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ABSTRACT

We consider strategies for transmitting packets over a
multiple access broadcast channel. In the strategies considered, a
inessage is formatted into K packets and N-K redundant packets are
added to these K packets to form what we call a superpacket. We propose
a simple coding scheme that sets these N packets of a superpacket into
a special temporal pattern. With a superpacket constructed in this
manner, it is possible to reconstruct packets which are lost through
collision on the channel with the packets of other superpackets. We
compare the throughput of our scheme with that of the slotted Alocha
scheme. We use as our retransmission strategy the conflict resolving

tree algorithm of Capetanakis.
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CHAPTER 1
INTRODUCTION

1.1 The Problem

A broadcast channel is a commnication channel in which a
signal generated at one information source can be received by many
receivers. Examples of a broadcast channel include a satellite channel
and a ground radio network. A major issue in designing any communica-
tion channel is to ensure that a signal from one source passes
through the channel without encountering any interference from signals
from other sources. In other words, the channel is to be so designed
that many individual signals can be transmitted simuiltaneously over

that channel.

Two popular techniques ﬁsed in solving thisr problem are
frequency division multiplex (FDM) and time division multiplex (TDM).
Iﬁ DM the channel frequency spectrum is partitioned into many
frequency bands and each source is allocated one such band. In TDM
the channel time is divided into time slots and one slot is dedicated
to each source. If these sources transmit very frequently, then the
channel utilization will be high. However, in many applications
the messages transmitted may be short in duration and infrequent in
occurrence; that is, the applications have low duty cycle, as in a
time-shared application or an inquiry-response system. Under such
situations, dedicating a frequency band or a time slot to each source
will be uneconomical. It may, therefore, be appropriate to allow

sources to transmit their messages at will, whenever they have any
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messages i:o transmit, using the entire channel frequency or time.
Because of the random nature of the message generation process it may
turn out that the probability of two or more sources attempting to
transmit simultaneously is very low. This technique in which many
sources transmit at will and randomly over a common channel is called
the random access technique. The random access technique, FDM and TDM
‘are all forms of the multiple access technique; that is a technique
" in which two or more sources share the channel at the same time. The
tyﬁe of multiple access technique we are concerned with here is the
random access technique which is finding a wide application in data
transmission.

In this technique, when a source has a message to transmit:
‘it formats the message into packets. A packet will include the source
and destination addresses and other overhead information such as parity-
check bifs for error detection and error correction. The packet is
then burst out onto the channel, which from now on we assume is a
satellite channel. The satellite receives the packet and, acting as
a transponder, beams it back to the earth where it can be received by
the sources. By being able to receive its transmitted packet a
source can then know whether or not its transmission_was successful.
When two or more sources transmit their packets at the same time,
the packets will collide on the channel and the intelligibility of
"each will be destroyed. Such packets which suffer a collision are
rescheduled for transmission. The main issue in this technique then
is how to formulate transmission and retransmission strategies that

produce acceptable levels of performance.
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The first analysis of this type of multiple access broadcast

scheme was carried out by Abramson [1] in the so-called pure Aloha scheme.
He made the following assumptions.

1. There are infinitely many sources in the system.

2. Each packet has a fixed length of Tt seconds.

3. The starting times of all packets newly generated by
the sources form a stationary Poisson point process with
mean Ap.

4, When é collision occurs the packets are not retrans-
mitted immediately; they are retransmitted randomly
after a given time has elapsed. The starting times
of all retransmitted packets are also assumed t§ form

a stationary Poisson point process with mean A..

Since the sum of two independent stationary Poisson point
processes is a Poisson random variable, assumptions (3) and (4) then
imply that the starting times of all packets presented to the channel
for transmission form a stationary Poisson point process with mean
A= 2y + Ap. With these assumptions Abramson obtained a throughput
of 0.184. Roberts [8] suggested thatconsiderable improvements could
be made if the channel is divided into slots whose lengths are 1
seconds and the packets are synchronized to these slots. WJ.th the
same assunptions made by Abramson he obtained a throughput of 0.368
packets/slot, twice ﬂ'lat for the pure Aloha. This later version is

known as the slotted Aloha.

However, the Aloha scheme is unstable. For a large nurber

of sources the Poisson assumption made for the newly generated

- s m U
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'péckets may be valid. However, the Poisson assﬁmption made fer the
rétransmitted packets can only be valid as long as the traffic is low.
When the system is operating neai: the saturation point the assumption
is no longer valid. This is so because, due to the high packet rate,
collisions become'so frequent that very few transmissions are -success?
ful. More sources are in the retransmission mode, 'more collisions
occur and soon the system breaks down as eventually no successful

transmission is made.

Severai schemes have been proposed for inCreas:Lng the
throughput of' the Aloha scheme, but unfortunately these have not
cured the stability problem of the scheme. Some of these throughput
improvement schemes J.nclude the dynamlc reservation schemes proposed
by Crowther and others [4], Binders [2], and Roberts [9]; and the carrier
sense schene proposed by Xleinrock and Tobagl [5]. The bJ.narv tree
algorithm proposed by Capetanakis [3] lsa scheme which is not ohly
superior to the Aloha scheme in terms ef thoughput but is 'aieo stable.

We shall discuss this scheme in Chapter 3.

All the above schemes deal w1th the transmission of one
packet at a time, the irredundant transmission. When a source uses
the multiple access broadcast channel to transmit a long message it
ie possible to transmit the entire message at a time by breaking it
into many packets and encoding the nxessage in such a way 'that a
number of these packets lost due to collision on the channel may be
reconstructed at the receiver. We consider here a sﬁnple way in

which this encoding may be done by introducing redundancy to the
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message. This idea was first proposed by Massey [6] and we shall study
this scheme by comparing its performance with that of the slotted

Alcha scheme. We shall also use the binary tree algorithm to

resolve conflicts that arise in the transmission.

1.2 The Superpacket Structure

Let K information packets be formed from a message which
is to be transmitted. Iet (N-K) parity packets be generated from these
K information packets by some operations performed on them, such as
the modulo-2 addition of a number of them. We define the N-packet
structure so formed as a superpacket. Suppose now that we have a
spatial arrangement of the N packets in a manner that their starting
times form a simple difference-set. A simple difference-set is
a set of N integers {i;, i,, ...., iy} such that the set of N(N-1)
differences {ij-iy|j#k} are all distinct.[6]. Thus, let the spatial
pattern of the superpacket be specified by the index vector
{ig, iy, eovey iy}, where 0<i, <ip<...<iy. That is, if the starting
time of the superpacket is t then the jth packet in the superpaéket
starts at time t+ij. The structure of a superpacket is shown 1n ‘
‘Figure 1.1. Here N=3, K=2 and the parity packet is the modulo-2
sum of the two information packets. The superpacket has the index

vector (0, 1, 3) and 1 is the length of one channel slot.

The starting time of a superpacket is synchronized to the
beginning of a channel slot. When more than one packet is present in
any slot at the same time the intelligibility of each packet will be

destroyed. For an irredundant transmission, the transmitted packets
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iT (i+1)r (i+2)r (i+3)7 C(i+4)T

Figure 1.1 An Example of a Superpacket: N=3, k=2.
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will not be accurately received at their destinations; they will have
to be retransmitted. However, for a redundant transmission using
the superpacket configuration described, it is possible to reconstruct
a lost packet from other correctly received packets. It is also
possible that the lost packet cannot be reconstructed at the receiver,
in which case we assume that the whole superpacket will have to be

retransmitted.

We have chosen the index vector of the superpacket so that

its components form a simple difference-set for the following reasons.

" Proposition 1: When and only when the components of the

index vector form a simple difference-set any two colliding trans-
mitted superpackets collide either in all N components or in only

one component packet.

Proof (Massey [6])

Suppose first that the components of the index vector form
a simple difference-set and that a superpacket starting in slot j
collides with a superpacket starting in slot j' of the channel in at
least two packets. Then for some integers p, g, ¥ and s we have that

j+io=3"'+ i

P 9w

That is, 1p—1r = 1q—ls
But the defining property of a simple difference-set then implies
that p=q and r=s, and hence that j=j', so the superpackets collide in

all N packets. Conversely, if the indices do not form a simple dif-
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ference-set, there exist pkg such that vip—ir = iq—is, and hence there
exist j 4 5' such that (1) is satisfied. But this implies that
two superpackets can collide in more than one, but less than N

packets. Q;E.D.

'PrOposition 2: TFor a given packet of a given transmitted

superpacket, there are exactly N-1 starting slots for a transmitteci
supérpaCket that collides with the given superpacket in only thev given
packet. Moreover, these N-1 slots are disjoint from the corresponding
N-1 slots for any other packet of the given superpacket. '

To state this proposition in another way, consider the jth

packet of a given transmitted superpacket. A single-packet collision
of this superpacket and any other transmitted superpacket implies ‘
that the starting times of the two superpackets are different. By
Proposifion 1if their starting times are the same then and only then
will they collide in all N packets. Excluding, therefore, this
particular case, Proposition 2 states that there are N-1 other slots
in which another superpacket can start and cause a cbl‘lision with the
jJCh packet of the current superpacket. Also the slots in which

that superpacket can start and cause a collision with the jt‘l'l packet
of the current superpacket are different from the slots in which the
superpacket can start and cause a single packet cx)lliéion with any

other packet of the current superpacket. The proof is thus cbvious

and we shall omit it.




16

*2ousSnbas 38y0ed PIATaOSY ' JO aTdwexy uy 7'T 9MbTI

(V]
e
(8]
Q
O




17

1.3 Reconstructing the Superpacket ‘at the Receiver’

Generally a receiver can reconstruct a superpacket if ’any Kv
or more packets of the superpacket are correctly received. In this
section we shall restrict our discussion to the supei'packets with -
index vector (0, 1, 3). Then if any two or all packets of the

superpacket are correctly received, the receiver can reconstruct the

superpacket.

If each packet of a superpacket carries a number J'.ndicafing
its position in the superpacket, the problem of reconstructing the super-
packet at the receiver becomes trivial. However, in the absence of |
such positibn idehtity it is still possible to reconstruct a
s‘uperpacket which has not lost more than one packet due to collision

on the channel.

Consider, for example, a receiver that‘ has received a packet‘
sequehcé shown J_n Figure 1.2. The P; indicate: packets that were
correctly received; X indicates a collision and a dash indicates ba
position where ndthing was received. Since each receiver knows the
superpécket configuration, then assuming nothing was received for a long
time before P, was received, the receiver will associate P and P, with
one superpacket. Pj3 then is the first packet of a second superpacket; '
its second packet was involved in the first collision with the
redundant packet of the first superpacket. P, then is the redundant
packet of this second superpacket. Hence the receiver can reconstruct
the first two superpackets. The receiver will identify Py as the

first packet of a third superpacket. Unfortunately three other colli-
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sions have obliterated the two other packets of the superpacket and
the first two packets of each of two other superpackets. Precisely, |
the second packet of this third superpacket collided with the'fir\:st
packet of a fourth superpacket at the position marked d. 2and the
redundant packet of the third superpacket collided with the second
packet of a fifth superpacket. The second packet of the fourth
superpacket collided with the first packet of the fifth superpacket.

Pg and P, are the redundant packets of the fourth and fifth super-

7
packéts respectively. Thus the third, fourth, and fifth superpackets
cannot be reconstructed at the receiver. The alphabets a, b, ..., e
indicate the starting packets of the five superpackets. When many
collisions have occurred it may turn out that the superpackets are

| not reconstructible at the receiver, probably due to loss of two

or more packets of each superpacket or due to lack of proper identi—

fication of the packets.
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CHAPTER 2

THE SLOTTED ALOHA TYPE OF TRANSMISSTON

2.1 Assumptions

As we stated earlier, the slotted Aloha scheme is unstable.
However, we wish to analyze our scheme when used in the slotted Aloha
type of transmission in order to compare its performance withv that of
the slotted Alcha. We shall make the same assumptions made in the

analysis of the siotted Alcha. These include:

(a) there are infinitely many sources in the system;
(o) each packet of the superpacket has a fixed length of
1 seconds, the length of each channel slot; |
(c) The starting times of all newly generated superpackets
form a stationary Poisson point process with mean An,;
(@) the starting times of all retransmitted superpackets

form a stationary Poisson point process with mean )‘r'

Because the sum of two independent stationary Poisson point proceséés
is a stationary Poisson random variable, assumptions (c) and (d) then
imply that the starting times of all superpackets presented to the
channel for transmission form a stationary Poisson point process

with mean A = A #A,. We shall also assume that if the channel
receives any packet of the superpacket it acknowledges receipt of
that packet by broadcasting it; the same source which transmitted the
packet cah also hear the broadcast. After transmitting a superpacket
the transmitting source waits for a time long enough to receive an

acknowledgement for the last packet of the superpacket. If the number
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of acknowledgements received by the source after this time-out is less
~ than K, the number of information packets in the superpacket, then
the entire superpacket is retransmitted randomly. Otherwise, the
message transmission is taken to be successful. The process of
retransmission and waiting for acknowledgements is repeated until

the right number of acknowledgements is received, assuming the

system does not break down.

2.2 Analysis 'of the Scheme

Let N = the number of packets in a superpacket,
K = the number of information packets in the superpacket,

A = the channel superpacket rate; i.e., all the super-
packets (both newly generated and those being retrans-—
mitted) arrive at the channel at the rate of A per
slot,

, )\p= the channel packet rate = NA. '

Py = Probla given transmission of a superpacket will be

successful].

Then P,K the expected number of correctly received information

packets per attempted superpacket transmission.

A performance measure of the system that we are interested in is the
system throughput; that is the expected number ‘of information packets
per slot that are successfully transmitted per attempted superpacket

transmission. Thus the system throughput, A5, 1s given by

‘o = PJK\ information packets per slot

TN

EE N T R R T N TR St A Yy
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Iet A= the event that there is no "direct hit" on the current super-—

packet.

By a direct hit we mean that two or more superpackets start in the same
slot and so completely render one another um_ntellng_ble. Similarly,
by an indirect hit we mean that two superpackets whose starting times
are different collide with each other. According to Propos:.tlon 1,
an indirect hit gives rise to a loss of only one packet of a super-

packet involved in the hit.

let B = the event that (N-K) or fewer indirect hits are made on the
current superpackét.
Then P(A) = Problno other superpacket started at the time the trans-
mission of the given superpacket started]

_ A
=e

_ e—AP/N
For any packet of the superpacket, the probability of an indirect hit,
p, is given by

b= 1- oA (N-1)

where e P 1) _ propno superpacket starts in any of the (N-1) slots
that would cause a collision with a given packet of a

transmitted superpacket].
N-K .
Hence P(B) = & (1;]) pl (1—p)N *
o i=0 :
Events A and B are independent and therefore,

P, = P(ANB) = P(A) P(B)
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CASE 1

K = N-1; i.e., one redundant packet.

_1 N, i N-i
P®) =2, () P 1P

- (N-1) 2 —AN (N-
= e DT (N-1)e (N l); N 22 T

- 12 - (N
= e DNy A (N-D)

P, = P(8) P(B)
B |
_ efxp/N [Ne—Ap’(N—l) /N - eyt D)
A = PIK Ap _ P; (N-1) Ap
~ N N
— Al (D expbrP (P-2:42) ) v otP (2enrl) )
= Apl (-Dexpi-2 ( B epi- 2 v 1

For the slotted Aloha scheme

A
- 7P
Pl e

.—>‘p
. )‘O = P.l)‘p ,=>‘pe

Values of P, and A\, are given in Appendik 2.1A for some values of N and

Ap- Corresponding values are given for the slotted Aloha for comparison.
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CASE 2:
K =0N-2; i.e., two redundant ?ackets
P(B) = igo (1;) pta-p™; w23
- ]fN (N-1) exp [———“——“A »(N;l) (N-Z)] - Nm—Z)exp[_————Ap(g—l)'zl

+ 20D (v2) e [Fp 1]

P1K A - Py (N-2
A = 18 Ap - 1( 2‘))\p
"o N N

_P(a) P(B) (N-2))p
N

A PN p(B)  (4-2)
N

Il

Values of Py and A, are given in Appendix 2.1B for some values of N

and A_.
P
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CASE 3:
K = N-3; i.e., three redundant packets
3 N i . N-i >
PB) = () p (I-p) ;3 N=4
. i
i=0 .
-1

Z N (N-1) (N-2) exp[- *p(N-1) (N-3)
6 a ]

- 1wt o3 e (ApOHN0ND),
1 ap-1)2
+ 5 N(N-2) (N-3) exp[~——x ]

- 3 01 (2) (N-3) exp [Ap(N-11]

_PiKip _ p(a) P(B) (N3))p
(o] N N

I

‘p
\p P(B) (N-3)exp (_W)
N

Values of Pl and A, are given in Appendix 2.1C for some values of N

and Ap.

2.3 The Use of A Different Simple Difference-set for Each Source

Theorem 2.1 | Iet D = {il, i2, oo J'.MN} be a simple difference-set.
Then any M simple difference-sets of N digits whose union is D have
the property that if they are used for the spatial patterns of M
‘sources, any collision of superpackets from two of these sources will

be a single packet collision.
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Proof: Suppose a superpacket from one source starting in slot j
collides with a superpacket from a different source starting in slot

j' in at least two packets. Then for some integers p, 4, T and s

j+i =3'+ 1
P B
J+ i =3j' + 1g
Thus' ip -i, = iq— ig

By"ithe‘defjnition of a simple differéncé'—-'set p=q and r=s From (*) it
folloWs that j=3'; hence the two superpackets are identically con- |
structed and must come from the same source; which contrédicts the
supposition. Thu‘s the two superpackets cannot collide in more than
one packet. |
Q.E.D.‘
 This theorem implies that the probability of the successful trans-
mission of any superpacket is the probability that (N;K) or fewer
packets of the superpacket are lost through indirect hits on the

superpacket. Direct hits are impossible.

Thus Pi Prob [successful transmission of a superpacket]

Prob [(N-K) or fewer packets are lost through indirect hits]

N—K N 3
L (1;]) pl(l—p)N *

1l

1 - e N

1l

where bp

Te_?‘N = the probability that no superpacket starts in any of the

N slots that would cause a collision with a given packet of

a transmitted superpacket.
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‘CASE 1:

K = N-1l; i.e., one redundant packet

1 N i N"i >

N exp[-A N(N-1)] - (N-1) e:cp[rXNZ] '

N e [p0-D] = (WD) @p (g (%)

PIKAp  Ap(N-1)P]
. AO = N = N

Theorem 2.2 For K = N-1, Pl (N) decreases monotonically for N = 2,3, ...

when Ay * 0, where Py (N) is the probability of the successful trans-
mission of a superpacket given as a function of N, the number of

packets in the superpacket.
Proof: P;(N) = Nexp [fAP(N—l)] - (N-1) exp(_—'ApN)

(see (*).

Pl(N)—Pl(N—l) =N exp[-2Ap(N-1)] - (N-1) exp(—ipN)

(1) expl-A,(¥-2)] + (N-2) expl-Ap(N-1)]

2(N-1) exp[f-xp'(N—l)] - (-1) {exp (A N) + exp[f-AP(N—2)]}

i

- (N-1) exp(-AgN) [1 —2exp(};) + exp(2ip)]

- (1) exp(-agN) [1 - exp(A)]1?

<0 for o3 0 and N > 2.

Q.E.D.

Values of A  and P, are given for selected values of )\p and N in

1
Appendix 2.2A.
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CASE 2:
K =N-2; i.e., two redundant packets.
2 N i N-i
. =2 NOFD) expl-h,(N-2)] N(-2)expl-ip (1]

+ Z(N-1) (N-2) exp (- )

_P1Kap  ap(N-2)Py
o~ N B N

Values of A, and P, are given in Appendix 2.2B for selected Valuesiof

Ap and N.

CASE 3:

K = N-3; three redundant packets.

W

3 N, i N-1i
pX (i) (1-p) ; N
jmp i PP

4

]

=  N(¥-1) (N-2) expl-h, (¥-3)] - %N(m) (N-3) exp -2, (8-2) ]

+ 2 N(¥-2) (%-3) expl-2; (N-1) ] (N-1) (N-2) (N-3) exp (-Agh)

CP1KAp . (N=3) AP
= 1®p (N3,)7\£1

(o] N N

values of Ao and Py for selected values values of N and_Ap are given in

Appendix 2.2C.

2.4 Finite Number of Groups of Sources

In the previous section we considered the situation where
. each source has a different simple difference-set. However, as the
size of the set D increases, the delay of the superpackets increases

" rapidly. We, therefore, consider a situation where we have n groups of
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sources and the member sources of each group have superpackets with
the same index vector; the index vector of one group is different
from those of other groups. We further make the following assump-
tions and remarks.

(1) There are the same number of sources in each group
and the total number of sources is infinite. .

(2) Direct hits on a given superpacket are only possible
from members of the same group as the source transmitting the
superpacket“.v

(3) Indirect hits on a given superpacket are possible from
all members of the system. |

A

(4) The overall channel superpacket rate

the overall channel paéket rate = ip.

(5) Adding a fixed integer to evéry element of a simple
difference—set results in another simple difference-set. No ‘generality
is lost, therefore ,' in conside‘ring only simple difference-sets contain-
ing the element O. That is, we assume that in all the groups il = 0.
’For example, consider the simple difference-set D=(0, 1, 3, 7, 12, 20).
If we wish to generate two groups of sources from D,‘ then these groups
will have the index vectors (0, 1, 3) and (7, 12, 20). Adding -7 to
every element of the second group gives (0, 5, 13) which is still a |

simple difference-set that is different from (0, 1, 3).

We shall restrict our analysis to the case of R=N-1.
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ILet P, = the probability that a given ‘transmission of a superpacket
will be successful.
= theprobability that one or no packet of the given super- -
packet is lost through collision.
= the probability that there is no direct hit on the superpacket

and no more than one packet is lost through indirect hits.

Iet A the event that there is no direct hit on the given superpacket.
B = theevent that no more than one packet of the superpacket is

lost through indirect hits.
Then events A and B are independent and so

P, = P(A) P(B)

1
For any given superpacket the probability of an indirect hit on a
given packet from members of the same group as the superpacket is

g =1- exp[—% A(N-1)]

Ap(N-1)
=1 - exp[_.LnN_]

where we have assumed that the number of all superpackets presented to
the channel for transmission is a Poisson random variable with mean A.
Note also that n is the number of groups in the system. The probability

of an indirect hit from members of other groups is

_ L

I

1 - exp[—(%) Ap]
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For any given superpacket the probability of a direct hit is

q=1 —exp[-%]

1 -exp (anl%)

Hence P(A) =1 - g = exp (‘—:;—E)

The event B is composed as follows:

B, = the event that there are no indirect hits on the .'given'
superpacket;

B, = the event that there is one indirect hit on the glven super-
packet from members of other groups and none frdn members
of the same group as the superpacket;

By = the event that there is one indirect hit on the given super-
packet from members of the same group as the superpacket and

none from members of other groups.
Since events Bl’ B2 and B3 are disjoint we may write
P(B) = P(Bl) + P(Bz) + P(B3)

Iet us also define the following events.
Cl = the event that there is no indirect hit on the given supérpacket

from members of the same group as the superpacket,

c, = the event that there is no indirect hit on the given superpacket
from members of other groups,
D, = the event that there is one indirect hit on the given superpacket

from members of the same group as the superpacket,
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)
Il

5 the event that there is one indirect hit on the given super-

packet from members of other groups.

’I‘henBl = _Cl n C
By =Cp M Dy
By =GN Dy

Evehts C, and C, are independent; events Cy and D, are also independent,

and events C, and Dy are:'indeperident. ‘Hence

P(B) = P(C)) P(C,) + P(C}) P(D,) + P(C,) P(D))
= (-apV @g) + -t G gy -ap™
+ () (D gy g™
= N expl-Ap(-1)] - (2N-1)expl-A ¥y
P ‘ FETPY n
o,
_y (MNS-2N+1
+ Nexpl )\p (_——nN )]
A
= S
P(A) = exp (= 1)
. Py =P(d) P(B)
" ='(§§¥)Ap Py

) A
" As a check, (a)Lim Py = Nexp[-5 (N-28+2) ]
>l

- (N-1) exp[~ EE-(NZ—N+1)]
which is the same result obtained in Case 1 bf Section 2.2;
(b) Lip Py = Nexp[-A,(n-1)] - (N=-1) exp (=2 N)

n>e

which is the same result obtained in Case 1 of Section 2.3.
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Consider the special case of N = 2. Then

av)
I

X it
L = 2 expl—E (2n])] = 3exp[~E (4n-1)]

Ap
+ 2expl—2 (4n-2)]

Values of Pl and )‘o are given in Appendix 2.3 for some selected values

fnand A_.
of n A




APPENDIX 2

- Values of A and P;

All Superpackets Have The Same Configuration

A2.1A K = N-1
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N=2 3 N=4 Slotted Aloha
*p P 2o 2o Py *o Pl Ao
0.1 0.9490 0.0474 .0.0637 0.9476 0.0711 0.9048 0.0805
0.2 0.8966 0.0897 0.0094 0.8660 0.1290 0.8187 0.1637
0.4 0.7918 0.1584 0.2010 0.6539 0.1962 0.6703 0.2681
0.6 0.6911 0.2073 0.2442 0.4657 0.2096 0.5488 0.3293
0.8 0.5975 0.2390 0.2568 0.3185 0.1911 0.4493 0.3595
1.0 0.5126 0.2563 0.2485 0.2120 0.1590 0.3679 0.3679
1.2 0.4371 0.2623 0.2275 0.1384 0.1246 0.3012 0.3614
1.4 0.3707 0.2595 0.2003 0.0821 0.0835 0.2466 0.3452
1.6 0.3131 0.2505 0.1713 0.2019 0.3230
1.8 0.2634 0.2371 0.1432 0.1653 0.2975
2.0 0.2209  0.2209 0.1176 0.1353 0.2706
2.2 0.,1847 0.2032 0.1108 0.2437
2.4 0.1541 0.1849 0.0907 0.2177
2.6 0.1283 0.1668 0.0743 0.1931
2.8 0.1066 0.1493 0.0608 0.1703
3.0 0.0885 0.1327 0.0498 0.1498



N=3 N=4 N=5 Slotted Aloha

>
yej

p A P A H.uH A Hu.._. o
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CONAENOOABRNODONNK

WNNMNNVMNFRERHEHREHROODOOO

0.9670 0.0322 0.9730 0.0487 0.09762 0.0586 0.9048 0.0905
0.9337 0.0622 0.9420 0.0942 0.9362 0.1123 0.8187 0.1636
0.8639 0.1152 0.8541 0.1708 0.8028 0.1927 0.6703 0.2681
0.7894 0.1579 0.7414 0.2224 0.6337 0.2281 0.5488 0.3293
0.7118 0.1898 0.6197 0.2479 0.4696 0.2254 0.4493 - 0.3595
0.6340 0.2113 0.5023 0.2511 0.3321 0.1993 0.3679 0.3679
0.5584 0.2234 0.3972 0.2383 0.2268 0.1633 0.3012 0.3614
0.4870 0.2273 0.3079 0.2155 0.1508 0.1267 0.2466  0.3452
0.4212 0.2246 0.2349 0.1879 0.0982 0.0943 0.2019 0.3230

0.3615 0.2169 0.176% . 0.1592 0.1653 0.2975
0.3084 0.2056 0.1318 0.1318 0.1353 0.2706
0.2616 0.1919 0.0973 0.1071 0.1108  0.2437
0.2209 0.1767 0.0907 0.2177
0.1858 0.1610 0.0743 0.1%931
0.1557 0.1453 0.0608 0.,1703
0.130. 0.1301 . 0.0498 0.149%4




A2.1C: K ='N-3
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N = 4 N=5 N=6 Slotted Alcha
- P . P, A Py A P Ao
0.1  0.9753  0.0244 0.9800  0.0392 0.9829  0.0491 0.9048  0.0905
0.2  0.9509  0.0475 0.9588  0.0767 0.9610  0.0961 0.8187 0.1637
0.4  0.9008  0.0901 0.9028  0.1445 0.8811  0.1762 0.6603  0.2681
0.6 0.8459  0.1269  0.8218 0.1972 0.7507  0.2252 0.5488  0.3293
0.8 0.7848  0.1570 0.7199  0.2304 0.5960  0.2384 0.4493  0.3595
1.0  0.7184  0.1796 0.6081  0.2433 0.4462 0.2231 0.3679  0.3679
1.2 0.6489  0.1947 1 0.4978  0.2390 0.3187 0.1912 0.3012 0.3614
1.4  0.5788  0.2026 0.3969  0.2222 0.2194 0.1536 0.2466  0.3452
1.6  0.5105  0.2042 0.3095 0.1981 0.1467 0.1173 0.2019  0.3230
1.8 0.4456  0.2005 0.2370 0.1706 0.0958  0.0862 0.1653  0.2975
2.0 0.3856  0.1928 0.1787 0.1430 0.1353  0.2706
2.2 0.3311  0.1821 0.1331 0.1171 0.1108  0.2437
2.4 0.2824  0.1694 0.0981  0.0942 _ 0.0907 0.2177
2.6  0.2395  0.1557 0.0743  0.1931
2.8 0.2021  0.01415 0.0608 0.1703
3.0

0.1698 0.1274 . 0.04%94 0.149%



Each Superpacket Differently Constructed

A2.,2A K= N-1
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N =2 N =3 N =4 Slotted Alcha

v,mu @.._. »O WH A o mvH v,O ,.UH v,O
0.1  0.9909 0.0495 0.9746 0.0650 0.9523 0.0714  0.9048  0,0905
0.2  0.9671 0.0967 0.9133  0.1218 0.8473 0.1271  0.8187 0.1637
0.4 0.8913 0.1783 0.7456  0.1988 0.5991 0.1797  0.6703 0.2681
0.6 0.7964 0.2389 0.5730 0.2202  0.3890 0.1751  0.5488  0.3293
0.8  0.6968 0.2787 0.4243  0.2262 0.2406 0.1444  0.4493  0.3595
1.0  0.6004 0.3002 0.3064  0.2043 0.1442 0.1082  0.3679 0.3679
1.2 0.5117 0.3070 0.2175 0.1740  0.0846 0.0761  0.3012 0.3614
1.4 0.4324  0.3027 0.1524  0.1423 0.2466  0.3452
1.6  0.3630 0.2904 0.1058  0.1129 0.2019  0.3230
1.8 0.3033 0.2729 0.1653 0.2975
2.0 0.2524 0.2524 0.1353  0.2706
2.2 0.2003 0.2303 0.1108  0.2437
2.4 0.1732 0.2078 0.0907  0.2177
2.6 0.1430 0.1859 0.0743  0.1931
2.8 0.1179 0.1651 0.0608  0.1703
3.0 0.0498  0.1494

0.0971 0.1456
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A2.2B: K = N-2
N=3 N=4 N=5 Slotted Alocha

ymu wH »O HuH »o Hu.._. »O Hv“_. v,o
0.1 0.9991 0.0333 0.9968 0.0498 0.9926 0.0596 0.9048  0.09G5
0.2 0.9940 0.0663 0.9794 0.0979 0.9555 0.1147 0.8187 0.1637
0.4 0.9642 0.1286 0.8921 0.1784 . 0.7955 0.1909 0.6703 0.2681
0.6 0.9082 0.1816 0.7569 0.2271 0.5909 0.2127 0.5488 0.3293
0.8 0.8330 0.2221 0.6079 0.2432 0.4056  0.1947 0.4493 0.3595
‘1.0 0.7474  0.2491 0.4687 0.2343 0.2636 0.1581 0.3679  0.3679
1.2 0.6588 0.2635 0.3504 0.,2102 0.1647 0.1186 0.3012 0.3614
1.4 0.5724 0.2671 0.2566 0.1792 0.1000 0.0840 0.2466  0.3452
1.6 0.4916 0.2622 0.1837 0.1470 0.2019 0.3230
1.8 0.4184  0.2511 0.1300 0.1170 0.1653 0.2975
2.0 0.3535 0.2357 0.0911 0.0911 . 0.1353 0.2706
2.2 0.2969 0.2178 0.1108  0.2437
2.4 0.2483 0.1986 0.0907 0.2177
2.6 0.2067 0.1791 0.0743 0.1931
2.8 0.1716 0.1601 . 0.0608 0.1703
3.0 0.1420 0.1420 0.0498 0.1494
3.2

0.1174 0.1252 0.0408 0.1304




N=4 N=5 N=6 Slotted Aloha
»mv wH A o mu. A o m“_. A o Hu“_. v.,o.
0.1  0.9999  0.0250 0.9996  0.0400 0.9989  0.0499 0.9048  0.0905
0.2 0.9989  0.0499 0.9954 0.0796 0.9881  0.0988 0.8187 0.1637
0.4 0.9882  0.0988 0.9565 0.1530 0.9034 0.1870 0.6703  0.2681
0.6 0.9586 - 0.1438 0.8676 0.2082 0.7428 0.2228 0.5488  0.3293
0.8 0.9080  0.1816 0.7428  0.2377 0.5571  0.2229 0.4493  0.3595
1.0 0.8403  0.2101 0.6054 0.2422 0.3893  0.1947 0.3679 0.3679
1.2 0.7615  0.2285 0.4742 0.2276 0.2579 0.1547 0.3012 0.3614
1.4 0.6778  0.2372 0.3600 0.2016 0.1641 0.1149: 0.2466  0.3452
1.6 0.5943  0.2377 0.2666 0.1706 0.1012 0.0810 - 0.2019 0.3230
1.8 0.5146  0.2316 0.1936 0.1394 0.1653 0.2975
2.0 0.4410  0.2205 0.1384 0.1107 0.1353  0.2706
2.2 0.3748  0.2062 0.0978 0.0860 0.1108 0.2438
¥ 2.4 0.3164  0.1898 0.0907 0.2177
2.6 0.2652  0.1726 0.0743  0.1931
2.8 0.2219  0.1554 0.0608 0.1703
3.0 0.1848  0.1386 0.0498  0.1494
3.2 0.1533  0.1227 " 0.0408 0.1304
3.4 0.1270  0.1079 . 0.0334 0.1135
3.6 0.1049  0.0944 _ 0.0273  0.0984




A2.3 Finite Number of Groups of Sources: The Case of K=N-1 'N'= 2
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n=1 n =2 n=-3 ; n=4

yv P, yo Py Ay Py Ay Py Ag
0.1 0.9490 0.0474 0.9680 0.0484 0.9753 0.0488 0.9790 0.0490
0.2 0.8966 0.0897 0.9252 0.0925 0.9377 0.0938 0.9445 0.0945
0.4 0.7918 0.1584 0.8209 0.1642 0.8401 0.1680 0.8513 0.1703
0.6 0.6911 0.2073. 0.7081 0.2124 0.7303 0.2191 0.7442 0.2233
0.8 0.5975 0.2390 0.5984 0.2393 0.6216 0.2486 0.6369 0.2548
1.0 0.5126 0.2563 0.4979  0.2490 0.5209 0.2605 0.5368 0.2684
1.2 0.4371 0.2633 0.4095 0.2457 0.4315 0.2589 0.4472 0.2683
1.4 0.3707 0.2595 0.3336 0.2335 0.3541 0.2479 0.3693 0.2585
1.6 0.3131 0.2505 0.2697 0.2157 0.2886 0.2309 - 0.3029 0.2423
1.8 0.2634 0.2371 0.2167 0.1950 0.2338 0.2105 0.2470 0.2223
2.0 0.2209 0.2209 0.1732 0.1732 0.1886 0.1886 0.2006 0.2006
2.2 0.1847 0.2032 0.1378 0.1516 0.1516 0.1667 0.1624 0.1786
2.4 0.1541 0.1849 0.1092 0.1311 0.1214 0.1457 0.1311 0.1573
2.6 0.1283 0.1668 0.0863 0.1122 0.0970 0.1261 0.1056 0.1372
2.8 0.1066 0.1493 0.0680 0.0953 0.0774 0.1083 0.0849 0.1188
3.0

0.0885 0.1327 0.0535 0.0803 0.0616 0.0924 0.0681 0.1022



o
<

3"“ .Dnm J".N J"m

yﬁ MH VO MH yO WH yO MH yO

0.1 0.9813 0.0491 0.9829 0.0491 0.9840 0.0492 0.9849 0.0492
0.2 0.9488 0.0949 0.9517 0.0952 0.9538 0.0954 0.9554 0.0955
0.4 0.8586 0.1717 0.8636 0.1727 0.8673 0.1735 0.8702 0.1740
0.6 0.7534 0.2260 0.7599 0.2280 0.7647 0.229%4 0.7684  0.2305
0.8 0.6473 0.2589 0.6546 0.2619 0.6601  0.2640 0.6643 0.2657
1.0 0.5476 0.2738 0.5554  0.2777 0.5612 0.2806 0.5657 0.2829
1.2 0.4581 0.2748 0.4659 0.2795 0.4718 0.2831 0.4763 0.2858
1.4 0.3798 0.2659 0.3875 0.2712 0.3932 0.2752 0.3976  0.2783
1.6 0.3129 0.2503 0.3201 0.2561 0.3256 0.2604 0.3298 0.2638
1.8 0.2563 0.2307 0.2631 0.2368 0.2682 0.2413 0.2721  0.2449
2.0 0.2091 = 0.2091 0.2153 0.2153 0.2200 0.2200 0.2236 . 0.2236
2.2 0.1701 0.1871 0.1757 0.1932 0.1799 0.1979 0.1832 0.2015
2.4 0.1379 0.1655. 0.1429 0.1715 0.1467 0.1761 0.1497 0.1796
2.6 0.1116 0.1451 0.1161 0.1509 0.1194 0.1553 0.1221 0.1587
2.8 0.0902 0.1263 0.0941 0.1317 0.0971  0.1359 0.0994 0.1391
3.0 0.0728 0.1091 0.0762 0.1143 0.0788 0.1181 0.0808 0.1212




el
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9 n =10 n =20 n=-c
»m. »0 Py Ao Py »o. Py
0.1 0.0493 0.9861 0.0493 0.9885 0.0494 0.9909
0.2 0.0957 0.9577 0.0958 0.9624  0.0962 0.9671
0.4 0.1745 0.8742 0.1748 0.8826 0.1765 0.8913
- 0.6 0.2314 0.0737 0.2321 0.7848  0.2353 0.7964
0.8 0.2671 0.6704 0.2682 0.6832 0.2733 0.6968
1.0 0.2846 0.5722 0.2861 0.5859  0.2929 0.6004
1.2 0.2880 0.4829 0.2897 0.4968 0.2981 0.5117
1.4 0.2808 0.4041 0.2829 0.4177 0.2924 0.4324
1.6 0.2665 0.3359 0.2688 0.3490 0.2792 0.3630
1.8 0.2478 0.2779 0.2501 0.2901 0.2661 0.3033
2.0 0.2265 0.2289 0.2289 0.2402 0.2402 0.2524
2.2 0.2044 0.1880 0.2068 0.1982 0.2181 0.2093
2.4 0.1825 0.1540 0.1848 0.1632 0.1959 0.1732
2.6 0.1614 0.1259 0.1637 0.1341 0.1743 0.1430
2.8 0.1417 0.1028  0.1439 0.1100 0.1540 0.1179
3.0 0.1236 0.0838 0.1256 0.0901 0.1352 0.0971
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CHAPTER 3

" THE BINARY TREE ALGORITHM TYPE OF TRANSMISSION

The binary tree algorithm was proposed by Capetanakis [3]
for an irredundant transmission. As a transmission strategy it is
both stable and has a higher throughput (up to 0.43) than the slotted
Aloha strategy. We shall discuss this algorithm as it was originally
proposed and then use it as a retransmission strategy for the super-

packets with the index vector (0, 1, 3).

3.1 The Irredundant Scheme

The channel slots are divided into slot pairs. When a
source has a message packet to transmit, it flips a coin. If the coin
comes up heads, the source tranémits t.he packet in the first slot of
the next slot pair; otherwise it transmits the packet in the second
slot of the slot pair. If the source is the only member of the system
that has a packet in that slot, then the packet will be accurately
received. However, if two or more sources transmitted their packets
in that slot, then a collision occurs and each packet involved in the
collision is rendered unintelligible and has to be retransmitted.
Assume that the number of packets arriving at the channel is a

Poisson random variable with mean 2.

When a conflict occurs, all sources stop their transmissions
at the end of that slot pair in which the conflict occurred. ‘A conflict
may arise from a collision in either of the slots of the slot pair;

it may also arise from collisions in both slots. If it is a single
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slot COlllSlon, the sources involved in that collision w111 use the
algorlthm described below to resolve their conflict. If the confllct
involves collisions in both slots, then the sources involved in the
‘collision in the first slot (the "heads") will resolve their conflict
first. At the end of that the sources J.nvolved in t.he collision :Ln
the second slot (the "Tails") will then resolve their confl:.ct in the

samne manner.

When all sources have stopped their transmissions due to
the occurrence of a collision, the sources involved in the collision
in the flrst slot (assumlng a two-slot cohflict, otherwise that group
J_nvolved in the conflict just follows this algorithm) will flip coms;
- Those sources whose coins comes up heads will transmit their
packets in the first slot of the next slot pair while those whose
coins come up tails will transmit their packets in the second slot
of the slot pair. If collisions occur again, then those sources that
prev1ously obtained tails in their toss will suspend their transmission
at the end of that slot pair, assuming a collision occurred in thelr
' slot. Tf a collision occurred in the first slot then the members
that transmltted in that slot will flip coins again and those whose
coins come up heads will transmit in the first slot of the next slot
pair and those whose coins come up tails will transmit in the second
slot. If the collision occurred only in the second slot then it is
menbers of this group that will take the above step in Kresolvi.ng their
conflict. The process of coin flipping and transmission conti.nues
if a collision occurs at any stage until all the menbers of the First

group have successfully transmitted their packets. If a collision also
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occurred in the second slot of the original slot pair in which the
conflict arose, then the members of that group who were involved in the
collision will also use the same algorithm to resolve their conflict.
Otherwise, the conflict resolution ends when the members in the first -
slot finish transmitting their packets. While the conflict resolution
is in progress, no new packets are transmitted; all newly arriving
packets will be transmitted in the next epoch. An epoch is the
interval of conflict resolution, given that a conflict occurred ; other-

wise it is a pair of slots. We also define an algorithmic step as

consisting of the transmissions taken in a pair of slots, the observa-
tion of the outcomes of those transmissions, and the decision as to

what action to take in the next slot pair.

A typical binary tree for a conflict involving five sources

is shown in Figure 3.1.
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col col col
1 1 1
Sl : S] : T . f : IS4 f :
!
S2 I S4 | : : I —= channel time
S3155 [S2 153 | S1152 | T35 34135
L. R B 1
— 1 epod'h
Figure 3.1 An Example of a Binary Tree
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The left branch represents packets from those sources that obtained
heads in their original coin toss, and the right branch repres'ehts
packets from sources that obtaiined tails in their original toss.

Point [a] is the beginning of the epoch during which all the five
sources flip coins together. Sources Syr S, and S, obtained heads
while sources S, and Sy obtained tails. Hence a collision occurred
in both groups. At this point S4 and Sy suspended their transmissions
while S1r Sy and S3 tossed again at point [b1] . Here Sl and S,
obtained tails

obtained heads and hence generated a collision while S5

and had a successful transmission. At point [cl] S, and Sé tossed

1
again; S; obtained heads while 'Sz obtained tails. Both sources had
successful transmissions, and at that point all members in the left
bfanch of the tree finished resolving their conflict. The sources in
the right branch then took over with S 4 and Sg tossing at point
[b,]. Both obtained tails again; no one transmitted in the first
slot and the two transmitted in the second slot and so another colli-
sion occurred " At point [c2] they tossed again S 4 obtained heads
and Sy obtained tails. Both sources had successful transmissions.

That marked the ‘end of the epoch.
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3.1.1 Approximate Analysis of ‘the Strategy (Massey [71)

The following is an approximate analysis of the above scheme ;

the accurate analysis was carried out in [3].

Iet L; = the expected number of slots required to resolve a conflict
involving i packets in the first slot of the slot pair,
including the slot where the conflict occurred.

Clearly Lo =1 and Ll =1.

To compute L, for i 2.2 we display the outcames of the different

tosses graphically as Shmn below.

1/4

oH + OT
2 2 et
L4  onsar

Together with the original slot in which the collision occured we obtain
the following: |

L 1
L2—1+7(L

L

272

1
2+Lo) + 7(L1+L1)

1+3/2=5/2

Il

o L, = 5 slots
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1/8
B snsor
3/8
ABEpTI
3
3/8
B o
18 oH+aT

— ]_';
(Thus Ty = 1+ Ly + L))

. 3. 1,15, 3 _ 23
T3 =1l+tg+grg=7
3 = 7.667 slots
. _ 1 1
Similarly, L4 =1+ §(L4+LO)+ 7(L3+Ll) + (L +L2)
7. _ 1 23 1,15 _ 221
gy =ltgte v+t T =07
y L4 = 10.524 slots
L5=l+l6(L L)+'6(L+Ll)+ (L L,)

.15, 1  5x221, 5 . 230 . 50
~Tes Tt tExa et s T 1e

L FE‘ = 13.419 slots
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A

Theorem 3.1 L.

s S 3i-1 for i % 2.

n
1+2 % L,

Proof: L
n i=0 Pi‘ 1

wheré p; = 2—"\ (2) = pﬁ—i' binomial process with p = 1,2,

H n . n.,
ence .): 1p; .2: ip; =
1= i=1

N

I | =1
pj
i=0

We use induction on n; we have already verified the theorem for

Assume the theorem is true for all i < n. Then

, n-1
Ln =1+ 2pOLo + 2p1Li + 2 122 plLl + ZpOLn

n=1 _.
s 1+ 2po_2pl + 2poLn + 2 2 (31—1)pl

n
. - < . — -
. Ln (1 2po) 1+ 2po+2pl+6 . iil ip; 6pl 6npo

-2 Ipj+4p,+2p
' i=0

1+ 3n -2+ 6po - ano - 21::l

3n(1-2p ) - (1-2p.) - (2p;~4p,)

. 2py—4pg
- < I Y Tl B
oL 3n -1 {1-2p(},'“
2n-4
= 3p-1 - :
n {zn_z}

’A

3n-1 for n % 2

Q.E.D.

n=2.
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3.1.2 Throughput Consideration:

let Lj = the length of the jth epoch in slot pairs.
Since we assumed that the number of packets arriving at the channel
is a Poisson random variable with mean A packets per slot, the
expected number of packets involved in the conflict resolution process
in the jth epoch, given that the length of the (j-1)st epoch is m,
is 2xm. And since there are two groups of sources in the system we
must have that

=) =2 ¥

L @
1) =
j1%5-1 S B = B BT

i=0

where we have divided L, by 2 to convert it to slot pairs, and we

‘have multiplied the sum by 2 to‘vrecognize the two groups mentioned

above. Also
i .
2\m
I L
1 il
5 i
.—:_F_(f,“) e M i-0,1,2...

PL +P,L,+ ¥ P.L.
(o) e}

E(2.|2. ; =m)
3'75-1 171 j=2 11

A

+ o
o P F1T 2 3i-1) By

= Po + P, + 3 _..Z lPi_3Pl —'E Pi+Po+P
i=1 i=0

1 1

3m -1 4 e ™ (2-3m) PR
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Theorem 3.2 (Capetanakis [31)

Let Qj be a positive integer corresponding to the state of a
Markov chain after the jth transition. Also assume that for some ccnstants

aand b, 0 Sa=<]l,

) — *%k
E(mjﬂlzj) < a(ty-1) +b (**)

then Lim g(y.) § 222 (3.2)
j-)oo J 1-a

Proof: The proof for this theorem can be found in the above réfefence'.
It consists of multiplying both sides of (**) by p(zj) and summing over
Sbj énd obtaining the steady-state solution as ﬂ,j—m. The theorem then
States that E(1) is finite. |
Thus from Equation (3.1) »

E(zjlzj_l = m) € 3am-1 +¢- ™ (2-xm)

= 3A(m1) + 301 + e (2-xm)

Iet a

31, where 2 < /5,

and b

Il

max{3A-1 + e " (2-xm) }
m

331 +2

=3 +1

3I1-32 1

Then E(2) & =337~ = T93% -

This is finite for A < 1/3. Thus the maximum stable throughput is at ’

least 1/3. An exact analys‘is shows that it is 1/2.88 (see [3]1). 1In
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Appendix 3A we have a tabulation of A against different values of m.
From this table we see that this approximate analysis gives a maximmum
value of A = 0.423 as against 0.43 obtained in the accurate analysis

in [3]. However, this is an unstable maximum.

3.1.3 Avoiding Situations of Obvious Conflict

It is possible to eliminate those situations where a colli-
sion is sure to occur. If no transmission was heard in the first
slot after a conflict, then all sources involved in that conflicE
obtained tails in their toss and will certainly collide again if they
transmit in the second slot. Under such a situation',i the sources
involved in the ‘conflict will not transmit in the second slot.
Instead they will toss again and continue the process of conflict

resolution from there.

let Li = the expected number of slots required to resolve a conflict
involving i sources in the first slot, including the
slot where the conflict occurred.

Then Lo

Li = 1 slot.

1/4
I—————2H+0T—DL2+L0

) 1/2

TH+1T — L, + L,

1/4
-—/—0H+2T——>LO+L2-'|

e spms me m Bii s a2




That is, L2 =

53

1 1 1
} + T (L2+LO) + 7(L1+Ll) + Z(L0+L2—l)

1+ 241 -14=202s5

L2 = 4.5 slots

A8 3H+0T —p L

+L

3 0

.3_/8__:_2H+1T_>|_2+|_]
P28 He 2T —e L L
1/8

OH+3T-—-—->LO+L

N | 3 !
. L3 = l + Z(L3+LO) + E(L2+Ll) §

2
4

|+

3

-1
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. _ 1 1
Similarly, L,=1 +§(L4+Lo) + -2-(L3+Ll) +—(L +Ll)—T

s
Il

1+V8+44+21/g-1p6-= ———67;35

. L4 = 9.6429 slots

= _1
Lg 1+—(L+L)+16(L+Ll)+ 6(L+L) 33

or _AL5.=‘12.3143 slots

Theorem 3.3

L, £ 2.75i-1 for i % 2.
_ . L
Proof: Ly=1+2 EPll-p
] iz
n-1
=1+2 2 pilt* 2Poln ~ R

We use induction on n = 2. Assume the theorem is true for all i <n.

Then
n-1
L, 1+2p01,o + 2plL + 2 iiz p;L; + 2p01h-p0

n-1
<1+ P, +2pl+2P L + 2 22 (2.75i-l)pi

] - < - -
- L (1-2p,) < I4p, +2p; + 5.5 lEllp 5. -5p;=5. 5 Py

-2 Zp +4p +2p
i=0
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. < _
- Ln(l—2po) 2.75n-1 =5.5ng, * 5p, 1.5py

= 2.75 (1-2p,) - (1—2pb) - (1.5p;-3p,)

=
A

< 2.75p-1 - {___EE;EEED
U l-po

1.5n7%
2"-2

2.750-1 - {

A

2.75r1—l for n z 2.
Q.E.D.

And from the results of Section 3.1.2,

_ om* -am
=1 ¢

E(ljllj_l = m) I P;L;; where P,

i=0
= PoLo + PiLi + ':_{_2 PiLi

A

P +P, 4+ % .
ot 1T [l (2.75i-1)py

P°+P

L+ 2.75 ¥ ip. - 2,75P)

i=1

LR TR s |
i=0

2.75Mmm -1 + ZPO —0.75P1

= 2.75 m -1 +¢ " (2 - 0.75Am)
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i

Thas E(g5]05 1 = m $2.753@-1) + 2,751 +e (2 -0.75)y)

Iet a

2.751, where X < 1/2.75
b = X3 751 -1 +&™(2-0.75Mm) }

= 2.75)\-1 +2 = 2.751 +1
Then E(zjlzj_l =m) § 2.75A(m-1) + {2.75) +1}
From theorem 3.2, therefore, we must have that

ba 1
T ===
B ¥ 13 = =27y

Thus the maximum stable throughout is at least 1/2.75 = 0.3636. An
exact analysis was not carried out in [3] for this strategy. In
Appendix 3B, we have given a tabulation of the values of m and the
corresponding values of A. From the table it is seen that an instantaneous

maximm throughput of at least 0.456 can be cbtained with this scheme,

3.2 'Retransmission Strategy For The Superpackets

In Section 3.1 we gave an overview of the binary tree algorithm
and used an approximate analysis to compute the throughput of the
scheme. In this section we propose how the algorithm can be used as a

retransmission strategy for the superpackets with index Vectdr (0, 1, 3).

We assume that the number of superpackets generated by the
sources and presented to the channel for transmission is a Poisson
random variable with mean A superpackets per slot. The superpackets are

thus randomly generated and transmitted as they are gen'er'atéd'. - To
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simplify the analysis we assume the satellite has memory and keeps
track of the number of packets of each superpacket that _sustaﬁ'.n colli-
sion when the system is in the free-rufming modé. When this nmibér
exceeds one for any superpacket, the nurber of parity packets.,- the
satellite sends a message to all the sources that a collision has :
occurred. At this point all sources stop their transmissioné. Ail
the sources that were transmitting their superpackets when the order

. to stop transmission came will then start tossingcoins as described

for the irredundaht transmission.

Two patterns for formattingthe superpacket for ret'ransmisisidn
are considered. | In the first scheme,b' the super‘packét' structure is
preserved and one algorithmic step spans five 'slots.- In the second
scheme the sources transmit only the information packets and one
algorithmic step spans four slots. When the system is in the retrans-
mission mode, the channel slots will be partitioned into superslots.

A superslot consists of the number of slots that are used in one

algorithmic step. Thus in Scheme 1 a superslot comprises the five
slots that are used in one algorithmic step, and in Scheme 2 a |
superslot comprises only four slots. These schemes are giaphi'cally

shown in Figures 3.2 and 3.3 respectively.
3.2.1 Scheme 1

Here the sources that obtain heads in their toss will start
théir transmission in the first slot of the superslot while the sources
that obtain tails will start their transmission in the second slot of

the superslot. Since a superpacket can be reconstructed if one packet
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is lost in collision, then if a superpacket does not lose another
packet through a direct hit arising from the fact that more than one
source obtained heads or tails, the superpackets of Figure 3.2

can be reconstructed at the receiver.

"Heads" A1 B] A.| ® B]

"Tails"

= 1 superslot

Figure 3.2 Retransmission Model For Scheme 1

3.2.2 ‘Scheme 2

This scheme is similar to the scheme for irredundant trans-
mission. The sources that obtain heads in their toss transmit their
two information packets in the first two slots of the superslot.
Sources that obtain tails transmit their two packets in the second
two slots of the superslot. Thus one superslot consists of only four

slots as shown.
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" Heads" A B

-

—ad
o e = |- — -

"Tails" , A B

0 1 2 3 4

l¢———————— 1 superslot

Figure 3.3 Retransmission Model for Scheme 2.

3.2.3 An ‘Appr'okﬁiraﬁev Analys:.s 'o‘f '.t‘ne' Schemes
Iet L, = the expected number of superslots used in resolving
a conflict involving i sources excluding the slots
which the original conflict occurredi.
Then L; is insensitive to which of the two schemes is in use. For a
collision to occur i * 2. Applying the same method of analysis we used

for the irredundant transmission we obtain the following.

1/4

2 — 1/2 TH+ 1T ——p 1 superslot
1/4
L—L——— OH + 2T —p(1+ L2) superslots

2H + 0T == (1+ L) superslots
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1 1
Thus L2—7(1+L2) +7(1)
f.2]:L-2=1
or | L, = 2 superslots
Similarly, L,= (1 + L.) + 2(1 + L.)
Yri37 1 3 T3 2
- 3. _ 3. _s
Loghym L+, = /2
y L3 = 3.33
_1 1 3 :
L4 = §4L4 + 1) + 5—(L3+1) + §42L2+1)
. 1 _ 5,3_25
gu-l+t3+3=3
- L4 = 4,762
_ 1 5 10
Lg = 1g (Lg + 1) + 75(L,+1) + 7£(Ly + L
. 15 _ 500 . 100 , 20
o5 - 1timor 28 T 16
or L5 = 6.210
Theorem 3.4
Li51.5i—1 for i%2.
n
Proof: L =1+2 ¥ p,L.
n . 1 1
i=2

where P is as

L =14+2pL +2
n . on

defined as theorem 3.1
n-1
r

FE =R TR (*)

2

+ 1)
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We use induction on n, We have verified the theorem for n = 2. Assume

the theorem is true for all i < n. Then from (*)

l .
(1.5 - 1)p;

L $1+2pL +2 “Z
" en i=2 *
o noo, . _ n
=1+ 2poLn + 3 lil ip; = 3p:L - 3np0 2 iiopi+4p o+2pl

A

. 3 . ’
- Ln(1—2po) 1+ >0 = 2 - 3npo + 4po - Py

3na-2py) - (- 2p) - (B =2R)

“ Ly €1.5n-1 —”{'Eizll__:_iiﬁ}
| | »
;.1.5',‘,, -1- O 2
£ 1.5 - 1‘ for n > 2
Q.E.D.

3.2.4 ‘Throughput Considerations:

Let &y = the expected length in superslots of the jth epoch
not counting the slots where the original conflict

occurred.

If we have as a rule that if no collision occurs in the superslot that
immediately comes after a superslot in which a collision occurred the
system reverts from the retransmissionmode tothe free-running mode, then

it follows that

E(24]25-17) =, PyTy

where P.

CRA ()]t e—_KMm+1) |
i 1l
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[5 if Scheme 1 is adopted
k= 4 if scheme 2 is adopted
That is k = the number of slots in one superslot. We have added 1
to account for the fact that one superslot is used to change from the

retransmission mode to the free-running mode at the end of each epoch.

@©

BT = < I .
DEGgleg g =m S5 (L5~ 1) By

=15 ¥ ip, -1.52) - £ P, 4P +P)
i=1 i=0
= 1.5KA(m+l) - 0.5p; + B_ -1 el (3.4)

1587 (m-1) +3kA-1+e M ™) 110 503 (me) ]

Iet a

1
1.5KA where' A< m‘

KA () [ _

b=""X3 K1 +e 0.5KA (m+1) 1}

I

3K\ -1 +e KA (1-0.5K))

Then, from theorem 3.2

E(2) < b-a _ e—K)\ (1-0.5KA) +1.5K -1
T la I-1.5RA

vhich is finite for A < L1/1.5K.

Thus the maximum stable throughput is obtained when A is at 1eas£ . 115K

Since A is the channel superpacket rate, the throughput AO——-Z)\, the chan-
nel information packet rate. Hence the system throughput is at least

5 ’_{0.2667 for Scheme 1
A=

o = I.5K _ 10.3333 for Scheme 2.
In Appendix 3C we have tabulated the values of A and m obtained for these

schemes.
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3.2.5 Avoiding Obvious Conflicts

As in the case of the irredundant transmission it is possible
to avoid these situations whére a conflict is sure to occur. Consider
Scheme 2. If ho transmission was heard in the first half of the super—
slot after a conflict, then all sources involved in that conflict |
obtained tails in their toss. If they transmit their packets in the -
second half of the superslot, then they are sure to generate a
collision. A strategy to adopt in such a situation is to skip
transmission in the second half of the superslot and toss again.

Those who obtain heads will transmit in the first half of the super-
slot after the superslot in vhich théy were scheduled to transmit. And
those who obtain tails transmit in the second half of that next
superslot. Thiis the sources tise ohe half of a superslot to avoid an

»obvious conflict.

We can, as usual carry out an approximate analysis as follows.

1/4 ,

2H + 0T ——pn (1 -I-Lé) ~ superslots
1/2

D Lt THH T — superslot
1/4

‘ . OH+ 2T — (1 +|_2-]/2) superslots




64

R =1 F(14L,) + 2.(1) + 4(1+L2 -1

o1 11
=74y 5 -3
: %Lz =1- %’= /8

2|, = 7/4 = 1.75 superslots

- S1 3 L1l
Similarly, L, = I(1+L3) + Z(l+L2) -3 U

: %L3 =1+ 3 %- fﬁ-= 1+5/4=94
. L3 =3
L, = %(1+L4) + %—(1+L3) >-|%—(1+2L2) - 11‘6“ (%—)
L, = 4.3214
Theorem 3.5 -
L; $1.3751 - 1 for i 3 2.
Proof Lr| =1+ 152 p;Li - 55

where p; is as defined in theorem 3.1. We use induction
We use induction on n. We have verified the theorem for n=2. Assume

that the theorem is true for all i<n. Then
1 n~-1
Za=l+2pL -3p +2 2 pilL
i=2
n-1

o+ 2 z (1.375i-1)p;
i=2

o)
I

A

N%I—'

1+ 2p0Ln -
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. < 1 no, )
L1 (-2p) §1 -5, * 275 151 ip; - 2.75p) -2.751P,
no |
-2 .Epi+4po+2p1
i=0
= 1.375, - 2.75,p, -1 + 3.5p, - O.75pl'
= 1'37‘5n> (];-2pq) — (;_2p0) -{0.75p; - 1.5po}
- 0.75p) - 1.5
In € 1.3750 -1 - (2= Poy
1 - 2po
. 0.75n- 1.5
- 1.375n-1 - {2
- 2n-2

N

1.375n for n 2 2

»

Q.E.D.

Iet 2y = the expected length in superslots of the jth epoch excluding
the slots where the original conflict occurred.

Then by the same argumenf in Section 3.2.4 we have that
e oo Im]t )
Eliglegqmm = b Pilys By =7 e

o]

z .
iop (1.3751 - 1) By

A

1.375; 5 i Py-1.375P = I Py#RHP)
i=1 1=0

= 1.375% -1 +e ~(1-0.375%) ..... (3.5)
where x = 4)(m+l)

550 (mtL) -1+e M) 111 53 (k1))

A

B2y | 25

5.50 (1) +11-1 4o D sl
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1

Iet a = 5.5 where A < 55

o
I

X (11A-1 + ML) 1y 5 (k) 1}

118 -1+ (1-1.50)
- Then from theorem 3.2

<b-a_ e 150+ 5.50-1
“Tm 1-5.5x ’

E(1)

which is finite for A <§-1'§

Thus the maximm stable throughput is obtained when A is at least
1/5.5 = 0.1818.
That is, the maximum stable throughput is at least
2) = A, = 0.3636
In Appendix 3D we have tabulated the values of A for different values

of m.
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" APPENDIX 3

- Throughput Calculations for the Approximate 'Arialyses

3A The Irredundant Scheme

From Equation (3.1) we have that

E(ljllj_l =m) € 3x1 + e ¥ (2~x) , Where x=Xm .
Since E(%) is finite, then for all m,

m Z3%1+e X (2-x)

The values of m and A satisfying this inequality are given in the

table below.
A =X
m X : m
2 0.8299 0.41495
2.5  1.0575 0.42300
2.6  1.10010  0.42312
2.7  1.1420 0.42296
3 1.2640 0.42133
4 1.6437 0.41093
5 2.0000 0.40000
6 2.3443 0.39072
7 2.6822 0.38317
8 3.0165 0.37706
9 3.3491 0.37212
10 3.6807  0.36807
50 17.0000 0.34000

100 33.6666 0.33666




68

3B The Trredundant Scheme Avoiding Obvious Conflicts

From Equation (3.3) we have that

E(%.|2. - =m) § 2.75x -1 +e <(2-0.
(JI 5-1 m € 2.75x -l+e ~(2-0.75%)

where x = Am
Since E(2) is finite, then for all m,
m % 2.75% -1 +e ¥ (2-0.75%)

Values of m and X satisfying this inequality are given in the table

below.

X
0.89279 0.44640
1.13944 0.45578
1.18568 0.45603
1.23115 0.45598
1.36367 0.45456
1.77715 0.44429
2.16617 0.43323
2.54279 0.42380
2.91273 0.41610
3.27901 0.40988
3.64333 0.40481

10 4,00665 0.40066
50 18.54545 0.37091
100 36.72727 0.36727

e e .
~N oy,

VOO WNNNMN T
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3C ‘The_Redundant Scheme

From Equation (3.4) we have that
‘ E(y]eg ) =m € 15x-1+ ™ (1 - 0.5%), where x = K\ (m+l)
5 of scheme 1 is used.
K =
4 of scheme 2 is used.
And since E(2) is finite, then for all m,
m3 1.5x -1+ e (1-0.5%)
In the table below we give the values of m and ) satisfying the above

inequality for the two schemes.

Scheme 1 Scheme 2
_ X T . _ X -

n x  Ms@m TP Mpmm A=

2 2.00000 0.13333 . 0.26666 0.16667 0.33333

3 2.68222 0.13411 0.26822 0.16764 0.33528

3.1 2.74931 0.13411 0.26823 0.16764 0.33528

3.2 2.81627 0.13411 0.26822 0.16764 0.33527
4 3.34912 0.1339% 0.26793 0.16746 0.33491
10 7.33449 0.13335 0.26671 0.16669 0.33339

50 34.00000 0.13333 0.26667 0.16667 0.33333
100 67.33333 0.33333 0.26667 0.16667 0.33333
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3D The Redundant Scheme Avoiding Obvious Conflicts

From Equation (3.4) we have that
E(e5]eg; =m § 1.375 -1+ €™ (1 - 0.375x)

Since (2) is finite, then for all m, the inequality holds:

m 2 1.375x -1 + e (1 -0.375%)

The values of m and A that satisfy this relation are given in the

table below.
‘m X A= A= 2
4 (m+1) "o

1 1.36366 0.17046 0.34092
2 2.16617 0.18051 0.36103
3 2.91273 0.18205 0.36409
3.6 3.35200 0.18217 0.36435
3.7 3.4249] 0.18218 0.36435
3.8 3.49776 0.18218 0.36435
3.9 3.57057 '0.18217 0.36434
4 3.64333 0.18217 0.36433
5 4.36951 0.18206 0.36413
6 5.09496 0.18196 0.36393

10 8.00048 0.18183 0.36366

50 37.09090 0.18182 0.36364
100 73.45454 0.18182 0.36364
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CHAPTERG

CONCTLUSTION

4.1 . Discussion

We have vstudied how the performance of the multiple access
broadcast channel is affected by the use of redundant packets. In
particular, we have considered the use of the superpacket in the
slotted Aloha type of trans:ﬁission, and the use of the binaryb tree
contention resolving algorithm to resolve conflicts that arise in a
random access transmission using the superpackets. Our measure of
system performance has been the system throughput only; neithét delay
nor system stability was explicitly considered. From the results
obtained we observe that we cannot increase the throughput above that

for an irredundant scheme.

For the slotted Aloha type of transmission we observe, how-
ever, that over some range of values of ip, the channel packet rate,
thé probability of a successful transmission of the superpacket per
attempted transmission is higher than that for an irredundant scheme.
One obvious consequence of this then is that, over this range, the
number of retransmissions required to get the message to be successfully
transmitted is fewer in the case of the superpacket scheme than in
the irredundant scheme. As we pointed out in Chapter 2, a major cause
of the instability of the slotted Alcha system is the .numerous |
retransmissions that are encountered in the system when the traffic
is heavy. We may then conjecture that the superpacket scheme will be

more "stable" than the slotted Alcha scheme. Note that slotted Aloha is
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unstable. Anything more stable than it may not be stable itself. We

have, therefore, used the term in a relative but not absoulte sense.

In the binary tree algorithm type of transmission we observe
from the values of the throughput given in the Appendix that the through-
put of the superpacket scheme is somewhat constant over all possible
values of m. But for the irredundant scheme, the throughput values
" are not as constant as noted above; the throughput reaches a maximum
value and finally remains constant at a much lower value>. One
possible conclusion then is that the superpacket scheme is again moré
stable than the irredundant scheme. Thus, whereas we cannot achieve
higher throughput with the superpacket scheme, we may be able to

~achieve a greater system stability.

4.2 Suggestion for Further Work

The above conclusion on the effect of redundancy on the
stability of the multiple access broadcaét channel is a mere conjecture.
The slotted Alcha scheme is known to be unstable and it is not
recommended that an analytical proof of the fact that the superpacket
scheme may be more stable than the slotted Aloha scheme be carried out.
However, the binary tree algorithm has been proved in [3] to be
stable. It may be necessary, therefore, to study the stability
effects of the superpacket scheme when used for the binary tree
type of transmission. In particular, one may wish to consider how
frequently the system switches from the free-running mode to the
retransmission mode. Our conjecture is that the system will not switch

as frequently as when the irredundant scheme is used.
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