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ABSTRACT

The mechanism of vortex inhibition by dilute polymer
solutions which also show drag reduction is discussed. The
velocity field for a confined vortex flow of a Newtonian
fluid has been determined numerically by a finite difference
(AWD) technique; the results compare favorably with experi-
mental velocity profiles found for water.

To model the behavior of dilute polymer solutions in
this flow we have idealized the macromolecules as dumbbells
with finitely extendable, nonlinear, elastic (FENE) connectors.
An approximate constitutive equation for this model is com-
bined with the numerically determined Newtonian velocity pro-
files to give the response to the polymer molecules to the
vortex flow.

It is found that appreciable stretching and accompanying
increase in elongational viscosity of the macromolecules occurs
in the immediate vicinity of the exhaust hole. We believe
that the change in stress field produced in this way is suffi-
cient to account for vortex inhibition.
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I. SUMMARY

1.1 Introduction

The viscoelastic phenomenon "vortex inhibition" was

discovered by Gordon (1972) in 1972. In his experiment, a

small amount of polymer in water prevents formation of a

vortex in draining the solution from the bottom of a square

tank (see Fig. 2.1). As shown in Fig. 2.1 this different

phenomenological behavior produced by adding just small

amounts of polymer indicates that the flow pattern is dras-

tically changed due to the presence of the polymer. In

order to describe vortex inhibition more explicitly, a

steady state vortex flow is established by tangentially

feeding the water at the outer wall of a cylindrical con-

tainer with an axially uniform velocity. The steady state

vortex flow is shown in Fig. 2.2. When the water is replaced

by approximately 30 wppm polyethylene oxide (Polyox WSR 301)

keeping the flow rate constant, the air core of the vortex

is suppressed and the suppression of the air core is not

steady but a randomly periodic phenomenon. Just after the

air core is suppressed, it tends to extend to the bottom

again. As soon as the air core reaches the bottom, it immed-

&tely is suppressed (See Fig. 2.3). This process is repeated

until the polymer is degraded. During vortex inhibition,

the liquid level drops by nearly 50%.

An interesting feature of vortex inhibition is that the

amount of polymer added to the water is so small that the
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Fig. 2.1 : Vortex Inhibition

In case of the Newtonian fluid, the vortex forms extending

down to the bottom. On the other hand, if a small, critical

concentration of polymer is present, the vortex is imcomplete.

surface of liquid

vortex

Polymer solutionNewtonian f luid



Fig. 2.2 Steady State Vortex Flow

3



Fig. 2. 3 Vortex Flow with Suppressed Air Core
___ 4
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shear viscosity of the polymer solution is only slightly

different from that of water itself (The relative viscosity

of the solution in this study is only about 1.02). Further-

more, the macromolecules which show vortex inhibition abil-

ity are also known to be good agents for drag reduction as

shown in TABLE 2.1.

Since the shear viscosity of the polymer solution is

almost equal to that of water for both vortex inhibition and

drag reduction, non-Newtonian rheological properties of the

dilute solutions such as strain rate thickening elongational

viscosity and non-zero normal stress differences in steady

shear flow might be responsible for vortex inhibition.

Especially the elongational viscosity is believed to be in-

creased drastically even at moderately high elongational rate

for a dilute solution. Even though no direct experimental

measurements have been obtained for the elongational viscosity,

the kinetic theory predicts that a high elongational viscos-

ity is realized when a linear flexible macromolecule is

stretched at almost full length due to the elongational flow

field. It may, therefore, be possible to expect that the

changes in flow behavior in vortex inhibition phenomenon

is due to the large elongational viscosity exerted by the

presence of a few macromolecules.

The objective of this thesis work is to investigate

the mechanism of vortex inhibition. The study is motivated

at first, by a possible correlation between vortex inhibi-

tion and drag reduction and secondly, by an interest in



TABLE 2.1

EFFECTIVE CONCENTRATIONS OF VARIOUS POLYMERS FOR V.I. AND D.R.

Polymer Designation Polymer Type
wwVm

Vortex Inhibition
wwpm

Drag Reduction

Polyox FRA*

Polyox WSR 301*

Separan AP 273'

Separan AP30

Polyethylene Oxide

Polyethylene Oxide

Polyacrylamide

Polyacrylamide

7.5

30

3

40

9

20

5

35

*Union Carbide (Manufacturer)

Dow (Manufacturer)

Note 1:

Note 2:

These data are from Gordon (1972).

Effective concentration is the lowest concentration with which polymer
shows the ability of vortex inhibition or drag reduction.
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developing a constitutive equation (rheological equation of

state) to describe dilute polymer solutions.

We can speculate from TABLE 2.1 that the mechanism of

vortex inhibition may be similar to that of drag reduction. In

spite of extensive studies of drag reduction, many aspects of

the phenomenon are not well understood. Out of several pro-

posed mechanisms for drag reduction, the visco-elastic nature

(especially large elongational viscosity) of macromolecules in

turbulent flow is proposed to be a major cause of reducing

turbulentenergy dissipation. According to Seyer and Metzner

(1969), the bursting (Kim et al., 1971) produced by a pair of

counter rotating eddies at boundary layer near the wall is char-

acterized by stretching motion similar to elongational flow.

The increased resistance to stretching due to the large elonga-

tional viscosity, thus results in less bursting and less radial

momentum flox transport. However, it is not possible to make a

direct test of this proposed mechanism because no precise velo-

city information of the fluid element is obtainable during the

bursting process. The proposed mechanism for drag reduction

may, in turn, be closely related to the molecular mechanism for

vortex inhibition. It might be possible to infer the molecular

mechanism for drag reduction from the analysis of vortex inhibi-

tion. Since the Newtonian vortex flow is treated as a laminar

flow, it is much easier to be analyzed than turbulent flow.

In order to analyze vortex inhibition, a constitutive

equation for a dilute polymer solution has to be introduced

so that information about the stress field can be predicted.
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Although a very simplified dumbbell model is used, we believe

that the kinetic theory provides reasonable predictions about

the differences in flow behavior resulting form molecular

structures. Moreover, we can evaluate the kinetic theory

constitutive equations by comparing their predictions in this

flow with experimental results.

The overall picture of this study is briefly described

in Fig. 1.1. The study is mainly divided into two parts;

one is to investigate fluid mechanics of vortex flow and the

other is to develop the constitutive equation. The study of

the vortex flow is further divided into theoretical and exper-

imental parts. The Newtonian velocity field determined from

both numerical and experimental results is used for stress

calculation by the constitutive equation because the Newton-

ian velocity field is a starting point for computing defor-

mation of the macromolecules when the polymer solution is

subjected to the flow field. The every part of study is then

combined in Chapter 6 for the discussion of the results

which lead to the conclusion of this study. The summary

of these studies are described in the rest of this chapter.
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1. 2 Fluid Mechanics of Vortex Flow

1. 2. 1 Theoretical Study

A Newtonian vortex flow has three distinct character-

istics in its flow behavior. As shown in Fig. 3.1, the

region I is called "free stream region" which is character-

ized by a potential flow. The tengential velocity Ve is

inversely proportional to the radial distance r in this

region. The changes in V 6 in the z-direction is so small

that the flow may be treated as one dimensional flow. The

region II is called "core region" where a large amount of

axial downflow exists because of the exit hole in the bottom

plate. The V6 , in turn, is proportional to the radius

in this region. The centrifugal force is exactly balanced

with the radial pressure gradient in both free stream and

core regions (Schlichting, 1968), the balance between the

two forces, however, is broken in the region III which is

called "bottom boundary layer". The Ve in the bottom

boundary layer is reduced due to the drag from the bottom wall

resulting in decreasing the centrifugal force. The radial

pressure gradient, on the other hand, remains the same along

the z-axis, this force, therefore, overcomes the centrifugal

force producing a large amount of radial inflow.

The tangential velocity in the free stream and core

regions is numerically solved assuming that the Ve is inde-

pendent of z. The 6-component of the equation of motion is

written in terms of circulation P (=rVe),
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1

I [
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Figure 3.1

Three Different Flow Regions

in a Newtonian Vortex Flow
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Vdr d2r IdrJ1.1
r dr r 2 r dr '

where v is kinetic viscosity. Since the radial velocity

Vr is inversely proportional to r when r is large and

V , in turn, is linear to r when r is small, Dergara-

bedian (1960) assumes the fo'llowing functionality of Vr-

V =- akr exp rJ] 1.2
r 2r 2

where an elongational rate at the axis of rotation i is

defined by

z 1.
S= Ejz) = rz 1.31 _CZ) -'Tz r=0

Using experimentally determined a and t in eq. 1.2 (Chiou,

1976), eg. 1.1 is solved by a finite difference scheme with

the boundary conditions P (r=0) = 0 and F (r=R) = F.
R

The calculated Ve in these regions agrees well with Chiou rs

experimental data (case 1 in Fig. 1.2). it is found from the

numerical simulation that the tangential velocity is very

sensitive to the elongational rate . When is in-

creased, the radial convection shifts the peak value of V0

toward the axis of rotation producing a steeper v 6 - profile

(case 2 in Fig. 1.2) which indicates that the increased &

intensifies the 6 -component of vorticity near the axis of
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Fig. 1.2

TANEENTIAL VELOCITY VS R
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rotation. On the other hand, when & is decreased, the vor-

ticity is able to diffuse farther in the positive r-direction

resulting in a flatter V 6 -profile (case 3 in Fig. 1.2).

Since V 6 near the axis of rotation is reduced, the corres-

ponding centrifugal force is also decreased. The radial

pressure gradient which is balanced with the centrifugal

force is then reduced.

The relative shape of the free surface of these vortex

flows can be obtained from the tangential velocity as a

function of r. Fig. 3.4 shows the calculated free sur-

faces with the three elongational rates corresponding to

Fig. 1.2. As expected, when i is increased (case 2 in

Fig. 3.4), the free surface becomes deeper due to the

larger radial pressure gradient near the center. When E,

however, is decreased (case 3 in Fig. 3.4), the fluid has

a flatter free surface. Vortex inhibition corresponds to the

free surface shape which becomes flatter due to the polymer

effect. As long as we regard the fluid as Newtonian, the

above discussion suggests that vortex inhibition corresponds

to a reduction in axial velocity gradient C.

it is known that large velocity gradient (strain rate)

is necessary for polymers to be subject to change its con-

formation. Especially when the strain rate reaches the

order of reciprocal of time constant k , various polymer
H

effects start revealing. Although Chiou (1976) indicated

that the strain rate
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Figure 3. 4
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would be responsible for the polymer effect causing vortex

inhibition, the maximum value of the strain rate in Fig.

1.2 is at most about 60 sec 1 around r=.4cm. The figure

is not large enough to realize the polymer effect because

the estimated time constant for Polyox WSR 301 solution shows

that the dimensionless strain rate which is the product of

the time constant and strain rate will be .6. The dimen-

sionless strain rate has to be at least more than unity to

expect the polymer effect according to the rheology of

polymer solution (chap. 5). The tangential velocity gra-

dient, therefore, maynot be a main cause of vortex inhibition.

And this leads us to investigate the area where higher strain

rates are established in the vortex flow.

The flow behavior inside the bottom boundary layer is

next analyzed in order to see if the polymer effect is rea-

lized in this region. The integral method (Lewellen, 1971)

is used for obtaining the boundary layer thickness and the

maximum radial velocity as functions of r. The results of

the method provides reasonable figures about these two var-

iables when compared them with the results obtained by Ander-

son (1966). The velocity gradient estimated from the re-

sults of the integral method is then used for polymer stress

tensor calculation. The constitutive equation used in this

calculation is the aookean Dumbbell model. The resulting
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stress tensor, however, is found to be not large enough

to change the flow behavior in the bottom boundary layer

when the stress terms are compared with the dominant force

which is radial pressure gradient in the r-component of the

equation of motion. The results of the analysis in the bottom

boundary layer, thus forces us to investigate the flow be-

havior in the core region and in the areas near the exit

hole to see if large velocity gradient is realized. In

order to analyze the flow behavior in these regions, the

numerical simulation is next described by solving full

Navior-Stokes equations in finite difference scheme for the

entire vortex tank.

For incompressible viscous flow in a confined cylin-

drical container, assuming that the flow is axisymmetric,

the velocity field in terms of circulation, vorticity and

stream function in a cylindrical coordinate (r, 6,z) are

described by the following equation.

CIRCULATION P

V r2 2 _17
ar ar ar aE 3

+ V + V -= l + 2 r-rj 1.4

VORTICITY w

V o 2
9w 9w 9w r W 1 ar2
9t r 3 zr r 3z

2v+ 2 lw rWi1.5
2+9 2  r 9r-.

Dr az rZ
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STREAM FUNCTION $

2 2
+ --- rw1. 6

2 2 r 9r

where v is a kinetic viscosity. The circulation is written

in terms of V0e.

r = rV 1.7

And the relation between the vorticity and the radial and axial

velocity v Vzis

@V 9V
r= - z 1.8

az 9r

vr' z relate to the stream function by

V 1 a --
r r 9z

1.9

z r 3r

In order to avoid the free surface as the boundary of vortex

flow, a cylindrical container is assumed to have two exit holes

located on the axis of rotation at each of the two walls. As

shown in Fiq.3.5, the vortex flow is then simulated over a

quarter of the total area because of geometrical symmetry. The

treatment of the free surface boundary in this way is eliminated

without losing the most important characteristics of the vortex
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flow (Anderson, 1961). The mesh construction of the flow field

is explained in Fig.3.6 according to a finite difference form-

ula. Due to the characteristics of the vortex flow described

previously, the mesh size in both the bottom boundary layer

and core region is made much smaller than that in the free

stream region to provide detailed information about the flow

behavior in those two regions. The dot in each zone repre-

sents the spacial position of each function whose value is

assumed to be uniform inside the zone. Since a zone method

(Clomburg, 1971) is used for a finite difference formula, eq.

1.4 to eq. 1.6 are arranged for more suitable forms. The dim-

ensionless forms of the equations are

CIRCULATION r

-rfI -(rv +aa
+t rr r) a5vz

a2+1.10
Re F2 a 2 r r

VORTICITY

3+a-(vW) - V W - a-
at r ar r az z r - 3 azr

1.11

[a + +a 2 aw2 + 12s
Re 2 2 r 3 r 2[R 2 a 2 ra2

STREAM FUNCTION $
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and core region is made much smaller than that in the free

stream region to provide detailed information about the flow

behavior in those two regions. The dot in each zone repre-

sents the spacial position of each function whose value is

assumed to be uniform inside the zone. Since a zone method

(Clomburg, 1971) is used for a finite difference formula, eq.

1.4 to eq. 1.6 are arranged for more suitable forms. The dim-

ensionless forms of the equations are

CIRCULATION P

9rC 1 r
at r 9r r + a 5-Cvz

FP2r+a2a2r1.10
R1 2 927r 1Dr
Re0  r 2 +a 2

VORTICITY o

Bo 1 a 9 1 aD2

9w + I - (rv to) + a-(-v co) - v wo - a- 2

at r r r) + z z r 3 @z
r

1.11

Re 2 + a 2+ rI ar -

ae8ar2 23z r9r

STREAM FUNCTION 'P
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2 2
a2 - 1 al-krw

2 2 ra@r ss 1.12

And dimensionless radial and axial velocities vr and v are

written by

V =SS
r r @z

1.13
SS 1 9I

z a r @r

The dimensionless variables are defined by (dimensional

counterparts are marked by asterisk)

v RHR

r Var

z=*ji-

F* r*
rv Rv eRv e/R

v*

z vR

t t*
t=R/v O

r=

Ra -
r

Two parametres, Reynolds number (tangential) Re6 and the

ratio of vR to v 6 R SS, are defined by

Re = RvOR1.146 v

SS = 1.15
v R

The boundary conditions are described in TABLE 1.1. The vor-

ticity at the bottom wall LUb is estimated from non-slip
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TABLE 1.1

THE BOUNDARY CONDITIONS FOR A CONFINED

VORTEX FLOW WITH FINITE DIFFERENCE EXPRESSIONS

STREAM

FUNCTION
'p

CIRCULATION

r'

VORTICITY

w,

THE AXIS OF

ROTATION TOTAL FLOW ZERO ZERO

p - = ]-= -
r=0 (1<j<M) =,L = 0rI 0

THE OUTER V is constant
r .CONSTANT ZERO

WALL V is zero
z

r=l (lcjc<A) '%T. = ZP .=I N j =-o- N, ZJ NrJ INr3

LIQUID LEVEL TOTAL FLOW SHEAR FREE ZERO

=1 -2 =0
Z=1 (1<i<N) iM iM

THE EXIT

HOLE SHEAR FREE SHEAR FREE SHEAR FREE

z=0 (cl<i<3) ifl = i,2 VL,I i,2 iI i,2

THE BOTTOM V and V NON-SLIP

PLATE are zero CONDITION

z=0 (4cicN) p. = 0 P. = 0 eq.1.16
i ,1 in

*l Since nothing is known in the exit hole, all conditions are reasonably
assumed.

*2 The finite difference expression is

i' =P10 F. - )Lrm 8 L-L, -1 rl4-2
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condition. Wob is then written by

W =SS- 2 5 'il - i,2 1.16
b R. 2

R 2DZ
2

for 4 < i < N

The stream function is first solved by S.O.R. (Suc-

cessive over relaxation). The velocity vrr and vz are then

determined from the interpolated stream function assigned at

four corners of each zone in Fig.3.6 by the descretized form

of eq.l.13. The time advanced circulation is then solved by

A.D.I. (Alternating-direction implicit method). Using the new

calculated circulation, the vorticity is calculated also by

A.D.I. The whole iteration procedure is summarized in Fig.

3.12. A very small time increment increases the stability of

calculation because it makes a strong diagonally dominant mat-

rix but it takes an excessive amount of calculation time.

When a very large time increment is taken, however, the calc-

ulation becomes unstable so that the results are physically

meaningless. The optimal time increment is determined by a

trial and error approach. The iteration is terminated when

the residual of each difference equation becomes sufficiently

small when compared with the dominant terms in the equation

for the entire geometry.
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1.2.2 Experimental Study

The continuous steady state vortex flow is established

by tangentially introducing fluid inside the outer wall of

the vortex tank with an equal flow rate of draining fluid

from the tank. The detailed description of the vortex tank is

shown in Fig. 4.2 where the exit hole is located at the center

of the bottom wall.

Tangential velocity V at the free stream region,

axial velocity Vz along the axis of rotation are quanti-

tatively measured by photographic tracer technique. These

velocity components are determined from time lapse photo-

graphs of small particles suspended in a thin section of

fluid which is illuminated by a collimated beam of light. A

light source used in the measurement is the strobe light (1540

strobolume, 1540-Pl oscilator, 1540-P2 Lump made by GenRad)

which can flash up to 400 times per second and the duration

of each flush is only 1 sec. The tangential velocity Ve in

the free stream region is measured at different radial posi-

tions and at two different axail positions. The V6  data at

two axial positions are enough to represent Ve in the free

stream region because Ve is almost independent of axial

position. The Ve is calculated from a particles's dot

trajectory on the bottom view photograph using a horizon-

tally collimated light (See Fig. 4.5). A number of dots can

be controlled by adjusting both the flash rate and the ex-

posure time of camera (Nikomat F 2.0).



Fig. 4.5 A Photograph for Measuring V0

N
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The axial velocity measurement in the core region is

very difficult with the present photographic technique because

the reflection of light from the air core is so strong that

it makes the particles near the air core impossible to detect.

Incomplete vortex flow (the word "incomplete" indicates that

the air core does not extend down to the exit hole) thus

is established so that Vz at the axis of rotation can be

measured from the side view photograph. Fig. 4.8 is a typical

photograph from which V. at the axis of rotation is approx-

imately determined by dividing the distance between two ad-

jacent dots by a time span of two flashes.

The experimental procedure for the measurement of V0

in the free stream region and VZ along the axis of rotation

for both a Newtonion fluid (room temperatured water) and a

polymer solution are briefly summarized as follows. After

calibration, the fluid starts circulating the vortex flow

system. Once a steady state vortex flow is established, the

volumetric flow rate and the liquid level are determined.

The small amount of seeding particles are then added in the

flow system for the purpose of reflecting the light. Vz

long the axis of rotation is measured followed by V mea-

surement at two different axial positions. During the velo-

city measurement, the flow rate and the liquid level are

also measured.

The concentrated polymer solution prepared at least two

days before use is then added to the flow system to make

about 30 wppm polymer solution. As soon as the polymer



Fig. 4.8 A Photograph for Measuring VZ

IQ
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effect, that is the small fluctuation of the air core and

the liquid levels falling is observed, the onset behavior

of vortex inhibition is measured by taking pictures for V6

data. All the pictures are taken within 30 seconds after

the onset. The important feature of the onset behavior mea-

surement is to be able to observe how the V is changed by

introducing the polymer solution into the Newtonian flow pat-

tern. And the information is very useful for the analytical

study of vortex inhibition because a numerical simulation

is done for the situation where the Newtonian fluid is suddenly

replaced by polymer solution to see how the resulting stress

field changes due to the presence of the macromolecules. After

a couple of minutes, the vortex flow completely shifts to a

new quite different flow status which is the vortex flow of

the polymer solution. The procedure of Vz measurement along

the axis of rotation which immediately follows the Vz measure-

ment for the Newtonian fluid is the same as that of V0 measure-

ment for polymer solution.

Four kinds of qualitative observations are done for

studying the characteristics of vortex flow for both Newton-

ian and polymer fluid. The complete vortex flow is used

because the air core does not disturb the observations. The

flow behavior of the core region is studied by using dyed

solution. When the dyed polymer solution Cabout 50 wppm

Polyox WSR 301) is dropped on the free surface of the New-

tonian vortex flow near the axis of rotation, the vortex is

immediately inhibited. When dropped in the free stream
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region, the polymer dyed solution behaves as if it were a

Newtonian fluid and the vortex is not inhibited. This obser-

vation indicates that the tangential velocity V0 in the

core region is reduced due to the presence of the macro-

molecules and that the polymer effect may be dominant somewhere

in the core region.

The flow behavior of the bottom boundary layer is studied

by injecting the Newtonian dyed solution through a very small

hole (its diameter is .04 cm) located in the bottom wall to

see the differences in the flow behavior between a Newtonian

fluid and polymer solution. For the Newtonian fluid, the

streak of the dye is very smooth and almost all of the dye

goes directly out through the exit hole. For the polymer

solutionr however, the dye is randomly scattered around the

exit hole. From this observation, the polymer effect may be

important in the area near the exit hole bebause of the

apparent difference in flow behavior between the Newtonian

fluid and polymer solution.

When a small tube is installed right above the exit

hole, the Newtonian vortex flow is heavily disturbed because

the tube prevents a radial inflow in the bottom boundary

layer from going out through the exit hole. The distinguish-

ing feature of this observation is that installing the tube

lowers the liquid level substantially while keeping the flow

rate constant (See Fig. 4. 16 (a)). When the liquid level

is raised up to the previous level, the flow rate has to be

increased about 6%. When the liquid level reaches the
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previous point, the vortex is inhibited in a very similar

way to vortex inhibition by Polyox WSR 301. This experimen-

tal observation also emphasizes the importance of the flow

behavior in the vicinity of the exit hole.

The vortex flows of Newtonian fluids with different

viscosity are observed in terms of the air core width and

liquid level. The fluids used for the observation are

water, glycerin-water solution A (the relative viscosity

is 1.068) and glycerin-water solution B (the relative vis-

cosity is 1.227). Both glycerin solution A and B are found

to form very similar vortex flow to that by water with res-

pect to the shape of the air core, liquid level and flow

rate. From the fact that the relative viscosity of the gly-

cerin solution A and 30 wppm Polyox solution are almost

equal, we can conclude that vortex inhibition cannot be

explained solely by viscous effect but it has to be due

to the elastic nature of the macromolecules.
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1.3 Development of Constitutive Equation

In order to investigate the polymer effect on the flow,

an approximate constitutive equation for a dilute polymer

solution is needed to see how the stress tensor changes due

to the existence of the macromolecules. A new constitutive

equation for a dilute solution of flexible macromolecules

is developed from the kinetic theory. The main difficulty

associated with the kinetic theory of dilute polymeric fluids

so far is that it can provide complete information about the

stress tensor only for small rates of strain and a few mater-

ial functions of high strain rates. The reason for the dif-

ficulty stems from being unsuccessful in solving the differ-

ential equation for the distribution function (called the

diffusion equation). Although Giesekus (1966) showed that

full information about the stress tensor can be obtained for

the Hookean Dumbbells model without solving the diffusion

equation, this model has two serious shortcomings which are

shear rate independent visometric functions and an unbounded

elongational viscosity even for moderately high elongational

rates.

The constitutive equation developed in this study not

only eliminates the shortcomings associated with the Eookean

Dumbbell model but also is simple enough to be manipulated

for any kind of homogenous flow at all strain rates. And

it shows that shear thinning (viscosity decreases with in-

creasing shear rate), non-zero primary normal stress co-
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efficient and a bounded elongational viscosity for high elonga-

tional rates. The new constitutive equation called the Modified

Nearly Hookean Dumbbell model CMNED) is constructed by matching

it with- the Nearly Hookean Dumbbell CArmstrong and Ishikawa,

1979) for a flow where the macromolecule is neither very stretch-

ed nor oriented and with the model which Tanner (1975) developed

for a flow where the macromolecule is strongly oriented and

stretched. The Spring law used in the MNHD is FENE (Warner, 1972)

spring law.

The main results of tests for the MNHD are shown in Fig. 6.7,

Fig. 2.4, Fig. 6.9 and Fig. 6.10 by using two simple flow pat-

terns, shear flow and elongational flow. Fig. 6.7 shows the com-

parison of intrinsic viscosity as a function of shear rate be-

tween available experimental data and the model prediction. The

macromolecule used in the experimental data is polystyrene of

various molecular weights. From the figure, the MNHD is seen

to show the shear thinning phenomenon. It is also found that

the mdoel shows a linear relation between En] and log y for

higher shear rate CX < 2, X = C5e+l) Xe). By comparisonee

with a wide variety of polystyrene solutions, the parameter

s which is associated with the maximum length of the macro-

molecule R falls into the range between .02 and .005,
0

which agrees with the prediction by Christiansen and Bird

C19-77). This range of parameter e may, therefore, be

a proper choice for polymer stress tensor field calculation.

Fig. 2.4 shows the comparison of steady state elongational

viscosity between the exact solution of FENE model (Bird

and et al., 1977) and the MNEID's prediction. The rapid
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increase of elongational viscosity observed at the moderate

elongational rates corresponds the nearly full extension of

the macromolecules which, then, show higher resistance to be

stretched out above those elongational rates. Both models

eventually approach the same large asymptotic elongational

viscosity at high elongational rates. It is found from Fig.

2.4 that the MNHD represents the FENE model very well over

the entire range o f elongational rate.

The stress growth and relaxation of elongational vis-

cosity are plotted with different scaled dimensionless time

in Fig. 6.9 and Fig. 6.10. As shown in Fig. 6.9, as the

elongational rate Xt increases, the time required for

reaching a steady state becomes much shorter. This character-

istic is quite different from the growth behavior of shear

viscosity shown in Chap. 5 where the time to reach steady

state is about t/XE = 4 for all shear rates. Unlike shear

flow, the macromolecules subjected to elongational flow are

stretched directly by hydrodynamic force and oriented to the

direction of the flow. The time scale for molecular response

to this flow, therefore, may be related to the elongational

rate . This is clearly explained when the elongational

viscosity is plotted with the dimensionless time scaled by

1/E in Fig. 6.10 where the time to reach steady state is

about :t = 3 for higher elongational rates. The shorter

response time for high elongational rate is important for

vortex inhibition. The residence time of fluid element is

very short in the area where large velocity gradient is estab-
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Fig. 6.9
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Fig. 6.10
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lished because the velocity of the fluid is usually very high.

Unless the macromolecules are excited within the residence

time of the fluid element, it would be carried away fromthe

area of high strain rates before polymer effect appears.

Thus it is necessary for realizing the polymer effect on the

flow field that the response time for high elongational rates

must be very short besides large elongational viscosity.

Judging from these results, the MNHD seems to be suitable

for vortex inhibition analysis., The MNHD is used as a con-

stitutive equation for the analysis of stress field in the

next section because first, its form is so simple that any

kind of locally homogeneous flow can be applied, and secondly,

the elongational viscosity predicted by the model is as good

as that by the FENE model.
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1.4 Tne Analysis of rhe Onset Behavior of Vortex Inhibition

The mechanism of the onset behavior of vortex inhibition

is anaLyzed by the following sequence. First, the Newtonian

vortex flow is discussed by the results of the numerical cal-

culation with locally obtained experimental velocity data.

Secondly, the experimental observation about the onset behav-

ior of vortex inhibition is described. Two important char-

acteristics are emphasized there. Third, the stress tensor

for polymer solution is calculated along the stream lines by

the MNHD. The velocity field for the calculation is the

Newtonian vortex flow. Finally, the polymer effect, namely

how the flow behavior changes due to the resulting polymer

stress tensor, is analyzed by an approximate method to explain

the experimental findings qualitatively.

The velocity field of Newtonian vortex flow is calculated

by A.D.I. for higher tangential Reynolds number Ree. The

general flow behavior of a confined vortex flow is well des-

cribed by stream lines. Fig. 6.1 and Fig. 6.2 show the re-

sults of the numerical calculation which described the stream

lines representing both the radial and axial velociites for

lower and higher tangential Reynolds number respectively.

Each fluid element also makes swirl motion due to the tangen-

tial velocity besides moving along the stream lines. As shown

in Fig. 6.1, for Re0 = 10, most of fluid elements supplied

at the outer wall move toward the exit hole in taking almost

the shortest distance. No reverse (due to positive vr) or up
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(due to positive vz) flow is observed for such a low Re0 .

For higher Re0 ( =1370 ), however, the flow behavior turns

out quite different. For example, taking the stream line

= .8 in Fig- 6.2 representing 80% of total flow rater the

fluid element initially moves toward the exit hole but after

passing the point C r,z ) = C .1,.2 ), the fluid starts

moving back and eventually goes into the bottont boundary

layer. As shown in Fig. 6.2. the bottom boundary layer is

formed for high Re0  and 80% of total flow rate is come from

this thin boundary layer region. The radial velocity in the

layer is much larger than that above the layer because the

stream lines are very dense. The core region is also recog-

nized by the stream line $ = .9 in Fig 6.2. Unlike Fig.

6.1 the stream $ = .9 is much closer to the axis of rotation

and this indicates that higher axial velocity forms the core

region. And the flow from the bottom boundary layer inter-

acts with the flow from the core region near the exit hole.

Tangential velocity at the free stream region is measured for

various Re0 . Although the measurement in v is taken both

at z = 4.0 cm and z = 10.0 cm, the difference in ve at

these two positions is negligible. Fig. 6.3 and Fig. 6.4

show comparison between the experimentally measured v 0 and

numerically calculated ve for two different Re0 and SS.

The numerical results show excellent agreement with experimen-

tal data for both cases. Fig. 6.5 and Fig. 6.6 show the com-

parison of vz at the axis of rotation. As shown in these

figures, the calculated vz corrected by factor 2.8 predicts
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Fig. 6.6
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experimentally determined v. profile very well. The cor-

recting factor may be explained mainly by the discrepancy

in the radius of the exit hole between calculation and exper-

iment. In the calculation, the location of radius re

has to be matched with the point at the canter of the zone.

This condition makes re about 1.5 times larger than the

real location. From the continuity of the fluid, the average

value of v. over the exit hole has to be increased 2.13

times larger for the real case. The axial velocity at the

axis of rotation is increasing in almost linear fashion from

the liquid surface, but as the fluid gets close to the

exit hole, vz is accelerated. This is observed from both

figures. It is also found from the calculation results that

v is further increased so rapidly especially when the fluid
z

interacts with the flow from the bottom boundary layer to

produce large velocity gradient

3V
z

The results of the comparison with experimental measure-

ment show that the numerical simulation describes the vortex

flow reasonably well. The confined geometry of the vortex

tank does not give any significant difference from the open

free surface vortex flow in terms of velocity field. Since

the numerical simulation provides full information about

velocity field for the entire vortex geometry and the calcu-

lated velocity field reasonably well represents the real
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velocity field, it is employed for stress tensor calculation

for polymer solution.

The information about the onset behavior is very impor-

tant for analysis of vortex inhibition because it provides

the transient flow behavior from Newtonian to polymer solution.

As shown in Fig. 6.11, after several minutes, the vortex

flow completely shifts to a new, quite different flow status

which is fully developed vortex flow of the polymer solution.

The analysis of the fully developed vortex flow of the polymer

solution seems to be irrelevant for this study because of the

following reasons.

First, the fluctuation of the air core is very large and

random so that it is almost impossible to obtain consistent

velocity data especially for vz at r=0. Secondly, since

the liquid level is dropped to about 50% of its original

figure and the total flow rate is not changed very much (see

number in Fig 6.11), a much higher tangential velocity is

established and this explains the broadening of the air core.

This larger tangential velocity, however, may not directly

be caused by the polymer effect but rather is due to the de-

crease of the liquid level while flow rate is almost unchanged.

To investigate the polymer effect on the vortex flow, it is,

therefore, more sensible to measure the onset behavior of

vortex inhibition rather than the fully developed vortex

flow. Besides these two reasons, the measurement of the onset

behavior is more consistent with the numerical simulation

which calculates the polymer stress thensor by the MNHD. The
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calculation simulates a physical situation where the Newton-

ian fluid is suddenly replaced by the polymer solution in

order to see how the stress field changes due to the presence

of the macromolecules.

Fig. 6.12 shows the tangential velocity measured during

the onset. The tangential velocity in the free stream region

is not appreciably changed when compared with that of the

Newtonian fluid. Several velocity data, however are found near

the axis of rotation (the core region). In v0  measure-

ments for the Newtonian fluid, no data could be obtained at

the core region because of large axial velocity. These data

indicate the reduction of vz in the core region due to the

fluctuation of the air core.

The axial velocity data on the axis of rotation is shown

in Fig. 6.13 during the onset along with the Newtonian data.

The vZ data for the polymer solution are obtained from dif-

ferent pictures taken during the onset. At each time, dif-

ferent vz data is obtained because of the fluctuation of the

air core. The figure indicates that vz at r=O is always

lower than the case of the Newtonian fluid from any of the data.

This seems to be inconsistent with the fact that the liquid

level is falling during the onset. The average vz over

the exit hole must be increased to explain the liquid level' s

falling, vZ at r=O, on the other hand, seems to decrease at

the exit hole form Fig. 6.13.

Thus, two experimental findings during the onset of

vortex inhibition should be emphasized. First, he averaged
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Fig. 6.13

Axial Velocity Measured before and during the Onset
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axial velocity over the exit hole is increased. Secondly,

the axial velocity at the axis of rotation seems to be de-

creased at the exit hole. These two findings characterize

the onset behavior of vortex inhibition and these are analy-

zed in the later parts of this chapter.

The stress tensor is calculated by using the MNHD as a

constitutive equation along the stream lines obtained pre-

viously. Since the onset behavior is the transient state

from the Newtonian vortex flow to the fully developed vor-

tex flow of the polymer solution, the information about the

velocity gradient may be obtained from the results of the

Newtonian vortex calculation. The calculation of the stress

tensor is limited to the area near the exit hole. Because

the simple speculation in section 1.2 indicates that thevelo-

city gradient is too small to excite the macromolecules until

the fluid element approaches this area where the velocity

gradients seem to become very large. Fig. 6.14 is a detailed

picture of Fig. 6.2 of the stream lines near the exit hole.

Once the fluid element reaches the square area enclosed by the

lines of r/R = .1 and z/H = .1, the calculation begins.

For example, the stress calculation of $- = .8 starts from

the point (r/R, z/H) = (.1, .025). The stress tensor is

then numerically calculated at the point 1. Every component

of the velocity gradient tensor needed for the calculation

is approximately determined from the velocity field at the

point 1. This calculation procedure is repeated until the

fluid element reaches the point 4 where the large velocity
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gradient is expected. The stress tensor is also calculated

in this way for i = .85, rP = .9 and ip = 1.0. TABLE 1.2

shows the calculated stress tensor component7 rZZ at each

stream line. No other stress components are found to be

insignificant. It is found from TABLE 1.2 that'cpjZZ

increases extremely rapidly very near the exit hole for

p = -. 85 and 0 =.8. This is due to the large velocity gra-

dient especially

avz
3 z

established at the exit hole. And the macromolecules are

suddenly stretched out in the z-direction nearly to the

maximum length R0  (see the column <(R/R )> in the table).
0

The study of the MNHD shows that the molecular response time

is very short when the velocity gradient is very large, the

macromolecule has enough time to be stretched extensively

even in a very short period of time. The macromolecules

flowing along the stream lines V = 1.0 and p = .9, on

the other hand, are not stretched substantially. Tp'zZ

at p = 1.0 is less than the half of the Newtonian stress

component even at the point 5. The fluid element along the

i = 1.0 may not be influenced by the presence of the macro-

molecules.

From the analysis of the Newtonian velocity field, it

is found that the dominant forces in the Newtonian flow in

the z-direction very near the exit hole are pressure gradient
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TABLE 1. 2

Tpz ALONG THE STREAM LINES

p= 1.0 =9

A B C B C

1 (.01) 0 .0146 1 (.02) .084) .0207

2 (.02) (-0 .0153 2 (.04) -.431 .0241
(.2) -. 027415) (0) (-.266) _____

3 (.03) -. 04557 3 (.06) -. 645 .0280
_______(-.24) .17 3(0) (-.64)

4 (.04) -. 147 0182 4 (.07) -9.158 .1660
_______(-.68) .12 4(0) (-3.02)

5 (.043) .203 .0194 5 (.075) -23.518 .3183
(.96) ______(-3.02)_

= .85 k- .8

A B C A B C

1(0) -2.322-.61 (.04) (-.112) .1185 1 (.03) .0.0172

2 (.08) -.398) .2175 2 (.07) -2.575 .1704

3 (.12) -3.84 .0948 3 (.09) -2.0.6769

-44. 899 -7.9
4 (.15) (-2.08) .4869 4 (.097) (-5.28) .8019

5 (.155) 96.449 6819
(-3.08) .681

* Column A is point number with (real time) [sec]

* Column B is r with (Newtonian counterpart)

Egcm/sec 2 -cm2

* Column C is <(R/R0 ) 2> where _R is the end-to-end vector of

macromolecule and R0 is the maximuta length.
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and the corresponding inertia forces. The viscous force,

therefore, does not contribute effectively to the force

balance. In order to cope with these dominant forces,

11rzz must be much larger than the Newtonian stress. As

shown in the case of p = .85 and ip = .8, Tpzzvery

near the exit hole becomes much larger than the Newtonian

case, it may, therefore, be possible that this stress component

influences the flow behavior. To investigate the influence

of T-p,zZ on the flow behavior, the force balance (the equa-

tion of motion) in the z-direction has to be considered with

the polymer contribution to the stress terms.

The force balance in the z-direction is written by

P!vr -r + v IV_ = -- 1- (r r ) + a zZ + g9r vz a) 9z r 9r rz + pg
1.17

TABLE 6.6 shows the magnitude of each term in eq.l.17 with the

orientation of forces around the point (r/R, z/E) = (.03,-01)

for the case Re6  = 1370 and SS = -.02. When the P.

is used for the stress terr in eq.l.17, it becomes about 20%

of the dominant force (pressure gradient) and the direction

of this force turns out to the negative. This indicates that

the new force produced by the macromolecules tends to push

fluid downward, that is, the axial velocity at this point may

be increased. Qualitatively speaking, this is consistent

with the decrease of the liquid level during the onset.

Although nothing can be said about the magnitude of increased

axial velocity unless the equation of motion is solved with
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the polymer stress tensor, it may be a reasonable outcome

that the polymer effect appears near the exit hole especially

around r/R = .03 and causes the liquid level's falling.

In order to see how the flow behavior changes by the

presence of the macromolecules, one must solve the equation

of motion with the polymer stress tensor expression (the

constitutive equation). This, however, requires a tremen-

dous amount of calculation. Nine non-linear partial differ-

ential equations (three from the equation of motion and six

from the constitutive equation) are to be solved simultan-

eously. The calculation is much more difficult and involved

than the case of Newtonian flow problem. Instead of pur-

suing this difficult calculation, the polymer effect may be

roughly estimated simply by changing the boundary condition

at the exit hole in the Newtonian vortex flow calculation.

This method comes from the previous results that the poly-

mer stress tensor becomes significant only for the area very

near the exit hole. The calculation procedure, thus, is

briefly described as follows. First, the axial velocity at

the exit hole is estimated by zprZZ- Secondly, the boundary

condition of the stream function is fixed according to the

estimated v . Third, the velocity field for the entire vor-
z

tex flow is calculated by A.D.I for a short period of time.

The initial state of the calculation is the case of Re6 =

1370 and SS = -. 02. And finally the polymer stress tensor

is again calculated along the newly calculated stream lines

to see the tendency of stress field. In this way, we could
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at least see an initial stage of flow change which may

correspond to the onset behavior of vortex inhibition.

Fig. 6.15 shows the newly calculated axial velocity at

the axis of rotation. The v at r=O slightly decreases
z

from the Newtonian case especially when z is less than

5 cm. Even for a short period of time (.286 seconds) , the

axial velocity responds to the change in the boundary con-

dition which is substitution of the polymer effectat the

exit hole. The decrease of the axial velocity at r=O seems

to correspond to one of the experimental findings during the

onset behavior of vortex inhibition. The calculated tan-

gential velocity, on the other hand, is not appreciably

changed at all from the initial state especially outside

the hole region. This is also consistent with the experi-

mental fact (See Fig. 6.12).

Fig. 6.16 shows the stream lines obtained from the cal-

culation. The dotted lines are the stream lines for the ini-

tial state. The flow pattern as a whole is not so different

in the two calculations. However, the stream lines above the

boundary layer shift to the right to some extent. This shift

also explains the reduction of v. at r=O because the radial

distance between Tp = 1.0 and q = .9 becomes wider. The

polymer stress tensor is calculated along the each of the

stream lines and the results are listed in TABLE 1.3. Again

rpzz very near the exit hole is increased dramatically for

p = .8 and ip = .85. The magnitude of rp zz in both lines

are a little larger than before. TPz along the stream
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Fig. 6.16

Stream Lines near the Exit Hole after

imposing the Polymer Effect
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TABLE 1. 3

ALONG THE NEWLY CALCULATED STREAM LINESPr ZZ

= n0 = .9

A B C A B C

1 (.01) -. 015 .0150 1 (.02) -. 204 .0194

2 (.02) -. 042 .0156 2 (.04) -. 291 .0214

3 (.03) -. 054 .0159 3 (.06) -. 298 .0209

4 (.04) -. 152 .0183 4 (.075) -1.247 .0394

5 (.045) -. 230 .0201 5 (.081) -5.045 .1056

p = .85=.8

A B C A B C

1 (.05) -2.505 .2313 1 (.04) -. 143 .0395

2 (.10) -7.402 .3456 2 (.08) -6.286 .2217

3 (.13) -23.532 .4180 3 (.20) -34.717 .4478

4 (.15) -40.625 .4551 4 (.106) -177.127 .8097

5 (.16) -131. 810 .7526

Column A is point number with (real time) [sec]

Column B is -r ZEgcm/sec2, 2

Column C is < (R/R 0)2> where R is the end-to-end vector

of macromolecule and R0 is the maximum length.
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lines tp = 1.0 and $ = .9 is not increased enough to cope

with the dominant force and the macromolecules are not

stretched at all. The tendency of the polymer stress tensor

observed before is even more emphasized in this calculation.

Tp,zz along 4 = .8 and 4 = .85 still becomes large

enough to be comparable to the dominant force so that the

fluid may be pushed downward again. From the sequence of

calculations, we found that the initial effect of the poly-

mers, that is, to increase Vz at the exit hole around r/R =

.03 , keeps its trend as time proceeds because the increased

v also increases the responsible velocity gradient
z

9Vz

9vz

producing higher stress tensor component. From the analysis

of TPrZZ, it is found that the dramatic increase of Tp,zz

along the stream lines iP = .85 and P = .8 very near the

exit hole seems to explain qualitatively experimental char-

acteristics of the onset behavior of vortex inhibition,

namely, the liquid level's falling and the reduction of

Vz at r = 0.
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1.5 Conclusions

Three major conclusions are drawn from the results of

this study. They are:

1) The numerical calculation for the confined Newtonian

vortexflow provides reasonable velocity field for the entire

vortex tank geometry. The calculated velocity field reason-

ably agrees with experimentally measured Ve at the free

stream region and Vz along the axis of rotation by photo-

graphic tracer technique. The consistency in the comparison

may make the velocity information reliable for the area near

the exit hole and for the bottom boundary layer. The vortex

flow studied in the thesis is highly non-linear (Re6 is up

to 2000) and has a singularity at the exit hole. The alter-

nating-direction implicit method with the zone formulation

is found to be suitable for this kind of complicated flow

problem.

2) The Modified Nearly Hookean Dumbbell Model seems to

be an appropriate constitutive equation for the vortex

inhibition study. The model can predict a bounded large

elongational viscosity which may change the flow behavior at

high strain rates as well as shear thinning. The MNHD also

has a simple form so that any kind of locally homogeneous

flow can be applied for obtaining the polymer stress field.

It is found from dynamical studies of the model that the time

to reach steady state in start-up of elongational flow is

well scaled by the reciprocal of elongational rate l* This
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result is quite different from that of shear flow which is

scaled by the time constant XH.

3) A highly elongational type of flowr namely very high

velocity gradient @Zr is established in the vicinity of
a z,

the exit hole according to the results of the numerical cal-

culation. This large velocity gradient may be a cause of the

onset behavior of vortex inhibition. The application of

the velocity field to the MNID shows that the macromolecules

moving along the stream lines passing the bottom boundary

layer and outside the core region (see W=.8 and t=.85 in

Fig. 6.14) seem to be almost stretched out to the maximum

length Ro very near the exit hole. The stretched macro-

molecules produce large stress tensor which seems to explain

qualitatively the characteristics of the onset behavior of

vortex inhibition.
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II. INTRODUCTION

2.1 The Description of Vortex Inhibition

Vortex inhibition was discovered by Gordon (1972) in

1972. In his experiment, a small amount of polymer in water

prevents formation of a vortex in draining the solution from

the bottom of a square tank. A square tank filled with tap

water is prepared. After stirring the water vigorously

with a paddle and then removing the plug from the center of

the bottom, a stable vortex forms extending down to the

bottom of the container. When this is repeated with a dilute

polymer solution, the vortex is incomplete (see Fig. 2.1).

This different phenomenological behavior produced by adding

just a small amount of polymer inidcates that the flow pat-

tern is drastically changed due to the presence of the

polymer. The vortex inhibition may be explained clearly

by using a steady state vortex flow. A steady state vortex

flow is obtained by tangentially feeding the water at the

outer wall of a cylindrical container with an axially uni-

form velocity. Fig. 2.2 shows the steady state vortex flow.

When the water is replaced by about 30 wwpra polyethylene

oxide (Polyox 301) keeping the flow rate constant, the air

core of the vortex is suppressed and the suppression of the

air core is not steady but a randomly periodic phenomenon.

Just after the air core is suppressed, it tends to extend

to the bottom again. As soon as the air core reaches the



70

Fig. 2.1 : Vortex Inhibition
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Fig. 2.2 Steady State Vortex Flow
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bottom, it immediately is suppressed (see Fig 2.3). This

process is repeated until the polymer is degraded. During

vortex inhibition, the liquid level, falls substantially

(by nearly 50%).

A particularly interesting feature of vortex inhibition

is that the amount of polymer added to the water is so

small that the shear viscosity of the polymer solution is

only slightly different from that of water itself. The

relative viscosity of the polymer solution used in this

study is only about 1.02.

Furthermore, Gordon (1972) showed that the macromole-

cules which show vortex inhibition ability are also good

agents for drag reduction. As Table 2.1 shows, the same

ordering in terms of effective concentration also seems to

hold for both the vortex inhibition and drag reduction.

Since the viscosity of the polymer solution is almost

equal to that of water for both vortex inhibition and drag

reduction, non-Newtonian rheological properties of the

dilute polymer solutions such as strain rate thickening

elongational viscosity and non-zero normal stress differ-

ences in steady shear flow might be responsible for vortex

inhibition. The elongational viscosity is believed to be

increased drastically even at moderately high elongational

rate for a dilute polymer solution. For instance, as shown

in Fig. 2.4 the modified nearly Hookean Dumbbells model

(developed in Chapter 5) shows a sudden increase of elonga-



Fig. 2.3 Vortex Flow with Suppressed Air Core
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TABLE 2.1

EFFECTIVE CONCENTRATIONS OF VARIOUS POLYMERS FOR V.I. AND DqR.

Polymer Designation Polymer Type
wwpm

Vortex Inhibition
WWPM

Drag Reduction

Polyox FRA*

Polyox WSR 301*

Separan AP 2730

Separan AP30

Polyethylene Oxide

Polyethylene Oxide

Polyacrylamide

Polyacrylamide

7.5

30

3

40

9

20

5

35

*Union Carbide (Manufacturer)

Dow (Manufacturer)

Note 1:

Note 2:

These data are from Gordon (1972).

Effective concentration is the lowest concentration with which polymer
shows the ability of vortex inhibition or drag reduction.



Fig, 2.4 Elongational Viscosity Predicted by MNHD
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tional viscosity when the domensionless elongational is of

order unity. The elongational viscosity increases up to

several orders of magnitude higher than that of solvent

alone. Even though no direct experimental measurements

have been obtained for the elongational viscosity for a

dilute polymer solution, the kinetic theory predicts that

a high elongational viscosity is realized when a linear

flexible polymer is stretched at almost full length due to

the elongational flow field. It may, therefore, be possible

to expect that the changes in flow behavior in vortex inhi-

bition phenomenon is due to the large elongational viscosity

exerted by the presence of a few macromolecules.
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2.2 Objective and Motivations

The objective of this thesis work is to investigate

the mechanism of vortex inhibition. The study is motivated

at first, by a possible correlation between vortex inhibi-

tion and drag reduction and secondly, by an interest in

developing a constitutive equation (rheological equation

of state) to describe dilute polymer solutions.

We can speculate from Table 2.1 that the mechanism of

vortex inhibition may be similar to that of drag reduction.

Although drag reduction has been extensively studied in

recent years, there are many aspects of the phenomenon

which are not well understood (Lumely, 1973; Virk et al.,

1967; Virk, 1975). Out of several proposed mechanism for

drag reduction, the viscoelastic nature (especially large

elongational viscosity) of macromolecules in turbulent flow

is proposed to be a major cuase for reducing turbulent

energy dissipation (Little et al.r 1975; Seyer and Metzner,

1969; Gordon and Everage, 1971). According to Seyer and

Metzner (1969), the bursting (Kim et al., 1971) produced by

a pair of counter rotating eddies at boundary layer near

the wall is characterized by stretching motion similar to

elongational flow. The increased resistance to stretching

due to the large elongational viscosity, thus results in

less bursting and less radial momentum flux transport.

However it is not possible to make a direct test of this
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proposed mechanism because no precise velocity informa-

tion of the fliud element is obtainable during the bursting

process. The proposed mechanism for drag reduction may,

in turn, be closely related to the molecular mechanism

of vortex inhibition. It might be, therefore, possible

to infer the molecular mechanism for drag reduction from

the analysis of vortex inhibition. The Newtonian vortex

flow is treated as a laminar flow so that it is much easier

to be analyzed than turbulen flow.

In order to analyze vortex inhibition, rheological

equation of state (a constitutive equation) for a dilute

polymer solution has to be introduced so that information

about the stress field can be predicted. Although an ex-

tremely simplified model (beads and spring bumbbell model)

is being used, we believe that the kinetic theory provides

reasonable predictions about differences in flow behavior

resulting from molecular structures. Moreover, we can

evaluate the kinetic theory constitutive equations by com-

paring their predictions in the flow with experimental

results.
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2.3 Approach and Previous Work

Approach

A study of vortex inhibition is carried out in the

following way. First, the Newtonian vortex flow is ex-

tensively studied in Chapter 3. The information about the

velocity field of the Newtonian vortex flow is necessary

for analyzing vortex inhibition because it provides a

starting point for computing deformation of the marcomole-

cules when the polymer solution is subjected to the flow

field. At first, various regions of the vortex flow are

analytically studied and'then the complete Navior-Stokes

equations, with a singularity (the presence of the exit

hole at the center of the bottom wall), are numerically

solved by finite difference scheme for various values of

tangential Reynolds number.

Secondly, the experimental part of vortex inhibition

is described in Chapter 4. The velocity components (tan-

gential and axial velocity) are measured by a photographic

tracer technique. The velocity measurement not only pro-

vides the characteristic of the Newtonian vortex flow but

also gives a check on the results of numerical simulation

which is given in Chapter 6. Besides the velocity measure-

ments, a series of qualitative observations about the flow

behavior of both the Newtonian and polymer vortex flow

are conducted to help understand the nature of vortex
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inhibition.

An approximate constitutive equation (rheological

equation of state) for dilute polymer solutions is devel-

oped from kinetic theory in Chapter 5. The model is then

tested for shear flow and elongational flow with various

strain rates to evaluate the material functions such as

shear viscosity, the primary normal stress coefficient and

elongational vis cos ity-

Finally in Chapter 6, the results of the numerical sim-

ulation are used for the polymer solution stress field

calculation by use of the constitutive equation developed

in Chapter 5. With the calculated stress field, an attempt

is made to explain vortex inhibition, that is, the dramatic

differences in flow behavior between the Newtonian and

polymer solution with the aid of the experimental study.



81

Previous Work

The major contributions of this thesis work are hydro-

dynamics of the Newtonian vortex flow and development of

constitutive equation, whose prediction for elongational

viscosity is especially important, for polymer solutions.

There have been a number of theoretical studies of confined

vortex flow in past because of its broad application in

fluid dynamics, heat transfer, power generation and meter-

ology. Lewellen (1971, 1964, 1962) has used similarity

transformations and asymptotic expressions to describe the

flow. Integral methods are used for analysis of the bound-

ary layer by Rott and Lewellen (1966). Anderson (1966) has

studied the flow behavior of the bottom boundary layer by

reducing the boundary layer equations to ordinary differ-

ential equations based on the method developed by Smith and

Cutler (1963). Farris et al. (1969) and Pao (1970) have

numerically solved the full Navior-Stokes equations for

confined vortex flow. These approaches, however, do not

provide velocity information about the flow behavior in the

vicinity of the exit hole which, in turn, plays a very im-

portant role for the analysis of vortex inhibition.

The experimental contribution to the analysis of the

Newtonian vortex flow is due to Kendall (1962) and Taylor

(1974). Kendall has measured radial and tangential velocity

components of gases inside the bottom boundary layer and
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the profiles of both velocity components of liquid are

qualitatively observed by Taylor. Chiou (1976) has used

a photographic tracer technique for determining Ve and V.

especially near the axis of rotation outside the bottom

boundary layer. His study for vortex inhibition is also

limited for the area away above the bottom wall.

There have been many models suggested for polymeric

fluids from the kinetic theory (Bird, 1977). Out of these

models, the idea of using a dumbbell (two beads jointed

by a connector) to simulate a macromolecule is focused on

this study (Bird et al., 1977). Even though the dumbbell

models are oversimplified representation of polymers and

the results obtained from them do not have a wide range of

applicability, many of the mathematical manipulations can

be performed because of the simplicity of the models.

Table 2.2 shows several kinds of dumbbell model for a flex-

ible macromolecule. The simplest one is the Hookean Dumbbell

model whose connector is described by Hooke's law. The

Hookean Dumbbell is the model from which the constitutive

equations can be derived without solving the diffusion

equation so that the polymer stress tensor can easily be

calculated from any types of homogeneous flow. The model;

howeverr has serious defects such as shear independent vis-

cosity and unbounded elongational viscosity for high

elongational rate because of the linearity in the connector

force law. The connector force law developed by Warner
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(1972) represents a macromolecule a little more realistically.

The connector force is getting stiffer and stiffer as the

end-to-end vector R becomes close to the maximum length

Ro. The model shows the shear thinning, non-zero primary

normal stress coefficient and bounded elongational viscosity.

The mathematical manipulation, however, is limited only for

small strain rates and a few material functions for high

strain rates. As to the prediction of elongational visco-

sity at high elongational rates, Stevenson and Bird (1971)

has numerically calculated bounded elongational viscosity

using inverse-Langevin-Spring dumbbell model. The bounded

elongational viscosity is also found by Tanner (1971) with

a use of linear locked spring model. The experimental

contribution to the rheology of a dilute polymer solution,

however, is far behind the theory.
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TABLE 2.2

CONNECTOR FORCE LAW OF DUMBBELL MODELS

Connector Force Law

F = HR

Tanner (1971) F=HR R < R0

HWarner (1972) F_ =R
1- (R/R)

R <Re

Comment

The connector is
infinitely stretch-
able.

The " linear-locked"
springs can stretch
as far as Ror for
R cR0 they are des-
cribed by Hooke's
law.

The "finitely extend-
able nonlinear
elas tic " (FENE)
connector has an
upper limiting length
R = Ro.

Name

Rooke
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III. STEADY NEWTONIAN VORTEX FLOW OVER A SOLID WALL

3.1 Introduction

A newtonian vortex flow has three distinct characteris-

tics in its flow behavior. As shown in Fig. 3.1, the region

I is called 'free stream region', which is characterized by

a potential flow. The tangential velocity v6 is inversely

proportional to the radial distance r (the distance from

the axis of rotation) in the free stream region. The change

in v6  in the z-direction is so small that the flow may be

treated as one dimensional. When the tangential Reynolds

number

RvR
Re6  - R

however, becomes larger, the flow eventually forms a cell

and this case makes one treat it as three dimensional flow

problem It is possible that the vortex flow in the free

stream region makes more than single cell (Donaldson and

Sullivan, 1960).

The region II is called 'core region' where a large

amount of downflow exists because of the exit hole in the

bottom plate. The tangential velocity v 6 r in turn, is

proportional to the radium because stress component

tr r~ 'E a r r

has to be vanished at the axis of rotation.
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Figure 3.1

Three Different Flow Regions

in a Newtonian Vortex Flow
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The relationship between the centrifugal force and the

radial pressure gradient is known in both the free stream

and core regions. The centrifugal force

2
v-

r

is exactly balanced with the radial pressure gradient

Dr

in these regions (Schlichting, 1968) but the balance between

the two forces is broken in region III which is called "bot-

tom boundary layer".

In the bottom boundary layer, the tangential velocity

v6 is reduced due to the drag from the bottom wall resulting

in decreasing the centrifugal force. On the other hand, the

radial pressure gradient remains the same along the z-axis

(Schlichting, 1968), this force, therefore, overcomes the

centrifugal force producing a large amount of radial inflow

(Taylor, 1972). The amount of fluid passing through the

bottom boundary layer is the same order as the total flow

rate (Lewellen, 1971).

In this chapter, the tangential velocity v6  in both

the free stream and core regions is determined by using an

empiracal expression of the radial velocity vr and the

flow behavior in the bottom boundary laver is approximatelv

analyzed. The impact of the axial downflow from the core
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region on the radial inflow from the bottom boundary layer

occurs near the exit hole. The flow behavior in this area

is not well known because of its complicated nature (Lew-

ellen, 1971) . A numerical simulation for the entire vortex

flow, thereforer is needed to investigate the flow behavior

in the region near the exit hole. The simulation is seeking

for the exact solution of the full Navior-Stokes equations

for a confined vortex flow. The treatment of an open-free

surface vortex flow such as used in the V.I. study has not

been studied. Such a oroblem is very difficult to manipu-

late because the shape of the free surface must be determined

as part of the solution. Dergarabedian (1960) treats a time-

dependent emptying process of vortex flow although he does

not consider the effect of the bottom boundary layer. Even

though the confined vortex flow is different from the open-

free surface vortex flow, the essential feature of the V.I.

study may well be characterized by the confined vortex flow.
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3.2 One Dimensional Vortex Flow

In this section the tangential velocity in the core and

free stream regions is numerically solved as a one-dimensional

problem and the results will agree with available experimen-

tal data. In these two regions, v6  is assumed to be inde-

pendent of z , so that the 6-component of the equation of

motion becomes

vC- a--A - 3.1
9 r 0 2 rD r]Dr

where the circulation r is defined by

r = v -r 3.2

Since the radial velocity vr is inversely proportional

to the radius r when r is large and. v is , in turn,

linear to r when r is small, Dergarabedian (1961) assumes

the following functionality of vr'

sa2  2
yr =- a 1- expr(- -) 3.3

r 2r x _a 2))

where an elongational rate at the axis of rotation s is

defined by

z z
k fz) = z r=0 3.4

From eq. 3.3,
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V r lcc/r r+0

3.5

v cc r r +co
r

As the desired axial velocity vZ is then given by the

continuity equation,

2
z=v I exp(_- r- 3.6z zir=0 a

Chiou (19 76) experimentally determines the parameter a and

vz along the axis of rotation. eq. 3.1 is solved by a fin-

ite difference scheme. eq. 3.1 is discretized according

to the finite difference formula and the circulation r at

each discrete point is solved implicitly using the boundary

conditions

P(r=0) = 0

and

P(r=R) = r

The result of the calculation with Chiou's experimental data

is shown in Fig. 3.2. The calculated v 6  agrees well with

the data. After numerical simulation, it is found that the

tangential velocity v 6 is very sensitive to the elongation-

al rate & . As shown in Fig. 3.3, when & is increased,

the radial convection shifts the peak value of v 6 toward

the axis of rotation producing a steeper v 6 - profile (case
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3.2 One Dimensional Vortex Flow

In this section the tangential velocity in the core and

free stream regions is numerically solved as a one-dimensional

problem and the results will agree with available experimen-

tal data. In these two regions, v is assumed to be inde-

pendent of z , so that the 0-component of the equation of

motion becomes

9r 32r 3.1
Vr~ r

where the circulation P is defined by

r = v0 -r 3.2

Since the radial velocity Vr is inversely proportional

to the radius r when r is large and vr is., in turn,

linear to r when r is small, Dergarabedian (1961) assumes

the following functionality of vr.

- 2 2
*2 - exp(- r 3.3

r 2r a 2

where an elongational rate at the axis of rotation C is

defined by

z-
C EZ) = 9z r=0 3.4

From eq. 3.3,



90

v rcc 1/r r +0

3.5

v r r +co

As the desired axial velocity vis then given by'the

continuity equation,

2

S= v jf=O exp (- r 3.6
a

Chiou (19 76) experimentally determines the parameter a and

vz along the axis of rotation. eq. 3.1 is solved by a fin-

ite difference scheme. eq. 3.1 is discretized according

to the finite difference formula and the circulation P at

each discrete point is solved implicitly using the boundary

conditions

F(r=0) = 0

and

F(r=R) = FR'

The result of the calculation with Chiou's experimental data

is shown in Fig. 3.2. The calculated v6  agrees well with

the data. After numerical simulation, it is found that the

tangential velocity ve is very sensitive to the elongation-

al rate i . As shown in Fig. 3.3r when s is increased,

the radial convection shifts the peak value of v0 toward

the axis of rotation producing a steeper v8 - profile (case
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Figure 3.2
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2 in Fig. 3.3). The case 2 indicates that the increased

s intensifies the 8 - component of vorticity near the axis

of rotation. On the other hand, when s is decreased,

the vorticity is able to diffuse farther in the direction

resulting in a flatter v 0 -profile (case 3 in Fig. 3.3).

Since vE near the axis of rotation is reduced, the corres-

ponding centrifugal force is also decreased. The radial

pressure gradient which is balanced with the centrifugal

force is then reduced.

The relative shape of the free surface of these vortex

flows can be obtained from the tangential velocity v 0  as

a function of the radius r. From the r- and z-components

of the equation of motion, the pressure gradients are

2

S2 = -3.7
3r r

-=-pz 3.8

Pressure is an analytic function of position (Bird and

et al., 1960),

ap 4p 3.9
dP =-dr + -dz

An integration of eq. 3.9 along the free surface gives

R 5(R)

p (r=R,S (R)) - p (r=r,S (r) ) = J 2 dr +9z 3.10

r S(r)
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Figure 3.3
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where S(r) the z-position of the free surface at r.

S(r) can be calculated in eq. 3.10 by knowing that the

pressure is equal along the free surface. The depth of the

free surface relative to that at the outer boundary (r=R)

is then given by

2
l R Ve

S(r) -S(R) = - p 2dr 3.11
P9 r r

Fig. 3.4 shows the relative shape of the free surface with

various elongational rate corresponding to Fig. 3.3 as the

result of numerical integration of eq. 3.11. As expected,

when the elongational rate S is increased (case 2), the

free surface becomes sharper due to the higher radial pres-

sure gradient near the center. When the elongational rate

S , however, is decreased, the fluid has a flatter free

surface.

Vortex inhibition corresponds to the free surface

shape's becoming flatter. As long as we regard the fluid

as Newtonian, the above calculation suggests that vortex

inhibition corresponds to a reduction in axial velocity

gradient s.

It is known that large velocity gradient (strain rate)

is necessary for polymer to be subject to change its confor-

mation. Especially when the strain rate reaches the order

of reciprocal of time constant X~r various polymer effects

start revealing (the rheology of polymer solutions will be

discussed in Chap. 5). Chiou (1976) indicated that the
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Figure 3.4
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strain rate

ar

would be responsible for the polymer effect causing vortex

inhibition, the maximum value of

9VE

3r

in Fig. 3.2 is, however, at most about 60 sec around

r = .4 cm. This figure of

av6
3r

is not large enough to realize the polymer effect because

the estimation of the time constant (See Appendix B) shows

that the dimensionless strain rate

ave
E r

will be .6. The dimensionless strain rate has to be at

least more than unity to expect the polymer effect accor-

ding to the results obtained in Chap. 5. The strain rate

Dy
0

ar '

therefore, may not be a main cause of vortex inhibition.

And this leads us to investigate the area where higher strain

rates are established in vortex flow.
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3. 3 The Analysis of Flow Behavior Inside
the Bottom Boundary Layer

Since the polymer effect reveals when velocity gradient

is very large, the flow behavior inside the bottom boundary

layer in analyzed by the integral method (Lewellen, 1971). A

large deformation rate is expected in the bottom boundary lay-

er because the velocity vanishes at the bottom wall. In this

section, the boundary layer thickness 6 and the maximum ra-

dial velocity vr,max in the bottom boundary layer are approx-

imately calculated as functions of radial distance r in order

to estimate the velocity gradient.

The following assumptions are made in the integral method.

1. The tangential velocity v 0e in the free stream region is

irrotational, that is,

v "P/r

where r is a function of r only.

2. The radial velocity in the free stream region is negligible.

3. The tangential and radial velocities's profiles inside the

bottom boundary layer are chosen as (Taylor, 1950)

v 6  f, =v6 ,2 ) - 2 3.12

Vr = V ag() = V m 7  (l- 2] 3.13
r r . ma max g CT r Ymax--4- 3.1

After an order of magnitude analysis, the equations of motion

to be solved are reduced to 6-component of the equations
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of motion:

2
v = 9v23.14

9z

r-component of the equation of motion:

9v v2 2
v r_ r + V =-p+ r3.15
ra3r r z 9t p @r 92

The continuity equation is

-Crv ) + -- v = 03.16
r r Dz z

The radial pressure gradient in eq. 3.15 can be replaced by

the centrifugal force in the free stream region.

2

1 ap _ _ Qo 3.17
p 3r r

Integrations of eq.3.14 and 3.15 from z = 0 to z = 6J(r)

using eq. 3.12, eq.3.13, eq.3.16 and eq.3.17 give two equa-

tions having the boundary layer thickness S (r) and the max-

imum radial velocity v- as two unknowns. The two equa-

tions are

K -v -1L
7 rmax

6 (r) = rI 3.18

2 K5Ev4 rma~x 5 , -



(v r,mar 2 + 2C I

where CI and C2 and X toY.7

3 41

c - - =2 87
x3 x5

02 = (X 1 -X 2)X 7 = -. 287

I
xi = J

are given by

S3.20

d 

z 27

80~

K2 = ZZ( = 1

3 = a Z) )
3 d( )z=O

4 = 0

150

=2

3.21f 2  )(Z) = 243
a 560

2z - 11d(t) = 7

K6 _ad

2k3  4
K 7 = -____

ffQ,)a z=O
27
4--

x6 = -14.46

V r max)

r

2C2

3r

99

3.19
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Eq. 3.19 is solved with the boundary condition vrrmax

= 0 at the outer wall (r=R). The boundary layer thickness

6 (r) is then obtained from eq. 3.18. From eq. 3.19, ,vrmax

is

2 2 2 L R 2 '_1

,max C-2i- r [4 2C2  3.22

The results of a sample calculation are shown in TABLE 3.1

with the results by Anderson C1966). Both vrrmax and 6(r)

calculated by the two different methods are well agreed.

Although the velocity profies of v0 and Vr are assumed

in the method, reasonable results are about the boundary layer

thickness and the maximum velocity are obtained when they are

compared with Anderson 's results. This method as well as An

derson's technique; however, can not be extended to the region

near the exit hole because the tangential velocity above the

boundary layer turns out to be a rigid rotational flow and

the radial velocity induced by a strong downflow above the exist

hole is not negligible anymore outside the bottom boundary layer.

The assumptions made are, therefore, no longer appropriate. The

flow behavior around the exist hole is much more complicated be-

cause the radial inflow from the bottom boundary layer interacts

with the axial down flow from the core region. In order to anal-

yze the flow behavior, a numerical simulation for an entire vor-

tex flow will be described in the later section. Before this,

stress tensor contributed by polymer additive in the bottom
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boundary layer is calculated in order to see if the flow

behavior is influenced by the resulting polymer stress tensor.
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TABLE 3.1

THE COMPARISON OF INTEGRAL METHOD AND ANDERSON'S TECHNIQUE

vrrMax Ccm/sec) 6(cm)

r/RJIIANDER- ANDER-
veror(cm/sec/ INTEGRAD SON'S INTEGRAL SON' S

METHOD TECH- METHOD TECH-
NIQUE NIQUE

4.00 0 0 0 0

.9 4.44 -1.08 -1.0 .28 .28

.8 5.00 -1.74 -1.5 .31 .31

.7 5.71 -2.47 -2.2 .32 .32

.6 6.67 -3.38 -3.0 .31 .32

.5 8.00 -4.62 -4.2 .28 .32

.4 10.00 -6.46 -5.9 .26 .28

.3 13.33 -9.55 .22

.2 20.00 -15.82 .17

*

*

The

The

boundary condition: = 6 = 0

data used is F =20 cm2 /sec., R = 5cm

at
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3.4 Influence of Polymer Additive in the

Bottom Boundary Layer

To test polymer effect, the simplest Hookean Dumbbell

model (Bird, et al.-, 1977) is used as a constitutive equation.

Since no polymer effect exists in the free stream region as

described in the last section because velocity gradient is

too small to excite macromolecules, the bottom boundary

layer is analyzed. The stress field in the region is numer-

ically calculated using Anderson's velocity profiles (1966)

and approximately calculated using the results obtained in

section 3.3.

Anderson uses the following equations in the bottom

boundary layer.

0 - component of equation of motion:

v+ r +v e= 0V 3.23
r r r z 9z 2

r - component of equation of motion:

2 2
vr v 9 aVZ

V r _ 0 + +3.24
r 3r r Z3z Pr33z.2

These equations are then transformed into a new coordinate

system where the numerical calculation starts from the out-

side wall. Using the method similar to that used by Smith

and Cutter (1963), the partial differential equations are

reduced to a set of ordinary differential equations which

can be easily solved. In this method, r-direction deriva-

tive in a finite difference formula is approximated by using
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only previously obtained values.

The stress field is calculated considering an imaginary

situation. If a Newtonian fluid is replaced by polymer

solution all of a sudden, the resulting stress field due to

the polymer solution must be different. And if the differ-

ence of the stress field between the polymer solution and

the Newtonian fluid is large enough to change flow pattern,

it may be said that polymer effect appears. To examine the

situation, the stress field is numerically calculated using

the Newtonian velocity profile. Since changes in z-direction

are important, the mesh points used in the calculation are

6x24 for r and z directions in the area

.4C< r/R <lI , 0 c Z/6 Ilr

where R and 6 are the radius of the outer wall and the

boundary layer thickness.

The constitutive equation used here is Hookean Dumbbell

model.

r +X ( =-nkTXEr 3.25
-p 1=p (1)

where : polymer cotribution to stress tensor

~: The rate of strain tensor = V_ + (Vv)+

Vv: Velocity gradient tensor

V )+:) Transverse of Vvy
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n: number density

k: Boltzman constant

T: Absolute temperature

T- = D (Vv) *r -r T -VV
p(1j'~ Dt==p - p =p -

The calculated stress field is then substituted into the r-com-

ponent of the equation of motion to see if there are signifi-

cant changes in an r-direction force balance. The r-component

of the equation of motion is most important in the boundary

layer because a strong radial inflow exists. Each stress term

is calculated for both polymer and Newtonian solutions in sev-

eral radial distances. TABLE 3 .2 shows those results evaluated

at the bottom wall where stress terms have their maximum

values. Although polymer contribution appears in stress terms,

these forces are not large enough to change flow pattern when

compared with the radial oressure cradient which is one of the

dominant forces in the r-direction force balance.

In order to see the polymer effect further down to r/R=.2,

the stress field at the bottom wall can be estimated by usina

the results obtained in section 3.3. Two important components

of velocity gradient

av r
1z z=0

and
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TABLE 3.2 THE COMPARISON OF FORCE TERMS IN R-COMPONENT

OF THE EQUATION OF MOTION

-@p
r/R @r

(veI

R = 5cm r

a 
rr@r rr

Polymer Newtonian
Solution Fluid

TrrT6

r

Polymer Newtonian
Solution Fluid

.4 -50.00 -1.918 0 .597 0

.6 -14.83 -. 292 0 .033 0

.8 -6.25 -. 040 0 .006 0

* The unit of the force terms is g-ecm/sec2/cm3

* The polymer solution is considered as 30wppm

Polyethylene oxide. (See Appendix B for con-

stants used in the calculation)

* Newtonian Fluid is water at 250 C.
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9v

@ z z=0

are expressed as

27
46 r,max

and

2
6 0cc

respectively according to the definitions in section 3.3. It

is reasonable to assume that other components of velocity

gradient tensor

r r 3r

etc. are small enough to be neglected when compared with the

two large components. The velocity gradient

9w
r

@ z

appears rz-component of eq. 3.25 as a forcing term. After

eliminating unimportant terms in eq. 3.25, T r zis

aw
nkTX r z

rz * H Iz=H

and T

then

3.26

effects 7rr in rr-component of eq. 3.25, rrr is
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= -2nkT r 3.27Trr H 3z z=0

In the same way as above, Tze is obtained from ze - com-

ponent,

T =.-nkT X z103.28

and 06 - component, - 60 becomes

= -2nkT [,z 3.29
ee -H az z=

The polymer contribution to Trr andcE at the bottom wall

are tabulated in TABLE 3.3 and compared with the numerical

results using Anderson's velocity porfile. Trr and 'e e from

the two methods reasonably agree to each other. The values

obtained by method 2 always exceed those estimated by method

1. They differ by factor about 2 for zrr and 1.5 for 7 E)6

The parenthesized values at r/R=.2 and r/R=. 3 are extrapola-

ted by multiplying the results from method 1 by the factor

1.91 for rr and 1.43 for T., based on averaging over the

range between r/R=. 4 andi . 8. Overall the two methods can

well provide stress components rrr and -E e in spite of

their quite different approaches. The force terms in r-compon-

ent of the equation of motion is then calculated and tabulated

in TABLE 3.4. Even though the force terms due to the polymer

solution increase as r/R decreases, the radial pressure gradient

is still a domonant force in r-component force balance at small
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TABLE 3.3 THE ESTIMATION OF rr AND 6 AT

THE BOTTOM WALL

2 2 2 2
r/R I rr [g-cm/sec cm T Ug cm/sec cm J

R = 5cm METHOD 1 METHOD 2 METHOD 1 METHOD 2

.2 -7.891 (-15.100) -1.107 (-1.583)

.3 -3.345 (-6.356) -. 294 (-.420)

.4 -. 563 -1.350 -. 116 -. 157

.6 -. 108 -. 155 -. 037 -. 056

.8 -. 029 -. 055 -. 021 -. 030

* METHOD 1:

* METHOD 2:

f rr'rTe

Analytically solved using the velocity gradient

from Integral Method.

Numerically solved using the velocity gradient

from Anderson' s technique.

Contributed by Newtonian fluid are zero.
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TABLE 3.4. THE COMPARISON OF FORCE TERMS DUE TO POLYMER

SOLUTION BY TWO DIFFERENT METHODS

@r

-r
METHOD

a ,

1

*1-IF

_ rr r

METHOD 2 METHOD 1 METHOD 2

.2 -400.0 -9.092 (-17.488) 6.784 (13.517)

.3 -117.9 -7.328 (-13.750) 2.034 (5.936)

.4 -50.0 -3.097 (-5.965) .224 .597

.6 -14.83 -. 194 -. 292 .024 .033

.8 -6.25 -. 040 -. 093 .002 .006

* C ) are calculated using extrapolated values in TABLE 3.3.

* The unit of force terms is ; cm/sec2 3

* METHOD 1 and 2 are the same as in TABLE 3. 3.

r/R

R = 5cm
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r/R because the stress forces are less than 5% of the domin-

ant force. Againr although the stress field raised by the

polymer solution grows in the bottom boundary layer, it is

too small to change Newtonian flow behavior. This conclusion

forces us to investigate the flow behaviors in the core re-

gion and in the area near the exit hole to see if large velo-

city gradient is realized. In order to analyze the flow

behavior of these regions, the numerical simulation by

solving a full Navior-Stokes equation for the entire vortex

tank is described in the next section.
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3.5 A Numerical Simulation for Entire Vortex
Flow Field

3.5.1 The Governing Equations.

For an incompressible viscous flow in a confined

cylindrical container, assuming that the flow is axisymmetric,

the velocity field in terms of circulation, vorticity and

stream function in a cylindrical coordinate (r, z) are des-

cribed by the following equations.

CIRCULATION P

--- + V IF+ v -V + - kPi- - 3.30
at r~r z3z L[9r 2  @z2 r9r)

VORTICITY w

- +v@- V --- -Vr - 1-9- 2
at rr zz r r39z

[V 0 3o 13 + + -,- 3.31
[@r 2 z 2 rr r

STREAM FUNCTION )

2 2 1 alp = -rw 3.32
2 2 r r

ar 9z

where v is a kinetic viscosity. The circulation is writ-

ten in terms of v0 .l

F = rv0  3.33

and the relation between the vorticity and the radial and ax-
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ial velocity yr rv is

9Z @v

v rVz relate to the stream function by

r r 9z

3.35

z r ar

Since a zone method (Clomberg,1971) is used for a finite dif-

ference formula, the eq.3.30 to eq.3.32 are arranged for more

suitable terms. The dimensionless forms of the equations are

CIRCULATION r

+ -r(rv ) + a-(vz7)
9t r ar r @Zzz

a32 + a29% - }3.30ARer 2 2 rr3r 
@z

VORTICITY w

aw 1 3 + 3 32+ r )+a- (v W) vow- 3-2
+ zrrw) + za (z r 3 3z

r

Re L 2 + a+F@w 7)3.31A
Rer 2z 2 r 3rr 2)

STREAM FUNCTION $
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2 2
a 2 + a 2 a $ _2 1 =-arw3.32A

2 2 r3r

The dimensionless variables (no marks) are related to the

dimensional counterparts (marked by asterisks) in the follow-

ing way:

1* * 03*
miv r 1=rv6  R r

R R r

V r* v z*r

V = rV = r
r VR z VRR

z Z- rt t a -
H ' R/vR rR

where vR and v0 R are the radial and tangential velocities

at the outer wall, R and H are the radius and height of

the container respectively. Two important parameters, the

radial Reynolds number Rer and swirl parameter S are de-

fined by

Rer E RR3.36

S = ' R) 3.37

IR

Eq.3.28 is rewritten by

= ilp 3.35A
r r 9z
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S1 i ai
V = 1 1-3V 3 . 3 5Av a rm 93r

3.5.2 Finite Difference Formula Czone method)

In order to avoid the free surface as the boundary of

vortex flow, a cylindrical container is assumed to have two

exit holes located on the axis of rotation at each of the two

end walls. As shown in Fig.3.5, the vortex flow is then sim-

ulated over a quarter of the total area because of geometrical

symmetry. The treatment of the free surface boundary in this

way is eliminated without losing the most important character-

istics of the vortex flow (Anderson,1961) .

The geometry of the flow field is explained in Fig.3.6.

Due to the characteristics of the vortex flow described previ-

ously, the mesh size in both the bottom boundary layer and core

region is made much smaller than that in the free stream region

to provide detailed information about the flow behavior in

those two regions. The zone construction is described in Fig.

3.7 where the dot in each zone represents the spacial position

of a dependent variable F which is assumed to be uniform in-

side the zone (F is one of r, w or p) . The velocities vr

and vz are calculated using linearly interpolated stream

IN IN.
function 4) at the corners of each zone. The P ij in

Fig. 3. 7, for example, is calculated by
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Figure 3.7
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IN _I i+lj+lFI + i ,j+DZj+ -DR
= L DZ 3+ DZ i+1

ip . -jDZJ+ $ .-DZ.
+DR. / (DR+DR

DZ. +- DZ. DR+ 1  i 1+1

2 ci < N
3.38

2 < j < M

According to eg.3.35A, the velocities v j and v

are approximated by

1( IN INK)/DZ.
r i,j (R .+ DR i) rJ j -1 J

2
3.39

I IN IN
S- -=*- p. .- 'p. J)/DR.
z ij a-R. 1ir -1, i

In order to increase the stability of the calculation, in

other words, to make a diagonally dominant matrix (see Appen-

dix D), the convective terms in ec.3.30A and ec.3.31A are ap-

proximated in the following way:

7v .ij+[v ijI . DR

v iji r i,3 DR 13

(R(r-=(R. )F. .
r r L,j 2Lr 13

+ vr '-- - Vr Lj (R.F D I-)F.
2 i 2 i+lJ

v .+v DR.
ri-l,j2 r i-Ij1 (Ri- )F2-

2 1- 2 i-Irj
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v r. .- [ i .L DR.rV1-I2 r i-,j (i- r)F. . DR1  3.40

When circulation (or vorticity) is transported across a zone

boundary by convection, eq.3.40 is devised such that it tends

to decrease the rate of circulation change in the zone from

which it comes and to increase it in the zone to which it

flows to conserve circulation (or vorticity) . The proper ap-

proximation of the convective terms is one of the critical

factors for the stability of the calculation especially when

Reynolds number and the swirl parameter are increased, that is,

when the magnitude of the convective terms becomes comparable

with that of the diffusion terms.

The second and first derivatives are approximated by

2 F -F. . _ F. . rF. 13 FI _ i+lJ i r 0'lr

2FJij rDR. +2DR. DR. + DR

2 2

i+l i-L 3.41
2

F. -F. . F. .- F[3F; i+lIj J-r] or Jr J3.42
0 rJ I - [DR. + DR-3 [DRi + DR.

1 2 
2L1

The choice between forward and backward approximations for the

first derivative in ec. 3.42 is determined so as to make a more

digonally dominant matrix for the calculation.

The boundary conditions due to the geometry of the con-
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fined vortex flow is tabulated in TABLE 3.5. The circulation

at the axis of rotation becomes zero although the tangential

velocity v6  may be finite at r = 0 because of its defin-

ition (see eq.3.33). The vorticity also vanishes at r = 0.

The radially directed momentum flux T must be zero at r

= 0 because of the axisymmetric nature of the vortex flow.

From the definition of Tz for Newtonian fluids,

T = v +V 3.43
rz - 9r 9z

where 4 is viscosity. In order to satisfy the condition for

Tr at r = 0r both velocity gradient components
rz

z rand z

in eq.3.43 have to be zero. it is also confirmed experiment-

ally that

9v z

ar

becomes zero at r = 0 (Chiou,1976). The boundary condition

W = 0 at r = 0 is thus reasonable. The stream function at

the outer wall is proportional to the height of the container

based on the reasonable assumption that the radial velocity at

tha outer wall is constant along with the height. By consider-

ing the confined vortex flow, the boundary condition at liquid

level (z = 1) are simply placed by the shear free condition



TABLE 3.5 THE BOUNDARY CONDITIONS FOR A CONFINED

VORTEX FLOW

STREAM

FUNCTION
CIRCULATION VORTICITY

ZERO
THE AXIS OF

ROTATION TOTAL FLOW (butv is ZERO

finite)

THE OUTER Vr is constant
rCONSTANT ZERO

WALL vzis zero

LIQUID LEVEL TOTAL FLOW SHEAR FREE ZERO

THE EXIT *
SHEAR FREE SHEAR FREE SHEAR FREE

HOLE

THE BOTTOM Vr and v NON-SLIP
r z ZERO

PLIATE are zero CONDITION

* Since nothing is known in the exist hole, all conditions

are reasonably assumed.
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for the z-direction for the circulation and the zero vor-

ticity because of the symmetry of the flow system. The shear

free condition mentioned above is defined so that the first

derivative of the circulation with respect to the z-direction

is zero. The boundary conditions thus become much simpler

when compared them with a curved-shaped free surface boundary

condition. The simpligication of the free surface boundary

condition really makes the calculation feasible. The values

of vorticity at the bottom plate are determined from non-slip

condition. Since the stream function vanishes at the bottom

plate, the vorticity ob at z = 0 is simplified from eq.

3.32A.

0a _ 3.44
b r3z2 =

The second derivative of the stream function at z = 0 is

approximated in terms of p(Az) and xp(2-Az) using Taylor's

expansion near z = 0. $(Az) and ip(2-Az) are then

2 z3

P(Az) = P(0) + $r(0)-Az + q"(0) 2 + i" (0) 6 + ... 3.45

2
Il( )(2 -Az)2

$(2-Az) = $P(0) + P'(0) (2-Az) + "(Q) (2

+ qjrrr(0) (2-Az) + ... 3.466

Since
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TP(0) = V'(0) = 0,

the second derivative is

p"1(0) =8.q(2-Az) 2 $ (Az) + 0 (Az2)3.47
2-Az

The truncation error of eq.3.47 is of order Az 2 . The flow

behavior at the exit hole is not known at all. The shear free

condition for the three functions (r,w,xp) may be a good choice.

The boundary conditions are rewritten in terms of finite dif-

ference formulation in TABLE 3.6. The solving methods for the

governing equations are described in the following two sec-

tions. The first method is called relaxation method which is

suitable for low Reynolds number and the ADI method for high

Reynolds number follows.

3.5.3 The solving Method for Low Reynolds Number

Using finite difference scheme, eq.3.23A to eq.3.25A are

approximated for a steady state flow. The equations are sum--

merized in a general expression.

Cl Fi- + C2 Filj + C3 F 1 1  +C4 F.

+ C5 F. . = CG 3.48

where ClC2,C3,C4,C5 are coefficients of the dependent var-

iable F (WP, w) at zones (i, j) , (i+lnj) r (irj+l) r (i-lj) r

(i,j-1) respectively and CG is a forcing function. If, for
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TABLE 3. 6 T HE BOUNDARY CONDITIONS IN FINITE

DIFFERENCE EXPRESSION

qP F 0)

r = 0 (l<j<M) r = in = 0 ,j = 0
- -1 3 Ir 1,

r = 1 (I<jC<) $ =Zj = 1 W n=0
-- Nr3 3 Ui Nrl

Z = 1 (l<icN) $ =.1 =-(9. . =0
- i, 8 iM-1 i M

Si--2 )

(L<i<3) tr.. = . = r.W =)
- f-,2 11,2 i ,. L, 2

Z=0
e(.3.=44

(4<i<N) T- 0 F- 0 -eq. 3.471
- - l 1

I
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example, eq. 3.48 is applied to the equation for circulation,

the coefficient Cl is expressed by

DR.
Cl(rJ(V -[v+__ ).(.(R.+DR)

DR.-
- (v .+ [v . )(R. -r - r --- J- 2

1
2 DR. +

a2eR.
3 +

2 DZ-
I

(z j i+[v -(vz irj-lv z ij-i-1)

R. 2
4 1 2

Rer R -R (DR.+DR.1 ) (R +R. )
Li+]- i-I i L+l, 3-i-+ I

2
+(DR +FDR l) (R +Rtig)

}4
+ a2 R-a R1  FI

+ Z:. -z .LDZ .+D ZJ+ + DZ.+DZ. 

First of all, eq. 3.49 is rearranged and

F r rF

(N indicates a newly calculated) are implicitly solved for

the r-direction by

N N N
C4 F + Cl F. + C2 F.

=-C3 F. - C5 F.. + C6
i, j+l ,-1

for 2 < i < N-1

3.49

3.50
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This is represented in each Z-point (2 < j < M-1).

N N N
Fir r F i -_ r F ij

are then solved implicitly for the z-direction by

N N N
C5 F + Cl F . + C3 F

i,3-1 irD ,+

= -C2 F.i . - C4 F. . + C& for 2 < j < M-1

3.51

Again eq.3.51 repeated for each R-point (2 < i < N-1). Once

the value of FN is calculated from eq.3.50 or eq.3.51, the

new value is assigned to F by averaging the newly calculat-

ed value and old value with a relaxation factor to avoid a

sudden change which induces instability (Schultz and Shah,

1975). The newly relaxed value of F is then used in the

right hand side of eq.3.50 and eq.3.51 as a known value.

The stream function (eq.3.32A) is first calculated and

the radial and axial velocities are then determined from the

interpolated stream function. Using the values of the vel-

ocities, the circulation (eq.3.30A)and then the vorticity (eq.

3.31A) are manipulated. This whole procedure is repeated un-

til the three variables reach a steady state. The calculation

is terminated when all of the variables have steady values at

each spacial point. The two parameter Rer and S are in-

creased gradually from Rer = 1 and S = 1 to the experi-

mental condition where Reynolds number is about 20 and the

swirl parameter is about 2500. And the results of the previ-
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ous calculation, namely the case which has a lower Rer and

S, is used as an initial condition for a higher Rer and S

case to make an initial error from a new steady state as

small as possible. The results of the case Re = 10 and

S = 40 after Go iterations are graphically shown in Fig.3.8

to Fig.3.ll. From these figures, the velocity gradient compo-

nents near the exit hole are found to be extremely large when

compared with those in other regions. For instance, the cir-

culation r at r = .03 in Fig.3.8 increases dramatically

as it goes down to the bottoi plate. The highest value of

at z = .03 is about 20 times as much as its value at z = 1.

The velocity gradient

9z

therefore, is very large especially within z = .1. The ra-

dial velocity vr inside the bottom boundary layer shown in

Fig.3.10 is also accelerated as the fluid flows toward the

axis of rotation producing a high deformation gradient

Dv
r

The axial velocity vz in Fig.3.ll in the core region grows

very rapidly especially near the exit hole. The high velocity

gradient components

and r



129

Figure 3.8
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Figure 3.10
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Figure 3.11
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are expected in this region. On the whole, even for the case

Re = 10 and S = 40, it is apparent that the significance of

the flow behavior near the exit hole is emphasized because

there exist much higher velocity gradients which may induce

the polymer effect.

The method described in this section is found to be inca-

pable of solving the equations for higher Reynolds number and

swirl parameter case where non-linear convective terms in the

circulation and vorticity equations become dominant forces.

The dependent variables never reach a steady state even though

very small relaxation factors and hundreds of iterations are

applied. Another approach, therefore, is used to solve the

non-linear partial differential equations (eq. 3.30 to eq. 3.32),

and this approach is described in the following section.

3.5.4 The Solving Method for High Reynolds Number

The method used in this section is the alternating-direc-

tion implicit method (A.D.I.) developed by Peacman and Rach-

ford (19 55) . The main difference between ADI and the relaxation

method described in the last section is that ADI includes the

time derivative terms in the equations so that the problem is

categorized as an initial value problem. By choosing an ap-

propriate time irc.rement, this iteration method shows a great

advantage over the relaxation method especially for large Rey-

nolds number.

The equations (eq.3.30 to eq.3.32) are again rearranged

into suitable dimensionless forms.
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CIRCULATION F

- + (rv @) +a--(v F)
2t rar r 3z z

1 ra2r 2 a 217_i
Re 2 + a 2 3.30B

6 ar aa

VORTICITY w

a W + I-a ry W) + a tL(V W) -V W j aia
ait raDr r + azz r - 3az

r

2 2
=P + a2 a + laW 3.31B

Re 2 az 2  rar r2

STREAM FUNCTION qp

a 2 + 2 a2 ) 1a p a
2 2 rar3.32B

ar aa

And the dimensionless radial and axial velocities vr and v

are written by

v =S S1
r r 3z

3.52

SS_ IP
z a ra@r

The dimesionless variables are defined by (dimensional coun-

terparts are marked by asterisk)



I *$p =
vRRH

*
r

S = R
rVOR

Z*
H =

a 

= rv =-
0 v6R

v*z
V =
z vR

t*
t=R/v e

W*S =
6 OR/R

r*

R
, a= H

Two parametersr Reynolds number (tangential) Re0 and the

ratio of VR to vxeRr SS, are defined by

RevR
Re = 3.53

SS= R 3.54VOR

The boundary conditions in TABLE 3. 6 can be used for this for-

mulation except for the vorticity at the bottom wall wb - b

is written by

b= ss-2 2-3. 5-

2DZ2
2  3.55

for 4< i < N

The stream function is first solved by the relaxation

method as described in the last section. The velocities v
r

and v- are then determined from the interpolated stream

function p by the descretized form of eq.3.52.
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Using operator notation, eq.3.30B is expressed by

19f- L r + L r 3.56
@t r z

where the differential operations for the r and z dir-

ection are given by

L =e6 (3aL _ nr] l kt(rv F)
Lar2 r)j r~

r Reo 3r 2 r r r 5r r 35

Te F= I fa 2 2 2 r -a(vjr)
Lz Ree Iar2 F-a~z

The time derivative and the operands are descretized by finite

formulas. The circulation advanced by one time step (N+l) are

then solved implicitly for the r-direction by

N+1- N
S -FL*r- =r--- + L*r 3.58At r At z

where L* and L* are descretized forms of L and L .r z

The further time advanced circulation r is next solved

implicitly for the z-direction using the previously obtained

rL_7N+ 2  FN+1
L* 2_ + L r173.59

At z At r

The vorticity is next calculated by ADI.

The whole iteration procedure (Pao, 1970) is summarized

in Fig.3.12. Choosing appropriate initial conditions and time



Figure 3.12
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increment, the stream function is iterated until it converges.

The convergence criterion for the stream function is

NEW OLD
1,11,Jc .05
NEW <

ij 3.60

2 < i < N-1
for

2 < j < M-1

After convergence, the time advanced circulation is calculated

followed by the vorticity calculation. A very small time in-

crement increases the stability because it makes a strong di-

agonally dominant matrix but it takes an excessive amount of

calculation time. When a very large time increment is taken,

however, the calculation becomes unstable so that the results

are physically meaningless. The optimal time increment is de-

termined by a trial and error approach. Von Neuman stability

analysis (Clomburg, 1971) obviously does not work for the case

where the non-linear convective terms are dominant in the e-

quations. The time increment is usually decreased when the

calculation results approach a desired steady state to ensure

the stability near the steady state.

The iteration is terminated when the residual of each dif-

ference equation becomes sufficiently small when compared with

the dominant terms in the equation for the entire geometry.

The detailed information about the calculation is found in

Appendix A along with a complete listing of program.
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IV. EXPERIMENTAL STUDY

4.1 Introduction

A steady state vortex flow system is constructed in

the vortex inhibition study although the original experi-

mental study conducted by Gordon (1972) used a batch vortex

flow with a square shaped tank. The two advantages of the

steady state vortex flow system are that it provides time-

independent velocity data and makes it much easier to

observe several qualitative features of the flow. A meas-

urement of velocity in the steady state vortex flow becomes

very reliable when compared with a batch system because it

requires a certain amount of time to get velocity data by

a photographic tracer technique described in the later

section.

The macromolecule (polymer) used in the study is poly-

ethylene oxide (Union Carbide, brand name - Polyox 301)

because it shows the vortex inhibition phenomenon more

distinctively than other types of polymers. For example,

Separan AP-273 (high molecular weight polyacrylamide) has

relatively large intrinsic viscosity (Clarker 1970) so that

it is very hard to distinguish between polymer effect and

viscous effect.

A large fluctuation (in the velocity components for

polymer solution) associated with the vortex inhibition

makes the quantitative measurement of them very difficult.

Most of the velocity measurements are thus done for
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Newtonian fluid and several qualitative observations are

done for both the Newtonian fluid and the polymer solution.

As mentioned in chapter 3, the flow characterization

of the Newtonian vortex flow is very complicated and still

not known completely. The velocity measurement of the

Newtonian vortex flow, therefore, not only provides very

important information about the rate of strain for the

vortex inhibition study but also gives some useful under-

standing for confined vortex flow.

The total flow system of the steady state vortex flow

is described in the next section followed by an explanation

of the photographic tracer technique. Experimental pro-

cedure for the measurement of velocity components in sev-

eral regions are then explained in detail. Finally four

kinds of qualitative observations are portrayed.
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4. 2 The Flow System

The continuous steady state vortex flow is established

by tangentially introducing a fluid inside the outer wall

of the vortex tank with an equal flow rate of draining

fluid from the tank. Fig. 4.1 shows the total flow system

of the steady state vortex flow. By keeping the head of

a fluid constant in the constant head tank, any desired

feed rate is obtainable by adjusting the three valves,

valve 1, 2, and 3. Once a steady st ate flow rate is estab-

lished, that is, the liquid level in the vortex tank be-

comes stationary, the flow rate is determined by measuring

the amount of the fluid leaving the vortex tank in a cer-

tain time period. The fluid drained from the vortex tank

is then sent to the feed tank where excess fluid from the

constant head tank is also collected. The fluid in the

feed tank is brought up to the constant head tank for re-

cycling. The pump used in the flow system is Moyno Pump

(1L2-CDQ). The Moyno pump is a screw conveyor type of

pump with rounded flights so that it reduces degradation

substantially when compared with centrifugal or gear types

of pump. Recycling the fluid is permitted for only Newton-

ian fluid because a polymer solution is eventually degraded

when used for recycle. The macromolecules are degraded

especially when a high shear rate is imposed. Since the

fluid experiences high deformation rate at the valves and

pump, the degradation of the macromolecules is inevitable

in this kind of experimental study. The polymer degradation
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is one of the reasons why quantitative velocity measure-

ments are difficult for the polymer solution.

A detailed sketch and photograph of the vortex tank

are shown in Fig. 4.2 and Fig. 4.3 respectively. The open

ended vortex tank made by plexiglas has a special inlet

section. The fluid is first fed into a small tube from

the constant head tank. The small tube is equipped with

39 equally spaced small holes of .32 cm diameter along its

entire height. The fluid then flows into a thin channel

through these small holes. A flow straightener made by a

pile of many small tubes is located at the end of the chan-

nel. The fluid come through the flow straightener enters

tangentially at the side wall of the vortex tank with near-

ly flat velocity profile from the bottom to the liquid

level. Although a viscous boundary layer forms near the

side wall, it does not disturb a main flow because the

boundary layer thickness is very small. The exit hole is

located at the center of the bottom wall. The diameter

of the exit hole is .48 cm and this is about 3% of that of

the vortex tank. It takes about one to two hours to get a

steady state vortex flow in this flow system.
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Fig. 4. 2 THE VORTEX TANK
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the vortex tank. It takes about one to two hours to get a

steady state vortex flow in this flow system.
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Fig. 4.3

A Photograph of the Vortex Tank
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4.3 Photographic Tracer Technique

Tangential velocity V 0 at the free stream region,

axial velocity VZ along the axis of rotation and axial velo-

city near the exit hole are quantitatively measured by this

technique. These velocity components are determined from

time lapse photographs of small particles suspended in a thin

section of the fluid which is illuminated by a collimated

beam of light (Hillr 1969 and Chiou, 1970). A strobe light

(1540 strobolume, 1540-PI oscilator, 1540-P2 lump, Genrad)

can flash up to about 400 times per second and the duration

of each flash is only about 14 sec. All measurements are

calibrated by photographs of scale.

The tangential velocity V0 in the free stream region

is measured at different radial positions. The measure-

ment is done at two different axial positions. The V -data

at two axial positions is enough to represent V0 in the

free stream region because the tangential velocity is almost

independent of axial position. The V0 is calculated from

a particle's dot trajectory on the bottom view photograph

using a horizontally collimated light. The camera (Nikomat

FTN F2.0) is located underneath the vortex tank so that a

distortion due to free surface is eliminated. The setup of

Va measurement is shown in Fig. 4.4. Fig. 4.5 shows the

picture of a typical particle's dot trajectory. A number

of dots can be controlled by adjusting both the flash rate

of strobe light and the exposure time of camera. The axis

of rotation on the photograph is determined by shifting a
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Fig. 4. 5

A Photograph for Eeasuring Ve
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a transparency paper on which a number of concentric circles

are drawn until the particlesr trajectories coincide with

the circles. The center of these circles on the transpar-

ency paper then indicates the axis of rotation on the

photograph. Although radial velocity Vr exists in the free

stream region, its value is so small when compared it with

V0 that it is hardly determined from the photograph. In

Fig. 4.6, V 0 is approximately calculated by

V= 1  2 2 1 4.1
2 At

where

r = 2+ y 2

r-=txn 1 2i = 1.2 4.2

o.i= tan -

Since each dot in Fig. 4.6 corresponds to individual flash,

At is determined by

At = nd/rf 4.3

where nd is a number of dots and rf is flash rate.

The axial velocity measurement in the core region is

very difficult with the present photographic technique

because the reflection of light from the air core is so

strong that it makes the particles near the air core impos-

sible to see. Incomplete vortex flow (the word rincompleter
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indicates that the air core does not extend down to the exit

hole.) thus is established so that Vz at the axis of rotation

can be measured from the side view photograph. A vertically

collimated beam of light which includes the axis of rotation

is used for V measurement. As shown in Fig. 4.7, the first
z

slit width is 1.2 cm and the camera is located so that it

can detect the scattered lights which makes a right angle

with the beam of light source. Fig. 4.8 is a photograph

from which Vz at the axis of rotation is calculated. V is

approximately determined by dividing the distance between

two adjacent dots by a time span for two flashes. Averaging

the axial positions of the dots gives that of the calculated

V.
z

When the axial velocity Vz is measured near the exit

hole, a black painted disk with a hole at the center, whose

diameter is the same as that of the exit hole, is placed

on the bottom wall of the vortex tank so that the reflection

of light from the bottom is substantially reduced. Fig. 4.9

is a photograph which shows the flow behavior near the exit

hole. From the particle's trajectory in Fig. 4.10r Vz as

a function of radial position near the exit hole, is approx-

imately calculated by

V 1 2 at r 4.4
z At M

where
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A photograph for Measuring Vz
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Fig. 4.9

A Photograph Showing the Flow Behavior near the
Exit Hole
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1  2 4.5
m 2

Since the magnitude of radial velocity Vr becomes comparable

to that of V6 in this region, the particle moves appreciably

towards the axis of rotation even in a very short time period

(At = .045 sec in Fig. 4.10). Two radial positions r1 and

r2' however, are not so different, the approximation (eq. 4.5)

may thus be acceptable.
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4.4 Experimental Procedure

Several kinds of experiments are done depending on the

kind of velocity data to be measured. The experimental proce-

dure for the measurement of the tangential velocity in the free

stream- region and the axial velocity along the axis of rotation

for both a Newtonian fluid (room terperatured water) and a

polymer solution are summerized as follows:

1. Calibration: After filling water in the vortex tank, the

pictures of scale are taken, first at the two axial position

(z, z2 ) for We calibration. Even though the axis of rotation

does notcoincide exactly with the center line, the error asso-

ciated with this is negligible.

2. Flow Circulation: Turn on the pump to circulate the water.

The valve 1 in Fig. 4.1 is wide open and at the same time

valve 4 is closed. By controlling valve 2 and 3, any desired

steady state is obtained. Establishing a steady state flow is

determined when the fluctuation of the liquid level in the

vortex tank becomes within .5 cm. The liquid level is usually

between 15 cm and 20 cm.

3. Flow Rate and Liquid Level Measurement: After a steady

state vortex flow is established, the volumetric flow rate is

determined by measuring the amount of the fluid from the vortex

tank in a certain time period. The measurement is repeated at

least 6 times to ensure the system has reached a steady state.

The liquid level is also recorded.

4. Seeding Small Particles (Chiou, 1976): The seeding parti-

cles are made from PLIOLITE (Goodyear product: Solution Regin
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type SEB Lot 42-13-Dl). The PLIOLITE is crushed in a mortar

and pestal until a desired particle diameter range is obtained-

The diameter of the particle used in the study varies between

208 im and 425 inn. The optimal particle density is determined

by trial and error. The highly concentrated particle solution

is first prepared. The particle solution is then added to the

feed tank little by little through a pipette. After the par-

ticles are well distributed in the whole fluid (it takes about

20 min.), the appropriateness of the particle density is

judged by looking through the finder of the camera.

5. Vz Measurement Along the Axis of Rotation: The pictures

for the particle behavior at the center of the vortex tank are

taken by the method delineated in Fig. 4.7 The aperture and

exposure time of the camera are F4.0 and .5 sec. respectively.

The flash rate of strobe is 4000 times per minute. The film

used for the velocity measurement is Kodak Tri-X pan with ASA

400. Twenty to thirty pictures are taken for Vz measurement.

6. Flow Rate and Liquid Level Measurement: The flow rate

and the liquid level are measured again in the way described

in procedure 3.

7. Ve Measurement at z1 and z2 : After setting up the appara-

tus as described in Fig. 4.4, the pictures for the particles'

behavior at two different horizontal plains (z, and z2) in

the free stream region are taken. Due to the characteristics

of the tangential velocity profile, 4 different flush rates

(1000, 2000, 3000, and 4000 times per minute) are used
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depending on how fast the particles move in the region of

interest. The aperture and exposure time of the camera are

F2.0 and > 4, 1 sec. About 20 pictures are taken at each

plane.

8. Flow Rate and Liquid Level Measurement: The flow rate

and the liquid level are measured to see if there is any

significant change in the steady state flow during the course

of the experiment.

The VT measurement for a Newtonian fluid is terminated

here. For a polymer solution, the procedure is continued

to the following:

9. V9 measurement for a polymer solution: A concentrated

polymer solution is prepared at least 2 days before use. A

certain amount of polymer (Polyethyrene oxide: Polyox 301

made by Union Carbide) is weighed carefully and dissolved in

about 30 cc of isopropanol (Paterson and Abernathy, 1970) in

a beaker. 1 g of Polyox 301 makes about 30 w. ppm solution

for the system. After the powder of the polymer is well

scattered in the isopropanol, water is gently poured into the

beaker until the solution reaches 1000 cc. The beaker is

then covered and allowed to stand until the polymer dissolves

completely in the water.

The concentrated polymer solution is poured into the

feed tank. As soon as the polymer effect begins. That is,

the small fluctuation of the air core is observed. The pump

is stopped running so that the degradation of the polymer is
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avoided to some extent. The onset behavior of the V.1. is

then measured by taking pictures for VeT. All the pictures

are taken within 30 seconds after the onset of vortex inhibi-

tion. The importance of measurement of the onset behavior is

to be able to observe how the V0 is changed by introducing

the polymer solution into the Newtonian flow pattern. And

the information is very useful for the analytical study of

vortex inhibition (in Chapter 6 ) because a numerical

simulation is done for the situation where the Newtonian

fluid is suddenly replaced by polymer solution to see how the

resulting stress field calculated by use of the Newtonian

flow behavior changes due to the presence of the macromole-

cules. After a couple of minutes , the vortex flow completely

shifts to a new quite different flow status which is the

vortex flow of the polymer solution. The flow rate and liquid

level are then measured.

The procedure for the measurement of axial velocity along

the axis of rotation for polymer solution is to follow the

procedure 9 with the setup for Vz measurement described in

Fig. 4.7.

The Vz measurement procedure near the exit hole is essen-

tially the same as that for Vz along the axis of rotation

except that the camera's position is lowered down to the bottom

plate of the vortex tank. Since a black painted disk is placed

on the bottom wall in order to reduce the reflection of the

light from the bottom plate as much as possible, the procedure

7 and 8 are not done for the measurement.



161

4.5 Oualitative Observations

Four kinds of aualitative observations are done for

studying the characteristics of vortex flow for both Newtonian

and nolymer cases. In this section. the descriptions and

results are briefly mentioned. The detailed results with

photogranhs are also presented. The complete vortex

flow (the air core extends down to the exit hole) is used

because the air core does not disturb the observations.

1. The flow behavior of the core region: A dyed water is

used for showing the existence of the core region. When the

dyed dolution is dropped from a pipette on the free surface

of the Newtonian vortex flow near the axis of rotation, it

immediately indicates the existence of a core region near the

axis of rotation (Fig. 4.11 (a) ,(b),(c)). It drains out very

rapidly. When it is dropped, however, far away from the axis

rotation, the dyed solution makes a very slow swirl motion

around the air core keeping its radial distance constant and

stays inside the vortex tank much longer than the case of

dropping it near the axis of rotation. The observation clearly

shows the existence of the air core region where the axial

velocity is much faster than that in the free stream region.

A dyed polymer solution (its concentration is about 50

ppm) is then dropped into the core region, the vortex is

immediately inhibited (Fig. 4.12 (a),(b)). If dropped in the

free stream region, the polymer dyed solution behaves as if

it were a Newtonian fluid. The vortex is not inhibited
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A Photograph of Newtonian Vortex Flow
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Fig. 4.11 (c)

A Photograph of Newtonian Vortex Flow

with Newtonian Dyed Solution
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Fig. 4.12 (b)

A Photograph of Newtonian Vortex Flow

with Polymer Dyed Solution
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because it does not reach the core region. The observation

indicates that the tangential velocity V in the core region

is reduced due to the presence of the macromolecules and that

the polymer effect may be dominant somewhere in the core

region. This observation provides quite important information

for the vortex inhibition study because it indicates that a

large deformation of fluid may take place in the core region.

2. The flow behavior of the bottom boundary layer: The

Newtonian dyed solution is injected through a very small hole

(its diameter is .04 cm) located in the bottom wall to see

the difference in flow behaviors in the bottom boundary layer

between a Newtonian fluid and polymer solution. For the New-

tonian fluid, the streak of the dye is very smooth and almost

all of the dye injected goes directly out through the exit

hole (Fig. 4.13 (a),(b)).

For the polymer solution, however, the dye is randomly

scattered around the exit hole. Some part of the dye drains

but some of it stays near the exit hole fora while. The flow

behavior is very random and no obvious streak line is observed

(Fig. 4.14 (a), (b)). it may be said that the polymer effect

is important in this area because of the apparent difference

in flow behavior between the Newtonian fluid and polymer solu-

tion.

3. A cap experiment--near the exit hole: When a small tube

is installed right above the exit hole (Fig. 4.15),, the New-

tonian vortex flow is heavily disturbed because the tube
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Fig. 4.13 (b)

A Photograph for a Newtonian Fluid
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A. Photograph for a Polymer Solution
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prevents a radial inflow in the bottom boundary layer region

from going out through the exit hole. The distinguishing

feature of this observation is that installing the cap lowers

the liquid level substantially while keeping the flow rate

constant (Fig 4.16 (a), (b),(c)). If the liquid level is

raised up to the previous level, the flow rate has to be in-

creased about 6%. When the liquid level reaches the previous

point, the vortex is inhibited in a very similar way to vortex

inhibition by Polyox 301. This experimental observation also

emphasizes the importance of the flow behavior near the exit

hole.

4. The vortex flow of Newtonian fluids with different

viscosity: The width of the air core is measured for Newtonian

fluids with different viscosity. As shown in Fig. 4.17 (a),

(b), (c), the air core width is not sensitive to changes in

viscosity. The fluids used for the observation are water-

glycerine solutions (TABLE 4.1). Flow rate and liquid level

are also not changed so much by changing viscosity. Both

glycerine solution A and B form very similar vortex flow to

that by water with respect to the shape of the air core, liquid

level and flow rate (Fig. 4.17). Glycerine solution A and

30 wppm polymer solution (Polyox 301) have almost equal

relative viscosity. From this, we can conclude that vortex

inhibition can not be explained solely by viscous effect, but

it has to be due to the elastic nature of the macromolecules.
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Fig. 4.16 (b)

Without the Cap



176

Fig. 4.16 (c)

With the Cap
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TABLE 4.1

The Vortex Flow of Glycerin Solutions

relative
viscosity
trel (250C)

1.000

glycerin-water A

glycerin-water B

1.068

1.227

liquid
level
I (cm)

17.0

16.5

16.0

the air
core width

(cm)

.38

.41

.42

fluid

water

flow
rate

(cc/sec)

36.5

34.8

34.6
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Fig. 4.17 (a)

Water

A-m
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Fig. 4.17 (b)

Glycerin-Water A
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Fig. 4.17 (b)

Glycerin-Water A
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V. THE MODIFIED NEARLY HOOKEAN DUMBBELL MODEL

5.1 Introduction

In order to investigate the polymer effect on the flow,

an approximate constitutive equation for a dilute polymer

solution is needed to see how the stress tensor changes due

to the existence of the macromolecules. In this chapter,

a new constitutive equation of a dilute solution of flexible

macromolecules is developed from the kinetic theory. The

main difficulty associated with the kinetic theory of dilute

polymeric fluids so far is that it can provide complete

information about the stress tensor only for small rates of

strain and a few material functions for high strain rates.

The reason for the difficulty stems from being unsuccessful

in solving the differential equation for the distribution

function (called the diffusion equation). Although Giesekus

showed that full information about the stress tensor can be

obtained for the Hookean dumbbells model without solving the

diffusion equation, this model has two serious shortcomings

which are shear rate independent viscometric functions and

an unbounded elong-ational viscosity even for moderately high

elongational rate.

The constitutive equations studied here not only elim-

inate the shortcomings associated with the Hookean dumbbell

model but also are simple enough to be manipulated for any

kind of homegenous flow at all strain rates. And it shows

that shear thinning (viscosity decreases with increasing
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shear rate) , non-zero primary normal stress difference co-

efficient and and a bounded elongational viscosity for high

elongational rate.

The new constitutive equation called the Modified Nearly

Hookean Dumbbell model (MNHD) is derived in the next section.

The model is constructed by matching it with the Nearly

Hookean Dumbbell (Armstrong, 1979) (good for a flow where

the macromolecule is neither very stretched nor oriented)and

with the model which Tanner (1975) developed for a flow where

the macromolecule is strongly oriented and stretched. The

result of tests for the Modified Nearly Hookean Dumbbell

model is then shown by using two simple flow patterns, shear

flow and elongational flow. From these tests, the MNHD seems

to be a suitable cons titutive equation for the vortex inhi-

bition study especially because it predicts an elongational

viscosity well when compared with FENE (Warner, 1972) model's

results. A good prediction for the elongational viscosity is

very important to this study because vortex inhibition is

believed due to a drastic increase of the elongational vis-

cosity at a moderate elongational rate.
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5.2 Kinetic Theory and the Modified
Nearly aookean Dumbbell Model

A dilute solution of the flexible- macromolecules is

modeled according to the kinetic theory. The detailed

description of the kinetic theory and the dumbbell model is

given by Bird, Hassager, Armstrong and Curtiss (1977). Each

macromolecule in the dilute polymer solution is idealized as

an elastic dumbbell consisting of two spherical beads joined

by a non-bendable spring. There are n dumbbells per unit

volume, suspended in a Newtonian solvent with viscosity nS

It is assumed that n is so small that no interaction among

the macromolecules occurs. The beads experience a hydro-

dynamic drag given by Stoke's law with friction coefficient

The configurational distributional function $ (Rt) is

defined as a probability density of finding a dumbbell with

an end-to-end vector R. A partial differential equation

(diffusion equation) from which the distribution function

is determined is then derived from the equation of motions

for the beads and the continuity of the distribution function.

The polymer contribution to stress tensor T is then ex-
=p

pressed in terms of expectation values using the distri-

bution function.

For an arbitrary, time-dependent, homogeneous flow with

velocity gradient Vv+ = ic(t) , the kinetic theory provides

the following equations.
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<R R> ED<R R> - {K <R R>} - (<R R> K+
- (1) Dt -- - = -- - - -=

4kT 4 (R F c)> 5.1

= - 5.2

r = -n <R F > = nkT6 5.3
=9 - -

or

r - <RR > 5.4
=p 4 4 (l)

In these equations , l is contravariant codeformational

differentiation, 6 is the unit tensor, F( is a force vec-

tor produced by the spring connector, < > is an expectation

value with respect to the distribution function, _j = Vv + Vy_

is the rate of strain tensor, r is stress tensor of a given

polymer solution, k is Boltzmann constant and T is tempera-

ture.

In order to manipulate these equations, information

about spring force vector is necessary. The "finitely exten-

dable nonlinear elastic" (or FENE) connector force law

studied by Warner (1972) is

F)0 R R < TR 5.5

R 20

where R is the maximum length of the dumbbell. A spring
0

with the force law in eq. 5.5 will be linear for small
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extensions, but will get stiffer and stiffer as the spring

is more extended and finally it will become infinitely stiff

at R0.

Tanner (1975) considers that when a polymer solution

is under a strong flow where macromolecules are almost fully

stretched due to high strain rate, all of the macromolecules

may orient in only one direction and may have a unique end-

to-end vector R. A mathematical interpretation of his idea

is that the distribution function may be expressed as Dirac 's

delta function, namely

p (R,t)c 6(R - R) 5.6

From the normalization condition of the distribution function

(an integration of it over the configurational space must be

unity)

* (R,t) = 6(R - R) 5.7

By using eq. 5.7, eq. 5.1 is rewritten with FENE force law.

4kT 4-~ ~ H0
R R6-- R R 5.8
-(1) C=c--R 2

1 -(

0

Introducing a dimensionless structure tensor a = nH R R>,

eq. 5.8 is rewritten

nkT& 5.9

)=nkT- I tra
nkT
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_=5a 5.4=p H-(l)

where the time constant Nv and the dimensionless small

constant e are defined as N1, 4-- and E = cT2 respectively.4H1a 
R

0 0

:2

The use of a = nR R R and tra- are also made in ob-
= - - = nff

taining eq. 5.9. Eq. 5.9 along with eq. 5.4 may be a suit-

able constitutive equation for a dilute polymer solution

in which the macromolecules are under a strong flow so that

they have a unique end-to-end vector R.

When macromolecules are under a weak flow where the

strain rate is not large enough to stretch them, eq. 5.9

is no longer appropriate because the distribution function

can not be described by eq. 5.7. Armstrong, Ishikawa, and

Essandoh (1979) studied the Nearly Hookean Dumbbell model

for a weak flow regime. The spring force law of this model

is

HR2(c) ER2
F =110 (1 + kT) R 5.10

In such a weak flow, the parameter e should be very small

and indicates the deviation of the spring tension from linear

behavior which is described by the Hookean Dumbbell model.

We assume that the distribution function is expanded in

power of s,

$1 = P 0 + E: L + E 2 4)2 + *5.11
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in eq. 5.11, gives the distribution function of the

Hookean Dumbbell model and 7V1 represents a deviation

caused by eq. 5.10 from the linear behavior. In the same

way, the structure tensor and stress tensor are also ex-

panded as

2 5.12
nH <R R> =c -+cr 2a+ 2 +...2

0  -+- -o =1=2

22225.13
0 L

=1T + E -+ +
=P ==o = 2

where 6 = (nH ) 2 <R2 R R> is an additional structure tensor.
= 0

The use of a regular perturbation method gives the stress

tensor in terms of a and Q, for E0 order.

XHrlc=nkT& -a 5.15

r X a5.16
H o(l)

for E order,

1=1 =1g - nkT 5.17 = X 5.18

where = (trcx ) a + 2(1a - }. Eq. 5.16 is easily solved

for a given flow field and the result is equivalent to that

from the iFookean Dumbbell model. The Nearly Hookean Dumb-

bell model is obtained by combining eq. 5.15 with eq. 5.17

and the result is
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S= nkT - a- nkT

=nkT6 - a -:[(tra )a + 2(a - a)]
= - nkT 0a=0 == =

= nkT& - a -:[(tra)a + 2(a - a)] + 0 (E2
n=cil nkT =- = = 0s

5.19

S=X5.4
=pHS(1)

To compare the result of the Nearly Hookean Dumbbell model

with Tanner's result, eq. 5.9 is expanded for small

tra
nkT,

2
Ka = nkTd - a - tra - a a+ 0(tra2) 5.20
H=(1) - - nkT

The only difference is that eq. 5.19 contains an additional

term -2E a a). Since eq. 5.20 is good for only a weak
nkT-

flow regime, the macromolecule is not extended substantially.

And this indicates the following important condition

0 R2
0 = tra <<I 5.21
kT nkT -

In other wordsr the expectation value of the non-linear

contribution to the spring force law in eq. 5.10 must be

small.

One possible method for combining eq. 5.19 with eq. 5.9

is as follows:
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nHS ) kTS - - (l -jT tra) Tfc n-a)
H=(1)- -__ trctnkT

5.22

Equation 5.22 is known as the Modified Nearly Hookean Dumb-

bell model. For a strong flow regime where all of the macro-

molecules are lined-up in the same direction and stretched

extensively, the term ET tr is nearly unity. Eq. 5.22

thus becomes eq. 5.9 which is the Tanner's model. For a weak

flow regime where eq. 5.21 is valid, eq. 5.22 is reduced to

the Nearly Hookean Dumbbell model by expanding eq. 5.22 for

smallsEnk tra. A summary of these three models are shown
nkT =

in Table 5.1



TABLE 6.1

A SUMMARY OF THE THREE CONSTITUTIVE EQUATIONS.

Constitutive

Equation The form of Equation
Applicable
flow recime

Modified any kind of
Nearly Hookean N 01 nkT (1
Dumbbell Hl)trcznk2rlowl
Model (Ml) nkT

Eq. 5.22

Tanner's Model a strong flow

(M2) A ( nkT6
Eq. 5.9 1 - tra E tra ~

nkT

Nearly Hookean a weak flow
Dumbbellawk l
Model (M3) A H() =nkT6 - (1 + tra) a 

( -)t 1
Eq. 5.19 + nk) tr- <k<Tn

The stress
tensor H c)
expression H2(l)

H
w
0
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5.3 The predictions of the models

In order to gain physical insight about the three

models discussed in the last section, two kinds of simple

flow are applied to them to see the behavior of material

functions calculated from the models. The stress growth

and relaxation for shear flow are numerically calculated

for shear stress and the primary normal stress difference.

The shear rate dependence of the material functions for a

steady shear flow are also calculated. The models are tested

for elongational flow to analyze elongational behavior as a

function of time and elongational rate.

5.3.1 Shear flow

First shear flow is considered to study viscosity and

the primary normal stress difference. The shear flow is

given by v = - (t)y, vy = v = 0, where Y(t) is a time
x y z

dependent rate of strain (shear rate). Stress Growth(de-

noted by + sign for material function).

For the stress growth behavior, the shear rate is des-

cribed by

y(t) = 0 for t < 015.22

yj(t) = y(constant) for t > 0 1
The normalized intrinsic viscosity En+]/[ri] and the nor-

malized primary normal stress coefficient VI/PI are cal-

culated by the 4-th order Runge-Cutta method. [n ] and
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'1 are values at steady state.

Intrinsic viscosity [q] is defined by

[n] = lim _ s 5.23
c-+o cp

where non-Newtonian viscosity n is defined as T = -n(y)y

and c is the concentration of polymer solution. One can

also define the primary normal stress coefficient TI as

T - T = -'%(x) y. Note that these material functions

depend on the shear rate. Some results are shown in Fig.

5.1 to Fig. 5.12

General trends for the stress growth are

1. Stress overshoot is found only for high shear rate

(S = 10. in figures).

2. The peak value of the overshoot is smaller for smaller

e (for example,.Fig. 5.1 and Fig. 5.2).

3. It takes longer to reach the peak for smaller e.

4. The material functions get to their steady state values

faster for higher shear rate.

5. There is little difference between S = .1 and S = .01

for both n+ andY+

As to the difference between p+ and IFy

1. It takes longer to reach steady state for ' 1 .

2. For higher stear rate (S = 10.0) the peak value of the

overshoot is larger and the time required for the peak is

shorter for p+
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Fig. 5.1 to Fig. 5.12

STRESS GROWTH BEHAVIOR OF

THE THREE MODELS FOR SHEAR FLOW

The following notation is used.

Modified Nearly Hookean Dumbbell

Tanner ' s model

Nearly Hookean Dumbbell

eq. 5. 22

eq. 5. 9

eq. 5.19

& = .02

= .005

VISCOSITY [n +]/[rI

STRESS DIFFERENCE

DIMENSIONLESS TIME

+ /T

t/XH (t is real time [secl)

S dimensionless shear rate

Ml

M2

K3

El

E2
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Stress Relaxation (denoted - sign for material functions)

The shear rate for the stress relaxation calculation is

described by

(t) = Y (constant) t < 0
5.23

jjt) = 0 t > 0

The steady state values of the material function (which will

be discussed later in this chapter) are used as initial con-

dition. The results of the calculation are plotted in Fig.

5.13 to Fig. 5.24.

The general tendencies of the relaxation behavior are

1. The higher the shear rate, the faster the stresses relax.

2. The larger Esr the faster pi and IF 1 decay.

3. No difference is found between cases S = .01 and S = .1.

4. It is also found that the relaxation behaviors of p

and IF are exactly equal for each of the three models

because of the structure of the models.
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Fig. 5.13 to Fig. 5.24

STRESS RELAXATION BEHAVIOR OF THE

THREE MODELS FOR SHEAR FLOW

The following notation is used:

Modified Nearly Hookean Dumbbell

Tanner's model

Nearly Hookean Dumbbell

eq. 5.22

eq. 5.9

eq. 5.19

& = .02

& = .005

VISCOSITY [n-I/En'

STRESS DIFFERENCE

D IMENS IONLES S TIME

P/

S dimensionless shear rate

Ml

M2

M3

El

E2
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The Comparison of the Models

Fig. 5.25 to Fig. 5.36 show the comparison among the

three models. The viscosity and the primary normal stress

coefficient are compared for growth and relaxation behavior

at various shear rate and e.

For n+ comparison, the three models show almost the

same result at the lowest shear rate (Fig. 5.25). At moder-

ate shear rate, however, the response of Tanner's model is

a little shower (Fig. 5.26). Tanner's model gives the

highest peak value at high shear rate and Ml and M3 have

almost the same peak values (Fig. 5.27). However, the time

required for reaching the peak is equal for the three models.

M3 gives a little higher steady state value than those of

other two models.

As to r comparison, Ml and M3 behave in an almost iden-

tical manner (Fig. 5.28) and they decay slightly faster than

M2 does (Fig. 5.29 and Fig. 5.30). It is also found that

the primary stress coefficient (,+( 1 -) has the same trends

as viscosity ([n+ Jr [-]) does for both growth and relaxation

behavior (Fig. 5.31, Fig. 5.32, Fig. 5.34, Fig. 5.35, Fig.

5.36). At high shear rate (S = 10 and C = .005), however,

f I+ by M2 has higher steady state value and the time required

for the peak of overshoot becomes slower (Fig. 5.33). Roughly

speaking, the three models predict the same trends. Up to

moderate shear rate (S = .01, S = .1 and S = 1.0), the be-

havior of M1L and M3 are very similar and the prediction by
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Fig 5.25 to Fig. 5.36

THE COMPARISON AMONG THE

THREE MODELS FOR SHEAR FLOW

The following notation is used:

Ml Modified Nearly Hookean Dumbbell

M2 Tanner's model

M3 Nearly Hookean Dumbbell

El c = .02

E2 c = .005

VISCOSITY En J for growt

STRESS DIFFERENCE

DIMENSIONLESS TIME

XHyS = Y
S =x

r1~

ti/XE

eq. 5. 22

eq. 5.9

eq. 5.19

for relaxation

for growth

for relaxation

.01

1.

10.

Si

S2

S3

S4

th
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M2 slightly deviates from them. At high shear rate (S = 10.)

differences in steady state values between the models are

observed.

Steady Shear Flow

The steady state material functions as functions of

shear rate are plotted in Fig. 5.37 to Fig. 5.40. Shear

thinning for both viscosity and the primary normal stress

coefficient is observed for the three models. Both onset

of shear thinning and slope of decreasing curve are similar

between them.

To sum up the performance of the models for shear flow,

they provide fairly good predictions like shear thinning

and stress overshoot and have very similar trends. Quali-

tatively speaking, M2 shows a small deviation from Ml and

M3 whose oredictions are extremely similar.
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Fig. 5.37 to Fig. 5.40

THE STEADY STATE VALUES OF VISCOSITY AND THE

PRIMARY NORMAL STRESS COEFFICIENT FOR SHEAR FLOW

The following notation is used:

Ml Modified Nearly Hookean Dumbbell

M2 Tanner's model

M3 Nearly Hookean Dumbbell

eq. 5.22

eq. 5.9

eq. 5.19

El .02

E2 S = .005

VISCOSITY [rj/[rj

STRESS DIFFERENCE

SHEAR RATE Ay
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5.3.2 Elong-ational Flow

The stress growth of elongational viscosity Ti is

calculated by using the models. The elongational flow is

described by

-1 0 0

0 -1 0 for t > 0

0 0 2 >5.24

0 for t<0

where E is called elongational rate. The elongational vis-

cosity is defined as n = (r - T )/&. The results of cal-
yy zz

cluation are shown in Fig. 5.41 to Fig. 5.46. It is found

from these figures the three models behave similarly at low

elongational rates CS = .01, S = -1).

Since macromolecules are in an almost equilibrium at

this low range of elongational rates, the Brownian motion

(nkT6) of the beads and spring force (<R F c>) of the con-

nector are two dominant contributions to stress tensor r
=-p

and these two forces are conterbalanced. No hydrodynamic

force obviously is important in such low elongational rates.

No matter what kind of distribution function is used, namely

6 - function for M2 and perturbed solution of the diffusion

equation Op = p0 + E: in eq. 5.11) for M3 (Armstrong-, 1979),

the results of calculation shows that there is no difference

between M2 and M3.

However, once the hydrodynamic force becomes significant
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Fig 5.4L to Fig. 5.46

THE STRESS GROWTH BEHAVIOR

FOR ELONGATIONAL FLOW

Modified Nearly ifookean Dumbbell

Tanner r smodel

Nearly Hookean Dumbbell

eq. 5. 22

eq. 5. 9

eq. 5.19

a = .02

S = .005

VISCOSITY normalized elongational vis cosity

(n - InS)/3 (r0- I )

-n: viscosity at zero shear rate

DIMENSIONLESS TIME t/X

S dimensionless elongational rate

Ml

M2

M3

El

E2

x H
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at intermediate elongational rates (S = .5, S = 1.0), M2

shows difference from Ml and M3. And Ml and M2 give almost

the same results while the results of M3 deviate from them

at high elongational rates (S = 2.0, S = 10.). These ten-

dencies of the three models at both intermediate and high

elongational rates can be expected from the previous sec-

tion where M1 was derived. The qualitative behavior of the

three models are explained more explicitly by the results

of steady state elongational viscosity.

The steady state alongational viscosity at various

elongational rates is calculated and plotted in Fig. 5.47

and Fig. 5.48. Up to S = .3 the three models give quite

similar results and from S = .3 M2 starts deviating from Ml

and M3. while M1 and M2 give almost equal results up to

S = 1.0. Then M2 curve gets close to Ml curve and finally

they become identical and bounded at high elongational rates.

M3 is still increasing and may go to infinite when the elon-

gational rate is further increased. As expected, 1 matches

M2 and have the same asymptotic value at high elongational

rate. M2 gives higher results than that of Ml in the range

S = .3 - 1. As in Fig. 5.47 the asymptotic value given by

Ml and M3 goes up 100. The rapid increase of elongational

viscosity observed at the moderate elongational rate corres-

ponds the nearly full extension of the macromolecules which,

then, show high resistance to be stretched out above those

elongational rates.
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Fig. 5.47 to Fig. 5.48

THE STEADY STATE VALUES

OF ELONGATIONAL VISCOSITY

The following notation is used:

Modified Nearly Hookean Dumbbell

Tanner's model
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Fig. 5.49 and Fig. 5.50 show the comparison between the

exact solution of FENE model, Ml and M2. The elongational

viscosity given by FENE model (Bird, et al., 1977) is

Trr
- R

no R +sin 28 + 2 cos 2 E)Yeq. f ' R 2 dR sine de

1- S + 4 Tr

1'eq.cqedR sine de 5.25

where

R2 2 E
<eq. = [1 - ( )1 5.26

1 R 2 2 -
= exp [- (+) (1 - 3 cos8 6)X&] 5.27

~fe 2E R
0

Eq. 5.25 with eq. 5.26 and eq. 5.27 was numerically integrated

over the configuration space in order to obtain Fig. 5.49

and Fig. 5.50. At E = .02 (Fig. 5.49), Ml represents the

FENE model well especially at moderately high elongational

rates. On the other hand, M2 overestimates the FENE model

at those rates. The three models eventually approach the

same asymptotic elongational viscosity at high elongational

rates. M2 turns out, however, to be closer to the FENE

results when s = .005 (Fig. 5.50), at range S = .7 to S = 1.0.

This indicates that the macromolecules are oriented to a

fix direction with smaller elongational rates when they are

more flexible. By judging from Fig. 5.49 and Fig. 5.50,

the Modified Nearly Hookean Dumbbell (Ml) seems to be
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suitable for vortex inhibition analysis because it predicts

the elongational viscosity well when it is compared with the

FENE model's prediction. The FENE model is known experi-

mentally to describe intrinsic viscosity for some dilute

polymer solution (Christiansen and Bird, 1977/1978).

As mentioned repeatedly so far, one of the very impor-

tant part of the vortex inhibition study is to find a

constitutive equation (approximate if necessary) which can

describe the elongational viscosity reasonably well. The

use of t4NHD, thus, may give reasonable information about the

stress field in chapter 6 because first, it has a very simple

form so that any kind of locally homogeneous flow can be

applied, and, secondly, the elongational viscosity predicted

by the model is as good as for the FENE model.



254

Fig. 5.49 and Fig. 5.50

THE COMPARISON BETWEEN Ml , M2 AND FENE MODEL

The following notation is used:

Ml Modified Nearly Hookean Dumbbell eq. 5.22

M2 Tannerrs Model eq. 5.9

FENE FENE Model eq. 5.25

El e = .02

E2 c = .005

VIsCosITY (ri-3 S ) /3 Cn -rnS

ELONGATIONAL RATE XHs
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VI. THE ANALYSIS OF THE ONSET BEHAVIOR OF VORTEX INHIBITION

In this chapter, the mechanism of the onset behavior of

vortex inhibition is analyzed by the following sequence.

First, the Newtonian vortex flow is discussed by the results

of the numerical calculation which is described in Chap. 3

with locally obtained experimental data. Secondly, a few

remarks are added on the constitutive equation (the Modified

Nearly Hookean Dumbbell) studied in Chap. 5 because the MNHD

is used for calculating the polymer contribution to the stress

tensor in polymer solution. Third, the experimental obser-

vation about the onset behavior of vortex inhibition is des-

cribed. Two important characteristics are emphasized in the

section. Fourth, the stress tensor for polymer solution is

calculated along the stream lines by the MNHD. The velocity

field used for the calculation is the Newtonian vortex flow.

Finally, the polymer effect, namely how the flow behavior

changes due to the resulting polymer stress tensor, is analyzed

by an approximate method to explain the experimental findings

qualitatively. A proposed mechanism of vortex inhibition is

then briefly discussed.
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6.1 The Velocity Field of Newtonian Vortex Flow

The velocity field of Newtonian vortex flow is cal-

culated by the method described in Chap. 3 for higher tan-

gantial Reynolds number Re6 . The detailed calculation pro-

cedure, he complete program listings and full information

about the velocity field in terms of r, vrr vz are

found in Appendix A. The velocity component v6 and vz

are locally measured as described in Chap. 4 and compared

with those obtained by the numerical simulation.

The general flow behavior of a confined vortex flow is

well described by stream lines. Fig. 6.1 and Fig. 6.2

show the results of the numerical calculation which describes

the stream lines representing both the radial and axial

velocities for lower and higher tangential Reynolds number

respectively. Each fluid element also makes swirl motion

due to the tangential velocity besides moving along the stream

lines. As shown in Fig. 6.1, for Re6 = 10, most of fluid

elements supplied at the outer wall move toward the exit

hole in taking almost the shortest distance. No reverse (due

to positive v ) or up (due to positive vz) flow is observed

for such a low ReG . For higher Re0 ( = 1370. ), however,

the flow behavior turns out quite different. For example,

taking the stream line p = .8 in Fig. 6.2, representing

80% of total flow rate, the fluid element initially moves

toward the exit hole but after passing the point (r,z) =

(.1, .2), the fluid starts moving back and eventually goes
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6.1 The Velocity Field of Newtonian Vortex Flow

The velocity field of Newtonian vortex flow is cal-

culated by the method described in Chap. 3 for higher tan-

gantial Reynolds number Re0 . The detailed calculation pro-

cedure, tihe complete program listings and full information

about the velocity field in terms of F, vr vz are

found in Appendix A. The velocity component v0 and vz

are locally measured as described in Chap. 4 and compared

with those obtained by the numerical simulation.

The general flow behavior of a confined vortex flow is

well described by stream lines. Fig. 6.1 and Fig. 6.2

show the results of the numerical calculation which describes

the stream lines representing both the radial and axial

velocities for lower and higher tangential Reynolds number

respectively. Each fluid element also makes swirl motion

due to the tangential velocity besides moving along the stream

lines. As shown in Fig. 6.1, for Re0 = 10, most of fluid

elements supplied at the outer wall move toward the exit

hole in taking almost the shortest distance. No reverse (due

to positive vr) or up (due to positive v.) flow is observed

for such a low Re0 . For higher Re0 ( = 1370. ), however,

the flow behavior turns out quite different. For example,

taking the stream line i = .8 in Fig. 6.2, representing

80% of total flow rate, the fluid element initially moves

toward the exit hole but after passing the point (r,z) =

(.l,.2), the fluid starts moving back and eventually goes
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into the bottom boundary layer. As shown in Fig. 6.2, the

bottom boundary layer is formed for high Re6  and 80% of

total flow rate is come from this thin boundary layer ragion.

The radial velocity in the bottom boundary layer is much

larger than that above the layer because the stream lines

are very dense. The core region is also recognized by the

stream line p = .9 in Fig. 6.2. Unlike Fig. 6.1 the stream

line t = .9 is much closer to the axis of rotation and

this indicates that higher axial velocity forms the core

region. And the flow from the bottom boundary layer inter-

acts with the flow from the core region near the exit hole.

These qualitative features of vortex flow can also be seen

by dye experiment (for the bottom boundary layer and the core

region) described in Chap. 4.

Tangential velocity at the free stream region (above

the bottom boundary layer) is measured for various Re 6 . Al-

though the measurement is taken both at z = 4.0 cm and

z = 10.0 cm, the difference in ve at these two positions

is negligible. This agrees with the results of the numerical

calculation (See Appendix A). Fig. 6.3 and Fig. 6.4 show

comparison between the experimentally measured ve and numer-

ically calculated v 6  for two different Re6  and SS. The

numerical results show excellent agreement with experimental

data for both cases. The velocity data near the axis of

rotation (the core region) cannot be obtained by the present

measurement method because the fluid does not stay in a

horizontal thin section which is illuminated by collimated
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illuminated by a collimated light beam, long enough to be

detected by the camera due to the higher axial velocity in

this region. However, the agreement between theoretical and

experimental results for r > .5 cm makes this calculated

ve in the core region reasonable. The v0 profile for both

cases are very similar except that higher Re0 gives higher

vg over the entire range of radius. The v0  in both figures

reaches its maximum value at about r = .24 cm which is

radius of the exit hole.

Fig. 6.5 and Fig. 6.6 show the comparison of vz at the

axis of rotation. As shown in these figures, although the

calculated vz predicts the tendency of v .profile very

well, there is discrepancy between theoretical calculation

and experimental data. There seems three reasons to explain

these differences. First, the zone size (especially in the

r-direction) may be too large to provide the detailed infor-

mation about v at r = 0. And the velocity information
Z

from the calculation is vZ at r/R = .01 due to thediffi-

culties in handling at r = 0. In other words, the calculated

v is the averaged value between r/R = 0. and r/R = .02

because the zone size in the core region A(r/R) is .02.

vz at r = 0 is, therefore, larger than vZ at r/R = .01.

Secondly, the radius of the exit hole re can not be des-

cribed correctly in the simulation because the radius re has

to be matched with the point at the center of the zone. This

condition makes re in the simulation about 1.5 times

larger than the real location of re. From the continuity of
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the fluid, the average value of vz over the exit hole has

to be increased 2.13 times larger for the real case. This

is well explained in these figures because the correction

factor 2.8 seems to fit the calculation results to the exper-

imental data very well for both cases. Third, the numerical

simulation is based on the geometry of a confined vortex

flow so that no free surface is considered. However, this

may not cause such a difference in vz because the calcu=

lated v0 is matched with experimental data. Therefore,

the first two reasons seem to explain the discrepancy. The

discrepancy in vz at r = 0 is not an essential defect

mainly because the size of the exit hole is not described

correctly. By reducing the r-direction zone size and locating

re correctly, the numerical simulation may provide more

precise vz information.

The axial velocity at the axis of rotation is increasing

in almost linear fashion from the liquid surface, but as

the fluid gets close to the exit hole, vz is accellerated.

This is observed from both figures. It is also found from

the calculation results that vz is further increased so

rapidly especially when the fluid interacts with the flow

from the bottom boundary layer to produce large velocity

gradient

3Vz
Tz

The results of the comparison with experimental measure-
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ment show that the numerical simulation certainly describes

the vortex flow reasonably well. And the confined geometry

of the vortex tank does not give any significant difference

from the open free surface vortex flow in terms of velocity

field. Since the numerical simulation provides full infor-

mation about velocity field for the entire vortex geometry

and the calculated velocity field reasonably well represents

the real velocity field, it is employed for stress tensor

calculation for polymer solution in later section.
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6.2 Additional Remarks on the Modified Nearly
Hookean Dumbbell Model

The Modefied Nearly Hookean Dumbbell model developed

in Chap. 5 is used as a constitutive equation for stress

tensor calculation of polymer solutions in the later section.

In this section, two important characteristics of the MNHD

model are described. The proper estimation of parameter 6

from the comparison with available experimental data and the

relaxation time for stress growth of elongational viscosity

are very important factors for analysis of polymer contribution

to stress tensor field.

Fig. 6.7 and Fig. 6.8 show the comparison of intrinsic

viscosity as a function of shear rate between experimental

data obtained by Christiansen and Bird C1977) and the model

predictions. The macromolecule used in the experimental data

is polystyrene of various molecular weights and at various tem-

peratures. From these figures, the MNRD is seen to show the

shear thinning phenomenon. It is also found taht the model

shows a linear relation between [n] and log y for higher shear

rate

Ckey > 2,XH = C5E+l) e)

By comparison with a wide variety of polystyrene solu-

tions, the parameter E which is associated with the maxi-

mum length of the macromolecule % falls into the range

between .02 and .005, which agrees with the prediction

by Christiansen and Bird (19771. This range of the parameter
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c may, therefore, be a proper choice for polymer stress

tensor field calculation.

The stress growth and relaxation of elongational vis-

cosity are plotted with different scaled dimensionless time

in Fig. 6.9 and Fig. 6.10. As shown in Fig. 6.9, as the

elongational rate X H increases, the time required for

raching a steady state becomes much shorter. This charac-

teristic is quite different from the growth behavior of

shear viscosity shown in Chap. 5 where the time to reach

steady state is about t/X = 4 for all shear rates. Unlike

shear flow, the macromolecules subjected to elongational

flow are stretched directly by hydrodynamic force and oriented

to the direction of the flow. The time scale for molecular

response to this flow, therefore, may be related to the elon-

gational rate E. This is clearly explained when the elonga-

tional viscosity is plotted with the dimensionless time

scaled by 1/4 in Fig. 6.10 where the time to reach steady

state is about Et = 3 for higher elongational rate Xs.

As will be described in the later section, the shorter res-

ponse time for higher elongational rate is important for vor-

tex inhibition. The residence time of fluid element is very

short in the area where large veLocity gradient is estab-

lished becasue the velocity of the fluid is usually very

high. Unless the macromolecules are excited within the resi-

dence time of the fluid element, it would be carried away

from the area of large velocity gradient before polymer effect

appears. Thus it is necessary for realizing the polymer
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Fig. 6.9
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Fig. 6.10

Dynamical Behavior of Elongational

Viscosity with Time Scaled by E
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effect on the flow field that the response time for high

elongcational rate must be short besides high elongational

viscosity whick- is emphasized in chap. 5.
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6.3 Experimental Observation of the Onset Behavior of
Vortex Inhibition

The onset behavior of vortex inhibition which is ex-

plained in Chap. 4 is described in this section. The infor-

mation about the onset behavior is very important for analy-

sis of vortex inhibition because it provides the transient

flow behavior from Newtonian fluid to polymer solution.

Shortly after concentrate polymer solution is poured into

the feed tank, the polymer effect appears, that is, a small

fluctuation of the air core is observed and the liquid level

starts decreasing. This onset behavior of vortex inhibition

is measured in terms of the tangential velocity v0 and

axial velocity at the axis of rotation vz[r = 0. These

variables are measured 30 seconds after the onset. As shown

Fig. 6.11, after a couple of minutes, the vortex flow com-

pletely shifts to a new quite different flow status which is a

fully developed vortex flow of the polymer solution. The

flow rate and liquid level are measured. The analysis of

the fully developed vortex flow of the polymer solution seems

to be irrelevant for this study because of the following

reasons. First, the fluctuation of the air core is very

large and random so that it is almost impossible to obtain

consistent velocity data especially for vz at r = 0.

Secondly, since the liquid level is dropped to about 50% of

its original figure and the total flow rate is not changed

very much (see number in Fig. 6.11), a much higher tangential
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Fig. 6.11
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velocity is established and this explains the broadening of

the air core- This larger tangential velocity, however, may

not directly be caused by the polymer effect but rather is

due to the decrease of the liquid level while the flow rate

is almost unchanged. To investigate the polymer effect on

the vortex flow, it is, therefore, more sensible to measure

the onset behavior of vortex inhibition rather than the fully

developed vortex flow. Besides these two reasons, the measure-

ment of the onset behavior is more consistent with the simu-

lation which will be discussed in the next section where the

polymer stress tensor field is calculated by the MNHD based

on the Newtonian velocity field obtianed in section 6.1. The

calculation simulates a physical situation where the Newtonian

fluid is suddenly replaced by the polymer solution in order

to see how the stress field changes due to the presence of

the macromolecules.

Fig. 6.12 shows the tangential velocity measured during

the onset of vortex inhibition. The tangential velocity in

the free stream region is not appreciably changed when com-

pared with that of the Newtonian fluid. Several velocity

data, however, are found near the axis of rotation (the core

region). In v6 measurement for the Newtonian fluid, no

data could be obtained at the core region because of large

axial velocity (see section 6.1). These data indicate the

reduction of v in the core region due to the fluctuation
z

of the air core. Fig. 6.12 may suggest that the polymer
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effect appears in the core region while nothing is changed

in the free stream region during the onset of vortex inhi-

bition as far as v6  profile concerns.

The axial velocity data on the axis of rotation is shown

in Fig. 6.13 during the onset along with the Newtonian data.

The vz data for the polymer solution are obtained from

different pictures taken during the onset. The picture num-

ber in Fig. 6.13 indicates that the lower the number is, the

earlier the picture is taken. The picture number, however,

does not correspond to the precise sequence of the onset

behavior. At each time, different vz data is obtained

because of the fluctuation of the air core. For example,

the data of PIC #11 shows that the velocity becomes almost

zero about z = 4 cm which is quite different from that of

the Newtonian fluid. Fig-. 6.13 indicates that vz at r = 0

is always lower than the case of the Newtonian fluid from

any of the data. This seems to be inconsistent with the fact

that the liquid level is falling during the onset of vortex

inhibition. The averaged vz over the exit hole must be

increased to explain the liquid level's falling, vz at

r = 0, on the other hand, seems to decrease at the exit hole

from Fig. 6.13.

Thus two experimental findings during the onset of vortex

inhibition should be emphasized in this section. First,

the averaged axial velocity over the exit hole is increased
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Fig. 6.13
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because the liquid level is decreasing while the total flow

rate is not changed appreciably. Secondly, the axial velocity

at the axis of rotation seems to be decreased at the exit hole

from the extrapolation of the experimental data. These two

findings characterize the onset behavior of vortex inhibition

and these are analyzed in the following sections.
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6.4 The Polymer Contribution to Stress Tensor

Along the Stream Lines (Based on the result of

the case Re6 =1370 and ss = -. 02)

In this section, the stress tensor is calculated by using

the constitutive equation (the Modified Nearly Hookean Dum-

bell) along the stream line obtained in the previous section.

Since the onset behavior of vortex inhibition is the transient

state from the Newtonian vortex flow to the fully developed

vortex flow of the polymer solution, the information about the

velocity gradient may be obtained from the results of the New-

tonian vortex calculation. The advantage of the numerical cal-

culation of the Newtonian vortex flow is to provide full infor-

mation about every component of the velocity gradient tensor

for the entire region. In this way, the stress tensor field

is calculated along the stream lines. By following the fluid

element on each of the stream lines, the complicated calcula-

tion of the convective terms in the MNHD can be avoided. The

six equations of the structure tensor derived from the MNHD are
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The symbol A in these equations is given by

A l= 1 - (a +a +a )nkT =rr E) Zz

The polymer stress tensor r

structure tensor a.

is then obtained from the

D
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P,Z H Dt HLZ ?~z + -r ez XffH rrz

P E z H5-'6Z H[_3

- X @ - K a 6.13
Hkp 9r rO H 9z zz

The calculation is supposed to start from the outer wall

where the fluid is introduced to the vortex tank. However,

the simple speculation in Chap. 3 indicates that the velocity

gradient is too small to excite the macromolecules until the

fluid elements approach the area near the exit hole where the

velocity gradients seem to become very large. So the cal-

culation of the stress tensor is limited only to this area.

Fig. 6.14 is a detailed picture of Fig. 6.2 of the stream

lines near the exit hole. Once the fluid element reaches

the square area enclosed by the lines of r/R = .1 and

z/E = .1, the calculation begins. For example, the stress

calculation of tP = .8 starts from the point (r/R, z/H) =

(.1, .025). The structure tensor at the point 1 is obtained

by a numerical integration of eq. 6.1 to eq. 6.7. The Runge-

Kutta fourth order method is accurate enough for this type

o f integration. (The program listing is found in Appendix C).

By choosing a small time step, the time advanced structure

tensor is calculated up to the point 1. Every component of

the velocity gradient tensor in the equations is approxi-

mately determined from the velocity field at the point 1.

Once the structure tensor at the point 1 is obtained, the

polymer stress tensor is calculated by eq. 6.8 to eq. 6.13.
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This calculation procedure is repeated until the fluid ele-

ment reaches the point 4 where the large velocity gradient

is expected. The structure tensor as well as the polymer

stress tensor is also calculated in this way for p = .85,

P= .9 and p = .1.0.

TABLE 6.1 to TABLE 6.4 show the results of the calcula-

tion. It is found from these tables that rPZZ is in-

creased extremely rapidly very near the exit hole for the

stream lines q = .85 and i = .8. This is due to thelarge

velocity gradient especially

Sz9V z

established at the exit hole. The large velocity gradient

for $ = .8 may easily be speculated because the fluid

element from the bottom boundary layer has almost zero axial

velocity and once it reaches near the exit hole, it is forced

to be flowed out with a large axial velocity. The boundary

layer thickness is so thin that the axial velocity has to be

increased in a very short distance. And the macromolecules

are suddenly stretched out in the z-direction nearly to the

maximum length R 0  (see the column <(R/Ro) 2> in the tables).

Since the relaxation time is very short when the velocity

gradient is large according to the MNHD, the macromolecule

has enough time to be stretched extensively even in a very

short period of time. The macromolecules flowing along the

stream lines p = 1.0 and $ = .9, (TABLE 6.1 and TABLE 6.2)



TABLE 6.1

POLYMER STRESS TENSOR ALONG THE STREAM LINE $ = 1.0

POINT
NUMBER

TIME
[SEC]

T

I p. rr T ,66 1

2 2[g-crn/sec *crn]

pOzz Iplr6 Tp,rz I p, Oz

2 >

, r-- -J- r --___ or --A. r --J. or f , -

0 0 .000 .000 .000 .000 .000 .000

1 .01 .000 .000 .000 .000 .000 .000 .0146

2 .02 .000 .000
(-.04) 00 0000 0000 .0153

3 .03 .000 .000 .045 .000 .000 .000 .0157
(.24)

4 .04 .000 .000 -.147) -000 .000 .000 .0182
(-.68)

5 .043 .000 .000 -. 203 0000 .000 .000 .0144
(-.96)

* The figures in the parenthesis are values for Newtonian fluid. N)co

-1



TABLE 6.2

POLYMER STRESS TENSOR ALONG THE STREAM LINE $ = .9

POINT
NUMBER

TIME
[SEC)

; g-cm/sec 2 -cm2:--pW

p,rr T
pzz

T p,rO T p, rz

0-2

0 0 0 0 0 0 0 0

1 .02 0 -. 001 20849 ,.003 -. 090 -. 141 .0207

2 .04 .008 .012 ,431 -. 005 -. 105 ".145 .0241
266)

3 .06 .028 .031 .664) .001 -. 076 -. 099 .0280

4 .07 .026 -. 053 9.158 -. 031 -. 390 -. 966 .1660
(-3,02)

5 .075 .1213 .002 -23.618 .09 38 -91 .13(-3.02) .09 .3 .9 .18

*The figures in the parenthesis are values for Newtonian fluid. N
'D
0D

T ,6



TABLE 6 .3

POLYMER STRESS TENSOR ALONG THE STREAM LINE - .85

POINT
NUMBER

TIME
(SEC]

2 2
T Lgacrn/sec *crn

T p,rr T p,6 4, Ip,ro T
perz Tp, Oz

<)2>
RO

0 0 0 0 0 0 0 0

1 .04 -2.368 -. 442 2.322 1.619 -2,352 1.481 .1185

2 .08 -3.700 -1.376 "8183 2.376 -5.459 3.326 .2175
("398)

3 .12 -. 301 .011 3.5804 .182 -.819 .261 .0948

4 .15 -1.039 -. 978 44.899 -1.060 -7.088 -6.831 .4869(-2.08)

5 .155 .083 ,.367 -3.80) .061 .688 -6.077 .6819

A The figures in the parenthesis are values for Newtonian fluid.



TABLE 6.4

POLYMER STRESS TENSOR ALONG THE STREAM LINE $ = .8

POINlT m MP

T [gcm/sec2 -acm

r J.LLN l., 1'L ZrLUJ - 1

NUMBER [SECl p,rr pO0 p,zz p,rO prz pOz 0

0 0 0 0 0 0 0 0

1 .03 -.040 .001 .069 .078 ,114 .030 .0172(- .02) .7 .L1 00 .37

2 .07 -3.461 -3.315 -2.575 3.484 -2.997 2.805 .1704
(,-.7)

3 .09 -35.001 -12.902 .47.004 332 -40.598 25564 .6769(-2.12)21. (-2.285)72.64 .6769

4 .097 -. 306 .039 -171.298 .005 -7.909 .646 9.8019

* The figures in the parenthesis are values for Newtonian fluid,

,,



TABLE 6.5

THE LOCATION OF EACH POINT

POINT

NUMBER

$) 1.0

r/R

= .9 $ = .85 p= .8
I F - I r

r/R I 4/13 z/H I r/R I

0 0 .1 .025 .1 .04 .1 .1 .025

1 0 .08 .024 .078 .038 .082 .078 .026

2 0 .059 .023 .055 .036 .061 .050 .023

3 0 .037 .021 .029 .031 .038 .037 .014

4 0 .012 .02 .013 .026 .014 .028 .003

5 0 .044 .018 .002 .022 .004

NJ

(-'3

I



294

on the other hand, are not stretched substantialy. For exam-

ple, at P = 1, r is less than the half of the New-
przz

tonian stress counterpart even at the point 5 so that the

fluid element may not be influenced by the presence of the

macromolecules. From the analysis of the Newtonian velocity

field, it is found that the dominant forces in the Newtonian

flow in the z-direction very near the exit hole are pressure

gradient and the corresponding inertia forces. The viscous

force, therefore, does not contribute effectively to the force

balance. In order to cope with these dominant forces, r

must be much larger than the Newtonian stress.

As shown in the case of ip = .85 and $ = .8, rzz very

near the exit hole becomes much larger than the Newtonian

case, it may, therefore, be possible that this stress component

influences the flow behavior. To investigate the influence

of -C on the flow behavior, the force balance (the
przz

equation of motion) in the z-direction has to be considered

with the polymer contribution to the stress tensor terms.

This will be discussed in the next section.
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6.5 The Analysis of Polymer Effect near the Exit Hole

As found in the last section, the dramatic increase

of pfzz is established near the exit hole for $ = .8

and p = .85. This is due to elongational nature of the

flow behavior which stretches the macromolecules substan-

tially as studied in Chap. 5. In this section, we investi-

gate how this r influences the flow behavior by using
p, ZZ

the z-direction force balance and try to explain qualita-

tively the onset behavior of vortex inhibition which was

described in section 6.3.

The force balance in the z-direction (z-component of the

equation of motion) is written by

Savz Vz) p aTzz
Q0 ar r + vz -3 zj ~9_7 ~ r ar(r-crz)+ T +Pg- 6.14

The study of the Newtonian flow field obtained in section 6.1

near the exit hole shows that the pressure gradient

@p

3 z

and the corresponding inertia force

3Vz
uDv

z; az

are the main dominant forces and the Newtonian stress terms

are too small to contribute the force balance. TABLE 6.6



THE MAGNITUDE AND

TABLE 6. 6

ORIENTATION OF EACH TERM IN THE FORCE BALANCE

Pv av z ~avza C
r - - (r ) -- r P

r a r P zat r ar rz rat z

magnitude 3 23

23 9534750 4703 980
[gcz/sec cm I (ttL) (921)

orientation
for the z -
direction + + - +

[s upward) _-)-downward

*l The contribution of the polymer solution is less than 5% of the dominant

force -

* The figure and sign in the parenthesis are contribution of the polymer solu-

tion estimated from TABLE 6.1L to TABLE 6. 4.

* The Newtonian stress tensor is calculated by Newton's law:

[V av-
rz = -a %+ j

rav

3 r
where T l[q,/cmseclr P = /gjm for water.
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shows the magnitude of each term with the orientation of

forces around the point (r/R, z/R) = (.03, .01) for the case

of Re= = 1370, SS = - .02. As shown in TABLE 6.6, when the

r z calculated in the last section is used for the term
przz

a-T
az zz

it becomes about 20% of the pressure gradient term and the

direction of this force turns out to be negative. In other

words, the new force produced by the macromolecules tends to

push fluid downward, that is, the axial velocity at this point

may be increased. Qualitatively speaking, this is consistent

with the decrease of the liquid level during the onset behav-

ior because the average axial velocity over the exit hole is

increased. Although nothing can be said about the magnitude

of the increased axial velocity unless the equation of motion

is solved with the polymer stress tensor, it may be a reason-

able outcome that the polymer effect appears near the exit

hole especially around r/R = .03 and causes the liquid

level's falling.

In order to see how the flow behavior changes according

to the presence of the macromolecules, one must solve the

equation of motion with the polymer stress tensor expression

(the constitutive equation) . This, however, requires a

tremendous amount of calculation because nine non-linear

partial differential equations (three from the equation of

motion and six from the constitutive equation) are to be
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solved simultaneously. The calculation is much more difficult

and involved than the case of Newtonian flow problem. In-

stead of pursuing this difficult calculation, the polymer

effect on the flow behavior may be roughly estimated simply

by changing the boundary condition at the exit hole in the

Newtonian vortex flow calculation because the polymer stress

tensor becomes significant only for this area. The calcu-

lation procedure, thus, is described as follows. Firstr

the axial velocity at the exit hole is reasonably estimated

by the contribution of the polymer stress tensor. Secondly,

the boundary condition of the stream function is fixed accor-

ding to the estimated axial velocity. Third, the velocity

field for the entire vortex flow is calculated by the method

described is section 3.5 for a short period of time. And

finally the stress tensor is analyzed along-the newly calcu-

lated stream lines in the same way as described in section 6.4

to see the tendency of the polymer stress field. In this way,

we could at least see an initial stage of flow change which

may correspond to the onset behavior of vortex inhibition.

According to the results of T obtained in section

6.4, the stream function at the exit hole is estimated (see

Appendix E for details). The velocity field is then calcu-

lated with this boundary condition for 20 iterations which

is equivalent to .286 seconds. An initial condition used

for the calculation is the velocity field of the case Re6

1370, SS = 0.02 (See Appendix A for full information). Fig.
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6.15 shows the axial velocity at the axis of rotation after

20 iterations. The v at r = 0 slightly decreases from the

Newtonian case especially when z is less then 5 cm.

Even for such a short period of time, the axial velocity

responds to the change of the boundary condition which is

substitution of the polymer effect at the exit hole. The

decrease of the axial velocity seems to correspond to one of

the experimental findings during the onset behavior of vor-

tex inhibition. The experimental data in Fig. 6.13 is taken

within 30 seconds since the polymer effect is first observed.

The axial velocity is always changing from time to time

because of the random fluctuation of the air core. All the

v data in the figure, however, are lower than that of the

Newtonian case. The results of calculation does indicate

this tendency.

The newly calculated tangential velocity, on the other

hand, is no appreciably changed at all from the initial

state especially outside the hole region. This is also con-

sistent with the experimental facts. For example, as shown

in Fig. 6.12, tangential velocity data during the onset

period is not different from the data taken before the onset.

Fig 6.16 shows the stream lines obtained from the

calculation. The dotted lines are the stream lines

for the initial state. The flow pattern as a whole

is not so different in the two calculations. However, the
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Fig. 6.16

Stream Lines near the Exit Hole after

Imposing the Polymer Effect
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stream lines above the bottom boundary layer shift to the

right to some extent. This shift also explains thereduction

of v at r = 0 because the radial distance between

P = 1. and IP = .9 becomes wider. The polymer stress

tensor is calculated along each of the stream lines in Fig.

6.16 in the same manner as in section 6.4. The results are

listed in TABLE 6.7 to TABLE 6.11. Again TPzz very near

the exit hole is increased so rapidly for ' = .8 and

TP = .85. And the magnitude of TPzz in both stream lines

are a little larger than before. k. along the stream lines

'P = 1.0 and 'P = .9 is not increased enough to cope with

dominant force of theequation of motion and the macromole-

cules are not stretched at all. The tendency of the polymer

stress tensor observed in section 6.5 is even more emphasized

in this calculation. In other wordsrIP'zz still becomes

large enough to be comparable to the dominant force so that

the fluid may be pushed downward again. It is found from the

sequence of the calculations that the initial effect of the

macromolecules, that is, to increase vz at the exit hole

around r/R = .03, keeps its tendency as time proceeds be-

cause the increased vz also increases the responsible

velocity gradient

av
az

producing higher stress tensor component (especially 'P = .85).

This nature of T is important because once the polymer
p, zz



TABLE 6.7

POLYMER STRESS TENSOR ALONG THE NEWLY CALCULATED STREAM LINE $ = 1.0

POINT
NUMBER

TIME
[SEC]

' [g-cm/sec2 -cm2 I

T
r' r T

n6 P
T

P7 77
T

nrP
T r, I F7

,~ 2 >
R

p, p LLz p Prp V14r VIL , z

0 0 0 0 0 0 0 0

1 .01 0 0 .015 0 0 0 .0150

2 .02 0 0 -. 042 0 0 0 .0156

3 .03 0 0 -.054 0 0 0 .0159

4 .04 0 0 -. 152 0 0 0 .0183

5 .045 0 0 .230 0 0 0 .0201

Li
0
wo



TABLE 6.8

POLYMER STRESS TENSOR ALONG THE NEWLY CALCULATED STREAM LINE 4 = .9

POINT
NUMBER

TI MEI

PT

p,rr T
plea

T
p,zz

T r0 I T
p, rz

2
Ro

0 0 0 0 0 0 0 0

1 .02 0 0 -,205 0 -.089 -. 124 .0194

2 .04 0 0 -.291 0 -.090 .137 .0214

3 .06 .013 .014 -. 298 .002 -. 081 .124 .0209

4 .075 .064 .056 -1.247 .009 .016 .128 .0394

5 .081 .101 ,052 -5.045 .109 .109 -.100 .1056

(L0
0
A :



TABLE 6.7

POLYMER STRESS TENSOR ALONG THE NEWLY CALCULATED STREAM LINE $ 1.0

POINT
NUMBER

TIME
[SEC1

[g- m/se c2 - crn2 3
.2 .2

T I T I I

j 2

R 0I A
- p,rr p,uu p,zz p,re p,rz p,uz

0 0 0 0 0 0 0 0

1 .01 0 0 -.015 0 0 0 .0150

2 .02 0 0 -. 042 0 0 0 .0156

3 .03 0 0 -. 054 0 0 0 .0159

4 .04 0 0 -. 152 0 0 0 .0183

5 .045 0 0 .230 0 0 0 .0201

UA



TABLE 6.8

POLYMER STRESS TENSOR ALONG THE NEWLY CALCULATED STREAM LINE $ = .9

POINT
NUMBER

TIME

P

pr r
T
p,.00 irv p Tr T

P.rz
P,oz

2

0 0 0 0 0 0 0 0

1 .02 0 0 .205 0 ,.089 -. 124 .0194

2 .04 0 0 -,291 0 -. 090 ,.137 .0214

3 .06 .013 .014 -. 298 .002 -.081 -.124 .0209

4 .075 .064 .056 -1.247 .009 .016 -. 128 ,0394

5 .081 .101 .052 -5.045 .109 .109 -.100 .1056

U)
0
A

I

I



TABLE 6.9

POLYMER STRESS TENSOR ALONG THE NEWLY CALCULATED STREAM LINE , =.85

2 2

POINT
NUMBER

TIME
[SEC) n rv T - UU I

= R2
< 

1
T' A f

0 0 0 0 0 0 0 0

1 .05 -8.917 -3.092 -2.505 5.382 -4.716 2.779 .2313

2 .10 -13.552 -5.643 -7.402 8.870 -10.018 6.470 .3456

3 .13 -8.990 -3.555 - 23.532 5.775 -14.551 9.160 .4180

4 .15 -. 982 -. 107 -40.625 -. 405 -6.585 -2.610 .4551

5 .16 -. 319 -. 093 -131.810 -. 241 -7.394 -4.456 .7526

LA)
0
Ul

.

I
fu r% l f



TABLE 6.10

POLYMER STRESS TENSOR ALONG THE NEWLY CALCULATED STREAM LINE $ = .8

POINT
NUMBER

TIME
[SEC]

Ip [gcrn/sec2 -2

T
p, rr

T
pies

T
Pz z p,re P. I

T
p, Oz

2
0- >

'1%

0 0 0 0 0 0 0 0

1 .04 -. 0382 .595 ,.143 .574 ,243 .195 .0395

2 .08 -6.436 -. 914 -6.286 2.494 -6.415 2.323 .2217

3 .10 -5.411 -. 268 -34.717 -. 996 -13,699 -2.922 .4478

4 .106 -2.327 -,.022 -177.127 -. 262 -20,540 -2.678 .8097

0
C)
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effect appears this effect may continue.

In this section it is found from the analysis of rp,zz

that the dramatic increase of TP,zz along the stream lines

$ = .85 and p = .8 very near the exit hole seems to ex-

plain qualitatively experimental characteristics of the on-

set behavior of vortex inhibition, namelyr the liquid level's

falling and the reduction of vz at r = 0.

The mechanism of vortex inhibition is discussed in the

next section based on the main results of the previous

sections.



308

6.6 A Proposed Mechanism of Vortex Inhibition

The results of the Newtonian vortex flow calculation

indicate that the velocity gradient

@vz

az

increases significantly only near the exit hole and the exper-

imental observations of the onset behavior suggest that the

polymer effect starts with both the liquid level's falling

and the reduction of v at r = 0. Since the onset behavior

of vortex inhibition is a transient state from the Newtonian

vortex flow to a fully developed vortex flow of polymer

solution, the initial change of the polymer contribution to

the stress tensor is calculated by solving the constitutive

equation using the Newtonian velocity field. The dramatic

increase of z very near the exit hole is found from

the calculation. This increase is mainly due to the strong

elongational type of flow which stretches the macromolecules.

Furthermore, the simple simulation shows that the increased

EP zz seems qualitatively to explain the onset bahavior of

vortex inhibition.

Although the mechanism of the fully developed vortex

flow may not be precisely described because of the compli-

cated nature of the phenomenon, we may speculate the mechan-

ism for the fluctuation of the air core from the analysis

of the onset behavior. The suppression of the air core
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corresponds to the decrease of v0 in the core region and

the reduction of v0  may be due to the decrease of vZ

at r = 0 which is one of the polymer effects discussed in

the last section. The experimental measurement shows vz

at r = 0 is always lower than that for Newtonian case

during the onset. The overall flow behavior, then, becomes

more like the case of the low tangential Reynolds number

(see Fig. 6.1, for example). As shown in Fig. 6.1, the flow

approaches the exit hole from all directions, and a bottom

boundary layer no longer exists. The flow behavior is quite

different from that of high Re0. For high Re0 , most of

the flow (about 80%) is from the thin bottom boundary layer

as shown in Fig. 6.2. The fluid element from the boundary

layer has almost zero axial velocity and it is merged with

the fluid from the core region near the exit hole. The fluid

element is then axially accelerated rapidly within the length

of the boundary layer thickness producing the large velocity

gradient. This explains why r pzz becomes very large only

for the stream lines 'p = .8 and 'p = .85 (p = .8 is from

the boundary layer and V = .85 is the stream line next to

'p = .8). Since a large velocity gradient

vz

does not exist near the exit hole in the absence of the bot-

tom boundary layer during the suppression of the air core,
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no polymer effect is expected. The flow system, thus, tries

to go back the original Newtonian vortex flow. And the tan-

gential velocity in the core region increases producing the

extension of the air core again. This whole process may

explain the fluctuation of the air core.



311

VII. CONCLUDING REMARKS

Three major conclusions are drawn from the results of

this study. They are:

1) The numerical calculation for the confined Newtonian

vortex flow provides reasonable velocity field for the entire

vortex tank geometry. The calculated velocity field reason-

ably agrees with experimentally measured v 6 at the free stream

region and vz along the axis of rotation by photographic tracer

technique. The consistency in the comparison may make the

velocity information reliable for the area near the exist hole

and for the bottom boundary layer. The vortex flow studied

in the thesis is highly non-linear (Re6 is up to 2000) and

has a singularity at the exist hole. The alternating-direc-

tion implicit method with the zone formulation is gound to be

suitable for this kind of complicated flow problem.

2) The Modified Nearly Hookean Dumbbell model seems to

be an appropriate constitutive equation for the vortex inhi-

bition study. The model can predict a boudned large elonga-

tional viscosity which may change the flow behavior at high

strain rates as well as shear thinning. The MNHD also has a

simple form so that any kind of locally homogeneous flow can

be applied for obtaining the polymer stress field. It is

found from dynamical studies of the model that the time to

reach steady state in start-up of elongational flow is well

scaled by the reciprocal of elongational rate . This re-

sult is quite different from that of shear flow which is
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scaled by the time constant XH'

3) A highly elongational type of flow, namely very

high velocity gradient

avz

is established in the vicinity of the exit hole according to

the results of the numerical calculation. This large velocity

gradient may be a cause of the onset behavior of vortex inhi-

bition. The application of the velocity field to the MNHD shows

that the macromolecules moving along the stream lines pass-

ing the bottom boundary layer and outside the core region

(Seeq)= .8 and P = .85 in Fig. 6.14) seem to be almost

stretched out to the maximum length R very near the exit

hole. The stretched macromolecules produce large stress ten-

sor which seems to explain qualitatively the characteristics

of the onset behavior of vortex inhibition.

The following possible studies are recommended as exten-

tions of this study.

1) To develop the solving method for the non-Newtonian

velocity field by solving the constitutive equation and the

equations of motion simultaneously.

2) To develop an experimental technique to measure the

velocity field especially in the vicinity of the exit hole.

3) To develop an experimental technique to measure rheo-

logical properties (shear viscosity, the normal stress coef-

ficient and hopefully elongational viscosity) of a dilute
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solution of flexible linear macromolecules.

4) To establish high elongational type of flow in a

simple geometry so that both measurement and calculation of

the velocity field are easier. This may also confirm the

importance of elongational viscosity for dilute polymer

solutions.

Since the elongational viscosity seems to be responsi-

ble for the flow change of the onset behavior of vortex inhi-

bition, the mechanism of drag reduction may also be related

to the large elongational viscosity exerted by macromolecules.

As to this direction,

5) To study the turbulent pipe flow to obtain detailed

velocity information about the bursting process in order to

investigate how the macromolecules are deformed.
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VIII. APPENDICES

Appendix A: Computer Program of the Newtonian Vortex
Flow Calculation.

As described in Chap. 3, this computer program is de-

signed for solving the Navior-Stokes equations in a confined

vortex flow especially for high tangential Reynolds number.

The methods used in the program are lined SOR for the stream

function and ADI for the circulation and vorticity. The

calculation program mainly consists of six files, KEIKO, STFN,

VRVZ, CIRL, VOTY and RESI. The file KEIKO controls the whole

calculation procedure which is described in Fig. 3.12. It

can start and cease the calculation. The initial conditions,

a time increment for the circulation and vorticityr zone

description and many parameters are also determined in KEIKO.

The calculation data are stored or read or printed or punched

in this file. KEIKO also includes several subroutines. The

subroutine NONS determines the boundary values of vorticity

wb at the bottom wall according to eq. 3.55. The subroutine

KEIKO, a basic tool of both lined SOR and ADI, solves the

tridiagonal system matrix.

The stream function is solved by the lined SOR in the file

STFN. The interpolated stream function which defined at each

corner of the zone is also calculated in this file. VRVZ

determines the radial and axial velocity from -theinterpolated

stream function at zone boundaries (See Fig. 3.7). The cir-

culation and vorticity are solved by ADI in files CIRL and
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VOTY respectively. In CIRL and VOTY, both functions are

first solved implicitly in the r-direction (R-sweep) and

followed by Z-sweep using the intermediate results obtained

by R-sweep. After certain number of iterations (loop 2) ,

the residuals of each function are calculated in the file

RESI.
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Description of Variables

Variable

ST(I,J)

STN(I,J)

CI(I,J)

CIN(I,J)

VO (IJ)

VON(IJ)

VR(1,J)

VZ (I,J)

EX(I,J)

R(I)

DR(I)

Z (J)

DZ (J)

RS (I,J)

RC (I,J)

RV (1,J)

N

L

NT

NTC

NTCl

MT

Description

Stream function p

The intermediate stream function after R-sweep

Circulation P

The intermediate circulation after R-sweep

Vorticity w

The intermediate vorticity after R-sweep

Radial velocity vr

Axial velocity vz

The interpolated stream function

The radial position of zone center

Zone size for r-direction

The axial position of zone center

Zone size for z-direction

The residual of stream function

The residual of circulation

The residual of vorticity

Constant for WRITE format

Constant for PUNCH format

Constant for READ format

The number of variables(*,Pw) location in r-
direction

NTC = NT - I

NTCl = NT - 2; The number of zones in r-direction

The number of variables (r,P,w) locations in
z-direction



317

Variable

MTC

MTCl

NEXIT

NETl

Im

IP

IDD

ICT

RE

SFAC

AFER

A

INOP

TIST

TICI

IOST

ioci

1ovo

Description

MTC MT -1

mTCl = MT - 2; the number of zones in z-direction

The radial location of the radius of the exit
hole

NEl = NEXIT - 1

The index number for choosing the method to
determine the bottom boundary values of
VORTICITY wb. IM = I~ 4 (See subroutine
NONS in file KEIKO)

The number of inner iterations

The number of outer iterations

ICT = IP x IDD; The number of total iterations

Tangential Reynolds number defined by eq. 3.53

The ratio of vR to vOR defined by eq. 3.54

The relaxation factor for stream function
calculation

The convergency criterion for stream function
calculation described by eq. 3.60

The ratio of R to H

INOP = 1; Fixed boundary condition at the exit
hole for stream function (This condition
is used for the polymer effect calculation
described in section 6.5) INOP = 2; The
Newtonian calculation

Stream function data reference number for input

Circulation data reference number for input

Vorticity data reference number for input

Stream function data reference number for output

Circulation data reference number for output

Vorticity data reference number for output
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Program Listing

The complete listing of the six files are followed.



0iS 00123
DES 007T2X
DZSOUIX?24N
01500123
00500124 C) Os007224

Oebti0012IN
01700I2I
0s1, 002 33
05t0012Y.

DtibfOIXY

00t00I23Y

C;96D-012
0 RE 007324

EE002232
09E001321
0 tic0 01

0 cc 0 01 2:p. O&LOCIZ3!
0 6Z 00133i
OSZODI2Y

LZ03232
DPZ 00732
C.sz 0noxax
OtiZ 0019-N
0 VZ 0 02711

DZ 001324

061 00234
08 LOOflY
DLL 001a)!
0 9 L0073-;

0US1. 00722&

b, CtL301221
CZI. 001324r
D L LO00."R.
D01 001324
06000123;
090001324

OLDD002224
tiZ00 017N

D L 0 001334

rsaLs 2s CZIN01 IYV1 CIIYSHSaA NO0D>Y NYLZ I OS02 i 3a2 7I i

scV=(rzc! ZL

L[z'Z=r L0L 0
LG'= (S+I)G 01L
zc'= (r'sa

9SZ=2 OL 00

'= (9 1.V2

'0=(L) 20
O=(L) a

'0= L('S

L= L3R

OL=L ZIG

L E=:)IW

I L=3I
BE =iW
Z L=1i

o(Vj Io P

oz=II 0 III
IS'L92 00
0L9=I SI

(c dZ= O 0 Dl

(EZI''0ELBE30 2 DL =21511

I(OLJ;SRr0 v0:)D

(s-E ZL)aKO, xo3w0nn
4ZS V' fY S J Z A'JS N&OZO

(0oL)a-G ON t0t~
SS'IEISi --E ROWNOZ

a01nI' LS:IR'X!IrL31 0SLOIN ZI1 -Z o 'lV ROWIO

(oz i'i7'oztI' BM19s 311aE]I[lC
(S L : 7' 0I 'ozL

5
9t:L'CL!cL T 't:L 9'2n."aF zNIas7c

(zza"?-Loz&I,'sc Ioz IVA 112C
(L L:-'- I ''cS I'(ZII'7 -- ) '#Z13SE a2 SK2a3nC

XTIXIYW IXRODIG-IEIS31 1,7OS 01 Z
VITCvo sxa BZ1ndGEN IN atuna01 n

2liWlOX-fS 112 X, iIZTLHOA IVA E ;01109 13 --3EXPflrHSO c0-1 3:
ADZL o'V Zra N

N1 21IMSSC SY XCMIIVDZTEZ TIV3SYE'"AO 'JXIXOC 012 Z
opaRPvP:SnnOIfSIE 1 "1131 1f-K8l230Ci 00

'0tiOZ 2131ionnaIsnon 02 nn
YIVO 71M1 1flIfD l0 0I~Yld~i 01 00

~SZISIXXZ'TYI3ZDRIOTID2 21zSIR 02413212 2131 .13

6T C



FILE: KE IKD FDRTR Al I CO NV ER S&TIOtAL *ONfTOa R SrSTE

DO 73 I=2,NT
73 R(i) =a(-i) +(DZ(L) +DE(r-1))/2.

00 74 J=2,1T
74 (J)=I(J-1)+(DZ(J)+Z (J-1))/2.

In= 3

2= 20
.LDD =2
c'"=0
WRITI a3,402)

400 FO RA T (/, r:10,'17 VI S2 2ARAEOLC, ilP2UI o' ,f,
IICI,'IF 7R IS ZERO IS2UT 1',/)
aRAoD (L, 40 1) INO

401 FORdKT t10)
WRIT E (,3 12)

3T2 FOakT-/.lOr.'PLEAS E IYPUT SS I F10.5',)
READLo,20L4) SS
DO 1 J=i1T
RZEAD2rIST'jJ,200) [ST r',J) ,I=1, 12)
REkfDC1CI'J, 20 0) Cil."lJ) ,D=l,12)
READ (IVO' J,201) "VOV"IJ) rI=1,12)

1 CONTINu27
ST !2, 1) =. 9946
WIrTE tcl,320)

323 FOENT(10,'IF TIHE SAXI SS PARIFETE& IS USED, INPUT 1,',/,
11 0X",L' SS KS DIFFRENT, TYPE 0 .',/)
ESAD tt,283) Iss

280 FOiAT (110)
IFISS) 13,13, 14

13 CONT IN UE
DO 3 I=1,NT
DO 3 J=1,T

3 TOcIJ)=-7O(IJ)*ss
14 COTINU--

WRLTE(,3 21)
321 F0EtXT10T,'LF S ORO INITIAL Z0KDITION CS USED, U(PUT I,'

1,/,10X, 'tF KEWLI INPUT INITIAL CONDITION IS USEDnIPtT 0',/)
READ L,283J CF[
:fciz)a 10,10,11

10 CONTINUE
CI (2,KT)=. Oa
CI(3,dT)=.40
C &4,LT)=.50
CZ(S, T) =5528
Cl6,dT)=.6322

CI 17,"1T)-=. 6748
CIr8 ,ZIT)=. 6379
CIr9,T)=.6638
CI(10,oT)=. 7552
C. I I ,&T) =.9 1
00 2 1211
DO 2 J=2,e&TC

2 CICI,J)=1 .5flt)
CI :2,1) =CI :2,tT)
CI,3,1)=Clt3 ,nT)

320

KEI00560
ECE100 570
KEI00580
KEI00 590
KEIC0600
KEIOO610
KEI00620
KEI-00630
.KEIO0 640
KE100650
KEI00660
KE100670
KEI 00680
KEI00690
KEZ00700
KEIAC 710
KEI00720
KI(00730
KIC00740
KEIO 750
KE100760
KE100770
KEI00780
KE100790
KEI00800
K100810
KZi100820
KEIO 0830
K200840
K2100850
KEI00860
KE100870
KIO0880
KEI00890
KE100900
KIOG910
KEI00920
KEI00930
KEI094 0
IcEI00950
KE100960
KE100970
KE100980
KE100990
KE.IO1000
KE10 1010
KE101020
KE101030

Z(501040
KE5101050
K1IO1060
KEIOI1070
KEIO 1080
KE101090
KE101100



FILE: KBIKO ?ORTRA2 I

1? CC&TZNUS
20230FOR&T 12F10.5)
201 ?ORIAT(1210.14)

25 CONTINUX3
WRITE(i307)

307 FORflT(/,,10,'2LEASE INPUT R tWIS ROPEBER rIyio
aE&D (L,204i) RE

W RId dr308)
303 FORKIT7.,l0K,'PLASE INUT SFA ZN F1.4li',/

REaD(L,205) SFAC
205 FORIarT 10. )

WRITZ o,3 09)
309 FORAT/,10_,'2LEXSZ INPUT AFER IN F12.8',/)

REAC (L,206) XFER
RITS :310)

310 FOR!r 7,10OI,'2LEASE INPUT DT(1) IN F12.8',/)
READL, 206) DT(1)

2(6 FORM'A112.8)
iiFRI T1E(l,3 1 1)

311 FORnT7,l1:,P2LEaSE INPUT A. IN ?1C.',/)
READ(L,205) A
WRITS ft,3 13)

313 FORAlT/,Vr ,' LEASE I2-T DS(1) I F12,8',/)
READ(L,206) D(1)

11=0
RaIT?:aX,15G) RESsA

150 FORKAT(C/,101,'RSIOLD NIUBEE IS',F10.1,,oI10,
1SS P&RA1ETER IS' ,1.5,,1 ,
2'ASPECT RATNO IS',E52,/)

CC INITIAL CONDITION
WRITE(I, 101)

TO1 FORnryT.V,10.'INr rTAL TALUES OF ST,CI AND 0VO',/)
WRITSAr(I300)
CALL 2222 :ST,:i,:)

fE-l? !,3 01)
CALL 22?? CIr4IZ)
WRITI "A,302)
CALL 222(WOLrZ)

CC SET UP :TSATION
49 COTIN U&

ICT=ICT* 1
IF(112-IP) 50,51,51

51 11=11*1
WRITE ( r103) II,ICT

103 FOR AT(lI,'AfTr1',15,' CICLES',15,' ITEaI
WRITE ( l,3fl)
CALL 2222(STe.,Z)
WRIT? CI,52) InhrTr

650 FoiXAT(,10r,'NUfsEF OF TINES FOR ST. IS 5IOW 01
WRITEr,301)
CALL 2222p2It,,Z)
CALL VRWZfR,?,DE,DZEr.k,SS)
CALL RISI
I5(11-1DD) 52,53,53

COKVERSATIOKAL qO1TOR StSTZO1

.1' ,/)

TICaS',/,)

,215,/)

KEI01110
KE.10 1120
KEIO 1130
KEIO1 14 0
[EI 01150
KIO 1160
KEI-011170
K[I101180

KEI(01190
KEI01200
KE10 1210
KE01220

K1E10123C
KETC1240
K1101250
E10 1260

CO I01270
KE101280

ICE1 01290
Kzi(1300
:CE01310

K EI0 1320
KEI-01330
KE101340
KET01350
1(:01360

KE10'01370
KE1380

KEI01390
K101400

0 101410
KE101 420

KEI01143 C
KEI01440

KE01450
KZ(10 1460
KE01472

KEI-0 1460
KEI101490
KE101500
;CE[01510
[(E1:01520
KE10 1530
KEIO01540
KEI 01550
KEZ101560
KE:01570

KEI01580
KE(10 1590

KE I01600
K1-01611
KE10 1620

KEI 1631
.KEIO 1640
1(5101650

321



FILE: KErKO FORTRAV A CCNTERS&TLOtiL toNl:-Oa STSDEEf

52 IP=l
50 II2=r1P1

CALL STE'K
CALL UO NS (Il,SS)
CALL CIRL
CALL VOTE
GO TO 49

53 COuTN:E
CALL PPP?(WO,L,Z)

DO 3nY J=1,aT
VRLT(IOST'J,200) (ST(L,J),L=1,12)

WRIT E LOCL' J,20Q) aC'I ,J) ,Z=1, 12)
30 WRITE(I070'J, 201) (VO (IJ) ,rI=1, 12)

WRITE 6 ,31)5)
305 FORiMAT '/,1 0I,'0LZKS2 PINPJT S VALEJE IN f10.5')

READ (L,2V;) SS
204 FORdATtF0. 5)

j~rSS) 21,20,21
21 CONTZ
SITES {EW &ELlATLO- ? ACrORS

rDD=Z
rCT= 0
GO TO 25

20 CcYTINE
303 FORIAT /, T0r.f'STRZaa" FUNCTION' ,/)
301 FOR!AT (/,101'C I RC It,/)I
302 FOET 7,1) r,'70SFTIClTt',/)

STOP
END
SuBEOUZriz NCNSrrj,SS)

C0A05O ST(12,38)rCI(12r38),70t12,38)rE12),DR12)
C N0 0 DZ(33).,ZC3S)8
CCKdON A, NTrdTo,-TCr TCrNTC1rTC1rNEXIT, NE1

:Ets SUBEOITINE DETZSEINES TKE rALUE OF 7OETICLTf AT
]E!E BOTT0 -ALL Br NON-SLIP COKDITICN-.

C I=1: 2ECISE NETEOD
C Ln=2: 5R. WOK'S NETEOD
C IM=3: SI2IPLE CNE

I:17=4: SL PLE ORE NO.2
0 TO l,2,3,4)),1I

I DO 10 r=NEXIT,:ITC
13 TO g,1) = r27. *ST ,2)-ST ',3))/9.*DZ2)*2/4. )A /E1) *SS
GO TO 20

2 DO 11 L=NEIIT ,KTC
11 rO r,1)=(25.wST(I,2)-STL [,3)l)/(8 . DZ2)**2/4. )PcA/rI)*Ss

GO TO 23
3 DO 12 I=;XITNTC
12 TC(Ir,1) =SS*(2.4cST (I,2) ) /(DZ(2) **2/4.) *&/R (1)

GO TO 21
4 DO 13 L=NEXITNTC

1T3 VO OI,1) =SS*ST I, 2) / DZ f2) **2/4. ) *A/RrL)
20 VINC=TO (NEIIT ,1 )/F O&Tc!EXlT+i)

70 2, 1) =VTN C
DO 14 T=3,NEi

14 4TO (I, 1) = 2. 0 7INC+-7 (1- 1 r1)

322

KEI01660
KE101670
KEI'0)168)
KEIO 1690
KE1xoi70C
KEI01710
KtEIO 1720
KEI0 730
9CE10 1740
KEI01 750
.EIO1760
KEIO1773
KEIO1780
KEIV1 79!0
=Io 1800

KZ01810
KIO 1820
3Iu183r)
KIIO 1840
KE1Iod5o
KIT0 1860
K-I701870

KEI:OI880
KEI01P90
KE10 I 9GG
IElo 1910

KE101920
KEIO1930
KIE.)194r
{EZo1950

KEI01960
KEIO1 970
KEIO 1980
KEI01990
KEI02000
icZI0201'0
KEI02020
K1I02030
KEI02040
K1302C50
KEI02060
0 102070
KEIO 2080
KEI02090
KEI02100
1E10 2110
KEI102120
K EIO 2130
KEI02140
KEI02150

K1I0216 0
KE 10e2170
KEIC218 0

KEM02190
KIO 220 0



FLLE: KEIKO FORTRA( A COtTERSToINL OurTOR SrSTE

Z ND
SUBRnLTIME PC2 CAB,)
DIdENSION A.B 12,38)

T- r- 6) 2,r3,3
3 DO 4 K=1,38

J=39-K
4 waLr!7,100) a (:rJ) ,r=1,12)
GO TO 1

2 D0 5 K=1,38
J=39-K

5 WZRTEh%7 ,101) &AF ),J) ,rI=1,6)
DO 6 K=1,38
J=39-K

6 WaITZ E C7A 01 ) AL (,J) ,I=T, 12)
T CO YTINEIS

10) FORafAT2f12 l)6.3)
101 FORAT(6312.3)

PET WKI
END
SBE0QTINE 2222 :.B31,Z)
DIKENSIOYI X3 12,38) rZ %38)
rFO-6) 2,3,3

3 DO 4 K= ,38
J=39-K

4& wrTz a,1C0) :ABtj,J)r=1,11)g,Z J)
SO To 1

2 L=+1
DO 5 K=1,38
J=39-K

5 WR rE L,101) ABr,J) ,1=1,11), ZJ)
I CO fTINUX9

10 ?OR aATi2r1.5)
101 FORIATC11Z10. 3,F10.5)

RET!JF R
.ND
SUBROTIRE KSIK4 "A,B,0,DrNt17T1)
D I-A E S0;TA r36 ) ,B3J6) ,.ot3 6) ,D36) ,Z(36 ) ,G136) ,U(36) ,0 (36) ,T(36)

rl()=0-
G .1 ) =B 1)
0(1) =C(1)/G (1)
DO 1 I=2,?TT1
0( )=C1)
G )=B I) -O L) *U I- 1)

1 r()=c (I) /G (r)
11 ) =D '.') /G (1)

DO 2 D=2,NTT1
2 ) =Dr ) -r Ll- 1) *O r))/G1"I)

T fNTT I ) =17 T T I)
DO 3 J=2,NTT1
i1EITTi-J

3 I(r) =r (L) -g(i-+1)tr u(1)
ZTURW
EL DT

KI102210
KZ102220
KE102230
KEI02240
K310225 0
KE102260
K3102270
KE102280
K'l0 2290
KE102300
KEI 02310
KE102320
KEI02330
M3102340
KEIO2350
KEI02360
K102370
KE102380
KZI02390
KE02400
KZIO2 11Y
KEI02420
KZ302430
KZ102440
KE10 2450
KE102460
KEIO2470
K1102480
K3I02490
KE102500
P=102510
KEIO 2520
KE10253 0
K1102540
K702550
KEI02560
KE102570
KE0 2580
KS10259(3
KEIO2600
KE102610
KE102620
K1I02630
KE102640
1=102650
K1I02660
KE102670
E1102680
-3I02690

KI02700
KEI02710
KEI02723
1ET102730
KEI 102740
K IO 2750

323



EIL3: KECrKO ?OR TAN A COfV3zESATu1TAL aOILTOa STSaZ?

LFcr- J) 1,2,T
1 D.LTA=0,

RETURb[
2 DELTA=1.

RT MR
AND

324

KI,10276 2)

KEIO2770
KZIQ2780
KEI02790
{EI02800
KE1028 1)



FILE: STF&9 ?oRTRaY 1 CONIEESATIrNAL 10IT3R SrSTE

CC TEE FILE STFY COCSZSTS OF ONE SUBROUTINE
CC TEES SUBROUTINE SOLTES STREAI FUNCTICI BY TEE LINED

SOR WITE REXIATIOE FACTOR SFAC. THIS ALSO
CC CILCKIST3S INTSRPOLATED STREAR FUNCTION FRio WHICE

CC TEE RADIKL AND &EIXL VELOCITIES ARS DETERdIZED.
SUORLUITI$E ST7Y(

DEEENSOt( F36),B36),,CC36) ,D'36),X436) ,STN(12,38)
CCI50151TC12,38),Cr(12,38),V0(12,38),R(12),DR(12)
COM0dOI DZ38), ZF38)
CV!O A NTlTNTC,TC,4TUC1 ,!TC1,TEIT,ET,nO2

CO ION RESWIRLSS
COnOI Dt f1 0)

COlD3T SF AC,CFAC,7F&CAER
CodiOlr= X 12,38)

cotioNINrrxr
CO"f:1O( DS'r1,)
ICC ",=1
rNTT1
I NX=0
nr r=o
1I2=1

30 COETINUE
C -SWEEP OF STREk FITUCTION

DO 100 J=2,rlTC
DO 211 1=2,NTC
XAA=-k*R(I) **2*70 (tJ)/SS

D rl=DE1C1)+*DR rr)
DIS2=DR I) +-DR E-1)

DIS3=DZrJ-1)4-ZDZ1J)
DIS4=DZ (J)-DZ J-1)
D 135=(R (I-1)+R (l) ) /2.
ODDZZ=fZ f(J+l)-Z rj-1)) /2.
DDDRR=((+1)-R CZ-1))/2.
S 1A.='1I./DISls-./D12) *2./DDRaRgI )4-2./DIS2+E1i) DS CIr2)

S1S=-(1./D553+1./DIS4)*2./DDDZZ*A**2*(I)+*R(I)*DS(LI2)
Sl&A.-=f-./DIS3+1./DT-S4)*2'./DDDZZ*-k**2*]RfI)
S 1A=S1A+s A.
S1B=R CI) *DS'IIP)
S2=2./DrSIo/DDaRR'I)
53=2./DI53*&s*2/DDDZZ*[ r)
54=(1.R I)/rD3R) 'C./DDR2P
s5=2./Dr4*!w2/DDDZZ*R C )

CC WOLD ST REA2I ?UNCTIOT BECCaES'JEGATIVE
1AAh=3t52(I,J+-1)+i55*(1.-DEIfC2,J) *DELITA2,I) 4-DELTA 3,I))*

DEIlA 1 , 110 2)) t ST I,Jh - AAA
IFCJ-2) 70,70,250

7B Ic-&EIr 251,76,76
76 I(KAA1) 77,77,250
77 kAA1='.r

r 1r=r nx+ 1
250 COTINU-

ID=r-2
IF(ID) 50.50,51
53 F -1)=1.D
B(I-1) =51&5-SLfl (2,J)$OELTA(I,tU02)

325

STF00010
S1F00020
ST00030
STF 0 040
STF00050
STPOO060
STE00070
ST200080
STFOO090
STF00100
STF00 110
STF00 120
STF00 130
ST700140
5ST00 150

STFOO160
ST00170
STF00180
ST00190
57F00200
STY00210
STF00220
STF00230
STF00 240
ST00250
5TF00260
STF00270
SrF00280
STF0C290
5TF00300
STF00310
51F00320
STF00 330
ST00340
STF00 350
5T700360
5TF00370
STF0G389
ST00390

T00G400
5T00410

STF420
STF00430
STF00440
3TF00450
STF00460
STF00470
STF00480
STF00490
STE00500
STE00510
STY00 520
STE00530
5TF00540
STF00 550



FZLE: STF9I ?ORTRA A CONTRSATIOgAL aIONTOR STSTEf

C -1)=-S2
DT -1)=AAk1 +S14 *STr l-1,J)

1+S18*-ST (I ,J)
GO TO 23

51 LD=t-fTC
rFtrID) 52,53,53

52 F t-1)=-S4
B !-)r=Sl&-55*EmTAV2,J)*'DELTA 3,I) 4

DELTAT2,YOP)
C lj-I)=-S2
D (I-1)=AX1

1I*SiB*ST (IJ)
GO 0TO 200

53 ? -1)=-S4
B (-ir =T,Z3-1) =S1 A
SCr-r- T)=0 -
D (I-1)=XAA1+S2'ST I+ 10,J)

1+S1 B4STCTJ)
21 CO NTINU =-,

CAlI KECK0C(FBCDrINTC1)
DO 55 1=1,NTC1

55 ST ('+-1,J) =SEACr*(1) +-(1.--SFXC) *ST (ci1 ,J)
100 CottTINaE

Z -SWEEP OF STREAl FUNCTICJ
0 300 E=2,ZTC
DO 400 J=2,aTC
X&A=-Arss*aR(I) **2*70 IJ)
DISI=0R (+1 )+lDR Vt)
DIS2=DR g) +DR (1-1)
DTS3=DZ rJ+1)+DZ J)
DIS(=DZ(J) +-DZ(J-1)
Dt35= CR EI-1) 4V)")/2
DCDRR=(r(t+1)-R (I-1)) /2.
D DD ZZ= rZ ,j+ 1) -Z(--1) /,2.
STB=(1.DIS 3.1-1 ./Drs4) *tkA*2*aI)/DDDa+a1) *DS rIP)

,MA=-C1.IDIS1+1./DIS2)*2.* 8Rf)/rDDDER-2./DIS2+ar) a DSgLP)

SL11) D ) 'DS1: 1)
S 1&=R I*DS CI)
S2=2./DZS1/DDCRR*RIc
S3=2./DrS34A**2/DDDZpZ*E T)
S 4=(1 .+-R(1) /DDDRR)42. /DIS2
S5=2. /DC:S4 4 A**- -2/DDDZZ*R 7t)
rD=J-2
LF(ID) 60,60,61

60 F rJ-1)=0.
B(J-1)=51B-S5*c(DEIca (2,I) 4-DELTA (3,I) )4*DELTA. c,i .1 p)

C J-1) =-3
D (J-1)=2*ST(L+1,J) +S4*ST (I-1J) +SS*ST(IJ-1)

1 3.,- aLTA[ (2) 4-DELTAr3gI)) DELTA<1,1N7P))
T+SiK*ST(1,J) +-AA

cc L7OID ST. IS BELOW ZORO
IF t-!EILT) 73,75,75

75 DDD=S3tST ,J4-1) +S55*ST IrJ-1) +AA
IF1CDD) 72,72,73

72 C(J-1)=0.
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STFOG560
TE00570

STF00580
STE00590
STF00600
STF0U610
STF00620
STFOC63G
STF00640
STFO650
STP00660
STFO670
5TFOO680
STF00690
527007C
STE00710
STF00720
STE00730
STE00740
STF0075ri
STE00760
5TF00770
STE00780
STF0079 0
IT00 800
STF00810
STF00820
STF00830
5T00840
ST-00850
5TF00860
ST00870
52700880
STF00890
STY00900
STF00910
STF00920
STFOO930
STF009 40
STFOO950
T00960

5TF0u970
STF00ge0
STF00990
STF01000
STF0 10 I0
2F701 020

STE01030
SZE01040
STF01050
STF01060
STE01070
STF01080
STF01090
STF01100



FILE: STFIT ?OaTRA I CONYEESATIJtAL aotITOr SYSTEn

ZC TrE FILE STFW( CO(SZSTS OF ONE SEBROUTIME.
cc :aE SUBROUTINE SOLVES SREAf FUNCTICI Br TrE LIYED
:: SOR WETR RELAIATIOa FACTOR SFAC. T&IS ALSO
CC CALCUlATES INTSRPOLATED STREL FUNCTION FROl laRIC
CC HE RADIAL AID ALIIAL TELOCITIES ARE DETERMINED.

SUBROUTINE STFN
DIENSI0W F(36) ,a36),C r36),D0t36) ,r(36)rSTKr12,38)
CC Mo& ST(12,38),CI(12,38),VOCl2,38)R(T2),DR(12)
COhO& DZ38)Z,38)
CNON AfT, TNC,3CTCTC,:rT1 ,!TC1,WEfITNEI,INO2
CO0N R ,SWIRL,SS
C0!oN DT 13)
C01131 SFACrCAC,TAC,AFER
C0M10N EX(12,38)
Covao& NrrIrr

ICG L=1
.TT1
I &X=0
14, =0
112=1

30 CONTINUE
C R-SWEZP OF STRS&E ! rNCTION

DO 100 J=2,TfC
DO 211 r=2,rTC
XAA=-A*RCI)**2*voCIrJ) /SS
DIS1=Dr TI+O+DR %l)
DIS2=DR rI) +-DR M-1)
DIS3=DZ(IJ+ T)4- DZ'J)
DIS=DZ rJ) +-JZ (J-1)
DISS=(R(CI-1)+R(I) )/2.
DDD ZZ=( (J+1)- (J-1))/2.
D DD RPR=(T-(I+ 1) -R (I-1))/2.
S1A=(1./DISI1+-1./DIS2) *2./DDDRR*R(I) +-2. /DIS2+ DS I) *25 (:12)
51B=-(./D1S3+1. /DIS4)*2./DDDZ*A**2*Rc)+(r)*DaS (2)
S1A=(1 ./D1S3+1./DIS4) *2. /DDDEZ* **2*/rI)
S1A=S51XA+1A
S1B=R (I)*DS II2)
S2=2./DS1/DDDRR*R 1)1
S3=2./D1S3*&**2/DDDZZ*R )
54=(1.-R i)/DCDRR)*-2./D132
S5-2. /D1S4*A**2[DDDZE*R r)

CC ATOID ST L2A FUNCTION sBECCaES EGATITE
LLA 1=53*STr(rJ+1) +55* (1.-DELT. "2,J)*4'CDELTA(2,I) -DELTA (3,1))

1DELTA. (1 ,IlNOP))*STrJ-1)+A.AA
IF(J-2) 70,70,250

7'.f* , -&F ry- tE)C I) 25r-,r7 6r7 6
76 IF(AAk1) 77,77,250
77 &AA=.

itx=rNr +-
250 CONITIfU3S

10=1-2
IFfID) 50,50,51

52 FrI-1)=).
a (1-1)=S1&-S5*DELTx (2,J)*DELTLA(,nrOP)
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STFo0O10
STFOO020
ST00030
STF00 040
STF00050
STP00060
STFOU070
STFOO080
STFOO090
STFOO100
STFO110
STF00 120
STFCO 130
STF00140
STZ00150
STFOO160
STFOO 170
STFOO 180
STF00190
STF0C20 0
STP00210
STF00 220
S2F00230
STFO0 240
STF00250
STFOO260
SEF00270
STFOO 280
STFOC290
T00300

ST-?00310
STF00320
STF00 330
STF00340
STF00 350
5TF00360
ST00370
sTFOc38 '
STF00390
STFOG400
ST00410
STF0G420
STF00430
STF00 440
STE00450
STF00 460
STFO0470
STF00480
STFOO 490
STF00500
STF00510
T00520

STF00530
STF00540
STF00 550



FIE: STFM( FORTRA X CON7ERSATLOALx IONTOR SISTE-

C l-1)-S2
D I-1) =AAA1 *S4*ST Ct-1 ,J)
1-SiB* ST (IJ)

GO TO 2-)
511 D=-rINT C

IF CID) 52,53,53
52 F Rr-1)=-S4

B 1- 1)=S1-S S*D EIZ AJ2,J) t DELTA r3, ) *DEL-TC1, rIOp:)
C (r-1)=-S2
D (I-1)=AAA1
1+S1B*sT(1,J)
GO TO 200

53 F (r-1)=- S4
B (I-) =S1 A
C (I-i) =0.
0(I-i)=AAA+-S2'ST +1 0,J)

1+ SI1B*ST (CL, J)
2Or CORT IlhU

CALL KEIKO(F,B,c,0,rwTC1)
DO 55 I=1,NTC1

55 sT grl, J) =5?AC*ER() 4(1 .- SFAC)'*ST (I1,J)
100 CO IfTI(LUE

Z-SW EE2 OF STREAi FUNCTIOTS
00 300 r=2,rTC
DO 400 J=2,aTC
AAA=-A./SS*E C) **2*TOC,)
D IS I=0 R V+ 1) *D R (I)
01S2= D R (I) +DR (P- 1)

D IS3=D rJ+ T) 4DZ IJ)
D154=D (J) 1 * (J-1)
D&S0=(J= -, ) *DZ () )/21-)
DCDRR=(a(+-1) -R(I-1)) /2-

DDD ZZ= CZ[J+1)-Z ,J-1))/2.
S IB= 1 ./DtS3 1-1 ./DIS4) *2 .*A*2*3 Ct) /DDDZZ+r (L) ODS (IIp)
S1=- (1. /DIS 1+1./DIS2)*t2. *R fI)4DDDER-2./DS2*RalrI) *DSttIP)
Si1BB=1SIA-.raCr) 4D S I:P)
STB=SIB+S1BB
S1A=R CI)D '05CIP)
52= 2. /DLSl/DDflP.CR*R (I)
S3=2./DrS3*A-**2/DDD* ()
S 4=(I.+a(t) /DCDRR) * 2.0/DIS2
55=2. /Dts4*a**r/DDDZZ*R (I)
ID=J-2
IFCID) 60,60,61

60 F J-1)=0.
B (J- 1) =51 B-S5' (DELT&X (2,I) +DELTI A(3 ,t) ) *DELTA (1 ,INlO)
C J-1)=-S3
D (J-1)-=S2* ST (I+1,J) +S4*ST (I-1, J) + S*ST (xJ-1)

1* C.-)SLT& C2,gr)+DELTA3,I))*DELTA(1,-ZOP))
l+S1A*ST(tJ)+*XAA

CC ATOID ST. IS BEIOW ZORO
tF (I- EfIUT) 73,75,75

75 DDD=S3*ST I,5j+1) +-S5*STI,J- 1) +-A L
t? CDD) 72,72,73

72 C(J-I)=0.
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SZFG560
"-TFOO570
STF00580
STE00590
STF00600
STFCU6111
STE00 620
STFO2C63C
'T00 640
STF00650
STF00660
STF00 670
STF00680
STFO0 690
S TF0OC70G
STF00710
STF00720
37F00730
STE00740
STF0075';
STF00 760
STF00770
STE00780
S TY00790
ST700800
ST00810
STFO0 820
STF00830
STY00840
ST00 850
ST F00 860
STF00870
STF00880
STF00890
STY00 900
STF70091 0
STF 00920
STF00930
STF009 40
TF00 950

STF00960
STFOU970
SF00980
STF00990
STF01000
STF0 10 10
s5F01020
ST0 1030
SF01040
STF01050
STF01060
STF01070
STF01 080
STF01090
STF01100



FILE: ST?N !ORTAN k CONVEESXTIoAL ONITO& SrSTEn

D J-1)=.52*S I+1,J)+S4sS7tr-1,J)+S*sorI,sJ)

73 COYTIYTE
GO TO 400

61 ID=J-TC
IF(fID) 62,63,63

62 ?(J-1)=-S5
S (J-1)=S1B
C(J- 1)=- S3
D J-1)=S2*ST :II+J)+S4*ST(I-1,J)

1+- 1l*ST CIJ)
2+A&A

GC TO 400
63 F fJ-1)=-S5

3 GJ-1)=313
C(J-1)=0.
D (J-1)=S2*T (I1,J) +S4*ST r-,J)+S3*ST,J+1)

1-S11*STciJ)
2r+AAA

400 CONWIUE
CALL EIKO (F,8,c,D,;ciraTCl)
00 65 J=1 ,aTCi
65 SN(IJ+1=sFAc*;c(J) + (.-SAC) *STC1,J+1)

303 COTINUE
W CEECK CONVERGECY

DO 10 I=2,aTC
DO 10 J=2,aTC
FE=&B5 ISTN' I,J) -S7 C!,J) /ST-V ,J)
.F(ER-kFER) 10,10,11

10 CObNTIKUE
wa:TE(S,121) ICON

101 FOElAT(10t, rTrE bIUBE-R OF ITERATION IS' ,I1O)
GO TO 81)

11 ZCNTINUE
DO 15 r=2rTC
DO 15 J=2, TC

15 ST CIt J)=S T%-(IJ)
ICON=ICOt+1

r-qlIF(coNq-5o) 1,10,o0
81 CONTINETS

GO TO 30
80 CONTflruz2

Do 16 1=2,1:0
DO 16 J=2,2 TC

16 S7IeIJ)=STNIJ)
IF(hltOP-1) 650,600,650

601 CONTINUE
ST (2,1)=STV.(2,2)
sr:3,1)=STY:3,2)

650 CONTINUE
=C CALCIJLKTE DfTERPCLATSD STR A FUNCTIO{

DO 500 I=1,xNTC
DO 500 J=IrTC
EIS!= [ST 'I,J)*DEFr1)TST(+1,) to am 7(DE(I)+Da (I+1))
1*D(J+1)/(DZ(J)+DZ (J+1))
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STFOl 110
STFO1 120
5TF01 130
STFO1 140
STFO 1150
STFO 1160
STF01170
STF01180
STF01 190
31FOl200
STFO 1210
ST4F01220
STF01230
STF1240
St?'01250
STF01260
STFO1270
STF01280
STF01290
STFO 1300
STFO 13 10
ST10 1320
STF01330
STF01340
STF01350
STFJ1360
SZFO 1370
STF01380
5T10 1390
STFO 1400
STF01 410
ST01420
STF01430
STF01440
STFO14i50
STF01460
STFO 1 470
ST01480
ST01490
SZF01500
STf0 1510
STF01520
5170 1530
STF01540
ST01550
STF01560
ST701570
STF01580
57FCT590
ST01600
STE01610
ST01620
STF01630
TF01640
T01650



328

?rLE: STFY ?FoTRAf X COTERSAWTONAL tINTTOR STSTE!

21 -ST t, J+1)*DR :-l1)*+sTr*1,J+1) *DEL))fORD RJIr)DaI+1)) TF01660
3 *DZ rJ) / DZ J) +DZ 9J+1)) STFO 1670

500 X(I,J)=EXST STF01680
E ErTLUE i STF0 1690
EYD STE01700
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?IIE: T~71 FORTRA P CO0TKZSAtID=[AL OtfITDa SSrE

cc THE FILE VRa Rs ONZ SUBROUTINE v7. VRvlOO10
CC TE SUBEOCTIXE TRTZ CKLCULATES TEM RADIAL 1 TR700020
CC AXIAL fELOCITIES FROd TE INTESPOLIATED STE-ZA- r7Y00030
cc FWNCTION WiaCE IS DETERaNED Ii TEE FILE STEN. 7250C04C

C TEE SUBROUTI9E ALSO 2RINTS THE VELOCITY DATA. TR700050
SUBROUTINE TRZ1 ERZ,DRDZZXr&,SS) v-aTrc060
DIrNSZOEI R12),r4338)rD R12),D, 0 3) ,ZX(12, 38)t 7R00070
DlS&ESIO 7 :12r38),7Zr12,38),Z-e38) 78700080

DO I 1=2,11 7R700090
DO 1 J=2,37 78700100
EI=EXE,.J) 7R730110
E2=XE(I-1,J) 7RV00120
E3=Err,J-1) 7R700130
E4=E(-1 ,J-1) TwR00140
7R(rJ)=SS SI-EJ)IDZ J)t r 1) + DEL)fZ.) vav00150
IF(-12) 87,87,88 TR700160

87 72(I1,J)=0. 7R700170
GO TO 89 TR700180

8 8 7E (1"'-l ,J) =SS* (E2- 24) /DZ (J ) / (R (Z-1 )+ DR (1-1 )/2. )7,Rv 0 19 0
89 COITINUE TRYOG2Gc

TIZ,J)=-SSE1-E2) /DRI) /(I) /A TR700 210
71 gJ- 1) =-SS*f.3-Ef4)/DR I)/R 1)/& 7R700220

1 CONTINUE 700230
D0 T 3=1,38 78700240
TR 1,J) =0. 7E700250

7 7 (1,J)=0. 7RY00260
DO a 1=1,37 vaw0 270

4 ZZI).r(I)+DZ7;)/2. 75R00280
RITE 6,100) ro290

100 FOR-IATk ,101,'TrE oEL0CZrr DATA 78 AD T',/f TR700300
11)X,'TIE RADIAL TELOCITT 7',/) 7R700310

DO 2 K=2,37 7R700320
J=39-K 7P700 330

2 zwRITE 6,017) c'taCIJ),I=1,11),ZtJ) 78700340
101 FOREKAT11E10.3,F10.3) M700350

7R8T1S(6,102) 7500360
102 YORMATQ,10I,'TiE AXIAL TEICCITI VZ',/) 7R700370

DO 3 K=1j,37 78700380
5=38-K 7-700390

3 WITES6,1I1) r(z IJ),I=1 11),rZCJ) 78700400
R78700 410

END 78700420



F ILE: C5L =rCRTRAN A CYERTSATLO !IXL O ITO& S1TS1''22

CC THE FILE CIL INCLUDES ONE SUBROUTINE CIRL.
CC THE SUBROUTINE CIRL CAIULATES CIECULATION ST ADI.

SUBROUTIYS CIRL
DIIENSIO& r 36) ,B 36) ,z (36) ,D(36) ,l(36) ,CI5(1 2,38)
:Co109 ST (12)38))C12.3Ro702(12,3P.),aC12),DE(12)
CO0Y0 DZ 38) ,Zf38)
COaOr k,kfT, aT, Y(TCra:TCrYTC1riTC1,rEInTNE1,rNO2
CGLEHO YSZ,SWIRLSS
CCfO Y OT (1)
COL4O SF AC, CFAC, VF AC, ASFER
CO%1:0i f El -12,38)

12=1
K-SWEE 0? IRCULATIOII

DO d J=2,TC
DO 82 I=3,NTC
z1E1(,J)
Z2= Z) I- 1,rJ)
E3=E (I,J-1)
E4=sr rI-1 ,J-1)

C CKLCJLATI0( OF CIS A3D V&EL
DIS1=DE:+-1)+D* RI)
DIS2=D02([) -D R (I- I)
DIS3=DZ (J+) +DZ [J)
D3I54=DZ (j) +DZ rJ-1)
DLS5R(I) +-DRCI) /2.
D IS6=R(I) -DR (1) /2.
DZS 7= C R I) +-1 1))/2,
D0IS8= 

tR rr I-7-1) )/2.
JON=TEZTITE TERIS: TERE IIPORITA

7T=SS*r:?1-E3)/D'z (J)/ :R :I)-DREI)/2.)
LF(I-2) 95,95,96

95 72=0.
GO TO 97

96 72=SS* (Z2- E4) /D Z fJ)/rf -1)+DR 1-1)/2.)
97 COITINUZ

73=-SS* (Ze1-E2) /CR (r) /R (I) 7
74 =-SS* "Z3-.7#4) /D a I /R "I) /A
TEL 1=71+ABS (71)
TEL= V-A BS (71)
TEL3=T2+kB 5(72)
TEL 4=V2-A BS (72)
EL5=W3 +ABS (73)

VEL6=73-AD3S :73)
7 EL7=714 +A BS r74)
TEL8=74-ABS (74)
EIT =2. /'3*D IS2)
DDDZZ= (I (J+1) -Z(J-1) )/2.
ODDRR="a:1*1)-R (1-1))/2.
ClA=(1E1*DS5-TE4*DES6) /(2.*DR (I)

1+*2. /R E/D D D Eta *R "I) **2* r 1. / rD IS I *D IS7) + 1. / D132* DXS8) )
i+R(I) *DT(IIP)
C1B=- (TELS-73L8) /DZ :J)3/2. *A*R (I )

1-2. /E/DDDZ Z*RjI) *r1 ./DIS3+I./D5l ) *xA**2
I*R () :*D t.II2 )
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CIR00010
'I-OO020
:1200030
CIR00040
CIREO O050
CIR00060
C.R00 070
C0500080
01500 090
cIrao 1000I 00 11 0
CZROO 10

cr00 120
CIRO0013-1
CIRsO 140
CIRE015C
CIR00160
CIRO0 17 0
0IR00 180
CIR00190
cIR O00200
CIR00 210
C200220
=w I 00 230
Cr0 240
ZIR00250
CIR00 260
CIR00270
CIR00280
C02 c0f290
CIR00300
CIR00310
CIR00320
CIR00330
CIR00340
Cla20 350
ZIR00360
c a00 370
CIROG380
CIR00390
CIROO 4012
IR00 410

CIR 0C420
C1200 430
CIR00 44 0
CIR00450
CIR00460
C-0O0470
C1R00 480
CR001490
CIR00 500
CI0 200 510
1R500 520

CITR 0 ,530
CIRO0540
CIR 00550



FILE: CIRL FORTRAN A COTERSAITIOhKL ONITOR SYSTEM

C2=2. *R 7) *I2REtDDDR*DLSi*DIS7) -TEL2/2.*D1S5/DR(I)
C4=2.*aR(1)f*a2/(aE*DDDRa*DIrS2*DtS8)+EI3/2.*DS6/DR(I)
C3=2.*&t*2/DS3/R/DDDZZ*R'I) -WEL6/2. *&/DZ FJ)P'R CI)
C5=2.*AY**2/D1S4/RE/DDEZZ*R (I) + EL7/2. */DZ (J) *R (I)
rD=T-3
IF fr C) 10,jr10 r3

10 F (-1)=0.
S(C-1T) =C1A-C4/9
C(I-1) =-C2
D T-1)=C1B*Z:I ,J)C3*CICJ+1)+C5*CLr,JL-1)
GO0 TO 82

3 IF Pt-NZCIT) 4,11,11

BC-)=CA,
C C-i)=-C2

FCt-11 =CiB*ccL,J)+c3*C(,J+i) +C5*CItIJ-1)
GO TO 82

11 LD=I-NTC
IFCID) 12,13,13

12 F C2-1)=-Z4
BaI-1) =1 A
C%.L-i)=-C2
DR1-1) =CiS*CCII,J)+*C3*CCIIJ+) +C5*CI1,J-1)
GO TO 82

13 F(1-1)=-C4
B (Z-1)=CiA
C(1-1) =0.

D TA-1)=C1B*CtCI,J)tC3*ACICIiJ+1)+C5*C2(LJ-I)1
1+C2*Cl(I+-1,J)

82 COYTIKfE
DO 14 1=1,9
Ft)=F :+1)
B (1) =B +1i)
C C) =C(L+ 1)

1I D I)=DC1+1)
CALL KELK0(,3,C,D, 1,9)
Do 15 r=1,9

15 c IRia+2,J)=r C)
CI0 :2,J)=crN :3,J)/9.

81 COUILNUE
DC 30 J=1,T
CrIC1,J)=CIC1,J)

30 Cf1f(NTJ) =C CT,J)
DO 31 I=1,NT
CZIrWr,1)=CICr,)

31 CIt (l,5T)=C L'I, KT)
Z-SWESP 0? CIRCtLkTION

DO 83 L=3,.fTC
00 84 J=2,arTC
S1=EIrC(, J)

="r- 1,rJ)
23=EICJ-i)
E 4=zIC- i,J- 1)

C CkLCULAIOlt OF DIS kfD TEL
DISI=DL(l-1)+DR I)
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CIR00560
1P0R0570
CIROO580
oRoo 590
CIa00600
CIRO0610
CIR0620
CIR00630
C0R00 640
CIR00650
C110E0660
CIROC671
CzrE00680
CIR00693
:IR00700
CIROO710

IR 00720
kC00730
CIRC74)
C0100750
CIRO 760
0IR00770
CIR00780
0100790
ctRoD800
2300810
CIR00 820
cIR00830
CIR00840
CIRO'850
CIR00860
CIROC870
CIR00880
C1R00890
C-IR00900
CIR00910
CIROv920
CI200930
CIRO,9 40
,-a00950
CI300 960
CIE00970
CIRO980
CIEOC990
CIR01000
CIR0O101)
CIR01020
CIR01030
CIR0i 01040
C01301050
C3E01 060
CIR01070
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:LE: CIRL FORTRA2[ A CO97ERSATO-AL toNrrz S'Ss:a

22 ?(J- 1)=-C5 :n0-1660
3 (J-1)=C18 CaI01670
c1J-1)=-c3 CIR016 0
o (J-1)=C2*CIN fI,) +C4CDI I-1, CIR01690

1+C1 *CXcI (Z,J) CIRO 1700
GO TO 84 CIR01710

23 ? CJ-1)=-C5+C3/8- CIR01720
B (J-1)=C13-CJ*9./, CIRO1730
C J~~- 1)CIR0l174'3
3 CJ-1)=C2*ZNIr t+1,J)+C*C&CIER-1,J) orR1750

1+C1A*ClI q ,J) C12$1761
84 CONTINUE CIR01770

CAL KElKO(?,BCrD,It'ZTC1) CIR01780
DO 25 J=iaTci CIRO790

25 CT(IJ+1)=1(J) CIRO1800
83 COIITXNU ZIy01810

DO 19 J=2,XTC CIR01820
19 C1C2,J)=CIC3,J)/9-.IR01830

DO 18 1=2,2E1 CIRO1840
18 C::r,1)=CrcL.2) CIEO1850

DO 26 1=1Nt CIRO1860
26 Cr(I,aT)=9./3.wCI(Z,%TC)-C(rtTa1)/8- CIR01870

RETr CIroiaso
EIRO 1890



?ILE: TOTY FORTRAr X COST7SRSkTIrObAL & OTOE SYSTEa

CC THE FILE TOT! INCLUDES ONE SUBROUTIN E 32T!.
CC THE SUBEOUTIUZ TOT'T SOLVES THE 70TICIT Br Dl.

SUB ROUT1,YZ 7OTY
oreENSIO; F 036),3 136) ,C(36),D(36),X36)ryON12r38)

Coado STrc12,38),r12,39),7o(12,38),EC12),oD12)
CO1NO 0D(38),Z(38)
C C fl ON ,A,4-r ,aLTrN2Cr-C,NTC1,IdT 1,IfEXIT, fE 1,L oP
CoaSioN aE, SJ'RL,S
COLION OT(10)
CaaON SpxCCYKC, txfCA- 7ER
CO tE3 9 122,38)
112=1

E-SWEEP OF TORTICIT!7
00 5 J=2,rTz

DO 6 r=2,,rC
E1= ,r TJ)

.2=1EX(-1, J)
E3=21(14,J-1)

E=EX (I-1,J-1)
CALCUIION OF 015 AD TEL

01S2=ORC (1) +RREC-1)
DIS3=DI (ZJ+1)0+DZ J)

DI5 4-DZ(J) + DZC(J-1 )
DISS=R (I) *Da- (1) /2.
DIS=r (I) -02 (I) /2
D1S7= R (I) +*R (I+ 1) )f2.

D I58= ( (I) -r (I-I) ) /2.
CO(TECTIVE T3S: TER I I PORT NUT

71=Ss* (S1-E3 ) /D1 ZJ) /fR Cl) +DR(I) /2.)
9FI2 7, 87,R88

37 72=1.J
30 TO 89

83 72=SS*r22-E-4)/DZ J)/ EVE-1)4DEI-1)/2.)
89 :0[TrIUE

T3=- SS* 1-172)/DR "rr)/Ei)/k
74=-SS*S33-E4)/DRr)/a:)/ x
7EL 1=71+ABS 7f 1)
TEL2=71 -ABS (T1)
TL 3=72+-ABS (72)

T&L4-=T2 -ABS (72)
TE 5=rT3 4-ABS(73)
TELS=73-A.BS (73)

7rL7=744.+ABS (74)
7BE L8=v4-kt5 74)

DDDZZ=(Z (J+1) -Z (3-1) ) /2 .
DOD RE= (R :Ir- 1) -F (I-1) ) /2.
7ZET=P (I) /E E

vit2=2.a (r )4**2/ 2*DIS1)
r1T T c3=E n 4*24r71 *o: 5+2-D1[S6) /2.

7 1k=(TE L1* DIS5-TEL44DIS6) *R (XI) p*2/ 2. 4D R'I) )
1+ (2 . *R(1) **2I/DDDERE*0rDIS7/DISl+DS/DIS2) +Rt) )/RE
1+- PI(I) 34c DI C -LIP)
7TlB=-(7L5-TSLS)/DZ 9j)/2. n*R(R) *43

1- 2. /RE/D D DZZ* (1 ./DIs3 +1 ./01S4) *k**2 * (1) **3'* (I) *3 *D T ( P)
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700T0010

TOT00030
VOT0004QG
TOT00050
70 TO00 60
7OT 00 070
V0T00083
702C093
70T00 100
7oT PC-11 G
70T00120

702CC 130
[0200 140

70T00150
TOT 00160
70230 170
TOT0016070200 1980TOTOO 019 0
TO TOG 200
70200210
TO TOO 220
70T00230
70 200 240
702TOG253
70200 260
TO TO C 271
7OT00 280
70TO T&290
70T00300
70T00310
TOT00320
70 TOO 330
70200340
TOTOO 350
T0T00360
70T00370
70 TOO 380
TOT00390
TO TcC 40G
T7OT 00410
TO TOO 420
70T00430
TOTOO 440
TOT0C 450
70T00 460
7TOO470
TOTO0 480
OTO490

TOT 00 500
70TO0 510
70200520
70 TO 530
70T00540
70 TOO 550



FILE: VOTY FOaT RAY A CONVERSAlIONAL 1OITOE fSITr

=a (I) t*2tr2. *Ds7/ IS*DIsDDraa) -TEL2*DIS5/V2.*DR'I))
74=p2<:) **2* ( .*DISs/azE*DrS2*DDDRE) *7EL3*DS&/C2- *DR (I)))
v3=arj t**3 * 2. / # *DIS3 *D DDZ) *A** EL6/'2.* DZJ)) *A)

75=E VI) 4**3 * 2 . /RE*DI54 *D DDZZ) *A*2+-73L 7/f2. *D Z (J)) *AJ
76=2.A* CI(LJ)* (C(crC(I, J+1) -C (I,J) /DIS3

1+2CS(r,TJ) -Cr 1,J-1) ) /DlS4)
ID= 1- 2

?rTD) 30o,31,24
30 F rr-1)= .

B(g-1)=71k
CP(1-1) =-72
D(-1==73*VO(,J+1)+V5*VO(IJ-1)+4*VC(I-1,J)+76

1+0B*0 V,J)
GO TO &

24 IFLrI-E XTT )25,31 f,3 1
25 F'1E-1)=-V4

B I-1)=V 1kA
C l-1)=-V2
D (Z-1) =93*93 (I, J+-1)+75*70 (rI,J-1)+76
1+V1BV70 IJ)

GO TO 6
31 LD=I-NTC

IF(ID) 32,33,33
32 F rl-1)=-74

a ,1-1)=T1A
C(1-1) =-V2
D T-1)V=3 *T O T, J+1) +T5*VO (I,J-I)+76

1+1B*7C (I,J)
GO TO 6

3-3 FC-1) =-V'4
B3"I-1)=71A
C (1-1)=0.
D (I-i1) =93*90 (I, J+1) +7 5*90 Z, J-1) +T6+T2tTOVT1, J)

I +7TB*VOrIJ)
6 CON[TINUS

CALL KEKO F,3,CDr,NTCI)
DO 35 I=1,CC1

35 7O N1+1 ,J)=I = )
5 COIITLtT7
DO 50 J=1,T
10t 1 ,j)=To ,j)

50 TOK(YT,JJ)=70(NT,J)
DO 51 1=1, UT

70TR(1, 1)=70 (I, 1)
51 70N FrIaT) =T O rI , )
C Z-5flI2 OF 7ORTICITI

DO 7 T=2,NTC
00 8 J=2,alTC
g 1=P I (L,J)
32=5I (I.-1,J)
E3=EZ(I,-1)
S4=Et -I ,J- 1)

ZALCULATIO1 OF DIS AD TEL
DIS1=D & :*1)-+D R Cl)

D1S2=05(L) +DR(T-1)
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T0T00 570
701U2 583
VOT00 590
10700 600
70T00610
VOTO0620
70T00630
70TOO640
VOT00650
T0T00660
VOT00670
T0T00680
70TOO690
70T 070
T0T00 7 10
70TOC720
TOT30730
70T00740
OTI00750

90TOCO760
T0T00 770
70T00780
TOT00790
rOT00800
70 TOO810
TT00 820
70TOO830
70T00840
VOT00850
10100860
T0T00870
70TO0 880
TOT00890
70T00900
70T00910
T0 TO 0 9 20
TOT 0 930
70T00940
701TOC950
TO100960
70T00970
70T00980
70T00990
TOT 01 000
1T01010
70T01020
90101030
70 TC10LI
TOT0 1050
v0 T0 1060
TOT01 070
70 TOIOBO
70TO1 090
TOT1 100
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FILE: EA FOR&AN A CZNVERSATIOI fiolfIlOR SYSTE

DIS3=D(J+1) +DZ(J) 70 TO 1110
DIS4=D0 "J) +- 0J-1) 70TOI1120
DISS=R(L) .DR (1) /2. TOTO 1 130
DIS6=E ) -DR Rt) /2. TOT 01 140
DIS7= (R(I) +R (+1))/2. OTO 1150
D158= I) +R Vr-1))f2. 70rot160

c CO ETI TS. aTnEsA: S E7 TI 20 RT AT 700 1170
V'1=SS* [1-2.3) /D Z rJ) / f[E lZ) +D R rl) /2.) TOT01 1SO
IF (I-2) 96,6,97 TOT0 1190

96 72=0. 70T01200
GO TO 98 TT001 210

97 T2=SS *2-E 4) /D Z J) fl R I)-+1)+DE-oaI-1),/2.) TO01220
98 CONTINE TOT01230

73=-SS* (E-E2)/D() /R WI)O/T70TO1240
74=-SS*-3-74)/DRI)/Rf)/A TT01250
TEL1=71+NBS(71) T001260
TL2=71 -&BS 7f 1) TOT01 270

7EL3=72+AB S (V2) 10TO1280
7?L4=72-BS 12) 70TI 290
THL5=3+kBS(73) 1T01300
71L6=T3-ABSV3) TO1310

1EL7=74+A3ST4) 0T101320
TSL8=14-A 45fv4) 70T01330
DDD ZZ=tz J+1l ) -Z :J- )/2. 7T01340
DDDaRr=c(R (I+ 1) -E V-1 ) )/2. 701T0 1350
7ZXT=aI)/RE 0T01360

V EX T 2=2. * (I) ** 2/ (E E* DIS1) TOTO 1370
1rt 3=-. rI) **2*f7l1*3 IS 5+T2*DIS6) /2. TOT10380
IB=(7EL5-T&ELP.) /DZ(J) /2.cA*R(I) * *3 10TO1390

1+2./RE/DDDZZ* r1.,'/DS3+1.rDrs4 i***2*r(r) **3+Rr) **34CDTEIlIP) 701T011400
71A=-(1aL1#0KDIS5-.tL4*DIS6) *R (I) **2/(2 .*DR (I)) 0T01410

1- t2. R :") *2/DnDDER* I'DtIS7/DS1+DIS8/DIs2) +&I) ) / E70701420
1+ RI) **3*DT II2) 010)T01430

72= -f) ** 2. tD 577 :51RE*D I*DD0DR.) 1VOT01440
1-EL2*Dr5/ 2.tDR V) )) 70TO1450
74=2(I)**2t*(2.*DIS8/SE *DDDER*DIS2) (0101460

1-TB t03 *D IS 6/ [2. VD R I))) 0T101 470
713= E(t) ** 3s(2./(E* DIS3* D D D ZZ) * A.*r*2-_EL6rC2.soDZ0%J)) t*) OTO1480
75=Rtf') #$3*r2./rCI*DIS4*DDDZZ) *k*2+w177/(2.%DrZrJ) ) *,) 10701490
76=2. tCI (I, J) * X* ( (CI (tl,J+1) -C (t, J) 3/DIS3 0TO 1500

1+- rCIt, J) -C_tI,J- 1) ) /D -LS4) 7070 510
tD=J-2 7001520
LF(ID) 40,41,41 70TO1530

42 CONTING 70T01540
tF(I-EIIT) 46,47,147 7O01550

46 F FJ-1)=1. 10T01560
B (J-11 =71B-75 7TO1570
C J-1)=-73 10I0 1580

D (IJ-1) =72*70N VT +1,) +74*VWI (I -T ,J) +V6 +-I kt 70- (4,J) TOT0 1590
GO TO 8 70T1601

47 F "J-1)=0. OT01610
B J-1) =v1 7070 1620
c fJ-1)=-"3 10101630
D (J-1) =72*T0otr(I+-1,J) +74*lOI(1-1,J) +76+T5*7071(,J-1) 700T 1640

1+71&*7O qI,J) 10 1650
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1rLz:o 70 TY' FORTa i CONVE2 SATIONAL aONITOR SrSTi

GO TO 8 70T01660
41 ID=J-1TC 0T01670

LF CTD ) 42,3,43 70TO 1680
42 F(J-1)=-V5 70TO1690

B rJ-1)=7l 70T(01700
&(J-1) =-73 70 TO 1710

D rJ-1)= V2O*70 TI1,J)+-74T*V0Y -1, J) +76 V0T1720
1+71A*7CN tt,J) t0T01730
GD TO d h7T01740

43 F J-1)=-V5 TOT01 750
B(J-1) =1B OTO1760
C J-1)=1T. OT 0 1770
D (J-1) =72*ro T (t+1, J) +74*7oYCI1,J)v+ 6s+V3t*701(1,rJ+ 1) Tor01780
I 1A*70af g,J* ) WOT)179Q

8 cONTr YuE TOTO1800
CALL KEZKO F,B,C,Do-lrCl) 70TO1810
D0 45 J=1 ,20TC1 W0T01820

45 70 (IJ+1)=I(J) 70TO 1830
7 COTUTIN U370701840

00 39 L=2rTI 70t1r01850
39 70':rI,1)=70ro2) TOT01860

RETUR T0T01870
"LTD 70T0188



FILE: RESI FORTDEI AU CONTERSATIONAL 3o9OEa SYSTZM

CC TEE FILE R ESI INCLUDES TWO SUBROUTINES, REEL & D 2REs.
cc TE SUBEOUTIE RESI CALCUL&TES THE EESIDUALS OF TH

ZC taEt FUNCTTOS AND THE SUBRCUTTEE 2ES PRINTS T-iz
CC RESULTS.

S UBPEOUT IN E RE
DIhERSION RS:12,38) ,EC12,38),RV.12,381
COMIOW S-r:1 2,38) C,"c12r38) ,W O2,38),rE:12),Da: 2 )COME1OY0 Z(38),(38)
C 0 20N r r,TrTC,.!TC, TCl,4 W1,:zxIr,{glzNop
ccilof RE,5SW&I RL, Ss
COAMO J:)T T! )
CCniON SFAC,CEXC, VYAC
COt131O srgZ2,38)
112=1
DO 2 =1,11
00 2 J=r1,t

RSCrJ) =0.
RC ,J)=1.
ST (I,J)J.-

2 CONTINUE
Do 1 1=2,NTCc

DO 1 J=,ITC
Z2=Er tIJ)
E2=srI(I-1,rJ)
E3=52C L,J-1)
ELt=,EXII,-1)

C CALCULArOIO 3F DIS AND tEL
oISi=Da :'+1) I)

)IS2= D R (I) *D2(1-1)

0I3S4=DZ (J) + D&Z(J- T)
DIS5=R kl) +tDR I)/2.
DIS6=R 1) -DR I) /2.
DIST= " RI) -P 1I+*1) )/2.
D158=(R (I I-ag-1))/2.

c CON VECTIVE TER S1: r Ear ZaPORTANT
TI=SS*t1.-E3)/DzJ),rarr) +D R I)/2.)

15C(-2) 37,37,88
87 T2=:!.

GO TO 839
83 72=SS*(E2-E 4) /D Z J) /CR rI-1) +-D E(1-1) /2.)
89 CO TINUE

73=-SS*31c&1- a 2 ) /D R (I r -)
T4=-SS* (33-.4)/DR()/R(I) /-k
7EL 1=71 +ABS (Ti)

T EL2=l-A B S 71)
7y 3=V2+-As zV2)

TEL4=T2-A.BSr72)
7EL 5=T3l-& BS F'73)

516=73 -ABS Cr3)
WETL7=W4+l3S (74)
TEL8=74-ABS (W4)
D DDZZ= (Z (J +-1) -Z (J-1)) /2
ODD RE= rEt+1) -R I- 1) )/2.
STEEAa ?UNCTION
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RE5S0 O 10
R Es 1 ('10

RES00030
3 sSOG:)40
RZS0 050
RESo 0060
RE 500070
RES00080
SES 00090

3E5500 100
asset 110
a5500 120

LES00130
EES00140
aES00150
R ESO160
RES00170

RE500 190
RIESO 120 a
-ES00210

RES00 220
aS00230

RES00 240
i 550 250
5ES00 260
as 300 270

RES00280
a SOo 29 0
RES00300

RSOO 310
R SC320
3500330

R ESO340
aRS00350

RE 500 360
IES00370
EES00380
RES00390
RES00400
3 350041 0
EE500 420
a ES00430
RESoc440
R ES OJ4511
aESoo 460
aLES00470
ES00480

as" SO 490
RES00500

R 500 510
R ES 00520

&500530
3ES30 540
RE S00550
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E**(z)*v*Pz/(r) ZQ/ (a2a-s57A)-=SLA

aa/ () +CzsiG/sswG+ Lsn3/LswcE) snzGaa/zs C)s*)L
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(r' L-1)Z *itoCL+ -r'w)r*E+ (r'L4I)-T*Z:W+-Cr'ID*vzL-= (r'7 )=E
(s* Cr) zo/i-2zwA*( szc./sn~o/zs*v 1z=soD
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The Result of Run #42 (Reg = 1370, SS = --.02)

All the calculations are executed by CMS (Conversational

Monitor System) under IBM 370 operated by IPC at MIT. The

calculation starts with Re0 = 10 and SS = -l from the sit-

uation where the fluid- is completely at rest. After several

hundreds of iterations, each function (?Pr ,W) is fully devel-

oped. These functions are then stored as initial conditions

for higher Reynolds number calculations. For the case

Re, = 1370 and SS = -. 02, the experimentally measured

circulation in the free stream region is input as the ini-

tial condition for the circulation calculation. The circu-

lation in both core region and bottom boundary layer is

reasonably guessed. Setting Re8 = 1370 and SS = -. 02

which corresponds to the experimental condition, the itera-

tion starts. Every fifty iterations, three functions (i,

E,w) as well as the radial and axial velocities are printed

over the entire geometry. Res iduals of the three functions

are also calculated and printed. The whole calculation is

terminated when the following requirements are satisfied.

1. The convergency of the stream function in the loop

1 is very fast, one iteration is desirable (see

Fig. 3.12)

2. The circulation and vorticity do not change much

in each iteration in the loop 2.

3. The residuals of the three functions are sufficiently
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small over the entire geometry when they are com-

pared with the dominant terms in the equations.

The results of each function and the radial and axial velocity

after 400 iterations inthe loop 2 are followed.
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VORTICITY

0.0
0.0
0.0
0,0
0,0
0,0
0,0
0.0
0.0
0,0
0,0
0.0
0.0
0.0
0.0
0,0
0,0
0.0
0,0
0,0
0.0
090
0,0
0,0
0,0
0,0
0.0
0.0
0,0
0.0
0.0
0.0
0t0
0,0
0.0
0.0
0.0
00

001 .03 .05 .07 .09 ,19 .37 .55 .73 .91

0.0 0,0 0,0 0.0 0,0 0,0 00 0,0 0.0 0.0
0,471Et01 0,160Et02-0,102E+00,0.930E+00-0,373E+00-0,280E-01-0,191E-02 0,150E-02-0219E-04 0,679E-03
0,340ET+01 0,11 Et02-0,456Et01'-0,307E+01-0,111Et01,'0,925E,01-0,762E,02-0.954E-03-0,133E,02 0,563E-03
010.109+00-0.839E+01-0,146E+02-0,116E+02-0,562Et01-0,193Et01,0,16 Et00-O,14?E,01-0,54SE-02-0,252E-02 0,703E-04

-0,157E02-0,356Efo2-0.170E02-0,7oE+01-0.269E01-0,229E+00-0,221E00-0,352E-02-00247E-02 0.913E-04
-0,102Et02-0.409Et02-0,205Et02-0,997Et01-0,345E+0o,0,315EtO1-00,3207E--O,7E-01 ,300E-02-0,77E-042
-O, 75Et02-0,367Et02-O,236Et02-O,12OEt02-0,418Et01-0,40E+00-0,422E-01-0,122E-01-0,47E-02-0,741E-04?
-0,164E+02-0207E+02-0,274E+02-0,141E202-0,495Et01-0,497Et00-0.550E-01-0,164E-010Ot556E-02-0,105E-031
-0,17Et02-0,368E+02-0,327E02-0,164E+02-0,573E+01-0,61IE+00-0,705Ef-01-0,211E-O01-75+E-02-0.344E-03Z
-0,200Et02-0,506Et02-0,3?IEt02-0,10BEfO2-0,655Et01-0,745Et00-0,9IIE-01-0,276E-01-0.?511-02-0,496E-03

-0.395E02-0,731E+02-0,455Et02-0.211Et02-0,734E+01-0,893E+00-0,115E00-0,349E--O0,320E-00,336E031
-0,406E.02-0,162Et02-0,5llEfO2-0,232Et02-0.812Et01-0,10Et01-0,145E+00-0,440E-01-0,153E-01-0,24E-030
-0,570E02-0,t11lE003-0,557Et+2-0,240E102-0, $2Et01,0,129Et01-0,la2Et00-0,556E-01-0,191-01-0,466E-030
-0,645E02-0,127E+03-0,596Ef+0-0,265E+02-0,956Et01-0,153E+01-0,225E00-0,6?OE-01-0,23?E-t01-0,72E-03
-0,720Et02-0,141E+03-0,629Et02-0,275E02-0.11E+02-0,179Et01,0,210Et00-0,075E-01-0,372E-"01-0,83E-03
-0,637Et02-0,164Et03-0,656Et02-0,273E+02-0,107E+02-0,21BE+01,0,342Et00-0,103Et00-0.33?E-01-0,07SE-03

-O,101Et03-0,201Et03-0,687Et02-0,266Et02-Otl09EtO2,0,219Et01-0,323Et00-0,942E-01-0,307E-01-0,0E,03

-0,110Et03E-0,603Et03 0,714Et02-0,253Et02-0.950E+01-0.223Et01-0.385E+00,0,119Et00-0.371E-+01-0,43E-hOl
-0,125E+03-0,267E+03,0,760E+02-0,223Et02-0,7157+01-0238Et01-0,501E+00-0,155Et00-0,452E-01,0,136E-+01
-0,136Et03-0,294Et03,.81?Et02-0,186Et02-0.517Et01-0,254Et01-0,6l7Et00-0,183Et00-0,497E-01-0,162E-02

-0,146E+03-0,314E+03-0,876E+02-0,148Et02-0,334Et01-0,271Et01-0.703Et00-0,1?3Et00-O,477F-01-0,175E-,'2

-0,155E03-0,331E+03-0,951Et02-0,117Et020,340Et02-0,1Et02-0,7E+02-00,39EE00-0,71396-02-0,Q66E,02
-0,163E+03-0,345E 03-0,103Et03-0,948Et01-0,766Et00-O,3l4Et01-0,729Et00-0,171Et00-O,272F-01-0,123E,02
-0,170E+03-0,357E+03-0,112E+03-0,B63E+01 0,407Et00-O,339Et01-0,681Et00-0,145Et00-0,12og-ol-o,335E-0;3
-0,175Et03-0,366Et03-0,12IEt03-0,104Et02 0,224E+01,0,35?E+01-0,610E+00-0,113E+00 0,606E-02 O,96W-03
-0,170Et03-0,371Et03-0,129Et03-0.165E+02 0,531Et01-0,272Et01-0,522Et00-0,737E-01 0,2839-01 0,270E,02
-O,l8QEtQ3-0,371E+03-0,135EfO3-0,300E+02 O,l03Et02-0,376Et01-0,42IEtOO-0,252E-01 005777-01 00604E,02
-0,IOIEt03-0,360Et03-O,136Et03-0,608Et02 0,210E+02-0,370E+01-0,306E000 0,422E-01 0,101E+05 0,NO E-NI

-0,103dfO3-0,36SEt03-0,133Et03-0.826E+02 0,320Et02-0,364E001-0,164E000 0,156E000 00177E000 0,120E-01
-0,190Et01-0,391Et03-0,126Et03-0,774E+02 0,259E+02-,.333E001 0.493E-01 0,100E000 0,332E000 0.055E-01
-0,203Et03-0,409Et03-0,118Et03-0,824EtO2 0,113Et02-O0001 0,496E000 0,080E000 0,601E+00 0.224E00
,0,223Et03-0,459Et03-0,12BEtO3,0,592E+02 0,363E000 0.150E001 0,169E001 0,242E001 0,146E001 0,567E00

-0,239Et03-0,46E3-,9E3 4131+02 0,199E002 0,116E002 0.532Et01 0,540E001 0,30E01 0,133E001
-0,250E003-0,492E003-0.420E003 0,120Et03 0,811E002 0.434E002 0,136E002 0,104E002 0,572E001 0,280E001
-0,273E+03-0,603E003 0,121E003 0,203E003 0,135E003 0,905E002 0,259E002 0,158E002 0,077E+01 0,403E001
-0,230E003-0,554E+02 0,327E003 0,241E003 0,167E+03 0,118E003 0,30?Et02 0,031E002 0.711E001 0,516E+01
-0,159E+03 0,177E003 0,310E003 0,135E003 0.340E+02-0.144E+02-0,267E+02-0,235Et02-0,143Et02,0,641Et01
-O,15?Et03 0,177Et03-,.877EtO4-0,416Et04-0,254Et04-0.116Et04-0.312Et03-0,141Et03-0,754Et02-0,399Et02

z

1,00000
0,97500
0,92500
0997500
0,92500
0,77500
0,72500
0.67500
062500
0,57500
0,52500
0,47500
0942500
0,37500
0.32500
0,27500
0,22500
0,19500
0,18500
0,17500
0,16500
0,15500
0,14500
0,13500
0.12500
0,11500
0910500
0909500
0,00500
0,07500
0,06500
0,05500
0.04500
0,03500
0, 02500
0001500
0.00500
0.0

w
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THE VELOCITY DATA YR AND VZ

THE RADIAL VELOCITY VR

010 0,2021-02-0,10,E-01-0,936E-01-0,425E-01-0,413E-01-05271E-01-0,222E,-01-0, 10 .- OE-0 , 200E-01 0,975
00, 0.925
0.0 0,875
00, 0.825
010 ,0,146E-01-0,20?E-01-O,102E-01-0,436E-Ql-Q,423E-01-0,294E-01-0,23BE-01-0.212E-01-0,202E-01-0,200E-01 0.775
010 0,725
010 -0,50E-01-0,645E-01-0,686E-01-0,64?E-01-0,5QOE-01-O,337E-01-0,258E-01-0,222E-O1-O,2O6E-01-0,200E-01 0,675
0,0 0,625
0,0 E,21OE01-0,200E01 0,575
090 0,525
010 -0,745E-01-0,,06E-01-0,746E-01-0.604E-01-0,63OE-01-0,397E-01-0,291E-01-0,235E-01-0,209E-01-0,200E-01 0,475
0,0 -0,655E-01-0,729E-01-0,6?7E-01-0.654E-01-0,613E-01-0,401 ,01-0,288E-01-0,22?E-01-0,205E-01-0,200E-01 0,425
0,0 -0,650E-01-0.722E,01-0,680E-01-0,635E-Ol-O,5?BE-01-0,3?3E-01-0, 73E-O1-O,2l4E-01-0.196E-01-0,200E-01 0,375
0,9 -0,723E-01-0,792E-01-0,650E-01-0,610E-01-0,569E-01-0,357E-01-0,235E-01-0,103E-01-0,IOOE-01-0,200E-01 0,325
0,0 0,275
0,0 -0,11Et00-0,101Et00-0.572E-01-0,302E-01-0,21IE,01-0,149E-01-0,831E-09-0.684E-02-0,119E-01-0,200E-01 0,225
0,0 -0-,237E+00-0,176E+00- 06O00,246E-,02 0,149E-01-0,704E-02-0,21 E-02-0144E,02-0,885E,02-0200E-0,195
0,0 -0,320E+00-0,233E+00-0,6E3SE-01 0.256E-01 0,3?3E-01-0,196E-02 0,255E,02 0,226E-02-0,688E-02-0.200E-01 0,185
0.0 -0,280E+00-0211E+00-0,609E-01 0,331E-01 0,461E-01 0,35E-02 0,738E,02 0,536E-02-0,535E-02-0,200E,01 0,175
0,0 -0.244E+00-0,193E+00-0,527E-01 0.320E-01 0,469E-01 0.120E,01 0,134E-01 0,681E-02-0,369E-02-0,200E-01 0,165
0,0 -0,217E+00-0,183E+00-0,655E-01 0,252F-01 0.44?E-01 0,218E-01 0,201E-01 0,124E-01-0,1?E-02-0,200E-01 0,155
0.0 -0,194Et00-0,175E+00-0,740F-01 0,XE7E-01 0,462E-01 0,334E-01 0,269E-01 0,160E-01-0,140E-03-0,200E-01 0,145
0.0 -0,14WEt00-0,146E+00-0,B40E-01 0,156E-01 0,557E,01 0,464E-01 0,336E-01 0,1?4E-01 0,167E-02-0,200E-01 0,135
0,0 -0,137E+00-0,153Et00-0,974E-01 0,156E-01 0,751E-01 0.608E-01 0,396E,01 0226E-01 0,349E-02-0,200E-01 0,125
0.0 -0,102E+00-0,136E+00-0,116Et00 0,154E-01 0,103EtOO 0,762E-01 0,448E,01 0,253E-01 0,529E-02-0,200E-01 0,115
0.0 -0,699E-01-0,114E+00-0,140F+00 0,134E-01 0,139Et00 0.923E-01 0,40E-,01 0,276E-01 0,7Q4E,02-0,200E-01 0,105
0,0 -0.575E-01-0.886E-0X-0,132E+00 0,140E-01 0,153E+00 0,108E+00 0,513E,01 0,291E-01 0,066E,02-0.200E-01 0,095
0.0 -0,915E-01-0,743E-OP-O,705E-01-0,203E-02 0,934E-01 0.124Et00 0,517E,01 0,2?3E-01 0,987E,02,0,200E-01 0,085
0,0 -0,187E400-0,111E+00-0,350E-01-0,352EF-01 0,205E-01 0,l4OE+00 0.482E-01 0,267F-01 0,997E-02-0,200E-01 0,075
010 -0,323E+00-0,210E+00 0,302FE02 0.355E-01 0,621F-01 0,152E+00 0,366E-01 0,17?E-01 0,716E-02-0,200E-01 0,065
0,0 -0,389E+00-0,350E+00 0,936E-01 0,270E+00 0,227E+00 0,141E+00 0,563E-02-0,605E-02-0,292E-"02-0,200E-01 0,055
0,0 -0,467E+00-0,624Et00-0,781E-01 0.271E+00 0,226E+00 0,588E-01-0,723E-01-0,625E-01-0.292E-01-0,200E-01 0.045
090 -00321E000-0,410E-01-0,152Et00-0,498Et00-0,551Et00-0,24IEtO0-0,248EtOO-0,179EtO0-0,864E-01,0,200E-01 01035
0,0 0,13Et00-0,555E200-0,157Et01-O,27@Et01-0,260Et01-0943Et00-0,575Et00-0,371Et25-0,189Et00-0,200E-01 Q,025
0,0 -0,134E+01-0,51Et01-0,796Et01-0,698Et01-0,585E+01--0,201Et01-0,978E+00-0,586E+00-0,312E+00-0,200E-01 0,015
0.0 -0,151E+01-0,147E+02-0,169E+02-0.107Et02-0,810Et01-0,244Et01-0,100E+01-0,547Et00-0.296Et00,0,200E-01 0,005

r -0 .02 ,04 .06 .08 .1 .28, .46 .64 ,82 1.0

L.J



THE AXIAL VELOCITY VZ

010 010 0100 o010 0,000.0 000 010 010 010 11000
010 - 0,950
010 00900
010 -0 6C,107 K 0 -,I5F0 -,1?-0 -,13E 91-o24E0 -,7J-2 0OB50

0,0000E0-,2E 0017,0-021~-0017~,003G-1Olt4,O-,1E0-,6 0-19E0 01800
010 0,22 1017+1053+0031E0-,5E0-.5E0-,9E0101?-101? -1OiO -1 o750
010 -,4E0-,2E0- 73E0 0,?F 00,0Ef -0 69 010-' E- -0 61 01010- -0 30- 000
010 - 29 tl-95EO ,,?FtO045 000' 3 tO - 67 -0 -,',7E0 0,E8 - -0 6I -,Ol9 -1 0,650
0,0 01600
010 ~ 9E"1'.8E~~ 01550
0,0 -,5E01023E 10 30+1065 000 5E000I E000 7E010'50- -O'1E01021- 0,500
010 -,3 tQ 0, 2E10 0-4''F'0 076E0 039E0 0.1 000IB - -027- -020 -102B - 0,450
0,0 ,9Etlo39,0 -- 5E0 -,',E0 -. 4E,00 1"E0 -,3E0 -, I -1027 -102G -1 01400
010 -,6 0,033C0 -,6E lOBi0 -,?EO -o4E0 -,6 -4O 9E0 -9 5 -1096E0 15
090 -, E0-,6 +lQl6+10?0+0050+00,5E0-,7E0-,00,0-#08-1024-1 0,300
010 -,3E 0.,O~-,O-,,B~-1091+0055+0 -,6EO -,7 0 -,11-1030 -103? -1 O 250
090 -,0 +2O~ 5- lt7I,0 -,9F+0057+0-,6C+0016 -1037 -103 1-10AP-,,-x 0,200
000 IO,0 -,'1 i0 -96F+1081,+005;EtOOllt0043 -10;1E0 -,30 -1047 -01190
010 ,1E0-,3ElOl7tl073tOO~2tO-,7 O-O48-lQ~4-1031-1045 -1 0,10
010 0,170
010 ,-7~O -,5-E0 -,3F+1056 0 --4EOOOl7 0 -,5E0 -,1E0 -,0E0 -,7r--I 0,160
010 -,3 0-,6,1l012E,104I+0049,0 -016+0043 -1039 -0 -," 0-, E0 f50

0,0 16t "-,7E,0 -,''7+ 1046E0 -,0EO -t7E+0044 -1034 -1-,3E0 -, I -1 00140
010 -,3 O-O4 E 101.4+1036+0036+0019+0047-1030-1043-1057-1 0,130
010 ,4I+~- ,9l,,lO l)3~,100.,5, 00''0 E0 - ,6 E0 - .'1E-1039 -104 1 -1055 -1 0,120
0.0 #4E09056 f0 -. 96,0 -97EQ -tBF+00 1iEO -t'"5-1036 -104? -106E)-1 00110
010 "0,145+0f2-0,516E+i01"0,134F+01 0 IP-l046-1015E0-,-iE0-95 -1057-1066-1 09100
010 ~016t0~,20-013410,167E+00 0,11t00O-,141Ft0""0,456E-01-0,366&-01-0,525E-"01-0,670H-01 0.090
000 "0118F+02-0,526,E+ 01-'0,145EZ+01 0,225E+00 0,220FIO+00"0,126Ft0C,48""E01""0,376E-01""0.541E01-0,704E-01 0,080
010 "0,52Et02"0,530Ft01"-0,Z1Et01 0,415W1O0 2 +00II+0-,4E0-,36 O-,'54- 07B-1 0,070
010 "0.156Et02"0,537Et 01-0, 123F+01 0-253+00 0,1E0-.31-1067-10,9E0-,'6E0-,7E0 0,060
0.0 "0,166E+02"0,557E+01"0,Q42F+00 0,401Ct00 0,323Et00-0,73E""01"0,7298E-01""0,410E-"01"0,561F-01-0,791E-01 09050

0.0 "0,175E+02"0,609E+01-0,437E+00 0,856F+00 0,334E+00-0.748EH01"0,87E-010424E010,536E01-0,787&-01 00040
090 "0182E+02""05?3Et01"04,'50Et00 0#39Et00 0,6E0-.4E0-,0EO-. -4-1041-1074-1 01030
0.0 -,7E0- 7E0 -# 7+1010+1021+0081-1011tO035 -1035-1050-1 01020
090 -,0 0 -#3E0 -,3~~ -,2E0 -*4E0 -079 -1061-1023-1013-1022-1 01010
0.0 -0,36E+02"0,322E02-0,160Et02 0,0 010 000 090 0.0 0.0 010 010

r- 3 05 107 ,09 '19 .3795.7q03 o55 73



THE REUDUAL OF EACH FUNCTION

STREAM FUNCTION

0,0 0,40?E-02-0,202E-01 0,56E-01 0,632E-01 0.238E,01 0,130O-01 0,532E,020,672OE-03-0,154E-02-0.267E-02 0,575
0.0 0,512E-03 0,577E-01-0,159E-01-0,387E-01-0.178E-01-0,112E,01-0,979E-03- ,6l E-02-0,160E-01-O,795E-02 0.825
0.0 -0,473E-02-0,104E+00 0.144E-01 0,653E-01 0.337E-01 0,271E-01 0,126E-01-0,220E-01-0,372E-01-0,220E-01 0,675
0,0 0,143E-01 0,152E+00 0,03E+00 0,732E-01 0,2?4E-01 00166E-02-0,372E-01-0,678E-01-0.637E-01-O,3lOE-01 0,525
0,0 0,1 OE-02 0,116E-01 0,226E-O 0,354E-01 , 0,375
0.0 0,804E-02 0,106F+00 0,751E-01 0,771E-01 0,312E-01-O,117E-01-0.322E-01-0,183E-01 0,742E-02 0.100E-01 0.225
0,0 0,iO1E,01 O,133E+00 0,4JEg01-0,206E-01 0,555E-01 0,315E-02 OA?6E-02 0,64WE-01 0.?63E-01 0,589E-01 0.175
0.0 0,809E-02 0,152E+00-O,122E+0-0,121Et00"-0,273E-O 0,23*"-O1 O435?E-01 0,10E+00 0,150Et00 0,801E-01 0,145
0,0 0.128E02 0,XO1E+00-0,229E00-0,195f2+00-0,482E-01 0,420E-01 0.818E-01 0,14?E+00 O,166Et00 0,802E-01 0115
0,0 -0,120E-01-0,1051-01-0,201EO00-0,304Et00 0,427E-01 0,376E-01 0,12lEt00 0,215Et00 0,25Et00 0,117Et00 0085
0,0 -0,29?E-01-0,223E+00-0,351F+00 0,139Et00-0,154E00 0,984E-01 0,130E+00 0.355E+00 0,309Et00 0,125EtOO 0,055
0,0 -0,194E0-0,155Et00,0,211+00-0,183Et00-0,25SE-01 0,771E-01 0,10?Et0O 0,321Et00 0.263E+00 0,113E+00 0.025
o,0 0.0 0,0 0,0 000,0 0,0 0,0 0.0 0,0 0,0 0.0

CIJCULATION

0,0 0,468E-02-0,236E01,0,125E,01-0,596E-02 0,209E-02-0,112E-02 0,137E-02 0,347E-02 0,120E-01 0.720E-02 0,975
0,0 0,20,E- -,144E-01,720E,02-0,32?E-02 0,145F-02-0,17?E-02-0,4124E-03 0.317E-02 0,158E,01-0,790E-02 0.825
0,0 0,360E-02-0,166E-01-0,482E-02 0,287F-03-0,442E-03 0,560E-03 0,311E-02 0,388E-02 0,422E,02 0408E-01 0,675
0,0 -0,803E-03-0,713E-02-0,205E-02 0,141E-03-0,615E-03 0,317E-02 0,347E-02 0,670E-02 0,478E-01 0,232E-01 0,525
0,0 0,763E-02-0,143E-01-0,639E-02-0,14E-03- ,235E-04 0,17FE-02 0,131E-02 0,179E,02 0,285E,02-0,80E-02 0,375
0,0 0,107E-01-0,.66E-020,379E-03-0,307E-03-0,101E-02 0,210E-02 0,205E-03-0,6?3E-03 0,2?OE-01 0,313E-01 0,225
0,0 0.4?0E,01-0,149E-01 0,131F-01 0,304E-02-0,202E-03 0,322E-03-0,905E-03-0,204E-02 0,187E,01-0,33?E-01 0.175
0,0 0,330E1-0.214E-01-0,430E-02 0,623E-02-0,422E-03 0,40E-03 0,751E-03-0.331E-02 0,141E-01-0,708E-02 0145
0,0 0,144E-01-0.278E-01-0,195E-01 0,101E-01-0.188E-02,-0,217E-02 0,144E-02-0,35?E-02 0,402E,01 0,168E-01 0,115
0,0 0,168E-01-0,151E,01-0,112E-01-0,674E-02-0,234E-02 0,260E-04-0,240E-02-0,698E-02-0,383E-01 0,217E-01 0,085
0.0 0,174E40-0,480E-01 0,457E-01-0,229F-0l 0,118E-01-0,369E-02-0,372E-03-0,825E-02 0,111E-01 0,299E-01 0.055
0.0 0,607F+00-0,142Et00-0,38QEt0 0,962E-02-"0,396E,02-0,251E-01-0,385E-01 0.71?E-01 0,625E,01 0,750E-01 0,025
0,0 0,0 0,0 0.0 0,0 0.0 0,0 0,0 0,0 0.0 0,0 0.0

VORTICITY

0,0 -0.275E-02-0,135E-01 0,416E-02 0,169E-02 0.133E-03-0,34;sEF-03-0,198F-03 0.665E-03 0,221E-03 0,363E-03 Os?75
0,o 6 -0,4,177?E- 0,186-102-0,1E-02-0.57E-02,0,156E02-0,159E-03 0,825
0,0 -0,69?E-02-0,292E-01-0,151E-02 0,251E-02 0,?91E-03-0,529E,02-0,450E-02-0,415E-02-0,316E-02-0,203E-03 0,675
0.0 -0,191E-01 0,254E-01 0,137E-01 0,668E-02 0.257E-02-0,O82E-02-0,.18E-02-0,771E-02,0,761E-,02-0,496E-03 0,525
0,0 -0160E-01-0,574E-02-0,99lE-03 0,211E-02 0,8S5E-03-0,125-01-0,118E-01-0112E,01-0,79E-02-0,96E-03 0375
0,0 -0,192E-01 0,421E-02 0,153E-01 0,206E-01 0,100E-01-0,116E-01-0,.28E-01-0,972E-02-0.450E-00-0,IlBE-02 0,225
0,0 -0.102E+00-0,158E-01 0,Q46E-01-0,945E-02 0,354E-01-QE31E-02-Q,5?2E-Q2-0,794E-02 0,866E-02-0,204E-02 0,175
0,0 -0,672E-01 0,101E,02 0,739E-01 0,7?2E-02 0,185E-01-0,379E-02-0,266E-01-0,223E-01 0,145E,01-0,140E-03 0,145 L

0,0 -0.192E-01 0.183E-02 0,184E-01 0,110FtOO 0,258E-01 0.939E,03-0,436E-01-0,193E-01 0,253E-01 0,172E-01 0,115 A
0,0 -0,646E-01 0,110E-01-0,488E-01 0,417Et00 0,703E-01-0.747E-0?-0,257E-01 0,1?9E-01 0,100E+00 0,6Q0E-01 0,085
0,0 -0,169Et00-0,112Et00 0,1?6Et00-0,104EFt0-0,188Et00 0,211Et00 0,142Et00 0,303Et00 0,685E+00 0.505EtOO 0,055
0,0 0.408E+00-0,776E+00-0,115E+02 0,11EtO1 0,675Et00 0,146E+01 0,184Et01-0,101Et01 0,432E+00 0,322E-01 0,025
0.0 0.0 0.0 0,0 0,0 010 010 0,0 0,0 0,0 0,0 0.0
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Appendix B: The Measurement of Intrinsic Viscosity of
Polyox WSR 301 (Polyethylene Oxide)

The intrinsic viscosity of Polyox WSR 301 is measured

by Ostwald-Fenske viscometer. By keeping temperature con-

stant (25.4 + .05*C), the time required for the solution to

fall for a certain distance is measured. The time measure-

ment is repeated at least six times to obtain consistent

data. The relative, specific and inherent viscosities are

then determined by the following equations.

Tj t
- =B.1r 'is ts

TI-Tis t-ts
1 = 3.2

sp 's ' t5

ninh = (lnir)/c B.3

where ts and t the time required for solvent along (water)

and the solution. The intrinsic viscosity is determined from

the intersection of the extrapolated curves nsp/c and

'ninh at zero concentration. From Fig. B.1, the intrinsic

viscosity is found to be between 12 and 14 [dl/gJ. TABLE

B.1 shows the intrinsic viscosity and weight average mole-

cular weight obtained from several investigators. Using

[n] = 14 [dL/gi and Mw = 3.81, the number density n and

the time constant XH are calculated. According to Bird,

Hassager, Armstrong and Cirtiss (1977), the time constant for
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FENE dumbbell model is determined by

Na = (5 E+l) B.4
RT

where R is gas constant. Eq. B.4 with the data gives

XH = 2.36 x 10- 3 [secl. The number density of 30 wppm of

Polyox WSR 301 is 4. 31 x 1012 [molecules/cm3I. In the

polymer stress calculations in chapters 3.5. and 6 , the

values of N 0 = .1 [secJ and nkT = .2 [gcm/sec2cm2

are used.
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Fig. B.1

Determination of Intrinsic Viscosity
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TABLE B.l

THE MOLECULAR CHARACTERISTICS OF POLYOX WSR 301

Name

ISHIKAWA

PATERSON (1970)

CHIOU (1976)

VIRK (1975)

[n] [dl/gI

12-14

28

15.1

20.1

Mw x 10 -6

3.16-3.81 *

8

4.2 *

6.1

* The molecular weight Mw is calculated by

[i] = (1.03 x 10 4)M o.78
w
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Appendix C: Program Listings for Polymer Stress Calculation
by the MNHD

C.l Polymer Stress Tensor Calculation in Chap. &

The method used in this calculation is Runge-Kulla

fourth order method. Since the stress tensor as well as

structure tensor are calculated along the stream lines, the

convective terms in the MNHD are eliminated. The equations

to be solved are found in eq. 6.1 to eq. 6.13

Description of Variables and Program Listing

Variables

PST (1,11)

BXX, BXXOD

TXX

Fl-F6

T

DT

E

VKMAX

CNKT

S Cl)

Description

r = 'r 6 corresponds T pTrrr ,,60

Cp,r6, prz, Tp,z respectively. These
components are determined at the points on the
stream lines in Fig. 6.14 and Fig. 6.16
II indicates the point number in these
figures.

The time advanced a and a before the
integration.

prr

XX, YY, ZZr KYr XZ, YZ correspond to rr , 6 ,
zz, re, rz, Oz components respectively.

The calculated values of the right hand side
of eq. 6.1 to eq. 6.6

Time !sec]

Time increment [sec.

The parameter E

The number of iteration

nkT defined in chap. 5

v
H r



S(2)

S C3)

S (4)

S (5)

S (6)

S(7)

S (8)
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9vrr

Na r

@z

ar

v
av0

az
3 r

av 8



FILE: 2LTSEi FORTAK A CoNrERSxTNr.AL OrIToa 1STSTEa

CC TEETS 2E)GRfl CALCULATES ALL TfEE STRESS TRENSOR CCaPCTETS
C &LO&G rE STEEAX LLIUES DESCEIBED L THE SECTIOZI 6.4.

DIENSL0 TT (10) ,PSTOSr10) ,E6,4)
COfaON BK,BYTBZZ,BrirBXZrRTZ
C3,10 9XfIl DrBrOD, EZZOD, rITOD,BKZO,B1ZOD
COKLKOlf SC-) ,DT,SCIKTCOF
COMMON Trir,21Y1, ,T1ZZT ,1TTZTYZ
COMMON Fl ,72,F3,F4,F5,F6
C!TKT=.2
E=.005

90 :WRTINUB
WEITE (6,100)

100 FoRAD/,13i,'2sLEASs I(2U TEE 7ALUE OF STREAd ,
1'LIKE IN 25.2',/)

READ '5,201) STI
200 FoRAT(?5.2)

CC INITIAL VALJE &SSIGUIENT

B11=1.-5.*E912=1 .- 5.*s
817=0.

BZ=0.
1=0.t=o11=0

70 COETINURE
WRITE 6,1)

101 FORIAT(/,I0I,' ASE INPUT CT Ir F10-5',/7)
READ P5,201) DT

201 FCR5AT(F10.5)
WRITE :6,102)

102 ?0EnAT V,10r,'pLASE INPJT VKAXK I F1O.5'.)
READ '5,221) WKfAX
KMAr=IFI:'fEAVK)
RITE6,103)

EEAD(5,203) Sl)
IRITE(6, 104)
RSAD1(5,213) Sf2)
VIRTE(6, 105)
EEAD [5,23) S(3)
WRITE(6, 106)
READ 15,2)3) SU"4)
fRLTE(6.,107)
Ek0D5,201) S :5)
WRITE &,108)
READ t5, 20 3) s 6)
WELTSF6,109)
REXD(5,203) S(7)
WRITE (6,11-)
READ(5,203) S(8)

203 FORAT?-1.5)
103 0REXT(/,10r,'p1L.Sxy IS [' VE1.CaTT GEA) 501) ,

1'IN F1G.5',/)
104 FOESAT(10i,'I-UT S(2)')
105 FORNATClO)r'INPUr "S 3)')

355

21.100010
2LY00020
2100030
2L00040
2L100050
2?L00060
2LY00072
21.100080
2LI00090
PLYOU101
2L100110
PLI00120
PLY00130
2L00140
2 LY00 150
2PL00160
2L100170
2L.100160
2L.10190
2LT00200
2L 00210
2LI00220
2Lr00230
2 LO&7240
21.00250
PLY00260
PLY00270
21100280
2LT00290
2LT00300
21T.100313
PL700 320
?100330
2L.100 340
2 LIOC 350
PL00360
2?L00370
2LI00380
2LY00390
PLI00400
2L100410
2Lr00420
2Lr00430
2110C441
21.00450
2L Y) C46l
2 .100 470
21.00480
21.00490
2Lr00500
21.r00510
2Lr00520
21.100533
2LI-00540
2 LIOU 551



FILE: PLtSd :)RTRAK A CCN7ERSATIOYAL "OfITOR STSTE2

106 FOEakT'IOIr, t r2EIS ,r4)')
107 FoRAT(IOr,'IUT S (5)')
108 FOfk E(13I,'lIN2UT S(6)')
109 FOR LT(10,'lIfPUT 5(7)')
113 FORI&r(12I,'aPUT Sf8)')

CC S T 1 S EQUAL TC ZERO
K=O

51 r=1
B rXoD= 5

S10D=BI T
S ZZOD=BZZ
BXZOD=B CZ
BIZOD=BIZ

50 CONTINEE
CALL FCAL
ff'1, T) =D T -r?1

ff 2) =DI *F23
f (3,Z)=JT*F3

Ef (4 ,L)=DT*F45

E(6,I)=CT*?6
IC7(-1) 40,40,41

40 L=2
T=T +DT/2.
Bxr=Brx*El(1o,1)/2.
BtC=BXfl+t(2,1)/2.
BYr=B1+E 3,1)/2-
B ZZ=BZZ+E (4,1)/2.
BXZ=BKZ+irt(5, 1)/2.
B 1=3YZ8-EL (,1) /2.
J0 TO 50

41 IFLI-2) '42,42,a&3
42 1r=3

XXI= 9XT+ i f- r,2) /2. - ff'1,T) /2.
BXY=BXT+.0 (2,2)2.- (2,1)/2.
B5Y=BY)4-Ea(3,2)/2.-f (3,1)/2.
9ZZ=3ZZ Ef-i4,2)/2.-ff r4,1)/2.
BIZ=BIZ EE (5,2)/2.-E(5,1)/2.
3rZ=BrZEf ,6 ,2)/2.-El 6,1)/
O TO 50

43 7F"1-3) 44,44,45
44 Tr=4

T=T+DT/2.
DIfl=BIXtLr(1 ,3)-l(1,2)/2.
Bsr=Srr*E(2,3)-E(2,2) /2.
3rt=Brr+P3)-a :3,2)/a.
BZZ=0ZZ+(4,3)-E(4,2)/2.
BIZ=BIZ+fva,3)-5,2)72.
3Z=BIZ+E (6,3)-a (6,2) /2.
GO TO 50

45 K=K+tI
Bn=BIoD+(EL(1,1)+2.*E(1,2)+2.*aC1,3)4E(1,4))/6.
3r1=BI7OD+(E21)P+2.WKf2,2)+2.*El(2,3) +EL(2,4))/6.
BY=ar0D+C(a(3,1)+2.aE(3,2) +2.*E(3,3)+a(3,4))/6.
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21200 560
21L00570
PLY00580
PLY00590
PLT00600
PILr00 610
2?L00620
1r100630

PLY00640
2L100650
2L 100 660
PL00670
2100680
2110C690
PLr00700
2LT00710
2PL00720
2L00730
2Lr0LU74 3
2L100750
2LI')076C
2 L00770
2L00780
2Lr00790
2L100800
2L100810
21100820
2 LOC33 0
2LT00840
2LI00850
2LZ00860
2LY00870
21100880
?1100 890
21 Ot900
PL00910
2LY700920
21L00930
2LT00940
2 L100 950
2LT00960
2IY00970
2L100980
2LY00990
2101000
2101010
21r01020
21I01030
2LT01040
21201050
PL01060
2?L01070
21101080
21101 090
2L.01100



FILE: 2LIESA FORTRAK A COWSEESATIOnfL KONflOE SYSTZ

8ZZ=EZZOD+(N-1)+-2.*E:f4,2)+2,.sHF4,3) + a4,4))/6.
B1Z=B1Z3D+(Ef(5,1) +2.*f(5,2) +2.*Er5,3) +-E(5,4))/6.
BYZ=BrOD+( i(6,1)+2.tL(&,2)+2.*E%,3) +a6,4,)/e.
C? K-FCNAL) 51 ,61:,60

60 COITINUZ
CALL STPP
LI=fI+1
ITII) =T
PSTI(1 ,II) =Tl;
2 ST (2,1) =Tf T
PST (3 ,II)=TZZ

2 ST [4,-1) =T X
PST 5,rr)=rrz
2STC6,11) =rrz
WRITE(6,12 ) STLKfT

120 F0B2AT(/,10r 'TTE Z ESULTS OF STREAM LINE' ,F5.2,
1/,10,'AT rHE rTIz ',F1:.5,/

WEIT?(6, 121)
T21 FOENAT7/,1)r,'ALPEA RU', 2X,'AL2EA TT,2X,

I'.WPEA. ZZ',2r,'ALax RT'r2Ir'ALPEA RZ',2i,
1'ALEA TZ',21,2'EITENSION RATIO')
srr= Eqc:(Er X+-El377y+321 )

WWITS5,122) BXXBr,3zZBr,BX.arZ.EXT
122 FOR AT (/, 10OF8.4,6F10.4)

WRIT (6,123)
123 ?CAAT7j/,10X'-Oa CXLCULATIO IS fEED2D?',

1' 7 f? S, IJ2PT 1r IF !O, 1qPUT 0',/)
a AD(5,204) JD1

204 FOEAT(15)
I1(IJD1) 65,65,70

65 COYTrNUZ
PRfNT s2ss wTEysoa sr raz wNKD
WRIT :6,125)

125 FOR3ATVrr10r,'T11',7,'TRR,71,'TTT',7T,
1':Zz',7k,'TaTI'j,7'TRZ ,7kr'TTZ',/')

DO 67 J=1, I
67 WRITS(6,126) TTtrJ),ZPST LJ) ,L=1,6)
126 ?CEAIAT/,lOrF4.1,r,6F10.3)

WRITE(6,124)
124 10EAT Yy,10r,'r1oaP CASE IS NEEDZD?',

I' ? TES, rLPUT i, I? Y0r, IN2UT 0',/)A
READ(5,204) rJD2
F(IJD2) 66,66,80

66 CONTIRUZ
STOP
f D

SUBROUTIYE FCAL
:c THTS SJBROUTIME CALZULXIES THE 2IGET a ANDO SIDES OF EQ.6. 1
CC TO EQ.6.'6.

COffmOK BrarrBaz",3rX3T, E11
COaW.- Y3XODhBYODBZZO DeBZoYBroZoarZOD
COffOy S p), DTZENKTCOF
CONOK T1,FTTY,3TZZ TXT, ,TZ

COdLION F IF2s, F3 rF4,r -,Fr F
COF=1I.- EIP (BXX+B)[+BZZ)
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2 LT01110
21101120
2101130
?LIOT140
21101 150
21101 160

21101170
2L01180
2LY01190
21101200

2Lr01210
21101220
2L0 1230
2LTO1240
PL01250

2101260
2 LY01270

PLTO1280
2L 101290
2L101300
PL I1310
2L101320
2? 10133;)
2L101340
211I1350
?LY01360

Pr01370
2LY01380
2LI01390
PL01400
2L101410

21101420
21L01431)
2LI0 1440
2 LW 145v)
21101460
PLr01470
2110 1480
2L101490
2LT01500
?L01510
2LI01520
2 101 530
PLT01540
2101550
2110 1560
2LI01570

21101580
P2t01590
2Y01600

PL 101610
2LY01620
2L 101630
2L101640
2LTO1650
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FILE: PLTSl FORTRA& A CONTERSATIONAL 50WITOE STSTEa

F 1=2. *S:1) * a x+2. *S :2) *BrZ-2. *S:8) * BI 2 LJ01660C
1-BII/COF-2.*E*(BXDt**2+BKY**24+BkZ*2)*CF+1. PLT01670
F3=2.OS :3) * y+2. *S 6) * 8+2. *S U7) *B'Z 2EA01680

1-8T r/C0 ?-2. *E* (8T*2 +B YT**2+BTZ**2) *C:F+1- 2L01690
F4=2.0S(4) kBZZ+2.*S (5)*BXZ ?L20 1700
1-BZZ/-G F-2. *S* rBXZ**s2+3yTo **2+BZZ*7*72) *COv+1- 2LI01 71 0
F2=S(6)'BII+(S(1)4S (3)) sBrr-S(8)*BTY+S(2)*BrZ 2LT.01720

1+ S7) *BXZ 2L.101730
2-srr/CF-2.s*2* (B x* BXvtIZ+ *BrTr+BZ*BrZ) *COF 2LX0 1740
v5=:rS:1s) +S:4) ) *B IZ+ Sr5) *S2)'ZZSv8) 811 2 0750
1-BZcoF-2.*E*(B1*BIZ+ 81 *BYZ+8BIZ*8ZZ) *COF 2L101760
F 6= ISf4)+S 93)3) *'TZ+S6) *B XZ+S

t5)r* K+S (7)0:BZZ 2LV)11770
1-8IZ/CoF-2.*E'(tBXTB+B'111*BZ+BIZ*BZZ)*COP ?2Lr01780
RZTURY 2 L101790

PYD 21.01800
SJBROUTTYE STPP 2101810

CC 1875 SUBROUTINE CAlZULATZS TEE STRESS TELSOR FRO Tm 2Lf.01820
CC STEJCTUE3 TENSOR EQUATICNS ( EQ.6.3 TO EQ.6.13 ) -'-LT01830

CC1.ON BXX,Bt1,3ZZ,3X1,;Z,B1Z 2L.OT1840
OIOtE1 311OD, BItO)r 3,B1ZO D,8kYOD,BXZCrrBZOD 2LTO018 50
CCa OE S -8) ,DToC1tKTCCF 21.01862

CCdZION T11,TI,TZZ, TIY1 T , TI% 2LT01870
CoaaORt ?1,32,23,4,F5,F6 2LO188)

Trr= (Bxr-BccXO ) /DT-2. #S(1) *Brr-2.*S (2) *I9Z#2. *S (9 ) *BXT 2 LIo189 0
TT=B1- BTITOD)/DT-2. *S :3) *BIT-2. *S 06) *BI-2.'S'7) *BIZ 21L101900

1ZZ= -zoBZZoD)orDT-2.*S(4y*8ZZ-2.*S(5)*BXZ 21.101910
T11= (BY- B1 0D0) /DT-S F6) *BiI- IS F1) +S -3) ) *Bi1+S9) .BT 2L101920

1-S (2) *BtZ-S (7) *1B) 2L T1930
IrZ=(BI-BIZO[:)/DT- (S (1) +S(4))*5B1Z-S(5) *B11-S (2) *BZZ 20 1940

It+S 8) *B811 2L.101 950
I= (BtZ-BOD) /DT- (S (4) +S(3)) B'r-S (6) *B1- (5) *811 21.10 1960

I- S7) *B3 ZZ 2 L101970
TXI=TXIC :K TP.0 1980
T YY=T 1T'CKT P1. 101990
T ZZ=TZZ *CNK T 2.L02000
TXY=TXI4-CNKT 2L.T2010
TIZ-TXZ*CNKT 2 L10 2020
TIZ= T1Z*CNtfKT PLY02030
EETUR U 21Y02040

zND 2L102050
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C.2 The Intrinsic Viscosity for Shear Flow (in Chap. 5)

This program solves the intrinsic viscosity and the pri-

mary normal stress coefficient for shear flow by Ringe-Kutta

forth order method.

Description of Main Variables and Program Listing

Variable

vis

PSD

SPSD

BXX

BYY

BZZ

BXY

BXZ

BYZ

TXX

TYY

TXY

E

T,Tl

DT

SR

Description

Intrinsic Viscosity

Intrinsic viscosity scaled by its steady state
value

Primary normal stress coefficient

Primary normal stress coefficient scaled by
its steady state value

cxx~

cyy

azz

axz

ayz

TrXX

Tpryy

Time

Time increment

Dimensionless Shear rate KHY



360

Variable Description

IMET Reference number for specifying model
IMET = 1; MNHD
IMET = 2; TANNER
IMET = 3; NHD



FILE: P2 COtVERSXTIOKL ALONiTORt srsza

C tRIS 2OGRII CfLC9LkTES TISCOSITY AND TEE 2R1 kAR
MJRNAL STRESS COEFFICIENT FOR SREAR FLOW sr THE

c HRREE DLFFERE[T dIThODS.
DtE NSrOtI R(6,4),T1 (32)
DIMENSION SWIS032),r1532),PSD32), SP SD32)
DIKZNSJICW 5 9ET32)
CO5OE Iti ,3TI8, 32,Bz, EYZ
C0&d0K ?1,rF2,F3,rFtF4,5,F6, SH(8),r Zr),i5,STLL
coinou cIxEr
CO muON &xrAXY,A rr
DEFITE FILE 1(200r12rUIOl)r2(200,12,U,102)
DEFINE ILE 3 2'-0 ,12,U,2I3), 422,12,U,IV) 4)
DEFINE FILE 5(200,12,I05),6(2O0,12,,106)
DEFINE FILE 7 r200,12,U,I07),8rSZOo,12,,I08)
L1=1l
L22
a =1
-12=-8

C IET=1: NNRD
C IET=2: TAYtIER'S
c INET=3: :fHD

READ(2,305) I2ET
305 FORdiT "I10)

GO TO 060,6O1,602),I iE:
600 wRTZ-3,306)

GO TO 604
601 WRTE(3,307)

GO TO 6!4
602 7EITZC3,308
604 CO'UTINU7
306 FORIAT7Vo,10,'!ODIIED N.H.D. 0DEL',/J
307 FoNAT/,10r,'T ALNER 10DEL' ,/)
30P FOEIAT(/,1Oc,' .a.o. OCEL',/)
50) CONTINuE

R ZAC2,301) 'C1
301 FOR![XTF10.2)

IFC1) 502,501,502
502 flITE(3,302) Cl
332 ?OR &T yrIOX,' 2kAAMEMS c o =r,5.2,

Y Y= 0
READ"2,3))) N3

300 FORAT(D5)
25 CONTINUE
111=0: rS'=SS GEOWTE FOE SEAR? FLOW

c II=: STRESS RELAfATION FOR SUEAR FLOW
111=2: STRESS GROWTH FOR ELONGATIONAL FLOW

READ :2,210) 1II
200 F?0iAT [I10)

READ 2,350)
350 FO1lAT P10.5)

IFCITL-1) T9,19,21
19 CONTINUE

E(1) =.02
E.. 2 ) =.-;3 5
C CF 1=1 .- 5.*()
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22 00010
22 00020
22 00030
22 00040
?2 3G053
22 00060
22 0C07'
22 00080
22 00090
22 00100
22 00110
22 00120
22 00130
22 OC140
22 00150
22 00160
22 00170
x2 00 180
22 0%P190
22 00200
22 0;210
22 00220
22 00230
22 00240
22 00250
22 00260
22 00270
22 00280
22 00290
22 0030)
22 00310
22 0032?
22 00330
22 00340
22 00350
22 OG36
22 00370
22 00380
22 00390
?2 00400
22 00410
22 00420
22 00430
22 00440
22 N-450
22 00460
22 00470
22 00430
22 0C490
22 00500
22 00510
22 00520
22 00530
22 OL54C
22 00550

FORTSUY k



F ILE: 22 F0RT RA N A C09TWERSATIONX AIOIrT3R S YSTZ

SR(1)=.01/COF I
SR f2)=.1/COF1
5(3) =1./Co1
SR 4)=10./COFI
SR 8)=8 .0/ZOF1l
SRa7)=6.0/COF I
SR (6)=5.0/CO!1F
sR(5)=4.0/COF1
SE(4)=3.1/COF1
SR(3)=2.0/COFI
SR '2)=1I.4/COF1
SR(1)=. 7/COF1
GO TO 83

21 OO0NTrINE
.(1)=.02
3 :2)=.Y35
COF1=1. -5.*E(1)
SE fl)=.-1 1/Co F I
SR f2)=.1/COF1
sa:,3)=. 5/CF1
SR t4 . 7/CO F1
SR (5)=1./COF1
SR 6)=2./COF1

7(7)=3./COF1
SR 7)=1I./COF1

83 CONTINUE
DO 98 LB=Ll,L2
WEITSP104) E4LL)
DO 99 tM=M1,a2
WET23,133) S Rtr

79 :OUTINUE
C Z FTIAL CONDITIO.I

IrLIr ) 1v1r2
I RIIT3(3,201)

201 FOREIATV, I rV'STRESS GRCWT FOR SHEAR FLOW',/)
BI=1.-5. * 3 (LL)
a ixr='.
BY.=1..-5. *E LL)
BZZ=1.-5.*EgILL)
3rz=o.
81Z0-.
TIS 1)=).
PSD(1) =0.
Ti 1)=C.
GO TO 80

2 Av- z-1) 3,3,
3 7EITE(3,202)

202 FORfTC/,r10o'STESS RELAXXTIO9 FOE S EAE FLOVr/)
T IS r1) =TIS r301
25D(1)=2SD(30)
T1 1)=0.
7C TO 80

4 IFFIII-2) 5,5,6
5s raIT(3,203)

203 FOE&T C/, 10X,'STaESss GROWTf FOR ELCNGATI0KL FLOW',/')
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22 00560
22 00570
22 00580
22 00590
22 00600
22 00612
22 J0620
P2 00630
22 00640
22 00650
22 00660
22 00670
22 00650
22 00690
22 00700
22 00710
22 00720
22 0073)
22 00740
22 00750
22 00760
22 00770
22 00780
22 00790
22 00800
22 00810
22 00820
22 00830
22 00840
22 00850
22 00860
22 0C870
22 00880
22 00890
22 00900
22 00910
22 00920
22 00930
22 0U940
P2 00950
22 00960
22 00970
22 00980
22 00991
22 01000
22 01010
22 01020
22 01030
22 01040
22 01050
22 01060
22 01070
22 01090
22 01090
22 01100



FILE: 22 4FRTRAK ?t CORT3RSATIOA I 3ITOE srSTE

3XX=1.-5. *E ':LL)
SIT=0.
BY1= 1. -5.vECLL)
SZZ=.-5. (Li)
1KZ=0.
B TZ=O.
E7l(1 )=0.
GO TO 80

6 1RITZtJ,24)1
204 FOREAT(1', 10I'STRESS EELkrOF FOE ZLONGKTLONXL F.LOW',/)
80 COUTINUE

CC TlE CASE DT=.05
J=1

T=0.1
DT=. 1

KKK=2
51 1=1

BXXDD=BII
B1!OD=BrI

SZZOD=BZZ
3 Z 0D=8KZ
BYZOD=B 11

50 CO1tIMUE
1F(111) 7,7,8

7 CALL SE&GR
GO TO 81

3 1FrlI-1) 9,9,10
9 CALL SESS

GO TO 81
10 IS rII-2) 11o,11,12
11 CALL ELGRI

GO TO 8 1
12 CONTINUE
81 CDITINOSZ

E I ,Z)=DT vF1
E(2,)0=DT*F2

E l3r,I)=DT *F3
El (4,r) O=DT*F4
E5,1)=DT*F5
&(6,I)=DT*F6
1F7(I-1) 40,40,r41

40 1=2
T+1'DT/2.

BX1=BXX4+(2,1) /2.
Yt=BY+EL r3,1)/2.
BZ1=BZE+E(4,1)12.
BIZ=BZ+E :5, 1)/2.
SZBYZ +aifB+ (,1)-/2.
GO TO 50

41 1? '1-2) 42,42,43
42 1=3
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22 01110
22 01120
22 01130
22 01140
22 01150
22 )1160
22 01170
22 01180
P2 01190
22 01200
22 01210
22 01220
22 012-30
22 01240
?2 01250
22 01260
22 01270
22 01280
22 01290
22 31300
22 01310
22 01320
22 01330
?2 01340
22 0135)0
22 01360
22 01370
22 01380
22P 01390
22 01400
22 01410
22 01420
22 01430
22 01440
22 01450
22 01460
22 01471
22 01480
22 01490
22 01500
22 01510
22 01520
22 01530
22 015,40
22 01550
22 01560
22 01570
22 01580
22 01590
22 01600
22 01610
2 2 01620
22 01630
22 01640
22 01650



oorzo re

061tZOz a

OL IZO Z a

OLZO za

06150 za

09150 dZ

0 1 0 Z2

Otil0o Sd

06 0 Z Z
05150 Sd

01 OZza

05 0 Se

GtLO Z Z

06050 Sd
osoro se

010 2za

09l 00 z2
OOSLO ScZ
066LO Z 2

C) 6 L 0 Z 2

096L0 Zd
01610 2?
O99 L 0 1 05E61.0 Sd
0t61 0 Z2

05610 SU

00610 S2
06210 S2
029810 Sd
OLB LO Z2
09210 Sd
C79 L0 Z2

OE81.0 za

00910 S2
0611 L0 Se
09110 za

09110 SCa

Ot1It0 Z2

GZLL 0 sE

OLLLO ZU

06910 5?-

089L0 ze

09910 ZE

(o E) SIA/ (2)lS:=t2)Ss 0
(cr3csa/t(osa=(3asas

oc't= ot cc

I -E I IJRIIROD (1

t'E1'ELs ( bs-ri9aL )Dfl-NZRDZNZ

aIRND)09 SZ3+ VS3

LP'19'0S (ts- 19

L=(r) Li
( s'oZ (Lv:*") /**C )xES/I-21-21)- (V)QS

C;as/ C(7)a s L')rVcsZZ-'j X1YM.
L +r=r L t

-9t'*Ll,t97(k2
22V2* ( -ES 'z-ao/ Y'(U0o22"9- 22G)=3S22 J

Ixe* C'i>as+ac/(Oo0xxX9-Yyfl=zn:
EDR IiNo" L -

C 002I-2223 =LIz
IV/(3027e-219) =a2xa
IC/aon2e-f S'=XI E qS

L 15 0 O
C / (3 022 2a --2l = -ra21

Iis( Ps-Io/(0119-.219)=2X1
IX.*Cw]Les* &z-1aG/ (aoo1-2-1:193=XXJ~

55'9'5SflIJLNOD I

"/(*+( z -+ (z a 4 U 90 V('o'S 1-fa+o22a=i .9/ ( C 'V n+ C#(E) n. Cz ' * Ct.('s) n +00226=229
'9/( (t'JnIB+C(E'ZS)ia-Z+.(Z 'S)nZ4(L'52 +00+12 =12

9/C r' +(C'L3Z+ZCZ'lB*'ZC ( L 134+00XY=X

-9/(t-'m -(E( t"+=0rClO"
'9z/ Cr'l) -Cvz'9 .).22=221

,p / ) R ( 9 n+Z G+=

4 Z/ ( =;9 -/ ( C S F 4 +Y 13=ZX 8

Z/ CZ'Jt)nIR- C(E't)F4 ZZE ZZO
Z/(ZC 1-Cr'j rElP4229=123

Z/ (Z Z/1/+4+=

S t'tt1'tt Cr3 17i
OS OZQf)

Z/C( I'-j ..* -/ (z -',f lqA =zx @

-Z/L1''E)Ft-aZ/(Z'Eli2422=1iG

8Z/CL'Z) P-vZ/(z'Z)-+.22=lx
-7/(L'1L)J3-'Z/(Z'1fl4+XX0=XX2

S21S 1 aO3nRO3 VflDIaYSAftDY ZVE OZzs : j11

tr 9E



FIL: P2 FORTRAf A CONVERSATIOMAL ONITOE SySta

15 DO 71 1=1,30
SpSD (I) =2SD "I)/PSDC1)

71 S71S(1) =713S(1)/71S(1)
GO TO 82

16 IFrIII-2) 17,17,18
17 CON TIN UZ

30 TO 82
18 CCNTIENU?
82 CONTINIz

WRIrE(3, 100)
INU I= + :LL- 1)*4
DO 20 I=1,30
;RITE5,131) T1 %E),71S 1) ,SLS-I),PSD(I),SPSDZO)

CZ STORE TE7 DATA IN DISK
IREC=r+r 3ET-1) *60
IF rrr) 66,86,87

86 WRITE(INUK'LREC) Ti Ir),7S3fI),SWISj1[) PSD:I),52D VI)
GO TO 20

87 ;EITE(INUMLIREC+30) Ti1(I),TIS(I)rSWlS ()2SD(I) ,52SD (T)
20 CONTINU

100 FOR(AT(' TZE *,12X, VISCOSIT T ,12,Y' NP. 715. ',12,

1'STEBSS DIF.',121,'L.ST. DIF.',/)
101 FOF AT(?7.3,4E22.4)
103 FORUAT:'1',' TEES 7ALU CF SHELR RATE = ',79.2,/)
104 FOEtIAT(/,' TEE VALUE OF PERTURBATION PARASETER = ',29.4,/)

IF F-11) 75,75,96
75 11=1

WRITY3,110)
11) FORIaK 1f,10I,'TES TALUES OF STRUCTURE TENYSORS',/,10,

1' err, ,Trr,3rC,,rZBrZ,BZ',r)

T7RZTSC3,111) anIsrBarBIZ,BTrBZZ
111 FCEMITC(5r6E15.4)

C GO TO 79
96 rhI=0
99 CONTINUE

tF( IT-1) 24,24,97
24 CONTINU E

COF 1=1.-5.*E 2)
SR 1)=.31/COF1
sa'2)=. T/COF I
SR(3)=1./COFI
SE (4) =10./CDF1
SE(8)=8 ./COFI
SR(7) =6. 3/CO?1
SR '6)=5.'/COF1
SE(S)=4.0/COFTI
SR "4) =3. 0/COF1
SR(3) =2.O/ZOF1
SE(2)=1. 4/COF1
S (1) =. 7/COFi
GO TO 98

97 COF1=1.-5.*E(2)
sC1)0=.1/COF1
SR 2)=.T/COF I
3 p3)=.5/COF I
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22 02220
22 02230
22 02240
22 02250
22 02261
22 02270
22 02280
22- 02290
22 02300
22 02310
22 02320
22 )2330
22 02340
22 02350
22 02360
22 02370
22 02380
22 02390
22 02400
22 02410
22 02420
22 02430
22 02440
22 02450
22 02460
22 02470
22 0248)
22 02490
22 02500
22 02510
22 02520
22 02530
22 02540
22 02550
22 02560
22 02570
22 02580
22 02590
22 02603
22 02610
22 02620
22 02630
22 02640
22 02650
22 02660
22 'J2670
22 02680
22 2269G
22 02700
22 02710
22 02720
22 02730
22 92740
22 02750
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FILE: 22 FORTRAN A CONTERSATIOAL 0tITOE SrSTSE

I CONTINUE
kk1 ./,1.-ELL)4trBrr+Btr+BzZ)
XAA=(1./1AA)*C 1
BB=2.*E LL) -. 0
GO TG 4

C2 tA1AVE's
2 CCSWINU Z

kA= 1./1.-E LUJ *3BI+BYT+BZZ))

BB=0.
GO TO 4

c3 NED
3 CONTINUEJ

Ak=1 .+EcrLL) *rrx*Br*BzZ)
BB= 2. * E (LL)

& coUT i1rE
F1=2.*SR()B-AB-E*(Bfl*t2+BX *+BXZ*2)+T.

1-2. *SF C-) *B~r
F2=Sa a) S*Br-xA*Brr-BB* (Bf *BKYBYY+BKZ*BTi)

1-SR ()*aTT
F5=SR Vr) *3rZ-AA*oaZ-EB* ar*Br 0+3XYr*BZ+ Srz*3ZZ)

I-SR ()r3BYZ
FU=-AA*BZZ-B3*"B3t**+BYt*t2+Bz3*2)+1.
F6=-&*rBTZ-B* (BXT* BXZ*BLT*BYZ+BYZ*BZZ)
F3=-k*3rr-3B* +B1**2+,rr**2+Brz**2) + 1.
RETUR Y
..bND
SUBROUTIiZ 3LGR I
Coazoi aXi, arzBrrBZZrBxzrrz
COlOY F0 F1F2,F3,4rF25,F6,SR8),r34)rwrTrLL

cootrfON x,&,Arz
AXA=1./Ll.-Z ) * (2.* x+ozz) )
AAA=1.f/AA)**C1
Ba=2. SLL) *jAj
BB=0.%
F1=1.-SR t1) *BX-A*3I-BB*BXX"x2
F 4= 1.+2.4 SR( )*BZ-iABZZ-BB*B1Z**2
F 2=0.
F3=0.
F5"=.
F6=0.
SETERN

U D
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22 03310
22 03320
22 03330
22 03340
22 03350
?2 03360
22 03370
22 03380
22 03390
22 03400
22 03410
22 03420
22 03430
22 03440
22 03450
22 03460
22 03470
22 03480
22 03490
22 03503
22 03510
22 03520
22 03530
22 03540
22 03550
?2 03560
22 03570
22 03580
22 03590
22 03600
22 03610
22 03620

2 03630
2 03643

22 03650
22 03660
22 03670
22 03680
22 0369C
22 03700
22 U3710
22 03720
22 03730
22 03740
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C.3 Elongational Viscosity for Elongational Flow (in Chap. 5)

This program solves elongational viscosity by predictor-

corrector method.

Description of Main Variables and Program Listing

Variable

S

DT

TLIM

xi

ZI

XN, AXX

ZN, AZZ

EVI, EVO

Description

Elongational rate

Time increment

The maximum time limit

a after the prediction

azz after the prediction

a after the correctionXX

after the correction
zz

Elongational vi scosity
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FORTRAN A CONVESkrTIOfUcL aObITRC SYSTzs

cc TEIS PROGRkn SOLVES SiCNGATlCAL TISCOSIT Br Y"THE
THREE ICDELS. THE SOLVING fETEOD IS 2PEDICTOR

CC AND CORRECTOR. THE ETLER dETEOD IS USED FOR PREDICTION
CC kWD NEWTO( ETHOD IS uSED FOR CORRECTION-.

DInENSION 502,20)r302)
DIXENSO XL(30)o,XZZf(30) ,ZLOC(30)v,TT3O)
CO%!NUOW SrTLIfrDTIPrISJ
DEFINE FILE 11t360,6.r,Isa01),12(360,6,U,ISIO 2)
DEFI E FILE 13(360,6rrISK03),14c360r6,0,r0IS04)
DEFIE FILE 15(36,fl6,,EISE05),16r360,6,urISo6)
DEFIIE FILE l7(360,6rU,ISEE07,18(360,6,UISO8)
DEFINE FILE 19(36C,6,IS109) r20(360,6,,5SEt10)
DEFIE ?ILE 21(360,6,LrISa11),22(360,6,UISa12)
DEFIE ?ILE JJS23 ,6,,ISH13),24t:36C,6,urISa14)
DEFIYE ?ILE 25(36Oa6,UISE 15),26(360,6,UISR16)
C 1=1.
1=3
L=2

CC BEAD IFOBtdAICON
C ID.ET=1: &.1.D-
C IKErt=2: TA fR'S ETECD
C IEET=3: Y..-.D.

READ (L,199) I ET
199 FORAT(I10)

GO TO f51,52,53),IdET
51 WRITE45,105)

GO TO 54
52 WRITEFI,106)

GO TO 54
53 WRIT2 a,107)
54 CONTINUE

105 FOaflTy, rr10,'.F..D. NETHOD'/)
106 FORIT(/,1OI,'TANERS ETEOD',/)
107 FOERATy ,1r,'N.E.D. ZETECD',/)

DO 1 1=1,2
lEAD PL,200) :s %,.J),J=1,8)

1 REkD r,200) (5EJ)S,J9,16)
EEAD(L,201) 3(L),I=1,2)
READ(L,202) TLI,T1,I1,I2,J1,J2
LL=O

LL=O: GROWTH BEHATIOR
C LL=1: REL&AITION BEHAVIOR
cc WRITE INFORfATION

DO 2 I=I1,12
DO 3 J=1,16

3 SdIJ)=SCI,J),(1.-5.E(I))
DO 2 J=JlJ2
.ss=s EJ)
WR ITE (d r10 1) H I),rS rEJ)

5 CONTINWE
IF(LL) 70,70,71

7 CONTINTE
WPITE(,103)
WRITE (E,102)
KO= 1. -5 . * _wr)

23 00010
23 300020
23 0003
23 00040
23 0C%:5
23 00060
?3 00070
23 00080
23 00090
23 00100
23 00110
23 00120
23 00 130
23 00140
23 00150
23 00160
23 00170
23 00180
23 00190
23 00200
23 00210
23 00220
23 10230
23 00240
23 -0250
?3 00260
?3 00270
23 00280
23 00290
23 00300
23 00310
:3 30320
23 00330
23 00340
23 00350
23 00360
23 00370
23 0380
23 00390
23 n7400
23 00410
23 00420
23 0O30
23 00440
23 00450
23 00460
23 u0470
?3 00480
23 00490
23 00500
23 00510
23 00520
23 00530
23 0054)
23 00550

FILE: 3



FILE: 23 FORTEAY & CONEFSAT r3ALIWTTO STSTE

zv0=o1. - o5. a.)/3& 40
EVTI= F-X+ ZO *2.)/3. /X 0
GO TO 72

71 CONTINUE
iETTE (I,104
WRITS ,102)
ro=r5

z 0= rZ
72 CONTINJEr

r=o.
AJxC1) =tO
LZZ rl)=Z3
ELO(1) = ET
'T[1)=T
CALL PA2A1

CC PREDICTION S EPLIZCIT SCEE1E
LYtLL) 60,%,59

59 CONTIIUE
S ?,J)=S.

60 CoUTIMKF7
GO TO :81,82,83),liET

81 CONTINUz
A=1.-E(1)*(2.TXO+ZO)
B=A* *C 1
30 TO a4

82 CONTINUS
W=I.-E(I) t(2.*10+-ZO)

3=0.
JO TO 84

33 A=1./ 1.+#ggl)*r2.rO+zO))
8=1.

84 CONTINUE
rI=KO+DTtV1.-S(I,J) *EO-XO/A)

1-DT*2.*S (II %SI*0*t2
Zl= 0+DT*1.+2. *SrlJ) *zO-ZC/A)M
-DT*2.*: ZCI) *B*ZO**2

cc COaRECTION S IPLICIT SCHEIE f--R dETHOD)
50 CONTIfuE

GO TO 91r92,r93)IVEET
91 CONTNt.E

AI= = .- E(C )*(2.* Y+-)
B3=A**C1
F A=2. IrE(1) /&I** 2
?B=-2.tE I) *C1tSI*B/&I
GA= E rI) /A40*2
GB=-E [I)sCi *aI/A&
GO TO 94

92 CONTINUE
AI=1 .- E I) 2. *t+L4-I)
81=0.
FA=2.*E : /X I**2
?B=0.
GAE CI) /ALW*2
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23 0056U
23 00570
23 00580
23 00590
23 00600
23 C0610
23 00620
23 00630
23 00640
23 00650
23 00660
23 00670
23 00680
23 00690
23 00700
23 00710
23 00720
23 00730
23 00740
23 00750
23 00760
23 00770
23 00789
23 00790
23 00800
23 00810
23 00820
23 00830
23 00840
23 0G-857
23 00860
23 0087e
23 00880
23 00890
23 00900
23 00910
23 00920
23 00930
23 00940
23 00950
23 00960
23 00970
23 00980
23 00990
23 01000
23 01010
23 01020
23 01030
23 01040
23 01050
23 01060
23 01070
23 01080
23 01090
23 0110f)
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FILE: P3 FORTRAN Ax

GB=Q.
GO TO 94

93 A-= 1./1rf. +E fCZ) "2. *I+Zl))
ar=1.
FA=2.*E (I)
FB=0.
GA=E I)
GB=.

94 CONTLNt3
F=rr+.DTtS(f,J)*IKi+DT*fl/jr-DT-XrO

14-2. * sE0) *DT*BI*f**2
IT-z-2. *DT*ZI*S tIJ) +DT*ZI/AI-DT-ZO

1+ 2. *E T) *rDT*BI*?L**2
F1=1.+DTs*CrJ) +-DT/AI+DT*I*FA

1+4.*&E(I) WDr*BI*r+2.*Z:) CI**2*DT*F3
G1=1 .-2. PSfr J)+-DT/AI+DT*I*GA

1+4. *E(I )*DT*5I*Z4-2.*E(I) *ZI**2*DT*GB
3N= CL-F/F 1
ZP=Z2-G/G 1
TESTI=BS :ZN-c)/I)

EST2kS=ABSC:ZN-ZI) /ZZ)
LF:TtST1-T1) 10,10.11

10 IF(rEST2-TI) 12,12,11
11 KI=nt

GO TO 50
12 T=T+DT

T 1= r.t-XO) /D T+ S IJ) #IT
rZ= (ZI-ZO)/DT-2. *5 IJ) WZY

VT= f(T-TZ) / 9.3*sst1-5* Cr)))
K= K+1I
LF(K-ZP) 3031,31

31 CCLTIU?
r=r*1. 03) 17 = T I+ 1 1))

&ZZ (1) =Zlt
SLO(N)=Fr
T'T N) =T
K=0

33 Co0TInUsE
I?(T-TfIa) 20,20,21

20 Xo==
ZO=z L
GO TO 60

21 CONTINUSE
DO 140 rx=1,r
!R=Ln-LL*3)+ 01-1) *63+ tLSET- 1)*120
JC=J+ 10
W2LTE(JC'YR) TT [L-) ,EIO pX7IL)

4W RIT (4,100) TT (lI) ,AMCrl),AZZ (It),?L3 (LI)
rF(LL) 4l,41, 42

41 LL=1
GO TO 5

42 LL=0

CONVERSITIOflL *ONITOZ SYST-a

23 01110
23 01120
23 0113,
23 01140
23 01150
23 01160
23 01170
23 01180
P3 01190
23 01200
23 01210
23 01220
23 01230
23 01240
23 01250
23 01260
23 01270
23 01280
23 01290
23 01300
23 01310
23 01320
23 01330
23 01340
23 01350
23 01360
23 01370
23 01380
23 01390
23 01400
23 01410
23 01420
23 01430
23 01443
23 01450
23 011460
23 01470
23 01460
23 011490
23 01500
23 01510
23 01520
23 0153n
23 01540
23 01550
23 01560
23 01570
23 01580
23 01590
23 01600
23 01610
23 01620
23 01630
23 01640
23 01650
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FILE: 23 FORTRAN I CONVERSATIOW&L dONETOR fSTSTE

2 CONTINUE 23 01660
101 FORMAT( 1' OKPRTURBfAO'J 2L&ARETER = ,F10.5, 23 01670

1' : ELO&G&TIOA L SATZ = ',10.5,/) 23 016S0
102 FOR13A T(/,10,TtdE',I.r,'AL PgJ n' ,1r,'n a ZZ',15r, P3 01690

1' ELO NGX7IO 4LL TISCOSITY',/) 23 01700
100 F OaeIA(F 14.2,ne23.3,:31 .31) P3 01710
200 FORLAT:8F7.3) 23 01720
201 F0P2MAT(2fl0.3) 23 01730
202 FORK AT:b27 10. 5,415) 23 01740
103 FOR5fAT(/,5Xr'STRESS GSO WTS ',/) 23 01750
104 F OR ifAT (/, 5L'STRESS REL AX ATIOK' ,/) 23 07760

STOP 23 01770
END 23 01780
SUBROUTINE PARAl 23 01790

TEIS SUBROUTINE SPECIFIES TIz ryCEmnz& ACCORDING 23 01800
CC If T2E ELOKGXTIoN-AL RATZS. - 23 01810

DIEENSION S(2,20) 23 01820
COMMON S.TLflDT,IP,I,J 23 01830
CHECK=S(IJ) -. 2 23 01840
IF(CEECK) 1,2,2 23 01850

1 TLIM=. 23 01860
DT=.02 23 01870
IP=25 23 01880
GO TO 10 23 01890

2 CHECK=ScI,J)-1. 23 01900
rr(CaECK) 3,7,7 23 01910

3 TL=5= 15. 23 01920
DT=.01 23 01930
I 2=60 23 01940
GO TO 10 23 01950

7 CRECK=SfIJJ)-3. - 23 01960
If(CHECK) 8,,9,9 23 01970

8 TLIl=10. 23 01980
DT=.01 23 01990
12=50 23 02000
GO TO 10 23 02010

9 CH11CK=S rI, J) -5. 23 02020
IF(CHECK) 11,4,4 23 02030

11 TLI!=2.- 23 02040
DT=.01 23 02050
Ip= 10 23 02060
GO TO 10 23 02070

4CECK=s(CZJ) -10. 23 02080
I%(CHECK) 5r6,6 23 02C'90

5 TLIZf=1. 23 02100
DT=.005 23 02112
IP=10 23 02120
GO TO 10 23 02130

S TII3=1. 23 02140
DT=.001 P3 02150
I-=50 23 02160

10 CO&TINIE 23 02170
RETURN - 23 02180
EYD 23 02190 -
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Appendix D: The Convergency of Diagonally Dominant Matrix

Most of numerical problems in finite different scheme are

reduced to solving large matrix equations. The matrix equation

is written by

Ax = b D.l

where A is the system matrix which described a physical

situation, x is an unknown vector to be solved and b is

a known vector. In order to understand a diagonally dominant

matrix is sufficient for convergency of iterative methods,

we use simple Jacobi method for demonstration. In Jacobi

method, the matrix A is divided into parts.

A = D + C D.2

The matrix D consists of diagonal elements of the matrix

A and the matrix C is off-diagonal elements of the matrix

A. A newly calculated vector x (k+l) by iteration is then

expressed by

D(k+l) = b - Cx(k) D.3

Introducing the exact solution vector x of eq. D.1, D.3

becomes

=k+) Mx(k)

where
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(k) (k) -6 = x- x

and

-C

Taking norm of eq. D.4 in Lw, space,

[ 
16xk+I) < [[< M r[ [6x(k) < IM[[k 6x(o) [1 D.5

According to eq. D.5, the error fronthe exact solution is

reduced to zero if [ M [1 is less than unity and the number

of iteration k is sufficiently large. The sufficient con-

dItion for convergency is thus

pII~<l c1- D.6i

The matrix M for the Jacobi method is written by

IM. -I = I ',

JirJ = 0

for i t j

for i t j

From eq. D.7 and D.9, the norm of the matrix M in L is

D.10
[ M(l B max ZI Irnr,jl =max ' < 1

i S ja

So if the matrix A is a diagonally dominant matrix, the

iterative method (Jacobi) for eq. D.1 provides convergency.

D. 7

0.8



Appendix E: The Estimation of the Stream Function
at the Exit Hole

From the newly produced force

9
9z P,ZZ

in TABLE 6.6, vz is expected to increase. To estimate

instantaneous change of v r we focus on the z-component

of the equation of motion around the point (r/R, z/H) =

(.03r .01). The equation to be solved is arranged as fol-

lowing introducing time difference formula.

N+1 N
bT-l N v o 93v 0  1P1

vz z ++ VN0 z i z _ _ p_
At z 9Z r 0r p z p 9z pzz

E.1
N

And v is expressed by

v N+l f Iap0 kJ +ga-v 0  fl o v at
z P 9z p @z pzz r Iar

I/At+ [z JE.2

where v zlis a time advanced velocity and indicates

the fixed values throughout the iteration. In eq. E.l and

eq. E.2, only axial velocity is assumed to be changed due to

the new force

193
p 9iz rp,zz

375
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while other variables remain constant. Although this assump-

tion may be crude, it might give some adea about how v

changes because the axial velocity in the dominant term

N+lr 9 0
I az9 zJ

is treated implicitly and the change of the velocity gradient

b I v,, 1 I

may be smaller than that of the axial velocity. The magni-

tude of the term

v o [ azl

is smaller than the dominant terms as shown in TABLE 6.6, the

change of the term, therefore, may be insignificant.

By choosing At = .0001 second, eq. E.2 is repeated until

the time reaches .001 seconds which is about one tenth of

the time constant of polyethyrene oxide X . The newly

1+1
calculated v 7  increases about 3% of the original value

(at time zero). This rate of increase may be applied to the

axial velocity at the point (r/R, z/H) = (.03, 0). The

axial velocity, thus, grows -65 cm/sec from -63.1 cm/sec.

From the new valuer the interpolated stream function is cal-

culated from which the stream function is fixed as boundary
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condition. Since the axial velocity at r/R = .03 represents

the average velocity in the zone which covers form r/R = .0 2

to r/R = .04 in the Newtonian calculation, the axial

velocity used in the calculation in section 6.5 is only 1%

increased velocity.
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NOMENCLATURE

Symbol Definition

A System Matrix

a Ratio of radius of the Vortex Tank to Liquid
Level; a =R/H

Parameter Used in eq. 3. 4

c Concentration

F Force Vector Exerted by Connector Spring

F General Expression of i w , w

g Gravitational Acceleration

H Spring Constant for Hook's Law

H Liquid Level

k Boltzmann Constant

Lr Differential Operator Defined in eq. 3.57

Lz Differential Operator Defined in eq. 3.57

Lr* Discretized Form of Lr

Lz* Discretized Form of Lz

Molecular Weight

n Number Density

p Pressure

R Dumbbell Orientation Vector

R End-to-end Distance of a Polymer Molecule

Ro Maximum Length of a Polymer Molecule

R Gas Constant

R Radius of the Vortex Tank

r Radial Coordinate in Cylindrical Coordinates


