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ABSTRACT

Two new methods of moisture measurement in polymers are
presented: d.c. and a.c. methods. The d.c. method measures the
amplitude of decaying current when a d.c. field is applied across
the bulk of the sample. The d.c. current is sensitive to the moisture
level in polymers, which can be monitored to determine the moisture
level. The a.c. method can detect minute amounts of moisture by
determining the dielectric loss factor at the moisture-sensitive
frequency. Using these techniques, the moisture-sensitive frequency
of the following polymers has been determined at room temperature:
polyamide, poly (amide-imide), polyethylene terephthalate, poly-
carbonate, polymethylmethacrylate, and thermoplastic polyurethane.
Because these techniques are accurate and fast, on-line measurement
of the moisture levels in polymers is possible, which can be used
as a process control tool.

Thesis Supervisor: Nam P. Suh
Ti*tle: Professor of Mechanical Engineering
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NOMENCLATURE

charging current

charge

capacitance of ideal capacitor
sinusoidal voltage sourse
angular frequency

total current

loss current

J-1, denotes imaginary number
complex permittivity
dielectric constant
dielectric constant

complex relative

relative dielectric constant
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switch out
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CHAPTER 1

INTRODUCTION

In polymer processing, moisture control is a very important task,
especially for condensation polymers such as polyamides (i.e. nylon)
and polyesters. For example, nylon 6/6 can absorb as much as 8.5%
moisture by weight at 23°C [1]. When granular nylon 6/6 with a
moisture content greater than the optimum level is processed by
extrusion, chain scission by degradation occurs due to hydrolysis.
The hydrolysis of polymers is a mechanism in which cleavage of the
backbone of a polymer chain occurs due to the presence of water.
(Detailed mechanisms are discussed in Appendix Al.) As a result of
chain breakage, the average molecular weight decreases. The reduced
molecular weight in turn Towers the tensile strength, On the other hand,
granular nylon 6/6 with a moisture content Tess than the optimum
level (in some cases, the optimum moisture level is below 0.0 2% by
weight) cannot be extruded due to the large increase in viscosity.
The control of the moisture content is, therefore, a major concern
in the polymer processing industry, because it affects the process-
ability of the polymer and the mechanical preperty of the resulting
end product.

Usually granules uf polymers are supplied to the manufacturer
with excess moisture. Therefore, before any process could be carried
out, they have to be dried in order to Tower their moisture content.

The amount of water absorbed frequently determines the length of

Ld
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time require? to dry the resin at a given temperature and a

given relative humidity. Such drying periods can vary from a few
hours to a few days. Most of the time, prior to processing, -
quantitative determination of the moisture level of the resin 1is
desirabie. Any devised technique, to be useful! in a plant, must
be quick, simple, and utilize inexpensive equipment.

A simple technique for moisture measurement is called the test
tube/hot block technique (TTHB) [2]. It is based on the fact that
the moisture present in the resin will vaporize when melted in a
closed test tube. This moisture will condense, as it cools, in the
form of.tiny water droplets, on the side 6f the glass tube. The
surface area, covered by this condensation on the tube, can then be
correlated directly to the moisture content in the virgin resin.

Another technique is called T.V.I. after the engineer who
developed it [3]. In brief, this method entails heating a few
pe]1ets‘of polymer to their melting point and observing whether bubbles
are present as an indication of moisture in the resin.

However, both of these simple methods are qualitative. It is
readily seen that both are subject tb many variables and open to
considerable error whenever accurate moisture data are necessary.

The traditional technique for accurate analysis of moisture in
polymer (ASTM Method D-789) involves a vacuum distillation followed
by Karl-Fisher titration of the moisture. This method is not only
time consuming and costly due to the reagents used but demands also

delicate laboratory techniques [4,5].
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A widely used method for accurate analysis of moisture in polymers
is called moisture evolution analysis [6,7]. The sample is heated to
an operator controlled temperature in an oven to drive off any water.
Moisture from the heated sample is picked up by a continuously
flowing stream of externally dried nitrogen and is carried into an
electrolytic cell to determine the moisture content. Although
relatively simple, this method still requires an hour of analysis time,
accurate weighting of the sample, and is not amenable to use as an
on-line process control technique.

An NMR (Nuclear Magnetic Resonance) method has been used to
determine the moisture content of plastics, molding powders, fillers,
etc. [8-11]. This technique has two major drawbacks. Besides being
an off-line method, the NMR signal has relatively low sensitivity
: " ... one cannot detect less than a few percent concentration of
magnetic nuciei in a sample whereas the dielectric measurement may be
sensitive to a much smaller proportion of re-orienting dipoles [11]."
For example, 1% water in wool [8], 7 ﬁ 0.3% water in potato powder [9],
and 1 1 0.5% water in Kapron [10] were the lowest detectable moisture
levels accomplished by the NMR method.

The unbound moisture content of many dielectric matérials can’ be
accurately measured with microwave technigues [12]. Microwaves are
strongly_absprbed by water molecules because water exhibits a broad -
band rotational relaxation in the microwave region. More specifically,
a pronounced absorption occurs at frequencies just above 10 G Hz.

Since many completely dry host materials are quite transparent in the

same frequency range, a moisture-measuring technique s possible.

= | aQn T

o ~na K N

|l
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This technique has found wide use for both continuous process and
laboratory sample tests of platics and ceramics. The main disadvantage,
however, is the reduced sensitivity at low moisture levels, particularly
at moisture content less than 1% where a substantial percentage of the
water molecules is bound to the polymeric chains.

Moisture control systems based on the dielectric principle are
now commercially available such as the MCS 401 manufactured by
Moisture Control System Inc. The MCS 401 system is designed based on
the dielectric principle; " ... the dielectric constant of most
materials without water varies between 2 and 5 while the dielectric
constant of water is approximately 81. Therefore, the presense of
varing amounts of water in a known material causes a corresponding’
change in the dielectric constant [12]." This system, however,
cannot measure low moisture levels in poiymers for reasons to be
discussed later on in this thesis.

This thesis describes a new accurate method for measuring the
moisture content of dielectric materials such as polymers. The
technique devised is particularly suited for the measurement of
minute moisture levels in polymers and for on-line cotinuous

monitoring of moisture levels.

- — —
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CHAPTER II

LITERATURE REVIEW

II-A. NYLON 6/6

One of the sponsors of the M.I.T.-Industry Polymer Processing
Program, AMP Inc., was intérested in determining the moisture levels
in nylon 6/6. Hence, the major portion of the investigation was
carried out with nylon 6/6 (polyhexamethylene adipamide).

Nylon 6/6 is synthesized by reacting solutions of adipic ac¢id
and hexahethy]ene-diamine to form a salt, hexamethylene diammonium
adipate. The concentrated salt is then polymerized, extruded between
chilled rolls, and finally pelletized. During part fabrication, these
pellets are injection molded into the desired configurations.

The structural repeat unit (i.e., mer) of'ny10n 6/6 is as follows:

0
o
OH+G~{CHglg~C =N~ (CHp)g = N - H
I |
0 H
- 1 n
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The physical properties of nylon 6/6 are dominated by the

intermolecular hydrogen bond (shown here as a dotted line).

Infrared studies show that the extent of hydrogen bonding in
polyamide at room temperature is essentially complete over 99% [14].
Since the water molecule has a strong tendency towards hydrogen bonds,
and nylon's physical properties are controiled by the intermolecular
hydrogen bonds, the physical properties of nylon 6/6 should be
influenced by the quantity of water abscrbed. For example, the
volume resistivity (ASTM - D257) of nylon 6/6 is 10]5 ohm - cm when
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dry, 10'3 ohm - cm at 50% relative humidity (R.H.), 10° ohm - cm at
100% R.H. [15]. Nylon 6/6 absorbs approximately 3% and 8.5% moisture
at 50% R.H. and 100% R.H., respectively [16]. This corresponds to

a four order of magnitude difference in the volume resistivity.

This difference is used in the D.C. measurement method to characterize
the meisture content in nylon.

Some mechanical properties are also affected by the amount of
moisture absorption. As the moisture Tevel increases, the modulus
and yield strength decrease while the impact strength and toughness
increase. Some dimentional changes will also occur with the
increasing moisture level [17].

A11 polyamides are hygroscopic by nature. Before discussing
in detail the mechanics of moisture intake, some back ground

dielectric terminology is reviewed in the next section.
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II - B: Dielectric Terminology [18]

Condider an ideal capacitor placed in a circuit with a sin-
usoidal voltage sourse as shown in Figure 1. The charging current

will lead the voltage by a phase angle of 90°.

o= Q- jucy
where,
Ic = charging current
Q = charge
Co = capacitance of ideal capacitor
V = sinusoidal voltage sourse
w = angular frequercy

When the capacitor is filled with a dieléctric material, the
éapacitance will increase and induce a loss current in phase with
the voltage. The total current tféversing the capacitor will no
longer be exactly 90° out of phase with the applied voltage as
shown in‘Figure'Z. Therefore, the total current is the sum of a
charging current and a loss current.

I = Ic + IL = ng*CoV

total current

where, 1

i IL loss current



e¥* =¢' - je" = complex permittivity

dielectric constant

dielectric loss factor

m
n

Also, the complex relative permittivity is defined as follows:

K* = Kl - jKII =_z_*
o
1
where, k! =-§—- = prelative dielectric constant

0
)

k" = z— = relative dielectric loss factor
i}

€ = real part of vacuum permittivity

The ratio of loss current to .charging current is defined as the '’

loss tangent (tan ) or dissipation factor, that is:

Dissipation Factor = tané =+:-; = T T-
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I, = I,coswt

\/
|
|

V=V,sinwt

FIGURE 1: Ideal capacitor in series with a =

sinusoidal voltage sourse
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[ ]

b b o @ = =m e e =a

| N

1,

FIGURE 2: Vector diagram of the current

through a dielectric
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II-C. NATURE OF WATER ABSORPTION

The water molecule is relatively small and tends to form hydrogen
bonds with other polar groups. Nylon 6/6, for example, contains
four kinds of pelar groups - CO, NH, NH2 and OH. The water molecule
can bind to the nylon chain in various ways and, as yet, the nature
of this phenomenon is not fully understood. Nevertheless, a possible
and perhaps dominant water bonding mechanism in nylon 6/6, especially
at low moisture levels, is presented below.

Golling [32] has concluded from nuclear magnetic resonance
ctudies that with a water content up to 0.5% the water molecules
are firmly bound to the polyamide. The absorption centers are
evidently nitrogen atoms. As the water content increases from 0.5%
to 8% by weight, the mobility of the water molecules gradually
increases and approaches that of free water moelcules.

Papir et al. [19] reported that in nylon 6, water can exist
under two forms, one tightly bound and the other loosely bound to
the polymer chain. They observed an abrupt change in the properties
of all six relaxation processes, a§ well as in the stress relaxation
behavior, occuring at a moisture content of 2% by weight.

At some low moisture level, the absorbed water molecules appear
to be firmly held to the polyamide. These water molecules make

hydrogen bridges between the C = 0 and the N - H [20].
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If the water molecules were to be firmly bound, they would not be able
to exhibit the rotational relaxation in the microwave region as would
unbound water molecules. In this case, measurement by microwaves of
the bound water would be unsuccessful.

Nylon should contain less than 0.3% water before molding or
extrusion for satisfactory performance [17]. Since a low moisture
level in nylon processing is required, any moisture measurement
technique, to be useful, must be able to detect the bound water
molecules. Due to these bound water, there appears to be a moisture-
sensitive dielectric relaxation in nylon 6/6, which could be useful
for moisture characterization. These moisture-sensitive dielectric

properties will be discussed in detail in the next section.
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II-D. MOISTURE - SENSITIVE RELAXATION

Curtis [21] reported that the dielectric relaxation process of
nylon'6/6 at about TOK Hz. and at room temperature is a very water-
sensitive nrocess. He concluded that this dielectric relaxation
resulted from the water/polymer association rather than from the end
groups (amine and carboxyl groups). He based his observation on the
fact that process could be made to reappear immediately following the
absorption of a small amount of water.

Rushton and Russell [22] illustrated the moisture-sensitive
relaxation with its peak at around 10K Hz. They showed that the
dielectric permittivity does not vary very much with the moisture

content. This is one reason why commercially available moisture

measuring device MCS 401 (12],'which relieson: the'difference in the .

dielectrié¢ 'permittivity cannot measure the low moisture levels in
polymers.

Baker and Yager [23] made extensive dielectric measurements on
polyamides, and showed the effect of absorbed water on frequency
dependence of the dielectric constant and the loss factor. The
extraordinary dielectric properties of polyamide have been explained
in terms of hydrogen bridging and the motion of charged hydrogens
in these bridges. They also showed that rasing the temperature
alone would give the same end result as adding strona-hydrogen

bonding agents to the polymer at ordinary temperatures. They

&

-
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considered the water (a strong hydrogen bonding agent) as a plastici-
zing or pseudo-ionizing medium which substitutes for intermolecular
polyamide bonds, and facilitates motion of the whole system [24].

Boyd [25] studied the effects of absorption by hydrogen bonding
solvents, namely, water, methanol, and ethanol. These solutes have
a strong platicizing effect, as evidenced by a shift of the loss
maximum to higher frequency at a constant temperature, and a
reduction in activation energy. He, also, noticed the reduction in
activation energy following the introduction of the first bit of
solute. Hence, the plasticizing action is thought to be a result of
the reduction of interchain amide-amide hydrogen bonds and also the
increase of the segmental mobility by dilution.

Although a large number of investigators have studied the
effects of\Water on the dielectric properties of polymers, no one
suggested that measurements of the dielectric loss factor or the loss
tangent wouid be useful for the determination of the moisture contents
in such materials.

The dielectric loss factor or the loss tangent is not only sensi-
tive to water but also to other hydrogen bonding solutes. These
have the same deleterious effect as water in polymer processing.
Thus, the measurement of the loss factor would also be useful in
determining the concentration of any hydrogen bonding solutes.

The typical atmosphere in wﬁich physicbchemical transformations
of polymers are subjected to in standard industrial operations is

moisture. Hence, measurement of the loss tangent or the loss facter




27

can be used as a moisture measurement parameter.
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CHAPTER III
IIT - A: D.C. Experiments.

IIT - A - 1: Experimental Procedures

The electrical response of a polymer sample can be modeled
using simple capacitor and resistor elements. For example, a simple
model of a polymer sample is shown in Figure 3. Suppose the resistance
of R, changes as a function of moisture content, then the decaying
current, when a step voltage is applied to the sample, will vary
as the moisture content in the sample varies. Knowing that the
moisture content increases the conductivity, one can assume that the
higher moisture content lowers the resistance of R2.

A circuit diagram for a polymer sample subjected to a D.C.
step voltage is shown in Figure 4. Vhen the switch is closed, the
capacitor initially acts as a short circuit. During this initial
time a charge is building up on the capacitor. The current that

flows through the circuit is governed by equation (1).

11,
itt) = A R et 4 (1)
161 RyC,
Ry + Ry

RZV

where | A
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Ci== R

!

e

FIGURE 3: Simple model of a polymer sample
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FIGURE 4;}Circuit diagram for a polymer sample

~ subjected to a D.C. step voltage
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- The current at t = 0F is given by equation (2).

) v

(2)

R1 + R2 Ry
Once the capacitor is fully charged up after the elapse of a charac-
teristic time period, the capacitof acts as a open circuit, and the
current flow will be primary tﬁrough resistors. Hence, the steady
state current for an ohmic conductor is given by equation (3).

v

i(x) = R] N R2 (3)

For a given polymer, the decaying current (from ilo") to i(w)) is
expected to follow a somewhat exponential decay as shown by the dotted
line in Figure 5. Thus the higher the moisture content, the small the
resistance of R2 and the expected steady state current increases as
shown in Figure 6.

A circuit diagram of the apparatus is shown in Figure 7, and the
corrisponding experimental set-up is shown in Figure 8. From right
to left, it shows an oscilloscope, an electrometer(General Radio Type
1230-A), the sample holder box(shown in Figure 9), and a power supply.
The electrometer can measure a very low current, on the order of 10'14
amp. The sample holder box is necessary to shield the sample holder
(shown in Figure 10) electrically from the background noise. In the
box therg is battery operated(24 volts) time-delay relay switch to

prevent an overflow in the electrometer. A special switch that was
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used to eliminate conduction through the switch insulator(ceramic)

is shown in the Figure 11.
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!

current

time —

FIGURE 5: Expected current-time response of

a polymer sample
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f

current

H,O !

time —

FIGURE 6: Eipected current-time response of a

polymer with increasing moisture level
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FIGURE 7: Circuit diagram of the D.C. apparatus
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FIGURE 9: General view of a sample
holder box
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FIGURE 11: Circuit diagram of the switch
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III - A - 2: Sample Preparation

Three nylon 6/6 samples were conditioned at AMP Inc. as de-
scribed in Table 1. The samples were disks, 2 in. in diameter and
1/32 in. in thickness.

Although samples a, b, and c were conditioned te have equalibrium
moisture contents of 0.9%, 0.7%, and 0.5% by weight, respectively,
the moisture level determined by techricans at AMP Inc. using the
Meeco moisture analyzer differed widely as shown in Table 2. The
sourse of error might have been the change in the moisture content
when the disk was brokeﬁ into smaller pieces under ambient conditions
for measurement in the Meezo anaiyzer.

Other disk samples were conditioned by placing them in a constant
humidity descicator. One of polyurethane samples was conditioned urder
ambient conditions. The conditioning of samples and their moisture

levels are given in Table 3
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Tdble 1 : Sample Conditions

sample material conditions

a nylon 6/6 (Vydyne 21x)  60°C, 72 hrs, 27% R.H.
b nylon 6/6 (vydyne 21x)  60%C, 90 hrs, 22% R.H.

¢ nylon 6/6 (Vydyne 21x)  60°C,115 hrs, 17% R.H.
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Table 2: Moisture data by the Meeco Analyzer

sample measurements average
a 0.705% 0.427% 0.566%
b 0.564% 0.644% 0.604%

c -- -- 0.48 %
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IIT - A - 3: Results

Nylon 6/6 which were conditioned at AMP Inc. had the response as
'shown in Figure 12. Although the moisture levels were targeted for
0.9%, 0.7%, 0.5% by weight, their probable moisture levels would be
at 0.7%, 0.6%, and 0.5%, respectivel: as shown in Table 2.

Nylon 6/6 conditioned in the desicator with desicant MNaCl and P205

had the responsed shown in Figure 13 and‘Figure 14, respectively.

The log-log plot of the current (20 sec. after the switch is closed)
of thermoplastic polyurethane: with three different moisture contents
vs. applied voltages are shown in Figure 15. For a given moisture ~
level, the current varies approximately linearly with the applied -

voltage.
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current (amp)

time — (5sec./cm)

FIGURE 12: Step response of nylon 6/6 (Vydyne21l)

with three different moisture levels at 23°

a) 0.7%, b) 0.6%, c) 0.5%
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FIGURE 13: Step response of nylon 6/6
(Vydyne 21x) with 3.45% moisture,

at 23°c
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FIGURE 14: Step response of nylon 6/6
(Vydyne 21x) with 0.26% moisture,

at 23°%
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IIT-- B: A.C. Experiment
IT1I - B - 1: Experimental Procedures

Three different bridges were used to cover a wide range of fre-
quency in the dielectric loss measurements. A bridge built in the
Insulation Laboratory at M.I.T. was used for frequencies less than
50 Hz. (The details of the bridge are given in Technical Report 6 [26].)
For frequencies in the range of 50 Hz to 30 MHz, another bridge built
ir the Insulation Laboratory, described in the Technical Report 201
[27], was used. For frequencies greater than 30 MHz, a laboratory

built bridge, described in the Insulation Laboratory Technical Report

182 [28], was used.



FIGURE 16 : Detailed view of the

disassembled sample

holder for granules
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IIT - B - 2: Sample Preparation

Nylon 6/6 sampies were prepared at AMP Incorporated. They were
disks of 2 inches in diameter and 1/8 inches in thickness. Vydyne 21
is pure nylon 6/6. Vydyne 21x is nylon 6/6 with Tubricant. J 120 FR
is glass filled nylon 6/6 with fire retardant. The condition at which
samples were prepared and their moisture levels are reported in Table
4. The moisture levels were determined by the Meeco Moisture Analyzer.
In the case of glass filled material, the moisture levels were cal="
culated, assuming that only nylon absorbed moisture.

The. sample disk was coated with vacuum grease(silicon 0i1) and
thin tin feil disks covered the both sides of sample. Vacuum grease
helps the tin foil stick to the sample and retains the moisture in
the sample

Granules of nylon 6/6 were conditioned to three different
moisture Tevels by placing them in a constant humidity desicator
over a period of three months. Granules with P205 desicant had the
moisture content of 0.38% by weight; granules with LiC1 desicant
had 0.86%; granules with CaCl desicant had 1.15%.

A photograph of the disassmbled sample holder for granules 1is
shown in Figure 16. The holder had the following dimensions: inside
radius:of outer electrode--9.916 cm., and its height--12.725 cm.,
outside radius of inner electrode--5.072 cm., and its height--9.660 tm.
The insulation between the two electrods is crosslinked polystyrene.

Dissipation factors, the loss tangents (tan §) of Holycarbonate

(Merloﬁb), po1ymethy1methacry1ate(plaxig!ags), and thermoplastic
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po]yurethane(Texiﬁg) were also measured. These samples were in the
form of disks of 2 inches in diameter and 1/32 inches in thickness.
Three different moisture levels were obtained by -a) putting them in
the desicator with 92% relative humidity, b) as recieved from
Eastman Kodak Co., and c) by vacuum-oven drying. The moisture level
of each sample was estimated from the weight difference between the
sample and the dry sample.

The dielectric loss factors of polyethylene terephthalate and
poly(amide-imide), Torlon were measured. The polyethylene tere-
phthalate resins were supplied and their moisture levels were re=
portéd by Goodyear Tire and Rubber Co. The Torlon resins were
supplied by Lord Corp. and their moisture contents were measured

by AMP Inc.
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ITT - B - 3: Results

Dielectric loss factor vs. frequency of nylon 6/6{Vydyne 21) are
shown in Figure 17. Note the moisture-sensitive frequency near
20,000 Hz. The loss factors vs. frequency of nylon 6/6(Vydyne 21x)
and nylon 6/6(J:T20-FR) are shown in Figure 18 and 19, respectively.
Other dielectric data are tabulated in Appendix A3.

413.1 grams of nylon 6/6 granules(Vydyne 21x) filled 4/5°th
of the sample holder shown in Figure 14. Since the sample holder
was not filled completely with granules of the nylon sample, shaking
the sample holder resulted in varing the geometry of samples! volume.
To study the variation of the Toss reading due to a change in the
sample geometry, changes in the loss reading and capacitance reading
were measured at 20,000 Hz.after the sample holder has been shaken.
The dielectric constant and loss factor can be calculated from the
loss and capacitance readings by equations (4)-arid (5), respectively

[28].

k' = S0 Si) + 1 (4)

k"= SO ’ (5)
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where,

Cso = Capacitance with the sample holder
disconnection switch out

csi = Capacitance with the sample holder
disconnection switch in

Co = Capacitance of the sample holder
without sample

C" = Capacitance on the right hand side
of the bridge [27]

DSo = Loss reading with the sample holder

disconnection switch out

D.; = Loss reading with the sample holder
disconnection switch in

It is also known that the following relation holds[29].

(k'-1) = Ax p (6)
k" = Bx p (7)
where, A = Constant
B = Constant
p = Density of sample

Dividing equation (6) by equation (7), one obtains the following

relation

A AC .
= — = (8)
B C" x AD
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where,

AC = C_. - C..

AD = D_. - D

From equation (8), one can say that the ratio of AC and AD

are the same even when one shakes the sample holder to change the
geometry of sample thereby changing AC, as long as the material
propertiés does not change. So one can compensate for the change
in the value of AD by variation in AC. The compensated AD
values are tabulated in Table 6. In comparison to the standard
deviation-value in Table 5, the compensated value of AD in Table 6
has a much smaller standard deviation.

The average values of AD are plotted according to their
moisture levels in Figure 20. From the slope if the line in
Figure'ZO, one can estimate the sensitivity of the moisture measure-
ment. Since one can read the AD value well within £0.25, one can
measure the moisture level within 0.01% sensitivity. Although AD
reading could be measured more sensitively using the micrometer
attached to the bridge [27], the micrmeter. reading was nat necessary
since the sensitivity of moisture measurement done at AMP Inc. was
not any better than 0.01%. More sensitive measurements can be achieved
if a comparative type of measurement is used. For example, the

difference in the loss factor reading for two moisture levels(i.e.,



56

0.23% and 0.10%) is about 0.015 at the moisture -sensitive frequency,
20 KHz as shown in Figure 17. Assuming the loss factor varies linearly
with the moisture level and it varies only to the moisture, one can
estimate 0.0001% (by weight) sensitivity since a comparative bridge
measurement can measure the phase angle difference within 10—5 radiant.

A moisture sensitive frequency must be found so that the loss
factor reading can be made at the frequency. The loss tangents of
several polymers were measured in a hope in locate the moisture-sensi-
tive frequency. Note that the loss factor is proportional to the Toss
tangent if the dielectric constant is the same. Since the change in
the dielectric constant due to the absorbed moisture is negligible in
the Tow moisture level considered, the loss tangent is approximately
proportional to the loss factor. Hence, either the loss tangent o
the loss factor can be used in determining the moisture levels in poly-
mars. Also, since'the value of the loss tangent (tand) is small, the
value of angle (8) is approximately equal to the loss tangent.

The loss tangent vs. frequency of polycarbonate, polymethylmeth-
acrylate(PMMA), and thermoplastic polyurethane are shown in Figure 21,
Figure 22, ard Figure 23, respectively.

The loss factor vs. frequency of polyethylene terephthalate and
poly (amide-imide) aré shown in Figufe 24 and Figure 25, respectively.

The moisture -sensitive frequency of poiycarbonate, PMMA, poly-
urethane, polyethylene terephthalate, and poly (amide -imide) is around

7 5 3 5

107 Hz., 105 Hz., 10° Hz., 10° Hz., and 10% Hz., respectively.
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The loss factor vs. frequency of polyethylene with the several
moisture levelswere made but not reported in this thesis. As expected,
the loss factors for the different moisture level were identical.
Interpretation of the result is as follows: Since polyethylene does
not have any polar groups which might have arweak electrostatic force
in attracting water molecules, the absorbed water is not bound to the
surrounding molecules. Hence, the author predicts that a very sensitive
moisture measurement is possible at the microwave frequency, more pre-
cisely around 10 GHz. This prediction is supported by the report [33]
which shpwed the effect of moisture on dielectric loss of polystyrene

at 3:10° Hz.
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Table 5: Readings of AD & AC after the sample

holder has been shaken

0.38% H20 0.86% H20 1.15% H20

AD AC AD AC AD AC
45.3 57.96 65.1 60.59 *78.6 62.85

45.5 58.11 64.9 60.34 78.8 62.49
45.5 58.12 66.2 61.16 79.1 62.79

44.6 57.19 66.4 61.43 79.5 63.06
45.4 58.16 66.6 61.69 79.4 63.00
45.4 58.26 66.7 61.50 *79.8 61.16
-- -~ £6.5 61.50 -~ --
x = 45.28 X = 66.1 'x =79.2
s = 0.34 s =0.74 s-=0.32

* omitted because of queastionable validity
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Table 6: Compensated AD values

0.38% H,0 0.86% H,0 1.15% H,0
45.30 65.7 *78.52
45.38 66.6 79.18
45.37 66.2 79.10
45.20 66.1 79.23
45.24 66.0 79.13
45.17 66.1 *81.85

-- 66.1 --
x = 45.28 X = 66.1 X = 79.2
s = 0.09 s = 0.27 s = 0.06

* omitted because of queastional validity
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III - C: Temperature Run
ITIT - C - 1: Experimental Procedures

Temperature of the sample was controlied by controlling the
temperature of the silicon oil bath. The controller, Haake (TP 41)
was used. A mixer was used to have a uniform temperature dis-
tribution in the oil bath. To off-set the temperature rise due to
the viscous heat generation by the mixer, cooling was required.

The refrigerator (Forma Scientific Inc.) was used for the required
cooling. A schematic diagram of the temperature experiment is
shown in Figure 26.

At each temperature setting, the system was equilibriated for at
least 30 min. before taking measurements. In most cases, the two
thermocouple readings (one located at oil inlet, T.C.: #1, and the
other at oil outler, T.C. #2) were the same except at high tem-
peratures. When the two thermocouple readings were different, an
average of the two readings was taken as the temperature of the
sample.

The changes in the loss readings on the capacitance bridge [27]

were measured at a fixed frequency of 20 KHz.
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IIT - C - 2: Sample Preparation

Granules of nylon 6/6 (Yydyne 21x) were conditioned to three '*
different moisture levels by putting them into the constant humidity
desicators over a period of three moaths. Granules with P205 desicant
had the moisture content of 0.15% by weight; granules with LiC1 de-
sicant had 0.90%; granules with CaCl desicant had 1.27%.

IIT - C - 3: Results

The change in the loss reading of the bridge vs. temperature of
three different moisture level nylon 6/6 sample is shown in Figure 27.
First, it shows that the process is thermally activated. Second, it
shows that there are two different thermally activated mechanism,
since the slope of the 1inesin Figure 27 changed. For the moisture
of 0.90% by weight, the slope changed to a higher value than the others
did.. An obvious explanation for such a result was not possible with-

out futher investigation.
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IIT - D: Comparative Measurement
IIT - D - 1: Experimental Procedures

The type 1605-A impedance comparator made by General Radio Company
is designed to measure and indicate on meters the magnitude and phase-
angle differences between two external impedances. Since no bridge-
balancing operation is necessary, the measurement may be made rapidiy.
The comparative type of measurement is particulary suitable for in-
dustrial application, since an absolute measurement is not necessary
for processing.

The- impedance comparator with the adjustable standard box and the
sample holder is shown in Figure 28. The adjustable standard box is
nothing but a variable capacitor and a variable resistor in parallel.
When an unknown sample, connected to one leg of the bridge, to be
standardized, the capacitor and the resistor in the standard box are

adjusted until the phase angle difference and the impedance difference

~meters can be brought to a null position. The phase angle difference

meter is used to determine whether an unknown sample has a higher or

lower moisture content than the standardized sample.

" EE——— e e



FIGURE 28:
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Impedance comparator
(G.R. type 1605-A ) with
the adjustable standard

box and the sample holder
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IIT - D - 2: Sample Preparation

Three moisture levels (0.6%, 0.2%, and 0.1% by weight) of nylon
6/6 (Vydyne 21x) have been prepared by AMP Inc. 412 grams of

granular nylon 6/6 were used in the testing.

III - D - 3: Results

The resistor and the capacitor in the standard box have been
adjusted so that the phase angle difference and the impedance dif-
férnce readings were zero when a 0.2% moisture level sample was
used as a standard sample. The 0.6% moisture level sample had
+0.0007 ;adiants (rad.) and 0.1% moisture level sample had -0.00045
rad. reading.

Since the phase angle difference meter of the impedance com-
parator is sensitive upto 2 10'5 rad., an accurate and fast compa-
rétive measurement is possible.

A nonlinear response was: observed. A sensitivity of 0.005%
by weight is estimated if the response of the phase angle difference
is linear between 0.1% and 0.2% moisture levels. On the other hand,
a sensitivity of 0.01% is estimated assuming the linear response the
linear response between 0.2% and 0.6% moisture levels.

As thé-sample size increases, the limitation due to noise in
the measurement system becomes smaller. And, in the 3-terminal
measurement, noise problems are virtually eliminated. Hence, more
sensitive measurement can be achieved if the sample size increases

oFf 3-terminal measurement is made. Also, more sensitive measurement
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can be made if a more sensitive phase angle difference meter is -
‘used. For example, the type 1605-AH(General Radio) has a 3-to-1
better sensitivity than the type 1605-A (G.R.).
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IIT - E: Conduction Mechanism
IIT - E - 1: Experimental Procedures

In polymers both electrons and ions contribute to the total
conductivity, however it is likely that one type of conductivity will
predominate depending on the internal structure, the temperature,
the applied voltages, ect.

Seanor [30] has suggested that conduction in nylon 6/6 involves
the transport of both protons and electrons at temperstures above
120%C, whereas at lower temperatures it is by transport of electrons.
This experiment is carried out to investigate Seanor's suggestion
about the conduction charge carrier at elevated temperatures.

A circuit diagram of the experiment is shown in Figure 29.

One of the silver electrods was heated electrically, and the tem-
perature of the sample was raised to 135%C by conduction through
the electode. After the sample reached a thermal equilibrium at

135%C, 3000 volts were applied across the sample.
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3000 V sample

MEHnn:

FIGURE 29: Circuit diagram of the c'Op‘dﬁCdeﬁ T
‘experiment '
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IIT1 - E - 2: Sample Preparation

The sample was a nylon 6/6 (Vydyne 21x) disk of 2 in. in dia-
meter and 1/8 in. in thickness. The moisture level of the sample
was about 3.5% by weight, determined by the Meeco moisture analyzer.
The sample was in the desicator with NaCl desicant over a period of

three months.

IITI - E - 3: Results

When 3000 volts were applied atross the sample , the current of
0.5 mA was observed for the whole duration of the experiment. The
experiment was terminated after one hour.

Some brown dots were seen only on the positive electrode and the
side of the sample which was in contact with the positive eiectrode.
The S.E.M. photograph of the dots is shown in Figure 30. The dots are
some compounds of silver. A photograph of the X-ray Energy Spectrum
of a dot, indicating that the dots consist of silver, is shown in
Figure 31.

Interpretation of the brown dots is as follows: The absorbed
water dissociated into the ions of 4* and OH™. These ions moved
toward the oppsite polarity electrode under the électrostaic force
field. When hydroxyl ions (OH”) reached the silver electrode, an

oxidation reaction occured;

2 OH™ +  2Ag5 ——= 2 AgOH —= Ag,0 + H,0

At the other elactrode, hydrogen gas might have been evolved as

Seanor [30] observed;
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2H" + 2 — H,

Thus, it is possible thdt the hydrogen gas Seanor had observed is not

from the protons of amide groups,but instead it is from an electrolysis

of water.

This dissociation of water and the transport of the dissociated

ions by an electric field brings about the possibility of drying of

polymer by an electric field.

A simple calculation of the water removal rate is presented:

o assumption: charge carriers are W & on”

o number of H,0 dissociated = 0.5 x( 0.5-1073 sg%%gmh )
.1n18 molecules _ .1n15 molecules
x 6.281¢10 coulomb - 1.57-10 Sec.
S, ' . 15 molecules 18
o water removal rate = 1.57-10 X
sec. 6.02-1023
=1.7.107

g/hr.

A surprisingly low water removal rate is calculated. Neverthe-
less, further investigation would be helpful in finding the feasi-
bility of drying by an electric field. Osaki et al. [34], also,
reported the possibility that the absorbed water can be removed by
a d.c. field.
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FIGURE 30: S.E.M photograph of the brown dots
(X 1000)
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FIGURE 31: Photograph of X-ray Energy Spectrum

of a brown dot
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CHAPTER IV
DISCUSSION

D.C. experiments indicated that it is possible to measure the
moisture level in polymers. There are about three orders of magnitude
difference in the amplitude of the current (t = 20 sec.) through
nylon 6/6 between moisture levels of 3.45% and .26%. This difference
in current level is due to the change in the volume resistivity as a
function of moisture content. Measurements at 1ow levels of current
due to béckground e1ectrfca1 noise resulting from harmonics in the
power line.

This method would be useful in the nondestructive evaiuation
of the moisture ccntent of finished products, Tiquid monomers, or some
relatively highly conductive polymers such as polyurethane. Measurements
on polymer granules were not reproducible due to residué] charges and
conduction along the surface of the granules.

The A.C. method is free of the resudual surface charge problem of
the D.C. method. ' For most accurate determination of the moisture level
it is necessary to determine the most méisture-sensitive frequency.
However, this frequency does not have to be located precisely, because
the moisture related relaxation shows a broad absoption spectrum,
unlike the sharp spectrum resulting from atomic absorption;

The moisture-sensitive frequency for nylon 6/6 is around 'IO4 Hz,

in agreement with other studies [21,22]. Since the loss maximum dis-
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appeared for dry nylon 6/6 [21], the mechanism is a water-polymer complex
relaxation not found in the dry state.

The loss maximum of nylon 6/6 (vydyne 21) shiftsto a higher
frequency as the moisture content increased. This indicates that water
provides a plasticizing action. The difference between Vydyne 21x and
Vydyne 21 is that the former has a lubricant whereas the latter is
pure nylon 6/6. The lubricant did not affect the moisture-sensitive
reiaxation, as evidenced by the fact that Vydyne 21x does not have a
pronounced difference in the loss.factor at around 104 Hz. On the
other hand the loss factor of nylon 6/6 (J120 FR), which is glass
filled wfth fire retardants, increased as the glass fibers and fire
retardants loading, except at the moisture-sensitive frequency.

Thus, it may be concluded that the relaxation was due only to
water-pclymer compliex, and not to any of the fillers or additives
(the lubricants, the glass fibers, or the fire retardants).

Additional experimental results will be useful in dertermining the
effect of minute quantities of additives on the sensitivity of the
A.C. measurement sensitivity. If significant side éffects were found,
then calibration for éach type of nylon 6/6 will be required.

Such properties and morpho]ogy of polymers as crystillinity,’
degree of orientation, type of processing technique used, etc. may °
also affect the sensitivity of the moisture measurement. Further
study on the same type of sample from different resin suppliers might be
useful in determininj:the effects of sample's history and properties on

the moisture measurement sensitivity.
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The sensitivity of comparative measurement depends
on how precisely the transformer in the bridge could be lalanced.
When the radio arms of the impedance comparator is balanced to be
equal within one part in 106 (General Radio Type 1605-A Spec.),

a detector sensitivity of 2-'l0"5 radians in phase difference can
be attained from the comparative measurement.

Polymer such as polycarbonate, poly (amide-imide), and polyethylene
terephthalate showed the moisture associated relaxation peaks whereas
PMMA and polyurethane did not. Common factors relating the group of
polymers exhibiting a moisture-sensitive relaxation have not been
investigated. |

An accurate, fast, and on-Tine measurement of the moisture level
in polymers in possible if a comparative measurement technique is used.
The exact value of the moisture content is not required during injection
molding or extrusion; instead an indication of whether the moisture
level is lower of higher than a level desired would be sufficient and
perhaps'more useful. By calibrating two standard values, one for the
minimum and the other for the maximum acceptable moisture levels, a
continuous monitoring of the polymer resins within a desired moisture
level is possible. Whenever the moisture level of the resins is within
the acceptable range, the dryer can be turned off. In so doing, |
. overheating can be eliminated 1eading to a substantial savings in energy
cost.

The loss factor reading increases exponentially as temperature
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increases, indicating that the process is themally activated. With a
decreasing moisture 1eve1; the change in the slope of the lines shown

in Figure 26 occurs at higher temperatures. Although it has been .
speculated that this is due to the change in the glass transition
temperature with moisture, further investigation is needed to elucidate
its causes. In on-line monitoring of the moisture level a microprocesser
can be used to compensate the changes in fhe reading due to the

temperature change.

The cenduction in nylon with a substantial amount of absorbed
water involves the transport of either electrons or dissociated water
ions depending on the temperature. At elevated temperatures, for
instance above 90°C, ions of dissociated water are the dominant
charge carriers as indicated by the oxidation of the silver é]etrode
(Sec. I1I-E-3). O1f et-al.[31] studied the chain mobilization and
the mobility of water in nylon 6/6. They concluded that the temperature
at which the chain segmental motion in the crystalline regions begin
to occur is ébout 90°C. Hence, below 9Q°C, jons cannot pass through
the crystalline region due to chain stiffness.

At termperatures below 90°C, nyion can be éonsidered as a wide band
gap semi-conductor, with the.handing;on type electron charge transfer.
In this case, absorbed water molecules may act as electron donor
impurities. A possible handing-on [20] type of electron transter is

in the next page:
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Based on the research reported in this thesis, the following
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CHAPTER V

CONCLUSIONS

conclusions can be drawn:

1).

2).

3).

The dielectric loss factor is very sensitive to the moisture

level in polymers regardless of whether or not the water

molecules are bound to polymers.

The moisture-sensitive frequencies for the following polymers

have been found:

polyamide

poly (amide-imide)
polyethylene terephthalate
polycarbonate
polymethylmethacrylate

Thermoplastic Polyurethane

An accurate, fast, and on-line measurement of tﬁe moisture
Tevel in polymer is possible if a comparative measurement unit

such as the impedance comparator (General Radio Type 1605 - A)

is used

E=3

~10" Hz

~ 10" Hz
~ 10" Hz
~ 10" Hz

~ 10" Hz

W o NS N

~ 10" Hz



4).
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The amplitude of decaying current, when a D.C. voltage is
applied across the bulk of a polymer sample, is very
sensitive to the material's moisture content. Therefore,

it can alsc be used to monitor the moisture level.
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APPENDIX Al

Hydrolysis Mechanism of Polyamide

Polyamide, otherwise known as nylon, is one of the well known
synthetic thermoplastics. Nylon possesses good resistance to impact
and fatingue, has a low coefficient of friction, and has excellent
abrasion resistance.

Nylon is normally processed by extrusion or injection molding.
While nylon is being processéd, it can undergo degradation by hydrolysis.
Hydrolitic degradation of nylon is a chemical reaction in which the
nylon reacts with ions of water (H*and OH-) to break the bond of the
nylon chain. This hydrolitic reaction lowers molecular weight because
the long.-chain .of nylon gets shorter due to the scission.

The technological importance of hydrolitic degradation of nylon 1ies
in the deterioration of tensile properties. It is therfore desirable
to understand the mechanism of the hydrolysis of nyion.

The mechanism of hydrolysis can be viewed as a depolymerization
process of polyamide. Depolymerization is simply the reverse reaction
of polymerization. Polymerization, also known as condensation, is |
a forward reaction in which amide and water are produced by the
chemical reaction between amine and carboxylic acid.

Depolymerization is a reverse reaction in which amide and water react

to produce amine and carboxylic acid.
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The reaction of an amine with a carboxylic acid to form an amide

can be represented as follows:

polymerization
R'NH2 + RCOOH «=— ™ RCONHR' + H,0 (AY)
depolymerization
amide carboxylic amide water

~acid
Note that water is a by-product in the polymerization of nylon.
Since water is part of the product, depolymerization can be viewd
as hydrolysis. 1In equation (A1), arrows point both ways; one indicates
the direction. of polymerization and the other that of depolymerization.
The ré&ction continues as long as the equilibrium concentrations of
products and reactants are not reached. For example, if the concentration
of water is greater than the equilibrium concentration of water,
nylon depolymerizes to lower the concertration of water until the
equilibrium condition is satisfied. However, when one pours some water
over a nylon block there is no chemical reaction at all. The reason
is that depelymerization is an endothermic reaction. In other
words water and nylon need energy to react with each other.
In extrusion or injection molding processes, enough thermal energy

is supplied so that.nylon hydrolyzes with the excess water.
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APPENDIX A2

Dielectric Data of Nylon 6/6

The following table contains the dielectric data of nylon 6/6.

The table gives the dielectric constant, the loss factor, the loss
tangent, the conductivity, and the conductance. The environment in
which the samples were conditioned and their moisture fevels are

listed in Table 4.

!
gt

3
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MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A






















