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ABSTRACT

The differential equations of motion for the Moon's
rotation are derived in terms of Euler angles referenced to
an inertial coordinate system. Modifications are made to
the rigid-body equations of motion to allow for lunar elas-
ticity, as well as for two possible forms of lunar anelas-
ticity. The two models of anelasticity correspond to
different assumptions regarding the frequency dependence of
the underlying dissipative mechanisms. The possibilities
considered are a constant Q, and a Q which is inversely
proportional to the strain oscillation frequency. Also
developed are variational equations of the rotational motion
with respect to six Euler angle initial conditions, the
lunar moment of inertia ratios S and y, the coefficients of
the third and higher-degree gravity harmonics, the potential
Love number k, and two different parameters describing
dissipation. The equations of motion and the variational
equations were integrated numerically within the framework
of the M.I.T. Planetary Ephemeris Program.

The numerical rotation model has been fit by weighted-
least-squares to 7 1/2 years of lunar laser range data. The
rms of the postfit range residuals was 27 cm. Some of the

parameter estimates obtained are presented and compared to
other determinations that have been published. Especially
interesting are the results for the lunar dissipation param-
eters. Both models of anelasticity yielded similar estimates
of Q: 27 4 for the constant Q model, and 22 4 for the Q
at a frequency of one cycle per month, with the model in
which Q was inversely proportional to frequency. The
apparent discrepancy between these estimates of Q and the
much higher estimates obtained by lunar seismologists may be
explained by the six-order-of-magnitude difference between
the relevant strain frequencies. However, several possible
deficiencies in the present model of the Moon's rotation are
noted; these deficiencies may have significantly biased the
estimates of Q, and warrant further study.
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I aIntroduction

As our nearest celestial neighbor and the second-most

prominent feature of the heavens, the Moon has been scru-

tinized by Man since prehistoric times. However, precise

observations of the Moon's rotation have been possible only

since the advent of the telescope in the 17th Century.

Based on such telescopic observations, in 1693 the French

astronomer G. D. Cassini proposed two simple laws describing

the rotation of the Moon:

1) The Moon rotates eastward about its polar axis with

constant angular velocity in a period of rotation

equal to the time of the revolution about the

Earth, i.e., one sidereal month.

2) The inclination of the Moon's equator to the plane

of the ecliptic is constant and equal to 1.5*.

The poles of the Moon's axis of rotation, of the

ecliptic, and of the lunar orbit, lie in one great

circle in the order given; i.e., the planes of the

lunar equator, lunar orbit, and ecliptic meet in

one line, the so-called line of nodes, with the

descending node of the equator coinciding with the

ascending node of the orbit.

An interesting dynamical implication of Cassini's second law

is that as the node of the lunar orbit on the ecliptic



undergoes its 18.6 year regression cycle, the lunar pole

regresses about the ecliptic pole, keeping the geometry

constant. It is well known (see, for example, Peale, 1969)

that the Cassini state corresponds to the dynamical solution

that has minimum dissipation of energy by internal friction.

Many great mathematicians have studied the rotation

of the Moon: Newton, D'Alembert, Euler, and particularly

Lagrange made successive contributions to the theory. But

it was Newton (1686) who first realized that there might

exist small departures from uniformity in the lunar rota-

tion, which have since become known as "physical librations".

These physical librations, whose amplitudes are at most a

few hundred seconds of selenocentric arc, would be even

smaller were it not for a much larger, apparent non-

uniformity of the Moon's rotation called "optical libra-

tions." The optical librations are due to observing

geometry: Since the lunar orbital angular velocity is

non-uniform (a result of the 5% orbital eccentricity), the

Moon appears to librate in longitude by about 60, as seen

from the Earth. Similarly, the 6.5* inclination of the

lunar orbit to the lunar equatot causes a monthly variation

of similar size in the apparent orientation of the Moon, but

in a (selenocentric) latitude sense. When viewed from a

frame fixed in the lunar body, the optical librations cause

the Earth to oscillate about some mean position, with
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amplitudes of about 6* in both longitude and latitude, and

predominantly monthly periods. Since the lunar gravity

field is not spherically symmetric, this oscillation causes

time-varying torques on the Moon. The resulting forced

motions of the lunar globe are the major constituents of the

physical librations. There are also physical librations due

to the torque exerted by the Sun, but these are smaller by

more than two orders of magnitude.

The differential equations of motion of the Moon

(treated as a rigid body) about its center of mass were

first written by Euler, but due to the complexity of the

forcing terms, theyhave been solved only approximately.

Formulations of these equations in which the orbital motions

of the Earth and Moon are approximated by functions composed

of terms secular and periodic in time (such as the Brown

lunar theory) are amenable to algebraic solution; the

theories of motion so derived are called analytic theories.

Several twentieth-century investigators have been involved

in the development of analytic theories, culminating in the

computer-assisted developments of Eckhardt (1970) and Migus

(1976). Such modern analytic theories are invaluable for

their concise description of different modes of physical

libration, but have the dual disadvantages of reliance

on relatively inaccurate analytic orbit theories, and an

astounding complexity of algebraic manipulation that

involves approximation at many steps.



Approximate solution of the equations of motion by

numerical integration has become a feasible alternative to

analytic theories only since the advent of digital computers.

The solution by numerical integration offers many advantages,

perhaps the greatest of which is simplicity. Numerous com-

puter programs that integrate differential equations have

already been written; the choice of which to use is mostly a

matter of efficiency and personal taste. Since the theorist

need only write the equations of motion and present them

(along with ancillary control information) to the integra-

tion routine, more effort can be spent modelling small

effects of interest. Also, for many of the same reasons

given above, modern high-accuracy lunar orbit theories

are also numerically integrated, so that the numerically-

integrated rotation theory can be set in a consistent

framework with the orbit to which it is intimately tied.

This dissertation describes a model of the lunar

rotation based upon the numerical integration of Euler's

equations, written in terms of Euler angles referenced to

an inertial coordinate system. The model is implemented as

part of the M.I.T. Planetary Ephemeris Program (PEP), and is

used in the reduction of lunar laser range data. Unknown,

or poorly determined, physical constants in our model are

estimated by weighted-least-squares fitting to the range

data.
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The high precision of the current laser data, with

typical standard erurors of 10 cm in range to the Moon,

imposes exacting demands upon the theoretician. It has

become necessary to include many small, previously ignorable

effects in models of the lunar rotation and orbit. The

gravity fields of Earth and Moon must be described to a

higher order, and the interaction of their figures con-

sidered. Even when these refinements are incorporated into

the lunar orbital and rotational motions, the discrepancies

between the theoretically calculated ranges and the observed

ranges are apt to be several times the uncertainties quoted

for the latter. ,

Yoder and Williams (Yoder, 1979; Ferrari et al., 1980),

seeking to lessen the discrepancy, included the effects of

lunar solid-body elasticity and dissipation in their model

of the Moon's rotation. The reasoning is simple: Since the

Mo6n has only finite rigidity, it deforms in response to the

tidal forces exerted by the Earth, and to the centripetal

forces, which vary as the Moon undergoes physical librations.

The response is not perfectly elastic, so there is a loss of

elastic energy into heat due to internal friction. Thus, the

response is retarded relative to that which a perfectly

elastic "Moon" would have. The exact manner in which this

delay is evidenced is dependent upon the dissipative mech-

anisms involved. These time-varying perturbations to the
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lunar inertia tensor affect the rotation, and thus, the range

to locations fixed on the lunar surface. Yoder obtained the

rather startling (at least for lunar seismologists) result

that, for the lunar interior, a dissipative quality factor

of Q = 14 + 10 allows a significant improvement in the fit

to data. Studies of seismic wave propagation within the Moon

indicate Q to be much greater, in the range of 200 - 10,000,

but it is argued in Chapter V that a direct comparison of

seismic and rotationally-inferred results may not be

meaningful.

One of the goals of the research here reported is to

ascertain the validity of such a small value for the lunar

quality factor. We do so by attempting to verify Yoder's

results using two different global models of the dissipative

mechanism. The two models, one of which Yoder adopted, are

used in fits to lunar laser range data. Our results and

their dependence upon the choice of dissipation model are

presented and discussed.
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II. Model of the Moon's Rotation

A. Development of the Equations of Motion Treating the Moon

as a Rigid Body

As a first approximation to the equations governing the

real Moon's rotation, we make the simplifying (and very

accurate) assumption that the Moon is a perfectly rigid

body. We will find it convenient to adopt a right-handed

body-fixed coordinate system with its origin at the lunar

center of mass and its axes aligned along the Moon's prin-

cipal axes of inertia, x. (i=1,2,3), with x1 being the

axis of least moment and x3 the axis of greatest moment.

The positive x1 axis points toward the mean-Earth direc-

tion; x3 is positive toward the lunar North pole. In this

selenocentric principal axis system the rigid Moon's inertia

tensor, I, is diagonal and constant; we will follow con-

vention and refer to the diagonal elements of 1I as A, B,

and C (A< B <C). As our fundamental reference frame we will

use an inertial coordinate system, % , referred to the

Earth's mean equinox and equator of 1950.0. The C3 axis

is perpendicular to the mean equator of 1950.0 and is

positive northward, the C axis lies along the mean

equinox and is positive in the direction of the constel-

lation Aries, and the C2 axis completes the right-handed

system. The origin of the inertial frame is the solar



system barycenter. The orientation of the selenocentric

principal axia system relative to the 1950.0 inertial system

is defined by the Euler angles P, 0, and 4 as shown in

Figure 1.

The instantaneous state of rotation of a rigid body may

be defined completely by six quantities; for this purpose we

choose the above-defined Euler angles and their rates of

change. Since the dynamical equations are written more

easily in the body-fixed system, we will need the kinematic

relations between motions in the inertial and body-fixed

systems. The components of the angular velocity vector in

the body-fixed system are easily expressed in terms of the

reference Euler angles (see Goldstein, 1950 for example):

S= Ocos + $sin sin 0

2 = -Osin$ +icos sine

3= qcose + (II-1)

If we differentiate equations (II-1) with respect to time we

obtain a system of equations linear in , e, and $, for which

we (algebraically) solve, obtaining:

csce ( 1 sin4 + w2 cos + 64) -ipcoto0 E F1

w cos$ - 2sin$ -qn sin0EF
3 -2 +

*3= w 3 F 1 coO E+40 sin 6 3 (11-2)



The above equations constitute our Euler angle equations of

motion, with the dynamics of the problem entering through

the body-fixed angular acceleration components, ., which

we will now derive.

In an inertial coordinate system the relation governing

the rate of change of angular momentum of a body is simply

d =++
W-(Iw) N, (II-3)

where the time-derivative is taken in the inertial reference

frame, and N represents the total of all externally applied

torques. The operator d/dt in an inertial frame is equivalent

to (d/dt + ox) in a frame rotating at angular velocity w

relative to an inertial frame, so we have

d + +

dt (IW) + O x Iw = N (11-4)

when the time-derivative is evaluated in the selenocentric

principal axis system. Solving equation (11-4) for w we

find that the resultant angular acceleration takes a simple

form due to the rigid-body assumption:

+ I( (N -w x I0 ) (11-5)
= 10,o~



By utilizing the fact that

A- 0 0

1 = 0 B 0

0 0 C 1  (11-6)

and by introducing the lunar moment of inertia ratios a E C-B

-C-A B-A.
-v B, and y = -- , we can write equation (11-5) in com-

ponent form as the familiar set of Euler's equations:

01 = -aw2 W3 + N1 /A

12 = 1W3+ N2/B

3 = .f 1 WW2 + N3 /C (11-7)

The total torque, whose components in the selenocentric

principal axis system are represented in equation (11-7) by

N , can be approximated to the desired level of accuracy

by considering only the gravitational effects of an oblate

Earth and a point-mass Sun (see Appendix E.1). Specifi-

cally, we will represent the total torque as the sum of the

torques caused by the Earth (NO) and the Sun (Di) treated as

point masses, and the Earth-figure torque (NF)

N = NO + N0 + NOF (11-8)
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The Earth-figure torque, originally referred to by Breedlove

(1977) as the "figure-figure interaction", is derived in

Appendix B. This torque results from the interaction of the

2nd zonal harmonic of the gravity field of the Earth (i.e.

the J2 term in the potential) with the complete 2nd degree

gravity field of the Moon. Since the amplitude of the lunar

librations induced by the Earth-figure interaction is less

than 0.1" (Yoder, 1979), the longitudinal inhomogeneities of

the Earth's gravity field, which are more than two orders of

magnitude smaller than the oblateness, are negligible. For

the purpose of calculating NSF the orientation of the Earth

is adequately represented by the customary expressions for

precession and nutation, with polar motion neglected.

We now outline the derivation of the expressions for

the point-mass torques; the detailed equations omitted here

are in Appendix A. The lunar gravitational potential is

eipressed as an expansion in spherical harmonics. The force

exerted by the Moon on body b (b = 0 or 0) is then given by

Fb =Mb b(11-9)

where VUb denotes the gradient of the lunar potential

evaluated at the position of body b. By Newton's Third Law

of Motion, there is a reaction force of -Fb, which gives

rise to a torque on the Moon:



11i

b b b

= Mb(rb x VUb) (II-10)

where rb is the vector from the center of mass of the Moon

to that of body b. The potential gradient, VUb, is eval-

uated as shown in equation (A-3), except for the infinite

summations. PEP is programmed to handle a maximum degree of

n=20 in the case of zonal harmonics (Jn terms), and n=10 for

the tesseral harmonics (Cnm and Snm terms). Due to limited

data sensitivity, we used a maximum of n=3 for both zonal

and tesseral terms ,in the research here reported. However,

it is possible (see Appendix E.2) that some fourth degree

harmonic terms should be included in the potential.

B. Alterations to the Equations of Motion to Incorporate

Lunar Solid-Body Elasticity and Dissipation

In section II-A we made the simplifying approximation

that the Moon is a perfectly rigid body. Of course this is

not true -- the Moon is made of material with finite strength

and thus yields to the stresses of tidal forces and rota-

tional (centripetal acceleration) forces. Fortunately for

our analysis, the deformation so induced is small compared

to the permanent asymmetry of the Moon's figure (about two

orders of magnitude smaller even for the limiting case of a
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fluid Moon), so the formulation can be somewhat simplified

by retaining only leading-order effects. In particular we

will assume that the effects of elastic deformation can be

modelled by adding a small perturbation to the rigid Moon's

inertia tensor

I(t) = I9 + 6I(t), (II-l1)0+

where we have explicitly shown that I is no longer constant,

but rather a function of time. We also note that in general

I is no longer diagonal in our (unperturbed) "principal axis"

system, though the products of inertia should have a nearly

zero time average.

We again use equations (11-3) and (11-4) to find the

angular acceleration, but now I is the inertia tensor of an

elastic Moon. Since w can vary with position in an elastic

Moon, we will define w to be the angular velocity of our

"body-fixed" reference frame, which coincides with the

unperturbed principal axis system. In Appendix E.3 we show

that the angular momentum of a homogeneous elastic (or

slightly dissipative) sphere is still I. The extent to

which the Moon deviates from these ideal conditions and the

errors introduced by this assumption are beyond the scope of

this paper.
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When we now solve equation (11-4) for w we get a somewhat

more complicated expression:

+ =-l + + =+1 +
w = I (N -wXI-Iw) (II-12)

For reasonable values of the lunar rigidity the elements of

61 are no larger than 1o of the diagonal elements in

I , so it is reasonable to express I in terms of10

plus a small perturbation:

pl -I+ (11-13)

To first order in the ratios 61I. ./C we have
1)-

6 11 /A2

f a - 61 2/AB
1)3 12

6I13/AC

6 12 /AB

6122 /B2

6I 23/BC

6113/AC

6I23/BC

61 33/c 2 (11-y 14)

or simply

r-61. (11-15)
13 0I) ii( 0

By dropping terms that are second order in the elastic

perturbation we can rewrite (II-12) such that W is linear in

the perturbation 61:



20

W I (N-W X I W) +IF(N - w x I W)
0 0 0

+ 10 (6N - W x 6IW - 6I) (II-16)

Note that the first term on the right-hand side is the right-

hand side of the rigid body formulation, given in equation

(11-5). We have also introduced N, a perturbation torque

which arises from the elastic changes in the Moon's figure.

Again to first order in the elastic perturbation we can

write 6N as the interaction of the change in the lunar

inertia tensor with the Earth, treated as a mass point; so

by Eckhardt (1967) we have:

3GM.
r= --- r x 61 r (11-17)
r5

The rationale for ignoring the torque caused by the Sun

acting on the elastic perturbation to the lunar figure is

given in Appendix E.4.

If the Moon is perfectly elastic then I takes the

following form (Peale, 1973):

[ Ww2 MN(uU 1

81 kR 4s1 i1 - 1 - (11-18
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with G the Newtonian gravitational constant, u. the

direction cosines of the Earth, and k the (dimensionless)

second order lunar potential Love number. The Kronecker

delta is defined by 6 = 1 for i=j and 0 otherwise. The

elastic distortion of the Moon's figure represented by

equation (11-18) has been derived by considering only the

equilibrium distortion of a homogeneous elastic sphere.

Terms of higher order than the second in (Ra/re) in the

Earth's tide-raising potential have been neglected. We have

also left out of equation (11-18) the tidal bulges raised by

other bodies. The largest tidal perturbation omitted is due

to the Sun, which is smaller than the tide raised by the

Earth by a factor of

-E-) 1/180 .

( 3

Me r

It should be noted that the time-varying part of the rota-

tional deformation is about three orders of magnitude smaller

than the time-varying part of the tidal bulge raised by the

Earth; in retrospect, it was perhaps inconsistent to have

included the rotational effects, in view of the other

approximations inherent in equation (11-18)*.

As a matter of convenience we have adopted a slightly

altered version of equation (11-18) in our elastic model,

wherein we replace (c2/3)6ij by (w2/3 - ai) 6 in the

rotational part, with
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+ (1/3)n2 for i = 1,2

a. (13) (11-19)

(2/3)n i = 3

where n is the mean motion of the Moon. The effect of this

change is to make the diagonal elements of the rotationally-

induced elastic perturbation nearly time-average to zero.

Otherwise our estimates of the moment of inertia ratios,

especially S (since the main effect of rotation is an equa-

torial bulge), would change from those obtained with the

rigid-Moon model. We have not altered the tidal part of

(11-18), since to do so would induce non-zero perturbation

torques (615), even in the case of perfect elasticity. Such

torques would exist because the tidal bulge would no longer

"follow" the Earth exactly. Of course, the different value

of Y that one would find and use would result in rigid body

torques offsetting the 6N, but for aesthetic reasons we left

in the time-average tidal deformation.

We obtain SI by differentiating (11-18):

2U

5(I .) = +(A i -6 W0
S( 1 33 G

r~. rr +6o. .r-4 5r.r .-
-M( i r ir j 1i) - 5ri (11-20)

5 7
r 0 r 0
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Up to now we have considered the ideal case of a purely

elastic Moon; now we consider the effect of a slight anelas-

ticity. There must be some energy dissipated as the lunar

material undergoes its (predominantly monthly) cycle of

strain. The physical mechanisms underlying this anelasticity

of the Moon are unknown: Indeed, one result of the research

here reported may be to shed some light on the nature of the

lunar interior. With this possibility in mind, we have

incorporated in our lunar rotation model two different models

of lunar anelasticity: a constant-time-lag model and a

constant-Q (or constant-phase-lag) model.

The constant-time-lag model is based upon the assumption

that the mechanism of dissipation is "viscous". As a result

of slight viscous dissipation, the normal elastic response

of a body to tidal and rotational stresses is simply delayed

in time (Munk & MacDonald, 1960). This leads to a simple

computational form: we merely replace all occurrences of

61(t) in the equations of motion (11-16) by 6I(t-T), with

6I(t-T) = 61(t) - T6I(t)

- 6I(t) - D(6I(t)/k) (11-21)

and 6I(t-T) = 6I(t) - D(6I(t)/k).

We have parameterized our dissipative model by D 2 kT, since

this allows easier separation of the effects of elasticity

and dissipation. We retard I and 6N by using 61(t-T) for

their computation. We find 61 by differentiating (11-20).
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d2 (61.W.) kR$ ..w+2..+ w. w(-+w-t)
13. =kR 5 3 1 3 3 ij

dt2  43G

[.r.+2r.r. +r3r. + 6 .. (r-r +r-r)

r5

5[(2 (rir . +r r i. r)r-+r r .(r- r+r)fl]

7

35r.r. (St)2
+ 139

r

See Appendix E.5 for a discussion of the approximations used

in the evaluation of w and r.

A useful parameter in the description of slightly dissi-

pative mechanical systems is Q, a dimensionless quantity

defined as the ratio of the peak stored elastic energy to

the energy dissipated per radian of the strain oscillation

(2W radians = 1 cycle). The reciprocal of Q is sometimes

referred to as the specific dissipation. The assumption of

linear viscosity as the dissipative mechanism corresponds to

a specific dissipation, 1/Q, that is proportional to

frequency.

There is no evidence to suggest that solid-body dissipa-

tion in the Moon actually occurs through a viscous mechanism.

If anything, the combination of seismic and rotational

evidence suggests that Q increases with frequency, rather

than decreases as the "viscous", or constant-time-lag model

predicts. However, the range of frequencies of the prin-

cipal strain components is so narrow that this simple model

still might be expected to produce a good representation of

the actual effect of dissipation on the rotation. On the
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other hand, it is of interest to determine, if possible, the

form of the frequency-dependence of the dissipation in the

Moon. Thus, we have also implemented a constant-Q model,

which represents a mechanism whose specific dissipation

is independent of frequency. The motivation for such an

assumption is given by the large body of laboratory and

seismic studies which suggest that Q, at least for rocks of

the Earth's mantle'and crust, remains relatively constant

for oscillation periods from microseconds to minutes. It is

difficult to justify the extrapolation of such terrestrial

experience to the Moon, where the strain cycle has appre-

ciable components with periods from 9 days to 6 years; one

can only treat the constant-Q model of lunar dissipation as

a hypothesis, whose predictions are to be compared (along

with those of other models) with the observations.

A dissipation mechanism characterized by a constant Q is

dispersive. If the elastic inertia tensor is harmonically

decomposed, i.e. expressed in the frequency domain, then the

phase of each spectral component lags by a constant amount.

(In contrast, the constant-time-lag model yields phase lags

which are proportional to the frequency. For an angular

frequency, w, the phase-lag corresponding to a time lag, T,

is just wT.) In the constant-Q model the phase lag, c, is

related to Q by (Melchior, 1978):

sin E = 1/Q (11-22)
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Our numerical model of the lunar rotation does not lend

itself easily to a harmonic decomposition of 61 as given in

(11-18). Therefore we obtained from D. H. Eckhardt (private

communication, 1979) _uch a decomposition based upon an

analytic rotation theory. It is tabulated in terms of sines

and cosines of linear combinations of the classical Delaunay

arguments, , 9', F, and D. In particular if we define

pt) Ept + qz' +rF + sD (II-23)

where p, q, r, and S are integers, then 61 can be written as

i = kpqrs sinp + C pqrscosu$ (11-24)
pqrs r

In the above expression, p, q, r, and s take on all valuds

for which a significant CPrs orSpqrs exists; in our

analysis we included all terms greater than 1% of the largest

time-varying term. The various C and S matrices can be

found in Table 1. (We shall henceforth dispense with the

pqrs subscript notation on C and S.) If we retard the

response by a phase c<<1, then

II(e) = (k) sin}-E) + C cos p-e)
pqrs i

kE S (sinP - sin EcosP ) + E(cos P + sine sin 4
pqrsi
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= Ii -(k/Q) Z cos1 - C sinJ (11-25)
pqrsi

This expression has been implemented in our equations of

motion, with k/Q now becoming the natural parameter with

which to model dissipation in the case of constant Q. Once
-4

again 6N and r are found from 6I(E), and SI can be found by

differentiating (11-25) and (11-24):

61 = k (S cos 1 - C sinl1)I1 + (k/Q) (S sinlP + C cosPV)U1
pqrs pqr s

(11-26)

C. Solution of the Equations by Numerical Integration

The rotational equations of motion developed in the pre-

vious two sections are non-linear and cross-coupled, and are

not easily solved to determine the Euler angles as functions

of time. In the implementation of our rotation model in PEP,

we solve them numerically via an Adams-Moulton predictor-

corrector numerical integration (Smith, 1968). We have

found that adequate accuracy is maintained by taking eight

steps/day using eleventh differences in the integrating

polynomial. Since the lunar orbital and rotatio.lal equa-

tions are strongly coupled, we integrate them simultaneously

(the lunar orbital equations will be described in Chapter
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III). The position of the Sun is found by interpolation of

ephemerides of the orbital motion of the Earth-Moon bary-

center, also the result of numerical integration within

PEP. Since the orbit of the Earth-Moon barycenter is only

weakly affected by the lunar orbit, we are able to simplify

matters somewhat by integrating the motion of the Earth-Moon

barycenter about the Sun separately, prior to the lunar

orbit and rotation integration (see Ash, 1965a, for a

derivation of the equations of motion for the Earth-Moon

barycenter).

The Adams-Moulton integrator is configured for a set

of simultaneous first-order differential equations, so we

rewrite the three second-order rotational equations of

motion as a set of six first-order equations. Defining

Y P Y4

Y2 5

3 Y6

we obtain:

i Y4 i4 = F1

y2 =mY5 i5 = F2

=3 6i6= F3 (11-27)
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where the F are given by equations (11-2). The six

initial conditions of the state vector y are the three Euler

angles and their rates at some initial epoch. The six

rotational equations of motion are integrated in parallel

with six orbital equations of motion and six variational

equations for each adjustable parameter that affects the

orbit or rotation.

D. Development of the Variational Equations

In order to fit our rotation model to data we rely upon

the iterative use of a linear least-squares estimator, as

elaborated in Chapter IV. Thus, in addition to the model

for motion, it is necessary to generate partial derivatives

of the state vector with respect to the libration parameters

at all times. In order to derive the partial derivatives we

must first determine which members to include in our set of

adjustable rotation parameters. In principle any unknown

parameter affecting the rotation should be modelled as such

and have derivatives generated for it; practically, we need

only model the small set of parameters whose uncertainties

influence the rotation to a measurable extent. We are left

with the following (significant) parameters, all of which

refer to the Moon:

1) six initial conditions of the rotation state vector;

2) J2'

3) B0andY;
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4) third and higher order harmonic coefficients; and

5) the elastic parameters k and either D

(constant-time-lag), or k/Q (constant-Q).

Note that we have arbitrarily chosen J2 , 3, and y as our

independent second-degree coefficients. C22 is a combina-

tion of all three, whereas a depends only on and y. Since

we choose the lunar principal axes of inertia to define our

selenocentric coordinate system, C21 ' S21, and S22 are iden-

tically zero. (This relation is not strictly true in the

presence of elasticity, but in that case we model the second

degree gravity field through the inertia tensor.)

Referring back to the defining equations (11-2) for the

driving terms, we note that the F k can be written for

convenience as

Fk E Fk(t, p, y)

since the Fk are explicit functions of time, the set of

adjustable parameters p, and the Eulerian state vector jy.

We differentiate the equations of motion (11-27) with

respect to any specific time-independent parameter pi and

interchange the order of differentiation to obtain the

variational equations:

d yk k+3

k = 1,2,3

d yk+3 3Fk

t,pt i (II-28)
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with p 7 i denoting the parameter set p exclusive of pi.

The initial conditions for these equations are all zero

except when pi is one of the state vector initial

conditions, in which case we have

aYk6 3yk ~ forpiy
ap.= SkJ ~ i2

1 0 t=t

In general a change in pi will affect the Fk both through

an explicit dependence of Fk upon pi, and also implicitly

through a change evoked in the state vector j by the inte-

grated effect of the pi perturbation.

Namely,

Uk 3Fk 6 DF k a i

t-- i + E -- - -- for k=l,2, 3.
ai - . i - . 1 =1 aUt -- pj

topofi t'VP j iY t~p-ty

(11-29)

The vector DFk i tJypFgi is found through differentiation

of the explicit dependence of the Fk upon pi; therefore when

Pi is one of the rotation initial conditions this term

vanishes. For the rest of the parameters, the explicit

dependence is found from equations (11-2):



= csc((sin4$ a +
aW 2

005 aCk

-0c=Cos a sin 4
ap

30
3a 3

ap1

aF
- Cos

api

To evaluate ,Ok/i, we differentiate

respect to pi:

0 

1 '

- (Nap.
+, = +

-ejxI
0

2=-i
+1I

0

(II-16) with

+
ON

p.i
+ 04+

9.W 1iW

+ 40
(N-wx 1I0 ) =( 3N4,+ -- + aT

Op1

aYi0  -~

+ ( -X 6I - 6IW)
3.i

=-1 36N+ I (- - 0) x --- W -- m
Op. Op.i)

(II-31)

3F

api

32

3F 3

ap

(II-30)

-

am

3 P

ar
ap

aw2

api
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We have

3A*
ap.

0

0

0 0

aB'
3p.

0

0

ac
api

with the diagonal elements presented in Appendix C.

larly, since A=(A ) , etc., we get

31

apg

23A
1

-A 3pi 0

0 2 B 1

-1

0

0

0

api

(II-32)

Simi-

(11-33)

From equation (II-17) it follows that

3 rN 3GM0  + a6 +

-P = rax a r
1 1

(11-34)

3p.
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Upon differentiating equation (11-8) we find

_N S+ -l +3NF 
(11-35)

3 Pap ap. ap.

and by (II-10) we get

aN b M[aXVU(11-36)
= Mbrb n (VLb)]

The formulae for a/ aP. (VUb as well as the elastic perturba-

tion partials, 36I/ap., a6I/ap., and ar/ap,, can all be found

in Appendix C. Finally, from equation (B-19) for NF we

derive:

OF - a 3C -3B ^ - A - C
aWPiV 1923a 3a J+ x2913 LaPi 3p

+ [3B -A

312[ api p
(11-37)

The only quantity in (11-29) that remains to be formu-

lated is the 3 x 6 matrix 3Fk./ay. First we differentiate

the defining equations (11-2) for the Fk with respect to

each component of the state vector:



S

csce0[sinla3+ cosi

= cos@ - sin$3tj

3F 1

3F
2

3%

HF

-w

2
1

2
-w

32 1-w + cos4$
S

cot 6 csc e 1w sin $+ w 2 Cos$

- 6$ cot B csc8e + '$6csc2

1 2 -
- cos, 2 sin$Pcos8

w3 F .
= - CosO -a+ sineF1 + IA cose

csce I l cost + asin

0

SCos aw

3 
C o- - lstz

csc e sin

sin

sin $w - cos $&o 2 - sin$

3F
4

Co1s
$ -+ cos,$

-- 213a*2

+w 2
+Cos$ -a

3W2-w

-
- cot

9

cos - - sin,

3Co
= --- cosO9

aF i-W + 0 sinO0
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3W3= -- - cosO

=csc 61 sin $

3F
2

aei
DF 3

aF

3F0

F
3

3F2

3F33-

$ sin B
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3F236

3F3

a6
3F

3$

3F3
3$2

30 30

: 1  . 2

cos, $ sin ,-
30 30

=cos --- + $sin6
30 30

2-
= csc0 [sin+ - cos4 at:] + csc

3w aa
aA 3 2  -' 6

cos $ - - sin -. s $jsin 6

33F

= - cos -

(11-38)

To obtain the quantities 3/3 y, we should again cifferen-

tiate equation (11-16), this time with respect to the Euler

angles. Instead, we make the simplifying approximation

(elaborated in Appendix E.6) that the rigid Moon formulation

will here suffice. So we differentiate the tigid-body

dynamic equation (II-5) to get:

1 4 3N- 3w= w
y , 0 13y , 3 y 't 0PY t (11-39)

A few words clarifying the notation might be helpful here.

For consistency within equation (II-39) we must evaluate the

vector components in the selenocentric principal axis



system. Thus, for example,

(3N1/36, 3N2/36, 3N3/30)T.0

frca the kinematic equation

aw

3=t

DN/3y2 means the column matrix

Now, 3w/3y, can be derived simply

(II-1), and is presented below.

02-= 0
3w 3
34

= sin$)cos0 S= Cos $) cos 0 a= - sin6

- = -0 sin4$+ y sin cos$
=w2  In

-6 .0cost- 4)sin4) sinO

w1 - sin $sin 6
3w

2 s--- = cos $) sin 0
3w 3 cos

3w2 _

-- = -sin4$
30

3 3-- 0

3w3 1

4--3w2 0
--

(11-40)

Once again we simplify (see Appendix E.7) by assuming

3NF/3YL is small enough to be ignored,. and from equations

(II-8) and (II-1r) we derive

w= 0

COS31 - os_

a .

-0
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a Mb x VUb +bA b
M b Vrx aY

rb x VUb + b vUb

(11-41)

by invoking the chain rule. The kth component of

3/ax (VUb) can be found in Appendix A (equation A-7).

We should make expl'icit the meaning of arb/ay: If the

selenocentric components of rb are (x1 , x2, x3)'

then 3rb ' T0 t U 3thn r/ayZ E(ax 1/ay., ax2 ay., ax 3/ay z)Ta

The terms 3x./3y represent the change in the seleno-

centric coordinates of the per turbing body with respect to

changes in the Euler angles. In PEP, the positions of both

Earth and Sun are integrated and tabulated in the 1950.0

inertial frame. Let be the coordinates of body b in this

frame, relative to the lunar center of mass. Then the

selenocentric coordinates are obtained from the inertial

coordinates by a rotation matrix R defined by

x = :,(!,0,4)T.



39

Goldstein (1950) gives the elements of R as:

cos $cos- sin$cos 6 sin$

-sin $ cos ) - cos $ cos 0 sin 4)

sin 6 sin *

cos $sin + sin $ os 0 cos 4)

-sin $ sin 4+ cos $ cos e cos *

-sin 0 Cos 4)

sin $ sin 0

cos $ sin 0

0os 0

(11-42)

Now & does not depend on the orientation of the seleno-

centric coordinate system, so:

ax
= (-cos sin*- sin$cos Ocos$) + (cos $cos$- sin $cos Osinf$) 2

ax1
--- = (-sin$cos*-cos cos 0 sin*) E1 + (-sin $ sin *+cos $ cos 0 cos $) 2

+ cos $sinO0 E3
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= (sin $ sini$-cosp$ cos Ecosp)+ (-sinq$icosi$-cos $ cose sinip)t 3

3x3

= cos sin esinE 1 -cos 4sin Ocospt4 +cos 4 cos e 3

ax2

= (-cos 0 cosP+ sin $ cos 0 sin P )E1+1 (-cos $sin$ sin $cos Ocos$2

-sin $0sinO

a3
= sin$cos*Fi1 +sin sin E 2

ax3
56= cos 6 siniE1 - cos 6 cosE2 - sin e' 3

ax 3

(II-43)

This completes the derivation of the variational equa-

tions for our lunar rotation model. For the sake of com-

pleteness, we have presented most of the important terms in

the variational equations. However, some of the preceding

formulae have not yet been implemented in our lunar rotation

model. In equation (11-31) the elastic perturbation terms

(all terms except the first two on the right-hand side) have

been included only for the elastic (k) and the dissipative

(D or k/0) parameters. Therefore all the other parameters
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will have errors of order 6I/(C-A) 1C-3 in their variational

equations. The derivative of the Earth-figure torque, given

in equation (11-37), is ignored for all parameters, thus

6committing an error of about 1 part in 10 (see Appendix

E.7). Finite differencing of the equations of motion over

the relatively short (for economic reasons) time-span of 40

days has proven the variational equations for each adjust-

able rotation parameter to be consistent with the equations

of motion to the level expected (0.1%).
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III. Model of the Moon's Orbit

The rotation of the Moon is strongly coupled to the

orbital motion of the Moon, as a result of the spin-orbit

synchronism. Any deviation from uniform orbital motion that

is not accompanied by a similar excursion from uniform rota-

tional motion will result in a torque which forces physical

librations of the Moon. For this reason, the orbital model

used in the generation of a description of the lunar rotation

is of central importance. In this chapter we give an over-

view of the treatment of the lunar orbit in PEP; more com-

plete detail can be- found in Slade (1971), and Ash (1965b).

The differential equations governing the motion of the

Moon's center of mass about the Earth are written and inte-

grated in the inertial 1950.0 Cartesian coordinate system,

defined in Chapter II. The principal force terms are the

2
Newtonian 1/r attractions of the Earth and Sun, treated

as point masses. Smaller perturbing forces due to the other

eight planets are included, with their positions interpolated

from a numerical ephemeris. The figures of the Earth and

Moon measurably affect the lunar orbit; Slade's treatment of

this effect has been modified, as described later in this

chapter. General relativistic correction terms to the

equations of motion, based on the post-Newtonian approx-

imation, are also applied. Tidal friction in the Earth is
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modelled by retarding the elastic response of the Earth to

the tides raised by the Moon by a fixed lag angle, 6; the

retarded tidal bulge is then used to calculate the tidal

acceleration of the Moon. This parameterization is designed

not so much to study dissipation within the Earth as it is

to account semi-empirically for an observed secular acceler-

ation in the Moon's longitude. (The Earth's interior may be

better studied by seismology and in situ tidal measurements,

than by indirect astronomical inference.) The tidal bulge

due to the Sun, though nearly half the size of the lunar

bulge, is ignored since it causes a nearly sinusoidal per-

turbing force on the Moon, and tends to average to zero over

the synodic month. However, this assumption should be sub-

jected to more rigorous analysis, due to the possibility

that the non-zero eccentricity and inclination of the lunar

or bit could significantly affect the longitudinal symmetry.

Also, the solar perturbations of the lunar orbit may

interact importantly with the solar tidal bulge.

Because of the existence of high precision laser range

data to which we can compare our models, the original Slade

formulation has been modified slightly. Slade included the

effects of the second and third-degree zonal terms of the

Earth's gravity field and the complete second-degree gravity

field of the Moon. To this we have added the effect of the

Earth's fourth-degree zonal field and the complete third-
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degree gravity field of the Moon. According to estimates

presented by Slade (1971), the Earth's fourth-degree zonal

field can cause a secular change in some of the lunar orbital

elements amounting to about 1 cm/yr change in lunar position.

Since nearly ten years of laser range data are now available

for analysis, this term should be added.

The necessity of including the third-degree gravity

field of the Moon is somewhat more subtle. Primarily it

is done to ensure consistency between the orbital and rota-

tional equations of motion. For example, when one includes

the S31 third-degree harmonic term in a rotation model, a

longitude offset of approximately 110" arises between the

mean-Earth direction and the Moon's principal axis of least

moment. With this orientation offset a balance is struck

between the torques caused by the lunar C22 and S31 fields

interacting with the Earth. Hence the transverse forces

applied to the Earth are also balanced when averaged over

time. If one includes only second-degree lunar gravity

harmonics in the orbital equations, while using a third-

degree model to find the (rotational) orientation of the

Moon, the offset of the C22 field will cause a spurious

secular acceleration of the Moon along its orbit. The

formulae for the higher order gravitational harmonic effects

have been adopted directly from the potential gradient

formulation of Appendix A.
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A major alteration to Slade's model was the parallel

integration of orbital and rotational equations of motion.

Since the equations are coupled, one must integrate the

equations together to be rigorously correct. Owing to the

much stronger dependence of the rotation on the orbit than

vice versa, one can approximate simultaneity by first inte-

grating the lunar orbit (using a previously integrated

rotation model), then integrating the rotation using the

orbit just integrated, and if necessary, iterating the

procedure. We feel that the procedure of simultaneous

integration is safer and more efficient, as well as being

simpler conceptually and easier to use.

The direct orbital effects of the Moon's figure inter-

acting with the Earth's figure, and those of lunar dissipa-

tion are very small, and thus are neglected (see Appendices

E.8 and E.9).
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IV. Fitting the Models to Laser Range Observations

of the Moon

The impetus for the refinements to the models of lunar

rotational and orbital motion described in previous chapters

was the availability of high precision range data, taken

between an Earth-based observatory and the retroreflectors

on the Moon. The retroreflectors are arrays of quartz

cornercubes, designed so that incident light is reflected

back toward the source. The Apollo astronauts on Missions

11, 14, and 15 left a retroreflector at each landing site.

Also, the Soviet Union has equipped with retroreflectors two

unmanned vehicles on the lunar surface, Lunakhods 1 and 2.

All of these reflectors, except Lunakhod 1, have been ranged

regularly by pulsed laser systems on the Earth, using tele-

scope optics for transmission and reception. Although the

first detection of a reflected pulse occurred within a month

of the Apollo 11 landing (July 1969), range measurements

sufficiently accurate for geodetic and selenodetic studies

were not obtained until October 1970.

The greatmajority of scientifically useful ranges (and

all the data used in the research here reported) have been

taken at the McDonald Observatory on the 2.7 m instrument,

owned and operated by the Unversity of Texas. In spite of

the vast number of photons emitted by the laser in each
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pulse, only 10-20% of such firings result in even one

returned photon being detected. The McDonald team generally

creates "normal points" consisting of perhaps 4-10 photon

detections each. The statistical errors assigned to the

normal points are based on scatter of the individual

returns, and also reflect system calibration uncertainties.

Due to continuing system improvements during the nine years

of regular ranging since the initial shakedown period, the

typical estimated uncertainties of the normal points have

decreased from around 15 cm to 10 cm. The distribution of

the data is non-uniform, due not only to the vagaries of the

weather and telescope availability, but also, in a more

worrisome systematic manner, as a result of an inability to

range close to new Moon (a limitation which is due primarily

to the difficulty of pointing the telescope when there is

little contrast on the visible lunar disk).

In order to analyze the laser range data to improve

determinations of physical constants of the Earth-Moon

system, we construct a theoretical model of the observable,

from which the value of the range can be calculated, given

the time of transmission of the pulse. We calculate the

orientation of the Moon and its position relative to the

Earth using the previously described lunar rotational and

orbital models. The Earth's orientation is found by

applying the conventional expressions for the Earth's

precession and nutation (Woolard, 1953). The "old" IAU
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value of the precession constant (5026.75"/cy) was used; our

estimate of D may be affected by this choice (see Chapter

V ). Small (,0.02") corrections were made to account for

the effects of the Earth's elasticity on nutation (Melchior,

1971) and for the nutation-induced diurnal polar motion

(Woolard, 1953; McClure, 1973). Polar motion values were

interpolated from tables circulated by the Bureau Inter-

national de l'Heure (BIH), and given in their "1968 system."

Universal Time (UTl) also was interpolated from the BIH

circulars. However, to the interpolated BIH values of UTl

we added fortnightly and monthly periodic corrections, each

of about 0.7 ms amplitude (Woolard, 1959; Guinot, 1970,

1974), to account for tidal effects which had been mostly

removed by the BIH's smoothing procedure. After applying

these corrections, we augmented the BIH values for UTl with

a parameterized piece-wise linear continuous function of

atomic time (King et al., 1978). The displacemert of the

McDonald Observatory due to solid-Earth tides was not

modelled; other analyses we have performed indicate this

neglect to have no significant effect on our results.

Specifically, when the effects of Earth tides were included

in fits to laser range data, the parameter estimates

presented here changed by only a small fraction of their

formal errors.

There are a.number of parameters in our theoretical

model of the round-trip light travel time whose values have
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not been determined as well from other measurements as they

can be determined from lunar laser ranging. These param-

eters have been incorporated as "free" parameters in the

model, so that their values may be adjusted to create a

"best-fit" of the model to the data. The number of free

parameters is not constant. We have varied the set of

estimated parameters to perform sensitivity studies, and at

times have estimated values for parameters to which the data

are only weakly sensitive. However, the following list can

be considered representative of the set of free parameters

usually estimated in our analyses:

1) eight orbit parameters: the mass of the Earth-Moon

system, the Earth's tidal friction parameter, and

six initial conditions

2) 17 rotational parameters: six initial conditions,

$,y, all seven third-degree harmonic coefficients,

the lunar Love number k, and a dissipation

parameter (D or k/Q)

3) 12 lunar coordinates: three coordinates for each

of four reflectors

4) three McDonald coordinates

5) five orbital elements of the Earth-Moon barycenter

(the longitude of the ascending node is kept fixed

to define an origin of right ascension)
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6) 186 parameters of the piecewise-linear function

describing the excursion of UTi from the BIH values

(the number varies with the length of the data span

and the distribution of the data)

7) one parameter to model an instrumental bias at

McDonald for 1972

The parameters listed above were fitted to the data

by iterative use of a linearized weighted least-squares

estimator. The weight was proportional to the inverse

square of each observrtion error, so the estimator minimizes

(O -C ) /C) 2, where O., C., and a. are respectively the

observed value, the computed value, and the standard error

of the ith observation., A more detailed account of the

method of least squares as here applied can be found in Ash

(1972). Under the assumption that the observation errors

are zero mean, independent random variables obeying Gaussian

statistics, the weighted least-squares estimator is also the

maximum-likelihood estimator. The formal standard errors of

the parameter estimates are based upon the truth of the

above assumption. Of course, the premise is not strictly

valid; many error sources are correlated, e.g. errors in

electronics calibration. In view of this fact, we often

quote errors several times larger than the formal errors,

especially when sensitivity studies or other information

indicates the presence of systematic errors.
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Due to the non-linear dependence of our theoretical

model on most of the estimated parameters we iterated our

solutions to achieve convergence. The process by which we

accomplished this goal was as follows:

1) We began with a priori values taken from the literature

for all free parameters, except the UTl corrections and

the McDonald bias, which we assumed to be zero.

2) We integrated the equations of motion of the Earth-Moon

barycenter orbit about the Sun, and the variational

equations for the corresponding initial conditions.

3) Using the ephemeris created in step 2, we integrated the

lunar orbital and rotational equations of motion, and

all relevant lunar variational equations.

4) We computed (0-C) for each observation and partial

derivatives of C with respect to all relevant

parameters, formed and solved the least-squares normal

equations, and obtained new estimates for the adjustable

parameters.

5) We repeated steps 2 through 4 until the model had

converged.

Due to the high cost of the integrations in steps 2 & 3

we stopped iterating when it appeared that the next round of

adjustments would change the parameter estimates by only

small fractions of the formal parameter errors. This approx-

imate convergence occurred after only a few iterations since

our a priori parameter values placed us within a domain in

parameter-space where the theoretical value of the observa-

1 .2.. 14 Ii, r A vn.nA n n^ n I-r M! I- r t7ylI1I
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V. Discussion of Results

We have analyzed 2317 normal points as described in

Chapter IV; these data spanned 7 1/2 years, from October

1970 to May 1978. Ranges between McDonald Observatory and

all four "functioning" reflectors were included. The errors

assigned to the majority of the observations were those

assigned by the University of Texas observing team (Abbot

et al., 1973; Shelus et al., 1975; Mulholland et al., 1975;

P. J. Shelus, private communication, 1976). However, for

about one quarter of the normal points we increased the

standard errors derived by the University of Texas by

factors of 1.5 - 3.0 to reflect unexpectedly large scatter

in the corresponding residuals. Such scatter occasionally

appeared in the residuals for isolated days but usually

persisted for a week or more.

We performed a number of fits to the data, varying both

the physical models employed and the membership of the

parameter set estimated. Of these fits, two are of par-

ticular interest and will be discussed here. The only

difference between these two fits was in the model employed

for dissipation: in one fit we used the constant-time-lag

model and estimated D (EkT); in the other fit we used the

constant-Q model and estimated k/Q. Along with each dissi-

pation parameter, we simultaneously estimated the 231 other

parameters listed in Chapter IV. Both fits yielded a

postf it rms range residual of 27 cm.
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The estimated values for parameters of geophysical

interest ate presented for both fits in Table 2. The quoted

errors are the formal standard deviations of the parameter

estimates obtained by uniformly scaling (by a multiplicative

factor of 1.8) all the range measurement errors so that the

weighted mean-square postfit range residual was unity. As

mentioned in Chapter IV, however, the true parameter uncer-

tainties are probably greater than the formal errors, due to

systematic errors in the observations and the theoretical

model of the observations. Thus the formal errors given in

Table 2 should be treated as lower bounds on the true uncer-

tainties. Previous, sensitivity studies of lunar laser range

data analyses, in which both data and parameter sets were

varied, have led to estimates of uncertainties in parameter

estimates of the order of three or four times the formal

errors (see, for example, Shapiro et al., 1976 or Ferrari

et al., 1980).

In order to allow comparison with an independent determ-

ination, we have also included in Table 2 results recently

obtained by Ferrari et al. (1980). In addition to seven

years (through August 1977) of lunar range data, their

analysis included Doppler tracking data from Lunar Orbiter

IV. The main contribution of the Doppler tracking data to

their analysis was an enhanced sensitivity to the lunar

gravity field. They down-weighted the laser range data by
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scaling the observation errors by about a factor of five

relative to the errors we assigned, resulting in formal

errors larger than ours for some of the parameter estimates.

In their analysis they used a constant-time-lag model for

the lunar dissipation. Two important differences between

their analysis and ours should be emphasized. First, their

model of the Earth's orbit about the sun was based on

previous analyses of interplanetary radar and spacecraft

tracking data, and was not adjusted in the fit to laser

range data. Second, they used a different model for correc-

tions to the BIH UTl data. Their UTl model had only four

degrees of freedom:. the amplitude and phase of an annual

term, the coefficient of a term linear in time, and a co-

efficient for an ad hoc sinusoidal term having the lunar

nodal period (18.6 yr). The simple model of UT1 corrections

they employed probably contributed greatly to their postfit

rms range residual of 38 cm; we have gotten similar results

when using a simpler UT1 model having only annual and semi-

annual correction terms.

Comparing our results with theirs, we see that the

estimates of the mass of the Earth-Moon system and the

Earth's tidal dissipation parameter agree very well. This

is reassuring, since the satellite tracking data, which were

obtained over a time span of less than one month in 1967,

are quite insensitive to both of these parameters. The
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parameters describing the lunar gravity field are somewhat

discrepant. This is probably attributable to their addition

of the Doppler data; for instance, when Ferrari et al. used

laser range data alone, they obtained for J3 an estimate

of (8.5 + 2.3)x10-6 , in excellent agreement with our

result. The source of disagreement between estimates of

gravity field parameters based on the two different data

types is unknown.

Of particular interest are the dissipation parameters, D

and k/Q, for which our estimated values are about 25 times

the formal errors. Even taking into account the above-

discussed possibility of systematic errors, this still seems

a significant result. It is interesting that the dissipation

parameters seem better determined than the elastic Love

number k. The magnitudes of the correlation coefficients

between k and D (or k/Q).and the rest of the parameters (as

well as each other) are all less than 0.5, indicating that

no single parameter mimics the signatures of k and D. A

gauge of the extent to which the signature of a given

parameter can be separated from the signatures of the

ensemble of other estimated parameters is the so-called

"masking factor"; we define it here as the ratio of the

given parameter's formal error when estimated simultaneously

with the complete set of parameters, to the given param-

eter's formal error when estimated alone. For both dissi-
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pation models the masking factor for the dissipation param-

eter is about seven, while the masking factor for k is about

30 -- which shows the greater separability of the effects of

D and k/Q, as compared to k. According to Yoder (1979), the

unique observable signature of internal dissipation is a

constant offset of the direction of the lunar pole from that

predicted by the Cassini state. The sense of the offset is

such that it represents a lag in the precession of the lunar

pole about the pole of the ecliptic; its magnitude is 0.16",

given our estimate of D (D. H. Eckhardt, private communica-

tion).

It can be seen from Table 2 that our estimate of D is

disparate with the estimate of Ferrari et al., theirs being

about 80% greater than ours. We know of no satisfactory

explanation for this result. For instance, when we fit to

the range data using the "new" IAU value for the precession

constant, the estimate of D was smaller by about 15%. The

effect of the difference in models for the Earth's rotation

has also been investigated: When we estimated D using

an Earth rotation model similar to theirs, the estimate of D

increased, but only by 10%.

As discussed in Chapter II-B, a useful quantity for

describing slightly dissipative phenomena is the quality

factor, Q. Since the constant-time-lag model corresponds
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to a frequency-dependent Q, one must make assumptions con-

cerning the frequency at which most of the energy is being

dissipated in order to speak of an "equivalent Q" for this

model. An examination of Table 1 shows that the greatest

elastic perturbations occur at near-monthly periods, so it

is not unreasonable to assume this to be the dominant time

scale for dissipation as well. The relation between D and Q

is then simply Q = k/(nD), where n is the lunar mean motion.

The consistency between our estimate of Q derived in

this manner (22 4) and that derived more directly via the

constant-Q model (27 4), tends to validate the above

assumptions a posteriori.

Our estimate of about 25 for the lunar Q disagrees

sharply with the values inferred by lunar seismologists.

The seismic Q values at depths of less than 500 km must be

on the order of 10,000 to account for the characteristics of

high-frequency teleseismic events (Nakamura, 1974). It is

likely, though, that most of the dissipation of tidal energy

takes place deeper in the lunar interior. From a numerical

model of the lunar interior based on seismic data, Cheng and

Toks*z (1978) find that a broad maximum of (tidal) shear

stress in the Moon occurs at depths of 600-1200 km. Given

the hypothesis that moonquakes are triggered by tidal shear

stress, as suggested by the coincident timing of moonquakes

and periods of maximum shear stress, the validity of their
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numerical model is supported by the observation that the

given depth range corresponds to the region of the lunar

interior from which most moonquakes originate. In an

earlier paper Toksz et al. (1974) inferred a seismic Q

in the range 200-700 for regions 800-1100 km deep.

This determination of Q still fails to agree with our

tidal Q by at least a factor of eight, but there is really

no good reason to expect agreement. The lowest frequency at

which the seismic Q is determined is about one Hertz. The

shortest period represented in our elastic perturbation to

the inertia tensor is a third of a month, or about nine days.

Thus the frequencies at which Q is determined are six orders

of magnitude apart,, and extrapolation of the seismic results

to monthly periods cannot be relied upon. The dissipative

mechanisms involved could be totally different.

Perhaps the closest analog for the lunar tidal Q is the

Q inferred for the Earth at the Chandler wobble frequency.

A value for the Earth's 0 of~ 30-60 has been deduced from

the apparent width of the -spectral peak at the Chandler

frequency in the Earth's polar motion data. Markowitz

(1980), among others, has argued that this range of Q values

can only be interpreted as a lower bound on the Earth's Q,

since the spectrum of the excitation mechanisms remains

unknown, and it is not clear that any damping of the

Chandler wobble has been observed. The role of the oceans
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in the dissipation of Chandler wobble energy is also

unknown. We can only conclude that our estimates of the

lunar Q are consistent with the lower bounds placed upon

the Q of the Earth's mantle.

The value we estimate for the global lunar Love number,

k, varies somewhat, depending on which dissipation

model is used; we are still unsure of the reason why this

is so. There is no convincing evidence for favoring either

model of dissipation: both fit the data equally well, and

the actual lunar dissipative mechanisms involved are

unknown. Cheng and Toksbz (1978), using their numerical

model of the lunar interior which was constrained to agree

with the seismic velocity profiles, arrived at a surface

potential Love number value of k = 0.029. This agrees

better with the constant-Q model's estimated value of

k = 0.026 0.003 than with the constant-time-lag result of

k = 0.020 0.003. In the absence of any other indications

that the constant-Q model better describes the anelasticity

of the Moon, we feel there is no basis for favoring either

model.
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VI. Sugggestions for Further Research

The apparent detection of a significant amount of dissi-

pation in the Moon's interior is extremely interesting and

warrants continued study. Of particular concern as a

possible source of error is some unmodelled effect which

is mimicking the "signature" of the solid-body dissipation

parameter. For example, Yoder (Ferrari et al. 1980) has

investigated the possibility that a viscous core-mantle

coupling in the Moon is providing dissipation by damping the

non-uniformity of the mantle rotation. He found that the

signatures are similar at about the 10% level, but to explain

the estimated value of kT in this way would seem to require

an unreasonably large value of c ther the radius of the core

or the kinematic viscosity at the core-mantle interfacc. The

question of whether significant unmodelled effects exist that

mimic solid-body dissipation, will possibly be resolved by

the addition of new data to the analysis, as they become

available. In general, as the span of time covered by lunar

ranging data lengthens, the similarity between the signature

of dissipation and the signatures of possible unmodelled

effects is lessened. Thus, if the effects of some unmodelled

parameter are being compensated for by the dissipation model,

the estimate of the dissipation parameter might vary as more

data are added, and the "mapping function" changes.
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Sizable effects have probably been omitted from our model

of the lunar range, since the rms of the postfit residuals

is 27 cm, much larger than the 10-15 cm errors typically

assigned by the observers. One possible source of error is

in the empirical model we use for the motion of the Earth's

pole of figure about the spin-axis. As explained in Chapter

IV, we have been using the polar motion data circulated by

the BIH; these are smoothed tabular points based upon optical

observations of stars, and (since 1972) Doppler observations

of Earth satellites. Lunar range data may determine the

Earth's polar motion more accurately, although only one com-

ponent of the pole ,position can be estimated from observa-

tions by a single ranging station. (See, for example,

Harris and Williams (1977).) We are in the process of

implementing in PEP a piece-wise linear correction function

for the BIH polar motion values, in a manner very similar to

our treatment of the BIH UTl data. Preliminary results

indicate that a substantial improvement in the fit to data

may be achieved.

As more range data become available it may be possible

to determine the frequency dependence of the lunar Q. The

two dissipation models we have implemented correspond to

Q a f0 (constant-Q) and Q a f1 (constant-time-lag).

One might consider a model in which the lunar Q is propor-

tional to an arbitrary power of frequency, say Q a fn; the

parameter n might then be estimated from the data. This
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of the elastic perturbation to the inertia tensor, in a

manner similar to our constant-Q formulation. Instead of a

constant phase shift, though, one would use a phase shift

proportional to frequency to the -n power.

Finally, it would be interesting to determine whether or

not free librations of the Moon have really been detected,

as has been asserted by Calame (1976). The Moon's free

librations represent sinusoidal motions about the Cassini

state. There are three modes of free libration, since there

are three rotational degrees of freedom. Peale (1973)

describes them as the free libration in longitude, the free

wobble (of the polar principal axis about the spin-axis),

and the free precession (of the spin-axis about the Cassini

direction); the periods of oscillation are, respectively,

2.9y, 75y, and 24y. The free librations are called "free"

beiause the amplitudes and phases of the three modes are not

fixed, in contradistinction to the "forced" librations of

the Moon, where the response is totally determined, given

the driving torques and the lunar inertia ellipsoid. The

amplitudes and phases of the free librations are dependent

on the practically unknown past history (-106 years) of

the Moon, since they can be stimulated by such events as

meteorite impacts. The rate of decay of the free librations

is determined by the dissipative properties of the Moon.
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Using our numerical rotation model, we have taken free

librations into account implicitly by estimating six initial

conditions of rotation at an arbitrary epoch. In a sense,

the free librations are "buried" within the forced rota-

tional motion, since we have made no attempt to distinguish

them within our numerical model (in fact, we know of no

practical way to do so). In an analytic theory, however,

the distinction between free and forced librations is

explicit.

Calame modelled free librations by adding the appro-

priate sinusoidal terms to an Eckhardt analytic model that

represented only the forced librations. She then estimated

the amplitudes and phases of the three modes of free libra-

tion, along with other parameters,.by least-squares fit to

laser range data; she obtained an amplitude of 1.7" for the

free libration in longitude. Perhaps without justification,

some have voiced skepticism concerning these results; to

date, no one has published an opposing viewpoint.

We have compared our best-fit constant-time-lag rotation

model with a more recent analytic model (D. H. Eckhardt,

private communication) which was generated using the param-

eter values from our fit. The results of this preliminary

comparison seem in good agreement with those of Calame,

especially for the free libration in longitude. Since our

rotational model gives rms residuals of under 30 centi-
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meters, it is hard to believe that it is in error by 1.7", a

lunar surface displacement of over 12 meters. Rather than

a detection of free librations of the Moon, however, this

result might be merely an indication of a large error in the

analytic theory in a nearly resonant term. Very small errors

(probably of omission) in the analytic lunar orbit theory

used to generate the rotation theory, can be magnified enor-

mously in the rotational response due to near-resonance.

Given a value for the lunar dissipation, though, one can

place an upper bound on this magnification factor. In sub-

sequent work we hope to continue our comparisons with an

analytic theory, and further explore the extent to which

analytic theories can be relied upon at frequencies near

resonance.

In an attempt to identify possible sources of error in

our model of the lunar range, we have compiled a list of

neglected or erroneously implemented effects. They are

given below in approximate order of importance, along with

page numbers of relevant discussions in this thesis, where

applicable.

1) BIH polar-motion data for the Earth inadequate (61)

2) neglected effect of the Earth tide raised by the

Sun acting on the lunar orbit (43)

3) elastic perturbations not incorporated in all of

the variational equations for rotation (40,96)
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4) precession constant error (56); elastic nutation

corrections possibly in error

5) neglected effect of the fourth-degree lunar

harmonics on the lunar rotation (90)

6) neglected effect of lunar non-homogeneity on the

elastic and dissipative rotational model (91)

7) effect of an error in the lunar J2 coefficient on

the lunar orbit

8) effect of errors in the planetary masses on the

lunar orbit

9) neglected effect of asteroids on the lunar orbit

10) questionable validity of diurnal polar motion model

11) neglected effect of solar torques on the retarded

lunar tidal bulge (94)

12) neglected effect of figure-figure forces on the

orbit (97)

13) neglected effect of lunar dissipation on the lunar

orbit (99)

14) neglected effect of torques exertedby other planets

on the lunar rotation

15) neglected effect of Earth-figure torques in the

variational equations for rotation (96)
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APPENDIX A

The Lunar Potential

In the derivation of the lunar rotational and orbital

equations of motion and the variational equations, it is useful

to write equations for the lunar gravitational potential gra-

dient, as well as for the partial derivatives of the potential

gradient with respect to position along Cartesian axes. We

will now derive the necessary formulae for the lunar potential,

though the results are equally applicable to other bodies.

The lunar potential can be expanded in spherical harmonics

as follows (Kaula, 1966):

U(r,L,) = -GM E J an r(n+l) P (sin L)
rn= n n

n=2 f

CO n
+ Ean r-(n+l) en()Pnm(sin L) (A-1)
n=2 m=l

with

enm (6) E Cnmcosm6 + S nmsin m 6 (A-2)

and G = Newtonian gravitational constant

M = mass of the Moon

a = lunar radius

r = distance from the lunar center of mass

L = selenocentric latitude

0 = selenocentric East longitude (for this appendix only)

Pn are the Legendre polynomials.



70

P are the associated Legendre functions.

n' Cnm, and Sm are dimensionless coefficients.

The lunar radius, a, serves here only to scale the harmonic

coefficients of different degrees. The component of the poten-

tial gradient along the kth Cartesian axis is found simply by

differentiating equation (A-l) with respect to xk:

au G xk +a n (n+l) xk asin L
- -GM + E J (!) - P -P --3 xk r3  n=2 nr r3 n n r xk

Sn
+na fln eu 1 asin L

+ E E (!) - P + - P

n=2 m=r r nm ax k nm r nm nm 3xk

(n+l)xk
- 3 A3

r3 E)nm Pnm 
A3

r

We have suppressed the arguments of Pn' nm, and 0nm in

(A-3) for notational simplicity. Differentiation with respect

to.a function's argument is represented by primes, as in

P E dP /d(sin L), ande' E)dO /dO; hence
nm nm nm nm

nm = m scos mo-C sin m 6(A-4)
nmInm .nmnm

If we choose the xk axis to lie along the corresponding seleno-

centric principal axis, then it can be easily demonstrated that

3 sin L _
63k -x3Xk (A-5)

3 xk r r3
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30 1 62k ~x2lk

aXk x 1 + x 2
(A-6)

For the development of the variational equations we need

to know how the potential gradient varies with position, as

embodied in the expression for 3 2U/ 3 x3 xk; this can be found

by differentiating equation (A-3) with respect to x.:

2U 3x x k 6ik
3x.3 x =3-G

1 k r rlnl[k ~~
o a n6 k p ++ EJ ( )n(n+l) i +- p n xk

n=2nr3 r

-(n+3) i k p _ 1 p 9 s in L + p nx 2

r 5 n r n x 1 3 x k n
r __3 snL-+ 3) +2 n - n19 Pm i

n=2=xrn

+ 0 p' 3sin L 3sin L

r3 nm nm \1 3 xk k axi/

3sinL 3sinL\
3 x I 3x

3sinL 3sinL
3 x1  3 xk

a xk 33xk k 9

6ik

r3 nm nm

-(n+3) -Il P +i 011 ae aaP I-a-0-P

+ E I -p-- 1 3 sin L + 3 6 3 sin L
nm nm axk 3Xi 3a x xk!

+ E n ; sin L asint + p, 32sin L
nm nm a xi 3 xk nm nm3x.3xkk 4 (A- 7)
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By differentiating equations (A-4), (A-5), and (A-6)

9n
2

- [-m [S sinrmG+ C n

we obtain:

cos m (3

2

a2 sin L 3x3 k 1 _ 63k xi + 3i k + ik 3
ax. ax 5 31 k r r

ae
x.ax -1 k

(A-8)

(A-9)

(x16 1k + x2 6 2k) (x2 6 i -x1 62iJ+(x1 6
1 +x2 

62i )x 2 
6 lk x1 62k)

1 2

(A-10)
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APPENDIX B

Derivation of the Earth-figure Torque

The distribution of mass within the Earth deviates from

spherical symmetry enough so that the lowest-order effects

of the Earth's figure must be accounted for in the calcula-

tion of the torque acting on the Moon. As discussed in

section II-A, the largest torque due to the Earth's non-

sphericity arises from the interaction of the Earth's oblate-

ness (corresponding to the J2 term in the potential) with the

lunar second-degree gravity field. The resultant torque,

which we call the Earth-figure torque, we will now derive.

The second-degree term in the gravitational potential

of the Earth, when the Earth is approximated as an oblate

spheroid, is

2
GM0 R0  3 1

U0  = 3 2 - sin2 6 - (B-1)
r

where r is the distance from the Earth's center of mass, and

8 is the declination with respect to the equator of date. The

force per unit mass due to this field is then

f(r,6) = -VU)

= -Kr 4[(-3 sin2 6 + 1) r + sin 266] (B-2)

2

where KE 3/2 GME J2 0 % . Since the lunar mass distribution is

expressed relative to the selenocentric principal axis system,

we now express t in this system and linearize about the lunar
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center of mass via the Taylor expansion:

f(x1 ,x2 ,x3)
+z

+ : xax
1=1 i 0

denotes evaluation at the lunar center of mass.

ities 3f/3x. can be found via the chain rule:

a f
x

a f 9r + 9f 6 + f $r +- + --
- r ax. a6 ax. a4 ax.

The quant-

(B-4)

where $ is the right ascension of the lunar mass element.

We find

af
Wr

+ f

-5 2
- 4Kr [(-3 sin 6+ 1) r + sin26 6]

-4 2^
= -Kr [-4 sin 2 6 r + (3 - 7 sin2 6) 6]

(B-5)

(B-6)

a f -r 4 2
a = - [cos (1 - 5 sin 6)c1]

At the lunar center of mass, we have

3r =
x. rx

31

-- 6*-x.ax. r 1

- ir-sx.ax. r cos 6

(B-7)

(B-8)

(B-9)

(B-10)

(B-3)
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After substitution of equations (B-5) through (B-10) equation

(B-4) becomes

SKr 5 [4(-3 sin26 + 1)rlx. + 4 sin 26 6-x.]r
3x

2 ^~ -^+ [4 sin 26 r - x. + (-3 + 7 sin 6)6- xj]6

1

+ [ (-1+ 5 sin 6)$x. ]$ (B-11)

where it must be kept in mind that r, 6, r, 6, and $ are all

to be evaluated at the lunar center of mass. Given n, the

unit vector along the Earth's North pole of date, we can find

6 and 4 by the relations

6 =_r x (n-xr) (B-12)

Jr x (nxr)I

and

4 = 6 x r. (B-13)

The force acting on a lunar mass element is fdM, and the

contribution of this element to the torque about the lunar

center of mass is dN = p x fdM, where p 2 (x1 ,x21x3 ) is the

vector to the element from the lunar center of mass. Thus the

total Earth-figure torque is found by integrating dN over the

entire mass distribution of the moon. So

N = fdMg px f

- ]dMh p x f + dM 3X X. f (B-14)

i=1 10 0
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by equation (B-3). The first integral vanishes since our

origin is at the lunar center of mass and all integrals of

the form fdM cx., where c is a constant, vanish by definition

of the center of mass. Thus (B-14) becomes

+

N = dMc =X Px 9x. (B-15)

Define the jth component (in the selenocentric principal axis

a f
system) of a to be g.. so that

= Stf X.(B-16)

a x. 1

1lo

Note that when we perform the indicated dot product on equation

(B-11) we see that g. is symmetric, that is g = g..

Working in the selenocentric principal axis system we evaluate

the cross product of equation (B-15):

P X ax 1 (x2gi3-x3gi2 x2 (x39il~"1gi3 3 (1 9i2~x2gil)I f

(B-17)

Substituting (B-17) into (B-15) and rearranging, we have

3

N = x1fdMU x (X 2gi3-x 3gi2)

3

+ x2 fdMgS x (X 3 i 1 i3(x xg

x3 fdMj x i (xgi2-x2gil) (B-18)
f 1=
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But in a principal axis system the products of inertia are (by

definition) zero, so fdMa x.x. = 0 for if j. Using this prop-

erty and the symmetry of g , it follows that

2 2 2 2N = xg 2 3 fdMea(X2  x) + x2 913 fdM (x23 x1

+ 3X 1fdMi(x? - x2
+3 g12  2

S(C-B) + x 1 3 (A-C) + x a (B-A) (B-19)b te ( ) + mn 3 12

by the definitions of the moments of inertia A, B, and C.
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APPENDIX C

Partial Derivatives with Respect to

Specific Rotation Parameters

In this appendix we present the somewhat tedious arid

often simple derivations of partial derivatives with respect

to the specific rotation parameters appearing in our model.

These derivative sub-expressions originate in Chapter II-D,

equations (11-31), (11-32), and (11-36).

3A_1/3p., B1/Dp., and 3C1/3p. are all zero for p

other than the second degree parameters S, y, and J2'for

which the following obtain:

1 1 22 - y + $y

Mga 2J2 (1+ )

aC- -1 -1
= -- C

9J2 2

c+_ 1+y

38 Ma2 J2 (1+f3)2

ac 0 S- 1

ay 2e 2 J 2(U+08)

-1 -1 1 +
A = C 1-y



A u 1 + 13 aS1

ayj2

_ 1l+ 6 _C_ +

1 - tSy 313

_1 +13 3C 1 +

I - gy ay

B - C
1 +y

1+ y 3J 2

_1+8S

1 + y
+ 1 c

1 +y

+ 1 +86
1 + y

_ 1 +8 -1~A
(1 + y)23y

The kth component of a/api (VUb) when pi is one of the

harmonic coefficients is simply the term by which the coeffi-

cient is multiplied in VUb (equation (A-3)):

asinL
ak1 ( a)=-Gg2) n[(n+)xk n 1

1+ y C~

(1 - 13y) 2

13(1 + (3) 2C1

(1 - 3y) 2
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(C-i)
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a_ Ub-, n 1 __

3C -n(>t= -G%(2)Mb- - sinn m r 3xk nm

+ cosmP8 1 P 3sin L COS m e(n+l)xk P
rn axk 3r n

a aUb -n n -cos
s (t)= -GMb(f mcosm ar3xknmnm kknr

+ sin mO P 3sin L -sin m 8(n+l)xk P (C-2)
r nm 3xks3 nm

For p one of S, y, orJ2 we apply the chain rule to find the

(additional, in the case of J2) change in the potential gra-

dient due to the change induced in C22

a3U b ac 22 aU b
a__p (x (C-3)

7k xk! i 3C22 \BXk

Since

CJy 1+
22  2 2 28 - y + ay

we have

aC 22 C22

2 2
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aC2 2  y (1 5)

as - 2(2S - y + Sy)

a2 22(1+ )2 (C-4)

9 Y2(2 - + 6y)

The second factor on the right hand side of equation (C-3) is

given by the second equation of (C-2) with n=m=2. The

partial derivatives of VUb with respect to the elastic param-

eters are all zero.

From equation (11-15) we obtain

arJk k

i (Io) (Io)kk api

+ 6 1 jk.(o) a(IO)kk + a. okE' Iik kf+kk
Io) (IO)kk]2 L api api jk

(C-5)

The quantities 3 (I0) ./3pi are simply the appropriate diagonal

elements of 3 Io/api, as given in equation (11-33).

The two quantities from equation (11-31) which remain

unformulated, 3 6I/3p. and 36 I/3pi, are dependent upon which

dissipation model is invoked. With the adoption of the con-

stant-time-lag model, the only non-zero partials are with

respect to k and D. We then have (from equations (11-18)
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through (11-21)):

3 61
3k

3D

36I1
3 D

-1
-- 61

k

II

1 --
- 61
-- k

(C-6)

For computational reliability in the event of small (or zero)

k, we form 36I/3k, etc., first, and then multiply by k to

find 61.

The constant-Q model, due to its linear formulation,

leads also to simple derivatives. All partials are zero,

except those with respect to k and k/Q, when by equations

(11-24) through (11-26) we get:

(S sin p + C cosp)
pqrs

3. (k/Q)- - x (s cos - Csinp)
pqrs

(S cos p - csinp) i
pqrs



(Ssinp + Ccosp)pa (k/Q)
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=12
pqrs

(C-7)



APPENDIX D

Tests Performed on the Rotation Model to Verify Correctness

Several tests have been performed on the programmed

version of the lunar rotation model (1) to verify that the

equations were properly programmed, and (2) to demonstrate

that the equations yield the correct solution for problems

to which the solution is already known. Falling into the

first category are tests such as printing out selected

variables and checking derivative expressions by finite

differencing of the parent expressions. Into the second

category fall two tests, the details of which we shall

further describe. They are (1) the comparison of our rigid-

body model with a similar model derived elsewhere, and (2) a

test of the elastic and dissipative models, for a geometric-

ally simple case in which the solution was easily derived

analytically.

We compared our rigid-body lunar rotation model to the

widely-available "LLB-5" rotation model developed by J. G.

Williams of the Jet Propulsion Laboratory (private commun-

ication); a detailed description of the procedure used and

the results obtained can be found in Cappallo et al. (1980).

The LLB-5 model represents a numerical solution of rigid-

body equations of rotational motion for the Moon, but the

equations were integrated in a non-inertial frame and the
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dependent variables were small Encke-like variables that

described the departure of the Moon's rotation from a uni-

form Cassini motion. We adjusted our rotation initial con-

ditions to obtain a best fit, over a six-year integration

span, of the lunar orientation given by the two models.

After removing three small bias angles representing co-

ordinate system offsets, the postfit rms difference between

the two models was 24 cm, when expressed as a lunar surface

displacement. The size of this difference is consistent

with the hypothesis that the discrepancy is caused by the

known differences in lunar orbital ephemerides used to

create the models. ,

The elastic and constant-time-lag dissipative code was

also checked, albeit in a non-comprehensive manner. For

this purpose we created a simplified and isolated two-

dimensional Earth-Moon system by appropriately choosing the

orbital and rotational initial conditions, and by setting

the masses of all the other bodies in the solar system to

zero. The lunar gravity field was/that of a tri-axial

ellipsoid, and all orbital forces other than the Newtonian

/r2 attraction of the centers of mass were suppressed.

The Moon was put in a circular orbit about the Earth, with

the lunar equatorial plane coincident with the orbital

plane. At the initial epoch of integration the xI prin-

cipal axis was purposefully offset by about two arc-seconds
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in longitude from the Earthward direction, so that free

librations would ensue. We then introduced a known amount

of damping and observed the decaying sinusoidal oscillations.

The rate of decay was predicted using simple formulae riot

based upon the equations in our model, and was found to

agree with the observed decay rate to within the accuracy

expected of the simple formulae (a few percent).
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APPENDIX E

Approximations

In the course of the derivation of the lunar rotation

model and of the alterations to the lunar orbital model we

have made several approximations, as noted in the text.

Generally, the motivation for these approximations was to

simplify the derivation and computer coding, to save our

time and the computer's. The lone exception is the approx-

imation explained in E.3, where we don't know enough about

the composition of the lunar interior to warrant a more

rigorous treatment.' In many cases the estimates of orbital

and rotational errors are based upon simplifying assumptions

such as two-dimensional geometry. It should be kept in mind

that these are not rigorous error analyses; instead, they

represent the current state of our investigation into

possible sources of error.

E.l: Neglect of torques exerted by other planets (see

page 15)

The far-field torque exerted on the Moon by an external

body is directly proportional to the body's mass, and

inversely proportional to the cube of its diitance. A

3calculation of M/rminimum for the principal bodies of

the solar system demonstrates that the torque on the Moon



88

may be approximated as the sum of the torques induced by

Earth and Sun to an accuracy-of 1 part in 106, with the

largest neglected torque being due to Venus. An examination

of a table of planetary synodic periods shows no periods

that are near resonance with the lunar libration periods,

so in order to establish an upper bound on the effects of

neglected planets, we will only consider here the neglected

librations due to Venus.

Assume for the moment that the orbit of Venus, the orbit

of the Moon, and the lunar equator all lie in the same plane.

Then the longitudinal angular acceleration of the Moon due

to the torque exerted by Venus is

3yGM in2X-6 
223 sin 2X=91.9 x 10 sin 2X arc-sec/d (E.1-1)

rvmin

where A (znt) is the angle between the the x, principal

axis and the direction of Venus. Since sin 2X varies with

a period of about 14 days, during which the Moon-Venus

relative orbital geometry stays roughly constant, the

time-average of displacement tends to average to zero. Of

course, there are fluctuations of the Moon's rotation with

this 14-day period. If we integrate (E.1-1) twice with

respect to time, we find fortnightly variations in longitude

with amplitude 9 x 1o 6 arc-sec, far below our observa-

tional limit.
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we now estimate the size of the latitudinal librations

caused by Venus. Since the funar equator is inclined by

only 1.5* to the ecliptic, the size of the maximum excursion

of Venus from the lunar equatorial plane is set approxi-

mately by the orbital inclination of Venus relative to the

ecliptic. When the passage of Venus through the point

farthest from the ecliptic (90* from the line of nodes)

coincides with opposition of the Earth, Venus is about 100

from the ecliptic, as viewed from the Moon. The magnitude

of the torque exerted on the Moon due to the attraction of

the lunar equatorial bulge by Venus can be found easily from

equations (A-3) and' (II-10):

2
3GM M2 Jqa 

(E.41

N _3 Isin 2LI -(E.1-2)
2r,

Adopting the worst-case values of Lg ~ 100 and r 0.26 AU,

we find IN'l 1.3 x 1021 dyne-cm. The precession of

the lunar spin-axis due to this torque can be found from

equation (11-3); after a short time, 6t, the change in the

direction of the spin-axis with respect to an inertial frame

+ 1 -1is simply IN6tC W 1 . The time interval over which the

Earth-Venus orbital configuration roughly maintains the

worst-case geometry is about 100d. During this interval the

lunar spin-axis thus suffers an "impulsive" orientation

change of 1.0 x 10-3 arc-sec, the equivalent of a lunar-
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surface displacement of about 8 mm. Such spin-axis displace-

ments are cumulative over successive conjunctions of Venus.

However, the lunar spin-axis, having been displaced, will

precess about the Cassini position with a period of 24 years,

so that the "impulsive" displacements do not accumulate

indefinitely. Furthermore, since we estimate initial condi-

tions for the lunar spin-axis, we are sensitive only to the

change in the direction of the spin-axis over the limited

time spanned by observations. Over the decade for which

lunar range data are available, at most only a few occur-

rences of this worst-case geometry are possible, and this

effect is negligible. Over long time scales, however, there

could be a significant departure of the lunar spin-axis from

the Cassini state; perhaps analytic theories should account

for this effect.

E.2: Neglect of torques due to fourth-degree harmonics

(see page 17)

Eckhardt (1973) has used his semi-analytic theory to

find the rotational pertubations due to the fourth-degree

harmonics of the lunar gravity field. Except for some

unobservable (by Earth-based ranging) constant offsets, he

finds only one libration term with an amplitude over 0.1".

The period of this longitude term is six years, while its

amplitude is 0.11", based upon the fourth-degree harmonic



coefficients of Ferrari et al. (1980). Williams (private

communication) believes that this term, and others that

result in libration amplitudes <0.1", can be masked by small

changes in the estimated values of third-degree coefficients.

Using laser range data, we have estimated various subsets of

the fourth-degree harmonic coefficients, and find their

values poorly determined. When the coefficients (S41 and S 43)

to which we appear to have marginal sensitivity are esti-

mated, the values of the third-degree coefficients change by

as much as 40%, but k and D are only slightly affected.

E.3: Contribution of deformation velocity to angJar

momentum (see page 18)

For an elastic Moon the angular momentum is, in general,

no longer given by L = Iw, since o will be non-uniform as

the Moon deforms. This relation will hold, however, under

certain restricted conditions: if we let o refer to the

rigid-body principal axis system (since this is the frame in

which I is evaluated), and if we consider only the equilib-

rium (quasi-static) distortion of a homogeneous elastic

sphere. The adoption of an equilibrium distortion is

reasonable since the tidal and rotational stresses occur

mostly at monthly and fortnightly periods, which are much

longer than the free oscillation period of about an hour for

lunar-sized bodies. Hence the strain field will be able to

follow the stress, without sizable non-equilibrium elastic
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waves being stimulated. Of course the Moon does not conform

to these idealized conditions; a treatment of a more real-

istic model of the lunar interior is beyond the scope of

this paper. In this appendix we attempt only to demonstrate

the consistency of our representation of the effects of

lunar solid-body elasticity and dissipation.

Given these idealized properties of the Moon, it is

easily seen that the distortion caused by centrifugal force

doesn't alter the uniformity of w, since the displacement

field has cylindrical symmetry about the instantaneous

rotation axis. In general a tidal bulge will cause longi-

tudinal (used here to denote rotation about the spin-axis)

displacements, but the integrated longitudinal displacement

will vanish for a homogeneous Moon. This follows from the

reflection symmetry of the bulge about the plane containing

the Earth and the spin-axis of the Moon. In general,

symmetry of displacement about a plane containing the

spin-axis is a sufficient condition for the longitudinal

displacement to vanish when integrated throughout the

spherical Moon. Such symmetry in the time-derivative of

displacement ensures that the excursions of angular velocity

from the spin-axis value also average to zero. As the

position of the Earth changes in the principal axis frame,

so does the position of the tidal bulge. That this motion
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doesn't break the symmetry inherent in the time-derivative

of the bulge can be seen by considering the Earth's motion

stroboscopically as a succession of appearances of a massive

body, each of which raises a tidal bulge symmetric about the

plane containing the body and the lunar spin-axis. As the

interval between appearances approaches zero the planes of

symmetry approach one another, and so the time-derivative of

displacement is symmetric. This result has been verified

somewhat more tediously by the direct calculation of the

changes in the longitudinal tidal displacement field, and by

then demonstrating that the planar symmetry does indeed

obtain.

"Constant-time-lag" dissipation will not change the

above conclusions concerning tides.since there will still be

a plane of symmetry defined by the spin-axis and the axis of

symmetry of the bulge, even though it no longer contains the

center of mass of the Earth. The offset of the symmetry-

axis of the rotational bulge from the spin-axis due to slight

dissipation also displays symmetry about the (tangent) plane

passing through the spin-axis and the symmetry axis of the

bulge ("old" spin-axis). The rate of change of the rota-

tional bulge is also symmetric about this plane.
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E.4: Neglect of solar torque on elastic perturbation (see

page 20)

The torque due to the Sun's attraction of the elastic

perturbation to the lunar figure is neglected. As stated

in Chapter II-B, the time-varying part of the rotational

deformation is so small that it could safely have been

ignored; we will do so here, and just consider the tidal

bulge.

Using equation (11-17) and the tidal part of equation

(11-18) we find the magnitude of the solar torque on the

tidal bulge to be

GM ,MO R5 s.

k 3 j Rq Sin 2
r r (E.4-1)

where C is the angle subtended by the Earth and the Sun, as

viewed from the Moon. The direction of the torque is normal

to the plane defined by the centers of mass of the Earth,

Moon, and Sun. A second neglected torque is that due to the

Earth attracting the lunar tidal bulge raised by the Sun;

this torque was ignored implicitly by omitting the solar

tides in equation (11-18). As can be seen by the (Earth-

Sun) symmetry of equation (E.4-1), the magnitude of this

second torque will match that of the first. Furthermore,

the direction of the second torque is opposite that of the

first, so that the net torque is zero for an elastic Moon.
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Under the presence of lunar -dissipation, however, the

tidal bulges no longer follow the Earth and Sun exactly, so

that the symmetry is broken, and there may be a net torque.

Although the ensuing librations are not easily derived, we

note that the nearly-cancelling torques being discussed are

quite small; using a k = 0.03 in equation (E.4-l), we find

the maximum resultant rate of change of the lunar angular

velocity to be 5 x 10- arc-sec/d 2  The only appre-

ciable offset of the tidal bulges due to dissipation will be

in a longitude sense (due to the size of wo3), and the

longitudinal geometry of the Earth-Moon-sun system is roughly

periodic, with a period of 29.5 days. Thus even this small

net torque due to the asymmetry of the dissipative bulges

will tend to average to zero.

E.5: Effect of approximations in 6I (see page 24)

Since w is used in our rotation model only for the

calculation of the rotational part of 6I, a sufficiently

accurate expression is obtained by differentiating the rigid

body angular acceleration in equation (11-5). The time-

derivative of the torque is evaluated by differentiating the

torque exerted on a tri-axial Moon. The acceleration of the



Earth relative to the Moon, r, is approximated in 6I by

considering only the Newtonian l/r2 mutual attraction of

Earth and Moon, and the disturbing acceleration of the Sun.

E.6: Nilect of elastic effects in implicit terms of

variational equations (see page 36j

The ratio of the magnitudes of the neglected terms in

equation (11-16) to the included rigid-body terms is roughly

the same as the ratio of the elastic perturbation to the

permanent asynuietry, or about 6I/(C-A) ~10-3. Errors of

this size in the variational equations are tolerable since

our solutions are iterated until convergence is achieved,

although the formal errors for highly-correlated parameters

could be affected.

E.7: Neglect of Earth-figure torques in variational

equations (see pages 37 andilk

The Earth-f igure torque is smaller than the torque

exerted by the Earth's center of mass by a factor of about

J20(R/rID)2 ~10-6. For the reasons given in Appendix E.6

a relative error of this- size is tolerable in the variational

equations.



E.8: Neglect ofjfijure-figure forces on orbit (see page 45)

The extra force term due to the interaction of the

Earth's figure with the lunar figure has been left out of

the orbital equations of motion due to its small size. We

now derive an estimate of this force.

Let be the force field due to the Earth's oblateness,

so that f = -V(J2 0 potential term). We expand f about the

lunar center of mass, using the selenocentric principal axis

system as a local orthogonal coordinate system:

4- 3+ 3 3 2+1,

f(xLx2X"fl +Y' xxax; x x.
oi=3 i x 21=1lj=l 1 j

3 3 3
=1+ N.x. + 2bL .. x-x.

i=1 i + 2 i=l j=l (E.8-1)

if we define

aan +2t

1X 1) axpn-x j (E.82)

The total force acting on the Moon is found by integrating

IdM over the lunar mass distribution.

F4 = M 4 fj 1+ y2idM 4 xi] M+jxbxijidflb Xjj(E.8-3)
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The first term of (E.8-3) is the interaction between the

lunar center of mass and the Earth's oblateness, and was

modelled by Slade. The second term vanishes, by definition

of the center of mass. By definition of the moments and

products of inertia we have

fdMgx.X. = I.. + 6. A + B + C
i 313 13

[1= 6~~ (A + B + C) -'~ E84
ij 1 2(E.8-4)

since the products of inertia are zero in the principal axis

system. It can be shown that b 11 + b22 + 033 = 0 by

expressing the bi. 'in terms of the potential and invoking

Laplace's equation. Using this relation and equation (E.8-4)

we can simplify the second term of.(E.8-3):

3 3 _ 131
# rbldMGX x.= . (A+ B+ C)

2 i=l 1 2

= - [AS1 + n 2 +C
2 11 22 33]

(C-A)51 + (C-B) 2 3 ] (E.8-5)

It can be shown that S61 and b22 are expressible as

linear combinations of the various second partial deriv-

atives 32 f/3r2, 3 2 f/36 , etc. and furthermore, that
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the magnitude of the coefficients are no greater than unity

if we scale the partial derivatives so that they represent

derivatives with respect to linear distance in the indicated

directions. A derivation of the nine partial derivatives

shows 92f/Sr2 to be potentially the largest, with a

maximum magnitude bounded by 30/5 GM®J2eR2/r® 6

Using (E.8-5) this corresponds to a figure-figure acceler-

ation of afj12/5 SGMJ 2eR2 R2 /r ~2x10 cm/d2

smaller than some other neglected effects on the lunar orbit.

E.9: Direct orbital effects of lunar elasticity and

dissipation (see page 45)

The external potential of the lunar tidal bulge raised

by the Earth when offset by an angle 4 (due to dissipation)

and evaluated at the center of mass of the Earth is:

Ra)5 GM@ (3 2
V =-k(r/cos $ 2-(E.9-1)

The force exerted on the Earth (treated as a point mass) is:

F=-M9VV

3 R 5 GM 2  2
=-- k 0 (3C%,os $-1r"'+ s in 26

r 2Or(E.9-2)

There is a reaction force of -F acting on the Moon, so the

acceleration of the Moon relative to the Earth is:



+ 3 RC G (M +NI)M ED2
a = (MkM2)(3cos $-1)r + sin 2$ $

(E.9-3)

Since $ is quite small the coefficient of r is about two,

and using a value of k = 0.03 we find the maximum radial

acceleration to be -4x10 2cm/d2. Due to the inverse

seventh-power dependence on distance, the minimum radial

acceleration is about half this value. The effect of these

variations in the radial acceleration is to cause an advance

of the argument of perigee at a rate of about 6x10~4

arc-sec/year. This slight advance of the line of apsides is

not currently detectable with the lunar range data.

The effect of the lunar elasticity is included in our

orbitai model, but there is no allowance made for

dissipation. The effect of dissipation is much smaller than

the elastic effect discussed above. The amplitude of the

optical librations is- about 0.1 radian, so the maximum $

that results is given by $max 1 radians. Thus a
10 0rdas. TuQ

lunar Q ~ 20 would cause a maximum transverse acceleration

~l/200 the size of the radial acceleration. The only way in

which an acceleration of this small magnitude could become

detectable would be through a secular acceleration in

longitude, in which case it would be hopelessly submerged

within the effect of the Earth's tidal bulge.
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TABLE 1

Harmonic decomposition of the elastic inertia tensor

p q r s C1 1  S12 S3 C22 C23 C33

0 0 0 0 -3.025 0.0 0.0 0.852 0.0 2.174

0 0 0 2 -.079 -.058 0.0 0.043 0.0 0.035

0 0 2 0 -.026 0.014 0.0 0.0 0.0 0.026

1 0 0 -2 -.076 0.085 0.0 0.036 0.0 0.040

1 0 0 0 -.422 -.426 0.0 0.211 0.0 0.211

2 0 0 0 -.058 -.049 0.0 0.041 0.0 0.017

0 0 1 0 0.0 0.0 0.455 0.0 0.0 0.0

1 0 1 0 0.0 0.0 0.062 0.0 -.025 0.0

1 0 -1 0 0.0 0.0 -.009 0.0 0.025 0.0

0 1 0 -2 -.005 0.004 0.0 0.0 0.0 0.0

1 -1 0 0 -.004 -.004 0.0 0.0 0.0 0.0

1 0 2 0 -.004 0.0 0.0 0.0 0.0 0.005

1 1 0 -2 -.003 0.004 0.0 0.0 0.0 0.0

1 1 0 0 0.004 0.003 0.0 0.0 0.0 0.0

2 0 0 -2 0.006 0.005 0.0 -.008 0.0 0.0

3 0 0 0 -.006 -.006 0.0 0.005 0.0 0.0

0 1 0 0 0.0 0.014 0.0 0.0 0.0 0.0

1 0 0 2 0.0 -.014 0.0 0.012 0.0 0.006

0 0 1 -2 0.0 0.0 -.007 0.0 0.0 0.0

0 0 1 2 0.0 0.0 .010 0.0 -.004 0.0

1 0 -1 -2 0.0 0.0 -.012 0.0 -.005 0.0

2 0 1 0 0.0 0.0 0.007 0.0 -.004 0.0

Notes

Used in equation (11-24). Since the inertia tensor is
symmetric, only the upper diagonal half is given. The
tensor element coefficients not given (Sll' C12 , C1 3 ' S22'
S23, and S3 3) are zero for all arguments. The constant
parts of the tidal and rotational deformations have not been
removed. The units are 4.848x1r-6 C, where C is the
Moon's polar moment of inertia.
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TABLE 2

Comparisons of parameter estimates

Constant-time-lag Constant-Q.

dissipation model dissipation model

Ferrari et al.

(1980)

M®/(Me+M) 328900.529 + 002( 328900.529 + .002 328900.540 + .021

sin 26 (1)

S (x106 )

y "o

J3 (x10 6 )

C3 1
C3 2

C3 3

S 3 1

S 3 2
s33

(2)

",

"I

"I

"

"3

k

DEkT

k/Q

0.081 + .002

631.3 + .4

227.92 + .06

8.7 + .4

25.4 + 6.0

4.867 + .010

1.90 + .14

14.6 + 1.6

1.612 + .007

-0.90 + .07

0.020 + .003

0.00401 + .00016

0.081 + .002

631.0 + .4

227.56 + .07

8.6 + .4

23.4 + 6.0

4.878 + .010

2.59 + .14

17.8 + 1.6

1.605 + .007

0.79 + .07

0.026 + .003

0.000953 + .000036

0.082 + .014

631.69 + .13

228.02 + .10

12.1 + 1.8

30.7 + 1.9

4.888 + .05

1.44 + .17

5.6 + 2.5

1.69 + .04

-0.33 + .17

0.022 + .013

0.0072 + .0010

Q (inferred)

postfit rms
range residual

22 + 4 27 + 4 14 +11-9

27 cm 27 cm 38 cm )
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Notes

(1) Ferrari et al. didn't estimate sin 26 directly, but
rather the product k 2 6. The value listed in the
table is computed using k 2 = 0.3 for the Earth, which
is the value used in our tidal friction model.

(2) Our estimate of y has been modified to incorporate the
constant part of the tidal bulge raised by the Earth.

(3) The errors given with our parameter estimates are the
formal errors, while Ferrari et al. have scaled their
errors to reflect possible systematic errors (see text).

(4) This was the postfit rms range residual when laser data
alone were fit; with the addition of tracking data,
their postfit rms range residual was 39 cm.
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(North)

C3

X3 x

FIGURE 1. The Euler Angles define the orientation

of the selenocentric principal axis

system (x.) relative to the inertial

1950.0 Earth equator-equinox system (Fi).




