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ABSTRACT

The mechanism of vortex inhibition by dilute polymer
solutions which also show drag reduction is discussed. The
velocity field for a confined vortex flow of a Newtonian
fluid has been determined numerically by a finite difference
(ADT) technique; the results compare favorably with experi-
mental velocity profiles found for water.

To model the behavior of dilute polymer solutions in
this flow we have idealized the macromolecules as dumbbells
with finitely extendable, nonlinear, elastic (FENE) connectors.
An approximate constitutive equation for this model is com-
bined with the numerically determined Newtonian velocity pro-
files to give the response to the polymer molecules to the

vortex flow.

It is found that appreciable stretching and accompanying
increase in elongational viscosity of the macromolecules occurs
in the immediate vicinity of the exhaust hole. We believe
that the change in stress field produced in this way is suffi-
cient to account for vortex inhibition.
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ii



Department of Chemical Engineering
Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

August 10, 1979

Professor George C. Newton, Jr.
Secretary of the Faculty
Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

Dear Professor Newton:

In accordance with the regulations of the faculty,
I herewith submit a thesis, entitled "A Study of the
Mechanism of Vortex Inhibition", in partial fulfillment
of the requirements for the degree of Doctor of Science
in Chemical Engineering at the Massachusetts Institute

of Technology.

Respectfully submitted,

Shingo Tshikawa

1ii



ACKNOWLEDGEMENT

First, I wish to extend my sincere appreciation to
my supervisor, Professor R.C. Armstrong, for suggesting
the topic and his consistent interest, advice and guidance
throughout this thesis investigation. I also wish to thank
Professor K.A. Smith for his helpful advice and criticism.
Dr. L.A. Clomburg deserves speclal thanks for his excellent
advice on numerical simulation.

Thanks are alsc due to Professor Edgerton for providing
the information about the strobe scope. Discussion with
Dr. K.J. Wong and Mr. T.B, Irwin about the numerical calculation
scheme contributed materially to the work.

The financial support from the National Science
Foundation for part of this work is acknowledged.

I am indebt to my dearest friend, Keiko, who has given
immeasurable encouragement with her love in the last two
years, Without her continuous encouragement, this work could
never have been completed. I also appreciate my brother-in
-law for his long term guidance to my education.

Finally, I wish to thank my parents and the rest of

my family for their continual stimulation (sometimes painful

criticism) and support during my stay at M.I.T. It has been

their love, patience and understanding that helped make this

educational goal possible.

iv



II.

ITT.

Iv.

TABLE OF CONTENTS

SUMMARY

1.1 Introduction

1.2 PFluid Mechanics of Vortex Flow

1.2.1 Theoretical Study

1.2.2 Experimental Study

1.3 Development of Constitutive Equation
1.4 The 2ZAnalysis of the Onset Behavior of
Vortex Inhibition
1.5 Conclusions

INTRODUCTION

2.1 The Description of Vortex Inhibition
2.2 Objective and Motivations
2.3 Approach and Previous Work

STEADY NEWTONIAN VORTEX FLOW OVER A SOLID WALL

3.1 Introduction

3.2 One Dimensional Vortex Flow

3.3 The Analysis of Flow Behavior Inside the
Bottom Boundary Layer

3.4 Influence of Polymer Additive in the Bottom

Boundary Layer
3.5 A Numerical Simulation for Entire Vortex
Flow Field
3.5.1 The Governing Equations
3.5.2 Finite Difference Formula (Zone

Method)

3.5.3 The Solving Method for Low Reynolds
Number

3.5.4 The Solving Method for High Reynolds
Number

EXPERTMENTAL STUDY

Introduction

The Flow System

Photographic Tracer Technique
Experimental Procedure
Qualitative Observations

P S S S
L]
Ul s W D

MODIFIED NEARLY HOOKEAN DUMBBELL MODEL

5.1 Introduction

Page

10
10
26
34

42
67

69
69
77
79
85

85
89

103
112

112
115

115
124
133
139
139
141
146
157
lel
181

181



5.2 ZXKinetic Thecory and the Modified Nearly
Hockean Dumbbell Model

5.3 The Predictions of the Models

VI. THE ANALYSIS OF THE ONSET BEHAVIQOR OF VORTEX

INHIBITION

6.1 The Velocity Field of Newtonian Vortex
Flow

6.2 Additional Remarks on the Modified Nearly
Hookean Dumbbell Model

6.3 Experimental Observation of the Onset
Behavior of Vortex Inhibition

6.4 The Polymer Contribution of Stress Tensor
Along the Stream Lines {(Based on the
Results of the Case Reg=l370 and SS=-.,02)

6.5 The Analysis of Polymer Effect near the
Exit Hole

6.6 A Proposed Mechanism of Vortex Inhibition

VII. CONCLUDING REMARKS

VIII. APPENDICES

A, Computer Program of the Newtonian Vortex
Flow Calculation
B. The Measurement of Intrinsic Visccsity of
Polyox WSR 301 (Polyethylene Oxide)
C. Program Listings for Polymer Stress Calcula-
tion by the MNHD
C.1 Polymer Stress Tensor Calculation in
Chapter 6
C.2 The Intrinsic Viscosity for Shear Flow
(Chapter 5)
C.3 Elongational Viscosity for Elongational
Flow {(Chapter 5)
D. The Convergency of Diagonally Dominant Matrix
E. The Estimation of the Stream Function at the
Exit Hole
NOMENCLATURE
BIBLIOGRAPHY

BICGRAPHICAL NOTE

vi

183
191

257

258
269
276

283

295
308

311

314

314
349
353
353
359

368
373

375
378
381

383



Figure
Number

1.1

LIST OF FIGURES

Title

The Overall Picture of Vortex
Inhibition Study

Tangential Velocity vs R with
Experimental Data

Vortex Inhibition
Steady State Vortex Flow
vVortex Flow with Suppressed Air Core

Elongational Viscosity Predicted by
MNHD

Three Different Flow Regions in a
Newtonian Vortex Flow

Tangential Velocity vs R

Tangential Velocity vs R (with
different elongaticnal rates)

Free Surface vs R

The Model Geometry of Vortex Flow
The Mesh Construction of Vortex Flow
The Zone Construction

Circulation vs Z, Rer =10, Swirl =40

Circulation vs R, Rer =10, Swirl =40

Radial Velocity vs Z, Rer =10, Swirl =40

Axial Velocity vs Z, Rer =10, Swirl =40

The Tteration Procedure for Vortex
Flow Calculation

The Total Flow System

The Vortex Tank

vii

Page

13
70
71

73

75

86
91

93

95
116
117
118
129
130
131

132

137
142

144



A Photograph of the Vortex Tank

Experimental Arrangement for Vg
Measurement

A Photograph for Measuring Vg

Dots Showing the Trajectory of Seed
Particles for Vg Measurement

Experimental Arrangement for V,
Measurement

A Photograph for Measuring V,

A Photograph Showing the Flow Behavior

near the Exit Hole

Dots Showing the Trajectory of Seed
Particles for VZ Measurement

(a2)
(b)

(c)

(a)
{(b)

(a)

(a)
(b)

The Core Region for a Newtonian

Fluid
A Photograph of Newtonian Vortex

Flow
A Photograph of Newtonian Vortex

Flow with Newtonian Dyed Solution

The Core Region for a Polymer

Scolution
A Photograph of Newtonian Vortex

Flow with Polymer Dyed Solution

Flow Behavior of the Bottcm
Boundary Layer for a Newtonian
Fluid

The Flow Behavior of the Bottom

Boundary Layer for a Polymer Solution
A Photograph for a Polymer Solution

The Dimension of the Cap

(a)
{b)
{c)

{(a)
(b)
{c)

The Effect of the Cap Experiment
wWithout the Cap
With the Cap

Water
Glycerin - Water A
Glycerin - Water B

viii

145

147

148

150

152
153

154

155

162
163
164

165

166

168

170
171

172

174
175
176

178
179
180



5.1 to 5.12

5.13 to 5.24

5.25

to

to

to

to

to

Stress Growth Behavior of the
Three Models for Shear Flow

Stress Relaxaticon Behavior of the
Three Models for Shear Flow

The Comparison among the Three
Models for Shear Flow

The Steady State Values of Viscosity
and the Primary Normal Coefficient
for Shear Flow

The Stress Growth Behavicr for
Elcngational Flow

The Steady State Values of Elonga-
tional Viscosity

The Comparison between M1, M2 and
FENE Model

Stream Lines for Low Reynolds Number
Stream Lines for High Reynolds Number

The Comparison between Experimentally
Measured Vg and Numerically Calculated

Vg (1)

The Comparison between Experimentally
Measured Vg and Numerically Calculated

Vg (2)

The Comparison of V, at r=0 (1)

The Comparison of V, at r=0 (2}

[n] vs AeY with Experimental Data (1)
[n] vs ley with Experimental Data (2)

Dynamical Behavior of Elongational
Viscocity with Time Scaled by Ay

Dynamical Behavior of Elongation%l

Viscocity with Time Scaled by €

The Difference between the Newtonian

193

207

221

235

241

249

254
259
260

262

263
265
266
270

271

273

274

Vortex Flow and a Fully Developed Vortex

Flow of Polymer Solution

ix

277



Tangential Velocity Measured before
and during the Onset

Axial Velocity Measured before and
during the Onset

Stream Lines near the Exit Hole

Axial Velocity Profile after Imposing
Polymer Effect

Stream Lines near the Exit Hole
after Imposing the Polymer Effect

Estimation of Intrinsic Viscosity

279

281

287

300

301

351



Table
Number

2.1

LIST OF TABLES

Title

Effective Concentration of Various
Polymers for V.I. and D.R.

Connector Force Law of Dumbbell Models

The Compariscon of Integral Method
and Anderson's Technique

The Comparison of Force Terms in
R-Component of the Equation of Motion

The Estimation of T and T at the
rr 66
Bottom Wall

The Comparison of Force Terms due to
Polymer Solution by two Different
Methods

The Boundary Conditions for a Confined
Vortex Flow

The Boundary Conditions in Finite
Difference Expression

The Vortex Flow of Glycerine Solutions

A Summary of the Three Constitutive
Equations

Polymer Stress Tensor Along the Stream
Line =1.0

Polymer Stress Tensor Along the Stream
Line ¢=.9

Polymer Stress Tensor Along the Stream
Line Y=.85

Polymer Stress Tensor Along the Stream
Line ¢=.8

The Location of each Point

The Magnitude and Orientation of each
Term in the Force Balance

x1

Page

74

84

102

106

109

110

122

125

177

130

289

290

291

292

293

296



Polymer Stress Tensor along the Newly
Calculated Stream Line $¥=1.0

Polymer Stress Tensor along the Newly
Calculated Stream Line p=.9 -

Polymer Stress Tensor along the Newly
Calculated Stream Line $=.85

Polymer Stress Tensor along the Newly
Calculated Stream Line y=.8

The Molecular Characteristics of Polyox
WSR 301

xili

303

304

305

306

352



I. SUMMARY

1.1 Introduction

The viscoelastic phenomenon "vortex inhibition" was

discovered by Gordon (1972) in 1972. In his experiment, a

small amount of polymer in water prevents formation of a

vortex in draining the solution from the bottom of a square

tank (see Fig. 2.1). As shown in Fig. 2.1 this different

phenomenological bebavior produced by adding just small

amounts of polymer indicates that the flow pattern is dras-—

tically changed due to the presence of the polymer. In

order to describe vortex inhibition more explicitly, a
steady state vortex flow is established by tangentially

feeding the water at the outer wall of a cylindrical con-—

tajiner with an axially uniform velocity. The steady state

vortex flow is shown in Fig. 2.2. When the water is replaced

by approximately 30 wppm polyethylene oxide (Polyox WSR 301)
keeping the flow rate constant, the air core of the vortex

is suppressed and the suppression of the air core is not

steady but a randomly periodic phenomenon. Just after the

air core is suppressed, it tends to extend to the bottom

again. As soon as the air core reaches the bottom, it immed-

ately is suppressed (See Fig. 2.3). This process is repeated

until the polymer is degraded. During vortex inhibition,
tre liquid level drops by nearly 50%.
An interesting feature of vortex inhibition is that the

amount of polymer added to the water is so small that the



Fig. 2.1 : Vortex Inhibition

In case of the Newtonilan fluid, the vortex forms extending
down to the bottom. On the other hand, if a small, critical

concentration of polymer is present, the vortex 1s Imcomplete.

surface of liquid

vortex

Newtonian fluid Polymer solution



Fig. 2.2 5teady State Vortex Flow




Fig. 2.3 Vortex Flow with Suppressed Air Core




shear viscosity of the polymer solution is only slightly
different from that of water itself (The relative viscosity
of the solution in this study is only about 1.02). Further-

more, the macromolecules which show vortex inhibition abil-
ity are also known to be good agents for drag reduction as
shown in TABLE 2.1.

Since the shear viscosity of the polymer solution is
almost equal to that of water for both vortex inhibition and
drag reduction, non-Newtonian rheclogical properties of the
dilute solutions such as strain rate thickening elongational
viscosity and non-zero normal stress differences in steady
shear flow might be responsible for vortex inhibition.
Especially the elongational viscosity is believed to be in-

creased drastically even at moderately high elongational rate

for a dilute solution. Even though no direct experimental

measurements have been obtained for the elongational viscosity,
the kinetic theory predicts that a high elongational viscos-
ity is realized when a linear flexible macromolecule is
stretched at almost full length due to the elongational flow
field. It may, therefore, be possible to expect that the
changes in flow behavior in vortex inhibition phenomenon

is due to the large elongational viscosity exerted by the

presence of a few macromoclecules.

The objective of this thesis work 1s to investigate

the mechanism of vortex inhibition. The study is motivated

at first, by a possible correlation between vortex inhibi-

tion and drag reduction and secondly, by an interest in



TABLE 2.1

EFFECTIVE COMCENTRATIONS OF VARIOUS POLYMERS FOR V.I. AND D.R.

wwpm wwpm
Polymer Designation Polymer Type Vortex Inhibition Drag Reduction
Polyox FRA* Polyethylene Oxide 7.5 9

Polyox WSR 301% Polyethylene Oxide 30 20
Separan AP 273° Polyacrylamide 3 5
Separan AP30° Polyacrylamide 40 35

*Union Carbide (Manufacturer)

"Dow (Manufacturer)

Note 1l: These data are from Gordon (1972).

Note 2: Effective concentration is the lowest concentration with which polymer

shows the ability of vortex inhibition or drag reduction.



developing a constitutive equation (rheological equation of

state) to describe dilute polymer solutions.
We can speculate from TABLE 2.l that the mechanism of
vortex inhibition may be similar to that of drag reduction. 1In

spite of extensive studies of drag reduction, many aspects of
the phenomenon are not well understood. Out of several pro-
posed mechanisms for drag reduction, the visco-elastic nature
(especially large elongational viscosity) of macromolecules in
turbulent flow is proposed to be a major cause of reducing
turbulent energy dissipation. According to Seyer and Metzner
(1969), the bursting (Kim et al., 1971) produced by a pair of
counter rotating eddies at boundary layer near the wall is char-
acterized by stretching motion similar to elongational flow.

The increased resistance to stretching due to the large elonga-
tional viscosity, thus results in less bursting and less radial
momentum flox transport. However, it is not possible to make a
direct test of this proposed mechanism because no precise velo-
city information of the fluid element is obtainable during the
bursting process. The proposed mechanism for drag reduction
may, in turn, be closely related to the molecular mechanism for

vortex inhibition. It might be possible to infer the molecular

mechanism for drag reduction from the analysis of vortex inhibi-

tion. Since the Newtonian vortex flow is treated as a laminar
flow, it is much easier to be analyzed than turbulent flow.
In order to analyze vortex inhibition, a constitutive

equation for a dilute polymer solution has to be introduced

so that information about the stress field can be predicted.
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Although a very simplified dumbbell model is used, we believe
that the kinetic theory provides reasonable predictions about

the differences in flow behavior resulting form molecular

structures. Moreover, we can evaluate the kinetic theory

constitutive equations by comparing their predictions in this
flow with experimental results.
The overall picture of this study is briefly described

in Fig. 1.1. The study is mainly divided into two parts:

one is to investigate fluid mechanics of vortex flow and the

other is to develop the constitutive equation. The study of

the vortex flow is further divided into theoretical and exper-—
imental parts. The Newtonian velocity field determined from
both numerical and experimental results 1is used for stress
calculation by the constitutive eguation because the Newton-
ian velocity field is a starting point for computing defor-
mation of the macromolecules when the polymer solution is
subjected to the flow field. The every part of study is then

combined in Chapter 6 for the discussion of the results

which lead to the conclusion of this study. The summary

of these studies are described in the rest of this chapter.
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1.2 Fluid Mechanics of Vortex Flow

1.2.1 Theoretical Study

A Newtonian vortex flow has three distinct character-

istics in its flow behavior. As shown in Fig. 3.1, the

region I is ¢called "free stream region" which is character-

ized by a potential flow. The tengential velocity Vg 1is

inversely proportional to the radial distance r in this

region. The changes in Vg in the z-direction is so small

that the flow may be treated as one dimensional flow. The

region II is called "core region” where a large amount of

axial downflow exists because of the exit hole in the bottom

plate. The " in turn, is proporticonal to the radius

in this region. The centrifugal force is exactly balanced

with the radial pressure gradient in both free stream and

core regions (Schlichting, 1968), the balance between the

two forces, however, is broken in the region III which is

called "bottom boundary layer". The Vg 1in the bottom

boundary layer is reduced due to the drag from thebottom wall

resulting in decreasing the centrifugal force. The radial

pressure gradient, on theother hand, remains the same along

the z-axis, this force, therefore, overcomes the centrifugal

force producing a large amount of radial inflow.

The tangential velocity in the free stream and core

v is inde-

regions is numerically solved assuming that the 8

pendent of z. The @-component of the equation of motion is

written in terms of circulation I (=rVg).



-
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-
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Figure 3.1
Three Different Flow Regions

in a Newtonian Vortex Flow
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2
dr [dl" ldI‘]
v —_— = Vv - D = 1.1
r dr drz r dr
where v 1s kinetic viscosity. Since the radial velocity
V. is inversely proportional to r when r 1is large and
v, in turn, is linear to r when r 1is small, Dergara-—

bedian (1960) assumes the following functionality of V..

. 2 ’
£a r :
= - == - - = .2
v 5 1 exp{ 2] 1

where an elongational rate at the axis of rotation & is
defined by
BVZ
= ¢ = <& 1.3
€ = &(z) = 5| r=0

Using experimentally determined a and ¢ 1in eq. 1.2 (Chiou,

1976), eg. 1.1 is solved by a finite difference scheme with

C{(r=R) =T .
R

The calculated Vg in these regions agrees well with Chiou's

the boundary conditions T (r=0) = ¢ and

experimental data (case 1 in Fig. 1.2). It is found from the

numerical simulation that the tangential velocity is very
sensitive to the elongational rate €& . When ¢ 1is in-
creased, the radial convection shifts the peak value of Yy

toward the axis of rotation producing a steeper Vg-— profile

(case 2 in Fig. 1.2) which indicates that the increased ¢

intensifies the 8 ~component of vorticity near the axis of



VvV, (cm/sec)

8

Fig. 1.2

TANGENTIAL VELOCITY Vo R

(With Experimental Data)

7350 -+ —+ = -+ — - + t i
T Calculation Results T
1 . Experimental Data 4
(2)
SG-0
=20
-0

RAOIUS (CM)

13

Q-7 41.03 i.28 1.594 1-80 2-068 2-F2 297



14

rotation. On the other hand, when & is decreased, the vor-

ticity 1s able to diffuse farther in the positive r-direction

resulting in a flatter Vg-profile (case 3 in Fig. 1.2).

Since Vg near the axis of rotation is reduced, the corres-

ponding centrifugal fcrce is also decreased. The radial

pressure gradient which is balanced with the centrifugal

force is then reduced.

The relative shape of the free surface of these vortex

flows can be cobtained from the tangential velocity as a

function of r. FPig. 3.4 shows the calculated free sur-

faces with the three elongational rates corresponding to

Fig. 1.2. As expected, when & 1is increased (case 2 in

Fig. 3.4), the free surface becomes deeper due to the

larger radial pressure gradient near the center. When £,

however, 1s decreased (case 3 in Fig. 3.4), the fluid has

a flatter free surface. Vortex inhibition corresponds to the

free surface shape which becomes flatter due to the polymer

effect. As long as we regard the fluid as Newtonian, the

above discussion suggests that vortex inhibition corresponds

to a reduction in axial velocity gradient &.

It is known that large velocity gradient (strain rate)

is necessary for polymers to be subject to change its con-

formation. Especially when the strain rate reaches the

order of reciprocal of time constant A , various polymer

H

effects start revealing. Although Chiou (1976) indicated

that the strain rate
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Figure 3.4
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ave
Ir

would be responsible for the polymer effect causing vortex

the maximum value of the strain rate in Fig.

1

inhibition,
1.2 is at most about 60 sec - arocund r=.4cm. The figure

is not large enough to realize the polymer effect because
the estimated time constant for Polyox WSR 301 solution shows

that the dimensionless strain rate which is the product of

the time constant and strain rate will be .6. The dimen-—

sionless strain rate has to be at least more than unity to

expect the polymer effect according to the rheology of

polymer solution (chap. 5). The tangential velocity gra-

dient, therefore, may not be a main cause of vortex inhibition.

And this leads us to investigate the area where higher strain

rates are established in the vortex flow.

The flow behavior inside the bottom boundary layer is

next analyzed in order to see if the polymer effect is rea-

lized in this region. The integral method (Lewellen, 1971)

is used for obtaining the boundary layer thickness and the

maximum radial velocity as functions of r. The results of

the method provides reasonable figures about these two var-
iables when compared them with the results obtained by Ander-

son (1966). The velocity gradient estimated from the re-

sults of the integral method is then used for polymer stress

tensor calculation. The constitutive equation used in this

calculation is the Hookean Dumbbell model. The resulting
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stress tensor, however, is found to ke not large enocugh

to change the flow behavior in the bottom boundary layer
when the stress terms are compared with the dominant force
which is radial pressure gradient in the r—-component of the

equation of motion. The results of the analysis in the bottom

boundary layer, thus forces us to investigate the flow be-

havior in the core region and in the areas near the exit
hole to see if large velocity gradient is realized. 1In
order to analyze the flow behavior in these regions, the
numerical simulation is next described by solving full
Navior-Stokes equations in finite difference scheme for the
entire vortex tank.

For incompressible wviscous flow in a confined cylin-
drical container, assuming that the flow is axisymmetric,
the velocity field in terms of circulation, vorticity and
stream function in a cylindrical coordinate (r,0,2) are

described by the following eguation.

CIRCULATION T

2 2
3T ar ar [ar 3°rT ]_BI]
Lt V= + V== v =5 + - = == 1.4
ot r 38r Zz 32 Br2 322 r ar
VORTICITY w

at r ar z 0z r r3 0z

2 2

3w 3" w 1 Sw w

=\)[——+ +———*—-—j 1.5
Brz 322 r 4r r2
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STREAM FUNCTION o

where Vv 1is a kinetic viscosity. The circulation is written

in terms of Ve.

And the relation between the vorticity and the radial and axial

velocity v_,v_ is

Ir Z
v, av,
W =3z T 3¢ 1.8

VorV, relate to the stream function by

v
dz

<
I
)

i

<3

I
il
mlw
<

In order to avoid the free surface as the boundary of vortex

flow, a cylindrical container is assumed to have two exit holes

located on the axis of rotation at each of the two walls. As

shown in Fig.3.5, the vortex flow is then simulated over a

guarter of the total area because of geometrical symmetry. The
treatment of the free surface boundary in this way is eliminated

without losing the most important characteristics of the vortex
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flow (Anderson, 1961). The mesh construction of the flow field

is explained in Fig.3.6 according to a finite difference form-—

ula. Due toc the characteristics of the vortex flow described

previcusly, the mesh size in both the bottom boundary layer

and core region is made much smaller than that in the free
stream region to provide detailed information about the flow

behavior in those two regions. The dot in each zone repre-

sents the spacial position of each function whose value is
assumed to be uniform inside the zone. Since a zone method

(Clomburg, 1971} is used for a finite difference formula, eq.

1.4 to eq. 1.6 are arranged for more suitable forms. The dim—
ensionless forms of the equations are
CIRCULATION T
al 1 3 3
3E T T oar (FVl) *oagglvpl)
1.10
_ 1[32r+a232r_££1
Ree ar2 822 r 3ar
VORTICITY w
3w 1L 3 1 ar2
5t F ¥ oar Vel Fagz(Vpe) - ovpe - amy oy
1.11
Ree ar2 az2 r 3r r2

STREAM FUNCTION ¥
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flow (Anderson, 196l1l). The mesh construction of the flow field

is explained in Fig.3.6 according to a finite difference form—

ula. Due to the characteristics of the vortex flow described

previously, the mesh size in both the bottom boundary layer

and core region is made much smaller than that in the free
stream region to provide detailed information about the flow

behavior in those two regions. The dot in each zone repre-

sents the spacial position of each function whose value is

assumed to be uniform inside the zone. Since a zone method

1971} is used for a finite difference formula, eq.

(Clomburg,
l.4 to eg. 1.6 are arranged for more suitable forms. The dim—
ensionless forms of the equations are
CIRCULATION T
ol 1 3 ]
3t T Foar (Fvel) F ey legl)
1.10
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Figure 3.6

The Mesh Construction of Vortex Flow
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And dimensionless radial and axial velocities V. and Vz are

written by

= ggi 3¢
Ve T Ssr 3z
1.13
_ SS 1 3y
v = - = = L
z a r Jar

The dimensicnless variables are defined by (dimensional

counterparts are marked by asterisk)

tp wk ]:"k m'k
= , I = rv, = row o=
VRRH 8 RveR veR/R
*
v = r* v = Vz r = r*
- == r - r = T
r VGR zZ VGR R

s

2=® TR, ¢ T

Two parametres, Reynolds number (tangential) Ree and the

ratio of VR to VaR" S5, are defined by

R v
ER
5 — 1.14

l

Re

A
_R 1.15

S8 = -
R

The boundary conditions are described in TABLE 1.1. The vor-—

ticity at the bottom wall wy is estimated from non-slip
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THE BOUNDARY CONDITIONS FOR A CONFINED

VORTEX FLOW WITH FINITE DIFFERENCE EXPRESSIONS

STREAM
FUNCTION CIRCULATION VORTICITY
v r )
THE AXIS OF
ROTATTON TOTAL FLOW ZERQ ZERO
r=0 (1<j<M) vi,5 =% F1,9°0 ®1,5 =9
THE QUTER V. is constant
WALL v, is zero CONSTANT ZERO
=1 <3< = R ., = 1 =
r (L<3<M) wN,j ZJ FN,] w3 0
LIQUID LEVEL TOTAL FLOW SHEAR FREE ZERO
= * =
z=1 (1<i<N) bim <L 2 “i,m = O
*1
THE EXIT
SHEAR FREE SHEAR FREE SHEAR FREE
HOLE
z=0 (1<i<3) Vi1 T V5,2 Fi,1 = Ti,2 i1 T Y2
THE BOTTOM V_ and V NON~SLIP
= z ZERO
PLATE are zero CONDITION
= i . = = 0 [ I
z=0 (4<i<N) Y1 0 rJ.,l eq.l.16

*] Since nothing is known in the exit hole, all conditions are reascnably

assumed.

*2 The finite difference expression is

1
Pim=%

(Q%qM—L -

Ly m-2)
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condition. Wy, is then written by

251. - .
- i,1l i,2
w, = ssﬁ— 5 L 1.16

b i 2 DZ2

for 4 < i < N

The stream function is first solved by S.0.R. (Suc-—

cessive over relaxation). The velocity V. and v, are then

determined from the interpolated stream function assigned at
four corners of each zone in Fig.3.6 by the descretized form
of eq.1.13. The time advanced circulation is then solved by
A.D.I. (Alternating-direction implicit method). Using the new
calculated circulation, the vorticity is calculated also by
A.D.I. The whole iteration procedure is summarized in Fig.
3.12. A very small time increment increases the stability of
calculation because it makes a strong diagonally dominant mat-
rix but it takes an excessive amount of calculation time.

When a very large time increment is taken, however, the calc-
ulation becomes unstable so that the results are physically
The optimal time increment is determined by a

meaningless.

trial and error approach. The iteration is terminated when

the residual of each difference equation becomes sufficiently

small when compared with the dominant terms in the equation

for the entire geometry.
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The Iteration Procedure for Vortex Flow Calculation
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1.2.2 Experimental Study

The continuous steady state vortex flow is established
by tangentially introducing fluid inside the outer wall of
the vortex tank with an equal flow rate of draining fluid
from the tank. The detailed description of the vortex tank is

shown in Fig. 4.2 where the exit hole is located at the center

of the bottom wall.

Tangential velocity Ve at the free stream region,

axial velocity V, along the axis of rotation are quanti-

tatively measured by photographic tracer technique. These

velocity components are determined from time lapse photo-

graphs of small particles suspended in a thin section of

fluid which is illuminated by a collimated beam of light. &

light source used in the measurement is the strobe light (1540
strobolume, 1540-P1l oscilator, 1540-P2 Lump made by GenRad)

which can flash up to 400 times per second and the duration

of each flush is only 1 usec. The tangential velocity Ve in

the free stream region is measured at different radial posi-

tions and at two different axail positions. The Vg data at

two axial positions are enough to represent Vg 1in the free

stream region because Vg 1is almost independent of axial

position. The Vg is calculated from a particles's dot

trajectory on the bottom view photograph using a horizon-

tally collimated light (See Fig. 4.5). A number of dots can

be contrclled by adjusting both the flash rate and the ex-

posure time of camera (Nikomat F 2.0).



Fig. 4.5 A Photograph for Measuring V

9
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The axial velocity measurement in the core region is
very difficult with the present photographic technique because
the reflection of light from the air core is so strong that
it makes the particles near the air core impossible to detect.
Incomplete vortex flow (the word "incomplete" indicates that
the air core does not extend down to the exit hole)}) thus

is established so that Vz at the axis of rotation can be

measured from the side view photograph. Pig. 4.8 is a typical

photograph from which v, at the axis of rotation is approx-—

imately determined by dividing the distance between two ad-

jacent dots by a time span of two flashes.
The experimental procedure for the measurement of Vg

in the free stream region and v, along the axis of rotation

for both a Newtonicon fluid (rcom temperatured water) and a

polymer solution are briefly summarized as follows. After

calibration, the fluid starts circulating the vortex flow

system. Once a steady state vortex flow is established, the

volumetric flow rate and the ligquid level are deftermined.

The small amount of seeding particles are then added in the

flow system for the purpose of reflecting the light. ¥V,

long the axis of rotation is measured followed by Vg mea-—

surement at two different axial positions. During the velo-

city measurement, the flow rate and the ligquid level are

also measured.
The concentrated polymer solution prepared at least two
days before use is then added to the flow system to make

about 30 wppm polymer scolution. As soon as the polymer



Fig. 4.8 A Photograph for Measuring V,
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effect, that is the small fluctuation of the air core and
the liguid levels falling is observed, the onset behavior
of vortex inhibition is measured by taking pictures for Ve
data. All the pictures are taken within 30 seconds after

the onset. The important feature of the onset behavior mea-

surement is to be able to observe how the Ve is changed by
introducing the polymer sclution into the Newtonian flow pat-

tern. And the information is wvery useful for the analytical

study of vortex inhibition because a numerical simulation

is done for the situation where the Newtonian fluid is suddenly

replaced by polymer solution to see how the resulting stress

field changes due to the presence of the macromolecules. After

a couple of minutes, the wvortex flow completely shifts to a

new quite different flow status which is the vortex flow of

the polymer solution. The procedure of vg measurement along

the axis of rotation which immediately follows the Vz measure-

ment for the Newtconian fluid is the same as that of Ve measure-—

ment for polymer solution.

Four kinds of gqualitative observations are done for

studying the characteristics of vortex flow for both Newton-

ian and polymer fluid. The complete vortex flow is used

because the air core does not disturb the observations. The

flow behavior of the core region is studied by using dyed

solution. When the dyed polymer solution (about 50 wppm

Polyox WSR 301} is dropped on the free surface of the New~

tonian vortex flow near the axis of rotation, the vortex is

immediately inhibited. When dropped in the free stream
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region, the polymer dyed solution behaves as if it were a

Newtonian fluid and the vortex is not inhibited. This obser-

vation indicates that the tangential velocity Vy in the

core region is reduced due to the presence of the macro-

molecules and that the polymer effect may be dominant somewhere

in the core region.

The flow behavior of the bottom boundary layer is studied

by injecting the Newtonian dyed soclution through a wvery small

hole {(its diameter is .04 cm) located in the bottom wall to

see the differences in the flow behavior between a Newtonian

filuid and polymer solution. For the Newtonian fluid, the

streak of the dye is very smooth and almost all of the dye

goes directly out through the exit hole. For the polymer

solution, however, the dye is randomly scattered around the
exit hole. From this observation, the polymer effect may be
important in the area near the exit hole because of the

apparent difference in flow behavior between the Newtonian

fluid and polymer solution.

When a small tube is installed right above the exit
hole, the Newtonian vortex flow is heavily disturbed because

the tube prevents a radial inflow in the bottom boundary

layer from going out through the exit hole. The distingquish-

ing feature of this observation is that installing the tube

lowers the liguid level substantially while keeping the flow

rate constant (See Fig. 4. 16 (a)). When the liquid level

is raised up to the previous level, the flow rate has to be

increased about 6%. When the liquid level reaches the
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previous point, the vortex is inhibited in a very similar

way to vortex inhibition by Polyox WSR 301. This experimen-

tal observation also emphasizes the importance of the flow

behavior in the vicinity of the exit hole.

The vortex flows of Newtonian f£luids with different
viscosity are observed in terms of the air core width and
liguid level. The fluids used for the observation are

water, glycerin-water solution A (the relative viscosity

is 1.068) and glycerin-water solution B (the relative vis-

cosity is 1.227). Both glycerin solution A and B are found

to form very similar vortex flow to that by water with res-—
pect to the shape of the air core, liquid level and flow

rate. From the fact that the relative viscosity of the gly-

cerin solution A and 30 wppm Polyox solution are almost
equal, we can conclude that vortex inhibition cannot be
explained sclely by viscous effect but it has to be due

to the elastic nature of the macromolecules.
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1.3 Development of Constitutive Egquation

In order to investigate the polymer effect on the flow,
an approximate constitutive equation for a dilute polymer

solution is needed to see how the stress tensor changes due

to the existence of the macromolecules. A new constitutive

equation for a dilute solution of flexible macromolecules

is developed from the kinetic theory. The main difficulty

associated with the kinetic theory of dilute polymeric fluids
so far is that it can provide complete information about the

stress tensor only for small rates of strain and a few mater-

ial functions of high strain rates. The reason for the 4if-

ficulty stems from being unsuccessful in solving the differ-
ential equation for the distribution function (called the

diffusion equation). Although Giesekus(1966) showed that

full information about the stress tensor can be obtained for
the Hookean Dumbbells model without solving the diffusion
equation, this model has two serious shortcomings which are

shear rate independent visometric functions and an unbounded

elongational viscosity even for moderately high elongational

rates.

The constitutive equation developed in this study not
only eliminates the shortcomings associated with the Hookean
Dumbbell model but also is simple enough to be manipulated
And

for any kind of homogenous flow at all strain rates.

it shows that shear thinning (viscosity decreases with in-

creasing shear rate), non-zero primary normal stress co-
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efficient and a bounded elongational viscosity for high elonga-

tional rates. The new constitutive equation called the Modified

Nearly Hookean Dumbbell model (MNHD) is constructed by matching
it with the Nearly Hookean Dumbbell (Armstrong and Ishikawa,
1979) for a flow where the macromolecule is neither very stretch-
ed nor oriented and with the model which Tanner (1975} developed

for a flow where the macromolecule is strongly oriented and

stretched. The Spring law used in the MNHD is FENE (Warner, 1972)

spring law.

The main results of tests for the MNHD are shown in Fig. 6.7,
Fig. 2.4, Fig. 6.9 and Fig. 6.10 by using two simple flow pat-
terns, shear flow and elongational flow. Fig. 6.7 shows the com-

parison of intrinsic viscosity as a function of shear rate be-
tween available experimental data and the model prediction. The
macromolecule used in the experimental data is polystyrene of
various molecular weights. From the figure, the MNHD is seen

to show the shear thinning phenomenon. It is also found that

the mdoel shows a linear relation between [n] and log Q for

higher shear rate (Ae < 2, kH_= L55+l)ke). By comparison

with a wide variety of polystyrene solutions, the parameter
g which 1s associated with the maximum length of the macro-
molecule RO falls into the range between .02 and .005,
which agrees with the prediction by Christiansen and Bird
(1977). This range of parameter e may, therefore, be

a proper choice for polymer stress tensor field calculation.
Fig. 2.4 shows the comparison of steady state elongational
viscosity bhetween the exact solutlion of FENE model (Bird

and et al., 1977) and the MNHD's prediction. The rapid
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increase of elongational viscosity observed at the moderate
elongational rates corresponds the nearly full extension of

the macromolecules which, then, show higher resistance to be

stretched out above those elongational rates. Both models

eventually approach the same large asymptotic elongational

viscosity at high elongational rates. It is found from Fig.

2.4 that the MNHD represents the FENE model very well over

the entire range of elongational rate.

The stress growth and relaxation of elongational vis-
cosity are plotted with different scaled dimensionless time

in Fig. 6.9 and Fig. 6.10. As shown in Fig. 6.9, as the
elongational rate Ax¢ increases, the time required for

reaching a steady state becomes much shorter. This character—

istic is quite different from the growth behavior of shear

viscosity shown in Chap. 5 where the time to reach steady

state is about t/ig = 4 for all shear rates. Unlike shear

flow, the macromolecules subjected to elongational flow are

stretched directly by hydrodynamic force and oriented to the

direction of the flow. The time scale for molecular response

to this flow, therefore, may be related to the elongational

rate &. This is clearly explained when the elongational

viscosity is plotted with the dimensionless time scaled by

1/¢ in Fig. 6.10 where the time to reach steady state is

about &t = 3 for higher elongational rates. The shorter
response time for high elongational rate is important for

vortex inhibition. The residence time of fluid element is

very short in the area where large velocity gradient is estab-
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lished because the velocity of the fluid is usually very high.
Unless the macromolecules are excited within the residence
time of the fluid element, it would be carried away fromthe
area of high strain rates before polymer effect appears.
Thus it is necessary for realizing the polymer effect on the
flow field that the response time for high elongational rates
must be very short besides large elongational viscosity.
Judging from these results, the MNHD seems to be suitable
for vortex inhibition analysis. The MNHD is used as a con-
stitutive equation for the analysis of stress field in the
next section because first, its form is so simple that any
kind of locally homogeneous flow can be applied, and secondly,

the elongational viscosity predicted by the model is as good

as that by the FENE model.
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1.4 Tne Analysis of the Onset Behavior of Vortex Inhibition

The mechanism of the onset behavior of vortex inhibition

is analyzed by the following sequence. PFirst, the Newtonian

vortex flow is discussed by the results of the numerical cal-
culation with locally obtained experimental velocity data.

Secondly, the experimental observation about the onset behav-

ior of vortex inhibition is described. Two important char-

acteristics are emphasized there. Third, the stress tensor

for polymer solution is calculated along the stream lines by

the MNHD. The velocity field for the calculation is the

Newtonian vortex flow. Finally, the polymer effect, namely

how the flow behavior changes due to the resulting polymer

stress tensor, is analyzed by an approximate method to explain

the experimental findings qualitatively.
The velocity field of Newtonian vortex flow is calculated

by A.D.Y. for higher tangential Reynolds number Reg. The

general flow behavior of a confined vortex flow is well des-

cribed by stream lines. Fig. 6.1 and Fig. 6.2 show the re-

sults of the numerical calculation which described the stream
lines representing both the radial and axial wvelociites for
lower and higher tangential Reynolds number respectively.

Each fluid element also makes swirl motion due to the tangen-—

tial velocity besides moving along the stream lines. As shown

in Fig. 6.1, for Rey = 10, most of fluid elements supplied

at the outer wall move toward the exit hole in taking almost

the shortest distance. No reverse (due to positive vr) or up
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(due to positive vz) flow is observed for such a low Reg.
For higher Reg ( =1370 ), however, the flow behavior turns

out quite different. For example, taking the stream line

g = .8 1in Fig. 6.2 representing 80% of total flow rate, the

fluid element initially moves toward the exit hole but after

.1,.2 ), the fluid starts

passing the point ( r,z ) = (
moving back and eventually goes into the bottom boundary
layer. As shown in Fig. 6.2, the bottom boundary layer is

formed for high Re, and 80% of total flow rate is come from

this thin boundary layer region. The radial velocity in the

layer is much larger than that above the layer because the

stream lines are very dense. The core regicn is also recog-

nized by the stream line ¢ = .9 in Fig 6.2. Unlike Figqg.

6.1 the stream ¢ = .9 1is much closer to the axis of rotation

and this indicates that higher axial velocity forms the core

region. And the flow from the bottom boundary layer inter-

acts with the flow from the core regicn near the exit hole.
Tangential velocity at the free stream region is measured for

various Reg. Although the measurement in g is taken both

at z = 4.0 cm and z = 10.0 cm, the difference in vg at

these two positions is negligible. Fig. 6.3 and Fig. 6.4

show comparison between the experimentally measured vg and

numerically calculated vy for two different Reg and SS.

The numerical results show excellent agreement with experimen-—

tal data for both cases. Fig. 6.5 and Fig. 6.6 show the com-

parison of v, at the axis of rotation. As shown in these

figures, the calculated v, corrected by factor 2.8 predicts
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experimentally determined v, profile very well. The cor-
recting factor may be explained mainly by the discrepancy

in the radius of the exit hole between calculation and exper-
iment. In the calculation, the location of radius r.

has to be matched with the point at the canter of the zcne.
This condition makes r, about 1.5 times larger than the

real location. From the continuity of the fluid, the average

value of v, over the exit hole has to be increased 2.13

times larger for the real case. The axial wveloccity at the

axis of rotation is increasing in almost linear fashion from

the liquid surface, but as the fluid gets close to the

exit hole, v, is accelerated. This is observed from both

figures. It is also found from the calculation results that

v, is further increased so rapidly especially when the fluid

interacts with the flow from the bottom boundary layer to

produce large velocity gradient

The results of the comparison with experimental measure-—

ment show that the numerical simulation describes the vortex

flow reasonably well. The confined geometry of the vortex

tank does not give any significant difference from the cpen

free surface vortex flow in terms of velocity field. Since

the numerical simulation provides full information about

velocity field for the entire vortex geometry and the calcu-

lated wvelocity field reasonably well represents the real
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velocity field, it is employed for stress tensor calculation
for polymer solution.

The information about the onset behavior is very impor-
tant for analysis of vortex inhibition because it provides
the transient flow behavior from Newtonian to polymer sclution.

As shown in Fig. 6.11, after several minutes, the vortex

flow completely shifts to a new, guite different flow status
which 1s fully developed vortex flow of the polymer soclution.
The analysis of the fully developed vortex flow of the polymer
solution seems to be irrelewvant for this study because of the

following reasons.

First, the fluctuation of the air core is very large and
random so that it is almost impossible to obtain consistent

velocity data especially for v, at r=0. Secondly, since

the ligquid level is dropped to about 50% of its original
figure and the total flow rate is not changed very much (see
number in Fig 6.11), a much higher tangential velocity is
established and this explains the broadening of the air core.
This larger tangential wvelocity, however, may not directly

be caused by the polymer effect but rather is due to the de-
crease of the liquid level while flow rate is almost unchanged.
To investigate the polymer effect on the vortex flow, it is,

therefore, more sensible to measure the onset behavior of

vortex inhibition rather than the fully developed vortex

flow. Besides these two reasons, the measurement of the onset

behavior is more consistent with the numerical simulation

which calculates the polymer stress thensor by the MNHD. The
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calculation simulates a physical situation where the Newton-
ian fluid is suddenly replaced by the polymer solution in

order to see how the stress field changes due to the presence

of the macromolecules.

Fig. 6.12 shows the tangential velocity measured during

the onset. The tangential velocity in the free stream region

is not appreciably changed when compared with that of the

Newtonian fluid. Several velocity data, however are found near

the axis of rotation ({(the core region). In v, measure-

ments for the Newtonian fluid, no data could be obtained at

the core region because of large axial velocity. These data

indicate the reduction of v, in the core region due to the

fluctuation of the air core.

The axial velocity data on the axis of rotation is shown
in Fig. 6.13 during the onset along with the Newtonian data.

The v, data for the polymer solution are obtained from dif-

ferent pictures taken during the onset. At each time, dif-

ferent Vo data is obtained because of the fluctuation of the

air core. The figure indicates that v, at r=0 is always

lower than the case of the Newtonian fluid from any of the data.
This seems to be inconsistent with the fact that the liquid

level is falling during the onset. The average v, over

the exit hole must be increased to explain the ligquid level's

falling, v at r=0, on the other hand, seems to decrease at

z
the exit hole form Fig. 6.13.
Thus, two experimental findings during the onset of

vortex inhibition should be emphasized. First, he averaged
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Axial Velocity Measured before and during the Onset
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axial wvelccity over the exit hole is increased. Secondly,

the axial velocity at the axis cof rotation seems to be de-—
creased at the exit hole. These two findings characterize

the onset behavior of vortex inhibition and these are analy-

zed in the later parts of this chapter.

The stress tensor is calculated by using the MNHD as a
constitutive equation along the stream lines obtained pre-

viously. Since the onset behavior is the transient state

from the Newtonian vortex flow to the fully developed vor-

tex flow of the polymer solution, the information about the

velocity gradient may be obtained from the results of the

Newtonian vortex calculation. The calculation of the stress

tensor is limited to the area near the exit hole. Because

the simple speculation in section 1.2 indicates that the velo-
city gradient is foo small to excite the macromolecules until

the fluid element approaches this area where the velocity

gradients seem to become very large. Fig. 6.14 is a detailed

picture of Fig. 6.2 of the stream lines near the exit hole.

Once the fluid element reaches the square area enclosed by the

lines of r/R = .1 and z/H = .l, the calculation begins.

For example, the stress calculation of ¢ = .8 starts from

z/H) = (.1, .025). The stress tensor 1s

the point (r/R,

then numerically calculated at the point 1. Every component

of the velocity gradient tensor needed for the calculation
is approximately determined from the velcocity field at the
point 1. This calculation procedure is repeated until the

fluid element reaches the point 4 where the large velocity



Fig. 6.14
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gradient is expected. The stress tensor is also calculated
in this way for ¢ = .85, ¢ = .9 and ¢ = 1.0. TABLE 1.2
shows the calculated stress tensor component Tp,zz at each
stream line. No other stress components are found to be
insignificant. It is found from TABLE 1.2 that Tp,z2

increases extremely rapidly very near the exit hole for

¢ = .85 and ¢ =.8. This is due to the large velocity gra-

dient especially

IV,
32z

established at the exit hole. 2aAnd the macromolecules are

suddenly stretched out in the z-direction nearly to the

maximum length Ro {(see the column <(R/Rb)2> in the table).

The study of the MNHD shows that the molecular response time
is very short when the velocity gradient is wvery large, the

macromolecule has enough time to be stretched extensively

even in a very short perieod ¢f time. The macromclecules

flowing along the stream lines ¢ = 1.0 and ¢ = .8, on

the other hand, are not stretched substantially. tp zz

at ¥ = 1.0 1is less than the half of the Newtonian stress
component even at the point 5. The fluid element along the
p = 1.0 may not be influenced by the presence of the macro-
molecules.

From the analysis of the Newtonian velocity field, it
is found that the dominant forces in the Newtonian flow in

the z-direction very near the exit hole are pressure gradient

ot —— e — =



TABLE 1.2
<, ALONG THE STREAM LINES
b= 1.0 v o= .9
a = c a B c
1 (.01) 0 0146 | 1 (.02) (::ggz) .0207
2 (.02) (::823 .0153 2 (.04) (::ggé) .0241
3 (.03) 08 0157 | 3 (.08) | (ggd .0280
4 (.04) ey 0182 | 4 (.07) | 7y .1660
5 (.043) | 1293 0194 | 5 (.075) (237537 | .3183
¥ = .85 ¢= .8
a B c A B c
1 (.04) ;3&3%5 .1185 1 (.03) Eiﬂﬁﬁ .0172
.08y | 200 2175 | 2 o7y | AR .1704
(.12) ;f:;?fb .0948 3 (.09) If;:fgﬁ 6769
(.15) ?fg:gg? .4869 4 (.097) 'ﬁl&}iﬁs .8019
(.155) | ?Eg:gg? .6819 | |
* Column A is point number with {(real time} [sec]
* Column B is Tp,zz with (Newtonian counterpart)
[gcm/secz-cmzl

* Column C is <(R/R0)2> where R is the end-to-end vector of

macromolecule and R, is the maximum length.
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and the corresponding inertia forces. The wviscous force,

therefore, does not contribute effectively to the force

In order to cope with these dominant forces,

balance.
Tp zz must be much larger than the Newtonian stress. As
shown in the case of ¢ = .85 and ¢ = .8, Tp,zz Very

near the exit hole becomes much larger than the Newtonian
case, it may, therefore, be possible that this stress component
influences the flow behavior. To investigate the influence

of Tp,zz on the flow behavior, the force balance (the equa-

tion of motion) in the z~direction has to be considered with

the polymer contribution to the stress terms.

The force balance in the z-direction is writften by

TABLE 6.6 shows the magnitude of each term in eq.l.l7 with the

orientation of forces around the point (r/R, z/H) = (.03,.01)

for the case Ree = ]370 and S8S = -.02. When the Tp,zz

is used for +he stress term in eg.l.17, it becomes about 20%

of the dominant force (pressure gradient) and the direction

of this force turns out to the negative. This indicates that

the new force produced by the macromolecules tends to push

fluid downward, that is, the axial wvelocity at this point may

be increased. Qualitatively speaking, this is consistent

with the decrease of the liquid level during the onset.

Although nothing can be said about the magnitude of increased

axial velocity unless the equation of motion is solved with
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the polymer stress tensor, it may be a reasonable outcome

that the polymer effect appears near the exit hole especially

around r/R = .03 and causes the ligquid lewvel's falling.

In order to see how the flow behavior changes by the
presence of the macromolecules, one must solve the egquation
of moticon with the polymer stress tensor expression (the

constitutive equation). This, however, requires a tremen-—

dous amount of calculation. Nine non-linear partial differ-

ential equations (three from the equation of motion and six
from the constitutive equation} are to be solved simultan-

eously. The calculation is much more difficult and involved

than the case of Newtonian flow problem. Instead of pur-
suing this difficult calculation, the polymer effect may be
roughly estimated simply by changing the boundary condition
at the exit hole in the Newtonian vortex flow calculation.
This method comes from the previous results that the poly-
mer stress tensor becomes significant only for the area very
near the exit hole. The calculation procedure, thus, is

briefly described as follows. First, the axial velocity at

the exit hole is estimated by Tp,zz* Secondly, the boundary

condition of the stream function is fixed according to the

estimated v . Third, the wvelocity field for the entire vor-
z

tex flow is calculated by A.D.I for a short period of time.

The initial state of the calculation is the case of Reg
1370 and 8§ = -.02. And finally the polymer stress tensor

is again calculated along the newly calculated stream lines

to see the tendency of stress field. In this way, we could
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at least see an initial stage of flow change which may

correspond to the onset behavior of vortex inhibition.

Fig. 6.15 shows the newly calculated axial velocity at

the axis of rotation. The v, at r=0 slightly decreases

from the Newtonian case especially when 2z 1is less than

5 cm. Even for a short period of time (.286 seconds}), the

axial velcocity responds to the change in the boundary con-
dition which is substitution of the polymer effect at the

exit hole. The decrease of the axial velocity at r=0 seems

to correspond to one of the experimental findings during the

onset behavior of vortex inhibition. The calculated tan-

gential velocity, on the other hand, is not appreciably

changed at all from the initial state especially outside

the hole region. This is also consistent with the experi-

mental fact (See Fig. 6.12).

Fig. 6.16 shows the stream lines obtained from the cal-

culation. The dotted lines are the stream lines for the ini-

tial state. The flow pattern as a whole is not so different

in the two calculations. However, the stream lines above the

boundary layer shift to the right to some extent. This shift

also explains the reduction of v, at r=0 because the radial

distance between % = 1.0 and ¢ = .8 becomes wider. The

polymer stress tensor is calculated along the each of the

stream lines and the results are listed in TABLE 1.3. Again

Tp,zz Very near the exit hole is increased dramatically for

p = .8 and ¢ = .B5. The magnitude of TS 2o in both lines

are a little larger than before. Tp 2z along the stream
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TABLE 1.3
‘Ep ,z2 ALONG THE NEWLY CALCULATED STREAM LINES

v = 1.0 = .9
A B C A B C
(.01) -.015 .0150 1 (.02) ~-.204 -.0194
(.02) -.042 .0156 2 (.04) -.291 .0214
(.03) -.054 .0159 3 (.06) ~-.298 .0209
(.04) -.152 .0183 4 (.075) -1.247 .0394
{.045) -.230 .0201 5 (.081} -5.045 .1056

Y = .85 Yy = .8
A B C A B c
(.05) -2.505 .2313 1 (.04) -.143 .0395
(.10) -7.402 .3456 2 (.08) -6.286 .2217
(.13) -23.532 .4180 3 (.20} -34.717 .4478
{-15) -40.625 .4551 4 (.106)} -177.127 .8097
(-186) -131.810 .7526

Column A is point number with (real time)

Column B is

Column C is <(R/RO)2> where R 1s the end—to-end vector

T
P22z

[gcm/secz-cmzl

[sec]

of macromolecule and RO is the maximum length.
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lines ¢ = 1.0 and % = .9 1s not increased enough to cope

with the dominant force and the macromolecules are not
stretched at all. The tendency of the polymer stress tensor
observed before is even more emphasized in this calculation.

To,zz along ¢ = .8 and ¢ = .85 still becomes large

encugh to be comparable to the dominant force so that the

fluid may be pushed downward again. From the sequence of

calculations, we found that the initial effect of the poly-

v at the exit hole around r/R =

mers, that is, to increase z

.03, keeps its trend as time proceeds because the increased

v, also increases the responsible velocity gradient

SVZ

3z

producing higher stress tensor component. From the analysis

of Tp,zz, it is found that the dramatic increase of Tp zz
along the stream lines % = .85 and ¢ = .8 very near the

exit hole seems to explain qualitatively experimental char-
acteristics of the onset behavior of vortex inhibition,

namely, the liquid level's falling and the reduction of

v, at r = 0.
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1.5 Conclusions

Three major conclusions are drawn from the results of

this study. They are:
1) The numerical calculation f£or the confined Newtonian
vortex flow provides reasonable wvelocity field for the entire

vortex tank geometry. The calculated velocity field reason-

ably agrees with experimentally measured Vg at the free
stream region and V, along the axis of rotation by photo-

graphic tracer technique. The consistency in the comparison

may make the wvelocity Information reliable for the area near
the exit hole and for the bottom boundary layer. The vortex
flow studied in the thesis is highly non-linear (Ree is up
to 2000) and has a singularity at the exit hole. The alter-
nating-direction implicit method with the zone formulation
is found to be suitable for this kind of complicated flow

prcoblem.

2) The Modified Nearly Hookean Dumbbell Model seems to

be an appropriate constitutive equation for the vortex

inhihition study. The model can predict a bounded large

elongational viscosity which may change the flow behavior at
high strain rates as well as shear thinning. The MNHD also
has a simple form so that any kind of locally homogeneous
flow can be applied for obtaining the polymer stress field.
It is found from dynamical studies of the model that the time
to reach steady state in start-up of elongational flow is

well scaled by the reciprocal of elongational rate e~l. rhis
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result is quite different from that of shear flow which is

scaled by the time constant Ag.
3) A highly elongational type of flow, namely very high

av
velocity gradient a;, is established in the wvicinity of

the exit hole according to the results of the numerical cal-

culation. This large velocity gradient may be a cause of the

onset behavior of vortex inhibition. The application of

the velocity field to the MNHD shows that the macromolecules
moving along the stream lines passing the bottom boundary
layer and outside the core region (see y=.8 and ¢=.85 in
Fig. 6.14) seem to be almost stretched out to the maximum
length R, very near the exit hole. The stretched macro-

molecules produce large stress tensor which seems to explain

qualitatively the characteristics of the onset behavior of

vortex inhibition.
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II. INTRODUCTION

2.1 The Description of Vortex Inhibition

Vortex inhibition was discovered by Gordon (1972) in

1972. TIn his experiment, a small amount of polymer in water

prevents formation of a vortex in draining the solution from

the bottom of a square tank. A square tank filled with tap

water is prepared. After stirring the water vigorously

with a paddle and then removing the plug from the center of
the bottom, a stable vortex forms extending down to the

bottom of the container. When this is repeated with a dilute

polymer solution, the vortex is incomplete (see Fig. 2.1).
This different phenomenological behavior produced by adding
just a small amount of polymer inidcates that the flow pat-
tern is drastically changed due to the presence of the
polymer. The vortex inhibition may be explained clearly
by using a steady state vortex flow. A steady state vortex
flow is obtained by tangentially feeding the water at the

outer wall of a cylindrical container with an axially uni-

form velocity. Fig. 2.2 shows the steady state vortex flow.

When the water is replaced by about 30 wwpm polyethylene
oxide (Polyox 301l) keeping the flow rate constant, the air
core of the vortex is suppressed and the suppression of the

air core is not steady but a randomly periodic phenomenon.

Just after the air core is suppressed, it tends to extend

to the bottom again. As soon as the air core reaches the




Fig. 2.1 : Vortex Inhibition
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Fig, 2.2 Steady State Vortex Flow
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bottom, it immediately is suppressed (see Fig 2.3). This
process 1s repeated until the polymer is degraded. During

vortex inhibition, the liquid level, falls substantially

{(by nearly 50%).

A particularly interesting feature of vortex inhibition
is that the amount of polymer added to the water is so

small that the shear viscosity of the polymer solution is

only slightly different from that of water itself. The

relative viscosity of the polymer solution used in this

study is only about 1.02.

Furthermore, Gordon (1972) showed that the macromole-—

cules which show vortex inhibition ability are alsc good

agents for drag reducticon. As Table 2.1 shows, the same

ordering in terms of effective concentration also seems to
hold for both the vortex inhibition and drag reduction.
Since the viscosity of the polymer sclution is almost
egual to that of water for both vortex inhibition and drag
reduction, non-Newtonian rheclogical properties of the
dilute polymer solutions such as strain rate thickening
elongational viscosity and non-zero normal stress differ-
ences in steady shear flow might be responsible for vortex
inhibition. The elongaticonal viscosity is believed to be
increased drastically even at moderately high elongational

rate for a dilute polymer sclution. For instance, as shown

in Fig. 2.4 the modified nearly Hookean Dumbbells model

(developed in Chapter 5) shows a sudden increase of elonga-



Fig. 2.3 Vortex Flow with Suppressed Air Core




TABLE 2.1

EFFECTIVE CONCENTRATIONS OF VARIOUS POLYMERS FOR V.I. AND D.R.

wwpm wwpm
Polymer Designation Polymer Type Vortex Inhibition Drag Reduction
Polyox FRA%* Polyethylene Oxide 7.5 9
Polyox WSR 301* Polyethylene Oxide 30 20
Separan AP 273° Polyacrylamide 3 5
Separan AP30° Polyacrylamide 40 35

*Union Carbide (Manufacturer)

‘Dow (Manufacturer)

Note l: These data are from Gordon (1972).

Note 2: Effective concentration is the lowest concentration with which polymer

shows the ability of vortex inhibition or drag reduction.

VL
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tional viscosity when the domensionless elongatioconal is of
order unity. The elongational viscosity increases up to
several orders of magnitude higher than that of solvent
alone. Even though no direct experimental measurements
have been obtained for the elongational viscosity for a
dilute polymer solution, the kinetic theory predicts that
a high elongational viscosity is realized when a linear
flexible polymer is stretched at almost full length due to
the elongational flow field. It may, therefore, be possible
to expect that the changes in flow behavior in vortex inhi-

bition phenomenon is due to the large elongational viscosity

exerted by the presence of a few macromolecules.
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2.2 CObjective and Motivations

The objective of this thesis work is to investigate

the mechanism of vortex inhibition. The study is motivated

at first, by a possible correlation between vortex inhibi-
tion and drag reduction and secondly, by an interest in
developing a constitutive equation (rheological equation
of state) to describe dilute polymer solutions.

We can speculate from Table 2.1 that the mechanism of
vortex inhibition may be similar to that of drag reduction.
Although drag reduction has been extensively studied in
recent years, there are many aspects of the phenomenon
which are not well understood (Lumely, 1973; Virk et al.,
1967; virk, 1975). Out of several proposed mechanism for

drag reduction, the viscoelastic nature (especially large

elongational viscosity) of macromolecules in turbulent flow

is proposed to be a major cuase for reducing turbulent
energy dissipation (Little et al., 1975; Seyer and Metzner,
1969; Gorden and Everage, 1971). According to Seyer and
Metzner (1969), the bursting (Kim et al., 1971) produced by
a pair of counter rotating eddies at boundary layer near

the wall is characterized by stretching motion similar to

elongational flow. The increased resistance to stretching

due to the large elongational viscosity, thus results in
less bursting and less radial momentum flux transport.

However it is not possible to make a direct test of this
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proposed mechanism because no precise velocity informa-
tion of the fliud element is obtainable during the bursting
process. The proposed mechanism for drag reduction may,

in turn, be closely related to the molecular mechanism

of vortex inhibition. It might be, therefore, possible

to infer the molecular mechanism for drag reduction from
the analysis of vortex inhibition. The Newtonian vortex
flow is treated as a laminar flow so that it is much easier
to be analyzed than turbulen flow.

In order to analyze vortex inhibition, rheological
equation of state (a constitutive equation) for a dilute
polymer solution has to be introduced so that information
about the stress field can be predicted. Although an ex-
tremely simplified model (beads and spring bumbbell model)
is being used, we believe that the kinetic theory provides
reasonable predictions about differences in flow behavior
resulting from molecular structures. Moreover, we can

evaluate the kinetic theory constitutive equations by com-

paring their predictions in the flow with experimental

results.
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2.3 Approach and Previous Work

Approach

A study of vortex inhibition is carried out in the

following way. First, the Newtonian vortex flow is ex-

tensively studied in Chapter 3. The information about the

velocity field of the Newtonian vortex flow is necessary
for analyzing vortex inhibition because it provides a
starting point for computing deformation of the marcomole-—

cules when the polymer scolution is subjected to the flow

field. At first, various regions of the vortex flow are

analytically studied and then the complete Navior-Stokes

equations, with a singularity (the presence of the exit

hole at the center of the bottom wall), are numerically

solved by finite difference scheme for wvarious wvalues of

tangential Reynolds number.
Secondly, the experimental part of veortex inhibition

is described in Chapter 4. The velocity components (tan-

gential and axial wvelocity) are measured by a photographic

tracer technique. The wvelocity measurement not only pro-

vides the characteristic of the Newtonian vortex flow but

also gives a check on the results of numerical simulation

which is given in Chapter 6. Besides the velocity measure-

ments, a series of qualitative observations about the flow

behavior of both the Newtonian and polymer vortex flow

are conducted to help understand the nature of vortex
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inhibition.

An approximate constitutive equation (rheological
equation of state) for dilute polymer solutions is devel-
oped from kinetic theory in Chapter 5. The model is then
tested for shear flow and elongational flow with wvarious
strain rates to evaluate the material functions such as
shear viscosity, the primary normal stress coefficient and
elongational viscosity.

Finally in Chapter 6, the results of the numerical sim-
ulation are used for the polymer solution stress field
calculation by use of the constitutive equation developed

in Chapter 5. With the calculated stress field, an attempt

is made to explain vortex inhibition, that is, the dramatic

differences in flow behavior between the Newtonian and

polymer solution with the aid of the experimental study.
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Previous Work

The major contributions of this thesis work are hydro-
dynamics of the Newtonian vortex flow and development of
constitutive equation, whose prediction for elongational
viscosity is especially important, for polymer solutions.
There have been a number of theoretical studies of confined
vortex flow in past because of its broad application in

fluid dynamics, heat transfer, power generation and meter-

ology. Lewellen (1971, 1964, 1962) has used similarity

transformations and asymptotic expressions to describe the

flow. Integral methods are used for analysis of the bound-

ary laver by Rott and Lewellen (1966). Anderson (1966) has

studied the flow behavior of the bottom boundary layer by

reducing the boundary layer equations to ordinary differ-

ential equaticons based on the method developed by Smith and

Cutler (1963). Farris et al. (1969} and Pac (1970) have

numerically solved the full Navior-Stokes equations for

confined vortex flow. These approaches, however, do not

provide velocity information about the flow behavior in the
vicinity of the exit hole which, in turn, plays a very im-
portant role for the analysis of vortex inhibition.

The experimental contribution to the analysis of the

Newtonian vortex flow is due to Kendall (1962) and Taylor

(1974}. Kendall has measured radial and tangential velocity

compeonents of gases inside the bottom boundary layer and
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the profiles of both velocity components of liguid are

qualitatively observed by Taylor. Chicu (1876) has used

a photographic tracer technique for determining Vg and V,
especially near the axis of rotation outside the bottom

boundary layer. His study for vortex inhibition is also

limited for the area away above the bottom wall.

There have been many models suggested for polymeric

fluids from the kinetic theory (Bird, 1977). Out of these

models, the idea of using a dumbbell (two beads jointed
by a connector) to simulate a macromolecule is focused on
this study (Bird et al., 1977). Even though the dumbbell
models are oversimplified representation of polymers and
the results obtained from them do not have a wide range of
applicability, many of the mathematical manipulations can

be performed because of the simplicity of the models.

Table 2.2 shows several kinds of dumbbell model for a flex-
ible macromolecule. The simplest one is the Hookean Dumbbell
model whose connector is described by Hooke's law. The
Hookean Dumbbell is the model from which the constitutive
equations can be derived without solving the diffusion

equation so that the polymer stress tensor can easily be

calculated from any types of homogeneous flow. The model;

however, has seriocus defects such as shear independent vis-—
cosity and unbounded elongational viscosity for high
elongational rate because of the linearity in the connector

force law. The connector force law developed by Warner
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(1972) represents a macromolecule a little more realistically.
The connector force is getting stiffer and stiffer as the
end-to-end vector R becomes close to the maximum length

R,- The model shows the shear thinning, non-—zero primary
normal stress coefficient and bounded elongational viscosity.

The mathematical manipulation, however, is limited only for

small strain rates and a few material functions for high

strain rates. As to the prediction of elongational visco-

sity at high elongational rates, Stevenson and Bird (1971)

has numerically calculated bounded elongational viscosity

using inverse-Langevin—-Spring dumbbell model. The bounded

elongational viscosity is also found by Tanner (1971) with

a use of linear locked spring model. The experimental

contribution to the rheology of a dilute polymer solution,

however, is far behind the theory.



TABLE 2.2

g4

CONNECTOR FORCE LAW OF DUMBBELL MODELS

Name

Hooke

Tanner {1971)

Warner (1972)

Connector Force Law

E

o]

™

Comment

The connector is
infinitely stretch-
able.

The "linear—-locked"
springs can stretch
as far as R,, for

R <R, they are des-
cribed by Hocke's
law.

The "finitely extend-
able nonlinear
elastic" (FENE)
connector has an
upper limiting length

R = RO'
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ITII. STEADY NEWTONIAN VORTEX FLOW OVER A SOLID WALL

3.1 Introduction
A newtonian vortex flow has three distinct characteris-

tics in its flow behavior. As shown in Fig. 3.1, the region

T is called 'free stream region', which is characterized by

a potential flow. The tangential velocity vy 1is inversely

proportional to the radial distance r (the distance from

the axis of rotation) in the free stream region. The change

in Vg in +he z-direction is so small that the flow may be

treated as one dimensional. When the tangential Reynolds

numbher

however, becomes larger, the flow eventually forms a cell

and this case makes one treat it as three dimensiconal flow

problem . It is possible that the vortex flow in the free

stream region makes more than single cell (Donaldson and

Sullivan, 1960).

The region II is called 'core region' where a large
amount of downflow exists because of the exit hole in the
bottom plate. The tangential velocity vy - in turn, is

proportional to the radium because stress component

. O B
re HI=F T

has to be vanished at the axis of rotation.
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Three Different Flow Regions

in a Newtonian Vortex Flow
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The relationship between the centrifugal force and the
radial pressure gradient is known in both the free stream

and core regions. The centrifugal force

is exactly balanced with the radial pressure gradient

_ 3%p
ar

in these regions (Schlichting, 1968) but the balance between

the two forces is broken in region III which is called "bot-
tom boundary layer".
In the bottom boundary layer, the tangential velocity

v is reduced due to the drag from the bottom wall resulting

3]
in decreasing the centrifugal force.

On the other hand, the
radial pressure gradient remains the same along the z-axis
(Schlichting, 1968), this force, therefore, overcomes the
centrifugal force producing a large amount of radial inflow

(Taylor, 1972). The amount of fluid passing through the

bottom boundary layer is the same order as the total flow

rate (Lewellen, 1971).

In this chapter, the tangential velocity Vg in both

the free stream and core regions is determined by using an

empiracal expression of the radial velocity v, and the

flow behavior in the bottom boundary laver is approximatelvw

analyzed. The impact of the axial downflow from the core
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region on the radial inflow from the bottom boundary layer

occurs near the exit hole. The flow behavior in this area

is not well known because of its complicated nature {(Lew-
ellen, 1971). A numerical simulation for the entire vortex

flow, therefore, is needed to investigate the flow behavior

in the region near the exit hole. The simulation is seeking
for the exact solution of the full Navior-Stokes equations

for a confined wvortex flow. The treatment of an open—free

surface vortex flow such as used in the V.I. study has not

been studied. Such a problem is very difficult to manipu—

late because the shape of the free surface must be determined

as part of the solution. Dergarabedian (1960) treats a time-

dependent emptying process of vortex flow although he does
not consider the effect of the bottom boundary layer. Even

though the confined vortex flow is different from the open-—

free surface vortex flow, the essential feature of the V.I.

study may well be characterized by the confined vortex flow.
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3.2 One Dimensional Vortex Flow

In this section the tangential velocity in the core and
free stream regions is numerically solved as a one-dimensional

problem and the results will agree with available experimen-

tal data. In these two regions, Vg 1s assumed to be inde-

pendent of 2 , so that the 6-component of the equation of

motion becomes

[+ ¥
=

|

Lok

_ [2°r _ 1
v r odr

T
Vr 3¢

|
r

where the circulation T 1is defined by

Since the radial velocity V. is inversely proportional

r when r 1is large and v is, in turn,

Dergarabedian (1961) assumes

to the radius

linear to r when r 1is small,

the following functionality of V..

éa2 r2 3
Vr=——2-r—[l— exp (- -‘Q‘)J 3.3
a
where an elongational rate at the axis of rotation e is
defined by
avz
= = g = - 3.4
= e(zZ) 3z =0

From eq. 3.3,
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V. = 1/ r - 0
3.5
v_«r r + «
Ir
As the desired axial velocity v, is then given by the
continuity equation,
r2
Vo, = V,lr=g exp (- ;5) 3.6

Chiou (1976) experimentally determines the parameter a and
v, along the axis of rotation. eq. 3.1 is solved by a fin-
ite difference scheme. eg. 3.1 is discretized according

to the finite difference formula and the circulation I at

each discrete point is solved implicitly using the boundary

conditions

F(r=0) =0

and

F({(r=R} = FR.
The result of the calculation with Chiocu's experimental data
1s shown in Fig. 3.2. The calculated v, adgrees well with
the data. After numerical simulation, it is found that the
tangential wvelocity Vg is very sensitive to the elongation-—
al rate € . As shown in Fig. 3.3, when e is increased,

the radial convection shifts the peak value of Vg toward

the axis of rotation producing a steeper Vg o~ profile (case
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3.2 One Dimensional Vortex Flow

In this section the tangential velocity in the core and
free stream regions is numerically solved as a one-dimensional

problem and the results will agree with available experimen-

tal data. In these two regions, Vg is assumed to be inde-

pendent of 2z , so that the 6-component of the equation of

motion becomes

?2

ol [ r oT
v 2 = y| = 3.1
r ar arz

_ Ll
r dr

where the circulation T 1is defined by

r' = ve-r

Since the radial wvelcocity V. is inversely proportional

to the radius r when r is large and V. is, in turn,

linear to r when r is small, Dergarabedian (1961) assumes

the following functionality of v,

-

where an elongational rate at the axis of rotation e 1is
defined by
av,
L=~ = 3.4
€ e (z) az r=0
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v, = 1/r r -~ 0
3.5
Vv = r r + =
r
As the desired axial velocity v, is then given by the
continuity equation,
r2
VZ = V‘Z r=0 exp(- a—z-) 3.6

Chiou (1976) experimentally determines the parameter a and
v, along the axis of rotation. egq. 3.1 is solved by a fin-
ite difference scheme. eg. 3.1 is discretized according

to the finite difference formula and the circulation T at

each discrete point is solved implicitly using the boundary

conditions

I'(r=0}) = 0

and

I' (r=R) r

R*

The result of the calculation with Chiou's experimental data

is shown in Fig. 3.2. The calculated Vg agrees well with

the data. After numerical simulation, it is found that the

tangential velocity Vg is very sensitive to the elongation-—

al rate €& . As shown in Fig. 3.3, when & |is increased,

the radial convection shifts the peak value of Vg toward

the axis of rotation producing a steeper v, - profile (case
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2 in Pig. 3.3). The case 2 indicates that the increased

¢ dintensifies the 8 - component of vorticity near the axis

of rotation. ©On the other hand, when ¢ is decreased,

the vorticity is able to diffuse farther in the direction

resulting in a flatter Vo -profile (case 3 in Fig. 3.3).

Since ve near the axis of rotation is reduced, the corres-

ponding centrifugal force is also decreased. The radial

pressure gradient which is balanced with the centrifugal

force is then reduced.

The relative shape of the free surface of these vortex

flows can be obtained from the tangential velocity vy as

a function of the radius r. From the r- and z-components

of the equation of motion, the pressure gradients are

Q2

spP - . .
= pz 3.8

Pressure is an analytic function of position (Bird and
et al., 1960) .,
_ 3p Ip 3.9
dp = 3par *+ 5342

An integration of eg. 3.9 along the free surface gives
R ap S(R) ap

p{r=R,$(R}) — pl(r=x,S(r})) = J s—dr + I g—dz 3.10
r °F s(r) °%
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where S{(r) the z-position of the free surface at r.

S{r) can be calculated in eqg. 3.10 by knowing that the
pressure is equal along the free surface. The depth of the

free surface relative to that at the outer boundary (r=R)

is then given by

1 (R Vg
S(r) - S(R) = — —I 02 _ar 3.11

Fig. 3.4 shows the relative shape of tha free surface with

various elongational rate corresponding to Fig. 3.3 as the

result of numerical integration of eg. 3.11. As expected,

when the elongational rate & 1is increased (case 2), the
free surface becomes sharper due to the higher radial pres-

sure gradient near the center. When the elongational rate

& , however, is decreased, the fluid has a flatter free

surface.
Vortex inhibiticon corresponds to the free surface

shape's becoming flatter. As long as we regard the fluid

as Newtonian, the above calculation suggests that vortex

inhibition corresponds to a reduction in axial velocity

gradient e.

It is known that large velocity gradient (strain rate)
is necessary for polymer to be subject to change its confor-
mation. Especially when the strain rate reaches the order
of reciprocal of time constant lH, various polymer effects
start revealing (the rheclogy of polymer solutions will be

discussed in Chap. 5}. Chiou (1%76) indicated that the
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strain rate

ave

or

would be responsible for the polymer effect causing vortex

inhibition, the maximum wvalue of

in Fig. 3.2 is, however, at most about 60 sec - around

r = .4 em. This fiqure of

ave

or

is not large enough to realize the polymer effect because

the estimation of the time constant (See Appendix B) shows

that the dimensionless strain rate

av
g
AH a3

will be .6. The dimensionless strain rate has to be at

least more than unity to expect the polymer effect accor-
ding to the results obtained in Chap. 5. The strain rate

3v8

r

ar

therefore, may not be a main cause of vortex inhibition.

And this leads us to investigate the area where higher strain

rates are established in vortex flow.
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3.3 The Analysis of Flow Behavior Inside
the Bottom Boundary Layer

Since the polymer effect reveals when velocity gradient

is very large, the flow behavior inside the bottom boundary

layer in analyzed by the integral method (Lewellen, 1971)y. A

large deformation rate is expected in the bottom boundary lay-

er because the velocity vanishes at the bottom wall. In this

section, the boundary layer thickness & and the maximum ra-

dial velocity Vi max in the bottom boundary layer are approx-
I

imately calculated as functions of radial distance «r in order

to estimate the velocity gradient.
The following assumptions are made in the integral method.

1. The tangential velocity vy in the free stream region is

irrotational, that is,

v = I'/r

g,=

where T is a function of r only.

2. The radial velocity in the free stream region is negligible.
3. The tangential and radial velocities's profiles inside the

bottom boundary layer are chosen as (Taylor, 1950)

_ Z, _ z, _ ,2,2
= V5 o f(gd = verm[%(g) (5):] 3.12

- Zy 27,2y (1-%2
Ve = Ve max 96 T vr,max[; T A5 3.13

After an order of magnitude analvsis, the equations of motion

to be solved are reduced to 6-component of the equations



28

of motion:

r—-component of the equation of motion:

av, A 2 av 32v
v _r -— __B _r = —_]: ?E. + L 3 .15
rar r zdt p dr 322

The continuity eguation is

d 3 _
V) Y gz v, =0

The radial pressure gradient in eq. 3.1l5 can be replaced by

the centrifugal force in the free stream region.

Integrations of eq.3.14 and 3.15 from z =0 to z = &(r)

using eq. 3.12, eq.3.13, eq.3.16 and eq.3.1l7 give two equa-
tions having the boundary layer thickness &(r) and the max-

as two unknowns. The two equa-

imum radial velocity v
r,max

tions are




where

v )2
2 r,max 2(‘_12
vr,max) + 2Cl r = r3
Cl and C:2 and kl to ;\7 are given by
=1- u—kfi‘é)—r‘ - 74
172202
XA
3
= x —ls)k = ~,287
17420
1
_ z z zZ, _ 27
_IO £Zg@ad = 2
1
- [" ke - &
0
e
d(g) z=0
1
- [ Fpap - 38
0
1
f >
= W@ - nad - -4
0 T
d(-g-) z=0
2, A
_ 374 _ - _
= =+ Ag = -l4.46

99

3.21
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Eg. 3.19 is solved with the boundary condition v
r ,max
= 0 at the outer wall (r=R). The boundary layer thickness

§(r) is then obtained from eg. 3.18. From eqg. 3.19, v
r,max

is

v e B3 N N 3.22
r,max c;-I ;7' g2 T 2 .

The results of a sample calculation are shown in TABLE 3.1

with the results by Anderson (1966). Both v and & (r)
r,max

calculated by the two different methods are well agreed.

Although the velocity profies of Vg and v,. are assumed

in the method, reascnable results are about the boundary layer
thickness and the maximum velocity are obtained when they are

compared with Anderson's results. This method as well as An

derson's technique; however, can not be extended to the region

near the exit hole because the tangential velocity above the
boundary layer turns out to be a rigid rotational flow and

the radial velocity induced by a strong downflow above the exist
hole is not negligible anymore outside the bottom boundary layer.
The assumptions made are, therefore, no longer appropriate. The
flow behavior around the exist hole is much more complicated be-—
cause the radial inflow from the bottom boundary layer interacts

with the axial down flow from the core region. In order to anal-

yze the flow behavior, a numerical simulation for an entire vor-
tex flow will be described in the later section. Before this,

stress tensor contributed by polymer additive in the bottom
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boundary layer is calculated in order to see if the flow

behavior is influenced by the resulting polymer stress tensor.



TABLE

3.1

THE COMPARISCN OF INTEGRAL METHCD AND ANDERSON'S TECHNIQUE

vr,max(cm/SEC) § (cm)
ANDER- ANDER—~
* =
r r/R Vg, (CM/sEC) INTEGRALI SON'S [INTEGRAI/ SON'S
METHOQD TECH- |METHOD TECH-
NIQUE NIQUE
1 4.00 0 0 0 0
.9 4._.44 ~-1.08 ~1.0 .28 .28
.8 5.00 -1.74 -1.5 .31 .31
-7 5.71 ~2.47 -2.2 .32 .32
.6 6.67 ~-3.38 -3.0 .31 .32
.5 8.00 -4.62 -4 .2 .28 .32
B | 10.00 -6.46 -5.9 .26 .28
-3 13.33 -9.55 .22
-2 20.00 -15.82 .17
* The boundary condition: Vomax - 0, 6§ =0 at r =R
= 20 cmz/sec, R = 5Scm

* The data used is T

B | ——

102
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3.4 Influence of Polymer Additive in the
Bottom Boundary Layver

To test polymer effect, the simplest Hookean Dumbbell

model (Bird, et al., 1977) is used as a constitutive equation.

Since no polymer effect exists in the free stream region as
described in the last section because velocity gradient is
too small to excite macromolecules, the bottom boundary

layer is analyzed. The stress field in the region is numer-

ically calculated using Anderson's velocity profiles (1966)
and approximately calculated using the results obtained in

section 3.3.

Anderson uses the following egquations in the bottom

boundary layer.

8 — component of equation of motion:

av vV v v
A 8§ ¢ L 6 + v 8 = v 6 3.23
r 3r r Z 32 2
3z
r — component of equation of motion:
2 2
av v av 3 v
r _ '8 r _ _Lla . z 3.24
Yr 3T r T Yz 3z o 3 “822 .

These equations are then transformed into a new coordinate
system where the numerical calculation starts from the out-

side wall. Using the method similar to that used by Smith

and Cutter (1963}, the partial differential equations are
reduced to a set of ordinary differential egquations which

can be easily solved. In this method, r-direction deriva-

tive in a finite difference formula is approximated by using
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only previously obtained values.

The stress field is calculated considering an imaginary
situation. If a Newtonian fluid is replaced by polymer
solution all of a sudden, the resulting stress field due to
the polymer solution must be different. And if the differ-
ence of the stress field between the polymer solution and
the Newtonian fluid is large encugh to change flow pattern,
it may be said that polymer effect appears. To examine the
situation, the stress field is numerically calculated using
the Newtonian velocity profile. Since changes in z-direction
are important, the mesh points used in the calculation are

6x24 for r and =z directions in the area

where R and & are the radius of the outer wall and the

boundary layer thickness.

The constitutive eguation used here is Hookean Dumbbell

model.

T
p 7 ‘ulp

where i : polymer cotribution to stress tensor

. . +
The rate of strain tensor Yy = VvV + (V)

Ik

Velocity gradient tensor

<
<

(Vg)+: Transverse of Vv
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n: number density
k: Boltzman constant
T: Absolute temperature
D 4
T = = 1t = (Vv T — T Vv
=P (ly ~ Dt =P Vo) L T LY

The calculated stress field is then substituted into the r-com-

ponent of the equation of motion to see if there are signifi-

cant changes in an r-direction force balance. The r-component

of the equation of motion is most important in the boundary

layer because a strong radial inflow exists. Each stress term

is calculated for both polymer and Newtonian solutions in sev-

eral radial distances. TABLE 3.2 shows those results evaluated

at the bottom wall where stress terms have their maximum
values. Although polymer contribution appears in stress terms,
these forces are not large enough to change flow pattern when
compared with the radial pressure gradient which is one of the
dominant forces in the r-direction force balance.

In order to see the polymer effect further down to r/R=.2.

the stress field at the bottom wall can be estimated bv usinag

the results obtained in section 3.3. Two important components

of velocity gradient

v
r

3z z=0
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TABLE 3.2 THE COMPARISON OF FORCE TERMS IN R-COMPONENT
OF THE EQUATION OF MOTION
—%% _ er _ Trr ~ Tae
r/R ar rr r
(Vg &)
—_— r
R = 5cm Ty Polymer Newtonian| Polymer Newtonian
Scolution Fluid Solutiocn Fluid
.4 ~50.00 -1.918 0 .597 0
.6 ~14.83 -,292 0 .033 0
.8 -6.25 -.040 0 .006 0

The unit of the force terms is g-cm/secz/cm .

3

The polyvmer solution is considered as 30wppm

Polyethylene oxide.

(See Appendix B for con~

stants used in the calculation)

Newtonian Fluid is water at 25°C.
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ave

3z z=0
are expressed as

27,

48 "r,mdEx
and

2

5 Vow

respectively according to the definitions in section 3.3. It

is reasonable to assume that other components of veloccity

gradient tensor

av ov
_r

8r

r

8
ar

r

etc. are small enough to be neglected when compared with the

two large components. The wvelocity gradient

avr
az

appears rz-component of eqg. 3.25 as a forcing term. After

eliminating unimportant terms in eg. 3.25, Tro is

av

. r
trz = IlkTA.H 3z

z=0

and Ty effects T, 1n rr-component of eq. 3.25, T.p 18

then



. Bvr 2
"L'rr = —-2nkT [XH —a? ‘zzoJ 3.27
In the same way as above, T,8 is obtained from =z8 - com—
ponent,
. Vg
Tzo = T T A B [z=0 328
and 88 - component, Tgg becomes
. vy 2
Tas = —2nkT [AH 9z z=0] 3.29
The polymer contribution to Ty and Tsg at the bottom wall

are tabulated in TABLE 3.3 and compared with the numerical

results using Anderson's velocity porfile. Trr and Tgg from

the two methods reasonably agree to each other. The values

obtained by method 2 always exceed those estimated by method

l. They differ by factor about 2 for T and 1.5 for Tgg *

The parenthesized wvalues at r/R=.2 and r/R=.3 are extrapola-

ted by multiplying the results from method 1 by the factor

T and 1.43 for Tgq based on averaging over the

1.91 for rr

range between r/R=.4 and .8. Overall the two methods can

well provide stress components Trr and Tgg in spite of

their quite different approaches. The force terms in r—-compon-—
ent of the equation of motion is then calculated and tabulated
in TABLE 3.4. Even though the force terms due to the polymer

solution increase as r/R decreases, the radial pressure gradient

is still a domonant force in r-component force balance at small
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TABLE 3.3 THE ESTIMATION OF Trr AND ‘08 AT
THE BOTTOM WALL
2 2 2_2
/R T, [grom/sec” cm®] Tgg [9 cm/sec”cm”]
R = 5cm [METHOD 1 METHOD 2 METHOD 1 METHOD 2
.2 -7.891 (-15.100) -1.107 (-1.583)
.3 -3.345 {(-6.356) -.294 (-.420)
.4 -.563 -1.350 -.116 -.157
.6 -.108 -.155 -.037 -.056
.8 -.029 -.055 -.021 -.030
¥ METHOD l: Analytically solved using the velocity gradient
from Integral Method.
* METHCD 2: Numerically solved using the velocity gradient

*

Trr’tee

from Anderson's technique.

Contributed by Newtonian fluid are zero.
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TABLE 3.4. THE COMPARISON OF FORCE TERMS DUE TO POLYMER
SOLUTION BY TWO DIFFERENT METHODS
)] -
5r 3 _Trr T Tasg
dr rr r
r/R (Vy o)
=-p La
r
R = Scm METHOD 1 |METHOD 2 (METHOD 1 |METHOD 2
.2 -400.0 -9.092 (-17.488) | 6.784 (13.517)
.3 ~-117.9 ~7.328 (-13.750)| 2.034 (5.936)
.4 -50.0 ~3.097 (-5.965) .224 .597
.6 ~14.83 -.194 -.292 .024 .033
.8 -6.25 -.040 ~-.093 .002 .006

=0 )

* The unit of force terms is

g cm/secz/cm .

3

* METHOD 1 and 2 are the same as in TABLE 3.3.

are calculated using extrapolated values in TABLE 3.3.
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r/R because the stress forces are less than 5% of the deomin-—

ant force. Again, although the stress field raised by the

polymer solution grows in the bottom boundary layer, it is

too small to change Newtonian flow behavior. This conclusion

forces us to investigate the flow behaviors in the core re-
gion and in the area near the exit hole to see if large velo-

city gradient is realized. In order to analyze the flow

behavior of these regions, the numerical simulation by

solving a full Navior-Stokes equation for the entire vortex

tank is described in the next section.
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3.5 A Numerical Simulation for Entire Vortex
Flow Field

3.5.1 The Governing Equations.

For an incompressible viscous flow in a confined

cylindrical container, assuming that the flow is axisymmetric,

the velocity field in terms of circulation, vorticity and
stream function in a cylindrical coordinate (r,9,z) are des-
cribed by the following equations.

CIRCULATION T

Q2
-
+
<
a»
=
+
<
Q|
=
|
<
[
[+F)
A% ]
—
-l-.
Q>
8]
=
t
=
Q2
Law |
———
(¥ ]
[F¥]
[ ]

Q2
ri-
K
o
a1
N

VORTICITY w

2 2
8w 8w 1 3w m]
= u[ + — - 3.31
ar2 3 2 r ar r
STREAM FUNCTION ¥
2 2 1 3
a_squ,a_g__%:_m 3.32
ar 2z r

where v is a kinetic viscosity. The circulation is writ-

ten in terms of Vg -

' = rvy 3.33

and the relation between the vorticity and the radial and ax-



ial velocity V,.rv, 1S
. Bvr _ avz
az ar

V.V, relate to the stream function by

v = - L 3¥
r 8z

e

L
\va = =
r

113

Since a zone method (Clomberg,l1971) is used for a finite dif-

ference formula, the eg.3.30 to eqg.3.32 are arranged for more

suitable terms. The dimensionless forms of the eguations are

CIRCUOLATION T

al 1l 3 3
2 4+ = £ I
st r ar(rvrr) * aaz(vzr)
1 32F + 2 82T 1 ar
Rer |.. 2 a 2 Tt 3r
or dz
VORTICITY
dw 1 3 3 _eda 3.2
3¢ t T oap(Evee) +ag vyl - Ve = ST
1[82w+a282w+£3_m__w_]
Rer ar2 az2 r or r2

STREAM FUNCTION @

3.30A

3.31a
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2 2
8r2 822 rar

The dimensionless variables (no marks) are related to the

dimensional counterparts (marked by asterisks) in the follow—

ing way:
* I"-k w*
Lpz—l‘p— , Fr =rv = ’ w =
RHV 8 RV o v, /R
* *
v_ = - v = Tz r = r*
- r = r = 4
r VR Zz VR R
7 = z* £ = t* a = R
= &£ _ , = —— , = =
H R/VR H
where Vo and Vg are the radial and tangential velocities

at the outer wall, R and H are the radius and height of
the container respectively. Two important parameters, the

radial Reynolds number Rer and swirl parameter S are de-

fined by
Rv
Rer = —2 3.36
v
v 2
S = [_GR} 3.37
Yr

Eg.3.28 is rewritten by

Y L

a 3.35A
az
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ay
I 3.35A

al L

v. =L
zZ a

3.5.2 Finite Difference Formula (zone method)
In order to avoid the free surface as the boundary of

vortex flow, a cylindrical container is assumed to have two

exit holes located on the axis of rotation at each of the two

end walls. As shown in Fig.3.5, the vortex flow is then sim-

ulated over a quarter of the total area because of geometrical

symmetry. The treatment of the free surface boundary in this

way 1s eliminated without losing the most important character-

istics of the vortex flow {(Anderson,l1961).
The geometry of the flow field is explained in Fig.3.6.
Pue to the characteristics of the vortex flow described previ-

ously, the mesh size in both the bottom boundary layer and core

region is made much smaller than that in the free stream region

to provide detailed information about the flow behavior in

those two regions. The zone construction is described in Fig.

3.7 where the dot in each zone represents the spacial position

of a dependent variable F which is assumed to be uniform in-

side the zone (F 1is one of T, w or ¢). The velocities v_

are calculated using linearly interpolated stream

and v
z
The ¢ 1,3 in

function wIN at the corners of each zone.

Fig.3.7, for example, 1is calculated by
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The Model Geometry of Vortex Flow
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Figure 3.6

The Mesh Construction of Vortex Flow
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The Zone Construction
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N (Yier,§+1°P%3 Y Vig1,5°DP%441
Yi,5 < DZ_. + DZ * DRy
rJ J +1
Y. .,1+DZ. + ¢. _+DZ
i,3i+1 ] i g i+l ]//
+ *DR. (DR.+DR. )
DZ] + Dzj+l i+l i i+1
2 <1 <N
3.38
2<3<H™
According to eg.3.35A, the velocities v _ i3 and v, i,]
are approximated by
1 IN IN
L e m e e (Y. = UL DZ .
Vr 1,3 (R +DRJ'_) (wl!] lplr]"l)/ ]
it L
2
3.39
_ 1 IN _ IN
Ve 1,5~ ar i3 T Yien, /PRy

In order to increase the stability of the calculation, in

other words, to make a diagonally dominant matrix (see Appen-—

dix D), the convective terms in eqg.3.30A and eqg.3.31A are ap-

proximated in the following way:

3 Ve 1,377 1,3 DR;
r I 4 e
Ef(rer)i,j - (R; +— )Fl,j
Ve 1,970 Ve 5,50 o PRi
* 2 (Ry+—5IF541,5
Ve 1,371 i-l,jl(R PRip _
7} i 0 F 1,5
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v . v | DR,
r 1-1,3 r i-1,3 i
5 (R;~—> )Firg] // DR, 3.40

When circulation (or vorticity) is transported across a zone

boundary by convection, eqg.3.40 is devised such that it tends
to decrease the rate of circulation change in the zone from
which it comes and to increase it in the zone to which it
flows to conserve circulation {(or vorticity). The proper ap-
proximation of the convective terms is one of the critical
factors for the stability of the calculation especially when
Reynolds number and the swirl parameter are increased, that is,
when the magnitude of the convective terms becomes comparable
with that of the diffusion terms.

The second and first derivatives are approximated by

[BZFJ _ (Fir1,3 T Fi5  Fig T Fio1,3
sps Jir3d DR; + DR, ; DR; + DR; ;|

2 2

R.,, - R,
- [ i+l L—l] 3,41

2
[EEJ' = Fi+l’j _ Fi’j or Fi'j _ Fi—l'j 3.42
arjyi,j [DRi + DRJ.__'_:L\ {DRi + DRi—l]

2 2

The choice between forward and backward approximations for the
first derivative in eq.3.42 is determined so as to make a more

digonally dominant matrix for the calculation.

The boundary conditions due to the geometry of the con-
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fined vortex flow is tabulated in TABLE 3.5. The circulation

at the axis of rotation becomes zero although the tangential

r = 0 because of its defin-

velocity v may be finite at

8

ition (see eqg.3.33). = 0.

The vorticity also vanishes at r

The radially directed momentum flux Ty must be zero at r

= 0 because of the axisymmetric nature of the vortex flow.

From the definition of Trz for Newtonian fluids,

BVZ avr
Trz = ‘“-{a—r * Tz_] 3.43

where p is viscosity. In order to satisfy the condition for

Tyo at r = 0, both velocity gradient components

av avr

A
ar and Z

in eg.3.43 have to be zero. It is also confirmed experiment-

ally that

avz

ar

becomes zero at r = 0 (Chiou,1976). The boundary condition

w =0 at r =0 is thus reasonable. The stream function at
the outer wall is proportional to the height of the container

based on the reasconable assumption that the radial velocity at

tha outer wall is constant along with the height. By consider-

ing the confined vortex flow, the boundary condition at liquid

level (z = 1) are simply placed by the shear free condition



TABLE 3.5

THE BOUNDARY CONDITIONS FOR A CONFINED

VORTEX FLOW
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STREAM
CIRCULATION VORTICITY
FUNCTION
ZERO
THE AXIS OF
TOTAL FLOW (but Vg is ZERO
ROTATION
finite)
THE OUTER v_ is constant
CONSTANT ZERO
WALL v, is zero
LIQUID LEVEL TOTAL FLOW SHEAR FREE ZERO

THE EXIT *

HOLE

SHEAR FREE

SHEAR FREE

SHEAR FREE

THE BOTTOM

PLATE

Vﬁ and v,

are zero

ZERO

NON-SLIP

CONDITION

*

Since nothing is known in the exist hole,

are reasonably assumed.

all conditions
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for the z-direction for the circulation and the zero vor-

ticity because of the symmetry of the flow system. The shear

free condition mentioned above is defined so that the first
derivative of the circulation with respect to the z-direction
is zero. The boundary conditions thus become much simpler

when compared them with a curved-shaped free surface boundary

condition. The simpligication of the free surface boundary

condition really makes the calculation feasible. The values

of vorticity at the bottom plate are determined from non-slip

Since the stream function wvanishes at the bottom

condition.
plate, the vorticity w, at z = 0 is simplified from egq.
3.32A.
2
a a3 ¢
Lo, = — — 3.44
o r 822 z=0

The second derivative of the stream function at =z = 0 1is

approximated in terms of y(Az) and (2-Az) using Taylor's

expansion near z = 0. ¢(Az) and ¢ (2-Az) are then
Az az>
p(Az) = ¢ (0) + @' (0)-az + ¢"(0) 5— + P (0) 3 + ... 3.45
(2-/_\2)2
p(2.a2) = ¢(0) + ¢'(0) (2-Az) + w"(O)———g———
(2-Az)3
+ [‘J"'(O) 6_ _+ .. . 3.46

Since
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p(0) = "0y = 0O,
t+he second derivative is

_ By (2-Az) 5 p{Az) O(Azz) 3.47
2:Az

wl'l'(o)

The truncation error of eq.3.47 is of order Azz. The flow

behavior at the exit hole is not known at all. The shear free

condition for the three functions ([,w,?®) may be a good choice.

The boundary conditions are rewritten in terms of finite dif-

ference formulation in TABLE 3.6. The solving methods for the

governing equations are described in the following two sec—

tions. The first method is called relaxation method which 1is

suitable for low Reynolds number and the ADI method for high

Reynolds number follows.

3.5.3 The solving Method for Low Reynolds Number

Using finite difference scheme, eq.3.23A to eqg.3.25A are

approximated for a steady state flow. The equations are sum—

merized in a general expression.

CLE; s #C2F; 4 5 +C3F; 5,4 ¥CLF; 4

r

+ C5 F; s 5 =C6 3.48

where Cl1,C2,C3,C4,C5 are coefficients of the dependent var-

iable F (¢,C,w) at zones (i,j), (i+l,j), (i,3+1), (i-1,3).

(i,j-1) respectively and Cé is a forcing function. If, for
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TABLE 3.6 THE BOUNDARY CONDITIONS IN FINITE

DIFFERENCE EXPRESSION

[
Y r o
r =20 (lf_jf_M) I[Jlrj = ] Fl,j = wl,j = 0
r=1 (1<j<m) Y,5 = % y,5 =1 wy 5 =0
Fi M
. _ 1 -
Z =1 (1<i<N) wi,M =1 =7 (9r:|.,M-l wiM o
rlrM-z)
(L=i<3) bi,0 T ¥, Ti,i T Ti0 ©i,1 T 9i,2
Z=0
[eq.3.44]
(4<i<N) v; = O Iy =0 eq.3.47
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example, eg.3.48 is applied to the equation for circulation,

the coefficient Cl is expressed by

DR,
[} ri,j Vil j’)(R * =)
DR,
- 5T IVe o1, 5D BRy- ﬂ
X 2 + | (v v [ - (v ~lv )
2 DE, z i,571Vzi, 7 z i,3-1"1V2 1,5-1
2 2
2R a Ry 2
2 Dzj Rer Ri+l_Ri-l (DR +DR l)(R +R l)
. 2
(DRi+DRi—l) (Ri‘l'Ri_l)
2
a R.
i 1 1 1
+ — [ + 3.49
Ty %5_p (DD 7 DZj+DZj_li]

First of all, eg.3.49 is rearranged and

N N N
Fiy5 ¢ Fivr,5 » Fic1,5

(N indicates a newly calculated) are implicitly solved for

the r-direction by

N N N
C4 F, y . +CLF, 5 +C2F; ., 4
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This is represented in each Z-point (2 < j < M-1).

N N N
Fi,5 ¢ Fig41 ¢ Fig-l

are then solved implicitly for the =z-direction by

N N N
C5 F; 59 +CLF, 4 +C3F; 54y
= =C2 Fiv1,9 ~ Cc4 Fi—l,j + Cé for 2 £ j £ M-1
3.51
Again eq.3.51 repeated for each R-point (2 < i £ N-1). Once

the value of FN is calculated from eg.3.50 or eq.3.51, the

new value is assigned to F by averaging the newly calculat-

ed value and old value with a relaxation factor to avoid a

sudden change which induces instability (Schultz and Shah,

1975). The newly relaxed value of F is then used in the

right hand side of eq.3.50 and eg.3.51 as a known value.

The stream function (eq.3.32A) is first calculated and

the radial and axial velocities are then determined from the

interpolated stream function. Using the values of the vel-

ocities, the circulation (eqg.3.30A)and then the vorticity (eq.

3.312) are manipulated. This whole procedure is repeated un-

+il the three variables reach a steady state. The calculation

is terminated when all of the variables have steady values at

each spacial point. The two parameter Rer and S are in-

creased gradually from Rer =1 and S = 1 to the experi-

mental condition where Reynolds number is about 20 and the

swirl parameter is about 2500. And the results of the previ-
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ous calculation, namely the case which has a lower Rer and

S, 1is used as an initial condition for a higher Rer and 5

to make an initial error from a new steady state as

case
small as possible. The results of the case Re = 10 and
S = 40 after 60 iterations are graphically shown in Fig.3.8

to Fig.3.ll. From these figures, the velocity gradient compo-

nents near the exit hole are found to be extremely large when

compared with those in other regions. For instance, the cir=-

culation T at r = .03 in Fig.3.8 increases dramatically

as it goes down to the bottom plate. The highest value of T

at z = .03 1is about 20 times as much as its value at z = 1.
The velocity gradient
Bve
2z
z = .1. The ra-

therefore, is very large especially within

dial velocity v_ inside the bottom boundary layer shown in

Fig.3.1l0 is also accelerated as the fluid flows toward the

axis of rotation producing a high deformation gradient

oV
.

ar

The axial velccity v, in Fig.3.1ll in the core region grows

very rapidly especially near the exit hole. The high velocity

gradient components

av avz

T a
-z an 5T
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Figure 3.8
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Figure 3.9

CIRCLULATION V& R

Re = 1G-0 SWIRL = 40-0

O
=

0
)

)
I
0
W
|-k

»)

6.0 5ei 0.2 5.3 0.4 5.3 CB C-S

R-AXHIS

CIRCULATION



Figure 3.10

RAOTAL VELOCITY VS Z

RE = 10-C SWIRL = 450

Z-AXIS
+ 1-0
- O-3
T 0-8
T O/
T G-
+ O8-%
T &-4
- C-3

13

]
1
: =.84
e eSS A
-3CC-C -250-C -=2C00-0 -15G-C -108G-0 -3C- L -O-3 42-3 99.

RACIAL vEL OCITY (M-S x25



132

Figure 3.11
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are expected in this region. On the whole, even for the case

Re = 10 and S = 40, it is apparent that the significance of
the flow behavior near the exit hole is emphasized because
there exist much higher velocity gradients which may induce
the polymer effect.

The method described in this section is found to be inca-
pable of solving the equations for higher Reynolds number and
swirl parameter case where non-linear convective terms in the
circulation and vorticity equations become dominant forces.
The dependent variables never reach a steady state even though
very small relaxation factors and hundreds of iterations are
applied. Another approach, therefore, is used to solve the

non-linear partial differential equations (eq.3.30 to eq.3.32),

and this approach is described in the following section.

3.5.4 The Solving Method for High Reynolds Number

The method used in this section is the alternating-direc-
tion implicit method (A.D.I.) developed by Peacman and Rach-
ford (1955). The main difference between ADI and the relaxation
method described in the last section is that ADI includes the
time derivative terms in the egquations so that the problem is
categorized as an initial value problem. By choosing an ap-
propriate time ircrement, this iteration method shows a great
advantage over the relaxation method especially for large Rey-
nolds number.

The equations (eq.3.30 to eq.3.32) are again rearranged

into suitable dimensionless forms.
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CIRCULATION T

ol 1 3 3
IE + E’g;*(rvrf) + ag;(vzf)
2 2
1 [ar 2 3°T 1 3T
= s— + a’t — - = == 3.30B
Ree arz az2 r ar
VORTICITY w
3 r 3r r® 5z ' z% ¥ r3 dz
2 2
_ 1 3w 2 37w 13w _ w
ﬁe—'{—i”a 2 T TIT z] 3.31B
& ar 2z r
STREAM FUNCTION ¢
2 2
¥ 23y lavw_ a
2 "2 7 7 T 3r ~ §8F¢ 3-32B
ar az

And the dimensionless radial and axial velocities V. and Vz

are written by

w
w
=
(o]
S
—

The dimesionless wvariables are defined by (dimensional coun-

terparts are marked by asterisk)
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* I‘* (IJ*
Y = b= , ' = v r w =
VRRH 8 RVeR VBR/R
* *
V. = L v = Vz r = ——r*
- r = ’ =
¥ V5r Z  Vgr R
g = z* £ = t* a = R
- =T r r - T
H R/veR H

Two parameters, Reynolds number (tangential) Re8 and the

ratio of VR to VeRr’ 55, are defined by

Rev
B oR
Rey = — 3.53
V.
S8 = ;33 3.54
8R

The boundary conditions in TABLE 3.6 can be used for this for-

mulation except for the vorticity at the bottom wall wp. wp

is written by

259, - .
wp = SSp- e o L.2 3.55
i 2+DZ
2
for 4 <1 <N

The stream function is first solved by the relaxation

The velocities w

method as described in the last section. -

and v, are then determined from the interpoclated stream

function wIN by the descretized form of eq.3.52.
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Using coperator notation, eq.3.30B is expressed by

o
s = LT+ LT 3.56

where the differential operations for the r and z dir-

ection are given by

2

-1 fa7r _Lloar|] _ 13

er ~ Re [ 2 r ar r ar(rer) )
2 ar
3.57
2

_ 1 2 3 .8

Lzr - Reg [a arZPJ aaz(vzr)

The time derivative and the operands are descretized by finite
formulas. The circulation advanced by one time step (N+1l) are

then solved implicitly for the r-direction by

=

I,N+IL

At

o opap ML _
r

1

N
*
+ LZF 3.58

)

A

where L; and L; are descretized forms of Lr and LZ.

. . + .
The further time advanced circulation PN 2 is next solved

implicitly for the z-direction using the previously obtained

pN+L
N+2 N+1
r e N+2 T o N+
S Ler = gt LET 3.59

The vorticity is next calculated by ADT.

The whole iteration procedure (Pao, 1970) is summarized

in Fig.3.12. Choosing appropriate initial conditions and time



Figure 3.12 137

The Iteration Procedure for Vortex Flow Calculation
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increment, the stream function is iterated until it converges.

The convergence criterion for the stream function is

_ NEW _ , OLD|
1,7 i,j

NEW < .05
i ] 3.60

|

¢
for

After convergence, the time advanced circulation is calculated

followed by the vorticity calculation. A very small time in-
crement increases the stability because it makes a strong di-

agonally dominant matrix but it takes an excessive amount of

calculation time. When a very large time increment is taken,

however, the calculation becomes unstable so that the results

are physically meaningless. The optimal time increment is de-

termined by a trial and error approach. Von Neuman stability
analysis (Clomburg, 1971) obvicusly does not work for the case
where the non-linear convective terms are dominant in the e-
quations. The time increment is usually decreased when the

calculation results approach a desired steady state to ensure
the stability near the steady state.

The iteration is terminated when the residual of each dif-
ference equation becomes sufficiently small when compared with
the dominant terms in the equation for the entire geometry.

The detailed information about the calculation is found in

Appendix A along with a complete listing of program.



Iv. EXPERIMENTAIL STUDY

4.1 Introduction

A steady state vortex flow system is constructed in

the vortex inhibition study although the original experi-

mental study conducted by Gordon (1972) used a batch vortex

flow with a square shaped tank. The two advantages of the
steady state vortex flow system are that it provides time-
independent velocity data and makes it much easier to
observe several qualitative features of the flow. A meas-
urement of velocity in the steady state vortex flow becomes
very reliable when compared with a batch system because it
requires a certain amount of time to get velocity data by
a photographic tracer technique described in the later
section.

The macromolecule {polymer} used in the study is poly-
ethylene oxide (Union Carbide, brand name - Polyox 301)
because it shows the vortex inhibition phenomenon more
distinctively than other types of polymers. For example,
Separan AP-273 (high molecular weight polyacrylamide) has
relatively large intrinsic viscosity (Clarke, 1970) so that
it is very hard to distinguish between polymer effect and
viscous effect.

A large fluctuation (in the velocity components for
polymer solution) associated with the vortex inhibition

makes the quantitative measurement of them very difficult.

Most of the velocity measurements are thus done for

139
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Newtonian fluid and several qualitative observations are
done for both the Newtonian fluid and the polymer solution.

As mentioned in chapter 3, the flow characterization
of the Newtonian vortex flow is very complicated and still
not known completely. The velocity measurement of the
Newtonian vortex flow, therefore, not only provides very
important information about the rate of strain for the
vortex inhibition study but also gives some useful under-
standing for confined vortex flow.

The total flow system of the steady state vortex flow
is described in the next section followed by an explanation

cf the photographic tracer technique. Experimental pro-

cedure for the measurement of velocity components in sev-

eral regions are then explained in detail. Finally four

kinds of qualitative observations are portrayved.
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4.2 The Flow System

The continuous steady state vortex flow is established
by tangentially introducing a fluid inside the outer wall

of the vortex tank with an equal flow rate of draining

fluid from the tank. Fig. 4.1 shows the total flow system

of the steady state vortex flow. By keeping the head of
a fluid constant in the constant head tank, any desired

feed rate is obtainable by adjusting the three valves,

valve 1, 2, and 3. Once a steady state flow rate is estab-

lished, that is, the liquid level in the vortex tank be-

comes stationary, the flow rate is determined by measuring

t+he amount of the fluid leaving the vortex tank in a cer-

tain time period. The fluid drained from the vortex tank

is then sent to the feed tank where excess fluid from the

constant head tank is also collected. The fluid in the

feed tank is brought up to the constant head tank for re-

cycling. The pump used in the flow system is Moyno Pump

(lLL2-CDQ). The Moyno pump 1is a screw conveyor type of
pump with rounded flights so that it reduces degradation
substantially when compared with centrifugal or gear types

of pump. Recycling the fluid is permitted for only Newton-

jan fluid because a polymer solution is eventually degraded

when used for recycle. The macromolecules are degraded

especially when a high shear rate is imposed. Since the

fluid experiences high deformation rate at the valves and

pump, the degradation of the macromolecules is inevitable

in this kind of experimental studv. The polymer degradation
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is one of the reasons why gquantitative velocity measure-

ments are difficult for the polymer solution.
A detailed sketch and photograph of the vortex tank
are shown in Fig. 4.2 and Fig. 4.3 respectively. The ocopen

ended vortex tank made by plexiglas has a special inlet

section. The fluid is first fed into a small tube from

the constant head tank. The small tube is equipped with

39 equally spaced small holes of .32 cm diameter along its

entire height. The fluid then flows intc a thin channel

through these small holes. A flow straightener made by a

pile of many small tubes is located at the end of the chan-

nel. The fluid come through the flow straightener enters

tangentially at the side wall of the vortex tank with near-
ly flat velocity profile from the bottom to the liquid

level. Although a viscous boundary layer forms near the

side wall, it does not disturb a main flow because the

boundary layer thickness is very small. The exit hole is

located at the center of the bottom wall. The diameter

of the exit hole is .48 cm and this is about 3% of that of

the vortex tank. It takes about one to two hours to get a

steady state vortex flow in this flow system.
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is one of the reasons why quantitative velocity measure-

ments are difficult for the polymer solution.
A detailed sketch and photograph of the vortex tank

are shown in Fig. 4.2 and Fig. 4.3 respectively. The open

ended vortex tank made by plexiglas has a special inlet
section. The fluid is first fed into a small tube from
the constant head tank. The small tube is equipped with

39 equally spaced small holes of .32 cm diameter along its

entire height., The fluid then flows into a thin channel

through these small holes. A flow straightener made by a
pile of many small tubes is located at the end of the chan-

nel. The fluid come through the flow straightener enters

tangentially at the side wall of the vortex tank with near-
ly flat velocity profile from the bottom to the liquid

level. Although a viscous boundary layer forms near the

side wall, it does not disturb a main flow because the

boundary layer thickness is very small. The exit hole is

located at the center of the bottom wall. The diameter

of the exit hole is .48 cm and this is about 3% of that of

the vortex tank. It takes about one to two hours to get a

steady state vortex flow in this flow system.
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Fie. 4.3

A Photograph of the Vortex Tank
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4.3 Photographic Tracer Technique

Tangential velocity V8 at the free stream region,
axial velocity Vz along the axis of rotation and axial velo-
city near the exit hole are quantitatively measured by this

technique. These velocity components are determined from

time lapse photographs of small particles suspended in a thin
section of the fluid which is illuminated by a collimated
beam of light (Hill, 1969 and Chiou, 1870). A strobe light

(1540 strobolume, 1540-Pl oscilator, 1540-P2 lump, Genrad)

can flash up to about 400 times per second and the duration

of each flash is only about 1lu sec. All measurements are

calibrated by photographs of scale.

The tangential velocilty Vg in the free stream region

is measured at different radial positions. The measure-

ment is done at two different axial positions. The Ve—data

at two axial positions is enough to represent Ve in the

free stream region because the tangential wvelocity is almost

The V., is calculated from

independent of axial position. 5

a particle's dot trajectory on the bottom view photograph

using a horizontally collimated light. The camera (Nikomat

FTN F2.0) is located underneath the vortex tank so that a

distortion due to free surface is eliminated. The setup of

Vé measurement is shown in Fig. 4.4. Fig. 4.5 shows the

picture of a typical particle's dot trajectory. A number

of dots can be controlled by adjusting both the flash rate

of strobe light and the exposure time of camera. The axis

of rotation on the photograph is determined by shifting a
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Fig., 4.5

A Photograph for Measuring VB
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a transparency paper on which a number of concentric circles

are drawn until the particles' trajectories coincide with

the circles. The center of these circles on the transpar-

ency paper then indicates the axis of rotation on the

photograph. Although radial velocity v, exists in the free

stream region, its value is so small when compared it with

Vg that it is hardly determined from the photograph. In
Fig. 4.6, Ve is approximately calculated by
r, +r, 6, - 8
Vezl 2 _2 L 4.1
2 At
where
.=/ %% +y.°
1 1 1
i=1.2 4.2
-1 ¥4
6. = tan 1 J
i X,
i

Since each dot in Fig. 4.6 corresponds to individual flash,

At 1Is determined by
At = nd/rE

where nd is a number of dots and re is flash rate.

The axial velocity measurement in the core region is
very difficult with the present photographic technique
because the reflection of light from the air core is so

strong that it makes the particles near the air core impos-

sible to see. Incomplete vortex flow (the word 'incomplete'



Fig. 4.6 POTS SHOWING THE TRAJECTORY OF 150

SEED PARTICLES FOR VS MEASUREMENT

T2 (%3,¥2)




131

indicates that the air core does not extend down to the exit

hole.}) thus is established so that Vz at the axis of rotation

can be measured from the side view photograph. A vertically

collimated beam of light which includes the axis of rotation

is used for Vz measurement. As shown in Fig. 4.7, the first

slit width is 1.2 cm and the camera is located so that it
can detect the scattered lights which makes a right angle
with the beam of light source. Fig. 4.8 is a photograph

from which Vz at the axis of rotation is calculated. Vz is

approximately determined by dividing the distance between
two adjacent dots by a time span for two flashes. Averaging

the axial positions of the dots gives that of the calculated

V_.
z

When the axial velocity v, is measured near the exit
hole, a black painted disk with a hole at the center, whose
diameter is the same as that of the exit hole, is placed
on the bottom wall of the vortex tank so that the reflection
of light from the bottom is substantially reduced. Fig. 4.9
is a photograph which shows the flow behavior near the exit
hole. From the particle's trajectory in Fig. 4.10, V6 as

a function of radial position near the exit hole, is approx-

imately calculated by

VvV, = —/———— at r

where
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Fig. 4.9

A Photograph Showing the Flow Behavior near the
Exit Hole
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Fig. 4.10 DOTS SHOWING THE TRAJECTORY OF

SEED PARTICLES FOR V, MEASUREMENT
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Since the magnitude of radial velocity v becomes comparable
to that of Vg in this region, the particle moves appreciably
towards the axis of rotation even in a very short time period

(At = .045 sec in Fig. 4.10). Two radial positions ry and

Lyr however, are not so different, the approximation (eg. 4.5)

may thus be acceptable.
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4.4 Experimental Procedure
Several kinds of experiments are done depending on the

kind of velocity data to be measured. The experimental proce-—

dure for the measurement of the tangential wvelocity in the free
stream region and the axial velocity along the axis of rotation
for both a Newtonian fluid (room terperatured water) and a

polymer scolution are summerized as follows:

L. Calibration: &After filling water in the vortex tank, the

pictures of scale are taken, first at the two axial position

(zl, 22) for Vg calibration. Even though the axis of rotation

does notcoincide exactly with the center line, the error asso-

ciated with this is negligible.

2. Flow Circulaticn: Turn on the pump to circulate the water.

The valve 1 in Fig. 4.1 is wide open and at the same time

valve 4 is closed. By contrelling valve 2 and 3, any desired

steady state is obtained. Establishing a steady state flow is

determined when the fluctuation of the liguid level in the

within £.5 cm. The liquid level is usually

vortex tank becomes

between 15 cm and 20 cm.

3. Flow Rate and Liquid Level Measurement: After a steady
state vortex flow i1s established, the volumetric flow rate is

determined by measuring the amount of the fluid from the vortex

tank in a certain time pericd. The measurement is repeated at

least 6 times to ensure the system has reached a steady state.

The ligquid level is also recorded.

4. Seeding Small Particles {Chiou, 1976): The seeding parti-

cles are made from PLIOLITE (Goodyear product: Solution Regin
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type S6B Lot 42-13-D1). The PLIOLITE is crushed in a mortar

and pestal until a desired particle diameter range is obtained.
The diameter of the particle used in the study varies between

208 um and 425 um. The optimal particle density is determined

by trial and error. The highly concentrated particle solution

is first prepared. The particle solution is then added to the

feed tank little by little through a pipette. After the par-

ticles are well distributed in the whole fluid (it takes about
20 min.), the appropriateness of the particle density is

judged by looking through the finder of the camera.

5. V, Measurement Along the Axis of Rotation: The pictures

for the particle behavior at the center of the vortex tank are

taken by the method delineated in Fig. 4.7 The aperture and

exposure time of the camera are F4.0 and .5 sec. respectively.

The flash rate of strobe is 4000 times per minute. The £ilm

used for the velocity measurement is Kodak Tri-X pan with ASA

400. Twenty to thirty pictures are taken for V, measurement.

6. Flow Rate and Liquid Level Measurement: The flow rate

and the liquid level are measured again in the way described

in procedure 3.

7. Vg Measurement at z4 and,zz: After setting up the appara-

tus as described in Fig. 4.4, the pictures for the particles'

behavior at two different horizontal plains (z; and 22) in

the free stream region are taken. Due to the characteristics

of the tangential velocity profile, 4 different flush rates

(1000, 2000, 3000, and 4000 times per minute) are used
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depending on how fast the particles move in the region of
interest. The aperture and exposure time of the camera are

F2.0 and %, %, 1 sec. BAbout 20 pictures are taken at each

plane,
8. Flow Rate and Liquid Level Measurement: The flow rate

and the liguid level are measured to see if there is any

significant change in the steady state flow during the course

of the experiment.
The V8 measurement for a Newtonian fluid is terminated

here. For a polymer solution, the procedure is continued

to the following:

9. Vy measurement for a polymer solution: A concentrated

polymer solution is prepared at least 2 days before use. A

certain amount of polymer (Polyethyrene oxide: Polyox 301
made by Union Carbide) is weighed carefully and dissolved in

about 30 cc of isopropancl (Paterson and Abernathy, 1970) in

a beaker. 1 g of Polyox 301 makes about 30 w. ppm solution
for the system. After the powder of the polymer is well

scattered in the isopropanol, water is gently poured into the

beaker until the solution reaches 1000 cc. The beaker is

then covered and allowed to stand until the polymer dissolves

completely in the water.

The concentrated polymer solution is poured into the
feed tank. As soon as the polymer effect begins. That is,
the small fluctuation of the air core is observed. The pump

is stopped running so that the degradation of the polymer is
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avoided to some extent. The onset behavior of the V.I. is
then measured by taking pictures for Vg. All the pictures
are taken within 30 seconds after the onset of vortex inhibi-
tion. The importance of measurement of the onset behavior is
to be able to observe how the Vg is changed by introducing
the polymer solution into the Newtonian flow pattern. And
the information is very useful for the analytical study of
vortex inhibition (in Chapter 6 ) because a numerical
simulation is done for the situation where the Newtonian
fluid is suddenly replaced by polymer solution to see how the
resulting stress field calculated by use of the Newtonian
flow behavior changes due to the presence of the macromole-—
cules. After a couple of minutes, the vortex flow completely
shifts to a new quite different flow status which is the
vortex flow of the polymer solution. The flow rate and ligquid
level are then measured.

The procedure for the measurement of axial velocity along
the axis of rotation for polymer solution is to follow the
procedure 9 with the setup for V, measurement described in
Fig. 4.7.

The V, measurement procedure near the exit hole is essen-
tially the same as that for Vz along the axis of rotation

except that the camera's position is lowered down to the bottom

plate of the vortex tank. Since a black painted disk is placed

on the bottom wall in order to reduce the reflection of the

light from the bottom plate as much as possible, the procedure

7 and 8 are not done for the measurement.
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4.5 COualitative Observations

Four kinds of cualitative observations are done for
studying the characteristics of vortex flow for both Newtonian

and polymer cases. In this section. the descriptions and

results are briefly mentioned. The detailed results with

photogravhs are also presented. The complefte vortex

flow (the air core extends down to the exit hole) is used

because the air core does not disturb the observations.

1. The flow behavior of the core region: A dyed water is

used for showing the existence of the core region. When the

dyed dolution is dropped from a pipette on the free surface

of the Newtonian vortex flow near the axis of rotation, it

immediately indicates the existence of a core region near the

axis of rotation (Fig. 4.11 (a),(b),(c)}). It drains cut very

rapidly. When it is dropped, however, far away from the axis

rotation, the dyed solution makes a very slow swirl motion

around the air core keeping its radial distance constant and

stays inside the vortex tank much longer than the case of

dropping it near the axis of rotation. The observation clearly

shows the existence of the air core region where the axial
velocity is much faster than that in the free stream region.

A dyed polymer solution ({(its concentration is about 50

ppm) is then dropped into the core region, the vortex is

immediately inhibited (Fig. 4.12 (a),(b)}. If dropped in the

free stream region, the polymer dyed solution behaves as if

it were a Newtonian fluid. The vortex is not inhibited
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A Photograph of Newtonian Vortex Flow
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Fig. 4.11 {(c)

A Photograph of Newtonian Vortex Flow

with Newtonian Dyed Solution
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Fig. 4.12 (b)

A Photograph of Newtonian Vortex Flow

with Polymer Dyed Solution




167

because it does not reach the core region. The observation

indicates that the tangential velocity Vg in the core region

is reduced due to the presence of the macromolecules and that

the polymer effect may be dominant somewhere in the core

region. This observation provides quite important information

for the vortex inhibition study because it indicates that a

large deformation of f£luid may take place in the core region.

2. The flow behavior of the bottom boundary layer: The

Newtonian dyed solution is injected through a very small hole

(its diameter is .04 cm) located in the bottom wall to see

the difference in flow behaviors in the bottom boundary layer

between a Newtonian fluid and polymer solution. For the New-

tonian fluid, the streak of the dye is very smooth and almost

all of the dye injected goes directly out through the exit

hole (Fig. 4.13 (a},(®)).
For the polymer solution, however, the dye is randomly
scattered around the exit hole. Some part of the dye drains

but some of it stays near the exit hole fora while. The flow
behavior is very random and no obvious streak line is observed

(Fig. 4.14 (a), (b)). It may be said that the polymer effect
is important in this area because of the apparent difference

in flow behavior between the Newtonian fluid and polymer solu-

tion.
3. A cap experiment—-near the exit hole: When a small tube
is installed right above the exit hole (Fig. 4.15), the New-

tonian vortex flow is heavily disturbed because the tube
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Fig. 4.13 (b)

A Photograph for a Newtenian Fluid
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Fig. 4.14 (b)

A Photograph for a Polymer Sclution
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prevents a radial inflow in the bottom boundary layer region
from going out through the exit hole. The distinguishing
feature of this observation is that installing the cap lowers
the liquid level substantially while keeping the flow rate
constant (Fig 4.16 (a), (b),(c)). If the liquid level is

raised up to the previous level, the flow rate has to be in-

creased about 6%. When the liquid level reaches the previous

point, the vortex is inhibited in a very similar way to vortex

inhibition by Polyox 301. This experimental observation also

emphasizes the importance of the flow behavior near the exit

hole.

4. The vortex flow of Newtonian fluids with different

viscosity: The width of the air core is measured for Newtonian

Fluids with different viscosity. As shown in Fig. 4.17 (a),
(b), (c), the air core width is not sensitive to changes in

viscosity. The fluids used for the observation are water-—

glycerine solutions (TABLE 4.1). Flow rate and ligquid level

are also not changed so much by changing viscosity. Both
glycerine solution A and B form very similar vortex flow to

that by water with respect to the shape of the air core, liquid

level and flow rate (Fig. 4.17). Glycerine solution A and

30 wppm polymer solution (Polyox 301) have almost equal

relative viscosity. From this, we can conclude that vortex

inhibition can not be explained solely by viscous effect, but

it has to be due to the elastic nature of the macromolecules.
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4.16 (b)

Fig.
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Fig. 4.16 (e)
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TABLE 4.1
The Vortex Flow of Glycerin Solutions

relative liquid the air flow

viscosity level core width rate

prel (25°C) h (cm) {cm)} (cc/sec)
1.000 17.0 .38 36.5
1.068 16.5 .41 34.8
1.227 16.0 .42 34.6

glycerin-water B
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Fig. 4.17 (a)
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Fig. 4.17 (b)

Glycerin—-Water A

Ao A

3
* I e wmare-

Fodm e s A A T b g

SL T

LRT




[ 3
{ I
"

3 g

s !

.
e
; ar

g I93BM-UTISDATD

(@) 1% 813



179

Fig. 4.17 (b)
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V. THE MODIFIED NEARLY HOOKEAN DUMEBELL MODEL

5.1 Introduction

In order to investigate the polymer effect on the flow,
an approximate constitutive equation for a dilute polymer

solution is needed to see how the stress tensor changes due

to the existence of the macromolecules. In this chapter,

a new constitutive equation of a dilute solution of flexible
macromolecules is developed from the kinetic theory. The
main difficulty associated with the kinetic theory of dilute
polymeric fluids so far is that it can provide complete
information about the stress tensor only for small rates of
strain and a few material functions for high strain rates.
The reason for the difficulty stems from being unsuccessful
in solving the differential equation for the distribution
function (called the diffusion equation). Although Ciesekus
showed that full information about the stress tensor can be
obtained for the Hookean dumbbells model without solving the
diffusion equation, this model has two serious shortcomings
which are shear rate independent viscometric functions and
an unbounded elongational viscosity even for moderately high
elongational rate.

The constitutive equations studied here not only elim-
inate the shortcomings associated with the Hookean dumbbell
model but also are simple enough to be manipulated for any
And it shows

kind of homegenous flow at all strain rates.

that shear thinning (visccsity decreases with increasing



182

shear rate), non-zero primary normal stress difference co-

efficient and and a bounded elongational viscosity for high
elongational rate.

The new constitutive equation called the Modified Nearly
Hookean Dumbbell model (MNHD) is derived in the next section.
The model is constructed by matching it with the Nearly
Hookean Dumbbell (Armstrong, 1979) ({(good for a flow where
the macromolecule is neither very stretched nor oriented}and
with the model which Tanner (1975) developed for a flow where
the macromolecule is strongly oriented and stretched. The
result of tests for the Modified Nearly Hookean Dumbbell
model is then shown by using two simple flow patterns, shear
flow and elongaticonal flow. From these tests, the MNHD seems
to be a suitable constitutive equation for the vortex inhi-
bition study especially because it predicts an elongational
viscosity well when compared with FENE (Warner, 1972) model's
results. A good prediction for the elongational viscosity is
very important to this study because vortex inhibition is

believed due to a drastic increase of the elongational vis-

cosity at a moderate elongational rate.
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5.2 Kinetic Theory and the Modified
Nearly Hookean Dumbbell Model

2 dilute solution of the flexible macromolecules is

modeled according to the kinetic theory. The detailed

description of the kinetic theory and the dumbbell model is

given by Bird, Hassager, Armstrong and Curtiss (1877). Each

macromelecule in the dilute polymer solution is idealized as
an elastic dumbbell consisting of two spherical beads joined
by a non-bendable spring. There are n dumbbells per unit
volume, suspended in a Newtonian solvent with viscosity g
It is assumed that n is so small that no interaction among

the macromolecules occurs. The beads experience a hydro-

dynamic drag given by Stoke's law with friction coefficient ¢.
The configurational distributional function y (R,%t) 1is
defined as a probability density of finding a dumbbell with

an end-to-end vector R. A partial differential equation

(diffusion equation) from which the distribution function

is determined is then derived from the equation of motions
for the beads and the continuity of the distribution function.

The polymer contribution to stress tensor ;P is then ex-

pressed in terms of expectation values using the distri-

bution function.

For an arbitrary, time-dependent, homogeneocus flow with

velocity gradient ng = k(t), the kinetic theory provides

the following equations.
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:l_j.__ — - —_ - +
<R E?(l) = 5% <R R> {§ <R R>} {<E R> kK
4kT 4 (c) 5.1
= —=§ - = <R F >
T = z - =
L = “”sl—+ ;P 5.2
t =-n <R F%>5 = nxrs 5.3
or
= Bt
;P'_ ) i53‘>(l) 5.4
In these equations, (1) is contravariant codeformational

differentiation, § is the unit tensor, E‘c) is a force vec-—

tor produced by the spring connector, < > is an expectation

value with respect to the distribution function, i = VZTFVET

is the rate of strain tensor, 1 1s stress tensor of a given

polymer solution, k is Boltzmann constant and T is tempera-

ture.
In order to manipulate these equations, infeormaticn

about spring force vector is necessary. The "finitely exten-

dable nonlinear elastic" (or FENE) connector force law

studied by Warner (1972) is

(c) %o
F¢ = ——=<R R < R 5.5
1-(z)

Ro

where RO is the maximum length of the dumbbell. A spring

with the force law in eqg. 5.5 will be linear for small
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extensions, but will get stiffer and stiffer as the spring
is more extended and finally it will become infinitely stiff
at Ro.

Tanner (1975) considers that when a polymer solution
is under a strong flow where macromolecules are almost fully
stretched due to high strain rate, all of the macromolecules

may orient in only one direction and may have a unique end-

to-end vector R. A mathematical interpretation of his idea
is that the distribution function may be expressed as Dirac's
delta function, namely

¥ (R,t) = §(R - R) 5.6

From the normalization condition of the distribution function
(an integration of it over the configurational space must be

unity)

¥ (R,£) = §(R - R) 5.7

By using eq. 5.7, eqg. 5.1 is rewritten with FENE force law.

H
E R =—4kT§-iRR o 5.8
= =(1) g = & — = =
1 - (392
R
o]
Introducing a dimensionless structure tensor g = nHj <R R>,
eq. 5.8 is rewritten
1 5.9
kHa(l) nkTg T o a
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Ip~ Ap2(1)

time constant AH and the dimensionless small

and £ = —52—3 respectively.

H R
o 0

where the

: =5
constant e are defined as AH a0
ﬁ2

R and trg = ﬁﬁ are also made in ob-

14

The use of o = nHO

taining eq. 5.9. Eg. 5.9 along with eq. 5.4 may be a suit-

able constitutive equation for a dilute polymer solution

in which the macromolecules are under a strong flow so that

they have a unique end-to-end vector R.

When macromolecules are under a weak f£flow where the

strain rate is not large encough to stretch them, egqg. 5.9

is no longer appropriate because the distributicon function

can not be described by eq. 5.7. Armstrong, Ishikawa, and

Essandoh (1979} studied the Nearly Hookean Dumbbell model

for a weak flow regime. The spring force law of this model

is
2

(c) _ HR
p' =m (1 +epT) R 5.10

In such a weak flow, the parameter £ shculd be very small
and indicates the deviation of the spring tension from linear

behavior which is described by the Hookean Dumbbell model.

We assume that the distribution function is expanded in

power of =,
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In eg. 5.11, TO gives the distribution function of the

Hookean Dumbbell model and ?l represents a deviation

caused by eg. 5.10 from the linear behavior. In the same

way, the structure tensor and stress tensor are also ex-

panded as

- 2 5.12
nHO <R R> =g + € 2y + £ 25 + . . .
2 2 _ 2 5.13
(nE_)~ <RR R> = B, + €f; + €785 + - -
T =T + € T, *+ ezr + 5.14

where B = (nHo)2 <R2 R R> is an additional structure tensor.

The use of a regular perturbation method gives the stress

. o
tensor in terms of g and B, for e  order.

Aglo (1) = DKTS - & 5.15
;O = KH go(l) 5.1¢6
1
for €7 order,
il
Ag@y 1y = "% Tk 2 I T A %31 >-18
where B_ = (trg ) g, + 2{go . go}. Eq. 5.16 is easily solved

for a given flow field and the result is equivalent to that

from the Hookean Dumbbell model. The Nearly Hookean Dumb-

bell model is obtained by combining eg. 5.15 with eg. 5.17

and the result is
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= -5 - —=
‘e 1) T PRTE -2 - mF £

— me _ _E .
= nkT8 - 2 - %7 [(tra e, + 2(z  * 2)]
- me E ] 2
= nkT§ - o - o7 [(tr@)g + 2(a + @)] + 0(e")
5.19
o = et 5-4

To compare the result of the Nearly Hookean Dumbbell model

with Tanner's result, eq. 5.9 is expanded for small

tro

€ nxT ,
Ao = nkT§ - - £ _tra + o + O(traz) 5.20
pE(1) T RRRE T &7 T VT2 T = 2 y

The only difference is that eg. 5.19 contains an additional

5.20 is good for only a weak

2e .
term kT (o a). Since edq.

flow regime, the macrcomolecule is nct extended substantially,

and this indicates the following important condition

E
< = <
€ %r > < kg T2 <<t

In other words, the expectation value of the non-linear

contribution to the spring force law in eqg. 5.10 must be

small.

One possible method for combining eq. 5.19 with eq. 5.9

is as follows:
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Equation 5.22 is known as the Modified Nearly Hookean Dumb-
bell model. For a strong flow regime where all of the macro-
molecules are lined-up in the same direction and stretched

extensively, the term,E%f tra is nearly unity. Eg. 5.22

thus becomes eqg. 5.9 which is the Tanner's mcdel. For a weak

flow regime where eqg. 5.21 is wvalid, eq. 5.22 is reduced to

the Nearly Hookean Dumbbell model by expanding eg. 5.22 for

smalls:E%E-trg. A summary of these three models are shown

in Table 5.1



TABLE 6.1

A SUMMARY OF THE THREE CONSTITUTIVE EQUATIONS.

Constitutive :
Applicable
Equation The form of Eguation flow regime
Modified -
any kind of
Nearly Hookean _ _ a _ B Ly 2E
Dumbbell ‘pe(1) T PRER T e U g e g -l flow
Model (M1) nkT =
Eq. 5.22
Tanner's Model a a strong flow
(Méé. 5.9 hpfty) T RIS T ET try € trg 1
n nkT =
Nearly Hookean
Dumbbell . ve a weak flow
Model (M3) A &y © nkT§ - (1 + o tro) a - % (2 + @)
Egq. 5.19 KT tra <<1
The stress
tensor T = Ayl
expression -P 1)

06T



191

5.3 The predictions of the models

In order to gain physical insight about the three

models discussed in the last section, two kinds of simple

flow are applied to them to see the behavior of material
functions calculated from the models. The stress growth
and relaxation for shear flow are numerically calculated
for shear stress and the primary normal stress difference.

The shear rate dependence of the material functions for a

steady shear flow are also calculated. The models are tested

for elongational flow to analyze elongational behavior as a

function of time and elongational rate.

5.3.1 Shear flow
First shear flow is considered to study viscosity and

the primary normal stress difference. The shear flow is

given by v_ = Y(£)y, vy =V, = 0, where v(t) is a time

dependent rate of strain (shear rate). Stress Growth(de-

noted by + sign for material function).

For the stress growth behavior, the shear rate is des-

cribed by
Y(t) =0 for £ < 0 l
. 5.22
vy(t) = y(constant) for £ > 0 J

The normalized intrinsic viscosity [n+]/[n] and the nor-—

. . . . +
malized primary normal stress coefficient Yl /Yl are cal-—

culated by the 4-th order Runge-Cutta method. [n] and
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¥ are values at steady state.

Intrinsic viscosity [n] is defined by

[nl = limn " 7 Ts 5 23
c+o cn .
where non-Newtonian viscosity n is defined as Tyx = -n(y)Y

and ¢ is the concentration of polymer solution. Qne can
also define the primary normal stress coefficient %l as

3 . 22 . .
Tex = TYY = Tl(Y)Y . Note that these material functions

depend on the shear rate. Some results are shcwn in Fig.
5.1 to Fig. 5.12
General trends for the stress growth are
1. Stress overshoot is found only for high shear rate
(§ = 10. in figures}.
2. The peak wvalue of the overshoot is smaller for smaller
e (for example, .Fig. 5.1 and Fig. 5.2).
3. It takes longer to reach the peak for smaller e.

4. The material functions get to their steady state values

faster for higher shear rate.

5. There is little difference between S = .1 and § = .01l

for beoth n+ and T+.
As to the difference between n+ and ¥l+;

1. It takes longer to reach steady state for'fo

2. For higher stear rate (5 = 10.0) the peak value of the

overshcot is larger and the time required for the peak is

+
shorter for n .



Fig. 5.1 to Fig. 5.12
STRESS GROWTH BEHAVIOR OF

THE THREE MODELS FGCR SHEAR FLOW

The following notation is used.

M1 Modified Nearly Hoockean Dumbbell

M2 Tanner's model

M3 Nearly Hookean Dumbbell

El e = .02

E2 g = .005

VISCOSITY [n*1/0n]

STRESS DIFFERENCE ¥l+/¥l

DIMENSICNLESS TIME t/lH (t is real time

S dimensicnless shear rate AHQ

eq.

eq.

[sec])
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Stress Relaxation (denoted -~ sign for material functions)

The shear rate for the stress relaxation calculation is
described by

Y (constant) t <0 }

Y (t)

vty =0 £ > 0

The steady state values of the material function (which will

be discussed later in this chapter) are used as initial con-
dition. The results of £he calculation are plotted in Fig.
5.13 to Fig., 5.24.

The general tendencies of the relaxation behavior are
1. The higher the shear rate, the faster the stresses relax.

2. The larger e, the faster n and Wl- decay.

3. No difference is found between cases S = .01 and S = .1l.

4. It is also found that the relaxation behaviors of n

and Yl_ are exactly equal for each of the three models

because of the structure of the models.



Fig. 5.13 to Fig. 5.24

STRESS RELAXATION BEHAVICR OF THE

THREE MCDELS FOR SHEAR FLOW

The following notation is used:

M1 Modified Nearly Hookean Dumbbell eq.
M2 Tanner's model ed.
M3 Nearly Hookean Dumbbell eq.
EL e = .02

E2 e = ,005

VISCOSITY (n 1/[n]

STRESS DIFFERENCE ?l'/wl

DIMENSICNLESS TIME t/lH

S dimensionless shear rate
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The Compariscn of the Models

Fig. 5.25 to Fig. 5.36 show the comparison among the
three models. The viscosity and the primary normal stress

coefficient are compared for growth and relaxation behavior

at various shear rate and e.

For n+ comparison, the three models show almost the

same result at the lowest shear rate (Fig. 5.25}. At moder-

ate shear rate, however, the response of Tanner's model is

a little shower (Fig. 5.26). Tanner's model gives the

highest peak wvalue at high shear rate and Ml and M3 have

almost the same peak values (Fig. 5.27). However, the time

required for reaching the peak is equal for the three models.

M3 gives a little higher steady state value than those of

other two models.

As to n comparison, Ml and M3 behave in an almost iden-

tical manner (Fig. 5.28) and they decay slightly faster than

M2 does (Fig. 5.29 and Fig. 5.30). It is also found that

. . + -
the primary stress ccefficient (¥; , ¥ ) has the same trends
as viscosity ([n+], [n 1) does for both growth and relaxation

behavior (Fig. 5.31, Fig. 5.32, Fig. 5.34, Fig. 5.35, Fig.

5.36). At high shear rate (S = 10 and € = .005)}, however,

¥l+ by M2 has higher steady state value and the time required

for the peak of overshoot becomes slower (Fig. 5.33). Roughly
speaking, the three models predict the same trends. Up to
moderate shear rate (§ = .01, S = .1 and § = 1.0), the be-

havior of Ml and M3 are very similar and the prediction by

—— e —— . —



Fig 5.25 to Fig. 5.36

THE COMPARISON AMONG THE

THREE MODELS FOR SHEAR FLOW

The following notation is used:

M1 Modified Nearly Hookean Dumbbell eqd.
M2 Tanner's model eq.
M3 Nearly Hookean Dumbbell eq.
El e = ,02
E2 g = .005
VISCOSITY In' for growth

(n ] for relaxation
STRESS DIFFERENCE ‘gl*' for growth

Wl- for relaxation
DIMENSIONLESS TIME t/lH
S1 S = Agy = .01
52 5 = AgY = .1
53 S = agy = L.
S4 S = a_y = l0.
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M2 slightly deviates from them. At high shear rate (5 = 10.),

differences in steady state values between the models are

observed.

Steady Shear Flow

The steady state material functions as functions of

shear rate are plotted in Fig. 5.37 to Fig. 5.40. Shear

thinning for both viscosity and the primary normal stress
coefficient is observed for the three models. Both onset
of shear thinning and slope of decreasing curve are similar
between them.

To sum up the performance of the models for shear flow,
they provide fairly good predictions like shear thinning
and stress overshoot and have very similar trends. Quali-

tatively speaking, M2 shows a small deviation from M1 and

M3 whose predictions are extremelv similar.



Fig. 5.37 to Fig. 5.40

THE STEADY STATE VALUES OF VISCOSITY AND THE

PRIMARY NORMAL STRESS COEFFICIENT FOR SHEAR FLOW

The following notation is used:

M1 Modified Nearly Hookean Dumbbell eq.
M2 Tanner's model eq.
M3 Nearly Hookean Dumbbell eq.
E1l e = .02

E2 e = .005

VISCOSITY [n]/[n]o

STRESS DIFFERENCE ql/wl.o

SHEAR RATE AgY
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5.3.2 Elongational Flow

. . . -+ .
The stress growth of elongational wviscosity n 1S

calculated by using the models. The elongational flow is

described by

-1 0 0
i = 0 -1 0 £ for £ > 0
0 0 2 5.24
Yy =0 for t < 0

where € is called elongational rate. The elongational vis-

cosity is defined as n = (Tyy - fzz)/é. The results of cal-

cluation are shown in Fig. 5.41 to Fig. 5.46. It is found

from these figures the three models behave similarly at low

elongational rates (S = .01, S = .1l).
Since macromolecules are in an almost equilibrium at
this low range of elongational rates, the Brownian motion

(nkT§) of the beads and spring force (<§_£(C)>) of the con-

nector are two dominant contributions to stress tensor T

and these two forces are conterbalanced. Nc¢ hydrodynamic

force obviously is important in such low elongational rates.
No matter what kind of distribution function is used, namely
§ - function for M2 and perturbed solution of the diffusion

equation (yp = wo + swl in eq. 5.11) for M3 (Armstrong, 1379),

the results of calculation shows that there is no difference

between M2 and M3,

However, once the hydrodynamic force becomes significant



Fig 5.41 to Fig. 5.46

THE STRESS GROWTH BEHAVIOR

FOR ELONGATIONAL FLOW

M1 Modified Nearly Hookean Dumbbell eq.
M2 Tanner's model eq.
M3 Nearly Hookean Dumbbell eq.
E1 £ = .02

E2 £ = .005

VISCOSITY normalized elongational viscosity

-t
(n - 31ns)/3(no - ns)

Nyt viscosity at zero shear rate

DIMENSICONLESS TIME t/lH

S dimensionless elongational rate AHE
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at intermediate elongaticnal rates (5 = .5, 5§ = 1.0), M2

shows difference from M1 and M3. And M1 and M2 give almost

the same results while the results of M3 deviate from them

at high elongational rates (S = 2.0, S = 10.). These ten-

dencies of the three models at both intermediate and high

elongational rates can be expected from the previous sec-

tion where M1l was derived. The qualitative behavior of the

three models are explained more explicitly by the results

of steady state elongational viscosity.
The steady state 2longational viscosity at various

elongational rates is calculated and plotted in Fig. 5.47

and Fig. 5.48. Up to § = .3 the three models give quite
similar results and from S = .3 M2 starts deviating from ML

and M3, while M1 and M2 give almost equal results up to
S =1.0, Then M2 curve gets close to Ml curve and finally
they become identical and bounded at high elongational rates.

M3 is still increasing and may go to infinite when the elon-

gational rate is further increased. As expected, Ml matches

M2 and have the same asymptotic value at high elongational
rate. M2 gives higher results than that of M1 in the range
S =,3 ~1. As in Fig. 5.47 the asymptotic value given by

M1 and M3 goes up l00. The rapid increase of elongational

viscosity observed at the moderate elongational rate corres-—
ponds the nearly full extension of the macromolecules which,

then, show high resistance to be stretched out above those

elongaticnal rates.



Fig. 5.47 to Fig. 5.48

THE STEADY STATE VALUES

OF ELONGATIONAL VISCOSITY

The following notation is used:

M1 Modified Nearly Hookean Dumbbell eg.
M2 Tanner's model eq.
M3 Nearly Hookean Dumbbell eqg.
El e =.02

E2 e =,005

VISCOSITY normalized elongaticnal viscosity

ELONGATIONAL RATE lH

(n - 3ns)/3(no - ns)

M=
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Fig. 5.49 and Fig. 5.50 show the comparison between the

exact solution of FENE model, M1 and M2. The elongational

viscosity given by FENE model (Bird, et al., 1977) is

- R

2 (95 3 2 2 2

f J R® (3 sin"8 + 2 cos 8)¥Y eq.¢ fi R“dR sin® do
nz’o ‘o
4 ™ R

n=3ng +
2 0
[ J ¥ eq.¢z, dR sing de 5.25
o ‘o
where 1
. —_ _R2 25
veg. = [1 (g 7] 5.26
o
. L Ry2 24,0 ¢
b = ©XP { 5e (R ) (1 3 cos B)AHE] 5.27

Eg. 5.25 with eqg. 5.26 and eq. 5.27 was numerically integrated

over the configuration space in order to obtain Fig. 5.49

and Fig. 5.50. At e = .02 (Fig. 5.49), M1 represents the

FENE model well especially at moderately high elongational

rates. On the other hand, M2 overestimates the FENE model

at those rates. The three models eventually approach the
same asymptotic elongational viscosity at high elongaticonal

rates. M2 turns out, however, to be closer to the FENE

results when ¢ = .005 (Fig. 5.50), at range S = .7 to § = 1.0.
This indicates that the macromolecules are oriented to a
fix direction with smaller elongational rates when they are

more flexible. By judging from Fig. 5.49 and Fig. 5.50,

the Modified Nearly Hockean Dumbbell (M1} seems to be
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suitable for vortex inhibition analysis because it predicts
the elongational viscosity well when it is compared with the

FENE model's prediction. The FENE model is known experi-

mentally to describe intrinsic viscosity for some dilute
polymer solution (Christiansen and Bird, 1977/1978).
As mentioned repeatedly so far, one of the very impor-

tant part of the vortex inhibition study is to find a

constitutive equation (approximate if necessary) which can

describe the elongational viscosity reasonably well. The

use of MNHD, thus, may give reasonable information about the

stress field in chapter 6 because first, it has a very simple

form so that any kind of locally homogenecus flow can be

applied, and, secondly, the elongational viscosity predicted

by the model is as good as for the FENE model.
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Fig. 5.49 and Fig. 5.50
THE COMPARISON BETWEEN M1, M2 AND FENE MODEL

The following notation 1s used:

M1 Modified Nearly Hookean Dumbbell eg. 5.22
M2 Tanner's Model eq. 5.9
FENE FENE Model eg. 5.25
EL g = .02

E2 g = .005

VISCOSITY (n=3ng) /3 (n —ng)

ELONGATTONAL RATE AHE



(l
10

Pl

8\

STEATY STATE AT
Ry oV
< 1y tﬂC_.'
b By RN

1

Flg. 5.49

| -1 0

10
LA T INAL RATE



: Fig. 5.50
iO 'I'f """" o T T 1 T T T 1 T+ i | 8 | S . At M 1—r+ T T T T T
© GTEADY STATE AT ES3
+ Hy M1
X BY M2
b HY FENE
3 T Bk
107} X T
> B+
— S
H X
Ul +
8 b
i +
N s L i
J10
-~ b
X
o
7
G Pk
1.0 p{g b DK 1
l(j . 1 L boddmd 1_14 e ITO . SR TN NPt SN SRTEN o A
o | -
I 10~ 10 0 10
|

i
ELONGATIONAL  KATE



257

vI. THE ANALYSIS OF THE ONSET BEHAVIOR OF VORTEX INHIBITION

In this chapter, the mechanism of the onset behavior of
vortex inhibition is analyzed by the following sequence.
First, the Newtonian vortex flow is discussed by the results
of the numerical calculation which is described in Chap. 3
with locally obtained experimental data. Secondly, a few
remarks are added on the constitutive equation (the Modified
Nearly Hookean Dumbbell) studied in Chap. 5 because the MNHD
is used for calculating the polymer contribution to the stress
tensor in polymer solution. Third, the experimental obser-
vation about the onset behavior of vortex inhibition is des-
cribed. Two important characteristics are emphasized in the
section. Fourth, the stress tensor for polymer solution is
calculated along the stream lines by the MNHD. The velocity
field used for the calculation is the Newtonian vortex flow.
Finally, the polymer effect, namely how the £low behavior
changes due to the resulting polymer stress tensor, is analyzed

by an approximate method to explain the experimental findings

qualitatively. A proposed mechanism of vortex inhibition is

then briefly discussed.
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6.1 The Velocity Field of Newtonian Vortex Flow

The velocity field of Newtonian vortex flow is cal-

culated by the method described in Chap. 3 for higher tan-

gantial Reynolds number Rey. The detailed calculation pro-

cedure, he complete program listings and full information

about the wvelocity field in terms of T, Ver Vv, are

found in Appendix A. The velocity component Vg and v,

are locally measured as described in Chap. 4 and compared

with those obtained by the numerical simulation.

The general flow behavior of a confined vortex flow is

well described by stream lines. Fig. 6.1 and Fig. 6.2

show the results of the numerical calculation which describes
the stream lines representing both the radial and axial
velocities for lower and higher tangential Reynolds number

respectively. Each fluid element also makes swirl motion

due to the tangential velocity besides moving along the stream

lines. As shown in Fig. 6.1, for Regy = 10, most of fluid

elements supplied at the outer wall move toward the exit

hole in taking almost the shortest distance. No reverse (due

to positive Vr) or up (due to positive v,) flow is observed

for such a low Reyz . For higher Reg ( = 1370. ), however,

the flow behavior turns out quite different. For example,

taking the stream line ¢ = .8 in Fig. 6.2, representing

80% of total flow rate, the fluid element initially moves

toward the exit hcole but after passing the point (r,z)

(.1,.2), the fluid starts moving back and eventunally goes
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into the bottom boundary layer. As shown in Fig. 6.2, the

bottom boundary layer is formed for high Reg and 80% of

total flow rate is come from this thin boundary layer ragion.
The radial velocity in the bottom boundary layer is much

larger than that above the layer because the stream lines

are very dense. The core region is also recognized by the

stream line ¢ = .9 in Fig. 6.2. Unlike Fig. 6.1 the stream

p = .9 1is much closer to the axis of rotation and

line
this indicates that higher axial velocity forms the core

region. And the flow from the bottom boundary layer inter-—

acts with the flow from the core region near the exit hole.
These gualitative features of vortex flow can also be seen

by dye experiment (for the bottom boundary layer and the core

region) described in Chap. 4.

Tangential velocity at the free stream region (above

the bottom boundary layer)} is measured for various Reg. Al-

though the measurement is taken both at z = 4.0 ¢cm and

z = 10.0 cm, the difference in vy at these two positions

is negligible. This agrees with the results of the numerical

calculation (See Appendix A). Fig. 6.3 and Fig. 6.4 show
comparison between the experimentally measured vg and numer-
ically calculated Vg for two different Re g and SS. The
numerical results show excellent agreement with experimental

data for both cases. The velocity data near the axis of

rotation (the core region) cannot be obtained by the present

measurement method because the fluid does not stay in a

horizontal thin section which is illuminated by collimated
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illuminated by a collimated light beam, long enough to be

detected by the camera due to the higher axial velocity in

this region. However, the agreement between theoretical and

experimental results for r > .5 cm makes this calculated

vg in the core region reasonable. The vy profile for both

cases are very similar except that higher Rep gives higher

v over the entire range of radius. The vy 1in both figures

8

reaches its maximum value at about r = .24 cm which is

radius of the exit hole.

Fig. 6.5 and Fig. 6.6 show the comparison of v, at the

axis of rotation. As shown in these figures, although the

calculated v, predicts the tendency of v, profile very

well, there is discrepancy between theoretical calculation

and experimental data. There seems three reasons to explain

these differences. First, the zone size (especially in the

r-direction) may be toc large to provide the detailed infor-

mation about v at r = 0. And the velocity information
z

from the calculation 1is vz at r/R = .01 due to thediffi-

r = 0. In other words, the calculated

culties in handling at

v is the averaged value between r/R = 0. and r/R = .02

4

because fthe zone size in the core region A(r/R) is .02.

v, at r = 0 is, therefore, larger than v, at r/R = .0QLl.

Secondly, the radius of the exit hole rg can not be des-

cribed correctly in the simulation because the radius . has

to be matched with the point at the center of the zone. This

condition makes rg 1n the simulation about 1.5 times

larger than the real location of r,. From the continuity of
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the fluid, the average value of v, over the exit hole has

to be increased 2.13 times larger for the real case. This

is well explained in these figures because the correction

factor 2.8 seems to fit the calculation results to the exper-

imental data very well for both cases. Third, the numerical

simulation is based on the geometry of a confined vortex

flow so that no free surface is considered. However, this

may not cause such a difference in v, because the calcu=

lated vg 1is matched with experimental data. Therefore,

the first two reasons seem to explain the discrepancy. The

is not an essential defect

discrepancy in v, at r = 0
mainly because the size of the exit hole is not described

correctly. By reducing the r-direction zone size and locating

reo correctly, the numerical simulation may provide more

precise v, infeormation.
The axial velocity at the axis of rotation is increasing

in almost linear fashion from the ligquid surface, but as

the fluid gets close to the exit hole, v, 1is accellerated.

This is observed from both figures. It is also found from

the calculation results that v, is further increased so

rapidly especially when the fluid interacts with the flow

from the bottom boundary layer to produce large velocity

gradient

av

The results of the comparison with experimental measure-



ment show that the numerical simulation certainly describes
the vortex flow reasonably well. BAnd the confined geometry
of the vortex tank does not give any significant difference
from the open free surface vortex flow in terms of velocity
field. Since the numerical simulation provides full infor-
mation about wvelocity field for the entire vortex gecmetry

and the calculated velocity field reasonably well represents
the real velocity field, it is employed for stress tensor

calculation for polymer sclution in later section.

268
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6.2 Additional Remarks on the Modified Nearly
Hookean Dumbbell Model

The Modefied Nearly Hookean Dumbbell model developed

in Chap. 5 is used as a constitutive equation for stress

tensor calculation of polymer scolutions in the later section.

In this section, two important characteristics of the MNHD

model are described. The proper estimation of parameter ¢

from the comparison with available experimental data and the
relaxation time for stress growth of elongaticnal viscosity

are very important factors for analysis of polymer contribution

to stress tensor field.

Fig. 6.7 and Fig. 6.8 show the comparison of intrinsic

viscosity as a function of shear rate between experimental

data obtained by Christiansen and Bird (1977) and the model

predictions. The macromolecule used in the experimental data

is polystyrene of various molecular weights and at wvarious tem-—

peratures. From these figures, the MNHD is seen to show the

shear thinning phenomenon. It 1s also found taht the model

shows a linear relation between [n)] and log y for higher shear

rate

(rey > 2, Ag = (5e+l) e).

By comparison with a wide variety of polystyrene solu-

tions, the parameter £ which is associated with the maxi-

mum length of the macromoclecule R, falls into the range

between .02 and .005, which agrees with the prediction

by Christiansen and Bird (1977). This range of the parameter
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e may, therefore, be a proper choice for polymer stress

tensor field calculation.

The stress growth and relaxation of elongational vis-—

cosity are plotted with different scaled dimensionless time

in Fig. 6.9 and Fig. 6.10. As shown in Fig. 6.3, as the

elongational rate Apé increases, the time required for

raching a steady state becomes much shorter. This charac-

teristic is quite different from the growth behavior of

shear viscosity shown in Chap. 5 where the time to reach

steady state is about t/AH = 4 for all shear rates. Unlike

shear flow, the macromolecules subjected to elongational

flow are stretched directly by hydrodynamic force and oriented

to the direction of the flow. The time scale for molecular

response to this flow, therefore, may be related tc the elon-

gational rate €. This is clearly explained when the elonga-

tional viscosity is plotted with the dimensionless time

scaled by 1/&¢ in Fig. 6.10 where the time to reach steady

gt = 3 for higher elongaticnal rate AHé.

state is about
As will be described in the later section, the shorter res-
ponse time for higher elongational rate is important for vor-

tex inhibition. The residence time of fluid element is very

short in the area where large velocity gradient is estab-—
lished becasue the velocity of the fluid is usually very

high. Unless the macromolecules are excited within the resi-

dence time of the fluid element, it would be carried away

from the area of large velocity gradient before polymer effect

appears. Thus it is necessary for realizing the polymer
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effect on the flow field that the response time for high
elongational rate must be short besides high eleongational

viscosity which is emphasized in chap. 5.
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6.3 Experimental Observation of the Onset Behavior of
Vortex Inhibition

The onset behavior of vortex inhibition which is ex-

plained in Chap. 4 is described in this section. The infor-

mation about the onset behavior is very important for analy-
sis of vortex inhibition because it provides the transient
flow behavior from Newtonian fluid to polymer solution.

Shortly after concentrate polymer solution is poured into

the feed tank, the polymer effect appears, that is, a small

fluctuation of the air core is observed and the liquid level

starts decreasing. This onset behavior of vortex inhibition

is measured in terms of the tangential velocity vg and

axial velocity at the axis of rotation v, [r = 0. These

variables are measured 30 seconds after the onset. As shown

Fig. 6.11, after a couple of minutes, the vortex flow com-
pletely shifts to a new gquite different flow status which is a

fully developed vortex flow of the polymer solution. The

flow rate and liguid level are measured. The analysis of

the fully developed vortex flow of the polymer solution seems
to be irrelevant for this study because of the following

reasons. First, the fluctuation of the air core is very

large and random so that it is almost impossible to obtain

consistent wvelocity data especially for v, at r = 0.

Secondly, since the liquid level is dropped to about 50% of

its original figure and the total flow rate is not changed

very much (see number in Fig. 6.1l), a much higher tangential
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Fig. 6.11
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velocity is established and this explains the broadening of
the air core. This larger tangential velocity, however, may
not directly be caused by the polymer effect but rather is
due to the decrease of the liquid level while the flow rate
is almost unchanged. To investigate the polymer effect on
the vortex flow, it is, therefore, more sensible to measure

the onset behavior of vortex inhibition rather than the fully

developed vortex flow. Besides these two reasons, the measure-—

ment of the onset behavior is more consistent with the simu-
lation which will be discussed in the next section where the

polymer stress tensor field is calculated by the MNHD based

on the Newtonian velocity field obtianed in section 6.1. The

calculation simulates a physical situation where the Newtonian

fluid is suddenly replaced by the polymer solution in order

to see how the stress field changes due to the presence of

the macromclecules.
Fig. 6.12 shows the tangential velocity measured during

the onset of vortex inhibition. The tangential wvelocity in

the free stream region is not appreciably changed when com-
pared with that of the Newtonian fluid. Several velocity
data, however, are found near the axis of rotation (the core

region). In vy measurement for the Newtonian fluid, no

data could be obtained at the core region because of large

axial velocity (see section 6.1). These data indicate the

reduction of v in the core region due to the fluctuation
FA

of the air core. Fig. 6.12 may suggest that the polymer
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effect appears in the core region while nothing is changed

in the free stream region during the onset of vortex inhi-

bition as far as vy profile concerns.
The axial velocity data on the axis of rotation is shown

in Fig. 6.13 during the onset along with the Newtonian data.

The v data for the polymer solution are obtained from

different pictures taken during the onset. The picture num-—

ber in Fig. 6.13 indicates that the lower the number is, the
earlier the picture is taken. The picture number, however,
does not correspond to the precise sequence of the onset
behavior. At each time, different v, data is obtained
because of the fluctuation of the air core. For example,
the data of PIC #1l1l shows that the velocity becomes almost

zero about 2z = 4 cm which is quite different from that of

the Newtonian fluid. Fig. 6.13 indicates that v, at r = 0
is always lower than the case of the Newtonian fluid from

any of the data. This seems to be inconsistent with the fact
that the liquid level is falling during the onset of vortex

The averaged v, over the exit hole must be

inhibition.
increased to explain the liquid lewvel's falling, v, at
r = 0, on the other hand, seems to decrease at the exit hole

from Fig. 6.13.
Thus two experimental findings during the onset of vortex

inhibition should be emphasized in this section. First,

the averaged axial velocity over the exit hole is increased
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because the liquid level is decreasing while the total flow
rate is not changed appreciably. Secondly, the axial velocity
at the axis of rotation seems to be decreased at theexit hole
from the extrapclation of the experimental data. These two
findings characterize the onset behavior of vortex inhibition

and these are analyzed in the following sections.
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6.4 The Polymer Contribution to Stress Tensor

Along the Stream Lines (Based on the result of

the case Ree = 1370 and ss = -.02)

In this section, the stress tensor is calculated by using

the constitutive equation (the Modified Nearly Hookean Dum-
bell) along the stream line obtained in the previous section.
Since the onset behavior of vortex inhibition is the transient

state from the Newtonian vortex flow to the fully developed

vortex flow of the polymer solution, the information about the

velocity gradient may be obtained from the results of the New-

tonian vortex calculation. The advantage of the numerical cal-

culation of the Newtonian vortex flow is to provide full infor-

mation about every component of the velocity gradient tensor

for the entire region. In this way, the stress tensor field

is calculated along the stream lines. By following the fluid

element on each of the stream lines, the complicated calcula-

tion of the convective terms in the MNHD can be avoided. The

six equations of the structure tensor derived from the MNHD are

rr-component

D avr avr ve
AH DESrr = 2*E5E %rr T 2 g5z %rz 2Ag T %rg
= 2eBh . 244 2¢a %) + nkT 6.1
A nkT* rr ro rZ *
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o Py — o Eu eoa =S4 4 2n. 2y
H Dt~a6 H r 986 H 3dr rég H 3z "z9
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The symbcl A 1in these equations is given by

= _ _E_
A=1 nkT (arr+a86+azz)

The polymer stress tensor T is then obtained from the

structure tensor go.

D avr avr Vg
To,rr = Ay DE%rr T 2*m 3 %er 22y 3z %rz T 2 g T%rg
6.8
v av v
- b 8 8 r
To,88 = *m D% ~ 2*m 3rre ~ 2Mm 3z %ze ~ **m T %es
6.9
D avz avz
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D avz vV, ave
Tp,62z = ‘' Deez " ;‘H[az * _r_]“ez - *m 6T %rz
avz ave
- AL =P~ A, ——a 6.13

H 38r r@8 H 3z zz

The calculation is supposed to start from the outer wall

where the fluid is introduced to the vortex tank. However,

the simple speculation in Chap. 3 indicates that the velocity

gradient is too small to excite the macromolecules until the

fluid elements approach the area near the exit hole where the

velocity gradients seem to become very large. So the cal-

culation of the stress tensor is limited only to this area.

6.14 is a detailed picture of Fig. 6.2 of the stream

Fig.

lines near the exit hole. Once the fluid element reaches
the sgquare area enclosed by the lines of r/R = .1 and

z/H = .1, the calculation begins. For example, the stress
calculation of ¢ = .8 starts from the point (r/R, z/H) =
(.1, .025). The structure tensor at the point 1 is obtained

by a numerical integration of eqg. 6.1 to eq. 6.7. The Runge-

Kutta fourth order method is accurate enough for this type

of integration. (The program listing is found in Appendix C).

By choosing a small time step, the time advanced structure

tensor is calculated up to the point 1. Every component of

the velocity gradient tensor in the equations is approxi-
mately determined from the velocity field at the point 1.
Once the structure tensor at the point 1 is obtained, the

polymer stress tensor is calculated by eqg. 6.8 to eg. 6.13.
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This calculation procedure is repeated until the fluid ele-
ment reaches the point 4 where the large velocity gradient
is expected. The structure tensor as well as the polymer
stress tensor is also calculated in this way for ¢ = .85,
= .9 and ¢ = .1.G0.

TABLE 6.1 to TABLE 6.4 show the results of the calcula-
tion. It is found from these tables that tp,zz is in-

creased extremely rapidly very near the exit hole for the

p = .85 and ¢ = .8. This is due to the large

stream lines

velocity gradient especially

BVZ

dZ

established at the exit hole. The large velocity gradient
for v = .8 may easily be speculated because the fluid
element from the bottom boundary layer has almost zerec axial
velocity and conce it reaches near the exit hole, it is forced
to be flowed out with a large axial velocity. The boundary
layer thickness is so thin that the axial velocity has to be
increased in a very short distance. And the macromolecules
are suddenly stretched out in the z-direction nearly to the

maximum length R, (see the column <(R/Ro)2> in the tables).

Since the relaxation time is vexry short when the velocity

gradient is large according to the MNHD, the macromolecule
has enough time to be stretched extensively even in a very
short period of time. The macromolecules flowing along the

stream lines 1y = 1.0 and ¢ = .9, (TABLE 6.1 and TABLE 6.2)



POLYMER STRESS TENSOR ALONG THE STREAM LINE Uy =

TABLE 6.1

1.0

T [g-cm/secz-cmz]
POINT | TIME P 12
NUMBER [SEC] <[ﬁ_] >
’p,rr Tp,ee Tp,zz Tp,rﬁ Tp,rz p, 0% ©
0 0 .000 .000 .000 .000 000 000
1 .01 .000 .000 .000 .000 000 .000 0146
-.027
2 .02 .000 .000 (~.04) .000 .000 .000 .0153
-.045
3 .03 .000 .000 (-.24) .000 .00 .000 .0157
-.147
4 .04 .000 .000 (-.68) .000 .000 .000 .0182
-.203
5 .043 .000 .000 (-.96) ,000 .000 .000 .0144

* The figures in the parenthesis are values for

Newtonian fluid,.



POLYMER STRESS TENSOR ALONG THE STREAM LINE

TABLE 6.2

= .9
. [g-cm/secz-cmz]
POINT | TIME P 2
NUMBER | [SEC] <[§L] s
pxr | "p,86 | ‘pyzz | "p,x6 | "p,rz | "p,0z ©
0 0 0 0 0 0 0 0
~.259
1 .02 0 -.001 | T"igqy | --003 | -.090 | -.141 | .0207
2 04 008 012 |, 7431 | _.o05 | -.105 | -.145 | .0241
. ) . 266y | " ) ) i
~.645
3 .06 .028 031 | gy | --001 | -.076 | -.099 | .0280
~9.158
4 .07 026 | -.053 | 0001 ~.031 | -.390 | -.966 | .1660
~23.618
5 .075 | .113 002 |7%57 05y | -039 0338 | -.991 | .3183

* The figures in the parenthesis

are values for Newtonian

fluid.



TABLE 6.3

POLYMER STRESS TENSOR ALONG THE STREAM LINE y = .85
Lp [g-cm/sec2-cm2]
2
POINT | TIME <[§l) >
NUMBER (SEC] Tp’rr Tp’ee Tp,zz Tp,rﬁ Tp’rz Tp'ez (o}
0 0 0 0 0 0 0 0
2,322
1 04 | ~2.368| ~.a2 | (2072 1619 | ~2.352 | 1481 | L1185
2 .08 | -3.700} -1.376 ;?'gggi 2.376 | -5.459 | 3.326 | .2175
-3.844
3 a2 | -.s01 |oLoan | P3SN Las2 | -uslg | 261 | L0948
4 16 | ~1.030| -.978 |44-899% 1 060 | -7.088 | -6.831 | .4869
(~2.08)
_96.449
5 155 | .083 | =367 |25 g0y | 061 .688 | -6.077 | .6819

* The figures in the parenthesis are values for Newtonian fluid.



TABLE 6.4

POLYMER STRESS TENSOR ALONG THE STREAM LINE § = .8
Lp [g-cm/secz-cmz]
2
POINT | TIME <[§L) >
NUMBER | [SEC] Tp'rr Tp’ee Tp'zz Tp’re Tp’rz Tp’ez o]
0 0 0 0 0 0 0 0
~.069
1 .03 | -.040 | 001 | *TRN L .078 ~.114] .030 | .0172
2 07 | -3.461 | -3.315 ‘(2;577)5 3.484 | -2.997 | 2.805 | .1704
~47.004 ~40.598
3 .09 {=35.0011-12.902| 5" 5| 21.332 | T 7001 25,564 | L6769
~171.298 -7.909
4 .097 2306 | 039 TRl w005 | Tgny | 646 | L8019

* The figures in the parenthesis are values for Newtonian fluid.



THE LOCATICN OF EACH POINT

TABLE 6.5

POINT P .0 p= .9 Y = .85 p= .8

NUMBER | /R 2/H r/R z /1 /R z /1 r/R z/H
0 0 .1 .025 <1 .04 -1 .1 .025
1 0 .08 024 | .078 | .038 | .082 | .078 | .026
2 0 .059 023 ,055 .036 061 .050 .023
3 0 037 | .021 | .029 | .03l | .038 | .037 | .0l4
4 0 012 | .02 013 | .026 | .014 | .028 | .003
5 0 044 | .018 | .002 | .022 | .004
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on the other hand, are not stretched substantialy. For exam—

ple, at y = 1, o, 2z is less than the half of the New-—
r

tonian stress counterpart even at the point 5 so that the
fluid element may not be influenced by the presence of the

macromolecules. From the analysis of the Newtonian velocity

field, it is found that the dominant forces in the Newtonian
flow in the z-direction very near the exit hole are pressure

gradient and the corresponding inertia forces. The viscous

force, therefore, does not contribute effectively to the force

balance. In order to cope with these dominant forces, TP 2z
r

must be much larger than the Newtonian stress.

As shown in the case of ¢ = .85 and vy = .8, tp sy VETY

near the exit hole becomes much larger than the Newtonian

case, it may, therefore, be possible that this stress component

influences the flow behavior. To investigate the influence

of Tp 22 on the flow behavior, the force balance (the

equation of motion) in the z-direction has to be considered

with the polymer contribution to the stress tensor terms.

This will be discussed in the next section.



6.5 The Analysis of Polymer Effect near the Exit Hole

As found in the last section, the dramatic increase

is established near the exit hole for ¢ = .8

of Tp,zz

and ¥ = .85.

flow behavior which stretches the macromolecules substan-

This is due to elongational nature of the

tially as studied in Chap. 5. In this section, we investi-

gate how this T influences the flow behavior by using

r
the z-direction force balance and try to explain gualita-

tively the onset behavior of vortex inhibition which was

described in section 6&6.3.

295

The force balance in the z-direction (z-component of the

equation of motion) is written by

[ v, 3V, 9D 9T
S Ve B3 tTVz2T5z/T T §Z 7

The study of the Newtonian flow field obtained in section 6.

near the exit hole shows that the pressure gradient

and the corresponding inertia force

v,

are the main dominant forces and the Newtonian stress terms

are too small to contribute the force balance. TABLE 6.6

1



TABLE 6.6

THE MAGNITUDE AND ORIENTATION QOF EACH TERM IN THE FORCE BALANCE

296

BV

A

v

z
sz 3z

R

T 3zzz

magnitude

[gcm/seczbm3]

953

4750

4703

(*1)

23

{921)

980

orientation
for the z
direction

+ upward

- downward

*1 The contribution of the polymer solution is less than 5% of the dominant

force - %E—.

* The figure and sign in the parenthesis are contribution of the polymer solu-

tion estimated f£rom TABLE 6.1 to TABLE 6.4.

* The Newtonian stress tensor is calculated by Newton's laws:

Tz

zz

where

p = .01 [g/cmsec].,

P

L g/cm

3

for water.
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shows the magnitude of each term with the orientation of

forces around the point (r/R, z/H} = (.03, .01) for the case

of Re. = 1370, 85 = — .02. As shown in TABLE 6.6, when the

T calculated in the last section is used for the term

pPrZ22

a
3z ‘zz

it becomes about 20% of the pressure gradient term and the

direction of this force turns out to be negative. In other

words, the new force produced by the macromolecules tends to
push fluid downward, that is, the axial velocity at this point

may be increased. Qualitatively speaking, this is consistent

with the decrease of the liquid level during the onset behav-

ior because the average axial velocity over the exit hole is

increased. Although nothing can be said about the magnitude

of the increased axial velocity unless the equation of motion

is solved with the polymer stress tensor, 1t may be a reason-

able outcome that the polymer effect appears near the exit

hole especially around r/R = .03 and causes the liguid

level's falling.

In order to see how the flow behavior changes according
to the presence of the macromolecules, one must solve the

equation of motion with the polymer stress tensor expression

(the constitutive equation). This, however, requires a

tremendous amount of calculation because nine non—-linear

partial differential equations (three from the equation of

motion and six from the constitutive equation} are to be
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sclved simultaneously. The calculation is much more difficult
and involved than the case of Newtonian flow problem. In-
stead of pursuing this difficult calculation, the polymer
effect on the flow behavior may be roughly estimated simply
by changing the boundary condition at the exit hole in the
Newtonian vortex flow calculation because the polymer stress
tensor becomes significant only for this area. The calcu-
lation procedure, thus, is described as follows. First,
the axial velocity at the exit hole is reasonably estimated
by the contribution of the polymer stress tensor. Secondly,
the boundary condition of the stream function is fixed accor-
ding to the estimated axial wvelocity. Third, the velocity
field for the entire vortex flow is calculated by the method
described is section 3.5 for a short period of time. And
finally the stress tensor is analyzed along the newly calcu-
lated stream lines in the same way as described in section 6.4
to see the tendency of the polymer stress field. In this way,
we could at least see an initial stage of flow change which
may correspond to the onset behavior of vortex inhibition.

According to the results of Tp'zz ohtained in section
6.4, the stream function at the exit hole is estimated (see
Appendix E for details). The velocity field is then calcu-
lated with this boundary condition for 20 iterations which
is equivalent to .286 seconds. An initial condition used
for the calculation i1s the wvelocity field of the case Reyp =

1370, S5 = 0.02 (See Appendix A for full information}. Fig.
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6.15 shows the axial velocity at the axis of rotation after

20 iterations. The v, at r = 0 slightly decreases from the

Newtonian case especially when =z 15 less then 5 cm.

Even for such a short period of time, the axial velocity

responds to the change of the boundary condition which is

substitution of the polymer effect at the exit hole. The

decrease of the axial velocity seems to correspond to one of

the experimental findings during the onset behavior of vor-

tex inhibition. The experimental data in Fig. 6.13 is taken

within 30 seconds since the polymer effect is first observed.

The axial velocity is always changing from time to time

because of the random fluctuation of the air core. All the

v_data in the figure, however, are lower than that of the

Newtonian case. The results of calculation does indicate

this tendency.

The newly calculated tangential velocity, on the other

hand, is no appreciably changed at all from the initial

state especially outside the hole region. This is also con-—

sistent with the experimental facts. For example, as shown

in Fig. 6.12, tangential velocity data during the onset
period is not different from the data taken before the onset.
Fig 6.16 shows the stream lines obtained from the

calculation. The dotted lines are the stream lines

for the initial state. The flow pattern as a whole

is not so different in the two calculations. However, the
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Fig. 6.16

Stream Lines near the Exit Hole after

Imposing the Polymer Effect
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stream lines above the bottom boundary layer shift to the

right to some extent. This shift also explains the reduction

r = 0 because the radial distance between

of v at

z
¥ = 1. and ¥ = .9 becomes wider. The polymer stress

tensor is calculated along each of the stream lines in Fig.

6.16 in the same manner as in secticon 6.4. The results are

listed in TABLE 6.7 to TABLE 6.11. Again Tp 2y VErY NDear
r

the exit hole is increased so rapidly for

in both stream lines

¥ = .85. And the magnitude of Tp,zz
are a little larger than before. I, along the stream lines

$ = 1.0 and ¥ = .9 1is not increased enough to cope with

dominant force of the equation of motion and the macromole-

cules are not stretched at all. The tendency of the polymer

stress tensor observed in section 6.5 is even more emphasized

in this calculation. In other woxrds, tp - still becomes

large enough to be comparable to the dominant force so that

the fluid may be pushed downward again. It is found from the

sequence of the calculations that the initial effect of the

macromolecules, that is, to increase v, at the exit hole

around r/R = .03, keeps its tendency as time proceeds be-

cause the ilncreased v, also increases the responsible

velocity gradient

IV,
3z
producing higher stress tensor component (especially ¢ = .85).

is important because once the polymer

This nature of =T
PrZ2Z



POLYMER STRESS TENSOR ALONG THE NEWLY CALCULATED STREAM

TABLE 6.7

LINE ¢ = 1.0

T [g-cm/secz-cmZ]

POINT TIME < [T] >
NUMBER [BEC] T T T T 0
p,rr p, 66 p,22 p,ré p,rz p,08z
0 0 0 0 0 0 0 0
1 .01 0 0 ~-.015 0 0 0 L0150
2 .02 0 0 -.042 0 0 0 .0156
3 .03 0 0 ~.054 0 0 0 .0159
4 .04 0 0 -.152 0 0 0 ,0183
5 .045 0 0 ~.230 0 0 0 .0201

g0t



POLYMER STRESS TENSQOR ALONG THE NEWLY CALCULATED STREAM

TABLE 6.8

LINE ¢ = .9
L 12
POINT <[--] >
NuMBER | TTIME T 1 1 T T R,
p,rr p,06 P, 22 p,x0 P,rz p,0z
0 0 0 0 0 0 0 0
1 .02 0 0 -.205 0 -.089 | -.124 .0194
2 .04 0 0 -.291 0 ~.090 | -.137 .0214
3 .06 .013 ,014 -.298 .002 -.081 | -.124 .0209
4 .075 .064 .056 | -1.247 .009 .016 -.128 .0394
5 .081 .101 .052 | -5.,045 .109 .109 -.100 .1056

Fot



TABLE 6.7

POLYMER STRESS TENSOR ALONG THE NEWLY CALCULATED STREAM LINE ¢ = 1.0

T [g-cm/secz-cmzl

P R 2
POINT TIME <[§_} 5
NUMBER [SEC] T T T T T o

p,rr p, 00 P,2%Z p,rd pP,rz p,8z
0 0 0 0 0 0 0 0
1 .01 0 0 -.015 0 0 0 .0150
2 .02 0 0 -.042 0 0 0 01586
3 .03 0 0 -.054 0 0 0 .0159
4 .04 0 0 -.152 0 0 0 .0183
5 .045 0 0 -.230 0 0 0 L0201

£0¢t



POLYMER STRESS TENSOR ALONG THE NEWLY CALCULATED STREAM

TABLE 6.8

I~

p R )2
POINT <[__) >
NoMBgER | TTME | ¢ T T T T T R,
p,rr p,66 p,22 p,rb p,rz p,0z
0 0 0 0 0 0 0 0
1 .02 0 0 -.205 0 -.089 | -.124 .0194
2 .04 0 0 -.291 0 -.090 | ~.137 .0214
3 .06 .013 .014 -.298 .002 ~-.081 | -.124 .0209
4 .075 .064 L0656 | -1.247 .009 .016 ~-.128 .0394
5 .081 .101 .052 | -5.045 .109 .109 -.100 .1056

¥0¢



POLYMER STRESS TENSOR ALONG THE NEWLY CALCULATED STREAM LINE ¢ =

TABLE 6.9

.85

—lp [g-cm/secz-cmz] 2

POINT | TIME <[-§R-] >
NUMBER [SEC] Tp,rr Tp'ae Tpfzz p,r8 Tp'rz Tp'az o]

0 0 0 0 0 0 0 0

1 .05 -8.917 1 -3.092 | -2.505 5.382 -4.716 2.779 L2313

2 .10 -13.5852]| -5.643 | -7.402 8.870 -10.018| 6.470 . 3456

3 .13 ~8.990 | -3.555 |-23.532| 5.775 |-14.551| 9.160 .4180

4 .15 -.982 ~.107 |-40.625| -.405 -6.585 | -2.610 L4551

5 .16 -.319 -.093 [-131.810 .241 ~-7.394 | -4.456 .7526

s0¢€



POLYMER STRESS TENSOR ALONG THE NEWLY CALCULATED STREAM LINE ¢ =

TABLE 6.10

.8
T -cm/sec2-cm2]
POINT { TIME ip 19 22
NUMBER [SEC] <[R—] >
'porr | "p,88 | "p,zz | "p,re | "p,xz | "p ez ©
0 0 0 0 0 0 0 0
1 .04 |-.0382| -.595 | -.143 | .574 | -.243 | .195 | .0395
2 .08 |-6.436 | -.914 | -6.286 | 2.494 |-6.415{ 2.323 | .2217
3 10 | ~5.411 1} -.268 |-34.717| -.996 |-13.699|-2.922 | .4478
4 106 | -2.327 | -.022 |-177.127 -.262 |-20.540|~2.678 | .8097

90¢t



307

effect appears this effect may continue.
In this section it is found from the analysis of Tp,zz

that the dramatic increase of Tp,zz along the stream lines
r

y = .85 and ¢ = .8 very near the exit hole seems to ex-
plain qualitatively experimental characteristics of the on-
set behavior of vortex inhibition, namely, the liquid level's

falling and the reductiocn of v, at r = 0.

The mechanism of vortex inhibition is discussed in the

next section based on the main results of the previous

sections.
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6.6 A Proposed Mechanism of Vortex Inhibition

The results of the Newtonian vortex flow calculation

indicate that the velccity gradient

IV
9z

increases significantly only near the exit hole and the exper-—
imental observations of the onset behavior suggest that the

polymer effect starts with both the liquid level's falling

and the reduction of vz at r = 0. 8Since the onset behavior

of vortex inhibition is a transient state from the Newtonian
vortex flow to a fully developed vortex flow of polymer
solution, the initial change of the polymer contribution to
the stress tensor is calculated by solving the constitutive
The dramatic

equation using the Newtonian velocity field.

increase of Tplzz very near the exit hole is found from
the calculation. This increase is mainly due to the strong
elongational type of flow which stretches the macromolecules.
Furthermore, the simple simulation shows that the increased

Tp,zz Seems qualitatively to explain the onset bahavior of

vortex inhibition.

Although the mechanism of the fully developed vortex
flow may not be precisely described because of the compli-
cated nature of the phenomenon, we may speculate the mechan-—
ism for the fluctuation of the air core from the analysis

of the onset behavior. The suppression of the air core



corresponds to the decrease of vy in the core region and

the reduction of Vg may be due to the decrease of vy

at r = 0 which is one of the polymer effects discussed in
the last section. The experimental measurement shows v,
at r =0 1is always lower than that for Newtonian case

during the onset. The overall flow behavior, then, becomes
more like the case of the low tangential Reynolds number
(see Fig. 6.1, for example). As shown in Fig. 6.1, the flow
approaches the exit hole from all directions, and a bottom
boundary layer no longer exists. The flow behavior is quite
different from that of high Reg. For high Regy, most of
the flow (about 80%) is from the thin bottom boundary layer
as shown in Fig. 6.2. The fluid element from the boundary
layer has almost zero axial velocity and it is merged with

the fluid from the core region near the exit hole.

309

The fluid

element is then axially accelerated rapidly within the length

of the boundary layer thickness producing the large velocity

gradient. This explains why Tp,zz becomes very large only
for the stream lines ¢ = .8 and ¢ = .85 (¢ = .8 is from
the boundary layer and ¢ = .85 1is the stream line next to
p = .8). Since a large velocity gradient

v,

3z

does not exist near the exit hole in the absence of the bot-—

tom boundary layer during the suppression of the air core,
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no polymer effect is expected. The flow system, thus, tries
to go back the original Newtonian vortex flow. 2And the tan-
gential velocity in the core region increases producing the
extension of the air core again. This whole process may

explain the fluctuation of the air core.
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VII. CONCLUDING REMARKS

Three major conclusions are drawn from the results of

this study. They are:

1) The numerical calculation for the confined Newtonian

vortex flow provides reasonable velocity field for the entire

vortex tank geometry. The calculated velocity field reason-

ably agrees with experimentally measured Vg at the free stream

region and v, along the axis of rotation by photographic tracer

technique. The consistency in the comparison may make the

velocity information reliable for the area near the exist hole

and for the bottom boundary layer. The vortex flow studied

in the thesis is highly non-linear (Ree is up to 2000) and

has a singularity at the exist hole. The alternating-direc-

tion implicit method with the zone formulation is gound to be
suitable for this kind of complicated flow problem.

2) The Modified Nearly Hookean Dumbbell model seems to

be an appropriate constitutive equation for the vortex inhi-

bition study. The model can predict a boudned large elonga-

tional viscosity which may change the flow behavior at high

strain rates as well as shear thinning. The MNHD also has a

simple form so that any kind of locally homogeneous flow can
be applied for obtaining the polymer stress field. It is

found from dynamical studies of the model that the time to
reach steady state in start-up of elongational flow is well

scaled by the reciprocal of elongational rate € ~. This re-

sult is quite different from that of shear flow which is
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scaled by the time constant kH.

3) A highly elongational type of flow, namely very

high wvelocity gradient

BVZ

oz’

is established in the vicinity of the exit hole according to
the results of the numerical calculation. This large velocity
gradient may be a cause of the onset behavior of vortex inhi-
bition. The application of the velocity field to the MNHD shows
that the macromolecules moving along the stream lines pass-—

ing the bottom boundary layer and outside the core region
(Seey= .8 and ¢ = .85 in Fig. 6.14) seem tc be almost

stretched out to the maximum length RO very near the exit

hole. The stretched macromolecules produce large stress ten-—
sor which seems to explain gualitatively the characteristics

of the onset behavior of vortex inhibition.

The following possible studies are recommended as exten-
tions of this study.

1) To develop the solving method for the non-Newtonian
velocity field by solving the constitutive equation and the
equations of motion simultaneocusly.

2) To develop an experimental technique to measure the
velocity field especially in the vicinity of the exit hole.

3) To develop an experimental technigque to measure rheo-

logical properties (shear viscosity, the normal stress coef-

ficient and hopefully elongational viscosity) of a dilute
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solution of flexible linear macromolecules.
4) To establish high elongational type of flow in a

simple geometry so that both measurement and calculation of

the velocity field are easier. This may also confirm the

importance of elongational viscosity for dilute polymer

solutions.

Since the elongational viscosity seems to be responsi-
ble for the flow change of the onset behavior of vortex inhi-
bition, the mechanism of drag reduction may also be related
to the large elongational viscosity exerted by macromolecules.
As to this direction,

5) To study the turbulent pipe flow to obtain detailed
velocity information about the bursting process in order to

investigate how the macromolecules are deformed.
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VIII. APPENDICES

Appendix A: Computer Program of the Newtonian Vortex
Flow Calculation.

As described in Chap. 3, this computer program is de-
signed for solving the Navior-Stokes equations in a confined
vortex flow especially for high tangential Reynolds number.

The methods used in the program are lined SOR for the stream

function and ADI for the circulation and verticity. The

calculation program mainly consists of six files, KEIKO, STFN,

VRVZ, CIRL, VOTY and RESI. The file REIKO controls the whole

calculation procedure which is described in Fig. 3.12. It

can start and cease the calculation. The initial conditions,

a time increment for the circulation and vorticity, zone

description and many parameters are also determined in KEIKO.

The calculation data are stored or read or printed or punched

in this file. KEIKO also includes several subroutines. The

subroutine NONS determines the boundary values of vorticity

at the bottom wall according to eg. 3.55. The subroutine

“b
KEIKO, a basic tool of both lined SOR and API, solves the
tridiagonal system matrix.

The stream function is solved by the lined SOR in the file

STFN. The interpolated stream function which defined at each

corner of the zone is also calculated in this file. VRVZ

determines the radial and axial velocity from the interpolated
stream function at zone boundaries (See Fig. 3.7). The cir-

culation and vorticity are solved by ADI in files CIRL and



VOTY respectively. In CIRL and VOTY, both functions are
first solved implicitly in the r-direction (R-sweep} and
followed by Z—sweep using the intermediate results obtained
by R-sweep. After certain number of iterations (loop 2},

the residuals of each function are calculated in the file

REST.

315
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Description of Variables

Variable

ST(I,J}
STN (I,J)
CI(I,J)
CIN(I,J)
VO (I,J)
VON (I ,J)
VR(I,J)
VZ(I,J)
EX(I,J)
R(I)
DR(I)

Z (J)

DZ (J)

RS (I.,J)
RC(I,J)
RV(I,J)
M

N

L

NT

NTC
NTC1l

MT

Description

Stream function ¥

The intermediate stream function after R—sweep

Circulation T

The intermediate circulation after R-sweep
Vorticity w

The intermediate vorticity after R—sweep
Radial veloccity vy

Axial velocity v,

The interpoclated stream function

The radial position of zone center

Zone size for r—-direction

The axial position of zone center

Zone size for z-direction

The residual of stream function

The residual of circulation

The residual of vorticity

Constant for WRITE format

Constant for PUNCH format

Constant for READ format

The number of variables(y,l,w) location in r-
direction

NTC = NT - 1
NTCl = NT - 2; The number of zones in r-direction

The number of wvariables (¢,.l,w}) locations in
z—direction



Variable

MTC
MTCL

NEXIT

NE1

IM

IP
IDD

ICT

55

SFAC

AFER

INQP

IIST
ITCI
ITVO
IOST
TOCT

IOVO

317

Description

MTC = MT — 1

MTCl = MT - 2: the number of zones in z-direction

The radial location of the radius of the exit
hole

NE1 = NEXIT - 1
The index number for chcosing the method to

determine the bottom boundary wvalues of
VORTICITY w,.. IM = 1 ~ 4 (See subroutine

NONS in file KEIKO)
The number of inner iterations
The number of outer iterations
ICT = IP x IDD; The number of total iterations
Tangential Reynolds number defined by eq. 3.53
The ratio of vgp to vgg defined by eg. 3.54

The relaxation factor for stream function
calculation

The convergency criterion for stream function
calculation described by eg. 3.60

The ratio of R to H

INOP = 1; Fixed boundary condition at the exit

hole for stream function (This condition
is used for the polymer effect calculation
described in section 6.5) INOP = 2; The
Newtonian calculation

Stream function data reference number for input
Circulation data reference number for input
Vorticity data reference number for input
Stream function data reference number for output
Circulation data reference number for output

Vorticity data reference number for ocutput
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Program Listing

The complete listing of the six files are followed.



?FILE:

T0
A

T2

KEI KD TORTRAN 32

THZ PILZ KEIKO HAS THE PCLLOWING CHARACTEBRISTICS.
TO INPUT AND QUT2UT THEZ DATA.
TO CONSTRUGCT THE ZONE.
TO DETERATNE THE L[TERATIONY SCHEIXE.
TO CONTRXOL OVEEBALL CALCULATION AS DESCRIBED IN
EIG. 3. 12.
TO DETERIATY¥E THE BOTTO% RALL VCEZICITY { IN sSURROUTINE
NONS | .
TO PAINT AYD PUOWCH THZ DATA.
TO SQLYZ THI TII-DIAGONAL MATEIX,
DEFINE FILE 10738 ,12G,L,I12}, 15738, 120,L,I%T)
GEFINE FTLE 20(38,120,L,I22)
DEFINZ PILE 61.38,120 ,L,Z13),71:38,120,L,I15}
DEFINZ ZLLE 81738,120,L,I20)
CoM#ON ST 712,238} ,CT 712,38} ,V0[12,38),8.12),08712)
co¥MOY DZ (38),Z r38)
CoMMOY¥ i, HT,4T,¥7C,ATC, NTC1,%TC1, YEXIT,¥E1,IH02
COMMON &2,SWIRL,SS
COMMON DT(10)
COYMON SPAC,CPAC,VFAC,ATZR
CCAMON TX 112,38)
CONMOR INX,INY
COXMON 35 I10)
IIST=10
IICI=15
IIVa=20
IOST=61
I0CI=71
IoYCc=81
=5
L=5
=9
DQ 6 I=1,10
CT!I})=0.
NE=12
MT= 38
NTC=11
MTC=37
TTC 1=10
MTC 1=36
YEXIT=4
NE1 =3
21 =0.
DR (1)=A.
Dz (1)=0.
52012 =4.
DZ738)=).
Z{1)=40.
DO 70 I=2,6
DR {IY=.22
JR(I+S) =.18
20 M1 J=2,21
DZ {J)=.0Q1
DO 72 J=22,37
DZLI)=.35
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CONVERSATIJUAL MONITDE SYSTEX

LEIQ0O010
KZIGE020
KEIQQQ30
KEIQCOQ4Q
KEIQQa5¢C
REIOCCE "
KET0Q070
KEIQQ089
KEIQQJ90
£EICO100
K2I00110
£EING 129
EEIZC137
X21I00 140
KEILL 15D
XEIQ0160
REIQC17C
KEICO180
KEIOD 190
KEIQL200
KETIO00210
IZIN0225
KET00230
ZEIQUD 240
KEIQG259)
REI0Q 260
REICL274G
XEILG280
XET00290
XEXOC300
KEICQ310
REICQ329
KEIOQC 330
XEIOQ34q
K®ET00 350
TEINQ 360
KEI®Q379
KETO0 340
KEICL 39
KEIQC400
KBICC410
XEINO420
LEI00430
KEIDud4ugQ
KEIQU4S0
X{EIDD 450
KEINQ4 74
KEIQOu80
TEIGQuEGY
KEIQQSQQ
LETI0D0S10
KBINQ520
KETIQ0530
LEI00 540
KETQQ550
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CONYERSATIONAL MONITOE SYSTEM

PILZ: KEIKD ZORTRAY A
DO 73 I=2,NT KEIDO0560

73 R(I)=R(I-1) +(D2(I) +DR (T-1)} /2., £EX00570
DO 74 J=2,4T KEIQ0580

T4 Z(JY=Z(T-1)+(DZ (J}+0Z (J-1}} 2. KEIQO0 590
TM=3 KEICGEOD
Ia=1 KEIO0610
Iz=20 ZZIN0620
iDp=2 KEID0630
ICT=0 KEL00 640
ARITE [M,%07) KET00650

400 FCEMAT(/,10L,'I7 ¥Z [5 PARABOLIC, INPUT G',/, XEIL00660
11CX,'IF YR I5 ZZRo INegT 11,/ XEION6TE
READ(L, 3071} IyO?2 KEXoosao

401 FORMAT IL10} XKEIDGE9D
NAITE [4,312) K2I00700

312 POBMAT ./, 10X, '"PLEASE I¥PUT S5 IY F10.5',/) KEIDLTI0
REA B (L, 204) SS XEID0720

80 1 J=1,4F KETQ0730
REAL{ITST'J,200) (ST!T,d) I=1,12) KEL0O740
BEAD(ITICI'J, 200} [CI'I,J) (I=1,12) XEIDUTSO
READ (TIVO'J,201) VOCI,J) ,I=1,12) REINOT60

1 CONTINUZ XEIOQ770
ST2,1)=.9946 LRINN7E8D
WRITE (4,320} KEID0790

32) PCEMAT(10X, 'IP THEZ SANE S5 PARAMFTER IS USED, LNBUT T.',/r KEI0Q800
110¢,IF SS AS DIPPERENT, TYPE 0 .!',/) KEICOS10
EZAD [L,2B7) ISS KETDO820

289 POIYAT(ITD) KEI00830
I= (Is5) 13,13,14 K2I00840

13 CONTIWGZ K2I00850
DO 3 I=1,¥47T XKET00860

50 3 J=1,4T KEI00870

3 vQ(I,d) =~¥0(I,J)*SS X{EI00880
14 CONTINUZ KEIGOB90
¥RTTE[(3, 321) - KEI00909

321 FOE¥AT{10X,'IF STORED INLTIAL CONDITION [5 USED, INPOT 1,° KEIOG910
1,/ 10X, '"IT? NEWLY INPUT ISITTAL CONDITION IS JSED,INEUT 0',/) KEI00920
REZAL {L,28)) ICH XEIJ0939
IP?IZH) 10,10,11 XEIOQ940

12 CONTINOZ KEIG0950
CIri2,4T)=.04 XKEIOD960
CI(3, 4T} =.40 XEIQQ970
criu,uT)=.50 XEI00980
CI(S.,¥T)=.5528 KELIQO990
CIL’6,47T}=.6322 KEIO 1009

I {7,5T)=.67u8 KEI0 1010
CI{8,4T)=,6379 KEI01029
CL{9,4T}=.,6538 XET010390
CI{ 10,47 =.7552 £EIN1040
CLf11,8T)=91 KEI01050

pe 2 I=2,11 KEIO 1060

DG 2 J=2,4TC KEID1G7]

2 CI{I,.J)})=CI(IL,aT) KETIO 1080
CLr2,1)=CT!2,4T) KEIG1099
FEI01100

CI,1)y=cI(3,NT)
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CONVERSATIORAL MONITOE SYSTEXN

?ILE: KZIEKO PORTRAY 13
11 CCONTZINDZ KEIG1110
200 PCRMAT(12F10.5) KEINT129
201 FORMAT({12Z210.4) KEIO 1130
25 CONTINOZ KEIG11419
TRITE [4,307} EEIQ 1150

307 EORMAT(/, 10X, 'PLEASZ INPUT EEYNOLS NUMSEE INF10.1',/} £ELQ 1160
READ [{L,224) RE KEIO1170
WEITZ (4, 308) KEIQ118¢

308 FORMATL/,10L,'PLEASEZ INPUT SPAZ I¥ EF10.4', . XEIO1190
BEAD(L, 205) SFAC KEIO01200

205 FORMAT ‘210. 4} KEIG1210
WRITE [4,309) KEIO 1220

303 FORMAT(/,10X,"PLEASZ INPUT APER IY¥ F12.8',. KEIOT23G
REAC{L,206) AFEER KEIC12u0
JRITT 1,310} XEID1250

310 PORMAT {/,10K,"2LEASE IMRUT DT({1) I¥ F12.8°'./) XEIQ1260
READ (L, 206) DT(1) 2101270

206 PORMAT [P12.3) XEIQ12380
FRITE(Y, 311) KEIO1290

311 FORYAT [/, 13K, Y2LZASE INPUT A4 LN FIC.4', /) KEIOT300
RBAG (L, 205) A LEIV 1318
HRITZ M ,313) KBI01320

313 FORMAT L/, 10X ,'PLEASEZ EY2UT DS(1) I¥ F12.8',,) XBI01330
BREAD(L, 206) O0S (T} KEEQG 1340
IIRP=) £ETI01350
TI=0 XEIO 1360
ARIT= [4,150) RE,SS5,4 KEIQ1370

150 FORAAT(/, 10%,"ESINOLD NU£L3ER Es',F10.1,/,70X, XBI0 1389
1S5 PARAMETER IS',212.5,/.10%, TEIN1392
2YASPECT ESATION IS',?5.2,/) XEIO150Q0

ccC INITIAL CONDITIOQY LEIGT1410
HATTE(Y, 101) ZBI0 1420

121 FORMAT /10X, *INITIAL TALUES OF ST.CI AND ¥YO', KEIQT43C
WRITEZ (4, 300Q) KEIGT4u0
CALE 2229 /ST, 4,7} KEIC1457
ERITE{X,301) KEIO 1460
CALL 2p22 /CL,3,2Z) XEICG1471
KRITE ®,302) KEIO 1480
CALL PEPPP(VO,L,Z}) ZEID 1490

cC SET O ITEEATION KEIO15Q0
49 CCNTINUSZ LEI01510
ICT=TCT+1 K2I01529
I[?{ITP-IP) 50,51,51 KETIO0 1530

51 EI=II+1 KEIO1549
TRITE (M,103) IL,ICT EEIO 1550

103 PORMAT(/, 10X, YAFTE1',I5,f CICLES* IS, LTERATIGNS', /7] KEIQ 1560
TRITE [1,397) KEIO157Q
CALL PPPP(ST,M,Z) TEIQ 1580
WRITT 71,653) INXK,INY XETI31590

650 FOEMAT(/, 10X, "NUM3EF OF TIMES FOR ST. IS B3LOod 0',2I5,/) EEIC1600
WRITE 74,331} EZIN1617)
CALL P2PP(-I,1,Z) KETO 1620
CALL VEVZ!®,Z,05%,DZ,2X,3,55) KETQO 1633
CALL RESI XEIO 164D
XEIN1650

IP(II-IDD} 52,53,53




PILE:

{1

nannan

32
30

53

30
305
204

21

KET XQ ZORTRAN A

ITP=3
ITP=LIZ2+1

CALL STPN

CALL NOYNS (T%,5S]

CALL CIRL

CALL VOTY

GO TO 49

CONTINOE

CALL PPeP(v0,L,Z)

20 37 J=1,4T

TRLTEZ(IOST'J, 200) (5T ,J) ,I=1,12)

WRITE (IOCI'J,2°7) ‘€I Z,J),I=1, 12)
WRITS(IOVO'J,201] (VO (L,J},I=1,12})
WRITE {6 ,315)

FOEZMAT (/,10%,'2LIASE INBOUT 55 VALUE LN 210.5')
AEAD (L,2%%) SS

PORAAT {2104 3)

IF7SS) 21,20,21

CONTING 2

ZNTEE ¥EZW ZELAZATION TACTORS

20
302
301
102

Inn=2
ICT=0

GO TO 25

CCNTINUE

FORMAT //, T0X,"'STRZax PUNCTION',/}

FORMAT (/. 10%, "CTSCOULATION", /)

PCEMAT I/, 13K, ' VOETICITY, /)

STQP

ZAD

SUBEQUTLINE NCHS (I, SS)

coH498 ST(12,38) ,CI(12,38),v0{12,38),R012},DK712)
coN¥ay DZ 33),2 38)

CCMUON e §T,H4T,¥TC,ATC, NTCI,LTC1, ¥EXIT, YEI

IAIS SOBEUUTINE DRTZEMINES THE YALUE OF TOETICITY AT
LAE BOTTIM WALL BY N¥NOX¥-S5LI? CONDITICN.

[K=1: PEZCISEZ METHCD

IE=2: Y5, WAON'S5 XETHOD

IM=3: STAPLE CNE

Ia=4: SIAPLE ONZE NO.2Z

1
12

2
11

30 10 “1,2,3,8),I4
DO 10 I=NEXIT,JIC

YOI, )=027.%ST L,2)-ST X ,3})/[9.%02[2) #*2/U.) =A/E L) *SS

GO TC 219
DQ 11 I=NEXIT, NTC

VO([I,1}={2S.%ST(L,2)—-ST(L,3)}/{8.%¥DT 02 »«2/4,)cA/2I) *55

GO TG 22

DO 12 L[=WEXIT,¥IC

YC(I,1) =S5% (2.€ST(T,2)} /(DZ(2) **2/4.) *3 /R (T}
Go TO 21

po 13 I=¥EXIT,iTC

¥O0 [I,1)=SS*ST 1,2)/ DI{2) **2/ 4. | *A/RT}
YIHC=TO (NBXIT,1} /PLOAT(IEXTT+1)

vo 12, 1) =VINC

pe 14 T=3,¥El

TO(I, 1) =2. € ¥INC+YO0 (I-1,1)
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CCNVERSATIONAL MCNITOR SYSTZH4

TEIO1660
ZEIN1670
K2I11689
XEI01690
REICITOG
XEIQ171Q
LEID1720
KEI01730
XEI0T1740
ZEI01T750
TEID1760
KZIC1774
£2I0178¢
EEINNT799
EI01800C
KEId181G
XEI01820
£2Iv133"
£ET0 1840
£ET0T135%9
KzIQ1860
XR2IQ187¢C
KEI{1880
TEI01890
K2IN190¢G
XEIO19D
XEIN192G
f2I01930
KEID1947
LE2I01950
KB2I01960
KEI01970
IEIO 1980
EE2I0199C
{EI02000
KEIO2819
KEIQ2029
TEIw2039
{EIQ2040
KEXI02C50
KEI02060
KBI0Z2070
KEI0 20840
KZ2IC2090
KEIQZ109
IEIOZ11C
KETQ2120
TEID 2130
KEL02140
XEID2150
KEIQ216G
REX0Z170
KEIC21806
2102193
TETC 2200



ILE:

1073
101

(18]

103
101

KEI KO POITRAY A

EETORY

ZND

SUBRIOTINE PC2C A3, M)
DIYENSION AB £12,38)

IZ M—-6) 2,3.3

DO 4 K=1,38

J=39-K

WRITE [7,100) (AB(I,J} ,I=%1.12}
GO TO 1

00 % K=1,38

J=19~K

WRITE 7,101) ‘AB L,J) (I=1,6}
D0 6 R=1,38

J=39-K

WRITE(7,101} (ABIZ,J),I=7,12)
CONTINGE

POBYAT {12P6. 3}

PORMAT (62 12. 3}

BETTRN

END

SOBEOOTENE 2PPP AB,X,Z)
DIMENSION A3 (12,.38) ,2 [38)
IF-6) 2,3,3

DO 4 R=1,33

J=39-K

WEITE A,1C0) ‘AB T,Jd) ,I=1,11),Z [J)
50 TO 1

L=M+1

DO S5 E=1,38

J=39-K

WRITEML,101) (AB(I,Jd) ,I=1,11).3!J)
CONTINUE

PORMAT 712212. 5)
PORMAT(T1E210Q.3,210,5)

RETORY

28D

SOBROOTIRE X=2IRO/A,B,C,0,X,4TTI1)

DIM=SNSCOY A 736) .8 (38} ,C(36) ,D(36) ,X(36),6(36) ,U0 (36} ,0(36) .7 (38)

3 71)=0.
G {1)y=8101)

g1} =Cc{(N /6(N

90 1 I=2,NTT1

Q(T)=1(0

G rI} =8 {I)=0 I} *T ‘I-1)

U (I =C{I] /G (I}
r{1)=0{1)/G1)

DG 2 I=2,4T™1
TX)=0{{I)-C{I-T1) %0 T)} /G E)
K NTT1) =Y (NTT 1)

DO 3 J=2, ¥NTT1

T=1+HTT 1-J
CT)=0({I}~X(IT+1}=U(T)
AZTORY

END

PUJCTION DELTA (T, J)
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COUVZRSATIONAL MONLTOR SYSIEX

KET0Z221Q
E2ZI02220
XEIN2239
REI02240
2102250
KZI02260
£=I02270
KEIQ2280
KEZI02290
RETQ2300
XEIO02310
KEICG2320
KET02330
KE2I02340
2102350
KEIOZ360
KZIQ2370
KEIOZ238B0
K2IN2390
£EI02400
KEIOZ412
KEIQ2429
KEZIo2437
KEZI02440
KEID2450
EET02460
KETQ 2470
KZT02480
KEIQ2u490
2102500
KZI02510
LEI02520
TETQ253a
TEIN2540
KEIQ255¢
¥EIQ2560
KEIC2570
KEIO02580
KETQ259¢
KETQ26QQ
KETQ2610
AEIQ2620
£EIDZ2630
KETQ2640
XZT02650
KEIQ2660
IZI02670
KEIOZ2687
RKEIQ2690
X2I02700
KEIQ2710
KET0272)
XEIN2730
KETQ2740
KEIQ 2750
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CONVZESATIONAL 4OWITOZ SISIZ

°ILZ: KELKO FOETRAN A
IF(T-J} 1,2,1 KEIQ276

1 DELTA=0. KZID2770
RETURN KEINZTE0

2 DELTA=1. KET02790
{EIC 2800

RITURN
ZND KZIJNZ2819
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CONVZESATIONAL XONITIR SYSTEY

?ILE: STPWN PORTRAY 1
sc THE SILE STPY COYSISTS GF ONE SUBROOGTINE. STPQ0010
cc THE SUSRIOUTINE SOLVES STEEZAM PONCTICY BY THE LIYED STP00029
oot SOE WITH RZLAXATION FACTOR SPAC. THIS ALSO STF00030
CC  CALCULATSS INTZRPOLATED STREAM FONCTION PROM FHICH STFOQ Q40
cc THE RADIAL AND AXIAL YSLOCITIES AREZ DETERMINZD. STF00050
SUBROUTINE STFY STE00Q6D
DIMENSION F!36),B8 36),C (36) ,D736) ,K (36} ,STN12,38) STF0UQ70
CCYM40¥ 5T (12,38),CI(12,32),v0(12,38),.K(12),DR (12} STF00080
COMMO¥ DZ38),Z 138) STFO0GOS0
ccaMod A, NT, 9T, ¥TC,47C, T ,17C1, NEXTT, NET,INOP STPO0 100
CoM4¥0Y RE,SWIERL,SS S3TPE0119
CO¥8QN DT 1Y) STPO0 120
COY43Y SPAC,CFAC,VFAC,AFER STFGC 130
COMMON £X 112,33) STF0O0 140
CoudoN INX, INY STEOQ 150
COXHON 25 719) STF00160
ICGHE1 STFOQ 179

sTT=1 STFEIC 180

INC=0 S5TEO0 190

INY=0 STFOGZ00

II2=1 STF00210

30 CONTINUE 5TFQ0 222

c Z-SWHEZP OF STREAM FUNCTION S2F0Q232
DO 100 J=2,4TC STEDQ 240

DO 257 I=2,NTC STP00250
AAA=—A*3(I) **2*Y0 (I,J) /S5 5TP00 260
DIS1=DE T+1)+DR T STFI0 270
DIS2=DRT) +J2 X ~1) STF00 280
DIS3=DT [J+1)+DZ 77} STEOL 290
DISU=DZ LJ) +3Z (T—1) STEGQ 300

DISS= (R (I-1} +3 (I) } /2. STPOD310

DD ZZ=(ZT [J+1) =L (J=1)) /2. STF00320
DDDRE=(3(I+1) =R (T-1)) /2. STFQQ 330
STA=01,/0DIS1+1. /DIS2) *2, /DDDRE*R{T) +2. /DL S2+& [T) ®*D5 (IIP} STEQ0340
518==(1,,/DLS3+1,/DI54)*2,/DEDZZ¥A*s*2%1 (L} +R (L) *DS (IL 2} STFQQ 350
S1AA=71./DIS3+1, /DI Su)*2. /DDDZZ *4**I*x BT} STF00360

5 1IA=S5TA+S1AA STPQO370

518=RK [I)*DS [II?) STFIG387
$2=2./DIS1/0DCRR*R L) STFO0 390

S3=2. /DIS3*A«*2/DDDZZ*E T) STFUC 40D
S4=11.+R [T) /DCCAE) *2,,DI52 STPA0410

S5=2. /DISU*3**2/DDDZZ*R I} STFCCU2G

CC ATOID ST £2AX PUNCTION BECCMES NEGATIVE STFOO430
L3A1=53*ST(I, J+1) +55% (1. ~-DELTA 72,J) */DELTA {2, I} +CELTA [3,I}}* STFOO 440
1DEZLTA {1,INOP)} ST T,J-1)+AAA STFQ0u4S0
IF(J-2) 70,70,250 STEDQ 460

3 IF [I-NEXIT) 257 ,76,76 STF00470

76 LF(AAAT) 77,77.250 STFQOQa80Q

77 AAR1=3. STEO0U49C
INX=INx+1 STEFO0500

259 CONTINUZ 5TFESC510
I9=r-2 STFO00520
IF{ID) 50,50,51 STEO0GS30

59 F IT—-1}=1. 5TEROO0S40
STP00550

3(I-1=S1A-5S95%CSLTA (2,J)%0ELTA (1, INOP})
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FILLE: STFN PORTRAN A CONTEESATIONAL XONITOE STSTEM
C I~T)==52 STFGCS6Q

DI ~1)=AAAl +SU*5T T ~1,d) 3TPOO570
1+5S1B%ST (I,J) STFO0G580
GO TO 2% STF00590

51 ID=I-NTC STPO0600
IF {ID} 52,53,53 STROUG 1N

52 Pa-T)=-5S4 STF00620
B T-1)=STA-S5%DZLTA [2,J) *DELTA (3, ) *DELTA T, LNOP) STEAN63G
Ca~-1)=-52 STPO0G40
D(I-1=2aaa1 STFJJ6590
1+518%5T (I,J) STFO066 1
30 TG 200 STFO0670

S1 P I-1}=-54 STF0Q068G
3 (T—~1) =313 STF00690
C{I-71)=9. STENCTOG
D(I-1)=AAA1+52=ST /T +1,J) STP00710
1+S1B*ST (I, .0} STFO0 720
29M COMTINUZ STPOO73C
CALL KEIXO(F,B,C,D,X,37TC1} STFOQT740

DO 55 L=1,NTC1 FTRINTST

355 ST{I+1,J) =STAC*¥L (I} +(1.-SFAC) *ST (T+1,J) STFOOQT60
100 CONTIEUE STPGUTTO
z I-SAELEP OF STREAM PUNCTIOY STF00780
DO 300 I=2,4TC STEQCT790

DO 400 J=2,4TC STZ008Q0
AAA=-3/SS*R (L) *% 2%V 71, J) STFO0B10
DIS1=DR [I+1)+DR [I} STFPQOB20
DIS2=DER(I) +D2 (I-1) STFO0830

B IS3=DZ J+1)+DZ 7]} STPO0840
DIS4=DZ (J} +DZ (J-1) STFI0ES0
DISS=/R [I-1)+B'I)) /2. STPONBED
ODCDRR=(Z(C+1) -R(I~-1)] /2. STFOQB70
ODDZZ= [Z (J+ 1)=Z {J=1}} /2. S5TPGI88%
S18={1./DI53+1./DLS4) *2 .*Ax%2€2 (T) /DDDZZ+2 (I) *0S [IID) STFO0890
$1a=-(1./DIS1+1./DIS2)*2. *& T) /DDDER-2.,/DIS2 +2°I) *DS (IL 2} STFQ0900
S1EB=S1a%®(=1.)+%(I) *DSIITP) SEF0Q910
S1B=S1B+S1BS 5TP00920

S TaA=R [I) *DS [TIP) STF00930
$2=2./DIS1/DDLRR*R (T} STPOCILE
S3=2./DIS3I*A*%2,/D0DTZ*E T} STFOQ950
S4=(1.+E&(I) /DCDORR} *2.,DIS2 STPO0960D
55=2, /DISUSA**D2/DDDZZ*R T) 3TFOuU9TY

I D=J-2 STFOQ9ED
IF(ID} 60,60,61 STFO0990

60 P rI-1)=0. STFQR1000
3(J—-1)=51B-55« (DELTa(2,I) +DELTA (3,L}) *DELTA (1,L40Q STFO 10 10

€ oI=1y==53 STEQIQ20
D{J—1) =52*ST{I+1,J) +S4*5T (T~1,T) +55%«5T (I,JT-1} STFQ 1030

1= .- [DZLTA {2,T)+DZLTA (3,I}) *DELTA /T, INOP)}} STFC1040
1+S1A*ST (L, J) +AdA STP01030
cc AVOID ST. IS5 BELOW ZORO STF01060
TF(I-NEXIT) 73.75.,75 STPO1070

TS DDD=S3*ST [L,J+1)+SS5&ST I, 5-1)+aAl STEQ10EN
IP{CLD} 72,72,.73 STFG 1090
STEQ11Q0

T2 C(I-11=0.



?ILE:

ZC
cc

-
-

cc
cCc

30
g

STPN FORTRAN 3

THE FILZ STFY CONSISTS GF ONE SUBROUTINE.
THE SUBRJUTINE SOLVES STREAY PUMCTICN BY THE LINED
SOR WITH RZLAXATION FACTOR SPAC. THIS ALSO
CALCULATES INTZREPOLATEL STREAN FUNCTION FROM FEICH
THE RADIAL AND AXIAL VEILOCITIES ARE DETERMINZD.
SUBRIUTINE STPFN

DIMENSION F{26) .8 (36) ,C [36) ,0036) ,X {36} ,STN 12,38}
CCHMON ST(12,3R),CI(12,38),V0(12,38),E(12),DR (12}
COMHMON DZ(38),Z738)

sCuMON s, NT, 9T, NTIC, XTC, NTC1,ATC1, ¥EXIT, SET1,INOR
CGXMON RE,SWIRL,SS

COMYCN DT 119)

C0443Y SFAC,CTAC,VFAC,AFZR

COMMON EX {12,338}

COMMON INX, INY

cCouMON 95 {19}

ICGHE=1

yTT=1

INX=0

INI=0D

Ir2=1

CONTINUE
-SWECP OF STREAM PONCTION

DO 100 J=2,5TC

Dg 2% I=2,¥TC

AAA=—A®I (L} **2*¥V0D (I,J) /S5

DLST=DEK T+1)+DR X}

DIS2=DR [T) +I% T-1)

DIS3=DZ [T+ T1}+DZ I}

DISU=D0Z (J) +3% (T-1)

DISS=(B(I~-1)+R(I}))/ 2.

DODZZ=(T (J+1}-Z (J-1)) /2.

DDDRE=(3(I+1) -8 (T-1)) 2.
S1A={1./DI51+1./0152} *#2. /DDDRR*RB{I) +2. /DL S2+E fT) £05 (TIP}
S1B==(1./DI53+1, /0LS3}*2. /DODZZ*A*=2 %5 (I) +R (L) *DS (L L 2)
S134={1./DI53+1. /DI S4)*2, /DDDZZ *4**2%3(T)
S1A=STA+STAL

S18=k {I)*D5 II?)

52=2./DIS1/DDERR*R (L)

$3=2. /DIS3I*A **2/DDDZZ*E T

S4={1.+R {I)/DCLAR} *2.,DI52

S5=2. /DISU*LA**2/DDDZZ*R T)

CC AYCID ST &ZAM PUNCTION BECCMES YEGATIVE

"

T7

259

52

ALAT=SI*ST (L, J+1) +55% (1.-DELTA 72,J) *(DELTA 2, L) +DELTA (3,11 *
1DELTA {1, INOP) } ST T, J—-1) + AARA

IF(J-2) 70,70,250

IP {I-NEXIT) 25°,76,76

EF(ARAT) 77,77,250

BART=2,

INX=TNE +1

CONTINUZ

ID=I-2

IF(ID} 50,50,51

P T-1}=).

3(I-1 =51A~55%D2LTA (2,J)*0ELTA {1, CNOP}

CONVERSATIONAL JONITIR SYSTEY

STrgQo10
STFO0021
STFOQQ30
STEFQQ Q40
STFOGOSC
STFO0Q&0
STFOUOT70
STFCC 080
STFUGO%0
STFO0 100
STECQ110
ST200 120
STPGC 13C
3TFQQ 140
STECQ 150
STFQ0160
STFOO 172
STEJC180
3TF00 190
STFOG200
3TFQ0210
S5TF00229
TPU0239
STEQQ 200
STPQQ250
3TFOQ260
STFI0274
STPO0 280
5IrQC 290
STFQO 300
STFCO370
STP00320
STF20 330
STE00340
STFOQ 350
STF0Q360
STPQU 370
STFIC3871
STFOO0 390G
STEGCA0D
STFOQRQ10Q
STEFCCU2G
STF0O430
STEPQQ 44
STEQOUSQ
STFO0 460
STEQ0470
STEQQ 480
STEQQ49C
STFO0OS00
STFOCS10
STFG0S520
STFO0S530
STF0O0540
ST®QQ 559

325



72 C(J-1)=d.

FILE: STPYW PORTRAN A CONTEESATIONAL XONITOR SYSTEY
CI~-1)=-52 STEGGCS60

DI ~1)=AAAT +54 *ST I~1,T) STPO0S70
1+S1B&ST (I, J} STPOGSB0
GO TO 232 STF00530

51 ID=I-NTC STFO00600
IF {ID) 52.53,53 STFCUBIN

52 FIT~1)=-54 STPO0620
B I-1)=313-55%DZLTA (2,J) *DELTA{3,I)*DELTA’1, LYOP) STEONG3C

T T-1)=-52 S5TEQQ&40
D{I-1)=aaa1 STFO0650
1+#S1B*ST I,J) STFNQ&6 1
30 TQ 200 STFOQ670

53 P [I-T)=-54 3TFI068G
a(I-1=51a STF00690
CZ=-1)=0. TEACTAG
DIT~1)=AaA1+52%ST(I+1,J) STFOC710
1+518*# ST (T, J} STFO0720
290 CONTINTZ STECQ730
CALL KEIKO(F,B,C,D,K, ¥7CI) STPOQT40

DQ 55 I=1,8¥TC1 STEONTSA

55 ST I[I+1,J) =5PAC*L (I} +{1.=-SPAC) *ST (I+1,J) 3TFGQ760
100 COoNTINUE STFOGTTO
z Z-SWZEP 0OF STREAM FUNCTIONW STPO0780
20 300 I=2,NTC STFQCT9

DO 400 J=2,4TC STZ700800
AAA=-L/5S*2 (I) **2*7Q [I,J) STFOQ810
DIS1=0R [I+1)+DR (I} STFQQ820
DIS2=DE(L) +DR (I-1) STFO0830
DIS3=DZ (J+1)+DZ 1) STZ0Q840
DIS4=0Z (J} +DZ (J-1) STEO0850
DIZS=/r [I-1)+RII)}/2. STFQO860
BCORR=(Z(I+1) —R(I-1)) /2. STPO0870
ODDZZ=1Z [T+ 1)=Z [J=1)) /2. SIFGOEEY
S18={1./DIS3+1.,/DIS4) *2 ,=Ax*2«2 (1) /DODZZ+2 (T) *05 [IIP) STFO0RB90
S1a==(1./DIS1+1./DI52)= 2. *& (I} /DODER~2./DIS2 +2/I} *DSII 2} STF00900
S1AB=S1A*/-1,)+5/I) *DS/ITR) STF00910
51Tp=S1B+51B8 STPO0920
S1A=R [I)«DS (IIP) STPO00930
$2=2.,/DIS1/DDCR2*A(I) ST200940
S3=2./DIS3*=A**2/DODIZ*E T) STFOQ950
Su=(1.+i{I) /DCDORR)*2./DILS2 STFQ0960
$5=2. /DIS4 €3 *%2/DDDZZ*R T) STFQuU3TQ
Ip=J-2 STF00980
LF(ID) 63,60,61 STF0Q0 990

60 P WI-1}=0. STF01000
3(J— 1) =518-55% (DELTA(2,I) *DELTA(3,.I)) *DELTA (1,INOR S5TFO10 10
CrJ=1}==33 5rPO1020
D{J-1)=52%ST(I+1,J) +S4*ST (T-1,J) +55%ST (L, -1} STF0 1030

1# {1.-{DZLT4 {2,I)+DZLTA3,I)) *DELTAT1,INOD)) STPC1040
T+STA®ST(L,J) +AAA STF01050
cc AYOID ST. IS BELON ZORO STF01960
TPII-NEXTIT}) 73.75.75 STF01070

75 DDD=S3*ST [I,J+1} +SS€ST I, J- 1) +iia STFQ1080
IFfCLD) 72,72,73 STFO1090
STFO 1100

326
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?ILE: STZN PORTRAN A CONVEESATIGNAL XOMITOE STSTZY
0 IJ~1}=S2%5T [T+ 1, ) +S4+*STI[~1,J) + S1A*STIT,J) STFO1110
THY=THT+1 STPO1120
73 CO¥TINGE 5TFG1130
30 TO 400 STPO 1140
&1 ID=J-HTC STFO 1150
I?{ID) 62,63,63 STFO1160
62 T{I-1)=~55 STFO 1170
8 (J-1}=S1B STFQ1180
C(J~1=—53 STFO 1190
D fJ~1)}=S2%ST [I+1,J)+34%ST (I-1,J) 3TF01200
1+ 51A%ST (I, J) STFD1210
2+AAR STPO1220
GC TO 330 STF0 1230
§3 F tJ-1}=—-55 STFN1240
arF-1}=5158 3TP01250
C{I=-1)=2. 3TFO1260
D (J~1)=S2*¥5T [T+1,0) +S3*ST I=1,J) +SI*ST(I, J+1) STF01270
1+S1A%ST (I,J) STP01280
2 ¢3AA STFO12940
400 CouTINDZ STFO 1300
CiLL KIIKO'®,B,C,D0,X.,¥0C1) STEN1310
DG 65 J=1,4TC1 STFO1320
65 STH(I,J+1} =SFACEL(J)+ (1.~5PAC) &ST (I, J+1] $TFO 1330
3N3 CONTINOES - STF01340
TC  CHICK CONVERGENCY STF0 1350
DO 10 I=2,4TC STPI 1360
DO 10 J=2,4TC STFO 1370
EE=ABS ! ISTN 'I,J)—-ST X ,J}}/STY I,J}) STFAI1380
IF {ER=AFZR) 10, 10,11 STP01390
10 CONTINGE STFO 1400
¥RITE 5,1%1) ICONW STFO1410
101 POEYMAT(10X, 'THE NUMBER OF ITERATION IS',I10) STP0 1420
GO TO 39 STPO1430
11 ZCNTINUR STPO 140
BG 15 IL=2,45TC STFO 1456
90 15 J=2,4TC STPO1460
1S STE{I,J =STY (L, J) 5TP0 1470
ICON=ICON+1 STPO1480
IF(ICON~50) 81,10,10 STPO 1490
81 CONTINT®S STP01500
GO TG 30 STPO1510
40 CONTINOZ STF01529
Dg 16 I=2,uTC STF0 1530
RO 16 J=2,x1C STED1540
16 ST (I,J)=STN T,J} STPD1550
LF{INOE-1] 650,600, 659 STPO 15640
6§07 CONTINUE STPO157¢
ST 12,1) =STN {2.2) 5TPO 1580
ST?3,1)=STN 73,2) STFC1534%
€50 CONTINOE STFQ 1600
CC CALCOLATE I[NTEEPCLATEID STRIAN FUNCTION STFO1610
DG 500 I=1,¥TC STP01620
DG 500 J=1,1TC STFOT1630
EXST={ST {I,J) *DE{T+1) +ST{I+1,5) *DR{T} ) /(DB (L} +3R [T+ 1} ) STEO1640
$TF0 1650

T*D= (J+1} A(DZ(J) +D2 (T+1) )



328

CONVEESATIONAL HONITOR SYSTEX

PTLE: S5TFY PORTRAN A
2 [STT,5+1) *DR [I+1} +5T T+ 1,J+1) *DR (L) } /(DRII) +0R{I+1}) STPU1669
3I=DZ (J) /(D2 (T) +DZ (T+1)) 5TF01670

500 ZX(I,J)=BXST STPR168°
EETUEY ) STFO0 1690
STEQ 1700

END



cc
cC

cc
joul oo

a7

38
89

7
[

140

i1
102

YRYZ FTOATRAN A

THE FILE V2IV¥Z HAS CNZ SURROUOTINE VRVZ.
THE SUBEQUTINE TREVZ CALCULATES THZ EADIAL AND
AXTAL VELOCITIES P20d THE INTERPOLATED STETAX
PUOSCTION WHICH IS DETEZEMI NED IN THE FILE STPFH.
THZ SOBROQUTINE ALSD 2RINTS THE VYELOCITTY DATA.
SUBRCUTINE VEVZ 2,%Z,DR,DZ,2ZX,A,55)

DTAEYSZION R112) .Z '38) ,DR{12) .DZ 38} ,2X! 12, 38)
DIMENSIDN VYR 712,38),7Z712,38),2Z738)

Do 1 1=2,11

DG 1 J=2,37

ZI=EX [I.J)

E2=2X(I-1,J)

EI=EX I, J-1}

E¥=EX{I-1,7-1)

YR (I,J) =55¢% {Z1-83)/DZ J) 7 R [I) +DE (I} /2.)
IF(I-2) 37,837,838

v2{I~-1,J) =0.

50 T2 83

YE(I-~1,J)=SS5®[{E2-B4) /D2 () /(R (I-1)+DR (L-1)/2.)
CONTINUE

T2 (L,J)=—-55*€E1—-£2) /DR(I) /R (T) /A
vZ!T,J-1}=-55%=3-£4) /DR I} /R (I} /2

CONTINU =

332 T 3=1,38

e, )=1.

YZ{1,J) =0.

Do 4 I=1,37

TZ (TL)=% (L} +DT (L) /2.

WRITE 16,120}

FORXAT{/,10K,'TYE VELGCITY DATA VR AND VI',./ /.
112X,"THE 2ADIAL YELOCITY VE',,/)

DO 2 ¥=2,37

J=39-¥

ABITE6,101) E,I) ., I=1,11)},2L7)

FORMAT f11210.3,F10. 3)

HRTTE(6,102)

ORMAT (/, 10X, "TH9E AXIAL VILOCITL VZ°*,/)

00 3 K=1,37

J=38-K

FEIT= 6 ,131) VT IT,d) ,I=1,11 .32 {J}

RETUOEY

ZND

329

CONVZRSATION AL XONITOE SISTEX

YRVY200 10
VEY0Q020
YRVO0030
TEVACLOQ:Z
YEVO0050
YRVICIEE
YRY00Q70
Yavogo08o0
YRY0Q099
TRVeQ 180
YR¥J0110
TRVYO0 120
TRVOG13¢
YEVOO 140
YRVOO0 15¢
TRYOUO160
YRVYO0 170
¥YRVOO0180
TRY00 190
TRYOGCZCC
YEVOC0Z10
VYRYDO222
TEV0023Q
VR¥0024Q
VEV0025¢C
YEVOOD 260
YRVOQ270
VEv0o0280
YRYQC2910
YRVQ0 300
YEYO0310
YRYQL320
YEV00330
VEV00 340
YRVQ0350
vAVO0O0 360
YRYCO370
TRYJ0380
VEVYDQ 394
YEVYOG400
TRV0Q4 10
TRVQNU2G



PILE:

cc
cc

8]

R

CIEL PCaTHAN A

THE PLLEZ CIXL INCLUDZIS GNE SOUBEOUTINE CIRBL.
THE SUDEOUTINEZ CIRL CAICOLATES CIECULATION 3 ADL.
SUBROUTIYE CIRL

DIMENSION F /36),B 736) ,= (36} ,D{36) ,T{36) ,CI¥ 12, 38)
CCMMON 5T(12,38) ,CI(12,32),%0(12,38) .5 (12],0E (12}
COMMOY DZ 738),Z 739)

COMMON 4,9T,4T,NTC,aTC,NTC1,4TC1, YEXIT,NET,INOR
CoMMON 52,SWIRL,SS

coKd0y 2T 719}

COXMON SPAC, CPAC, ¥F AC,AFER

CoMA0§ =X r12,38)

=6

rip=1
-SHZE® 07 CILRCULATION

30 41 J=2,MTC

DO 82 E=3,4TC

S1=EL(I,J)

Z2=ZX (I-1,4)

E3=BX(I,J-1)

EU=ZX[T=1,J-1}

CALCITATICH CP CIS A¥D VEL

35

96
97

DIS1=DE& {I+1)+DR I)
BIS2=DR [L) +DR T-1)

DIS3=DZ (J+ 1) +DZ (J)

DIS4=DZ {J)+DZ [J—1)

DISS=R(I) «+DR(I) /2.

DISE=R/I)-DR 'T) /2.

DIS7=(R(I) +3(T+1)) /2.
DISB=/R[I)+R ‘I~-1)) /2.
CY¥YECTIVE TEANS: VERY IXPORTANT

¥1=55% (21-Z3} 02N/ /R 'T)+DE'T) /2.)
IF{I-2) 95,95,96

v2=0.

GO TGO 97

V2=S5* (Z2-E4) /D2 [J) /E T-1)+DR TI-1} /2.)
CONTINUZ

¥3=-55% (E1-22) /CR(I) /3(I) /4
V4=-55%* E3-z4) /DET})/R'I) /A
VELI=V1+ABS (V1)

YEL2=V1-185 (¥ 1}

YEL3=V2+ABS(V2)

VEL 4=V2-ABS 7V2)

TEL5=V3 «ABS [V3)

VEL6=V3-485 (V1)

TELT=VUL +ABS (T4}

YELB=V4—AaBS (V)

EXT=2./ {R2*DI52}
DDDZZ=(Z(J+1)~Z(J-1)} /2.
DDDRR= {3 [I+1)=R T~1}) /2.
C1A=(VEL1#DILSS—VELU4* DTS6) /(2.%DR (L))
1+2. /RE/DDDRR #R 'T) *%2x 71,/ LIS 1*DIST) + 1. /{DE52%DI548} )
1+ (I} *DT (IR}

C1B=- [VEZL5-VZ2L8)/DZ J) /2. *A*R [T}
1-2./EE/DDDZZ*RT) = (1, /0IS3+1./TLSY) FAL*:2
1+2 (I} *DT 'IIP)

330

CONVEBRSATICYAL YONITGE SYSTZM

CIEROGO10
ZI200020
CIZ00030
CIZ00040
CIEOUQ OS50
CIRVGO60
CIRQCO70
CIRQCQ8B0
ZIRO0090
CIEDO 100
crs00110
ZIRQOQ 120
CIRG313%
CIR0O 140
CIEQJ15C
CIROO 160
CIRQO 170
CIRGO0180
CIR00 199
CIRCGO20G
CIROGZ21O
CIROC220
ZIR00 230
CIEQQ 240
ZIR0G250
CIRQO 260
CIR00270
CIROO 280
CIRCG 290
CTIR00 200
CIRC0319
CIR0O0320
CIRQGQ33GC
CIR0O 340
CIZN0350
ZIRE00360
CIe00 370
CIRQC380
CIR00390
CIROCRNN
CIR0O 410
CIEDC G20
CIR0Q 430
cIr(C4a0
CTROQ450
CIROO 460
CIEQO0uT70
CLROO0 48O
CIKO00W90
CIEO0502
CIEQHO 510
CIR00S520
CIROW530
CIEQOQOZ40
CIRGLS5Q



PILE:

L]

4]

10

11

12

13

CIZE FORTIAN 3

C2=2.+R [T)**2/(RE*DDDER*DIS1*DIS7) —VEL2 /2. *0LS55,/DE (I)
Cu=2,63 (L) ¥« 2 /(2. DODRR*DIS2* RLSA) +VEL3 /2, *0LS6 /DR (T)
C3=2.%a%*2/DIS3/RE/DDDZZ*R (L) ~VELE /2. *1 /DZ [J) *B (I)
c5=2.;Aecz/ursuxaz/onnzz*a(I)+vaL7/2.sa/nzta1ta(I)
ID=I~

IF!IC) 10,10.3

F(I-1 =1

38 (I-1)=C1A-C4/9.

c(r-1y=-cz2
DII-1}=CIB*CI{I,J}+C3*CI I, J+ 1) +CS*CT (L, J-1)

G0 70 82

IFP [I=NZXIT) 4,11,11

FII-1)==T4

B(I-1)=C1a

C (I=1) =-C2

D{C-1=C1B*CL(I,J} +CI=CI(ZL,J+1) +C5+CT L, J—1}

GO TQ 82

ID=I-NTC

ITfID} 12,.13,13

FI-1)==24

B(I-1=Cla

CII-1)=-C2

D(I-1 =CIB¢CE(I,J) +CI*CL(I, J*1) +C5«CI I, J=1}

GO To B2

F{I-7) =~C4

3(T-1)=C1a

c(I~1}=09.

D {(T-1)=CI1B*CI(I,J)+CI+*I[I,J+1) +C5&CL (I, J~1)
1+C2*CI{I+1,J)

82 CONTINUZ

1%

15

31

o

31

Dg 14 I=1,9
EX)=F [(I+1)

B [(T)=B [I+1)
C(I}=C(E+1

DII)=D {I+1)

CTALL KEEKO(P,3,C,D, %, 9)
Do 15 I1=1,5

CIN [XT+2 ,J}=X (T}

CIN [2,J)=CL¥ !3,J}),9.
CONTINUE

0C 30 J=1,x7T
CINI1,J)=CI{1,J)}
CI¥(¥T,J)=CI(NT,J}
DO 31 I=1,N7
CINII,1)=CTI IT,1}

CIN {I,8T)=CI /I AT}

Z=-SWEZIP OF CIRCULATION

DO 83 I=3,NTC
D0 84 J=2,4TC
21=EX(I,J)
T2=BY[I-1,J)
ZI=EX (T ,JT-1)
E4=BY T—1,J-1}

ZALCTLATION OF DIS aWD VEL

DISI1=DE (I+ 1} +DR (L)

331

CONVERSATIONAL JO¥ITOE SYSTEN

CIRQ0S69
ZIROGS370
CIaET0580
CIRAQS590
CIEQC60C
CIE0Q610
CIEOQ620
CIR00630
CIR00 640
CIRQ0650
CIEJ0660
CIROCETD
CILEOQ 680
CIBDG6E9G
ZIRQQTQQ
CIRGG 710
2IRQ00720
CIRO0Q 730
CIR2LT4)
CIRO0Q750
CIEONT767
CIR0OT770
CIa007380
ZIEQ0790
CIRDOBOC
CIzudB1Q
CIRQ03820
CIBRO032¢0
CIaI08uUD
CIRDG 855
CIZ00860
CIROCSETO
CIRGO8BO
CIR0089)
CIR0OU900
CIRG0910
CIEQw92D
CIR0093G
CIRIGIH)
CI&00950
CIE0G960
CIRO0970
CIRCQ980
CIEQLC 939
CIRG1000
CIEJ1910
CIRQ1G2Q
CIRQ1033
CIRO0I1040
CIRE0 1650
CIEQ1060
CIRO1070
CIRQTCEG
CIRO1090
CTROT1100
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0ZHhL0EID {811 10= (I 5+L
QL4103 TID { (§STC2TSTIQ /" L+ (LSICG*L5IC) /" 1) +Z 4 {I)5+FX0AC/3L/ "L
0Ot 1LO¥ID ((I)80a» 2] /(S TQ+H TS A=-SSTG#L TR} -=FLD
06EL0¥I (@IT) TG {I) B+ (T) SxTaxb+ [4STII/ " 1+ E5TA/ " L) 42 20AQ/TES *T +L
c8fLoTI= {I)8aYs "2/ (P} 20/ {813 A4-5T347 =810
CLE L QIID T/l lhi=r) -1 +0)z) =220G0C
0SELOEICZ g/ (-0 3-( 1+ I gi=Tzqaqqa
CSELEHETD (281023 /"P=II2
QRELOQYID (h4)SEY—HhA=BTI A
0EELGEID (hA) SEV+nA=LTER
oCcEL ORI (EA)SEY-CA=9TZA
DLELOEIZ (4 SEV+€A=GCTdh
GOELDEID (Zh) sgy-za=nT2h
06Z 1 0HID (ZA) SEV+ZA=ETIZ 4
¢8ZLOIID (1A SEY -1 A=Z T34
0LZ1LDYID {LAISEYV+ LASETE 2
C9z LOETD VI 3/(1 3G/{nd-£2 x55-=hi
05Z1 0YID Y/ U(I)B/ (1) 80/ lgE=L2 ) s 55=-=f &
trzZ 1L 91D SOKILROD 68
0EZ L DRI "2/ -1) 2a+ (1-~1)u) / {£) 20/ (hA-~TZ ) #S5=Z » B&E
0TZLOEIZ 68 01 09
oLZL 03I *0=gA LB
00ZL0dTD ge’re’Le (Z-I;4d1
psrtirpaI2 {*2/(1) 30+ () W) / {r) 24/ (E2—~15) »55=| &
0Bl loTIz LIRYLEGCEKI X424 :SKRETEC ZATIDIANOD o)
0LLLECEID z/({L-1) 0+ {1)8)=851a
0911081z v/ i+ D H+ (I B =L51IC
¢SLLOFETID /(1) 8e-{1; 8=9514
QnL102ID ¢/ (1) ga+ (1) E=551C
LELLOZID (1-01 zG+ (0) za=rS51IQ
GZLLOEIZ {(r}za+81+0) 20=£SIG
goLLtOETC (1-T: 80+ (I, 30=75IC
WILZSIS I0IIROR TYEOIIVSEILECD ¥ HvEId04 15Is 31T

ZEL

Ez’ez’ee (GIjal



7

<

ILE:

CIEL FORTRAN A

22 ?{J=-1 =-C5

23

au
25
83
19
18

26

37J-1)=C18
ClW-1)=-C3

D{J— 1 =C2%CIN [I+71,J)}+C4*CIN I-T1,J)
1+CI1A*CIN (I,J}

GO TO 84

? 1I=-1}=-25+C3/3.

8§ [J-1) =C1B-C3*9, /7.

CrI-1)=".

DIT~1) =C2*CT N IT+T1,J) +CU™CIN (T-1,J)
1+ C1A*CEN (T, J)

CONTEND Z

CALL KBIX0(?,2,C, D, L, 47C1)

no 25 J=1,arcl

CL(L,J+ 1) =X {J}

COuTINgZ

20 19 J=2,M4TC

CLi2,J)=CI 3,J)/9.

90 18 I=2,NE1

CI{I,1)=CI{I,2)

DO 26 I=1,NT

CI{L,4T)=9./8.¥CI{T,4TC})~CI(I,4TC1}/8.

ZTURY
ZHD

CONVEE SATIOY AL

333

HONITIe SY¥STEM

ZIBO 1660
CIRG16T7A
CIgQd 1580
CIR31690
CIEG170QQ
CIROT1710
CIRO1 720
CIE01730
CIED174Y
CcIZ01750
CIEG176)
CIR01770
CIz01784
CIz01790
CIRr01800
<IRO1810
SIEO 1820
CIRQ1833
CIz018u0
CIrr01853
CIEJ186¢
CIRG1870
CIRr0Y 880
<Iz01890



PILE:

cc
cc

[#]

LB ]

yoTY PORTRAN A

THE PILE VOTY INCLUDES ONE SUBREOUTIKE VOTY.
THE SUBEOUTINE YOTY SDLVES THE VOTICITY BY ADL.

SUBROCUTINE TOTY
DIZENSIOW 7 736} ,B 736} ,C [36) ,D736),X!36) ,¥OK 12,38}
CoMMON ST{12,38),2T012,39),¥0{12,38) ,E(12},DE12)
COXM0N BZ (38),Z(38)

CCMMOY 4,NT, 4T, NTC, 47C, NTC1,HTC 1, NEXI T, ¥E 1, IKOR
COA40N 2E, 5ALRL,SS

COAMON DT 13)

TCY%0N SFAC,CEAC, VFAC,ATER

CONNIN 2X12,38)

ITe=1

E-SWEZP OF VOQRTICITY

DO 5 J=2,4T"
DO 6 I=2,0TC
21=%X T ,J)
E2=EX{I-1,3)
E3=S{[L,J-1)
Eu=FX T-1,J=-1

CALCULATION OF DIS AND VEL

DIS1=0K [T+1})+DZ [I)
DI32=DA(I) +JR{I-1)
DIS3=DZ [J+1}+0Z [0}
DISu=DZ (J) +0Z (J-1)
DISS5=R [TI)+D& (I)/ 2.
DISE=2[I)-DI(I) /2.
DIST="R T)+R (I+1}) /2.
DISB=(a (I} +R(I-1)) /2.

CONVECTIVE TR2MS: VZRY INPORTANT

37

33
g9

T1=55% (Z1-83)} /0L [J} /(RK{I) +DR(T) /2.]
TF(I-2) B7,87,R8

¥2=3,

50 TC 39
Y2=SS*(22-E4} /DL (T} /(RII- 1)+DR I~ 1} /2.)
IoNTINGZ

Y3l=-55* = 1-22)/DRI)/R{I) /A
Ty=—S55*23~S4) /DRIT) /2[I) /A

VEL 1=V1+485 /71)

VEL2=V1~-A25 (V1)
¥YIL3=V2+4Bs (V2}
VILY4=T2-ABS {V2)
YELS=¥3+4BS(T3)
TEL6=V3-AB5 (¥3}
VTEL7=Y4+Ai8S (V4})
VYZ2LB8=VU4 —-ABS V4)
DDDZZ=(Z (J+1) =2 (I=1)} 2.
DODRE= (X 'T+1}-B T-1)) /2.
VEXT=82{I) /RE

YEXT2=2.%R ([} **2/ R I*DIS1}

VEXT3I=E (T) **2*[¥1*3[S5+Vz*DI56) /2.
T1A=(VEL1*¥DISS—VELu*DISE) *K [T} **2/ 2. *DR[I}}
1+{2.¥R(I}‘*Z/DDDRE={DIS7/DISI+DISB/DISZJta(I))/RE
1+B(T) «*= 3x DT (IIP)

V1B=—{VELS5-FTZL8) /DT [J) /2. *a*R (L} **1]
1-2. /RE/DDDZZ* (1.,/DI53 +1 /I S4) #A**2*R (L) **3+E (I) **] #DT (ILP)

334

COSVERSATION AL JO0NITOE SYSTEX

TCTC0019
yoToCcdze
YQTQ20030
YOTOO C4 G
YOT00050
70TIQ 060
YOT 00070
YOTOUOB)
YOTOC 3972
0T340 100
TOTCQU: 110
¥OoTd0120
702CC 132
70T00 140
¥OTOO 150
YCTNO150
yOT2I0 170
YOTAU 164
YOT00 190
yoT0g 200
TYOTO0Z10
YOTOOQ 220
YOT00230
Yoroo 240
YOT3G252
7QT0Q 260
TOTAC27)
TOT00280
yOTOG 2992
vOT00300
voTod 312
¥OoT00320
70100 330
TOTHG 349
70100350
FyOTOC 360
YQTOO 370
YO TO0389
YOTQC 390
YOROC S0
TOTL0Q410
YOTOO 420
YOTQ00uw30
YOTOO 44l
YOTJL 459
70200460
TOTI647TH
YOoTaQ 480
YOTAC 49D
TOTRQS00
vOQToosS14d
YCTOOS520
vOT0G 530
YOT005480
vOT00550



'q

jod

YOTY PO0ATEAN A

(U]
T

¥2=B [T} *%2% 2, *DIS7/ R2*DIS 1*DDLER) ~VYEL2¥DIS5,/[2.*DE (1) })
VU=PR [T) #+2 ® {2 =0T S8 /(BE*DISZ¥DDDRE) +VEL3I*DIS6/ (2. *DR (1))
Y3=R 'T) **3* 72 s 'RE«DISI*ODDZL) *4*%*«2~VELGE/(2.¥ DL [J)}) *3a)
¥YS=E 7I) **3*f2 s BE*DL 4 *DDDZZ)} *A**2+TVZLT/12.%DZ (J)) =A)
V6=2.kA«CI (L J)* ((CI(I,J¥ 1} —-CI(L,J))/DL53
1+/CI{I,J)=-CI?I,Jd-1)} /DI sS4)
Ip=I-2
I 7ID) 32.,37.,24
30 F-1)=9.
B(I-1 =V1A
CiI=-1}==¥2
D(I-1}=T3€VQ (I, J+1} +V5# VYD (L, J~1} +VE*YC (I-1,J)+V6
1+V1B*V0 I,J)
GO TO B
2% IPCI-NEXIT) 25.31,31
25 P-1)==V4
8 I-11=v1a
CIE-1)=-v2
D(I=1=V3I*VD (I, J+1) +VS*vQ [, J-1}+V4
1+71B=Y0 /I,J)
GO TO 6
31 Ip=I-NTC
IF{ID) 32,33,33
32 F'II-1)=-Vv4
B I~1)=vV1A
C{I-1=-v2
DII-T)=Vv3*VO[I,Je7} +¥5&V0O (I, T-1]+76
1+¥1B*YC (L, N}
GQ TO &
33 F(T-f1=-Vu
B fI-1}=V14
C{I~1)=0.
O({I~1)=V3I*V¥D ‘I, I+ 1) +T5*¥0 [T, J~1) +T6+VZ2¥T0 I +1,J)
1+¥1B*Y0 IT,J)
6 CONTINUSZ _
CALL KEIKJ (F,3,C,D,K,NTC1)
DO 35 I=1,HNTC
35 VONI+1,J)=K'T)
5 ZOUTINUZ
DO S0 J=1,47T
vay¥ 1,J)=vo 1,0
53 VON({NT,J) =70 (NT,J]
PO 51 I=1,NT
YOE(I, 1} =V0(ZI, T
S1 7ON [LI,4T)=70 [I,4T)
L-SWTEEP QF YORTICITY
90 7 I=2,.¥TC
DQ 8 J=2,47C
Z1=FX'L,J)}
I=EX {I-1,J)
E3=EX(I.J~1)
ZU=EYX (I-1,J=1}
CALCULATION OF DIS AND VEL
3IST=0& 'T+1)+DR [I)
DIS2=N2(I) +IR( -1)

335

CONVIRSATIONAL MONITCE SYSTEHM

TOLO0566
70T0C 570
YOTUT 587
YOTOCS530
YOTCO06C0
TO0T00610
YyoT00620
YOT 00630
VOTQOo 6u0
YOTOL 650
FTOTO0Q6643
VOTIOQ 670
VYOI Q0680
7O0T20 690
YOT 3762
vOTO0710
vOToGL 720
7TQTIC 730
JOTOO 744
YOT 00750
YOTOOQ 760
YQTQ077Q
YOTAO7T80
YOTCG 796G
¥ OT00880
vyOoT0021C
yoTop8zo
yoTde830
YGT 008U O
YOTao0850
YOTAG 850
YOT00870
TOT0C 880
TYO0I0089Q0
YOTEO90G
TOTO00310
yoTd0920
YOTG5932
TOTQOSLO
voTOC 959
voT00960
TOTGO 970
YOT00S80
TO0TDOS90
vargl1000
yOTO1010
Yoro1020
vOTO 1030
TOTC1IOWn
vOoTD1058
vOoT01060
0T 01079
YoT01080
YOT01090
YOTO 1100



?ILZ:

C c

96

a7
98

47

191

47

336

vOT I ZORTEAN A CONVERSATIONAL AONITOBE SISTEM
DIS3=DZ (F+«1) +DT(J} YOTG1110
DIS4=0Z 1I)+0Z 1J-1) vOTO1120
DISS=R(L} +*D2(I} /2. VOTO 1130
DI56=R 7L} -DR (L) /2. YOI Q1140
DIS7=(R(I) +R(I+1)) /2. TOT011590
0IS8= 7R (I)+R T~1))/2. YOTOT160
ONVECTIVE TERAS: VEEY IMPORTANT YOTD1170
¥Y1=S55% {21-23)/DZJ}/ 'BE'I) ¢DETL} /2.) YOTO1 189
IP'I-2) 96,36,97 70T0 1190
v2=10. ¥QT01209
GO TD 98 TOT01210
V2=SS* [E2-E4) /DZ LI}/ 'E ‘T- 1) +DE TI-1) /2.] TOTN122)
CONTTNOE TOTO01230
Vv3=—55% (21-£2) /DE (I} /R I} /& YaTO 1240
T4==55% [Z3-B4) /DR(I) /RII) /A YOT 01259
VEL1=V1+ABS(V 1} ¥YOTO 1260
TEL2=¥1-1BS V1) YOT 01270
YELI=VZrABS(V3} YO T0 1280
TILU=V2-A83 'V2) YOTS1290
TOLS=V3+a33(¥3) TOT01300
TELE=¥3~-ADBS (¥3) FOTQ131¢
VEL7=V4 +ABS (T4} YaTo1320
¥2L8=V4-485 '74) vOTO1330
DDDZI=!Z(J+1)-Z [J-1)}) /2. TQTO07340
DDDRE= (R {I+1)-B T-1)) /2. YOT0 1350
VIXT=R [T} /RE YOT 01360
YEXT2=2.%2(I) ** 2/ (E E* DI51) YOTO 1370
YELT3I=R (I) £*24'Y1*¥3I155+V2*DISH) /2. vOT 01380
V18=(VELS=VELA} /0Z(J} /2 .%a*R (L) %3 YOTO 1390
1+2./RE/0ODDZZ* [1.,/DIS3+1./DIS4) 4 =« 2% (T} **3+R {I) **3%DpT (TIP) vOTQ1400
T1A==(VEZL1€DIS5-VELU* 0L 56 ) #3 (L) #*%2/ (2 .*DE (I} } YoTQ1410
1- (2.%R (L) #**2/DDDER* {DIST/DIS1+DIS8,DLS2) +8I}) /EE TOTOT42%
1+R {T) *«3#DT [ITP) YOT01430
¥2=2 (I} **2% (2, *DIS7/ 'RE*DIS 1*DDIRR} VOTO1449
1-YEL2*DIS5/ [2.*DR{T))} TOTO1450
V4=2 (I) **2* (2.+DIS8/ [(RE*DDDER*DNIS2) TOTO1460
1-YEL3*DIS6/ (2. *DA T} } vOTO1470
V3=E(L) ¥+ 3% (2. /(R Ex DISI*DDDZZ) #A**2-V ELE/ (2. %DZ {J]) *a) Vo TO 1480
VS=3 [T} «¥3% (2 /IRE*DLS4 *DDDZZ} *A**2+VELT /(2. EDZT [T} ) *A) TOT Q1490
TE=2.&CL(I,J)*A% ((CT(IL, J+1) -CI(L,J) ) DIS3 ¥YoTO 1500
1+#{CL{T,J)-CI T,J-1))/DIS4) YGT 01510
ID=J~-2 YOTO1520
IE{LD} uQ,ut,.41 VOT015390
CONTING Z TQTO 1549
TP (I-NEXIT} 46,087,u7 Y0 TG 1550
F(T-1}=1. TOT 01560
B(IJ—-N=C18=-V5 VOTO 1570
CLI-1)==v¥3 YOTG1580
D{T-1)=T2*TON T +1,J) +V4 #VON (T~1,J] +V6 +TTA®VON (I,J) VOTD 1590
GO TQ 8 voTJ160Q049
B{I—1}=v18 YOTO 1620
ClI-1)1=-73 YOT01530
D{I=1)=V2¢€VON (L +1,J)} +VE*VON (I~1,J} +T6+T5*=VQ¥ (T, J-1) VOTQ 1640
YOTG1650

T+ ¥1A*Y0% /T, J)



2ILZ:

41

52

43

8

45
T

39

VoTY PORTHAY 3
GJ TO 8
ID=g-4TC

I? ID) 42,43 ,43
P{J-1)=-¥5

B J=1}=V13
T J-1) =~v3
DII-1)=V25V0N (I+1,J)+T4*WOQN TI=1,.J) +V6
1+V1A®YCY T ,J)

G2 TO 8

P J=1};==-V5

3(J-7 =v18

CI-1)=1.
D=1)=V2*TOV(I+1,J) +T4%VON (L~1,J) +VE +VI*VOU (I,J+ 1)
Te T1A*VON T,J5)

CONTINUE

CALL KZIKJ 7 ,8,C,D,X,4TCT)

D0 45 J=1,2TC1

VO{I,J+ 1) =X{.J)

CONTINUZ

DQ 319 I[=2,ME1

v3:.I,1)=v0'1,2)

RETURYN

=D

337

CONVERSATIONAL JOYITOR SYSTISX

Y¥OTr0 1660
yOTO0 1670
YOT0164Q
YOTC 1690
TOrai1 704
YQTG 1710
¥oQTI1720
vOTGQ 1730
YOTO 1740
YOT 01750
YOTO 1760
Yoral1y77q
VOTO 1780
YOTO1794
vyOTO0 1800
YoTHT1815
¥YOTO 1820
vOT0 1830
YOoTO1840
vOTO1854
TOTU1867
70TO01870
FOTI1889



?7ILE: RESL FORTZAN A

cC
cc
o a4
cc

C

(o

COSVEBESATION AL JMONITDE

THE PTILZ REST INCLODES T SGOB20UTINES, 2ESI LMD PRES.
THE SUBEQUTINE RESI CALCOLATES THE EESIDUALS OF THE
THREZE PUNCTILONS AND THE SUSRCUTINE 2225 PRINTS THE

RESULTS.

SUBEGUTINE W3ST

DI4ENSION RS [12,38) ,2C(12,38) ,EV 12,38)

cosmow ST {12,38) ,CI[12,38),V012,38),5K(12),DR12)

COMMQN 0Z (38),2(39)

COXMON i,NT,NT,NTC, 2TC, NTC1,4T< 1, HEXIT, NE 1, INOP

CCA¥ON RE, SWIALL, S5

CQUMGH IT 717)

CCHMCN 3PAC ,CPAC, TTAC

CCHY¥CN 32X 712,38)

IIp=1

DO 2 I=1,¥T

DQ 2 J=1,4T

25(r,. J) =0.

icrr, nN=n.

T IT,JT) =),

CONTINUE

90 1 I=2,NTC

0Q 1 J=2,47C

Z1=8x [Z,Jd)

22=3{I~1,0)

£3=px (I,J-1}

Th=FEY (L=-1,J-1)

CALCULALIOQON JF DIS AYD VEL
DIST=0& [I+1) +JB{I)
DIS2=DR(I)} +D3 (I-1)
2I53=07% LJ+1) +DZ (J)
IISU=0Z (J) +DT (d~1)

DISS=R [I) +DR I}/ 2.
DIS6=B([)-DZIT)} /2.
DEST=(RI)+2 'T+1}) /2
PISB=[R (I) +3 IT-1)) /2.

CONVECTIVES TEZRXS: VZEY IMPORTANT
TI=SS*(21-23) /D2 13 /(R{I} *DRI{I} 2.}
I?(1-2 A&7,87,88

87 v2=n,
GO TO B9

83 V2=S5%[22-E4} /DL LI} /IRIT~ 1) +0B(I- 1} /2.)

89 COMTINUZ
Ti==-55% 'Z1-22) /DR 'T) /EII) /A
T4=-55% (E3-E4) /DR(I) /5 (I) /A
YBL1=T1+A35 (V1)
TEL2=V1-AB5 (V1)
VEL 3I=Y¥Z+485 'V2)
TEL4=V2-ABS (V2)
VELS=V3+aBS 7V3)
VEL6=Y3~ARS /¥3)
F2L7=VU+A35(V4)
YELB=Y4—ABS 77U}
DODZZ={2 (J+1)-Z (J-1}) /2.
DDORE=(Z (I+1)—-& T-1)) /2.
STECAM ZGHZTTON

(¥

338

S5ISTZM

RES00010
R ESICQ20
3IES00030
I250G2890
®RES00050
AES00Q60
52500070
EES00080
2 ES000990
ZES500 100
AE505119
a2500120
EESCQ 130
REES00 140
22500 150
1E500160
RESG0 170
IESIL189
AES500 190
1ES202039
23500210
2ES00220
22500230
2ESQ0 240
12532253
dE500 260
2ESJ0270
ZE500280
XES00280
RE500390
125003190
AESCC32D
22500330
RESDU3IGG
1E500350
RESQQ 360
1E5Q0370
zES00380
RES00390
RESOC KO0
22500410
IES00 %20
2ESQ30230
RESQO 440
EESNJ 457
2ES500 460
RESQ0U4TQ
ZES0Q U480
2ES3C490
aES00500
RESDOS510
22500520
RES00 530
BESJIG540
ZES0Q550



FILE

ccc

4]
N
L]

ccc

: REST FORTRAN A

AAA=-A/SSER (I)**2«Y0 (I, .J)

S1A=71./0I51+1, /DIS2) ¥2./DDDEE*R{I) +2. /DIS2
S1AA=(1./DIS5341./DISU)*2, /DLDEIFA**2%T (1}

S1A=514a+5144

$2=2./DIST/DDCAiz*E(I)

S3=2./DIS3*aA**2/DDDZZ*x (L}

Su={1.+32 (I} /ECORE} «2./DIS52

S5=2. /DISU*A**2/DDDZI*E T)

BS(X,J) ==5TA®ST (L,J} +S2*ST{I+1,J} +53FSTII,J+ 1) +54*5T (I-1,J}
1+55«ST( L[, J-1) +24ar

CIRCULATION

FiT=2./(EZxDL52)

CIlA='VEL1I*DISS5-VZ LU *DIS56) /(2. *DR[I})}
1+2. /RE/DDDER*A(I) ¢ 2% {1 ./ (DIS1*CIS7} +1./ (DISZ2*DISA} )
1+ [I})*DT IIP}

C18== T ZL5=VEL3) /DT J} /2. *p*R (T}

1=2. /RE/JDDDZZ*R (1) * 1. /DIS3+ 1. /7DISY) *A **x2+R/I) *DT IT P}
ClA=CTA-C18

C2=2,%«2 (L) ¢* 2/ (REXDODRE*DIS1*DIST) -¥ 212 /2. #DISS /DR 'T)
Ct=2,%E (T} **2 /EE*DDDBE*DI S2%DI 58) +VEL I/ Z.*DI56/DE I}
C3=2.Far* 2 /DIS3/RE/DDDZZ*R (I) —TEL6/2. FA /DZ {J) *R (I)
C5=2.*%3 ¥*2/DISY /RE/DDDIZ*R(T) +VYZIL7 /2. %4 /DZ (J) *¥8 (T)
BO(L,J) ==CTA*CI (L, J}+C2¥CI(L+1,J) +C3*®CT (T, F+1)+C4Y *«=I (I-1,J)
1+CS*CI (T, J=1)

TORTIZITY

VEXT=& [I) /RE

TIXT2=2  *R(T) **2/PE*DI 51

VELTI=F (L} ** 2% (VI*DISS+V2=DIS6) /2.

TI1A=(VYEL1 ®)}ISS5-VZ LY *DTS56) *R{I) **=2//2.*DR(1})
i1+ (2, %R (I) *%2 /LDGR2* (DIST/CIST1+DISB/DIS2) +B (L)) /RE
T+R{I)¥=3*DT [TIP)

Y 1B==(VELS-VZL3) /DZ (J) /2. € L*R (1) *%*2
1-2. /RE/DDDZZ* [T./DIS3+1./DISH) SA*=2%R /T) £#*34+E (I) #«3* [T ‘ITP)
TI1A=VI1A-V18

F2=k (L) **2* (2, *DIS7/(RZ*DIS 1*DDCAR) ~VEL2*DISS5/72.*DR‘I}})
Ty=5 (L) **2 ¢ (2 . x0T S8/ (HE*DIS2*DDDEE) +VELI*DISE /{2, *DR (T )}
T3=R [T) *#*1« 2,/ (REFOISIFDODIZ) TaA**2-TELGE/[2.*[0Z 1T} ) £4)
T5=8(T) #«3 %2 /{EEFDI S4 *DDDZZ) “A®*J+VELT7 /12, *DZ [T} ) ®4}
¥6=2.%A¢CI(I,J)* ((CI(L, J+1)}-CI(L,J)}/DILS3
1+!CT(E,J)-2L{I,3~1))/DL54)

EV(L, D1 ==VIA€VO (I, J) +V2*T0(I+1,J) +V3*V0 (I,JT+1 ) +V4 &¥0 (I-1,J)
1+95*€YC (T, J=1)+76
1 CONTINUZ

PEINT ZZSUDOALS

dIITE 5 ,100)

CALL 2RES(RS,2Z)

AEITE 6 ,171)

CALL 22ES({2C,72)

TEITZ 6 . 122)

CALL PEES(RT.Z)

10) FOEMAT '/, 1%X, ' THE EESUDUFAL CF ZACT FUNCTIIORN',/ /17X,

1*STEBAY FUNZTION',/)

101 PORMAT./,13X,"CIECULATICNY,/)
102 PQRNMAT(/, 10K, ' VORTLCLTY', /}

RETURY

CONVEESATIONAL 20 YITCE SYSTE

2ES00 560
2ES00570
EES3Q 530
AES00590
aES00640
IESJILETY)
32506620
RESCCE3D
AES00640
RES90650
2ESQG660
Fesogse70
RES006840
RES00690
nESGGT7QD
RESQO0710
B=ZS596720
RESCOD730
AES00 740
RESQ0750
EESQ0 76D
RES00770
igs00787
RESQC 790
235008200
HESCOB10
EZ530820
EEZS5308330
RES3038u0
EES06850
2ES00860
3E530870
& ESTA8G
IES0G89¢
12594900
32500910
RESGL 9272
22500930
A 3500940
2ESQ0950
ZES30960
EE50Q00570
AE500980
EESJ2990
E25071000
RES01010
RES501024
RES0103D
AESQT040
22501050
RESO1050Q
2ES31070
B ESJ1080
RES01090
RESG11C9

339
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CONVEESATIONAL XONITZ0E SYSTEXN

FILE: BESI FIRTRAY A
24D RESO1110
SUBROUTIVE PRES(AS,Z) EES0 1120
DIMENSTON A8 712,38} ,Z (36} RES01130
pe 1 K=2,34,3 BES0 1140
J=39-K EE501150

1 WRITE[6,190) (A2 (T,J) ,I1=1,11},2() ZE501160
100 FOEXAT11210.3,P10. J) aBsC117"
RETURW SES0 1180
AZSC1 7190

IND
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The Result of Run #42 (Reg = 1370, S5 = -.02)

All the calculations are executed by CMS (Conversational

Monitor System) under IBM 370 operated by IPC at MIT. The

calculation starts with Ree = 10 and 88 = -1 from the sit-

uation where the fluid is completely at rest. After several

hundreds of iterations, each function (¢,I,w) is fully devel-

oped. These functions are then stored as initial conditions

for higher Reynolds number calculations. For the case

Reg = 1370 and SS = -.02, the experimentally measured

circulation in the free stream region is input as the ini-

tial condition for the circulation calculation. The circu-

lation in both core region and bottom boundary layer is

reasonably guessed. Setting Re, = 1370 and 88 = -.02

which corresponds to the experimental condition, the itera-

tion starts. Every fifty iterations, three functions (¢,

[,w) as well as the radial and axial velocities are printed

over the entire geometry. Residuals of the three functions

are also calculated and printed. The whole calculation is
terminated when the following requirements are satisfied.
1. The convergency of the stream function in the loop

1 is very fast, one iteration is desirable (see

Fig. 3.12)

2. The circulation and vorticity do not change much

in each iteration in the loop 2.

3. The residuals of the three functions are sufficiently
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small over the entire geometry when theyare com—
pared with the dominant terms in the eguations.
The results of each function and the radial and axial velocity

after 400 iterations inthe loop 2 are followed.



1:.00000
1.00000
1.00000
1, 00000
1.00000
1.00000
1.00000
1,00000
1.00000
1,00000
1,00000

1,00000

1.00000
1.00000
1.00000
1,00000
1,00000
1:00000
1.00000
1.00000
1.00000
1.00000
1.00000
1,00000
1.00000
1.Q6000
1,00000
1,00000
1.00000
L 00000
1,00000
1.06000
1,00000
1.,00000
1,00000
1.00000
1,00000
1.00000

STREAM FUNCTION

1.00000
1.0003%
C.7974%
0.,9%003
G, 7?9700
0.,99479
0,79447
G.PP413
Q.929508
0,99%43
0,%9218
0,272093
0,7879%0
0.78871
0.?8784
0.28444
0.?8474
0,98344
0,%28238
0.9813%
¢, 78054
0,97979
0,97713
0,?278BG4
0.97805
0,2774%
0.97744
C.97727
0.27709
Q.97447
0.97584
0,?7454
0, 97324
0.2714B
0,P72117
0.97172
0,94553

0,24555

.01

1.00000
1.00218
¢.99615
0., ?R%10
0,78317
0,98164
0.,20041
0,77786
0.?7217
0+9643%
0,7544)
0.24940
0.24370
0,938348
0,723243
0.?2518
0.%71438
0.90950
0.,90382
0,87874
0.,8%9444
0.,89062
0.B8717
Q.80411
0.,88151
0.87247
0.07803
0.8770%
0+8740B
0,87403
0.BA&TBA
0,84321
0.85484
0,84743
0. 84409
0.B3250
0.79818
0.77822

.03

1.00000
0.99994
0.992351
0.,98009
0.97123
0.76681
0,9462021
0.93506
0.74483
0,93271
0.220%70
0.,91037
0, 70122
0,B7229
0.RB344
0.,87381

0.84430

0.B5803
0.85402
0.,B85015
0.844649
0.H42084
0,83912
0,83533
0.83151
0.82771
G.82410
0.82078
0.B81O%746
0.016810
0.81434
0.B1211
0.80131
0,77801
0.806880
0.728561
0.39230
0,0

.05

1.,00000
0.997469
0.98776
0,97345
0,74371
0,9?5540
0.9247&0
0.?3710
0,?2383
0.920701
0.89448B
0.80150
0.84957
¢,85778
0.84453
0.83544
0.82640
0,823
0,82283
6.82288
0., BR304
0,82302
0,82357
0.,82164
0.82010
0,81758
0,81355
080753
0,80268
0,80194
0.80129
0,80829
0.B2754
0.83302
0.80549
0.64647
0,24530
0.0

.07

1,00000
0.99408
0,90445
0.94936
0.?56%72
0.94736
0,9371%
0.92437
0,90904
0,89234
0.87607
0.86075
0.844644
0,83217
0.818545
0,80568
0.79655
0,79617
0,79813
0, 800460
0,80319
0,80557
0,80771
0,80992
0.01269
0.,81649
0,82170
0,82870
0.83460
0.83396
0.,830559
0,83329
0.84749
0,85188
0.78991
0,59269
0,21270
0.0

.09

1,00000
0.,99236
0.97415
0,70878
0.94208
0,92572
0.,208332
0.88870
0.84753
¢.84481
0.B2144
0.79750
0,77322
0.74834
0,72413
0,702035
0.47014
0.684%1
0,56B441
0.4B&37
0.584697
0,68850
0.4%91322
0. 695360
0.70216
0.71147
0.72408
0+74046
0,76108
0,78439
0.81799
0.B5465
0.89234
091374
0.856000
0. 4642327
0.20497
0.0

19

1.,00000
0.788%3
0,94440
¢.?74385
0.%22079
0.,879709
6,8722

0.84615
0.B1B43
0.,78977
0.,75974
0.,72B64
0.69492
0,448547
0.,435807
0.61188
0,59773
0.57279
0.,59207
0.57233
0.59370
0,57680
0,40170
Q.408372
0.61674
0.62655
0,63751
Q.64723
0,66121
0.,67279
0.60292
0. 68757
0.460774
0, 66342
0, 058503
0.40688
0,111246
0.0

37

1,00000
0,78568
0.95474
0. 92742
0.87774
0. BA759
0.83443
0.80445
0.77144
0.7375%
0.,702467
0.66717
0,43178
0.,5%9775
0.5471%
0,54342
0,53047
0.52873
0,52967
0.53163
0,53483
0, 53937
0.54529
0.55257
0,546112
0,57083
0,58154
0,59205
0,40504
0,61702
0,62770
0.63394
0.62B04
'0.59355
0.50285
0,32594
0,07649
0.0

W35

1,00000
0.78104
0.24544
0.20887
0.87210
0.,83474
0.79723
0.75889
0.71990

0,468035,

G.61038
0.40031
0,54083
0., [3302
048843
0,46033
0.44138
0.43501
0.43540
0,435600
0443739
0.43754
0.,44272
0.44481
0.,45173
Q445742
0,44374
0.47052
0,47747
0.,4B8403
0.,28904
0,48997
0. 48097
0.,45041
0,37844
C.24242
0.05483
0,0

73

1.00000
0.97704
0.73251
0.80737
0.84214
0775683
0.75131
0.70859
0.45744
0.41352
G.846733
0.52116
0.47531
0.A3022
0.38441
0.34550
0.,30829
0.28882
0.282%9
0.37754
0,2725¢
0426795
0.263%91
0,246045
0.25744
0.255548
0.25430
0.25400
0.25477
0,25447
0.25953
0.,26247
0.26283
0.25420
0.223581
0.1517%
0.03583
0.0

.91

2

1.00000
0.77500
0.922500
0.87300
0.82500
0. 77500
0,72500
0,67500
0,43500
0.57500
0,52500
0.,47500
0.+42500
0.37500
0,32500
0.27500

0.22500°

0.192500
0.18500
0,17500
0,14500
0,15500
0.14500
0,13500
0.,12500
0.11300
0,10500
0.07500
0.,08500
0.,07500
0.04500
0.08500
0,64500
0,03500
0,02500
0.01500
0,00500
0.0

132



CIRCULATION

[=]

- = % e o w e =

Py
=

0.04704
0.04789
0,04812
0,04792
0.04750
0,04741
0, 04830
0,0488B%
0.04203
0.,048%2
0.04873
0, 04847
0.04688
0,04919
0,04957
0,04990
0.05042
0,05094
0,05176
0,05238
0,05287
0,0532%
0., 05347
0:05401
0,054730
0.,05452
0.05ﬂ6?
0,05472
0,05472
0,05489%
0,05544
0,05445
0.05818
0,05803
0.05940
0,04547
0.0355461
0,05541

coooo OO0

"
|
=]

.01

0,43071
0.43097
0,43306
0.,43131
0,42752
0,42847
0,43472
0,4374%
0,44130
0,44024
0, 43859
0.,436823
0,437791
0,44249
044612
0:44714
045377
8. ATIBAR
0,44583
0:471423
¢,47583
0, 47743
0,A830%
¢, 48407
0,48848
G AT047
0.A219%
0,49244
0.,42252
0.4%403
042900
0,50804
0,52346
0,52227
0,53458
0,58722
0.900%50
0,50050

.03

0.461957
0,41953
0.:61940
0.61%04
0.41877
0.,41967
0.621464
0.,462312
0.,62382
0.62417
0.62480
0.42598
0.42773
0.42949
0.,463108
0.63194
0.63213
0. 630247
0.43320
0.463364
0.43471
0.463407
0,43800
Q64033
0.,44302
01445603
0,464724
0.45177
0.,4635222
0.45151
0.464740
0. 64809
0.463182
0,44500
0.7049%
0484044
0,43987
0.0

Q5

0.,49935
0.69954
0,69748
0,49734
0,49973
0,70031
0.,7011%9
0.70201
0,70272
0.,70345
0.,70439
0,705%50
0.70482
0.70804
0.70913
0.,709230
0.70843
0.,70732
0,70840
0,70343
0.704364
0.70321
0,70204
0.7009%8
0.,70003
0,46%9935
0,469921
0.7003%
0.,70278
0.70501
0.,703541
0.71034
0.72640
0,73045
0,71903
0.42458
0.,3468460
0,0

07

073514
0.73914
0.73516
0.73338
0.73547
0.,73579
0.734623
0.,73471
0,73725
0,73784
073857
0,73240
0.74033
0,74128
0.74224
0,74291
0.74310
0,74254
0,74126
0,74004
0,73%903
0.73824
0.73748
0,73722
0.73474
C,7341%5
0,73532
0,73370
0.,73109
0.72848
0,72412
0,72573
0,73532
0.74279
0+72010
0.,41214
0,32343
0.0

.09

0.7A5080
0. 74580
0,74583
0.,74592
0,74604
0.744622
0.,74645
0.74674
0.,74711
0,74755
0.+74808
0.74872
0+ 74946
0, 75030
0.,75121
0,75208
0,75317
0,75336
0.,753%0
0,75342
0,75372
0,75361
00,7431
0,75402
0.75414
0,75425
0.75434
0,754329
0.75457
0.,754%98
0,75503%
0,753%91
0.,75310
0.75028
0,72112
0.408948
0.30774
0.0

.19

0,74424
0. 746424
0.78426
0,74433
0.76643
0,74658
0,745678
0.76705
0.76738
0,74780
0.,76831
0.,748%2
0,7469265
0.77047
0.7713%
0.,77238
077333
Q,77374
0,77395
0774235
0.77461
077495
0.77524
0.,77543
0.,77554
0,77554
0,77350
0,77935
0,77612
0.,77482
0.77444
Q.77397
0.,77321
0,746402
0,72380
0.40028
0,2B8%8Bé6
0.0

37

0.77711
0,77711
0,79%03
0.79%12
0.,79925
0,79944
0. 79744
0.79990
0,8001%
0.80058
0.80106
0,80141
0.00224
0.,80301
0,80302
0.B0472
0,80541
0,80549
0,B805683
0,80606
0,80530
0.80647
C.BCAAD
0.B0676
0.80480
0.80677
0,B0670
0,804354
0.,80462%
0,80580
0,80479
0.,80237
0,79525
0,77358
0,71334
0.54182
0.23540
0.0

.35

0.85143
0.BI1A3
0.83141
0.85154
0,85144
0,85173
0.85186
0.,8520%
0.,85224
¢.8525%5
0.85248
0,853728
0.85375
0,85425
0.85483
0.,85543
0.85593
0.89570
0,085571
0,.85588
0,80582
0,853548
0,85540
0,85509
0.,85475
0,85434
0,83383
©.85323
0.85241
0,85118
0,84707
0.84484
0,83530
0.,8111°9
0.74792
0.58833
0,24173
0'0

13

0.923734
0.93753
0.93748
0.93747
0,93747
0.93748
0,23747
0,?3748
0.?73748
0,923791
0,93754
0.9370G4
0.,937305
0,93758
0.93742
0.93765
0,93748
0,93770
0,93770
0.93771
0,93772
0.93774
0.93774
0,93771
0.93761
0.93747
0.,9372B
0.,923704
0.93471
0.,23419
0.973508
0.93211
0.,92334
089799
0.83821
0,47883
0,30333
0,0
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4

1,00000
0.97500
0.92500
0.87500
0,82500
0,77300
0,72500
0,47500
0. 42500
0,97500
0,52500
0,47500
0.42500
0.37500
0,32500
0,37500
0,22500
0,19500
0,18500
0.17300
0,14500
0,18500
0,14500
0,13500
0,12500
0,11500
0,10500
0,09500
0,08500
0.,07500
0,04500
0.,00500
0.04500
6.03500
0.,02500
0.01500
6.00500
0.0

A4l
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0.0 0.0 0.0 0.0 G.0 0.0 0.0 0.0 0.0 0.0

0+471£401 0,180E+02~0,102E+00-0,730E+00-0,373E+00-0.280E~01-0,171E~02 0,150E-02-0,219E-04 0.479E~03
0+340E+01 Q. 11BE+02~0.A5GEH01~0.307E+01-0,111E401-0,928E-01-0,742E~02~0,254E-03-0,133E~-02 0,583E-03
~0,837E4+01-0, 144E+02-0,114E+02-0,562E401-0,193E401-0,1461E4+00-0,142E-01~0,548E~02-0,252E-02 0,703R-04
~0,157E+02-0,351E+02~0.,170E402-0,788E+01~-0,242E+01-0.2327E+00~0,221E-01~-0,852E~02~0,347E~02 0,134E-04
-0, 102E402-0,409E4+02~0,208E+02~0,997E4+01-0.345E+01-0.318E+00~-0. J07E~01~0,100E~01-0,300E~-02~0,877E-04
~0,175E400-0, 3475 H02~0, 236E4+02-04 120E+02-0  418E+01-0,400E+00~0,4R2E~01-0, 123E-01-0+4Q00E~-02~0,741E~04
=0, 1A4AEH02-0, 297E+02-0, 274E+02-0, 141E+02~0, 4A96E401~0 . 4APEBE+00-0,5SQFE-01-0, 144E~-01--0,554E~02-0, 1 05E~03
~0.197E4+02-0,338EA02-0, F27E+02~0,144E402-0,573E401-0, 61 1E+00-0.700E-01~0.211E-01-0,759E-02~0,344E~03

v =G RAQEHORQ, DOAEFO20  FPL1E10R2 -0, 108BE402~0, 85TE+01-0, 745E+00-0,2L1E-01-0,274E-01-0,251E-02-0 4P4E-03

~0.,385E4+02~0,730E4+02-0,450E+02~0,21LE+02~-0,734E+01-0,878E+00-0,115E+00-0.347E~01-0,120E-01~0.334E-03
=0, 484E+02-0,PAREF02-0, 51 1E+02-0,232E402-0,812E401~0,10BE+01-0,145E+00-0,440E-01-0, 153E-01~0,278E~03
—~0,B70E+02-0, 1 13E+H03-0,557E402-0, 24PE4+02-0,882E+01-0, 129E4+01-0, 182E+00~0,G54E-01-0, 171E-01-0,444E~03
0. GAGETOR-0, 127E103~0.594E+02~0, 265E4+02~0, 956E4+01~0, 153E401~-0, 225E4+00-0.6%7E-01-0,239E~-01-0,729E-03
0 724E+02~0, 14LE+03~0, 629E4+02-0,275E402-04101E402-0,172E+01-0,2B0E+00~-0,875E~01-0,300E-01 -0, BEIE~03
~0,B837E+02-~0,1464E+03~0, 455E+02-0,273E+02-0,107E+02-0,218E+01-0.342E+00-0. 103E+00~-0, 339E-01~0,87BE~-03
~0101EHOE-0 . 20LEHOA~0 GH7EHQI-04 246RH02-0, 109FE4+02-0, 212E+01~0, 32AE+00-0,942E~01~0,307E~01-0.,809E-03

~0,1L0E+03~0,22PEH0E~0,714E+02-0,253E+02-0,?50E+01-0,223E401-0,385E+00-0,119E+00-0,371E-01-0,103E-02
=04 120E103-0,2467E+03-0. 740E+02-0,223E4+02~0.715E+01~0,238E401-0,501E+00~-0, 155E+00-0,452E-01~0, 134E~02

~0,1346E403-0,3P4E+03-0,810E4+00~0, 1844020, 517E+01-0,254E+01-0,417E+00-0,183E+00-0,477E~01~0, 1 42E~02
~0.,144E4+03~0,314E4+03-0,874E+02-0, 14BE+02-0,334E+01~0,271E401-0.703E400-0,193E+00-0.477E-01-0,175E-02
=0 13%E+03-0331E4+03-0,P51E402~0,117E4+02-0, 1BOBE4+01~-0, 291E401-0,740E+00-0, 188E400-0,394E-01~0,146E-02
~04 1463 H03-0, 3406403 -0, 103E1 030, P40E+01-0,764E+00~0,314E4+01-0, 739E+00~0, 171E400-0,278E~01-0,123E~02
0, 170E+03~0,307E4+03~0.1126403-0,883E+01 0,407E+00-0,330E+01-0,46B1E400~0, 14A5E+00-0,120E~01-0,335E~03
=04 1794030, 34484030123 EH03-0, 104E+02 0, R24E+01-0,359E+01-0,5610E+00~0, 1 13E4+00 0.404E-02 0.,949E~03
~0,178E403-0,371E+03-0,129E+03-0,145E+02 0,831E401-0,372E+01~-0,522E400-0,737E-01 0,283E-01 0.278E-02
~0,180E4+03-0,371E4+03~0, 135E+02~0,303E+02 0,103E402-0,376E+01~0,421F+00-0,252E-01 0,577E~01 0,404E-02
=0, 18E+OI~0, 36BE+03-0 13AE103~0, 40BEF02 0.214E+02-0,I70E4+01~0,304F+00 0,422E~01 0,101E+0D §,135E-01
~0, 183E+03~0, 36BE+03-0, 133E+03-0,824E402 0,325E402-0,344E+01-04164E+00

20 0.156E+00 0.,177E+400 0.329E-01
~0,170E403-0,381E+03-0,124E+03~0,774E+02 0,259E402-0,333E+01 0.493E-01 0,400E+00 0.332E+00 0.855E-01

~0,203E+03-0,409E+03~0, 118E+03-0,824E+02 0,113E+02-0,170E4+01 0,424E+00 0,78BE+00 0.,4B1E+00 0.224E+00
~0,223E4+03-0, 492E+03~0,128E+03-0,592E+02 0.343E400 0,150E+01 0,149E401 0.242E401 0,144E4+01 0,S47E+00Q
~0, 23PE+03-~0 44264030 1P1E+03 0, ALZEH02 0, 19BE+02 0, 1146E4+02 0.932E+01 0,540E4+01 0,303E+01 0,133E+01
~0, 2E0EF03-0,4P2E+03-0,4208E+03 0. 121E+03 0.811E+02 0.434E+02 0,134E4+02 0,104E+02 0.572E+01 0.2B0E+01
~0,373E+03-0,403E+03 0,121E+03 0,203E403 O.135E+03 0,20%E402 0,259E4+02 0,158E402 0,877E+01 0,493E+01
~0,230E4+03-0,954E+02 0,327E+03 0.241E+03 0,167E+03 0.118E+03 0,309E+02 0,131E+02 0.711E+01 0,514E+01
~0,159E403 0,177E4+03 0.310E+03 0,135E+03 0,340E+02-0.144E+02-0,247E402-0,235E402~0,143E+02-0,441E401

~0,159E+03 0,177E+03~-0,877E+04~0,414E+04~0,254E+04~0.114E+04~0,312E+03-0, 141E+03-0,754E+02-0,399E+02

.01 .03 .05 07 .09 W19 37 .55 .73 91

Z

1,00000
0,97300
0.%2500
0,87500
0,82500
0.77500
0,72500
0.,47500
0,42500
0,57500
0,52500
0.47500
0,42500
0.37500
0.,32500
0.27500
0,223500
0,192500
0.,18500
0.,17500
0.14500
0,15500
0,14500
0.,13500
0.,12500
0.,11300
Q. 10500
0.,02500
0,08500
0,07500
0,04500
0,03500
0,04500
0,03500
0,02500
0.,01500
0.00300
0.0

Sy
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THE VELOCITY DATA VR AND VZ
THE RANIAL VELOCITY VR

0y 2Q2E-02~0 181E-01~0,348E-01-0,425E-01-0,113E-01~0, 27 1E-01-0,22RE-01-0.204E-01-0,178E-01-0.200E~01
~0,779E~03~0,RA23IE~01-0,731E~01-0,434E-01-0,548E-01~0,281E~01~0, 225E-01-0, 205E~01~0, 199E~01-0, 200E~01
~0,883E-01-0,904E-01~0,772E-01-0,4597E-01-0.59464E-01~0.285E~01-0,228E-01--0,207E-01-0,200E~-01-0,200E~-01
-0y 434E-01-0,518E-01~0,524E-01-0,503E~01~0,442E~01~0,2B5E~01~0, 232E-01~0,209E-01-0,201E-01-0,200E-01
~0,144E~01-0,289E~01-0,402E-01-0,436E~01~0,423E-01~0,294E~01-0,23BE~-01-0.212E-01~0,202E-01-0,200E-01
~0,223E~01~0,3B%E~01~0,501E~01~-0,514E-01-0,487E~-01-0,313E-01-0,24BE~01-0,217E~01~0,204E~01-0,200E~01
~0.300E~01-0,445E~01-0, 484E-01-0,449E~01-0,588BE~01-0,337E-01-0,3258E~01~0,222E-01~0,204E~01-0,200E~01
~0.790E-01-0,894E-01-0,841E-01-0,750E~01-0,445E-01-0.359E~01-0,26BE-01~0.22BE-01-0,208E~01-0.200E-01
~0,933E-01-0,992E-01~0,885E-01-0,774E~01~-0,485E-01-0,373E-01~-0,27BE~01~0,232E-01-0,210E-01-0,200E~01
=0 A82E-01-0,%32E-01-0,831E~01-0,739E-01-0, 463E~01-0, 3§7E~01-0,284E-01~0,235E-01-0.210E-01~0,200E~01
~0,74UE~01 -0, Q08E~01 -0 746E~-01~0., 684E-01-0,430E-01-0,397E~01-0,2371E-01~0,235E-01-0,209E-01~-0, 200E~01
-~0,405E-01-0,729E-01-0,697E-01~0,454E~01~0.813E~01~0,401E-01-0,288E~01-0,229E-01~0,205E~01-0, 200E-01
~0,459E~01-0,722E-01-0,480E~01-0,4635E-01-0,598E-01~0,393E-01-0,273E-01~0.214E~-01-0,194E~-01-0,200E-0}
~0.783E-01~0,792E~01~0, 4B0E~01~0,410E-01-0,549E~01~0,357E~01-0,235E-01-0,183E-01-0,1B0E-01~0,200E-01
=0,948E~01-0,8B4E-010, 455E-01-0,520E~01-0,4464E-01-0,258E~01-0,143E-01~0,131E-01-0,153E~01-0,200E-01
~0AER00-0,101E400-0,572E-01~0,302E-01-0,221E~-01~0,142E~01-0,831E~02~0,6B4E~02-0,119E~01~0,200E~01
~0. 237E+00-0, 17564000, 62HE-01 0.2446E-02 0,149E~01~0, 704E~02-0,21B8E-02-0,144E-02~0,885E~-02-0.200E-01
~0,3320E4+00-0,233E+00-0, 4685E-01 0,254E-01 0.393E~01-0,194E-02 0,255E-02 0.,224E-02-0,4BBE-02-0,200E-01
~0,280E+00-0.211E+00-0,409E~01 0,331E~01 0,461E-01 0.3?5E-02 0,73BE~02 0,534E-02-0,535E~02-0,200E~01
~0.244E+00-0,193E400-0,G97E-01 .320E-01 0.44%E-01 0.120E-01 0.134E-01 0,8B1E-02-0.34PE-02-0,200E-01
~0,217E+00~0,183E+00~0,455E-01 0,252E-01 0.449E~01 0.218E-01 0,201FE-01 0,124E-01-0,194E-02-0,200E-01
~0,194E+00-0,17%E+00~0,740E-01 0, 187E-01 0,442E-01 0.334E-01 0.269E-C1 0,140E-01-0.140E-03-0.200E-01
=0, 140E400-0,14&E+00-0,BA0E-01 0,154E-01 0,557E-01 0.444E-01 0.334E-01 0,194E-01 0,147E~00-0,200E-01
-0, 137E400-0,153E+00-0,?74E~-01 0,154E-01 0,7516-01 0,408E~01 0,394E~01 0.226E-01 0,349E~02-0,200E-01
~0,102E+00~0, 134E+00-0,116E+00 0,154E-01 0,103E+00 0,742E-01 0,448E-01 0,253E-01 0,529E-02-0,200E-01
~0,479E~01-~0,114E+00-0,140E+00 0,134E~01 0,13%9E+00 0.9323E-01 0.4B88E-01 0,274E-01 0.704E~02-0,200E-01
-0,575E-01~0.884E~01-0,132E+00 0,140E-01 0,153E+00 0.10BE+00 ©,513E-01 0,291E-01 0,888E-02-0,200E-01
~0,?15E-01-0.743E~02~0,700E~01-0,203E-02 Q,934E~-01 0.,124E400 0,517E~01 0,293E-01 0,987E-02-0,200E-01
~0,187E400~0,111E+00-0,350E-01-0,352E-01 0,2056-01 0,140E+00 0,482E-01 0,267E~01 0,997E-02-0,200E~01
~0,323E+00-0.210E-+00 0,302E~-02 0,35SE~01 0,4621E~01 0.152E+00 0,384E~01 0,17%E-01 0,714E-02-0,200E~-01
-0, 387E400-0,300E+00 0.934E-01 0,270E400 0,227E+00 0,141E+00 0,553E-02-0,405E-02-0,292E~02-0,200E-01
~0AB7E+00~0, 424EH00-0,7B1E-01 0.271E+00 0,224E+00 0,588E-01-0,723E-01~0.625E~01~0.292E-01-0,200E~01
~0.321E+00-0,410E-01~0,122E+00-0,498E+00~0,551£4+00-0,241E+00~-0,24BE+00-0, 178E+00~0,844E-01-0,200E~01
0,130E400-0,555E+00-~0,197E+01~0,278E+01-0,240E+01~0,943E+400~0,570E+00-0,371E+00-0, 189E+00-0,200E-01
~0,134E+01~0,581E+01~0,794E+01-0,498E401-0,585E+01~0,201E+01~0,978E+00-0,5R4E4+00-0,312E+00-0,200E-01
~0v151E+01~0,147E+02-0, 169E4+02-0,107E4+02~0,810E+01~0,244E+01~0,100E+01-0,547E+00-0,294E+00-0,200E-01

.02 .04 06 .08 W1 .28, 46 . 64 .82 1.0

0.97%
0.925
0.875
0.825
0,775
0,725
6,675
0,425
0,575
0,525
0,475
0.423
0.379
0,325
0,275
0.225
0.195
04185
0,175
0,143
0,133
0,145
0,135
0,125
0,115
0.105
0.095
0,085
0,075
0.0435
0,055
0.045
0.033
0.025
0.015
0,005

9% E



THE AXIAL VELDCITY VZ

0.0 0.0 0.0 0.0 6.0 0.0 0.0 0.0 0.0 .0

0, 202E-01-0,127E400~0, 1 42E4+00-0.8BL1E-01~0,407E-01~0,101E-01~0,391E-02~0, 23ABE~D2~0, 247E~02-0, P2RE-0D
~0,75RE+00~0,41PE+00-0, 25B8E+00-0,134E4+00-0,432E~01~0,171E-01-0, 762E-02-0,547E-02~0,4B89E~02~0,A53E-02
0 1HAEH01~0,729E4+00-0, FLPEF00-0 4 1 7PE400-0,B43E-01~0,240E~01~0, 114E-01-0,BAGE~02~0,7RBE~-02~0,475E~-02
=0,207E4+01-0,927E-+00~0Q, 467E+00~0. 241E+00-0, 11 7E4+00-0,338E~-01-0, 154E~01-0,112E~-01~0, P42E~02~-0,B92E~00
~0,2223E401~0,107E1+01-0,593E+00~0, 31 BE4+00-0,157E400-0.455E-01-0,195E-01~0,139E~-01-0,117E-01-0,110E-0t
=0, 244E+01-0,126E+01~0,73BE+H00~0,3?BE+00-0,200E+00-0,549E-01~0.234E~01-0,144E-01-0,140E~01~0,130E-01

~0.2PAEF0L-0, 1TAEFQL-04BPLEFO0-0,475E400~0, 23BE+00-0, 673E-01-0,270E-01-0,188E~-01~0,141E~-C.~0.149E-01

~0,374E101-0,185E+01~0.104E+01~0,544E+00-0,274E+00-0772E~01-0,3053E-01~0,210E~01~0, 180E-01-0,147E~01
~0.4A7E401 -0, 220E+0L -0, 1 17E401-0, 40PEF+00-0,310E+00~0,B79E~-01~0,3F3PE~01~0,231E~01-0,1i97E-01~0,184E-0}
~0.555E+01-0,253E4+01-0,130E+01-0,475E+00~0,350E+00-0, 100E+00-0,374E-01-0,250E-01~0,214E~01-0,201E-01
~0,430E+01-0,282E101~0, LAREF01-0,746E400-0.325E+00-0., 1 14E+00~0,40BE-C1-0.247E~01-0,230E-01~-0,218E~01
=0, 498E+01~-0,309E+01~0,155E4+01~0,8B21E400~0,445E4+00~0,122E4+00-0,439E~-01-0,2B81E-01-0.247E~01~0,238E~-01
~0.7461E401-0,33%E401-0,147E+01-0,892E+00~0,495E+00~0,144E400~-0,142E-01-0,293E-01-0, 245E~01~0,2462E~-01
~0,839E+01-0,362E+01-0,174FE+01 -0, 950E+00~0, SADE+00~-0, 154E400~0,474E~01-0,302E:-01-0, 28BE-01-0.294E~0])
~0,9234E4+01~0,38BE+01-0, 1BOE401-0,971E+00~0,545E4+00~0, 144E4+00-0,478E~-01-0.311E~-01-0,320E-01-0,339E-01
=0, 104E402~0,415E+01~0, 174E+01-0,898E+00-0,547E400-0, 149E4+00-0.474E-01-0,317E-01-0,341E-01~-0,402E~01
-0, 110E+02-0,423E401 -0, 167E+01-0.841E+00~-0,533E4+00~0,171E4+00-0,473E~-01-0,314E-01~2,370E-01~0,417E~01
ﬂO.117E+02—0.433E+01~0.157E+01~0.753E+00—0.512E+00—0.174E+00"0,4ABE-01—0.31bE—01—0.381E—01~0.435E—01
=0, 122E4+02~0,442E+01 -0, 1A7E+01 -0, 643E4+00-0, A90EF00-0, 178E4+00~-0,4461E~01-0,314E-01-0,323E-01-0.454E~-01
~0,127E+02~0,452E+01~0,139E+01~0,5746E+00-0. 447E400-0,177E4+00-0,452E-01-0,317E~-01-0,404E-01-0,475E~01
~0, 132E4Q2-0, 442E4+01-0 132E402 -0, AP1E+00-0,439E4+00-0,174E+00~0,443E-01-0,31PE~01-0,421E-01~0,497E-01
=04 134EY02~0 ., 472E401 0, 127E+01~0,404E+00~0. 4A04E+00-0,173E400-0,A34E~01-0,324E~-01-0,434E-01~-0,521E-01
~0.137E+02-0,4B3E+0L1-0 124E+01 -0, 31 4ET00-0 FFAEHOO-0.146PEF00-0 . 427E-01-0,330E-01-0,453E-01-0,547E-01
~Qy I42E+02-0, 44E401-~0, 123E401 -0, 2A5E+00~0, 287E+00~0, 143E+Q00~0,4AR3E~01-0,IZFE-01~0 ,471E-01-0,575E-01
=0, 144E402~Q,5OSE401~0,124E+01-0,973E~01-0, 1B6E+00~0,157E400~-0,425E~01-0,344E-01-0,489E-01-0,4605E-01
~0 IAGELOR-0, 514E401~0, 134E+01 O, JHOE~D1-0,A34E~01~0, 150E+00-0,435E-01-0,354E-01~-0,507E-01~0, 434E-01
~0,1486E+H02-0, 524E401-0, 1436401 0,147E400 0. 114E+00-0,141E4+00-0,A54E-01-0,344E~01-0,525E-01-0,470E~01
0 1AREF+02~0,52BE+01-0, 145E+01 0,225E+00 0.220E+00~0,124E4+0C -0.4B9E-01-0,374E-01~0,541E-01-~0,704E-01
~0.182E4+02-0,S30E+01-0,141E+01 Q,215E+00 0,274E400~0,104E400~0,540E-01-0,384E-01-0,554E~01~0,73BE~01
~0,1385+02~0,537E+01-0,123E401 0.2S3E+00 0,311E+00-0.831E-01-0,417E~01~-0,397E-01-0,543E-01-0.770E~-01
~0,156E+02~-0,557E+01~0.,842E+00 0.481E+00Q 0,323E+00-0,732E-01-0,72BE~01-0,410E-01~0,541E~01-0,791E-01
~0, 178E+02-0,40PE4+01~0.437E+00 0.BSBE+00 0,334E+00-0,748E-01~0,878BE~01-G,424E-01-0,534E~01~-0,787E~01
~0,182E+02~-0,593E+01~-0,550E4+00 0,393E+00 0,145E400-0,841E~01~0,102E+00-0,424E-01-0,471E-01-0,724E-01
~0.179E+02-0.,675E+01-0,247E+01~0,110E+01~0,251E+00-0.844E-01-0,101E+00-0,375E-01~0,34SE~01-0,540E-01
~0,204E+02~0,134E+02~0,738E+01-0,225E+01-0,547E+00-0,73%E-01~0,471E-01-0,223E~01~-0,143E-01-0,272E-01
~0,234E+02~0,32RE+02-0, 140E4+02 0,0 0.0 0.0 0,0 0,0 0.0 0.0

.01 .03 05 07 .09 18 W37 V33 W73 91

1.000
0.%9350
0.900
0,850
0.800
0.750
0.700
0,450
0,400
0,550
0,500
0400
0.400
0,350
0,300
0,250
0.200
0.170
0.180
0.170
0,140
0,150
0,140
0,130
0,120
0.110
0,100
0.070
0.080
0,070
0.060
0.050
0.040
0,030
0,020
0.010
0!0

LYE
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THE RESUDUAL OF EACH FUNCTION
STREAM FUNCTION

0,A0%E-02-0,202E-01 0,541E-01 0,432E-01 ©0,238E-01 0,130E-01 0,532E-02-0,472E-03-0,154E-02-0.2467E-02
0.512E-03 0,877E~01~0,159E~01~0,387E-01-0,178E~01~0,112E-01~0,?79E~03-0,418E-02-0, 140E-(1-0,795E-02
~0473E-02-0,104E+00 0, 144E-01 0,453E~01 0,337E-01 0.271E-01 0.12AE-01-0,220E-01-0,372E-01-0,220E-01
0+143E-01 0,152E+00 ¢,103E+00 0,732E-01 0,294E-01 0.144E~02~0,372E-01-0,478BE-01-0,437E~01-0,310E-01

0. 1P1E-02

0,809E-02

0.0 0.0 0.0 0.0
CIREULATION

0,440E-02-0,234E-01-0,125E-01~0,994E~02 0Q,209E~02-0,112E~02 0,137E-02
0.210E~02-0, 144E~01~0,720E~02~0,329E-02 0,145E~02~Q,179E~02-0,424E-03
0,3460E-02-0,1446E-01-0,482E-02 0,287E-03-6.442E-03 0,540E-03 0.311E-02
~0,803E~03-0,713E-02-0,205E-02 0,141FE-03-0,615E~03 0,317E-02 0,347E-02
0,763E-02~0,14A3E~01 -0, 437E~02-0,114E~-03~0,235E~04 0,178E-02 {.131E-02
0.107E~01-0,044E~02-0,37PE-03~0,307E-03~-0,101E-02 0,210E-02 0,205E~03-0,4%3E-03
0.420E-01-0,149E-01 0,131E-01 0,304E-02-0,202E~03 0.322E-03-0,905E-03-0,204E-02
0.330E~01-0,214E-01~0,430E-02 0,423E~02~0,422E~03 0,408E-03 0,751E~03-0,331E-02

0,0

0'0

0.0

0y1146E-01 0,224E-01 0,354E-01 0.1ABE-01-0,1465E-01-0,619E-01-0,78BE~01-0,413E-01-0,2534E-01
0. 804E-02 0, 1046E+00 ©0,731E-01 0,771E~01 0,312E-01-0.,117E~01~0.322E-01-0.,183€-01
0+L01E-~01 0y133E+00 0,4859E-01~0,204E-01 0,555E-01 0,315E-02 0,494E-02

0., 152E4+00~0,122E4+00-0, 121E+00~0,273E-01 0,233E~-01 0,359E-01
Q. 1328E-02 0,V101E+QC~0,229E+00-0,195E+00-0,482E-01 0,420E-01 0.818E-01
~0,120E-01-0,105E~01-0,201E+00~0,304E+00 0,427E-01 0.374E-01 0,121E400
~0.29?2E-01~-0,223E+00~0,351E+00 0.13PE+00-0,154E+00 0,984E-01 0,130E400
-01194E-01~-0,155E100-0,211E4+00~0,183E+00-0,255E-01 0.771E-01 0,109E+00

0.742E-02 0,100E-01
0,243E-01 0,589E-01
0,150E+00 0,801E-01
0. 164E4H00 0.802E-01
0.215E+00 0.117E4+00
0,309E+00 0.123E+00
0,243E+00 0,113E+00
0.0 0.0

0,120E-01 0,7208-02
0.158E-01-0,790E~02
0.422E-02 0,408E-01
0.578E-01 0.232E-01
0.28%5E-02-0,808E-02
0,290E-0t 0,313E-01
0,187E-01-0,33%9E-01
0,1416£-01-0,708E-02

0,144E-01-0.278E~01~0,195E-01 0,101E-01~-0.188E~-02-0,217E-02 0,144E-02-0,352E-02 0.402E-01 0,148E-01
0.1468E-01-0,151E-01-0,112E-01~0,674E-02-0,234E-02 0,260E-04-0,240E-02-0,478E~02~0,383E~01' 0,217E-01
0, 174E+00-0,480E-01 0,457E~01~0,229E~01 0,11BE~01-0,349E-02-0,372E-03~0,B25E-02 0,111E~01 0,29%E-01
0,607E+00-04 142E+00~0,3BBE+0C0 0.962E-02~0,394E~02~0,251E~01-0,3B5E-01 0.719E-01 0,425E-01 0.730E-01

0,0 0,0 0.0 0.0
VORTICITY

-Q.275E~02-0,135E-01 0,418E-02 0.149E~02 0.,133E-03-0,343E~02-0,198E~-03 G,4465E-03 0,

0.0

0.0

0.0

0.0 Q.0

221E-03 0,343E-03

~04477E-02 0,186E-01 0. 132E-02-0,177E-03-0,499E-03-0,207E~02-0,192E~02-0,257E-02-0, 154E-02-0, 159E-03
-0,499E-02-0,293E-01-0,151E~02 0,251E-02 0,921E~03-0,529E-02-0,400E-02-0.,4156-02-0,314E~-02-0,203E-03
~-0,19852-01 0,254E-01 ©0,137E-01 0.,64BE~02 0,257E~02-0,.8BYE-02-0,818E-02-0,771E-02-0,741E-02-0,474E~03
~0.140E~01~0,674E~02-0,921E-03 0,211E-02 0,8835E-03-0,1253E~-01-0,118E~-01-0,112E-01~0,7972E-02~0,248E~ 03
~0,1922E-01 0.,421E-02 0,153E-01 0,3206E~01 0.109E-01-0,114E-01-0,128E-01-0,972E-Q2-~0,A50E~-02-0.,118E-02

~0,102E+00~0,158E~01 0,B46E-01-0,9245E-02 0,354E~-01-0,831E-032-0,392E-02~0,794E-02
~0,4672E-01 Q.18LE~02 0.,73%E-01 0.792E~02 0,185E-01~0,37PE~02-0,284E~-01-0,223E~01
~0,192E-01 0.183E~02 0,184E-01 0.,110E+00 06,23BE-01 0.P39E-03-0.,435E-01-0,173E-01
~0,446E-01 0,110E~01-0,40BE-01 0,417E+00 0,703E~01-0,747E~02~0,257E-01 0,1%%E-01
=0, 149E4+00-0,112E+00 0,1946E+00-0.104E401~0,188E+00 0,211E+00 0,142E4+00 0,303E+00
0,408E+00~0,774E+00-0,115E+02 0,11BE+01 0,473E+00 0,1446E+01 0,184E+01~-0,101E401

0.0 0.0 ¢.0 0.0

.0

0.0

0.0

0,844E-02-0,204E~03
0.143E~01-0,140E~03
0.353E~01 0.172E-01
0,100E4+0¢ 0,480E-01
0.485E+00 0.305E+00
0,432E+00 0,322E-01
0,0 G0

0.975
¢.825
0.675
0,325
0.375
0,225
0,175
0,145
0.115
0.085
0,055
6.025
0.0

04973
0,823
0,475
0.525
0,373
0,225
0,175
G145
0.115
0,086
0,085
0.025

0.0

0.975
0.B25
0+475
0,525
04375
0,225
0.175
0,145
0,115
0.083
0,033
0,025
0.0

B7E
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Appendix B: The Measurement of Intrinsic Viscosity of
Polyox WSR 301 (Polyethylene Oxide)
The intrinsic viscosity of Polyox WSR 301 is measured

by Ostwald-Fenske viscometer. By keeping temperature con-
stant (25.4 + .05°C), the time required for the solution to
fall for a certain distance is measured. The time measure-—

ment is repeated at least six times to obtain consistent

data. The relative, specific and inherent viscosities are

then determined by the following eguations.

- - £t
Ny Ng 'ts B.1
n-—n t-t
Ngp = S o = B.2
P Ng tg
Oinh = (lnnr) P o] B.3

where ts and ¢t the time required for solvent along (water)

and the solution. The intrinsic viscosity is determined from

the intersection of the extrapolated curves nsp/c and

Njpp &t zero concentration. From Fig. B.l, the intrinsic
viscosity is found to be between 12 and 14 [dl/g]. TABLE

B.l1 shows the intrinsic viscosity and weight average mole-

cular weight obtained from several investigators. Using
[n] = 14 [dl/g] and Mw = 3.81, the number density n and
the time constant Ag are calculated. According to Bird,

Hassager, Armstrong and Cirtiss (1977), the time constant for
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FENE dumbbell model is determined by

nlongt
rg = (5e+l) Lolsy B.4
RT

where R 1s gas constant. Eg. B.4 with the data gives

Ag = 2.36 x 1073 [sec]l. The number density of 30 wppm of
12

Polyox WSR 301 is 4.31 x 10 [molecules/cm>]. In the

polymer stress calculations in chapters 3.5. and 6, the

values of AH = .01 [sec] and nkT = .2 [gcm/seczcmz]

are used.
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TABLE B.1l

THE MOLECULAR CHARACTERISTICS OF POLYOX WSR 301

Name (n] [di/g] Mw x 1072
ISHIKAWA 12-14 3.16-3.81 *
PATERSON (1970) 28 8
CHICU (1976) 15.1 4.2 *
VIRK (1975) 20.1 6.1

* The molecular weight Mw 1is calculated by

4 0.78

[n] = (L.03 x 10~ )Mw
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Program Listings for Polymer Stress Calculation

Appendix C:
by the MNHD

C.l1 Polymer Stress Tensor Calculation in Chap. 6

The method used in this calculation is Runge-Kulla

fourth order method. Since the stress tensor as well as

structure tensor are calculated along the stream lines, the
convective terms in the MNHD are eliminated. The equations

to be solved are found in eq. é.1 to eq. 6.13

Description of Variables and Program Listing

Variables Description

psT (L,II) f = l,6Tcorres$onds Tp,rr, Tp,ee, Tp,zz,
p,r8, p,rz, pP,8z respectively. These
components are determined at the points on the
stream lines in Fig. 6.14 and Fig. 6.16
IT indicates the point number in these
figures.

BXX, BXXOD The time advancedarr_and T before the
integration.

TXX Tp,rr
XX, YY, 22, XY, XZ, YZ correspond to rr, 69,
zz, r9, rz, Bz components respectively.

Fl1-F6 The calculated values of the right hand side
of egq. 6.1 to eq. 6.6

T Time [sec]

DT Time increment [sec]

E The parameter ¢

VEMAX The number of iteration

CNKT nkT defined in chap. 5

S(1L) 3V

r
lH or



S(2)

S(3)

S(4)

S(5)

S (6)

5(7)

5(8)
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FX

cC
cC

cC

LE:

90

PLISX TORTRAN

THIS PRJIGR A CALCULATES ALL THE STEESS TRENSOR CCYPOHENTS
LLIWES DESCEIBZD IN THE SECTIOH 6.4.
DI®ENSIOY TT(10),PS5T(6,17) ,H.5,4)

CoXyOoN 3XX,BYY,BZZ,BLY,B8LZ,BYZ

ALONG IHE STEZAY

A

355

CONVERSATIDNAL MONIICQE SYTSTEYN

CI%¥0N 3XZ20D,8YY0D,BZZ0D,B8YIQL,B3XZ0LC,BYZOD

CcCOoRMON 578) ,DT,E2,CHKT,COP
coUnsoN TYX, TYY, TZZ, TXY, TXZ,TYZ
COMMON P1,72,F3,7FU,P5 ,F6

CHET=.2
E=.005
SONTINT 2
WEITE (6, 100)

150 FORMAT [/, 1JX,"PLEASE LNBUT THEZ VALUZ OF STREAM
1*LINE IN PS.2', /)

200

73
101
291

102

READ {5,207 STLN

FORMAT(7 5.2}

INITIAL VALJE ASSIGYMINT

BXX=1.-3.%E
BYY=1.-5. %
827=1.-3, *E
BX¥=0.
BXZ=",
BYzZ=0.
T=0.

IT=0
CONTIBODE
WRITE 6,171}

FOREAT(/, 10X,'2L2A8E IYPUT LT IX F10.5*,/)

READ [5,201) DT
FGRMAT(P10.5)
¥2ITE 76,102)

POSMAT {/,100,'PLEASE INDUT VKXAX IN F10.5',/)
READ /5.271) VRMAX

K MAK=LCFIL (VKMAX)
ARITE 76,10 3}
EEAD(5,203) 511)
ARITE(6, 124)
RZAD (5,213) 512}
ARITE{5, 105)
BTAD {5,213) s5(3)
WRITE(6, 106)
¥2aD’5,213) S8}
XRITE(&, 107)
BEAD(S,201) 5!5)
F2ITE 6 ,108)
READ IS, 203} S '6)
TRITE 6,199)
22AD(5,203) S5(7)
ARITE 6,110)
EEAD(S, 203) 58}

223 FORIAT 'F153.5)

103 ZOEMAT(/, 10X, "2LZASE INDOT VYELOCITY GEAD $(1)

1918 F12.5',/)

104 POEMAT{104L, "I¥20T 5(2)"')
105 FORMAT[1IK,' INPOT 5 73} )

x

r

2LYJ0M1Z
BPLYQ0D20
PLT00030
PLYOCOLD
2LY0G05)
2LY0O0060
PLYDQOTD
2LY00080
2LY 200990
2LYINLICY
LY 00112
2LYOG 129
PLY00120
2L YOO 14d
2LY00150
PLYOCQ 1690
PLYDOT72
2LYGG180
PLYGC159
2LY 00200
PLYQQ 21D
PLYQ0220
2LY00 230
2LY0C24)
21Y00250
BLYQ0 262
PLYOO270O
PLyY00Q 280
2LYq0290
2LEQC 300
PLYIC 31
PLYQO 320
2LYQ0D330
2LYQO 349
PLYOC 35D
PLYOQO 360
2LYIN03TQ
2L¥00380
2LYOQ 390
2LYQQUGO
2LYOD WD
2LYQ0L2D
PLYIQL30
2LYQGHED
2L¥N0 450
PLYIGUEN
2LYNG U770
BLTOG 480D
2LY00490
2LY0O0 500
PLY0Q510
PLINOS20
PLYJOS53D
PLYOCS40
2LYQUSS5D
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CCNVERSATIONAL XONITOR S5YSTEM

FILE: PLYSYH PORTRAN 3
106 POBMAT (10X, "IKPOT S4) ") 2LY00560
17 EGREAAT(TOXL,'IHRUT S 15)') PLYQO570
158 PORMAT (1)L, *INPUT S76)*} PLYQO580
109 PORMAT(10X, "INBPUT S5(7)*) PLYDOS90
11) PORMAT [12L,*IHPOT SI6)") PLYIOCOE00

CC SgT K IS ZQROAL 1TIC ZERO PLYDOG 10

x=0 2LYNCE2C

51 =1 2LY00630
BXXGD=BXX PLYDOELO
3LY0D=BXY BLYOO650
BTYOD=BYY 2LI00660
2ZZOD=BZ3Z2 PLY0067Q
BXZCD=8BXZ 2LT006&80
BYZOD=BYZ 2LYICE90

50 CONTINDE 2LYN0700
CALL PCAL 2LIOOT10
71,.I)=DT*21 2LYJ0720
B({(2,I)=DT*22 PLYOGT30
A3,I)=0T*F3 PLIGLTLED
H[4 ,I)=CT*F4y PLYO0750
g/5,Il)=0T*F5 PLIACTEC

H (6 ,Z)=LCT*F§ 2LYIJ0770
IFP(I-1) u40,40,41 2L1I00780

31 I1I=2 . PLYQ00790
T=T+DT/2. 2LY0D0800
BXX=BXX+H{1,71)/2. 2LI00819
BXC=BXL+H (2,1) /2. PLYQ00320
3YY=8YY+H (3 ,1)/2. 2LYBC330
BZZT=BZZ+d M ,1} /2. ZLY0O0B40
SXZ=BXZ+H(5,1) /2. 2LT00850
3YZ=3YZ2+H 6 1} /2. PLI00860

30 TO 53 2LY00870

41 IF7I-2) 42,42,43 2LI00880
42 I=3 PLY00890
ALX=8XIFH [T ,2)/2.-501,1)/2. 2LY0G9CT
BXY=BXY+T2,2})/2.-9(2,1)/2. PLTI00910
3YT=BYY+H (3,2) 72.-d(3,1)/2. 2LY20920
3ZZ=BZZ+d 4 ,2) /2.-H 8,1} /2. 2LY00930Q
JEZ=DBXZ+H(5,2) /2.3 (5,1) /2. 2LYC0940
3YZ=BYZ+H 6 ,2)/2.-0H [6,1) /2. 2LYD0950

30 TO 59 2LY0G960
43 LT [I-3) u&,44,45 PLYOCST7C
44 T=4 2LYQO98Q
T=T+DT/2. PLY00990
DEXX=BXL+d 1 ,3)-21,2) /2. 2LI01000
3XY=8XY+H(2, 3}~E(2,2) 2. 2LYO 101D
IYY=8 YT+ [3,3)~H 3,2) /2. PLYO1020
BZZ=BZZ+d [4,J}-H (4,2) 2. PLYQ 1030
BXZ=BYZ+H [3,3)-H 5,2} /2. 2LTO1040
BYZ=BYZ+H (6 ,3)-H (6,2) /2. 2LY01050

GO TO 59 PLIN1060

45 K=K+1 2LY01070
BYX=3XI0D+ (H(1,1) +2.*H(1,2) +2,*H(1,3) +H (T ,4}) /6. PLI01QB0
SIY=BXYUD+ (H 2,1y +2.Fa 12, 2} +2.=sH [2,3} +d [2,4) ) /6. BLY01090
BLZO1 100

AYY=3YYOD+(H{3,1) +2.%0(3,2) «2. %8 (3,3) +H (3,8) } /6.
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CONVEESATIONAL 4YONITQE SYSTZYd

FILE: PLYSX FORTRAN A
BZZ=BZZOD+ [H (4,1} +2. *H {4, 2) +2, FH4,3) +H4,0)) /6. 2LrdT1110
BIZ=BXZCD+ [H (5,1) +2 . *#H {5,2) «2.%H0(5,3) +H!S,4) ) /5, 2LT01120
BYZ=BYZOD+(H(6,1) +2.%H(6,2) «+2.*H[6,3) +A16,4)} /6. 2LY0T1130
LFIR-KMAL) 51,60 ,60 PLYO1140

60 CONTIRUZ PL¥01150
CALL 5TPP PLY01160
II=II+1 PLYQ 7170
ITII)=T PLYINT180
ST (1,II)="xX 2LY0 1190
PSTr2,IT})=TYY PLYN12G0

PST (3,II)=TZZ PLYC1210
PSTIY4,IL)=TLY PLY?1223
P5T (5,I1)=TL2Z PEY3 1230
PST(6,1T)=C2Z 2L I0T 240
ARITE (6,127) STLN,T PLYB1250

120 PCENAT(/, 10X, 'THE ZESULTS OF STREANM LINE',F5.2, PLYIO 126D
1/ ,10%,"AT THE TIAZ *,F10.5,.) 2LY01270
TELTZE(6,121) 2LY91280

121 FQEMAT/,13%,"ALPHA RR',2X,*AL2HEA TT*,2X, 2LY0129)
1*ALPHA ZZ',2X,"ALPHA BT',2X,' ALPHA REZ',2X, PLY(G 1300
TTALZYA TZ',2X,"BLTEVSION BATIQ!) PLYIC131IN
EXT=Zf (BXX+BI¥+3Z%) PLY0D1320
WRITEZ (5 ,122) BXX,37Y¥7,32Z,BXY,5£Z,3YZ,EXT 2LYU1339)

122 FOEMAT!/,104,E8.4,6F10.4) 2LY0 1340
¥RITZ [6,123) 2LIN135¢C

12) PCRIMATL/,T0%,'M0RE CALCULATION IS NEEDED?', 2LYC1360
1" IF YES, INPUT 1, IZ NC, INBOT 4!, .} PLYD1370
BEAD(S, 204) IJD1 PLYO 1380

204 FOEXAT 7IS) 2LY01390
IZ(LJIDY) 65,6%5,70 PLYO 140D

55 CONTINUZ 2LYID14T0

fotod BRINT 5T2ESS TEINSOR 3Y THE MNHD PLY01420
ARIT2{6,125) 2LYO1430

125 PORUAT [/ 10X, "TINEY ,TL, *"TRR*, 7L, "I7T',7X, 2LT01440
1'7rzZ  7L,"TAT' ,TX,TRZ! 7L, 'TTZ!, /) 2LYD1450

pa 67 J=1,II 2LY01460

67 ARITE(6,126) TT {J}, (28T L ,J),L=1,6) PLTZO14TY

126 POEMAT (/,TIX, FU,.1,3L,6F10.3) PLYO 1480
ABEITE [5,124) PLYO1490
124 FORMAT [/,10X,"MOR2 CASZ IS WEZEDZD2Y, 2LT01500
1* 12 YBES, L¥20T 1, EZ 70, INPUT 0°%, ) ?LY01510
A ZAD (5,204) Iip2 2LY0T1520
IP {IJD2) 56,66,87" 2LI01530

66 COUTINUZE 2L YO 1540
STO3 PLIDISEY
ZND 2LY01560
SUBROUTINZ PCAL PLID1IST7Q

ded THIS SUBRCUTINE CALTZULATES THE ZIGHT HAND STDES OF EQ.5. 1 2LY01580
cec TO EQ.8.5. PLY01599
COMMON 3XX,3YY,BZ%,3XY¥,B8LZ,BYZ 2LY0 1600
COX4DN 3XX0D,BYYOD, BZZ0D,8XY0D,BXZCD,5YZ0D PL Y3 1610
CO¥MOY S(3), DT,E,TN¥NKT, COF 2LYIN1620
COMMON TLXL,TYY,TZZ,TXY,TXZ,TYIZ 2L 101630
CO4M0ON F1,F2,E3,F4, 85 ,P6 2LI0T640

2L ID 1650

Cor=1.-5¢ (BLI+BYT+32Z)



PILE:

cC

PLYSH FORTRAN A

P 1=2.%5 71} ® 3KXX+ 2. *5 (2] *BXI-2. *5 /8] *BXY
1=BXX/COF—2, *E# (BXLE%2 +8XT ¢*24BLT*&2) $CIF+ 1,

F3=2.FS [3) *BYY+2. 25 [6) *BX Y+ 2, %5 (7) *BYZ
1~BYY/Z0%=2. *E* (BXY*%2 +BYL ¥*2+ BYZ*%2) (D F+1.

TY=2,€5(4) ¥ILT+ 2. %5 (5} *BXZ
1=BTZ/oGF—2. *E € (BXZ+*2+3YZ #*Z+gZZ*+Z) ¥COF+1,

F2=5(6) € BXX+(S({1) +5(3)} *BIY~-5 () *BYY+S (T} *B (2
1+5 T} *BX T
2-9XY/COP=2.%2* (BXA* BXT+ B{Y*BIY+BXS*BYZ) *COP
F5=(571)+5 (4))*BLZ+ 5 [5) *BXA+S5 [2) ¥B%Z- S/8) *BYZ
=B{Z/COF-2.#2% (BXX*B{Z+BXY*BYZ+BIZ*BTZ) *COF
F6=!574)+5 73)) ¥BYI+S 76) *BXZ+S5 (5) *BXT+S(7) *BZ T
1~BYZ/CO0F-2.FE8 /BT *BAZ +BY [*BYZ+ BYZ*BZ 2} *COT

RETURN

ZND

SUSROUTINGZ ST2P
TYiS SOUSROUTINE CALTULATES THE STRESS TEYSOR FEOM THE
STEZUCTUEZ TENSOR EOJATICNS [ EQ.6.4 TO B2Q.6.13 ).
CCHXON BXX,BYL,3%Z,9KY,51Z,BYZ
ZG%MON 3XXGD, 3LY0D,3Z23 D, 8LYD D, 3X2ZC0,BYZOD
CGMMON S 8) ,DT,Z,CUKT,CCZ
ccuad0Y TXX, TTY, TZZ, TXY,1TLZ,TIC

coxsoN 21,72,F3,74,75,F6
TXX=(BXI-BAXOL) /DT~2, %S 1) *BXX-2 .45 (2)*3XZ+2.#5 (3) £5XY
TYT= {BYT-3YTOD)}/DT—2. %5 73) *BYY-2. %5 (6) ¥BXY-2.¥%577) *BIZ
T2Z= BTZ-BZZTOD)/DT—2.%5 (4} *BZZ~2. %S (5} *BLZ
TXY=(BYY-8XYOD)}/DT~-S /6] *3XX~(S 1) +$73)} *BLY+573) ¢*BYY
1-5 12) ¥BYZ~-5 (7) #8XZ
TXZ={BLZ-BXZOE) /DT~ (S (1) +S (4]} ) *BXZ~S (5) *BXX~5'2) *BZZ
1+58) #*BYZ
TYZ=(BYZ-BTZO0) /DT- (S {4} +5(3)} =BYZ-S (6} *BXZ~5(5) *BXT
1-5 1T} *BZZT

TXI=TIL*CYKT

TYY=TIY*CNKT

ZZ=TZL*CNKT

TYXT=TXY *CNKT
T XZ=TXZ *CHKT

TYZ=TYZ*CHNKT

EETURY

zND
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CONVERSATIONAL SONITOE SYSTEA

2LIN166C
2LI0 1670
PLYD1680
BLYG1690
2LY01700
2LY01 710
ZLI01720
PLYQTIT730
2LYO 1740
2LIG1753
2LY01760
PLIMNTIO
2LY0 1780
2LTIG179C
2LY Q1800
2ZLIC1310
2LY01829
L 101830
2LT0T840
2L 101850
2L{01862
2LI0 1870
2L¥01889
ELI01890
2LIS1902
2LIG1970
2LY013%20
2LY371930
2LID 1940
2LIQ1959
2LI01963
2LI01970
PLY0 1980
2LY01992
2LI02000Q
BLYJ2Q1D
2LY02020
PLIO2Q30
PLYD2040
2PLYQ2050
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C.2 The Intrinsic Viscosity for Shear Flow (in Chap. 5)

This program scolves the intrinsic viscosity and the pri-

mary normal stress coefficient for shear flow by Ringe-Kutta

forth order method.

Description of Main Variables and Program Listing

Variable

VIS

SVIS

PSD

SPSD

BXX
BYY
BZZ
BXY
BXZ
BYZ
TXX
TYY

TXY

Description

Intrinsic Viscosity

Intrinsic viscosity scaled by its steady state
value )

Primary normal stress coefficient

Primary normal stress coefficient scaled by
its steady state value

axx

Cyy

Crz

Time
Time increment

Dimensionless Shear rate kH%
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Variable Description

IMET Reference number for specifying model
IMET = 1; MNHD
IMET = 2; TANNER

IMET 3; NHD



FILE:

aon

aoan

106

e2 FORTRAY A

[RIS PR0OGRAY CALCULATES VISCOSITY AND THE ERIYARY
NJBYAL STIESS COEFPICIENT POR SHEAR FIGY¥ 3Y TH=

r

05
593
601
802
a4
30a
307

309
503

01
592
352

300
25

HEEE DIFZEREJT MSTHODS.
DIXENSION 8 (6,4),7T1 (32)

DIMENSION SVIS (32),VIS 32),PsD 32),5PsD (12)
DIMENSICN EVIf32)

COM®ONW BXX, 3%Y, 3YY, 82%,3XZ.EYZ

coddcy ©1,72,73,F%, F5,F6,SE (8), E{4} ,9,T7,LL
COAMCN C1,IXT

COXMON AXX,AXY,ATT

DEFIYE PILE 1(200,12,9,L01),2(200,12,97,I02)
DEFINE ZILZ 3:2%3,12,0,I%23),4:232,12,G,I04)
DEFINE ?ILE 5(200,12,0,I05},6(200,12,0,I06)
DEFL¥E °ILE 7!200,12,U0,I07),87205,12,0,I08)
L1=1

L2=2

21=1

12=8
INET=1: ANED
INZT=2: TANHER'S
IMET=3: YHD

2EAD {2, 305) TAET

PORMAT 'I10)

GO T0 (500,601,602} ,IMET

¥RITE 73, 336)

GO TO &0

ARITE(3, 307

G0 TS 6L4

YEITE (3, 308}

CONTINUZ

FORJAT {/,10% ,"ODI?TED N.E.D. “GDEL', /)
FORAAT !/, 10X, ' TASNER MODEL',/)
FCEMAT(/, 10L, "M, E.D. HOCEL*,/)

CONTINOZ

QZALD 12,301 <1

FORMAT /7 10. 2)
IFZ1) 502,591,502

9ILTE (3,302} C1

30&&&1:/,10x,- PAEAAZTER C1 = 1,55, 2,
qy=

FEAD 12,333) X
T CRMAT (5]
COMTINOZ

IIT=0: ST2355 GEOWTI Q2 SHEAZ ?LOW
ITI=1: STRESS RTLAXATION FOR SHEAR FLOW

I
200
350

19

II=2: STAESS GROWTY FPOR ELONGATIONAL FLOW
2Ead {2,230} IIT

POERAT [T10)

READ €2, 150}

TOEMAT [F1G.5)
LF(LII-1) 19,1%,21
CONTINTE
E(1) =.02

E2}1=.235
CCF1=1.—-5.%E 1)

CONMVERSATIONAL MONITCR SYSTEA

22
22
22
22
22
22
22
=]
22
22
22
22
22
p2
p2
p2
g2
¢2
r2
22
22
22
P2
22
22
22
22
22
22
g2
p2
22
e2
P2
B2
p2
22
22
p2
22
22
P2
22
p2
22
22
22
22
22
j=ged
22
22
p2
22
22
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qUQa1 g
o0020
0a034
00040
iy 14
00060
20073
QQeasa
00299
00100
00110
95120
00130
nciyn
20159
20160
Qo170
00 180
0o 199
Qo206
agatn
0g220
30230
00240
G250
0G260
00270
00280
0230
G309
QG310
G327
00330
cn3uc
00350
26361
0o 374%
gu 380
00390
Qo uogQ
00410
404629
00439
cougd
0L k50
00460
OCGu47%
0o us0
Qo ugn
oc 500
cG510
J05240
0G930
ousuc
04550
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CONVYEE SATION AL =SOHITOR SYSTZ4

PILE: P2 FORTRAN A
SRE{1 =.01/COF1 22 00560
SRf2)=, 1/COF 22 00570
SB(3) =1, /G P2 20580
SE (4)=10. /COF1 22 005919
SRI8)=8.0,/20F1 22 00800
S2!7)=6.0/C0F1 p2 98612
SE 16}=5.0,C0%1 22 MW520
SR({S5)=4.0/COP1 P2 00630
5B {8)=3.%/2071 ?2 006430
SR{3) =2.0,COF1 22 00650
SR ‘2)=1.4/C0FP1 22 9C66Q
SR(MN =.7,C071 22 00870
GO TO 83 22 QU&agy

21 ZONTINTE 22 00690
E(T) =.02 22 2070%
212)=.395 22 00716
COF1=1.~5.%E({1) 22 00723
SE[1)=.31/C0F 1 22 00739
SR{2}=.1,COPF1 22 00740
SR {3)=.5/CIF1 22 Q0759
SEf4)=,7,CaP1 22 G0760
SR{S)=1.,/C0F" 22 00770
SR {6)=2./COF1 22 00780
52(71=3./COF1 22 00790
SEI7T)=13./C0OF1 22 G0809d

43 CQuTINDE 22 go0ain
DC 98 LE=L1,L2 P2 GR8Z:
FEIT2{3,104) E(LL) 32 00839
DO 99 NM=u1,12 22 Quaao
WE2ITZ73,123) SEIH) 22 00850

by 79 ZOQHTINUE 22 0086d

c INITIAL CONDITION 22 0C372
IPIITI) 1,1,2 22 00880

1 WRITE(3,201) 22 00890
201 FORXAT /,10{,'STR2SS GRC4TH FOR SHAEAR ZLONY, /) 22 0¢GQ0904Q
BXL=1.-5.%*S(LL) 22 00919
axy=", P2 00920
BYY=1.-5.%E (LL} P2 00930
BZZ=1.~5. *E /LL) 22 QuILe
3XZ=90, 22 00950
BYZI=0, P2 004960
TIS f1)=3. 22 d0970
PSDL 1) =0. 22 00980
T171)=C. 22 00992
G0 TO 89 22 01000

2 IPITII-1) 3,3.% 22 01019
3 ¥EITE(@ ,202) B2 01020

202 PORAAT(/, 10X, 'STEESS RILAYXATION FOF SHEAR PLGH',/) 22 01030
VIS [1)=VvI5 {32, 22 01040
PSD{ 1) =25D(30) 22 01050
T171y=1. 22 010672
30 TC 8¢ 22 01070

4 IF/ITI-2) 5,5,& p2 01083
S ¥RITE={3,203) P2 01099
22 011090

203 POX¥AT(/, 10X, 'STESSS GROWTH POR ELCNGATIONAL FLOW' , /)



PILE: P2 ZORTRAN

aXX=1.-5. % 'LL)
31T=0,
BYY=1.-5.*=Z(LL)
8ZzZ=1.-5, *I [LL)
BLZ=0.

BYZ=0.

EVI [1)=4.

GO TQ 80

& TRITE [3,274%)

204 FORMAT("1°, 10X, 'STEESS EELAXATION FOE ZLOXGATIOMNAL rLow' N

a0 courINuz
TC THE CASE DT=.45
J=1
&=1
T=0.
DT=.1
KK=13
KRK=2
51 =1
BILIOD=8BXYX
BXYOD=5(Y
3YYOD=BYY
BZZOD=BZZ
BIZOD=3X2
BYZCD=BYZ
50 CONTINUZ
IF(III) 7.7.8
7 CALL SHGR
GO TO 81
9 rP(III-1) 9,9,10
9 CALL SH2E
GO ™ 31
9 ILPIITT-2) T1,11,12
1 CALL ELGR1
GO0 T0 81
12 CONTINUZ
81 CONTINOZ
€11 ,0)=0T*F1
(2,1 =DT*FP2
H173,I)=DT *F3
H(%,I)=DT*F4
75 ,L)=0T *F5
H{(6,1) =DT*?4
IF(I-1) 40,450,481
40 T=2
T=T+DT/2.
BXX=BXX+H [1,1)}/2.
BXY=BXL+H (2, 1} /2.
AYY=3YY+d 3,1)/2.
BZZ=BZZ+A {4, 1) /2.
BYXZ=BXZ+H 'S, 1)/2.
AYZ=BYZ+E 5.1} /2.
30 TO S50
41 IP!I-2) 42,482,433
42 I=3

CONVIRSATIOYAL JONITQE SYSTEX

g2
22
g2
22
22
22
g2
22
P2
P2
2
22
22
22
22
22
P2
22
22
22
22
22
22
22
22
B2
22
22
22
22
22
22
22
22
gl
22
22
22
22
22
22
22
22
22
22
P2
22
22
22
P2
p2
p2
22
22
p2

363

01110
01120
01130
291140
01150
311639
01170
31180
01190
01200
g1210
01220
01230
01240
p1250
gizZe
01270
012839
01299
J1 390
a1310
01320
01330
01380
01353
01360
01379
01380
313940
01400
01410
014820
0143¢
Tiuan
01450
01360
o1u7n
c1ugd
01499
01500
01510
01520
01530
Disuc
Q1550
01580
01570
01530
0159¢
015600
01610
21620
016830
J1649
01650



PILE:

43
44

45

55

56

57

47

61
&0

46
52

13

T0

14

22 PORTHAN A

GEX=0XX+H 1,2)/2.-511, 1) /2
BXY=BXY+H (2,2} /2.-E{2,1}/2.
PYY=BYY+H (3,2)/72.-4 {3,1}/2.
8ZZ=RZZ+E {4 ,2) /2.-H 4,1 /2.
BXZ=BIZ+H!5,2)/2.~H 5,1}/2.
BYZ=BYZ+H 5 ,2)/2.-H E,1) /2.
GO 7O 50

IP(T-3) 43,44,45

I=4

T=T+DT/2.

BXX=BXX+H 1,3)-3 11,2} 2.
BXY=BX¥+H2,3)-H1:.2,2) /2.
BYY=BYY+d 3,3)-H13,2) /2.
ZZ=DBZZ rH (4, 3) -H (4, 2) 2.
BYXZ=BXZ+H4 'S ,3}—H 5,2) /2.
BYZ=BYZ+H[6,3)—-d (6,2) 2.

GO TO 50

K=K +1

BEI=BLXOD* [H ¢1,1)+2. ®#H {1, 2) +2. #071,3} +H 11,1} ) /6,
BXY=BETOD+ (H72,1) +2 . #0802, 2} +2. %972, 3) +H'2,3)) /6.
BYT=BYYOD® (H(3, 1) +2.%H(3,2) ¢2.*H (3,3} *E{3,4)) /6,
BZT=0ZZCO+ (H(U,1) +2. ®Hfu, 2) +2, *H 73, 3) +8 (6, 4} ) /6,
BXZ=BXZOD+ (H(S5,1) +2.8H(5,2) +2.*H (5,3) +E {S5,4)} /6.

BYZ=8YZOD+ 6,11 +2. ®H [6, 2} +2. *H [6,3) +H {6, 4) ) /6. 22

COYVEESATICHAL IONITCQR STSTcEM

22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
P2
22
22
22
22
22

IF{III~1) 55,%56,59 22
CONTINUE p2
FXX=(BXX-3XLOC]) /DT~2. #SR{ 3} *BLY 22
TXY=(B8X¥Y-BZY0D)//DT-SR M)=BYY p2
TYr={3TY-BYYQL) /0T 82
GC TC 57 22
T XX='!3ZzX-31X0D} /DT p2
TXY=(BX{~BXYOC} /DT 32
TYY=/BYY-B3YY0D)/OT 23
CONTINDZ 22
T XXE= (BYY-BXX0D)/OT +5SR [4) *BXX 22
T ZZE=I(BZZ~BZZ0O0) /DT=2 .«SR (¥} *8ZL 22
IT(K-¥K} u6,47,u46 22
J=J+1 22
EVT (J)=TXXE~-TZZE) /(3 .*(1.=-5.=2 (LL})})/SE (1) 22
VIS {J)=-TXY/SR M) /CCF1 p2
PSD(J) =~(TXL-TYY) /SA(M) *=*2,/(2.%{1,-12,*Z TL))) 22
1 {J)=T p2
IFfR-51} 50,61,61 22
KEK=25 22
CONT INUE 22
RE= KK+ KKK p2
Te [™~15,) 51,52,52 02
CANTINUE 22
IF 'III) 13,13,.14 p2
COYTINUE 22
03 70 I1=1,30Q B2
$BSD fT) =psS (T} /BSD £31} D2
SYLS(I =VIS (I} /YIS {39) g2
GO TO 42 p2

P2

TECTII-N 15,15,16
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01660
gi16evd
1630
01690
01700
01710
01720
017310
Q1740
21753
01760
31772
01730
01790
01300
21810
01822
01830
Q18472
01850
01380
01870
01880
1890
01900
2191¢C
Q1920
01930
01940
01950
01960
01970
219840
01990
329CH
az2910
32020
02030
02040
02050
02080
32079
020480
32090
021900
2110
02123
02130
021uC
D2150
02163
02174
62182
02190
02200



T1

16
17

18
a2

a6
a7
22
100
101
103
L
75

117

111

96
99

24

a7

p2 FCETRAN A

Do 71 I=1,30
SPSD {T)=25D {I)/250{1)

SYIS(I}=VIS(I} /TIS{1}

GO TO 82

TP{ITI-2) 17,17,18

CONTINTZ

50 TO B2

CCNTINUZ

CANT INUZ

WIITE(3, 100)

LN %=3+ [LL1-1)*4

Do 20 I=1,30

FRITE 3,131} ©17L},VIS(I) ,SYLISIL),PSD /L), SPSDII)
STORE TEZ DATA IY DISK

IREC=IC+ 'IMNET~- 1} *60

IF{ITI} 66,86,87

WEITE (L¥UN'IREC} T1(I),VISII},SVIS(I),2SDI},S250(I)
GO TO 20
ARITE(INUX® [REC+30)
CONTINOZ

PORUAT(" TrME ', 12X,
1% STEZSS DIF.',12%,' Y. ST. DIE.*,/)
PORMAT(?7.3, 4E22.4)

PORMAT 7'1%,' THE VALUE CP SHEAS 3ATE
FOEMAT(/, ' THE VALUE OF

IF 'TIT) 75.,75,56

IITI=1

' 79.2,/)

WRITZ (3, 110}
TENSO2S',/» 10K,

PORMAT ¢/ ,10£ ,'TEE TALUES OF STRUCTUAL
1* BXX, BXY, 3YY, 3¥Z,.BYZ,BZZ" /)
WRITE (3,111} BXX,8XY,BYT,BXZ,BYZ,B2I
FCEMAT{S5X, 6E15. 4)

GO To 79

IITI=9

CONTINDE

IF/ITT=1) 24%,24,97

CCSTINUE

COF1=1.-5. *E [2)

SRy =.31,/C0F1

SEI2)=. 1/COF 1

SR(3)})=1./COF1

SE(U) =19, ,/C071
SEf8)=5.53/C0%1

SR(7 =6.3/C0F1

SR (6} =5."/C0OF1

S2({5 =4.0/COFT

S& T4)=3.0/COF1
SR{3)=2.0/=0F1

SE (2)=1. 4/COE 1

S271)=.7/COF1

GO TO 98

COF 1=1.-5. *E 12)
S2(1} =. 31/C071

SR2)=.1/c0P1

52(3) =.5/Cc0F1

TI(I} ,FIS(I} ., STIS(T),252(1) ,SBSD (I}

YISCOSITI' ,12X,' ¥. VIS. " L124%,

PERTURBATION PARAMETER = ',29.4,/}

CONVERSATIONAL XONITQOE SYSTZM

22
22
22
22
22
22
22
22
22
22
22
22
22
g2
22
22
22
p2
22
22
22
22
22
22
22
22
22
22
22
22
22
22
p2
22
g2
22
22
22
P2
22
22
22
22
22
B2
22
p2
22
22
e2
22
22
22
22
B2

365

02219
02220
02230
02240
322590
32267
02270
022849
02290
02300
Q2310
02320
92339
02340
02359
02380
22370
02380
Q02393
024900
02410
24240
02430
02440
o2u5¢
02460
Q2470
02482
J2490
02500
02510
02529
225390
22540
Q2552
32560
02570
02580
02590
32601
02610
22620
02630
02640
92630
02660
267G
Q2680
J265%C
d2700
42710
Uz2720
02730
02740
02752



PILE: p2 PORTRAY 1A

SR{4) =, T/CIF 1
Se (5)=1./C071
SR{6) =2./COF1
S8 [T)=3./CO0F1

98 CCHTINDE

HN=NN+1
THN=WN-—4
IF(NYN) 25,26,26

26 CONTINUE

GO TO 500

5301 CONTINUZE

cc
s oy
cC

ci

=2

c3

-r
-

cC
cc

c1

CALL EXIT
2ND
SUBECUTINE SHGE
T4T5 SOBROQUTEINZ CALCULATES THE 2L[GHT HANTC SIDES OF
£p.5.22, 33.5.9, A¥D =Q.5.19 FO0R STEEZSS GREOWTH FOR
SHEAR FLONW.
ccM#ON 5X¥,BXY,3YY,32%Z,BXZ,BYZ
coMMoN P1,P2,7P3,P4,?25,°6,5E(B), Z(4),4,7,LL
COMMON C1,IMET
Ga To (1,2,3) ,IAET
AN HD
1 ZONTINU®
A= 1./ 71,8 {LL) * *3XX+BYY+8ZZ} )
ARA= 1. AR) ®%C1T
BEB8=2,*E (LL) *AAA
G0 TC 4
TANNER'S

2 CONTINUZ

AA=1,/(1.=E(LL) * (BXX+BYY+3ZZ) )
AAA= [1. /AL) ®%C1
B8=0,
GO TO 4

NED

3 CONTINOE
AA=1.+E 'LL) * BIL+BYY+H2Z)
88=2.¢E(LL}

4 COWNTINUE

F1=2._ €S2} *SXT-AA®BXX—B3* (EXX**2 +BYF*#2+DAT**2}+ 1.
P2=SE M) *BYY-A)A*RIY-BA* /BXL*BYXY+BXY*ATT+BLZ*BYZ)
FPS=SR [M) *BYZ-AA *3XZ —BB* [BXC *BXZ + 3X{Y*BYZ + BXZ*BZZ)
Pu=—AA* BZZ-BB* (BXTF*2+BYL **2+BII**2) ¢1,
E6=—AA*BYZ~BB=/BXY*BXZ+3Y T*ELZ +BYZ*BZT)
PI=—A3F SYY—BE® (BLLEF2+8 Y22+ BLT* 2] +1.
BETTRN
ERD
SUBRCOTINE SHREE
THEIS SUBROUTINE CAL-ULATEZS THE ZIGHT HAND SIDES OF
EQ.5.22, £3.53.9, AND =Q.5.19 POR STEESS RELATATION
FOR SHEAR °LOW.
COMMON BXX, 3XY,aYY,BZZ,3XZ,BYZ
COox<MOK P1,P2,F53,P4,75,F6,SE (B} ¢E18).%,T,LL
CaY0o¥ <1, INET
¢0 To f1,2,3),D%2T
MNHD

CONVZRSATIOWAL MCNIIOE SYSTEXY

22
22
22
22
22
22
g2
22
22
22
22
22
22
e2
22
22
P2
22
22
g2
22
22
22
22
g2
22
22
p2
22
22
B2
22
22
e2
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
02
22
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02758
02770
02780
9279¢
02800
n2310
02820
02830
02840
02850
12864
02870
0z880
02890
G2909
02910
Q2920
029340
02940
02950
02969
22973
02989
12999
03000
03010
03020
03030
N304
G3050
330645
03070
Q34980
03 094
23100
031190
43120
23130
0310
¢3152
03160
03173
¢11480
03194
33200
03210
J3220
03230
33240
03250
232869
03270
03280
032940
03300
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CONYZRS ATIONAL XANITOE STSTZN

FPTILE: P2 FORTRAN A
1 CONTINOE 22 943310
AA=1,/01.-CZ/LL) * {BXX+BYT+9ZZ) ) 22 03320
12a=(1. 734) **+C1 22 03330
8B5=2.%E 'LL) *AAd 22 03340
GO TC 4 22 23352
c2 TANNER'S 22 03360
2 CCYTINOE 22 0337¢
Bi=1.,/[{1.—E LL} * [3XL+BYT+BZZ} ) 22 73380
AAA= (1. /A7) =%C1 22 03390
B8=0. P2 03400
GO TO 4 P2 034190
c3J SHD 22 03420
1 CONTINUE 22 23430
AA=T.+E/LL) *{(BXX+BYY+BZZ) 22 Q3uug
BB=2.*E {LL} P2 Q3450
4 CONTINUE P2 03460
Pi=2,¢SA(M) *BXY-AA*BXY—~FE3* (BXYX**x2 +BXY**2+BLZ*x*2 )+ 1, B2 03470
1-2.*SR [M] *BXY 22 03489
F2=32 (M) *BYY-AA*BXY ~-BB¥ (BXX*BLY+BXY*BYT+BXT*ETT) 22 03490
1-S3 {1} *3YY 22 13506
TS5=SR (M} *IYZ-AA*BXZ ~BB* (BIL *BXZ +BXY*0YZ+3XZ*2ZZ) 22 03510
1-SE {X) £3YZ 22 013520
PL=—AA®BZZ~BB*/BAC**2+DYZ *x2+82Z%*2) + 1. 22 93530
F6==-A4* 3YZ~-HB% (BXI*BXZ+BLY*BYZ+BYZ*BZZ) 22 035480
Z3=—AA*3YY-33% [JUYF*2+BYY *xZ+BYZ**2] + 1, g2 035590
RETURN 22 03560
IND 22 Q3579
SUBROUTINE ZLGRT 22 03539
Ccoadoy BxY, 8xy,.BYY,n82%,5%XZ,8Y%T 22 23590
couMoy #1,72,F3,P4,35,P6,558).,274) X, T, LL P2 036040
COM¥ON C1, T213T 22 33610
COXNMON AXX,AXY, AY¥T 22 03620
AA=1. /(1. =2 (1LL) * (2.% 32X +3Z2Z}) 22 y3630
AAA= 1. /A7) =*C1 22 J364)
BA=2.%CZ (LL) TAAA 22 03650
3B=0. 22 03669
P1=1,=-5E[Y) *BIA-AA*3YX-RE*BLL*2 82 03670
f4=1.+2.¢SR(A)*BZZ—AA*BZZ~-BR*BZI**2 22 03680
P2=2. 22 03394
Fi=0. 22 03700
F5=1. 22 vwi7in
PE=0. 22 03720
SITORN 22 03730
p2 Q9327449

ZHD
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C.3 Elongational Viscosity for Elongational Flow (in Chap. 5}

This program solves elongational viscosity by predictor-

corrector method.

Description of Main Variables and Program Listing

Variable Description

) Elongational rate

DT Time increment

TLIM The maximum time limit

XTI ®ysr after the prediction
ZT ¢, after the prediction
XN, AXX - after the correction
ZN, AZZ . after the correction

EVI, EVO Elcongational viscosity



FILE:

cc

cc
cc

c
I

Nnann

199
51
52

53
54
135
106
107

23

THIS PIOGEAM SOLVES SLCRGATLICNAL VISCOSITY BY THE

THREE MCDELS.
AHD COREZCTOR.

FORTRAN &

THE SOLVENG METHOD IS 2PEDICTOR

AWD NEWTQNW METHOD IS USED FGR COBEECTION.

DIMENSION 5 [2,20}.,2172)
DIMENSION AXX {30} ,AZZ {30} ,21L0(30),TT730)

couyoN
DIFINE
DEFI¥=
DEFINE
DEFINZ
DEFINZ
DEPINXZ
DEPINZ
DEPINE
c1=1.
1=3
L=2

s, TLIX,DT,IP ,L,J

PILE 11360,6,.0,I5H01},12(360,6, U, ISHO 2)
PILE 13(360,6,Y,ISHO03),14(360,6,0,I5404)
FILE 15{368,6,0,ISAYS), 16 {360,6, T, LSq06]
FILE 17(360,6,0,ISH07),18(360,6,0,IS508)
PILE 19 (36%,6,0,ISE09) ,29{360, 6, J,I5A10)
PTLE 21(360,6,G.ISH11),22(360,6,0,I5412)
PILE 23!367,6,0,I5813),24736G,6, 0, ISH14)
PILE 25(360,6,U,I5815),26 (360,6,0,I5416)

PEAD INFOHMATICN

I¥ZT=1:

qy=T=2:

IMET=3:

f.¥.H.D.
TANNZR'S 22 THCD
N.q3. 0.

12D L, 199} INET

FOZMAT
GO TC

(T10)
t51,52,53) ,IAFT

WEITEM,105)
GO TO 5S4
ARITZ [4,126)
GQ TO 54

WEITE [,

1.,107)

CONTINTDE

FORJAT

/10X, M. 4. 9. D. METHOD',/}

FORMAT(/, 10X, '"TANYERS METHOL',/)
POESAT ./, 17L,"N.H.D. 4ETHCG',/}

Do 1 I=t,2

IZTAD T
READ[L
EEAD (L
R EAD L
LL=0

Li=a:

C

TC

c LL=1:
c

(200} SI,J),J=1,8)
£200) (S{I,J)T=9,16)
£2017) (EI),I=1,2)

,202) TITA,T1,I1,12,F1,72

GROWNTY BEHAVIOR
RELAXATICN BEHAVIOR

W2 ITE INFORMATICY
DO 2 I=r1,I2
oe 3 J=1,16
SEAM=S(I,J)/(1.-5.*E(I})
Do 2 J=J1,J2

55=5 1

«J)

dRITE(M, 101} =Z(I).,5 [T.J}
CONTINUE

IF(IL}

70,73, 11

CONTIND 2
WBRITE(X, 103)
JEITE ™,112)
X0=1.-5.%5/T)

CONVI2SATIONAL

THE EOLZR XETHOD IS USED FOR PEESDICTION

MONITCE 3YST=4

23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
3
23
23
23
B3
23
23
23
23
23
23
23
23
23
23
23
£3
23
23
P3
23
23
23
23
23
23
23
B3
23
23
23
g3
23
B3
B3
23
23
23
23
23
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quo1o
30020
QCQ3.;
00040
JGSI
00060
BgO7a
004080
00090
00100
00110
00122
02 130
25149
00150
o160
00170
00 180
20190
20260
36211
00220
0239
Q240
an2sa
30250
Qo270
03280
00290
00300
co31o
IC3270
043330
QC349
00350
43360
c0 370
£1389
00390
3400
00410
00u2n
agQu3 o
oo usd
pogs0
augsl
[FIAR Y 4o]
aoua0
00499
00500
ga510
00320
00530
00549
00550



PILE:

cc

cc

71

72

59

a

82

33

8y

S0

91

g2

23 FORTEAN A

Z0=1.-5.8Z(I)
EVI=TI0+Z0%2. ) /3. X0
GQ TQ 72

CONTINUZ

ABRTTE M _ T)
WRITE M1, 102)

Xo=xy
T0=2%
COSTINITS
=1

T=10

T=0.

ALX (1) =%0
AZZ 71)=Z0
ELO(1) =&VT
2T 1)=T
CALL 2ARA1

BRZDTCTION BY EZX2LICIT SCHEME
IF{LL) 63,6M",39

CQNTIIUZ

5 I,5)=".

CONTINUE

GO ™ 81,82,83}),I3zT
CONTINO Z

AST.-E(I) *#(2.%XD+20)

B=A**C1

30 TO B4

CONTINU =

A=T.-Z(I] *(2.¥L0+Z0}

3=0Q.

30 TN 84

A=T, /{T1.+Z (X} %12, *XQ+20) )}
a=1.

CCNTINOE

(I=XO+0T*(1.-S{I.J) =LC-X0Q/A)
1-DT*2,#2 (1) «3*x{0*x*2

COY¥VEESATIIN AL AGNITOZ SYSTEM

ZI=ZO+DT* ’1, +2. *5 [I,J) #T0~Z Cri})

1~DT*2, %2 (I) £ EETO*%*2
CORBRECTION 8T INPLITIT SCHIME
CONTINUE

GO0 T [91,%2,§3),I%ET
COETINDOE

AI=1.-Z (I} *® (2. *XI+2I}
BI=AI®*CT

TA=2.%E(I) /a[**2

PB=-2.%2 1) *C1*3I/A1
GA=E(T) /AL **2

GB=—-T [T} *sC1¥BL/ AT

GO TO 9y

CONTINUE

AT=1.-F IT) €12, $LI+LI)

8I=0.

FA=2 .%E [I) /AL%>2

FB=0.

GA=F 7I) /AL **2

(M—R XETHOD)

P3
23
B3
e3
P3
23
°e3
23
P3
23
B3
e3
23
23
23
g3
B3
23
P3
23
Pl
p3
23
K]
23
B3
23
23
e3
23
23
23
23
23
23
23
23
23
23
23
23
p3
23
B3
e3
23
23
23
e3
23
B3
23
g3
p3
23
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Q0 561
095790
00580
00590
00s00
cng1n
00620
0Gald
0o640D
20650
QUBE60
qQa7o
0C &390
006949
007092
AcT192
00720
ge73c
GO 74d
Q@750
Q0750
Qo770
2T8D
QCc7940
0aago
00810
agaz0
oL83g
00d40
JLesn
00360
gQ87s
ooeeo
QG890
Q09300
00910
00920
Q0930
Qo94n
Q0950
cL989
G970
06989
0us9d
01009
P101¢
Q13290
01930
Q1044
01058
Q1060
01073
Q10840
¢109¢0
01141



PILE:

33

34

13
11

12

31

33
20

21

&1

42

B3 PCRTRAN A

GE=0.

GO TQ 94
AI=1./01. +E [L}) ¥ [2.%XT+Z1}}
8I=1.

Fa=2. *E (I)

FB=0.

CONTINOZ
F=XI+DT*¢S5(L,J} *XL+DT* XT /AL- BT X0
1+2. %7 (I) «DT*BI&XI **2
3=ZI~-2,*DT*ZI*ST,J) +DT*ZL/AL-DT-ZD
14 2, ®B [T} €DT *BI*ZI**]
P1=1.+DT 4S5 (T ,J) +DT/AT +DT=XI *F}

144, *E(I) *DC*BIX XI+2, ®E7I) «XI*+*2 *DT*F2
G1=1.~2. ¢5 [T,J) +DT/AT+DTEII*GA

Tey, ®E(I) #DT*BI*TT+2,* E{I} *ZI**2*DT*GB
IN= XI-F /71

TU=2I~G /G 1
TEST1=ABS 7 /X¥—XT) /XI)
TEST2=AHS { {ZN-ZI) /2T}

IF [TEST1=T1} 10,13, 11
IP{TEST2-T1) 12,12, 11
XI=XY

ZI=ZY

GO TO 50

T=T+DT

T I= (XN-X0) /DT+5 T, J) ¥
TZ=1ZN-20) /DT~2. 85 11, J) *¥2¥
PYI= PYX-TZ) / '3.%SS={1,-5.%21T}]}
K=K+ 1

IF f4~-I2) 33,31,31

CONTINUZ

T=T*1, 31231331

y=y+1

LXK (N]= KN

AZZ (N} =ZN

ELO(N) =EVI

TT [¥)=T

k=0

CONTINUE

IF(T~TLIH) 20,20,21

Xo=x

Z0=Z ¥

Ga TO 60

CONTINOZ

DO 40 IT=1,H
NB=IT+LL*3)+ {I-1) #63+ THET~ 1) *120
Jo=J+10

WRITE (JC'NR) TT {II} ,ELO [II}

CONVESRSATIONWAL

FRITZ (M,100) TTIIX)} ,AXX [ET] ,AZZ (IT).ZLJ[IT)

LF(LL) 41,41,42
LI=1

50 TO 5

LL=0

SCONITORE SYSTEY

el
23
23
23
23
23
23
23
p3
23
23
23
23
23
23
23
23
P3
23
e3
23
23
23
23
23
23
B3
23
23
?3
23
B3
23
23
23
23
23
23
23
23
Bl
23
22
23
P3
23
23
23
23
B3
23
23
23
23
23
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g111o0
01120
N11393
1140
01150
v1160
01170
011840
01190
01200
391210
01220
01233
01240
£1250
01260
01270
01280
g1290
613046
21110
1320
01330
c13uQ
01350
01360
01370
61330
01390
140
01410
01420
01430
0144
01450
1460
01470
014890
01490
21500
01510
01520
21530
01540
21550
01560
01570
¢158%
01590
31600
g161Q
01620
01630
01640
01653



FILE: B3 PORTRAN 1 CONVERSATIONAL MONLTOR
2 CONTINUE
101 FORMAT('1%,70X, "P¥RTURBATIOY PARAMETER = ',P10.5,
1r ¢ ELOYGATIOHAL 3372 = ',F19.5,/

102 PORMAT(/, 10X, *TIME',15%," ALPHA YX',15X,%ALPRA ZZ%,15X,
1 ZLONGATIONAL VISCOSITY',/)
100 PORMAT(P14.2,2223.3,£31.3)
200 FPORMAT (8F7.3)
201 FORMAT (2P10.3)
202 FORMAT (2% 10. 5,4I5)
103 FORXAT (/,5{,'STRESS GFOWTE',
104 FORNAT(/,5L, 'STRESS 2ELAXATION',/)
sToP
END
SUBROUTINE PARA1
2  THIS SUBROUTINE SPETIPIES TIXE IHCEEMENT ACCORDING
€€ TO THE ELONGATIONAL 2ATZS. .
DIMENSION S (2,20)
COMMON S,TLIM,DT,.I®,I,J
CHECK=S {I,J) .2
IP(CHECRK} 1,2,2
1 TLI==13.
DT=.02
IP=25
GO TO 10
2 CHECK=S(I,J)-1.
IF (CHECK) 3,7,7
3 TLEm=15S,
DT=.01
IE=60
GO TO 10
7 CHEICK=5 {I.,J) -3.
IF (CHECK) 8,9,9
8 TLIN=10.
DT=.01
IP=50
G0 TO 10
9 CHEZCK=S (I,J)-5.
IP(CHECK) 11,4,4
11 TLIN=2. .
T DT=.01
IB=10
go TO 19
8 CHECX=5(L,J)-10.
IT(CHECK} 5,6.6
5 TLIN=1.
DT=.005
IP=10
G0 TO 10
5§ TLIN=1.
DT=.001
I2=50
10 CONTIUUE
RETURN
EXD

STSTEM

B3
B3
P3
23
23
r3
B3
P3
B3
P3
P3
B3
e3
p3
23
e3
P3
B3
p3
£3
23
P3
23
P3
B3
23
B3
3
P3
P3
B3
23
P3
23
23
P3
23
P3
23
P3
e3
B3
P3
g3
P3
B3
p3
P3
PR3
P3
P3
3
- B3
P3

01680
01670
01480
01690
01700
a1710
01720
Q17320
01780
01750
01760
Q1770
01780
0179¢
01800
01810
01820
01830
01840
01850
018640
01870
01880
01890
g1900

Q1910
01920
01930
01940
01950
01960
0197439
01930
¢1990

024900
02010

02020
020320
Q2¢4an

Q2050
Q2060

02970
02080
02790
02190
02113
oz2120
¢2130
02140
22150

02169
02170
02189
02150

372
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Appendix D: The Convergency of Diagonally Dominant Matrix

Most of numerical problems in finite different scheme are

reduced to solving large matrix equations. The matrix equation

is written by
Ax = b

where A 1is the system matrix which described a physical

situation, x is an unknown wvector to be solved and b is

a known vector. In order to understand a diagonally dominant

matrix is sufficient for convergency of iterative methods,

we use simple Jacobi method for demonstration. In Jacobi

method, the matrix A 1is divided into parts.

A =D+ C D.2

The matrix D consists of diagonal elements of the matrix

A and the matrix C 1is off-diagonal elements of the matrix

A. A newly calculated wvector x(k+l) by iteration is then

expressed by

b K+1) = b _ cx (k) D.3

Introducing the exact solution vector x of eq. D.1, D.3

hecomes

(k)

§x (etl) _ Méx

where
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s () LK) _

b

and

Taking norm of eq. B.4 in L« space,

“ Gx(k+l) H < ” Mk” . HSX(k) ” < HM”k. ” 5}{(0) ” D.5

According to eq. D.5, the error fromthe exact solution is
reduced to zero if || M || is less than unity and the number
of iteration k 1s sufficiently large. The sufficient con-

dition for convergency 1s thus

[{m][ <1 D.6
The matrix M for the Jacocbl method is written by
|a-j_ jl
Imi | o= — for 1 # 3J D.7
R R P54
Mi,i =0 for i # j D.8
From eq. D.7 and D.9, the norm of the matrix M in L. 1is
la; -] D.10
| M| 2 max £ |m,i,j|= max ¥ —=—d— < 1
i j i 3 [Ti,1]

So if the matrix A 1is a diagonally dominant matrix, the

iterative method (Jacobi) for eq. D.1 provides convergency.
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The Estimation of the Stream Function

Appendix E:
at the Exit Hole

Prom the newly produced force

3
9Z PpPr22Z

in TABLE 6.6, v, is expected to increase. To estimate

instantaneous change of V,r We focus on the z-component

of the equation of motion around the point (r/R, z/H) =

(.03, .0L}). The equation to be solved is arranged as fol-

lowing introducing time difference formula.

v N+l—v N av_Jlo av_ | o o
zZ Z N+1 z o z _ _ 1 3p _ 1l 3 +
At T Ve (BZ‘] T Ve [ar ] T 9 T3z 3 3z ‘p,zz °
E.1
And v is expressed by

N+L _ J[_ L p° _ L 3 _ o (3v,))9 N /
v = 557 " 573z “p,zz T I TV { zJ_] + v, //At ///

N+ - . . . -
where v, L is a time advanced velocity and © indicates

the fixed values throughout the iteration. In eq. E.l1 and

eq. E.2, only axial velocity i1s assumed to be changed due to

the new force

e

3 -
az pr2z
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while other variables remain constant. Although this assump-

tion may be crude, it might give some adea about how v,

changes because the axial velocity in the dominant term

N+l|{av_|o
vz z

is treated implicitly and the change of the wvelocity gradient
o)
8vz
az

may be smaller than that of the axial velocity. The magni-

tude of the term

ov_to
v © z
r ar
is smaller than the dominant terms as shown in TABLE 6.6, the

change of the term, therefore, may be insignificant.

By choosing At = .0001 second, eqg. E.2 is repeated until

the time reaches .001 seconds which 1s about one tenth of

the time constant of polyethyrene oxide XH' The newly

calculated V7N+l increases about 3% of the original wvalue

fat time zerc). This rate of increase may be applied to the

axial velocity at the point (r/R, z/H) = (.03, 0). The

axial velocity, thus, grows -65 cm/sec from -63.1 cm/sec.

From the new value, the interpolated stream function is cal-

culated from which the stream function is fixed as boundary
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condition. Since the axial wvelocity at r/R = .03 represents
the average velocity in the zone which covers form r/R = .02
to r/R = .04 in the Newtonian calculation, the axial

velocity used in the calculation in section 6.5 is only 1%

increased velocity.



Symbol

Lr*
Lz*

M

LR I B |

H
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NOMENCLATURE

Definition

System Matrix

Ratio of radius of the Vortex Tank to Liguid
Level; a =R/H

Parameter Used in eqg. 3.4

Concentration

Force Vector Exerted by Connector Spring
General Expression of ¢, I, w
Gravitational Acceleration

Spring Constant for Hook's Law

Liquid Level

Boltzmamn Constant

Differential Operator Defined in eq. 3.57
Differential Operator Defined in eq. 3.57
Discretized Form of Lr

Discretized Form of Lz

Molecular Weight

Number Density

Pressure

Dumbbell Orientation Vector

End-to—-end Distance of a Polymer Molecule
Maximum Length of a Polymer Molecule

Gas Constant

Radius of the Vortex Tank

Radial Coordinate in Cylindrical Coordinates



