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ABSTRACT

A joint flow control and routing (JFCR) strategy is proposed for store
and forward communication networks. The strategy is based on a convex opti-
mization problem in terms of the average input rates and multi-commodity
flows and is shown to have the following properties: First the average load
of each buffer stays below some arbitrarily chosen level for the input rate
and routing assignments of the strategy. This level can be chosen so as to
upper bound the probability of buffer overflow arbitrarily. Secondly, by
proper selection of the cost functiom, it is possible to utilize the network
fully and to achieve a variety of different types of priorities in the serv-
ices offered to the users. Finally, the routing assignments of the strategy
correspond to a routing strategy which tends to minimize the total delay when
the network is lightly loaded and tends to prevent congestilion when it is
heavily loaded. Furthermore, the proposed JFCR problem is shown to bhe equi-
valent to a minimum delay routing problem corresponding to a bigger network.
Accordingly, any minimum delay routing algorithm can be converted into a
JFCR algorithm. Using this approach, a class of JFCR algorithms with distri-
buted computationg at the nodes are developed.

Under certain conditions, a one to one correspondence is shown to exist
in a store and forward network between the set of average input rates and the
set of average number of outstanding packets of commodities. This unique
correspondence is used to show that in practice the average input rates can
be adjusted as desired by restricting the number of outstanding packets on
each commodity {(window strategy). It is further shown that the upper bounds
(window sizes) corresponding to each set of input rate assignments can be
computed distributively in the network.

If a sufficiently fast algorithm with frequent updates is employed, the
JFCR strategy can cope with quasi-static variatious of the load offered to the
network. On the other hand the window strategy is effective in controlling
the dynamic fluctuations of the traffic. Thus the analytical features and
quasi-static effectiveness of the JFCR strategy is combined with the fast
dynamics and practicality of the window strategy.
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CHAPTER I - TINTRODUCTION

1.1 Description of the Problem

In a store and forward (S/F) data communication network, each node is
equipped with some storage capacity, called a buffer. The messages arriving
at each node will be queued in this buffer and wait until they can be trans-
mitted over an appropriate outgoing communication link. As In the case of a
single server, the sizes of the queues built up in the buffers depend on the
rate of the traffic seeking service by the network. As the rate of arriving
traffic increases, these queues also will grow in size and the messages will
undergo larger delays when passing through the network, ©Since the nodal sto-
rages are limited in size, if the input rates continue te increase, eventual-
lv some of the buffers will become congested by the stored data.

When congestion occurs, i.e. when some of the buffers of the network
get congested with the data waiting for available links, the efficiency of
the network drops since those links which lead to saturated buffers can no
longer send data, Therefore, in this situation, an increase in arrival rate
leads to a decrease in the service rate. This is an unstable situation and,
unless the inputs to the network are reduced sufficiently, will drive the
network more into congestion and more buffers will become saturated. As the
number of nodes with saturated buffers increases, a situation known as 'dead-
lock" will occur. A deadlock involves several saturated nodes, each one
filled up with the data which should be sent to other saturated nodes. In
effect, no transmission of data remains possible between these nodes and
they will be locked up to each other unless some of the buffered data is
dropped ocut. A deadlock may even involve all of the nodes of the network.

The above comments are roughly illustrated in Fig. 1.1, where the

throughput of the network is sketched versus the total stored data in the



buffers. Although the term 'throughput' here is a vague notion, since it
could be interpreted either as the sum of the throughput of all commodities
or sum of the flow of all the links, stillwe find this diagram useful in

demonstrating what happens in the network.

|
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Fig. 1.1
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In a well-designed network, the nodal storages and link capacities are
properly sized so as to accomodate peak hour traffic requirements and to ab-
sorb reasonable short-term flusctuations within the peak hour. This does
not guarantee, however, that the input traffic will never exceed the limits
of the network. If controls are not imposed, a sufficiently high burst of
input traffic can always drive the network inte the congestion or deadlock
states.

Adaptive routing, flow control and deadlock prevention refer to three
types of control schemes which are mecessary in order to maintain a small
delay and uncongested traffic in the network. A routing strategy, while
assuming no control over the rate of arriving traffic,often tries to route
the data through the network with the objective of minimizing the total
number of messages in the network for the given input rates. When conges-

tion is likely te occur in some parts of the network, adaptive routing can



provide some relief by offering alternate routes to the data passing through
the congested regioms. However, if the input rates are higher than the max-
imum flows achievable by the best routing, then congestion will still occur.

Adegquate control procedures must, therefore, be developed to regulate
input rates and prevent the network from entering the congestion region.

The ensemble of such procedures is generally referred to as the flow contrel
strategy. In a well-designed network some additional control means should
be available to avoid deadlock if the flow control procedure does not work
and the network becomes partially congested. This latter control procedure
is referred to as a deadlock prevention mechanism. Here in this report, we
are only concerned with the routing and flow control preblems with the em-
phasis on the flow control. A discussion about deadlock prevention can be
found in [1], [2].

The problem of routing has been an active research area in the field
of data networks in recent years and several static, quasi-static and dyna-
mic routing algorithms using central or distributed computations have been
studied [3] - [6]. The objective of most of these algorithms is to minimize
the expected number of messages which are in the network. This is equivalent
to minimizing the expected delay of messages travelling through the network.
This type of routing is called a "minimum delay routing'". There is a differ-
ent type of routing problem, considered by J.R. Yee [6], with the objective
of minimizing the congestion of the most congested link, that is to minimize
the ratio of flow over capacity (£f/C) for the link with the biggest such
ratio in the network. This type of routing is called minmax routing. Minmax
routing currently appears to be more difficult to implement than minimum
delay routing. However, it is probably more meaningful with respect to the

congestion problem, since it tries to minimize the congestion over the worst



link. Both types of routing policies, however, frequently lead to very si-
milar routing assignments [7].

While the routing problem is intemsively studied, there is little work
done in the area of flow control. Our objective in this research initially
was to develop @ flow control strategy for data communication networks.What we
came up with, however, is a unified approach to both routing and flow conrol.

The kind of congestion that we are concerned with in our study here is
the saturation of intermediate nodes in a S/F communication network. This
is sometimes referred to as store and forward (S/F) congestion. There exists
a less fundamental kind of congestion in S/F networks where different
packets (sgements) of the same conversation may take alternate routes. These
packets must therefore be reassembled in the correct sequence before delive-
ry to the destination. Deadlock may occur if the number of outstanding
packets exceed the size of the reassmbly buffer. This is known as reassembly
congestion and is less interesting conceptually because it is an isolated
problem involving only an interaction between a source and a destination
node.For this reason we focus on the more general problem of store and
forward congestion and by "flow control' we mean that kind of control neces-
sary to prevent it.

Basically the objectives of a flow control design are as follows:

i) protection against congestion;

ii) minimum reduction of the network throughput and minimum
overhead in normal network conditions;

iii) fairness with respect to all network users.

It is important to keep the second objective in mind because otherwise
one may shut down all ports of the network in order to protect it against

congestion. The third objective becomes important when a nework is conges-
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ted and it is necessary to reduce some of the input traffics. The question

is which conversation should be reduced first.

1.2 Historical Background and Previous Results

The problem of flow control in S/F networks goes back to early 1970's
when the ARPA network was developed to demonstrate the feasibility of §/F
networks, Since then there have been many articles written on the subject
and several examples of flow control strategies are found in the literature,
a few of which are implemented on real nmetworks [8] - [13]. Gerla and Chou
give an excellent summary and critique of some of these strategies [14].
Most of the proposed flow control strategies so far have been ad hoc and de-
spite the importance of the subject, it appears that little systematic work
has been done to formulate the general problem and to investigate the re-
lationship between network congestion and other important network functions
and parameters such as routing strategy, transmission delay, buffer size,
etc, However, some of the suggestions have interesting features. Here we
refer to some of the work done so far:

Perhaps the most direct forward flow control scheme is the ome proposed
by D.W. Davies and simulated in National Physical Laboratory (NPL) UK [9].
Here the idea is to keep the total number of outstanéing packets in the net-
work below some critical number P. This can be done by circulating P empties
(places)} through the network. A packet can enter the network only if it can
capture one of these empties. The empty will be released once the packet
is at the destination. The method does not prevent local cengestion, how-
ever, since it controls only the total number of packets but not the packet
distribution in the network. Proper distribution of the empties through
the network in order toc maintain a fast and effective service to the pack-

ets waiting at the ports is another critical problem.
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Another strategy which appears to be the best among the existing ones
is the window strategy [14]. Here the number of cutstanding packets between
each source and destination pair is kept below a given number called the
window size. The window size corresponding te each source—destination pair
is usually fixed but might be updated based on some flow control table in-
formation circulated in the network. The proposal does not describe, how-
ever, how the updating precedure could be performed. It is worth noting
that even with fixed window sizes, this strategy provides some adaptive flow
control since the input rate for each source—destination pair decreases as
the number of highly active source-destination.pairs increases.Nevertheless
this change is not enough to recover the normal performance of the network
when it has become congested because of too many active source-destination
pairs.

As examples of the few analytical works done in this area, we mention
two articles. The first article, by Pennoti and Schwartz [11], considers
the effect vf the traffic over a set of tandem links on the service offered
to cother conversations each of which uses only a single link out of this set.
Statistical analysis is then used to evaluate the result of applying some
window sizes on the internal traffic. But the analysis is limited to a
set of tandem links rather than the entire network and in effect establishes
only that by reducing the input rate of one commodity, a better service can
be offered to the others.

A more interesting flow control analysis is presented by Lam and
Reiser [12]. Here flow control is achieved by applying a limit for every
node on the percentage of the corresponding buffer which can be engaged by
packets entering the network at that node (input buffer limits). Due to the

complexities involved, a statistical analysis is performed only for a homo-
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geneous case in which there is complete syrmatry amongst the nodes with
respect to the number of incoming and outgoing links and their capacities,
the rate of arriving traffic, the routing parameters and the available
buffer. The throughput of the arriving traffic and the probability of
buffcr overflow is then computed and sketchad in terms of the input buffer

limit, and a rule cf thuwb for calculatinz the best input buffer limit is

The analysis is successful in demonstrating some of the important tra-
de-offs such as the trade-off between offering service to different users
and the tréde—off between increasing input ctraffic and decreasing.congesticm
It is, however, limited to a completely syozmetrical case and also considers
a stationary traffic, ther=fore does not skow how the input buffer limits
can be updafed.in accerdance with the changing traffic. Furthermore, innut
bufier limits, while being very simple to implement znd relatively easy for
statistical analysis, do not seem to provilds sufficiently effective means
for flow cortrol. This is kecause when sco: node j  1is congested due
to the traffic entering at node i, the injur at j will be inhibited,

but that at che offending nnde 1 1is unaffec:ted.

1.3 Overview of the Model and Results

A major source of difficulties in alzmost all of the previous attempts
made to formulate a flow control problem is the statistical analysis of the
queves of the network, especially when buffars are considered to be limited
in gize. A Fundamental question, therefors, is whether or not we have to
introduce the statistical behavior of the nztwork into analysis in order to
derive some effective results. Another gquastion with respect to the model

is the choice of the flow control variables, namely the parameters which

should be controlled in order to maintain an uncongested traffic. Possible
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parameters are the number of outstanding packets, the percentage of the
buffers engaged by different commodities, or the average input rates. Which
one of these, or other, parameters should be considered as flow control
variables in order to formulate the problem and/or achieve an effective flow
control in practice?

Here,in the present work, we have primarily avoided a statistical
analysis of the queues by formulating the problem in terms of the average
quantities involved, such as the average flows and the average buffer loads,
Also, for the purpose of theoretical development of the problem,we consider
the average input rates of different commedities as ocur flow control vari-
ables, After the problem is formulated and solved and basic results with
respect to the average behavior of the network is derived, then we are able
to consider the statistical fluctuations of the traffic as well and also to
propose other means of achieving flow control which are more practical and
effective compared to the control of average input rates.

In Chapter II, we formulate the flow control problem together with
the routing problem as a convex optimization in terms of the average input
rates and the average multi-commodity flows. We shall refer to this formu-
lation as a joint flow control and routing (JFCR) problem and to the result-
ing flow control and routing policy as a JFCR strategy. The formulation is
based on a static model for the network where there is a fixed set of active
commodities and the statistics of these commodities are stationary in time.
Nevertheless, the strategy is shown to be applicable to a quasi-static situa-
tion where both the set of active commodities and tﬁe statistics of these
commodities change gradually with time.

The fundamental trade-off between offering service to more traffic

and avoiding congestion is embodied in the formulation by trading-off
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between two sets of cost functions, one set corresponding to the links (one
function for each link) and reflecting the level of congestion, the other
set corresponding to the commodities (one function for each commodity) and
reflecting the magnitude of the restrictions imposed.

The input rate and the routing assignments of the strategy guaréntee
that the load of each buffer on the average will remain under an arbitrarily
chosen level. Given the statistical fluctuations of the traffic and the
maximum available buffer at each node, one can choose this level so as to
upper bound the prebability of buffer overflow arbitrarily. The routing
assignments of the strategy correspond to what we may call a minimum conges-
tion routing. The minimum congestion routing lies somewhere between the
minimim delay routing and the minmax routing and shares the advantages of
both of them: Like the minimum delay routing it is computationally more
amenable while having the congestion relief property of the minmax routing.

The cost functionscorresponding to the commodities and the links can
be arbitrarily chosen from a wide class of convex functions. We show in
Chapter II that by choosing appropriate cost functions for the commodities,
it is possible to achieve a variety of different types of priorities in the
services offered to the users. Specifically,we show that the relative magni-
tude of the input rate assignments to different commodities and the relative
sensitivity of these assignments with respect to the changes in traffie, can
be widely modified by changing certain parameters in the cost functions.
Furthermore, we show that if the magnitude of the link cost functions are
appropriately chosen, the strategy does not go beyond the necessary magni-
tude in confining the input rates, in order to achieve flow control.

An important feature of the proposed JFCR strategy is that it is

equivalent tc a minimum delay routing problem corresponding to a bigger net-
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work. This equivalence, which is shown in Chapter III1, allows us to use
any one of the algorithms proposed for the intensively studied routing prob-
lem, in order to develop a JFCR algorithm. As an example of such, we have
used the distributed routing algorithm of R.G. Gallager [4] to develop a
JFCR algorithm using distributed computations at the nodes of the metwork.
Finally in Chapter IV we show that under certain conditioms there
always exists a unique correspondence between the set of average input rates
of the network on one hand and the set of average number of outstanding
packets of commodities on the other hand. This unique correspondence allows
us to use the window strategy as the means of achieving the input rate
assignments of the JFCR strategy. We further show that the window sizes
corresponding to each set of input rate assignments can be computed distri-
butively in the network. The window strategy is effective in controlling the
fast fluctuatioms of the traffic, a desired property that the JFCR stategy
lacks. Thus, we are able to combine the nice analytical features and the
quasi-static effectiveness of the JFCR strategy with the fast dynamics and

practicality of the window strategy.
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CHAPTER II

GENERAL FORMULATION OF A JOINT FLOW CONTROL AND ROUTING PROBLEM

Our objective in this chapter is to show how the routing and the flow
control problems in a data communication network can be formulated together
as a convex optimization problem. In our discussion we consider a store and
forward (5/F) packet switching network, However, the idea is quite general
and can be used for the design of flow control strategies in other types
of data communication networks. After the model of the network is discussed,
we shall propose our formulation of the flow control problem and then shall

show that the formulation actually complies with our expectations of a sen-

sible flow control scheme.

2.1 The Model
Consider a S/F packet switching network with N nodes. Let N denote

the set of nodes in the network:

N o= {ili=1,...7
Let a link from node i to node k be represented by (i,k). In order to
discuss traffic flow, we distinguish (i,k) from (k,i), but assume that if
one exists, the other one does also. Assume that there exists at least one
sequence of links connecting any two nodes in the network. Let L be the
set of the links of the network:

L = {(i,k)| a link goes from i to Kk}

Let L be the total number of the links in the network. We will sometimes

specify a link with only one subscript £ =1,..,,L. Let Ci (Cg) denote

k
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the capacity of link (i,k) (link 2).

In general there may exist some exchange of data between any pair of
nodes 1 and j in the network, We refer to the stream of data entering
the network ét node i and destined for node j as commodit (i,j). Clearly
commodity (i,j) is different from commodity (j,i), Let C( be the set of

all potential commodities (or all source-destination pairs) in the network:
C = {(i,1)]1,3eN, i # 3}

In practice, the sequence of arrivals of messages of a given commodity
(i,j) forms a random process whose statistics may change from time to time.
Furthermore, as times goes on some of the active commodities, namely those
that have had some nonzero stream of data, may become silent and some of the
inactive ones may start transmitting data, Although our major interest is
in the JFCR strategy for a quasi-static situation, for the purpose of theo-
retical development cof the problem we consider for the time being a static
case where the active commodities are always active and the silent ones
always stay inactive, Accondingly we defin C, as the set of active

A

commodities:

CA = {(i,7)|(i,3) is an active commodity)

Furthermore, we assume that the statistics of the active commodities
are stationary. That is, they do not change from one time to another,
After we have developed a JFCR algorithm with the present model, we shall
discuss its application to a quasi-static case in chapter IV, There,both
the set of the active commodities and their statistics change slowly with

time,

Let us denote by rij the expected traffic, in bits per second, enter-
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:
ing the network at node i and destined for nede j, We shall refer to

rij as the rate of commodity (i,j). The statistical nature of commodity
(i,j) can not be completely characterized by a single parameter rij and
there are other parameters of importance such as the variance of the inter -
arrival times and the length distribution of the packets, In our model,
however, we do not use any other statistical parameter of the commodities ex-
plicitly and characterize commedity (i,j) completely by rij‘ Nevertheless,
the statistical characteristics that we have neglected will influence the
behavior of the resulting JFCR strategy implicitly as we shall see.

For the purpose of accomplishing flow control in the network, we assume
that it is somehow possible for each node 1 to set the rate of any active
commodity (i,j) to any value rij which is selected by the flow control
strategy in some interval O E-rij i-nij' The practical mechanism of doing
so will be discussed in Chapter IV. Here nij denotes the maximum of rij
and the rate at which commodity (i,j) would have entered the network if
there was no flow control practiced by node i, We refer to &ij as the
desired rate of commodity (i,j). Since we have censidered the stationary
case, we assume that lij is a fixed value. We take both rij and hij
to be zero for (i,j)ﬁcA.

Let fi denote the total expected flow of link (i,k) in bits per second

k
and let fik(j) denote that part of fik which is destined for node j. Let

Sij denote the total expected traffic, in bits per second, at node i

+Assuming that the source of commodity (i,j)} is ergodic, the expected traffic
for the stationary case considered here can be written as:
r.. = 1l,i,m, L . (no. of bits of commodity (i,j) entering the net-
ij T .
To<o work in T seconds)

rij can then be measured approximately over a limited time interval T,
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destined for nede j. Therefore s,, 1includes hoth rij and the traffic
1]

from other nodes that is sent through node i for destination j ,

We assume that for every link (i,k), there is a buffer space reserved
in node 1 with the capacity of Bik(max) packets. This space is used to
store that part of traffic arriving at node 1 , which should be sent over
link (1,K).° 1If the data arriving at link (i,k) for a limited period of

time exceeds the capacity of the link Ci the buffer starts to f£ill up.

k‘l

Similarly when the arriving flow is less than Ci bits per second, the

k
buffer starts teo get emptied. In the long run, however, since Bik(max) is
a limited number, if there is no buffer overfiow, the average traffic
arriving at link (i,k) is equal to the average traffic leaving it. Similar-
ly despite the short-term fluctuations in the amount of data stored in the
buffers, if there i1s no buffer overflow the expected flow into a node i for
a given destination j # i 1is equal to the expected traffic out of the node
for that destination, i.e.
Si3 =Tyt Ll @ = LE () LieN, 14
m:{m,i)el k:(i,kK)el

Finally, let tik demonstrate the expected delay in second per packet
on lirk (i,k) (including queueing delays at the link input) and let Dik
denote the expected number of packets waiting at node 1 for transmission
on link (i,k) or being tramsmitted on link (i,k).According to Little's

formula:

- 1 :
Dy = 7«f, -t (i,k)el

where I denotes the expected length in bits of a packet in the network. We

Practically, at each node i, the available buffer can be shared among all
the outgoing links (i,k). Therefore, the distinction made between the avail-
able buffers of outgoing links at one node is rather artificial and is just
for the sake of theoretical developments.
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assume that Dik is a function of fik only, As an example in which this

assumption is not a good approximation, consider a network with two commo-

dities which have different packet length distributions, In this case D_k
1

is a function of both fik and the routing assignments of the network which
determine what portion of each commodity will pass through (i,k). However,
in order to make the problem analytically tractable, we consider Dik as a
function of fik only.

We shall consider Di (fik) in its general form, only making the reason-

k
able assumption that it is a convex, increasing and twice differentiable

function on the interval [O,Ci ), Some other notations,which will be used

k

later,are as follows:

s The set of all node flows =..; s = {s,.}(i,3)eC}

1] 1]
f The set of all commodity flows fik(j); f={fik(j)|(i,k)EL,(i,j)EC}
r The set of rates of 2ll active commodities; r = {rij\(i,j)ECA}

% The set of desired rates of all active commodities: k={hij\(i,j)ECA}

2.2 Formulation of the Problem as a Convex Optimization

Before we can present our formulaticn eof the problem, we need to dis-
cuss twe functional quantities which are the core of our strategy, The first
quantity, gik(fik), is a cost function assigned to each one of the links of
the network. As long as the average number of packets stored at link (i,k),

namely Dik(fik)’ is far below a given crit.-al value Bik’ g (fik) is equal

ik
to Dik(fik)' When Dik(fik) gets close to Bik’ the cost approaches infinity
(Fig, 2.1 ),Bik is a fixed parameter chosen according to the size of the

maximum available buffer at the link, Bik(max) : and should be some fraction

of it, i.e. 0 < Bik /Bik(max) < 1, Therefore, the cost of a link is the
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Fig. 2.1
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same as its average delay as long as the link is far from becoming satur-
ated. As the load gets heavier and the average quantity of stored data

approaches the limit point Bik’ the cost builds up rapidly.

Definition 2.1 To each one of the links of the network, there is a cost

function gik(Dik) assigned with the following properties;

D e D) ~ Dy Dip < By
ii) élm+B gik(Dik) = o
ik “ik

iii) gik(Dik) is a convex and increasing function om [O,Bik)s

iv) gik(Dik) ig twice differentiable on [O,Bik)-

We define gik(Dik) to be infinity also for Dik > B Properties (iii) and

ik’
(iv) are added for the sake of subsequent mathematical developments.

Since Bik is a function of Di , wWhich is a function of fi is

k K Bk

indirectly a functicn only of fi With some abuse of notation we refer

kc

to this new function as gik ). The following lemma is an immediate

£y

result of definition 2.1 and the assumptions made about Dik(fik) in Sec.2.1:

. . , , -
Lemma 2.1: TFor each link {(i,k) there is a number Eik’ 0 < Sik < Cik s
for which ilm+g gik(fik) = = and gik(fik) is convex, increasing

ik “ik

and twice differentiable on [O,Eik) (Fig, 2.1). For £ f

ik 2 Sae Bk

is infinite,
The proof is easy and left to the reader.

We refer to Eik as the effective capacity of link{(i,k) and to

g, =

ik Eik/cik as the efficiency of the link. From now on,we describe a
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link as saturated when its average flow has reached its effective capacity
and reserve the work "congested"” for a link with its total buffer size
Bik(max) filled up by the incoming data. Therefore,"congestion' ' refers to

a determinate buffer overflow at some link while "saturation" is a statisti-
cal measure about a link.

Tn the strategy to be discussed later, the effect of the cost function
assigned to each link is te prevent the link from becoming saturated. 1In
order t¢ prevent this saturation, the active commodities will have their
assigned rates reduced. This in turn requires preventing the assigned rate
iy (igj)ECA,from becoming teco small; thus we should introduce some cost
on the amount of restriction imposed on rij by the flow control strategy.

This explains the motive for the following definition;

Definition 2.2: To every active commodity of the network, (i,j)eC, , we

A,

assign a cost function eij(rij) with either of the following properties:

a - eij(rij) is a positive, decreasing, twice differentiable and

strictly convex function on [0,*) (Fig.2.2.a).

b - eij(r__) is a positive, decreasing, twice differentiable and
1
strictly convex functicen on (0,*). Furthermore Iim ei.(ri,) = ®
ri.+0 ] ]
(Fig. 2.2.b). .

We will refer to these two types of commodity cost functions as the
cost function without or with singularity at point zero. Throughout our
discussion in this report we usually consider the commodity cost functions
without singularity at point zero. Wherever we consider cost functions with

signularity at point zero we shall specify that.
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‘ e:LJ (rij) ‘eij (rlj)
- -
r,. r,.
Fig. 2.2.a +J Fig. 2.2.b +J
Fig. 2.2

At this point we can define the total transmission cost and the total
flow contrel cost of the network, respectively, as follows:

G. = g., (f.. )
T (1i,K)el ik "Tik

1
1l

e, (r..)
(i,3)ec, WV

Our joint flow control and routing formulation follows immediately:

min J = E. + G (2.1
f,r

£,,3) >0 i4#3, (i,Kel (2.1.a)
£ 20 (i,3)eC, (2.1.b)
rij f,ﬂij (i,j)sCA (2.1.c)
N
}gi £.,0G) 2 & (i,k)el (2.1.4d)
jfi

fik(j) - 2: fli(j) =Ty (i,i)eC (2.1.e)

k:{(i,kK)el i (R,1)el
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To verify that the solution to this problem presents a set of desired
inputs r and link flows £ for the purpose of flow control and routing in

the network, we proceed in the following steps:

i) J is a convex function of the variables (r,f) on the set of feas-

ible points defined by constraints (2.1.a) - 2.1l.e) {(which is a convex set),

ii) The objective function J becomes infinite if £, = i.e.

ik aik’

Do = Bike

for some link (i,k). J has a finite value if the rates of all
of the active commodities are sufficiently small so that all of the link
flows stay below the corresponding effective capacities.

iii) (i) and (ii) imply that (2.1) has at least one optimal point

* A7)
(r ,f%) and at any ptimal point the objective function J 1is limited and

the constraint (2.1.d) is inactive.

iv) The value of T in any optimal solutiom to (2.,1) is unique. We
show this by contrapositive proof. Suppeose that there are two optimal points
1 £l 2 .2 . . . . . * -
(r+,f4) and (r",f"), with the corresponding objective function J . Since Er
is a strictly convex function of r and GT is a convex function of f, for
any 0 < A < 1 we have:

1

Jlhr™ + (1 - A)rz, Rfl + (1 - A)fz] = EI,[}\r1 + (1 - A)rz] +

GoDE 4 (1= MET] < ALR (D) + GUEDT + (1 M [E () + G (E)]

(el 1Y) + (@ a2y = 17

2
This contradicts the assumption that (rl,fl) and(rz,f ) are optimal points.
* & % i
Therefore r at any optimal point {(r ,f ) is unique.
v) TFurthermore, (ii) implies that at the optimal point none of the
links is saturated, i.e. D_k < Bik for all (i,k)el, This means that the
i

average number of packets waiting on each link {i,k) can be kept below any
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desired nmumber Bik' Nevertheless, due to the staristical variations in the
buffer, there will still be some chance of buffer overflow (congestion) at
the link. By making the ratio Bik/Bik(max) small enough, one can reduce the
probability of buffer overflow arbitrarily., But there are costs incurred

in reducing Bik/Bik(max), since this means either an increase in Bik(max)

which is costly or a decrease in Bi which reduces the effective capacity

k
of the link,

In summary, the JFCR strategy effectively controls the average load of
the buffers, which is to some extent helpful in preventing congestion in
the network. In order to prevent congestion more effectively , we need to
contrel the statistical fluctuations of the buffer loads as well. Therefore

other means of control should be implemented together with the present scheme.

We will investigate this issue in more details in chapter IV,

* % %
vi) At an optimal point (r ,f ), f defines a set of minimum cost

)

*
routing flows for the set of inputs r , with the cost assignements gik(fik
for the links. This cost is almost equal to the delay of the link, Dik(fik)’

as long as fik is far below the effective capacity Eik'

s as fip approaches the

effective capacity, + ® (Fig. 2.1 ). This means that the data will

Bik
first be routed with the objective of minimizing the total delay. But as
soon as some of the buffers get close to the saturation level, the routing
will be adapted with the objective of sending data over the nomnsaturated
links. Despite this apparent difference between minimuwm delay routing and
the routing in our strategy, there exists a basic similarity between them,

The following example presents an interesting case where this similarity is

most evident,

Example 2.1 Assume a network with M/M/1 queues at all of the links and let
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B, . D,
us choose the cost function g. (D, ) = ik ik for all (i.k)el.
ik ik B., -~ D, :
ik ik
Therefore we have
f
ik
oD, (f,.) = 1‘;_“
ik ik Cik - i
f Z, B
ik _ Sik ik
and 8o (Fap) = Ty e : » where L. = - T¥E
ik ik ik +
Let B, be a constant B for all of the links. Then
ik
f
- ik - B
g, (f.) = ¢ ¢7——-— , & = —— = constant.
ik Uik Eik fik 14+B

Since T is egual for all of the links, it is easy to see that the above cost

function will lead to the same routing if they are changed to

y = ik
k Eik ~ T

(f..) = 1. g

ik . ik This means that in the given network,

o >

f.

( i
> - » * ] *

according to our strategy, the set of optimal inputs r will be routed as if

the objective was minimum delay where the capacities are reduced by a factor

B
of =mH

We should add that if the cest function of any commodity (i,j) has
singularity at point zero, the above conclusions (i - vi) are still valid,.
This singularity will only imply that the inequality constraint (2.1l.c) is
always inactive for commodity (i,j) and specifically the optimal value of rij
is nonzero, namely r:j >0.

We have seen that all of the optimal points of (2.1) share a unique set
of inputs r*, that the set of inputs to the network is routed in a minimal

cost way (quite similar to the minimum delay routing), and that the average

buffer levels are all constrained below some desired set of limits Bik' To
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complete our argument, all we need iIs to justify the appropriateness of the
*
set of assigned inputs r . The rest of this chapter is devoted tg this

purpose,

2.3 Necessary and Sufficient Conditions for Optimality

Before obtaining the optimality conditions we need to state the

following definitions:

Definition 2.3 Any sequence of Iinks connecting an arbitrary pair of nodes

i and j is a route R(i,j)}. That is

Nell

R{i,3) ={(n k=1,...,8 st, n =i, n, = j and(nk_l,nK

k-1' ") + Mo

Definition 2.4 A route R(i,j) is called an active route if there is some

nonzero traffic, travelling from node 1 to node j over this route,

Definitien 2.5 At a given feasible point (r,f), the length cof any route R

is the sum of the marginal costs of all of the links contained in R That is

i
length of R = 2:
Te-12"x

Definition 2.6 At a given feasible point (r,f), the distance of a node i

from another node j, lij’ is the minimum length over all possibel routes
connecting 1 to j.
Notice that lij is not necessarily equal to kji' We take Ajj = 0 for

jeN.

Definition 2.7 The priority function of any active commodity pij (rij)J

(i,j)ECA, is the negative of its marginal cost function, i.e.
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deij(rij)
Pijlrysd = - 57 (1,3)eCy
1]
It follows from definition 2.2 that Pij(rij) is a positive, strictly de-
creasing and differentiable function on either {0,®) or [0,~) depending on

whether or not eij(rij) has a singularity at point zero,

X %
Lemma 2,2 Given an optimal point {(r ,f )}, the length of any active route

connecting an arbitrary node 1 tc another node j, is ‘Aij' Furthermore

for (.i,J')eCA

* w
= > >
Mig T Py ) B3 7 Tay 7P
% x
3_p13(rij) rij =0
* *
< = A
< pij(rij) rij 3 (2.2)

This lemma is proved in Appendix A. The following corollary is a direct re-

sult of definition 2.6 and lemma 2.2:

x %
Corollary 2.1 At any optimal point (r ,f ), for any link (i,k)el and any

node jeN: N
' * - ) Y >
i i) ¥ Ay = Ay fip @G>0
*
dgiy(fik) 1J
' - o=
where g, (£ = ~F¢
ik

Theorem 2.1: The necessary and sufficient conditions for a feasible point

% & .
(r ,€ ) to be a minimizing point for (2.1) is that there exists a set of

positive number Bij » 1,3 N, (Bjj = 0, jeN) such that:

1 & _ ¥ “
i)+ By = By fi (>0
* .
> Bij fik 3 =0 (i,k)el, jeN

(2.4)
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p.(,r:.&.) =8, 0<r¥ <1
13} 1] 1] 1] ij
> B r’f. = i,
— 1] 1] 1]
*
< = s 4
< By Ti 0 (1,1)eC, (2.5)

L. }

Proof: The necessity follows directly from corollary 2.1 taking Bij = Aij

i,3eN . The sufficiency is proved in appendix A.
*
Now consider two nodes 1 and j for which sij > 0, By writing

Eq. {2.4)for all of the links of some active route R(i,j) and summing them

*

up, one can see that Bij is equal to li Similarly if Sij = 0 for some

5

nodes 1 and j»> we can consider Eq. (2.4) for each of the links of a minimum

length route R(i,j) and see that Bij < Aij‘ These results are stated in

the following corollary,

Corcllary 2.2 For any set of positive numbers Bij' i,j eN, (Bjj = 0, jel)

that satisfies(2.3)we have:

B.. =2, 5%, > 0
ij i3 i3
*
< hyg °ij =0 (2.6)

Finally we should point out that the above results are still valid if any
cost function eij(rij) has singularity at peint zero. In this case, however,
*

we know that rij > 0 and the optimality conditions with respect to rij

reduce to a simpler form,

2.4 Utilization of Network Resources

Having the necessary and sufficient conditions for optimality at hand,
*
let us consider the set of optimal inputs r and see how they correspond
with our expectations of a flow control scheme., A suitable flow control

scheme should comply with the following:
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i} It should bBe fair with respect to different users. The scheme
should not relieve congestion by imposing restrictions only on some of the
users - arbitrarily chosen - and leaving the rest free . It rather should
impose restriction on the users either evenly or preferably according to

some pre-established set of priorities,

ii) The restrictions imposed on the users should not go beyond the
necessary magnitude, In other words, the scheme should tend to confine input
flows only when it becomes unavoidable in order to keep the network un-

saturated.

In the present section we investigate the validity of the second
property in our scheme and leave the discussion of the first property for

section 2,5. Consider the following optimization problem;

nin 7 = z: eij(rij) (2.7}
i,r (i,3)eC
A

£, >0 i#3, (d,Kel (2.7.2)
1320 (i,1)eC, (2.7.1)
rij-i nij (i,j)sCA (2.7.¢)

N

2, £, g, (1,k)el (2.7.4)

j=1

3#i

2 £,G0) - 2 £, = r. i#3] (2.7.9)

k: (i,k)el : (R ,1)el +
This problem {s identlcal to (2.1) execept that the link cost functions are
eliminated from the objective function. However, constraint (2,1,d) is kept

here to guarantee that at any optimal point no buffer may become oversaturated.

Since e..(r_,),(i,j)ECA,are decreasing functions,it is clear that at any optimal
1 e ) - ’
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point ,none of the input rates can be increased without wviolating (2.7,c.)

or (2.7.d). Therefore the optimization problem (2.7) does not impose restric-

tions on the users beyond what is necessary to keep the network unsaturated.
Due to the difficulties involved in finding the optimal point, the

flow control scheme formulated by (2.7),currently does not appear to be

suitable for implementation. Nevertheless, as the following theorem indi-

cates, it can be approximated by the proposed JFCR strategy if a set of

appropriate cost functions are used.

Theorem 2.2 Let (f

gik ik)’ (i,k)el, and eij(rij), (1,3)€CA,satlsfy the
conditions of definitionm (2.1) and (2.2). Let {Em};=1 be a decreasing
sequence of pesitive numbers with the limit point zero. Assume that (rm,fm)

is a solution to problem (2.1) with the cost function gik(fik) replaced by

T (f,,) = €

i Fix o " Bik (i,k)el. Then any limit point of the sequence

g (fik),

{rm,fm }:=l is a solution to (2.7).

This theorem is a specific case of the barrier function theorem which
is proved in [15]. It shows that by sufficiently decreasing the magnitude of
the link cost functions, one can bring the solution of (2.1) arbitrarily
close the the boundaries where no more increase is possible on the rate of
any commedity. Notice that if one holds r constant and minimizes

b}

J = ET(r) + z: €

(fik) over f only, then the minimizing £
(i,k)el

m " 8ik

is ddentical for all €m > 0. 1In other words, the routing objective does

not change when the cost functions of the links are all multiplied by € > 0,
Despite what it may seem from the above discussion, a very small (or

zerc) value of oo is not desirable, since one can argue that in practice

there is a cost to using each link (i,k) that raises rapidly as fik approaches
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£

1K’ and that this cost should really appear as a trade—off against in-
creasing input rates, This would in effect lead to the optimization problem

(2.1). TFurthermore, solving problem (2,1) requires much computation if ¢
m

is too small.

2.5 The Trade-off Between Priority Functions of Different Users

In this section, we study the effect of the priority functions

*
on the assigned set of input rates r and investigate

* '3 EC
Pij(rij), (l,_]) A?
the fairness of this set with respect to different users, In particular, we
show that in offering the service to the users, a variety of types of prior-
ities between them can be achieved through the appropriate choice of priori-
ty functions for each user . In deing this, we restrict ourselves to the
following class of priority functions with singularity at point zero:

Oti_,l n,.
p,.(r..) = (—L) + n,, >1 (2.8)
11 17

. ..
13 J

We refer to aij and nij respectively as the priority factor and priority
order of the commodity (i,j). Naturally, choosing the priority functions
from a more general class may prove to provide additional features compared
to what we can obtain from this class.

In our evaluation of the fairness and priority issue, we temporarily
eliminate constraint (2.1.c) from problem (2.1) by letting nij = o a(i,j)ECA;
therefore making sure that in the set of optimal input rates r* all the
restrictions are imposed by the flow control scheme and not by the users
internal limitations. Therefore, with these assumptions we always have

0 <r,. < &ij , (i,j)eCA, Accordingly (2.5) reduces to

po.(xr..) = X, (i,j)ECA (2.9
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In the following discussion, we explain in several steps the types of

priorities which can be achieved using the class of pricrity functions (2.8):

i) First consider two commodities a and b wusing priority functions

of the class (2,8) with the same priority order na = n = o and assume that

the distance of source-destination nodes is equal for tgem, i.e. Ka = Rb.
r o

Under these conditions, frem (2.8) and (2.9) we have ;% = EE- . Thus,when
b b

several commodities of the same priority group (i.e., with equal priority
orders) experience similar network conditions (i.e, travel through equal
source-destination distances), the assigned throughput of each one is pro-
portional to its priority factor., Therefore, larger priority factors should

be assigned te the bigger users,

ii) Now consider two commodities a and b with the same priority
order n and priority factor o, In order to explore the effect of the
topological distance of the source and destination of a commodity on its
assigned throughput, we assume that all of the links have equal marginal
cost at the optimal point, In this case if the number of links in an active
route of commodity a is m times the number for b, we would have

A =m . A_. Therefore,
a b

Pa(r: ) = pb(ri) .M >

o
m—l/n

a8
*
T
b
For n = 1, the throughputs are inversely proportional to the source-desti-

nation topological distances, As =n increases, the throughputs become less
%

T
' . » a
sensitive to distance., As an example, for o =4 and m= 2, —g— = 0,84,
T
b
We conclude that n =1 in some sense gives each user equal resource, where

n > ® gives each the same throughput,

iii) Finally consider two commodities a and b with priority orders
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n  and n,
a

5 and priority factors @ and ety - If the set of active commodi-

ties changes, for example if some new commodities become active, the

*

*
optimal input rates T, and T, may alsc change, We would like to compare

L

X *
the amount of changes that ra and rb undergo when some change of traffic

happens in the network and investigate the impact that o, and o, might have.

Since this comparison in general is complicated, we consider the two commo-
dities under exactly similar network conditions, that is we let both of them
have the same source and destination nodes 1 and j.+ In this case it

follows from (2.8) and (2.9) that:

—lfn Tl/ﬂ
fea o, ° = o o O
Ta ™ %a ® M3 and Ty b " Mg
% %
Since the change in the traffic will be reflected in r, and Ty through Kij’
dfz
let us compute Y
ij
ar B 1
T 1 0,
= o . - . )\
dr,, a n i3
ij a
or ar -1 dx..
2 . 11 (2.10)
T = n A
a a ij
Similarly dr .. (2.11)
b _ -1 ij
N
b b ij

dr® n dr”
a _ b, b

pra o (2.12)
a a b

Tn our model of the network, we considered the traffic between any source-
destination pair as being one commodity just for the sake of simplicity

in the use of notations. The results obtained here with this assumption
all will stay valid if we consider several commodities between any source-=
destination pair.
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Eq. (2.12) means that when the traffic in the network changes, then the ratio
of the percentage of change in the rate of one commodity to that of the other
is inversely proportional to their priority orders, given that the two commo-

dities experience similar network conditions (have the same source and desti-

nation). This does not mean that if we increase the priority orders of some
commodities, the assigned input rates of 311 of them will necessarily become
less sensitive to the changes in the network traffic. This is because the com-
parison was made between two commedities which exist in the network at the same

time and not between two which replace each other.

We conclude from the above comparison that in general if there is a
combination of commodities with high and low priority orders in the metwork,
as the number of active users goes up, the high priority order users will be
pushed back more slowly at the cost of lower priority users being slowed down
more rapidly. This is exactly our expectation of a priority service svstem.

A quantitative analysis of the sensitivity of the assigned input rates with
respect to the changes in the set of active users or changes in the set of
desired input rates %, requires further study.

We can only add here that the sensitivity of the assigned input rates
r*, with respect to the changes in the desired input rates of those commodi-

*
ties for which rij < &ij’ is zero. This implies that if a user of the network
is not assigned as much throughput as it desires (namely r:j < nij for some
(i,3)),1it can not provoke any increase in the assigned throughput r:j by
exaggerating about its desired rate, namely by increasing &ij' The desired
input rate, reported by each user, only upper bounds the assigned throughput

and has no other impact. This is a basic and important characteristic of the

proposed JFCR strategy which is common to any type of priority function used.
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CHAPTER ITI

SOLUTION OF THE JFCR CONVEX OPTIMIZATION FROBLEM

Our primary goal in this chapter is to show how the convex optimization
problem (2.1) can be solved in an iterative way using distributed computa-
tions in the network., In the first section, however, we present a rather
general approach to the solution of (2.,1), by making a simple analcgy between
problem (2,1) and a minimum delay routing preblem in general, This analogy
actually reduces the problem to a minimum delay routing problem and shows how
any method of obtaining a minimum delay routing canm be generalized to a so-
luticn of problem (2.1).

In the following sections first we reformulate the JFCR problem (2.1)
in terms of some new routing variables(different from f) which then allow us
to design some algorithms using distributed computatiocns at.the nodes of
the network to find the set of optimal inputs and optimal routing for the

network.

3.1 Analogy of the JFCR Problem with the Minjmum Delay Routing Problem

Consider 2 data communication network M as modelled in section 2,1 and
let us construct a new network H'by making the following changes in M:

Keep the nodes of M unchanged but add one new link between any pair of
nodes (i,j) for which an active commodity exists in M, We denote this newly
added link by (i,j') in order to distinguish it from an old link (i,j) which
might exist in M (and also M). Thus notice that j' does not indicate a node

different from j but the link (i,j") is different from the link (i,3).
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Therefore if ﬁ', [ and C respectively denote the set of nodes, the set of

3

links and the set of commodities of the new network M we have

N = N, T=LUCA, T = ¢

Let the capacities and the average delavs of the links of M be as follows:

) (i,k)el (3.1.a)

T 1 =n Yy = n - F _ _
Cij 11 Dij'(fij') eij( i3 fij') (l,J)ECA (3.1.8)

Assume that the cest functions e (r ) , (i,j)ECA, have a singularity at
ij 1]
point zero. It follows then that Dij' (fif 7, (i,j)ECA,is a positive, in-

creasing, strictly convex and twice differentiable function on [O,ﬁij) and

3 1]

lim ﬁi., (f..,) =< (Fig. 3.1). Therefore, Dij'(?ij') complies with
f.. .

v

ij ij
all of the properties assumed for the total delay of a link.
Finally, assume that no flow control is practiced in M and the through-
put of commodities of M is r,., =4, ., (i,9)eC .
ij ij
In summary, to construct network M we have assigned the desired input
rates nij to each commodity of M and instead have added a new link with capa-

city &ij between i and j. UYow consider the following minimum delay routing

problem for network M :

Fig. 3.1
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min D, (O = 2 D, G0+ Dv (B0 (3,2)
(i,x)el (i,j)eC
A
£, 20 143,36, el jeN (3.2.a)
f..m) >0 i#m (i.3)eC,, melN (3.2.1)
ij - A
TGy - 2 Fo(q) = o
E: 1k(J) e DL 21(]) &ij (1,7)eC (3.2.¢)

kiu(i, kel

Notice that the upper limits on link flows are eliminated since given (3.1)

they are all inactive at any point with a finite objective value,

Lemma 3.1 : There is at least one optimal point for (3.2) for which each

supplementary link (i,j') carries traffic only for destination j, 1 e,

1l
=

(1,3)eC mel, m # j

PO A

Proof: Let £ be any optimal point for (3.2)., Consider any link (i.j'),
- . e . IS e El < __'
(1,])ECA . and let fij,(m) > 0 for some m # j. We have fij,(]) %ij fij,(m).

Therefore, some part of the commodity (i,j), namely some part of Ty T &ij

is routed to the destination j over some route other than link (i,j'). Call

- . - - = - - - s » > -
this part fix (j). Obviously fi (1) . fij,(J) fij‘(m)

% ij

If we let the flow E;j,(m) and an equal part of the flow E: {j) interchange
ix

their routes to the node j, the aggregate flows of the network H; and the

total delay DT do not change. Therefore,the new routing is alsc optimal,
Through repeating this interchange of routes for all flows such as %;j,(m)

we come up with an optimal point satisfying %;jl(m) = O,(i,j)ECAs m# j.

Q.E.D.
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Corollary 3.1 Any solution teo the following routing problem is a solution

to (3.2):
min Dp(E) = 20 Dy (F) 4 PD . (Fin) (3.3)
(i,x)el (i,3)eCa
Fae 00 5 0 (i,00el, jeN, § # 1 (3.3.2)
g0 ) 20 (i,3)eC, (3.3.b)
X 0 - D Fe @) =y (i,j)eC (3.3.0)
k: (i,k)el :(0,i)el
fij' (m) =0 (i,j)‘aCA, meN, m # j (3.3.4)

Theorem 3.1: Let the cost functions coerresponding to the commodities of net-

work M have singularity at zero. The JFCR problem (2.1) for network M then is
equivalent to the routing problem (3.3) for network M , Furthermore, there
are solution points to (3.2) which are also optimal for (2.1). The equiva-

lent variables are as follows:

fik Gy = fik(J) (A,kel , jeN , 3 #1i
hij - fij'(J) = rij (l,J)ECA
Proof: Easy to verify.

The above theorem is important in showing how to solve problem (2.1)
by relating it to the routing problem which is intensively studied. It
shows that the nature of both problems and their degrees of mathematical
complexity are the same, and the JFCR problem only involves a somewhat larger

number of wvariables compared to a routing problem for the same network.
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Accordingly, any static or quasi-static approach, using central or distribu-

ted computations to the minimum delay routing problem which proves to be
successful, can be used for solving the JFC® problem. There are two prob-

:l&ms, howaver, in the blind application of 2z routing algoritﬁﬁ to solve the
JVCE problem. The first is that each dummy link (i,j') should be used only

for the (rejected) traffic destimed for 3. The second and most important

is that,both in terms of implementation and convergence, the dummy links should
be treated differently than the other links. The next three sections deal with

thase problems. : : -

3.2 New Formulatior of JFRC Problem Aimed azt Distributed Solution

Cailager in a recent paper [4] shows %how a minimum delay routing problem
“in the quasi-giatic case can be solved using only distributed computations
at the nodes of the natwork, The core of his approach is a new set of para-
meters ¢ik(j)’ caliad routing variables, iastead of the conventional wvari-
ables fik(j)’ in order to fcrmulate the routing problém, Here, in order to
develop a distribuﬁed JFCR alogrithm, we stall use the =are variables., In
the present section, we introduce these nev variables and restate JFCR
problem (2.1) and the corresponding optimality conditions in terms of them.
Then in sections (3.3) and (3.4) we work out some distributed JFCR algorithms.
The approaches taken in these two sectioms are different, however. 1In
section 3.4, we use the analogy made between routing and JFCR problems aund,
as described earlier, simply use a class of distributed routing algorithms
for network M to come up with a corregponding class of JFCR algorithms, In
saction 3.3, however, we take a rather direct approache and, while still

using many of the results in Gallager [4], try to keep the distinction

between routing and flow control parameters.
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Now let us consider the network M as modelled in sec. 2.1. Let ¢ik(j)?

(i,k)el, j # i, denote the fraction of the node flow s, which is sent over

ij
the link (i,k). Tt follows that
Fic ) = 845 ¢ (3) (i,k)el , jeN , i # ) (3.4
sij = rij + 2: Skj ¢ki(j) i jeN , 1 # 3 (3.5)
k:(k,i)el

More formally let us defime a routing variable set ¢ for network M as a

set of nonnegative numbers $ik(j), i,j,k eN, i # j, satisfying:

a) 4, = 0 (1,0¢L ,  jeN

N
b) o, (3) =1
ég; ik

c) for each (i,3)eC,, there is at least one sequence of nodes

A!

i,k /Q',-o-,m;j such that (blk(:l) > 0, ¢k«Q‘(J)> O,:,;;¢ (.J) > 0.

mj

Theorem 3.2: For any routing variable set $ and any set of inputTates r, there
is a unique set of node flows s and link flows f as the solution to (3.4)
and (3.5). Each component Sij or fik(j) is nonegative and continuously
differentiable as a function of r and ¢,

For proof see Gallager [4]. The above theorem shows that any quantity
which can be expressed in terms of (r,f} can also be expressed in terms of

(r,»). We can, therefore, restate problem (2.1) as the following:

min J = ET(r) + GT(r,¢) (3.6)
r,d

rij-i 0 (i,j)ecA (3.6.a)
Tis f_nij (i,j)ECA (3.6.b)
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¢ is a routing variable set (3,6.2)

Constraints 2.l.a, and 2.1,e are inherent in the definition of a routing
variable set, as theorem 3.2 establishes; and constraint 2.1.d is inactive
at any point with limited objective value. Therefore they are not repeated
in problem (3.6).

Theorem 3,.3: the following equations are valid and lead to a unique set of
BGT BGT
solutions for +—— and <+ -——-= , which are both continuous in r and
3r, 8¢ (3)
ij ik
¢ for (i,k)el, jeN, 3§ # i

a6 ac
T _ . ' T
TR i ey () o+ 3t J (3.7)
+J ke (i,k)el J
oG
taking -5;—1 = 0 jeN
3]
aG aG
T T
T~ =s,. [g'., (f..) + ] (3.8)
aéik(J) ij ik ik Brkj

Proof: Similar results are proved bv Gallager [4] for the function

DT = 2: :Dik(fik) istead of GT = 2: gik(fik)' Since gik(fik) shares
(i,k)el (i,k)el
all of the properties assumed for Dik(fik)’ thecorem 3,3 is also valid, Q.E.D.

At this point we can state the optimality conditions of the JFCR problem

with the new formulation.

Theorem 3.4: The following conditions are sufficient for any feasible

* &
point (r ,¢ ) to be a minimizing solution to (3.6):

oG oG
g () + o (00 2t
ik ! kj 1]

L6 (1,%)el, feN, 1 £ 3 (3.9)



bl

3G
T % ,* * *
= (r =p,.(r. ) > r.. >0
arij (r »¢ ) pl_] 3 leJ 15
.k %

> Pyy (”ij) ri; =0

< * * n 1,5)eC

S opyy ey Tiyo T My (dh3eCa (3.10)

* X %
where £ 1s the set of link flows corresponding to (r‘,¢ }. TFurthermore,
x %
for any optimal point (r ,f ) of problem (2.1), there exists some feasible

%
routing variable set ¢ such that (3.9) and (3.10) hold true.

Proof: First notice from (3.7) that (3.9) is equivalent to the following:
' 2G L, 296G "
' * T -~ X _ T * & * )
e Fi ) ¥ — (9) = g @, ) 2., (3) > 0
kj 1]
fe #*
T * * 3 _
EO e C ®.,, Gy =0
1j
(i,k)el, jeN, J # 1 (3,11)
BGT * £
Now consider thecrem 2.1 and let Bij = 5;——'(r 0 ), i,jeN, 1 # j. The
ij

sufficiency of the above conditions follows directly. To show the second

.
part of the theorem, let (r ,fx) be any optimal point for (2.1). Consider

]
the length of any active route R(i,j) is Aij' It follows from (3,7) that

any pair of nodes i and j, 1 # j, with s.. > 0, According to lemma 2,2,
i

* *
(r ,0 ) =A.. for s,, > 0. 1If Sij = 0 for some i and j, i # j.

% * *
¢ik(j) is not determined by f , By allowing ¢ik(j) to be nonzero only if

(i,k) is located on some route R(i,j) with the length Aij’ we will get

f?GT

or, .
1]

* & *
(r ,£f) = Aij for Sij = 0 also, Again considering theorem 2,1 and
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taking Bij = Aij’ i,jeN, 1 # 3, it follows that (3,9) and (3.10) are valid
x %
valid for (r , ¢ ).

3.3 A Distributed JFCR Algorithm - Direct Approach

Let (r,$) be any feasible point of (3.6). We define the algorithm A as
the product of two algorithms Ar and A¢, i.e.

A= A¢ . Ar (3.12)

Algorithm Ar only changes r, while algorithm A¢ only changes ¢. The mapping

(Il,¢) = Ar(r,¢) is a point to point mapping as follows:

3G

8J T

¢ = - p,.(r..) (i,3)eC (3.13)
ij Brij Brij 19743 A

rl (r,¢) = r,, - ud 0<r,, —usd,, <n
ij T ij ij — Tij ij — 1ij

= 0 r - ué.. <0

13 13 —
= Ay, L (3.14)

where U is a positive scale factor of Ar to be discussed later.
Before introducing A¢, we have to make the following definition:

Definition 3.1 : Let T be a given positive number., For any routing

variable set ¢ and any pair of nodes i, j, 1 # j, we define Bjj as

the set of all nodes keN for which either (i,k)iL or ¢ik(j) = 0 and k is
blocked relative to j. A node k is blocked relative to j if there exists
a route R(k,j) with the following properties: i) For every link in R(k,j),

the routing variable with respect to j is nonzero. ii) R(k,j) contains

some link (%,m) for which:

T (3.15)
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G oG

. ! T T
$gm(3) M [gzm“zm) M T 5‘—‘] ®13 (.16)
mj 2]

We define ancther set Bij similar to Bij except with ( > ) in (3,15) and
(3.16).

1
Now let us define the mapping (r,¢ ) = A¢(r,¢) as follows:

el

1. _ N
$5,(3) = 0 Aik(g) = 0 kE:Bij (3.17)

where Bij is chosen by node i, in every application of mapping A¢ arbitrarily

such that B..c B,. c B, .. Tor kiB.. define:
ij= "ij =i ij

i
1 aGT 1 BGT

23 =By By 5 omin ley, B0+ ] (3.18)
k3 m¢Bij mj

B (3) = min [o, (),nay, () /s, ] (3.19)

where N is a scale parameter of A¢ and is the same quantity usedin defi-
nition 3.1. We shall discuss the proper value of I later, Let Kmin(i,j) be

a set of values of m that achieve the minimization in (3,18), Then:

S0 = 9, () - 8 () KK (1, 9) (3.20. )

cblik(j) > 64 G) kEKmin(i,j) {3.20,b)
N 1

)IRINORES! (3.20.¢)
= ik

j=1

Notice that &{r,¢) as defined by Eq. (3.17) - (3,20) is not unique since Bij

is not generally unique and also for a given Bij’ Kmin(i,j) can have more than

one element. Therefore the mapping A and A = A * Ar are point to set

¢ ¢

mappings.
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The algoerithm A, , as defined here, is a modification of the

¢
distributed minimum delay routing algorithm proposed by Gallager [4]. There
is an error in the proof of lemma 6, appendix C of [4]. The modification

of A¢ and some respective changes in the proof of convergence is suggested

By Gallager as corrections to [4]. The JFCR algorithm A = A¢' Ar proposed

here is a generalization of the routing algorithm A, .

b

Theorem 3.5 Let (x°, ¢%) be gny feasible point of (3.6) and let

J(ro,¢0) < Jo' for each value Jo’ there exist scale factors ¢ andn for Ar

m-1 m_l)} oo

and A¢ such that any sequence {(rm,¢m)EA(r , 0 n=] COTVErges to a

sclution of (3.6).

This is proved in appendix B. The next thing is to see whether
the computations necessary for this algorithm can be conducted distributive-
ly at the nodes of the network instead of being performed at a central node.
It turns out that a condition known as loop-freedom is essential for distri-
buted computations of the algorithm to Be possible, Therefore, first we

shall define the concept of loop-freedom:

Definition 3.2 : A set of routing variables ¢ is called loop-free if for any

destination j,there is no directedloop in the network with links all having

nonzero routing variables with raspect to the destination j.

Theorem 3.6: If (ipl¢0)is loop-free (namely if 6° is loop-free) so is

(r?¢l)€A¢ (r?¢0), for any value of the scale factor 1 in the algorithm A¢.

This theorem is proved in [4]. We just point out here that the
introduction of the set Bij in the algorithm A¢ was necessary in order to

establish this result. From lemma 3.2 it follows that if (r0,¢0) is loop-
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1.1 o 0., .
free, any (r ,¢" ) cA(r ,¢ ) is also loop-free since Ar does nat change the
. - . . ) m m, 0 0

routing variables, Therefore,by induction,(r ,0 ) = A (r ,¢ ) is locp-free
form=1,2,...., In other words if we start with a loop-free point, then
the routing remains loop-free at zll of the stages of the algorithm A,

Now let the routing variables be lcop-free at the starting point
(and therefore at all of the stages) of the algorithm A. In order to
demonstrate how the algorithm may be performed using distributed computations

at thHe nodes of the network, let us first show the method of computing

aG
Dy i,jeN, 1 # j, distributively. Consider any node 1 and destination
1]
3G
j # i, Let 3 be known at all nodes m for which ¢. (j) > 0 and
Ir_, im -
m] aG
assume that all such nodes m send the value of e to node i (over link
CL nj
(m,i). Once node i receives 5T for all m with ¢im(j) > 0, it can
Yo R 3G
compute - from Eq. (3.7). This process of computing Py in fact
ij 1]
can be started at nodes 1 which send all the traffic Sij directly to j
3G
(namely all nodes i for which ¢ij(j) = 1), since BrT is zero, Then

33
the computation can be done for the nodes i which send the traffic Sij
either directly to j or to the nodes of previous class. This process can
3G
continue until 57 is known at all nodes ieN. For every destination j,
1]
a separate process is necessary. The property of loop-freedom is necessary
oG
ar_.
1]
before it can be computed at another node m, and vice-versa, so that both

to avoid deadlock situations where should be known at some node 1

nodes i and m wait indefinitely for the other.

G
Fach node 1, 1in the process of computing Py will also get
Je : 1 3C
the value of 5;;; + gim(fim) for all-méqij.Therefore,onCe arij is known

at all nodes ieN for every destination jeN, the mapping A or A¢ can be
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applied on the current (r,$) and eyery node i can compute the new
values of rij or ¢ik(j) s ke (i,kdel, 3 # 1, Notice that

in the algerithm A proposed here, each of the two parts Ar and A, shpuld be

_ ©
applied on the network in separate iterations. It is certainly desirable

to update r and ¢ both at the same iteration, However, the proposed algo-
rithm A has this limitation since the obizctive here was to show that the
JFCR problem can be solved using iterative and distributed computations,

and not to find the fastest algorithm,

3.4 A Class_of Distributed JFCR Algorith=s

.3ertsekas [16] and Gafni [17] have recently generalized Gallager's

e

distributed routing algorithm. Their formulations allow the use of second
derivative infermation and also provide the flexibility for our purpose of
reating the dumnmy links of section 3.1 differently from tle other links.

We have applied'the results of section 3.1 to the class of algorithms in [17]
to coue up with the following class of distributed JFCR algorithms. The
equivalence of this class of algorithas witk the xouting algorighms of [16]

and {17] is shown in appendix B.

Consider the network M as model’ed in section 2,1 and iet us cefine

a set of JFCR variables 1 as following:

vy 3 = £, 54 i,3eN, i # 3 (i,k)el (3.21.a)

wijxj) = Inij = rij] 543 (1,32C, , (3.21.b)

where Sij = 1ij n 2: £ () (3.21..¢)
wi{m,i)el ™

It fellows from (3.21) that:

G320 Y v, @) =1 1,3eN, 1 # 3, (1,14C, (3.22.a)

k:(i,k)el
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wik(j) > 0, wiij) >0, wijq(j) + E: wik(j) =1, (i,j)ECA (3.22.%)
k: (,k)el

Definition 3.3 Let Y be any set of variables wik(j) which satisfy Eq. (3.22).

I1f for any (i,j)eC,, there is a sequence of nodes i,k,%,,. m,j for which

s . 5 _ N , : , .
ﬂjik(J) a, ka(J) a,. wmj(J) 0, then { is called a JFCR variable set

Theorem 3.7: Given the set of desired input rates 4, any set of JFCR vari-
ables Y corresponds to a unique set of input rates r and multicommodity

flows f.

This lemma is proeved in appendix B. Now let

BGT

Vi @) =8l () iy i, jeN, i # 3, (i,k)el

For any pair of nodes i and j , i # j, define two column vectors wij and
Yij respectively with entries wik(j) and Yik(j)’ (i,k)el, in any fixed order.
If (i,j)ECA » we extend the dimension of wij and Yij by one to include respect-

. s .
ively wij (i) and pij(rij) as their last entry,

For any set of JFCR variables W and any node i , we define a

node k as blocked with respect to destination j if (i,k)el  and

aGT aGT
T = or
ij ki

or there exists a route R {(k,j), with

wik(j) = 0 and either

nonzero JFCR variables on each part it, which contains some link (%,m) with

BGT BGT
TS < e . For any given ¥ , we denote by Bij the set of all
i — o
2] mj

blocked nodes with respect to node 1 and destination J.
Now the clas of JFCR algorithms A¢ are as follows: In each

iteration, in order to map the current point ¥ into the new peint Aw(w), at

each node i and for every destination j the following optimization problem
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is solved

] t 1 513 2 t -
min  Yiy (ll)ij - IPijJ t35 3 (lbij - Rbij) 'Mij (wij 71Pij)

L

subject to i) wij satisfies Eq. (3.22)

o~
ii) wik 3y =0 for kEBij

where o > 0 is a scale factor and M’j is a symmetric matrix of proper dimen-
1

sion that can be a function of Y and the iteration, but must satisfy the

following constraints for some fixed A > 0, € > 0: First the elements of

M,,, savy m must satisf o < A. Secondly M,, should satisf
iy? 5 Epp 4 ’ pﬂz' — ¥ P4 Y
2
€||v|[ < vyt , Mij *v for all vectors v of proper dimension which have

a zero component on places corresponding to nodes kEBij.

o
Theorem 3.8: Assume that lim e, (r ,} = i,3€C . Let ¥~ be any
ij " 1ij A
r..>0
1]

JFCR variable set corresponding to a feasible point (ro,¢0) with J(r°,¢o) EJO.
For each value of Jo, there exists a positive value for O such that any
sequence {wm = A$(w°)} converges to a solution of (2.1). Furthermore, if

o m
" corresponds to a loop-free routing, so does ¥ , m =1,2,,,,

This theorem is proved in appendix B. Since the JFCR variable set ¥

is loop-free at every stage of the algorithm, the distributed computation of

gl

is possible.
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CHAPTER IV

THE USE OF WINDOW STRATEGY FOR IMPLEMENTATION OF JFCR STRATEGY

In this chapter we discuss three distinct problems regarding the
implementation of the JFCR strategy and its effectiveness in controlling
the flow of traffic in the network. The first problem is that of adjusting
the input rates of different commodities to the values assigned by the JFCR
strategy. We prove that a flow control mechanism known as widow strategy -
which has been in the literature for some time - is an effective way of ad-

justing the input rates to the set of assigned values.

Next, we discuss the behavior of the JFCR algorithm in a quasi-sta-
tic situation where the statistics of arriving traffic changes slowly with
time. Finally, we consider the short-term fluctuations of the traffic and
show that while the JFCR strategy itself is not capable of reacting to the
fast fluctuations of the traffic, the window strategy employed for the input
rate adjustment, effectively reduces the danger of congestion caused by fast

changes of traffic.

4.1 The Window Strategy for Input Rate Adjustment

The strategy developed in the foregoinf chapters, aims at maintain-
ing an appropriate and noncongesting traffic in the network, through assign-
ing a set of optimal input rates to the commodities. Tt iIs simply assumed
there that the average rate of the incoming messages on each commodity (i,]j)
can be set to any value on some interval [O,nij], and the difficulties in-
volved in the actual implementation are not considered. Our objective in

this section is to propose an appropriate mechanism for adjusting the input
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rates to the assigned wvalues.

Consider any commodity (i,j) with the desired input rate &i and

]
the allowed throughput rij f-nij assigned by the flow control strategy.

Accordingly, there must be some controlling device at the entrance of node
i which will accept some of the incoming traffic into the network and re-
. t . . )

ject the rest. It is,therefore,necessary to define the rules according to
which the decision about acceptance or rejection of the incoming messages

Sl
should be made in order to maintain the input rate rij'l The window stra-

tegy is a flow control scheme which provides such rules. In the present
section, first we explain what this strategy is and then discuss its appli-
cation for our purpose.

Let us first define a term which will be used in the explanation
of the window strategy. At a given time an "outstanding packet" in the
network is one which has already entered the network and either it has not
yet arrived at the destination or its acknowledgment has not yet been receiv-
ed by the source node.

The window strategy refers to a control scheme in which each
source node i, keeps the number of the outstanding messages of each commodi-

ty (i,j) below a given number Wij’ called the window size of commodity (i,j).

ot
If storage capacity is available, the rejected traffic can be queued at the

entrance ¢f the network until it can be accepted into the network.

+ . .
The arrival rate of commodity (i,j) at node i, is not equal to the desi-
red input rate hij in general. It depends on the nature of the source and

on the valwe of rij as well as nij. For example, if a human being .is at the
source of the commodity, a small assigned throughput rij can discourage him

from sending data. On the other hand, if the source is a computer which con-
sistently tries to send some data, the arrival rate would include both the
traffic that is arriving for the first time and the traffic that has not gome
through before, and therefore is bigger than hij'

In any case,it is reasonable for our purpose to assume that the arrival

rate is greater than or equal to r,., for r., < &.,.
1] 1] — 1]
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Accordingly, whenever a new message arrives for commodity {(i,j), it can
enter the network if the number of outstanding packets of commodity (i,j)
at that time is less than v&j. If this number is equal to Wij’ no packet
of commodity (i,j) can enter the network until an acknowledgment from node
j 1is received by i, indicating that a new packet of this commodity has

reached the destination.

To our knowledge this strategy was first proposed by Cerf and
Kahn [10] and later on discussed by Gerla and Chou [14] as a mechanism for
congestion contrel in data communication networks.It was argued that a set
of appropriate window sizes for different commodities would provide an
effective flow centrol in the network. The proposals, however, did not say

much about the criteria or computation of an appropriate set of window sizes.

Here we link the window strategy and the JFCR strategy together,
by showing that it is possible to maintain any assigned set of input rates
r (which is demanded at some stage of the JFCR algorithm) through implement-
ing the window strategy with an appropriate set of window sizes. In other
words, we show that for any set of feasible input rates r, there exists a
set of window sizes w = {Wijl(i’j)ECA}’ such that the implementation of the
window strategy using these windows will force the input rates to become

equal to r.

We will spend the rest of this section verifying the above claim.
In doing so, first we need to obtain the relationship between the average
number of outstanding packets and the rate of commodities in the network,
Later on, in Section 4.4, we will discuss the interesting features of the
window strategy and explain why we have proposed it for maintaining the

desired set of input rates in the network.
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Consider the network N with some given set of routing variables
$. Let K be the number of active commodities of the network. For the sake
of notational simplicity, in this section we will mostly use a single sub-
script k = 1,2,...K in order to refer to an active commodity instead of
specifying it with its source and destinatiom pair (i,j). Thus L for
example, represents the rate of commcdity k. Let ny (nij) be the expected
number of the outstanding packets of commodity k (commodity (i,j)). This

number consists of two parts. The first part, which we shall denote by

n;’, is the average number of packets of commodity k at any given time,
which have entered the network and have not reached the destination. The

2 . .
second part, n is the average number of packets of the commodity which

K?
have reached the destination but whose acknowledgment has not yet reached
the source node.
For the given set of routing variables ¢, let us define the rout-
ing matrix Q, with dimensions K x L, as follows: Each component Aq of Q
denctes thé fraction of commodity k which passes through link R.+ The £'th
)

column of Q,q EF&K specifies the fractions of different commodities pass-

ing through link £. Similarly the k'th row of Q, GIRL shows how commodi-

U
ty k is routed through the network., With this definition, it follows from
Little's formula that the average number of packets of commodity k,

waiting or being transmitted om link £, is %'rk'qkﬁ'tkl for k = 1,..K

and £ =1,..,L, where I' is the average length in bits of packets and tkﬂ

In specifying matrix Q in terms of ¢ it iIs reascnable to assume that the
traffic is routed through the network regardless of the source that each
packet is originated from and based only on the destination. With this
assumption , each routing variable set ¢ specifies the routing table of every
single commodity as well as the overall traffic and, therefore,corresponds to
a unique routing matrix Q.
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denotes the average delay per packet that commodity k undergoes,waiting
or being transmitted on link 2,

In order to avoid statistical analysis of the queues of the net-
work, which is very hard when flow control is practiced even under many
simplifying assumptions, we assume that on each link the average delay per
packet experienced by different commodities is the same.+ Therefore,

t =t k=1,..,K, £ =1,...,L
With this assumption we can conclude from the above results that:

1 _1 - 1 -
n,o= T T ég; Upp + by = ToooT e G t (4.1)
where %G'RL is a column vector consisting of the components tg‘

Instead of writing Little's formula for every single link, we can
consider the whole network as a single server for commodity k and apply

Little's formula to it to see that:

K (4.2)

where T, Tepresents the average delay per packet for commodity k when

travelling through the network. Now by comparing (4.1) and (4.2) we get:

-
T = q - t (4.3)

2
In order to compute n

.y let us denote by ek the average time

between the moment that a packet of commodity k arrives at the destination

and the moment that the corresponding acknowledgment is received by the

g
' This assumption is not true in general, despite looking trivial. Suppos-

ing that the service times of each packet at different links are expomential-
ly distributed and statistically independent, we have been able to use the

results of [18] and show that bt = B for all & = 1,...,L and

k=1,..,¥, if a window strategy is not practiced and the arrival of packets
of each commodity is poisson. But if the window strategy is imposed even on
some of the commodities, the assumptiom is not valid, Nevertheless, we
think it is a reasonable approximation, especially since an exact analysis
has been impossible.
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source node. By applying the same concept ome can see that:

r. . 8 (4.4)

Therefore: n, =n, + n, = % r (1. + 8) (4,5)

k k k

In the following two cases we continue our analysis under two different
assumptions, with respect to the time necessary for the acknowledgments to
reach the source nodes. 1In both cases it is assumed that the acknowledg-
ments do not add to the traffic of the network. This is reasonable if data

packets contain a field for acknowledgment of cther packets.

CASE 1 - Bkris fixed and independent of the network's traffic:

This case is approximately valid if the acknowledgments are consi-
dered as high priority protocols when passing through the network and at
each node are inserted inte the first packet on the next link on a pat® to

+
the right destination. When we consider the next case, we will see that

the assumption in this case is important in order to maintain a stable
situation in the network. With the assumption made here, and for a given
routing variable set &, Eq. (4.3) and (4.5) completely describe n in terms
of the input rates r o, m= 1,...,K, through the functions ty (fg),

£ =1,...,L. Therefore we can view (4.3) and (4.5) as the following mapping

from IRK to Ilé(:

7= D (4.6)

K .
where_HE?RK and Té R are two column vectors with the k'th components n

and Xy respectively,

1
When there is no packet going on such a link, a special protocol packet

should be formed to send the acknowledgment over that link.
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Theorem 4.1 : Let tg(fgl, £=1,.,.,L, be an increasing and continuously
differentiable function on [O,CQ). Assume that tQ(O) >0 for 8 =1,...,L,
and ek‘z‘O for k=1,...,K. For a given routing matrix Q, define T as the

=
set of feasible inputs r , i.e.

D ={r|T>0 iy 2
= {r|r > an Eg; L qk£< EQ =1,...,L}

where El is the effective capacity of link £ as defined in section 2.2,
Then there exists a one to one correspondence between the points in 0 and
h(D), i.e.

- -
h(r) =n >

H
m
=

>
T

m
3

n(r') = n,

. , > R N S . . .
Furthermore,the inverse functien r = h "(n) is continuously differentiable

=
on h{(I)) and its derivative with respect to T s, the inverse of éhiél-.
dr
This theorem is proved in Appendix C,
CASE 2 - Equal priority in the transmission of acknowledgments and other

data:

An altermative to our assumption of giving high priority to the
service of acknowledgments is to route them through the network and serve
them at the links with the same priorities as other traffic. 1In this case,
if we assume that the average length of packets containing acknowledgments
is equal to the average length of other packets, it follows that eij = Tji’
(i,j)ECA. Notice that if (j,i) does not denote an active commodity, still

we can define Tji as the expected travelling time between j and 1.

In this case eij is not constant and is a function of the traffic

in the network, 1In order to obtain this function, let the source-destina-
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tion pair (i,j) correspond to the commodity k. Let us definee the row

L .
vector VkG'E. with the £'th entry showing the portion of commodity (j,i)

which goes through the 1link 2. Bk can be expressed then as:

e _ -
K-V t (4.7)

It is clear that if (j,i)} denotes an active commodity, Vi is equal to that
row of Q which corresponds to commoditv (j,i). Equations (4.3), (4.5) and

(4.7) imply that:

1 -+
n = T Ty (vk + qk) .t k=1,...,K (4.8)
In appendix C, Eg. (4.7) is used to show that when eij = Tji s
' > >
(i,j)eC, there is no longer a unique correspondence between r and n

and for a given E there mav exist multiple inputs ;ED satisfying
n = h(r).

Theorem 4.1 suggests that in a nerwork where the acknowledgments
are given high priority in service, one way of adjusting the input rates

*
to a set of desired values r , is to keep the expected number of outstand-

*
ing packets of each commodity (i,j) at the value corresponding to r ,
- % %
namely to have n =n = h(r ).

The window strategy provides an effective means for controlling
- * .
the value of n. Suppose that we choose wij = nij for all (i,j)ECA. This
implies that the number of outstanding packets of any active commodity (i,j)
*

will always be equal to or smaller than wij = uij . If we further assume
that on each active commodity (i,j), there are always some messages waiting
to enter the network, then as soon as a new acknowledgment arrives at node

i, a new packet enters the network and the number of outstanding packets

*
will always stay at Wij = nij . Therefore the expected number of out-
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standing packets, nij’ will glso become equal to the desired value n?..
1]
According to theorem 4.1 it follows that:
%

rij = rij (i’j)E—CA

If the acknowledgments in the network do not possess high priority
in service, theorem 4.1 does not apply. Indeed in this case, as we pointed
out earlier, enforcing the value of ; to the desired value ;* through the
implementation of the window strategy, does not necessarily guarantee that
; = ;* and in fact might allow multiple points; corresponding to the
same value of ; = ;*. Thus,the window strategy is not necessarily an
effective way of adjusting the input rates in this case.

The impact of the above results goes beyond the scope of the
implementation of the window strategy for achieving a desired set of input
rates. In fact if there are multiple choices for ; with a given set of
windows, the statistical behavior of the network makes it possible for the
input rates to oscillate back and forth between several poimnts. Therefore
in order to maintain a stable situation in the network, wherever windowing
is implemented, the acknowledgments should have high priority in service so
that their expected travelling time becomes independent of the level of
traffic in the network.

In the foregoing discussion, in order to conclude that nij = wij’
we assumed that there are always some messages waiting to enter the network
for commodity (i,j). This assumption is reascnable if for every commodity
there is a sufficiently large buffer located before the flow control device
where the arriving messages can be queued until they are accepted by the
network. Of course, with this buffer, the actual delay of commodity (i,j)

igs more than Tij . We have not, however, introduced this additional delay

into our JFCR formulation (Egq. 2,1), since this delay depends on nij and
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as explained in section 2,5, we would like to keep the assigned input rate
r,, independent of X, (except for the constraint r., < A,.).
1] 1] ij

*
Notice that even with this buffer, as the assigned input rate L

approaches the corresponding upper bound ﬂij’ the likelihood that the

buffer is empty at a given time increases, and therefore the expected number
%

of outstanding packets, nij’ will become smaller than wij = nij' According-

%
1y the actual rate rij will be somewhat less than rij (Fig. 4.1)-

A

ij

%

>, .

L. 1]

1]
Fig. 4.1
%
A more important source of error in adjusting rij to rij for

many cases of practical importance is the approximation involved in choosing

*
an integer value for Wij when nij is not integer. This error becomes

£
particularly significant when nij is a fraction of unity. One possible way
of correcting this type of error is to change eij artificially to some
' * 1 *®
1 i L= T rL. .. + 8!'.) is an integer, This
larger value eij for which n, I Tij (,T:L:J ,13) g

can be done by disregarding any received acknowledgment at node i (from

node j) for 8',, - 6,, seconds.
ij ij
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4.2 Distributed Computation of Window Sizes:

Given a set of assigned input rates r, Eq, (4.5) shows how the
appropriate window size Wij’(i’j)ECA’ can be computed. This closed form
relationship is inappropriate for a distributed computation of the window
sizes. In order to comput W&j distributively, we notice that Tij can be

expressed as follows:

.= o 4. (e 1) (4.9)
13 i@ reL K ik kg
where Tkj denotes the expected travelling time between k and j , for

any (k,j) whether it represents an active commodity or not. Naturally, we

take 7.. =0, j=1,...,N.
3]

The similarity between Eq. (4.9) and Eq. (3.7) suggests that

Tij can be computed distributively in the same way that was explained in
3G

Section 3.3 for the distributed computation of cramll This,indeed is
1]

possible for a loop-free case, which is the case under our consideration:

For any destination j, every node i # j should wait until it receives

T from all the adjacent and downstream nodes k (downstream with respect

kj

to j). Node i itself can measure or calculate the value of tik for all
(i,k)el, Then it can compute Tij from (4.9) and in turn send it to all

of the adjacent nodes. This process continues until T;; is known at every

J
node i and for every destination j. Each node 1 then uses Tij
in adjusting the window size.
In the above explanation we tried to demonstrate that the distri-
buted computation of window sizes is possible. There are, however, some

problems involved in this computation that we have neglected. To explain

these problems let us consider the network after the m'th iteration of the
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algorithm ¥ Let rm ¢m e, W 0 aGT \
gori . € » P » ij’ kj, Nt

for k,jeN, 1:(i,j)eC,
k3

denote the parameters of the network at this stage, For the next iteration

A m+1 1 m+l m+1
- = = . 8 ..
it is necessary to comput Wij T rij a(Tij + ij), for (1,J)€CA.
T?;l is a function of t 1 and ¢m+l as we have
m+1 m+ m+1 m+l
T = i .
13 > rbik]h) (Tkj ot ) (4.10)

k:(i,k)el

+ + +
Therefore, in order to compute T?jl, both ¢m . and tm 1 are needed. The
following procedure describes the distributed computations which are

+ +
necessary in order to compute Tle and xa?jl, (i,j)ECA.

+
1) perform the distributed procedure of computing ¢m . and rm+l .

ii) every node i should inform all of its adjacent nodes k, whether
. . mtl . . . .
or not the routing variables ¢ik (i), jeN, 3 # 1, are zero.
Thus every node k will know what its adjacent upstream nodes
with respect to different destinations will be in the next
iteration.

iii) Perform the following distributed computations to find f?;l,

(i,k)el. For each destination 3j, every node i waits until

+1, .
it receives f.. (3) from all the adjacent upstream nodes k

ki
+
and then obtains STT1= r?fl + E: fﬁil(j). Then node 1
. T kg idel
informs all of the adjacent nodes k of the value of

XL
By one iteration we refer to any step of the algorithm in which a new

update of the cost differentials BGT/Brij s (i,j)eCA is necessary. In

this sense, one iteration of the algorithm proposed in Section 3.3,
corresponds to one application of the mapping Ay or Ar and not to one
application of the mapping A = A¢ . Ap L
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mHl,,, _ mFl | o atl . \ "y m+l L. .
fik (1) = 543 ¢ik (i) for all jeN, j#i. Once fik (3) is

known for all (i,k)el, jeN, i # j, every mode i can compute

L
mtl mtl
fae = & fgo O

j=1

j#i

+1 .
iv) Having the wvalue of f?+l , each node i can find tT+1(f? } either
ik ik ik

analytically, if the function tik (fik) is known, or using the

following approximation:

de. \"
tm+l:tn.z +( 1k) . (f:EH-l . fm )

ik ik df, ik ik
ik

dt m
- .
where t,. and ik are estimated by node 1.
ik dfik

+
v} Now the previously explained procedure for computing T?jl based

can take place, and then

on the values of ¢m+1 and t?+l

k

. . , m+1
every node 1 «can compute the window sizes Wij =

rwfl(T?fl

+9..) for all (i,j)ECA
ij ij ij

=

As is evident, the distributed computations described above require
alomost three times the protocol transmission compared to the distributed
computations of just updating ¢ and/er r. This increase is due to the

.o . . m+l ] Sy
additional computations necessary to find Tij . If one is willing to
accept some approximation, it is possible to use a simpler and faster pro-

. . m+1 m+1 .. .
cedure for finding Tij and wij > (1,3 )ECA :

+1

m+1 ] “ m
P s let us define T..  as:
i ij

As an approximation teo T P

~m+l 2: m+l . “m+1 m .. ; .
T::. = ¢ () (t,. +t,.) i, jeN, i # j (4.11)
] k:(i,k)el ik K] ik
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“mt+
T?jl would be the expected travelling time between i and i , if the

m+1

routing variable set was o but the link flows were £, It is possible

Smtl . . .
to compute Tij distributively in parallel with the cowmputation of rm+l

m+1 . . . . . ,
and ¢ : TFor every destination j , each node i waits until it

3G m
receives Dboth 5;2* and ;m+1 from all of the adjacent downstream nodes
ki kj
k. Then node i first computes ¢T;1 (i) for all (i,k)el, and then obtains
“m+1 Sm+ G \*
the value of Tij from (4.11), TFinally it sends Tij and T to all
- eS|

. +
of the adjacent modes. The process continues until T?jl and ¢ik (j} are
known for all 1i,jeM, i # j, (i,k)el . Then the input rates and window sizes

can be updated easily,

Finally an even simpler method of computing the window sizes is to
measure the round trip delay Tij + eij directly at the node 1 , and use
this value to compute wij for the next iteration, which means using
N G

+ r - . - .
i3 T T 1] eij) as the window size of commodity (i,j) at

iteration {m+l). This involves more approximation compared to the previcus
. m . mtl . .
case since Tij is used to compute‘fij . A more serious problem here is
that the average round trip delays can be estimated less accurately over a
given interval than the link delays sifice the link flows generally combine

many commodities and thus generally contain more packets per unit time.

4.3 Quasi-Static Behavior of the JFCR Strategy

The JFCR strategy and the algorithm developed in chapters II and IIT
are based on the assumption that the input statistics and the link capa-
cities of the network do not vary with time. This assumption is reflected
in a fixed set of active commodities CA and a fixed set of desired input

rates M. The algorithm is intended however for quasi-static applications
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where, as time goes on, the desired input rates change slowly and also new
commodities become active gradually or some of the active commodities become
silent,

While the convergence of the algorithm under these conditions is
subject to question, it can be applied to the quasi-static case with slight
modification in the procedure of the algorithm, To discuss this necessary
modification, comsider the network just before an update of the input rates
and let CA and & respectively represent the set of active commodities
and the set of desired imput rates at this moment. Let r be assigned as

the set of input rates after this update, Until the mext update the

following quasi-static changes might occur in the network:

a) Some of the desired input rates may increase and new commodities

may become active,

b) Some of the desired input rates may decrease. This reduction for
some of the commodities may be sufficient to reduce the new desired input
rate to less than the assigned rate. At the limit, some of the commodities

may become totally silent.

Clearly if case a, b or both occurs, each source node i at the next
update of the algorithm should consider the active commodities at that time
and should calculate and assign their new input rates, based on the most
recent values of the corresponding desired rates (Eq, 3.14), Additional
considerations are necessary, however, due to the possibility of case b.
Suppose that for gome commeodity (i,j), the desired input rate in the time
interval between two updates decreases from nij to some value less than
thg.input rate rij assigned at the first update, Clearly then the actual

input rate of commodity (i,j) in this interval will be less than rij.
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Let rij (real) denote this actual input rate in contrast with the
nominal value rij assigned by the algorithm, During the interval under

consideration, the measurement cof the marginal 1ink costs and the cost

oG
differentials Py is based on the actual traffic passing through the
ij
network and not on the traffic specified by the nominal input rates r,_,

1]

(i,j)ECA. Therefore,at the next update of the algerithm, the new input
rate rij should also be computed based on the actual input rate rij(real)
and not the nominal value Ty Accordingly, Eq, (3.13) and (3.14) should

be modified as follows:

s - 97 ) BGT
ij Brij Brij
rij = rij(real) rij = rij(real)
= Pyj (rlJ)
gy = ryy(real) (4.12)
1
r = — —
i = rij(real) uéij, Of;ij(real) Uaij < &ij
=0 r,. (real) -ud,., <0
1] 1] —
= - >
hij rij(real) Uﬁij —-&ij {4.13)

Here, hij denotes the most recent value of the desired input rate,

The variations of rij and rij(real) with respect to time are illustra-
ted in Fig. 4.2 for two types of behavior of hij' In both cases it is
assumed that nij stays below the amount of service which the JFCR strate-
gy can potentially offer. More precisely, it is assumed that aij as

defined by Eq. (4.12) is always negative. Tn case a, where hij changes
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gradually with time, the algorithm is able to keep up with it. In case b,
when hij suddenly increaes, it takes some time until the appropriate input
rate is assigned to the commodity, while on the falling edge, rij follows
nij almost immediately, This case illustrates an important shortcoming of
the proposed JFCR strategy: When a big user of the network, which is in-
active for a while, suddenly becemes active, it may take a long time before
the proper input rate is assigned to it, Teo solve this problem,one alter-
native is to leave the window sizes large when the desired input rates have
become too small compared to the active pericds. But this has the dis-
advantage of exposing the network to congestion when many such commodities
become active altogether, Further investigations are necessary to find an
appropriate way of handling the trade-off between the difficulties of above
two altermnatives,

The difference between rij and rij(real) is not merely caused by the
reduction of nij. In fact, as we discussed in sections 4.1 and 4.2,
there are always some approximations involved in adjusting the input rate
by the window strategy. Therefore some difference between rij and rij(real)
should always be anticipated. 1In this respect,Fig. 4.2 (and also Fig. 4.3
to be discussed later) are somewhat misleading,

In our discussion in this report, we have assumed so far that the
desired input rate Rij is known by the source node 1. While this assump-
tion is reascnable for a static case, for the quasi-static case in which
nij changes with time, the assumption may not be valid any longer, When
node 1 1is updating rij’ if it does not know what &ij is going to be,
it should anticipate some increase in the load offered by the commodity,&ij,

and choose the value of rij accordingly. Eq, (4,13), therefore,changes to
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-
"

i rij(real) - uﬁij rij(real) -Lléij > 0

= O _
rij(real) uéij <0 (4,14)

1
If rij as computed by (4.14) is larger than hij’ the actual input rate

rij(real) will be less than rij. Since in the next iteration,rij is compu-
ted based on rij(real), it will be kept closed to nij' Fig. 4.3 illustra-
tes how rij and rij(real) change according te (4.12) and (4.14), namely,
when &ij is not known by node 1.

In summary, we have shown in this section that under quasi-static vari-
ations of input statistics and when the offered load hij is not kmown by
the source node i, the JFCR strategy can still be implemented and practiced.
The essential question of whether it can adapt fast enough to keep up with
the changing input statistics is, however, difficult and requires further
research. Clearly,in order to keep up with faster statistical variatiomns,
the algorithm needs to be updated more frequently. But frequent updating
requires more updating protocol which reduces the effective link capacities

available for data. It also makes the measurement of marginal link delays

and other invelved variables less accurate.

4.4 Statistical Fluctuations of the Input Arrivals -~ Buffer Overflow

An ideal flow control scheme should be able to prevent buffer over-
flow in the network under all circumstances. That is, it should guarantee
that in the course of communication, no packet ever arrives at some node
without any buffer space available to store it. The JFCR strategy developed
in chapters II and III does not meet such a strong requirement. It only
guarantees that if the cost function J 1is initially limited, then at every

stage of the algorithm the expected number of packets waiting at any link
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{i,k), namely D remains less than Bik’ where Bik is some fractiom of

ik’
the total available buffer space Bik(max). This does not imply that at
any instant of time, the number of packets at each link (i,k) is less than
B or even less than B, (max).
ik ik

In order to see this clearly, let us consider an example in which the
packets of eqch commodity, at the point where they are admitted by the flow
control device into the network, form a poisson process. In this case it
is possible, although very unlikely, that while the expected number of
packets allowed to the network is kept at a limited value by the JFCR stra-
tegy, a huge number of puckets enter the network in a short period of time
in which case buffer overflow becomes inevitable at least at some of the
nodes. The probability of such an event can be reduced by choosing smaller
values for Bik/Bik(maX)’ but will always remain nonzero. We conclude that
the JFCR strategy is only capable of reacting te sufficiently slow variations
of the input traffic and can not control the more dynamic statistical fluctu-
ations of the input.

This inability to control the short-term statistical variations of the
traffic is inherent in the working mechanism of the JFCR strategy. As the
congestion builds up in the buffer of some link (i,k),it takes some times

until the news value of Di is measured and the congestion is noticed by

k
the algorithm. It may even take several iteratioms until sufficient reduc-

tion is introduced by the algorithm in the flow of traffic through link

(i,k). 1If the congestion builds up rapidly, however, before these arrange-

{As we shall see, this can not happen if the window strategy is employed as
the means of adjusting the input rates. However, we consider this case

in order to investigate the dynamic behavior of the JFCR strategy alomne.
The effect of the window strategy will be discussed later.
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ments are made, the buffer may overflow.

This limitation of the JFCR strategy indicates that other flow control
gchemes with faster dynamics should be implemented together with it., The
window strategy that was propesed as a mechanism of adjusting the input rates
for implementation of the JFCR strategy, in fact is very effective in con-
trolling short-term fluctuations of the arriving traffic as we will see.

The window stategy at any time allows only a limited number of out-
standing messages for each commodity. This, in comparisen with the example
that was just considered, is a big imporvement, since now large bursts of
arriving traffic which are going to create congestion will be smoothed out
over time by the window strategy before being allowed to enter the network.
Moreover, if congestion builds up at some buffer of the metwork, the input
rate of the traffic passing through that buffer will be cut back since these
commodities undergo larger amount of delays before reaching their destina-
tions. This can be viewed as a negative feedback effect, in which as con-
gestion builds up, messages arrive at their destinations more slowly,
corresponding acknowledgments come back to the source node with a slower
rate, and the input rate is cut back accordingly.

It is clear at this point that the proposed window strategy does not
simply function as a mechanism of implementing the JFCR strategy but rather
plays a distinct and important dynamic flow control role in the network.

It is even helpful to view the window strategy as the basis of our proposal
for flow control with the JFCR strategy playing the following two roles:
First a complementary role in determining the appropriate window sizes
based on the quasi-static input statistics, and second, the role of optimal

routing of the data in the network,
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The argument about the effectiveness of the window strategy in conges-
tion c;ntrol does not mean, however, that the network is protected against
congestion completely, The number of outstanding messages permitted by the
window strategy is such that on the average the number of messages waiting
on each link (i,k) is less than Bik' But again, the distribution of the
outstanding messages on different nodes has a statistical nature and it is
possible that many messages cluster at one node creating buffer overlow.

The advantage of the window strategy is in making such events very unlikely
but the likelihood remains nonzero if the windows are large enough.

The likelihood of buffer overflow in a network where the window strate-
gy is implemented (with the window sizes determined by the JFCR strategy),
depends on several factors. TFirst comes the value of %U&/§ﬂ<(maX) for
different links. As this ratio is reduced, the likelihood of buffer overflow
at the corresponding link decreases. At the limit, it is always possible to
choose a sufficiently small wvalue for Bik/Bik(maXJ which totally prevents
buffer overflow at link (i,k). However, this either would result in very
inefficient utilization of the available capacity of link (i,k) (if Bik is
smallﬁ) or would require unreasonably costly buffer assignment (if Bik(max)
is very large)}.

Another important factor in determining the likelihood of buffer over-
flow in the network is the size of the network and the number of links which
a2 message has to pass through before arriving at the destination. As the

communication path's get longer (in terms of the number of links invelved),

the chance of congestion increases, To see this peint clearly consider a

Recall from example 2.1 that assuming M/M/1 queues at any link (i,k), the

effective capacity of the link would be &, = "Cjy - By /(1 + By
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commodity which has only one path to the destination with n links. Let

w 1indicate the corresponding window size and for simplicity assume instant-
aneous acknowledgments. If n = 1 , namely, if there is only one link which
this commodity has to go through, the number of packets waiting at this link
is always w and therefore it never exceeds the anticipated average quanti-
ty which is w. On the other hand if n = 20, assuming that all of the in-

volved links have the same average delay per message, the anticipated avera-

ge number of messapes waiting on each link is , while the range of

\
20
fluctuations of the waiting messages is between 0 and w. Here,obviously we
have more chance of congestion unless Bikﬁmax) is much bigger than ‘Bik
for all of these links.

Finally, we need to emphasize that in a well-designed network, together
with any quasi-static and dynamic flow control scheme (such as the JFCR
strategy and the window strategy), the system must have some emergency
mode of operation in it, which becomes active whenever the potential for

deadlock arises. Some intersting discussions of deadlock recovery systems

can be found in [1] and [2].

4,5 Node-to-Node versus End-to-End Flow Control

In this last section, we introduce a rather general type of flow control
in comparison with what was discussed previously. In the approach just pre-
sented, flow control was viewed merely as an end to end practice. According-
ly, we tried to maintain a noncongesting traffic by imposing restrictions on
the traffic, only at the gates of the network. This is not the only type of
flow control which can be practiced, nor is it always sufficiently effective
for the purpose of avoiding congestion while using the network efficiently,

as we showed in the previous section. A more general type of flow control is
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to impose restricticns on the traffic on a node-to-node basis. Of course,

to be precise we should indicate that minimum cost routing itself is a type
of node-to-node flow control which tries to maintain some sort of balance in
the level of saturation of different links, so that local congestion does not
cccur. But in the same way that the input rate assignments of the JFCR stra-
tegy were only successful in coping with the long-run variations of the
traffic and not with its short-run fluctuations, the routing assignments are
only helpful in maintaining balanced traffic on the long-run, and do not
effect the problem of local congestion due to the fast fluctuations of traffic.
In order to provide protection against local congestion created by
fast fluctuations of traffic, a window strategy on a node to node basis
might be used. Presumably the link flow assignments of the JFCR strategy
should be used to determine the right size of the node-to-node windows,
in which case the node-to-node window sizes could be interpreted as a
mechanism of implementing these routing assignments.
The extreme of node-to-node flow control is that over any link (k,%),
rand for every commodity (i,j) using that link, there be a window size
Wkg(i’j) assigned to node . This scheme is very costly, however, and it
may be desirable to practice node-to-node flow control with less generality.
To see the possibility of such a scheme, recall from section 4.4 that as
the length of a communication path (in terms of the number of links involved)
increases, the chance of local congestion grows. This reveals a more tract-
able way of viewing and practicing node-to-node flow control : As the size
of a network grows, it can be split into smaller submnetworks with the pro-
posed end-to-end flow control strategy practiced for each network.
Further research is necessary to evaluate the need for node-to-node

flow contrel and develop the theory and details of an appropriate strategy.
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APPENDIX A

Proof of Lemma 2.2

L

Assume that at the optimal point (r*,f“) there is an active route
Ra(i.j) with the length Aa(i,j) > Aij' By definition there should be at
least one rToute Rb(i,j) with the length Rb(i,j) = Aij' Consider the traffic
travelling from node 1 to node j over route Ra(i,j). Let us change the
routing bv sending a small part of this traffic, say € bits per second,

LA

over Rb(i,j) and call the new point (rA,f). Therefore,

IGLE) - I E) = Co(xE) = G (riE) =

* F3 ® *®
L leg gy +0) - g (0] + Zig, (57 - gy, (g, - ©)]
all links(&,k) all links(2,k)
in R_(1,3) in R_(1,3)

Since the cost functions gﬁk(fﬂk)’ L ,k)el, are twice differentiable at

oL

fgk’ we can use the first order Taylor expansion as follows:

* *
~ . dg, (£ 4 ) dg,, (£, )
% ok {, & ') Lk
J(r 3f) - J(r :f ) = Z %——k'-g - —_kd fg‘ e+ 0(82)
2 ke
all links{?,k) k all links(® ,k)
in Rb(l,:j) in Ra(l,J)
= A G, 9) A (L,3) .« e 06D = G, - A (E,3) + 0™
= b 1,] £ - a 1,] v B £ - l:l a s ] + E £
* X %
Then for a sufficiently small value of €, J(r ,f) - J(r ,f ) becomes negative

£ %
which contradicts the assumption that (r ,f ) is an optimal point, Therefore

& %
at the optimal point (r ,f ), the length of any active route R(i,j) is Aij'
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*
Next consider any commodity (i,j)ECA and suppose rij < &ij'

Let R(i,j) be any route with the length Kij' Let us define a new point

~ *
(t,f) by increasing rij slightly and sending the increased part of rij over

route R(i,j). Using an argument similar to the above, we can show that
A p..(r) *
TP S P <}L .
ij 2 i3 i3 ) Iij i (A.1)

* ..
Similarly if r_j > 0, take any active route R(i,j) over which part of
i
~ *
the nodal flow S is passing. Define a new point (r,f) by decreasing rij

slightly and reflecting this decrease only in the flow passing over R{i,]j).

Then in a similar way it is possible to show that

* *
>
iy = Py (rij ) Ty 0 (2.2)
Combining (A.1) and (A.2), Ea. (2.2) follows. Q,E.D.

Proof of Sufficiency of Theorem 2.1

First we establish the following lemma:

& %
Lemma A.1 TFor any feasible points (r ,f )} which satisfies conditions of

theorem 2.1 and any other feasible point (r,f), the following inequality

* %
holds true with equality if (r,f) = (r ,f )

' *
2 i) gy (B ) 2 G jz)ec Ti5 %4 &.3)
(i,k)el ’ A
jeN

Proof: Multiply both sides eof (2.4) by fik(j) to get

| v

' % . . . - A
(€ ) (F ) + 8 * £, () > 8,0 £, (L,Rel, JeN  (A.4)

ij
%
(A.4) becomes an equality for fik(j) = fik (j), since in this case either

*
fik (i} » 0 or fik(j) = 0. Summing up (A.4} over i,k and j we get:
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et : 2 .
Zgik(fik)-fik(j) > 2 Bij fik(J) - Bkj fik(‘])
(i,krel (i,k)el (1,k)el
jeN jeN jeN

2 By 2 P = X By > £ @

i,] ke(i,k)el k, ] i:(i,k)el

25, Lim- XL e ol Xer, 2 8,

ij = 13 i3
1,] k: (i, kel m: (m,ijel 1,] (i,3)eC,

%
with equality in <:> for £ = £, G.E.D,
Now let there be a set of positive numbemsBij satisfying (2,4) and (2.5)
at a feasible point (rx,fﬂ). For any other feasible point (r,f) and any

L

0<a<1, (@r+ (L -a)r, of + (1 - 0)f ) is also a feasible point. Define

% *
J (@) = Jar + (1 -a)r , af + (1 ~a)f Y. Since J(z) is a convex function,
% %
J(r,£) - J(r ,£ ) = J(Q) - JW@Q) > %& | =
o= 0

L
~

* * . *® . 1
2 NG ) e GEOV X [ () - £ GN e ()]

i3 i3 iij
(iyj)ECA (1.k)el
jel
//rAccording to (A.3)
* * _ *
2 3 [(ry577y5) Pij(l'ij)1 o LI > TiiFis
(i,j)eCA (i,j)eCA (i,j)eCA
_ * _ % _ - * _ % =
> (= T3 Gyy(ryy) - By )y (= 1) (g () =By +
(lsJ)ECA (i,j)ECA
N
rij—

+ * * *
Z (rij - rij)(pij(rij) —Bij) + Z (rij - rij)(pij(rij) - Bij)
(1,31€C (i,3)eC

O<r,.< X i3 i
rlJ i3 i3
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According to (2.5), the second summation above is zerp, and the other two

summations are both positive since 0 E\rij f-ﬂij!(i’j)ECAf Therefore,

& %
J(r,£f) - J(r ,f ) > 0 for all feasible (r,f).

APPENDIX B

Q.E.D,

We prove theorem 3.5 through establishing the following 3 lemmas:

Lemma B,1 Let

p>0and n > 0 such that for any

J(r0,¢o) f_JO, we have:

I L0 - 36,09 < 0

JO be any positive number.

There are scale factors

feasible point (r0,¢o) satisfying

for all (rl,él)EA(ro,¢D)

Proof: First consider the point (r1,®o) = Ar(r0,¢0) and let us define

o 1

T = 0. r + (1 -a) r® and J(a)

twice differentiable in terms of r,

terms of o.

A A dJ(CX)
J@) = J(0) = o ———
do a=0

di{a) _ 1 _ o

do, z: (IiJ rlj)

(i,jECA

2
d°J@) 1
—%— = > ('rij - r

doy ..

(I’J)ECA

= 3¢:%,0% , 0<o <1, Since J(r,8) is

J{) is also twice differentiable in

Therefore from the Taylor remainder theorem:

2
+ l_aZ a J() ) (B.1)
2 2 *
do O<a <u
3J
5t .2
1]
o
T=r
0 1 i
(o} N
MO DR C NS S Bt
c &m fLm argm ari.
(&,m) € A Am ] o
r=r
(B.3)

One can see from (3.13) and (3.14) that:
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. (_1’.. _r..) <--(_r.. "‘r..) (B 4)

< - % DN (B.5)
a=0 (1,3 ),ECA

Next let us define the bound MJ as:

d J(r,¢) |I

M = max |}
Jo dr2
(r,0):J(r,$3<J
— 0
d2r(r, )
where ————El*— is the Hessian of J(r,¢) with respect to r, considering r as
dr dZJ(r $)
a vector (the order of components rij inr is not Important) and ]1**43%44—ﬂ|

dr

2
d
is defined as max vt- —-iigigl* . v over all vectors Vv of proper dimension
dr
and magnitude one., The bound MJ exists since J(r,$) 1is twice differentiable

o)
in terms of r for J{(r,d) < =, It follows from (B.3) that given J{o) < JO:

2 1
g Jlo) Jz( ) . M,oo- E (.. =12 )? (B.6)
- PR 1] 1]
da o (1,J)ECA

We know that J(0) = J(ro,¢o) i_JO. Take any ce[0,1] satisfying:

-~

J(@) < J(0) for oaelQ,a] . , (B.7)

According to (B.1), (B.53) and (B,6):

b

3@ - 3O < 2 el -2 {~ LS +%MJ .&1 (B.8)
T(i,ieC, H 0
’ A

=

For u< 2/MJ and o2cl0,1] the R.H.S, of (B,8) is negative, therefore
~ o
J(a) < J(0) with strict inequality if rl # ro. Since J(0) §~Jo’ it follows

that (B.7) is true for any 0 < o < 1, Taking & = 1 we have the following
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J

Finally, let us

Let (riol

~-81-

ity if and omly if 1 = r’;

M) - 3 = 3@",4%) - 3:°,4%) < { > (- r?j)z] G

(i,j)ECA

(B!g)

JE A¢(rl,¢o). Since GT(rl,¢0) f_J(r%¢o) E-Jo’ it follows

Gallager [4], Appendix €, that there exists an 1 > 0 such that
2
3ely - 36he® = ep(heh - e e L — 5 af)
1
2N(N-1) . . I
i,jeN
i#]
where Ai(j) = Z Aik (3
k: (i,kK)el

consider the effect of the mapping A¢ on the cost J,

from

2
s;4 =0

(B.10)

1 0 .
and Aik(j) and s are the values corresponding tc point {(r ,$ ). Summing up

(B.9) and

Lemma B.2

for some

minimize

J{x ,¢N_l) < J(r0,¢o) for all (r~ “,4 ")e

Proof: C

ij
(B.10) we get J(r1,61) - 3(%,6%) < 0.

Q.E.D.

Let the scale factors u and n be chosen as required by

given value Jo and let (ro,ﬁo)be any feasible point which

(3.6) and J(r°,$°) <J_. Then

N-1 N-1 N-1 AN—l

(r°,69)

onsider any point (rN—1,¢N-%E:AN_l(rO,¢O)- Let (r",4™, n

by any sequence of points satisfying:

(

rn,¢n)€A(rn-l,¢n'll n=1,2,...N-1

It follows from Eg. (B.9) and(B.1Q) that:

3™6™ < 3™ MY < ™, h n- e

lemma B.1

does not
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Therefore, the only case in which (8,11) does mnot hold is when we have:
3™ = 3G = g™, o™l nel,.. el (5.12)

We show this can happen only if (ro, ¢O) minimizes (3.6), Contrary to our

assumption:

Let (B.12) hold true. It follows then from (B.9) and (B.10) that

- - - - -1
rN 1 rN z ... =1 and at any point (rn 1,¢n 1) = (I:D,qbrl )}, n=1,..,N-1,
n-1 . n-1 _ . , X .
b Q) S5 0 i,k,jeN, 1 # ] (B.13)

where A?k is the value defined by Eq. (17) - (19) corresponding to the
, , o ,n-1 . o .n . )
mapping of point (r ,¢ )} to point (r ,3 ). We show first that if (B.13)
- . . o ,n-1, . 0 n
holds,there can be no blocking for the mapping of (r ,d ) into (z ,¢ )
for n=1,...8-1. 1If any blocking occurs, there is some %,m,j for which

(3.15) and (3.16) is satisfied (with > ). Thus sntl > 0 and ¢E;l(j) > 0.

xj
BGT BGT n-1
. ] - T T'h A - .
Also from (3.18), an(J) z-gim + P 5;52 > g m > 0. us m (j) > 0
] J
n-1_, n-1 , . R ]
and Aim ) . SRj > 0, which is in contradiction with (B.13).

Next let us denote by Kﬁgi(i,j), n=l..N-1, the set of points k
which achieve the minimization im Eq. (3.18) at the point (IO,¢D_1). It can
be seen from Eq. (3.18) - (3.20) that ¢§k(j) is nonzero only if kEKEEi (i,3).

This is because, according te (B.13), either A;;](i)= 0 or 5231 =0, TIf

n-1 ,., _ . \ . . n-1,,.
Aik (j) = 0, Eq. (3.18) and (3.19) imply that either kEKmin(l’J)’or(bik (3)=0

i hich case ¢n (5) = ¢n-%') —An_l(') =0. On the other hand if sm'-l =0
In whieh case 94, N ik “37 “B4 30 =0. % R Ty T

] =1
it follows from Eq. (3.18) and (3.17) that either kEKEin (i,j) or
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n-l., _  D—i.. . . no.y _ n=l.o o1 .. _
AiR%J) = ¢ik{3) in which case ¢ik(J) ¢ik13) Aik () = 0. Thus in all
noL, n-1 .
cases ¢ik(3) is nonzero only for ksKmin (i,3).

Now consider a fixed destination j in the network and let us de-
note by Im(j) the set of nodes i which are m hops away from j on a
shortest route R(i,j) with géi (fkk) considered as the length of link
(k,%). Notice that according tec (B,13) the link flows are the same for all
of the points (r0,¢n-1),n = 1,..N; therefore the shortest routes and the
sets Im(j) are identical at different steps of algorithm A. From our previous
result , for any iEIl(j),¢ik(j) > 0 only if keK;in(i,j). Since (i,j) in this
case ig a shortest route from i to j, it alsc follows that at (ro, ¢l),
BGT BGT ‘ . ,
5;15 = lij‘ One can also see that 5;;; remains the same in the next
steps of A namely at (ro,¢n), n=2,..N-1, Next we know that for any

. . 2 . . 1 . . . .
1812(]), ¢ik (j) > 0 only if kEKmin (i,3). By definition of IZ(J), at least

one element of Kiin(i’j) belongs also to Tl(j). Therefore at (r0,¢2),
BGT

e = Ai,. We can continue this argument to show that at (ro,¢N_l),
ij J

BGT

o = Aij for all nodes ieN, since no node can be more than N-1 hops away
ij -1

from j. Thus it follows from Theorem 3.4 that (r0,¢N Y minimizes (3.6).

N_l),(r0,¢o) also minimizes (3.6).

Since by assumption J(ro,¢0) = J(ro,¢
Thus we have shown that (B.1l1) fails to hold only if (B.12) holds and (B.12)

holds only when (ro, ¢0) minimizes (3.6), Q.E.D.
y

Lemma B,3 The mapping A is a closed mapping (in the sense defined in page

124 of [15]).

Proof: First notice from (3.13) and (3.14) that Ar is a continuous point

to point mapping. Thus according to corollary 2, p, 125 of [15], in order
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to verify lemma B,3 we only need tg show that A is a closed point to set
mapping.
Let (:,¢n) be a sequence of feasible points of (3,6) converging
1

to (r,9). Take any (i,k)el and jeN , i # j, and let aik(j) Be the value

of aik(j) at (r,¢") as defined by (3.18) for any possible choice of ng and

nooLy o . . n .
let 2k (i) aik(J). Let us denote by Yim(J) and Yo (j), the value of
1 BG ial
gim(fim) + 3r respectively at (r,$) and (r, ¢ ). According to theorem

m]
3.2, Yim(j) is continuvous in (r,¢): therefore Y?m gy - Yim(j) for all

(i,m)el. Since azk (j) approaches a limit, it follows from (3.18) that
min 'Y? (j) also approaches a limit, which for a subsequence of n must
im
meZBY
13 .
be achieved at some particular m. Since this m is not blocked for the
subsequence, it can be considered not blocked at (r,$). Similarly, i1f there

is any node £ which is blocked and Y?E (i) < miEn ng(j) for this sub-
mdBij

sequence of n, £ can also be blocked for (r,¢). Therefore, the mapping

from (r,¢) to aik(j) is a closed mapping. Furthermore,since sij is continu-

ous in (r,$),n . aik(j)/sij is also a closed point to set mapping from (r,¢)

for Sij > 0, TFinally since 0 §-¢ik(j) <1, it follows from (3.19) that

Aik(j) is a closed point to set mapping for arbitrary Sij‘ Thus from (3.17)

and (3.20), A, 1is a closed point to set mapping.

¢
Q.E.D,

Proof of Theorem 3.5 1Let us defins S as the set of points (r,$) which are

feasible for (3.6) and J(r,¢) i_JO, i.e,

s ={yl o<r,

i3 <L, (i,j)ECA,¢ is a routing variable set,

1]

I(x,9) 23
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Since S is a compact set and A 1is a closed mapping from $ into itself,
it follows from corollary 1, p. 124 of [15] that AN—l is also a closed
mapping. Theorem 3.5 now follows from lemma B,2 and the general convergence

theorem, p. 125 of [15], using AN_l as the algorithm,

Proof of TPheorems 3.7 and 3.8

First notice from Eq. (3.21.¢) that Eij is equal tc the correspond-
1

ing nodal flow in network M. The routing variables of network M are as

follows:
£, () £..@3)
- ik ik .
i) = —— = - = 5 ,Ikdel
T () _ - b 3 (i,k)e
Sij alj
?} 1(j) ., = 1,,
Yy .y = _ik e % R 5 : - )
d)ik'(:l) — g = wijr(.j). k=3, (l,k)ECA
ij ij

Therefore,each set U uniquely specifies the routing variables and the multi-
commodity flows of network M , which in turn correspond to a unique point
(r,f) (Th. 3.2). Thus theorem 3.7 is verified.

To prove theorem 3.8, consider the routing algorithm of [17] for
network M ., We shall introduce a slight modification in this algorithm to
come up with algorithm Aw : In order to satisfy constraint (3.3.d), for every
(i,j)eCA, we shall define the set of blocked nodes Ei(j)of network M to
also include all links (i,k"), k # 3., This extension in the definition of
Ei(j) does not effect the proof of convergence in [17], Furthermore, accord-

ing to corollary 3.1, any limit point of the algorithm with the above

extension in Bi(j), is still an optimal point for the routing problem 3.1.
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Next notice that for every node i and destination j , wit® the
extended set g&(j), the following routing variables of network }| , are always

zero during the algorithms

$4(3) =0 keN ,  (1,1)¢1

i () =0 k#73, (i,k)eCA

The subproblem (2.9) of [17] can accordingly be simplified by dropping the
terms corresponding to the above routing variables. What remains is the
same as the algorithm Aw discussed in section 3,4. Therefore, according to
theorem 3.1 and the convergence theorem of [17], there exists an a > 0 for
which algorithm Aw converges to a solution of (2.1). Furthermore, accord-
ing to [16] , the JFCR variable set wm = A$ (wo) corresponds to a loop-free

routing for all m = 1,2,3,... G.E.D.

APPENDIX C

Proof of Theorem 4.1

. . dh , . . dnk
First we show that the matrix P = — (with entries P = —)
dry km ary

is nonsingular for ?éD. We know that f2== Z:qu'rk, for 2=1,...L.
k=1

It follows then from (4.3) that:

L at L dtg
%k =7 qkz'T& = IOy dE, Ime
T'm 2=1 T =1 2
=g -M-qt k,m=1l,...K (Cc.1)
k m 3 ?

where q; denotes the transpose of 9, and M is an LxL diagonal matrix

dt

with the entries ¥, - Ef—’g“ on the diagonmal. Also it follows from
?
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(4.3) that:

1 Itk
P = —— = —=a -
T rk ,a_rm kiél'n
(c.2)
3T

k
= ?[rk'ﬁ;;'+(Tk+ek)] k=

=

Therefore if Pk denotes the k'th row of P, we have from (C.1) and (C.2)

that
p. = Lo yre, 4 tr oq o o .
AL S T R M R A AR (C.3)
where edeK is a row vector with one in the k'th place and zero in other
places. Notice that the last matrix in (C.3) is Qt. Finally it feollows

from (C.3) that:
P="T+ R-Q-M-Qt (C.4)

where T and R are KxK diagonal matrices, respectively with the entries

TxHok Tk .
Tkk = T and Rkk =-f on the diagonal.

In order to show that Pis a nonsingular matrix, we consider the
following two cases:
Case a — rk>0, k=1,2,...K:

In this case P can be expressed in the following form:

p = R(TF + Q-M-Q%) (C.5)
r ro_ kPP
where T° is a diagonal KxK matrix with the entries Tkk = on the
k
diagonal. Since T£k>0 for k=1,...K, T' is a positive definite matrix.
K

Since M is a diagonal matrix with nonnegative entries, for any xeR

we have:

xCo (@m0 x = (@80 M- @) 20
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Therefore Q-M'Qt is positive semidefinite. It follows that " + Q-M-Qt
is positive definite, and thus nonsingular. Since R is also nonsingular

in this case, it follows from (C.5) that P is nonsingular and det. F>0.

Case b — rk=0 for some commodities:

For any k with rk=0, the corresponding row in the matrix R-Q'M-Qt

is zero. It follows then from Eq. (C.4) that for any k with rk=0, the
BrtTi
corresponding row of P only has the diagonal entry Pkk =7 - Let us

construct a matrix P by eliminating the k'th row and the k'th column of

P for all k with rk=0. It can be seen from (C.4) that:

B =t 4+ Qg

where T and R are constructed by eliminating the corresponding rows and
columns of T and R, and Q is constructed by eliminating the corresponding

rows of Q. Since R has only nonzero elements on the diagonal, according

to Case Il,det ﬁ>0. Therefore,

ek'l"'['k
T

det P=det P *I( Yy >0

all k
with = 0

Therefore the matrix P= gg-is nonsingular for any YeD. It follows
r

.

from the implicit function theorem [19] that for any point rOED and

- -+ > > >

n, = b(ro), there exist small spheres |[r-r0|]<e 3 ||n—n0||<6 in which
, > >

there is a one to one correspondence between r and n., Furthermore, the
. . .. L2 -1, . . . .

resulting implicit function r = h " (n) is continuously differentiable on

- -
h(D) and its derivative with respect to n is P

- >
Notice that the one to one correspondence between r and n, as

claimed in theorem 4.1, i1s a stronger condition than we have established

up to here. In order to complete the proof of theorem 4.1, we need to
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-
show that the one to one correspondence between r and ; ig valid in the
whole region D and h(D). To do so, let us consider two arbitrary

. -+ >y w+ = >, >, .. .
points r and r' in . Let n = h(r) and n' = h{r"). Similarly in the

=
following, any parameter which is primed, corresponds to the imput r'.

We have from Eq. (4.5) that:

nl-n = %[rl'((Tf{Jrek) - (146,07 =
(C.6)
Flron) () + n (o)
From Eq. (4.3) we have:
L
T T T 2L G [ () - £ (E)) (.7
£=1

According to the mean value theorem, for each link £, there exists a

point fz on the line segment connecting fi and fi such that:

dtg
T - = — . |_
b (£)) =t (£) df£/4R= £% (F-fp) (c.8)

It follows from (C.7) and (C.8) that

L dt
2
G R gy
kT e T4 e T TEfe eyt e
L dt
,Q,/ t =+, >
=Z . - g, (r'-1) (€.9)
& kg de f2=f§ L

-+ _K - K
If 1e®R and 1'elR  are column vectors made of components Ty and Té, we see

from (C.9) that
> t >, >
T

' T= Q-M*.Q - (¥'-7) (C.10)

where M* is an LxL diagonal matrix with diagonal entries M*¥ = —- x
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Finally from (C.6) and (C.10) we conclude that:

t >, >

> -+ *

n' -n=(T"+R-"Q"M Q) * (r'-1) {(C.11)
. . * ' G * .

Now consider the matrix P~ = T'+R*Q'M -Q°+ P" is the same ag P

dtg . . *
1 k=1,...X, and /=/— , £=1...L, in matrix P

except that the parameters T Tl
'3

> >
are evaluated at different points on the line segment connecting r and r',

%
rather than being calculated at the same point. However, I is also a
nensingular matrix. This is because, in the process of proving the
nonsingularity of P, only the structure of F and the fact that the para-
dtg
meters Ty k=1,...K, are strictly positive and the parameters ET7Y

. . % .
are nonnegative were used. Since P” shares all of these properties

, %=1...L,

with P, the same argument can be restated for P* to prove that it is

nonsingular. Therefore from (C.11):

Kl _ K = O%?'—? =0 Q.E.D.

—_ = i 5 C H
Case 2 eij Tig s (i,3)e A

We use an example in this case to show that when eij=Tji

» (1,3)eC,,
there can be multiple sets of input rates r corresponding to the same
vector n. Consider the network of Fig. C.1 with two active commedities
rl(from node 2 to node 5) and r, (from node 4 to node 1). Let half of T
take the links (2,4) and (4,5) and the other half take (2,3), (3,4) and
(4,5); but assume that acknowledgments all take the route (5,4), (4,3) and

(3,2). Similarly let half of r, take (4,2) and (2,1) and the other

2
half take (4,3), (3,2) and (2,1); but assume that the acknowledgments
all take the route (1,2}, (2,3) and (3,4). Let the capacities of links

(1,2, (2,1), (4,5) and (5,4) be large enough so that the delay of these
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links is megligible. Let the other links all have capacity C and the delay

function t(f) = E%g . With these assumptions we have:

Fig, C.1
1 1 1 1.5
T, = 0.5 - + 0.5+ (+ +——) =
1 C-rl C-r C—r1 C-rl
6 = 1 1 2
1 C—r2 C—r2 C-r2
.. 1.5 _ 2
Similarly: T, ot and 82 =
2 1
1.5 2
Therefore: n, = rlQ]—r Cor )
1 2
1.5 2
and n, = 1.,( )
2 2 C—r2 C—rl
If we further assume that r +T 5 =-% C,it follows that:
rirz
n = n =
1 2 2(C—r1)(C—r2) {(c.12)
If we interchange the values of ry and Ty, a = (nl,nz) will remain the
same, Therefore, in this case ? = (rl,rz) and ' = (rz,rl) both

7
correspond to the same n, if rtr, =% C.
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It is not difficult to find the matrix P = E;—in this case.
T

to Eq. (C.1), one can easily conclude from (4.7) that:

Similar
36
k _ . . ot _
5=Vt Mg k,m=1,...K (C.13)
m
From (C.1) and (C.13) we have
t (C.14)

a8, +1.)
k 'k .

or
m
Using Eq. (4.2) and (C.14), one can proceed in a manner similar to the

(C.15)

previous case to find that:

'M‘Qt

P = T4R{(G+V)
where V is a KxL matrix composed of rows vk'
For the network of Fig. C.1 it is possible to deduce from {(C.12)
7
g C» without computing P from (C.13).

that p is singular at Iy =¥, =
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