A STUDY OF THE

MECHANISM OF VORTEX INHIBITION

by

© Shingo Ishikawa

B.S., Waseda University (1971)

B.Eng., Waseda University (1973)

S.M., Massachusetts Institute of Technology (1975)

• ,1

SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENT FOR THE

DEGREE OF DOCTOR OF SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

August, 1979

A STUDY OF THE

MECHANISM OF VORTEX INHIBITION

by

Shingo Ishikawa

Submitted to the Department of Chemical Engineering on August 10, 1979, in partial fulfillment of the degree of Doctor of Science at the Massachusetts Institute of Technology.

ABSTRACT

The mechanism of vortex inhibition by dilute polymer solutions which also show drag reduction is discussed. The velocity field for a confined vortex flow of a Newtonian fluid has been determined numerically by a finite difference (ADI) technique; the results compare favorably with experimental velocity profiles found for water.

To model the behavior of dilute polymer solutions in this flow we have idealized the macromolecules as dumbbells with finitely extendable, nonlinear, elastic (FENE) connectors. An approximate constitutive equation for this model is combined with the numerically determined Newtonian velocity profiles to give the response to the polymer molecules to the vortex flow.

It is found that appreciable stretching and accompanying increase in elongational viscosity of the macromolecules occurs in the immediate vicinity of the exhaust hole. We believe that the change in stress field produced in this way is sufficient to account for vortex inhibition.

THESIS SUPERVISOR: Professor Robert C. Armstrong Department of Chemical Engineering Department of Chemical Engineering Massachusetts Institute of Technology Cambridge, Massachusetts 02139

August 10, 1979

Professor George C. Newton, Jr. Secretary of the Faculty Massachusetts Institute of Technology Cambridge, Massachusetts 02139

Dear Professor Newton:

In accordance with the regulations of the faculty, I herewith submit a thesis, entitled "A Study of the Mechanism of Vortex Inhibition", in partial fulfillment of the requirements for the degree of Doctor of Science in Chemical Engineering at the Massachusetts Institute of Technology.

Respectfully submitted,

. 1

.

Shingo İshikawa

iii

ACKNOWLEDGEMENT

First, I wish to extend my sincere appreciation to my supervisor, Professor R.C. Armstrong, for suggesting the topic and his consistent interest, advice and guidance throughout this thesis investigation. I also wish to thank Professor K.A. Smith for his helpful advice and criticism. Dr. L.A. Clomburg deserves special thanks for his excellent advice on numerical simulation.

Thanks are also due to Professor Edgerton for providing the information about the strobe scope. Discussion with Dr. K.J. Wong and Mr. T.B. Irwin about the numerical calculation scheme contributed materially to the work.

The financial support from the National Science Foundation for part of this work is acknowledged.

I am indebt to my dearest friend, Keiko, who has given immeasurable encouragement with her love in the last two years. Without her continuous encouragement, this work could never have been completed. I also appreciate my brother-in -law for his long term guidance to my education.

Finally, I wish to thank my parents and the rest of my family for their continual stimulation (sometimes painful criticism) and support during my stay at M.I.T. It has been their love, patience and understanding that helped make this educational goal possible.

iv

TABLE OF CONTENTS

<u>Page</u>

.....

I.	SUM	MARY	1
	1.1 1.2	Introduction Fluid Mechanics of Vortex Flow 1.2.1 Theoretical Study 1.2.2 Experimental Study	1 10 10 26 34
	1.3 1.4 1.5	The Analysis of the Onset Behavior of Vortex Inhibition Conclusions	42 67
II.	INTI	RODUCTION	69
	2.1 2.2 2.3	The Description of Vortex Inhibition Objective and Motivations Approach and Previous Work	69 77 79
III.	STEA	DY NEWTONIAN VORTEX FLOW OVER A SOLID WALL	85
	3.1 3.2	Introduction One Dimensional Vortex Flow	85 89
	3.3	The Analysis of Flow Behavior Inside the Bottom Boundary Layer	103
	3.4	Influence of Polymer Additive in the Bottom Boundary Layer	112
	3.5	A Numerical Simulation for Entire Vortex Flow Field 3.5.1 The Governing Equations 3.5.2 Finite Difference Formula (Zone	112 115
		Method) 3.5.3 The Solving Method for Low Reynolds	115
		Number 3 5 4 The Solving Method for High Revnolds	124
		Number	133
IV.	EXPE	RIMENTAL STUDY	139
	4.1 4.2 4.3 4.4 4.5	Introduction The Flow System Photographic Tracer Technique Experimental Procedure Qualitative Observations	139 141 146 157 161
v.	MODIF	IED NEARLY HOOKEAN DUMBBELL MODEL	181
	5.1	Introduction	181

__

	5.2 5.3	Kinetic Theory and the Modified Nearly Hookean Dumbbell Model The Predictions of the Models	183 191
VI.	THE INH	ANALYSIS OF THE ONSET BEHAVIOR OF VORTEX IBITION	257
	6.1	The Velocity Field of Newtonian Vortex Flow	258
	6.2	Additional Remarks on the Modified Nearly Hookean Dumbbell Model	269
	6.3	Experimental Observation of the Onset Behavior of Vortex Inhibition The Delymor Contribution of Strong Tensor	276
	0.4	Along the Stream Lines (Based on the Results of the Case Re_{θ} =1370 and SS=02)	283
	6.5 6.6	The Analysis of Polymer Effect near the Exit Hole A Proposed Mechanism of Vortex Inhibition	295 308
VII.	CONC	CLUDING REMARKS	311
VIII.	APPI	ENDICES	314
	Α.	Computer Program of the Newtonian Vortex Flow Calculation	314
	Β.	The Measurement of Intrinsic Viscosity of Polyox WSR 301 (Polyethylene Oxide)	349
	c.	Program Listings for Polymer Stress Calcula- tion by the MNHD	353
		C.1 Polymer Stress Tensor Calculation in Chapter 6 C.2 The Intrinsic Viscosity for Shear Flow	353
		(Chapter 5)	359
	D.	Flow (Chapter 5) The Convergency of Diagonally Dominant Matrix	368 373
	Ε.	The Estimation of the Stream Function at the Exit Hole	375
NOMENCLATURE			378
BIBLIOGRAPHY			381
BTOGRAPHTCAT. NOTE			383

LIST OF FIGURES

Figure Number	Title	Page
1.1	The Overall Picture of Vortex Inhibition Study	9
1.2	Tangential Velocity vs R with Experimental Data	13
2.1	Vortex Inhibition	70
2.2	Steady State Vortex Flow	71
2.3	Vortex Flow with Suppressed Air Core	73
2.4	Elongational Viscosity Predicted by MNHD	75
3.1	Three Different Flow Regions in a Newtonian Vortex Flow	86
3.2	Tangential Velocity vs R	91
3.3	Tangential Velocity vs R (with different elongational rates)	93
3.4	Free Surface vs R	95
3.5	The Model Geometry of Vortex Flow	116
3.6	The Mesh Construction of Vortex Flow	117
3.7	The Zone Construction	118
3.8	Circulation vs Z, Rer = 10, Swirl = 40	129
3.9	Circulation vs R, Rer = 10, Swirl = 40	130
3.10	Radial Velocity vs 2, Rer = 10, Swirl = 40	131
3.11	Axial Velocity vs Z, Rer = 10, Swirl = 40	132
3.12	The Iteration Procedure for Vortex Flow Calculation	137
4.1	The Total Flow System	142
4.2	The Vortex Tank	144

4.3	A Photograph of the Vortex Tank	145
4.4	Experimental Arrangement for V ₀ Measurement	147
4.5	A Photograph for Measuring $ extsf{V}_{ heta}$	148
4.6	Dots Showing the Trajectory of Seed Particles for V ₀ Measurement	150
4.7	Experimental Arrangement for ${ m V}_{ m z}$ Measurement	152
4.8	A Photograph for Measuring V_z	153
4.9	A Photograph Showing the Flow Behavior near the Exit Hole	154
4.10	Dots Showing the Trajectory of Seed Particles for V _z Measurement	155
4.11	(a) The Core Region for a Newtonian Fluid	162
	(b) A Photograph of Newtonian Vollex Flow	163
	(c) A Photograph of Newtonian Vortex Flow with Newtonian Dyed Solution	164
4.12	(a) The Core Region for a Polymer	165
	(b) A Photograph of Newtonian Vortex Flow with Polymer Dyed Solution	166
4.13	(a) Flow Behavior of the Bottom Boundary Layer for a Newtonian Fluid	168
4.14	(a) The Flow Behavior of the Bottom Boundary Layer for a Polymer Solution	170
	(b) A Photograph for a Polymer Solution	170
4.15	The Dimension of the Cap	1/2
4.16	(a) The Effect of the Cap Experiment(b) Without the Cap(c) With the Cap	174 175 176
4.17	(a) Water (b) Glycerin - Water A (c) Glycerin - Water B	178 179 180

-

5.1 to 5.12	Stress Growth Behavior of the Three Models for Shear Flow	193
5.13 to 5.24	Stress Relaxation Behavior of the Three Models for Shear Flow	207
5.25 to 5.36	The Comparison among the Three Models for Shear Flow	221
5.37 to 5.40	The Steady State Values of Viscosity and the Primary Normal Coefficient for Shear Flow	235
5.41 to 5.46	The Stress Growth Behavior for Elongational Flow	241
5.47 to 5.48	The Steady State Values of Elonga- tional Viscosity	249
5.49 to 5.50	The Comparison between Ml, M2 and FENE Model	254
6.1	Stream Lines for Low Reynolds Number	259
6.2	Stream Lines for High Reynolds Number	260
6.3	The Comparison between Experimentally Measured V $_{\theta}$ and Numerically Calculated V $_{\theta}$ (1)	262
6.4	The Comparison between Experimentally Measured V $_{\theta}$ and Numerically Calculated V $_{\theta}$ (2)	263
6.5	The Comparison of V_z at r=0 (1)	265
6.6	The Comparison of V_z at r=0 (2)	266
6.7	[n] vs $\lambda e \dot{\gamma}$ with Experimental Data (1)	270
6.8	[η] vs $\lambda e \dot{\gamma}$ with Experimental Data (2)	271
6.9	Dynamical Behavior of Elongational Viscocity with Time Scaled by λ_{H}	273
6.10	Dynamical Behavior of Elongational Viscocity with Time Scaled by é ⁻¹	274
6.11	The Difference between the Newtonian Vortex Flow and a Fully Developed Vortex Flow of Polymer Solution	x 277

6.12	Tangential Velocity Measured before and during the Onset	279
6.13	Axial Velocity Measured before and during the Onset	281
6.14	Stream Lines near the Exit Hole	287
6.15	Axial Velocity Profile after Imposing Polymer Effect	300
6.16	Stream Lines near the Exit Hole after Imposing the Polymer Effect	301
B.1	Estimation of Intrinsic Viscosity	351

LIST OF TABLES

Table <u>Number</u>	Title	Page
2.1	Effective Concentration of Various Polymers for V.I. and D.R.	74
2.2	Connector Force Law of Dumbbell Models	84
3.1	The Comparison of Integral Method and Anderson's Technique	102
3.2	The Comparison of Force Terms in R-Component of the Equation of Motion	106
3.3	The Estimation of $ au_{rr}$ and $ au_{ heta heta}$ at the Bottom Wall	109
3.4	The Comparison of Force Terms due to Polymer Solution by two Different Methods	110
3.5	The Boundary Conditions for a Confined Vortex Flow	122
3.6	The Boundary Conditions in Finite Difference Expression	125
4.1	The Vortex Flow of Glycerine Solutions	177
5.1	A Summary of the Three Constitutive Equations	190
6.1	Polymer Stress Tensor Along the Stream Line $\psi{=}1.0$	289
6.2	Polymer Stress Tensor Along the Stream Line $\psi\text{=.9}$	290
6.3	Polymer Stress Tensor Along the Stream Line $\psi \texttt{=.85}$	291
6.4	Polymer Stress Tensor Along the Stream Line $\psi\text{=.8}$	292
6.5	The Location of each Point	293
6.6	The Magnitude and Orientation of each Term in the Force Balance	296

6.7	Polymer Stress Tensor along the Newly Calculated Stream Line $\psi=1.0$	303
6.8	Polymer Stress Tensor along the Newly Calculated Stream Line ψ =.9	304
6.9	Polymer Stress Tensor along the Newly Calculated Stream Line ψ =.85	305
6.10	Polymer Stress Tensor along the Newly Calculated Stream Line $\psi=.8$	306
B.1	The Molecular Characteristics of Polyox WSR 301	352

I. SUMMARY

1.1 Introduction

The viscoelastic phenomenon "vortex inhibition" was discovered by Gordon (1972) in 1972. In his experiment, a small amount of polymer in water prevents formation of a vortex in draining the solution from the bottom of a square tank (see Fig. 2.1). As shown in Fig. 2.1 this different phenomenological behavior produced by adding just small amounts of polymer indicates that the flow pattern is drastically changed due to the presence of the polymer. In order to describe vortex inhibition more explicitly, a steady state vortex flow is established by tangentially feeding the water at the outer wall of a cylindrical container with an axially uniform velocity. The steady state vortex flow is shown in Fig. 2.2. When the water is replaced by approximately 30 wppm polyethylene oxide (Polyox WSR 301) keeping the flow rate constant, the air core of the vortex is suppressed and the suppression of the air core is not steady but a randomly periodic phenomenon. Just after the air core is suppressed, it tends to extend to the bottom again. As soon as the air core reaches the bottom, it immedately is suppressed (See Fig. 2.3). This process is repeated until the polymer is degraded. During vortex inhibition, the liquid level drops by nearly 50%.

An interesting feature of vortex inhibition is that the amount of polymer added to the water is so small that the

Fig. 2.1 : Vortex Inhibition

In case of the Newtonian fluid, the vortex forms extending down to the bottom. On the other hand, if a small, critical concentration of polymer is present, the vortex is imcomplete.

Fig. 2.2 Steady State Vortex Flow

Fig. 2.3 Vortex Flow with Suppressed Air Core

shear viscosity of the polymer solution is only slightly different from that of water itself (The relative viscosity of the solution in this study is only about 1.02). Furthermore, the macromolecules which show vortex inhibition ability are also known to be good agents for drag reduction as shown in TABLE 2.1.

Since the shear viscosity of the polymer solution is almost equal to that of water for both vortex inhibition and drag reduction, non-Newtonian rheological properties of the dilute solutions such as strain rate thickening elongational viscosity and non-zero normal stress differences in steady shear flow might be responsible for vortex inhibition. Especially the elongational viscosity is believed to be increased drastically even at moderately high elongational rate for a dilute solution. Even though no direct experimental measurements have been obtained for the elongational viscosity, the kinetic theory predicts that a high elongational viscosity is realized when a linear flexible macromolecule is stretched at almost full length due to the elongational flow It may, therefore, be possible to expect that the field. changes in flow behavior in vortex inhibition phenomenon is due to the large elongational viscosity exerted by the presence of a few macromolecules.

The objective of this thesis work is to investigate the mechanism of vortex inhibition. The study is motivated at first, by a possible correlation between vortex inhibition and drag reduction and secondly, by an interest in

TABLE 2.1

EFFECTIVE CONCENTRATIONS OF VARIOUS POLYMERS FOR V.I. AND D.R.

Polymer Designation	Polymer Type	wwpm Vortex Inhibition	wwpm Drag Reduction
Polyox FRA*	Polyethylene Oxide	7.5	9
Polyox WSR 301*	Polyethylene Oxide	30	20
Separan AP 273'	Polyacrylamide	3	5
Separan AP30'	Polyacrylamide	40	35

*Union Carbide (Manufacturer)

'Dow (Manufacturer)

- Note 1: These data are from Gordon (1972).
- Note 2: Effective concentration is the lowest concentration with which polymer shows the ability of vortex inhibition or drag reduction.

•

developing a constitutive equation (rheological equation of state) to describe dilute polymer solutions.

We can speculate from TABLE 2.1 that the mechanism of vortex inhibition may be similar to that of drag reduction. In spite of extensive studies of drag reduction, many aspects of the phenomenon are not well understood. Out of several proposed mechanisms for drag reduction, the visco-elastic nature (especially large elongational viscosity) of macromolecules in turbulent flow is proposed to be a major cause of reducing turbulent energy dissipation. According to Seyer and Metzner (1969), the bursting (Kim et al., 1971) produced by a pair of counter rotating eddies at boundary layer near the wall is characterized by stretching motion similar to elongational flow. The increased resistance to stretching due to the large elongational viscosity, thus results in less bursting and less radial momentum flox transport. However, it is not possible to make a direct test of this proposed mechanism because no precise velocity information of the fluid element is obtainable during the bursting process. The proposed mechanism for drag reduction may, in turn, be closely related to the molecular mechanism for vortex inhibition. It might be possible to infer the molecular mechanism for drag reduction from the analysis of vortex inhibi-Since the Newtonian vortex flow is treated as a laminar tion. flow, it is much easier to be analyzed than turbulent flow.

In order to analyze vortex inhibition, a constitutive equation for a dilute polymer solution has to be introduced so that information about the stress field can be predicted.

Although a very simplified dumbbell model is used, we believe that the kinetic theory provides reasonable predictions about the differences in flow behavior resulting form molecular structures. Moreover, we can evaluate the kinetic theory constitutive equations by comparing their predictions in this flow with experimental results.

The overall picture of this study is briefly described in Fig. 1.1. The study is mainly divided into two parts; one is to investigate fluid mechanics of vortex flow and the other is to develop the constitutive equation. The study of the vortex flow is further divided into theoretical and experimental parts. The Newtonian velocity field determined from both numerical and experimental results is used for stress calculation by the constitutive equation because the Newtonian velocity field is a starting point for computing deformation of the macromolecules when the polymer solution is subjected to the flow field. The every part of study is then combined in Chapter 6 for the discussion of the results which lead to the conclusion of this study. The summary of these studies are described in the rest of this chapter.

developing a constitutive equation (rheological equation of state) to describe dilute polymer solutions.

We can speculate from TABLE 2.1 that the mechanism of vortex inhibition may be similar to that of drag reduction. In spite of extensive studies of drag reduction, many aspects of the phenomenon are not well understood. Out of several proposed mechanisms for drag reduction, the visco-elastic nature (especially large elongational viscosity) of macromolecules in turbulent flow is proposed to be a major cause of reducing turbulent energy dissipation. According to Seyer and Metzner (1969), the bursting (Kim et al., 1971) produced by a pair of counter rotating eddies at boundary layer near the wall is characterized by stretching motion similar to elongational flow. The increased resistance to stretching due to the large elongational viscosity, thus results in less bursting and less radial momentum flox transport. However, it is not possible to make a direct test of this proposed mechanism because no precise velocity information of the fluid element is obtainable during the bursting process. The proposed mechanism for drag reduction may, in turn, be closely related to the molecular mechanism for vortex inhibition. It might be possible to infer the molecular mechanism for drag reduction from the analysis of vortex inhibition. Since the Newtonian vortex flow is treated as a laminar flow, it is much easier to be analyzed than turbulent flow.

In order to analyze vortex inhibition, a constitutive equation for a dilute polymer solution has to be introduced so that information about the stress field can be predicted.

Although a very simplified dumbbell model is used, we believe that the kinetic theory provides reasonable predictions about the differences in flow behavior resulting form molecular structures. Moreover, we can evaluate the kinetic theory constitutive equations by comparing their predictions in this flow with experimental results.

The overall picture of this study is briefly described in Fig. 1.1. The study is mainly divided into two parts; one is to investigate fluid mechanics of vortex flow and the other is to develop the constitutive equation. The study of the vortex flow is further divided into theoretical and experimental parts. The Newtonian velocity field determined from both numerical and experimental results is used for stress calculation by the constitutive equation because the Newtonian velocity field is a starting point for computing deformation of the macromolecules when the polymer solution is subjected to the flow field. The every part of study is then combined in Chapter 6 for the discussion of the results which lead to the conclusion of this study. The summary of these studies are described in the rest of this chapter.

Fig. 1.1 : The Overall Picture of Vortex Inhibition Study

1.2 Fluid Mechanics of Vortex Flow

1.2.1 Theoretical Study

A Newtonian vortex flow has three distinct characteristics in its flow behavior. As shown in Fig. 3.1, the region I is called "free stream region" which is characterized by a potential flow. The tengential velocity V_{θ} is inversely proportional to the radial distance r in this region. The changes in V_A in the z-direction is so small that the flow may be treated as one dimensional flow. The region II is called "core region" where a large amount of axial downflow exists because of the exit hole in the bottom plate. The V_A , in turn, is proportional to the radius in this region. The centrifugal force is exactly balanced with the radial pressure gradient in both free stream and core regions (Schlichting, 1968), the balance between the two forces, however, is broken in the region III which is called "bottom boundary layer". The V_{θ} in the bottom boundary layer is reduced due to the drag from the bottom wall resulting in decreasing the centrifugal force. The radial pressure gradient, on the other hand, remains the same along the z-axis, this force, therefore, overcomes the centrifugal force producing a large amount of radial inflow.

The tangential velocity in the free stream and core regions is numerically solved assuming that the V_{θ} is independent of z. The θ -component of the equation of motion is written in terms of circulation Γ (=rV_{θ}),

£

.

-

$$v_{r} \frac{d\Gamma}{dr} = v \left(\frac{d^{2}\Gamma}{dr^{2}} - \frac{1}{r} \frac{d\Gamma}{dr} \right)$$
 1.1

where v is kinetic viscosity. Since the radial velocity V_r is inversely proportional to r when r is large and V_r , in turn, is linear to r when r is small, Dergarabedian (1960) assumes the following functionality of V_r .

$$V_{r} = -\frac{\dot{\varepsilon}a^{2}}{2r} \left[1 - \exp\left(-\frac{r^{2}}{a^{2}}\right) \right]$$
 1.2

where an elongational rate at the axis of rotation $\dot{\epsilon}$ is defined by

$$\dot{\varepsilon} = \dot{\varepsilon}(z) = \frac{\partial V_z}{\partial z} \Big|_{r=0}$$
 1.3

Using experimentally determined a and $\dot{\epsilon}$ in eq. 1.2 (Chiou, 1976), eg. 1.1 is solved by a finite difference scheme with the boundary conditions $\Gamma(r=0) = 0$ and $\Gamma(r=R) = \Gamma$. The calculated V_{θ} in these regions agrees well with Chiou's experimental data (case 1 in Fig. 1.2). It is found from the numerical simulation that the tangential velocity is very sensitive to the elongational rate $\dot{\epsilon}$. When $\dot{\epsilon}$ is increased, the radial convection shifts the peak value of V_{θ} toward the axis of rotation producing a steeper V_{θ} - profile (case 2 in Fig. 1.2) which indicates that the increased $\dot{\epsilon}$ intensifies the θ -component of vorticity near the axis of

Fig. 1.2

TANGENTIAL VELOCITY VS R

(With Experimental Data)

0.00 0.25 0.51 0.77 1.03 1.28 1.54 1.80 2.06 2.32 2.57 RADIUS (CM)

- - -

rotation. On the other hand, when $\dot{\epsilon}$ is decreased, the vorticity is able to diffuse farther in the positive r-direction resulting in a flatter V_{θ} -profile (case 3 in Fig. 1.2). Since V_{θ} near the axis of rotation is reduced, the corresponding centrifugal force is also decreased. The radial pressure gradient which is balanced with the centrifugal force is then reduced.

The relative shape of the free surface of these vortex flows can be obtained from the tangential velocity as a function of r. Fig. 3.4 shows the calculated free surfaces with the three elongational rates corresponding to Fig. 1.2. As expected, when $\dot{\epsilon}$ is increased (case 2 in Fig. 3.4), the free surface becomes deeper due to the larger radial pressure gradient near the center. When $\dot{\epsilon}$, however, is decreased (case 3 in Fig. 3.4), the fluid has a flatter free surface. Vortex inhibition corresponds to the free surface shape which becomes flatter due to the polymer effect. As long as we regard the fluid as Newtonian, the above discussion suggests that vortex inhibition corresponds to a reduction in axial velocity gradient $\dot{\epsilon}$.

It is known that large velocity gradient (strain rate) is necessary for polymers to be subject to change its conformation. Especially when the strain rate reaches the order of reciprocal of time constant λ , various polymer H effects start revealing. Although Chiou (1976) indicated that the strain rate

 $\frac{\partial v_{\theta}}{\partial r}$

would be responsible for the polymer effect causing vortex inhibition, the maximum value of the strain rate in Fig. 1.2 is at most about 60 sec⁻¹ around r=.4cm. The figure is not large enough to realize the polymer effect because the estimated time constant for Polyox WSR 301 solution shows that the dimensionless strain rate which is the product of the time constant and strain rate will be .6. The dimensionless strain rate has to be at least more than unity to expect the polymer effect according to the rheology of polymer solution (chap. 5). The tangential velocity gradient, therefore, may not be a main cause of vortex inhibition. And this leads us to investigate the area where higher strain rates are established in the vortex flow.

The flow behavior inside the bottom boundary layer is next analyzed in order to see if the polymer effect is realized in this region. The integral method (Lewellen, 1971) is used for obtaining the boundary layer thickness and the maximum radial velocity as functions of r. The results of the method provides reasonable figures about these two variables when compared them with the results obtained by Anderson (1966). The velocity gradient estimated from the results of the integral method is then used for polymer stress tensor calculation. The constitutive equation used in this calculation is the Hookean Dumbbell model. The resulting

stress tensor, however, is found to be not large enough to change the flow behavior in the bottom boundary layer when the stress terms are compared with the dominant force which is radial pressure gradient in the r-component of the equation of motion. The results of the analysis in the bottom boundary layer, thus forces us to investigate the flow behavior in the core region and in the areas near the exit hole to see if large velocity gradient is realized. In order to analyze the flow behavior in these regions, the numerical simulation is next described by solving full Navior-Stokes equations in finite difference scheme for the entire vortex tank.

For incompressible viscous flow in a confined cylindrical container, assuming that the flow is axisymmetric, the velocity field in terms of circulation, vorticity and stream function in a cylindrical coordinate (r, θ, z) are described by the following equation.

CIRCULATION [

$$\frac{\partial \Gamma}{\partial t} + \nabla_{r} \frac{\partial \Gamma}{\partial r} + \nabla_{z} \frac{\partial \Gamma}{\partial z} = \nu \left[\frac{\partial^{2} \Gamma}{\partial r^{2}} + \frac{\partial^{2} \Gamma}{\partial z^{2}} - \frac{1}{r} \frac{\partial \Gamma}{\partial r} \right] \qquad 1.4$$

VORTICITY W

$$\frac{\partial \omega}{\partial t} + \nabla_{r} \frac{\partial \omega}{\partial r} + \nabla_{z} \frac{\partial \omega}{\partial z} - \frac{\nabla_{r} \omega}{r} - \frac{1}{r^{3}} \frac{\partial \Gamma^{2}}{\partial z}$$
$$= \nu \left[\frac{\partial^{2} \omega}{\partial r^{2}} + \frac{\partial^{2} \omega}{\partial z^{2}} + \frac{1}{r} \frac{\partial \omega}{\partial r} - \frac{\omega}{r^{2}} \right] \qquad 1.5$$

STREAM FUNCTION ψ

$$\frac{\partial^2 \psi}{\partial r^2} + \frac{\partial^2 \psi}{\partial z^2} - \frac{1}{r} \frac{\partial \psi}{\partial r} = -r\omega \qquad 1.6$$

where ν is a kinetic viscosity. The circulation is written in terms of $\, V^{}_{\rm A} \, .$

$$\Gamma = r V_{\theta}$$
 1.7

And the relation between the vorticity and the radial and axial velocity v_r, v_z is

$$\omega = \frac{\partial \nabla_r}{\partial z} - \frac{\partial \nabla_z}{\partial r} \qquad 1.8$$

 v_r, v_r relate to the stream function by

$$\nabla_{r} = -\frac{1}{r} \frac{\partial \psi}{\partial z}$$

$$V_{z} = \frac{1}{r} \frac{\partial \psi}{\partial r}$$

$$1.9$$

In order to avoid the free surface as the boundary of vortex flow, a cylindrical container is assumed to have two exit holes located on the axis of rotation at each of the two walls. As shown in Fig.3.5, the vortex flow is then simulated over a quarter of the total area because of geometrical symmetry. The treatment of the free surface boundary in this way is eliminated without losing the most important characteristics of the vortex

flow (Anderson, 1961). The mesh construction of the flow field is explained in Fig.3.6 according to a finite difference formula. Due to the characteristics of the vortex flow described previously, the mesh size in both the bottom boundary layer and core region is made much smaller than that in the free stream region to provide detailed information about the flow behavior in those two regions. The dot in each zone represents the spacial position of each function whose value is assumed to be uniform inside the zone. Since a zone method (Clomburg, 1971) is used for a finite difference formula, eq. 1.4 to eq. 1.6 are arranged for more suitable forms. The dimensionless forms of the equations are

CIRCULATION F

$$\frac{\partial \Gamma}{\partial t} + \frac{1}{r} \frac{\partial}{\partial r} (rv_{r}\Gamma) + a\frac{\partial}{\partial z}(v_{z}\Gamma)$$

$$= \frac{1}{Re_{\theta}} \left[\frac{\partial^{2}\Gamma}{\partial r^{2}} + a^{2} \frac{\partial^{2}\Gamma}{\partial z^{2}} - \frac{1}{r} \frac{\partial\Gamma}{\partial r} \right]$$
1.10

VORTICITY

ω

$$\frac{\partial \omega}{\partial t} + \frac{1}{r} \frac{\partial}{\partial r} (rv_{r}\omega) + a\frac{\partial}{\partial z}(v_{z}\omega) - v_{r}\omega - a\frac{1}{r^{3}} \frac{\partial r^{2}}{\partial z}$$

$$= \frac{1}{Re_{\theta}} \left[\frac{\partial^{2}\omega}{\partial r^{2}} + a^{2} \frac{\partial^{2}\omega}{\partial z^{2}} + \frac{1}{r} \frac{\partial \omega}{\partial r} - \frac{\omega}{r^{2}} \right]$$
1.11

STREAM FUNCTION ψ

- - . .

flow (Anderson, 1961). The mesh construction of the flow field is explained in Fig.3.6 according to a finite difference formula. Due to the characteristics of the vortex flow described previously, the mesh size in both the bottom boundary layer and core region is made much smaller than that in the free stream region to provide detailed information about the flow behavior in those two regions. The dot in each zone represents the spacial position of each function whose value is assumed to be uniform inside the zone. Since a zone method (Clomburg, 1971) is used for a finite difference formula, eq. 1.4 to eq. 1.6 are arranged for more suitable forms. The dimensionless forms of the equations are

CIRCULATION Γ

$$\frac{\partial \Gamma}{\partial t} + \frac{1}{r} \frac{\partial}{\partial r} (rv_{r}\Gamma) + a\frac{\partial}{\partial z}(v_{z}\Gamma)$$

$$= \frac{1}{Re_{\theta}} \left[\frac{\partial^{2}\Gamma}{\partial r^{2}} + a^{2} \frac{\partial^{2}\Gamma}{\partial z^{2}} - \frac{1}{r} \frac{\partial \Gamma}{\partial r} \right]$$
1.10

VORTICITY W

$$\frac{\partial \omega}{\partial t} + \frac{1}{r} \frac{\partial}{\partial r} (rv_{r}\omega) + a\frac{\partial}{\partial z}(v_{z}\omega) - v_{r}\omega - a\frac{1}{r^{3}} \frac{\partial r^{2}}{\partial z}$$

$$= \frac{1}{Re_{\theta}} \left[\frac{\partial^{2}\omega}{\partial r^{2}} + a^{2} \frac{\partial^{2}\omega}{\partial z^{2}} + \frac{1}{r} \frac{\partial \omega}{\partial r} - \frac{\omega}{r^{2}} \right]$$

$$I.11$$

STREAM FUNCTION ψ

The Mesh Construction of Vortex Flow

Figure 3.6

$$\frac{\partial^2 \psi}{\partial r^2} + a^2 \frac{\partial^2 \psi}{\partial z^2} - \frac{1}{r} \frac{\partial \psi}{\partial r} = \frac{a}{ss}r\omega \qquad 1.12$$

And dimensionless radial and axial velocities v_r and v_z are written by

$$v_{r} = SS\frac{1}{r} \frac{\partial \psi}{\partial z}$$

$$v_{z} = -\frac{SS}{a} \frac{1}{r} \frac{\partial \psi}{\partial r}$$
1.13

The dimensionless variables are defined by (dimensional counterparts are marked by asterisk)

$$\psi = \frac{\psi^{\star}}{v_{R}^{RH}} , \quad \Gamma = rv_{\theta} = \frac{\Gamma^{\star}}{Rv_{\theta R}} , \quad \omega = \frac{\omega^{\star}}{v_{\theta R}^{\prime R}}$$
$$v_{r} = \frac{r^{\star}}{v_{\theta R}} , \quad v_{z} = \frac{v_{z}^{\star}}{v_{\theta R}} , \quad r = \frac{r^{\star}}{R}$$
$$z = \frac{z^{\star}}{H} , \quad t = \frac{t^{\star}}{R/v_{\theta R}} , \quad a = \frac{R}{H}$$

Two parametres, Reynolds number (tangential) Re $_{\theta}$ and the ratio of $v_{\rm R}^{}$ to $v_{\theta\,\rm R}^{},\,SS,$ are defined by

$$Re_{\theta} = \frac{R v_{\theta R}}{v}$$
 1.14

$$SS = \frac{v_R}{v_{\theta R}}$$
 1.15

The boundary conditions are described in TABLE 1.1. The vorticity at the bottom wall $\omega_{\rm b}$ is estimated from non-slip

TABLE 1.1

THE BOUNDARY CONDITIONS FOR A CONFINED

VORTEX FLOW WITH FINITE DIFFERENCE EXPRESSIONS

	$\begin{array}{c} \texttt{STREAM} \\ \texttt{FUNCTION} \\ \psi \end{array}$	CIRCULATION F	VORTICITY w
THE AXIS OF ROTATION	TOTAL FLOW	ZERO	ZERO
r=0 (1 <u><j<m< u="">)</j<m<></u>	$\psi_{l,j} = 1$	$\Gamma_{l,j} = 0$	$\omega_{l,j} = 0$
THE OUTER WALL	V _r is constant V _z is zero	CONSTANT	ZERO
r=l (l <u><j< u="">≤M)</j<></u>	$\Psi_{\rm N,j} = Z_{\rm j}$	$\Gamma_{N,j} = 1$	$\omega_{\rm N,j} = 0$
LIQUID LEVEL	TOTAL FLOW	SHEAR FREE	ZERO
$z=1$ ($1 \le i \le N$)	$\psi_{i,M} = 1$	*2	$\omega_{i,M} = 0$
THE EXIT *1 HOLE	SHEAR FREE	SHEAR FREE	SHEAR FREE
z=0 (1 <u>≤i≤</u> 3)	$\psi_{i,1} = \psi_{i,2}$	$\Gamma_{i,1} = \Gamma_{i,2}$	$\omega_{i,l} = \omega_{i,2}$
THE BOTTOM PLATE	v_r and v_z are zero	ZERO	NON-SLIP CONDITION
$z=0$ (4 $\leq i \leq N$)	$\psi_{i,1} = 0$	$\Gamma_{i,1} = 0$	eq.1.16

*1 Since nothing is known in the exit hole, all conditions are reasonably assumed.

*2 The finite difference expression is

$$\Gamma_{i,M} = \frac{1}{8}(9\Gamma_{i,M-1} - \Gamma_{i,M-2})$$

condition. ω_h is then written by

$$\omega_{\rm b} = SS_{\rm R_i}^{9} \frac{\frac{25\psi_{\rm i,1} - \psi_{\rm i,2}}{2 DZ_2^2}}{1.16}$$

for $4 \leq i \leq N$

The stream function is first solved by S.O.R. (Successive over relaxation). The velocity v_r and v_z are then determined from the interpolated stream function assigned at four corners of each zone in Fig.3.6 by the descretized form of eq.1.13. The time advanced circulation is then solved by A.D.I. (Alternating-direction implicit method). Using the new calculated circulation, the vorticity is calculated also by A.D.I. The whole iteration procedure is summarized in Fig. 3.12. A very small time increment increases the stability of calculation because it makes a strong diagonally dominant matrix but it takes an excessive amount of calculation time. When a very large time increment is taken, however, the calculation becomes unstable so that the results are physically meaningless. The optimal time increment is determined by a trial and error approach. The iteration is terminated when the residual of each difference equation becomes sufficiently small when compared with the dominant terms in the equation for the entire geometry.

The Iteration Procedure for Vortex Flow Calculation

• ..

1.2.2 Experimental Study

The continuous steady state vortex flow is established by tangentially introducing fluid inside the outer wall of the vortex tank with an equal flow rate of draining fluid from the tank. The detailed description of the vortex tank is shown in Fig. 4.2 where the exit hole is located at the center of the bottom wall.

Tangential velocity V_{A} at the free stream region, axial velocity V_{π} along the axis of rotation are quantitatively measured by photographic tracer technique. These velocity components are determined from time lapse photographs of small particles suspended in a thin section of fluid which is illuminated by a collimated beam of light. A light source used in the measurement is the strobe light (1540 strobolume, 1540-Pl oscilator, 1540-P2 Lump made by GenRad) which can flash up to 400 times per second and the duration of each flush is only 1 $\mu\,sec\,.\,$ The tangential velocity $\,V^{}_{A}\,$ in the free stream region is measured at different radial positions and at two different axail positions. The V_A data at two axial positions are enough to represent $V_{ heta}$ in the free stream region because V_{θ} is almost independent of axial position. The V_{θ} is calculated from a particles's dot trajectory on the bottom view photograph using a horizontally collimated light (See Fig. 4.5). A number of dots can be controlled by adjusting both the flash rate and the exposure time of camera (Nikomat F 2.0).

Fig. 4.5 A Photograph for Measuring ${\rm V}_{\theta}$

The axial velocity measurement in the core region is very difficult with the present photographic technique because the reflection of light from the air core is so strong that it makes the particles near the air core impossible to detect. Incomplete vortex flow (the word "incomplete" indicates that the air core does not extend down to the exit hole) thus is established so that V_z at the axis of rotation can be measured from the side view photograph. Fig. 4.8 is a typical photograph from which V_z at the axis of rotation is approximately determined by dividing the distance between two adjacent dots by a time span of two flashes.

The experimental procedure for the measurement of V_{θ} in the free stream region and V_z along the axis of rotation for both a Newtonion fluid (room temperatured water) and a polymer solution are briefly summarized as follows. After calibration, the fluid starts circulating the vortex flow system. Once a steady state vortex flow is established, the volumetric flow rate and the liquid level are determined. The small amount of seeding particles are then added in the flow system for the purpose of reflecting the light. V_z long the axis of rotation is measured followed by V_{θ} measurement at two different axial positions. During the velocity measurement, the flow rate and the liquid level are also measured.

The concentrated polymer solution prepared at least two days before use is then added to the flow system to make about 30 wppm polymer solution. As soon as the polymer

Fig. 4.8 A Photograph for Measuring $\rm V_{\rm Z}$

effect, that is the small fluctuation of the air core and the liquid levels falling is observed, the onset behavior of vortex inhibition is measured by taking pictures for ${\rm V}_{\rm A}$ All the pictures are taken within 30 seconds after data. the onset. The important feature of the onset behavior measurement is to be able to observe how the V_A is changed by introducing the polymer solution into the Newtonian flow pattern. And the information is very useful for the analytical study of vortex inhibition because a numerical simulation is done for the situation where the Newtonian fluid is suddenly replaced by polymer solution to see how the resulting stress field changes due to the presence of the macromolecules. After a couple of minutes, the vortex flow completely shifts to a new quite different flow status which is the vortex flow of the polymer solution. The procedure of ${\rm V}_{_{\!\!\!\!\!\!\!\!\!\!\!\!\!\!}}$ measurement along the axis of rotation which immediately follows the V_{τ} measurement for the Newtonian fluid is the same as that of ${\rm V}_{\rm A}$ measurement for polymer solution.

Four kinds of qualitative observations are done for studying the characteristics of vortex flow for both Newtonian and polymer fluid. The complete vortex flow is used because the air core does not disturb the observations. The flow behavior of the core region is studied by using dyed solution. When the dyed polymer solution (about 50 wppm Polyox WSR 301) is dropped on the free surface of the Newtonian vortex flow near the axis of rotation, the vortex is immediately inhibited. When dropped in the free stream

region, the polymer dyed solution behaves as if it were a Newtonian fluid and the vortex is not inhibited. This observation indicates that the tangential velocity V_{θ} in the core region is reduced due to the presence of the macromolecules and that the polymer effect may be dominant somewhere in the core region.

The flow behavior of the bottom boundary layer is studied by injecting the Newtonian dyed solution through a very small hole (its diameter is .04 cm) located in the bottom wall to see the differences in the flow behavior between a Newtonian fluid and polymer solution. For the Newtonian fluid, the streak of the dye is very smooth and almost all of the dye goes directly out through the exit hole. For the polymer solution, however, the dye is randomly scattered around the exit hole. From this observation, the polymer effect may be important in the area near the exit hole because of the apparent difference in flow behavior between the Newtonian fluid and polymer solution.

When a small tube is installed right above the exit hole, the Newtonian vortex flow is heavily disturbed because the tube prevents a radial inflow in the bottom boundary layer from going out through the exit hole. The distinguishing feature of this observation is that installing the tube lowers the liquid level substantially while keeping the flow rate constant (See Fig. 4. 16 (a)). When the liquid level is raised up to the previous level, the flow rate has to be increased about 6%. When the liquid level reaches the Fig. 4.16 THE EFFECT OF THE CAP EXPERIMENT

previous point, the vortex is inhibited in a very similar way to vortex inhibition by Polyox WSR 301. This experimental observation also emphasizes the importance of the flow behavior in the vicinity of the exit hole.

The vortex flows of Newtonian fluids with different viscosity are observed in terms of the air core width and liquid level. The fluids used for the observation are water, glycerin-water solution A (the relative viscosity is 1.068) and glycerin-water solution B (the relative viscosity is 1.227). Both glycerin solution A and B are found to form very similar vortex flow to that by water with respect to the shape of the air core, liquid level and flow rate. From the fact that the relative viscosity of the glycerin solution A and 30 wppm Polyox solution are almost equal, we can conclude that vortex inhibition cannot be explained solely by viscous effect but it has to be due to the elastic nature of the macromolecules.

1.3 Development of Constitutive Equation

In order to investigate the polymer effect on the flow, an approximate constitutive equation for a dilute polymer solution is needed to see how the stress tensor changes due to the existence of the macromolecules. A new constitutive equation for a dilute solution of flexible macromolecules is developed from the kinetic theory. The main difficulty associated with the kinetic theory of dilute polymeric fluids so far is that it can provide complete information about the stress tensor only for small rates of strain and a few material functions of high strain rates. The reason for the difficulty stems from being unsuccessful in solving the differential equation for the distribution function (called the diffusion equation). Although Giesekus(1966) showed that full information about the stress tensor can be obtained for the Hookean Dumbbells model without solving the diffusion equation, this model has two serious shortcomings which are shear rate independent visometric functions and an unbounded elongational viscosity even for moderately high elongational rates.

The constitutive equation developed in this study not only eliminates the shortcomings associated with the Hookean Dumbbell model but also is simple enough to be manipulated for any kind of homogenous flow at all strain rates. And it shows that shear thinning (viscosity decreases with increasing shear rate), non-zero primary normal stress co-

efficient and a bounded elongational viscosity for high elongational rates. The new constitutive equation called the Modified Nearly Hookean Dumbbell model (MNHD) is constructed by matching it with the Nearly Hookean Dumbbell (Armstrong and Ishikawa, 1979) for a flow where the macromolecule is neither very stretched nor oriented and with the model which Tanner (1975) developed for a flow where the macromolecule is strongly oriented and stretched. The Spring law used in the MNHD is FENE (Warner, 1972) spring law.

The main results of tests for the MNHD are shown in Fig. 6.7, Fig. 2.4, Fig. 6.9 and Fig. 6.10 by using two simple flow patterns, shear flow and elongational flow. Fig. 6.7 shows the comparison of intrinsic viscosity as a function of shear rate between available experimental data and the model prediction. The macromolecule used in the experimental data is polystyrene of various molecular weights. From the figure, the MNHD is seen to show the shear thinning phenomenon. It is also found that the model shows a linear relation between [n] and log $\dot{\gamma}$ for higher shear rate $(\lambda_{p} < 2, \lambda_{H} = (5\varepsilon+1)\lambda_{p})$. By comparison with a wide variety of polystyrene solutions, the parameter ε which is associated with the maximum length of the macromolecule R falls into the range between .02 and .005, which agrees with the prediction by Christiansen and Bird (1977). This range of parameter ε may, therefore, be a proper choice for polymer stress tensor field calculation. Fig. 2.4 shows the comparison of steady state elongational viscosity between the exact solution of FENE model (Bird and et al., 1977) and the MNHD's prediction. The rapid

[\eta] vs $\lambda_e \dot{\gamma}$ with Experimental Data (1) (Polystyrene in benzene at 30 °C)

Fig. 2.4 : Elongational Viscosity Predicted by MNHD

Dimensionless Flongations1 rate 3 *

increase of elongational viscosity observed at the moderate elongational rates corresponds the nearly full extension of the macromolecules which, then, show higher resistance to be stretched out above those elongational rates. Both models eventually approach the same large asymptotic elongational viscosity at high elongational rates. It is found from Fig. 2.4 that the MNHD represents the FENE model very well over the entire range of elongational rate.

The stress growth and relaxation of elongational viscosity are plotted with different scaled dimensionless time in Fig. 6.9 and Fig. 6.10. As shown in Fig. 6.9, as the elongational rate $\lambda_H \epsilon$ increases, the time required for reaching a steady state becomes much shorter. This characteristic is quite different from the growth behavior of shear viscosity shown in Chap. 5 where the time to reach steady state is about $t/\lambda_{\rm H} = 4$ for all shear rates. Unlike shear flow, the macromolecules subjected to elongational flow are stretched directly by hydrodynamic force and oriented to the direction of the flow. The time scale for molecular response to this flow, therefore, may be related to the elongational rate i. This is clearly explained when the elongational viscosity is plotted with the dimensionless time scaled by $1/\epsilon$ in Fig. 6.10 where the time to reach steady state is about $\dot{\epsilon}t = 3$ for higher elongational rates. The shorter response time for high elongational rate is important for vortex inhibition. The residence time of fluid element is very short in the area where large velocity gradient is estab-

Dynamic Behavior of Elongational Viscosity

with Time Scaled by $\lambda_{\rm H}$

 $t/\lambda_{\rm H}$

Fig. 6.10

Dynamical Behavior of Elongational Viscosity with Time Scaled by ϵ^{-1}

lished because the velocity of the fluid is usually very high. Unless the macromolecules are excited within the residence time of the fluid element, it would be carried away from the area of high strain rates before polymer effect appears. Thus it is necessary for realizing the polymer effect on the flow field that the response time for high elongational rates must be very short besides large elongational viscosity.

Judging from these results, the MNHD seems to be suitable for vortex inhibition analysis. The MNHD is used as a constitutive equation for the analysis of stress field in the next section because first, its form is so simple that any kind of locally homogeneous flow can be applied, and secondly, the elongational viscosity predicted by the model is as good as that by the FENE model.

......

1.4 The Analysis of the Onset Behavior of Vortex Inhibition

The mechanism of the onset behavior of vortex inhibition is analyzed by the following sequence. First, the Newtonian vortex flow is discussed by the results of the numerical calculation with locally obtained experimental velocity data. Secondly, the experimental observation about the onset behavior of vortex inhibition is described. Two important characteristics are emphasized there. Third, the stress tensor for polymer solution is calculated along the stream lines by the MNHD. The velocity field for the calculation is the Newtonian vortex flow. Finally, the polymer effect, namely how the flow behavior changes due to the resulting polymer stress tensor, is analyzed by an approximate method to explain the experimental findings qualitatively.

The velocity field of Newtonian vortex flow is calculated by A.D.I. for higher tangential Reynolds number Re_{θ} . The general flow behavior of a confined vortex flow is well described by stream lines. Fig. 6.1 and Fig. 6.2 show the results of the numerical calculation which described the stream lines representing both the radial and axial velociites for lower and higher tangential Reynolds number respectively. Each fluid element also makes swirl motion due to the tangential velocity besides moving along the stream lines. As shown in Fig. 6.1, for $Re_{\theta} = 10$, most of fluid elements supplied at the outer wall move toward the exit hole in taking almost the shortest distance. No reverse (due to positive v_r) or up

r/R

r/R

(due to positive v_{τ}) flow is observed for such a low $\operatorname{Re}_{\theta}$. For higher Re_A (=1370), however, the flow behavior turns out quite different. For example, taking the stream line ψ = .8 in Fig. 6.2 representing 80% of total flow rate, the fluid element initially moves toward the exit hole but after passing the point (r,z) = (.1,.2), the fluid starts moving back and eventually goes into the bottom boundary layer. As shown in Fig. 6.2, the bottom boundary layer is formed for high Re, and 80% of total flow rate is come from this thin boundary layer region. The radial velocity in the layer is much larger than that above the layer because the stream lines are very dense. The core region is also recognized by the stream line ψ = .9 in Fig 6.2. Unlike Fig. 6.1 the stream ψ = .9 is much closer to the axis of rotation and this indicates that higher axial velocity forms the core region. And the flow from the bottom boundary layer interacts with the flow from the core region near the exit hole. Tangential velocity at the free stream region is measured for various $\operatorname{Re}_{\theta}$. Although the measurement in v_{A} is taken both at z = 4.0 cm and z = 10.0 cm, the difference in v_{θ} at these two positions is negligible. Fig. 6.3 and Fig. 6.4 show comparison between the experimentally measured v_A and numerically calculated v_{θ} for two different Re_{θ} and SS. The numerical results show excellent agreement with experimental data for both cases. Fig. 6.5 and Fig. 6.6 show the comparison of v_z at the axis of rotation. As shown in these figures, the calculated v_{τ} corrected by factor 2.8 predicts

The Comparison between the Experimentally Measured ${\tt V}_{\theta}$ and Numerically

Fig. 6.3

Fig. 6.4

The Comparison of V_z at r = 0

Fig. 6.6

experimentally determined v_z profile very well. The correcting factor may be explained mainly by the discrepancy in the radius of the exit hole between calculation and exper-In the calculation, the location of radius r_{a} iment. has to be matched with the point at the canter of the zone. This condition makes r_e about 1.5 times larger than the real location. From the continuity of the fluid, the average value of v_z over the exit hole has to be increased 2.13 times larger for the real case. The axial velocity at the axis of rotation is increasing in almost linear fashion from the liquid surface, but as the fluid gets close to the exit hole, v_z is accelerated. This is observed from both figures. It is also found from the calculation results that v_z is further increased so rapidly especially when the fluid interacts with the flow from the bottom boundary layer to produce large velocity gradient

$$\frac{2^{2}}{2}$$

The results of the comparison with experimental measurement show that the numerical simulation describes the vortex flow reasonably well. The confined geometry of the vortex tank does not give any significant difference from the open free surface vortex flow in terms of velocity field. Since the numerical simulation provides full information about velocity field for the entire vortex geometry and the calculated velocity field reasonably well represents the real

velocity field, it is employed for stress tensor calculation for polymer solution.

The information about the onset behavior is very important for analysis of vortex inhibition because it provides the transient flow behavior from Newtonian to polymer solution. As shown in Fig. 6.11, after several minutes, the vortex flow completely shifts to a new, quite different flow status which is fully developed vortex flow of the polymer solution. The analysis of the fully developed vortex flow of the polymer solution seems to be irrelevant for this study because of the following reasons.

First, the fluctuation of the air core is very large and random so that it is almost impossible to obtain consistent velocity data especially for v_{z} at r=0. Secondly, since the liquid level is dropped to about 50% of its original figure and the total flow rate is not changed very much (see number in Fig 6.11), a much higher tangential velocity is established and this explains the broadening of the air core. This larger tangential velocity, however, may not directly be caused by the polymer effect but rather is due to the decrease of the liquid level while flow rate is almost unchanged. To investigate the polymer effect on the vortex flow, it is, therefore, more sensible to measure the onset behavior of vortex inhibition rather than the fully developed vortex flow. Besides these two reasons, the measurement of the onset behavior is more consistent with the numerical simulation which calculates the polymer stress thensor by the MNHD. The

Fig. 6.11

The Difference between the Newtonian Vortex Flow and A Fully Developed Vortex Flow of Polymer Solution

The Newtonian vortex flow

Ł

flow rate: 33.5 cc/sec

A fully developed vortex flow of polymer solution

flow rate: 30.0 cc/sec

calculation simulates a physical situation where the Newtonian fluid is suddenly replaced by the polymer solution in order to see how the stress field changes due to the presence of the macromolecules.

Fig. 6.12 shows the tangential velocity measured during the onset. The tangential velocity in the free stream region is not appreciably changed when compared with that of the Newtonian fluid. Several velocity data, however are found near the axis of rotation (the core region). In v_{θ} measurements for the Newtonian fluid, no data could be obtained at the core region because of large axial velocity. These data indicate the reduction of v_z in the core region due to the fluctuation of the air core.

The axial velocity data on the axis of rotation is shown in Fig. 6.13 during the onset along with the Newtonian data. The v_z data for the polymer solution are obtained from different pictures taken during the onset. At each time, different v_z data is obtained because of the fluctuation of the air core. The figure indicates that v_z at r=0 is always lower than the case of the Newtonian fluid from any of the data. This seems to be inconsistent with the fact that the liquid level is falling during the onset. The average v_z over the exit hole must be increased to explain the liquid level's falling, v_z at r=0, on the other hand, seems to decrease at the exit hole form Fig. 6.13.

Thus, two experimental findings during the onset of vortex inhibition should be emphasized. First, he averaged

Axial Velocity Measured before and during the Onset

 ∇_z (cm/sec)

axial velocity over the exit hole is increased. Secondly, the axial velocity at the axis of rotation seems to be decreased at the exit hole. These two findings characterize the onset behavior of vortex inhibition and these are analyzed in the later parts of this chapter.

The stress tensor is calculated by using the MNHD as a constitutive equation along the stream lines obtained previously. Since the onset behavior is the transient state from the Newtonian vortex flow to the fully developed vortex flow of the polymer solution, the information about the velocity gradient may be obtained from the results of the Newtonian vortex calculation. The calculation of the stress tensor is limited to the area near the exit hole. Because the simple speculation in section 1.2 indicates that the velocity gradient is too small to excite the macromolecules until the fluid element approaches this area where the velocity gradients seem to become very large. Fig. 6.14 is a detailed picture of Fig. 6.2 of the stream lines near the exit hole. Once the fluid element reaches the square area enclosed by the lines of r/R = .1 and z/H = .1, the calculation begins. For example, the stress calculation of ψ = .8 starts from the point (r/R, z/H) = (.1, .025). The stress tensor is then numerically calculated at the point 1. Every component of the velocity gradient tensor needed for the calculation is approximately determined from the velocity field at the point 1. This calculation procedure is repeated until the fluid element reaches the point 4 where the large velocity
Stream Lines near the Exit Hole

Re₀=1370 , SS=-.02

gradient is expected. The stress tensor is also calculated in this way for $\psi = .85$, $\psi = .9$ and $\psi = 1.0$. TABLE 1.2 shows the calculated stress tensor component $\tau_{p,zz}$ at each stream line. No other stress components are found to be insignificant. It is found from TABLE 1.2 that $\tau_{p,zz}$ increases extremely rapidly very near the exit hole for $\psi = .85$ and $\psi = .8$. This is due to the large velocity gradient especially

$$\frac{\partial \nabla_z}{\partial z}$$

established at the exit hole. And the macromolecules are suddenly stretched out in the z-direction nearly to the maximum length R_0 (see the column $\langle (R/R_0)^2 \rangle$ in the table). The study of the MNHD shows that the molecular response time is very short when the velocity gradient is very large, the macromolecule has enough time to be stretched extensively even in a very short period of time. The macromolecules flowing along the stream lines $\psi = 1.0$ and $\psi = .9$, on the other hand, are not stretched substantially. $\tau_{p,zz}$ at $\psi = 1.0$ is less than the half of the Newtonian stress component even at the point 5. The fluid element along the $\psi = 1.0$ may not be influenced by the presence of the macromolecules.

From the analysis of the Newtonian velocity field, it is found that the dominant forces in the Newtonian flow in the z-direction very near the exit hole are pressure gradient

TABLE 1.2

	$\psi = 1.0$			$\psi = .9$	
A	В	С	A	В	с
1 (.01)	0	.0146	1 (.02)	259 (084)	.0207
2 (.02)	027 (04)	.0153	2 (.04)	431 (266)	.0241
3 (.03)	045 (24)	.0157	3 (.06)	645 (64)	.0280
4 (.04)	147 (68)	.0182	4 (.07)	-9.158 (-3.02)	.1660
5 (.043)	203 (96)	.0194	5 (.075)	-23.618 (-3.02)	.3183
	ψ = .85			ψ=.8	
A	В	С	А	В	С
1 (.04)	-2.322 (112)	.1185	1 (.03)	069 (02)	.0172
2 (.08)	-8.183 (398)	.2175	2 (.07)	-2.575 (7)	.1704
3 (.12)	-3.844 (504)	.0948	3 (.09)	-47.004 (-2.12)	.6769
4 (.15)	-44.899 (-2.08)	.4869	4 (.097)	-171.198 (-5.28)	.8019
5 (.155)	-96.449 (-3.08)	.6819			

τ ALONG THE STREAM LINES

- * Column A is point number with (real time)[sec]
- * Column B is $\tau_{p,zz}$ with (Newtonian counterpart) [gcm/sec²·cm²]

* Column C is $\langle (R/R_0)^2 \rangle$ where <u>R</u> is the end-to-end vector of macromolecule and R_0 is the maximum length.

____.

and the corresponding inertia forces. The viscous force, therefore, does not contribute effectively to the force balance. In order to cope with these dominant forces, $\tau_{p,ZZ}$ must be much larger than the Newtonian stress. As shown in the case of $\psi = .85$ and $\psi = .8$, $\tau_{p,ZZ}$ very near the exit hole becomes much larger than the Newtonian case, it may, therefore, be possible that this stress component influences the flow behavior. To investigate the influence of $\tau_{p,ZZ}$ on the flow behavior, the force balance (the equation of motion) in the z-direction has to be considered with the polymer contribution to the stress terms.

The force balance in the z-direction is written by

$$\rho \left(v_{r} \frac{\partial v_{z}}{\partial r} + v_{z} \frac{\partial v_{z}}{\partial z} \right) = - \frac{\partial p}{\partial z} - \frac{1}{r} \frac{\partial}{\partial r} (r\tau_{rz}) + \frac{\partial \tau_{zz}}{\partial z} + \rho g$$
1.17

TABLE 6.6 shows the magnitude of each term in eq.1.17 with the orientation of forces around the point (r/R, z/H) = (.03,.01) for the case $Re_{\theta} = 1370$ and SS = -.02. When the $\tau_{p,zz}$ is used for the stress term in eq.1.17, it becomes about 20% of the dominant force (pressure gradient) and the direction of this force turns out to the negative. This indicates that the new force produced by the macromolecules tends to push fluid downward, that is, the axial velocity at this point may be increased. Qualitatively speaking, this is consistent with the decrease of the liquid level during the onset. Although nothing can be said about the magnitude of increased axial velocity unless the equation of motion is solved with

.. ...

the polymer stress tensor, it may be a reasonable outcome that the polymer effect appears near the exit hole especially around r/R = .03 and causes the liquid level's falling.

In order to see how the flow behavior changes by the presence of the macromolecules, one must solve the equation of motion with the polymer stress tensor expression (the constitutive equation). This, however, requires a tremendous amount of calculation. Nine non-linear partial differential equations (three from the equation of motion and six from the constitutive equation) are to be solved simultaneously. The calculation is much more difficult and involved than the case of Newtonian flow problem. Instead of pursuing this difficult calculation, the polymer effect may be roughly estimated simply by changing the boundary condition at the exit hole in the Newtonian vortex flow calculation. This method comes from the previous results that the polymer stress tensor becomes significant only for the area very near the exit hole. The calculation procedure, thus, is briefly described as follows. First, the axial velocity at the exit hole is estimated by $\tau_{p,ZZ}$. Secondly, the boundary condition of the stream function is fixed according to the estimated v. Third, the velocity field for the entire vortex flow is calculated by A.D.I for a short period of time. The initial state of the calculation is the case of $Re_A =$ 1370 and SS = -.02. And finally the polymer stress tensor is again calculated along the newly calculated stream lines to see the tendency of stress field. In this way, we could

at least see an initial stage of flow change which may correspond to the onset behavior of vortex inhibition.

Fig. 6.15 shows the newly calculated axial velocity at the axis of rotation. The v_z at r=0 slightly decreases from the Newtonian case especially when z is less than 5 cm. Even for a short period of time (.286 seconds), the axial velocity responds to the change in the boundary condition which is substitution of the polymer effect at the exit hole. The decrease of the axial velocity at r=0 seems to correspond to one of the experimental findings during the onset behavior of vortex inhibition. The calculated tangential velocity, on the other hand, is not appreciably changed at all from the initial state especially outside the hole region. This is also consistent with the experimental fact (See Fig. 6.12).

Fig. 6.16 shows the stream lines obtained from the calculation. The dotted lines are the stream lines for the initial state. The flow pattern as a whole is not so different in the two calculations. However, the stream lines above the boundary layer shift to the right to some extent. This shift also explains the reduction of v_z at r=0 because the radial distance between $\psi = 1.0$ and $\psi = .9$ becomes wider. The polymer stress tensor is calculated along the each of the stream lines and the results are listed in TABLE 1.3. Again $\tau_{p,zz}$ very near the exit hole is increased dramatically for $\psi = .8$ and $\psi = .85$. The magnitude of $\tau_{p,zz}$ in both lines are a little larger than before. $\tau_{p,zz}$ along the stream

Axial Velocity Profile after Imposing

63

Fig. 6.15

(cm/sec) V_z

÷

Stream Lines near the Exit Hole after Imposing the Polymer Effect

r/R

				_	
$\psi = 1.0$			$\psi = .9$		
A	В	С	A	В	С
1 (.01)	015	.0150	1 (.02)	204	.0194
2 (.02)	042	.0156	2 (.04)	291	.0214
3 (.03)	054	.0159	3 (.06)	298	.0209
4 (.04)	152	.0183	4 (.075)	-1.247	.0394
5 (.045)	230	.0201	5 (.081)	-5.045	.1056
	$\psi = .85$			$\psi = .8$	
A	B	С	A	В	С
1 (.05)	-2.505	.2313	1 (.04)	143	.0395
2 (.10)	-7.402	.3456	2 (.08)	-6.286	.2217
3 (.13)	-23.532	.4180	3 (.20)	-34.717	.4478
4 (.15)	-40.625	.4551	4 (.106)	-177.127	.8097
5 (.16)	-131.810	.7526			

ALONG THE NEWLY CALCULATED STREAM LINES ^Tp,zz

TABLE 1.3

Column A is point number with (real time) [sec] ×

* Column B is
$$\tau_{p,q,q}$$
 [gcm/sec²·cm²]

Column C is $\langle (R/R_0)^2 \rangle$ where <u>R</u> is the end-to-end vector * of macromolecule and R_0 is the maximum length.

~

lines $\psi = 1.0$ and $\psi = .9$ is not increased enough to cope with the dominant force and the macromolecules are not stretched at all. The tendency of the polymer stress tensor observed before is even more emphasized in this calculation. $\tau_{p,zz}$ along $\psi = .8$ and $\psi = .85$ still becomes large enough to be comparable to the dominant force so that the fluid may be pushed downward again. From the sequence of calculations, we found that the initial effect of the polymers, that is, to increase v_z at the exit hole around r/R =.03, keeps its trend as time proceeds because the increased v_z also increases the responsible velocity gradient

 $\frac{\partial z}{\partial z}$

producing higher stress tensor component. From the analysis of $\tau_{p,ZZ}$, it is found that the dramatic increase of $\tau_{p,ZZ}$ along the stream lines $\psi = .85$ and $\psi = .8$ very near the exit hole seems to explain qualitatively experimental characteristics of the onset behavior of vortex inhibition, namely, the liquid level's falling and the reduction of v_z at r = 0.

1.5 Conclusions

Three major conclusions are drawn from the results of this study. They are:

1) The numerical calculation for the confined Newtonian vortex flow provides reasonable velocity field for the entire vortex tank geometry. The calculated velocity field reasonably agrees with experimentally measured V_{θ} at the free stream region and V_z along the axis of rotation by photographic tracer technique. The consistency in the comparison may make the velocity information reliable for the area near the exit hole and for the bottom boundary layer. The vortex flow studied in the thesis is highly non-linear (Re_{θ} is up to 2000) and has a singularity at the exit hole. The alternating-direction implicit method with the zone formulation is found to be suitable for this kind of complicated flow problem.

2) The Modified Nearly Hookean Dumbbell Model seems to be an appropriate constitutive equation for the vortex inhibition study. The model can predict a bounded large elongational viscosity which may change the flow behavior at high strain rates as well as shear thinning. The MNHD also has a simple form so that any kind of locally homogeneous flow can be applied for obtaining the polymer stress field. It is found from dynamical studies of the model that the time to reach steady state in start-up of elongational flow is well scaled by the reciprocal of elongational rate $\dot{\epsilon}^{-1}$. This result is quite different from that of shear flow which is scaled by the time constant $\lambda_{\rm H}$.

3) A highly elongational type of flow, namely very high velocity gradient $\frac{\partial V_z}{\partial z}$, is established in the vicinity of the exit hole according to the results of the numerical calculation. This large velocity gradient may be a cause of the onset behavior of vortex inhibition. The application of the velocity field to the MNHD shows that the macromolecules moving along the stream lines passing the bottom boundary layer and outside the core region (see ψ =.8 and ψ =.85 in Fig. 6.14) seem to be almost stretched out to the maximum length R_o very near the exit hole. The stretched macromolecules produce large stress tensor which seems to explain qualitatively the characteristics of the onset behavior of vortex inhibition.

II. INTRODUCTION

2.1 The Description of Vortex Inhibition

Vortex inhibition was discovered by Gordon (1972) in In his experiment, a small amount of polymer in water 1972. prevents formation of a vortex in draining the solution from the bottom of a square tank. A square tank filled with tap water is prepared. After stirring the water vigorously with a paddle and then removing the plug from the center of the bottom, a stable vortex forms extending down to the bottom of the container. When this is repeated with a dilute polymer solution, the vortex is incomplete (see Fig. 2.1). This different phenomenological behavior produced by adding just a small amount of polymer inidcates that the flow pattern is drastically changed due to the presence of the polymer. The vortex inhibition may be explained clearly by using a steady state vortex flow. A steady state vortex flow is obtained by tangentially feeding the water at the outer wall of a cylindrical container with an axially uniform velocity. Fig. 2.2 shows the steady state vortex flow. When the water is replaced by about 30 wwpm polyethylene oxide (Polyox 301) keeping the flow rate constant, the air core of the vortex is suppressed and the suppression of the air core is not steady but a randomly periodic phenomenon. Just after the air core is suppressed, it tends to extend to the bottom again. As soon as the air core reaches the

Fig. 2.1 : Vortex Inhibition

In case of the Newtonian fluid, the vortex forms extending down to the bottom. On the other hand, if a small, critical concentration of polymer is present, the vortex is imcomplete.

Newtonian fluid

Polymer solution

Fig. 2.2 Steady State Vortex Flow

bottom, it immediately is suppressed (see Fig 2.3). This process is repeated until the polymer is degraded. During vortex inhibition, the liquid level, falls substantially (by nearly 50%).

A particularly interesting feature of vortex inhibition is that the amount of polymer added to the water is so small that the shear viscosity of the polymer solution is only slightly different from that of water itself. The relative viscosity of the polymer solution used in this study is only about 1.02.

Furthermore, Gordon (1972) showed that the macromolecules which show vortex inhibition ability are also good agents for drag reduction. As Table 2.1 shows, the same ordering in terms of effective concentration also seems to hold for both the vortex inhibition and drag reduction.

Since the viscosity of the polymer solution is almost equal to that of water for both vortex inhibition and drag reduction, non-Newtonian rheological properties of the dilute polymer solutions such as strain rate thickening elongational viscosity and non-zero normal stress differences in steady shear flow might be responsible for vortex inhibition. The elongational viscosity is believed to be increased drastically even at moderately high elongational rate for a dilute polymer solution. For instance, as shown in Fig. 2.4 the modified nearly Hookean Dumbbells model (developed in Chapter 5) shows a sudden increase of elonga-

Fig. 2.3 Vortex Flow with Suppressed Air Core

TABLE 2.1

EFFECTIVE CONCENTRATIONS OF VARIOUS POLYMERS FOR V.I. AND D.R.

Polymer Designation	Polymer Type	wwpm Vortex Inhibition	wwpm Drag Reduction
Polyox FRA*	Polyethylene Oxide	7.5	9
Polyox WSR 301*	Polyethylene Oxide	30	20
Separan AP 273°	Polyacrylamide	3	5
Separan AP30	Polyacrylamide	40	35

*Union Carbide (Manufacturer)

'Dow (Manufacturer)

Note 1: These data are from Gordon (1972).

Note 2: Effective concentration is the lowest concentration with which polymer shows the ability of vortex inhibition or drag reduction.

Fig. 2.4 : Elongational Viscosity Predicted by MNHD

tional viscosity when the domensionless elongational is of order unity. The elongational viscosity increases up to several orders of magnitude higher than that of solvent alone. Even though no direct experimental measurements have been obtained for the elongational viscosity for a dilute polymer solution, the kinetic theory predicts that a high elongational viscosity is realized when a linear flexible polymer is stretched at almost full length due to the elongational flow field. It may, therefore, be possible to expect that the changes in flow behavior in vortex inhibition phenomenon is due to the large elongational viscosity exerted by the presence of a few macromolecules.

2.2 Objective and Motivations

The objective of this thesis work is to investigate the mechanism of vortex inhibition. The study is motivated at first, by a possible correlation between vortex inhibition and drag reduction and secondly, by an interest in developing a constitutive equation (rheological equation of state) to describe dilute polymer solutions.

We can speculate from Table 2.1 that the mechanism of vortex inhibition may be similar to that of drag reduction. Although drag reduction has been extensively studied in recent years, there are many aspects of the phenomenon which are not well understood (Lumely, 1973; Virk et al., 1967; Virk, 1975). Out of several proposed mechanism for drag reduction, the viscoelastic nature (especially large elongational viscosity) of macromolecules in turbulent flow is proposed to be a major cuase for reducing turbulent energy dissipation (Little et al., 1975; Seyer and Metzner, 1969; Gordon and Everage, 1971). According to Seyer and Metzner (1969), the bursting (Kim et al., 1971) produced by a pair of counter rotating eddies at boundary layer near the wall is characterized by stretching motion similar to elongational flow. The increased resistance to stretching due to the large elongational viscosity, thus results in less bursting and less radial momentum flux transport. However it is not possible to make a direct test of this

proposed mechanism because no precise velocity information of the fliud element is obtainable during the bursting process. The proposed mechanism for drag reduction may, in turn, be closely related to the molecular mechanism of vortex inhibition. It might be, therefore, possible to infer the molecular mechanism for drag reduction from the analysis of vortex inhibition. The Newtonian vortex flow is treated as a laminar flow so that it is much easier to be analyzed than turbulen flow.

In order to analyze vortex inhibition, rheological equation of state (a constitutive equation) for a dilute polymer solution has to be introduced so that information about the stress field can be predicted. Although an extremely simplified model (beads and spring bumbbell model) is being used, we believe that the kinetic theory provides reasonable predictions about differences in flow behavior resulting from molecular structures. Moreover, we can evaluate the kinetic theory constitutive equations by comparing their predictions in the flow with experimental results.

2.3 Approach and Previous Work

Approach

A study of vortex inhibition is carried out in the following way. First, the Newtonian vortex flow is extensively studied in Chapter 3. The information about the velocity field of the Newtonian vortex flow is necessary for analyzing vortex inhibition because it provides a starting point for computing deformation of the marcomolecules when the polymer solution is subjected to the flow field. At first, various regions of the vortex flow are analytically studied and then the complete Navior-Stokes equations, with a singularity (the presence of the exit hole at the center of the bottom wall), are numerically solved by finite difference scheme for various values of tangential Reynolds number.

Secondly, the experimental part of vortex inhibition is described in Chapter 4. The velocity components (tangential and axial velocity) are measured by a photographic tracer technique. The velocity measurement not only provides the characteristic of the Newtonian vortex flow but also gives a check on the results of numerical simulation which is given in Chapter 6. Besides the velocity measurements, a series of qualitative observations about the flow behavior of both the Newtonian and polymer vortex flow are conducted to help understand the nature of vortex inhibition.

An approximate constitutive equation (rheological equation of state) for dilute polymer solutions is developed from kinetic theory in Chapter 5. The model is then tested for shear flow and elongational flow with various strain rates to evaluate the material functions such as shear viscosity, the primary normal stress coefficient and elongational viscosity.

Finally in Chapter 6, the results of the numerical simulation are used for the polymer solution stress field calculation by use of the constitutive equation developed in Chapter 5. With the calculated stress field, an attempt is made to explain vortex inhibition, that is, the dramatic differences in flow behavior between the Newtonian and polymer solution with the aid of the experimental study.

Previous Work

The major contributions of this thesis work are hydrodynamics of the Newtonian vortex flow and development of constitutive equation, whose prediction for elongational viscosity is especially important, for polymer solutions. There have been a number of theoretical studies of confined vortex flow in past because of its broad application in fluid dynamics, heat transfer, power generation and meterology. Lewellen (1971, 1964, 1962) has used similarity transformations and asymptotic expressions to describe the Integral methods are used for analysis of the boundflow. ary layer by Rott and Lewellen (1966). Anderson (1966) has studied the flow behavior of the bottom boundary layer by reducing the boundary layer equations to ordinary differential equations based on the method developed by Smith and Cutler (1963). Farris et al. (1969) and Pao (1970) have numerically solved the full Navior-Stokes equations for confined vortex flow. These approaches, however, do not provide velocity information about the flow behavior in the vicinity of the exit hole which, in turn, plays a very important role for the analysis of vortex inhibition.

The experimental contribution to the analysis of the Newtonian vortex flow is due to Kendall (1962) and Taylor (1974). Kendall has measured radial and tangential velocity components of gases inside the bottom boundary layer and the profiles of both velocity components of liquid are qualitatively observed by Taylor. Chiou (1976) has used a photographic tracer technique for determining V_{θ} and V_{z} especially near the axis of rotation outside the bottom boundary layer. His study for vortex inhibition is also limited for the area away above the bottom wall.

There have been many models suggested for polymeric fluids from the kinetic theory (Bird, 1977). Out of these models, the idea of using a dumbbell (two beads jointed by a connector) to simulate a macromolecule is focused on this study (Bird et al., 1977). Even though the dumbbell models are oversimplified representation of polymers and the results obtained from them do not have a wide range of applicability, many of the mathematical manipulations can be performed because of the simplicity of the models. Table 2.2 shows several kinds of dumbbell model for a flexible macromolecule. The simplest one is the Hookean Dumbbell model whose connector is described by Hooke's law. The Hookean Dumbbell is the model from which the constitutive equations can be derived without solving the diffusion equation so that the polymer stress tensor can easily be calculated from any types of homogeneous flow. The model; however, has serious defects such as shear independent viscosity and unbounded elongational viscosity for high elongational rate because of the linearity in the connector force law. The connector force law developed by Warner

(1972) represents a macromolecule a little more realistically. The connector force is getting stiffer and stiffer as the end-to-end vector \underline{R} becomes close to the maximum length R_0 . The model shows the shear thinning, non-zero primary normal stress coefficient and bounded elongational viscosity. The mathematical manipulation, however, is limited only for small strain rates and a few material functions for high strain rates. As to the prediction of elongational viscosity using inverse-Langevin-Spring dumbbell model. The bounded elongational viscosity is also found by Tanner (1971) with a use of linear locked spring model. The experimental contribution to the rheology of a dilute polymer solution, however, is far behind the theory.

TABLE 2.2

CONNECTOR FORCE LAW OF DUMBBELL MODELS

Name	Connector Force Law	Comment
Hooke	$\underline{F} = \underline{H}\underline{R}$	The connector is infinitely stretch-able.
Tanner (1971)	$\underline{F} = \underline{H}\underline{R} R < R_{O}$	The "linear-locked" springs can stretch as far as R _O , for R < R _O they are des- cribed by Hooke's law.
Warner (1972)	$\underline{F} = \frac{H}{1 - (R/R_0)^2} \underline{R}$ $R < R_0$	The "finitely extend- able nonlinear elastic" (FENE) connector has an upper limiting length $R = R_0$.

III. STEADY NEWTONIAN VORTEX FLOW OVER A SOLID WALL

3.1 Introduction

A newtonian vortex flow has three distinct characteristics in its flow behavior. As shown in Fig. 3.1, the region I is called 'free stream region', which is characterized by a potential flow. The tangential velocity v_{θ} is inversely proportional to the radial distance r (the distance from the axis of rotation) in the free stream region. The change in v_{θ} in the z-direction is so small that the flow may be treated as one dimensional. When the tangential Reynolds number

$$Re_{\theta} = \frac{Rv_{\theta R}}{v}$$

however, becomes larger, the flow eventually forms a cell and this case makes one treat it as three dimensional flow problem. It is possible that the vortex flow in the free stream region makes more than single cell (Donaldson and Sullivan, 1960).

1

The region II is called 'core region' where a large amount of downflow exists because of the exit hole in the bottom plate. The tangential velocity v_{θ} , in turn, is proportional to the radium because stress component

$$\tau_{\mathbf{r}\theta} = -\mu r \frac{\partial}{\partial r} (\frac{v_{\theta}}{r})$$

has to be vanished at the axis of rotation.

Three Different Flow Regions

in a Newtonian Vortex Flow

•

······

The relationship between the centrifugal force and the radial pressure gradient is known in both the free stream and core regions. The centrifugal force

$$-\rho \frac{v_{\theta}^2}{r}$$

is exactly balanced with the radial pressure gradient

in these regions (Schlichting, 1968) but the balance between the two forces is broken in region III which is called "bottom boundary layer".

In the bottom boundary layer, the tangential velocity v_{θ} is reduced due to the drag from the bottom wall resulting in decreasing the centrifugal force. On the other hand, the radial pressure gradient remains the same along the z-axis (Schlichting, 1968), this force, therefore, overcomes the centrifugal force producing a large amount of radial inflow (Taylor, 1972). The amount of fluid passing through the bottom boundary layer is the same order as the total flow rate (Lewellen, 1971).

In this chapter, the tangential velocity v_{θ} in both the free stream and core regions is determined by using an empiracal expression of the radial velocity v_{r} and the flow behavior in the bottom boundary laver is approximately analyzed. The impact of the axial downflow from the core

region on the radial inflow from the bottom boundary layer The flow behavior in this area occurs near the exit hole. is not well known because of its complicated nature (Lewellen, 1971). A numerical simulation for the entire vortex flow, therefore, is needed to investigate the flow behavior in the region near the exit hole. The simulation is seeking for the exact solution of the full Navior-Stokes equations for a confined vortex flow. The treatment of an open-free surface vortex flow such as used in the V.I. study has not been studied. Such a problem is very difficult to manipulate because the shape of the free surface must be determined as part of the solution. Dergarabedian (1960) treats a timedependent emptying process of vortex flow although he does not consider the effect of the bottom boundary layer. Even though the confined vortex flow is different from the openfree surface vortex flow, the essential feature of the V.I. study may well be characterized by the confined vortex flow.

3.2 One Dimensional Vortex Flow

In this section the tangential velocity in the core and free stream regions is numerically solved as a one-dimensional problem and the results will agree with available experimental data. In these two regions, v_{θ} is assumed to be independent of z, so that the θ -component of the equation of motion becomes

$$v_{r} \frac{\partial \Gamma}{\partial r} = v \left(\frac{\partial^{2} \Gamma}{\partial r^{2}} - \frac{1}{r} \frac{\partial \Gamma}{\partial r} \right)$$
 3.1

where the circulation Γ is defined by

$$\Gamma = v_{\theta} \cdot r \qquad 3.2$$

Since the radial velocity v_r is inversely proportional to the radius r when r is large and v_r is, in turn, linear to r when r is small, Dergarabedian (1961) assumes the following functionality of v_r .

$$v_r = -\frac{\dot{\varepsilon}a^2}{2r} \left(1 - \exp\left(-\frac{r^2}{a^2}\right) \right) \qquad 3.3$$

where an elongational rate at the axis of rotation ε is defined by

$$\dot{\varepsilon} = \dot{\varepsilon}(z) = \frac{\partial v_z}{\partial z} |_{r=0}$$
 3.4

From eq. 3.3,

$$\left. \begin{array}{ccc} v_{r} \propto 1/r & r \neq 0 \\ & & \\ v_{r} \propto r & r \neq \infty \end{array} \right\} 3.5$$

As the desired axial velocity v_z is then given by the continuity equation,

$$v_z = v_z \Big|_{r=0} \exp(-\frac{r^2}{a^2})$$
 3.6

Chiou (1976) experimentally determines the parameter a and v_z along the axis of rotation. eq. 3.1 is solved by a finite difference scheme. eq. 3.1 is discretized according to the finite difference formula and the circulation Γ at each discrete point is solved implicitly using the boundary conditions

$$\Gamma(r=0) = 0$$

anđ

$$\Gamma(r=R) = \Gamma_R$$
.

The result of the calculation with Chiou's experimental data is shown in Fig. 3.2. The calculated v_{θ} agrees well with the data. After numerical simulation, it is found that the tangential velocity v_{θ} is very sensitive to the elongational rate $\dot{\epsilon}$. As shown in Fig. 3.3, when $\dot{\epsilon}$ is increased, the radial convection shifts the peak value of v_{θ} toward the axis of rotation producing a steeper v_{θ} - profile (case

3.2 One Dimensional Vortex Flow

In this section the tangential velocity in the core and free stream regions is numerically solved as a one-dimensional problem and the results will agree with available experimental data. In these two regions, v_{θ} is assumed to be independent of z, so that the θ -component of the equation of motion becomes

$$v_{r} \frac{\partial \Gamma}{\partial r} = v \left(\frac{\partial^{2} \Gamma}{\partial r^{2}} - \frac{1}{r} \frac{\partial \Gamma}{\partial r} \right)$$
 3.1

where the circulation Γ is defined by

$$\Gamma = v_{\theta} \cdot r \qquad 3.2$$

Since the radial velocity v_r is inversely proportional to the radius r when r is large and v_r is, in turn, linear to r when r is small, Dergarabedian (1961) assumes the following functionality of v_r .

$$v_{r} = -\frac{\dot{\epsilon}a^{2}}{2r}\left(1 - \exp\left(-\frac{r^{2}}{a^{2}}\right)\right)$$
 3.3

where an elongational rate at the axis of rotation $\dot{\epsilon}$ is defined by

$$\dot{\varepsilon} = \dot{\varepsilon}(z) = \frac{\partial v_z}{\partial z} |_{r=0}$$
 3.4

From eq. 3.3,

$$\begin{array}{ccc} v_{r} & \alpha & 1/r & r \neq 0 \\ & & & \\ v_{r} & \alpha & r & r \neq \infty \end{array} \end{array}$$
 3.5

As the desired axial velocity v_z is then given by the continuity equation,

$$v_z = v_z \Big|_{r=0} \exp(-\frac{r^2}{a^2})$$
 3.6

Chiou (1976) experimentally determines the parameter a and v_z along the axis of rotation. eq. 3.1 is solved by a finite difference scheme. eq. 3.1 is discretized according to the finite difference formula and the circulation Γ at each discrete point is solved implicitly using the boundary conditions

$$\Gamma(r=0) = 0$$

anđ

$$\Gamma(r=R) = \Gamma_R.$$

The result of the calculation with Chiou's experimental data is shown in Fig. 3.2. The calculated v_{θ} agrees well with the data. After numerical simulation, it is found that the tangential velocity v_{θ} is very sensitive to the elongational rate $\dot{\epsilon}$. As shown in Fig. 3.3, when $\dot{\epsilon}$ is increased, the radial convection shifts the peak value of v_{θ} toward the axis of rotation producing a steeper v_{θ} - profile (case

TANGENTIAL VELOCITY (CM/GEC)

91

2 in Fig. 3.3). The case 2 indicates that the increased $\dot{\epsilon}$ intensifies the θ - component of vorticity near the axis of rotation. On the other hand, when $\dot{\epsilon}$ is decreased, the vorticity is able to diffuse farther in the direction resulting in a flatter v_{θ} -profile (case 3 in Fig. 3.3). Since v_{θ} near the axis of rotation is reduced, the corresponding centrifugal force is also decreased. The radial pressure gradient which is balanced with the centrifugal force is then reduced.

The relative shape of the free surface of these vortex flows can be obtained from the tangential velocity v_{θ} as a function of the radius r. From the r- and z-components of the equation of motion, the pressure gradients are

$$-\frac{\partial p}{\partial r} = -\rho \frac{v_{\theta}^2}{r} \qquad 3.7$$

$$\frac{\partial p}{\partial z} = -\rho z \qquad 3.8$$

Pressure is an analytic function of position (Bird and et al., 1960),

$$dp = \frac{\partial p}{\partial r}dr + \frac{\partial p}{\partial z}dz$$
3.9

An integration of eq. 3.9 along the free surface gives

$$p(r=R,S(R)) - p(r=r,S(r)) = \int_{r}^{R} \frac{\partial p}{\partial r} dr + \int_{S(r)}^{S(R)} \frac{\partial p}{\partial z} dz \qquad 3.10$$

....

F

TAMPENTIAL VELOCITY (CK/SEC)

and the second
> . ج

· · -

L

1111 H. L.

0:00 0:25 0:51 0:77 1:03 1:26 1:54 1:60 2:06 2:32 2:51 RADIUS (CM) where S(r) the z-position of the free surface at r. S(r) can be calculated in eq. 3.10 by knowing that the pressure is equal along the free surface. The depth of the free surface relative to that at the outer boundary (r=R) is then given by

$$S(r) - S(R) = -\frac{1}{\rho g} \int_{r}^{R} \rho \frac{v_{\theta}^{2}}{r} dr \qquad 3.11$$

Fig. 3.4 shows the relative shape of the free surface with various elongational rate corresponding to Fig. 3.3 as the result of numerical integration of eq. 3.11. As expected, when the elongational rate $\dot{\varepsilon}$ is increased (case 2), the free surface becomes sharper due to the higher radial pressure gradient near the center. When the elongational rate $\dot{\varepsilon}$, however, is decreased, the fluid has a flatter free surface.

Vortex inhibition corresponds to the free surface shape's becoming flatter. As long as we regard the fluid as Newtonian, the above calculation suggests that vortex inhibition corresponds to a reduction in axial velocity gradient $\dot{\epsilon}$.

It is known that large velocity gradient (strain rate) is necessary for polymer to be subject to change its conformation. Especially when the strain rate reaches the order of reciprocal of time constant $\lambda_{\rm H}$, various polymer effects start revealing (the rheology of polymer solutions will be discussed in Chap. 5). Chiou (1976) indicated that the

strain rate

$$\frac{\partial v_{\theta}}{\partial r}$$

would be responsible for the polymer effect causing vortex inhibition, the maximum value of

$$\frac{\partial v_{\theta}}{\partial r}$$

in Fig. 3.2 is, however, at most about 60 sec⁻¹ around r = .4 cm. This figure of

$$\frac{\partial r}{\partial r}$$

is not large enough to realize the polymer effect because the estimation of the time constant (See Appendix B) shows that the dimensionless strain rate

will be .6. The dimensionless strain rate has to be at least more than unity to expect the polymer effect according to the results obtained in Chap. 5. The strain rate

1

therefore, may not be a main cause of vortex inhibition. And this leads us to investigate the area where higher strain rates are established in vortex flow.

3.3 The Analysis of Flow Behavior Inside the Bottom Boundary Layer

Since the polymer effect reveals when velocity gradient is very large, the flow behavior inside the bottom boundary layer in analyzed by the integral method (Lewellen, 1971). A large deformation rate is expected in the bottom boundary layer because the velocity vanishes at the bottom wall. In this section, the boundary layer thickness δ and the maximum radial velocity $v_{r,max}$ in the bottom boundary layer are approximately calculated as functions of radial distance r in order to estimate the velocity gradient.

The following assumptions are made in the integral method. 1. The tangential velocity $v_{\theta,\infty}$ in the free stream region is irrotational, that is,

$$v_{\theta,\infty} = \Gamma/r$$

where Γ is a function of r only.

 The radial velocity in the free stream region is negligible.
 The tangential and radial velocities's profiles inside the bottom boundary layer are chosen as (Taylor, 1950)

$$v_{\theta} = v_{\theta,\infty} f(\frac{z}{\delta}) = v_{\theta,\infty} \left[2(\frac{z}{\delta}) - (\frac{z}{\delta})^2 \right]$$
 3.12

$$v_{r} = V_{r, \max} g(\frac{z}{\delta}) = v_{r, \max} \left[\frac{27}{4} (\frac{z}{\delta}) (1 - \frac{z}{\delta})^{2} \right] \qquad 3.13$$

After an order of magnitude analysis, the equations of motion to be solved are reduced to θ -component of the equations of motion:

$$v_z \frac{\partial v_\theta}{\partial z} = v \frac{\partial^2 v_\theta}{\partial z^2}$$
 3.14

r-component of the equation of motion:

$$v_{r}\frac{\partial v_{r}}{\partial r} - \frac{v_{\theta}^{2}}{r} + v_{z}\frac{\partial v_{r}}{\partial t} = -\frac{1}{\rho}\frac{\partial p}{\partial r} + \frac{\partial^{2} v_{r}}{\partial z^{2}}$$
3.15

The continuity equation is

$$\frac{\partial}{\partial r}(rv_r) + \frac{\partial}{\partial z}v_z = 0 \qquad 3.16$$

The radial pressure gradient in eq. 3.15 can be replaced by the centrifugal force in the free stream region.

$$-\frac{1}{\rho}\frac{\partial p}{\partial r} = -\frac{v_{\theta,\infty}^2}{r}$$
 3.17

Integrations of eq.3.14 and 3.15 from z = 0 to $z = \delta(r)$ using eq. 3.12, eq.3.13, eq.3.16 and eq.3.17 give two equations having the boundary layer thickness $\delta(r)$ and the maximum radial velocity $v_{r,max}$ as two unknowns. The two equations are

$$\delta(\mathbf{r}) = \left[\frac{-\lambda_7 \cdot \mathbf{v}_{\mathbf{r}, \max}}{\lambda_4 \cdot \mathbf{v}_{\mathbf{r}, \max}^2 + \lambda_5 \cdot \mathbf{v}_{\theta, \infty}^2} \mathbf{r}\right]^{\frac{1}{2}}$$
 3.18

$$\frac{d}{dr}(v_{r,max})^{2} + 2C_{1} \frac{(v_{r,max})^{2}}{r} = \frac{2C_{2}}{r^{3}}$$
3.19

where C_1 and C_2 and λ_1 to λ_7 are given by

$$\begin{array}{l} c_{1} = 1 - \frac{\lambda_{3}\lambda_{4}}{(\lambda_{1}-\lambda_{2})\lambda_{7}} = .74 \\ c_{2} = \frac{\lambda_{3}\lambda_{5}}{(\lambda_{1}-\lambda_{2})\lambda_{7}} = -.287 \\ \end{array} \right\} 3.20 \\ c_{1} = \int_{0}^{1} f\left(\frac{z}{\delta}\right)g\left(\frac{z}{\delta}\right)d\left(\frac{z}{\delta}\right) = \frac{27}{80} \\ \lambda_{1} = \int_{0}^{1} f\left(\frac{z}{\delta}\right)d\left(\frac{z}{\delta}\right) = \frac{9}{16} \\ \lambda_{2} = \int_{0}^{1} f\left(\frac{z}{\delta}\right)d\left(\frac{z}{\delta}\right) = \frac{9}{16} \\ \lambda_{3} = \frac{d}{d\left(\frac{z}{\delta}\right)}g\left(\frac{z}{\delta}\right)\left|_{z=0} = 2 \\ \lambda_{4} = \int_{0}^{1} f^{2}\left(\frac{z}{\delta}\right)d\left(\frac{z}{\delta}\right) = \frac{243}{560} \\ \lambda_{5} = \int_{0}^{1} [g^{2}\left(\frac{z}{\delta}\right) - 1]d\left(\frac{z}{\delta}\right) = -\frac{7}{15} \\ \lambda_{6} = \frac{d}{d\left(\frac{z}{\delta}\right)} f\left(\frac{z}{\delta}\right)\left|_{z=0} = \frac{27}{4} \\ \lambda_{7} = \frac{2\lambda_{3}\lambda_{4}}{\lambda_{1}-\lambda_{2}} - \lambda_{6} = -14.46 \end{array} \right\}$$

99

Eq. 3.19 is solved with the boundary condition $v_{r,max} = 0$ at the outer wall (r=R). The boundary layer thickness $\delta(r)$ is then obtained from eq. 3.18. From eq. 3.19, $v_{r,max}$ is

$$v_{r,max} = \frac{C_2}{C_1 - 1} \Gamma^2 \left(\frac{1}{r^2} - \frac{1}{R^2} \left(\frac{R}{r} \right)^{2C_2} \right) \frac{1}{2}$$
 3.22

The results of a sample calculation are shown in TABLE 3.1 with the results by Anderson (1966). Both $v_{r,max}$ and $\delta(r)$ calculated by the two different methods are well agreed.

Although the velocity profies of $v_{ heta}$ and $v_{ extsf{r}}$ are assumed in the method, reasonable results are about the boundary layer thickness and the maximum velocity are obtained when they are compared with Anderson's results. This method as well as An derson's technique; however, can not be extended to the region near the exit hole because the tangential velocity above the boundary layer turns out to be a rigid rotational flow and the radial velocity induced by a strong downflow above the exist hole is not negligible anymore outside the bottom boundary layer. The assumptions made are, therefore, no longer appropriate. The flow behavior around the exist hole is much more complicated because the radial inflow from the bottom boundary layer interacts with the axial down flow from the core region. In order to analyze the flow behavior, a numerical simulation for an entire vortex flow will be described in the later section. Before this, stress tensor contributed by polymer additive in the bottom

100

boundary layer is calculated in order to see if the flow behavior is influenced by the resulting polymer stress tensor.

•

TABLE 3.1

THE COMPARISON OF INTEGRAL METHOD AND ANDERSON'S TECHNIQUE

r* = r/R	v _{θ,∞} (cm/sec)	v _{r,max} (cm/sec)		δ (cm)	
		INTEGRAL	ANDER- SON'S	INTEGRAL	ANDER- SON'S
		METHOD	TECH- NIQUE	METHOD	TECH- NIQUE
1	4.00	0	0	0	0
.9	4 - 44	-1.08	-1.0	.28	.28
. 8	5.00	-1.74	-1.5	.31	.31
. 7	5.71	-2.47	-2.2	. 32	.32
.6	6.67	-3.38	-3.0	.31	.32
. 5	8.00	-4.62	-4.2	.28	.32
.4	10.00	-6.46	-5.9	.26	.28
. 3	13.33	-9.55		.22	
.2	20.00	-15.82		.17	

* The boundary condition: $v_{\text{rmax}} = 0$, $\delta = 0$ at r = R* The data used is $\Gamma = 20 \text{ cm}^2/\text{sec}$, R = 5 cm

. .

3.4 Influence of Polymer Additive in the Bottom Boundary Layer

To test polymer effect, the simplest Hookean Dumbbell model (Bird, et al., 1977) is used as a constitutive equation. Since no polymer effect exists in the free stream region as described in the last section because velocity gradient is too small to excite macromolecules, the bottom boundary layer is analyzed. The stress field in the region is numerically calculated using Anderson's velocity profiles (1966) and approximately calculated using the results obtained in section 3.3.

Anderson uses the following equations in the bottom boundary layer.

 θ - component of equation of motion:

$$v_r \frac{\partial v_{\theta}}{\partial r} + \frac{v_r v_{\theta}}{r} + v_z \frac{\partial v_{\theta}}{\partial z} = v \frac{\partial^2 v_{\theta}}{\partial z^2}$$
 3.23

r - component of equation of motion:

$$v_{r} \frac{\partial v_{r}}{\partial r} - \frac{v_{\theta}^{2}}{r} + v_{z} \frac{\partial v_{r}}{\partial z} = -\frac{1}{\rho} \frac{\partial p}{\partial r} + v_{z}^{2} \frac{\partial^{2} v_{z}}{\partial z^{2}} \qquad 3.24$$

 \mathbf{n}

These equations are then transformed into a new coordinate system where the numerical calculation starts from the outside wall. Using the method similar to that used by Smith and Cutter (1963), the partial differential equations are reduced to a set of ordinary differential equations which can be easily solved. In this method, r-direction derivative in a finite difference formula is approximated by using

only previously obtained values.

The stress field is calculated considering an imaginary situation. If a Newtonian fluid is replaced by polymer solution all of a sudden, the resulting stress field due to the polymer solution must be different. And if the difference of the stress field between the polymer solution and the Newtonian fluid is large enough to change flow pattern, it may be said that polymer effect appears. To examine the situation, the stress field is numerically calculated using the Newtonian velocity profile. Since changes in z-direction are important, the mesh points used in the calculation are 6x24 for r and z directions in the area

 $.4 \leq r/R \leq 1$, $0 \leq z/\delta \leq 1$,

where R and δ are the radius of the outer wall and the boundary layer thickness.

The constitutive equation used here is Hookean Dumbbell model.

$$\underline{\tau}_{p} + \lambda_{\underline{H}} \underline{\tau}_{p(1)} = -nkT\lambda_{\underline{H}} \dot{\underline{\gamma}}$$
 3.25

where \underline{i}_{p} : polymer cotribution to stress tensor

 $\underline{\dot{Y}}$: The rate of strain tensor $\underline{\dot{Y}} = \nabla \underline{v} + (\nabla \underline{v})^+$

Vv: Velocity gradient tensor

$$(\nabla \mathbf{v})^+$$
: Transverse of $\nabla \mathbf{v}$

- n: number density
- k: Boltzman constant
- T: Absolute temperature

$$\underline{\underline{\tau}}_{p(1)} \equiv \underline{\underline{D}}_{t} \underline{\underline{\tau}}_{p} - (\underline{\nabla}\underline{v})^{+} \cdot \underline{\underline{\tau}}_{p} - \underline{\underline{\tau}}_{p} \cdot \underline{\nabla}\underline{v}$$

The calculated stress field is then substituted into the r-component of the equation of motion to see if there are significant changes in an r-direction force balance. The r-component of the equation of motion is most important in the boundary layer because a strong radial inflow exists. Each stress term is calculated for both polymer and Newtonian solutions in several radial distances. TABLE 3.2 shows those results evaluated at the bottom wall where stress terms have their maximum values. Although polymer contribution appears in stress terms, these forces are not large enough to change flow pattern when compared with the radial pressure gradient which is one of the dominant forces in the r-direction force balance.

In order to see the polymer effect further down to r/R=.2. the stress field at the bottom wall can be estimated by using the results obtained in section 3.3. Two important components of velocity gradient

$$\frac{\partial \nabla \mathbf{r}}{\partial z} |_{z=0}$$

anđ

TABLE 3.2 THE COMPARISON OF FORCE TERMS IN R-COMPONENT

OF THE EQUATION OF MOTION

r/R	$\left \begin{array}{c} -\frac{\partial p}{\partial r} \\ (v_{q})^{2} \end{array} \right ^{2}$	$-\frac{\partial}{\partial r}rr$		$\frac{\tau_{rr} - \tau_{\theta\theta}}{r}$	
R = 5cm	$=-\rho - \frac{\theta}{r}$	Polymer Solution	Newtonian Fluid	Polymer Solution	Newtonian Fluid
. 4	~50.00	-1.918	0	.597	0
.6	-14.83	292	0	.033	0
.8	-6.25	040	0	.006	0

- * The unit of the force terms is $g \cdot cm/sec^2/cm^3$.
- The polymer solution is considered as 30wppm
 Polyethylene oxide. (See Appendix B for constants used in the calculation)
- * Newtonian Fluid is water at 25°C.

$$\frac{\partial v_{\theta}}{\partial z} \Big|_{z=0}$$

are expressed as

$$\frac{27}{4\delta}$$
 v_{r,max}

and

$$\frac{2}{\delta} v_{\theta^{\infty}}$$

respectively according to the definitions in section 3.3. It is reasonable to assume that other components of velocity gradient tensor

$$\frac{\partial v_{\theta}}{\partial r}$$
 , $\frac{\partial v_{r}}{\partial r}$,

etc. are small enough to be neglected when compared with the two large components. The velocity gradient

appears rz-component of eq. 3.25 as a forcing term. After eliminating unimportant terms in eq. 3.25, τ_{rz} is

$$\tau_{rz} = -nkT\lambda_{H} \frac{\partial v_{r}}{\partial z} \Big|_{z=0}$$
 3.26

and τ_{rz} effects τ_{rr} in rr-component of eq. 3.25, τ_{rr} is then

$$\tau_{rr} = -2nkT \left(\lambda_{H} \frac{\partial v_{r}}{\partial z} \middle|_{z=0} \right)^{2} \qquad 3.27$$

In the same way as above, $\tau_{\ensuremath{z}\theta}$ is obtained from z0 - component,

$$\tau_{z\theta} = -nkT \quad \lambda_{H} \frac{\partial v_{\theta}}{\partial z} \Big|_{z=0}$$
 3.28

and $\theta\theta$ - component, $\tau_{\theta\theta}$ becomes

$$\tau_{\theta\theta} = -2nkT \left[\lambda_{H} \frac{\partial v_{\theta}}{\partial z} \Big|_{z=0} \right]^{2} \qquad 3.29$$

The polymer contribution to τ_{rr} and $\tau_{\theta\theta}$ at the bottom wall are tabulated in TABLE 3.3 and compared with the numerical results using Anderson's velocity porfile. τ_{rr} and $\tau_{\theta\theta}$ from the two methods reasonably agree to each other. The values obtained by method 2 always exceed those estimated by method 1. They differ by factor about 2 for τ_{rr} and 1.5 for $\tau_{\theta\theta}$. The parenthesized values at r/R=.2 and r/R=.3 are extrapolated by multiplying the results from method 1 by the factor 1.91 for τ_{rr} and 1.43 for $\tau_{\theta\theta}$ based on averaging over the range between r/R=.4 and .8. Overall the two methods can well provide stress components τ_{rr} and τ_{AB} in spite of their quite different approaches. The force terms in r-component of the equation of motion is then calculated and tabulated in TABLE 3.4. Even though the force terms due to the polymer solution increase as r/R decreases, the radial pressure gradient is still a domonant force in r-component force balance at small

TABLE 3.3 THE ESTIMATION OF τ_{rr} and $\tau_{\theta\theta}$ at THE BOTTOM WALL

r/R	τ _{rr} [g·cm	u/sec ² cm ²]	τ _{θθ} [g cm/sec ² cm ²]		
R = 5cm	METHOD 1	METHOD 2	METHOD 1	METHOD 2	
.2	-7.891	(-15.100)	-1.107	(-1.583)	
. 3	-3.345	(~6.356)	294	(420)	
. 4	563	-1.350	116	157	
.6	108	155	037	056	
. 8	029	055	021	030	

* METHOD 1: Analytically solved using the velocity gradient from Integral Method.

- * METHOD 2: Numerically solved using the velocity gradient from Anderson's technique.
- * τ_{rr} , $\tau_{\theta\theta}$ Contributed by Newtonian fluid are zero.

TABLE 3.4. THE COMPARISON OF FORCE TERMS DUE TO POLYMER SOLUTION BY TWO DIFFERENT METHODS

r/R	$-\frac{\partial p}{\partial r}$ $=-\left(\frac{\left(v_{\theta,\infty}\right)^{2}}{\left(v_{\theta,\infty}\right)^{2}}\right)$	$-\frac{\partial}{\partial r}$	rr	$-\frac{\tau_{rr}}{\tau}$	- τ _{θθ}
R = 5cm	r r	METHOD 1	METHOD 2	METHOD 1	METHOD 2
.2	-400.0	-9.092	(-17.488)	6.784	(13.517)
.3	-117.9	-7.328	(-13.750)	2.034	(5.936)
. 4	-50.0	-3.097	(-5.965)	.224	.597
. 6	-14.83	194	292	.024	.033
.8	-6.25	040	093	.002	.006

* () are calculated using extrapolated values in TABLE 3.3. * The unit of force terms is g cm/sec 2 /cm 3 .

* METHOD 1 and 2 are the same as in TABLE 3.3.

r/R because the stress forces are less than 5% of the dominant force. Again, although the stress field raised by the polymer solution grows in the bottom boundary layer, it is too small to change Newtonian flow behavior. This conclusion forces us to investigate the flow behaviors in the core region and in the area near the exit hole to see if large velocity gradient is realized. In order to analyze the flow behavior of these regions, the numerical simulation by solving a full Navior-Stokes equation for the entire vortex tank is described in the next section.

3.5 A Numerical Simulation for Entire Vortex Flow Field

3.5.1 The Governing Equations.

For an incompressible viscous flow in a confined cylindrical container, assuming that the flow is axisymmetric, the velocity field in terms of circulation, vorticity and stream function in a cylindrical coordinate (r, θ, z) are described by the following equations.

CIRCULATION [

$$\frac{\partial \Gamma}{\partial t} + v_r \frac{\partial \Gamma}{\partial r} + v_z \frac{\partial \Gamma}{\partial z} = v \left(\frac{\partial^2 \Gamma}{\partial r^2} + \frac{\partial^2 \Gamma}{\partial z^2} - \frac{1}{r} \frac{\partial \Gamma}{\partial r} \right)$$
 3.30

VORTICITY ω

$$\frac{\partial \omega}{\partial t} + v_r \frac{\partial \omega}{\partial r} + v_z \frac{\partial \omega}{\partial z} - \frac{v_r^{\omega}}{r} - \frac{1}{r^3} \frac{\partial r^2}{\partial z}$$
$$= v \left(\frac{\partial^2 \omega}{\partial r^2} + \frac{\partial^2 \omega}{\partial z^2} + \frac{1}{r} \frac{\partial \omega}{\partial r} - \frac{\omega}{r^2} \right) \qquad 3.31$$

STREAM FUNCTION Ψ

$$\frac{\partial^2 \psi}{\partial r^2} + \frac{\partial^2 \psi}{\partial z^2} - \frac{1}{r} \frac{\partial \psi}{\partial r} = -r\omega \qquad 3.32$$

where ν is a kinetic viscosity. The circulation is written in terms of $\, v_{\theta} \, .$

 $\Gamma = rv_{\theta}$ 3.33

and the relation between the vorticity and the radial and ax-

ial velocity v_r,v_z is

$$\omega = \frac{\partial \mathbf{v}_r}{\partial z} - \frac{\partial \mathbf{v}_z}{\partial r} \qquad 3.34$$

 v_r, v_z relate to the stream function by

$$v_{r} = -\frac{1}{r} \frac{\partial \psi}{\partial z}$$

$$3.35$$

$$v_{z} = \frac{1}{r} \frac{\partial \psi}{\partial r}$$

Since a zone method (Clomberg, 1971) is used for a finite difference formula, the eq.3.30 to eq.3.32 are arranged for more suitable terms. The dimensionless forms of the equations are

CIRCULATION F

$$\frac{\partial \Gamma}{\partial t} + \frac{1}{r} \frac{\partial}{\partial r} (r v_r \Gamma) + a \frac{\partial}{\partial z} (v_z \Gamma)$$
$$= \frac{1}{\text{Rer}} \left(\frac{\partial^2 \Gamma}{\partial r^2} + a^2 \frac{\partial^2 \Gamma}{\partial z^2} - \frac{1}{r} \frac{\partial \Gamma}{\partial r} \right)$$
3.30A

VORTICITY ω

$$\frac{\partial \omega}{\partial t} + \frac{1}{r} \frac{\partial}{\partial r} (r v_r \omega) + a \frac{\partial}{\partial z} (v_z \omega) - v_r \omega - S \frac{a}{r^3} \frac{\partial}{\partial z} \Gamma^2$$
$$= \frac{1}{Rer} \left(\frac{\partial^2 \omega}{\partial r^2} + a^2 \frac{\partial^2 \omega}{\partial z^2} + \frac{1}{r} \frac{\partial \omega}{\partial r} - \frac{\omega}{r^2} \right) \qquad 3.31A$$

.......

STREAM FUNCTION ψ

$$\frac{\partial^2 \psi}{\partial r^2} + a^2 \frac{\partial^2 \psi}{\partial z^2} - \frac{1}{r} \frac{\partial \psi}{\partial r} = -ar\omega \qquad 3.32A$$

The dimensionless variables (no marks) are related to the dimensional counterparts (marked by asterisks) in the follow-ing way:

$$\psi = \frac{\psi^{\star}}{RHv_{R}} , \quad \Gamma = rv_{\theta} = \frac{\Gamma^{\star}}{Rv_{R}} , \quad \omega = \frac{\omega^{\star}}{v_{r}/R}$$
$$v_{r} = \frac{v_{r}^{\star}}{v_{R}} , \quad v_{z} = \frac{v_{z}^{\star}}{v_{R}} , \quad r = \frac{r^{\star}}{R}$$
$$z = \frac{z^{\star}}{H} , \quad t = \frac{t^{\star}}{R/v_{R}} , \quad a = \frac{R}{H}$$

where v_R and $v_{\theta R}$ are the radial and tangential velocities at the outer wall, R and H are the radius and height of the container respectively. Two important parameters, the radial Reynolds number Rer and swirl parameter S are defined by

$$\operatorname{Rer} \equiv \frac{\operatorname{Rv}_{\mathrm{R}}}{\operatorname{v}} \qquad 3.36$$

$$s \equiv \left(\frac{v_{\theta R}}{v_R}\right)^2$$
 3.37

Eq.3.28 is rewritten by

$$v_{z} = \frac{1}{a} \frac{1}{r} \frac{\partial \psi}{\partial r} \qquad 3.35A$$

3.5.2 Finite Difference Formula (zone method)

In order to avoid the free surface as the boundary of vortex flow, a cylindrical container is assumed to have two exit holes located on the axis of rotation at each of the two end walls. As shown in Fig.3.5, the vortex flow is then simulated over a quarter of the total area because of geometrical symmetry. The treatment of the free surface boundary in this way is eliminated without losing the most important characteristics of the vortex flow (Anderson, 1961).

The geometry of the flow field is explained in Fig.3.6. Due to the characteristics of the vortex flow described previously, the mesh size in both the bottom boundary layer and core region is made much smaller than that in the free stream region to provide detailed information about the flow behavior in those two regions. The zone construction is described in Fig. 3.7 where the dot in each zone represents the spacial position of a dependent variable F which is assumed to be uniform inside the zone (F is one of Γ , ω or ψ). The velocities v_r and v_z are calculated using linearly interpolated stream function ψ^{IN} at the corners of each zone. The ψ^{IN} i,j in Fig.3.7, for example, is calculated by

The Mesh Construction of Vortex Flow

Figure 3.6

Figure 3.7

$$\psi_{i,j}^{IN} = \left(\frac{\psi_{i+1,j+1} \cdot DZ_{j} + \psi_{i+1,j} \cdot DZ_{j+1}}{DZ_{j} + DZ_{j+1}} \cdot DR_{i} + \frac{\psi_{i,j+1} \cdot DZ_{j} + \psi_{i,j} \cdot DZ_{j+1}}{DZ_{j} + DZ_{j+1}} \cdot DR_{i+1}\right) / (DR_{i} + DR_{i+1})$$

$$2 \leq i \leq N$$

$$2 \leq j \leq M$$
3.38

According to eq.3.35A, the velocities $v_{r i,j}$ and $v_{z i,j}$ are approximated by

$$v_{r i,j} = -\frac{1}{(R_{i} + \frac{DR_{i}}{2})} \cdot (\psi_{i,j}^{IN} - \psi_{i,j-1}^{IN}) / DZ_{j}$$

$$v_{z i,j} = \frac{1}{a \cdot R_{i}} \cdot (\psi_{i,j}^{IN} - \psi_{i-1,j}^{IN}) / DR_{i}$$
3.39

In order to increase the stability of the calculation, in other words, to make a diagonally dominant matrix (see Appendix D), the convective terms in eq.3.30A and eq.3.31A are approximated in the following way:

···-··

$$\frac{\partial}{\partial r} (rv_{r}F)_{i,j} = \left[\frac{v_{r i,j} + |v_{r i,j}|}{2} (R_{i} + \frac{DR_{i}}{2})F_{i,j} + \frac{v_{r i,j} - |v_{r i,j}|}{2} (R_{i} + \frac{DR_{i}}{2})F_{i+1,j} - \frac{v_{r i-1,j} + |v_{r i-1,j}|}{2} (R_{i} - \frac{DR_{i}}{2})F_{i-1,j} - \frac{V_{r i-1,j} + |v_{r i-1,j}|}{2} (R_{i} - \frac{DR_{i}}{2})F_{i-1,j} - \frac{V_{r i-1,j} + |v_{r i-1,j}|}{2} (R_{i} - \frac{DR_{i}}{2})F_{i-1,j} - \frac{V_{r i-1,j} + |v_{r i-1,j}|}{2} (R_{i} - \frac{DR_{i}}{2})F_{i-1,j} - \frac{V_{r i-1,j} + |v_{r i-1,j}|}{2} (R_{i} - \frac{DR_{i}}{2})F_{i-1,j} - \frac{V_{r i-1,j} + |v_{r i-1,j}|}{2} (R_{i} - \frac{DR_{i}}{2})F_{i-1,j} - \frac{V_{r i-1,j} + |v_{r i-1,j}|}{2} (R_{i} - \frac{DR_{i}}{2})F_{i-1,j} - \frac{V_{r i-1,j} + |v_{r i-1,j}|}{2} (R_{i} - \frac{DR_{i}}{2})F_{i-1,j} - \frac{V_{r i-1,j} + |v_{r i-1,j}|}{2} (R_{i} - \frac{DR_{i}}{2})F_{i-1,j} - \frac{V_{r i-1,j} + |v_{r i-1,j}|}{2} (R_{i} - \frac{DR_{i}}{2})F_{i-1,j} - \frac{V_{r i-1,j} + |v_{r i-1,j}|}{2} (R_{i} - \frac{DR_{i}}{2})F_{i-1,j} - \frac{V_{r i-1,j} + |v_{r i-1,j}|}{2} (R_{i} - \frac{DR_{i}}{2})F_{i-1,j} - \frac{V_{r i-1,j} + |v_{r i-1,j}|}{2} (R_{i} - \frac{DR_{i}}{2})F_{i-1,j} - \frac{V_{r i-1,j} + |v_{r i-1,j}|}{2} (R_{i} - \frac{DR_{i}}{2})F_{i-1,j} - \frac{V_{r i-1,j} + |v_{r i-1,j}|}{2} (R_{i} - \frac{DR_{i}}{2})F_{i-1,j} - \frac{V_{r i-1,j} + |v_{r i-1,j}|}{2} (R_{i} - \frac{DR_{i}}{2})F_{i-1,j} - \frac{V_{r i-1,j} + |v_{r i-1,j}|}{2} (R_{i} - \frac{DR_{i}}{2})F_{i-1,j} - \frac{V_{r i-1,j} + |v_{r i-1,j}|}{2} (R_{i} - \frac{DR_{i}}{2})F_{i-1,j} - \frac{V_{r i-1,j} + |v_{r i-1,j}|}{2} (R_{i} - \frac{DR_{i}}{2})F_{i-1,j} - \frac{V_{r i-1,j} + |v_{r i-1,j}|}{2} (R_{i} - \frac{DR_{i}}{2})F_{i-1,j} - \frac{V_{r i-1,j} + |v_{r i-1,j}|}{2} (R_{i} - \frac{DR_{i}}{2})F_{i-1,j} - \frac{V_{r i-1,j} + |v_{r i-1,j}|}{2} (R_{i} - \frac{DR_{i}}{2})F_{i-1,j} - \frac{V_{r i-1,j} + |v_{r i-1,j}|}{2} (R_{i} - \frac{DR_{i}}{2})F_{i-1,j} - \frac{U_{r i-1,j} + |v_{r i-1,j}|}{2} (R_{i} - \frac{DR_{i}}{2})F_{i-1,j} - \frac{U_{r i-1,j} + |v_{r i-1,j}|}{2} (R_{i} - \frac{DR_{i}}{2})F_{i-1,j} - \frac{U_{r i-1,j} + |v_{r i-1,j}|}{2} (R_{i} - \frac{DR_{i}}{2})F_{i-1,j} - \frac{U_{r i-1,j} + |v_{r i-1,j}|}{2} (R_{i} - \frac{DR_{i}}{2})F_{i-1,j} - \frac{U_{r i-1,j} + |v_{r i-1,j}|}{2} (R_{i} - \frac{DR_{i}$$

119

$$\frac{v_{r i-l,j} - |v_{r i-l,j}|}{2} (R_{i} - \frac{DR_{i}}{2}) F_{i,j} / DR_{i}$$
 3.40

When circulation (or vorticity) is transported across a zone boundary by convection, eq.3.40 is devised such that it tends to decrease the rate of circulation change in the zone from which it comes and to increase it in the zone to which it flows to conserve circulation (or vorticity). The proper approximation of the convective terms is one of the critical factors for the stability of the calculation especially when Reynolds number and the swirl parameter are increased, that is, when the magnitude of the convective terms becomes comparable with that of the diffusion terms.

The second and first derivatives are approximated by

$$\left(\frac{\partial^{2}}{\partial r^{2}}F\right)_{i,j} = \begin{bmatrix} \frac{F_{i+1,j} - F_{i,j}}{\left(\frac{DR_{i} + DR_{i+1}}{2}\right)} - \frac{F_{i,j} - F_{i-1,j}}{\left(\frac{DR_{i} + DR_{i-1}}{2}\right)} \\ \frac{F_{i+1} - F_{i-1}}{2} \end{bmatrix}$$

$$\div \left(\frac{\frac{R_{i+1} - R_{i-1}}{2}}{2}\right) \qquad 3.41$$

$$\left(\frac{\partial F}{\partial r}\right)_{i,j} = \frac{F_{i+1,j} - F_{i,j}}{\left(\frac{DR_i + DR_{i+1}}{2}\right)} \quad \text{or} \quad \frac{F_{i,j} - F_{i-1,j}}{\left(\frac{DR_i + DR_{i-1}}{2}\right)} \quad 3.42$$

The choice between forward and backward approximations for the first derivative in eq.3.42 is determined so as to make a more digonally dominant matrix for the calculation.

The boundary conditions due to the geometry of the con-

fined vortex flow is tabulated in TABLE 3.5. The circulation at the axis of rotation becomes zero although the tangential velocity v_{θ} may be finite at r = 0 because of its definition (see eq.3.33). The vorticity also vanishes at r = 0. The radially directed momentum flux τ_{rz} must be zero at r= 0 because of the axisymmetric nature of the vortex flow. From the definition of τ_{rz} for Newtonian fluids,

$$\tau_{rz} = -\mu \left(\frac{\partial v_z}{\partial r} + \frac{\partial v_r}{\partial z} \right)$$
 3.43

where μ is viscosity. In order to satisfy the condition for $\tau_{rz}^{}$ at r = 0, both velocity gradient components

$$\frac{\partial v_z}{\partial r}$$
 and $\frac{\partial v_r}{\partial z}$

in eq.3.43 have to be zero. It is also confirmed experimentally that

becomes zero at r = 0 (Chiou,1976). The boundary condition $\omega = 0$ at r = 0 is thus reasonable. The stream function at the outer wall is proportional to the height of the container based on the reasonable assumption that the radial velocity at tha outer wall is constant along with the height. By considering the confined vortex flow, the boundary condition at liquid level (z = 1) are simply placed by the shear free condition

TABLE 3.5 THE BOUNDARY CONDITIONS FOR A CONFINED

VORTEX FLOW

	STREAM FUNCTION	CIRCULATION	VORTICITY
THE AXIS OF ROTATION	TOTAL FLOW	ZERO (but v _g is finíte)	ZERO
THE OUTER WALL	v _r is constant v _z is zero	CONSTANT	ZERO
LIQUID LEVEL	TOTAL FLOW	SHEAR FREE	ZERO
THE EXIT * HOLE	SHEAR FREE	SHEAR FREE	SHEAR FREE
THE BOTTOM PLATE	∇_r and ∇_z are zero	ZERO	NON-SLIP CONDITION

* Since nothing is known in the exist hole, all conditions are reasonably assumed.

for the z-direction for the circulation and the zero vorticity because of the symmetry of the flow system. The shear free condition mentioned above is defined so that the first derivative of the circulation with respect to the z-direction is zero. The boundary conditions thus become much simpler when compared them with a curved-shaped free surface boundary condition. The simplification of the free surface boundary condition really makes the calculation feasible. The values of vorticity at the bottom plate are determined from non-slip condition. Since the stream function vanishes at the bottom plate, the vorticity $\omega_{\rm b}$ at z = 0 is simplified from eq. 3.32A.

$$\omega_{\rm b} = -\frac{a}{r} \left. \frac{\partial^2 \psi}{\partial z^2} \right|_{z=0}$$
 3.44

The second derivative of the stream function at z = 0 is approximated in terms of $\psi(\Delta z)$ and $\psi(2 \cdot \Delta z)$ using Taylor's expansion near z = 0. $\psi(\Delta z)$ and $\psi(2 \cdot \Delta z)$ are then

$$\psi(\Delta z) = \psi(0) + \psi'(0) \cdot \Delta z + \psi''(0) \frac{\Delta z^2}{2} + \psi'''(0) \frac{\Delta z^3}{6} + \dots 3.45$$

$$\psi(2 \cdot \Delta z) = \psi(0) + \psi'(0) (2 \cdot \Delta z) + \psi''(0) \frac{(2 \cdot \Delta z)^2}{2}$$

+
$$\psi^{\prime\prime\prime}(0) \frac{(2 \cdot \Delta z)^3}{6} + \dots$$
 3.46

Since

$$\psi(0) = \psi'(0) = 0,$$

the second derivative is

$$\psi''(0) = \frac{8 \cdot \psi(2 \cdot \Delta z) - \psi(\Delta z)}{2 \cdot \Delta z^2} + O(\Delta z^2) \qquad 3.47$$

The truncation error of eq.3.47 is of order Δz^2 . The flow behavior at the exit hole is not known at all. The shear free condition for the three functions (Γ, ω, ψ) may be a good choice. The boundary conditions are rewritten in terms of finite difference formulation in TABLE 3.6. The solving methods for the governing equations are described in the following two sections. The first method is called relaxation method which is suitable for low Reynolds number and the ADI method for high Reynolds number follows.

3.5.3 The solving Method for Low Reynolds Number

Using finite difference scheme, eq.3.23A to eq.3.25A are approximated for a steady state flow. The equations are summerized in a general expression.

Cl
$$F_{i,j}$$
 + C2 $F_{i+1,j}$ + C3 $F_{i,j+1}$ + C4 $F_{i-1,j}$
+ C5 $F_{i,j-1}$ = C6 3.48

where Cl,C2,C3,C4,C5 are coefficients of the dependent variable F (ψ,Γ,ω) at zones (i,j), (i+1,j), (i,j+1), (i-1,j), (i,j-1) respectively and C6 is a forcing function. If, for

TABLE 3.6 THE BOUNDARY CONDITIONS IN FINITE

DIFFERENCE EXPRESSION

		ψ	Г	ω
r = () (1 <u><j<< u="">M)</j<<></u>	ψ _{1,j} = 1	Γ _{1,j} = 0	ω _{l,j} = 0
r = 1	(l <u><j< u="">≤M)</j<></u>	ψ _{N,j} = Z _j	ſ _{N,j} = l	$\omega_{\rm N,j} = 0$
Z = 1	(1 <u>≤</u> i <u><</u> N)	$\psi_{i,M} = 1$	$\Gamma_{i,M}$ $= \frac{1}{8} (9\Gamma_{i,M-1})$ $- \Gamma_{i,M-2})$	$\omega_{i,M} = 0$
	(1 <u><i< u="">≤3)</i<></u>	$\psi_{i,1} = \psi_{i,2}$	$\Gamma_{i,l} = \Gamma_{i,2}$	$\omega_{i,l} = \omega_{i,2}$
Z=0	(4 <u>≤i≤</u> N)	$\psi_{i,l} = 0$	$\Gamma_{i,1} = 0$	(eq.3.44 (eq.3.47)

······

example, eq.3.48 is applied to the equation for circulation, the coefficient Cl is expressed by

$$CL = \left[(v_{ri,j} + |v_{ri,j}|) (R_{i} + \frac{DR_{i}}{2}) - (v_{ri-1,j} + |v_{ri-1,j}|) (R_{i} - \frac{DR_{i}}{2}) \right]$$

$$x \frac{1}{2 DR_{i}} + \left[(v_{zi,j} + |v_{zi,j}|) - (v_{zi,j-1} - |v_{zi,j-1}|) \right]$$

$$x \frac{a^{2} \cdot R_{i}}{2 DZ_{j}} + \frac{4}{Rer} \left[\frac{R_{i}^{2}}{R_{i+1} - R_{i-1}} \left\{ \frac{2}{(DR_{i} + DR_{i+1}) (R_{i} + R_{i+1})} + \frac{2}{(DR_{i} + DR_{i-1}) (R_{i} + R_{i-1})} \right\}$$

$$+ \frac{a^{2} R_{i}}{Z_{j+1} - Z_{j-1}} \left\{ \frac{1}{DZ_{j} + DZ_{j+1}} + \frac{1}{DZ_{j} + DZ_{j-1}} \right\}$$
3.49

First of all, eq.3.49 is rearranged and

.

(N indicates a newly calculated) are implicitly solved for the r-direction by

$$C4 F_{i-1,j}^{N} + CI F_{i,j}^{N} + C2 F_{i+1,j}^{N}$$

= -C3 $F_{i,j+1}^{N} - C5 F_{i,j-1}^{N} + C6$ for $2 \le i \le N-1$
3.50
This is represented in each Z-point (2 \leq j \leq M-1).

are then solved implicitly for the z-direction by

$$C5 F_{i,j-1}^{N} + C1 F_{i,j}^{N} + C3 F_{i,j+1}^{N}$$

$$= -C2 F_{i+1,j}^{N} - C4 F_{i-1,j}^{N} + C6 \qquad \text{for } 2 \leq j \leq M-1$$
3.51

Again eq.3.51 repeated for each R-point $(2 \le i \le N-1)$. Once the value of F^N is calculated from eq.3.50 or eq.3.51, the new value is assigned to F by averaging the newly calculated value and old value with a relaxation factor to avoid a sudden change which induces instability (Schultz and Shah, 1975). The newly relaxed value of F is then used in the right hand side of eq.3.50 and eq.3.51 as a known value.

The stream function (eq.3.32A) is first calculated and the radial and axial velocities are then determined from the interpolated stream function. Using the values of the velocities, the circulation (eq.3.30A) and then the vorticity (eq. 3.31A) are manipulated. This whole procedure is repeated until the three variables reach a steady state. The calculation is terminated when all of the variables have steady values at each spacial point. The two parameter Rer and S are increased gradually from Rer = 1 and S = 1 to the experimental condition where Reynolds number is about 20 and the swirl parameter is about 2500. And the results of the previous calculation, namely the case which has a lower Rer and S, is used as an initial condition for a higher Rer and S case to make an initial error from a new steady state as small as possible. The results of the case Re = 10 and S = 40 after 60 iterations are graphically shown in Fig.3.8 to Fig.3.11. From these figures, the velocity gradient components near the exit hole are found to be extremely large when compared with those in other regions. For instance, the circulation Γ at r = .03 in Fig.3.8 increases dramatically as it goes down to the bottom plate. The highest value of Γ at z = .03 is about 20 times as much as its value at z = 1. The velocity gradient

therefore, is very large especially within z = .1. The radial velocity v_r inside the bottom boundary layer shown in Fig.3.10 is also accelerated as the fluid flows toward the axis of rotation producing a high deformation gradient

The axial velocity v_z in Fig.3.11 in the core region grows very rapidly especially near the exit hole. The high velocity gradient components

$$\frac{\partial v_r}{\partial z}$$
 and $\frac{\partial v_z}{\partial r}$

Figure 3.8

ī.

RE = 10.0 SWIRL = 40.0

CIRCULATION

1999 - 19

. .

in a state of the
statistical statistics of the statistic of the statistics of the statistic statistics of the stat

. **.**•

RADIAL VELOCITY (CM/SEC) x25

13]

are expected in this region. On the whole, even for the case Re = 10 and S = 40, it is apparent that the significance of the flow behavior near the exit hole is emphasized because there exist much higher velocity gradients which may induce the polymer effect.

The method described in this section is found to be incapable of solving the equations for higher Reynolds number and swirl parameter case where non-linear convective terms in the circulation and vorticity equations become dominant forces. The dependent variables never reach a steady state even though very small relaxation factors and hundreds of iterations are applied. Another approach, therefore, is used to solve the non-linear partial differential equations (eq.3.30 to eq.3.32), and this approach is described in the following section.

3.5.4 The Solving Method for High Reynolds Number

The method used in this section is the alternating-direction implicit method (A.D.I.) developed by Peacman and Rachford (1955). The main difference between ADI and the relaxation method described in the last section is that ADI includes the time derivative terms in the equations so that the problem is categorized as an initial value problem. By choosing an appropriate time increment, this iteration method shows a great advantage over the relaxation method especially for large Reynolds number.

The equations (eq.3.30 to eq.3.32) are again rearranged into suitable dimensionless forms.

CIRCULATION F

$$\frac{\partial \Gamma}{\partial t} + \frac{1}{r} \frac{\partial}{\partial r} (rv_{r}\Gamma) + a\frac{\partial}{\partial z}(v_{z}\Gamma)$$
$$= \frac{1}{Re_{\theta}} \left(\frac{\partial^{2}\Gamma}{\partial r^{2}} + a^{2} \frac{\partial^{2}\Gamma}{\partial z^{2}} - \frac{1}{r} \frac{\partial\Gamma}{\partial r} \right) \qquad 3.30B$$

VORTICITY ω

$$\frac{\partial \omega}{\partial t} + \frac{1}{r} \frac{\partial}{\partial r} (rv_r \omega) + a \frac{\partial}{\partial z} (v_z \omega) - v_r \omega - a \frac{1}{r^3} \frac{\partial \Gamma^2}{\partial z^2}$$
$$= \frac{1}{Re_{\theta}} \left(\frac{\partial^2 \omega}{\partial r^2} + a^2 \frac{\partial^2 \omega}{\partial z^2} + \frac{1}{r} \frac{\partial \omega}{\partial r} - \frac{\omega}{r^2} \right) \qquad 3.31B$$

STREAM FUNCTION ψ

$$\frac{\partial^2 \psi}{\partial r^2} + a^2 \frac{\partial^2 \psi}{\partial z^2} - \frac{1}{r} \frac{\partial \psi}{\partial r} = \frac{a}{SS} r \omega \qquad 3.32B$$

And the dimensionless radial and axial velocities $v_{\rm r}$ and $v_{\rm z}$ are written by

$$v_{r} = SS\frac{1}{r} \frac{\partial \psi}{\partial z}$$

$$v_{z} = -\frac{SS}{a} \frac{1}{r} \frac{\partial \psi}{\partial r}$$

$$3.52$$

The dimesionless variables are defined by (dimensional counterparts are marked by asterisk)

$$\psi = \frac{\psi^{*}}{v_{R}^{RH}} , \quad \Gamma = rv_{\theta} = \frac{\Gamma^{*}}{Rv_{\theta}R} , \quad \omega = \frac{\omega^{*}}{v_{\theta}R/R}$$
$$v_{r} = \frac{r}{v_{\theta}R} , \quad v_{z} = \frac{v_{z}^{*}}{v_{\theta}R} , \quad r = \frac{r^{*}}{R}$$
$$z = \frac{z^{*}}{H} , \quad t = \frac{t^{*}}{R/v_{\theta}R} , \quad a = \frac{R}{H}$$

Two parameters, Reynolds number (tangential) Re $_{\theta}$ and the ratio of v_{R} to $v_{\theta R}$, SS, are defined by

$$Re_{\theta} = \frac{R \cdot v_{\theta R}}{v} \qquad 3.53$$

$$SS = \frac{v_R}{v_{\theta R}} \qquad 3.54$$

The boundary conditions in TABLE 3.6 can be used for this formulation except for the vorticity at the bottom wall ω_b . ω_b is written by

$$\omega_{\rm b} = SS\frac{9}{R_{\rm i}} \frac{25\psi_{\rm i,1} - \psi_{\rm i,2}}{2 \cdot DZ_2^2} \qquad 3.55$$
for $4 \leq {\rm i} \leq {\rm N}$

The stream function is first solved by the relaxation method as described in the last section. The velocities v_r and v_z are then determined from the interpolated stream function $\psi^{\rm IN}$ by the descretized form of eq.3.52.

Using operator notation, eq.3.30B is expressed by

$$\frac{\partial \Gamma}{\partial t} = L_r \Gamma + L_z \Gamma \qquad 3.56$$

where the differential operations for the r and z direction are given by

$$L_{r}\Gamma = \frac{1}{Re_{\theta}} \left(\frac{\partial^{2}\Gamma}{\partial r^{2}} - \frac{1}{r} \frac{\partial\Gamma}{\partial r} \right) - \frac{1}{r} \frac{\partial}{\partial r} (rv_{r}\Gamma)$$

$$L_{z}\Gamma = \frac{1}{Re_{\theta}} \left(a^{2} \frac{\partial^{2}}{\partial r^{2}}\Gamma \right) - a\frac{\partial}{\partial z} (v_{z}\Gamma)$$

$$3.57$$

The time derivative and the operands are descretized by finite formulas. The circulation advanced by one time step (N+1) are then solved implicitly for the r-direction by

$$\frac{\Gamma^{N+1}}{\Delta t} - L_{r}^{*}\Gamma^{N+1} = \frac{\Gamma^{N}}{\Delta t} + L_{z}^{*}\Gamma^{N}$$
3.58

where L_r^* and L_z^* are descretized forms of L_r and L_z . The further time advanced circulation Γ^{N+2} is next solved implicitly for the z-direction using the previously obtained Γ^{N+1} ,

$$\frac{\Gamma^{N+2}}{\Delta t} - L_z^{\star} \Gamma^{N+2} = \frac{\Gamma^{N+1}}{\Delta t} + L_r^{\star} \Gamma^{N+1}$$
3.59

The vorticity is next calculated by ADI.

The whole iteration procedure (Pao, 1970) is summarized in Fig.3.12. Choosing appropriate initial conditions and time

Figure 3.12

The Iteration Procedure for Vortex Flow Calculation

increment, the stream function is iterated until it converges. The convergence criterion for the stream function is

$$\frac{|\psi_{i,j} \stackrel{\text{NEW}}{j} - \psi_{i,j} \stackrel{\text{OLD}}{j}|}{\psi_{i,j}} < .05$$
for
$$2 \leq i \leq N-1$$

$$2 \leq j \leq M-1$$

After convergence, the time advanced circulation is calculated followed by the vorticity calculation. A very small time increment increases the stability because it makes a strong diagonally dominant matrix but it takes an excessive amount of calculation time. When a very large time increment is taken, however, the calculation becomes unstable so that the results are physically meaningless. The optimal time increment is determined by a trial and error approach. Von Neuman stability analysis (Clomburg, 1971) obviously does not work for the case where the non-linear convective terms are dominant in the equations. The time increment is usually decreased when the calculation results approach a desired steady state to ensure the stability near the steady state.

The iteration is terminated when the residual of each difference equation becomes sufficiently small when compared with the dominant terms in the equation for the entire geometry. The detailed information about the calculation is found in Appendix A along with a complete listing of program.

IV. EXPERIMENTAL STUDY

4.1 Introduction

A steady state vortex flow system is constructed in the vortex inhibition study although the original experimental study conducted by Gordon (1972) used a batch vortex flow with a square shaped tank. The two advantages of the steady state vortex flow system are that it provides timeindependent velocity data and makes it much easier to observe several qualitative features of the flow. A measurement of velocity in the steady state vortex flow becomes very reliable when compared with a batch system because it requires a certain amount of time to get velocity data by a photographic tracer technique described in the later section.

The macromolecule (polymer) used in the study is polyethylene oxide (Union Carbide, brand name - Polyox 301) because it shows the vortex inhibition phenomenon more distinctively than other types of polymers. For example, Separan AP-273 (high molecular weight polyacrylamide) has relatively large intrinsic viscosity (Clarke, 1970) so that it is very hard to distinguish between polymer effect and viscous effect.

A large fluctuation (in the velocity components for polymer solution) associated with the vortex inhibition makes the quantitative measurement of them very difficult. Most of the velocity measurements are thus done for

Newtonian fluid and several qualitative observations are done for both the Newtonian fluid and the polymer solution.

As mentioned in chapter 3, the flow characterization of the Newtonian vortex flow is very complicated and still not known completely. The velocity measurement of the Newtonian vortex flow, therefore, not only provides very important information about the rate of strain for the vortex inhibition study but also gives some useful understanding for confined vortex flow.

The total flow system of the steady state vortex flow is described in the next section followed by an explanation of the photographic tracer technique. Experimental procedure for the measurement of velocity components in several regions are then explained in detail. Finally four kinds of qualitative observations are portrayed.

4.2 The Flow System

The continuous steady state vortex flow is established by tangentially introducing a fluid inside the outer wall of the vortex tank with an equal flow rate of draining fluid from the tank. Fig. 4.1 shows the total flow system of the steady state vortex flow. By keeping the head of a fluid constant in the constant head tank, any desired feed rate is obtainable by adjusting the three valves, valve 1, 2, and 3. Once a steady state flow rate is established, that is, the liquid level in the vortex tank becomes stationary, the flow rate is determined by measuring the amount of the fluid leaving the vortex tank in a certain time period. The fluid drained from the vortex tank is then sent to the feed tank where excess fluid from the constant head tank is also collected. The fluid in the feed tank is brought up to the constant head tank for recycling. The pump used in the flow system is Moyno Pump (1L2-CDQ). The Moyno pump is a screw conveyor type of pump with rounded flights so that it reduces degradation substantially when compared with centrifugal or gear types of pump. Recycling the fluid is permitted for only Newtonian fluid because a polymer solution is eventually degraded when used for recycle. The macromolecules are degraded especially when a high shear rate is imposed. Since the fluid experiences high deformation rate at the valves and pump, the degradation of the macromolecules is inevitable in this kind of experimental study. The polymer degradation

.

(

is one of the reasons why quantitative velocity measurements are difficult for the polymer solution.

A detailed sketch and photograph of the vortex tank are shown in Fig. 4.2 and Fig. 4.3 respectively. The open ended vortex tank made by plexiglas has a special inlet The fluid is first fed into a small tube from section. the constant head tank. The small tube is equipped with 39 equally spaced small holes of .32 cm diameter along its entire height. The fluid then flows into a thin channel through these small holes. A flow straightener made by a pile of many small tubes is located at the end of the channel. The fluid come through the flow straightener enters tangentially at the side wall of the vortex tank with nearly flat velocity profile from the bottom to the liquid level. Although a viscous boundary layer forms near the side wall, it does not disturb a main flow because the boundary layer thickness is very small. The exit hole is located at the center of the bottom wall. The diameter of the exit hole is .48 cm and this is about 3% of that of the vortex tank. It takes about one to two hours to get a steady state vortex flow in this flow system.

144

······

is one of the reasons why quantitative velocity measurements are difficult for the polymer solution.

A detailed sketch and photograph of the vortex tank are shown in Fig. 4.2 and Fig. 4.3 respectively. The open ended vortex tank made by plexiglas has a special inlet The fluid is first fed into a small tube from section. the constant head tank. The small tube is equipped with 39 equally spaced small holes of .32 cm diameter along its entire height. The fluid then flows into a thin channel through these small holes. A flow straightener made by a pile of many small tubes is located at the end of the channel. The fluid come through the flow straightener enters tangentially at the side wall of the vortex tank with nearly flat velocity profile from the bottom to the liquid level. Although a viscous boundary layer forms near the side wall, it does not disturb a main flow because the boundary layer thickness is very small. The exit hole is located at the center of the bottom wall. The diameter of the exit hole is .48 cm and this is about 3% of that of the vortex tank. It takes about one to two hours to get a steady state vortex flow in this flow system.

Fig. 4.3

4.3 Photographic Tracer Technique

Tangential velocity V_{θ} at the free stream region, axial velocity V_z along the axis of rotation and axial velocity near the exit hole are quantitatively measured by this technique. These velocity components are determined from time lapse photographs of small particles suspended in a thin section of the fluid which is illuminated by a collimated beam of light (Hill, 1969 and Chiou, 1970). A strobe light (1540 strobolume, 1540-Pl oscilator, 1540-P2 lump, Genrad) can flash up to about 400 times per second and the duration of each flash is only about μ sec. All measurements are calibrated by photographs of scale.

The tangential velocity ${\rm V}_{\rm A}$ in the free stream region is measured at different radial positions. The measurement is done at two different axial positions. The V_A -data at two axial positions is enough to represent ${\rm V}_{\rm A}$ in the free stream region because the tangential velocity is almost independent of axial position. The V_A is calculated from a particle's dot trajectory on the bottom view photograph using a horizontally collimated light. The camera (Nikomat FTN F2.0) is located underneath the vortex tank so that a distortion due to free surface is eliminated. The setup of $v^{}_{\theta}$ measurement is shown in Fig. 4.4. Fig. 4.5 shows the picture of a typical particle's dot trajectory. A number of dots can be controlled by adjusting both the flash rate of strobe light and the exposure time of camera. The axis of rotation on the photograph is determined by shifting a

_ _ - - -

Fig. 4.4 EXPERIMENTAL ARRANGEMENT

For v_{θ} measurement

A Photograph for Measuring ${\rm V}_{\theta}$

a transparency paper on which a number of concentric circles are drawn until the particles' trajectories coincide with the circles. The center of these circles on the transparency paper then indicates the axis of rotation on the photograph. Although radial velocity V_r exists in the free stream region, its value is so small when compared it with V_{θ} that it is hardly determined from the photograph. In Fig. 4.6, V_{θ} is approximately calculated by

$$v_{\theta} = \frac{r_1 + r_2}{2} \frac{\theta_2 - \theta_1}{\Delta t}$$
 4.1

where

$$r_{i} = \sqrt{x_{i}^{2} + y_{i}^{2}}$$

$$i = 1.2 \quad 4.2$$

$$\theta_{i} = \tan^{-1} \frac{y_{i}}{x_{i}}$$

Since each dot in Fig. 4.6 corresponds to individual flash, Δt is determined by

 $\Delta t = nd/r_f$ 4.3

where nd is a number of dots and r_f is flash rate.

The axial velocity measurement in the core region is very difficult with the present photographic technique because the reflection of light from the air core is so strong that it makes the particles near the air core impossible to see. Incomplete vortex flow (the word 'incomplete'

Fig. 4.6 DOTS SHOWING THE TRAJECTORY OF SEED PARTICLES FOR V_{θ} MEASUREMENT

indicates that the air core does not extend down to the exit hole.) thus is established so that V_z at the axis of rotation can be measured from the side view photograph. A vertically collimated beam of light which includes the axis of rotation is used for V_z measurement. As shown in Fig. 4.7, the first slit width is 1.2 cm and the camera is located so that it can detect the scattered lights which makes a right angle with the beam of light source. Fig. 4.8 is a photograph from which V_z at the axis of rotation is calculated. V_z is approximately determined by dividing the distance between two adjacent dots by a time span for two flashes. Averaging the axial positions of the dots gives that of the calculated V_z .

When the axial velocity V_z is measured near the exit hole, a black painted disk with a hole at the center, whose diameter is the same as that of the exit hole, is placed on the bottom wall of the vortex tank so that the reflection of light from the bottom is substantially reduced. Fig. 4.9 is a photograph which shows the flow behavior near the exit hole. From the particle's trajectory in Fig. 4.10, V_z as a function of radial position near the exit hole, is approximately calculated by

$$V_z = \frac{z_1 - z_2}{\Delta t}$$
 at r_m 4.4

where

Fig. 4.7 EXPERIMENTAL ARRANGEMENT

FOR V_z MEASUREMENT

A photograph for Measuring ${\tt V}_{\tt Z}$

A Photograph Showing the Flow Behavior near the Exit Hole

exit hole

$$r_{\rm m} = \frac{r_{\rm l} + r_{\rm 2}}{2}$$
 4.5

Since the magnitude of radial velocity V_r becomes comparable to that of V_{θ} in this region, the particle moves appreciably towards the axis of rotation even in a very short time period ($\Delta t = .045$ sec in Fig. 4.10). Two radial positions r_1 and r_2 , however, are not so different, the approximation (eq. 4.5) may thus be acceptable.

4.4 Experimental Procedure

Several kinds of experiments are done depending on the kind of velocity data to be measured. The experimental procedure for the measurement of the tangential velocity in the free stream region and the axial velocity along the axis of rotation for both a Newtonian fluid (room terperatured water) and a polymer solution are summerized as follows:

1. Calibration: After filling water in the vortex tank, the pictures of scale are taken, first at the two axial position (z_1, z_2) for V_{θ} calibration. Even though the axis of rotation does not coincide exactly with the center line, the error associated with this is negligible.

2. Flow Circulation: Turn on the pump to circulate the water. The valve 1 in Fig. 4.1 is wide open and at the same time valve 4 is closed. By controlling valve 2 and 3, any desired steady state is obtained. Establishing a steady state flow is determined when the fluctuation of the liquid level in the vortex tank becomes within ±.5 cm. The liquid level is usually between 15 cm and 20 cm.

3. Flow Rate and Liquid Level Measurement: After a steady state vortex flow is established, the volumetric flow rate is determined by measuring the amount of the fluid from the vortex tank in a certain time period. The measurement is repeated at least 6 times to ensure the system has reached a steady state. The liquid level is also recorded.

4. Seeding Small Particles (Chiou, 1976): The seeding particles are made from PLIOLITE (Goodyear product: Solution Regin

type S6B Lot 42-13-D1). The PLIOLITE is crushed in a mortar and pestal until a desired particle diameter range is obtained. The diameter of the particle used in the study varies between 208 µm and 425 µm. The optimal particle density is determined by trial and error. The highly concentrated particle solution is first prepared. The particle solution is then added to the feed tank little by little through a pipette. After the particles are well distributed in the whole fluid (it takes about 20 min.), the appropriateness of the particle density is judged by looking through the finder of the camera. V_z Measurement Along the Axis of Rotation: The pictures 5. for the particle behavior at the center of the vortex tank are taken by the method delineated in Fig. 4.7 The aperture and exposure time of the camera are F4.0 and .5 sec. respectively. The flash rate of strobe is 4000 times per minute. The film used for the velocity measurement is Kodak Tri-X pan with ASA 400. Twenty to thirty pictures are taken for V_z measurement. 6. Flow Rate and Liquid Level Measurement: The flow rate and the liquid level are measured again in the way described in procedure 3.

7. V_{θ} Measurement at z_1 and z_2 : After setting up the apparatus as described in Fig. 4.4, the pictures for the particles' behavior at two different horizontal plains $(z_1 \text{ and } z_2)$ in the free stream region are taken. Due to the characteristics of the tangential velocity profile, 4 different flush rates (1000, 2000, 3000, and 4000 times per minute) are used

depending on how fast the particles move in the region of interest. The aperture and exposure time of the camera are F2.0 and $\frac{1}{4}$, $\frac{1}{2}$, 1 sec. About 20 pictures are taken at each plane.

8. Flow Rate and Liquid Level Measurement: The flow rate and the liquid level are measured to see if there is any significant change in the steady state flow during the course of the experiment.

The V_{θ} measurement for a Newtonian fluid is terminated here. For a polymer solution, the procedure is continued to the following:

9. V_{θ} measurement for a polymer solution: A concentrated polymer solution is prepared at least 2 days before use. A certain amount of polymer (Polyethyrene oxide: Polyox 301 made by Union Carbide) is weighed carefully and dissolved in about 30 cc of isopropanol (Paterson and Abernathy, 1970) in a beaker. 1 g of Polyox 301 makes about 30 w. ppm solution for the system. After the powder of the polymer is well scattered in the isopropanol, water is gently poured into the beaker until the solution reaches 1000 cc. The beaker is then covered and allowed to stand until the polymer dissolves completely in the water.

The concentrated polymer solution is poured into the feed tank. As soon as the polymer effect begins. That is, the small fluctuation of the air core is observed. The pump is stopped running so that the degradation of the polymer is

avoided to some extent. The onset behavior of the V.I. is then measured by taking pictures for V_A . All the pictures are taken within 30 seconds after the onset of vortex inhibition. The importance of measurement of the onset behavior is to be able to observe how the V_{β} is changed by introducing the polymer solution into the Newtonian flow pattern. And the information is very useful for the analytical study of vortex inhibition (in Chapter 6) because a numerical simulation is done for the situation where the Newtonian fluid is suddenly replaced by polymer solution to see how the resulting stress field calculated by use of the Newtonian flow behavior changes due to the presence of the macromole-After a couple of minutes, the vortex flow completely cules. shifts to a new quite different flow status which is the vortex flow of the polymer solution. The flow rate and liquid level are then measured.

The procedure for the measurement of axial velocity along the axis of rotation for polymer solution is to follow the procedure 9 with the setup for V_z measurement described in Fig. 4.7.

The V_z measurement procedure near the exit hole is essentially the same as that for V_z along the axis of rotation except that the camera's position is lowered down to the bottom plate of the vortex tank. Since a black painted disk is placed on the bottom wall in order to reduce the reflection of the light from the bottom plate as much as possible, the procedure 7 and 8 are not done for the measurement.
4.5 Oualitative Observations

Four kinds of gualitative observations are done for studying the characteristics of vortex flow for both Newtonian and polymer cases. In this section, the descriptions and results are briefly mentioned. The detailed results with photographs are also presented. The complete vortex flow (the air core extends down to the exit hole) is used because the air core does not disturb the observations. 1. The flow behavior of the core region: A dyed water is used for showing the existence of the core region. When the dyed dolution is dropped from a pipette on the free surface of the Newtonian vortex flow near the axis of rotation, it immediately indicates the existence of a core region near the axis of rotation (Fig. 4.11 (a), (b), (c)). It drains out very rapidly. When it is dropped, however, far away from the axis rotation, the dyed solution makes a very slow swirl motion around the air core keeping its radial distance constant and stays inside the vortex tank much longer than the case of dropping it near the axis of rotation. The observation clearly shows the existence of the air core region where the axial velocity is much faster than that in the free stream region.

A dyed polymer solution (its concentration is about 50 ppm) is then dropped into the core region, the vortex is immediately inhibited (Fig. 4.12 (a),(b)). If dropped in the free stream region, the polymer dyed solution behaves as if it were a Newtonian fluid. The vortex is not inhibited

NEWTONIAN FLUID

A Photograph of Newtonian Vortex Flow

A Photograph of Newtonian Vortex Flow with Newtonian Dyed Solution

Fig. 4.12 (a) THE CORE REGION FOR A 165 POLYMER SOLUTION

A Photograph of Newtonian Vortex Flow with Polymer Dyed Solution

because it does not reach the core region. The observation indicates that the tangential velocity ${\tt V}_{\theta}$ in the core region is reduced due to the presence of the macromolecules and that the polymer effect may be dominant somewhere in the core region. This observation provides quite important information for the vortex inhibition study because it indicates that a large deformation of fluid may take place in the core region. The flow behavior of the bottom boundary layer: The 2. Newtonian dyed solution is injected through a very small hole (its diameter is .04 cm) located in the bottom wall to see the difference in flow behaviors in the bottom boundary layer between a Newtonian fluid and polymer solution. For the Newtonian fluid, the streak of the dye is very smooth and almost all of the dye injected goes directly out through the exit hole (Fig. 4.13 (a),(b)).

For the polymer solution, however, the dye is randomly scattered around the exit hole. Some part of the dye drains but some of it stays near the exit hole for awhile. The flow behavior is very random and no obvious streak line is observed (Fig. 4.14 (a),(b)). It may be said that the polymer effect is important in this area because of the apparent difference in flow behavior between the Newtonian fluid and polymer solution.

3. A cap experiment--near the exit hole: When a small tube is installed right above the exit hole (Fig. 4.15), the Newtonian vortex flow is heavily disturbed because the tube

A Photograph for a Newtonian Fluid

.....

Fig. 4.14 (a) THE FLOW BEHAVIOR OF THE BOTTOM BOUNDARY LAYER FOR A POLYMER SOLUTION

A Photograph for a Polymer Solution

prevents a radial inflow in the bottom boundary layer region from going out through the exit hole. The distinguishing feature of this observation is that installing the cap lowers the liquid level substantially while keeping the flow rate constant (Fig 4.16 (a), (b), (c)). If the liquid level is raised up to the previous level, the flow rate has to be increased about 6%. When the liquid level reaches the previous point, the vortex is inhibited in a very similar way to vortex inhibition by Polyox 301. This experimental observation also emphasizes the importance of the flow behavior near the exit hole.

4. The vortex flow of Newtonian fluids with different viscosity: The width of the air core is measured for Newtonian fluids with different viscosity. As shown in Fig. 4.17 (a), (b),(c), the air core width is not sensitive to changes in viscosity. The fluids used for the observation are waterglycerine solutions (TABLE 4.1). Flow rate and liquid level are also not changed so much by changing viscosity. Both glycerine solution A and B form very similar vortex flow to that by water with respect to the shape of the air core, liquid level and flow rate (Fig. 4.17). Glycerine solution A and 30 wppm polymer solution (Polyox 301) have almost equal relative viscosity. From this, we can conclude that vortex inhibition can not be explained solely by viscous effect, but it has to be due to the elastic nature of the macromolecules.

Fig. 4.16 THE EFFECT OF THE CAP EXPERIMENT

Without the Cap

With the Cap

TABLE 4.1

The Vortex Flow of Glycerin Solutions

fluid	relative viscosity µrel (25°C)	liquid level h (cm)	the air core width (cm)	flow rate (cc/sec)
water	1.000	17.0	.38	36.5
glycerin-water A	1.068	16.5	.41	34.8
glycerin-water B	1.227	16.0	.42	34.6

Fig. 4.17 (a)

Water

V. THE MODIFIED NEARLY HOOKEAN DUMBBELL MODEL

5.1 Introduction

In order to investigate the polymer effect on the flow, an approximate constitutive equation for a dilute polymer solution is needed to see how the stress tensor changes due In this chapter, to the existence of the macromolecules. a new constitutive equation of a dilute solution of flexible macromolecules is developed from the kinetic theory. The main difficulty associated with the kinetic theory of dilute polymeric fluids so far is that it can provide complete information about the stress tensor only for small rates of strain and a few material functions for high strain rates. The reason for the difficulty stems from being unsuccessful in solving the differential equation for the distribution function (called the diffusion equation). Although Giesekus showed that full information about the stress tensor can be obtained for the Hookean dumbbells model without solving the diffusion equation, this model has two serious shortcomings which are shear rate independent viscometric functions and an unbounded elongational viscosity even for moderately high elongational rate.

The constitutive equations studied here not only eliminate the shortcomings associated with the Hookean dumbbell model but also are simple enough to be manipulated for any kind of homegenous flow at all strain rates. And it shows that shear thinning (viscosity decreases with increasing shear rate), non-zero primary normal stress difference coefficient and and a bounded elongational viscosity for high elongational rate.

The new constitutive equation called the Modified Nearly Hookean Dumbbell model (MNHD) is derived in the next section. The model is constructed by matching it with the Nearly Hookean Dumbbell (Armstrong, 1979) (good for a flow where the macromolecule is neither very stretched nor oriented) and with the model which Tanner (1975) developed for a flow where the macromolecule is strongly oriented and stretched. The result of tests for the Modified Nearly Hookean Dumbbell model is then shown by using two simple flow patterns, shear flow and elongational flow. From these tests, the MNHD seems to be a suitable constitutive equation for the vortex inhibition study especially because it predicts an elongational viscosity well when compared with FENE (Warner, 1972) model's results. A good prediction for the elongational viscosity is very important to this study because vortex inhibition is believed due to a drastic increase of the elongational viscosity at a moderate elongational rate.

5.2 Kinetic Theory and the Modified Nearly Hookean Dumbbell Model

A dilute solution of the flexible macromolecules is modeled according to the kinetic theory. The detailed description of the kinetic theory and the dumbbell model is given by Bird, Hassager, Armstrong and Curtiss (1977). Each macromolecule in the dilute polymer solution is idealized as an elastic dumbbell consisting of two spherical beads joined by a non-bendable spring. There are n dumbbells per unit volume, suspended in a Newtonian solvent with viscosity n_s . It is assumed that n is so small that no interaction among the macromolecules occurs. The beads experience a hydrodynamic drag given by Stoke's law with friction coefficient ζ . The configurational distributional function ψ (R,t) is defined as a probability density of finding a dumbbell with an end-to-end vector R. A partial differential equation (diffusion equation) from which the distribution function is determined is then derived from the equation of motions for the beads and the continuity of the distribution function. The polymer contribution to stress tensor $\underline{\tau}_{p}$ is then expressed in terms of expectation values using the distribution function.

For an arbitrary, time-dependent, homogeneous flow with velocity gradient $\nabla \underline{v}^+ = \underline{\kappa}(t)$, the kinetic theory provides the following equations.

المادية مستهورية والمعروف والمتعوية المتعادية المعاد المعاد المعروف ال

.

$$\frac{\langle \underline{R} \ \underline{R} \rangle}{\zeta} = \frac{\underline{D}}{\underline{Dt}} \frac{\langle \underline{R} \ \underline{R} \rangle}{\zeta} - \frac{\langle \underline{K} \ \underline{R} \rangle}{\zeta} \frac{\langle \underline{R} \ \underline{R} \rangle}{\zeta} - \frac{\langle \underline{R} \ \underline{R} \rangle}{\zeta} \frac{\langle \underline{R} \ \underline{R} \ \underline{R} } \zeta} \frac{\langle \underline{R} \ \underline{R} \ \underline{R} } \zeta} \frac{\langle \underline{R} \ \underline{R} \ \underline{R} } \zeta} \frac{\langle \underline{R} \ \underline{R} \zeta$$

$$\underline{\tau} = -\eta_{s} \underline{\dot{Y}} + \underline{\tau}_{p} \qquad 5.2$$

$$\underline{\underline{\tau}}_{p} = -n < \underline{\underline{R}} \underline{\underline{F}}^{(c)} > = nk \underline{\underline{T}}_{\underline{\underline{\delta}}}$$
 5.3

or

$$\underline{r}_{p} = \frac{n\zeta}{4} < \underline{RR} > (1)$$
 5.4

In these equations, (1) is contravariant codeformational differentiation, $\underline{\delta}$ is the unit tensor, $\underline{F}^{(C)}$ is a force vector produced by the spring connector, < > is an expectation value with respect to the distribution function, $\underline{\dot{Y}} = \nabla \underline{v} + \nabla \underline{v}^{\dagger}$ is the rate of strain tensor, $\underline{\tau}$ is stress tensor of a given polymer solution, k is Boltzmann constant and T is temperature.

In order to manipulate these equations, information about spring force vector is necessary. The "finitely extendable nonlinear elastic" (or FENE) connector force law studied by Warner (1972) is

$$\underline{F}^{(C)} = \frac{H_{O}}{1 - (\frac{R}{R_{O}})^2} \underline{R} \qquad R < R_{O} \qquad 5.5$$

where R_0 is the maximum length of the dumbbell. A spring with the force law in eq. 5.5 will be linear for small

extensions, but will get stiffer and stiffer as the spring is more extended and finally it will become infinitely stiff at R_{o} .

Tanner (1975) considers that when a polymer solution is under a strong flow where macromolecules are almost fully stretched due to high strain rate, all of the macromolecules may orient in only one direction and may have a unique endto-end vector $\underline{\tilde{R}}$. A mathematical interpretation of his idea is that the distribution function may be expressed as Dirac's delta function, namely

$$\psi$$
 (R,t) \propto δ (R - R) 5.6

From the normalization condition of the distribution function (an integration of it over the configurational space must be unity)

$$\psi (\mathbf{R}, t) = \delta(\mathbf{R} - \mathbf{R})$$
 5.7

By using eq. 5.7, eq. 5.1 is rewritten with FENE force law.

~

$$\frac{\tilde{R}}{\tilde{R}} \frac{\tilde{R}}{\Gamma(1)} = \frac{4kT}{\zeta} \stackrel{\delta}{=} -\frac{4}{\zeta} \frac{\tilde{R}}{\tilde{R}} \frac{\tilde{R}}{\tilde{R}} \frac{-H_{O}}{1 - (\frac{\tilde{R}}{R_{O}})^{2}}$$
5.8

Introducing a dimensionless structure tensor $\underline{\alpha} = nH_{O} < \underline{R} \underline{R} >$, eq. 5.8 is rewritten

$$\lambda_{\underline{H}\underline{\alpha}(1)} = nk\underline{T}\underline{\delta} - \frac{1}{1 - \varepsilon \frac{t\underline{r}\underline{\alpha}}{nk\underline{T}}} \underline{\underline{\alpha}}$$
5.9

$$\underline{\underline{r}}_{p} = \lambda_{H} \underline{\underline{\alpha}}_{(1)} \qquad 5.4$$

where the time constant $\lambda_{\rm H}$ and the dimensionless small constant ε are defined as $\lambda_{\rm H} = \frac{\zeta}{4{\rm H}}$ and $\varepsilon = \frac{k{\rm T}}{\frac{{\rm H}_{\rm O}{\rm R}_{\rm O}}{2}}$ respectively.

The use of $\underline{\alpha} = nH_0 \quad \tilde{\underline{R}} \quad \tilde{\underline{R}} \quad and \quad tr\underline{\alpha} = \frac{\tilde{\underline{R}}^2}{nH}$ are also made in obtaining eq. 5.9. Eq. 5.9 along with eq. 5.4 may be a suitable constitutive equation for a dilute polymer solution in which the macromolecules are under a strong flow so that they have a unique end-to-end vector $\underline{\tilde{R}}$.

When macromolecules are under a weak flow where the strain rate is not large enough to stretch them, eq. 5.9 is no longer appropriate because the distribution function can not be described by eq. 5.7. Armstrong, Ishikawa, and Essandoh (1979) studied the Nearly Hookean Dumbbell model for a weak flow regime. The spring force law of this model is

$$\underline{F}^{(C)} = H_{O} (1 + \varepsilon \frac{HR^{2}}{kT}) \underline{R}$$
 5.10

In such a weak flow, the parameter ε should be very small and indicates the deviation of the spring tension from linear behavior which is described by the Hookean Dumbbell model. We assume that the distribution function is expanded in power of ε ,

$$\psi = \psi_0 + \varepsilon \psi_1 + \varepsilon^2 \psi_2 + \cdots 5.11$$

In eq. 5.11, Ψ_0 gives the distribution function of the Hookean Dumbbell model and Ψ_1 represents a deviation caused by eq. 5.10 from the linear behavior. In the same way, the structure tensor and stress tensor are also expanded as

$$nH_{O} < \underline{R} \ \underline{R} > = \underline{\alpha}_{O} + \varepsilon \ \underline{\alpha}_{1} + \varepsilon^{2} \ \underline{\alpha}_{2} + \cdot \cdot \cdot \qquad 5.12$$

$$(nH_{O})^{2} < R^{2}\underline{R} \underline{R} > = \underline{\beta}_{O} + \underline{\varepsilon}\underline{\beta}_{1} + \underline{\varepsilon}^{2}\underline{\beta}_{2} + \cdots \qquad 5.13$$

$$\underline{\underline{\tau}}_{p} = \underline{\underline{\tau}}_{0} + \varepsilon \, \underline{\underline{\tau}}_{1} + \varepsilon^{2} \underline{\underline{\tau}}_{2} + \cdots$$
 5.14

where $\underline{\beta} = (nH_0)^2 < R^2 \underline{R} \underline{R} >$ is an additional structure tensor. The use of a regular perturbation method gives the stress tensor in terms of $\underline{\alpha}$ and $\underline{\beta}$, for ε^0 order.

$$\lambda_{H=0}^{\alpha}(1) = nkT \underline{\delta} - \underline{\alpha}_{0} \qquad 5.15$$

$$\underline{\underline{\tau}}_{O} = \lambda_{H} \underline{\underline{\alpha}}_{O}(1)$$
 5.16

for ϵ^1 order,

$$\lambda_{\underline{H}} \underline{\underline{\alpha}}_{\underline{1}}(\underline{1}) = -\underline{\underline{\alpha}}_{\underline{1}} - \frac{\underline{\underline{\beta}}_{\underline{0}}}{\underline{nkT}} \quad 5.17 \quad \underline{\underline{1}}_{\underline{1}} = \lambda_{\underline{H}} \underline{\underline{\alpha}}_{\underline{1}}(\underline{1}) \quad 5.18$$

where $\underline{\beta}_{0} = (tr\underline{\alpha}_{0}) \underline{\alpha}_{0} + 2\{\underline{\alpha}_{0} \cdot \underline{\alpha}_{0}\}$. Eq. 5.16 is easily solved for a given flow field and the result is equivalent to that from the Hookean Dumbbell model. The Nearly Hookean Dumbbell model is obtained by combining eq. 5.15 with eq. 5.17 and the result is

$$\lambda_{\underline{H}\underline{\underline{\alpha}}(1)} = nkT\underline{\underline{\delta}} - \underline{\underline{\alpha}} - \frac{\underline{\varepsilon}}{nkT} \underline{\underline{\beta}}_{0}$$

$$= nkT\underline{\underline{\delta}} - \underline{\underline{\alpha}} - \frac{\underline{\varepsilon}}{nkT} [(tr\underline{\underline{\alpha}})\underline{\underline{\alpha}}_{0} + 2(\underline{\underline{\alpha}} \cdot \underline{\underline{\alpha}}_{0})]$$

$$= nkT\underline{\underline{\delta}} - \underline{\underline{\alpha}} - \frac{\underline{\varepsilon}}{nkT} [(tr\underline{\underline{\alpha}})\underline{\underline{\alpha}} + 2(\underline{\underline{\alpha}} \cdot \underline{\underline{\alpha}})] + 0(\varepsilon^{2})$$
5.19

$$\underline{\tau}_{p} = \lambda_{H} \underline{\alpha}_{(1)}$$
 5.4

To compare the result of the Nearly Hookean Dumbbell model with Tanner's result, eq. 5.9 is expanded for small

$$\varepsilon \frac{\mathrm{tr}\underline{\alpha}}{\mathrm{nkT}},$$

$$\lambda_{\mathrm{H}\underline{\alpha}}(1) = \mathrm{nkT}\underline{\delta} - \underline{\alpha} - \frac{\varepsilon}{\mathrm{nkT}} \mathrm{tr}\underline{\alpha} \cdot \underline{\alpha} + 0(\mathrm{tr}\underline{\alpha}^{2}) \qquad 5.20$$

The only difference is that eq. 5.19 contains an additional term $-\frac{2\varepsilon}{nkT} (\underline{\alpha} \cdot \underline{\alpha})$. Since eq. 5.20 is good for only a weak flow regime, the macromolecule is not extended substantially. And this indicates the following important condition

$$<\varepsilon \frac{H_0 R^2}{kT} > = \frac{\varepsilon}{nkT} tr \alpha <<1$$
 5.21

In other words, the expectation value of the non-linear contribution to the spring force law in eq. 5.10 must be small.

One possible method for combining eq. 5.19 with eq. 5.9 is as follows:

$$\lambda_{\underline{H}} = \underline{nkT} = \underline{\delta} - \underline{\underline{\alpha}} = \underline{nkT} = (1 - \frac{\varepsilon}{\underline{nkT}} t\underline{r}\underline{\alpha}) \frac{2\varepsilon}{\underline{nkT}} (\underline{\alpha} \cdot \underline{\alpha})$$

$$1 - \frac{\varepsilon}{\underline{nkT}} t\underline{r}\underline{\alpha}$$

Equation 5.22 is known as the Modified Nearly Hookean Dumbbell model. For a strong flow regime where all of the macromolecules are lined-up in the same direction and stretched extensively, the term $\frac{\varepsilon}{nkT}$ tr<u>a</u> is nearly unity. Eq. 5.22 thus becomes eq. 5.9 which is the Tanner's model. For a weak flow regime where eq. 5.21 is valid, eq. 5.22 is reduced to the Nearly Hookean Dumbbell model by expanding eq. 5.22 for small $\varepsilon \frac{1}{nkT}$ tr<u>a</u>. A summary of these three models are shown in Table 5.1

5.22

TABLE 6.1

A SUMMARY OF THE THREE CONSTITUTIVE EQUATIONS.

Constitutive		Applicable
Equation	The form of Equation	flow regime
Modified Nearly Hookean Dumbbell Model (Ml) Eq. 5.22	$\lambda_{H} \underline{\underline{\alpha}}(1) = nk \underline{\underline{n}} \underline{\underline{\beta}} - \frac{\underline{\underline{\alpha}}}{1 - \frac{\varepsilon}{nkT}} - (1 - \frac{\varepsilon}{nkT} t \underline{\underline{\alpha}}) \frac{2\varepsilon}{nkT} (\underline{\underline{\alpha}} \cdot \underline{\underline{\alpha}})$	any kind of flow
Tanner's Model (M2) Eq. 5.9	$\lambda_{H} \stackrel{\alpha}{=} (1) = nkT \underline{\delta} - \frac{\alpha}{1 - \frac{\varepsilon}{nkT}} tr \underline{\alpha}$	a strong flow £ nkT tr <u>a</u> ≈ 1
Nearly Hookean Dumbbell Model (M3) Eq. 5.19	$\lambda_{H^{\underline{\alpha}}}(1) = nkT\underline{\delta} - (1 + \frac{\varepsilon}{nkT} tr\underline{\alpha}) \underline{\alpha} - \frac{2\varepsilon}{nkT} (\underline{\alpha} \cdot \underline{\alpha})$	a weak flow <u>€</u> nkT tr <u>a</u> << 1
The stress tensor expression	$\underline{\underline{\tau}}_{p} = \lambda_{H} \underline{\underline{\alpha}}_{(1)}$	

5.3 The predictions of the models

In order to gain physical insight about the three models discussed in the last section, two kinds of simple flow are applied to them to see the behavior of material functions calculated from the models. The stress growth and relaxation for shear flow are numerically calculated for shear stress and the primary normal stress difference. The shear rate dependence of the material functions for a steady shear flow are also calculated. The models are tested for elongational flow to analyze elongational behavior as a function of time and elongational rate.

5.3.1 Shear flow

First shear flow is considered to study viscosity and the primary normal stress difference. The shear flow is given by $v_x = \dot{\gamma}(t)y$, $v_y = v_z = 0$, where $\dot{\gamma}(t)$ is a time dependent rate of strain (shear rate). <u>Stress Growth(de-</u> noted by + sign for material function).

For the stress growth behavior, the shear rate is described by

$$\dot{\gamma}(t) = 0$$
 for $t \le 0$
 $\dot{\gamma}(t) = \dot{\gamma}(constant)$ for $t > 0$
 $\begin{cases} 5.22 \\ \end{cases}$

The normalized intrinsic viscosity $[n^{\dagger}]/[\eta]$ and the normalized primary normal stress coefficient $\Psi_{l}^{\dagger}/\Psi_{l}$ are calculated by the 4-th order Runge-Cutta method. $[\eta]$ and Ψ_1 are values at steady state.

Intrinsic viscosity $[\eta]$ is defined by

$$[\eta] = \lim_{c \to 0} \frac{\eta - \eta_s}{c\eta}$$
 5.23

where non-Newtonian viscosity n is defined as $\tau_{yx} = -n(\dot{\gamma})\dot{\gamma}$ and c is the concentration of polymer solution. One can also define the primary normal stress coefficient Ψ_1 as $\tau_{xx} - \tau_{yy} = -\Psi_1(\dot{\gamma})\dot{\gamma}^2$. Note that these material functions depend on the shear rate. Some results are shown in Fig. 5.1 to Fig. 5.12

General trends for the stress growth are

- Stress overshoot is found only for high shear rate
 (S = 10. in figures).
- 2. The peak value of the overshoot is smaller for smaller ϵ (for example, Fig. 5.1 and Fig. 5.2).
- 3. It takes longer to reach the peak for smaller ε .
- The material functions get to their steady state values faster for higher shear rate.
- 5. There is little difference between S = .1 and S = .01for both η^+ and Ψ^+ .

As to the difference between η^+ and Ψ_{η}^+ :

1. It takes longer to reach steady state for Ψ_1^+ .

2. For higher stear rate (S = 10.0) the peak value of the overshoot is larger and the time required for the peak is shorter for n^+ .

Fig. 5.1 to Fig. 5.12

STRESS GROWTH BEHAVIOR OF

THE THREE MODELS FOR SHEAR FLOW

The following notation is used.

Ml	Modified Nearly Hookean Dumbbell	eq.	5.22
м2	Tanner's model	eq.	5.9
м3	Nearly Hookean Dumbbell	eq.	5.19

El $\varepsilon = .02$

E2 $\varepsilon = .005$

VISCOSITY $[n^+]/[n]$ STRESS DIFFERENCE Ψ_1^+/Ψ_1 DIMENSIONLESS TIME t/λ_H (t is real time [sec]) S dimensionless shear rate $\lambda_H \dot{\gamma}$

Fig. 5.1

Fig. 5.3

96T

:

:

i

Stress Relaxation (denoted - sign for material functions)

The shear rate for the stress relaxation calculation is described by

$$\dot{\dot{\gamma}}(t) = \dot{\dot{\gamma}} \quad (\text{constant}) \qquad t \leq 0 \\ \dot{\dot{\gamma}}(t) = 0 \qquad t > 0 \end{cases}$$
5.23

The steady state values of the material function (which will be discussed later in this chapter) are used as initial condition. The results of the calculation are plotted in Fig. 5.13 to Fig. 5.24.

The general tendencies of the relaxation behavior are 1. The higher the shear rate, the faster the stresses relax. 2. The larger ε , the faster η^- and Ψ_1^- decay.

- 3. No difference is found between cases S = .01 and S = .1.
- 4. It is also found that the relaxation behaviors of η^{-1} and Ψ_{1}^{-1} are exactly equal for each of the three models because of the structure of the models.

Fig. 5.13 to Fig. 5.24

STRESS RELAXATION BEHAVIOR OF THE

THREE MODELS FOR SHEAR FLOW

The following notation is used:

M1	Modified Nearly Hookean Dumbbell	eq.	5.22			
M2	Tanner's model	eq.	5.9			
м3	Nearly Hookean Dumbbell	eq.	5.19			
El	$\varepsilon = .02$					
E2	ε = .005					

VISCOSITY [n]/[n]

STRESS DIFFERENCE Ψ_{1}^{-}/Ψ_{1}

DIMENSIONLESS TIME $t/\lambda_{\rm H}$

S dimensionless shear rate

.

The Comparison of the Models

Fig. 5.25 to Fig. 5.36 show the comparison among the three models. The viscosity and the primary normal stress coefficient are compared for growth and relaxation behavior at various shear rate and ε .

For n^+ comparison, the three models show almost the same result at the lowest shear rate (Fig. 5.25). At moderate shear rate, however, the response of Tanner's model is a little shower (Fig. 5.26). Tanner's model gives the highest peak value at high shear rate and M1 and M3 have almost the same peak values (Fig. 5.27). However, the time required for reaching the peak is equal for the three models. M3 gives a little higher steady state value than those of other two models.

As to n⁻ comparison, Ml and M3 behave in an almost identical manner (Fig. 5.28) and they decay slightly faster than M2 does (Fig. 5.29 and Fig. 5.30). It is also found that the primary stress coefficient (Ψ_1^{+}, Ψ_1^{-}) has the same trends as viscosity $([n^+], [n^-])$ does for both growth and relaxation behavior (Fig. 5.31, Fig. 5.32, Fig. 5.34, Fig. 5.35, Fig. 5.36). At high shear rate (S = 10 and ε = .005), however, Ψ_1^{+} by M2 has higher steady state value and the time required for the peak of overshoot becomes slower (Fig. 5.33). Roughly speaking, the three models predict the same trends. Op to moderate shear rate (S = .01, S = .1 and S = 1.0), the behavior of Ml and M3 are very similar and the prediction by

Fig 5.25 to Fig. 5.36

THE COMPARISON AMONG THE

THREE MODELS FOR SHEAR FLOW

The following notation is used:

Ml.	Modified Nearly Hookean Dumbbell	eq.	5.22
м2	Tanner's model	eq.	5.9
мз	Nearly Hookean Dumbbell	eq.	5.19

El $\varepsilon = .02$ E2 $\varepsilon = .005$

VISCOSITY	[n ⁺]	for growth
	[ŋ]]	for relaxation
STRESS DIFFERENCE	Ψ + Ι	for growth
	Ψ	for relaxation

DIMENSIONLESS TIME $t/\lambda_{\rm H}$

SI $S = \lambda_H \dot{Y} = .01$

S2
$$S = \lambda_{H} \dot{\gamma} = .1$$

S3
$$S = \lambda_H \dot{\gamma} = 1$$
.

S4 S = $\lambda_{H}\dot{\gamma}$ = 10.

.

-

M2 slightly deviates from them. At high shear rate (S = 10.), differences in steady state values between the models are observed.

Steady Shear Flow

The steady state material functions as functions of shear rate are plotted in Fig. 5.37 to Fig. 5.40. Shear thinning for both viscosity and the primary normal stress coefficient is observed for the three models. Both onset of shear thinning and slope of decreasing curve are similar between them.

To sum up the performance of the models for shear flow, they provide fairly good predictions like shear thinning and stress overshoot and have very similar trends. Qualitatively speaking, M2 shows a small deviation from M1 and M3 whose predictions are extremely similar.

Fig. 5.37 to Fig. 5.40

THE STEADY STATE VALUES OF VISCOSITY AND THE

PRIMARY NORMAL STRESS COEFFICIENT FOR SHEAR FLOW

The following notation is used:

Ml	Modified Nearly Hookean Dumbbell	eq.	5.22
M2	Tanner's model	eq.	5.9
мЗ	Nearly Hookean Dumbbell	eq.	5.19

El $\varepsilon = .02$

E2 $\varepsilon = .005$

VISCOSITY [ŋ]/[ŋ]

STRESS DIFFERENCE $\Psi_1/\Psi_{1.0}$

SHEAR RATE $\lambda_{H} \dot{\gamma}$

;

5.3.2 Elongational Flow

The stress growth of elongational viscosity $\bar{\eta}^+$ is calculated by using the models. The elongational flow is described by

$$\dot{\underline{x}} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \dot{\epsilon} \quad \text{for } t > 0 \\ \dot{\underline{x}} = 0 \quad \text{for } t \leq 0 \end{pmatrix} 5.24$$

where $\dot{\epsilon}$ is called elongational rate. The elongational viscosity is defined as $\bar{\eta} = (\tau_{yy} - \tau_{zz})/\dot{\epsilon}$. The results of calcluation are shown in Fig. 5.41 to Fig. 5.46. It is found from these figures the three models behave similarly at low elongational rates (S = .01, S = .1).

Since macromolecules are in an almost equilibrium at this low range of elongational rates, the Brownian motion $(nkT\underline{\delta})$ of the beads and spring force $(\langle \underline{R} \ \underline{F}^{(c)} \rangle)$ of the connector are two dominant contributions to stress tensor \underline{T}_p and these two forces are conterbalanced. No hydrodynamic force obviously is important in such low elongational rates. No matter what kind of distribution function is used, namely δ - function for M2 and perturbed solution of the diffusion equation ($\psi = \psi_0 + \varepsilon \psi_1$ in eq. 5.11) for M3 (Armstrong, 1979), the results of calculation shows that there is no difference between M2 and M3.

However, once the hydrodynamic force becomes significant

Fig 5.41 to Fig. 5.46

THE STRESS GROWTH BEHAVIOR

FOR ELONGATIONAL FLOW

Ml	Modified Nearly Hookean Dumbbell	eq.	5.22
м2	Tanner's model	eq.	5.9
МЗ	Nearly Hookean Dumbbell	eq.	5.19

E1 $\varepsilon = .02$

E2 ε = .005

VISCOSITY normalized elongational viscosity $(\bar{n}^+ - 3n_S)/3(n_O - n_S)$ n_O : viscosity at zero shear rate

DIMENSIONLESS TIME

```
t∕λ<sub>H</sub>
```

S dimensionless elongational rate $\lambda_{H} \dot{\epsilon}$

242

 1° ,

at intermediate elongational rates (S = .5, S = 1.0), M2 shows difference from Ml and M3. And Ml and M2 give almost the same results while the results of M3 deviate from them at high elongational rates (S = 2.0, S = 10.). These tendencies of the three models at both intermediate and high elongational rates can be expected from the previous section where Ml was derived. The qualitative behavior of the three models are explained more explicitly by the results of steady state elongational viscosity.

The steady state elongational viscosity at various elongational rates is calculated and plotted in Fig. 5.47 and Fig. 5.48. Up to S = .3 the three models give quite similar results and from S = .3 M2 starts deviating from ML and M3, while M1 and M2 give almost equal results up to S = 1.0. Then M2 curve gets close to M1 curve and finally they become identical and bounded at high elongational rates. M3 is still increasing and may go to infinite when the elongational rate is further increased. As expected, Ml matches M2 and have the same asymptotic value at high elongational M2 gives higher results than that of M1 in the range rate. $S = .3 \sim 1$. As in Fig. 5.47 the asymptotic value given by Ml and M3 goes up 100. The rapid increase of elongational viscosity observed at the moderate elongational rate corresponds the nearly full extension of the macromolecules which, then, show high resistance to be stretched out above those elongational rates.

Fig. 5.47 to Fig. 5.48

THE STEADY STATE VALUES

OF ELONGATIONAL VISCOSITY

The following notation is used:

ML	Modified Nearly Hookean Dumbbell	eq.	5.22
М2	Tanner's model	eq.	5.9
м3	Nearly Hookean Dumbbell	eq.	5.19

El
$$\varepsilon = .02$$

E2 ε = .005

VISCOSITY normalized elongational viscosity $(\bar{n} - 3n_S)/3(n_o - n_S)$

ELONGATIONAL RATE $\lambda_{H} \dot{\epsilon}$

:

Fig. 5.49 and Fig. 5.50 show the comparison between the exact solution of FENE model, Ml and M2. The elongational viscosity given by FENE model (Bird, et al., 1977) is

$$\overline{\eta} = 3\eta_{S} + \frac{n\zeta}{4} \int_{0}^{\frac{\pi}{2}} \int_{0}^{R_{0}} R^{2} \left(\frac{1}{2}\sin^{2}\theta + 2\cos^{2}\theta\right) \Psi' eq.\phi \text{ fl } R^{2} dR \sin\theta d\theta$$

$$\int_{0}^{\frac{\pi}{2}} \int_{0}^{R_{0}} \Psi' eq.\phi \text{ fe } dR \sin\theta d\theta \qquad 5.25$$

where

$$\psi$$
 eq. = $[1 - (\frac{R}{R_0})^2]^{\frac{1}{2\epsilon}}$ 5.26

$$\phi_{fe} = \exp \left[-\frac{1}{2\epsilon} \left(\frac{R}{R_{o}}\right)^{2} (1 - 3\cos^{2}\theta)\lambda_{H}\dot{\epsilon}\right] \qquad 5.27$$

Eq. 5.25 with eq. 5.26 and eq. 5.27 was numerically integrated over the configuration space in order to obtain Fig. 5.49 and Fig. 5.50. At $\varepsilon = .02$ (Fig. 5.49), M1 represents the FENE model well especially at moderately high elongational rates. On the other hand, M2 overestimates the FENE model at those rates. The three models eventually approach the same asymptotic elongational viscosity at high elongational rates. M2 turns out, however, to be closer to the FENE results when $\varepsilon = .005$ (Fig. 5.50), at range S = .7 to S = 1.0. This indicates that the macromolecules are oriented to a fix direction with smaller elongational rates when they are more flexible. By judging from Fig. 5.49 and Fig. 5.50, the Modified Nearly Hockean Dumbbell (M1) seems to be suitable for vortex inhibition analysis because it predicts the elongational viscosity well when it is compared with the FENE model's prediction. The FENE model is known experimentally to describe intrinsic viscosity for some dilute polymer solution (Christiansen and Bird, 1977/1978).

As mentioned repeatedly so far, one of the very important part of the vortex inhibition study is to find a constitutive equation (approximate if necessary) which can describe the elongational viscosity reasonably well. The use of MNHD, thus, may give reasonable information about the stress field in chapter 6 because first, it has a very simple form so that any kind of locally homogeneous flow can be applied, and, secondly, the elongational viscosity predicted by the model is as good as for the FENE model.

Fig. 5.49 and Fig. 5.50

THE COMPARISON BETWEEN ML, M2 AND FENE MODEL

The following notation is used:

Ml	Modified Nearly H	ookean	Dumbbell	eq.	5.22
м2	Tanner's Model			eq.	5.9
FENE	FENE Model			eq.	5.25
El	$\varepsilon = .02$				
E2	$\varepsilon = .005$				
VISCOSITY		(n-3n ₅	s)/3(n _o −n _s)		

ELONGATIONAL RATE $\lambda H \hat{\epsilon}$

VI. THE ANALYSIS OF THE ONSET BEHAVIOR OF VORTEX INHIBITION

In this chapter, the mechanism of the onset behavior of vortex inhibition is analyzed by the following sequence. First, the Newtonian vortex flow is discussed by the results of the numerical calculation which is described in Chap. 3 with locally obtained experimental data. Secondly, a few remarks are added on the constitutive equation (the Modified Nearly Hookean Dumbbell) studied in Chap. 5 because the MNHD is used for calculating the polymer contribution to the stress tensor in polymer solution. Third, the experimental observation about the onset behavior of vortex inhibition is described. Two important characteristics are emphasized in the section. Fourth, the stress tensor for polymer solution is calculated along the stream lines by the MNHD. The velocity field used for the calculation is the Newtonian vortex flow. Finally, the polymer effect, namely how the flow behavior changes due to the resulting polymer stress tensor, is analyzed by an approximate method to explain the experimental findings qualitatively. A proposed mechanism of vortex inhibition is then briefly discussed.

6.1 The Velocity Field of Newtonian Vortex Flow

The velocity field of Newtonian vortex flow is calculated by the method described in Chap. 3 for higher tangantial Reynolds number $\operatorname{Re}_{\theta}$. The detailed calculation procedure, the complete program listings and full information about the velocity field in terms of Γ , v_r , v_z are found in Appendix A. The velocity component v_{θ} and v_z are locally measured as described in Chap. 4 and compared with those obtained by the numerical simulation.

The general flow behavior of a confined vortex flow is well described by stream lines. Fig. 6.1 and Fig. 6.2 show the results of the numerical calculation which describes the stream lines representing both the radial and axial velocities for lower and higher tangential Reynolds number respectively. Each fluid element also makes swirl motion due to the tangential velocity besides moving along the stream lines. As shown in Fig. 6.1, for $Re_{\theta} = 10$, most of fluid elements supplied at the outer wall move toward the exit hole in taking almost the shortest distance. No reverse (due to positive v_r) or up (due to positive v_z) flow is observed for such a low $\operatorname{Re}_{\theta}$. For higher $\operatorname{Re}_{\theta}$ (= 1370.), however, the flow behavior turns out quite different. For example, taking the stream line $\psi = .8$ in Fig. 6.2, representing 80% of total flow rate, the fluid element initially moves toward the exit hole but after passing the point (r,z) =(.1,.2), the fluid starts moving back and eventually goes

6.1 The Velocity Field of Newtonian Vortex Flow

The velocity field of Newtonian vortex flow is calculated by the method described in Chap. 3 for higher tangantial Reynolds number $\operatorname{Re}_{\theta}$. The detailed calculation procedure, the complete program listings and full information about the velocity field in terms of Γ , v_r , v_z are found in Appendix A. The velocity component v_{θ} and v_z are locally measured as described in Chap. 4 and compared with those obtained by the numerical simulation.

The general flow behavior of a confined vortex flow is well described by stream lines. Fig. 6.1 and Fig. 6.2 show the results of the numerical calculation which describes the stream lines representing both the radial and axial velocities for lower and higher tangential Reynolds number respectively. Each fluid element also makes swirl motion due to the tangential velocity besides moving along the stream lines. As shown in Fig. 6.1, for $Re_{\theta} = 10$, most of fluid elements supplied at the outer wall move toward the exit hole in taking almost the shortest distance. No reverse (due to positive v_r) or up (due to positive v_z) flow is observed for such a low Re_{A} . For higher Re_{θ} (= 1370.), however, the flow behavior turns out quite different. For example, taking the stream line $\psi = .8$ in Fig. 6.2, representing 80% of total flow rate, the fluid element initially moves toward the exit hole but after passing the point (r, z) =(.1,.2), the fluid starts moving back and eventually goes

Stream Lines for Low Reynolds Number

Fig. 6,1

Fig. 6.2

r/R

Stream Lines for High Reynolds Number

into the bottom boundary layer. As shown in Fig. 6.2, the bottom boundary layer is formed for high $\operatorname{Re}_{\theta}$ and 80% of total flow rate is come from this thin boundary layer ragion. The radial velocity in the bottom boundary layer is much larger than that above the layer because the stream lines are very dense. The core region is also recognized by the stream line $\psi = .9$ in Fig. 6.2. Unlike Fig. 6.1 the stream line $\psi = .9$ is much closer to the axis of rotation and this indicates that higher axial velocity forms the core region. And the flow from the bottom boundary layer interacts with the flow from the core region near the exit hole. These qualitative features of vortex flow can also be seen by dye experiment (for the bottom boundary layer and the core region) described in Chap. 4.

Tangential velocity at the free stream region (above the bottom boundary layer) is measured for various $\operatorname{Re}_{\theta}$. Although the measurement is taken both at z = 4.0 cm and z = 10.0 cm, the difference in v_{θ} at these two positions is negligible. This agrees with the results of the numerical calculation (See Appendix A). Fig. 6.3 and Fig. 6.4 show comparison between the experimentally measured v_{θ} and numerically calculated v_{θ} for two different $\operatorname{Re}_{\theta}$ and SS. The numerical results show excellent agreement with experimental data for both cases. The velocity data near the axis of rotation (the core region) cannot be obtained by the present measurement method because the fluid does not stay in a horizontal thin section which is illuminated by collimated

Fig. 6.3

Fig. 6.4
illuminated by a collimated light beam, long enough to be detected by the camera due to the higher axial velocity in this region. However, the agreement between theoretical and experimental results for r > .5 cm makes this calculated v_{θ} in the core region reasonable. The v_{θ} profile for both cases are very similar except that higher $\operatorname{Re}_{\theta}$ gives higher v_{θ} over the entire range of radius. The v_{θ} in both figures reaches its maximum value at about r = .24 cm which is radius of the exit hole.

Fig. 6.5 and Fig. 6.6 show the comparison of v_{π} at the axis of rotation. As shown in these figures, although the calculated v_z predicts the tendency of v_z profile very well, there is discrepancy between theoretical calculation and experimental data. There seems three reasons to explain these differences. First, the zone size (especially in the r-direction) may be too large to provide the detailed information about v at r = 0. And the velocity information from the calculation is v_z at r/R = .01 due to the difficulties in handling at r = 0. In other words, the calculated v is the averaged value between r/R = 0. and r/R = .02because the zone size in the core region $\Delta(r/R)$ is .02. v_z at r = 0 is, therefore, larger than v_z at r/R = .01. Secondly, the radius of the exit hole re can not be described correctly in the simulation because the radius re has to be matched with the point at the center of the zone. This condition makes re in the simulation about 1.5 times larger than the real location of r_e. From the continuity of

The Comparison of ∇_z at r = 0

Fig. 6.5

(cm/sec) v_z

₹ (cm/sec)

-

the fluid, the average value of v_z over the exit hole has to be increased 2.13 times larger for the real case. This is well explained in these figures because the correction factor 2.8 seems to fit the calculation results to the experimental data very well for both cases. Third, the numerical simulation is based on the geometry of a confined vortex flow so that no free surface is considered. However, this may not cause such a difference in v_z because the calcu= lated v_{θ} is matched with experimental data. Therefore, the first two reasons seem to explain the discrepancy. The discrepancy in v_z at r = 0 is not an essential defect mainly because the size of the exit hole is not described correctly. By reducing the r-direction zone size and locating re correctly, the numerical simulation may provide more precise v, information.

The axial velocity at the axis of rotation is increasing in almost linear fashion from the liquid surface, but as the fluid gets close to the exit hole, v_z is accellerated. This is observed from both figures. It is also found from the calculation results that v_z is further increased so rapidly especially when the fluid interacts with the flow from the bottom boundary layer to produce large velocity gradient

 $\frac{\partial \nabla_z}{\partial z}$.

The results of the comparison with experimental measure-

ment show that the numerical simulation certainly describes the vortex flow reasonably well. And the confined geometry of the vortex tank does not give any significant difference from the open free surface vortex flow in terms of velocity field. Since the numerical simulation provides full information about velocity field for the entire vortex geometry and the calculated velocity field reasonably well represents the real velocity field, it is employed for stress tensor calculation for polymer solution in later section.

6.2 Additional Remarks on the Modified Nearly Hookean Dumbbell Model

The Modefied Nearly Hookean Dumbbell model developed in Chap. 5 is used as a constitutive equation for stress tensor calculation of polymer solutions in the later section. In this section, two important characteristics of the MNHD model are described. The proper estimation of parameter ε from the comparison with available experimental data and the relaxation time for stress growth of elongational viscosity are very important factors for analysis of polymer contribution to stress tensor field.

Fig. 6.7 and Fig. 6.8 show the comparison of intrinsic viscosity as a function of shear rate between experimental data obtained by Christiansen and Bird (1977) and the model predictions. The macromolecule used in the experimental data is polystyrene of various molecular weights and at various temperatures. From these figures, the MNHD is seen to show the shear thinning phenomenon. It is also found taht the model shows a linear relation between [n] and log $\dot{\gamma}$ for higher shear rate

$$(\lambda e \gamma > 2, \lambda_{\rm H} = (5\varepsilon+1) e).$$

By comparison with a wide variety of polystyrene solutions, the parameter ε which is associated with the maximum length of the macromolecule R_o falls into the range between .02 and .005, which agrees with the prediction by Christiansen and Bird (1977). This range of the parameter

Fig. 6.7

[ŋ]

Fig. 6.8

[η] vs $\lambda_e \dot{\gamma}$ with Experimental Data (2) (Polystyrene in toluene Mn=10⁷)

 ϵ may, therefore, be a proper choice for polymer stress tensor field calculation.

The stress growth and relaxation of elongational viscosity are plotted with different scaled dimensionless time in Fig. 6.9 and Fig. 6.10. As shown in Fig. 6.9, as the elongational rate $\lambda_{H} \dot{\epsilon}$ increases, the time required for raching a steady state becomes much shorter. This characteristic is quite different from the growth behavior of shear viscosity shown in Chap. 5 where the time to reach steady state is about $t/\lambda_{_{\rm H}} = 4$ for all shear rates. Unlike shear flow, the macromolecules subjected to elongational flow are stretched directly by hydrodynamic force and oriented to the direction of the flow. The time scale for molecular response to this flow, therefore, may be related to the elongational rate i. This is clearly explained when the elongational viscosity is plotted with the dimensionless time scaled by $1/\hat{\epsilon}$ in Fig. 6.10 where the time to reach steady state is about $\dot{\epsilon}t = 3$ for higher elongational rate $\lambda_{H}\dot{\epsilon}$. As will be described in the later section, the shorter response time for higher elongational rate is important for vortex inhibition. The residence time of fluid element is very short in the area where large velocity gradient is established becasue the velocity of the fluid is usually very high. Unless the macromolecules are excited within the residence time of the fluid element, it would be carried away from the area of large velocity gradient before polymer effect appears. Thus it is necessary for realizing the polymer

Dynamic Behavior of Elongational Viscosity

with Time Scaled by $\lambda_{\underline{H}}$

 $c/\lambda_{\underline{H}}$

Dynamical Behavior of Elongational Viscosity with Time Scaled by ϵ^{-1}

effect on the flow field that the response time for high elongational rate must be short besides high elongational viscosity which is emphasized in chap. 5.

6.3 Experimental Observation of the Onset Behavior of Vortex Inhibition

The onset behavior of vortex inhibition which is explained in Chap. 4 is described in this section. The information about the onset behavior is very important for analysis of vortex inhibition because it provides the transient flow behavior from Newtonian fluid to polymer solution. Shortly after concentrate polymer solution is poured into the feed tank, the polymer effect appears, that is, a small fluctuation of the air core is observed and the liquid level starts decreasing. This onset behavior of vortex inhibition is measured in terms of the tangential velocity v_A and axial velocity at the axis of rotation $v_z | r = 0$. These variables are measured 30 seconds after the onset. As shown Fig. 6.11, after a couple of minutes, the vortex flow completely shifts to a new quite different flow status which is a fully developed vortex flow of the polymer solution. The flow rate and liquid level are measured. The analysis of the fully developed vortex flow of the polymer solution seems to be irrelevant for this study because of the following reasons. First, the fluctuation of the air core is very large and random so that it is almost impossible to obtain consistent velocity data especially for v_{τ} at r = 0. Secondly, since the liquid level is dropped to about 50% of its original figure and the total flow rate is not changed very much (see number in Fig. 6.11), a much higher tangential

Fig. 6.11

The Difference between the Newtonian Vortex Flow and

A Fully Developed Vortex Flow of Polymer Solution

The Newtonian vortex flow

flow rate: 33.5 cc/sec

A fully developed vortex flow of polymer solution

flow rate: 30.0 cc/sec

velocity is established and this explains the broadening of the air core. This larger tangential velocity, however, may not directly be caused by the polymer effect but rather is due to the decrease of the liquid level while the flow rate is almost unchanged. To investigate the polymer effect on the vortex flow, it is, therefore, more sensible to measure the onset behavior of vortex inhibition rather than the fully developed vortex flow. Besides these two reasons, the measurement of the onset behavior is more consistent with the simulation which will be discussed in the next section where the polymer stress tensor field is calculated by the MNHD based on the Newtonian velocity field obtianed in section 6.1. The calculation simulates a physical situation where the Newtonian fluid is suddenly replaced by the polymer solution in order to see how the stress field changes due to the presence of the macromolecules.

Fig. 6.12 shows the tangential velocity measured during the onset of vortex inhibition. The tangential velocity in the free stream region is not appreciably changed when compared with that of the Newtonian fluid. Several velocity data, however, are found near the axis of rotation (the core region). In v_{θ} measurement for the Newtonian fluid, no data could be obtained at the core region because of large axial velocity (see section 6.1). These data indicate the reduction of v_{z} in the core region due to the fluctuation of the air core. Fig. 6.12 may suggest that the polymer

effect appears in the core region while nothing is changed in the free stream region during the onset of vortex inhibition as far as v_{θ} profile concerns.

The axial velocity data on the axis of rotation is shown in Fig. 6.13 during the onset along with the Newtonian data. The v_{τ} data for the polymer solution are obtained from different pictures taken during the onset. The picture number in Fig. 6.13 indicates that the lower the number is, the earlier the picture is taken. The picture number, however, does not correspond to the precise sequence of the onset behavior. At each time, different v_z data is obtained because of the fluctuation of the air core. For example, the data of PIC #11 shows that the velocity becomes almost zero about z = 4 cm which is quite different from that of the Newtonian fluid. Fig. 6.13 indicates that v_z at r = 0is always lower than the case of the Newtonian fluid from any of the data. This seems to be inconsistent with the fact that the liquid level is falling during the onset of vortex inhibition. The averaged v_{τ} over the exit hole must be increased to explain the liquid level's falling, v_z at r = 0, on the other hand, seems to decrease at the exit hole from Fig. 6.13.

Thus two experimental findings during the onset of vortex inhibition should be emphasized in this section. First, the averaged axial velocity over the exit hole is increased

Fig. 6.13

Axial Velocity Measured before and during the Onset

 ∇_z (cm/sec)

.

- -- -- -----

because the liquid level is decreasing while the total flow rate is not changed appreciably. Secondly, the axial velocity at the axis of rotation seems to be decreased at the exit hole from the extrapolation of the experimental data. These two findings characterize the onset behavior of vortex inhibition and these are analyzed in the following sections. 6.4 The Polymer Contribution to Stress Tensor Along the Stream Lines (Based on the result of the case $Re_{\theta} = 1370$ and ss = -.02)

In this section, the stress tensor is calculated by using the constitutive equation (the Modified Nearly Hookean Dumbell) along the stream line obtained in the previous section. Since the onset behavior of vortex inhibition is the transient state from the Newtonian vortex flow to the fully developed vortex flow of the polymer solution, the information about the velocity gradient may be obtained from the results of the Newtonian vortex calculation. The advantage of the numerical calculation of the Newtonian vortex flow is to provide full information about every component of the velocity gradient tensor In this way, the stress tensor field for the entire region. is calculated along the stream lines. By following the fluid element on each of the stream lines, the complicated calculation of the convective terms in the MNHD can be avoided. The six equations of the structure tensor derived from the MNHD are rr-component

$$\lambda_{\rm H} \frac{D}{Dt} \alpha_{\rm rr} = 2\lambda_{\rm H} \frac{\partial v_{\rm r}}{\partial r} \alpha_{\rm rr} + 2\lambda_{\rm H} \frac{\partial v_{\rm r}}{\partial z} \alpha_{\rm rz} - 2\lambda_{\rm H} \frac{v_{\theta}}{r} \alpha_{\rm r\theta}$$
$$- \frac{\alpha_{\rm rr}}{A} - \frac{2\epsilon A}{nkT} (\alpha_{\rm rr}^2 + \alpha_{\rm r\theta}^2 + \alpha_{\rm rz}^2) + nkT \qquad 6.1$$

 $\theta\theta$ -component

$$\lambda_{\rm H} \frac{D}{Dt} \alpha_{\theta\theta} = 2\lambda_{\rm H} \frac{\nabla_{\rm r}}{r} \alpha_{\theta\theta} + 2\lambda_{\rm H} \frac{\partial \nabla_{\theta}}{\partial r} \alpha_{\rm r\theta} + 2\lambda_{\rm H} \frac{\partial \nabla_{\theta}}{\partial z} \alpha_{\rm z\theta}$$

$$-\frac{\alpha_{\theta\theta}}{A} - \frac{2\varepsilon A}{nkT}(\alpha_{r\theta}^2 + \alpha_{\theta\theta}^2 + \alpha_{\thetaz}^2) + nkT \qquad 6.2$$

zz-component

$$\lambda_{\rm H} \frac{D}{Dt} \alpha_{zz} = 2\lambda_{\rm H} \frac{\partial v_z}{\partial z} \alpha_{zz} + 2\lambda_{\rm H} \frac{\partial v_z}{\partial r} \alpha_{rz}$$
$$- \frac{\alpha_{zz}}{A} - \frac{2\epsilon A}{nkT} (\alpha_{rz}^2 + \alpha_{\theta z}^2 + \alpha_{zz}^2) + nkT \qquad 6.3$$

rθ-component

$$\lambda_{\rm H} \frac{D}{Dt} \alpha_{\rm r\theta} = \lambda_{\rm H} \left(\frac{\partial v_{\rm r}}{\partial r} + \frac{v_{\rm r}}{r} \right) \alpha_{\rm r\theta} + \lambda_{\rm H} \frac{\partial v_{\theta}}{\partial r} \alpha_{\rm rr} - \lambda_{\rm H} \frac{v_{\theta}}{r} \alpha_{\theta\theta}$$
$$+ \lambda_{\rm H} \frac{\partial v_{\rm r}}{\partial z} \alpha_{\theta z} + \lambda_{\rm H} \frac{\partial v_{\theta}}{\partial z} \alpha_{\rm rz} - \frac{\alpha_{\rm r\theta}}{A} - \frac{2\varepsilon A}{nkT} (\alpha_{\rm rr} \alpha_{\rm r\theta} + \alpha_{\rm r\theta} \alpha_{\theta\theta} + \alpha_{\rm rz} \alpha_{\theta z})$$
$$= 6.4$$

rz-component

$$\lambda_{\rm H} \frac{D}{Dt} \alpha_{\rm rz} = \lambda_{\rm H} \left(\frac{\partial v_{\rm r}}{\partial r} + \frac{\partial v_{\rm z}}{\partial z} \right) \alpha_{\rm rz} + \lambda_{\rm H} \frac{\partial v_{\rm z}}{\partial r} \alpha_{\rm rr} + \lambda_{\rm H} \frac{\partial v_{\rm r}}{\partial z} \alpha_{\rm zz}$$
$$- \lambda_{\rm H} \frac{v_{\theta}}{r} \alpha_{\theta z} - \frac{\alpha_{\rm rz}}{A} - \frac{2\varepsilon A}{nkT} (\alpha_{\rm rr} \alpha_{\rm rz} + \alpha_{\rm r\theta} \alpha_{\theta z} + \alpha_{\rm rz} \alpha_{\rm zz}) \qquad 6.5$$

 θz -component

$$\lambda_{\rm H} \frac{D}{Dt} \alpha_{\theta z} = \lambda_{\rm H} \left(\frac{\partial v_z}{\partial z} + \frac{v_r}{r} \right) \alpha_{\theta z} + \lambda_{\rm H} \frac{\partial v_{\theta}}{\partial r} \alpha_{r z} + \lambda_{\rm H} \frac{\partial v_z}{\partial r} \alpha_{r \theta} + \lambda_{\rm H} \frac{\partial v_z}{\partial r} $

The symbol A in these equations is given by

$$A = 1 - \frac{\varepsilon}{nkT} (\alpha_{rr} + \alpha_{\theta\theta} + \alpha_{zz})$$
 6.7

The polymer stress tensor \underline{T}_p is then obtained from the structure tensor $\underline{\alpha}$.

$$\tau_{p,rr} = \lambda_{H} \frac{D}{Dt} \alpha_{rr} - 2\lambda_{H} \frac{\partial v_{r}}{\partial r} \alpha_{rr} - 2\lambda_{H} \frac{\partial v_{r}}{\partial z} \alpha_{rz} + 2\lambda_{H} \frac{v_{\theta}}{r} \alpha_{r\theta}$$
6.8

$$\tau_{p,\theta\theta} = \lambda_{H} \frac{D}{Dt} \alpha_{\theta\theta} - 2\lambda_{H} \frac{\partial v_{\theta}}{\partial r} \alpha_{r\theta} - 2\lambda_{H} \frac{\partial v_{\theta}}{\partial z} \alpha_{z\theta} - 2\lambda_{H} \frac{v_{r}}{r} \alpha_{\theta\theta}$$
6.9

$$\tau_{p,zz} = \lambda_{H} \frac{D}{Dt} \alpha_{zz} - 2\lambda_{H} \frac{\partial v_{z}}{\partial z} \alpha_{zz} - 2\lambda_{H} \frac{\partial v_{z}}{\partial r} \alpha_{rz} \qquad 6.10$$

$$\tau_{p,r\theta} = \lambda_{H} \frac{D}{Dt} \alpha_{r\theta} - \lambda_{H} \left(\frac{\partial v_{r}}{\partial r} + \frac{v_{r}}{r} \right) \alpha_{r\theta} - \lambda_{H} \frac{\partial v_{\theta}}{\partial r} \alpha_{rr}$$

+
$$\lambda_{\rm H} \frac{v_{\theta}}{r} \alpha_{\theta\theta} - \lambda_{\rm H} \frac{\partial v_{\rm r}}{\partial z} \alpha_{\theta z} - \lambda_{\rm H} \frac{\partial v_{\theta}}{\partial z} \alpha_{\rm rz}$$
 6.11

$$\tau_{p,rz} = \lambda_{H} \frac{D}{Dt} \alpha_{rz} - \lambda_{H} \left(\frac{\partial v_{r}}{\partial r} + \frac{\partial v_{z}}{\partial z} \right) \alpha_{rz} - \lambda_{H} \frac{\partial v_{z}}{\partial r} \alpha_{rr}$$
$$- \lambda_{H} \frac{\partial v_{r}}{\partial z} \alpha_{zz} + \lambda_{H} \frac{v_{\theta}}{r} \alpha_{\theta z} \qquad 6.12$$

$$\tau_{p,\theta z} = \lambda_{H} \frac{D}{Dt} \alpha_{\theta z} - \lambda_{H} \left(\frac{\partial v_{z}}{\partial z} + \frac{v_{r}}{r} \right) \alpha_{\theta z} - \lambda_{H} \frac{\partial v_{\theta}}{\partial r} \alpha_{rz}$$

$$-\lambda_{\rm H} \frac{\partial v_{\rm Z}}{\partial r} \alpha_{\rm r\theta} - \lambda_{\rm H} \frac{\partial v_{\rm \theta}}{\partial z} \alpha_{\rm ZZ}$$
 6.13

The calculation is supposed to start from the outer wall where the fluid is introduced to the vortex tank. However, the simple speculation in Chap. 3 indicates that the velocity gradient is too small to excite the macromolecules until the fluid elements approach the area near the exit hole where the velocity gradients seem to become very large. So the calculation of the stress tensor is limited only to this area. Fig. 6.14 is a detailed picture of Fig. 6.2 of the stream lines near the exit hole. Once the fluid element reaches the square area enclosed by the lines of r/R = .1 and z/H = .1, the calculation begins. For example, the stress calculation of ψ = .8 starts from the point (r/R, z/H) = (.1, .025). The structure tensor at the point 1 is obtained by a numerical integration of eq. 6.1 to eq. 6.7. The Runge-Kutta fourth order method is accurate enough for this type of integration. (The program listing is found in Appendix C). By choosing a small time step, the time advanced structure tensor is calculated up to the point 1. Every component of the velocity gradient tensor in the equations is approximately determined from the velocity field at the point 1. Once the structure tensor at the point 1 is obtained, the polymer stress tensor is calculated by eq. 6.8 to eq. 6.13.

Stream Lines near the Exit Hole

This calculation procedure is repeated until the fluid element reaches the point 4 where the large velocity gradient is expected. The structure tensor as well as the polymer stress tensor is also calculated in this way for $\psi = .85$, $\psi = .9$ and $\psi = .1.0$.

TABLE 6.1 to TABLE 6.4 show the results of the calculation. It is found from these tables that $\tau_{p,zz}$ is increased extremely rapidly very near the exit hole for the stream lines $\psi = .85$ and $\psi = .8$. This is due to the large velocity gradient especially

$$\frac{\partial \mathbf{z}}{\partial \mathbf{z}}$$

established at the exit hole. The large velocity gradient for $\psi = .8$ may easily be speculated because the fluid element from the bottom boundary layer has almost zero axial velocity and once it reaches near the exit hole, it is forced to be flowed out with a large axial velocity. The boundary layer thickness is so thin that the axial velocity has to be increased in a very short distance. And the macromolecules are suddenly stretched out in the z-direction nearly to the maximum length R_0 (see the column $\langle (R/Ro)^2 \rangle$ in the tables). Since the relaxation time is very short when the velocity gradient is large according to the MNHD, the macromolecule has enough time to be stretched extensively even in a very short period of time. The macromolecules flowing along the stream lines $\psi = 1.0$ and $\psi = .9$, (TABLE 6.1 and TABLE 6.2)

POLYMER STRESS TENSOR ALONG THE STREAM LINE $\psi = 1.0$

POINT	TIME	$\underline{T}_{p} [g \cdot cm/sec^2 \cdot cm^2]$						
NOWDER		^T p,rr	^τ p,θθ	^T p,zz	^T p,rθ	^T p,rz	^τ p,θz	
0	0	.000	-000	.000	.000	.000	.000	
1	.01	.000	.000	.000	.000	.000	.000	.0146
2	.02	.000	.000	027 (04)	.000	.000	.000	.0153
3	.03	.000	.000	045 (24)	.000	.000	.000	.0157
4	.04	.000	.000	147 (68)	.000	.000	.000	.0182
5	.043	.000	.000	203 (96)	.000	.000	.000	.0144

POLYMER STRESS TENSOR ALONG THE STREAM LINE ψ = .9

POINT	TIME [SEC]		$\left(\left[R \right]^{2} \right)$					
NOMBER		^τ p,rr	^τ ρ,θθ	^τ p,zz	^τ p,rθ	^T p,rz	^τ p,θz	
0	0	0	0	0	0	0	0	
1	.02	0	001	259 (084)	003	090	141	.0207
2	.04	.008	.012	431 (266)	005	105	145	.0241
3	.06	.028	.031	645 (64)	001	076	099	.0280
4	.07	.026	053	-9.158 (-3.02)	031	390	966	.1660
5	.075	.113	.002	-23.618 (-3.02)	.039	.338	991	.3183

POLYMER STRESS TENSOR ALONG THE STREAM LINE ψ = .85

$\underline{\mathbf{I}}_{\mathbf{p}} [g \cdot cm/sec^2 \cdot cm^2]$										
POINT NUMBER	TIME (SEC)	[†] p,rr	^τ p,θθ	^T p,zz	^τ p,rθ	^t p,rz	^τ p,θz	$<\left(\frac{R}{R_{O}}\right) >$		
0	0	0	0	0	0	0	0			
1	.04	-2.368	442	-2.322 (112)	1.619	-2.352	1.481	.1185		
2	.08	-3.700	-1.376	-8.183 (398)	2.376	-5.459	3.326	.2175		
3	.12	301	.011	-3.844 (504)	.182	819	.261	.0948		
4	.15	-1.039	978	-44.899 (-2.08)	-1.060	-7.088	-6.831	.4869		
5	.155	.083	367	-96.449 (-3.80)	.061	.688	-6.077	.6819		

POLYMER STRESS TENSOR ALONG THE STREAM LINE $\psi = .8$

	$\frac{1}{p} \left[g \cdot cm/sec^2 \cdot cm^2\right]$								
POINT NUMBER	TIME [SEC]	τ _{p,rr}	^τ ρ,θθ	τ _{p,zz}	^τ p,rθ	τ _{p,rz}	^τ p,θz	$\left\langle \left(\frac{R_{o}}{R_{o}} \right) \right\rangle$	
0	0	0	0	0	0	0	0		
1	.03	040	.001	069 (02)	.078	114	.030	.0172	
2	.07	-3.461	-3.315	-2.575 (~.7)	3.484	-2.997	2.805	.1704	
3	.09	-35.001	-12.902	-47.004 (-2.12)	21.332	-40.598 (-2.285)	25.564	.6769	
4	.097	306	.039	-171.298 (-5.28)	.005	-7.909 (~.97)	.646	.8019	

THE LOCATION OF EACH POINT

POINT	$\psi = 1.0$		ψ=.9		ψ = .85		$\psi = .8$	
NUMBER	r/R	2/ H	r/R	z/H	r/R	z/H	r/R	z/H
0	0	.1	.025	.1	.04	.1	.1	.025
1	0	.08	.024	.078	.038	.082	.078	.026
2	0	.059	.023	.055	.036	.061	.050	.023
3	0	.037	.021	.029	.031	.038	.037	.014
4	0	.012	.02	.013	.026	.014	.028	.003
5	0	.044	.018	.002	.022	.004		

on the other hand, are not stretched substantialy. For example, at $\psi = 1$, $\tau_{p,zz}$ is less than the half of the Newtonian stress counterpart even at the point 5 so that the fluid element may not be influenced by the presence of the macromolecules. From the analysis of the Newtonian velocity field, it is found that the dominant forces in the Newtonian flow in the z-direction very near the exit hole are pressure gradient and the corresponding inertia forces. The viscous force, therefore, does not contribute effectively to the force balance. In order to cope with these dominant forces, $\tau_{p,zz}$ must be much larger than the Newtonian stress.

As shown in the case of $\psi = .85$ and $\psi = .8$, $\tau_{p,zz}$ very near the exit hole becomes much larger than the Newtonian case, it may, therefore, be possible that this stress component influences the flow behavior. To investigate the influence of $\tau_{p,zz}$ on the flow behavior, the force balance (the equation of motion) in the z-direction has to be considered with the polymer contribution to the stress tensor terms. This will be discussed in the next section. 6.5 The Analysis of Polymer Effect near the Exit Hole

As found in the last section, the dramatic increase of $\tau_{p,ZZ}$ is established near the exit hole for $\psi = .8$ and $\psi = .85$. This is due to elongational nature of the flow behavior which stretches the macromolecules substantially as studied in Chap. 5. In this section, we investigate how this $\tau_{p,ZZ}$ influences the flow behavior by using the z-direction force balance and try to explain qualitatively the onset behavior of vortex inhibition which was described in section 6.3.

The force balance in the z-direction (z-component of the equation of motion) is written by

$$\rho \left(v_r \frac{\partial v_z}{\partial r} + v_z \frac{\partial v_z}{\partial z} \right) = - \frac{\partial p}{\partial \overline{z}} - \frac{1}{r} \frac{\partial}{\partial r} (r\tau_{rz}) + \frac{\partial \tau_{zz}}{\partial \overline{z}} + \rho g \qquad 6.14$$

The study of the Newtonian flow field obtained in section 6.1 near the exit hole shows that the pressure gradient

$$-\frac{9z}{9b}$$

and the corresponding inertia force

$$rac{9a}{2a}$$
 $\frac{3a}{9a}$

are the main dominant forces and the Newtonian stress terms are too small to contribute the force balance. TABLE 6.6

	$pv_r \frac{\partial v_z}{\partial r}$	$\rho v_z \frac{\partial v_z}{\partial z}$	- 3p 3z	$-\frac{1}{r}\frac{\partial}{\partial r}(r\tau_{rz})$	$-\frac{\partial}{\partial z}\tau_{zz}$	ρg
magnitude [gcm/sec ² cm ³]	953	4750	4703	3 (*L)	23 (921)	980
orientation for the z direction (+ upward - downward)	÷	+	-	+	- (-)	-

THE MAGNITUDE AND ORIENTATION OF EACH TERM IN THE FORCE BALANCE

TABLE 6.6

- *1 The contribution of the polymer solution is less than 5% of the dominant force $-\frac{\partial p}{\partial r}$.
- * The figure and sign in the parenthesis are contribution of the polymer solution estimated from TABLE 6.1 to TABLE 6.4.
- * The Newtonian stress tensor is calculated by Newton's law:

 $\begin{cases} \tau_{rz} = -\mu \left(\frac{\partial V_z}{\partial r} + \frac{\partial V_r}{\partial z} \right) \\ where \quad \mu = .01 \ [g/cmsec], \quad \rho = I \ g/cm^3 \text{ for water.} \\ \tau_{zz} = -2\mu \ \frac{\partial V_z}{\partial z} \end{cases}$

shows the magnitude of each term with the orientation of forces around the point (r/R, z/H) = (.03, .01) for the case of $Re_{\pm} = 1370$, SS = -.02. As shown in TABLE 6.6, when the $\tau_{p,zz}$ calculated in the last section is used for the term

$$\frac{\partial}{\partial z} \tau_{zz}$$

it becomes about 20% of the pressure gradient term and the direction of this force turns out to be negative. In other words, the new force produced by the macromolecules tends to push fluid downward, that is, the axial velocity at this point may be increased. Qualitatively speaking, this is consistent with the decrease of the liquid level during the onset behavior because the average axial velocity over the exit hole is increased. Although nothing can be said about the magnitude of the increased axial velocity unless the equation of motion is solved with the polymer stress tensor, it may be a reasonable outcome that the polymer effect appears near the exit hole especially around r/R = .03 and causes the liquid level's falling.

In order to see how the flow behavior changes according to the presence of the macromolecules, one must solve the equation of motion with the polymer stress tensor expression (the constitutive equation). This, however, requires a tremendous amount of calculation because nine non-linear partial differential equations (three from the equation of motion and six from the constitutive equation) are to be

sclved simultaneously. The calculation is much more difficult and involved than the case of Newtonian flow problem. Instead of pursuing this difficult calculation, the polymer effect on the flow behavior may be roughly estimated simply by changing the boundary condition at the exit hole in the Newtonian vortex flow calculation because the polymer stress tensor becomes significant only for this area. The calculation procedure, thus, is described as follows. First, the axial velocity at the exit hole is reasonably estimated by the contribution of the polymer stress tensor. Secondly, the boundary condition of the stream function is fixed according to the estimated axial velocity. Third, the velocity field for the entire vortex flow is calculated by the method described is section 3.5 for a short period of time. And finally the stress tensor is analyzed along the newly calculated stream lines in the same way as described in section 6.4 to see the tendency of the polymer stress field. In this way, we could at least see an initial stage of flow change which may correspond to the onset behavior of vortex inhibition.

According to the results of $\tau_{p,ZZ}$ obtained in section 6.4, the stream function at the exit hole is estimated (see Appendix E for details). The velocity field is then calculated with this boundary condition for 20 iterations which is equivalent to .286 seconds. An initial condition used for the calculation is the velocity field of the case $\text{Re}_{\theta} =$ 1370, SS = 0.02 (See Appendix A for full information). Fig.

6.15 shows the axial velocity at the axis of rotation after 20 iterations. The v_{τ} at r = 0 slightly decreases from the Newtonian case especially when z is less then 5 cm. Even for such a short period of time, the axial velocity responds to the change of the boundary condition which is substitution of the polymer effect at the exit hole. The decrease of the axial velocity seems to correspond to one of the experimental findings during the onset behavior of vortex inhibition. The experimental data in Fig. 6.13 is taken within 30 seconds since the polymer effect is first observed. The axial velocity is always changing from time to time because of the random fluctuation of the air core. All the v_{τ} data in the figure, however, are lower than that of the Newtonian case. The results of calculation does indicate this tendency.

The newly calculated tangential velocity, on the other hand, is no appreciably changed at all from the initial state especially outside the hole region. This is also consistent with the experimental facts. For example, as shown in Fig. 6.12, tangential velocity data during the onset period is not different from the data taken before the onset.

Fig 6.16 shows the stream lines obtained from the calculation. The dotted lines are the stream lines for the initial state. The flow pattern as a whole is not so different in the two calculations. However, the

Axial Velocity Profile after Imposing

Fig. 6.15

Z (cm)

 v_z (cm/sec)

Stream Lines near the Exit Hole after Imposing the Polymer Effect

stream lines above the bottom boundary layer shift to the right to some extent. This shift also explains the reduction of v_{z} at r = 0 because the radial distance between ψ = 1. and ψ = .9 becomes wider. The polymer stress tensor is calculated along each of the stream lines in Fig. 6.16 in the same manner as in section 6.4. The results are listed in TABLE 6.7 to TABLE 6.11. Again Tp,zz very near the exit hole is increased so rapidly for Ψ = .8 and ψ = .85. And the magnitude of $\tau_{p,zz}$ in both stream lines are a little larger than before. $\underline{\tau}_p$ along the stream lines ψ = 1.0 and ψ = .9 is not increased enough to cope with dominant force of the equation of motion and the macromolecules are not stretched at all. The tendency of the polymer stress tensor observed in section 6.5 is even more emphasized still becomes in this calculation. In other words, $\tau_{p,zz}$ large enough to be comparable to the dominant force so that the fluid may be pushed downward again. It is found from the sequence of the calculations that the initial effect of the macromolecules, that is, to increase v_z at the exit hole around r/R = .03, keeps its tendency as time proceeds because the increased v_z also increases the responsible velocity gradient

<u>9 z</u>

producing higher stress tensor component (especially $\psi = .85$). This nature of $\tau_{p,zz}$ is important because once the polymer

TABLE 6.7

POLYMER STRESS TENSOR ALONG THE NEWLY CALCULATED STREAM LINE $\psi = 1.0$

DOTM	пт мы	$\underline{\tau}_{p} [g \cdot cm/sec^{2} \cdot cm^{2}]$							
NUMBER	[SEC]	^T p,rr	т _{р,θθ}	Tp,zz	^τ p,rθ	^T p,rz	^τ p,θz		
0	0	0	0	0	0	0	0		
1	.01	0	0	015	0	0	0	.0150	
2	.02	0	0	042	0	0	0	.0156	
3	.03	0	0	054	0	0	0	.0159	
4	.04	0	0	152	0	0	0	.0183	
5	.045	0	0	230	0	0	0	.0201	

								$\left(R \right)^{2}$
NUMBER	TIME	^τ p,rr	^τ p,θθ	^T p,zz	^τ p,rθ	^T p,rz	^τ p,θz	
0	0	0	0	0	0	0	0	
1	.02	0	0	205	0	089	124	.0194
2	.04	0	0	291	0	090	137	.0214
3	.06	.013	.014	298	.002	081	124	.0209
4	.075	.064	.056	-1.247	.009	.016	128	.0394
5	.081	.101	.052	-5.045	.109	.109	100	.1056

POLYMER STRESS TENSOR ALONG THE NEWLY CALCULATED STREAM LINE ψ = .9

TABLE 6.8

TABLE 0.

POLYMER STRESS TENSOR ALONG THE NEWLY CALCULATED STREAM LINE $\psi = 1.0$

DOIN	ПТМР	$\underline{\underline{\tau}}_{p} [g \cdot cm/sec^{2} \cdot cm^{2}]$								
NUMBER	[SEC]	^T p,rr	^τ ρ,θθ	^τ p,zz	τ _{p,rθ}	^τ p,rz	^τ p,θz			
0	0	0	0	0	0	0	0			
1	.01	0	0	015	0	0	0	.0150		
2	.02	0	0	042	0	0	0	.0156		
3	.03	0	0	054	0	0	0	.0159		
4	.04	0	0	152	0	0	0	.0183		
5	.045	0	0	230	0	0	0	.0201		

TABLE	6	•	8
-------	---	---	---

POLYMER STRESS TENSOR ALONG THE NEWLY CALCULATED STREAM LINE ψ = .9

ΡΩΤΝΦ		<u>⊥</u> p						
NUMBER	TIME	^τ p,rr	^τ p,θθ	τ _{p,zz}	^τ p,rθ	^T p,rz	^τ p,θz	$\left(\frac{R_{o}}{R_{o}}\right)$
0	0	0	0	0	0	0	0	
1	.02	0	0	205	0	089	124	.0194
2	.04	0	0	291	0	090	137	.0214
3	.06	.013	.014	298	.002	081	124	.0209
4	.075	.064	.056	-1.247	.009	.016	128	.0394
5	.081	.101	.052	-5.045	.109	.109	100	.1056

ים דכו אות	6		ο
ТАВЬБ	D	•	9

POLYMER STRESS TENSOR ALONG THE NEWLY CALCULATED STREAM LINE ψ = .85

POINT	T M F		$\left(R \right)^{2}$					
NUMBER	[SEC]	^τ p,rr	^τ p,θθ	τ _{p,zz}	^τ p,rθ	^T p,rz	^τ p,θz	
0	0	0	0	0	0	0	0	
1	.05	-8.917	-3.092	-2.505	5.382	-4.716	2.779	.2313
2	.10	-13.552	-5.643	-7.402	8.870	-10.018	6.470	.3456
3	.13	-8.990	-3.555	-23.532	5.775	-14.551	9.160	.4180
4	.15	982	107	-40.625	405	-6.585	-2.610	.4551
5	.16	319	093	-131.810	241	-7.394	-4.456	.7526

TABLE 6.10

POLYMER STRESS TENSOR ALONG THE NEWLY CALCULATED STREAM LINE ψ = .8

POINT	TIME [SEC]		$\left(\frac{R}{R}\right)^2$					
	[020]	¹ p,rr	^τ p,θθ	^T p,zz	^τ p,rθ	^T p,rz	^τ p,θz	
0	0	0	0	0	0	0	0	
1	.04	0382	595	143	.574	243	.195	.0395
2	.08	-6.436	914	-6.286	2.494	-6.415	2.323	.2217
3	.10	~5.411	268	-34.717	996	-13.699	-2.922	.4478
4	.106	-2.327	022	-177.127	262	-20.540	-2.678	.8097

effect appears this effect may continue.

In this section it is found from the analysis of $\tau_{p,zz}$ that the dramatic increase of $\tau_{p,zz}$ along the stream lines $\psi = .85$ and $\psi = .8$ very near the exit hole seems to explain qualitatively experimental characteristics of the onset behavior of vortex inhibition, namely, the liquid level's falling and the reduction of v_{τ} at r = 0.

The mechanism of vortex inhibition is discussed in the next section based on the main results of the previous sections.

6.6 A Proposed Mechanism of Vortex Inhibition

The results of the Newtonian vortex flow calculation indicate that the velocity gradient

$$\frac{\partial z}{\partial z}$$

increases significantly only near the exit hole and the experimental observations of the onset behavior suggest that the polymer effect starts with both the liquid level's falling and the reduction of v_{τ} at r = 0. Since the onset behavior of vortex inhibition is a transient state from the Newtonian vortex flow to a fully developed vortex flow of polymer solution, the initial change of the polymer contribution to the stress tensor is calculated by solving the constitutive equation using the Newtonian velocity field. The dramatic increase of $\tau_{p,zz}$ very near the exit hole is found from the calculation. This increase is mainly due to the strong elongational type of flow which stretches the macromolecules. Furthermore, the simple simulation shows that the increased seems qualitatively to explain the onset bahavior of Tp.zz vortex inhibition.

Although the mechanism of the fully developed vortex flow may not be precisely described because of the complicated nature of the phenomenon, we may speculate the mechanism for the fluctuation of the air core from the analysis of the onset behavior. The suppression of the air core

corresponds to the decrease of v_{θ} in the core region and at r = 0 which is one of the polymer effects discussed in the last section. The experimental measurement shows v_z at r = 0 is always lower than that for Newtonian case during the onset. The overall flow behavior, then, becomes more like the case of the low tangential Reynolds number (see Fig. 6.1, for example). As shown in Fig. 6.1, the flow approaches the exit hole from all directions, and a bottom boundary layer no longer exists. The flow behavior is quite different from that of high Rea. For high Rea, most of the flow (about 80%) is from the thin bottom boundary layer as shown in Fig. 6.2. The fluid element from the boundary layer has almost zero axial velocity and it is merged with the fluid from the core region near the exit hole. The fluid element is then axially accelerated rapidly within the length of the boundary layer thickness producing the large velocity gradient. This explains why τ becomes very large only p,zz for the stream lines $\psi = .8$ and $\psi = .85$ ($\psi = .8$ is from the boundary layer and ψ = .85 is the stream line next to ψ = .8). Since a large velocity gradient

 $\frac{\partial v_z}{\partial z}$

does not exist near the exit hole in the absence of the bottom boundary layer during the suppression of the air core, no polymer effect is expected. The flow system, thus, tries to go back the original Newtonian vortex flow. And the tangential velocity in the core region increases producing the extension of the air core again. This whole process may explain the fluctuation of the air core.

VII. CONCLUDING REMARKS

Three major conclusions are drawn from the results of this study. They are:

1) The numerical calculation for the confined Newtonian vortex flow provides reasonable velocity field for the entire vortex tank geometry. The calculated velocity field reasonably agrees with experimentally measured v_{θ} at the free stream region and v_z along the axis of rotation by photographic tracer technique. The consistency in the comparison may make the velocity information reliable for the area near the exist hole and for the bottom boundary layer. The vortex flow studied in the thesis is highly non-linear (Re_{θ} is up to 2000) and has a singularity at the exist hole. The alternating-direction implicit method with the zone formulation is gound to be suitable for this kind of complicated flow problem.

2) The Modified Nearly Hookean Dumbbell model seems to be an appropriate constitutive equation for the vortex inhibition study. The model can predict a boudned large elongational viscosity which may change the flow behavior at high strain rates as well as shear thinning. The MNHD also has a simple form so that any kind of locally homogeneous flow can be applied for obtaining the polymer stress field. It is found from dynamical studies of the model that the time to reach steady state in start-up of elongational flow is well scaled by the reciprocal of elongational rate e^{-1} . This result is quite different from that of shear flow which is scaled by the time constant λ_{μ} .

3) A highly elongational type of flow, namely very high velocity gradient

$$\frac{\partial \nabla z}{\partial z}$$
,

is established in the vicinity of the exit hole according to the results of the numerical calculation. This large velocity gradient may be a cause of the onset behavior of vortex inhibition. The application of the velocity field to the MNHD shows that the macromolecules moving along the stream lines passing the bottom boundary layer and outside the core region (See $\psi = .8$ and $\psi = .85$ in Fig. 6.14) seem to be almost stretched out to the maximum length R₀ very near the exit hole. The stretched macromolecules produce large stress tensor which seems to explain qualitatively the characteristics of the onset behavior of vortex inhibition.

The following possible studies are recommended as extentions of this study.

 To develop the solving method for the non-Newtonian velocity field by solving the constitutive equation and the equations of motion simultaneously.

2) To develop an experimental technique to measure the velocity field especially in the vicinity of the exit hole.

3) To develop an experimental technique to measure rheological properties (shear viscosity, the normal stress coefficient and hopefully elongational viscosity) of a dilute

solution of flexible linear macromolecules.

4) To establish high elongational type of flow in a simple geometry so that both measurement and calculation of the velocity field are easier. This may also confirm the importance of elongational viscosity for dilute polymer solutions.

Since the elongational viscosity seems to be responsible for the flow change of the onset behavior of vortex inhibition, the mechanism of drag reduction may also be related to the large elongational viscosity exerted by macromolecules. As to this direction,

5) To study the turbulent pipe flow to obtain detailed velocity information about the bursting process in order to investigate how the macromolecules are deformed.

VIII. APPENDICES

Appendix A: Computer Program of the Newtonian Vortex Flow Calculation.

As described in Chap. 3, this computer program is designed for solving the Navior-Stokes equations in a confined vortex flow especially for high tangential Reynolds number. The methods used in the program are lined SOR for the stream function and ADI for the circulation and vorticity. The calculation program mainly consists of six files, KEIKO, STFN, VRVZ, CIRL, VOTY and RESI. The file KEIKO controls the whole calculation procedure which is described in Fig. 3.12. Ιt can start and cease the calculation. The initial conditions, a time increment for the circulation and vorticity, zone description and many parameters are also determined in KEIKO. The calculation data are stored or read or printed or punched in this file. KEIKO also includes several subroutines. The subroutine NONS determines the boundary values of vorticity $\omega_{\rm b}$ at the bottom wall according to eq. 3.55. The subroutine KEIKO, a basic tool of both lined SOR and ADI, solves the tridiagonal system matrix.

The stream function is solved by the lined SOR in the file STFN. The interpolated stream function which defined at each corner of the zone is also calculated in this file. VRVZ determines the radial and axial velocity from the interpolated stream function at zone boundaries (See Fig. 3.7). The circulation and vorticity are solved by ADI in files CIRL and

314

VOTY respectively. In CIRL and VOTY, both functions are first solved implicitly in the r-direction (R-sweep) and followed by Z-sweep using the intermediate results obtained by R-sweep. After certain number of iterations (loop 2), the residuals of each function are calculated in the file RESI.

Description of Variables

Variable	Description
ST(I,J)	Stream function ψ
STN(I,J)	The intermediate stream function after R-sweep
CI(I,J)	Circulation F
CIN(I,J)	The intermediate circulation after R-sweep
VO(I,J)	Vorticity w
VON(I,J)	The intermediate vorticity after R-sweep
VR(I,J)	Radial velocity v _r
VZ(I,J)	Axial velocity v _z
EX(I,J)	The interpolated stream function
R(I)	The radial position of zone center
DR(I)	Zone size for r-direction
Z (J)	The axial position of zone center
DZ (J)	Zone size for z-direction
RS(I,J)	The residual of stream function
RC(I,J)	The residual of circulation
RV(I,J)	The residual of vorticity
м	Constant for WRITE format
N	Constant for PUNCH format
L	Constant for READ format
NΤ	The number of variables (ψ, Γ, ω) location in r-direction
NTC	NTC = NT - 1
NTCL	NTCl = NT - 2; The number of zones in r-direction
МТ	The number of variables (ψ, Γ, ω) locations in z-direction

Description Variable MTC = MT - 1MTC MTC1 = MT - 2; the number of zones in z-direction MTCL The radial location of the radius of the exit NEXIT hole NE1 = NEXIT - 1NEL The index number for choosing the method to IM determine the bottom boundary values of VORTICITY ω_b . IM = 1 ~ 4 (See subroutine NONS in file KEIKO) The number of inner iterations ΙP The number of outer iterations IDD ICT = IP x IDD; The number of total iterations ICT Tangential Reynolds number defined by eq. 3.53 RE The ratio of v_R to $v_{\theta R}$ defined by eq. 3.54 SS The relaxation factor for stream function SFAC calculation The convergency criterion for stream function AFER calculation described by eq. 3.60 The ratio of R to H А INOP = 1; Fixed boundary condition at the exit INOP hole for stream function (This condition is used for the polymer effect calculation described in section 6.5) INOP = 2; The Newtonian calculation Stream function data reference number for input IIST Circulation data reference number for input IICI Vorticity data reference number for input IIVO Stream function data reference number for output IOST Circulation data reference number for output IOCI Vorticity data reference number for output IOVO

-- - -----

--- ----

The complete listing of the six files are followed.

CONVERSATIONAL	JONITOE	SISCEA

cc	THE FILE KEIKO HAS THE POLLOWING CHARACTERISTICS.	KEI00010
cc	TO INPUT AND OUTPUT THE DATA.	KEIUUU2U
cc	TO CONSTRUCT THE ZONE.	KEL00030
CC	TO DETERMINE THE ITERATION SCHEME.	KELOUU40
cc	TO CONTROL OVERALL CALCULATION AS DESCRIBED IN	KEIUUU50
ce	EIG. 3. 12.	KEIUG065
cc	TO DETERMINE THE BOTTOM WALL VORTICITY (IN SUPROUTINE	KELOUG/G
cc	NON2) •	KEI00080
cc	TO PRINT AND PONCH THE DATA.	KET00090
CC	TO SOLVE THE TRI-DIAGONAL MATRIX.	K EL 00 100
	DEFINE FILE 10 (38,126,L,E12), 15 (38,120,L,E17)	KELUUITU
	5EFINE FILE 20(38,120,L,122)	SEL00120
	DEPINE PILE 61 (38, 122, L, I 1), 71 (38, 120, L, I 15)	KELOCI3:
	DEFINE FILE 61(38,120,L,120)	X2100140
	COMMON ST (12, 38), CI (12, 38), VO (12, 38), R (12), SB (12)	K3100 150
	COMBON DZ (38),Z (38)	<u>XETOD 160</u>
	COMMON L, MT, MTC, MTC, MTC1, MTC1, MEXIT, MET, INOP	KEIUU 170
	COMBON RE, SWIRL, SS	KELUUISU
	COMMON DI (10)	KE100 190
	COMMON SPAC, CPAC, VFAC, A FEB	KE100200
	CCM30N EX (12,38)	KE100210
	CORMON INY, INY	K3100225
	COMAON DS (10)	KE100230
	IIST= 10	3 ELOU 240
	IICI=15	KE100250
	114 0=20	KE100260
	IOST=61	KEIU6276
	IOC I=71	KEIDO280
		XE100290
	<u>4</u> =6	KEID03D0
		KELUU 31U
	a=g	KE100329
~	00 6 I=1,10	ZE 100 330
6	DT(I)=0.	KE100340
	NT=12	
	AT= 38	1EID0 360
		RE100370
	ATC = 3 /	KE100340
		XE10.390
	17C 1=36	KRI00400
		77700030
		Z RT00420
	$\mathcal{L}(I) = 0$	KEIDU 430
		KE100440
	94(12) = 0	X E I U U 400
		KET00410
		ZE100480
		KETODEDO
70	DX(L)=.JZ	ZRIGE 10
70	00 71 v-2 21	KPTAAS2A
7.		KELUCJZU
1	D2(J)=,UI	CETOO 330
	$\frac{1}{2} \frac{1}{2} \frac{1}$	75100340
12	u 2 (d) = .) 5	VETAADDA

FILE: KEIKO FORTEAN A

.

-

PILE:	KEIKO	FORTRAN	Ŧ	CONVERSATIONAL	MONI TOE	SYSTEM
	DO 73 I=2	2 . NT				KEI00560
73	R(I) = R(I-	-1) + (D2 (I) + DE (I·	-1)}/2.		KE100 570
	DO 74 J=2	2. MT	, ,			KEI00580
74	Z (J) =Z (J-	-1) + (BZ (J)+DZ (J·	-1))/2.		KEI 00 590
	IM=3					KZICC600
						KEI00610
	IP= 20					K 2100620
	100=2					KET00630
	101-0 201702/N 4	0.11				X EL 00 640 X ET 00 650
400		10X. FTZ	V7. 75 P	ARABOLTC INDUT GL.Z		XEL00030
1	ICX. IF V	R TS ZER	5 T V PO 7			XET00670
•	READ(L. 40	T) INOP				KEI 00680
40.1	PORMAT (11	0)				KEI00690
	WRITE (1,3	12)				KZI00700
312	FORMAT (/.	10X, PLE	ASE INP	UT SS IN £10.5',/)		KEI06710
	READ(L.20	4) 55				KEI00720
	DD 1 $J=1,$	AP 				KEI00730
	READ(IIST	J 200)	(ST(I,J	j = 1, 12		KSE00740
	READ (IICI	·J,200)	(CI(I,J	I = 1, 12		KE100750 KE100760
٩	CONTENTS	(102-01)	(V U (T * U	$j_{r} = (r_{r} + 2)$		2 PT00700
L	CONTINUS ST (2 1) =.	9946				X7100780
	NRTTE (M. 3)	20)				KEI 00790
323	POEMAT(10	X. IF THE	SAME	SS PARAMETER IS USED, IMPUT 1,	1.1.	KEID0800
1	10X, IF 5	S AS DIPE	ERENT,	TYPE 0 /)		KE100810
	EEAD (L. 28))) ISS	•			KEI00820
289	PORMAT (II)	0)				KEI00830
	IF (ISS) 1.	3,13,14				KEI0084C
13 (CONTINUE					K2100850
	DO 3 I = 1, 2	<u>sr</u>				KEI00860
	1, I=L L DC	AT IO(T N TG	~			KELUUB/U
1 1 1	YO[⊥,0] =-1 CONTINUS	10 (T* 3) + 2	2			KETOOBOO
1.44	EGNIINUS ERTTRINUS	21)		•		KET 00900
321 2	FORMAT (10)	L'IF STO	RED INI	TTAL CONDITION IS USED. INPUT	1. *	KE106910
1,	/, 10X, 'I	NEWLY I	NPUT IN	ITIAL CONDITION IS USED, INPUT	0.7)	KEI00920
i	READ (1,283) ICH				KEI00939
1	CP(ICH) 10	0,10,11				XEI00940
10 0	CONTINUZ					KE100950
<	I(2,MT)=.	04				KE100960
(I(3, dT) =.	40				XE100970
	:1(4,3T)=. :T(5,37)-	50				KETUU990
2	·I(J, 3I)	6372				KETO 1000
•	210717-97)=	5.674A				KEI0 10 10
c	I (8. MT) =.	6379				KE101020
õ	I(9,MT)=.	6638				KEI01030
C	I(10.11) =	.7552				KEI01040
c	I(11, MT) =	- 91				KEI01050
D	$0 \ Z \ I = 2_{r} 1$	1				KEI0 1060
D	0 2 J=2,4	TC				KE101070
2 0	I(I,J)=CI	(I.J.)				KE101080
c	1 (2, 1) =CI	2.1T)				KETA 102A
C	T(2°T) ≡CT	(a - ar)				PPTO 1 100

.

-

-

FILE: KEIKO FORTRAN A

-

-

-

CONVERSATIONAL MONITOR SYSTEM

11	CCNTINUE	KEI01110
205	PORMAT(12F10.5)	KE101120
201	FOR MAT (12210.4)	KE 10 1 130
25	CONTINUE	KEI01140
	VRITE (M, 307)	KEI01150
307	PORMAT (/, 10X, 'PLEASE INPUT REYNOLS NUCHER INF10.1',/)	KEI01160
	8 EAD (L. 204) BE	KEI01170
	WEITZ(1,308)	KEI01180
305	FORMAT (/, 10X, PLEASE INPUT SPAC IN F10, 41, /)	KEI01190
	READ(L, 205) SPAC	KEI01200
205	FORMAT (F10. 4)	KEI01210
	HRITE (K,309)	KEI01220
30 9	FORMAT (/, 10K, "PLEAS 2 INPUT APER IN P12.8",/)	KEI0123C
	REAC(L, 206) AFER	KEIC1240
	aries (4, 310)	KEI01250
310	FORMAT (, 107, PLEASE INPUT DT(1) IN P12.8',/)	KEI01260
	READ(L, 206) DT(1)	KEI01270
206	PORMAI (F12.3)	KEI01280
	TRITE(M, 311)	KEI01290
311	FORMAT (/, 15%, PLEASE INPOT A IN PIG. 41, /)	KEI01300
	READ (1, 205) A	KEI01310
	RRITE (1,313)	KEI01320
313	FOR MAT (/, 1 OX, 'PLEASE IN PUT DS(1) IN F12.8',/)	KEI01330
	READ(L, 206) DS(1)	KEI01340
		KEI01350
		SEI01360
150	$ARTIL(A, (DU) \times S), A$	KEI01370
150	CRAAT(/, IOX, 'EINOLD'NUGBER LS', FIO. 1,/, IOX,	KEI01380
י כ	JACET SARAGEISA IS'JE SJY/ WIY	XET01390
	ASELE ALLON IS (SIZ)	XEI01400 XEI01410
		X2101410 X2101420
101	CORNER (ALLER FUTURE ALLER OF ST CT AND TOT A	KET01420
	RITE(A, 300)	KET 0 1 4 4 0
(CALL 2222 (ST, 3, 3)	KEI01450
;	(RITE (1,301)	KEI01460
C	ALL 2222 (CI,1,Z)	KEI01470
i	(RITS (1,302)	KEI01460
c	CALL PP2P(VO,L,Z)	KEI01490
CC SI	T UP ITERATION	KEI01500
49 0	CNTINUE	KEI01510
1		KEI01520
I	[P(IIP-IP) 50,51,51	KEI01530
51 1		KEI01540
স	RITE (N.103) II, ICT	KEI01550
103 P	ORMAT(/, 101, 'AFTER', 15,' CICLES', 15,' ITERATIONS', //)	KEI01560
2	RITE (1,300)	KEI01570
c	ALL PPPP(ST, 1, 2)	XEI01580
	RITE (3,05) INX, INY	KEI01590
050 8	DESAT(/, IVE, NUESER OF TILES FOR ST. IS BELOW 0',215,/)	KE101600
N		KSI01610
	ALL FEFE(LF4144) NTT WEF770 7 DE D7 D7 1 CEN	KEIU 1620
ب ح	אשר יהיט(ה-לפטה-200-200) אדר ספר	KETU 1030
с. т	REAL REAL RITT-INN 52 53 53	ALLU 1040 2870 1650
+		VET0 1000

CONVERSATIONAL MONITOR SYSTEM

52 IIP=3	XEI01660
50 IIP=IIP+1	XZI01670
CALL STPN	KEI01680
CALL NONS (IM, SS)	KEI01690
CALL CIRL	KEI01700
CALL VOTY	KEI01710
GD TO 49	KEI01720
53 CONTINUE	KE101730
	XEI01740
$J \cup J : J = I A T$	XEI01750
$\pi \alpha (1) (1) (1) (3, 2) (0) (3) (1, 3) (2, 1, 1, 2)$	XEI01760
	KEIC177J
30 # RIIS(1040-3,201) (40 (1,3),1-1,12)	KEI01780
ACTE (0,2/2) 105 BORNA(/ 107 101 2162 INDUM 55 VALUE TV 210 511	ABI01790
SUSTICIAL CONTRACTOR INFOL STATUCE IN FILES	KEIU 1800
	XET01816
	XET0 1820
	X2101037
2 - 20075 V28 271 VX17101 2107085	221013E0
	XEL01850
I CT=0	TPT01070
GO TO 25	X2101070 X2101880
20 CONTINUE	TET01890
30) FORMAT (/, 10 X, STR ZAM RUNCTION ,/)	88701966
301 FORMAT (/, 10X, 'CIECULA TION', /)	3EI01910
302 PORMAT (/, 1) X, 'VORTICITY', /)	KET01920
STOP	82101930
END	KEI01940
SUBEOUTINE NCNS (IM, SS)	X2I01950
COHMON ST (12, 38), CI (12, 38), VO (12, 38), R(12), DR(12)	KZI01960
CONTON DZ (33) *2 (38)	KEI01 97 0
CCHEON A, MT, MTC, MTC, MTC1, MTC1, NEXIT, NEI	TEI0 1980
C THIS SUBLOUTINE DETERMINES THE VALUE OF VORTICITY AT	KEI01990
C THE BOTTON WALL BY NGM-SLIP CONDITION.	KEI02000
C IN=1: PRECISZ METHOD	KEI02010
C IM=2: MR. WON'S METHOD	KZI02020
C IN=3: SIMPLE CNE	KEI02030
C IN=4: SIMPLE ONE NO.2	KEI02040
GO TO (1,2,3,4),19	KEI02050
1 DO 10 L=NEXIT, 3TC	KEI02060
$1J \forall 0 \ (1, 1) = (27. *ST \ (1, 2) - ST \ (1, 3)) / (9. *DZ \ (2) ** 2/4.) *A/E \ (1) *SS$	KE102075
	KEI02080
2 DO 11 LENERIT, NTC 11 STU(τ 2) (2) τ 2) (2) τ 2 τ 2) 2	KEIC2090
$\frac{11}{10} \frac{11}{11} = \frac{25}{51} \frac{51}{12} - \frac{51}{12} \frac{11}{12} - \frac{51}{12} \frac{11}{12} \frac{11}{12$	KEI02100
	SETU 2110
	KELU2120
$\frac{12}{10} + \frac{11}{10} + \frac{13}{10} + \frac{12}{10} + \frac{11}{10} + 11$	X ELU 2 130
	RETUZ 140
13 TO (T 1) = SS 4 T (T 2) / (D 2 (2) ** 2/4.) * A/R(T)	XELUZ 130 KRT02 165
20 $\forall T K = \forall O N B X T + 1 / 2 C O X T N E X T T + 1)$	82102100
VO(2, 1) = VINC	XET02 180
	KET 02 190
$14 \ VO(I_{1}) = 2.4 \ VINC + VO(I_{1}, 1)$	KET02200

PILE: KEIKO FORTRAN A

-

-

CONVERSATIONAL MONITOR SYSTEM

	eeturn	KEI02210
	ZND	KEI02220
	SUBRDUTINE PCPC (13, X)	KEI02230
	DIMENSION AB (12,38)	KEI02240
	IZ (1-6) 2,3,3	KZI02250
3	1 DO 4 K=1,38	KEI02260
	J=39-K	SEI02270
(+ WRITE (7,100) (AB (I, J), I=1, 12)	KEI02280
	GO TO 1	K EIO 2 290
2	2 0 5 K=1,38	KEI02300
	7= 3 <i>8- K</i>	XEI02310
5	WRITE (7,101) (AB (I,J),I=1,6)	KEI02320
	90 6 K=1,38	KEI02330
	J= 39- K	KE102340
6	· HRITE (7,101) (AB (I,J),I=7,12)	KEI02350
ĩ	CONTINUE	KEI02360
100	POR MAT (12 P6-3)	KEI02370
10 1	Poriat (6212. 3)	KEI02380
	return	KSI02390
	END	KEI 02400
	SUBROUTINE PPPP (18, 1, 2)	KEI02410
	DIMENSION A3 (12,38) ,Z (38)	KEI02420
	IF(<u>1</u> -6) 2,3,3	KEI02430
3	DO 4 K=1,38	KZI02440
	J= 39-K	KEI02450
4	WEITE $(L, 1CO)$ (AB $(I, J), I=1, 11$), $Z(J)$	KEI02460
	GO TO 1	KEI02470
2	L=# 1 -	KEI02480
	DO 5 K≈1,38	KEI02490
	J=39-K	KE102500
5	$\forall RITE (L, 101) (\lambda B (I, J), I=1, 11), Z (J)$	KEI02510
1	CONTINGE	KEI02520
100	FORMAT (12F13.5)	XEI 02530
101	FORMIT(11210.3, F10.5)	XEI0 2540
	e Slofs a	KEI02550
	END	XZI02560
	SUBROUTINE KEIKU (1, B, C, D, X, NTT 1)	KEI02570
	DIMENSION A (36), B (36), C (36), D (36), X (36), G (36), U (36), C (36), X (36)	KEI02580
	⊃ (1)=0.	KEI02590
	G(1) = B(1)	KEI02600
	J(1) = C(1) / G(1)	KEI02610
	DO 1 1=2,8TT1	KEI02620
	$O(\underline{T}) = \underline{I}(\underline{T})$	KEI02630
	G(I) = B(I) - O(I) + G(I - 1)	KEI02640
1	$\mathbf{I}(\mathbf{I}) = \mathbf{C}(\mathbf{I}) \times \mathbf{G}(\mathbf{I})$	XEI02650
	r(1) = D(1)/G(1)	KEI02660
-	DG 2 L=2,NTT1	KEI02670
2	$Y(L) = \{0, (L) - Y(L-1) \neq 0, (L)\} / G(L)$	KEI02680
	x (NTT) = x (NTT)	KEI02690
	DU 3 J= 2, NTT 1	K2I02700
-		KEI02710
3	$k (\perp) = k (\perp) + k (\perp + 1) \neq 0 (\perp)$	K2I0272)
	4 2 X 0 K 3	XEI02730
		KEI02740
3	ruscrion delta(1, J)	KEI0 2750

FILE: KEIKO FORTRAN A

.

FILZ: KZIKO FORTPAN A

1

-

_ ____ -

.

CONVERSATIONAL MONITOR SYSTEM

	IF(I-J) 1,2,1	KEI0276)
1	DELTA=0.	KEI02770
	RETURN	KE102780
2	DELTA=1.	KEI02790
_	RETUEN	SEI0 2800
	END	KEI02810

;

SC	THE FILE STEN CONSISTS OF ONE SUBROUTINE.	ST200010
cc	THE SUBROUTINE SOLVES STREAM PUNCTICN BY THE LINED	STF00020
20	SOR WITH RELAXATION FACTOR SPAC. THIS ALSO	STF00030
CC .	CALCULATES INTER POLATED STREAM PUNCTION FROM WHICH	ST200040
cc	THE BADIAL AND ATTAL VELOCITIES ARE DETERMINED.	STF00050
	SUBROUTINE STYN	STF00060
	5 THENS TON 2(36) B (36) C (36) D (36) Y (36) - STN (12-38)	57700070
		57700080
	COMMON D T (12) = T	STEGGOGO
	CCREACE DE 19972 2007 CCREACE E VA VAC VAC VAC VACA VACA VEXTA NET TROP	STP00100
		57700110
		51200120
		51200 120
	COMPANIES (1) 201	377700 100
		57200 150
		57200160
		STF00 170
		57200180
		57700 190
		STF06200
		57700210
٦C		57700220
د ج	-SEPED OF STREAM FRENCHTON	57700230
		STF00 240
		STY00250
	AAA = -A + 3 (I) + 2 + y (I , J) / SS	5TP00260
	DIS1=DE[T+1]+DR[T]	STF90270
	DIS 2 = DR (I) + DR (I - 1)	STP00 280
	DIS3=DZ(J+1)+DZ(J)	STF0C 290
	D IS 4 = DZ (J) + DZ (J - 1)	STF00300
	DIS5=(R(I-1)+R(I))/2	STP00310
	DDDZZ = (Z (J+1) - Z (J-1)) / 2	STF00320
	DDD RE= $(3(1+1) - R(1-1))/2$.	STF00 330
	S 1A= (1./D IS 1+1./D IS 2) *2./DDD ER* R(I) +2./DI S2+E(I) *DS (II2)	STF00340
	5 1B=+(1./DIS3+1./DIS4)*2./DDDZ2*A**2*2(I)+R(I)*DS(II2)	STF00 350
	\$14A=(1./DI\$3+1./DI\$4)*2./DDDZZ*4*2*8(I)	5 T F00360
	5 1A=51A+51AA	5TF00370
	S13=R(I)*DS(IIP)	STP00380
	S2=2./DIS1/DDDRR*R(I)	STF00 390
	5 3= 2. /DIS3*& ** 2/DDDZZ *R (I)	STF00400
	S4=(1.+R(I)/DEERE) #2./DIS2	ST200410
	55= 2. /DIS 4* & ** 2/ DDD ZZ *R (I)	STFCG420
CC 74	OID ST REAL PUNCTION BECCKES REGATIVE	STP00430
	AAA 1=S3*ST(I, J+1) +5 5* (1DELTA (2, J) *(DELTA (2, I) +DELTA (3, I)) *	STP00440
	1DELFA (1, INOP)) *ST (I, J-1) + AAA	STF00450
	IF(J-2) 70,70,250	STF00460
72	IP (I-NEXIT) 250,76,76	STF00470
76	LP (AAA1) 77,77,250	ST200480
77	ASA1=0.	STE00490
200		ST200500
250	CONTINUE	STF90510
		STF00520
= -		51200530 cm200540
20	ε (⊥=1)=). 2 (Σ=1)=ε1λ-εξερπεπ) (2 ελερεταλιεί τναρ)	31200340
	D (T = 1 + 2 I = 2 = CTTTT (S'A) + CETTE (I'TNOS)	21100 220

-

.

-

E	TLE:	STFN	FORTRAN	Å	CONVERSATIONAL	YONITOR	SYSTEM
		C (T ~ 1) == (e 7				
			52 111501200	(T = 1 T)			STP00560
		U(⊥~1)≃A/ 1+ 51 25 00 ()	(A) +54 +52	(L=1,J)			5TP00570
		(+5(0+51)() (0, mo 3))	Le U J				STP00580
	E 1	GO TO ZI	:				STF00590
	21	TD-L-MIC					STP00600
	53	TE (TD) 27	2,33,33				STP00619
	52	F (1 - 1) = -2			 .		5TF00620
		5 (I = 1) = 51	1 A-2 240-L3	CA (2,J) #D)	EITA [3, I] *DELTA [1, INOP)		STF0C63C
		C (1-1)=-5	2				3T200640
		D(1-1) = AA	1.4.1				STF00650
	1	+SIB#ST (1	(L + 1				5TF90669
	~ 7	GO 10 200) 				STF00670
	23	P (I−1)=-S	4				5 1 F00680
		B (I = 1) = S1	X				STF00690
		C(I+1)=0.					52290700
	-	$D(I-1) = \lambda \lambda$	A1+52=ST	[I+1,J)			STF00710
	1	+ 51 B* 5T (I	- J)				STF00720
	200	CONTINUE					5TP00730
		CALL KEIK	0(2,8,0,0), X, NTC1)			STF00740
		DO 55 I=1	NTC 1				STE00756
	55	ST (I+1,J)	=5 ?λC* X (I) + (1SFA	C) *ST (I+1 "J)		STF00760
	100	CONTINUE					5 1 F00770
2	Z-1	SWEED OF	STREAM FU	NCTION			ST£00780
		DO 300 I=	2,NTC				STF00790
	1	00 400 J=2	Z, MTC				ST700800
		1 A A = - 1/554	*R (I) ** 2*	VO (I,J)			STF00810
	i	DIS1=DR(I∙	+1)+DR(I)				STF00820
	í	DIS2=DR(I)	+DR (I→1)				STF00830
	5	DIS3=DZ (J+	+1)+DZ (J)				STF00840
	i)I54=DZ(J)	+DZ (J-1)				STF00850
	Ę) IS5= (R (I-	-1)+B(I))	/2.			ST200860
	i	DCDRR⇒(II)	[+1] —R (I—	1)) 12.			STF00870
	2) DD ZZ= (Z [3	J+1)-Z (J-	1))/2.			51705880
	5	TB={1./DI	[53+1./DI:	54) #2 . *X**	*2*2(I)/DDDZZ+2(I)*DS(II2)		STE00890
	5	51 A=- (1. /D)IS1+1./D]	IS2)*2.*R	<pre>(I) / DDDEE-2./DIS2 +3(I) *DS(II)</pre>	2)	STF00900
	S	188=\$14*	(-1.)+a(I)	*DS(IIP)			STF00910
	S	1B=\$1B+\$1	IBB				ST200920
	5	TA=R (I) *D	S (IIP)				STF00930
	S	2=2./DIS1	/DDCRR# R	(I)			STF00940
	S	3=2./DI53	****2/000) II *E (I)			STF00950
	s	4=(1.+R(I) /DCORR) *	2./DIS2			STP00960
	S	5=2./DIS4	*A **2/DDC	ZZ *R (I)			5TF00970
	Ι	D≕J-2					STP009E0
	I	E(ID) 60,	60,61				STF00990
	60 P	(J-1)=0.					5TF01000
	3	(J-1) = 51B	-S5# (DELT	A(2,I) +DE	LTA (3, I)) * DELTA (1, INOP)		STF0 10 10
	С	(J-1)=-33		• • •			5TF01020
	D	(J-1) = S2*	ST(I+1,J)	+54* 5T (I-	(,J)+S5#ST(I,J-1)		STF0 1030
	1#	(1()ELT.	& (2,I)+DÌ	LTA (3, I))	*DELTA(T, INOP))		STFC1040
	1+	SIA*ST (I.	J) +AAA				3TF01050
CC	A V	OID ST. I	S BELOW Z	ORO			STE01060
	Ĩ	F(I-NEXIT)	73,75,7	5			STF0 1070
	75 D	DD=S3≠ST (I,J+1)+55	*ST (I, J-1) + 1 T T		STF01080
	I	P(CCD) 72,	,72,73				5 TEO 1090
	72 C	(J−1)=0.					5TF01100

.

,

7ILE	: STPN	FORTRAN	7	CONVERSATIONAL LONITOR	SYSTEM
20	קטי אין	2 STRV COVE	19 76 6 7		277 700010
		2 3113 CUNS BOUNTER CONS	1313 02	UNE SUBRUUTINE.	STP00010
	COE ETT	RUCLINE SOL	A SYCAUN	AA FUNCTION BI THE LINED	STF00020
ČČ		TTE TUTTO	0 FACIUI	A SERCE LALS ALSO	STF00030
cc	THE BID	TAT AND AVT	17 VPIA	TALES IN STREEMINDS	51100040
	SUBBON	TINE STEN		TILD ARE DETERMINED.	STE00050
	DIMENS	TON 7/361-8	(36) - 0 13	(1) 0(36) Y(36) STW(12 29)	STE00000
	CCNNON	ST (12, 38) -	CI(12.36	21 - VO (12-38) - E (12) DR (12)	51200080
	COMMON	DZ (38) - 7 (36	3)	./ # to (12 # 50 # # (12) # 5# (12)	51100000
	CANON	A NT. MT. NTO	. MIC. NI	C1-STC1.NEXTT.NE1_TNOP	STP00100
	CONNON	RE.SVIEL.SS	5		STP00110
	CONNON	DT (19)			ST200 120
	CONNON	SEAC, CEAC,	TFAC, AFE	ER.	STPCC 13C
	CONMON	EX (12,38)	_		STF00140
	CONMON	INX, INY			STP00 150
	NOFFOD	əs (10)			STP00160
	ICC∦=1				STF00 179
	NTT=1				STF00180
	I NK = 0				5TP00 190
	IN I=0				5TF00200
	II2=1				5TF00210
30	CONTINE	12 			5 TF 00220
C 3	-SWEZP C	E SINEAE PU	NCTION		STF00230
	00 100	J=2, STC			STF00 240
					STP00250
		·3(1) ++ 2+ VU (1,0)/55		STP00260
					STF00270
		(1) / UA (1 - 1) / TA 11 A D7 / T1			S E E O O 28 O
	0154=02	(T) + 37 (T - 1)			STEUL 290
	DTS5=(B	(T - 1) + 3(T)	12-		SIF 00 300
	200 ZZ= (Z (J+1) -Z (J-	1122		57200320
	DDDRE= (3(I+1)-E (I-	1) 1/2		57200 330
	s 1a= (1)	/DIS1+1./DI	52) *2./1	DDBR*R(I) +2. /DI S2+8 (I) *DS (TIP)	STE00340
	5 18=-(1	/DI 53+1./D	[S4] # 2 .	/DCDZZ#&##2#E(I)+E(I)#DS(II2)</td><td>STF00 350</td></tr><tr><td></td><td>5144=(1</td><td>./DIS3+1./DI</td><td>ES4) *2. /</td><td>(DDDZZ *4 ** 2* R(I)</td><td>5TF00360</td></tr><tr><td></td><td>S1A=51A</td><td>+STAA</td><td></td><td></td><td>5TPQ0370</td></tr><tr><td></td><td>\$18=R (I</td><td>)*DS <u>(II</u>2)</td><td></td><td></td><td>SIP00380</td></tr><tr><td></td><td>52=2./D</td><td>LS1/DDDRR#R</td><td>(I)</td><td></td><td>5TP00 390</td></tr><tr><td></td><td>S 3= 2. /D.</td><td>ES3*X **2/DDI</td><td>DZZ 🐮 (I)</td><td></td><td>STF00400</td></tr><tr><td></td><td>54= (1.+)</td><td>R(I)/DECRE) (</td><td>2./DISZ</td><td></td><td>5TF00410</td></tr><tr><td>CC 150</td><td>55=2.70.</td><td></td><td>) 42 ¥R (I)</td><td></td><td>STFCC420</td></tr><tr><td>CL AYO</td><td></td><td>EXE FUNCTION</td><td></td><td>S NEGATIVE</td><td>STF00430</td></tr><tr><td>4</td><td>N T NA /1</td><td>- 27 (75 97 1) + 20 (77 97 1) 27 (75 97 1) - 27 (75 97 1)</td><td>J- (J</td><td>GLTA (2, J) + (UELTA (2, L) + UELTA (3, L)) *</td><td>STP00440</td></tr><tr><td>•</td><td>USLIK(, TR(I=2)</td><td>- THOE] - 51 [1</td><td></td><td>AA</td><td>ST200450</td></tr><tr><td>70</td><td>TP (T-NFY</td><td>TT 250 76</td><td>76</td><td></td><td>STEUU 460 CRR00470</td></tr><tr><td>76</td><td>TP (AAA 1)</td><td>77.77.250</td><td></td><td></td><td>STE00470</td></tr><tr><td>77</td><td>A A A 1=0.</td><td></td><td></td><td></td><td>STE00400</td></tr><tr><td></td><td>INX=INX</td><td>- 1</td><td></td><td></td><td>57700500</td></tr><tr><td>250</td><td>CONTINUE</td><td>L</td><td></td><td></td><td>STECCSIO</td></tr><tr><td>-</td><td>ID=I-2</td><td></td><td></td><td></td><td>STF00 520</td></tr><tr><td></td><td>IF(ID) 5</td><td>0,50,51</td><td></td><td></td><td>STP00 530</td></tr><tr><td>50</td><td>F (I-1)=)</td><td>•</td><td></td><td></td><td>ST200540</td></tr><tr><td></td><td>a (I - 1) = s</td><td>11-55* DEL T1</td><td>(2,J)*0</td><td>ELTA (1, INOP)</td><td>STP00 550</td></tr></tbody></table>	

-

-

		5164	FURTRAD	A	CD	DNV ERSATIONAL	YONITOR	SYSTES
		C (I-1) =- S	2					57200560
		D (I -1) =AA	A1+S4 *ST (I-1,J)				57200570
		1+ 51 B* 5T (I	- J}					51200370
		GO TO 2))						51200580
	51	ID=I-NTC						STP00530
		IF (ID) 52	,53,53					STR00610
	52	P (T-1) =- S	4					51200013
		B (I-1) = S1	A-SS*DELT	A (2, J) #DELTA ((3,I) *DELTA	(1, INOP)		STEOCOLO
		C (I-1) =-S	2		• • • •	•••		57200640
		$D(I-1) = \lambda A$	A 1					STE00650
	1	+S18*ST (I	₽J}					STF00660
		GO TO 200						ST200670
	53	P (I+1)=-5	1					STF00680
		3 (I-1) =S12	Ł					ST700690
		C(I−1)=0.						52200700
		D (I-1) = XX/	l1+52*5T (1	[+1,J)				STF00710
	1	+ S18# ST (I,	, J)					STF00720
	200	CONTINUE	_					ST200730
	4	CALL KEIK()(8,8,C,D,	, X, MTC1 }				ST200740
		DO 55 I=1,	NTC 1					STR00750
	55 :	S <u>T (I+1,</u> J) =	*5 ?λC# Χ (Ι)	+{1SPAC} *5	T(I+1,J)			STE00760
_	100	CONTINUE						STF00770
	2-5	SWEEP OF S	THEAM PUN	ICTICN				STF00780
		00 300 I=2	L,NTC					STE00790
	i	JO 400 J=2	JIC (T) == 7=7					ST700800
		AAA=- 6/ 55+	£ (⊥) ++ 2+ V	U (I,J)				STF00810
	L A)15 (=0R (1+	1) + DR (1)					STF00820
)152=06(1))762=07(1+	+ DR (1 - 1)					STF00830
	L 7)133-04 (J+)T=U-07(T)	1) +U4 (3) AD7 (T-1)					51200840
) _ 3 4 02 (3)	+U2(J=1)	-				STF00850
		7 T T T T T T T T T T T T T T T T T T T	+1) == (T=1	110				ST200860
	-) DD 77- (7 (1	+1)=7 (I=1	11/2.				STP00870
	5	18 = 11. / JT	S1+1 /DTS	///~。 (1) #7 = #1:1:#:#7#:2 /	(T) (D0077+9			51200880
	- -	13 = -(1, 20)	TS 1+1- /DT	521# 7. #R TI /T	11)/00022*a	(1)"UJ(115) (57 49/T) #DC/TT		STF00890
	s	188=514 * /	-1.)+R(T)	*DS/TT PI		or a strain of th	. E	STE00900
	5	1B= \$1B+\$1	89	(,				51100310
	S	1A=R (I) +D	S (IIP)					51200920
	s	2=2./DIS1	/DDCRR# B (I)				57200940
	S	3=2./DIS3	*A **2/DDD	ZZ *R (I)				51200340
	S	4=(1.+R[I]	/DCDRR) #:	2./DIS2				57700960
	\$	5=2./DIS4	*a **2/DDD:	ZZ #R (I)				57700970
	I	D=J-2						ST700980
	I	F(ID) 60,	50,61					STROO990
	60 P	(J-1)=0.						STF01000
	З	(J-1) = 51 B-	-55# (DELT)	A(2,I) +DELEA((3,I)) * DELT	A (1, INOP)		STF0 10 10
	c	(J-1)=-33				•		51P01020
	D	(J-1) = S2 + S	5T(I+1,J) -	+S4#ST(I-1,J)	+S5#ST(I,J-	-1}		STF0 1030
	1#	(1 - () 21 TA	.(2,I)+DE1	LTA (3,I)) *DEL	TA(1, INOP))	1		STPC1040
_	1+:	SIA*SI (I,J	") +AAA					STF01050
CC	A VI	DID ST. IS	BELOW ZO	DRO				STF01060
	I	F(I-NEXIT)	73,75,75	D	_			ST201070
	75 DI	DD=S3*ST [I	.,J+1)+S54	SI (I, J- 1) + 442	A			STF01080
	I.	F(100) 72,	12,73					STF01090
	72 C	(J - 1) = J.						STF01100

3513.

-

,

.

PILE: STEN FORTRAN A CONVERSATIONAL MONITOE SISTEM

D (J-1)=S2*ST (I+1,J)+S4*ST (I-1,J)+S1A*ST (I,J)	STP01110
I XY = I XY + 1	STF01120
73 CONTINGE	5TF01130
JO TO 400	STP01140
61 ID=J-MTC	STP01150
IE(ID) 62,63,63	STF01160
62 P (J-1) = -55	STF01170
5(J-1) = 51B	STF01180
C(J-I) = -53	STEO 1 190
D (J-1) = S2 + ST (I+1,J) + S4 + ST (I-1,J)	32701200
1+51A+52(L_J)	STF01210
	STF01220
63.2(7-1) = -25	STF01230
	STF01240
C(J-1) = 0	52201250
0 (0 -) -) -) -) - (T+1 _ 1) + Su + Su + Su + (T - 1 , T) + Su + S	51101260
1+ <1.1+ <t (t1)<="" td=""><td>STE01270</td></t>	STE01270
2+3,3	STEV 1280
400 CONTINUE	51101299
CALL KEIKO (F.B.C.D.X.MFC1)	SLEV (.500 STE01310
DQ 65 J=1, STC 1	51101010
65 STY(I, J+1) = SPAC * X(J) + (1, -SPAC) * ST(I, J+1)	STER 1 330
300 CONTINUE	52107550
CC CHECK CONVERGENCY	STE0 1350
DO 10 I=2,NTC	57201366
DO 10 J=2, MTC	STF0 1370
EE = ABS ((STN (I,J) - ST (I,J)) / STN (I,J))	STP01380
IF (ER-AFER) 10,10,11	STF01390
10 CONTINUE	STF0 1400
WRITE (6, 101) ICON	5T201410
101 POENAT(10X, THE NUMBER OF ITERATION IS , 110)	STF0 1 420
GO TO 80	STP01430
11 CONTINUE	5TF0 1440
00 15 1=2,NTC	STF01450
	ST201460
15 ST(1,3) = STS(1,3)	STP0 1470
	STP01480
	STP0 7 490
	52201500
	51101510
	51201529
	51101330
16 ST $(I,J) = STN(I,J)$	51201550
IF(INOP+1) = 650, 690, 650	51101550
60) CONTINUE	STED 1505 STR01570
ST(2, 1) = STN(2, 2)	STP0 1580
ST (3,1) = STN (3,2)	57501590
650 CONTINUZ	STP0 1600
CC CALCULATE INTERPOLATED STREAM FUNCTION	STF01610
DO 500 I=1, NTC	STP01620
DC 500 J= 1, 1TC	STF0 1630
EXST= (ST (T,J) +DE (T+1) +ST(T+1,J) +DR(T)) /(DE(T) +DR(T+1))	STP01640
1≠DZ (J+1) / (DZ (J) + DZ (J+1))	STP0 1650

.

-

PILE:	STFY	FORTRAN	A	CONVERSATIONAL	HONITOR	SYSTEM
	2+ (ST (I, J+	-1) *DR (I+	1) +ST (I+ 1,J+1) *DR(I)),	(DR(I) + DR(I+1))		5TP01660
	3 *DZ (J) / (I)Z (J) +DZ (J+1))			STF0 1670
500	ZX(I,J)=E	XST				STP01689
	e etuen					STP01690
	END		-			STF01700

-

•

,

CONVERSATIONAL MONITOR SYSTEM

CC.	THE FILE VEVZ HAS ONE SUBBOUTINE VEVZ.	YR 7300 10
с г		0.000 8 8 9
сс сс	AYTAL VELOCITIES FROM THE INTERPOLATED STERAN	0000787
CC.	FINCTION WHICH IS DETERNINED IN THE FILE STEN.	TETOCO4:
ac	THE SUBROUTINE ALSO PRINTS THE VELOCITY DATA.	V RV00050
	SUBBOUTINE YEVE 7.7. DR. DZ. 2X-A.SS)	VR VOCOGO
	DT = ST =	V RV 00070
	DIMENSION VR (12.38) .72 (12.38) .72 (38)	VE 700080
	DO 1 $I = 2.11$	VR700090
	DO 1 J = 2.37	V2 V00 100
	E1=EX (I.J)	VRV30110
	$= 2 = 2 \times (1 - 1, J)$	V R V 00 120
	$B_{3}=E_{X}\left(1,J-1\right)$	7R 70G 130
	E4 = EX (I - 1, J - 1)	V RV00 140
	VR(I, J) = SS + (E1 - E3) / DZ(J) / (R(I) + DR(I) / 2.)	VR V00 150
	IF(I-2) 37.87.88	72700160
87	$V \ge (I - 1, J) = 0.$	VR 700 170
	GO TO 89	YRV00180
88	VE(I-1,J)=SS*(E2-24)/DZ(J)/(R(I-1)+DR(I-1)/2.)	VEV00 190
89	CONTINUE	VRVOG200
	7Z(I,J)=-SS*(E1-E2)/DR(I)/R(I)/A	V RV 00 210
	7Z (I,J-1) =-55 * (E3-E4)/DR (I)/R (I)/A	VR V00 220
1	CONTINU E	¥ RV00 230
	00 7 J= 1, 38	VR 700 240
	₹R (1,J) =J.	VR V00250
7	YZ(1,J) = 0.	VR V00 260
	DO 4 I=1,37	VRV00270
4	ZZ(I) = Z(I) + DZ(I) / 2.	V RV 00 280
	7RITE(6,100)	V2V00290
1 0 0	FOR MAT (/, 10X, 'THE VELOCITY DATA VE AND VZ',//,	V RV00 300
	110X, THE RADIAL VELOCITY VE',/)	VEY00310
	DO 2 K=2,37	V RV00 320
	J=39-K	YEY00330
2	REITE (6,101) (YE(I,J),I=1,11),2(J)	V 2V 00 340
10 1	PORMAT (11210.3, F10.3)	VR V00350
	REIT= (6,102)	A 84 00 360
10.2	FORMAT (/, 10X, 'THE AXIAL VELOCITY V2',/)	VR V00 370
	$D \cup S = 1, S / C = 1, S	18100380
-		VEV00390
٤	WEITE (6,101) (VZ (1,J),I≃1,11),ZZ (J)	YEV00400
	RETURN	Y E VUU 4 10
	END STATE	48.400450

FILE: VEVZ FOETRAN A

-

-

329

.

CC THE FILE CIRL INCLUDES ONE SUBROUTINE CIRL. CIR00010 THE SUBROUTINE CIRL CALCULATES CIECULATION BY ADI. CI200020 cc SUBROUTIVE CIRL CI300030 DIMENSION F (36), B (36), C (36), D (36), Z (36), CIN (12,38) COMMON ST (12,38), CI (12,38), VO (12,38), E (12), DE (12) COMMON DZ (38), Z (38) CIE00040 CIROU050 CIR06060 COMMON A, NT, MT, NTC, MTC, MTC1, MTC1, NEXIT, NE1, INOP COMMON RE, SWIRL, SS CIR00070 CIROCO80 COMMON OT (10) CTR00090 COMMON SPAC, CPAC, VF AC, AF ER CIE00 100 COMMON EX (12,38) CIE 00110 <u>M</u>= 6 CI 800 120 IIP = 1CIR00130 R-SWEEP OF CIRCULATION DO 81 J=2,MTC CIR00 140 CIE00150 DO 82 I=3,NTC CIR00 160 E 1=EX(I,J) E2=EX(I-1,J) CIR00170 CIR00180 E3 = 2X(I, J-1)CIR00 190 E4=EX(I-1,J-1) CALCJLATION OF DIS AND VEL CIR00200 CIR00210 DIS1=DE(I+1)+DE(I) DIS2=DE(I)+DE(I-1) CIROC220 CIE00230 CIE00240 CIR00250 DIS3=DZ(J+1)+DZ(J)DIS3=DZ(I)+DZ(J)

.

Ç

С

С

.

FILZ: CIEL

FORTRAN A

D 124 = D2 (J) + D2 (J - 1)	CIR00520
DIS 5= R(I) + DR(I) / 2.	CIR00 260
DIS6=R(I) - DR(I)/2.	CIR00270
DIS7 = (3(I) + 3(I + 1))/2.	CIR00 280
DIS8 = (R(I) + R(I - 1)) / 2,	CIRC6290
CONVECTIVE TERMS: VERY INPORTANT	CIR00 300
$V_1 = SS * (21 - 23) / D_2 (J) / (R(I) + D_E (I) / 2.)$	CIR00310
IF (I-2) 95,95,96	CIE00320
95 72=0.	CIR00330
GO TO 97	CIR00340
96 $\nabla 2 = SS* (22 - E4) / DZ (J) / (E (T-1) + DR (T-1) / 2.)$	CI 200 350
97 CONTINUE	CIR00360
▼ 3=+SS* (ご1+S2) /CR (I) /R (I) /A	CI 200 370
V4 = -S5 * (Z3 - Z4) / DE(I) / R(I) / R	CIROC380
VEL 1 = V1 + ABS(V1)	CI 200 390
VEL2=V1-183 (V1)	CIR00400
\forall EL 3= \forall 2+ λ B S (\forall 2)	CIR00410
VEL 4 = V2 - ABS(V2)	CIEOC420
$\nabla EL5 = V3 + ABS(V3)$	CIROU 430
VEL 6 = V3 - ABS(V3)	CIRCC440
$\nabla EL7 = \nabla 4 + ABS(\nabla 4)$	CIR00450
VEL8=V4-ABS (V4)	CIROU 460
$EXT = 2 \cdot (R3 \neq 0 IS2)$	CIR00470
DDDZZ = (Z(J+1) - Z(J-1))/2.	CIROO 480
DDD RR= $(3(I+1) - R(I-1))/2$.	CIE00490
C 1A = (VEL1*DIS5-VEL4*DIS6) / (2.*DR(I))	CIR00 500
1+2./RE/DDDRR *R (I) **2*(1./ (DIS 1*DIS7) + 1./(DIS2*DIS8))	CIE00510
1+1(I) *DT(IIP)	CIR00520
C1B = - (V2L5 - V2L8) / D2 (J) / 2. *A *R (I)	CIR0v530
1-2./EE/DDDZ2*R(I)*(1./DIS3+1./DIS4)*A**2	CIE00540
1+ R (I) *D" (IIP)	CIR06550

CONVERSATIONAL MONITOR SYSTEM

r

.

c

с

-

	C2=2.*R(I)**2/(RE*DDDRE*DIS1*DIS7)-YEL2/2.*DIS5/DE(I)	CIR00560
	C = 2 + 7 (T) + 2 / (2 R + 0 D R + 0 T S 2 + 0 T S 2) + 0 T T 2 / 2 + 0 T S 2 + 0 T T 2 / 2 + 0 T S 2 +	77200570
		51200570
	C3=2.+E ++2/0133/E2/DDD22+E(1)+V2L6/2.+E/DZ(J)+E(1)	CTE00280
	C5=2.*A**2/DI54/RE/DDC22*R(I)+VEL7/2.*A/DZ(J) *R(I)	CI 800 590
	D = I - 3	CTP00600
	TR (TP) 10 10 3	CTR00610
		CIRDOGIO
10	F(1-1) = 0	CIE00620
	B(I-1) = C1A - C4/9.	CIR00630
	$C(T-1) = -C^2$	CT 200 640
		27200640
	0 (T= () ~ C(0 + CT (T*0) + C 2 + CT (T*0 + () + C 2 + CT (T*0 - ()	CIRO0650
	GO TO 82	CIRJ0660
3	IF (I-N2XIT) 4,11,11	CIROC670
а	$\mathcal{F}(\mathcal{I}+1) = -\mathcal{I} \mathcal{U}$	CTE00680
-		CILOUDBO
		CIRDCPAN
	C(I-1) = -C2	CIR00700
	D(I-1) = C1B + CI(I,J) + C3 + CI(I,J+1) + C5 + CI(I,J-1)	CT R00710
	GQ TO 82	7 17 00720
		21100720
		CT800/30
	IF (ID) 12,13,13	CIR-9074)
12	P (I-1) =-24	CIR00750
	B(T-1) = C1A	CT200760
		CIRC, 707
		01800110
	D(L-1)=C1B*C1(1,J)+C3*C1(1,J+1)+C5*C1(1,J-1)	CIE00780
	GO TO B2	CIE 00790
13	F(T-1) = -C4	CT 200 800
. –	3(T-1) = C(1)	CTR00000
		CTEOOSIO
	C(I-1) = 0.	CIR00820
	D (I-1) = C1B*CI (I,J) + C3 *CI(I,J+1) + C5*CI (I,J-1)	CIR00830
-	+C2*CI{I+1,J}	CT 200840
82	CONTINUE	CTROCASO
45		C110-705-7
		CIROOSOO
	z(1) = r(1+1)	CIR00870
	B(I) = B(I+1)	CIR00880
	C(T) = C(T+1)	00800870
1 1		CIRCO 0000
. +		CIRU0900
	CALL REIRO (P, B, C, D, X, 9)	CIED0910
	DO 15 I=1,7	CIE0,920
15	CIN(T+2J) = r(T)	0EP00SID
		CTROCOM
~ 4		C1X00340
21	CONTINUE	CIE00950
	OC 30 J=1,とT	CIEOG960
	CIN (1,J) = CI (1,J)	CIE00970
30	T = T = T = T = T = T = T = T = T = T =	CTEGO980
		CIRCOSCO
		CTE0. 330
	LN (Le 1) = CL (Le 1)	CIR01000
31 (CIN (I, KT) = CI (I, KT)	CIE01010
Z-:	SWEEP OF CIRCULATION	CTR01020
	0, 83, T = 3, VTC	CT R0 10 30
		CIRUIU40
	s [= EL (L p J)	CIRO 1050
1	22=EX(T-1,J)	CIE01060
2	$3=\text{Ex}(\mathbf{I},\mathbf{J}-1)$	CTR0 1070
5		CTRATARC
~ * *		CIRC:000
- n. I	TO LALLON OF SLA ARD YEL	CIR01090
	LS I=DE {L+1} +DE {E}	CIR01100
```
EZ'EZ'ZZ (GI)JI
    05910810
     019108ID
                                                                                                                                                                                 51 ID=1-4IC
    CIB01630
                                                                                                                                                                                  t8 OL 09
     CI301620
                                                                                                                                                                     1+ C1 7* CI3 (I* 1)
    01910HIC
                                                                        0 (1-1)=C5 *CIN (I+1'1) +C# *CIN (I+1'1) +C2 *CIN (I'1-1)
    00910HID
                                                                                                                                                                            r_{2} = (1 - r_{1})
    06510310
                                                                                                                                                                            8(D=((-T) 8
    DBSIDED
                                                                                                                                                                                'v=(1-£)ā 1L
    012102IC
                                                                                                                                                                                 178 03 0Đ
    CIE01200
                                                                                                                                                                     (r'I)NIO+VLO+L
    0521 (810
                                                                                                                                                  D(1-1)=C2*CIX(I+1'1)
    0 101 01000
                                                                                                                                                                            C(1-1)=-C3
    CI801230
                                                                                                                                                     3 (1-1) = C13-C2-C#13"
    CIE01250
                                                                                                                                                                               0 = (1 - 1) = 0L
    CISICETO
                                                                                                                                                              11'11'01 (61) at
                                                                                                                                                                           IIXIN-I=61
    0051 CHID
                                                                                                                                                                                50 CONLINGS CT
   061103ID
   08010810
                                                                                                                                                             IP(ID) 20,20,21
   0L1108ID
                                                                                                                                                                                     ID=1-5
                                                                   C2=5" * ##* 5/DI2 #/8 E DD D 2 * # (I) +4 E L/15 * # 10 (1) * (I)
   09#108ID
                                                                  (I) =* (I) ZU/Y ** 7/9121- (I) =* Z Z 00/38/ ESIG/Z** V* 72- (I) *E (I)
   CIROLADO
                                                          C1=2,*8(I)**2/(E2*DDD86*DIS1*DIS1)-VEI2/2.*DIS6/D8(I)
C2=2,*8(I)**2/(E2*DDD86*DIS2*DIS0)+VEI2/2.*DIS6/D8(I)
   Upp103TD
   02510370
   CIE01420
                                                                                                                                                                   (911) 70*(1) 8+1
                                                           ((#SIG*ZSIG)/*L+(LSIG*LSIG)/*L) *Z**(I)#*EEGGG/38/-2-L
   01010310
                                                                                                    CIV=-{AEI1*DI22-AEI#*DI20)/(5**D8(I))
  CI801400
                                                         C19= (AI 12 - AI 12 - AI 14 + AI 12 + 1 < C19 + (3 + AI (1) + A (1) + 
   06E108ID
  CI201380
   CIE01310
  09610212
                                                                                                                                     DDBE=(3(I+1)-E(I-1)) \5.
                                                                                                                                                           EXT=2./ FE*DIS2)
  OSELOSTO
  07510213
                                                                                                                                                              (1) SEV-1 A=833A
  0 22 10 810
                                                                                                                                                             (\pi \Lambda) SEV+\pi \Lambda = LT = \Lambda
  CI801330
                                                                                                                                                             (EA) SEV-EA=9TEA
  CIE01310
                                                                                                                                                             AEFS=A3+792 [A3]
  002105ID
                                                                                                                                                             (2) S84-2V=0 J3V
  CI801560
                                                                                                                                                             V 3L3=V2 +ABS (V2)
                                                                                                                                                             (1 A) SEV-1 A=Z IEA
(1 A) SEV+1 A=Z IEA
 CIE01280
  OLZIONIO
                                                                                                                            Ad=-52*(53-54)\D9(1)\8(1)\9(1)\4
A3=-22*(51-55)\05(1)\2(1)\4
 09710HID
 05710HID
 CIECISTO
                                                                                                                                                                              SOKIINOD 69
 CIECIS30
                                                                                            88 A S=22* (35~Ed) \D2 (1) \(E(I+1) +D5 (I-1) \5
 07210HIC
                                                                                                                                                                              68 CT CD
 CIEC 1510
                                                                                                                                                                                       "0=ZA L8
007103TD
                                                                                                       L=(1-2) B2'28
A 1=2*(21-23) \D2(1) \(E(1)+20(1)\.
 061108ID
08110210
                                                                                                                    CONVECTIVE TERMS: VERY INPORTANC
                                                                                                                                                                                                               2
 OTFORID
                                                                                                                                              DIS8= (8 (I) +8 (I-1))/2
                                                                                                                                           .2/(I) 8-(I) 8:=1510
-2/(I) 8-510
-510 -510 -510 -510 -510
091107IC
65110ETD
                                                                                                                                                   · 2/ (I) 80+ (I) E=SSIG
01110210
CIE01133
                                                                                                                                                   (1-f) Z G + (f) Z G = tSIG
CIECTISO 1120
                                                                                                                                                   (r) ZJ+(1+r) ZC=ESIG
01110310
                                                                                                                                                   (1-I) 80+(I) 80=ZSI0
```

METRIC FORTHAN A WARTEON LAIST SATIS

Ŧ							
SILE	CIRL	FORTRAN	4		CONVERSATION AL	RONILDS	SYSTEM
22	2 ? (J-1) =-	·C5					CTP0 1660
	∃ (J−1) =C	:18					CTR01670
	C(J-1) = -	-C3					CT201680
	D(J-1) = C	2*CIN (I+1	.J) + C4 *CIN	(I-1.J)			CTR01690
	1+CIA*CIN	(I,J)					CTR01700
	GO TO 84						CTE01710
23	? (J-1)=-	C5+C3/8.					C TR 01 72 0
	8 (J-1) =C	18-03*9./	P.				CTR01720
	c (j-1)=1	•					CTE01740
	0 (J - 1) =C	2*CIN(I+1.	J) +C4 *CIN	(I-1,J)			01201750
	1+014+011	(I,J)	•				CTE01761
84	CONTINUE	•••					CTR01770
	CALL KEI	KO(2,3,C,U), X, ≝T C1)				CT 201780
	00 25 J=	1.MTC1					CTR01790
25	CI(I, J+ 1)	= X (J)					CT201800
83	CONTINUE	•					CTR 01 81 0
	DO 19 J=	2. HTC					CTR01820
19	CI(2,J) = 0	I (3,J)/9.					CTR01830
	30 18 I=	2.NE1					CTED 1840
18	CI(I,1)=0	CI (I,2)					CTR01850
	DO 26 I=1	I ST					CTE01860
26	CI(I,MT) =	9./8.*CI(I. MTC)-CI	(I. MIC1)/8.			CTR0 1870
	EZTURN		· •				CTR 01 880
	e nd						27301890

-

-

.

PILE: VOTY	PORTRAN	λ	CONVERSATION AL	RONITOR	System
CC THE PILE I	TOTT INCL	UDES ONE SUBBOUTINE V	OTY.		¥ CT 0 C 0 10
CC THE SUBED	TTINE VOT	I SOLVES THE VOTICITY	BY ADI.		VOTOC 02C
SUBROUTI	NE VOTY				7010030
DISENSION	I 7 (36) "B	(36) ,C (36) ,D (36) ,X (36) - 70N (12 - 38)		VOT00-046
COMMON ST	:(12,38),:	ΞΙ(12,39),VO(12,38),Ε	(12), DE (12)		VOI00050
CONMON D2	:(38),2(3	8)			7070060
ссимоя т,	,NE,ME,NTO	C, MIC, NIC 1, AIC 1, NEXLI,	, NE 1, INOP		VOT 00070
COMMON AN	, SVIRL, S	S			YOTOUOBJ
COMMON D1	<u>[[</u>]]				VUTUC 090
COMMON SE	(AC, GIAC,) (1) - 39)	I ZAL FAI EK			
	. [12,30]				VOT00 120
	TORTICITY	r			70700130
DO 5 J=2	MTC	-			7 OT 00 140
DO 6 I = 2	NTC				VO TO 0 150
$\Xi 1 = \Xi X (I)$	5				VCT 90 16 0
E2= EX (I-1	(J)				VOT30 170
E3=EX(I,J	(-1)				VOT00160
E4 = EX (I - 1	,J-1)				VOT00 190
C CALCULATION	OP DIS A	ND VEL			VO100200
DIS1=05(I	+1)+DE(I)				VOT00210
DI32=DR(I) + CR (I-1)				VU100220
9 IS 3=0 Z (J	+1;+02;0;				VOT00250
) + UZ (U - 1) + D 2 (T) (2				TOT 06 250
	-DE (1)/4-				VOT00 260
) + R (T+ 1))	17-			TOT9C 271
DISB = Ta T	+ R (I - 1)	/2.			7 OT 00 28 0
C CONVECTIVE	TERMS: VE	RY IMPORTANT			VO TO C 290
₹1=SS * (E1·	-E3}/0Z{J)/(R(I) +DR(I)/2.)			70T00300
IP(I-2) 8	7,87,98				VO TOO 310
37 \$2=3.					VOT00320
GO TC A9		· · · · · · · · · · · · · · · · · · ·			70100330
55 YZ=55*(32	-543/06:0)/(=(1=)/2+)			70700350
20111102 to	1-271 /02 /	T1 ZR (7) ZA			70700360
Vi=-99×(2) Vi=-99×(2)	1- <u>52</u>]/DL (1-54)/DR (YOT00 370
VEL 1= V1+4	8s (71)				VO TO 0 389
VEL2=V1-A	35 (71)				VOT00 390
VEL 3=V2+A	as (V2)				VO 200 400
V 2L4=V2-AB	is (v2)				TOT00410
V SI 5= V 3 + 4 9	35 (¥3)				VO TO 0 4 20
7 E L 6 = 7 3 - A E	IS (V3)				VOTOU430
V 2L 7= V4+AL	35 (74)				YO TUU 440
	IS (V-1)				70100 450
20022=(2(J	1+1)=2 (J=	1) / /2 -			70200400
U TY THE (A (1	.+ .)== (+= . /> =	1, 1, 7 2.			YOT00 480
+ === == == = = = = = = = = = = = = = =	 	E*DTS1)			VOTOC 490
	##2#/11#1	155+V2*01561 /2.			70T00 500
V 1A= (VEL 1*	DIS5-VEL	*DIS6) *R (I) **2/(2.*D)	R[I])		VO TO 0 510
1+ (2 • *R (I) *	**2/DDD&E*	(DIS7/DIS1+DIS8/DIS2)	+ H (I)) / HE		VCT00520
1+ E(I) ++ 3+ E	T(IIP)				VO TOC 530
V 18=- (VELS	-7 E L8) /DZ	(J)/2. *A*E(I) **3	<u>.</u>		VOT00540
1-2./RE/DDD	ZZ* (1./DI	53 +1 ./EI 54) *A**2*E (I)	**3+E (I) **3 *DT (TT5)	VO TO 0 550

,

. -

r

	V2=R(T) **2*(2.*DIS7/(RE*DIS 1*DDDER)~VEL 2*DIS5/(2.*DE(I)))	70100560
	Y4=P(1) **2 * (2 * DI S8 / (RE*DIS2*DDDRE) + VEL 3*DIS6 / (2 * DR (I)))	7 OT 00 57 0
	$y_{3=8} + (1 + *3 + (2 + 7) + (1 + 2 + 7) + (1 + 2 + 2 + 7) + (1 + 2 +$	VOTU::580
	V5=F (T) **3 * (2, / (P F* DT S1 *D DDZZ) *A**2+VEL 7/(2.*DZ (J)) *A)	YOT00590
	$V_{6=2}$, $*A*CI(T_{1})*(CI(T_{1})+1)-CI(T_{1}))/DIS3$	VOT00 600
	$1 + (T_1 T_1 - T_1) + (T_1 T_1 - T_1) + (DT_1 S_1)$	VOT00610
		V0T00620
		YOT 00630
		V OT 00 640
	$B(T-1) = t^{-1}b$	VOTD0650
	C(T-1) = -V2	70100660
	C(I - 1) = 12 $D(I - 1) = 23 \pm 20 (I - 1 + 1) + 25 \pm 20 (I - 1) + 24 \pm 20 (I - 1) + 20$	VOT00670
		VOT00680
		70 100 690
		VOT 00760
	$25 T T = 12 \pm 27$	VOT00710
		VOT00720
		70T00730
	C_{1} $(T_{1}, T_{2}, T_{2}$	70100740
		YOT 00750
		VOT00760
		VOT 00770
		YOT00780
	$12 \times (1-1) = 24$	YOTCG79G
		V OT00800
	C(T-1) = + V2	VOT0081C
		YOT 00 82 0
		YO TOC 8 30
		YCT 00840
	33 7 (T-1) = - 44	V0T00850
		VOT 00860
	C(T-1)=0	V0T00870
	$0 (T - 1) = U^2 + V(0 (T - 1 + 1) + V + V + V (T - 1) + V + V + V + V + V + V + V + V + V + $	VOTDO 880
		VOT00890
		VO TO 0 900
		70T 00 91 0
		VO TO 0 9 20
		VOT00 930
		YOT00940
		VOT0C950
	$V(\mathbf{N}_{1}) = V(\mathbf{N}_{1})$	VOT00960
	50 $V(0)((T_{T_{1}})) = V((T_{T_{1}}))$	TOTO0970
		VOT00980
	$\mathbf{YON}(\mathbf{T}, 1) = \mathbf{YO}(\mathbf{T}, 1)$	70 TO 0 99 0
	51 for(T, MT) = f(0, T, MT)	VOT 01 000
С	2-STZEP OF YORTICITY	VOT01010
-	30.7 = 2.37	TOT01020
	BO = J = 2.4TC	VOT0 1030
		70 TC 104 0
	$\Xi 2 = E \chi (I - 1, J)$	VOT01050
	$E_{3} = E_{1} (1, J-1)$	VOT01060
	E4 = EX (I - 1, J - 1)	VOI 01 070
С	CALCULATION OF DIS AND VEL	VO TO 1080
_	D IS 1= DS (I+1) + DR (I)	VOI01090
	DIS 2=D2(I) + DR(I-1)	V OTO 1 100

FILE: VOTY FORTRAN A

-

С

-

,

	DIS3=DZ(J+1)+DZ(J)	VO TO 1110
	DIS4=DZ(J)+DZ(J-1)	VOT 01 120
	DIS 5 = R(I) + DR(I) / 2.	VO TO 1 130
	DIS6 = R(I) - OR(I)/2	70T 01140
	DIS7 = (R(I) + R(I+1))/2	VOT01150
	0IS8 = (R(I) + R(T - 1))/2	VOT 01 160
С	CONVECTIVE TERMS: VERY IMPORTANT	VOT01170
-	V1 = SS + (21 - 23) / D (7 (1) / (P(1) + D P(1) / 2))	YOT 01 180
	IF(I=2) - 96 - 36 - 97	TOTO 1 190
	96 ¥2=0.	70 10 1 200
		TOT01210
	97 V2=55* (52+64) /D7 (1) / (5 (T-1) +D5 (T-1) /2 -)	VOT01220
		TOT01230
	$V_3 = -55 + (E_1 - E_2) / DE(T_1 / E_1) / A$	VO TO 1240
		VOT 01250
		VOT0 1260
	VTL 2=V1-185(V1)	VOT 01270
		YO TO 1 280
		YOT 01290
		70701300
		VOT01310
		VOT01370
		V0701320
		70701340
		70701350
		TOT 01 360
	τως 4 = α (1/) α.5 (ΓΕΥΤΟ) = 5 = (1) = ± 5 / / Ε τε οτοίι	VOT01370
	$T G \in L^2 \cap \mathcal{L}_{+} \cap \mathcalL_{+} \cap \mathcalL_{$	VOT01383
	Y 1 2 2 1 3 - E (1) Y 7 2 Y (Y 1 7 3 1 3 3 7 Y 2 Y 1 2 3) / 2 + Y 1 9 - (Y E F 5 - Y D R) / D 7 / Y / 2 + + 3 (T) + + 3	VOL01300
	$\mathbf{v} = \mathbf{v} = $	VOT01000
	(72.7KC/9D042+(1.7D133+(1.7D134)+4++2.K(1)+-3+0.(1)+-3+0.(11+)	TOTO1400
		70101410
	1 - (2 + R (1) + + 2/DDDRR + (D12 //D12 (+D120/D122) + R (1))/E2	YOT01020
	$(+\kappa(L)) + + 3 + 0T(LLP)$	VOL01430
		10101440
	{	7 OL 0 1450
	44=8(1) + 2*(2*D158)(2E*DDEE*D152)	TOTO 1400
		YOTO1470
	$v_3 = E(1) + i_3 + (2)/(R + DIS3 + DD ZZ) + R + 2 + ELO/(2 + DZ (J)) + R)$	YU 1V 1400
	$y_{0} = x_{1} + x_{3} + (z_{0} / (RE + DI S4 + D DDZZ) + A + + 2 + VEL / (2, +DZ (3)) + A)$	VOE01490
		TOTO1510
	1+(CT(1)-CT(T)-1))/DT24)	YOEV(370
		YOLV1520
		10101530
	40 CONTINUE	YUTU 1540
	1P(1-NEXIT) = 46, 47, 47	10 10 1330
	46 P (J-1)=1.	VUTU1560
		VUTU1570
	$C(J-1) = +V_3$	YUTUIS80
	$D(J+1) \approx YZ = YON(I+1,J) + YU = YCN(I-1,J) + YU = YTA = YON(I,J)$	Y UTU 1590
	GO TO 8	VOTU1609
	47 + (3-1) = 0	V UT 01510
	B(J-1) = V 1 B	VOT91620
	$C(J-1) = -\sqrt{3}$	VOT01630
	D (J-1) = V2*VON (I+1,J) + V4*VON (I~1,J) + V6 + V5*VON (I,J-1)	VO TU 1640
	1+V14*0N(I_J)	TOT 01650

FILE: VOLY FORTEAN A

.

-

FILE: VOTY FORTRAN 1 CONVERSATIONAL MONITOR SYSTEM

·····

GO TO 8	, VOT01660
41 ID=J-MIC	VOT0 1670
IT (ID) 42,43,43	VOT 01680
42 P(J-1) = -75	VO TO 1690
B(J-1) = V19	70201700
$\Im (J-1) = -\nabla 3$	VOT01710
D (J-1) = V2*VOX (I+1,J)+V4*VOX (I-1,J) +V6	VOT01720
1+V1A+VCN (I, J)	YOT01730
GO TO 8	VOT01740
43 P (J-1)=-V5	YOT 01 750
3(J-1) = 71B	70101760
C(J-1) = 3	VOT 01 770
D (J - 1) = 72 * 70 N (I + 1, J) + 74 * 70 N (I - 1, J) + 76 + 73 * 70 N (I, J + 1)	VOT01780
1+ V1 A* VOL (I, J)	YOT01790
8 CONTINUE	70701800
CALL KEIKU (F, B, C, D, X, MTC1)	VOT01810
00 45 J=1.2TC1	VOT01820
45 VO(I, J+1) = X(J)	VOT0 1830
7 CONTINUE	VOT 01 840
DO 39 I=2, NE1	YOT01850
39 VO(1,1) = VO(1,2)	70701860
RETURN	70701870
END	YO TO 1880

i

.____

-

CONTRESATIONAL MONITOR SYSTEM

CC	THE FILE REST INCLUDES TWO SUBROUTINES, REST AND PRES.	RE 5000 10
C	THE SUBEOUTINE RESI CALCULATES THE RESIDUALS OF THE	2 FS:10020
20	THREE FUNCTIONS AND THE SUBROUTINE PRES PRINTS THE	TES00030
CC	C RESULTS.	3 7506040
	SUBECUTINE RESI	88500050
	DIMENSION RS (12,38), RC (12,38), RV (12,38)	2E500060
	COMMON ST (12,38), CI (12,38), VO(12,38), B(12), DB (12)	52500070
	CORMON DZ (38), Z (38)	EE 500 080
	COMEON A, NI, MT, NTC, MTC 1, MTC 1, MEXIT, NE 1, INOP	E 500090
	CCIMON RE, SWIRL, SS	3E 500 100
	CONNON 21 (12)	a 2500 110
	CCMMON SPAC, CFAC, VFAC	EES00 120
	COMMON 3X (12,38)	E ESO0 130
	LIP=1	RES00 140
	DO 2 I=1, NT	RES00 150
	50 2 J=1, MT	R ES 00 16 0
	2S(I, J) = 0.	RE 500 170
	$\mathbb{RC}(\mathcal{I}, \mathcal{J}) = 0$	3 ES 00 180
	RY(I,J) = J.	RESOO 190
	2 CONTINUE	3ES00200
	30 1 1=2, NTC	aES00210
		32S00 220
		R 25 0 0 2 3 0
	$E Z = SX \left(1 - 1, J \right)$	RES00 240
		1 esjo 250
~	$24 = \text{EL}(1 - 1, \mathbf{J} - 1)$	aes00 260
<u>ل</u>	CALCULATION JE DIS AND VEL	22 SOO 270
		2ES00280
		ae 500 29 0
		RES00300
		32 S00 3 10
		a es o c 32 o
		32500330
		R 2500340
- ح		RES00 350
~		RE 500 360
		32500370
	87 ¥2=0.	AE500380
	GO TO BY	EES00390
	83 $72 = 55 * (22 - 64) / DZ (J) / (R(I - 1) + DE(I + 1) / 2)$	
	89 CONTINUE	2 23 0 0 4 1 0 2 8 5 0 0 4 1 0
	$V3 = -55 \pm (21 + 22) / DR(1) / 2(1) / A$	2 2 2 0 0 4 2 0
	$\mathbf{Y}_{4=-SS*}$ (E3-E4)/DE(I)/E(I)/A	RE 500 440
	VEL 1=V1 +ABS (V1)	RE300 440
	v = 12 = v1 - ABS(v1)	25500 460
	VEL 3= V2+ ABS (V2)	E PS00470
	V EL 4 = V2 - A B S (V2)	35500 480
	VEL 5= V3+ABS (V3)	2E 500490
	42L6=43-7B2 (A3)	RES00500
	VZL 7=V4+ABS (V4)	2E 500 5 10
	VEL8=74-ABS (V4)	3 ES 00 52 0
	DDD2Z = (2(J+1) - 2(J-1)) / 2.	RE 500 530
	$DDDRE = \{ \exists \{I+1\} - R \{I-1\} \} / 2.$	B 2500 540
222	STEERA FUNCTION	£E 500 <i>5</i> 50

FILE: RESI FORTRAN A

338

-

FILE:	RESI	FORTRAN	A	CONVERSATION AL	LOSITOR	SISTER
	A AA=-A/S	S#a (I) #*2	≠VO(I,J)			82 S00 560
	5 1A=(1./	∂IS1+1./DJ	[S2) *2./D!	DDSE*R(I) +2./DIS2		a 25 00 5 7 0
	S 1AA= (1.	/DIS3+1./#	DIS4)*2./1	DDDZZ*A**2*R(I)		EE \$00 580
	S14=S14+	5 1 A A				ā ES 00 590
	S2=2./DI	S1/DDCER##	E(I)			RES00600
	S3=2./DI	53*A**2/DI)DZZ *5 (I)			EESV0610
	54=(1.+3	(I) /DCDRE)	*2./DIS2			32500620
	S5=2.∕DI	54*A**2/DD	DZZ *E (I)			RESOC630
	2S(I,J) =	-511 *ST (I,	J)+S2*ST;	[I+1,J) +53# ST{I,J+1}+S4#5T{	I-1,J}	a es 00640
	1+ 55* 5T (I,	$J-1$ + $\lambda \Delta A$				ae 500 650
CCC	CIRCULATI	LON				2 ES 0066 0
	EXT=2./()	ESFBLSZ)				āE 500 670
	CIA= YEL	1 = 0 1 2 2 - 4 2 1	4 = 0 1 5 6) / (,24 ¥U R(⊥)) Taibhran 11 (Antaninana)		B ES 00 680
	1+2./2E/01]]][]:::::::::::::::::::::::::::::::::	*2* (1.7 (1	DIS(*0157)+1.7(DIS2*D158))		RES00690
	1+a(1)+0T	(TTS) (TTS)	7 (1) /7 **	+D (T)		a ES 00700
		-) = Y = L 0 / / U N 7 7 6 9 / T \ #	4 (J)/2**A	.T.X.(↓) .1 _ (つてにい) またまちつ ロイエン ★ 0m / T.T. ロン		RE500710
	C11 -C11 -C	1066 TA (1) T	. 1• / 013 3+	(1, 2) 13 4) + R + + 2 + R(1) + 0 [(11 P)		83500720 8500720
		-10 11 k ± 0 / /9 E ±				RES00730
		.)/ (0 L - - 1 3 #3 // 6 - 8	00042 ~D13	7*0137) -* 222/2.*9133/UR 1)		AESU0740
		2 / 1 7 5 7 / 2 / 2	ZODEZ 2#P (T) - UFT 6/2 * 1/D7 (T) * 0 / T)		3 ES 00 750
	CS=2 *1 **	2/0133/85	/00022*8(T) + V 7T 7 /2, * & / D7 (1) * C (T)		
	PC(T. I) =-	C14*CT (T	1)+C2 +C T (T+1 . J) +C3 *CT (T . J+1) +CU *TT /T	- 1 TI	22500770
	1+05+01/7	J-1)	-,(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1		12300703
ccc	TOSTICI	Y				22500000
	YEXT=R (I)					RES00800
	V =x = 2 = 2 . *	9(I) **2/!	EE*DIS1)			2 2500 820
	VEXT3=R (I) **2* (V1*	DIS 5+V2*D	IS6)/2.		87510830
	714= (VEL1	*) ISS-VEL	∔*DIS6) *R	(I) **2/(2, *DR(I))		RES00840
	1+(2.*R(I)	**2/CD DR 2	* (DIS7/CI	51+DI58/DIS2)+B(I))/RE		82500850
	[+8(I) ++3+	DT (IIP)	- /			R ES 00 86 0
	V 1B=+ (VEL	5-V218)/D	Z (J)/2.*Å	₽E(I)*#3		RE 500 870
1	1-2./BE/DD	DZZ* (1./D)	ES3+1./DE	54) *A**2*R (I) **3+E (I) **3* DT	(IIP)	E 2500880
	V 1λ = V 1λ −V	18			• •	IES00890
	V2=R(I)**	2*(2.*DIS'	//(RE *D IS	1#DDCRR) -V EL 2#DIS5/(2.*DR(I)	a 25 00 900
	T4=1(I) **	2 * (2 . * D <u>T</u> S8	3/(SE*DIS:	2*DDDEE) +VEL3*DIS6/(2.*DP (I	1))	RE500910
	73=R(I) **	3# (2./ (ES	*DIS3 *DDD;	CZ) *A **2-V EL6/(2.*C2 (J)) *A)		RESOC920
	75=2(1)**	3 * <u>(</u> 2 . / (2 E 1	•DI \$4 *DDD2	<pre>[2] * A** 2+ YEL 7 / [2.*D2 (J)) * A)</pre>		EES00930
	76=2. 	I(I,J)*((0	I(I,J+1)	-CI(I,J))/DIS3		ae soù 940
1	+ (CI (I, J)	-CI(I,J-1))/DIS4)			a es 00 95 0
-	$\exists V(I, J) = -$	V14 # VO (I,)	r) + v2 * v o (1	I+1,J)+V3*V0(I,J+[}+V4 *V0(I-	-1_J)	22500960
I	+ 75 * VO (I,	J-1)+V6				E ZS 00 97 0
1	CONTINUZ					RESO0980
CCC	PRINT RESU	JDUALS				E ES 00 99 0
	ARITE (5,1)	00} (D G 7)				62501000
	CALL PRES	(23,4)				RES01010
	WELTE (0,1.	11] (70 //)				RES01020
	VALE CAED Termo (C. 19	(24,6) 121				RZ 50 10 30
	CITE DESCI	· ~) (37 7)				RES01040
100	CALL ERLO(FOEKIT// 1	137 1992 5	2580831	R FACE FUNCTIONS // 107		1250 1050 2 ECO 1060
1.0.2	COLDET (A)		CODUCAL C	- INCLICATION #//#UNK#		H L D U I U D U
101	90631477 1		I LATECN€ /	3		AESUIU/U B Reviseo
102	20681767 1	Or IVORT	CT TTI.	,		
	2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	the second	///			RESULUTU RESULUTU
						⊌⊌ا ال- سيند

-

-1 -

FILE:	RESI	FORTRAN	Λ	CONVERSATIONAL	SONI TOE	SYSTEM

	2 XD	RES01110
	SUBROUTINE PRES(AB,Z)	EE SO 1 120
	DIMENSION AB (12,38) ,Z (38)	R ES 01 13 0
	DO 1 K= 2, 39, 3	2ES01140
	J=39-K	a 2501150
1	WRITE(6,100) (AB(I,J),I=1,11),I(J)	22501160
100	FOEMAT (11210.3, PTU.3)	a 2501 170
	RETURN	SES01180
	END	RES01190

340

.

-

٠

-

The Result of Run #42 ($\operatorname{Re}_{\theta}$ = 1370, SS = -.02)

All the calculations are executed by CMS (Conversational Monitor System) under IBM 370 operated by IPC at MIT. The calculation starts with $Re_{\theta} = 10$ and SS = -1 from the situation where the fluid is completely at rest. After several hundreds of iterations, each function (ψ, Γ, ω) is fully developed. These functions are then stored as initial conditions for higher Reynolds number calculations. For the case $Re_{\theta} = 1370$ and SS = -.02, the experimentally measured circulation in the free stream region is input as the initial condition for the circulation calculation. The circulation in both core region and bottom boundary layer is reasonably guessed. Setting $Re_{\theta} = 1370$ and SS = -.02which corresponds to the experimental condition, the iteration starts. Every fifty iterations, three functions (ψ , Γ,ω) as well as the radial and axial velocities are printed over the entire geometry. Residuals of the three functions are also calculated and printed. The whole calculation is terminated when the following requirements are satisfied.

- The convergency of the stream function in the loop l is very fast, one iteration is desirable (see Fig. 3.12)
- The circulation and vorticity do not change much in each iteration in the loop 2.
- 3. The residuals of the three functions are sufficiently

small over the entire geometry when they are com-

pared with the dominant terms in the equations. The results of each function and the radial and axial velocity after 400 iterations in the loop 2 are followed.

.....

STREAM FUNCTION

.

0	.01	.03	.05	.07	.09	.19	, 37	.55	.73	.91	
1.00000	V,70000	0.79822	0.0	0.0	0.0	0+0	0.0	0.0	0.0	0.0	0.0
1,00000	0,96553	0,79818	0.39230	0.26630	0.21270	0.20697	0,11126	0,07649	0.05485	0.03585	0.00500
1,00000	0.97179	0.85250	0.72851	0.64647	0.59299	0.64227	0,40686	0.32594	0.24262	0.15179	0.01500
1,00000	0.97117	0.84609	0.80880	0.80549	0.78991	0.86000	0,58503	0.50285	0,37844	0.22361	0,02500
1,00000	0.97168	0,84743	0,77801	0.83302	0,85188	0.91374	0,66342	0.59355	0.45041	0.25420	0.03500
1,00000	0,97326	0.85686	0.80131	0.82756	0.84749	0.89236	0.68776	0.62804	0.48097	0.26283	0.04500
1,00000	0,97456	0,86321	0.81211	0,80829	0,83329	0.85465	0,68957	0.63396	0,48997	0,26247	0.05500
1,00000	0.97584	0.86986	0.81634	0.80129	0.83055	0.81799	0.68292	0,62770	0,48706	0,25953	0.06500
1,00000	0,97667	0,87403	0.01810	0,80194	0.83396	0,78659	0,67279	0,61702	0,48403	0,25667	0.07500
1,00000	0.97709	0,87608	0,81896	0,80288	0.83460	0,76106	0,66121	0,60506	0,47747	0.25477	0,08500
1,00000	0,97727	0.87709	0.82098	0.80753	0.82870	0.74046	0.64923	0.59305	0.47052	0.25400	0,09500
1,00000	0.97744	0,87803	0,82410	0.81355	0,82170	0.72408	0,63751	0,58154	0.46374	0.25430	0,10500
1+00000	0,97769	0.87947	0+82771	0,81759	0.81649	0.71147	0,62655	0,57083	0.45742	0.25556	0.11500
1,00000	0.97805	0,88151	0.83151	0.82010	0.81269	0.70216	0.61674	0,56112	0,45173	0,25764	0.12500
1,00000	0,97854	0,88411	0,83533	0,82166	0,80992	0,69560	0,60839	0.55257	0.44681	0,26045	0,13500
1.00000	0,97913	0.88717	0.83912	0,82257	0.80771	0.69122	0,60170	0.54529	0,44272	0,26391	0,14500
1,00000	0,97979	0,89062	0.84284	0,82302	0.80557	0.68850	0,59680	0.53937	0.43954	0,26795	0,15500
1,00000	0,98054	0,89444	0.84649	0,82306	0,80319	0.68699	0.59370	0,53483	0,43730	0,27251	0,16500
1+00000	0.98139	0,89876	0.85015	0,82288	0,80040	0,68637	0.59223	0.53163	0,43600	0.27754	0,17500
1,00000	0,98238	0,90382	0,85402	0,82283	0,79813	0,68641	0,59207	0.52967	0,43560	0,28299	0,18500
1,00000	0,78346	0,90950	0.85803	0,82321	0,79617	0,68691	0.59279	0.52873	0.43601	0,28882	0,19500
1,00000	0,98476	0,91638	0,86430	0,82640	0,79655	0.69014	0,59773	0,53047	0,44138	0,30829	0.22500
1,00000	0,98644	0,92518	0,87381	0,83544	0,80568	0,70205	0,61188	0,54342	0,46033	0.34550	0,27500
1.00000	V,78/84	0,73265	V,88346	0.84653	0.81865	0,72413	0,63607	0.56719	0,48863	0.38661	0.32500
1.00000	0.78871	0,73836	0.87229	0,85778	0,83217	0.74836	0,66547	0.59775	0.52302	0,43022	0,37500
1,00000	0,98990	0,94378	0,90122	0,86757	0.84644	0.77322	0.69692	0,63178	0,54083	0,47531	0,42500
1.00000	0,99093	0,94945	0,91037	0.88150	0,86075	0,79758	0,72864	0.66717	0.60031	0.52116	0,47500
1,00000	0,77218	0,95641	0,92090	0.89468	0,87607	0,82146	0,75974	0.70267	0.64038	0.56732	0.52500
1,00000	0,99363	0+96439	0.93271	0,90901	0,89234	0.84481	0,78977	0.73759	0.68035	0.61352	0.57500
1.00000	0,99508	0.97217	0.94483	0,92383	0,90904	0.86753	0,81863	0.77164	0.71990	0.65964	0,62500
1,00000	0,99613	0.97786	0,95506	0,93710	0.92437	0.88890	0.84615	0.80465	0.75889	0,70559	0.67500
1,00000	0,77000	0+98001	0.96221	0.94/60	0,93/19	0,90833	0,87229	0.83663	0.79723	0,75131	0,72500
1,00000	0,99679	0,98166	0,76681	0,75540	0.94736	0,92572	0.89709	0.86759	0,83494	0.79683	0.77500
1,00000	0.99700	0,98317	0,97123	0,96271	0.95692	0.94208	0.92079	0.89774	0.87210	0,84216	0.82500
1.00000	0,99803	0,98910	0,98009	0,97365	0.96936	0,95878	0.94385	0.92742	0,90887	0,80737	0.87500
1.00000	0.99969	0,99815	0.99251	0,98776	0.98445	0.97615	0,96660	0,95676	0.91516	0,93251	0.92500
1.00000	1.00039	1.00218	0,99994	0,99769	0.99608	0,99236	0,78893	0,98568	0,98186	0.97754	0.97500
1,00000	1.00000	1+00000	1,00000	1,00000	1.00000	1,00000	1,00000	1,00000	1,00000	1,00000	1.00000
	1 00000	* *****	1 00000								

343

z

CIRCULATION

.

0.0	0.04786	0,43071	0.61957	0.69955	0,73514	0.74580	0.76624	0.79911	0,85143	0.93754	1.00000
0,0	0.04789	0.43097	0.61955	0.69954	0.73514	0,74580	0.76624	0,79911	V.85143	0.93753	0.97500
0.0	0,04812	0,43306	0.61940	0.67748	0.73516	0.74583	0.76626	0,79903	0.85141	0.93748	0.92500
0,0	0.04792	0,43131	0.61904	0.69954	0.73528	0.74592	0,76633	0.79912	0.85154	0.93747	0.87500
0.0	0,04750	0,42752	0,61877	0,69973	0.73547	0,74604	0,76643	0,79925	0,85164	0.93747	0,82500
0.0	0,04761	0,42847	0.61967	0,70031	0.73579	0,74622	0,76658	0.79946	0,85173	0,93748	0.77500
0.0	0,04830	0,43472	0,62164	0,70119	0.73623	0.74645	0,76678	0,79964	0,85186	0.93747	0.72500
0.0	0,04885	0,43969	0.62312	0.70201	0.73671	0.74674	0.76705	0,79990	0,85205	0,93748	0.67500
0.0	0.04903	0,44130	0.62382	0,70272	0.73725	0.74711	0,76738	0,80019	0,85226	0,93748	0.62500
0.0	0.04892	0.44024	0.62417	0,70345	0.73784	0.74755	0,76780	0.80058	0,85255	0.93751	0.57500
0.0	0.04873	0,43859	0.62480	0.70439	0,73857	0+74808	0,76831	0.80106	0.85288	0,93754	0,52500
0.0	0.04869	0,43823	0,62598	0,70550	0,73940	0.74872	0.76892	0,80161	0,85328	0.93754	0,47500
0,0	0.04888	0,43991	0.62773	0,70682	0,74033	0.74946	0,76965	0.80226	0,85375	0.93755	0.42500
0,0	0,04919	0,44269	0.62949	0.70804	0,74128	0,75030	0.77047	0,80301	0,85425	0,93758	0.37500
0,0	0,04957	0,44612	0.63108	0.70913	0.74224	0.75121	0.77139	0.80392	0.85483	0.93762	0,32500
0.0	0,04990	0.44914	0,63194	0.70950	0.74291	0,75208	0,77238	0.80472	0,85543	0,93765	0,27500
0.0	0.05042	0,45379	0.63213	0,70843	0.74310	0,75317	0.77353	0,80561	0.85593	0,93768	0,22500
0.0	0.05096	0.45862	0.63247	0.70732	0.74254	0,75336	0,77374	0,80569	0,85590	0,93770	0,19500
0.0	0.05176	0,46583	0.63320	0,70640	0,74126	0,75350	0,77395	0,80583	0,85591	0,93770	0,18500
0.0	0,05238	0,47142	0.63384	0,70545	0.74006	0,75362	0,77425	0,80606	0,85588	0,93771	0.17500
0,0	0,05287	0,47583	0.63471	0,70436	0,73903	0,75372	0.77461	0,80630	0,85582	0,93772	0,16500
0,0	0,05329	0,47963	0,63609	0.70321	0,73824	0,75381	0.77495	0.80649	0,85566	0.93774	0,15500
0.0	0,05367	0,48305	0,63800	0.70206	0,73768	0,75391	0.77524	0.80664	0,85540	0.93774	0,14500
0,0	0,05401	0,48607	0.64033	0.70098	0,73722	0,75402	0,77543	0.80676	0.85509	0,93771	0,13500
0.0	0,05430	0,48868	0.64302	0.70003	0,73674	0.75414	0,77554	0.80680	0,85475	0.93761	0,12500
0.0	0.05452	0,49069	0,64603	0.69935	0,73615	0,75425	0,77556	0,80677	0.85434	0.93747	0,11500
0,0	0,05467	0,49199	0.64926	0,67921	0,73532	0,75434	0,77550	0,80670	0,85385	0,93728	0,10500
0.0	0.05472	0,49246	0.65177	0.70039	0.73370	0,75439	0.77535	0,80654	0,85323	0,93704	0,09500
0.0	0,05472	0.49252	0,65222	0.70278	0.73109	0.75457	0,77512	0.80627	0.85241	0.93671	0,08500
0.0	0.05489	0.49403	0,65151	0.70501	0.72848	0.75498	0,77482	0,80580	0,85118	0,93619	0,07500
0.0	0.05544	0,49900	0.64960	0,70541	0.72612	0,75503	0,77446	0,80479	Q,84907	0.93508	0,06500
0.0	0.05645	0,50804	0.64809	0.71036	0,72573	0,75391	0,77397	0,80237	0.84484	0.93211	0,05500
0.0	0.05818	0.52366	0,45185	0,72640	0,73532	0,75310	0,77321	0,79525	0,83530	0.92334	0.04500
0,0	0,05803	0,52227	0.66505	0,73045	0.74279	0.75028	0,76402	0,77358	0,81119	0.89989	0,03500
0.0	0.05940	0,53458	0.70495	0,71903	0,72010	0,72112	0,72380	0.71336	0.74792	0,83821	0.02500
0.0	0.06547	0,58922	0.64046	0.62458	0.61216	0.60896	0.60028	0.56182	0,58833	0,67883	0,01500
0.0	0.05561	0,50050	0,43987	0.36860	0,32343	0.30774	0,28986	0,23548	0.24173	0,30333	0,00500
0.0	0.05561	0,50050	0,0	0,0	0.0	0.0	0.0	0.0	0.0	0,0	0.0
r = 0	.01	,03	.05	.07	۰09	.19	. 37	. 55	.73	.91	

344

,

Z

VORTICITY

	VURTICITY										Z
0.0	0.0	0.0	0.0 0	.0 0	.0 0	.0 0	.0 0),0 0.0	0 (.0	1.00000
0.0	0,471E+01	0,1802+02~	0,1028+00-0	.930E+00-0	.373E+00-0	.280E-01-0	,191E-02 (0,150E-02-0,	219E-04 ().679E-03	0,97500
0.0	0.340E+01	0,118E+02-	0.456E+01-0	.307E+01-0	.111E+01-0	.925E-01-0	.762E-02-0	0,954E-03-0,	1338-02 (0.583E-03	0.92500
0.0	~0.839E+01	-0.146E+02-	0.116E+02-0	,562E+01-0	.193E+01-0	.161E+00-0	149E-01-0	0.548E-02-0.	252E-02 (0.703E-04	0,87500
0,0	-0,157E+02	-0.351E+02-	·0.170E+02-0	.789E+01-0	.269E+01-0	·229E+00-0	,221E-01-0	0,852E-02-0,	247E-02 (0.134E-04	0,82500
0,0	-0.102E+02	-0.409E+02-	-0.205E+02-0	,997E+01-0	-345E+01-0	.315E+00-0).307E-01-	0,100E-01-0.	300E-02-0	0.877E-04	0.77500
0,0	-0,175E+02	-0.3676+02-	-0,236E+02-0	+120E+02-0	+418E+01-0	.400E+00-0).422E-01-	0.122E-01-0.	400E-02-0	0,741E-04	0,72500
0.0	-0,164E+02	-0.297E+02-	-0,2748+02-0	•141E+02-0	+495E+01-0	+498E+00-0	0.550E-01-	0.164E-01-0.	556E-02-	0,105E-03	0.67500
0.0	-0.197E+02	~0.338E+02-	-0.327E+02-0	.1442+02-0	1,573E+01-0	-611E+00-0	0.705E-01~	0.211E-01-0.	759E-02-	0.344E-03	0.62500
0.0	-0.280E+02	-0,506E+02-	-0,391E+02-0),188E+02-0	• 455E+01−0	.745E+00-0	0.911E-01-	0,276E-01-0,	951E-02-	0.4965-03	0,57500
0.0	-0.385E+02	-0,738E+02	-0,455E+02-0).211E+02-0),734E+01-0),898E+00-(0,115E+00-	0.349E-01-0.	120E-01-	0.336E-03	0.52500
0.0	-0.486E+02	?-0,962E+02∙	-0.5110+02-(),232E+02-(),812E+01-0),108E+01-(0,145E+00-	0,440E-01-0,	153E-01-	0.298E-03	0.47500
0.0	-0,570E+02	-0.113E+03	-0.5576+02-0),249E+02-().882E+01-(),129E+01-(0.182E+00-	0.556E-01-0,	191E-01-	0,466E-03	0,42500
0,0	-0,645E+02	2-0,127E+03	-0.5966+02-(),265E+02-(),956E+01-(),153E+01-(0.225E+00-	0.697E-01-0,	239E-01-	0,729E-03	0,37500
0,0	-0.724E+02	2-0,141E+03	-0,6298+02-(),275E+02-().101E+02-().179E+01-(0,280E+00-	0,875E-01-0.	300E-01-	0,8835-03	0.32500
0.0	-0,8376+02	2-0,164E+03	-0.4546+02-0	0.2736+02-0).107E+02-().218E+01-0	0.3425+00-	0.1032+00-0.	339E-01-	0.878E-03	0.27500
0.0	-0,101E+03	3-0.201E+03	-0.6875+02-0	0,266E+02-4),109E+02-0).219E+01-(0.323E+00-	0,9425-01-0.	307E-01-	0,8096-03	0,22500
0.0	-0.110E+03	3-0-229E+03	-0.714E+02-0	0.253E+02-0	0.950E+01-0).223E+01~	0.385E+00-	0,119E+00-0.	371E-01-	0,103E-02	0,19500
0.0	-0,125E+03	3-0,2676+03	-0,760E+02-0	0,223E+02-4	0.715E+01-0	0.2386+01-	0,501E+00-	0,1555+00-0	452E-01-	0.136E-02	0,18500
0,0	-0.136E+0.	3-0,274E+03	-0.812E+02-0	0,1866+02-	0.517E+01-0	0.254E+01-	0,617E+00-	0.183E+00-0	497E-01-	0,162E-02	0,17500
0.0	-0.146E+0.	3-0-314E+03	-0.874E+02-0	0.1486+02-	0.334E+01-0	0.271E+01-	0.703E+00-	0.193E+00-0	477E-01-	0.175E-02	0.16500
0.0	-0,155E+0.	5-0.331E+03	-0.9516+02-0	0.1176+02-0	0.188E+01-0	0.291E+01-	0.740E+00-	0.188E+00-0	3966-01-	0.166E-02	0.15500
0,0	-0,1636+00	3-0.3456+03	-0.103E+03-	0,9488+01-	0.766E+00-	0.3146+01-	0.729E+00-	0.171E+00-0	2725-01-	0.123E-02	0,14500
0.0	-0,170E+0.	3-0.357E+03	~0.1125+03-	0.863E+01 ·	0.407E+00-	0.338E+01-	0.681E+00-	0.145E+00-0.	120E-01-	0.335E-03	0,13500
0,0	-0.1/06+0.	3-0,3666403	-0.1216+03-	0,1046+02	0,2246+01-	0.3596+01-	0.6106+00-	-0.113E+00 0	606E-02	0.9695-03	0,12500
0.0	-0,1/8E+0.	3-0.3/16,03	-0.1296+03-	0.1656402	0,5316+01-	0.3728+01-	0.5228+00-	·0./3/E-01 0	.283E-01	0.278E-02	0,11500
0.0	-0,180670	3~V,3/1E4U3 7_0 7/0E107	~0.130E+03-	0.3086402	0,1036402-	0,3/6E+01-	0.4212+00-	-0.252E-01 0	5778-01	0.604E-02	0.10500
0.0	-0,101ETV.	37V+300ETV3	-VII30ETV3-	0.0086102	0,2146+02-	0.3/06401-	0.3065+00	0.422E+01 0	101E+00	0.1355-01	0.09500
0.0	-0.100510	3-0.3086403		0.8266402	0,3286402-	0,3846+01-	0.1646400	0.1565400 0	·1//E+00	0.3291-01	0.08500
	-0.202540	3-0,3816103	-0.1106407-	0,//45,402	0,2376402-	0,3335,701	0.4736-01	0,400E+00 0	1332ET00	0.8026-01	0.0/500
0.0	-0 007EL0	3-014076403		010246TV2 0 5005100	0,1136702~ 0,7/76100	0 1 FOC 101	014705100	0.7000100 0	+0016100	0.2246700	0,00000
0.0 0 0	-0,220ETO	370+4476403	-0+12067037 -0 1016107	0.372ET02	0.3035700	0.1006701	0,107CTUI	0+2426101 0	+1466401	0.30/2700	0,03300
0 · 0	-0 250FLO	37019826703 7-0 4096103	-A 40081403	V:41357V2 A 19161A7	0,1786702	0,110CTV2 0 A7AC±07	0.00225101	0.0405+01 0	+303ET01	0,1335701	0.04500
0.0	-0,2306+0	3-0+4726402 3-0 4076402	019206703 0 1916407	0 1216TV3	0,011ETV2 0 17EEL07	0,434CT02 0 008C100	0,1305702	A 1605102 A	+J/2CTV1	0,200CTU1	0.03300
0.0	-0.2305+0	3-0.5546400) 0.307E403	0 2015403	V 1476407 0 1476407	0.1195102	0,207ETU2	0 131EL09 0	- G//CTUL	0 - 47 3ETUL	0.01500
0.0	-0.1596+0	3 0.1775407	3 0.310F+03	0.135F+03	0.340F+09-	0.1445403-	-0.2676702	-0.7355+02-0	143E+02-	-0.4415101	0.00500
0.0	-0.159540	3 0.1776+01		0.4145404-	0.2546404-	0,114E+02- 0 114E+04-	-0 319E+02		75AF102	-0.3006101	0.0000
***	· ····································	W VIA//ETV	· • • • • / / ⊑ • • • •	ALATOCIA4-	VIZUMETUM"	A.1106404-	-0,3125703	-~+*416103-0	1/046702	-013776792	V+V

rro, 01, 03, 05, 07, 09, 19, 37, 55, 73	.91
---	-----

THE VELOCITY DATA VR AND VZ

THE RADIAL VELOCITY VR

0.0	0,202E-02-0,181E-01-0,368E-01-0,425E-01-0,413E-01-0,271E-01-0,222E-01-0,204E-01-0,198E-01-0,200E-01	0.975
0.0	-0,722-01-0,8236-01-0,7316-01-0,6346-01-0,5486-01-0,2816-01-0,2256-01-0,2056-01-0,1996-01-0,2006-01	0.925
0.0	-0,883E-01-0,904E-01-0,72E-01-0,457E-01-0,564E-01-0,285E-01-0,228E-01-0,207E-01-0,200E-01-0,200E-01	0.875
0.0	-0,434E-01-0,518E-01-0,526E-01-0,503E-01-0,462E-01-0,285E-01-0,232E-01-0,209E-01-0,201E-01-0,200E-01	0.825
0.0	-0,144E-01-0,289E-01-0,402E-01-0,436E-01-0,423E-01-0,294E-01-0,238E-01-0,212E-01-0,202E-01-0,200E-01	0.775
0.0	-0,223E~01~0,389E-01-0,501E-01-0,516E-01-0,487E-01-0,313E-01-0,248E-01-0,217E-01-0,204E-01-0,200E-01	0,725
0.0	-0,500E-01-0,645E-01-0,686E-01-0,649E-01-0,588E-01-0,337E-01-0,258E-01-0,222E-01-0,206E-01-0,200E-01	0.675
0.0	-0,798E-01-0,896E-01-0,841E-01-0,752E-01-0,665E-01-0,359E-01-0,268E-01-0,228E-01-0,208E-01-0,200E-01	0,625
0.0	-0,933E-01-0,992E-01-0,885E-01-0,776E-01-0,685E-01-0,375E-01-0,278E-01-0,232E-01-0,210E-01-0,200E-01	0.575
0.0	-0,882E-01-0,932E-01-0,831E-01-0,739E-01-0,663E-01-0,387E-01-0,286E-01-0,235E-01-0,210E-01-0,200E-01	0.525
0,0	-0,745E-01-0,808E-01-0,746E-01-0,684E-01-0,630E-01-0,397E-01-0,291E-01-0,235E-01-0,209E-01-0,200E-01	0,475
0,0	-0,355E-01-0,729E-01-0,697E-01-0,654E-01-0,613E-01-0,401E-01-0,288E-01-0,229E-01-0,205E-01-0,200E-01	0,425
0.0	-0, <u>59</u> E-01-0,722E-01-0,680E-01-0,635E-01-0,598E-01-0,393E-01-0,273E-01-0,214E-01-0,196E-01-0,200E-01	0.375
0.0	-0,783E-01-0,792E-01-0,680E-01-0,610E-01-0,569E-01-0,357E-01-0,235E-01-0,183E-01-0,180E-01-0,200E-01	0,325
0.0	-0,948E-01-0,884E-01-0,455E-01-0,528E-01-0,464E-01-0,258E-01-0,163E-01-0,131E-01-0,153E-01-0,200E-01	0,275
0,0	-0,121E+00-0,101E+00-0,572E-01-0,302E-01-0,211E-01-0,142E-01-0,831E-02-0,684E-02-0,119E-01-0,200E-01	0,225
0,0	-0,237E+00-0,174E+00-0,628E-01 0,246E-02 0,149E-01-0,704E-02-0,218E-02-0,144E-02-0,885E-02-0,200E-01	0,195
0,0	-0,320E+00-0,233E+00-0.685E-01 0,256E-01 0.393E-01-0,196E-02 0,255E-02 0.226E-02-0.688E-02-0,200E-01	0,185
0.0	-0,280E+00-0,211E+00-0,609E-01 0,331E-01 0,461E-01 0,395E-02 0,738E-02 0,536E-02-0,535E-02-0,200E-01	0,175
0.0	-0.244E+00-0.193E+00-0.597E-01 0.320E-01 0.469E-01 0.120E-01 0.134E-01 0.8B1E-02-0.369E-02-0.200E-01	0,165
0.0	-0,217E+00-0,183E+00-0,655E-01 0,252E-01 0,449E-01 0,218E-01 0,201E-01 0,124E-01-0,194E-02-0,200E-01	0,155
0.0	-0,194E+00-0,175E+00-0,740E-01 0,187E-01 0,462E-01 0,334E-01 0,269E-01 0,160E-01-0,140E-03-0,200E-01	0,145
0.0	-0,168E+00-0.166E+00-0,840E-01 0,156E-01 0,557E-01 0.464E-01 0.336E-01 0,194E-01 0,167E-07-0.200E-01	0,135
0.0	-0,137E+00-0,153E+00-0,974E-01 0,154E-01 0,751E-01 0.609E-01 0.396E-01 0,226E-01 0,349E-02-0,200E-01	0,125
0.0	-0,102E+00-0,136E+00-0,116E+00 0,154E-01 0,103E+00 0,762E-01 0,448E-01 0,253E-01 0,529E-02-0,200E-01	0,115
0.0	-0,699E-01-0,114E+00-0,140E+00 0,134E-01 0,139E+00 0,923E-01 0,488E-01 0,276E-01 0,704E-02-0,200E-01	0,105
0.0	-0.575E-01-0.886E-01-0.132E+00 0.140E-01 0.153E+00 0.108E+00 0.513E-01 0.291E-01 0.866E-02-0.200E-01	0.095
0.0	-0,915E-01-0,743E-01-0,705E-01-0,203E-02 0,934E-01 0,124E+00 0,517E-01 0,293E-01 0,987E-02-0,200E-01	0,085
0.0	-0,187E≠00-0,111E+00-0,350E-01-0,352E-01 0,205E-01 0,140E+00 0,482E-01 0,267E-01 0,997E-02-0,200E-01	0,075
0.0	-0.323E+00-0.210E+00 0.302E-02 0.355E-01 0.621E-01 0.152E+00 0.366E-01 0.179E-01 0.716E-02-0.200E-01	0.065
0.0	-0,389E+00-0,350E+00 0,936E-01 0,270E+00 0,227E+00 0,141E+00 0,563E-02-0,605E-02-0,292E-02-0,200E-01	0,055
0.0	-0.467E+00-0.624E+00-0.781E-01 0.271E+00 0.226E+00 0.588E-01-0.723E-01-0.625E-01-0.292E-01-0.200E-01	0.045
0.0	-0.321E+00-0.410E-01-0.122E+00-0.498E+00-0.551E+00-0.241E+00-0.248E+00-0.178E+00-0.864E-01-0.200E-01	0.035
0.0	0,130E+00-0,555E+00-0,197E+01-0,278E+01-0,260E+01-0,943E+00-0,570E+00-0,371E+00-0,189E+00-0,200E-01	0,025
0.0	-0.134E+01-0.581E+01-0.794E+01-0.498E+01-0.585E+01-0.201E+01-0.978E+00-0.586E+00-0.312E+00-0.200E-01	0,015
0.0	-0.151E+01-0.147E+02-0.169E+02-0.107E+02-0.810E+01-0.244E+01-0.100E+01-0.547E+00-0.296E+00-0.200E-01	0,005

r=0,02,04,06,08,1,28,,46,.64,.82,1.0 z

THE AXIAL VELOCITY VZ

0.0	0.0	0,0	0.0	0.0) 0	• 0	0	.0	0	0	0.	0	0.0		٥,	0	1.000
0.0	0,202E-01	-0,127E+00	-0.149E+00	-0.8	351E-01-0	,407E-03	-0	,101E-01-	-0.	391E-02	-0,	285E-02-	0,24	76-02-	-0,	228E-02	0,950
0.0	-0,752E+00)-0,419E+00)-0,258E+00	-0.1	134E+00-0	.632E-01	0~1	,171E-01-	-0	762E-02	-0.	567E-02-	0,48	9E-02	-0.	453E-02	0.900
0.0	-0,164E+0;	L~0,729E+0(-0.359E+00-	-0.j	1795+00-0	.843E-0	l-0	240E-01	-0	,114E-01	-0.	8456-02-	0.72	8E-02	-0.	675E-02	0.850
0.0	-0,207E+0;	-0,929E+00	-0,467E+00	-0.2	241E+00-0	.117E+00	0-0	.338E-01	-0	154E-01	-0.	112E-01-	0.96	2E-02	-0.	892E-02	0.800
0.0	-0,222E+0;	-0,107E+0;	1-0.593E+00	-0.3	318E+00-0	.159E+0	0-0	455E-01	-0	.195E-01	~0	139E-01-	0.11	9E-01	-0,	110E-01	0.750
0.0	-0,244E+0;	L-0,126E+0:	1-0.738E+00	-0.;	3986+00-0	.200E+0	0-0	,569E-01	-0	.234E-01	-0	,164E-01-	0.14	0E~01	~0,	130E-01	0,700
0.0	-0,2946+0.	L-0,152E+0;	L-0,871E+00	-0.4	4756+00-0	+238E+0	0-0	.673E-01	-0	.270E-01	-0	,188E-01-	0.16	1E-0.	~0.	149E-01	0,650
0.0	0,374E+0	1-0,185E+0:	1-0.104E+01	-0.	344E+00-0	·2745+0	0-0	772E-01	-0	.305E-01	~0	,210E-01-	0.18	0E-01	-0.	167E-01	0,600
0.0	-0.4476+0	1-0,220640:	1-0,117E+01	0,,	609E+00-0	.310E+0	0-0	.879E-01	-0	.337E-01	-0	,231E~01-	0.19	7E-01	~0	,184E-01	0,550
0,0	~0,555E+0	1-0.253E+0	1-0.130E+01	-0,	675E+00-0	.350E+0	0-0	.100E+00	-0	·374E-01	-0	.250E-01-	0.2	4E-01	-0	,201E-01	0.500
0,0	-0.630E+0	1-0.282E+0	1-0.1428+01	-0.	7465+00-0	.3956+0	0-0	.114E+00	-0	+408E-01	-0	.267E-01-	-0,23	30E-01	-0	,218E-01	0,450
0,0	-0,695E+0	1-0.309E+0	1-0,155E+01	-0.	821E+00-0).445E+O	0-0	.129E+00	-0	.439E-01	-0	.281E-01-	-0.2	176-01	~0	.238E-01	0,400
0,0	-0,761E+0	1-0.335E+0	1-0,167E+01	-0,	8925+00-0).495E+0	0-0	144E+00)-Q	-462E-01	-0	.293E-01	-0.2	55E-01	-0	.262E-01	0,350
0.0	-0,839E+0	1-0.362E+0	1-0,1766+01	-0,	950E+00-(),540E+0	0-0	156E+00)-0	· 474E-01	l-0	.302E-01-	-0,2	88E-01	-0	.294E-01	0,300
0.0	-0,9346+0	1-0.388E+0	1-0.180E+01	-0.	971E+00-0).565E+0	0-0	,164E+00	>-0	.478E-01	l-0	.311E-01	-0,3	20E-01	-0	.339E-01	0.250
0.0	-0,1046+0	2-0.415E+0	1-0-1746+01	-0,	89BE+00-0),547E+0	0-0	,1692+00)-0	.474E-01	l - 0	.317E-01	-0,3	61E-01	-0	402E-01	0,200
0.0	-0.110E+0	2-0,423E+0	1-0.1676+01	-0.	841E+00-0	0.533E+0	0~0).171E+00)-C	+473E-0	1-0	.316E-01	-2.3	70E-01	l-0	+417E-01	0.190
0.0	-0.117E+0	2-0.433E+0	1-0,157E+01	-0.	753E+00-0	0.512E+0	0-0),174E+00)0	+468E-0:	i~0	.316E-01	-0.3	81E-01	0- ا	,435E-01	0,180
0.0	-0,122E+0	2-0,442E+0	1-0.1476+01	l∽Ø,	663E+00-	D,490E+0	0-0),176E+00)-0	,461E-0	1-0	,314E-01	-0,3	93E-01	l-0	.454E-01	0.170
0.0	-0,127E+C	2-0.4526+0	1-0-1395+01	1-0,	576E+00-	0.4675+0	0-0).177E+00)-C	.452E-0	1-0	.317E-01	-0,4	06E-01	1-0	475E-01	0,160
0.0	-0,132E+0	2-0.4622+0	1-0.132E+0:	ι~Ο,	4916+00-	0.4396+0	0-0),176E+0(0-0	,443E-0	1-0	,319E-01	-0,4	21E-0;	1-0	497E-01	0,150
0.0	-0.136E+C	2-0.472E+0	01-0.127E+0;	1-0,	406E+00-	0.404E+0	0-0(),173E+0(0-0),434E-0	1-0	.324E-01	-0.4	36E-0:	1-0	.521E-01	0.140
0.0	-0.139E+0	2-0,483E+0	1-0.124E+0	1-0.	3166+00-	0.356E+0	0-0).169E+00	0-0).427E-0	1-0	,330E-01	-0.4	53E-0:	1-0	.547E-01	0,130
0.0	-0,142E+0	2-0,494E+0)1-0.123E+0;	1-0.	215E+00-	0,2876+0	0-0	0,163E+00	0-(>.423E0	1-0).338E-01	-0.4	71E-0	1-0	•575E-01	0,120
0.0	-0.144E+()2-0.506E+C	1-0.126E+0	1-0,	973E-01-	0,186E+0	0-0	0,157E+0(0-0),425E-0	1-().346E-01	-0.4	89E-0:	1-0	.605E-01	0.110
0.0	-0.145E+0)2-0,516E+(1-0,1346+0	10,	380E-01-	0.436E-()1-0	0.150E+0	0-0),435E-0	1-(),354E-01	-0.5	07E-0	1-0),636E-01	0,100
0.0	-0.146E+()2-0,5246+0)1-0.143E+0	10	167E+00	0.114E+(>0-0	0.141E+04	0-0).456E-0	1-(),366E-01	-0.5	256-0	1-0).670E-01	0.090
0.0	-0.148E+()2-0,528E+()1-0.145E+0	10	225E+00	0.220E+0)0~	0.126E+0	C - (0.489E-0	1-(),376E-01	-0.5	41E-0	1-0).704E-01	0.080
0.0	-0.152E+()2-0.530E+(>1-0.141E+0	10	215E+00	0.2746+0	00-	0.104E+0	0~0	0,540E-0	1-(),386E-01	-0.5	54E-0	1-0).73BE-01	0,070
0.0	-0,158E+	02-0.537E+0	01-0.123E+0	1 ()	253E+00	0,311E+	20-	0.831E-0	1-	0.617E-0	1-(0.397E-01	-0.5	63E-0	1-0	0.770E-01	0.060
0.0	-0,166E+	02-0.557E+(01-0.842E+0	00	481E+00	0.3236+	00-	0.732E-0	1-	0,728E-0	1-0	0,410E-01	-0.5	61E-0	1-0	0.791E-01	0.050
0.0	-0,175E+0	02-0,6076+0	01-0.437E+0	00	\$58£+00	0.334E+	00-	0,768E-0	1-	0,878E-0	1-0	0,424E-01	-0.5	j36E-0	1-(0.787E-01	0.040
0.0	-0.182E+	02-0,593E+0	01-0.550E+0	00	393E+00	0.165E+	00-	0.841E-0	1-	0.102E+0	0-0	0.424E-01	-0.4	71E-0	1-(0.724E-01	0.030
0.0	-0,179E+	02-0.676E+0	01-0,247E+0	1-0	.110E+01-	0.251E+	00-	0.864E-0	1-	0,101E+0	0-0	0.375E-01	-0.1	45E-0	1-(0.560E-01	0,020
0.0	-0,206E+	02-0,136E+0	02-0.738E+0	1-0	.225E+01-	0.547E+	00-	0,739E-0	1-	0.671E-0	1-	0.223E~01	-0.:	63E-0	1-(0.272E-01	0.010
0.0	-0,236Et	02-0.3226+	02-0,160E+0	20	•0	0.0		0.0		0,0		0.0	0,0	>	(0.0	0,0

r = 0 .01 .03 .05 .07 .09 .19 .37 .55 .73 .91

0.0 -0.2755-02-0.1355-01 0.4185-02 0.1495-02 0.1335-03-0.3435-03-0.1985-03 0.4455-03 0.2215-03 0.3435-03	0,975
All turing a tital a tital a tital of tital of all and a divide a divide a divide a divide a	0.825
0.0 -0.477E-02 0.186E-01 0.132E-02-0.177E-03-0.499E-03-0.259E-02-0.192E-02-0.257E-02-0.156E-02-0.156E-02-0.159E-03	01020
0,0 -0,499E-02-0,292E-01-0,151E-02 0,251E-02 0,921E-03-0,529E-02-0,450E-02-0,415E-02-0,314E-02-0,203E-03	0.675
0.0 -0,198E-01 0,254E-01 0,137E-01 0.668E-02 0.257E-02-0.889E-02-0.818E-02-0.771E-02-0.761E-02-0.496E-03	0.525
0,0 -0,140E-01-0,574E-02-0,991E-03 0,211E-02 0,885E-03-0,125E-01-0,118E-01-0,112E-01-0,799E-02-0,968E-03	0,375
0.0 -0.192E-01 0.421E-02 0.153E-01 0.206E-01 0.109E-01-0.116E-01-0.128E-01-0.972E-02-0.450E-02-0.118E-02	0.225
0,0	0,175
0.0 -0.672E-01 0.181E-02 0.737E-01 0.792E-02 0.185E-01-0.379E-02-0.284E-01-0.223E-01 0.145E-01-0.140E-03	0,145
0,0 -0.192E-01 0.183E-02 0.184E-01 0.110E+00 0.258E-01 0.939E-03-0.434E-01-0.193E-01 0.253E-01 0.172E-01	0,115
0.0 -0.444E-01 0.110E-01-0.488E-01 0.417E+00 0.703E-01-0.747E-02-0.257E-01 0.199E-01 0.100E+00 0.680E-01	0.085
Q,0 -0,169E+00-0,112E+00 0,196E+00-0,104E+01-0,188E+00 0,211E+00 0,142E+00 0,303E+00 0,685E+00 0,505E+00	0,055
0,0 0,408E+00-0,776E+00-0,115E+02 0,118E+01 0,675E+00 0,146E+01 0,184E+01-0,101E+01 0,432E+00 0,322E-01	0,025
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0

VORTICITY

0,0	0,468E-	02-0,234E-	01-0,125E-0	1-0.5966-	02 0,209E-0	2-0,1128-	02 0.1375-0	2 0.347E-02	0,120E-01	0,720E-02	0,975
0,0	0.210E-	02-0,144E-	-01-0.720E-0	2-0.329E-	02 0.145E-C	2-0.179E-	02-0.424E-0	3 0.317E-02	0,158E-01-	-0.790E-02	0,825
0.0	0,360E-	02-0,166E-	-01-0,482E-0	2 0,2875-	03-0.4426-0	3 0,560E-	03 0,311E-0	2 0,388E-02	0.422E-02	0.408E-01	0,675
0.0	-0,803E-	03-0,713E-	-02-0,2058-0	2 0,141E-	03-0,615E-0	3 0,317E-	02 0.3475-0	2 0,6705-02	0.378E-01	0.232E-01	0,525
0.0	0,763E-	02-0.143E-	-01-0,639E-0	2-0.114E-	03-0,235E-C	04 0,178E-	02 0.131E-0	2 0.179E-02	0.2856-02-	-0.808E-02	0.375
0,0	0.107E-	-01-0,865E	-02-0,379E-C	3-0,307E-	03-0,101E-(0,210E-	02 0.205E-(3-0,693E-03	0,290E-01	0,313E-01	0,225
0,0	0.490E-	-01-0,149E	-01 0,131E-(0.304E-	02-0,202E-0	3 0.322E-	03-0.9058-0)3-0,204E-02	0,1876-01	-0,339E-01	0,175
0.0	0.338E-	-01-0.214E	-01-0,430E-(2 0.623E-	02-0,422E-0	3 0,408E-	03 0,751E-()3-0,331E-02	0,141E-01	-0,708E-02	0,145
0.0	0.144E-	-01-0.278E	-01-0,195E-()1 0,101E-	01-0.188E-0	2-0,2178-	02 0,144E-0	2-0.352E-02	0.402E-01	0,168E-01	0,115
0.0	0,168E-	-01-0.151E	-01-0,112E-0)1-0.674E-	02-0,234E-	02 0,260E-	04-0,240E-	02-0.678E-02	-0,383E-01	0.217E-01	0,085
0.0	0,174E	+00-0,480E	-01 0,4576-0	01-0,229E-	01 0,118E-	01-0.369E-	02-0.3726-	03-0,825E-0;	? 0,111E-01	0,299E-01	0,055
0.0	0,607E-	+00-0,142E	+00-0,388E+(00 0,962E-	02-0,396E-	02-0.251E-	01-0,385E-	01 0.719E-0:	0,625E-01	0,750E-01	0,025
0.0	0,0	0,0	0,0	0.0	0.0	0,0	0.0	0,0	0,0	0.0	0.0

CIRCULATION

	STREAM FUNCTION	
0.0	0,409E-02-0.202E-01 0.561E-01 0.632E-01 0.238E-01 0.130E-01 0.532E-02-0.672E-03-0.154E-02-0.267E-02	0.975
0.0	0.512E-03 0.577E-01-0.159E-01-0.387E-01-0.178E-01-0.112E-01-0.979E-03-0.618E-02-0.160E-01-0.795E-02	0.825
0,0	-0,473E-02-0,104E+00 0,144E-01 0.653E-01 0.337E-01 0.271E-01 0.126E-01-0.220E-01-0.372E-01-0.220E-01	0.675
0,0	0,143E-01 0,152E+00 0,103E+00 0,732E-01 0,294E-01 0,166E-02-0,372E-01-0,678E-01-0,637E-01-0,310E-01	0,525
0.0	0,1916-02 0,1166-01 0,2266-01 0,3546-01 0,1456-01-0,1656-01-0,6196-01-0,7886-01-0,6136-01-0,2546-01	0.375
0.0	0,884E-02 0,106E+00 0,751E-01 0,771E-01 0,312E-01-0,117E-01-0.322E-01-0,183E-01 0,742E-02 0,100E-01	0,225
0.0	0,101E-01 0,133E+00 0,485E-01-0,206E-01 0,555E-01 0,315E-02 0,496E-02 0,641E-01 0,963E-01 0,589E-01	0.175
0.0	0.807E-02 0.152E+00-0.122E+00-0.121E+00-0.273E-01 0.235E-01 0.359E-01 0.108E+00 0.150E+00 0.801E-01	0.145
0.0	0,128E-02 0,101E+00-0,229E+00-0,1952+00-0,482E-01 0,420E-01 0,818E-01 0,149E+00 0,146E+00 0,802E-01	0.115
0,0	-0,120E-01-0,105E-01-0,201E+00-0,304E+00 0,427E-01 0,376E-01 0,121E+00 0,215E+00 0,215E+00 0,117E+00	0,085
0.0	-0.297E-01-0.223E+00-0.351E+00 0.139E+00-0.154E+00 0.984E-01 0.130E+00 0.355E+00 0.309E+00 0.125E+00	0,055
0,0	-0,194E-01-0,155E+00-0,211E+00-0,183E+00-0,255E-01 0,771E-01 0,109E+00 0,321E+00 0,263E+00 0,113E+00	0,025
0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0

THE RESUDUAL OF EACH FUNCTION

Appendix B: The Measurement of Intrinsic Viscosity of Polyox WSR 301 (Polyethylene Oxide)

The intrinsic viscosity of Polyox WSR 301 is measured by Ostwald-Fenske viscometer. By keeping temperature constant (25.4 \pm .05°C), the time required for the solution to fall for a certain distance is measured. The time measurement is repeated at least six times to obtain consistent data. The relative, specific and inherent viscosities are then determined by the following equations.

$$\eta_r = \frac{\eta}{\eta_s} = \frac{t}{t_s}$$
B.1

$$n_{sp} = \frac{n - n_s}{n_s} = \frac{t - t_s}{t_s}$$
B.2

$$\eta_{inh} = (\ln \eta_r)/c \qquad B.3$$

where ts and t the time required for solvent along (water) and the solution. The intrinsic viscosity is determined from the intersection of the extrapolated curves nsp/c and η_{inh} at zero concentration. From Fig. B.1, the intrinsic viscosity is found to be between 12 and 14 [dl/g]. TABLE B.1 shows the intrinsic viscosity and weight average molecular weight obtained from several investigators. Using [n] = 14 [dl/g] and Mw = 3.81, the number density n and the time constant $\lambda_{\rm H}$ are calculated. According to Bird, Hassager, Armstrong and Cirtiss (1977), the time constant for FENE dumbbell model is determined by

$$\lambda_{\rm H} = (5\epsilon+1) \frac{[\eta]_{\rm O} \eta_{\rm S} M_{\rm W}}{\rm RT} \qquad B.4$$

where R is gas constant. Eq. B.4 with the data gives $\lambda_{\rm H} = 2.36 \times 10^{-3}$ [sec]. The number density of 30 wppm of Polyox WSR 301 is 4.31 x 10^{12} [molecules/cm³]. In the polymer stress calculations in chapters 3.5. and 6, the values of $\lambda_{\rm H} = .01$ [sec] and nkT = .2 [gcm/sec²cm²] are used.

Fig. B.l

Determination of Intrinsic Viscosity

TABLE B.1

THE MOLECULAR CHARACTERISTICS OF POLYOX WSR 301

Name	[n] [dl/g]	$Mw \times 10^{-6}$
ISHIKAWA	12-14	3.16-3.81 *
PATERSON (1970)	28	8
CHIOU (1976)	15.1	4.2 *
VIRK (1975)	20.1	6.1

* The molecular weight Mw is calculated by

$$[\eta] = (1.03 \times 10^{-4}) M_{W}^{0.78}$$

C.l Polymer Stress Tensor Calculation in Chap. 6

The method used in this calculation is Runge-Kulla fourth order method. Since the stress tensor as well as structure tensor are calculated along the stream lines, the convective terms in the MNHD are eliminated. The equations to be solved are found in eq. 6.1 to eq. 6.13

Description of Variables and Program Listing

Variables	Description
PST (I,II)	I = 1,6 corresponds $\tau_{p,rr}$, $\tau_{p,\theta\theta}$, $\tau_{p,zz}$, $\tau_{p,r\theta}$, $\tau_{p,rz}$, $\tau_{p,\theta z}$ respectively. These components are determined at the points on the stream lines in Fig. 6.14 and Fig. 6.16 II indicates the point number in these figures.
BXX, BXXOD	The time advanced α_{rr} and α_{rr} before the integration.
TXX	^τ p,rr XX, YY, ZZ, XY, XZ, YZ correspond to rr, θθ, zz, rθ, rz, θz components respectively.
Fl-F6	The calculated values of the right hand side of eq. 6.1 to eq. 6.6
т	Time [sec]
DT	Time increment [sec]
E	The parameter ε
VKMAX	The number of iteration
CNKT	nkT defined in chap. 5
S(1)	$\lambda_{\rm H} = \frac{\partial \nabla_{\rm r}}{\partial r}$

S(2)
$$\lambda_{\rm H} \frac{\partial v_{\rm r}}{\partial z}$$

S(3)
$$\lambda_{\rm H} - \frac{v_{\rm r}}{r}$$

S(4)
$$\lambda_{\rm H} = \frac{\partial v_z}{\partial z}$$

$$s(5) \qquad \qquad \lambda_{\rm H} \frac{\partial v_{\rm Z}}{\partial r}$$

S(6)
$$\lambda_{\rm H} \frac{\partial v_{\theta}}{\partial r}$$

S(7)
$$\lambda_{\rm H} = \frac{\partial v_{\theta}}{\partial z}$$

S(8)
$$\lambda_{\rm H} \frac{v_{\theta}}{r}$$

.

•

THIS PROGRAM CALCULATES ALL THE STRESS TRENSOR COMPONENTS ALONG THE STREAM LLINES DESCRIBED IN THE SECTION 6.4. 21100010 CC 55 PLYJO020 DIMENSION TT(10), PST(6,10), H(6,4) 2L 100 0 30 COLION BIX, BIY, BZZ, BXY, BXZ, BYZ 2LY00040 COMSON SXXOD, BYYOD, BZZOD, BYYOD, BXZOC, BYZOD 2L Y00050 COMMON S(8), DT, E, CHKT, COP 2 LY00060 COMMON TXX, TYY, TZZ, TXY, TXZ, TYZ PL 100070 2 LY00080 COMMON P1, 72, F3, F4, P5, F6 CNKT=.2 5TL00030 E=.005 21100100 SONTINUS 2 LY 00 110 WEI TE (6, 100) 2LY90120 100 FORMAR (/, IJK, PLEASE INPUT THE VALUE OF STREAM ', PLY00130 1'LINE IN 25.2',/) 2L YOO 140 READ (5,200) STIN 21100150 200 FORMAT(75.2) PL YOO 160 IN ITIAL VALUE ASSIGNMENT BXX=1.-5.*E CC 2 LY00170 2LY00 180 BYY=1.-5.*E 2LY00199 3 ZZ=1.-5.*E 2 LY 00 200 BXY=0. PL Y00210 BXZ=1. PLYOD220 BYZ=0. 2LY00230 T=0. 2 LY00243 II=0 2 LY 00 250 70 CONTINUS PL YOO 260 WRITE (6,101) 101 FORMAT(/,101,'PLEASE INPUT ET IN 710.5',/) READ (5,201) DT PLY00270 21, YOO 280 21,700290 201 PORMAT(210.5) 2LT00300 WRITE (6,102) 21700310 102 POEMAT (/,10X, PLEASE INPUT VKMAX IN F10.5',/) READ (5,2)1) VKMAX KMAX=IFIX (VKMAX) PLT00320 5TX00330 2 LY 00 340 WRITE (6, 103) E EAD (5,203) S(1) PLYOC 350 PLY 00 360 21100370 TRITE(6, 194) READ (5,213) 5(2) 2 L X 0 0 3 8 0 WRITE(5,105) 2 E YOU 390 EEAD (5,2)3) S(3) PLY00400 WRITE (6, 106) 21 YOU 4 10 3 ZAD (5,2)3) 5 (4) 2LY00420 RITE(6,107) 21Y00430 READ (5,201) S (5) 21106441 RRITE (6,108) 21100450 READ (5, 20 3) S (6) PLY90460 TRITE (6,109) 21106470 BEAD (5, 203) S(7) PL 700 480 WRITE (6,110) 21100490 EEAD(5,203) S(8) 2 L YOO 500 203 FORMAT (F10.5) PLY00510 103 FOREAT (/, 10X, 'PLEASE INPUT VELOCITY GRAD S(1) ', 2LY00520 1'IN F12.5',/) 104 FOELAT(102,'INPOT 5(2)') 105 FORMAT(13X,'INPOT 5(3)') PL 200530 21700540 PT700550

.

-

PILE: PITSA FORTBAN A

CONVERSATIONAL MONITOR SYSTEM

FILE:	PLYSM	FORTRAN	à	
106 107 108	FOEMAT (1 FORMAT (1 FORMAT (1	OX,'INPUT OX,'INPUT DX,'INPUT	5'[4]') 5'[5]') 5'[6]'}	
109 113 CC 521	ZORMAT(1 PORMAT(1 K IS 20	OX, INPUT DX, INPUT DAL IC ZE	S(7)") S(8)") RO	
51	K=0 I=1 BXXCD=BX	x		
	BYYOD=BY BYYOD=BY BYZOD=BY BYZOD=BY	1 2 2 2 2		
50	CONTINUZ CALL PCAL H $(1, I) = 0$ H $(2, I) = 0$	- 		
	H (3, I) = D1 H (4, I) = D1 H (5, I) = D1 H (5, I) = D1 H (6, I) = D1	:*E3 :*E4 :*E5 :*E6		
40	IF(I-1) I=2 T=T+DT/2. 3XX=BXX+B	(1,1)/2		
	8 XY = 8 XY + 6 3 YY = 8 YY + 6 8 ZZ = 8 ZZ + 6 8 XZ = 8 XZ + 6	(2, 1)/2. (3, 1)/2. (4, 1)/2. (5, 1)/2.		
41 (41 (912=912+8 30 TO 50 1F (1-2) 4	2,42,43		
+ Z] i i	L B XX= BXX+ H B XY=BXY+ H BYY= BYY+ H BZZ=BZZ+ H BZZ=BZZ+ H	(1,2)/2 (2,2)/2 (3,2)/2 (4,2)/2	H (1,1)/2. H (2,1)/2. H (3,1)/2. H (4,1)/2.	
3 43 1 43 1	542-542-6 542=842+6 50 TO 50 5 (I-3) 4 -4	(5,2)/26 (6,2)/26 4,44,45	H (6,1)/2.	
1 1 3 3	T=T+DT/2. XX=BXX+d XY=BXY+d XY=BYY+d	(1,3)-E(1, (2,3)+E(2, (3,3)+E(3,	2) /2 - 2) /2 - 2) /2 -	
8 8 8 6	ZZ=BZZ+A XZ=BXZ+A YZ=BYZ+A O TO 50	(4,3) -H (4, (5,3)-H (5, (6,3) -H (6,	2) /2 . ,2) /2 . ,2) /2 .	
45 K	i=κ+1			

 N-X+1

 BXX=BXXOD+(H(1,1)+2.*H(1,2)+2.*H(1,3)+H(1,4))/6.

 SXY=BXYOD+(H(2,1)+2.*H(2,2)+2.*H(2,3)+H(2,4))/6.

 BYY=BYYOD+(H(3,1)+2.*H(3,2)+2.*H(3,3)+H(3,4))/6.

.

12

-

CONVERSATIONAL MONITOR SYSTEM

2LY00560 PL 100570 2L100580 PL 100 590 PL100600 PLY00610 21100620 ST100 230 PL Y00640 PL100650 2L 100 660 PLY00670 5 TI 00 29 0 2 L YOC 690 2 LY 00 700 21, 100 710 2 LY 00 72 0 2LY00730 2 LY00740 21100750 21100760 2LY 00770 21100780 2LY00790 2L TO 0 800 21100810 PIY00820 21Y0C330 2LT00840 21100850 2 L 700 860 21 YO0870 21700880 21Y00890 2LY00900 PLI00910 21100920 2 L Y O O 93 O 2L 100940 2 LY00 950 2LY00960 2 LY0097 C 9LT00980 PL 100 990 21101000 ST 10 10 10 PLY01020 PLY0 1030 21101040 2LY01050 2L 101060 2LY01070 21 YO 1080 PLY01090 PLY01100

-

-

BZZ=EZZOD+(H(4,1)+2,*H(4,2)+2,*H(4,3)+H(4,4))/6,	25701110
BXZ=BXZCD+(H(5,1)+2,+H(5,2)+2,+H(5,3)+H(5,4))/6	21701120
BYZ = BYZOD + (H(6, 1) + 2, +H(6, 2) + 2, +H(6, 3) + H(6, 4)) / 6	2 22 0 1 120
	22101130
	PL101140
	2L YO 1 150
CALL STPP	PLY01160
II=II+1	2LY01170
TT (II) = T	PLY01180
PST(1,II) = TXX	21.701190
PST(2,II) = TYY	PT Y01 200
PST(3,II) = TZZ	21101200
	2101210
$ = J + (\neg f = \bot + J) = J + \Delta J = J + J + \Delta J = J + \Delta J$	57101550
$F \supset L \downarrow J = L \land A \land$	2 LY 0 1 230
$e \operatorname{Sr}(6, 11) = E I Z$	2L IO1240
WRITE(6,12)) STIN,T	PLY01250
120 POLNAT(/, 10X, THE RESULTS OF STREAM LINE, 75.2,	2L YO 1260
1/,10%, AT THE TILE ',F10.5,/)	PLY01270
TEITE(6,121)	21 21 1 290
121 FORMAT (/, 1) C. ALPHA RR - 2X. (ALPHA TT (. 2Y.	21101200
1 ALPHA 731-2X TATPHA RTL 2T TATPHA R71 2Y	2 LIU (29 J
11 11 34 TAT OF TATTA ALL TATAL	21101300
THE TERMINE THE TERMINE TO THE TERMINE	51301316
	PLY01320
WRITE (5,122) BXX, BYY, BZZ, BXY, BXZ, BYZ, EXT	2LY0133)
122 FORMAT (/, 10X, F8, 4, 6 F10, 4)	2LY01340
WRITE (6, 123)	2LT01350
123 FORMAT (/,10X, 'MORE CALCULATION IS NEEDED?',	21,701360
1º IF TES, INPUT 1, IF NO, INPUT 0', /)	PT 701370
B = A D (5, 204) IJD 1	pr v0 1 290
204 FOR 54 P(TS)	21101380
	5 TI01340
	PLY01400
	2 LYO1410
CC PRINT STRESS TENSOR BY THE MAND	PLY01420
78IT3 (6,125)	2 L T O 1 4 3 1
125 POR MAT {/_10X_'TIME',7X, 'TRR',7X, 'TTT',7X,	2LT01440
1' TZZ', 7 %, ' TRT', 7 %, ' TRZ', 7 %, 'TTZ', /)	2 L X01450
DO 67 J=1,II	21.401460
67 7RITE(6,126) TT(J), (PST(L,J),L=1.6)	PT.701470
126 POR HAT 1/ 10X F4 1.37 6F10 3)	21701480
7PITE (5, 124)	
124 FORMAT (7-10% - MORE CASE IS MERDER 24	2 2 2 2 4 3 0
	21101300
	2L101510
	2L Y01520
LF (1JD2) 56,86,89	2 L I O 1 53 O
66 CONTINUE	2L TO 1540
STOP	2LI01550
END	2LY01560
SUBROUTINE PCAL	21791570
CC THIS SUBROUTINE CALCULATES THE SIGHT HAND STORS OF ED. 6. 1	21701580
CC TO EQ.6.6.	DTY01500
COMMON BXX_BXX_BXX_BXX_BXZ	5 TTO (3 70
CONTAN STYDD BYYDD BYYDD BYYDD BYYDD BYYDD	2110 1000
	PL IJ 16 IU
	2LY01620
	2L 101630
CULAUN E1, F2, F3, F4, F5, F6	2 L Y O 1 6 4 0
COP = 1 - E = (BXX + BYX + 3ZZ)	21 YO 1650

CONVERSATIONAL MONITCE SYSTEM

	p 1= 2. *s (1) *8 XX+ 2. *s (2) *8XZ- 2. *s (8) *8XY	2 L 7 O 166 C
	1-8XX/COF-2.*E*(BXX**2+8XY **2+8XZ**2) *C)?+1.	2LIO 1670
	p 3= 2. * s (3) * b Y Y + 2. * s (6) * b X Y + 2. * s (7) * e Y Z	2LY01680
	1-BYY/305-2.*E*(BXY**2+BYY**2+BYZ**2)*C)P+1.	PLY01690
	24=2.*S(4) * 3ZZ+2.*S(5) * 3ZZ	2L 10 1 70 0
	1-BZZ/COP-2. *E*(BXZ**2+BYZ **2+BYZ**2)*COP+1.	2LT01710
	F2=5(6) * BXX+(5(1) + 5(3)) * BXY-5(8) * BYY+5(2) * BTZ	2L TO 1720
	1+S (7) *BX 2	2 LY01 73 0
	2- 8XY/CCZ-2, * 5* (BXX* 8XY+ 8XY+ 8XY+8XZ*8Y2) *COP	2LY01740
	25= (S(1)+S(4))*BXZ+S(5) *BXX+S(2)*BZZ-S(8)*BYZ	2 LI01750
	1- BXZ/COF-2. #2* (BXX* BXZ+ BX Y* BYZ+BXZ*BZZ) *COF	2LT01760
	26= (S (4) + S (3)) *8 YZ+S (6) *8 XZ + S (5) *8 XY + S (7) *8ZZ	21291770
	1-BYZ/CO2-2.*E*(BXY*BXZ+BYY*BYZ+BYZ+BYZ*BZZ)*CO7	2LY01780
	RETURN	2LT01790
	END	2LY0 1800
	SJBROUTINE ST2P	2L 10 1810
CC	THIS SUBROUTINE CALCULATES THE STRESS TENSOR FROM THE	PLY01820
CC	STEUCTURE TENSOR EQUATIONS (EQ.6.3 TO EQ.6.13).	PL 10 18 30
	CCMMON BXX, BYY, 32Z, 9XY, 8XZ, 8YZ	2LT01840
	COSMON BXXOD, BIYOD, BZ 20 D, SX YOD, BXZOD, BYZOD	21.10 1850
	CGAMON S (8), DT, E, CNKT, CC2	2 L X 9 1 86 9
	COMMON TXX, TYY, TZZ, TXY, TXZ, TYZ	2L101870
	CONNON 21,22,23,24,25,26	2 L Y 0 1 8 8 9
	TXX= (BXX-BXXOC) /DT-2.*5(1) *BXX-2.*5(2) * BXZ+2.*5(9) *BXY	PLT01890
	TYY= (BYY- BYYOD)/DT-2. *5 (3) *BYY-2. *5 (6) *BXY-2.*5(7) *BYZ	PLIC1900
	TZZ= (BZZ-BZZOD) / DT-2.*S(4) * BZZ-2.*S(5) * BXZ	2LI01910
	TXY=(BXY-BXYOD)/DT-S(6) *BXX-(S(1) +S(3)) *BXY+S(3) *BYY	2L YO 1920
	1-5 (2) *BYZ-5 (7) *BKZ	2LY01930
	TXZ= (BXZ-BXZOE) / DT- (S (1) +S (4)) *BXZ-S (5) *BXX-S (2) *BZZ	2LYO 1940
	1+5 (8) *BYZ	2 L 10 1 95 0
	TYZ= (BYZ-B7ZOD) /DT- (S (4) + S (3)) *BYZ-S (6) *BXZ-S (5) *BXY	2L IO 1960
	1-5 (7) * B ZZ	2L101970
	TXX=TXX*CNKT	PLY01980
	TYY=TYY*CN KT	2 L YO 1 99 0
	T 22 = T 22 #C NKT	21102000
	ΙΧΙ=ΙΧΙ *CN KT	PLY02010
	T XZ=TXZ *C NKT	2LY02020
	TYZ=TYZ*CNKT	PL 102030
	EETURN	PLY02040
	E ND	PL 10 20 50

PILE: PLYSE FORTRAN A

.

-

-___

C.2 The Intrinsic Viscosity for Shear Flow (in Chap. 5)

This program solves the intrinsic viscosity and the primary normal stress coefficient for shear flow by Ringe-Kutta forth order method.

Description of Main Variables and Program Listing

Variable	Description
VIS	Intrinsic Viscosity
SVIS	Intrinsic viscosity scaled by its steady state value
PSD	Primary normal stress coefficient
SPSD	Primary normal stress coefficient scaled by its steady state value
BXX	αxx
BYY	^α yy
BZZ	α _{zz}
BXY	axy
BXZ	α _{xz}
BYZ	α _{yz}
TXX	^T p,xx
TYY	^т р,уу
TXY	^τ p,xγ
Е	ε
T,Tl	Time
DT	Time increment
SR	Dimensionless Shear rate $\lambda_{H} \dot{\gamma}$

Description

IMET

Reference number for specifying model IMET = 1; MNHD IMET = 2; TANNER IMET = 3; NHD

1	FILE:	£ 2	FORTEAN	A		CONVERSATIONAL	NONI TOR	SYSTEM	
		8T2 030						- 2	00010
2	- L - W	113 EIU 1941 E	TARES COPE	5 A I 23 7 T C T 3	NE POR CURIE AND THE	T BRTJYRI		22	00010
č		HPFE DE	FFFFFUT NT	r HODS	LAL FOR SACAR FLUX	DI TAL		22	00020
	• 1	DIEENSI		_ 11 (1	21			20	0000040
		DIMENS	ION SVIS (3.	2), 71	(5/32), PSD (32), SP SC	(32)		22	06050
		DIMENS	CON EVE (32)			()		22	00060
		CORFOX	BXX, BXY, B	ζΥ, EZ	Z, BXZ, EYZ			22	00070
		CONNON	21,22,73,3	24, F5	, F6, SE (8), 2(4), 3, 1	, LL		P 2	00080
		CONNCN	C1, IMET					22	00090
		COMMON	AXX, XXY, AY	Ĩ				₽2	00100
		DEFINE	FILE 1(200	12,	0,101),2(200,12,0,	102)		22	00110
		DEETNE	2116 3 (203 2717 5/200	1 1 2 -	$U_{2}U_{3}U_{3}$, 4 (203, 12, 0, π TOE), 4 (200, 12, π	194) TOEN		22	00120
		DEFINE	PTTP 7 /200	17	(1 TA7) 8(200,12,0, (1 TA7) 8(200,12,0,	T00)		<u>2</u> 2	00130
		1.1=1	- + 65 / ,200	1121	0,10,1,40,200,12,0,	T/:0)		27	00 150
		L 2= 2						P2	00160
		81=1						22	00170
		<u>5</u> 2= 8						24	00 180
С	1	LAET=1:	ANHD					₽2	00190
С	1	CMET=2:	TANNER 'S	;				22	00200
С	ג	ENET=3:	ਮੁਜ D					22	00210
		READ (Z.	305) IMET					22	00220
	30.5	FORMAT	110) 500 601 50	<u>.</u>				22	00230
	500	3020 (377777777	2061-601-60	2) <u>.</u> 13	1211			22	00240
	000	60 70 6	പ്പ					22	00250
	601	WRITE(3	- 3071					22	00 270
	•••	GO TO 6	C4					22	00280
	602	WEITE (3.	. 3081					22	00290
	60 4	CON TINU.	3					22	00300
	306	FOR SAT (/.10X."#0D	ÍFIEI	N.H.D. MODEL',/)			P 2	00310
	307	FORMAT (/,10X,'TAN	VER S	ODEL (,/)			52	00320
	309	FORMAT(,	/,10K,'N.H	D. 8	IO CEL (,/)			P 2	00330
	503		2010 01					P2 -	00340
	30.1	3.64.6.24. 2029.14.14						22	10350
	101	TS/211	502 591 50'	;				27	1030 2
	502	TTITE (3.	302) C1	-				P2 (10 380
	302	CR MAT 1	(10X)	A RA B	E = 1.75.2.7	1		P2 (00390
	3	0 = N N	• • • •			,		22 (0 400
	i	READ (2, 1	N (CC					22 (30410
	300 9	CREAT (1	:5)					22 C	0 420
	25 (CONTINUE						5Z (10430
2	III	E=0: ST	LESS GROWT	E EC	E SHEAR FLOW			P2 0	10 440
-		L=1: 31	RESS RELAX	ATIO	N FOR SHEAR FLOW			22 L	YC 45G
-	TTT		AESS GROWI	a ro	R ELONGATIONAL PLO	×		22 0	0460
	200 9	ት መቆም እርስ ላ የበም ዘል ጥር የ	10) <u>11</u>					22 0	0 4 7 9
		EAD (2. 3	50)					22 0	12491
	350 E	OE MAT (P	10.5)					22 0	0 50 0
	I	F(III-1) 19, 19, 21					22 0	0510
	19 C	INT INT E						22 Ú	0 52 0
	E	2(1)=.02						P2 0	0530
	Ξ	[2]=.73	5					22 0	454C
	c	CF1=1	5.*E(1)					22 0	0 550

والمحصوفة المربية

.

P IL	Z: P2	FORT RA N	A	co	NVER SATIONAL	LONITOR	SYSTIM	
	SR(1) =. 01/COF 1						00560
	5 R (2	2) =. 1/COF1					22	00500
	S2(]	3) = 1. /C CP 1					22 92	00580
	SE (4	()=10./COF1					22	00590
	S R (8	3) =8.0/COP1					22	00600
	Sa (7	()=6.0/COP1					92	00610
	58 (D	0)=5.0/C021					52	00620
	ב) אכ 11 פפ	U=3 0/COF1					85	00630
	58(3	0 = 2 - 0 / COP1					22	00640
	5R (2)=1.4/C071					22	00650
	52(1) =.7/COF1					54 07	00670
	GO T	0 83					22	00650
2	1 CONT	INUE					22	00690
	2(1)	=.02					22	00700
	5 (4) COT 1	=.J95 =1 =5 + 9771					22	00710
	SF 1	-1.73.7 6(1)					55	00720
	58 (2))=.1/COF1					22	00730
	SR (3)	= 5/COF1					22	00740
	SE (4)=.7/C021					22	00750
	SR (5)	=1./COF1					22	00770
	S R (6))=2./COF1					22	00780
-	5 Z (/)	=J./COF1					22 (00790
я	ענישב 3 ויתעמים 3						22	00800
<u>u</u>	00 98	1 1 1 1 1 1 1 2 2					22 (00810
	VELTS	E(3,104) E(LL)					22 0	00820
	DO 99) H=M1, M2					22 (10820
	WEITE	1(3,103) SE(8)					22 (00850
5 79	CONTI	NUE					P2 0	0860
С	IN IT IA	L CONDITION					22 (00870
	12(11	L] 1,1,2					P2 (0880
201	FORMA	T 1/ 108 1578 25	5 GROWTH FOI		•		22 0	0890
	BXY= 1	-5.*E(LL)		A SHEAR FLUM	• • /)		22 0	0910
	a xr=^	•					P2 0	0910
	8 YY = 1	-5.*E(LL)					P2 0	0930
	B ZZ= 1	•-5•*E(LL)					22 C	694C
	3XZ=0	•					P2 0	0950
	B12≃0. 7TC 1	•					22 0	0960
	PSD(1))-).					2Z 0	0970
	T1(1)=	=0.					220	0980
	GO TO	80					22 0	1000
2	IZ (III	I-1) 3,3,4					22 0	1010
3	TEITE	(3,202)					P2 0	1020
20 2	F 05 5 M	r(/, 10X, 'STRESS	RELAXATION	FOR SHEAR P	'LOW' //}		22 0	1030
	15[1]	- asp (30)					52 0	1040
	 1'1)=						22 0	1050
	C TC	80					22 U	1070
4	IF (III	-2) 5,5,6					92 0	108.0
S	TRITE	(3,203)					P2 0	1090
20 3	P OS MAT	(/, 10X, 'STESS	GROWTH FOR	ELCNGATIONA	L FLOR /)		22 0	1 100

FILE: P2

-

FORTRAN A

+

٢

-

<pre>B XX=15.*E (LL) B XX=0. B YY=15.*E (LL) B ZZ=15.*E (LL) B ZZ=0. B YZ=0. B YZ=0. G0 T0 80 6 FRITE (3,204) 204 FORMAT('1', 10X, 'STRESS FELAXATION FOR ELONGATIONAL FLOW'./)</pre>	P2 01110 P2 01120 P2 01130 P2 01140 P2 01150 P2 01160 P2 01170 P2 01180 P2 01190 P2 01200
30 CONTINUE	22 01210
CU THE CASE DT=.05	22 01220
	22 01230
	22 01240
	22 01250
KK= 3	22 01260
<u>κ</u> κκ=2	22 01270
51 I=1	22 01289
BXXCD=BXX	22 01230
9XTOD=9XX	22 01310
SYY OD= SYY	22 01320
5 ZZ OD = 8 ZZ	22 01330
	22 01340
	22 01350
	22 01360 22 01360
7 CALL SHGR	22 01379
GO TO E1	22 01380
8 IF(III-1) 9,9,10	22 01330
9 CALL SHRE	22 01410
G TO 81	22 01420
$10 \ I^{\circ}(III-2) \ 11, 11, 12$	P2 01430
CO DO 9.1	22 01440
	P2 01450
	22 01460
	22 01470 D2 01470
$\pi(2, I) = DT + P 2$	22 01480 27 01480
E (3, I) =DI *P3	22 01500
$\mathbf{H}\left(4,\mathbf{L}\right) = \mathbf{D}\mathbf{T} \mathbf{F} \mathbf{E} 4$	22 01510
a (5, I) = DT #F5	22 01520
	22 01530
	22 01540
T=T+DT/2.	22 01550
BXX=BXX+H(1,1)/2.	22 UISOU 32 A157A
BXY = BXY + H(2, 1)/2.	P2 01580
BYY=BYY+H(3,1)/2.	22 01590
3ZZ = 8ZZ + H(4, 1)/2.	P2 01600
BL4=BL4+H [], []/2. 277-BV7-47 (5 1)/2.	P2 01610
30 TO 50	22 01620
41 IF (I-2) 42-42-43	22 01630
42 I=3	22 U1640
	22 VIQ-V

CONVEES AT ICNAL	TONITOR	SISTER
------------------	---------	--------

	BXX=BXX+H(1_2)/2H(1_1)/2.
	BXY = BXY + H(2, 2)/2 - H(2, 1)/2
	BYY=BYY+H (3,21/2,-H (3,1)/2.
	3ZZ = 8ZZ + 8(4,2)/2 + 6(4,1)/2
	BXZ=BXZ+H (5,2)/2H (5,1)/2.
	BYZ=BY3+H(5,2)/2,-H(6,1)/2.
	GO TO 50
43	IF(I-3) 44,44,45
44	<u>I</u> =4
	T=T+DT/2.
	BXX=8XX+H(1,3)-H(1,2)/2.
	BXY=BXY+H(2,3)-H(2,2)/2.
	BYY=BYY+H (3,3)-H (3,2)/2.
	$\partial Z Z = \partial Z Z + H (4, 3) - H (4, 2) / 2$.
	BXZ=BXZ+H (5,3)-H (5,2)/2.
	BTZ = BTZ + H(6, 3) - H(6, 2)/2.
	GO TO 50
45	
	BXX=BXXOD+(H(1,1)+2. #H(1,2)+2. #H(1,3) +H(1,3) /6.
	$BXY = BX(OU + \{d_1(2, 1) + 2, *d_1(2, 2) + 2, *d_1(2, 3) + d_1(2, 4)\} / 0.$
	$BII = BII \cup D + (n(3, 1) + 2 + n(3, 2) + 2 + n(3, 3) + n(3, 3) + n(3, 4)) / 0 + n(3, 3) + n(3,$
	BZZ=92200+(0(5,1)+2.+0(4,2)+2.+0(4,3)+0(4,4))/0.
	$BX_2 = BX_2 \cup U + \{a_1, b_2, b_3, b_4, b_6, b_1, b_2, b_4, b_4, b_4, b_4, b_4, b_4, b_4, b_4$
C E	
22	CUNTINUE N77-/EVY_BYYAD)/D7-7 #52/4}#B/7
	T X X - (D X X - D X X O D) / D T - 23 / 3 N (N) / D X 4
	CO TO 57
56	r xx = (377 - 377 0) / 2T
20	$r_X r = (B_X r - B_X r O C) / D T$
	TYY = (BYY - BYYOD)/DT
57	CONTINUE
	XXE= (BXX-BXXOD)/DT+SR(M) *BXX
	CZZE= (BZZ-8ZZOD) / DT-2. * SR (1) * 8ZZ
	IE(K-KK) 46,47,46
47	J=J+1
	EVI (J) = (TXX Z-TZZ Z) / (3 .* (15.*Z(LL)))/SZ(M)
	VIS (J) = -TXY/SR (X) / COF1
	<pre>PSD(J) = - (TXX-TYY) /SR(Y) ##2/(2.*(112.*E(LL)))</pre>
	c1 (J) =T
	[F(K-51) 60,61,61
61	(KK=25
60	S DNI TNOS
	KK= KK+ KKK
46	(T-15.) 51,52,52
52 (IONTINUE
	IF (III) 13, 13, 14
13 (CONTINUE
2	0 70 I = 1,30
30	PSD(1) = PSU(1) / PSU(3)
70 5	AT2(T) = AT2(T) \ AT2(70)
<i>c</i>	I T T T T T T T T T T T T T T T T T T T

14 IF(III-1) 15,15,16

-

FILE: 22

.

20ETEAN A

364

22 01660

22 0167J 22 01680 22 01690 22 01690 22 01700

22 01860 22 01870 22 01880

P2 02050 P2 02050 P2 02060 P2 02070 P2 02080

P2 02090 P2 02100 P2 02110

P2 02120 P2 02120 P2 02130 P2 02140 P2 02140 P2 02150

P2 02160 P2 02170 P2 02180

22 02190 22 02200

· ----- ·

,

CONVERSATIONAL	MONITOR	SYSTEM
----------------	---------	--------

15 bo 71 $I = 1, 30$	22 02210
SPSD(I) = PSD(I) / PSD(1)	22 02220
71 SVIS(I) = VIS(I) / VIS(1)	22 02230
GO TO 82	22 02240
16 IP (III-2) 17,17,18	22 02250
17 CONTINUE	22 02260
30 TO 82	22 02270
18 CENTINUE	22 02280
82 CONTINUE	22 02290
WRITE(3, 100)	₽2 02300
I N U = 4 + (L L - 1) = 4	22 02310
$p_0 20 = 1, 30$	22 02320
TRITE (3, 1) 1) T1 (I), VIS (I), SVIS (I), PSD (I), SPSD (I)	22 02330
CC STORE THE DATA IN DISK	22 02340
IREC=I+(IMET-1)*60	22 02350
IF(III) 86,36,37	22 02360
86 WRITE (INUM IREC) T1 (I), VIS (I), SVIS (I), 2SD (I), SPSD (I)	22 02370
GO TO 20	P2 02380
87 TRITE(INUX'122C+30) T1(I), VIS(I), SVIS(I), 2SJ(I), SPSD(I)	22 02390
2) CONTINUE	22 02400
100 FORMAT(TIME , 12X, VISCOSITI, 12X, N. VIS. , 12X,	22 02410
1' STEZSS DIP. ', 12X,' N. ST. DIF. ',/)	22 02420
10 1 FOR MAT (27.3, 4E22.4)	22 02430
103 FORMAT (11, THE VALUE OF SHEAS RATE = 1, 29.2,/)	22 02440
104 FOEMAT(/, ' THE VALUE OF PERTURBATION PARALETER = ', 29.4./)	22 02450
IF (III) 75,75,96	22 02460
75 III=1	22 02470
WEITE(3,110)	P2 0248)
11) PORMAT (/,10X, THE VALUES OF STRUCTURE TENSORS',/, 10X,	22 02490
1 BXX, BXY, 3YY, 3XZ, BYZ, BZZ' //)	22 02500
TRITE (3,111) BXX, BXY, BYT, BXZ, BYZ, BZZ	22 02510
111 FCERAT(5x, 6E15. 4)	P2 02520
C GO 10 79	P2 02530
96 III=0	22 02540
99 CONTINUE	22 02550
IF(III-1) 24,24,97	22 02560
24 CONTINUE	22 02570
CO21=15.*E (2)	22 02580
SR(1) = .01/COP1	P2 02590
SR(2) = .1/COF1	22 02600
SR(3) = 1./CO21	22 02610
SE(4) = 10.7COT1	22 02620
SE(8)=6.5/COF1	22 02630
SR(7) = 6.0/CO21	22 02640
SR (6) =5. ?/COF1	22 02650
SE(5) = 4.0/COP1	22 02660
SR(4) = 3.0/COF1	22 02670
SR(3) = 2.0/20P1	22 02680
SE $(2) = 1.4 / COF 1$	22 92699
52 (1)=.7/COP1	P2 02700
60 TO 30	22 92710
97 COFI=15.*E (2)	22 02720
SE(1) = .01/C021	PZ 02/30
SR(2) = .1/COP1	82 92740 DD 00750
52(3) = .5/COP1	22 UZ150

•

-

.

PILE: P2 FORTRAN A

	SR(4) = .7/COF1	22 0276	٥
	SR (5) =1./COP1	22 0277	0
	SR(6) = 2.7021	P2 0278	0
	SR (7) = 3./COF1	22 0279	0
	98 CONTINUZ	22 0280	0
	SN = NN + 1	22 0281	0
	3 3 2 3 3 - 3	22 0282	0
	IP(NNN) 25, 26, 26	22 0283	0
	26 CONTINUE	22 0284	0
	GO TO 500	22 0285	3
	501 CONTINUE	22 0286	0
	CALL EXIT	22 0287	0
	ЭND	22 02880	3
	SUBRCUTINE SHGR	22 0289	٥
CC	THIS SUBAOUTINE CALCULATES THE RIGHT HAND SIDES OF	22 02904	3
сc	EQ.5.22, EQ.5.9, AND EQ.5.19 FOR STEESS GROWTH FOR	22 0291	0
СC	SREAR FLOW.	22 02920	2
	CCMMON BXX, BXY, BYY, BZZ, BXZ, BYZ	22 0293	0
	COMMON P1, P2, P3, P4, P5, P6, SE(8), E(4), L, T, LL	22 02940)
	COMMON C1, INET	92 02950	3
	GO TO (1,2,3),IMET	22 02960)
C1	an hd	22 0297:)
	1 CONTINUE	22 02981	3
	LA= 1./(15(LL)*(3XX+BYY+3Z2))	22 02993)
	$\lambda A \lambda = (1 \cdot / \lambda \lambda) * * C 1$	P2 03000)
	Б 8= 2. * С (LL) * ААА	22 03010	1
	GO TC 4	22 03 02 0)
22	TANNER'S	P2 03030)
	2 CONTINUE	22 03040	2
	λλ= 1./(1.−Ξ(LL) * (BXX+BYY+322))	22 03050	1
	AAA= (1. /AA) **C1	P2 03060	,
	BB=0.	22 03070)
	GO TO 4	22 03080	
C3	N HD	22 03 09 0	1
	3 CONTINUE	22 03 100	
	$A \Delta = 1 + E (LL) + (B X X + B Y Y + B Z Z)$	22 03110	J
	$B = 2.4 \Sigma (LL)$	22 03 120	
	4 CONTINUE	22 03130	
	F1=2.*S2(1) *BXY-AA*BXX-BB*(EXX**2+BXY**2+BXZ**2)+1.	22 03140	
	5 2= 2E (X) *BKX-Y7*BXX-BB* (BXX *BXX+BXX+BXX+BXX *BXZ)	22 03 150	
	25=5R (1) *BYZ-AA *BXZ-BB* (BXX *BXZ + BXY*BYZ + BXZ*BZZ)	22 03 160	
	24=-11* BZZ-BB*(BXZ**2+BYZ**2+BZZ**2)+1.	22 03 17 3	
	P6=-AA*BYZ-BB*(BXY*BXZ+BYY*6YZ+BYZ*BZZ)	22 03 180	
	P3=-41# 3YY-B8# (3XY##2+8YY##2+8YZ##2) +1.	22 U3 190	
	BETURN	22 03200	
	END		
	SUBRCUTINE SHRE	22 03220	
10	THIS SUBROUTINE CALCULATES THE HIGHT HAND SIDES OF	201250 201250	
cc	EQ.5.22, EQ.5.9, AND EQ.5.19 FOR STRESS RELAXATION	22 VJ240	
cc	FOR SHEAR PLOW.	22 03230	
	COMMON BXX, 3XY, 3YY, BZZ, BXZ, BYZ	22 JJ200	
	CUSAON 21, 22, 23, 24, 25, 26, SE (8), E (4), 1, T, LL	22 022/0	
	CUARON CI, LEET	52 03200 52 03200	
	GU TO (1,2,3),ITET	7052E0 23	
C 1	AN 8D	E4 93300	

.

-

-

FILE: 22 FORTRAN A

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	PILE	: 22	FORTRAN	λ	CONVERSATIONAL SONITOR	SYSTER	I I
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccc} & A = 1 & - \chi^{2} (1 - \xi - \xi) (2) (3 X X + BY Y + BZ Z)) & 2 & 0 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3$		1 CONTINUE				22	03310
$\begin{array}{ccccc} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 $		AA=1./{1	== (LL) ≠	(BXX)	BY (+ 5Z Z))	22	03320
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		AAA= (1./	1A) **C1			22	03330
C2TANNER $22 0.3350$ C2TANNER'S $22 0.3360$ 2 CONTINUE $22 0.3370$ AA=1./(1E(1L)*(3XX+BYT+3ZZ)) $22 0.3370$ AA=1./(1E(1L)*(3XX+BYT+3ZZ)) $22 0.3370$ AA=(1./AA)**C1 $22 0.3370$ BB=0. $22 0.3370$ GO TO 4 $22 0.3370$ J CONTINUE $22 0.3400$ J CONTINUE $22 0.3440$ AA=1.+E(L)*(3XX+BYT+BZZ) $22 0.3440$ BB=2.*E(L) $22 0.3440$ BB=2.*E(L) $22 0.3440$ BB=2.*E(L) $22 0.3440$ F1=2.*S3(M)*BXT-AA*BXY-E3*(BXX**2+BXT*2+BXZ**2)+1. $22 0.3440$ F2=S3(M)*BYT-AA*BXY-E3*(BXX**2+BXT*3Y*BYT*8Z*E) $22 0.3440$ F2=S3(M)*BYT-AA*BXY-E3*(BXX**2+BXT*3Y*BYT*8Z*E) $22 0.3440$ r2=S5(M)*BYT-AA*BXY-E3*(BXX**2+BXT*8Y*BYT*8Z*E) $22 0.3440$ r2=S5(M)*BYT-AA*BXT-E3*(BXX**2+BXT*8Y*BYT*8Z*E) $22 0.3500$ r2=S5(M)*BYT-AA*BXZ-BB*(BXX**2+BYT*8Y*BYT*8Z*E) $22 0.3500$ r2=S5(M)*BYT-AA*BXZ-BB*(BXX**2+BYT*BYZ+BYZ*BZZ) $22 0.3500$ r2=S5(M)*BYT-AA*BYT-BB*(BXX**2+BYT*BYZ+BYZ*BZZ) $22 0.3500$ r2=S5(M)*BYT-AA*BYT-BB*(BXX**2+BYT*BYZ+BYZ*BZZ) $22 0.3500$ r2=S5(M)*BYT-AA*BYT-BB*(BXX**2+BYT*BYZ+BYZ*BZZ) $22 0.3500$ r2=S5(M)*BYT-AA*BYT-BF*(BYT*BYT*BYZ+BYZ*BZZ) $22 0.3500$ r2=CAMON P1,r2;r5;r6,SR(B);r2(H),K,r,LL $22 0.3500$ r2=CAMON P1,r2;r5;r6,SR(B);r2(H),K,r,LL $22 0.3600$ r2=CAMON P1,r2;r5;r6,SR(B);r2(H),K,r,LL $22 0.3600$ r2=CAMON P1,r2;r5;r6,SR(B);r2(H),K,r,LL $22 0.3600$ r2=CAMON P1,r2;r5;r6;SR(M)*BZZ-AA*BZZ*BE*BZZ*2 </td <td></td> <td>38=2 *2</td> <td>LL) #AAA</td> <td></td> <td></td> <td>22</td> <td>03340</td>		38=2 *2	LL) #AAA			22	03340
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		GO TC 4				22	03350
$ \begin{array}{ccccc} 2 \ CGWTINUE & p2 \ 03370 \\ AA=1./(1E(L)*(3XX+BYT+BZZ)) & p2 \ 03380 \\ AAA=(1./AA)**C1 & p2 \ 03490 \\ BB=0. & p2 \ 03490 \\ GO TO 4 & p2 \ 03440 \\ GO TO 4 & p2 \ 03440 \\ AA=1.+E(L)*(3XX+SYY+BZZ) & p2 \ 03440 \\ BB=2.*E(L) & p2 \ 03440 \\ BB=2.*E(L) & p2 \ 03440 \\ P1=2.*SZ(3)*BXT-AA*BXY-E3*(BXX**2+BYX*2+8XZ**2)+I. & p2 \ 03450 \\ P1=2.*SZ(3)*BXT-AA*BXY-E3*(BXX**2+BYX*2+BYZ**2)+I. & p2 \ 03470 \\ P2=SZ(3)*BYT & p2 \ 03490 \\ P2=SZ(3)*BYT-AA*BXZ-BB*(BXX*BXY+BYY+BYZ+BYZ*BZZ) & p2 \ 03510 \\ P2=SZ(3)*BYT - AA*BZZ-BB*(BXX*BY+BYZ*BYZ*BZZ) & p2 \ 03510 \\ P3=SR (3)*BYZ-AA*BZZ-BB*(BXX*BY+BYZ*BYZ*BZZ) & p2 \ 03510 \\ P3=SR (3)*BYZ-AA*BZZ-BB*(BXX*BY+BYZ*BYZ*BZZ) & p2 \ 03550 \\ P3=AA*BYZ-BB*(BYT*BYZ+BYZ*BYZ*BZZ) & p2 \ 03550 \\ P3=CAA*BYZ-BB*(BYT*BYZ+BYZ*BYZ*BZZ) & p2 \ 03550 \\ P3=CAA*BYZ-BB*(BYT*BYZ+BYZ*BYZ*BZZ) & p2 \ 03550 \\ P3=CAA*BYZ-BB*(BYT*BYZ+BYZ*BZZ) & p2 \ 03550 \\ COMMON PXX, BYT, BZZ, BYZ, BYZ & p2 \ 03550 \\ COMMON PXX, BYT, BZZ, BYZ, BYZ & p2 \ 03550 \\ COMMON PXX, BYT, BZZ, BYZ, BYZ & p2 \ 03560 \\ P1=1SE(3)*BYX-AA*BYZ-BB*BYX*SZ & p2 \ 03560 \\ P1=1SE(3)*BYX-AA*BYZ-BB*BYX*SZ & p2 \ 03560 \\ P1=1SE(3)*BYX-AA*BYZ-BB*BYX*SZ & p2 \ 03560 \\ P2=0. & p2 \ 03570 \\ P2=$	C2	TANNER'S				22	03360
$\begin{array}{ccccc} & A = 1, /(1, - E (LL) * (3XX + BYT + 3Z2)) & 22 03380 \\ A A = (1, /A A) * *C1 & 22 03410 \\ B = 0. & 22 03410 \\ G O TO 4 & 22 03410 \\ C J NHD & 22 03420 \\ 3 CONTINUE & 22 03430 \\ A = 1. + E (LL) * (3XX + 8YY + 8Z2) & 22 03430 \\ A = 1. + E (LL) * (3XX + 8YY + 8Z2) & 22 03450 \\ P T = 2. *SZ (M) * 8XY - A A * 8XY - E3* (8XX * *2 + 8XY * 2 + 8XZ * 2) + 1. & P2 03460 \\ F 2 = 2. *SZ (M) * 8XY - A A * 8XY - E3* (8XX * 8XY + 8YY + 8XZ * 8Z7 + 2) + 1. & P2 03460 \\ T = 2. *SZ (M) * 8YY - A A * 8XZ - EB* (8XX * 8XY + 8YY + 8YZ + 8ZZ + 2) + 1. & P2 03460 \\ T = 2. *SZ (M) * 3YZ - A A * 8XZ - EB* (8XX * 8XY + 8YY + 8YZ + 8ZZ + 2) + 1. & P2 03500 \\ T = 5 = SC (M) * 3YZ - A & 8XZ - EB* (8XX * 8XY + 8YY + 8YZ + 8ZZ + 2) + 1. & P2 03500 \\ F = -AA * 8ZZ - BB * (5XT * *2 + 8YX * 8YZ + 8ZZ + 2) + 1. & P2 03500 \\ F = -AA * 8ZZ - BB * (5XT * *2 + 8YX * 8YZ + 8ZZ + 2) + 1. & P2 03500 \\ F = -AA * 8ZZ - BB * (5XT * *2 + 8YX * 8YZ + 8ZZ + 2) + 1. & P2 03500 \\ F = -AA * 8ZZ - BB * (5XT * *2 + 8YX * 8YZ + 8ZZ + 2) + 1. & P2 03500 \\ F = -AA * 8ZZ - BB * (5XT * *2 + 8YX * 8YZ + 8ZZ + 2) + 1. & P2 03500 \\ S ND & P2 0 3550 \\ C O M ON Y 1, P2 , F3, P4, P5 , P6, S R (B), P (A), X, T, LL & P2 03500 \\ C O M ON Y 1, P2 , F3, P4, P5 , P6, S R (B), P (A), X, T, LL & P2 03600 \\ C O M ON Y 1, P2 , F3, P4, P5 , P6, S R (B), P (A), X, T, LL & P2 03600 \\ C O M ON Y 1, P2 , F3, P4, P5 , P6, S R (B), P (A), X, T, LL & P2 03600 \\ C O M ON Y 1, P2 , F3, P4, P5 , P6, S R (B), P (A), X, T, LL & P2 03600 \\ A A = 1, / (1, -2(LL) * (2, * 3XX + 3ZZ)) & A A = 1, -S E (M) * 8ZZ - A A * 8ZZ - B P * 8ZZ + P2 & P2 0 & P2 03600 \\ P 1 = 1, -S E (M) * 8ZZ - A A * 8ZZ - B P * 8ZZ + P2 & P2 0 & P2 03600 \\ P 1 = 1, -S E (M) * 8ZZ - A A * 8ZZ - B P * 8ZZ + P2 & P2 0 & P2 03600 \\ P 2 = 0. & P2 0 & P2 03700 \\ P 5 = 0. & P2 0 03670 \\ P 5 = 0. & P2 0 03700 \\ P 5 = 0. & P2 0 03700 \\ P 2 0 03700 \\ P 2 0 03700 \\ P 1 = 0. & P2 0 03700 \\ P 2 0 03700 \\$		2 CONTINUE				22	03370
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		A = 1. / (1.	-E (LL) * ;	SXX.	BYT+3ZZ))	22	03380
BB=0, GO TO 4 P2 03 400 CJ NHD P2 03 420 J CONTINUZ P2 03 420 AA=1.+F(LL)*(BXX+BYY+BZZ) P2 03 440 BB=2.*E(LL) P2 03 440 Y CONTINUE P2 03 460 Y 1=2.*S3(M)*BXY-AA*BXY-BB*(BXX**2+BXY**2+BXZ**2)+1. P2 03 440 Y 2=2.*S2(M)*BYX-AA*BXY-BB*(BXX**2+BXY**BYX*BXX*BZ P2 03 440 Y =2.*S3(M)*BYX-AA*BXY-BB*(BXX**2+BYX**2+BXZ**2)+1. P2 03 440 Y = 2.*S2(M)*BYX-AA*BXY-BB*(BXX**2+BXY*BYX*BXX*BXX*BZZ) P2 03 440 Y = 2.*S2(M)*BYZ-AA*BXZ-BB*(BXX**2+BYX*BYX*BYX*BXX*BXZ*BZZ) P2 03 510 Y = 2.*S1(M)*BYZ-BB*(BXX**2+BYX*EYX*BYX*BYX*BYX*BXX*BZZ) P2 03 550 Y = -AA*BZZ-BB*(BXZ**2+BYY*EXEYZ*BYZ*AZZ) + 1. P2 03 550 Y = -AA*BZZ-BB*(BXX**2+BYY*EXEYZ*BYZ*AZZ) + 1. P2 03 550 Y = -AA*BYX-BS*(MY*AZ*BYY*AZ*BYY*AZ*BYY*AZ*BYZ*AZZ) P2 03 3500 Y = 03 COMMON F1, F2, F3, F4, F5, F6, SR (8), F2(4), N, T, LL P2 03 660 Y = 1, -2, F, DYY, AYZ, AX*BYZ, BYX P2 03 660 Y = 1, -2, C, MY*AZ*BYZ, AX*BYZ, BYX*AZ P2 03 660 Y = 1, -5E (M)*BZZ-AA*BYZ, BB*BXX**2		AAA= (1./)	1A) **C1			22	03390
GO TO 4P2 03410CJ NHDP2 03420J CONTINUEP2 03430AA=1,+E (L) * (SIX + BYY+BZZ)P2 03430BB=2,*E (LL)P2 03450P1=2,*SR(M) * BXY-AA*BXY-E3* (BXX**2+BXY*2+BXZ**2)+1.P2 03460P1=2,*SR(M) * BXY-AA*BXY-E3* (BXX**2+BXY*8YY-BXZ*E17)P2 03460P1=2,*SR(M) * BYT-AA*BXY-E3* (BXX*BY+SXY*BYY+6XZ*E17)P2 034901-2,*SR (M) * BYT-AA*BXY-E3* (BXX*BXY+SYY+SYZ*BYZ)P2 03460P2=528 (M) * BYZ-AA*BXZ-E3* (BXX*BZ + BXY*BYY+6XZ*BTZ)P2 03500P5=58 (M) * SYZ-AA*BXZ-E3* (SXX**2+BYX*BYZ+BYZ*BZZ)P2 035101-SS (M) * SYZP3 03510P5=58 (M) * SYZ-AA*BXZ-E3* (SXX**2+BYX*BYZ+BYZ*BZZ)P2 035101-SS (M) * SYZP3 03510P5=58 (M) * SYZ + AA*BXZ-B3* (SXX**2+BYX*BYZ+BYZ*BZZ)P2 03530P6=AA*SYZ-B3* (SXX**2+BYY*BYZ+BYZ*BZZ)P2 03550SUB COTINE 2LGE1P2 03560COMMON P1, P2, P3, P4, P5, P5, SS (S), P2 (4), M, T, LLP2 03620COMMON P1, P2, P3, P4, P5, P5, SS (S), P2 (4), M, T, LLP2 03620COMMON XI, AIY, AYTP2 03620AA=1, (AA) **C1P2 03660B=2, *E (LL) *AAAP2 03650SB=0,P1 = 1, -5E (M) * SZZ-AA*SZZ-BB*BZZ**2P2 03660P1 = 1, -5E (M) * SZZ-AA*SZZ-BB*BZZ**2P2 03660P2 = 0,P2 = 0,		88 = 0.	·			22	03400
CJ NHD P2 03420 J CONTINUZ P2 03430 AA=1.+E (LL) * (BXX+BYY+BZZ) P2 03440 BB=2.*E (LL) P2 03450 Y CONTINUZ Y P2 03450 Y P2 03450 Y P2 03450 Y P2 03450 Y P2 03470 Y P2 03500 Y P2 03500 Y P2 03500 Y P2 03500 Y P2 03500 <td></td> <td>GO TO 4</td> <td></td> <td></td> <td></td> <td>P 2</td> <td>03410</td>		GO TO 4				P 2	03410
3 CONTINUZ 22 03430 AA=1.+E(LL)*(BXX+BYY+BZZ) 22 03440 BB=2.*E(LL) 22 03440 Y CONTINUE 22 03440 Y CONTINUE 22 03460 P1=2.*S2(M)*BXY-AA*BXY-E3*(BXX*2+BXY*2+BXZ*2)+1. P2 03460 Y=2=S2(M)*BXY-AA*BXY-BB*(BXX*BY*BYY+BXY*BYZ*BYZ*2) 22 03400 Y=2=S2(M)*BXY-AA*BXY-BB*(BXX*BY*BYY+BXY*BYZ*BYZ*E17) 22 03500 Y=5=S2(M)*BXZ-AA*BXZ-EB*(BXX*BXZ+BYY*BYZ+BXZ*BZZ) 22 03500 Y=5=S2(M)*BXZ-BB*(BXZ**2+BYZ**2)+1. 22 03520 Y=4=AA*BXZ-BB*(BXZ**2+BYY*BYZ+BYZ*BZZ) 22 03500 Y=5=S4(M)*BXZ-BB*(BXX**2+BYY*BYZ+BYZ*BZZ) 22 03500 Y=5=S2(M)*BXZ-BB*(BXZ**2+BYY*BYZ+BYZ*BZZ) 22 03550 Y=4=AA*BYZ-BB*(BXT*BY*BYY*BYZ*BYZ*2)+1. 22 03550 RETURN 22 03550 SUBROUTINE ELGE1 22 03550 COMMON P1,P2,F3,P4,F3,P6,S1(B),Z(4),M,T,LL 22 03600 COMMON AXX,AYY,AYY 22 03600 AA=1./(12(LL)*(2.*3XX+3Z)) 22 03600 AA=1./(12(LL)*(2.*3XX+3Z)) 22 03600 AA=2.*E(M)*BZX-AA*3XX-BB*BXX**2 22 03600 P2=0. 22 03600 P2=0. 22 03600	с3	NHD				22	03420
$\begin{array}{llllllllllllllllllllllllllllllllllll$		CONTINUE				22	03430
$\begin{array}{llllllllllllllllllllllllllllllllllll$		AA=1.+E(1	LL) = (BXX +	вүү+	BZ Z)	22	03440
* CONTINUEP2 03460 $Y = 2, *SR (M) *BXY - AA * BXY - EB * (BXX * * 2 + BXY * 2 + BXZ * * 2) + 1.P2 034701 - 2, *SR (M) *BXY - AA * BXY - BB * (BXX * BXY + BYY * BYZ * BXZ * ETZ)P2 03400Y = SR (M) *BYY - AA * BXZ - EB * (BXX * BXY + BYY * BYZ * BXZ * ETZ)P2 03500Y = SR (M) * 3YZ - AA * BXZ - EB * (BXX * BXY + BYY * BYZ * BXZ * BZZ)P2 03500Y = -AA * BZZ - BB * (BXZ * * 2 + BYZ * EXZ * 2) + 1.P2 03500Y = -AA * BZZ - BB * (BXX * X + BYY * BYZ * BYZ * BXZ * BZZ)P2 03500Y = -AA * BZ - BB * (BXX * 2 + BYY * BYZ * BYZ * BZZ)P2 03500Y = -AA * BZ - BB * (BXY * BYY * BYZ * BYZ * BYZ * BZZ)P2 03550Y = -AA * BZ - BB * (BXY * BYY * BYZ * BYZ * BYZ * BZZ)P2 03550Y = -AA * BYZ - BB * (BXY * BYY * BYZ * BYZ * BYZ * 2) + 1.P2 03550Y = -AA * 3YY - 33 * (BXY * BYY * BYZ * BYZ * BYZ * Z) + 1.P2 03560SUBROTTINE ELGR1P2 03560COMMON P1 , P2 , P3 , P4 , P5 , P6 , SR (8) , P2 (4) , M , T , LLP2 03600COMMON ATX , AIY , AYTP2 03610AA = (1, / (A) * C1 L1) * (2 * 3XX + BZZ))P2 03620AA = (1, / (A) * C1 L1) * (2 * 3XX + BZZ)P2 03650B = 0.P1 = 1 SF (M) * BZZ - AA * BZZ - BE * BZZ * 2P2 03660P = 0.P2 0.3700P2 0.3700P2 = 0.P2 = 0.P2 0.3700P2 = 0.P2 = 0.P2 0.3700P2 = 0.P2 0.3700P2 0.3700P2 = 0.P2 0.3700P2 0.3700P2 = 0.P2 0.3700P2 0.3700P2 = 0.P2 0.3700P2 0.3700P2 = 0.P2 0.3740$		BB=2.*E(3	LL)			22	03450
$P = 2 + 8 \ge 3(4) + 8 \ge 1 - A + 8 \ge 1 - E = (B \ge 1 + 2 + 8 \ge 2 + 8 \le 2 + 1 + 1 + 2 + 8 \le 2 + 1 + 1 + 2 + 8 \ge 1 + 1 + 2 \ge 1 + 2 \ge 1 + 1 + 2 \ge 1 + 2 = 1 + 2 \ge 1 + 1 + 2 \ge 1 + 2 = 1 + $	4	CONTINUE				P2	03460
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		P 1=2.*SR((M)#BXY—A	λ ≠ 8 X	%-E3* (B%%**2+B%%**2+B%%Z**2)+1.	65	03470
F2 = 52 (1) * 6YY - AA * 8YY - BG* (BIX*BYY + BYY + BYZ * BYZ + BYZ * BZZ) $22 0 3500$ $P5 = 5S (1) * 3YZ - AA * BZZ - BB* (BXZ * BYZ + BYZ * BYZ + BYZ * BYZ * BZZ)22 0 3510P4 = -AA * BZZ - BB* (BXZ * * 2 + BYZ * BZZ)22 0 3530P6 = -AA * 3YZ - BP* (BXZ * BYZ * BYZ * BYZ * BYZ * BZZ)22 0 3540P3 = -AA * 3YZ - BP* (BXT * BXZ + BYY * BYZ + BYZ * BZZ)22 0 3540P3 = -AA * 3YZ - BP* (BXT * BXZ + BYY * BYZ + BYZ * BZZ)22 0 3550P3 = -AA * 3YZ - BP* (BXT * BYZ + BYY * E + BYZ * * 2) + 1.P2 0 3560P3 = -AA * 3YZ - BP* (BXT * BYZ + BYY * E + BYZ * Z) + 1.P2 0 3560P3 = -AA * 3YZ - BP* (BXT * BYZ + BYY * E + BYZ * Z) + 1.P2 0 3560P3 = -AA * 3YZ - BP* (BXT * BYZ - BYZ * BYZ * BYZ * D Y * D$		1-2.*SR (A)	# BXY			22	03480
1-SR (1) * BYY22 03500 $F5=SR (1) * BYZ-AA * BKZ - BB* (BXX * BXZ + BXY* BYZ + BXZ* BZZ)22 03500P5=SR (3) * BYZ - BB* (BXZ * 2 + BYZ * 2 + BZZ * 2) + 1.22 03520P4=-AA * BZZ - BB* (BXX * BXZ + BYY * BYZ + BYZ * BZZ)22 03530P6=-AA * BYZ - BB* (BXX * BXY * BYY * BYZ + BYZ * BZZ)22 03540P3=-AA * BYY - BB* (BXX * 2 + BYY * BYZ + BYZ * BYZ * BZZ)22 03560P1=2 + AA * BYY - BAY, BYY, BYZ - BYY * 2 + BYZ * 2) + 1.22 03560P2 = 0.522 03570SUBROWTINE ELGR122 03560COMMON P1_F2, P3_F4, P3_F6, SR (8), P2(4), N, T, LL22 03600COMMON P1_F2, P3_F4, P3_F6, SR (8), P2(4), N, T, LL22 03600COMMON P1_F2, P3_F4, P3_F6, SR (8), P2(4), N, T, LL22 03600COMMON AXX_AXY, AYY22 03600AA = (1, /AA) * C122 03600B = 2 + E(LL) * (AA) * C122 03660B = 2 - E(LL) * (AA) * BZZ - AA * BZZ - BB * BZZ * 2)22 03660P2 = 0.22 03670P2 = 0.22 03700P2 = 0.22 037700P2 = 0.22 03710P2 = 0.22 03720P2 = 0$		F2=S2(4)	*B Y Y - 7 7 * 6	X7 - B	B* (BXX*BXY+BXY*BYY+BXZ*EYZ)	22	03490
P5=SR(M) * 3YZ - AA * BXZ - EB* (BXX * BXZ + BXY * BYZ + 3XZ * 3ZZ) $P2 = 0.3510$ $1-SR(M) * 3YZ$ $P2 = 0.3520$ $P4 = -AA * BZZ - BB* (BXZ * 2 + 3YZ * 2 + 3YZ * 2 + 3YZ * 2 + 3YZ * 2 - 3S + 0)$ $P2 = 0.3530$ $F6 = -A4 * 3YZ - BB* (BXT * BXZ + BYY * BYZ + BYZ * BZZ)$ $P2 = 0.3540$ $F3 = -AA * 3YY - 3B * (3XY * 2 + 3YY * 2 + 3YY * 2 + 3YZ * 2) + 1.$ $P2 = 0.3550$ $RETURN$ $P2 = 0.3560$ SND $P2 = 0.3570$ SUBROUTINE ELGR1 $P2 = 0.3560$ COMMON EXI, BXI, BYI, BZZ, BXZ, BYZ $P2 = 0.3580$ COMMON P1, P2, F3, P4, P5, P6, SR (3), E(4), M, T, LL $P2 = 0.3600$ COMMON AXX, AXY, AYT $P2 = 0.3600$ $AA = (1, /AA) * C1$ $P2 = 0.3620$ $B = 0.$ $P2 = 0.3640$ $P1 = 1, -SE (M) * BZX - AA * 3XX - BB * BXX * 2$ $P2 = 0.3660$ $P2 = 0.$ $P2 = 0.3660$ $P2 = 0.$ $P2 = 0.3660$ $P2 = 0.$ $P2 = 0.3660$ $P2 = 0.5$ $P2 = 0.3670$ $P2 = 0.3660$ $P2 = 0.3670$ $P2 = 0.3660$ $P2 = 0.3670$ $P2 = 0.5$ $P2 = 0.3670$ $P2 = 0.5$ $P2 = 0.3720$ $P2 = 0.5$ $P2 = 0.3720$ $P2 = 0.5$ $P2 = 0.3720$ $P2 = 0.3720$ $P2 = 0.3740$ $P2 = 0.3740$ $P2 = 0.3740$		1- SR (1) * 81	TY			22	03500
$1-SE (X) * 3YZ$ $22 0 3 520$ $Y^{4} = -AA * BZZ - BB * (BXZ * *2 + BYZ * *2 + BYZ * *2) + 1.22 0 3 530F = -AA * 3YZ - BB * (BXY * BXZ + BYY * BYZ + BYZ * BZZ)22 0 3 540Y^{3} = -AA * 3YZ - BB * (BXY * 2 + BYY * 2 + BYZ * 2) + 1.22 0 3 550RETUEN22 0 3 550SUBROUTINE ELGR122 0 3 550COMMON PI, F2, F3, F4, F5, F6, SE (B), E(4), X, T, LL22 0 3 550COMMON PI, F2, F3, F4, F5, F6, SE (B), E(4), X, T, LL22 0 3 600COMMON AXX, AXY, AYY22 0 3 600AA = (1, /AA) **C122 0 3 620Ba=2.*E (LL) * AAA22 0 3 650B=0.22 0 3 650F = 1.+SE (M) * BXX - AA * 3XX - BB * BXX ** 222 0 3 660F = 0.22 0 3 700F = 0.22 0 3 700F = 0.22 0 3 700F = 0.22 0 3 720F = 0.22 0 3 720F = 0.22 0 3 720F = 0.22 0 3 740F = 0.22 0 3 740$		25=58 (M) *	BYZ-AA *B	XZ - E	8* (BXX *BXZ + BXY* BYZ+ 9XZ* 3ZZ)	22	03510
P4 = -AA *BZZ - BB * (BXZ **2 + BYZ **2 + BZZ **2) + 1.22 03 530 $F6 = -AA * BYZ - BE* (BXY * BXZ + BYY **BYZ + BYZ **BZZ)$ 22 03 540 $P3 = -AA *BYY - BB * (BXY **2 + BYY **2 + BYZ **2) + 1.$ 22 03 550 $RETURN$ 22 03 560SND22 03 570SUBROUTINE ELGR122 03 580COMMON P1, P2, F3, P4, P5, P6, SR (8), E(4), X, T, LLP2 03 600COMMON C1, LL STP2 03 610COMMON AXX, AYY, AYY22 03 620 $AA = (1 - /AA) **C1$ 22 03 650BB = 0.P2 03 650 $P1 = 1 - SE (M) * BXX - AA * BXX - BB * BXX **2P2 03 660P2 = 0.P2 03 650P2 = 0.P2 03 660P2 = 0.P2 03 660P2 = 0.P2 03 650P2 = 0.P2 03 650P2 = 0.P2 03 660P2 = 0.P2 03 670P2 = 0.P2 03 770P2 = 0.3720P2 03 770P2 = 0.3720P2 03 770P2 = 0.3720P2 03 740$		1-SE (3) = 31	Z	_		22	03520
F G = -AA = 3YZ - BE = (BX T + BXZ + BYY + BYZ + BYZ + BYZ + BYZ + BYZ + BYZ + Z + BYZ + Z + BYZ + BYZ + Z + Z + Z + Z + Z + Z + Z + Z + Z +		$P_4 = -AA * BZ$	Z-BB+(BX)	5**2	+BYZ **2+BZZ **2) + 1.	22	93530
23 = -AA * 3YY - 33 * (3YY * 2 + BYY * 2 + BYZ * * 2) + 1. $92 03560$ RETURN $92 03570$ SND $22 03570$ SUBROUTINE ELGR1 $22 03580$ COMMON $21, 22, 32, 322, 322, 322, 32222 03590COMMON 21, 22, 53, 24, 25, 26, 58 (8), 2(4), 3, 7, LL22 03600COMMON 21, 22, 53, 24, 25, 26, 58 (8), 2(4), 3, 7, LL22 03600COMMON 21, 22, 53, 24, 25, 26, 58 (8), 2(4), 3, 7, LL22 03600COMMON 21, 22, 53, 24, 25, 26, 58 (8), 2(4), 3, 7, LL22 03600COMMON 4XX, AYY, AYT22 03610AA = (1, /A1) **C122 03620AA = (1, /A1) **C122 03630B = 2, *E(LL) * (2, * 3XX + 3ZZ))22 03650B = 2, *E(LL) * (1, -3)(LL) * (2, * 3XX - BB * BXX **2)22 03660P 1 = 1, -5E(M) * BXX - AA * 3XX - BB * BXX **222 03680P 2 = 0.22 03600P 2 = 0.22 03700P 2 = 0.22 03700P 2 = 0.22 03700P 2 = 0.22 03720P 2 = 0.22 03730P 2 = 0.22 03730P 2 = 0.22 03740$		F 6=-A A* 3Y	Z-88* (87	r* Bx	Z+BYY*BYZ+BYZ*BZZ)	22	03540
RETURN 92 03360 SND 22 03570 SUBROUTINE ELGEN 22 03570 COMMON EXI, BXY, BYY, BZZ, BXZ, BYZ 22 03580 COMMON P1, P2, F3, P4, P5, P6, SR (8), E(4), M, T, LL 22 03600 COMMON C1, LITT 22 03620 AA= 1./(12(LL)*(2.*3(X+3ZZ)) 22 03620 AA= (1./AA)**C1 22 03660 BB=2.*E(LL)*AAA 22 03650 BB=0. 22 03660 P1=1.*SE(M)*BXX-AA*3XX-BB*BXX**2 22 03660 P2=0. 22 03660 P2=0. 22 03670 P2=0. 22 03700 P2=0. 22 03720 P2=0. 22 03720 P2 03720 22 03730 P2 03720 22 03740		73=-AA#32	а т-38 * (9 ха	<u>r**2</u>	+BYY **2+BYZ **2) + 1.	82	03550
SND 22 03579 SUBROUTINE ELGR1 22 03580 COMMON EXI, BXY, BYY, BZZ, BXZ, BYZ 22 03590 COMMON P1, F2, F3, P4, F5, P6, SR (8), E(4), M, T, LL 22 03600 COMMON C1, LLET 22 03620 COMMON AXX, AXY, AYT 22 03630 AA= (1, /AA) **C1 22 03660 Ba=2.*E(LL) * (2.* 3XX+3Z2)) 22 03630 AA= (1, /AA) **C1 22 03660 Ba=2.*E(LL) *AAA 22 03650 Ba=0. 22 03660 P1=1.+SE(M) *BXX-AA*3XA-BB*BXX**2 22 03660 P2=0. 22 03670 P2=0. 22 03680 P2=0. 22 03700 P2=0. 22 03700 P2=0. 22 03720 P2=0. 22 03730 P2=0.720 22 03730 P2=0.720 22 03740		RETURN				22	03560
SOBROUTINE ELGRI 22 03580 COMMON EXI, BXY, BYY, BZZ, BXZ, BYZ 22 03590 COMMON P1, F2, F3, P4, F5, P6, SR (8), E(4), X, T, LL 22 03600 COMMON C1, LET 22 03610 COMMON AXX, AXY, AYY 22 03620 AA= 1./(12(LL)*(2.*3XX+3ZZ)) 22 03620 AA= (1./AA)**C1 22 03640 B3=2.*E(LL)*AAA 22 03650 B3=0. 22 03660 P1=1.+SE(M)*BXX-AA*3XX-BB*BXX**2 22 03660 P2=0. 22 03670 P2=0. 22 03700 P2=0. 22 03700 P2=0. 22 03720 P2=0. 22 03730 P2=0. 22 03720 P2=0. 22 03730 P2=0. 22 03740		END				22	01570
COMMON P1, F2, F3, F4, F5, P6, SR (8), E(4), M, T, LL P2 03600 COMMON C1, L1 TT P2 03610 COMMON AXX, AXY, AYY P2 03620 AA= 1./(12(LL)*(2.*3XX+3Z2)) P2 03630 AA= (1./AA)**C1 P2 03650 BB=2.*E(LL)*AA P2 03650 BB=0. P2 03660 P1=1.+SE(LL)*BXX-AA*3XX-BB*BXX**2 P2 03660 P2=0. P2=0. F3=0. P2 03690 P2=0. P2 03670 P2 03690 P2 03700 P2 03670 P2 03710 P2 03730 P2 03730 P2 03740 P2 03740		SUBROUTIN	E ELGEI			22	03580
COMMON P1, P2, P3, P4, P5, P6, SR [8], B(4), M, T, LL P2 03610 COMMON C1, ILT P2 03610 COMMON AXX, AIY, AYT P2 03620 AA= 1, /(12(LL)*(2.*3XX+3ZZ)) P2 03630 AA= (1./AA)**C1 P2 03650 BB=2.*E(LL)*AAA P2 03650 BB=0. P1=1.+SE(M)*BXX-AA*3XX-BB*BXX**2 P2=0. P2 03670 P2=0. P2 03690 P2=0. P2 03690 P2=0. P2 03700 P3=0. P2 03700 P2=0. P2 03720 P2=0. P2 03720 P2=0. P2 03720 P2=0. P2 03730 P2 03740 P2 03740		CUARON EX	I, SIL, SY	C, 92:	STATES STATES	22	03590
COMMON AXX,AXY,AYY 22 03620 CAMON AXX,AXY,AYY 22 03620 CAMON AXX,AXY,AYY 22 03630 CAMON AXX,AXY,AYY 22 03620 CAMON AXX,AXY,AYY 22 03620 CAMON AXX,AXY,AYY 22 03620 CAMON AXX,AXY,AYY 22 03630 CAMON AXX,AXY,AYY 22 03640 CAMON AXX,AXY,AYY 22 03650 BB=2.*E(LL)*AAA 22 03650 BB=0. 22 03660 P1=1SE(M)*BXX-AA*3XX-BB*BXX**2 22 03680 P2=0. 22 03690 P2=0. 22 03690 P3=0. 22 03700 PS=7. 22 03700 PS=7. 22 03720 PSTURN 22 03730 SXD 22 03740		COMMON PT	-14,13,14	F. 25 .	26, SR (8), E(4), A, T, LL	22	03600
CORRON ALX, ALY, ALY 22 03620 AA=1./(12(LL)*(2.*3(X+3Z2)) 22 03630 AA=(1./AI)**C1 22 03640 BB=2.*E(LL)*AAA 22 03650 BB=0. 22 03660 P1=1.*SE(M)*BXX-AA*3XX-BB*BXX**2 22 03660 F4=1.*2.*SR(M)*BZZ-AA*3XX-BB*BZZ**2 22 03670 F2=0. 22 03690 P3=0. 22 03700 P5=0. 22 03700 D2=7. 22 03720 D2=0. 22 03720 D2=0. 22 03720 D2=0. 22 03720 D2=0.32TURN 22 03740		COMENN CI	,1111			24	03010
AA= (1, /A) **C1 22 03640 B=2.*E(L) *AA 22 03650 B=0. 22 03660 P1=1SE(1) *BXX-AA*3XX-BB*BXX**2 22 03660 P2=0. 22 03680 P2=0. 22 03690 P3=0. 22 03700 PS=2. 22 03700 PS=2. 22 03700 PS=2. 22 03700 PS=2. 22 03720 PS=2. 22 03720 PS=2. 22 03730 PS=2. 22 03740		CUIEUN II	X, AXI, AYI			22	0.3020
AAA = (1.7A) **C1 22 03640 BB=2.*E(LL) *AAA 22 03650 BB=0. 22 03660 P1=1.+SE(M) *BXX-AA*BXX-BB*BXX**2 22 03670 E4=1.+2.*SR(M) * BZZ-AA*BZZ-BB*BZZ**2 22 03680 P2=0. 22 03690 F3=0. 22 03700 PS=7. 22 03700 PS=7. 22 03720 SZTURN 22 03730 SXD 92 03740			-3(LL)=(2	. * d.	(X+3ZZ))	22	U3030 U7643
BB=0. 22 03660 Pl=1.+SE(M)*BXX-AA*3XX-BB*BXX**2 22 03670 P2=0. 22 03680 P2=0. 22 03690 P3=0. 22 03700 P5=0. 22 03700 RSTURN 22 03730 SXD 22 03740		AAA- 1. 1. /A	* * * * * *			22	03650
P 1=1.+SE (M) *BXX-AA*3XX-BB*BXX**2 P2 03670 F 4= 1.+2.*SR(M) *BZZ-AA*5ZZ-BB*BZZ**2 P2 03680 P 2=0. 22 03690 F 3=0. P2 03700 P 5=0. P2 03720 SETURN P2 03740 SED P2 03740		28-0	L) TARA	-		22	03660
F 1+2.* SR(1)*SZC-4A*SZZ-BB*SZZ**2 22 03680 F2=0. 22 03690 F3=0. 22 03700 FS=7. 22 03720 SZTURN 22 03740		20-0. R1-1 -651	KI #077-13	* > * ?		52	03670
P2=0. 22 03 690 P3=0. 22 03 700 P5=0. 22 03 710 P6=0. 22 03 720 RETURN 22 03 740		2 1 = 1 = 3 <u>c</u> c	1) "DAL-44 CD(4) 6 D77			22	03680
F3=0. P2 03700 P5=0. P2 03710 P6=0. P2 03720 RETURN P2 03730 SXD P2 03740		P2=0	JK(11/* 322		524-60+622++2	22 (03 690
25=0. 22 03710 P6=0. 22 03720 RETURN 22 03730 EXD 22 03740		F Z= ()				22 (1 1 7 0 0
P6=0. 22 03720 SETURN 22 03730 SED 22 03740		25=0				22	Ú3710
22 03730 22 03740 22 03740		P6=0.				22 (03720
EXD 22 03 740		9 27 11 2 1				22 0	3730
		530				22 (03 74 0

.

-

.
C.3 Elongational Viscosity for Elongational Flow (in Chap. 5)

This program solves elongational viscosity by predictorcorrector method.

Description of Main Variables and Program Listing

Variable	Description
S	Elongational rate
DT	Time increment
TLIM	The maximum time limit
XI	$lpha_{\mathbf{x}\mathbf{x}}$ after the prediction
ZI	α_{zz} after the prediction
XN, AXX	α_{xx}^{α} after the correction
ZN, AZZ	α_{zz}^{α} after the correction
EVI, EVO	Elongational viscosity

CONVERSATIONAL MONITCE SYSTEM

.

CC THIS PROGRAM SOLVES SECONDATIONAL VISCOSITY BY THE	23 00010
IC THREE ACDELS. THE SOLVING METHOD IS PREDICTOR	23 30020
CC AND CORESCIOR. THE EULER METHOD IS USED FOR PREDICTION	23 00030
CC AND NEWTON METHOD IS USED FOR COPRECTION.	23 00040
DIMENSION $5(2,20), E(2)$	23 00050
DIMENSION $\lambda X X (3.0) + \lambda Z Z (3.0) + 3LO (3.0) + TT (3.0)$	33 00060
	23 00000
$ \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}$	23 00070
	53 00080
	53 00040
DEFINE PILE (5(360,6,0,15805), 16(360,6,0,15806)	23 00100
DEFINE FILE 1/(360,6,0,15H07),18(360,6,0,15H08)	23 00 110
DEFINE FILE 19 (360,6,0,ISH09),20 (360,6,0,ISH10)	23 00120
DEPINE FILE 21 (360,6, U. ISH11), 22 (360,6, U, ISH12)	P3 00 130
DEPINE FILE 23 (360,6,0,15H 13),24 (360,6,0,15H 14)	23 00140
DEPINE FILE 25(360,6, U.ISE15),26(360,6, U.ISE16)	P3 00 150
C 1=1.	P3 00160
1+3	23 00 100
$r \rightarrow 2$	23 00170
	23 00 180
	23 00190
	P3 00200
C IMET=2: TANNER'S ATTHCD	23 00210
C IMET=3: N.H.C.	₽3 00220
READ (L. 199) IMET	23 00230
199 FORMAT (I10)	23 00240
GO TO (51,52,53), IMET	P3 00250
51 WEITE (8,105)	23 00250
GO TO 54	23 00270
52 WRITE(1,196)	23 00270
GO TO 54	23 00280
53 SETTER (N - 107)	23 00290
	23 00300
	23 00310
	23 30320
	23 00330
IVI FORMAL (JIIX, A.A.U. ATACU (J)	23 06340
DO = 1 + 2	P3 00350
4EAD(1,200) (S(1,J), J=1,8)	23 00360
$1 \text{ READ} (L_2 200) (S(I_J)_J = 9, 16)$	23 00370
EEAD(L, 201) (E(I), $I=1, 2$)	23 00380
R ER D (L,202) TII C, T1, I 1, I2, J 1, J2	23 00390
LL=0	23 00400
C LL=0: GROWTH BEHAVIOR	23 00410
C LL=1: RELAXATION BEHAVIOR	23 00420
CC WEITE INFORMATION	93 00430
$DO 2 I = I 1 \cdot I 2$	23 00 440
3 J = 1 - 16	
3 = 577 - 10 = 5(1 - 1) / (1 - 5 + 5(7))	23 00430
	23 004/0
	23 00490
J CONITAGE	23 00500
	23 00510
/ CONTINUS	23 00520
WEITE(E, 103)	23 00530
REITE (1, 102)	23 00540
KO=15.*E(I)	23 00 550

FILE: P3 FORTRAN A

-

•

CONVERSATION AL	NONITOR	SYSTES
-----------------	---------	--------

-

70 = 15.87(T)
E UT= (Y0+70+2,) /3. /(0
71 CONTINUE
FRITE (M 100)
25 T T T T T T T T T T T T T T T T T T T
$7 \odot = 7 \mathrm{N}$
V= 1
(1-) K=0
r=0
1 - 0: 1 - 7 - 0:
377(1) = 70
$\mathbb{P}[O(3) = \mathbb{P}[T]$
CC DEFATCETON BY ZYDITCIT SCHEME
59 CONTINUE
00 CONTINUS CO 100 (91 90 93) TYPT
01 CUNIINUS 1-1 _C(T)#(D #70+70)
$\frac{1}{2} = \frac{1}{2} = \frac{1}$
$\frac{1}{2} = \frac{1}{2} = \frac{1}{2} + \frac{1}$
x=15(1) + (2.+10+60)
3-U. Co TO Sa
30 10 34 33 1-1 7/1 47/114/3 50047011
55 A=1.7(1.+1(1)+(2.+AU+20))
DEL.
1
21-20791+(1,72,73(1,0)72074(73) 1-0753(1,15)55570553
CC CORRECTOR OF INDITCIP SCURME (V-D METROD)
So counting
GU 10 (91/92/93)//1011
97 - CUMILIU E 37-1 - F (T) # (3 # FT+7T)
$\mathbf{A} \mathbf{L} = \{\mathbf{c} = \mathbf{L} \mid \mathbf{L} \mid \mathbf{c} \in \{\mathbf{L} \mid \mathbf{L} \mid \mathbf{C} \in \mathbf{L} \}$
コニーム エイイレー マット フォー ク・ホック オー ク・ホック
E A- 2 5 (1) / AL 2 RD 2 - + 2 (1) + 2 (1+2 E /) T
2 Dーーともてた。11 TビリアD1/Aユ C3 = F /T1 /R T ##7
GR== (4) / RATTC GR== T(1) #C(1#RT/) T
CU WU ON CO- D'Tl-C:ADTNT
7 C CONTINUE 1 T-1 -5 /T1 E/2 SYTE7 T1
41-1
しょう し。 F A = フ _ 本F 『T \ / A 下 # # フ
$\nabla \mathbf{R} = 0$

PORTEAN A

FILE: 23

.

-

370

P3 00560

P3 00570 P3 00580 P3 00590

23 00990 23 01009 23 01010 23 01020

CONVERSATIONAL	loni to a	SYSTEM

.

	G8=♀.	23 01110
	GO TO 94	23 01120
9	3 AI=1./(1.+E(I)*(2.*XI+ZI))	23 01130
	BI=1.	23 01140
	FA=2.*E(I)	23 01 150
	PB=0.	23 01160
	GA=E(I)	23 01170
	GB=0.	23 01180
9	4 CONTINUE	P3 01190
	F=XI+DT*S(I,J)*XI+DT*XI/AI-DT+XO	23 01200
	1+2.*E(I)*DT*BI*XI**2	P3 01210
	3=ZI-2.*DT*ZI*S(I,J)+DT*ZI/AI-DT-ZO	23 01220
	1+ 2. *E (I) *DI *BI*ZI**2	23 01230
	P1=1.+DI*5(I,J)+DT/AI+DT*XI*PA	23 01240
	1+4,*E(I)*DI*BI*XI+2.*E(I) *XI*#2*DI*FB	23 01250
	G1=12. *S(I,J) + DT/AI+DT*ZI*GA	23 01260
	1+4, #5(I) # DT# 5I#ZI+2, # E(I) #ZI##2#DT#GB	23 012/0
	XN = XI - P/P1	P3 01280
	2 N= 2I+G/G 1	23 01290
		23 01300
	TEST2 = ABS((2N-21)/21)	23 01310
	17(TEST(-T)) 10,10,11	23 01320
1.	J = I = (I = Z = Z = V I) + Z = (Z = V I)	
1	0 A 1 - A 3 7 - 7 M	23 01340 27 01350
		23 01360
12	50 I0 50 ' T-T+DT	P3 01300
14	□ V= /ΣV=YΩ) /DΨ+S/T	23 01380
	- 2 二 (スペームモリア ジェ・ジュニタン) * スペ マグー / グバーグロ / ブローラ、 オケノエ - 3) *7.3	23 01390
	PT = (mr - mr) / (3 + ss + (1 - 5 + r (7)))	23 01400
	X=K+1	23 01410
	TE (K-TE) 31.31.31	P3 01420
31	CONTINUE	23 01430
	T=T *1. (0)))1	23 01440
	N=N+1	23 01450
	f(X) = XX	23 91460
	$\lambda ZZ (N) = Z N$	23 01470
	ELO(N) = EVI	23 01480
	TT(S) = T	23 01490
	κ=0	23 01500
30	CONTINUE	P3 01510
	IF(T-TLIM) 20,20,21	23 01520
20	XO = XN	23 01530
	2 O=2 N	23 01540
	GO TO 60	P3 01550
21	CONTINUE	23 01 560
	DO 40 II=1, N	23 01570
	$\frac{1}{10} = 11 + 11 + 31 + (1 - 1) + 63 + (1 - 1) + 120$	23 01580
	JC=J+10	23 01590
	WEITE (JC'NR) TT (II) ,ELO (II)	PJ 01600
40	WRITE (E,100) TT (II) ,AXX (II) ,AZZ (II) ,SLJ (II)	23 01610
	LK(LL) 41,41,42	23 01620
41		23 U1630
	GU TU D	23 U104U
42	TT=A	23 01030

,

-

-

-

FILE: P3 FORTRAN A

FI	IS:	83	FORTRAN	7	CONVERSATIONAL	MONITOR SYSTEM	1
	2	CONTINCS				·.	
	101	POPELEC				¥ -	3 01660
	101	TURDALL'I	1 "# 19 %# "2".) NG1 11 TO X 1	LETURBATION PARAMETER	= ',210.5,	2.	5 01670
	10.2	POPN3477/	107 INTA	$L = \frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} \right] \left[\frac{1}{2} - \frac{1}{2} \right]$	4170 <i>7</i> 1 771 167	P.	3 01080
	102	19 210 963 71	- IVA - ILD. Inva - Ild.	STRAT ALPHA IL JOI	ALPHA 22. 15X.	P.3	S 01090
	100	TODALT (21	10 J J J J J J J J J J J J J J J J J J J	-USITI';/)		2.	3 01700
	200	FOR DUT (F	9.4 <i>646663</i> , 17.31	· · · · · · · · · · · · · · · · · · ·		23	
	200	TOURDAL OF	. / • 3)			23	
	201	- FORMAR(2F	(10.3) 10.5 µtsi			P.3	
	102	FORGAL 22	1V. 3,413) 57 10000			53	01740
	10.0	PORTAT ()	57 (CTD Da			24 07	
	10 4	ronat(//	DAT - DIRES	55 FELACATION ./)		23	01760
		3105				23	
		5 NU 5 NU 0 0 0 TX	7		-	23	01780
		SUBRUUIIA	A PARAI			23	01790
22	;	TAIS SUBRU	VIINE SPE	CIPIES TILE INCREMENT	ACCORDING	23	01800
		IO THE LLU	AGATIONAL	. HATZS.		23	01810
		DIEFNZION	5 (2,20)			23	01820
			TLIADIA	ل و ل و گ		23	01830
			1 2 2			23	01840
	4	TICELCAL	1, 2, 2			23	01850
	•	1515-13.				23	01880
		D104 TD-35				23	01870
						23	01880
	2	GU TU IU	1) _ 1			P 3	01890
	4					23	01900
	2		-/ -/			23	01910
	-	111 <u>3-</u> 13.				23	01920
						23	01930
						23	01940
	7	CHECK-SIT	T) _7	_		2.2	01950
	'					22	01900
	٥	TTN-10	0,5,5			23	01979
	0					20	01900
						53	02000
		20 TO 10				23	02000
	0	GO TO 10	1) -6			52	02010
	2		11 4 4			23	02020
	11	12 (CADGAN) 71 TW-7	(L <i>y</i> 4 <i>y</i> 4			22	02030
	۱ <u>۱</u>					23	02040
		$T_{P} = 10$				50	02050
						53 Fa	02000
	а	CHRCX-SIT	T = 10			50	02070
	-	CILECA-3(1) T7 (CHPC8)	5 5 5			23	02000
	5		2.0.00			5-3 5-3	02100
	٠,					53	02113
		TP=10				23 23	02120
		ED TO 10				53 59	02110
	5	00_10 IV PTTX=1				53 FQ	02140
						53	02150
		~VV TD=50				בים לים	02160
	10 4	- 0 M - 1 M - 1 TE - 70				23 7 2	02100
		COUTTONE COUTTONE				נים 7 פי	02 18-1
		881V88				- EJ	02100
		630				23	J 4 17 U

.

-

Appendix D: The Convergency of Diagonally Dominant Matrix

Most of numerical problems in finite different scheme are reduced to solving large matrix equations. The matrix equation is written by

$$Ax = b$$
 D.1

where A is the system matrix which described a physical situation, x is an unknown vector to be solved and b is a known vector. In order to understand a diagonally dominant matrix is sufficient for convergency of iterative methods, we use simple Jacobi method for demonstration. In Jacobi method, the matrix A is divided into parts.

$$A = D + C \qquad D.2$$

The matrix D consists of diagonal elements of the matrix A and the matrix C is off-diagonal elements of the matrix A. A newly calculated vector $x^{(k+1)}$ by iteration is then expressed by

$$Dx^{(k+1)} = b - Cx^{(k)}$$
 D.3

Introducing the exact solution vector \overline{x} of eq. D.l, D.3 becomes

$$\delta \mathbf{x}^{(\mathbf{k}+1)} = M \delta \mathbf{x}^{(\mathbf{k})}$$

where

١

$$\delta \mathbf{x}^{(k)} = \mathbf{x}^{(k)} - \overline{\mathbf{x}}$$

and

$$M = -D^{-1}C_r$$

Taking norm of eq. D.4 in L_{∞} space,

$$|| \delta x^{(k+1)} || \leq || M^{k} || \cdot || \delta x^{(k)} || \leq || M ||^{k} \cdot || \delta x^{(0)} ||$$
 D.5

According to eq. D.5, the error from the exact solution is reduced to zero if || M || is less than unity and the number of iteration k is sufficiently large. The sufficient condition for convergency is thus

The matrix M for the Jacobi method is written by

$$|\mathbf{m}_{i,j}| = \frac{|\mathbf{a}_{i,j}|}{|\mathbf{a}_{i,i}|}$$
 for $i \neq j$ D.7

$$m_{i,j} = 0$$
 for $i \neq j$ D.8

From eq. D.7 and D.9, the norm of the matrix M in L_{∞} is

$$|| M|| \equiv \max \Sigma ||m,i,j| = \max \Sigma \frac{|a_{i,j}|}{|a_{i,i}|} < 1$$
D.10
D.10

So if the matrix A is a diagonally dominant matrix, the iterative method (Jacobi) for eq. D.1 provides convergency.

Appendix E: The Estimation of the Stream Function at the Exit Hole

From the newly produced force

in TABLE 6.6, v_z is expected to increase. To estimate instantaneous change of v_z , we focus on the z-component of the equation of motion around the point (r/R, z/H) = (.03, .01). The equation to be solved is arranged as following introducing time difference formula.

$$\frac{\mathbf{v}_{z}^{\mathbf{N}+1}-\mathbf{v}_{z}^{\mathbf{N}}}{\Delta t} + \mathbf{v}_{z}^{\mathbf{N}+1} \left(\frac{\partial \mathbf{v}_{z}}{\partial z}\right)^{\circ} + \mathbf{v}_{r}^{\circ} \left(\frac{\partial \mathbf{v}_{z}}{\partial r}\right)^{\circ} = -\frac{1}{9} \frac{\partial p}{\partial z}^{\circ} - \frac{1}{9} \frac{\partial}{\partial z} \tau_{p,zz}^{+g}$$
And $\mathbf{v}_{z}^{\mathbf{N}}$ is expressed by
$$E.1$$

$$v_{z}^{N+1} = \left\{ \left[-\frac{1}{\rho} \frac{\partial p^{o}}{\partial z} - \frac{1}{\rho} \frac{\partial}{\partial z} \tau_{p,zz} + g - v_{r}^{o} \left(\frac{\partial v_{z}}{\partial r} \right)^{o} \right] + v_{z}^{N} / \Delta t \right\} / \left[\frac{1}{\Delta t} + \left(\frac{\partial v_{z}}{\partial z} \right)^{o} \right]$$
 E.2

where v_z^{N+1} is a time advanced velocity and ^o indicates the fixed values throughout the iteration. In eq. E.1 and eq. E.2, only axial velocity is assumed to be changed due to the new force

$$-\frac{1}{2}\frac{\partial}{\partial z}\tau_{p,zz}$$

while other variables remain constant. Although this assumption may be crude, it might give some adea about how v_z changes because the axial velocity in the dominant term

$$v_{z}^{N+1} \left(\frac{\partial v_{z}}{\partial z}\right)^{O}$$

is treated implicitly and the change of the velocity gradient

$$\left(\frac{\partial \mathbf{v}_z}{\partial z}\right)^0$$

may be smaller than that of the axial velocity. The magnitude of the term

$$v_r^{o} \left(\frac{\partial v_z}{\partial r}\right)^{o}$$

···· ·· ·

is smaller than the dominant terms as shown in TABLE 6.6, the change of the term, therefore, may be insignificant.

By choosing $\Delta t = .0001$ second, eq. E.2 is repeated until the time reaches .001 seconds which is about one tenth of the time constant of polyethyrene oxide $\lambda_{\rm H}$. The newly calculated $v_{\rm Z}^{\rm N+1}$ increases about 3% of the original value (at time zero). This rate of increase may be applied to the axial velocity at the point (r/R, z/H) = (.03, 0). The axial velocity, thus, grows -65 cm/sec from -63.1 cm/sec. From the new value, the interpolated stream function is calculated from which the stream function is fixed as boundary condition. Since the axial velocity at r/R = .03 represents the average velocity in the zone which covers form r/R = .02to r/R = .04 in the Newtonian calculation, the axial velocity used in the calculation in section 6.5 is only 1% increased velocity.

NOMENCLATURE

Symbol	Definition
A	System Matrix
a	Ratio of radius of the Vortex Tank to Liquid Level; $a = R/H$
a	Parameter Used in eq. 3.4
с	Concentration
<u>F</u>	Force Vector Exerted by Connector Spring
F	General Expression of ψ , Γ , ω
g	Gravitational Acceleration
H	Spring Constant for Hook's Law
Ħ	Liquid Level
k	Boltzmann Constant
Lr	Differential Operator Defined in eq. 3.57
Lz	Differential Operator Defined in eq. 3.57
Lr*	Discretized Form of Lr
Lz*	Discretized Form of Lz
м	Molecular Weight
n	Number Density
р	Pressure
R	Dumbbell Orientation Vector
R	End-to-end Distance of a Polymer Molecule
Ro	Maximum Length of a Polymer Molecule
R	Gas Constant
R	Radius of the Vortex Tank
r	Radial Coordinate in Cylindrical Coordinates