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INSPECTION METHODS IN PROGRAMMING
by
Charles Rich

Abstract

This thesis is motivated from two dircctions. As research in artificial intelligence, it is a step
towards a model of programming as a kind of problem solving. In particular, this thesis focusses on
the aspect of programming which involves the routine application of previous experience with similar
programs. I call this programming by inspection.

There are also practical motivations. The inadequacy of current programming technology is
universally recognized. Part of the solution to this problem will be to increase the level of automation
in programming. 1 believe (and have argued clsewhere) that the next major step in the evolution of
more automated programming will be so called programmer’s apprentice systems. These are
interactive systems which provide a mixture of automated program analysis, synthesis and
verification.

This thesis concentrates on the knowledge based components of a programmer’s apprentice.
The most important such component is a taxonony of commonly used algorithms and data
structures. To the extent that a programmer is able to construct and manipulate programs in terms of
the forms in such a taxonomy, he may relieve himself of many details, and generally raise the
conceptual level of his interaction with the system, as compared with present day programming
environments. Also, since it is practical to expend a great deal of effort pre-analyzing the entries in a
library, the difficulty of verifying the correctness of programs constructed this way is correspondingly
reduced.

A major contribution of this thesis is a new formalisin, called the plan calculus, for
representing classes of similar computations. This formalism makes it is possible to capture many
important generalizations and take multiple points of view. The use of the plan calculus is
demonstrated by the construction a library of some common techniques for manipulating symbolic
data, and its application to analysis, synthesis and verification of programs by inspection.

In this thesis, programming is viewed as a kind of engineering activity. This rescarch takes
place in the context of a larger study, involving a number of other rescarchers, of the principles
underlying engineering problem solving in general. Inspection methods for analysis and synthesis
arc a prominent part of expertise in many other engincering disciplines, such as clectrical and
mechanical engincering. The notion of program understanding developed in this thesis is also
motivated by similar notions of understanding for other types of engincered devices.

Thesis Supervisor: Gerald J. Sussman
Title: Associate Professor of Electrical Engineering
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CHAPTER ONE
INTRODUCTION

This thesis is motivated from two directions. As rescarch in artificial intelligence, it is a step
towards a model of programming as a kind of problem solving. In particular, this thesis focusses on
the aspect of programming which involves the routine application of previous experience with similar
programs. 1 call this programming by inspection.

There arc also practical motivations. The inadequacy of current programming technology is
universally recognized. Part of the solution to this problem will be to increase the level of automation
in programming. 1 belicve (and have argued clsewhere) that the next major step in the cvolution of
more automated programming will be so called programmer’s apprentice systems. These are
interactive systems which provide a mixture of automated program analysis, synthesis and
verification.

This thesis concentrates on the knowledge based components of a programmer’s apprentice.
The most important such component is a taxonomy of commonly used algorithms and data
structures. To the extent that a programmer is able to construct and manipulate programs in terms of
the forms in this taxonomy, he may relieve himself of many details, and gencrally raise the
conceptual level of his interaction with the system, as compared with present day programming
environments. Also, since it is practical to expend a great deal of effort pre-analyzing the centries in a
library, the difficulty of verifying the correctness of programs constructed this way is correspondingly
reduced. ‘ '

A major contribution of this thesis is a new formalism, called the plan calculus, for
representing classes of similar computations. This formalism makes it is possible to capture many
important gencralizations and take multiple points of view. The use of the plan calculus is
demonstrated by the construction of a library of some common techniques for manipulating symbolic
data, and its application to analysis, synthesis and verification of programs by inspection.

In this thesis, programming is viewed as a kind of cngincering a(:tivi[y.1 This rescarch takes
place in the context of a larger study, involving a number of other rescarchers, of the principles
underlying engincering problem solving in general. Inspection methods for analysis and synthesis
arc a prominent part of cxpertise in many other engincering disciplines, such as clectrical and

1. Rather than, say, as a branch of mathematics. This bias will not be defended here, but is discussed in another paper by the
author.



mechanical engincering.  The notion of program understanding developed in this thesis is also
motivated by similar notions of understanding for other types of engineered devices.

1.1 Inspection Methods

What are inspection methods and where do they come from?  Furthermore, why do
inspection methods continue to be important in many domains, engincering and otherwise, where
powerful gencral methods have been discovered to solve a wide range of problems?

Inspection methods are a distillation of the collective experience of solving many problems
in a particular domain. The cssence of this experience is a library of common problem forms. The
first step of any inspection method is to recognize a familiar form embedded in a given problem.
Associated with cach such form is cither an explicit solution or some schema from which a solution
can casily be computc:d.1

For example, analysis of the termination conditions of a program is often done by
inspection. If you recognize a loop that counts up to a fixed number greater than the initial number,
then you know from cxpericnce that it terminates. Similary, for synthesis by inspection, experienced
programmers typically have a repertoire of standard operations on scts which they know how to
implement for variety of set representations. Once a progtammer recognizes that a problem calls for
one of these operations, he can implement it immediately. Verification by inspection is similar. Most
of the difficult verification steps (typically the inductive arguments) are embedded in pre-proven
theorems, which are associated with lfmms in the library. All that remains is to combine these
theorems appropriately as lemmas in the proof of the particular program.

Clearly a key issuc in the use of inspection methods is how the common forms and solutions
in a particular domain are represented. In the domain of programming, 1 call these forms plans.
Plans are a powerful new formalism in which generalizations of both data and control structure in
programs can be expressed. The plan calculus will be discussed further in an upcoming section.

1. In sufficiently complex situations, debugging is also an unavoidable part of the use of inspection methods. The role of
debugging in problem solving has been investigated by Sussman; it is not part of the focus of this thesis.



An Engineering Vocabulary

Another important feature of inspection methods is that the common forms acquire names
which become part of the standard working vocabulary of experts in the ficld. These names for
intermediate level constructs supplement the primitive vocabulary of the domain. For example, the
primitive vocabulary of currents, voltages and resistances is formally adequate for specifying a wide
range of clectrical circuits. However, experienced engineers use a much richer vocabulary, including
such concepts as serics and parallel configuration, voltage divider, cascode connection, and so on.
Similarly, an expericnced programmer knows much more than the meaning of primitive
programming constructs, such as tests, iterations, arrays, assignments, and so on.  An experienced
programmer is also familiar with many other, more abstract, standard plans, such as lists, hash tables,
scarch loops, and splicing.

A shared intermediate level vocabulary is very important for communication between
experts. In many ficlds this vocabulary has been codified and is taught as part of the standard
education of novices. This implies that facility with the appropriate intermediate vocabulary is an
essential component of any intelligent interactive system which is going to help experts in any ficld.
Chapter Two demonstrates this point for a programmer’s apprentice system in particular.

General Mcthods

We come now to the question of why inspection methods persist in the presence of more
powerful general methods for the same problems. General methods, by their very nature, operate at
the most primitive level of vocabulary of the domain. This causes two serious problems: the
methods are incfficient; and the results are difficult for users to interpret.  Because of these
difficulties, experts tend to bypass general methods whenever they can recognize a familiar special
case which can be solved by inspection. In fact, this behavior is usually taken as one of the
distinguishing characteristics of being an expert.

For example, a very powerful general method for symbolic integration has recently been
discovered by Risch. However, it is usually used only as a last resort, even by automated systems like
Macsyma, because inspecting an integral for one of the many well-known forms is comparatively
inexpensive, and if one is recognized, the answer can be computed much more quickly than by the
Risch algorithm. Similarly, gencral circuit analysis techniques involving node and cut scts and the
inversion of matrices are seldom employed by experts because they are so laborious in comparison to
decomposing a circuit into familiar patterns.

General methods have recently been developed in the arca of programming also. For
cxample, a gencral method for program verification decomposes the problem into two steps. The
first step is the generation of verification conditions, in which specifications of the desired behavior of
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the program are combined with the axioms for cach language primitive in the program, yielding a
single formula to be proved valid. This formula is then passed to a general purpose thcorem prover.
. Unfortunately, if the program is incorrect, which is the most common case, the manner in which the
proof of the verification conditions fails provides little guidance to the user about how to correct the
original program. Verification by inspection, while it is not as powerful, does not suffer from this
problem of incomprchensibility. Errors are detected by inspection cither by recognizing a known
pattern whose pre-proven properties contradict the desired specifications, or by recognizing a
suspiciously close match to a known pattern. In cither case, the nature of the discrepancy can be
communicated to the user in terms of familiar engineering vocabulary.

The analysis of programs with side effects is another arca in which general methods have
failed to supplant inspection. Some work has been done on representing and reasoning about side
effects in programs [56], but the general methods developed thus far are clumsy and computationally
expensive.  Furthermore, there is reason to believe that there are fundamental limitations to the
effectiveness of general methods in this arca. Programs with an unconstrained use of side cffects
(such as rpLACA and RPLACD) are cxtremely difficult to understand, even for the most expert human
programmers. This has led some to advocate the extreme position of banning side effects entirely in
new languages and systems. However, there are also good arguments that side effects are crucial for
the modularity and efficiency of certain programs [58]. The resolution of this apparent conflict is the
observation that side effects are typically used only in very stylized forms, such as to splice nodes in
and out of a linked list, to update a global data base, and so on. By constructing a library of these
standard plans and their propertics, analysis of side effects by inspection can suffice for most practical
purposes.

Education

The importance of inspection methods is reflected in the way we educate novices in a field.
We first develop their intuitions by acquainting them with the standard forms. Only much later, if
ever, do we teach general methods. For example, in the ficld of medical diagnosis (where there are as
yet no reliable general methods) new doctors arc trained primarily through a sct of paradigm cases.
Similarly, clectrical engineering students are first taught how to predict the behavior of certain
standard circuits (e.g. oscillators), and how to implement certain common signal processing functions
(e.g. filters), before they arc taught general tools for analyzing and synthesizing circuits. 1In
programming also, we begin with the craft lore of standard algorithms and data structures before
introducing any general program analysis, synthesis or verification methods, such as those of Floyd
[20], Hoare [28] and others.
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1.2 Multiple Points of View

The power of inspection methods rests primarily on the ability to recognize familiar forms.
There are many different ways in which the recognition of familiar forms can be obscured. For
example, in medical diagnosis, the presence of a sccond independent disease may cause certain key
symptoms to be changed or absent. In electrical engineering, a standard circuit may not appear to be
familiar because some components are in parallel rather than in series, or vice versa. Similar
difficultics also arise in programs. For example, the placement of exit tests other than at the top or
bottom of a loop can obscure recognition of standard loop plans.

Various techniques have been developed in different ficlds to overcome such complications.
These techniques are gencerally called cquivalences, transformations, or models.  All of these can be
be thought of as ways of providing the user with different points of view on a problem. Somectimes a
different point of view is necessary in order to use inspection methods at all.  Somctimes several
different points of view cach contribute some part of the solution. For example, in the analysis and
synthesis of clectrical circuits, equivalence theorems (such as Thevenin-Norton) are a basic tool for
rearranging the topology of circuits to match standard forms. Electrical engineers also use views in
which certain features of the problem are ignored -- the so-called AC (sinusoidal steady state) and
DC (direct current) models are an example. In onc model certain components become open circuits,
while in the other they become shorts. Since the circuit in cach model is simpler than in the full
circuit view, the user is more likely to be able to use inspection. (It is also an important feature of
these particular two views that results derived in them can be simply combined to give a complete
analysis of the circuit.)

Multiple points of view arc also important in understanding programs.  Program
transformations can be used to move the position of cxit tests in loops,] and thereby increcase the
power of inspection methods which recognize loop plans. 1In the arca of data structures, it is often
necessary to view a single structure from the two different points of view, each of which captures a
different gencralization. For example, in this thesis a Lisp list can be viewed both as a recursive
structure (the tail of a list is a list) and as a labelled directed graph (where the nodes are Lisp cells
connected by the ¢pr relation and labelled by the car relation). The first view is appropriate for
understanding cons and cpr as push and pop operations. The sccond view brings to bear a
programmer’s experience with standard graph manipulations in order to understand RPLACD as the
operation of splicing out a node. A single Lisp list may be used in both these ways in a single
program.

1. These are the so-called loop "winding" transformations.



12

Another example of point of view in programming is what I call the "stcady state" model of
loops (and in general, recursions). In this view, exit tests are ignored in order to recognize the basic
iteration and recursion plans, such as counting, summing, CAR-CDR recursion, ctc. This view is similar
to the AC model in electronic circuits, in that it can be simply combined with other views to construct
a complete description. For example, the counting part of a loop can be abstracted as gencrating an
infinite sequence of numbers, which is truncated by the exit test.

The plan calculus developed in this thesis includes a mechanism, called overlays, for
representing these and other points of view. Overlays will be described further in the next section.

Overlapping Implementations

A general category of recognition difficulty arises in many cngineering domains when the
implementations of two distinct abstract functions overlap. This means that a single component at
the implementation level plays a role in two distinct forms. For example, a screw in a mechanical
device may fasten two plates together and also provide a fulcrum about which to pivot a lever. Ina
radio-frequency amplificr, an inductor may be both part of a resonant circuit in the AC model and
also part of the bias network of a transistor in the DC model. Thus "bumming” is not just a feature
of arcanc programming -- it is an cssential part of good engineering.

For example, consider the following program which, viewed abstractly, performs two
functions: it finds the maximum clement of a (non-empty) list, L; and it finds the minimum clement.

(PROG (MAX MIN L)
(SETQ L ...)
(SETQ MAX (CAR L))
(SETQ MIN (CAR L))
(MAPC ' (LAMBDA (N)
(COND ((> N MAX)(SETQ MAX N)))
(COND ((< N MIN)(SETQ MIN N))))
(CDR L))
.MAXL L
...MIN...)

The analysis of this program according to the plans in this thesis has the structure shown in
the diagram below.

[o]
/N
/N
o]
/1IN 7N
/1NN
0

o 0 O [o]

At the top level the program is logically decomposed into two functions, onc which finds the
maximum and one which finds the minimum. The standard loop plans for implementing these
functions each have three cssential components:
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(i) an initialization,
(ii) a standard list iteration (MAPC), and
(iii) a comparison on each step between the current list clement and the current
maximum or minimum.

In the program above, the standard list itcration component is shared between the
implementation of finding the maximum and finding the minimum. Thus at the third level in the
diagram above there are five rather than six components -- onc of them doing double duty. This type
of analysis is a violation of strict hicrarchical refinement, which is currently the dominant paradigm
for structuring programs [11]. I have in general found, however, that it is not possible to maintain the
strictly hicrarchical view and at the same time analyze programs in a way which makes their
similaritics explicit.

In this thesis, implementation relationships are treated as points of view. This approach has
the advantage of allowing the cfficiency represented by the program above (as compared to a strictly
hicrarchical implementation with two separate loops), while still capturing the similaritics between
this program and programs which calculate only the maximum or only the minimum.

1.3 The Plan Calculus

The purpose of this section is to introduce the plan calculus and point out some of its
important features. This formalism is an outgrowth of carlicr work by the author in collaboration
with Shrobe [47] and Waters. A more detailed description of the plan calculus is the topic of Chapter
Four. The important features discussed in this section are as follows.

* Wide Spectrum Specification

* Control and Data Abstraction

* Mutable Objects

* Programming Language Independence
* Multiple Points of View

» Additivity

* Verifiability

* Dependencies

The plan calculus is made up of two major components: plans and overlays. Basically, a
plan is the specification of a computation. Overlays represent the relationship between two different
points of view on a computation, cach of which is specificd by a plan. -
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Programming is viewed in this thesis as a process invoiving the construction and
manipulation of specifications at various levels of abstraction. In this view, there is no fundamental
distinction between specifications and programs. A program (c.g. in Lisp) is simply a specification
which is detailed enough to be carried out by some particular interpreter. This approach is related to
the current trend in computer science towards wide spectruin languages. Like wide spectrum
languages, the advantage of this approach is that various parts of a program design can be refined to
different degrees without intervening shifts of representation.

Plans

Computations, in the view of this thesis, arc made up of three types of primitives:
operations, tests, and data objects. There are three corresponding types of primitive specifications in
the plan calculus: input-output specifications, fest specifications and object type specifications.
Operations are specified by input-output specifications (preconditions and postconditions). Tests are
specified by whether they succeed or fail when a given relation holds between the inputs. The
primitive object types used in this thesis are numbers, sets and functions.

Hicrarchy is represented by composite plans. Each composite plan specifies a set of local
names for its parts (called role names) and a sct of constraints which must hold between them. There
arc two kinds of composite plans, according to the types of the parts.

Data plans specify data structures whose parts are primitive data objects or other data
structures. Data plans thus embody a kind of data abstraction. For example, List is a data plan with
two roles named Head and Tail. The Head of a list may be an object of any type, but the Tail is
constrained to be cither an instance of List or the distinguished object, Nil ("the empty list"). Data
plans are also used to represent common implementation forms. For example, a data plan called
Segment is shown in Fig. 1-1. Data objects arc indicated in plan diagrams by ovals. This plan has
three roles named

Base (a sequence),
Upper (a natural number), and
Lower (a natural number),

and the following constraints:
(i) The Upper number is less than or equal to the length of the Base sequence.
(ii) The Lower number is less than or cqual to the length of the Base sequence.

(iii) The Lower number is less than or cqual to the Upper number.

This data plan (and special cases of it) is commonly used to implement other data abstractions, such
as lists and qucues.
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Primitive data objects and data structures arc mutable. For primitive data objects, this
means that the behavior of the object can change while its identity remains the same. For example,
we can specify a set addition operation in which the identical set is both the input and output. For
data structurcs with parts, such as instances of the Segment plan, mutability means that one or more
of the parts may be replaced while the identity of the data structure remains the same. For cxample,
a common operation on Segment data structures is to increment the Upper index. The semantics of
mutability are part of the logical foundations of the plan calculus, which are discussed later in this
section.

Temporal plans specify computations whose parts are operations, tests, data structures or
other composite computations. In addition to various logical constraints between roles, such as "less
than or equal”, temporal plans also include data flow and control flow constraints. An example of the
temporal plan for computing absolute value is shown in Fig. 1-2. Operations and tests are indicated
in plan diagrams by rectangular boxes. The bottom half of test boxes are divided into cases labelled
"F" for failure and "'S" for succeed. This plan has three roles named

If (a test for less than zero),
Then (a negation operation), and
End (a join).1

Data flow constraints (solid arrows in the figure) specify correspondences between the
outputs and inputs of operations and tests. Control flow constraints (hatched arrows) specify which
parts of a computation are reached depending on which tests succeed or fail. Temporal plans thus
embody a kind of control abstraction. '

The plan calculus is to a large degree programming language independent (for a wide class
of conventional sequential programming languages). This makes it possible to build a program
understanding system which is concerned with the syntactic details of different languages only at its
most superficial interface. In order to translate back and forth between a given programming
language and the plan calculus, the primitives of the programming language are divided into two
categories:

(i) The primitive actions and tests of the language, such as CAR, CDR, CONS, NULL
and £Q in Lisp, arc represented as input-output specifications and test
specifications,

1. A join is a virtual entity which is nceded in order to specify what the output is in each case of a conditional. Joins will be
defined in Chapter Four.
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(ii) The primitive connectives, such as PROG, COND, SETQ, GO and RETURN in Lisp,
are represented as patterns of control and data flow constraints between
operations and tests.

The translation from standard program code to an cquivalent plan representation has been
implemented for reasonable subsets of Lisp [47], FFortran [60] and Cobol. The translation from
suitably restricted plans to Lisp code has also been implemented.

Overlays

Overlays arc the mechanism in the plan calculus for representing points of view in the
programming domain. An overlay is formally a triple made up of two plans and a sct of
correspondences between roles of the two plans.  Each plan represents a point of view; the
correspondences express the relationship between the points of view. The development of overlays
for program plans was motivated by Sussman’s "slices”, which he uses to represent cquivalences in
clectronic circuit analysis and synthesis.

In addition to standard plans, there also standard overlays. For example, consider the
following recursive Lisp program which copics a list.

(DEFINE COPYLIST
(LAMBDA (L)
(COND ((NULL L) NIL)
(T (CONS (CAR L)(COPYLIST (CDR L)))))))

This program is an example of a singly recursive program in which there is computation "on
the way up", i.c. in which the recursive invocation is not the last step in the program. Many standard
recursive computations, such as list accumulation by consing, can be performed cither "on the way
down" or "on the way up." For example, the following tail recursive program, which reverses a Lisp

list, performs list accumulation on the way down.

(DEFINE REVERSE
(LAMBDA (L)
(REVERSE1 L NIL))))

(DEFINE REVERSE1
(LAMBDA (L M)
(COND ((NULL L) M)
(T (REVERSE1 (CDR L)(CONS (CAR L) M))))))
Recognition of the standard Lisp list accumulation plan in these two programs is facilitated
by an overlay which expresses how, in general, to view accumulation on the way up as accumulation

the way down with an intervening order reversal. This overlay is shown in Fig. 1-3. Without going
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into details,! consider that the plan on the left represents accumulation on the way up; the plan on
the right represents accumulation on the way down. The four hooked lines between the two plans
specify correspondences between the two points of view. Unlabelled correspondences (three out of
the four in Fig. 1-3) arc cqualitics. Thus the initialization of the accumulation (the Init role) is the
same in both views. So arc the input-output specifications of the accumulation operations (the Add
role), and the final output. The most important correspondence, however, is the one labelled
"reverse” in the figure. This is the correspondence which specifies that the order in which the
clements of list L are accumulated in the copyLIST program is the reverse of the order in which they
are generated by the CAR-CDR part of that program.’

Notice that overlays are symmelric.3 This means that either side can be used as a "pattern”
(plans can be naturally thought of as patterns), which makes it possible to use the same overlays in
both analysis and synthesis. 'The fact that correspondences are equalitics (or equalities between the
values of functions) means that information can propagate between points of view in both directions.
For example, analysis by inspection of copyLIsT proceeds by first recognizing the standard list
accumulation by consing plan in the point of view represented by the right hand side of the overlay
in Fig. 1-3. The known propertics of this plan include the fact that the final output is a list whose
clements are the successive inputs to the accumulation operations, in reverse order. Propagating this
information back to the original view through the correspondences and performing the algebraic
simplification,

reverse(reverse())=1,

leads dircctly to the result that the elements of the output of copyLIST are the same as the elements of
the input list, in the same order.

As mentioned earlier, implementation is also represented using overlays. One side of the
overlay is a plan representing the abstract behavior, e.g. pushing an clement onto the front of a
queue. The other side of the overlay is an implementation plan, e.g. storing the element in an array
and adding one to an index pointer. The correspondences in such an overlay propagate information
between the abstract and concrete descriptions. Such overlays are used in both analysis and synthesis
by inspection.  In bottom-up analysis, we try to recognize known implementation plans; once an
implementation plan has been recognized, we overlay it (pun intended) with the corresponding

1. It is not necessary to understand this diagram in detail at this point. Overlays in general will be explained more fully in
Chapter IFour, and this overlay in particular is discussed at Iength in Chapter Nine. IFor now, it is adequate just to get the idea
thal there are plans on both sides and correspondences between them.

2. The Lisp interpreter’s stack is being used to cffect the reversal.

3. This is not strictly true, but only for a reason which is beyond the level of detatl of this introduction.
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abstract plan, and continue to work upwards. Conversely, in synthesis by inspection we try to
recognize abstract plans for which there are known implementation overlays.

Logical Foundations

The remaining features of plans and overlays, namely additivity, verifiability and
dependencics, are all related to the logical foundations of the plan calculus. Formally, a plan is a set
of axioms in a first order logic. (The details of the axiomatization are given in Chapter Eight.)
Although, practically speaking, plans arc not manipulated as first order axioms, the logical
foundations provide a semantics and a set of proof rules against which the practical manipulations
can be validated.

Placing plans in the paradigm of logic has scveral advantages. For example, additivity is a
direct consequence of an axiomatic formalization. Additivity means that the result of combining two
plans is always to narrow down the sct of specified computations. This is a desirable property not
shared by other formalisms, such as program schemas (other formalisms arc reviewed at the end of
this chapter). Additivity also meshes well with the principle of lecast commitment (which in this
context means that implementation plans should have the minimum nuinber of constraints necessary
to support the implemented abstract behavior.)

The logical foundations of the plan calculus are also involved in inspection mecthods for
program verification. Verification by inspection is based on recognizing plans and applying alrcady
verified overlays. Automating the verification of overlays is not part of this thesis rescarch. However,
the logical foundations developed here do establish what needs to be proven to verify an overlay. For
example, the verification of an implementation overlay entails proving that the constraints of the
abstract plan are derivable from the constraints of the implementation plan, with the correspondences
also taken as premises.

In addition to simply recording that an overlay has been verified, it is also uscful to keep a
record of which constraints of the implementation plan were used in the proof of which constraints of
the abstract plan. This information can be extracted as a by-product of the proof process [56]. Such
links are in general called dependencies. Dependencices, as part of the plan calculus, are a network of
links between specifications which trace the logical derivation of one from the other. Dependencies
thus capture a dimension of logical structure which is different from the hicrarchical decomposition
expressed by the roles of a plan.

Dependencics make it possible for a programmer’s apprentice system to cxplain how a
program works and reason about the potential effects of a modification. For example, if you want to
delete a constraint from an implementation plan, the dependences tell you exactly which constraints
of the corresponding abstract plan could become invalid.  Similarly, if you change the abstract



specifications of an already verificd overlay, the dependencics indicate which parts of the verification
need to be redone and which parts can be carried over without any extra work. The use of
dependencies in reasoning about programs, especially in program evolution and modification, has
been the focus of related work by Shrobe [56].

1.4 Guide to the Reader

The remaining chapters of this thesis can be broken up into threc parts. The first part,
consisting of Chapters Two, Three and Four, gives an overview of the main components of the thesis.
Chapter Two is a scenario which illustrates the use of inspection methods in understanding an
example program which implements a simple symbol table with hashing. Chapter Three outlines the
scope of the current plan library. Chapter Four introduces the form of diagrams which will be used
in the rest of the thesis to define plans and overlays.

Chapters Five, Six and Seven form a sccond part, which backs up the overview with more
details. Each of these chapters is an in-depth scenario of the use of inspection methods in program
analysis, synthesis or verification. The same example program as was first introduced in Chapter Two
is also used in cach of these chapters. The style of presentation in these chapters is to introduce and
explain new plans as they are needed in the example. Also, for case of referring to previously defined
plans, an index is provided at the back. 1f there are two page numbers listed for cach item, the first is
the page on which the plan or overlay diagram appears; the second is the appendix entry for that
item.

The final part of the thesis, Chapters Eight, Nine, Ten and the appendix, is the most
detailed and technical. Chapter Eight lays out the logical foundations of plans and overlays. Chapter
Nine gives the detailed formalization of loop plans and temporal abstraction, a way of viewing loops
in which composition is simpler. Chapter Ten deals with plans involving side effects. These topics
are treated in a more general way earlier in the thesis. The appendix is a reference manual for the
plan library which gives the detailed specifications for cach plan and overlay used in the thesis.
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1.5 Relation to Other Work

It is uscful to distinguish three arcas of concern of this thesis. In this section I outline some
connections and comparisons with other work in these areas. The three arcas are:

* Taxonomy - Standard programming forms and the relationships
between them.

* Formalisin - For representing programming knowledge.
* Applications - Analysis, synthesis, and verification of programs.

More generally, at the end of this section, T discuss related work on aspects of programming
other than the use of inspection methods, such as debugging and deductive methods.

Program Taxonomies

Many people in the computer scicnce and software cngincering community have been
calling for the codification of standard program forms for a long time. Two major motivations for
this are: to improve software reliability and correctness, and to improve the cducation of
programmers. For example, Dijkstra in his influential Notes on Structured Programming [11] called
for the codification of standard program forms with associated theorems about their correctness, as
follows.!

"di= D,
while non prop(d) do d: = f(d)" (6)

When a programmer considers a construction like (6) as obviously
correct, he can do so because he is familiar with the construction. 1 prefer to
regard his behavior as an unconscious appeal to a thcorem he knows, although
perhaps he has never bothered to formulate it; and once in his life he has
convinced himself of its truth, although he has probably forgotten in which way he
did it and although the way was (probably) unfit for print. But we could call our
assertions about program (6), say, ""The Lincar Scarch Theorem" and knowing
such a name it is much easicr (and more natural) to appeal to to consciously.

...it might be a uscful activity to look for a body of thcorems pertinent to
such programs.

More recently, Floyd in his 1978 ACM Turing Award I.ccture talked as follows about the
importance of teaching the standard forms of programming to new programmers, as compared with

L p. 10.
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emphasizing the primitive programming language constructs. (Floyd calls these forms paradigms and
is particularly interested in very general ones, such as "divide and conquer").1

To the teacher of programming, even more, I say: identify the paradigms
you use, as fully as you can, then teach them explicitly.  They will serve your
students when Fortran has replaced Latin and Sanskrit as the archetypal dead
language.

Many people have answered these calls, using a varicty of expressive tools and covering a
range of programming arcas. 1T group these cfforts roughly into two categories. In the first category
arc those who have tried to give wide coverage of the basic forms of cveryday programming, such as
the standard manipulations involving of sets, dirccted graphs and linear data structures (lists and
sequences).  Most prominent in this category is the work of Knuth [32]. In three monumental
volumes, Knuth uses a mixture of mathematics, example programs and expository English text to
communicate his "programmer’s craft" in fundamental algorithms (manipulations on lincar lists and
tres), seminumerical algorithms (random numbers and arithmetic), sorting and scarching. There are
also many one-volume text books which have a similar format, but arc somewhat less comprehensive.

In the second category, I put those whose have focussed on a more particular programming
domain. Not suprisingly, work in this category is also characterized by more formal representations
(which will be discussed in the next section). Domains that have been studied in some depth include
algorithms on sequences [43] [46], sorting [23], standard loop forms [44] [60], sct implementations [S1],
and the implementation of associative data structures [49].

This thesis falls partly in both categories. The contents of the current plan library is mostly
the result of generalizing the plans required for an in-depth understanding of a particular example
program -- the implementation of a symbol table using hashing, which is introduced in the scenario
in Chapter Two. This example program was chosen because it involves many different techniques
which are representative of the domain of routine symbolic manipulations (sets, lists, ctc.). 1 believe
that a library which is adcquate for this example is a good start towards complete coverage of the
domain. The small fraction of plans in the current library which are not directly motivated by the
symbol table example fall into two categories. Some of these are obviously important basic plans
which don’t happen to be used in the example, such as counting and accumulation loops. Other
plans are included to fill gaps in the taxonomic structure of the library, such as the plan for splicing
into a list (only splicing out appcars in this particular symbol table). Barstow’s work [3] is similar in
depth and breadth.

1. p. 459.



25

Other Formalisms

In this section I review other formalisms that have been used to represent standard
- programming forms, and point out similarities with the plan calculus. Note, however, that no other
formalism has all the featurces described in the preceding section.

The most obvious candidate for representing standard programming forms is partially
completed program texts with constraints on the unfilled parts. These are generally called program
schemas, and have been used by Wirth [62] to catalog programs based on recurrence relations, by
Basu and Misra to represent some typical loops for which the loop invariant is alrcady known, and by
Gerhart [21] and Misra [43] to represent and prove the properties of various other common forms.
Unfortunately, the syntax of conventional programming languages is not well suited for the kind of
generalization needed in this endeavor. For example, the idea of a search loop, expressed informally
in English, is something like the following.

A scarch loop is a loop in which a given predicate (the same one each
time) is applied to a succession of objects, until one satisfics the predicate;
the loop is then exited, making the object which satisfied the predicate
available for usc outside the loop.

In Lisp, this kind of loop can be written in innumecrable forms, many of which are
syntactically very different, such as:

(PROG (X)
LP (COND ((P X)(GO OUT)))

(SETQ X ...)

(GO LP)
OUT ...X...)
or
(...(PROG (X)
LP (COND ((P X)(RETURN X)))
(SETQ X ...)
(60 LP))...)
or

(DO ((X ...))
(P X) ...%X...))
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The problem here is that conventional programming languages arc oriented towards
specifying computations in cnough detail so that a simple local interpreter can carry them out.
Unfortunately a lot of this detail is often arbitrary and conceptually unimportant.  Gerhart [21]
combines program schemas with program transformations to help overcome this problem.

A new gencration of programming languages, descended from Simula, provide better syntax
for specifying computations at various levels of abstraction. For example, both CLU [33] and
Alphard [55] have iteration statements that capture some of the structure of the loop plans in this
thesis. Like plans, these languages also enable some of both the data and control aspects of a
computation to be be unified in a single specification.

However, there arc two more fundamental problems with using program schemas to
represent abstract programming forms, which Simula and its descendants do not solve.  First,
programs are not in general additive. This means that when you combine two program schemas, the
resulting schema is not guaranteed to satisfy the specifications of both of the original schemas. (This
is mostly due to side cffects, which arc a part of all practical programming languages.) In contrast, in
the plan calculus all constraints between the parts of a plan are explicitly stated, so that if the
constraints of two plans do not contradict, the combination is guaranteed to satisfy both original sets
of constraints.

Sccond, existing programming languages can only describe one point of view. [ speculate
that the rcason for this is that a program is still basically thought of as a sct of instructions to be
executed. In comparison, 1 think of a plan as a sct of blucprints in which various features of a
computation are specified, cach from the most appropriate point of view.

Another commonly used formalism for representing abstract programming forms is
flowchart schemas. Originally developed by lanov in 1960 [30], flowchart schemas are a network-like
connection of test and operation boxes. This formalism has the features of being programming
language independent and having logical foundations. (Manna gives an cxcellent tutorial on the
formalization and use of flowchart schemas in his book on the mathematical theory of computation
[37].) Flowchart schemas capture control flow abstraction in a very natural and intuitive way.
However, the only method they provide for expressing the flow of data between operations is
variable assignment. Unfortunately, the use of variables in this way destroys additivity the same as
for programming languages.

This problem with flowchart schemas can be fixed by combining flowchart schemas with
another network-like formalism, the data flow schemas of Dennis [12]). In data flow schemas,
operations have local port names and data flow is represented by port-to-port connections. The
synthesis of these two types of schemas is essentially the temporal plan formalism used in this thesis.
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Temporal plans, however, have the additional featurc that mutable objects are representable, which is
not the case in data flow schemas.

A currently popular formalism for specifying data abstractions is the algebraic axiom
approach [25] [34] [22]. Though data plans arc formally cquivalent to abstract data types, in practice
the approach of this thesis is somewhat different (mostly due to concern with mutable objects). In
the algebraic axiom framework, there are no mutable objects or side effects. For example, in the
standard algebraic axiomatization of stacks one defines the following three primitive functions on
stacks!

push: stack X object — stack
pop: stack — stack
top: stack — object

and the following sct of algcbraic cquations.

top(push(x,y))=y
pop(push(x,y))=x

In this thesis, however, similar behavior is formalized differently. The only primitive
functions on a data structure are its roles, which arc thought of as access functions. For example, the
fundamental singly rccursive data structure in this thesis is called List. The two primitive access
functions on lists are?
head: list — object
tail s list — list

In this framework, operations such as Push, Pop, and Top, are non-primitive concepts which
are specificd by input-output specifications roughly as follows.

(i) A Push operation take as input a list and an object; its output is a list whose
head is the input object and whose tail is the input list.
(ii) A Pop opcration takes as input a list; its output is the tail of the input list.
(iii) A Top opcration takes as input a list; its output is the head of the input list.

Side effects are specified in this framework by specifying an operation in which the same
object is both input and output, but in which parts of that object (i.e the values of primitive access
functions) arce different before and after. Recently, Guttag and Horning [26] have taken a similar

1. We do not worry about the empty stack in this example.
2. Again we do not worry aboul the empty case, since it is not relevant Lo the comparison being made in this section. The
formalization of data plans is presented more completely in Chapter Eight.



28

approach. They call the part of their system in which side effects are specified "routines” and use the
predicate transformer notation instead of preconditions and postconditions.

Other work on representing mutable data objects and side cffects includes Early [17],
Burstall [5] and Yonezawa. Of these, the V-graphs of Early arce the most similar to data plans. Early
also takes access paths as the only primitive functions, and specifics side effect operations as
transformations on the part structure of data objects.

To my knowledge, the largest existing machine-usable codification of knowledge about non-
numerical programming has been compiled by Green and Barstow [23]. They use a semantic
network representation for abstract programming forms, which does achicve programming language
independence  (Barstow’s  system  [3] synthesizes programs in  two different languages).
Implementation relationships are represented in their system as rules in which the left hand side is a
semantic network with pattern variables, and in which the right hand side is a semantic network into
which the values of those variables arc substituted. As compared to overlays, which are symmetric
between use in analysis or synthesis, these pattern-substitution rules arc biased towards usc only in
program synthesis. Multiple points of view arc also missing from this representation.

The most scrious problem with Green and Barstow’s representation, however, is that it has
no formal semantics. This means that the implementation rules are not verifiable. From the point of
view of this thesis, this is a crucial flaw, since one of the main practical attractions of the inspection
method approach is the potential for compiling a library of already verified forms, which one can
combine to construct more rcliable programs.

Another formalism some have found attractive for codifying programming knowledge is
formal grammars. For example, Ruth constructed a grammar (with global switches to control
conditional expansions) which represented the class of programs expected to be handed as exercises
in an introductory PI./1 programming class. This grammar was used in a combination of top-down,
bottom-up and heuristic parsing techniques in order to recognize correct and near-correct programs.
Miller and Goldstein also used a grammar formalism (implemented as an augmented transition
network) to represent classes of programs in a domain of graphical programming with stick figures.
The major shortcoming of these grammars is the same as with Green and Barstow’s representation,
namely the lack of verifiability.

The three projects discussed above have taken a "practical” approach to the representation
problem. They have concentrated on getting their systems to do something useful and significant
with their representations, and they have succeed in those terms. In this thesis, however, I have
developed a formalism which can be practically used and also has logical foundations, with the
additional benefits outlined carlier.
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Computer Aided Program Development Systems

The application arca to which this thesis is aimed can be generally described as computer
aided environments for program development. In particular, this thesis is part of a project aimed at
developing what we call a programmer’s apprentice system. What distinguishes a programmer’s
apprentice from cxisting systems is the level of program understanding shared between the user and
the system.

Existing program development systems provide various types of services at different levels
of understanding. The lowest level of understanding is when the system manipulates everything as
text strings. At this level, various kinds of useful bookkeeping can be provided, such as keeping track
of versions of source code, test data and documentation [1] [16].

The next level of understanding is when the system is able to parse the syntax of the user’s
programming language. At this level it is possible to provide many more uscful services, such as
structure editors [14] and cross-referencing [59]. If in addition the system can interpret the semantics
of the programming language, then further analysis and verification assistance is possible, such as
symbolic interpreters [7] [2] and verification condition generators [45]. A slight step above the
programming language understanding level are systems which support the syntax of a more abstract
design formalism [61].

[ believe that current systems are quickly approaching fundamental limitations to the
services they can provide due to fact that they understand programs only at the level of the
programming language. 1 believe the next major step, represented by the programmer’s apprentice,
is to program understanding based on a library of standard programming forms. This will make it
possible for the system to apply inspection methods to the analysis, synthesis and verification of
programs. The scenario in the next chapter claborates what a programmer’s apprentice could do.

Other Aspects Of Programming

Inspection methods are certainly not the whole story in programming. Programiners are not
always faced with totally familiar problems. Miller has studied and catalogued some very general
problem deccomposition methods which programiners can apply when faced with unfamiliar
problems. Sussman has explored the role of debugging when plans arc "alimost right”.  Finally,
Manna and Waldinger [40] have explored the applicability of deductive methods to programming.
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CHAPTER TWO
PROGRAMMER’S APPRENTICE SCENARIO

2.1 Introduction

A library of plans opens up many ncw possibilitics for what a computer aided program
development system can do to help a programmer. This chapter illustrates some of these new
possibilitics, without going into too much detail. Chapters Five, Six and Seven go into more depth
on how the behavior illustrated here can be implemented using the results of this thesis.

Many diffcrent activitics are interwoven in the programming process. These activitics can
be roughly dividing into three major arcas: analysis, synthesis and verification. Analysis activities in
general involve determining propertics of a plan which are not explicit in its definition (usually by
decomposing it into parts). Synthesis in general involves refining an abstract plan into one which is
more detailed in the appropriate sense for some target machine. Verification in general has to do
detecting errors and constructing arguments as to why a given plan works.

A program development system can aid a programmer in all three of thesc areas. For a
programmer’s apprentice system, in particular, this means the same library of plans is used for
analysis, synthesis and verification by inspection.  For example, suppose therc is a plan which
captures the idea of iteration with a "trailing” value, as illustrated by the following code.

(PROG (CURRENT PREVIOUS)
LP (SETQ CURRENT (... PREVIOUS))

(SETQ PREVIOUS CURRENT)
(60 LP))

If this plan is in the library, the system should be able to recognize its use in programs it
hasn’t scen before; it should be able to synthesize programs using this plan; and it should be able to
detect errors in the usc of this plan, such as incorrect initialization. This factorization of knowledge is
an important feature of the design of programmer’s apprentice.

The scenario in this chapter portrays a system in which inspection methods for program
analysis, synthesis and verification are fully intcgrated. At the time of this writing, an integrated
system with these capabilitics has not yet been implemented.  However, several of the major
functions portrayed in the scenario have been implemented separately in experimental form. Waters
has implemented a system which translates Lisp code to the plan calculus and performs some further
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analysis on the resulting plans. Shrobe has implemented a system which verifics plans by symbolic
evaluation.  Although a complete synthesis system has yet been implemented, Waters has
implemented the bottom-end module for this which translates suitably detailed plans to Lisp code.
Finally, an cxperimental program for automatically drawing plan diagrams from the system’s internal
representation has also been implemented.

What we will sce in this scenario is basically the top-down, stepwise refinement style of
program development. This should not be taken as an endorsement of this methodology to the
exclusion of all others. T belicve that the appropriate style of development depends greatly on the
particular programming task. A strongly top-down decvelopment, such as in this scenario, is
appropriate when the programming task is very familiar. On other occasions, a bottom-up or middle-
out methodology may be more appropriate. The rescarch in this thesis is aimed at developing the
representations and basic capabilities which are needed to support program development in any
order.

2.2 The Scenario

In this scenario, we sce an expert user intcracting with a programmer’s apprentice system to
develop the implementation of a symbol table using hashing. Lincs typed by the user arc in lower
casc; lines typed by the system are in upper case. The user communicates with the system in a simple
English-like command language. The important part of this language is not its syntax, but the shared
vocabulary of programming terms.

> let a "symbol table" be a finite set.

0K

The system initially doesn’t know anything about symbol tables per se. The user thus begins
by introducing "symbol table" as a new term (indicated by quotation marks). The term finite set is
known to the system.

> implement a symbol table.

APPLICABLE TMPLEMENTATIONS FOR: SYMBOL-TABLE (FINITE-SET)
1. LIST
2. SEQUENCE
3. LABELLED-THREAD
4. DISCRIMINATION
?)

Here the system presents a menu of ways its knows for implementing a finite set. A
completely menu-driven scenario is shown in Chapter Six. Such menus are computed dynamically
by scarching the current library for overlays between finite sets and other data structures. At present
there arc only four choices; niore implementations will be added to the library in the future. The

user declines to choose an option, asking for some documentation first.
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> define discrimination function.

A DISCRIMINATION FUNCTION IS A FUNCTION SUCH THAT
IF "B" BELONGS TO THE RANGE OF THE FUNCTION, THEN B IS A SET;
AND IF "X" BELONGS TO B, THEN THE TFUNCTION APPLIED TO X EQUALS B.

> implement a symbol table as a discrimination function,.

oK

A discrimination function is a function which partitions its domain into a disjoint sct of sets
(called buckets). Discrimination functions arc part of the system's library of standard forms. The
formal definition of discrimination function presented above is not a "canned"” text string, but is
constructed from the logical formula which defines discrimination function in the system’s library.1
The user’s first refinement step is then to implement the symbol table as a discrimination function.

The library also contains plans and overlays involving discrimination functions. The overlay
invoked by the user above says that a discrimination function can be viewed as implementing a set
which is the union of its buckets.

> show code for addition to a symbol table by side effect.

(DEFINE SYMBOL-TABLE-ADD
(LAMBDA (OLD INPUT) ;MODIFIES OLD.
(PROG (BUCKET)
(SETQ BUCKET (APPLY OLD INPUT))
(UPDATE-FUNCTION OLD
BUCKET
(BUCKET-ADD BUCKET INPUT)))))

(DEFINE BUCKET-ADD
(LAMBDA (OLD INPUT)

ee0))

(DEFINE UPDATE-FUNCTION
(LAMBDA (OLD VALUE INPUT) ;MODIFIES OLD.

o))

The system knows how to implement addition to a sct implcmented as a discrimination

function. One way of displaying this knowlcdge is for the system to generate code from its current

plan representation of the design thus far. As can be scen above, this code has gaps in it (indicated by

three dots). Thesc gaps correspond to the fact that it doesn’t yet know how the discrimination
function or the buckets arc implemented.

The arguments to the procedure SYMBOL-TABLE-ADD arc the symbol table to be modified

~(oLp) and the entry to be added tnput. At this point in the design, all the system knows is that the old

symbol table is a function, but not how that function is implemented. The discrimination function
may later in the design turn out to be implemented by a Lisp procedure, or by a data structure, or (in

1. Sce the appendix for the definition in logical form. The technology for making this kind of a straightforward translation
CXists.
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fact) a combination of the two. The code (APPLY OLD TNPUT) in the first linc of SYMBOL-TABLE-ADD is
therefore used by the system to express the general idea of applying the discrimination function to get
the appropriate bucket in which to add the given entry. Similarly, the procedurc UPDATE-FUNCTION is
a placcholder for the operation of modifying an oLp function such that all domain elements which
used to map to a given range VALUE (in this case the bucket before addition), will afterwards map to
the 1npuT (in this case the bucket after addition).

Despite the arguments made earlier as why code is not an appropriate representation for the
library of standard forms, code can still be a convenient language for communicating between the
system and the user in certain circumstances. Also code has the short term advantage of being more
familiar to the user, as compared to using the plan calculus explicitly.

Notice also that the system has annotated the code it has written with comments. We will
sce later in the scenario that the system also reads the comments on any code that the user types in.

> describe symbol-table-add.

SET ADDITION TO A DISCRIMINATION FUNCTION IS IMPLEMENTED BY THREE STEPS,
DISCRIMINATE: APPLY THE DISCRIMINATION FUNCTION
ACTION: SET ADDITION
UPDATE: MODIFY THE DISCRIMINATION FUNCTION WITH A NEW VALUE
SUCH THAT THE OUTPUT OF THE DISCRIMINATE STEP IS THE OLD SET OF THE ACTION STEP;
THE INPUT OBJECT OF THE ACTION IS THE INPUT OBJECT OF THE DISCRIMINATE STEP;
THE OUTPUT OF THE DISCRIMINATE STEP IS THE VALUE INPUT TO THE UPDATE STEP;
THE NEW SET OF THE ACTION STEP IS THE INPUT OBJECT TO THE UPDATE STEP;
AND THE DISCRIMINATION FUNCTION IS THE OLD FUNCTION INPUT TO THE UPDATE STEP.

In response to a request from the user, the system here gives a toplevel logical
decomposition of the code it has written. Again, this description is not "canned" text, but can be

gencrated from the plan representation as needed. For this sort of information, displaying the plan
diagram shown in Fig. 2-1 is probably superior.

> impliement the discrimination function as a keyed discrimination.
0K

> define keyed discrimination,

A KEYED DISCRIMINATION IS A COMPOSITION OF TWO FUNCTIONS,
ONE: A FUNCTION ("THE KEY FUNCTION")
TWO: A FUNCTION ("THE BUCKET FUNCTION")

SUCH THAT THE COMPOSITION, VIEWED AS A FUNCTION, IS A DISCRIMINATION

FUNCTION,

The design of the symbol table continues in small steps. The next step here is to decompose
the discrimination function into two functions: one which maps from objects to keys; and one that
maps from keys to buckets. The strings in quotation marks above are "canned” text which is attached
to roles of the plan to give better words than "the one function™ and "the two function™, which would

be generated automatically.,



34

( .'M‘ML( J{)edj >

A

L diseat w{\vm’\‘e,

(“P?\@

f .ouh?u\’t (ge(:\')

.o\d
(se)

W4 .l‘?/

.actio

(,Se‘t,-q(Xd

n Q\AJA\MD

\y4

< Snew ('?uv\ctiam)>

Figure 2-1. Discriminate, Action and Update Plan for Addition to Symbol Table.




35

The system knows quite a bit about functional compositions. For example, it knows that the
range of the first function must be a subset of the domain of the second function. Tt also knows that
to update a function implemented as the composition of two functions, it suffices to update the
second function. Both of these pieces of information will be used later in the scenario.

> the key function of the keyed discrimination is car.
0K

> implement the bucket function of the keyed discrimination as a hashing.
0K

> define hashing.

A HASHING IS A COMPOSITION OF TWO FUNCTIONS,
ONE: A FUNCTION ("THE HASH FUNCTION")
TWO: AN IRREDUNDANT SEQUENCE ("THE TABLE")
The final step in the refinement of the symbol table data structure is to introduce hashing,
The basic idea of hashing is to decompose a function (in this case the function from keys to buckets)
into two functions: a many-to-onc function which maps from the original domain to an initial
interval of the natural numbers; and one-to-one function which maps from the natural numbers to
the original range. Scquences arc formalized in this system as functions on initial intervals of the
natural numbers. An irredundant sequence is one in which no two terms are equal.

> show symbol-table-add.

(DEFINE SYMBOL-TABLE-ADD
(LAMBDA (TABLE INPUT) ;MODIFIES TABLE.
(PROG ( INDEX)
(SETQ INDEX (HASH (CAR INPUT)))
(ARRAYSTORE TABLE INDEX
(BUCKET-ADD (ARRAYFETCH TABLE INDEX)
INPUT)))))

(DEFINE HASH
(LAMBDA ( INPUT)

o))

(DEFINE BUCKET-ADD
(LAMBDA (OLD INPUT)

ces))

The user has asked the system to regencrate code for SyMBOL-TABLE-ADD bascd on the
additional specifications provided thus far. Notice that the system still doesn’t know how the buckets
arc implemented, so BUCKET-ADD is still just a placcholder. However, the system does now have
enough information to make some other implementation decisions. For example, since the hashing
function does not need to be modified, it has been implemented as a Lisp proccdurc.1 The only
function that nceds to be modified now is the table (a scquence). The systcm has also taken the

1. There is nothing in the current plan library of the lore concerning what makes for good hashing functions. This is really in
the domain of numerical computation and theory, which is outside of the focus of this thesis.
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initiative of implementing this sequence as a Lisp vector. Modifying a Lisp vector is achieved by
ARRAYSTORE.

If desired, the user could have been queried about each of these decisions. However, it is
probably preferable to have the system take the initiative at this low level and make it possible for the
user to retract decisions later.!

> show code for associative retrieval from a symbol table.

(DEFINE SYMBOL-TABLE-RETRIEVE
(LAMBDA (TABLE INPUT)
(BUCKET-RETRIEVE (ARRAYFETCH TABLE (HASH INPUT))
INPUT)))

(DEFINE BUCKET-RETRIEVE
(LAMBDA (BUCKET INPUT)
(PROG (OUTPUT)

2('?(.)ND (... (RETURN NIL)))

(COND ((EQ (CAR OUTPUT) INPUT)
(RETURN OUTPUT)))

e N))

Associative retrieval is a standard specification known to the system. Conceptually, it has
three inputs: a set, a key function, and a scarch key. It also two cases: if there is a member of the set
such that the key function applied to it cquals the scarch key, then the retricval succeeds and its
output is such a member; otherwise, it fails.?

As can be seen from the code above, the system also knows the standard plan for
implementing associative retricval from a set implemented as a keyed discrimination, namely : apply
the bucket function to the scarch key to obtain a bucket; and then perform associative retrieval from
the bucket using the same key function and scarch key. Notice that the respective sets (either the
whole table or the bucket) and the scarch key (ineut) are the formal parameters of
SYMBOL-TABLE-RETRIEVE and BUCKET-RETRIEVE in the code above, while the key function, CAR, is
coded in line. This coding docs not cause any loss of modularity, since the purpose of that particular
usc of CAR is preserved in the plan representation.

The gaps in BUCKET-RETRIEVE arc duc to the fact that the user has not yet specified how the
buckets arc implemented. However, the systems does know that this procedure conceptually has two
cases. Procedures in Lisp can have only one return point. The system has thus decided to use the
standard technique of a flag to encode two cases -- a return value of NIL signals the failure case.

1. A truth maintenance system can facilitate this kind of retraction. The issucs involved in incremental modification are an
important part of the programmer’s apprentice project in general, but are outside of the focus of this thesis.
2. This way of specifying associative retrieval generalizes well to multiple key retrieval.
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Minor programming techniques, such as the use of flags, can also be captured in the plan
representation.

The following frame illustrates another kind of interaction between the user and the system.
In addition to being able to read cach other’s code, the user and system can also edif each other’s
code. This frame also shows how the plan library can provide the user with a sort of "macro
expansion” facility for writing code more casily and correctly. For example, the user below invokes
the standard plan for gencrating successive clements of a Lisp list by car and Cor, truncated by NULL.
The code that is generated for this plan in this context is underlined below.

> insert code for truncated 1ist generation of bucket in bucket-retrieve.

(DEFINE BUCKET-RETRIEVE
(LAMBDA (BUCKET INPUT)
(PROG (OUTPUT)
LP (COND ((NULL BUCKET)(RETURN NIL)))
(SETQ OUTPUT (CAR BUCKET))
(COND ((EQ (CAR OUTPUT) INPUT)
(RETURN OUTPUT)))
(SETQ BUCKET (CDR BUCKET))

(60 LP)))))

The important difference between what takes place here and a conventional macro facility is
that here the insertion of new material takes place in the plan calculus, where the benefits of
additivity hold. Only afterwards is code regenerated from the augmented plan.

Notice that the user here has indirectly told the system that the buckets of the symbol table
are implemented as lists. This gives the system enough information to complete the implementation
of BUCKET-RETRIEVE by identifying the cxit test of the list gencration with the failure case of the
associative retrieval, (RETURN NIL), and by sctting ouTPUT to the successively gencrated list clements.

> show symbol-table-add.

(DEFINE SYMBOL-TABLE-ADD
(LAMBDA (TABLE INPUT) ;MODIFIES TABLE.
(PROG (INDEX)
(SETQ INDEX (HASH (CAR INPUT)))
(ARRAYSTORE TABLE INDEX
(CONS (ARRAYFETCH TABLE INDEX)
INPUT)))))

Given that buckets are implemented as lists, the system assumes the most straightforward
implementation for BUCKET-ADD which is simply cons, as shown above.
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> describe'the impiementation of a symbol table.

A SYMBOL TABLE IS IMPLEMENTED AS A DISCRIMINATION FUNCTION.

THE BUCKETS OF THE DISCRIMINATION FUNCTION ARE IMPLEMENTED AS LISTS.
THE DISCRIMINATION FUNCTION IS IMPLEMENTED AS A KEYED DISCRIMINATION.

THE KEY FUNCTION OF THE KEYED DISCRIMINATION IS CAR.
THE BUCKET FUNCTION OF THE KEYED DISCRIMINATION IS IMPLEMENTED AS A HASHING.

THE HASH FUNCTION OF THE HASHING IS IMPLEMENTED AS A LISP PROCEDURE.

THE TABLE OF THE HASHING IS IMPLEMENTED AS A LISP VECTOR.

Above we see how the programmer’s apprentice can provide an interactive documentation
facility. This can be particularly useful if more than onc programmer is working on a program, or if a
program needs to be modified a long time after it was written.

> show code for associative deletion from a symbol table by side effect.

(DEFINE SYMBOL-TABLE-DELETE
(LAMBDA (TABLE INPUT) ;MODIFIES TABLE,
(PROG ( TNDEX)
(SETQ INDEX (HASH INPUT))
(ARRAYSTORE TABLE INDEX
(BUCKET-DELETE (ARRAYFETCH TABLE INDEX))))))

(DEFINE BUCKET-DELETE
(LAMBDA (BUCKET INPUT)
(COND ((NULL BUCKET) NTL)
((EQ (CAAR BUCKET) TNPUT)
(BUCKET-DELETE (CDR BUCKET) INPUT))
(T (CONS (CAR BUCKET)
(BUCKET-DELETE (CDR BUCKET) INPUT))))))

Associative deletion is also a standard specification known to the system. Like associative
retrieval, it has three inputs: a set, a key function, and a key. Its output is the input set minus those
members for which the key function applicd to them equals the input key. The implementation of
associative deletion from a set implemented as a discrimination function is a similar three step plan to
the set addition plan introduced earlier, namely: apply the discrimination function to get a bucket,
perform the same associative deletion on the bucket to get a new bucket, and then modify the
discrimination function to incorporate the new bucket. The system has generated code for this plan

as shown above.

Notice that associative dcletion from the bucket list is implemented by the system in the
straightforward manner which copics the list. In the next frame, we will see that the user has
something more clever in mind, and therefore intervenes to provide his own "more cfficient” code
for deleting from the bucket by side effect.
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> edit bucket-delete

(define bucket-delete
(lambda (bucket input) ;modifies bucket.

(prog (p q)
(setq p bucket)

1p (cond ((eq (caar p) input)
(rplacd q p) ;splice out,
(return bucket)))
(setq q p)
(setg p (cdr p))
(go 1p))))

WARNING! THE LOOP IN BUCKET-DELETE IS ALMOST A
TRAILING GENERATION AND SEARCH,
CURRENT: P
PREVIOUS: Q
EXIT: (COND ((EQ (CAAR P) ...)))
ACTION: (CDR P)

EXCEPT THAT THE OUTPUT OF THE ACTION IS NOT EQUAL TO THE

INPUT OF THE EXIT TEST.

Here we see an example of inspection methods used for verification. The user has
attempted to code a gencration and scarch loop with a trailing value and has not gotten it quite right.1
The plan in the library for trailing gencration and scarch has the roles for the Current value, the
Previous value, the Exit test, and the generating Action on cach iteration, with roughly the following

constraints between them:

(i) The output of the Action is equal to the .nput of the Action on the next
iteration.
(i) The output of the Action is cqual to the input of the Exit test.
(iii) The Current value is equal to the Input of the Exit test.
(iv) The Current valuc is equal to the Previous value on the next iteration.
(v) The Current value and Previous value are outputs of the loop.

In a near-miss recognition, most but not all of the constraints of a plan are satisfied. In this
example, constraint (ii) is not satisfied as indicated by the system in the warning message above. The
details of how this recognition takes place are explained in Chapter Seven.

Verification by inspection yiclds a much more meaningful diagnostic than would be given
by other methods of detecting this crror. For example, running the code above with certain inputs
would result in the Lisp interpreter halting at the RPLACD with an error message such as the following.

; NIL BAD ARG - RPLACD

1. Whether or not the user should have known that this particular plan was in the library is irrclevant. The point here is to
illustrate the idea of a program understanding system that "looks over the shoulder” of the user.
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In general, correcting errors is more difficult than detecting them. For example, it is hard
for the system to know whether a ncar-miss is actually an error or just a new variation on a plan it
doesn’t know about. The programmer’s apprentice will thus in gencral rely on the user to correct
errors. The user’s response to the warning message above is shown underlined below.

> edit bucket-delete

(define bucket-delete
(lambda (bucket input) ;modifies bucket.
(prog (p q)
(setqg g bucket)
Ip (setq p (cdr a))
(cond ((eq (caar p) input)
(rplacd q p) ;splice out.
(return bucket)))
(setq q p)
(go 1p))))

WARNING! THE CODE (RPLACD Q P) IS NOT RECOGNIZED AS SPLICEOUT.
SUGGEST (RPLACD Q (CDR P)) ? yes

Unfortunately, therc is yet another error in the user’s code. The user has asserted in a
comment above that the RPLACD linc implements splicing an clement out of the list. However, the
system finds that this code does not match its library plan for splicing out. In this case, since the user
has stated his intention in a comment, the system can go as far as offering a correction, which is
accepted.

Notice that at different points in this scenario, Lisp lists have been viewed both recursively
and as dirccted graphs. The first version of BUCKET-DELETE was a standard recursion on the tail of the
list; while the version above is in the domain of graph manipulations involving successor nodes and
modifying arcs between them.

Now that BUCKET-DELETE has becn re-implemented using side effects, a more cfficient
implementation of SYMBOL-TABLE-DELETE is possible, in which the ARRAYSTORE is necessary only if the
first element of the bucket is deleted.

> show symbol-table-delete.

(DEFINE SYMBOL-TABLE-DELETE
(LAMBDA (TABLE INPUT) ;MODIFIES TABLE.
(PROG ( INDEX BUCKET)

(SETQ INDEX (HASH INPUT))

(SETQ BUCKET (ARRAYFETCH TABLE INDEX))

(COND ((EQ (CAAR BUCKET) INPUT)
(ARRAYSTORE TABLE INDEX (CDR BUCKET)))
(T (BUCKET-DELETE BUCKET))))))

To come to this implementation, the system has done some analysis of side cffects by
inspection.  Specifically, there arc plans and an overlay in the library which say that one way to
modify a function (change the associations between domain and range clements by adding a new
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range clement) is to modify an old range clement. Applied to this program, this overlay allows the
system to view the dcletion by side effect of an element from the bucket as the implementation of the
modification of the discrimination function.

Analysis by inspection is also in operation here. By recognizing the user’s BUCKET-DELETE
code as a trailing gencration and scarch plan, the system derives some important additional properties
of this procedure. In particular, it knows that this procedurce only scarchs internal nodes of the
bucket list, and that it only finds the first node which has the given key. With regard to the first
property, there is a plan in the library which combines an internal delction with a conditional test on
the first node to achieve a complete deletion. The system has used this plan to arrive at the code
above. The second property is propagated up to the specifications of SYMBOL-TABLE-DELETE, as shown
below.

> describe preconditions of symbol-table-delete.

THERE EXISTS A UNIQUE "X" SUCH THAT X BELONGS TO THE OLD SYMBOL TABLE,
AND THE CRITERION APPLIED TO X IS TRUE.

> describe preconditions of symbol-table-insert.

THE INPUT DOES NOT BELONG TO THE OLD SYMBOL TABLE.

Thus analysis by inspection has revealed some important additional restrictions which the
user either was not clearly aware of, or in any case, did not cxplicitly state. The propagation of
restrictions from the specifications of BUCKET-DELETE to SYMBOL-TABLE-DELETE and SYMBOL-TABLE-ADD
could be achieved by the use of general reasoning mechanisms. However, in keeping with the
emphasis on inspection methods in this thesis, 1 argue these arc familiar specializations of the most
general addition and deletion specifications, and are thercfore pre-compiled in the library.
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CHAPTER THREE
OVERVIEW OF PLAN LIBRARY

3.1 Introduction

This chapter gives an overview of the plan library with an emphasis on taxonomy. English
descriptions and examples programs are used to give a feeling for the extent and overall organization
of the knowledge in the library. Formal definitions for all library entries can be found in the
appendix (sce index for page numbers) written in a notation which is explained in Chapter Eight.
Chapters Five, Six and Seven, describe the use of the library in specific scenarios of analysis,
synthesis and verification by inspection.

[.ct me emphasize that the taxonomy represented in the current library is only intended to
be a beginning. The exact contents of the current library has been determined primarily by the
requirements of giving a complete account of one significant size example program, capturing all the
important generalizations,  The cxample program that was chosen for this is the symbol table
program introduced in the scenario of Chapter Two. This particular program was chosen because
contains many different forms which arc representative of the domain of common manipulations on
symbolic data. 1 felt that a library which was adequate for this example would be a good start
towards complete coverage of the domain. Furthermore, 1 felt that concentrating on understanding
one example in depth would lead to better development of the relationships between many different
levels of abstraction in the library.

 Both of thesc feelings have been borne out in fact.  Capturing all the important
generalizations in this one program has touched upon a remarkable range of basic programming
techniques.  Furthermore, to give a complete account of the symbol table program has required
filling the library with plans at a fairly abstract level, such as the idea of implementing a set as a
discrimination function, down to the level of minor programming techniques, such as the usc of flags,
and at many levels in between. T found that if onc looks deep enough, one can indeed "see the
universe in a blade of grass”.

The small fraction of plans in the current library which are not directly motivated by the
symbol table example fall into two categorics. Some of these arc obviously important basic plans
which don’t happen to be used in the example, such as counting and accumulation loops. Other
plans arc included to fill gaps in the taxonomic structure of the library, such as the plan for splicing
into a list (only splicing out appears in the symbol table program).
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While T would defend the major outlines and organization of the current library, [ do not
expect that any reader will agree on every last detail. Many common manipulations on symbolic data
arc missing at present. The current library also needs be expanded in many different directions, such
as to include more specialized graph algorithms, matrix manipulations, and so on. However, it will
hopefully be clear after reading this chapter where many of these extensions would fit into the
cxisting structure.

Methodology

My basic methodology in developing an taxonomy of programming forms has been to start
with the technical vocabulary commonly used and understood by experienced programmers, and
then to apply my own intuitions to make appropriate gencralizations and distinctions. 1 thus take the
position that if programmers have cvolved a name for something, it is probably an important concept.
This means, for example, that there are objects in the library which express the meaning of terms like

"trailing pointer”, "scarch loop™ and "splice out".

Another method T have used to discover important programming concepts is to look for
abstractions which unify the cxplanations of how many different programs work. For cxample, the
concept of a dirccted graph makes it possible to cxpress a number of standard algorithms
independently of how the nodes and cdges arc represented in a particular program. This line of
argument has also lead to including in the library a number of other familiar mathematical objects,
such as functions, rclations, sequences and sets.

The vocabulary of descriptions is not the only kind of knowledge involved in programming.
A programmer also knows many ways of implementing once specification in terms of others. The idea
of implementing a sct as a hash table, or of removing an entry from a list by splicing it out, are
examples of implementation relationships. In building up a library of programming knowledge,
there is an interplay between these implementation relationships and the vocabulary of descriptions.
One motivation for making a vocabulary distinction can be to separate two cases which allow
different implementations. For cxample, finite and infinite sets are distinguished in the library
because membership tests for finite sets may be implemented by a loop with two cxits, which is not
that case for infinite sets. (The sct of natural numbers is an examplc of an infinite set which is part of
basic programming.)

A third important kind of knowledge, which is not yet explicitly represented in the library, is
the relative cost (according to an appropriate metric) of various computations. | have taken the
approach of first studying the vocabulary of computation descriptions and implementation
relationships because, in part, I believe that much of an expert programmer’s knowledge about the
relative cost of computations is embedded in his vocabulary. In other words, given that cost
considerations are the primary motivation behind many standard programming idcas, the study of
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these ideas is a logical starting place for developing an understanding of computational cost. For
example, the idea of a hash table is motivated by the desire to speed up various kinds of retrieval
operations. This increase in speed is due the fact that any single bucket in the table is smaller than
the union of all the buckets. I hope to study the existing library further from this viewpoint in order
to make this kind of knowledge more explicit. '

Overall Organization

The current library contains approximately 50 input-output and test specifications, 50 data
plans, and 100 temporal plans. These plans and specifications are organized in two ways: in a
taxonomic hicrarchy and by an interlocking network of approximately 100 overlays. There are two
taxonomic relationships used in the library: specialization and extension. IYurthermore, a plan may
be a specialization or extension of more than one other plan, so that the taxonomic hicrarchy may be
tangled. An example of this appears later in this chapter.

A plan or specification is a specialization of another plan or specification if it has the same
roles, but additional constraints. This means that the computations or data structures specified by the
specialized plan arc a subsct of those specified by the more general plan.

A common motivation for introducing a specialization of a plan is because the properties of
the specialization are exploited in some particular implenientation.  For example, consider the data
plan, Scgment, introduced in Chapter One. This data plan has three roles: a Base sequence, an
Upper index, and a Lower index. One way of implementing a mutable stack is to use an instance of
Segment in which only the lower index is varied -- the upper index is always equal to the length of
the base sequence. T call this data plan Upper-segment; it is a specialization of Scgment. Upper-
segment has the same role names as Segment. Its constraints are the three constraints of Segment, i.e.

(i) The Upper number is Iess than or equal to the length of the Base sequence.
(ii) The Lower number is less than or cqual to the length of the Base sequence.
(i) The Lower number is less than or equal to the Upper number.

plus the following specializing constraint.
(iv) The Upper number is equal to the Length of the Base sequence.

The basic idea of extension is to add an additional role to a plan or scpcification. The
extended plan also inherits all the constraints of the old plan.

A common kind of extension is to add an additional output to an input-output specification.
For example, when Thread-find is the standard input-output specification for finding a node
satisfying a given criterion in a lincar directed graph (called a thread), assuming there is one. It has
wo input roles, named Input and Criterion, and one output role, ‘named Output. The Output is a
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node of the Input thread which satisfics the Criterion predicate. When Thread-find operations are
used in conjunction with other plans, such as splicing, it is convenient to output not only the node
found, but also the previous node in the thread. [ call this extension Internal-thread-find. Internal-
thread-find has the same input roles as Thread-find and two output roles, Output and Previous, with
the additional constraint that the successor of the Previous node in the Input thread is the Output
node.

Object Types

Part of the hicrarchy of object types is shown in Fig. 3-1. The names in this figurc arc the
names cither of primitive object types or data plans. Similar figures later in this chapter will also
include the names of input-output and test specifications, and temporal plans. Plain solid vertical
lines between names in these figures denote specialization or cextension relationships, with the
specialized or extended plan always below. Arrows in these figures represent overlays between plans.
Most overlays are many-to-once mappings from instances of one plan to another. The arrowhead for
such ovelays points from the domain to the range. Overlays that are one-to-onc arc indicated by
double-headed arrows. Dotted lines indicate "use” relations. For example, the definition of labelled
directed graph data plan makes use of the definition of the directed graph (Digraph) data plan.

Referring to Fig. 3-1, note that the root node in the data object hicrarchy is called Object.
Below Object are the primitive types in the current library are Integer, Function, Binfunction
(functions of two arguments), and Set. By "primitive” [ mean here that systems which usc the plan
library are expected to have specific procedures for reasoning about these objects, and that this
knowledge is not explicitly represented in the library itself.

The notion of Integer used here arc a standard cxtension of the finite integers with a
maximum clement, Infinity, and a mimumum clement, Minus-infinity. - Integer has subsets Natural
and Cardinal. Instances of Natural arc all the integers greater than or equal to 1, and not including
Infinity. Instances of Cardinal arc all the integers greater than or equal to zero, including Infinity.

Subsequent main scctions of this chapter give overviews of parts of the library under the
other main nodcs in this hicrarchy. There is a section about plans involving functions, one about
plans involving sets, one about directed graphs, and one about recursive structures. However, these
sections will not be able to mention every last plan in the library, since that would make the figures
an unreadable clutter. For example, some plans involving minor programming techniques, such as
the use of flags, various ways of implementing predicate tests are described as they arisc in the
scenarios later in the thesis, and in the appendix.
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Notice the overlays in the middle Fig. 3-1 between Sequence, List, Thread, and Labelled-
thread. These overlays will be explained in more detail in subscquent sections. For now it is
important just to point out this example of how multiple of points of view are catalogued in the
library. Each of these data plans (Scquence is a subsct of the primitive object type Function) captures
an alternative point of view on what could be called linear structures.

3.2 Functions

Fig. 3-2 shows parts of the plan library which involve functions. At the top left are three
basic input-output specifications which have functions as inputs or outputs. @Function is the
specification for applying a function to an argument to get a value.!

Another common operation performed on functions is to change the value associated with a
given argument. The input-output specification for this operation is called Newarg. Newarg has
three inputs: the old function, the arg, and the new value. The output is a new function such that the
argument maps onto the new value and the values of all other arguments remain unchanged.

A less commonly used specification is Newvalue.  Newvalue also has three inputs: the old
function, the old value, and the new value. The output is a new function such that all the arguments
that used to map onto the old value now map onto the new value and the values of other arguments
remain unchanged. Newvalue will be used in this thesis as part of the explanation of how hash tables
work.

Notice that these specifications make no commitment as to whether the old function is
copied or modified to get the new function. The copying and side effect versions will be treated as
specializations. It is advantageous to work with these more abstract specifications as much as
possible, since they unify the logical structure of a larger number of programs. The input-output
specification, Old+new, of which Newarg and Newvalue are specializations, is a very general form
which makes it possible to state this idea in general. These same remarks apply to all other input-
output spccifications in this chapter which arc shown as specializations or extensions of Old+new.
Plans involving side effects are discussed further in Chapter Ten.

At the middle left of Fig. 3-2 are sume plans having to do with implementing a function as
the composition of two functions, i.c. by the data plan Composed-Functions.

1. The character "@" is intended to be read as "apply”.
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Composed-@functions is the temporal plan for applying the second function of a
composition to the output of applying the first function to the given argument, which is the
implementation of @Function for a function implemented as a composition.

The plan Newvalue-composed, and the overlay betwween it and Newvalue express the fact
that a Newvalue operation on a function implemented by a composition can be implemented by a
Newvalue operation on the sccond function only. This plan arises in the symbol table example where
the hash table is viewed as the composition of two functions: a numcrical hash function which
doesn’t change, and an array that is modified to insert new entries.

Notice that the data plan Hashing is a specialization of Composed-Functions. As we have

- seen in the scenario, the first function in this case is referred to as the hash function, and the second (a
sequence) is referred to as the table. A discrimination function can be implemented as a hash table,
in which case the table is a sequence of sets, called the buckets. The significance of this

- implementation is that changes (c.g. Newvalue operations) to a discrimination decomposed this way
may be achieved by changing only the table, as specified by the Newvalue-composed plan discussed
above. Discrimination functions will be discussed further in the next section on sets.

Sequences

Sequences in this thesis are viewed formally as a subset of functions on the natural numbers
which arc defined on some initial interval (up to the Length of the sequence) and undefined
elsewhere. A common specialization is Irredundant-sequence, i.e. sequences in which no two terms
are cqual.

A number of common operations on lincar structures are most naturally specified in terms
of sequences. Fig. 3-2 shows several such input-output specifications. The first two specifications,
Term and Newterm, are simply specializations of @Function and Newarg to the casc when the
functions involved are sequences.

The next two specifications have to do with truncating sequences according to some
criterion predicate. In both cascs a precondition is that there exist some term of the input sequence
which satisfics the criterion. The output sequence in both cases is a finite initial subsequence of the
input sequence. In the case of Truncate-inclusive, all but the last term of the output scquence fail the
criterion; the last term passcs. In the case of Truncate, all terms of the output sequence fail the
criterion and the length of the output sequence is one less than the index of the first term in the input
sequence that passes the criterion.

A closely related input-output specification is Earliest. Again the inputs are a sequence and
a criterion, and a precondition is that there exist some term of the input sequence which satisfies the
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criterion. The output is the carliest term of the sequence which passes the criterion, i.e. all terms with
indices lower than the index of the output fail the criterion.

The final input-output specification on sequences in Fig. 3-2 is Map. Here the input and
output are sequences of the same length. An additional input (Op) is a function such that each term
of the output is the result of applying that function to the corresponding term of the input.

Aggregations

This section introduces a bit of clementary algebra to capture the similarity in structure
between programs which compute sums, products, sct unions and intersections, maximums and
miminums. What all of these have in common is that they involve functions of two arguments which
are commutative, associative and have identity elements. 1 call such functions aggregalive.]

The input-output specification which is the generalization of all these operations is called
Aggregate.  Aggregate takes as input a (non-empty finite) sct of objects and an instance of
Aggregative-hinfunction. The output of Aggregate is the result of composing the application of the
given binary function to the members of the input set. The algebraic properties of aggregative
functions guarantee that the order of this composition doesn’t matter.

Fig. 3-2 also names six common spccializations of Aggregate for particular common
aggregative functions: Sum (for Plus), Product (for Times), Aggregate-union (for Union),
Aggregate-intersection (for Intersection), Max (for Greater), and Min (for Lesser).

Relations

Note in Fig. 3-2 note that relations are treated as boolean valued functions. In particular,
unary relations, Predicate, are a subset of functions of one argument, and binary relations, Binrel are
a subsct of functions of two arguments. Correspondingly, @Predicate is the spccialization of
@Function to predicates, and @Binrel is the specialization to binary relations.

Finally in Fig.3-2 note the overlay between Partial-order, a specialization of Binrel, and
Aggregative-binfunction. This overlay allows the following code

1. Ifin addition there is an inverse function, then we have the structure of an Abclian group. Of the six functions mentioned
above, Plus, Times, and Union have this structure.

2. Which is why the input is a set rather than a list or sequence. Also there is some subtlety being suppresed here concerning
whether the input should be a sct or a multisct. In the case of union, intersection, maximum and minimum, the occurence of
duplicates doesn't matter, and therefore the set abstraction is definitely appropriate. Sum and product, however, do not have
this property. Nevertheless, I argue that, conceptually, the input to a summation operation is a set of objects in the sense that
even though viewed as integers they may have the same behavior, they represent conceptually distinct quantities and are
therefore not identical. See Chapter Iight for more on the notion of behavior versus identity.
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(chD ((> N MAX)(SETQ MAX N)))

to be analyzed as an application of the Lesser function (and similarly, when the test is "<", an
application of Greater), which then facilitates analyzing a loop with this code in the body as
implementing a Max or Min operation.

3.3 Sets

Fig. 3-3 shows part of the plan library which involves scts. At the left of the figure we first
have some common input-output and test specifications with sets. Member? tests whether a given
object is a member of a given set. Any is a more complicated test: given a sct and a predicate as
inputs, if there exists a member of the set which satisfies the predicate, it succeeds and returns such a
member as its output; otherwisc it fails. Sct-find is a related input-output specification: it has the
precondition that there that there exists a member of the input set which satisfies the input predicate,
and simply returns such a member as its output.

The next two input-output specifications cach have a set as input and a set as output. Each
is a specification used to abstract programs like (MAPCAR 'SQRT L), where the input list, t, is viewed
as a set and SQRT is a function applied to cach clement of the set to get an output set. Restrict takes as
input a set and a predicate and returns the subsct which satisfies the predicate. As in the casc of
functions, no commitment is made in these specifications as to whether the old sct is copied or
modified to get the new set.

~Finally, Set-add and Set-remove specify addition and removal of a given input object to or
from a set. The general specification Old+input+new-set, of which both Set-add and Sct-remove are
specializations, makes it possible to capture what the implementations of these specifications have in
common for sets implemented as discrimination functions, (which will be discussed later in this
section).

_ The implementation of scts is a very rich arca of programming technique [52]. It is not the
goal of this thesis to be exhaustive of all of the possibilitics, but rather to show by example how to go
about formalizing such implementations using the plan calculus. In addition to the standard simple
implementations of sets as sequences and lists, this scction presents two examples of non-trivial set
implementations, which arc involved in understanding the the symbol table program.

The overlay for viewing a list as the implementation of a set is recursively defined: an
object is a member of the implemented iff it is the head of the list or it is a member of the set
implemented by the tail of the list. The empty sct is usually implemented by Nil. There are also
overlays in the library for viewing Push and Pop operations as Sct-add and Sct-remove operations.
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The implementation of other set operations is more naturally expressed taking the point of view of
the list as a directed graph, which will be discussed in the next section.

A sequence can be viewed as the implementation of the set of terms of the sequence.

Discrimination

One basic idea underlying many sct implementations is to introduce a function (called a
Discrimination), whose range is a sct of scts (called buckets). Such a function can be viewed as
implementing a sct wherein a given object is a member iff it is a member of the bucket obtained by
applying the discrimination function to that object. 'This is the basic "divide and conquer” strategy
underlying both hash tables and discrimination nets.

Testing for membership in a set implemented as a discrimination is implemented by the two
step plan Discriminate+member?, as shown in Fig. 3-3. "The first step is to apply the discrimination
function to the given object to determine which bucket to look in. The second step is an instance of
Member?, with the set input being the bucket fetched by the first step. Since any single bucket in a
discrimination is smaller than the overall implemented set, (except in the case of a degencrate
discrimination function which maps all objects to a single bucket), this implementation leads to a
increase in speed.

Both Sct-add and Set-remove for for input and output scts implemented as discriminations,
arc implemented by specializations of the same three step plan: first, apply the discrimination
function to the input object to obtain a bucket; sccond, perform the appropriate operation on that
bucket to get a new bucket; and finally, update the discrimination function so that all domain objects
which used to map onto the old bucket now map onto the new bucket (i.c. a Newvalue operation).
These three steps are expressed by the Discriminate+action+update plan.

Associative Retrieval

Associative retrieval adds to basic set operations the concept of a key. The function which
associates members of a set with keys is called the key function. Given a sct, such as the entries in a
symbol table, we are often more interested in finding a member with a given key, than just testing for
membership. The most basic specification for associative retrieval is called Retrieve (sce bottom of
Fig. 3-3). Given a sct, a key function and an input key, Retricve has two cases: if there exists a
member of the set with the given key, then it succeeds, and its output is such a member; otherwise it
fails. The other main associative retrieval specification, Expunge, removes all members of an input
set which have a given key. Expunge-one is a common specialization of Expunge which often allows
a simpler implementation. Expunge-one has the additional precondition that there exists cxactly one
member of the input sct with the given key.
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Keyed Discrimination

To speed up associative retricval for a given key function, a discrimination function can be
used which is itself the composition of two functions. This is the data plan Keyed-discrimination (see
middle of figure). The first function is called the key function. The second function, called the
bucket function, maps from the sct of keys to the buckets. In typical usage, the bucket function may
itself be decomposed further into a Hashing (or another keyed discrimination, as will be discussed
shortly).

The implementation of Retrieve from a keyed discrimination has the same two step
structure as the implementation of Member? for a discrimination: first apply a function to obtain a
bucket; then perform the appropriate operation on the bucket. In the case of a keyed discrimination,
however, the appropriate bucket is obtained by applying the bucket function (which is the second
half of the composed functions which implement the discrimination) to a given key, instead of
applying the full discrimination function to an object which might be a member of the sct. This plan
is called Keyed-discriminate+retrieve and is used in the analysis of SYMBOL-TABLE-RETRIEVE.

For Set-add and Set-remove, the fact that a discrimination is further implemented as a
keyed discrimination makes no difference. For example, SYMBOL-TABLE-ADD is analyzed in terms of
the Discriminate+action+update plan described carlier.

Associative deletion (Expunge) from a keyed discrimination is implemented by a three step
temporal plan, Keyed-discriminate+expunge+update, which is an cxtension of the Discriminate+
action+update plan described carlier (sce figure). Keyed-discriminate+expunge+update has the
following three steps. (This is the plan used to understand SYMBOL-TABLE-DELETE.)

(i) First, the appropriate bucket is obtained by applying the bucket function of
the keyed discrimination to the given key.

(ii) Then, just as in Discriminate+action+update, the action on the whole set
reduces to a corresponding action on the bucket. The Action step here is an
instance of Expunge.

(iii) The final Update step is similarly a Newvalue operation on the
discrimination function so that all domain objects which used to map the
old bucket, map to the new bucket. Furthermore, in the case of a keyed
discrimination, only the bucket function neceds to be updated; the key
function stays unchanged.

The idea of keyed discrimination can be generalized to multiple key data bases in two ways.
One approach is to have separate discrimination functions for cach key function which map into a
shared sct of buckets. Associative retrieval on a pattern of keys is then implemented by intersecting
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the appropriate buckets. Alternatively, the discrimination functions for different keys can be
composed, so that cach function maps to a bucket which is itsclf a sct implemented as a
discrimination on the next key. This is the basic idea underlying discrimination nets.

3.4 Directed Graphs

Directed graphs are one of the most common programming data structures. A Digraph in
this thesis is a set of nodes and an cdge relation. For example, a Lisp list may be thought of as a
directed graph whercein the nodes are Lisp cells, the edge relation is Lisp-cdr, and Lisp-car is a
function which attaches a label to cach node. The nodes of a standard Lisp binary tree structure may
also be viewed as a directed graph in which the edge relation is the union of the Lisp-car and Lisp-cdr
relations between the nodes. This view is particularly appropriate for programs which splice objects
in and out of lists or trees.

Barstow has recently developed a sct of rules for generating many standard programming
algorithms for operating on directed graphs in the general case. Some time in the futurc his rules
should be incorporated into the present library. This section concentrates on the special case of
acyclic graphs with a single root, i.c. trees, and furthermore on the lincar case of trees, which are here
called threads.

Fig. 3-4 shows some standard specializations of Digraph. Tree is a directed graph in which
there is a root and no cycles.1 A Bintree is a a tree in which each node is either a terminal or it has
exactly two successors. A Thread is a specialization of Tree in which the successor of each node is
unique. This also means that the predecessor of each node in a thread (if it exists) and the terminal
node are unique.

The vocabulary of partial orders is often applied to trees and threads. For example, it is
common to think of a nodes in a tree or threcad being "before™ other nodes. This viewpoint is
formalized by an overlay from 'I'ree to Partial-order indicated in Fig. 3-4. A tree is viewed as a partial
order in which two nodes are less than or cqual iff they are succcssm'* (the transitive closure of the
successor relation) in the tree or are the same node. The root of the tree in this view becomes the
minimum clement of the partial order. Furthermore, if the tree is a thread, then the partial order is
total.

1. Notice that this definition of tree does not constrain a node to have a unique precedecessor, i.c. there can be sharing of .
substructure in the tree. In later versions of the library it will be necessary to distinguish between acyclic rooted directed
graphs in which nodes do and do not have unique predecessors.
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Fig. 3-4 also shows an overlay between Irredundant-Sequence and Sequence.  An
irredundant sequence can be viewed as a thread in which the first term of the sequence corresponds
to the root of the thread and any two consccutively numbered terms in the sequence are successors in
the thread. Notice also that this overlay is one-to-one, which means that for cach instance of Thread
there is a unique corresponding instance of Irredundant-Sequence, and vice versa. This gives the
user complete flexibility to use both the standard vocabulary of sequences (such as length and the
idea of the ath clement) and of directed graphs (such as the idea of successors) in specifying
propertics and relationships between objects.

Generators

One of the most common ways of implementing dirccted graphs in programming is to
specify a single node (called the "sced”) and a binary relation such that the nodes of the desired
graph arc the transitive closure of the given node under the given relation. This implementation is
captured by the data plan Generator.

Iterator is the specialization of Generator which generates threads. This constrains the
binary relation of an iterator to be many-to-one and have has no cycles within the transitive closure of
the sced. This data plan is involved in the analysis of the part of loops which gencrate, such counting
or coring down a list. The effect of the generating part of loops is also abstracted further in terms of
the input-output specification Iterate, which takes an iterator as input and outputs the sequence of
generated nodes. Toop plans and temporal abstraction will be discussed further in the next section.

Truncated Directed Graphs

Another common way of specifying a directed graph is as part of another directed graph.
This is particularly used for specifying finite parts of infinite graphs such as intervals of the natural
numbers.

The most general plan for describing this technique is Truncated-digraph. This data plan
has two roles: the Base graph and a predicate called the Criterion. The criterion must divide the
nodes of the basc graph into three sets: a set of boundary nodes which satisfy the criterion; interior
nodes, from which boundary nodes can be reached (in a finitc number of successor steps); and
exterior nodes, which can be reached from boundary nodes. In the case when the base graph is a
thread (Truncated-thread), this means more simply that some node of the thread (cither the root or a
finite successor of the root) satisfies the criterion.  Fach such criterion thus determines a finite
subgraph of interior nodes, cither including or not including the boundary nodes.

Examples of truncated directed graphs in Lisp programming are ¢DR threads truncated by
NuLL and CAR-CDR binary trees truncated by ATOM.



-~

58

A closely related way of specifying truncated threads, is in terms of upper and lower bounds
on some total order. This is called an Interval. Thus for example, the integers from 10 to 100 are
specified as an instance of Interval in which the the total order is numerical Le, the lower bound is 10,
and the upper bound is 100.

Splicing Plans

Thinking in terms of directed graphs is particularly appropriate for understanding programs
which add or remove nodes in the middle of lists or trees. This scction introduces a number of plans
related to adding or removing internal nodes of threads in particular. These plans arc used for
example in analyzing the SYMBOL-TABLE-DELETE.

At the left of Fig. 3-4 are some basic input-output specifications on dirccted graphs which
arc involved in understanding splicing plans. Digraph-add is the basic specification for adding a node
to a directed graph. It takes an old graph and a node as inputs and gives a new graph as output. All
that can be said at this level of abstraction is that the input is a node of the new graph, and that all the
successor relationships in the graph not involving the added node remain unchanged. Digraph-add
docs not specify where in the directed graph the node is to be added. Internal-thread-add is a
specialization of Digraph-add in which the old and new graphs are threads and the new node is
added anywhere but at the root.

The basic input-output specification for removing a node from a directed graph is
Digraph-remove. Like Digraph-add, it takes an old graph and a node as input, and returns a new
graph. All the successor relationships in the directed graph not involving the removed node remain
unchanged. The successors of the removed node in the old graph become the successors of the
predecessor of the removed node in the new graph. Internal-thread-remove is the specialization of
Digraph-remove in which the old and new graphs are threads and the node to be removed is not the
root.

Programs which splice nodes in or out of a thread typically have two steps. The first step is
to find the place in the thread where the addition or removal is to occur. The output of this step is
usually a pair of successor nodes, such that cither the new node is to be added between them or the
second node is the one to be removed. If the thread is implemented as a iterator, the second step is
then to modify the generating function so as to cither splice in or splice out a node, as thc case may
be.

The input-output specifications of the first step, finding internal nodes, which is shared
between add and remove programs, are called Internal-thread-find.  Given a thread and a criterion,
Internal-thread-find returns a node of the thread (other than the root) which satisfics the critcrion,
and its predecessor. The typical implementation of this specification is to usc a search loop which
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keeps track of both the current and the immediately preceding node. This loop pattern is captured
by the recursive temporal plan Trailing-gencration+scarch plan, which will be discussed further in the
next section.

The second step of implementing removal of a node is a Newarg operation in which the
association between the predecessor of the node to be removed and the node is modified to be an
association between the predecessor and the successor of the node to be removed. So for example in
BUCKET-DELETE the node to be removed is in P and its predecessor is in Q; the generating function is
¢pr. The code for splicing out in BUCKET-DELETE is as follows.

(RPLACD Q (CDR P))

The plan for this form of code in general is called Spliceout.

The second step of implementing addition of a node requires two Newarg operations:  one
to make the new node point to its successor, and one to make what was the predecessor of that node
point instead to the new node. For example, addition of a node to a Lisp list iterator might be coded
as follows.

(RPLACD NEW CURRENT)
(RPLACD PREVIOUS NEW)

The plan for this form of code in general is called Splicein.

Finally in Fig. 3-4, Labelled-digraph is a data plan with two roles: Spine and Label. Spine is
a directed graph and Label is a function on the nodes of that graph. An important specialization is
Labelled-thread, in which the spinc is further constrained to be a thread. This plan captures the idea
of viewing a Lisp list as a cor thread with objects attached at cach node by cAR. As demonstrated in
this scction, this view is particulary natural for understanding programs which splice in and out of
lists.

1. RPLACD is modelled as Newarg, where the first argument to RPLACD is the domain clement and the second argument is
the new range clement.
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3.5 Recursive Plans

As in many other formalisms, the plan calculus uses recursive definitions to represent
unbounded structures. A recursive plan is one in which one or more roles are constrained to be
instances of the plan itself. This scction will discuss only the special case of singly recursive plans,
since the plans and overlays for doubly and mutiply recursive structures tend to be long and more
detailed than those for singly recursive structures, without introducing any fundamentally new ideas.

At the top of the hicrarchy of recursive plans in Fig. 3-5 is a minimal plan, Single-recursion,
which says nothing more than that there is a role, Tail, constrained to be either an instance of Nil or
itself a Single-recursion. Nil is a distinguished object used to terminate singly recursive structures.

The most basic singly recursive data plan, List, will be discussed first in the following
section. The most basic singly recursive temporal plans, loops, will be discussed in the scection
following that. Finally, temporal abstraction will be introduced as a point of view which links singly
recursive temporal plans with singly reucrsive data plans. Chapter Nine treats loops and temporal
abstraction in much more dctail.

Lists

List is a recursive data plan with two roles, Head «nd Tail. The head may be any object, but
the tail must be an instance of List or Nil. It is important not to think of this data plan too concretely.
The List plan is trying to capture what all recursive views of data structures have in common. List is
the point of view which is used for making (lincar) inductive arguments about data structures. Thus
the reader should not identify the data plan List too closely with, for example, the Lisp list. Think of
the data plan List as if it were called "singly recursive data structure™.

Two basic input-output specifications on lists arc shown at the top left of Fig. 3-5. Push
takes as input a list (or Nil) and an object, and returns a new list, whose tail is the input list and whose
head is the input object. Pop takes a list and returns its head and tail as its two outputs.

A common implementation of lists is using a sequence (c.g. an array) with a index to where
the current head is stored. The data plan which captures this implementation is called
Upper-segment. This plan is a specialization of Segment, which has three roles: the Base, which is a
sequence, and the Upper and Lower bounds, which must be valid indices for the base. Upper-
segment is the specialization in which the upper bound is equal o the length of the base scquence.
Push and Pop operations on this implementation are implemented by the two-step temporal plans,
Bump+update and Fetch+update, respectively. The second step in cach of these plans is either to add
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or substract one from the old lower bound to get a new lower bound.! The first step in
implementation of Push is a Newterm operation, which makes the given object the head of the new
list. The first step in the implementation of Pop is a Term operation, which fetches the current head
of the list.

Multiple Views of Linear Structures

Fig. 3-5 also indicates overlays between lists and other lincar structures, such as sequences
and threads. For example, whether a given data structure is viewed as a list or as a sequence depends
on what we want to say about it. Certain properties are casier to specify inductively, in which case the
list view is appropriate. In other cascs, explicit quantification over the indices of a sequence is more
conveninet. In the overlay between List and Sequence, the head of the list corresponds to the first
term of the sequence, and the head of the nth tail of the list corresponds to the N+ /th term of the
sequence.

In the overlay between List and Labelled-thread, the nodes of the spine of the thread are the
list and all of its tails. The edge function on the nodes of the spinc is the Tail function, and the label
function is Flead. Thus we now have two ways of viewing Lisp cells which have Lisp cells or NIL as
their cor. We can view such a Lisp cell as implementing a list in which the car of the cell is its head
and the CDR is its tail; or we can view the same Lisp cell as the seed for generating a cor thread which
is labelled by cAR.

Linear structures fnay also be viewed as (i.c. implement) sets. In particular, a list niay be
viewed as the set whose members are the head of the list unioned with the tail of the list viewed as a
set. Nil is usually viewed as the empty set. In this view, neither the order of occurence of clements of
the list nor the occurence of duplicates matters. Under this view, Push and Pop operations on a list
are one implementation of Set-add and Set-remove operations on the sct. Taking the view of lists as
labelled threads, Splicein and Spliccout also implement Sct-add and Set-remove. Both of these
points of view are needed to understand how entries and added and removed from the bucket sets in
the symbol table cxample. In SyMBOL-TABLE-ADD, cntrics arc added to the bucket a Push operation
(CONS): in BUCKET-DELETE, entrics are removed by a Spliceout plan (RPLACD).

1. Again, al this level of abstraction no commitment is made in these plans as to whether the instance of Upper-segment is
modificd by side cffect or copied. These are treated as specializations, just as the "pure” and "impurc” versions of Push and
Pop are treated as specializations.
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Loops

The taxonomy of loop structures used in ihis thesis is based on Waters’ [60] method for
analyzing loop programs. Waters’ method decomposes loops into fragments which correspond to
"easily understood sterotyped fragments of looping behavior.” The next section also introduces a
point of view under which these fragments are logically composed, rather than interleaved (as they
arc in the raw loop), which makes their net cffect casier to understand. For example, consider the
following program, which sums up the non-nil clements of a list.

(DEFINE STIGMA
(LAMBDA (L)
(PROG (S N)
(SETQ S 0)
LP (COND ((NULL L)(RETURN S)))
(COND ((SETQ N (CAR L))
(SETQ S (PLUS S N))))
(SETQ L (CDR L))
(GO LP))))
Waters distinguishes three types of fragments (he calls them plan building methods) in loops
with one exit test. The first type he calls "basic loops”. A basic loop is characterized by the fact that
all of the computation in the body of the loop can potentially affect the termination of the loop. For

cxample, the basic loop part of s16Ma is the following.

(LAMBDA (L)
(PROG (...)

LP (COND ((NULL L)...))
(SETQ L (CDR L))
(60 LP)))

In this thesis, basic loops arc further decomposed into a generation part (c.g. the part
involving cbr above) and a termination part (e.g. the NULL test above). The temporal plan which
captures the form of the generating part of loops in general is called Iterative-gencration. The plan
which captures the form of single exit tests is called Iterative-termination. Both of these are are
extensions of Single-recursion (sce Fig. 3-5). The advantage of this further decomposition is it allows
us to capturc the similarity between loops which have the same gencration part but different
terminations. For example, the gencration part of many loops is Counting (a specialization of of
Iterative-generation in which the gencrating function is Oneplus) although they may have different
terminations.

Waters’ second category of plan  building method is called "augmentations”.
Augmentations arc characterized by the fact that they consume values produced by other parts of the
loop and produce values which may be used by other augmentations. In this thesis, augimentations .
are further divided into application and accumulation. ‘The distinction between these two types of
augmentations rests on whether there is any "feedback™, i.c. whether the augmentation consumes its
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own values from previous iterations -- accumulation docs, application does not. For cxample, the
following is the application part of SIGMA.

(PROG (...N)

LP ...
.«.(SETQ N (CAR L))...

"o

(GO LP))

The plan for this form of code in general is called Tterative-application. S1GMA also has an
example of accumulation, as shown below.

(PROG (S...)
(SETQ S 0)
LP ...(RETURN S)...
...(SETQ S (PLUS S ...))...

(60 LP))

The plan for this form of code in general is called Iterative-accumulation. Three common
specializations of lterative-accumulation are shown in TFig. 3-5. Tterative-set-accumulation is the
specialization in which the accumulation operation (e.g. pLUS above) is Set-add and the initial
accumulation is the empty set. lterative-list-accumulation is the specializtion in which the
accumulation operation is Push and the initial accumulation is Nil. Iterative-aggregation is the
specialization in which the accumulation operation is the application of an aggregative function (as
discussed carlier in the section on functions) and the initial accumulation is the identity element for
that function.

Waters’ final type of plan building method is called "filtering”. It is the special case of an
augmentation whose body is a conditional. The purpose of filtering usually is to restrict the values
that will be consumed by some other augmentation. For example, in s16MA the following is the
filtering part of the loop which restricts the accumulation part to consuming only the non-nil inputs.

(PROG (...N)

LP ...
(COND (...N...))

(GO LP))
The plan for this form of code in general is called Iterative-filtering.

Finally, the Trailing-generation+search plan at the bottom of Fig. 3-5 illustrates an
important feature of the taxonomy in this thesis, namely that it is a fangled hicrarchy. Trailing-
generation+scarch combines the features of three plans. One of these plans is Iterative-generation, an
cxample of which is the following.
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(PROG (P ...)
LP (SETQ P (CDR P))
(GO LP))
The second plan is Iterative-search. Iterative-search is a specialization of Itcrative-
termination whercin the cxit test is the application of a predicate which doesn’t change as the

computation procceds, and in which the final object which satisfied the exit test is available outside
the Toop. This plan is suggested by the following code.

(PROG (P ...)

LP ...
(COND (...P...

(RETURN ...)))
(6O LP))
The final plan is Trailing, which captures the idea of keeping track of the immediately
previouls value of some loop variable, as suggested by the following code. ‘

(PROG (P Q)
LP (SETQ P ...)
(SETQ Q P)
(GO LP))

Tailing-generation+scarch inherits the roles and constraints of all three of these plans. For
example, the combination' of the three example fragments above gives the cssential loop structure of
BUCKET-DELETE, as shown below.

(PROG (P Q)
(SETQ Q BUCKET)
LP (SETQ P (CDR Q))

(COND ((EQUAL (CAAR P)) INPUT)
(RPLACD Q (CDR P)) ;SPLICE OUT,
(RETURN BUCKET))

(SETQ Q P)

(GO LP))

As mentioned carlier, this plan implements Internal-thread-find.

1. The code fragments above cannot literally be combined to get the loop of BUCKET-DELETE. The appropriate domain for
this combination is the plan calculus.
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Temporal Abstraction

The basic idea of temporal abstraction is to view all the objects which fill a given role in a
recursive temporal plan as a single data structure. In programming language terms, this often
corresponds to having an explicit representation for the sequence of values taken on by a particular
variable at a particular point in a loop. This idea is also present in the work of both Waters [60] and
Shrobe [56]. Chapter Ten, however, explains how this point of view can be formalized as overlays for
the various loop plans described in the preceding section.

Fig. 3-5 shows some of thesc overlays. For example, Iterative-generation can be abstracted
as Iterate. The input to Tterate in this overlay is an iterator whose sced is the initial value of the
relevant loop variable (c.g. P above) and whose gencrating function is the function applied each time
around the loop (e.g. ¢dr above). The output of Iterate corresponds to the sequence of values taken
on by the loop variable.

The relationship between the sequences of values consumed and produced in an instance of
Iterative-application can be similary viewed as a Map operation. In programs where order and
occurence of duplicates in the loop values doesn’t matter, a further temporal abstraction can be made
by viewing the values consumed and produced as scts. In this view, Iterative-application implements
Each.

Similarly, Iterative-scarch can be viewed as implementing cither Earliest or Any, depending
on whether the inputs over time to the exit tests arc viewed as a sequence or a set. One temporal
abstraction of l(erative-filtering is as Restrict.

Thus using temporal abstraction the recursively defined plan for a loop can be viewed much
more simply as a simple composition of operations on sequences or sets.
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CHAPTER FOUR
THE PLAN CALCULUS

4.1 Introduction

This chapter dcals with the practical side of the plan calculus. (For a more formal
treatment, scec Chapter Eight)  Practically spcaking, the plan calculus is a nctwork-like
representation. There are many well-known ways of storing such representations in a computer to
facilitate various kinds of pattern matching and associative retrieval.  Several different computer
implementations of the plan calculus using fully inverted assertional data bases have alrcady been
implemented and successfully used by the author [47], Shrobe [56] and Waters [60]. The details of
this level of implementation are therefore not going to be disucssed in this thesis. In this document
we will use a diagram language to represent plans and overlays. The purpose of this chapter is to
introduce these diagrams and specify their intuitive meaning.

The plan calculus is made up of two major components: plans and overlays. The first
major section of this chapter discusses plan diagrams. At the end of this section, there is also some
discussion of the relationship between plans and Lisp code. The second major section of this chapter
discusses overlay diagrams. At the end of this section, there are some general observations on the use
of overlays as a preview of the next three chapters.

Note that the issuc of side effects and mutable objects will only be mentioned in passing in
this chapter, since to give a more in depth treatment requires the logical foundations developed in
Chapter Eight. Chapter Ten is devoted entirely to the topic of plans involving side effects.
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4.2 Plans

The basic idea of a plan, as used in this thesis comes from an analogy between programming
and other engincering activities. 1n most other engineering disciplines plans are very prominent. For
cxample, clectrical engincering has circuit diagrams and block diagrams at various levels of
abstraction: structural engincering uses large-scale and detailed bluc prints of the architectural
framework of a building and also of various subsystems such as heating, wiring and plumbing; and in
mechanical engincering there are overlapping hicrarchical descriptions of the interconnections
between mechanical parts and asscmblics.

A fundamental characteristic shared by all these types of engincering plans is that at each
level there is a sct of parts with constraints between them. Sometimes these parts correspond to
discrete physical components, such as transistors in a circuit diagram, but morc often the
decomposition is in terms of function. For example, a simple amplifier in an clectrical block diagram
has the functional description szkvl’ where V; and V, are the output and input signals of other
blocks to which it is connected. As far as this level of plan is concerned the amplification may be
realized in any number of ways. A primitive component may be used or another plan may be
provided which decomposcs the amplifier further.

By analogy, plans in programming specify the parts of a computation and constraints
between them. The parts of a plan are called roles. Tt is natural to think of the roles of a plan as
selector functions. For example, consider the Segment plan discussed in Chapter One, which has
three roles named Base, Upper and Tower. We will write Segment.Base to refer to Base sequence,
Segment.Upper to refer to the Upper index, and so on. The character, point ("."), in this notation is
intended to have an intuitive meaning similar to the way it is used for record structures in
programming languages such as P1./1. 1f a role is filled by an instance of another plan, the point
notation can be used several times, as in Iterate.Input.Seed, meaning the Sced of the Input (which is
an instance of Iterator, which has a role named Sced) of the Iterate operation. A nested expression

like Iterate.Input.Seed is called a path name.

All plans arc built up, using roles and constraints, out of three primitives: input-output
specifications, fest specifications and primitive objects (integers, sets and functions). Plans built up
exclusively out of objects are called duta plans. Plans involving objects, test and input-output
specifications are called temporal plans.
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Input-Output Specifications

An example of an input-output specification is shown at top of Fig. 4-1. An input-output
specification is drawn as a solid rectangular box with solid arrows entering at the top and leaving the
bottom. FEach arrow entering at the top represents an input; cach arrow leaving the bottom
represents an output. Fach input and output has name, which is used the same as a role name.!

For example, the input-output specification depicted in Fig. 4-1 is Newterm. It has three
inputs, named Old, Arg and Input; and onc output, named New. Note that when the input or output
of an input-output specification is not connected to any other the inputs or outputs, ¢.g. when an
input-output specification is drawn in isolation, the arrows are terminated in solid ovals. When this is
the case, the input or output role name is written inside the oval rather than beside the arrow.

Input-output specification also have preconditions and postconditions. 'The preconditions
involve only the inputs; the postconditions involve both the inputs and the outputs. The simplest
kind of such conditions are restrictions on the type of cach role individually. These are usually
written directly on the plan diagrams, in parentheses after the role name. For example, in Fig. 4-1 we
see that the Newterm.Old is expected to be a sequence; and that Newterm.Arg is expected to be a
natural number. "Object" as a type restriction, as for Newterm.Input, means that there is no
individual restriction on the given role.

Constraints between roles are written in a standard logical language, the details of which are
explained in Chapter Eight. In this chapter and the following three, the relationships between the
inputs and outputs of an input-output specification will be described informally in English, as they
are relevant to the current discussion. The interested reader may also refer to the appendix for the
formal preconditions and postconditions of any particular input-output specification (use index to
find page number).

To reduce the clutter in more complicated plan diagrams later in this document, some of the
information described above will omitted when it can casily be inferred by the reader. For example,
type restrictions (especially "object”) will often be omitted for input-output specifications which
should be familiar by that point in the discussion. Role names will also sometimes be omitted, in
which case the left-to-right order used when the specification was first defined (and which is listed in
the appendix) is to be understood.

1. In this chapter input-output specifications are primitive. In the formal semantics, however, input-output specification
specifications are in fact treated as composite plans whose parts are objects and situations. This is why the inputs and outputs
are treated here as roles.
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Test Specifications

A test specification is drawn as a solid rectangular box with a divided bottom part, as shown
in the lower part of Fig. 4-1. The inputs and outputs of a test specification are notated in the same
way as the inputs and outputs of an input-output specification. For example, the test shown in Fig. 4-
1, Any, has two inputs named Universe (a sct) and Criterion (a predicate); and one output named
Output (an object). A test also has preconditions and postconditions, just like an input-output
specification.

A test specification differs from an input-output specification in that two distinct output
situations are specified. Which one occurs depends on whether or not a given rclation (called the
condition of the test) holds true between the inputs. If the test condition is true, then the test is said to
succeed and the outputs indicated on the "'S" side of the box are available; otherwise the test is said to
fail, and the outputs indicated on the "I side of the box arc available. For example, Any succeeds
when there exists a member of Any.Universe which satisfies Any.Criterion, in  which case
Any.Output is such an object; otherwise it fails and there are no output roles.!

As in the case of preconditions and postconditions, test conditions are specified formally in
a logical language in the appendix, but will will be described informally in English in the body of the
following chapters.

More complicated tests with more than two cases can be represented by composing the
binary tests described above. Alternatively, the test notation may be gencralized to more than two
cases.

Control Flow

Fig. 4-2 shows how control flow arcs (hatched arrows) are used to connect input-output and
test specifications to specify conditional behavior. This plan, called Cond, is the basic "if-then-else”
construct in the plan calculus. The If role is restricted to be an instance of Test, which is the minimal
test specification, i.c. all other test specifications are cxtensions of it. The Then and Else roles of
Cond are restricted to be instances of In+Qut, which is the minimal input-output specification.

The End role of Cond introduces the use of a third primitive in the same category as input-
output and test spccification, namcly join spcciﬁcations.2 Joins are like the mirror images of tests. A
join specification is drawn as a solid rectangular box with the top part divided in "S" and "F",
corrcsponding to the succeed and fail cases of the matching test. Unlike tests, however, joins do not

1. Note that at this level of abstraction, no commitment is made as to whether or not this test modifies its inputs. This .
property will be specificd when necessary in the constraints of plans of which this test is a part.
2. Joins were first introduced into the plan calculus by Waters [60].
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represent any real computation. Joins are a technical artifact used to rejoin the two "wings” of a
conditional block, as in Cond. Join is the minimal join specification. An extension of Join, called
Join-output, is used to specify the connection between which way a test goes and which of two
possible outputs is made available for further computation, as in the following fragment of code.

(SETQ C (COND ((...) A)
(1.8)))

Data Flow

The basic idea of data flow is to specify cquality between roles in a temporal plan, especially
between the output of an input-output specification or test and the input of another one. Data flow is
indicated in plan diagrams by solid arrows, as shown in Fig. 4-3.

Fig. 4-3 defines a plan with two roles, Discriminate and If.  The Discriminate role is
restricted to be an instance of @Discrimination. @Discrimination is a specialization of @Function in
which the Op input is restricted to be a disrimination function, and in which the Output is therefore a
set. The If role is restricted to be an instance of Member?, which tests whether the Input is a member
of the Universe set. The data flow arc between Discriminate.Output and [f.Universe means that the
output of the Discriminate operation is the same as the Universe set of the If test.

Note however, that the data flow arc in Fig.4-3 docs rot mean that the If test must
immediately follow the Discriminate operation.  An arbitrary amount of computation may occur
between the end of the Discriminate operation and the beginning of the If test, as long as the set
involved is the same at the time the If test begins as when the Discrminate operation ended.

Temporal Plans

Fig. 4-3 is an example of a temporal plan. Such plans in general have data flow and control
flow arcs between input-output, test and join specifications, and are drawn with a dashed box
enclosing the entire plan definition. This scction describes a very natural way of interpreting the
meaning of such diagrams in terms of the propagation of data and control tokens through an acyclic1
directed graph according to a specified set of rules. This interpretation is essentially the one used in
data flow schemas [12].

From this standpoint, control flow arcs are treated no differently than data flow arcs. When
an input-output box has reccived tokens on all of its incoming arcs, it is "activated” and gencrates
tokens with the appropriate propertics (according to its input-output specifications) on all of its

1. Loops are represented as tail recursions.
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outgoing arcs.? If an output goes to the inputs of several other boxes (i.c. an arc splits along its way
into two or more arcs), then tokens passing over that arc are duplicated the appropriate number of
times so that the same object may be available at cach input location. Control flow tokens have no
propertics; their only function is to enable activitation.

Test and join boxes also have activation rules. A test box is activated the same way as an '
input-output box, i.c. when it has received tokens on all of its incoming arcs. It then generates tokens
cither on all of the arcs leaving the success side of the box, or on all those leaving the failure side,
depending on the propertics of the incoming objects. A join has the complementary behavior. It is
not activated until it has reccived all the tokens on one or the other input side. It then generates all
its output tokens with properties according to its specifications (since joins involve no computation,
the output tokens are always the identical to the input tokens).

Data Plans

Data plans arc plans whose roles are restricted to primitive data objects or other data plans.
Data plans are drawn as dashed ovals. Primitive data objects are drawn as solid ovals. For example,
the data plan Segment, shown in has three roles named Base, Upper and Lower, restricted to be a
sequence and two natural numbers, respectively. The constraints between roles specify the both the
Upper and Lower numbers are less than or equal to the length of the Base sequence, and that the
Lower number is less than or cqual to the Upper number. (Again, these constraints are written
formally in a logical language, the details of which are being suppressed until Chapter Eight.)

Recursive Plans

Recursion in plan diagrams is indicated by a spiral line as shown in Fig. 4-5. The minimal
singly recursive plan is called Single-recursion. It has only one role, Tail, which is constrained to be
an instance of itself. All other singly recursive plans arc extensions of Single-recursion.

2. Thus input-output specifications require termination.
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4.3 Surface Plané

In most common programming languages, such as Lisp, Fortran or PL/1, it is possible to
construct many different programs which, from the point of view of this thesis, specify the same
computations. Difference in the names of variables is the most trivial example of this kind of
uninteresting variability. Most programming languages also provide many different mechanisms for
achieving the flow of data from one operation to another. For example, in Lisp we could write cither

(SETQ X (F ...))
(G X)
or

(6 (F ...))

Similarly, the following two constructions specify essentially the same control flow.

(PROG (...)

LP (COND (P (RETURN NIL)))

(GO LP))
(PROG (...)
LP (COND (P)
"6 ey
Finally, compare the following two codings of BUCKET-RETRIEVE (the first is from the

scenario), which differ in all three of the superficial ways mentioned above.

(DEFINE BUCKET-RETRIEVE
(LAMBDA (BUCKET TNPUT)
(PROG (OUTPUT)
LP (COND ((NULL BUCKET){RETURN NIL)))
(SETQ OUTPUT (CAR BUCKET))
(COND ( (EQUAL (CAR OUTPUT) INPUT)
(RETURN OUTPUT)))
(SETQ BUCKET (CDR BUCKET))

(60 LP))))

(DEFINE BUCKET-RETRIEVE
(LAMBDA (B 1)
(PROG (0)
LP (COND ((NULL B))
((EQUAL (SETQ O (CAR 0)) I)
(RETURN 0))
(T (SETQ B (CDR B))
(GO LP))))M)
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The importance of surface plans is that both of these versions translate to the same surface
plan (which will be shown in the next chapter). From the standpoint of analysis, a surface plan can
be thought of as an abstraction of the data flow and control flow in a program, without abstracting
the primitive data structures and operations. From the standpoint of synthesis, this amounts to the
lowest level plan before translating the result of synthesis into code in a standard programming
language.

Programming Language Semantics

In order to translate from a given programming language to surface plans, the primitives of
the programming language arc divided into two categorics: connectives, such as PROG, COND, SETQ, GO
and ReTURN in Lisp, which arc concerned soley with implementing data and control flow; and the
objects, relations, and actions of the language, such as numbers, dotted pairs, arithmetic relations,
cAR, cOR and cons. The first category of primitives is translated into the pattern of control and data
flow relationships (including tests and joins) between other specifications defined in terms of the
second category of primitives. '

The translation of the second (non-connectives) category of primitives into the plan calculus
is done in three steps, cach of which involves some discretion. ‘The first step is to identify the set of
basic object types in the language. In this thesis, a basic Lisp is used in which there are four types of

1

objects: atoms, dotted pairs, vectors, and integers.” A fifth type, Lisp datum, is the union of these

four.

The next step is to choose an appropriate sct of basic relationships between objects. These
relationships arc not the same as the primitive actions of the programming language, but arc the
vocabulary in terms of which these computations will be specified. For example, in this thesis I use
two primitive functions relations on dotted pairs, Car and Cdr, with functionalitics as shown below.

Cdr: dotted-pair = datum
Car: dotted-pair — datum

This approach separates the notion of Car as a relationship between two objects (existing at
a given time), from a computation which has as input a dotted pair and as output the object which is
in the Car relationship to it.

The final step in translating from Lisp to surface plans is to translate code primitives such as
(CAR ...) into input-output specifications in terms of the primitive relations Car and Cdr, and
similarly for cobr, CONS, RPLACA and RPLACD. CONS becomes a specification which takes as input two

1. This is the mathematical notion of an integer. The distinction between this and the fixed width computer representation of
an integer in Lisp is not made here, because [ have codilied no knowledge having to do with this distinction.
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Lisp data, and returns as output a dotted pair such that Car holds between it and the first input, and
Cdr holds between it and the sccond input. RPLACA and rRPLACD specify modification of the Car or
Cdr relation to make the relation hold between a given dotted pair and object.

Two primitive relations on Lisp data arc shown below.

Null: datum — boolean
Fq: datum X datum — boolean

Again, the distinction is made here between the relation and a computation which tests whether that
relation holds for a given tuple of objects. Thus code such as the following constructions with CoND is
translated into the plan calculus as tests involving these relations respectively.

(COND ((NULL ...) ...))
(COND ((EQ ...) ...))
The final two primitives used to express the semantics of Lisp in the plan calculus concern
Lisp vectors (one dimensional arrays).

Dim: vector — integer
Flement: veclor X integer - datum

The input-output specifications of the vector creation (ARRAY) and accessing (ARRAYFETCH
and ARRAYSTORE) primitives of Lisp are then written in terms of these.

4.4 Overlays

An overlay is formally a triple made up of two plans and a set of correspondences between
roles of the two plans. An overlay can also be thought of as a projection from the set of computations
(or data structures) specificd by one plan to the sct specified by the other, especially if one of the two
plans is a primitive object type.

For example, the following overlay,1
Composcd>function: composed-functions — function

is a projection from instances of Composed-functions to instances of Function. Composcd-functions
is a data plan whose two roles, named One and Two are functions, with the constraint that the range
of function One is a subset of the domain of function Two. Given an instance of Composed-
functions, the definition of Composed>function (which is written out formally in the appendix)

1. The character ">" is intended 1o be read as "as".
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specifics how to view it as a single function from the domain of function One to the range of function
Two. Clearly, this overlay is a many-to-one projection. Other overlays, such as between List and
Sequence, are one-to-one, which amounts to an isomorphism between the two scts of computations.

An additional important property of overlays is that cach overlay and its inverse function
must be rotal on the specified domain and range. For the use of overlays in analysis, it is important
that, given an instance of the domain type, there exist a corresponding instance of the range type.
For example, for the overlay Composcd>function, if we rccognize an instance of Composed-
functions, it is important to know that there cxists an corresponding instance of Function which it
implements. Conversely, for synthesis it is important to know that for every instance of the range
type of an overlay, there exists an instance of the domain type which is a valid implementation of it.

Fig. 4-6 shows the kind of diagram which is used to represent an overlay between two
composite plans. An overlay diagram is divided in two halves by a line down the middle. The left
side shows the plan diagram for the domain of the overlay; the right hand side shows the plan
diagram for the range. Correspondences are drawn as lines with hooks on the ends which connect
roles on one side with roles on the other.

The domain of the overlay in Fig. 4-6 is Composed-@functions, which has three roles: One
and Two are instances of @lFunction, and Composite is an instance of Composed-functions. Data
flow constraints in the Composed-@functions plan are such that the functions Composite.One and
Composite.Two become the inputs One.Op and Two.Op, respectively; and One.Output becomes
Two.Input. The range of the overlay is @Function. Basically, this overlay expresses how to view the
composed application of two compatible functions as the application of a composed function.

Correspondences in overlay diagrams are cither labelled or unlabelled.  Unlabelled
correspondences represent cquality between the indicated roles; labelled correspondences represent
cquality between the value of labelled function applied to the role on the left and the role on the
right. ‘The function involved in such correspondences is very often another overlay.

For example, there are three correspondences in Fig. 4-6. The topmost correspondence says
that the instance of Composcd-functions on the left side which is the Composite role of Composed-
@functions, viewed as a function acéording to the overlay Composed>function, is cqual to the Op
role of @Function on the right. Thus Composed>function encapsulates a chunk of implementation
knowledge which then can be employed to define larger chunks. The next overlay we will discuss in
this section uses Composed> function twice.

The other two correspondences in Fig. 4-6 arc simple cqualities. The first one means that
for an instance of Composed-@functions and an instance of @Function related as Composed>
@function, the object filling Composed-@functions.One.Input is equal to the object filling
@Function.Input. Similary Composed-@functions.Two.Output corresponds to @Function.Output
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Note that in the formal definition of Composed>@Function (sce appendix) there are two
more correspondences. The input situation of Composed-@functions.One on the left is identified
with the input situation of @Function on the right; and the output situation of Composed-
@functions. Two on the left is identified with the output situation of @Function on the right. To
avoid clutter, correspondences between input and output situations will usually omitted in overlay
diagrams.

We can now move more quickly through the another overlay, involving composed
functions. Newvalue-composite>newvalue, shown in Fig. 4-7, captures the idea that, given a function
implemented as a composition, a Newvalue operation on the component T'wo of the composition can
be viewed as a Newvalue operation on the implemented function. This overlay is used in the
description of the symbol table program introduced in Chapter Two. The hash table in that example
is viewed as a function implemented as the composition of two functions: a numerical hash which
doesn’t change, and an array which is viewed as a sequence that is modified to insert new entrices.

Notice the overlapping of plans on the left hand side in Fig. 4-7. This style of building up
larger plans by making usc of instances of alrcady defined plans and constraining certain components
to correspond, allows us to be very concise. More important, we have separated what is novel about a
particular plan, like Newvalue-composite, from what it has in common with other plans. Similarly
for overlays, it is significant that Newvaluc-composite>newvalue makes use of Composed>function
rather than restating the same knowledge several times.

A Standard Implementation

As a sccond introductory cxample of overlays, T have chosen the implementation of lists
using an array and an index. "This particular implementation is not used in the symbol table program,
but is included here because it is a standard and familiar example for many other papers on
representing programming knowledge.

We begin with the idea of viewing a segment of a sequence between two bounds as a
scqucncc.l This is formalized as the overlay Segmenty>sequence, which says (sce appendix) that the
terms of the implemented sequence correspond to the terms of the basc sequence, offset by the lower
bound.?

1. We arc skipping the step of modelling an array as a sequence, which is part of the surface plan translation.
2. This implementation "wastes” the first and and last terms of the base sequence. It can be improved by adding Oneplus and
Oneminus in various places, but this would just make the example more complicated without adding any new ideas.
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A specialization of Segment is Upper-segment, in which the upper bound is the length of
the base sequence. This is a data plan often used to implement a list. The head of the implemented
list corresponds to the term of the base sequence indexed by the lower bound, and the tail of the list
is recursively defined as the list implemented by the upper segment which has the same base
sequence with one plus the lower bound. Nil is implemented by a segment in which the lower bound
meets the upper bound, i.c. when the lower bound is the length of the sequence. This
implementation is described formally by the overlay Upper-segment>list, in the appendix.

Fig. 4-8 defines the overlay Bump+update>push, which shows how to implement a Push
operation on a list implemented by Upper-segment>list. The plan on the left hand side, Bump+
update, has four roles: Bump, an instance of @Oneminus (the specialization of @lFunction when the
Op is Oneminus); Update, an instance of Newterm; and Old and New, instances of Upper-scgment.
The essence of the plan is that a new term is updated at one minus the lower bound. Bump+update>
push specifics how this plan can be viewed as a Push operation if the Old input to Update together
with the input to Bump are viewed as the Old input of Push (implemented by Upper-segment>list), if
the Input of Update corresponds to Input of Push, and if the New output of Update together with the
output of Bump are viewed as the New output of Push (also implemented by Upper-segment>list).

Similarly, Fig. 4-9 defines the overlay Fetch+Update>pop, which specifics how to implement
a Pop operation on a list implemented by Upper-segment>list. Here we see that the base sequences
of the old and new upper segments are the same. One is added to the lower bound. The Output of
Fetch corresponds to the Output of Pop. The Fetch and Bump operations may occur in any order
since neither uses the output of the other.

Using Overlays

We will sce many more examples of overlays in this and the following chapters. In Chapters
Five and Six we will also sce how overlays are used in analysis and synthesis. For now [ would like to
make make just a few gencral introductory remarks on using overlays.

We have alrcady scen that overlays are an important tool for codifying programming
knowledge. An overlay can encapsulate a chunk of implementation knowledge so that it may be used
many times in building up larger chunks. Such overlays express a generalization of many specific
implementation strategies.

In analysis and synthesis scenarios, overlays are invoked by pattern matching against one
side of the overlay and instantiating the other. For cxample, suppose we arc in the midst of
synthesizing a program and at some point we have a plan involving an instance of Push. One thing
we could do is search in the plan library for an overlay which has Push on one side, for ecxample
Bump+update>push, and instantiate the other side, in this case Bump+update. The arc obviously
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many questions unanswered here concerning how the scarch and matching is performed and how the
instantiated plan is hooked up with the existing plan structure.

In bottom-up analysis, overlays are used in a similar way to build up more abstract
descriptions of the program under analysis. The first step is to recognize known plans in the surface
plan translation of the program. This may involve deduction, since some of the required constraints
may not yet be explicit assertions. Furthermore, this rccognition process can be made more
hypothesis driven by first matching against explicit assertions and then cither trying to derive the rest
of the required constraints, or assuming them in order to accumulate more cvidence for and against
the hypothetical analysis. Once a plan has been recognized, we seck to overlay it (again, pun is
intended) with another equivalent or more abstract plan. This is achicved by scarching the library as
above for overlays which have the given plan on one side. Having found one, an instance of the plan
on other side is made and integrating into the evolving analysis.

Finally, we come to the use of overlays in verification. Recall that for verification we have
in mind a very rich structure. First of all, there is the layered decomposition of plans and sub-plans.
Plans at different layers are connected by overlays. Furthermore, cach overlay is tied together by a
network of dependencies which summarizes its verification.  Whether we start by analyzing an
existing program or with initial specifications for a new program to be synthesized, the final state of
description is this top to bottom decomposition. From this standpoint, overlays are pre-verified
modules which include both plans and telcology. Some of these overlays may be quite difficult to
derive from first principles. However, once this has been done, they can be used over and over again.
One of the goals of this thesis to compile enough of these pre-verified overlays so that the verification
of routine! programs becomes mostly a matter of combining these picces with very little difficult
deduction remaining.

1. There is an intended circularity here. 1 believe that what makes certain programs “routine” is that they are a
straightforward combination of familiar chunks.
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CHAPTER FIVE
ANALYSIS BY INSPECTION

This chapter presents a scenario of the automated analysis of part of a symbol table program
similar to the example introduced in Chapter Two. The input to this analysis is the Lisp code in
Table I together with a comment that this program deals with a set of entries implemented as a hash
table on keys. The output of this analysis is a hicrarchy of plans which describe the computations
performed by the given program at various levels of abstraction. The topmost plans in this hierarchy
describe these computations in very abstract terms, i.c. in terms of set operations. The bottommost
plans are very close to the code. They describe the computations in terms of the primitive data
structures and operations of Lisp, such as dotted pairs, cAR and cpr. Conncctions between these
different levels of description are represented using overlays.

The type of analysis shown in this chapter can be construed as a reconstruction of the top-
down design of a program. This does not mean that the given program was actually designed that
way, or that programs should be designed top-down. 1t only means that a top-down account is a
uscful way of understanding an cxisting program.

Table 1. Lisp Code to be Analyzed.

; A SET OF ENTRIES IS IMPLEMENTED AS
H A HASH TABLE ON KEYS.

. THE BUCKETS ARE IMPLEMENTED AS LISTS.
(SETQ TBL (ARRAY TBLSIZE))

(DEFINE LOOKUP
(LAMBDA (KEY)
(PROG (BKT ENTRY)
(SETQ BKT (ARRAYFETCH TBL (IIASH KEY)))
LP (COND ((NULL BKT)(RETURN NIL)))

(SETQ TNTRY (CAR BKT))

(COND ((EQ (CAR ENTRY) KEY)
(RETURN ENTRY)))

(SETQ BKT (CDR BKT))

(GO LP))))

(DEFINE HASH
(LAMBDA (KEY)
(REMAINDER (MAKNUM KEY) TBLSIZE)))



90

5.1 Why Analysis?

In a programmer’s apprentice system, a complete reconstruction of the abstract structure of
a program as illustrated in this chapter would seldom be required, since the intermediate levels of
description would be built up incrementally as part of the development process. There are, however,
other reasons for studying this type of analysis. As a practical matter, automated analysis will be
useful in converting from the present programming technology, which deals exclusively with code, to
future technologics, which will involve many levels of computation description. Furthermore, for the
foresceable future the only common medium for transfer of programs between different systems will
likely be code written in a standard programming language. In both of these situations, it is necessary
to reconstruct a plausible design from given code in order to assimilate already written programs into
new systems.

More fundamentally, many of the capabilitics required for program analysis arc important
in other parts of the programming process as well.  For example, the ability to recognize standard
computations (analysis by inspection) at various levels of abstraction is important for automating
both synthesis and verification, even in an incremental system. This is because there are often several
different, but equally intuitive, ways of abstracting a given computation. For example, the symbol
table LooKUP routine can be abstracted cither as associative retrieval (i.c. finding an entry in the set
satisfying a given predicate), or as the application of a (partial) function from keys to entries. A
programmer may be developing a program along once of these viewpoints, but the system may have to
reanalyze it in a different way in order to bring the power of the plan library to bear. Furthermore, in
an interactive program development system, this reanalysis need not wait until the plans involved are
specific cnough to be translated into code -- reanalysis can be uscful at all levels of abstraction.

Others have also studied program analysis as a way of gaining insight into the programming
process and the knowledge involved in programming.
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5.2 Overview

The overall goal of the analysis described in this chapter is to decompose a given program
into parts which may be recognized from the plan library. This is done in formal language which
four major steps.  The first two steps are basically algorithmic and have been implemented. The
second two steps are of a more heuristic nature, and have not yet been implemented. In summary,
while this chapter gives a fairly complete account of what constitutes the analysis of a program, it only
goes part way towards automating the process of constructing one.

The first step in analyzing an alrcady written program is to translate the computation
description from the given program programming language into the plan calculus. 'This step is
viewed as a translation because it does not involve any programming knowledge other than the
semantics of the given programming language. The plans which arc are the output of this translation
step are called surface plans. The purpose of this translation step is to insulate the rest of the analysis
process from the syntactic differences between various programming languages.  Surface plans
resulting from the translation of Lisp code were discussed briefly in Chapter Four. Code to surface
plan translation has also been implemented for Fortran [60] and Cobol.

The second step of analysis described in this chapter is loop analysis. The purpose of this
step is to decompose Ioops and recursions in a way which makes producer-consumer relationships
explicit. Furthermore, the producer and consumer components resulting from this decomposition
arc often specializations of standard plans in the library. For example, temporal analysis decomposes
the loop in Lookup roughly into three parts: CDR generation, iterative application of AR, and itcrative
testing for an entry with the given key. These components are connected by data streams which
represent the history of values taken on by the loop variables 8kT and ENTRY, The idea for this type of
loop analysis using the plan calculus was developed and has been implemented by Waters.

The final two steps of analysis in this chapter are less well worked out. The basic idea is to
try to recognize known plans, first working bottom-up and then top-down. Working bottom-up
entails regrouping parts of the surface plan and the temporal analysis in various ways so as to match
plans in the library. One method of controlling this process is to use the fypes of the various
descriptions involved (such as list, number, test, or loop) as a first filter on the grouping and
matching. Also, not all plans in the library arc considered in this first bottom-up matching phase.
For example, with the current library, bottom-up goes as far as recognizing plans which have
distinctive control flow and data flow features, but docs not include recognizing the program
structure having to do with the hash table. How far bottom-up methods can proceed with a larger
plan library is an issue for further study.



92

The final step of plan recognition in this scenario is top-down analysis by synthesis. [
assume that we arc given a high level description of the program to start with. For example, for the
symbol table program we are told that "a set of entries is implemented as a hash table on keys”, and
that "the buckets arc implemented as lists”. The concepts of set, hash table, key, bucket and list are
all known in the current library. Furthermore, the names of the Lisp functions in Table I, vasi and
Lookup, and the names of their arguments, Key and ENTRY, arc taken as part of the program
documentation indicating that these routines implement a hashing function and associative retrieval
from the sct of entrics, respectively.

The basic idea of analysis by synthesis is to use the plan library to gencrate possible
implementations of the given high high level description until we find one which matches the existing
bottom-up analysis. With the current library and the symbol table example, this technique appears to
be feasible with simple breadth-first scarch through the space of possible implementations. With a
larger library, some additional control mechanisms will need to be developed. Fickas has done some
initial work in this dircction.

The approach of dividing plan recognition into a bottom-up phase and a top-down phase
has the feature that programs for which the appropriate higher level plans are not in the library can
still be partially analyzed at the lower levels. For example, if the methods described in this chapter,
together with the current plan library, were applied to analyzing an associative retricval data base
implemented entirely with linked lists, the top-down part of recognition would fail, but we would still
succeed in analyzing the structure of the program at the level of search loops and list manipulations.

The next four sections present the four steps of analysis illustrated using tookup. Note that
there is not much to say about the analysis of the first two s-cxpressions in Table I by themselves.
These cxpressions simply create a Lisp vector (18L) of a specified size and define a numerical
function (HASH), both of which are used later.
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5.3 Surface Plans

In this section, we go over the diagram of the surface plan of Lookup in detail, explaining
both the specifics of this example, and some points about surface plans in general,

A plan is a description which specifies a sct of parts (or steps) with constraints between
them. A computation is an instance of a plan if its parts satisfy the constraints of the plan. For
surface plans, this is any computation which is the result of executing the corresponding code (e.g.
with various inputs).

For example, the surface plan translation of Lookup is shown in Fig. 5-1 and Fig. 5-2. At the
top level, this plan has has three steps: application of the hashing function, fetching from the hash
table, and a loop with two exits. This structure is shown in Fig. 5-1 as a dashed outline with four
boxes inside labelled One, Two, Loop and End. (The fourth box, End, is required to join the two
cases of the loop). The names One, Two, Loop and 1ind are called role names, which are local to the
plan. The name of the whole plan is Lookup-surface. These particular names are gencrated by the
translation process basced on some simple conventions.

The Loop role of Lookup-surface is further described by another plan, which is shown
partially in Fig. 5-1, and in full in Fig. 5-2. Rolc names can be composed using periods (read as
"point™) to form path expressions, such as Lookup-surface.One and Lookup-surface.l.oop.If-one,
meaning respectively role One of Lookup-surface, and role If-one of the Loop role of Lookup-
surface. '

Note in these figures that inputs and outputs that arc not constrained by data flow are
usually cither unconstrained (as far as the larger plan is concerned) or fixed to some constant.
Unconstrained inputs and outputs are labelled with the appropriate role names in ovals, just as in the
defining diagram. Roles that are fixed to constants are indicated by writing the constant inside the
corresponding oval. Constants can be distinguished from role names by the abscnce of the point
prefix. All of these notations are illustrated by Lookup-surface.One in Fig. 5-1. The function being
applied (Lookup-surface.One.Op) is a constant, Hashl, which is the mathematical function defined
by HasH. The argument to the function (I.ookup-surface.One.Input), which corresponds to the
variable KEY in the code, is unconstrained. Finally, there is a data flow link between Lookup-
surface.One.Output and the sccond input of Two.

The input-output specification for role One of lookup-surface is @Function, the
application of a given function (Op) to a given domain element (Input) to compute the correspnding
range clement (Qutput). In the case of Lookup-surface.One, the function applied is Hashl, the
numerical function implemented by the HASH procedure.
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The input-output specification for role Two of Lookup-surface is Fetch. he input roles are,
in order from left to right: Input, a Lisp vector, and Index, a valid numerical index for that vector.
The output role, Output, is the corresponding clement of the vector. Lookup-surface.Two.Input is
constrained to be Vectorl, the Lisp vector created in the first line of the symbol table listing.

After Lookup-surface.Two, control flows into Lookup-surface.L.oop. As can be seen in
Fig. 5-1, control exits from the loop at two different locations. These two exits correspond to the two
instances of RETURN in the code. Tn one case, ((RETURN ENTRY)) there is also data flow out of the loop.

The surface plan for the looping pait of tookup is shown in Fig. 5-2. The most prominent
feature of this plan is that it is recursively defined. In the plan calculus, loops are represented using
recursive definition, as suggested by the following code.

(DEFINE LOOKUP
(LAMBDA (KEY)
(PROG (BKT ENTRY)
(SETQ BKT (ARRAYFETCH TBL (HASH KEY)))

(LP))))

(DEFINE LP
(LAMBDA ()
(COND ((NULL BKT)(RETURN NIL)))
(SETQ ENTRY (CAR BKT))
(COND ((FQ (CAR ENTRY) KEY)
(RETURN ENTRY)))
(SETQ BKT (CDR BKT))

(LR))))

This turns out to be the most convenient representation for many purposes, especially for

making inductive arguments in program verification.!

In plan diagrams, rccursive definition is
indicated by a curly line, as in the lower left of Fig. 5-2. This notation means that the Tail role of
Lookup-loop is defined to have the same plan as Lookup-toop. Enough of the Tail is expanded in

this diagram to specify the connections between one repetition of the loop and the next.

Lookup-loop has seven other roles, in addition to Tail.2 Three of these (One, Two and
Threc) are applications of the primitive Lisp functions, Car and Cdr. These are the translations of
(CAR BKT), (CAR ENTRY) and (CDR BKT) in the code. The other four roles in Lookup-loop are various
kinds of tests and joins.

A test specification has two cases: a test cither succeeds or fails, depending on some some
specified conditions on the inputs. Two particular kinds of tests used in Lookup-loop arc @Predicate
and @Binrel. @Predicate tests whether or not a given unary relation (Criterion) is true of given object

1. There are interpreters, and certainly compilers, which execute tail recursive code as efficiently as code with loops in control .
flow, essentially making these syntactic variants.
2. As in Lookup-surface, the role names in this plan are chosen by the translation process based on some simple conventions.
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(@Predicate.Input). Similarly, @Binrel tests whether two given objects satisfy a given binary relation
(Criterion).

The first test in Lookup-loop, If-onc, is constrained to be a instance of @Predicate in which
the Criterion is Null, a primitive Lisp predicate. This role is the translation of the code

(COND ((NULL BKT)...)) .

When this test succeeds, control exits from the loop, as can be scen by the control flow
arrow from the "S" side of If-one which bypasses the Tail. When this test fails, control passes to One
and then Two, which are the translation of the following portion of the loop code.

(SETQ ENTRY (CAR BKT))
...(CAR ENTRY)...

The output of Two feeds into input One of 1f-two, which is an instance of @Binrel. The
criterion in this test is the primitive binary relation, Fq. Input Two (key in the code below) is
unconstrained as far as the Lookup-loop plan is concerned, except that it doesn’t change on
successive repetitions of the loop. The fact that input Two of this test is the same as the argument to
the hashing function is reflected in the constraints of T.ookup-surface, as can be seen in Fig. 5-1.

(COND ((EQ ... KEY) ...))

If this test succeeds, control exits the loop through End-two making Onc.Output (ENTRY)
available outside the loop. Otherwise, Cdr is applied to If-onc.Input (8kT), with the result feeding
into the recursive invocation.

Lookup-surface.End, Lookup-loop.End-one and Lookup-loop.End-two are joins, the
complementary construct to tests.  Joins have two input cases (similarly labelled "S™ and "F"),
indicated in plan diagrams by dividing the top patt of the box in half. There are two possible ways
for control to flow into a join, and onc way out.! Joins are also used to represent the effect of control
flow on data flow. For cxample, the pattern of data flow and control flow through Lookup-
surface.End in Fig. 5-1 indicates that in onc case the value returned by Lookup is the cntry that
satisfied the second exit test of the loop, and in the other case it is the constant, Nil.

1. Note that this is not a parallclism construct. In any given computation, only one or the other branch of a conditional is
taken.
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5.4 Loop Analysis

The goal of analysis in this chapter is to decompose a program into recognizable parts. In
other words, we want to figure out how the surface plan for a program could be built up out of
standard plans in the library. This section in particular is concerned with the analysis of singly
recursive surface plans, such as Lookup-loop, which represent the looping parts of a program. It is
important to note, however, that none of the analysis in this section is particular to whether a surface
plan is the translation of code written in Lisp versus some other standard programming language.
Although appropriate specializations for Lisp will be emphasized for the purpose of this example, the
plans and overlays introduced in this section are all quite gencral.

The analysis of loops takes place in two steps. In the first step, a loop is decomposed into
standard recursively defined fragments. In the sccond step, the behavior of these fragments is
abstracted in such a way that a loop can be represented by a non-recursive plan. This allows further
analysis to treat the looping and non-looping parts of programs uniformly.

Loop Augmentations

The natural building blocks for non-recursive plans are typically input-output specifications,
which are composed using control flow, data flow and tests. The plan library contains many standard
input-output specifications and their implementations in terms of compositions of others. For
recursively defined plans, however, a different notion of composition is needed in order to make a
library of standard building blocks. Loops arc viewed here as being built up by a process of
augmentalion.' For example, the loop of Lookup can be built up starting with just the part that does
the coring, as suggested by the following code.

(PROG (BKT)
(SETQ BKT ...)
LP ...
(SETQ BKT (CDR BKT))
(6O LP))
This pattern of looping, in which a given function is repeatedly applied to the output of the
preceding application of that function, is called iterative gencration. Iterative generation using Cdr is

acommon building block of many loops in Lisp.

This loop can be augmented by adding the code underlined below.

1. This view of loops is taken from Waters [60]. In this refercnce, Waters also goes into a more lengthy justification of why a
different analysis method is required for loops as compared to straight-line code.



99

(PROG (BKT ENTRY)
(SETQ BKT ...)
LP ...
(SETQ ENTRY (CAR BKT))

(SETQ BKT (CDR BKT))
(GO LP))

The basic idea of augmentation is that the augmented loop does cverything the
unaugmented loop does, plus something extra. For example, the aixgmcntcd loop above makes
available in ENTRY the cAR of each successive value of BKT computed by the generation part of the
loop. This pattern of augmentation is called iterative application; the function being applied in this
case is Car.

Two other kinds of augmentation, which are not illustrated in the symbol table cxample, are
filtering and accumulation. These will be covered in Chapter Nine.

The addition of an exit test to a loop, as shown underlined below, is a kind of augmentation
which violates the general rule that an augmentation must not disturb the behavior of the
unaugmented loop.

(PROG (BKT ENTRY)
(SETQ BKT ...)
LP (COND ((NULL BKT)(RETURN NIL)))
(SETQ ENTRY (CAR BKT))

(SETQ BKT (COR BKT))
(GO LP))

The reason an exit test is treated as an exceptional case of augmentation is because, as will
be seen in the next section, its effect is modelled similarly. In general, the effect of an augmentation
is to create a new sequence of data objects (such as the values of ENTRY) in the augmented loop which
is related in some way to a sequence of objects (such as the values of 8kT) in the unaugmented loop.
The effect of adding an exit test to a loop is modelled as creating truncated versions of the
(potentially infinitc) scquences which would be generated by the loop without the exit test. This also
applies for adding more than one cxit test, as shown below.

(PROG (BKT)
(SETQ BKT ...)
LP (COND ((NULL BKT)(RETURN NIL)))

(SETQ ENTRY (CAR BKT))

(COND ((EQ (CAR ENTRY) KEY)
(RCTURN_ENTRY)))

(SETQ BKT (CDR BKT))

(60 LP))

Waters has implemented a system which automatically decomposes loops according to this
idca of augmentation. 'The basic algorithm his system uses is to iteratively remove parts of a loop .
which do not produce data objects required by the remaining parts. For example, for the loop of
Lookup,, the cffect of this algorithm is to undo the augmentation steps above in the reverse order. The



100

plan library contains plans for many standard augmentations. The rest of this section shows some of
these which arc used in Lookup and how they arc represented in the plan calculus.

The first augmentation recognized in the Lookup loop is shown in Fig. 5-3. On the left hand
side of this figure we have the surface plan for the loop, Lookup-surface. On the right hand side is a
plan from the library called Terminated-iterative-search. This plan captures the idea of a scarch loop
with two exits, without specifying how the sequence of objects being searched is produced. Role If-
two of this plan is a test which applies a given criterion (the same on cach iteration) to the current
input (provided by the rest of the loop). When this test succeeds, the current input is made available
outside the Toop (as End-two.Output). The other exit test (If-one) is for terminating the loop when
there arc no more objects in the scarch space.

Note that the role names of a plan in the library, such as Terminated-iterative-search, are
fixed at the time the plan is catalogued. In general, role names have been chosen to have some
mnemonic value relative to the given plan, but this strategy is somewhat restricted by the fact that
specialized plans inherit their role names from their generalizations. For example, the most general
plan for a two exit loop, of which Terminated-iterative-scarch is a specialization, is Cascade-iterative-
termination. At the level of generality of Cascade-iterative-termination, it is not possible to give any
better names to the two exit test roles than If-one and If-two.

The hooked lines between the left and right hand sides of Fig. 5-3 indicatc how the
‘Terminated-iterative-scarch  plan is  matched against Lookup-surface:  Lookup-loop.If-one
corresponds to Terminated-iterative-search.If-one; Lookup-loop.If-two corresponds to Terminated-
itcrativc'scarch.lf-two;] and there is a correspondence between the joins, End-one and End-two. The
fact that the corresponding roles have the same names is a coincidence. The hooked line between
L.ookup-loop.Tail and Terminated-iterative-scarch. Tail indicates that the match is made recursively.

Fig. 5-3 is an example of an overlay. The basic idca of overlays is re-description. The plan
on the left describes a sct of computations -- the instances of the plan. The correspondences in the
figure indicate how to re-describe (part of) any such computation as an instance of the plan on the
right, in this case a standard plan from the library. In order for this re-description to be possible, the
constraints of the right hand plan must logically follow from the constraints of the left hand plan,
substituting appropriately for the corresponding parts. It can be seen in Fig. 5-3 that this condition is
met for control flow and data flow constraints (control flow is transitive).

1. A detail is being skipped here, which is covered in the appendix. T.ookup-loop.If-two is a test in which a binary relation
(q) is applied to two inputs. Terminated-iterative-scarch.li-two is a test involving a predicate (unary relation). In order to
recognize ‘Terminated-iterative-scarch as indicated, an intermediate step is required in which 1.ookup-loop.If-two is grouped
together with Lookup-loop. Two and these are viewed as the implementation of testing a compaosite predicate of the form
(EQ (CAR ...) KEY).
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Overlays are the mechanism usced to relate various various levels of description in the
analysis of a program. The origin of the term "overlay"” is in the idea of having cach plan drawn on a
transparent slide and laying onc on top of the other, lining up the corresponding parts.1 Some
overlays, such as the one in Fig. 5-3, arc particular to the analysis of one specific program; others, of
which we will sce examples later, express re-descriptions of general applicability and are therefore
catalogued in the plan library together with the plans to which they apply.

Recognition of the other augmentations in Lookup-loop takes place in a model of the loop
in which the exit tests are assumed to always fail. This is what [ call the steady state model. The
relationship between the surface plan and the steady state model is also represented using an overlay
which is explained in more detail in Chapter Nine.

The first augmentation recognized in the steady state model of Lookup-loop is the iterative
application of Car, shown in Fig. 5-4. On the right hand side of this overlay is the plan from the
library, Iterative-application, which represents the gencral idea of repeatedly applying a given
function (Action.Op) to an input provided by the rest of the loop (Action.Input) to produce an
output (Action.Output), which may be used by the rest of the loop. The correspondences between
this plan and Lookup-loop on the left indicate that Lookup-loop.One in the steady state matches this
description.  Similarly, Fig.5-5 shows the how TLookup-loop.Three is re-described as Iterative-
generation.

Temporal Abstraction

Given that we have decomposed a loop plan into these standard augmentations, the
question remains of how to represent the connection between, say, the gencration and the
application. Temporally, the components of cach computation arc interleaved, but it seems more
logical to view the generation and application as being composed in some way. This scction shows
how to construct this viewpoint.

The basic idea of temporal abstraction is to view all the objects which fill a given role in a
recursively déﬁncd plan as a single data structure.2 In terms of Lisp code, this often corresponds to
having an explicit representation for the sequence of values taken on by a particular variable at a
particular point in a loop. For example, in the LookuP loop we would like to talk about the sequence
of objects iteratively generated by Cdr, i.e.

1. Sussman uses the term "stice” for a similar concept in the analysis of clectronic circuits.
2. Both Shrobe [56] and Waters [60] use the idea of temporal abstraction, but with slightly different formalizations than
presented here.
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Iterative-generation.Action.Input,
Tterative-generation. Tail. Action.Input ,
[terative-gencration. Tail. Tail. Action.Input ,

which corresponds to the values of BKT at the point underlined below cach time around the loop (in
the steady state).

(PROG (BKT)
(SETQ BKT ...)
LP ...
(SETQ BKT (CDR BKT))
(GO LP))))

The bottom overlay in Fig. 5-6 shows how this abstraction is made in terms of the input-
output specification, Iterate, which takes as input a data structure called an iterator (which is the
lincar specialization of a generator), and gives as output the generated sequence. An iterator has two
parts: the Seed, the starting value which will be the first term of the generated scquence; and the Op,
the function which maps from one term to the next. As shown by the hooked lines in Fig. 5-6, the
[terate.Input.Seced  corresponds  to  Tterative-generation.Action.Input, and  Tterate.Input.Op
corresponds to Iterative-generation.Action.Op. Tterate.Output then represents the sequence of inputs
to Action on each iteration, as described above.

[terator is an cxample of a data plan -- the plan for a data structurc. This plan, together with
Tterate and the overlays in FFig. 5-6, arc part of the current library. An important feature of the plan
calculus is that it allows the hicrarchical description of data structures and temporal computations
(and mixturcs of the two) in a single formalism.

The top overlay in Fig. 5-6 makes the same sort of abstraction for Iterative-application. In
this overlay from the library, Tterative-application is viewed as the input-output specification, Map,
which takes a sequence and a function (Op) as inputs, and has a sequence as output. The terms of the
output sequence are the result of applying the given function to the terms of the input scquence. In
this temporal overlay, the input sequence of Map is the abstraction of the inputs to the Action of
[terative-application on cach iteration, and the output sequence is the abstraction of the outputs of
Action; and, of course, Map.Op corresponds to Action.Op. In terms of the code of Lookup,
Map.Input represents the values of BKT at the point underlined below and Map.Output represents the
values of ENTRY (in the stcady state).

(PROG (BKT ENTRY)
(SETQ BKT ...)

LP ...
(SETQ ENTRY (CAR BKT))

(SETQ BKT (CDR BKT))
(GO LP))))
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Notice in this code that the value of BKT is the same at the underfined point as at the input to
cor. This means that in the temporal abstraction of T.ookup-loep, the output sequence of lterate is
the same as the input sequence of Map. In the next section we will sce how this pattern, together
with the temporal abstraction of the NULL test, is recognized as the standard plan for gencrating a list
in Lisp.

Exit test augmentations are also temporally abstracted. Fig. 5-7 shows an overlay from the
library which abstracts Terminated-iterative-search as an input-output specification on sets. This
overlay also illustrates a sccond kind of temporal abstraction, in which we talk about the sct of objects
filling a given role in a-recursive plan, ignoring their temporal order.” As we shall see, this turns out
to be the appropriate level of abstraction for this example.

The pattern of two exit tests with an output from the second one, which has been recognized
in Lookup-toop, can be viewed as the temporal implementation of a standard test on sets called Any.
Given a set (Any.Universe) and a predicate (Any.Criterion), this test succeeds if there is a member of
the set which satisfies the predicate, and returns such an object (Any.output); otherwise it fails. In
the temporal overlay of Terminated-iterative-scarch as Any shown in Fig. 5-7, Any.Universe
corresponds to the set of inputs to the sccond exit test of the scarch.? In the code of LOOKUP, this is the
set of values of EnTRY at the point underlined below.

(PROG (BKT ENTRY)

(SETQ BKT ...)
LP (COND ((NULL BKT)(RETURN NIL)))
(SETQ ENTRY (CAR BKT))
(COND ((EQ (CAR LNTRY) KEY)
(RETURN ENTRY)))

(SETQ BKT (CDR BKT))
(G0 LP))))

Finally, the effect of the NULL test in the code above is modelled in the temporal view by an
input-output specification called Cotruncate.  Cotruncate takes as input two sequences
(Cotruncate.Input and Cotruncate.Co-input) and a predicate (Cotruncate.Criterion). Its output is the
truncation of the second sequence at the carliest term for which the corresponding term of the first
sequence satisfies the given predicate. This may sound like a somewhat obscure specification, but the
idea of two parallel sequences is in fact quite basic. For example, the standard plan for computing
the length of a Lisp list can be naturally viewed in terms of two parallel temporal scquences: the

natural numbers, and the scquence of cors of the list. In the code above, the sequence of values of

1. Formally this abstraction is done in two steps: first a temporal sequence (not exactly) abstraction is made; and then this
ordered structure is viewed as the implementation of a set. This will be explained more fully in Chapter Nine.
2. More precisely, Any.Universe corresponds to the sct of objects which would be scarched if there were no member
satisfying the predicate. This abstraction involves forming a steady state model in which exit Two always fails.
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ENTRY (the output of Map) is truncated according to the occurrence of NIL in the sequence of values
of BkT (the output of Ttcrate).

The relationship between the temporal abstractions of the various parts of Lookup-loop is
illustrated in Fig. 5-8. This figure shows all four overlays discussed in this section applied to Lookup-
loop simultancously. In order to reduce clutter, only the data flow constraints in L.ookup-loop and
the correspondences which involve temporal abstraction are drawn. Notice that many of the
temporal sequences on the right are the abstraction of roles of Lookup-loop which arc constrained by
data flow to be the same. In particular, Iterate.Output is the same sequence as Map.Input and
Cotruncate.Input, and Map.Output is the same sequence as Cotruncate.Co-input.

Some of the temporal correspondences in Fig. 5-8 involve different steady state models. For
example, Cotruncate.Input is the temporal abstraction of Lookup-loop.One.Output in the steady
state model with no exit tests; Cotruncate.Output is the sequence which includes the cffect of the
Null test. This detail cannot be shown conveniently in this figure, but is explained in the next
scction.

The relationship between the output scquence of Cotruncate and Any.Universe is
represented by an overlay, Sequenced>set, which expresses in general how to view a sequence as a set.
Such overlays between abstract descriptions are typical as analysis progresses beyond the surface
plan.

In summary, Fig. 5-9 shows an overview of the plans and overlays used in the loop analysis
thus far. The names of the plans are arranged in a hicrarchy which reflects the order in which they
must be recognizcd.1 Fach plan depends on the recognition of the plans below it as indicated by the
vertical lines in the figure. Plans at the same level in the hicrarchy may be recognized in any order.
Overlays from the library used in this analysis are drawn as vertical lines with arrow heads to suggest
that once the lower plan is recognized, the library is scarched to suggest a more abstract description.
The other lines represent pattern matching that is done specifically for this example. Notice that the
analysis of a program is not a strict hicrarchy. Distinct nodes at onc Ievel may share parts of the same
plan at a level below. For example, the recognition of both Iteration and lterative-application share
the [terative-steady-state plan. Conversely, the fact that a given plan or role has been used in one
overlay, does not make it incligible for usc in others.

1. Some of these steps have been skipped over in this initial exposition, but are included here for future reference.
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5.5 Bottom-up Recognition

[t is natural to divide the analysis of Lookup roughly into three layers, as shown in Fig. 5-10.
The bottom layer is loop analysis, as described in the preceding section. The middle and top layers
are distinguished mostly by the complexity of the data structures involved. The plans in the middle
layer involve only basic data structures such lists, sequences and sets.  The effect of temporal
abstraction, which is the final step of loop analysis, is to re-describe looping computations in terms of
these basic data structures. ‘The top layer of analysis in this example involves the relatively complex
and specialized hash table data structure.

My intuition is that these general layers of abstraction are not specific to this cxample,
though in larger programs there would be more upper layers. This means that the plan library itself
can be roughly divided into layers. Most of the plans in the current library are in the middle layer
involving lists, sequences, scts, and also directed graphs. Presently the only more complicated data
plan is the hash table.

The three layers of knowledge in this cxample also suggest a three stage strategy for
automating analysis. The first stage is the specialized algorithm for loop analysis described in the
preceding section. The second stage can be thought of as bottom-up pattern recognition, in which
the standard plans involving basic data structures familiar to cvery experienced programmer are
recognized. The final stage of analysis in this example depends on being given some high level
description of what the whole program is trying to do, so that top-down analysis by synthesis can be
used. An alternative scenario, in which no top level description is given, is not considered in this
thesis.) These three stages agree with my own introspection and expericnce in analyzing previously
unseen programs. [t would be interesting to conduct some experiments to verify the psychological
validity of this model.

The rest of this section describes the particular plans in middle layer of the analysis of
rookup, which are recognized bottom-up. The next section describes the plans in the top layer, which
are recognized top-down, and how the two layers arce connected.

As we can see in Fig. 5-10, there are scveral plans in the middle layer which may be
recognized in any order. We begin with the plan Car+edr+null, shown in Fig. 5-11, which has three
steps: One, an instance Iterate; Two, an instance of Map; and Three, an instance of Cotruncate. The
data flow between the roles in this plan is the same as between the overlays of Iterate, Map and
Cotruncate on Lookup-loop described in the preceding section and shown in Fig. 5-8. This plan in
general is called Truncated-list-generation. Car+cdr+null is a specialization in which the generating

1. Such a scenario would presumeably involve a much stronger control structure for hypothesis formation and testing.
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function is Cdr, the function being applicd by Map is Car, and the criterion of Cotruncate is Null.2

Returning to LookuP, we have now come as far as recognizing that the initial input to the
loop (ihc initial valuc of 8kT) is a Lisp list. The temporal abstraction of the second cxit from the loop
as Any goes one step further and views this list as the implementation of a set. From the analysis of
Lookup alone, it is not clear whether or not this list may contain duplicates. In the plan library, the
implementation of sets as irredundant lists is represented as a specialization of the overlay used here.

There arc two more small points to be covered. The first two steps of Lookup-surface
(please refer back to Fig. 5-1) nced to be analyzed as the application of a functional composition,
Composed-@functions, as described in Chapter Four. This is a common cliche which is nceded here
to put the surface plan in a form which will connect well with the top-down recognition stage of the
next section.

Another feature of the surface plan of Lookup to be recognized bottom-up is that the final
output object (I.ookup-surface.End.Output), which in the code is the value returned by the LAMBDA
expression, can be viewed as a flag. Flags are a minor programming technique which is formalized in
the appendix. The basic idea is that the result of a test (in this case Any) is encoded in a data object
and a given predicate (in this case Null) so that the information discovered by the test can be
recovered after the join. (In this case control is joined because Lisp does not allow multiple return
points). The information encoded in the flag is recovered later by testing the object with the given
predicate.

2. We always try to recognize the most specialized version of a plan where possible.
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5.6 Top-down Recognition

The main point of this section to illustrate how a (inoderately) complex data structure, such
as a hash table, is decomposed in terms of the plan library. This section also introduces an important
heuristic principle which is applicable to both top-down recognition and the standard synthesis
scenario.

The comment at the beginning of the code for the symbol table program in Table I reads:
"a sct of entries is implemented as a hash table on keys”. In this analysis scenario, we make use of
this comment to retricve the top few plans in the analysis of Lookup from the library.

At the highest level of abstraction, we arc dealing with the implementation of a set. This set
is implemented as a hash table on keys. In the analysis presented here, this implementation is
decomposed into three basic ideas: discrimination, hashing and keys.

According to the plan library, a discrimination is a function which maps some domain (in
this example, "entries”) onto a set of sets, called buckets. Such a function can be viewed as
implementing a sct wherein a given object is a member if and only if it is a member of the bucket
obtained by applying the discrimination function to that object. Operations on a set implemented
this way reduce to operations on a single bucket, which is often more cfficicnt, especially in the case
of operations which involve scarch. This ideca is also part of many other data structures, such as
discrimination nets.!

The basic idea of hashing is to implement a discrimination function as the composition of
two functions. The first function, called the hash function, maps the domain of the discrimination
onto the set of valid indices for a sequence, cafled the table, which is the second function. The utility
of this decomposition is that modifications to the discrimination function may be achieved by
modifying only the table.

Discrimination on keys is also an implementation idea involving functional decomposition.
In a keyed discrimination, cach member of the implemented set has an associated key. In the symbol
table example, the function from entrics to keys is Car. 'The discrimination function in this
implementation is the composition of two functions: the first function is the key function; the second
function maps from the sct of keys to the buckets. The point of this decomposition is that for certain
operations, such as associative retricval, we are given only the key of an entry, rather than the entry
itsclf.

1. The relationship between hash tables and discrimination nets is pursued further in Chapter Four.
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To summarize, all three of these ideas are combined in the symbol table example as follows.
At the top level we have a sct implemented as a keyed discrimination. The key function is Car, and
the function from keys to buckets is implemented as a hash table. The hash function of the hash
table is Hashl (nasn); the table is an abstraction of Vectorl (L), in which it is viewed as a function
from natural numbers to scts implemented as Lisp lists.

Being able to formally analyze a data structure design in this way is a new and important
result of this thesis. This analysis gives a deep insight into the logical structure of this implementation
and captures what it has in common with other implementations. It also decomposes the verification
of the design, since cach component can be separately verified.  This aspect of this thesis is a
contribution towards current cfforts in computer science to develop an "algebra™ of practical
programming constructs.  Others in this movement thus far have cither concentrated on the
composition of procedural constructs, similar to the ideas described in the loop analysis section, or
have worked only with simpler data structures [43].

The Maximal Sharing Heuristic

There are several plausible accounts of how the analysis described above could be derived
automatically, given the code and comments in Table I, the bottom-up analysis described in the
preceding section, and the current plan library. All of these accounts involve using what T call the
maximal sharing heuristic. The origin of this heuristic is in program synthesis, but it also turns out to
provide an clegant solution to the problem in program analysis of connecting bottom-up recognition
with top-down analysis by synthesis.

The maximal sharing heuristic is applicd at cach point in synthesis when an implementation
step is made. The basic idea of the heuristic is, rather than always adding new structure for an
implementation, to reusc as many parts as possible of other plans in the current design which satisfy
the constraints of the current implementation plan. The effect of this heuristic is to cause there to be
a (locally) maximal amount of sharing in the analysis hierarchy. The motivations for this heuristic,
and its application in a synthesis scenario are claborated in Chapter Six.

The way to apply this heuristic in analysis is to view the parts of the bottom-up analysis as
parts of the current design which are available for reuse. Whenever a part of the bottom-up analysis
gets used in a top-down synthesis step, a connection has been achicved between the two directions of
analysis. This holds out the promisc that a module written for automated synthesis which obeys this
heuristic may be used without change in automated analysis.

Another nice feature of this approach is that it suggests two fairly intuitive notions of partial
analysis. One situation is when you can’t find parts of the program you cxpect. This corresponds to-
when parts of the top-down synthesis never get connected with the bottom-up analysis. In an
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interactive system, this could signal a potential bug or at least a request for further explanation from
the user. The complementary situation is when parts of the bottom-up analysis are never used by the
top-down phase. The most natural interpretation of this situation is that the programmer is using
plans which are not in the current library. An interesting topic for future research is the possibility of
isolating and generalizing these novel parts of a program so that new plans can automatically be
added to the library.

Returning now to Lookup, let me give one account of how the final steps of analysis might
proceed. Tt may help to refer to Fig. 5-10 to follow this explanation.

The first step in the top-down analysis is to conclude that the sct operation implemented by
LOOKUP is associative retricval. This could be deduced from the name of the routine, or by looking at
the types of its inputs and outputs and the fact that it has two cases.

The library overlay for implementing associative retricval from a keyed discrimination is
shown in Fig. 5-12. The input-output specification for associative retrieval on the right hand side is
called Retrieve. Tt is a test with three inputs, a set (Universe), the key function (Key), and an input
key (Input), and onc output. If there exists a member of the set with the given key, then the test
succeeds and returns such a member; otherwise it fails. On the left hand side of the overlay we have
the typical two step plan for implementing a set operation on a discrimination: apply the
discrimination function to fetch the appropriate bucket, and then perform the same operation on the
bucket. This general implementation works for adding and removing a member, and certain kinds of
retrieval. Tt does not work for other operations such as union or intersection.

The first step (Discriminate) of the plan on the left of Fig. 5-12 is thus constrained to be an
instance of @Function, in which the function being applied is the discrimination function from keys
to buckets. The maximal sharing heuristic suggests using the @lFunction recognized bottom-up (see
Fig. 5-10) in this role. Recall that this @Function is itsclf implemented as the composition of two
instances of @Function,

(ARRAYFETCH TBL (HASH KEY)),

from which we can conclude that the hashing function is Hash1 and the table is Vectorl.

The second step (If) of the plan on the left of Fig. 5-12 is constrained to be an instance of
Retrieve, applied to the bucket fetched in step one. According to the second comment at the front of
the code (see Table 1), "the buckets arc implemented as lists”. The only implementation in the
library for Retrieve on scts other than than discriminations is as Any (an input-output specification
introduced carlier in this chapter) in which the criterion is a composite predicate. The form of this
predicate is to test whether the key of a given object is equal to some constant. If the key function is
Car, this comes down to Lisp code like the following test in Lookup.
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(COND ((EQ (CAR ...) KEY)
cl))

The sharing heuristic suggests recognizing the bottom-up Any specification as implementing
the bucket Retrieve in this way. In order for this to be the case, the key function of the
implementation must be Car.

This completes the analysis of Lookup. Iet me emphasize that the last few paragraphs are
only one of many possible accounts of how the top-down recognition could be accomplished. There
are many other strong clues in this program, particularly in the types of objects. For example, the
only candidate for the table part of the hash table, by virtue of being a vector, is Vectorl; the only
candidate for the hash function, by virtue of being a numerical function, is Hash1.
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CHAPTER SIX
SYNTHESIS BY INSPECTION

6.1 Introduction

A library of plans, such as presented in Chapter Three, opens up many new possibilites for
what an interactive program development system can do to help a uscer synthesize programs. This
chapter is an exploration into some of these new possibilitics. In particular, this chapter highlights
the use of the plan calcutus as a design language.

In broad terms, the plan library represents a significant body of knowledge about
programming which is shared between the user and the system, which has never been the case before.
The most advanced current program development systems [8] have some built-in knowledge of
programming language syntax and type restrictions, but nonc include the range and kind of
knowledge represented in the plan library.

This chapter presents a simple scenario of interactive program synthesis in which the
working medium is the plan calculus rather than Lisp code. Code is generated only as the final
translation of the synthesized surface plan. Also, the order of development in this scenario is top-
down. The user the progressive refinement of an initial abstract specification by application of
overlays from the plan library. This scenario is thus restricted to programs which can be completely
analyzed using plans in the library alone. This scenario, also portrays an expert user who is familiar
with the plan library.

This chapter also picks up where Chapters Two and Five leave off in showing the details of
how the plans in the library are used together in a complete example.

The fundamental interaction between the system and the user in this scenario is for the
system to proposc a menu of overlays from the library which are applicable to the current design plan,
and for the user to choose between them. In this way, the user guides the synthesis in top-down
fashion. The user also intervenes at certain crucial points in the development to introduce new plans
from the library, and to suggest reanalysis of the current design which leads to a more efficient
implementation, In addition to retricving overlays from the library, the system also needs to be able
to spontancously propagate some information and construct specializations of library plans
appropriate to the current design.  This implies a deductive component in the system, whose -
operation will not be discussed here, since it is part of related research reported elsewhere [56].
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Deductive capabilitics are also required to apply the maxim;ﬂ sharing heuristic. The basic
idca of this heuristic, as described in Chapter Five, is to build plans which shate as much structure as
possib]e.bl The motivation for this heuristic is that it often leads to more cfficient programs. [t is
applied in synthesis cach time an overlay is used to further implement some part of the current
design. To apply the heuristic, the system needs to know whether a given subset of the roles on the
left hand side of the overlay can be identified with roles of other existing plans in the current design,
while being consistent with both the constraints of the plan on the left hand side of the overlay and
the existing constraints on the other roles.

With the maximal sharing heuristic in operation, synthesis using overlays becomes a mixture
of progressive refinement and constraint. In the refinement steps, an overlay is used to expand the
current design in a tree-like fashion, by adding more detail at one of the terminal nodes.
Alternatively, whenever sharing is established in the application of an overlay, the effect to is add
further constraints to the current design.

The synthesis scenario in this section is divided into three distinct phases: data structure
design, procedure implementation, and code generation. In the first phase, the user lays out the
implementation of the hash table data structure using overlays between data plans. The second
phase, procedure implementation, involves refining the abstract plans (c.g. input-output
specifications) for associative retrieval, addition, and deletion on the hash table down to the level of
Lisp surface plans. The final stage is the generation of Lisp code from surface plans. As in the first
scenario in this chapter, the system prompts for variable and procedure names where needed in the
coding. Furthermore, in this particular scenario the implementation of the retricval, addition and
deletion procedures are cach carried out fully, including the coding phase, before moving on to the
next one.

I do not, however, make any claims for the particular order of synthesis depicted in this
scenario.  The major purpose of the scenario is to demonstrate what it could be like to develop
programs interactively with a system that had significant programming knowledge in the form of a
plan library. In rcality, any such system will have to be based on a mixed initiative model which
allows the user to tailor the order of development to the particular programming task at hand. Asin
the scenario of Chapter Two, lines typed by the system arc shown in upper case; lines typed by the
user arc shwon in lower case.

1. Sacerdoti, in his work on gencral problem solving [50] uses a similar heuristic of the form "usc existing objects whenever
possible".
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6.2 Data Structure Design

In this section, the user designs the main data structure of the symbol table program,
starting with a description of it as a set of entrics, and culminating with its implementation as a keyed
discrimination in which the function from keys to buckets is implemented by hashing.

> let an "entry" be a data structure.

> "symbol1" {(an atom) is part of an entry.

> "info" 1is part of an entry.

The user begins by defining a new data plan which is particular to the programming task at
hand. This definition becomes a part of the permanent documentation of the program. An "entry" is
defined as a data structure with two ficlds, named Symbol and Info. The Symbol ficld contains a
Lisp atom; nothing is said about the Info field.

> let a "symbol table"” be a finite set.

> for all "x" if x belongs to a symbol table, then x is an entry.

The user now defines a symbol table as finite sct of entrics. The rest of this section of the
scenario is concerned with implementing this set.

)
APPLICABLE IMPLEMENTATIONS FOR: SYMBOL-TABLE (A FINITE SET)

1. LIST

2. SEQUENCE

3. LABELLED-THREAD

4, DISCRIMINATION FUNCTION
? 4

The user transfers initiative temporarily to the system by typing an ecmpty command line.

The basic action of the system in this situation is retricve from the library all overlays which are
applicable to the current design. In general, this includes all overlays whose right hand sides (or
specializations or extensions of them) appear in the current design.  Furthermore, the system in
general first proposes overlays for a whole plan before trying to find overlays for any of its roles. In
this case, the system retricves four overlays: the first three are for implementing scts as lists,
scquences, and labelled threads, respectively; the fourth is for implementing a finite sct as a
discrimination. The user chooses the fourth overlay as the onc to apply, and the system responds by
instantiating the left hand side of the overlay, propagating the appropriate information through the

correspondences.

LET "DISCRIMINATION1" BE THE IMPLEMENTATION OF SYMBOL-TABLE AS A
DISCRIMINATION FUNCTION,

Thus Discrimination]l is a discrimination function on entries, which is the implementation
of Symbol-table. Fig. 6-1 shows the complete implementation of Symbol-table, as it will be
developed in this scction. Implementation relationships, such as between Discriminationl and
Symbol-table, are shown in this figurc as vertical arrows pointing up from the instance of the left
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hand side to the instance of the right hand side. (This is the same convention as was used in Chapter
Three.) In this figure, and the other similar one is this chapter, vertical lines without arrow heads
denote part-whole relationships, with the role names indicated.

> )
APPLICABLE IMPLEMENTATIONS FOR: DISCRIMINATION1 (A DISCRIMINATION FUNCTION)
1. COMPOSED-FUNCTIONS
2. UNARY-LAMBDA
7?2
The scenario continues with the system proposing applicable overlays for Discriminationl.
In this case, the only applicable overlays are for functions in general, of which there are two in the
current library : a function can cither be implemented as the composition of two other functions, or it

can be implemented directly in Lisp as a lambda expression. The user chooses the first option.

SPECTALIZATIONS OF: COMPOSED-FUNCTIONS
1. HASHING
2. KEYED-DISCRIMINATION

(3

LET "KEYED-DISCRIMINATION1" BE THE IMPLEMENTATION OF DISCRIMINATION1 AS A
KEYED-DISCRTIMINATION,

Before applying an overlay, the system checks in the library for any specializations or
extensions of the plan on the left hand side. If any exist, the user is given a chance to choose one. In
this case, the system finds two specializations of Composed-functions, namely Hashing and Keyed-
discrimination. The user chooses the sccond, causing the system to instantiate Keyed-discriminationl
as the implementation of Discriminationl. (The user could have responded "no", causing the system
to instantiate an instance of Composed-functions with no further constraints.)

> .
gLIGIBLE SHARING FOR: KEYED-DISCRIMINATION1.ONE ("THE KEY FUNCTION")
1. SYMBOL
2. INFO
71

LET SYMBOL BE THE KEY FUNCTION OF KEYED-DISCRIMINATION1.
LET "FUNCTIONI" THE BUCKET FUNCTION OF KEYED-DISCRIMIANTIONI.

The instantiation of Keyed-discrimination] gives us our first opportunity to sce the maximal
sharing héuristic in action. The system above has scarched for existing objects in the current dcsign
which could fill the roles of Keyed-discriminationl and satisfy the constraints of the Keyed-
discrimination plan. The first filter on this scarch can be the object fypes -- roles One and Two of a
keyed discrimination must be functions. There are three functions in the current design: Symbol,1
Info and Discriminationl. Discriminationl can immediately be climinated from consideration
because it is above Keyed-discriminationl in the tree, so that sharing with it would lead to a

1. Role names are formally functions.
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meaningless circularity. Symbol and Info can be rejected for role Two of Keyed-discriminationl,
since the range of this function is constrained to be finite sets. This Icaves the possibility of Symbol
or Info filling role Onc of Keyed-discrimination, which the system proposes as shown above. The
user chooses a keyed discrimination on the symbol ficld of entrics. The system completes this frame
of the interaction by instantiating Functionl, a function from Lisp atoms to finite sets, to fill role
Two. (Again, the user could have responded "no" to the question above, in which case a new object
would be instantiated for role One as well as for role Two.)

>
APPLICABLE IMPLEMENTATIONS FOR: FUNCTION1 (A FUNCTION)
1. COMPOSED-FUNCTIONS
2. UNARY-LAMBDA
71

SPECIALTIZATIONS OF: COMPOSED-FUNCTIONS
1. HASHING
2. KEYED-DISCRIMINATION

71

LET "HASHING1" BE THE IMPLEMENTATION OF FUNCTION1 AS A HASHING.

[n this next frame, Functionl is implemented as a hash table, Hashingl.

> )
LET "HASH1" BE THE HASH FUNCTION OF HASHINGI1.
LET "TABLE1" BE THE TABLE OF HASHINGI.

Since there arc no existing objects which can fill the roles of Hashingl, the system instantiates Hashl
and Tablel.

> implement the buckets of tablel,

After letting the system carry the initiative for a few steps, the user intervenes here with a
command to retrieve overlays from the library for implementing the buckets of the discrimination
(the range elements of Tablel).

APPLICABLE IMPLEMENTATIONS FOR: BUCKETS OF TABLE1 (A FINITE-SET)
1. LIST
2. SEQUENCE
3. LABELLED-THREAD
4, DISCRIMINATION
71

SPECIALIZATIONS OF: LIST
1. IRREDUNDANT-LIST
? 1

LET "TABLE2" BE THE IMPLEMENTATION OF TABLE1 SUCH THAT )
FOR ALL "I"™ AND "X", If TERM I OF TABLE2 EQUALS X, THEN X IS THE
IMPLEMENTATION OF TERM I OF TABLE1 AS AN IRREDUNDANT-LIST.
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The user above chooses to implement the buckets as lists, and in particular lists without
duplicates. The system responds by instantiating Table2 which is related to Tablel an overlay in
which cach term of Table2 (an irrcdundant list) is viewed as the corresponding term of Tablel (a
finite set).

This completes the part of the data structurc design that is programming language
independent (sce Fig. 6-1). '

Lisp-Specific Data Structure Implementation

The remaining few steps in this section are involving with bringing the data structure design
down to the level of Lisp data objects.

> implement an entry as a dotted pair, such that
entry.symbol=dotted-pair.car and entry.info=dotted-pair.cdr

Here the user specifies the implementation of entries as dotted pairs such that the Symbol
function is implemented by Car and the Info function by Cdr.

>

gPPLICABLE IMPLEMENTATIONS FOR: HASH1 (A HASHING)
1. COMPOSED-FUNCTIONS
2. UNARY-LAMBDA

(3

Hash1 is to be implemented as a Lisp procedure, which will be coded later.

>
gPPLICABLE IMPLEMENTATIONS FOR: BUCKETS OF TABLE2 (IRREDUNDANT-LIST)
1. UPPLR-SEGMENT
2. DOTTED-PAIR
3. LIST-GENERATION
? 2

LET "TABLE3" BE THE IMPLEMENTATION OF TABLE2 SUCH THAT
FOR ALL "I" AND "X", IF TERM I OF TABLE3 EQUALS X, THEN X IS THE
IMPLEMENTATION OF TERM I OF TABLE2 AS A DOTTED-PAIR,
The range elements of Table2 arc not yet implemented as Lisp data objects. The system
suggests three overlays for implementing lists. The user chooses the direct route of implementing

lists as dotted pairs.

> )
APPLICABLE IMPLEMENTATIONS FOR: TABLE3 (A SEQUENCE)
1. SEGMENT
2. VECTOR
3. LIST
(3

LET "VECTOR1" BE THE IMPLEMENTATION OF TABLE3 AS A VECTOR.
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Finally we have Table3, which is a sequence of Lisp data objects (dotted pairs), which can be
implemented as a Lisp vector.

6.3 Procedure Synthesis

The user now moves on to the implementation of some procedures which access the symbol
table data structure. The first procedure is to retricve the entry associated with a given symbol.
Fig. 6-2 gives an overview of this implementation. Down the left side of this figure is the data
structure implementation developed in the preceding section.  As in Fig. 6-1, arrows in this figure
denote overlays, and roles names arc labelled. In this figure, however, many roles are left out in
order to make it more readable. The names in parentheses are the types of the roles.

> Tet "symbol table retrieve" be a specialization of retrieve,
such that the universe is a symbol table, and the key function is symbol.
The starting point for the program development which culminates in the Lookup procedure
a specialization of Retricve, in which the Universe is the symbol table designed in the preceding
section, and the key function is the function which extracts the symbol component of an entry.

In traditional terms, Symbol-table-retricve would be called the specifications for Lookup. In
the framework ¢7 this thesis, however, the usual distinction between specifications and programs as
separate formalisms does not exist. What we have in gencral is plans at various levels of abstraction.
The topmost plan often amounts to what would normally called a specification, and the bottommost
(surfacc) plan is certainly what would be called an implementation.  All of these descriptions are in
the same language, and there arc implementation relationships between the intermediate plans also.
Furthermore, in this framework there is no reason to restrict a user’s starting plan to being an input-
output specification or test with onc input situation and one or two output situations. The most
natural top level description of a program may also be a multi-step plan.

>
APPLICABLE IMPLEMENTATIONS FOR: SYMBOL-TABLE-RETRIEVE (RETRIEVE)
1. ANY-COMPOSITE
2. DISCRIMINATE+RETRIEVE
72
In the interaction above, the system has scarched the plan library for ways of implementing
Symbol-table-retrieve (i.c. for overlays with Retrieve as their right hand side). In the current library,
there are two: the default implementation as Any, and the implementation in which the universe is
implemented as a keyed discrimination (see Fig. 6-3). These are presented as options to the user, who

chooses the second.
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The system at this point could be more clever and conclude that since Symbol-table has

alrcady been implemented as Keyed-discriminationl, therefore the second choice was indicated.

However, this degree of automation in general may be more difficult, particularly in the presence of

multiple views. In any case, once option two is chosen, cither by the system or the user, the maximal

sharing heuristic makes sure that Keyed-discrimination] does become part of the implementation

plan, as shown below.

LET "SYMBOL-TABLE-KEYED-DISCRIMINATE+RETRIEVE"™ BE THE IMPLEMENTATION
OF SYMBOL-TABLE-RETRIEVE AS KEYED-DISCRIMINATE+RETRIEVE.

ELIBIBLE SHARING FOR: SYMBOL-TABLE-KEYED-DISCRIMINATE+RETRIEVE,COMPOSITE
(KEYED-DISCRIMINATION)
1. KEYED-DISCRIMINATION1

T

The system has created a specialized version of the plan Keyed-discriminate+retrieve,

(wherein the keyed discrimination is Keyed-discriminationl) which implements Symbol-table-

retrieve (sec Fig. 6-2).

>

APPLICABLE IMPLEMENTATIONS FOR:
SYMBOL-TABLE-KEYED-DISCRIMINATE+RETRIEVE .DISCRIMINATE(@FUNCTION)
1. COMPOSED-@FUNCTIONS

T

LET "SYMBOL-TABLE-COMPOSED-GFUNCTIONS" BE THE IMPLEMENTATION OF
SYMBOL-TABLE-KEYED-DISCRIMINATE+RETRIEVE .DISCRIMINATE AS COMPOSED-QGFUNCTIONS.

ELTGIBLE SHARING FOR:
SYMBOL-TABLE-COMPOSED-@FUNCTIONS.COMPOSITE (COMPOSED-FUNCTTIONS)
1. HASHING1

)

Since there are no overlays for implementing Symbol-table-keyed-discriminate+retrieve as a

whole, the system proposes applicable overlays for the roles, beginning with the Discriminate role,

which is constrained to be an instance of @Function. There is only onc plan in the library for

implementing @Function, that is as a composition of two other instances of @Function. Using the

maximal sharing heuristic again, these become the application of the hash function, Hashl, followed

by fetching from the hash table, Tablel.

>

%PPLICABLE IMPLEMENTATIONS FOR:
SYMBOL-TABLE-KEYED-DISCRIMINATE+RETRIEVE.IF (RETRIEVE)
1. ANY-COMPOSITE
2, DISCRIMINATE+RETRIEVE
?1

LET "SYMBOL-TABLE-ANY-COMPOSITE" BE THE IMPLEMENTATION OF
SYMBOL-TABLE-KEYED-DISCRIMINATE+RETRIEVE,IF AS ANY-COMPOSITE.
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Implementation of the other role (If) of Symbol-table-keyed-discriminate+retricve is shown
above. This role is an instance of Retrieve applied to the bucket obtained by Discriminate. As
before, the system presents two options for implementing Retricve. This time the user chooses the
first option: retrieval from the bucket is implemented as Any in which the criterion is a composite
(sce Function+two in Chapter Four) of the key function (Symbol) and the Input to Retrieve.

The plan Any-composite is shwon in Fig. 6-4. An instance of Retricve can be implemented
as an instance of Any in which the Criterion predicate has a definiton of the following form.

P(x) = F(x,K)

This way in general of constructing a predicate, P, for a given function, F, and a value, K, is
formalized as the overlay Function+valuespredicate in the appendix. In the implementation of
Retrieve as Any, F corresponds to the key function of Retrieve and K is the input key. This overlay
gives a default way of implementing Retricve in terms of Any. For example, if the Universe set is
implemented as a list, Retricve can be implmented as a cArR-CDR scarch loop.

Loop Synthesis

We now come to the point in the synthesis where we begin to introduce loops into the
design. The job of making sure that the loop implementations of different parts of a program are
combined into a single loop when possible may require more specific cxpertise than is currently

conceived of as part of the maximal sharing heuristic. A temporal synthesis expert module will

therefore likely need to be written to realize this part of scenario.!

)
APPLICABLE IMPLEMENTATIONS FOR: SYMBOL-TABLL-ANY-COMPOSITE.IF (ANY)
1. TERMINATED-ITERATIVE-SEARCH
[

To begin, Any is implemented as Terminated-iterative-search (sce figure in Chapter Five).

>
} ﬁPPLICABLE IMPLEMENTATIONS FOR:
SYMBOL-TABLE-ANY-COMPOSITE.IF . UNIVERSE (FINITE-SET)
1. LIST
2. SEQUENCE
3. LABELLED-THREAD
4. DISCRIMINATION

1. Waters has written a module which does part of this work.
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SPECIALIZATIONS OF: LIST
1. IRREDUNDANT-LIST
T)

LET "SYMBOL-TABLE-IRREDUNDANT~LIST" BE THE IMPLEMENTATION OF
SYMBOL-TABLE-ANY-COMPOSITE.IF, UNTVERSE AS AN IRREDUNDANT-LIST.

The Universe of Any must then be implemented as a loop augmentation which generates
the inputs to the sccond cxit test of this search loop. This takes place in two steps under user
guidance. In the first step above the set is implemented as a list (without duplicates). As earlier in
this scenario, the system could also be more clever here and save the user some cffort. In particular,
the system should realize that the finite sets which fill Symbol-table-any-composite.If.Universe are
the buckets of Tablel, which were implemented ecarlicr as irredundant lists.

>
ﬁPPLICABLE IMPLEMENTATIONS FOR:
SYMBOL-TABLE-IRREDUNDANT-LIST (IRREDUNDANT-LIST)
1. UPPER-SEGMENT
2. DOTTED-PAIR
3. LIST-GENERATION
?3

EXTENSIONS OF: LIST-GENERATION
1. TRUNCATED-LIST-GENERATION
[

SPECIALIZATIONS OF: TRUNCATED-LIST-GENERATION
1. CAR+CDR+NULL
7))

Finally, the irredundant lists of entrics arc implemented as the standard Lisp CAR, CDR and nULL loop.

Code Generation

The final phase of the top-down synthesis scenario is code generation. The user has guided
the implementation of all parts of the program down to the level of applications of the primitive
functions of the programming language and tests of the primitive predicates, connected by data flow
and control flow. All that remains now is for a special purpose procedure, the surface plan
synthesizer, to gather up the constraints between all the terminal nodes of Fig. 6-2 into the form of a
single surface plan. A lot of detail is suppressed in this figure, but the result in the end is essentially
the same surface plan for Lookup as shown in Chapter Five. This surface plan is then turned over to a
code gencrator, which implements the data and control flow using the available connective primitives
in the programming language. A code gencerator for Lisp has been implemented by Waters as part of
the Programmer’s Apprentice project.
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> show code for symbol-table-retrieve

(DEFINE SYMBOL-TABLE-RETRIEVE
(LAMBDA (TABLE INPUT)
(PROG (BUCKET OUTPUT)
(SETQ BUCKET (ARRAYFETCH TABLE (HASH INPUT)))
LP (COND ((NULL BUCKET)(RETURN NIL)))
(SETQ OUTPUT (CAR BUCKET))
(COND ((EQ (CAR OUTPUT) INPUT)
(RETURN OUTPUT)))
(SETQ BUCKET (CDR BUCKET))
(GO LP))))
At the end of all of this the code as shown in Chapter Two and Chapter Five is produced,
perhaps with some minor syntactic variations duc to the stylistic biases of the code gencratyion

algorithm.

Synthesis of Insert

This section shows the synthesis of a procedure to add entrics to the symbol table. ‘Two new
points arc introduced in this example. First, the plans in this implementation involve side effects.
Second, the user intervenes at a key point in the development in order to suggest a reanalysis which
leads the system to the desired program. An overview of the implementation is shown in Fig. 6-5.

> let "symbol table add" be a specialization of set add by side effect
such that the old set is a symbol table, =nd the input does not belong to
the old set.

The starting plan for this synthesis is a specialization of the input-output specification #Set-
add,} in which the old set is a symbol table implemented carlier. #Set-add is a specialization of Set-
add in which the new set has the same identity (but different members) as the old set. The role names
"old" and "new" then refer to the state of the same object before and after the side effect operation,
rather than to different objects. The representation of side effects will be specified in more detail in
Chapters Eight and Ten. Note that the user above has also specified as a precondition that the entry
to be added is not alrcady in the table, which simplifies the implementation.

>
;)\PPLICABLF_ IMPLEMENTATIONS FOR: #SYMBOL-TABLE-ADD (SET-ADD)
1. PUSH
2, INTERNAL-THREAD-ADD
3. DISCRIMINATE+ACTION+UPDATE
? 3

LET "#SYMBOL-TABLE-DISCRIMINATE+ACTION+UPDATE" BE THE IMPLEMENTATION OF
#SYMBOL-TABLE-ADD AS DISCRIMINATE+ACTION+UPDATE, SUCH THAT
#SYMBOL-TABLE-DISCRIMINATL +ACTION+UPDATE .ACTION IS SET ADDITION,

AND #SYMBOL-TABLE-DISCRIMINATE+ACTION+UPDATE .UPDATE IS BY SIDE EFFECT.

1. The character " #" is inlended to be read as "impure”. Thus # Set-add is "impurc set add" or "sct add by side effect”.
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The system begins by retrieving three possible implementations for #Symbol-table-add.
The first two are implementations of Sct-add for scts implemented as lists or labelled threads; the
third is the implementation of Old+input+output-set (of which Set-add is a specialization) for sets
ifnplemcntcd as discriminations, shown in Fig. 6-6. The user chooses the third option,1 and the
system responds, as usual by specializing the left hand side plan appropriately.

Notice that the overlay in Fig. 6-6 is between two plans in which no commitment has yet
been made as to whether or not side cffects are involved. One of the pre-computed properties of this
overlay, however, is that an Update by side effect on the Ieft hand side (i.c. # Newvalue) corresponds
to a Set-add or Set-remove by side cffect on the right hand side.

Since there are no overlays for #Symbol-table-discriminate+action+update as a whole, we
move on to implementing the roles separately. The Discriminate role is an instance of @lFunction, in
which Discriminationl is function applied (Op). The further implementation of this role is simply a
two level composition of instances of @Function which mirrors the decomposition of
Discriminationl into Symbol, Hashl and Tablel, This is shown in Fig. 6-5, but omitted from the
scenario transcript here.

>
APPLICABLE IMPLEMENTATIONS FOR:
ASYMBOL-TABLE-DISCRIMINATE+ACTION+UPDATE .ACTION (SET-ADD)
1. PUSH
2. INTERNAL-THREAD-ADD
3. DISCRIMINATE+ACTION+UPDATE
? 1

LET "SYMBOL-TABLE-PUSH" BE THE IMPLEMENTATION OF
#SYMBOL-TABLE-DISCRIMINATE+ACT ION+UPDATE .ACTION AS PUSH.

Sct-add operations on the buckets (which are implemented as irredundant lists) are
implemented by Push operations.

)
APPLICABLE IMPLEMENTATIONS FOR:
#SYMBOL-TABLE-DISCRIMINATE+ACTION+UPDATE .UPDATE (#NEWVALUE)
1. NEWVALUE-COMPOSITE

7))
LET "NEWVALUE-COMPOSITE" BE THE IMPLEMENTATION OF

#SYMBOL~TABLE-DISCRIMINATE+ACTION+UPDATE .UPDATE AS NEWVALUE-COMPOSITE
BY SIDE EFFECT.

1. As discussed carlier, if the system assumes the same sel is not being implemented two different ways, it could choose this
option on its own initiative. However, some clever implementations actually do involve implementing the same abstract data
structure simultancoulsy two diffcrent ways.
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‘ As discussed in Chapter Four, Newvalue operations on a function implemented as a
composition can be implemented by Newvalue operations on the sccond component only.
Furthermore, a property of this implementation, is that if the operation on the sccond component is
by side effect equivalent, then in effect the composed function has been modified. In this case,
#Newvalue operations on Discrimination] are implemented as # Newvalue operations on Functionl.
Similarly (sce Fig. 6-5, but not shown here), #Newvalue operations on Functionl are implemented
as #Newvalue opcerations on Tablel. This completes implementation of all roles of #Symbol-table-
discriminate+action+update.

>
APPLICABLE OVERLAYS FOR: SYMBOL-TABLE-PUSH (PUSH)
1. BUMP+UPDATE

2. CONS
(3
>
APPLICABLE OVERLAYS FOR: SYMBOL-TABLE-COMPOSED-@FUNCTIONS.TWO (TERM)
1. FETCH
[

Prompted by the user, the system continucs to suggest overlays for implementing the parts
of the design which are not yet down to the level of Lisp primitives. The two simple steps shown
above are: to implement Symbol-table-push as cons, corresponding to the implementation of the
buckets of the -able as Lisp lists; and to implement Term applied to Tablel as ARRAYFETCH,
corresponding to the implementation of Tablel as Vectorl.! Other simple steps, omitted here, are
the implementation of the application of Symbol as cAR, and the application of Hashl as a procedure
call. This leaves only #Newvalue applicd to Tablel (sce Fig. 6-5) to be implemented further.

>
APPLICABLE IMPLEMENTATIONS FOR: .
#SYMBOL-TABLE-NEWVALUE-TWO-COMPOSITE ,ACTION (#NEWVALUE)
1. NCWVALUE-COMPOSITE
?n

’ ﬁo APPLICABLE OVERLAYS.

Unfortunately, the only implemention in the current library for #Newvalue? is for a
function implemented as a composition of two functions, which is not what we want for Tablel. At
this point the simple refinement strategy used by the system thus far is stymied. The problem is that,
in order to implement #Ncwvalue as the simpler #Newarg (which then becomes ARRAYSTORE for
Lisp vectors), the system must recognize that the function involved is one-to-one (a Bijection) and

1. This is skipping the intermediate steps of Table2 and Table3, as discussed earlier.
2. Recall that Newvalue is the specification for updating a function such that all arguments that used to map to a given value,
map (o a ncw given value.
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that the argument which maps to the old value has alrcady been computed. This is the plan
@Function+newvalue, shown on the right hand side of Fig. 6-7.

The basic idea of the overlay in Fig. 6-7 is that in the special case of onc-to-one functions, an
instance of @Function followed by Newvalue, as in the Discriminate+action+udpate plan, can be
implemented simply by an instance of Newarg. In other words, if you know that there is only one
domain element which maps to a given range clement, then updating all domain clements which map
to that range clement (i.c. the specifications of Newvalue) degencrates into changing the value
associated with that one domain clement (i.c. Newarg). Furthermore, in terms of side effects, an
impure Update operation (#Newvaluc) in @Function+newvalue corresponds to #Newarg.

> recognize @function+newvalue.

LET "#SYMBOL-TABLE-GFUNCTION+NEWVALUE" BE A SPECIALIZATION OF
@FUNCTTON+NEWVALUE SUCH THAT
#SYMBOL-TABLE-@FUNCTION+NEWVALUE ,ACTTON.OP=TABLEL .

The user guides the system at this point by advising it to try to recognize an instance of the
plan @Function+newvalue somewhere in the current design. Given the focus of trying to recognize
only one particular plan, the system succceds in noticing that Symbol-table-composed-
@functions. Two (sec Fig. 6-5 together with the #Symbol-table-newvalue-two-composite.Action

1 What has happened here is that parts of two

satisfy the constraints of @Function+newvalue.
different branches of the tree have been grouped together to recognize a plan which has a known
implementation. This is a novel feature of this sythesis scenario as compared to the standard top-
down refinement approach.
> )
APPLICABLE IMPLEMENTATIONS FOR:

#SYMBOL-TABLE-@FUNCTION+NEWVALUE (GFUNCTION+NEWVALUE)
1, NEWARG-BIJECTION

T

LET "#SYMBOL-TABLE-NEWARG-BIJECTION" BE THE IMPLEMENTATION OF
#SYMBOL-TABLE-@FUNCTION+NEWVALUE AS NEWARG-BIJECTION.

Now the overlay can be applied which implements #Newvalue as #Newarg, or in the case of a
sequence, # Newterm,

>
APPLICABLE IMPLEMENTATIONS FOR: #SYMBOL-TABLE-NEWARG-BTIJECTION (#NEWTERM)
1. #STORE
T

and finally, as #Store.

1. Tablel is an irredundant sequence, which means it is a one-to-one function.
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Code generation follows in a similar fashion to before.

> show code for #symbol-table-add

(DEFINE SYMBOL-TABLE-ADD
(LAMBDA (TABLE TNPUT) ;MODIFIES TABLE.
(PROG ( INDEX)
(SETQ INDEX (HASH (CAR INPUT)))
(ARRAYSTORE TABLE INDEX
(CONS (ARRAYFETCH TABLE INDEX)
INPUT)))))

Synthesis of Delete

The last procedure to be synthesized is for associative deletion of entries in the symbol table.
This procedure and its development share many features with Lookup and INSERT. This part of the
scenario will therefore be brief and will for the most part rely on Fig. 6-8 rather than showing the
detailing system-user interactions, as in the preceding sections.

> let "symbol table expunge" be a specialization of expunge by side effect such
that the old set is a symbol table and the key function is symbol;
and such that there exists a unique "x" such that x belongs to the old set
and the key function applied to x equals the input,
Thesc are the starting specifications. Notice that the deletion is by side effect, and that there
is expected to be exactly onc entry in the table whose Symbol is the given Lisp atom. This

precondition is a standrad specialization of Expunge in the library called Expunge-one.

>
APPLICABLE IMPLEMENTATIONS FOR: #SYMBOL-TABLE-EXPUNGE-ONE (EXPUNGE-ONE)
1. RESTRICT-COMPOSITE
2. KEYED-DISCRIMINATE+EXPUNGE+UPDATE
ez

LET "#SYMBOL-TABLE-KEYED-DISCRIMINATE+EXPUNGE+UPDATE" BE THE IMPLEMENTATION
OF #SYMBOL-TABLE-EXPUNGE-ONE AS KEYED-DISCRIMINATE+EXPUNGE+UPDATE.

For sets implemented as keyed discriminations, Expunge is implemented by the three step
plan Discriminate+expunge+update, shown in Fig. 6-9 which is similar to Discriminate+action+
update in the implementation of syMBoL-TABLE-ADD. l.ike Discriminate+action+update the standard
pre-compiled side effect analysis of this plan says that the side effect implementation is achieve by
specializing the Update step to # Newvalue. Part of the cleverness in this synthesis example involves
avoiding this step by performing the Action by side effect instead.

The first step, Discriminate, is an instance of @Function which computes the appropriate
bucket from the given key. The implementation of this step uses the plan Symbol-table-composcd-
@functions, which was developed in the synthesis of Lookup (sce Fig. 6-8).
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>
APPLICABLE IMPLEMENTATIONS FOR:
#SYMBOL-TABLE-KEYED-DISCRIMINATE+EXPUNGE+UPDATE ,ACTION (EXPUNGE-ONE)
1. RESTRICT-COMPOSITE
2. KEYED-DISCRIMINATE+EXPUNGE-+UPDAT
7?1

LET "SYMBOL-TABLE-RESTRICT-COMPOSITE" BE THE IMPLEMENTATION OF
#SYMBOL-TABLE-KEYED-DISCRIMINATE+EXPUNGE+UPDATE ,ACTION AS RESTRICT-COMPOSITE.
The Expunge-onc action on the buckets is implemented in the default way as Restrict, in
which the criterion is a composition of the Symbol function and #Symbol-table-cxpunge-one.Key.
This overlay is shown in Fig. 6-10. It is similar to the implementation of Retricve as Any-composite
in SYMBOL-TABLE-RETRIEVE. Furthermore, it is a property of this overlay that if the right hand side is
specialized to Expunge-one, then the Action on the left hand side is correspondingly specialized to
Restrict-one, in which there is expected to be only one member of the Universe set which satisfies the
given Criterion.,
>
APPLICABLE TMPLEMINTATIONS FOR:
SYMBOL-TABLE-RESTRICT-COMPOSITE .ACTION (RESTRICT-ONE)
1. ITCRATIVL-FILTERING

2. @TAIL+INTERNAL
? 2

LET "SYMBOL-TABLE-@TATL+INTERNAL" BE THE IMPLEMENTATION OF
SYMBO!-TABLE-RESTRICT-COMPOSITE ,ACTION AS @TATL+INTERNAL,
Restrict can be implemented cither as a filtering loop, or as the plan @Tail+internal, shown
in IFig. 6-11. This plan removes a member from a sct implemented as an irredundant list.

Removing a member from a set implemented as an irredundant list breaks down into two
cascs: if it happens that thc member to be removed is the head of the list, then removal is achicved
simply by a taking the tail of the list; otherwise, viewing the list as a labelled thread, the internal node
of the spine which is labelled with the given member must be found and removed. These two cases
will eventually manifest themselves in the code for SYMBOL-TABLE-DELETE as follows:

(PROG (... BUCKET PREVIOUS)
(COND ((EQ (CAAR PREVIOUS) INPUT)
(... (CDR PREVIOUS))
(RETURN NIL)))
LP ...
(COND ((EQ (CAAR BUCKET) INPUT)
(RPLACD PREVIOUS (CDR BUCKET))
(RETURN NIL)))

Ly

(60 LP))

Let us first consider the overlay @Tail+internal>restrict in Fig. 6-11, which formalizes the
breakdown into two cascs described above. On the right hand side of this overlay we have Restrict-
one, which specifies the removal of the (unique) member of a set which does not satisfy a given
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criterion. The essence of the plan on the left, which implements these specifications, is a conditional
(Cond). The Input to the test of this conditional is the head of the irredundant list which implements
the OId sct; the criterion is the complement of the criterion of Resrict-one. The output of this
conditional (End.output) is the irrcdundant list which implements the New set. In the Succeed case
(i.c. when the head of the input list satisfics the given criterion), this output is the resulting of taking
the tail of the input list. In the Fail case, the new list corresponds to the New labelled thread of
Internal, an instance of Internal-labelled-thread-find+remove.

Internal-lahelled-thread-find+remove, shown in Fig. 6-12, is an extension of Internal-thread-
find+remove. In this plan, the old and new lists are thought of as labelled threads. Internal-labelled-
thread-find+remove removes an internal node from the spine of a labelled thread (O1d), the label of
which satisfies a given predicate, resulting in a (New) labelled thread. As used in @ Tail+internal, the
criterion applied by Find to cach node in the spinc of the labelled list is composed from
Updatc.if.criterion and the label function of the list viewed as a labelled thread, according to the
overlay Predicate+function>predicate, given in the appendix. he basic idca of this construction is to
test the label of cach node, rather than the node itself. Thus for example, if the label function is Car
(as in the case of Lisp lists), and Update.if.criterion is P, then the criterion of the Find step is Q
defined as follows:

Q(x) = Pcar(x)

>
APPLICABLE IMPLEMENTATIONS FOR:
SYMBOL-TABLE-@TAIL+INTERNAL . INTERNAL.FIND (INTERNAL-THREAD-FIND)
1. TRAILING-GENERATION+SLARCH

7))

Internal-labelled-thread-find+remove has two roles. The first role, which is an instance of
Internal-thread-find, is implemented as a Trailing-gencration+scarch loop, as shown in Fig. 6-14.
The Universe of Internal-thread-find is the thread gencrated by the trailing gencration, and the two
outputs of the loop correspond to the two output of Internal-thread-find. This plan will eventually
appear in the code for SYMBOL-TABLE-DELETE as follows, in which the function being applied by the
action is Cdr, the Current object is hold in BuckeT and the Previous object in PREVIOUS.

(PROG (... BUCKET PREVIOUS)

LP (SETQ BUCKET (CDR PREVIOUS))
(COND ((...BUCKET...)
...PREVIOUS. . .BUCKET...
(RETURN NIL)))
(SETQ PREVIOUS BUCKET)
(60 LP))

The system then proposes to implement Internal-thread-remove by splicing out, but the
uscr intervenes to suggest a reanalysis.
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>
%PPLICABLE IMPLEMENTATIONS FOR: SYMBOL-TABLE-@TAIL+INTERNAL.INTERNAL.REMOVE
- - (INTERNAL-THREAD-REMOVE)
1. SPLICEQUT
? no

> recognize #actiontupdate.

LET #SYMBOL-TABLE-ACTION+UPDATE BE A SPECTALIZATION OF #ACTION+UPDATE
~ SUCH THAT #SYMBOL-TABLE-ACTION+UPDATE.UPDATE.OLD=FUNCTION1 .
In contrast to SYMBOL-TABLE-ADD, where advice from the user was crucial to completing the
synthesis, this intervention is merely to cause the system to come out with a more cfficient program.
In particular we want the system to realize that, if Internal-thread-remove is implemented by side
- effect, then in the case when the member of the bucket to be deleted is not the Head, the operation to
update the table is not necessary. This picce of implementation knowledge is represented in the
library by the overlay #Old+input+new>action+update, which will be discussed further in Chapter
Ten. The basic idea of this overlay, however, is that in general, modifying a range clement amounts
to modifying the function. In order to apply this overlay, however, the system must first group
together parts of plans on different branches of the tree (sce Fig. 6-8), as was the casc in the synthesis
of SYMBOL -TABLE-ADD.

Thus the system implements the Internal.Remove step of Symbol-table-@tail+internal as
#Internal-thread-remove, which is further implemented as #Spliccout, as shown in Fig. 6-16.

Spliceout has four roles: Old and New, which are iterators with the same sced; Bump,
which is an instance of Apply; and Splice, which is an instance of Newarg. The purpose of Bump is
to get the successor of the node to be removed, which becomes the Input of Splice. The Arg of Splice

-~ is the predecessor of the Input of Bump (which typically comes from an instance of Internal-thread-
find). The Op of the old iterator (c.g. Cdr for Lisp lists) is the Op input to both Bump and Splice; the
Op of the new iterator is the output of Splice. This plan will eventually emerge as the following code
in SYMBOL-TABLE-DELETE,

- (RPLACD PREVIOUS (CDR BUCKET))

Spliceout implements  Internal-thread-remove  as  described by the overlay

Spliccout>remove, shown in Fig. 6-16. The old iterator implements the old thread, and the new

itcrator implements the new thread. The node being deleted is the Input of Bump. Notice that the

-~ Arg input to Splice in the Spliccout plan (the predecessor of the node deleted) has no corresponding

object on the right hand side of the overlay. This means that as far as this overlay is concerned, some

other part of the program surrounding an instance of the Ieft hand side (c.g. the Internal-thread-find)

must provide an Arg input to Splice which satisfics the successor constraint. In other words this is an

implementation of Internal-thread-remove for the casc when we alrcady know the location of the
node to be removed.
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v By the further rearrangement and straightforward implementation steps, we arrive finally at
a surface plan which can then be turned over to the code gencrator. The resulting code is essentially
the same as in the scenario of Chapter Two.

> show code for #symbol-table-expunge-one.

(DEFINE SYMBOL-TABLE-DELETE
(LAMBDA (TABLE INPUT)
(PROG (INDEX BUCKET PREVIOUS)

(SETQ INDEX (HASH INPUT))

(SETQ PREVIOUS (ARRAYFETCH TABLE INDEX))

(COND ((EQ (CAAR PREVIOUS) INPUT)
(ARRAYSTORE TABLE INDFX (CDR PREVIOUS))
(RETURN NIL)))

LP (SETQ BUCKET (CDR PREVIOUS))

(COND ((EQ (CAAR BUCKET) INPUT)
(RPLACD PREVIOUS (CDR BUCKET))
(RETURN NIL)))

(SETQ PREVIOUS BUCKET)

(GO LP))))
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CHAPTER SEVEN
VERIFICATION BY INSPECTION

Verification has two aspects: verifying correctness and detecting errors.  Inspection
methods arc applicable in both of these areas.

In the arca of verifying correctness, the basic idea is to usc only implementation steps that
are already known to be correct. The overall correctness of a program then follows directly from the
correctness of the building blocks. This implics that the maintainer of the plan library must convince
themself that cach overlay in the library is correct.

Verifying Overlays

As will be explained further in Chapter Eight, an overlay is formally a function from
instances of the plan on the left hand side to instances of the plan on the right hand side. For an
overlay to be correct means formally that this function and its inverse must be fofal (i.c. it and its
inverse must be defined on all clements of the domain and range). Practically spcaking, the effect of
this definition of correctness is to force all of the conditions required for the correct use of an overlay
to be explicitly stated in the constraints of the plans on both sides.

The verification of overlays is important for this thesis only in that it is possible. Chapter
Fight specifies the logical foundations of the plan calculus within which it is possible to verify
overlays to whatever degree of rigor is warranted, up to and including a step-by-step formal proof in
first order logic (which might be mechanically checked). Note however that these proofs can be quite
difficult and idiosyncratic, depending as they do on the mathematical properties of the various
programming domains involved; but this is as expected. The basic idea of inspection methods is to
take advantage of this effort by re-using these standard forms in new situations.

Near-Miss Recognition

An inspection method for error detection is called near-miss recognition.  In ncar-miss
recognition, most but not all of the constraints of a plan are satisficd. If part of a user’s design almost
matches a plan in the library, the discrepancy between the two descriptions can be brought to the
user’s attention as a potential crror. This method of crror detection thus makes use of the standard
correct plans in the library to detect errors, rather than explicitly adding a taxonomy of crrors to the
"grammar" as in Ruth.
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Like all inspection methods, error detection by inspection is not as powerful as more general
mecthods. However, it has the advantage that potential errors are characterized in terms which are
closer to the engineering vocabulary of the user’s design. The remainder of this chapter gives an
example in detail. The method described in this example has not yet been implemented, however the
implementation of an algorithm for near-miss pattcrn matching using the plan library of this thesis is
currently in progress by Brotsky.

In the scenario of Chapter Two, the uscr typed in the following code for finding an clement
in a list satisfying a given critcrion, and splicing it out.

(DEFINE BUCKET-DELETE
(LAMBDA (BUCKET INPUT) ;MODIFIES BUCKET.
(PROG (P Q)
(SETQ P BUCKET)
LP (COND ((FQUAL (CAAR P) INPUT)

(RPLACD Q P) ;SPLICE OUT,
(RETURN BUCKET)))

(SETQ Q P)

(SETQ P (CDR P))

(60 LP))))

There were two crrors detected in this code: one in the loop that finds the element, and one

in the splicing out. This scction discusses only the detection of the first error.

The first step in detecting an crror is to translate the code above into the plan calculus as
discussed in Chapters Four and Five. The surface plan for the loop part of BUCKET-DELETE (not
including the splice out after the loop) is shown on the left of Fig, 7-1. To make this example casier
to follow, the surface plan shown in the figurc has been simplified by omitting the control flow arcs
(since the important recognition in this example depends on the data flow), and by assuming that the
code (EQUAL (CAAR P) INPUT) has alrcady been analyzed as the testing of p by a composite predicate
madc up out of the Eq relation, the Caar function and eut.!

The detection of the error in this loop plan has three steps. [n the first two steps, the plans
Trailing-search and Itcrative-gencration are rccognized (see Chapter Five for a discussion of
recognition).  After a successful recognition, the system in general attempts to recognize any
specializations or cxtensions of the recognized plan in the library. In this example, Trailing-
generation+search is an cxtension of both Trailing-scarch and lterative-generation in which a data
flow arc is added between the output of the Action step of Iterative-gencration and the input of the
Exit test of Trailing-scarch.

1. Sce Binrel + two>predicate and Predicate + function>predicate in appendix.



158

\; \V 4

i {(0oxdicde,

§
Len A R

R PR AV A
:"' [/
X
{

rend k_l/ .

B (AOW\ “fwo- M(Mi

Vo e

- 'D@,\Q‘QJ- {oo? o

Figure 7-1. Recognizing Trailing Scarch in Bucket-Delete.
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In the third step, the system tries to recognize Trailing-generation+search in the surface plan
-- and finds that the required data flow is missing. The systemn then decides to consider this as a near-
miss (rather than just a failure to match) and warns the user. The exact criteria for distinguishing in
genceral between near-misses and failures to match will have to be determined experimentaily.

Fig. 7-1 illustrates the recognition of Trailing-search in the surface plan for BUCKET-DELETE.
Trailing-search, shown on the right hand side of the figure, is a loop plan with four roles: Exit, Tail,
Current and Previous. As in all loop plzms,l the recursively defined role is called Tail. The Exit role
is a conditional plan which groups together the cxit test (Exit.If) of the loop and the join (Fxit.If) "on
the way up". If the exit test succeeds, the loop terminates (and the input to the test is available
through the join as an output of the loop); otherwisc it continues. The Current and Previous roles are
what make this plan a trailing loop. The Current object on each iteration is the same as the Previous
objcct on the next iteration (Tail.Previous). The Current object in a trailing scarch Joop is the input
to the test; and both the Current and the Previous object arc available through the join as outputs of
the loop.

Delete-loop can be analyzed as Trailing-scarch by corresponding Delete-loop.If with
Trailing-scarch.Exit.If (in which case p in the code corresponds to the Current object), and
corresponding  Delete-loop.End  with  Trailing-scarch.Exit.End (in which case @ in the code
corresponds to the Previous object).

Fig. 7-2 illustrates the rccognition of lterative-gencration in the surface plan for
BUCKET-DELETE. Itcrative-gencration is the plan for repeatedly applying a given function (the same
function each time) to the output of the preceding application of that function. This plan has two
roles: Action and Tail. Action is an instance of @Function, in which the function is applied; Tail is
the standard recursive invocation. Declete-loop can be analyzed as Iterative-generation by
corresponding Delete-loop.One with Iterative-generation.Action, as shown in the figure.

In the third and final step of this scenario, the system attempts to recognize Trailing-
generation+scarch. This plan as five roles: Exit, Action, Tail, Current Previous. Exit, Current and
Previous arc constrained as in Trailing-scarch; Action is constrained as in Iterative-gencration; Tail is
recursively defined. In addition, there is a data flow constraint between Action.Output and
Exit.Test.Input. This data flow is not found in Delete-loop, Icading to the following crror message
(from the scenario in Chapter Two.)

1. A detailed taxonomy of loop plans is given in Chapler Nine.
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WARNING! THE LOOP IN BUCKET-DELETE IS ALMOST A
TRAILING GENERATION AND SEARCH,
CURRENT: P
PREVIOUS: 0
EXIT: (COND ((EQUAL (CAAR P) ...)))
ACTION: (CDR P)
EXCEPT THAT THE OUTPUT OF THE ACTION IS NOT EQUAL TO THE
INPUT OF THE EXIT TEST.
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CHAPTER EIGHT
LOGICAL FOUNDATIONS

8.1 Introduction

The preceding chapters take a practical approach to the issue of knowledge representation.
This has meant focussing on how the plan calculus is used in a practical program understanding
system, such as a programmer’s apprentice. This chapter takes a more semantic and formal approach
to plans. We begin by defining a formal logical language, called the situational calculus, similar to the
situational calculus of McCarthy and Hayes [42]. This language is adequate for expressing the
fundamental computational concepts we arc interested in.

We use the situational calculus to provide a semantic foundation for the plan calculus by
giving rules for translating plans into scts of axioms in the situational calculus. The presentation of
these rules will be done in two stages. TFirst we will develop cnough of the situational calculus to
support the semantics of data plans and overlays. We will then add a notion of temporal order and
give the translation rules for temporal plans and overlays.

The reason for doing this is to be more precise about what the rules of inference are for plan
calclus. For cxample, we need to answer questions like whether one plan subsumes another, or
whether one plan is a correct implementation of another. This is particularly important in order to
pre-verify plans in the plan library.

In most of this chapter, examples of Lisp computations will be used to motivate various
aspects of the formalism. However, the logical framework developed here is equally applicable to
. other conventional sequential programming languages.
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8.2 Mutable Objects and Side Effects

The everyday world of physical objects is a system with mutable objects and side effects.
For example, if T drill a hole in my dining room table, [ normally choose to think of it as the same
object cven though it now behaves differently (i.c. has different propertics). Similarly for a
hicrarchically structured object, such as an automobile, changing some of the parts (for example
replacing the brake linings) is normally viewed as a side cffect, rather than resulting in a new
automobile which has many of the same parts as the original.

The question of side effects is tied up with the phenomenon of naming.1 As observers of
the system, we choose to use the same name for the dining room table and the automobile at two
different points in time, despite the fact that they have been modified. The notion of mutable objects
thus involves two aspects: identity and behavior. The identity of a mutable object is unchangeable.
[ts behavior can change over time.

Syntax

The language we will use to cxpress these ideas formally is called the situational calculus.
Syntactically, the situational calculus is a standard first order logical language with constants,
variables, function and relation symbols, logical connectives (A, v and —), quantifiers (V and 3), and
cquality (= and #). Sct theory (€ and €) and integer arithmetic (Plus, Times, Gt, ctc.) are taken for
granted.

Basic Semantic Domains

The identity of a mutable object is embodicd in its name. The sct of names is called P. If p
is a name, we will commonly say "the object p", rather than more precisely "the object named by p".
Names are similar to what are called pointers in computer science.

The universe of possible behaviors is called U. Think of U as a universe of mathematical
entities which are used to describe the propertics of objects at given points in time. A nice feature of
this approach is that U can be treated strictly as formal domain (with an equality relation). For
example, supposc we want to talk about mutable sets; U would then be the universe of mathematical
sets.

Time is represented as a sct of situations, S. Situations are denoted in the language by
constant symbols such as s and t. In this scction, we are interested only in a notion of time for

1. Sussman and Stecle give a véry good illustration of this point in the context of programming language interpreters in [58].
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distinguishing diffcrent behaviors of mutable objects. In a later section, a primitive order relation on
situations will be introduced in order to specify the flow of control in computations.

Behavior Functions

The behavior of an object at a given point in time is cxpressed by a behavior finction, which
maps from a name and a situation to a behavior.

B:PXS—->U

The term B(p,s), where B is a behavior function, may be thought of as expressing the "state
of object p at s". The notion of whether or not an object p exists at time s is represented by mapping
the behavior of p in some situations to a distinguished clement of U called Undefined.

Generally speaking, a computing system provides the user with a sct of primitive names and
one or more primitive behavior functions, out of which all other mutable objects are built.  For
example, in Lisp the primitive names arc the pointers (addresses) of cons cells, arrays, and atoms.
The primitive behavior functions specify the dotted pair behavior (i.e. the car and cor) of cons cells
at given points in time; the array behavior (i.c. the current function from indices to objects) of array
pointers; and the property list of atom pointers. The complete details of the model of Lisp used in
this thesis will be ziven later.

Fquality

Fquality in P, S and U is denoted by "=", with the usual rules of substitution. We first
consider the intuitive meaning of equality in these three domains, and then discuss how the notion of
side effect is represented using equality.

Intuitively, p=q, for two names, p and q, mcans that p and q arc different names for the
same object. This could be the casc if we introduced two anonymous objects named p and q, and
then wanted to consider what would happen if they were the same object.

Intuitively, s=t, for two situations, s and t, means that the behavior of all mutable objects is
the same in s and t. We express this formally as the Axiom of Extensionality for Situations, which has
the following form (where B,C,... arc behavior functions).

Vst [Vp[B(p,s)=B(p,0) A Clp,s)=C(p,0) A ..] Ds=1]

For a given computing system it is adcquate to include only the primitive behavior
functions in this axiom. For example, for Lisp, two situations arc equal in which all cons cells have
the same cArR and CpPR, all arrays have the same items, and all atoms have the same property lists.
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Later in this chapter, we will extend this axiom to distinguish situations which are temporally distinct,
but in which the behavior of all objects is the same.

Equality in U is the cquality relation for the particular mathematical domain used to
represent behavior. For example, if U is sets, then normal set equality is used.

Side Effects

We speak of a side effect having occured when an object behaves differently in two
situations. Formally this is when for some behavior function, B,

B(p.s)#B(p,t) where s#t.

We say here that p has been modified. For example, to describe the side effect in which the
integer 3 is added to the mutable set p which originally contains the integers 1 and 2, we write the
following.

set(p,s)={1,2}
set(p,t)=1{1,2,3} where s#t

To say that the behavior of an object p is the same in two situations, s and t, we write
B(p.s)=DB(p,0).

Behavior Types

In practice, we want to use many different mathematical domains, such as pairs, sequences,
sets, integers, lists, ctc., to specify the behavior of mutable objects. These sub-domains of U are called
behavior types.

The details of how a behavior type is specified are not important for this level of discussion.
For now we can think of a type as providing two things: a predicate on clements of U which
distinguishes behaviors of that type from other behaviors, and a rule for determining cquality

Table 1. Axioms for Dotted Pairs.
Axiom of Extensionality

V xy [ [dotted-pairp(x) A dotted-pairp(y) A car(x) =car(y) A cdi(x) =cdr(y)] D x=y]
Axiom of Comprehension

Vxy[ [x#undefined A y#undefined] D 3z [dotted-pairp(z) A car(z)=x A cdr(z)=y] ]
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between behaviors of that type. For example, for dotted pairs, the type predicate is Dotted-pairp,
and the rule for cquality is an axiom which says that two dotted pairs arc cqual if their AR and CDR
arc cqual, as shown in Table L.

Associated with each behavior type we usually defince a behavior function which maps to
clements of that type. For example, Dotted-pair is the primitive behavior function of Lisp which
specifies the dotted pair behavior of a cons cell at a given point in time. This function thus has the
following rclatio'nship to the type predicate Dotted-pairp. (In the following local context Greek
letters will be used for clements of U.)

Y ps [a = dotted-pair(p,s) O [dotted-pairp(a) V a =undcfined] |

Alternatively, we can (and will) take the approach of considering the behavior function
rather than the type predicate as primitive. For example, for dotted pairs, we can define the type
predicate in terms of the behavior function as follows.

dotted-pairp(x) = [Aps dotted-pair(p,s) = x A xZundefined]

In general, for type T (formally a behavior function), we can always write
[Aps T(p,s)=x A x#undcfined] .

where we necd to assert a type predicate on x. Furthermore this will be abbreviated!
instance(T,x) .

Function Objects

Many plans in this thesis arc paramecterized with respect to functions and relations. For
example, a directed graph is modelled as a set of nodes and an edge relation. The accumulation loop
plan abstracts away from which particular aggregative function (e.g. Plus, Times, Union) is used. We
also need to talk about functions as mutable objects. For example, splicing opcerations are viewed as
side cffects to the edge relation of a graph.

In order to formalize such plans, we introduce functions as a behavior type in U. The
standard technique for doing this is in a first order language is to introduce the function symbol,
Apply (and Apply2 for functions of two arguments, ctc.) which is axiomatized as shown in Table 11
For basic functions, such as Plus, Times, ctc. which we want to use both as first order function
symbols and as clements of U, we introduce corresponding underlined symbols such as Plus, Times,

ctc. with axioms such as the following.

1. Instance must be formally treated as a syntactic abbreviation in order to keep the language first order.
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Table I. Functions énd Sequences.
Axiom of Extensionality

V /g [ [instance(function,f) A instance(function,g) A ¥ x apply(fix) = apply(g.x)] D f=g
Sequences

VIf[ [instance(function,f) A ge(7,0) A Vi [apply(f,)# undcfined = [ge(i,1) A le(i,)} 1]
= [instance(sequence,f) A length(f)=1]

Y x apply(oncplus, x) = oneplus(x)

Furthermore, given this convention, we can omit the underlining since the underlined
symbols can appcar only as terms, which are syntactically distinct from function symbols in a first
order language.

Relation objects are modelled as boolecan valued functions. [For example, the element of U
which corresponds to the arithmetic binary relation, Gt, is axiomatized as follows.

Vxy [apply2(gt,x.y)=true = gl(x.y)]

Sequences are treated as functions on a range of integers. This makes it convenient to
model vectors in Lisp as mutable sequence objects.  For example, to describe a STORE operation in
which the first item of a vector p is changed from 3 to 4, we write the following,.

apply(sequence(p,s),1) =3
apply(sequence(p,t),]) =4 where s#t

Sequences are introduced formally as a subtype of functions by the last axiom in Table II,
which states basically that a sequence is a function defined for all integers between 1 and the length
of the sequence.

As a final example of mutable function objects, consider a view of Lisp in which cAr and
¢or are the names of mutable function objects, whose domains arc cons cells. In this view, RPLACA
and reLAch are modelled as modifying the function behavior of cAr and cpg, rather than modifying
the dotted pair behavior of a given cons cell. The relationship between these two views is expressed
in the following axioms.

Y ps apply(function(car,s),p) = car(dotted-pair(p,s))
V ps apply(function(cdr,s),p) = cdr(dotted-pair(p,s))
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8.3 Multiple Points of View

The ability to view the behavior of an object in different ways is fundamental to this thesis.
We also need to represent objects whose behavior at a given time depends on the behaviors of other
objects at the same time. (This is similar to the notion of implementation in computer science.)

As a simple example, suppose we arc using a computing system in which mutable sets are
not provided as primitives. [f mutable sequences arc available (cither as primitives or themselves
built out of some other mutable objects), we can in effect implement a mutable set by viewing a
sequence as the set of its range clements. This point of view is defined formally as follows.

=sequencedset(p.s) = [instance(set,o) A
Ya[(a € o) = ilapply(scquence(p,s).))=a A a=undefined]]]

Sequencesset is a behavior function for sets. Notice that the form of this definition is to
construct a set behavior function using a sequence behavior function, as highlighted below.

o =scquence>set(p,s) = [..sequence(p,s)...]

We make other definitions of this form to describe how to implement set behavior in terms
of list behavior,

o =list>set(p,s) = [...list(p,s)...]
and scquence behavior in terms of list behavior,

0 =list>sequence(p,s) = [..list(p,s)...]
and‘ SO on.

This way of defining behavior functions in terms of other behavior functions is the key idea
for representing the implementation of mutable objects.  However, one could argue that this
approach misses the morce fundamental implementation relationships between elements of U, e.g.
from mathematical sequences to mathematical sets. This anomaly is solved by extending the
functionality of behavior functions so that their first argument may be cither a name or an clement of
U.

B:(PUU)XS—->U

For cach primitive behavior function, such as Sct, Sequence and List, we define an
additional axiom which says in cffect that behaviors are immutable objects which behave like
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themselves.! For example, for Sequence we have the following axiom.
Y [instance(sequence,d) D Vs scquence(8,s)= 6]

Given this convention, dcfinitions like that of Sequencerset express both the
implementation relationship between mathematical sequences and mathematical sets and between
mutable sequences and mutable sets.

Sharing

Related to the notion of mutable objects and multiple points of view is the fact that two
objects can share structure. The significance of sharing is that side cffects on an object propagate to
become side effects on other objects with which it shares structure. For cxample, in Lisp, a single
RPLACA can modify the behavior of several different list objects. This is similar to what is called
"aliasing" in computer scicnce.

Sharing arises out of implementations which involve names. In order to describe such
implementations, we nced to make names part of U.

PCU

In other words we can have pairs of names, sets of names, sequences of names, etc. Given
the convention introduced above that behaviors name themselves, this means that the functionality of
behavior functions is now simply

B:UXS—U.

Since we still want to distinguish thosc elements of U which are not names; we define the set
of values, V, as

V=U-P.
(In the following local context, Greek letters will now be used to denote values.)

The casiest way to cxplain how shared structure and the propagation of side cffects arises
from the use of names is by an cxample. Consider implementing a (mutable) set as a (mutable)
sequence of (mutable) sets, such that an object is a member of the implemented set iff it is a member
of one of the sets in the sequence. This is part of the idea of hash tables, in which the scts in the
sequence are called "buckets”. This implementation can be defined formally as follows.

1. This is similar to the idea in Lisp that constants such as T, NIL and integers, evaluate to themselves.
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o =scquence-of-sets>set(p,s) = [instance(sct,o) A
Vx[(x € o) = 3i(x € set(apply(sequence(p,s),d),s)] |

Notice, as highlighted below, that the Sct behavior function is used to obtain the set
behavior of terms in the scquence.

o =scquence-of-sets>set(p,s) = [...set(apply(sequence(p,s),...),s)...]

This means that the terms in the sequence may be names. By always using behavior
functions this way, we provide for the mutability of objects.

Now let us sec how this implementation leads to sharing. In particular, let us sce how a side
effect to any bucket amounts to a side cffect to the implemented set. Consider a sequence named H
which is viewed as implementing a sct according to the technique of Sequence-of-setsyset.
Furthermore, suppose B is some bucket of H at some particular time s,

apply(scquence(H,s),i)=B
and that the sequence H is not modified between sand t.
sequence(H,s) =scquence(H,t)
However, if B is modified between s and t, i.e.
set(B,s)#set(B,t) where s#t,
it follows from the definitions above that the Scquence-of-sets>set behavior of H s also modified.
sequence-of-setsyset(H,s)#scquence-of-sets>set(H,t)

The general point illustrated by this example is that the potential for structure sharing and
the propagation of side cffects is introduced whenever you start to manipulate names (pointers) as
behaviors. It is usual to think of sharing at the lowest level of irmplementation, such as at the machine
language level, or at the cons cell level in Lisp. This example demonstrates that it may enter in at any
level of abstraction.

Sharing does not always arisc when pointers are used.  For cxample, suppose we
simultancously view the sequence H above as implementing a sct another way, c.g. according to
Sequenceysct. In this view, for the same situations s and t, no side effect has occurred.

sequence>set(F,s)=sequence>set(H,t) ,
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This is because Sequencessct(H,s) is the set of bucket names, which doesn’t change even
though one of the buckets has been modified. We could give scparate names to these two set views of
H, as follows.

V s set(M,s) = scquence-of-sets>set(H, s)
Vs set(K,s) = sequencesset(H,s) '

The set M can be thought of as the set of members of the hash table, and K the set of buckets.

Shared List Structure in Lisp

As a sccond example of sharing, we show how to represent a kind of sharing which should
be very familiar to Lisp programmers -- shared list structure. 'This example is more complicated than
the hash table example mostly because of the recursive nature of the definition of list behavior. The
axioms for lists arc given in Table I11.

Lists in Lisp are built out of dotted pairs whose coR is cither nIL (a distinguished element of
U) or the name of (pointer to) another such dotted pair.  This is often called the "linked list”
implementation. It is defined formally in terms of behavior functions as follows.

A =dotted-pairlist(p,s) = [instance(list,\)
A head(A) = car(dotted-pair(p,s))
A tail(A) = dotted-pair>list(cdr(dotted-pair(p,s)),s)]

Notice that this is a recursive definition. The tail of the implemented list is the list
implemented by the cor of the dotted pair (in the same way).

To demonstrate how this implementation of lists in Lisp cntails structure sharing we show
an example of how side effects are propagated. Consider three cons cells C, D, and E, such that in
situation s the cor of both Cand D is E.

Table IH. Axioms for Lists.
Axiom of Extensionality

Yafpgs|la=list(p,s) A B=list(¢,5) A hcad(a)=hecad(B) A list(tail(a),s) =list(tail(B),s)]
> a=f]

Axiom of Comprehension

V xys[ [x#undcfined A [y=nil Vv list(y,s)# undefined} ]
= Jap [a=list(p,s) A a#undefined A head(a)=x A tail(a)=y] ]
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cdr(dotted-pair(C,s)) =E
cdr(dotted-pair(D,s))=E

If we view C, D and E as implementing lists according to Dotted-pair>list, then by the definitions
above, C and D share tails in s, i.e.

tail(dotted-pair>list(C,s)) = tail(dotted-pair>list(D,s))
If we now modify E (e.g. by RrLACA), without changing C and D, so that

dotted-pair(C,s) = dotted-pair(C,t)
dotted-pair(D),s) = dotted-pair(D,t)
dotted-pair(E,s)# dotted-pair(E,t)  for s#t,

it follows that
dotted-pairslist(E,s)= dotted-pair>list(E,t) .

Furthermore, since they share structure with E viewed as a list, it follows that the list behaviors of C
and I have both been modified.

dotted-pair>list(C.s)# dotted-pair>list(C,t)
dotted-pair>list(1),8)# dotted-pair>list(D,t) .

8.4 Data Plans

We are now in a position to explain the meaning of data plans in terms of the formal
framework developed in the preceding sections. The basic idea is that a data plan defines a new type
and an associated behavior function. We will first present an example, and then outline the general
rules for how to translate from the data plan formalism to a sct of axioms in the situational calculus.

Consider the data plan, Scgment, shown in Fig. 8-1, which consists of a sequence (the Base)
and two natural numbers (Upper and Lower), with the constraint that Upper and Lower are valid
indices for the Base, and Lower is Iess than or equal to Upper.

In terms of the formal framework developed in the preceding sections, the meaning of this
plan is to define a new behavior type with the two axioms shown in Table IV. The first axiom says
that two segments arc cqual iff their base sequences and upper and lower indices are the same. The
second axiom says that for any sequence and two numbers which are valid indices for that sequence,
there cxists a segment with that sequence as the base and the two numbers as the upper and lower
indices; and conversely, that the upper and lower indices of any segment are valid indices for the base
sequence and the lower index is less than the upper.
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Figure 8-1. Segment Data Plan.
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Table IV. Segment Data Plan.
Axiom of Extensionality

YapBpgs| [a=scgment(p,s) A B =scgment(g,s)
A sequence(basc(a),s) = scquence(base(B),s)
A natural(fower(a),s) = natural(lower(f3),s)
A natural(upper(a),s) = natural(upper(8),s)]
Da=p]

Axiom of Comprehension

Y xyzs| [sequence(x,s)# undefined A natural(y,s)#undefined A natural(z,s)#undefined
A le(natural(y,s),natural( z,s))
A le(natural(y, s)length(sequence(x,s)))
A le(natural(z,s),length(sequence(x,s)))]
= Jap[a =scgment(p,s) A a#undefined
A base(a)=x A lower(a)=y A upper(a)=2z]]

DataPlan Scgment
roles .basc(scquence) lower(natural) .upper(natural)
constraints le(lower,.upper)
A le(lower,length(.base)) A le(upper,length(.base))

Notice that behavior functions are used throughout these axioms to refer to the behavior of
the parts of a segment. This is necessary to allow for shared structure at any level. For example this
means that the Base of a scgment can be cither a sequence of the name of a sequence.

The general rule for translating data plans into a set of axioms in the situational calculus has
two steps. First, the name of the plan formally becomes a behavior function, and the roles of the plan
become functions on behaviors of that type. Sccond, two axioms arc written involving these
functions.

The first axiom defines equality on the new behavior type in terms of cquality of the
appropriate behaviors of the roles. So for data plan D with 2 roles fig,..., restricted to behavior types
T,U,..., respectively, the following axiom (called the axiom of extensionality) is written.

YaBpgs[la=D(p,s) A B=1)g,s)
A T(Ra),s)=TU(B),5) A Ulg(a),s)=U(B),s) A ...]
D a=p] _ :
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The second axiom involves the type restrictions on roles of a data plan and the constraints
between roles.  Formally the constraints are an s-ary relation, where cach argument position
corresponds to a role, with an extra role for the situation argument to the behavior functions for each
role type. So for the same data plan D as above, with constraint relation, C, the following axiom
(called the axiom of comprchension) is written.

Vsxy... [[T(x,s)#Zundefined A U(y,s)#undefined A ... A C(s,,0,...)]
= Japla=D(p,s) A a#undefined A {a)=x A gla)=y A ..]]

This axiom specifics that instances of the plan D cxist, and that all instances satisfy the role
type restrictions and constraints.

Finally, the information in the axioms for a data plan can be written in more compact
tabular form as shown at the bottom of Table 1V, 'This is the notation that will be used in the
remainder of this thesis for formal logical plan definitions. In this notation, the definition of the
constraint relation is made casier to read by using the role names preceded with a leading point (such
as ".base™) instcad of quantificd variables corresponding to roles, as appear in the fully written out
axioms. Remaining points in constraint formulac are interpreted as normal function application. For
example, a path name like ".f.r.s", where fis a role in the plan being defined, is formally equivalent to
"s(r(.f))", since r and s arc other role functions.

An additional abbreviation used in writing constraints in data plans is to make the behavior
functions applied to role functions implicit when the behavior function is the same as the type
restriction on the role. For example, at the bottom of Table IV,

le(.upper,length(.base))
is an abbreviation for
le(natural(.upper,s),length(sequence(.base,s))) .

The type restriction on cach role of a data plan is indicated in the compact notation in
parentheses following cach role name. For example, the axioms for lists can be rewritten using this
notation as follows.

DataPlan 1.ist
roles hcad(object) .tail(list+nil)

The type List+nil is defined by the behavior function shown below.

A =list+nil(p,s) = [A =list(p,s) V A =nil]
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The absence of type restriction (other than being defined) is indicated by the keyword
"object" after the role name. For example, the axioms for dotted pairs can be rewritten using this
notation as follows.

DataPlan Dotted-pair
roles .car(object) .cdr(object)

8.5 Data Overlays

Intuitively, a data overlay is a many-to-one mapping from onc behavior type to another.
Formally, a data overlay is a bchavior function which is defined in terms of another behavior
function. For example, Scquence>set is a data overlay for viewing a (mutable) scquence as the
implementation of a set. Furthermore, because of the way overlays are used in analysis and synthesis,
the mapping must be "total” in both directions. For example, for the Sequence>set overlay this
means that given any sequence, there exists a sct which it implements in this way; and conversely,
given any set, there is at least one sequence which implements it in this way. These properties are
written formally as the two totality axioms shown in Table V. The definition of Sequence>sct is also
repcated in this table for reference.

As in the casc of data plans, it is more convenient to use a compact tabular notation than to
write out the definition and axioms for a data overlay as in Table V. The tabular notation that will be
used in the rest of this thesis for data overlays is shown at the bottom of the table. The general rules
for recovering the fully written out formal logical definition and axioms are as follow. In general, the
definition of an overlay V from behavior type T to behavior type U,

DataOverlayV: T — U

Table V. Sequence as Set Overlay.
Totality Axioms
Y xs [scquence(x,s)# undefined D 3y [y=scquence>set(x,s)] ]
Vys [set(y,s)# undefined D Ix [y=scquence>set(x,s)] |
Definition
y=sequencesset(p,s) = [instance(set,y) A Ya [(a € y) = 3iapply(sequence(p,s),)=a]]

DataOverlay Scquence>set: sequence — set
definition y=scquencessel(p,s) = Val(a € y) = Jiapply(sequence(p,s),) = a
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is of the following form.
y=V(p,s) = [instance(U,y) A ..y..T(p,s)...]

The content of this definition is in the formula relating y and T(p,s) above. The standard
prefix, Instance(U,y), is omitted in the tabular notation. Furthermore, two totality axioms are written
from the type information in the header of the tabular notation. These axioms have the following
form.

Y xs [T(x,s)#undefined D Ay [y=V(x,5)} ]
Vs [U(y,s)#undefined D 3x [y=V(x,9)] ]

8.6 Computations

In this thesis, computations arc thought of as structures some of whose parts arc situations
(clements of S) and some of whose parts are objects (clements of U). In order to formally describe
computations in the situational calculus, we introduce a new basic domain, C, of computations. C is
divided into types which arc specified by axioms similar to those used to specify behavior types in U.
In the rest of this scction, after some formal preliminarics, we present axioms for various computation
types. In the next section we use these foundations to the specify the semantics of the temporal plan
formalism.

Temporal Order

Thus far we have been using situations only as arguments to behavior functions to
distinguish the different states of objects. In order to represent temporal order in computations we
introduce a new primitive relation, called Precedes, whiqh is formally a total order on S. Intuitively,
this relation captures the notion of states occuring "before” or "after” other states. This relation also
makes it possible to talk about cyclic computations in which all objects return to the same state as at
some carlier time. Formally, this is achieved by extending the Axiom of Extensionality for Situations
as follows.

Vst[[Vp[B(p,s)=B(p,) A Cp,s)=C(p,) A ...}
A Yu [precedes(s,u) = precedes(,u)]] D s=1]

B,C.... here are the appropriate primitive behavior functions as before.  What this axiom
says is that two situations arc identical if the behavior of all objects is the same and they are
indistinguishable in the teinporal order.

Notce that Precedes is a tofal order. This is because we are formally dealing with sequential
computations. As we will sce shortly, however, in specifying computation fypes we will often leave
the order between two steps unconstrained.
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Termination

Another basic feature of computations we need to deal with is termination. In order to talk
about this formally, we introduce a bottom clement in S, i.e.

Vs precedes(s,.L) .

Intuitively, L represents a computation step which is never reached. As we shall see in the
following sections, L appears in the axioms for clementary computation types, such as opcrations
and tests. The termination properties of composite types, such as loops, are then derived from the
axioms of the components and their connections. Important termination properties are whether or
not a given step is reached in all instances of a computation type, and whether there exists an instance
of a computation type in which a given step is reached. Formally these propertics amount to whether
or not specified situations arc equal to L.

Operations

The most basic computation types are operations. Operations in gencral involve two
situations, one of which precedes the other, and some number of input and output objects. An
example of such a type is set addition operations. Intuitively, a set addition computation is an
operation involving three objects: the old set, the new set, and the member added. This is specified
formally by the two axioms shown in Table VI. These axioms involve the type predicate, Set-add,
and the functions In, Out, Old, New, and Input, on clements of the type which act like the part
functions (c.g. Head and Tail for lists) of a data structure. For cxample, consider two situations, s and
t, and mutable scts A and B, such that the following statements hold.

precedes(s,t)
sct(A,8)=1{1,2}
set(B,t)=1{1,2,3}

Formally, what we have here is a computation, a , such that

set-add(a)
inla)=s
out{la)=t
old(a)=A
input(a)=3
new(a)=8B.

In the following local context Greek letters will be used to denote elements of C. Note that
we will also informally refer to clements of C as instances of a computation type, T. Formally, this
just means T(a).
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Table VI. Sct Addition Operations.
Axiom of Extensionality

Vap [ [set-add(a) A set-add(B) A in(a) =in(8) A out(a)=out(B)
A old(a)=o0ld(B) A input(a)=input(3) A new(a)=new(B)] D a=p]

Axiom of Comprehension

Y xyzst [ [precedes(s,)) A [s#L D
[t# L A set(x,s)#Zundefined A set(y,7)# undefined A z#undefined
A (z € sel(y,0)
AVwwzz D [(wE€ set(3,n)) = (v € set(x, ) 1111
= Ja [set-add(a) A in(fa)=s A oulfla)=¢
A old(a)=x A newla)=y A input{a)=2| ]

10spec Sct-add / .old(set) .input(object) => .new(set)
postconditions (.input € .ncw)
A Y x[x#.input D [(.input € .new) = (Linput € .o0ld)] ]

The first axiom in Table VI defines cquality of set addition operations in terms of cquality
of the situations and objects involved. The sccond axiom specifies a necessary and sufficient
condition between the objects and situations of sct addition operations. These axioms amount to
what would be called an input-output specification in standard software engincering terminology.

Let us now pay attention to the details of the second axiom in Table VI. Part of the
necessary and sufficient condition deals with the temporal order and termination properties of set
addition operations, as shown below. (This pattern of specification is followed for operations in
general).

[precedes(s,) A [s#L D=L A L]

Thus the In situation precedes the Out situation. Furthermore, if the In situation is reached,
it follows that the Out situation is reached, i.e. the operation always terminates. Notice that it follows
from this axiom and the definition of L that, if the In situation is never reached (i.c. s= L), then the
Out situation is never reached (1= 1).

The remainder of the condition part of the second axiom spccifics that the members of the
New sct in the Out situation are exactly the members of the Old set in the In situation, with the sole
addition of the Input object. This relationship is conditionalized inside /# L (o avoid contradiction
in the case when neither situation is reached, i.e. s=¢= L.
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Notice that this specification uses the Set behavior function in referring to the Old and New
objects. This means that that instances of this computation type include both by operations in which
the input and output scts arc distinct objects, and those which involve a side effect (c.g. suppose
old(a)=new(ea) in the cxample above). More will be said about plans involving side effects in a later
section.

A more compact tabular notation for writing input-output specification is shown at the
bottom of Table VI. The first line of this notation lists the name of the operation type (formally a
predicate on computations), separated by a slash from the input roles, scparated by a double arrow
from the output roles. Type restrictions are indicated in parenthescs following the role names, as in
the compact data plan notation. Roles are formally functions on computations. To recover the
formal axioms from this notation for a general input-output specification, P, with input roles fg,...,
and output roles m,n,..., we first writc an axiom of extensionality of the following form.

Yap [[P(a) A P(B) A in(a)=in(B) A out(a) =out(B)
A fla)=fB) A gla)=g(B) A ... Am(a)=m(B) A n(a)=n(B) A ..]
Da=p]

The constraint between roles in an input-output specification is made casier to rcad in the
compact tabular notation by using the role names preceded with a leading point instead of quantified
variables, similai to the constraint notation for data plans. Embedded points arc interpreted as
normal functional nesting.

Like the compact notation for data plans, the application of behavior functions
corresponding to role types is also made implicit in compact input-output specifications. For
example, at the bottom of Table VI

(.input € .new)
is an abbreviation for
(.input € sct(.new,.in)) .

By convention, the situational argument to such implicit behavior function applications is
either ".in" or ".out", depending on whether the role involved is an input or an output. No behavior
function is supplied for roles, such as Input, without type restriction (indicated by the keyword type
"Object” as in data plans).

After expanding all abbreviations as outlined above, the constraint relation is formally a
relation, C, where cach argument position corresponds to a role, plus two situational arguments
which correspond to In and Out. In general for an input-output specification P with input roles fig,...,
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with type restrictions T,U,..., and output roles m,n,..., with type restrictions A,B,...,we then write the
following axiom.

Vsixy...ow... [ [precedes(s,f) A [s# L D
[1# L A T(x,s)#undcfined A U(y,s)2Zundefined A ...
A A{v,)#undefined A B(w,0)# undefined A ...
A C(s,8,%,s00s vy Wy )] 1]
= Ja [P(a) A in(a)=5 A out{a)=1
Afla)=xAgla)=y A .. Am(a)=vAn(a)=wA.l]]

Finally, note that as a matter of convention the constraint clauses in an input-output
specification are divided into those which involve only input roles (called preconditions), and those
which involve both input and output roles (called postconditions). For example, the following is the
compact specification of @Function, the operation of applying a function to an argument to get the
corresponding range clement.

IO0spec @Function / .op(function) .input{object) = .output{object)
preconditions 3x [x=apply(.op,.input)]
postconditions apply(.op,.input)=.output

Tests

The second basic computation type uscd in this thesis is tests. Tests in general have three
situational roles: an input situation, In, and two alternative following situations, Succeed and Fail,
only one of which is rcached in any instance.

An example of a type of test, membership tests, is shown specified formally in Table VIL
The first axiom is the usual axiom of extensionality which defines equality on a computation type in
terms of cquality of its roles. The roles of a membership test are the three situational roles, In,
Succeed and Fail, and two object roles, Universe (a set) and Input.

The sccond axiom in Table VII says roughly that membership tests succeed if the Input is a
member of the Universe; otherwise they fail. This is expressed formally by specifying the conditions
under which the Succeed and Fail roles are equal to L, as shown below.

[precedes(s,r) A precedes(s,u) A [t=L v u= 1]
AsELD[[FELVurlIA . AlEL = L]

This is the pattern of specification used in general for tests. At most onc of cither Succeed
or Fail is rcached in any instance. If the condition of the test is true in the In situation, then the
Succeed situation is reached; if it is false, then the Fail situation is rcached. If the In situation is never
reached, it follows that neither Succeed nor Fail are reached. -
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Table VII. Membership Tests.
Axiom of Extensionality

Yaf [ [memberX(a) A member?(B) A in(a)=in(B) A succeed(a)=succced(B) A fail(a) = fail(8)
A universe(a) =universe(8) A input(a) =input(8)] > a=pg]

Axiom of Comprehension

Yxystu [ [precedes(s,)) A precedes(s,u) A [t=L v u=_1]
AlseL D[[r=L v uzl]
A x#undefined A set(y,s)= undefined
AEL = (x €sct(y,s)] 1]
= Ja [member?(a) A in(a)=s A succeed(a) =t A fail(a)=u
A universe(a)=y A input(a)=x] |

Test Member? / .universe(sct) .input{object)
condition (.input € .universe)

In the next section, we will sce how tests specified this way can be combined with other
computations, via the notion of control flow, to construct spccifications for larger conditional
computations.

Finally, Table VII shows an cxample of the compact notation for tests. The header line lists
the name of the computation type followed by the object role names with type restrictions, similar to
the input-output specification notation introduced in the preceding scction.  The axiom of
extensionality which follows from this notation in gencral is obvious. The axiom of comprehension
for a test P? with object roles f,g,.;., and type restrictions T,U,..., is of the following form.

Vstuxy... [ [precedes(s,f) A precedes(s,u) A[t=L v u=1]
AlseLD[[#EL Vv uzrl]
A T(x,s)#undefined A U(y,s)#undcfined A ...
Al#E L = Cls,xp,.) 111
= Ja [PAa) A in(a)=s A succeed(a) =1 A fail(a)=u
Afla)=xAgla)=yA.l]]

The relation C above is derived by expanding abbreviations in the "condition” part of the
compact test notation in the same way abbrevations are cxpanded in the preconditions and

"

postconditions of an input-output spccification, supplying ".in™ as the situational argument to

implicit behavior functions where required.
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8.7 Temporal Plahs

In this section we extend C by allowing parts of computations to be not only situations and
names, but also other computations. This gives us the ability to combine alrcady defined
computation types, such as opcrations and tests, into the specification of larger computations. For
cxample, we can define a computation type which has two steps. The first step is an instance of
@Discrimination;! the second step is a membership test. The temporal plan representation of this
computation type is shown in Fig. 8-2. The axioms which are the formal translation of this plan are
given in Table VIIL |

Notice that the name of the plan, Discriminatermember?, is formally a predicate on
computations. The roles of the plan, Discriminate’ and If, arc formally functions on computations,
like Old, In, Input, New, etc. in the preceding section. The ranges of these role functions, however,
are computations, as can he seen in the seccond axiom of Table VIIT highlighted below.

Y ap [ [@discrimination(a) A member?(B) ...
= 3§ [discriminate+member?(§) A discriminate(8) =« A if(8)= S]]

Table VIII. Discriminate and Member Plan,
Axiom of Extensionality

Y af [ [discriminate+member?(a) A discriminate+member?(f)
A discriminate{a) = discriminate() A if(a)=if(8)] D a=p]

Axiom of Comprehension

Vaf [ [@discrimination(a) A member?(8) A cflow(out(ea),in(B))
A set(output(a),out(a))=sct(universe(),in(B))
A input(a) =input(B)]
= 3§ [discriminate+member?(§) A discriminate(8§)=a A if(6)=f]]

TemporalPlan discriminatc+@member
roles .discriminate(@discrimination) .iftmember?)
constraints cllow(.discriminate.out,.if.in) _
A .discriminate.output =.if.universe A .discriminate.input=.if.input

1. @Discrimination is a specialization of @Function in which the Qutput role is a set. Specialization and extension will be
discussed later in this chapter. .
2. The name of this role is duc to the fact that this plan is the implementation of membership tests on a set implemented as a
discrimination function.
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Table IX. Bump and Update Plan.
Axiom of Extensionality

Vap [ [bump+update(a) A bump+udpate(8) A bump(a)=bump(8) A update(a) = update(B)
A old(a)=old(B) A new(a)=ncw(B)] D a=p]

Axiom of Comprehension

Y xyaf [ [@oneminus(a) A newterm(f3)
A upper-segment(.x,in(a))# undefined
A upper-segment(y,out())#undefined
A cflow(out{a),in(B))
A upper-scgment(x,in(a)) = upper-segment(x,in(f3))
A upper-segment(y,out(a)) = upper-segment(y,out(8))
A integer(input(a),in(a))= natural(lower(upper-segment(x,in{a))),in(a))
A sequence(old(f),in(B)) = sequence(basc(upper-segment(x,in(3))),in(8))
A integer(output(a),out(a)) = natural(arg(f),in(8))
A integer(output(a),out(a)) = natural(lower(upper-segment(y,out(a))),out(a))
A sequence(new(f),out(B)) = sequence(base(upper-segment(y,out())),out(8))]
= 16 [bump+update(8)
A bump(8)=a A update(8§)=8 A old(8)= x A new(8)=y] ]

TemporalPlan Bump-+update
roles bump(@oneminus) .update(newterm) .old(upper-segment) .new(upper-segment)
constraints cflow(.bump.out,.update.in)
A .old =.0ld

bump.in .update.in
A ‘new.bump.oul:'Old.updatc.out
A bump.input=.old.lower
A .update.old =.old.base
A bump.output=.update.arg
A .bump.output=.new.lower
A .update.new =.ncw.base

In general, the type restriction on a role in a temporal plan is cither a behavior type
(formally a behavior function) or a computation type (formally a predicate on computations). An
example of a temporal plan which has some of both kinds of roles is shown in Fig. 8-3. The Old and
New roles are restricted to being instances of the Upper-segment data plan;' Bump and Update are
opcrations.22 The axioms for this plan are shown in Table IX. The axiom of comprehension in this

1. Upper-segment is a specialization of Segment in which the Upper index is equal to the length of the sequence.
2. The specifications for @Oneminus and Newterm can be found in the appendix.
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table is quite long, but is of the same general form as the axiom of comprehension for Discriminate+
member?. The first three lines stipulate type restrictions. For temporal roles, these are assertions of
the appropriate computation type predicates, e.g.

@oncminus(a) A newterm(8) .

For behavior type roles, the assertion of a type restriction has to include the situation in
which it is used, e.g. '

upper-segment(x,in(a))# undefined
upper-segment(y,out(8))#undefined .

For data roles that are used in more than one place, additional equalities arc added to
guarantee that the data object is the same in all situations of use. For example, the two lines
following the control flow constraint in the comprehension axiom of Bump+update are for this
purpose.

upper-segment(x,in(a)) = upper-scgment(x,in())
upper-segment(y,out(a))=upper-scgment(y,out(8))

The remaining cqualities have to do with data flow, which will be discussed later in this
section.

Control Flow

Control flow constraints (hatched arrows in the plan calculus) are formalized in the
situational calculus as follows.

cflow(s,f) = [precedes(s,) A [s=L = (= 1]]

In other words, control flow entails temporal order and termination is preserved. However,
the two situations do not have to be equal.

Fach control flow arc in a temporal plan becomes a Cflow clause in the axiom of
comprehension for the computation type. The terms in this clause arc the appropriate In, Out,
Succeed or Fail roles, as read from the diagram. For example, the control flow arc in Fig. 8-2
becomes the following clause in the comprehension axiom of Table VIIL

cflow(out(a),in(B))
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Data Flow

A second kind of "glue" in temporal plans is data flow. Data flow arcs in general are
translated into cqualitics between names and values in different situations. The details of this
translation, however, depend on whether the data flow is between operations and tests, or whether it
also involves data plan roles, such as Old and New in Bump+update.

We start with the simple case of the data flow arc in Discriminate+member (Fig. 8-2) from
Discriminate.Input to If.Input. This arc is translated into the following clause in the comprchension
axiom for this plan.

input{a)=input(B)

This is an example of data flow between the untyped roles of two operations. In other
words, what is being passed between these two operations is being treated as a name. The other data
flow arc in Fig. 8-2 is between Discriminate.Output (a set) and [f.Universe (a set). For typed roles,
the rules is to write the equality in terms of the behavior function and the appropriate situational role,
such as In or Out, e.g.

set(output(a),out(a))=sct(universe(8),in(B)).

The disiinction between whether or not a data flow cquality involves a behavior function is
similar to the distinction between "call by name™ and "call by value” in somec programming
languages.

Fig. 8-3 shows data flow involving data plan roles. In particular, different parts of Old and
New are inputs and outputs of Bump and Update. These data flows are translated into the equalities
listed on separate lines of the comprehension axiom in Table IX. The first of these is

integer(input(a),in(a)) = natural(lower(upper-segment(x,in(a))),in(a)) .

This is the translation of the arc from Old.Lower to Bump.Input in the plan representation.
Notice how the behavior functions have been supplied on both sides abovc—,] and that the situational
arguments arc the In situation of the consuming operation.

scqucncc(old(ﬁ Lin(B)) = sequence(base(upper-segment(x,in(B))),in(B))

The next data flow arc, shown above, is from Old.Basc to Update.Old. Here again we have
behavior functions on both sides, with the same situational argument, namely Updatedn. The
translation of the two data flow arcs involving New are similar, as shown below.

1. The input and output of @Oneminus are of type integer. Natural is a specialization of Integer.
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integer(output(a),out(a)) = natural(lower(upper-segment(y,out(a))),out(a))
sequence(new(B),out(B))=scquence(base(upper-segment(y,out())),out(8))

~ Finally, examples of the compact notation for writing the axioms for temporal plans are
shown at the bottom of Table VIIT and Table IX. In general for a temporal plan P with roles fg,...,
we write the following axiom of extensionality.

Vap [ [P(a) A P(B) A le)=f(f) A é(a)‘—‘g(B) A.]Da=p]

The axiom of comprehension is of the following form, where fig,..., are temporal roles with
types T,U,... and k,l.... are data roles with types A,B,....

Yxy.oow. [Ty AU A ..
A A(y,..)#undefined A B(w,...)#£undefined A ...
A C(X, 0y W)
= Ja[Pla) Afla)=x A gla)y=y A .. Ak(a)=v Alla)=wA ..]]

The constraint relation C above is derived by expanding abbreviations in the constraints of
the compact notation in a similar manner to the way abbreviations arc expanded in compact input-
output specifications. In particular, implicit applications of behavior functions with appropriate
situational arguments is provided for path names which terminate in roles typed by behavior
functions. F()r'cxample,

.if.universe
in the constraints of Discriminate+member? is expanded to
set(.if.universe,.if.in) .

C also includes constraints that guarantec an object used in more than one situation is the
same in all situations of use. Table IX illustrates all these conventions. To facilitate comparison, the
constraints of Bump+update in the compact notation arc written in the same order line by line as in
the fully written out axiom above in the table. The first two lines of the compact notation in Table IX
following the control flow constraint illustratc how situational arguments can be explicitly indicated

in the compact notation by subscripts.
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Conditional Plans

Fig. 8-4 is an example of a conditional plan which computes absolute value.! The formal
axioms for this plan, written in compact notation, are as follow.

TemporalPlan Abs
roles .if(1t-zero?) .then(@negative) .end(join-outputs)
constraints cflow(.if.succeed,.then.in)
A cflow(.then.out,.end.succeed)
A cflow(.end.fail,.cnd.fail)
A .ifinput=.then.input
A .then.output=.cnd.succeed-input
A .ifinput=.cnd.fail-input

This plan has two key features which are typical of conditional plans in general. First,
notice the control flow arc from If.Succeed to Then.In. The intuitive meaning of this arc is that the
@Negative operation is to be performed only if the test succeeds. This is expressed formally as the
following property of the Abs plan, which follows from the way tests, operations and control flow

have been axiomatized.
Ya [abs(a) D [in(then(a))2 L = I(input(if{a)),0)] ]

Second, notice the data flow and control flow arcs involving the join (End). The meaning of
these arcs is that the output of the join is either If.Input or Then.Output, depending on whether the
test succeeds or fails. Stated formally, we want the Abs plan to have the following property.

Y a [abs(a) D
[ [I(input(ift)),0) > output(end(a))= negative(input(if{ a)))]
A [=1(input(if{er)),0) D output{end(a)) =input(if(a))] ]

This is achieved by axiomatizing joins (with onc output) as shown in Table X. Joins are like
the mirror images of tests. Joins have three situational roles, Succeed, Fail, and Out. Like tests, only
one of either Succeced or Fail is reached in any instance. Unlike tests, however, joins do not represent
any real computation, since the Out situation is always equal to cither the Succeed or Fail situation,
depending on which is reached. The purpose of the join is to state, in a modular fashion, the
connection between which way a test goes and which of two possible outputs is made available for
further computation. The two possible outputs are the Succeed-input and Fail-input roles of the join.
One of these is equal to the Output role (which one depends on whether Succeed or Fail is reached),
from which data flow arcs to following computations emanate.

1. Lt-zero? is the test for less than zero. @Negalive computes the negative of an integer.
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Table X. Joining Outputs.
Axiom of Extensionality

Yaf [ [join-outputs(a) A join-outputs(f3)
A succeed(a) =succeed(B) A fail(a)=fail(B) A out(a)=out(8)
A succeed-input(a) =succeed-input(B8) A fail-input(a) = fail-input(8)]

D a=p]
Axiom of Comprehension

Vstuxyz[[[iI=L Vvu=LIA[i=L D[s=uA x=2]]A N [u=L D[s=t A x=y]]]
= Jq [join-outputs(a) A out(a)=s A succeed(a)=1A failla)=u
A output{a)=x A succeed-input(a) =y A fail-input(a)= 2] ]

8.8 Temporal Overlays

A temporal overlay is formally a function from onc computation type to another.
FFurthermore, like data overlays, this function must be total in both directions. For example, consider
the temporal overlay shown in Fig. 8-5, which expresses how to view instances of the temporal plan
Discriminate+rmember? as implementing membership tests in a sct implemented as a discrimination
function.

The formal definition and totality axioms for this overlay are given in Table XI. Each
correspondence in the figure becomes an cquality in the formal definition. Unlabelled
correspondences, such as between I)iscriminatc+mcrﬁbcr?.Discriminatc.lnput on the left and
Member?.Input on the right become simple equalitics such as

input(8) = input(discriminate(a)) .

Since overlays can be used in defining other overlays, some correspondences in temporal
overlays arc labelled with the names of other overlays. For example, the correspondence between
Discriminate+member?.Discriminate.Op on the left and Member?.Universe on the right is labelled
with  the Discrimination>sct ()vcrlay.l Intuitively, this mecans that  Discriminate+
member?.Discriminate.Op is  viewed as implementing  Member?.Universe  according  to
Discrimination>sct. This is written formally in the definition of Discriminatc+member?>member? as
follows.

1. This s a data overlay similar to Sequence-of-setsdset introduced carlier in this chapter.
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Table XI. ITmplementing Membership in a Discrimination
Totality Axioms
Y a [discriminate+member?(a) D 3B [member?(B) A B =discriminate+member?>member(a)] |
¥ [member?(8) D Ja [discriminate+member?(8) A B =discriminate+member?>member(a)] ]
Definition

B = discriminate+member?>membera) = [member?(8)
A set(universe(f),in(B)) = discrimination>set(op(discriminate(a)),in(discriminate(a)))
A input(B)=input(discriminate(a))
A in(B)=in(discriminate(a))
A fail(B) = fail(ifla))
A succeed(B)=succeed(if(a)) ]

TemporalOverlay Discriminatc+member?>member?: discriminate+member? — member?
correspondences
member?.universe = discrimination>sct(discriminate+member?.discriminate.op)
A member?.input = discriminate+member?.discriminate.input
A member?.in = discriminate+member?.discriminate.in
A member?.fail = discriminate+member?.if.fail
A member?.succeed = discriminate+member?.if.succeed

set(universe(B),in(B)) = discrimination>set(op(discriminate(a)),in(discriminate(a)))

Notice that behavior functions are supplied for typed roles with the appropriate situational
arguments as usual. In general, the definition of an overlay V from computation type T to
computation type U, where f,g,... are the role functions of U, is of the following form.

B=V(a) = [UB) A ()=t A g(B)= et A ]

In other words, there is an cquality for cach role of 8 in terms of some function of a. This
form, together with the cxtensionality axiom of U, guarantces the uniqueness property of the
function V.

As with data overlays, it is more convenient to usce a compact tabular notation than to write
out the definiton and axioms for a temporal overlay as in Table XI. An cxample of the tabular
notation is shown at the bottom of the table. In genceral, from the header line

TemporalOverlayV: T — U

the following two totality axioms arc written.
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Va [T(e) 3B [UB) A B=V(a)] ]
VB [U(B) 2 Ja [T(a) A B=V(a)] ]

The definition of the overlay function is abbreviated in the tabular notation by listing only
the equalitics and leaving behavior functions and situational arguments implicit in the usual way.

8.9 Specialization and Extension

In this section we discuss two additional ways of making use of alrcady defined plans in
defining new oncs: spccialization and extension.

Specialization

The basic idea of specialization is to define a type whose instances are a subsct of another
type. A common motivation for doing this is to exploit the propertics of the subtype in some
‘particular implementation. For example, we have carlier in this chapter defined a general data plan,
Segment, involving an upper and lower index to a base sequence. One way of implementing a
mutable stack is to use an instance of Segment in which only the lower index is varied -- the upper
index is always cqual to the length of the base sequence. We called this plan Upper-segment. The
formal relation between Upper-segment and Scgment is captured by the following statement.

o = upper-segment(p,s) = [oc =scgment(p,s)
A natural(upper(o),s) = length(scquence(base(o),s))]

Thus Upper-segment is Segment with additional constraint. In tabular notation, this will be
written as follows.

DataPlan Upper-scgment specialization scgment
roles .base(sequence) .lower(natural) .upper(natural)
constraints .upper = length(.base)

Notice that a specialization has the same roles as the more general plan, and that the
application of behavior functions of the appropriate type for each role is abbreviated in the
constraints in usual manner.

The specialization of computation types is similar. For cxample, the following is the general
input-output specifications for finding a node in a directed graph (Digraph), which satisfies a given
predicate.



™

196

10spec Digraph-find / .universe(digraph) .criterion(predicate) => .output(object)
preconditions x [node(.universe,x) A apply(.criterion,x)=true]
postconditions node(.universe,.output) A apply{.criterion,.output) =true

An important special case of directed graphs is threads, in which cach node has a unique
successor and there are no cycles. Finding nodes in threads is considerably simpler than the general
case. The computation type of such operations is specificd formally as follows.

thread-find(a) = [digraph-find(a) A thread(old(«),in(a))# undcfined]

Thus the additional constraint here is an additional type restriction on the Old role. (The
behavior function Thread is the appropriate specialization of Digraph.) This is written in the
compact tabular notation as follows.

IO0spec Thread-find / .universe(thread) .critcrion(predicate) = .output(object)
specialization digraph-find

Of course, computation types can also be specialized by additional constraints between
roles. For example, in this thesis set addition by side effect, #Sct-add, is viewed as a specialization
set addition in general, This is expressed formally as follows.

#set-add(a) = [sct-add(a) A old(a)=ncw(a)]

In other words, instances of #Set-add arc thosc instances of Set-add in which the Old and
New sct objects are identical. In tabular notation, this will be written as follows.

10spec #Set-add / .old(object) .input(object) = .new(object) specialization sct-add
postconditions .old = .ncw

Notice that the type restrictions on Old and New above are Object rather than Set, as in Set-
add. This usage is essentially a syntactic trick to control the abbreviation that will be applicable in the
postcondition above. [Logically, an Object restriction is weaker than a Set restriction, so no
information is added.

Extension

The basic idea of extension is to define a new type with an additional role function, such
that instances of the new type have the same constraints as the old type between those roles which are
in common. The formalization of cxtension is more complicated than the formalization of
specialization in the preceding section. In the case of specialization, the new behavior function or
predicate on computations can be simply defined in terms of the old one. For extension, however,
new extensionality and comprehension axioms need to be written for the new type. However, these
new axioms are related to those of the old type in a systematic way.
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Table XII. Internal Thread Find.
Axiom of Extensionality

Yap [ [internal-thread-find(a) A internal-thread-find(8) A in(a)=in() A out(a)=out(f)
A universe{a) = universe(B) A criterion(a) =criterion(f8) A output(a)=output(f)
A previous(a) = previous(S)]

D a=f]

Axiom of Comprehension

Vwxyzst [ [Fa [thread-find(a) A in(a)=s A out(a) =1
A universe(a) = w A criterion(a)=x A output{a)=y]
A z#zundcfined
A apply(predicate(x.s).root{thread(w,s))) = false
A successor(thread(w.s),z.y)]
= 3B [internal-thread-find(B) A in(B)=s A out(B)=1
A universe(B)=w A criterion(B)= x A output(8)=y A previous(8)=z] ]

IO0spec Internal-thread-find / .universe(thread) .criterion(predicate)
=> output(object) .previous(object)
extension thread-find
preconditions apply(.criterion,root(.universe)) = false
postconditions successor( .universe,.previous,.output)

A common use of extension is to add an additional output to an input-output specification.
For example, when Thread-find operations are used in conjunction with other plans, such as splicing,
it is convenient to output not only the node found, but also the previous node in the thread. We call
this extra role Previous, and the extension type Internal-thread-find.

The axioms for Internal-thread-find are shown in Table X1I. They are derived from the
axioms of Thread-find by adding the underlined portions. [n the axiom of extensionality, an
additional equality is added for the Previous role. The axiom of comprchension specifics the
constraints on the new type by first referring to the corresponding instance of the old type,

Ja [thread-find(a) A in(@)=sA ...]

and then specifying the added underlined constraints, which include the type restriction on the new
role and some additional constraints between this role and the others. One could think of this as an
extension step, followed by a specialization, but in practice one alimost never adds a new role without
relating it to the old roles. As usual the more compact tabular notation is shown at the bottom of the
table.
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CHAPTER NINE
LOOPS AND TEMPORAL ABSTRACTION

9.1 Introduction

Like many other formal languages, the plan calculus uses self-referential (i.e. recursive)
definitions to represent unbounded structures. This chapter concentrates on the special case of singly
recursive plans, and loops in particular. The generalization of these ideas to multiple recursion will
be discussed briefly at the end of the chapter.

We begin in Table I with a minimal plan, Single-recursion, which says nothing more than
that there is a role, Tail, constrained to be cither an instance of Nil or itself a Single-recursion. A
finite single recursion is defined as one whose tail is nil or cventually has a nil tail. "Eventually™ is
defined by the transitive closure tail relation, 'l‘ail*, which is in turn defined in terms of the n-th tail
relation, Tail™. The Null predicate is introduced as a shorthand for saying that an object is an
instance of Nil.

Table 1. Single Recursion.

DataPlan single-recursion
roles .tail(single-recursion+nil)

Type single-recursion+nil uniontype single-recursion nil

DataPlan finite-single-recursion  specialization single-recursion
roles .tail(single-recursion+nil)

E 3
constraints .tail=nil v Ax (tail (.tail,x) A x=nil)

- . . . .
Function tail @ single-recursion — object
* *
properties ¥ R [instance(single-recursion,tail (R)) v tail (R)=nil]
b3
definition x=tail (R) = [3n tail™(n,R) = x]

Binfunction tail™: natural X single-recursion — single-recursion+nil
definition x=tail™(n,R) = [(n=1 A R.tail=x)
v tail™oneminus(n),R.tail) = x)]
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The most common singly recursive data plan, List, has alrcady been discussed in Chapter
Eight. The next scction in this chapter will concentrate on how loops, the most common singly
recursive temporal plans, are represented in the plan calculus. The section following then shows how
to represent the relationship between singly recursive temporal plans (loops) and and singly recursive
data plans (lists) using overlays. Finally, note that the taxonomy of loops discussed in this chapter
covers only loops with a single jump from the end of the loop to the beginning (i.e. interleaved loops
are not included).

9.2 Loops

Since the temporal order relation on situations is not allowed to have any cycles, loops are
represented in the plan calculus as singly recursive plans where the jump from the end of the loop to
the beginning is viewed as a recursive invocation.  Tor example, Fig. 9-1 is a diagram of the
SEARCHLIST program below.

(DEFINE SEARCHLIST
(LAMBDA (L P)
(PROG (ENTRY)
LP (SETQ ENTRY (CAR L))
(COND ((FUNCALL P ENTRY)(RETURN ENTRY)))
(SETQ L (CDR L))
(60 LP))))

The Tail role, which represents the recursive invocation of the loop body, is constrained to
be an instance of the same plan as the outside plan. This is indicated in plan diagrams by a spiral line
from the outside plan box to the recursive role. The operation boxes in the diagram arc instances of
@Function; the test boxes are instances of @Predicate; and the join boxes are instances of Join-
outputs. Thus we are viewing the program as if it were coded as follows.

(DEFINE SEARCHLIST
(LAMBDA (L P)
(PROG (ENTRY)

(LP))))

(DEFINE LP
(LAMBDA ()
(SETQ ENTRY (CAR L))
(COND ((FUNCALL P ENTRY)(RETURN ENTRY)))
(SETQ L (CDR L))
(LP)))

In fact, recent work on Lisp interpreters and compilers suggests that the distinction between
loops and single recursions where the recursive call is the Tast step of the program (so called "tail
recursions™) can be considered only a superficial syntactic variation. In Scheme, a dialect of Lisp
developed by Sussman and Stecle, the prRo6 with 60 construction is provided as a macro which .
expands into a single recursion similar to the example above. The Scheme interpreter executes tail

recursions without accumulating list depth. The compiler for Scheme also views looping constructs
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as macros which expand into singly recursive structures. This special case of tail recursive temporal
plans is often referred to as the "iterative" case.

Given this representation for loops, it is possible to formalize a small set of the basic plans
which decompose many loops into intuitively meaningful parts. The remainder of this section will
present these plans, along with explanations and some typical fragments of code which arc instances.
The taxonomy of loops presented here is an extension of the work of Waters [60].

Steady State Plans

To begin let us ignore any cxits from a loop and the question of termination. This is what [
call the "steady state™ model. This viewpoint will be formalized later as an overlay which explicitly
assumcs that the loop doces not exit.

One of the most common computations in a loop is to repeatedly apply a given function (the
same function cach time) to the output of the preceding application of that function. This pattern of
application is in general (i.c. for multiply recursive plans) called generation. The special case for
loops is called iterative gencration, as shown in Table IT and Fig. 9-2. Notice that the starting value
for the generation is Action.Input, the input to the first application. The SEARCHLIST example
contains an instance of Iterative-generation, as shown below, where the function being applied is Cdr
and the variable L holds the successive values generated.

(PROG (...)

LP ...
(SETQ L (CDR L))
(GO LP))))

Table 1. Iterative Steady State Plans.

Temporal Plan iterative-application  extension single-recursion
roles .action(@function) Lail(iterative-application)
constraints .action.op = .tail.action.op A cflow(.action.out,.tail.action.in)
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