COMMUNICATION COMPLEXITY OF DISTRIBUTED SHORTEST

PATH ALGORITHMS
by
Daniel U. Friedman

S.B., Rice University, Houston, Texas (1976)

SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

December, 1978

Signature of AUENOT . et terre e T e T e e e I o A
Department of Electrical dnglneerlng and Computer

Science, December 20, 1978

Certified by...cveeeresns T e i i et e at et Ceeesecareacansasanna

Accepted bY.cveereeeneansesneenans teereseratneaete st Wi eeetececesecsse s
Chairman, Departmental Cormittee on Graduate Students

COMMUNICATION COMPLEXITY OF DISTRIBUTED SHORTEST PATH
ALGORITHMS

by
Daniel U. Friedman

Submitted to the Department of Electrical Engineering and
Computer Science in Partial Fulfillment of the Requirements
for the Degree of Master of Science, December 20, 1978.

ABSTRACT

One routing strategy freguently used in computer networks
assigns traffic dependent distances’ to the links of the network
and then increases the traffic flow on shortest paths. If a
central facility monitors all network traffic, classical algo-
rithms can be readily employed to compute shortest paths. If
traffic is cnly locally monitored, we wish to have distributed
procedures in which the nodes begin with only local information
and compute shortest paths by communicating with one another.

In this thesis, we present several such distributed shortest
path algorithms and analyze their communication cost. Since the
transmission of control information required for network ope-
ration reduces the bandwidth available to users, we concentrate
on finding algorithms that use a minimum of information exchange.

Thesis Supervisor: Robert G. Gallager

Title: Professor of Electrical Engineering and Computer Science
and Associate Director of Laboratorv for Information and
Decision Systems

ACKNOWLEDGEMENTS

I take this opportunity to thank Prof. Robert Gallager for
introducing me to this thesis topic and for supervising the thesis
work. His willingness to listen and think about the problems made
the research rewarding. I also express my appreciation to Prof.
Pierre Humblet for his interest, advice, and willingness to discuss
many problems at length. In addition, I wish to acknowledge several
helpful discussions that T had with Prof. Jim Massey while he was at
MIT, and with my fellew graduate student Mr. Paris Kanellakis.

The manuscript was typed by Ms. Fifa Monserrate, and I thank
her for her patience and a job well done.

The research was carried out the MIT Laboratory for Information
and Decision Systems with support from the John and Fannie Hertz
Foundation and the Vinton Hayes Fund of MIT, and I gratefully
acknowledge their aid.

Finally, I take this opportunity to thank my paients for their
encouragement and support. Without this, I probably would have had
a job by now. Wovon man nicht sprechen Kann, daruber muss man

schweigen.

I.

II.

ITI.

Iv.

TABLE OF CONTENTS

INTRODUCTION

I.1 Motivation
1.2 Notation and Definitions
I.3 Problem Formulation

1.4 Shortest Path Trees

CENTRALIZED ALGORITHMS FOR THE SHORTEST PATH PROBLEM

II.1 Single Source Problem
IT1.2 All Pairs Problem

I1.3 Lower Bounds

DISTRIBUTED SHORTEST PATH ALGORITHMS

II1I.1 More Notation and Assumptions
I1T.2 Minimum Hop Path Algorithms
III.3 Broadcasting All Arclengths

III.4 Worst Case Analysis of Some Distributed Shortest
Path Algorithms

‘ITI.5 Preprocessing and Message Encoding

AVERAGE COMMUNICATION COST ANALYSIS

IV.1 Motivation
IV.2 Average Computation Analysis of Spira's Algerithm

IV.3 Applications to Distributed Algorithms

13

13

23

25

27

27

30

41

- 45

58

62

62

66

- 73

TABLE OF CONTENTS
(continued)

V, SUGGESTIQNS FOR FURTHER RESEARCH

APPENDIX A

BIBLIOGRAPHY

88

20

92

I. INTRODUCTION

I.1 Motivation

One routing strategy frequently used in computer hetworks assigns'
traffic dependent lengths to the links of the network and then apportions
the traffic among the various paths depending on their relative distances.
(The distance of a path is the sum of the lengths of its links).
Periodically, the lengths are updated to reflect chamge§ in the traffic,
path distances are recomputed, and traffic is appropriately rerouted.
Thus, the strategy is somewhat adaptive. Implementation of this strategy

requires that four basic subproblems be addressed.

1) Dependence of link lengths on the traffic
2) Computation of path distances
3) Allocation of traffic

4) Frequency of updating.

Parts 1) and 3) are generally handled by choosing some cost function,

. assigning to each link a length that reflects the cosﬁ of using it, and
then routing traffic so as to minimize the total cost. Methods for
doing these things involve considerations of multicommodity flow problems
and‘the statistics of network traffic. They present formidable problems

because
a)> it is not always obvious how to choose a meaningful

(in terms of network performance) cost function ang,

b) given a cost function, it is not easy to see how to

assign link distances in an appropriate manner and,

c) given the link distances, the optimal traffic
allocation pattern can be difficult to find.

Much of the previous work done on routing has focused on these problems
and the reader is referred to [1] and [2] for representative studies.
Limitations of the computational resoﬁrces.directly affect 2) and hence
the whole strategy. Since the total number of paths can grow exponen-—
tially with the number of nodes, it is often not feasible to compute all
path distances. Frequently, only the shortest paths are computed and
the amount of traffic flow allocated to these paths is increased relative
to the old values. The frequency with which updates can be performed
depends on how much of the network's resources the updating procedure
uses.

If a central facility monitors all network traffic, 2) is purely
a computational problem, and there are several well known algorithms
fbr computing shortest paths. If traffic is only locally monitored,
these algorithms can still be used provided all other nodes send their
. local information to the central computer. This is a communication
problem. In either case,_the network is completely dependent on the
central facility for purposes of routing. Hence, it is desirable to
have procedures in which the nodes begin with only local information and
compute path distances by_qommunicating with one another. If a node or
" 1ink is not functioning, it is automatically excluded from the update,

but other nodes proceed with the remaining links.

This thesis presents and analyzes several such distributed
shortest path algorithms, and hence bears on part 2) of this strategy.
The link lengths are assumed to be already assigned and are taken as
part of the input. Each node initially knows the lengths of its outgoing
arcs and possibly some things about the topology of the network. It
finds shortest paths to other nodes by communicating with them. It is
assumed that the arc lengths and topology are all fixed during execution.
The problem of routing in the presence of failures is indeed'significant,
but here we are only concerned with the amount of information that the
nodes must exchange in order to find shortest paths in a fixed graph.
The problem is discussed abstractly in that protocol issues are ignored.
It is assumed that there is a protocol enabling nodeéAto communicate
reliably with one another, and we count only the information relevant
to‘the algorithm. For example, if one node sends to a neighbor the
length of some link, we count only the number of bits needed to encode
this length, even though this "message" will have protocol bits appended.
This abstraction of communication cost is analogous to that made in the
study of centralized algorithms. Elementary operations such as addition
or comparison are often assigned unit cost since they only require some
bounded number of machine language instructions to implement. Similarly,
we view protocol as a fixed overhead and are interested in how the
abstract communication cost grows as a function of the size of the

network.

I.2 Notation and Definitions

For our purposes, a network is represented by a directed graph or

digraph G=(N,A), where N is a set of vertices or nodes labelled

l,...,n and A C NxN is a set of arcs. An arc from mode i to node j is
denoted by (i,j). We assume all arcs are nontrivial, i.e.

(1,3) € A => i#j. The set {j](i,j) € A} is termed the adjacency list of

i, AL(i), and a node j € AL(i) is called a neighbor of i. The cardinal-
ity of AL(i), |AL(i)l, is called the outdegree of i, OD{(i). Similarly,
the indegree of node i, ID(i), is defined as l{(k,i)l(k,i)e A}l. Note

X oD(i) = ZID(i) = |a]. G can be naturally associated with an undirected
i i

graph, EQ(N,L), where N is the same set of nodes as in G, and L is a

set of undirected edges or links, <i,j> . We take <i,j> € L if either

(i,jd)e A or (3,i)e A inclusively. If (i,j)e A and {j,i)e A, we still

take only one copy of <i,j> . The degree of node i in E, D(i), is

defined as |{<i,j>l<i,j>€ L}l. Note that <i,j> and <j,i> are the same

element .z D(i) = 2L since a link is counted at both endpoints.
i

A path in G from i to j, PI[i,j] is a finite seguence of vertices

[i=i_, 1

s . . <0<
g Lgeeeendp jl, such that (ll’ 1£+1)€ A, l_ﬁ_k»l. The arcs

(ig, i£+1) are said to be in the path. If i=j and all other nodes are

distinct and different from i then P[i,j] is a cycle. A path Plr,t]

= [r=j1,...,js=t] is a subpath of P[i,]j] if

1) Plr,t] is a subsequence of P[i,j] and

2) (x,y) is an arc in P[r,t] only if (x,y) is an arc in PI[i,]].

Path can be analogously defined for undirected graphs in an obvious

manner. A directed graph G is called strongly connected if there is a

path from i to j, Vi#j. G is called weakly connected or just connected

if there is a path in G from i to j, Vi#j. Note that in G, if there

is a path from i to j then there is also one from j to i since the

edges have no direction. This is not true in G,and hence we distinguish
strongly connected from connected. The diameter of G, D(G) is defined as
max (min # of linksin a path from i to j in G). This means that for any
i3

i,j, there is a path from i to j in Ebusing'at most D(G) edges.

A weighted digraph G=(N,A,%) is a digraph together with a

function 2: NxN - (-»,®], and £(i,j) is called the length of arc (i,J).
We take 2(i,i)=0 Vi e N, %2(i,j)< =, V(i,j) €A, and %(i,j) = @ V(i,j)g A.
That is, for shortest path problems, we consider these arcs in the graph
to have finite length and missing arcs to have infimite length. The

k-1

length of a path P[i,j]=[il,...,ik] is defined as z R(is, i
s=1

s+l)'

We will frequently consider asymptotic rates of growths of functions.
To express this notion in compact form, we introduce the "big-oh"
notation. A function f(n) is said to be 0{(g(n)) (order g(n) or big-oh

of g(n)) if there exists an n and a constant c such that

—-6—

| £(n) |_<_|c.g(n) |,Vn'z_no.
Additionally, we will often denote the cardinality of a set S,

|S|, simply by S if it is clear that the reference is to a numerical

quantity and not to S as a set.

I.3 Problem Formulation

(Much of the material in the remainder of this chapter and in
the next chapter is dfawn from [3] and [4]. They are excellent ref-
erences for the reader who is unfamiliar with graphs or the shortest
path problem).

Given a weighted digraph there are 3 shortest path problems
we consider.

1) All Pairs (AP) - Find the length of a shortest path from
i to j, Vi#j.

2) Single Source (SS) - Find the length of a shortest path

from a source node i to all other nodes.
3) Single Pair (SP) - Find the length of a shortest path
' from a given source to a given desti-
nation.
In practice, one may actually want the path or just the length. We
tend to such details when necessary.

Assume for the moment that G is strongly connected. If G has
cycles of negative 1ength{ then there is no shortest path from i to j
for any choice of i and j. Otherwise, all of the above problems have
well defined solutions, and there is a cycle free shortest path between
anyAtwo nodes. (Cycles of-zero length can be deleted). One of the

basic observations concerning the shortest path problem is the following

"Principle of Optimality":

If P[i,j] is a shortest path from i to j then any subpath
P[r,t] must also be a shortest path from r to t.

From this principle, we readily obtain the following necessary conditions
for the shortest path path lengths in a weighted digraph having no

negative length cycles.

Let D(i,j) = length of a shortest path from i to j.
Then

D(i,i) = O

D(i,j) = min(D(i,k) + Z(k,3))

k#]

These are called Rellman's Equations (BE). It is shown in [4], that if
G has no nonpositive cycles, then BE are uniquely satisfied by the
shortest path lengths. If G has zero length cycles, then BE may have
solutions other than the shortest path lengths. In practice however,
computational procedures.find the shortest path lengths solutions even

if G has zero length cycles.

I.4 Shortest Path Trees

A digraph containing no cycles is called a directed acyclic graph

or dag for short. A rooted tree, T=(M,B), is a dag satisfying

1) There
2) Every

3) There

Note that

show that

is exactly one vertex called the root with indegree = O,
other vertex has indegree = 1.

is a path from the root to every other vertex.

2) implies that the path in 3) is unique, and one can also

B=M-1. Because T is acyclic, there is at least one vertex

having outdegree = 0, and any such vertex is a leaf. The depth of a

vertex j in T is defined as the number of arcs in the path from the

root to j.

The depth of the root is 0, and the depth of the tree is

defined as max (depth(j)ljeM). Examples of trees amd dags are shown

below.

DAG

AN

¢-—-—-Y‘OOT

\\'j

TREE

-10-

Now suppose G=(N,A) is a weighted digraph in which every cycle has
positive lenéth. Define DO(i) to be the set of zrcs such that
(p,q)€e DO(i) iff (p;q) is.an.arc in a shortest path in G from i to some
other vertex. Tet DSPO(i) be the graph (N,DO(i)). By using the prin-
ciple of optimality and the fact thatrall cycles in G have positive
length, one can show that the graph DSPO(i) is a dag- (DSPO(i) stands
for dag of shortest paths out of i). DSPO(i) is not always a tree

because there can be two or more different paths from i to some other

vertex that have equal lengths.

DSPO(L)

By arbitarily choosing only one of the paths (in the example, delete

either (£,3) or (m,j)) we can change the graph into a tree.

oY

If we do this for all vertices in DSPO(i) having indegree >1, we can
construct a tree rooted at i in which the path from i to j in the tree
is a shortest path from i to j in G. We call this a tree of shortest
path out of i, TSPO(i). By considering £he set of arcs in G that are
in shortest paths from all other vertices to a vertex i, one obtains
analogous structures - shortest path trees and dags into i. We call
these DSPI(i) and TSPI(i) (TSPI(i) is a graph satisfying the definition
of rooted tree with the roles of indegree and outdegree reversed. Thus

it is a reverse rooted tree, but we still call it a tree). If

-11-

-12-

2(i,j)=1 V(i,j)eA then a shortest path is called a minimum hop path

for obvious reasons. In this special case, we call these trees and
dags MHT(D)I(0) (i) for minimum hop tree (dag) into (out of) i. These

tree and dag structures play an important role in shortest path algorithms.

-13-

II. CENTRALIZED ALGCRITHMS FOR THE SHORTEST PATH PROBLEM

IT.1 Single Source Problem

It is perhaps a curious fact that there is no known algorithm for
solving the SP problem that in effect doesn't solve the SS problem at
the same time. In this section, three algorithms for'solving the SS

problem are presented.

Dijkstra's Algorithm

This algorithm works under the assumption that 2(i,j)>0 V(i,j)eA.

We take node 1 as the source.

D(1,1) == O
D(1,3) <« &(i,3)
p <« {1},

T <—V{Z,...,n}
Step 1: Designation of the set P of Permanent Labels

Find Re T s.t. D(1,K) = min[D(1,3)|3eT)
T« 1 - {k}
A
p <P U {k}
If T=¢ stop. Else Go To Step 2.
Step 2: Revision of Tentative Distances to Nodes in T

V3 € TNAL(K)do: D(1,3)¢ min{D(1,3), D(1,K) + £(k,5)}

Go To Step 1.

~14-

th . . .
The m— time step 1 is executed, at most n-m-1 comparisons are needed to
. . . 2 \
find the minimum. Thus step 1 requires a total of O0{(n~) comparisons.
Each arc in A appears at most once as part of an addition. Thus the total

) 2 2 . L
cost is O(n~ + A), n° comparisons and - 0(A) additioms.

Proof of Correctness

Claim: TLet T = {j.,-..,] } and P be the sets T and P at the beginning

R m 1 n-m m o

of the mEE-iteration! Let Dm(l,jk) be the value of D(l,jk) at that time,

1 < k< n-m. Assume (without loss of generality) that node jl is the node

in Tm chosen in the first line of step 1. Then

1) b Q1
m

,jk) is the length of a shortest path from 1 to jk s.t. all

nodes except are in Pm; for all 1 < k < n-m.

jk
2) Dm(l,jl) is in fact a shortest path length (unconstrained).
Proof:

Part 1) follows immediately from the fact that at each iteration,
D(1,j), is updated with the smaller of the old value of D(1,j) and the
path length D(l,ﬁ) + £(ﬁ,j) where k was just marked permanent.

To prove part 2), assﬁme that there is some other path ?[1,jl]
of length B(l,jl) s.t. B(l,jl)< Dm(l,jl). Let node x be the first
node in §[I,j1] that’is in Tm (note jl €T, X exists, and node 1
€ P => x#1). Let §[l,x] bé the subpath of E[l,jll that goes from 1

m

to x and let the length of §[l,x] be B(l,x). Then we have

-15-

Dm(l,x)ﬁ_ﬁ(l,x) by part 1 of the claim since all nodes in

ﬁ[l,x] except x are in Pm

< D(l,j) since all arclengths are > O.
= 1 g Z

< D(l,jl) by assumption.

Hence we have Dm(l,x)< Dm(l,jl). If x=jl, this is a contradiction.
if x#jl, this means jl would not have been chosen in step 1. Again
contradiction.]]

Thus Dijkstra's algorithm works by growing a shortest path tree.

It finds such a tree for nodes i say, such that

1,...,ik,
D(l,il)f.D(l,iz)...i D(l,ik) and shortest paths to remaining nodes

have lengths > D(l,ik). It then considers one arc extensions of this

tree and labels the closest unlabelled nodes. (See example below):

-"(:\,'f'?—/ next +o be

815“..-' labelled -~ ———— = u»\lo;'oc”ezc‘
'3” —— * labkelleq
| A{) '
3 ,
4"?‘ ‘3’:}-8,'

O

Observe, however, that it considers all one arc extensions from a certain
node as soon as it is labelled. The set of tentative distances, therefore,

need not be in any order, and so it can take n-m-1 comparisons to find the

-16-

minimum in the worst case at the mEll stage. By considering
shortest one arc extensions only one at a time, we can achieve an
O(A log n) compariscns algorifhms. This is better than 0(n2) if
A << n2, i.e. sparse graphs. This modification of Dijkstra's algorithm
is due to Spira [5].

To explain this procedure, we introduce the notion of played
binary trees. An undirected graph T is a binary tree if it is the
undirected graph associated with a footed tree T having the property
that all vertices in T, other than the leaves, have outdegree = 2. 1If

all leaves are at the same depth the Einary tree is complete.

net complete C Ow P\e+€

Notice that a binary tree with n leaves must have. at least depty
lo n] .
o5,
Binary trees are useful for extracting minima of sets. To find

the minimum of a set of n numbers, first construct a complete binary

[iog A]
tree with 2 2 leaves. Place the numbers on various leaves and

perform successive comparisons going up the tree.

6

-17-

This is called plafing the tree and n-1 comparisons are required to
find the minimum. After doing this, we can find the next smallest
element in O(log n) comparisons. We erase the path taken by the winner
and then replay that part of the tree. Since it has depth O(log n},

only O0(log n) comparisons are required.

e ———

9 v"ep)ow/ > 9

]~ g (PR /0 g I~

We obtain a savings over the naive method (performing n-2 comparisons
on the n-1 remaining elements) because we only have to redo comparisons
among elements that lost to the minimum the first time. This leads us

to the following lemma.

Lemma: There is an algorithm to find the k smallest elements of a set
in n-1 +‘(k—l) llog ﬂ] comparisons.

Spira's algorithm uses a variation of this idea.
Lemma: Let {Si},lf}fk be a family of sets such that

1) ISll =1

2) S. =8, - {min S. } + one or two new elements.
i i-1 i-1

Then there is an algorithm to successively find the minimum of

1’ "7'Sk in 2k |1og ﬂ] comparisons provided !Sk‘i n.

-18-

We sketch the proof since it should be pretty cbvious. Construct
. . (log rJ .
a complete binary tree with 2 leaves. Place the element in Sl
at a leaf and play the tree ([iog nw steps). Erase the path taken by
this element and place one new element in 52 at the leaf where the
element of Sl was. If there is another new element in 52, place it at

some other leaf. Replay the tree. The procedure continues in an obvious

manner. | |

S, = {1
S:l = 25-)('3
St 16, 3,12]

/

 Now we present the algorithm. We assume that we are given an

arclength list for each noae i, and we call this list ALLST(i). Node

1 is taken to be the source.

-19-

Dijkstra-Spira Algorithm

1. For i=1 to n DO: SORT ALLST(i) into increasing order.
2. For j=2 to n DO: LABEL(j) = TENTATIVE

3. T+« {2,...,n}

4. D(1,1)<0

5. s, * {D(1,1) + min ALLST(1l)}.

COMMENT :

The sets Si will consist of distances of variocus paths from node 1
to other nodes. Each such distance will be stored in the form
D(l,p) + 2£(p,k) since we will need the identity of the node P which is
the next to last vertex in the path from 1 to k having distance
D(1,p) + 2(p,k). Though we don't explicitly give the data structure for
doing this, we cbserve that storing a distance in this two-part manner
only adds a constant amount of work over just storimg the distance as

one number.

6. i<1
7. Let D(1,p) + £(5,K) = min{D(1,p) + 2(p,k) D(1,P) + 2(p,k)eS,}

8. ALLST(p)< ALLST(p) -{min ALLST(p)}.

COMMENT ON 8: The minimum of ALLST(ﬁ) at this point is just l(ﬁ,ﬁ)

and since we examined it in 7, we remove it.

-20-

9. Si41 ¢ si - {p(1,p) + 2(p,K)}{D(1,p) + min ALLST(p)}

COMMENT ON 9: We revise our set of distances by deleting the one just

examined in 7 and adding the distance of the next best path that is a

~

one arc extension from p.

10. TIF LABEL(K) = TENTATIVE THEN
DO ;

LABEL (K) = PERMANENT
T+ T - {k}
D(1,K) < D(1,p) + 2(5,%)

;41 € 844, VID(LK) + min ALLST(R)]}

END;

,

COMMENT ON 10: If the distance in 7 wés to a tentative node, then it

is a shortest distance. We mark the node as permanent and add to the
set of candidate distances the distance of the next best path that is

~
a one arc extension from k.

11. i« i+l
12. If T#$ GO TO 7

13. .ELSE STOP.

The proof of correctness of this procedure should be clear from
previous discussions. It is basically Dijkstra's algorithm except
extensions of paths from labelled nodes are considered one at a time.

This allows the minimum to be found in an efficient manner in step 7.

-21-

Sorting a list of g numbers can be done in ¢.q log g comparisons for
some constant c. Thus, the arclength list ALLST(i) can be sorted in

n
C-op{i) log(OD(i)) comparisons => step 1l requires c z OD(i)log (OD(1i))"
i=1

comparisons. Now CD(i) < n and so step 1 reguires at most
n

c: log n Z OD(i) = c-A-log n comparisons. Step 7 requires O(log n)
i=1

comparisons to find the minimum because of the lemma, and it is executed

at most once for each arc in A. Thus the overall cost is O(A log n).

Bellman-Ford Method

If there are negative arclengths then the inductive character
of Dijkstra's algorithm breaks down since a path can have a smaller
length than its subpaths. However, as long as there are no negative
length cycles, there will exist cycle free shortest paths. The following
procedure solves the SS problem when negative arclengths are allowed
provided there are no negative length cycles. It is 0(n3), however,
_siﬁce in effect it considers extensions of paths from all nodes rather
than extensions of known optimal paths. Node 1 is again taken as the

source.
D(1,1,1)=0
D(1,5,1) = 2(1,§) (Recall &(1,3) = @ if 3¢AL(1))

m< 1

-22-

Step 1: D(1,j,m+1)< min[D(1,3,m), min{D(1,k,m) + R(k,3)1}]
k3

Step 2: IF D(1,j,m+l) =0(1,3j,m}Vj then STOP.
ELSE DO: m*m+l Go.to Step 1.

An intuitive proof of correctness can be seen in the following

interpretation of D(1,j,m):
D(1,j,m) = the length of a shortest path from 1 to j that
uses m or fewer arcs.

(the reader can easily verify this interpretation). Since there is a
shortest path using n-1 or fewer arcs, D(1,3j,n-1) must be a shortest
distance; vij. If the test in step 2 . yields a true result, for m<n-1,
then we are fortunate to have early‘convefgence. To analyze the cost,
observe that each execution of step 1 requires O(nz) comparisons and
additions. Since step 1 can be executed O(n) times in the worst case,
the algorithm - requires 0(n3) comparisons and additions.

We observe that the algorithm can be modified so that in step 1,
only the additions D(1l,k,m) + 2(k,3) for (k,j)e 2 are performed.
In this case, each execution ©of step l:requires a total of 0(A) ad-
ditions énd comparisons and overall the ‘algorithm is O(An). This of

course can be 0(n3).

-23-

II.2 All Pairs Problem

Let P and Q be two real nxn matrices. Define the min/plus
product * of P and Q, R=P*Q .by
= 1 +
Rij m;n{p ik o] kj}

If L is a matrix of arclengths £(i,j) then a little work shows that

LE(L*(....*L)...)
m times

is a matrix of shortest path lengths subject to the constraint that
the paths have m or fewer afcs.: One can shoﬁ that * is associative,
and therefore, Ln-l, a matrix of shor£est_path lengths, can be computed
by performing logz(n—l) successive squaring operations. Each squaring
can be done in O(n3) additions and comparisons and SO we obtain an
O(n3 log n) algorithm.

There is in fact a clever labeliing algorithm due to Floyd and
Warshall that. solves the AP problem in O(n3) comparisons and additions.

Let D(i,j,m)= the length of a shortest path from i to j subject to
the. constraint that all nodes other thah.i and j are not in the set
{m,m+1,...,n}. Then D(i,j,n+l) is a shortest distance between i and j.
(Again we assume no negative length c¢ycles). Now a shortest path from
i to j that has no intermediate nodes in the set {m+l,...,n} either a)
does not visit m, in which case'D(i;j,m+l) = D(i,j,m) or b) visits m in

which case D(i,j,m+l) = D{(i,m,m) + D(m,j,m). Hence we can compute

24—

D(i,j,n+l) as follows.
1. D(i,3,1) = &(i,3J)
2. mel
3. D(i,j,m+l)< min(D(i,j,m), D(i,m,m) + D{m,j,m))
4. mem+l

5. 1IF m=nt+l STOP. ELSE GO TO 3.

Note, negative arclengths are allowed as long as there are no negative
length cycles. There are exactly n(n-1) (n-2) equations to solve, i#j
and m#i and m#j and hence the algorithm is O(n3). This is the same
order of complexity as the Bellman-Ford algorithm yet here we find all
n(n-1) shortest paths. The AP problem has an algebraic flavor (matrices)
that is not present in the SS problem. Observe, though, that if
2(i,3)>0 vi#j then we can also achieve an 0(n3) algorithm for the AP
problem by applying Dijkétra's algorithm n times, once for each node as

.d source,

-25-

ITI.3 Lower Bounds

An analytic tree program is a program that at each step evaluates
some analytic function of the input and then branches to one of two
successive steps. Dijkstra's algorithm is such a procedure since at
each step it computes a linear function of the inpst distances (addition)
and then branches based on a comparison. Spira amd Pan [6] have shown
that any analytic tree program which verifies that a weighted rooted
tree with n vertices is a shortest path tree (with respect to some
weighted graph containing this tree) must use 0(n2» comparisons in the
worst case. Thus Dijkstra's algorithm is essentiallly optimal in the
class of algorithms that use comparisons among sums of arclengths to
compute a shortest path tree. An interesting open,éfoblem is to find
an 0(A) algorithm for the SS problem when the grapgh is sparse, i.e.
A<<n2.

It has also been shown that computing the matzix product * is
of the same order of complexity as solving the AP groblem, when the
matrix entries and arclengths are nonnegative. Thzt is, computing
P*Q is of the same difficulty as computing Ln_l far nonnegative
reals. The reader is referred to [3] for a proof, references to the
original work, and a more general formulation of tie minimum cost
path problem and its relationship to computing *. The problem of
detecting negative cycles is discussed in [4]. Kemr [7] has shown
that if.the only bermissible operations are p+q anf min(p,q) then

0(n3) operations are required to compute P*Q in the worst case.

-26-

: 3
However, Fredman [8] has foundan O (2_%§§ngga) algorithm that
of course uses other operations, In addition to [3] and [4], the

reader is also referred to a doctoral thesis by D.B. Johnson [9]

for a discussion of the shortest path problem.

-27-

IIT. DISTRIBUTED SHORTEST PATH ALGORITHHS

III.1 More Notation and Assumptions

Since G represents a data network, we hereafter assume, (unless

otherwise noted)

1) (i,3)e A implies (j,i)e A. (links are duplex)

2) G is connected

3) 2(i,3)>0 (i,j)e A. (Conventional routing algorithms generally
assign positive costs to the links).

A directed graph satisfying condition 1 is termed symmetric. However,

it is not assumed that £(3,i) = &(i,3), because in general the cost

of sending a certain flow over the path [i,j] will zot be the same as

sending an equal amount of flow over the path [j,i]. Note that 1) and

2) imply that the directed graph G is strongly connected.

An undirected graph G=(N,L) is called bipartite if HNl and N2 such

that Nl F\N2=¢, Nl LJN2=N and <i,3j> € L implies either iENl,jENz, or

1655. jeNl. Intuitively, a bipartite graph is one that can be made to

look like this

-28-

for some appropriate partition of the set N into Nl and N2. Our
interest in bipartite graphs will become apparent im III,2,

We assume that at each node of the network, there is a computer
capable of performing the usual operations such as addition, subtrac-
tion, comparison, branching, and data.storage and retrevial.
Additionally, we assume that there is a protocol enabling reliable

node to node communication. The communication cost of an algorithm

will be taken as

message cost in bits x # arcs traversed
+ by message

all messages
occurring while
algorithm executes

In general, messages will consist of node identities and arclengths.
An element of the set of integers {l,.;},M} can be encoded into a
binary number with {1og2(M{] bits. Note that even if we wish only

to encode the number 1 as an element of this set, liogzM] bits are

still required since we must specify the end of this message, Thus a
node identity can be encoded with {Iogzn] bits. 1If arclengths are all

integers, then one arclength can be encoded with {iogz(l—maxﬂ bits

-29-

where fL-max = max{l(i,j)l(i,j)e al. If arclengths are allowed to be
arbitrarily large integers or rational numbers with arbitrary pre-
cision, then the cost of representing them is clearly uﬁbounded.
However, this is misleading since in some sense, we wish to consider
the transmission of an arclength from some node to cme of its neighbors
as 1 message.. In conventional network, the arclengths tend to be
relatively small integers anyway. The communication cost of a distri-
buted algorithm X will be denoted by CC(X).

The algorithms presented in the remainder of the thesis will

require that the nodes process and communicate various. arclengths and
path distances. For notational convenience, we will denote arclengths and
path distances simply by 2(i,j) and d(i,j) when presenting the algorithms.
However, we will assume that whenever a node stores am arclength £(i,j),

it does so in a manner that allows it to retrieve the identities i and j
at some later time, (This can be done by either directly storing the
identities i and j together with the length or using a data structure that
allows i and j to be uniquely determined from the position of the arclength
in the data structure, e,g. mapping the pair (i,j) into some index in a
1-1 manner,) In particular, a node will be able to supply the identities
i and j as well as the length if some other node requests this information.

The same will hold for distances d(i,j).

-

-30-

III.2 Minimum Hop Path Algorithms

We first consider the problem of finding minimum hop paths since
it illustrates the salient features of the operation and analysis of
distributed algorithms. Each node i initially knows only its own
identity, and at the completion of the algorithm kmows all neighbors
jk through which it has minimum hop paths to k, for each k#i. It
doesn't know the entire path, but then this is not necessary. With
all distributed algorithms, there is the problem of beginning the pro-
cedure. That is, how do the nodes know when to start. For the time
being, we ignore this problem, and assume that, somehow, the nodes
receive a signal to start. Later, we will deal wiith the problem of

executing these algorithms in an asynchronous environment.

-31-

Algorithm MH1l: (Gallager)

Each node i executes

Step 0: Broadcast the idéntity "i" to all neighbors and receive

transmissions from them.

Step £: 1) Record newly discovered identities and *the neighbors

2>0 . .
from which they were received.

2) If no new identities were received, broadcast the

message "done" and stop.

3) Otherwise, to each neighbor j, broadcast the iden-
tities of all nodes not previously received from
or broadcast to j. 1If there are no such identities
to broadcast to j, send the message "ncthing new".
4) Receive transmissions from all active neighbors.
One can see that i has an (2+1) hop minimum hop path to a node k
through neighbor Jj iff
1) i first heard about k at step & and

2) i heard about k from j at step %.

Communication Cost:

Each node identity traverses each of the L duplex links in at
least one direction. Since each identity is encoded into log n bits,

we have

CC(MH1)> Ln log n bits

-32-

An identity k, will traverse a link <i,j> in both directions iff i

and j are connected to k via equidistant minimum hop paths.

‘=== = path followed by k's
identity.

In the above graph i(j) will hear aﬁout k from p(qg) at the same step and
then tell the other about k at the next step. If there exist such i,k,j.,
then if in fact there is an s, such that i,j, and s are part of an odd
elementary cycle in G. (a cycle [ilf;.ik=il]in‘a is termed elementary,
if there is no other cycle in G containing!exactly a proper subset of
the nodes [il...,ik].) One can show that G has no ocd length elementary
cycles iff G has no odd length cycles iff G is bipartite. This corresponds
to the fact that in a bipartite graph, for every link <i,j> and node k,
either i has a minimum hop path to k through j or j has a minimum hop
path to k through i. Note that in the example, neither i nor j has a
minimum hop path to k through the other. Of course the graph is not
bipértite.

To upperbound CC(MH1), observe that node i transmits its identity

to D(i) neighbors and the identity of node j#i to at most D(i)-1

neighbors , where D(i) = degree of node i. Thus we have

-33-

cc(MHl) < [) D(i) +) -) (D(i)-1)]log n bits
i i j#i

[2Ln-n(n-1)]log n bits.

There is a simple way to get around the odd cycle problem (at the
expense of doubling the number of steps taken by MH1) and achieve an
algorithm that uses Ln log n bits for all networks with n nodes and L
duplex links. Each pair i,j s.t. <i,3j>€ 1L arbitrarily choose one of
the nodes to be HI and the other LO. Then MHl is executed with HI and

LO nodes broadcasting on alternate steps.

Algorithm MH2:

Step ¢: Node pairs exchange identities and choose HI and LO.

Step £: All HI nodes broadcast to their corresponding LO neighbors,

% odd as in MH1, new identities learned at Step 2-1.

Step L: All LO nodes broadcast to corresponding HI neighbors new

% even identities learned at Step £-2.

Termination is as in MHI1

Note that a node can be HI relative to one neighbor and LO relative

to another neighbor and it will broadcast to them on alternate steps.

In fact there must be at least one such node unless G is bipartite.
Algérithm MH1 takes D(G) steps whereas algorithm MH2 takes 2D (G)

steps. In both of them each node must perform a constant number of

operations for egch identity it receives - determining if the identity

is 0ld or new and storing it if it's new. ©Node i therefore performs

0(D(i) 'n) computations.

-34-

At the end of either MH1 or MH2, each node i knows all neighbors
jk through which it has a minimum hop path to k, Vk#i. After MHl,
even more is known. Each node i also knows its position in MHDI (k)

relative to its neighbors. The rule for determining this is as follows:

We say that i is upstream (downstream) from a neighbor

j in a dag if the arc (i,3j)((j,i)) is in the dag. Then
there are three cases:
1) i has a minimum hop path to k through j. Then i is upstream from
j in MHDI (k).
2) i and j told each other about k at the same step. They are
not related, i.e. neither (i,j) nor (j,i) is in MHDI(K).

3) Otherwise i is downstream from j in MHDI (k).

The same works for MHDO (k) with the roles of upgtream and downstream
reversed. This rule doeshft quite work with MH2 because of the al-
ternation. Consider the case in which i and j have equidistant minimum
hop paths to k. If i is HI and j is LO, then i tells j about k, but

-j doesn't tell i about k. Algorithm MH2 uses less communication than
MH]1 because it resolves such ambiguities in one direction only. That
is, j knows that i and j are not related in MHDI(k), but i only knows
that'j is not downstream. There is a way to resolve these ambiguities
in Ln bits. Since j knows the precise relationships, it can communicate

this td i. At the end of MH2, j sends i either

-35-

1) a stream of n bits with a 1 in position k if i1 and j are not

related in MHDI(k). Otherwise this bit is a 0. or

2) a list of such nodes k.

If there are o such nodes k, j chooses 1) iff n<a log ﬁ. At the end of
MH2, i knows those k for which j is downstream from i in MHDI (k).

For the other nodes, it only knows that either i and j are not related
or that j is upstream in the appropriate MHDI. Using the information
described above, i can resolve those ambiguities. Notice that this
procedure must be done at most once for each <i,j>c L. The total cost
of this is therefore Ln bits. So using MH1l, it takes [2Ln-n(n-1)]logn
bits to find the MHDI(k). Whereas, using MH2 and the above information,
it takes only Ln{[logn+l] bits.

The previous discussion illustrates the significance of being able
to wait and encode identities efficiently. MH1 resolves odd cycle
ambiguities one at a time at a cost of logn bits/identity. With MH2,
the LO nodes can wait and encode all ambiguities in approximately the
-minimum of (n,alogn} bits. If n<alogn, then the augmented MH2 is better.
Otherwise MH1 and MH2 have‘the same cost for finding the MHDI(K), since
these o identities would go from j to i in MH1 anyway. The number o
depends on the numbe; of odd cycles in G. It appear difficult to make a

precise statement about how o depends on L and n. As an example, for

2

any n, even, and n-1 < L < n_ ,3J a connected bipartite graph with n
4

-36-

vertices and L edges, and bipartite graphs have no odd cycles.
We now consider the problem of extracting minimum hop trees from
minimum hop dags. A node i knows if a neighbor j is upstream in

MHDI (k). However i doesn't know if j is upstream from any other nodes.

In the above example, there are two possible trees.

or @ (O

-37-

Node j is in a position to choose either i or % as its downstream

neighbor in MHTI(k). So once the nodes have determined their re-

lative Positions in MHDI (k), Vk, they can extract minimum hop trees as

follows: Each node j must do:

For each k#j, choose a downstream neighbor jk in MHDI(k). There
is at least one such node. Tell this neighbor jk that you have chosen
it as your downstream neighbor in MHDI (k).

Note that evén if j only has one downstream neighbor jk‘in
MHDI (k), it must tell this neighbor, because jk might not know it is
a unique downstream neighbor. There are a total of n(n-1) such messages,
since each j must broadcast once about each k#j. Thus this costs n(n-1)
log n bits, since the message to neighbor jk consists essentially of the
identity kf Once relative positions in MHTI (k) have been chosen, the
nodes immediately know relative positions in a MHTOf{k), k. As an

example consider the following MHDO (k).

-38-

If j chooses £ and p chooses 0, we get

At
starting
with the

In fact,

node can choose to begin. One method for coordinating the nodes is the

followin

the beginning of this section, we mentioned the problem of
these distributed procedures. The algorithms were presented
assumption that each node somehow receives a starting signal.

these algorithms can operate totally asynchrconously, and any

g:

Suppose node i, and only node i, wishes to begin an
update. It does so by sending its

identity to its neighbors. Consider some neighbor
of i, say j. When j receives node i's identity, J
"wakes ﬁp" and sends its own identity to all its
neighbors, including i. Consider a neighbor of j,

say k. k is either asleep (and so wakes up) or

-39-

-has been awakened by another node, when it receives
j's probe. Thus k either sends or has already sent
its identity to j. A node pair xys.t. <x,y>e L is
thus initiated into the update when they exchange
"identities. Once node i(j) has learned the identi-
ties of all its neighbors, it sends this information
to j(i). After nodes i and j have done this with
all .neighbors, each knows two hop minimum hop paths,
and then they exchance this information. In general,
an arbitrary node P will at some point have all
information about m hop minimum hop paths. Node p
sends this information to all its neighbors and
waits to hear from them. Whén it has received the .
m hop information from all its neighbors, it can
compute its own m+l hop minimum hop paths, and the

process is repeated.

Observe that this method also works even if any number of nodes indepen-
dently decide to begin an update. Inigeneral node p will be awakened

by probes from one or more of its néighbors. Node p then sends its
identity to all its neighbors and the process continues as above. The
point is that once a node pair x,y s.t. <x,y>€L exchange identities,
they are initiated into the procedure and are coordinated from then on.
The alternation feature of MH2 can also be implemented in this manner.
When a node pair exchange identities,‘they can then decide which is

HI and which is LO and proceed as usual.

—40-

It is desirable for a distributed algorithm to operate.correcfly
in an asynchronous environment. If one wishes to design routing
algorithms that work in the presence of link and node failures, it
is important for the algorithms to allow a node to recognize some

local failure and then independently initiate some procedure to inform

the other nodes.

41~

III.3 Broadcasting All Arclengths

It was mentioned in the introduction that classical shortest
path algorithms can be used by one computer if it has all arclengths
in memory. In this section, we present algorithms for broadcasting
all arclengths to all nodes and for transmitﬁing all arclengths to
one node and then having this node send shortest path information

back to the other nodes. It is assumed that each node i knows

1) its identity

2) its upstream and downstream neighbors in the minimum hop trees,

MHTO (k) and MHTI(k), V k.

3) (i,3)vJ e AL(1).

The second assumption is not entirely ihpractical since the nodes
need learn this information only once, and these trees can be used
repeatedly for communication purposes as the arclenéths change. One
can view this as the distributed equivalent of preprocessing.

Now consider the following procedure for broadcasting all arc-

lengths to a single destination j.

Algorithm BASD

Node j decides to do an update and begins by broadcasting a
"start" message to its neighbors in MHTO(j). These nodes in turn
broadcast the "start" message to their neighbors in MHTO(j). The
message keeps propagating down the tree until it reaches the leaves.
When a leaf receives the start, it broadcasts its arclength list to
its downstream neighbor in MHTI(j). This procedure continues until
all arclengths reach the root j. That is, when a node i has received

42—

information from all of its upstréam neighbors in MHTI(3), it
broadcasts this information together with its own arclength list
to its downstream neighbor in MHTI(J).

Example:

MHTI (1)

Node 1 is the destination. MHTI (1) is shown but other arcs in the
network are not shown.

7 sends ALLST(7) to 4.
4 sends ALLST(7) and ALLST(4) to 2.
5 sends ALLST(5) to 2.
2 sends ALLST(7), ALLST(4), and ALLST(5) to 1.
Other arclength lists propagate similarly.
Notice that the algorithm operates completely asynchronously. The
“"start" message can be interpreted as a ready command, and receipt of
arclength lists from an upstream neighbor is an acknowledgement from
that neighbor.

An arclength 2(i,k) will traverse each arc in the tree path

from i to the root j exactly once. The maximum number of arcs in

such a péth is just the depth of MHTI(j). An arclength can be

43—

specified as a triple (i,j, #(i,j)) in 2log n + log(f-max) bits.
Since max Depth(MHTI(j)}) = D(E), the communication cost of this

]
procedure is upperbounded over all possible destination nodes by

2LD(G) [2log n + log (%-max)]bits.

Once theldestination node j has computed shortest paths for all
node pairs, it can send this information back to the other nodes via
minimum hop paths. Each node i#j requires a neighbor my through
which it has a shortest path to k, Vk#i. The identity of each such
best route neighbor can be sent from j to i via a minimum hop path
having at most D(G) arcs. Accounting for all i, we see that node j
must send the identities of (n—l)2 such best route neighbofs. Since

each identity traverses at most D(G) arcs and can be encoded with

log n bits, the communication cost of this procedure is

O(D(G)(n-l)zlog n)bits.
Hence the overall cost of sending all arclengths to one node and then
having this node send shortest path information back to the other

nodes 1is

O[LD(E)(log n + log(2-max)) + D(a)nzlog n)Jbits.
We now consider the problem broadcasting all arclgngths to all

destinations.

44—

Algorithm BAAD

1. Each node i begins by sending its identity and arclength list

to its neighbors in MHTO(1), 1i.e. in its own tree.

2. When a node receives such an arclength list, it examines the
source and then sends this list on to its downstream neighbors

in the MHTO for that source.

Each node k receives 2(r,s) for r#k exactly once. Thus
cC(BAAD) = 2L(n-1) (arclength messages).

where an arclength message uses 0(log n + log(l—max))bits.

Again, observe that the algorithm is completely asynch;onous,
i.e., any node can start the ‘update, and transmission delays can
be arbitrary. If some node x is “sléepingd (i.e. mot involved in
the update) when it receives a transmission from ome Oor more
neighbors, it "wakes up", sends its own arclength list down its own
tree, and then sends other subsequent‘arclength lists down the
appropriate trees.

Observe that a variation of this algorithm can be used to send
the topology of the whole network to all nodes, in 0(Ln logn)bits,
The nodes first perform a minimum hop algorithm to establish minimum
hop trees. Then algorithm BAAD is executed with nodes simply sending

adjacency list rather than arclength lists.

-45-

IIT.4 Worst Case Analysis of Some Distributed Shortest
Path Algorithms

In this section, we assume that each node i initially knows
1) its own identity and the identities of its neighbors
2) the number of nodes in the network, n
3) 2(i,3)V3 € AL(1).
Once again, we temporarily ignore the problem of beginning the
algorithm, and methods for coordinating asynchronocus epération will

be discussed later.

Algorithm SP1: (Distributed Bellman-Ford)

(The reader may wish to refer to Section II.1 for the discussion of
the centralizgd Bellman Ford Algorithm).

Arclengths are not assumed to be positive. Each node i executes:
1. m<0

2. ViFi do: d(i,j,m<« &(i,3).

3. If d(i,j,m)< «, broadcast d(i,j,m) to all neighbors.

4. Receive transmission from neighbors.
5. Update distances as follows:

a(i,j,m+l)<« min{d(i,j,m), min(a(k,j.,m) + 2(i,x}
keaL (1)

6. mmtl

7. If m>n-1 then stop. Else go to step 3.

46—

Although the details have been omitted, it is clear that each node
can easily keep track of which neighbor is associated with a
shortest distance, i.e. a neighbor k s.t. d(i,j,optimal) = &(i,k) +
d(k,j, optimal).

Each node i broadcasts at most ﬁ‘times about each of the n-1 other
nodes in the worst case. Thus node i broadcasts at most D(i)n2 dis-

tances, where D(i) is the degree of i. Summing over all i, we obtain

2
CC(SP1)< 2Ln (distance messages) .

Observe that the following improvements can be node in practice:

a) A node does not initially have to know the number of nodes
in the network, but can learn this as,the algorithm is
.. . ' th . .
executed. This is because if after the m— iteration, a

node i has heard about x other nodes, with x<n-1, then

node i must hear at least one new identity at the (m+l)st
iteration. Thus, if node i learns no new identities at
the (m+l)st iteration, it knOWS:the identity of (but

not necessarily a shortest path to) every other node in

the network.

b) Node i need only broadcast d(i,j,m+l) to a neighbor k

"if a(i,j,m+l)< d(i,j,m) and A(i,j,m+l)< min{d(k,j,%)
' Rfm
received from k}.

c) If d(i,j,m+l) = d(i,j,m),v j#i, then node i can stop.

47~

d) If 2(i,3)> 0V(i,j)e A, then at each iteration node i can
mark the smallest unmarked distance as being a shortest
distance. Initially, node i marks any distance l(i,ﬁ) s.t.
l(i,g) = min{f(i,J) [jeAL(i)} as being a shortest distance.
The proof of correctness of this is completely analogous
to the proof of correctness of Dijkstra's algorithm.

(see II.1) Thus at iteration m, node i will have at most
n-m+l possible improved distances to broadcast. This re-
duces the communication cost by approximately a factor of

n 2
2 since Z n—jA,E—- rather than n2.

j=1 2

Notice that if #(i,j)=a positive constant v (i,j)e A, then algorithm
SP1 with improvements essentially reduces to the minimum hop algorithm
MH1 (see III:2) and only 0(Ln) distance messages are transmitted.
Unfortunately, the O(Ln2) upperbound is tight even if
2£(i,3) >0, v (i,j) €eA. In particular, the algorithm is neither 0(L2) nor
O(n3), either of which is better than O(an). Examples to demons-
trate the tightness of the O(Ln2) upperbound are presented in
Appendix A. One could conceivably use other modifications or pre-
processing (for example, assume the nodes know the topology of the
network) to further reduce the constant factor so that CC(SPl)i_anz,
with c<2, or to efficiently encode distances. However, such discus-
sion has been omitted since there are asymptotically more efficient
algorithms for graphs with positive arclengths. In III.5, we will

discuss methods for making these algorithms as efficient as possible

48—

in terms of a bit communication cost rather than just a "message"

cost.

We now turn to a discussion of two Dijkstra-like procedures that

can be used if all arclengths are positive.

Algorithm SP2:

Recall that N is the set of nodes in the network and that
ALLST (k) is the arclength list of node k. |
Each node i executes:
1. T <« n-{i}
2. V3 € AL(i) do:[d(i,]),NT(3)1<[2(i,3),]]

3. V3j ¢ AL(i) do:[d(i,3),NT(J)]«[®, blank]

Comment: NT(j) is the identity of a neighbor through which i has
a path to j of distance d(i,j). Initially, NT(j)=j

if j € AL(i) and NT(j) is undefined (blank) if j ¢ AL(i).

4. Tet £ be such that d(i,k) = min{da(i,k)|keT}.

5. T<T- {k}

6. If ALLST(E) is not in memory, send a request to k for its
arclength list. The request traverses the minimum hop path
from i to E and ‘is answered by the first node along the path
having the information.

7. Vs e AL(k) do:

If 2(K,s) + a(i,k)< d(i,s) then
[d(i,s)NT(s)]<[d(i,K) + L(R,s) NT(K)].

—49~

8. If T=¢ then stop. Else go to 4.

In parallel node i executes the following communication process:

1. When a probe of the form {Request ALLST(k)} arrives from a
neighbor j do:
a) If atusT(k) is in memory, send it to j.

~

b) If ALLST(k) is not in memory do.
Record the fact that j wants ALLST(k). If node i
has not requested ALLST(Q), send a reguest to the

downstream neighbor in MHTI(E).
2. When ALLST (k) is received, send it to all neighbors that have
requested it.

Node i receives each arclength 2(r,s) for r#i at most once.
Further, each node i requests every other arclength list at most
once. Thus

CC(sp2)< 2L(n-1) arciength messages + n(n-1l) request messages.
We also observe that the algorithm can be executed completely
asynchronously, and the coordination required is analogous to that
of the previous asynchronous algorithms.

From a computational point of view, algorithm SP2 is exactly
Dijkstra's algorithm. Since nodes only begin with local information
though, they must request ALLST(E) after ﬂ has been labelled in order
to find the next shortest path. Communication takes place over the
minimum hop trees in order to insure that each arclength list is

received only once by each node. Once a node j has

-50~

received ALLST(Q), a subsequent request for ALLST(ﬁ) made by a node i
that is upstteam from node j in MHTI(E), can be answered by node j.
Thus from a communication§ point of view, algorithm SP2 is essentially
equivalent to the procedure for broadcasting all arclengths to all
nodes (Algorithm BAAD - see III.3) ih that ALLST(k) travels to all
other nodes via paths in MHTo(ﬁ). The notion of a request mechanism
was introduced to interleave the communication and computation.
However, the communication and coméutation structures are not co-
ordinated since the minimum hop trees and shortest paths trees need
not be the same. Thus, algorithm Sf2 does not fully exploit the

distributed character of the sﬁortest path problem that arises from

*

the optimality principle. This principle implies that if the path

[iz""ik] has been examined by node i_ and found to be non-optimal,

2

then the path [il, i ,...,ik] need not be examined by il since it

2

cannot be optimal. Thus if the path [il,i Peee, i] is a shortest

2 k-1

path and node il asks node i2 for ALLST(ik_l), node i2 should not

give the arclength £(i ik) to node i, since the path [il,iz.q..,ik]

k-1’ 1

is not optimal. Essentially, node iZ'Can "prune™ a part of node
ii's potential shortest path tree. We now present the algorithm

formally.

Algorithm SP3: [10]

Each node i executes:

1. T <« N-{i}

-51-

2. B (i}

3. V 3j e AuL(i) do: [d(i,3), NT(j)I«[L(i,]),]]
4. V3 ¢ AL(i) do: [d(i,3), ﬁT(j)J«[m,blank]
5. CANDIDATES (i,i)< ALLST(i)

6. V s#i do: CANDIDATES (i,s)« ¢-

7. V3jeN-{i} do: FATHER(j)< i

Comment: :

CANDIDATES (i,s) is the set of arclengths 2(s,k) that are useful
to node i, that is, those arcleng£hs that correspond to arcs which
are in shortest paths or potentially in shortest paths from node i
to other nodes. Since node i initiaily knows only its own arclengths,

s .
CANDIDATES (i,1i) <« ALLST(i) and CANDIbATES (i,s)* ¢ for s#i.
FATHER (i,s) is the immediate predecessor of node s in the path from
i to s having a length equal to the present value of d(i,s);

FATHER (i,s) must be remembered in order to do pruning.

8. m<«1l

9. Let kj,....k be such that d(i,?<j) = min{d(i,k) |[keT} for 1 < j < b(m).

b (m)
Comment:

The nodes kl""'kb(m) are the u§1abelled nodes that are
closest to i. The number b(m) will possibly vary on each iteration.

We have previously presented Dijkstra's algorithm with only cone node

-52-

at a time being processed, that is, a node i would select any
node that minimized tentative distances. However, it is-ee;tainly

correct and potentially faster to label all nodes ﬁ at

1""'kb(m)

once.
10. For j=1 to b(m) do:
TeT - {I'Ej}

P«PLJ{Ej}

I1f ALLST(ﬁj) is not in memory, request it from NT(ﬁj)

end;

1l1. For j=1 to b(m) do:
For each arclength R(Qj,s) received do:
If d(i,ﬁj) + z(ﬁj,s)< d(i,s) then do:
CANDIDATES (i'ﬁj)<-_ CANDIDATES (i ,ﬁj) u i (}?j ,s)}
If d(i,s)< « then

CANDIDATES (i,FATHER(s))+ CANDIDATES (i,FATHER(s)) -

{2 (FATHER(s) ,s) }
[d(i,s),NT(s)]+[a(i,ﬁj) + l(ﬁj,s),NT(ﬁj)]

FATHER (s) < l?j
end;
end;

end;

Comment :
Pruning is done in step # 11. 1If d4(i,s)< ® then d(i,s) is the

length of an actual path in the graph going from i to s through
FATHER(s). If d(i,ﬁj) + z(ﬁj,s)< d(i,s) then the path from i to s

through kj'is better and so we delete & (FATHER(s),s) from
CANDIDATES (i,FATHER(s)) .

-53-

12. For j=1 to b(m) do:
If there are any requests for ALLST(ﬁj), send
cANDIDATEs(i,ﬁj)
end ;

—_—

13. If T=¢ stop. Else do: m < m+l
Go to 9.

In parallel, node i executes the following communication process.

1. If a neighbor j requests ALLST(r) then do:
If reP, send j CANDIDATES(i,r).

Else record the fact that j has requested ALLST(r).

Observe that as is the case with algorithm SP2, each node i
can learn the number of nodes in the network as it executes the
procedure. We further observe that algorithm SP3 can be executed
completely asynchronously. Any node may choose to begin an update
and "awaken " its neighbors. These nodes in turn begin their
updates and wake up their neighbors etc. However, there is a potential
for deadlock that does not arise with SP2. There, é node i immediately
forwards any request for ALLST(Q) on to its downstream neighbor in
MHTI(ﬁ), if node i does not have the information. The request can
keep propagating down the tree, but can eventually be answered since
node ﬁ knows ALLST(ﬁ) by.assumption. With SP3 though, a node j
passes on ALLST (k) to some neighbor i that requested it, only after

j has processed it (by process, we mean execute step 11 of SP3 on the

—54-

arclengths feceived), In fact, the whole pepint of pruning is that if i
has a shortest path to k through j, j should proéess ALLST(;) before

i does. 1If transmission'deléys-are arbitrary, j may not have
processed ALLST(Q) by the time that i wants it. This point is il-

lustrated by the following example:

Node 1 initially labels nodes 2,4, ané-S and node 2 initially labels
5; After node 1 requests, receives, and processes the arclengths
from 2,4, and 5 (by process we meén‘execute step 11 of algorithm
SP3 on the arclengths received from 2,4, and 5), it realizes that

the path P[1,3]=[1,2,3) is the next best shortest path, and it asks

-55-

node 2 for ALLST(3). If node 5 is slow in responding to 2's request
for ALLST(5), node 2 will not have processed ALLST(3) by the time
node 1 requests it, i-é-2 is waiting on 5 before it proceeds.

This leads one to suspect that there is the possibility of having a

=i_] such that node i

cycle [il,...,ik 1 2

has requested some information
. . . <Q<k-1. .

from node io41r but i does not have it, 1<<k-1. In this case,

there will be a deadlock. Fortunately, this cannot occur if all

arclengths are positive. We show this for a 3 node cycle.

— WV,

= a shortest path
(not necessarily
one arc)

In the above figure, k(1,2) is the node whose arclength list has been
requested by 1 from 2, that is d(1,k(1,2)) = 2(1,2) + d(2,k(1,2))-
k(2,3) and k(3,1) are analogously defined. Since algorithm SP3

processes nodeg in order of increasing distance from the source;the

-56-

fact that 2.has not processed (i.e. executed step 11) the arclengths
of k(1,2) means that d(2,k(2,3))< d(2,k(1,2)). If the deadlock exists
this inequality must hold fof the other node pairs as well, and
we obtain
d(1,k(3,1))> d(1,k(1,2))
d(2,k(1,2))> a(2,k(2,3)) III.4-1
d(3,k(2,3))> d4(3,k(3,1))

But if 2(i,3)> 0,v(i,j)e A we also have

a(l,k(1,2))> a(2,k(1,2))
ac2,k(2,3))> d(3,k(2,3)) ' © IIT.4-2

a(3,k(3,1))> d(1,k(3,1))

Combining III.4-1 and III.4-2 we see d(1,k(3,1))> d(1,k,(3,1)) which
is a contradiction. We also see that in fact we only need one of

the inequalities in II1I1.4-2 to be strict, i.e. only one of

2(1,2), 2(2,3), £(3,1) need be striétly positive. This argument
clearly extends to an arbitrary cycle and so we conclude that if
R(i,j)z 0 and there are no zero length cycles, then in any cycle of
rgquests, there must be at least one node that can answer the request

made of it without waiting for its own request toc be answered.

Communication Cost:

Each node i requests ALLST(j) for j#i and receives each arc in
ALLST(j), j#i, at most once. Thus CC(SP3)< 2L(n-1) arclengths

+ n(n-1) request messages. Unfortunately, we have been unable to

-57-

quantify the effectiveness of pruning. This is because pruning
depends very heavily on thé topology of the graph, and for given
values of n and |L|, there are many graphs on n nodes and lLl links
that have distinctly different topologies. One can construct

graphs in which one node, even with pruning, will receive a significant
number of the arclengths. This does not mean all nodes will receive
a lot of arclengths. It is just difficult to quantify the inter-
active effects of pruning. Thus, the above bound on CC(SP3)
basically states that the total worst case communication cost is Jjust
n times the worst case amount of information that one node must
receive. One useful "rule of thumb" is that pruning tends to be
relatively more effective in those graphs that havébrelatively long
(in terms»of number of arcs) shortest paths, because there are re-
latively more intermediate nodes in such paths to do the pruning.
Algorithms SP2 and SP3 also have an advantage over algorithm SP1l in
that only arclengths and not path distances must be transmitted.

This reduces the bit cost of a message by approximately log n bits
since a path length can be (n-1)(2-max) which requires approximately

log n + log(f-max) bits to encode.

-58-

III.5 Preprocessing and Message Encoding

In III.3, we assumed that each node knows its position in the
various minimum hop trees for purposes of broadcasting all arclengths,
and we viewed this as a distributed ?ersion of preprocessing. 'In
this section, we investigate some improvements to algorithm SP3 that
can be made by assuming that all nodes know the topology of the
network. More specifically, we assume that each adjacency list is
assigned some order and that all nodes know all ordered adjacency
lists.

Firstly, we observe that for each <x,y> in L, the source node i
needs to know at most one of 2(x,y) and R(y,x). If x is labelled
before y is, then the arc (x,y) is potentially in é shortest path
from i through x to y, and so node i can use £(x,y). When y is
labelled; however, the arc (y,x) is of no use since node i already
has a shortest path to x that doesn't visit y. If x and y are
labelled at the same iteration, then neither the arclength 2(x,y)
nor the arclength %(y,x) is of any use to node i. The problem is
that if the shortest path from i to x goes through a neighbor of
i, say jx' and the shortest path from i to y goes throuéh jy' with
jy # jx, then jy may not necessarily know that i has ;lready
labelled x and hencé jy will give i the arclength &(y,x). Thus we
need an efficient way for i to tell its neighbors which arclengths

are potentially useful. To do this, we introduce the notion of

candidate bit vectors. Suppose that the ordered adjacency list

-59-

of a node p is {pl""'pD(p)} where D(p) is the degree of p. Then,b

when i labels p and requests the arclengths of node p from a neighbor

of i, say j, node i gives'j a vector of D(p) bits with a 1 in the
kEE-position iff node p is unlabelled by i, i.e. 1iff i does not yet
know a shortest path to P, - The infdrmation in the bit vector allows

j to know which arcs are still candidates as far as i1 is concerned.

We further note that node i may even be able to use fewer than D(p) bits.
Suppose that

1) p € AL (p) and P € AL(s).

2) The shortest paths from i to both s and p go through a.
neighbor j.

3) Node i labelled nodes Py s S, P in that order and s was the
first node that i labelled after Py such that the shortest
path from i to s went through j.
Then, when i requested the arclengths of s from j, i gave a bit to
j that indicated Py was already labeiled. Hence when i labels p
and asks j for the arclengths of p, i does not even have to give a
bit for the arc (p,pk) since jJ alreadyvknows it cannot be useful to
i.. To accomplish this nodes i apd Jj ﬁust both maintain a list, say
Pij' of those nodes that j knows i has labelled. WNode i of course
maintains its own list, say Pi of all nodes it has labelled. When i
labels p and asks j for the arclengths of p, it constructs the fol-

lowing bit vector:

-60-

Suppose AL(p) = {pl,...,pb }, and Pk € AL(p). There are 3 cases.

(p)

1) P € Pif Node i does not need to give a bit since Jj knows i
has labelled p, - '

2) Py
P and so doesn't need the arclength l(p,pk).

€ Pi—Pij. The corresponding bit is 0 since i has labelled

3) pk € N—Pi where N = set of nodes in the network. In this case,

the arclength l(p,pk) is possibly useful and the bit is 1.

Now j receives a vector of bits bl,...,bs (s §'|AL(p)‘) where a

bit br corresponds to a node pt such that Pt is the rEE node in
AL(p) that is not in fii: If bz=0, j knows i ;as labelled Pt since
i last requested some arclengths from j. In this case j addsrpt

to Pij' If ?r=l, j knows that R(p,ptr) is potentially useful to i and
so gives the arclength to i unless it (i.evj)v already pruned it.

(Recall that by the optimality principle, whatever is not useful to
j cannot be useful to i). The exact number of bits, which is
]AL(p)l-IAL(p)ﬂPijl, depends very much on the topology, and SO we
are unable to make any general statement. We can only say that a
source node i will give at most ? IAL(S)I bits in total, i.e.

s=1
s#L

one bit vector of at most IAL(s)I bits when it requests the arclengths
of s, for each s#i. Hence all nodes use at most 2L(n-1) bits for
all candidate bit vectors. With this scheme, each node i will

receive at most L—lAL(i)[arclengths and so overall, at most L(n-2)

-61-

arclengths are transmitted. As before, any other pruning that
occurs will reduce this cost even further. If an arclength message
uses b bits, then this scheme uses the fraction

2L(n~1) + L(n-2)b . b+2
2L(n-1)b 2b

as L,n > ®

of the number of bits used by algorithm SP3.

Another improvement that can be made with preprocessing is in
the encoding of arclength messages. We have previously said that
an arclength can be specified as a triple (x,y,%(z.y)) in
2logn + log(f-max) bits. Now if node i requests thé arclengths of x
from j, node j clearly does not have to specify x in the triple since
i knows x. We further observe that if each node kmows the topology,
then node j need only specify the identity of y relative to other
nodes in AL(x). This can be done in log(D(x)) bits, where

D(x) = degree gf x. For sparse graphs, i.e. D(x)<<n, this results

log (D(x))

in an i t b factor
in an improvemen y a fac logn

bits and may be significant.

—62-

IV. AVERAGE COMMUNICATION COST ANALYSIS

Iv.1l Motivation

Thusfar, we have developed an [Ln arclength messages + 2Ln bits]
distributed shortest path algorithmvand a 2Ln arclength messages
algorithm for broadcasting all arclengths to all nodes. (Algorithm
BAAD - Section IITI.3). Observe however, that the latter procedure
has a constant cost over all networks with n nodes, L links, and any
arclength assignment, whereas the pruning of algorithm SP3 may
reduce the cost of that algorithm to be asymptotically smaller than
0(Ln), at least for certain topologies. Still, it is somewhat disap-
pointing that we have not found a shortest path algorithm whoseworst case
communication cost is provably less than that of algorithm RBRAAD.
More specifically, is there is a distributed shortest path algorithm
whose communication cost is upperbounded by anz arclength messages
for some constant a? We note that for classes of sparse graphs (say
the degree of each node < a constant B that is independent of n), the
0(Ln) bound is 0(n2). However the constant multiplying the n2 term
increases with B. The following "plausibility argument" is meant to
indicate to the reader some of the reasons that will make it difficult
to ever find an O(n2) algprithm for sparse graphs, if we have each
node execute the same single source algorithm. (We term such
algorithms homogenecus because ali nodes execute the same procedure).

Consider the following ring network.

—63—

It is plausible that for this graph; node 1 must examine at least k-1
arclengths in the worst case, even if node 1 knows the topology.
Hence, it is plausible that for the folldwing graph, node 1 must

examine O(L) arclengths in the worst case.

-64—

Even with pruning and knowledge of the topology, node 1 must in

the worst case resolve all potential ties created by elementary
cycles. Since our techniques do not really enable us to distinguish
one source from another, we can only say that the worst case total
is just n times the worst case for one node. This yields the 0(Ln)
bound.

As we see, the crux of the problem lies in precisely determining
the interactions of the wvarious single source problems, solely in
terms of n and L. This appears to be difficult in view of the large
number of different topologies that can exist. The properties of
homogeneity and topology independence are useful in practice since
they permit the same program to be used at all nodes, regardless of
topology. While one could conceivably design a more efficient algo-
rithm for a particular network, this approach seems to be somewhat
impractical since this algorithm may be very inefficient on some other
network. Because the addition or deletion of a few choice nodes can
significantly alter some topologies, one may have to develop a new
reoptimized algorithm for each new graph. 1In our algorithms, the nodes
may indeed know the topology, but nothing special is assumed about
it, i.e. the topology is part of the input.

With this in mind, we consider the communication cost of a
distributed shortest path algorithm when averaged over random

arclengths. This analysis is motivated by the fact that the lengths

assigned to the links of data networks for purposes of routing may
be appropriately modelled as ;andom variables. Since shortest path
updates may be performed ielatively frequently, our average case

analysis will perhaps be relevant to the average ccmmunication cost

of performing these updates.

—66—

IV.2 Average Computation Analysis of Spira's Algorithm

We briefly review Spira's algorithm. (See II.1 for a detailed
presentation.) Spira's procedure is similar to Dijkstra's except
that arcs from a particular node are examined one by one in order of
increasing arclength. Recall that this enables us to find the next
best path in only O(log n) comparisons using played binary trees.
Suppose node 1 is the source. At each stage of the algorithm, there
is a tree (rooted at node 1) of shortest paths to j other labelled
nodes. 1In addition, from each labelled node p, there is a one arc
extension which is the last arc in the next best path that is a

one arc extension of the path from 1 to p.

— Permanenr Rres
e Temtakive Aves

-67-

We find the shortest of all such paths say [1,...,§,§], where 5 is

in the tree and (p,%) is the one arc extension. If % is unlabelled
(new) then we have found a shortest path from 1 to ;, and the tree
grows by one node. If % is already -labelled, this path is of no use
since we already have a shortest path to X. Thus the number of
iterations (i.e. # of times we play the tree to find the next best
path) depends on how often we are unlucky and find a path to a
labelled node. Fortunately, the average number of such unlucky trials

can be computed. More precisely we have:

Lemma: [5]

Let G = (N,A,%) be a weighted digraph on n nodes such that

1A= {(i,9)]i#9)

2. The arclengths are independent, identically distributed

' nonnegative random variables.

Then the average number of iterations Spira's algorithm makes to

solve the single source problem for any source node i is O{n logn)
provided ties are broken randomly when the arclength lists are sorted and

when the binary tree is played to find the next best path.

Remark: Property 1) simply means that G contains all possible n(n-1)

arcs. G is called a clique on n nodes. The random tie breaking

-68-

rule is important. In [11], it is shown that for a certain "plausible"
s . . 2, . .
deterministic, tie breaking rule, 0(n") iterations may be used on the

average for certain probability distributions on the arclengths.

Proof: Let zj be a {0,1} valued random variables s.t. zj=l iff the
path we examine leads to a new node given that we have found
shortest paths to j nodes. Now we claim that

= > - . 2=
pr[zj 1] > nnj Iv.2-1

Let p be one of the j labelled nodes. The set of unexamined arcs of

p can be partitioned into two subsets.

37:X0) {unexamined arcs leading to old nodes}

UAN

{unexamined arcs leading to new nodes}

Now we observe that IUAO{+]UAN| < n-1 (we may already have examined

and discarded some arcs =~ and in this case IUAO|+IUAN| < n-1)

and IUANl = n-1-j since every node has n-1 outgoing arcé and only j

nodes are labelled. Because all arclengths are i.i.d. random

variables and ties are broken randomly, the next one arc extension

from p is equally 'likely to go to any node that is the sink of an unexamined

arc. Hence the probability that this one arc extension from p goes

to a new node is just UANI N n-1-j S5 n-j Now this
UAO|+|UAN|= n-1 = n

argument holds for any of the labelled nodes and so IV.2-1 follows.

-69-

Hence the expected number of paths we must examine before we find a

shortest path to a new node, given that we have labelled j nodes is

< ;?5 . Summing over all j we obtain that the overall average number
. . . n-1 _
of iterations is < z n - 0(n logn)
=1

Since the graph is a clique, this argument clearly holds for any

source i.]l

Because the bound holds for any source i and because
the number of comparisons on each iteration is 0(logn) (using played
binary trees), we conclude that the all pairs problem for a cligque with
random nonneg. arclengths can be solved as n single source problems on the
average in O(nzlogzn) comparisons + # compariséns needed to sort the
arclength lists. Recall that this latter quantity is Jjust O(pzlogn).
Even for a single source problem we must sort all arclength lists and
so in this case, the O(nzlogn) sorting cost dominates the O({(n logzn)
cost of performing the rest of the algorithm for thatbsource. In
the all pairs problem, the O(nzlogzn) cost is dominant, and the sorting
is worthwhile. In his paper, Spira also shows that the variance in
the number of iterations for a single source problem is at most 3n2.
However, the number of iterations required for.the various single
sourcé problems need not be independent. Thus, he can only bound

. . . 4
the variance of the total number of iterations for all sources by 3n .

-70-

We now observe that, unfortunately, this O(n logn) results does
not necessarily hold if G is not a clique. There are two basic

problems. Firstly, since every node does not necessarily have an arc

UAN

lUANi+lUAOI is not necessarily lower bounded by

to every other node,

%:l . The exact value depends on the topology. 1In fact, for the

following graph, the expected number of iterations to solve the SS
. 2 .
problem is 0(n”), when each of the nodes 1,...,n/4 is a source.

3
Thus the overall number of iterations is 0(n), for the AP problem.

In this graph, the sets of arcs is

{(4,i+1)] 1<i<n-1}U{(i,9) | %<j<i, i Z%})
For a source k, k < % , the nodes will initially be labelled in the

order k, k+1,...,n/2. Once we reach g- however, only 0O(%) of the

arcs lead to new nodes. Hence, we will examine 0{n) arcs out of

-71-

NS

, on the average. The same clearly holds once any jz_%-is labelled.

So, for a scurce k, we will examine % - 0(n) arcs =O(n2) arcs. The

second problem is that the average will not necessarily be the same

for all sources in general.‘ In the‘above example, if we take node n

as the source, we immediately have'many arcs to new nodes and thus

the average will be different from that when node 1 is a source.
Spira's result does hold howeyer, if we average over random

graphs, because the averaging enables us to make a statement about the

probability that a certain arc leads tova new node. More precisely

we have:

Lemma: Let n and Y be given positive intégers with 0<y< n(n-1),
and let LENGTHS be a finite set of nonnegative real numbers. Let
G be the collection of all weighted cliques on n nodes s.t. for

any G € G, there is a subset AG of the arcs of G satisfying
A =
v agl =

2) (i,3)e Ay => &(i,j)¢ LENGTHS, (1,304 Ay =>L(i,5) ==

(Note for G, G' € G A, is not necessarily equal to A, but
lAGI=lAG‘I' Also |LENGTHS|< ® => |G|< »). Assign the (discrete)

uniform probability measure to G. Then under the assumption of

random tie breaking rules for sorting arclength lists and playing

-72-

binary trees, Spira's algorithm uses an average of O(min(Y,n logn))

iterations to solve the single source problem for any source.

Proof: The assumptions of random tie breaking rules and‘a unifofm
probability measure on G imply that for any node i, all possible or-
derings of the destinations of arcs leaving i (where the ordering is
in terms of arclengths) are equiprobable. This implies IV.2-1 holds
and the n logn part follows as before. Now, observe that if the
length of the shortest one arc extension from a certain node is in-
finite, Spira's algorithm can be modified to consider that node as
being "blocked". In particular, on a clique of n nodes in which only Y
arclengths are finite Spira's algorithm need only perform Y iterations.
At that point the length of a shortest path to each node that has not
been labelled must be . Thus the average number of iterations is
0(min(y,n logn)).]|

The previous lemma effectively embeds the collection of random
graphs with y arcs and random arclengths into the collection of

random weighted cliques that have exactly Y finite arclengths.

-73-

IV.3 Applications to Distributed Algorithms

We now present a distributed implementation of Spira's algorithm.
Our discussion will only informally outline the basic iteration since the
details of the initialization and data structures are similar to those
of previous algorithms. 2gain, NT(x) denotes the neighbor through which
the source has a shortest path to X, T is the set of nodes to which the
source has not found shortest paths, and for a source i, CANDIDATES(i,x)
is the ordered set of arclengths of x that are useful or potentially
useful to i. The ordering,> , on CANDIDATES(i,x) is defined as follows: 2(x,y) >
L(x,z) 1ff either 2(x,y)> 2(x,2), or 2(x,y) =2(x,z) and i received 2(x,y) after
it received £(x,z). When a node initially sorts its own arclength list,
it breaks ties randomly, i.e. if l(x,xl)=...=2(x,xk), then x randomly

{(uniformly) chooses any one of the k! possible orderings.

Algorithm Sp4

Each node i executes:
1. Let [i,...,r,x] be the next smallest path as determined by playing
the binary tree of path distances. (Hereafter, we will say that node
i examines the path [i,...,r,x]).
2. If xeT then do:
a. T<T- {x}
b. If r=i then NT(x)<x.

c. Else NT(x) <«NT(r)

—74—

d. Ask nodes NT(r) and NT(x) for the next smallest

arclengths of r and x respectively.

e. end
3. Else do:

a. CANDIDATES(i,r)<CANDIDATES(i,r) - {2(r,x)}

b. Ask node NT(r) for the next smallest arc out of r.

c. end
" 4. When the requested arclength (s) arrive, add it (them) to the
appropriate CANDIDATE list (s). If there are any outstanding
requests for the arclengths for r and/or x, send the apgropriate

information.

5. If T=¢ then stop. Else go to 1.

In parallel, node i executes the following communication process:
When a neighbor j requests the next smallest arclengthsvof k do:
Suppose %(k,x) is the arclength that i most recently gave j.

a. If there is an arclength 2(k,y) in CANDIDATES (i,k) s.t. 2(k,y) >

L(k,x), then send j the smallest (in terms of >>)
such arclength 2(k,v).
b. ‘Otherwise, record the fact that j haslrequested the next

smallest arclength of k.

Comment: Step a) of the communication process requires that node i know

the arclength &(k,x), which is the arclength of k that 1 most recently sent

-75-

to j. Either node i can remember this, or node j can supply this
information as part of the request. Also, if there are no more useful
arcs out of a certain node, then the next smallest arclength is effec-

tively infinite, and node i can send a message to this effect.

Deadlock Problems:

As was the case with algorithm SP3 (See III.3), one may suspect that
algorithm SP4 may deadlock. Again, we will prove that if all arclengths

are positive, then for any cycle [il,iz,..,is=ill such that il has re-

qguested some information from i , at least one of the nodes will be

2+1
able to supply its neighbor with the requested information. That this is
sufficient to guarantee that the algorithm is deadlock free can be seen

as follows. At any instant of (real) time, the set of nodes N can be

partitioned into three subsets

CcoMP = {nodes that are computing}
WAIT = {nodes that are waiting for new information}
FIN = {nodes that have finished}.

If there 1is never a time when the nodes that are in N-FIN are all waiting
for new information from other nodes in N-FIN, then the fact that
Spira's algorithm terminates correctly after finitely many iterations

together with the fact that any node in FIN can answer any request

-76~

without wéiting for more information implies that all nodes will even-
tually finish. We aléo obse;ve that if node i examines some path [i,j]
and requests the next arclehgths, then this request can be answered with-
out waiting since by assumption i and j know their own arclengths.

Thus a deadlock can occur only if thefé is a time whan COMP=9, lWAIle_2,
and each node i in WAIT is waiting to receive a new arclength of r, from
NT(r.), where NT(r,)e WAIT, NT(r,)#i, and NT(r;)#r . Now since |warT|< =,
”the "pigeon hole" principle implies fhat there must b= a cycle of requests

(i .,is=il]. So assuming the result that at least one of the nodes in

17
the cycle can answer, we conclude thaé at least one of the nodes in the
cycle will receive the information it_fequested and will move from WAIT
to COMP. (We note that the previous argﬁmen; is vali& only if transmission
delays are all finite. They can be arbitrary, but they must be finite).
So now we turn to proving the result about a cycle of requests.

We first observe that in algorithm SP3, (II153), if a node i chooses
a shortest path P[i,x]=[i,NT(x),...,x] from itself te x, then node NT(x)
must in fact choose the subpath of P[1l,x] from itself to x as a shortest
path. This fact can be proved by induction on the number of arcs in
P[l,#], and we say that algorithm SP3, coﬁputes consistent shortest paths.
However, algorithm SP4 need not compute consistent shortest paths if ties
are broken randomly. Recall that this random tie breaking rule was used

in obtaining the average time bounds of section IV.2. While it may be

possible to devise a deterministic tie breaking rule which insures that

~77—

SP4 computes consistent shortest paths, the proofs of IV.2 will no
lpnger be correct as they'are. However, we note that the proof cf dead-

lock freedom for SP3 did not use the consistency property. Fortunately,

" we will also not need it to prove the result on cycles of requests for

algorithm>SP4. It has been mentioned 6nlylbecause one might be.éeﬁptei
to invoke it and bécause it may bear on the manner in which the general
routing strategy uses the shortest paths. o
As in III.3, we will prove our ré;ult for a "canonical” three node
cycle._ The generalizatiom to an aibitrary cycle should be élear.

Consider the following situation

“f“NWAA’*——i? = a shortest path (not necessarily one arc)

in which;

node 1 has a shortest path tc y through 2
node 2 has a shortest path to z through 3
node 3 has a shortest path to x through 1

and

-78-

X is the current one arc extension from x in node l's tree

1lc
" 11} " ” n]
x3c 3's tree
ylc " " n Y n 1 1 s tree
y2c 11 n " n” n 2 1 S tree
ch " " " A " 3's tree
zzc 11 n n” " n 2 1 s tree
and

1 transitions into the WAIT state after examining the path through y to y

2 ” A1) n n n -n z " z
3 n " n ’ " 11 . ;; x n x
Now because 1 receives arclengths of y from 2
" 2 " z from 3
" 3 " " x from 1
the following inequalities must hold
>
l(x,xlc) __Z(X,x3c)
>
Myryy) 2 2(yeyy) Iv.3-1
>
Q(z,z3c) __ﬁ(z,ZZC)
We claim in fact that at least one of the inequalities in IV.3-1 must be
a strict inequality. Suppose that they are all equalities. Then because
the nodes examine paths in order of nondecreasing length, it must be that
d(i,x) + l(x,xlc)z_d(l,y) + R(y,ylc) = d(l,y) + &ly,y,.)
a2,y) + 2(y,y2c)2_d(2,z) + l(z,ZZC) = 4d(2,z) + i(z,ZSC) IV.3-2
da(3,z) + 2(2,230)2_6(3,x) + 2(x,x3c) = d(3,x) + £(x,xlc)

where d(i,j) is the shortest distance from i to j. Now if all arclengths
are positive, the fact that 1 (2,3) has a shortest path to y(z,x) through

2 (3,1) implies

1c
2c
3c

~79-

d(1,¥y)> d(2,y)
d(2,z)> 4d(3,z) Iv.3-3

a(3,x)> d(l,x)
Combining IV.3-2 and IV.3-3 wé obtain l(x,xlc)> l(x,xlc). This is a

contradiction, and so we conclude that one of the inegualities in IV.3-1

must be strict. Without loss of generality assume R(X,xlc)> 2(x,x3c).

Then this means that node 1 does have a new arclength of x to give to 3.
We are not quite done, however, because if node 3 determines that the

is a new shortest path, it also

path from itself through 1 to x and X

needs a new arclength out of x3c. The fact that node 1 has an arclength

L({x,x,) s.t x, #Xx implies that node 1 examined the path from itself
1c lc 3c ’

through x to x on a previous iteration. If the path P[3,x3c] examined

3c
by 3 is a shortest path for 3, the optimality principle implies that the

subpaths 3 of P[3,x c] that go from 1 to x and x must also be shortest

3 3c

paths. Now even if 1l's shortest path to x, ;[l,xl, is not a subpath of
P[3,x3c], it must have the same length as the subpath of P[3,x3c] that

goes from 1 to x. Hence the path §[l,x3c] = (E[I,X] followed by

-~

[x,x3c]) must be a shortest path. When i examined P[l,x3c] either

a) it already had another shortest path to x3c or

b) it determined PI[1l,x c] is a shortést path and waited for an

3
arclength of X0 before doing its next iteration.

In either case, node 1 must now also now have an arclength of x3c. Thus
node 1 can supply node 3 with all the information that 3 needs to perform

its next iteration.||

-80-

Remarks:

a) One can now see why it is not necessary for algorithm SP4 to
compute consistent shortest paths in order to be deadlock free.
Even if 1 does not choose a shortest path to x that is consistent
with the shortest path to x choosen by 3, the strict ineguality
d(3,x)> d(1l,x) must still hold if £(3,1)> 0.

b) The previous proof works even with zero length arcs as

long as there are no zero length cycles.

Worst Case Communication Cost:

Each node requests and receives each arclength at most once,
Therefore, CC(SP4)< 2Lnlarclength messages + request messagesl. The
exact bit cost of a message depends on the details of the implemen-
tation (see comment after description of SP4). 1In any case, the cost

of each message will be O(logn + log(&-max)) bits.

Application of Results of 1IV.2

There is an almost exact correspondence between the number of

. arclengths a node receives and the number of iterations of Spira's
algorithm it makes. (More precisely, # arclengths received < #
iterations + n. A node maf receive some arclengths hut finish before
it uses them.) Therefore, the results of Section IV.2 apply to the
average communication costf However, one must be careful when inter-
preting their significance,vand there are severél points that merit

elaboration.

-81-

The first result of IV.2 stated that for a cligues of n nodes with
i.i.d. random arclengths, a source performs 0(nlogn) iterations (average). We
showed, though, that this néed.not apply to an arbitrary graph. Since
many networks are not cliques (in fact»connecting every pair of nodes
by a link is not only often economicéll& unfeasible, but also defeats
the purpose of having a network to begin with), this result is of limited
practical value. - However, we observg that our counterexample relied
heavily on a graph with 0(n) nodes of large outdegree and small indegree.
It is not clear if a similar counterekampie exists for symmetric,
connected graphs (data networks).

The second result stated tha; ifvﬁe average over random digraphs with

.
Y arcs, then a similar O(nlogn) average éase bound holds. This result
is also of limited practical value. The class of random digraphs with
Y arcs includes many graphs that are not symmetric. in fact, the sym-

metric digraphs comprise approximately only the fraction

n(n-1) Y
222 L)
B(n(n_l) IY)

where B(n,k) is the binomial coefficient on n,k, of the total number of
digraphs on Y arcs. For large n and Yy this is a very small nunmker,

Thus, it is not clear if the same avérége case bound holds for the smaller
class of symmetric graphs, and it appears to be more difficult to compute
the average in this case. Our proof of the bound for general digraphs

used the fact that all possible orderings (in terms of arclengths) of the

destinations of arcs leaving a node are equiprobable.k In particular,

knowing that 2(i,3j)<*® tells us nothing about the value of 2(5,1)

relative to other arclengths of j. If we ﬁttempt to extend this result,

by embedding the class of random symmetric digraphs with Yy arcs into the

class of random cliques with Y finite arclengths s.t. 2(r,s)<®=> 2(s,r)< = then
given that 2(i,j)<<, it is not clear that all orderings of arclengths of

j are equiprobable since 2(j,i) must also be finite.

Even if we were able to obtain an average case bound for random
symmetric graphs, the result would be of limited practical significance
because the topology of a network remains relatively fixed while many
shortest path updates are performed. The significant averaging occurs
only over the arclength ensemble.

We now outline a distributed algorithm that exploits the properties
of statistical averaging o&er the arclengths only, in any fixed topology.
The procedure will make use of candidate bit vectors, and so we again
assume that each adjacency 1ist is assigned some order, and all nodes
know all ordered adjacency lists. (It is important to‘realize that the
orderings of the adjacency'lists are entirely arbitrary and must be
agreed upon by all nodes only once beforehand. Their sole purpose is to
facilitate the use of bit vectors, and they can be repeatedly used on
succesive shortest path updates.)

On each iteration, a source node i examines a path pli,x]. 1If
pli,x] is a new shortest path, we term the event a success. So given

that node i has found shortest paths to nodes nl,...,nj, the

-83-

(conditional) probability of success can be expressed as
]
Pr [success] = v Pr[p[i,x]> ns]Pr[successl Pli,x]> nS]
s=1
where P[i,x]~> ns means that the path P[i,x] is a one arc extension of the
known shortest path to n_. In general, the probabilities in each term of

the sum depend upon the topology and the particular nodes n -, n,, and

1’ 3
hence appear difficult to compute. However, whatever the probakilities
{pr(p[i,x]~> ns} are, they sum to one, and thus, if we are able to lower
bound Pr[success| Pli,x]> ns] by a constant o that is independent of s,
we obtain Pr[success]>a . Our proof of the first lemma in IV.2, in fact,
used such a lower bound‘ o = Eii .

Now we will use candidate bit vectors to insure that whenever a node
i receives the next arclength of a node j, the probakrility that this arc
leads to a new node is Z_.%- most of the time. Because of deadlock
problems that will be discussed later, node i will have to communicate
directly with node j via a minimum hop path (rather than communicate with
node NT(j) as in algorithms SP3 and SP4) when i wants the next smallest
arclengths of j. 1In crder to use bit vectors, each node j must also
maintain a list Aij of those nodes in AL(j) which j knows i has labelled,
for each i#¥j. (Node j can do this with n|AL(j)| bits of storage.) Note
that node j may not have to know all nodes i has 1abe11ea since i will

only ask j for arclengths of j.

84—

So the basic procedure is to have each node i execute Spira's
algorithm and request new arclengths directly via minimum hop paths.

However, whenever i makes a request it does the following:

Suppose i examines a path P[i,x] = [i,...,r,x] and asks node r for
its next best arclength. If more than half the nodes :i.n'li.L(i:)—A]._‘ﬂr are
unlabelled by i, i sends the request as is. Otherwise i sends r a bit
v?ctor indicating which nodes in AL(r) —Air’ i has labelled since it
last gave ¥ a bit vector. (Node i does similarly with Ai% if it also needs

an arclength from x.) Node r will respond with the smallest arclength

2(r,t) s.t. t € AL(r)-Aan, .
ir

Let us analyze the average communication cost under the assumption
that for each node, all possible orderings of the destinations of arcs
leaving that node (orderiﬁg is by arclength with random tie breaking

rules) are equiprobable and independent of orderings at other nodes.

. a) Bits in bit vectors:

Each time i sends r a bit vector, r learns that i has labelled
at least half the nodes that remain in AL(r) -A. Thus i sends
ir

r at most

|an(r) | + ...+ 1 = 2|AL(r)]

|an@) |, an() |
2 4

bits in bit vectors, and so i sends at most 2 § IAL(r)[= 4L

bits in total for bit vectors.

b)

-85-

of arclengths received by i:

As previously mentioned, (# arclengths received by i)< (# iterations
of Spira's algorithm i performs + n). Thus we compute the average

of iterations. Consider the computation phase of some iteration,

say m, in which i examines a path [i,...,r,x]. Node i received

~the arclength 2(r,x) from r during the communication phase of some

previous iteration m' < m. (Iteration m' is the most recent ite-
ration prior to m in which i examined a path that is a one arc
extension from r.) Now when i received £(r,x), x was equally likely
to be any node in AL(r) _Air' The independence assumption implies,
however, that x is still eéually likely to be any node in

AL (x) —Air at the beginning of the mEE iteration (note: Air at

the beginning of iteration m is the same as Air at the end of
iteration m') regardleés of which other paths i examined in between
iterations m' and m. Wwhat has changed of course is the probability
that x is an unlabelled node. Because of the use of bit vectors

though, there can be at most [IggzlAL(r)TW iterations involving

r for which Pr[x is unlabelled] is f_%-. Since this holds for any

n
r, there can be at most }E: [ZQQZ!AL(I)T] iterations for
’ r=1

r#i
which Pr[success] is f.%-. For other iterations, i finds a new
. L Qs 1
shortest path with probability 2-5 . Hence the average number of
these other iterations is < 2n. Combining all this with the fact

that # arclengths received < # iterations + n, we conclude that i

-86-

receives on the average at most

E ;[IggzlAL(r)IW + 3n arclengths.

Since this analysis holds for any source i and since every message
or bit vector traverses a minimum hop path having at most D(G) arcs

we obtain an average total communication cost upperbounded by

4Ln D(G) bits + nD(G) [Z EogzlAL(r')l—[+ 3n]

[arclength messages + request messages].

Because log is a convex N function,Zi—l_nglAL(r)]_‘ < n(log, Zn_L + l)

and so the expression further simplifies to

41n D(G) + n°D(Q) I log, R T

The reader may now ask why this procedure cannoct be modified so
that node i communicates with node NT(r) for the arclengths of r, and
thereby eliminate the D(G) factor. He or she can be certain that we have
tried, but as previously indicated, é serious deadlock problem arises.

We describe the problem by means of another three node example:

-87-

The above example is identical to the previous example of this section

with the exceptions of three new nodes x3n, v n' and z and the

1 2n

corresponding arcs. Now, unfortunately, one can show that the following

can occur:

Noée 1 ex§mines a path [1,2,...,y,ylc] and asks 2 for the next
smallest arc of y. Node 2 has a new arc, i.e. Y2c 7 ylc' but node 1
already has a shortest path to Y5 (this path is not shown), and the
next arc of y which is useful to 1 is in fact (y,yln) whose length node 2
does not yet have. Analogous situations can also hold for (2,3,z) and
(3.1,x), and a deadlock exists.

Our previous result on cycles of requests for algorithm SP4 only

guarantees that at least one of y2c, z xlc must be different from

3¢’

one of ylc,.z b4 respectively. It does not guarantee that one of

2¢’ T3c

the nodes has a new arc that is also potentially useful to the reques-
ting nodes. Were we able to eliminate the D(G) factor (by some yet
unknown technique), we would obtain an algorithm that uses

0(Ln) bits + O(nzlog ﬁ-) arclength messages of communication on the

average, and this represents at least a modest improwvement over our

0(Ln) arclength messages algorithms.

-88-

V. SUGGESTIONS FOR FURTHER RESEARCH

1. New Algorithms and Better Analysis of Existing Algorithms

It would be satisfying to find a distributed shortest path algorithm
which uses asymptotically less communication than algorithm BAAb
(broadcasting all érclengths to all destinations). Thus far, our ap-
proach has been to decompose the problem into n interacting single source
problems, and our single source algorithms have in some sense mimicked
centralized algorithms (though nontrivial deadlock guestions arise if
one attempts to devise intelligent interactions). It is certainly pos-
sible that an entirely new approach will be needed in order to beat tﬁe
0(Ln) arclengths bound. The reader should be aware that centralized
lower bounds apply to distributed algorithms which can be simulated on
one computer, in the following sense. Suppose the distributed algorithm
uses O0(X) computations + d(Y) communications, and that it can be simulated
in such a way that one communication requires only a constant number

of computations in the simulation. Then if X is less than some cen-
tralized lower bound, Y must be greater than that bound. Thus the
basic idea is to decrease Y at the expense of increasing, X, i.e. make
the nodes "smarter". In some sense, candidate bit vector$(III.5) do
just that, because é node may use 0(n) computations in interpreting the
meaning of one bit in a bi£ vector.

It would also be nice to have better analyées of existing algorithms.

In particular, can the effectiveness of the pruning heuristic of

-89-

algorithm SP3 be more precisely characterized, and can one find
average case bounds similar to those of IV.2 for symmetric connected

graphs?

2. Simulation

If tighter analytical bounds are not obtainable, simulations may
provide some insight into the average behavior of existing algorithms
and into the construction of worst case examples for the pruning

heuristic.

3. Models of Distributed Algorithms and Lower Bounds

Since a lower bound is only valid within the context of some
model, we first need to develop reasonable models of the cemputation -
communication processes of distributed algorithms before searching for
such bounds. This appears to be a difficult task. However, we sus-
pect that an 0(Ln) "somethings" worst case lower bound does exist, where

the "somethings" (perhaps bits) is to be determined by the model.

-90-

APPENDIX A

Worst Case Examples of Algorithm SP1 (III.4)

I. This shows CC(SPl) is not 0(n3)

and fill in other arcs analogously, i.e. &(i,i+l)=1, £(i,i+2)=3
2(i,i+3)=5, etc.

By symmetry, the total communication cost is just n times the
number of distances received by node 1. A little work will show that
node 1 will hear i times about node k from node k-i, for i<k. Thus
node 1 hears 0(k2) times about node k and so receives O(n3) distances.

4
Hence the total cost is o(n’).

R —

-91~

) 2
'II. This shows CC(SPl) is not O(L").
‘ -n

| -3 zp3-¢
z - B
é . \
‘.’ o ‘_h-.,_ .
. L ,

+-€

R

WS

2
)

Each of the

[w|s

-nodes on the left will hear approximately %- times

about each of the %- nodes on the right. This yields 0(n3).

However IL[< 2n and so O(L2) is 0(h2). Thus the algorithm cannot

be O(Lz).

N

(V0

10.

11.

-02-

BIBLIOGRAPHY

D. Cantor and M. Gerla, "Optimal Routing in a Packet Switched
Computer Network," IEEE Trans, on Comput., Oct. 1974.

R.G. Gallager, "A Minimum Delay Routing Algorithm Using
Distributed Computation," IEEE Trans. on Comm., Jan. 1977.

A. Aho, J. Hopcroft, J. Ullman, The Design and Analysis of
Computer Algorithms, Addison-Wesley, June 1976.

E. Lawler, Combinatorial Optimization: Networks and Matroids,
Holt, Rinehart, Winston, 1976.

P.M. Spira, "A New Algorithm for Finding All Shortest Paths in
a Graph of Positive Arcs in Average Time O(nzlogzn)“,
SIAM J. on Computing, March 1973.

P. Spira and A. Pan, "On Finding and Updating Shortest Paths
and Spanning Trees," SIAM J. on Computing, Sept. 1975.

L.R. Kerr, "The Effect of Algebraic Structure on the Computational
Complexity of Matrix Multiplications," Ph.D. Thesis, Cornell
University, Ithaca, N.Y., 1970.

M.L. Fredman, "New Bounds on the Complexity of the Shortest
Path Problem," SIAM J. Computing, March 1976.

D.B. Johnson, "Algorithms for Shortest Paths," Ph.D Thesis,
Cornell University, Ithaca, N.Y¥Y., 1973.

The basic idea of this algorithm is due to R.G. Gallager.
A. Meyer, P. Bloniarz, M. Fischer, "A Note on the Average Time

to Compute Transitive Closure", Unpublished Memorandum, MIT
Laboratory for Computer Science,July 1976 '

