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ABSTRACT

Soils exhibit a non-linear and inelastic response even at
low stress levels and hence require comprehensive modelling.
An overview of Plasticity Theory is presented with emphasis
on applicatiuns to soils.

Two incremental stress-strain constitutive laws are
studied and evaluated by comparing their predictions with
laboratory results on Normally Consolidated resedimented
Boston Blue Clay.

The Cam-Clay Model is an Effective Stress model,
appropriate for drained, undrained and partially drained
(consolidation) loading. Comparisons with results of
undrained tests show generally good predictions of trends.
However the accuracy of predictions is limited especially for
anisotropically consolidated soils.

The Mroz-Prevost Model is a Total Stress model,
appropriate only for undrained loading conditions. The model
provides good predictions but requires a large number of
input soil parameters, which may limit its usefulness in
practice.

Finally both models are used to predict the stress and
pore pressure fields around an expanding cylindrical cavity.

Thesis Supervisor: Pr. M.M. Baligh

Title : Associate Professor of Civil Engineering
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CHAPTER I

INTRODUCTION

The response of a soil mass to changes in loading

conditions is of primary importance in Soil Mechanics. The

geotechnical engineer evaluates the performance of a

foundation (or an earth structure) by means of two criteria:

1. Adequacy against excessive deformations (i.e.

settlement or lateral movement).

2. Adequacy against gross shear failure (i.e.

instability).

The first criterion basically calls for the prediction of

deformation fields. However, instability problems are also

deformation-type problems. They simply occur when loading

reaches a limiting state where the external energy supplied

by the added loads can no longer be absorbed by the soil as

strain energy and/or plastic deformation energy.

According to the Principles of Classical Mechanics, the

prediction of deformations requires that the following

conditions be satisfied everywhere in the soil mass:

8



1. Equilibrium of stresses.

2. Constitutive relations of the material (i.e. relations

between stress and strain components).

3. Strain compatibility.

Due to the complexity of actual foundation problems and

the need for predictions in designs, the above conditions are

methodically violated. Three examples are presented:

1. In conventional slope stability analyses, (1) equilibrium

is only satisfied globally and the shearing resistance of

the soil is only needed along the assumed failure (shear)

surface. Equilibrium and Constitutive relations at different

points in the slope are neglected and strain compatibility

cannot be (rigorously) considered, because deformations are

basically neglected (except at the location of the shear

surface). Consequently, stability considerations are usually

limited to stress fields with little or no reference to

kinematic restrictions (i.e. compatibility).

2. In estimating stress distributions in a soil mass

Elasticity Theory is often used. In some cases results are

satisfactory. (2) However, soils rarely exhibit the linear

behavior assumed by the -theory and hence constitutive

relations are violated.

3. The Stress Path Method (3) (4) is another example where

e.g circular arc analyses.

(2)
when local yielding is not extensive.

(3)

9



strain compatibility is violated. The method basically

consists of obtaining 'undisturbed' samples of the soil,

subjecting them to stresses and stress changes (1) that are

expected in the field and then computing deformations by

appropriately integrating the measured strains. In applying

the stress path method two different stress-strain relations

are used. A simplified (usually linearly elastic)

stress-strain law is used to estimate the stress changes in

the field and a more rigorous one (obtained from the tests)

is used to obtain the deformations resulting from the

estimated stress changes.

The use of two different constitutive laws results in strain

incompatibility. The effect is less pronounced in problems

where the stresses are relatively independent of the

material response. (2) In such problems (or cases

approaching them) realistic stress changes can be calculated

prior to the experimental evaluation of the stress strain

characteristics of the soil. Unfortunately, few problems

T.W. Lambe (1967).'Stress Path Method'.JSMFD, ASCE, Vol.93,
No.SM6, pp. 309-331.

(4)
T.W. Lambe and W.A. Marr (1979) 'Stress Path Method: Second
Edition'. JGED, ASCE, Vol.105, no.GT6 pp 727-738.

(1)
as they are estimated by using simplified methods of analysis
such as the Theory of Elasticity.

(2)
such as the loading of a horizontal layer with constant
thickness extending horizontally to infinity, by a constant
load also extending to infinity.

10



result in stresses that are independent of the material

properties.

In order to evaluate the effect of neglecting the strain

compatibility in the stress path method, the settlement of a

point lying under the centerline of a smooth flexible strip

footing, resting on the surface of a uniform soil deposit

which is loaded in an undrained mode, was evaluated by using

two different integration paths for the strains.

(a) A vertical path.

(b) A horizontal path.

The analysis (described in Appendix V) shows that by

neglecting strain compatibility the settlement computed from

the second path is almost double than the settlement computed

via the first path.

Furthermore the Stress Path Method has serious additional

limitations. It requires an exceptionally high standard of

sampling and testing and is therefore very expensive.

Moreover, even given perfect sampling, it has been

demonstrated (1) that the mere process of stress relief

during sampling gives rise to behavior in the laboratory

which may differ appreciably from the in-situ condition. A

third difficulty is that in all but the simplest situations

the stress changes that occur in the field are too complex to

reproduce in routine laboratory tests, since they involve

Skempton A.W and Sowa V.A (1963) 'The behavior of saturated
clays during sampling and testing.' Geotechnique 13,4 pp
26 9-290 .
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rotations of principal stresses; it is often the region of

complex stress changes that is of greatest interest to the

engineer. Finally laboratory simulation of stress changes in

zones of local yielding is very difficult to perform with

existing laboratory tests.

Recent developments of large digital computers have

rendered possible, in principle, the solution of a wide

variety of problems without the need to violate equilibrium

or compatibility (e.g. by using the Finite Element Method).

In fact, by employing such techniques the fictitious

distinction between stability and deformation problems can be

eliminated by treating stability problems as problems of

large uncontrollable deformations (i.e failure).

The major difficulties in implementitng these powerful

computational tools in practice are:

1. The complicated behavior of soils.

2. The difficulties associated with determining and

describing the soil conditions in situ.

The complicated behavior of soil is caused by:

1. Soils exhibit non linear and inelastic behavior even

at low stress levels and during unloading. (1)

2. The behavior of soils under stress (i.e.

(1)
Hardin B.C. (1972) 'Effects of Strain Amplitude on the Shear
Modulus of Soils'. Technical Report No. AFWL-TR-72-201 Air
Force Base, UM. 63 p.

12



compressibility moduli and strength) is controlled by

the effective stresses acting on the skeleton. Since

soils are multiphase materials where water (and

possibly gases) contribute in resisting the applied

stresses , the response of soil masses can only be

estimated rationally and systematically after the

pore pressure distribution is determined. Pore

pressures develop in soils due to isotropic

(hydrostatic) and shear (as discussed later) loading

and dissipate with time. Due to these complexities,

analyses are usually performed for two limiting

conditions:

(a) Undrained; where no fluid migration takes place

during loading and

(b) Drained; where no excess pore pressures develop

during loading.

3. Shearing causes a tendency of volume change. During

drained shearing, dense sands and highly

overconsolidated clays tend to dilate, whereas loose

sands and normally consolidated clays contract.

However, after significant shearing it is generally

accepted that soils approach a condition of no

volume change. (1) When drainage is prevented (i.e.

in undrained cases), negative (decreased) pore

(1)
Rowe P.W. (1971) 'Theoretical Meaning and Observed Values of
Deformation Parameters for Soil'.Proc. Roscoe Memorial Symp.,
Cambridge U. Editor R.H.G. Parry, pp.143-1194.

13



pressures develop during shearing of dilatant soils

and positive (increased) pore pressures develop in

contracting soils. This coupling between volume

change and changes in shear stress cannot be

explained or simulated by the Theory of (linear

isotropic) Elasticity.

4. Many soils (undrained or drained) exhibit a

significant reduction in shearing resistance after

the peak strength is reached. Strain softening

behavior poses existence and uniqueness problems in

the derived solutions. (1)

5. Some soils exhibit significant anisotropy due to the

method of deposition (inherent anisotropy) and/or

subsequent straining (often called stress induced

anisotropy).

6. Soil conditions in situ are difficult to estimate.

Soils are natural materials and therefore have

variable properties (non homogeneous). Undisturbed

sampling poses serious problems especially in sands.

On the other hand, in situ tests are usually hard to

interpret, because of the complicated boundary

conditions and/or the non uniform conditions they

impose in the soil (e.g Field Vane, Cone etc. )

(1)
Prevost J.-H. and Hoeg K.(1975) 'Soil Mechanics and
Plasticity Analysis of Strain Softening' Geotechnique 25,2,pp
279-297

74



Numerous formulations have been proposed in the Soil

Mechanics literature, in recent years, to describe soil

behavior under stress. Some of these models are strictly

one-dimensional and thus their use in practical problems

which are usually two or three dimensional is subject to

significant errors. On the other extreme, some very general

models are not useful in practice because of the large number

of parameters they require to predict performance. (1) (2)

The theory of Incremental Plasticity provides a powerful

and versatile mathematical tool for modeling Soil Behavior.

It was initially developed for metals but in the last two

decades, considerable efforts were devoted to apply the basic

concepts of plasticity theory to soils. In metals, inelastic

deformations involve various dislocation processes which

depend primarily on the level of shearing but are largely

unaffected by the level of the hydrostatic stress. Therefore

Plasticity Theory for soil applications requires significant

modifications in the original Metal Plasticity Theory.

This study summarizes the state of the art of soil

plasticity and evaluates the capabilities and limitations of

a number of promising models.

(1)
Cuellar V. et al (1977) 'Densification and Hysteresis of
Sand under Cyclic Shear' JGED ,ASCE ,Vol.103,No GT5,
pp399-416

(2)
Bazant Z. and Krizek R. (1976) 'Endochronic Constitutive Law
for Liquefaction of Sand' JEMD ASCE, Vol.102,No.EM2,pp
225-238

'3



Chapter II reviews the basic concepts of the Theory of

Incremental Plasticity for the Geotechnical Engineer.

Chapter III discusses various isotropic models and

derives the incremental stress-strain equations.

Chapter IV applies some promising isotropic models in

various laboratory loading conditions and discusses their

limitations.

% Chapter V decribes an anisotropic model developed by Mroz

and studied extensively by Prevost. The model is evaluated by

comparing predictions to test results performed on Boston

Blue Clay.

In Chapter VI the expansion of a cylindrical cavity

problem (pressuremeter) is interpreted by means of an

isotropic model and the Mroz-Prevost model.

16



CHAPTER II

FUNDAMENTALS OF PLASTICITY THEORY IN SOIL APPLICATIONS

2.1. Incremental Formulations.

Non-linear behavior of materials can be described by

constitutive laws formulated either in an integral or

differential form.

Given a stress (or strain) history at an element of soil,

integral laws relate the strains at any loading stage with

the corresponding stresses, whereas differential (or flow)

laws relate increments of strains to the corresponding

increments of stresses.

Integral formulations are appropriate for non-linear but

elastic materials (rubber-like materials) where no energy is

dissipated by means of plastic deformation. These materials,

when unloaded, follow the same curve, in a stress-strain

diagram, that they followed when they were loaded. Unloading

in soils is generally much stiffer than loading, and this

makes integral laws have limited value in the solution of

17



boundary value problems by numerical procedures. On the

contrary, differential relations follow different paths in

loading (which induces irreversible strains) and unloading

(where no irreversible strains occur) and so they are more

appropriate for energy dissipating materials such as soils.

In the following only differential laws will be studied.

We will also restrict this study to rate independent

constitutive relations i.e we will exclude creep and

relaxation effects. Rate independency is a severe restriction

to the constitutive relations, especially for modelling

highly structured and/or highly plastic or organic clays.

However for more typical clays the exclusion of

rate-of-loading effects is a reasonable assumption.

is



2.2 Yield Function.

For convenience, the state of stress at any point of a

soil mass is mapped onto a point in a nine-dimensional stress

space with coordinates given by the stress components:

In fact, because of conservation of angular momentum,

Ez z 'Ey for all ij and hence a six-dimensional space

suffices. Any loading sequence is thus represented in the

stress space by a stress path. About the origin of this space

(zero stresses), an elastic zone is assumed to exist. Stress

paths located within the elastic zone produce no change in

permanent (i.e irreversible or plastic) strains. The rest of

the space defines the totality of plastic states and the

boundary between the two subspaces defines the Yield Surface.

It is a fundumental assumption that the total strain

increments (in the plastic range)) , may be decomposed

into elastic components E! and plastic components LA

i.e:

where the symbol 'd' denotes an increment of the quantity to

which it is applied.

The sum (over the strain path) of the corresponding plastic

strain increments, defines the components of the plastic

strain tensor

19



In addition, we assume that the elastic strain increments are

linearly related to the stress increments by the generalized

Hooke's law:

S4 .= CQrZ-:2)

Einstein's summation convention of repeated indices is used

in Eq. 11-2 and the rest of this thesis unless otherwise

stated. The matrix is the Elastic stiffness (rigidity)

matrix which is assumed to be symmetric and positive

definite.

For convenience eq. 11-2 can be written in a matrix form:

or inverted to determine the elastic strain increment CE

in terms of the stress increment 6 :

where . is the rigidity matrix and e is the

flexibility matrix (inverse of C )

For isotropic materials the elastic stress-strain relations

reduce to:

where G and K are the shear and bulk modulus respectively,

and 0 is the Kronecker delta (equal to one for i=j and

equal to zero for i different than j ).

20



The yield surface is often (1) written in the form:

and defined such that, for elastic states, the value of the

function is negative (i.e the corresponding stress points lie

inside the yield surface) and plastic states satisfy eq. 11-4

(i.e stress points lie on the yield surface). States which

make the function positive are inadmissible. Furthermore,

when the soil is in a plastic state (i.e when f=O ) any

infinitesmal stress change which induces plastic strain

increments, is referred to as a 'loading' condition and leads

to a new plastic state. On the other hand 'unloading' refers

to conditions resulting in no plastic strain increments.

During loading, plastic strains accumulate and (since we

require eq. 11-4 to hold) the shape, size and location of the

yield surface may change in the stress space, but the stress

point always remains on it. During unloading, the yield

surface does not change in shape, size and location and the

stress point retreats from it. Further stress changes may

lead to situations where the stress point again reaches the

yield surface and starts to push it, i.e yielding -restarts.

However yielding is not synonymous with failure, (2) but only

(1)
Hill R. (1950) 'The Mathematical Theory of Plasticity',
Clarendon press, Oxford England.

(2)
Failure (or critical state) is defined as the condition where
the material undergoes significant shear strains with no
further changes of the applied shear stress and no further
volumetric strains.

21



means the onset of irreversible strains. As mentioned

earlier, (Chapter 1), plastic strains develop in soils at

very low stress levels and even during unloading and

therefore, the notions of elasticity and yielding are

somewhat arbitrary and are only maintained herein for the

sake of clarity and mathematical convenience. The effects of

this simplification depend on the history and level of

straining in the problem considered.

The parameters defining the functional form of the yield

surface (typically functions of plastic strains) may vary in

such a way that the yield surface expands during loading (i.e

stresses increase) and then the soil is said to be

strain-hardening. Inversely when the yield surface contracts

during loading, stresses decrease and the soil

strain-softens. Finally when the yield surface does not

change during yielding, the onset of yielding and the

critical state (failure) occur simultaneously and a soil

model having such a yield surface is called perfectly

plastic.

22



2.3. Hardening rules.

The form of the yield surface given by eq. II-4 is too

general for practical purposes and simplifying assumptions

are necessary. It is almost universally accepted that the

shape of the yield surface is invariant during straining.

If only the size and location (but not the shape) of the

yield surface is allowed to vary during loading, the effect

of stresses and plastic strains on the yield surface can be

decoupled and eq. 11-4 can be written in the form:

Function f' describes the shape of the yield surface whereas

function F determines its size based on the plastic strains

undergone during loading, and thus describes the strain

hardening or strain softening characteristics of the soil.

This type of hardening or softening behavior is called

Isotropic Hardening (or Softening).

Another type of hardening is the so-called 'kinematic

hardening'. It refers to a shift (translation) of the yield

surface in the stress space without (necessarily) a change in

size during yielding. Mathematically a kinematic nardening

model is described by:

where Qj; are the coordinates of some characteristic point

of the yield surface (e.g its center) and 'c' the SiZe

23



(radius) of the yield surface.

Combining eq. II-5a and eq. II-5b , we can introduce an

isotropic and kinematic hardening model which has the

following functional form:

4a~CEL\.Qvi)

A further simplification is introduced by assuming that

the hardening characteristics of the soil depend on invariant

measures of plastic strain, rather than the individual

plastic strain components. This assumption is always done

for isotropic models (as we will discuss in a subsequent

section) but it is quite common in some anisotropic soil

models like the Mroz-Prevost Model.

Defining the plastic deviatoric strain increments by:

6( I ~dL)
r(i .7U

then, two invariant strain quantities are given by:

The f irst,

P~

Sv, is a measure of plastic volumetric strains

24
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and the second ,E? , provides a measure of plastic shear

distortions (deviatoric strains). Using these twc invariants

in the equation of the yield surface, eq. 1I-5a and eq. I:-6

take the simpler form:

p CE46Hc

4E f'eu-c( HCE

~r) ~O

=0

(= .(9)

(11 - 9 ct )



2.4. Incremental stress-strain relations (Flow rule)

Elastic materials have no memory, i.e the strain

increments depend only on the specified stress increments and

do not depend on the current stress state nor the stress (or

strain history). On the contrary Theory of Plasticity

introduces such characteristics.

In order to relate the plastic strain increments to the

current stress state, a so-called 'Flow Rule' is required.

This functional dependence can be quite arbitrary and is

usually chosen to simplify analyses rather than comply with

physical requirements (such as laws of thermodynamics or the

behavior of the material in the micro-scale).

We start from the intuitive remark that a stress path which

remains on the yield surface without moving it, should not

result in any plastic strain increments, i.e

if df=O then dei=O.

Using eq. II-5a the last requirement results in:

So a functional dependence of the form:

is justified.

In addition, if we introduce a 'Plastic Potential Function'

g( such that:

26



= 0C

then, instead of nine unknown proportionality parameters

(these are functions of the stress and the plastic strain

components) in eq. 1-11, we only have to specify the

potential 'g' (which is only a function of stresses), and the

scalar O (which includes some dependence on the strains).

Then eq. II-11 reduces to:

This implies that the plastic strain increment vector, is

perpendicular to the plastic potential function (actually to

the surfaces g=constant). Note that the relations between the

plastic strain increments and the stress increments are

linear, and for convenience we can write eq. 11-13 in the

following matrix form:

where8E is the vector of plastic strain increments and

(=6 the vector of the corresponding stress increments.

An interesting remark is that the matrix is

singular (i.e it cannot be inverted) because if it was not

singular, then given any arbitrary vector cs , we could

solve eq. II-13a for . Then using these computed stress

increments in eq. II-13 (which is equivalent to eq. U1-13a ),

we will evidently get the same plastic strain increment

vector (which was initially chosen arbitrarily)". owever

27



this vector is not arbitrary (since it is perpendicular to

the plastic potential according to eq. 11-13). This proves

that is singular.

The final incremental stress-strain relations are then

easily obtained by using eq. II-1 , II-2b , and II-13a :

( = E _ - = E46 - (S?85

or:

Usually the elastic strain increment _ is small

compared to the plastic strain increment 5 r .However, it

cannot be neglected since is singular and consequently

eq. 11-14 cannot be inverted (inversion is usually required

in numerical schemes). Consequently elastic strains although

they do not contribute much in the total strains, allow us to

invert the resulting equations.

Two important points require attention:

1. For simplicity the plastic potential function 'g' is

often assumed to be identical to the yield function 'f',

i.e we assume that they are given by the same functional

form. In this case the flow rule eq. 1-13 becomes:

K1 = c k P~

23



which is usually called 'associated flow rule'.

2. The 0<' parameter describing the magnitude of the

plastic strain increments (eq. I1-13), is evaluated from

the so-called 'connectivity condition', which basically

requires that the change in size of the yield surface

(which depends on ) should be such that the new

stress point is always located on the yield

surface. Detailled expressions for evaluating 0( will

be given when the equations for the various models will

be derived (see also Appendix I).

29



2.5. Convexity of the yield surface and normality.

In Section 2.4 the concept of an associated flow rule was

introduced for simplicity of the mathematical formulation

(elimination of the necessity to evaluate a plastic potential

function). However there are somehow stronger indications

that such an assumption should be done.

Let's assume that a plastic state has been reached and

the stress point is currently located on the yield surface. A

stress increment A6 is then applied and elastic strain

increments and plastic strain increments are

induced. The elastic strain increments are related to the

corresponding stress increments through Hooke's law. Assuming

isotropy, the elasticity matrix is positive definite

and consequently:

d 45 a = S.. de>

Under such an assumption the uniqueness of solution in linear

elasticity can be proved. (1) Drucker (2) based on the

arguments used to establish uniqueness in linear Elasticity

assumed that the plastic flexibility matrix S is also

(1)
Timoshenko S.P. and Goodier J.M. (1970) 'Theory of
Elasticity' McGraw-Hill , pp 269-271

(2)
Drucker D.C. (1959) 'Definition of stable inelastic Material'F
J. of Applied Mechanics, 26, pp 101-186

30



positive definite, which directly results in:

and based on that, proved the uniqueness of solutions in

Incremental Plasticity using exactly the same arguments as

for Linear Elasticity. Drucker's assumption is referred in

the literature as Drucker's Postulate. For strain hardening

materials 5r- is required to point outside the current

yield surface during loading and then eq. 11-17 means that

the plastic strain increment vector is orthogonal to the

yield surface (Normality Rule).

'yield sur fa - =

Based on the above postulate it can be proved (1) that the

complementary work done during a cycle (see figure) which

includes an infinitesmal plastic loading path, should be

non-positive. Expressing the complementary work during such a

cycle, it can be found that:

where is a stress point inside the yield surface,

(1)
Martin J.B. (1975) "Plasticity: Fundamentals an& General
Results". MIT Press, Cambridge Mass. 931 p.

31



a stress point on the yield surface and GE the

infinitesmal plastic strain increment, corresponding to the

stress increment 8ciei (see previous figure).

Eq. 1-18 again leads to the normality rule and it also

requires that the yield surface is convex, since is an

arbitrary point inside the yield surface.

Assuming that normality holds, strain softening materials

violate Drucker's Postulate (i.e eq. II-17) (1) and

consequently there is no reason to obey the normality rule.

However since most real materials include both a strain

hardening (at low strains) and a strain softening region (at

high strains) normality is often retained (even for strain

softening materials) for the sake of convenience and

simplicity.

As we discussed previously, assuming normality for a strain

softening material means that:

Combining this with eq. 11-15, we can immediately see that

o is negative for a strain softening material and positive

for strain hardening materials.

Eq. 11-19 means that the plastic flexibility matrix is

negative definite for strain softening materials. In fact

using eq. II-13a and 11-19 we get:

(1)
since for such materials the stress increment points towards
the interior of the yield surface
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Prior to using such material laws, existence and uniqueness

of solution has to be proved (because Drucker's proof is only

valid for positive definite matrices). Prevost et al. (1)

studied the conditions under which uniqueness of solution can

be guaranteed, as well as the limit at which multiple

solutions are possible (i.e when failure occurs). In fact a

strain hardening material cannot fail theoretically. A

strain softening material on the contrary, will fail when the

strain softening zone extends spacially to a degree that the

external work can no longer be absorbed by the material as

elastic and/or plastic strain energy.

In the following Chapters Drucker's normality rule will

be used unless otherwise stated. However it has to be

understood that it does not result from thermodynamic

requirements, nor it is necessary for uniqueness; it is just

an assumption to simplify the mathematics. In addition using

associated flow rules leads to symmetric flexibility matrices

which greatly simplifies the numerical calculations.

In fact eq. 11-15 can be rewritten:

which means that the plastic flexibility matrix is given by:

(1)
Prevost J-H. and Hoeg K. (1975) 'Soil Mechanics and
Plasticity Analysis of Strain Softening'. Geotechnique 25,
No.2, pp.279-297.
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which is symmetric. However is also symmetric, hence

their sum (which is the flexibility matrix) is symmetric,

too.
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2.6 Isotropic yield functions.

A soil is isotropic when its stress-strain-strength

behavior does not depend on the inclinations of the principal

stress directions. In such a case the explicit dependence of

the yield function on the stress components (eq. 11-9), can

be substituted by a dependence on merely three mutually

independent invariant stress measures.

In choosing these measures it is convenient to separate the

effect of hydrostatic pressure from the effect of shear

stresses because of the different response of soils to

hydrostatic versus shear (deviatoric) loading.

The first invariant I, of the stress tensor, provides a good

measure of the hydrostatic confinement. It is defined as:

where are the principal stresses. We further

define the components -of the deviatoric stress tensor, by

just subtracting the effect of the hydrostatic part from the

corresponding stress components as follows:

5L( U 3

The second and third invariants J2  and 3 of the

deviatoric stress tensor are commonly used as invariant

stress measures in the yield function. They are defined as

follows:
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For simplicity, the dependence of the yield function on

the 33invariant, is often omitted because it is

considered that only one shear measure is enough to express

the dependence of actual behavior on shearing. (1) However

Nayak et al. (2) and Lade and Duncan (3) suggest that

inclusion of the third invariant may be a realistic

improvement.

In the following we will only use dependence of the yield

function on the and Ta invariants.

A further improvement according to Roscoe and Burland (1) is

to use these two measures, but multiplied with appropriate

coefficients to make them energetically congugate with the

invariant strain measures defined by eq. IL-8.

Using:

(1)
Roscoe K.H. and Burland J.B. (1968) 'On the Generalised
Stress-Strain Behavior of Wet Clays'. Eng. Plasticity. Heyman
and Leckie Eds. ,Cambridge U. Press, pp. 535-609

(2)
Nayak G.C. and Zienkiewicz 0.C. (1972) 'Convenient Form of
Stress Invariants for Plasticity'. J. of the Str. D., ASCE
Vol 98, No ST4 pp. 949-954

(3)
Lade P.V. and Duncan J.M. (1973) 'Cubical Triaxial tests on
Cohesionless Soil' JSMFD,ASCE Vol 99,SM10, pp. 793-812
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energetic conjugacy means that :

gVA4 =6..cAEJ= 8E 9cE

which is an expression of the increment of the plastic work.

Using 'p' and fqf , the equation for the yield surface II-9,

for the simplified isotropic material becomes:

.- / 4 - H V(cs (3-a 24)

This last form is the basis for most isotropic models and

will be discussed in detail in conjuction with the Cam-Clay

model.

The incremental stress-strain relations (eq. II-1q), can also

be simplified for the case of isotropic models.

It can be proved (see Appendix I ) that:

(r
caE1

,Imo_

I1 ?e-r-

(2 -25')
?=I

These equations express the normality rule in a two
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dimensional invariant stress space 'p' and

appropriately chosen invariant strain measures

+4f.( v

0l

'C:,
with

and

I I'

yic4" s.rcc t

S4A F ki

6 '. In fact if the yield surface is plotted in the p,q

space (see figure) the plastic strain increment vector E

is perpendicular to the yield surface. The projections of

this vector on the axes, are equal to the volumetric and

distortional plastic strain increments.
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2.7. Effective versus Total Stress Formulations.

The Effective Stress concept (1) is universally accepted

in soil mechanics. It states that the total stress vector

6 acting on each soil element, is resisted by the pore

water pressure components U. r (2) and by stresses on the

soil skeleton 6 , according to the equation:

or in increments:

Under fully drained loading conditions, no pore pressures

are created in excess to the steady state (usually

hydrostatic) conditions.

Under fully undrained conditions pore pressure increments

are developed to reduce (or increase) the effective stresses

to a degree that the no-volume-change condition holds.

It is widely accepted (3) (4) (5) that effective stresses

(1)
Terzaghi K.V. (1925) 'Erdl rmechanik auf bodenphysikalischer
Grundlage' Vienna

(2)
m stores the Kronecker delta components.

(3)
Bishop A.W. and Blight G.E. (1963) 'Some Aspects of Effective
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govern the behavior of soil materials irrespective of

drainage conditions. More specifically experiments indicate

that strength and volume change of all soils, are controlled

by the effective stresses for each mode of deformation.

The Effective Stress concept, however, does not mean that

there is a unique relationship between effective stresses and

the various strain measures (e.g. void ratio, moduli etc).

Such unique relationship holds only in Theory of Elasticity.

The Effective stress concept means that:.

Loading (or unloading) paths which follow the same

stress path in an EFFECTIVE stress space, will have the

same strain measures (e.g. void ratio, moduli etc)

regardless of the magnitude of the total stresses

associated with this path.

On the contrary, a total stress concept, would imply that:

Loading (or unloading) paths which follow the same

stress path in a TOTAL stress space, will have the same

strain measures, regardless of the magnitude of the

effective stresses associated with this path.

Stress in Saturated and Partly Saturated Soils'. Geotechnique
13, p. 177

(4)
Jennings J.E. (1961) 'A Revised Effective Stress Law for Use
in the Prediction of Behavior of Unsaturated Soils'. Pore

pressure and Suction in Soils, London (Butterworth)

(5)
Skempton A.W. (1961) 'Effective Stress in Soils, Concrete and
Rocks.' Pore Pressure and Suction in Soils, London
(Butterworth).
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According to the previous definitions, effective stresses

do control soil behavior. However it needs to be clarified

that when we say 'total' stresses we do not mean total

DEVIATORIC stresses. Most formulations which are mentioned in

the literature as 'total stress formulations' (e.g. the

Mroz-Prevost model), involve deviatoric stresses. As we will

prove later, this is necessary in order for the resulting

matrices to be non-singular. At the same time, however, the

use of deviatoric total stresses instead of total streses

makes these formulations equivalent to an effective stress

formulation (only for undrained loadind, though) as we will

also prove at the end of this section.

Under drained loading (i.e slow enough so that no

significant excess pore pressures to develop), only effective

stress formulations are applicable.

Under undrained loading (i.e fast enough so that water

does not have time to escape and consequently the assumption

of no volume changes is generally acceptable), pore pressures

develop and the externally applied loads are undertaken by

both the soil skeleton and hydrostatic pressures in the

liquid phase. In this case both total and effective stress

formulations can be used (and they have been used in the

Literature), and their comparative merits and limitations

will be studied in the following:
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A. Effective Stress Formulations.

An effective stress incremental Constitutive relation is

of the form:

Or: . g

where S are the effective stress changes and C and S

the incremental stiffness and flexibility matrices

respectively.

Cam-Clay model is such a formulation.

During an undrained loading the following question arises:

Given a total stress increment what is the

corresponding pore pressure increment ?

Let's assume that we know the total stress increment

46 and we want to compute the corresponding pore pressure

change AU , resulting from this increment. If _ is the

effective stress increment and M the Kronecker delta

vector (1) then:

M = - M.LL (-2-7)

If is the bulk modulus of water, B the bulk

modulus of the solids (i.e grains), 'n' the porosity and I a

6x6 unit matrix, then Appendix III shows that the pore

pressure increment will be given by:

(1)
It contains 1 at the normal stress locations and 0 at the
locations of the shear stresses.
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Eq. 11-28 relates linearly the pore pressure increment

with the components of the total stress increment, provided

that the effective flexibility matrix is known. (i.e an

effective stress model is used.)

For the more common case of incompressible grains and fluid

(BW =B1=co )eq. 11-28 simplifies to:

rn SAe45-8

The last equation may seem unfamiliar to the Geotechnical

Engineers. A form like:

where the contributions of the octahedral and the

deviatoric stress increments and AT respectively (1)

on the pore pressure increment are separated is more common.

Appendix III shows that eq. II-28a can be put in the form of

eq. :I-28b. The parameter 'a' depends only on the

(1)
Henkel D.J. and Wade N.H. (1966) 'Plane Strain Tests on a
Saturated Remolded Clay' JSMFD, ASCE Vol 92, No SM6, Nov
1966, pp 67-80.



cross-coupling terms between shear stresses and nc

volumetric) strains of the matrix S . Conse

there is no such coupling (as in Theory of Linear

Elasticity) then a=O. This means that the por

increment is equal to the total octahedral stress

a result well known in Theory of Elasticity.

It is interesting to note that an effectit

formulation can lead to total stress i

relationships. Using Eqs. 11-28 and 11-26 we can u

or

which is of the form:

Eq. II-29a provides the incremental strains in

the total stress increment.

For the common case of incompressible water and gr

total stress formulation derived above can be put f

deviatoric stresses (form similar to the Mroz-Prevc

In fact for this case eq. 11-29 reduces to:
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Substituting the total stress increment

the deviatoric stress increment _

stress increment from the equation:

C= .cK)

in terms of

and the octahedral

41 = As

the octahedral

reduces to:

stress terms drop out and eq.

Ac=Sobs-SrA
-(z s-

Eq 11-30 is of the form:

tz=Z A s0
and it relates linearly the deviatoric s

with the deviatoric total stress increments.

train increments

B. Total Stress Formulations.

Since there is no volume change, only the deviatoric

components A. of the strain increment must be considered

in the formulation. (1) On the other hand we cannot use the

total stress increment 4, in the formulation, since an

equation of the form:

(1)
The volumetric component is zero.

1I-29b

(Ir goo 03 C

-30

As = Cd



will necessarily have singular C matrix.

In fact let's assume an arbitrary deviatoric strain increment

Sc and applying eq. 11-32, compute the corresponding total

stress increment . The stress increment

where p is an arbitrary parameter, will correspond to the

same deviatoric strain increment AC because hydrostatic

pressures are completely resisted by the pore water and cause

no deviatoric strains. Consequently:

However if C is non-singular, we can always find a vector

X (not identically zero) such that:

Then combining eq. 11-33 and 11-34 we get:

Eq. 11-32 and 11-35 show that we have more than one solution

(1) of the matrix equation 11-32.

Hence matrix C is singular.

The singularity of C requires the use of a deviatoric

stress incremental constitutive relation and hence, instead

of an equation of the form 11-32 we consider:

, k= C AcZ-c

(1)'
actually we have an infinity of solutions since parameter p
is arbitrary



Matrix C is no longer singular.

The Mroz-Prevost model to be discussed in Chapter V, is

an example of a total stress model of the last form.

A disadvantage of the method is, that there is no way to

compute the pore pressures developed, unless we make

additional assumptions relating the magnitude of the pore

pressure changes with the change of the total stresses.

Let's summarize what we have discussed so far on the

effective and total stress formulations.

(1) An effective stress incremental model of the form:

E or: As E % r-2

is sufficient for the treatment of problems involving

drained loading, partially drained loading (i.e soils

undergoing consolidation) and loading of partially saturated

soils.

For an undrained loading it is also sufficient, provided that

an appropriate Variational Principle is used in the Finite

Element scheme.

(2) A total stress formulation has to be of the form given

by eq. 11-36.

i.e it has to involve the deviatoric stress increments and
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not the total stress increments. Such a formulation can only

be used for undrained loading conditions and fails to predict

the pore pressure increment. A separate model has to be used

for this purpose, which will associate the pore pressures

generated due to shear stress increments.

We will further show that such a total stress formulation

is equivalent to an effective stress formulation, in the

following sense:

If a total stress increment A , applied under undrained

loading conditions, results in no strain increment according

to either of the two formulations, then it will give no

strains with the other formulation, too. In addition if it

gives a non-zero incremental strain with one formulation then

the same total stress increment will result in a unique and

non-zero strain increment with the other.

In fact let 46 be a total stress increment such that the

corresponding strain increment through a total stress

formulation is zero. Then:

But since is non-singular, As =0

This means that the total stress increment has to be of the

form = Orn which is a hydrostatic stress increment.

However a hydrostatic stress increment does not produce

strains according to an effective stress formulation.

Similarly, if Lz4 qthen: AS # o which means that:
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i.e the stress increment is not hydrostatic. But a

non-hydrostatic total stress increment gives a unique and

non-zero strain increment through an effective stress

formulation, too.

Consequently the two formulations are equivalent in the sense

that there is a one-to-one correspondence between stress

paths in an effective stress space, and stress paths in a

total deviatoric stress space. These stress paths may result

in different strain paths (depending on the specific form of

each formulation) (1) but there is no stress path in one

stress space which corresponds to a null stress path in the

other stress space.

or the same strain path may result in different stress paths
depending on which formulation is used.



2.8. Summary of results.

The Theory of Incremental Plasticity enables the

increment of strains E in a soil element to be determined

in terms of the stress increment (1) {6 from an equation

of the form:

The term in parenthesis can thus be considered the

'incremental flexibility matrix'. is the contribution

of the elastic strains which is usually insignificant in

magnitude, but absolutely necessary in order for the

flexibility matrix to be non-singular. is the

contribution of the plastic strains; this matrix is singular

but symmetric (provided that an associated flow rule is used;

see Section 2.5). Inverting the last expression we get the

incremental stiffness matrix:

J= C e(r37)

In the special case of elastic behavior (e.g during

unloading) no plastic strain changes occur and consequently:

(1)
Total or Effective stress increment depending on if a total
stress or an effective stress formulation is used.

50



The elastic flexibility matrix depends on the elastic

shear and bulk moduli.

The plastic flexibility matrix depends on the following

quantities provided that normality rule is used:

1. The current stress state

2. The functional form of the yield surface (and the plastic

potential if a non-associated flow rule is used).

3. The strain hardening function HCE3,V) describing the

size of the yield surface during plastic flow. 'H' is

usually assumed to depend only on the two invariant

strain measures (eq.II-8).

4. The cummulative invariant plastic strains which depend on

the loading history (eq. 11-8).

Provided that normality rule is used, the incremental

stress-plastic strain equations are given by eq. LI-13. If

an associated flow rule is also used they are given by eq.

11-15. For the case of an isotropic model eq. 11-24 and 11-25

can be used.
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CHAPTER III

ISOTROPIC SOIL MODELS

3.1 THE CAM-CLAY MODEL

The Cam-Clay Model, developed by the Cambridge University

group, will be studied in this Chapter. The following

presentation is largely based on the paper by Roscoe and

Burland. (1)

The Cam-Clay model is an isotropic model and consequently

the general form of the yield function is given by (see eq.

11-24 in Chapter II):

where p is the mean effective stress, q is related to the

second invariant of the stress deviator, and E?6 are

their associated invariant strain measures (for exact

(1)
Roscoe K.H and Burland J.B (1968) 'On the Generalized

Stress-Strain Behavior of Wet Clays' Eng. Plasticity. Heyman
and Leckie Eds. Cambridge U. Press, pp. 535-609
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definitions see eq. 11-8 and 11-23).

By assuming a specific form for the function f' (e.g

ellipse) and the hardening function H, and applying the

procedure described in Appendix I, (1) the incremental

stress-strain relations can be obtained. However such a

mathematical presentation does not provide the necessary

insight to the physical principles of the model.

A further assumption (in addition to the assumption of

isotropic behavior implied in eq. 11-24), is that the effect

of the plastic shear strains on the size of the yield

surface is neglected. So plastic volumetric strains t. ,

solely determine the size of the yield surface, and eq. 11-24

now simplifies to:

{ 1E )- Z = i24a4

The plastic volumetric strain increments Cie are

directly related to the plastic void ratio increments by

the equation:

where 'e' is the void ratio. (2) Similarly for the elastic

components:

eP

(1)
also assuming normality and associated flow rule

(2)
The void ratio is defined as the ratio of the volume of voids
to the volume of solids in an element of soil.
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According to eq II-24a, the state of soil can be

represented in a three-dimensional space of ?p','qf, and the

plastic void ratio ' Z ' (or just the void ratio le'). This

space is familiar to the soil engineers because its subspaces

are used extensively. The e-p subspace is used for the

representation of results of isotropic (and K.) consolidation

tests (e.g the oedometer test). The p-q subspace is used for

the representation of shear tests. In fact in a triaxial

test E 2 = 3, and eq. 11-23 reduces to:

Fc4 3 Qu=Ia-i4-)-3

which are similar to the:

commonly (1) used in the representation of triaxial tests.

Fig. 2 represents various stress paths in the e-p-q

space. During virgin isotropic consolidation the point

representing the state of the soil moves along curve DE.

During isotropic rebound from points like D or E, the stress

point moves along curves DH or EJ'' respectively, which lie

on the e-p plane. (i.e the q=O plane) Note that points (on

the e-p plane) lying outside the region between the virgin

(1)
T.W.Lambe (1967) 'Stress Path Method' JSMFD,ASCE, Vol 93, No
SM6, pp. 309-331.
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isotropic consolidation curve and the e-axis cannot be

reached by any loading path. Points inside this region can be

reached by unloading from an appropriate position Ceg point

s can be reached by unloading from point D, lying on the

virgin isotropic consolidation curve). All such points

correspond to overconsolidated states. We can easily extend

the idea of a boundary curve (like DE) separating accessible

drominaccessible states on the e-p plane, to a boundary
surface separating accessible from inaccessible states in the

e-p-q space. The so-called 'State Boundary Surface' (SBS),

is represented by the surface EDICJ in Fig. 2.

Points inside the SBS correspond to overconsolidated states,

and it is assumed that Elasticity Theory is appropriate in

describing stress p a ths in this region. Linear ElIasticity

could be used, but it was prefered to stick to the results of
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tests which show that isotropic (and K.) rebound, relates the

void ratio linearly with the logarithm of the octahedral (or

'p') stress. Expressing this mathematically:

(a-4.)

where 'k' is an elastic (rebound) volumetric flexibility

measure. (1) However linear elasticity will be used for the

deviatoric components:

=P

- ?G Jz.'5 G7M-c9)

where CISV are the deviatoric stress increments, 82 -

are the deviatoric strain increments and 'G' an elastic shear

modulus.

Parametric studies performed for this thesis on the effect

of the specific value assumed for the elastic shear modulus

have shown that the value of 'G' has a negligible effect on

the resulting stress Oaths, and only a minor effect on the

stress-strain curves (because elastic strains are anyway

(1)
Using eq. 111-2 and eq. 111-4 we can compute the bulk modulus
'K' as a function of 'k':

Note that the bulk modulus 'K' is not a constant (as jn
linear elasticity), but it depends on the stress level 'o'
and the current void ratio. On the contrary, 'Ik' is assumed
to be constant.
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small compared to the plastic ones). (1) However 'G' has to

be finite because, otherwise, the flexibility matrix will be

singular (as it was proved in Chapter II).

From equations 111-4, 111-5 and 1I1-6, the elastic

flexibility matrix can be computed:

=

where for a principal stress space:

3p ~ )2GJr
{ 4p-e) -2i

snrIckI

3p C t +e) r j

Points on the SBS correspond to normally consolidated states.

The curve DIC, (Fig. 2), is the intersection of the SBS with

a vertical 'wall' passing through an isotropic rebound curve.

A Yield Surface, (as it was studied in Chapter II), is

represented in a space of stress components only, which is

For undrained loading the effect of the specific value of 'G'
is significant because the elastic volumetric strain is equal
in magnitude to the plastic one, which enforces the elastic
strain components to have the same order of magnitude with
the plastic ones.

57

F kU

C -4- ~

L3t~ aj

doC a
qs 3

CM -



evidently different than the e-p-q space shown in Fig. 2. It

would be nice however, instead of defining the yield surface

independently, to somehow relate it with the SBS, because

they do have something in common: they both separate

accessible from inaccessible states. (1) This is the major

contribution of the Cambridge University group. By relating

the yield surface to the State Boundary Surface they linked

an otherwise purely Mathematical Model to the mechanics of

actual Soil Behavior.

The Yield Surface will be represented in the p-q subspace

of the e-p-q space and specifically it will be assumed to be

identical to the projection DI'CI of the curve DIC (lying on

the SBS) on the p-q plane. Consequently a movement of the

stress point from the location ,say, I (on the SBS), to a new

location J (also on the SBS), will correspond to a change of

the yield surface from the position D'I'C' to the new

position E'J'. (the projection of the stress point stays on

the yield surface). An ellipse (see also Fig. 3), having its

major axis located along the p-axis (with length Pc ) and

passing through the origin was chosen as a yield function

(i.e it was assumed that the projection of the curves DIC on

the p-q plane are such ellipses). The ratio of the major to

the minor axes (denoted by 'M') was kept constant during the

deformation process and consequently the only degree cf

(1)
The only difference is that the yield surface is represented
in a stress space, and the SBS is represented in a space
which also includes one strain component, namely the void
ratio).
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freedom of the ellipse is the size of the p-axis , p, , which

(as mentioned in the beginning of the chapter) was assumed to

depend only on the plastic void ratio. (Hardening rule)

So:

C P ?C

As loading proceeds, the yield surface is pushed by the

stress point and moves homothetically with pole the origin 0,

as it is shown schematically in Fig 3.

There is a characteristic behavior associated with the peak M

of the ellipse. At this point (using normality) the plastic

strain increment vector .Y has no component along the

p-axis, which means that:

c E = 0 (M-o

or using eq. 111-1, that the plastic void ratio remains

constant during subsequent shearing. Furthermore the size of

the yield surface depends on C. (eq. II-9), and hence it

does not change. Consequently the stress point once it has
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reached point M (the peak), it stays there provided that the

sample is monotonically loaded. At this level only plastic

deviatoric strains occur (eq. II-10), with no further

changes of the stresses (because the stress point does not

move). This condition is defined as 'failure'. The locus of

points M (i.e line OM in Fig 3) is the projection of a curve

on the SBS (curve KC in Fig 2) which is called the Critical

State Line. (CSL) (1) The projection of the Critical State

Line (or Failure line), on the e-p plane is assumed to be a

curve parallel (in an e-lnp plot) to the isotropic

consolidation line.

Undrained Stress Paths.

During undrained loading of a soil, the void ratio does

not change. Hence the stress path for a normally consolidated

sample under undrained loading, will be the intersection of

the SBS with a plane e=constant (i.e a plane parallel to the

p-q plane in Fig 2). Such a curve lies close to, but it is

not identical, to a curve like DIC. (2) They are identical,

only if the rebound flexibility 'k' is equal to zero. In

(1)
Schofield A.N. and Wroth C.P. (1968) 'Critical State Soil
Mechanics' McGraw-Hill, New York.

(2)
Consequently the projection of the undrained stress path on
the p-q plane is not identical with the curve D'I'C', but it
lies very close to it (there is a small translation of the
yield surface associated with small changes of the plastic
void ratio which are compensated with equal changes of the
elastic void ratio, so that their sum is zero as it is
required for an undrained loading path.
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this case the isotropic rebound curves are parallel to the

p-axis (in the e-p-q plot).

Appendix II uses the equations developed in Appendix I in

conjunction with the specific form chosen for the yield

function (an ellipse), to evaluate the incremental

stress-strain relations in the plastic region (i.e the

plastic flexibility matrix is formulated in a principal

stress space).

Input parameters.

The input parameters to the model are:

(1) The position of a consolidation curve under isotropic

stresses, i.e its slope ( 2 ) and the location of

one point on it to specify the curve in a e-lnp plot.

Since isotropic and KO-consolidation curves are

usually parallel in an e-lnp plot, the position of a

K 0 -consolidation curve can be used alternatively.

(2) The slope (k) of an isotropic rebound curve.

(3) The friction angle in one (arbitrary) mode of

failure. This is expressed through the 'M' parameter

which is the ratio of 'q' versus 'pf at failure for

this specific mode of failure. If the triaxial

compression mode of failure is chosen then:

N,+2



where

and is the friction angle at failure in the

triaxial compression mode. (1)

For other modes of failure, a failure criterion (like

the Mohr-Coulomb) should be employed to artificially

cause failure to occur at a reasonable value of the

friction angle. This is because (as we show in

Chapter IV) the model itself will cause failure (i.e

large shear strains with no further changes of the

effective stresses) at unrealistically high values of

the friction angle. With ni additional failure

criterion the model will cause failure only when the

Critical State Line is reached.

For each water content (i.e for each e=constant plane in Fig

2) there is one corresponding point on the CSL. Hence -:.e

model predicts a unique relation between Fq? at failure

(designated as 'q 1) and water content (or equivalently the

(1)
Note that the Cam-Clay Model predicts different friction
angle for compression and extension tests. Also note that
the model is always strain hardening for normally
consolidated samples. However actual undrained K.-TC and
K0 -PSA tests exhibit strain softening characteristics.
Therefore the friction angle that will be used as an input to
the model should be chosen with these in mind.
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void ratio). (2) For a soecific mode of failure, 'q'

corresponds to a value of the 'undrained shear strength'.

The undrained shear strength is defined as follows:

-mo

where 4A are the maximum and minimum principal stresses.

Using this definition for the undrained shear strength,

relations between ?q ? and 's can be established for the

various modes of loading. For example for the triacial test:

For the plane strain test assuming that:

we have: (1)

JEsPS = V3-

So the model predicts a unique relation between the undrained

shear strength and the corresponding void ratio for each mode

irregardless of the mode of failure.

Note that by dividing eq. U-14a and 7I-114 we get that the
ratio of the undrained shear strengths of the plane strain
versus the triaxial mode of failure is 1.155
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of failure. (irrespective of the Overconsolidation Ratio)

This agrees with the results obtained by Hvorslev. (1)

Hvorslev M.J. (1960) 'Physical Components of the Shear

Strength of Saturated Clays' ASCE,RCSSCS pp. 169-273
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3.2 OTHER ISOTROPIC MODELS

3.2.1 Total Stress Models.

As we have mentioned in Chapter II Section 2.7, the total

stress models are only useful for undrained loading of

saturated soils, and they relate a total deviatoric stress

increment AS with the corresponding deviatoric strain

increment in the form:

or: Ac -- (s As

3.2.1.1 Mises-Hencky Hardening Model.

Mises and Hencky (1) independently assumed the following

form for the yield function (eq. 11-24):

and hence, the plastic

relationships (eq. 11-15) become:

incremental stress-strain

I pSrciSz

'3 K 2y7~jI
Evaluation of the hardening parameter from the

63

Henciky H. (1923)'Uber einige statisch bestimmte Falle des
Gleichwichts in plastichen Korpern' Z. Angew Math. Mech. Vol
3. pp 241-251 .
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consistency condition (see Appendix II), gives:

r

By including the elastic strain

rewrites:

components, eq. III-16

2cR (24)_d

which is the flexibility form of the

stress-strain relations.

Inverting eq. III-16a we get:

i-r .ICoL

incr emenital

20a
JOGfv3G4M 1s cz (r-17

which is the conjugate stiffness form of the incremental

relations. Various forms of the hardening function H( E')

have been used in the literature. Hyperbolic relations, (1)

or functional forms including softening (H decreases with

increasing C. for large values of S ) have been used

(1).

3.2.1.2 Von Mises Perfectly Plastic Model

66

Prevost J-H. and Hoeg K.(1975) 'Soil Mechanics and Plasticity
Analysis of Strain Softening' Geotechnique 25,2 pp. 279-297



It can be obtained from the previous formulation by just

setting H=0.

Then eq. 111-17 rewrites:

22

which is the stiffness form of the incremental relations.

Note that the stiffness matrix is singular. This is the case

for ALL perfectly plastic models.

In fact there is no flexibility form as we can easily see

from eq. III-16a because for H=0, the denominator vanishes.

3.2.2 Effective Stress Models.

3.2.2.1 Extended Von Mises Model. (1)

For an effective stress model, dependence on the 'o'

stress invariant is necessary to model the behavior

appropriately, since soils are pressure sensitive materials.

Eq. 111-15 generalizes in the following form:

where A>0.

Using the method described in Appendix I, (Eq. A-I-5, A-I-6

and A-I-7) the incremental stress-strain relations can be

(1)
Drucker D.C. and Prager W. (1952) 'Soil Mechanics and Plastic
Analysis of limit design' Q. Appl. Math. Vol 10 pp 157-165.
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written in the form:

A CI

- - A

Eq. 111-20 is similar to eq. A-II-7 which was derived for

the Cam-Clay model. Consequently a procedure similar to the

one described in Appendix II can be used to go from the

invariant form of eq. 111-20, to an incremental stress-strain

relation in the principal space.

The major disadvantage of this model is that it predicts

a dilatant behavior during shearing, (since A>0), as eq.

111-20 shows. This contradicts experimental results from

normally consolidated clays, (which contract during drained

shear) and results from heavily overconsolidated clays which

initially dilate but at large strains reach a condition where

no further volume changes occur.

The Cam-Clay model is undoubtedly superior to the rest

isotropic models and consequently it will be the only one

evaluated by comparing its predictions with results of tests.
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CHAPTER IV

EVALUATION OF PREDICTIONS

OF THE CAM-CLAY MODEL

This chapter evaluates predictions of the Cam-Clay model

by means of laboratory tests on resedimented samples of

Boston Blue Clay. (1) (2) (3)

The following tests were simulated by using the Cam-Clay

model.

[1) Consolidation Tests.

(1.1) Isotropic Consolidation

(1.2) K.-Consolidation (no latteral strains are allowed)

Ladd C.C and Varallyay J. (1966). 'The influence of stress
system on the behavior of saturated clays during undrained
shear'.Research in Earth Physics. Phase Report No.1, Part II,
MIT Department of Civil Engineering, RR65-11.

(2)
Kinner E.B and Ladd C.C (1970) 'Load deformation behavior of
saturated clays during undrained shear'. Research in Earth
Physics, Phase Report No.13, MIT Department of Civil
Engineering, RR70-27.

(3)
Ladd C.C, Bovee R.B, Edgers ., and Rixner J.J (1971)
'Consolidated Undrained Tests on Boston Blue Clay.' Research
in Earth Physics, Phase Report No.15 MIT, Department of Civil
Engineering RR71-13.
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[2) Undrained Triaxial Tests

(2.1) Consolidated Isotropically Triaxial Compression (CIUC)

(2.2) Consolidated Isotropically Triaxial Extension (CIUE)

(2.3) K.-Consolidated Triaxial Compression (CK.UC)

(2.4) K.-Consolidated Triaxial Extension (CKCUE)

[3) Undrained Plane Strain Tests

(3.1) K.-Consolidated Plane Strain Compression (CKCUPSC)

(3.2) K,-Consolidated Plane Strain Extension (CK.UPSE)

(3.3) Pressuremeter type of loading (CK.UPM)

1. INPUT PARAMETERS

For the isotropically consolidated tests the initial

conditions were assumed to be:

~c 80 r\ 3 1730
For the K.-Consolidated tests the initial conditions were

assumed to be:

vo he--5.5 12=' 3 (

According to data from the previously mentioned reports, a

value of: C=0.345 (Consolidation Index from isotropic

consolidation tests) was used, which corresponds to: 3 =0.15

since: (1)

(1)
2.7133 is the base of the physical logarithms (number 'e').
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A value for the Recompression index of Cr=0.092 was also

used which corresponds to k=0.04

Finally: M=1.20 was used which is equivalent to % 30 for

the triaxial compression tests.

2. RESULTS

Fig IV-1 shows an s-t plot (1) for K.-consolidation test

(oedometer test). The straight line corresponds to K =0.55

(the starting value). Clearly K. predicted by the model

increases from K=0.55 to stabilize at K,=0.662.

Fig IV-2 through IV-15 show results of various undrained

modes of failure. The continuous line is the Cam-Clay model

prediction. Open Circles represent results of experiments on

resedimented samples of Boston Blue Clay.

Figures with even numbers show the stress-strain curves for

the various modes of loading and these with odd numbers show

the associated effective stress paths.

Generally Cam-Clay prediction curves are softer than the

measured ones and the best predictions are for isotropically

consolidated samples, sheared in a triaxial compression mode.

On the other hand, strength predictions in extension tests

are too high and for K-consolidated compression tests, the

(1)

4- .6_

L_-)
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model fails to account for the pronounced strain softening of

the clay.

Fig IV-14 and IV-15 give model predictions for the

pressuremeter mode of loading. (1)

The Cam-Clay predicts the same value of undrained shear

strength for all plane strain modes of loading. It also

predicts a unique value of shear strength for the two, (TC

and TE), K,-consolidated Triaxial modes. As it was proved in

Chapter III, the ratio of these two values of undrained shear

strength is predicted equal to 2/T3=1.155 .

Finally the friction angle for all modes of failure, (except

for triaxial compression where it was forced to be equal to

30* by selecting M=1.2) is much higher than 30. However

experimental results also show a wide range of va-lues for the

friction angle ranging from 1=24.7 for CKQUC, to k=51.2

for CK0UE.

Fig IV-16 summarizes test data and Cam-Clay predictions. For

the test data, values are given at both the peak and critical

condition (i.e after strain softening). Cam-Clay does not

show strain softening, and so only the value at the peak is

given (the peak coincides with the critical condition).

Plane strain pressuremeter type of loading involves plane
strain in the vertical direction, with the radial stress
increased till the critical state is reached. Major and
minor principal stresses are the two horizontal stresses. No
rotation of principal planes takes place.
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TEST RESULTS

At peak condition

____ .t [
0.308 2.7 28.0

Ultimate

s. I
0.297

condit-lon

~e/i +
7.0 32.8

Can-Clay simula

7s
.= 1x61i 4- f- II -- I:

7.00.361

Lon

30.0

CIUE -0.226 7.0 35.4 -0.226 7.0 35.4 -0.361 7.0 48.3

CKQUC 0.320 0.3 24.7 0.230 7.0 34.4 0.304 7.0 30.0

CK0UE -0.124 7.0 51.2 -0.124 7.0 51.2 -0.303 7.0 48.3

CKOUPSC 0.335 0.6 29.8 0.200 7.0 30.0 0.351 7.0 43.6

CKOUPSE -0.265 7.0 42.8 -0.265 7.0 42.8 -0.351 7.0 43.6

_________ .1 .1 I *1- I I

0.351 7.0 44.5

Fig. IV-16 -- Data from experiments and

Cam-Clay predictions.

comparisons with
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Mode
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I I I - Ii I

00
0o

CKUPM

I - -



CHAPTER V

THE MROZ-PREVOST MODEL

The constitutive relations discussed so far, modelled the

soil as an isotropic material. However since most soils occur

in anisotropic conditions due to both the method of

deposition and subsequent stressing, it seems that an

anisotropic model would predict soil behavior more

accurately.

Parameters useful in a quantitative estimate of the

degree of anisotropy in a soil are:

(a) The latteral stress ratio under geostatic conditions,

defined as:

It measures the stress induced anisotropy at the

initial condition.

(b) The ratio of the undrained shear strengths in plane

strain, i.e the undrained shear strengths measured in

CKOUPSC and CK0 UPSE modes of loading. This ratio is

usually defined in the literature as:
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S = (SPSE

It measures the combined effect of inherent and

stress induced anisotropy.

Lean (i.e low Plasticity Index) Clays and/or highly

precompressed (i.e with high Overconsolidation Ratio), are

expected to exhibit less anisotropy and consequently an

isotropic model can probably model their stress-strain

behavior satisfactorily. For other clays an anisotropic model

may be necessary.

The model to be discussed is a general mathematical

model, based on the Theory of Incremental Plasticity and

describes the anisotropic, elastoplastic, path-dependent

stress-strain-strength properties of saturated inviscid (i.e

time effects are neglected) clays under undrained conditions.

The common assumption of incompressibility is made for

undrained loading. The initial ideas of the model were

stated by Iwan (1) and at the same time independently by Mroz

(2) Prevost (3) (4) applied it in soils and studied the

Iwan W.D(1967) 'On a Class of Models for the Yielding
Behavior of Continuous and Composite Systems' Journal of
Applied Mechanics Vol 34, pp 612-617

(2)
Mroz Z.(1967) 'On the Description of Anisotropic
Workhardening' Journal of the Mechanics and Physics of
Solids. Vol 15 pp 163-175

(3)
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mathematics of the incremental formulation for the loading

conditions, common in Soil Engineering. The following

presentation is based on the papers by Mroz and Prevost

mentioned above.

The general formulation of a otal stress model was

studied in Chapter II and it was found that deviatoric stress

increments have to be used in the formulation. The present

model follows this principle. However a representation in a

principal stress space (as it was done for Cam-Clay) is no

longer possible. The model is anisotropic and consequently a

full stress space representation has to be employed.

A modification of the Von Mises type Yield Function

was used.

The Von Mises cylinder (represented by the previous equation)

is isotropic with respect to rotations of the principal axes

and centered at the origin. By removing the center of the

cylinder from the origin, anisotropy is introduced.

A second order symmetric tensor 0(. was introduced to

Prevost J-H(1977) 'Mathematical Modeling of Monotonic and
Cyclic Undrained Clay Behavior' International Journal for
Numerical and Analytical Methods in Geomechanics. Vol 1,no 2,
pp 195-216

(4)

Prevost J-H. (1978) 'Anisotropic Undrained Stress-Strain

Behavior of Clays'. JGED, ASCE Vol 104, No GT8 pp 1075-1090.
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describe the coordinates of the center of thae yield surface.

Then the yield surface takes the form:

Since Q is not necessarily proportional to the

isotropic - tensor (Kronecker delta), the material exhibits

anisotropy (kinematic hardening).

The k parameter on the other hand, is a measure of the size

of the yield surface, as it was used in the previous

Chapters, and it is a function of the plastic strain

increments. (Isotropic hardening)

If the physical coordinate axes x,y,z coincide with the

principal axes of the material anisotropy, then

aXY= 0a,= = -'C
Due to the way of deposition, clays usually exhibit

rotational anisotropy about the vertical axis (y), (i.e

transverse isotropy in the horizontal plane) before shearing.

This means that initially:

a Ly = c =Ox=c) and C1.

However the original anisotropy of the soil is not

preserved during subsequent shearing. If the principal axes

of stress rotate during shearing, the principal axes of

anisotropy will also rotate (1) and hence Q-. will no longer

(1)
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be zero for iij. This means that further stress induced

anisotropy takes place.

In addition, due to the anisotropy caused by plastic flow,

the strain tensor does not remain coaxial with the stress

tensor (i.e their principal directions do not coincide), and

the structure of the clay is altered. This means that

application of shear stresses tends to erase the clay's

memory of its previous history (1) and create a new state of

anisotropy.

The concept of a field of plastic moduli is introduced to

increase the flexibility of the model by increasing the

number of its parameters. This field is defined in the

deviatoric stress space, by a set f1 ,f2 ,...f, of nested yield

surfaces with respective sizes

K 0 <k'~~ <

which delimit the regions of constant plastic moduli. (2)

Each of the yield surfaces is represented by an equation of

the form of eq. V-1:

C 1/

Since da 0~ as it is shown in Appendix LV.

(1)
Expressed mainly through the parameters a-q and k.

(2)
Usually there is a finite number of yield surfaces and the
resulting stress strain relations of the model are piecewise
linear. If a continuous field is used then a non-linear
behavior will result.
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for m=1,2,...p

A shear modulus H' is associated with each of the yield

surfaces and the associative flow rule (i.e normality rule

with an associated potential function) is used to compute the

plastic strain increments. Note that since the model only

studies undrained loading, only deviatoric plastic flow

occurs.

The outermost yield surface f plays the role of a

failure surface, and it is the geometrical boundary in the

stress space outside which the stress point and the inner

yield surfaces cannot go. At any stage in the loading history

of the material, stress points inside this yield surface

represent stress states that can always be reached along

stable paths. (1)

The Hardening rule which was used by Mroz and later by

Prevost, specifies that the yield surfaces may be translated

in the stress space by the stress point, without changing in

form or orientation and they consecutively touch and push

each other without intersecting. When the stress point

reaches the yield surface f,, all the prior yield surfaces

f0 ,f ,...f,, have been translated and they are tangent to each

other and to f., at the contact point M as it is shown in fig

V-1.

Complete specification of the model parameters requires

(1)
i.e H'm is allowed to be less or equal to zero only on the
outermost yield surface f .
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the determination of (1) the initial positions and sizes of

the yield surfaces and their associated shear moduli and (2)

The law which defines how the sizes of the yield surfaces

change during plastic flow.

Appendix IV discusses the method of determination of the

initial locations of the yield surfaces and the incremental

stress-strain relations.

Model parameters can be evaluated by using solely the

results from triaxial compression and extension tests. A

computer program was written that automatically generates

these parameters if data points from triaxial tests are

given. The CKUC and CKUE test data presented in Chapter 4V

were used to evaluate the model parameters. in order to

smooth the test results a hyperbolic function was fitted and
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was subsequently used to locate the initial positions of the

yield surfaces and the initial Hardening moduli. The program

created 14 yield surfaces, which means that 71 parameters

need to be saved and updated during shearing. Compared with

the number of parameters of the Cam-Clay Model, the

Mroz-Prevost model requires a lot more storage.

Fig V-1 and V-2 show the stress-strain curves for CKUC and

CKCUE tests backfigured by using input parameters from the

same tests. As it is expected the predictions (continuous

line) fits the data points (discrete dots) exactly.

Fig V-3 and V-4 show the predictions for CK0 U(PSC) and

CK0U(PSE) tests and data points from the tests described in

Chapter IV. The model predictions are generally stiffer than

the test data. In Plane strain compression it overpredicts

the undrained peak shear strength by 8 per cent (0.355 versus

0.335 of the test) but in Plane strain extension it

underpredicts by about 40 per cent (0.157 versus 0.265 of the

test) Finally Fig V-5 gives the stress-strain curve for the

pressuremeter mode of loading.

The values of the peak undrained shear strength:

predicted by the model for the various modes of failure,

depend only on the initial location and size of the outermost

yield surface and can be predicted in closed form

expressions.

Due to initial rotational anisotropy in the Horizontal plane
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the outermost yield surface is centered on the S1 axis (i.e

a =aa=0). If a, and k are the initial location and size of

this surface, then using eq. V-1 and the kinematic

restrictions of each mode of loading, it can be shown that:

Q(T) IQ -

STTC Cs:

_L r~

IThe rat iof thsa ndainedy isher strenthn for PSCead

s(-rc) CZk

If the material is initially isotropic, then the yield

surfaces are initially centered at the origin; hence a (I=0

and the last expression reduces to:

Note that the same value of this ratio is predicted by
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the Cam-Clay model as it was discussed in Chapter III. This

is because both models use normality rule and for initially

isotropic behavior the yield surfaces of the Mroz-Prevost

model depend only on the second stress invariant J2.
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CHAPTER VI

MODELLING OF THE UNDRAINED EXPANSION

OF A CYLINDRICAL CAVITY

The undrained expansion of a long cylindrical cavity is a

problem which can be easily analysed even for non-linear soil

constitutive law. It has been used to model the in-situ

pressuremeter test and the installation of a cylindrical pile

into the ground.

In the case of modelling the pressuremeter test there are

two major deviations from the in-situ conditions:

(a) The pressuremeter probe is not infinetely long, (it

usually has an aspect ratio equal to 2).

(b) During the installation of the probe, stresses are

relaxed (i.e some initial unloading takes place).

In the case of the pile driving, there are shear stresses

along the pile shaft which are neglected in the analysis.

Due to kinematic constraints, the strains are independent

of the material law. In fact loading is axisymmetric around

the z-axis, and in plane strain in the z-direction. In

addition the no volume change condition, (undrained loading)
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allows the calculation of the displacement field around the

cavity, as a function of the size of the hole, and the

r-coordinate at any point.

Previous analyses of the expansion of a cylindrical

cavity have been developed for the interpretation of the

pressuremeter test by Gibson et al, Ladanyi, Baguelin et al,

Palmer et al, and Randolph et al.

In the following, the total and effective stress changes

around 'an expanding cylindrical cavity are studied for the

case of a non-linear material law.

Two soil models are applied:

(a) The Mroz-Prevost Model (see Chapter V)

(b) The Cam-Clay Model (see Chapter III and IV)

The Mroz-Prevost Model, which is a total stress model,

does not allow the estimation of the effective stresses and

pore water pressures around the cavity. On the other hand,

the Cam-Clay model will be used to estimate the total and

effective stresses as well as the pore pressures .

The stress-strain curves used are those calculated in the

previous Chapters for the pressuremeter mode of failure (Fig.

IV-14 for the Cam-Clay and Fig. V-5 for the Mroz-Prevost).

The predicted values of the normalized shear strength are:

0.351 from the Cam-Clay.

0.258 from the Mroz-Prevost.

Note also that although the Cam-Clay does not show strain

softening, the Mroz-Prevost strain-softens for strains larger

than about 3.5%.
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During expansion of the cavity, large strains develop

especially in the immediate vicinity of the cavity. For this

reason, large strain theory is used in this analysis.

Distribution of stresses and strains along the radial

direction were calculated for four values of the expansion

ratio AV/V0  . (1) The curves in the subsequent figures,

corresponding to these ratios, are labeled C1,[22,C33,E4 as

shown in Table Vt-i.

TABLE VI-i

Fig. VI-i through VI-4 were produced by using the

Mroz-Prevost Model. The radial coordinate in all figures is

normalized with the initial radius of the hole.

Fig VI-1 shows the radial strain plotted versus the

normalized radial coordinate, for the four values of the

expansion ratio. Note that radial strains equal to 42.5%

develop at the hole boundary for the largest expansion ratio.

Fig VI-2 shows the normalized shear stress (~r-E/&vc ,

plotted versus the normalized radial coordinate. Even for the

The expansion ratio is defined as the volume change due to
the expansion divided by the initial volume.
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smallest expansion ratio of 4.0%, the peak strength is

reached at the cavity boundary and for the larger expansion

ratios, the yielded zone extends quite significantly.

Fig. VI-3 shows the normalized radial stress

plotted versus the normalized radial coordinate. Although the

strain softening zone around the hole is quite extended, the

radial stress at the cavity boundary continues to increase

with increasing expansion ratio \/. . This is because

the radial stress at the cavity boundary is not affected only

by the local values of the shear stress (r-Ge/Cc , but it

is a result of an integration of the shear stress from

infinity to the boundary of the hole. (1) The same effect is

also shown in Fig. VI-4 where the normalized radial stress at

the boundary is plotted against the expansion ratios. The

curve is monotonically increasing. It starts from an ordinate

value of 0.55 (equal to K.) for AV/V.=0.0 and reaches an

ultimate value of normalized boundary pressure equal to

1.734. This is the type of curve measured in the

pressuremeter test.

Fig. VI-5 through VI-8 were produced by using the

Cam-Clay model.

Fig VI-5 shows the shear stress 4- /v vs the

normalized radial coordinate C7Q, . Since the Cam-Clay mcdel

does not strain soften, the curves are monotonically

From equilibrium;
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increasing till the critical condition (reached for

rS 46 v =0.702)

Fig VI-6 shows the normalized total radial stress Cr/ve

vs the normalized radial coordinate.

Fig VI-7 shows the normalized radial stress at the cavity

boundary (6r4rsr./&c plotted vs the expansion ratio. The

curve is again monotonically increasing and it approaches

roughly the same limit pressure as the Mroz-Prevost curve,

but it is much softer.

Finally Fig VI-8 shows the distribution of the pore

pressure increment d4U.tvC vs /. . Table VI-2 shows the

value of the normalized excess pore presures at the cavity

boundary, for the 4 values of the expansion ratio.

TABLE VI-2

Label AV/V0 (5) (Au/,,

[1) 4 0.168

[2) 10 0.402

3) 40 0.776

[4) 100 0.973

An elastic perfectly. plastic model gives the following

relation for the pore pressure increment during an undrained

expansion of a cylindrical cavity:

For tha Cam-Clay /,=0.351
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Also the following relation was

prediction:

3Q-27)
)

and since

-3(1 -2v')

2(4V

d+CE

Svc

-_0.3-33x 'z10.0
0.1$x0.'

So:

0- 0Mi &[1009= CtE

Comparing with the previous Table, this corresponds to an

expansion ratio of about 50%.
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CONCLUSIONS AND RECOMMENDATIONS

Incremental Plasticity seems to be an efficient tool for

the design of rational models of materials with complicated

behavior, such as the geologic materials. It can be

especially useful for the study of the behavior under general

3-dimensional loading conditions with or without reversals of

loading.

In the previous Chapters two such models were evaluated:

A. The Cam-Clay Model

This has the following advantages:

[1) It is based on the Critical State Concept which is a

reasonable theory (at least qualitatively) for clys.

[2) It requires few input parameters which can be evaluated

from standard routine laboratory tests.

[3) Since it is an effective stress model it can be used for

drained, undrained as well as for partially drained

loading conditions.

It has the following disadvantages:

[1) It predicts a very extended elastic region during

unloading which limits its use for the study of cyclic

loading.

[21 It cannot predict strain softening for normally

consolidated clays, although most K-normally
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consolidated clays strain soften during undrained shear

in triaxial compression and plane strain compression.

This significantly limits its use for KE-consolidated and

sensitive clays.

[3) It predicts too high shear strength in extension tests in

general (triaxial and plane strain).

[4] It predicts a too high friction angle for undrained

triaxial extension and plane strain tests.

B. The Mroz-Prevost Model.

This has the following advantages:

[I] The concept of the field of Hardening Moduli allows great

flexibility in modelling soil behavior accurately.

[2) It gives reasonable predictions of the stress-strain and

strength characteristics under undrained conditions.

It has the following disadvantages.

[1) It requires the evaluation of many parameters. This may

limit its applications in Numerical Analyses via the

Finite Element Method because of storage requirements.

[2) It can only be used for undrained loading.

(3) It does not allow the evaluation of the excess pore

pressures and consequently of the effective stresses.

Only the total stresses can be evaluated.

Concluding we think that further research should be

oriented towards:
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(a) Development of more adequate constitutive laws. A

combination of the Critical State Concepts with the

notion of the field of hardening moduli would be

desirable.

(b) Applications of non-linear constitutive laws in practical

problems, mainly via the Finite Element Method.
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APPENDIX

STRESS-STRAIN RELATIONS FOR ISOTROPIC SOILS

Assuming that the yield surface is just a function of the

two stress invariants, 'p
1

_ 4e~ e '-

4+

which gives:

In addition since:

I S . -33

and 'V 1I I( 1) we can write:

3 #-?7
N2

In Chapter II, Section 2.6 it, was defined:

3Z3j q*t

cv t ~ 1 2
1 11

I

I



we get:

CAd i= S 3

and since :

Cuj-203)

we get:

3 s..Js..
2c1

3.WMEMO

Then using eq. A-I-i , A-I-2 and A-I-3 we get:

For the invariant measure of plastic volumetric strain

increment we have from eq. 1-8 in conjunction with eq.

II-15:

dE = OM = K ' 6

Then using eq. A-I-4 and A-I-i we get:

JEJiiA, t ( sro

Similarly for the invariant measure of

strain increment we have:

CA-1-459

plastic deviatoric

3 V los AE~
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W

?f--If=5i -
I x

o r :- U

Jp4d*- CA-:- C)

We can now evaluate the parameter Ca( for the case of a

yield function, depending on only the stress invariants 'p1

and 'q'.

Rewriting eq. II-24:

we require the stress point to remain on the yield

(consistency condition). This means that: = C

T,- S! ?

surface

or :
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Using eq. A-I-5 and A-I-6 we end up with:

Eq. A-I-S , A-I-6 and A-I-7 are very useful and will be

used extensively in this Thesis. The first two, express

normality rule in a two-dimensional stress subspace. In fact

starting from the normality rule in the nine-dimensional

stress space (eq. 11-15), and by choosing the stress and

strain measures appropriately, we deduced normality in a

two-dimensional subspace of the stress invariants 'pt  and

p
'q', with associated invariant strain measures and

Finally eq. A-I-7 gives the strain hardening (or softening)

parameter. As we have proved in Section 2.5 o( is positive

in the strain hardening region and negative in the strain

softening region.



APPENDIX II

STRESS-STRAIN RELATIONS FOR THE CAM-CLAY MODEL

The equation of the ellipse shown in Fig A-II-i is:

where 'M' is the ratio of the vertical to the horizontal

J N1 PC/a/

ML.

Pi . A-W-_1

0

axis. In Fig A-AI-M point D' is the projection on the p-q

plane of a point D which is located on the virgin isotrooic

consolidation curve (see also Fig 2 in Ch. III), which,

according to experiments, is a straight line in a e-Inp plot
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with slope 'A

The isotropic rebound curve is of the form:

Differentiating the last two equations we have for the

plastic void ratio changes:

or:

5P C PC

Using eq. 11-24 in conjunction with eq. A-II-1, eq. A-II-2

and eq. Iw- we get:

p p-

EV EY

- -c-~Q Zt~kM - Wet

or:
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3k ltz

mc rn-k QoAm-3

and .

-ow

The derivatives of 'f' with respect to 'p'

also to be computed. Using eq. A-II-1, we have:

F 9>

$4 _

and 'q' have

CA -a -S)

Finally substituting from eq. A-II-3, eq. A-II-4 and

A-II-5 into eq. A-I-7, eq. A-I-5 and eq. A-I-6 we have:

tf -

eqs.

- - - - - - - -

and

ci II2r2

{ /tlz
2r71
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Eq. A-II-6 gives the value of the hardening

parameter, and eq. A-II-7 the incremental stress-strain

relations in invariant form. The matrix relating the

invariant increments will be noted as 'B in the following.

Expressing the invariant increments in terms of the principal

stress and strain increments we end up with:

AsN, (AT5,O .A)( Ic

where E. , are the principal plastic strain

stress vectors and matrix A is given by the form:

and

AI
I

2~~- G>C3

2CI

Adding the elastic strain increments from eq. 111-7 we

get:

or:

ciE -< A no8
Nj Nj
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which are the required incremental stress-strain relations

in a principal space.
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APPENDIX III

PORE PRESSURE DEVELOPMENT

IN SOILS

UNDER GENERAL LOADING CONDITIONS

Let's assume that the total stress increment

applied on a soil element is specified, and we want to

compute the corresponding pore pressure change Au ,

resulting from this increment. We will further assume that

the soil is fully saturated and that an incremental effective

stress-strain law is available (i.e the effective flexibility

matrix S is known as it was discussed in Chapter II). If

VS is the volume of the solids, V, the volume of the pore

water and:

V0 = V5 +vv
is the total volume of the soil element (small enough for

the assumption of constant stresses to be valid then:

=4 .\ T7
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or if In' is the porosity: (1)

V5

Let's assume for the moment that the compressibility of

both the water1B and soil grains is constant.

Then:

where A is the pore pressure increment.

This restriction is not significant since in most cases the

compressibilities of water and grains are much smaller than

the compressibility of the skeleton and they are neglected

(i.e the assumption of incompressibility under undrained

conditions is done).

Using the last three equations we get:

But: 'and E = e.

(1)
Porosity is defined as:
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fLE =(1-n)A
~' '~ 5c

We will then introduce the effective

increment by using the incremental effective

stress-strain relationship:

Ae= SA~

and then substitute the effective stress increment with

the difference o-f the total stress A6 and the pore

pressure increment AU. , as follows:

rrZA~ 4i.=n)
a,~ 5~

+ q

and f-inally solve for the pore pressure increment:

'm? ij
dT - C % r3 i3 (w-28)
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where I is a 6x6 unit matrix.

This last equation gives the pore pressure increment as a

linear combination of the components of the applied total

stress increment . The multipliers are functions of

the components of the effective flexibility matrix 5
which varies along the stress path.

The philosophy underlying the previous procedure is the

following:

We need a pore pressure increment with magnitude sufficient

to reduce (or increase) the effective stresses to a degree

that the corresponding strains (through the incremental

stress-strain law) satisfy the incompressibility condition

(or limited compressibility depending on its magnitude for

the water and grains). The incompressibility condition is

one equation which when expressed in terms of the total

stress increment and the pore pressure increment, and solved

for the pore pressure increment, gives the magnitude of the

pore pressure increment in terms of the total stress

increment.

The meaning of eq.II-28 will be further explained by

applying it to predict the pore pressures developing under

some basic loading modes. Specifically the effect of pore

pressure generation due to octahedral (i.e hydrostatic)

versus shear loading will be studied. in order to separate

these two effects, let's assume that we apply a total

octahedral stress increment equal to 'Ap' and a shear stress
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increment equal

vector will be:

f p~

to 'Aq', in all directions.

*1
3=

The Kronecker delta vector rr
^,.

fO
.

can be rewritten:

C sm
(Do

The effective flexibility matrix will also be

separated in octahedral and shear components, as follows:

ST
4-rnI,\

st
where each submatrix has a dimension 3x3 and superscript

T indicates the transpose of a matrix. (1) Submatrix

Sr. represents the relation between normal stresses and

normal strains; similarly is the relation of shear

stresses with shear strains. Even in Linear Elasticity, these

Note that _

addition
is symmetric and of dimension 6x6.

and I are also symmetric matrices.
A tt

E A-taI-?)

( 1)
inl

Then the

(A-M-i)



matrices are non-zero and positive definite.

Submatrix S represents the coupling between normal

stresses and shear strains (due to symmetricity, it also

represents the coupling between shear stresses and normal

strains). In Linear Elasticity there is no such coupling and

consequently this matrix is identically zero.

Using eq. A-III-3 and eq. A-III-2 we get:

.tj T M.4)

which is a scalar quantity.

Using eq. A-III-1, A-III-2, and A-III-3 we get:

fSM0* -0. CA1.-sLrU10

Now we are ready to apply eq. 11-28 and compute the pore

pressure increments. To simplify the mathematics,

incompressible fluid and grains will be assumed (i.e

3= 3 : ). Then eq. 11-28 rewrites:

and using eq. A-III 4 and eq. A-III-5 we end up with:

135



0563

Let's study this equation.

The pore pressure increment due to a hydrostatic and a shear

stress increment is given as the sum of two terms.

The first term, gives the pore press-re increment due to the

hydrostatic total stress increment 'Ap'. It is equal to the

hydrostatic total stress increment which should be expected

for a saturated soil ( Henkel's b parameter (1) is equal to

1) with incompressible pore fluid.

The second term gives the pore pressure increment due to the

applied shear stress increment 'Aq'. The factor by which '4 '

is multiplied, is equivalent to Henkel's 'a' parameter. Since

it depends on the flexibility matrix (which varies with the

stress level) this factor also varies with the level of

stressing. In linear elasticity this term is zero (since

Setis zero as we have mentioned previously). This result

also agrees with the standard Soil Mechanics Literature.

We can also study the sign of this multiplicative factor. (2)

Henkel D.J. and Wade N.H. (1966)'Plane Strain Tests on a
Saturated Remolded Clay' JSMFD,ASCE Vol 92 No SM6, pp67-8 0.
give the equation:

for the pore pressure increment in terms of the total
stress increment.

(2)

A positive sign means that positive pore pressures will be

136



The denominator (in parentheses) is always positive since

se is positive definite (for a strain hardening

material).

If is positive definite (which means that shear

stress increments tend to create compressive normal

strains),then the numerator is also positive and hence

positive pore pressures are generated due to shearing. This

is the case of normally consolidated clays.

If is negative definite (which means that shear

stress increments tend to create dilative normal strains)

then negative pore pressures due to shearing are generated,

because the nominator will be negative. This is the case of

heavily overconsolidated clays.

generated with uniform shearing

negative pore pressures.

and a negative sign means
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APPENDIX IV

DERIVATION OF INCREMENTAL

STRESS-STRAIN RELATIONS

FOR THE

MROZ-PREVOST MODEL

The equation of the m- yield surface is:

The consistency condition for this surface gives:

7%P)5 = (A-w.4m2~)

Let's study each term separately:

ft
2 -

~

V

r (rnl3Qs1 - a~
= _______

2 V'~

0c

63 S
eKt2

(,A -w-J.)
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Inaddition:

cK

and:

where:

2 2

3K% 3K, 3G

and can be obtained from triaxial tests since :

2
C4®-G63)%

for the triaxial test.

Finally using eqs. II-8 and 11-15 :ie get:

2L- D-o2 kcr-Q
(CA

Substituting eqs A-IV-3 through A-IV-6 in the consistency

condition A-IV-2 we get:

2
/--1' - 7)

Finally eq. 1-15 gives:

or:
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Adding the elastic components:

These are the incremental stress-strain relations which

are of the form studied in Chapter II:

A4 Z = SlCs
Note the similarity of eq A-IV-8 with the incremental

stress-strain relations for the Von Mises Hardening model

(eq. III-16a) Inverting eq. A-IV-8 we get:

JSz =2Gc8i. i ___

which are of the form:

Kinematic Hardening

Kinematic hardening is introduced by allowing the yield

surfaces to translate in the stress space. If the current

position of the stress point is A (see Fig. A-1V-1) then the

translation will take place along the vector:



kI )-Csim

where 0 B is parallel to0V A. This kind of k

hardening is generally credited to Ziegler (1959)

magnitude of translation of surface f, will be:

EAA5

where:

is such that the new position of

continues to be on the yield surface.

the stres.,

ii,.

f

f-

Ziegler H. (1959) Quarterly of Aoplied Mathematics 17,

CYR cyn)

A -U--i

vv%



Let's study the way that further

anisotropy is taken care of by the model.

Initially due to the method of deposition:

CM&)

stress induced

3

Ii' during subsequent shearing :

dS =0 9)

(i.e no rotation of the principal stress planes occurs),

then eq. A-IV-11 and A-IV-10 result in: c C" o for

i.e the principal axes of anisotropy do not rotate

and then equation A-IV-8 gives that:

cle.-o

i.e the principal axes of strain do not rotate,

the contrary if:

too. On

i.e the principal stress planes rotate during shearing,

then the principal axes of anisotropy and the principal

strain axes will rotate, and in general these three sets of

axes will not coincide.
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Simplification of the model for the case of axisymmetric

and plane strain loading.

Axisymmetric and Plane strain loading conditions are very

common in practice. Especially for this model due to the

large number of parameters involved in the computation it is

almost impossible to use the model in general

three-dimensional problems because of severe storage

restrictions.

Plane strain in the z-direction as well as axisymmetric

loading around the y-axis both have Cy- ~Cr& = C at all

times. Since these components of stress vanish, we can

represent the model in the subspace of the three

non-vanishing independent components of the deviatoric stress

tensor. Mroz (1967) introduced this space for the similar

case of plane stress. Prevost (1977) treated the Plane

strain and axisymmetric cases.

The following stress components are introduced:

The associated kinematic hardening parameters for the m

surface are:
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(rq~

2 K 0 " -Q',( 'I

C xV%)

and the corresponding strain measures are:

aC-
M' e

2 (

Then the yield surfaces are described by ecuations of the

form:

z -/ -/<3 - o r
- VI -

and the incremental stress-strain equations reduce to:

A -C- )

AS :5G01PCAcr.

or:

2
'I

OK

yS L z
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and

aaa)

(A--It)

where: (Avo

3(m.,\ k (i. - a )Ct -3
-2 ; ^-4

/ = 3 ..



APPENDIX V

APPLICATION OF THE STRESS PATH METHOD IN

THE PREDICTION OF THE SETTLEMENT

OF A STRIP FOOTING

The undrained loading of a strip footing resting on the

surface of a uniform soil deposit is studied, to investigate

the effect of choosing various stress paths in the

application of the Stress Path Method.

The specific problem was chosen because it is one of the

few practical cases, where the stress distributions are

independent of the properties of the soil, (1) and

consequently the Stress Path Method is particularly suited.

In addition the applied load was chosen small enough to avoid

significant local yielding and stress redistributions in

which case the stress increments predicted from the Theory of

Elasticity would be in error.

The soil was assumed to have properties similar to the

normally consolidated Boston Blue Clay.

The geometry chosen is shown in Fig. A-V-1.

The settlement of a point lying at a depth 1.80b under the

(1)
Assuming Elasticity and uniform deposit.
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centerline of the footing was

different paths.

5.26
:= 5.o m

0.52

ak

studied by choosing two

1. A Vertical Path A IB

The stress increments along A1 B correspond to undrained

plane strain conditions. Data from CKU(PSC) tests on

normally consolidated Boston Blue Clay were used. Since the

peak in this test is reached at very low strains, (about

0.4%), it is hard to establish the shape of the stress-strain

curve in this region accurately. For this reason two possible

shapes were used in the analysis.

{a} A straight line between the points:

11 -~2 c.24, O3
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S.34 - Ea= O .4E/.= .

(b} A Hyperbola of the form:

2 AW1+Y- .

with parameters:

m=0.00469274

n=8.8268

The settlements computed with each of the two shapes were:

From the Straight line: C) =26.0 mm

From the Hyperbola : .), = 7.6 mm

2. Horizontal Path AZB

The settlement along this path is mainly governed by the

shear strains. In applying the stress path method, shear

stresses are computed by using Theory of Elasticity (1) and

then the shear strains are obtained by using the test data of

a CK 0 UDSS test (Direct Simple Shear). However in addition

to the shear strains, the vertical settlement depends on -the

gradient of the horizontal displacements.

In fact since:

They are independent of the material properties for uniform
deposits
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by integration we get:

A 2

The first term should not be neglected. For this reason it

was assumed that the ratio:

7 2

BB

is the same in both the elastic solution and in the stress

path method. The elastic solution gave the value -4.76 for

the above ratio. Using this number in the stress path

method, the settlement of point B computed via the path A B

was found:

(.)= 13.3 mm

The following table shows a summary of the results for the

two paths:

TABLE A-V-1

Settlement of a point located

1.8b below the centerline

of a strip footing

Vertical Path Horizontal Path

straight linej Hyperbolic

(mm) 26 .0 7.61 13.3
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CONCLUSIONS

The computed settlement is greatly integration path

dependent. In addition it depends on the stiffness of the

stress-strain curve (straight line vs hyperbolic

approximation) which is hard to define accurately

experimentally.

The above discrepancies are mainly due to strain

incompatibilities.
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