
Th6 Design and Implementation of a

Display-Oriented Editor Writing System

by

Owen Theodore Anderson

Submitted in Partial Fulfillment

of the Requirements for the

Degree of 3achel0r of Science

at th0

Massachusetts Institute of Technology

,January, 1979
~~'1 - /l

Signature of
Signature redacted

Author •.. ~ • .,, •• , --. •, .. , ·-.- ... ·-..... -................ .

Certified

Accepted

Department of Physics, January 1979

Signature redacted
by,

Thesis Supervisor
...-

Signature redacted
bY••••ti>••••••••••••••••••cov••••••c•••n••••••••••••••••

Chairperson, Departmental Committee on Theses

Archive~
MASSACi-iUSETTS INST:T:J. E

OF T~CIH-~)L'JSY

M?\R 2 2 1979

LIB~AP.!ES

2

The Design and Implementation of a

Display-Oriented Editor Writing System

by

Owen Theodore Anderson

SubMitted to the Department of Physics

on January 19, 1979 in partial fulfillment of the requiremP.nts

for the Degree of Bachelor of Science

Abstract

This thesis describes the design and implementation of an editing

system in use on the MagicSix operating system at MIT's

Architecture Machine Group. The foundation of the system is a

simulated stack machine which implements all of the basic editing

functions. This is the target machine for a LISP-like language

compiler. This language is used to write a real-time display

oriented editor with many advanced features.

Signature redacted
Name and Title of Thesis Supervisor:

I -
Nicholas Negroponte

Associate Professor of Computer Graphics

3

Table of Contents

Abstract 2

Table of Contents 3

Acknowledgments 5

Introduction 6

History 8

The Development of Programmable Editors 8

The Development of Display-Oriented Editors 10

The Combination 12

The Goals for the Editor System 16

The System Implementation 20

The Pseudo-Machine 21

Sine Machine Architecture 23

Stack Format 26

String Space Data Types 30

The Garbage Collector 44

Code Segment Format 45

The Sine Language 47

The Workings of the Compiler 47

The Language 51

The Editor: What It's All About 54

Basic Commands 54

The Structure of the Editor 57

Modes 64

Results, Observations and Conclusions 68

References 72

Appendix 1 - Table of Data Types Used by the Sine Machine 74

Appendix 2 - Global Variables Used in TVmacs 101

5

Acknowledgments

This thesis is the culmination of a great deal of discussion and

consultation with many people. I would like to thank the members

of the Architecture Machine Group for supporting the work I have

done on this project, the members of the Student Information

Processing Board for introducing me to the world of computers and

for much friendship along the way, and to the Artificial

Intelligence Laboratory for adding another dimension to my view

of computing at MIT.

Special thanks must go to Seth Steinberg, Lee Parks, Rich

Kovalcik, Dan Weinreb, Bernie Greenberg and Richard Stallman for

their invaluable advice.

6

Introduction

The Sine (Sine Is Not Eine) editing system described in this

thesis contains three levels of description. The lowest level is

the Sine Machine. This is an interpreter which processes binary

machine-type code in a LISP-like object world. The next level is

that provided by a language called Sine. This provides high-

level control structure and uniform access to Sine Machine

instructions, user defined functions and macros. The highest

level is that of the editor. It provides buffers, screen

management, modes, and a large number of general purpose

functions. This three-level system tries to provide as much

flexibility and power as possible without making simple editing

chores difficult to accomplish.

This editing system was developed under the MagicSix timesharing

system, running at the MIT Architecture Machine Group [MLK].

MagicSix runs on an Interdata 7/32 with segmentation hardware in

32 bit mode. It is a dynamic linking system which manages many

address spaces for each process, each address space containing

16 segments. The operating system always uses 6 segments of each

address space for the system, including the stack and other

required segments. The remaining ten segments can be used by

user programs.

The first section of the thesis describes the history and the

7

environment in which I grew accustomed to using display-oriented

editors. The next section outlines the goals for this project

and justifies them in light of the historical evidence of the

first section. The third section explains the system in which

the editor is written. In the fourth section the editor itself

is described and some details of its implementation are given.

The last section relates some of the important observations made

during the project and problems which came up during its

development.

8

History

The Development of Programmable Editors

The standard editor encountered on most time-sharing systems is a

very simple program which can be used to insert and correct text.

Normally the editing commands are in the form of one or two

character long commands and strings which describe the operations

on the text being edited. One command enters insert mode which

allows successive lines to be entered into the file. Edit mode

is returned to by typing a special character sequence in the

input text such as a blank line. This sort of editor allows the

modification of text much as a keypunch operator would edit a

deck of cards, with a few improvements. One can usually search

for a line containing any sub-string and even to change part of a

line without typing the whole line over.

Several additions were made to this kind of editor to make them

more powerful and easy to use. One was the ability to perform a

command over a range of lines. Thus all occurrences of a

misspelled word could be corrected in one command. People wanted

to do more and more complicated things; just iterating over each

line wasn't good enough, or one substitution per line wasn't

enough. Another step was taken to increase the power of the

editor. This was to allow a set of commands to be saved away

somewhere and executed once or many times later. This ability

9

with even a simple looping and conditional facility made the

editor much more powerful. Fairly complicated editing

instructions could be described and performed by the invocation

of a simple command to execuk4 the saved command string. For

example, find this string, delete a few characters in it, add a

word after it and then find the next occurrence of the string,

etc: this sort of description was possible and even quite easy.

Most TECO implementations are at least this complex and some such

as the one developed at ITS are much better [RMS1].

The editor had in fact become a programming language. The

usefulness of a particular editor as a language depends upon what

commands the editor has available and how easy it is to use them.

Only a rather small subset is necessary to make any task

possible, if not necessarily easy. The editor was serving a

double purpose, both as an editor which received individual

commands from the user, and as a programming language for making

complicated changes to a text file.

This duality had its problems though. The two aspects were. not

always compatible in their requirements on the editor's design.

This inevitably led to complication. The editor side wanted the

commands to be short and powerful: one letter commands to delete

or print a line, begin an insertion and other common functions;

two or -three letters to print the whole text file or change all

occurrences of one string to another. In general, concise,

10

powerful commands were needed to make editing easy and fast. On

the other hand, programming had different constraints. The

program should be easy to write, easy to read and efficient in

execution. While using the same commands as were used while

editing made the programs relatively easy to write, their brevity

tended to make the programs very hard to read. The same

compactness that ..aade the commands* easy to type meant that the

editor's interpreter had a big job making explicit all the

implicit information that people can so easily encode into the

commands. Strings had to be parsed and saved somewhere,

arguments had to be gathered up and defaults inserted; all this

occurred every time a command.was executed. For a programming

language things should be simple and explicit so that a minimum

amount of preprocessing is required. Otherwise a compiler should

be employed to expand the implicit information and parse the

strings and produce a simplified representation for execution.

The Development of Display-Oriented Editors

The advent of inexpensive display terminals over the last few

years has sparked considerable interest in display-oriented

editors. These are editors which maintain on the screen of the

terminal a page of text which is updated with each command to

reflect the current state of the text being edited. The command

syntax is completely different in this situation. Instead of

having "insert mode" and "edit mode" as conventional editors do,

11

these editors are always inserting and editing. Any printing

character that is typed goes into the text buffer and is

displayed on the screen. The commands to move about in the

buffer and delete text are in the form of non-printing control

characters.

Not surprisingly, these editors have introduced a whole host of

new problems. How should one best optimize the amount of display

needed to keep the screen image up to date? What should each of

the control characters do? This last question also brings up the

whole issue of standardization between various implementations.

The many different types of terminals which can be used with a

display oriented editor vary radically in the functions they can

perform and they way they are performed. This makes the job of

supporting a wide variety of terminals very difficult.

All implementations are different both in appearance and in

internal design, but the basic idea is clear in all. The user

can see what is happening to his text at all times. The feedback

for editing commands is immediate and so mistakes do not go

unnoticed. Operations on the text are very intuitive: move left,

add a word, go down two lines, skip over two words, delete a

word. The most striking evidence for their superiority is that

once people get used to using one of these editors they become

addicted. The feeling of working in the dark while using an

editor that is not display-oriented is a sure symptom of this

addiction. The major force behind the spread of these editors

seems to be programmers who move to a site where there is no

display-oriented editor; often their frustration is so great that

they write one for the site rather than try to use a conventional

editor.

The Combination

The solution to the dilemma of how to make an editor work as a

programming language and vice-versa came to me quite slowly. I

must credit Richard Stallman with providing the right idea. He

suggested that the editor should have a LISP-like syntax. What I

couldn't understand was how it would be usable as an editor. It

would be too verbose and the functions didn't seem at all LISP-

like. So I put his advice to the back of my mind and implemented

my first editor in the style of the TECO on the ITS PDP-10's.

This had a macro facility but in no way solved the redisplay

problems. TECO's command syntax consists of single or double

characters optionally preceded by one or two numeric arguments

and/or followed by one or more string arguments terminated by a

special character (alt-mode or escape). Though this is a very

nice syntax for typing quickly, I found that its efficient

implementation was made very difficult by the task of parsing the

input and supplying defaults. In addition, a string of TECO

commands is almost unreadable.

12

13

I could not avoid the idea of a super-flexible editor syntax,

like TECO's, but I could not see how to implement a reasonably

efficient and readable programming language with such a syntax.

Then, at ,*ome poiut after T learned about the real-time display-

oriented editor mode in ITS TECO, I realized the solution. For

the editor, you use a screen editor which has a simple command

syntax and is really vastly better for editing than regular TECO

or any other non-display editor. Then the language you use for

programming complicated editing tasks doesn't really matter. It

can, and should, be much different from the commands used for

editing and be as clean and elegant as it can be made. With the

realization of the fundamental separati-n. between the programming

and editing aspects of an editor, I was able to begin thinking

seriously of producing a programmable editor with a reasonable'

(display-oriented) human interface.

I came to this realization none too fast though. The evidence

around me was quite clear. The ITS TECO real-time mode had

recently been greatly enhanced by the introduction of a editor

called EMACS [ECC] [RMS2J. This is an editor that is in fact

written in ITS TECO, the programming language, by using real-time

mode which allows a macro to be invoked for every key that is

typed. Thus, most printable characters just call a macro which

inserts that letter. But the control keys call macros which can

do much more complicated things: move to the next line, uppercase

the next word, justify the current paragraph, or grind the

14

current LISP function.

This editor became a model for several other implementations.

The first was one written for the LISP Machine at MIT's

Artificial Intelligence Laboratory by Daniel Weinreb [DLWI, not

surprisingly in LISP. This is a very good language to write an

editor in, but I will say much more about that later. One reason

it is so good is that the functions written for the editor can be

used just like built-in LISP functions and so form a LISP-like

editing language. Anckher implementation started somewhat after

mine was written by Bernard Greenberg on Honeywell's Multics

operating System also in LISP [BSG1] [BSG2]. This program places

more emphasis than the LISP Machine version on creating an

editing language from the functions used to produce the real-time

responses to keystroke commands. In addition to the functions

needed by all the commands, many other functions were added to

make writing editor extensions in this extended LISP easier.

This basically describes the environment in which the ideas that

lead to the development of this thesis were produced and

developed. In addition to my rather general conviction that a

display-oriented editor was best I had several constraints which

had much effect on the eventual implementation. The machine on

which the editor was to be written was an Interdata 7/32 running

a segmented, but not paged, operating system. The address space

was fairly large, but because the unit of swapping was the

15

segment, the segments had to be small to minimize the memory load

on the system.

16

The Goals for the Editor System

Quite a few goals exist for the system, some of which it has

achieved and some it has not. Some of the goals are self-evident

but many require elucidation. I will list the major goals here,

and then proceed to explain them in depth in the following

paragraphs.

1) Display-Orientation

2) Dynamic LISP-like Environment

3) Easy-to-Use Programming Language

4) General-Purpose Text Processing System

5) High Code Density

6) Space Efficiency

7) Reasonable Speed Efficiency

I have explained the need for a display-oriented editor above but

here is a summary. Display-orientation is very good for

graphically displaying text and changes being made to it. It

provides excellent feedback for changes made to a text buffer. A

display-oriented editor has built into it a display manager.

This is a program which is called from time to time and whose job

it is to make sure that the text on the screen reflects the

contents of one or more internal text buffers. This is not a

simple program, and one purpose for developing a general purpose

system is to allow the display mechanism to be used easily by

many different programs.

17

One of the biggest advantages of a program like Emacs is that

almost everyone using it has a personalized version. The editor

is aware of the specific properties of the terminal being used

and adjusts its line length and page length and takes advantage

of special capabilities the terminal may have. More interesting,

though no more important, is its ability to change which program

is called by a key. This frequently-used capability means that

if I do not like the standard search routine I can have control-S

(the Emacs search command) use my favorite flavor of search.

Some people go to the extreme of changing around almost every

character so that their version of the editor is almost unusable

by anyone else. Not only can other built-in functions be re-

bound to keys (the function that is invoked when a key is typed

is called its binding), but entire packages of functions can be

loaded in and bound to keys. The potential for specialization is

almost unlimited.

A LISP-like environment provides all the necessary flexibility to

enable run time modifications to the program environment. The

primary requirement of the programming environment is the ability

be able to hold a function as an object. This allows the

rebinding of keys to be implemented as the assignment of a

function into the appropriate cell, so that it will be called

when the key is typed. Also needed is the ability to make a new

function known to the system and to redefine an old function.

18

LISP is particularly well suited to handle these requirements and

so makes a good model for the projected system.

The usability of a programming language is e::tremely hard to

predict in advance of extensive use. The best one can do is to

incorporate features of languages which are known to be easy to

use. For this reason I used a LISP-like syntax and semantics for

this project [MOON]. The issue of which functions to build into

the system as primitives, though, is very difficult, and can only

be decided by examining many programs and looking for common

functions and sequences of functions.

Since one of the most common tasks on a computer is to deal with

text in some way, it is reasonable to have a system that is

specialized for processing text. Mail systems, editors, text

justifiers and documentation readers are a few examples of

important systems on any computer which deal mostly with text.

Most of these also have some use for a display-oriented human

interface. Thus there are many areas which can benefit from a

convenient, easy-to-use system for processing text.

Since it is desirable to use this system for many programs, it

should generate dense code, at least in as much as doing so is

consistent with speed considerations. Systems like Emacs, which

are written in TECO have the problem that TECO doesn't compile

into anything; it is interpreted. This is mostly a result of the

19

fact that TECO was originally an editor, not a programming

language. Both the LISP Machine and Multics editor

implementations mentioned above are in LISP and therefore are

compiled as a matter of course. All of these other systems,

though, are paged and therefore code size, especially pure code

size, is of relatively little consequence. Our experience using

MagieSix shows that memory of any sort is at a premium and so the

density of compiled code is an important factor.

The other aspects of space efficiency are also important.

Especially critical is the issue of how much impure area will be

needed for each user in the system. On a time-sharing system it

is vital to keep the per-user data bases as small as possible.

The choice of language and the decision of what functions to make

built-in have a primary influence on this.

The usual space-time tradeoff strikes here. The smaller the code

that is to be run, the more processing it will take to prepare it

for execution, and the more compact the data structures are the

more decoding they will require for use. All you can do is to

make the best set of compromises and to try to find clever

strategies that will allow both space and time efficiency.

20

The System Implementation

The Sine system, as it is called, is made up of several levels of

programs. The lowest of" these is a pseudo-machine called the

Sine Machine. This is an interpreter which interprets a binary

object code and dispatches to a variety of internal routines. The

compiler for Sine is written in LISP and produces the object code

used by the Sine Machine. The language implemented by this

compiler, in addition to compiling references to Sine Machine

instructions, compiles calls to Sine functions and expands

macros. All instructions, function calls, and macro invocations

appear as nested, parenthesized lists, a la LISP. In addition, a

great many, very useful programs are part of the editor, called

TVmacs, so that they collectively represent almost another whole

language.

21

The Pseudo-Machine

The decision to implement the lowest level of the Sine system as

a pseudo-machine was not easy. At least two other possibilities

were seriously considered. One was to follow the lead of Dan

Weinreb and Bernie Greenberg and use LISP. This certainly would

have been a lot easier sinde a fair sized portion of the effort

required to implement this system was that of writing routines

that are already in LISP. In fact a LISP did exist on our system

but there was no compiler for it and it was very slow. If the

editor was to be at all useful it had to be fast. The other

possibility was to compile Sine code into Interdata 7/32 machine

language. For most simple things, the compiler could generate

the appropriate instructions; for more complicated functions it

would generate calls to operators which would find their

arguments on the stack or somewhere. The problem with this is

that it would generate much more code than the proposal described

below for most of the functions since it would have to manage the

stack and other data spaces itself. The major advantage of this

scheme is that it would make the instruction decoding very fast

since it would be done by the compiler not at run time. If an

appreciable amount of time is spent in the operators though, even

this scheme would not help make it fast. Thus this plan was

rejected on grounds of code density. This left the proposal to

use a pseudo-machine.

22

This idea allowed a very nice modular approach to implementing '

the system. Each instruction can be viewed as a subroutine call

with simple, shared argument-processing code. Those aspects of

LISP which make it slow or which are not needed can be left out.

The pseudo-machine is a LISP machine optimized for text

processing work. In describing the Sine Machine I will assume a

working knowledge of LISP since a great many aspects of Sine are

like LISP. Ample documentation on LISP is available and I will

not attempt to duplicate such work [MOON].

This decision to use a pseudo-machine as a vehicle for describing

editing functions still left a great many questions, such as:. How

big are opcodes and operands? What kind of encoding should be

present in each? How should the stack look? What are the basic

data types and what do they look like? I will not go through the

whole, long decision process, but in describing the Sine Machine

I will comment when appropriate o.n the issues involved.

Most crucial to the performance of the pseudo-machine is the

design of its architecture. Like almost any system that must

support recursion and pure code, the Sine system must have a

stack. The need for global static information also seemed very

important, so some- kind of impure area associated with each

function whereby it could find global variables was added. The

global variables, strings, buffer headers and other permanent

information were put in a heap area called the string space. The

23

addressing architecture should be able to address any of these

areas as well as addressing the code so that PC-relative

constants and branches are possible. In addition, immediate

constants are important to save space and time.

Sine Machine Architecture

The decision of an instruction format is extremely important

because it impacts very crucially on code density and decoding

efficiency. Once the above requirements for the architecture are

set, the remaining leeway is not too great. I decided in the

interests of simplicity to use halfword (16 bits) opcodes and

operands. Using only 8 bits for each was a possibility but that

would have left little room for offsets or any kind of flag bits.

Sixteen bits is a comfortable size. The opcode is only 12 bits

long which leaves 4 bits for flags. Three of these bits are set

so as to distinguish an opcode from almost all operands and the

fourth specifies whether the result of the instruction should be

pushed onto the stack. This allows the compiler to decide when a

returned value should be saved on the stack and makes detection

of wild branches quite easy by requiring all opcodes to have the

correct bits set. If a branch is made to an operand the bits

will be different.

24

declare /* here is a declaration of the opcode as a

PL/1-style structure */

1 opcode unaligned,

2 designator bit(3), /* must be "001"b /

2 dontpush bit(1), /* "1"b means don't push result */

2 opcodenumber bit(12); /* index into opcode table */

The operand encoding is more complicated. The first (leftmost)

bit is zero if the rest of the halfword is a signed immediate

constant. If the first bit is a one then the next two bits

specify an index register and the remaining 13 bits are a signed

offset in halfwords for PC indexing and in fullwords for other

index registers. The opcode indexes into a dispatch table which

also contains information about how many operands should be

fetched and an additional halfword of information about how each

operand should be interpreted. The top two bits of this halfword

indicate whether an address or a value is desired and whether the

address, if any, is that of a variable. This additional bit is

necessary because a variable is not simply a cell and sometimes

the address of the value cell of the variable is wanted and

sometimes the address of the variable itself is wanted; more

about variables later. The remaining 14 bits form a bit mask for

the allowed data types for this operand. Since each data object

has type bits these can be checked against this mask when the

value is fetched. This means that operations on illegal types

are detected all the time and at very low cost.

25

declare /* operand bit layout */

1 immediatcoperand u1,aligned, /* immediate form */

'?immediate bit(1), /* must be "0"b */

2 constant fixed binary(14),

1 indexedoperand unaligned, /* indexed form */

2 %mmediate bit(1), /* must be "1"b */

2 indexregister bit(2), /* which index register 0-3 */

2 offset fixed binary(12);

declare /* opcode table format */

1 opcode_table (0:numberofopcodes) ,

2 operandtypes (4) unaligned, /* up to 4 operands */

3 vbl address bit(1),

/* get the address of a variable */

3 celladdress bit(1),

/* get the address of a cell */

3 allowedtypes(0:13) bit(l),

/* if allowed types(13-datatypenumber) =1"b

then type is legal for this operand. */

2 instructiontype fixed binary(15),

/* if this is 1 then this instruction has a return value

otherwise it has nothing to return./

2 addressof_'instruction bit(16); /* where to branch */

26

The fact that four index registers exist but only the PC, the

string space and the stack have been mentioned is not a mistake.

In fact there are two index registers which point into the stack.

The first of these points to the current stack frame. This is

used to reference arguments and temporaries. The second is a

pointer to the top of the stack, and is used to reference values

left on the stack by previous instructions.

Stack Format

The format of a stack frame should now be explained. This format

had to be worked out in concert with the design of the addressing

format so that the important data areas could be easily and

quickly addressed. As in most stack machines, much of the

temporary storage is in the form of values pushed on the stack

and calls (not instructions but subroutine calls) get their

arguments from the top of the stack. In addition, this machine

has the capability to address another kind of temporary, called

automatic, whose extent is the duration of the invocation of a

function. These are analogous to PL/1 automatic storage or LISP

prog variables. The addresses of these must be known at compile-

time and since the conventional top-of-stack pointer changes all

the time, the concept of a stack frame had to be invented. The

stack frame base pointer then can address arguments as negative

offsets and automatics as positive offsets. Values that are

pushed by instructions are then referenced by negative offsets

27

off the top-of-stack pointer. The automatics are not the only

thing in the stack frame though. The first things are the saved

index registers. This constitutes most of the state of the

processor and so it must be saved over a call, especially the PC,

so the return instruction can find it. Next is the name of the

function being called. This is taken from the name of the

variable whose value cell contained the function object being

called. This is why the call instruction needs the

variableaddress bit in its operand descriptor, but I will

discuss functions and their naming later. Following the function

name is a pointer to all the condition handlers active for this

function. This points ahead into the stack frame where the

active condition handlers are chained together, but I will talk

more about these later too. Next is a halfword of flags which

currently contain only the opcode of the call instruction so the

return instruction can determine whether or not the returned

value should be pushed onto the stack. Then follow three

halfwords which keep count of the number of arguments to the

function, the number of automatifs in this frame, and the number

of bound variables. The actual cells for the automatics follow,

with the binding blocks for the variables bound in this frame

after them.

The binding blocks and condition handlers deserve further

mention. Though they are conceptually each on a separate stack,

economics dictate that they both be incorporated into the one

28

Sine stack. This naturally leads to some conflict with the stuff

that normally gets pushed onto the stack. Thus, the rule is that

all binding blocks must be pushed before any other temporaries.

They are of fixed size and the only way to determine their

position is from the count of the number of automatics which

precede them. The condition handlers are chained together so

that their position on the stack is not important. As long as a

condition handler is not created between the arguments to a

function there should be no problem. In practice the use of

handlers is done by macros and so any problems can be avoided.

The binding process is exactly like that of LISP. When a

function is called, any global variables in the argument list are

bound. The compiler generates code to do this and to assign the

arguments to the variables that have been bound. In addition, a

program can specifically ask to have a variable or an array cell

bound. These requests must come at the beginning of the function

to avoid the above-mentioned difficulty with binding blocks. The

binding block contains three values: the object which contains

the bound value (e.g. a global variable), the address of the

value being bound (e.g. the address of the value cell in the

global variable), and the saved value of that cell. This

mechanism allows any fullword in the Sine environment to be

bound, though in practice, mostly variables and an occasional

array cell are.

29

The condition mechanism in Sine is useful for handling error

conditions and for effecting non-local goto's; in this capacity

the condition mechanism is more like LISP throws than real PL/1-

style conditions. They do not cause a new activation but unwind

the stack. The information contained in a condition handler is a

pointer to the next handler, the address at which to start

executing the handler, a contour pointer to tell how far to

unwind the stack and the name of the error condition being

handled. When a signal instruction is executed or a serious

error occurs, such as the passing of an argument of illegal type

to an instruction, the stack iS traversed from the current frame

to the base of the stack until a handler for that condition is

found. Ii one is found, the stack is unwound to the specified

point and control is passed to the saved location.

declare /* stack frame format */

1 stackframe based (stackframepointer),

2 saved pcbuffer pointer,

2 savedpc_offsetinbuffer fixed binary(31),

2 savedstack_framepointer pointer,

2 savedtop_ofstackpointer pointer,

2 saved variable table pointer pointer,

2 nameoffunction pointer,

2 conditionhandlers pointer,

2 flagbits bit(16), /* opcode of call instruction */

2 numberofarguments fixed binary(15),

30

2 numberofautomatics fixed binary(15),

2 numberofbindingblocks fixed binary(15),

2 automatics (numberof automatics) pointer,

2 bindingblocks (numberof binding blocks),

3 boundobject pointer,

3 boundcell pointer,

3 old-value pointer,

1 conditionhandler based,

2 handlingpcbuffer pointer,

2 handlingpooffset fixed(31),

2 contour pointer, /* this is where the stack should be

unwound to */

2 conditionname char(8);

String Space Data Types

The objects are what make this Sine and not LISP; a description

of the denizens of the Sine world is next. The most important

object in Sine is the buffer. This is an object that exists in

most editors in some fashion or another but does not exist in

LISP. In Sine, a buffvir is a header and a description of a

segment which contains text with possibly an embedded gap. Like

ITS TECO and unlike the LISP Machine and Multics editors, the

buffer in Sine contains a gap when it is being modified to

alleviate the need to move all the text past the current point

31

each time a character is inserted. The gap is positioned at the

point of modification. Deletions simply require the expansion of

the gap to include the deleted text. Insertions involve copying

the new text into the gap and moving the bottom gap pointer past

the new text. This makes insertion and deletion at a single

point very cheap. Thus typing at the editor would simply involve

copying the current character into the gap and incrementing the

gap pointer by one. When the position changes, the gap does not

need to be moved until an attempt is made to modify the buffer.

Due to the memory and address space problems on the 7/32, the

text of each buffer is in a separate segment which may or may not

be mapped into the address space. Thus part of the information

in the buffer is about the buffer's state with respect to

addressability. Whenever a buffer is addressed by an

instruction, the Sine Machine calls a routine to make sure that

the buffer is present in the address space. This applies not

only to text but also to Sine code, which is also stored in

buffers. This address space management has the advantage that

Sine code can be present in very large quantities without causing

performance problems since buffers containing code can be

swapped in and out of the address space. There is no limit of

two or three code segments for fear of running out of segments.

The fact that buffers are not always addressable adds a bit of

complication, since the program counter is no longer just an

address, but also a buffer object. Also, functions like call,

32

return, and even the condition handler must make sure the current

code is swapped in.

The information associated with a buffer thus includes: address

space swapping information, pointers to the gap and the top of

the text, and the current position where inserts and deletes take

place. In addition, associated with every buffer is a list of

marks which hold places in that buffer. The position held by a

mark floats with the text; it does not move when text is inserted

or deleted before it in the buffer. Two of these marks are used

to point to the first and last modified point in the buffer.

declare

1 buffer based,

2 next buffer pointer,

2 textbase pointer,

2 swappinginfo bit(32),

2

2

2

2

2

2

2

location fixed binary(31), /* "poin

gapstart fixed binary(31),

gapend fixed binary(31),

topoftext fixed binary(31),

beginningofmodifications pointer,

endofmodifications pointer,

mark chain pointer,

/* not used */

/* address of base of segment

containing buffer text */

/* used for swapping between

address spaces */

t" */

33

2 flags bit(32); /* readonly, wired */

The marks are another data type that is built into the Sine

Maiharne~-.Tieposition held by a mark is recorded as an absolute

position. When the gap is moved or when insertion or deletion

occurs at a mark the mark is moved to point at the same text.

Marks are all chained to the buffer to which they point so that

when the gap is moved all the marks can be updated. One problem

that has come up with marks is that a mark does not know which

buffer it refers to. This happened because I did not want them

to be three words long instead of two, but it has caused some

problems and perhaps some scheme should be worked out. It has

been suggested that the marks be on a circular chain which would

both start at the Uuffer and end there. This would make finding

the end of the chain more difficult but would not ir.crease the

size any of the marks any. The space-time tradeoff problem rears

its ugly head again.

declare

1 mark based,

2 nextmarkinchain pointer,

2 offsetin buffer fixed binary(31);

The next object is the string: a character string preceded by a

halfword count. It is the primary mechanism for giving names to

variables and for constant strings. Originally constant strings

34

existed only in the code section and were referenced with a PC-

indexed operand. When code was moved into buffers, however,

these references, when passed to a function in another buffer,

would become invalid if the calling code had been swapped out.

The compiler was changed to cause the strings which were passed

as arguments or saved to be copied into string space when the

code section was loaded into a buffer.

declare

1 string based,

2 length fixed binary(15),

2 text character(length) ;

A third sort of text object is a gnirt (string spelled

backwards). This solves a problem with strings which is that

they are not modifiable. A gnirt can have text appended to its

end or deleted from its end; it is essentially a stack of

characters. Thus it is mostly suitable for appending strings

when a buffer is too expensive. The gnirt is a two word block,

the first of which contains two halfword numbers, the maximum

length and the current length. The second word is a pointer to

the actual text. Both of these are allocated in string space.

When an insertion would grow the length of a gnirt beyond the

maximum length a new, larger text section is allocated and the

old text copied in, then the insertion is completed.

35

declare

1 gnirt based,

2 maximumlength fixed binary(15),

2 realtextlength fixed binary(15),

2 text area ptr pointer,

textarea character(maximumlength) based(textarea_ptr);

The fourth and last sort of text object is called a window. It

is little used and mainly meant to pass around parts of buffers.

A window has a pointer to a buffer and two marks, one to the

beginning of the area and one to the end. Windows are of dubious

worth and significant complexity. The use of the name window for

these little used objects was extremely unfortunate. In common

terminology a window is a portion of a terminal display screen

which shows a buffer. There may be several of these on the

terminal at once. Future uses of this word in the thesis will

refer to a part of a terminal display not to this object.

declare

1 window based,

2 starting_point pointer,

2 endingpoint pointer,

2 buffer pointer;

One of the very nice features cf Sine is that insert is a generic

operator. It will take any string object including a small

36

integer which is interpreted as a single ascii character and

insert it into either a buffer or a gnirt. In fact, since all

character processing is done through special, fast coroutines,

any instruction which accepts. a string as an input argument will

take any sort of text object. Therefore it is convenient to use

the handiest or most efficient representation when working with

text.

In support of the display orientation of the editor a data type

exists, called a screen, which contains data needed to keep the

image of a buffer up to date. Each screen corresponds to a

window on the terminal display and is used to keep that window

"correct". The display mechanism supports multiple windows on

the display and each screen (and window) has a buffer associated

with it. The screen contains information about how many lines

long the window is, where it starts on the display, where to

position the current line relative to the top of the window, and

one mark for every line of the window. These marks point to the

beginning of every visible line and are used to keep track of

where each line starts and whether it should be redisplayed. The

redisplay routine also makes use of the start and end

modification marks that are maintained for each buffer. After

each redisplay these marks are reset to show no modification.

37

declare

1 screen based,

2 next pointer, /* not used */

2 buffer pointer,

2 lineondisplay fixed binary(15),

/* where the window starts on the display */

2 number of lines in window fixed binary(15),

/* this is really the number of lihes times 4 minus 4 "/

2 first linecontainingmodifications fixed binary(15),

2 displayed fixed binary(15),

/* flag so this screen is only updated once */

2 currentline fixed binary(15),

/* line containing the current location */

2 pad bit(16), /* not used */

2 forcedisplay bit(32),

/* one bit per line in screen: if the bit is set the

line must be updated */

2 empty bit(32),

/* if the line is empty this bit is set */

2 lasttop fixed binary(31),

/* address of first character it top line on screen */

2 line-marks (24) pointer;

/* only numberoflines inscreen of these

are used but all 24 are allocated when the screen is

created */

38

The editor maintains an array of pointers, one pointer for each

line on the physical terminal display. Each pointer indicates

the screen which includes that line. Thus if a screen contains

the first five lines on the display then the first five pointers

in this line array would point to that screen. If' another screen

contains lines three through ten, then the shared lines are part

of both screens but must be in one window at a time. The line

array determines which, by pointing to the screen "responsible"

for each line. An instruction is available which sets the screen

pointer for each line and adjusts the size and position of the

screen.

This scheme has the difficulty that the point around which the

window is centered is the current location in the buffer. This

is not useful if two windows are to display different sections of

the same buffer, since there is only one point (current position)

in each buffer. For this and other reasons an alternate proposal

has been suggested to increase both the flexibility and

simplicity of the screen management system. This proposal is to

upgrade the line array to a table containing all of the

information that is needed. This would eliminate the need fc.

screen objects altogether. The table would contain a structure

for each line on the display. This structure would have a bit

specifying whether it is the top line of a window or not. If it

is, then it would have a pointer to a mark which would indicate

the centering point for the screen, as well as specify some

39

additional information needed to compute the new screen.

Subsequent lines in a window would contain only a mark into the

buffer where that line starts and pointers to the next and

previous visible lines (table entries) of the window. This

organization would reduce the number of marks necessary and would

allow a screen to be discontinuous on the physical display.

Most of the rest of the data types are not specially oriented

towards string processing but are needed to provide the desired

LISP-like environment. The most important of these is the

variable. This corresponds quite closely with the LISP atom. It

i a global entity with a name, a value cell and a next-variable

pointer. All the variables in the environment are chained

together so that every module which is loaded into the

environment will share variables of the same name. These

variables are the primary means of communication between various

modules. The "linel" variable lets every routine know what the

line length is. The "currentbuffer" variable allows any routine

to modify the buffer being edited, without requiring every

routine which deals with the buffer (almost all of the functions

in the editor do) to take the current buffer as an argument which

would be very expensive.

40

declare

1 variable based,

2 nextvariable pointer,

2 name pointer,

2 value pointer;

To allow all functions to efficiently use global variables when

their addresses are riot known at compile time is obviously

necessary. The names of the variables are compiled into the

object segment of the module. There is only one instance of each

variable per module even though there might be many routines

contained in the module which use the variable. When the module

is loaded into the Sine environment the variables are looked up

in the environment to obtain their addresses 'and to create them

if they did not previously exist. These addresses are then

inserted into a table through which the references to variables

are made. The address of this table is associated with every

function; all functions that were compiled together share the

same table. The pointer to this table is one of the four index

registers used in operand address calculation mentioned above.

Though the address calculations for variables are conceptually

more complex than those which just reference stack data the

uifference amounts to only about three instructions in the decode

routine.

The necessity of copying s'rings from the pure code buffers into

41

string space, mentioned previously, is taken care of by including

those strings which must be copied with the variables, with a

flag set to indicate that no variable is to be created. The

string is then copied into string space and a pointer to it is

left in the cell in the variable table where variables normally

are. The type bits on the pointers are used to differentiate the

two when an operand referencing them is decoded.

A difficulty with this use of variables is that in order to have

a piece of data be static it must also be global. This leads to

naming and efficiency problems. The efficiency problems are

caused by the fact that a global variable must have a name and be

chained with the other variables so that other routines can

access the variable. In essence all that is needed is a single

cell. No name or other complication is needed at run time. All

of this extra overhead for a global variable makes the string

space, a per-user impure area, bigger than necessary. The

variable table has a single h2ader word which gives the count of

the number of variables in the table. This is mostly used by the

garbage collector. A second count could be added to specify the

number of words in the table which are not global variables or

strings but are value cells. These could be addressed as any of

the cells on the stack are, and a single comparison should

suffice to separate the local static variables from the global

ones. Th, data I have found frcm metering the garbage collector

has indicated that more that half of the storage in the string

42

space is taken up with strings and my guess is that a fair

fraction of those could be made into local variables, saving a

lot of space.

Then, of course, there is the cons. This is the mainstay of most

data objects in a LISP and while diminished somewhat in

importance by the string data types in Sine it is still very

important.

declare

1 cons based,

2 car pointer,

2 cdr pointer;

The array is also an important data structure primitive, so Sine

supports single dimension arrays of bits and pointers (objects).

The header for the array contains a count of the number of

elements and a indicator of the number of bits in each element.

In principle, array elements of any bit length could be kept in

such arrays but in practice byte arrays are better handled by

strings and halfwords may be useful eventually, although I have

not add-ed the support for them as yet, Any other size is

probably much more work than it could possibly be worth.

43

declare

1 array based,

2 elementsize fixed binary(31), /* in bits */

2 number of elements fixed binary(31),

2 elements (numberofelements) bit(elementsize);

The last data type implemented by the Sine Machine is the

function. This data type contains the information needed to call

a function. This includes a buffer which contains the code, "

pointer into that buffer where the function starts, and a context

pointer to the variable table associated with this function.

These three things are all set by the program which loads a code

segment into the Sine environment when it encounters function

definitions. The names associated with a function are not

actually connected to the function object but come from the

variable containing the function. The decision to name the

variables and not the functions was not easy. This method has

several advantages. There is only one sort of named object in

the Sine environment, which certainly simplifies naming issues

and, if nothing else, saves the space of having all those extra

names around. But more interesting is the fact that variables

can be set and bound and hence functions can be changed and

redefined. This fact has some rather serious and perhaps

dangerous implications but I decided that the extra flexibility

and power provided by this capability would be of more benefit

than harm - a statement not true of every scheme to increase

44

flexibility and power.

declare

1 function based,

2 pcbuffer pointer,

2 pcoffset fixed binary(31),

2 variable tableptr pointer,

1 variable-table based (variabletableptr),

2 number of entries fixed binary(31),

2 entries (numberofentries) pointer;

The Garbage Collector

A very important aspect of the Sine Machine is the Garbage

collector. As in most object oriented systems the environment

gradually gets filled up with forgotten objects (called, for

obvious reasons, garbage). A garbage collector is needed to

peruse the string space and the stack and to recompact all

objects in the space, thus reclaiming the space used by unwanted

objects. The garbage collection scheme I chose uses a temporary

segment into which all the referenced objects in the Sine

environment are copied and the references to them updated. Then

the new string space is copied back into the old one and the

segment shrunk to the correct size. This subroutine is called

whenever the allocator has allocated a certain amount of storage.

45

It does not have a fixed amount of memory to fill up as in most

garbage collecting situations but instead it strives to keep the

size of string space as small as possible without burdening the

Sine user with overly many garbage collections.

Code Segment Format

The code segment format has been referred to briefly in other

contexts. The first halfword of a code segment is the offset in

the segment of the beginning of the strings which define the

functions, strings, and variables. The first halfword of the

variable section gives the count of the number of strings in this

module. Then follow string descriptors, each of which contains

two halfwords and a string. The second halfword gives the length

of the string, while the first is the offset of the function

definition if the string is the name of a function, zero if the

string is a variable and minus one if it is just a string to be

copiea into string spaca. The loader interprets these halfwords

and creates a string, it also creates a variable if the halfword

is not negative and a function too if it is positive. Between

the string area and the first halfword of the segment is the code

consisting of any number of function definitions. The Sine code

for each function is preceded by a halfword which specifies how

many automatics are to be created by the call instruction when it

builds the stack frame for that function. After the code for a

function the strings that can safely be referenced by PC-indexed

46

operands may appear.

declare

1 code segment based(function.pc buffer -> buffer.text base);

2 offsetofstringsection fixed binary(15), /* in bytes */

2 code (offset_ofstringsection/2 - 1) bit(16),

/* all the code and constants for the functions compiled

in this module are here */

2 numberofstrings fixed binary(15),

2 string descriptors (number-of strings),

3 stringtype fixed binary(15),

3 stringlength fixed binary(15),

3 text character(string length);

/* pad this out to nearest halfword */

47

The Sine Language

The set of Sine instructions is a little over one hundred strong.

All of these can be used through the compiler, but just producing

code for Sine instructions is not the major task of the Sine

compiler. Its major task is to make instructions and user

functions appear indistinguishable. It uses LISP-like syntax

which is made easy since its written in LISP itself. It also

manages variables and their bin.ding, the definition of stack

automatics, stack discipline and the expansion of macros.

The Workings of the Compiler

A form is a parenthesized list of tokens; the first of these is

the operator and the rest are operands. All top level forms in a

Sine programs must be one of three types. Either the operator is

the token "variable" in which case the operands are declared to

be global variables througizout this module, the operator is

"defun" and the rest of the form is the definition of a function,

or the token is "documentation" in which case the second operand

in the form is a string which is stored in the object segment;

the getdocumentation function retrieves this string when given a

function. Since declaring a function is useless unless the

function is bound to a variable, the defun form also has the

effect of declaring a global variable.

48

The form of a "defun" is as follows, where the items in square

brackets are optional.

(defun <function> ([<argi> <arg2> ...] [&aux <vbll> <vbl2> ...])

the body is like a prog body in lisp ...)

The second token in the form is the name of the function being

defined. The next is a form itself which specifies the arguments

and automatics for the function. The rest of the forms in the

function definition are either single tokens in which case they

are defined as labels or else they are compiled to yield code.

In LISP terms, the functions are implicit progs so that labels,

gotos and returns will work.

The idea for the "&aux" construction is taken from the Lisp

Machine dialect of LISP [MOON]. The argument list has two parts,

either or both of which may be missing, separated by the token

"&aux". Those tokens appearing in the argument list before the

"&aux" are argument names which are referenced as negative

offsets from the stack frame pointer. If an argument has been

declared as a global variable the compiler will generate a "bind"

instruction to save the old value and a "store" instruction to

assign the argument value which is below the stack frame pointer

to the global variable. References to those arguments are to the

global variable not the the actual argument.

49

Those tokens appearing after the "&aux" are auxiliary variables.

If an "aux" variable is declared as a global variable then it

will be bound like an argument, but no assignment will be made.

Those "aux" variables can be modified in that function and the

old value will be restored when the function returns. Tokens

which are not globally known will have stack automatics generated

for them which will be referenced as positive offsets from the

stack frame pointer.

Once the argument list has been parsed the compiler proceeds to

generate code for the rest of the function in a traditional two

pass process. The first pass does most of the work. First, the

locations of all of the labels must be dctermined. More

interesting though is that the nesting of function calls is

unwound on the first pass. That is, when a function as its

argument another function, that other function must be evaluated

first and its returned value pushed onto the stack. Then the

reference to the argument of the first function becomes a rtack

reference. The depth of that reference below the top of the

stack depends on how many arguments to that function were

functions themselves.

Here is an example of an expansion of a nested set of function

calls. The result is expressed in an assembly language type

format. The index register "sp" is the top-of-stack pointer.

"read in string" is a user defined function. The minus before

50

some opcodes means that the returned value will not be pushed

(the compiler sets a bit in the opcode). Aspects of this example

will be explained in detail below.

(set loc (car buffer-list) 0)

loop (ifnil (lookingatp (read in string) (car buffer-list) 0)

loop)

+car bufferlin

-setloc -4(sp),0

loop: +call read in string,0

+car buffer-list

-lookingatp -8(sp),-4(sp),0

-ifnil -4(sp),loop

The function which evaluates the forms also checks for macros.

Before analyzing a form it makes two checks on the operator of

the form. If it is an atom with a macro property then the

compiler calls LISP eval on that form. The definition of the

Sine macro puts the property ri the atom and defines a function

which recursively calls the first pass form evaluator to produce

the effects that are wanted. The form evaluator does nothing

else with the macro form assuming the macro function has done

everything that is necessary. The form evaluator next checks to

see if the operator is a known instruction opcode. If it is, the

form is processed in the normal way: opcode followed by all the

51

operands in the form. Otherwise the operator is assumed to be an

external function. These should be declared to be global

variables but the compiler will assume it is a global if it is

not known. For a function, though, things are different. All

arguments to a function must be pushed on the stack since

functions always find their arguments just below their stack

frame. Instructions can address their arguments where ever they

are and so do not need their arguments push onto the stack for

them. The actual code for the function is also different.

Instead of an opoode followed by operands, a call instruction

with one argument is generated. The argument to the call

instruction is the number of arguments passed to the function.

The second'pass then evaluates all symbols into an indexing type

and an offset, decides whether to have the function, or

instruction, push its result, and emits the appropriate code.

After emitting code for all functions in the module the compiler

sets the first halfword to the ending PC and then emits the

string section described above.

The Language

Having to keep track of all the values that are at various

offsets on the stack, offsets which change as things get pushed

and popped, would make programming in Sine much too hard. The

use of the LISP syntax for function calling eliminates the need

52

to keep track of the stack at all. The programmer can almost

forget that there is a stack. The compiler manages the stack for

you; this is as it should be.

Another important simplifying factor is that there are only five

kinds of control transfers not including the call and return

instructions. The first of these is the unconditional branch.

This takes an address in the current code buffer and transfers to

that location. There is a branch on true and a branch on false

instruction which take an address and a boolean and branch on

whether that is true or false. The last two are a pair which

branch on error or no error. These test a internal flag whizh is

set by instructions like search and set loc when they encounter a

some error condition.

These simple transfer instructions are then used by Sine macros

to produce the rather more complicated control structures used in

LISP. A variety of predicates exist which return T or NIL and

which can be passed on to the conditional branches. In this way

"cond", "do-while", "do until",1 repeat," and others are

implemented. Also the "iferror" function is really not a

function but a macro which executes a form then generates a

conditional branch which tests the error flag. This is used

primarily to handle special cases involving failing searches of

various sorts. The "errset" macro is used to set up a dynamic

handler for a Sine condition. These conditions are produced

53

either by the signal instruction or by serious errors in the Sine

Machine such as an illegal type being passed to an instruction.

Since the macros are written in LISP ard thus can deal with lists

and lists of lists very easily it is simple to produce code to

correspond to very complicated control structures with only very

simple instructions. The usual sequence is to generate a

conditional by consing up the appropriate list incorporating a

predicate from the argument list and calling the form evaluator,

then mapcaring that evaluator down a list of forms and generating

a label at the end. This is what the "do-while" macro does.

A very interesting and useful Sine program would be a Sine

Compiler. Since the data types are very LISP-like this should

not be too difficult but Sine has not been blessed (or burdened)

with a reader. This means that the parsing of the input text

does not come for free as it does in LISP. Since Sinc is a

string processing language, though, it should be particularly

suitable for this task. The major difficulty is that macros

would have to be re-done significantly. They can not really be

done without and since, in the current implementation of the

compiler, they rely on the existence of the subr "eval" they must

be dealt with differently. The major use of a Sine compiler

written in Sine is that it would make writing simple little Sine

programs much easier, since one would not have to switch to LISP

all the time.

54

The Editor: What It's All About

Basic Commands

A real-time display-oriented editor has three basic categories of

commands. All the rest of the commands can be divided into two

or three other groups. The basic categories are: commands which

modify the buffer, commands which manipulate the position of the

cursor on the screen, and commands that deal with files. Each of

these broad classifications can be further subdivided by their

scope of action or various other means.

The first group of commands are those to modify the buffer. All

the printing characters are in this group. They each insert

tnemselves into the buffer. The rubout or delete key removes the

previous character from the buffer. Control-D (VD) Deletes the

next character in the buffer.

To understand how this really works it is necessary to understand

the working environment of a display-oriented editor a bit

better. What is seen by the user is a terminal screen that is

initially blank save a line or two at the bottom describing the

state of the editor. This blank workspace is very much like a

sheet of paper on which you can type. Associated with this

window is a point, a current position in the text buffer, which

is represented by the terminal as a cursor. The exact nature of

55

the cursor varies from terminal to terminal but is often a

lighted square or horizontal underscore. This cursor selects the

next character. The character to the left of the cursor is the

last character. After typing a character the cursor is moved

over the new character and it becomes the last character.

Rubout is good for removing characters that have been typed. If

you notice a mistake several lines-back, however, it would be a

real shame.to hit rubout a couple hundred times to fix the error.

To help in these situations the control-P (^P) command moves you

up to the beginning of the Previous line. Then ^F will move you

forward one character at a time until you arrive at the offending

spot. Control-D will delete the character under the cursor.

Using ^Ds ^Fs ard typing new characters the typo can be

corrected.

This set of commands is enough to edit really anything but it

would be very clumsy. To fill out the basic repertoire and to

summarize here is a list of basic editing and positioning

commands:

letters, numbers, and punctuation

The character is inserted between the last character (to

the left of the cursor) and the next character (under the

cursor). The new character becomes the last character

and the next character remains the same.

^F Forward over one character unless at end of buffer.

56

^B Backward over one character unless at beginning of

buffer.

N Goes to beginning of Next line (down one line).

P Goes to beginning of Previous line (up one line).

E Goes to the End of the current line.

A Goes to the beginning of the current line.

^D Delete next character.

rubout Remove last character.

K Kill from point to end of line. If line is blank delete

the line. ^K at the beginning of the line will make the

line blank. Two ^Ks will delete the line entirely.

The use of these commands can be made even more convenient when a

command must be repeated many times. The ^U command reads a

number and passes it to the next commpnd as a repeat count. Thus

^U15^N will move you down 15 lines in the current buffer. If no

number is supplied the argument is four times the old argument,

where the default argument is one. Thus ^U^N is four lines,

^U7"N is seven lines ^U^U^N is 16 (1*4*4) lines, and ^U7^U^N is

28 lines..

In order to make any of this editing worth while you must be able

to save the buffer in a file. All of the file commands are sub-

commands of the ^X command. ^X^W (type control-X immediately

followed by control-W) will ask for a file name to write the

buffer out to in a special area at the bottor of the screen

57

called the echo area. Type the filename followed by a carriage

return (CR) and the file will be saved. If no filename is typed

(just ^X^WCR) then the buffer will be written out with the

default filename. The ^X^S (Save) command just writes the buffer

out to the current default filename without asking for a new one.

When you start a session the buffer is initially empty and to

edit an old file you need to read it in. The ^X^R command is

analogous to ^X^W but instead replaces the contents of the buffer

with the contents of the specified file.

With this set of commands you can edit quite reasonably. All the

other fancy commands (and there are a lot of other commands) just

make the editing easier and faster. This is also enough of an

introduction to the editor to allow an explanation of how the

editor is constructed in the Sine environment described above.

At this point it is suggested that the reader glance over

Appendix 1 enough to get an idea of what kinds of instructions

exist and what sorts of arguments they take.

The Structure of the Editor

By structure I mean two things, what kind of data objects does it

deal with and how are subroutines layered: who calls who. I will

describe the structure of the editor outlined above. The editor

naturally includes more complexity that would be needed to

implement the above described subset.

58

When the editor is called the first time it must do a certain

amount of work to set up the initial environment. Later entries

return to the Sine environment with all information intact. The

state of the buffer, the current position, the default filename,

everything but the exact positioning of the cursor in the current

window since the screen is refreshed when you reenter. The

function that is called when the editor is called for the first

time is called "toplevel". Later invocations enter at the label

specified by the restartat instruction.

/After initialization, "top-level" calls "invoke-editor". This

function deals with setting up the mode information which will be

described later. Eventually control enters the program called

"reader". This is the function which reads characters from the

keyboard and calls the appropriate function. It also does a

number of bookkeeping actions which must be handled before or

after every command. To save redisplay time the function calls

"tyis" and only if no characters are in the input buffer does it

do a redisplay. This means that while you are typing fast it

will only attempt to refresh the screen every few characters.

The "reader" also resets the argument to its default value of one

and updates the buffer modified flag by calling "modifiedp" on

the current buffer. The basic function of this routine is to

read a character with "tyi", look up the function (in a variable)

corresponding to that character in the dispatch array, and call

59

that function with no arguments the number of times specified by

the global variable "argument". The character read is put into

the global variable "char" and the function called is put in to

the global variable "function to call".

The selected function does whatever it wants then returns to the

reader which reads another character and calls another function.

Explaining the function of several typical functions will be

useful. The most commonly called function is called

"self-insert". This executes one instruction: "insert char

currentbuffer". The "F command calls "forwardchar" which is

defined as follows:

(defun forward-char () ;no arguments to this function

(addtoloc currentbuffer argument) ;increment "point"

(store 0 argument)) ;so it doesn't get called again

Note that the global variable "argument" is not an argument in

the strictest sense of the word. Thus this function doesn't take

any arguments but it does get information from its caller via

"argument". This function doesn't want to get called repeatedly

if you type "U32431^F, instead, the function takes care of the

requested repetition itself, then sets "argument" to zero so

"reader" drops out of its loop. The method that is used to set

the argument to other than one is quite simple. The function

that build up the numeric argument is called when "^U is typed.

60

It reads characters until it gets a non-numeric character, then

calls the appropriate function and resets "function tocall" so

the reader will repeat the correct function. The ^E function is

a little more complicated:

;;; Set the location to just before the next CR or to the end

,,, of the buffer if there are no more CRs.

(defun endofline ()

(setloc current-buffer

(iferror (sub (search currentbuffer 13) 1)

(length currentbuffer))))

Another level of routines are provided in the editor's

environment which are not commands. They are various utility

routines called from several of the command functions.

The data structures used by the editor are of three types:

variables, arrays and lists. See Appendix 2 for a list of global

variables used by the editor and a description of what each is

used for. There are six object arrays used by the editor. One

is the dispatch table for all the commands which can be accessed

by one character. It is 128 entries long and is indexed by the

ascii value of the character typed. Two other arrays are for the

^X sub-commands and the Meta sub-commands. The other three are

copies which are used to restore the command characters to their

61

defaults when reading in the echo area while in another mode;

more about modes later. These arrays contain variables since

functions by themselves are not named. They are loaded initially

by using the "fill vbl array" instruction.

The lists used by the editor are mostly for holding information

about tvbufs. The tvbuf management basically allows the editor

to keep track of several editing workspaces at once. Only one is

used for editing at a time but each has a separate file in it and

has its own modes associated with it. Multiple tvbufs are very

convenient for examining one file while editing another or for

moving text from one to another or just for keeping any sort of

information easily at hand. The global variable "buffer-list"

contains a list of tvbufs used in the editor. Each time a new

tvbuf is entered it is added to the list and so can be returned

to very easily. Each element of the tvbuf list is as follows:

(tvbufname buffer screen mark filename modified-flag

(mode-names . mode defs))

The name of the tvbuf is identified by the first element; the

buffer object actually used for inserting into is the second.

The third is the screen object needed to display the buffer on

the terminal. The mark is an alternate place in the buffer which

some commands refer to. The fifth element is the default

filename. The modified-flag is "t" if the buffer has been

62

modified since last written out and "nil" otherwise. The last

element is a cons containing two lists. This first is a list of

mode names and the second is a list of functions which are to be

called to activate this mode. When a tvbuf is entered the

"gotobuffer" routine is called. This routine sets up several

global variables such as "currentbuffer" and "currentmode"

which make it easier to use the information about this tvbuf.

Another important structure is the kill-ring. This is

conceptually a circular ring of the last ten strings deleted from

the buffer. A ^K, for instance, copies the line onto the

kill-ring before deleting it. All of the commands that delete

more than a single character copy the stuff they are going to

delete onto the killring. Consecutive deletions are

concatenated, thus ten ^Ks will save the next five lines on the

kill-ring. Several commands then exist for inserting the last

thing killed and looking at previous killed strings. The

kill-ring is the usual way of duplicating and moving text; by

deleting the desired text and bringing it back.

The implementation of the killring is rather complex. The text

is stored in a special buffer (no screen, or filename, or

anything - just a Sine buffer). Then a circular doubly threaded

list contains marks into that buffer which separate the various

elements of the kill-ring. Two flags called "save delete flag"

and "old savedelete flag" are used to keep track of consecutive

63

deletions. The new killed text is concatenated either to the

beginning or the end of the old area so that the old order of

text is preserved.

One of the very useful features of the editor as it is written is

that the reader is recursively invokable. The reader function

takes two arguments, one is a buffer to read the text into and

the other is the screen associated with that buffer. The reader

is defined with the arguments currentbuffer and currentscreen.

These are the same variables that are set by the "gotobuffer"

function and are used throughout the editor. When the reader is

entered these variables are bound because they are global

variables and the values passed to "reader" become the global

values. Thus the read-line routine which reads text in the echo

area can call the reader with "echobuffer" and "echoscreen" and

all references to currentbuffer by functions like "self-insert"

and "forward-char" will use "echo-buffer" automatically. To

cause a carriage return to end input, as with the ^X^W and ^X^R

commands, the slot in the dispatch table corresponding to CR is

rebound, using the bindarraycell instruction, to a function

which returns to the caller. Then any text in the "echo buffer"

is the text that was typed in.

Another extremely important feature of the editor, due to the

nature of the Sine environment, is that new functions can be

loaded at any time. This means that all the functions that.may

64

be needed while editing do not have to be present initially.

Users can load their own functions to replace standard ones or

add new functions or packages of functions of their own to the

environment. When the editor is first started it looks for a

file of initial commands to run which the user can specify. This

allows each person to specially tailor his environment to his

preference. Also some functions in the dispatch table are not

functions at all but are strings. If the reader tries to call a

string, that string is interpreted as a filename containing the

function that is to be called. This auto-loading feature is very

useful in loading large, infrequently used packages into the

editor when and if they are needed.

Modes

Two issues have not been addressed very well so far. The first

is that of command character allocation and the other is that of

specialization. Both are extremely important in the construction

of a large editing system. The decision of what keys should

execute which commands might seem unimportant but human nature

being what it is the debate on the subject often blooms into

raging controversy. There are about three problems fueling the

argument. The first is that there are not enough keys to go

around. There are only 32 control characters and some of those

such as "M (CR) and AI (tab) are taken. This is not nearly

enough characters especially if some attempt is made to make the

65

commands mnemonic (consider even ^"A: beginning of line?). The

use of the escape key and the ^X key as prefix commands helps but

the double characters are harder to type. Another problem is

that with so many commands, most bound to non-mnemonic keys, and

different implementations with different command sets there is no

standard set of editing command keys. The really basic reason is

that different applications require different actions when

dealing with the text. The elementary commands described above

do not really illustrate this problem but many commands exist to

specialize the editor for the editing task at hand. A good

example of this are commands for commenting code. Different

languages have comments that work differently. But to have a

separate command for each type of commenting style is a

ridiculous waste of commands. The objections to all these

arguments is that people do not like to have editing commands

change. Most editing functions become habitual sequences of key

strokes and it is very hard to remember to use a different set of

commands.

Though the command allocation deals in part with specialization,

the question is more complex than that of deciding which kind of

commenting to do. Specialized applications involve changing the

definition of a word, removing or adding a function or class of

functions, or even changing something as fundamental as the

selfinsert command. A general mechanism for changing everything

and then changing it back is needed. The modes facility I

66

implemented in the editor is a good attempt at this.

Attached to each tvbuf is a list of modes that are in effect when

that is the current tvbuf. There is usually a major mode which

is a function of the sort of text you are editing and a list of

minor modes that can modify any (almost any) major mode.

Examples of major modes are PL/1_mode, TECO mode, LISP-mode, and

textmode. Minor modes can be such things as AutoSavemode

(which writes your tvbuf out every so often so that if the system

crashes little work will be lost) and AutoFill mode (when the

line you are typing gets too long it will automatically insert a

CR in the right place).

The mechanism that I used to accomplish this is to attach to each

tvbuf a list of mode names (so a person can find out what modes

he is in) and a list of functions which implement those modes.

Whenever a tvbuf is changed or a mode is added to a tvbuf a flag

is set and the reader is told to return to its caller. When the

caller, "invokeeditor", notices this flag set it immediately

calls the reader again. But "invoke-editor" does not call the

reader directly, but through a chain of mode functions. It sets

a global variable, "tunnelpath", to the list of mode functions

to call then calls "keep on tunneling". This function takes the

first function on the list and saves the rest of the list in

"tunnelpath", then calls that first function. Each mode

function then calls "keepontunneling" when it is done setting

67

everything up. When the list of functions is empty the reader is

called .

The advantages of this scheme are that the binding and unbinding

mechanism can be used to effect the changes required by each

mode. Variables can be changes by making them &aux variables in

the mode function. Functions can be changed similarly. Key

bindings, the most common change, can be done by the

"bindarraycell" instruction. All of these actions are

automatically undone upon return, planned or unplanned. If an

error occurs and the handler unwinds past all of these levels of

mode functions all their changes will be undone.

Major and minor modes are implemented in exactly the same way,

which casts suspicion on the distinction made by ITS Emacs and

others. The idea itself are very good. The power of an editor

system can not be effectively used if the user must remember and

explicitly type a thousand different commands. Despite or

because of its promise this area of editor design is very poorly

understood. Consequently, this aspect of editor design will

probably see the most work in the future.

68

Results, Observations and Conclusions

In this last section I will review the interesting ideas and

problems that have come out of this project. In addition to

these thoughts I will mention a few ideas for future applications

of this system or a system of similar design.

A problem I had not bargained with when I first designed this

system was the amount of impure overhead that would be necessary

to support all these data types and complicated data structures.

On the small machine this system was implemented on the size of

this area is a real problem. The biggest contributor to this

problem is the names of all the variables and strings of other

sorts. These are theoretically constant strings but because of

problems with limited address space size I had to copy the names

and strings into the string space. In a system where the address

space swapping is not necessary the strings can be referenced

where they are without copying. This could help a lot.

Considering the interpreted nature of the Sine Machine the speed

of even quite complex programs is surprisingly good. This is

partly due to the fact that the whole interpreter and most of the

instructions are written in assembly language. The operand

decoding routine is also very carefully optimized for speed. I

would guess that obtaining additional speed would require using

the scheme outlined above for compiling directly into machine

69

code. If speed is not of absolute importance, and in editing it

rarely is, then this pseudo-machine seems to be a good

speed/space compromise.

The issue of personalization versus compatibility is very

interesting. Editors of this kind allow the user to completely

redefine how the editor looks. This means that trying to arrange

a compatible set of commands is almost impossible if next to no

one has the same command environment as anyone else, let alone

each installation with their own version of an editor. But

perhaps indicates that it is not worth the trouble. The cost of

everyone having their own different environment is little more

expensive than having everyone's the same, so perhaps it is not

worth worrying about a standard.

Several times during the design of the system naming issues came

up. Most of the time I used LISP as a guide in solving the

problems but in the case of functions I diverged rather

radically. A function is one of several facets of the named

object in LISP (the atom). In my scheme, the only object

attached to a name was a value. This value could be a list, a

number, a function or anything. The question had to do with what

to do with functions without names. Can it be called? Can it be

referenced? Several places in the editor I assign a function

from one variable to another, which serves to rename the

function. The fact that functions could change names in mid-

70

stream was a little disconcerting. But no serious problems have

come of it, though a great deal of code has not been written in

Sine to date.

The most interesting and fundamental problem that this project

attempted to address is the tradeoff between flexibility and

complexity. The question is: How does one provide as much

flexibility as possible to the sophisticated user without

removing all flexibility from the realm of the relatively naive

user? ITS TECO is so complex and subtle that almost no one can

use it effectively. Though it is very powerful, its complexity

effectively prevents its widespread use. My goal in this respect

was to have a system easy enough to use that the inexperienced

user could take good advantage of it.

Basically almost any task that involves either human interface or

text processing is a possible application for a system like this.

A command processor is one program I have always though would be

useful. A documentation system to peruse and edit documentation

would be very handy. A text justifier is an often-mentioned

project but that task is a bit too processor-intensive a task to

be adequately handled in Sine, though as an interactive text

justifier it is already useful. My editor is missing a macro

mode. This is some way to be able to quickly type in a simple

Sine program to do something that would require several

keystrokes, then to quickly compile or interpret this and perhaps

71

attach it to a key. This would greatly help in debugging Sine

programs and in all sorts of editing tasks.

The Sine system is written in a very modular fashion. The

pseudo-machine that it is written in can be conceived of as a

package of utility subroutines which provide perhaps the ultimate

in modular design. Every operation is performed through this

very carefully defined, relatively simple interface. The Sine

system would probably be ideal for transporting to other sites

with different computers. The reimplementation of the Sine

Machine on the new system immediately permits the whole editor to

run. The system is flexible and powerful enough so that there is

still a great deal of room for growth even with this well defined

interface.

72

References

[ECC] Ciccarelli, Eugene. An Introduction to the Emacs Editor.

AI Memo #447, January 1978, MIT.

[BSG1] Greenberg, Bernard S. Real-Time Editing on Multics.

Multics Technical Bulletin # 373, Honeywell Information

Systems, Inc. April 1978, Cambridge.

[BSG2] Greenberg, Bernard S. Online Multics Emacs Documentation.

(>udd>m>emacs>editor.info) MIT-Multics, Cambridge, Mass.

[M6] MagicSix Subroutine Manual. MIT Architecture Machine Group.

1978.

[MLK] Michael Kazar, Dynamic Linking in a Small Address Space,

Undergraduate Thesis, EECS Department MIT, May 1978

[RMS1) Richard Stallman, ITS Teco Order, Online Documentation.

(AI:.TECO.;TECORD >). MIT Artificial Intelligence

Laboratory.

[RMS2] Richard Stallman, ITS Emacs Order, Online Documentation.

(AI:INFO;EMACS >). MIT Artificial Intelligence Laboratory.

73

[MOON] Dan Weinreb and David Moon. Lisp Machine Manual. November

1978, MIT Artificial Intelligence Laboratory.

[DLW] Dan Weinreb, A Real-Time Display-Oriented Editor for the

LISP Machine, Undergraduate Thesis, EECS Department MIT,

Jan. 1979

74

Appendix 1 - Table of Data Types Used by the Sine Machine

This table defines the opcodes and the data types that each takes

as well as a definition of what each instruction does. The

names, type numbers and a short description of each type is given

below. See the text for more information about each of these

data types. In the functional definition opi will refer to the

first operand, op2 the second etc. No instruction takes more

that four operands except fill vbl array.

Numbers: (0) 28 bit signed two's complement integers

Booleans: (0) t ("Ob02fff1"b4) or nil ("ObO2fffO"b4) are just

numbers.

Labels: (0) positions in a program. These are 24 bit number

from the base of the code buffer segment.

Characters:(0) A single character represented by its ascii

value.

Buffers: (1) Large scale text objects. Can search and insert

and delete text anywhere.

(2) Unmodifiable text objects.Strings:

75

Windows:

Conses:

Variables:

Functions:

Marks:

Screens:

(3) Used to delimit part of a buffer.

(4) LISP-like conses with car's and cdr's

(5)

(6)

Global variables with names and value cells

Procedure which can be invoked with arguments.

(7) Pointer at text in a buffer which float with the

text.

(8) Description of display windows needed to update

the display of a buffer.

Arrays:

Gnirts:

Text-:,

(9) One dimensional arrays of objects or of bits

(10) Strings object. Can insert and delete only at

the end.

Compound Objects

A character, buffer, string, window or gnirt

Growable: A buffer or gnirt.

buffer, string, window, gnirt (text minuslong text:

76

character).

regional:

charmap:

logical:

Anything:

buffer, string, gnirt, character. (text minus

window)

buffer, string, window, gnirt, character, array.

(text plus array)

number and boolean

Any of the above data types.

Notes

Some operands are fetched as addresses only. The store

instruction is prime example of this. There are two methods of

getting the address of something if it is a variable. Either the

address of the variable's value cell or the address of the

variable itself may be needed. (VA) will indicate Variable

Address and (CA) will indicate Cell Address. If neither are

present then the object itself is passed to the instruction.

A (NR) after the opcode name will indicate that the instruction

does Not Return a value which may be pushed onto the stack. A

bit in the opcode can cause a returned value to be discarded

instead of pushed onto the stack.

77

Storage Control:

store anything anything(CA)

return (opi)

The value op1 is stored into op2. These arguments are

the reverse of the order of arguments to the LISP

function setq.

Numeric operators:

add number number

return (opl+op2)

sub number number

return (opl-op2)

mul number number

return (op1*op2)

div number number

return (opl/op2)

this is integer division so the result will

be truncated to the nearest integer.

number numbermod

78

return (remainder of opi divided by op2)

number number

return (the smallest of opi and op2)

number number

return (the largest of opi and op2)

Logical operators:

logical

return (bitwise: opi & op2)

logical

return (bitwise: opi | op2)

logical

logical

xor logical logical

return (bitwise eXclusive OR of opi and op2)

List Operations

For more information about list structures see any introductory

guide to LISP. These functions exactly parallel standard LISP

functions of the same name.

anything anything

min

max

and

or

con s

79

return (a cons whose car is opi and whose cdr is op2)

car cons

return (the car of opi)

cdr cons

return (the cdr of opi)

caar cons

cadr cons

cdar cons

cddr cons

For your convenience caar, cadr, cdar, and cddr are defined to

take the car of the car, the car of the cdr, the cdr of the car,

and the cdr of the cdr respectively.

rplaca cons anything

return (opi)

This function replaces the car of opi with op2.

rplacd cons anything

return (opi)

This function replaces the 2dr of opi with op2.

Variable operators:

80

intern text array

return (new variable with a name of opi)

This instruction makes a new variable with a specified

name and hashes it into op2 which is an obarray. If a

variable of the specified name already exists on the

obarray that variable is return, a new one is not created

and the error flag is set. These variables will never

conflict with other variables in the Sine environment of

the same name.

makevariable text

return (a variable with name opi)

This looks in the Sine environment for a variable of name

opi and returns it if it can. Otherwise it creates a new

one and puts it into the Sine environment. If an old

variable is returned the error flag is set.

getpname variable

return (the string which is the name of opi)

Stack manipulation operators:

These are all completely random instructions which modify the

stack pointer and are of no interest to the casual user with the

possible exception of push which just prior to a return

81

instruction returns the argument to the caller.

push anything

return (opi)

This is just so that objects in variables can be put on

the stack. This is used by the compiler when preparing

do a call to a function since all args to a function must

be on the stack.

pop (NR) anything(CA)

pops the top of the stack and stores it into opi.

squish (NR) number

This throws away opi stack locations from just below the

top item on the stack. The top item on the stack is

still top but is opi cells closer to the base.

discard (NR) number

throws away the top opi things on the stak.

bind (NR) variable(VA)

bind takes a variable (like call does) and saves its

value in a binding stack. All explicit bindings (the

assembler does some) must occur before anything gets

pushed on the stack in the function.

82

bind vbl (NR) variable

the same as bind but it takes a variable like callvbl

does.

bind array cell (NR) array number anything

binds a specific element of an array to a value.

Control operators:

call variable(VA) number

return (the top value on the stack when this function is

returned from)

This calls the function bound to the variable opi with

the top op2 values on the stack as arguments. This

instruction is normally generated from implicit context

by the assembler and can be forgotten about. If the

value cell of the variable does not contain a function

the error "call^fun" will be signaled.

call vbl variable number

This is the same as call but fetches its argument

differently. An example of the difference between the

two is as follows:

(call foo 0)

This is generated by (foo) in a Sine program.

(callvbl (ar function dispatch 12) 0)

83

This code will expect to find a variable in

element 12 of the array "function-dispatch" and

will call it with no arguments.

return

Returns from a function. This instruction is

automatically generated by the assembler when it reaches

the end of a defun.

restartat (NR) number

This is a instruction which gives the interpreter a label

to branch to if the interpreter is reentered. This

allows the editor to recover gracefully if an error

occurs and tne user is dumped out to command level. He

can release and reenter the editor, which can then take

appropriate recovery action.

eval variable

return (opi)

The normal argument fetching for opi is performed. This

returns the value cell of a variable. Compare quote

below.

quote variable(VA)

return (opi)

This returns a variable object not the value cell.

goto (NR)

branches to the label specified

ift (NR) anything

branches to the label if the

ifnil (NR) anything

branches to the label if the

label

boolean is not nil.

label

boolean is nil

berr (NR) label

Branches to the label if the error flag is set and resets

the error flag.

bnoerr (NR) label

Branches to the label if the error flag is not set.

handle (NR) text label

Causes a branch to the label if the condition with the

name specified by opi is signalled.

signal (NR) text

Signals the condition named by opi.

revert (NR)

Reverts the most recent handler.

label

85

Predicate operators:

t

return (t)

This is the number "ObO2fff1"b4.

nil

return (nil)

This is the number "ObO2fffO"b4.

eq anything anything

return (t or nil)

If opi and op2 are text objects then eq returns t if the

strings are equal, otherwise it returns nil. If the

objects are not text they are checked to see if opi and

op2 are the same object.

not anything

return (if opl=nil then t else nil)

This instruction returns nil if it is passed any object

except nil. It returns t if passed nil.

gp anything anything

return (if opl>op2 then t else nil)

86

gep anything anything

return (if opl>=op2 then t else nil)

lp anything anything

return (if opl<op2 then t else nil)

lep anything anything

return (if opl<=op2 then t else nil)

looking atp text buffer number

return (if opl=<text in buffer, op3 chars from location

of op2> then t else nil)

functionp anything

return (if opi is of type function then t else nil)

stringp anything

return (if opi is of type string then t else nil)

variablep anything

return if op! is of type variable then t else nil)

Search operations:

All these search operations set the error flag if the search

fails. The value returned by these instructions in the case of a

87

failure is not clearly defined so the iferror macro should always

be used if there is a possibility of failure. It is used as

follows;

(iferror <form in which an error

<form to be executed if

To go to the next line or the end of the

line the following code could be used:

(set loc buffer (iferror (search

(length

search

rsearch

searchr

may occur>

an error occurs>)

buffer if on the last

buffer 13)

buffer)))

buffer text

return (A number which is the position in the buffer of

the end of first occurrence of the string after

the current location)

buffer text

return (A number which is the position in the buffer of

the start of the first occurrence of the string

before the current location)

buffer text

return (A number which is the distance forward from the

current location in the buffer at which the first

88

occurrence of the string after the current

location ends)

rsearchr buffer text

return (A number which is the distance backward from the

current location in the buffer at which the first

occurrence of the string before the current

location)

The next set of functions search for a list of characters

specified by op2. They all return the position just before the

character found. The last two characters of the instruction name

specify the direction of search and the point relative to which

the resulting position is returned. The first character is "f"

for forward or "b" for backward from the current position. The

second characters is "a" if the absolute position is returned and

"r" if the number of characters from the current position is

returned. The suffix "_br" will always return a negative number.

The "find first in" sequence is equivalant to the PL/1 search

builtin; it finds the first character in the buffer which is

specified in op2. The "findfirstnotin" is analogous to the

PL/1 verify builtin; it finds the first character in the buffer

which is not specified by op2.

In all of these, op2 can be a bit array; if the element of the

89

array addressed by the ascii value of a character is a one then

that character is specified by the bit array. Op2 can also be a

text object in which case all the characters in the text string

are specified. The bit array form is more efficient and should

be used for repeated calls to these routines. A bit array can be

easily fill in from a text string by the fill char array

instruction. See below for its usage.

findfirst in fa

findfirst in fr

findfirst in ba

findfirst in br

find first not-in fa

findfirstnot-in fr

findfirstnot in ba

find first not in br

buffer

buffer

buffer

buffer

buffer

buffer

buffer

buffer

charmap

charmap

charmap

charmap

char map

charmap

charmap

charmap

Buffer and string operators:

makebuffer

return (new empty buffer)

make string text

return (string whose value is the same as opi)

This is essentially a copying operation.

90

make-window buffer

return (window on to the buffer opi)

The region specified by the window is specified by the

define-window instruction; see below.

define window window number number

return (opi)

The low bound of the window is set to op2 in the

buffer addressed by the window and the high bound is set

to op3. If either op2 or op3 is illegal the error flag

is set.

makegnirt

return (new empty gnirt)

insert text insertable

return (op2)

This inserts opi into op2 at the current position if op2

is a buffer and at the end if op2 is a gnirt. If any

of these insert operations are attempted on a read-only

buffer the error "bash ROB" (read only buffer) will be

signaled

insert-region regional number number insertable

return (op4)

91

This inserts the text of opi from position op2 to

position op3 into op4.

insert ioa long-text number insertable

return (op3)

calls a MagicSix system routine, called ioa$ioars nnl,

[M6] with opi as the control string and op2 as an

argument and inserts the string returned from the

formatting routine into op3. This system subroutine is

primarily used to convert numbers to character strings

but it also provides very good control over the exact

nature of the conversion.

nth longtext number

return (the character object at the location op2 in opi)

The position is number of a character is defined as the

number of characters between the beginning of the text

string and the addressed character. Thus (nth "foo" 0)

returns the ascii value of "f". If op2 is negative nth

returns the first character and sets the error flag. If

op2 is greater the the length of opi then the error flag

is set and nth returns a -1.

nthr buffer number

return (character in opi op2 characters from the current

position of opi)

92

This is equivalant to:

(defun nthr (buffer offset)

(nth buffer (add (location buffer) offset)))

location buffer

return (current position location of opi)

buffer number

return (op2)

This makes the current location of opi be op2. If the

position goes negative it is set to zero and the error

flag is set. If the new position is greater that the

length of opi it is set to the length and the error flag

is set.

add-to loc buffer number

return (op2 + (location opi))

This increments the current position of opi.

error actions as in set loc take place.

The same

modifiedp buffer

return (if <buffer modified since last redisplayed>

then t else nil)

This instruction examines the marks which point to the

first and last points modified in the buffer if the first

set loc

93

point is less than or equal to the last point then it

returns t else it returns nil. These marks are used by

the redisplay routine to identify which parts of th.e

buffer need to be refreshed on the screen. They are

reset to the unmodified position after every redisplay

operation on a screen containing the buffer.

gethpos text number

return (the horizontal position of character at position

op2 in opi)

It does this by searching backwards through opi from

position op2 for a carriage return or the beginning of

the text, then calculating the horizontal position

forward from there. Very long lines will not wrap around

but return hpos's as though linel is infinite.

length text

return (number of 'characters in opi)

delete insertable number

return (opi)

deletes op2 characters from op2. If opi is a gnirt the

last abs(op2) characters are deleted. If it is a buffer

a positive number deletes characters after the current

location and a negative number before. (delete gnirt

(length gnirt)) empties a gnirt. If op2 is larger than

94

the amount of text that can be deleted in the specified

direction then the error flag is set and as much is

deleted as possible. If opi is a read_onlybuffer then

this instruction will signal the error "bash ROB".

make-readonly buffer

return (opi)

This sets a bit in the buffer which causes the error

"bash ROB" to be signaled whenever an attempt is made to

modify it.

Mark operators:

make-mark

return (new mark attached to no particular buffer)

set-mark mark buffer number

return (opi)

The mark is added to the markchain for the buffer op2

and the mark is set to position op3 in the buffer. If

the position is illegal for that buffer the error flag is

set and the mark is set to the end of the buffer.

unset mark mark buffer

return (opi)

The mark is removed from the mark-chain for the buffer

95

op2. If the mark was not on the mark-chain the error

"unk mark" is signaled.

eval mark mark buffer

return (location in op2 specified by opi)

Array operators:

make-array number number

return (new array of the specified type and size)

An array is created with op1 bits per entry and op2

entrys. A request for an array with other than 1 or 32

bits per entry will cause the error "array sz" to be

signaled. All elements of the array are zeroed.

ar array number

return (opl[op2])

as anything array number

return (opi)

The op3-th element of op2 is set to opi.

fill vbl array array number

return (opi)

The instruction really takes an arbitrary number of

arguments and therefore causes the compiler no end of

96

trouble. op2 is the number of additional arguments,

which must be variables or strings, which are stored into

consecutive elements of opi. The variables are stored

into the array not the value cells of the variables.

Each operation is equivalant to:

(as (quote vbl-n) opi n)

fill char array array text

return (opi)

If the array is not a bit array then the error "arry^bit"

will be signaled and if the array is not 128 bits long

then "^chrarry" will be signaled. Each character in op2

is used as an index into opi and that element is set to

one.

I/O operators:

tyi

return (ascii value of the next character typed on the

terminal)

tyis

return (the number of unread characters in the input

buffer)

charactertyo

97

return (opi)

This prints opi on the terminal at the current position.

In general, it should not be used, use print instead.

print text number number number

return (if <more was flushed>

then <ascii value of flushing character>

else 0)

This prints opi at the (op2,op3) position on the screen.

If op4 is odd more processing will be performed. The

redisplay subroutine is informed of the damage produced

by the print instruction to the screen and next time the

display instruction is called the text over written by

print will be restored. Note that tyo does not inform the

redisplay code what areas of the screen it is

overwriting.

print-clearing text number number number

Same as print except that a clear to end of line is done

before every line is output. This instruction should gc

away. To replace it the next bit of op4 should specify

whether clearing is to be done.

read file buffer text

return (system error code for last file system operation

performed)

98

Reads the file specified by op2 into the buffer. All

marks associated with the buffer are zeroed. If the

operation fails the returned value will be negative and

the error flag will be set.

writefile text text

return (last system error code recieved)

Writes the text specified by opi into the file named by

op2. If the returned value is negative the error flag is

set.

load text

return (last system error code recieved)

Loads all of the functions in the file specified by opi

into the current Sine environment.

Miscellaneous MagicSix operators:

commandargs number

return (opl-th argument to che Sine Machine Interpreter)

This allows the program which calls the interpreter to

pass infomation into the Sine program.

cline (NR) longtext

Calls the command processor on opi.

99

call af text

return (a gnirt containing the text returned by opi

called as an active function)

getdocumentation variable

return (the string specifying documentation for this

function)

When a Sine module is compiled it is possible to specify

a string describing the documentation for the module.

Usually this is the filename of a file containing the

documentation.

Display operators:

make screen buffer

return (new screen good for displaying opl)

force display screen number

return (this returns garbage and shouldn't return

anything)

If op2 is positive tRehop2 is the line on the screen

where "point" should be positioned. If it is negative

the screen will be recentered around "point". In either

case the specified screen will be refreshed.

screen numberdisplay screen (NR) number

100

This instruction causes opi to be displayed at physical

line op2 and extending op3 lines.

display (NR)

Redisplays the console display, this requires it to step

through each line in the console display and determine

what screens are currently visible. It will reset the

default display mode of each visible screen and the

modified marks of each buffer.

101

Appendix 2 - Global Variables Used in TVmacs

C-X dispatch

The dispatch array for the controlX commands (Control-X

prefix).

Mdispatch

The dispatch array for the Meta commands. (altmode

prefix)

abortflag

This value is used to pass information from various

commands to the reader loop. It has several possible

values.

0 - Usual thing: read another character

1 - The user wants to abort: unwind

2 - Just return from the reader

3 - Return from the reader to change modes

There are several occurrences which could cause the

reader to do something besides reading more characters.

If anything unusual happens and a command wants to abort,

the command signals "abort" and the reader catches this

with an errset and goes on reading commands. If the

abort function is invoked, it means that the user has

gotten to a place he doesn't want to be, so return. This

command is normally bound to ^G and is used primarily for

102

getting out of the readline routine for inputting a

line. This function sets "abortflag" to 1 and returns.

The reader notices this and signals "abort" so that the

reader calling it will notice an error. The reader must

signal "abort" because if the "abort" function tried to

do it the first reader would handle it. The reader must

signal "abort" outside its errset so that control will

unwind to the previous level. The "toplevel" function

has a handler for "abort" and just calls the reader again

if it is ever signaled. This popping-up scheme is

complicated but really works. The value 2 is used to

exit the reader in the normal way; it is used to quit

the editor. The 3 indicates that there has been some

change in the modes for the current buffer and that

"invoke-editor" should call the reader again with the new

modes in effect.

alphanumerics

A bit array with bits set for all letters and numbers

for use with the find first ... instructions.

argument

The value of the command argument. It is set by the

functions "getmultiplier" and "get-number" which are

called by ^U.

103

argumentp

T or NIL depending on whether an argument was given to

the command. It is used to distinguish between the user

giving an argument of 1 and the user not giving an

argument which sets "argument" to 1 by default.

buffer list

The list containing all buffers known about by TVmacs.

See also current tvbuf.

char

The character last typed and read by the reader. It is

primarily used by "self-insert" so that it can insert the

correct character.

clear-modified

This is set, by the functions which read files into the

buffer so that the reader will clear the modified flag

for the current buffer. It can not clear it itself

because the action of reading in the file will make the

buffer modified. It will remain modified until the

reader calls the display function.

currentbuffer

The buffer which contains the text of the current tvbuf.

The "gotobuffer" function sets it along with the

104

next several variables.

current_filename

The default filename of the current tvbuf.

currentmark

The mark associated with the current tvbuf.

current_mode

The cons containing the list of mode names and functions

for the current tvbuf.

current-modifiedp

The modified bit for the current tvbuf.

current-screen

The screen for the current tvbuf.

current tvbuf

The list containing all of the above state variables for

the tvbuf. The "buffer-list" is a list of such lists.

default cxd

The default C-Xdispatch table. See also C-X dispatch

and default d.

105

default_d

The default dispatch table which is copied into the

"dispatch" array by the "invoke-editor" function to allow

each invocation of the editor to start with the default

bindings, not the ones of the modes it was in when it was

last called. It is also the dispatch table used by the

read-line function. See also default cxd and default md .

defaultmd

The default dispatch array for the meta commands. See

also default d and Mdispatch.

default-mode

The string indicating the initial mode for any tvbuf.

dispatch

The dispatch array for all single character commands.

display mode line

The flag indicating that some item displayed in the mode

line has changed and that it should be updated.

Every time the reader calls "display" it also calls

"redomode line" which just returns if displaymodeline

is 0. If it is -1 the whole mode line is reprinted and

if it is 1 then only the message part of the mode line is

output.

106

echo buf

The buffer (not tvbuf) used to read text into by the

"readline" function. It is used as an argument to the

reader function when called from "read-line".

echomark

The mark used by "read-line" to separate the prompting

string and the text typed by the user. Both go into the

echo buf.

echo-screen

The screen used to update the echobuf on the screen. It

is defined to occupy one line at the bottom of the screen

by default.

echowindow

The window used by "read-line" to return its results. It

does not copy the typed string but returns it in place by

means of this window. Thus the value returned by

"read line" is not valid after a second call to

"read-line".

editor-name

The string typed out as the first thing in the mode line.

It is normally "TVmacs".

107

first time

This is T or NIL depending on whether this it the first

time the "startup" function has been called in this

editor environment.

functiontocall

The variable containing the function called by the

character last read by the reader. The control-U command

resets this to be the command to be repeated.

hold

This is 1 if the next call to "display" is to be

inhibited. This is used to prevent text print,.d with

"print" or "print-clearing" from being erased

immediately.

killbuffer

This is the buffer in which saved kills are stored.

kill-ring

A circular ring of ten marks pointing into kill-buffer to

separate the ten different elements of the kill stack.

lastbufferin

The name of the last buffer which was the currenttvbuf.

This is set by "goto buffer" to the name of the current

108

tvbuf before it goes to the new buffer. This is the

buffer selected by "selectbuffer" if the buffer name

read in is zero length.

library dir

The string which indicates the directory from which

auto loaded keys are loaded. It is ">sl1>sinemacs" by

default.

linel

The number of characters per line on the user's terminal.

loadedmodes

The list of mode names whose associated packages have

been loaded into the Sine environment. This is to

prevent multiple loadings of the same mode package.

message

The message printed by ".redomodeline". "Search failed"

and "n chars written" are typical messages. They are

automatically cleared after one comnmand is typed.

old savedeleteflag

This flag is copied directly from "save delete flag"

before every command to allow the state to be preserved

for one command.

109

page_overlap

This is the number of lines less than a full screen that

the "nextpage" and "previous-page" functions move. The

default is 11 lines.

pagel

The number of lines on the terminal.

read line tg

The temporary gnirt bound in the "read line" function to

"tg". See also tg.

recursive read line

The flag that indicates that the echo area is in use and

that calls to "read-line" should abort.

save delete flag

This flag is T if the last command was a command which

saved some text on the killstack. This information

allows consecutive deletions to be concatenated into a

single element on the kill-stack. See also

oldsave delete flag.

search string

The string which was last searched for. If the

"stringsearch" function prompts for a search string and

110

receives a zero length string from "read-line" it will

search for this string again.

tg

This hold a temporary gnirt which is used by many command

functions when they need a gnirt. Be sure when using

this that you were not called by anyone who is using it.

token-chars

The bit array defining all the characters that are part

of tokens. This is used by the word commands:

"forward-word", "delete-word" etc. This is different

from "alphanumerics" because it has some of the

punctuation marks that want to be considered parts of

word, such as underscore in PL/1_mode.

tokenhackers

The list of functions that are to be called when ever a

break character is selfinserted. In fact, all the

printing characters other then letters and numbers call

"self insert break" instead of "self-insert".

"selfinsertbreak" calls all the functions on this list

before inserting the character in "char". This feature

is used by "fill-mode" to check the current line to see

if it is too long whenever a break character is typed.

111

tunnel path

The list of mode functions still to be called by

"keep on tunneling" before it calls the reader.

white space

The bit array defining all the white space characters:

space, tab and carriage return.

