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ABSTRACT

The applicability of statistical linearization as a design
tool in the lateral stability and forced response analysis of nonlinear
rail vehicles is investigated. A digital lateral half carbody locomo-
tive model is developed to validate the results obtained by the statis-
tical linearization method. Gaussian and trapezoidal probability density
functions (PDF's) for the inputs to the nonlinearities are used, and it
is shown that the trapezoidal PDF reduces the difference in r.m.s.
values less than 15% for both low and high speeds whereas the Gaussian
assumption produces differences as great as 30% in the high speed case.
It is shown that the statistical linearization method is a useful tool
in predicting the frequency content of the variables as well as the
total r.m.s. values.

The extension of the half carbody model to a full carbody
model indicates that the half carbody model is adequate to predict the
Jateral stability of the locomotive model. The developed and validated
method is then used to determine the influence of wheel profile. track
roughness, axle clearance and centerplate Coulomb friction level on the
lateral stability of the locomotive.

Thesis Supervisor: J.K. Hedrick
Title: Associate Professor
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NOMENCLATURE

1/2 track gauge
track roughness parameter

wheelset roll coefficient in lTinearized
expression

lateral primary damping
yaw primary damping
lateral secondary damping
yaw secondary damping
vertical primary damping
primary roll damping
secondary roll damping

distance from truck c.g. to primary
suspension

distance from truck c.g. to secondary
suspension

lateral creep coefficient

lateral/spin creep coefficient

spin creep coefficient

Tongitudinal creep coefficient

height to truck c.g. above axle center

height of carbody c.g. above bolster spring
center

height of bolster spring center above
truck c.g.

wheelset yaw moment of inertia
wheelset spin moment of inertia
truck yaw moment of inertia
truck roll moment of inertia
carbody roll moment of inertia
bolster yaw moment of inertia
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[in]
[in® -rd/ft]

[1b-sec/in]
[1b-sec/in]
[1b-sec/in]
[1b-sec/in]
[1b-sec/in]
[1b-sec/in]
[1b-sec/in]

[in]

[in]
{1b]
[in-1b]
[in2-1b]
(1b]
[in]

[in]

[in]

[lb-in-secz]
[1b—1n-sec2]
[1b-1n-sec2]
[1b-1n-sec2]
[1b-in-sec2]
[1b-in-sec2]
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primary lateral stiffness

primary yaw stiffness (1inear)

primary roll stiffness

primary vertical stiffness

secondary lateral stiffness

secondary yaw stiffness

secondary roll stiffness

primary yaw stiffness in the linear range

primary yaw stiffness after the linear
range

equivalent linear gain for roll angle

equivalent gravitational stiffness

axle load

distance between truck center and leading
axle

distance between truck center and middle
axle

distance between truck center and trailing
axle

half distance between truck centers
wheelset mass

truck mass

carbody mass

sample size

left, right normal forces

Teft rolling radius

right rolling radius

rolling radius for centered wheelset
power spectral density

estimate of power spectral density
student t distribution

[1b/in]
[1b/in]
[1b/in]
[1b/1in]
[1b/in]
[1b/1in]
[1b/in]
[1b/in]

[1b/in]

[1b]
[in]
[in]

[in]
[in]
[lb-secz/in]
[1b-sec?/in]
[1b-sec2/in]

(1b]
[in]
[in]
[in]
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centerplate Coulomb breakaway torque
vehicle forward speed

left contact angle

right contact ingle

contact angle for centered wheelset

deadband amplitude of primary spring
linear range for primary yaw spring

wheelset roll angle

cant deficiency

longitudinal creepage

lateral creepage

spin creepage

cut-off frequencies for track irregularity
PSD's

effective conicity

V/ro, nominal axle angular velocity
spatial frequency

r.m.s. value of x

sample r.m.s. value of X

Chi-Square distribution
white noise

equation (2.3 )
equation (2.4 )
equation (2.5 )

[1b-in]
[mph]
[rad]
[rad]
[rad]
[in]

[in]
[rad]
[degrees]

[rad/ft]

[rad/sec]
[rad/sec]
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CHAPTER 1
INTRODUCTION

The use of the analytical techniques to study rail vehicle
dynamics has seen increasing application around the world during the
past few decades. Most of these analytic studies have employed 1inear
analysis techniques such as eigenvalue/vector and frequency response
computations to study the stability and the forced response of the
rail veé%c]es. The analysis of new rail vehicle truck designs has
proceeded along these 1ines and a great deal has been learned about
the complex lateral dynamic behavior by linear analytical techniques.
The fundamental papers of Wickens [1]. Matsudaira [2], and Cooperrider
[3] made use of the linear matrix theory for rail vehicles with many

degrees of freedom. Cooperrider and Law's survey paper, [4], outline

the results of the linear theory.

Although the 1linearized theory often yields correct quali-
tative results, it cannot include the effects of worn wheel profiles,
wheel flanges, suspension clearances, spring hardening, dry friction
and creep force saturation. Cooperrider [5] found that flange contact
can lead to sustained hunting at speeds well below the linear critical
speed. Hobbs [6]. King [7] and Law [8] showed that nonlinear creep may

have a significant influence on the truck hunting.

One way of including these nonlinear effects is through digital

simulations and this technique has been used successfully by many
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investigators [8,9]. Although an extremely useful method to make
final checks of the design, this technique is not suitable as a design
tool due to its complexity, cost and the difficulty in interpreting

the results.

In order to develop nonlinear analytical tools for rail
vehicle design, a number of approximation techniques have been inves-
tigated. DePater [10], Law [8],Law and Brand [11] applied the averaging
method of Krylov and Bogoliubov to determine the hunting behavior of
a wheelset. This method is difficult to extend to large order systems
and is limited to the analysis of speeds above the onset of hunting.
Cooperride’ and Hedrick, [12,13,14]. applied the sinusoidal describing
function method to predict the hunting behavior of wheelsets and higher
degree of freedom vehicles. This technique, although very useful, is
limited to speeds above the onset of hunting, like the K&B method.
Stassen [15], Rus [16]. Hedrick [17], Hedrick and Arslan [18], Hedrick
and Castelazo [19] have applied the approximate method of statistical
linearization to analyze the stationary statistical response of non-
linear rail vehicle models. The statistical linearization method re-
places the nonlinear system with an equivalent linear system. This
technique has the advantage of being applicable for speeds below and
up to the onset of hunting. Thus it can be used to predict the forced
response of the vehicle to statistical track jrregularities as well
as the influence of suspension parameters on the lateral stabiiity.

It also has the advantage of allowing the vehicle designer to inter-

-18-



pret the nonlinear system response in fam liar terms, i.e., natural
frequencies, damping ratios, and modes of vibration. The disadvantage
of the technique is that the probability density function of the in-
puts to the nonlinearities sho.ld be known. Booton [20] has shown

that if the exact probability density functions are used the propagation
of the mean and covaranice of the approximate system is identical to

that of the nonlinear system.

Scope and Goals:

The major objective of this research is to investigate the
applicability of the statistical linearization as a design tool in the
lateral stability and forced response analysis of rail vehicles, and to
validate the results against a time domain digital simulation model.

The proposed research is:

-To develop a nonlinear locomotive model
-To develop a time domain digital simulation model

-To investigate (evaluate) the statistical linearization
method as a design tool for rail vehicles

-To validate the results by time domain simulations

-To apply the developed and validated method to analyze
the effects of the nonlinearities on the lateral dynamics
of a six-axle locomotive.

In order to accurately describe the wheel/rail interaction
forces the complete nonlinear wheelset equations are derived and
presented in Appendix A. The nonlinear wheelset equations together

with suspension nonlinear characteristics, which are obtained from
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Martin-Marietta test data [21] are incorporated into a linear AAR

locomotive model [22] in Chapter 2.

Chapter 3 describes the time domain digital simulation
model. The digital program was developed to investigate the impor-
tance of wheel/rail nonlinearities and to validate the statistical
1inearization method. Chapter 3 also describes the digital simulations
and the processing of time traces to compute probability &ensity

functions, power spectral densities and r.m.s. values. _

In Chapter 4, the historic development of statistfcé1'}in-
arization method and the approach used in this thesis are presented. \
Also, the flow chart of the developed computer program and the im-
provements made to increase the efficiency of the program are dis-
cussed.

Chapter 5 describes two types of probability density func-
tions that are used in the evaluation of the statistical linearization
method. These are Gaussian and trapezoidal density functions. It is
shown that the trapezoidal density function assumption for the inputs

to the nonlinearities is suitable as a design tool.

Chapter 6 presents the parametric studies performed using
the developed and validated design tool. In the first part of the
chapter the extension of the half-carbody model to full carbody model
and the comparison of the two models are presented. It is shown that

although the half carbody model is sufficient to investigate the lateral

-20-



stability characteristics of rail vehicles, a full carbody model is
recommended for the ride quality analysis. The second part of the
chapter contains the parametric studies to investigate the effects of
important nonlinearities on the lateral stability of the half carbody
locomotive model. The results of parametric studies are summarized
in Chapter 7.

The equations of motions of the digital and statistically
linearized half carbody models and the extension to full carbody

equations are presented in Appendix B. Finally, Appendix C contains

the computer 1isting of the 12 D.0.F. statistically 1inearized

half carbody model.
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CHAPTER 2

MODEL DEVELOPMENT

In the first part of the research a nonlinear Tocomotive
model has been developed for lateral stabilityand forced response analysis.
It consists of the derivation of nonlinear wheelset equations and
incorporation of these equations together with the suspension non-
linearities obtained from Martin-Marietta test data into a lateral

Tinear A.A.R. Tocomotive model [22].

The essential dynamic element of a rail vehicle is the
wheelset. It is important to accurately describe the wheel/rail
interaction forces and to include all of the terms that have a signi-
ficant influence on the dynamic performance of the vehicle. There-
fore, a rigorous derivation of the nonlinear wheelset equations has
been completed. This nonlinear wheelset model has been incorporated into a
twelve degrees of freedom half-carbody digital locomotive model to
eliminate those nonlinearities which havera negligible influence on the
lateral forced response and the stability of the locomotive. The
detailed derivation of the nonlinear wheelset equations and simpli-
fications of these eguations to well-known approximations are pre-
sented in Appendix A, and the twelve d.o.f. Tocomotive equations with

nonlinear wheelset equations are presented in Appendix B.1.
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The resulting locomotive model‘js used in Chapter 5 to
validate the statistical linearization method. Since the model
is used for parametric studies it is important that while containing
all important nonlinearities it must be a low order model to reduce
the computation costs. It was felt that a half-carbody model
achieved these goals [4]. 1In Chapter 6 a comparison of the half-

carbody and full-carbody models are presented.

Also in this chapter, the time domain and frequency domain

representation of random track irregularities are presented.

2.1 Locomotive Lateral Half-Carbody Model

2.1.1 Degrees of Freedom and Assumptions

- The half-carbody model which is adapted from [22], Figure 2.1,
consists of a half-carbody mounted on a single truck with three wheel-

sets. The twelve degrees of freedom of the model are:

¥1,3,5 lateral displacement of wheelsets 1,2,3
y2’4’6 yaw displacement of wheelsets 1,2,3

Y7 = truck lateral displacement

Yg = truck yaw displacement

Yg = truck roll displacement

y]b = carbody lateral displacement

T = carbody roll displacement

Y12 = bolster yaw displacement

-23-
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In this model the following assumptions are made:

-The venicle is running at constant forward speed on
tangent track

-A11 elements are rigid and their stiffnesses are
fumped at the suspension connections

-There is no wheel 1ift

-The vehicle is symmetric about a vertical, longitudinal
plane. Therefore, lateral and vertical motions are de-
coupled.

2.1.2 Wheel/Rail Profile Nonlinearities

In the nonlinear wheelset equations derived in Appendix A the

following wheel/rail profile nonlinearities appear.

r -r
L R
) > (2.1)
P b (2.2)
tan(8 + ¢) - tan(s, - ¢)
o 4 (by) = T (2.3)
2 - -—a—{rLtan(6L+¢)+rRtan(6R-¢)]
sing, cos(s, +4) - sind,cos(8y-0)
o () = e Y
sinéLcos(6L+¢) - sindRCOS(SR-¢)
® Az(Ay)= 2.5)

2 - —%—{rLtan(6L+¢) + rRtan(GR-¢)]
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where "LTR T left and right rolling radii [Figure 2.2]

SL’SR = left and right contact angles
0 = wheelset roll angle
a = half of the wheelbase

Equation (2.1) is the rolling radii difference, i.e.,
the difference between the left and right radius measured at the
respective contact points as shown in Figure 2.2. Equation (2.2)
is the wheelset roll angle. Equation (2.3) represents the lateral
gravitational force normalized by the constant axle load, LA'
Equations (2.4) and (2.5) reduce to the contact angle difference
for small contact angles. For a real wheel these geometric para-
meters are nonlinear functions of the wheelset excursion.

Figures 2.3 and 2.4 are typical examples of these geometric non-

linearities [23].

2.1.3 Suspension Nonlinearities

There are three kinds of nonlinear suspension elements in
the Tocomotive model [21]. These are:
-Primary lateral suspension

-Primary yaw suspension

-Coulomb friction between bolster and the carbody yaw
motions.

Primary Lateral Suspension:

The primary lateral suspension is modeled as a deadband

spring in parallel with a viscous damper [21]. The characteristics
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of the nonlinear spring are shown in Figure 2.5.a. The force-dis-

placement relation of the spring is given by:

k £, ; (1oy;] > 85)
kayi = (2.6)
\ 0 5 (lAY1| f-dyi)
where g, = (|Ay1l - Gyi)sign(Ayi)

by, = Y5 - Y7 £ 45Yg 7 PepYg T = 1,3,5

5yi =  Deadband amplitude.

Primary Yaw Suspension:

The primary yaw suspension 1is modeled as a hardening spring
in parallel with a viscous damper [21]. The hardening yaw spring has
the piecewise linear shape as shown in Figure 2.5.b. The force-dis-

placement relation of the spri g is given by:

kpw1 MY s ] <8,
Mepu (2.7)
kpw1 6¢ sign(Aw)+kpw2[(Aw-6w-sign(Aw))]
s sl > 6
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where Ay i= 234s6

"
<

8 b}

O
1}

Linear range of primary yaw spring

Secondary Yaw Suspension:

The secondary yaw suspension is modeled as an ideal
Coulomb damper between the carbody and the bolster in series with a linear
spring between the bolster and truck as shown in Figure 2.6. The
characteristics of the Coulomb damper are shown in Figure 2.5.c.

The force-displacement relation is given by:

.-&w & ; by, < _%m_
sy
MSlD - . (2.8)
Tep ; by, > —Kii_
where Aws =Yg - ¥pp
Tcp = centerplate breakout level

2.2 Track Input Description

Two types of rail irregularities are important in the
analysis of lateral dynamics of rail vehicles: alignment and
crosslevel. Alignment is defined as the average lateral position

of the two rails. Crosslevel is defined as the difference in ele-
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FIGURE 2.6: SECONDARY YAW SUSPENSIOn [25]

-33-



vation of the rails. Both displacements are illustrated in Figure

2.7. [24]

2.2.1 Frequency Domain Representation

The power spectral density of alignment and crosslevel
have been measured for different kinds of tracks [24]. Figures 2.8
and 2.9 show the one sided spectral densities of alignment and

crosslevel, respectively, for class 6 track [24].

These spectra have been approximated by a function which
gives an analytic representation of the measured spectra. In
practice, the track inputs are modeled as a stationary stochastic
process whose spectral density fits that of the measured data in the

frequency range of interest.

The spectral sensity functions obtained for the cases

shown in Figures 2.8 and 2.9 are the following [24]:

Alignment:
2
S (Q) _ ZTTAaQC [ in 'ft ]
A @ + Qi)(QZ + QE) cycle
(2.9)
Crosslevel:
2
8mA Q . 2
-ft
s.(e) = £ 05 [ (2.10)
c (92 + QE)(QZ + Qi) cycle
-34-
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where Q = spatial frequency [rad/ft]
. 2
A = track roughness parameter [—lﬂ?%rég—i
QA,QC,QS= cut-off frequencies [rad/ft]

Table 2.1 shows the track roughness parameters and Qs as

a function of Track Class Number. [25]

TABLE 2.1: TRACK INPUT PARAMETERS AS A FUNCTION OF TRACK CLASS NUMBER

TCN 1 2 3 4 5 6
Ac 0.05722 0.04808 0.03218 0.02543 0.00993.0.00159
|
) \
Aa 0.1589 0.0572 0.0195 0.0143  0.0036 {0.00159
|
Qg 0.1843 0.2837 0.2597 0.3448 0.2502 Q.1335

2.2.2 Time Domain Representation

To obtain a time domain representation of the rail inputs
suitable for digital simulation Gaussian white noise was passed
through a linear shaping filter such that its output spectral density
is equal to the spectra given by (2.9) and (2.10). A Gaussian
random number generator which has a power spectral density shown in
Figure 2.10 was used as the white noise. In this research only

random alignment irregularities was used as track inputs.
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Derivation of Linear Shaping Filter:

The relationship between the input and output spectra for

a linear time invariant system is given by:

so(n) = H(Q) s].(sz) H(-Q) (2.11)
where Q = -%%— [rd/ft]

= spatial frequency

s.(Q)= PSD of input signal
SO(Q)= PSD of output signal

H(Q) = Transfer function of the linear system

The transfer function H(Q) can be obtained factorizing
the output PSD and collecting all the factors with poles and zeros
in the left hand plane. If such factorization is carried out H(R)
is the transfer function of a stable, minimum phase system. This

system is defined as the shaping filter.

Following this algorithm the factorization of (2.9) is

given by:

2
ZnAaQ ?

S\(®) s TR F R - G - 8 (212}

where s = JQ 5 j = VA



The spectral density of white noise is given by:

Si(Q) = —%— = constant

where ‘ q = intensity of the white noise.

Then the transfer function of the linear shaping filter can be ex-

pressed as:

H(Q) = 1 (2.13)

(5 +)(5 + Q)

2, ~2
2m Aaﬂc (2.14)

O
i

Finally, we can express the system defined by the trans-
fer function (2.13) by its time-domain differential equation with

white noise input.
goob (e 0Dy, * 0y, = n,(t) (2.15)
Eln,(t) n (t + 7)] = qé(1)

Verification of the Shaping Filter:

The random sequence for alignment input produced by the
shaping filter was verified by computing its power spectral den-

sity using a Fast Fourier Transform (FFT) algorithm. Figure 2.11
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shows the PSD of the constructed rail alignment irregularity compared
with the formula given by (2.9). Figure 2.12 shows the computed proba-

bility density function of the constructed alignment irregularity from

the digital simulation of equation (2.15).
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CHAPTER 3

DIGITAL SIMULATION OF LOCOMOTIVE DYNAMICS

3.1 Introduction

The twelve degrees of freedom three-axle nonlinear half-
carbody Tocomotive model presented in Chapter 2 has been simulated
on a DEC/VAX 11/780 digital computer. In Chapter 5, the results of
digital simulations are used to validate the statistical linearization
method. The random track alignment input was generated and stored
on disk as a staticnary stochastic process. Twelve second order
nonlinear ordinary differential equations which are presented in
Appendix B.1 were represented by 24 first order nonlinear differen-
tial equations. These equations were integrated on the digital
computer by a fourth order Runge-Kutta algorithm. The response of
the locomotive model to random alignment irregularity was stored

on disk files for further processing of the time traces.

Nonlinear characteristics of the model, specifically
nonlinear wheel/rail profile geometry, is important during
flange contact. Therefore a variable time step was used in the
integration scheme in order to reduce the time step in the flange
region and still allow larger time steps in the tread region.
As a result of this variable time step a 30-60 percent reduction

in computation time was achieved. The necessary time steps for the
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digital simulation were estimated by the eigenvalues of the linear

frequency domain program.

The wheel/rail geometric functions as a function of wheel-
set excursion were stored on disk in tabular form at intervals of
0.01 inches in the excursion range of [-1.0, 1.0] inches. The array

-of 8x201 elements contains the following variables:

y - wheelset excursion [in]
reo- rolling radius, left wheel [in]
rn " rolling daius, right wheel [in]
GL - contact angle, left wheel [rd]
§p - contact angle, right wheel [rd]
¢ - wheelset roll angle [rd]
¢' - 3¢/ay [rd/in]
z - wheelset verticai displacement [in]
z2' - 93z/dy [in/in]

The locomotive equations presented in Appendix B.1 have
many trigonometric functions of these wheel/rail geometric con-
straints. To reduce the computation time a second table was pre-
pared and stored on disk. This table has the following variables:

y,sing , sindp, cos(cSL + ¢), cos(csR - 4),

tan(dL + ¢’)s tan(GR - ¢’)3 AL(.Y)-
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At each integration step these geometric constraints

were computed from the tables by linear interpolation.

The computer program has the capability of including
creep fgrce saturation using an approximate creep force model.
This nonlinear creep force model is presented in Appendix A.

The digital half-carbody lTocomotive model with nonlinear
wheel/rail geometry, fully nonlinear suspensions and a linear creep
force/creepage relationship was simulated on the digital computer to
obtain the time response of the model to random track alignment
irregularities. These time traces were processed to obtain the
r.m.s. values, proability density functions and power spectral
densities. The results were used in Chapter 5 to evaluate the
statistical linearization method. In these digital simulations
a high conicity (Heumann) wheel on new AAR rail at standard 56.5"
gauge was used. The purpose of using a high conicity wheel was to
evaluate the method of statistical linearization at both on-flange

and off-flange conditions.

The computer ~ ogram was coded in such a way that the

user has many options. The program can be used:

-To obtain the initial condition response or response
to track alignment irregularities

-To determine the effect of linear and nonlinear wheel/
rail profile geometry on the performance of the vehicle

-To determine the effect of nonlinear suspensions on the
performance separately or in any combinations
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-To determine the effect of linear creep or creep force

saturation. Also, the above options can be used in any combinations.

3.2 Digital Analysis of the Data

This section presents the methods used in the
processing of the time traces generated by the digital half-carbody
program. A complete and detailed treatment of these methods is

given in reference [26].

3.2.1 Stationarity of the Data

The correct procedures for analyzing the random data are
strongly influenced by the stationarity of the data. Because, the
analysis procedures required for nonstationary data are generally

more complicated than those which are appropriate for stationary data.

In this research, two methods were used to check the
stationarity of the data.
Method 1: This method consisted of plotting the running mean and
running variance of the data versus time. Figure 3.1 and 3.2 show
the mean and variance vs time for the Teading wheelset excursion
at 60 mph. These figures indicated the stationarity of the data

after 10 seconds.

Method 2 [26]: In this method, the stationarity of the data is tested

by investigating the sample record as follows:
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1. Divide the sample record into N equal time intervals

where the data in each interval may be considered independent.

2. Compute a mean square value (or mean value and
variance separately) for each interval and align these sample values
in a time sequence, as follows.

2 2 2
X] s Xgs oo Xy

3. Test the sequence of mean square values for the

presence of underlying trends or variations other than those due

to expected sampling variations.

The final test of the sample values for nonstationary
trends may be accomplished in many ways. If the sampling distribu-
‘tion of the sample values is known, various statistical tests could
be applied. However, the sampling distribution of mean square values
requires a detailed knowledge of the frequency composition of the
data. Such knowledge is generally not available at the time one
wishes to establish whether or not the data is stationary. Hence
a nonparametric approach which does not require a knowledge of the
sampling distributions of data parameters is more desirable. One

such nonparametric tast is the run test which may be applied as follows.

Let it be hypothesized that the sequence of sample mean
"2"2“'?')

square values (x], Xos «evs Xy) are each independent sample values

of a stationary random variable with a mean value of X. If this
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hypothesis is true, the variations in the sequence of sample values
are random and display no trends. Hence the number of runs in

the sequence relative to, say, the median value, is as expected

for a sequence of independent random observations of the random
variable, as presented in Table A.6 of reference [26]. If the num-
ber of runs is significantly different from the expected number
given in Table A.6 of reference [26], the hypothesis of stationarity

is rejected. Otherwise, the hypothesis is accepted.

~

In this research both methods were used. The run test
was a check of the stationarity. The first method was used to
eliminate the transient part of the time traces in the processing

of the data.

3.2.2 Sample Mean and Sample Variance Calculations

Estimators for Mean and Variance:

The sample mean and sample variances were computed using the

following estimators.

- 1 N
S RTINS (3.1)
N
2 _ 1 202
G W 5 - R (3.2)
i=1
where X = sample mean
85 = sample variance

sample size
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Estimators given by (3.1) and (3.2) are unbiased es-

timators for mean and variance x and Oy [26].

Confidence Intervals for the Mean and Variance

Equations (3.1) and (3.2) give a point estimate for the
mean and variance. It provides no indication how closely a sample
value estimates the parameter. Therefore, a more satisfactory way is
the estimation of an interval, rather than a single point, with a

known degree of confidence.

A confidence interval for the mean value Hy based upon the

sample value X with unknown variance is given by [26]:

o, t,.. ot .
[i _ X n,a/2 f_u < i + X n,a(Z ] (3.3)
A X N
where n = N-1
t = student t distribution

Equation (3.3) gives a (1-a) confidence interval for the
mean value My and can be stated as: "The true mean value Hy falls

within the noted interval with a confidence of 100(1-a)percent".

Similarly, a (1-a) confidence interval for the variance

05 based upon a sample variance Bi from a sample of size N is [26]
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o g
- <ok < X (3.4)
2
O 3q/2)/m X"y @ )/n
where ci = actual variance
Gi = sample variance -
N = sample size
n = N-1
xﬁ,a= Chi-Square distribution with n-degrees of

freedom

3.2.3 Power Spectral Density (PSD) Calculations

The estimates of power spectral densities (PSD) were ob-
tained by means of aFast Fourier Transform (FFT) algorithm. A smooth
cosine taper filter, which is shown in Figure 3.3, was used for FFT
estimates to reduce the Teakage [26]. In practice, the random
error of an estimate produced by an FFT is reduced by smoothing the
estimate in one of two ways. These are frequency and segment averging
They can be uséd separately or together. Segment averaging
is done by computing individual estimates from g independent segments
and then averaging the q estimates at each frequency of a spectral
component. Frequency averaging is done by averaging the spectra
at adjacent frequencies. It can be shown that [26] the random

errors for both cases are:
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€. = —:%:7- (segment average) (3.5)

S e
1
e, = —— (frequency average) (3.6)
f v 2
where q = number of segments averaged

number of adjacent frequencies averaged

P
1]

-~

Remarks on averaging: If we take a finite length time trace and

consider that as a single segment, the normalized random error

i$ 100% [26]. To reduce this error segment averaging can be

done. But there is a lower limit on the smallest possible length

of each segment based on the independency assumption of segments.

If we further want to reduce the normalized random error frequency
averaging can be done at the expense of losing the Towest resolution

frequency. Then the total normalized random error is given by:

e = —— (3.7)
vql
where q = number of segments averaged
% = number of adjacent frequencies averaged
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Confidence Interval for a Power Spectral Density Estimate

After estimation of a power spectral density by a FFT al-
gorithm, a smoothing operation is required to obtain a consistent
estimate. The sampling distribution of a smoothed estimate is
approximately chi-square [26] with n = ZBeT degrees of freedom.
Hence a (1-a) confidence interval for a power spectral density func-
tion S(f) based upon an estimate S(f) measured with a resolution

bandwidth B, and a record Tength T is given by [26]:

oIMN
Py
=<
3N
QR
S
S
~
=3

(X ;3/2)/'1

where n = ZBeT

3.3 Digital Simulation Results

The digital model with nonlinear wheel/rail profile
geometry, fully nonlinear suspension and a Tinear creep force/
creepage relationship was simulated to obtain the time response of

the Tocomotive to random track alignment inputs at two speeds.

3.3.1 Low Speed Simulation

The locomotive with high conicity wheels (Heumann) on new
rail at standard gauge was simulated at 40 mph. The flange clearance

was 0.35 inches. The duration of the simulation was 100 seconds which
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was equal to 1.11 miles of track. Variable integration time steps
of 0.003 and 0.001 seconds were used. The peak values of the

wheelset excursions were:

o 0.3684 inches for the leading wheelset
o 0.3048 inches for the middle wheelset

0 0.2125 inches for the trailing wheelset
These show that only the leading wheelset was flanging.

Figure 3.4 shows the leading wheelset excursion response
to a random alignment input. The estimate of the mean and the rms
values of the wheelset excursions, suspension strokes were computed

by (3.1) and (3.2). The results are shown below.

TABLE 3.1: MEAN AND RMS VALUES AT 40 MPH

LATERAL PRIMARY STROKE
WHEELSET EXCURSIONS LENGTH

#1 #2 #3 #1 #2 #3

Mean (in) 0.97E-3 0.72E-3 0.86E-4 0.34E-2 0.31E-2 0.26E-2

R.M.S.(in) 0.12474 0.096578 0.066809 0.18375 0.18563 0.21616

The 90% confidence intervals for the mean and variance

are given by:
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Mean:

(X - 5.2E-3 G) < u < (X +5.36-35 )

Variance:
-2 2 -2
(0.9927 ox) <o, < (1.0074 ox)
where X = sample mean
-2 ,
oy = sample variance

Figure 3.5 to 3.14 show the probability density functions
of the inputs to the nonlinearities. The solid lines are the Gaussian
densify functions with the computed mean and variances and the com-
puted probability density functions are shown in histogram forms.
These PDF's are used in Chapter 5 to check the assumptions on

the probability density functions.

Figures 3.15 to 3.17 show the PSD's of the wheelset ex-
cursions. The PSD's were obtained by an FFT algorithm with 48 seg-
ments averaging. Each segment had a length of 2.048 seconds cor-
responding to a resolution frequency of 0.488 Hz. The normalized

error for 48 segments was 14.4%.
The 90% confidence interval for spectral points is given

by:
0.807 3(f) < S(f) < 1.3 §(f)
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The upoer and lower bounds on spectral points are shown in Figures

3.15 to 3.17 together with the computed spectral point value.

3.3.2 High Speed Simulation (60 mph)

The duration of the high speed simulation was 84 seconds
which corresponded to a 1.4 mile track. Variable integration time
steps of 0.005in thread region and 0.001 seconds in flange region

were used. The peak values of the wheelset excursions were:

o 0.3874 inches for the Teading wheelset
0 0.3794 inches for the middie wheelset

0 0.3464 inches for the trailing wheelset

These show that the leading and middle wheelsets were flanging.

The estimate of the mean and the r.m.s. values at 60 mph

are shown below.

TABLE 3.2: MEAN AND RMS VALUES AT 60 MPH

LATERAL PRIMARY STROKE

WHEELSET EXCURSION LENGTH
#1 #2 #3 #1 #2 #3
Mean (in) 0.62E-3 0.13E-2 0.36E-3 0.31E-2 0.39E-2 0.25E-2

R.M.S. (in) 0.17014 0.15958 0.13771 0.28565 0.24280 0.35139
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The 90% confidence intervals for the means and variances

are given by:

Mean:

(x - 5.67E-35,) < u, < (x + 5.67E-30, )

Variance:

2 2

2 <02 <1.008 5

0.992 ¢ N x

Figures 3.18 to 3.27 show the PDF's of the inputs to the
nonlinearities. Similarly, the-computed PDF's are shown in histo-
gram form and the Gaussian PDS's with the computed means and vari-

ances are shown as solid lines.

Figures 3.28 to 3.30 show the PSD's of the wheelset
excursions. These were computed using 41 segments with a normalized

random error of 15.6%. The 90% confidence interval for spectral

points is given by:
0.788 3(f) < S(f) < 1.32 §(f).

These upper and lower Timits are shown in Figures 3.28 to 3.30 to-

gether with the computed point value.

3.4 Conclusions

The purpose of the digital simulations has been to provide
a basis for evaluations of themethod of statistical 1inearization as a

design toel for rail vehicles.
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The essential assumption of the statistical linearization is the
knowledge of the probability density function of the inputs to

the nonlinearities as explained in Chapter 4. If the exact proba-
bility density functions are known the statistical linearization gives

a perfect estimate of the mean and rms values, Booton [20].
The shape of the PDF's at Tow speed can be summariéed as:

o Wheelset Excursions (Figures 3.5 to 3.7), primary yaw strokes
(Figures 3.11 to 3.13), the input to the Coulomb damper (Figure 3.14)
and the lateral primary stroke of the trailing wheelset (Figure 3.10)

are close to the Gaussian density functions.

e The PDF's of first and second lateral primary strokes

(Figures 3.8 and 3.9) are far from the Gaussian shape.

These probability density functions can be interpreted

physically as follows:

e Figures 2.3 to 2.5 show the type of nonlinearities that are
effective in the system. The nonlinear effects of the wheel/rail
geometry, and the primary yaw spring are small at low speed because
of the small amplitude of the inputs to these nonlinearities. The
deadband spring in the lateral primary can be considered as a piece-
wise linear (hardening) spring. At low speed, the wheelset behaves
as if that spring is not there. Then, the wheelset equations given

by (A.8.13) and (A.8.14) can be roughly approximated by a dominantly 1inear

system:
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v ] [y ]

= A + I'm + e {Negligible nonlinear
(. effects and truck coupling)

Lv ] 2

where n = Input which has a Gaussian density function.

From linear system theory, y and ¢ should have PDF's which
are close to the Gaussian shape. Since any linear operations on
Gaussian random variables produce Gaussian random variables, the
PDF's of the wheelset excursions and yaw strokes are close to

Gaussian density functions.

e In the case of the lateral primary stroke, because of the
deadband, the stroke has, roughly, the same probability of being
at any Qoint with 6 deadband value. Therefore, we can expect a
flat (uniform) density functions corresponding to this range of
values.

The shape of the PDF's at high speed can be summarized as:

o Excursions (Figures 3.15 to 3.16) and lateral primary strokes
(Figures 3.17 to 3.19) are no longer Gaussian. Because the nonlinear
part of the system, especially the flange contact of the wheelset,

becomes more effective.

o The others are still close to the Gaussian probability den-
sity function.
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CHAPTER 4
STATISTICAL LINEARIZATION

4.1 Historic Development [27,28]

The general problem of random excitation of physical systems was
first investigated theoretically by Einstein (1905) and was generalized
and extended by von Smoluchowski (1916) in the context of the theory
of Brownian Motion. In 1931, Kolmogorov derived a precise mathematical
formulation of the equations governing the probability densities satis-
fied by such processes.

The early studies were confined to the effects of additive noise
on linear systems. The earliest work on the problemlof random excita-
tions of nonlinear systems was due to Andronoy et al. (1933) who used
the Kolmogrov-Fokker-Planck equations to study the motion of a general
dynamic systems subject to random disturbances. Many others,

Caughey [42], Crandall [43], Atkinson [39], Kramers [40], Sawaragi [41],
etc., applied this technique to solve nonlinear dynamics and control
problems.

In almost all of these investigations only first order statistical
properties were obtained. There are some applications where additional
statistical information is required. For example, the spectral
density of a random process requires the second order statistics of the
process. Then, a number of approximate techniques 1ike Perturbational
method by Crandall (1961), Eigenfunction expansions by Wang (1964) and

Atkinson (1970) have been developed to obtain second order statistics
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for the response of nonlinear systems to random excitations. In many
respects [28] the simplest and most useful development was statistical
linearization. This method is simply a statistical extension of the
well known equivalent linearization technique of Krylov and Bogolijubov
(1937) for deterministic excitation., It was developed independently

by Booton (1952), Kazakov (1954) and Caughey (1959). There are

several types of statistical linearization techniques in the Titerature.
The well known methods are due to Booton [20], Axelby [29], Pupkov [30],
Somerville and Atherton [31].

Booton [20] has shown that if the exact probability density
functions are used the propagation of the mean and covariance of the
approximate system is identical to that of the nonlinear system. A
description of the technique cafi be found in Gelb [32], Sunahara [33],
Phaneuf [34] and Beaman [35].

The basic problem in linearization is to find an equivalent

linear system which approximates the nonlinear system given by
x(t) = flx(t), t) . (4.1)

One way is by approximating the nonlinearity as
f(x(t),t) = alt) + N(t)(x(t)-m(t)) (4.2)

where m is the expected value of x . By defining the error

vector e as

e = f(x(t),t) - a(t) - N(t)(x(t)-m(t)) (4.3)

-92-



and, following Booton, choose a and N such that E[ng] is

minimized. The solution is [35]

ECf] (4.4)

-3
n

where P is the covariance matrix given by

P = E[(x-m(x-m] (4.6)
Equation [4.1] is then approximated as

X = N(x-m) + a (4.7)

By defining r to be the zero mean process, (x - m), equation (4.7)

can be written as

+r = Nr+a . (4.8)

(ED

The chojce of a and N to minimize the mean square error,
E[ngJ , yields an equivalent linear system (4.7) which has identical
mean and ccvariance propagation equations with the nonlinear system

(4.1). The expected values of equations (4.1) and (4.7) are identical,

j.e.,
m o= E[f] (4.9)

The covariance propagation of (4.7) is

B = NP+ PN ‘ (4.10)
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and the covariance propagation of (4,1) is [36]
p o= E[fr'] + Elrf] (4.1)

Equation (4.11) can then be rewritten as

°

b= E[F PP+ PPTIELr £11 = NpapN

(4.12)

which is identical to(4.10). Therefore, the propagation of the mean
and covariance of the approximate system (4.7) is identical to that
of nonlinear system (4.1), provided both systems are assumed to have
the same probability density function by which to evaluate the
expectations,

Iwan [37] has given a formal solution for the equivalent linear
system corresponding to an n-degree of freedom system with arbitrary
stiffness and damping nonlinearities. He reported the existence and
uniqueness of approximate solutions generated by the generalized
method of equivalent linearization. Recently, Spanos and Iwan [38]
have shown that a unique equivalent linear system exists whenever the
elements of the solution vector:

X
g- |-

X

are linearly independent. Also in the paper, the existence and
uniqueness of a generalized equivalent 1inear system were examined in
detail. It was shown that even though, in some cases, the equivalent
linear system may not be unique, but a simple element-by-element
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substitute system always exists. Furthermore, the equivalent system
defined by element-by-element substitution is at least as good as any
other similarly defined substitute system. Finally, they concluded
that the equivalent linear elements (gains) not only satisfy the
minimization criterion for the system as a whole but also satisfy

the condition the system error is minimized for each element of the

system separately., A1l these conclusions were drawn for the follow-

ing type of systems. .
W& + f(x,x) = g(t) (Nonlinear Dynamical System)
Mx +Tx +&x = g(t) (Equivalent Linear System)
e = f(x,x) -Tx « kx (Error equation)

where g(t) represents a stationary Gaussian random vector.

Up to now, a precise definition of the error bound on the
equivalent linearization has not been developed. Kolovskii [44], Iwan
and Yang [45] were able to evaluate the error in stationary mean
square response for a restricted class of systems. Iwan and Patula
[46] defined analytic bounds on the error for certain simple systems.
They concluded that the solution error, in general, was considerably
smaller than the one predicted, Beaman [35] has shown that for
Hamiltonian systems the variance found by replacing the nonlinearity
with Gaussian statistical linearized gains is a lower bound of the

actual variance, 95



Phaneuf [ 34], Beaman and Hedrick [47] have given an interpreta-
tion to the eigenvalues of the equivalent Tinear system. bBeaman and
Hedrick [47] showed that the eigenvalues for the propagation of the
perturbed mean were the stationary values of the Gaussian statistically
Tinearized system., It was emphasized that if the Gaussian density
approximation is valid then the stability and the speed of the
perturbed mean response is characterized by the eigenvalues of the
equivalent Tinear system.

4.2 Application to Rail Vehicle Dynamics

Statistical linearization was applied by Stassen [15] to a
two-degrees-of-freedom rail vehicle model, His dissertation includes
the verification of the method by analog/hybrid simulation and full
scale bogie test by 0.R.E. Rus [16], Hedrick [17], Hedrick and
Arslan [18], Hedrick and Castelazo [19] have also applied the method
to analyze the stationary statistical response of a nonlinear rail
vehicle model.

In general, nonlinear rail vehicle equations can be expressed
as:

My + gly,y) = Bu(t) (4.13)

where y is an n-yector of generalized position coordinates, E: is
the inertia matrix, g(y,J) is a vector of linear and nonlinear
elements including the wheel/rail profile, creep, and suspension non-
linearities, and gﬂt) is an m-vector of random inputs. In this

research all the nonlinearities in the rail vehicle were isolated.
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Therefore, an equivalent linear system may be constructed by a simple
element-by-element substitution technique [37]. The resulting statis-
tical linearizatinn method for an isolated nonlinearity is shown in
Figure 4,1 [48], Here, the input to the nonlinearity was assumed to
have a general form. It was considered to be the sum of any number
of signais, Xi(t) » each of an identifiable type. In most cases,
these input components xi(t) could be considered as constant

signals, sinusoids and zero mean random variables, i.e.
x(t) = X+ r(t) +A sin(wt +¢) . (4,14)

Through physical considerations and digital simulations it was seen
that, in this research, the inputs to the nonlinearities had zero
means. Since we are concerned not only in predicting the hunting
behavior of the rail vehicle but also in predicting the dynamic
response of the vehicle to random disturbances, the sinusoidal input
assumption is not valid, With these assumptions the general form
of the statistical linearization shown in Figure 4.1 reduces to the
original form by Booton [20] as shown in Figure 4.2,

In this method, the nonlinearity is replaced by a linear gain
Keq chosen so as to minimize the mean square of the difference
between the outputs of the two devices, i.e., the error in the approxi-
mation is:

e(t) = y(t) - ya(t) (4.15)

and its mean squared value
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R SN NONL INEARITY y(t)
xn(t): r] ]y Qutput
AN
= T
W](t) ;
s, + | ya(t)
2 + |App;;¥imate
: Qutput
l W (t)

| Approximator for
I Nonlinearity

FIGURE 4.1: GENERAL LINEAR APPROXIMATOR FOR AN ISOLATED
NONL INEARITY [48]

x(E)y(E) = x(tly,(t)

FIGURE 4.2: EQUIVALENT LINEAR MODEL OF BOOTON [56]
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ELe(t)?] = ELy(t)%1- 2€Ly(t)y, (£)] + ELy(t)] (4.16)

Keq is then chosen to minimize z-:(t)2 , the resulting expression for

K becomes [48]:

eq
[ x f(x) p(x)dx
g = Sl 4 = (3.17)
E[x"] J xzp(x)dx
where
E[(.)] = "expected" value of (.)
p(x) = probability density function of x(t).

The equivalent linear gain defined by (4.17) is thus a
function of the parameters ot the probability density function p(x).
The most common form that has been assumed for p(x) 1is the Gaussian

density function. If p(x) s assumed to have a Gaussian form:

—
N

p(x) = exp(- 2 ) (4.18)

equation (4.17) becomes,

1
K = fm x f(x) exp(- 25 ) dx (4,19)
S A 205
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Crandall [49] has shown that improved results are obtained if
the exact density function can be used., Simulation and experiments
have shown that as the critical speed is approached the density
functions deviate from a pure Gaussian and take the form of a Gaussian

plus sinusoid as shown in Figure 4.3,

P(x) A

——p mre A ey men =
e e w— Gmey wnw

" |

-a +a

Figure 4.3 Gaussian Plus Sinusoidal Density Function

The non-Gaussian density function shown in Figure 4.3 can be
characterized by two parameters, o , the r.m.s, value, and o .
The difficulty in using this density function is in determining the
second parameter, a . In previous work Stassen [15] determined the
second parameter, a , for his system by analog/hybrid simulation
while Rus [16] assumed that & was equal to the wheelset flange

clearance. Although both approaches yield slightly more accurate
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results than the purely Gaussian assumption, the first is not con-
sistent with an analytical design method and the second is only
valid when the hunting amplitude is known and equal to the flange
clearance,

One of the purposes of this research is to find the probability
density functions which are specified by only one parameter and are
valid over a wide range of speeds. Chapter 5 also presents the
probability density function chosen for the specific problem.

4,3 Solution Method

The statistical linearization method attempts to replace the
nonlinear system defined by equation (4.13) with an equivalent linear
one, i.e., we seek equivalent damping and stiffness matrices D and

K such that:

gly,y) = Dy +Xy (4.20)

If equation (4.20) is substituted into equation (4.13) the equivalent
Tinear form becomes
Ay +0y +Ky = Bu(t) (4.21)
where the equivalent linear damping and stiffness matrices are now
functions of the equivalent gains defined by (4.,17) or, in other terms,
they are functions of the variances of the inputs to the nonlinearities.
The transfer function matrix between y and u of (4.21) is

defined by: _
y(iw) = [K- wzﬂ + J'wE]-] Bu (juw) (4.22)
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Since we are considering the vector system to be made up of a number of
scalar nonlinearities the equivalent gains are functions of the
variances of the inputs to these nonlinearities. Therefore we need

to compute these variances, Let 2z be an r-vector that represents

the inputs to all of the nonlinear elements, then;

2(jw) = Cly(jw)

- CTIR - o® B+ 3607 B (o) (4.23)

\
= E(jw) u(jw) |

where H s an rxm matrix of transfer functions. The power spectral

densities of the vector can be found from:

s, () = Alju) s,(dw) B (-jo) (4.24)

where SZ is an rxr matrix containing the spectral densities of the
Z vector along the diagonal and the cross-spectral densities on the
off-diagonal elements and Su is an mxm matrix of input spectral
and cross-spectral densities.

The equivalent linear gains defined by (4.17) depend on the mean

square value, og » of the input to the nonlinearity. Thus in order to
.i

evaluate the equivalent gains in the K and D matrices we need to
compute the mean square value of the r varjables in the z vector,

This can be done by integrating the diagonal terms of Sz s 1.4,

2 oe [ s, ) w D Aeler (4.25)
i 7
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The jterative nature of the required solution procedure is apparent

from (4.25). The spectral density functions, S, , are dependent on
i

the equivalent gains of the :K and E, matrices which are in turn

!
dependent on the Ozi s .

4,4 Numerical Algorithm

The following statistical linearization algorithm was used:

1. Place the system in equivalent linear form
(Eq.(4.21)). This requires,replacing all
nonlinearities by their equivalent linear
gains. In many cases, if the nonlinearities
are common, the gains have been precomputed
and are available in modern texts [32], other-
wise the gains need to be computed and stored
as a function of o by integrating Eq. (4.17).

2. Select an initial set of rms (o) values for
the 2z vector , i.e., 0z:,...,0z,. and using
these o's evaluate the equiva]gnt Tinear
gains.

3. Using Egs. (4.23), (4.24), and (4.25) evaluate
the computed values of Oz; These values
are then compared with the guessed values and
the difference used to begin an iteration
process until convergence occurs,
Figure 4.4 is a flowchart of the developed computer program. To
increase the efficiency of the program the following improvements
were made and they were incorporated into the program.

Convergence Algorithm: There are numerous convergence algorithms that

can be used to seek convergence, It was found that a simple first-
order gradient algorithm, which is given by equation (4.26), provided

fast convergence,
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READ: -Velocity
-Vehicle parameters
-Guessed R.M.S. values
-SDF Tables

o

FIND equivalent gains from the table
FORM M, K, C matrices

COMPUTE: -Transfer functions

.Spectral densicies

-R.M.S. values | -Update the
R.M.S. values

-Iterate

COMPARE the guessed and
computed R.M.S. values

COMPUTE eigenvalues and eigenvectors
of the equivalent system

l

PRINT: +M,K,C matrices

-Effective gains
.Transfer functions

-Spectral densities

.Eigenvalues/eigenvectors

FIGURE 4.4: FLOWCHART OF THE PROGRAM
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(n) -0, (n)] (4.26)

where
n = the iteration number

o. (n) = computed variance using (4,25) at iteration n

o.(n) = guessed variance at iteration n

and

(4.27)

_ 1
ej(n) = HOMOp

1 & —1
d(o, ()

The derivative term in (4.15) is computed numerically by

d(OZC]'(n)) czc.i(n) - Gzci(n‘])
o, (M)~ "o, (n] - o, (n=1)
1 1 1

Aftér calculating aL(n) from (4.27) it was bounded to be in an
interval [e;, eu] . These bounds were found to be very useful in

the convergence algorithm. In general, the number of nonlinearities
in a system are greater than one. Then, equation (4.21) has n-coupied
equations. Non-convergence of one variance affects the other
variances. Usually, some variances are less sensitive to the

changes of the others. Then, they converge to some values, not

necessarily to the correct values, rapidly. As a result the e's for
-105-



those go to zero if there is no lower bound on the e's. After this
occurs, it is very difficult to update the estimated variances. In
this research a non-zero value for = (e.g., 0.1) was found to solve
this problem. The upper bound was chosen to be one assuming that the
guessed value at jteration (n+1) is not far from the two previous
guesses.,

In the program, there are two flags to terminate the iteration
The first one is the 1imit on the allowable number of iteration and
the second is the maximﬁm allowable difference between the computed
and guessed r,m,s. values.

Frequency Range of Interest: To calculate 0, » equation (4.25)

3
should be integrated numerically. To decrease the computation time a

pre-analysis of the frequency range of interest was done. The approach
was to find the frequency range which contained 95% of the r.m.s.
values, It was found that for the lateral locomotive 0.4 - 10 Hz

range was the frequency range of interest,

Inversion of the Complex Matrix in Equation (4.10) [24]: To

determine the transfer function matrix we have to invert an (nxn)
complex matrix. It is known that the inversion of two (nxn) real
matrices takes less computer time than the inversion of an (nxn) complex

matrix [ ], Therefore, let

K - e Mo+ waJ-] = QR + 3 ﬁl (4.29)

|7<1

where QR and Q{ are (nxn) real matrices. Premultiply equation
(4,29) by [ E_- mz ﬁ_+ jwéj.to get:
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I o= [(R-w®#)+gud I Dy + jud; ] (4.30)

where I = Identity matrix,

Equation (4,30) is a complex identity, therefore:

(R-u?H)Bg -wdby =1 (4.31)
and
) (K-wM) D, + wdDy = 0 (4.32)

We can solve for é4z and ﬁi from equations (4.31) and (4.32) to
get:
| s [(K-w?W) +e?D(K-0?f) DT (4.33)

0p
and

CouTomb-Damper Lock-up: The secondary yaw suspension is

modeled as an ideal Coylomb damper between the car body and the bolster
in series with a linear spring between the bolster and the truck as
shown in Figure 2.6, At high speeds truck yaw displacement exceeds
TCp/sz so that the moment generated by the spring is sufficient to
start the motion of the bolster., At low speeds, however, it is not
enough and the bolster does not move, i.e. will Tock up to the car
body.

In digital programs this Tock-up conﬁition can be solved by a

simple logical algorithm . In frequency domain programs the lock-up
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4
.

condition can be dealt with by either eliminating one degree of freedom

from the system or increasing the equivalent gain to a very high value

as shown below.

cp

'G'V

<. ‘r

cp

In this thesis, the second method was chosen and implemented in

the program, If the equivalent gain is increased to infinity, i.e.

C +o , it causes numerical problems in the inversion of the matrix
To eliminate the problem the equivalent gain was

given by (4.29).
C* , corresponding to a saturation in

saturated at a certain value,
r.m.s. bolster velocity as shown below, C* was chosen such that an

C
C

*————-—-——-—
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order of magnitude change in C* did not affect the results, Also,
the value of C* was at least an order of magnitude greater than all
the other viscous dampers in the system,

4,5 Application to 12 D.0.F. Locomotive Model

The statistical linearization method outlined in the previous
sections is applied to the lateral, twelve degrees of freedom half car
body locomotive model. The assumptions made in the Statistical Lineari-
zation Model (SLM) are those of the digital model, In this research a
Tinear creep force/creepage relationship is assumed., The linear creep
force assumption with nonlinear creepages reduces the general non-
Tinear wheelset equations to the equations (A,8.13) and (A.8.14) which
are presented in Appendix A, i.e.,

Lateral Equation:

Zf]] 2f 2f]2
My + —— g -w) + ———w-—;—— by (ay)
0
(4,35)
Ly () = Fsuspy
Yaw Equation:
2
“ 2a-f 2af r
V . 33 o 33,1 R
Lt * Iwy F;'¢ ey v T ( J )
2f 2f
+ —W%g-w - —T}g-(y *orgh - V) (4.36)
2%

- —— o (ay) -alpsw = M

o suspz
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where

tan(cSL +¢) - tan(sp - )

2 - 2 [rLtan(sL +¢) + rRtan(aR - ¢)]
( i sing, cos(6L +¢) - singp cos(aR - 4)
b (ay) - sing cos(GL +¢) - sindp cos(GR - ¢)
2 2 - %-[rL tan(s +¢) + rg tan(sp = ¢)]
Ay = wheelset lateral displacement with respect to rail

4.5.1 Nonlinearities

The nonlinearities included in the dynamic model can be
divided into wheel/rail geometry and suspension nonlinearities.

4.5.1.1 Wheel/Rail Geometry Nonlinearities - In the

nonlinear wheelset equations the following wheel/rail geometry terms

appear:

" -r
. L > R (4.37)

. ¢ (4.38)

Lpltan(s +¢) - tan(sp - )] (4.39)

2 -1% [rLtan(6L+¢) + rRtan(GR-¢)]
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sing, cos(8, + ¢) - sinS, cos(Sy - 4)
.oy lay) e B (4.40)

sing cos(6L +¢) - sindp cos(6R - ¢)

- A (ay)
2 2 - %-[rLtan(dL + ) + rRtan(GR - ¢)]

Equation (4.37) is the rolling radii difference, i.e., the

difference between the left and right radius measured at the respective

contact points. Equation (4.39) represents the lateral gravitational

stiffness force where LA is a constant axle load. Equations (4,40)
and (4,41) reduce to the contact angle difference for small contact
angles. For a real wheel these geometric parameters are nonlinear
functions of the wheelset excursion, i.e., the wheelset lateral dis-
placement with respect to the rail. Numerous examples of wheel/rail
geometry are given in reference [23],

The equivalent linear forms for the nonlinear terms in equations

(4,37) to (4.41) are:

"n_" TR

R ~ )\(O'Ay) < Ay (4.42)
k (o, )

b > -E?Al—- . Ay (4.43)
k (o, )

A (ay) ” —E—S%X— Ay (4,44)
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kA](oAy)

A](Ay) o W

Thus there are five equivalent linear gains that are used to

describe the nonlinear wheel/rail geometry, A , k., k_, Kk, 5 K, .
A .

(4.45)

(4.46)

From the linear analysis we can give the gains A , kg the interpretation

of:
A = "effective conicity"
k = "effective lateral gravitational
g stiffness"

These five equivalent gains can be found using equation (4.17) for

specified input probability density functions. If the input PDF is

assumed to have the Gaussian form, then these five gains are given by:

2 I (ay) - rolay)] 2
A = .__l._..__ I L R .A_y.exp(-éx__).d(Ay)
o 2 26°
Ay =« Ay
¢ = =2 [ ) () . )
5 " o(ay) « oy expl- » dldy
V2T oy oo/ 20
y Ay
k= a j AL(Ay) o Ay + exp(- A 2
g — 3 '%‘)'d(A.Y)
Ver GAy -0 ZGAy
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co

2
K, = —2— j 3 (0y) + ay - epl- o) L dly)  (4.50)
1 ver OAy - ZGAY

n

kAz = 3 ; f By (ay) = By - exp(- 21’7—) . d(ay) (4.51)
_ i o
vem GAy - Ay
4,5,1.,2 Suspension Nonlinearities - The suspension non-

linearities in the locomotive model are:
~- Primary lateral deadband spring (Figure 2.5a)
-- Primary yaw hardening spring (Figure 2.5b)

-- Coulomb damper between centerplate and car-
body (Figure 2.6)

Ceadband Spring:

The force displacement relation for the deadband spring is given
by equation (2.6)., The equivalent Tinear form for the deadband spring

can be expressed as:
: . 4.
kay kp(cAp) &p (4.52)

where (Gaussian assumption)

(o]

2
k& = —— I Frpy * &Y * exp(- L) d(ap)
P 3 Py 25
2T o - Ap
Ap (4.53)

8
= k[1 - erf( —L—)]
V2 GA
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Tateral primary stroke

[}
>
o
1}

Gaussian error function tabulated in

erf(s)
Reference [50].

Hardening Spring:

The force displacement relation for the piecewise linear hardening
spring is given by equation (2.7), The equivalent Tinear form for the

hardening spring can be expressed as:

Mkpw x kw(cAw) o MY (4,54)

where (for Gaussian assumption)

o

2
: Moy * 80+ exp(= &) d(ay)
v2r Ty 2°Aw

(

kw ko)

(4,55)
=k + (k_ -k )[1-erf(—2_)]
Y,

plp-' pwz
2 ¢
A\

Ay primary yaw stroke

erf(s)

Gaussian error function

Coulomb Friction:

The governing equation for the Coulomb friction between the center-
plate and carbody is given by:

T = T, Son(d, - 3 , = 0 (4.56)

.
(2]
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where

T = torque

wb = angular velocity of the bolster
T = breakout level of the torque

Sgn = Signum function

Then the equivalent linear form for Coulomb friction can be expressed

as:
™ T )i .57
where (for Gaussian Assumption)
(=] . . JJ .
Cp = —— [ T by e exnl- =3 )l
N 20&
Uy b
(4.58)
_ 2/ T
Gib

4.5.2 Alignment Input

There are three wheelsets, thus there are three inputs to the
wheelset lateral equations and three inputs to the wheelset yaw equa-
tions. Also the alignment input enters the truck roll equation through
the wheelset roll1, The input to each trailing wheelset is just the
input to the leading wheelset delayed by the time it takes for each

wheelset to reach the same point in the rail; i.e.,
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where

= ——
u]L(t)
U]L(t - T]) (4059)
u]L(t - 12)
2] - 22
———
1ty
v

distance of the wheelset c.g, from
truck c.g. (Figure 2,1)

In the frequency domain:
-
[
-ij]
‘EL(jw) = e U](jw) (4.60)
- jwt
e 2
e -
or in general,

-116-



In matrix notation the equivalent linear equations of motion of

the locomotive become:

My + 07 + Ky = By i(t) + B, u(t) (4.62)
where u(t) = random rail irregularity.

The transfer function matrix between y and u is then defined by

y(jw) = H(jw) uq(jw) (4.63)

where
1

Hiw) = [R-o®M + 301 [B, +3B,18,  (4.64)

(12x1) (12x12) (12x6) (6x1)

In the locomotive model all the nonlinearities are single input
nonlinearities, thus the equivalent linear gains are a function of
the variances of the inputs to these nonlinearities. In the model

there are ten nonlinearities, the inputs to these nonlinearities are:

Zy = yy- u](t) Wheelset Excursion (#1)
zp = y3-ult-1) Wheelset Excursion (#2)
23 = yg - u](t - 12) Wheelset Excursion (#3)
2y = Yyt Yy -4 ¥g - htp Yg Displacement Across Primary

Lateral Spring (#1)
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Zr = Ya =Yg = LYq = h_ V¥ Displacement Across Primary
5 377 78 Ttp 79 Lateral Spring (#2)
Z, = Yp = Yot Layq = h. y Displacement Across Primary
6 5 7 7¥8 Ttp 9 Lateral Spring (#3)
29 = Yy =Yg Displacement Across Primary
Yaw Spring (#1)
Zg =Yg =Yg Displacement Across Primary
: Yaw Spring (#2)
Zg = Yg =Yg Displacement Across Primary
. Yaw Spring (#3)
z,y = 9]2 Velocity Across Coulomb

Damper

The transfer function matrix between Z and Uy can be obtained

from:
. _ AT .
z,(jw) = C. y(dw)
(4.65)
T .
= E.' ﬂ(.]w) U](Jw)
The power spectral densities of the nonlinearities can be found
from:
. T . . T, .
SZ.(Jw) = C. H(jw) Sy (jw) H ('Jw)-(-:-i (4.66)

i

where Su is the input spectral density.
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These statistically Tinearized Tocomotive equations are presented

in Appendix B.1.
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CHAPTER 5

EVALUATION OF STATISTICAL LINEARIZATION
AS A DESIGN TOOL

5.1 Introduction

In rail vehicle dynamic analysis, linear models have been
developed and used extensively to investigate the complex dynamic be-
havior of rail whicles. These models are coded and available to the
rail industry to provide guidance in the design and evaluation of new
and existing vehicles. Linear models, however, cannot include the
critical nonlinear effects of worn wheel profiles, flanges, suspension
clearances, hardening springs, dry friction and creep force saturation.
The importance of these nonlinearities have been observed through simu-
lations and experiments [ 4 ]. For example, it is known that the
lateral primary stiffness strongly affects the stability of rail
vehicles [ 4], Tocomotives have nonlinear axle clearances intheir pri-
mary, as shown in Figure 2.5.a. This nonlinear suspension cannot be
jncluded in linear models, therefore an equivalent spring constant
which has a value in the range of 0 to k should be chosen. This wide
range gives a critical speed ranging from 5 mph to 145 mph. Therefore,
if these linear models are to be used an "effective" spring constant
needs to be selected, for example through field tests, which is not

in general a practical alternative.
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One way of including these ncnlinear effects is through
digital simulation as presented in Chapter 3. Digital simu]aéion,
however, is a limited technique as a design tool since it is too
complex for a designer, very expensive in parametric studies and

also it is extremely difficult to interpret the results.

Many approximation techniques for representing nonlinear
effects which are reviewed in Chapter 1, have been investigated. 1In
this research, the statistical Tinearization method, described in
Chapter 4, has been evaluated as a design tool for rail vehicles.

This approximation technique is a compromise between the efficiency

of the linear methods and the accuracy of digital simulations. It

was shown in Chapter 4 that if the correct probability density function
of the input to the nonlinearity is known, then the statistical
1inearization method provides a perfec£ representation of the mean

and covariance of the system. Unfortunately, these PDF's are not known
apriori, and they must be assumed.

In the following sections, the statistical linearization
method is evaluated and the results are compared with those of digital
simulations presented in Chapter 3. The comparison includes not only
the r.m.s. values but also the frequéncy content of the input to the
nonlinearities since natural frequencies and transfer functions are as

important to the vehicle designer as r.m.s. values.
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5.2 Gaussian Probability Density Functions

If the density functions are unknown, they are usually assumed
to have a Gaussian form. This assumption is based on the "filter
hypothesis" which appeals to the central theorem for validity, however,
Beaman [35] has shown that the filter hypothesis can give misleading

results in nonlinear random systems.

If the probability density functions of the inputs to the

nonlinarities are assumed to be Gaussian equation (4.17) reduces to:

> 2
1 .}f X

K = ——s xf(x) exp(- —5—)dx (5.1)
&4 Jor ci - 20§

Using equation (5.1). the equivalent gains for the nonlinearities can be

found as follows.

Wheel/Rail Profile Nonlinearities

The equivalent gains for the nonlinearities given by equations

(4.37) to (4.41) are given by equations (4.47) to (4.51).

Wheel/rail profile data for a wide variety profile types and
gauges are available in reference [23]. Figures 5.1 and 5.2 show the

equivalent gains obtained by integrating equations (4.47) and (4.49)

numerically.
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Suspension Nonlinearities:

The equivalent gains for a deadband spring, linear hardening
spring and Coulomb damper are given by equations (4.53), (4.55) and
(4.58). Figure 5.3 shows the naffective" spring constant for 2 dead-

band spring.

The twelve degrees of freedom statistically linearized
equations with Gaussian equivalent gains were implemented on a digital
computer to predict the response of the model to random alignment in-
puts. The output of the program was r.m.s. values of the inputs to
the nonlinearities, transfer functions, power spectral densities,
mass, stiffness, and damping matrices, and eigenvalue/eigenvectors

of the equivalent linear system after convergence has been obtained.

5.2.1 Low Speed Run (40 mph) .

The frequency range chosen was 0.4 to 10 Hz with 50
frequency points. The frequency points were equally spaced in 10910
scale and convergence was achieved after 7 iterations. The results
are compared to the digital simulation presented in Chapter 3.

Table 5.1 shows the comparison of the r.m.s. values, and
Figures 5.4 to 5.6 show the wheelset excursion PSD's obtained from

the digital simulation and statistical.linearization.

The results presented in Table 5.1 and in Figures 5.4 to

5.6 can be summarized as follows:
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TABLE 5.1: COMPARISON OF DIGITAL SIMULATION AND GAUSSIAN
STATISTICAL LINEARIZATION RESULTS AT 40 MPH
(RMS Values, inches)

Wheelset Excursions Lateral Primary Stroke
Length
40 WPH 21 #2243 #1 #2 #3
Digital 0.12474 0.096578 0.066809 0.18375 0.18563 0.21616
Gaussian 0.12492 0.09809 0.05579 0.16602 0.18006 0.22215
% Difference 0.1 1.5 16 9.6 3 2.6

¢ The maximum difference in r.m.s. values is in the trailing
wheelset. The peak value in the digital simulation (30 = 0.167 inches)
is less than the axle clearance of 0.18756 inches. This shows that
the trailing wheelset can move almost "freely" within the deadband.
As far as a vehicle design is concerned, this value is not important
due to its small size. Therefore it can be concluded that the r.m.s.

values are predicted quite well.

o Figures 5.4 to 5.6 show that the spectral density of the
statistically linearized system is very close to that of digital

simulation. For the first and second wheelset the PSD's of the
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system fall within the 90% confidence interval at most of the fre-
quencies. These show that statistical Tinearization is predicting
not only the r.m.s. values but also the shape of the power spectrum.
Specifically, the location of the peaks and the decay rates are pre-

dicted quite accurately.

5.2.2 High Speed Run (60 Mph)

The frequency range and frequency points selected were
the same as that for the 40 mph analysis and convergence was achieved

after 8 iterations. Table 5.2 shows the comparison of the r.m.s.

values.

TABLE 5.2: COMPARISON OF DIGITAL SIMULATION AND GAUSSIAN
STATISTICAL LINEARIZATION RESULTS AT 60 MPH
(RMS Values, inches)

WHEELSET EXCURSIONS LATERAL PRIMARY STROKE

LENGTH
60 MPH #1 #2 #3 #1 #2 #3
Digital 0.17014 0.15958 0.13771 0.28565 0.24280 0.35139

Gaussian 0.14887 0.12900 0.094359 0.22224 0.21657 0.27831

% Difference 12 19 31 22 10.8 20.8
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Figures 5.7 to 5.9 show the wheelset excursion PSD's ob-
tained from the digital simualtion and statistical linearization
at 60 mph. These figures indicate that despite the big differences
in excursion r.m.s. values the prediction of the shape of power
spectrum and specifically the peaks are very good. But the dif-
ferences in the r.m.s. values are as much as 31%. In addition, if
we assume that the digital results are correct, the statistical
linearization method underestimates the correct value which is not

good from a design point of view.

5.3 Trapezoidal Probability Density Functions

The Gaussian density function assumption for the inputs
to the nonlinearities is simple to use, however, the results are not
acceptable in predicting the performance of the lateral half carbody
locomotive model due to the 31% difference in results between the
predicted r.m.s. values by Gaussian statistical 1inearization method

and digital simulations.

In this section, the trapezoidal probability density
function and its degenerate forms, i.e., triangular and rectangular,
are proposed and applied to the twelve d.o.f. lateral half carbody
Tocomotive model. The choice of trapezoidal PDFs and its degenerate
forms is based on the type of nonlinearities which exist in the

model.
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The exact steady-state probability density function for
any first order nonlinear system excited by white noise can be
determined by the direct integration of the Fokker-Planck equaton

[27]. For a stochastic differential equation of the type
x = -f(x) + w(t)

where w(t) = white noise

the steady state probability density function is

X
p(x) = ¢ expl- f ()0 ce]
o]

where D = positive constant
© X
¢ = f exl-f 7e) paglix
- )

The probability density function of a first order system

with a deadband nonlinearity is shown in Figure 5.10.a.

Figure 5.10.b shows a trapezoidal density function.
The choice of the trapezoidal density function is based on the

need for the continuity in the PDF's as the r.m.s. value increases.
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FIGURE 5.10.a: PDF OF A FIRST ORDER SYSTEM WITH DEADBAND
NONLINEARITY
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The variance of the trapezoidal density function is given

by:

b
02 - J( x2 p(x)dx
-b

p(x)4

FIGURE 5.710.b: TRAPEZOIDAL DENSITY FUNCTION

In order to have a probability density function which is a function
of one variable either a or b should be fixed. The important non-
linearities in the locomotive equations are the ones which have

wheelset excursions and lateral primary strokes as inputs. There-
fore, the choice of the fixed parameter in the probability density

function is based on the characteristics of these two inputs.
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Because of the axle clearance in the lateral primary sus-
pension, the lateral primary stroke has the same probability of being
at any point within the axle clearance of §. Thus the fixed para-
meter of the trapzeoidal density function, a, can be chosen to be

equal to the axle clearance.

The choice of the fixed parameter in the trapezoidal den-
sity function for wheelset excursion is not as easy as that of the
lateral primary stroke. The lateral motion of the wheelset can

roughly be represented as shown in Figure 5.11.

TRUCK

deadband spring
gavitational stiffness force

FIGURE 5.11: SIMPLE TRUCK-WHEELSET LATERAL MODEL
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The characteristics of the deadband spring and the gravitational

stiffness are shown below.

Fd‘) Fgﬂ
) -S¢
' oy
5 p ; 5. Ay
f
where § = axle clearance
Sf = flange clearance

The total lateral spring force acting on the wheelset is a combin-
ation of these forces. Then, the first stop that the wheelset

experiences depends on the magnitude of the axle clearance, flange
clearance and the speed of the vehicle, in other words, the r.m.s.

wheelset excursions.

The model selected for the validation of the statistical

linearization has the following axle and flange clearances.
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Axle clearance, § 0.18756 inches

Flange clearance, df = 0,35 inches

Therefore, the following discussion on the choice of the first stop
for the wheelset excursion is based on the knowledge that the axle
clearance is less than the flange clearance. Similar arguments can

be made for other combination of clearances.

From a rail vehicle designer's point of view, the approxi-
mate method should predict the extreme cases 1ike high r.m.s. wheel-
set excursions and r.m.s. lateral primary stroke lenghts to reduce
the amount of flanging and spring bottoming. In rail vehicles, these
extreme cases occur at high speeds where the natural frequency
(kinematic) of the wheelset is 2-5 times that of the truck lateral
motion. Therefore, the first stop that the wheelset experiences is,
most of the time, due to the axle clearance when § < Gf. Also, as
explained in Section 5.1, the critical speed of 5 mph for the vehicle
with zero lateral primary stiffness indicates that even at low speeds,
20-40 mph, the vehicle uses up the available primary stroke clearance
in order to generate an effective lateral primary stiffness for

stability at all speeds.

In summary, the fixed value of the trapezoidal, density
function, a, was chosen to be equal to the axle clearance. Then the

value of b can be determined from:
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b = 6o~ - & (5.3)

Figure 5.12 shows the trapezoidal density functions and
its degenerate forms as the r.m.s. value changes. Note that for
the lateral primary stroke onlyCase5 can exist whereas the wheel -
set excursion can have all the possibilities depending on the r.m.s.
wheelset excursion. The occurrence of the degenerate forms of the
trapezoidal PDFs for the wheelset excursion is based on the need
for the continuity in the PDFs as the r.m.s. value increases o)
that a continuous equivalent gain tables can be prepared without

any smoothing and/or curve fitting.

The change from one form to another can be described as
follows. For a lTow r.m.s. value, Case 1, the PDFs for wheelset ex-
cursions are given by the Gaussian density function, as explained in
Section 3.4, and it can be approximated by triangular PDFs. Figure
5.15 shows the PDFs of the trailing wheelset excursion at 40 mph.

Note that in this case a is free and is determined by:

a =/6 ¢ (5.4)

As the velocity increases, the r.m.s. value increases and the peak
value, a, reaches the value of the axle clearance, S, which is shown
as Case 2 in Figure 5.12. A further increase in speed, Case 3, does

not increase the peak value, §, but the PDF becomes flat and the
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range of flatness is given by the parameter b which can be computed
from equation (5.3). The extreme of Case 3 is shown as Case 4 which
§ Finally, Case 5

V3
corresponids to the r.m.s. value which is greater that S

is the uniform density function where o =

In summary, the form of the density function should be
chosen from Figure 5.12 depending on the magnitude of the r.m.s. value

of the input to the nonlinearity.

Figures 5.13 to 5.18 show the comparison of the trapezoidal
density functions with the digital and Gaussian density functions
at 40 mph and Figures 5.19 to 5.24 show the comparison of PDFs at
60 mph. The best feature of the trapezoidal density function is in

predicting the peak values closely for high r.m.s. values.

-

5.3.1 Application to the Half Carbody Locomotive Model

5.3.1.1 Wheel/Rail Nonlinearities

The effective gains given by equations (4.47) to (4.51)
were computed using the trapezoidal PDFs and its degenerate forms.
Figure 5.25 shows the effective conicity which is obtained by inte-

grating equation (4.17) numerically.

5.3.1.2 Effective Stiffness for the Deadband Spring

The effective gain for the deadband spring is given by

equation 4.17,1.e.,
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©

“/F x f(x)p(x)dx

/ x2 p{x)dx

where f(x) is given by equation (2.6). Equation (5.5) can be inte-

K

eff

grated analytically and the effective stiffness for the deadband

spring is given by:

0 ; o] < —
/3
Keff = (5.6)
2
=32 ’ o > =
(b™-67) /3
Note that o = 8 corresponds to b = 6.

5.3.2 Trapezoidal PDF Results

Tables 5.3 and 5.4 show the comparison of the digital
simulation and the results for trapezoidal PDFs at 40 mph and 60 mph.
The frequency range chosen was 0.4-10 Hz with 50 frequency points.
Convergence was achieved after 7 iterations at 40 mph and after 8
iterations at 60 mph. The results indicate that the difference in

r.m.s. values are within 14.3% of the digital simulations as compared
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to 31% difference with Gaussian density functions. Comparison of
Tables 5.1 and 5.3 indicates that Gaussian density function predicts
the r.m.s. wheelset excursions better than the trapezoidal density
functions. This is due to the fact that at low speeds the wheelset
excursions have PDF closer to the Gaussian density function as ex-
plained in Section 3.4 and as shown in Figures 5.13 to 5.15. An
improved way to prepare the equivalent gain tables for wheel/rail
geometric nonlinearities is to use Gaussian density function at Tow
speed, trapezoidal density function at high speed with a smoothing

of the describing function table at intermediate speeds to avoid dis-
continuities. Table 5.5 shows the comparison of the results obtained

for this case at 40 mph.

5.4 Conclusions

In this chapter the method of statistical Tinearization has
been evaluated as a design tool using Gaussian and trapezoidal density
functions for the inputs to the nonlinearities. The Gaussian density

function was the first choice because:

-it is the most common density function that was used in
Titerature

-it does not require any knowledge about the type of non-
linearities in the system

-the effective gains for the nonlinearities are easy to
obtain
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However, the Gaussian method produced a maximum difference of 31% as
compared to the digital simulations. To reduce the difference in
r.m.s. values as compared to the digital simulation trapezoidal den-
sity functions have been proposed and applied to the half carbody
Tocomotive model. The trapezoidal density function is simple to
use, the difference in r.m.s. values are reduced to 14.3%, and the
trapezoidal density function predicts the peak values of the inputs

to the nonlinearities accurately at extreme cases.

In Chapter 6, the trapezoidal density function and its
degenerate forms are used as PDFs in the statistical linearization

method for parametric studies.
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CHAPTER 6

PARAMETRIC STUDIES

This chapter presents the extension of the half carbody
model to a full carbody model and the comparison of the response of
the two models. The second part contains a parametric §tudy of loco-
motive dynamics utilizing the trapezoidal density-statistical linear-

ization technique.

6.1 Extension to a Full Carbody Model

In the development and the validation of the statistical
linearization method as a design tool, a 12 D.0.F. half carbody loco-
motive model was used. The reason for using the half carbody model
was to reduce the computation costs in the validation process while
still including the important nonlinearities. In addition, studies
with linear models have indicated that [4 ] truck and carbody motions
are usually weakly coupled in the truck hunting mode which determines

the stability of conventional rail vehicles.

To compare the half carbody and full carbody models, the
12 D.0.F. model was extended to a 23 D.0.F. full carbody model. The
degrees of freedom and equations of motion for the full carbody model

are presented in Appendix B.3.

The half carbody and full carbody models with a low conicity

wheel (New AAR wheel on New AAR rail [23]) have the same baseline
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parameters which are given in Appendix B.4. The critical speed of the
half carbody model with a low conicity wheel is 105 mph (Section 6.2.1).

The speed chosen to compare the results of the two models was 95 mph.

The results which are presented in Table 6.1 shows that the
difference in the r.m.s. values of wheelset excursions are less than
2.4%. The maximum difference in the lateral primary stroke r.m.s.
values is 17%. Figure 6.1 shows the power spectral densities of the
leading lateral primary stroke length for the half carbody and full
carbody models. The two PSDs have similar peaks, but the full cérbod}
PSD has an extra peak at 1 hertz which corresponds to the carbody yaw

degree of freedom.

The eigenvalues which cerrespond to the least damped mode at

this speed are:

-1.04 + j 23.33 with p = 0.0445 (half carbody)

0.0512 (full carbody)

-1.18 + j 23.02 with p

The least damped mode indicates that the full carbody model is slightly
more stable than the half c- .ody model. This is due to the fact that
the r.m.s. lateral primary strokes in the full carbody are higher than
that of the half carbody, and higher r.m.s. strokes mean higher effec-
. tive stiffnesses in the lateral primary which yields a more stable
system. However, the damping ratios for these two models are very
close and the difference in predicted critical speed will be less than

10%.
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The biggest difference in Table 6.1 is the lateral carbody
acceleration levels. Table 6.1 shows that the half carbody model
overestimates the acceleration by 37%. This change in the carbody
acceleration levels can be explained by noting the half carbody model
has only lateral and roll degrees of freedom for the carbody, thus the
Tateral acceleration of the carbody is the same at any point
along the car length. In other words, the half carbody model can be
thought of a full carbody model with two trucks moving in phase. The
extension to the full carbody model allows a variable acceleration
Tevel to exist along the car length, due to the fact that the two trucks’
can now move in opposite directions which, in turn, reduces the accel-

eration at the geometric center of the car.

As a result, the half carbody model appears to be sufficient
to investigate the lateral stébi]ity characteristics of rail vehicles.
The results indicate that the half carbody model underestimates the
lateral primary strokes and overestimates the lateral acceleration
Tevels, therefore, a full carbody model is recommended for ride

quality analyses.

6.2 Parametric Studies Using the Half Carbody Model

The statistical Tinearization method with trapezoidal
PDFs was used to investigate the effects of important nonlinearities
on the lateral stability of the 12 degrees of freedom half carbody

locomotive model.

-168-



6.2.1 Wheel Profile Variations

Figure 6.2 shows the effective conicity of two types of
profiles. They are a Heumann wheel [23] (high conicity) and a New
AAR wheel (low conicity) on new AAR rail at standard gauge (56.5").
Figure 6.3 shows the Teast damped mode vs speed for both profiles.
It is seen that the change of wheel/rail profile from low conicity

to high conicity decreases the critical speed from 105 mph to 65 mph.

6.2.2 Track Roughness Variations

Figure 6.4 shows the lateral truck acceleration spectral
densities at 60 mph for the equivalent linear system for three
track class specifications. The r.m.s. lateral accelerations on
track classes 6, 5, and 4 were o_ = 0.0466g, o. = 0.05875g, o =

% a5 4
0.0976g. It 1is interesting to note that for a purely linear model

the ratio of the mean square accelerations would be equal to the

ratio of the track roughness parameters, A, i.e.

. 2
a A
= ——= 2.25
0y 6
6

whereas the nonlinear equivalent linear results yield:

a
.____.5..._._. = 1.59
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Figure 6.4 shows that the lateral truck acceleration psds in the

half carbody model have two major peaks corresponding to the carbody
lateral and truck lateral motions. The location of the first peak

is the same for all track classes, but the peak corresponding to the
truck lateral motion occurs at higher frequencies on rougher tracks.

The reason for this is that on rougher tracks the r.m.s. lateral primary
strokes are higher than those occurring on smoother tracks at the same
speed. As a result, the effective lateral primary stiffness and

natural frequency corresponding to the truck lateral motion is higher.

Figure 6.4 shows that there is a sharp drop at the frequency
of 4 Hz for class 6 track corresponding to the first drop in the spacing
function as shown in Figure 6.5. The spacing function does not go to
zero due to the unequal spacing of the wheelsets with respect to the
geometéic center of the truck. This drop does not exist for the rougher

tracks because the kinematic frequency of the leading wheelset

A

w =V
aro
= 4,02 Hz

corresponds to the frequency at which the drop occurs.

To determine the influence of the track class on the
stability of the half carbody locomotive model the least damped modes
for the speeds up to 105 mph were compared and it was found that the

half carbody locomotive model was stable up to 105 mph on track classes
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4, 5 and 6. This result can be explained as follows. Wickens [51] has
formulated the effects of the longitudinal. 1étera1 stiffnesses and the
conicity on the stability of a simple wheelset suspended from a sta-

tionary truck as:

1/2
2[@1 kx + az(ky + kg)]
v =
cr
Gq A
where vcr = critical speed
kx = longitudinal stiffness
ky = lateral stiffness
kg = gravitational stiffness
_ 2 2
o dpr a iy * T3l
and ¢, =
= zf 3 arO
% = 2733

For a model with a linear suspension and nonlinear wheel/rail geometry
the critical speed is basically determined by the effective conicity.
The r.m.s. wheelset excursion and, as a result, the effective conicity
increases as the track class number reduces. Thus a low critical
speed is expected for low (rough) track class numbers. However, the
half carbody model has a hardening spring in the longitudinal and a
deadband spring in the lateral primary suspension as shown in Figure
2.5. Therefore, the effective lateral and longitudinal stiffnesses

are higher on the lower track classes at the same speed due to higher
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r.m.s. strokes, thus yielding a more stable system than expected.

For example, at 80 mph on track class 4 the longitudinal stiffness is
1.5 times, the lateral stiffness is 1.6 times, the gravitational
stiffness is 2.9 times and the effective conicity is 3.3 times greater

than the values on track class 6.

To investigate the influence of the longitudinal hardening
spring shown in Figure 2.5 on the lateral stability, the hardening
spring was replaced by a linear épring with a stiffness of k]. It
was seen that the critical speed of the half carbody model is re-
duced from 105 mph on track class 6 to 75 mph on track class 4.

Thus it is clear that the hardening spring has a strong influence

on the lateral stability characteristics.

6.2.3 Effect of Axle Clearances

Axle clearances are important in the curving performance
of the six-axle locomotive, but they degrade the lateral stability
of the Tocomotive by decreasing the effective lateral stiffness.
The magnitude of the axle clearances are chosen such that the loco-
motive can negotiate the tightest curves in a yard. In practice,
axle clearances are generally chosen to be equal at each axle.
Simple geometric analysis has shown that [57] the sum of the leading
and middle axle clearances determine the curving ability of the
locomotives in yard curves. It is clear from Figure 6.6 that the
leading wheelset always has the highest r.m.s. excursion, or in
other words, has the highest effective conicity. If the clearance
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in the leading axle is reduced and the clearance in the middle axle
is increased by the same amount such that the total axle clearance
for the leading and middle axle stays the same, the same effective
conicity can be obtained at higher speed. Therefore an increase

in the critical speed is expected. Figure 6.7 shows the least
damped mode vs speed for two types of axle clearances (Case 7 in
Table 6.2). Curve 1 corresponds to the baseline case which has
equal clearances of 0.18756 in. at all axles. In Curve 2, the
leading and trailing axle clearances were reduced by 50% whereas the
clearances in the middle axle was increased by 50%. As éxpected,

the criticai speed was increased from 105 mph to 113 mph.

To determine the effect of each axle clearance on the
Tateral stability of the locomotiv@ the axle clearances were in-
creased/decreased by 50% at the same speed, 80 mph, and the results
are tabulated in Table 6.2 with the damping value of the mode which
becomes unstable at the critical speed. Table 6.2 indicates that to
increase the critical speed the first axle clearance should be re-
duced. The comparison of cases 4 and 7 shows the effect of the third
axle clearance on the stability. The decrease in the third axle
clearance increases the effective stiffness without changing the

other terms in equation (6.1) significantly.

6.2.4 Effect of Bolster Dry Friction Level

In this section the effect of the bolster dry friction

Tevel on the lateral stability of a locomotive is investigated.
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It was observed that the critical speed of the halfcarbody model was
reduced from 105 mph to 95 mph when the dry friction level was de-

creased by 10 times from 100,000 1b-in to 10,000 1b-in. The reason
for this reduction in the critical speed is that the truck can move
more in the yaw direction as the dry friction level decreases, and

this increase in yaw motion of the truck increases the wheelset ex-
cursions and, in turn, increases the effective conicity to decrease

the critical speed of the halfcarbody model.

6.3 Conclusions

The extension of the halfcarbody model to a fullcarbody
model indicated that the halfcarbody model is sufficient for pre-

dicting the lateral stability of the locomotive model.

-

The developed nonlinear technigue was used to determine
the influences of the wheel/rail profile, the track roughness, axle
clearances and the bolster dry friction level on the lateral
stability of the locomotive model. The parametric studies were
selected to show the advantages of the nonlinear technique over the
linear techniques in determining the effects of the various non-

linearities on the performance of the rail vehicles.
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CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

In this thesis the applicability of the statistical
linearization method as a design tool in nonlinear rail vehicle
dynamics was investigated. The first part of the research involved
the nonlinear wheelset equations and the development of a digital
half carbody lateral locomotive model to validate the results ob-

tained by the statistical 1inearization method.

The traditional statistical linearization method using a
Gaussian density function was found to produce large errors at high
speeds, thus a different form for the assumed density function was
developed. The trapezoidal density function was found b compare more
favorably with the digitally computed probability density functions
while not increasing the computational complexity. It was shown that
the r.m.s. values obtained by the Gaussian probability density func-
tion assumption deviate from the r.m.s. values obtained from the digi-
tal simulation by as much as 31%. To reduce the difference in r.m.s.
values the trapezoidal density function and its degenerate forms were
used as the input probability density functions to the nonlinearities.
It was shown that the trapezoidal density function reduces the differ-
ence in r.m.s. values to within 14.3% of the r.m.s. values of the

digital simulations, and that they are as simple to use for a design
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tool. It was also shown that the statistical linearization method is
a useful tool both in predicting the r.m.s. values and the frequency

contents of the inputs to the nonlinearities.

The most important aspect of the statistical linearization
method is that the computation time required to obtain the r.m.s.
values and the power spectral densities was reduced from 30-40
minutes for the digital simulation to 1.5 - 2 minutes for the

statistical linearization method.

The developed and validated design todl, the statistical
linearization with the trapezoidal density function, was used to
check the assumption of using the half carbody model in the lateral
stability analysis of lTocomotives. The 12 D.0.F. half carbody model
was extended to a 23 D.0.F. full carbody model and it was shown that
the half carbody model is sufficient for predicting the lateral
stability of the locomotive model. However, the full carbody model

is recommended for ride quality analyses.

Finally, the developed design tool was used to investigate
the influence of the nonlinearities on the lateral stability of the

12 D.0.F. half carbody model. The parametric studies indicated that:

-The effect of changing the wheel profile from a high
conicity (Heumann) wheel to a low conicity (new AAR
wheel) was to increase the critical speed by 38 percent

-The effect of operating the vehicle over a rougher track
was to increase the r.m.s. lateral acceleration of the
truck by 26 percent for class 6 to class 5 and 109 per-
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cent for class 6 to class 4.

-8y changing the axle clearances the critical speed can be
increased by 10% without hurting the curve negotiation.

-The effect of decreasing the dry friction level by 10
times was to decrease the critical speed by 10 percent.

7.2 Recommendations for Future Work

The future directions to improve the developed method as
a design tool for the nonlinear rail vehicles could be diyided into

three areas as follows.

7.2.1 The Improvement of the Method

In this study, the probability density functions. for the
inputs to the nonlinearities are restricted to be a function of only
one variable to develop a simple design tool. To improve the accuracy
in predicting the r.m.s. values the method could be extended by in-
cluding the higher moments [35] or by taking into account for the

possibility of the multiple inputs to the nonlinearities.

In this study only the second order moments were computed
and compared. To have a better description of the probability den-
sity function of the inputs to the nonlinearities the calculation
of the fourth moment will be useful. However, the addition of the
fourth moment in the convergence algorithm will complicate the tech-

nique and it will be expensive as a design tool.
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7.2.2 The Creep Force Saturation

In this study a linear creep force/creepage relationship
due to Kalker [53] was used. Law [4] showed that the creep force
saturation could have significant influence on truck hunting.
Therefore, the creep force saturation, e.g. the approximate model

presented in Section A.9, could be included in the model.

7.2.3 Verification of the Method and the Modles by Field Tests

In this study the statistical linearization was validated
against a time domain digital simulation mathematical model. The
rail vehicle models should be verified by field tests to make sure

that the mathematical models represent the actual behavior of rail

vehicles.
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APPENDIX A
NONLINEAR WHEELSET EQUATION FORMULATION

The wheelset is the essential dynamic element of a rail
vehicle. It is important to accurately describe the wheel/rail
interaction forces and to include all of the terms that have a
significant influence on the dynamic performance of the rail
vehicle. In this appendix a complete derivation of the equations
of motion for a rail vehicle wheelset are presented. This nonlinear
wheelset model will be incorporated into twelve degrees of freedom,
lateral Tocomotive models (digital simulation and statistical
linearization models) in Chapters 3 and 5. Section A.8 shows how
further simplifications can be made in the equations to yield the
well known approximations. Section A.9 presents the approximate

nonlinear creep force model.

A.1 Definition of Axes

Three axes are used to represent the steady state motion
of the wheelset on the tangent truck, Figure A.1. Axes systems
(e1L,e2L,e3L) are attached to the left and right rail instantaneous
contact points as shown in Figure A.2. They are used to represent

the direction of the wheel/rail contact forces.

The coordinate transformations between the axes are

given by:
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il = 0 cosd sing

k' 0 -sing cos¢
and

i" B cosy siny 0

" = | -sinmp cosy 0

k" 0 0 1

.i 1t

J'Ill
klll

(A.1.2)

then the relation between the body and the equilibrium axis is:

i cosy siny 0

coso-siny cos¢-cosy  sing

el
i

k' sind-siny -sing-cosy oS

.i "

jnl
klll

(A.1.3)

The relations between contact-point axes and the body

axis are given by:

Fe]R 1 0
e = 0 cosaR
e 0 siné
B BRJ L R
and
r_ — —
&L 1 0
e -
2L = 0 cossL
e3L- i 0 -smdL
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A.2 Degrees of Freedom and Constraints

The coordinates that are used in the derivation are:

x: Longitudinal displacement of c.g.
y: Lateral displacement of c.g.

z: Vertical displacement of c.g.

Yaw displacement about z'" axis

Roll displacement about x" axis

mw e &

Perturbation, angular displacement from nominal
value of Q about y' axis.

In the derivation it is assumed that the wheels are al-
ways in contact with the rails, i.e., there is no wheel 1ift. Using
this assumption, two constraint equations for vertical and roll
displacements are obtained in terms of lateral and yaw displace-

ments of the wheelset.

Cooperrider [23] stated that yaw dependence of vertical
and roll displacements is second order w.r.t. lateral displacement

dependence.

Consequently, two constraint equations and their time derivatives

are:

Vertical:
z = z(y)
z = z2'y (A.2.1)
5 = 292 + 7'y
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Ro11:

o = ¢(y)
o = o'y (A.2.2)
5= oPe ey

where ()= (50 5 (0= (F)

A.3 Complete Wheelset Equations

The angular velocity of the wheelset is:

(8)i" + (Q+B)3" + k"

w:
(A.2.3)
=wx1" +wyj' +wzk'
where
w, = ¢
w, = Q + B8 + ysine
w, = cosé
The angular momentum of the wheelset at the c.g. is:
- s ! s 1 ]
Hcg = wawxl + Iwywa + Iwzwzk (A.3.2)
where
wa = Iwz for a wheelset.
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Then

WX X wy W
+ [waxis X Hcg] (A.3.3)
where '
axis T H T (A.3.4)

$i' + Ysingj' + vcosok'

small roll and yaw angle assumption reduces Equétion

A.3.3 in equilibrium axis to:

dH
cqg - o * N s noam
dt (wa¢ Iwymp)1 ¥ IwyB J

. . (A.3.5)
+ (IwaCb + wall); ¥

The moments due to creep, normal, and suspension forces

shown in Figure A.3 are:

M= [RR X (FR + NR)] + [RL X (FL + NL)] + Ml_-x-MR+MSusp (A.3.6a)

where

=)
=
1]

-(a + Ag)i' - rpk!
R R (A.3.6b)

(a - AL)j - rLk

=
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and AL,AR: Displacements of the contact points w.r.t. axle

FL FR: Creep forces at left, right contact points

ML,MR:

NL,NR: Normal forces at left, right contact points

Creep moments at left, right contact points

Msusp' Suspension moment

Applying Newton's Law for the equilibrium axis yields

the following six equations.

Longitudinal equation

Mx = FLx + FRX + FSuspx (A.3.7)

Lateral equation

My = FLy + FRy + NLy + Fsusp (A.3.8)

Vertical equation

Mi = F, o+ Fp, +No, + N+ Fsuspz - Ly (A.3.9)

Roll equation

“ _\!_.
wa¢ - Iwy T vt RRy(FRz NRz) (FRy Ry)
+ RLy(FLz + NLz) - RLz(FLy + NLy) (A.3.10)
* MLx * MRx * Msuspx



Spin equation

Iwyé

Yaw equation

where

LX
Ly
Lz

Rx

Ry
RRz

(Fp, + N

Rz Rz) + R

v L ]
-IW,Y Tc—)' ¢ + RRX(FRy + NRy
Rix(FLy * Nuy) - RyFiy * 4,
axle load

[-(a-AL)cos¢ sinw-rLsin¢sinw]
[(a-AL)cos¢ coswi-rLsin¢ cosy]
[(a-AL)sin¢ - rLcos¢]

[(a+AR)cos¢ siny - rRsin¢sinw]
[-(a+ag)cosgcosy + rRsin¢cosw]

[-(a+pp)sing - racosv]
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A.4 Normal Forces

Normal forces at the left and right contact points are

given by the relations:

Left wheel:

NL = 'NL sin(6L+¢)j"' + NLcos(6L+¢)k” (A.4.1)
Right wheel:
NR = NRsin(GR - o)j" + NRcos(dR - o)k" (A.4.2)

Normal forces NL’ NR are obtained from the vertical and
the roll equations. Solution of the equations (A.3.9) and (A.3.10)

gives the magnitude of the normal forces as:

(R, * Rthan(6L+¢)]F: - M;

NRcos(GR-¢) = (A.4.3)
RLy-RRy + [Rthan(6L+¢)+Rthan(6R-¢)]
and
* *
[-R, + R,_tan(s,-¢)JF + M
NLcos(6L+¢) = Ry Rz R z__ ¢ (A.4.4)
RLy-RRy + [Rthan(6L+¢)+Rthan(GR-¢)]
where

L
Fp=Mzsly- (Fpp v Fip* Fsuspz)
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and

RRyFRz

=
n

Lix® - Iwaw * RRzFRy B

* RLzFLy B RLyFLz B (MLx M Msuspx)

Static Wheel Lift Condition:

The vertical component of the creep forces given by
equations (A.4.3) and (A.4.4) can be decomposed into two parts,
namely, static part and dynamic part. Static parts of normal forces
can also be obtained from the force moment balance of a wheelset.
In Section A.6 this decomposition will be examined in gravitational
stiffness derivation. It will be shown that the creep forces ap-

-

pear as a multiplicative factor in equations (A.6.18) and (A.6.19).

Static part of the equations (A.4.3) and (A.4.4) becomes:

NR a - rLtan(6L+¢)

La cos(GR-¢) = (A.4.5)
2a-[rLtan(6L+¢)+rRtan(6R-¢)]

N a - rotan(8,-¢)

A 2a-[rLtan(6L+¢)+rRtan(SR-¢)]

-202-



In order not to have a wheel 1ift, the normal forces NR

and N, should always be greater than zero. Assume that the wheel-

L
set is moving to the left. The following cases are possible:

Case 1: rLtan(GL +¢) <a

It is clear that NR and NL are positive.

Case 2: r‘Ltan(GL +¢) =a

This case corresponds to NR =0 and NL takes its maxi-

mum value, i.e.,

S . S— (A.4.7)

Case 3: rLtan(GL +9) >a

When rLtan(GL + ¢) exceeds the value a, static wheel
1ift occurs, i.e., Np < 0 and N_ > 0.

Therefore, the angles at which static wheel 1ift occurs
are 56° for locomotive wheels and 60° for passenger wheels. In
reality, wheel 1ift can occur at lower contact angles due to the

high dynamic forces in the system.
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A.5 Creep Forces

The creep forces, in general, are defined with respect to
the contact plane. Since the derivation is done in the equilibrium
axis, after the coordinate transformation, creep forces and creep

moments in equilibrium axis are:

Left Wheel:
FLy = Fl cosv - FﬂyCOS(GL + ¢)siny
Fly = Flesin + F cos(8 + ¢)cosy
FLg = FLysin(s, +9)
(A.5.1a)
M . = M sin(s + o)siny
My = -M sin(8 + ¢)cosy
M, = Mﬂz;OS(SL + ¢)
Right Wheel:
FRX = Féxcosw - Féycos (6R - ¢)siny
Fry ~Faysimy + Fp cos (8p - ¢)cosy
Frz =-Féysin (8p - ¢) (A.5.1b)
Moy =Fp,sin(ep = ¢)siny
Moy = Mrzsin(op - ¢)cosy
Mo, = Mpcos(8p - )
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where

F' FiT- 1'1:-ﬂ component of the creep forces at the
contact plane
M§1 M£1' 135 component of the creep moments at the

contact plane.

A.6 Final Equations

Six rigid body equations were derived in Section A.3.
Using the vertical and roll equations to find normal forces NL’

N, equations A.4.3 and A.4.4 were obtained. The longitudinal

R
and the spin equations decouple from the lateral and yaw

equations for tangent track motions.

Substitution of the normal forces into the yaw and

Tateral equations gives:

Lateral equation:

My = Fiy Fry * Fsusp ¥ NRSi"(GR'¢)'NLSin(6L+¢)
y (A.6.1)
Yaw equation:
o= v
Ld = Ly ro ¢t (ReyFry RryFRx) * (RLFLY Ry FLx)

+ RRXNRsin(GR-¢) - RLXNLsin(6L+¢)

+ MLz + MRz + MSUSPZ (A.6.2)

-205-



A.6.1 Lateral Gravitational Stiffness Derivation

Lateral "gravitational stiffness force", Fgrav’ is de-
fined as the net lateral (in j™ direction) component of the normal

forces:

Fgrav = 'NRSi"(GR - o) + NLsin(SL + 0) (A.6.3)

A small yaw and roll angle assumption together with equa-

tions (A.4.3) and (A.4.4) reduces the equation (A.6.3) to

* *
* M F
= _9 z
Foray = FoAL () + == 0, (89) + —"— 4 (ay)  (A.6.4)
where
F =Ly [F' S1n(6L+¢) Fr ys1n(6 -¢)] + MZ - FSuspz
(A.6.5)
Fsuspz = 0 at equilibrium (A.6.6)
R I rF
My = 1 0= 1,9% - v Ingfay + r Fl, ]
[rR Rycos(é -¢) + 4] F cos(6 +¢)]
+y[M' sin(8 +¢) - Mp_sin(dp-0)] - Msuspx (A.6.7)
MSuspx = 0 at equilibrium (A.6.8)
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Ay

Case a:

tan(s + ¢) - tan(sp - 9)

2 - —Lr tan(s +¢)+rptan(sg-0)]

tan(s + ¢) + tan(s, - ¢)

2 - —{r tan(s_+¢) + rgtan(sp-6)]

(rL-rR) . tan(6L+¢) -tan(GR-¢)

2 - —%—{rLtan(6L+¢) + rRtan(GR-¢)]

(A.6.9)

(A.6.10)

(A.6.11)

Lateral displacement of the wheelset w.r.t. rail

In general, three wheelset positions are possibie:

a) Both of the wheels are in the 1inear range, i.e.
wheelset excursion is less than the flange clearance

b) Left wheel is on the flange

c) Right wheel is on the flange

§ + 6
b (ay) = —E=
a_(ay) (r, -re)
e s LR (g 4oy - )

-207-



A _(by)

The result is . —=——— << A (8y)
a L

Case b:

tan(GL + ¢)
2 - —}{rLtan(cst)]

o (by) =

AC(A.V) - (rL'rR) tan(GL + ¢) ‘ (GR - ¢)
a a 2 - —%—-[rLtan(6L+¢)]
A (ay)
The result is - 3 << AL(AY)
Case c:
-tan(6R - )
AL(A.Y) = 1
2 - —E—{rRtan(GR-¢)]
a(by)  mg)  (5%0) tan(8-0)
a a 2 - —{rotan(sy-6)]
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A (ay)
The result is 3 << AL(Ay)

« A (dy) *
Therefore, F, << FZAL(Ay), always, and equation
(A.6.4) reduces to:
*
* M
Fgrav = FZAL(Ay) t— Aw(Ay) (A.6.12)

A small yaw and roll angle assumption together with
equations (A.6.6) and (A.6.8), and by neglecting the vertical
force and vertical component of the creep force reduces F* and

*

M

6 :
*~
FZ ~ LA (A.6.13)
and
*
= o 1 - - 1
M¢ = rRFRycos(GR ¢) rLFLycos(6L+¢) (A.6.14)
A.6.2 Yaw Gravitational Stiffness Derivation
Yaw gravitational stiffness (monent), Mgrav is defined
as:
Mgrav = -RRXNRs1n(6R-¢) + RLXNLs1n(5L+¢) (A.6.15)
where

[-(a-AL)cos¢sinw - rLsin¢sinw]

Rx

Rx

pel
1

[(a+AR)cos¢sinw - rRsin¢sinw].

-209-



Assuming small yaw and roll angles, equation (A.6.15)

reduces to:
M*
*
Maray = ~20LF 4, (ay) + —2 4 (ay)]
*
+ ay FZ Acw(Ay) (A.6.16)
here (r 1) (5 + ¢)tan(s, - o)
r, +r tan(s, + ¢)tan(s, - ¢
by 01) = LR L R

2 - %{rLtan(6L+¢)+rRta"(GR'¢)]

Case a: Wheelset is within the flange clearance:

then ( (3 )
N L R L R
(8, + &,)
L R
Aw(AY) = 2
"Lt TR
Since is of order one, the result is;

By (By) << 4 (Ay)

Case b: Left wheel is on the flange;

(g +rp) (&g - ¢)tan(s + ¢)
a 2 - %{rLtan(5L+¢)]

Acw(AY) =
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tan(GL + ¢)
2 - %{rLtan(6L+¢)]

Aw(Ay) =

The result is: Acw(Ay) << Aw(Ay)

Case ¢c: Right wheel is on the flange:

Similarly

Acw(AY) <«< Aw(AY)

Therefore Acw(Ay) << Aw(Ay) in general, and Mgrav re-
duces to: (A.6.18)
M*
* ]
= -
Mgrav aw[FzAw(Ay) + ——gL—-AL(Ay)] (A.6.19)

A.6.3 Wheelset Equations

Substitution of the equations (A.6.12) and (A.6.17) into
the yaw and lateral equations and neglecting the higher order terms

gives:
Lateral Equation:

. "L 'R
L T L "

r
+ Fiycos(GL +¢) - [T+ —?%— Aw]

-211-



r
' - 8) - _R_
+FRycos(6R ¢) -« [1+ . Aw]

-LAAL(Ay) + Fsuspy (A.6.18)

Yaw Equation:

waw+I Q= a(FRX - F!

wyo Lx) + M cos(GL + ¢)

Lz

+ Mchos(GR - ¢) + awLA Aw(Ay) + MSuspz

(A.6.19)

A.7 Derivation of Creepages

Lateral, longitudinal and spin creepages are defined as

relative linear and angular motions between the wheel and rail,

i.e.

£ = (Lateral velocity of wheel -lateral velocity of rail) at contact point

Yy nominal velocity

£ = (Longitudinal welocity of wheel-longitudinal wvelocity of rail Jatcont.pt.
X nominal velocity

£ = (Angular velocity of wheel-anqular velocity of rail) at contact point

sp nominal velocity

Let Ri and Ré be the position vector of the left and

right contact points from equilibrium axis, i.e.,
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Left wheel:

then

where

Rli = X.im + yjm zkm + (a -A L)Jl - r.Lkl
=[x - (a - AL)cos¢sinw - rLsin¢sinw]i”
+ [y + {a - AL)cos¢cosw + rLsin¢cosw]j”
+ [z + (a - AL)sin¢ - rLcos¢]k” (A.7.2)
o r‘L
El = (RL ey -V e cosy)/V
= (RY - ey )/V (A.7.3)
Sop™ (v * eg )V
(+) = dot product of two vectors
ey = cosypi™ + sinyj™
ey = -cos(§ + ¢)sinpi™ + cos(§ + ¢)cospi™ + sin(s + ¢)k™
ey = -sinéLj' + cosaLk'
w=0¢1i'+ (Q+ B+ Ysing)j' + Ycosok’ (A.7.4)

-213-



Right wheel:

] - m - 1t 1] s ! ]
RR = xi™ + yj"™ + zk"™ - (a + AR)J - rRk

=[x+ (a+ AR)cos¢sinw- rRsin¢sinw]1”
(A.7.5)
+ [y - (a + AR)cos¢cosw-+ rRsin¢cosw]jm
+[z-(a+ AR)sin¢ - chos¢]km
then
° rP
Ep = (Rp - egp =V —ro‘—cosw)/v
Epp = (R - epp)/V (A.7.6)
gSpR= (m . eBR)/V
where

(¢) = dot product of two vectors

g = cosy i" + siny j"
eop = -cos(6R - ¢)sinpi™ + cos(aR-¢)coswjm -sin(sR-¢)k”
ey = sinGRj' + cosGRk'

w=061i' + (Q+ B + Psing)j' + Pcosok’ (A.7.7)

After some algebra and neglecting the higher order terms

the creepages are obtained as:
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Left wheel:

L = —%——1V(1 - —Fin) - ((a - AL)cos¢cosw)iJ . COSY
gyL = —%—[}cosw + r cos¢ coszw é-Vsinw]cos(GL + ¢)
(A.7.8)
+ —%—[i + (a - AL)cos¢ 6] sin(sL + ¢)
EspL = —‘]/— [J;cos(sL +¢) - 9 sing ]
Right wheel:

£ = LTV - =Ry 4 ((a + a)cosocosy)i] - cos
xR~V ry a * fpjcosecosy)y v
EyR = —%—-[&cosw + chos¢coszw ¢ - Vsinw]cos(GR - ¢)

- [2- (e ag)coso $lsin(s, - ¢) (A.7.9)

EspR = —%— [&cos(éR - ¢) + QosinsR]

where

Q, = V/r0 (Nominal angular velocity)

A small roll and yaw angles assumption together with
small vertical velocity of wheelset reduces the equations (A.7.8)

and (A.7.9) to:
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Left wheel:

] "L .
EXL = _V—[V(l - ro ) - aUJ]
oo Ly ryd - W )eos(s + ¢)
EspL = —%—{icos(dL + ¢) - QosinaL]

Right wheel:

) "R .
ER —V—[V(1 - —;;—) + ay]
g = L+ rgd - Wwloos(sg - ¢)

EspR = —L—[&) cos(8p - ¢) + @ sindp]

(A.7.10)

(A.7.11)

Furthermore, small contact angles assumption reduces

the creepages to:

Left wheel:

.
L .
[V(1 - ) -2

<- <~

g, =y LV +ro- Wl

(A.7.12)



Right wheel:

T "R .
ER -V—{V(l - To-) + ay]
gyR = -%-{& + rR$ - Vyl (A.7.13)

EspR - _%—{i ¥ QoéR:l

A.8 Simple Forms of Equations of Motion

In this section the simplification of the nonlinear wheel-
set equations (A.6.18 and A.6.19) under certain assumptions are

presented.

A.8.1 Linear Creep Force/Creepage

The most widely accepted linear creep law is due to
Kalker [53] and called "Linearized Theory". The linear creep force/

creepage relations are given by:

Lateral Creep Force:

-f - f (A.8.1)

y N 11€y 12gsp

-n
i

Longitudinal Creep Force:

(A.8.2)
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Spin Creep Moment:

MZ = f] ZEy - fzzgsp (A.8.3)
where
Ey = Lateral creepage
&y = Longitudinal creepage
Esp = Spin creepage

Using creepages given by equations (A.7.10) and (A.7.11)
together with equations (A.8.1 to A.8.3) and also assuming that
rLé and rR$ x roé in creepage equations reduces the wheelset

equations (A.6.18) and (A.6.19) to:

Lateral equation:

. 2fy4 . . 2ty
M+ [ (5 + rgh - V) + g 01 - ag(ay)

2f]2
- r Az(Ay) + LAAL(Ay) = Fsuspy (A.8.4)
Yaw equation:
. v 2a2f33 . 2af33 , rL- TR
waw * Iwy rs o+ v LA s ' 2 )
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2f

ot (A.8.5)
S22 5 (ny) - ap L,A (ay) =M
s 1A A"y Y susp,
where
tan{s, + ¢) - tan(s, - ¢)
o (ay) = : : : (A.8.6)
2 - — [rLtan(GL + ¢)+rRtan(6R - 4)]
tan(s, + ¢) + tan(s, - ¢)
8,(0y) = L R (A.8.7)
2 - —%— [rLtan(GL + ¢)+rRtan(6R - ¢)]
sins, -+ cos(s, + ¢) - sind, * cos(S, - ¢)
- L L R R
A](Ay) - 2
(A.8.8)
sins, . cos(s, + ¢) - siné, - cos(S, - @)
L L R R
A,(dy) =
2

2 - -1 [r tan(s + ¢) + rytan(s, - ¢)]
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) cosz(éL +¢) + cosz(cSR - ¢)
a5(ay) = ,
2 - —E—-[rLtan(éL + ) + rRtan(GR - ¢)]
(A.8.10)
cosz(ﬁ +¢) + 0052(5 - ¢)
a,(0y) = L :
4 2
(A.8.11)

It is clear that AL(Ay), A](Ay), Az(Ay) are odd func-
tions and Aw(Ay), 85(8y), 8,(dy), are even functions of wheelset
excursion Ay.

In digital simulation models odd and even functions can
be used. But in order not to get a bias term in equivalent gains,
odd nonlinearities should be used in equivalent linearization pro-
grams. The following table shows the error introduced by replacing

the even nonlinearities with their nominal values, i.e.

A5(8y) = 1
A4(AY) = ]
A (ay) = & (80=0.0694 for New
v 0  ‘Wheel on New Rail

at STD gauge)
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(GL R+¢) 5° 10° 20° 30° 40° 50°

A3(Ay) 1.028 1.05 1.081 1.10 1.13 1.22
A4(Ay) 0.996 0.985 0.940 0.875 0.793 0.707
Aw(Ay) 0.045 0.094 0.207 0.358 0.584 0.994

Digital simulation of twelve degrees of freedom locomotive half car-

body model at 60 mph shows that

Iylmax < 10 in/sec

] oy 0.5 rd/sec

lwlmax < 0.01 rd
Therefore the actual errors introduced by the nominal values of

A4(Ay) and A (Ay) in equations (A.8.4) and (A.8.5) will be negli-

v
gible with respect to the error introduced by A3(Ay) which is less

than 13% when the wheelset is on a forty degrees flange.
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Using these assumptions the wheelset equations further

reduce to:

Lateral equation:

- —,(0y) + Lpay (8y) = Fg oo (A.8.13)

Yaw equation:

2a f 2af r -r
- v 33 = 33 , L R
waw * Iwy s o * v v+ s \ 2 )
2f22 . Zf]2 (

+ ] v - V \.)./ + Y.O&) - W))
- —==A (dy) - ap LS = Msuspz (A.8.14)

where
8, (2y), 8, (ay), b, (dy) are given by equations (A.8.6),
(A.8.8) and (A.8.9)

A.8.2 Linear Creep, Small Contact Angles

Assuming small contact angles and linear creep force/

creepage relations reduces equations (A.6.1) and (A.6.2) to:
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Lateral equation:

(r, +ry) 2f (r, +rp)
. L R 11 . L RY
My + 2f33 [] - zro ]w + ] [.Y + ‘_—2‘_"""" ¢ - VU)]
.8 6 § - 6
v o7 %R L~ %R )
2fy, [y s Aty [ 0] = P
0 Yy
(A.8.15)
Yaw equation:
. v o 2a2f33 (rL-rR) 2f]2 . (rL+rR) .
LV * Iwy?i: o+ r 2a V y* 2 ¢-Vy]
2a°f 5 5, -.sR 5, + 8
Py b Ay ) Al
2f
22 o _
A (A.8.16)

A.8.3 Linear Creep, Linear Profiled Wheel

The linear profiled wheel assumption further simplifies

the equations of motion for the wheelset, i.e.,

(8 - &p) A
2 F) Ay

R

-223-



(rL -rp)
R 5 A
5 x T Ay (A.8.17)
a
. 1
¢ = —5— by
where
Ay = wheelset excursion =y - Yy
y = absolute lateral displacement of wheelset
Yp T absolute lateral displacement of the rail
Equations (A.8.15) and (A.8.16) reduce to:
(r, +r,) 2f (r, +r,)
L 'R 11 (e LR o o
M.y + 2f33[1 = Zro ]ll) + V LY + 2a a]( "yr)'v‘p]
‘I’ A A+ a]
+2f12£—v_ "EF;(y B yr)]+LA[—__?T_——J(y'yr) ) Fsuspy (A.8.18)
Yaw equation:
2af., .\ 2f (r, +r,)
TR s BT 33 12 pe, LTTRY e s
LxV* Loy o — Y-y # F (y-yy) - ——y+ —57—a,(y-y,)-W]
2
, By, A ) (8, *op)
v V- ZfZZCEF;(y'yr) - _ﬁ_) B aLA(_———_?_____Jw 'Msuspz

(A.8.19)
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A.8.4 Linear Creep, Conical Wheel

A conical wheel assumption together with (A.8.17) gives the

most simplified equations, i.e.:

(r, = 1)
LR
¢ 2a T a by
(8 -6,)
L R -
0 5 = 0
. G
[} o = 5 Ay a] = A (A.8.20)
(r, + rp)
L R .
° 2 =T
(8, + 6p)
L R
o 2 - 5o

The wheelset equations reduce to:

Zf]] a;r 21’]2 . LA

‘e . o . -
My + — [y + — V- vl + v b+ — aly'Fsusp -uL(t)
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Yaw equation:

a,V 2af A 2f a,r
- 17 e 33 12 . 10
I b+1 y y - [y + -y - V]
WX Wy ar, o ) a
2a2f33 . 2f22 .
* V V=gV -y ady - Msuspz= uw(t)
(A.8.22)
where
2fyqa,r . a
u(t) = — e 5 o Loy (A.8.23)
( Iwya]V 2f]2a]ro )9 . 2af33A ;
uw(t) - ar, aV r o r
(A.8.24)

A.9 Approximate Nonlinear Creep Force Model

The creep forces and the creep moment due to the shear
stresses in the contact area between the wheel and the rail are im-
portant in the dynamic analysis of rail vehicles. For many problems
in rail vehicle dynamics a linear creep force/creepage relationship

has been used to determine the lateral stability and to estimate
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the slip boundaries for steady state curving. But recent studies [4]
have shown the need for more sbphisticated models of the wheel/rail in-
teraction processes; in particular, adhesion limits on the creep force/

creepage relationship should be included.

Vermuelen-Johnson [52] have formulated a nonlinear creep
law which has been confirmed by laboratory experiments, this theory,
however, does not include spin creepage which is known to be signi-
ficant in the wheel flange region. Kalker [53] has formulated a
nonlinear creep law that incorporates the effects of this spin
creepage. The conversion of Kalker's Algol language computer program
to Fortran is given in reference [54]. The inputs to the program
are a function of the resultant normal load on the contact region.
Therefore, all the creep force calculations must be on-line in a
rail véhicle program. Even for Kalker's "Simplified Theory" [53]
the computation time for one calculation of the creep forces is an
order of magnitude greater than the simulation integration time step.
Therefore, a "Heuristic Nonlinear Creep Force Model" [53] has been

evaluated and found to be adequate over a broad range of creepages.

The most widely accepted linear creep law is due to Kalker

[55]. The linear (unlimited) creep force/creepage relations are given
by:

Lateral Creep Force:

Fy = -f]]gy - f]ngp (A.9.1)
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Longitudinal Creep Force:

Fx - 'f33£x

Spin Creep Moment:

where

Sp

1

22

33

computed

adhesion

M, = f,,8 - f

z 12€y 22Esp

= Jateral creepage

= longitudinal creepage

= spin creepage

= lateral creep coefficient

= Tlateral/spin creep coefficient
= spin creep coefficient

= Tlongitudinal creep coefficient

(A.9.2)

(A.9.3)

In approximate creep model, the creep forces are first

using the linear theory and the nonlinear effect of the

1imit is brought in by computing:
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1/2

el - 2 "‘2
Fr = (FX + Ey) (A.9.4)
F
= .
where Fx o
_ F
F = —_L
Y uN
Fo = unlimited (linear) longitudinal creep force
Fy = unlimited (1inear) lateral creep force
N = normal load at the contact region
u = coefficient of friction

Following the Vermuelen-Johnson approach for creep with-

out spin the limited normalized resultant force is determined by:

F = (A.9.5)

Note that the above equation includes the spin creep contribution
to the lateral creep force, Fy, in computing the resultant creep
force, FR.
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Then the approximate nonlinear forces in lateral and

longitudinal directions are given by:

F
T = Fy
FR
(A.9.6)
:
F. = —R_F
xN F! X
R

Figure A.4 and A.5 show the normalized creep forces vs
normalized lateral creepages. The normalized creepages are a func-

tion of the normal force at the contact region and are defined as

[ 54]:

E, P
UXN = ——%%1—17— (Normalized Longitudinal Creepage)

E, * P

UYN = -%%1—17- (Normalized Lateral Creepage)
&p * P )

PHN = "'JLTT"_ (Normalized Spin Creepage)

(A.9.7)
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where

C = vVa.b = function of normal load
-4 1 1 1 1 . + - o+ -
5 = o + - + o + - with Ry, R], Ros R,
1 1 2 ?

being the principal radii of curvature of the two elastic bodies,

a = semi-axis of the contact ellipse in rolling
direction
b = semi-axis of the contact ellipse in lateral

direction

Figure A.4 and A.5 show the comparison of the Nonlinear
Approximate Model with Kalker's Simplified Nonlinear Theory for
thread and flange region, respectively. These figures show that
Heuristic Model's results are close to Kalker's Simplified Theory
results. The maximum error in lateral creep force is 11% whereas

the maximum error in longitudinal creep force is less than 5%.
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APPENDIX B
LOCOMOTIVE EQUATIONS

In this appendix, the nonlinear equations of motion for the
half-carbody digital Tocomotive model and statistically linearized
equations of motion for the same model are presented. Section B.3
describes the extension of half-carbody equations to full carbody
equations. Also, baseline parameters for an EMD SDP 40, six-axle

locomotive are presented [21,22].

B.1 Digital Model Equations

Leading Wheelset:

Lateral Equation

. "L ™R
Mwyl ) [FLx(] ¥ a Aw) ¥ FRx(] * a v

r
] L o 1 __R___ . -
+ FLy[1 + -?;—-Aw] cos(6L+¢) + FRy[] *— Aw] cos(dR ¢) 1

T b, W) 0y - Py, (8.1.1)

Yaw Equation

v v'-i_l 1
Todg * Tay 7 8 = alFpy = Fiydy * M, cos(e +e),

+ Mézlcos(dR-¢)] + aLAAmy2 - Dpyaw] - Mpyaw] (B.1.2)
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Middle Wheelset -

Lateral Equation
. " 'R
Mwy3 - [Fix(1 ¥ a Aw) * Féx(] ¥ a Aw)]z Yy

r r
+ Fﬂy[] + —éL—— Aw]cos(5L+¢) + Féy[l + aR Aw]cos(GR-qJ) 2

-L (y)-D,, =-F (B.1.3)
A A‘-z Pyz kp.Y2

Yaw Equation

. v ¢ _ v '
Lda ¥ Iwy 7?; 9, = a(FRx FLx)2 * MLz2

cos(6L+¢)2

+ M.

Rchos(cSR-q>)2 + aLAA¢2y4 - Dpyaw - Mpyaw2 (B.1.4)

2

Trailing Wheelset:

Lateral Equation

” " 1. 'R
MwyS ) [FLx(] "3 Aw) ¥ FRx(] 3 Aw]3 Y6

r r
\ L N ' R -
FLy[l * Aw]cos(6L4¢) + FRy (1 + —?;—-Aw]cos(GR ) 3

- A -D - F B.1.5
e, ) - Oy~ gy, (B.1.5)
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Yaw Equation

\4

I —_—

I Wy r 0

wx'6 03 = a(Féx b

+ M

R23C05(6R-¢)3 + aLAAw3y6

Truck Equations:

+F

+D 4+ D
Py;

Mty7 = Dpy]

Yaw Equation

Itz'y8 =0

2. (D

- 1 py,

sSyaw * ¥ kay]

- 2.(D + F )

3 pY3 kPY3

Roll Equation

-D_, -F

I kpé s¢

txfg = Dpy - F

+D

+
htp(Dpy] pyZ
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] ]
FLx)3 tM z

-D - M

+
kpy,

+D +D + M +
pyaw, * “pyaw, " “pyaws " “pyaw,

) + 2

ks¢ *

! 3cos(6L+¢)3

(B.1.6)

pyaw3 pyaw3

+F, .
FkPYZ kPY3

(B.1.7)

+ M

M .
Pyaw, Pyaw,

(b, +F

2°"py, )

kpyZ

(B.1.8)

hts(sty * Dsy)

+D. +F + F +F )
PYz  kpyy o key,  TkeygTip g )



Carbody Equations:

Lateral Equation

McY10 = *Fisy * Dgy (8.1.10)

Roll Equation

chyll N st¢ ¥ Ds¢ * hcs(sty * Dsy) (8.1.11)
where
tan((SL + ¢) - tan(GR - ¢)
y (y) = i=1,2,3
i 1
2 - —3—{rLtan(6L+¢)+rRtan(6R-¢)]
i
tan(GL + ¢) + tan((SR - d))
8, (y) = i=1,2,3
i 1
2 - —E—-[rLtan(6L+¢) + rRtan(GR-¢)]
i
Dpy] = pr](y] - YyhYg - htpyg)

Dpy2 prz(y3 T Y7t Ao¥g - htpy9)
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Py; Py3

D =
pyaw1 pyaw1

sty - Ksy(y7 = Y10 ~ Peg¥g - hcsy11)

Dsy - Csy(y7 B &]O B hts).'9 ) hcsyll)
Frso = Kspl¥g = ¥97)
Ds¢ - Cs¢>(5'9 B &11)

» 1=1.2,3 are given by Equation (2.1) |

M » 1 =1,2,3 are given by Equation (2.2)

Msyaw is given by Equation (2.3)
-238-



B.2 Statistically Linearized Half Carbody Equations

Leading Wheelset:

Lateral Equation

My s -, o ) 2L )
w1 v W1 T3 0 V17 V2 v Y2 " ra By I
k
] - - -
+ LA a y] + kp] (.Y] .Y7 2']‘!8 htpyg) (B.Z.])
" Coy 1 - Y7 = hyYg - hypYg) = uy (1)
where
L.k 2f 2f er
- Aql 12 11 0 .
ulL(t) ( a T Tra K )ua(t) + V. a k¢ )ua(t)
0 21 1
(B.2.2)
Yaw Equation
2af 2f r

v Vo 33 R P o, s v

way2 * Iwy rod k¢]y] * "o A]y] S k¢]y] v Yz)
2
2af 2f 2f
33 22 22 .
TV Y2t Tar, R N T Y2t Y,
+ ok (g - yg) + praw] (¥p - yg) = up,(¢) (B.2.3)

-239-



*r
-—12 0 i) (B.2.4)

Middle Wheelset:

Lateral Equation

2f r
.o -l] !‘ O L] - . .V
Mys + — g3+ — k¢2y3 Vyp) + =y - 77 Ky Ys)

K
2 - - -
tly T2 Y3t kalyy - vy - tyyg - hyyg)

A

+C (.y3 = .Y7 - 22)’8 = htPYQ) = UZL(t) (5.2.5)

(B.2.6)
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Yaw Equation

v Zaf33 2f]2 . ro .
s ¥y 73 %73 T M3 T (v3 + “p,3 " Vyy)
2
2a°f 2f 2f
33 22 22
* 4" Tar Ko Y3t TV Yyt akadgaYy
o 12 i
+ sz(y4 - Yg) prawz(y4 ¥g) = up(t) (8.2.7)
where
2af 2f L - L IV
uzl(t) = ( r 33 )\2 a 3.2 kA )ua(t = ] V 2 ) + (_‘g‘L}"— qu
¥ 0 0 12 0 2
2f.,r L, - 2
12° 0 . ] 2
TV k¢2)ua(t - V ) (B.2.8)

Trailing Wheelset:

Lateral Equation

. 2f:]'l . Yo . 2f12 . V
M + —y s + ky Y5 = Vyg) + ———{¥g - F;E’kA23y5)

a ¢3
* Ly fa K (Yo = Yo + 2.0 = h. ya)
a Y5 T Kp3Wg = Y7 T F3¥g 7 Niplg
+ pr3(y5 - Y7 ¥ La¥g - htpyg) = u3L(t) (B.2.9)
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a r.a A23 a v Va ¢3

Yaw Equation

2af f r
v . 33 - 12 0 <
way6 Iwy o2 k¢3y5 * "o A3y5 2 v (y5 * a k¢3y5 Vy6)
2%, | 2f, 2,y
S 6~ ar Ka.Ys T Ve~ 3aSn3Ys
0 13
+ kw3(y6 - yg) t praw3(y6 - Yg) = ug,(t) (B.2.11)
where
e (t) = 2af33 . 2f22 ¢ ) u(t - 21 + 23 L Iwy v )
3y o 3 ar, A13 a ) ar, ¢3
2f, ,r 2 + 2
12° 0 . 1 3
- —5- k¢3)ua(t - ——)  (B.2.12)
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Truck Equations

Lateral Equation

Md7 * Coy, D7 = P e hip¥g) * Cpy, (Y7 = ¥3 ¥ fo¥g * hip¥g)

+ pr3(y7 - Jg - fq¥g + hyp¥g) + Ky (¥g = ¥y * 2yYg * o)

+koolyy =Yg + 8g¥g * hip¥g) * Kyalyy - vg = Aa¥g hypYg)

*kgy(¥7 = Y10 7 MisYg - ho¥qp) + Coyl¥y - Y0 - hysYgNeg¥q1)=0

(B.2.13)

Yaw Equation

IiYg * praw](yB'yz) ¥ prawz(ys'y4) * praw3(y8'y6)

+

MIC,, (77y + 23 * hyg¥g) * kpy (y7-yy#iy¥g * NypYg)]

py]

+

R0 (V5793 + 2p¥g * hpdg) + Kpolyz=yg + So¥g + Myp¥gl]

PY9

- 2lC, (57Vg = gV *+ Meg¥g) + kpa(yyys - S3¥g * hep¥y)]

PY3

+

kw](ys’YZ) + sz(y8'Y4) + kw3(y8-y6) + ksw(YS'y]z) =0

(B.2.14)

-243-



Roll Equation

Itxy9 +C

Ko

a

+ k

(vg - ¥y) p¢2(y9

p¢]

- h

+

Cop(Yg-ypy) + kgy(ygmyyy)

C

- hts sy

(¥7-¥70 = MysYgheshrt)

* Pep

+

h, C

tp pyz(y7 y3 ¥ 22 8 y9)

+

* hy oY)

tp pl(y7 nt 2 Ys. tp

hypkn3(¥77¥5 = %3vg + hyp¥g)

where

P,

-244.-

42
a

y3) t

k

ts sy(y7'y10'htsy9'hcsy11)

C

¥ htp Py]

(¥7=yq + &q¥g + hyp¥g)

C

¥
htp pY3

(y7-¥g=23%g + hyp¥o)

+h, k

tpXp2(¥77Y3*ho¥g + hyp¥g)

= u(t) (8.2.15)



Carbody Equations

Carbody Lateral

MI10 + Coylyqg = ¥7 * hyg¥g + Rog¥yy)

t kg ¥y = ¥7 * Myg¥g * hegyyy) = 0 (B.2.17)

Carbody Rol1

Ly * Ksp(VqqYg)tCey (g 1-¥g)th ke, (V1 gmy 7y gYgth Yy )

* hcscsy(ylo'y7 thegYg * hegyyy) =0 (B.2.18)

Bolster Yaw Equation

Iiig * kgylyyp - Yg) * Cp¥yp = 0 (B.2.19)

B.3 Statistically Linearized Full Carbody Equations

This section presents the extension of half-carbody
equations to full-carbody equations. The degrees of freedom for

the full-carbody are:

¥1.3.5 Lateral displacements of wheelsets 1,2,3.

Yo 4.6 Yaw displacements of wheelsets 1,2,3.
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Y14,16,18
¥15,17,19
¥7,20
Yg,21
9,22
V12,23
Y10

3

M

Wheelset 1

Lateral displacements of wheelsets 4,5,6
Yaw displacements of wheelsets 4,5,6
Lateral displacements of trucks 1,2

Yaw displacements of trucks 1,2

Roll displacements of trucks 1,2

Yaw displacements of bolsters

Lateral displacement of carbody

Yaw displacement of carbody

Ro1l displacement of carbody.

Lateral Equation

Equation (B.2.1)

Equation (B.2.2)

Yaw Equation

Equation (B.2.3)

Equation (B.2.4)

Wheelset 2

Lateral Equation

Equation (B.2.5)

Equation (B.2.6)

Yaw Equation

Equation (B.2.7)

Equation (B.2.8)
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Wheelset 3

Lateral Equation

Equation (B.2.9) (B

Equation (B.2.10) (B.
Yaw Equation

Equation (B.2.11) (B.

Equation (B.2.12) (B.
Leading Truck
Lateral Equation

[Equation (B.2.13)] - ksy12 Yi3 - Csy]g N3 = 0 (B.
Yaw Equation

Equation (B.2.14) (B.

Rol1 Equation

[Equation (B.2.15)] + htsz(ksy]yIB + sy]y13) ut(t) (B
Equation (B.2.16) (B.
Wheelset 4

Lateral Equation

MV +_2fi1_(' +_r.9_.k V.. =V )+2f_12_(' -
w14 V N4 7 3 6 Y14 =~ W15 v Y15
Xg4
by Vgt Ko (YygYapmtaYarmhypYop)
* pr4(y14'yzo T 2g¥p1 - hyp¥ap) = uy (t) (8
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3.11)
3.12)

3.13)

3.14)
.3.15)

3.16)

L

—k, ¥Y1a)
roa A24 14
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L.k 2f 2+ .- 9
_ A qd 12 1 74
ug (t) = ( Ky )ou(t- )
4L a roa A24 a v
2f” ro L+ J?.] - 24

Yaw Equation

. y . 2af33 2f]2 . ro .
Lo1s + Ly F;E‘k¢4y14 ¥ ’"F;‘*4y14 TV Wt k¢4y14'VV15)

2
2a°f 2f 2f
33 22 22
tyv N5t “EF;"kA]4Y14 ey Vs - aladgatys
+ |<w4(y]5 - Yyp) ¥ praw4(y15 - Y1) = g, () (B.3.19)
where )
af 2f L+ 2 -2
33 22 1 4
u, (t) = (- A, - - k, )u(t - )
4y s 4 aro A]4 a v
I v 2f, .1 L+ 2, -2
* (-ng" Ky, = a1s : ke ) uy(t - b )
0 4 4
(B.3.20)
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Wheelset 5

Lateral Equation

2f r 2f

v [ R 0 . 12 ,¢ V
e T TV Vis e Keie T W7 T Yy - R g K e
K
_95 - - -
tla Y16t ko506 - Yo = Rg¥ar - hypYap)
+ prs(y]s - Yoo = Rg¥p1 - hypYap) = ug (t) (8.3.21)
where
L.k 2f L+ 2, -2
AXg5 12 17 %
ug, (t) = ( - ka Ju_(t - —1 )
5L a roa o5 @ V
2f,,r L+ 2, -2
11 o . ] 5
+ (-—vg——— k¢5) ua(t - v ) (B.3.22)
Yaw Equation
2af 2f r
. _V_ . 33 - 12 /= , 0 o
L7 + Ly ra k¢5y16 * “‘F;“"Asyls v W6t k¢5y16 Vy,7)
2
2a°F 2f 2f
33 . 22 22
ey Ny "SF;"kA]5y16 t g Yy7 - alpSesYyy
* kw5(y17 B y21) * praws(y17 B y21) - USw(t) (B.3.23)
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where

2af 2f L+ 0. -0
ug, (t) = ( Ao - —22 )y u(t - ——d 5
5'«" ro 5 ar‘o A.ls a V
IV ’ 2f,,r L+ R, -2
bk, -k, ) Ot 175
0 5 ¢5
(B.3.24)
Wheelset 6
Lateral Equation
2f r 2f

. ]] . o . ]2 . V
g+ 7 Wit 3 ke ds - Wrgd * T e v g ke

k
96 ) i
tLly =2 Vit Kes(Yig Yoo * a1 T MipYar)
* prs(yw - Yoo * Lg¥a1 - Myp¥ap) = ug (t) (B.3.25)
where
L k 2f L+ 2 + L
A"gb 12 1 6
ug (t) = ( - kK. ) u(t - )
o 2 To? b2 2 v
2f.qr L+ L+ 8
M el AL : ) (B.3.26)
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Yaw Equation

. v . 2afyq 2fi0 0 Ty
Lod19 * Ty 73 %e18 * Tr MeYis T TV gt e ke 1s7Wno)
2
2a°F 2f 2f
33 T T .
TV 9T Targ kA16y18 v Y19 - aadpeYrg
+ ka(y]Q'YZ]) + cpyaWG(y]g-yz]) = Ugy(t) (8.3.27)
where
2af 2f L+ R+ 8
} 33, _ ‘T i 17 %
u6w(t) = ( ry AG ar kAw)ua(t Vv )
Ny IV - 2f 1Ty Yot R RS )
ar 0 aV . "a ]
o} 6 6
(B.3.28)

Trailing Truck

Lateral Equation

Me¥20 * Coy, Va0 N1a* e Pep¥a) * Coy oo ¥r6MsYor epY20)
* cpys(yZO-yl8'£6y21+htpy22) + k(Y201 4+44Y 21 i pYp0)

*hip¥a)

+ ko5 (VagmYy6theYaepYan) * Ko6l¥ouY18™26Y21
* ksyz(yzo'ylo‘“tsyzz‘hcsy11+“y13)
*+ G (yzo'y10'htsy22'hcsy11+zy13)=0
(8.3.29)

Y2
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Yaw Equation

Itzy21

* g0y, Daong

+

2G[prﬁ(yzo'yls -

+

¥ praw4(y21'y]5) ¥ praws(y21'y17)
5Ly Y20 Y16 *

Ko Wa17¥1s) * Ky o vg) + Ky U

pyaw6

+ h ) + k

La¥or * hep¥oo

Re¥or * hyp¥pe) + K
LY
= N19)

¥ kswz(yz1' Yp3) = 0

Roll Equation:

+C

LixY22 p¢4(y22

Coog V22 -

+

kp¢5(y22

+C

S¢2(y22 -y

ts sy (yZO

htscsyz(yzo

+

C .
htp py4(y20

tp pys(yzo

o4
T a y]4)

-—3 Vg *

- N0

"Vt

65
(y22 a

6

2 18] * Koo, W22 - 2

ko Y22 = T

nl ks¢2(y22 - )

N0~ htsy22 - hcsyll + 2y13)

- hog¥oy = Neghiy + Wq3)

L¥o1 + hipYop)

Yig * Vg1 + Myp¥oo)
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pal¥20714 *
p5Y207Y16 *

+ hyp¥ap) + kg(Yoa-Yyg = Lg¥or

+ C (92]'9]9)

(B.3.30)

21t epY20)]
25Y1*hpYpp)]

+htpy22):I



+htpcpy6(y20 - Y1g " Rg¥ay * hyp¥p,)
+hy kg (Yag = Y1g + 2g¥1 * hyp¥s))

*thy ko5 (Yo = Y16 + L5¥ay * Nyp¥s))

tp p5
+hy kog(Yag = Y1g = L¥a1 * Myp¥ap) = Upp(t) (8.3.31)
where
k L+ 2, -2 k L+ 2, =4
= - ¢4 - 1 4 . ¢4 - 1 4
utZ(t) Cp¢4 a ua(t v ) kp¢4 a ua(t v )
k 2+ 2 -4 k L+ 2, -4
< =Gt - LI L I LI
k L+, + 8 k 2+ 2, +2
) $6_ _ 1 6\ _ ¢6 _ 1 6
Cp¢6 S ua(t 7 ) kp¢6 T u (t 7 )
(B.3.32)

Leading Bolster

Iby]z + ksw](y12 - y8) + Ccp](y12 - y]3) =0 (B.3.33)

Trailing Bolster

Iy¥23 + ksy, 23 = ¥21) * Cop, V23 = #13) = O (8.3.34)
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Carbody Equations

Lateral Equation
+C ](y]O = Y7 *hiYg * hoyip + Ayy4)
kg, (Y70 = ¥y * hyg¥g * ey + 2¥q3)

+C (Y10 = Yoo * Peg¥op * Neg¥pr - W13)

+ ko (Y30 = Yoo * Myg¥op * Meg¥qy = W¥q3) = 0

Yaw Equation

P Ccp](y13 - Yyl * Ccpz(y13 - Yp3)

+

ey, 10 7 Y7 ¥ Megdg * ey ¢ 2¥,3)

*80gy (qg = Y7+ Byg¥g ¥ Meghyy * Ayg)

1

kayz(ylo - Yoq * hyg¥pp * heg¥yy - Wp3)

- 2Csy2(y10 - Yoo ¥ Mpg¥op * heg¥yy - A¥y3) = 0
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Roll Equation

Tt * ks i =Ygl * Cgy Ugg = Ygd+hgy, Ly

* hcsksy](ylo - Yy hiYg t hoYy + qg)

hes "y](ylo - Y7 ¥ higYg + h Yy + &Yg3)

thogkey (Vg = Yoo + Pyg¥pp * Ml - 2yq3)

*heslsy. Y10 - y20 theYop + heg¥qy - 2yq3) = 0

CsS sy2

B.4 Baseline Parameters

Input Data for EMD SDP 40, 6 Axle Locomotive [16,18]

Dimensional Data

a - Half distance between contact points

z] - Distance between truck center and leading axle

22 - Distance between truck center and middle axle

23 - Distance between truck center and rear axle

dp - Distance from truck c.g. to primary suspension

dS - Distance from truck, c.g. to secondary suspen-
sion

htp - Height of truck c.g. above axle center
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(B.3.37)

29.562
79.38
-1.25
85.0
39.5

35.12
2.5

- y22)+cs¢2(y11‘y22)

in
in
in
in

in

in

in



Height of carbody c.g. above bolster
Height of bolster spring center above

Half distance between truck centers

Wheelset yaw moment of inertia
Wheelset spin moment of inertia
Truck yaw moment of inertia
Truck roll moment of inertia

Carbody roll moment of inertia

h -

cs spring center
h -

ts truck c.g.
2 -
Mass and Inertia Data
Mc - Carbody mass
MT -~ Truck frame mass
Mw - Wheelset mass
wz

Iwy -

Itz -

Itx -

ch -

Linear Suspension Parameters

Py
pv
pd
pPZ
Sy
Sy

Cs¢ -

kpy -

(gl (%} () (@] (gp] O
1

Lateral primary damping per axle
Yaw primary damping per axle

Roll primary damping per axle
Vertical primary damping per axle
Lateral secondary damping per truck

Yaw secondary damping per truck
Roll secondary damping per truck

Lateral primary stiffness per axle
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50.2 in
5.0 in
276.0 in

766.0 1b-sec2/in
40.0 Tb-sec?/in
30.0 1b/sec?/in
16,500 1b-in-sec’
3,600 1b-in-sec?
178,000 1b-in-sec?
56,000 1b-in-sec

1,720,000 1b-in-sec?

400 1b-sec/in

19,503 1b-in-sec/rad

468,075 1b-in-sec/rad
100 1b-sec/in

600 Tb-sec/in

200,000 1b-in-sec/rad

616,700 1b-in-sec/rad

5000 1b/in



kpw - Yaw primary stiffness per axle

kp¢ - Roll primary stiffness per axle

kpz - Vertical primary stiffness per axle
ksy - Lateral secondary stiffness per truck
ksw - Yaw secondary stiffness per truck

ks¢ - Roll secondary stiffness per truck

Creep Force Data (Linear Kalker Values)

f]] - Lateral creep coefficient per wheel

f]z - Lateral/spin creep coefficient per wheel
f22 - Spin creeo coefficient per wheel

f33 - Longitudinal creep coefficient per wheel
LA - Axle load

Nonlinear Suspension Parameters

pr - Lateral primary damping per axle
pr - Yaw primary damping per axle
o " Roll primary damping per axle:
P Leading and rear axles

middle axle

sz - Vertical primary damping per axle:
Leading and rear axles
middle axle

csy - Lateral secondary damping per truck
Csw - Yaw secondary damping per truck
Cs¢ - Roll secondary damping per truck
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780,125,000 1b-in/rad
10,297,650 1b-in/rad
6,600 1b/in

22,000 1b/in

10x10% 1b-in/rad

616,707,200 1b-in/rad

3.59 x 10° 1b
462,000 in-1b

65,952 in°-1b

3.9 x 10 1b

66,000 1b

150 1b-sec/in
3.12x105]b-in-sec/rad

111,818 1b-in-sec/rad
1,141,580 1b-in-sec/rad

71.67 1b-sec/in
731.67 1b-sec/in

600 1b-sec/in

0.0

1.665x1081b-in-sec/rad



Centerplate Coulomb breakaway torque

Deadband amplitude of primary lateral
spring

Linear spring constant for primary dead-
band

Linear range for primary yaw spring

Primary yaw stiffness in the linear range
per axle

Primary yaw stiffness after linear range
per axle :

Primary roll stiffness per axle
Vertical primary stiffness per axle
Secondary lateral stiffness per truck
Secondary yaw stiffness per truck

Secondary roll stiffness per truck
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100,000 1b-in

0.18756 in

4

1.44x10" 1b/in

4.74x10"3 yads
1.872x10%1b-1n/rad

1.248x10%1b-in/rad
1.144x101b-in/rad
7333.3 1b/in

23,000 1b/1n
2.7996x1071b-in/rad
5.8587x10%1b-in/rad



APPENDIX C

STATISTICAL LINEARIZATION STABILITY AND FORCED
RESPONSE PROGRAM LISTING

The computer listing of the twelve degrees of freedom three-
axle half-carbody 1ocomotive model is presented. The computer pro-
gram is coded in such a way that the user can use the program to get

the frequency domain analysis of:

-Linear model
-Model with nonlinear wheel/rail profile geometry
-Model with nonlinear suspension and linear profile geometry

-Model with nonlinear wheel/rail profile geometry and
nonlinear suspension

The outputs of the analysis are the rms values of states,
rms values of the inputs to the nonlinearities, rms values of carbody
and truck lateral accelerations, transfer functions, power spectral
densities, and eigenvalues/eigenvector analysis of the equivalent

Tinear system.

User specifies the frequency range of interest in Hertz
and the number of frequency points. Also, user can use different
wheel profiles at each axle. User should supply the system parameters
and the equivalent gains for the wheel/rail geometry nonlinearities.

For nonlinear analysis the number of iterations for convergence should

be specified by the user.
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ZOUATION
ENUATION
EOURTION
EGUATION
EOUATION
EQUATION
TOUATION
EQUATION
EOUATION
ZQUATION 10
SDUATION 11
SOUATION 12

[CRIEN B« ) B S, T S WU T N QN

0OOO00000000OO00cO OO0
e

Chhtrtfhhdhkhhddhhik

LR R R PR R R 0 TR B R R L R g gy pupn Y
STEYISTICAL DOGCRIDING FUNCTION PROGRAIY FOR
A TUTLVE DeGoF, HalD=CAR LOCOIO IV HODIL

I3 FOR LEADING UL 2LSET LATIERAL
IS5 FOR LEADING UHELZLSET YAW

IS FOF {ILDLT WHLILSET LATLRAL
IS5 FOR HIIDDLE WHEELSET YAU

I3 FOR TRAILINC VWHEELEET LATIIML
Is

IS5 FOR TRUCK LATERAL

IS5 FOR TRUCK YaW

IZ FOF TPUCY. ROLL

*
*
*
*
*
*
*
*
FOR TRAILING WHEELSET YAW *
*
*
*
IS FOR CARBODY LATERAL *
IS TOF CARFODY ROLL *
IS5 FOR ROLSTER YAW *

*

*

dhkhkhdhdehhdkhhkhhkhkrhhhbrhhhhhhhhkkhhkkhrerrdrdd

comr'on/card /a, L1, L2,L3, 402, 17s,nCE, P2ZLr0, 1,7, e,

1 Iuy

,I%,1IT2,I1TX,ICX,LA,V,IBOLS

COHLION /O LION/I0PT

comMMON /1P
ChARACTLR

IS/IPROF,ISUSE
*50 OPT1,0D12,0873,0P74,0PTS

CCMMON/RP/R, P

INMTEGER D

DIMENSION
REML L1,L2
COLLriOM /1A
COIMUN/IC

p=5

READ(R,2)
READ(R,2)
READ(R,2)
READ(R, 2)
REARD(R,2)

WP

R3IG(10)
2,L3,M0,LT,0C, VY, IWY, 272,00, ICX, LA ,ILOLS
PAZ):N

S/Tbou,IuD{

0P
OPT2
0OPI3
oprPT4
OP5

2 FORMAT (50A)

WRITE(P,2
YRITE(P, 2
WRITH(®, 2
WRITE(P, 2
RITE(D,2
WRITE(?, 3

) OPT1
) OPT2
) -0pP3
) OPT4
) oPTS
)

3 FORMAT(/ /2%, '"OPTIONS /12X, ! '/
12%, 'OPTION 1 LINEAR SYSTEM'/

12%, 'OPTI

12.‘{, 'OPTION
1 PPIMARY'

128, '0pP71

12X, '0OPTION

oN 2 NOML 'L‘;'\F ‘iiil'.‘"l',/‘:AIL CEQAITRY'/
3 MNOMLINEAR WHERL/RAIL GIONETRY AMD LAT

/

Ot 4 LONMLINEAR ThiteL/RAIL ALD LOULINZAR PRICA
5 XNOULIMEAR SYSTEIY/
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- R ryarr ey . - -
129, '0D0T0N & SONLILELY LATOPEAL DY I OAIY'Y/)

URITL(2,4)

4 FOIMAT(2Y, '"OPTION 7 MNONLINEAR r:I-ﬂr"'/
1 2%, '0PTION 2 NONLIMEAR PRIVARY AND COULONMF DAMPCR I
1 SnCONLATY'/
1 2%, 'OPTIOn 9 MOULIIILAR PRIVALY ¥al'/
1 2%, "OPTIOH 10 LOMLLAZAR PRIMARY YAY AND COULOMZ Ii
1 STCOLDARY'/
1 2%, '0PTION 11 COULOND Ii. SECOUDARY'/
1 2X, 'OPTION 12 NOULINEAP WHIFL/RAIL GROMEITRY AUD
1 PRIMANY YAL'/)
VRITE(P,S)
5 FORMAT(2X, 'OPUION 13  LONLIMEAR V/R,PRINATY YAW ALl COULCES

1 I SCCONDARY'/
1 2%, 'OPTION 14 JOBLTINTAR /R, COULGHE Lo SunCGLDARY'/
1 2%, 'OPTION 15 NOWLINEAR VW/R,PRINANY YA AND COULOME
1 Il SLCOUDARY'/
1 25, 'CPTICH 16  NOMLINTAR PRILARY LALVL.TAL ANND COULDD
1 INM SECONDAKRY'/)
READ(F,200) VIMPH, YA
200 FORMAT(F5.1,E12.5)
VFPS=VMPH/0.H8182
V=VFPS*12,
REMD(R,201) IUF,ITC,IPPOR,ISHSP,ICPT

201 FOPMAT (512) -
) READ(R,202) IGSIL,IG
202 FORMAT (2I2)

IF(IOPT.ER.1) GO 7O 1
CALL PRIL(RSIC,IVP)

1 TRITE(P,20) YMEH,INWP,ITC,ITFOT,IONT
20 FORMAT(/ /2%, '"VCLOCITY =',r5.,2,' 'pil'/
1 2%, '"PROFILE & =',11/
1 2¥, "TRACK CLASS -',11/
1 ¥, '"PROFILE TYDE =',11, LINLAR=C,WOLLINEAl=1"/
1 2X, '"DPTION =',12)

CALL FCFRSP(RSLG,ICC)
Crr ARk AR ERIRT IR AR KRNI I RERERRRI AN IRNI NN KRNI R IR R ARk A A A AR

C OUTPUT THE PSDS AND RMS VALUES
o a et e e T T R I R L R L SR SRR SR R L R R R R R R L L SRR bbb bbb bbbl

CALL OUTPUT

cC
Clkkdhkhkihkhkhrrhhhhd ke Rkdrdhkkdhkhokh ek AN khh R Ak deddokdededdodokdkor s
o TIGENVECTOR/FIGENVALUE CALCULATIONS

C********************************‘t*****************************

READ(,1C01) IVEC
1001 FORMAT(IN)
IF(IVEC.EQ.0) STOP

CaLL TIGVEC
STOP

END
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SULROUTIHE FOFREP(RSIG, ITC)

COMMON AMONL/ZT?R(150,10),72T72I(150,10),2PSD (150 ,10)
COMION/COUA /A, 11, L2,L3, 4T, (DG, =CL, PR, 1 el b,

1 Iwy,IwX,IT%,I7X,ICY,LA,V,IR0NS

DIHTHSION GO(10),8P(10),3IC(10)

COMMON /OUT/DRE (12) ,DPSD(150,12),FREDN(150) ,122,

1 APSDC(150) ,APSDET(150),

1 RMYC, RUET,MAGN (150 ,12) ,PHASE (150,12)
coMOL/RP/R,P

COMMOL/OPTION /IOPT

INTEGER E,P,DOF

COMMON /DOF/DOT

ROAL L1,L2,L3,01 K, N9, NT,NC,I0VY, TV, 107,11, ICY, LA, IR0LE, HAGE
coMoNn /corc/i(12,12) ,%(12,12),C(12,12),

1 n2(12,¢),B1(12,6)
COMMON/GT3/¥NT(12),1W3(12)

COMMON/GT2/tNE(16) ,PSC(10) ,U3R(€),R3I(8)

DIMEHSION C1(12,12),0011(12,12)

DIMENSICH REIG(10)
COMION/CT1/RMIR(10,12) ,RMI(10,12) ,R¥M2R(10) ,RiR2I(10),
1 DZR(10),T2I(10),W1(10),W2(10),1v3(10), Wa(10),W5(10),
1 RMS(10),TEA(12),TIA(12),BRA(12),2I4(12)

REAL*8 DI(12,12),DR(12,12)

R22=06,2332/(386.4*3838.4)

READ(R,2) DOF,INL

2 FORMAT(2I2)
Chadhkhkhrr A AL FAIRRRRKKAAREIE IR R R hhA IR I Ik TRk dhx K,
c READ FRIQUENCY RANGE OF INTLREST (IN HIRTS) *

C********************************************** X de J K dede de Kk ke k

READ(R,489) IFREQ,ITER1

499 FORMAT(2I2)
2EAD(R,1)¥W1,'?2,122,ITER,=PS,123,133

1 FORIAT(2E12,5,2I3,F5.2,13,12)

R e e L a L L

C CONVERT FRIDQULCNCIES TN (RAD/SEC) *

ChkkdhhteRAIIIIHRA K IR RIS Ak AR Tk kI Ik hR Tk kAR I,
W1=171%6.2832

112=W2%*6.,2832
IF(IFRDO.TE 1) ZEAD(R-1,447) (FREC(I),I=1,122)
447 FORINAT (2X,E12.5)
w=11
CALL FCULEZ(RSIG,%,0)
e e e R S e L L s e
c I22 UUALLY SPACED PTS.(Ik LOG SCALD) *
s e I e e L s L
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62

1364

1365

1366

1363

CO 62 I=1,11L
RM2R(I)=0N.0
Ri2I(1)=0.0

ZR(I)=0.0
T2I(I)=0.0
DO 62 J=1,DOT
FYIR(I,T)=0.0
Ri41I(I,J)=0.0
RMIR(1,1)=1.0
RMIR(2,3)=1,
RMR(3,5)=1.0
RMIR(4,1)=1.
RMIR(4,7)==1.0
RMIR(4,8)=-11
RMRE(4,9)==17D
BRMIN(5,3)=1.0
RIMR(S,7)==1.1
RMIR(S5,3)=~1.2
RI'IR(5,9)==LTP
RIMIR(A,5)=1.0
RIMTP(6,7)==1,0
RMIR(/,8)=L3
RMIP(G6,C)==147P
RIMIR(7,2)=1.0
RMR(7,8)==1.0
RIEEIR(2,4)=1.0

R (R,3)==1.0
RITIR(9,6)=1.0
RMIR(9,8)==1.D0
IF(IOPT.CD.1) ITCR=1
IF(IOPY.L, 1) I'LRI=1
ILIMNIT=0
IF(IOPL.GT.5) SO 10 1363
INL1=1

INL2=IIiL
IF(IOPT.EQ.5) GO TO 1367
IF(IOPT™=3)1364,1365,13€5
INL2=3
GO 70 1267

INL2=6

GO TO 13487

INL2=9

GO 70 1327
IF(IOPT.GT.8) GO TO 1368
INL1=4

IMNL2=INT,
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IM(IOVT.T .5) I:iL2=6
IF(IOPT.T7.7) INL2=C
GO Te 138
1363 IF(IOPT.GT.11) 20O TO 1367
I5L1=7
IiiL2=1n
IF(IOFT.T2. Q) IlL2=9
IF(IOPT.RG.11) INL1=10
1367 IF(IOPL.GT11)ILT I
591 DO 556 I5=1,ITEF
IF(I6.LT.IDPERT) GO 20 427
IF(I33.50.0) GO TO 487
122=I23
IFREQ=0
ag7 COUTIHNUE
IF(I6.1E.ITER) GO T0 430
InL1=1
INL2=INL
ILIMIT=0
498 CONTINUF
=11
IF(IFRELEQ. 1) W=FRID(1)*6.2932
490 CALL FCDE(RSIG,',1)
DO 570 I=1,IXL
570 RMS(I)=0.
DO 1570 I=1,DOF
1570 DRMS(I)=0.
DO 555 15=1,I22
IF(IFREQ.TD.1) GO TO 446
ALPHA=({12/111) ** (1, /FLOAT(I22-1) )
RK5=1"
U=W1*ALRHA** (I5=1)
FREQ(I5)=%/6.2832
GO TO 445

446 RK5=W
W=FRIC(I5) *6.2832
445 DW=(W-RK5) /6 .2832

CALL FCDE(RSIG,W,2)
C************************************************* *
o RAIL ALIGMMENT IMPUT,REAL ALD IMAHCINARY PART
c***************************************************

B3R(1)=1.

B3R(2)=1.

B3R (3)=COS((L1=L2) *i/V)

B3R (4)=83R(3)

B3R(5)=CO3( (L1+L3) *I/V)

B3R(6)=B3R(5)
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P31(1)=C.
P3I(2)=n.
B3I(3)==CT0( (T 1-02) *i/v)
N3I(4)=r3I(3)

E3I(5)==CI (I 1+L3) *v/V)
R3I(#)=R3I(5)
RIM2R(1)=-R3R(1)
RM2R(2)==B3R(3)
RI2R(3)==B3R(5)

RM2I (2)=-B3I(3)
RI2I(3)=-P3I(5)

o)
Ri11I(10,12)=0

C***********************************************

c INVERSION OF ((X)=(M)***2+3 4 (D)) *
Cc ASEMM L INVERSI=NDP(REAL)+J DI(TIMACINARY) *
c THEN CAULCULALTE DR,DI *

C***************************************k**t****
no 300 7=1,DOF
NG 306 I=1,pOF
CHI,J)==C(1,T)*
DI(T,J)==11(I,J) *"*w47(1,.7)

300 PDR(I,J)=NI(I,J)
CALL IIWSRIT(DI,I L)
DO 20 J=1,DOF
DO 20 I=1,p0F
DUMI(TI,T)=0,C
DC 20 JJ=1,por

20 LOM1(I,J)=DUNI(I,T)+ C1(I,JJ)*D1(JJ,JT)
DO 3C J=1,D0F
DO 39 I=1,p0r
DO 30 JJ=1,D0F

30 DR(I,J)=DR(I,J)+DUM1(I,JJ)*C1(JJ,J)
CALL INVERT(DR,DET)
DO 40 J=1,nor
DO 40 I=1,D0F
DI(I,J)=O.

. DO 40 JJ=1,D0F

40 DI(I,J)=DI(I,J)+DR(I,JJ) *UM1(JJ,J)
DO 400 I=1,DOF
TRA(I)=0.
TIA(I)=0.
BRA(I)=U.
BIA(I)=0,

400 CONTINUE
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nC GUN I=1,N0OF
DO 600 J=1,¢F
PELT)=FRA(I)+R2(I,T) *RAT(T)=11(T,J) *R31I(T)
RIA(T)=BIA(I)+R2(I,J)*R3I(T)+P1(I,T)*T3R(J)
600 CONTIHUE
DO 700 I=1,N0F
no 706 J=1,00F
TrA(L)=TrA(I)+DR(I,T)*RRMI)=0I(I, T)*RIA(T)
TIA(I)=TIA(I)+DI(I,T)*BRA(J)4DP(I,JT)*=Is(.T)
700 COMIIUE
IF(ILINIT.EZN.1) GO 70 1217
DO 701 I=I¥L1,INL2
LXT2(I)=0,.
W3(I)=0.
W 1(I)=0.
W4(I)=0.
701 COLTINUL
DO 705 I=INL1,IML2
DO 705 J=1,00F
WAU(I)=W1(I)+RMIR(I,J)*TRA(J)
TW2(I)=R2(I)+-1:12(1,T) *TIA(T)
W3(I)=wWW3(I)+RMI1I(I,JT)*TRA(J)
WVA(I)=WVA(I)+RMIR(I,JT) *TIA(T)
705 CONTINUZ
C*********************k****************k****************

C COMPUTE TRANSFERFUWCTIONS FOR 10 D.F.VAR. AND PSL,5 *
o R T L S R R g R R I
CALL PSDA(™,AIPSD,I22,15,V,ITC)
DO 706 I=INL1,IL2
TZR(I)=RM2R(I)+W1(I)="m2(T)
TZI(T)=TP2I(T)+"V3(I)+4(1)
PSO(I)=(TZR(I)**2+T7ZI(T) **2) *AIPS[*5 ,2232

708 COMTI-IUOF
GO TO 1218
2 CALL GT1(",AT®Sy,T22,15,V,1TC)
1212 IF(IA.NELITER) GO TO 801

DO 802 I=1,I"L
ZTZR(I5,I)=TZR(I)
ZTZI(I5,I)=T2I(I)

802 ZPSD(I5,1)=PSD(I)
b2 2 2 Ry T e P P Y S I R L D
c DISPLACEMENT TRANSFER FUNCTIONS,t:AGNITUDS AliD PilASE  *

Chhkkkkkkkiehkhkhrkhhhhrhhkhhhrrrrrhhdkrhbhhrrhdhhhhhrhhhkhhhrhkdxhx

DO 800 I=1,D0T
AGU(IS,I)=SCRT(TRA(I)**2+TIA(I)**2)
800 PUASE(IS,I)=ATAN(TIA(I)/TRA(I))*360./6.2832
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C****k***************************
C PSD'S OT STATUZS *
C********************************
DO 707 I=1,DOF
707 NPSO(IS,I)=(TRA(T) **24TIA(T) **2) *AISSN*5,2932
301 IF(I5.S2.1) GO TO 559
IF(ILINIT.iC.1) GO T0 1212
DO 561 I=IvL1,INL2
RME(I)=IVE( I )+ S*¥DHE* (PSD(I )+ 5(T))
561 CONTINUE
co 70 1220
1219 CALL GT2(DW)

1220 IF(TA.EL.ITER) GO T0 559

nO 562 I=1,D0F '
562 PRIG(I)=IVE( L)+« S*DU* (DPL(IS,I)+NT(T))
559 COWTINUE

IF(ILDEIT.we 1) 50 TO 1230
DO 560 I=INL1,INL2
WS(I)=PsD(I)
WS(I)=Ri1S(I)

560 COLTIIUL
GO TO 1231
1230 CALL G173
1231 IF(ISMELITER) GO TO 431

DO 563 I1=1,DCF
W7(I)=DPSD(I5,I)

563 "RNB(I)=DRIS(TI)

IF(IS5.LT.IT"R) GO TO 431
434 IF(IS.NFE.1) GO TO 433

R1YC=0,

RMFT=0.
432 CONTINUT
c***************************************k*********
o CAR LATERAL ACC. TRAMSFER FUNCTION *
C TRUCK ACC. TRAMNEFTR FUNCLION *

CHAAh R Ik R RA AR AR RN I AR IR I RER KT IA R RN IR IR AR IR AR,k
ATFCR==TRA(10) *¥w**2
ATPFTR==TRA(7) *\/**2
ATFWII=~TIA(7)*U**2
ATFCI=~TIA (10)*ij**2
CRARRARR AR AR KA RARIREAERRR IR RN R R RSN IR KRR RH Rk
c POVETR SPECTRAL DENSITILS *
CreRAA IR AR IR AR RRARRRE AR RIR IR RIR IR KRR N Kk
APSDC(I5)=(ATFCR* *2+ATFCI**2) *AIPSD*R22
ARPSDFT(IS)=(ATFFTR**2+NTFFTI**2) *BIPSL*R2 <
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Chhhhkhkkhkhhhdhhkhkhkhhhhhhhhhhhkhhkddhhkdehhhhhhthrhhhkedhrhhkk bk hx

C RS VALULS OF CAP RODY,AMD TKUCK ACCRLORATIONE *
R R L P P T
432 IF(IS5.i;.1) GO TO 430

REYC=RIYC+0. 5*DU* (P2 4+ P50C(I5) )
EINFT=RIFT+0. 5*Dir* ( R2S+APSDFT( I5))

430 R24=APSLEC(15)
R25=APSDFT(I5)

431 CONTINUE

555 COULITINUR
IF(16.LT.ITER) GO TC 467

3001 RIYC=SORT (RMYC)
RIFT=SOPT(REFT)

467 CONTINUL

pe 580 I=1,Ii'L
NMS(I)=SORT(RMS(I))

520 CONDIIIE
DC 531 I=1,NOF
521 DRIS(I)=8¢:RT(DRME(T))

c*******#****ﬁ*************************
C ITLRATION SCHEME FOR CONVERGICE  *
C**************************************
VRITE(P,92) TA
WRITE(P,191) 122

191 FORMAT(2, "FRI( OUHCY POTLHTS"',I)
TYPZ 92, I&

92 FORIAT(//14,5%, ' ITIRATICH WO. ',I3/7%,20('*")/
1 8X, '"GUESSED' ,7%, 'COMPUTED? )

TwPE 191,122

No 927 I=1,INL

UERITR(2,93) I,LS8IG(T),Riws(I)
TYPF 93, I,RSIG(I),RrS(I)

927 CONTINUL

o3 FORMAT(2,12,3X,212.5,3%,E12.5)
IF(I6.50.1) GO TO 1111
GO TO 1113

1111 DO 1112 J=1,INL
GC(J)=RNS(J)

SIG(J)=RSIG(J)

1112 RSIG(T)=1.1*BSIG(JT)
GO TO 835

1113 IF(I6.55.1TC7) GO 70 235
DO 1114 J=1,IiL
IF((FSIG(T)=SIG(T)=RMS(JT)+GC(T) }TlieNe) 50 70 1019
SP(J)=(RSIG(JT)=SIG(I) ) /(FSIG(I)=SIG(JT)=RMS{IT)+GC(J))
GO TN 1320
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1219
1220

1117

1203
1114
£35
556

EP(J)=87(J)
IF(ARS(EP(J) )T URE) SO(T)=F2L*SIGH (1. ,70(T))
IF(ABS(S2(.J)) LT o01) EP(J)=uN1*SIC (1,,32(T))
GC(T)=Pr"S(J)

SIG(J)=RII3(J)

DIFF=RIS(T)=PSIG(.T)

IF(ARS(DINF) T ¥SIG(T) ) NIFF=STS( 1. ,0INF) *R2IG(.T)
RSIG(J)=KSIZ(JT)+SD(JT)*DIFF

IF(RSIG(T)eFCe04) REIG(T) =0, 5% (SIC(J)+RVS(T) )
CONTIMUFE

CONTIHUnN

CONTINUT

CONTINUE

RZTURN

gL
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SURPOUIING FEL(PLIC, ™ ,IT)
COMMON /COM2/CPYA™T(3),CPY(3),CPPFT (3) ,£PP-T(3),

1 MSPHI, CERHI,TEY, CEY, FEYAU,TOR, FY(3),
1 PYATT1(3) DVA”2(3),DLY(3) MNLYAT(3) ,07T.0(3)
core qu/(‘O"l/r‘ ,_( ,).11,‘ W ,l T3 %.h(‘ N7 AC' i ,.:C,

1 IWY,IUX ITZ, ;“,fo,IA,V IRQLS

CC‘“Ou/CO‘S/"11 F12,F22,¥33

COMMON /GAINS/X71,X72,X73,::21,X82,283, /11, A12,A13,

1 XGRAV(3) ,VDEL(3) ,LADAa(3) ,CC2,a2HI(3) ,%HulY(3)

REAL HAGHN

CO~MCL/OUT/DRES(12) ,0PED(150,12) ,FRLi(150) ,122,

1 APSDC (150), APSDFT (150),

1 RWC , T, G (150, 12) ,PLAST(150C, 12)

COMMON/RP/R,P

COlM0U/LOF/DOF

INTEGER R,?,DOF

REAL KP¥hI,KSPuI,XSY,¥ L

1 ,K71,KX72,K73,%8

REAL L1,L2,L3,NMW,N0,1C

DIMENSION RSIG(10)

COMMON/AINC/ALINCT ,ATICR

commou /comc/Hi(12,12) ,x(12,12),2(12,12),

1 B2(12,6),21(12,6)

COMMON /OPTION/IOPT

IF(II.CE.2) GO TO 1786 -

IF (IT.G=.1) GO TO 1200
C********************************************

C YEHICLE PARAMATERS

oL aa R T P T T T T ™
RCAD(R,199) IURITE

FOPHAD(IN)

SYAW,IVY, ITWY,I03,17%,1CX, A
1,K82,¥83 ,KGRAV ,XDEL,LAMDA, M, K

I80LS

HJDELY

100

READ(R,200)
RFED(R,200)

ROIAND(R,200)
RIAD(R,200)
READ(R,200)
RTUAD(R,200)
READ(R,200)
READ(R,200)
READ(R,200)
READ(R,200)
READ(R,200)
REAL(R,200)
READ(R,200)

A,L1,L2,L3
HT2, 1 C3,HTE, PZUR0, N T
F11,F12,F22, 723
1,13, MC LA, IPOLS
1W¥,IVY,ITA,ITZ,ICX
(cry(1),I1=1,3)
(CPYav(1),I=1,3)
(cPPdI(I),I=1,3)
(KPPHI(I),I=1,3)
XKSPHI, CSPHI,KLY, C5Y
(°Y1(I),1=1,3)
(PYi:1(1),I=1,3)
(PYAL2(I),I=1,3)
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Aol

TLAC(R,200) XEYrVi,ICP
noAD(R,200) (DLY(I),I=1,3)
REOAD(®,200) (DLyY2:XI),I=1,3)
READ(R,200) (DELO(I),I=1,3}
RMAD(TF,200) A11,212,413
REAR(R,200) (LAMDA(I),TI=1,3)
RIAR(R,200) (XDLLL(I),I=1,3)
READ(R,200) (XDELY(I),I=1,3)
PEMD(P,200) (WGRAV(I),I=1,3)
REBAD(R,200) X71,X72,K73
READ(P,200) 721,KR2,733
READ(R,200) CCP

RGEL(P,200) (GDPII(I),T=1,3)
REAND(R,200) AINCT7,AI™CH
IF(IVRITV,,C.N) 30 7C 203

FORIAT (5E12.5)

WpITE(P, 21) ,

FORAT(131/2X, 'LOCONOTIVE FARRANUIURS'/
1 2%, v/
1 2%, /)

YJRITE(P,22)A,L1,L2,L3

FORMAL(S X, 'DIVMENSIONS'//

1 5%,'A (HALF LENGTH OF WHEEL PASE)

1 =',512,5," IL.'/

2 5%, 'L1 (DISTANCE BITWEEN TRUCK CEITTZL AkD LEAD AY¥LE)
2 =',212,5,"' In.'/

3 5%, 'L2 (DISTAICE PETNEN TRUCK CLAIER Anb BIDLLE ANLE)
3 =',£12,5,' I%."/

4 BY, 'L3 (DICTANCE HETUEEN TRUCK CEUTHER AnD TRALLING
4 NLE) =',E12.5," IN.')

YWRITE(P,23)HTP,HCS,HTS,RANRO, MY

. FORMAT({ /5%, "HTP (PEIGHYDY OF TRUCK FRAML C.Ge ARBOVH

1 AXLE CTHNTER) =',%12,5," T.L.'/

2 5%, 'HCS  (HEIGHT OF CARBODY C.G. ABOVE ROL
2STER SPRING CENTIR) =',B12,5,' I~.'/

3 5X, 'HTS  (HEIG!IT OF BOLSTWR SPRING CENT™F

4 AROYZ TRUCK FRAME CJ5.) =',E12.5,' IM.'/

5 5%, 'RZERC (WHFEFEL TREAD RADIUS)

6 =',£12.5,"' Ii."/
7 5X, '¥MU (CORFFICIENT OF FRICTIOL)
8 =',212.5," IN.')

WRITE(P,24) DLY(1),NLYAW(1)

TORMAT(/5Y, 'DLY (DEADPAMD IN PRIMARPY LATERLL

1 STITFNESS) =',1812.,5,"' 1M.'/

2 SX, 'OLYAJ (LINMIT OF TITST LINUAR STIFITIICS
3 IN PRIMARY YAW) =',E12.5,' IN.')
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o
n

26

27

29

30

URIVW(P,25)1%, 0L, C LA
FORMAT(///5X, '"MBRSS PROPLRTINS'//

1 Sx, U (MEEWLLELT NASS)  =',.12.5," LE=SLC**2
2/111' /

3 5%, " (TRUCH MASL ) =',T12.5,' LE=-SLC**2
4/13'/

5 SX, 'liC (HALF=-CAR MASL) =',512.5,' LE=S.C**2
6/11'/

7 5%, "7 (NOMINAL AXLE LOAR)=',%12.5,' L&')

WRITE(P,26)IUX,IWY,I%X,ITZ,ICX,IBOL3
FORMAT(/5X, 'IVY (ROLL & YAl MOMENT OF IHIRTIA OF
1 THE UH®EELSET) =',E12.5,' LB=-Il=-SEC**2'/

2 5X, 'INY (SPIW MOMINT OF INZFTIA OF Thi
3 UHEELSTT) =',£12.5,"' LB=Iu=SLC**2'/

4 X, 'ITY (ROLL MOMIUT OF INMCRTLY O Tt
5 TRIICY) =',F12,5,"' LP=IN=SEC**2'/

6 57, 'I7Z (YAW MOMENT OF INWSXTIA OF THD
7TRUCK ) =',5812,5,"' LR=IMN-GEC**2'/

g 5%, 'ICY (“ALF=-ROLL FOMENT CF INERTIA OF
9 THE CARBODY) =',E12.5," LB=-IN=-SuC**2'/

3 5%, "IRCLS(YAW MOITNT OF INTRTIA OF 'l
9 BOLSTER) =',1712.5,"' LE=IN=GEIC**27)
WPITE(P,27)F11,F12,722,733

FOPMAT(//5X, 'NOI'INAL CREED CORFFICIENTE'//

1 5¥,'F11 (LATERAL) =',F12.5,' LB/VHICL'/

2 5X,'F12 (LAT/SPIN) =',E12,5,' LB=IMAJHEUL'/

3 5%, 'F22 (3PIN) =1,512,5,"' LE=IU**2/ULL"LY/

4 5%¥,'F33 (LONGITUD.)=',212.5,' LEAMFEL')
WRITE(P, 28) (OPY(I),I=1,3)

FORMAT (1:1,///5X, "PRIMARY SUSPENSIONS (PSR 7XL%)'//
1 5X,'CPY (LAT. LA:PIKG COLFF. =1,

2 £12.5,2X,£12.5,2%X,812.5,' LO=CEC/Ix')
WRITS(P,29) (CPYAW(I) ,I=1,3),(CPUI(T),I=1,3)

FORMAT (5X, 'CPYAYW (YAUW DAMPING COLFF.) =',
2 E12. 5,2}:,.;312. S’2X'E120 5, ' IJB—I:‘:-SCC'/
3 5¥,'CPPHI (ROLL DAMPING COEFF.) =',E12.5,2X,

4 =12,5,2%,812,5,' LBE~IN-GSC')

URITE(D?,30) (KPPHI(I),I=1,3),(PYAVI(I),I=1,3),

1 (PYAW2(I),I=1,3)

FORMAT (5X, '®PPHI (POLI STIFFNESS) =',E12.5,
2X,K12.5,2X,812.5,"' TLE-TH'/

5%, '"PYAW1 (FIRST STIFFNZSS IN YAW) =',©12,.5,2%,

®12.5,2%,712,5,' LE-IN'/

5X, '®YA(72 (STCOND STIFFNESS IN YAU) =',T12,5,2X,

£12.5,2%,E£12.5,"' LB=IN')

B W N
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TRIT(DP,32)ver-I,CE0HI, YLy, CSY, REYAT, T
32 FORMAT(//5Y, 'SECOUDARY SUSPLIGIONS (PUR TRICK)'//

1 5%, 'SP I (FOLL STIFRILES) =',F12,5,"' Lr=I '/

2 5¥%,'CSPiI (HOLL DAMPILG) =',C12.5,' Lp=-Iu-svC'/

3 5%, 'WSY (LATZIRAL S5TIVENLSS)=',112.5," Lv/14%/

4 5X,'CsY (LATERAL DAMPING) =',312.5,' LR~-SLC/IU'/

5 ¥, '"¥SYAW (YA.! $TIFFIESS) =',112 R,' LE-I:'/

6 5X,'"CP (COULOMP BREAKAUWAY)=',E£12.5,' LB=Iui')

WRITE(P,33) (DELO(I),I=1,3),A11,A12,A13, (LAMDA(L),I=1,3)
33 FORMAT(///5X, '"LINCAR PARAMETERS'/

1 5%, '//

1 5X, 'DELO =',3(2X,212.5)/

1 SX, '21(1) =',3(21,€1 «35)/

1 5X, 'LAMDA =',3(2X,212.5))

URITE(P,34) (KDLL(I),I=1,3),(¥DLLY(I),I=1,3),{¥Cki(I),I=1,2),

1 v71,%72,%73,%81,%32,%83,CCP
34 FOPMAT(5Y, 'WDEL  =',3(2X,%12.5)/

1 5X¥, '"WDELY =',3(2¥,%12.5)/

1 5X, '"W.GRAY ="',3(2%,712.5)/

1 5%, ‘%7 =',3(2X,N12.5)/

1 5y, '¥8 =',3(2%,712,5) /

1 SA, ccp =',3(2X,812.5),5(/))

203 IF(IOPT.EQ.1) CO TO 201

CALL DSF4(RE€IG,0)
o R R e e e L E A e e s e e L

C INITIALIZATION OF M,¥,C AND INPIJT COFFF. MATFICEC
Chkhdde stk ek T AR AR AR I I IR T I KT I I IR Tk Rk kkdekhdkk hdedek ko dk ke hnddn
201 DO 650 I=1,DOT

DO 650 J=1,DCF
t(I,J)=0.0
C(I,7)=0.0
¥(1,J)=0.0
650 CO.TINUL
DO 906 I=1,DCF
DO 906 J=1,0
n2(1,J)=0.0
L1(1,3)=0.0n
906 CONTIMUFL
C************************************************i************
C THE FORM USED IMN THE COEFF HATRICES IS
C MEDDYHC*¥DE+* =0
C THE EOUATIONS ARE STILL COUPLEDR HLEL
C***************************************************i********
M1, 1)=11
H(~,2)=wa
M(3,3)="17
M4 ,4)=TX
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1(5,8)=v

M(5,6)=IWY

1:(7,7)=T

1M(R,3)=ITZ

1 (9,9)=I0V

M(10,10)=MC

M(11,11)=1x

(12,12)=IRCLS
C***************************************************
C  ***SPRING CONSTANTH**
C***************************************************

Y(1,2)==2.*T11

K(3,4)==2,*F11

X(5,6)==2.*F11

¥(7,10)==113Y

X(7,11)==HCE*I'EY

K(8,12)==X3YA¥

X(9,10)=HTS*K3Y

K(9,11)=-KsPII+HTS*iTEr 5 Y

%(1n,7)=-KSY

X(10,Q2)=HUG*KSY

%(10,10)=KsY

(10, 11)=IC5*KSY

X(11,7)==HCS*KSY

K(11,0)==KsPl I+KCS*ITS* Y

¥.(11,10)=CS*XSY

K(11, 11)=VEP:HT+HTC*ICS*NSY

X(12,8)==GYAY

X(12,12)=K3V¥nY

C(1,2)=2.*F12/V

C(1,7)==CPY(1)

C(1,8)==L1*CPY (1)

C(1,9)==HTV*CPY(1)

C(2,2)=2.*A*A*F33/V+ 2, *F22 /V+CP Y2 (1)

C(2,8)==CPYATI(T)

C(3,4)=2.*F12/V

C(3,7)==CPY¥(2)

C(3,8)=-L2*CPY(2)

C(3,9)==HTP*CPY(2)

C(4,4)=2.*A*A*F33/V+2.,*F22/V+CPYN% (2)

C(4,8)==CPYAV(2)

C(5,6)=2.*F12/V

C(5,7)==CPY(3)

C(5,3)=L3*CPY(3)

C(5,9)==tiT2*CPY(3)

C(6,0)=2.*¥A%A*F3I3/V+2,*F22/V+CPYA'I(3)

C(5,3)==C2YAN(3)
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c(7,1)==Cpy(1)
C(7,3)==CPY(2)
C(7,5)==Cpr¥(3)
C(7,7)=CPY(1)+CPY(2)+CPY(3)+CSY
C(7,8)=L1*CPY(1)+L2*CPY¥(2)-L3*CPY(3)
C(7,9)—.'1TP*(CP:'(1)+CP‘.’(2)+CPY(3) )=HTS*CEY
C(7,10)=-=CSY
C(7,11)=-HCS*CSY
C<311)=“L1*CPY(1)
C(8,2)==CPYAW(1)
C(2,3)=-L2*CP¥(2)
C(R,4)==CPYA"I(2)
C(3,5)=L3*CPY(3)
c(8,6)==CPYLI(3)
c(2,7)=L 1*CPY(1)+L2*CPY(2)~-L3*CPY (3)
C(3,2)=CPYA'I(1)+CPYA" 1(2)+CPYNLT(3) 4L 1*L1*CY ( 1)+L2*L2*CPY (2)
1 +L3*L3*CPVY(3)
C(2,2)=HTP* (L1*CDY (1)+L2*CPY(2)-L3*CPY(3))
C(9,7)='{'T3*CSY+[iT:"*('TD‘[(1)+(‘ Y(2)4CPY(2))
c(9, R)=ITP* (L1*CPY (1) +L2*CPY (2)=L3*CPY (3))
C(9,2)=CP2i1I(1)+CPPIi II(2)+CPRHI(3)+CEe IR TL* UL * LY+
1 HTP*YTP* (CPY (1)+CPY (2)+CPY(3))
C(9,10)=HT3*C3Y
C(9,11)=~CSPuIHICS*ITS*CSY
C(19,7)==CSY
C(10,9)=ITS*CSY
C(10,10)=CcEY
C(10,11)=CS*CS
C(11,7)’ile*CoY
C(11,9)==CSEHIHICS*iTS*CSY
C(11,10)=HCS*C3Y
”(11 11)=CSPLIHICS*HCS*CSY
O 7G 5000
1200 CO“”INUC
IF(IOPT.EQ. 1) GO TO 1201
("****h***************************************************************x

C CALL DSF4 TO GET DESCRISING FUNCTION GAINS FOR HONLIMZAPITITS

C***************************************t********w********************
CALL DSF4(RSIG,1)

1 20:‘ ®(1,1)=-2. *F1 2%*EDRL(1) /A/RZEROFLA*VGRAV (1) /A+X71

X(1,7)==X7

X(1,8)= -L1*F71

K(1,9)==2TP*K71

K(2, 1)=2. *A*F33*LAMDA(1) /RZERO=2, *F22*¥WDELY(1) /A/TZLR0

K(2,2)=2.*F12=-A*LA*DEZLO( 1) +181

¥(2,n)==¥S1

#(3,3)==2. *F12%XDEL(2) /3 /FPREROGFLAYKCGRAY (2) /A+Y 72

X(3,7)==K72
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(@]

W(3,8)=-L2%* 72
X(3,9)==""n*72
X(4,3)=2,*A*TII*LAI 2 (2) /P2 .a0=00 *F2 2%V LILY(2) /A /P2 FO
F(4,4)=2.*F12=A*LA*DCLI (2) +IR2

K(4,8)==1182

X(5,5)==2.*F12*XDLL(3) /A/PZLoGHLAR G (3) /a+:7 3
X(5,7)=-K73

¥(S,9)=L3*x73

K(5,9)==UTP*K73

F(5,5)=2.*A*F33*LAMIA(2) /RZLERC=24 *F22*VDLELY(3) /R /RTEI0
‘((6 $5)=2.*F12-A*LA*DELO(3)+i83
X(6,38)==X23

(7, 1)—-x71
X(7,3)==%7

:W,&“ﬁﬂ3

KA(7,7)=XT1+K724XT73+KSY

K(7,9)=L1*117 14L2*KX72-1.3*%73
X(7,9)==HPS*LSY+ITP* (X7 1+K72+1773)

K(S,1)=-11*X71

X(8,2)=-K31

FAB,3)=-1,0%K72

¥.(8,4)==%32

(R”,3)=L3*x73

X(f8,H6)==¥%a3

K(8,7)=L1*¥71+L2*V.72-L3*X73
X(8,8)=L1*L1*K71+L2*L2*KT7 2+L3*L3*K73+<Q 1+ 0.2 +183 +:5¢ad
K(8,9)=tiTE* (I,L1*K7 14L2*¥72-L3*%7 3)

X(9,1)==1ITP*K7 1~KPOKI(1) *A11/A
K(9,3)=-HTP*K72-¥XFPHI(2)*M12/A

K(9,5)==tTP*K7 3= PPIII(3) *A13/A

¥(9,7)=hTP* (X71+K72+K73)=HTS*KSY

K(9,8)=HTr* (L1*X7 1+L2*K72-1L3*X73)

K(9,9)-I&PP—II( 1)+KPPHI (Z2) +XPPHI (3) +XSPUIHHTS* TS *KeY+
1 HTE*HTP* (K7 1+K7 2+K7 3)

C(1,1)=2.*F11/V* (1. +RZEZRO*GPHI(1) /0 )+CP¥(1)
C(2,1)=IWY*V*GPHI(1)/A/RZERO=2.*F12/V* (1. +RZZRO*GPHI (1) /A)
C(3,3)=2.*F11/V* (1. +RZZRO*GPHI(2) /R)+CPY(2)
C(4,3)=IWY*V*3P4I(2) /A/RZERO-2.*F12/V* (1. +RZZEO*GPUI(2) /A)

C(5,5)=2.*F11/V* (1. +RZEZRO*GPHI(3) /A)+CPY(3)
C(h,53)=IWY*V*GPHI(3)/A/RACRO=2.*F12/V* (1. +RZTPO*GPHI (3)/2)
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1796

5000

C(9,1)==N1TP*CDY(1)=CPPuUI(1) *CPxI(1) /A
C(9,3)==HTO*0Y (2)=CPP:IT (2) *GPAI (2) /A
C(9,5)==1T2*CPY(3)=-rPPrI(3) *aPuT(3) /A
£(12,12)=CCP
F2(1,1)=2,*(LA*NGRIMV (1) /2. =FT12*XDIL(1) /F2VF0O) /2
B2(2,2)==2.,%(F22*DELY (1) /A=A*F3I3*LADA (1)) /RZIED
R2(3,3)=2.* (LAY CRAV(2) /2. =F12*¥DTL(2) /R7LT0) /A
B2(4,4)==2,*(F22*DELY(2)/A=-A*F33*LAI'CA(2) ) /R20R0O
B2(5,5)=2, * (LA*YGRIV(3) /2. -F12*FLIL(3) /RZERC) /B
B2(6,06)==2,*(F22*WDELY (3) /A=-A*T33*LAIDA(3) ) /R2NED
B2(2,1)==-KDPPUI(1)*211/4

B2(9,3)==KPPHI(2)*A12/A

B2(9,5)==XPPHI(3) *A13/2

CONTINUE

B1(1,1)=2.*F1 1*RZERO*G2PHI(1) /L/C*w
B1(2,2)=(IWY*V/RZERO=2. *F12*EIENO/V) *GPHI (1) /i *
B1(3,3)=2.*F11*RZIRO*3PHI(2) /A/V*W
B1(4,4)=(IWL*V/KZERO=2.*F12*RECRO/V) *GPHI (2) /a*y
B1(5,5)=2.*F1 1* RZERO*CFHI(3) /A/V*(]
B1(56,6)=(IUY*V/RZERC=2.*TF12*RZERO/V) *GprRI (3) /a*l
31(9,1)==~CPPuI(1)*3PLI(1)/a*
B1(9,3)==-CPPHI(2)*GPHI(2)/A*WV
P1(9,5)==CPP{I(3)*GPEI(3) /A*

CONTINUL

RETURY

mip
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SURRQOUTINS RaIl (RSICG,IVI)

DIMEWSIOH RSIG(10)

COl L0/ LnPUT/ (S 1) AL (S 1), AP LI(5T) ,aR01(51) ,GE1(B 1),
1 ADLY1(51),X2(51),AL!:2(51),ADL2(51),ARPH2(51),552(51),
1 ADLY2(51) ,X3(3 1) ,nLo2(531) ,.0L3(31),5p01.3(51),383(51),
1 ADLY3(51)

COMNON/FP/R,P

COMIIOH/IGS/IGSL,IGSY

COMEOI/GISESL/Y1(120) ,6AI871(120) ,Y2(120) ,354I372(120),

1 ¥3(120) ,GAINT73(120)
COMMON/GIGSY/Y4(120) ,GAI81(120),Y5(120) ,GrIx82(120),
1 ¥5(120) ,GAIN83(120)

INTEGER 1,P -
CO'11MOM/ER/ER(201)
C********************************************************************

c READ STATISTICAL DESCRIRIMNG FUNCTION TARLE FOR THREE WHESLSITE
Cc X fUHETULESIT RELATIVE LATERAL DISPLACTHLDNT

C ALM.EFFECTIVE CONICITY (LaMPA(*),R1C.)

C ADL:CONTACT ANGLE COYEFFS. (¥YDIT(*),=1C.)

c APH:ROLL COEFFS. (251,ETC.)

c GS :EFFLCTIVE LATOERAL Gvave.e STIFFHESS

c****************************************************k**k************

READ(R+1,10) (X W(1),ADPLYWI),ALNMI(I),AF.1(T),G31(1),ADLI(T),

1 I1=1,51)
RIAD(R+2,10) (X2(I),ADLY2(I),ALL2(1),AP2(T),G52(1),A0L2(T),
1 I=1,51)
READ(T+3,10) (¥3(I),aDL¥2(I),AL3(I),A0a3(1),683(I),~0L3(1),
1 I1=1,51)
10 PORMA(G(2X,E12.5))
Chhkhakhhhhhhkhrhhhhhh kAR kkhhRRddddiedhhkrndkinindk x
C READ ERRCR FUNCTION TALLL LLKF(X)

C**********************************************k*****

RLAD(R+4,2) (21(I),I=1,201)
2 FOICMAT(F7.5)
IF(IGSLL.EZ.?) GO TO 1
READ(+5,11) (Y1(I),GAIN71(I),I=1,120)
READ(R+6,11) (Y2(I),GAIN72(I),I=1,120)
READ(R+7,11) (¥Y3(I),GAIW73(I),I=1,120)
1 IF(IGSY.EQ.0) GO 70 22
READ(R+8,11) (Y4(I),GAINB1(I),I=1,120)
REAN(R+9,11) (¥Y5(I),GAI®2(I),I=1,120)
READ(R+10,11) (¥Y6(I),GAINB3(I),I=1,120)

22 CONTIVUR

11 FORMAT (2(212.5))

oL Rt e 2 e T L
o RTAD GUESSED RMS VALUGE

C*******************************

READ(R,20) (RSIG(I),I=1,10)
FORMAT(2T12.5)

RETURN

EuD

L)
>
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SURROLUTIVE DERA(R0I5,I3)
COoMON /COM2/CPYA™N (3) ,CPY (3),CPP II(3) ,11PDITI(3),

1 TP L, CUN L, VEY, CSY,VSVAC,TCO,PYI(3),

1 PY2W1T(3) ,°YAt2(3) ,DLY(3) ,OLZAY(3) ,0EL2(3)
COBHON/GRINS/RT 1, ¥ 72,73, 821,VR2,¥S3,011,212,R13,

1 {GRAV (3) ,KDUL(3) ,LADA(3),CCP,GP:II(3) ,XDNLY (2)
REAL FPDHI,WSIHI,KEY,WEYAL T 1,X72,K73, K81, K82, KE3, 1 LGKRaY
1 DEL,LANDA ,KDELY

COMZON/ALNPUL/X1(S5 1) ,31511(51) ,ADLI(5 1) ,AFLI(5 1) ,5L1(5 1),
1 ADLY 1(51),X2(51),ALM2(51),ADL2(51),aPH2(51) ,G52(51),
1 ADLY2(51) ,%3(51) ,a1L3(51) ,ADL3(51) ,APU3(51),353(51),
1 ADLY3(51)

COUNCON/GIGSL/Y 1(120) ,GATN7 1(120),Y2(120) ,601.72(120),

1 v3(120),CAIn73(129)
CONiIGl./GLGSY/¥Ya(1210) ,GAI"81(120),¥Y5(120),540.532(120),
1 ¥5(12C) ,GAI.I83(120)

COMIMON/AINC/AINCT , ALNCS

COMMON/RP/R, P

COMI'Ca/TR/F.2(20 1)

INTEGFR R,DP

CO'™MON/IPIS/IPROF,L SUSD

CoMMOMN/1GS/IGST,IZSY

COMMON/OPPICH/IOPT

DI¥ENSICH RSIG(10)

IF(I3.E0.N) RLan(Rr,2) SIGLOI
2 PORMAT(12.5)

IF(IPROF.EQ.N) GO TO 20
C***************************************************************

C YHEEL/RAIL PROFILE EQUIVALINT GAINUS

~

c***************************************************************

CALL LDP4(RSIS(1),LAIBA(1) ,IILCEL(1),A11,RGRAV(T) ,<DELY (1),

1 ¥1,ALI1,ALL1, APHT,G51, A0LY )
CALL LDP4(R3SIG(2),LAMDA(2) ,KDEL(2), M 2,YGFAV(2) Y UTLY(2),
1 £{2,AL2,ARL2, AR2,G82, A0 Y 2)
CALL LDP4(RSIG(3),LAMDA(3) KDEL(3),A13,KGRaV(3),“DFLY(3),
1 ¥3,ALMN3,ADL3, AP13,383,A0LY3)
C*************************************************
C AT THIS STAGE OF THI DFVLLOB!ENT 5Pu(I)=A1I

C***********i*************************************
GPHI(1)=A11
GPHI (2)=A12
GPHI(3)=A13
IF(IOPT.EQ.2) RETURY
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C**’ll*********t*****ﬁ****ﬁ****k********************‘ﬁ***********

c SUSPINSION EQUIIVALENT GAINS
R T T T s
20 RC=,7978R

IF(IOPT.LZ.2) GO TO 50
IF(IOPT.GR.15) GO TO 50
GO 7™ 11

50 IF(IGSL.ED0.1) GO TO 10
CALL ERF(DLY(1),RSIG(4),x71)
CAlLL ®RF(DLY(2),RSIG(5),X72)
CALL BRF(DLY(3),RSIG(6),¥%73)
K71=PY1(1)*(1.~-X71)
K72=RY1(2)*(1.-V72)
K73=PY1(3)*(1.~X73)
GO ™0 11

10 CLLL C¥7(ESIS(4),¢71,Y1,CAL71,A1%C7)
CALL GX7(RSIC(S),”72,¥Y2,GAI1172,RINCT)
CALL GV7(TSIG(R) ,K73,Y3,3AIY73,R1.C7)

11 IF(I0OPT.ED.3) RETURN
IF(IOPT. "ﬁ.s) RETIPL
IF(IOPT.FD.11) GO TO 17
IF(IOPT.GE.14) GO TC 17
IF(IGSY.CM.1) GO TO 12
CALL nRF(bLYAT(1),LSIu(?),K81)
CALL ERF(DLYAW(2),RSIG(8),X82)
CALL ERE(DLYA'N3),FSIG(9),KE3)
K81=PYAWT( 1)+ (PYAW2(1)=PYANTI(1))*(1.-K81)
Ke2=PYAWI(2)+(FYAIR(2)=FYAT1(2) ) *(1,~KE2)
KS3=PYAW1(3)+(PYAW2(3)=PYAWT(3))*(1.,-K83)
GO ™0 13

12 CALL GR7(RSIG(7),%S1,Y4,CRITA1,AINCE)
CALYL GHR7(R3IG(8),KB82,¥Y5,GAINS2,AINC3)
CALL GK7(RSIG(2),X83,v6,GAINK3, A1ICR)

13 IF(IuPT.LE.4) RETURN
IF(IOPT.50.12) RETURN
IF(IOPT.EQ.9) RFTTURN
IF(IOPT.E7,7) RETURY

17 IF(RSIG(10) GF.SIGLOW) CCP=RC*TCP/NSIS(10)
IF(RSIG(10) JLT.SIGLOW) CCP=RC*TCP/SIGLI
RETURN
FHD
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31

4

COMNON/DOF/DOT
CoI0L/ner2/70k2
RIAL W, M
RUAL*3 Ar(12,12)
INTEGER R,P,DOF ,DOF2
COMMON/PR/R,P
COuMON/COMC/H(12,12),K(12,12),C(12,12),92(12,12),31(12,12)
DIMENSION G(24,24),X4IMV(12,12),Y(12,12),0(12,12),2(12,12),
1 ROOTR(24),ROOTI(24),Z(24,24),DA1P(24)
DOF2=2*DOF
DO 2 I=1,DOr2
Do 2 J=1,DOF2
G(1,J3)=0.0
D0 3 I=1,D0F
00 3 J=1,D0Tr
SMIWV(I,J)=0.0
v(I,J3)=0.0
B(I,J)=".0
(T,T)=0.0
po 4 1=1,DOF
U(1,I)=1.0
DUMMY=0.0
pe 31 I=1,NDCTr
no 31 J=1,00F
a(I,J)=~r(1,7)
CARLL M&TINV(AH,DOF,DIW&Y,O,DETERW,DOF,VARK)
po 5 1=1,D0F
po 5 J=1,DCF
KINV(I,J)==A(1,T)
DC 6 I=1,DOF
Do 6 J=1,D0OYF
Y(I,J)=0.0
DO 6 L=1,DOF
Y(I,J)=Y(I,T)+L1I.v(I,L) *R(L,TJ)
DO 7 I=1,DCF
DO 7 J=1,hOF
E(1,J3)=0.0
Do 7 1=1,DOF
E(I,J)=F(I,J)+XMINV(I,L) *C(L,J)
DO 3 I=1,DO%
II=I+DOF
po 8 J=1,b0%
JJ=J
G( II'JJ)=Y(IrJ)
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10

D 2 I=1,DQF

II=I+H0OF
DU 9 J=1,DOF
JI=JHOF

G(Irr,cJ)=c(r,J)
Do 10 I=1,DOF
II=I
DO 10 J=1,DOTF
JJ=J+DOF
G(I1,3J3)=0(I1,J)
CALL EISPRC(NOF2,DOF2,0,1,5,R00TK,RO0TI,%,1
1.,0)
CALL STAR(DOF2,R00TR,RO0TI,MATF, 1)
CALL TRANS(ROOTR,RO0TI,Z)
RETURN

mn
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SU uoUTI.; ouTRYT
CONTCH/NOUL/ZIER(150,10) ,5T2I(150,19), Z0s0(15C, 10)
COrtON/Corc/ (12,12) ,¥(12,12),2(12,12),
1 32(12,6),021(12,%)
COMICU/UP/R, P
I.7%GLR °,?,DCF
COMMOL /DOF/NOT
REAL NAGN,K71,T7L,V7\ 1,002, ¥03, KGRIV, YD L, Lall i, {0SLY
COMMON /GAINS /X7 ,X73,¥81,722,123,A11,A12, 313,
1 KGRAV(B),YDLL’B),MA.DA(B),CCP,CPHI(3),YDHLY(3)
COMMON/OUT /DRMS (12) ,DPSD(150,12),FRES(150) ,122,
1 APSDC(150) ,APSDPD(150),
1 PYC, RIFT, MAGYN {150 ,12) ,PHASC (150 ,12)
RIAL i1
DINENSIOY 2-ACH(150,10) ,ZPEA87(150,10)
PLAD(R,500) IP1,IP2,IP3,IF4,IPS .
5¢0 FOXIAD(SI2)
C***********************k**********************
c PRINT EFFECPIVE GAILNS AT CONVERGEN *
C**********************************************

WRITEZ(?,33)A11,A12,A13, (LANDA(I) ,I=1,3)

33 “CF"A‘(///SA,'hPFQCTIVd GALLS AT COLNLERGLICA'/
1 5%, ‘//
1 5Z,'R1(1) =',3(2%,12.5)/
1 5X,'LAMDA =',3(2X,E12.5))
UEITE(P,34) (YLEL(I) ,I=1,3), (KDELY(I),I=1,3),(KGnAV(I),I=1,3),
1 X71,X72,K73,K81,K82,X83,CC
34 FCR.AT(5X, 'KDEL =',3(2,812.5)/

1 5%, '"RDELY ='.3(2%,B12.5)/

1 5%, '"WGRAV =',3(2%,E12.5)/

1 5X%,'K7  =',3(2X,E12.5)/

1 5%, ' =',3(2%,812.5)/

1 5%,'cC®  =',3(2%,E12.5))
C*****#**************************************
c %,%,C MATRICES AT CONVSRGENCE *

C********************************************

URITE(P,12019)

1201 TORMAT(1H1,4%, "1,%,C MATFICES AT COMVLEGFTICE' /21, 30( '* 1))
WRITL(P,1205)
1205 FONUAT(OX, 'M=MATRIX' )

DO 121% I=1,DOF

URITE(E, 1210) (4(I,J),J=1,DOF)
1210 FORMAT (12(1¥%,510.3))
1215 CONTINDE

URITE(2,1220)
1220 FORMAT(///, 94, '"C=FATRIX)

DO 1225 I=1,D0F

MRIVE(P,1210) (S(I,3),3=1,00F)
1225 conwxhub
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1235

20

o

501

41

42

43

JORITT(R, 1230)

FOPYAT(///, 00, "= ATRIN")

DC 1225 I= ,nOF

HRITE(P,1210) (<(I,3),3=1,n0F)

COLLINUD

IF(IP1.1:0.N) GO 70 501

URITE(P, 20)

FORMAT (1H1)

WKRITCS(P, 1)

FORMAT(2X, "OISPLACEMENT PGVIR LFLCTRAL DOnSITILS'/42( %))

WRIT=Z(P,8)

FORMAT( ' FREQUELCY U1 LATERAL wOET YAV

1 ' v #2 LATERAL i1 %2 vAw!

1 ! W %3 LATEREL i #3 YA/
ex,'(Hz)"',4x%," (IiI**2/R7)

1 (RD**2 /14%) (TU**2/47) (TL**D /147) (IL**2 /2
1 (RD**2/H7) ")

UPITS(P,2) (FREQ(I),(DPPSLMI,T),J=1,8),I=1,122
FORMAT(2¢,€12.5,4X,812.5,3%,812.,5,2V¥ “1".5 1¥,512.5,
1 3%, 512.5,3%,%12.%)

VURITF(P,20)

yrITH(P, O

TOPMAT( ! FREAUDNCY TRUCY LATIWAL TRUCY YAT  IRLCH =oLr !
1' CAR LATERAL CAR ®NILJ,  ROT,STED YA/

1RY, '(312) ' ,4%, " (11**2 /47 (I-D**2 /1122

1 (RD**’/HZ)(IN**2/HZ) (PD*%*2/117) (RD**2/12)% /)

WFITE(P,3) (FPREC(I),(TPCC(T,T),C=7,12),1=1,122)
FORMAT (7(2¥,E12.5))
IF(IP2.,FR.0) CO 20 502
"‘RITE(P 41)
OREAT(11:1, 2K, 'DISPLACSHMENT TRANSFSP FULCTIONE'/2X,31('*")/

1 S5X, 'FREDJENCY ;1 #1 LATERAL o1 YAU
1 ‘1 »2 LATLRAL T2 Yuauo o'/
1 8X,"'(iZ) HMAGIIITUDE PHACE AGAITULD PHAELE SAGMIT

1 ULE PHAEE MAGNITUDE PHASY')

WRITS(P,42) (FRIR(I),(MAGH(I,J) ,PRASE(I,T),J=1,4),I=1,I22)
FORAT(2Y,E1245,3:,112.5,2%,76.2,3%,%12.5,25,F642,3%,212.5,2%, 76,2
1,3X,812.5,2%,7A.2)

WRITE(P,43)

FORMAT(1R1,5X, 'FRLCUIRCY W #3 LATTRAL B3 yad

1 TRUCK. LATERAL TRUCK YAl '/

1 8%, '(HZ) MAGUHITIIDE ~— PHASTE NAGUITUDLE PUASH CRGVIT
1 Une  PHASE MAGNITUDT  THASE')

WRITE(P,42) (FRIO(I),(MYACI(I,T),PHa55(T,J),I=5,8),I=1,I22)
WRITE(P,44)

TORMAT(1111, 8%, 'PRUDTFCY TRICK ROLL Chal POPY LATLEAL

1 CAR °0LL PBOLSTET YAU''/

1 3%, *(HZ) SAGUITUDE PUAST CAGMITURD ULARE MO Ui
1107 DHAST SACNITUDT PEASE')
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WRITR(P,422) (FRI(I),(MAGI(I,T),Piasn(I,T),J=3,12),I=1,122)

422 FORMAT (2X,E12.5,3%,112.5,2%,F6.2,3%,E12.5,2%,75.2,3%,212.5,
1 20, F6.2,3%,E12.5,M.2)
502 IF(IP3.50.0) GO TO 503
URITE(P,A)
6 FOSMAT( 1111, 2%, "ACCHELYRATION 230 OF CAE , AWD  TRICK 7 .G,
1 /2%,50('*"))
URITE(P,7)
7 FORMAT( /° FRECULNCY CAR FOLY TEUC Y/
1 8%, (HZ)"',4%, "' (G*x*2/v7) (G**2/12) /)
WRITH(P,11) (FREO(I),APSDC(T),rPSDFRT(I),I=1,1I22)
11 FORMAT (2X,E212.5,2X,E12.,5,2X,E12,.5)
502 IP(IP4.1:3.0) CQ 70 504
WRITE(P,505)
505 PORMAT( 111, 3%, "THANSFER FULCTIOCNS OF O LIHSARINVIES' /
1 '3x"***k********************************l)

DO 1000 J=1,10
DO 1000 I=1,I22
ZPAGH(I,T)=SURT(7ZDEZR(I,J) **2+2TCI(I,T) **2)

1000 ZPHASE(I,J)=ATAN(ZTI(I,J) /2TZR(1,J)) *3C0./6.2332
WRITE(P,42) (FRECG(I), (ZHeGH(I,T),ZERASE(T,T) ,0=1,4) ,I=1,122)
URITE(P,506)

506 FORMAT(1H1)

WRITE(T,42) (FPL(I),(2LaGK(I,T) ,2PHASE(T,T),J=5,8),1=1,1I22)
WRITE(P,506)
URITE(P,510) (FRED(I), (ZLAGM(I,T),2PuaS(1,T),T=2,10) ,1=1,122)

510 FORI‘AT(2X,E12.5,3X,E12.5,2X,F6.2,3%,E12.5,2Y,F6,2)

504 IF(I®S.E0.0) CO 70 565
WRITE(P,507)

507 FOPMAT(11i1,3X, 'POUER SPECYPAL DENSITIES OF NGMLILELFITIAS!

1 3x"******************************************')
URITA(P,2) (FRUO(I),(ZPSM(I,T),3=1,6),I=1,I22

TIRITTR(D,506)

WRITZ(P,502) (FREX(I), (7081, T),3=7,10),I=1,122)

508 FORIAT (5(2%,%12.5))

565 CONTINUE
WRITE(P,4)

4 FORMAT(1H1, 33, "OISELMCRAINT RIS YALUNS (I°7)'/3%,29('*'))
WRITE(P,S5) (DRMS(I),I=1,12)

5 FORMAT(3X, 'LEADING UHTELSLET LATERAL ',%12.5,' I.'/
1 X, 'LEADING WHERLSET YAU ',112.5," uwpt/
1 3%, "MIDDLE WHLELSET LATEPAL ',E12.5,' Lii'/
1 3X,'"IDDLE (MEELSHT YAW ',E12.5,' ro'/
1 ¥, "TRAILING UHLZLSET LATRPFAL' ,212,5,' Ix'/
1 3¥, '"TRAILING WHEELSET YAW ',E12.5," RO/
1 3%, "TRUCK LATHRAL ',E12.5,° 1Y/
1 3%, '"TRUCKX YAU ',E12.5,' RD'/
1 ¥, "IIUCK ROLL ',.12.5,' PUL'/
1 3%, "CARZONY LATEHRAL ',212.5, IuY/
1 X, "CAREUSY ROLL 'LL12.8,' opt/
1 3%, '"BOLSTEDR YA 'LE12.5,' RDY)
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13

WUNITE(P,12)

POSYAT(//3%, "AZCELLIATIONN ©n v
1.G)'/3%,55('*"))

URITC(R,13) RYC ,REPT

=
=
3
.3
I
2
ey

FORFAT(/ /32, 'CLL POLY 51,812, R/2X, ' TrUCK

RETURY
EiLD

SUTRCUTIIL LRE(D,S,G)
COMMON/LR/ER(201)
ROOT2=1,4142
B=D/S/ROOCT2
I1=IFIX(?/0.01)+1
IF(I1.Gr.201) GO TO 1
YINT=(P=(I1=1)*0.01)/0.01
I2=I1+1
G=(CR(I2)=UR(IT))*ISHTDR(IT)
RETURN

G=1.
RETURM
T
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NNaOO0O000O0000000000N 00000060

10

na0an

el

30

20
14C

13

SUTNOUTIN . FS
COMmr Qi /vp/v 7
DIAELSIGH TRIC(30)
CONTOTAIA /LN
I..0LehR K,P
JINENSION PSDI(S0)
IF(I%«¥L.1) GO 201

La('1,.IP8D,122,15,V,1I70)

PLAD ALIGIMLAT ESU
READ(R,2) (FPECG(I) ,PSDI(I),I=1,I22)
PORGNT( *** %% )

It TZRPOLATION
W=1*6.2832

DO 50 1=1,122
IF(.LT.FREQ(I)) GO 7O 70
COLTIMGT

GO TO 90

) TF(I.70.1) GO 70 a0

I1=I-1
CU=(7=FRN2(T1) ) /(FREM(I)=FEIN(I1) )
AIPSD=(PSDI(I)=PSNI(I1))*DI+PSNT(I1)
GO TO 140

AIPSD=PSNI(1)

GO TO 140

AIDPSD=2ENI(I22)

COUTINUE

W=17/6.2832

I7(17°C~5) 13,11,12
CLAES 4
HC=0.2513/12,*
GA=UAL/12. %V
Al=9,9E-05%12,
GO TO 13
CLASE 5
C=0.2513/12.*V

UDN=UIAA/124%Y
AX=2, 47’54"05*1 2e
GO TO 13

CLASS )
YUC=0,2513/12.*7
{JASUIAA/ 12, *V
AX=1,12=-05%12.
‘1 oePL/SE
v :IM/SEC
e DL T
I OF AIDSC IS ((I**2/(FD/50C))
AIDSD=AN*T*ICH*UIC/ (VXTI TR *TUIA) / (W*IHICHIC)
i Su’ reR

AR 2N
PN BN
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701

705

706

17491

SUDROUTIME G717 ,AIRED,I22,I8,7,1720)
CoIMON /0P INN /I0DT
CONCI /T3 /TN T7(12), va(12)
coMmm/aT2/M5(10) ,7€2(10) ,n3R(6),3I(A
CO IO I/ET /P I (160,12) , Ui (106,12) ,mr 20 ((16),7 0 21(10),
1 TZR(10), 72T (10),7 A 1(10),7W2(10), W3 (10), ma(10),'x5(10),
1T RME(10),T2a(12) ,TIR(12) ,06h(12) ,0I48(12)
IF(IOPT.GT.14) GO TO 1
DO 701 I=1,3
W2(I)=0.
"'3"3(1):00
B1(I)=0.
WWd4(1)=0,.
CONTIMUR
DO 705 1=1,3
DO 705 J=1,12
WWIHI)=3WA(I)+RATR(I,T) *TEA(T)
W2(I)=WwV2(I)+RA4A1I(1,J)*PIA(T)
WI(I)="R3(I)+F1I(I,T)*TRA(T)
WA(I)=WA(I)+RMIR(I,J)*TIA(T)
CCLTINUL
CALL P3LA(V,AIPSC,I22,1I5,V,ITC)
Do 706 I1=1,3
TZR(I)=PM2R(I)+ "V I(I)=-"V2(I)
TZI(I)=RM2I(I)+W3I(I)+'WV4(I)
PED(I)=(TZR(I)**2+T71(1)**2) *AIT5EN*6.2232
COdTINUR
IF(IOPLIT14) G0 TG 2
w2(1n)=0.
T3(10)=5.
1(19)=0,
wr4(10)=0.
DN 7951 J3=1,12
WAI0)=TV 1 10)+RETR(1Q,T) *TFA(T)
w2(10)=W2(10)+RM1I(10,3) *TIA(T)
F3(10) = 3(10)+P"11I(1G,T) *TRA(T)
TWA(10)=WA(10)+RPMIn(10,T) *TIA(T)
COMTINUL
TZR(10)=PMR(10)+V1(10)="7V2(10)
TZI(10)=RM2I(10)+iN3(10)+'¥4(10)
PsSL(10)=(T2R(10) **2+T2L(10) *¥*2) ¥ [25D*%6,2332
RETURN
I12=10
IF(IUPT.LCe12) I2=9
DO 1701 1=7,12
W2(I)=0.
W3(I)=0,.
WW1(1)=0,
TVa(I)=h.
COn2?INGT
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1795

1706

711

715

716

1715

DC 1705 1=7,12

PO 1708 J=1,12
IN1(I)="vI(I)+R1P(T,T) *THa(J)
R2(I)=IW2(I)+P"M1I(I,J)*TIA(J)
TVI(I)=VI(I)+RMII(I,T) * T RA(J)
"W4(I)=wWA(I)+RMIR(I,JT)*TIA(T)
CONTIVUL

DO 17056 1I=7,I2
TOR(I)=RM2R(I)+ NV I(I)-NV2(TI)
TZI(I)=RM12I(I)+'NV3(1)+iN4(T)

PSD(I)=(TZR(I)**2+TTI(T) **2) *ALI>GD*5.2832

CONTTINUT

RoTURN

I1=1

IF(ICPT.F . 1€) Il1=4

no 711 1=I11,6

w7 2(1)=0,

W3(I)=n.

7 1(T)=C.,

TWa(I)=N.

CONTILIUZ

0o 715 I=11,46

Lo 715 J=1,12

TR1(T)=W 1(I)+NHIR(I,JI)*TRA(T)
IR2(I)=N2(I)+RMII(I,T)*TIAGT)
W3I(I)="W3(I)+R1L(I,JT)*TRA(T) -
A(I)=IVA(L)4RIA(T,T)*TIAT)
CONTINUE

CALL Powa('i,nIPSD,I22,15,V,I1C)
po 716 1I=I1,6
TZR(I)=R2P(I)+W1(I1)=-172(1)
TZI(I)=RA2I(I)+WVI(I)+vI(I)

PSD(I)=(TAR(I)**2+7 2T (I) **2) *AIPCI*6.2832

CONTINUY
w7 2(10)=0.

W3 (10)=0.

TV1(10)=0.

w4 (10)=0.

nDCe 1715 J=1,12
W1(10)=W71(10)+RI:IR (10 ,T) *TRA(J)
T2(10)=RN2(10)+RMII(10,T) *TIA(JT)

W3 (10)=573(10) 4RI (10,T) *TPA(JT)
TUA(10)=WUA(10)+ELIR(10,T) *2IAGT)
CONTINGT
T7R(10)=RiRT (10)+ T 1(10) ="V 2( 10)

7 (10)=R¥2I (10)+ M3 (10)+¥va(10)
BED(10)=(TZR(10) **¥24m7I (10) *¥*2) *L IPIL*G
RETR

1R
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CUTCOUTTILD GTR(T)
COriON /OpTION /IDPT
CCrvQu/Go2 /v T7(12) 2 va(12)
CORUIDN/GT2/' W& (10),PED(10) ,PI0(6),T3I(5)
COvoN/GU/TIR(10,12) ,72AI(10,12) 50 280010) , 2T (10),
1 02R(10),72I(10),IW1(13), M2(10),3373(10), x4 (10),2w5(10),
1 D03(10) ,TRA(12) ,TIA(T12) ,2RA(12) ,VI0(12)
IF(IOPT.GT.14) GO 70 1
nc 701 1=1,3
RUMS(I)=IWO(I)+S*DUX(PSLC(I )+V5(I))
701 COMIINUE
IF(Iurl.LT1d) GO 70 2
RIS(10)="Mo(10)+.5*DW* (P3SD (10 )+'W5(10))
RETURKN
12=10
IF(IOPT,.12) I2=°
Do 1701 1=7,12
RUS(I)=iVoH(I)+.5*DiT* (PSO(I )+5(1))
1701 CONTINUY
RETURY
1 I1=1
IF(IOPT,9C,16) I1=¢&
DO 711 I=I1,6
RMS(IN=IA( I+ S*DI*(PSO(T )+T5(1))
711 COXNTINUE
RUZ(10)=TVAE(1))+5*¥DT*(BI(10 )+ WE(10))
PYLTIRM

20N

N

SUDROUTIIN GV7(A,GATI,X,00INT0, AL C)
C**********************************************t****************
c INTEPPCLIIED VAL S FOR OHE GEUCKRINING UL IOHS Prls
c THE TACLF
c************************************k**************************

DIMEISION X(120),GATH73(120)

NDF=120

IF(ALGE.X(NDE)Y) G0 70 1

I1=IFIX(A/AINC)+1

I2=T1+1

DX=A-X(I1)

5aIn=CATT2(TN)+(GAL T S(I2)=CnIi 75(T1) ) *Du/AL IC

RETURIT

1 GAI ECAINTB(IDF)
BaTURld
oy &
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701

[\8}

1701

SUBRFCUTIVE GT
COUMON/0PTION /I0DT

CONYOL/GI3/°VvT(12) ,°VR(12)

CoM QU /GT2/'Na(10) ,PS2(10) ,B3R(D),FII(6)
CoMION/CTT/FIAR(10,12) ,PIII(10,12) 228 (1)) ,T121(1¢),
1 TZR(10),T7I(10), R 1(10),2(10),5v3(10),*Vv4(10),"V5(16),
1 RMS(10) ,TRR(12) ,TI~(12),RPA(12),7IA(12)
IF(INPT.GT.14) GO TO 1

no 701 1=1,3

TRT5(I)=PSD(I)

TWE(I)=RINS(I)

COMNTINUE

IF(IOPT.LT.14) GO T 2

TR5(10)=PSN(10)

WG (10)=Fi1S(19)

RETURI}

I2=10

IF(IUPTEpe12) I2=9

DO 1701 1=7,12

WIS(I)=Ps(I)

Wo(I)=RS(I)

COnTIVUL

RETURYU

I1=1 -
IF(IOPT.FQ.16) I1=4

DO 711 1I=I1,6

WE(I)=FSO(I)

Wo({I)=RHNE(I)

CONTINUL

WU5(10)=RPSD(10)

VS 10)=RMS(10)

RETURY

EuD
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STRFOUTIVG LET4(3,I 5, 0In,Pil, G0 LULY, Y, AL, ML, ok, 0L ¢ L)

****************************i****************** fe de ke ok Je de de K e dede Kok Kk kK
LDT TUTIIDOLATES VALLUIE POY Thi DLGORIPILC 'L CUICE TG
THE DIESCRIBING FUNCTION TARLT

C***************************************************************
REAL LAl
DLHLLSIOL N(51) ,ALLY(51) ,ALL(51) ,APH(51),CS(51) ,BLLY(51)
NDF=51
IF(AW EX(NDE)) GG TG 1
I1=IFIX(A/0.01)+1
I2=I1+1
DX=a-X(I1)
LAM=ALIN(I1)+(ALA(I2)=ALM(X1) ) *DX/0.,01
DEL=ADL(I1)+(ADL(I2)=-ADL(I1))*DX/0.01
PUI=APH(I)+(ACL(I2)=2AT0(I1) )*DX/7.N1
GRAV=GS(I1)+(CS(I2)=GS(I1))*DX/N.01
DEILY=ADLY(I1)+(ADLY(I2)=-ADLY(I1))*D:%/0.01
RETURN

1 LAN=ALM(MLF)

DEL=ADL (HIDF)

PO I=APH(NLF)

GRAV=GS (1'CF)

RITTURN

END

OO0 a0

SUBROUTINE LL#5( 1 ,GRAV)
NIMEMSION X(51)
COMMON/COM2 1/CHD(5 1)
MDF=5 1
no 1 I=1,r0F

1 N(I)=(I-1)*1.01
A=P
PO 50 TI=1,NDF
IF(RLTWN(I)) GO ¢ 70

59 CONTINUF
IF(A.T2.X(I)) 50 TO 190
GO TO 90
70 IF(I.50.1) GO TC 80
I1=I-1

¥X=(A=Y(I1))/(X(I)=X(I1))
GRAV=( (CAD(I)=CAD(I1))*XX+CAD(I1))*29,.562
GO 70 140

80 CONTIIIUE
GRAV=CAD(1) *29,582
GO TO 140
90 CONTINUE
100 GRAV=CAD (UDEF) *22,562
140 COiTINSS
RETURY
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SUPRCUTIVE T.WuiT(A,D)
REAL*S E(12,12)
RIAL*S A(12,12)
REAL*3 DET
T.WGLR L(12),%(12),00F
COL:i0t /DOF /DOT
DC 10 I=1,DOF
DO 10 J=1,DOF
10 B(I,J)=A(I,J)*1.E=05
CALL MATINV(B,LOF,DUMM4Y,0,DZT,DOF,MARY)
DO 15 I=1,DOL
DO 15 J=1,DOF
15 A(I,J)=R(I,J)*1.7=05
D=DET
RETURY
END

SURRCUTINEG LATINV(RA,L, 8,1, DD UNRM,IY , NATR)

IMPLICIT KEAL*3(A-il,0-2)

IHNTEGER 2,P

CoM:1on/"P/R,P
o)
C MATRIY, IWVETEION WITH ACCOMPANYING SOLUTICY CF LIMLAL B UATIION
C

NIMCUSING I2IVOT(100) , IR (100,2) ,A(N 20, % (100, 1) ,BIV)I(100)
EQUIVALENCE (IPOW,JFPOW) , (ICOLINY, SCOLYU'1), (F)FAX, T, 31"AP)
o IFITIATLIZATION

c
8 MAFR=0
10 DETERN=1.0
15 Ce 20 J=1,4
20 IPIVOT(J)=0
30 DO 580 I=1,M
cc
C STARCH FOR PIVOT ZLE":nT
C
40 arAN=0,0
45 DO 105 J=1,N
50 IF (IPIVOT(J)-1) 60,105,F0
60 DO 100 K=1,1
706 IF (IPIVOT(¥)=-1) 80,100,723
80 IF (DARS(AMAX)=DALS(A(J,K))) 25,100,102
35 IROW=T
20 ICOL =V
95 AlRY=N(T,™)
100 CONTIMUE
105 corrItiue
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O 00

c
C

110

103
140
150
150
170
200
205
210

nBe ¥

€l

230
2580
260
27n
310
315
316

320

I2TVO(ICCLU Y=I2IVOT(ICOLL ) +1

Ier2ONCHARGR ROML TO PUT

R S R S e e e -
FIvoes crasrnyr o ov ol 0L AL

IF (IeCI=-ICOLI®) 140,2¢€0,1.00

NETERN=~DETINM
ro 200 T=1,0
5(7AP=A (IROY , L)

A(ICOLIY,L)=SWAP
IT(M) 260,2A0,210
DO 250 L=1,
SUAP=R(IRCY,L)

A(InO,5)=A(ICOLG,L)

C(IROM,L)=R(ICOLI™,L)

™ ICOLMM,L)=STAR
IMDEX(TI,1)=IP0™
INNZ(I,2)=ICoLa

PIVOT(I)=A(ICOL®",ICCLUM)

IP(SAES(DITERM) LT,

-~ wlas vaa

. ON+35) GO T 326

DETERM = RRTERM/1.0D+20
ChkkkkrrrRakhrhhkhhkhhkrxhk
COPEZCT OuE IS TIE FOLLOVING
DETER=NITLR*FPIVCT(I)

c**************** ¥k kode ek ke ok ok K

OO0

00

320
c

321
330
340
350
355
360
37n
C

380
390
400
420
430
4590
455
460
500
550

DUTERIFET.

pIV1IND PIVOT FOu 8Y DPIVCT KLIDENT

IF(DARS(PIVOT(I) ) .LE.1.00=-25) CC 7O 720
R(ICOLUM,ICOLUNM)=1.0N

Z0 350 IL=1,%

A(ICOLUM,L)=4(ICOLUM ,L)/2IVOT(I)

IF(M) 380,330,360
Do 370 =1,

R(ICOLW ,L)=R(ICOLLM,T.)/PIVOT(I)

REDICE NON=DPIVOT RCITIS

DO 550 L1=1,Y

IF(L1-ICOLITY) 400,550,400

T=A(L1,ICOLUM)
A(L1,ICOLUM)=0N.0
Lo 450 1=1,1

A(L1,L)=A(L%,L)=-A(ICOLW:,L)*T

IF(11) 550,550,460
0O 500 L=1,r

R(L1,0)=R(L1,L)-E(ICCLITT,L)*T

cCoNTINUE
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60¢ LG 710 I=1,u4
610 =:+1~-1
620 IF (IsDo(D, 1) =-I.cae(L,2)) 530,710,530
630 JROW=I:uDEX(L, 1)
540 JCOLy =l LX(L,2)
650 Do 705 ¥X=1,u
660 SUAP=D (¥, JFO)
670 .‘-‘\(K,JROY:?):A(}’.,JCOLUI'U
700 A(¥,TJCOLi1)=8iIA2
705 COMNTINU=
710 CONTIUUR
715 RETUPH
723 RITP,721)
721 FORNAT (11,157 ATRIZ 3INGITLAR)
722 MASV=1
723 RETNR'

BN
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11

[ A5 T N

10
13

n

NOUTILED SUAT(, PONTR, ROnTI, NN D, TL0ATR)

-
’BIﬁ” ROOT”(.),ROOTI("),WA”V(') -
I "? TR,
COJ"")”/‘:P/p P
IF(I I, T, r) 30 T 3
¥ 1=0n
w2="
%3=n
pe 1% I=1,
IF(ROOTR(I ))”0 30,40
F 1=K 1+1
GO TO 15
F2=2+1
GO TO 15
113=3+1
CO?ZTINUr
I7(¥1 ) GO 70 2

IF (X ~..\!...0) GO TO 31

IF(F3.nE.0) CC TC 11

GO 70 3

GRITE(P, 1N

CO TO 32

TPITz(P, 12)¥3

GO TO0 3

“RITCE(R,P)
DO 1 I=1,!
D81 B(I)= COS(ADAN2(AI'S(RCCTI(I)),=ROGTH(I)))

IF(ISTATE.Z2.0) RETURY
WwpITF(T, Q)
po 2 I=1,1

I~

(DAMR(T) e 20e Te ) GO T 4

EINTR(D,10)PN0TR(I),ROOTI(I) L2A1P(I),PO0T F(I),0007TI(T)

30 70 2

1

SRITTP, 13) QOTR(I),RO0TI(I) , FGOTIR(I) , TOOTI(I)

CONTINUT

FPORMAT(1LO, "SYSTE T5 LUTAALLY CSWAYLL, v o=',I5," *OUTE Ul
ZEPO REAL PARTS'//)

FOPYAT(10, " evsTL UHNCTANLT, X3 =',15,' ROOUS wIUE PoSLUIVL
REAL PRETS'//).

FORMAT(1i10, 'SYSwLM SUABLE, ALL ROQTs file LEGATIVE Tal DAaRT3E'//)

FORITAT (1H0 ,40¥%, "THE =IGELVALULS RVD DAMPING FACTORS ARL'///6X,

'REAL PART',4%, "' I®AGINARY PANT',4X,' OarPIsG raciot 3%,

' LEAL PART',4XZ,' INAGIIAPY PART'///)

FOWMAT(1: ,215.8,4%11 Jop)’ ,‘., £15.2,650,2155,45,215.2/)

FORIAT (11 ,215.8,4X,C15.8,5%, "' APIRIODIC ',6%,L015.9%,-1¢,:15.8/

)3

RITURL
XD

13
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SanCJTI:X ikl (U, NI, )
NICCLETION UR(24) ,TT(24) ,7(24,24) ,0(24,24) , 005, 20 R (12, 24) ,00(12, 1
1 3),N109(12,. LI ND(12,24),TTaRTS(12,34) ,0007(20%)
IMTRGLRE Q,D,POP,DOYE
COMON/RP/R
corrnt/n \‘[/"‘:U*
CQIMOM /MOF2/NHOF?
X=1
M=DOF?2
NHALF=Y/2

1009 IF (K.GT.24) GO 70 500N
II(UI(XN) .7 .0, 0) O TO 2000
npo 2000 I=1,:1,1
S(I,v)=2(I,%)
C(I,¥)=2(T,%+1)
R(L,¥+1)=3(1,¥)
C(I,Z+1)==C(I,%)

2000 CONTINUT
K=+2
GO 70 1000

3000 DO 4000 I=1,Y,1
B(I,)=2(I,X)
C(I,X)=0.00

4000 COATINUE
H=K+1
S0 7O 1000

5000 DO /000 I=1,HHALF
CO 6000 X=1,4

6000 WO I,v)=R(I,%)*B(1,K)+C(I,%)*C(I,¥)

DO 7500 %=1,

¥ AA=EMOL(1, %)

DO 6500 JJ3=2,MUALT

TP (FMON(JI, V) JLOWVHAY) G0 10 6500
R1AN=X0D (3T, K)

6500 olol¥ing S P
XHORM( K) =AY
nO 7000 I=1,}ALF
7000 IF (WIOFPM(X) T 20D(I, X)) LL=1

DO 7500 L=1,MHALF
BF(L,%)=(R(L,X) *P (LL,K)+C (L,K) *C(LL,*) ) /KUCRI(X)
CR(L,X)=(C(L, %) *B(LL,X)=B(L,%) *C(LL,X) ) /ZUORM(K)
BIGIOD(L,K)=SCRT(PR(L,K) *eR(L,X)+C (L, %) *C&(L,¥))
IF(RICIOD(L,K) .NZ.0.00) GO 70 7501

ELCARG(L,K)=0.

GO TO 7509
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7501
7500
B2IGC

8100

8200

2500

3300

9400
Qcoe

9500
97C0

TISATO(L,T)=8T 3TN (NI, ), ST, )
cos‘rp"'\ rre
coNTINGE

WRITE(P,9200) NHALE

KLd=

NLJSJ=4
WEIVE (P,9350) (X,X,r=rLJ,»1LJJ)
URITE (P,9400) (I (), 9T (K) ,¥X=L.J,xLJJ)
Wwal'th (P,2530)
DO 8200 L=1,WHALF
urIre (P,2600) L, (
IF (KLJJ-1) 850C,9700,
CCHTINUL
LLJI=KNLJI+4
KLJII=FLIJ+4
IF(ZLJJ.LT.W) GO TO 38100
XLI=1=3
LJJ=
GCCoTN a1ne
TOFPAT(IEC, 20V, "TIGENMYALITVS AND TISLVICUORS, V1AAT LT 1LY/

?1 OL(L,¥),CIG0iG(L,Y) ,/=xLJ, T LJJ)
)

1 20%,' THD ZIGONVALUZ, MUXT !',I2,' RIS TNTSE ARD COIRPONTNTS Of'/
1 20X, " THL DISPIACSIENT SIGENVECTOR It Jal=DLALL Thannt/)

FOR?AT (1H0"**k************************************************'/
1 1,60, 4(PR(Y,ID, V) ,AN, RI(,I2, ") ,a3Y))

FORLET (1n ,3%, 8E14.5)
FARHAT (130, 20, 'FIGHMVECTOR COPOLTT TS/
1 15,5y, 4( "HODULUS ','  FLASE DLG ")
FORGAT (14 ,I2,(BE11.5))
RETURY

aD

]

-298-



STATISTICAL NUECITRING FUICTIOT PioSPa’ TON

A IPLYE D.0.F. HALT=CAP LOCCTOTIVT “GDEL
GTVOLLR O T rAIL
PAINKETITO STUNTENS ( k% ey CRITICAL DT k)
DEADRAND IS REPOCID Y 50% T ALL IULES
116,01 0,021 06 VLLACITY, 4
1615 5, 1.10,10C,IPPOR ,ICUSP,INN S
10, IGHL, TLEY

.13600a7% 00 N.124245 00 0.20000E 00 0,22000C 00 9.36C007 00

0.44:20L 03 0.R768NE-03 0. 115C4rR-C2

0.12429E 00
0.10496:5-02

1210, LOF ,INTL

0 4, IFRED, ITEM

0.40000% 00 0.10000E 02 50 7 1.00 50 1, \11,42,I22,ITCR,EPs,523,133
0, IURLTE

0.2956258 02 0.79380C 02-0.125C0C 01 0.85000% 02, A,L1,L2,L3
0.250005 01 0.502008 02 C.50000. 01 0.20000E 02 0.2000060 20, 0Ik, e s, mBlhi, 7
0.35900E 07 0.45240T 06 0.5358600 05 0.405505 07, F11,F12,P-2,F33
0.30000E 02 0.40000F 02 0.32300L 03 0,66000% 05 C.178u0T 04,057,017, C,La, Ihlhe
0.16500% 05 0.3560005 04 0.5G000% 05 0.17800E 06 0.3¢000% OL,Iih,IHx,LLC
0.75000% 02 0,75000: N2 0,75000C 02, cPy(I)

0.216606E 04 0.21556E 04 N,21656F 04, CPYAL(I)

0.11120E 06 0.11420F 07 0.11120E 06, CUCeRI(I)

0.11140E C2 0.11440% 28 N.11440F OR, CPPUI(I)

0.525070 09 0.18651% 07 C.23CUOE 05 0.60000:8 03, KSPIIL,CLPLI,KEY,CLY
0.14400E 05 0.14400% 05 0.14100F N5, PY1(I)

0.187200 N9 N,137201 09 C.18720F N2, SYAS(T)

0.124R20% 10 0.12480F 10 0,12490F 10, PYAW2(L)

0.27995F N8 C.100C0F N6, vVSVAL,TCD

0.18756% 00 0.1275AL 00 0.13756% 00, DLY(I)

0.47400E-02 0.474005=-02 0.474007=0Z, DLYATA(T)

0.36600F=01 0.3A6507=01 0.3656000-01, NEL)(1=3)

0,A79233=-01C
0.669487-01

C.57993c-01
0.659¢3r=-01

N.672971=01,
N.AE0487-01,

at11,112,
LAYDGA (1-3)

A3

0.287097=02 0,307007=02 0,3276a0-02, 7L
0.9944GE 00 0.994453 60 N.02446E 00, KDILY
0.10329 01 0,10329% 01 0.10329: 01, 1CRAV
0.14400E 05 0.14400E 05 0.14400% 05, K71
0.18720E NS 0.18720E 09 0.187208 09, v21,r22,K8
0.06000E 07, cer

0.108658 00 0.103580 00 0.92433r=-01, GPLI
0.0100CE G0 0.00010E 00,

0.00100c 00, SIGLOW

0010 1, DISP PSD,DISP TF,ACC PSL CAR &TUCK, KL TF
1, EVEC/IVAL QPUIO
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APPENDIX D

DESCRIBING FUNCTION TABLES FOR
HEUMANN AND NEW WHEEL ON NEW
RAIL AT STANDARD GAUGE
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TABLE D.1:

ag

.00
Nn.01
.02
0.03
0.0n4
0.05
0.06
0.07
0.08
0.09
0.1()
0.1
0.12
0.13
0.14
.15
0.16
N.17
0.18

L)

o
~

o« ®
NN M N
e B oA U 1 BN U Iy 3

ODOC DD OO«

0.28
0.29
0.30
0.31
0.32
0033
0.34
0.35
0.36
0.37
0.38
0.39
0.40

HEUMANN WHEEL ON NEW RAIL AT 56.5" GAUGES

GAUSSIAN PROBABILITY DENSITY FUNCTION

KA]

0.24514F+01
0.24514C+01

Ue30062E+0U L

0.37186L+01
0.43514LE+01
0.496120+01
0.56067E+01
0.62258E+01
0.h8365E+Ul
0.74378E+01
U.80284E4+01
0.36041E+Q1
D.91560C+0U 1
0.96719E+01
0.10141E+02
0.10556E+02
0. 10912E+02
0.11210E+02
0.11450E+02
0.116388+02
ND.11775E+02
N.11866E+02
0.11%17E4+02
D0.112930E+02
0.11911E+02
0.118645+02
0.117%94E+02
0.11704E+02
0.11599:+02
0.1148208+02
06113572+02
0.11226C+02
0.11092E+02
0.10957E+02
0.10623E+02
0.10691E+02
0.10562E+02
0.10437E+02
0.10316E+02
N0.10199E+02
0.10088E+02

A

0.83869E-01
ND.88869E-01
0.,10188E+00U
0.11497E+00
Ue1250CHE+DVU
0.14116E+00
0.15425E+00
0.16734E+00
0.18C47C+00
0.19382E+00
0.20793E+00
0.22365T+0C
0.24186E+00
0.206314E+00
0.28755E+00
N.31471C+00
0.343941+00
0.37439E+00
0.40523E+N00
0.43570E+00
0.46518E+00
0.49320T+N0
0.51245E+00
N.54369E+00
0.56584E+00
N.585883E+00
0.A0383E+C0
N.61980E+00
N.633539E+00
0.64627E+00
0.65700E+0U
0.66644E+00
0.h74506E+00
0.68155E+00
0.68756C+00
0.6927 1E+00
0.69712E+00
0.70088E+00
0.70408E+00
0.70680E+00
0.70911E+00
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Ko

Ce3RHT5E-0U1
N.386750-01
U.3870YE=-01
0.29449C-1)1
0.41717E-U1
0.46253E-01
0.52270E=-01
0.58889%E-01
U.H65626LE-01
0.72301%=01
0.789603E=01
0.859330=-01
0.93720L-01
0.102032+00
Vel140G45+00
0.12733E+00C
0e 1428 1E+00
0.16027C+00
0.179345+0C0
N,19959°c+00

«22056E+00
0.241821+0nN
C.26300E+00
0.28376E+00
Le303860+00
0N.,3230984+01)
D.341312+00
O 35R43T+00)
0.374405+00
0.382200+00
Uebu286C+0C
0.41540E+0¢C
0.420633C+0V0
0.437306L+0C0
Ueb446915+0U
0.45560E+00
0.46349E+00
0.47067E+00
0.47719E+00
0.483122+00
0.48351:+00



(in)
n,n0
(ro0)1
0.Nn2
N.03
N, Nk
.05
.06
0.07
0,08
0.09
0.10
N.11
0.12
0.13
0.14
0.15
0.16
0.17
0.18
0.19
0.20
0.21
0.22
0.23
0.24
0.2
0.76
N27
0.26
0.2
0.30
N.31
0.32
0.33
0.34
0.35
0.36
0.37
0.38
0.39
0.40

K
g

N.255321+01
0.255330+01
N,32064E+01]
N,33669C+01
N.45351E+01
0.52134C+01
0.590312+01
0.66066C+01
0.73323E+01
0.31280%5+01
0.911025+01
Q.104515+02
Vel229070+02
V.14697C5+02
0.17580E+02
N20792E+02
Ue241415+02
0.274428E+02
G.3U543E4+02
0.33333C+02
0.35745E+02
0.37748C+02
0.393415+02
N0.40540C+02
0.413795+02
0.41896E+02
0.42135E+02
0.,42141E+02
0.41955C+02
N0.41A16E+02
0.41159E+02
0.,40614E+02
0.40007C+02
0.393586E+02
0.38635C+02
0.38002E+02
0.37319E+02
N0.36646E+02
Ue.352878+02
0.35347E4+02
0.34730E+02

Ka
0.25033C+01
N.2503306+01
N.315220+01
13806 30+01
N b b0634TC+0]
051234F4+01
0.576620+01
0.64512EC+01
N,71168C+01
0.779560+0 1
0.04997E+01
0.92551C+01
Ue.1VUT7T7E+0D2
0.109615E+02
0.11884L+02
V.12811C2+02
0.13707E+02
C.145410+02
0.15287E+02
0.15932C+02
U.1H6468E+0D2
N.1683940E+02
0.17213E+02
0.17433E+02
0.17564E+02
0.176160+02
0.17600CC+02
0.17528C+072
0.17409F+02
0,1725474+072
0.170728+02
0.16869E+02
N.166530+02
0.164298+02
0.16200E+02
0.15972C+02
0.15746E+02
0.15524E+02
0.153U9E+02
D.1531008+02
0.14%00E+02
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o}
(in)
Q.00
0.01
N.02
0.03
C.N4
0.05
0.06
0.07
0.06
0.009
0.10
0.11
0.12
0.13
0.14
0.15
0.16
0.17
0.18
0.19
0.20
0.21
0.22
0,2
0.24
0.2
0.26
0.27
e 28
0.2
0.30
0.31
0.32
0.33
0.34
0.35
0.36
0.37
0.38
0.39
0.40

TABLE D.2:

K
4

U.,2196310+01l
0.219635+01
0.270336+01
0.33201E+01
0.36873t+ul
0.44716E+01
0.50486E+01
0.56188E+01
0.60117C+01
0.52403E+01
0.h06361C+ul
0.71312C8+01
0.76393E+01
0.81749C+01
0.87164E+01
N,22518C+01
0.,97719C+01
0.10276E+N2
0. 10902E+02
H.11478c+02
0.113701+02
N.12094FE+02
D.12230E4+02
N0.12322E+02
0.12389E+02
0.12441C+02
0.,12471C+02
0.12470E+02
Ue1243%E+02
0.123625+02
0.12255E+02
0.12113E+02
Ue.11944E+02
0.11757E+02
0.115618+02
0.11356E+02
0.11144E+02
0.10925CE+02
0.10702E+02
0.10476E+02
0.,102512+02

A

De540190~0l
0.34012E=-01
V. 943000-01
0.10717E+00
0.118Y5E+00
0.13112E+00
0,14317E+00
0.15514E+00
0.16343LE+00
0.16822E+00
0.17653E+00
0.18714E+00
0.19812E+00
0.20989F+00
0.22206F+00
0.23444LE+00
N,24690E+00
N.25952C+00
0.27821E+CC
0.30306L+CO
0.34539€E+00
N.38664C+C0
0.42954F+00
N.47115E+00
0.51040E+0¢C
N.54601FE+00
0.57728E+00
N.60468C+00
0.02632E+0U
0.64870E+00
0.66592E+00
0.68042E+00
0.069242E4+00
0.70233C+00
0.71U37E+0U
0.7167 1E+00
0.72157E+0¢C
0.72511E+00
0.72747E+00
0.72874E+00
0.72905C+0U
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TRAPEZOIDAL PROBABILITY DENSITY FUNCTION

Ko
0e38431E=-01
0.38431E-01
G.28431.°-0U1
0.366675=-01
U.39155E-ul
0.4C718E-01
Ue.45390E-01
0.51734E-01
0.56320E-01
0.58590E-01
0.h37378=-01
0.69607E=-01
0.750412-01L
0.50850E-01
. RO75YE-01
0.,92542E-01
0.98086E-01
N.10232F+00
0.1C802E+0U
N.11602E+00
.12759E+4+00
0.14549E+00
0.16930E+008
019619400
0.22476E4+00
0.25330F+00
U.28096L+0UC
03074 4F+00
Ue33212E+00
0.35520C+00
(376261400
0.395595+00
C.413U3E+VU
0.42386LE+00
Ue 64302E+00U
0.455680+00
0.46692E+00
0.47688E+00
0.48565E+00
0.49335E+00
U.500COE+00



o}

(in)
0,00
0.01
0.02
0.03
0.04
N.05
0.06
N0.07
0.N8
N.09
0.1¢
G.l1
0.12
0.13
0.14
0415
0.160
0.17
0.18
0.19

.20
0.21
0.22
0.23
0.24
0.25
0.26
0.27
0.28
0.2¢
0.30
0.31
0.32
0.33
0.34
0.35
0.36
0.37
0.38
0.39
0.40

g

0.229116E+01
0.229115+01
020127E4+01
0.34508%+01
0.00419F+1011
0.46581E+01
0.527760+01
N.59015E+01
0.h3381°+01
06587 2E+01
0.70265E+0n1
0.75982C+01
0.82010E+01
0.88632C+01

c05674E4+01
0.10308r4+02
0.11N82E+02
0.119120+02
0.13964E+02
0.191332+02
Ue25514E+02
7.31933E+02
0e37799E+02
0.42422C+02
0.45730E+02
0.47905E+02
Ve49267E+02
0.499025+02
0.49953E+02
0.49529E+02
0.48773C+02
0.47745E+02
0.46547E+02
0.45221E+02
0.4383F+02
0.42411E+02
0.40981E+02
0.39551E+02
0e38146E+02
0.36770E+02
De35439E+02

K

8,
0.,22426E+01
0.22426E+01
0.27615E+01
0.339510+01
0.39204E+01
0.4587 2F+0 1
0.51909C+01
0.57928F+01
3 A2110E+01
D.64518T+01
C.68741C+01
0.740087+01
0.7 9683E+01
0.85674T+01
C.OLl3550+01
0.93110E+01
0.1U0635E+02
0.110610+02
Q.120UTE+U2
0.133680+02
0.14849E+02
0.162350+02
0.17354E+02
0.18186E+02
C.18776E+02
0.19175E+02
0.194626E+02
0.19535E+02
0.19521E+02
0.193975+02
0.19187E+02
0.183901C+02
0e125613+02
0.18181E+02.
0.17782E+02
0.17367F+02
0.15943E+02
0.165126+02
0.16079E+02
0.15643T+02
0.15225E6+02
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g

(in)
0.00
.01
0.02
0.03
0.N4
0.05
0.00
(07
.08
0.09
O.1u
0.1l
0.12
0.13
O.14
0.15
0.16
0.17
0.18
OO19
0.20
0.21
0.22
.23
0.24
0.25

TABLE D.3:

KA]

0. 15060E+01
N.150607+01
N.150917+01
0.14374E+01
0.13539E+01
0.12280E+01
0.10655E+01
0.38967E+00
0.72025E4+00
0.57759L+00
0.49279C+00
N.50340C+00
0.63810C+00
0.90600E+00
0.12962E+u1l
0.178430+01

«23395E+01
0.29311C6+01
0.353218+01
0.41205E+01
0.468012+01
0.51995E8+01
0.56717E+01
N0.60034E+01
0.h4636E+01
N.67836E+01
0.70500E+01
0.72844F+01
0,74727E+01
0.76255F+01
N.77469E+01
0.78414T+01
0.79127E+C1
0.79646E+01
0.80001£+01
0.80221C+01
0.80330E+01
0.80350E+01
0.802938E+01
0.80189E+01
0.80035E+01

A

N.7512ut=-01
n.73129n-01
0e77102E=01
0.,74722E=-01
0.73053E-01
0.72425E-01
0.72331E-¢1
0.72262E=01
0e72099E-01
U.72350E-01
0.74350E~-01
0.30121LE=-01
0.91307E~-01
0.10883e+00
0.13258E+uvU
0.16164E+00
0.19460E+0UV
0.23017C+00

Y.26679C+00)
0.30334E+00
0.33891E+00
0.37282E+00
0.40463E+00
0.43406E+00
0.460975+00
0.43534E+00
0.50722E+00
0.52673C+00
0.54400E+00
N,559237+00
0572538400
0.58424E+00
0.59440E+00
N.60322E+00
O0.hLUSTE+OV
Ce61749E+00
0.62321E+00
0.62816E+00
0.63243E+0C
0.63612C+00
0.63930E+0U
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Ko

N.Hh92320-0
N.62232E=-01
0.699560-011
N.6997 4E-01
Deh98670=-01
(1.6971905=-n1
0.69590E=-01
0.69505C=-01
Ue0693991=-01
0.69351E~01
0.69729E-01
0.71258E=01
Ue748306L=ul
0.31229E=01
0.90859E-01
01037 4E+00
Ue11957E+0UU
0.13780E+00
0.13781u+00
0.17898E+00
0.20072E+00
0.,222520+00
«24400E+00
0.26481C+00
0.28474FE+0U
N.30362E+00
0.32133E+00
0.33783C+00
0.35310L+00
0.36715C+00
0,38001E+00C
N.39176E+00
0.40245E+00
0.41215T+00
0. 42095E+00
U-42892E+00
C.436145+00
0.44267E+00
0.44858E+00
0.453938E+00
U4 5879E+00V



K
9

0.16577E+01
0.16577E+01
Bs16615E+01L
N.158530+01
0.14974F+01
0.13645E+01
0.11933E+01
0.10094E+01
0.850183E+00
0.82129E+00
0.11460E+01
N.209505+01
0.38438E+01
0.63910E+01
0.95759E+01
N.13151C+02
0.16853L+02
0.20462E+02
Ce23805E+02
0.206776E+02
Ve293106E+02
0.31411E+02
Ue33V71E+02
0.34327E+02
0.35220E+02
N.35794E+02
Ce36uU93L+02
0.36176E+02
0.360720+02
0.35822E+02
U.35461E+02
0.35017E+02
0.34514E+02
0.33971E4+02
0.33405E+02
0.32828E+02
0.322505+02
0.31679E+02
0.31119E+02
0.30575E+02
C.300V49FE+02

K
By

0. 1353640E+01
0.15640C+01
Uel13672E+01
N0.14925C+01
Ve14056E+01
0.12748E+01
0.11060C+01
0,92370T+00
0.75104E+00
0.62312E+00
0.A0451C+00
).773990+00
C.118687+01
).18509C+01
N.27302r+01
0.37615E+01
U.48744%+01
0.600442+01
Ce70998E+01
0.31232E+01
0.90506L+01
0.98691LE+01
VelUST74E+UL
0.11168E+02
Uel11655E+uU2
0.12046E+0 2
0.12343E+02
0.12573E+02
0.,127325+02
0.12835F+02
0.128%0E+02
0.12907C+02
0.12893E+02
0.12854E+02
N.12796F+02
0.12723C+02
0.12641E+02
0.12550E+02
0.124558+02
0.123577+02
0.12258E+02
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TABLE D.4:

k
4
Q.94 46F+00
N.9944654+00
0.,10210E+01
0.10505E+01
0.107447+01
0.10957C+01
O0.11136E+01
N.,11282C+01
D.11367E+01
0.11428E+01
V.11506C+01
0.11570C+01!
Uel11505E+01
0.11607C+01
Os11582E+01
0.11529E+01
0.11433E+01
0.11525E+01
0.17034E+01
0.25348E+01
Ue34212E+01
N.43081E+01
0.5161238+01
0.59327E+01
0.h6130E+01
0.71933E+01
0.767983E+01
N.80791C+C1
0.83936E+01
0.3R400E+0)1
0.,R&241E+01
0.89540F+01
0.90360E+0U1
0.,90761%+01
0.907306RE+01
0.90485E+01
C.89919C+01
N0.89121C+01
Ve 88144E+01
0.37026E+01
Ue85707E+U1

A

0.A0942E=-01
N.65948C=-01
0.786931n=11
N.76014E~-01
0.739030=-01
N.72095E=-n1
N0.71R859E-01
0.72282E=-01
0.,72605E=01
0.726530=-01
0.72939E=-01
0.73491L=-01
0.72673L=01
0.71540E~01
0.70451E-01
0.69458E-01
0.6851UE=U1
0.683498E-01
0.90372E=-01
0.13256E+00
0.18537E+U0U
0.24196C+00
0.298115+00
0.35635E+00
0.39780E+00
0.43989E+00
Ne470674E+00
0.50887E+00
.53662E+00
0.56058E+4+00
0.9580945+00C
N.59825E+00
Ve H 12735400
0.624775+00
0.63463E+00
0.64258E+00
0.04884E+00
0.65360E+00
0.HS57UV4E+UU
0.65930E+00
0eHOUSOGE+UU
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NEW WHEEL ON NEW RAIL AT 56.5" GAUGES
TRAPEZOIDAL PROBABILITY DENSITY FUNCTION

K

0.h79¢30=-01
N,67993E=-01
NeHY455E-01
N.6959%94F-01
0.69513E-01
0.69429C=-01
0.69248E~-01
0.69014E=-01
0.68901c~-01
N.68915E-01
Ve h8B840E=-01
V.69066L-01
Heb69170E-01
0.69025E-01
0.680639%u~01
0.68081E-01
0.674U0iE=01
0.66757E=-01
0.656749C-01
0.78695E=-01
0.97744E-01
0.12344T+00
0.15298E+0¢C
0.18335F+0¢0C
213618+ 00
N.24265E+00
0.270000E+0C
0.2955&45+00
0.31889E+00
0.34038E+00
0.35973E+00
N3772984+0"
N,39301=+00
0.407128+00
0.4196754+00
0.43084E4+00
0.44070E+00
04494 28+00C
0.45706E+00
0.463755+00
0.469575+00



(in)
N.0Y
0.01
0.0N2
0.03
0. 04
0.05
0.N6
0.07
0.08
0.09
N.10
0.11
0.12
0.13
O.14
0.15
.16
0.17
0.13
0.19
0.2
0.21
0.22

0.23

K
g

UelllBUL+UL
0.11180E+01
O.11473C+01
U0.11781E+01
0.12028E+01
0.12248C+01
0.124315+01
0.12578C+01
0.12664E+0U1
0.12726E+01
0.12805E+01
0.12871E+01
0.12905FE+01
N.12903E+01
0.12870E+01
0.12805E+01
0.12695E+01
0.14593E+01
(eh2259E+01
0.13806E+02
0.21790E+02
0.28978E+02
0.34487E+4+02
0.38363E+02
Ue b TU3BE+02
0.42719C+02
Ce43608E+C2
0.43885E+02
Coes3711c+02
0.43183E+02
0.4241YE+02
0.41467E+02
0e40406E+02
0.39254E+02
0.38056E+02
0.36827E+02
0.355956+02
N.343670+02
0.33161E+02
0.31982F+02
0.30836E+02

Ka
N0.10329L+01
0.10329E+01
0.10604LE+0U1
0.10908L+01
0.11154E+01
0.11373C+01
0.11557:+ul
0.11707C+01
¢.11793kE+0l
0.11856E+01
N,11935E+01
0.120005+01
0.120340+01
0.12034E+01
0.12007E+01
N0.11950E+0 1
0., 118495+01
NJ2200E+0 1
0.24455E+01
0.45349E+01
Ue672688E+01
0.370058+01
0.1U353E+02
0.11680T+02
0.127328+02
0.135392E+02
O.14136L+02
0.14558E+02
0.14830L+02
0.149325+02
U.15G37E+02
0.15011E+02
0.14922C+02
0.147775+02
0.13590E+02
0.14365E+02
0.141145+02
0.13842C+02
0.13556E+02
C.13260T+02
0.12958E+02
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