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ABSTRACT

Soils exhibit a non-=linear and inelastic response even at
low stress levels and hence require comprehensive modelling.
An overview of Plasticity Theory is presented with emphasis
on applications to scoils.

Two incremental stress-strain constitutive laws are
studied and evaluated by comparing their predictions with
laboratory results on Normally Consolidated resedimented
Beoston Blue Clay.

The Cam=Clay Model 1is an Effective Stress model,
appropriate for drained, undrained and partially drained
(consolidation) 1loading. Comparisons with results of
undrained tests show generally good predictions of trends.
However the accuracy of predictions is limited especially for
anisotropically consolidated soils.

The Mroz-Prevost Model is a Total Stress model,
appropriate only for undrained loading conditions. The model
provides good predictions but requires a large number of
input soil parameters, which may 1limit its usefulness in
practice.

Finally both models are used to predict the stress and
pore pressure fields a2round an expanding cylindrical cavity.
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CHAPTER I

INTRODUCTION
The response of a seoil mass to changes 1in loading
conditions is of primary importance in Scil Mechanices. The
geotechnical engineer evaluates the performance of a

foundation (or an earth structure) by means of two criteria:

1. Adequacy against excessive deformations (i.e.
settlement or lateral movement).
2. Adequacy against gross shear failure (i.e.

instability).

Thne first criteriecon basically calls for the prediction of
deformation fields. However, instability problems are also
deformation-type problems. They simply occur when loading
reaches a limiting state where the external energy supplied
by the added locads can no longer be absorbed by the scil as
strain energy and/or plastic deformation energy.

According to the Principles of Classical Mechanics, the
prediction of deformations requires that the following

conditions be satisfied everywhere in the soil mass:



1. Equilibrium of stresses.
2. Constitutive relations cf the material (i.e. relations
between stress and strain components).

3. Strain compatibility.

Due to the complexity of actual foundation problems and
the need for predictions in designs, the above conditions are
methodically violated. Three examples are presented:

1« In conventional slope stability analyses, (1) equilibrium
is only satisfied globally and the shearing resistance of
the so0il 1is only needed along the assumed failure (shear)
surface. Equilibrium and Constitutive relations at different
points in the slope are neglected and strain compatibility
cannot be (rigorously) considered, because deformations are
basically neglected (except at the 1location of the shear
surface). Consequently, stability considerations are usually
limited to stress fields with little or no reference to
kinematic restrictions (i.e. compatibility).

2. In estimating stress distributions in a soil mass
Elasticity Theory 1is often used. In some cases results are
satisfactory, (2) However, soils rarely exhibit the linear
behavicr assumed by the theory and hence constitutive
relations are violated. |

3. The Stress Patn Methed (3) () is another exampls where

(2’

(3)

2.g circular arc analyses.

when loczl yielding is not extansive.

W



strain compatibility is violated. The method basically
consists of obtaining 'undisturbed"’ samples of the soil,
subjecting them to stresses and stress changes (1) that are
expected in the field and then computing deformations by
appropriately integrating the measured strains. In applying
the stress path method two different stress-strain relations
are used, A simplified (usually linearly elastic)
stress=-strain law 1s used to estimate the stress changes in
the field and a2 more rigorous cone (obtained from the tests)
is wused to obtain the deformations resulting from the
estimated stress changes.

The use of two different constitutive laws results in strzin

incompatibility. The effect is less pronounced in problems
where the stresses are relatively independent of the
material response. (2) In such problems (or cases

approaching them) realistic stress changes can be calculated
pricr to the experimental evaluation of the stress strain

characteristics of the soil. Unfoertunately, few problems

(4)

(1)

(2)

T.W. Lambe (1967).!'Stress Path Method'.JSMFD, ASCE, Vol.932,
No.SM6, pp. 309-331.

T.W. Lambe and W.A. Marr.(1979) 'Stress Path Method: Second
Edition'. JGED, ASCE, Vol.105, no.GT6 pp 727-T38.

as they are estimated by using simplified methods of analysis
such as the Theory of Elasticity.

such 2s the lcading of a horizontal layer with constant
thickness extending horizontally to infinity, by a constant
load also extending to infinity.

10



result in stresses that are independent of the material
properties.

In order to evaluate the effect of neglecting the strain
compatibility in the stress path method, the settlement of a
point lying under the centerline of a smooth flexible strip
footing, resting on the surface of a uniform s0il deposit
which is loaded in an undrained mode, was evaluated by wusing
two different integration paths for the strains.

(a) A vertical path.

(b) A horizontal path.
The analysis (described in Appendix V) shows that by
neglecting strain compatibility the settlement computed from
the second path is almost double than the settlement computed
via the first path.

Furthermore the Stress Path Method has sericus addiEional

limitations. It requires an exceptionally high standard of
sampling and testing and 1is therefore very expensive,
Morecover, even given perfect sampling, it has been

demonstrated (1) that the mere process of stress rellef
during sampling gives rise to behavior in the laboratory
which may differ appreciably from the in-situ condition. A
third difficulty is that in all but the simplest situations
the stress changes that occeur in the field are too complex to

reproduce in routine laboratory tests, since they involve

Skempton 4.W and Sowza V.3 (1663) 'The behavior of saturated
gégy;o during sampling and testing.' Geotecnnigque 13,4 pp
- - - 40.



rotations of principal stresses; it is often the region of
complex stress changes that is of greatest interest to the
engineer. Finally laboratory simulation of stress changes in

zones of local vyielding is very difficult to perform with

existing laboratory tests.

Recent developments of large digital computers hnave
rendered possible, in principle, the solution of a wide
variety of problems without the need to violate equilibrium
or compatibility (e.g. by using the Finite Element Method).
In fact, by employing such techniques the fictitious
distinction between stability and deformation problems can be
eliminated by treating stability problems as problems of
large uncontrollable deformations (i.e failure).

The major difficulties in implementing these powerful
computational toels in practice are:

1. The complicated behavior of soils.

2. The difficulties associated with determining and

describing the soil conditions in situ.
The complicated behavior of soil is caused Dby:
1. Soils exhibit non linear and inelastic behavior even

at low stress levels and during unloading. (1)

2. Tne behaviecr of soils under stress (i.e.

(1)
Hardin B.C. (1972) 'Effects of Strain Amplitude on the Shear

Modulus of Soils'. Technical Report No. AFWL-TR-72-2C1 Air
Force Base, M. 63 p.



compressibility moduli and strength) is controlled by
the effective stresses acting on the skeleton. Since
soils are multiphase materials where water (and
possibly gases) contribute in resisting the applied
stresses , the response of soil masses can only ©De
estimated rationally and systematically after the
pore pressure distribution 1is determined. Pore
pressures develop in soils due to isotropic
(hydrostatic) and shear (as discussed later) 1loading
and dissipate with time. Due to these complexities,
analyses are usually performed for two 1limiting
conditions:

(a) Undrained; where no fluid migration takes place

during loading and

(b) Drained; where no excess pore pressures develop

during loading.

3. Shearing causes a tendency of volume change. During
drained shearing, dense sands and highly
overconsolidated clays tend to dilate, whereas loose
sands and normally consolidated <c¢clays contract.
However, after significant shearing it is generally
accepted that soils approach a condition of no
volume change. (1) When drainage is prevented (i.e.

in undrained cases), negative (decreased) pore

(1)
Rowe P.W. (1971) 'Theoretical Meaning and Observed Values cof

Deformation Parameters for Scil'.Proc. Roscoe Memorial Symp.,
Cambridge U. Editor R.H.G. Parry, pp.143-124,

13



pressures develop during shearing of dilatant soils
and positive (increzsed) pore pressures develop in
contracting scoils. This coupling Dbetween volume
change and changes 1in shear stress cannot bDe
explained or simulated by the Theory of (linear
isotropic) Elasticity.

4, Many soils (undrained or drained) exhibit a
significant reduction 1in shearing resistance after
the peak strength 1Is reached. Strain softening
behavior poses existence and uniqueness problemé in
the derived solutions. (1)

5. Some so0ils exhibit significant anisotropy due to the
method of deposition (inherent anisotropy) and/or
subsequent straining (often called stress induced
anisotropy).

6. Soil conditicns in situ are difficult to estimate.
Soils are natural materisls and therefore have
variable properties <(non homogeneocus). Undisturbed
sampling poses serious problems especizally in sands.
Cn the other hand, in situ tests are usually hard to
interpret, because of the complicated boundary
conditions and/or the non uniform conditions they

impose in the soil (e.g Field Vane, Cone etc. )

Prevost J.-H. and Hoeg K.(1975) 'Soil Mechanics and
Plasticity Analysis of 3Strain Softening' Geotechnique 2%,2,pD
272=297



Numerous formulations have been proposed in the Seoil
Mechanies 1literature, in recent years, to describe soil
behavior under stress. Scme of these models are strictly
one-dimensionsl and thus their use 1in practical problems
which are usually two or three dimensional is subject to
significant errors. On the other extreme, Some very general
models are not useful in practice because of the large number

of parameters they require to predict performance. (1) (2)

The theory of Incremental Plasticity provides a powerful
and versatile mathemaﬁical tool for modeling Soil Benavior.
It was initially developed for metals but in the last two
decades, considerable efforts were devoted to apply the basic
concepts of plasticity theory to soils. In metals, inelastic
deformations involve various dislocation processes which
depend primarily on the level of shearing but are largely
unaffected by the level of the hydroestatic stress. Therefore
Plasticity Theory for soil applicaticns requires significant
modifications in the original Metal Plasticity Theory.

This study summarizes the state of the art of soil
plasticity and evaluates the capabilities and limitations of

2 number of promising models.

(2)

Cuellar V. et al (1¢77) "Densification and Hysteresis o
Sand under Cyelie Shear! JGED ,ASCE ,Vel.103,N0 GTS

pp399-416

Bazant Z. and Krizek R. (16768) 'Endochronic Constitutive Law
for Liquefaction of Sand' JEMD ASCE, Vol.102,No.EM2,pp
2258-238

[
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Chapter II reviews the basic concepts of the Theory of
Incremental Plasticity for the Gectechnical Engineer.

Chapter III discusses variocous 1isotropic models and
derives the incremental stress-strain equations.

Chapter IV applies some promising isotropic models 1in
various laboiratory loading conditions and discusses their
limitations.

 Chapter V decribes an anisotropic model developed by Mroz
and studied extensively by Prevost. The model is evaluated by
compgring predictions to test results performed on Boston
Blue Clavy.

In Chapter VI the expansion of a c¢ylindrical cavity
problem (pressuremeter) is 4interpreted by means of an

isotropic model and the Mroz-Frevost model.

16



CHAPTER II

FUNDAMENTALS OF PLASTICITY THEORY IN SOIL APPLICATIONS

2.1, Incremental Formulations.

Non=linear behavior of materials ¢an be described by
constitutive laws formulated either in an integral or
differential form.

Given a stress (or strain) history at an element of soil,
integral laws relate the strains at any loading stage with
the corresponding stresses, whereas differential (or flow)
laws relzte 1increments of strains ¢to the corresponding
increments of stresses.

Integral formulations are appropriate for non=-linear but
elastic materials (rubber-like materials) where nc energy 1is
dissipated by means of plastic deformation. Thase materisls,
whnen unloaded, follow the same curve, in a stress-strain
diagram, that they followed when they were loaded. Unloading
in soils is generzally much stiffer than loading, and this

makes integral laws nave limited value the solution of

(=
o ]



boundary value problems by numerical procedures. On the
contrary, differential relations follow different paths in
loading (which induces irreversible strains) and unloading
(where ne irreversible strains occur) and so they are more
appropriate for energy dissipating materials such as soils,
In the following only differential laws will be studied.

We will also restrict this study ¢to rate independent
constitutive relzations i.e we will exclude <creep and
relaxation effects. Rate independency iIs a severe restriction
to the constitutive relations, especially for medelling
highly structured and/cor highly plastic or organic clays.
However for more typical clays the exclusion of

rate-of-loading effects is a reasonable assumption.

13



2.2 Yield Funetion.

For convenience, the state of stress at any point of 2
soil mass is mapped onto a point in a nine-dimensicnal stress

space with coordinates given by the stress components:

. : 1 V= A2
Gg_} j L 3 j ] » 5
In fact, because of <conservation of =angular momentum,
G“-ij for all i,j and hence a six-dimensional space

suffices. Any loading sequence is thus represented 1in the
stress space by a stress path. About the origin of this space
(zero stresses), an elastic zone is assumed to exist. Stress
paths located within the elastic zone produce no change In
permanent (i.e irreversible or plastic) strains. The rest of
the space defines the totality of plastic states and the

boundary between the two subspaces defines the Yield Surface

It is a fundumental azssumption that the total strain
increments (in the plastic range) c&Eﬂ , may be decomposed
into elastic components c:L_es and plastic components <£&&
i.e:

deil = d 5 - clE CTI"“)

where the symbol 'd' denotes zn increment of the quantity to
which it is applied.
Tne sum (over the strain path) of the c¢orresponding plastic

strain increment defines the components of the plastic

s
_ P
strain tensor Eﬁ

19



In addition, we assume that the elastic strain increments are
linearly related to the stress increments by the general ized

Hooke's law:
<
56,-_-5 = erne deg, (r-2)

Einstein's summation convention of repeated indices is used

in Eq. II-2 and the rest of this thesis unless otherwise

e
stated. The matrix C:@d is the Elastiec stiffness (rigidity)
matrix which 1is assumed to be symmetric and positive

definite.

For convenience eq. II-2 can be written in a matrix form:

q&? = (;;e 45?2 (&E-:?a\

. . . i . !
or inverted to determine the elastic strain increment c:E.e

in terms of the stress increment dS :
L )

e
ds® = S ds (m-2L)
e
where g;e is the rigidity matrix and ES is the

—

[}
flexibility matrix (inverse of C ).

For isotropic materizls the elastic stress-strain relations
reduce to:

de;&= 2G cie-f; 4 (K - '“%G) de® gi} (z-3)

where G and X are the shear and ©bulk modulus respectively,

—
and OLS is the Kronecker delta (equal to cne for i=zj and

eaual to zero for i different than j ).



The vyield surface is often (1) written in the form:

205y, &) = (x-4)

and defined such that, for elastic states, the value of the
function is negative (i.e the corresponding stress points lie
inside the yield surface) aﬁd plastic states satisfy eq. II-YU
(i.e stress points 1lie on the yield surface). States which
make the function positive are inadmissible. Furthermore,
when the soil is in a plastic state (i.e when £=0 ) any
infinitesmal stress c¢hange which induces plastic strain
increments, is referred to as 3 'loading' condition and leads
to a new plastic state. On the other hand 'unloading' refers
to conditions resulting in no plastic strain increments.

During loading, plastic strains accumulate and (since we
require eq. II-4 to hold) the shape, size and location of the
yield surface may change in the stress space, but the stress
point always remains on it. During unlocading, the yield
surface does not change in shapre, size and location and the
stress point retreats from it. Further stress c¢changses may
lead to situations where the stress point again reaches the
vield surface and starts to push it, i.e yielding -restarts.

However yvielding is not synonymous with failure, (2) but only

1)

(2)

Hill R. (1950) 'The Matnematical Theory of Plasticity',
Clarendon press, Oxford England.

Failure (or critical state) is defined as the condition where
the material undergoes significant shear strains witn no
further changes of the applied shear stress and no furtner
volumetric strains.



means the onset of irreversible strains. As mentioned
earlier, (Chapter I}, plastic strains develop in soils at
very 1low stress levels and even during unloading and
therefore, the notions of elasticity and yielding are
somewhat arbitrary and are conly maintained herein for the
sake of clarity and mathemztical convenience. The effects of
this simplification depend on the history and level of
straining in the problem considered.

The parameters defining the functional form of the yield
surfacé (typically functions of plastic strains) may vary in
such a way that the yield surface expands during loading (i.e
stresses increase) and then the soil 1is said to be
strain-hardening. Inversely when the yield surface contracts
during loading, stresses decrease and the soil
strain-softens. Finally when the yield surface does not
change during vyielding, the onset of yielding and the
critical state (failure) occur simultanecusly and a soil

model having such a yield surface is called perfectly

plastic.



2.2, Hardening rules.

The form of the yield surface given by eq. II-4 1is too
general for practical purposes and simplifying assumptions
are necessary. It is almost universally accepted that the
shape of the yield surface is invariant during straining.

If only the size and location (but not the shape) of the
yield surface 1is allowed to vary during loading, the effect
of stresses and plastic strains on the yield surface can be

decoupled and eq. II-4 can be written in the form:
- ¢ Q- F( E.P. ) - g
¥='£(Eﬂ - § ) =< (T-5a)

Function f' describes the shape of the yield surface whereas
function F determines its size based on the plastic strains
undergone during loading, and thus describes the strain
hardening or strain softening characteristics of the soil.
This type of hardening or softening behavicor 1is called
Isotropic Hardening (or Softening).

Another type of hardening is the so=-callasd 'kinematic
hardening'. It refers to a shift (translation) of the yield
surface in the stress space without (necessarily) a change in
size during yielding. Mathematically a kinematic nardening

model is described by:

0 X 7~ AN

- = - 5 — = O - :

== < (8 SHDEENS (Z-5h;
where CJH are the coordinates of some cnhnaracteristic point
of the yield surface (e.g its center) and '¢' the size



(radius) of the yield surface.
Combining eq. II-5a and eq. II-50 , wWe c¢can intreduce an

isotropic and kinematic hardening model which has the

following functional form:

L= il(sfk—ﬁa&) - F(ei) =0 (z-¢)

A further simplification is introduced by assuming that
the hardening characteristics of the soil depend on invariant
measures of plastie strain, rather than the individual
plastic strain components. This assumpticon is always done

for 1isotropic models (as we wWill discuss in a subsequent
section) but it is quite common in some anisotropic soil

models like the Mroz-PrevosE Model.

Defining the plastic deviatoric strain increments by:
P s
dey = def - L(del) Si-i (x-7)

then, two invariant strain quantities are given by:

s‘: - de: ) &EE: C{E.::,,k

rcﬂh A
(m-8)

.

E? - /(Cl;ép ) éé—.P = {%de:::'lczwg :

F;H\

P
The first, £€,, is a2 measure of plastic volumetric strains



?
and the second , & , provides a measure of plastic shear
distortions (deviatoriec strains). Using tnese twe invariznts
in the equation of the yield surface, eq. II-S5a and eq. II-E

take the simpler form:

22 ﬁg’(sq) - nCer &) =o (z -9)

22 #(si-a) - H(el ¥7) = (z-94)

2
w



2.4, Incremental stress-strain relations iFlow rule?

Elastic materia2ls have no memory, 1il.e the strain
increments depend only on the specified stress increments and
do not depend on the current stress state nor the stress (or
strain history). On the contrary Theory of Plasticity
introduces such characteristics.

In order to relate the plastiec strain increments to the
current stress state, a so=called 'Flow Rule!' is required.
This functional dependence can be quite arbitrary and 1is
usually chosen to simplify analyses rather than comply with
physical requirements (such as laws of thermodynamics or the
behavior of the material in the micro-scale).
We start from the intuitive remark that a stress path which
remains on the vyield surface without moving it, should not
result in any plastic strain increments, i.e :
if d£=0 then def=0.
Using eq. II-5a the last requirement results in:
zi de;g = O C‘EE-\O)
gs\d
So a2 functicnal dependence of the form:

iy 5, (oo -

[l Y%

is justified.
In addition, if we introduce a 'Plastic Potential Function'

g( § such that:

5.3),



<9
g.. = & — Cﬂ—\?)
‘Y B%aj
then, instead of nine unknown proportionality parameters
(these are functions of the stress and the plastic strain
components) in eq. II-11, we only have to specify the
potential 'g' (which is only a function of stresses), and the
scalar o (whieh includes some dependence on the strains).
Then eq. II-11 reduces to:
4 N
det 1 1) 29 (z-3)
€, = —_— k$
) oS / 36’;3
This implies that the plastic strain increment vector, is
perpendicular to the plastic potential function (actually to
the surfaces g=constant). Note that the relations between the
plastic strain increments and the stress increments are
linear, and for convenience we can write eq. II-13 in the

following matrix form:
de’ = §' 46 (m-12a)

where éﬁp is the vector of plastic strain increments and
é§ the vector of the corresponding stress increments.

An interesting remark is that the matrix §§P is
singular (i.e it <cannot be inverted) because if it was not
singular, then given azny arbitrary vector %5? , wWe could
solve egq., II-13a for éﬁ . Then using these computed stress
inerements in egq. II-13 (which is equivalent to eg. II-12a ),
we will evidently get the same plastic strain increment

vactor (which was initially chosen arbitrarily). However

(3]
|



this vector is not arbitrary (since it is perpendicular to
the plastic potential accordiné to eq. II=-12). This proves
5". .
that ~) 1s singular,
The final incremental stress-strain relations are then

easily obtained by using eq. II-1 , II-2b , and II=-12a :

de-detvde” - S'ds + S'ds

~

de- (3°+57) s (219

Usually the elastic strain increment §§e 1S is small
compared to the plastic strain increment §Pd~€ . However, it
cannot be neglected since §§? is singular and consequently
eq. II-14% cannot be inverted (inversion is usually required
in numerical schemes). Consequently elastic strains although
they do not contribute much in the total strains, allow us to

invert the rescvlting equations.

Two important points require attention:

- 3

. For simplicity the plastic potential function 'g' |1is
often assumed to be identical to the yield function 'f',
i.e we assume that they are given by the same functioconal

form. In this case the flow rule eq. II-13 Dbecomes:

[ — Cl-"a _— P D=5
C!Eti = (o4 \\ BGKP kP / _ag,. " )

!



which is usually called 'associated flow rule’'.
The o parameter describing the magnitude of the
plastic strain increments (egq. II-~13), is evaluated from
the so~called 'connectivity condition', which ©Dbasically
requires that the <change in size of the yield surface
(which depends on cﬁE% ) should be such that the new
stress point ‘5%-+d6q is always located on the yield
surface. Detailled expressions for evaluating X will
be given when the equations for the various models will

be derived (see also Appendix I).



2.5. Convexity of the yield surface and normality.

In Section 2.4 the concept of an asscociated flow rule was
introduced for simplicity of the mathematical formulation
(elimination of the necessity to evaluate a plastic potential
function). However there are somehow stronger indications
that such an assumption should be done.

Let's assume that a plastic state has been reached and
the stress point is currently located on the yield surface. A
stress increment <$6q is then applied and elastic strain
increments CEEL—:-& and plastic strain increments ds% are
induced. The elastic strain increments are related to the
corresponding stress increments through Hooke's law. Assuming
isotropy, the elasticity matrix §§e is positive definite

and consequently:
C{si? dsij = Sieine C}GRO &SLS b ¥ (H‘EG\)

Under such an assumption the uniqueness of solution in linear
elasticity can be proved. (1) Drucker (2) based on the

arguments used to establish uniqueness in linear Elasticity

o

assumed that the plastic flexibility matrix ESI ig also

e

(1)

(2

Timoshenke S.P. and Goodier J.N. {1970) '"Tneory of
Elasticity' McGraw=Hill , pp 269-=2T1

Drucker D.C. (1959)'Definition of stable inelastic Material'’
J. of Applied Mechanics, 26, pp 101-186
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positive definite, which directly results in:

de-lz &5{5 = S;_;_; éﬁhp dGi} >0 (ﬂ-l?)

and based on that, proved the uniqueness of solutions 1in
Incremental Plasticity wusing exactly the same arguments as
for Linear Elasticity. Drucker's assumption 1is referred 1in
the 1literature as Drucker's Postulate. For strain hardening
materials <i€15 is required to peoint outside the current
yield surface during loading and then eq. II-17 means that

the plastic strain increment vector 1s orthogonal to the

vield surface (Normality Rule).

5%+J66

vield sarface $:0

Based on the above postulate it can be proved (1) that the
complementary work done during a cycle (see figure) which
includes an infinitesmal plastic loading ©path, should be
non-positive. Expressing the complementary work during such a

cycle, it c¢can be found that:
CG‘LJ- - €°> AE: o (‘B’.-IB\/

-]
whare Sq is a stress point inside the yield surface,

(1)
Martin J.B. (1975) wp v: Fundamentals anz Generazal

lasticit
Results". MIT Press, Cambridge Mass. G631 p.
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Gﬂ

infinitesmal plastic strain increment, correspending to the

=]
a stress point on the yield surface and CiE% the

stress increment tﬂﬁq (see previous figure).

Eq. II-18 again leads to the ncrmality rule and 1t alseo
<

requires that the yield surface is convex, since GH is an

arbitrary point inside the yield surface.

Assuming that normality holds, strain scftening materials
violate Drucker's Postulate (i.e eq. II-17) (1 and
consequently there 1is no reason to obey the normality rule.
However since most real materials include both a strain
hardening (at low strains) and a strain softening region (at
high strains) normality is often retained (even for strain
softening materials) for the sake of convenience and
simplicity.

As we discussed previously, assuming normality for a strain

softening material means that:
C{E,-_r& 561& < © (z-m

Combining this with eq. II-15, we can immediately see that
e is negative for a strain softening materizl and positive

for strain hardening materials.

F
Eq. II-19 means that the plastic flexibility matrix ES is

L)

negative definite for strain softening materials. In fact

using eq. II-132a and II-12 we get:
P !
Si(kh OSLJ CIS:D < -

(1)

since for such materials the stress increment points towards
the interior of the yield suriace

3z



Prior to using such material laws, existence and uniqueness
of soluticn has %o be proved (because Drucker's proof is only
valid for positive definite matrices). Prevost et al. (1)
studied the conditions under which uniqueness of sclution can
be guaranteed, as well as the limit at which multiple
solutions are possible (i.e when failure occurs). In fact a
strain hardening material <cannot fail theoretically. A
strain softening material on the contrary, will fail when the
strain softening zone extends spacially to a degree that the
external work c¢an no longer be absorbed by the material as

elastic and/or plastic strain energy.

In the following Chapters Drucker's normality rule will
be used unless otherwise stated. However it has to be
understood that 1t does not result from thermodynamic
requirements, nor it is necessary for uniqueness; it is Jjust
an assumption to simplify the mathematics. In addition using
associated flow rules leads to symmetric flexibility matrices
whnich greatly simplifies the numerical calculations.

In fact eq. II-15 can be rewritten:

32 24
c&eﬁz - w2 AN

BGLJ' o8«
which means that the plastic flexibility matrix is given by:
=" 22 27 _ SP
— - — — . j .-
byl 28y D6kep -4
(1)
Prevost J-H. and Hesg K. (1675) rSoil Mechanics znd

Plasticity Analysis of Strain Softening'. Geotechnique 2%,
NO.2’ pp.279-29”l
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e
which is symmetric. However §§ is 2also symmetric, hence

their sum {(which 1is the flexibility matrix) is symmetric,

too.

34



2.6 Isotropic yield functions.

A soil is isotropic when 1its stress-strain-strength
behavior does not depend on the inclinations of the principal
stress directions. In such a case the explicit dependence of
the vyield function on the stress components (eq. II=-9), can
be substituted by a dependence on merely three mutually
independent invariant stress measures.

In choosing these measures it is convenient to separate the
effect of hydrostatic pressure from the effect of shear
stresses because of the different response of soils to
hydrostatic versus shear (deviatoriec) loading. -

The first invariant I, of the stress tensor, provides a good

measure of the hydrostatic confinement. It is defined as:

[ =84 =6 +8;+83 (E-EO)

where 5}‘52'G3 are the principal stresses. We further
define the components 'of the deviatoric stress tensor, by
just subtracting the effect of tne hydrostatic part from the

corresponding stress components as follows:

1 N
¥ i =3 Swx G-;'S

The second and third invariants J, and J3 of the

(z-2)

deviatoric stress tensor are commonly used as invariznt
Stress measures in the yield function. They zre defined as

follows:



Lo ysysy s {(aes s (s (e |
(w-22)
33 = é‘ SLS Sin Skt

For simplicity, the dependence of the yield function on
the .Is invariant, is often omitted ©because it 1is
considered that only one shear measure 1s enough to express
the dependence of actual behavior on shearing. (1) However
Nayak et al. (2) and Lade and Duncan (3) suggest that
inclusion of the third invariant may be a realistic
improvement.

In the following we will only use dependence of the yield
funetion on the I‘ and I; invariants.

A further improvement according to Roscoe and Burland (1) 1is
to use these two measures, but multiplied with appropriate
coefficients to make them energetically congugate with the
invariant strain measures defined by eq. II-8.

Using:

(12

(2)

(3)

Roscoe K.H. and Burland J.B. (1968) 'On the Generalised
Stress-Strain Behavior of Wet Clays'. Eng. Plasticity. Heyman
and Leckie Eds. ,Cambridge U. Press, pp. 535-609

Navak G.C. and Zienkiewicz 0.C. (1872) 'Convenient Form of
Stress Invariants for Plasticity'. J. of the Str. D., ASCE
Vol 98, No ST4 pp. 949-9C4

Lade P.V. and Duncan J.M. (1673) 'Cubiczl Triaxial tests o¢on
Cohesionless Soil' JSMFD,ASCE Vol $9,SM10, pp. 793-812
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(T -23)

9=\3T,

energetic conjugacy means that
r s sP

which is an expression of the increment of the plastic work.
Using 'p' and 'q' , the equation for the yield surface II-9,

for the simplified iscotropic material becomes:

2:4(p,9) - H(&l, &) =0 (T -24)

This last form is the basis for most isotropic models and
will be discussed in detail in conjuction with the Cam-Clay

model.

The incremental stress-strain relations (eq. II-15), can also
be simplified for the case of isotropic moedels.

It can be proved (see Appendix I ) that:

: Vs 2 27
C!E.I: o \ i clP - 7\
op ?7 / 27 \
. (m-29)
delf = o (?..1 de -+ c) 3 ?:g
2p ! ?/ 27
These equations express the normality rule in a <two



dimensional invariant stress space 'p' and 'q', With

appreopriately chosen invariant strain measures ' Ef' and

surFaCe F=c

=P,clef

U

' é' '. In fact if the yield surface is plotted in the p,q

space (see figure) the plastic strain increment vector ch?
- ~~

is perpendicular to the yield surface. The projections of

this vector on the axes, are equal to the volumetric and

distortional plastic strain increments.



2.7. Effective versus Total Stress Formulations.

The Effective Stress concept (1) is universally accepted

in soil mechanics. It states that the total stress vector
§ acting on each soil element, is resisted by the pore
water pressure components thg (2) and by stresses on the

s0il skeleton §' , according to the equation:

§=8 +um (I-27a)

or in increments:

A6 = A§ + Au m (z-27)
~ ~ ~ .

Under fully drained loading conditions, no pore pressures
are created in excess to the steady state (usually
hydrostatic) conditions.

Under fully undrained conditions pore pressure increments
are developed to reduce (or increase) the effective stresses
to a degree that the no-volume-change condition holds.

It is widely accepted (3) (4) (5) that effective stresses

(1)
Terzaghi K.V. (1625) 'Erd- mechanik auf bodenphysikalischner

Grundlage' Vienna

Pl
n
S

m stores tne Kronecker delta compcnents.

(37
3ishop A.W. and Blight G.Z. {1S63) 'Some Aspects of Effsctive



govern the behavior of soil materials irrespective of
drainage conditions. More specifically experiments indicate
that strength and volume change of all scils, are controlled
by the effective stresses for each mode of deformatiocn.

The Effective Stress concept, however, does not mean that
there is a unique relationship between effective stresses and
the various strain measures (e.g. void ratio, moduli ete).
Such unique relationship holds only in Theory of Elasticity.
The Effective stress concept means that:

Loading (or unloading) paths which follow the same
stress path in an EFFECTIVE stress space, will have the
same strain measures (f(e.g. void ratio, moduli etc)
regardless of the magnitude of the total stresses
associated with this path.

On the contrary, a total stress concept, would imply that:

Loading (or unloading) paths which follow the same
stress path in a TOTAL stress space, will have the same
strain measures, regardless of ¢the magnitude of the

effective stresses associated with this path.

(u)

(5)

Stress in Saturated and Partly Saturated Scils'. Geotechnigue
13, p. 177

Jennings J.E. (1661) 'A Revised Effective Stress Law for Use
in the Prediction of Behavior of Unsaturated Soils'. Pore
pressure and Suction in Scils, London (Buttarworth)

Skempton A.W. (1961) 'Effective Stress in Soils, Concrete 2anc
Rocks .! Pore Pressure and Suection in Soils, Lendon
(Butterworth).



According to the previous definitions, effective stresses
do control soil behavior. However 1t needs to be clarified
that when we say ttotal'! stresses we do not mean total
DEVIATORIC stresses. Most formulations which are mentione< in
the literature as 'total stress formulations' (e.g. the
Mroz-Prevost model), involve deviatoric stresses. As we will
prove later, this is necessary in order for the resulting
matrices to be non-singular. At the same time, however, the
use of deviatoric total stresses instead of total streses
makes these formulations equivalent to an effective stress
formulation (only for undrained loadind, though) as we will
also prove at the end of this section.

Under drained 1locading (i.e slow enough so that no
significant excess pore pressures to develop), only effective
stress formulations are applicable.

Under undrained loading (i.e fast enough so that water
dces not have time to escape and consequently the assumption
of no velume changes is generally acceptable), pore pressures
develop and the externally applied loads are undertaken by
both the soil skeleton and hydrostatic pressures in the
liquid phase. In this case both total and effective stress
formulations c¢an be used (and they have been used in the
Literature), and their comparative merits and limitations

will be studied in the following:



a. Effective Stress Formulations.

An effective stress incremental Constitutive relation is

of the form:

dB = C de or: C(E = D &é (]I-?G)

~ ~ =~ -~ -~ .~

where dﬁ are the effective stress changes and g and -§

the incremental stiffness and flexibility matrices

respectively.

Cam=-Clay model is suchh 2 formulation.

During an undrained loading the following questicn arises:
Given a total stress increment what is the
corresponding pore pressure increment ?

Let's assume that we know the total stress increment
éﬁ and we want to compute the corresponding pore pres;ure
change :ﬁu , resulting from this increment. If 45 is the

ef fective stress increment and Q} the Kronecker delta

vector (1) then:

4s - 4s - m du (m-27)

w 3 '
Iif B is the bulk modulus of water, B the bulk
modulus of the solids (i.e grains), 'n' the porosity and I a
6x6 unit matrix, then Appendix III shoews that the pore

pressure increment will be given by:

(1)

It contains 1 at the normal stress locations and C at the
locations ¢cf the shear stresses.



T g _ -7 I AN
T {_ Bs - } (m-2s)
M?S Mm% l - 3(1-h)
~ e B Bj

Eq. II-28 relates linearly the pore pressure increment

with the components of the total stress increment, provided

that the effective flexibility matrix < is known. (i.e an
[ ¥ ]

effective stress model is used.)

For the more common case of incompressible grains and fluid

(3¥=B'zm ) eq. II-28 simplifies to:

43,

as

T

Au =

(1-28.)

03
(Ui zU!l

The last equation may seem unfamiliar to the Geotecnnical

Engineers. A form like:

Au: A'Sar_l- -+ Atgc{;

where the contributions of the octahedral =zand the
deviatoric stress increments Aﬁﬁ and Aﬁuh respectively (1)
on the pore pressure increment are separated is more common.
Appendix III shows that eq. II-28a can be put in the form of

eq. II-28b. The parameter 'a' depends only on the

(1

Henkel D.J. and Wade N.H. (1366) 'Plane train Tests on a
Saturated Remolded Clay' JSMFD, ASCE Vol &2, No SM&6, Nov
te66, pp 67-80.



{4

cross-coupling terms between shear stresses and nc

volumetric) strains of the matrix ié . Conse
there is no such coupling (a2s in Theory of Linear
Elasticity) then a=0. This means that the por
increment is equal to the total octahedral stress
a result well known in Theory of Elasticity.

It is interesting to note that an effecti:

formulation can lead to total stress i

relationships. Using Egqs. II-28 and II-26 we can

or
r) = 1-71]: S
. - i3-S IlA
Ae= S As - Sm.“*{_ Bh e
TM~+B" ‘53

€ = i; As (&I—“?CTq)

Eq. II-29a provides the incremental strains in
the total stress increment.
For the common case of incompressible water and gr
total stress formulation derived above can te put
deviatoric stresses (form similar toc the Mroz-Prevc

In fact for this case eq. II-2¢ reduces to:



=
W
Fe/]

= (z-=9v)

™

g

455 = 53 .§ - ES m . -

13
(N

Substituting the total stress increment é§ in terms of
the deviateoric stress increment 4?: and the cctahedral

stress increment Aqé,from the equation:

éue - A-é - AGM.‘. m

the octahedral stress terms drop out and eq. II-29D

reduces to:

Qf:=

LU

ot

ds - Sm o ? 45 (Z-30)
- >

3

Eq II-30 is of the form:

Az = 2 As (z-30a)

and it relates linearly the deviatoriec strain increments

with the deviatoric total stress increments.
B. Total Stress Formulations.

Since there is no volume change, only the deviatoric
components 452 of the strain increment must be considered
in the formulation. (1) On the other hand we cannot use the
total stress increment cﬁ in the formulation, since z2n

o

equation of the form:

As = C de (x-232)

The volumetric component is zero.



will necessarily have singular g; matrix.

In fact let's assume an arbitrary deviatoric strain increment
455 and applying eq. II-32, compute the corresponding total
stress increment 4“5 . The stress increment A,;G"PT'
where p is an arbitrary parameter, will correspond to the
same deviatoric strain increment 45? because hydrostatic
pressures are completely resisted by the pore water and cause

no deviatoric strains. Consequently:
As - pm = C Ae (m-=7)
o a i ~

However if C: is non=-singular, we can always find a vector

—

X (not identically zero) such that:

Cx=m (m-34)

-~ o

Then cembining eq. II-33 and II-34 we get:

A
AS = C(AQ+P§> (x-39)
£q. II-32 and II-35 show that we have more than one solution

(1) of the matrix equaticen II-32.

Hence matrix C: is singular.
The singularity cof g: requires the use of a deviatoric
stress incremental constitutive relation and hence, instead

of an equation of the form II-32 we consider:

bs = C 4e (z-3)

(1)

actually we have an infinity of sclutions since parameter P
is arbitrary

F
[s )



Matrix g; is no longer singular.

The Mroz-Prevost model to be discussed in Chapter V, 1is
an example of a total stress model of the last form.
A disadvantage of the method 1s, that there 1is no way to
compute the pocre pressures developed, unless we make
additional assumptions relating the magnitude of the pore
pressure changes with the change of the total stresses.
Let's summarize what we have discussed s¢ far on the

effective and total stress formulations.

(1) An effective stress incremental model of the form:

T8Y

€ o: Az =S A§ (7-26)

- ~ b d v ~

As =
is sufficient for the treatment of problems involving

drained loading, partially drained loading (i.e sqils

undergoing consolidation) and loading of partially saturated

soils,

For an undrained loading it is also sufficient, provided thsat

an appropriate Variational Principle is used 1in the Finite

Element scheme.

(2) A total stress formulation has to be of the form given

by ea. II-36.

Aes = C e or Az = S 4} (‘JI—BG_\,

— e V] ~ "~

i.e it has to involve the deviatoric stress increments and



not the total stress incerements. Such a formulation can only
be used for undrained loading conditions and fails to predict
the pore pressure ilncrement, A separate model has to be used
for this purpose, which will asscciate the pore pressures

generated due to shear stress increments.

We will further show that such a total stress formulation
is equivalent to an effective stress formulation, 1in the
following sense:

If a total stress increment <é§ ’ applied under undrained
loading <conditions, results in no strain increment according
to either of the tweo formulations, then it will give no
strains with the other formulatien, too. In addition if it
gives a non-zero incremental strain with one formulation then
the same total stress increment will result in a wunique and

non-=zere strain increment with the other.

In fact let éﬁ be a total stress increment such that the
corresponding strain inerement through a total stress
formulation is zero. Then:

O = Ac = S 4s

et ) = ~
But since § is non-singular, é::. =Q_ .

This means that the total stress increment has te be of the

form &5

]

Prn which {is a hydrostatic stress increment.
—~

However a hydrostatic stress increment does not produce
strains according to an effective stress formulation.

Similarly, if AQ:,-"-.C) then: A =0 which means that:
Vo ot

-~
o



A§ £ P

i.e the stress increment is not hydrostatic. But a
non-nydrostatic total stress 1increment gives a unique and
non=-zere sStrain increment through an effective stress
formulation, too.
Consequently the two formulations are equivalent in the sense
that there is a one=-tc-one correspondence between stress
paths in an effective stress space, and stress paths in a
total deviatoric stress space. These stress paths may result
in different strain patns (depending on the specific form of
each formulation) (1) but there is no stress path 1in one

stress space which corresponds to a null stress path in the

other stress space.

(1)

or the_same strain path may result in different stress paths
depending on wnich formulation is used.



2.8. Summary of results.

The Theory o¢f Incremental Plasticity enables the
increment of strains ég‘ in a soil element to be determined
in terms of the stress increment (1) qﬁS from an equation
of the form:

CLE = ( §e+ §P> S C‘I[_td-)

P

The term in parenthesis c¢an thus be considered the
'ineremental flexibility matrix'. §§e is the contribution
of the elastic strains which is usually insignificant in
magnitude, but absclutely necessary in order for the
flexibility matrix to be non-singular; §§r is the
contribution of the plastic strains; this matrix is singular
but symmetric (provided that an associated flow rule is used;

see Section 2.5). Inverting the last expression we get the

inecremental stiffness matrix:

é5'=- C:. & (i[—37)

gt L™ L )

In the special <case of elastic behavior (e.g during

unloading) no plastic strain changes occur and consequently:

i&:: S-‘d or "6 = CQC\E

Pt ~ et

(1)

Total or Effective stress increment depending on if 2 total
stress or an effective stress formulation is used.
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The elastie flexibility matrix depends on the elastic

shear and bulk modulli.

The plastic flexibility matrix depends on the following
quantities provided that normality rule is used:

1. The current stress state 6-.,5 .

2. The functional form of the yield surface {(and the plastic
potential if a non-associated flow rule is used).

3. The strain hardening function 54CES,EU describing the
size of the yield surface during plastic {low. 'H' is
usually assumed to depend only o¢n the two invariant
strain measures (eq.II-8).

4, The cummulative invariant plastic strains which depend on

the loading history (eq. II-8).

Provided that normality rule is used, the incremental
stress-plastic strain equations are given by eq. II=-13. If
an asscciated flow rule is also used they are given by eaq.

II-15. For the case of an isotropic model eq. II-24 and II-25

can be used.



CHAPTER IIL

ISOTROPIC SOIL MODELS
3.1 THE CAM-CLAY MODEL

The Cam=-Clay Model, developed by the Cambridge University
group, will be studied in this Chapter. The following
presentation is largely based on the paper by Roscoe znd
Burland. (1)

The Cam-Clay model is an isotropic model and consequently
the general form of the yield function is given Dy (see eq.

II-24 in Chapter II):

£:42'Cp,9) - H(Cel, &) =0 (1-2¢4)

where p is the mean effective stress, q 1is related to the
i . P =P
second invariant of the stress deviator, and EL‘ E are

their asscciated invariant strain measures (for gexact

e Ceneralized

Roscoe K.H and Burland J.B (1968) 'On th
asticity. tHevman
Q9

Stress-Strain Behavior of Wet Clayvs' Eng. P

;
and Leckie Eds. Cambridge U. Press, pp. 535=6

w
1~



definitions see eg. II-8 and II-23).

By assuming a specific form for the function ' (e.g
ellipse) and the hardening functicn H, and applying the
procedure described in Appendix I, (1) the incremental
stress-strain relations can be obtained. However such a
mathematical presentation does not provide the necessary
insight to the physical principles of the model.

A further assumption (in addition to the assumption of
isotropic behavior implied in eq. II-24), is that the effect

of the plastiec shear strains €% on the size of the yield
-P

surface 1s neglected. So plastic volumetric strains <,

solely determine the size of the yield surface, and eq. IT-24

now simplifies to:

L= {(P.‘i) - HCel) =0 (:cr-'24q)

A . . X *

The plastic volumetric strain increments <ﬁ€,, ars
: P

direetly related to the plastic void ratic increments de by

the equation:

de' - - (1+az) el (m-1)

~_A

where 'e' is the void ratioc. (2) Similarly for the =elastic

components:

de® = - (1+e) Q&ed (m-=2)

(1)

(2’

also assuming normality and associzted flow rule

The void ratio is defined 23 the ratic of the volume of voids
te the vclume of solids in an element of scil.



According to eq II-Z24a3, the state of so0il can be
represented in a three-dimensional space of 'p','q’', and the
plastic void ratio 'QZP' (or just the void ratio 'e'}. This
space is familiar to the soill engineers because its subspaces
are used extensively. The e-p subspace 1is used for the
representation of results of isotropic (and K,) consolidation
tests (e.g the ocedometer test). The p-q subspace is used for
the representation of shear tests. In fact in a triaxial

test 8,=83; , and eq. II-23 reduces to:
=0
P= %(6|+2€3> ) q--. ['61"6‘31 Cm 3)
which are similar to the:

S=3(%+65)

b= 1(s-ss)

commonly (1) used in the representation of triaxial tests.
Fig. 2 represents various stress paths in the e=-p=q
space. During virgin isotropic <consolidation ¢the point
representing the state of the soil moves along curve DE.
During isotropic rebound from points like D or E, the stress
point moves along curves DH or EJ'' respectively, which lie
on the e=D plahe. (i.e the gq=0 plane) Note that points (on

the e-p plane) lying outside the region between the virgin

(1)

T.W.Lambe (1967) 'Stress Path Methed' JSMFD,ASCE, Vol ¢3, No
SMé, pp. 209-331.
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isoéropic consolidation curve and the e-axis cannot be
reached by any loading path. Points inside this region can be
reached by unloading from an appropriate position (e.g point
H can be reached by unloading from point D, lying on the
virgin isotropic consolidation curve). All such points
correspond to overconsolidated states. We can easily extend
the idea of a boundary curve (like DE), separating accessible
from inaccessible states on the e-p plane, to a boundary
surface separating accessible from inaccessible states in the
e-p=q Space. The so-called 'State Boundary Surface’' (SBS),
is represented by the surface EDICJ in Fig. 2.

Points inside the SBS correspond to overconsolidated states,
and 1t is assumed that Elasticity Theory is appropriate in
describing stress paths in this region. Linear EZlasticity

could be used, but it was prefered to stick to the results of

U
w



tests which show that isotropic (and K_ ) rebound, relates the
void ratio linearly with the logarithm of the octahedral (or

'p') stress. Expressing this mathematically:
|
de®s —lkdp (- <)

where 'k' is an elastic (rebound) volumetric flexibility
measure. (1) However linear elasticity will be used for the

deviatoric components:

dsid- - 2G c!czis (m-<)

where ClS“ are the deviatoric stress increments, cﬂGZq
are the deviatoric strain increments and 'G' an elastic shear
modulus.

Parametric studies performed for this thesis on the effect
of the specific value assumed for the elastic shear modulus
have shown that the value of 'G' has a negligible effect on
the resulting stress aths, and only a minor effect on the

stress=-strain curves (because elastic strains are anyway

(1)
Using eq. III-2 and eq. III-4 we can compute the bulk modulus

'K' as a funetion of 'k':

~

J ALI+Z) -~
_ <P P <)
K=£- — (Ir-)

Q&

Note that the bulk modulus 'X' is not a constant (zs in
linear elasticity), but it depends on the stress level 'p!
and the current void ratio. On the contrary, 'k' is assumed

to be constant.
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smzll compared to the plastic ones). (1) However 'G' has ¢to

be finite because, otherwise, the flexibility matrix will be

singular (as it was proved in Chapter II).

From equations III-4, III-5 and 1III-&, the elastic

flexibility matrix can be computed:

St d

cia"

where for

a

et

T

(m-7)

principal stress space:

20)
n

i
b

r
L——-—-i-— -i—-f k — _.f_.
{3?(“’6) G {BF’(HQ - 2&}

{ SP{t‘:-z) - -?l.':-j
{

Symmesric ?- !(

(m-8)

Points on the SBS correspond to normally consclidated states.
(Fig. 2),

twall!

The curve DIC,

is the intersection of the SBS with

a vertical passing through an isotropic rebound curve.

A Yield Surface, (as it was studied in Chapter II), 1is

represented in a space of stress components only, which 1is

(1)

For undrained loading the effact of thne specific value of
is 51gn;ficant because the elastic volumetric strain Ls equal
in magnitude to the plastic one, which eniorces the elastic

strain components to have the szme order of magnitude with
the plastic ones,
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evidently different than the e-p-q spazce shown in Fig. 2. It
would be nice however, instead of defining the yield surface
independently, to somehow relate it with the SBS, Decause
they do have something in common: they both separate
accessible from inaccessible states. (1) This is the major
contribution of the Cambridge University group. By relating
the yield surface to the State Boundary Surface they linked
an otherwise purely Mathematical Model to the mechaniecs of
actual Soil Behavior.

The Yield Surface will be represented in the p-q subspace
of the e-p-q space and specifically it will be assumed to be
identical to the projection D'I'C' of the curve DIC (lying on
the SBS) on the p-gq plane. Consequently a nmovement of the
stress point from the location ,say, I (on the SBS), to a new
location J (also on the SBS), will correspond to a change of
the yield surface from the positien D'I'C' to the new
position E'J!'. (the projection of the stress point stays on
the yield surface). An ellipse (see also Fig. 3), having its
major axis located along the p-axis (with length Q_) and
passing through the origin was chosen as a2 yield function
(i.e it was assumed that the projection of the curves DIC on
the p-q plane are such ellipses). The ratioc of the major to
the minor axes (denoted by 'M') was Kkept constant during the

deformation process and consequently the only degree cf

(1)

The only difference is that the visld surface is represented

in a stress space, and the SBS is represented in a space
which also includes one strain component, namely the void
ratio).

(¥l
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—r— ] o
Fic‘.]. 3 : Cam- Clay yiztd ¥u¥‘]C{‘iDY\ _
freedom of the ellipse is the size of the p-axis , p_, which

(as mentioned in the beginning of the chapter) was assumed to

depend only on the plastic void ratieo. (Hardening rule)

So:

As loading proceeds, the yield surface is pushed by the
stress point and moves nomothetically with pole the origin O,
as it is shown schematically in Fig 3.

There is a characteristic behavior associated with the peak M
of the ellipse. At this point (using normality) the plastic
strain increment vector <i§9 has no component along the

p-axis, which means that:

dE::O (IU'—"{Q)

or using eq. III-1, that the plastic void ratio remains
constant during subsequent shesring. rurthermore tne sizs of
- , - . P - 3
the yield surface depends on & {eq. III-9), and hence it

does not change. Conseguently the stress point once it has



reached point M (the peak), it stays there provided that the
sample is monotonically loaded. At this level only plastic
deviatoric strains occur (eq. III-10), with no further
changes of the stresses (because the stress point does not
move). This condition is defined as 'failure'. The locus of
points M (i.e line OM in Fig 3) is the projection of a curve
on the SBS (curve KC in Fig 2) which is called the Critical
State Line. (CSL) (1) The projection of the <Critical State
Line (or Failure line), on the e-p plane is assumed to be a
curve parallel <(in an e=lnp plot) to the isotropic

consolidation line.
Undrained Stress Paths.

During undrained loading of a soil, the void ratic does
not change. Hence the stress path for a normally consolidated
sample under undrained loading, will be the intersection of
the SBS with 2 plane e=constant (i.e a plane parallel to the
p=-q plane in Fig 2). Such 2 curve lies close to, but it is
noet identical, to a curve like DIC. (2) They are identical,

only if the rebound flexibility 'k' is equal to zero. In

(1)

(23

Schofield A.N. and Wroth C.P. (1968) 'Critical State Soil
Mechanics' MeGraw=-Hill, New York.

Consequently the projection of the undrained stress path on
the p-aq plane is not identical with the curve D'I'C', but it
lies very close to it {(there is a small translation of the
vield surface associated with small changes c¢f the plastic
void ratio which ares compensated with equal changes of tne
elastie¢ void ratio, so that their sum 1s zZero as 1t is
required for an undrained loading path.
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this case the isotropic¢ rebound curves =sre parallel to the
p-axis (in the e-p=-gq plot).

Appendix II uses the equations developed in Appendix I in
conjunetion with the specifiec form chosen for the yield
function (an ellipse), to evaluate the incremental
stress-strain relations in the plastic regien ({(i.e the
plastic flexibility matrix ES? is formulated in a2 principal

it

stress space).
Input parameters.

The input parameters to the model are:

(1) The position of a consoclidation curve under isotropic
stresses, i.e its slope ( } ) and the location of
one point on it to specify the curve in a e-lnp plot.
Since isotropie¢ and K -consclidation curves are
usually parallel in an e=lnp plot, the pecsition of =
K =-consolidation curve can be used alternatively.

(2) The slope (k) of an isotropic rebound curve.

(3) Tne fricticon angle in one (arbitrary) mode of
failure. This is expressed through the 'M' parameter
which is the ratio ¢f 'q' versus ‘'p' at failure for
this specific mede of failure. If the triaxial

compression mode of failure is chosen then:

M- 2CNe-1) (ar-)
Ne +2

on
[



where

Ne = Jrcmz(df’i-*- ;f_;_i) (wr-12)

and P is the friction angle at failure in the

triaxial compression mode. (1)

For other modes of failure, a failure criterion (like
the Mohr-Coulomb) should be employed to artificially
cause failure to occur at a reasonable value of the
friction angle. This 1is because (as we show in
Chapter IV) the model itself will cause failure (i.e
large shear strzins with no further c¢hanges of the
effective stresses) at unrealistically high values of
the friction angle. With no additional failure
criterion the model will cause failure only when the

Critical State Line is reached.

For each water content (i.e for each e=constant plane in Fig

2) there 1s one corresponding point on the CSL. Hence "'.e
model predicts a unique relation between rq! at failure
(designated as ‘qﬁ') and water content (or equivalently the

Note that the Cam-Clazy Model predicects different friction
angle for compression and extension tests. Also note that

the medel 1is always strain hardening for normally
consolidated samples. However actual undrained K.-TC and
Ko=PSA tests exhibit strain softening characteristics.

Therefore the friction angle that will be used as an input to
the model snould be chosen with these in mind.
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veid ratio). (2) For a specific mode of failure, 'q%f

corresponds to a value of the 'undrained shear strength'.

The undrained shear strength is defined as follows:

s, - | By S (m-13)

where 'Gﬂﬁﬁf are the maximum and minimum principal stresses.
Using this definition for the undrained shear strength,
relations between 'qg' and 's,' ¢an be established for the

various modes of loading. For example for the triaxial test:

T+
(B.). = = (o -14)
For the plane strain test assuming that:

gzzg = é’(é"ﬁ "'éﬁ-)

we have: (1)

(8.5 = % 95 (@ -a)

So the model predicts a unique relztion between the undrained

shear strength and the corresponding void ratio for each mode

(2)
irregzrdless of the mode of failurse,

(1)
Note that by dividing 2gq. III=-14z and III-14 we get that the
ratio of the undrained shear strengths of the plane strain
versus the triaxiazl mode of failure is 1.155
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of failure. (irrespective of the Overconsolidation Ratio)

This agrees with the results obtained by Hvorslev. (1)

1)
Hvorslev M.J. (1860) tPhysical Ccmponents o¢f the Shear
Strength of Saturated Clays' ASCE,RCS3CS pp. 160=273

B4



3.2 COTHER ISOTROPIC MODELS

3.2.1 Total Stress Models.

As we have mentioned in Chapter II Section 2.7, the total
stress models are only useful for wundrained loading of
saturated soils, and they relate a total deviatoric stress
increment éﬁi with the <corresponding deviatoric strain

increment in the form:

-C A...‘Z or: Ac S 4‘3 (T -3¢)

L} Pt

3.2.1.1 Mises~-Hencky Hardening Mocdel.
Mises and Hencky (1) independently assumed the following

form for the yield funection (eq. II-24):

= A
£z g - H(E&’ ) =0 (m-9)
and hence, tnhe plastic incremental stress-strain

relationships (eq. II-15) hecome:

/, 2

| _P

CIfZ,-_- = 2 S S,‘_; CISK{ (III-\G)
J i

Evaluation of the hardening parameter =4 from the

{1

Hencky H. (1923)'Uber einige statisch bestimmte Falle des

Gleichwicnts in plastichen Korpern' Z. Angew Math. Mech. Vol
2. PD 2412291,



"consistency condition (see Appendix II), gives:

[ dH \"
=\ der)
By including the elastic strzin components, eq. III-16

rewrites:

CJS;' -
< = 2<; N :) (%) Sy Sa ISu (-16a)

which s the flexibility form of the incremental

stress-strain relations.

Inverting eq. III-16a we get:

(w-n)

c:IS-LS = QG aznl - BG EL__ <‘2ﬂ LJ Sxb dz’:?_

which is the conjugate stiffness form of the incremental
relations. Various forms of the hardening function H( E?)
have been used in the literature. Hyperboliec relations, 1)
or functicnal forms 1including softening (H decreases with

? p—
increasing & for large values of &' ) nave been used

(1).

2.2.1.2 Von Mises Perfectly Plastic Model

Prevost J-H. and Hoeg K.(1975) 'Soil Mechanics and Plasticity
Analysis of Strain Softening' Geotechnique 25,2 pp. 279-297
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It can be obtained from the previcus formulaticon by just

setting H=0.
Then eq. III-17 rewrites:

55@'5 = 2G C;Q';S' - -§? Si] Sk de k. C‘.TII "8)

=T
which is the stiffness form of the incremental relations.
Note that the stiffness matrix is singular. This is the case
for ALL perfectly plastic models.
In fact there is no flexibility form as' we can easily see

from eq. ILI-16a because for H=0, the denominator vanishes.

3.2.2 Effective Stress Models.
3.2.2.1 Extended Von Mises Model. (1)

For an effective stress model, dependence on the 'p'!
stress invariant is necessary to model the behavior
appropriately, since soils are pressure sensitive materials.

£q, III-15 generalizes in the follcwing form:
=P\ _ /-
3_15 —AP—\.-C? — H(E ; =0 (IT -19)

where A>0.

Using the method described in Appendix I, (Egq. A-I-5, A-I-=6

and A=I=-7) the incremental stress-strain relations can be

(1)

Drucker D.C. and Prager W. (1852) 'Soil Mechanics and Plastic
Analysis of limit design' Q. Appl. Math. Vel 12 pp 157-165.



Written in the form:

= _aA7(d
de! ) 1 A P .% (m0)
JdE? (-j—_%-) - A { &7

€

Eq. III-20 is similar to eq. A=II-7 which was derived for
the Cam-=Clay model. Consequently a procedure similar to the
one described in Appendix II can be wused to go from the
invariant form of eq. III-20, to an incremental stress-strain
relation in the principal space.

The major disadvantage of this model is that it predicts
a dilatant behavior during shearing, (since A>0), as eq.
III-20 shows. This contradicts experimental results from
normally consolidated clays, (which contract during drained
shear) and results from heavily overconsolidated clays which
initially dilate but at large strains reach a condition where
no further velume changes occur.
The Cam-Clay model is undoubtedly superior to the rest
isotropic models and consequently it will be the only one

evaluated by comparing its predictions with results of tests.
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CHAPTER IV

EVALUATION OF PREDICTIONS
OF THE CAM-CLAY MODEL

This chapter evaluates predictions of the Cam-Clay model
by means of laboratory tests on resedimented samples of
Boston Blue Clay. (1) (2) (3)

The following tests were simulated by wusing ¢the Cam=Clay

model.

1] Consolidation Tests.
(1.1) Isotropic Consolidation

(1.2) K,=-Consolidation (no latteral strains are allowed)

(1)

(2)

(37

Ladd C.C and Varallyay J. (1666). 'The 1influence of stress
system on the behavior of saturated clays during undrained
shear'.Research in Earth Physics. Phase Report No.l!, Part IL,
MIT Department of Civil Engineering, RRE65-11.

Kinner E.B and Ladd C.C (1870) 'Load deformation behavior of
saturated <clays during wundrained shear'. Researcnh in Earth
Phnysics, Phase Report No.13, MIT Department of Civil
Engineering, RR70=-27.

Ladd C.C, Bovee R.S3, fdgers L., and Rixner J.Jd (16712
'Consolidated Undrained Tasts on Boston 3Blue Clay.' Research

in Earth Pnysics, Phase Report No.15 MIT, Department of Civil
Engineering RRT1=13.



(2] Undrained Triaxial Tests

(2.1) Consolidated Isotropically Triaxial Compression (CIUC)
(2.2) Consclidated Isotropically Triaxial Extension (CIUE)
(2.3) K,-Consolidated Triaxial Compression (CK_ UC)

(2.4) K,-Consclidated Triaxial Extension (CK_ UE)

(3] Undrained Plane Strain Tests
(3.1) K,~Consolidated Plane Strain Compression (CK_ UPSC)
(3.2) K,-Consolidated Plane Strain Extension (CX,UPSE)

(3.3) Pressuremeter type of loading (CK,UPM)

1. INPUT PARAMETERS

For the 1isotropically consoclidated tests the initiazal
conditions were assumed to be:
8= 8.0 psi z= 1130

For the K -Consolidated tests the initial conditicns were

assumed to bhe:
$i=10 psi j B =55 psi , @=1I30
According to data from the previously mentioned reports, a
value of: C.=0.345 (Consolidation Index from isotropic

consclidation tests) was used, which corresponds to: q =0.15

since: (1)

D= C. oy, (27183)

2.7183 is the base of the physical logarithms {(number 'e&').
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A value for the Recompression Index of CF=O.O92 was also
used which corresponds to k=0.04 .
Finally: M=1.20 was used which is equivalent to <P =30° for

the triaxial compression tests.

2. RESULTS

Fig IV-1 shows an s-t plot (1) for K, -consolidation test
(cedometer test). The straight line corresponds to K =0.55
(the starting value). Clearly K, predicted by the model
increases from K_=0.55 to stabilize at K,=0.662.

Fig IV-2 through IV-15 show results of various undrained
modes of failure. The continuous line is the Cam=-Clay model
predicticon., Open Circles represent results of experiments c¢n
resedimented samples of Boston Blue Clay.

Figures with even numbers show the stress-strain curves for
the various modes of loading and these with odd numters show
the associated effective stress paths.

Generally Cam-Clay prediction curves are softer than the
measured ones and the best predicticns are for isotrepically
consolidated samples, sheared in a triaxial compression mode.
On the other hand, strength predictions in extension tests

are too high and for X _-consolidated compression tests, tne




model fails to account for the pronounced strain softening of
the e¢lay.

Fig IV-14 and 1IV=15 give model predictions for the
pressuremeter mode of loading. (1)

The Cam-Clay predicts the same value of undrained shear
strength for all plane strain modes of loading. It also
predicts a unique value of shear strength for the two, (TC
and TE), K, 6 -consolidated Triaxial modes. As it was proved in
Chapter III, the ratio of these two values of undrained shear
strength is predicted equal to 2/(5:1.155 .

Finally the friction angle for 211 modes of rfailure, (except
for triaxial compression where it was forced to be equal to
30° by selecting M=1.2) is much higher than 30°. However
eXxperimental results also show a wide range of values for tne
friction angle ranging from d—?:au.?" for CK,UC, to $=51.2°
for CK, UE.

Fig IV-16 summarizes test data and Cam-Clay predictions. For
the test data, values are given at both the peak and critical
condition (i.e after strain softening). Cam-Clay does not
show strain softening, and so only the value at the peak 1is

given (the peak coincides with the critical condition).

(1)

Plane strain pressuremeter type of lcading inveclves plane
Strain in the vertical direction, Wwith the radizl stress
increased till the critical state 1s reached. Major and
minor principal stresses are the two horizontal stresses. No
rotaticn of principal planes tzakes place.
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¥

TEST = RESULTS-

At peak condition Ultimate condition Cam-Clay' simulakion

Loading LT ' o s —_

Mode s"/,é-'" en, @& S /on E(/a) ¢ sw.l € (‘I.] &b
cIoC 0.308 2.7 28.90 0.297 7.0 52.8 0.361 7.0 0.0
CIUR ~0.226 7.0 | 35.4 -0.226 | 7.0 | 3s5.4 || -0.361 | 7.0 | 48.3
CK,ucC 0.320 0.3 24.7 0.230 7.0 34.4 06.304 7.0 30.0
CK UE ~0.124 7.0 51.2 -0.124 7.0 51.2 -0.303 7.0 48.3
CK,UPSC 0.335 0.6 29.8 0.200 7.0 30.0 0.351 1.0 43.6
CK ,UPSE -0.265% 7.0 42.8 -0.265 7.0 42.8 ~0.351 7.0 43.6
CK,UPM - - - - - 0.351 7.0 44.5

Fig. Iv-16 : Data from experiments and comparisons with

Cam-Clay predictions.




CHAPTER V

THE MROZ-PREVOST MODEL

The constitutive relations discussed so far, modelled the
soil as an isotropic material., However since most soils occur
in anisotropic conditions due to both the method of
deposition and subsequent stressing, it seems that an
anisotropic model would predict soil behavior more
accurately.

Parameters useful in a quantitative estimate of the
degree of anisotropy in a soil are:

(a) The latteral stress ratio under geostatic conditions,
defined as:
c - &
s év
It measures the stress induced anisotropy at the
initial condition.
(b) The ratio of the undrained shear strengtis in plane
strain, 1.e the wundrained shear strengths measured in
CK,UPSC and CK,UPSE modes of leoading. This ratio 1is

usually defined in the literature as:
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s, (Psc)
S.(PSE)

,r< -

)

It measures the combined effect of inherent and
stress induced anisotropy.

Lean (i.e 1low Plasticity Index) Clays and/or highly
precompressed (i.e with high Overconsolidation Ratio), are
expected to exhibit less anisotropy and consequently an
isotropice model <can probably model their stress-strain
behavior satisfactorily. For other clays an anisotropic model
may be necessary.

The model to be discussed is a general mathematical
model, based on the Theory of Incremental Plasticity and
describes the anisotropic, elastoplastic, path-dependent
stress-strain-strength properties of saturated inviscid (i.e
time effects are neglected) clays under undrained conditions.
The common assumption of incompressibility is made for
undrained loading. The initial ideas of the mocdel were
stated by Iwan (1) and at the same time independently by Mroz

(2) Prevost (3) (4) applied it 1in soils and studied the

(1)

(2)

(3)

Iwan W.D(1967) 'On a Class of Models for the Yielding
Behavior of Continuous and Composite Systems' Journal of
Applied Mechanies Vel 34, pp 612-817

Mroz Z.(1667) 'Cn the Description of Anisoctropic
Workhardening' Journal of the Mechanics and Physies of
Solids. Vol 15 pp 163-175S
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mathematics of the incremental formulation for the locading
conditions, c¢ommon 1in Soil E&Engineering. The following
presentation is based on the papers by Mroz and Prevost

mentioned above.

The general formulation of a c¢otal stress model was
studied in Chapter II and it was found that deviatoric stress
increments have to be used in the formulation. The present
model follows this principle. However a representation in a
principal stress space (as it was done for Cam=Clay) 1s no
longer possible. The model is anisotropic and consequently a2
full stress space representaticn has to be employed.

A modification of the Von Mises type Yield Function

- Y.
t0o5, )% (39321 keen =

was used.
The Von Mises cylinder (represented by the previous equation)
is isotropic with respect to rotations of the principal axes
and centered at the origin. By removing the center of the
cylinder from the origin, anisotropy is introduced.

A second order symmetric tensor Clﬂ was introduced to

(4)

Prevest J=-H(1977) 'Mathematical Modeling of Monotonic and
Cyelic Undrained Clay Behavior' International Journal for
Numerical and Analytical Methods in Geomechanics. Vel 1,no 2,
pp 195=-216

Prevost J=H. (1978) ‘'Anisctropic Undrained Stress-Strain
Behavior of Clays'. JGED, ASCE Vol 104, No GT& pp 1Q75-1CS0.
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deseribe the coordinates of the center of tne yield surface.

Then the yield surface takes the form:

0(sq,8)= 3 2 (sq-99)(sq- Gﬂjr ~k(gn =0, (1)

Since Clﬁ is not necessarily proportional to the
isotropic S% tensor (Kronecker delta), the material exhibits
anisotropy (kinematic hardening).

The k parameter on the other hand, 1is a'measure of the size
of the yield surface, as it was used 1in the previocus
Chapters, and it is a function of the plastic strain
increments. (Isotropic hardening)

If the physical coordinate axes x,y,z2 coincide with the

principal axes of the material anisotropy, then
Due to the way of deposition, clays usually exhibit

rotational anisotropy about the vertical axis (y), (i.e
transverse isotropy in the horizontal plane) before shearing.

This means that initially:

Quy = Ayy = Q=0 and Q. = ¢
However the original anisotropy of the soil 1is not
preserved during subsequent shearing. If the principal axes
of stress rotate during shearing, the principal axes of

anisotropy will also rotate (1) and hence QLS will no longer

(1}



be zero for iéj. This means that further stress induced
2nisotropy takes place.

In addition, due to the anisotropy caused Dby plastic flow,
the strain tensor does not remain coaxial with the stress
tensor (i.e their principal directions do not ¢oincide), and
the strueture of the <c¢lay 1is altered. This means that
application of shear stresses tends to erase the <c¢lay's
memory of its previous history (1) and create a new state of
anisotropy.

The concept of a field of plastic moduli is introduced to
increase the flexibility of the model by increasing the
number of its parameters. Tnis field is defined in the
deviatoric stress space, by 2 set fl,fz,...ff of nested yield

surfaces with respective sizes
o

(O (=}
kO < k' < o0 < K
which delimit the regions of constant plastic moduli. (2)

Each of the yield surfaces is represented by an equation of

the form of eq. V-1:

‘Tem (‘GLJ , E—P) = i%(SLJ - C'J',.cjh) )(S;i -O(;'? >f — {((“ﬂ(é'i') =0

(2)

Since dchjéo as it is shown in Appendix IV.

Expressed mainly through the parameters a.- and k.

!

Usuzally there is a finite number of yield surfzces and the
resulting stress strain relations of the model zre piecewise
linear. If a continuous field is used then 2 non=linear
behavior will result.
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for m=1,2,...p

A shear modulus H! 1is associated with each of the yield
surfaces and the associative flow rule (i.e normality rule
with an associated potential function) is used to compute the
plastic strain increments. Note that since the model only
studies undrained 1loading, only deviatoric plastic flow
oceurs.

The outermost yield surface f‘P plays the role of =2
failure surface, and it is the geometrical Dboundary in the
stress space outside whiech the stress point and the inner
yield surfaces cannot go. At any stage in the loading history
of the materizl, stress points inside this yield surface
represent stress states that can always be reached along
stable paths. (1) |

The Hardening rule which was used by Mroz and later by
Prevost, specifies that the yield surfaces may be translated
in the stress space by the stress point, without changing in
form or orientation and they consecutively touch and push
each other without intersecting. When the stress point
reaches the yield surface f_, all the prior yield surfaces
fo 18y 4+o..f, have been translated and they are tangent to each
cther and to f,, at the contact point M as it is shown in fig
V-1,

Complete specification of the model parameters requires

(1)

i.e H'., is alleowed to be less or equal teo zero only on the
ocutermost yield surfacs f?.
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Fki V-1 : Nested vyicle surfaces

the determination of (1) the initial positions and sizes of
the yield surfaces and their associated shear moduli and (2)

The law which defines how the sizes of the yield surfaces

change during plastic flow.

Appendix IV discusses the methed of determination of the
initial locations of the yield surfaces and the incremental
stress-strain relations.

Model parameters can be evaluated by using solely the
results from triaxial compression and extension tests. A
computer program was Written that automatically generates
these parameters if data points from triaxial tests are
given. The CK,UC and CK.UE test data presented in Chapter IV
were used to evaluate the model parameters. In order tc

smooth the test results a nhyperbolic function was fitted and
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was subsequently used to locate the initial positions of the
yield surfaces and the initial Hardening moduli. The preogram
created 14 yield surfaces, which means that 71 parameters
need to be saved and updated during shearing. Compared with
the number of parameters of the Cam-Clay Model, the
Mroz-Prevost model requires a lot more storage.

Fig V-1 and V-2 show the stress-strain curves for CK,UC and
CK,UE tests backfigured by using input parameters f{rom the
same tests. As it is expected the predictions (continuous
line) fits the data points (discrete dots) exactly.

Fig V-3 and V-4 show the predictions for CX,U(PSC) and
CK,U(PSE) tests and data points from the tests described in
Chapter IV. The model predictions are generally stiffer than
the test data. In Plane strain compression it overpredicts
the undrained peak shear strength by 8 per cent (0.355 versus
0.335 of the test) but 1in Plane strain extension it
underpredicts by about U4C per cent (0.157 versus 0.265 of the
test) Finally Fig V-5 gives the stress-strain curve for the

pressuremeter mode of loading.

The values of the peak undrained shear strength:

5,-S
Su= l2‘5

predicted by the model for the various modes cof failure,
depend only on the initial loecation and size of the outermost
vield surface and can be predicted in closed form
expressions.,

Due to initial rotational znisotropy in the Horizontal plane
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the outermost vyield surface is centered on the S1 axis (i.e
) e s , .

Q:Lagéo). I ain and kc? are the initial location and size of

this surface, then wusing eq. V=1 and the kinematic

restrictions of each mode of loading, it c¢can be shown that:

(?) 3

s, (7<) = 12. { a’+ Y }
=Y. 4 cC lf(P)
Su (T"') - 2 1 Q-, - X }

(7}
SM(PSC)=%{O, +23 L((P)}
5“(Psa)=é { a:m _ \% L(ml)(

( e}
Su(TC) ) CI:,) I( r
S.(TE) a’ - k”

The ratio of the peak undrained shear strength for PSC and
TC is:

OCP\ 2 ;¢
S, (PSS) T A
=
N (m (P
s. (7<) a, + Kk
If the material is initizlly isotropic, then the vield

surfaces are initially c¢entered at the origin; hence a?‘:O

and the last expression reduces to:

N
S. (PS¢ 2
- ) 3
S. (Te) E
Note that the same value ¢f tnis ratio is predicted oy



the Cam-Clay model as it was discussed in Chapter III. This
is because both models use normality rule and for initially
isotropic behavicr the yield surfaces of the Mroz-Prevost

model depend only on the second stress invariant B
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CHAPTER VI

MODELLING OF THE UNDRAINED EXPANSICN
OF A CYLINDRICAL CAVITY

The undrained expansion of a long cylindrical cavity is a
problem which can be easily analysed even for non-linear soil
constitutive law. It has been used to model the in-situ
pressuremeter test and the installation of a cylindrical pile
into the ground.

In the case of modelling the pressuremeter test there are
two major deviations from the in-situ conditions:

(a) The pressuremeter probe 1is not infinetely long, (it

usually has an aspect ratioc equal to 2).

(b) During the installation o¢f the probe, stresses are
relaxed (i.e some initial unloading takes place).

In the case of the pile driving, there are shear stresses
along the pile shaft which are neglected in the analysis.

Due to Kinematic constraints, the strains are independent
of the material law. In fact loading is axisymmetric around
the z=-axis, and 1in plane strain in the z=-direction. In

addition the no volume change condition, (undrazined loading)
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allows the calculation of the displacement field around the
cavity, as a function of the size of the hole, and the
r-coordinate at any point.

Previous analyses of the expansion of & c¢cylindrical
cavity hnave been developed for the interpretation of the
pressuremeter test by CGibson et al, Ladanyi, Baguelin et al,
Palmer et al, and Randolph et al.

In the following, the total and effective stress changes
around ‘an expanding cylindrical cavity are studied for the
case of a non-linear material law.

Two soil models are zpplied:

(a) The Mroz-Prevost Model (see Chapter V)
(b) The Cam=Clay Model (see Chapter III and IV)

The Mroz-~Prevost Model, which is a total stress model,
does not allow the estimation of the effective stresses and
pore water pressures around the cavity. On the other hnhand,
the Cam=Clay model will be used to estimate the total znd
effective stresses as well a2s the pore pressures .

The stress-strain curves used are those calculated in the
previous Chapters for the pressuremeter mode of failure (Fig.
IV-14 for the Cam-Clay and Fig. V=5 for the Mroz-Prevost).

The predicted values of the normalized shear strength are:
0.351 from the Cam=Clay.
0.258 from the Mroz-Prevost.
Note also that although the Cam<Clzy does not show strain
softening, the Mroz-Prevost strzin-softens for strains larger

tnan about 3.5%.
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During expansion of the c¢avity, large strains develop
especially in the immediate vicinity of the cavity. For this
reason, large strain theory is used in this analysis.

Distribution of stresses and strains along the radial
direction were <calculated for four values of the expansion
ratio AN/\Q . (1) The curves in the subsequent figures,
corresponding to these ratios, are labeled [1],[2],(3]1,[4] as

shown in Table VI-1.

TABLE VI-1

Label v/V o (%)
(1] 4
(2] 10
£31] 40
(ul 100

Fig. VI-1 through VI=4 were produced by using the
Mroz=-Prevost Model. The radial coordinate in all figures 1is
nermalized with the initial radius of the hole.

Fig VI-1 shows ¢the radial strain plotted versus the
normalized radial coordinate, for' the four values of the
expansion ratioe. Note that radial strains equal to H2.5%
develop at the hole boundary for the largest expansion ratio.

Fig VI-2 shows the normalized shear stress (%}-59 /Q§§¢ ,

plotted versus the normalized radial zcordinate. Even for the

(1)

The expansion ratio is defined 2s the volume change due to
the expansion divided by the initial volume.
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smallest expansion ratio of 4.0%, the peak strength is
reached at the cavity boundary anc for the larger expansion
ratios, the yielded zone extends quiteAsignificantly.

Fig. VI-3 shows the normalized radial stress Sr/év;
plotted versus the normalized radial coordinate. Althougn the
strain softening zone arcund the hole is guite extended, the
radial stress at the cavity boundary continues to increase
with increasing expansion ratic A%/Vo . This 1s because
the radial stress at the cavity boundary is not affected only
by the local values of the shear stress (Gr'€9>/évc , but it
is a result of an integrztion of the shear stress from
infinity to the boundary of the hole. (1) The same effect is
also shown in Fig. VI-4 where the normalized radial stress at
the boundary is plotted against the expansion ratios. The
curve is monotonically increasing. It starts from an ordinate
value of 0.55 <(equal to K,) for AV/V,=0.0 and reaches an
ultimate value of normalized ©boundary pressure equal to
1.734. This is the type of —curve measured 1in the
pressuremeter test.

Fig. VI-5 through VI-8 were produced by usiang the
Cam=-Clay model.

Fig VI-5 shows the shear stress Csr-so)/%vc vs the

noermalized radial coordinate 1j43,. Since the Cam-Clzy mcdel

does not strzin soften, the curves are monotonically
1) -
GSY' 6,- -Ta

From equilibrium:
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increasing till the critical condition (reached for
(Sr—Ge)/é\,c 20.702)

Fig VI-6 shows the normalized total radizl stress Sqﬂgﬂc
vs the normalized radial coordinate.

Fig VI-7 shows the normalized radial stress at the cavity
boundary (Sr\nn;/’évc plotted vs the expansion ratio. The
curve s agz2in monotonically increasing and it approaches
roughly the same limit pressure as the Mroz-Prevost curve,
but it is much softer.

Finally Fig VI-8 shows the distribution of the pore
pressure increment ALL/éic Vs 5430 . Table VI-2 shows the
value cf the normalized excess pore presures at the cavity

boundary, for the 4 values of the expansion ratio.

TABLE VI-2
Label AV/V, (%) (Au/€idesm,
(1] 4 0.168
(2] 10 0.402
(31 40 0.776
(4] 100 0.973

An elastic perfectly. plastic model gives the following
relation for the pore pressure increment during an undrained

expansion of a cylindrical cavity:

Au_ Su{ﬂ /9)
—_ = 'Eic T g,

For tha Cam-Clay S«/5, =0.351
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Also the following relation was used
prediction:
3(1-2V - _
-G"¢= ( _) } Vo= O?)D
K 2(1+3)
and since
1,¢  (l+az)
K = — Iy
we have: y :?l
-+ s
G 3(‘-?3)_0*2)( 3 ) _
se 20a9)
Sve
. O.333 216 x O.70 ~ 100
OIS « O, 3%\
So:
JAN .
2 - 0231 < (00) = O.

GVC

Comparing with the previous Table,

expansion ratio of about 50%.
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CONCLUSIONS AND RECOMMENDATIONS

Incremental Plasticity seems to be an efficient tool for
the design of rational models of materials with complicated
behavior, such as the geologic materials. It can be
especially useful for the study of the behavior under general
3-dimensional loading conditions with or without reversals of
loading.

In the previous Chapters two such models were evaluated:

4. The Cam-Clay Model

This has the follcwing advantages:

[1] It is based on the Critical State Concept which 1is a
reasonable theory (at least qualitatively) for clys.

[2] It requires few input parameters which can be evaluated
from standard routine laboratory tests.

(2] Since it is an effective stress model it can be used for
drained, undrained as well as f{or partially drained
loading econditions.

It has the following disadvantages:

(1] It opredicts a very extended elastic region during

unleoading which l1imits its use for the study of cyeclice

loading.
(2] It cannot predict strain scftening for normally
consclidated clays, although most Ko-normally
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(3]

(u]

(1]

(21

(11

(21
(31

consolidated clzys strain soften during undrained shear
in triaxial compression and plane strain compression,
This significantly limits its use for K_-consclidated and
sensitive ¢clays.

It predicts too high shear strength in extension tests in
general (triaxial and plane strain).

It predicts a too high friction angle for undrained

triaxial extension and plane strain tests.

B. Tne Mroz-Prevost Model.

This has the following advantages:

The ¢oncept of the field of Hardening Moduli allows great
flexibility in modelling sc¢il behavior accurately.

It gives reascnable predictions of the stress-strain and
strength characteristics under undrzined conditions.

It has the following disadvantages.

It requires the evaluation of many parameters. Tnis may
limit its applications in Numerical Analyses viz the
Finite Element Method because ¢f storage reguirements.

It can only be used for undrained loading.

It does not allow the evaluation of the excess pore
pressures 2and consequently of the effective stresses.

Cnly the total stresses can be evzluated.

Concluding we think that further resesrch should be

orientad towards:
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(a)

(bl

Development of
combination of
netion of the
desirable.

Applications of

more adequate constitutive laws. A
the Critical State Concepts with the

field of hardening moduli would be

non-linear constitutive laws in practical

problems, mainly via the Finite Element Method.



APPENDIX I

STRESS-STRAIN RELATICNS FOR ISOTROPIC SOQILS

Assuming that the yield surface is just a functiecn of the

two stress invariants, 'p' and 'q', (1) we can write:

23 ?4’_23_'_?#"39?7,_ .
%"1_ 2p ?§y 29 T, sy

which gives:

'a D ..
__‘E - + g;_- ?;T_ + BS_LJ fzi CA-I"T\J
'aeil 3 J P 27 ‘a?

In addition since:

P= % I = '3 S g;\' (m-=3)

In Chapter II, Secticn 2.6 it was defined:

_ 1 _ _ 3 ~ 2 —_—
D= 3 O ) 9T Z(ES‘J'S‘J'} =/ 3L

=
2
'—J



we get:

dF_ g ésij (a-1-2)

and since:

7=\[3—]'= (7 -23)

| . 3 ; A-1-3)
d?___ _3__31 As‘l = 27 Skdﬁd (

-I-1 , A=I-2 and A-I-3 we get:

’a}’ _ 2y 2%
%% dg, = Edp + o= A-T-4)
For the invariant measure of plastic volumetric strain

inerement wWe have from eq. II-8 1in conjunction with eq.

II-15:
[ de) O

— -
—p———
L

P _P
de - def, = « \ 6y ¢/ 2w

Then using eq. A-I-4 and A-I-1 we get:

def. (.zi dp ~ "E% Cl?) = (a-1-2)

Similarly for the invariant measure of plastic deviatoric

strain increment we nave:

!

/2
e (ol r 27 L der S 1T der L

O
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We can now evaluate the parameter o for the case of a
yield function, depending on only the stress invariants 'p'
and 'q'.

Rewriting eq. II-2U4:

/?5 £/CP,7) _H(e &) =0 (z-24)

we require the stress point to remain on the vyield surface
|
(consistency condition). This means that: c:?:=c3 =Y ol
)
¥, %R, L 28 def 4 22 der
CYp =a = . DET
op P ?1 ﬁ 2E,



Using eq. A-I-5 and A-I-6 we end up with:

ek 2% 20 A\
™ = 35: BF -+ ‘az-P 3? J CA-I-_’)

Eq. 4-I-5 , A-I-6 and A-I-T7 are very useful and will be
used extensively 1in this Thesis. The first two, express
normality rule in a two-dimensional stress subspace. In fact
starting from the normality rule in the nine-dimensional
stress space (eq. II-15), and by <choosing the stress and

strain measures appropriately, we deduced normality in a

two-dimensional subspace of the stress invariants 'p' and
'q'y, with associated invariant strain measures ' E: ' and
L

Finally eq. A-I-7 gives the strain hardening <(or softening)
parameter. As we have proved in Section 2.5 & 1s positive
in the strain hardening region and negative in the strain

softening region.



APPENDIX II

STRESS-STRAIN RELATIONS FOR THE CAM-CLAY MODEL

The equation of the ellipse shown in Fig A-II-1 is:

2(p,9,p) = Mp(p-p) g =0 (a-T-1)

where 'M!' is the ratio of the vertical to the horizontal

*7

MPe/2 Fica. A-T-1
- o
F D’ o b
Pe/2
axis. In Fig A-II~-1 point D' is tne projection on the p-g

plane of 2a point D which is located on the virgin isotropic
consolidation curve (see also Fig 2 in Cnh. III), which,

according to experiments, is a straight line in a e-1lnp plot

=
i~
L¥1]



with slope '2
< = A-'Aa?n]:g

The isotropic rebound curve is of the form:

e'- B -khnp

Differentiating the last two equations we have for the

plastic void ratio changes:

&P: l(& c
P e P
dz =dz -ClZ = - "—"'.Pc -+ ?c

or:

dpc R
de’ = A-k (a-2-2)

Using eq. II-24 in conjunction with eq. A-II-1, eq., A=-II-2

and eq. III-1 we get:

L 2% 24 2P <

)

|

gf el ‘aP; 2e’ el

Q)

= -G (- %)?-C‘“‘e)i



— = M p pe A-T-3)
EEV? ’D{—k F ( )
and
CLIEPS
o¢&f
The derivatives of 'f' with respect to 'p' and - have

alse to be computed. Using eq. A-II-1, we have:

F [P
A-T-S
_’a_ﬁ.: ’27

Finally substituting from egq. A-II-3, eq. A=II-4 and egs.
A-II-5 into eq. A=I-7, eq. A-I-5 and eq. A-I-6 wWe have:

X= ——- (a-m-¢)

and 2
M-n 4 ] dp
cdef?  2(a-K)n T3 !
7 = z 2 2" ]\ d
- M =~ ' i
kdé?J ‘DO @) (M=) L Mz_-qij



where: n= q/p
Eq. A-II-6 gives the value of the hardening
parameter, and eq. A=-II-7 the incremental stress=strain
relations in invariant form. The matrix relating the
invariant increments will be noted as E? in the following.

Expressing the invariant increments in terms of the principal

stress and strain increments we end up with:

de’- (A"BA ) ds

where d_g.P ’ (iG are the principal plastiec strain and
Stress vectors and matrix A is given by the form:
1 1 1

1
3] 26,-8-63 26, 5,55 ¢, - 616+

T 9 T

Adding the elastic strain increments from eqg. III-7 we

get: '
de-desadsr- | §°+ (47B4A) | ds

er:

C'.‘iE: S dg (A—TL-B}

it



which are the required incremental stress-strain relations

in a principal space.
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APPENDIX TIII

PORE PRESSURE DEVELOPMENT
IN SOILS
UNDER GENERAL LOADING CONDITIONS

Let's assume that the total stress increment @gﬁ
applied on a soil element 1s specified, and we want to
compute the corresponding pore pressure change ‘A14 ’
resulting from this increment. We will further assume that
the soil is fully saturated and that a2n incremental effective
stress-strain law is available (i.e the effective flexibility

matrix ES is known as it was discussed in Chapter II). If

Al

v

s 1s the volume of the solids, V_, the volume of the pore

water and:
V, = Ug-+\ﬂ~

is the total volume of the scil element (small enough for

the assumption of constant stresses to be vzalid then:

Aauai = ---~—--{i\"\/o = A\/g - ‘i"\\jw
VYo V, Ya
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or if 'n' is the porosity: (1)

\ JANVIN
Agyy = (1 -n) %is- 0=z

Let's assume for the mcoment that the compressibility of

both the water 943" and soil grains '”/Esg is constant.

Then: _
AV, _ASe
V. B
av. - A2
v, B

where -ALL is the pore pressure increment,.
This restriction is not significant since in most cases the
compressibilities of water and grains are much smaller than
the compressibility of the skeleton and they are neglected
(i.e the assumption of incompressibility under undrained
conditions is done).

Using the last three equations we get:

A8, o Au
AEMI = (’I —T'I) B.;. -+ =~
A

But: AS_ = m 4€ and AE.M= ' €.

ack

(1)

Porosit 1s defined as: g
o mn= /\/o
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So:

TAS
]
'TA " mé.. Au
Ag =U-n) T w0
We will then introduce the effective stress
increment 4%5 by using the incremental effective

stress-strain relationship:
AE: = A8 ('E-?G)

and then substitute the effective stress increment with
the difference of the total stress 4&5 and the pore
pressure increment .All » as follows:

_ T AR A
S8 (o) EEF 40

s—
——

B B”
- v (45 -m 4 A
T‘g(gﬁ_@m%(»\-w)m(fﬁam 4 + T—gﬁf

and finally solve for the pore pressure increment:

T1S- S I ks

AU = (x -28)
mTém + n _3_@
~ ~ o~ B\u Bq
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where I is a 6x6 unit matrix.
This last equation gives the pore pressure increment as 2
linear c¢ombination of the components of the applied total
stress increment é? . The multipliers are functions of

the components of the effective flexibility matrix ES ’
which varies along the stress path.

The philosophy underlying the previcus procedure is the

following:
We need a pore pressure increment with magnitude sufficient
to reduce (or increase) the effective stresses to a degree
that the corresponding strains (through the incremental
stress-strain law) satisfy the incompressibility condition
(or limited campressibility depending on its magnitude for
the water and grains). The incompressibility condition is
one equation which when expressed in terms of ¢the total
stress 1increment and the pore pressure increment, and solved
for the pore pressure increment, gives the magnitude of the
pore pressure increment in terms of the total stress
increment.

The meaning of eq.II-28 will be further explained by
applying it to predict the pore pressures developing under
some basic locading modes. Specifically the effect of pores
pressure generation due to octahedral (i.e hydrostatic)
versus shear loading will be studied. In order %£o separate
these two effects, let's assume that we apply 2 total

octahedral stress increment equal to '&p' and a shear stress



increment equal to 'Aq', in all directions. Then the

vector will be:

2o 3T
As =

\¢ Aﬁ 3 (A-m-1)

—
A
il
— — P

The Kronecker delta vector m can be rewritten:
-~
J O
™ = ~ : O = 0 (A-Tﬂ-?}
~ O ) o
The effective flexibility matrix f5 will also be

ot
-

separated in octahedral and shear components, as follows:

gcc §51 |
—§ = (4-m-3)
ES;; g;tt ]

where each submatrix has a dimension 3x3 and superscript

T 4indicates the transpose of a matrix. (1) Submatrix

S e represents the relation between normal stresses and
~ a—

normal strains; similarly ES,= is the relation of shear

stresses with shear strains. Even in Linear Elasticity, thes=

(1) -

Note that _ S is symmetric and of dimension 6x6. In
addition S&c and S .. are also symmetric matrices.
b J L -
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matrices are non-zero and positive definite.

Submatrix fssz represents the coupling between normal
stresses and shear strains (due to symmetricity, it also
represents the coupling between shear stresses znd normal
strains). In Linear Elasticity there is no such coupling and
consequently this matrix is identically zero.

Using eq. A-III-3 and eq. A-III-2 wWe get:

h"lTZSr:\ = :ST

{UAl

;;] (A"m'é)

b

which is a scalar quantity.

Using eq. A-III-1, A-III-2, and A-III-3 we get:
-— T — ;f’/_-r —
84 s p (T80])+49(T8,1) Gea-9

Now we are ready to apply eq. II-28 and compute the pore
pressure increments. To simplify the mathematics,
incompressible fluid and grains will Dbe assumed (i.e

b

E>3= B = ). Then eq. II-28 rewrites:

m D A8
A= =
m S m

and using eq. A-III 4 and eq. A-III-5 we end up with:
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-T =
A= A =+ é 5 ":‘j' 4 (A-m~€}
ENEN

Let's study this equation.

The pore pressure increment due to a hydrostatic and a shear
stress increment is given as the sum of two terms.
The first term, gives the pore press' 're increment due to the
hydrostatic total stress increment 'Ap'. It is equal to the
hydrostatic total stress increment which should be expected
for a saturated soil ( Henkel's b parameter (1) is equal to
1) with incompressible pore fluid.
The second term gives the pore pressure increment due to the
applied shear stress increment 'Aq'. The factor by which 'dq’
is multiplied, is equivalent to Henkel's 'a' parameter. Since
it depends on the flexibility matrix {(which varies with the
stress level) this factor also varies with the level of
stressing. In 1linear elasticity this term is zero (since

i;S‘ is zero as we have mentioned previously). This result
also agrees with the standard Soil.Mechanics Literature.

We can also study the sign of this multiplicative factor. (2)

(1)

(2)

Henkel D.J. 2nd Wade N.H. (1966)'Plane Strain Tests on a
Saturated Remolded Clay' JSMFD,ASCE Vol 92 No SM6, pp67-80.
give the equation:

AU. = AGQQ* +~ Q A-C;.;{:

for the pore pressure increment 1in terms of the total
stress increment.

A positive sign means that positive pore pressures will be
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The denominator (in parentheses) is always positive since

f;ss is positive definite (for a strain hardening

materiall.

If 5551 is positive definite (which means that shear
stress increments tend to ¢create compressive normal
strains),then the numerator is also pesitive and hence
positive pore pressures are generated due to shearing. This
is the case of normally consclidated clays.

If i§$t is negative definite (which means that shear
stress increments tend té create dilative normal strains)
then negative pore pressures due to shearing are generated,
because the nominator will be negative, This 1is the case of

heavily overconsoclidated clays,

generated withh unifarm shearing 2and a2 negative sign means

negative pore pressures.

-
L
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APPENDIX IV

DERIVATION OF INCREMENTAL
STRESS-STRAIN RELATIONS
FOR THE
MROZ-PREVOST MODEL

th
The equation of the m yield surfzace is:

%MCGLSI-E',’) = {3 (5 C-:\ \( s - cm)] k(ﬂ(a ) <o (A-N-ﬂ

The consistency condition for this surface gives:

(mi) .
‘_af’_". dBu + ?;3_\ ’al( o€’ = (o2
’35.“

Let's study each term secarately:

? 'B?,.. "o Sy _
T‘H'l a6 ("'ﬂ ‘ C,l-'s‘# -
36,! }\g\) '\'\ ) Ed
- S(Si' C““

) (gm - %Ei\'}gﬂ> C\‘Eﬂ =

2 k™

(nn
t-\)< Sa ~ e / CI‘G"Q =

S 2k

kA W= i\

El?m 16y = 2 (s -Q ) Gox
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In additien:

g (amm =)
?‘Kcm‘\
and:
(™S /
EEE. = 2 W, (A-1v - 3)
ef 2
where:
2 .2 _ 4
3, 33U, 3G
and _EL can be cobtained from ¢triexial tests since
3”111 hY
3u - é(s\'GBJ
2 7 de,

for the triaxial test.

Finally using eqs. II-8 and II=-15 we get:

| = 3 () \ ~
de‘ = o 2{((“\ ngp —O.,e )C"E‘\;L (A,[.J-u}

Substituting eqs A~IV-3 through A-IV-6 in the consistency

condition A-IV-2 we get:

2
X = 3W (/—\-1\1-7)
Finally eq. II-15 gives:
P 3 {m) 3 -~ (H)z{
de;_ = 2 {my (s"f —G\‘-? >&SK? -_“—:]KSI'.\_QL\
33 Y2k 2« v ,-J
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Cﬂﬂ

| __p 3 ("1 !
Gzt& = 2H:. — [tm) (Sw- S S

Adding the elastic components:

C[)Z-- . dSa:\ 3 sy =S ‘L — c~\ CTS:? (A -y -8)
lj 24G - 2H' (k(-ﬂ) C )

These are the incremental stress-strain relations which

are of the form studied in Chapter II:
< As
— -~
Note the similarity of eq A-IV-8 with the incremental

stress=-strain relations for the Von Mises Hardening model

(eq. III-16a} Inverting eq. A-IV-8 we get:

(my

3 46 S GL. ( _ c"‘“ !
2 <G A I k‘(cm\)

which are of the form:

!
dsi.‘s 26 521\\

4s=C Ae (z-36)

Kinematic Hardening
Kinematic hardening is introduced by a2llowing the vyield
surfaces to translate 1in the stress space. If the current
poesition of the stress point is A (see Fig. A-IV-1) then the

translation will take place z2long the vector:



U Comae)

ATT;: Mo C : M) (S MM) Ca-tv-
8
-_p‘(.‘\-r“
;'\-3_- A=)

_’
le

where 0 B is parallel to © . This kind of k
hardening is generally credited to Ziegler (1659)

magnitude of translation of surface f, will be:
™o du AB (a-w-n)
c i : ’

where:

3("5;3 Ci BCEQ _ L‘(Cnﬂ&kcm

(>

0-
x
]

(mad | () (‘m*ﬁ (v-n\

is such that the new position of the stres.

continues to be on the vield surface.

(1)

3
.:I'I

Ziegler H. (1959) Quarterly of ipplied Mathematics



Let's study the way that further stress induced
anisotropy is taken care of by the model.

Initially due to the method of deposition:

(m) o
Sl'.}:OiS = O : L#S

I7 during subsequent shearing :
QS =0 ) L #

(i.e no rotation of the principal stress planes occurs),
then eq. A-IV-I1 and A-IV-10 result in: ch:f;}z o for
l#j . 1.e the principal axes of anisotropy do not rotate

and then equation A-IV-8 gives that:

clziszo ; L#E]

i.e the principal axes of strain do¢ not rotate, Loo,. On

the contrary if:

i.e the principal stress planes rotate during shearing,
then the principal axes of anisotropy and the principal
strain axes will rotate, and in general these three sets of

axes Will not coincicde.



Simplification of the model for the case of axisymmetric

and plane strain locading.

Axisymmetric and Plane strain loading conditions are very
common in practice. Especially for this model due ¢to the
large number of parameters involved in the computation it is
almost impossible te use the medel in general
three-dimensional problems because of severe storage
restrictions. |
Plane strain in the z=direction as well as axisymmetric
loading around the y-a2xis both have T,z =T, =0 at all
times. Since these components of stress vanish, we can
represent the medel in the subspace of the three
non-vanishing independent components of the deviatoric stress
tensor. Mroz (1667) introduced this space for the similar
case of plane stress. Prevost (1977) treated the Plane
strain and axisymmetric cases.

The following stress components are introduced:

51- 3—§C x+63) = -%‘Sy)-

. A
52: '—2_(6-3‘6) (A-\\J—\B\j
S-b = \[g -C'ty

) ) . _ R
The associated kinematic hardening parameters for the m

surface are:
fen

b4

{m)

L, =

vt



) jg/— Uﬂ SN
OZ=2‘ _Q"‘/

(A-1v-1e)

(v
‘fg C]xy

and the correspoading strain measures are:

M
{
‘—'A
~
'\
w
\
N
Y
-’

(A-w-19)

m
o
1]
b))
E?<

Then the yield surfaces are described by eguations of the
form:

iz ~ N
'?mafz(sw r /f - kK=o (a-vi-ve)

L=

and the incremental stress=-strain equations reduce to:

(A-1v-1T)
or
o 4S5 2 s-dT S Jry ds.
T U TR PES (v 18

JRPA
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APPENDIX V

APPLICATION OF THE STRESS PATH METHOD IN
THE PREDICTION OF THE SETTLEMENT
OF A STRIP FOOTING

The undrained loading of a strip footing resting on the
surface of a uniform soil deposit is studied, to investigate
the effect of choosing various stress paths in the
application of the Stress Path Method.

The specific problem was chosen because it is one of the
few practical cases, where the stress distributions are
independent of the properties of the soil, (1) and
consequently the Stress Path Method is particularly suited.
In addition the applied load was chosen small enough to aveoid
significant local yielding and stress redistributions in
which case the stress increments predicted from the Theory of
Elasticity would be in error.

The soil was assumed to have properties similar to the
normally consolidated Boeston Blue Clay.
The geometry chosen is shown in Fig. A=-V=1,

Thne settlement of a point lying at a depth 1.80b under the

(1)

Assuming Elasticity and uniform deposit.



2 OP
.85
o F GO'D Az
52b
b=5Om
<, = 0.92
5 Ap =30 ¥
iex Xb = 1.0.&/"13 L
. S e~ A R I e

centerline of the footing was studied by choosing two

different paths.
1. A Vertical Path AQB

The stress increments along AtB correspond to undrained
Elarne strain conditions. Data from CK_U(PSC) tests on
normally consolidated Boston Blue Clay were used. Since the
peak 1in this test 1is reached at very low strains, (about
0.4%), it is hard to establish the shape of the stress-strain
curve in this region accurately. For this reason two possible
shapes were used in the analysis.

{a} A straignht line between the points:

5.-67 1_ ke e A~ }
: - = 0.24 €a= 0.0/
U] { nga 2 J J

~4



€,-%1 _ _ o
2] { Soe 034 €a=0 .4 % {

{b} A Hyperbola of the form:

0,-€1 - Ea + 1— lr(,

28ve M+ Ea <

with parameters:
m=0.00469274
n=8,8268
The settlements computed with each of the two shapes were:
From the Straight line: W, =26.0 mm

From the Hyperbola : Wy = 7.6 mm

2. Horizeontal Path AZB

The settlement along this path 1is mainly governed by the
shear strains. In applying the stress path method, shear
stresses are computed by using Theory of Elasticity (1) and
then the shear strains are obtained by using the test data of
a CK,UDSS test (Direct Simple Shear). However in addition
to the shear strains, the vertical settiement depends on -the
gradient of the horizontal displacements.

In fact since:

du L w
6= 22 7

1)

They are independent of tne material properties for uniform
deposits

148



by integration we gat:
- A
A A
Wy = [ e dy - Escﬂx
J o= /
B B
The first term should not be neglected. For this reason it

was assumed that the ratio:

A / /,Az
u
fb'dx / v_f a_.?_ d)‘-
3" ' B

is the same in both the elastic solutiocn and in the stress
path method. The elastic solution gave the value =4.76 for
the above ratio. Using this number in the stress path
method, the settlement of point B computed via the path A B
was found:
Wy = 13.3 mm

The following table shows a summary of the results for the

two paths:
TABLE A-V-1

Settlement of a point lccated

1.8b below the centerline

c¢f a strip footing

Vertical Path Horizontal Path [

straight line Hyperbolic

A

(mm) 26 .0 7.6 13.

SN |




CONCLUSIONS
The c¢computed settlement 1Is greatly integrstion path
dependent. In addition it depends on the stiffness of the
stresé-strain curve (straight line Vs hyperbolic
approximation) which is hard to define accurately
experimentally.
The above discrepancies are mainly due to strain

incompatibilities.
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