
THE ATTENUATION OF SEISMIC WAVES

IN DRY AND SATURATED ROCKS

by

DAVID H. JOHNSTON

S.B., Massachusetts Institute of Technology

SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE

DEGREE OF

DOCTOR OF PHILOSOPHY

at the

OMASSACHUSETTS INSTITUTE OF TECHNOLOGY

(1973)

October 19, 1978

Signature of Author..
Department of Earth and Planetary Sc nce October 19, 1978

Certified by............--------- .. .. ...-- ------- .... ........
, Thesis Supervisor

Accepted by."-................... r .... ..................
Chairman, Departmental Committee on Graduate Students

LIBRARIES



THE ATTENUATION OF SEISMIC WAVES

IN DRY AND SATURATED ROCKS

by

David H. Johnston

Submitted to the Department of Earth and Planetary Sciences

on October 19, 1978, in partial fulfillment of the requirements

for the degree of Doctor of Philosophy.

ABSTRACT

The attenuation of seismic waves in upper crustal
rocks is studied from both experimental data and theoretical
models of specific attenuation mechanisms. The attenuation,
or anelasticity may be used in conjunction with the
compressional (P) and shear (S) wave velocities to infer
the microstructure of the rock and the physical conditions
encountered in the subsurface environment. Generally,
the attenuation varies much more than velocity with
accompanying changes in the physical state making this
measurement a particularly valuable tool. Unfortunately,
systematic studies of the behavior of attenuation with
parameters such as pressure and saturation conditions are
deficient. Nor has the development of new experimental
techniques and theoretical models kept pace with the
methods for elastic properties.

It is shown in this thesis that previous experimental
data suggest one or more of several proposed mechanisms
may be contributing to the overall attenuation observed
in crustal rocks. These include crack and grain boundary
sliding friction; fluid associated mechanisms such as
crack lubrication, fluid flow through porous and
permeable rock, squirting flow from thin cracks to larger
pores, and viscous shear relaxation in the void spaces;
losses associated with gas bubble resonances; and a host
of geometrical effects with scattering from pores in the
rock being most important from an experimental point of
view. Mathematical models of all these mechanisms in
terms of their frequency and pressure dependences are
developed.

The attenuation or Q values (inverse proportional to



the energy loss) for P and S waves are determined for a
suite of upper crustal rocks as functions of pressure
and saturation using an ultrasonic pulse transmission
technique with the goal of interpreting these results in
terms of the theoretical models of the mechanisms. In
general, it is found that Q for both P and S waves
increases (attenuation decreases) as a function of pressure
for dry and water saturated rocks. Q values for saturated
and partially saturated rocks are less than for dry rocks
and while not conclusive, the experiments suggest that
Q for low gas saturations is slightly lower compared to
the fully water saturated case. The major controlling
factor in determining the differences in Q for individual
rocks is the nature and concentration of thin cracks -
the exceptions studied being shales and tuffs. Rocks
with a higher density of fine cracks exhibit lower Q values
and the rate of change of Q with pressure may be correlated
with the crack width distribution inferred from static
stress-strain measurements.

Modeling of the Q data obtained for dry and water
saturated samples of Berea sandstone imply that friction
is the dominant mechanism for attenuation. Increasing
pressure decreases the number of sliding surfaces and thus
Q increases. The major effect of fluid is to lubricate
these surfaces thus facilitating sliding. Attenuation due
to fluid flow plays a secondary role. At ultrasonic
frequencies and moderate pressures, flow is, however,
important in porous and permeable rock like the sandstone.
Scattering is dominant only at very high frequency or, as
with the tuffs, when the grain or pore sizes are large
compared to the wavelength. Attenuation in shales may be
due to relative shear motion between the rock matrix and
clay or kerogen. Bubble associated losses in partially
saturated rocks may be important only in limited cases.

The phenomenon of frictional attenuation is further
examined using a resonance bar experimental technique.
It is found that Q in dry rocks is dependent on amplitude,
constant at low strains but decreasing rapidly at strains
greater than about 10-6, explaining differences in Q
observed between resonance and ultrasonic methods. The
amplitude dependence is also a function of the types of
cracks existing in the rock. This is investigated for
samples that have been thermally cycled in order to induce
cracking. It is found that rocks cycled at low heating
rates show an increase in Q up to a cycled temperature of
about 400 0 C which is accompanied by a migration of the
amplitude transition to lower strains. These data are
interpreted in terms of the widening of thin cracks thus
reducing the contact area of frictional sliding - both



increasing Q and allowing the surfaces to slide at lower
amplitudes. Some of the effect observed may also be due
to outgassing of volatiles from the crack surfaces.

The results obtained in this thesis may be used to
evaluate the difficulties involved in extrapolating
laboratory data to insitu measurements of attenuation.
Theoretical models such as those used to describe the
anelastic behavior of the Berea sandstone, provide the
best method at the present time. However, field measure-
ments must be corrected for other factors that affect
seismic wave amplitude. Furthermore, the contributions
of mechanisms that may be important at low frequencies
and not easily established from ultrasonic data plus the
amplitude dependence of attenuation must be considered
before any meaningful comparisons can be made.

Thesis Supervisor: M. Nafi Toks6z
Title: Professor of Geophysics
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What ineffable twaddle! I never read such rubbish in my life.

- Dr. Watson, A Study in Scarlet

Sir Arthur Conan Doyle



CHAPTER 1

INTRODUCTION

Most of our knowledge of the structure and

composition of the Earth's interior is based on data

obtained from seismic waves. In particular,

compressional and shear wave velocities, combined with

density, provide the most direct information on the

elastic moduli at great depths in the Earth. These,

combined with controlled laboratory studies of rock

properties under simulated subsurface conditions have

provided a most valuable tool for determining lithology

and structure not only for global seismology but for

exploration geophysics as well.

Yet, knowledge of the elastic properties alone

presents an incomplete picture. The interpretation of

seismic data in terms of rock properties must also

include the anelastic characteristics or attenuation.

In fact, the attenuation generally varies much more

than the seismic velocities as a result of changes in

the physical state of rocks and their constituents.

However, the development of experimental techniques for

measuring attenuation in the laboratory and theoretical

models of attenuation mechanisms has lagged far behind

the methods for elas-tic properties.
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The emphasis of this thesis will be on the anelastic

properties of rocks in the upper crust - to depths of

5-10 km and at relatively low temperatures. Much of the

application of this work may eventually be found in

exploration geophysics. Attenuation combined with both

P and S wave velocities may help in the identification

of rock type, the characterization of pore spaces

including porosity and permeability, and perhaps most

importantly, the direct determination of pore fluid.

In order to understand the effect of the conditions

commonly found in the upper crust on attenuation, one

must start from empirical observations from the

laboratory and field. Field data on attenuation, however,

is nearly nonexistent and as we will see, laboratory data

is fraught with interpretational difficulties. While

the laboratory is practical for controlled experiments in

terms of pressure and temperature, many times the

frequency and/or amplitude of the seismic waves are quite

different from those obtained in the field. In this

case, theory provides a useful tool for the extrapolation

of laboratory data to field conditions.

The theory of attenuation in rock may be

approached two ways. From a phenomenological point

of view, one may arrive at a differential equation

relating attenuation with phase velocity and frequency,
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establishing the behavior of seismic wave propagation.

This kind of method, however, does not lead to a greater

understanding of the physics of attenuation and does not

relate the anelastic properties of seismic waves to

rock properties. The mechanistic approach, used in this

thesis, attempts to determine the specific physical

mechanisms by which seismic energy is lost. A precise

definition of each mechanism involved in attenuation,

along with its pressure and frequency dependence is

required.

Numerous mechanisms have been proposed and each may

be considered to have a greater degree of importance to

the overall attenuation under certain physical conditions.

These mechanisms include: matrix anelasticity including

frictional dissipation due to relative motions at the

grain boundaries and across crack surfaces (Walsh, 1966);

attenuation due to fluid flow including relaxation due

to shear motions at pore-fluid boundaries (Walsh, 1968,

1969; Solomon, 1973); dissipation due to the relative

motion of the rock frame,.with respect to fluid inclusions

(Biot, 1956a,b and 1962a,b; Stoll and Bryan, 1970);

"squirting" of fluid from cracks to pores (Mavko and

Nur, 1975; O'Connell and Budianski, 1977); partial

saturation effects such as gas pocket squeezing (White,

1975) and gas bubble resonance; energy absorbed in



systems undergoing phase changes (Spetzler and Anderson,

1968); and a large category of geometrical effects

including scattering off small pores (Yamakawa, 1962;

Kuster and Toksdz, 1974) and large irregularities and

selective reflection from thin beds (O'Doherty and Anstey,

1971; Spencer et al., 1976). All the above mechanisms

except large scale geometrical effects, are dependent

upon intrinsic rock properties. Thus, the interpretation

of data in terms of these mechanisms may provide

information on the microstructure of rock.

The objectives of this thesis are as follows:

I. To investigate the variation of seismic body

wave attenuation with pressure and fluid saturation.

P and S wave attenuation (Q values) are found from an

ultrasonic pulse transmission technique using spectral

ratios (Toks8z et al., 1978).

2. To develop and use theoretical formulations of

attenuation mechanisms to model the Q data. By doing

this, we may discover under what conditions one or more

mechanisms may be dominant in causing the overall

attenuations of both P and S waves and determine to what

features or rock structure attenuation is most sensitive

Another important aspect of theoretical modeling

is addressing the question of the extension of

laboratory data to other frequencies.
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3. To further examine the dominant mechanism of

attenuation in the upper crust - friction. Here,

longitudinal bar attenuation is determined by a dynamic

resonance technique for uncracked and thermally

cracked rocks. The phenomenon of strain amplitude

dependent attenuation is investigated. From the

discussion, it will be seen that this presents a further

complication in comparing laboratory to field data.

4. To synthesize the ultrasonic data and models

and the information gleaned from the further study of

the friction mechanism. New directions to be taken in

the future for both experimental and theoretical work

will be suggested.

In the next chapter the various techniques

for measuring attenuation and the published data

for rocks under varying physical conditions, highlighting

important features that contribute to the understanding

of the mechanisms involved will be reviewed. In the third

chapter attenuation mechanisms along with their

theoretical formulations are presented. Next, a

detailed description of the experimental techniques

and rock samples used in this thesis is given. In the

fifth chapter, attenuation data as functions of pressure

and saturation conditions are presented along with

theoretical modelling and discussion of important
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mechanisms. This is followed in the next chapter by a

more thorough investigation of the friction mechanism.

Finally, in the last chapter, a discussion and

conclusions are presented. Again, the main emphasis

throughout the thesis is to determine the relative

importance of the mechanisms in contributing to the

overall attenuation of seismic body waves in the upper

crust and to what extent laboratory data may be used

to infer rock properties from seismic data obtained in

the field.
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CHAPTER 2

REVIEW OF ATTENUATION MEASUREMENTS

In this chapter, previous experimental measurements

of attenuation are discussed. In order to interpret

these results and to appreciate the difficulties and

weaknesses in attenuation measurements, a section

describing common laboratory techniques is included.

While a knowledge of common measures of attenuation

is assumed, the definitions of these and derivations

of their interrelationships are included in Appendix A.

2.1 Laboratory Measurement of Attenuation

The accurate measurement of intrinsic attenuation

is a difficult task and seriously limits the utilization

of anelastic rock properties. Both in the laboratory

and field, seismic wave amplitudes are strongly affected

by geometrical spreading, reflections and scattering in

addition to intrinsic damping. Thus, in many cases,

to obtain the true attenuation it is necessary to

correct for these other effects. This can be a

formidable task.

Generally the methods for measuring attenuation

in the laboratory can be separated into the following

categories (Zener, 1948; Kolsky, 1953; Schreiber et al.,



1973):

1. Free vibration method

2. Forced vibration method

3. Wave propagation

4. Observation of stress-strain curves

Each method can be further split into subgroups.

The choice of an experimental method is based largely

on the frequency range of interest, the actual values

of attenuation, and the physical conditions under

which the sample will be studied. For example, the

use of stress-strain curves will provide information

at frequencies below 1 Hz while resonance vibrations

measure the attenuative properties in the range of

100 Hz-100 KHz and wave propagation experiments are

commonly restricted to the ultrasonic range of 100 KHz

or higher. And, while perhaps a more difficult

technique to employ, the wave propagation method is

most suited for jacketed samples in pressure vessels.

Furthermore, each method determines a different

attenuation or loss parameter. Their definitions and

relationships must be specified if any meaningful

comparison may be made among various laboratory

measurements.



Of the four methods listed above, forced

vibration (bar resonance) and wave propagation are

utilized in this thesis. Descriptions of other common

techniques will be presented for completeness and

comparison while a detailed discussion of the specific

techniques employed here are deferred until Chapter 3.

The most common measures of attenuation found in

the literature are attenuation coefficient, a, the

-1
"quality factor", Q, and its inverse, Q , sometimes

called the "internal friction". To avoid conflict in

the name of an important attenuation mechanism, Q-1

will be referred to as the "dissipation factor" and may

be defined as

AW
-1

= 2TrW (2-1)

where AW/W is the fraction of strain energy lost per

stress cycle. The relationship between Q and a

(derived in Appendix A) is given by:

Trf
Q - (2-21

av

where f is the frequency and v is velocity. The

usefulness of the quantity Q is that it is related only



to the rate at which mechanical energy is converted

into heat and is not dependent on any specific

attenuation mechanism. Thus, for noncoupled mechanisms,

the total Q-1 may be found by the sum of each individual

contribution.

2.1a Free Vibration Method

In this technique the attenuation is found by the

amplitude decay of successive cycles of free vibrations.

In general, we may define the logarithmic decrement as:

6 = ln(A/A 2 ) = In(A /A o )  (2-3)

(tl-t 2) f

where Al and A2 are the amplitudes at times tl and t2

and f is the natural free vibration frequency of the

system. The alternative definition is in terms of the

amplitude A, one wavelength from a starting amplitude,

Ao . For small attenuation:

-1
Q (2-4)

where 6 is given in equation 2-3. This is approximately

true provided that Q>10 (McSkimin, 1964).

This method has been implemented in several ways.

The first is a torsion pendulum (Peselnick and Outerbridge,



1961) in which a rod of rock is clamped at the top and

attached to a mass with a large moment of inertia at

the bottom. If the mass is given a "kick" and the system

is allowed to vibrate freely, the frequency is a function

of the rock properties and the moment of inertia of the

mass. The rate of decay of the amplitude of these

oscillations is due to losses in the rock if other

losses can be made small. One important application of

this method is the study of elastic constraints and

attenuation of metals and composite materials at high

temperatures and very low frequencies on the order of

1 Hz (K&, 1947; Kingery, 1959; Jackson, 1969). However,

it is difficult to fabricate long cylindrical rock

samples with uniform cross section needed for this type

of experiment. Furthermore, the initial applied stress

must be low so that: the sample does not fracture, Q

and the elastic moduli are independent of amplitude

and stress inhomogeneities in the sample are minimized.

Vibration may also be excited by piezoelectric,

electromagnetic and electrostatic effects. These

methods become necessary for short samples which have

resonant frequencies in the KHz range. In each case,

for rocks, one must apply a conductive coating or a

transducer and thus corrections to the resonant frequency



must be made. While the effect of these corrections

is minimal for attenuation measurements, they are

crucial for the determination of elastic parameters.

As with all resonant techniques the specific loss

parameter determined depends on the type of vibration

excited (White, 1965).

2.1b Forced Vibration Method

One of the more common methods for measuring

attenuation is the forced longitudinal, flexural or

torsional vibration of long bars. This is based on

the phenomenon of standing waves. Under this condition

for longitudinal and torsional waves the velocity of

the wave is given by

V = Af = 2kf n = 1,2,3,... (2-5)
n

where f is the resonant frequency of mode n and k is

the length of the sample. The expression for flexural

waves is more complicated because the nodes do not

occur at the quarter points.

Reasonably exact solutions of the three-dimensional

wave equation exist for cylindrical and rectangular

geometries, therefore these shaped bars are most

suited for resonance experiments. Based on these

solutions, Spinner and Tefft (1961) derived



relationships between the Young's modulus E, the

shear modulus, p, and the resonant frequency, f. For

longitudinal vibrations in a cylindrical rod:

p 2Zfp 2n2 (2-61E = t 1K nn

where Kn is the correction factor for the nth mode, p

the density and Z is the length. In the case d/X <1

Kn as defined by Rayleigh (1945) is

K1 2n d /2 £ }2 (2-7)
n2

where d is the diameter and a is the Poisson's ratio.

A numerical solution of the same problem may be obtained

for shorter rods. Note that except for very long and

thin rods where Kn 1, independent information on the

Poisson's ratio must be obtained.

For torsional resonance, the shear modulus is

given by:

p = p{2kfn/n}2R (2-81

where R depends on the geometry and is equal to 1 for

cylinders.
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Equations for longitudinal vibrations in bars with

rectangular cross sections have not been determined. The

relationships for flexural vibration are more complicated

and will not be presented here but may be found in

Spinner and Tefft (1961) or Schreiber et al. (1973).

For a continuously driven system, Q may be found

from the width of the resonance amplitude peak (Appendix A).

Defining Af to be the frequency range between those values

for which amplitude is 3 db down from resonance, then:

f
Q n (2-9)

Af

If the system can be driven easily, this method may be

used for low Q materials with an accuracy of about 5-10%

(Bozorth et al., 1951).

Again, the sample may be driven by electrostatic,

electromagnetic or piezoelectric methods. Because of its

weakness, electrostatic drives are more suited for high Q

materials. Electromagnetic drives are useful if the

sample is electrically conducting. Operation over a wide

range of frequency is obtainable. Piezoelectric excitation

(Quimby, 1925) is particularly simple to set up and will

be used in this thesis. Very simply, piezoelectric

transducers are cemented to the specimen and the

combination is made to resonate. Corrections must be
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made for the impedance and mechanical Q of the transducer

(Chapter 4) but highly efficient, low loss ceramic

transducers are available making this method'attractive

for both low and relatively high Q samples.

While the resonance methods are easily implemented

and the Q values determined over a wide frequency range,

the physical conditions in which these types of

experiments may be performed without concern for

extraneous losses are limited. In particular, it is

necessary to consider radiation losses into the

surrounding medium.

In torsional vibration dnly shear waves are leaked

to the surrounding medium (e.g. air, gas). Since coupling

is poor, this results in little energy loss. For

longitudinally waves, however, damping along the

cylindrical surface and radiation from the ends can be

substantial. Browne and Pattison (1957) analyzed this

problem in great detail and found the contribution to

the logarithmic decrement due to radiation from the

sample sides to be:

S= £ind/Z}2 (2-101

where d is the diameter, R is the length, a is the Poisson's

ratio, p is the density of the sample and p' is the



density of the surrounding medium. Treating the ends of

the sample to be piston radiators, they found that the

portion of the decrement due to this loss to be:

_2p'cl - J 1 (2kr)} (2-11)6 2 fp kr

where c is the sound velocity in the medium, f is the

frequency, k is the wavenumber and r is the radius of

the sample. These types of corrections are negligible

for low Q materials in ambient air conditions. For high

Q materials such as metals it would be advised to perform

resonance experiments under vacuum. However, even for

rocks, losses when the sample is subjected to pressure

can be high compared to the intrinsic attenuation. For

these types of experiments to be performed successfully

it is imperative from equations 2-10 and 2-11 that the

density and sound speed of the pressure medium be as low as

possible. For this reason, hydrogen or helium is commonly used.

A further consideration is the effect of a jacket on

the sample which will alter the resonant frequency and the

apparent attenuation. These changes can be calculated

using Rayleigh's principle (Gardner et al., 1964) and

are generally small. For some porous rocks, though, the

jacket will penetrate the sample and thus the results

obtained represent an average of the sample and jacket
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(Gardner et al., 1964).

2.1c Wave Propagation

The use of wave propagation experiments in the

lower ultrasonic frequency range to determine attenuation

in the laboratory is of particular interest since the

loss parameters involved closely parallel those observed

in the field. However, these types of techniques are

fraught with experimental and interpretational

difficulties. These methods assume that the amplitude

of the seismic wave (generally considered to be a plane

wave) decays exponentially with distance or time or

that losses other than the intrinsic attenuation can be

corrected for. This can be a formidable task. The

extraneous losses include beam spreading, coupling losses,

diffraction losses and wedging effects. It is not the

purpose of this section to detail the causes and remedies

of these difficulties but a brief description of each

will be given.

At low frequencies (<1 MHz) the effect of beam

spreading can become significant. While direct

corrections can be made, their validity is based on the

assumption of plane or spherical waves. The extent of

the plane wave region, dependent on the size of the

transducer and wavelength of the seismic wave, must be

determined. It is easier, in most cases, to design the
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experiment so that spreading losses are minimal compared

to the intrinsic attenuation.

At low frequencies, relative to the transducer

diameter, diffraction losses may become important.

Because of beam spreading, sidewall reflections and

mode conversions may occur, interfering with the

directly propagating wave. This interference can be

readily observed in the pulse-echo technique as a

non-exponential decay in amplitude. While it is

possible in many cases to design the experiment so

that the sample diameter to transducer diameter ratio

is large, this is not always possible and diffraction

may cause problems even with pulse transmission techniques.

Turell et al. (1969) have treated diffraction

theoretically but generally this problem must be tackled

empirically.

Energy loss can occur due to the transducer itself,

transducer coupling to the sample (bond) and the

electrical measurement system. The transducer properties

are known and one can choose a material with a much higher

mechanical Q than the sample. However the other losses

are impossible to calculate theoretically and must be

determined empirically (Truell et al., 1969) or

eliminated by the experimental method.



Finally, if the ends of the sample are not exactly

parallel, non-exponential losses due to phase variations

over the surface of the transducer may result. That is,

a plane wave is not reflected or transmitted in phase by

a non-parallel or "wedged" boundary. Again, this effect

is a most important consideration for the pulse echo

technique but unlike diffraction, is more pronounced at

higher frequencies. Similar errors can occur if the

transducer bond thickness is nonuniform or if, in the

case of single crystals, elastic constants vary slightly

within the ultrasonic beam. This problem has been

analyzed by Truell and Oates (1963) and it is shown that

in order to reduce the non-parallelism effects, the

allowed deviation is inversely dependent on the Q of the

material and the frequency.

All of the above corrections must be considered in

terms of the problem to be solved. For low Q samples

such as rocks, measured at low ultrasonic frequencies,

nonparallelism is unimportant while diffraction may

alter the result one wants to obtain. Furthermore, in

designing an experiment to eliminate one of the effects,

another might be enhanced. For example, it would be

desirable to have the sample diameter several times

larger than the transducer diameter to reduce sidewall

reflections but at the lower frequencies, large diameter



transducers result in less beam spreading. Clearly

compromises must be reached for each experiment.

In general, wave propagation experiments can be

classified by pulse-echo or through-transmission methods.

Also the type of excitation may either be a pulse, which

provides an attenuation value averaged over a relatively

broad frequency band, or.a tone burst which is strictly

band limited.

In the pulse-echo technique, the attenuation is

found by observing the amplitude decay of multiple

reflections from a free surface. Of course, exponential

decay must be assumed. If the-electronic measuring

system is linear and the amplitudes can be directly

determined then the attenuation coefficient can be

calculated by:

=(x x 1) In{A(x 1 )/A(x 2 ) } (2-12)

where x 2 -xl would be twice the sample length and

A(xl) is the amplitude at one echo while A(x 2 ) is the

amplitude at the next echo.

Most times, however, the attenuation coefficient

is found by a calibrated exponential decay curve

superimposed on the echo images on an oscilloscope.

The curve is generated by allowing a capacitor



discharge through a known resistor so that the R-C time

constant can be evaluated. Measurements obtained in this

way are in terms of inverse time. The essential

advantage of this method over using the absolute amplitudes

is that non-exponential behavior, if present, is easily

seen. However, the technique does not work well for

high attenuation. In this case, the pulse comparator

method must be employed where a pulse of the same

frequency as that applied to the transducer is sent

through the same electronics. If this comparator

pulse can be accurately attenuated then the relative

amplitude loss between two echos can be determined.

The pulse echo techniques are generally used for

high Q samples and are popular for determining the Q

of single crystals. An important consideration of this

method, however, is that the reflection at the free

boundary is loss free. This assumption limits the

method's usefulness in high pressure studies where

energy will be lost into the pressure medium. The

technique has, though, been used successfully on some

fine-grained limestones at atmospheric pressure (Peselnick

and Zietz, 1959). In this study, beam spreading,

diffraction losses and incomplete reflection at the free

surface were deduced to be negligible compared to the

intrinsic attenuation.



The method for measuring attenuation that is most

suited for use with jacketed samples in pressure vessels

is through-transmission. And, in the use of spectral

ratios, many of the problems that plague the pulse echo

method can be, at least conceptually and mathematically,

eliminated.

Transmission experiments can be categorized in

terms of the transmitter and receiver transducer

locations and sample size. In most cases the transducers

are located at opposite ends of the sample. If the sample

diameter is larger than the length, sidewall reflections

are minimized. Alternatively, the guided wave method may

be used using a cyclindrical rod as a wave guide (McSkimin,

1956). The primary distinction is in the types of

corrections that must be made. A further arrangement

involves large blocks of material on which the transmitter

and receiver are moved to measure the amplitude loss as

a function of distance (Watson and Wuenschel, 1973). In

this case, if the transducer diameters are small and the

distances large with respect to the wavelength, simple

inverse length beam spreading may be assumed.

The data for the first two arrangements may be

analyzed in terms of echoes as before. While neither

arrangement provides greater accuracy, the guided wave
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method requires extensive sample preparation and

calculations to determine the effect of mode conversions

at the sidewall. These calculations not only depend on

the sample's elastic properties but also on the

attenuation. Short sample lengths compared to the

diameter minimize mode conversions but the diffraction

fields must be accounted for.

For large samples the attenuation may be found with

some uncertainty from the amplitude decay of a particular

peak in the wave train as a function of transmitter

receiver separation. Of course it is assumed in this case

that the coupling between the transducer and sample is

the same in each case and that spreading has been

accurately accounted for.

Attenuation may also be found from pulse type

waveforms using a predictive waveform. If the input

pulse is known or the waveforms at greater distances

are normalized to a starting point, then the match of

a synthetic waveform for a variable Q material with

the actual waveform will yield an attenuation value

(Watson and Wuenschell, 1973).

Spectral ratios is by far the most common technique

used in seismology and allows for the elimination of

many of the problems associated with wave propagation

methods. This technique relies on the fact that high



frequencies are preferentially attenuated relative to

low frequencies. In general, the spectral amplitude of

the propagating wave may be expressed as (Ward and Toks6z,

1971):

A(f,x) = GA (f)exp(-t*f) (2-13)

where G includes geometrical spreading, and transmission

or reflection coefficients, Ar is the receiver response

and

t* = ath dx (2-14)
path QV

for frequency independent Q. This expression is also

valid for slowly varying Q in the frequency band of

interest. For spectral amplitudes obtained at two

points for a common source then:

Al (f) G A (f)
In = (t* - t*)f + ln + In (2-15)

A2 (f) G2 Ar (f)

If the receiver responses are known or are equal,

equation 2-15 may be reduced so that the slope of a

straight line fitted to the log of the spectral ratios

versus frequency will yield the differential

attenuation, t2 *-tl*, between the two receivers.



A modification of this technique has been

successfully applied to laboratory samples (Toksiz et al.,

1978). Used in this thesis, this method allows the

determination of attenuation in a rock sample relative

to a high Q standard. This turns out to be a convenient

method to measure Q over a variety of physical conditions.

It is, however, for relatively narrow bandwidth signals

as obtained in the lab, limited to samples with Q < 100.

This is due to the difficulty in obtaining a good

correlation coefficient for a linear regression analysis

of data with a low slope (high Q). A more complete

discussion of this method is deferred until the next

chapter where details of data reduction and analysis

are presented.

2.1d Observation of Stress-strain Curves

Energy loss may be measured graphically from

stress-strain curves in loading-unloading cycles at very

low frequency. Attenuation occurs during both hydrostatic

and deviatoric loading (Walsh et al., 1970) and is

reflected in nonrecoverable volume change. Specifically,

the area between the loading and unloading paths on a

stress-strain curve is the energy lost, AW, in that cycle.

The relative attenuation may be found by dividing AW by

the maximum work done during loading, W, i.e., the area

under the loading path.



A direct comparison of results obtained by this method

with those obtained by ultrasonics or resonant bars is

difficult primarily because strain amplitudes involved are

much higher than would be found in seismic or ultrasonic

waves. Perhaps the method's greatest applicability is in the

study of the properties of attenuation near an earthquake or

underground explosion source. However, recent advances in

servo feedback controls and strain gage technology may make

this technique attractive for future experimental work at

low strain amplitudes.

2.2 Previous Experimental Work

A variety of individual attenuation measurements have

been obtained for many rock types over wide ranges of

physical conditions and frequencies, and by many techniques.

Unfortunately seldom are the variations in attenuation with

respect to changes in physical state systematically

examined. At best, one may deduce several qualitative

generalizations concerning attenuation and its behavior

with varying rock 'type, porosity, frequency, pressure,

strain amplitude and temperature. In this section individual

determinations of attenuation will be briefly summarized,

followed by a more extensive review of data that is

pertinent to this thesis.



2.2a Individual Measurements of Attenuation

A representative sample of individual attenuation

measurements is listed in Table 2.1 along with other

pertinent parameters. Another summary taken from the

compilation of Bradley and Fort (1966) is shown graphically

in Figure 2-1, where Q is a function of rock type and

porosity is plotted. The values taken are generally at

surface pressure although they cover a wide frequency range.

Figure 2-1 shows the wide variability of attenuation in

rocks and a general trend of Q inversely proportional to

porosity. As noted by many investigators (Wyllie, et al.,

1962; Knopoff, 1964, Bradley and Fort, 1966; and others),

the accumulation of individual attenuation measurements

has led to a series of generalities that may be applied

to the nature of Q in crustal rocks. These are summarized

below, with references to later sections of this paper

where certain effects are discussed in more detail.

1. Frequency Dependence. Laboratory experiments

show that Q may be independent of frequency (a proportional

to f) over a broad frequency range (10-2-107Hz) especially

for some dry rocks (Birch and Bancroft, 1938; Born, 1941;

McDonal et al., 1958; Peselnick and Outerbridge, 1961;

Attwell and Ramana, 1966; Pandit and Savage, 1973; and

others). Q-1 in liquids, however, is proportional to

frequency (Pinkerton, 1947) so that in some highly porous
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and permeable rocks the total Q-1 may contain a frequency

dependent component (Born, 1941; Wyllie et al., 1962).

This component may be negligible at seismic frequencies

even in unconsolidated marine sediments (Hamilton, 1972a).

2. Strain Amplitude. Attenuation appears to be

independent of strain amplitude for low strains such as

those associated with seismic waves (Mason, 1958; Gordon

and Davis, 1968). Both the measurements carried out for

this thesis and the studies of Winkler et al. (1977) suggest

that attenuation may rapidly increase above some strain

amplitude threshold. This will be discussed in detail in

Chapter 6.

3. Fluid Saturation. Attenuation for fluid

saturated rocks is higher than for dry rocks and depends

on the degree of saturation, fluid type, and frequency in

a complicated way. For rocks fully saturated with a low

viscosity fluid (water, oil) it is generally found that at

ultrasonic frequencies Qp > Qs. This topic will be further

discussed in the next section.

4. Pressure and Stress Dependence. Observations show

that attenuation decreases with increasing confining

pressure. This is usually considered to be due to the

closing of cracks in the rock matrix. Data supporting

this and theoretical models of the pressure effects will

be discussed in later sections of this paper. For applied



non-hyrostatic stress, the attenuation appears to be

anisotropic (Merkulova, et al., 1972; Walsh et al., 1970).

For shear waves polarized normal to the axis of maximum

compression, attenuation is lowest due to the closure of

cracks with faces normal to the axis (Lockner et al.,

1977). At high differential stresses, the onset of

dilatancy increases the attenuation (Lockner et al.,

1977).

5. Temperature Dependence. The small amount of data

on this topic (Volarovich and Gurevich, 1957; Gordon and

Davis, 1968) indicate that Q is generally independent of

temperature at temperatures low relative to the melting

point. An increase of attenuation in quartzite with

temperatures above 1500C noted by Gordon and Davis (1968)

may be due to thermal cracking of the rock. Near the

boiling temperatures of pore fluids, attenuation may be

affected strongly by temperature.

2.2b Correlation of Q With Simple Rock Properties

In addition to the generalizations listed above,

several investigators have attempted, with limited success,

to correlate attenuation with simple rock properties such

as the porosity, permeability, grain size, or shear

modulus. This at first seems to be an attractive approach

since, if successful it would provide an important

diagnostic for determining rock lithology and reservoir



characteristics directly from seismic data. However, as

will be seen later, the attenuation in rock depends not

so much on the bulk properties but rather on micro-

properties such as crack density, distribution and

structure, and pore fluid-grain interaction.

The dependence of attenuation on porosity has been

alluded to in Figure 2-1. Experiments by Toksbz et al.

(1978) show for a very limited sample of sandstones that

Q is inversely proportional to porosity. This effect

probably reflects the fact that higher crack densities

and permeability generally accompany high porosity.

Attenuation measurements on fine-grained low porosity

limestones (Peselnick and Zietz, 1959) indicate that

higher porosity may be associated with higher

attenuation but the authors prefer a correlation with

grain size. In this case, attenuation is higher for

samples with smaller grain sizes supporting the

conclusion that the major contribution to attenuation is

at the grain boundaries.

Any correlation with porosity is apparently not valid

between different rock types. Q values of the Spergen

limestone with a 14.8% porosity obtained by Toks6z et al.

(1978) are nearly twice those obtained for a Navajo

sandstone with a porosity of 12.5%. It is clear from the

above discussion that porosity, by itself, is not a good



diagnostic. High porosity does not insure high attenuation.

Attenuation may be correlated with velocities (i.e.,

elastic moduli). This may be due, in part, to the

possibility that conditions that determine elastic

properties also effect anelastic properties. In particular,

since in most cases in the earth, attenuation is associated

with shear, rather than bulk, loss, it is not surprising

that Q can be correlated with the shear modulus, p

(Hamilton, 1972b). As would be expected, the strongest

correlation is between Qs and p. While, in the broadest

sense, Qs increases with increasing it (Hamilton, 1972),

there is much scatter to the data and again, large

differences exist among differing rock types.

2.2c Attenuation as a Function of Saturation Conditions

Although of great interest to the exploration

community, relatively little experimental work has been

done on the nature of attenuation as a function of

saturation conditions. Even the published data must be

examined critically due to the inherent difficulties

involved in partial saturation work. Unfortunately, little

or no detailed description is given in the experimental

literature about the techniques of fluid saturation. An

important, yet experimentally difficult, aspect is

maintaining a homogeneous distribution of the saturant

in the bulk of the rock. One must-also address the



question as to what constitutes a "dry" rock. In most

cases, samples are oven-dried prior to fluid injection.

Heating the sample will cause some alterations of the

matrix structure. In any event, it is nearly impossible

to remove the fluid completely; at least a mono-

molecular layer of fluid will probably remain in the

thinnest cracks.

In this and the next section the data are generally

presented in terms of the relative change in a or Q-.

In many cases, the absolute determinations of attenuation

are unreliable, yielding unreasonable values.

The degree of saturation and the type of saturant,

characterized primarily by viscosity, appear to play an

important role in attenuation. Studies of the effect of

partial saturation by various fluids have been reported

in Born (1941), Obert et al. (1946), Collins and Lee

(1956), Wyllie et al., (1962), and Gardner et al. (1964).

A summary of these results is shown in Figures 2-2 to

2-5, where Q or the fractional change in Q is plotted

as a function of percent saturation. As pointed out in

the preceding section, the overall Q of the rock may be

considered to contain a frequency independent component

plus a frequency dependent component due to the fluid

inclusions, Thus the effect of partial saturation may
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be frequency dependent (Born, 1941). However, since the

curves shown here were taken over a wide range of

frequencies but exhibit similar behavior, fluid losses

may not dominate frequency independent losses in most

rocks at surface pressures.

Most of the rocks shown in Figures 2-2 to 2-5 are

saturated with water, chemically active with

intergranular material. The exception is the alundum

(A1203 ) saturated with soltrol, a relatively inert

petroleum naptha, shown in Figure 2-3. The behavior of

attenuation as a function of water saturation is similar

for all rocks. Q is sharply reduced at low saturations

presumably due to the wetting effect of water entering the

fine cracks, possibly reacting with intergranular material

and softening the rock. Also note that the effect of

pressure is to reduce the effect of saturation for both P

and S waves as shown in Figures 2-4 and 2-5 since the

finer cracks are closed. In the case of soltrol saturation

(Figure 2-3) the change in Q observed for water saturation

is not seen. This implies that the effect observed for

water saturation is primarily due to either chemical

alteration of the intergranular material or a wetting

phenomenon. Since it is unlikely that water reacts

strongly with alundum, we favor the explanation that

different wetting properties cause the different
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saturation effects observed. In real rocks, of course,

a combination of the two mechanisms is likely.

Of particular interest are the relative contributions

of shear, Q and bulk, QK' loss as functions of saturation.

The decomposition of the QE and QS measurements of Gardner

et al. C1964) into these components is shown in Figure 2-6

for a differential pressure of 500 psi (35 bars). The

results are similar for other pressures. It is evident

that for dry rocks, shear losses dominate bulk losses

(QP < QK) while for partial saturation, a reversal occurs

and QK < Q For full saturation it appears from the data

of Toks8z et al. (1978) for a similar Berea sandstone,

Q < Qk as in the dry rock. If high bulk attenuation

really exists, this may require a mechanism in the

partially saturated case that is not operative in dry or

completely saturated rocks. Furthermore, this mechanism

must result primarily in bulk rather than shear loss.

The effect of fluid type, i.e. viscosity, has been

discussed in detail by Wyllie et al. (1962) and Nur and

Simmons (1969a). The dependence of attenuation on fluid

viscosity is complicated and not at all obvious from

results presented by Wyllie et al. (1962). Taking these

data at face value, it would appear that very large

viscosity fluids (e.g. glycerol) result in small fluid

contributions to attenuation. This makes sense for some



attenuation mechanisms such as fluid flow in that higher

viscosity fluids are equivalent to a decrease in the

effective permeability. However, Nur and Simmons (1969a)

have shown that the viscosity effect is frequency

dependent, consistent with a relaxation type mechanism.

In their experiment, a Barre granite (porosity = 0.6%)

was saturated with glycerol which has a viscosity

extremely dependent on temperature. Thus by varying

the temperature of the saturated sample, the effect of

viscosity on velocities and relative attenuation of P and

S waves is measured. The attenuation of S waves as a

function of pore fluid viscosity is shown in Figure 2-7.

The relaxation peak occurs at a viscosity where the

characteristic time is equal to the wave period. An

experiment reported by Gordon (1974) shows similar results.

2.2d Attenuation as a Function of Pressure

The pressure dependence of attenuation has been

generally neglected by most investigators yet the behavior

of Q with pressure can yield as much information about

mechanisms as the frequency dependence. When a rock is

subjected to hydrostatic pressure such as overburden

pressure, its elastic and anelastic properties will change.

The behavior of elastic properties may be found in Toksiz

et al. (1976). The most important factor causing changes

in the velocity is the change of porosity with pressure;



in'particular, the closing of thin cracks. This also

holds true for changes in attenuation as will be discussed

in the next section. In all cases, attenuation decreases

(Q increases) with increasing pressure. Experimental

data verifying this are found in Gardner et al. (1964),

Klima et al., (1964), Levykin (1965), Gordon and Davis

(1968), Al-Sinawi (1968), Walsh et al., (1970) and

Toksiz et al. (1978). For these data the pressure given

is the differential or effective pressure, Pd = Pc - Pf,

where Pc is the confining pressure and Pf is the fluid or pore

pressure. This relationship generally holds for velocity as

demonstrated by laboratory tests (Wyllie et al., 1958;

Nur and Simmons, 1969b).

The attenuation of P waves in diabase and greywacke

were measured by Klima et al. (1964) up to a pressure of

4 kilobars (kb) by a pulse transmission method with a

prevailing frequency of 0.9 MHz. Although not stated

explicitly, the samples are assumed to be air dry. The

results of this experiment are shown in Figure 2-8 which

plots the change in the attenuation coefficient, a, as a

function of pressure. In all cases a clear decrease in a

is observed up to about 1 kb. The relative changes in

attenuation are greater than those of the velocity

measured in the same type rocks under the same conditions

(Pros et al., 1962).



Levykin (1965) investigated the attenuation of both P

and S waves in several igneous and metamorphic rock types

up to pressures of about 4 kb. A pulse echo technique at

a frequency of 1 MHz was used. Samples were air dry.

The results of these experiments for several gneiss

samples are shown in Figure 2-9. Again, the attenuation

decreases rapidly with increasing pressure, leveling off

after about 1 kb. Levykin attributes the different extent

to which attenuation is changed under pressure to be due to

differences in the weathering of the rocks.

Gordon and Davis (1968) studied the effect of pressure

(up to 4 kb) on a fluid saturated granite using slow stress

cycles (f = 10 MHz). Their data are reproduced in

Figure 2-10. The same features as seen in the previous

works are evident here.

So far only data for low porosity rocks, either dry

or completely saturated have been considered. However, the

pressure effect for a partially saturated Berea sandstone

has been studied by Gardner et al. (1964). Both extensional

and torsional Q values were determined using resonance

techniques at frequencies up to 30 KHz. External

influences on the sample, such as losses into the pressure

medium were considered. These data are shown in Figures

2-4 and 2-5. The same general behavior is seen for the



data in Toksiz et al. (1978) for dry, methane, and

water-saturated Berea sandstone at ultrasonic frequencies

using the pulse transmission technique. The Q, however,

levels off at a lower pressure than for the igneous and

metamorphic rocks.

The variation of attenuation of P and S with pressure

was also studied for a variety of rock types by Al-Sinawi

(1968). A pulse transmission technique using 122 KHz

transducers was used and the pressures for which

measurements were taken were 0.5, 1, and 2 kb. All of the

rocks studied were sedimentary except a granite gneiss and

a volcanic tuff. Al-Sinawi found, as observed before, that

both ap and as decreased with pressure. In some rocks,

particularly limestones, the pressure effect is different,

however, this is not completely described.



Measured Body Wave Q For Several Rock Types

Rock

Quincy Granite

SDlenhofen Limestone

I-i Limestone

Hunton Limestone

Amherst Sandstone

Berea Sandstone
(brine saturated)

Navajo Sandstone

Pierre Shale

Q

125
166
112
188
165

65

52

10

21

32
10

Frequency, Hz

(.14-4 .5) x 103

(3-15) x 10 6

(5-10) x 106

(2.8-10.6) x 103

(.930-12.8) x 103

(.2-.8) x 10 6

50 - 120

50 - 450

Method

long resonance
tors. resonance
P wave pulses
S wave pulses
P wave pulses

long. resonance

long. resonance

P and S wave pulses

flexural vibrations

P waves in situ
S wave in situ

Reference

Birch and Bancroft
(1938)

Peselnick and Zietz
(1959)

Peselnick and Zietz
(1959)

Born (1941)

Born (1941)

Toksiz et al. (1978)

Bruckshaw and Mahanta
(1954)

McDonel et al. (1958)

Table 2.1
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FIGURE CAPTIONS

Figure 2-1. Q as a function of porosity. Data for

igneous and metamorphic rocks (triangles), limestones

(squares), and sandstones (circles) are taken from

Bradley and Fort (1966) and cover wide frequency

and saturation ranges.

Figure 2-2. Change in Q as a function of saturation.

Data from Obert et al. (1946) and Martin, reported

in Collins and Lee (1956).

Figure 2-3. Change in Q as a function of soltrol and

water saturation in alundum at about 10 kHz. Data

from Wyllie et al. (1962). Samples 7915-B and

7928-B for soltrol and water, respectively.

Figure 2-4. Q as a function of saturation and

differential pressure in Berea sandstone, extensional

mode. Data from Gardner et al. (1964).

Figure 2-5. Q as a function of saturation and

differential pressure in Berea sandstone, torsional

mode. Data from Gardner et al. C1964).

Figure 2-6. Shear attenuation (Q ) and bulk attenuation

(QK) as functions of saturation in Berea sandstone

at a differential pressure of 500 psi (35 bars).

Data are calculated from the Q values shown in

Figures 2-4 and 2-5.



Figure 2-7. Relative attenuation of S waves as a function

of pore fluid viscosity in Barre granite. Data from

Nur and Simmons (1969a).

Figure 2-8. Change in the attenuation coefficient as a

function of pressure for several rocks. Data from

Klima et al. (1964).

Figure 2-9. Change in the attenuation coefficients of P

and S waves as functions of pressure for several

gneisses. Data from Levykin (1965).

Figure 2-10. Q-1 as a function of differential pressure

in a granite. Data from Gordon and Davis (1968).
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CHAPTER 3

ATTENUATION MECHANISMS

The phenomenon of attenuation is complex. While

elastic wave propagation is generally well understood,

anelasticity is not. As observed from attenuation

data, its variations with changes in physical state

are complicated and probably not amenable to a single

model or mechanism. However, in order to reasonably

evaluate and interpret laboratory and field measurements,

precise definitions of the possible attenuation

mechanisms involved are needed.

The investigation of the behavior of Q in the earth

has classically been approached along two lines. The

first method is to explain the nature of attenuation in

terms of a generalized equation of linear elasticity

(Hooke's Law) or by modified equations allowing certain

nonlinearities. These phenomonological models have

been well studied but yield little information on the

microscopic properties of the rock. The second approach,

favored in this thesis, is the physical and mathematical

description of possible attenuation mechanisms.

Numerous mechanisms have been proposed and each may be

considered to have a greater degree of importance to the

overall attenuation under certain physical conditions.



These mechanisms cover: matrix anelasticity including

frictional dissipation due to relative motions at the

grain boundaries and across crack surfaces (Walsh,

1966); attenuation due to fluid flow including

relaxation due to shear motions at pore-fluid

boundaries (Walsh, 1968 and 1969; Solomon, 1973),

dissipation in a fully saturated rock due to relative

motion of the frame with respect to fluid inclusions

(Biot, 1956a,b; Stoll and Bryan, 1970), and "squirting"

phenomena (Mavko and Nur, 1975; O'Connell and Budiansky,

1977); partial saturation effects such as gas pocket

squeezing (White, 1975); energy absorbed in systems

undergoing phase changes (Spetzler and Anderson, 1968);

and a large category of geometrical effects including

scattering off small pores and large irregularities and

selective reflection from thin beds (O'Doherty and

Anstey, 1971; Spencer et al., 1977). Several of the

important mechanisms are schematically illustrated in

Figure 3-1. The mechanistic approach is satisfying in

that the physics of attenuation may be better understood,

However, as will be seen, mathematical models based on

these mechanisms suffer, many times, from excessive free

parameters. Thus they have little predictive ability.

This chapter begins by briefly introducing

several common phenomenological models, serving
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to introduce important concepts such as relaxation.

Then, hypothesized attenuation mechanisms along with

their pressure and frequency dependences will be presented.

Assuming that these mechanisms are uncoupled,

each may be considered seperately and the total

attenuation (1/Q) may be obtained from the sum. In all

these cases, the theoretical formulations presented are

not very rigorous. They are guided primarily by

experimental observations and as a whole, should be

treated as empirical relationships.

Finally, all of the attenuation mechanisms considered

in this chapter require the knowledge of the elastic

moduli. The method used in this thesis to calculate

effective elastic properties and pore-crack aspect ratio

distribution is that of Kuster and Toks8z (1974) and

Toksiz et al. (1976). This is briefly discussed in

Appendix B. Furthermore, this method allows the use of

complex moduli, thus facilitating the introduction of

attenuation into the calculations.

3.1 Phenomenological Models of Attenuation

Numerous attempts have been made to model attenuation

based on small deviations from perfect elasticity. These

models fall into two categories - linear and nonlinear.

Much effort is spent to find under what conditions these

models provide a constant Q loss. It is generally
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assumed that attenuation is independent of strain

magnitude and thus all of the processes are linear in

amplitude. As shown by the data in this thesis, that

assumption may not always be true.

3.1a Linear Models

One of the most common methods of investigating

attenuation is the modification of Hooke's Law so that

stress is directly proportional not only to strain but

also to strain rate. Investigated by Meyer (1874),

Kelvin (1878), and Voigt (1892), this type of medium

is known as a Voigt or viscoelastic solid. For one

dimension, the model is equivalent to a spring and

dashpot in parallel. In general:

a = ME + M'de (3-1)
dt

where a is the stress, M is the elastic modulus, M'

the anelastic modulus, E is strain and dc/dt the strain

rate. The advantage of this model is that it yields a

linear wave equation. The Voigt solid, however, does

not provide a constant Q. For low frequencies, Q-1 is

proportional to f and for high frequencies, f-1/2

Since this behavior corresponds to that observed for

sound attenuation in liquids, it has been proposed as

a likely model in that case where M' = n (viscosity).



Another model in which viscosity is commonly used

as the anelastic modulus is the Maxwell solid where:

do de a (3-2)
dt dt n

This is equivalent to series combination of a spring

and dashpot.

More generally, the linear solid using the

superposition principle employing relaxation functions

(Boltzmann, 1876). If stress is applied to a solid,

strain will be delayed. Or, if a component of strain

is suddenly applied, the associated stress component

will suddenly increase and then "relax". If the time

behavior of strain relaxation is described by the

function f(t) then the stress strain relationship for

the solid is given by:

a(t) = ME (T) f (t-T)dT (3-3)

The relaxation function is also known as the "memory"

function and the departure from Hooke's Law is simply

the convolution of strain with the relaxation function.

Many investigators have reviewed models such as

those described above and have attempted to determine

under what conditions a constant Q loss may be
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approximated - either with complicated combinations of

masses, springs, and dashpots or with special relaxation

functions. For each model one may obtain a transfer

function, M(w) (Knopoff, 1964):

M( ) = M(t)eitdt (3-4)

In the case of relaxation models, M(t) = f(t). If C(w)

and S(M) are the real and imaginary parts of MC)

respectively and assuming that attenuation is associated

only with complex moduli and not density, then the

complex velocity may be written as:

v = {C + iS 1/2 (3-5)
P

with 1/Q written as:

1 = 2 (C2 + S2 )1/ 2  C 1/2 (3-6)
Q (C 2 + s2 1/2

(Knopoff, 1964). For small losses, Q>>1 and C>>S,

equation 3-6 can be approximated by:

1/Q = S/C (3-7)

Thus, one would want to find a loss function, M(t), so

that its associated transform pair, S(o) and C(w), provide



a constant Q. An infinite set of such functions exist.

Lomnitz (1957) has suggested a relaxation function

of the form In(l + 0 t) and claims that this does give

constant Q and velocity. The characteristic frequency,

Wo, is introduced to avoid a singularity at t = 0 and

may be found from causality.

Futterman (1962) examined further possible transform

pairs for which causality is obeyed. In particular, he

found that Q is independent of frequency above a certain

characteristic cut-off freqeuncy. In principle, this

absorption cut-off frequency can be arbitrarily small.

Velocity is dispersed and group and phase velocities

can be determined from the Q of the solid.

3.1b Nonlinear Models

Several investigators have proposed nonlinear

models of attenuation. In each case, certain aspects

of linear theory are assumed, such as superposition

for low stress and strains. One approach in finding

a constant Q nonlinear model has been to consider a

solid with a non-Hookian stress-strain relation (Loeb,

1961). In this case, a material undergoing stress-

strain cycling will exhibit nonelliptical hysteresis.

The relationship between stress and strain given by

Loeb is:

a = Mesin(.t + 4K'/fK) (3-8)



71

where M is the elastic modulus with K and K' the linear

and nonlinear amplitudes respectively.

Coulomb friction has also been proposed as a

nonlinear mechansim (Fortsch, 1956). This provides the

proper frequency dependence. Walsh (1966) examined

this problem in great detail for rocks and his results

are presented and discussed in the next section.

Finally, Knopoff and MacDonald (1960) have suggested

a lumped parameter model in which a linear system is

damped by frictional forces. This mechanism is linear

in amplitude but nonlinear in directionality. The

equation of motion given by the authors is:

2 2 I2u u
p 2 2 sgn-- (3-9)a t xt at

where u is displacement and f is a constant. This type

of a damping term, dependent on both the sign of the

displacement and the velocity, provides for a frequency

independent Q.

3.2 Attenuation Due to Matrix Anelasticity

Here the study of the mechanistic approach to

attenuation is begun. In this section, losses in the rock

matrix are emphasized. Later sections discuss the role

of fluids and partial saturation on the attenuation.

Attenuation of seismic waves in a rock matrix can



be attributed to two factors: (1) intrinsic anelasticity

of matrix minerals and (2) frictional dissipation due to

relative motions at the grain boundaries and across

crack surfaces. The intrinsic attenuation of minerals

is generally small. In individual crystals Q values are

generally higher than a few thousand, while in the whole

rock Q values are normally lower than a few hundred.

Thus, in considering matrix attenuation, it is reasonable

to neglect the intrinsic attenuation in minerals and to

consider only the attenuation across grain surfaces and

thin cracks.

. The importance of frictional dissipation is supported

by the observation that Q is generally independent of

frequency as predicted by this mechanism. However,

friction across crack surfaces cannot account for all the

anelasticity of the matrix. As pointed out by Walsh

(1966), rocks subjected to confining pressures high enough

to close all cracks still exhibit non-zero attenuation.

Thus, it is necessary to consider in addition to

dissipation across crack surfaces, an "intrinsic"

anelasticity of the mineral aggregate.

The exact mechanism of grain boundary and crack

dissipation is not known but frictional loss due to relative

motions of the two sides may be the major factor (Walsh,

1966). If this is the case, then the attenuation should



depend very strongly on the surface conditions that

effect friction between grains. Among these are whether

rocks are saturated or dry, the properties of saturating

fluids, and the amount of clay or other soft components

in the matrix.

From laboratory experiments and the lunar experience

it is found that granular materials exhibit very high Q

values when totally dry and in a vacuum. In the absence

of atmosphere and water, the Coulomb forces across grains

are very strong and friction coefficients are high.

Hence, no sliding motion can take place across the surfaces.

This accounts for the very high Q values measured for

seismic waves in the moon (Q = 2000-5000: Dainty et al.,

1976; Nakamura et al., 1974; Latham et al., 1974; ToksSz

et al., 1974) and in the laboratory under hard vacuum

conditions (Pandit and Tozer, 1970; Warren et al., 1974;

Tittmann et al., 1972, 1975). In the laboratory, when

a little water vapor was introduced into the vacuum

chamber, Q values decreased significantly.

It is difficult to formulate attenuation due to

grain boundary and "frame anelasticity" effects since

this would require the detailed knowledge of the crack

and grain boundary properties. Walsh (1966) formulated

the problem by approximating cracks as ellipsoids in

plane strain. For a random orientation of cracks, the Q



values for compressional and shear waves were computed

using the friction coefficient, K, effective Poisson's

ratio, a*, matrix and effective rock moduli as parameters.

The resulting expression for P waves in an infinite

medium is too complicated to be presented conveniently

but has the following form:

Q 1 = E* (1 - *) 3 N
p E ( - 2o * z ) V0 F(K,a*) (3-10)

where E* and E are the effective and matrix moduli

respectively, and N is the number of cracks with half

length, £, in a volume, V . The function F(K,a*) is

implicitly dependent on the angle between the normal to

the crack plane and the direction of wave propagation.

Only cracks of certain orientations, determined by K and

y*, will contribute to the attenuation.

A closed form solution for the attenuation of S

waves is impossible to obtain, but again from the Walsh

formulation one may write the general form as:

-1 - 1 E* 0 N
Q1 E N F'(K) (3-11)s (1 + a*) E V

where F'(K) is a function of the friction coefficient.

Fewer orientations of cracks are available to contribute

to the attenuation of S waves compared to P waves in most



cases of interest.

For reasonable values of the friction coefficient

and Poisson's ratio, Qp /Qs may be found by numerically

evaluating equations 3-10 and 3-11 (Walsh, 1966). For

K between 0.0 and 0.5 with a* between 0.15 and 0.25,

Q /Qs is found to be between about 0.4 and 1.5. For

most dry rocks Q /Qs< 1, while for saturated rocks,

Q /Q > 1 (see Table 2.1).

Many data (Peselnick and Outerbridge, 1961;

Peselnick and Zeitz, 1959; Knopoff, 1964) can be explained

by the frictional dissipation mechanism. This mechanism

which yields a constant Q with frequency also explains

the "frame anelasticity" incorporated in Biot's (1956a,b)

formulations.

Although friction explains much of the observed

behavior of attenuation in rocks, the calculation of

absolute values requires the specification of too many

unknown parameters (friction coefficients, number and

lengths of cracks whose surfaces are in contact).

Furthermore, these parameters most likely change with

variations in the physical conditions experienced by the

rock. However, the Walsh formulation is useful in

determining the effect of pressure on the frictional

mechanism.

In order to formulate this dependence it is assumed:
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1. The cracks and grain boundaries that contribute

to friction can be characterized by very thin spheroids

with a small aspect ratio, a m , (= thickness/diameter).

From equation B-3, the relative change in the fractional

volume, c, for this family of cracks as a function of

differential pressure is:

dc _ -P 4 (1 - o 2 ) } (3-12)
c K* 3ra (1 - 20c)

where a is the matrix Poisson's ratio and K* is the

effective static or frame bulk modulus.

2. The effective coefficient of friction, K, is

constant with pressure. Thus, F'(K) in equation 3-11 is

a constant. If the effective Poisson's

ratio, a*, varies more slowly with pressure than c, then

F(K,o*) in equation 3-10 is essentially a constant also.

Since the fractional volume of cracks with aspect

ratio, am , is:

c (a ) = 4 m N(cm) £3
m (3-13)

3 V

equation 3-10 may be written as:

-1 3 E* (1 - 0*) c(c )(
p 4 E (1 - 2 *4) I'

m
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with a similar change for equation 3-11. Then:

-1

dQ dE* dc + (3-15)
-1 E c

where e includes variations in a* and F(K,a*). Using

assumption 2, E-0O. Substituting equation 3-12 into 3-15

and then integrating, one finally obtains:

-1 -1
Q = Q E* exp(-AP/KA) (3-16)

p po f* A0

where A = 4/37am{ (1- 2)/(1-2a)} = constant. A similar

expression is obtained for the attenuation of S waves.

Q and Q at P = 0 must be determined empirically.
p s

Then the imaginary parts of the matrix can be set as

described in Appendix B. From the calculated

attenuations at each pressure, the imaginary parts of the

moduli are given by:

K = (KR + 4R/3 )Q - 4 lRQs /3

-1 (3-17)
1= PRQ s

These results can then be used in equations B-1 and B-2

to determine the effective moduli, velocities, and

attenuation. Since am is arbitrary, the constant A is a

free parameter and must be found empirically.
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At first glance, the exponential decay of Q-1 with

pressure predicted by equation 3-16 may not seem

reasonable. As stated before, the attenuation of many

rocks at high pressure is not zero. However, equation

3-16 describes only the effects of cracks which control

the behavior of elastic and anelastic properties at

relatively low pressure. If one considers a rock with

an extremely low total porosity but moderate crack

porosity such as a granite, then equation 3-16 may truly
-i

represent the pressure behavior of Q -1. This is indeed

observed in the data from Gordon and Davis (1968) shown

in Figure 2-10. For rocks such as sandstones, however,

onemust consider the intrinsic aggregate anelasticity to

contribute to the observed attenuation at pressures

where the cracks are closed. In the models this is

determined empirically and assumed to be constant with

pressure.

One further consideration, discussed in detail in

Chapter 6, is the dependence of attenuation on strain

amplitude. Q values determined by ultrasonic pulse

methods are generally lower than those obtained under the

same conditions by dynamic resonance. For example, in

a dry Berea sandstone, Qp at low pressure from the pulse

technique is about 20 while for the resonance method, Q

is higher than 50. This discrepancy appears smaller for
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saturated rocks. Two explanations are possible. Either

the dry friction mechanism is frequency dependent, not

supported by the data, or Q is dependent on strain

amplitude. As will be seen, much evidence supports the
-6

latter. Higher amplitude ultrasonic pulses (strain>10-6)

result in higher attenuation or lower Q. Data to be

presented in Chapter 6 on several sandstones, limestone,

diabase, granite, and Plexiglass imply that the presence

and nature of crack or sliding surfaces control the

amplitude behavior even though not explicitly predicted

by Walsh theory. In general, it is observed that Q is
-7

independent of amplitude at low strains (<10-7 ) but

decreases rapidly at higher amplitudes. This effect

turns out to be a most important consideration, especially

in comparing laboratory data of different experimental

techniques with insitu measurements.

Finally, the effect of fluid saturation on the friction

mechanism must be inspected. As was shown in section 2.2c

and briefly discussed earlier in this section, the

introduction of small amounts of liquid into a rock lowers

Q substantially. This may be a result of the wetting

and lubrication properties of the liquid or chemical

interaction of the liquid with intergranular clay material,

softening the matrix. Experimental evidence favors the

former mechanism as being dominant but certainly
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softening can be important too. This is evident from

the need to lower the matrix shear modulus for many

saturated sandstones relative to the dry rock cases in

order to fit velocity data using the elastic moduli model

(Toks8z et al., 1976). In either case, it is extremely

difficult to quantify the behavior of attenuation as a

function of saturation primarily because the process

of friction in real rocks is complicated and not well

understood. At best, the problem may be discussed

qualitatively.

The phenomenon of lubrication consists of two types,

film or perfect lubrication and boundary or imperfect

lubrication. In the case of film lubrication, a small

amount of fluid is placed between the sliding surfaces.

The solid friction coefficient is eliminated and

replaced by the viscosity of the fluid (Gemant, 1950).

This is the mechanism for oil lubrication of moving
-4 -3

metal parts. Minimum film thicknesses of 10 to 10 cm

are required. Since attenuation in essentially zero width

cracks is considered, film lubrication is probably not

applicable to rocks.

If the distance between the two crack faces decreases

to the point where the lubricating film breaks down, one

might generally expect the crack to lock. This is not

true, however, for dipolar type liquids and in fact, very



thin, even monomolecular layers of liquid are sufficient

in this case to reduce the coefficient of friction (Adam,

1938). This is boundary lubrication and this mechanism

has no connection whatsoever with the bulk viscosity of

the liquid. Rather, the motion of molecules in the

liquid behaves more like plastic flow in a solid. In

many cases, lubrication can even be achieved by the

adsorption of vapor.

The formation of the boundary layer depends critically

on the wetting properties of the liquid with respect to

the solid. It is because of this and the fact that the

"rigidity" of the first monolayer of the liquid depends

strongly on the properties of the solid that makes

modeling of this mechanism so difficult. Even if the

boundary layer increases in thickness, the effect of the

solid remains, even though diminished. However,

experimental evidence shows that qualitatively, the

friction coefficient drops with increasing layer thickness.

This is schematically illustrated in Figure 3-2 (from

Gemant, 1950). The sharp decrease presumably occurs once

the first complete monomolecular layer is formed.

Eventually, friction approaches a constant value. It is

evident that many of the features observed in attenuation

in rocks resemble the process of boundary lubrication and

that this mechanism is a likely candidate for explaining
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the behavior of Q with partial saturation.

One might finally ask what the effect of elastic

moduli are on the Walsh model. In other words, does this

model predict any change in Q with increasing saturation

after the point where all sliding cracks are lubricated.

The answer is no. We compare a typical consolidated

sandstone fully saturated with water with the same rock

for 50% saturation. For the fully saturated case, E* =

0.241 Mb and o* = 0.302 while for the partially saturated

case, E* = 0.233 Mb and a* = 0.225. Applying equation

3-10 and assuming F(K,*) to be constant, it is found that

Q50%/QI00% = 1.02.

The effect of changing elastic moduli might be more

pronounced for partially saturated (gas saturated)

unconsolidated or granular sands. The greatly increased

compressibility due to the presence of gas may permit

greater bulk deformation, grain sliding, and thus

attenuation. There should be little or no change for an

applied shear stress.

3.3 Attenuation Due to Viscosity and Flow of Fluids

All rocks in the upper crust are partially or

completely saturated with some fluid. It is of special

interest then to consider the effect of viscous fluids

in a solid rock matrix. Some mechanisms by which fluids

contribute to attenuation are illustrated in Figure 3-1.



These fluids in elongated pores and fine cracks contribute

to attenuation in a complex manner. First, attenuation

peaks due to viscous shear relaxation will develop at

frequencies dependent both on the pore geometry and fluid

viscosity. For a rock with a wide spectrum of pore

aspect ratios, the attenuation spectrum is of a complicated

form. This problem has been discussed by Walsh (1968,1969),

Solomon (1973), and Kuster and Toks6z (1974) for

spheroidal pores.

Second, fluid flow between pores, induced by the

stress (seismic) wave, may cause attenuation. These flow

mechanisms fall into two categories, inertial flow (Biot,

1956a,b), important at ultrasonic frequencies, and

"squirting" flow (Mavko and Nur, 1975; O'Connell and

Budiansky, 1977), more prominent at lower frequencies.

Each will be considered seperately and the analysis of

"squirting" flow will also include the formulation for

viscous relaxation.

3.3a Biot Fluid Flow

In highly porous and permeable rocks, relative motion

may take place between the rock frame and the saturating

liquid as seismic waves propagate. Biot (1956a,b and

1962a,b) derived a theory for acoustical wave propagation

in an isotropic solid with connected pores. This theory

can be used to calculate both phase velocity and



attenuation due to this mechanism. In the absence of

boundaries, Biot theory predicts the existence of three

types of body waves, two dilatational and one shear.

One dilatational wave is highly attenuated and resembles

a diffusion wave. The other is the P body wave that

travels with little attenuation or dispersion. A

formulation of Biot's theory has been developed by Stoll

and Bryan (1970) and Stoll (1974,1977) and has been

adopted for this study.

To formulate the Biot theory for compressional

waves, two equations of motion may be written. The

first describes the motion of a volume element attached

to the rock frame or the fluid flow into or out of that

volume and is given by:

V2 (He - CC) = 2 (P* 0 - p'.) (3-18)

The second equation describes the motion of the fluid

relative to the frame:

V2 (CO - ME) = 92 (p', - m) - n DE (3-19)

In equations 3-18 and 3-19, H, C, and M are operators

describing the constitutive relations for the medium

and are given by:



2
H = (K - KA ) + KA + 4p*

D - KA

C = K(K - KA) (3-20)

D - KA

M = K2

D - KA

where D = K(1 + (K/K' - i))

For the above equations, e is the dilatation, p* and p'

are the effective and fluid densities, K is the matrix

bulk modulus, K' the fluid bulk modulus and KA is the

frame modulus. X is the permeability, the porosity, n

the fluid viscosity and p* is the effective shear modulus.

In equations 3-18 and 3-19, is the volume of fluid that

has flowed into or out of the unit volume. The parameter

m in equation 3-19 is given by:

m = a'p'/4 a'>l (3-21)

and is included to take into account the tortuosity of

the flow paths. For a uniform system of pores with all

orientations, a' has a theoretical value of 3 (Stoll

and Bryan, 1970).

In equation 3-19, the term n/X /Dt is the resis-

tance to flow. This constant ratio of fluid flow to

pressure gradient describes Poiseuille flow and is valid

only for low frequencies. At high frequencies turbulent



flow develops in which the effects of viscosity are only

felt in a thin boundary layer. To correct the flow

resistance for high frequencies, the viscosity is written

as F()n where F( ) is a complex correction factor

derived by Biot and given as:

F(1) = F R() + iFi( ) = (3-22)
R I 4 1 - 2T( )/i

where

ber'() + i bei'(M)
ber() + i bei()

and

S= a(p'/n)1/2

The functions ber and bei are the real and imaginary

parts of the Kelvin function and their primes denote

derivatives. The parameter, a, is a function of the size

and shape of the pores. Stoll (1974) found that values

between 1/6 and 1/7 the mean grain diameter resulted

in good agreement to experimental data for unconsolidated

sands. It may be considered a free parameter. The

correction factor is only valid where the wavelength is

large comapared to the pore size.

To obtain velocity and attenuation, assume

solutions to equations 3-19 and 3-20 of the form:

e = Alexp{i(wt - kx)}

and (3-23)
( = A 2exp{i(wt - kx)}



The wavenumber, k, is complex so that k = kR + ikI , and

is found from the solution of the following period

equation:

p2 2
Hk2 _ P*W2 P _ -Ck 2

2 0 (3-24)2 2 2 2Ck p'm m -Mk - i&Fn/X

The attenuation coefficient is obtained from k I . There

are two roots to 3-24, one representing the diffusion

wave and the other the propagating P wave. For frequencies

at which Poiseuille flow is valid, the attenuation

coefficient, c., for the P wave varies as the square of

the frequency (Q-1 f). At higher frequencies, a is

proportional to f1 /2 (Q-1 f- 1 /2).

Shear attenuation involves only the idea that the

moving solid frame drags the viscous fluid with it. Since

the fluid motion is due only to inertial stresses, this

mechanism must be treated in addition to the viscous

relaxation model described later in this chapter. A

simpler period equation for S waves may be obtained

and is given by (Stoll, 1977):

2 *k2  2

2 2 = 0 (3-25)
p'c mo - ioFn/X

Here there is only one root. Viscous drag at the pore-

fluid interface results in greater loss than flow

induced by pressure gradients. Thus the model predicts



that the attenuation of S waves is greater than for P

waves in the case of the fluid flow mechanism.

In general, the elastic moduli of the frame in this

formulation may be complex, allowing for the anelasticity

of the frame. Since this effect is considered separately

in this study, the imaginary parts of the frame moduli

are set to zero. Numerical calculations carried out by

Stoll and Bryan (1970), though, indicate that frame

anelasticity dominates over the fluid flow effects at low

frequencies (f<104 Hz). At high frequencies, the fluid

flow contribution could be detected in permeable, high

porosity rocks. For most sedimentary rocks saturated

with water, the effects of fluid flow are small at seismic

frequencies (f = 10 - 200 Hz), but could become important

at ultrasonic frequencies.

The pressure dependence of attenuation due to fluid

flow depends primarily on the change in the permeability

in the rock due to compaction, crack closure, and pore

collapse and on the stiffening of the matrix. The elastic

moduli and total porosity are easily obtained as functions

of pressure using the method of Toks8z et al. (1976).

Furthermore, it is assumed that the viscosity of the fluid

inclusion remains relatively constant in the pressure

range of interest.

Experimental determinations of permeabiltiy as a



function of confining hydrostatic pressure have been made

for several sandstones (Fatt and Davis, 1952), Westerly

granite (Frangos, 1967), and Ottawa sand (Zoback and

Byerlee, 1976). In general, permeability decreases with

increasing pressure but the rate of decrease depends on

the total porosity and fraction of crack porosity. In

highly porous and permeable consolidated rocks, the bulk

of the porosity and permeability is contained in the large

aspect ratio pores which do not close under pressure.

Fatt and Davis (1952) found a maximum reduction in

permeability of 25% at moderate pressures for sandstones

while in granites, order of magnitude changes are common.

Measurements of permeability in unconsolidated Ottawa

sand (Zoback and Byerlee, 1976) show a slow reduction up

to about 800 bars where it drops off rapidly to level

off again between 2000 and 3000 bars. The acceleration

in permeability loss at 800 bars is presumably due to

grain crushing and pore collapse. However, the

applicability of this study to consolidated rocks is

uncertain nor could it be easily modeled. It will be

assumed that permeability in highly porous rocks is

constant with pressure. The effect of this is to give

an upper bound on the contribution due to fluid flow on

attenuation.

The effect of partial
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saturation in the form of gas-liquid mixtures in the rock's

pore spaces is finally considered. The presence of gas (or air)

in the pores will tend to block flow and thus the resistance

term in equation 3-19 is increased. The logical way

to approach this problem is through the concept of

relative permeability, Xr. The flow of liquid in the

pores is affected by the presence of gas so that, in

effect, the flow channels for the liquid are narrowed.

This reduced permeability is called the effective

permeability, Xw, or if written as a fraction of the

physical or specific permeability, X, the relative

permeability. For a gas-water mixture:

Xw + Xg 
< X

and Xrw +Xrg < 1

A plot of relative permeabilities for gas and liquid

(wetting phase) is shown schematically in Figure 3-3

as a function of liquid saturation, S . Swi refers to

the irreducible or connate saturation. The shape of

the curves is due primarily to the effect of

capillary forces.

Unfortunately, no exact theory exists to calculate

relative permeability curves for a given rock. One

must rely on experimental observations. Based

on many experimental data, Wyllie (1962) developed

empirical relative permeability equations. The appropriate
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equation for consolidated sandstones used in this thesis

is:

X w wi (3-26)
Xrw I - S .

Thus, the permeability in the Biot flow equations is

modified by substituting Xrw 'X in place of X. The

liquid remains the flowing medium and K' and p' remain

that of the liquid. This model gives the correct

results for both end members. For Xrw = 1, the

attenuation due to fluid flow is that for full saturation.

If Xrw decreases (decreasing Sw ) then the attenuation

decreases. At some point the liquid may no longer be

considered the flowing medium, however for gas, the

solution is essentially that of a dry rock and no

attenuation due to Biot flow occurs. The effect of

relative permeability and examples of Biot flow attenuation

will be shown in Chapter 5.

3.3b Squirting Flow

Several investigators have proposed attenuation

mechanisms by which flow is induced between two adjacent

interacting cracks due to the relative volume change

caused by the stress wave (Mavko and Nur, 1975;

O'Connell and Budiansky, 1977). These are commonly

known as "squirting" mechanisms and while they are not

important at ultrasonic frequencies, they may be so at



sonic or seismic frequencies. The elastic model of

Toksiz et al. (1976) is particularly useful in treating

these mechanisms in that a distribution of crack aspect

ratios is uniquely determined from velocity data and that

pressure gradients between cracks may be readily

calculated.

Flow in any squirting mechanism is from small aspect

ratio (thin) cracks to larger ones (pores). Thus the

flow field within the crack may be approximated by the

flow between two infinite plates as is done by Mavko and

Nur (1975) and O'Connell and Budiansky (1977). Here an

approach to the problem consistent with the concepts and

formulations introduced by ToksBz et al. (1976) is

considered. The details of the calculations may be found in

Appendix C. Assuming that flow will take place between

very thin cracks with a =0 and pores with am = due to

a differential volume change induced by the stress wave,

then the pressure difference, the equalized pressure

after flow, the instantaneous flow, q, and the total flow,

qT can be easily calculated. Given a relaxation of

the form:

q q e-t/dt = qT (3-27)

where T is the relaxation time, one finds that

T = 8i/a 2 K'(1 4- ) -8
m (3-28)
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where n is the viscosity of the fluid, K' is the fluid

bulk modulus and e is the ratio of connected crack to

pore volume. For most porous rocks we can approximate

E0. Taking K' = 2 x 1010 dynes/cm 2 , n = 10 poise,

-3 -4
with am ranging from 10 to 10 , one obtains

-6 -4
relaxation times ranging from 4 x 10 to 4 x 10 sec.

The formulation of this mechanism in terms of complex

moduli yields an expression that also includes the

viscous relaxation mechanism in pores discussed earlier.

This is a result of applying the correspondence

principle for the shear modulus, p' = iwo and expressing

the bulk modulus of the fluid as K' = K' + iog, where g

is considered an unknown to be determined from the

relaxation time for the squirting flow. It is shown in

Appendix C that equations B-1 and B-2 for the effective

moduli can be written in terms of two characteristic

frequencies: wc = K/g and wd = 3K/4n (equation C-13).

Wd is recognized as the characteristic frequency for

viscous relaxation (Walsh,1969) and wc is the characteristic

frequency for fluid flow from cracks. From the estimate

of the relaxation time for this mechanism:

8 K
g = + ) -K' (3-29)

m R

-3 -2
For example, with c = 0, m = 10 , = 10 poise,



K = 4 x 1011 dynes/cm 2 and K = 2 x 1010 dynes/cm 2 , we

find that g = 1.6 x 106 poise or more generally,

g = 1.6/a2 poise. This mechanism is readily included in
m

the elastic moduli formulations by finding g from equation

3-29 and then substituting to give the value of K'

required. Knowledge of crack aspect ratio distributions

from the elastic model eliminates the need to specify

these as free parameters.

Squirting flow is enhanced for partial saturation.

As will be discussed in the next section, one may assume

that for all but the lowest fluid saturations, the gas

(or air) phase is restricted to the larger pores. Because

of the high compressibility of the gas, volume changes

of the pore due to the seismic wave offer no resistance

to flow from the thinner cracks. One may therefore

proceed with the analysis of Appendix C except that for

partial saturation, the equalized pressure, P = 0, and

the total flow, q = -dC . The result is the same as

equation 3-28 except that c is identically zero. Thus,

partial saturation has the effect of increasing T or

shifting the attenuation peak to lower frequencies.

3.4 Gas Bubbles

The presence of gas bubbles in a porous rock can

have a great effect on the acoustical properties. This

is especially true for unconsolidated sands such as
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ocean bottom sediments. The acoustics of gas bearing

sediments has been extensively studied and an excellent

review of the topic may be found in Anderson (1974).

This section begins by discussing the nature of

gas occurrence in natural sediments, a proposed model

for gas release under laboratory and reservoir production

conditions, the types of loss mechanisms involved and the

mathematical formulations for attenuation. Much of the

original work on attenuation due to gas bubbles was

motivated by the need to understand the acoustic

properties of ship's wakes and the ocean environment.

This work is then extended to the problem of bubbles in

materials of finite rigidity.

5.4a TheOccurrence of Gas in Nature

Partial saturation and gas bubbles may occur in the

earth in several ways. The first is in ocean bottom

sediments where gas is formed by the decomposition of

organic matter. Close to shore, bubbles may be formed

by wave action. Of more interest, however, is the

presence of gas in reservoir sands. Only

partial saturations of two phases (water-gas for example) are

considered. More common is a three phase system such as water-

oil-gas. In gas reservoirs, the distribution of

saturants is a function of depth. In all cases the

liquid phase is wetting and the gas non-wetting. Because



of capillary forces, there is no sharp discontinuity

between the gas and liquid phases. Rather, a transition

zone exists in which gas saturation, S , increases from

0 to near 1. This is illustrated in Figure 3-4a. In

natural rocks there is a lower limit to the water

saturation, Sw, called the irreducible or connate water

saturation, Swi, that cannot be removed under gravitational

separation. Since gas is the non-wetting phase, as S

increases, the gas will occur in pockets (bubbles)

located in the larger aspect ratio pores. Eventually,

these pockets will expand to fill nearly the entire pore spaces.

A second case of gas occurrence is during gas

solution drive of a reservoir. In this cas, gas in

solution is released as the fluid pressure is dropped.

The same situation may be simulated in the laboratory

and such an experiment is described in Chapter 5. Gas

release is illustrated by the phase diagram in Figure 3-4b.

Consider a very simple case of isothermal pressure

drawdown. The system initially exists at point A above

the bubble point curve. As the fluid pressure drops

following the line from A-D, gas will begin to come out

of solution at point B. From point B to C, S increases

from 0 to 1.

Here, a simple model for the occurrence of

gas bubbles in a solution drive situation is proposed. This is



illustrated in Figure 3-5. For small values of S , the

gas first appears as small bubbles (Figure 3-5a). During

this phase, the acoustical properties of the gas are

dependent only on the liquid medium surounding the

bubbles. That is, the bubbles do not "see" the rock

matrix. As S increases, the small bubbles will coalesce

into larger ones (Figure 3-5b). At this stage, the bubble

properties are determined by the effective properties of

the surrounding media. Eventually (Figure 3-5c), S
g

will increase to the point where the gas fills the entire

pore space. This condition will essentially eliminate

any acoustical losses due to the bubbles. It will be seen

in the next section how this model may be used with the

theoretical formulations of attenuation.

3.4b Bubble Resonances

The theory of gas bubble dynamics in water has been

well studied particularly in terms of the acoustical

properties of ship's wakes. The theory of bubble dynamics

in solids is not as well developed. Fundamental to this

study is the resonance frequency of bubble pulsations,

driven by the acoustic wave. While for small bubbles

or low frequencies, an adiabatic equation of state may

be assumed for the bubble, a more general polytropic

equation, valid for all conditions, is used:

Kb = yP/AV



where Kb is the bubble stiffness, P is the bubble pressure,

V the volume, y is the ratio of specific heats, and A is

the polytropic coefficient defined by:

A = { + B2 + 3(y-1) sinhX - sinX3
X coshX- cosX

where

X(sinhX+sinX) - 2(coshX-cosX) } (3-32)
X' (coshX-cosX) + 3(y-1)X(sinhX-sinX)

and X = r (2W/K) 1/2

r is the bubble radius, w is the angular frequency and K
o

is the thermal diffusivity of the gas. It should be

pointed out at this stage that the gas properties may be

found as a function of P and T using the kinetic theory of

gases. This allows the estimate of bubble losses under

actual subsurface conditions.

The basic equation for the bubble resonant frequency

was derived by Minnaert (1938) based on energy considerations.

The resonance frequency, f , is given by:

f 1 3yP / 2  (3-33)
o 2-r Ap

or, f is inversely proportional to the bubble radius

and directly proportional to the acoustic velocity. Equation

3-33 is valid for most conditions except for small bubbles

which are, unfortunately, of primary interest to this study.

Many investigators since Minnaert have studied the



resonance problem (Smith, 1935; Richardson, reported by

Briggs et al., 1947; Houghton, 1963; Shima, 1970), the

important developments being the inclusion of viscous,

elastic, and surface tension effects. The latter is

most important for small bubbles. A review of these

frequency relations may be found in Anderson (1974).

In this work, the Shima equation, which includes all the

important effects, is used. This is given by:

f 2 N(1+LM) - (M+LN) 2/4/2 (3-34)
o 2r (I+LM)(

where

L = {p'/7P(l + K)}1/2

M = 4q/p'r

N = {P(l - 1/3y)2a s/ro)}3y/p

and L 3 kilobars / P.

a is the surface tension and n is the fluid viscosity.
s

The theory of gas bubble pulsations in materials of

some rigidity has been developed primarily to study the

acoustical effects of fish bladders on sonar signals

(Andreeva, 1964; Weston, 1967). Their approach may be

modified for bubbles in rock. The main effect, as one

would expect, is to shift the resonance to higher

frequencies. The best available equation (Anderson, 1974)

for the resonance frequency of gas bubbles in a solid is

the Minneart equation modified by the elastic properties
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of the surrounding matrix (Andreeva, 1964):

f 1 r - +  1/2 (3-35)
o 2rrr LAP pJ

This equation is used in this thesis.

3.4c Bubble Losses

Bubble losses are due to three mechanisms: thermal,

radiation, and viscous. Devin (1959) discussed these

losses at resonance and later, Eller (1970) extended

Devin's work to losses at frequencies other than at

resonance. Eller's results will be presented here.

If one assumes an equation of motion for the

pulsating bubble of the form:

-iot
MU + ba + KbU + Ae = 0 (3-36)

where b is the damping coefficient and A is the driving

amplitude, then a damping constant, d, may be defined

as:

d = wb/Kb (3-37)

d is the sum of the thermal, radiation and viscous

losses.

Thermal losses are due to the fact that compression

in a bubble is polytropic. The work done by the acoustic

wave in compressing the gas is greater than the work

done by the gas in expanding into the liquid surrounding

it. The difference is a flow of heat into the liquid.



101

Radiation damping is due to the generation of spherical

sound waves by the volume pulsation of the bubble.

Viscous damping for bubbles in a liquid may be due to

momentum transfer from a bubble moving in translation

or rotation. For no external forces acting on each unit

mass of liquid, the equation of motion may be obtained

from the Navier-Stokes equation. But, this is not valid

for a pulsating bubble. However, distortion in a

liquid volume surrounding the bubble is caused by

viscous stresses.

Equations for the damping constants, dth, drad , and

d vis for the three types of losses are valid only for

wavelengths longer than the bubble radius. This

presents no difficulty in the work here. The damping

constants for bubbles in liquid are (Eller, 1970):

dth
3 3p'rcMA

d = o (3-38)
rad

3yPCo

d -4A

vis 3yP

where C0 is the acoustic velocity of bubble free liquid,

p' is the liquid density, and B is defined in equation

3-32.

Thermal damping for bubbles in a solid material is

the same as for bubbles in water. Radiation damping is
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modified by the wavelength of the acoustic wave in the

solid and is given by Weston (1967) as:

3 3
d = re o Ap (3-39)

ra d  3P +

where C is now the acoustic velocity in the.effective
o

(rock) medium. Viscous damping is more appropriately

considered frictional damping for bubbles in the rock.

Since this is studied separately in this thesis,

d vis  0 for bubbles in a solid medium.
V's

3.4d Attenuation Formulations

We shall now present the equations which describe

the attenuation due to a homogeneous distribution of

bubbles in both water and rock. The assumption of

homogeneity may, however, be questioned. Certainly on

a scale from pore to pore the gas bubbles are not evenly

distributed. In the long wavelength approximation,

though, the pores, and therefore the bubbles will appear

to be homogeneously located.

In order to calculate the effective properties of

attenuation, one needs not only the damping constant but

also the variation of the medium compressibility (or

sound speed) with gas content. For bubbles in water,

Wood's (1955) formula of volume averaged compressibilities

is valid for frequencies well below resonance where there
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is little attenuation. Spitzer (1943), though, derived

the following general formulas for both velocity and

attenuation for a homogeneous mixture of bubbles of

uniform radius in a liquid (water):

o= +aX 1±{l+(aY/(l+aX)) 2} 1 2  (3-40)
c2

= fC
a = --C-r aY (3-41)

0

where
S (1 - f2) 2

X = a =p'C /yP
(1-f )2  + d 0o

f, = f/fo

Y = g 2---- 2-5-- 2
(l-f L) + d, d, df

a is the attenuation coefficient and C is the effective

sound speed. Spitzer's theory has been tested experimen-

tally. Silberman (1957) has also shown that equations

3-40 and 3-41 are valid for non-uniform bubble sizes.

For a distribution of bubbles with radii ri, i = 1,2,...,n

and concentrations S , with associated normalized

frequencies, f*i, then the terms, X and Y, in equations

3-40 and 3-41 may be written as a sunmation over i.

For bubbles in rock, equations 3-40 and 3-41 remain

the same except that:

K*
a = and S S g (3-42)

P + 4p/3 g
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where K* is the effective bulk modulus of the saturated

rock and 4 is the porosity. f , d and therefore d, and

f, are modified as discussed before. The equation for

the attenuation coefficient becomes:

rfC K*Y
S= P + 4p/3 (343)

0

where C0 is the acoustic velocity in the bubble free

medium as before.

It has been shown in this section that the attenuation

due to gas bubbles may be calculated for both the case

of bubbles in water or in a rigid medium (rock). In

terms of the model proposed in section 3.5a, for small

values of S , one would find the attenuation from

equation 3-41. For larger values of S , equation 3-43

is appropriate. The actual transition between these two

stages would be difficult to model. While a detailed

discussion of a gas release experiment and the results

of calculations for these mechanisms will be deferred to

Chapter 5, one can at least conclude that bubble losses

are much greater only if the bubbles "see" water. The

losses are substantially reduced for gas in a rigid

medium.

3.5 Other Sources of Attenuation

An attenuation model describing the effects of large

scale irregularities (on the order of 10 cm) in saturation
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conditions has been proposed by White (1975). The porous

rock is modeled as containing spherical pockets saturated

with gas with the rest of the volume saturated with

liquid. Loss due to fluid flow is enhanced at the gas-

liquid interfaces. White showed that for this particular

model chosen, attenuation due to this mechanism can be

important at seismic frequencies. There is some debate,

however, as to the occurrence of the type of saturation

irregularities proposed.

Several other mechanisms for attenuation have been

proposed although their applicability to upper crustal

rocks is debatable. Several of these mechanisms may be

operable in the upper mantle, however, such as grain

boundary relaxation, relaxation caused by a phase change,

and a "high temperature background attenuation" probably

related to Nabarro diffusion (Jackson and Anderson, 1970).

Experimental evidence suggests little change in attenuation

as a function of temperature at relatively low temperatures

(Volarovich and Gurvich, 1957) when the rock is not

thermally cracked and the saturating fluids are not altered.

However, near phase changes, attenuation could change

rapidly with temperature. High attenuation has been

observed at critical points in multi-component systems

(Spetzler and Anderson, 1968; Wang and Meltzer, 1972).

Energy is absorbed by a medium whose equilibrium is
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disturbed by a stress wave. The frequency at which this

occurs depends on the rate at which phase equilibrium

can follow the changes imposed upon it by the wave

(Spetzler and Anderson, 1968). This mechanism may result

in high attenuation in certain geothermal areas.

The effective attenuation due to scattering by

inclusions in the rock is now evaluated. Although this

is a geometrical effect, it can, in some cases, affect

the observed attenuation. Yamakawa (1962) has analyzed

the scattering of compressional waves by spherical pores.

The equivalent attenuation coefficient, a, is given by:

a 12 f4r3 {2B + 2 3 2 + (2+3v5 ) 2} (3-44)

V4  o 3 1 5 2

where
K - K' -20p2

B B2B 3K' + 4p 2  3 p(9K + 8-P)

B1 = (p - p')/3p v = V /V s

r is the radius of the inclusions and f is the frequency.

Primed coefficients represent inclusion properties.

Although the effective attenuation of incident S waves

has not been calculated, one may estimate this effect by

noting that the energy scattered due to SP reflections

is equivalent to PS reflections because of the reciprocal

theorem. While losses due to SS reflections are not the

same as PP, they are probably close and one can reevaluate
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equation 3-44 for incident S waves assuming SS-PP. Doing

so, the only changes in the equation are that V is
p

replaced by V and v = V /V . Attenuation due to
s s p

scattering is strongly dependent on frequency ( f 4). As

will be shown in Chapter 5, scattering effects can be

important, if not dominant, at high ultrasonic frequencies

(f>l MHz) or lower if the inclusion radius is large. At

seismic frequencies, scattering due to pores is negligible.

Another geometric effect is the apparent attenuation

due to selective reflection of the short wavelength

component of seismic waves in thin beds. Although of

little importance with respect to laboratory measurements,

this mechanism may, under certain conditions, contribute

to observed amplitude loss in seismic sections. O'Doherty

and Anstey (1971), Schoenberger and Levin (1974), and

Spencer et al. (1977) have examined these cases in detail.

In general, selective reflection due to cyclic

stratification contributes a small but important part

to the overall attenuation. If high reflection

coefficients occur, the apparent attenuation can be high.



108

FIGURE CAPTIONS

Figure 3-1. Schematic illustration of several proposed

attenuation mechanisms for saturated and partially

saturated porous rocks.

Figure 3-2. Friction coefficient as a function of

boundary layer thickness for the imperfect lubrication

model (from Gemant, 1950). Boundary layer thickness

may be related to fluid saturation, Sw*

Figure 3-3. Relative permeability, Xr, for wetting and

non-wetting phases as functions of wetting fluid

saturation. Swi is the irreducible saturation.

Figure 3-4. a) The effect of capillary action on the

distribution of water and gas within a natural rock

formation. Pc is capillary pressure. The figure is

from Mayer-Grr (1976). b) Phase diagram of a two

component liquid and gas mixture. The effect of pore

pressure reduction is shown in line A-D.

Figure 3-5. Schematic illustration of a simple model for

the occurrence of gas bubbles in a solution drive

situation. S is the gas saturation.g
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CHAPTER 4

EXPERIMENTAL TECHNIQUES

The methods used in this thesis for measuring

attenuation are pulse transmission using spectral ratios

and resonant bars. As discussed in Chapter 2, the pulse

transmission technique is most suited for jacketed

samples in pressure vessels. However, the method does

require some rather cumbersome data processing and thus,

for experiments where pressure is not a variable, the

simpler bar resonance technique is used. Furthermore,

several of the samples studied have Q > 100 and thus the

pulse method is inappropriate. In this chapter the

experimental methods and equipment are described. Data

processing and potential errors are also discussed. In

the case of pulse transmission, the effect of stress

amplitude is briefly examined. Finally, important aspects

of sample preparation and treatment are presented. A

detailed discussion of the specific experiments and samples

studied are deferred to the next chapter.

4.1 Pulse Transmission - Amplitude Ratio

The accurate measurement of attenuation using pulse

transmission can be difficult since amplitudes are strongly

affected by geometrical spreading, reflections and

scattering in addition to intrinsic damping. Correction for

these effects can be a formidable task. This difficulty is
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removed by determining the attenuation of a rock sample

relative to a reference sample which has very low

attenuation, using the spectral ratio technique. Only

one-way transmission effects are measured. The sample to

be studied and reference sample have exactly the same

shape and geometry. Essentially, two measurements are

made using identical procedures, one with the rock of

interest and again with the reference sample.

The amplitudes of plane seismic waves for the

reference and the sample can be expressed as

A (f) = G1(x) e- I(f)x ei(2ft - k 1 x)

(4-1)

A2 (f) = G2 (x) e-a2(f)x ei(2Tft - k2X)

where A = amplitude, f = frequency, x = distance,

k = 27if/v = wavenumber, v = velocity, and G(x) is a

geometrical factor which includes spreading, reflections,

etc. a(f) is the frequency dependent attenuation

coefficient. Subscripts 1 and 2 refer to the reference

and sample respectively. From available data it is

reasonable to assume that over the frequency range of the

measurements, 0.1 - 1.0 MHz, a is a linear function of

frequency, although the method itself tests this

assumption (Knopoff, 1964; Jackson and Anderson, 1970;

McDonal, et al., 1958). Then one can write:
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a(f) = yf (4-2)

where y is constant and related to the quality factor Q by

Q = !(4-3)
YV

When the same geometry is used for both the sample and

standard Ci.e., same sample dimensions, transducers,

arrangements) then G1 and G2 are frequency independent

scale factors. The ratio of the Fourier amplitudes are:

A G
1 _ 1 e-(Y - y 2 )fx (4-4)

A2  G2

or

In = (Y2 - yl)xf + In (4-5)

A2  G2

where x is the sample length. When Gl/G 2 is independent of

frequency (Y2-Y1) can be found from the slope of the line

fitted to In(A 1/A2 ) versus frequency. If the Q of the

standard' reference is known, y2 of the sample can be

determined. When the Q of the standard is very high (i.e.

Q1 = o) then Y1 = 0 and Y2 of the rock sample can be

determined directly-from the slope.
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Aluminum is used as the standard reference. Q for

aluminum is about 150,000 (Zamanek and Rudnick, 1961),

as opposed to Q < 1000 for rocks. Thus taking y1 = 0 never

introduces more than 1% error. For typical rocks where

Q = 10-100, the error is less than 0.1% and is negligible.

A more serious concern is the validity of assumption that

the geometric factors G1 and G2 have the same frequency

dependence, and GI/G 2 is independent of frequency. With

polished rock surfaces and good coupling between the

transducer holder and sample, one would not expect

frequency dependent reflection coefficients at the

interface. Repeated measurements showed that pulse

amplitudes, shapes and spectra were duplicated.

The error introduced by assuming an infinite Q for

the aluminum is obviously not associated with the error or

accuracy of the results. The problem of accuracy and

repeatability is discussed in a section 4.5. It should

also be noted, as mentioned in Chapter 2, that this method

is useful only for rocks with low Q (<100) due to the

difficulty in using linear regression analysis resulting

in a low slope and correlation coefficient for high Q

samples. The technique, while conceptually and

mathematically simple, does require a great deal of data

processing. This problem will be addressed later.
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4.2 Ultrasonic Measurement System

An ultrasonic measurements system has been developed

to determine acoustical waveforms and velocities under

various pressure conditions. Piezoelectric transducers

mounted on the ends of the sample generate and receive P

and S waves. Coupling is provided primarily by the

confining pressure in a modified Birch (1960) technique.

The resulting waveforms are then displayed and digitized

for subsequent analysis. Travel times through the sample

are obtained to determine wave velocities.

A block diagram of the system's electronics is

shown in Figure 4-1, with a photograph shown in Figure

4-2. A Dumont model 404B pulse generator is used to

produce a low voltage (10 V), lis pulse and oscilloscope

trigger. Variable pulse repetition rates and trigger

delay are available. The pulse is used to drive a Velonex

model 350 high power pulse generator, the output of which

drives the transducers. An output voltage of 250 V into

50Q is used. The trigger output of the Dumont unit is

used to trigger a Tektronix 545B oscilloscope which

provides a delayed pulse to trigger the display

oscilloscope. This feature allows the display of any

portion of the waveform desired. A Tektronix IL5

spectrum analyzer installed in the 545B was not used for

data analysis but did prove useful in transducer design.
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The low voltage pulse from the Dumont unit also

serves the purpose of providing a reference mark for

timing measurements. The pulse is fed into a Hewlett-

Packard 5308A Timer counter and a continuously variable

(1-30ps) delay generator. The output of the delay is

a lps pulse which is then filtered to provide a variable

rise time. This filtered timing pulse is connected to

the second input of the timer so that a direct

m-easurement of the time interval between the driving

and timing pulses can be obtained. The use of time

interval averaging in the timer results in a resolution

of 1 ns. The rise time of the timing pulse is matched

to the rise time of the signal as shown in Figure 4-3

and the "first arrival" is defined as 50 mV above zero

on the timing pulse. Thus the transit time of the

signal through the sample is unambiguously determined

regardless of the attenuation. The transit time is

measured several times and then averaged to eliminate

bias in fitting the timing pulse to the signal.

The signal from the receiver transducer and the

timing pulse are simultaneously displayed on a Hewlett-

Packard 175A oscilloscope. The relative position between

these signals is unaffected by the delay trigger

operation. If needed, a broad band linear preamplifier
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(HP model 465A) may be used to amplify the received signal.

An HP 1782A Display Scanner is usdd to trace the displayed

waveform onto an HP 7035A X-Y plotter for subsequent

digitization.

Rock samples used in this study are 1 inch (2.54 cm)

long and 1.25 inches (3.18 cm) in diameter. The sample

is placed between two transducer holders and jacketed

using a urethane strip bonded with tetrahydrofuran. This

assembly, connected to a plug is then placed in the

pressure vessel as shown in Figures 4-4 and 4-5. The

vessel, with a 1.5 inch (3.81 cm) inner diameter, is

rated to 10 kb. External confining pressure is applied

via a kerosene medium using a two stage pump system.

The confining pressure is monitored with a bourdon tube

gage and a manganin coil. The coil is connected with a

bridge circuit, instrumentation amplifier and panel meter

to provide a direct, digital pressure reading. Confining

pressure is determined to within 2 bars.

Pore fluid pressure may be controlled independently

from the confining pressure and ranges from 0-2 kb. Access

to the sample is through the plug and transmitter

transducer holder as shown in Figure 4-4. Pore pressure

is measured on a bourdon tube type gage and can be

determined to 10 bars. Ideally, one would like to have

an outlet and second gage for the pore pressure system

to determine pressure equilibrium within the sample.
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Lacking space for this, sufficient time (depending on the

rock permeability) must be allowed for the fluid pressure

to stabilize.

Furthermore, time must be allowed between

measurements for the temperature within the vessel to

stabilize after compression or decompression. A

copper-constantan thermocouple mounted next to the sample

connected to a Fluke 2170 digital thermometer monitors

these temperature changes to within 0.20 C. Constant vessel

temperature is maintained by a circulating water system

coiled around the vessel.

Transducer holders are used instead of mounting the

transducers directly on the sample for two reasons. First,

it is imperative that the coupling between the transducers

and sample be constant. By using the same holders for each

experiment and by inserting a thin copper disc between the

holder and sample, this is accomplished. Second, pore

pressure must be brought in through the transmitter holder

requiring a certain thickness for mounting the high

pressure tubing.

A cutaway view of the transmitter transducer holder

is shown in Figure 4-6. The holder is 2 inches (5,08 cm)

long, 1.25 inches (3.175 cm) in diameter with 0.5 inches

(1.27 cm) between the transducers and sample. Pore pressure

is introduced via the tube through the center. The
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receiver holder is different only in that no pressure

tube is needed so that the bottom thickness is 0.030

inches (0.076 cm). Titanium is used due to its similar

acoustic impedance compared to most rocks and because of

its hardness so that the holder will not deform into

the rock under high pressure.

Lead-zirconate-titanate piezoelectric transducers

are used in a stacked P and S mode arrangement as shown

in Figure 4-6. The transmitter transducers are 1 MHz

Gulton HDT-31 (PZT, 4 equivalent) material of high

efficiency and high Q (>500), while the receiver

transducers are Gulton G1500 (PZT 5 equivalent) with a

low Q (80) to reduce ringing. P waves are generated

using standard thickness mode discs. The S wave

transducers, on the other hand are fabricated using pie-

shaped shear plate wedges (provided by Valtec, Valpey

Fisher Corporation) epoxied to an aluminum backing plate

as shown in Figure 4-7. The result is a torsional

transducer which produces very little precursory P modes.

The stacked P-S transducer system has the advantage

that either mode may be selected externally to the

pressure vessel by switching the leads to the high

voltage or ground as shown in Figure 4-7. Thus, both

modes may be studied without running a separate

experiment. All electrical connections both inside
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and outside the vessel are made with coaxial connectors

and cable to reduce spurious electrical noise and RF

coupling.

Some difficulty was encountered in the construction

of the transducer stacks and holders. Ideally, one

would like to keep the transducers exposed only to

atmospheric pressure. This reduces transducer-holder

coupling effects under pressure since the transducers

could then be glued directly to the holder. The physical

constraints of the system, however, prohibited this

arrangement and it was found that glue under high

pressures would crack. This presented little problem

for the P wave but coupling for the S wave was variable

due to slippage on the time scale of a minute or two.

A compromise solution was found in the use of a

nonhardening, pliable sealant (Permatex, Formagasket

no. 2) as the bonding agent. Spread in a thin film, the

sealant is impervious to kerosene and allows capacitive

coupling between the electrodes and transducers,

sufficient at the voltages and frequencies used. The bond

is supplemented by a stiff backing spring as shown in

Figure 4-6.

Another problem arose in the placement of the pore

pressure tubing. Due to size considerations it was

necessary to locate this through the center of the
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transmitter holder and transducers. This presents no

particular distortion in the S waveforms since the

displacement along the center line is zero. Some

distortion exists for the P waves but was found to be

of minor consequence.

4.2a Determination of Velocity

At each pressure, the travel time, t, of the P or S

wave is measured. From this, the total system delay,

ts, must be subtracted, giving the transit time through

the sample, t. t s is due primarily to the travel time

of the waves through the titanium transducer holders

and was determined by running the experiment with the

holders face to face. This was repeated several times to

check on reliability and, as discussed in the next section,

samples of fused quartz with known velocities were used to

insure correct calibration of the system delay.

Velocity, then, is found from V = k/(t-t s ) where Z

is the sample length. Linear strain as a function of

pressure may be corrected for using the static

measurements discussed later. In general, as will be

shown in the next section, such a correction is small in

terms of the overall accuracy of the system.
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4.2b Data Processing

Full waveforms of both P and S waves were plotted on

the X-Y recorder and then manually digitized. It was

discovered that the HP 1782A Display Scanner did not

produce a constant peak voltage for the x axis during

an experimental run. However, careful testing showed

that the same x interval on the oscilloscope was recorded

each time. Thus the plotted waveforms may be stretched

or contracted relative to each other. To correct for

this, the waveforms were digitized at 40 ns per point,

one half the interval to be used (80 ns) for signal

processing. The time base was then adjusted according to

the time between the end points of the signal and scaled

to a total record length of 13.4 Ps. The data was then

scanned and interpolated to obtain a constant

digitization interval of 80 ns with a resolution in the y

direction of one part in 104. The Nyquist frequency for

this sampling rate is 6.25 MHz. No antialiasing filter

was needed.

Sidewall reflections and reflections within the

transducer package interfere with the direct pulse.

Because these components have ray paths longer than the

sample length, the Q values obtained by using the direct

pulse plus interfering waves are altered. The reflections

may be eliminated by one of two techniques: homomorphic
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deconvolution or time windowing and taper.

Homomorphic signal processing is a nonlinear technique

based on a frequency invariant filter operation on the

complex cepstrum and allows the separation of the direct

pulse from the reflection components (Oppenheim and Shafer,

1975, pp. 480-531). The method has been successfully

applied to seismic problems (Ulryck, 1971; Tribolet, 1977a).

The essential advantage of this method over other forms of

deconvolution is that no a priori knowledge of the nature

of the direct pulse or medium transfer function is required.

It does, however, assume that the recorded signal is the

result of a convolution of the direct pulse and medium

response. The mathematical basis of the method is

discussed in Appendix D.

While homomorphic devonvolution represents a precise

way to remove unwanted reflections, in practice the method

is cumbersome and expensive for large quantities of data.

In fact, it was only used in this thesis for special cases

and as a guide to time windowing. Most of the data has

been windowed to accept about the first 4-5 is of the

signal with a cosine taper applied to the end. As it

turns out, this technique is nearly as effective as

deconvolution in removing the reflection components

because these are fairly well separated in time.
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If needed, a simple linear termination filter may

be applied to the signal. In this case, of course, the

same filter must be applied to the aluminum standard

waveform before spectral ratios are determined. The

standard filter used has a bandpass between 0.2 and 0.8

MHz with a 0.2 MHz cut-off at each end. These parameters

could be changed if necessary.

After the preliminary processing, the resultant

waveform is Fourier transformed using a 1024 point FFT

routine to obtain the amplitudes used in the spectral

ratio method. In order to efficiently handle the large

amounts of data obtained for each experiment, an

interactive graphics program package was developed.

Time windowing the waveform and frequency windowing the

spectral ratios is done by means of a graphics cursor

on the terminal. Hard copy plots of the spectra and

line fits may be obtained. The frequencies over which

spectral ratios were taken were dictated by the

bandwidth of the received signal. Only those frequencies

occurring in the peak energy of the spectrum were used

in determining Q.

4.2c Sources of Error

In this section the sources and nature of errors in

the velocity and attenuation are discussed. As will be

shown, it is difficult to assign a formal accuracy
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figure to the attenuation and at the present time, the

reliability of such measurements must be considered in

terms of repeatability. Errors in velocity, though, may

come from among the following:

1. Time interval measurement. The use of the HP

5308A time interval counter permits timing through

averaging to a resolution of 1 ns. In practice, however,

the true resolution is limited by the operator's ability

to judge the position of the first arrival and accurately

match this with the timing pulse. While the use of a

variable rise time timing pulse facilitates this match

for all but the most distorted waveforms, it is found that

the resolution obtained is better than or equal to +10 ns.

By comparing measured time between several separate

experimental runs of the transducer holders face-to-face

under identical conditions, it is found that time interval

is repeatable with a standard deviation, at of 20 ns. for

both P and S waves. The deviation is larger, about 50 ns

at pressures lower than 200 bars.

2. Sample length. Initial sample length is measured

to within +0.0001 inches (0.0003 cm). For the determination

of velocity this may be corrected for linear strain under

hydrostatic load. As will be discussed later, these types

of measurements were done. In the worst case, the
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maximum strain for any sample studied was about 3%.

If the initial length is uncorrected for pressure then

for one inch (2.54 cm) samples, there can be a maximum

error of 0.03 inches (.076 cm). One may use this to

evaluate the worst case accuracy for velocity. Letting

the standard deviation for the sample length, a be the

maximum error (an overestimate), then the variance of the

velocity estimate, a 2 may be written as:

2 2
2 G2 3V + 2 3V
v R 3 t 9t

(4-6)
2 2

t 2  R4

Thus, the variance is reduced for long sample lengths

and/or time intervals. Unless the velocity is very high

(for our constant, Z of one inch) the a term dominates a2 .t v

From the above equation we find that velocity is determined

to within 3% for both P and S waves except at low pressures

where this figure increases to 9-10%. These numbers were

confirmed by determining the velocity of fused quartz

with Vp = 5.9 km/s and Vs = 3.75 km/s for several sample

lengths. The results were well within the calculated

errors and also suggest that the 10% figure for low

pressures might well be an overestimate, the true value

being closer to 5%.
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3. Dispersion of Vp. Several trade-offs involving

sample dimensions, £ and d and the wavelength, , may

involve the accuracy of Vp determinations (Anderson and

Liebermann, 1966). In general, the length to diameter

ratio, £/d should be less than 5 for clear observation of

the P wave arrival. Otherwise, the arrival amplitude

decreases as compressional energy is delayed by sidewall

reflections. For R/d >> 5 the wave also travels near the

bar velocity (E/p) 1/2 Furthermore, to minimize dispersion

of the P-wave, d/A must be greater than 5 (Tu et al., 1955).

However, if X is too small (about three times the grain

size) then substantial scattering and waveform distortion

will occur (Mason and McSkimin, 1947).

For the system used for this thesis, k = 2.54 cm,

d = 3.18 cm. Thus R/d = 0.80 and the first criterion

holds. However, for reasonable values of A for 0.5-1.0

MHz waves, d/X is about equal to 5. Since X cannot be

decreased without entering the scattering region, this

number must be accepted.

In summary, P and S wave velocities may be determined

with an accuracy of 3% at pressures greater than 200 bars.

For lower pressures the accuracy is decreased to a

calculated value of 10% but measurements of P and S

velocities in fused quartz suggest that this value is

actually lower.
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The accuracy of ultrasonic attenuation measurements

is not easily determined. In fact, no formal equation for

the variance may be written that makes any sense. For

example, one may examine the formal errors on line

fitting to data. Define S = slope/a, where a is the

standard deviation of the estimate. Then, in terms of

statistical reliability, a large value of S corresponds

to a good fit to the data and for S<1, the fit must be

rejected. This is precisely the reason why the amplitude

ratio method is limited to low Q samples (large slope)

but it has no bearing on the accuracy or resolution.

Using synthetic data, Millahn and Jurczyk (1977) showed

that in some cases a high S was associated with large

errors and concluded that S only measures the modulation

character of the spectral ratio and not the accuracy of

the method.

It is apparent that the accuracy of the attenuation

measurement can only be based on repeatability and

comparison to other techniques. The validity of the assumption

that Gl/G 2 in equation 4-5 is constant will, however, be

discussed. Any one of the following sources of error

can result in non-exponential decay in amplitude as a

function of frequency. Generally, these effects are

second order.
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1. Deviation from plane waves: For large distances

from the transmitting transducer, the plane wave

assumption of equation 4.1 may not be valid. Theoretical

formulations of the diffraction field from a circular

compressional source are based on fluids and are thus not

applicable to shear waves and perhaps compressional waves

in solids especially if there is appreciable anisotropy

(Truell et al., 1969). It appears, however, that plane

wave deviation is not a major source of error. Q values

have been obtained for Lucite and Berea sandstone relative

to aluminum for 1, 2, and 3 inch (2.54, 5.08, and 7.62 cm)

sample lengths under unconfined uniaxial stress of about

300 bars. In both sets of samples the Q values for P and

S waves were consistent, Furthermore, as will be shown

in the next chapter, attenuation measurements made on the

same rock under the same conditions but with different

sample dimensions also produce consistent results.

2. Wave distortion: The transmitted wave may be

distorted by the superposition of other waves and modes.

As discussed in section 2.1c this may be overcome by

ensuring a large sample to transducer diameter ratio.

In this thesis, however, such effects are removed by

deconvolution or time windowing.
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3. Parallelism: If the sample faces are not planar

and parallel, significant errors can occur since the wave

is not reflected or transmitted in phase at the boundary.

However, as noted in section 2.1c this effect is pronounced

only at very high frequencies (>>1 MHz). In any event,

the faces of the samples are parallel to within +0.001

inches (0.0025 cm).

4. Digitizing errors: This may represent the most

likely source of error in the attenuation measurement and

is, of course, human error. If one assumes that digitizing

errors are random, then if we were to sample a waveform

n times,the resulting measured values would fall on a normal

distribution about the expected value. Furthermore,

errors in frequency space would also be normal. For truly

unbiased errors this would present little difficulty in

that spectral ratios are used although significant errors

could occur for narrow bands.

Unfortunately, there are few ways to test this and

other sources of errors. To determine probable error,

one technique used was the repeatability of measurements.

This was done for the Navajo sandstone and the results

are shown in Figure 4-8. Here, waveforms are shown for

a single run plotted and digitized three times (trials 1,

2, and 3) plus a waveform taken from a different

experiment but at the same paessure (trial 4). The



134

percent deviation in the Q values obtained from the

spectral ratio method are shown relative to trial 1

(an arbitrary choice). It is clear that the results fall within

a standard deviation of 7% and that digitizing errors are no

larger than the repeatability in this case. Furthermore,

during the course of the experiments, identical

conditions were encountered for the same rock but in

different runs. These cases provided a further check

on reproducibility. Also, as will be discussed in the

next chapter, the results obtained with the system

described in this chapter may be compared to data found

for the same rock under the same conditions but with a

different experimental setup and sample dimensions.

The reproducibility or precision of the Q measurements

then, is conservatively estimated at 15-20% depending

on waveform quality. However, this makes no statement

on accuracy. It may be that the estimates of Q obtained

with the spectral ratio method are biased. One way of

checking this possibility is to compare results from

this technique with those found from other methods.

There are several severe problems in doing this, though.

First, all will be seen in the later chapters, a direct

comparison would be valid only if parameters such as

frequency and strain amplitude were the same. This

is very difficult to achieve. Second, most of the rocks

suitable for comparison have high Q's and are thus not
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amenable to the spectral ratio method. One material that

may be used, however, is plexiglass. Since plexiglass is

crack free, amplitude effects are insignificant, but it has

a relatively low Q. Q values obtained using a dynamic

resonance technique (22) and the ultrasonic method (20)

agreed to within the precision of the spectral ratio

method and thus we may assume the results of this

method are not overly biased. While error bars are not

drawn for every point, they are included for several

representative data on each graph.

4.3 Forced Vibration - Resonance

Attenuation is found using longitudinal vibrations for

several experiments where pressure is not a parameter. The

simplicity of the method combined with easy data analysis

makes this technique attractive. As discussed in Chapter 2,

the resonance method is based on the phenomenon of standing

waves. In particular, for longitudinal (and torsional)

vibrations in a bar of length £, the velocity is given by:

2£f
V = Xf n (4-7)

n

where X is the wavelength and fn is the frequency of mode n.

The relationships between velocities and moduli are

functions of the sample geometry and were given for
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longitudinal and torsional vibrations in equations 2-6

through 2-8. For longitudinal waves in long, thin bars

(d/X << 1, where d is the sample diameter) the velocity

determined by the resonance method is known as the bar or

Young's modulus velocity:

V = (E/p)1/ 2  (4-8)

where E is the Young's modulus and p is the density.

-1The attenuation of the sample, QE is found by

measuring the half-power frequency bandwidth, Af about

a resonance peak at fn. From equations A-25 and A-26:

-1 Af (4-9)
E f n

Af may also be defined as the bandwidth between points -3db

in amplitude from the peak.

A block diagram of the resonance measurement system

used in this study is shown in Figure 4-9. A Hewlett-

Packard model 3300A function generator with a built-in

frequency sweep option (HP 3304A) can generate a sine wave

varying between 1 Hz and 100 kHz. This is used to quickly

scan a decade of frequency in order to locate resonance

peaks. The sweep output provides a voltage ramp

proportional to frequency and enables a plot of amplitude
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versus frequency to be made on an x-y plotter. A General

Radio 1161-A frequency synthesizer provides a sine wave

output with frequency settable to 0.01 Hz in a range of

0-100 kHz. This highly accurate frequency source is used

to determine the half power bandwidth of a resonance peak.

The exact frequencies are read from an HP5308A universal

counter.

The signal from the function generator or frequency

synthesizer is amplified by an HP 467A power amplifier

which drives the sample. The amplitude of the driving

signal is monitored on the Fluke voltmeter. The signal

from the detector on the sample is then amplified by an

HP 465A preamplifier. This output may be fed to an

oscilloscope or an HP 400E AC Voltmeter. The output of

the function generator can thus be connected to the

horizontal trace of the oscilloscope. As the frequency

approaches resonance, a Lissajous pattern may be observed.

This pattern could be used to determine phase shift and

thus attenuation but its use here was to identify nodal

points and vibration modes.

The AC voltmeter is used to determine the shape of

the resonance peak. Once the resonance condition is

achieved, the gain of the power amplifier is adjusted

so that the meter reads 0 db. The frequency is then
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adjusted to obtain the two -3 db points in amplitude.

The difference between these frequencies is the Af

bandwidth of equation 4-9.

A DC output proportional to the RMS voltage of

the received signal is provided by the AC voltmeter.

This is used to obtain plots of amplitude versus

frequency for a graphical display of the resonance

spectra. Theoretical resonance frequencies were

calculated using previously published elastic constant

data in order to facilitate the location of peaks.

The samples used in this study are about 15 cm

(6 inches) in length and 0.635 cm (1/4 inch) in diameter.

The large length to diameter ratio reduces dispersion

of the wave. Longitudinal vibrations are driven and

detected by a pair of 0.635 cm diameter coaxial plated

PZT-4 piezoelectric transducers. These are bonded to

the ends of the sample with shellac. Operated well

below their resonance frequency of 1 MHz, the transducers

tend to be more efficient at the higher frequencies.

This makes the Q analysis of higher modes difficult for

low loss samples since the effect is to spread the

bandwidth.

During the experiment, the sample is supported

exactly at the fundamental mode nodal point (Z/2).
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This is important for high Q (>100) samples since

deviations of the support from the node will result in

extraneous energy loss. For low Q samples, however, it

is sufficient to place the sample on a soft pad.

Unfortunately, the rigid support method eliminates the

possibility of studying even modes since nodal points

for these do not occur at £/2. In general, it was found

that given the simple sample supports used in this

experiment, only the fundamental mode is reliable for Q

measurements. A photograph of the resonance set-up and

sample holder is included in Figure 4-10. Not shown are

the frequency counter, x-y plotter, or oscilloscope.

The use of a piezoelectric transducer cemented to the

sample presents several difficulties. First, there is a

shift in the measured resonance frequency versus the

actual frequency due to the added mass of the transducer.

For equal transducer-sample cross-sections, the

mechanical resonant frequencies are given by (Bozorth

et al., 1951):

7 f 7 f

Mf tan c + Mtft tan c= 0 (4-10)

where Ms and Mt are the masses of the sample and transducer

respectively. fs is the transducer resonant frequency

and fc is the measured frequency. Ms and Mt are found by
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weighing the transducer and specimen beforehand. Equation

4-10 is then solved for fs using a simple Newton method.

Second, the layer of shellac used to bond the transducers

to the sample also effects the measured frequency (Terry,

1957). This effect is small, however, and will be

neglected.

Finally, onemust consider the effect of the mechanical

Q of the transducers on the actual Q of the rock. This

relationship is most easily expressed in terms of the

decrement, 6 = T/Q and masses (Marx, 1951):

s = (Mc - 2Mt6t)/M s  (4-11)

where the subscripts are as defined in equation 4-10.

For PZT-4 transducers with a mechanical Q > 500

(6t < 6 x 10- 3 ) and Mt = 0.5164 g one may evaluate this

effect. For the Solenhofen limestone studied in this

thesis, Ms ' 12g giving Mc = 13.15 g, and Qc = 260

(6c = 1.2 x 10-2). Thus from equation 3.28, s/Q c = 0.93.

Frederick diabase with Ms = 14.6 g and Q = 770, results

in Qs/Qc = 1.04. In the other extreme, the Berea

sandstone samples have Ms = 10 g with a Q of 30. In

this case, Qs/Qc = 0.9. Therefore, with no corrections

for transducer loss, Q values less than 1000 are determined
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within 10% even though differences between actual and

measured Q may be large for low loss rock such as the

diabase,

Given that the corrections mentioned above are

applied to the data, checks on the repeatability of the

Q determinations indicate a resolution of 5% or better.

This could be improved by a more sophisticated sample

support and a more accurate method of finding the -3 db

points. Comparison with previously published data imply

equal accuracy. A typical resonance peak is shown in

Figure 4-11 for the fundamental mode of the Solenhofen

limestone.

4.4 Static Measurements

Linear strain as a function of hydrostatic

confining pressure is determined for all the samples

studied. This is done for two reasons. First, from

these experiments, the correction term for the sample

length may be found for use in determining the ultrasonic

velocities. Second, the sample may be characterized in

terms of crack density as discussed by Walsh (1965). This

interpretation will be particularly useful in the study of

attenuation in thermally cracked rocks.

In the experimental method used, two BLH SR-4,

FAE-50-12S6 electric resistance strain gages are epoxied

directly to the sample, parallel to its length. Samples



142

are about 0.5 inches (1.27 cm) in diameter by 1.25 inches

(3.18 cm) long. The use of duplicate gages provides a

backup in case of failure of a gage and is also a check

on the reliability. In the case of porous rocks, the

surface is coated with A1203 filled epoxy prior to gage

installation. This insures a smooth surface to prevent

gage collapse into pores at high pressure. The epoxy

filler has a negligible effect on the elastic properties

of the rock.

The samples are then potted in an RTV compound to

isolate them from the pressure medium. Since the most

likely place for the pressure medium to leak is along the

gage leads, these are coiled to provide a longer path for

any possible leak. The potted sample is then coated

several times in kerosene impervious "K-Kote". The gage

leads along with thermocouple leads are then connected

to the pressure vessel plug.

A block diagram of the static measurement system is

illustrated in Figure 4-1.2 and a photograph of the system

is shown in Figure 4-13. The experiments are run in the

same pressure vessel as the ultrasonics. Pressure is

determined by a Manganin coil with the output of the

associated bridge circuit fed to the horizontal axis of

dual trace HP X-Y recorder. Similarly, the strain gages
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are connected to duplicate bridges with the outputs

connected to the Y1 and Y2 axis of the recorder.

The experiments are generally run with a strain gage

calibration so that one inch on the record is equal to a

strain of 500 su (5 x 10- 4 ). In using this technique to

find d/k for a length correction, the pressure axis is

calibrated so that one inch is equal to 250 bars. Otherwise,

one inch is set equal to 500 bars. These settings

provide more than enough resolution needed.

During the experiments, pressure is increased slowly

to maintain thermal equilibrium as monitored by the

thermocouple. In all experiments, strain as a function

of increasing and decreasing pressure is found to

determine hysteresis effects. If there is evidence of

plastic flow, a second cycle is run.

4.5 Sample Preparation

4.5a Pulse Experiment

Rock samples are cored using a diamond core drill

with sufficient water flushing to prevent damages to the

sample. The rocks are then cylindrically ground to a

diameter of 1.250+0.001 inches. Following this the sample

faces are ground flat and parallel to within +0.001

inches. Care is taken during the grinding procedures to

keep the samples cooled so that thermal cracking near the

surface is minimized.
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All samples are dried out at 800C in a vacuum system

with 10 microns of pressure (10-2 torr). For experiments

requiring a dry rock, the sample is removed from the vacuum

oven and immediately jacketed. It is unavoidable, however,

that some moisture from the air will be adsorbed by the

rock. To saturate a rock, the sample is again placed in the

vacuum along with a tub of the saturating fluid. Both are

held at the maximum obtainable vacuum determined by the

boiling point of the fluid. The sample is then dunked into

the tub and the vacuum then released. This procedure

insures full saturation for most porous and relatively

permeable rocks. For rocks that are difficult to

saturate, the sample, still immersed, is placed in a small

pressure vessel and about 10 bars pressure of Argon is

applied.

4.5b Resonance Experiment

Samples used for the resonance experiments are

treated slightly differently than for the pulse method.

For soft rocks, such as sandstone, cores are taken with

a 1/4 inch (0.635 cm) i.d. drill. Since the samples are

about 5 to 6 inches long (13-15 cm) and very thin, it

is not possible to cylindrically grind them without

breaking. Thus, only the ends are faced off with the

grinder. For hard rocks, however, cores are made using

a 5/16 inch (0.794 cm) i.d. drill and the samples are
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able to be ground down to a 1/4 inch (0.635 cm) diameter

and the ends faced off parallel. If done carefully,

little surface damage results. As with the pulse

experiment, each sample is dried out in the vacuum oven.

Many of the resonance experiments require the heating

of the samples to thermally crack them. In order to

compare the results with data obtained using differential

strain analysis (Simmons et al., 1974; Richter and

Simmons, 1974; and Cooper and Simmons, 1977) a heating

rate of no more than l-20C/min is required. The technique

used is very similar to that described by Richter and

Simmons. A diagram of the furnace system is shown in

Figure 4-14. The rate at which the motor drives the

controller determines the heating rate. Furnace

temperature is monitored by a thermocouple and strip

chart recorder. For all the runs, temperature is

increased to the desired level and held constant for at

least one hour. The temperature is then lowered at the

same rate as before.

Of some concern is the variation of temperature

within the furnace as a function of distance from the

center. Both ends of the furnace are packed with fire

brick in order to minimize temperature differences.

An experimental determination of temperature changes

showed that there was no more than 5% variation across

I' ~:
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the length of a sample in the furnace.

4.6 Description of Samples

The rock samples used for this study were

chosen for two distinct reasons. First, several porous

upper-crustal rocks, two sandstones and a limestone, were

chosen because one would expect low Q's and thus these

are amenable to the pulse technique. Furthermore, these

rock types are commonly encountered in exploration and

might be considered good reservoir rocks. Two tuffs were

chosen due to their high porosity but, as will be shown

later, low crack porosity compared to the sandstones. A

Colorado oil shale and a New York calcareous shale

complete the samples used in the ultrasonic experiments.

Secondly, three additional rocks were chosen for use in

the resonance experiment. Two of these, the Solenhofen

limestone and Maryland diabase, are particularly well

suited for thermal cracking experiments since they have

zero crack porosity initially, Westerly granite was also

chosen for this type of experiment.

In general, all of the samples chosen are quite

commonly used in the laboratory and thus much subsidiary

information on their properties may be obtained. In fact,

several of the rocks: Berea sandstone, Bedford limestone,

and Westerly granite, are accepted "standard" rocks by the
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U.S. Bureau of Mines (Krech et al., 1974). In this section,

each rock will be discussed in terms of its petrographic

description, physical properties such as density, porosity,

permeability and grain size. Porosity and densities are

determined by first weighing the sample dry and then

saturated and immersed in CC14 .

Further information on the mechanical properties of

most of the samples were obtained from static linear

strain versus pressure curves. According to the theory

proposed by Walsh (1965), these may be interpreted in terms

of crack porosity. It is assumed that the total change in

porosity when all the cracks have closed is equal to the

initial crack porosity, qc. Very simply, c is the

intercept on the volumetric strain axis of the straight

line section of the stress-strain curve extrapolated to

zero pressure. In this analysis, volumetric strain is three

times linear strain. Furthermore, the maximum crack aspect

ratio, a, may be estimated from the pressure required to

completely close the cracks, P c. From Walsh theory

P = 7Ea/4(l - a2 )

or to order of magnitude:

P = Ea
c
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where E is the matrix Young's modulus and a is the Poisson's

ratio. This aspect ratio, in and of itself, is little

use however. Of more direct interest is the closure

pressure, Pc. One may consider a rock with a high closure

pressure to contain, on the average, higher aspect ratio

cracks than one with a low closure pressure.

1. Berea Sandstone

The Berea sandstone is a relatively clean, flat

bedded, light gray, medium to fine-grained protoquartzite

with a silica and clay cement. The Berea is Mississippian

in age, deposited in deeply cut channels in northern Ohio

(Krech et al., 1974). Classified as a feldspathic sandstone,

the Berea contains about 75-78% quartz, with feldspar

ranging from 2 to 16% (Timur, 1968; Krech et al., 1974).

Carbonates make up 4-5% and clays about 5-10%. Physical

parameters for the Berea and other samples are listed in

Table 4.1. While the porosity may vary only 5%, there are

wide variations in permeability up to 40%. Grain size and

maximum pore diameter is about 0.1 mm. Grain contacts are

point to concave-convex. Acoustically, the Berea is about

9% anisotropic with nearly orthohombic elastic symmetry

(Krech et al., 1974). For all of the experiments, cores

were taken perpendicular to the bedding plane. While

cross-bedding in this sandstone is common, no evidence of

such was seen in the samples.
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Linear strain as a function of hydrostatic pressure is

shown in Figure 4-15. This represents a classic example

of the effect of cracks. As pressure increases, cracks

close and the rock stiffens. After 1000 bars the small

cracks are completely closed and the sample behaves as an

elastic material with constant modulus. On the return

cycle permanent hysteresis is noted - not all the cracks

having closed elastically. There is no evidence of plastic

flow or pore collapse.

Applying the Walsh analysis to the Berea data we

obtain c = 0.465% with a closure pressure of 1000 bars.

This is somewhat lower than the 0.2% crack porosity

estimated from seismic velocities as a function of pressure

(Toksiz et al., 1976). The discrepancy is probably due to

the fact that pressures for the velocity data did not

exceed 1 Kb. Thus, aspect ratios on the order of 10- 3

are not as well determined as for smaller ratios.

2. Navajo Sandstone

The Navajo sandstone is included in the Glen Canyon

group of the Colorado Plateau eolian sandstones. Lower

Jurassic in age, the Navajo is found in beds up to 300 feet

thick, exposed primarily along the Colorado River.

Brownish red in color, it is composed of medium to fine

grains and is well sorted. Dune bedding is found throughout

the formation. Classified as an orthoquartzite, the Navajo
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contains about 85% quartz and 2% feldspar. The grains are

cemented primarily by silica with minor amounts of clay.

Porosity and permeability vary greatly within the

formation, ranging from 11 to 28% and 100 to over 1000

md respectively. The sample studied had a porosity

of 16% and the permeability given in Table 4.1 is an

estimate. The grains, subrounded, are about 0.15 mm in

diameter with planar contacts.

Linear strain for the Navajo is shown in Figure

4-16. In general appearance, it is very similar to the

Berea. Crack porosity determined by the zero pressure

intercept is 0.411% with Pc = 1250 bars. The hysteresis

on the Navajo run is slightly smaller than the Berea.

Intuitively then, given this fact plus the lower porosity,

one would expect higher velocities and Q compared to the

Berea. This is observed (Timur, 1968; Toksiz et al., 1978).

3. Bedford Limestone

The Bedford limestone is also known as Salem, Spergen

and Indiana. The Bedford is a flat lying Mississippian age

limestone. Primarily found in Indiana, it occurs as massive

and lenticular attaining thicknesses of 50 to 60 feet.

Layers of shale are associated with the limestone. Light

tan in color, the Bedford is fossiliferous and may even be

referred to as a Spergenite or Coquina. It is coarse

grained, made of poorly sorted fossil debris. The fossil

material (69%) may be recrystallized and is always well
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cemented by crystalline calcite (31%). The pore spaces

are vuggy and irregularly scattered (Timur, 1968; Krech,

et al., 1974). The grains are about 0.75 mm in diameter.

Porosity is about 12% and the permeability may vary as

much as 18% (Krech, et al., 1974). The Bedford is nearly

isotropic acoustically, with only a 3% velocity anisotropy

with the low value elastic axis perpendicular to the

bedding. Bedding planes, however, were nearly impossible

to pick out visually on the lab samples.

Linear strain for the Bedford limestone is shown in

Figure 4-17. Here a classic example of plastic flow and

pore collapse is seen. In the first cycle, it is

noticed that the crack porosity is extremely low, 0.09%

with Pc = 350 bars. The rock behaves elastically from

250 to 1000 bars where the onset of plastic behavior

occurs. During the experiment, in the zone of plastic

flow the pressure was increased in increments of 250 bars

and kept at pressure until the material had completely

deformed. For decreasing pressure, the rock behaves more

or less elastically but a large increase in crack porosity

due to pore collapse is noted. In the second cycle, the

rock is stiffer for increasing pressure compared to the

unloading curve of the first cycle due to the effect of

friction. Crack porosity and closure pressure obtained

from the second cycle are 0.4% and 1100 bars. Elastic

behavior continues up to about 2250 bars where a slight
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amount of plastic flow reoccurs.

4. Ammonia Tanks Tuff

The Ammonia Tanks tuff is the upper member of the

Timber Mountain Tuff series. It is part of a quartz

bearing ash flow erupted 11 m.y. ago from the Timber

Mountains caldera center in southern Nevada near the

nuclear test site (NTS). The Ammonia Tanks formation

attains a thickness of about 900 feet beneath the Timber

Mountain dome (Byers et al., 1976).

Classified as a moderately welded quartz latite,

the Ammonia Tanks is compositionally complex. Brown to

red in color, its most outstanding feature is the

presence of quartz phenocrysts that are commonly 3 mm

long. These and other phenocrysts make up anywhere from

30-40% of the rock. Of the total, mafic phenocrysts

represent 5-10% while felsic phenocrysts make up the bulk

of the remainder. The felsic component is generally found

with about 20% quartz, 40-50% alkali feldspar and 20%

plagioclase.

The porosity of the samples used in this thesis was

measured as 5.8% but can be quite variable within the

formation. The grain (phenocryst) sizes average about

1-2 mm but can be as large as 5 mm. Grain contacts are

point to floating. The large grain size imples that

scattering dominates the acoustic properties of the rock.

As will be seen later, this is indeed true.
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Linear strain for the Ammonia tanks is shown in

Figures 4-18 (Morrow et al., 1977) and 4-19. An

interesting comparison between this tuff and the sandstones

can be made in terms of crack populations. For low

stresses (<60 bars) the tuff behaves elastically with no

hysteresis while the sandstones show evidence of crack

closure. However, for high stresses, the maximum strain

and crack porosity is obviously larger for the tuff. This

implies that the tuff, while having a larger total crack

porosity than the sandstones, contains cracks with a

larger average aspect ratio. Apparently the Ammonia Tanks

Tuff has no very fine cracks, a hypothesis that could be

tested from attenuation measurements if scattering were

unimportant. The volume strain analysis of Figure 4-19

gives 4c - 1.25% with Pc = 1600 bars.

5. Tunnel Beds Tuff

The Tunnel Beds Tuff (for lack of a better name) is

an ash fall tuff from NTS in Nevada. The particular

sample studied was obtained near the side of Aqueduct Mesa

Road near T tunnel in Area 12 and represents a typical

example of the latest eruptures from the peralkaline

Silent Canyon caldera (F.M. Byers, personal conmmunication).

Tunnel Beds is yellowish-gray, poorly sorted with fine to

very coarse grains 2-4 mm in diameter. Pumice granules

are common and zeolitization is nearly complete. While
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the porosity is extremely variable, the value obtained for

this sample was 29.6%.

An estimate of the mineral and rock constituents of

the Tunnel Beds Tuff (F.M. Byers) gives a phenocryst

content of 20% of which 5% (of total rock) is quartz,

14% feldspar and 1% biotite. 5% of the rock is

peralkaline lithic fragments while the remaining 75% is

groundmass including 40% clinoptilotite, 10% clay, 15%

opal and silica minerals and 10% glass.

Linear strain for the Tunnel Beds is shown in Figures

4-18 and 4-20. As with the Ammonia Tanks Tuff, low

stresses produce little hysteresis in strain as compared

to the sandstones. At higher pressures (Figure 4-20),

however, this tuff behaves differently even compared to

Ammonia Tanks. Pore collapse during the first loading

cycle begins at about 500 bars and the total linear strain

at 2850 bars is 2.7%. Permanent hysteresis for the first

cycle is 0.8% linear strain. The second loading cycle

shows that a large population of fairly high aspect ratio

cracks has been produced by the initial pore collapse.

Crack porosity and closure pressure for the first loading

cycle are about 0.3% and 300 bars respectively but these

values are unreliable due to the onset of pore collapse.

For the second cycle, c = 0.9% and Pc 1= 000 bars.
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6. Colorado Oil Shale

The oil shale used in this thesis was obtained from

the Anvil Points Mine located in the Naval Petroleum and

Oil Shale Reserve about 5 miles northwest of Rifle,

Colorado. While its exact origin is not well-determined,

the sample is part of the Parachute Creek member of the

Green River Formation of the Piceance Creek Basin and

represents a typical, medium grade oil shale with about

20% kerogen by weight. The Green River Formation was

deposited during the Eocene in what was then, Lake Uinta.

The oil shale members were deposited in quiet waters far

from shore (Donnell, 1964).

The Parachute Creek member, about 500 feet thick at

the Anvil Points mine, consists of three oil bearing zones,

the upper two being the richest and exposed at the mine.

The oil shale is an impure fine-grained carbonate

rock containing varying amounts of organic matter, clay

minerals, and small amounts of volcanic ash or tuff

(Duncan and Denson, 1949). The particular sample studied

is dark brown and resembles wood both in color and grain

texture. As with most oil shales, there is little or no

measureable porosity or permeability. The measured density

is 2.004 g/cm3 . The sample is visually anisotropic and

thus cores were taken both normal and parallel to the

bedding planes.
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Linear strain as a function of pressure for both

orientations is shown in Figure 4-21. Oil shale has the

peculiar property of behaving elastically similar to

some polymers (B. Bonner, personal communication). As

will be seen from the velocities, a typical Poisson's

ratio is 0.4. The static measurements clearly show a

30% anisotropy in linear strain. Little or no crack

porosity is evident and there is little permanent

hysteresis.
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7. Esopus Shale

The Esopus Shale is a dark gray, calcareous silty

shale found in eastern New York State. Devonian in age,

outcrops run from Port Jervis to Kingston and up to

Albany County. The formation is fairly uniform with

thicknesses ranging from 110-150 feet. The rock has a

sandy texture and weathers easily. When dry, it is

extremely friable and difficult to work with.

The sample used was collected at the

Atlantic Cement Co. quarry in Ravena, New York. The

following mineralogical analysis is based on a sample from

a site about 5 miles from the quarry (New York Dept. of

Commerce, 1951). The distinguishing feature of the

Esopus shale is its large quantity of quartz, greater than

30%. It also contains more than 30% illite clay with

5-10% calcite and dolomite. Muscovite occurs with about

1-5%.

Esopus has a very low permeability and thus porosity

is impossible to measure by the methods available. However,

water content is about 14% of the dry weight and the bulk

3density is 2.666 g/cm . Linear strain curves were not

obtained for this sample. Furthermore, a normal

experimental run could not be accomplished since it

requires over a week for pore pressure to completely

equilibrate.
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8. Westerly Granite

The Westerly Granite is an extremely well studied

rock and despite its reputation as a 'standard' its

properties are quite variable. Late Pennsylvanian or

Permian in age, Westerly and associated pegmatites intrude

folded Pennsylvanian sedimentary rocks along the

southwestern shore of Narragansett Bay (Krech et al., 1974).

Samples used for analysis are quarried in and near

Westerly, Rhode Island.

Westerly granite varies from fine-grained rocks to

small pegmatites with compositions ranging from granite to

granidiorite. Light gray in color, the sample used in

this study has a massive, fine-grained, equigranular

texture. Classified as a granite, it contains 27.5%

quartz, 35.4% microcline, 31.4% plagioclase (an1 7) and

4.9% mica (Brace, 1965). The porosity can vary between

0.3 and 1%. Grain diameters average about 0.175 Rmm.

Despite its apparent homogeneity, the Westerly granite is

accoustically about 10% anisotropic with orthorhombic

symmetry (Krech et al., 1974; Birch, 1960). Cores used

in this study were taken both parallel and normal to the

presumed fast axis.

Linear strain for the two orientations of Westerly

granite is shown in Figure 4-22. The deformation behavior
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is very well-behaved and analysis of crack closing gives

a crack porosity of 0.3% and a closure pressure of 1000

bars for the 'soft' direction and 0.12% and 500 bars for

the 'stiff' direction. Hysteresis and permanent strain

are both larger for the core cut in the slow direction.

The intrinsic (high pressure) modulus is nearly equivalent

for both cores.

9. Solenhofen Limestone

The Solenhofen is an extremely fine-grained, buff

colored, crystalline limestone. It is considered to be

one of the finest lithographic limestones available,

Jurassic in age, its original source is Solenhofen,

Bavaria. The Solenhofen is homogeneous both in

appearance and elastically (Birch, 1960) and is of fairly

high purity. While the bulk of the rock is CaCO3 (calcite),

it also contains 0.2% A1203, 0.3% FeO, 0.1% K20 and Na20

and varying small amounts of water (Robertson, 1955). It

has an interlocking grain structure with a mean grain

diameter of 0.005 to 0.008 mm.

Solenhofen is relatively porous for a lithographic

limestone ( -= 1-4%) but is essentially crack free in

its virgin state. This is readily apparent in Figure

4-23 where linear strain as a function of pressure is

virtually a straight line for pressures less than 2 Kb.

At higher pressures, however, pores begin to collapse
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plastically.

10. Frederick Diabase

The Frederick Diabase is a fine-grained olivine

basalt from a Triassic dike in Frederick, Maryland.

Like the Solenhofen limestone, it is crack free and

homogeneous in its virgin state. It is composed of about

48% an67 (plagioclase), 49% augite hypersthene and 1% mica.

The average grain size is 0.175 mm and the porosity varies

from 0.1 to 0.3% (Brace, 1965).

Linear strain is shown in Figure 4-23 together with

Solenhofen. Again, complete linear elastic behavior with

little or no evidence of crack porosity is seen. In fact,

some consider the Frederick diabase in its virgin state

to be close in mechanical behavior to metals.



Table 4.1 Sample Parameters

Total Crack Closure

Rock Name Porosity % Porosity % Pressure Permeability Grain Diameter p Bulk p Grain

bars md mm g/cm3

Berea Sandstone 18.4 0.465 1000 75 0.10 2.137 2.620

Navajo Sandstone 16.4 0.411 1200 100 0.15 2.189 2.619

Bedford Limestone 11.9 0.090 350 1a 0.75 2.335 2.652

Ammonia Tanks Tuff 5.8 1.25 1500 - 1-2 2.314 2.457

Tunnel Beds Tuff 29.6 0.30 300 - 2-5 1.607 2.283

Colorado Oil Shale -- -- - 2.004 --

Esopus Shale -- - -- - - 2.666 --

Westerly Granite 0 .3-1b 30 1000 10-3 c 0.750 2.62 2.646
0.12 500

Solenhofen Limestone 4 0 -- - 0.008 2.55 2.66

(Peselnick, 1962)

Frederick Diabase 0.2 0 -- 0.175 3.020 3.026

(Brace, 1965)

Krech et al. (1974)

Brace (1965)

Frangos (1967)

~1~ C--CI---C-II-I--- - - _ . - ---------_-~I
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FIGURE CAPTIONS

Figure 4-1. Block diagram of the ultrasonic measurement

system, including both signal and timing circuits.

Figure 4-2. Photograph of the ultrasonic measurement

system electronics. The coaxial cable from the

pulse generator leads to the pressure vessel.

Figure 4-3. P and S waveforms superimposed with the timing

pulses. The rise time of the timing pulse is variable

to match the rise of the received signal.

Figure 4-4. Diagram of the transducer holder - sample

assembly mounted inside the pressure vessel. TR

and RC are the transmitter and receiver transducer

holders. SM is the sample and TC is the thermocouple.

PC and PF refer to the confining and fluid pressures.

Signal electrical leads are labelled P and S.

Figure 4-5. Photograph of the transducer holder-sample

assembly.

Figure 4-6. Cutaway view of the transmitter holder

showing the P and S wave transducers and electrical

leads, the backing spring, and the pore pressure

tubing.
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Figure 4-7. S wave transducer assembly and wiring diagrams

for the stacked P-S transducer arrangement. Switches

are shown for the generation and reception of S waves.

Figure 4-8. Reproducibility of waveforms and Q values for

the Navajo sandstone. See the text for explanations.

Figure 4-9. Block diagram of the resonance measurement

system.

Figure 4-10. Photograph of the resonance system including

the sample and support. Not shown are the oscilloscope,

preamplifier frequency counter, or X-Y plotter.

Figure 4-11. Resonance peak for the fundamental

longitudinal mode in Solenhofen limestone.

Figure 4-12. Block diagram of the static stress-strain

measurement system.

Figure 4-13. Photograph of the static measurement system.

Figure 4-14. Block diagram of the heat treating furnace

system. The voltage of the power supply is set so

that the motor drives the controller at a rate to

produce the desired heating rate.

Figure 4-15. Linear strain as a function of hydrostatic

confining pressure for the Berea sandstone. In this

and later figures, the loading and unloading paths

are shown and denoted by the arrows.
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Figure 4-16. Linear strain as a function of confining

pressure for the Navajo sandstone.

Figure 4-17. Linear strain as a function of confining

pressure for the Bedford limestone for two successive

pressure cycles.

Figure 4-18. Linear strain as a function of unconfined

uniaxial stress for the Tunnel Beds (TB) and Ammonia

Tanks (AT) tuffs and the Berea sandstone (from Morrow

et al., 1977).

Figure 4-19. Linear strain as a function of confining

pressure for the Ammonia Tanks tuff.

Figure 4-20. Linear strain as a function of confining

pressure for the Tunnel Beds tuff for two successive

pressure cycles.

Figure 4-21. Linear strain as a function of confining

pressure in the Colorado oil shale in the directions

perpendicular and parallel to the bedding.

Figure 4-22. Linear strain as a function of confining

pressure for the Westerly granite for two mutually

perpendicular directions. The curve labelled JL

is presumably the slow or soft direction based on

the measured acoustic velocity.

Figure 4-23. Linear strain as a function of confining

pressure for both the Solenhofen limestone and

Frederick diabase.
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CHAPTER 5

THE EFFECT OF PRESSURE AND SATURATION ON Q

It is clear from previous experimental work and

theoretical considerations outlined in the previous

chapters, that fine cracks control the pressure

behavior of Q in much the same way as velocity. The

effect of saturation conditions, though, are much less

predictable. It is the purpose of this chapter to

study both of these aspects of attenuation in more detail.

The emphasis is placed on porous rocks. First Q data as

a function of pressure obtained using the ultrasonic pulse

technique, for both dry and completely saturated samples,

is examined. For the Berea sandstone, partial

saturation effects will also be investigated. The data

will be compared to each other on a qualitative basis -

in terms of the known physical properties and crack

distribution characteristics described in Chapter 4.

The pressure dependent data also provide a valuable

tool in quantitatively describing the contributions of

the several attenuation mechanisms discussed in Chapter 3.

Using the mathematical formulations developed in that

chapter, an unusually complete set of data for the Berea

sandstone obtained at the Chevron Oil Field Research Co. (COFRC)

and described by Toksbz et al. (1978), will be modeled.
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The attenuation model developed is then extended,

theoretically, to other frequencies, thus enabling a

comparison with low frequency seismic data In fact, an

important part of this work is to determine the extent to

which laboratory data may be used to infer rock

properties from seismic data obtained in the field.

The final discussion of this aspect, though, must be put

off to the last chapter. It will seem from the modeling,

however, that crack and grain boundary frictional sliding

is the dominant mechanism of attenuation in the upper

crust. Other mechanisms such as fluid flow play

secondary roles. The presence of fluids does increase

the attenuation due to friction but at this stage the

effect can only be treated empirically.

Finally, the attenuation model will serve as a

basis for the understanding the effects of partial

saturation and the comparison of the Berea Q data with

those obtained for other rocks.

5.1 Experimental Data

In this section, ultrasonic Q data as functions of

pressure and saturation will be presented. The rocks

studied are the Berea and Navajo sandstones, Bedford

limestone, Esopus shale, Colorado Oil Shale, and

Ammonia Tanks and Tunnel Beds tuffs. For all the
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experiments, an aluminum sample with the same shape of

the rock sample was used as a standard reference. Q

values were calculated from spectral ratios of rock-

aluminum pairs at each pressure (see equation 4-5).

5.1a Berea Sandstone

The Berea sandstone is a particularly important rock

to investigate because it is considered a "standard",

well studied by many investigators. In particular we

have, in this case, the opportunity to compare Q values

obtained under similar conditions using the same ultrasonic

pulse technique but at different laboratories (MIT and

COFRC) with different sample dimensions. Furthermore,

onemay also compare the ultrasonic data with resonant

bar data (Gardner et al., 1964) for the same saturation

and pressure conditions. It is because of this unique

position the Berea occupies, that it is studied in the

most detail and is used for theoretical modelling.

Four experiments were performed at MIT: one with a

completely dry sample, the second fully water saturated,

the third partially saturated and the fourth an experiment

where gas is released from solution in water by the

reduction of pore pressure. Four experiments were also

run at COFRC. Again, dry and saturated rocks were studied

but with two saturated experiments of different pore

pressure to confining pressure ratios. Also, Q values

were obtained for a methane saturated sample.
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Unless otherwise noted, for the saturated runs of

the Berea and other rocks presented in this thesis, Q

values are plotted as a function of differential or effective

pressure, Pd, defined as Pc-Pf where Pc is the confining or

overburden pressure and P is the fluid or pore pressure.

In the first experiment, done at MIT, Q values and

velocities were determined for a vacuum dried sample at

confining pressures up to I kbar. The velocity

determinations are shown in Figure 5-1. The increase for

P and S waves at low pressures is due to the closing of

cracks (Toks6z et al., 1976) and corresponds to non-linear

region of the static stress strain curve in Figure 4-14.

Waveforms normalized spectra, and spectral ratios are shown

for P and S waves in Figures 5-2 and 5-3 respectively for

several confining pressures. In these and later figures,

the dashed line in the spectrum plot corresponds to the

aluminum standard (Al). Only the waveforms for the rock

sample are shown. A rather large DC shift is noted for

the S waves. This feature, common to many of the

experiments presented in this chapter, is due to low

frequency noise. This could be filtered out prior to

time windowing but was not necessary since the low

frequency portion of the spectrum is not used in

determining Q. Clearly, the slopes of the spectral

ratio plots decrease with increasing pressure indicating
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an increase in Q for both P and S waves. The resulting

Q values, calculated from the slopes and velocities are

shown in Figure 5-4.

Q for the dry Berea sandstone increases rapidly with

pressure, approaching a value over 100. As stated in

Chapter 4, these high pressure, high Q, values are

particularly unreliable and thus, from this experiment,

we are unable to determine ultimate Q values. However,

the trend in pressure is obvious and furthermore, Qs is

about equal to Qp as predicted by the dry friction

attenuation model (Walsh, 1966).

A Berea sample was then saturated with distilled

water and the experiment repeated. The fluid pressure

was maintained at 0.465 the confining pressure for

differential pressures ranging from 45 to 2000 bars.

This ratio of pore-fluid and confining pressures is a

nominal value for saturated sedimentary rocks where the

fluid pressure is equal to the hydrostatic pressure of

a water column.

The presence of water increases the velocity of P

waves while slightly decreasing the velocity of S waves

as illustrated in Figure 5-1. The increase in velocity

with pressure is not as great as for the dry sample.

Again, waveforms, normalized spectra, and spectral

ratios are shown for the saturated Berea sandstone in

Figures 5-5 and 5-6. The slopes of the ratios at a given
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pressure are larger than for the dry sample but as with

the dry case, decrease with pressure. The resulting Q

values are shown in Figure 5-7 as functions of differential

pressure. Both Qp and Qs are substantially lower than

their dry counterparts and in the saturated case Qs is

much lower than Q , approaching a value of only about 30

even at high pressure. Qp increases to a value of about

60 by a pressure of about 750 to 1000 bars. While it

appears that the effect of fluid saturation is to

dramatically increase the attenuation, especially for S

waves, the dependency of the Q values on crack closing is

still observed. Thus, the bulk of the effect of

saturation seems to be the altering of the friction

mechanism.

A similar set of Q determinations for the Berea

sandstone were obtained at the COFRC (Toksbz et al.,

1978). While the physical conditions (pressure and

saturation) of the experiments were similar to those

performed at MIT, the geometry was somewhat different.

A description of the laboratory set-up and high pressure

system is given by Timur (1977). The samples used were

cylindrical, 8.9 cm in diameter and 5.1 cm long. The

increased length relative to the MIT system improves

the resolution of the Q values since the slope of the

spectral ratios versus frequency, for a given Q, is
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larger. Also, pre-processing and deconvolution or

windowing were not required since the reflections were

further delayed in time and did not interfere with the

direct wave.

In the first experiment, the sample was dried in a

vacuum oven while being periodically flushed with argon.

Q values were determined in the range of 1 bar (14.7 psi)

to 550 bars (8000 psi). These results are shown in

Figure 5-8 for both P and S waves. Again it is seen that

both Qp and Qs increase rapidly with confining pressure

with a slight leveling off at higher pressures. Also,

Qs is slightly higher than, or equal to Qp.

In the second experiment, a Berea sample was fully

saturated with methane and the experiment repeated with

Pf = 0.465 Pc* The resulting Q values are plotted as a

function of differential pressure in Figure 5-9. Q
p

increases rapidly at first with pressure but appears to

begin to level off at higher pressures. Qs is again,

either equal to or slightly larger than Qp. It exhibits

a similar but a little more gradual behavior. As would

be expected, the differences between the dry rock and the

methane saturated rock are small.

Following this, a sample was completely saturated

using the same techniques described in section 4.8 with

an NaCl brine of 67,191 ppm concentration. Again Pf was



195

maintained at 0.465 Pc throughout the experiment. Q values

obtained are shown as a function of differential pressure

in Figure 5-10. It is seen again that Q increases with

pressure but that Qs is less than Qp.

A final brine saturated (NaC1 = 161,334 ppm)

experiment was run in which Pc was fixed at 1035 bars

(15,000 psi) and Pf decreased from 1000 bars (14,500 psi).

The results are shown in Figure 5-11 and agree quite well

with the data shown in Figure 5-10. This implies that the

law of effective pressure may apply for attenuation as well

as velocity. The slight increase in Q at high pressure is

not significant.

The remarkable aspect of these data is that they

agree very well with data obtained under nearly

identical conditions at MIT but with different sample

dimensions. This fact greatly enhances our confidence in

the experimental technique and implies that the assumptions

made in Chapter 4 are valid. Q values obtained, if not

with great resolution, are at least reasonable.

From another point of view, these data imply that Q

is not very sensitive to the brine content of the pore

water. Both Qp and Qs remain about the same for

saturations of distilled water, 67,191 ppm brine and

161,334 ppm brines at all pressures.

Finally, two experiments were done at MIT to
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investigate the effects of partial water saturation on Q.

The primary influence of water saturation is known from

data like those of Gardner et al., 1964. The motivation

for these experiments, however, lies in reported high

P wave attenuation from gas sands relative to what would be

expected for completely water saturated sediments. The

data from Gardner et al. imply that the Q for a partially

saturated sandstone should be about the same as for a

completely saturated sample (see Figures 2-4 and 2-5) in

apparent contradiction with the in-situ observations.

The question we wish to answer here is if there is any

evidence to support a higher P wave attenuation (lower Q)

for the partially saturated case.

The first experiment was essentially a repeat of

the conditions examined by Gardner et al. for which Qp

and Qs are determined as a function of pressure for a

sample of given saturation. Partial saturation was

obtained by slowly drying out a completely saturated

sample until a mass, M, given by the following equation

was reached:

M = V{p(l - #) + p'Sw}

V is the sample volume, p is the matrix density,p' the

water density and Sw is the water saturation. After the
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correct mass was obtained, the sample was stored in an air-

tight plastic bag to allow the pore water to equilibrate

throughout the rock. The Berea sandstone is relatively

permeable and storage of over a week was considered adequate.

Prior to jacketing the sample was reweighed and the saturation

was determined to be 37% (Sw = 0.37).

P and S wave velocities and Q's were then found as a

function of confining pressure (Pf = 0). Velocities for this

experiment are shown in Figure 5-12. These values are as would

be expected from theoretical considerations (Toks8z et al.,

1976). Waveforms, spectra, and spectral ratios are shown for

several pressures in Figures 5-13 and 5-14. Q values are shown

in Figure 5-15. Comparing these data with those of the

completely water saturated Berea sandstone (Figures 5-8,

5-11 and 5-12), we find that both Qp and Qs are essentially

unchanged for most pressures. While Qp is slightly lower

relative to the fully saturated sample at higher pressures,

there is by no means any evidence to support high P wave

attenuation in this saturation range.

In order to examine this in greater detail, an

experiment was designed so that partial saturation could be

achieved by the release of gas from saturated pore water by

reducing the fluid pressure in a closed system. The

pore pressure apparatus used for this experiment is illustrated

in Figure 5-16. The critical part of the
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set-up was the pressure generator-volumeter from which

volume changes could be found with a resolution 0.0052 cm3

The range of partial saturation for the experiment was

determined by back pressure required to operate the

volumeter properly (due to the friction of the packing

material) - about 150 to 200 bars and the maximum fluid

pressure obtainable before the gas converts to liquid

phase. Helium was chosen as the gas since fluid pressures

up to 1000 bars could be used and since it is soluble

enough in water so that comparatively large quantities of

the gas, relative to the resolution of the volumeter could

be used.

The procedure used during the experiment was as

follows: a completely saturated sample of Berea sandstone

was jacketed, placed in the pressure vessel and connected

to the pore pressure system. Care was taken to flush

the system with water to eliminate trapped air pockets.

With valve A open and B closed, (Figure 5-16), the pore

pressure was set to 200 bars using the hand pump. The

confining pressure was simultaneously raised maintaining

a differential pressure of 200 bars. It was extremely

important to keep the differential pressure constant

throughout the experiment so that the effect of crack

closure was eliminated.
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After this first step, valve A was closed so that

the pore pressure system was now closed. The total volume,

VT, of the water was calculated. This included the volume

of the volumeter, pressure tubing, gage, and the pore

space in the rock. From VT, the volume of gas at 200 bars,

Vg, required to completely saturate the water at a fluid

pressure of 1000 bars was calculated using solubility

curves found in Stephen and Stephen (1963). For this

experiment, VT at 200 bars was 21.5856 cm3 and V was

3
0.7784 cm . To insert the helium into the system, valve B

was opened and the volumeter piston backed off so that

Pf was kept at 200 bars until the system volume was

increased by the amount V9. Valve B was then closed.

Following this step, the fluid pressure was increased

using the volumeter piston, in order to force the free

helium into solution. A final fluid pressure of 1200 bars

was chosen to insure complete saturation. Of course,

confining pressure was raised at the same time to 1400

bars. The pressure was held constant for one hour so

that the helium had adequate time to diffuse throughout the

pore pressure system. Once this step was accomplished, the

fluid pressure could be dropped, allowing the gas to come

out of solution. Since the volume of the entire system was

known at any pressure, the volume percentage of liberated

helium could be calculated. It was implicitly assumed that
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this gas fraction was the same throughout the system,

including the pore spaces in the rock. Starting from

zero gas saturation at 1000 bars fluid pressure, a total

gas saturation of 5% could be obtained if the fluid

pressure were reduced to 150 bars. Thus, the pore pressure

was lowered from 1200 bars using the volumeter and the

confining pressure simultaneously lowered maintaining

the 200 bar differential pressure. Velocities were

determined and waveforms recorded at discrete pressures.

The presence of free gas in the rock was confirmed

two ways. First, the compressibility of the pore fluid

could be roughly determined by the volume change required

to affect a given pressure drop. This clearly indicated

an increase in compressibility at fluid pressures below

1000 bars but assumed that the gas phase was homogeneously

distributed throughout the system. More concrete

evidence was found in the velocities shown in Figure 5-17.

Here, Vp and Vs are plotted as functions of pore fluid

pressure and calculated gas saturation. Clearly, Vp

decreases with increasing gas saturation while Vs remains

constant. This behavior is exactly as would be expected

from theory but as a check, V was determined theoretically
p

(see Appendix B) for a completely water saturated Berea

sandstone in which the only change was the compressibility
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of the water as a function of fluid pressure. This

calculation is shown as the dashed line in Figure 5-17

and obviously does not explain the data except for the

two high pressure points which are supposed to be

completely water saturated anyway. It appears then,

that the experiment was indeed successful in releasing

helium gas from solution in the rock.

Q and Qs are shown as functions of gas saturation

and fluid pressure in Figure 5-18. The average values

of both are comparable to those obtained at 200 bars

differential pressure in the previous experiments.

Clearly, there is no change in Qs as a function of gas

saturation. There are variations in Qp and even though

they are within the resolution of the experimental

technique, they might be significant. In particular,

there is a slight reduction in Qp up to a gas saturation

of 3 or 4% at which Q increases to its full water

saturation value. This type of behavior is predicted

from the gas release model presented in section 3.4a but

this data is by no means hard evidence of gas or gas

bubbles decreasing Qp. One cannot even say that the data

disproves any relation between gas saturation and Qp

since the gas properties change with pressure and one

would theoretically expect the largest effect at only
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low fluid pressures. Furthermore, Q may depend on pore

pressure and thus keeping the differential pressure constant

may not eliminate the effects of other mechanisms. However,

the apparent decrease in Qp followed by a recovery is in-

triguing in light of the models for gas bubble losses and will

be further discussed later in this chapter.

5.1b Navajo Sandstone

As with the Berea sandstone, Q values were obtained for

the Navajo for a vacuum dry sample and a water saturated

sample. Recalling section 4.6, one might expect that since

the Navajo has a lower crack density compared to the Berea,

the Q values might be higher. As will be seen, this is

confirmed by the data.

Velocity as a function of pressure (Pd for the saturated

case) is shown in Figure 5-19 for P and S waves. Consistent

with the static stress-strain measurements, velocity increases

more rapidly at lower pressures than for the Berea. Furthermore,

the values for velocity are higher - 3.56 km/s versus 3.22

km/s for P waves in dry rock at 45 bars and 4.37 km/s versus

4.23 km/s at 1000 bars as examples. Similar comparisons may

be made for the saturated samples and for S waves.

Waveforms, spectra, and spectral ratios for the dry

rock experiment are shown in Figures 5-20 and 5-21 for P and

S waves respectively. Q values obtained from the

spectral ratios are shown in Figure 5-22. Again, it must

be mentioned that the high Q values at the higher
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pressures are unreliable - a restriction of the

experimental technique. However, for pressures less than

500 bars, one may say that the Q's calculated for both P

and S waves behave in much the same manner as for the

dry Berea sandstone. The absolute values of Q are higher

than for the Berea - 30 compared to 24 for P waves at

45 bars confining pressure. Q also seems to increase at

a slightly faster rate with pressure.

In the second experiment the sample was saturated

with distilled water and as with several of the Berea

runs, Pf was maintained at 0.465 Pco Waveforms, spectra,

and spectral ratios are shown in Figures 5-23 and 5-24

and Q values are shown in Figure 5-25. In this case, the

differences between the Navajo and Berea sandstones are

more clearly observed. While the Q's obtained for the

Navajo are substantially the same as those for the Berea

at pressures greater than 600-700 bars, the increase in

Q at low pressures is much faster for the Navajo. Also,

as with the dry case, the absolute Q values, particularly

for P waves, are higher for the Navajo. This is in good

agreement with the inferences made from both the static

stress strain curves and the velocity measurements.

Clearly, this is a good example of how the same parameters

that determine elastic properties also affect attenuation.
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5.1c Bedford Limestone

The Bedford limestone presents an interesting

comparison to the sandstone. Although the total porosity

is rather high (12%), the crack porosity is somewhat

lower than the sandstones. Also, pore collapse,

initiated at 1000 bars, alters the typical behavior of

both velocity and Q observed in the sandstones. Again,

two experiments were run, one dry and the other saturated.

For the water saturated case Pf was maintained at .465 Pc

throughout the experiment.

P and S wave velocities for the Bedford limestone

are shown in Figure 5-26. Note the general features of

an increase in velocity due to crack closure up to about

500 bars and higher P wave and lower S wave velocities for

the saturated sample. At 1000 bars the effect of pore

collapse becomes evident. During the loading cycle

(increasing differential pressure), velocity increases as

the large pores collapse due to localized plastic flow.

As the rock is unloaded (decreasing pressure), it behaves

elastically until about 1000bars at which point, cracks

induced by pore collapse open, reducing the velocities

to a point well below those obtained during the loading

cycle. This type of behavior was correctly identified by

Nur (1969) and, of course, confirmation lies in the static
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stress-strain measurements shown in Figure 4-16. The

effect is observed for both P and S waves in both dry and

saturated samples.

P and S waveforms, spectra and spectral ratios are

shown for the dry rock in Figures 5-27 and 5-23

respectively. It is clear for the P waves at least, that

the attenuation is very low. There was some question as

to the quality of the shear waves and thus the results should

be used with caution. As will be seen, the dry Qs values

are not consistent with the other data. There is no

explanation at the present time as to why this is so.

The resulting Q values are plotted as functions of

confining pressure (Pf = 0) in Figure 5-29. Concentrating

on the P wave values, one sees that Qp is much higher than

for sandstones at low pressures - around 70 at 105 bars.

The rate of increase with pressure is lower than the

sandstones however, and at pressures of 700-800 bars, Qp

is only slightly higher than the values attained by the

sandstones. While the data is shown only to a pressure of

1000 bars (subjected to the constraints of the experimental

method), the sample was run to a maximum pressure of 2250

bars. During the unloading cycle, the effect of pore

collapse is evident at the lower pressures. Qp is sharply

reduced at pressures less than 1000 bars due to the large

increase in crack porosity. At 100 bars the Q is lowered

by 52% (118% increase in attenuation). This may be
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compared to the 344% increase in crack porosity obtained

from the static measurements. Clearly, not all of these

cracks are of sufficiently low aspect ratio at 100 bars

to contribute to the attenuation. Indeed, Q appears to

level off from 250 to 100 bars on the unloading cycle

implying a lower limit to the induced crack aspect ratio

spectrum at surface pressure.

Waveforms spectra and spectral ratios are shown for

the saturated Bedford experiment in Figures 5-30 and 5-31

with the calculated Q values in Figure 5-32. Again the Q

is lower than for the dry case - by a factor of two for P

waves at 500 bars for example, and Qs is lower than Q .

However, there is little difference between the supposed

dry Qs values (Figure 5-29) and the wet ones. Nor do the

dry S results increase with pressure as the wet data. One

would expect from what has been seen in the velocities, that

the changes in Q for the dry rock at pressures less than

500 bars would be more rapid than the wet rock.

In any event, the rapid increase in Q at low

pressures is followed by a levelling off up to about 900

bars. An increase in Q, particularly for S waves, occurs

at that point due to pore collapse. The final value of

Q obtained at 2000 bars is nearly twice that obtained
s

by the sandstones. The increase in Q is not as dramatic.

However, upon unloading the sample, the effect of induced
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cracks is much greater for P waves than S waves although

both obtain lower values than during the loading cycle.

5.1d Shales

The first experiment run was on the Esopus shale.

Because the porosity and permeability of this sample is

so low, a full series of pressures was not used.

Furthermore, since the rock becomes very friable when

dry, only a water saturated test was run. For this

experiment, an Esopus shale sample cored perpendicular

to the bedding was fully saturated under argon pressure.

Rather than applying pore pressure, the sample remained

with atmospheric pore pressure during the course of the

experiment.

Data was obtained at 105, 500, 1000, and 2000 bars

confining pressure. The sample was held at each pressure

for two hours to allow the pore pressure to equilibrate.

Velocities were continuously monitored during this time

and the experiment continued once the velocity leveled

off to a constant value. However, the sample was kept

at 1000 bars overnight (16 hours) resulting in a further

increase in velocity. This implied that 2 hours were not

enough to equilibrate pore pressure. Velocities obtained

unloading the sample show that the data from 1000 bars

(after the 16 hour wait) and 2000 bars probably most

closely represent the completely equilibrated values.
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V and V s for the 2 hour equilibrated points and the

16 hour equilibrated run at 1000 bars are shown as

functions of confining pressure in Figure 5-33. The

changes in velocity are not nearly as great as for the

sandstones or limestone due to the absence of fine

cracks implied by the lack of effective porosity or

permeability. The unloading portions of the velocity

curves, while offset from the low pressure loading curves

due to pore pressure equilibration, have essentially the

same curvature, further corroborating the absence of

fine cracks.

Waveforms, spectra, and spectral ratios for P and S

waves are shown in Figures 5-34 and 5-35 respectively.

There is very little obvious change in the nature of the

waveforms and spectra implying that Q does not change

very drastically. This is, in fact, clear in Figure 5-36

where the Q values obtained from the spectral ratios are

plotted as functions of confining pressure. The effect of

pore pressure equilibrium and unloading is the same for

attenuation as velocity. The Q values for the Esopus

shale are consistently higher than for the saturated

sandstones at all pressures although the difference is

minimized at higher pressures where the fine cracks in

the sandstones have closed. The large difference between

Q and Qs may be due to slippage in clay lubricated grain
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contacts oriented parallel to the bedding and perpendicular

to the direction of S wave propagation. Both Q and Qs

are also higher than in situ values (32 and 10 respectively)

obtained for the Pierre shale by McDonal et al. (1958)

but lie well within the range of Q values for various

shales listed by Bradley and Fort (1966).

Two experiments were run for the Colorado oil shale -

one perpendicular to the bedding and the other parallel.

As with the Esopus shale the samples were completely

saturated but Pf = 0 throughout the experiment. The

velocities, plotted in Figure 5-37 are consistent with

the static measurements of linear strain discussed in

the last chapter. For both P and S waves, velocity is

higher in the direction parallel to the bedding. There

is little evidence of microcracks since the velocities

show no rapid changes at low pressures and increase less

than 20% by 2000 bars compared to an increase of over

30% for sandstones.

Because the slopes of velocity versus pressure are

virtually identical for both orientations, onemay assume

that the variations in velocity observed are not controlled

by cracks. Furthermore, the presence of kerogen in the

shale seems to play an important role in determining

both the elastic and anelastic properties. First, the

Poisson's ratio calculated from the velocities is
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0.40 - implying that the shale is behaving more like some

polymers than rock. For comparison, the Poisson's ratio

of the Esopus shale is 0.27. Secondly, as seen from the

waveforms, spectra and spectral ratios plotted in Figures

5-38 and 5-39, it was very difficult to propagate S waves,

particularly those in the direction mormal to the bedding

(plane of polarization parallel to bedding). Furthermore,

a frequency dependent component of the spectral ratios

is observed. This was not true for the Esopus shale.

Q versus confining pressure (Pf = 0) for both P and

S waves in both directions are shown in Figure 5-40.

The results are peculiar - not all expected. First note

that Q in all cases remains unchanged with pressure -

confirming the lack of cracks. Qs is very low, as would

be expected, and Qs for the perpendicular direction is

lower than the parallel one, mimicking the anisotropic

velocity behavior. However, the anisotropy of Q in P waves

is reversed from that of velocity. Furthermore, there is a

large discrepancy in the differences between Qp and Qs for

the two orientations. In the parallel case Qs is nearly equal

to Qp, with Q p/Qs = 2 in the perpendicular direction. The

large differences between the Qp values for the two orientations

are not particularly obvious from the spectral ratios but it

should be pointed out that the velocities of the perpen-

dicular direction are lower than for the parallel

direction, emphasizing the difference in attenuation.
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Finally, this is the only case studied in which

the changes in Q with pressure are less than the changes

in velocity. As to what attenuation mechanisms can account

for this data is not certain. At first glance it seems

that none of the mechanisms discussed in Chapter 3 do the

job. While it may be premature to propose an attenuation

mechanism for oil shales, especially since their properties are

so variable, the problem will be discussed further in section 5.2.

5.1e Tuffs

The study of attenuation in tuffs was prompted by

the interesting differences in crack distributions

compared to the sandstones implied by the static

measurements discussed in section 4.9. It was found that

the tuffs contain fewer small aspect ratio cracks than

either the Berea or Navajo sandstones even though the

total porosities are roughly equivalent. Thus, any

observed differences in Q might be attributed to the

dissimilar crack distributions. However, the observed

attenuation in both Ammonia Tanks and Tunnel Beds tuffs

appear to be dominated by scattering even though the

effect of cracks is evident. In Tunnel Beds, the Q

measurements are further complicated by the presence

of pore collapse under pressure.

The following presentation of the Q data for the

two tuffs is not intended to be a study of the scattering
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problem. It will be shown, however, that the formulation

of Yamakawa (1962) for scattering roughly accounts for

the observed attenuations.

For both tuffs it was difficult to work with saturated

samples primarily because the large grains in the rocks

blocked the pore pressure tube. Furthermore, especially

for Tunnel Beds with about 30% porosity, it was nearly

impossible to propagate good quality waves. Thus, only

dry samples are studied here.

P and S wave velocities for the Ammonia Tanks tuff

are shown as functions of confining pressure (Pf = 0) in

Figure 5-41. As suspected from the static measurements

(Figure 4-18), velocity increases more gradually with

pressure than for the sandstones and does not begin to

level off until about 1500 bars. P wave velocities are

similar in magnitude to the Navajo and about 5% higher

than the Berea even though the measured porosity is much

less, 5% compared to 16-18%. S wave velocities are

uniformly lower than the sandstones by about 5%. This

implies that isolated pores and cracks may exist in the

rock and that the actual porosity is higher than that

measured by CC 4 saturation.

The Q analysis was complicated by the presence of

scattering which introduces a frequency dependent

component to the apparent attenuation. Thus the spectral
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ratios are not linear over a broad frequency range.

The Q values calculated are strictly applicable only

to a frequency bandwidth limited to the peak power

portion of the spectrum. For the Ammonia Tanks, this

occurs at about 0.4 MHz for P waves and 0.5 MHz for

S waves. Waveforms, spectra and spectral ratios are

shown in Figures 5-42 and 5-43. The resulting Q

values are shown in Figure 5-44. The most outstanding

features of the data are the low Q values at all

pressures and that Qs is nearly 1.5 times Q . Since

one would intuitively expect that the attenuation due to

scattering would be relatively constant with pressure,

the increase in Q and Qs with pressure may be due to

crack closure just as with the sandstones. However, as

with velocity, the rate of increase is slow compared

to the sandstones.

The large difference between Qs and Q (also

observed in the Tunnel Beds as will be seen) is obtainable

from Walsh theory but requires a lower coefficient of

friction than for the dry sandstone since the Poisson's

ratio is 0.24 compared to 0.17. Another explanation

is that the attenuation due to scattering of

incident S waves is less than for incident P waves.

The Tunnel Beds tuff was even more difficult to work

with than the Ammonia Tanks. With its very high porosity
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(30%), vugular pore spaces, and large grain sizes,

scattering completely dominates the anelastic behavior

at ultrasonic frequencies. Pore collapse, initiated at

about 800 bars and observed in the velocities shown in

Figure 5-45, further complicates the picture. P and S

wave velocities, about 25-30% lower than for the Ammonia

Tanks do, however, behave predictably and in a manner

similar to the Bedford limestone. Under loading, velocity

increases slightly at low pressures due to crack closure

and then levels off. At 800 bars, velocity increases

again as pores collapse. During unloading of the sample,

velocities are higher than the loading cycle for pressures

greater than 800 bars but are lower at lower pressures

due to cracks generated during pore collapse.

The effect of scattering is clearly evident from

Figure 5-46 where a typical, non-linear spectral ratio

curve is shown for a broad frequency band. Q values were

again determined for a limited band width centered on

roughly 0.4 MHz for both P and S waves. Typical waveforms,

spectra and spectral ratios are shown in Figure 5-47

and resulting Q values are plotted in Figure 5-48. Q is

essentially constant with pressure, consistent with the

domination of scattering. There is, however, evidence of

the effect of pore collapse barely observable in the loading

cycle but more evident in the unloading cycle. A clear
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decrease in Q relative to the loading path that can be

attributed to crack production during pore collapse.

As with the Bedford limestone, the difference seems to be

greater for P waves. Also, as seen for the Ammonia Tanks,

Q is less than Qs by about the same amount. Here, however,

the Poisson's ratios are comparable with the sandstones.

In order to investigate the effect of scattering on

the attenuation in the tuffs a little more thoroughly,

the formulation of the apparent attenuation coefficient

derived by Yamakawa (1962) and listed in equation 3-44

is used to theoretically calculate Q for P and S waves.

One may assume that scattering in the tuffs is due to empty

(air-filled) pores and not from phenocrysts which have less

elastic property contrasts. The matrix moduli are

determined from the acoustic velocities at high pressure

and are then corrected for spherical porosity. These,

and the other parameters used as well as the results of

the calculations are listed in Table 5.1. Velocities

from 300 bars and 2000 bars are used. A scattering radius

of imm is assumed, but the calculations may be scaled using

the r3 dependence in the attenuation coefficient. The

frequency is taken to be 0.4 MHz. The results for the

Ammonia Tanks tuff show that scattering does indeed

account for most of the observed attenuation.

The calculations for the Tunnel Beds tuff are not
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nearly as satisfying. First of all, it is necessary to

assume that only a fraction of the total porosity

actually contributes to scattering. In the example shown,

10% porosity is used. While the calculated Q values are

still low compared to the data, we have seen that scattering

does account for most of the observations, including the

fact that Q does not seem to vary much with pressure for

the Tunnel Beds. One could expend a great deal of effort

trying to characterize scatterers in terms of pore sizes

and indeed, this might be a valuable tool for the future

using high frequency ultrasonic waves in porous rocks.

5.2 Interpretation of Laboratory Data

The relative effects of various attenuation mechanisms

in dry and saturated porous rocks are now considered

in more detail. The methods and techniques

discussed in Chapter 3 will be applied to model the

behavior of attenuation as a function of differential

pressure for the ultrasonic data obtained for the Berea

sandstone at COFRC. These models will then be extrapolated

to other frequencies. Next, the effect of partial

saturation in the Berea will be examined in terms of gas

bubble theory. The models obtained for the Berea sandstone

are then used in comparison to the experimental data on

other rocks. The attenuation mechanisms given

most consideration to are friction and fluid flow. As
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will be seen, the other mechanisms are of minor importance

for saturated rocks at ultrasonic frequencies.

5.2a Sandstone Model of Attenuation

The procedure taken involves first modeling the

attenuation in the dry rock in order to establish the

needed parameters for the friction mechanism and intrinsic

attenuation in the absence of fluid associated mechanisms.

These parameters will then be used in the modeling of the

saturated sample data. An important but probably valid

assumption made here is that all attenuation mechanisms

that occur in dry rocks also occur in wet ones. Given the

parameters obtained from the dry case, one may examine in

more detail the relative importance of the mechansisms

contributing to the attenuation in the brine-saturated case

as a function of pressure. In particular, since the

attenuation due to Biot-type fluid flow, squirting and

scattering are readily calculable, it remains to be seen

what the contribution due to the presence of pore fluid

is in terms of the friction mechanism and intrinsic

aggregate anelasticity. The approach taken here is

empirical and thus the models presented have no absolute

predictive ability.

The elastic moduli, fluid and frame properties used

in modeling the Berea sandstone are listed in Table 5.2.

The bulk modulus of brine as a function of pore pressure
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is given by Adams (1931) and Long and Chierici (1961).

For the dry case, the bulk modulus of air is taken to be

one bar and the pore pressure is assumed to be constant

at one bar.

The surface pressure aspect ratio distribution listed

in Table 5.3 is determined by fitting theoretical

calculated elastic properties (equations B-1 and B-2) to

the P and S wave velocity versus differential pressure data

for both saturated and dry cases as described by Toksiz

et al., (1976). The frequency is taken to be .5 4Hz.

The contributions to attenuation in the dry case are

assumed to be due to friction and the intrinsic aggregate

attenuation only. Zero pressure Q's were taken as 23 for

P waves and 26 for S waves based on the data in Figure 5-8.

The pressure dependence of Q for the dry Berea sandstone may

be reasonably modeled with A = 0.2 x 104 (equation 3-16)

and an intrinsic aggregate Q for both P and S waves of 120.

The possible variations in the parameter A are not as wide
4 4

as one might expect, ranging from 0.15 x 10 to 0.25 x 10

The results of this empirical model fitted to the data are

shown in Figure 5-49.

The introduction of brine as the pore saturant results

in no change in the parameter A, since the crack closing

rate is the same as for the dry case, determined by the

static rather than the dynamic effective bulk modulus.
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In Chapter 3 the role of fluids in determining the

attenuation was discussed. In particular, water may soften

and lubricate the matrix resulting in a higher attenuation

due to a friction type mechanism, especially for shear

waves. Since the contributions due to Biot fluid flow,

squirting flow, viscous shear relaxation and scattering are

fairly well determined from the properties listed in Table 5.2

it remains to be seen in modelling the saturated data, what

the contribution due to friction is. This must be

determined empirically. One important constraint, however,

is the low Q, especially Qs, at high pressures. This

implies that a mechanism which is relatively independent of

pressure, such as Biot fluid flow, is required under those

conditions.

The fluid flow contributions to the attenuation are

calculated as described in section 3.3. Given the

attenuation due to all the mechanisms other than friction,

it is found that to fit the data, one must choose a zero

pressure Q for friction of 15 and a Qs of 10. These low

values of Q relative to the dry case indicate that brine

saturation increases the attenuation due to friction by

almost a factor of two. Although the data may be fit

with a fluid viscosity of 1 cp, a better fit is obtained

by allowing the effective viscosity to be 4 cp. This

might be expected from experimental measurements of the

viscosity of water iD clay-water systems (Low, 1959).
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Such an effect would predict a lower attenuation in rocks

with lower clay content. This was indeed observed for

the Navajo sandstone. Furthermore, while again not

necessary, the best fit to the data, also shown in

Figure 5-49, is obtained by reducing the intrinsic

aggregate Q for shear waves by 5%. It is perhaps no

coincidence that the seismic velocities are best fit

in the saturated case by reducing the matrix shear modulus

5% relative to the dry case. This may reflect the

possibility of increased shear and thus higher attenuation

at grain boundaries due to the presence of water as

discussed earlier.

The relative contributions of the two important

mechanisms, friction and Biot-type fluid flow, in the

brine-saturated case are easily seen in Figure 5-50

-1showing Q for each mechanism as a function of pressure.
P

The small increase in the fluid flow contribution at low

pressures is an artifact of the calculations, a result

of the stiffening of the frame moduli. As would be

expected, friction across cracks and grain boundaries

is dominant at low pressures but becomes less important

as cracks close. Since the bulk of the porosity and

permeability is unaffected under the pressure conditions

of interest, the fluid flow contribution to attenuation

remains relatively constant with pressure and becomes an
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increasingly important mechanism. Obviously at some

pressure, the porosity and permeability of the rock will

break down and one should expect a rapid increase in Q.

This is exactly as observed for the Bedford limestone

undergoing pore collapse.

Using the Berea sandstone properties from model

calculations, one may now examine in more detail the

individual contributions of each mechanism for the fully

saturated case and extrapolate these results to other

frequencies. The interpretation of these models must

remain strictly within the confines imposed upon them.

That is, it is assumed that strain amplitudes are

equivalent to those in the laboratory experiment and

that no other mechanisms contribute to attenuation at

frequencies other than those calculated at 0.5 MHz.

A theoretical overview of the relative contribution

of each mechanism considered is shown in Figure 5-51a.

Here, the P wave attenuation coefficients are plotted as

functions of frequency for a surface pressure condition.

Figure 5-51 was obtained by fixing the attenuation at

0.5 MHz based on the theoretical model of the pressure

data (Figure 5-49). The resulting curves are theoretical

extrapolations. A constant Q mechanism for friction is

assumed. The same model is shown in Figure 5-51b except

that the attenuation coefficients are calculated for a
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differential pressure equivalent to a depth of about 3 km.

The corresponding aspect ratio distribution is listed in

Table 5.3.

Figures 5-51a and b clearly show the relative effects

of friction, fluid flow, shear relaxation and scattering

on the attenuation of P waves. Similar results are obtained

for S waves. If friction is indeed a frequency independent

attenuation mechanism, then it dominates the other mechanisms

for this case. However, as seen before, friction is of

somewhat less importance at higher pressures. As

assumed in the models, the contribution of Biot fluid

flow remains essentially unchanged between the two cases.

While never dominating in this case, it is of importance
5

at about 10 Hz where Poisseuille flow breaks down. A

striking change in the squirt flow and shear relaxation

mechanism is apparent however. For surface conditions,

the contribution due to these mechanisms is readily seen

from Figure 5-52. Here, 0-1 for both P and S waves is

shown for the squirting and shear relaxation mechanisms

only. Two peaks are evident, the lower frequency one

corresponding to the flow mechanism and the other to

viscous relaxation. The shape of the relaxation peaks

are complicated, reflecting the spectrum of pore and

crack shapes. The transition from flow to viscous

relaxation takes place at about 50 KHz, below which
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-1 -1 -1 -1Q p>Qs and above which Q >Q . Even though viscous

relaxation peaks at f = 10 Hz, it is clear from

Figures 5-51 and 5-52 that the contribution of these

mechanisms to the attenuation in the Berea Sandstone is

small in the frequency band of interest, even at surface

pressure. Furthermore, the effect of pressure, as seen

in Figure 5-51b is to close cracks contributing to both

the squirt flow and viscous relaxation, thus lowering

even further, their associated attenuations.

Scattering off inclusions produces a negligible

effect except at very high frequencies where this mechanism

clearly dominates. A larger scatterer radius will shift

this curve to lower frequencies. Thus for the tuffs,

scattering dominates. The radius assumed for the Berea

is 5 x 10- 3 cm, based on direct observation of pore sizes.

This represents the upper bound since not all the porosity

is contained in such large pores.

Finally, the combination of both the frequency and pressure

behavior of attenuation in the saturated Berea Sandstone model

is shown in Figure 5-53 where the total Q of the rock is
p

plotted. For low pressures, Qp remains essentially unchanged

as a function of frequency, reflecting the importance of

the friction mechanism. Q increases with pressure and at
p 4

high pressures and low frequencies (<10 Hz) Q is greater
p

than 100. Q decreases with increasing frequency at higher
p
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pressures due to the increasing contribution of Biot flow.
7

Finally, at very high frequencies (10 Hz), Q decreases
p

sharply because of scattering.

Considering the effects of partial saturation on

the model, one is concerned with the

changes (or lack of changes) observed for high water (low

gas or air) saturations. If the results shown in Figure

5-18 indicate a decrease in Q only, relative to the fully

saturated state, then we are looking for a mechanism that

results in bulk rather than shear loss. It has been

suggested that Biot type fluid flow may cause high

attenuation for partially saturated rocks (White, 1975).

However, if the gas or air pockets are distributed on a

microscopic scale in small pores, then the model, using

relative permeability (section 3.3, equation 3-26) predicts

just the opposite. The attenuation coefficients as functions

of frequency for Biot flow are shown in Figure 5-54 for

the fully saturated case and 90% saturation for P and S

waves. The presence of gas in the pores restricts flow

generated by pressure gradients (bulk flow) and the

attenuation is decreased substantially. Viscous drag

is relatively unaffected by small quantities of gas and

the shear attenuation remains about the same.

In Chapter 3 a mechanism involving gas bubble

resonance was proposed that could explain the behavior
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(if it is indeed real) observed in Figure 5-18. Recall

that high attenuation may be realized if gas bubble

resonance properties are determined only by the surrounding

water medium. If the bubble is surrounded by the effective

rock properties, resonance frequencies are shifted higher

and the attenuation reduced.

The equations outlined in section 3.4 are applied to

the Berea model and the attenuation coefficient is plotted

as a function of frequency for 5% gas saturation with

50 micron radius bubbles immersed in both water and the

effective rock medium. The gas is assumed to be methane

and its properties are calculated at a pressure of 100

bars and 201C using a form of the Beattie-Bridgeman

equation of state for non-ideal gases.

One can see that high bulk attenuation may occur for

ultrasonic frequencies if one is willing to assume that

the bubbles see only the surrounding water. Attenuation

is decreased substantially and the resonance frequency

increased for bubbles in the rock. However, the case

shown here is for the maximum bubble radius permissible

in the Berea sandstone - limited by the average pore size.

Thus the curve labeled "water" is unrealistic. Smaller

bubbles would result in lower attenuation and higher

resonance frequencies making bulk attenuation at any

frequency of interest difficult to obtain.
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While the results shown in Figure 5-55 are not

strictly a modeling of the data in Figure 5-18, it is

possible to stretch one's imagination a little and

suppose that the apparent decrease in Q for low gas

saturations is due to bubble resonances. At least the

frequency of the maximum effect is of the right order

of magnitude. If this were true, then one could infer

from the data that the gas bubble resonant properties

are determined by the effective rock medium at gas

saturations greater than 5%. Thus, any changes in bulk

attenuation would be seen only for very low gas

saturations in the best of cases.

5.2b Comments On The Other Samples

1. Navajo sandstone: The Navajo behaves in all

respects, similarly to the Berea. The faster increase

in Q with pressure is due to a shift in the crack

aspect ratio spectrum to lower ratios relative to the

Berea. The small differences in the saturated runs may

be due to a lower clay content in the Navajo. Thus, the

effect of water on the friction mechanism is less.

2. Bedford limestone: The relatively higher Q,

especially at low pressures is certainly due to the far

lower crack density compared to the sandstones although

these cracks are of lower aspect ratio (see the static

measurements, Figures 4-14 to 4-16). Since the
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permeability of the Bedford is also lower than the sand-

stones, there is less of a difference between the

saturated and dry runs at high pressures because the

effect of fluid flow is minimal. What fluid flow effect

there is, is larger for the S waves and thus as

permeability is further decreased during pore collapse,

the change in Qs is larger than for Q . Upon unloading,

the change in Q is larger than Qs. This may be

explained by the friction mechanism with fewer cracks

contributing to the attenuation for S waves.

3. Shales: The shales, in general, are characterized

by their lack of fine cracks. Thus the changes in Q

with pressure are small. None of the mechanisms as

formalized in Chapter 3 can explain the attenuation in

shales, particularly the peculiar anisotropic behavior

of the oil shale. However, relative motion within the

rock due to moduli differences between the kerogen and

shale may contribute to attenuation. Munson and Young

(1977) observed that the propagation of high amplitude

stress pulses show characteristics of rate effects and

dispersion suggesting that oil shale responds as a

mechanical mixture of rock and kerogen. One may model

the oil shale schematically as

illustrated in Figure 5-56 with shale being the

continuous component. Such a model easily explains the
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observed velocity anisotropy. Waves propagating normal

to the bedding planes average the moduli of the soft

kerogen and stiff shale. Those propagating parallel are

affected primarily by the stiff shale - close to simple Voigt-

Reuss bounds.

If one assumes that attenuation in oil shale is due

to relative shear motion between the shale and kerogen

then it is clear that a P wave propagating in a direction

perpendicular to the bedding planes will suffer the least

loss. S waves propagating in the same direction with

the plane of polarization parallel to the bedding will

tend to shear the bedding planes and suffer the greatest

attenuation. Both P and S waves traveling parallel to

the bedding induce relative deformation. Thus their Q's

are lower than the perpendicular P wave. Since the

S wave is circularly polarized, the relative slip

induced is of lower magnitude than if the wave were

propagating normal to the bedding. This is also shown

in Figure 5-56 where the small arrows are proportional

to the induced displacement. Qs for parallel propagation

is then higher than for the perpendicular direction.

This model may possibly be extended to other types of

shales by assuming a mechanical mixture of a rigid

component ("rock") and clay. Thus, clay plays the role

of kerogen.
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This hypothesis is based on a single sample and

requires further testing, especially since the properties

of oil shales are extremely variable spatially. The degree

and nature of velocity and Q anisotropy though, should depend

critically on the kerogen content. Munson and Young (1977)

point out that "the variation of kerogen contents in natural

oil shales span a range which should cover the transition

between a continuous kerogen and a continuous shale

constituent. Potentially, such a system when studied in

detail could exhibit all extremes of relaxation (attenuation)

behavior of mixtures".

4. Tuffs: Both tuffs studied in this thesis have

attenuations at ultrasonic frequencies dominated by

scattering. Theeffects of friction are masked.

However, in the case of the Tunnel Beds tuff, the effect

of pore collapse is observed to be very similar to the

Bedford limestone.



Table 5.1. Scattering in Tuffs

300 bars 2000 bars

QP QS Vp VS P QS

Ammonia Tanks

S= 5.8%
K = .281 Mb
p = .166 Pb
p = 2.456 g/cm

3

Tunnel Beds

S= 30% (10% used)
K = .123 Mb
p = .077 Mb
p = 2.296 g/cm

3

4.00 2.30 19.0 22.6

3.00 1.87 7.9 10.5

4.56 2.65 29.0 34.0

3.30 2.08 10.0 13.0

K' = p' = 0 (air inclusions)

f = 0.4 MHz

r = 1 mm

Vp VS
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Table 5.2

Physical Properties Used for Modeling the Berea Sandstone

K = 35 x 1010 dynes/cm
2

S= 25 x 1010 dynes/cm
2

p = 2.61 g/cm 3

K' = 2.6 x 1010 dynes/cm
2

n = 4 x 10- 2 poise

P ' = 1.0 g/cm
3

Inclusion:

$n 0.16

X= 75 md

Fluid Flow Structure Constants: a = 1.0x 10- 4 a' = 3.0

Matrix:

Frame:
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Table 5.3

Aspect Ratio Distributions

Concentration, c

0.12

0.04

0.10 x 10-3

0.10 x 10-3

0.20 x 10-3

0.15 x 10-3

0.75 x 10-4

0.30 x 10-4

0.90 x 10 - 5

0.30 x 10
-5

0.119

0.395

0.152 x 101

Aspect ratio, a

1.00

0.10

0.17 x 10-2

0.14 x 10-2

0.10 x 102

0.60 x 10-3

0.30 x 10-

0.10 x 10-

0.30 x 10-4

0.10 x 10-

1.00

0.98 x 10-

0.258 x 10-3

Surface

3 km
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FIGURE CAPTIONS

Figure 5-1. Compressional (P) and shear (S) wave

velocities for the dry (open symbols) and water

saturated (solid symbols) Berea sandstone as a

function of differential pressure. As with the

following plots of velocity, the errors, except

for the lowest pressures, are within the size of

the symbols and thus no error bars are drawn.

These velocities are used for the Q calculations.

Figure 5-2. Attenuation characteristics of P waves in

the dry Berea sandstone at two confining pressures,

Pc = 45 an 500 bars (Pf = 0). Left: Pulse shapes

in the sandstone. Middle: Normalized Fourier

amplitude as a function of frequency for the rock

(solid line) and alumnium standard (dashed line).

Right: Natural logarithm of the aluminum (Al) to

rock (AZ3 amplitude ratios as a function of

frequency. Points are actual ratios and the dashed

line is the linear fit to the data. The slope of

this line is proportional to l/Q.

Figure 5-3. Attenuation characteristics of S waves in

the dry Berea sandstone. See figure 5-2 for

explanations.
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Figure 5-4. Q values of P and S waves as a function of

confining pressure in the dry Berea sandstone (Pf=0).

In this and later plots of Q, representative error

bars are shown.

Figure 5-5. Attenuation characteristics of P waves in

the saturated Berea sandstone for two differential

pressures, Pd = 105 and 400 bars (Pf = 0.465 Pc ) .

See figure 5-2 for explanations.

Figure 5-6. Attenuation characteristics of S waves in

the saturated Berea sandstone.

Q values of P

differential pressure

sandstone (Pf = 0.465

Figure 5-8. Q values of P

confining pressure in

The data was obtained

Research Co. (COFRC).

Figure 5-9. Q values of P

differential pressure

sandstone (Pf = 0.465

Figure 5-10. Q values of

and S waves as a function of

in the saturated Berea

P ),

and S waves as a function of

the dry Berea sandstone (Pf=0).

at the Chevron Oil Field

and S waves as a function of

in methane saturated Berea

Pc ) . Data obtained at COFRC.

P and S waves as a function of

differential pressure in 67,190 ppm NaCl brine

saturated Berea sandstone (Pf = 0.465 Pc). Data

obtained at COFRC.

Figure 5-7.
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Figure 5-11. Q values of P and S waves as a function of

differential pressure in 161,335 ppm NaCI brine

saturated Berea sandstone (P = 15000 psi %1000 bars).c

Figure 5-12. P and S wave velocities as a function of

confining pressure in 37% water saturated Berea

sandstone (Pf = 0).

Figure 5-13. Attenuation characteristics of P waves in

the partially saturated Berea sandstone for two

confining pressures, Pc = 105 and 400 bars (Pf = 0).

See Figure 5-2 for explanations.

Figure 5-14. Attenuation characteristics of S waves in

the partially saturated Berea sandstone.

Figure 5-15. Q values of P and S waves of a function of

confining pressure in the partially saturated Berea

sandstone (Pf = 0).

Figure 5-16. Block diagram of the pore pressure system

used for the gas release experiment.

Figure 5-17. P and S wave velocities as a function of

fluid pressure and calculated gas saturation for the

gas release experiment in the Berea sandstone.

The dashed line represents the theoretically

calculated P wave velocity for a fully saturated

rock. The differential pressure is 200 bars.
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Figure 5-18. Q values of P and S waves as a function of

fluid pressure and calculated gas saturation in the

Berea sandstone (Pd = 200 bars).

Figure 5-19. P and S wave velocities as a function of

differential pressure in the dry and saturated

Navajo sandstone.

Figure 5-20. Attenuation characteristics of P waves in

the dry Navajo sandstone for two confining pressures,

P = 45 and 300 bars (Pf = 0). See Figure 5-2 for

explanations.

Figure 5-21. Attenuation characteristics of S waves in the

dry Navajo sandstone.

Figure 5-22. Q values of P and S waves as a function of

confining pressure in the dry Navajo sandstone (Pf = 0).

Figure 5-23. Attenuation characteristics of P waves in the

saturated Navajo sandstone for two differential

pressures, Pd = 45 and 300 bars (Pf = 0.465 P ). See

Figure 5-2 for explanations.

Figure 5-24. Attenuation characteristics of S waves in the

saturated Navajo sandstone.

Figure 5-25. Q values of P and S waves as a function of

differential pressure in the saturated Navajo

sandstone (P = 0.465 Pc).
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Figure 5-26. P and S wave velocities as a function of

differential pressure in the dry and saturated Bedford

limestone. The unloading path is denoted by the

dashed lines.

Figure 5-27. Attenuation characteristics of P waves in

the dry Bedford limestone for two confining pressures,

Pc = 105 and 400 bars (Pf = 0). See Figure 5-2 for

explanations.

Figure 5-28. Attenuation characteristics of S waves in the

dry Bedford limestone.

Figure 5-29. Q values of P and S waves as a function of

confining pressure in the dry Bedford limestone

(Pf = 0). The unloading path for the P wave is

denoted by the dashed line.

Figure 5-30. Attenuation characteristics of P waves in

the saturated Bedford limestone for two differential

pressures, Pd = 105 and 500 bars (Pf = 0.465 P ).

See Figure 5-2 for explanations.

Figure 5-31. Attenuation characteristics of S waves in

the saturated Bedford limestone.

Figure 5-32. Q values of P and S waves as a function of

differential pressure in the saturated Bedford

limestone (Pf - 0.465 P ). Unloading paths are

denoted by dashed lines.denoted by dashed lines.
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Figure 5-33. P and S wave velocities as a function of

confining pressure in the saturated Esopus shale

(Pf = 0). The sample was held at 1000 bars for 16

hours resulting in the velocity increase due to pore

pressure equilibration. Dashed lines denote unloading

paths.

Figure 5-34. Attenuation characteristics of P waves in

the saturated Esopus shale for two confining

pressures, Pc = 105 and 2000 bars (Pf = 0). See

Figure 5-2 for explanations,

Figure 5-35. Attenuation characteristics of S waves in

the saturated Esopus shale.

Figure 5-36. Q values of P and S waves as a function of

confining pressure in the saturated Esopus shale

(Pf = 0). Dashed lines denote unloading paths.

Figure 5-37. P and S wave velocities as a function of

confining pressure in the Colorado oil shale (Pf = 0)

for the directions perpendicular and parallel to the

bedding planes.

Figure 5-38. Attenuation characteristics of P waves in

the Colorado oil shale at a confining pressure of

500 bars (P = 0) for the perpendicular and parallel

directions. See Figure 5-2 for explanations.
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Figure 5-39. Attenuation characteristics of S waves in

the Colorado oil shale.

Figure 5-40. Q values of P and S waves as a function of

confining pressure in the Colorado oil shale

(Pf = 0) for directions perpendicular and parallel

to the bedding planes.

Figure 5-41. P and S wave velocities as a function of

confining pressure for the dry Ammonia Tanks tuff

(Pf = 0).

Figure 5-42. Attenuation characteristics of P waves in

the dry Ammonia Tanks tuff for two confining

pressures, Pc = 105 and 1000 bars (Pf = 0). See

Figure 5-2 for explanations.

Figure 5-43. Attenuation characteristics of S waves in

the dry Ammonia Tanks tuff.

Figure 5-44. Q values of P and S waves as a function of

confining pressure in the dry Ammonia Tanks tuff

(Pf = 0).

Figure 5-45. P and S wave velocities as a function of

confining pressure in the dry Tunnel Beds tuff

(Pf = 0). Dashed lines denote unloading paths.
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Figure 5-46, Logarithm of the spectral ratio for the P

wave in the Tunnel Beds tuff at 210 bars showing

the effect of scattering.

Figure 5-47. Attenuation characteristics of P and S waves

in the dry Tunnel Beds tuff at a confining pressure

of 210 bars (Pf = 0). See Figure 5-2 for explanations.

Figure 5-48. Q values of P and S waves as a function of

confining pressure in the dry Tunnel Beds tuff (Pf = 0).

Dashed lines denote unloading paths.

Figure 5-49. Fit of the attenuation model to the dry and

brine saturated Berea sandstone data shown in Figures

5-8 and 5-10.

Figure 5-50. Relative contributions of the friction and

Biot fluid flow mechanisms for P waves from the model

of Figure 5-49 as a function of differential pressure.

Figure 5-51. a) P wave attenuation coefficients at surface

pressure as a function of frequency, for several

mechanisms considered in the saturated Berea sandstone

model. Model parameters are listed in Tables 5.2 and

5.3 and the text. The viscous shear relaxation mechanism

is included on the line labeled "squirt" flow.
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b) P wave attenuation coefficient as a function of

frequency for the saturated Berea model as in

Figure 5-51a. Here, the contributions for each

mechanism are calculated at a differential pressure

equivalent to about a 3 km depth. The crack aspect

ratio distribution used is listed in Table 5.3.

-1 -1
Figure 5-52. Q and Qs for the "squirt" flow and viscous

shear relaxation mechanisms in the saturated Berea

sandstone model at surface pressure as functions of

frequency.

Figure 5-53. Total Q for the saturated Berea model as a

function of frequency and differential pressure based

on the results presented in Figures 5-49 and 5-51.

Figure 5-54. P and S wave attenuation coefficients at

surface pressure as a function of frequency for the

Biot fluid flow model. The solid lines are for a

fully saturated rock while the dashed lines represent

a rock with 10% gas saturation (90% water).

Figure 5-55. P wave attenuation coefficient as a function

of frequency for losses due to gas bubble resonance

shown for bubbles of 50 micron radius immersed in

both water and the effective rock medium of the Berea

model. 5% gas saturation is assumed.
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Figure 5-56. Schematic illustration of the oil shale

model. Large arrows show the directions of wave

propagation used in the experiments. Small arrows

denote the amount of relative deformation due to

incident parallel S waves.
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CHAPTER 6

CRACKS AND AMPLITUDE DEPENDENT ATTENUATION

One of the less satisfying aspects of modeling the

ultrasonic data discussed in the previous chapter was the

empirical nature of describing the friction mechanism.

Yet, as we have seen, this mechanism is clearly dominant

under most physical conditions in the upper crust. The

experiments described in this chapter were designed to

study the nature of crack friction in more detail.

The phenomenon of frictional attenuation is inves-

tigated along two fronts. First is the dependence of

Q on strain amplitude. The careful reader has noted a

rather large discrepancy between Q measurements obtained

by dynamic resonance and ultrasonic pulse techniques.

Either dry friction attenuation is frequency dependent or

some other factor comes into play. A dependence on

amplitude might explain the discrepancy in observed Q

values. This possibility will be addressed.

Secondly, the effect of increasing crack density due

to thermal stresses induced by temperature cycling on

attenuation is studied. Since frictional attenuation

depends primarily on the density of low aspect ratio

cracks, it was first thought that one could obtain an

independent test of the Walsh theory if the increase in
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crack porosity could be determined from static stress-

strain measurements. As will be seen, the thermal cycling

experiments yielded results that abrogated this idea.

In many cases, Q increased with thermal cracking. This

will be interpreted in terms of volatile loss from

sliding surfaces and increasing aspect ratios of cracks

during thermal cycling. The effect of volatile loss is

to increase the friction coefficient and thus prevent

sliding at low strains. The widening of thin cracks,

likely to contribute to attenuation due to friction, also

increases Q.

It will also be seen that amplitude dependence is coupled

to the effects of thermal cycling. This will provide a

further means of understanding the importance of cracks

in determining the overall attenuation.

6.1 Experimental Results

For most of the experiments described in this section

Q values were obtained using the longitudinal resonant

bar technique discussed in section 3.6. The samples

were about 15 cm long by 0.635 cm in diameter producing

fundamental mode frequencies in the 10-20 kHz range. One

set of runs was done with a sample diameter of 1.27 cm.

Q was obtained for maximum strain amplitudes, Emax'
-8 -5

varying from 10 to 10 The samples studied include

the Berea and Navajo sandstones, Plexiglas, Westerly
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granite, Solenhofen limestone, and Frederick diabase.

The latter two were chosen for their low crack porosity

in the virgin state.

Strain amplitude may be adjusted by varying the

voltage applied to the driving transducer (see Figure

4-11). Amplitude at resonance is found using continuity

of stress across the transducer-sample boundary.

Maximum strain in the transducer for the thickness

(compressional) mode is given by:

tmax Vd 3 3= =(6-1)t t t

where t is the unperturbed transducer thickness, V is

the peak driving voltage, and d33 is the piezoelectric

charge coefficient perpendicular to the transducer face

(3 direction). For PZT-4 transducers, d33 = 2.8xl0- 10m/V.

The stress, ot, is given by:

D
= E stOt 33 t

where ED is the open circuit Young's modulus in the 3
33

direction and is equal to 1.18 Mbar. Applying continuity

of stress, the maximum strain in the sample, Emax' may

be written as:

CEt 33S3 (6-2)
max 2E

s
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where Es is the Young's modulus of the sample. The

factor of 1/2 is included since one end of the transducer

is a free surface.

6.1a Strain Amplitude Dependent Q

As discussed in sections 2.2a and 3.2, attenuation

values for dry rocks obtained by dynamic resonance and

ultrasonic techniques differ, the former yielding higher

Q's. Since these measurements are generally made at

different frequencies, one might possibly hypothesize

a frequency dependent mechanism. However, no data

support this. Q dependent on strain amplitude though,

may provide an explanation. Most resonance experiments

are carried out at low strains relative to those

associated with ultrasonic pulses. If Q for low strains

is higher than for high strains, the apparent discrepancy

in the data may be resolved. This behavior is indeed

observed for the dry Berea sandstone as shown in Figure

6-1 where Q and bar velocity are plotted as a function of

maximum strain amplitude. Also shown for comparison is

Q for amorphous Plexiglas over the same amplitude range.

Behaving similarly to data reported by Winkler et al.

(1977) for the Massilon sandstone, Q for the Berea rapidly

decreases from a value of 75 to a value of 30 at a strain

-5
amplitude of about 10-5. This corresponds to a 60%

decrease in Q. Velocity decreases by only 1%.
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Comparison of the increasing amplitude curve versus

decreasing amplitude shows nearly complete recovery of

the initial Q value. As will be seen, this lack of

hysteresis is observed for all the rocks studied and

implies that little or no damage to the crack surfaces

(assuming that attenuation is due to frictional sliding)

occurs at high strains.

For the same range of strain amplitude, Q of the

Plexiglas remains relatively constant and if anything,

increases slightly. This fact strongly suggests that

the presence of cracks in the rock is the controlling

factor in producing amplitude dependent behavior.

A further experiment with the Berea sandstone was

done using the ultrasonic pulse technique. The data

from the resonance experiment are limited at the high

amplitude range but imply that Q may approach a constant

value. This was investigated by measuring Q from

spectral ratios in a dry Berea at 45, 210, and 500 bars

confining presure with applied pulse voltages of 100

to 2000 volts. The results of this experiment must be

interpreted with some trepidation since the acoustical

properties of the transducers vary nonlinearly with

applied voltage due to domain reorientation (Berlincourt

et al., 1964). In particular, the mechanical Q of the

transducer decreases with increasing voltage and thus

the data obtained for higher amplitudes may be biased
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to lower Q values.

The results of the pulse experiment are shown in

Figures 6-2 and 6-3. It is difficult to directly compare

these data with those of Figure 6-1 in terms of strain

amplitude since equations like 6-1 strictly apply to

frequencies well below the transducer resonance. It is

safe to say, however, that the amplitudes one is dealing

with are at least as high as the highest obtained for the

resonance experiment. In any event, it is wise to use

the data in Figures 6-2 and 6-3 for qualitative

interpretation only.

For all three confining pressures, there is a clear

decrease in Q for P waves as a function of amplitude.

For S waves, however, there is no such significant change.

As mentioned by Walsh (1966) it is possible that high

amplitude P waves may be able to close open cracks and

then cause them to slide. This process increases the

number of cracks contributing to attenuation. For S waves

there are fewer orientations of cracks relative to the

direction of propagation that can slide, thus the

amplitude effect would be smaller. Also, the efficiency

of the S wave transducers is less than for P waves and

for a given voltage the strain amplitude in the rock

would be less. But, an arguemant against amplitude

dependent Q behavior in this case is that virtually no
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change in velocities were observed as shown in Figure

6-4. If the resonance experiment can be taken as a guide,

velocity should decrease with Q.

This takes us back to the possibility that the

observed decrease in Q is due to the change in transducer

properties where for HDT-31 (PZT-4) piezoelectric

material, Q decreases from over 500 to well under 100 in

the voltage range used. It is difficult to understand,

however, why the S waves are not affected as the P waves.

At best, one must say that the results of the ultrasonic

work on the Berea are inconclusive as regards to the

amplitude dependence of Q.

To further investigate the amplitude effect, another

resonance experiment was run, this time with the Navajo

sandstone. In Figure 6-5, Q is plotted as a function

of strain amplitude. One sees nearly the same behavior as

observed for the Berea - constant Q at low amplitudes
-6

with a sharp decrease at a strain amplitude of 10-6

The Q values, 60 at low amplitude and 28 at high amplitude,

are lower than those observed for the Berea. This is

in contradiction with the ultrasonic results presented

in the last chapter where Q for the Navajo was higher

than for the Berea. It may be, however, that this is an

effect of air humidity, the Berea experiment being run

in the winter (40% relative humidity) and the Navajo run
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in the summer (75% humidity).

Does the amplitude dependence explain the difference

between reported resonance and ultrasonic measurements?

For the most part - yes. Qp values at low pressure

obtained in the last chapter using ultrasonic pulses are

compared to the results just described for the dry Berea

and Navajo sandstones in Table 6.1. Here, low and high

amplitude resonant bar Q values are listed along with the

ultrasonic P wave values. Clearly the high amplitude

results from the resonance technique are comparable to

the ultrasonic data. The data, however, are limited and

it would be premature to rule out other mechanisms -

even frequency dependent dry friction - as supplements

to amplitude dependence in interpreting the discrepancy

between the two experimental methods. It is inescapable,

however, that amplitude dependence must be considered if

any comparison is to be made between not only different

experimental techniques but also between laboratory

and field data.

6.1b Thermal Cracking and Amplitude Dependent Q

The data in the preceding section strongly suggest

that cracks in the rock are important in determining

the amplitude dependent behavior of Q. Thermal cycling

presents a unique opportunity to form cracks in rock.

Thus, if information on the induced crack porosity is
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available, the change in Q might be quantified in terms

of crack density. Intuitively, one would expect that

Q would decrease with increasing thermal cycling. As

will be seen, this is not always the case. In fact, one

of the more interesting results of this chapter is what

can be said about the nature of thermal cracking

mechanisms.

Samples of Frederick diabase, Solenhofen limestone,

and Westerly granite, 0.635 cm in diameter, were thermally

cycled up to a maximum temperature of 6000C at room

pressure in order to induce cracking. Second samples of

each rock were cycled in separate runs in order to

check reproducibility. As discussed in section 3.8b,

the heating and cooling rates were kept under 2WC/minute.

The samples were exposed to the maximum temperature for

at least one hour. Data from Johnson et al. (1978)

suggest that this time is required for the decay of

acoustic emissions (and thus cracking) in a rock at

constant temperature.

Other samples of each rock were slowly cycled to

maximum temperatures of 400' and 800 0 C. These were used

for static stress-strain measurements to obtain a

handle on the induced crack density. Finally, samples

of Solenhofen limestone and Frederick diabase, 1.27 cm

in diameter, were subjected to thermal cycling at high
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heating rates of about 200C/minute. Westerly granite

did not remain coherent during these runs and was thus

not used.

In both procedures, after cooling the samples were

left in laboratory air for several days. All attenuation

measurements were made at room temperature and pressure

in air. The relative humidity in the laboratory varied

during the course of the experiments from 45 to 75%.

This appeared to have had no bearing on the Q measurements.

In fact, several samples were saturated with water and

then allowed to dry with little change in the results.

Thermally induced crack porosity may be characterized

using static stress-strain analysis. Linear strain as a

function of hydrostatic confining pressure is shown for

virgin and thermally cycled samples of diabase, limestone,

and granite in Figures 6-6 through 6-10. For Westerly

granite, data is shown for two orientations: the stiff

(parallel) and soft (perpendicular) directions. The

induced crack porosities for cycling to 400 and 8000 are

found using the method described in section 4.6 and the

results are listed in Table 6.2. The increase in porosity

is generally proportionally greater for the samples cycled

to 8000 than those heated to 4000. The shapes of the

thermally induced cracks seem also to depend on the

temperature achieved during cycling. In the diabase, for
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the 4000 curve, the cracks appear to be of fairly high

aspect ratio. The closure pressure is relatively high

(>1000 bars) and there is little curvature at low

pressures. The case for higher aspect ratio cracks in

the 4000 cycled Westerly samples is not nearly as clear

as for the diabase. The effect is masked by preexisting

low aspect ratio cracks. However, evidence to be

presented later suggest relatively higher concentrations

of wide cracks compared to thin ones produced by thermal

cycling to temperatures no greater than 400
0 C. In both

the diabase and granite, heat treatment to 8000 not

only produces a dramatic increase in crack porosity but

also, these cracks seem to be of lower aspect ratio.

In both cases, the curvature of the stress-strain curve

at low pressures is strickingly high compared to the

other runs. For the Solenhofen limestone, however, a

rapid change in crack porosity is not observed after

heating to 8000 nor are the induced cracks of particularly

low aspect ratio.

Q values at low strain amplitude and bar velocity

as functions of maximum temperature obtained in slow

heating and cooling cycles for the diabase and limestone

are shown in Figures 6-11 and 6-12. Q and V for the

two core directions of Westerly are shown in Figure 6-13.

For all three rocks, two separate experiments were run to
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check reproducibility (with the exception of the "stiff"

core of Westerly granite). These are denoted on the

figures by different symbols. While the experiments were

run under different humidity conditions, there is quite

satisfactory agreement between the two runs for all

three rocks.

The remarkable aspect of the data is the dramatic

increase in Q for all the samples at maximum temperatures

of 4000 and less. Simultaneously, velocity decreases -

quite substantially for the Westerly granite which

contains more cracks initially. The changes in velocity

seen for the granite are nearly identical to those

reported by Johnson et al. (1978) in a similar experiment

on Westerly (Q values were not obtained). Anisotropy in

Westerly is apparent, amounting to 10% for velocity and

25% for Q. The velocity changes in the diabase and

limestone are low compared to the granite for temperatures

below 4000 followed by a rapid change above that point.

This is reflected by the changes in crack porosity upon

thermal cycling listed in Table 6.2. It is clear then,

from all the data, that Q increases up to a point, even

though crack porosity is also increasing. This change in

Q is also apparently independent of orientation as shown

for the Westerly granite in Figure 6-13.

Between 400 and 5000, however, the trend in Q
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reverses and in two of the three cases, Q decreases

substantially. These data are very similar to those

reported by Todd et al. (1972) for Westerly granite and

Fairfax diabase. The high temperature Q values of the

limestone do not follow the form of the other two rocks,

showing only a slight decrease. This difference might

have been expected from the static measurements where

the Solenhofen was the only sample not exhibiting a

large increase in low aspect ratio cracks at 8000.

It should be noted that the decrease in Q above 4000

observed for the diabase and granite is not initially

due to the a-8 transition in quartz which does not

occur until 5730C.

Q and bar velocity for the 1.27 cm diameter cores

of rapidly heated limestone and diabase are shown in

Figures 6-14 and 6-15. The behavior of Q as a function

of maximum temperature for the limestone is clearly

opposite that observed for low heating rates. For the

diabase, there is an initial decrease in Q at 2000 followed

by a gradual rise to a maximum at 5000 although the Q

values at this point are far below those obtained by

slow heating even though the sample here was kept at

temperature for at least one hour as before. A sharp

decrease in Q is noted between 500 and 6000C probably

due to the phase transition in quartz. In cycling to
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800 0 C, a marked change in the sample appearance was noted.

This was accompanied by a further decrease in Q and a

very rapid decrease in velocity.

These results imply that a different crack producing

mechanism is operative for high heating rates. Compared

to the slow rate, one might expect that finer (lower

aspect ratio) cracks are generated. The data are more

conclusive for the limestone where not only Q decreases

continuously but the decrease in velocity is larger than

for the slow heating rate case. For a given volume

concentration, lower aspect ratio cracks produce larger

changes in the elastic moduli compared to high aspect

ratio cracks (Toksiz et al., 1976). Apparently in the

diabase, permanent outgassing of volatiles has a

compensating effect on the generation of thin cracks

at temperatures between 300 and 500 0 C. The minor

contribution of this same effect may be observed in the

limestone where Q levels off between 400 and 6000 C.

Amplitude dependent behavior is also coupled to the

nature of thermally induced cracks. Q as a function of

maximum strain amplitude is shown for several temperatures

each for the three .slowly cycled rocks in Figures 6-16

through 6-18. Amplitude dependence, not readily apparent

in the virgin states of the diabase and limestone,

appears for thermally cycled samples. The important
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feature to note from the data is that while Q increases

as a function of temperature for low strains, the

transition from low to high strain amplitude behavior

migrates to lower amplitudes. It also appears that the

Q values for high strains tend to converge. Once the

maximum temperature exceeds 4000C and the Q's at low

strains decrease, the amplitude transition moves back

to higher strains. The exception to this is the

Solenhofen limestone. Again it is apparent in this case

that the nature of the cracks obtained at high temperature

are different than in the granite or diabase.

Amplitude dependent behavior was also observed for

the rapidly heated samples although for a given maximum

obtained temperature, the transition seems to occur at

a higher strain than for the slowly heated samples. This

is shown in Figure 6-19 for the Frederick diabase where

Q as a function of amplitude is plotted for the virgin

rock and the two heat treated runs. The amplitude

dependence for the 200C/minute treated sample is not a

clearly defined as for the other run. Either the transition

does occur at higher strains or the amplitude dependence

is smeared out or reduced somewhat.

The behavior of amplitude cycling on Q is nearly

identical for all the rocks including the sandstones shown

in Figures 6-1 and 6-5. Typical curves for the diabase,
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limestone and granite are shown in Figures 6-20 through

6-22. Again, the lack of hysteresis implies little or

no rock damage at high strain amplitudes.

6.2 Mechanisms of Amplitude Dependence, Volatile Loss
and Thermal Cracking

The data presented in the preceding section will be

interpreted in terms of sliding contact area, degassing

of volatiles from the contact surfaces, and most importantly,

the nature of the cracks produced by thermal cycling.

In this section first the amplitude dependence of attenuation

in general is discussed. Then, volatile loss as a

result of heating will be discussed particulary in terms

of comparing the results of this thesis with data

acquired on lunar samples and terrestrial analogs.

Mechanisms for thermal cracking and their implications in

terms of crack characteristics will then be presented.

This will be followed in the next section by a discussion

of the above results in relation to the Q data obtained.

6.2a Amplitude Dependent Attenuation

It is almost invariably assumed in the literature

that attenuation is independent of strain amplitude.

While this may indeed be true for strains associated with
-6

teleseismic waves (<10-6 ) numerous experimental studies,

including this one, have shown amplitude dependent

behavior at higher strains (F>10-6). Gordon and Davis
behavior at higher strains ( >i0 ). Gordon and Davis



315

(1968) examined Q as a function of amplitude ranging from

-9 -4
10 to about 10 using a resonant bar at 90 kHz. The

samples studied included granite, basalt, dunite, quartzite,

and others. The results obtained were similar to the data

presented in the previous section. Q was observed to

be constant at low strains, decreasing sharply for strain

amplitudes greater than about 10- 6 . Their explanation

that these features are due to rock damage is not valid

since we have seen little hysteresis effect upon unloading.

Other studies by Peselnick and Outerbridge (1961) on

Solenhofen limestone under torsional vibrations at 1 Hz

and Gordon and Rader (1971) for the Chester granite

produce similar results.

The theoretical basis for amplitude dependent

attenuation is not well developed. The difficulty lies

in the fact that such behavior is very model dependent.

The important parameter to consider in the development

of models is the product of the frictional stress, Tf,

and the contact area of sliding, a. If Tf *a is linear

with strain amplitude, then Q is independent of amplitude.

-l
If f *a is parabolic with amplitude, then Q linearly

depends on strain and so on.

While not explicitly dependent on strain amplitude,

Walsh (1966) admitted that his model could be considered

amplitude dependent if one is willing to assume that high
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amplitude waves are able to both close and then slide

non zero width cracks.

A friction model producing a more explicit amplitude

dependence was developed by Mindlin and Deresiewicz (1953)

for elastic spheres in contact. The attenuation is given

by:

-1 2AF
Q (6-3)

9KF

where A is the amplitude of an applied shear force

(assumed <<KF ), K is the coefficient of friction, and

F is the normal force acting on the area of contact. (
n

is a dimensionless function depending on the orientation

of the contact surface relative to the propagation

direction of the seismic wave. The spherical contact

model, while a highly specialized geometry, has lately

served as a basis for a crack friction model proposed by

Mavko (1978). In his treatment, Mavko assumes a flat,

two dimensional, tapered crack undergoing plane strain
-1

sliding. The result of his analysis is that Q-1 is

linearly dependent upon strain. Again, this is a direct

result of Tf'a being parabolic with amplitude. In an

attempt to explain the strain independent behavior of

Q at low amplitudes, Mavko proposes that linear mechanisms

such as thermoelasticity mask the attenuation due to

friction. As will be shown later, the data presented in
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the last section do not necessarily support or disprove

this hypothesis. But, it may be that cracks and sliding

friction play a role in the observed attenuation even

at low strain amplitudes.

The data presented in this chapter have shown that

the amplitude dependence of attenuation, while not

necessarily important at seismic amplitudes, is most

important for understanding the nature of the friction

mechanism. Section 6.3 will come back to the

basis for amplitude dependence - directed more specifically

towards the data obtained for the thermally cycled rocks.

6.2b Volatile Loss

It is widely accepted that small amounts of volatiles,

most commonly water, produce large effects in attenuation.

Since the earliest observations by Born (1941) the effect

of absorbed water vapor on Q has been studied in detail.

Perhaps the most exhaustive survey of the effects of

volatiles has been carried out in conjunction with the

study of the acoustical properties of lunar rocks

(Tittmann et al., 1973, 1974, 1975, and 1976). As is

discussed in Chapter 3, extremely high in-situ Q values

>3000 have been observed for the moon (Latham et al.,

1974; Dainty et al., 1976). In their series of experiments,

Tittmann et al. have shown that these high values can be

duplicated in the laboratory by repeated thermal cycling
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-7and application of hard vacuum (10-7 torr) for both lunar

samples and terrestrial lunar analog basalts. The results

of an experiment described in Tittmann et al. (1975) for

which a Q of 3100 was obtained for lunar rock 70215,85

are shown in Figure 6-23. Here Q and velocity are

plotted as functions of vacuum pressure in torr. The

solid lines indicate runs in which the vacuum was increased

while the temperature was held constant. Dashed lines

show where the sample was slowly thermally cycled to

300 0 C. For example, on run AB, the pressure was reduced
-3

from atmospheric to 10 torr while the temperature

remained at room value. On path BC, however, the pressure

was held constant while the rock was thermally cycled.

While the changes in velocity are small compared to

changes in Q, it is important to notice that velocity

decreases only when the sample is thermally cycled.

Furthermore, it is apparent that the offset AF in Q at

room temperature and pressure is due mostly to changes

induced by thermal cycling.

Tittmann et al. have hypothesized that these effects

are due almost entirely to outgassing of volatiles from

the rock. To study this effect, Tittmann et al. (1976)

subjected a terrestrial analog of a lunar basalt to a
-8

vacuum of 10-8 torr and cycled to a maximum temperature

of 400*C resulting in a Q (at room temperature) of 740.
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The sample was then exposed for 30 minutes to saturated

vapors of volatiles at ambient pressure in the absence of

water. Several volatiles, free of water as an impurity,

resulted in significant drop (40-50%) in Q with small

(1-2%) reductions in velocity. Water vapor, though,

produced the largest change, a 60% decrease in Q and a

4.4% decrease in velocity. Interestingly, the viscosity

of the volatile had little effect on Q. This supports

the contention made in Chapter 3 that boundary or

imperfect lubrication theory is appropriate for the

friction mechanism in rocks. Volatiles with different

dipole moments produced similar changes in Q but ones

with higher moments (e.g. water) proved more difficult

to outgass.

6.2c Thermal Cracking

It is possible that a large portion of the increase

in Q observed in both the lunar rocks and those studied

here is due not to outgassing but to changes in crack

densities and shape as a result of thermal stresses during

cycling. Two mechanisms for thermal cracking have been

hypothesized and we will show that each one produces

cracks of quite different characteristics. The first

mechanism opens cracks at low pressure due to differential

thermal expansion across grain boundaries and preexisting

cracks. The second is the propagation of cracks induced
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by thermal gradients.

Thermal expansion in rocks measured at room pressure

is generally found to be irreversible in thermal cycles.

Residual strains remain after a heating and cooling

cycle. Much of the data can be explained by thermally

induced cracks (Richter and Simmons, 1974) and it is

found that thermal expansion is reversible in temperature

if the measurements are made at a pressure high enough

to close these cracks (Wong and Brace, 1978).

For low thermal gradients in the sample, internal

stresses and cracking are induced by mismatches in thermal

expansion across the grains. This will occur even in

monomineralic rocks such as the Solenhofen since thermal

expansion is a tensor quantity and grains of different

orientations produce differential expansion coefficients.

As will be seen, this mechanism is operative at the low

heating and cooling rates (<20C/min) primarily used in

this work. For this case, the internal stress, c,

induced by a temperature change, AT, is given by

(Myklestad, 1942; Edwards, 1951; Eshelby, 1957):

a = EAaAT (6-4)

where E is the Young's modulus and Aa is the differential

thermal expansion.

There is a great deal of evidence to support the

hypothesis that expansion and contraction of grains at
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thermal equilibrium has the effect of opening cracks.

Differential strain analysis of several rock types

including Westerly granite and Frederick diabase (Cooper

and Simmons, 1977) show that the peak in crack porosity

as a function of closure pressure shifts to higher

closure pressure and thus higher aspect ratio cracks as

a result of thermal cycling. Wong and Brace (1978) have

shown that the pressure required to produce reversible

thermal expansion also increases after cycling. These

effects have been observed qualitatively in Figures 6-6

through 6-9 showing linear strain as a function of

pressure. As was noted in section 6.1b, while the effect

of cycling a rock to 400 0C is to increase the overall

crack porosity, these seem to be of high aspect ratio.

This is most evident for the diabase and limestone, more

or less crack free in their virgin states. Again note

that further heating to 8000C produces a dramatic change

in the crack porosity for the diabase and granite. It is

possible that above 4000C, the rocks are unable to

accomodate any more thermal expansion induced strain and

low aspect ratio cracks are propagated. Thus we see a

sharp increase in strain for low confining pressures.

The change for the Solenhofen at 8000 (Figure 6-7) is not

nearly as dramatic and this is reflected in the Q values

which did not suffer a dramatic decrease for maximum
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temperatures above 400 0C. The limestone probably deforms

plastically at these temperatures and thus fine crack

growth is inhibited.

Perhaps the most concrete evidence for crack widening

due to thermal expansion mismatch at cycling temperatures

no greater than 400 0C has been obtained by direct

observation using a scanning electron microscope (SEM).

Sprunt and Brace (1974) used SEM photographs to determine

the form and distribution of microcracks in both virgin

and stressed crystalline rocks. Figure 6-24 from their

paper shows graphically, the effect of thermal cycling

to 400 0C in Chelmsford granite. Clearly, thin preexisting

cracks have been widened and new, fairly wide, cracks

have been formed at the grain boundaries. Figure 6-25,

also from Sprunt and Brace, shows the aspect ratio

distribution of unstressed (virgin) and thermally stressed

Westerly granite. There is a decrease in the number of
-4

low aspect ratio cracks (10-4 ) while a substatial increase
-2

in the number of cracks with aspect ratios of 10-2 is

observed.

In the second mechanism for thermal cracking, local

thermal gradients in the rock may induce crack growth.

These gradients occur in the transient stage before

thermal equilibrium. Goodier and Florence (1964) have

shown that for a Griffith crack of length Z, and specific
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fracture surface energy, S, crack growth is initiated if

the temperature gradient, T, exceeds a critical gradient,

Tc, given by:

8S
TC - S 2 (6-5)

c 27rEa (9/2)

E is the Young's modulus, a the thermal expansion

coefficient and the solid material is assumed to be

homogeneous and isotropic. Wong and Brace (1978) have

estimated Tc to be 313 0 C/mm for Westerly granite.

The actual gradient achieved in the sample is a

function of the heating rate, thermal properties of the

solid, and the geometry. From solutions to the heat

conduction equation for an infinite cylinder uniformly

heated at its surface at a rate, 6, Russell (1936)

showed that the maximum gradient (at the surface) is

approximated by:

T 1 ro (6-6)
r 2 K

where K is the thermal diffusivity and r0 is the radius.

Taking the sample dimension ro = 64 mm and K = 1.2 mm 2/s

with 0 = 20 C/min, we find T/3r = 1.80C/mm, far below the

critical value obtained from the Goodier and Florence

theory. This theory may be of little quantitative use,

however. Indirect evidence of the heating rate required

to induce crack growth has been obtained by Todd (1973).
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For rates of 50C/min and higher in samples of 2.5 cm

radius, acoustic emissions and increasing residual

strain with heating rate imply significant thermal

gradient cracking. Applying equation 6-6 for 0 = 50C/

min and r0 = 250 mm, we find 3T/Dr = 8.68
0 C/mm which may

be used as a critical gradient. It is clear that if one

can indeed use this value as a guide, it is difficult to

induce gradient cracking in the 0.64 cm samples used

in this thesis even at high heating rates. For the

1.27 cm diameter samples, however, with 0 = 200C/min,

we obtain 9T/r = 17.64OC/mm.

One may assume then, for the samples of 0.64 cm

diameter with a heating rate of less than 20C/min, that

the most important mechanism for thermal cracking is

differential thermal expansion which has the effect of

widening cracks. For larger diameter samples and faster

heating rates, thermal gradient cracking predominates.

Stresses due to thermal gradients exist over a volume

larger than the grains, while with differential thermal

expansion stresses are concentrated between grains.

Thus, cracks produced by thermal gradients may propagate

through the grains, providing a mechanism by which contact

area is increased. Therefore, attenuation is also

increased as generally observed in the data.
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6.3 Discussion

The purpose of this section is to explain the

resonance Q data in terms of both the thermal cycling

and amplitude dependent behavior. The discussion will

first emphasize the thermal cycling data. From the

analysis, we will see that reduction of sliding contact

area for thermal cracking at low heating rates is

consistent with the observed data. This will be followed

by several hypotheses to explain amplitude dependent Q

which are also in agreement with the variations of this

behavior with thermal cycling.

To summarize the data presented in section 6.1 for

thermally cycled rocks, we have seen that for low heating

rates (<20C/min), Q increases substantially up to a

maximum temperature of 4000, and velocity decreases as a

function of temperature. These effects may be explained

by one or both of the following mechanisms:

1. Outgassing of volatiles tied to mineral grains

and sliding surfaces. This has the effect of increasing

the friction coefficient as shown in section 3.2 and

thus decreasing the attenuation (increasing Q)

2. Increasing aspect ratio of cracks as a result of

cracking due to differential thermal expansion. The

widening of thin cracks, likely to contribute to attenuation

due to friction, also increases Q. Alternatively, this
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mechanism may also be thought of as decreasing the sliding

surface contact area.

While the data is limited, the decrease in Q observed

for the rapidly cycled Solenhofen limestone and Frederick

diabase is probably due to an increase in the number of

thin cracks as a result of thermal gradient cracking.

Concentrating on the low heating rate data, it is

important to determine, at least qualitatively, the

relative contribution of each mechanism. Since the

measurements were made in laboratory air, one might assume

that the samples had reabsorbed water vapor. If this is

true, then most of the effect in Q observed may be due to

thermal cracking. However, this assumption must be

justified. The diffusion time for volatile replacement

may be quite long considering it may have taken 10-100

million years for them to be tied up to the mineral

grains in the first place.

The question may be resolved, though, by comparing

the data of this thesis with that obtained for lunar

rocks and analogs. First note that permanent offsets

in Q measured for lunar rocks at atmospheric conditions

after heat treatment and vacuum outgassing are due mostly

to thermal cycles. Next, relative changes in Q for a

terrestrial lunar analog (W-8, from Tittmann et al., 1974)

and the samples studied here are plotted as a function of
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the maximum temperature achieved during thermal cycling

in Figure 6-26. The major difference between W-8 and the
-7

others is that its Q's were measured at a vacuum of 10-

torr. Roughly, the effect of measuring Q under laboratory

conditions is to reduce the change in Q by one half.

It appears that the presence of high vacuum is required

to maintain a volatile free state. Tittmann et al. (1976)

noted that exposure to ultra high vacuum alone, was

sufficient to increase Q in lunar rock 70215,85 from

-7 -101871 at 10 to 3330 at 10 with a 0.21% increase in

velocity. As noted before, vacuum outgassing not only

increases Q but also increases velocity, both effects

being reversible. Thermal cycling, on the other hand,

irreversibly reduces velocity due to the overall

increase in crack density.

For the experiments described in this thesis, the

exposure to the air does seem to imply that volatiles

(water vapor) have been able to reenter the rock.

Also, thermally cycled samples were saturated with water

and then allowed to dry. Little change in the Q values

was observed. Thus, most of the increase in Q is

probably due to crack widening. If volatile depletion

had a major effect on the Q, then this should have been

seen for the rapidly heated samples also. Rather, Q

decreased or remained relatively constant with maximum
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temperature. Furthermore, and most important, one would

expect that outgassing would inhibit sliding a thus

amplitude dependent attenuation would not be observed.

Finally, these results are consistent with data

reported by Kissell (1972) in which Q was obtained as

a function of temperature (ambient) from -2000 to 6000 C.

Kissell observed an increase in Q as a function of

temperature above 00 C. For moderate temperatures, this

effect was reversible and Kissell interpreted it to be

associated with moisture loss. Returning the sample to

room temperature resulted in the reabsorbtion of

moisture. For temperatures above 1000, the effect was

irreversible. Kissell offered no explanation but this

observation is easily explained by thermal cracking.

In some respects, thermal cracking at low heating

rates is similar to the effect of pressure on Q. This

is schematically illustrated in Figure 6-27 where crack

concentration or porosity is shown as a function of

aspect ratio. From theoretical considerations described

in Chapter 3 and data in Chapter 5, we have seen that the

effect of pressure is to reduce the number of all

cracks including the small aspect ratio ones that contribute

to attenuation. Thermal cracking via thermal expansion

mismatch also reduces these small aspect ratio cracks

even though the total crack porosity increases as shown
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by the broken line. Temperature gradient cracking, on

the other hand, appears to increase the number of low

aspect ratio cracks along with (perhaps) higher aspect

ratio ones.

Strain amplitude effects may be incorporated into

this model in several ways. First recall the Mavko

(1978) model of friction for which Q is inherently

amplitude dependent. It is necessary in this case to

hypothesize some amplitude independent linear mechanism

that masks attenuation due to friction at low strains.

If the effect of low heating rate thermal cycling is to

decrease the attenuation due to this linear mechanism,

then the total effect on 0 is as observed for maximum

temperatures up to 400 0C as illustrated in Figure 6-28.

The transition from low to high amplitude Q behavior

would migrate to lower strains as the rock was thermally

cycled. The Q values at high strains would be equivalent

regardless of the temperature history. This explanation

is appealing except for the fact that the linear

mechanism is undefined and that cracks seem to be

important even at low strains. This is borne out by Q

versus pressure measurements made at low amplitudes

(Gardner et al-., 1964) where attenuation decreases with

pressure just as in the case of the higher amplitude

ultrasonic measurements. Furthermore, the decreases in
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Q at low amplitudes upon heat treating above 4000 and

also at high heating rates at all temperatures, strongly

suggest the presence of cracks and frictional sliding of

some kind.

An alternative explanation may be found in terms of

contact area in cracks available for sliding. Consider

a crack with a distribution of contact areas as illustrated

in Figure 6-29a. For a given normal stress acting on the

contacts, those with smaller area will slide at lower

amplitudes. When the wave amplitude exceeds the frictional

stress, Tf, on the larger surface areas, they too will

slide and attenuation increases. The widening of cracks

due to differential thermal expansion will decrease the

area of contacts as shown in Figure 6-29b. Thus Q increases

and sliding on the once larger area surfaces is induced

at lower amplitudes. Once low aspect ratio cracks are

propagated (above 400 0 C or by thermal gradients) the

contact area increases, Q is lowered, and the amplitude

dependent behavior shifts back to higher strains.

A similar crack model which holds great promise to

quantitatively explain these effects has been recently

proposed by Walsh and Grosenbough (1978). Cracks are

modeled as cavities formed by contact of two bumpy

surfaces. The bumps, or asperities, are considered round

and thus Hertzian contact theory is assumed. The
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distribution of asperity heights and therefore contact area or

normal stress is taken to be nearly Gaussian in nature. While

the exact form of this distribution is critical in terms

of Walsh and Grosenbaugh's elastic model, it is sufficient

for this discussion that there is merely a peak in

the distribution. A Gaussian profile, however, is

observed for slightly polished steel and bead blasted

gold surfaces (Greenwood and Williamson, 1966).

Now consider the effect of this model in terms of

general amplitude dependence of attenuation. For low

strains, sliding is induced on the low contact area tail

end of the distribution. Since the distribution here is

relatively flat, Q would appear independent of amplitude.

As strain amplitude increases, sliding of contact areas

near the peak of the distribution occurs and Q decreases.

At very high amplitudes, this theory would predict a

leveling off of Q as sliding passes the peak. The model

is illustrated in Figure 6-30a where Q as a function of

amplitude is superimposed on the distribution of contact

area or normal stress.

This same model predicts the behavior of amplitude

effects for thermally cycled rocks. Thermal cracking

that widens cracks will shift the peak in the distribution

of contact area to lower values. This is shown in

Figure 6-30b for normalized distributions. Thus while
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the actual density of contacts may decrease and Q increases,

the peak occurs at lower areas and the drop in Q due to

amplitude effects happens at lower strains.

The two contact models just presented are closely

related. Their essential feature, quite different from

the Mavko model, is that cracks play a role at all strain

amplitudes investigated in this thesis. This is more

consistent with our notion that the increase in Q as a

function of pressure measured at low amplitudes by

resonance techniques is due to crack closing just as

interpreted for the ultrasonic data. All of the amplitude

dependent models, however, require further development.

For the Mavko model, the low amplitude linear mechanism

must be identified and its properties understood before

any judgement can be made in terms of its acceptability in

explaining the data. Clearly the contact models need

much mathematical development to justify the qualitative

arguements made in this thesis. This is beyond the

scope of the present work but is obviously the next step

to take in order to fully understand the nature of

frictional attenuation.



Table 6.1

Comparison of Resonance and

Resonance, low amplitude

Resonance, high amplitude

Ultrasonic P wave

Ultrasonic Q Data

Berea Navajo

75 60

30 28

20 30

Table 6.2

Crack Porosity (%) From Thermal Cycling

Frederick Diabase

Solenhofen Limestone

Westerly Granite

perpendicular

parallel

virgin

0.30

0.12

400 0C

0.05

0.09

0.54

0.34

333

8000C

0.20

0.18

2.70

2.07
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FIGURE CAPTIONS

Figure 6-1. Q and bar velocity as a function of strain

amplitude for longitudinal waves in the dry Berea

sandstone. Also shown is Q as a function of strain

amplitude for plexiglass. In this and later figures,

representative error bars are shown.

Figure 6-2. Q values for P waves in the dry Berea

sandstone as a function of peak voltage applied to

the transducers. Data obtained at 45, 210 and 500

bars confining pressure (Pf = 0).

Figure 6-3. Q values for S waves in the dry Berea

sandstone as a function of applied voltage.

Figure 6-4. P and S wave velocities as a function of

applied voltage in the dry Berea sandstone.

Figure 6-5. Q as a function of strain

amplitude for longitudinal waves in the dry

Navajo sandstone.

Figure 6-6. Linear strain as a function of confining

pressure in Frederick diabase for a virgin sample

and samples thermally cycled to 400 and 800 0 C.

Figure 6-7. Linear strain as a function of confining

pressure in Solenhofen limestone for virgin and

thermally cycled samples.

Figure 6-8. Linear strain as a function of confining

pressure in Westerly granite for the "soft"
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direction. Curves for the virgin and 400 0 C cycled

samples are shown.

Figure 6-9. Linear strain as a function of confining

pressure in Westerly granite for the "stiff"

direction.

Figure 6-10. Linear strain as a function of confining

pressure in Westerly granite for both directions

for samples thermally cycled to 800 0C.

Figure 6-11. Q (solid symbols) and bar velocity (open

symbols) as a function of maximum temperature

achieved in slow thermal cycling in the Frederick

diabase. Two separate experiments were run and

the results are denoted by the different symbols.

Representative error bars are also shown.

Figure 6-12. Q and bar velocity as a function of

maximum temperature in Solenhofen limestone. See

Figure 6-11 for explanations.

Figure 6-13. Q and bar velocity as a function of

maximum temperature in Westerly granite for both

directions. See Figure 6-11 for explanations.

Figure 6-14. Q (solid symbols) and bar velocity (open

symbols) as a function of maximum temperature

achieved in fast thermal cycling in Solenhofen

limestone.
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Figure 6-15. Q and bar velocity as a function of

maximum temperature (fast cycling) in Frederick

diabase.

Figure 6-16. Q as a function of strain amplitude in

Frederick diabase for virgin and several slow

thermally cycled samples.

Figure 6-17. Q as a function of strain amplitude in

Solenhofen limestone for virgin and several slow

thermally cycled samples.

Figure 6-18. Q as a function of strain amplitude in

Westerly granite (soft direction) for virgin and

several slow thermally cycled samples.

Figure 6-19. Comparison of amplitude dependent Q

behavior for slow and fast cycled samples of

Frederick diabase.

Figure 6-20. Typical strain amplitude-Q hysteresis

in Frederick diabase.

Figure 6-21. Typical strain amplitude-Q hysteresis

in Solenhofen limestone.

Figure 6-22. Typical strain amplitude-Q hysteresis

in Westerly granite.

Figure 6-23. Q and bar velocity as a function of
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vacuum pressure from results of an experiment

described in Tittmann et al. (1975) for lunar

rock 70215, 85. Solid lines indicate isothermal

runs and dashed lines thermally cycled runs.

Figure 6-24. Photomicrographs of the same field in

virgin (a) and thermally cycled to 4000 C (b)

Chelmsford granite. From Sprunt and Brace (1974).

Figure 6-25. Frequency distribution of crack aspect

ratio in virgin (unstressed) and thermally cycled

(stressed) Westerly granite. In each a random

sample of 80 cracks was compared. From Sprunt and

Brace C1974).

Figure 6-26. Increase in Q as a function of maximum

temperatures achieved during slow thermal cycling

for the three rocks studied in this thesis,

measured under atmospheric conditions and a

terrestrial lunar analog (W-8) measured at 10- 7

torr vacuum (Tittmann et al., 1973).

Figure 6-27. The effect of increasing pressure and slow

thermal cycling on the distribution of crack aspect

ratios.

Figure 6-28. A model to explain the strain amplitude

effects of attenuation in rock proposed by Mavko

(1978). Here, the effect of thermal cycling is

assumed to decrease the attenuation (increase Q)

due to a linear mechanism.
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Figure 6-29. Schematic illustration of a crack and

sliding surfaces in a virgin (a) and thermally

cycled (b) rock. Tf is the frictional stress that

must be overcome to induce sliding on each

surface. The effect of thermal cycling is to

widen-the cracks and reduce the sliding contact

area.

Figure 6-30. Possible extension of the Walsh and

Grosenbaugh (1978) crack model to attenuation. A normal

distribution of contact area (or normal stress) is assumed.

a) The effect of the contact area distribution on

the amplitude dependence of Q. b) The effect of

thermal cycling on the contact distribution and the

resulting changes in Q as a function of strain

amplitude. The curves have been normalized.
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CHAPTER 7

SUMMARY AND CONCLUSIONS

This thesis has attempted to cover, from both

experimental and theoretical points of view, the nature

of seismic wave attenuation in dry and saturated upper

crustal rocks. The investigation of both published and

new data on the attenuation in rocks has shown that many

of the same properties and processes that affect volocity

also affect attenuation, many times to a greater extent.

These properties include the number and distribution of

cracks, the type and amount of fluid saturation, and the

mechanical properties of the rock matrix.

Data obtained for this thesis, using both ultrasonic

pulse transmission and resonant bar methods, have shown

for a limited number of samples the following:

1. There are wide variations in Q (10-1000) for

typical crustal rocks under varying conditions.

2. For rocks with cracks, attenuation decreases

(Q increases) with increasing differential pressure both

for P and S waves in all cases of saturation. The rate

of increase is high at low pressures and levels off at

higher pressures. For rocks undergoing pore collapse,

Q increases during the loading cycle (increasing pressure).

During unloading, at pressures less than the point of
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initial collapse, both Qp and Qs are lower than the values

attained while loading. The difference appears to be

larger for P waves.

3. The major exception to the above result was for

the oil shale. In this case the attenuation appears not

to be controlled by cracks. Q did not increase rapidly

for the tuffs either. Here, that effect was masked by

scattering.

4. Attenuation in brine and water saturated rocks

is greater (lower Q) than in dry or methane saturated

rocks. There was no significant difference between the

Q values obtained for a partially saturated Berea sandstone

and those found for the completely saturated sample.

However, a hint of increased bulk attenuation (opposed

to shear) was observed for the Berea with gas saturations

of 5% and less.

5. In water saturated rocks, Qp is higher than Qs

at both high and low pressures. In dry or methane

saturated rocks, Qs is generally slightly higher than or

equal to Qp

6. The Q value is critically dependent not only on

the number of cracks in the rock but also their shapes or

widths. Rock samples thermally cycled at low heating and

cooling rates up to 4000C show a marked increase in Q

that cannot be entirely explained by outgassing of
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volatiles. Such cycling also widens thin cracks thus

reducing the numbers that contribute to attenuation

due to friction. Fast thermal cycling propagates thin

cracks and Q decreases.

7. Q is dependent on strain amplitude. Above a

certain amplitude, 10-6 to 10-5 for the rocks studied,

Q decreases rapidly. The behavior of amplitude

dependent Q is also a function of the crack distribution

in the rock. Thermally cycled samples experience the

transition from high to low Q at lower amplitudes than

untreated rocks. The lack of hysteresis in Q versus

amplitude implies that little or no damage to the crack

surfaces occurs at high strains.

The strain amplitude dependence of Q could have

major implications. For example, to increase the high

frequency content of seismic pulses, one may need to

transmit the energy with relatively low near-source

strain amplitudes.

8. Rocks anisotropic in velocity are also anisotropic

in attenuation. For Westerly granite the anisotropy is

apparently controlled by crack orientations. The Q

anisotropy in oil shale is complicated and not easily

explained by cracks

One procedure by which laboratory data may be compared

to in-situ data is through the use of theoretical models.
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Results obtained at high frequency then, in principle, may be

extrapolated to seismic frequencies. This problem has

been approached by examining a number of hypothesized

attenuation mechanisms for which numerical models may be

applied. The formulation of the pressure dependences of

these models allows a reasonable fit to the ultrasonic

Qp and Qs data obtained for the Berea sandstone. Such

modeling provides a basis for the understanding of the

mechanisms of attenuation in other rocks as well. However,

the models require the specification of several free

parameters thus limiting their predictive abilities.

Furthermore, assumptions involving the amplitude behavior must

also be considered. Given the limitations of the models,

several specific conclusions regarding the attenuation

mechanisms of seismic waves in porous rocks may be made.

1. At relatively shallow depths under normal hydrostatic

pore pressures in the earth's crust, the primary mechanism

for attenuation in rocks is motion and friction across grain

boundaries and thin cracks. This is evident from the Qp /Qs

ratios and the pressure, frequency, and amplitude dependencies

in dry rocks. It has been said that Q is critically dependent

on the geometry of the contact surfaces. In fact, the

amplitude behavior of attenuation may be explained by

assuming one of several possible sliding surface
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configurations, most likely a peaked distribution of

contact area.

2. Increasing differential pressure decreases the

number of surfaces contributing to attenuation by friction.

Since frictional loss depends on the number of cracks or

sliding surfaces, the attenuation decreases (Q increases)

with increasing pressure.

3. The introduction of fluid into a dry rock will

wet crack surfaces and grain boundaries. By this crack

lubrication, frictional sliding is facilitated and the

attenuation increases. The amount of increase in

attenuation is probably determined by several complex

factors including the amount of clay in the rock and the

wetting properties of the fluid relative to the solid

rock matrix.

4. In a saturated porous rock, attenuation due to

fluid flow plays a secondary role relative to friction.

At low frequencies, squirting flow may be a viable

mechanism, especially in the case of partial saturation.

At ultrasonic frequencies, the Biot type fluid flow

mechanism, while not necessarily dominating, plays an

important role in the overall attenuation at moderately

high pressures.

5. Losses associated with gas bubble resonances

may result in an increase in P wave attenuation but only



374

for high frequencies (MHz range) and low gas saturations

(<5%). The conditions for which this might be an

important mechanism are extremely limited.

6. In rocks with large grains or pores, such as the

tuffs, the dominant mechanism for attenuation at ultrasonic

frequencies is scattering.

7. Attenuation in shales is in large part not due

to crack friction. It is postulated in this thesis that

the mechanism involved in oil shale is relative shear

motion between the stiff shale comonent and the soft

kerogen. For other shales, clay may play the role of

kerogen in this model.

The most important and immediate application of the

work done in this thesis, as has been mentioned many

times throughout the text, is the use of laboratory

measurements to infer rock properties from seismic data

obtained Iin the field. While the ultrasonic data may be

understood and modeled by several mechanisms, some

problems still exist in the extrapolation of these data

to other conditions. Such extrapolations are not only

required in frequency, as has been done here, but also in

strain amplitude. Amplitudes at seismic exploration

frequencies may not be the same as those used in ultra-

sonic measurements, thus invalidating the absolute

estimates of Q. It is clear that in order to utilize
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laboratory data, it is most important to critically

evaluate all the conditions of the measurements. Many

of the discrepancies, even between separate laboratory

measurements on the same rock, may be due to factors

such as amplitude. However, given all that has been

said about the frequency independence of Q in rocks, it

may be that amplitude dependence cannot explain all the

differences observed between Q values obtained with

different experimental techniques. It may be that there

is a frequency dependent component to friction or some

other unaccounted for mechanism.

Even so, theoretical models provide the best method

at the present time of comparing laboratory data taken

under controlled conditions with in-situ data. One

has to be aware, however, that the contributions of

mechanisms that may be important at low frequencies are

difficult to establish from ultrasonic data unless

supplementary information is available. This may be in

the form of certain low frequency resonance experiments

performed at surface conditions. Furthermore, one must

address the question of scaling. At best, models and

data in this thesis represent only a point property of

the rock. Factors which affect the amplitude of seismic

waves in the real earth include such things as source

strength and coupling, geometrical spreading, reflection
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coefficients at interfaces, noise interference, interfer-

ence of different waves, multiple reflections from thin

beds, scattering and diffraction from large joints, faults,

and other inhomogeneities, and even recording instrument

response. Hidden under all of these is the intrinsic

rock attenuation which must be isolated before any

meaningful comparisons with laboratory data can be made.

As has been alluded to several times in the preceding

chapters, a great deal of work is left to be done in the

field of attenuation. This is especially true for

amplitude dependence which has been seriously studied

for only a very short time. In the future, experiments

must be carefully designed and controlled to isolate

important effects. Researchers using high frequency,

high amplitude methods should consider simultaneous use

of low frequency, low amplitude techniques on the same

sample.

Other than amplitude effects, future experimental

work should perhaps concentrate on the effects of acoustic

anisotropy, considering the interesting results obtained

for the oil shale. Also the effects of partial saturation

should be studied in more detail. In particular, it is

very important to understand the crack lubrication

process for small fluid saturations. The influence of

the wetting properties of the fluid on the behavior of Q
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with saturation should prove to be a useful experiment

along these lines. In an effort to better simulate in-situ

conditions, attenuation should be measured in saturated

rock at relatively high ambient temperatures (up to 200 0 C)

and pressures. Finally, experimental and field measurement

techniques must be improved. It is meaningless to say that

attenuation varies so much more that velocity if these

changes cannot be detected with better precision.

From a theoretical point of view, the details of the

friction mechanism are not much better understood now

than 10 to 15 years ago. The extension of the contact

model of cracks to attenuation, however, holds great

promise to quantitatively explain many of the phenomena

associated with the frictional mechanism observed in this

thesis.

The development of new theory and its application

to in-situ data should depend strongly on the direction

taken in the experimental laboratories. Not enough

systematic or appropriate data have been obtained in the

past to justify much of the theoretical work done. It is

not sufficient just to propose new mechanisms with no data

to support them. The challenge will be to merge a growing

set of controlled experimental and field data with new

theoretical developments.
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APPENDIX A

DEFINITIONS

For plane waves propagating in a homogeneous medium the

amplitude is given by:

A(x,t) = Ao e i(k x - wt) (A-l)

where w is the angular frequency and k is the wave number.

Attenuation may be introduced by allowing either complex

velocity or wavenumber. In the latter case:

k = kR + ia (A-2)-R

so that

A(x,t) = A e e(kR-ct)

a is the attenuation coefficient in units of inverse length

and the phase velocity is:

v - - (A-3)
R

Attenuation may also be defined in terms of inverse time by

allowing w to be complex.

Letting the attenuation be determined by

A(x) = A e - x  (A-4)o
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a may be written as

1 dA(x) d
x dx =x In A(x)-TY dx dx

For two different positions, xl and x2 with respective am-

plitudes A(xI) and A(x2) then

I In (A-5)

x2-xl A(x 2 )

for xl < x2 in units of nepers/unit length. Alternatively:

a 1 * 20 log (x)

x2xl A(x

in units of db/unit length.

For an oscillating system in free decay, the definition

of the logarithmic decrement, 6, immediately follows:

6 = in = l = av (A-6)

where A1 and A2 are the amplitudes of two consecutive cycles,

v is the velocity, f the frequency, and X is the wavelength.

Attenuation may also be considered as the phase lag of

strain behind stress or in terms of the energy dissipated

per cycle. We define the "quality factor", Q, to be:

mE 2nW
Q E - (A-7)

-dE/dt - W
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where E is the instantaneous energy in the system, dE/dt is

the energy loss per second, W is the elastic energy stored

at maximum strain and stress, AW is the energy loss per

cycle of a harmonic excitation. An alternative definition

is in terms of the resonance peak bandwidth for an oscillat-

ing system:

f
Q r (A-8)

Af

where Af is the frequency between half power points about a

resonant peak at fr on a power-frequency plot. These two

definitions are equivalent as we will now show.

We first consider the transient decay of the oscilla-

tions. The equation of motion including a damping term is:

x(t) + Ix(t) + 2x(t) = 0 (A-9)

where w is the natural frequency of the undamped system

and is equal to (K/M)1/2 where K is the restoring force and

M is the mass. P is the damping constant per unit mass.

This equation has a solution of the form:

x(t) = e-t/2 T cos (ot+O) (A-10)

where T = l/r and = W2 ()2. Of course a more general

solution is the superposition of linearly independent solu-

tions. For weakly damped systems we may assume e-t/
2 T
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e-rt/2 to be relatively constant during one cycle of oscil-

lation. We may then write:

t) =W -Pt/2
x't) = -&le sin (olt+O) (A-11)

The total kinetic plus potential energy is

1 2 1 2 2E z= M + Mox (A-12)

This can be shown from (A-11) to be

-t= E eE = Eeo

M 2 2where E - W 2 .

is a solution to:

If we identify F = el/Q then

(A-13)

(A-13)

dE -1l E

dt Q

or

S. COlE
Q - -dE/dt

which is the definition given for Q in (A-7).

We now consider steady state oscillation under a har-

monic driving force of the form:

F(t) = Fo cos (ot)o

The equation of motion is:

(A-14)
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F2 F
-(t) + (t) + ex(t) - cos to M

The steady state solution is:

x(t) = A sin wt + B cos wt

where (Crawford, 1968):

A - 0 PM 2 2 2 2 2(2w ) w ]
0

2 2
0 0B - M 2 2 2 2

0

(A-15)

(A-16)

(A-17)

(A-18)

The instantaneous power delivered to the system by the

driving force is F cos wetx(t) or:

P(t) = F cos wt(wA cos wt - wB sin wt) (A-19)
o

The time average input power is found by the average over

one cycle:

2P = F A<cos ot> - F owB<cos at sin ct>
o O

1
=- -F oA
2o (A-20)

We see from equation (A-20) that only the velocity component

and
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of x that is in phase with the driving force (displacement

900 out of phase) contributes to the average input power.

For steady state oscillations the time average input power

is equal to the power dissipated by attenuation. It can be

shown that the average power loss is

2

and is in fact equal to (A-20). This is not to say that

the instantaneous power input and loss are equal, only the

time average over a cycle.

We shall now derive the frequency bandwidth definition

of Q. From (A-20) and (A-17):

2

F 21 o F_
P 0 (A-22)2 M 2 2 2 2 (A-22)

0

The maximum average power will occur at the minimum of

the denominator of (A-22). This resonance occurs when w =

o so that P = F /2Mr. Then:
o max o

P = P (A-23)max W 2_2 2 2 W2

for which the power is one-half maximum areValues of
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2 2
given by c = 2 + E with the two possible (out of four)

solutions giving:

2 1 2 2
±=-4oT r ± (A-24)

The full frequency width of the half power units is simply

Aw = r (A-25)

If r = el/Q as defined before then:

A_ Af 1- - (A-26)
Wi f Q

In the above analysis we have assumed that the rapid varia-

tion in the denominator of (A-23) is due to the (w2 -2)

2 2
term and have neglected the r e term. This is valid for

the weak damping case where wl wo. In actuality the un-

damped resonance frequency, o , is pulled towards the free

decay frequency wl by the damping term. For most rocks,

however, the assumption of low loss is appropriate.

Furthermore, the same analysis and result obtained in

(A-26) also holds for half energy units. From (A-12):

1 T2 2 2

E (E +E)
S 2 22 2 2o ( _ ) +1'

0

Again it may be shown that the values of w for which E =

1/2 E are:
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2 22 = 20 + Fc
o

or

2 1 2 +
o - 2
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APPENDIX B

ELASTIC MODULI FOR CALCULATING ATTENUATION

The calculation of attenuation requires the knowledge

of several elastic moduli and their pressure dependence.

Given the matrix or grain moduli and density, K, P, and p,

and the inclusion properties K', y' and p', the effective

properties of a composite medium may be found following the

treatment of Kuster and Toksiz (1974). Cracks and large

pores in the rock are represented by a discrete spectrum of

various aspect ratio spheroids. Letting c(am) be the con-

centration of pores and cracks with aspect ratio a = thick-

ness/diameter, the effective moduli are given by (Kuster and

Toksbz, 1974):

K*-K 1 K'-K
- ~ C(am)Tiijj (om)  (B-1)3K*+4p 3 3K+4 m=lmiij j m

m-=l

-Y, c (a [T -

6p* (K+2p)+p (9K+8)p) 25p (3K+ C ( " [Tijijm) i jj ( a

(B-2)

where '*' denotes effective properties, primed quantities

refer to fluid properties and unprimed quantities are matrix

properties. K and p represent bulk and shear moduli and

T.... and T.... are scalar quantities. The total porosity
1133 1313

is:
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M
S= c(Ctm )

m=l

and the density is:

p* = p(1-4) + p'4

The effect of pressure on the crack and pore distribu-

tions and thus the effective moduli and velocities of rocks

has been studied by Toks8z et al. (1976). The strain field

around an ellipsoidal cavity is calculated as a function of

the elastic moduli of the matrix and an applied strain field

at infinity. The dilatation of the applied field is -P/K*

where P is the applied hydrostatic differential pressure and

K* is the effective static bulk modulus or frame bulk modu-A

lus. From this, the fractional change in pore volume, dc/c

may be found. For the particular case of very thin cracks

(i.e. am  - 0),

dc P 4 (1-o) 2
c = - a (B-3)

A m (1-2a)

where a = matrix Poisson's ratio. This relationship also

provides the basis for calculating the change in attenua-

tion due to friction under increasing hydrostatic or differ-

ential pressure.

Anelasticity may be introduced into the effective

moduli formulations by employing the concept of complex
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moduli (Anderson et al., 1965 and Bland, 1960). This method

is particularly useful in dealing with frequency independent

Q mechanisms such as grain boundary and crack friction. Let

the complex bulk and shear moduli be expressed as

K = K R + iK I  (B-4)

S= PR + i-PI

where subscripts R and I refer to real and imaginary parts.

If the attenuation is small, then the velocities and atten-

uation coefficients can be expressed conveniently. For

compressional waves,

K +4 1/2

Vp= p3R

(B-5)

4
KR + 3

For shear waves,

V (R) 1/2
s p

(B-6)

-1 _I

S PR

To determine the imaginary part of the moduli it is

necessary to rely on observation and to follow an empirical
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approach. The magnitudes of KI and pI should be chosen in

each case to match observed Q values at appropriate condi-

tions.
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APPENDIX C

FLUID FLOW FROM CRACKS

FORMULATION AND ESTIMATION OF THE RELAXATION TIME

Flow will take place between thin cracks with aspect

ratio cam 0 and pores with am  1I due to a differential

volume change induced by the stress wave. The fluid pres-

sures and volume changes are given by:

P 0 = -K'e0 and dC 0 = C0 0', am 0

(C-l)

P = -K'1 and dC = C i , 1
1 1 1 C161, cn 1

where C is the volume concentration of cracks or pores and

8 is the dilatation. The pressure difference is AP = P -P1.

Letting the equalized pressure after flow be P, then the

corresponding dilatation in both the crack and pore is 0 =

-P/K'. The total liquid volume displaced in order to equal-

ize the pressure is given by:

qT = d 0 - dC 0 = dCl - d C 1  (C-2)

where dC0 = C0T and dC1 = C1 e. Solving for T we obtain:

6 (C-3)
1+E

where c = CO/C 1 , or the volumetric ratio of connected

cracks to pores. Furthermore:
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eCo 1 012(7r1-0 (C-4)

The instantaneous flow between two parallel plates

(crack surfaces) separated by distance h is given by

h2A dP
q 3-n - (C-5)

where A now becomes the cross sectional area of the crack

and is equal to wh2/am or 7h£. If we let dx = 2k (crack

length) then from equation (C-1) and (C-5):

Kh"q = -6 K' (81- 0)
(C-6)

Assuming a relaxation of the form:

(C-7)qT = q et/ dt = qT
0

where T is the relaxation time, we obtain

CO (e1-e 0 )/(l+E)
7h3K ' (61-0)/6,n

(C-8)

3 2Since the volume of the crack, C = 4h /3a
S8 K' (

(C-9)
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Viscoelastic Formulation:

We will now show that by using the correspondence prin-

ciple for both the shear and bulk moduli of the fluid phase

that the equations for the effective moduli may be written

in terms of real and imaginary parts and two characteristic

frequencies. Rewriting equations (B-l) for the effective

bulk modulus by letting 6" = (K'/K - 1)Tiijj/3 (dropping

the summation over aspect ratios we obtain:

4CK6"
3K+4p 1+4VC6'K* 3 3K+4 - K +4C(C-10)

1 -3CK6
1" 1-3KC6' (C-10)

3K+4p

where 6' = 6"/(3K+4p). Letting 6' be complex, i.e. 6'

a+ib, then:

K* = K [1 + 4 pC ( a + i b )  K*+K*
= 1-3KC(a+ib) RR I

where

K= K(I+4VCa)(1-3KCa) - 12KyC2b 2

(1-3KCa)2 + (3KCb)2  (

and

K* bK4C(-3KCa) + 3KC(1+4Ca)
I I (-3KCa) 2 + (3KCb) 2

Applying the correspondence principle we let K' =

KR + iwg and P' = iwn where n is the viscosity and g is con-
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sidered an unknown to be determined from the relaxation time

for flow. We now show that the equations for the effective

moduli can be written in terms of two characteristic fre-

quencies and that the real and imaginary parts of 6' are

uniquely determined. For small aspect ratios:

1 = K' 1] 3K+4pI'
3K+4 K 3K' +4 '+K 1  (C-12)

(Toksbz et al., 1976, equation (C-4)) where K1

3ra vm(3K+4p)/(3K+4p). Substituting the complex K' and p'

we obtain after some algebra:

1+21 io+id6' K" - 1 + o) d

K-+-41 c (K"+K2)+i( +_

where K" = KR/K, K 2 = K/3K with c = K/g and d = 3K/4n.

Od is recognized as the characteristic frequency for vis-

cous relaxation in isolated cracks (Walsh, 1969) and wc is

the characteristic frequency for fluid flow from cracks.

Finally, it can be shown that the real and imaginary parts

of 6' = a+ib can be written as:
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1r 2( 12 2 K"+K 1 
a = (K"-1) (K" + K2 + ( )) (

2 d 'c d c Wd Wc Cd

(C-14)

1 2 1 1 W 3 1 1
b = ( )(K"-) + (K"+K ) + ( + c

d c Wd c OcWd 'c Wd

where A = (K" +K)2 + 0 ( + ) /(3K+4p). The equivalent
c d

result is obtained for the effective shear modulus.

From equation (C-9) we have

1 8-n (C-15)
s 2c a K '(1+E)

mR

so that

8r) K

Sa2 (1+E) KR
m

(C-16)
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APPENDIX D

HOMOMORPHIC DECONVOLUTION

A homomorphic system is one that obeys a generalized

principle of superposition. That is, let F] denote a rule

for combining inputs (e.g. addition, multiplication or con-

volution) and : a rule for combining scalars with inputs.

Also allow 0 to represent the rule for combining outputs

and I for combining scalars with outputs. Then:

H[x 1 (n) 0O x2 (n)] = H[x l (n)] O H[x 2 (n)]

and (D-l)

H[c : x 1 (n)] = c f H[x l (n) ]

where x1 (n) and x2 (n) are input sequences, c is a scalar

and H is the system transformation (Oppenheim and Schafer,

1975). The particular homomorphic system that is useful for

seismic deconvolution is when the input rule is convolution

and the output rule, addition. This is suited for our pur-

poses since the input sequence may be considered to be the

convolution of a wavelet with the impulse response of the

medium. While linear inverse filtering can be used to sep-

arate the components of such signals, this would require

detailed knowledge of one of its components.

We define then, the characteristic homomorphic system
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D, (* refers to the convolution rule) by:

D,[x l (n) * x 2 (n)] = D,[x l (n)] + D,[x 2 (n)]

= x l (n) + x 2 (n) (D-2)

D,[c : x l ( n)] = cD,[x l (n)] = cx 1 (n)

-1
If L is a linear system and D, is the inverse of D,, then

the homomorphic filter can be represented in canonical form

as shown in Figure D-la.

The characteristic system D, is found by considering

the properties of the z transform. The input sequence x(n)

can be represented by its z transform X(z). Then, if

x(n) = xl (n) * x2 (n)

it follows that

X(z) = X1 (z) * X2 (z) (D-3)

It is apparent that the system, D,, can be realized in

terms of the z transform, by the complex logarithm,

log [X(z)], defined so that if

X(z) = X1(z) * X2 (z)

then
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X(z) = log [X 1 (z) * X2 (z) ]

= log [X l (z)] + log [X 2 (z)] (D-4)

The canonical form of D, is given in Figure D-lb where Z[ ]

represents the z transform and Z- [ ] the inverse transform.

x(n) is known as the complex cepstrum since the complex

logarithm and transforms are commonly used. x(n), however,

is real for purely real input sequences.

If the input sequence is minimum phase, then the homo-

morphic system of Figure D-lb may be realized with the

Fourier transform. In general, however, signals to be pro-

cessed are of mixed phase. To remedy this situation expo-

nential weighting of the form

x(n) = anx(n) a < 1 (D-5)

may be used (Schafer, 1968; Ulrych, 1971). a is chosen so

that all zeros of Z[x(n)] lying outside the unit circle are

-1
moved inside. Of course, the output of D, , y(n), must be

-n
scaled by a-n

The implementation of D, requires the use of the com-

plex logarithm which must be carefully defined. If X(e i )

is the Fourier transform of x(n),



420

X(e") = XR(e ) + iX(e

= X(el ) Iexp{i arg X(eic)} (D-6)

where X(e i ) is the magnitude and arg X(e ) is the

phase of the transform. The Fourier transform of the

complex cepstrum is then:

1 10 10) 1
X (e ) = log X(e ) = loglX(e i ) + i arg X(e i ) (D-7)

The complex logarithm, and thus the cepstrum is uniquely

defined if X(z) is a valid transform and if it is

analytic on the unit circle. This implies that X(e )

must be a continuous function of w. However, we note

that:

i arg{X(z)} = ei ARG{X(z)} (D-8)

where ARG[X(z)] is the phase principle value.

ARG[X(z)] is clearly discontinuous in w and does not

satisfy the requirement of analyticity on the unit circle.

But, the principle value is what is determined from the

Fourier transform. In order to remove the ambiguity in

the complex logarithm implied by equation D-8, the phase

principle value must be "unwrapped" to obtain a continuous

phase function. That is, at any frequency w:

arg[X(e i l )] = ARG[X(e ( )] + 21rTZ(wi) (D-9)

where £(i) is an integer. A phase unwrapping algorithm
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using an adaptive numerical integration scheme has been

published by Tribolet (1977b) and is used in this study.

-1
The canonical representation of D, defined by:

-1
D, [D,[x(n)]] = x(n)

is shown in Figure D-1c. There is no uniqueness problem

for the complex exponential so that if Y(z) is analytic

on the unit circle, so is exp[Y(z)].

The separation of the direct pulse from the

reflection components is achieved by applying a frequency

invariant linear filter to the complex cepstrum as

shown in Figure D-la. For the linear filter, L:

iw 2 1 io i(m-)
Y(e ) - X(e )L[e ]d6 (D-1O)

where

X(e ) = log[X(e )]

may be written in the time domain as:

9(n) = (n) (n) (D-11)

where £(n) is the inverse transform of L(e )

(Oppenheim and Schafer, 1975). Since x(n), R(n), y(n),

and 9(n) are real sequences, so is £(n).

The reflection component of the waveform is

removed by retaining only the low time portion of the

cepstrum. That is,k(n) is of the form:

S(n) = 1 n<n 1
(D-12)

S(n) = 0 n>n I
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where nl is the filter cut-off postion. To show that

the high time portion of the cepstrum does indeed

correspond to the reflection components, consider a

simple case of one reflection delayed by nt:

x(n) = s(n) + Bs(n-n t )

,or
x(n) = s(n)*p(n) (D-13)

where
p(n) = 6(n) + 6 (n-n t )

where 8 is a scale factor and s(n) is the signal to

be recovered. The Fourier transform of D-13 is:

X(e) = S(e i ) (1 + Be- int) (D-14)

The contribution to the complex logarithm due to p(n) is:

P(e) = log (1 + Be(nt) (D-15)

Then for jBj<l,

0 k+l k
P(n) = E (-l) 8 8(n-knt) (D-16)

k=l k

(Oppenheim and Schafer, 1975). Thus, ^(n) is nonzero

only for integer multiples of nt . If S(ei ) is slowly

varying relative to the variations in P(e i ) then

these components may be separated with the frequency

iW
invarient filter L(e ). In reality, reflections are

not equally spaced. However, for minimum phase sequences,
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P(n) = 0 for n<0 and p(n) = 0 for n<n t where nt is the

shortest delay (Schafer, 1968).

In summary, the input waveform is processed to

remove the reflection components by the following steps:

1. Exponential weighting of the waveform, x(n), to

force it to minimum phase.

2. Fourier transform to give X(ei ). Unwrap the

phase principle value to obtain a continuous phase function.

3. Take the complex logarithm of X(e ) to find the

, iW
transform, X(e ), of the complex cepstrum.

4. Inverse Fourier transform X(e ) to obtain the

complex cepstrum, x (n).

5. JApply a frequency invarient filter, £(n) to

x(n) obtaining Y(n) and eliminating the reflection

components of the cepstrum.

6. Fourier transform y(n) to give Y(ei). Taking

the complex exponential of Y(e ) gives Y(e i ). Inverse

Fourier transform to get y(n).

7. De-exponentiate y(n) to obtain the resulting

deconvolved direct waveform.

An example of this method is shown in Figures D-2

and D-3. The original unweighted waveform is shown in

Figure D-2a. Following exponential weighting with

a = 0.965, the log magnitude and the phase principle

value are shown in Figures D-2b and c respectively.
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A 4096 point FFT was used (padding the initial waveform

with zeros) and the abscissa of Figures D-2b and c is

plotted in terms of n. The phase is then unwrapped and a

linear trend removed (resulting in a time shift of the

deconvolved waveform that must be corrected for), the

results being displayed in Figure D-3a. The complete

complex cepstrum is shown in Figure D-3b with an

enlargement of the low time (low n) portion shown in

Figure D-3c. The cepstrum was then filtered according

to equation D-12 with nl = 25 and the recovered waveform

after de-exponentiation is shown in Figure D-3d.

As stated in Chapter 4, homomorphic deconvolution

turned out to be an expensive and cumbersome method to

apply to large quantities of data. It was, however, useful

as a guide to time windowing. As an example, the low time

portion of the cepstrum, windowed (solid lines) and

deconvolved (dashed lines) waveforms and spectra are shown

for P and S waves in dry Berea sandstone at 300 bars in

Figure D-4. The major difference between the windowed and

deconvolved results is the hole in the windowed spectra

near 0.2 MHz due to the approximately 5ps window used.

The deconvolution also seems to result in slightly higher

amplitude at the high frequencies. However, in the peak

portion of the spectra, the two methods produce nearly

identical results.
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FIGURE CAPTIONS

Figure D-1. a) Canonic form of the homomorphic system

in which convolution is the input operation. b) The

realization of D* by means of the Z transform and

complex logarithm. c) The realization of D,- .

Figure D-2. An example of homomorphic deconvolution:

the initial waveform (a) with log amplitude (b) and

phase principle value (c) as functions of n for

a 4096 point FFT.

Figure D-3. An example of homomorphic deconvolution:

a) Unwrapped phase of figure D-2c with the linear

trend removed. b) Complete complex cepstrum of

the waveform shown in figure D-2a. c) Enlargement

of the low time portion of the cepstrum. 'd) The

deconvolved waveform after filtering the cepstrum to

remove the high time (n) portion.

Figure D-4. Typical low time portions of the complex

cepstrum for P and S waves (top). Comparison of

deconvolved (dashed lines) and time windowed (solid

lines) waveforms (middle) and spectra (bottom).
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(a) Canonic Form

(b) Realization of D.

*1

(c) Realization of D.

+1 I

I I
L I

Figure D-1
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David H. Johnston, Mary and Phil's little boy, was

born in Syracuse, NY on August 25, 1951. His first

recollections were of the booming metropolis of Albany,

NY. In the quest of the American Dream, his family

then moved to Delmar, NY. Here he grew up in the

suburban bliss of paper routes, Boy Scouts, proms, and

the like, graduating from the Bethlehem Central High

School in 1969.

Rumor has it that as a young boy on a visit to

Boston, he caught a glimpse of some strange Roman revival

buildings stretched out along the Charles River and

decided that institution was for him. Little did he know...

So, in the fall of 1969 he entered MIT and quickly

got swept up by the rising tide of anti-Vietnam demon-

strations. If nothing else, these political activities

were the catalyst for his meeting Linda Kaznova, who

barged her way into his heart.

In the sophomore year he declared Earth and Planetary

Sciences as a major. He immediately began to work for

Nafi Toksiz on several projects (how little time changes)

and settled down on the study of planetary interiors, a

field with practically no data but a lot of speculation,

enabling one to publish many papers on the same topic as

the reference list illustrates.
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In the fall of 1972, Linda and Dave were married.

And yes, all of you statistics fans, Linda was a Simmons

College graduate.

After four years of MIT, he graduated in June of

1973. If that weren't enough, he decided to stay at MIT

for graduate school because he thought there would be a

good chance to get out with a PhD earlier. He quickly

came down to earth in more ways than one. Power hungry,

he procured the services of several undergraduates and

set up the MIT seismic network, declaring himself to be

Deputy Director of the Wallace Geophysical Observatory

(Director Toks6z gave mixed blessings).

The summer of 74 was spent in California working

for Chevron, which is how he got started in that "new,

exciting, and challenging" field of rock physics. Four

years later, after several false starts, blood (as the

scar on his right arm testifies to), sweat, tears, nail

biting, swearing at equipment, and writer's cramp, this

thesis was finished.
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