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ABSTRACT

A joint flow control and routing (JFCR) strategy is proposed for store

and forward communication networks. The strategy is based on a convex opti-

mization problem in terms of the average input rates and multi-commodity

flows and is shown to have the following properties: First the average load

of each buffer stays below some arbitrarily chosen level for the input rate

and routing assignments of the strategy. This level can be chosen so as to

upper bound the probability of buffer overflow arbitrarily. Secondly, by

proper selection of the cost function, it is possible to utilize the network

fully and to achieve a variety of different types of priorities in the serv-

ices offered to the users. Finally, the routing assignments of the strategy

correspond to a routing strategy which tends to minimize the total delay when

the network is lightly loaded and tends to prevent congestion when it is

heavily loaded. Furthermore, the proposed JFCR problem is shown to be equi-

valent to a minimum delay routing problem corresponding to a bigger network.

Accordingly, any minimum delay routing algorithm can be converted into a

JFCR algorithm. Using this approach, a class of JFCR algorithms with distri-

buted computations at the nodes are developed.

Under certain conditions, a one to one correspondence is shown to exist

in a store and forward network between the set of average input rates and the

set of average number of outstanding packets of commodities. This unique

correspondence is used to show that in practice the average input rates can

be adjusted as desired by restricting the number of outstanding packets on

each commodity (window strategy). It is further shown that the upper bounds

(window sizes) corresponding to each set of input rate assignments can be

computed distributively in the network.

If a sufficiently fast algorithm with frequent updates is employed, the

JFCR strategy can cope with quasi-static variations of the load offered to the

network. On the other hand the window strategy is effective in controlling

the dynamic fluctuations of the traffic. Thus the analytical features and

quasi-static effectiveness of the JFCR strategy is combined with the fast

dynamics and practicality of the window strategy.
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CHAPTER I - INTRODUCTION

1.1 Description of the Problem

In a store and forward (S/F) data communication network, each node is

equipped with some storage capacity, called a buffer. The messages arriving

at each node will be queued in this buffer and wait until they can be trans-

mitted over an appropriate outgoing communication link. As in the case of a

single server, the sizes of the queues built up in the buffers depend on the

rate of the traffic seeking service by the network. As the rate of arriving

traffic increases, these queues also will grow in size and the messages will

undergo larger delays when passing through the network. Since the nodal sto-

rages are limited in size, if the input rates continue to increase, eventual-

ly some of the buffers will become congested by the stored data.

When congestion occurs, i.e. when some of the buffers of the network

get congested with the data waiting for available links, the efficiency of

the network drops since those links which lead to saturated buffers can no

longer send data. Therefore, in this situation, an increase in arrival rate

leads to a decrease in the service rate. This is an unstable situation and,

unless the inputs to the network are reduced sufficiently, will drive the

network more into congestion and more buffers will become saturated. As the

number of nodes with saturated buffers increases, a situation known as "dead-

lock" will occur. A deadlock involves several saturated nodes, each one

filled up with the data which should be sent to other saturated nodes. In

effect, no transmission of data remains possible between these nodes and

they will be locked up to each other unless some of the buffered data is

dropped out. A deadlock may even involve all of the nodes of the network.

The above comments are roughly illustrated in Fig. 1.1, where the

throughput of the network is sketched versus the total stored data in the
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buffers. Although the term "throughput" here is a vague notion, since it

could be interpreted either as the sum of the throughput of all commodities

or sum of the flow of all the links, stillwe find this diagram useful in

demonstrating what happens in the network.

4-i

0

Fig. 1.1 to G

Buffer Utilization

In a well-designed network, the nodal storagE and link capacities are

properly sized so as to accomodate peak hour traffic requirements and to ab-

sorb reasonable short-term fluctuations within the peak hour. This does

not guarantee, however, that the input traffic will never exceed the limits

of the network. If controls are not imposed, a sufficiently high burst of

input traffic can always drive the network into the congestion or deadlock

states.

Adaptive routing, flow control and deadlock prevention refer to three

types of control schemes which are necessary in order to maintain a small

delay and uncongested traffic in the network. A routing strategy, while

assuming no control over the rate of arriving traffic,often tries to route

the data through the network with the objective of minimizing the total

number of messages in the network for the given input rates. When conges-

tion is likely to occur in some parts of the network, adaptive routing can
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provide some relief by offering alternate routes to the data passing through

the congested regions. However, if the input rates are higher than the max-

imum flows achievable by the best routing, then congestion will still occur.

Adequate control procedures must, therefore, be developed to regulate

input rates and prevent the network from entering the congestion region.

The ensemble of such procedures is generally referred to as the flow control

strategy. In a well-designed network some additional control means should

be available to avoid deadlock if the flow control procedure does not work

and the network becomes partially congested. This latter control procedure

is referred to as a deadlock prevention mechanism. Here in this report, we

are only concerned with the routing and flow control problems with the em-

phasis on the flow control. A discussion about deadlock prevention can be

found in [1], [2].

The problem of routing has been an active research area in the field

of data networks in recent years and several static, quasi-static and dyna-

mic routing algorithms using central or distributed computations have been

studied [3] - [6]. The objective of most of these algorithms is to minimize

the expected number of messages which are in the network. This is equivalent

to minimizing the expected delay of messages travelling through the network.

This type of routing is called a "minimum delay routing". There is a differ-

ent type of routing problem, considered by J.R. Yee [6], with the objective

of minimizing the congestion of the most congested link, that is to minimize

the ratio of flow over capacity (f/C) for the link with the biggest such

ratio in the network. This type of routing is called minmax routing. Minmax

routing currently appears to be more difficult to implement than minimum

delay routing. However, it is probably more meaningful with respect to the

congestion problem, since it tries to minimize the congestion over the worst
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link. Both types of routing policies, however, frequently lead to very si-

milar routing assignments [7].

While the routing problem is intensively studied, there is little work

done in the area of flow control. Our objective in this research initially

was to develop a flow control strategy for data communication networks.What we

came up with, however, is a unified approach to both routing and flow conrol.

The kind of congestion that we are concerned with in our study here is

the saturation of intermediate nodes in a S/F communication network. This

is sometimes referred to as store and forward (S/F) congestion. There exists

a less fundamental kind of congestion in S/F networks where different

packets (sgements) of the same conversation may take alternate routes. These

packets must therefore be reassembled in the correct sequence before delive-

ry to the destination. Deadlock may occur if the number of outstanding

packets exceed the size of the reassmbly buffer. This is known as reassembly

congestion and is less interesting conceptually because it is an isolated

problem involving only an interaction between a source and a destination

node.For this reason we focus on the more general problem of store and

forward congestion and by "flow control" we mean that kind of control neces-

sary to prevent it.

Basically the objectives of a flow control design are as follows:

i) protection against congestion;

ii) minimum reduction of the network throughput and minimum

overhead in normal network conditions;

iii) fairness with respect to all network users.

It is important to keep the second objective in mind because otherwise

one may shut down all ports of the network in order to protect it against

congestion. The third objective becomes important when a nework is conges-
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ted and it is necessary to reduce some of the input traffics. The question

is which conversation should be reduced first.

1.2 Historical Background and Previous Results

The problem of flow control in S/F networks goes back to early 1970's

when the ARPA network was developed to demonstrate the feasibility of S/F

networks. Since then there have been many articles written on the subject

and several examples of flow control strategies are found in the literature,

a few of which are implemented on real networks [8] - [13]. Gerla and Chou

give an excellent summary and critique of some of these strategies [14].

Most of the proposed flow control strategies so far have been ad hoc and de-

spite the importance of the subject, it appears that little systematic work

has been done to formulate the general problem and to investigate the re-

lationship between network congestion and other important network functions

and parameters such as routing strategy, transmission delay, buffer size,

etc. However, some of the suggestions have interesting features. Here we

refer to some of the work done so far:

Perhaps the most direct forward flow control scheme is the one proposed

by D.W. Davies and simulated in National Physical Laboratory (NPL) UK [9].

Here the idea is to keep the total number of outstanding packets in the net-

work below some critical number P. This can be done by circulating P empties

(places) through the network. A packet can enter the network only if it can

capture one of these empties. The empty will be released once the packet

is at the destination. The method does not prevent local congestion, how-

ever, since it controls only the total number of packets but not the packet

distribution in the network. Proper distribution of the empties through

the network in order to maintain a fast and effective service to the pack-

ets waiting at the ports is another critical problem.
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Another strategy which appears to be the best among the existing ones

is the window strategy [14]. Here the number of outstanding packets between

each source and destination pair is kept below a given number called the

window size. The window size corresponding to each source-destination pair

is usually fixed but might be updated based on some flow control table in-

formation circulated in the network. The proposal does not describe, how-

ever, how the updating procedure could be performed. It is worth noting

that even with fixed window sizes, this strategy provides some adaptive flow

control since the input rate for each source-destination pair decreases as

the number of highly active source-destination pairs increases.Nevertheless

this change is not enough to recover the normal performance of the network

when it has become congested because of too many active source-destination

pairs.

As examples of the few analytical works done in this area, we mention

two articles. The first article, by Pennoti and Schwartz [11], considers

the effect of the traffic over a set of tandem links on the service offered

to other conversations each of which uses only a single link out of this set.

Statistical analysis is then used to evaluate the result of applying some

window sizes on the internal traffic. But the analysis is limited to a

set of tandem links rather than the entire network and in effect establishes

only that by reducing the input rate of one commodity, a better service can

be offered to the others.

A more interesting flow control analysis is presented by Lam and

Reiser [12]. Here flow control is achieved by applying a limit for every

node on the percentage of the corresponding buffer which can be engaged by

packets entering the network at that node (input buffer limits). Due to the

complexities involved, a statistical analysis is performed only for a homo-
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geneous case in which there is complete syw=etry amongst the nodes with

respect to the number of incoming and outgoing links and their capacities,

the rate of arriving traffic, the routing parameters and the available

buffer. The throughput of the arriving traffic and the probability of

buftEar overflow is then computed and sketched in terms of the input buffer

limit, and a rule of thumb for calculating' the best input buffer limit is

sugg es-ted

The analysis is successful in demonstrating some of the important tra-

de-offs such as the trade-off between offering service to different users

and the trade-off between increasing input traffic and decreasing congestion.

It is, however, limited to a completely syetrical case and also considers

a stationary traffic, therefore does not show how the input buffer limits

ca' be updated in accordance with the changing traffic. Furthermore, innut

buffer limits, while being very simple to inplemenL and relatively easy for

statistical analysis, do not seem to provide sufficiently effective means

for flow cortrol. This is because when some node j is congested due

to the traffic entering at node i, the input at j will be inhibited,

but that at The offending node i is unaffected.

1.3 Overview of the Model and Results

A major source of difficulties in aliost all of the previous attempts

nade to formulate a flow control problem is the statistical analysis of the

queues of the network, especially when buffers are considered to be limited

in size. A fundamental question, therefore, is whether or not we have to

introduce the statisLical behavior of the network into analysis in order to

derive some effective results. Another question with respect to the model

is the choice of the flow control variables, namely the parameters which

should be controlled in order to maintain an uncongested traffic. Possible
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parameters are the number of outstanding packets, the percentage of the

buffers engaged by different commodities, or the average input rates. Which

one of these, or other, parameters should be considered as flow control

variables in order to formulate the problem and/or achieve an effective flow

control in practice?

Herein the present work, we have primarily avoided a statistical

analysis of the queues by formulating the problem in terms of the average

quantities involved, such as the average flows and the average buffer loads.

Also, for the purpose of theoretical development of the problem,we consider

the average input rates of different commodities as our flow control vari-

ables. After the problem is formulated and solved and basic results with

respect to the average behavior of the network is derived, then we are able

to consider the statistical fluctuations of the traffic as well and also to

propose other means of achieving flow control which are more practical and

effective compared to the control of average input rates.

In Chapter II, we formulate the flow control problem together with

the routing problem as a convex optimization in terms of the average input

rates and the average multi-commodity flows. We shall refer to this formu-

lation as a joint flow control and routing (JFCR) problem and to the result-

ing flow control and routing policy as a JFCR strategy. The formulation is

based on a static model for the network where there is a fixed set of active

commodities and the statistics of these commodities are stationary in time.

Nevertheless,the strategy is shown to be applicable to a quasi-static situa-

tion where both the set of active commodities and the statistics of these

commodities change gradually with time.

The fundamental trade-off between offering service to more traffic

and avoiding congestion is embodied in the formulation by trading-off
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between two sets of cost functions, one set corresponding to the links (one

function for each link) and reflecting the level of congestion, the other

set corresponding to the commodities (one function for each commodity) and

reflecting the magnitude of the restrictions imposed.

The input rate and the routing assignments of the strategy guarantee

that the load of each buffer on the average will remain under an arbitrarily

chosen level. Given the statistical fluctuations of the traffic and the

maximum available buffer at each node, one can choose this level so as to

upper bound the probability of buffer overflow arbitrarily. The routing

assignments of the strategy correspond to what we may call a minimum conges-

tion routing. The minimum congestion routing lies somewhere between the

minimum delay routing and the minmax routing and shares the advantages of

both of them: Like the minimum delay routing it is computationally more

amenable while having the congestion relief property of the minmax routing.

The cost functionscorresponding to the commodities and the links can

be arbitrarily chosen from a wide class of convex functions. We show in

Chapter II that by choosing appropriate cost functions for the commodities,

it is possible to achieve a variety of different types of priorities in the

services offered to the users. Specifically,we show that the relative magni-

tude of the input rate assignments to different commodities and the relative

sensitivity of these assignments with respect to the changes in traffic, can

be widely modified by changing certain parameters in the cost functions.

Furthermore, we show that if the magnitude of the link cost functions are

appropriately chosen, the strategy does not go beyond the necessary magni-

tude in confining the input rates, in order to achieve flow control.

An important feature of the proposed JFCR strategy is that it is

equivalent to a minimum delay routing problem corresponding to a bigger net-
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work. This equivalence, which is shown in Chapter III, allows us to use

any one of the algorithms proposed for the intensively studied routing prob-

lem, in order to develop a JFCR algorithm. As an example of such, we have

used the distributed routing algorithm of R.G. Gallager [4] to develop a

JFCR algorithm using distributed computations at the nodes of the network.

Finally in Chapter IV we show that under certain conditions there

always exists a unique correspondence between the set of average input rates

of the network on one hand and the set of average number of outstanding

packets of commodities on the other hand. This unique correspondence allows

us to use the window strategy as the means of achieving the input rate

assignments of the JFCR strategy. We further show that the window sizes

corresponding to each set of input rate assignments can be computed distri-

butively in the network. The window strategy is effective in controlling the

fast fluctuations of the traffic, a desired property that the JFCR stategy

lacks. Thus, we are able to combine the nice analytical features and the

quasi-static effectiveness of the JFCR strategy with the fast dynamics and

practicality of the window strategy.
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CHAPTER II

GENERAL FORMULATION OF A JOINT FLOW CONTROL AND ROUTING PROBLEM

Our objective in this chapter is to show how the routing and the flow

control problems in a data communication network can be formulated together

as a convex optimization problem, In our discussion we consider a store and

forward (S/F) packet switching network, However, the idea is quite general

and can be used for the design of flow control strategies in other types

of data communication networks. After the model of the network is discussed,

we shall propose our formulation of the flow control problem and then shall

show that the formulation actually complies with our expectations of a sen-

sible flow control scheme.

2.1 The Model

Consider a S/F packet switching network with N nodes. Let N denote

the set of nodes in the network:

N = {ii = ,,.N}

Let a link from node i to node k be represented by (i,k). In order to

discuss traffic flow, we distinguish (i,k) from (k,i), but assume that if

one exists, the other one does also. Assume that there exists at least one

sequence of links connecting any two nodes in the network. Let L be the

set of the links of the network:

L = {(i,k)I a link goes from i to k}

Let L be the total number of the links in the network. We will sometimes

specify a link with only one subscript Z = 1,.,,,L, Let Cik (CZ) denote
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the capacity of link Ci,k) Clink Al,

In general there may exist some exchange of data between any pair of

nodes i and j in the network, We refer to the stream of data entering

the network at node i and destined for node j as commodit (i,j), Clearly

commodity (i,j) is different from commodity (j,i). Let C be the set of

all potential commodities (or all source-destination pairs) in the network:

C = {(ij)Ii,jcN , i j)

In practice, the sequence of arrivals of messages of a given commodity

(i,j) forms a random process whose statistics may change from time to time.

Furthermore, as times goes on some of the active commodities, namely those

that have had some nonzero stream of data, may become silent and some of the

inactive ones may start transmitting data. Although our major interest is

in the JFCR strategy for a quasi-static situation, for the purpose of theo-

retical development of the problem we consider for the time being a static

case where the active commodities are always active and the silent ones

always stay inactive, Accondingly we defin CA as the set of active

commodities:

CA f= (i,j) (i,j) is an active commodity}

Furthermore, we assume that the statistics of the active commodities

are stationary. That is, they do not change from one time to another,

After we have developed a JFCR algorithm with the present model, we shall

discuss its application to a quasi-static case in chapter IV, Thereboth

the set of the active commodities and their statistics change slowly with

time.

Let us denote by r.. the expected traffic, in bits per second, enter-
iJ
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ing the network at node i and destined for node j, We shall refer to

r . as the rate of commodity (i,j). The statistical nature of commodity

(i,j) can not be completely characterized by a single parameter r.. and
1J

there are other parameters of importance such as the variance of the inter -

arrival times and the length distribution of the packets. In our model,

however, we do not use any other statistical parameter of the commodities ex-

plicitly and characterize commodity (i,j) completely by r.., Nevertheless,

the statistical characteristics that we have neglected will influence the

behavior of the resulting JFCR strategy implicitly as we shall see.

For the purpose of accomplishing flow control in the network, we assume

that it is somehow possible for each node i to set the rate of any active

commodity (i,j) to any value r. . which is selected by the flow control
:LJ

strategy in some interval 0 < r.. < tr... The practical mechanism of doing

so will be discussed in Chapter IV. Here PL.. denotes the maximum of r..

and the rate at which commodity (i,j) would have entered the network if

there was no flow control practiced by node i. We refer to t.. as the

desired rate of commodity (i,j). Since we have considered the stationary

case, we assume that t,.. is a fixed value. We take both r.. and t..
LJ 'J '3

to be zero for (i,j)tCA*

Let f denote the total expected flow of link (i,k) in bits per second

and let f. (j) denote that part of f. which is destined for node j. Let
ik ik

s.. denote the total expected traffic, in bits per second, at node i

tAssuming that the source of commodity (i,j) is ergodic, the expected traffic

for the stationary case considered here can be written as:

r.. l.i.m. - .(no, of bits of commodity (i,j) entering the net-
TTO T work in T seconds)

r.. can then be measured approximately over a limited time interyal T,
1J
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destined for node j. Therefore s.. includes both r.. and the traffic

from other nodes that is sent through node i for destination j ,

We assume that for every link (i,k), there is a buffer space reserved

in node i with the capacity of Bik(max) packets. This space is used to

store that part of traffic arriving at node i , which should be sent over

link (i,k).' If the data arriving at link (i,k) for a limited period of

time exceeds the capacity of the link C ik, the buffer starts to fill up.

Similarly when the arriving flow is less than C. bits per second, the

buffer starts to get emptied. In the long run, however, since B. (max) is
ik

a limited number, if there is no buffer overflow, the average traffic

arriving at link (i,k) is equal to the average traffic leaving it. Similar-

ly despite the short-term fluctuations in the amount of data stored in the

buffers, if there is no buffer overflow the expected flow into a node i for

a given destination j # i is equal to the expected traffic out of the node

for that destination, i.e.

s.. = r.. + E'f .(j) = Ef.(j) i,jEN, it j
13 1' mi i

m:(m,i)sL k:(i,k)cL

Finally, let tik demonstrate the expected delay in second per packet

on link (i,k) (including queueing delays at the link input) and let Dik

denote the expected number of packets waiting at node i for transmission

on link (i,k) or being transmitted on link (i,k).According to Little's

formula:

D , f. tEL
ik P ik ik

where F denotes the expected length in bits of a packet in the network. We

Practically, at each node i, the available buffer can be shared among all

the outgoing links (i,k). Therefore, the distinction made between the avail-
able buffers of outgoing links at one node is rather artificial and is just
for the sake of theoretical developments.
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assume that D is a function of f only, As an example in which thisik ik ly Asaexml inwihts

assumption is not a good approximation, consider a network with two commo-

dities which have different packet length dis-tributions, In this case Dik

is a function of both fik and the routing assignments of the network which

determine what portion of each commodity will pass through (i,k). However,

in order to make the problem analytically tractable, we consider D. as a
ik

function of f. only.
ik

We shall consider Dik fik) in its general form, only making the reason-

able assumption that it is a conyex, increasing and twice differentiable

function on the interval [0,C. ) Some other notations which will be used
'ik'

laterare as follows:

s The set of all node flows s..; s = {s..j(ij)sC}

f The set of all commodity flows fik( fik(j)(i,k)sL,(i,j)cC}

r The set of rates of all active commodities; r = {r.ij(ij)sC}
ii A

t The set of desired rates of all active commodities; T={/..L j(ij)ECAzig A

2.2 Formulation of the Problem as a Convex Optimization

Before we can present our formulation of the problem, we need to dis-

cuss two functional quantities which are the core of our strategy, The first

quantity, gik ik), is a cost function assigned to each one of the links of

the network. As long as the average number of packets stored at link (i,k),

namely Dik(fik), is far below a given crit cal value Bik' gik(fik) is equal

to Dik(fik). When Dik(fik) gets close to Bik, the cost approaches infinity

(Fig. 2.1 ).Bik is a fixed parameter chosen according to the size of the

maximum available buffer at the link, Bik(max) ; and should be some fraction

of it, ie. 0 < B. /B. (max) < 1, Therefore, the cost of a link is the
ik 1k
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same as its average delay as long as the link is far from becoming satur-

ated, As the load gets heavier and the average quantity of stored data

approaches the limit point B khe cost builds up rapidly.

Definition 2.1 To each one of the links of the network, there is a cost

function g (D. ) assigned with the following properties:

ikik

i) ik (Dik ikik Bik

ii) lim g(D ) = 0
D ik ikD +B3

ik ik

iii) g (D. ) is a convex and increasing function on [0,Bik),
ikik i

iv) g (D. ) is twice differentiable on [0,B. ).
ik ikik

We define gik(Dik) to be infinity also for Dik > B k. Properties (iii) and

(iv) are added for the sake of subsequent mathematical developments.

Since g is a function of D. , which is a function of f.k' ,g is

indirectly a function only of f.k. With some abuse of notation we refer

to this new function as gik(ik). The following lemma is an immediate

result of definition 2.1 and the assumptions made about Dik(fik) in Sec.2.1:

Lemma 2.1: For each link (i,k) there is a number ik' 0 < ik < Cik

for which lim gik(ik) = coand g(ikfik) is convex, increasing

f +E
ik ik

and twice differentiable on {0,'ik) (Fig. 2.1). For fik > Cik' gikfik)

is infinite,

The proof is easy and left to the reader.

We refer to Cik as the effective capacity of link(i,k) and to

1k = ik/Cik as the efficiency of the link. From now on,we describe a
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link as saturated when its average flow has reached its effective capacity

and reserve the work "'congested" for a link with its total buffer size

B ik(max) filled up by the incoming data, Therefore,"congestion"refers to

a determinate buffer overflow at some link while "saturation" is a statisti-

cal measure about a link.

In the strategy to be discussed later, the effect of the cost function

assigned to each link is to prevent the link from becoming saturated. In

order to prevent this saturation, the active commodities will have their

assigned rates reduced. This in turn requires preventing the assigned rate

r,1 , (ij)CCAfrom becoming too small; thus we should introduce some cost

on the amount of restriction imposed on r.. by the flow control strategy.
1J

This explains the motive for the following definition;

Definition 2.2: To every active commodity of the network, (i,j)CA'we

assign a cost function e. . (r..) with either of the following properties:

a - e . (r ..) is a positive, decreasing, twice differentiable and

strictly convex function on [O,o)(Fig.2.2.a).

b - e..(r..) is a positive, decreasing, twice differentiable and
1J]I

strictly convex function on (Q,co). Furthermore lim e. . (r..) =O

r.. -Q
(Fig. 2.2.b).

We will refer to these two types of commodity cost functions as the

cost function without or with singularity at point zero. Throughout our

discussion in this report we usually consider the commodity cost functions

without singularity at point zero, Wherever we consider cost functions with

signularity at point zero we shall specify that.
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e.. (r. .)

'r

e.. (r,.)
1] 13

Fig. 2.2.a Fig. 2.2.b

Fig. 2.2

At this point we can define the total transmission cost and the total

flow control cost of the network, respectively, as follows:

o = x fGT 2. ikfik)
(ik)cL

E = e.T.(r..)

A

Our joint flow control and routing formulation follows immediately:

min J =ET + GT
f,r

fikQ 0

r.. > 0
ij -

r.. </..
ij < j

N

E f .k (j) < EikZ k - ~ik
j=1
jfi

E :ik -
k:(ik)cL

i # j, (ik)cL

(ij)ECA

(i, j)E- CA

(ik)cL

t(j) = r.. (i,j)EC

: (Z,i)eL

1]

(2.1)

(2.1.a)

(2.1,b)

(2.l.c)

(2.1.d)

(2.1.e)
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To verify that the solution to this problem presents a set of desired

inputs r and link flows f for the purpose of flow control and routing in

the network, we proceed in the following steps:

i) J is a convex function of the variables (rf) on the set of feas-

ible points defined by constraints (2.1,a) - 2.1.e) (which is a convex set),

ii) The objective function J becomes infinite if f.k = ,ik' i.e.

D. = B for some link (i,k). J has a finite value if the rates of all
ik ik'

of the active commodities are sufficiently small so that all of the link

flows stay below the corresponding effective capacities.

iii) (i) and (ii) imply that (2.1) has at least one optimal point

(r ,f ) and at any ptimal point the objective function J is limited and

the constraint (2,1.d) is inactive.

iv) The value of r in any optimal solution to (2.1) is unique. We

show this by contrapositive proof. Suppose that there are two optimal points

(rt fl) and (r 2f), with the corresponding objective function J . Since E

is a strictly convex function of r and GT is a convex function of f, for

any 0 < X < 1 we have:

1 1 21 1 22
J[Xr1 + (1I X)r2 , Af1 + (1 - ))f ] = E5Xr (1 - X)r2 ] +

GT[ f1 + (1 2)f2] < xr (r1  + G (f 1 )] + (1 -)[E (r2) + G (f )
GT[X 1-Xf" L~/ T ' T T

= -J(r1,f1) + (1 -X)-J(r2 2 ) J

This contradicts the assumption that (r1,f1) and(r2,f ) are optimal points.

* * *
Therefore r at any optimal point (r ,f ) is unique,

v) Furthermore, (ii) implies that at the optimal point none of the

links is saturated, i.e, D. < B. for all (i,k)cL, This means that the
ik ik

average number of packets waiting on each link (i,k) can be kept below any
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desired number B . Neverthelessdue to the statistical variations in the

buffer, there will still be some chance of buffer overflow (congestion) at

the link. By making the ratio B. /B. (max) small enough, one can reduce the
ik 1k

probability of buffer overflow arbitrarily, But there are costs incurred

in reducing B./Bik (max), since this means either an increase in B (max)

which is costly or a decrease in Bik which reduces the effective capacity

of the link,

In summary, the JFCR strategy effectively controls the average load of

the buffers, which is to some extent helpful in preventing congestion in

the network. In order to prevent congestion more effectively , we need to

control the statistical fluctuations of the buffer loads as well. Therefore

other means of control should be implemented together with the present scheme.

We will investigate this issue in more details in chapter IV.

vi) At an optimal point (r ,f ), f defines a set of minimum cost

*
routing flows for the set of inputs r , with the cost assignements g (f. )

for the links, This cost is almost equal to the delay of the link, Dik(fik),

as long as fik is far below the effective capacity Eik; as fik approaches the

effective capacity, gi- +CO (Fig. 2.1 ). This means that the data will

first be routed with the objective of minimizing the total delay, But as

soon as some of the buffers get close to the saturation level, the routing

will be adapted with the objective of sending data over the nonsaturated

links. Despite this apparent difference between minimum delay routing and

the routing in our strategy, there exists a basic similarity between them.

The following example presents an interesting case where this similarity is

most evident,

Example 2.1 Assume a network with M/M/l queues at all of the links and let
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us choose the cost function g (D
ik ik

Therefore we have

= ik ik for all (i.k)EL,
B. - D
ik ik

fik

Dik (fik C -- .
ik ik

ikf

k - f.
ik 1k

Bik ik
,where %k - _ = 1+B.

C. ik
1k

be a constant B for all of the links. Then

gik =ik
fk ik

ik fik

-B
l + = constant,

Since

function

is equal for all of the links, it is easy to see that the above cost

will lead to the same routing if they are changed to

f^ 9 (f (fik-
ik ik g ik ik .k - f . , This means that in the given network,

ik ik ~,ik ik
*

according to our strategy, the set of optimal inputs r will be routed as if

the objective was minimum delay where the capacities are reduced by a factor

Of B
o f C =B+l

We should add that if the cost function of any commodity (i,j) has

singularity at point zero, the above conclusions (i - vi) are still valid.

This singularity will only imply that the inequality constraint (2,l.c) is

always inactive for commodity (i,j) and specifically the optimal value of r..

*
is nonzero, namely r.. >0.

We have seen that all of the optimal points of (2,1) share a unique set

*
of inputs r , that the set of inputs to the network is routed in a minimal

cost way (quite similar to the minimum delay routing), and that the average

buffer levels are all constrained below some desired set of limits B ,k* To

and

Let B
ik

gik ( ik)
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complete our argument, all we need is to justify the appropriateness of the

*
set of assigned inputs r . The rest of this chapter is devoted to this

purpose,

2.3 Necessary and Sufficient Conditions for Optimality

Before obtaining the optimality conditions we need to state the

following definitions:

Definition 2.3 Any sequence of links connecting an arbitrary pair of nodes

i and j is a route R(i,j). That is

R(i,j) nk n ), k = 1,., st, n = i, n j and(nk )-ELRkilj) kn)Ik1 Z0Lian k-l'R-

Definition 2.4 A route R(i,j) is called an active route if there is some

nonzero traffic, travelling from node i to node j over this route.

Definition 2.5 At a given feasible point (r,f), the length of any route R

is the sum of the marginal costs of all of the links contained in R. That is

dg

length of R = dfk-i'nk
k=l nk-lnk

Definition 2.6 At a given feasible point (r,f), the distance of a node i

from another node j, Xi., is the minimum length over all possibel routes

connecting i to j.

Notice that X.. is not necessarily equal to X. We take X.. = 0 for

Definition 2.7 The priority function of any active commodity p..(r),

(i,j)cCAs is the negative of its marginal cost function, i.e.
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de. . (r..)

p.. (r..) = - 131(i,j)ECAij ij d r..)A
iJ

It follows from definition 2.2 that p.. (r..) is a positive, strictly de-
iJ1J

creasing and differentiable function on either (0,c) or [0,o) depending on

whether or not e.. (r..) has a singularity at point zero,

* *
Lemma 2.2 Given an optimal point (r ,f ), the length of any active route

connecting an arbitrary node i to another node j, is X. Furthermore

for (i,j)cCA

r= p..(r..) k..>r.. >0
iJ= ij ij J3 J

> P.(r*) r.. =0
ij iJ i

* *
< p.. (rt.) r. . =tf.. (2.2)
- '3 'J 13 1J

This lemma is proved in Appendix A. The following corollary is a direct re-

sult of definition 2,6 and lemma 2,2:

* *
Corollary 2.1 At any optimal point (r ,f ), for any link (i,k)cL and any

node jc04:
g'(f*) +X . =A.. f. (j)> 0
ik ik kJ Jik

*

w> fik (j = 0 (2.3)
dg (f .) - 13 i

where gik ik d f ik

Theorem 2.1: The necessary and sufficient conditions for a feasible point

* *
(r ,f ) to be a minimizing point for (2.1) is that there exists a set of

positive number 5.. , i,j , (2.. = 0, j e) such that:

g' (f )+ = .f.*(j) > 0
ik ik kj ij ik

*

> .. f (j) = 0 (ik)cL, jcH

(2.4)
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**
p..(Or.. ) = S.. 0 < r.. t.

iJ ij IjIJ j Ij

*

*

< .. r.. =0 (ij )CCA (2.5)
ii1 1J A

Proof; The necessity follows directly from corollary 21 taking 5.. A..,
1J IJ

i,jeN . The sufficiency is proved in appendix A.

*
Now consider two nodes i and j for which s.. > 0. By writing

1J

Eq. (2,4)for all of the links of some active route R(i,j) and summing them

*
up, one can see that 3.. is equal to A. . Similarly if s.. 0 for some

nodes i and j, we can consider Eq. (2.4) for each of the links of a minimum

length route R(i,j) and see that G., < A.., These results are stated in
13 -- 1J

the following corollary,

Corollary 2 .2 For any set of positive numbers 5.., i,j EN, (f. . = 0, jEN)

that satisfies(2.3),we have:

. =X.. s. > 0
ij ij ij

< x. st
- ijsij = 0 (2,6)

Finally we should point out that the above results are still valid if any

cost function e.. (r..) has singularity at point zero. In this case, however,
1J2I

we know that r*. > 0 and the optimality conditions with respect to r..
1J ij

reduce to a simpler form.

2.4 Utilization of Network Resources

Having the necessary and sufficient conditions for optimality at hand,

let us consider the set of optimal inputs r and see how they correspond

with our expectations of a flow control scheme, A suitable flow control

scheme should comply with the following:
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i) It should he fair with respect to different users. The scheme

should not relieve congestion by imposing restrictions only on some of the

users - arbitrarily chosen - and leaving the rest free . It rather should

impose restriction on the users either evenly or preferably according to

some pre-established set of priorities,

ii) The restrictions imposed on the users should not go beyond the

necessary magnitude, In other words, the scheme should tend to confine input

flows only when it becomes unavoidable in order to keep the network un-

saturated.

In the present section we investigate the validity of the second

property in our scheme and leave the discussion of the first property for

section 2.5. Consider the following optimization problem;

mm e..(r..) (2,7)
min J = E i ( (.7

f,r (i j)EC
A

f. (j) > 0 i # j, (ik)cL (2.7.a)

r.. > 0 (ij)ECA (2.7.b)

r..<k.. (i j)EC (2.7.c)

N

L f. (j0) < E.k (i~k)F-L (2.7.d)

2=1
j#i

f(j) - f(j) = r.. j(2.7.e)
k:(i,k)ELik (ki)E

This problem is identical to (2.1) execept that the link cost functions are

eliminated from the objective function, However, constraint (2,1.d) is kept

here to guarantee that at any optimal point no buffer may become oversaturated.

Since e (r ),(ij)ECare decreasing functionsit is clear that at any optimal
ij ij A
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point,n ne of the input rates can be increased without violating (2.7,c.)

or (2.7.d). Therefore the optimization problem (2.7) does not impose restric-

tions on the users beyond what is necessary to keep the network unsaturated.

Due to the difficulties involved in finding the optimal point, the

flow control scheme formulated by (2.7),currently does not appear to be

suitable for implementation. Nevertheless, as the following theorem indi-

cates, it can be approximated by the proposed JFCR strategy if a set of

appropriate cost functions are used.

Theorem 2.2 Let g1 (f.), (i,k)cL, and e..(r..), (i,j)cC ,satisfy the

conditions of definition (2.1) and (2.2). Let E } be a decreasing
m m=l

sequence of positive numbers with the limit point zero. Assume that (rm fm)

is a solution to problem (2,1) with the cost function gik(f ik) replaced by

g. (f. ) = E . g (f ), (i,k)E.Then any limit point of the sequence
ik ik- m ik ik

{rm,fm )0 is a solution to (2.7).
m=1

This theorem is a specific case of the barrier function theorem which

is proved in [15]. It shows that by sufficiently decreasing the magnitude of

the link cost functions, one can bring the solution of (2,1) arbitrarily

close the the boundaries where no more increase is possible on the rate of

any commodity. Notice that if one holds r constant and minimizes

Jm T(r) + E ,m g (f Ekr))over f only, then the minimizing f
(i,k)ELi

is identical for all s > 0. In other words, the routing objective does
m

not change when the cost functions of the links are all multiplied by E > 0.

Despite what it may seem from the above discussion, a very small (or

zero) value of cm is not desirable, since one can argue that in practice

there is a cost to using each link (i,k) that raises rapidly as fik approaches



-33-

ikand that this cost should really appear as a trade-off against in-

creasing input rates, This would in effect lead to the optimization problem

(2,1), Furthermore, solving problem (2.1) requires much computation if @
m

is too small,

2.5 The Trade-off Between Priority Functions of Different Users

In this section, we study the effect of the priority functions

*
P (r..), (ij)sCA, on the assigned set of input rates r and investigate

the fairness of this set with respect to different users, In particular,we

show that in offering the service to the users, a variety of types of prior-

ities between them can be achieved through the appropriate choice of priori-

ty functions for each user . In doing this, we restrict ourselves to the

following class of priority functions with singularity at point zero:

p..(r..) = ( )i n.. > 1 (2.8)
ij ij r 13

We refer to o.. and n.. respectively as the priority factor and priority

order of the commodity (i,j). Naturally, choosing the priority functions

from a more general class may prove to provide additional features compared

to what we can obtain from this class.

In our evaluation of the fairness and priority issue, we temporarily

eliminate constraint (2.l,c) from problem (2.1) by letting .. = co ,(i,j)ECA;
13 A'

*therefore making sure that in the set of optimal input rates r all the

restrictions are imposed by the flow control scheme and not by the users

internal limitations. Therefore, with these assumptions we always have

0 < r < / ,C (ij)cCA, Accordingly (2.5) reduces to

*
p.. (r..) = X.. (ij)eC (29)ij j '3 A
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In the following discussion, we explain in several steps the types of

priorities which can be achieved using the class of priority functions (2.8):

i) First consider two commodities a and b using priority functions

of the class (2,8) with the same priority order na = n = n and assume that

the distance of source-destination nodes is equal for them, i.e. N = ,
* a a b
a aUnder these conditions, from (2.8) and (2.9) we have -_ =- Thuswhen

r* a .
b b

several commodities of the same priority group (i,e, with equal priority

orders) experience similar network conditions (i.e, travel through equal

source-destination distances), the assigned throughput of each one is pro-

portional to its priority factor, Therefore, larger priority factors should

be assigned to the bigger users,

ii) Now consider two commodities a and b with the same priority

order n and priority factor 0, In order to explore the effect of the

topological distance of the source and destination of a commodity on its

assigned throughput, we assume that all of the links have equal marginal

cost at the optimal point. In this case if the number of links in an active

route of commodity a is m times the number for b, we would have

A = m A . Therefore,
a b

r a -1/n

Pa (ra b (rb) . m ,-m

rb

For n = 1, the throughputs are inversely proportional to the source-desti-

nation topological distances, As n increases, the throughputs become less

r*a
sensitive to distance, As an example, for n = 4 and m = 2, -_--- = 0,84,

rb

We conclude that n = 1 in some sense gives each user equal resource, where

n + gives each the same throughput.

iii) Finally consider two commodities a and b with priority orders
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n and n and priority factors Ua and ab. If the set of active commodi-
a b a b'

ties changes, for example if some new commodities become active, the

* *

optimal input rates ra and rb may also change, We would like to compare

* *
the amount of changes that ra and rb undergo when some change of traffic

happens in the network and investigate the impact that n and n might have,
a b

Since this comparison in general is complicated, we consider the two commo-

dities under exactly similar network conditions, that is we let both of them

have the same source and destination nodes i and jii In this case it

follows from (2.8) and (2.9) that:

-1/n -/nb
r =ca .)w.. and r = L *,A.
a a ij b b ij

*~ *
Since the change in the traffic will be reflected in r and r through X..,

a b 13
dr*a

let us compute

ii
-1

d1r na -l a
dX.. a n ij

13 a

or drd.
a- * (2.10)

r = n
a a ij

Similarly dr b -1 d..(2.11)
b_= - a 1

b b 13

Therefore, from (2.10) and (2.11)

dr* n dr*
a _ b b (2.12)

r* n r*
a a b

In our model of the network, we considered the traffic between any source-

destination pair as being one commodity just for the sake of simplicity

in the use of notations. The results obtained here with this assumption
all will stay valid if we consider several commodities between any source-

destination pair.
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Eq. C2.12) means that when the traffic in the network changes, then the ratio

of the percentage of change in the rate of one commodity to that of the other

is inversely proportional to their priority orders, given that the two commo-

dities experience similar network conditions (have the same source and desti-

nation). This does not mean that if we increase the priority orders of some

commodities, the assigned input rates of all of them will necessarily become

less sensitive to the changes in the network traffic. This is because the com-

parison was made between two commodities which exist in the network at the same

time and not between two which replace each other.

We conclude from the above comparison that in general if there is a

combination of commodities with high and low priority orders in the network,

as the number of active users goes up, the high priority order users will be

pushed back more slowly at the cost of lower priority users being slowed down

more rapidly. This is exactly our expectation of a priority service system.

A quantitative analysis of the sensitivity of the assigned input rates with

respect to the changes in the set of active users or changes in the set of

desired input rates Pr, requires further study.

We can only add here that the sensitivity of the assigned input rates

*
r , with respect to the changes in the desired input rates of those commodi-

*
ties for which r.. < .. , is zero. This implies that if a user of the network

is not assigned as much throughput as it desires (namely r.. < Pr.. for some
'3 '3

*
(i,j)),it can not provoke any increase in the assigned throughput r.. by

exaggerating about its desired rate, namely by increasing tr... The desired

input rate, reported by each user, only upper bounds the assigned throughput

and has no other impact. This is a basic and important characteristic of the

proposed JFCR strategy which is common to any type of priority function used.
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CHAPTER III

SOLUTION OF THE JFCR CONVEX OPTIMIZATION PROBLEM

Our primary goal in this chapter is to show how the convex optimization

problem (2.1) can be solved in an iterative way using distributed computa-

tions in the network. In the first section, however, we present a rather

general approach to the solution of (2.1), by making a simple analogy between

problem (2.1) and a minimum delay routing problem in general, This analogy

actually reduces the problem to a minimum delay routing problem and shows how

any method of obtaining a minimum delay routing can be generalized to a so-

lution of problem (2.1).

In the following sections first we reformulate the JFCR problem (2.1)

in terms of some new routing variables(different from f) which then allow us

to design some algorithms using distributed computations at the nodes of

the network to find the set of optimal inputs and optimal routing for the

network.

3.1 Analogy of the JFCR Problem with the Minimum Delay Routing Problem

Consider a data communication network M as modelled in section 2.1 and

let us construct a new network H by making the following changes in M:

Keep the nodes of H unchanged but add one new link between any pair of

nodes (ij) for which an active commodity exists in H. We denote this newly

added link by (i,j ) in order to distinguish it from an old link (i,j) which

might exist in H (and also U). Thus notice that j' does not indicate a node

different from j but the link (i,j') is different from the link (i,j).
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Therefore if TLI-and C respectively denote the set of nodes, the set of

links and the set of commodities of the new network V we have

= , L= LUCA C = C

Let the capacities and the average delays of the links of V be as follows:

C. = . D (f. ) = gj(f. ) (ik)cL (3,1.a)
k kik ik ikilk

C..j =- 4.. D.., (f .,) = e..(4.. - f .. , ) (ij)CCA (3,1,b)
i3 j '3 3 ij 1 1

Assume that the cost functions e (r ) , (i,j)EC have a singularity at
ij iiA'

point zero. It follows then that D *' (f. .' ), (ij)cC ,is a positive, in-
ij ij A

creasing, strictly convex and twice differentiable function on [0, A. ) and
:ij

lim i.., (f..,) =1 (Fig. 3.1). Therefore, D . ,(fi. .,) complies with

f . , ..
13 13

all of the properties assumed for the total delay of a link.

Finally, assume that no flow control is practiced in MT and the through-

put of commodities of FI is r.. 4.., (i,j)EC

In summary, to construct network F we have assigned the desired input

rates 4.. to each commodity of M and instead have added a new link with capa-
1J

city 4.. between i and j. Now consider the following minimum delay routing
1J

problem for network M

j I j

e* (r..j)

Fig. 3.1

Iij
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mim P (t) = D. Cf. ) + E D..i (E..,) (3,2)
TDik ik j131U

(i k)Ec:L (i 'j)ECA

ik () > 0 i # j ,(ik)EL, jEN (3.2.a)

f..,'m) > 0 i M i, (ij)ECA, mEN (3,2.b)
1J -A

Tik ft=i i )(ij)aC (3.2,c)k:(i, k)sF-L Z:(, i)cL EL

Notice that the upper limits on link flows are eliminated since given (3.1)

they are all inactive at any point with a finite objective value,

Lemma 3,1 : There is at least one optimal point for (3.2) for which each

supplementary link (i,j') carries traffic only for destination j, i e.

f..,(m) = 0 (i,j)EC , mN, m # j
13A

Proof: Let f be any optimal point for (3.2), Consider any link (i,j'),

(i,j)ECA, and let f..,(m) > 0 for some m # j. We have f..,(j) < A.. -f..,(m).
A13 13 13 :ij

Therefore, some part of the commodity (i,j), namely some part of r.. = i..

is routed to the destination j over some route other than link (i,j'). Call

this part f. (j). Obviously f. (j) = ti.. - f..,(j)> f..jm)
lx ix 13 13 13

If we let the flow fi .,(m) and an equal part of the flow f. (j) interchange
13 ix

their routes to the node j, the aggregate flows of the network M, and the

total delay DT do not change. Thereforethe new routing is also optimal.

Through repeating this interchange of routes for all flows such as f.. ,(m)
1j

we come up with an optimal point satisfying f, (m) = 0, (i,i)sCA, m # j.

QED,
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Corollary 31 Any solution to the following routing problem is a solution

to (3.2);

m in DT ) =

T (j

f.., (j) > 0

f 
i .(j)

fik

k: (ik)cEL

If.., (in) = 0
1]

Z2D.(f. ) + ri.. (W..,)
ik(ik L lJ WJ

(i,k)EL (i,j)CCA

(i~k)cLq jcN, j$i

(i , j)ES CA

-
7  (j) =t. .

1]

S:(, i)cEL

(ij)C

(ii)ECA, mEN, m # j

Theorem 3,1: Let the cost functions corresponding to the commodities of net-

work M have singularity at zero. The JFCR problem (2.1) for network M then is

equivalent to the routing problem (3.3) for network g , Furthermore, there

are solution points to (3.2) which are also optimal for (2.1). The equiva-

lent variables are as follows:

F. (J) =f.()ikfik

t.. f ..,Qj) = r..

Proof: Easy to verify.

(i,k)cL , jENt, j # i

(ij)ECA

The above theorem is important in showing how to solve problem (2.1)

by relating it to the routing problem which is intensively studied. It

shows that the nature of both problems and their degrees of mathematical

complexity are the same, and the JFCR problem only involves a somewhat larger

number of variables compared to a routing problem for the same network.

(3.3)

(3 .3. a)

(3.3.b)

(3.3. c)

(3.3.d)
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Accordingly, any static or quasi-static approach, using central or distribu-

te, computations to the mintimum delay routing problem which proves to be

successful, can be. used for solving the JFCR problem.. There are two prob-

lcms, however, in the blind application of aProuting algorithm to solve the

JPCR problem. The first is that each dummy link (i,j') should be used only

for the (rejected) traffic destined for j. The second and most important

is that,both in terms of implementation and convergence, the dummy links should

be treated differently than the other links. The next three sections deal with

thase problems.

3.2 Nexr Formulation of JFRC Problem Aimed at Distributed Solution

Gallager in a recent paper 14] shows how a minimum delay routing problem

'1n the quasi-s'tatic case can be solved using only distributed computations

at the nodes of the network, The core of his approach is a new set of para-

meters Q(j), called routing variables, instead of the conventional vari-

ables f.k(j), in order to fcrmulate the routing problem. Here, in order to

develop a distributed JFCR alogrithm, we shall use the sane variables. In

the present section, we introduce these new variables and restate JFCR

problem (2.1) and the corresponding optimality conditions in terms of then.

Then in sections (3.3) and (3.4) we work out some distributed JFCR algorithms.

The approaches taken in these two sections are different, however. In

section 3.4, we use the analogy made between routing and JFCR problems and,

as described earlier, simply use a class of distributed routing algorithms

for network II to come up with a corresponding class of JFCR algorithms, In

section 3.3, however, we take a rather direct approache and, while still

using many of the results in Gallager [4], try to keep the distinction

between routing and flow control parameters.
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Now let us consider the network M as modelled in sec. 2.1. Let ik(

(i,k)cL, j # i, denote the fraction of the node flow s. which is sent over
ij

the link (i,k), It follows that

fi (j) = sj.. j (3.4)

s.. = r.. + .kj tki(J) i,jEN ,i j(3.5)
:i- ij k

k: (k,i)EL

More formally let us define a routing variable set k for network M as a

set of nonnegative numbers $ik j), i,j,k EN, i # j, satisfying:

a) ik = 0 (i,k)L ,jEN

N

b) k tik(i)=1

c) for each (i,j)ECA there is at least one sequence of nodes

i,k Z,.,.,m,j such that t$ik(j) > 0, kj)> 0,,,,,t (Cj) > 0.

Theorem 3.2; For any routing variable set t and any set of inputrates r, there

is a unique set of node flows s and link flows f as the solution to (3.4)

and (3.5). Each component s.. or f. (j) is nonegative and continuously

differentiable as a function of r and t.

For proof see Gallager [4]. The above theorem shows that any quantity

which can be expressed in terms of (r,f) can also be expressed in terms of

(r,t). We can, therefore, restate problem (2.1) as the following:

min J = ET(r) + GT(r, 0) (3.6)

r,>

r..j > 0 (i,j)E-CA (3.6.a)

r.. < t.. (i'j)6C (3.6.b)
13 - 1 A
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t is a routing variable set (3,6.c)

Constraints 2.l.a, and 2,1,e are inherent in the definition of a routing

variable set, as theorem 3.2 establishes; and constraint 2.l.d is inactive

at any point with limited objective value. Therefore they are not repeated

in problem (3.6).

Theorem 3.3: the following equations are valid and lead to a unique set of

solutions foriand k , which are both continuous in r and
9ij ik~j

t for (i,k)cL, jE04, j # i

DG T Y ) g fG 
37

Dr. k + ik ik ik r r3.7)

k: (i,k)EL k

taking T = 0 jEN
Dr..

Ji

G G

T6 (j) fs [gIik(ik) + 9rT] (3.8)

ik ikikJkj

Proof: Similar results are proved by Gallager [4] for the function

DT = D ik(fik) istead of GT = E g (f .) Since gik (f.) shares

(i,k)EL (ik)cL

all of the properties assumed for D (f ), theorem 3.3 is also valid, Q.E.D.

At this point we can state the optimality conditions of the JFCR problem

with the new formulation.

Theorem 3.4: The following conditions are sufficient for any feasible

* *
point (r ,4 ) to be a minimizing solution to (3.6):

DG T GT(f T * * T * *
g (ik + rrr r (f ,t ) (i,k)EL, jEN, i # j (3.9)
ik kj ij
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DGT * * * *
7(r , ) p.r..) L., > r.. > 0

r1:2.1] Ji;j J

* *
> p.0(r..)

- JiJ J1 1]

* *
< p (r.. ) r.. = IL., (i,j)ECA (3.10)

- ij ij
* j.L Lri Lij ( CA (.0

where f is the set of link flows corresponding to (r ,4 ). Furthermore,

* *
for any optimal point (r ,f) of problem (2.1), there exists some feasible

routing variable set $ such that (3.9) and (3.10) hold true.

Proof: First notice from (3.7) that (3.9) is equivalent to the following:

DG DG
*GT * * T * * *

ik(fik + r (r + .r (Dr. f, tik Q )>

DGT

(r,$ ) $ (j) = 0
- Dr.. ik

iJ

(i,k)cL, jEN, j # i (3.11)

DGT

Now consider theorem 2.1 and let (r ijN, i j. The
ij Dr..(

sufficiency of the above conditions follows directly. To show the second

* *
part of the theorem, let (r f ) be any optimal point for (2.1). Consider

any pair of nodes i and j, i # j, with s. . > 0. According to lemma 2.2,

the length of any active route R(i,j) is X... It follows from (3,7) that

DGT * * * *
(r ,( ) = X.. for s.. > 0. If s.. = 0 for some i and j. i # j,

Dr.. 31 J13

* * *
$ik (j) is not determined by f . By allowing 4ik(j) to be nonzero only if

(i,k) is located on some route R(i,j) with the length X ., we will get

9GT
DT * * *

(r ,f ) = N.. for s.. = 0 also. Again considering theorem 2.1 and
Lr. 3.3 1]
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taking P.. = N.., i,jEN, i $ j, it follows that (3,9) and (3.10) are valid

* *
valid for (r , t ).

3.3 A Distributed JFCR Algorithm - Direct Approach

Let (r,t) be any feasible point of (3.6). We define the algorithm A as

the product of two algorithms Ar and A i.e.

A = A A (3.12)

Algorithm Ar only changes r, while algorithm A only changes 4. The mapping

(ri ,) = Ar(r,4) is a point to point mapping as follows:

__J T
6j.= .Dr.. P.. (r ) (ij)EC (3.13)6ij - r D i 13.

1
r.. (r,t) = r.. - p .. 0 < r.. - p6. < A.

S13 - 1]- 13

= 0 r.. - 6.. < 0
13 3j-

t .. r.. - p8.. >'v.. (3.14)1 13 - (314

where 11 is a positive scale factor of A to be discussed later.
r

Before introducing A,, we have to make the following definition:

Definition 3.1 : Let T be a given positive number, For any routing

variable set 4 and any pair of nodes i, j, i $ j, we define B .. as
'J

the set of all nodes kcN for which either (i,k)VL or $. (j) = 0 and k is
ik

blocked relative to j. A node k is blocked relative to j if there exists

a route R(k,j) with the following properties: i) For every link in R(k,j),

the routing variable with respect to j is nonzero. ii) R(k,j) contains

some link (Z,m) for which:

S TDG T 
(3.15)

Dr . Dr .
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m(i) )>1 gIm(fk) + T - r J S (3,16)

We define another set similar to Bj except with ( > ) in (3,15) and

(3.16).

Now let us define the mapping (rt ) = At(r,t) as follows:

ik ( = 0 ; A (j) = 0 kc.. (3.17)
ik J

where B is chosen by node i, in every application of mapping A arbitrarily

such that 8 ..c B.. c ... For k .. define:
)1J- 13 - 146.

G T GT
a.i)s g (fr+ -- min [g. (f. ) + - 1 (3.18)ik ik ik r . im im ar

kj mfB .. M31mj

Aik(j) = min [tik( )'h-a iki(j)/s..] (3.19)

where p is a scale parameter of A and is the same quantity usEdin defi-

nition 3.1. We shall discuss the proper value of T later, Let K . (i,j) be
min

a set of values of m that achieve the minimization in (3,18) , Then:

1 N=ik (i) = tik(( i Kmin (ij) (3, 20.a)

tik ik j) k&Kmin ,) (3.20, b)

N 1
k(j) = 1 (3,20,c)

j=1

Notice that 9(r,t) as defined by Eq. (3.17) - (3,20) is not unique since B.
iJ

is not generally unique and also for a given B.., K . (i,j) can have more than

one element. Therefore the mapping A and A = A * Ar are point to set

mappings.
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The algorithm At , as defined here, is a modification of the

distributed minimum delay routing algorithm proposed by Gallager 14]. There

is an error in the proof of lemma 6, appendix C of 14]. The modification

of A and some respective changes in the proof of convergence is suggested

by Gallager as corrections to I4]. The JFCR algorithm A = A * Ar proposed

here is a generalization of the routing algorithm At.

Theorem 3.5 Let C~r, 0 0) be any feasible point of (3.6) and let

J(r0 ,$0 ) < J . for each value Jo, there exist scale factors ii andri for Ar

m m m-l m-l
and A such that any sequence {Crm$)EA(r ,1 1 m-lOconverges to a

solution of (3.6).

This is proved in appendix B. The next thing is to see whether

the computations necessary for this algorithm can be conducted distributive-

ly at the nodes of the network instead of being performed at a central node.

It turns out that a condition known as loop-freedom is essential for distri-

buted computations of the algorithm to be possible. Therefore, first we

shall define the concept of loop-freedom:

Definition 3.2 : A set of routing variables # is called loop-free if for any

destination j,there is no directedloop in the network with links all having

nonzero routing variables with respect to the destination j.

Theorem 3.6; If CrOtO)is loop-free (namely if $ is loop-free) so is

0 1 0 0
Crt )cA (r,$P, for any value of the scale factor n in the algorithm A

This theorem is proved in 14]. We just point out here that the

introduction of the set B.. in the algorithm A was necessary in order to
1rth

establish this result. From lemma 3.2 it follows that if (r0 ,$b ) is loop~-
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1 1 00o
free, any (r ,T ) EA(r ,# ) is also loop-free since A does not change the

r

m m n
routing variables, Therefore,by induction,(r ,c) = Am(r ,$ ) is loop-free

for n = l,2,,,.., In other words if we start with a loop-free point, then

the routing remains loop-free at all of the stages of the algorithm A,

Now let the routing variables be loop-free at the starting point

(and therefore at all of the stagesy of the algorithm A. In order to

demonstrate how the algorithm may be performed using distributed computations

at the nodes of the network, let us first show the method of computing

DGT , i,jEN, i j, distributively, Consider any node i and destination
9r..

iJ

GT

j # i. Let be known at all nodes m for which #. (ji) > 0 and
Dr. im

assume that all such nodes m send the value of to node i (over link

DGT

(r,i). Once node i receives - for all m with t. i) > 0, it can
Dr .ira

DGT

compute Dr from Eq. (3,7), This process of computing T-in fact

13 iJ

can be started at nodes i which send all the traffic s., directly to j
DG 'j
T

(namely all nodes i for which . ) = 1), since r. is zero, Then

the computation can be done for the nodes i which send the traffic s .

either directly to j or to the nodes of previous class. This process can

DGT
continue untilDG is known at all nodes ieN, For every destination j,

1J
a separate process is necessary. The property of loop-freedom is necessary

DG
to avoid deadlock situations where T should be known at some node i

Dr..
iJ

before it can Be computed at another node m, and vice-versa, so that both

nodes i and m wait indefinitely for the other.

DG
T

Each node i, in the process of computing r. will also getDr.. as e
3G , a GT

the value of + g .90 (fT.) for all int3. . .Therefore,once is known
Dr in i'm ijbr.

njij

at all nodes isN for every destination jeN, the mapping Ar or At can be
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applied on the current (r,4) and eyery node i can compute the new

values of r.. or 4.(j) k: (ik)eL, j #0 ,Notice that

in the algorithm A proposed here, each of the two parts A and A should be

applied on the network in separate iterations. It is certainly desirable

to update r and #i hoth, at the same iteration, However, the proposed algo-

rithm A has this limitation since the objective here was to show that the

JFCR problem can he solved using iterative and distributed computations,

and not to find the fastest algorithm.

3.4 A Class of Distributed JFCR Algoritbs

Bertsekas 116] and Gafni [17] have recently generalized Gallager's

distributed routing algorithm. Their formulations allow the use of second

derivative information and also provide the flexibility for our purpose of

treating the dummy links of section 3.1 differently from tie other links.

We have applied the results of section 3.1 to the class of algorithms in [17]

to come up with the following class of distributed JFCR algorithms. The

equivalence of this class of algorithms with the touting algorithms of [16]

and [17] is shown in appendix B.

Consider the network M as modelled in section 2,1 and let us define

a set of JFCR variables $ as following:

ik k -'i,jeV, i $ j, (i,k)sL (3.21.a)

,(j) [t... - r.J s.. (i,j)CCA (3,21.b)

jhere ij + f .Q) (3.21.c)

m(m,i)sL m

It follows from (3.21) that:

4, (0) > 0 j 1ijtit , (~)C(3.22.a)
ik ) > ,0 ik 'EA

k:(i,k)SL
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$ (j) > 0, P.(ij) > 0, $..,(j) + Z)+ E (ji) -1, (ij)ECA (3,22.b)
ik - i '2 1k

k: (i,k)cL

Definition 3.3 Let $P be any set of variables 'ik (j) which satisfy Eq. (3.22).

If for any (i,j)CCA, there is a sequence of nodes i,k,R,,. m,j for which

4. (j) > 0, 'kV(j) > 0,.. 'P .(j) > 0, then $ is called a JFCR variable set.

Theorem 3.7: Given the set of desired input rates It, any set of JFCR vari-

ables ' corresponds to a unique set of input rates r and multicommodity

flows f.

This lemma is proved in appendix B. Now let

Y (j) = g' (f ) + i, jcN, i # j (ik)EL
ik ik ik 9r .

For any pair of nodes i and j , i # j, define two column vectors 'P.. and

Y.. respectively with entries ik (j) and yikik)EL, in any fixed order.

If (i,j)eC , we extend the dimension of *P.. and y.. by one to include respect-
A 'ci1

ively P..'(j) and p..(r..) as their last entry.

For any set of JFCR variables ' and any node i , we define a

node k as blocked with respect to destination j if (i,k)EL and

. (j) = 0 and either Sr < T or there exists a route R (k,j), with
ik rj -Drkj

nonzero JFCR variables on each part it, which contains some link (2,m) with

G G
Tr Sr . For any given ' , we denote by B.. the set of all

9r . -or mj
2J mj

blocked nodes with respect to node i and destination j.

Now the clas of JFCR algorithms A are as follows: In each

iteration, in order to map the current point P into the new point AN($), at

each node i and for every destination j the following optimization problem
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is solved

min( ).+Y ()M.
m- ij ij ij 2 & 4' - . .NJ.. -.. )

subject to i) 4.. satisfies Eq. (3,22)

ii) ik (j) = 0 for kEB

where a > 0 is a scale factor and M.. is a symmetric matrix of proper dimen-
i-i

sion that can be a function of $ and the iteration, but must satisfy the

following constraints for some fixed A > 0, > 0: First the elements of

M.., say m , must satisfy m < A. Secondly M.. should satisfy

e vj12 <vt . M. . *v for all vectors v of proper dimension which have

a zero component on places corresponding to nodes kES...
IJ

Theorem 3,8: Assume that lim e. , (r..) = o, ijC Let yO be any
r . .-*0 1J A
IJ

JFCR variable set corresponding to a feasible point (r0 t0) with J(rO0) <J.
0

For each value of J0 , there exists a positive value for O such that any

sequence {'m = A ( 'O)} converges to a solution of (2.1). Furthermore, if
oI m

0 corresponds to a loop-free routing, so does $', m = 1,2,

This theorem is proved in appendix B. Since the JFCR variable set 4

is loop-free at every stage of the algorithm, the distributed computation of

A is possible.
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CHAPTER IV

THE USE OF WINDOW STRATEGY FOR IMPLEMENTATION OF JFCR STRATEGY

In this chapter we discuss three distinct problems regarding the

implementation of the JFCR strategy and its effectiveness in controlling

the flow of traffic in the network. The first problem is that of adjusting

the input rates of different commodities to the values assigned by the JFCR

strategy. We prove that a flow control mechanism known as widow strategy -

which has been in the literature for some time - is an effective way of ad-

justing the input rates to the set of assigned values.

Next,we discuss the behavior of the JFCR algorithm in a quasi-sta-

tic situation where the statistics of arriving traffic changes slowly with

time. Finally, we consider the short-term fluctuations of the traffic and

show that while the JFCR strategy itself is not capable of reacting to the

fast fluctuations of the traffic, the window strategy employed for the input

rate adjustment, effectively reduces the danger of congestion caused by fast

changes of traffic.

4.1 The Window Strategy for Input Rate Adjustment

The strategy developed in the foregoinf chapters, aims at maintain-

ing an appropriate and noncongesting traffic in the network, through assign-

ing a set of optimal input rates to the commodities. It is simply assumed

there that the average rate of the incoming messages on each commodity (i,j)

can be set to any value on some interval [0,LI..], and the difficulties in-
1]

volved in the actual implementation are not considered. Our objective in

this section is to propose an appropriate mechanism for adjusting the input
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rates to the assigned values.

Consider any commodity (i,j) with the desired input rate Pu.. and

the allowed throughput r.. < t.. assigned by the flow control strategy.
1 - 1]

Accordingly, there must be some controlling device at the entrance of node

i which will accept some of the incoming traffic into the network and re-

ject the rest. It is,therefore,necessary to define the rules according to

which the decision about acceptance or rejection of the incoming messages

should be made in order to maintain the input rate r...' The window stra-

tegy is a flow control scheme which provides such rules. In the present

section, first we explain what this strategy is and then discuss its appli-

cation for our purpose.

Let us first define a term which will be used in the explanation

of the window strategy. At a given time an "outstanding packet" in the

network is one which has already entered the network and either it has not

yet arrived at the destination or its acknowledgment has not yet been receiv-

ed by the source node.

The window strategy refers to a control scheme in which each

source node i, keeps the number of the outstanding messages of each commodi-

ty (i,j) below a given number w.., called the window size of commodity (i,j).

4.J

If storage capacity is available, the rejected traffic can be queued at the
entrance of the network until it can be accepted into the network.

The arrival rate of commodity (i,j) at node i, is not equal to the desi-
red input rate It.. in general. It depends on the nature of the source and

i~j
on the value of r.. as well as tu... For example, if a human being.is at the

iJ 13
source of the commodity, a small assigned throughput r.. can discourage him

1J
from sending data. On the other hand, if the source is a computer which con-
sistently tries to send some data, the arrival rate would include both the
traffic that is arriving for the first time and the traffic that has not gone
through before, and therefore is bigger than Pu..,

In any case,it is reasonable for our purpose to assume that the arrival
rate is greater than or equal to r.. for r.. < <u..,

13 1J3-13
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Accordingly, whenever a new message arrives for commodity (i,j), it can

enter the network if the number of outstanding packets of commodity (i,j)

at that time is less than w... If this number is equal to w.., no packet

of commodity (i,j) can enter the network until an acknowledgment from node

j is received by i, indicating that a new packet of this commodity has

reached the destination.

To our knowledge this strategy was first proposed by Cerf and

Kahn [10] and later on discussed by Gerla and Chou [14] as a mechanism for

congestion control in data communication networks.It was argued that a set

of appropriate window sizes for different commodities would provide an

effective flow control in the network, The proposals, however, did not say

much about the criteria or computation of an appropriate set of window sizes.

Here we link the window strategy and the JFCR strategy together,

by showing that it is possible to maintain any assigned set of input rates

r (which is demanded at some stage of the JFCR algorithm) through implement-

ing the window strategy with an appropriate set of window sizes. In other

words, we show that for any set of feasible input rates r, there exists a

set of window sizes w = w . . i(i,j)cC}I, such that the implementation of the
ij A

window strategy using these windows will force the input rates to become

equal to r.

We will spend the rest of this section verifying the above claim.

In doing so, first we need to obtain the relationship between the average

number of outstanding packets and the rate of commodities in the network.

Later on, in Section 4.4, we will discuss the interesting features of the

window strategy and explain why we have proposed it for maintaining the

desired set of input rates in the network.
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Consider the network N with some given set of routing variables

#. Let K be the number of active commodities of the network. For the sake

of notational simplicity, in this section we will mostly use a s-ingle sub-

script k = 1,2,...K, in order to refer to an active commodity instead of

specifying it with its source and destination pair Ci,j). Thus rk, for

example, represents the rate of commodity k. Let nk (n...) be the expected
1J

number of the outstanding packets of commodity k (commodity (i,j)). This

number consists of two parts. The first part, which we shall denote by

n , is the average number of packets of commodity k at any given time,
k'

which have entered the network and have not reached the destination. The

2
second part, nk, is the average number of packets of the commodity which

have reached the destination but whose acknowledgment has not yet reached

the source node.

For the given set of routing variables t, let us define the rout-

ing matrix Q, with dimensions K x L, as follows: Each component qk of Q

denotes the fraction of commodity k which passes through link k.' The 5th

column of Q, q RK specifies the fractions of different commodities pass-

ing through link Z. Similarly the k'th row of Q, qkCTL shows how commodi-

ty k is routed through the network, With this definition, it follows from

Little's formula that the average number of packets of commodity k,

waiting or being transmitted on link Z, is 1rk t for k = 1,..K

and = 1,..,L, where r is the average length in bits of packets and tkt

In specifying matrix Q in terms of 4 it is reasonable to assume that the

traffic is routed through the network regardless of the source that each

packet is originated from and based only on the destination. With this

assumption , each routing variable set { specifies the routing table of every

single commodity as well as the overall traffic and, therefore,corresponds to

a unique routing matrix Q.



-56-

denotes the average delay per packet that commodity k undergoeswaiting

or being transmitted on link k,

In order to avoid statistical analysis of the queues of the net-

work, which is very hard when flow control is practiced even under many

simplifying assumptions, we assume that on each link the average delay per

packet experienced by different commodities is the same. Therefore,

tkt k = 1,.9,K , R =1,...,L

With this assumption we can conclude from the above results that:

1 1 L1 +
n =TrkE kk - . rk qrk. t (4.')

k=1

+ L
where tG IR is a column vector consisting of the components ti.

Instead of writing Little's formula for every single link, we can

consider the whole network as a single server for commodity k and apply

Little's formula to it to see that:

1 1
nk Fp .rk 'T k (4.2)

where Tk represents the average delay per packet for commodity k when

travelling through the network. Now by comparing (4.1) and (4.2) we get:

Tk = qk . t (4.3)

2In order to compute nk, let us denote by e the average time
k 9 k

between the moment that a packet of commodity k arrives at the destination

and the moment that the corresponding acknowledgment is received by the

This assumption is not true in general, despite looking trivial. Suppos-
ing that the service times of each packet at different links are exponential-
ly distributed and statistically independent, we have been able to use the
results of [18] and show that tkz = tfor all k = 1,...,L and
k = 1,..,K, if a window strategy is not practiced and the arrival of packets
of each commodity is poisson. But if the window strategy is imposed even on
some of the commodities, the assumption is not valid, Nevertheless, we
think it is a reasonable approximation, especially since an exact analysis
has been impossible.
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source node. By applying the same concept one can see that:

n2= - , 1(4,4)
k r'ki k

1 2 1
Therefore: nk =nkI + n = - r (T + e ) (4.5)k k k ' k k k

In the following two cases we continue our analysis under two different

assumptions, with respect to the time necessary for the acknowledgments to

reach the source nodes. In both cases it is assumed that the acknowledg-

ments do not add to the traffic of the network. This is reasonable if data

packets contain a field for acknowledgment of other packets.

CASE 1 - ek is fixed and independent of the network's traffic:

This case is approximately valid if the acknowledgments are consi-

dered as high priority protocols when passing through the network and at

each node are inserted into the first packet on the next link on a pat>- to

the right destination. When we consider the next case, we will see that

the assumption in this case is important in order to maintain a stable

situation in the network, With the assumption made here, and for a given

routing variable set #, Eq. (4.3) and (4.5) completely describe nk in terms

of the input rates rm , m = 11... ,K, through the functions t (f )

k= 1,...,L. Therefore we can view (4.3) and (4.5) as the following mapping

from RK to 1K

nt h(r) (4.6)

where -* K -R and rQ R are two column vectors with the k'th components nk

and r k respectively,

When there is no packet going on such a link, a special protocol packet

should be formed to send the acknowledgment over that link.
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Theorem 4.1 : Let t(fQ), = 1,.,.,L, be an increasing and continuously

differentiable function on [O,CZ) . Assume that t((0) > 0 for k = 1,...

and 6 k for k 1,...,K. For a given routing matrix Q, define V as the

set of feasible inputs r , i.e.

=I{tt>o and
K
2 r . q <z
k=l

z =1 ,...,LI

where z is the effective capacity of link Q as defined in section 2.2.

Then there exists a one to one correspondence between the points in D and

h(D), i.e.

h (r) =n , r c D

h(r' =n, r'FE D

Furthermorel,theinverse function r = h (n) is continuously differentiable

dh(r)on h(D) and its derivative with respect to r is. the inverse of dh .0
dr

This theorem is proved in Appendix C,

CASE 2 - Equal priority in the transmission of acknowledgments and other

data:

An alternative to our assumption of giving high priority to the

service of acknowledgments is to route them through the network and serve

them at the links with the same priorities as other traffic. In this case,

if we assume that the average length of packets containing acknowledgments

is equal to the average length of other packets, it follows that 8.. =T..

(i,j)EC . Notice that if (j,i) does not denote an active commodity, still
A

we can define T.. as the expected travelling time between j and i.

In this case 0 .. is not constant and is a function of the traffic
rikj

in the network, In order to obtain this function, let the source-destina-
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tion pair (i,j) correspond to the commodity k. Let us definee the row

vector vk IR with the 9'th entry showing the portion of commodity (j,i)

which goes through the link . ek can be expressed then as:

6 = v k. t (4.7)
6k k '

It is clear that if (j,i) denotes an active commodity, vk is equal to that

row of Q which corresponds to commodity (j,i). Equations (4.3), (4.5) and

(4.7) imply that:

1 -
nk = Tp rk (vk + qk . t k = 1,...,K (4.8)

In appendix C, Eq. (4.7) is used to show that when 6.. = T-,

(ij)CA, there is no longer a unique correspondence between r and n

and for a given n there may exist multiple inputs rcD satisfying

n = h(r).

Theorem 4.1 suggests that in a nerwork where the acknowledgments

are given high priority in service, one way of adjusting the input rates

*
to a set of desired values r , is to keep the expected number of outstand-

*
ing packets of each commodity (i,j) at the value corresponding to r

namely to have n = n = h(r).

The window strategy provides an effective means for controlling

the value of n. Suppose that we choose w.. = n.. for all (i,j)EC . This

implies that the number of outstanding packets of any active commodity (i,j)

*
will always be equal to or smaller than w,.. = n.. . If we further assume

1J 1J

that on each active commodity (i,j), there are always some messages waiting

to enter the network, then as soon as a new acknowledgment arrives at node

i, a new packet enters the network and the number of outstanding packets

*
will always stay at w.. = n. . Therefore the expected number of out-

13ii
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*
standing packets, n.., will also become equal to the desired value n...

According to theorem 4.1 it follows that:

*
r., = r.. (i,j)C

If the acknowledgments in the network do not possess high priority

in service, theorem 4.1 does not apply. Indeed in this case, as we pointed

++
out earlier, enforcing the value of n to the desired value n through the

implementation of the window strategy, does not necessarily guarantee that

r = r and in fact might allow multiple pointsr corresponding to the

same value of n = n . Thusthe window strategy is not necessarily an

effective way of adjusting the input rates in this case.

The impact of the above results goes beyond the scope of the

implementation of the window strategy for achieving a desired set of input

rates. In fact if there are multiple choices for r with a given set of

windows, the statistical behavior of the network makes it possible for the

input rates to oscillate back and forth between several points. Therefore

in order to maintain a stable situation in the network, wherever windowing

is implemented, the acknowledgments should have high priority in service so

that their expected travelling time becomes independent of the level of

traffic in the network.

In the foregoing discussion, in order to conclude that n. = w..

we assumed that there are always some messages waiting to enter the network

for commodity (i,j). This assumption is reasonable if for every commodity

there is a sufficiently large buffer located before the flow control device

where the arriving messages can be queued until they are accepted by the

network. Of course, with this buffer, the actual delay of commodity (i,j)

is more than T. . , We have not, however, introduced this additional delay
iJ

into our JFGR formulation (Eq. 2,1), since this delay depends on /ti and



-61-

as explained in section 2.5, we would like to keep the assigned input rate

r .. independent of A.. (except for the constraint r. . < 4..),

*
Notice that even with this buffer, as the assigned input rate r..

approaches the corresponding upper bound A.., the likelihood that the

buffer is empty at a given time increases, and therefore the expected number

of outstanding packets, n.., will become smaller than w.. = n... According-

*
ly the actual rate r.. will be somewhat less than r.. (Fig. 4.1)-

n*

IJi

CO

_,-- --

11

*

4.. 'J
'J

Fig. 4.1

*
A more important source of error in adjusting r.. to r.. for

many cases of practical importance is the approximation involved in choosing

*
an integer value for w.. when n.. is not integer. This error becomes

*
particularly significant when n.. is a fraction of unity. One possible way

1J

of correcting this type of error is to change 8. . artificially to some
iJ

* 1 *
larger value 6.. for which n.. =- r.. (.. + 0'..) is an integer, This

can be done by disregarding any received acknowledgment at node i (from

node j) for 0'.. - 6.. seconds.
iJ 'a
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4.2 Distributed Computation of Window Sizes:

Given a set of assignedinput rates r, Eq, (4.5) shows how the

appropriate window size w5 , (i~j)eCA, can be computed. This closed form

relationship is inappropriate for a distributed computation of the window

sizes. In order to comput w.. distributively, we notice that T.. can be

expressed as follows:

T.. = Z i(j) (t., + T1..) (4.9)
k: (i, k)c L

where T . denotes the expected travelling time between k and j ,for
kj

any (k,j) whether it represents an active commodity or not. Naturally, we

take T.. = 0, j = 1,...,N.

The similarity between Eq. (4.9) and Eq. (3.7) suggests that

T.. can be computed distributively in the same way that was explained in
IJ 3G

T
Section 3.3 for the distributed computation of r.. This,indeed is

possible for a loop-free case, which is the case under our consideration:

For any destination j, every node i # j should wait until it receives

T . from all the adjacent and downstream nodes k (downstream with respect
kj

to j). Node i itself can measure or calculate the value of tik for all

(i,k)sL. Then it can compute T.. from (4.9) and in turn send it to all
13

of the adjacent nodes. This process continues until Tij is known at every

node i and for every destination j. Each node i then uses T..

in adjusting the window size.

In the above explanation we tried to demonstrate that the distri-

buted computation of window sizes is possible. There are, however, some

problems involved in this computation that we have neglected. To explain

these problems let us consider the network after the m'th iteration of the
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m m m m m Talgorithm. Let r , , t , j , Tkj 9(r . forkJ i:(i,)A

denote the parameters of the network at this stage, For the next iteration

m+l 1 m+1 m+1it is necessary to comput w.. = -- r..#.(T.. + e..), for (i,j)eC A

m+l . in+l in+lT is a function of t and # as we have

m+1 i+ n+l + m+lT.. = #.yj) (T . + t. ) (4.10)
Ij k:(i,k)cL ik kj ik

in+l i+l in+1Therefore, in order to compute T.. , both $) and t are needed. The

following procedure describes the distributed computations which are

necessary in order to compute T.. and w .. , (ij)C -

i) perform the distributed procedure of computing )M+1 and rm+1

ii) every node i should inform all of its adjacent nodes k, whether

or not the routing variables m+l (j)'jN j are zero.

Thus every node k will know what its adjacent upstream nodes

with respect to different destinations will be in the next

iteration.

iii) Perform the following distributed computations to find fm+1
ik

(i,k)EL. For each destination j, every node i waits until

in+1it receives f (j) from all the adjacent upstream nodes kki
M+l= m+l m+l

and then obtains s..Gr. + f.ki (j), Then node i

informs all of the adjacent nodes k of the value of

4.

By one iteration we refer to any step of the algorithm in which a new
update of the cost differentials 9GT/Tr.. , (i,j)EC is necessary. In

this sense, one iteration of the algorithm proposed in Section 3.3,
corresponds to one application of the mapping Ak or Ar and not to one
application of the mapping A = A4 . Ar -
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+1 m+l n-+l it+l
=ik * dk (j) for all jaN, jfi Once fik (j) isik i ik ik

known for all (i,k)EL, jcN, i # j, every node i can compute

m+l m+l
f. = f.(j).
ik .Z ik

J=1

jji

m+1 m+l m+l
iv) Having the value of fm+l , each node i can find tik (f ) either

ik ik ik

analytically, if the function tik (f ) is known, or using the

following approximation:

m+1 m + ik m m+l m
ik ik dfik! ik ik

m
where tik and dt . are estimated by node i.

ik df ik)

m+lv) Now the previously explained procedure for computing T.. based
iJ

m+l m+l
on the values of + and t+ik can take place, and then

m+l
every node i can compute the window sizes w.. =

13

1 m+l M + 6 ).r.- r.. (T. + 6..) for all (i,j)ECA
F i13 13 13

As is evident, the distributed computations described above require

alomost three times the protocol transmission compared to the distributed

computations of just updating # and/or r. This increase is due to the

m+ladditional computations necessary to find T.. . If one is willing to
1J3

accept some approximation, it is possible to use a simpler and faster pro-

m+l m+1cedure for finding T.. and w.. , (i,j )EC :
13 13 A

m+1 ^ m+l
As an approximation to T.. , let us define T.. as:

^t+l lJ Am+ i j
T .. = E (j)('T. j + t. ) i, jcN ,i J j (4.11)

k: (i , k) EL
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^m+l
T.. would be the expected travelling time between i and j , if the

LJ

routing variable set was M+1 but the link flows were fm. It is possible

m+l m+l
to compute T.. distributively in parallel with the computation of r

and M+: For ever destination j , each node i waits until it

reeve ot T an+dreceives both 9GT and k from all of the adjacent downstream nodes

kjlkj

k. Then node i first computes $ (j) for all (i,k)EL, and then obtains
11 ik G \m

^m+l ^m+( Tthe value of T.. from (4.11). Finally it sends T.. and to all
S1J" 9r.. I

^m+l m+l
of the adjacent nodes. The process continues until T.. and tik (j) are

'3 ik

known for all i,jEN, i # j, (i,k)SL . Then the input rates and window sizes

can be updated easily,

Finally an even simpler method of computing the window sizes is to

measure the round trip delay T.. + 6.. directly at the node i , and use

this value to compute w. for the next iteration, which means using
'3

Am+l _1 m+l m
w . . r -r .. . (T.. + ..) as the window size of commodity (i,j) at

23 F 3 J :i3

iteration (m+l). This involves more approximation compared to the previous

m m+lcase since T.. is used to compute w.. . A more serious problem here is
1J 'J

that the average round trip delays can be estimated less accurately over a

given interval than the link delays since the link flows generally combine

many commodities and thus generally contain more packets per unit time.

4.3 Quasi-Static Behavior of the JFCR Strategy

The JFCR strategy and the algorithm developed in chapters II and III

are based on the assumption that the input statistics and the link capa-

cities of the network do not vary with time. This assumption is reflected

in a fixed set of active commodities CA and a fixed set of desired input

rates IL. The algorithm is intended however for quasi-static applications
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where, as time goes on, the desired input rates change slowly and also new

commodities become active gradually or some of the active commodities become

silent1

While the convergence of the algorithm under these conditions is

subject to question, it can be applied to the quasi-static case with slight

modification in the procedure of the algorithm, To discuss this necessary

modification, consider the network just before an update of the input rates

and let CA and A respectively represent the set of active commodities

and the set of desired input rates at this moment, Let r be assigned as

the set of input rates after this update, Until the next update the

following quasi-static changes might occur in the network:

a) Some of the desired input rates may increase and new commodities

may become active,

b) Some of the desired input rates may decrease. This reduction for

some of the commodities may be sufficient to reduce the new desired input

rate to less than the assigned rate, At the limit, some of the commodities

may become totally silent.

Clearly if case a, b or both occurs,each source node i at the next

update of the algorithm should consider the active commodities at that time

and should calculate and assign their new input rates, based on the most

recent values of the corresponding desired rates (Eq, 3,14), Additional

considerations are necessary, however, due to the possibility of case b.

Suppose that for some commodity (i,j), the desired input rate in the time

interval between two updates decreases from A.. to some value less than
3J

the input rate r.i. assigned at the first update, Clearly then the actual

input rate of commodity (i,j) in this interval will be less than r .. .
JJ
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Let r .i. (real) denote this actual input rate in contrast with the

nominal value r.. assigned by the algorithm, During the interval under
13

consideration, the measurement of the marginal link costs and the cost
3GT

differentials ---- is based on the actual traffic passing through the
3r.iJ

network and not on the traffic specified by the nominal input rates r..,

(i,j)ECA. Thereforeat the next update of the algorithm, the new input

rate r.. should also be computed based on the actual input rate r..(real)
13 13

and not the nominal value r... Accordingly, Eq. (3.133) and (3.14) should

be modified as follows:

S = =__ G
1j Dr.. Dr..

13 ii

r..r = r..(real) r.. = r..(real)
1J13 13 13

- p.. (r. .)/

r.. = r.j(real) (4.12)

r = r..(real) -p 6 .., O<r..(real) - <6.. < h..
13 iJ 13 -13 13- 13

= 0 r. .(real) -p6.. < 0
13 iJ--

= ". . r. . (real) -p6.. > i. (4.13)
1J 13 13- iJ

Here., v. . denotes the most recent value of the desired input rate.
1J

The variations of r.. and r. .(real) with respect to time are illustra-

ted in Fig. 4.2 for two types of behavior of &... In both cases it is

assumed that i.. stays below the amount of service which the JFCR strate-
1J

gy can potentially offer. More precisely, it is assumed that 6.. as
iJ

defined by Eq. (4.12) is always negative. In case a, where Iv.. changes
1J
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gradually with time, the algorithm is able to keep up with it. In case b,

when A1.. suddenly increaes, it takes some time until the appropriate input

rate is assigned to the commodity, while on the falling edge, r.. follows

Pu.. almost immediately. This case illustrates an important shortcoming of
"J

the proposed JFCR strategy: When a big user of the network, which is in-

active for a while, suddenly becomes active, it may take a long time before

the proper input rate is assigned to it, To solve this problem,one alter-

native is to leave the window sizes large when the desired input rates have

become too small compared to the active periods! But this has the dis-

advantage of exposing the network to congestion when many such commodities

become active altogether, Further investigations are necessary to find an

appropriate way of handling the trade-off between the difficulties of above

two alternatives,

The difference between r.. and r..(real) is not merely caused by the
1J 13

reduction of A.., In fact, as we discussed in sections 4.1 and 4,2,

there are always some approximations involved in adjusting the input rate

by the window strategy. Therefore some difference between r., and r..(real)
1J 1J

should always be anticipated. In this respect,Fig. 4.2 (and also Fig. 4.3

to be discussed later) are somewhat misleading.

In our discussion in this report, we have assumed so far that the

desired input rate Pu.. is known by the source node i. While this assump-

tion is reasonable for a static case, for the quasi-static case in which

,.. changes with time, the assumption may not be valid any longer. When

node i is updating r.., if it does not know what tu.. is going to be,

it should anticipate some increase in the load offered by the commodity, 5 >,

and choose the value of r.. accordingly, Eq, (4,13),therefore,changes to
'Li
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1
r.. = r..(real) -p&.. r..(real) - p 6.. > 0

=0 r..(real) - p6.. < 0 (4.14)

If r.. as computed by (4.14) is larger than Li.., the actual input rate

2-2

r (real) will be less than r... Since in the next iteration,r.. is compu-
ij (raij 

orijiscmu

ted based on r..(real), it will be kept closed to k... Fig. 4.3 illustra-
i-J J

tes how r . and r. . (real) change according to (4.12) and (4.14), namely,

when t. . is not known by node i.
1J

In summary, we have shown in this section that under quasi-static vari-

ations of input statistics and when the offered load t .. is not known by
1J

the source node i, the JFCR strategy can still be implemented and practiced.

The essential question of whether it can adapt fast enough to keep up with

the changing input statistics is, however, difficult and requires further

research. Clearly,in order to keep up with faster statistical variations,

the algorithm needs to be updated more frequently. But frequent updating

requires more updating protocol which reduces the effective link capacities

available for data. It also makes the measurement of marginal link delays

and other involved variables less accurate,

4.4 Statistical Fluctuations of the Input Arrivals - Buffer Overflow

An ideal flow control scheme should be able to prevent buffer over-

flow in the network under all circumstances. That is, it should guarantee

that in the course of communication, no packet ever arrives at some node

without any buffer space available to store it. The JFCR strategy developed

in chapters II and III does not meet such a strong requirement, It only

guarantees that if the cost function J is initially limited, then at every

stage of the algorithm the expected number of packets waiting at any link
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(i,k), namely Dik, remains less than Bik, where Bik is some fraction of

the total available buffer space Bik(max). This does not imply that at

any instant of time, the number of packets at each link (i,k) is less than

B or even less than Bik(max).
ik

In order to see this clearly, let us consider an example in which the

packets of eqch commodity, at the point where they are admitted by the flow

t
control device into the network, form a poisson process. In this case it

is possible, although very unlikely, that while the expected number of

packets allowed to the network is kept at a limited value by the JFCR stra-

tegy, a huge number of puckets enter the network in a short period of time

in which case buffer overflow becomes inevitable at least at some of the

nodes. The probability of such an event can be reduced by choosing smaller

values for B./B.k (max), but will always remain nonzero. We conclude that

the JFCR strategy is only capable of reacting to sufficiently slow variations

of the input traffic and can not control the more dynamic statisticalfluctu-

ations of the input.

This inability to control the short-term statistical variations of the

traffic is inherent in the working mechanism of the JFCR strategy. As the

congestion builds up in the buffer of some link (i,k),it takes some times

until the news value of D. is measured and the congestion is noticed by
ik

the algorithm. It may even take several iterations until sufficient reduc-

tion is introduced by the algorithm in the flow of traffic through link

(i,k). If the congestion builds up rapidly, however, before these arrange-

TAs we shall see, this can not happen if the window strategy is employed as

the means of adjusting the input rates. However, we consider this case

in order to investigate the dynamic behavior of the JFCR strategy alone.

The effect of the window strategy will be discussed later.
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ments are made, the buffer may overflow.

This limitation of the JFCR strategy indicates that other flow control

schemes with faster dynamics should be implemented together with it. The

window strategy that was proposed as a mechanism of adjusting the input rates

for implementation of the JFCR strategy, in fact is very effective in con-

trolling short-term fluctuations of the arriving traffic as we will see.

The window stategy at any time allows only a limited number of out-

standing messages for each commodity. This, in comparison with the example

that was just considered, is a big imporvement, since now large bursts of

arriving traffic which are going to create congestion will be smoothed out

over time by the window strategy before being allowed to enter the network.

Moreover, if congestion builds up at some buffer of the network, the input

rate of the traffic passing through that buffer will be cut back since these

commodities undergo larger amount of delays before reaching their destina-

tions. This can be viewed as a negative feedback effect, in which as con-

gestion builds up, messages arrive at their destinations more slowly,

corresponding acknowledgments come back to the source node with a slower

rate, and the input rate is cut back accordingly,

It is clear at this point that the proposed window strategy does not

simply function as a mechanism of implementing the JFCR strategy but rather

plays a distinct and important dynamic flow control role in the network.

It is even helpful to view the window strategy as the basis of our proposal

for flow control with the JFCR strategy playing the following two roles:

First a complementary role in determining the appropriate window sizes

based on the quasi-static input statistics, and second, the role of optimal

routing of the data in the network.
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The argument about the effectiveness of the window strategy in conges-

tion control does not mean, however, that the network is protected against

congestion completely. The number of outstanding messages permitted by the

window strategy is such that on the average the number of messages waiting

on each link (i,k) is less than B. . But again, the distribution of the
ik~

outstanding messages on different nodes has a statistical nature and it is

possible that many messages cluster at one node creating buffer overlow.

The advantage of the window strategy is in making such events very unlikely

but the likelihood remains nonzero if the windows are large enough.

The likelihood of buffer overflow in a network where the window strate-

gy is implemented (with the window sizes determined by the JFCR strategy),

depends on several factors. First comes the value of B. / B. (max) for
ik ik

different links. As this ratio is reduced, the likelihood of buffer overflow

at the corresponding link decreases. At the limit, it is always possible to

choose a sufficiently small value for B. /B. (max) which totally prevents
ik ik

buffer overflow at link (i,k). However, this either would result in very

inefficient utilization of the available capacity of link (i,k) (if Bik is

small!) or would require unreasonably costly buffer assignment (if Bik(max)

is very large).

Another important factor in determining the likelihood of buffer over-

flow in the network is the size of the network and the number of links which

a message has to pass through before arriving at the destination. As the

communication path' s get longer (in terms of the number of links involved),

the chance of congestion increases. To see this point clearly consider a

Recall from example 2.1 that assuming M/M/1 queues at any link (i,k), the

effective capacity of the link would be Eik Cik . Bik/(1 + B)ik.
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commodity which has only one path to the destination with n links. Let

w indicate the corresponding window size and for simplicity assume instant-

aneous acknowledgments. If n = 1 , namely, if there is only one link which

this commodity has to go through, the number of packets waiting at this link

is always w and therefore it never exceeds the anticipated average quanti-

ty which is w. On the other hand if n = 20, assuming that all of the in-

volved links have the same average delay per message, the anticipated avera-

ge number of messages waiting on each link is -- ,while the range of
20

fluctuations of the waiting messages is between 0 and w. Here,obviously we

have more chance of congestion unless B (max) is much bigger than B
ik( ik

for all of these links.

Finally, we need to emphasize that in a well-designed network, together

with any quasi-static and dynamic flow control scheme (such as the JFCR

strategy and the window strategy), the system must have some emergency

mode of operation in it, which becomes active whenever the potential for

deadlock arises. Some intersting discussions of deadlock recovery systems

can be found in [1] and [2].

4.5 Node-to-Node versus End-to-End Flow Control

In this last section, we introduce a rather general type of flow control

in comparison with what was discussed previously. In the approach just pre-

sented, flow control was viewed merely as an end to end practice. According-

ly, we tried to maintain a noncongesting traffic by imposing restrictions on

the traffic, only at the gates of the network. This is not the only type of

flow control which can be practiced, nor is it always sufficiently effective

for the purpose of avoiding congestion while using the network efficiently,

as we showed in the previous section. A more general type of flow control is
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to impose restrictions on the traffic on a node-to-node basis, Of course,

to be precise we should indicate that minimum cost routing itself is a type

of node-to-node flow control which tries to maintain some sort of balance in

the level of saturation of different links, so that local congestion does not

occur. But in the same way that the input rate assignments of the JFCR stra-

tegy were only successful in coping with the long-run variations of the

traffic and not with its short-run fluctuations, the routing assignments are

only helpful in maintaining balanced traffic on the long-run, and do not

effect the problem of local congestion due to the fast fluctuations of traffic.

In order to provide protection against local congestion created by

fast fluctuations of traffic, a window strategy on a node to node basis

might be used. Presumably the link flow assignments of the JFCR strategy

should be used to determine the right size of the node-to-node windows,

in which case the node-to-node window sizes could be interpreted as a

mechanism of implementing these routing assignments.

The extreme of node-to-node flow control is that over any link (k,Z),

and for every commodity (i,j) using that link, there be a window size

w k(i,j) assigned to node Z. This scheme is very costly, however, and it

may be desirable to practice node-to-node flow control with less generality.

To see the possibility of such a scheme, recall from section 4.4 that as

the length of a communication path (in terms of the number of links involved)

increases, the chance of local congestion grows. This reveals a more tract-

able way of viewing and practicing node-to-node flow control: As the size

of a network grows, it can be split into smaller subnetworks with the pro-

posed end-to-end flow control strategy practiced for each network.

Further research is necessary to evaluate the need for node-to-node

flow control and develop the theory and details of an appropriate strategy.



-76-

APPENDIX A

Proof of Lemma 2.2

* *
Assume that at the optimal point (r ,f ) there is an active route

R (i,j) with the length A (i,j) > A... By definition there should be at
a a 1]

least one route Rb(iji) with the length Xb(i i) = Nij, Consider the traffic

travelling from node i to node j over route Ra(i,j). Let us change the

routing by sending a small part of this traffic, say c bits per second,

over Rb (i, i) and call the new point (r f), Therefore,

.. * * * * *
J(r ,f) - J(r,f ) = G(r f) -- GT(rf ) =

E k k + c) - kk] + L [g(k) g k(f -
all links(t,k) all links(Z,k)
in Rb (ij) in Ra (i.j)

Since the cost functions gk k ' (k,k)cL, are twice differentiable at

f .k, we can use the first order Taylor expansion as follows:

* *
J(r ,f) - J(r ,f ) =

dg)
d f.E

1.1 links ( ,k)

n Rb(i,j)

*

d gZk k '(f(c
2

all links(Q,k)
in R (ij)

2 2
= b (i~j) . a - (ij) . + O(2 ) = (a.. - a (i,j)) E + OQE )

* * *
Then for a sufficiently small value of E, J(r ,f) - J(r,f) becomes negative

* *
which contradicts the assumption that (r ,f ) is an optimal point. Therefore

* *
at the optimal point (r ,f ), the length of any active route R(.i,j) is N..

:i3
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*
Next consider any commodity (i, j)cC and suppose ri..< &.

A adspoer. 4..

Let R(i,j) be any route with the length \ .. Let us define a new point

~ *
(r,f) by increasing r. . slightly and sending the increased part of r. . over

route R(i,j). Using an argument similar to the above, we can show that

j j j r .(A.1)

*
Similarly if r > 0, take any active route R(i,j) over which part of

ii

the nodal flow s . is passing. Define a new point (r,f) by decreasing r.
Jdrsg

slightly andreflecting this decrease only in the flow passing over R(i,j),

Then in a similar way it is possible to show that

. < p..(r. ) r. > 0 (A,2)
- I :1iJ

Combining (A.1) and (A.2), Eq. (2.2) follows. Q,E,D.

Proof of Sufficiency of Theorem 2,1 :

First we establish the following lemma:

* *Lemma A.1 For any feasible points (r ,f ) which satisfies conditions of

theorem 2.1 and any other feasible point (r,f), the following inequality

holds true with equality if (r,f) = (r ,f )

ik k ik - E (A.3)

(i~k)cL (1,J)CA

jEN

Proof: Multiply both sides of (2,4) by fik(j) to get

(gki + kj ik i) ikj) (i,k)cL, jEN (A.4)

(A.4) becomes an equality for f =ikik (j), since in this case either

*
fk (j) > 0 or fik(j) = 0. Summing up (A,4) over i,k and j we get:
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g (f * ) f. ( D
kik ikC I

(i, k) EL (i,k)EL
j CHj jeH-

A.. f. (i j) -ii ik kj ik
(i,k)EL
jcN

=2
i,j

k:ik f ik 
k: (i, k) -L

- ik Q

iJ k: (i,k)cL

k,j
kj E fik Q

i: (ik)eL

f .(j) Y .r. A1= r..

m; (m,)EL J , j )C

with equality in for f = ft Q.E.D.

Now let there be a set of positive numbET s.s. satisfying (2,4) and (2.5)
1J

at a feasible point (r,f). For any other feasible point (r,f) and any

0 < a < 1, (cr + (1 -a)r , af + (1 a)f ) is also a feasible point. Define

*
J (a) = J(ar + (1 -cz)r , af + (1 -c)f ). Since J(a) is a convex function,

* * d
J(r,f) - J(r ,f ) = J(l) - J(0) > dJ

da
a= 0

E
(i)CC

[(rS.-r.. ) P.(r. ) + ( (j)- f (j))g' ik(fik)1]I 1 Jik ik ik ik
(ik)cL
j EN

According to (A.3)

[(rt.-r..) p.. (rt.)] + ' r..lJ ] ij L ij 'Ij

(ijEAijEA

A

- r....
C JC A

(r.. - r.(p.. (r..) - A..) 2 (r.. - r..)(p..(r..) -A..) +

(i, J)E

r. =0
iJ

(r.* *
(r2 - r..)(p.. (r..) -A.,) + 2 (r..

(ii)CC (i,j)sC
* r A

O< r.. .ij ij
'3 ii

*
- r. .)(p..(r..) - A..)ij J LJ

-2

A
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According to (2.5),the second summation above is zero, and the other two

summations are both positive since 0 < r. . < /t. , (ij)CCA. Therefore,

* *
J(r,f) - J(r ,f ) > 0 for all feasible (r,f). Q.E.D,

APPENDIX B

We prove theorem 3.5 through establiahing the following 3 lemmas:

Lemma B.1 : Let J be any positive number. There are scale factors

y > 0 and r > 0 such that for any feasible point (rP0 ) satisfying

J(r0 , 0) < J , we have:

J(r1 1 -J(r ) < 0 for all (rbl)EA(rOA )

Proof: First consider the point (r 1 0) = Ar(r00) and let us define

ra = a. r1 + (1 - a) ro and J(a) = J(r a 0) , 0 < a- < 1. Since J(rt) is

twice differentiable in terms of r, J(a) is also twice differentiable in

terms of cx. Therefore from the Taylor remainder theorem:

dJ(a) 1 ^2 d2J(c)
J(a)- J(9) = a- + - a (B,1)dJact=0 2 da A Bl)<a

dJ(a) 1 0 J
d = (r.. - r..) 9r . f(B2)

(iicCAIr
r=r

d2J(ar) _ 1 o 1 2

dc2 6 ij ij )(r , .r ) ?)
(rarr).L C Zrn 3r Sr.

(i, icCA (Z,m)SCAZm i c
r=r

(B.3)

One can see from (3,13) and (3.14) that;
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J1 1 o 1 1 0 2
(x1  r..) < - jjr.. -r..)(4

Br. 3 3 p13 13 (B, 4)

r..=r..
3ij 1

It follows from (B.2) and CB.4) that:

dJ(a) 1 1 o 2
< -L (7Cr.. - r.. ) (B.5)

"P iJ i

a=0 
Ai, j )F-CA

Next let us define the bound M as:

0

2
lid 2J(r, )M = max I r )2

o dr

(r,t):J(r,t)<J

where 2 is the Hessian of J(r,4) with respect to r, considering r as

dr 2
a vector (the or der of components r.. in r is not important) and d J (r, )

d2 1Jdr
2

is defined as max vt. 2 . v over all vectors v of proper dimension

and magnitude one. The bound M exists since J(r,t) is twice differentiable

in terms of r for J(r,t) < o. It follows from (B.3) that given J(a) < J
0

d2 J) < M(r. -ri. B.6)

da (ij ) C

We know that J(0) = J(r 0 ) < J . Take any a6[0,1] satisfying:

J(a) < JCO.) for accfQ,cx] (B.7)

According to (BEd), (B.5) and (B,6):

J() - J(0) < Z.r.. -r 2- + 1 21 (B.8)
(i3j)cCA i-22 0

For p< 2 /M and cfe[O,l] the R.H.S. of (B,8) is negative, therefore
A 0

J(a) < J(0) with strict inequality if r' r0 , Since J(O) < J_ , it follows

that (B, 7) is true for any 0 < c < 1. Taking a = 1 we have the following
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with equality if and only ift r r

lo000o2 1 1
J(l) J(0) = J(r tt) J(r t) <( ri.)J -N - )<>0

(i,j)EC A

(B,9)

Finally, let us consider the effect of the mapping A on the cost J.

Let (r ,1)E A (r1 0 , Since G (r 4 ) _<J(rlt) < J , it follows from

Gallager 14], Appendix C, that there exists an p > 0 such that

J(rl,4A) - J(r ) = GT(1) -0 (r t)2 2<_0
T T 2n(N-1) .E.

ifj

where AG () VAik (j) (B,10)

k: (i, k) eL

and Aik(i) and s are the values corresponding to point (r 0 ). Summing up
ii

(B.9) and (B.10) we get J(r1,t) - J(r 0 4/') < 0.

Q.E.D.

Lemma B.2 Let the scale factors p and p be chosen as required by lemma BJ

for some given value J and let (r0 ")be any feasible point which does not

minimize (3.6) and J(r 0,t) < J . Then

N-i N-i o o N-i N-i N-l o oJ(r , ) < J(r 4, ) for all (r ,N )EA (r ,0 ) (B.11)

Proof: Consider any point (rN-1 AN-1 AN-1( Let (rn ,n), n = 1,.. ,N-2,

by any sequence of points satisfying:

(r n)ESA(rn- n-) n = 1,2,..,N-

It follows from Eq. (B.9) and(B.10) that:

j r nn) < J(rnt n-K$ < J(rn-1, -l) n
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Therefore, the only case in which (i1) does nQt hold is when we have:

J(rnn) = J(rn n-1) = J(rn-l 4n ) n=l,,. .. N-1 (B.12)

We show this can happen only if (r0 , 4) minimizes (3.6), contrary to our

assumption:

Let (B.12) hold true. It follows then from (B.9) and (B.10) that

N-i N4-2 _o n-i n-I o n-i
r = r -= ... = r and at any point (r ,4 ) = (r ,4 ), n=1,..,N-1,

n-i n-iA. (j) .-s.. = 0 i,k,jEN, i # j (B.13)
ik 'a

where Aik is the value defined by Eq. (17) - (19.) corresponding to theik i

mapping of point (r4 n-1) to point (r,4n). We show first that if (B.13)

holds~there can be no blocking for the mapping of (ron-l) into (r0 n)

for n = 1,...N-1. If any blocking occurs, there is some t,m,j for which

n-i -(3.15) and (3,16) is satisfied (with > ). Thus sn-1 > 0 and tn-m(j) > 0.

SG 3G -
Also from (3.18), a (j) > g' + T --_ - > g'. > 0, ThusA n- (j) > 0

tM - tm Er9. 9r - km ' km
ma E

n-i n-iand A (j) . s > 0, which is in contradiction with (B.13).

Next let us denote by Kn- (i,j), n=l. .N-1, the set of points k
min

which achieve the minimization in Eq. (3.18) at the point (r 4 n-). It can

be seen from Eq. (3.18) - (3.20) that $nkj) is nonzero only if ksKn-)
ik j snneo nyi PKmin (~)

n-J n-iThis is because, according to (B.13), either Aik (i)= 0 or si. = 0. If

n-i -
Aik (j) = 0, Eq. (3.18) and (3,19) imply that either kcK in (i,j),or n-i1j)=O

n n-i n-iin which case kj) = k ~Aik () =0. Qn the other hand if sn-i 0ik i ij i

it follows from Eq, (3.18) and (3.19) that either kEKn1 (i,j) or
min
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= k'kj) = nik=) in which case knik) = 0. Thus in all

casest ik (J) is nonzero only for kcKn (i,j).
ik min

Now consider a fixed destination j in the network and let us de-

note by T (j) the set of nodes i which are -m hops away from j on am

shortest route R(i,j) with gj(f considered as the length of link

(k,Q). Notice that according to (B,13) the link flows are the same for all

of the points (r0,n ),n = 1,. .N; therefore the shortest routes and the

sets I (j) are identical at different steps of algorithm A. From our previous

result ,for any iElU(j),t () > 0 only if keK0 . (i,j), Since (i,j) in this
ik min

case is a shortest route from i to j, it also follows that at (r0 , 4),

GT GT
- I'.., One can also see that remains the same in the next

Dr.. D3 r..
J nij

steps of A namely at (r ,tn), n = 2,..N-1, Next we know that for any

2 1iEI (j), 4 (j) > 0 only if kcK. (i,j). By definition of T9(j), at least
2 ik min 2

one element of Km (i,j) belongs also to T (j). Therefore at (r , ,2
min1

T__ o N-i

r. . ij. We can continue this argument to show that at (r ,t ),

DGT

Dr.T= X.. for all nodes iEN, since no node can be more than N-1 hops away

o N-1
from j. Thus it follows from Theorem 3.4 that (r ,t ) minimizes (3.6).

Since by assumption J(r,0 0) = J(r 0 $N-1), (r,0 0 ) also minimizes (3.6).

Thus we have shown that (B.11) fails to hold only if (B.12) holds and (B.12)

holds only when (r0 , $0) minimizes (3.6), Q.E.D.

Lemma B,3 The mapping A is a closed mapping (in the sense defined in page

124 of 115]).

Proof: First notice from (3.13) and (3.14) that A is a continuous point
r

to point mapping. Thus according to corollary 2, p. 125 of [l5], in order
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to verify lemma B,3 we only need tQ show that A is a closed point to set

mapping.

Let (r,tn) be a sequence of feasible points of (3,6) converging

n
to (r,t), Take any (i,k)d and jEN , i # j, and let ak(j) be the value

of a (j) at (r,$T) as defined by (3.18) for any possible choice of BS. and
ik ij

let an (j) + a () Let us denote by y. (j) and y.n (j), the value of
ik ik in im

S(f. ) + T respectively at (r,$) and (r, tn) According to theorem
im im 'ar .

mJ
3.2 , y.n(j) is continuous in Cr,t); therefore yn () + Y i) for all

(i,m)cL. Since a'' (j) approaches a limit, it follows from (3.18) that
ik

min yn (j) also approaches a limit, which for a subsequence of n must
im

iJ

be achieved at some particular m. Since this m is not blocked for the

subsequence, it can be considered not blocked at (r,4). Similarly, if there

is any node k which is blocked and y n ) < min yn(j) for this sub-
i ^on in

iJ
sequence of n, k can also be blocked for (r,t). Therefore, the mapping

from (r,t) to a (j) is a closed mapping. Furthermore,since s.. is continu-
ik 13

ous in (rt),n. a. (j)/s.. is also a closed point to set mapping from (r,t)
ik 1

for s. > 0. Finally since 0 () -1 , it follows from (3.19) that

A. (j) is a closed point to set mapping for arbitrary s.., Thus from (3.17)
ik i

and (3.20), A is a closed point to set mapping.

Q,E.D,

Proof of Theorem 3.5 Let us defins S as the set of points (r,t) which are

feasible for (3.6) and J(rt) < J, i~e,

S =<{(r,$) <r.. < t.. , Ci,j)ECt is a routing variable set,
-13 -13 A

J(rt) < J }
-0
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Since S is a compact set and A is a closed mapping from S into itself,

it follows from corollary 1, p, 124 of 115] that AN-1 is also a closed

mapping. Theorem 3.5 now follows from lemma B,2 and the general convergence

theorem, p. 125 of 115], using AN-1 as the algorithm,

Proof of Theorems 3.7 and 3.8

First notice from Eq. (3.21.c) that s.. is equal to the correspond-
'2

ing nodal flow in network 8, The routing variables of network M are as

follows:

Kk -fi-fik
S.. S..

f. ,(j) I. -r..

ik'( - ik _3 = $. ,j) k=j, (ik)CCA
S..

1] 13

= 0 kj, (i,k)ECA

Therefore, each set 4 uniquely specifies the routing variables and the multi-

commodity flows of network A , which in turn correspond to a unique point

(r,f) (Th. 3.2). Thus theorem 3.7 is verified.

To prove theorem 3.8, consider the routing algorithm of [17] for

network & . We shall introduce a slight modification in this algorithm to

come up with algorithm A : In order to satisfy constraint (3,3,d), for every

(.i,j)ECA, we shall define the set of blocked nodes YS(j)of network IT to

also include all links (i,k'), k # j, This extension in the definition of

1. (j})does not effect the proof of convergence in 117], Furthermore, accord-

ing to corollary 3.1, any limit point of the algorithm with the above

extension in W.Cj), is still an optimal point for the routing problem 3.1.
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Next notice that for every node i and destination j , wit> the

extended set Wj), the following routing variables of network 7 , are always

zero during the algorithm:

ik(J) = 0 keN , (ik) L

ik(j) =j 0 k j, (ik)ECA

The subproblem (2.9) of 117] can accordingly be simplified by dropping the

terms corresponding to the above routing variables. What remains is the

same as the algorithm A discussed in section 3,4, Therefore, according to

theorem 3.1 and the convergence theorem of [17], there exists an a > 0 for

which algorithm A converges to a solution of (2.1). Furthermore, accord-

ing to [16] , the JFCR variable set 'p = Am (y) corresponds to a loop-free

routing for all m = 1,2,3,... Q.E.D.

APPENDIX C

Proof of Theorem 4.1

dh _nkFirst we show that the matrix P = - (with entries P = )
drK km Drm

is nonsingular for reD. We know that f = q kk-r k, for Z=1,...L.
k=l

It follows then from (4.3) that:

Lk Lt L dtz

rm = k Dr m Z=lk. Kdf(cml

t
=q k-M-qm k,m=l,.. K (C.1)

where q denotes the transpose of q and M is an LxL diagonal matrixm
dt2z

with the entries MN = - on the diagonal. Also it follows from9. df k
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(4.5) that:

afnk 1 'Tk km
km rm = y rm(C.2)

= I[rk' rm +(Tk+6k)] k=m
r 9m

Therefore if Pk denotes the k'th row of P, we have from (C.1) and (C.2)

that

1 t it t

fk = (Tk+ek) )ek + prk kM[Rl q 2  '.I qK (C.3)

where ekEdRK is a row vector with one in the k'th place and zero in other

t
places. Notice that the last matrix in (C.3) is Qt. Finally it follows

from (C.3) that:

P = T + R.Q-M-Qt (C.4)

where T and R are KxK diagonal matrices, respectively with the entries

Tk+Ok r
Tkk and Rkk on the diagonal.

In order to show that Pis a nonsingular matrix, we consider the

following two cases:

Case a - rk>0, k=1,2,...K:

In this case P can be expressed in the following form:

P = R(Tr + Q.M.Qt) (C.5)

where Tr is a diagonal KxK matrix with the entries Tr -k+ek on the
r rr

diagonal. Since Tr >0 for k=l . . .K, Tr is a positive definite matrix.
kk

K
Since M is a diagonal matrix with nonnegative entries, for any xEIR

we have:

xt-(Q-M-Q )'x = (Qt.x) 4 m- (Qt.x) >0
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Therefore Q-M-Qt is positive semidefinite. It follows that Tr + Q-M-Qt

is positive definite, and thus nonsingular. Since R is also nonsingular

in this case, it follows from (C.5) that P is nonsingular and det. P> 0 .

Case b - rk=O for some commodities:

For any k with r =0, the corresponding row in the matrix R-Q-M-Qt

is zero. It follows then from Eq. (c.4) that for any k with rk=0, the

k+
corresponding row of P only has the diagonal entry kk = kk Let us

construct a matrix P by eliminating the k'th row and the k'th column of

P for all k with rk=O. It can be seen from (C.4) that:

P = T + R-Q-M-Q

where T and R are constructed by eliminating the corresponding rows and

columns of T and R, and Q is constructed by eliminating the corresponding

rows of Q. Since R has only nonzero elements on the diagonal, according

to Case ldet p>O. Therefore,

ek+Tk
det P = det P'fl( ) > 0

r

all k
with rk=O

dh 4
Therefore the matrix P = d is nonsingular for any rD. It follows

dr

from the implicit function theorem [19] that for any point r0 ED and

n = h(r ), there exist small spheres r-r <E , n-n <6 in whichn0 hr0 rr0 -0

there is a one to one correspondence between r and n. Furthermore, the

resulting implicit function r = h~(n) is continuously differentiable on

+-l
h(D) and its derivative with respect to n is P

Notice that the one to one correspondence between r and n, as

claimed in theorem 4.1, is a stronger condition than we have established

up to here. In order to complete the proof of theorem 4.1, we need to
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show that the one to one correspondence between r and n is valid in the

whole region D and h(D). To do so, let us consider two arbitrary

points r and r' in V. Let n = h(r) and n' = h(r'). Similarly in the

following, any parameter which is primed, corresponds to the imput r'.

We have from Eq. (4.5) that:

nk -nk r[Y(k +kk - rk(k+ek

(C.6)

[(r-rk) (k+k) + rk k k

From Eq. (4.3) we have:

L

T -Tk L k[ (f') - t (f ) (C.7)k k Z=lP

According to the mean value theorem, for each link P, there exists a

point f* on the line segment connecting f and f' such that:

t (f') - t (f) = dt f-f) (C.8)

It follows from (C.7) and (C.8) that

L dt t/ +kk kE kkQ-dfifzkfz

qk dt / -f* qt(t-ft) (C.9)

+ K ÷ K
If TEM and T'EIR are column vectors made of components T and T' ,we see

from (C.9) that

T - T.= QM .Q-r'r) (C.10)
* - +dte) C~O

where M* is an LxL diagonal matrix with diagonal entries M* dt
EE dfk f=f*
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Finally from (C.6) and (C.10) we conclude that:

+4 +* t +4+
ny - n = (T'+R'* Q - M Q) (r'-r) (C.11)

* * t- *
Now consider the matrix P - T'+RQ-M -Q P is the same as P

dtZ *
except that the parameters Tk' k=1,...K, anddf , 2=l .... L, in matrix p

k9 dfZ

are evaluated at different points on the line segment connecting r and r',

rather than being calculated at the same point. However, P is also a

nonsingular matrix. This is because, in the process of proving the

nonsingularity of F, only the structure of P and the fact that the para-

dtz
meters Tk, k=l,...K, are strictly positive and the parameters d , =l...L,

are nonnegative were used. Since P * shares all of these properties

with P, the same argument can be restated for P * to prove that it is

nonsingular. Therefore from (C.11):

- -=o- =tr'-t =0 Q.E.D.

Case 2 - 6..=.. , (i,j)cC:
ij ji A

We use an example in this case to show that when 6
j=T.i, (ij)eCA,

there can be multiple sets of input rates r corresponding to the same

vector n. Consider the network of Fig. C.1 with two active commodities

r1(from node 2 to node 5) and r2 (from node 4 to node 1). Let half of r1

take the links (2,4) and (4,5) and the other half take (2,3), (3,4) and

(4,5); but assume that acknowledgments all take the route (5,4), (4,3) and

(3,2). Similarly let half of r2 take (4,2) and (2,1) and the other

half take (4,3), (3,2) and (2,1); but assume that the acknowledgments

all take the route (1,2), (2,3) and (3,4). Let the capacities of links

(1,2), (2,1), (4,5) and (5,4) be large enough so that the delay of these
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links is negligible. Let the other links all have capacity C and the delay

function t(f) = C-f With these assumptions we have:

3

Fig. C.1

T =0.5 - + 0.5 - (+ =1.51 C-r C-r1 C-rf C-r

1 1 2
1 C-r C-r2 C-r2

=1.5 2Similarly: rT C-r and 6 =
2 C-r 2 2 C-r1

Therefore: n = r 15 )l 1 -r + C-r2

1.5 2
and n = r2 (C + C-)

2 2 C-r 2 C-r1

7
If we further assume that r +r2 = C,it follows that:

rlr2
nl = -22(C-r1)(C-r2) (c.12)

If we interchange the values of r1 and r2 , a = (n1 ,n2 ) will remain the

same. Therefore, in this case r = (r1 ,r2 ) and r' = (r2 ,r1 ) both

7
correspond to the same n, if r1+r2 = T C .
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It is not difficult to find the matrixP = dh in this case.

Similar to Eq. (C.1), one can easily conclude from (4.7) that:

ek t
= Vk -M- k,m=,...K (C.13)

m

From (C.l) and (C.13) we have

(k +rk) t
(v = k(+k k) -M -q M(C .14)

m

Using Eq. (4.5) and (C.14), one can proceed in a manner similar to the

previous case to find that:

P = T+R(Q+V) - M - Q(tC.15)

where V is a KxL matrix composed of rows vk'

For the network of Fig. C.1 it is possible to deduce from (C.12)

7
that p is singular at r1 = r2 = C, without computing P from (C.15).
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