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Abstract: Accurate forecasting of COVID-19 case numbers is critical for timely and effective
public health interventions. However, epidemiological data's irregular and noisy nature
often undermines the predictive performance. This study examines the in�uence of four
smoothing techniques—the rolling mean, the exponentially weighted moving average, a
Kalman �lter, and seasonal–trend decomposition using Loess (STL)—on the forecasting
accuracy of four models: LSTM, the Temporal Fusion Transformer (TFT), XGBoost, and
LightGBM. Weekly case data from Ukraine, Bulgaria, Slovenia, and Greece were used to as-
sess the models' performance over short- (3-month) and medium-term (6-month) horizons.
The results demonstrate that smoothing enhanced the models' stability, particularly for
neural architectures, and the model selection emerged as the primary driver of predictive
accuracy. The LSTM and TFT models, when paired with STL or the rolling mean, outper-
formed the others in their short-term forecasts, while XGBoost exhibited greater robustness
over longer horizons in selected countries. An ANOVA con�rmed the statistically signi�-
cant in�uence of the model type on the MAPE ( p = 0.008), whereas the smoothing method
alone showed no signi�cant effect. These �ndings offer practical guidance for designing
context-speci�c forecasting pipelines adapted to epidemic dynamics and variations in
data quality.

Keywords: COVID-19 forecasting; time series smoothing; STL decomposition; LightGBM;
LSTM; Temporal Fusion Transformer; Kalman �lter; epidemic modeling

1. Introduction
Accurate, forward -looking estimates of epidemic activity remain a frontline decision

support tool for ministries of health, hospital networks, and multilateral agencies. Almost
�ve years after the �rst reports of SARS -CoV-2, this virus still produces hundreds of
thousands of new laboratory-con�rmed infections every month. It continues to strain
the intensive care capacity in several regions [1]. At the same time, regular surveillance
streams have become more heterogeneous as countries have downscaled testing, shortened
reporting lags, or adopted sentinel schemes. These shifts intensify the statistical noise
already created by the clearance of backlogs, holiday effects, and sudden behavioral
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changes, and they complicate the task of building forecasting systems that can be transferred
from one national setting to another.

A well -established way to attenuate this noise is to smooth the raw time series before
�tting the model. Classical �lters, like moving averages (MAs), Holt–Winters exponential
smoothing, and Kalman variants, have long been applied to epidemic curves. Recent
reviews list these among the most frequently recommended preprocessing steps for health
emergencies [2]. Empirical studies con�rm their practical value: centered MAs improved
short-term COVID -19 projections by reducing the mean absolute percentage error below
6% [3]. At the same time, seasonal–trend decomposition using Loess (STL), coupled with
the seasonal autoregressive integrated moving average (SARIMA), captured extreme surges
more faithfully than un�ltered baselines [ 4]. Adaptive Kalman �ltering has also been used
successfully to track non-stationary case volatility in real time, outperforming static sta-
tistical models during the Omicron wave [ 5]. On the modeling side, modern machine
learning architectures such as long short-term memory (LSTM) networks and the Temporal
Fusion Transformer (TFT) increasingly dominate the accuracy rankings for multi -horizon
epidemic forecasts. LSTM variants augmented with attention mechanisms recently deliv-
ered sub-10% two-week error rates for Japanese prefecture-level predictions [ 6], and TFT
has proved resilient in other pandemic-affected domains that require interpretable time
series estimates [7].

Despite these advances, the literature still treats the choice of smoother and the
choice of forecasting model as largely independent design decisions. Comparative studies
usually �x one dimension (for example, they benchmark several learners on a single
smoothed signal or test several smoothers with a single learner) and rarely explore how
these dimensions interact when the data quality, epidemic phase, and prediction horizon
vary across countries. As a result, practitioners lack systematic evidence on whether the
bene�ts of smoothing depend more on the statistical properties of the �lter, on the inductive
biases of the learner, or on the forecasting window itself.

This study aims to determine how four common smoothing techniques—the rolling
mean, the exponentially weighted moving average (EWMA), a Kalman �lter, and STL—
affect the short- (3-month) and medium-term (6-month) accuracy of four forecasting models
(LSTM, TFT, XGBoost, and LightGBM) when applied to weekly COVID -19 case data from
Ukraine, Bulgaria, Slovenia, and Greece.

To achieve this aim, the following tasks were formulated:

1. Assemble and standardize weekly COVID-19 incidence series for the four countries;
2. Apply the four smoothing methods to every series with uniform parameter settings;
3. Train and evaluate each forecasting model on every smoothed dataset for both pre-

diction horizons using the root mean squared error (RMSE), the mean absolute error
(MAE), and the mean absolute percentage error (MAPE);

4. Use a two-way ANOVA to quantify the main and interaction effects of the choice of
smoothing and model architecture on the forecast error.

This study is, to our knowledge, the �rst to jointly evaluate the effects of smoothing
techniques and forecasting models across multiple national COVID-19 datasets with varied
quality of reporting. The results offer practical, generalizable guidance for public health
forecasting pipelines.

The expected contribution of this work is four -fold. Firstly, it offers the �rst cross-
country, full-factorial comparison that jointly varies the preprocessing and model selection
in epidemic forecasting. Secondly, it identi�es speci�c smoother–model pairs that minimize
the error and reduce the variance under different horizon lengths and data quality pro�les.
Thirdly, it shows that while the model architecture is the main driver of accuracy, the right
smoothing technique can still cut the variance in the forecasts by up to one-third, providing
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clear guidance for pipeline design. Fourthly, it offers reproducible code and country-level
recommendations that public health agencies can adapt quickly during future outbreaks.

The remainder of this article is organized as follows. Section 2 reviews the recent
research on smoothing and machine learning approaches to epidemic forecasting and
positions our work within this literature. Section 3 details the data sources, preprocessing
steps, smoothing pipelines, and experimental design, including the model architectures
and error metrics. Section 4 reports the empirical results for all model–smoother–horizon
combinations. Section 5 interprets these �ndings in light of prior studies, highlights the
practical implications for public health agencies, and discusses this study's limitations.
Section 6 concludes with the main takeaways and outlines directions for future research.

2. Analysis of the Current Research
Smoothing techniques such as simple MAs, the EWMA, Kalman �lters, STL, and

exponential smoothing are commonly employed to prepare epidemic data for forecasting
models [8–10]. These methods aim to isolate underlying trends and seasonal patterns,
thereby improving the performance of both statistical and machine learning models. Tra-
ditional smoothing approaches, such as moving averages, have been widely applied to
epidemic data [11]. Although these methods are simple and effective for reducing noise,
they can also lag behind real-time changes and potentially obscure critical in�ection points.
Conversely, exponential smoothing techniques provide more responsiveness by assigning
greater weight to recent data [12].

The EWMA, a variant of exponential smoothing, has gained prominence in epidemic
forecasting due to its ability to detect small shifts in time series data while maintaining
computational ef�ciency. In [ 13], the authors demonstrated that EWMA charts accurately
captured the evolution of COVID-19 mortality in the USA, identifying critical pandemic
phases and peak periods across multiple waves. Similarly, Ref. [14] utilized EWMA-based
techniques, including robust variants, to enhance the stability and predictive accuracy
of epidemic time series from Iraq, particularly in the presence of outliers and irregular
�uctuations. The paper [ 15] further showed that integrating EWMA charts with time
series models (e.g., ARIMA and VARMA) enabled the earlier detection of outbreak signals
compared to conventional observation-based approaches, highlighting this method's utility
for real-time surveillance.

Kalman �lters offer a more adaptive approach. In [ 16], a Kalman �ltering framework
was employed to estimate the stochastic volatility in daily COVID-19 case rates using
time-varying parameters, demonstrating its robustness in capturing volatility clustering,
a common feature of epidemic data. In [ 17], the authors combined Kalman �ltering with
an ensemble machine learning pipeline, including random forest, to analyze in�uential
environmental and demographic variables. Then, they used the Kalman �lter to predict the
case trends in the short term. Additionally, Ref. [ 18] presented a two-stage approach that
�rst classi�ed Indian states based on COVID-19 risk using a naïve Bayes classi�er, followed
by using Kalman-based smoothing to re�ne the state-level outbreak predictions. Advanced
variants, such as the Cubature Kalman Filter [ 19], have been used within compartmental
models to estimate epidemic states in real time.

Although Kalman �lters are highly effective for adaptive smoothing and dynamic
estimation, they are often complemented by methods that provide clearer structural de-
composition. One such method is STL, a more �exible technique that separates time series
into three components: trend, seasonal, and residual. Several studies have successfully
applied STL in the context of COVID-19. In [ 4], STL was combined with the SARIMA to
forecast extreme increases in daily COVID-19 cases in Jakarta. The hybrid STL-SARIMA
model allowed for accurate estimation of the value-at-risk of infection surges, yielding a
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low error and demonstrating STL's ability to enhance the accuracy of the upper-bound pre-
dictions under volatile conditions. Similarly, Ref. [ 20] highlighted the robustness of STL in
smoothing time series with pandemic-induced disruptions, showing that STL could be ap-
plied without modi�cations even when the traditional methods (e.g., X13-ARIMA-SEATS)
required the treatment of outliers or adjustment to seasonal patterns.

The effectiveness of smoothing methods often depends on the characteristics of the
forecasting model. ARIMA models have been widely used to forecast COVID-19 trends
across regions, showing a reliable short-term performance [21,22]. Variants like ARIMAX
have allowed for the integration of external features such as comorbidities, enhancing
hospital resource planning [ 23]. Hybrid approaches, such as ARIMA-LSTM, combine linear
and nonlinear modeling capabilities and have outperformed standalone models in their
accuracy [24].

Machine learning models like XGBoost and LightGBM can handle complex, nonlinear
data structures and bene�t substantially from smoothed input features such as rolling aver-
ages and lagged statistics [25]. In [ 26], an ensemble framework incorporating LightGBM,
XGBoost, and random forest was developed to forecast daily COVID-19 cases in the USA.
This study emphasized the importance of feature engineering, including smoothed time-
lagged variables and policy intervention indicators, and found that LightGBM achieved
the highest predictive accuracy among the base learners. In [27], LightGBM and LSTM
were used to predict daily new cases in Indonesia. Although LSTM yielded a slightly better
accuracy, LightGBM performed competitively, especially when smoothed and normalized
features were used. Furthermore, Ref. [28] focused on real-time COVID-19 predictions
across �ve cities in Saudi Arabia, comparing the accuracy and computational ef�ciency of
XGBoost and LightGBM. The results demonstrated that while LightGBM offered strong
scalability, XGBoost consistently delivered faster computation, making it more suitable for
time-critical public health forecasting.

Deep learning models, especially recurrent architectures like LSTM and GRUs [ 29],
have shown strong potential for COVID-19 time series forecasting. These models are
well suited to learning long-term temporal dependencies and nonlinear patterns, but
their effectiveness depends heavily on the quality of the input data. Several studies have
shown that smoothing and normalization signi�cantly enhance the performance of LSTM
when predicting daily case numbers. For example, in [ 30], LSTM-based models were
used for multi-step COVID-19 infection forecasting in India, successfully capturing both
the �rst and second pandemic waves and providing two-month-ahead forecasts. In [ 16],
an optimized LSTM model with a modi�ed output gate (popLSTM) outperformed the
standard LSTM models across multiple countries by increasing the prediction accuracy by
over 4%. Another study [ 31] proposed an LSTM framework augmented with an attention
mechanism and transfer learning for small-area urban time series predictions. The model,
trained on smoothed sequences, demonstrated improved robustness in handling both
jagged and �at segments of the COVID-19 curve. These �ndings underscore the critical role
of data preprocessing and model enhancements, such as attention and transfer learning, in
improving deep-learning-based forecasting.

While LSTM and its variants are now widely used for epidemic time series modeling,
the TFT, a state-of-the-art deep learning architecture for interpretable time series forecasting,
remains underexplored in COVID-19. Initially proposed in [ 32], the TFT combines attention
mechanisms with gating layers to model short- and long-term temporal patterns while
retaining interpretability. Despite its success in other domains, such as electricity load
and retail forecasting, the current literature lacks substantial applications of the TFT to
COVID-19 case predictions.



Computation2025, 13, 136 5 of 20

The variability in the COVID-19 data across countries, stemming from differences in
their testing capacities, reporting standards, and healthcare infrastructure, poses signi�cant
challenges for model comparability and forecast reliability. In response, smoothing tech-
niques have been widely used to harmonize epidemic curves and reduce local �uctuations.
Studies have demonstrated their effectiveness in enhancing the forecasting performance in
diverse national settings. For instance, penalized smoothing splines revealed the mortality
patterns across multiple countries [ 33], while centered moving averages improved the
imputation accuracy in datasets with reporting gaps [ 34]. Exponential smoothing showed
sensitivity to parameter tuning in ASEAN countries [ 35] and proved helpful in capturing
real-time changes in trends during rapidly shifting epidemic phases in Thailand [ 36]. Other
work found that smoothing improved the model performance in cases with short-term
volatility [ 37] and across a range of forecasting methods, including Prophet, Holt–Winters,
and LSTM techniques [38].

Beyond improving the predictive accuracy, smoothing enhances forecasts' inter-
pretability and practical usability. Smoothed outputs have been shown to clarify key
events such as lockdowns and vaccination effects [33,35], improve the attention and weight
distribution of machine learning models [36], and reduce bias during imputation [34].

Despite the proven effectiveness of individual smoothing techniques and forecasting
models, prior studies have rarely offered systematic comparisons across multiple smooth-
ing methods, model architectures, and national contexts simultaneously. To address this
gap, our study evaluates the combined effects of different smoothing strategies and ad-
vanced forecasting models across diverse countries with varying data quality and epidemic
volatility. This approach aims to identify effective, context-speci�c preprocessing strategies
that enhance epidemic forecasting in real-world public health settings.

3. Materials and Methods
3.1. The Data and Preprocessing

For this research, we used publicly available COVID-19 case data from the World
Health Organization https://data.who.int/dashboards/covid19/data (accessed on 2 March
2025), which includes of�cially reported new infections, cumulative cases, and deaths for
all member countries. The dataset spans the pandemic's full course, from January 2020
through to the end of December 2024, allowing for a long-range temporal analysis.

For this study, we focused on four countries: Ukraine, Bulgaria, Slovenia, and Greece.
This selection was based on both qualitative and quantitative criteria, including their
geographic proximity, comparable pandemic trajectories, and consistent data reporting.
In addition, these countries demonstrated a high degree of correlation in their weekly
new case counts, with the Pearson's coef�cients exceeding 0.85 over the study period.
This ensured epidemiological similarity while preserving administrative diversity and
variability in the surveillance practices. To reduce reporting noise and align with the goals
of medium-term forecasting, we aggregated the daily case counts into weekly totals, using
Monday as the start of the week. This also compensated for inconsistencies caused by
weekend reporting delays or administrative batching.

We applied quantile-based normalization to stabilize the scale of reported cases and
mitigate the impact of extreme �uctuations [ 39]. This approach transforms the empirical
distribution of each country's time series to approximate a standard normal distribution.
The transformation promotes a uniform statistical structure across inputs by mapping
the original values to a normal distribution, facilitating more stable and ef�cient learn-
ing, particularly in neural network models. This normalization strategy was selected
after hyperparameter tuning on Ukrainian data, where it yielded the lowest forecast error
and most stable convergence, particularly for the LSTM and TFT models. While opti-

https://data.who.int/dashboards/covid19/data
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mized on one country, the same method was applied uniformly across all datasets to
ensure comparability.

3.2. Smoothing Techniques

To prepare the weekly time series for forecasting, we applied four distinct smoothing
methods to each country's case counts: the MA, the EWMA, Kalman �ltering, and STL.

The moving average uses a 7-day symmetric window centered at each time point,
incorporating three observations before and after the current value. The smoothed value at
time t is given by

ỹt =
1
7

3

å
i= � 3

yt+ i (1)

This method effectively reduces short-term �uctuations and weekly seasonality but
may blur sudden structural changes, especially near outbreak peaks. To address this
limitation, we also applied the EWMA, de�ned recursively as

ỹt = ayt + ( 1 � a) ỹt � 1 (2)

where a 2 (0, 1) is the smoothing factor. Our experiments used a span of 7 days, corre-
sponding to

a =
2

span + 1
= 0.25. (3)

This formulation allows the model to adapt to short-term trends while maintaining
smoothness.

The Kalman �lter provides a probabilistic framework that models the observed series
as a linear dynamical system with Gaussian noise. It estimates an unobserved state xt

recursively as new observations vt become available:

xt = xt � 1 + wt , wt � N (0,Q) (4)

yt = xt + vt , vt � N (0,R) (5)

We estimated the parameters using the expectation-maximization algorithm over
10 iterations. The Kalman �lter captures the hidden temporal structure and smooths the
series by balancing model predictions with the observed data.

To isolate long-term patterns, we used STL, which expresses the observed series as the
sum of three components:

yt = Tt + St + Rt (6)

where Tt is the trend, St is the seasonal component, andRt is the residual. The seasonal
period was �xed at 7 days to re�ect the weekly periodicity observed in the aggregated data.
Only the trend component Tt was retained and used as input to the forecasting models.

All smoothing methods were applied independently to each country's weekly time
series using consistent parameters. Our goal was not to optimize each technique per
country but to compare their relative impact on the forecasting performance under a
uniform preprocessing pipeline.

3.3. The Forecasting Models and Experimental Design

To evaluate how different smoothing techniques affected the accuracy and robustness
of COVID-19 case forecasts, we designed a comprehensive experimental setup involving
four predictive models that spanned both classical machine learning and deep learning
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paradigms: LightGBM, XGBoost, LSTM, and the TFT. Each model was trained on four
versions of the preprocessed time series across multiple countries, enabling a system-
atic comparison of the forecasting performance across smoothing strategies, modeling
approaches, and time horizons.

For LightGBM and XGBoost, we adopted a feature-based forecasting formulation. The
input feature set included �xed lags (1, 2, 7, and 14 days), rolling statistics (mean, stan-
dard deviation, min, and max), percentage changes, and STL-derived components (trend,
seasonal, and residual). LightGBM was trained with L1 loss, while XGBoost optimized
the squared error using a consistent set of hyperparameters across countries to ensure
fair evaluation.

We employed two deep learning models, LSTM and the TFT, to explicitly capture
the temporal dependencies. Both were trained on smoothed weekly case counts using
a 48-week input window and generated predictions for 12-week and 24-week horizons.
Both the LSTM and TFT models were trained on the same input structure: smoothed new
case counts enriched with engineered time-varying covariates. These included lagged
values (up to 90 days), rolling window statistics (mean, std, min, and max), percentage
changes (1-day and 7-day), and components extracted via STL. No external covariates such
as vaccination coverage, policy interventions, or mobility indicators were used. LSTM was
implemented as a deep recurrent network optimized using quantile regression, enabling
predictive intervals through quantile loss:

Lquantile = å
q2 Q

max(q(y � ŷ), (q � 1)(y � ŷ)) (7)

with Q = f 0.1, 0.25, 0.5, 0.75, 0.9g.
The TFT used the same quantile-based strategy, with four attention heads, a hidden

size of 256, and all engineered features provided as time-varying covariates. Standard
regularization techniques (early stopping, dropout, and gradient clipping) were applied to
both models.

All models were trained on normalized and smoothed weekly case data. Two fore-
casting scenarios were de�ned for each dataset, short-term (12 weeks) and medium-term
(24 weeks), with the prediction windows beginning in June and September 2024, respec-
tively. To re�ect realistic deployment conditions, the models were trained once for each
country and forecast horizon and remained �xed throughout the prediction period.

Forecast accuracy was evaluated using the RMSE, MAE, and MAPE, all com-
puted on inverse-transformed predictions. The resulting experimental grid included
128 con�gurations (4 models × 4 smoothing methods × 2 horizons × 4 countries), enabling
a robust comparison across the dimensions of interest.

4. Results
Building on the experimental setup described in the previous section, we evaluated

the impact of smoothing techniques on the forecasting accuracy. To support a comparative
evaluation, the results are visualized using boxplots (to illustrate the variability in the
predictions), heatmaps (to summarize the average performance across countries), and line
plots (to compare the predicted versus actual case trajectories).

Figure 1 summarizes the forecasting error distribution across two forecast horizons
for each model–smoothing combination.

As expected, shorter-term forecasts generally result in lower absolute errors. However,
the model's sensitivity to the choice of smoothing technique remains notable. In the
3-month horizon, the TFT achieves the lowest median RMSE and MAE, particularly when
paired with STL or the rolling mean, indicating its strong short-term performance. However,
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LightGBM outperforms the other models when considering the MAPE, exhibiting lower
variability in the relative error. LSTM, while capable of a competitive median performance
under STL, shows signi�cant instability, especially with the other smoothing methods.

Figure 1. Boxplots for 3- and 6-month forecasting horizons.

For the 6-month horizon, XGBoost consistently outperforms the other models across
all three metrics, with the lowest median RMSE, MAE, and MAPE. This suggests that
tree-based models are more robust for longer-term forecasts. While neural models like the
TFT and LSTM demonstrate potential, they are more prone to error spikes, particularly
under less effective smoothing methods such as the Kalman �lter or EWMA. The MAPE
plotted on a logarithmic scale, due to its high variance, reveals substantial volatility for the
neural models in both the 3-month and 6-month forecast periods when paired with the
Kalman �lter or EWMA smoothing, likely due to small denominators where accurate case
counts approach zero. Notably, extraction of the trends using STL consistently reduces this
instability, particularly for LSTM, underscoring its effectiveness in stabilizing the relative
error across short- and medium-term forecasts.

Figures 2 and 3 present heatmaps of the RMSE, MAE, and MAPE for the 6-month and
3-month forecast horizons.

The patterns shown are supported by the summary of the best-performing combina-
tions in Table 1, which lists the lowest values for each error metric across all settings.

As expected, 3-month forecasts generally yield lower RMSE and MAE values than
those of 6-month forecasts, especially for Ukraine and Bulgaria. For instance, in Ukraine,
the TFT with STL achieves an RMSE of 144.49 and an MAE of 91.01 for the 6-month horizon,
but at 3 months, LSTM with the rolling mean performs better, with a 33.89 RMSE and a
27.6 MAE. In Bulgaria, the TFT paired with the rolling mean achieves an RMSE of 41.68
and an MAE of 28.97 at 3 months, compared to the lowest error for a 6-month forecast for
the TFT with the Kalman �lter, at a 56.12 RMSE and a 43.76 MAE. These reductions con�rm
that neural models bene�t from shorter horizons, provided that appropriate smoothing
is applied.
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Figure 2. Heatmaps for 6-month forecasting.

However, the reduction in the error is not uniform. In Slovenia, the TFT with the
Kalman �lter achieves the lowest RMSE (19.81) and MAE (14.34) for the 6-month horizon,
yet the performance for the 3-month horizon is not consistently better across all metrics.
The TFT with the rolling mean achieves the best RMSE (22.33), and the TFT with the
Kalman �lter still yields the lowest MAE (15.94). This suggests that even when shorter-
term forecasts are generally more accurate, some combinations at longer horizons can still
outperform them depending on the error metric and smoothing method. In Greece, a
different pattern emerges. For the 6-month horizon, XGBoost with STL outperforms the
neural models in its RMSE (434.03) and MAE (333.09). For 3 months, although the TFT
with the rolling mean achieves the lowest RMSE (604.24) and MAE (375.15), the overall
errors remain higher than those for the other countries. This indicates that forecasting
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challenges in Greece may stem more from the underlying variability in the data or reporting
inconsistencies than from the choice of model or horizon.

Figure 3. Heatmaps for 3-month forecasting.

The MAPE values vary considerably across countries and smoothing methods. For the
3-month horizon, LSTM + STL achieves the lowest MAPE in Slovenia (894,000) and Greece
(13,700,000), and it also leads in Greece at the 6-month horizon (1,530,000), highlighting
STL's stabilizing effect on neural models in terms of the relative error. However, in low-
incidence countries like Slovenia and Greece, the MAPE can become extremely in�ated
due to division by near-zero actual case counts. In such cases, the RMSE and MAE offer
more stable indicators of the performance and should be prioritized when interpreting the
results. In contrast, Bulgaria sees its best MAPE value using the TFT with the EWMA at
both horizons (27.3 at 6 months and 25.5 at 3 months), while in Ukraine, XGBoost with
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STL and LightGBM with the rolling mean perform best for the 6- and 3-month forecasts,
respectively. These results suggest that STL can effectively stabilize the relative error in
neural models like LSTM, particularly for countries such as Slovenia and Greece. However,
no single smoothing method consistently outperforms the others across all countries and
models, reinforcing the need for context-speci�c optimization in epidemic forecasting.

Table 1. Best-performing method per country and forecast horizon.

Country Forecast Best Method RMSE Best Method MAE Best Method MAPE
Period (RMSE) (MAE) (MAPE)

Ukraine 6M TFT + STL 144.49 TFT + STL 91.01 XGBoost + STL 0.93
3M LSTM + RM 33.89 LSTM + RM 27.6 LightGBM + RM 0.396

Bulgaria 6M TFT + Kalman 56.12 TFT + Kalman 43.76 TFT + EWMA 27.3
3M TFT + RM 41.68 TFT + RM 28.97 TFT + EWMA 25.5

Slovenia 6M TFT + Kalman 19.81 TFT + Kalman 14.34 LSTM + Kalman 46.6
3M TFT + RM 22.33 TFT + Kalman 15.94 LSTM + STL 894,000

Greece 6M XGBoost + STL 434.03 XGBoost + STL 333.09 LSTM + STL 1,530,000
3M TFT + RM 604.24 TFT + RM 375.15 LSTM + STL 13,700,000

Note: Bolded values indicate the lowest metric values across countries.

Figures 4–11 visually compare the 6-month and 3-month forecast trajectories across
countries and smoothing methods. These plots provide insight into how well the different
models track the actual case dynamics, especially during rising or falling trends.

Figure 4. Forecast trajectories for 6-month forecasting and the rolling mean as the smoothing method.



Computation2025, 13, 136 12 of 20

Figure 5. Forecast trajectories for 6-month forecasting and the Kalman �lter as the smoothing method.

Figure 6. Forecast trajectories for 6-month forecasting and STL as the smoothing method.
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Figure 7. Forecast trajectories for 6-month forecasting and the EMWA as the smoothing method.

Figure 8. Forecast trajectories for 3-month forecasting and the rolling mean as the smoothing method.
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Figure 9. Forecast trajectories for 3-month forecasting and the Kalman �lter as the smoothing method.

Figure 10. Forecast trajectories for 3-month forecasting and STL as the smoothing method.
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Figure 11. Forecast trajectories for 3-month forecasting and the EMWA as the smoothing method.

Consistent with the earlier �ndings, LSTM combined with STL produces the most
visually accurate forecasts in Slovenia and Greece, closely tracking the actual trends for
3-month forecasting. In contrast, in Ukraine, LSTM with the Kalman �lter or the EWMA
for 6-month forecasts and LSTM with the rolling mean, the Kalman �lter, or the EMWA
for 3-month forecasts diverge signi�cantly, where the predictions �uctuate or are �attened
unrealistically.

In Bulgaria, the TFT with the EWMA, which shows the best MAPE, also closely
follows the real case trajectory. In Ukraine, XGBoost with STL for 6-month forecasting
and LightGBM with the rolling mean for 3-month forecasting align better with the actual
values, con�rming their strong MAPE results. Across most of the countries, STL smoothing
improves the shape and stability of the forecasts for the neural models, while the tree-based
models offer more consistent but sometimes overly smoothed predictions.

These �ndings are supported not only visually but also statistically. We conducted
a two-way ANOVA on the MAPE, MAE, and RMSE values to validate the observed
differences (Table 2).

Table 2. Two-way ANOVA: summary of effects on the MAPE, MAE, and RMSE.

Factor
F-Value

for
MAPE

p-Value
for

MAPE

F-Value
for

MAE

p-Value
for

MAE

F-Value
for

RMSE

p-Value
for

RMSE

Smoothing Method 1.49 0.222 0.095 0.96 0.082 0.97
Model Name 4.13 0.008 1.98 0.12 1.066 0.37

The MAPE was the primary focus due to its scale independence and higher variability
across conditions. As shown in Table 2, model architecture had a statistically signi�cant
effect on the MAPE (F = 4.13,p = 0.008), while its impact on the MAE and RMSE was in-
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signi�cant. The smoothing methods showed no signi�cant effect on any metric, reinforcing
that the choice of model is the primary driver of accuracy.

Table 3 lists the best-performing model and smoothing combinations by country and
forecast horizon to summarize the dominant con�gurations observed across all evaluations.
These combinations were selected based on the lowest error metrics and were consistent
with the abovementioned patterns, such as LSTM with the rolling mean in Ukraine for short-
term forecasts and the TFT with the Kalman �lter in Bulgaria for longer horizons. In most
cases, the strong showing of the neural models further reinforces the statistical �ndings.

Table 3. Summary of best model–smoothing combinations.

Country Horizon Best Model Best Smoothing

Ukraine 3M LSTM Rolling mean
Ukraine 6M TFT STL
Bulgaria 3M TFT Rolling mean
Bulgaria 6M TFT Kalman �lter
Slovenia 3M TFT None
Slovenia 6M TFT Kalman �lter
Greece 3M TFT Rolling mean
Greece 6M XGBoost STL

Beyond identifying the optimal model–smoothing pairs (Table 3), several deeper
insights emerged. First, neural models like LSTM and the TFT showed greater sensitivity to
volatility in the data, especially for longer horizons, re�ecting the patterns seen in epidemic
forecasting studies where the performance drops during phase shifts. Second, although
our analysis evaluates the models independently, prior research suggests that combining
predictions from multiple models (i.e., using ensemble methods) can reduce the variance in
forecasts and improve robustness.

Third, smoothing methods like the rolling mean and STL improve the performance for
neural models but also help stabilize the predictions from tree-based models, particularly
in countries with high case variability. These elements highlight the interplay between the
model type, smoother, and forecast horizon in shaping accuracy and reliability.

5. Discussion
Our analysis shows that smoothing is helpful when matched to both the learning

algorithm and the forecast horizon. A two -way ANOVA con�rmed that the model archi-
tecture explained the bulk of the variation in the MAPE (F = 4.13, p = 0.008), whereas the
main effect of smoothing was not signi�cant. Even so, the descriptive results reveal clear
interaction patterns.

For the 3-month forecasts, LSTM and the TFT fed with either a centered seven-point
rolling mean or the trend component from STL reduced the RMSE by more than 60% in
three of the four countries studied. Comparable behavior was reported in [ 40], which used
an STL-SARIMA hybrid to track the daily incidence in Jakarta and attained a MAPE of 0.15.
This improvement stems from the removal of the dominant weekly cycle, which otherwise
drives gradient instability during backpropagation. Similar advantages for smoothed
inputs were observed in a study using multi-step LSTM in Indian states [30].

Kalman smoothing lowered both the RMSE and MAE for the TFT in Bulgaria and
Slovenia, echoing the results from a study tracking the volatility in daily case rates [ 16]. In
Greece, however, the same �lter suppressed meaningful peaks and in�ated the relative
error, an outcome previously noted when the variance in the observations was misspeci�ed
in epidemic state-space models [40]. These mixed results underline that adaptive �lters
demand careful tuning to the local reporting noise.
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When the horizon widened to 6 months, gradient boosting trees became the most
reliable option. XGBoost achieved the lowest median RMSE in half of the long -range runs
and showed low sensitivity to the smoother. In [ 28], a similar conclusion was reached for
�ve Saudi cities: XGBoost offered faster training and more stable long -horizon errors than
LightGBM, even though both models shared most engineered features.

Because different model–smoother pairs excel in different settings, an ensemble of-
ten outperforms any single contributor. The U.S. Forecast Hub showed that a simple
median-weighted ensemble was the most accurate forecaster of mortality for 18 months of
the pandemic [41], and similar gains were documented for European case forecasts [14].
Although the present work evaluated the models independently, the diversity of the error
profiles indicates that combining neural and tree predictions would further reduce the variance.

This study has several limitations. First, only four European countries were analyzed;
extending this experiment to settings with sparser surveillance may change the balance
between the cost and bene�t of smoothing. Second, the smoothing parameters were
�xed across countries to isolate the relative effect of each method. However, future work
could explore country-speci�c tuning to enhance the accuracy further and better re�ect
national reporting characteristics. Third, weekly aggregation improved the robustness
by removing weekday noise and administrative artifacts. Data were used as reported by
the WHO. Weekly aggregation minimized the �uctuations, though missing data remain a
limitation. However, it may have obscured short-term surges or rapid outbreak dynamics.
Exploring daily or biweekly aggregation could capture such patterns better. Operational
dashboards that run on daily data should pair light smoothing with anomaly detectors.
Additionally, future work may apply mixed-effects models to capture interaction terms
and country-speci�c effects better. Temporal cross-validation or ensemble averaging could
help reduce the variance and is worth exploring in follow-up work. Real-time deployment
requires balancing the accuracy and computational cost. TFT training requires GPU support,
which may limit its accessibility for some agencies. Training the TFT and LSTM was
3–4 times slower than this process for XGBoost or LightGBM, making tree-based models
more accessible in resource-limited contexts. Advanced architectures like N-BEATS or
diffusion models may offer improvements and are planned for future research. Robust
STL and outlier detection techniques may prevent the peak suppression seen with Kalman
�ltering. This will be tested in subsequent experiments.

For horizons up to 12 weeks, LSTM or the TFT preceded by STL or a short rolling
mean would likely give the lowest point error. For 13–26 weeks, a tree ensemble offers
greater robustness with a modest computing cost. Both smoothing steps run in linear time,
so they add little overhead to real -time pipelines. Updating the model–smoother pairing
as new data accrue could help public health agencies keep the predictions reliable under
changing surveillance conditions. A real-time system may integrate anomaly detection,
residual monitoring, and scheduled retraining to maintain accuracy during regime shifts.

6. Conclusions
This study assessed the effect of smoothing techniques and the model selection on

forecasting the COVID-19 case counts across multiple countries and two forecast horizons.
Our results indicate that shorter-term forecasts (3 months) consistently reduce the absolute
error metrics (the RMSE and MAE), especially when neural models like LSTM and the TFT
use smoothing methods such as STL or the rolling mean.

The tree-based models (XGBoost and LightGBM) demonstrated a more robust per-
formance for longer-term forecasting, particularly for countries with more irregular data
patterns. Among the smoothing methods, STL was most effective at stabilizing the MAPE



Computation2025, 13, 136 18 of 20

across the models, with statistical tests con�rming that model choice signi�cantly impacted
the relative accuracy of the forecasts (F = 4.13,p = 0.008).

While no single combination performed best across all countries and metrics, these
results emphasize the importance of aligning the forecast horizon, data volatility, and model
architecture with an appropriate smoother. These insights can support the development of
more reliable epidemic forecasting pipelines for diverse national contexts.

The proposed forecasting pipeline, combining smoothing techniques with robust ma-
chine learning models, can be adapted for real-time deployment by public health agencies.
By regularly updating the input data and leveraging model–smoother con�gurations tai-
lored to the epidemiological pro�le of each country, health authorities can improve their
short- and medium-term outbreak predictions. This, in turn, can support early intervention
planning, healthcare resource allocation, and the timely implementation of containment
measures during future pandemic waves or similar public health emergencies.

Future work may explore using adaptive training schemes or ensemble techniques
to improve the generalizability and real-time applicability. Additionally, incorporating
anomaly detection or reporting correction steps before smoothing may help mitigate the
risk of obscuring critical short-term shifts in the case dynamics, especially in countries with
irregular reporting practices.
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