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ABSTRACT

This dissertation addresses the problem of estimating the phase of
the frequency response of mixed phase signals and systems. A number of
techniques are appiied to estimation of the phase of the frequency response
of the speech production tract from quasi-periodic speech segments. Methods
of phase estimation are categorized as indirect or direct. A subset of the
indirect procedures yield a closed form solution for retrieving the phase
from the magnitude of a mixed phase frequency response and a priori know-
~ ledge about the corresponding signal. Linear iterative algorithms are
also developed for retrieving the phase from the magnitude, and, similarly,
the megnitude from the phase, with a causality or finite duration con-
straint imposed on the desired signal, The iterative algorithm for magni-
tude retrieval provides an alternative to the Hilbert transform for obtain-
ing the magnitude from the phase of a minimum phase signal, but without the
need of an unwrapped phase. In addition, it serves as the major component
within a new phase unwrapping algorithm which does not require modulo 2r
considerations. An alternate indirect strategy changes a phase estimation
problem to one of magnitude estimation by modifying a quasi-periodic wave-
form so that the desired impulse response takes on a minimum phase charac-
teristic. Direct approaches rely on harmonic samples of a frequency re-
sponse, or of the principal value of its phase. Specifically, time-domain
windowing and frequency-domain interpolation are applied to a quasi-periodic
waveform in estimating the unwrapped phase at harmonics. Mixed phase esti-
mates from these direct approaches are incorporated within homomorphic and
spectral envelope speech analysis-synthesis systems with a second-order
improvement in quality over their minimum phase counterparts.
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CHAPTER 1

INTRODUCTION

In many physical situations, we encounter the problem of recovering a
signal which is not directly accessib]é to measurement, but for which par-
tial knowledge of its Fourier transform can be determined. This partial
knowledge may, under certain conditions, be sufficient to recover the
entire Fourier transform. For example, when a signal is known a priori
to be minimum or maximum phase, the Fourier transform can be recovered
within a sign 6r scale factor from only its magnitude or phase[22].

Within this dissertation, we shall, in particular, consider techniques
which use various kinds of partial information in estimating the phase of
the Fourier transform of mixed phase discrete-time signals and systems.

A number of these techniques are applied specifically to the analysis of
voiced speech. That is, we consider estimation of the phase of the fre-
quency response of a signal which consists of the convolution of the com-
bined vocal and nasal tract impuise response, and the glottal wavelet[5].

A simplified model of voiced speech sounds such as vowels, nasalized vowels,
and nasal consonants is given by the convolution of this response with a
train of equally spaced impulses representing the periodicity of the vocal
cord excitation function[5]. This type of representation, i.e. a "quasi-
periodic" waveform, is also characteristic of other waveforms found for
example in biology, music, and many other acoustic disturbances.

We shall apply a subset of our procedures for phase estimation to two
speech analysis-synthesis systems: (i) the homomorphic system proposed by

Oppenheim[23], and (ii) the spectral envelope system proposed by Paul[26].
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The original schemes introduced either a zero or minimum phase impulse
response derived from a magnitude estimate only.

Although many of the phase estimation procedures we consider are
developed in the context of speech analysis, our techniques have more
general implications and potential use in other areas where phase estima-
tion is required. For example, a number of results may be extended to
two-dimensional signals and systems, and thus are possibly applicable to

such areas as image or seismic signal processing.

1.1 Scope of Thesis

Most deconvelution techniques for recovering an impulse response from
a quasi-periodic waveform are directed primarf]y to estimating the magni-
tude of the desired frequency response. Linear prediction[2,15] and homo-
morphic filterirg[23,24], for example, have been applied quite successfully
to magnitude estimation.

The phase estimation procedures we shall consider are roughly classi-
fied as either "indirect" or "direct". Our class of indirect schemes
capitalizes on either knowing the desired magnitude or being capable of
deriving an accurate estimate of it by conventional deconvolution tech-
niques. Clearly, when the desired signal is minimum or maximum phase, the
phase can be obtained by applying a Hilbert transform to the logarithm of
the given magnitude. More generally, we shall use various kinds of a
priori information about the desired signal along with the magnitude to
unambiguously determine a mixed phase function. In particular, imposing
causality or a finite length constraint on the signal and specifying a few

samples of the phase, or the first few points of a discrete-time sequence,
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in some cases, is sufficient to uniquely characterize the entire phase
function. For example, as we shall see, for a certain class of causal
sequences only the initial value of the sequence is necessary.

An alternate indirect means of recovering phase from magnitude con-
verts the phase estimation problem to a magnitude estimation problem by
modifying the speech waveform so that the desired impulse response takes
on a minimum phase characteristic. Specifically, a class of invertible
transformations is derived thch are suitable to changing the general prob-
lem of deconvolution, involving both magnitude and phase estimation of a
mixed phase sequence from a quasi-periodic waveform, to a deconvolution
problem where only a magnitude estimate is required. This procedure is
applied to homomorphic deconvelution[24]. The sensitivities inherent in
this deconvolution scheme, due to the requirement of an unwrapped phase
[33], are therefore avoided. In addition, it appears that this indirect
approach to phase estimation by homomorphic deconvolution is less sensitive
to noise disturbances than a direct approach which requires an unwrapped
phase. Since most noise reduction systems estimate only the magnitude of
a frequency response, this technique is also potentially applicable to
signal enhahéemént[14], where both magnitude and phase estimates are ob-
tained through a magnitude estimate only.

A linear iterative algorithm is also developed for retrieving the
phase from the magnitude and a priori informationrabout a desired signal.
The algorithm obtains the phase by iteratively imposing the known magnitude
function in the frequency domain, and a priori information about the signal
in the time domain. The algorithm thgrefore falls within a class which

encompasses, for example, the recently proposed iterative techniques by



11
Gerchberg[6] and Papoulis[25] for extrapolation of a finite portion of a

bandlimited signal.

An analogous iterative procedure is likewise presented for retrieving
tha magnitude of the frequency response from the phase. When the sequerice
is minimum phase, applying the Hilbert transform to the unwrapped phase re-
covers the logarithm of the magnitude (within a scale factor)[zz].. Our
iterative algorithm, however, when imposing the a priori knowledge of caus-
ality, recovers the magnitude from only the principal value of the phase of
a minimum phase sequerice. The procedure of phase unwrapping is therefore
avoided. The algorithm under this particular constraint also serves as the
major component within a new phase unwrapping algorithm which does not re-
quire the conventional modulo 2w considerations[32]. As we shall see, an
unwrapped phase is neaded not only in phase estimation by homomorphic decon-
volution, but also in other techniques within the thesis.

In parallel with this thesis development, Hayes et ai[10] have demon-
strated that when imposing a finite length constraint on a sequence, the
magnitude of its frequency response in general is uniquely specified by
the phase (within a scale factor), As a result, we show that our iterative
algorithm can, as well, recover the magnitude from the phase of a finite
length mixed phase sequence,

The direct approaches we shall consider do not require an estimate
of a magnitude function, but rather require partial knowledge of its phase
function which is derived from the phase of the speech waveform. Homomor-
phic deconvolution is one such approach.

An alternate direct strategy addresses the problem of phase estima-

tion from partial knowledge consisting of harmonic samples of the desired
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frequency response or of its principal phase value. OQur estimation algor-
ithms attempt to preserve the unwrapped phase at harmonics -- a procedure
referred to as "phase tracking”. Phase tracking ensures that the un-
wrapped phase estimate at harmonics equals the unwrapped phase of the de-
sired frequency response. Such a property is desirable since under a band-
limited constraint on the unwrapped phase, the entire unwrapped phase may
be approximately recovered from only the given harmonic samples. One
method of phase tracking invokes an interpolation procedure on harmonic
samples, or samples of the principal phase value. In particular, we derive
conditions onthe desired unwrapped phase under which a simple linear inter-
polation scheme across two consecutive samples preserves the unwrapped
phase at harmonics.

This study leads to a heuristic understanding of the interaction
between windowing a speech waveform modeled as exactly periodic over a
short time, and the nature of the unwrapped phase of the windowed waveform.
In particular, constraints on the duration and position of a specific class
of windows are derived for guaranteeing bhase tracking by the windowing
procedure itself.

Phase estimates derived from the techniques of phase tracking are in-
corporated within our two speech analysis-synthesis schemes. Constraints
on time-domain windowing play a major role in governing the accuracy of
the phase estimate within these systems. In the hemomorphic scheme tailor-
ing the duration and position of the window is used to improve the phase
estimate by homomorphic filteriny,

Linear interpolation in the frequency domain can 1ikewise be viewed

in the time doamin as multiplication by a window. The position of this
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window is also important in obtaining an accurate unwrapped phase estimate
at harmonics. This consideration will be made in designing a high quality
spectral envelope speech analysis-synthesis system with a phase estimate
derived from our linear.interpolation procedure.

With an alternative interpretation of windowing both analysis-synthesis
schemes are shown to be identity systems with respect to reconstruction of
a periodic waveform. .

Informal listening tests indicate a small, but perceptible improvement
in "quality" when in these systems a mixed phase reconstruction replaces

its minimum phase counterpart.

1.2 Phase in Speech

The phase of the frequency reéponse of the speech production tract has
generally been considered less important than the magnitude function in
generating high quality synthetic speech within speech analysis-synthesis
systems. Experiments, however, have been reported demonstrating that the
envelope of a periodic waveform can be an important factor in audible per-
ception[17]. In particular, it influences sensations of roughness or
smoothness. The change from roughness to smoothness may be accompiished
by changing the phase or magnitude of a particular component or set of com-
ponents of a periodic waveform, and the degree of roughness is related to
the relative length and depth of the recurrent depressions in the envelope.
This "peakiness" factor is thus a determinant in roughness of a pericdic
waveform.

The ultimate goal in any speech analysis-synthesis system {s to ex-
tract from the speech waveform in analysis perceptually important informa-

tion which is used in synthesis to reconstruct the original waveform.
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Short-time speech segments are loosely categorized as either voiced or
unvoiced. The input-output system model for voiced segments was given in
the introduction. Unvoiced speech is likewise modeled over a short-vime
as the convolution of the combined vocal and nasal tracfxﬁmpulse responsa
with a white noise excitation. The analysis stage usually éit(acts the
magnitude of the Fourier transform of the desired impulse response, a
voiced/unvqiced decision, and a pitch measurement for voiced signals.
Either a zero phase or a minimum phase function is introduced[2,23].

Both the zero and the minimum phase impulse response estimates are
characterized by peakiness. The minimum phase estimate, for example,
yields a maximum energy concentration at the signal's origin due to its
minimum delay property[22]. Although there does not exist a demonstration
of a correlation between peakiness and quality degradation in speech
analysis-synthesis systems; the highly quasi-periodic characteristic of
speech and perceptual tests on the envelope of a periodic waveform suggests
the possibility of "quality" improvement by reduction of peakiness with an
accurate phase estimate o the desired response. Two results developed in
parallel with this thesis support this conjecture. First, Atal and David
[1] have shown that the quality of Linear Prediction Coding (LPC) is im-
proved by introducing an approximation to the LPC error residuagl. For
voiced speech the prediction residual is quasi-periodic with'tho same per-
fed as the speech waveform. A pitch period long segment of the prediction
residual can be expressed in tarms of a Fourier series expansion as a sum
of contributions of the fundamental and the individual harmonics., The
contribution of a particular harmonic (e.g. the kth harmonic) is given by
a cosine function of a particular frequency, amplitude, and phase:
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Ay cos(wkn + ek). The Fourier series representation allows the variation
of the amplitude and phase of different harmonics in any desired fashion.
Listening tests 1nd1cété a second order, but perceptible change in speech
quality for any magnitude condition when the phase changes from zero to
the phase derived at each harmonic. Furthermore, there is only a slight
difference between the original phase and a fixed Frequency-dependent phase.
This fixed phase was generated by éomput1ng the medium group delay at each
harmonic over ail pitch periods included in a sentence-11ke structure.

Go1d[8] in preliminary 1istening tests has also found quality improve-
ment by introducing a phase function within the channel vocoder. A fixed
frequency-dependent mixed phase was introduced along with the phase function

of a minimum phase vocal tract impulse response estimate derived from LPC.

1.3 Outline of Chapters

The thesis begins in Chapter 2 with developing a framework for the
phase estimation problem in the context of speech analysis and discrete-
time signals and systems, A review is given of a specific set of results
to be used throughout the following chapters.

In Chapter 3 we consider the indirect approach of estimating the phase
from the magnitude of a Fourier transform, Constraints and solutions are
presented for unambiguous retrieval of the phase from the magnitude func-
tion. These constraints are then applied within a linear iterative aigor-
ithm for phase retrieval.

In the second portion of this chapter, we investigava methods of con-
verting the phase estimation problem to a magnitude estimation problem.

A specific class of invertibie transformations is derived for changing an

arbitrary mixed phase sequence to a minimum phase sequence, and which are
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suitable to preserving the convolutional characteristic of a quasi-periodic
waveform,

In Chapter 4 we first review homomorphic 4deconvolution for directly
estimating 2 phase function from a quasi-periodic waveform. We next de-
scribe the heuristics of the sensitivity of this approach due to the need
of an unwrapped phase function. Homomorphic deconvolution without an un-
wrapped phase is then used as an illustration of the indirect approach by
transformation of a quasi-periodic waveform given in Chapter 3. Finally
in this chapter, we present a new phase unwrapping algorithm which does not
require modulo 27 considerations. Toward this objective, we first discuss
a class of constraints which guarantees unambiguous magnitude retrieval
(within a scale factor) from the phase of a Fourfer transform. A linear
iterative algorithm, the dual to that in Chapter 3, is then developed to
retrieve the magnitude from the phase under such constraints. We illustra“e
the use of this algorithm by recovering the magnitude of a minimum phase
sequence (which ylields the same result as would a Hilbert transform), and
by recovering also the magnitude of a finite length mixed phase sequence.
Finally, this iterative technique is used as the major component in our new
phase unwrapping algorithm,

In Chapter 5 we take a direct approach to phase estimation within a
different context than found fn Chapters 3 and 4. Specifically, we assume
only harmonic samples of the desired frequency response are available.
Techniques of phase tracking are developed, which involve both linear inter-
polation in the frequency domain, and windowing in the time domain.

In Chapter 6 techniques of phase tracking derived in Chapter 5 are
applied in designing the two previously described high quality speech
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analysis-synthesis systems with mixed phase. Finally in this chapter
results of informal listening tests are presented, where mixed and minimum
phase reconstructions are compared.
Lastly, in Chapter 7 a summary of the main results of the thesis is
given. We also suggest a direction and some potential areas of future

research.
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CHAPTER 2
A FRAMEWORK FOR PHASE ESTIMATION IN SPEECH ANALYSIS

In this chapter a framework is developed for the phase estimation
probiem in speech analysis in the context of discrete-time signals and
systems. We first present the general problem of estimating the magnitude
and phase of the Fourier transform of a sequence h(n) which is convolved
with a train of equally spaced pulses p(n): x(n) = h(n) * p(n). This for-
mulation is applicable to voiced speech segments modeled over a short dur-
ation by a "quasi-periodic" waveform which is produced by exciting the
vocal and nasal tract with pulses of air, i.e., the glottal wavelet, caused
by vibration of the vocal cords[5]. We shall assume that the desired se-
quence h(n) consists of the convolution of the impulse response of the vocal
and nasal tract and glottal wavelet.

The phase estimation component of this deconvolution probler. is often
tied to magnitude estimation. In fact, for a certain class of sequences
the phase function can be derived from the magnitude which is often more
easily and directly measurable than phase. We are therefore led to a review
of minimum and maximum phase sequences which fall within this class, and
for which the Hilbert transform relations exist between the continuous
phase and logmagnitude of the Fourier transform. Thase relations enable
the phase to be reconstructed from the magnitude and, likewise,;the magni-
tude from the phase. In general, without additional constraints neither
the magnitude nor the phase 1s sufficient to completely characterize a

mixed phase sequence.
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Since the phase of a complex number is a multivalued function, it is
generally not unique. With appropriate constraints, however, a unique func-
tidn can be derived and is termed the qurapped phase. Besides being a re-
quirement in the Hilbert transform relationsfor minimum and maximum phase
sequences, the unwrapbed phase is also an important component in the theory
of homomorphic deconvolution, and in other direct phase estimation procedures.

Our primary objective in this chapter is to collect a specific set of
results which are useful in the chapters to follow. We will avoid a detailed
discussion of subtle mathematical issues, and present only those results

necessary in formulating certain techniques of phase estimation.

2.1 Deconvelution of a Quasi-Periodic Waveform

Consider a sequence x{n) which consists of the convolution of a sequence

h(n) and p(n) a train of equally spaced pulses:

x(n) = h(n) * p(n) (2.1)
where p(n) is given by
p(n) = T a(k) &(n-kP) (2.2)
k

and where P is the pulse spacing (i.e., the "pitch period" in the context
of voiced speech), &(n) 1s the unit-sample sequence[22], and k may range
over finite or infinite extent.

From physical considerations h(n) is assumed to be causal, i.e., h(n)=0

for n<0, and stable, 1.e., § |h(n)| < « , The z-transform of h(n) is given
n

by @
H(z) = T n(n)2™" (2.3)

n=Q
and has a region of convergence which encompasses the unit circle and the

entire z-rlane outside the unit circle, including z = = . H(z) is referred
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to as the system function, and when evaiuated on the unit circle yields the
frequency response of the system: H(Z)lzsexp[jw]=H(“)' In general, H{w) is

complex and can be expressed in terms of its real and imaginary parts as
H(w) = H (0) + J Hy(w) (2.4)

where r and i denote real and imaginary, respectively. In terms of its mag-

nitude and phase (i.e., polar form), (2.4) is expressed as
H(w) = |H(w)| explje,(w)] (2.5)

where eh(w) = arg[H(w)].
With X(z), H(z), and P(z) denoting the z-transforms of x(n), h{n), and

p(n), respectively, it follows from (2.1) that X(z) can be written as
X(z) = H(z) P(z) (2.6)

X(z) represents the z-transform of a stable sequence when p(n) is absolutely
summable, i.e., lep(n)l < «» , and in particular when p(n) is bounded and
of finite extent go that the range of k is finite.

The Fourier transform of x(n) is found by evaluating X(z) on the unit

circle and in polar form is expressed by

X(w) = X(2)|, = |X(w)]| explje, (w)]

=expljw]
= [H(w)|[P(w)| explie,(w)] exp[Jep(m)] (2.7)

where, Bx(m) = arg[X(w)] and ep(w) = arg[ep(m)].

The goal of deconvolution of the quasi-periodic sequence of (2.1) is
to extract the magnitude and phase of H(w) and P(w). Estimation of [H(w)|

has been extensively investigated and is generally an easier problem than
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estimation of eh(m). Extraction of P(w) is often not required in speech
analysis but rather only the period P is sought -- a problem denoted as
"pitch detection". Within this dissertation, we shall restrict ourseives to

recovering the phase of H(w).

2.2 Minimum, Maximum, and Mixed Phase Sequences

In this section, we formulate the definitions and properties of minimum,
maximum, and mixed phase sequences. The unwrapped phase function is also
defined and its characteristics are discussed.

2.2.1 Definitions

The definitions of minimum and maximum phase sequences are completely
analogous to each other and are given below.

Minimum Phase Sequences: A complex function H(z) of a complex variable

z is minimum phase if it is analytic and its reciprocal H'](z) is also
analytic for |z| > 1 in the z-plane. A minimum phase seqhence is then de-
fined as a sequence whose z-transform is minimum phase. It follows from

this definition that a necessary, but not sufficient, condition for h(n) to

be minimum phase is that it be causal, stable, and nonzero at n = 0. That
is,

h(n) = 0 n<o (2.8.a)

h(n) # 0 n=20 (2.8.b)

L h(n)] <= (2.8.c)

Maximum Phase Sequences: A complex function H(z) of a complex variable

z is maximum phase if it is analytic and its reciprocal H'](z) is also analy-
tic for |z| < 1 in the z-plane. A maximum phase sequence is defined as a

‘sequence whose z-transform is maximum phase. Such sequences are anti-causal,
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stable, and nonzero at n = 0. That is,

n(n) =0 n>0 (2.9.a)
h(n) # 0 n=20 (2.9.b)
I |h(n)] <= (2.9.c)
n

Conditions 2.9.a, b, and ¢, however, are necessary, but not sufficient, for
a maximum phase characteristic.

Mixed Phase Sequences: A complex function H(z) of a complex variable

Z which is neither minimum nor maximum phase is termed mixed phase. A mixed
phase sequence has a z-transform which is mixed phase, is stable, and nay

or may not be causal or anti-causal.

2.2.2 Hilbert Transform Relations for Minimum Phase Sequences

A consequence of the propertins of a minimum phase sequence is a useful
relationship between the logarithm of |H(w)| and 6, (w). Specifically, the
Hilbert transform relations[22] provide a means of retrieving the phase from
the magnitude, and the magnitude (within a scale factor) from the phase for
such sequences.

To derive these relations consider the complex logarithm of H(z) given

by -
H(z)

Tog[H(z)]
Tog|H(z)| + § arg[H(z)] (2.10)

If ﬁ(z) is viewed as the z-transform of a real sequence ﬁ(n), then when ﬂ(n)
is causal, ﬁ(n) can be completely recovered from its even component

ﬁe(n) = (ﬁ(n) + ﬁ(-n))/z, or its odd component ﬁo(n) = (ﬁ(n) - ﬁ(-n))/z and
h(0)[22]. That is, h(n) is given by



he(0) n=0
ﬁ(n) = Zﬁe(n) n>0 (2.1a)
0 n<o0
ar
h(a) n=0
h(n) ={2h_(n) n>o0 (2.11b)
k0 n<o0

The Fourier transform of ﬁe(n) is log |H(w)| , and the Fourier transform of
ﬁo(n) i§ arg[H(w)]ii Therefore, a consequence of (2.11a) and (2.11b) is that
the imaginary component of ﬁ(w), arg[H(w)] can be recovered from its real
component, log |H(w)|. Likewise, the real component, 1og|H(w)| can be re-
covered from its imaginary component, arg[H(w)] within the additive con-
stant ﬁ(o).‘ In fact, it is possible to obtain direct relations between
log|H{w)| and arg{H(w)], i.e., the Hilbert transform relations. Neverthe-
less, magnitude and phase reconstruction is generally easier to perform
indirectly through (2.11a) and (2.11b}.

The requirement that log|H(w)| and arg[H(w)] be a Hilbert transform
pair is often referred to as the minimum phase condition. It corresponds
to the requirement that the sequence ﬁ(n) be causal and stable and can be
shown to be equivalent to the definition of a minimum phase sequence given
in the preceding section. The analogous case with ﬁ(n) anti-causal and

stable corresponds to the maximum phase condition.
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2.2.3 The Unwrapped Phase Functinn

For ﬁ(n) of the preceding section to be causal and stable, ﬁ(z) must be
analytic in the region [z| > 1. In considering this analyticity, we must
appropriately define arg[H(z)] since any multiple of 27 can be added to the
phase without affecting the value of H(z), and thus arg[H(z)] in general
will be discontinuous.

The phase is therefore ambiguous to within a 27 multiple, and can be
expressed by

arg[H(z)] = ARG[H(z)] + 27g (2.12a)
where q = 0,1,2,... and
-7 < ARG[H(z)] < = (2.12b)

ARG[H(z)] is termed the principal value of arg[H(z)]. This ambiguity is
resolved by the fact that analyticity of ﬁ(z) implies that its real and
imaginary parts must be continuous functions of z, and consequently if

ﬁ(z) is to be analytic, we must define arg[H(z)] to be a continuous func-
tion. Furthermore, since ﬁ(n) is assumed real, arg[H(z)] will be defined
so that for z = exp[jw] it is odd, periodic in w with period 27, and a con-
tinuous function of w[32]. A phase function which satisfies these proper-
ties is termed the unwrapped phase function.

One approach to computing the unwrapped phase is to assume that a
continuous phase function is obtained by integration of the phase deriva-
tive. Assuming a differentiable complex logarithm in (2.10), and evaluating
the logarithmic derivative on the unit circle, we obtain

H () = H' (w)/H(w)
H(w) + 3 Hi(w) (2.13)
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where the prime denotes differentiation with respect to w. From (2.13) we

obtain .
Hi(w) = arg’[H(uw)]

_ Hr(w)H%;m) - Hi(:)H;(m)
.20 + H.2w)

(2.14)

Integrating (2.14) ensures that arg[H(w)] is a continuous function of
w. In addition, to ensure that arg[H(w)] be odd and periodic in w with

period 27, the follewing two conditions must be met:

arg[H(w)]' =0 (2.15)
’w = 0,%

Since,

Hlw) = ¥ h(n) (2,16)

- n
w =0

and

arg[H(w) ] = J arg'[H(w)] dw (2.17)

w=T 0

it follows that only sequences with a positfve mean and a zero mean phase
derivative are compatible with the above requirements.
We define the linear phase component of H(z) as zn°, where
Ny = arg[H(r)]/r and where arg[H(n)] is given in (2.17). Thus, it is per-
haps necessary that h(n) be inverted and shifted (removing the linear phase
component corresponds to a shift [22]) in order that (2.15) be satisfied.
Nevertheless, it will be useful to modify our definition of unwrapped

: n
phase to encompass a linear phase component. With the presence of z °, the
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unwrapped phase is dafined over the haif-open interval [o,n) by integration
of the phase derivative, and is continuocus in this {nterval. Howaver, to
be odd, it must be discontinucus at =[32].

Since many of the techniques developad in this thesis will be implement-
ed on a digital computer, discrete Fourier transform (DFT) implementations
are required. In particular, we need to determine samples of the continucus
phase function. One technique of aobtaining samples cof the unwrapped phase
first computes the principal value of the unwrapped phase using inverse
tangent routines and then "unwraps" by simply adding appropriate multiplies
of 2r to the principal value until the discontinuities induced by the
modulo 2r operation are removed[32]. A more recent technique has been pro-
posed that combines the information in both the phase derivative and the
principal value of the phase into an adaptive numerical integration unwrap-
ping scheme[34]. The method adds appropriate multiples of 2r to the princi-
pal value of the phase until the phase is "consistent" with the numerically

integrated phase derivative.

2.3 Sequences with Rational z-Transforms

In this section we restrict ourselves to sequences whose z-transform is

given by a rational function of the form

m. m
1 -1 (0]
n (l-a,z ') n (1-b,z)
o ka1 K kst K
H(z) = Az pi 5 (2.18)
i (l-ckz'l) 2 (l-dkz)

k=1 k=1

n
where [a |, [b |, |c, |, and |d,|are Tess than or equal to unity and z s

the linear phase component. Factors of the form (l-akz']) and (l-ckz'])

correspond to zeros and poles on or inside the unit circle, and the factors
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(l-bkz) and (1-dkz) corragpond to zeros and poles on or outside the unit

circle.

2.3.1 Minimum and Maximim Phase Rational z-Transforms

We shall interpret the results of the previous secticns in the ccatext
of this more restrictive class of sequences. Since ﬁ(z) of (2.10) (or
equivalently H(z) and H'](z)) must be analytic in the region |z| > 1, for
H(z) toc be a minimum phase functien, there can be no poles or zeros of H(z)
on or outside the unit circle. This includes poles and zeros at infinity;
i.e., if H(z) is minimum phase 1im H(z) must be a nonzero finite constant.
The implication of this restrict?gz is that factors of the form (l-bkz) and
(1-dkz) do not exist, and a linear phase component is not present.

A in (2.8) may be positive or negative when H(z) is minimum phase.
However, for H(z) to be compatible with the requirement that there exists an
odd, continuous phase function, A must be positive.

The z-transform of a normalized (i.e., A=1) minimum phase sequence can

‘therefore be expressed as m

1 (]-akz'])
_ k=1
Hmin(z) = P E (2.19)
it (1-ckz )
k=1

A completely analogous formulation can be made for maximum phase
sequences for which poTes and zeros lie outside the unit circle. The cor-

responding normalized z-transform is given by

Mo
I (l-bkz) :
Hoay(2) = F'f:‘ (2.20)

k=1
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Therefore, a mixed phase sequence with no zerss on the unit circle

is expressed by

h(n) = Ahmin(n) * hmx(n)*a(n-no) (2.21)

where h_, (n) and h___(n) correspond to (2.19) and (2.20),and5(n-n°)

min max
accounts for a linear phase component. A mixed phase sequence in general,

however, may have zeros on the unit circie.

2.3.2 Magnitude-Phase Relations for Mixed Phase Rational z-Transforms

In this section we consider the problem of reconstructing the magni-
tude from the phase, and the phase from the magnitude of a Fourier trans-
form, for a mixed phase rational z-transform.

Suppose we are given the magnitude of the Fourier transform of a
causal sequence. A phase function can be derived indirectly through (2.11a)
to obtain a minimum phase z-transform denoted by Hmp(z). The poles
(assumed inside the unit circle) of Hmp(z) are the bo]es of the original
z-transform H(z), and zeros inside the unit circle are also left intact.
However, zeros of H(z) outside the unit circle are mapped to their con-
jugate reciprocal locations[22]. The original z-transform H(z) can
therefore be represented by the cascade of a minimum phase system and
an all-pass system, A(z): H(z) = Hmp(z)A(z), where an-a11-pass is de-
fined as a system for which the magnitude of the frequency response is

unity for all w. In particular, an arbitrary all-pass A(z) can be shown

to consist of a cascade of factors of the form:
+1

1 -a*z |~
—1-‘ 2.22
[I - az ] ( )

where |a] <1,
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Conseguently, such systems have the property that their poles and zeros
occur at conjugate reciprocal locations.

Since the original sequence h(n) 1s causal, knowledge of the magni-
tude of H(w) uniquely specifies the poles of H(z) whith from above are

equal to the poles of Hmp(z). Therefore, with knowledge of the existence

of M zeros of H(z) there exists a maximum of M different phase functions
(excluding 1inear phase) for a given magnitude function. These phase func-
tions can be generated by reflecting zeros about the unit circle through
(2.22). Without additional a priori knowledge the exact location of the
zeros and thus the original phase cannot be determined.

Consider now the dual problem of recovering the magnitude from the
‘ phase of the z-transform on the unit circle. We assume the linear phase
component is removed to satisfy the phase continuity condition for the
Hilbert transform relations. We shall see that the ambiguity in obtaining
the magnitude function is of a different nature from the problem of phase
retrieval from magnitude.

As before, the minimum phase counterpart to the original z-transform
is found by applying (2.11b). To see the resulting pole-zero pattern

consider the all-pass function

Hap(2) = H(z)/H(z™) (2.23)

Evaluating Hap(z) on the unit circle, we obtain

Hap(z)l exp[j2e; ()] (2.24)

z = exp[jw]

where Bh(w) is the known phase function. (2.24) can be written as

TR SR 0 G R KRR AN



= Hoonfz) o R (2) (2.25)
where zaexpLju]
Hogn(2) = Hog (2)/H - (27T) (2.26a)
and,
Hoo(2) = B (2)/H (27]) (2.26b)

Since ﬁmin(z) and H (z) both have identical phase Oh(w), on the

max

unit circle, H (z) corresponds to the minimum phase counterpart of H(z)

min
with phase eh(u). From (2.26a), the poles and zeros inside the unit cir-
cle of H(z) remain intact, while the zeros outside the unit circle have
been reflected as poles to their conjugate reciprocal locations.

The original z-transform H(z) can therefore be represented by the
cascade of a minimum phase system and a zero-phase system B(z) for which
the phase of the frequency response is zero for all w: H(z) = ﬁmﬁ$z)B(z).

In particular, an arbitrary zero-phase system B(z) can be shown to consist

of a cascade of factors of the form
[(1-az’ 1)1 - a*z)] & (2.27)

Given that there exist no poles outside the unit circle and that the ori-
ginal z-transform has a total of L poles inside the unit circle or zeros
outside the unit circle, there exists a maximum of ZL different magnitude

functions for a given phase function. These magnitude functions can be
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generated by refliecting poles to zeros and zercs to poles through the

zero-phase function of (2.27). For example, a maximum phase zero, repre-

sented by the factor (1-bz), where |b| < 1 , is reflected to a minimum

[
!
B
r

phase pole by the operation:

-1 q -1
= (1 - bz)[(1 - b*z” " )(1 - bz)]

(2.28)

(1 - b*z"1)

LR B R N m

Therefore, without additional a priori knowledge, the magnitude function

cannot be uniquel} specified from the phase.




32

CHAPTER 3
PHASE RETRIEVAL FROM MAGNITUDE

We have seen in the preceding chapter that for minimum or maximum
phase sequences the phase of a Fourier transform is uniquely recoverable
from its magnitude. When a sequence does not fall within this class, it
is reasonable to seek altarnative a priori knowledge about the sequence
which is sufficient to unambiguously retrieve the phase from the magnitude
function. ‘

For example, we may know a priori that the zeros of a rational z-
transform H(z) 1ie outside the unit circle and that the corresponding
sequence is causal and nonzero at the origin. The zeros of the minimum
phase z-transform, with the given magnitude on the unit circle, from (2.22),
fall at conjugate reciprocal locations to those of the original z-transform.
H(z) and consequently the phase of H(w) can therefore be retrieved[10].

In this chapter we shall consider two categories of constraints:

(i) Constraints on values of points of the sequence

(i1) Constraints on the values of samples of the phase function

In a number of cases these constraints lead to a set of linear equations
for obtaining parameters of a rational z-transform, and thus an indirect
means of retrieving the phase function.

y An alternative method of phase retrieval invokes a Tinear iterative
procedure which incorporates known values of the sequence and the known mag-
nitude function. This iterative algorithm is particularly useful when a
linear solution does not exist for the given constraints.

Recently there has been a great deal of interest in iterative algor-
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ithms for signal reconstruction. Gerchberg[6] and Papoulis[25], for
example, have developed an iteration for the determination of a bandlimited
continuous-time signal x(t) in terms of a finite segment of x(t). Gerchberg
and Saxton[7] utilize the magnitude of a complex signal and the magnituce
of its Fourier transform in an iterative fashion to obtain the phase func-
tions in both the time and frequency domains. Mersereau and Schafer{20]
also have recently performed a comparative study of various 1terat1ve'decon-
volution algorithms. These techniques impose a time-limited, band-1imited,
and positivity constraint on the output of the deconvolution.

Such algorithms and, likewise, the algorithm proposed within this
chapter all fall within a class where information about the sequence and
jts Fourier transform is iteratively imposed. In the next chapter, we
describe an iterative algorithm, also of this class, which recovers the mag-
nitude of a Fourier transform from its phase.

When conistraints of the above kind are not specified or accuracy of
the magnitude is uncertain, we consider the alternative procedure of con-
verting a phase estimation problem to a magnitude estimation problem by
modification of the speech waveform. The second main area of this chapter,
in particular, investigates methods to transform a mixed phase sequence to
a minimum phase sequence. With an appropriate invertible transformation a
magnitude function is then sufficient ta completely characterize the modi-
fied sequence. Such transformations are useful in changing the general
problem of deconvolving a mixed phase séquence from a quasi-periodic wave-
form to a deconvolution problem where only an estimate of the magnitude of
the Fourier transform of the modified sequence is required. The invertibil-

ity of the transformation allows approximate recovery of the desired phase




function.

A .econd area of potential application of this technique is in signal
enhancement[14]. We can modify a sequence to take on a minimum phase char-
acteristic before degradation by addi‘ .. noise. Most noise reduction
systems such as spectral subtraction estimate only the magnitude of the
Fourier transform[13]. Transformaticn of a sequence allows both magnitude

and phase estimation through only a magnitude estimate.

3.1 Phase Retrieval From Magnitude with Constraints

When a sequence h(n) is causal, stable and has a rational z-transform,

H(z) is given by

n, ™ -1 Mo
Az I (1-a,z )1 (1-b,2)
k=1 k™ T k
H(z) = (3.1)
i -1
T (1-c27)
k=1

where la |, [b |, |, |, and [d, | are less than unitﬁ. We argued in section
2.3.2 that (neglecting the linear phase component z o) there exists a maxi-
mum of ZM possible phase functions when |H(w)| is given, where M=mi+m0 is
the number of zeros in (3.1). We shall now consider constraints on h(n) and
eh(m) to resolve this phase ambiguity. These constraints are not exhaust-

ive, but indicative of the nature of requirements for phase recovery.

3.1.1 Constraints on the Segquence

One method of guaranteeing a unique phase function is to constrain
values of points of the sequence. In section 3.1.1.1, we specify the first
M+1 points of h(n) to remove phase ambiguity. Alternatively, in section

3.1.1.2 we demonstrate that for a restricted class of sequances, the ini-



tial value of h{n), h(0) is sufficient for a unigque phase determination.

3.1.1.1 Infinite Length Sequences and the Pade Approximation

The first method we consider borrows the philosophy of the Pade
approximation of a rational z-tranform[18]. In this technique the para-
meters of the rational model are chosen to exactly match the first
P + m; + m, + 1 points of the sequence, where Pis My, and m, are given
in (3.1). In a similar manner, we shall show that when the first m.+m +1
points of the sequence are matched and the magnitude is given, the para-
meters of the rational medel can be uniquely determined, and thus a phase
Tunction unambiguously specified.

Assuming that h(0)#0, and expanding the numerator and denominator
1

functions of (3.1) as polynomials in z~', we obtain
H(z) = N(z)/0(z)
Mok, Nk
= §a(k)z™/ § b(k)z (3.2)
k=0 k=0

where M=mi+mo and N=pi. When the magnitude of H(w) is known, from section
2.3.2, the denominator polynomial D(z) of H(z) can be determined{18]. Cross
multiplying by D(z), we can express (3.2) in the time domain as a convolu-
tion:

i(n) = 6(n) * n(n)
N
= | b(k)h(n-k) (3.3)
k=0

Given the coefficients B(n) and h(n) for n=0,1,2,...M, the numerator coef-

ficients a(n) are easily computed from (3.3).



3.1.1.2 ¥nowledge of h(0)

When h(n) is causal and h(0)#0, H(z) in (3.1) is expressed by

m - mo -
A ]'[1 (]‘akz 1) It (Z ]'bk)

H(Z) = k=1 k=1 (3.4)
. Py
I (l-ckz'])
k=1

The zeros of (3.4) may be flipped inside and outside the unit circle by an

all-pass function A(z) consisting of factors represented by
-1 1y
(27" -a*)/(1-az )T (3.5)

This particular form maintains |H(w)| , while preserving the causality of

the original sequence h(n). (3.5) also implies a nonzero initial value.

Therefore, from the Initial Value Theorem[22], for each zero geometry,

with |H(w)| held constant, the initial value fi(0) is given by

h(0)

Tim H(z)A(z)

240

AT (- -b 3.6
ap ) I 0 3-6)

where A(z) is an all-pass function, and where I represents the set of in-
tegers which correspond to maximum phase factors of the form (z']-ak),
and 0 represents the set of integers which correspond to maximum phase
factors of the ferm (2'1-bk). Thus given arbitrary sets I] and O], and
I2 and 02, each possible zero geometry corresponds to a distinct h(0)
under the constraint[21] (-a,) T (-b

k)
kEI-I keO-I

4 1 (-a) T (-b) 3.7
kel, (=2 xe0, by (3.7)
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The constraints represented by (3.7) and knowledge of h(0) have neither a
simple meaningful interpretation, nor a linear solution, as does matching
the first M+1 points of h(n). Nevertheless, they provide a flavor for the
requirements necessary for phase retrieval.

In summary, when (3.7) is satisfied, |H(w)| is given, and H{z) is of
the formin (3.4), a unique phase function is guaranteed for each distinct
h(0).

3.1.2 Constraints on The Phase Function

Consider the situation where the magnitude is known and samples of the
phase function are given. We shall show that when the number of samples of
the phase in the frequency interval [0,m] is greater than the order of the
numerator M in (3.1), the phase is uniquely specified.

Given samples of arg(H(z)) on the unit circlie at W00 5 e e By
samples of H(z) can also be determined on the unit circle since |H(w)| is

known. Cross-multiplying by D(z) in (3.2) with z = exp[jwm], we obtain

M
L a(k)exp[-jke ] = H(w )0 (w0 ) (3.8)
k=0

With M+1 samples of the phase function (3.8) represents M+1 equations in
M+1 unknowns. The real component of this set of complex Tinear equations

is given in matrix form by
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- M+1 > (3-93)
AT 1 [~ ] F
1 cos(uy) cos(ZwO) +++ €05 (Muy) a(0) N_.(0)
1 cos(w1) COS(2m1) eee a(1) Nr(l)
1 cos(wz) cos(ZmZ)
wel | : . . S
- 1 cos(ug) cos(Mmm)- L.a(M). nNr(Ml
~—— ~—— — ~_.—:.,—-w \-—:/—n’
C a Nr
or,
Ca = Nr (3.9b)

where Nr(m) = Re(H(mm)D(wm)).

McCiellan and Parks[19] have demonstrated that the set of functions {1,cos(w),
cos(2w)...cosMw)} is a Chebyshev set for we[0,7]. An implication of this
result is that when 0 < w < v and the samples v are distinct, the matrix
C is invertible. There exists, therefore, a unique set of numerator coef-
ficients a(k) and consequently an unambiguous phase function.

In suﬁmary, when |H(w)| is known, h(n) is causal, and M+1 distinct
phase samples are given in the interval [0,n], the phase function is unique.
'Clearly, a consequence of this result is that any finite ségment of the
phase function is also sufficient to remove ambiguity since M+]1 phase

samples can always be obtained from such a segment.

3.2 An Iterative Procedure to Retrieve Phase From Magnitude

In this section a linear iterative procedure is developed for phase
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retrieval. The method invokes values of the sequence and the magnitude
of the Fourier transform which guarantee an unambiguous phase function
when the z-transform is assumed rational.

3.2.1 Theory

The iterative algorithm will now be described and a proof is given
showing that a defined error must decrease monotonically as the algorithm
iterates.

The algorithm is illustrated in Figure 3.1. We begin with an initial
qguess eo(w) of the desired phase, and inverse transform the function
M(w)exp[jeo(m)], where M(w)=|H(w)| is the given magnitude. This step yields
hg(n), the initial estimate of h(n). Next, the known values of h(n) for
nel (where I is the set of integers for which h(n) is given) are incorpor-
ated in the initial estimte ho(n) to obtain ﬂo(n). The magnitude of the
Fourier transform of ﬁo(n) is then replaced by the given magnitude and the
procedure is repeated. The steps involved in one iteration are summarized
below. hk(n), ek(w), and Mk(m) are the signal, phase, and magnitude esti-
mates, respectively on the kth iteration and Ek+](n) is defined by

hk(n) ngl
hy,q(n) = (3.10)
h(n) nel



- M{w)exp[]j@glw)]

F"

1 hk(n)

h{n)—hy(n)
nel

hiet1(n)

Y

F

len(‘“)exP[i@kH(“’)]

M(w)"’Mk_” (w)

M (@) exp [jO+i(w)]

Fig. 3.1 Iterative algorithm to recover phase
from magnitude
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Iteration to Recover Phase From Magnitude

(1) Inverse transform M(w)exp{jek(m)]:hk(n)

(ii) Replace hk(n) with h(n) for neI:ﬁk+](n)

(iii) Forward transform ﬁk+](n):Mk+1(m)exp[jek+](m)]
(iv) Replace Mk+1(“) by M(m):M(m)exp[jek+](w)]

(v) Repeat

The above steps complete one iteration and the algorithm is continued
for as many desired number of iterations. In order to demonstrate that the
algorithm results in a "reasonable" phase estimate, we wish to choose an
error function which is monotone decreasing through each pass of the algor-
ithm. One error function we have considered is the sum:of the squared dif-

ferences between h(n) and the estimate hk(n) on each iteration:

= I In(n) - n, (n)|2 (3.11)

Clearly, from (3.10) the error decreases in the time domain whenever
hk(n)#h(n) for nel, and stays the same whenever hk(n)=h(n) for nel.
That is,
= 2
E 2 E [n(n) = hpq(n)® . (3.12)

However, in the frequency domain it ic not possible to show through a
vector argument that |H(w) - ﬁk+1(“)| monotonically decreases at each fre-
quency w when the known magnituda is incorporated in ﬁk+](m), the Fourier
transform of hk+1(n).

For this reason we choose an alternative error function which can be
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easily shown to monotonically decrease upon each pass of the algorithm. The
error function is defined as the mean squared difference between the known

magnitude and the estimate Mk(m) on each iteration:

, - é%.I M) - # (0)|*do (3.13)

We shall show in two steps that E, is monotone decreasing: Ee > Eppq-

Error Reduction in the Time Domain

With the identity |exp[,jek(w)]|2 = 1, the expressicn for E, n (3.13)

can be written as
™
E, = o M) - M () |2 [expLio, (w)]]2 d
k 7; w k\lw PLJ klo w
-1

™

= é%- I IM(w) expliey (w)] - M () exp[Jek(w)112 duw
=5 J [ (0) - H (0)]? do (3.14)

-

where Hk(w) and ﬁk(m) are the Fourier transforms of hk(n) and ﬁk(n), res-

pectively. From Parseval's Theorem (3.14) is given in the time domain by

B = ] Inyln) - hy (n) (3.15)
From (3,10) it follows that
0 n¢l
I (n) - h g (n)] = (3.16)

lhk(n) - h(n)| nel
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and therefore
b (n) = k()] > [h () = b (n)[ =0 n¢I  (3.17a)

and

[he(n) = B (n)] = [h (n) = hyq(n)] rel  (3.17b)
Sumning (3.17a) and (3.17b) over all n, we obtain

= 1 () = By 2 3 i) - Ry (3.18)

Error Reduction in the Frequency OJomain

From the triangle inequality for vector differences:

(@) = Hegg @] 2 B ()] = Iy (0)] (3.19)

Therefore, we have from Parseval's Theorem and (3.19),
E, > ¥ |h(n) - A, (n)]>
k = a k k+1

™

i~ f [H (w) = By yp ()2 do

-7

T

> J M(s) = M (0) | d

-T

= By (3.20)

Since E, is monotone decreasing and E >0, it has a lower bound of
zero. Consequently, it must converge to a limit point[30].
Although we have shown that the error Ek is monotone decreasing, we

have not shown thét 1im Ek=0 nor that lim ek(m)=9h(m), i.e. thatek(m)
k- L.



a4

converges to eh(m) at each frequency w. In spite of the possibility that

Tim ek(u)#eh(m) often, in practice, this situation does not occur when the
koo
constraints of section 3.1.1 are imposed.

3.2.2 The DFT Realization

Since our iterative algorithm will be implemented on a digital com-
puter, we can compute a Fourier transform at only a finite number of points.
In particular, we shall use the discrete Féurier transform (DFT). It is
important then to investigate the implications of this implementation.

We first demonstrate that under certain conditions uniformly spaced
samples of the magnitude of the Fourier transform (i.e., samples correspond-

ing to the DFT) are sufficient for phase retrieval.

3.2.2.1 Phase Retrieval from Samples of the Magnitude

Suppose we are given the magnitude of the Fourier transform of h(n)
and sufficient a priori knowledge about the sequence so that a unique phase
function can be specified. We wish to show that when our a priori knowledge
includes a finite duration constraint of M points, M or more uniformly
spaced samples of |H(w)| at w = 2rk/N, ¥u, in the interval [0,7], are suf-
ficient to recover the phase of the Fourier transform of h(n).

To derive this result, we Examine the autocorrelation function
R(n) = h(n)*h(-n) whose Fourier transform is given by |H(m)|2. Since h(n)
is of length M, the symmetric function R(n) is of length 2M-1. At uni-

formly spaced samples of the squared magnitude, we have
M
() |5 = | R(n) exp[j2rkn/N] (3.21)

wy =2k/ N n=-M
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When N > 2M-1, (3.21) is simply the DFT of R(n}. Therefore, 2M-1 or more
samples of |H(m)|2 in the interval [0, 2] uniquely characterizes both R(n)
and |H(m)|2. From symmetry, this condition is equivalent to specifying M -
or more samples in the interval [0,7][22].

Consider now two M point sequences h1(n) and hz(n). Furthermore,
suppose that they are recoverable from their respective magnitude functions
and values of the sequences over a set I (e.g., the constraints of section
3.1.1), and that these values are identical for each sequence: h](n) =
hz(n) = h(n) , nel. Suppose also that their magnitude functions are equal
at M or more uniformly spaced points wp = 2wk/N ¥hk in the interval [0,r].
Since both R1(n) and Rz(n) are 2M-1 points in extent and are recoverable
from the given magnitude samples, it follows from above that R](n)=R2(n)
and that |H1(w)|2 = |H2(m)|2, ¥ . But we have assumed both h;(n) and h,(n)
are recoverablie from their maghitude functions and the values h(n) for nel.
Therefore, hy(n) and hz(n) must be identical.

That is, contrary to our original assumption, there can exist only
one M point sequence which satisfies the given a priori knowledge in the
time domain, and has a magnitude function with'specified values at M or

more uniformly spaced points in the interval [0,r].

3.2.2.2 [Iteration Based on Samples of the Magnitude

From the results of the previous section, we are now in a position to
formulate the iterative procedure of section 3.2.1 in terms of a DFT reali-
-zation. The error function is defined as the mean squared difference be-

tween samples of the known magnitude and samples of the estimate:
N-1

1 2
E, =3 M(2) - M 3.22
S IRLORERC] (3.22)
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where N is the DFT length. h(n) is assumed causal and of duraticn M, so
that N > 2M-1.
Following steps (3.14) through (3.20) and with the application of

forward and inverse DFTs we obtain,

I :z; [M(2)explie, (1)1 - M, (1)expLse, ()11
-1 -
-1 L IH(2) - H(2)]
2=0 |
N-1 ]
= I I - ()12
N-1
> nZO Iy (n) = hyy(n)]?
N-1
S IPROREWOIL
N-1
> LM - Mpp (2) 12
= E +1 (3.23)

Thus, as shown for the continuous counterpart, Ek 3~Ek+1 .

3.2.3 Examples

In this section we investigate two examplies which illustrate the iter-
ative algorithm for recovering phase from magnitude. The initial phase

estimate eo(m) in both cases is set to zero.



47

Example 3.1

Consider a causal infinite length mixed phase sequence with h(Q)#0.
The first M+1 points of the sequence are constrained where M is the number
of zeros of H(z) which consists of two complex pole pairs at 292 Hz and
3500 Hz and one maximum phase complex zero palr at 2000 Hz. Consequently,
the first three points of h(n) are necessary.

Since a finite length sequence is required, we assume h(n)=0 for
n>256 and the OFT length is set at 512 points. This approximation does not
noticeably alter H(w). Nevertheless, the magnitude of the Fourier transform
of the truncated sequence was incorporated in the iteration.

The sequence of functions logLMk(m)] and ek(w) are depicted in Fig.
3.2 superimposed on the originals for 5, 10, 20 and 50 iterations.
log[Mk(w)] and ek(m) are indistinguishable from the originals after 50

iterations,

Example 3.2

Consider a causal mixed phase finite length sequence where only the
first point of h(n) is constrained and the zero geometry of H(z) satisfies
the condition of (3.7). The original sequence is eight points in duration,
and a 512 point DFT is used. The sequence of functions 1og[Mk(u)] and ek(m)
are depicted in Fig. 3.3, superimposed on the corresponding originals for
1, 2, 4, 10, 80 and 200 iterations. 1og[Mk(m)] and Gk(w) are indistinguish-

able from the originals after 200 iterations.

3.3 Phase Estimation From Magnitude by Transformation

In the previous sections we presented methods of retrieving the phase
from the magnitude function with sufficient a prieri information. An alter-

native approach which requires only a magnitude function is to convert a
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phase estimation brob]em to a magnitude estimation probiem by transforming
the desired sequence to take on a minimum phase characteristic. This
approach does not require the strict constraints given in section 3.1, but
does require some general knowledge about the sequence or its Fourier
transform. '

In the context of deconvoluticn of a quasi-periodic waveform, we shall
see that our class of transformations can be applied to modify a desired
mixed phase sequence while preserving the convolutional characteristic of
the quasi-periodic waveform. After obtaining an estimate of the magnitude
of the modified (minimum phase) sequence, we can obtain an estimate of its
phase by applying a Hilbert transform. Performing, finally, the inverse
operation to the original transformation yields an estimate of the desired

sequence, and hence an estimate of its phase,

3.3.1 Conditions for a Minimum Phase Property

It is desirable tc detect a minimum phase characteristic by some
simple operétion on the sequence or its Fourier or z-transform so that
appropriate modifications for minimum phase conversion are easily derived.
One method of testing whether a sequence with a rational z-transform is
minimum phase is to find the locations of its pole§ and zeros. Fortunately,
a number of tests are available that enable us to determine whether or not
the roots of the numerator and denominator polynomials of the z-transform
1ie within the unit circle. For exampie, Jury's criterion[29], a counter-
part of the Routh-Hurwitz criterion[4] for stability of continuous-time
systems, provides information on the whereabouts of the roots of a poly-
nomial with respect to the unit circle in the z-plane. Such tests enable

one to make the denominator polynomial of a system function minimum phase
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(i.e., stable) by appropriately applying feedback to the given system.

¢

For our purposes, however, the discrete-time version of the Nyquist
criterion for stability will be more useful since it provides a graphical
interpretation of a necessary and sufficient cordition for a minimum phase

property. The Nyquist criterion will also be useful in deriving a sufficient

IO AT T R 1 T

condition for a minimum phase z-transform denoted as the "positive real”
constraint. The positive real constraint is then used to derive other
sufficient conditions, and also transformations to ensure the minimum phase

property.

3.3.1.1T The Nyquist Criteripn

The Nyquist criterion is based on a mapping theorem by Cauchy[29]. If

a complex variable z in the z-plane describes a closed contour C1 in a pos-
itive sense, then H(z) will describe a closed contour C, in the H(z) plane.
The contour CZ’ the polar plot, will encircle the origin M times in the
positive direction, where M is the difference between the number of zeros
and poles of a rational z-transform H(z) enclosed by C1. C1 is taken to be
the closed contour depicted in Fig. 3.4a where the inner radius is the unit
circle and the outer radius R is made to approach infinity. The only con-
tribution to the contour C2, i.e. the polar plot, results from the component
of ¢4 along the unit circle[29]. The criterion requires that ;iﬂ H(z) =
constant which holds in our case since h(n) is assumed to be causal. When
h(n) 1s also stable all poles of H(z) 1ie within the unit circle and thus
the poiar plot will encircle the origin M times, where M is the number of
zeros outside the unit circle. \

A simple example will be used to illustrate the Nyquist criterion.

Consider a three point sequence with z-transform given by
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(a)

(b)

Fig. 3.4 (a) Contour within the z-plane required by
the Nyquist criterion, (b) Polar plot of
H(z) in (3.24),
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H(z) = h(0) + 3,921 + 4,022 (3.24)
where h(0) is variable. For h(0)=1, the z-transform consists of two zeros
outside the unit circle and two poles at the origin. The polar ﬁTot of
H(z) for z=exp[jw] with 0 2w < 2ris given in Fig, 3.4b. There exist two
clockwise encirclements of the origin, indicating the presence of two zeros
outside the unit circle,

One method of modifying this sequence so that it is transformed to a
minimum phase sequence is to increase h(0) so that there occur no encircle-
ments of the origin. This is equivalent to adding a positive constant to
H(z) or the real component of H(w), Hr(“); thus the entire polar plot is
shifted to the right in the z-plane. From Fig. 3.4b we observe that the
leftmost real axis crossing (i.e. H; (w)=0) occurs when H.(w) = - 3.0, In
this particular example, then, augmenting h(0) so that h(0) > 4 will ensure
no encirciements of the origin, In general, however, constraining the
leftmost real axis crossing of the polar plot to fall to the right of the
origin is only sufficient for the minimum phase condition[4].

Suppose now that h(0) is augmented further so that H (m) > 0-¥
Clearly from Fig. 3.4b this constraint represents a sufficient condition on
H (w) to guarantee no encirclements of the origin; that is H (w) must take
on a negative value for some w for an encirclement of the origin to occur.
In our example, h(0) > 5 guarantees H (m) >0 .

In summary, we can enumerate three increasingly restrictive constraints
on H(w) for H(z) to be a minimum phase z-transform when h(n) is assumed
causal and stable. We shall show that these constraints imply increasingly
restrictive limitations as well on the unwrapped phase function of H(w).

The first is the Nyquist criterion which is a necessary and sufficient con-



54
dition on the polar plot of H(w), The polar plot can be interpreted as

a tracing of the path of H(w) as a function of magnitude and unwrapped
phase. Clearly, the unwrapped phase function which corresponds to this
condition generally is unbounded. For example, the polar plot may spiral
otitward and then by necessity spiral 1nw§rd without a net encirclement

of the origin. The return through an inward spiral must cccur since the
final value of the unwrapped phase equals its initial value over the inter-
val [0,7] when the zeros of H(z) lie within the unit circle.

The second condition is more restrictive, follows directly from the
Nyquist criterion, and is only a sufficient condition. This condition re-
quires that the leftmost zero crossing of the polar plot must fall to the
right of the origin. As implied by Fig. 3.4b this second condition guaran-
tees that the unwrapped phase of H{w) (assuming H(0) > 0 and thus eh(0)=0)
cannot exceed = in abznlute value: lop(w)] < = .

The third condition is somewhat more restrictive than the second,
again follows directly from the Nyquist criterion, and requires that the
real component of H(w) be positive. As implied by Fig. 3.4b this positivity
constraint guarantees that the unwrapped phase cannot exceed n/Z:bh(m)|<n/2.
We shall see in the next section that the implications of this positivity
constraint are even greater since H(z) under this condition falls into a
class denoted as "positive real z-transforms". -

The phase restrictions due to the latter two conditions guarantee that
the unwrapped phase equals the principal value of the phase. Consequently,
the unwrapped phase may be computed at samples by simply an arctangent

routine.
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3.3.1.2 The Positive Real Constraint

A ratioral function of a complex variable s, F(s) which is real for
real values of s, and whose real part is positive for all values of s with
a positive real part, is calle& a positive real function. Functions of
this sort play an important part in electrical network theory and have
been studied extensively[9]. In this section we first briefly review the
properties of a positive real function. The minimum phase characteristic
of such a function is proven in a new way through the continuous-time ver-
sion of the Nyquist criterion. We then proceed to develop an analogous
theory for complex functions with respect to the unit circle. Specifically,
a positive real rational z-transtorm for a causal and stable sequencm is
defined by the following two properties:

(i) H(z) is real for real values of z

(i) Hr(z) >0 for |z] > 1

The first property implies simply that the sequence is real, We saw in the
previous section that when h(n) is causal and stable and Hr(“) > 0, h(n)

is a minimum phase sequence. We shall show that these conditions are nec-
essary and sufficient for H(z) to be a positive real z-transform. Thus in-
vestigation of the positivity of}ﬂiz) over the entire region |z| > 1 is

not necessary in determining whether H{(z) is positive reai.

Consider now the positive real function F(s) whose properties were
described above. Guillemin has shown that a positive real function cannot
have poles in the right half s-plane (RHP) since the presence of a pole
implies F (s) < 0 for some s 1in the region of the pole[9]. Clearly F(s)
cannot have zeros in the RHP and therefore F(s) represents a minimum phase

function. Through appropriate use of the theory of functions of a complex
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variable, it is paessible to show that a necessary and sufficient condition
for F(s) to be positive real is that F(s) is positive on the ju axis and
analytic for Re(s) > 0[9]. Therefore, an alternative way of proving the
minimum phase characteristic of positive real functions is to apply the
continuous;time version of the Nyquist criterion to the polar plot of F(s)
along the ju axis. The analyticity constraint for Re(s) > 0 guarantees
no poles in the RHP. The positivity constraint guarantees that there can
exist no encirclements of the origin by the polar plot, C,,
where C1 is taken to be the boundary of the RHP, including the jw axis.
Therefore, the RHP is also zero free and F(s) is a minimum phase function.

The discrete-time counterpart to this theory easily follows:

A z-transform H(z) is positive real with respect to
the unit circle if and only if H(z) is analytic for

|z| > 1 and H (z) > 0 on the unit circle.

The proof of the "only if" component of this proposition is identical
to that by Guillemin for a positive real function[9], and will not be pre-
sented because of the little insight gained. The proof of the "if" com-
ponent, on the other hand, provides a rather interesting view into the nat-
ure of a positive real z-transform. The proof is also similar to that by
Guillemin, but is modified to address the discrete-time nature of the prob-
lem. |

The proof calls upon the Extremum Theorem[9] of complex analysis

which concerns the real part of a function, analytic over a given region,



57

and on the boundary of that region, The theorem states that the largest

and smallest values which the real part (or imaginary part) assumes through-
out the given region including its boundary must lie on the boundary.
Therefore the smallest values which the real part assumes throughout this
region including its boundary must lie on the boundary. In our particular
problem the smailest value assumed by the real part of H(z) in the infin-
itely large annulus whose boundary includes the unit circle and a circle

at infinity must occur then on tliis boundary. Since Hr(z) > 0 on the unit

circle, the value of H(z) at infinity is also positive:

T

lim H(z) = h(0) =-§; J H () do > 0 (3.25)

2o
=T

Thus our entire boundary is positive and from the Extremum Theorem ro point
within this boundary can be zero or negative.

Clearly, we can use the positivity of Hr(w)'and analyticity of H(z)
for |z| > 1 to prove that a positive real z-transform is minimum phase. We
have in fact already shown this property in the preceding section through

the Nyquist criterion.

3.3.1.3 A Sufficient Condition on h(0Q)

The positive real constraint is useful in testing for a minimum phase
characteristic. It is also useful in deriving other sufficient conditions
for cnsuring this property. In particular, we shall capitalize on the

positive real constraint in proving the following sufficient condition:

A causal sequence h(n) is minimum phase if the absolute value of h(0)
is greater than the sum of the absolute value of the remaining terms:

Ih(0)] > I |h(n)] (3.26)

n>1
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We shall show by example that this condition is more restrictive than the
positive real constraint.

Since h(n) is causal and stable, H(z) is analytic “or |z| > 1. Without
Toss of generality we also assume that h{(0) is pouitive. Suppose now that

for some w, thke positive real condition doesn't "oid:

Hr(w) = h{0) + ] h(n) cosw - O (3.27)
n>1
Therefore,
Y h(n) coswn < - h(0] (3.28)
n>1

Since h(Q) > 0, we have

| Z] h(n) coswn | > |h(C}| (3.29)
n

and so, since |coswn| < 1

¥

21 [h(n)| > 21 [h(n) coswn

n n>

>| I h(n) cosen| > |h(0)] (3.30)
|n>1
In conclusion,
[h(0)| < ¥ [h(n)] (3.31)
n>1 :

which is a contradiction to our original assumption. Therefore, Hr(“) >0,
¥ and since H(z) is analytic for |z| > 1, H(z) is positive real, and con-
sequently minimum phase.

The positive real constraint, however, in general does not imply con-
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dition (3.26). A counterexample is the sequence h(n) = a" u{n) where

.5 < a < 1 and where u(r) is the unit-step sequernc:. Summing, we obtain

)= T o

n>1 n=1

= af(1-a)
> |h(0)| (3.32;

for .5 <o« < 1. But, Hr(w) >0 ¥b

3.3.2 Transformations for a Minimum Phase Sequence

In this section we present a number of techniques for transforming an
arbitrary, causal mixed phase sequence tc a minimum phase sequence. These
transformations are based on the conditions discussed in the previous sec-
tion, and are restricted to a class which has two specific properties:

(i) A transformation T must be invertible

(i1) In the context of deconvolution of a quasi-periodic waveform,

T must modify the desired sequence, while preserving the con-
volutional characteristic of the original waveform. That is,

a transformation T must be such that
x(n) = T[x(n)]
TCh(n)*p(n)]

TCh(n)J*p(n) (3.33)

where T exists, i.e., T'][T[h(n)J] = h(n), and p(n) may or may not equal

B(n), but consists of a train of equaliy spaced samples with spacing P.
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We shall consider two such transformations:
(i) Exponential weighting

(i1) Addition of a "reference" signal

3.3.2.1 Exponential Weighting

Consider weighting a mixed phase sequence with a decaying exponential

[32]:
h(n) = a"h(n) (3.34)

This operation results in preservation of the convoiutional property and in

individual weighting of both components of a quasi-periodic waveform:

x(n) = a"(h(n)*p(n))

«"h(n)*a"p(n) (3.35)

The z-transform of ﬁ(n) «"h(n) is given by

H(z) = § o"n(n)z™" H(a'1z) (3.26)

n

Therefore if H(z) has a pole or zero at =2 ), ﬁ(z) has a pole or zero at
az,. h(n) can then be made minimum phase by multiplying x(n) by o« where
« is small enough to move the pole or zero of h(n) with the greatest magni-
tude inside the unit circle: hmp(n)=a"h(n). h(n) can always be recovered
from hmp(n) by inverse transformation: h(n)=a'"hmp(n).

One drawback to this technique is that often the required a is smail
enough to cause trouble with rounding error when implemented with a digital

computer[32], A second drawback is that « depends on knowledge of zero

locations,
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3.3.2.2 Addition of a Reference Signal

A different approach is to add a causal "reference" signal a(n) to
h(n) to create a minimum phase sum ﬁ(n) = g(n) + h(n). Such transforma-
tions are also suitable for preserving the features of a quasi-periodic

waveform since with a priori knowledge of p(n), we can form the sequence

x(n) = h(n)*p(n) + g(n)*p(n)
= (h(n) + g(n))*p(n) (3.37)

One simple way of guaranteeing that E(n) is minimum phase is to ensure
that the polar plot of H(w) has no encirclements of the origin by imposing
the constraint ﬁr(m) > 0. An alternative is to force the leftmost real axis
crossing of the polar plot to lie to the right of the origin in the z-plane.
The latter condition can be checked by investigation of the gain/phase
margin for stability and thus directly from a logmagnitude and unwrapped
phase function[4].

A third approach is to add a minimum phase signal. We shall show with
the aid of the positive real condition that when G(z) is minimum phase and
|G(w)]| > |H(w)] » ¥ H(z) = G(z) + H(z) is minimum phase. To see this, we

express ﬁ(z) by
H(z) = G(z)(1 + H(z)/G(z)) (3.38)

G(z) is minimum phase, so the remaining problem is to show that (1+H(z)/6(z))
is minimum phase. Since |H(w)/G(w)| < 1, the polar plot of H(w)/G(w) must
lie within the unit circle |z| < 1. Therefore, 1+H(w)/G(w) 1ies to the

right of the imaginary axis in the z-plane, so that Re(1+H(w)/G(w)) > O.

Now, both H(z) and G(z) represent causal sequences and since G(z) is mini-

mum phase, G'](z) also represents a causal sequence (see section 2.2.1).
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Therefore 1+H(z)/G(Z) corresponds to a causal sequence, and must be analytic
for |z| > 1. Consequently, 1+H(z)/G(z) is positive real, and thus minimum
phase.

We have already seen an example in section 3.3.1.1 of transforming a
mixed phase sequence to a minimum phase sequence by augmenting h(0) with a
positive constant: g(n) = A§(n). The conditions we have been discussing
together with that of section 3.3.1.3 represent restrictions on the values
of A of different degrees.

As a point of interest, we can show that modifying the value of h(0Q)
to form a minimum phase seauence is analogous to changing the gain of a
feedback control system for stability. Factoring out A in ﬂ(n)=A6(n)+h(n),
we obtain

(z) = A(T + A" TH(2)) (3.39)

A']H(z) is reminiscent of an "open loop transfer function" where Al s

the "open loop gain"[4].



63

CHAPTER 4
MIXED PHASE DECONVOLUTION

The problem of deconvolving a sequence from a quasi-periodic waveform
was described in section 2.1. In the frequency domain the problem of decon-
volution is twofold: to estimate the magnitude and phase of a Fourier
transform. In Chapter 3 we assumed that the desired magnitude is known or
measurable and that, with a priori information about the sequence or phase
function, we found that unambiguous phase recovery is possible. We also
investigated methods of creating a situation where the phase can be recovered
from the magnitude. That is, we derived transformations which convert a
mixed phase sequence to a minimum phase sequence, and which are applicable
to magnitude-only deconvolution.

One technique which is potentially capable of directly and accurately
estimating both the magnitude and phase of a Fourier transform from a quasi-
periodic waveform is homomorphic deconvolution[24,32]. A drawback to this
direct approach, however, is the requirement of an unwrapped phase function.
The unwrapped phase is generally difficult to compute at samples due to
modulo 2r considerations. Available unwrapping algorithms are prone to
error when frequency sampling is not "sufficiently" dense[32,34] or the
Fourier transform contains regions of low energy which are particu1af1y
susceptiblefto degradation by quantization noise. Moreover, as we shall
see, the envelope (i.e., slowly varying component) of the unwrapped phase
is quite sensitive to small changes of a sequence in the time-domain. This
sensitivity leads to an inherently ill-conditioned problem.

As a result, we wish to either avoid the use of an unwrapped phase

function, or compute this function from only frequency regions with a high
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signal-to-noise ratio. The latter approach was first taken by Tribelet[33]
in confronting the problem of low-pass and high-pass filtered seismic data.
His approach entailed shifting and stretching the signal's passhand to
occupy the entire frequency interval [0,r], while preserving the convolu-
tional characteristic of the original sequence. Our problem, however, is
not suitable to this appreach since the periodic-like nature of our wave-
forms corresponds in the frequency domain, to multiple bands of Tow signal-
to-noise. In Chapter 5 we develop a technique within this same philosophy,
which addresses the harmonic structure of our spectra.

The alternative approach is to avoid the issue of phase unwrapping by
conversion to a magnitude-only deconvolution problem. Applying the trans-
formations of section 3.3.2.2, we can perform homomorphic deconvolution
without an unwrapped phase. Note that although we shall illustrate magni-
tude-only deconvolution through hcmomorphic filtering, any deconvolution
technique yielding a minimun or zero phase solution is applicable.

When such an approach is difficult to take, as for example with in-
adequate knowledge of p(n), we must compute DFT samples of an unwrapped
phase in directly estimating phase by homomorphic deconvolution. The need
of an unwrapped phase arises also in the following chapter where a phase
estimate is deduced from only harmonic samples of a Fourier transform.

The second major area of this chapter presents a new technique for
determining the unwrapped phase which does not require conventional modulo
2r considerations, In developing this technique, we first investigate mag-
nitude retrieval from the phase of a Fourier transform., In a manner simi-
lar to our development in sections 3.1 and 3,2 we formulate a linear iter-

ative procedure which retrieves the magnitude from the phase, and which
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constrains the values of a sequence over a specified region.

Under a causality constraint, the algorithm provides an alternative to
the Hilbert transform in obtaining the magnitude from the phase for a mini-
mum phase sequence. However, it has the advantage of not requiring an un-
wrapped phase fﬁnction, but oniy the principal value of the phase. Under a
finite length constraint, the algorithm is capable of unambiguously recov-
ering a magnitude from an arbitrary phase.

Finally, in the context of phase unwrapping, the algorithm serves as a

major component within our new phase unwrapping algorithm.

4.1 Phase Estimation by Homomorphic Deconvolution

When we confront the problem of filtering signals which have been added,
we often use a linear filter. Extracting the phase or the magnitude of H(w),
on the other hand, is a nonlinear probiem since H(w) and P(w) are multiplica-
tively combined. The approach of homomorphic system analysis proposed by
Oppenheim{24] transforms this nonlinear problem to a linear filtering prob-
lem. In this section we first review the theory of multiplicative homomor-
phic systems, and "direct" phase estimation by homomorphic filtering. We
then proceed to illustrate the sensitivity inherent in this diréct approach
due to the requirement of an unwrapped phase function. Finally, a specific
transformation of section 3.3.2.2 is applied in demonstrating the indirect
approach of phase estimation by magnitude-only homomorphic deconvolution.

4.1.1 Theory

Much of the groundwork for multiplicative homomorphic systems has been
laid in Chapter 2. The purpose of such systems is to transform the problem
of separating the multiplicative components of X(w) = H(w)P(w) to a problem

of 1inearly filtering additive components. In particular, the compiex log-
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arithm provides the means of obtaining this additivity:

Tog[X(z)] = log[H(z)] + Tog[P(z)] (4.1)
= Tog|H(z)| + Tog|P(z)]| + j(8;(2) + 8,(2))

The additivity of the imaginary components (i.e., the phase components)

of the complex logarithm of X{z) holds when the unwrapped phase is used in

n
0 may also be included when its unwrapped

(4.1). A linear phase component z
phase is defined to be odd, but discontinuous at =~ . This term, neverthe-
less, should be removed since it interferes with the estimation of Bh(m)
[32].

Under these conditions, the complex logarithmic operation represents a
homomorphic system which maps multiplication to addition. Taking the in-

verse transform of (4.1) we cbtain the real sequence

x(n) = h(n) + p(n) (4.2)

;(n) is tarmed the "complex cepstrum”" to emphasize the use of the complex
logarithm. We use the term "real cepstrum" when the real logarithm is used
and thus only the magnitude of the Fourier transform of x(n) is retained.
Likewise, "phase cepstrum” refers to the case where only the phase is re-
tained. |

For a raticnal H(z), (4.2) can be expressed in terms of the complex
cepstrum of the minimum and maximum phase components of the desired se-

quence and the pulse train:

x(n) = (Tog[A])s(n) + h . (n) +h _ (n) +p(n)  (4.3)

min

where hm1n(") and h___(n) are normalized so that hmin(o) = hmax(o) = 1.

max
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Using the well-known power series e .pansions:

-1 a" _-n
log{1 - "']=2- 7 =2 lz| > |a] (4.4a)
n=1
and -
n
togll - oz 172 - 1 &2 |2 < Jaf (4.4b)

n=1

From (2.19) and (2.2C), it follows that

- [ my az p1 cz i
hm.n(n) = - Z r + z Y u(n-]) (4.5a)
k=1 k=1
. .
and - -
N My bk po da
max(n) = | + Z e Z o u{~n-1) (4.5b)
L k-] ‘1 _l

where u(n) is the unit-step function and {akl, |bk|, Ickl, and ldkl are less
than unity.
The properties of the complex cepstrum that are of importance in the

sequal can be summarized as follows:
P1 h(n) decays at least as fast as 1/n. Specifically,

. g"
| < ¢ & (4.6)
where C is a constant and g equals the maximum of [a, [, [b,],

ley |+ and |d |

P2 The complex cepstrum of a minimum phase sequence is stable
and causal, and likewise the complex cepstrum of a maximum

phase sequence is stable and anti-causal.

P3  The complex cepstrum B(n) of a train of equally spaced
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pulses p(n), is also a train of equally spaced pulses with the same spacing.

4.1.2 The Direct Approach

Suppose that ﬂ(n) decays rather quickly and that the sample spacing
of B(n) is sufficiently large so that ﬁ(n) and ﬁ(n) do not considerably
overlan. Under these conditions we can filter ﬁ(n) from B(n) by applying
a "low-time gate" to §(n). An estimate of h(n) is comouted by transform-
ing the estimate of ﬁ(n), exponentiating, and inverse transforming.

Estimation of ﬁ(n) is equivalent to obtaining an estimate of the
even and odd components of h(n). These components correspond to log|H(w)|
and Gh(w) respectively. Therefore, we might estimate the two components

independently with Tow-time gates tailored to each separately.

4.1.3 The Heuristics of Unwrapped Phase Sensitivity

Suppose that the sequence x(n) = h(n)*p(n) is modified by an additive
disturbance d(n):

x(n) = n(n)*p(n) + d(n) (4.7)

In the frequency domain. (4.7) is given by

X{w) = H(w)P(w) + D{w)
= H(w)P(w) (1 + D(u)/H(w)P(w))
2 H(w)P(w)E(w) = ' ~ (4.8)
where,
E(w) = (1 + D(w)/H({w)P(w)) (4.9)
Therefore,

1og[X(w)] = Tog[H(w)P(w)] + log[E(w)] (4.10)
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Thus, the effect of D(w) on the complex cepstrum is strongly dependent
on the ratio D(w)/H(w)P(w).

For homomorphic deconvolution to be robust in the presence of a dis-
turbance d(n), the slowly varying components (i.e., the envelope) of the
complex logarithm should not be susceptible to a large change with a small
change in x(n) due to d(n). We wish to preserve the slowly varying com-
sonents of log|X(w)| and Bx(m) since they map to the low-time region of the
complex cepstrum. In the context of quasi-periodic waveforms the follow-

ing observations were made:

(i) "Small" disturbances in the sequence x(n) tend to propagate
small changes in the envelope of log |X(w)| and thus small

changes in the low-time region of the real cepstrum.

(i1) Small disturbances in x(n) often propagate "large" changes
in the envelope of the unwrapped phase of ex(m) and thus

large changes in the low-time region of the phase cepstrum.

(iii1) Large changes in the unwrapped phase envelope of Gx(m) may or
may not be mapped through low-time cepstral gating to large

changes in the impulse response estimate[28,35].

In summary, an estimate of h(n) obtained by homomorphic deconvolution
which requires a magnitude function only is less susceptible to degrada-
tion by time-domain disturbances than an estimate based on magnitude and
phase.

The sensitivity of the unwrapped phase function is understood by the
following heuristic argument. Consider a region where [D(w)/H(w)P(w)| < 1.

Under this constraint the unwrapped phase of E(w) cannot exceed w/2 in
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absolute value, as depicted in Fig. 4.1la, where the "noise vector",

D(w)/H(w)P(w) remains smaller in magnitude than the "signal vector", 1+jC.
When the noise vector exceeds the signal vector in magnitude, as for
example in a low-energy region of H(w)P(w), the poilar plot of E(w) may
encircle the origin resulting in a 2 jump in the unwrapped phase of E(w).
Such 27 jumps can accumulate and significantly distort the envelope of
“the unwrapped phase of Gx(m), and thus the low-time region of the phase
cepstrum. Gating the phase cepstrum may therefoure not extract an accurate

estimate of the desired phase, Gh(m).

4,7.4 Magnitude-Only Deconvolution by Transformation:
An Indirect Approach

Consider modifying a causal sequence h(n) by adding to it a sequence
g(n) so that the resulting sum v(n) = h(n) + g(n) is minimum phase. In
particular, we choosevg(n) a AS(n). From (3.36) to preserve the convolu-
tional property of x(n), and to appropriately modify h(n), we add to x(n)

the sequence As{n)*p(n) to obtain:

y(n) = (h(n) + As(n)} » p(n)
= v(n)*p(n) (4.11)
Since As(n) is such that v(n) is minimum phase, from property P2 of
section 4.1.1, the ccmplex cepstrum of v(n), Q(n) is causal and thus com-

pletely characterized by its even component or equivalently by lcg|V(w)|.

From (2.11a) the complex cepstrum of v(n) is therefore expressed by
v(n) = L(a)v,.(n) (4.12)

where ;r(n) is the real cepstrum of v(n) and L(n) is the causal sequence

given by
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1 n=0
L(n) =<2  n>0 (4.13)
0 n<0

Since H(z) is assumed rational, V(z) is also rational and therefore Q(n)
satisfies properly P1 of section 4,1.1,

The real cepstrum of p(n) is the even compenent of the complex cep-
strum of p(n), ﬁ(n) and from property P3 of section 4.1.1 consists of
equally spaced samples with spacing P. Consequently, when ;(n) decays
rather quickly, the real cepstra Gr(n) and Br(n) do not significantly over-
lap. From this property and (4.12) we can obtain an estimate of Q(n) by

gating the real cepstrum of y(n):

v(n) = g(n) y,.(n)
= g(n)v,(n) + g(n)p,.(n)
v(n) 0O<nx<?P
=¢ v(0) + p(0)  n=0 (4.14)
0 n<0, n>p
where
1 n=0
g(n)=4(2 0<n<?P (4.15)
0 n<0, n>P

With B(O)=O, we then obtain an estimate of v(n) by transforming
g(n)&r(n), exponentiating and inverse transforming. Finally, an estimate
of h(n) is obtained through the inverse operation of subtracting As(n)

from the estimate of v(n).
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With respect to the choice of the value A, a number of comments are
in order. We saw in section 3,3.2.2 that the value of A may be chosen to
satisfy any one of a number of sufficient conditions for ensuring a mini-
mum phase characteristic. The extreme case of choosing A so that the
Nyquist criterion is just met should be avoided. This is because such 3
choice places a zero of V(z) "just on" the unit circle. From property P1
of section 4.1.1, the complex cepstrum of v(n) decays as approximately
CI%J , and so the requirement that G(n) decay rather quickly is not satis-
fied.

The alternative extreme is to allow the value of A to become very
large. With this choice, the compiex cepstrum of y(n) has an interesting
and rather useful property. Replacing az”! by H(z)/A in the logarithmic

expansion of (4.4a), and assuming |H(z)/A| << 1, we obtain

Tog[Y(z)] = log[A + H(z)] + Tog[P(z)]

Tog[A] + log[1 + H(z)/A] + Tog[P(z)]

"

log[A] + H(z)/A + 1o0g[P(z)] (4.16)

9(n) is then written approximately as

log[A] + h(0)/A + p(0) n=0
y(n) =< h(n)/A + p(n) n>0 (4.17)
p(n) n<0

Therefore, h(n) can be recovered "almost exactly" and directly from the
complex cepstrum by setting &(n)=0 for n=kP, where k=+1,+2, ..., subtract-
ing log[A] + 5(0) from ;(0), and scaling the result by A. An equivalent

operation can also be carried out on the real cepstrum.
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In order to sliminate the need of a priori knowledge of 5(0) in the
above algorithms, we apply g(n) = As(n) to a version of h{(n) which is

shifted to the right:
v(n) = As(n) + h(n-no) (4.18)

For this case, we can show that the estimate obtained from (4.14)
for n>n  is given approximately by exp[ﬁ(o)] h(n-no). Thus, only a scaling

degradation occurs so that the desired phase is preserved.

4.1.5 Examples

We now consider two examples of the techniques discussed within this
section. We shall compare estimates from the direct and indirect approaches
of sections (4.1.2) and (4.1.4) obtained by gating the complex and real

cepstrum, respectively, with and without, a white noise disturbance.

Example 4.1

Consider H(z) with two complex pole pairs at 292 Hz and 3500 Hz, and
a maximum phase complex zero pair at 2000 Hz. p(n), the pulse train is

given by
p(n) = ,38(n) + §(n-64) + .55(n-128) (4.19)

where P=64. In order to reduce the effect of sidelobe interference of
the Fourier transform of a rectangular gate, the complex

cepstrum is multiplied by a Hamming window expressed by

.54 - .46 cos [2240=89) 1_ 60 < n < 60
w(n) =

0 In| > 60 (4.20)
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The original continuous unwrapped phase and its estimate derived from
the direct approach are illustrated in Figs. 4.2a and 4.2b, respectively.

Next, the indirect approach is taken where p(n) is appropriately
scaled so that B(O)=0. We set A=,05 to create a minimum phase sequence,
v(n)=As(n) + h(n). The real cepstrum of x(n) is multiplied by w'(n)=w(n)L(n)
where L(n) is given in (4.13) and w(n) is given in (4.20). The resulting
continuous phase estimate {is depicted in Fig. 4.2c and is almost indistin-

guishable from that derived from the direct approach.

Example 4.2

This example is identical to example 4.1, but now we add white noise
to x(n) with a 40 db S/N. The original unwrapped phase and results from
the direct and indirect approach are illustrated in Fig. 4.3. A linear
phase component is incorporated so that all three impulse response esti-
mates are causal and nonzero at n=0. Note that a jump of approximately
4w occurs near the zero of H(z) at 2000 Hz, This jump indicates that the
noise component caused two encirclements of the origin by E(w), as depicted

in Fig. 4.1b.

4.2 Phase Unwrapping by Phase-Only Signal Reconstruction

When H(z) is rational, we saw in section 2.3.2 that the number of pos-
sible magnitude functions is finite when the phase is fixed. To specify
a unique magnitude additional constraints must be imposed. One set of con-
straints of particular interest is causality and phase continuity. These
constraints are compatible with only a minimum phase sequence and are easily
incorporated within a 1inear iterative procedure for magnitude retrieval.

A consequence of this iterative algorithm and the ultimate objective of
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Unwrapped phase (with a 1inear phase component)
of H(w) from example 4.2

Estimate of (a) in the presence of noise by the
indirect approach '

Estimate of (a) in the presence of noise by the
direct approach
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this section is a new-means for computing the unwrapped phase without
modulo 2r considerations. Another consequence of this iterative proced-
ure, equally important, is a new techrique for obtaining the magnitude
from the phase of the Fourier transform of a minimum phase sequence. The
Hilbert transform, the conventional approach, requires an unwrapped phase.
Our procedure, on the other hand, requires only the principal value of the
phase, and thus avoids the necessity of phase unwrapping.

Other constraints may also be incorporated within the iterative algor-
ithm. In parallel with this thesis, Hayes et al have demonstrated that
under a set of rather loose conditions on H(z) the Tagnitude function of
a finite length sequence is unambiguously determined (within a scale
factor) by the phase. As we shall see, this finite length constraint can
therefore be imposed within the iterative procedure to retrieve the magni-
tude. In addition, it is useful in developing a DFT realization of the

iteration.

4.2.1 Magnitude Retrieval From Phase With Constraints

In this section, we consider constraints for recovery of the magnitude
from the phase of a Fourier transform.

4,2.1.1 Causality and Phase Continuity

Consider a sequence h(n) which is causal and of arbitrary duration.
Furthermore, suppose the unwrapped phase of its Fourier transform is con-
tinuous and odd, and thus is without a linear phase contribution. We assume
that h(n) contains a maximum phase component and then show that this
assumption leads to a contradiction.

h{n) can bevexpressed by

h(n) = A hmin(")*hmax(") (4.21)
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where hmin(") and hmax(") are normalized so that hmin(0)=hmax(0)=1.
Consequently, the z-transform of h(n) is given by
H(z) = A Hmin(z) Hmax(z)
= -n
= A(T + nzl hointn)z ™)
- -n
x (1 + ni-1 hmax(n)z ) (4.22)

Since the region of convergence of Hmax(z) must be the interior of a
circle of finite radius[22], the region of convergence of H(z) cannot
include z==. However, since h(n) is assumed causal and stable, from (4.22)

lim H(z) = A (4.23)
P
and so a contradiction arises, and h(n) must be minimum phase.

Therefore, under our constraints of causality and phase continuity,
the magnitude of H(w) is unambiguously specified (within a scale factor) by
the phase.

4.2.1.2 The Finite Length Constraint

Let us suppose that H(z) contains no conjugate reciprocal zeros. Under
this condition the magnitude of a Fourier transform is uniquely determined
(within a scale factor) by the phase when h(n) is constrained to be of
finite duration[10]. Equivalently, suppose h(n) is causal and of finite
duration, and H(z) contains no conjugate reciprocal zeros. The phase of
H(w) is then sufficient to recover a mixed phase h(n), and the correspond-
ing unwrapped phase need not be continuous, i.e. Oh(w) may include a linear
phase component.

This property can be argued heuristically from (2.28). The z-transform
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of a finite length sequence contains only zeros. Therefore, creating a
magnitude function different from the original and méintaining the phase
requires from (2.28) reflecting a zero to a conjugate reciprocal pole.
But the presence of a pole implies an infinitely iong sequence, and thus
only a zero geometry is allewed. This geometry can be shown to be unique
as in [10].

Furthermore, under these same conditions when the sequence is M
points in duration, M samples of the phase function in the frequency inter-
val [0,7] are sufficient to uniquely determine the sequence within a scale
factor{10].

4,2.2 An Iterative Procedure to Recover Magnitude From Phase

Solutions to both the above magnitude retrieval problems can be given
in closed form. In the former case the Hilbert transform generates the
magnitude from the unwrapped phase. In the later casé, the magnitude can
be obtained indirectly through solution of a set of linear equations[10].

In this section, we discuss an alternative method of solution which
invokes a linear iterative algorithm.

4.2.2.1 Theory

The iterative algorithm will naw’be described and a proof is given
showing that a defined error must strictly decrease as the algorithm iter-
ates. We also prove that the sequence of functions hy(n) derived from the
iteration converges to h(n) for nel where I is the set of integers for
which h(n) is known a priori. The algorithm is illustrated in Fig. 4.4.
We begin with ;ﬁ initial quess MO(“) of the desired magnitude and take the
inverse Fourjer transform of Mo(m)exijXmEL where 6(w) is the known phase.

This step y1élds ho(n), the initial estimate of h{(n). Next, the known
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magnitude from phase
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values of h(n) for nel are incorporated in the initial estimate ho(n)

to obtain ﬁ1(n). The phase of the Fourier transform of 51(n) is then re-
pléced by the given phase and the procadure is repeated. The steps involved
in one iteraticn are summarized below. hk(n), ek(m), and Mk(m) are the
signal, phase, and magnitude estimates, respectively on the kth iieration,

and ﬁk+](n) is defined in (3.10).

Iteration tc Recover Magnitude From Phase

(i) Inverse transform Mk(w) exp[jo(w)]: hk(n)

(i1) Replace hk(n) with h(n) for nel: ﬁk+](n)

(iii) Forward transform hk+](n): Mk+1(w)exp[jek+](m)]
(iv) Replace °k+1(“) with 8{w): Mk+](u)exp[je(m)]
(v) Repeat

We shall first show in two steps that the mean squared error between

H(w) and Hk(m) strictly decreases on each iteration.

Error Reduction in the Time Domain

The mean squared error on the kth iteration from Parseval's Theorem

can be written as
T

Ek 'Z]?I |H(w) - Hk(m)lz do - 7

-

L h(n) - ()| (4.24)

lh(n) - hy(n)[? h(n) - h, (n)|2
nél th(n) - h (n)[™ + ngl [h(n) - hy(n)]|



From (3.10), we have

~

[h(n) - hk(n)l = jh(n) - hk+1(n)| , nklI (4.25a)

and

Ih(n) = hy(n)| > [h(n) - h . (n)| =0, nel (4.25b)

Summing (4.25a) and (4.25b) over all n, we obtain

£ = 1 Ihtn) - hy (n) |2

2} [h(n) - ﬁkﬂ(n)l2 (4.26)
n

Error Reduction in the Frequency Domain

From Parseval's Theorem, we write (4.26) as

ki)
1 - - 2
' z7m ["IH(M) "~ (o) (4.27)

= é‘; [ IM(m)exp[je(w)] - Mk+‘l (w)exP[jek+‘| (w)]lz dow

=T
With the triangle inequality for vector differences, we have at each fre-
quehcy w:

[M(w)expLie(w)] - M q(w)explioy  q(u)]]
> [M(w)exple(w)]] - M q(w)expliey ,q(a)]]
= [M(w) = M (0)] (4.28)
Therefore, from (4.27), (4.28), and the identity |exp[jo(w)]|% = 1 :

v
E 2o I M(w) - By ()]? du

-T
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s 2’; I |M(w)explio(w)] - Mk\;-,(m)exp[je(m)]I2 du

=T

= -211}- I ]H(m) - Hk+-|(m)|2 dw

=T

= E (4.29)

k+1

Therefore, Ek is at least monotone decreasing upon each iteration. Since
E, 20, it has a lower bound of zero. Therefore,E, must converge to a unique
Timit[30].

Let us now suppose that on the kth iteration hk(n)#h(n) for nel.
From (4.25b) and (4.26) the mean squared error must decrease on the next
iteraiion. Therefore, the error strictly decreases unless convergence to

the Timit of Ek has been reached.

Proof of Convergence over [

Since Ek is convergent and real, Ek is a Cauchy sequence[30]. There-
fore, given any real number €>0, there is a positive integer N such that
|Ek-E2|<e whenever k,2>N, In particular, let 2=k+1 so that for any e2>0,

we can find an N so that whenever k>N
2

IEk - Ek+]l = Ek - Ek+] < E (4.30)
Then, from (4.26) through (4.29), and (4.30)
I Ih(n) - h(n)]2 - 5 [h(n) - by, (6)[2
n k n k+1
2
= ¥ |h(n) ~ h (n)]
nel k
<E -E < 52 (4.31)
k k+1 :
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Therefore, .

Ih(n) = h (M%< & nel (4.32a)
and

Ih(n) = h(n)] <& nel (4.32b)
Finally, (4.32b) implies that

1im hk(n) = h(n) ° nel (4.33)

ko

Erom (4.33), and since each sequence hk(n) has the known phase, eh(w),
a reasonable conjecture, under the causality and finite length constraints
of section 4.2.1 where h(n)=0 for nel, is that
| Tim Mk(m) = aM(w) (4.38)

K-
where a is a constant. We shall see in section 4.2.2,4 that in practice

the 1imit given by (4.34) is in fact approached.

4.2.2.2 The DFT Realization

We saw in section 4.2.1.2 that M points of the phase in the frequency
interval [0,7] are sufficient to characterize an M point sequence within a
scale factor, Therefore, we are justified in formulating the iterative
algorithm and proofs of error reduction and convergence of section 4.2.1
for a DFT realization with DFT length 2M-1 or greater in a manner similar

. to that of section 3.2,

4.2.2.3 Examples

The following two examples illustrate the iterative algorithm with the

constraints of section 4.2.1. In both cases the initial magnitude estimate
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Mo(m) is set to unity.

Example 4,3

Let h(n) be the sequence as defined in example 3.1 whose z-transform
contains two minimum phase complex pole pairs and one maximum phase zero
pair. Its minimum phase counterpart hmp(n) with the continuous phase of
H(w) is of infinite duration and so witain a DFT realization must be
truncated. We assume that h(n)=0 for n>256 and use a 512-point DFT. Trunca-
tion of hmp(n) does not noticeably alter the phase of H(w). Nevertheless,
the phase of the Fourier transform of the truncated hmp(n) is incorporated
within the iteration.

The sequence of functions Mk(m) and Gk(m) are depicted in Fig. 4.5
for 5, 15, 25 and 100 iterations superimposed on the original phase, and
magnitude functions of hmp(n). Mk(m) and ek(w) are indistinguishable from
the magnitude and phase of'the original minimun phase fgnction after 100
iterations. Note that the maximum phase zeros of the original z-transform
now appear as conjugate reciprocal poles as we would predict from (2.28).
The negative offset in the logmagnitude estimate occurs since « in (4.34)

is less than unity,

Example 4.4

Let h(n) be the mixed phase causal 8-point sequence of example 3.2.
A 512-point DFT is used and the linear phase component retained. The se-
quence of functions Mk(m) and ek(m) are depicted in Fig. 4.6 superimposed
on the original magnitudé and phase of H(w) for 1, 5, 15, and 100 itera-

tions,
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4.2.3 A New Phase Unwrapping Algorithm

We are now in a position to state a new phase "unwrapping" algorithm
without modulo 2r considerations. Suppose we are given the principal value
of the phase of H(w) and that the corresponding unwrapped phase is contin-
uous. Our new unwrapping algorithm.is outlined below. Mmp(m) in step (i)
denotes the magnitude of the Fourier transform of a minimum phase sequence
derived from our iterative procedure under a causality constraint. Step
(i) yields the same magnitude (within a scale factor) that would be obtained
by applying the H11bert'transfonm to the unwrapped phase, but bypasses the

need of phase unwrapping.

Phase Unwrapping Algorithm

(i) Apply the iterative algorithm of section 4.2.2.1 with a causality
| constraint: Mmp(m)
(ii) Compute the Togarithm of the resulting magnitude function from
step (1): IogEMmp(m)]
(ii1) Hilbert transform the logmagnitude function derived in step (ii)

to obtain the desired unwrapped phase: eh(w)

There are two major considerations in the use of this algorithm.
First from our discussion in section 2.3.2, we see that, in general, the
minimum phase solution derived from the iteration is of infinite extent
regardless of whether the original sequence h(n) is of finite duration.
Therefore, a possible problem with aliasing arises. The DFT length must be
sufficiently large so that the minimum phase counterpart of h(n), hmp(n)

has essentially decayed to zero. In particular, when hmp(n)=0 for n>N,
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the DFT length from the results of sectior 4.2.1 should be at least 2i-1.
The second consideration is the linear phase component of H(w). The
presance of this term represents a potential drawback to the algorithm since

a priori knowledge of such a component is often difficult to obtain.
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CHAPTER 5
ESTIMATION OF THE UNWRAPPED PHASE FROM HARMONIC SAMPLES

In section 4.1.2 we described a direct approach to phase estimation
through homomorphic deconvolution. This approach relies on the phase of
the quasi-periodic waveform. The magnitude estimate is found separately
and is not used in deriving the phase estimate. The procedure yields amn
estimate which is bandlimited and is an accurate representation of the
desired unwrapped phase.

An implicit assumption in this direct approach is that the pulse
trainp(n) of (2.6) is not exactly periodic. When p(n) is periodic with
period P, P(w) is impulsive and periodic with period 2n/P. Under this
condition, P(w) samples the desired system function H(w) at h&rmonica]]y
related frequencies, W = Z2rk/P, and corresbonds to a periodic x(n). Since
X(w) is zero in frequency bands, the complex cepstrum does not exist [33],
and thus our direct approach cannot be appilied.

Nevertheless, this situation is useful in representing voiced speech
over a short duration in time. Typically, within a voiced speech segment,
the vocal tract and vocal cord characteristics are slowly varying. There-
fore, voiced speech over a short duration (e.g. 20 msec.) can be modeled
as a segment of an infinitely long period%c wavaeform, x(n) = w(n) x(n),
where w(n) is a finite length, unity amplitude window over which the vocal
tract and vocal cords are time-invariant.

Certainly with only samples o¥ H(w), without additional constraints,
there exist an infinite number of choices for H(w) and likewise for the

phase of H(w). The number of samples generally may not be sufficient to
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uniquely specify the parameters of a rational model through, for exampie,
techniques similar to those in sections 3.2 and 4.2. Alternatively, in
this chapter we take a direct nonparametric approach to resolving this
ambigquity.

Specifically, we shall view the problem of phase estimation as a
problem of polynomial interpolation over harmonic samples of the real and
imaginary components of H{w), or when only phase samples are given, of
the all-pass function H(w)/|H(w)|. In particular we apply linear inter-
polation over two successive samples. Conditions on eh(w) are derived
under which its corresponding unwrapped phase at harmonic samples is pre-
served by this simple procedure - a situation denoted as "phase tracking".
Phase tracking preserves the slowly varying component, i.e. the envelope,
of the unwrapped phase of H{w). With an appropriate bandlimited con-
straint the entire phase function may then be recovered.

Linear interpolation is also useful in understanding the properties
of an arbitrary window w(n) and its relation to the unwrapped phase of
the windowed waveform x(n) = w(n) x(n). Windowing can be viewed as an
interpolation procedure in the frequency domain, and, in fact, is itself
a means of phase estimation. With this viewpoint, constraints on the
window duration and alignment (i.e. positioning with respect to x(n))
are imposed for phase tracking.

In the final section of this chapter, with appropriate abriori
information, a method is derived for phase tracking by windowing without

the need of alignment.

5.1 Techniques of Phase Tracking

Consider a periodic train of pulses p(n) with spacing P. With
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p(0) # 0, p(n) in the frequency domain is given by

Plw) = %E-E 8 (w-w, ) (5.1)

where w, = 2mk/P and §(w) is the dirac delta function.

From section 2.2.3, we can write the unwrapped phase* of H(w) as

eh(w) = eﬁ(w) *+ 0w we [0 ,7] (5.2)

where eﬁ(m) is continuous and ngw is a 1inear phase component. For con-
venience, we express the Fourier transform of h{(n) is a function of two

variables:

H(w,ny) = H(w) exp[in o] (5.3)
where

H(w) = [H(w, ny)| expli0g(w)] (5.4)
In the frequency domain w2 also express the Fourier transform of the
pericdic waveform x(n) = p(n)*h(n) as a function of two variables:

X(m,no) = H(w,no)P(w) | (5.5)

Therefore, from (5.1) and (5.5), we have

E H(mk,ho) G(m-wk) (5.6)

and so only samples of H(m,no) are available.

L2
X(wsno) = P

We have generally assumed throughout this thesis that h(n) is
causal, nonzero at the origin, and has a rational z-transform. In

particular, when h(n) is a mixed phase sequence, we see from (3.1) and

-
Throughout this chapter a phase function 6(w) denotes an unwrapped

phase.
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(3.4) that Ny equals the numbevr of zeros of H(z) outside the unit circle.
Howevar, given an arbitrary segment of a periodic waveform of the form
x(n) = h(n)*p(n), we must define an origin. Consequently, without addi-
tional knowledge, the position of h(n) relative to our defined origin is
arbitrary, and therefore N, in (5.2) is also arbitrary. Because x(n) is
periodic, however, we can restrict n, to the range -P/2 <n, <P/2.

Since, conceptualiy x(n) is of inf%nite extent; we must apply a
window, w(n). Throughout this chapter, we assi¢ - .(n) is symmetric and
that the time origin (i.e. n=0) is set at the center of w(n). Therefore,
chang’ N, corresponds to sliding x(n) under the window w(n).

In this section, we consider two methods for phase tracking, that is,
for retrieving the unwrapped phase of H(m,no) at harmonic samples. The
first method of linear interpolation can be viewed as a special case of
the second method of time-domain windowing. These techniques are also
applicable to samples of the all-pass function H(m,no)/IH(m,no)l, and

so do not rely necessarily on magnitude information.

5.1.1 Linear Interpolation in the Frequency Domain

One approach to estimating H(w,no), and thus the phase 6y (w) is to
fit a polynomial of order M to M given samples of H(mk,no) over a
specified interval. For example, one possibility is to fit a first order
polynomial over two successive samples, i.e. perform Tlinear interpo{étion
on H(mk,no) and H(“k+l’"o)‘ We choose this particular scheme for three
reasons which will become clear in the sequel:

(i) Linear interpolation illustrates the fundamental problems

in preserving the unwrapped phase of H(w,no) at harmonics by

time-domain windowing x(n).
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(ii) The unwrapped phase at harmonics derived by linear inter-
polation equals the unwrapped phase found by a running sum on

the principal value of the difference between two successive
samples of eh(m).

(111) Phase estimation by linear interpolation is compatible
with the spectral envelope speech analysis-synthesis system given

in Chapter 6.
A linear interpolation procedure is equivalent to convolving the reai

and imaginary components of X(w,no) with a triangular function given by

1 - |w/(21/P)| |w| < 2m/P
W(w) = (5.7)
0 lw| > 2n/P

The estimate of H(w,no), ﬁ(m,no) is therefore exprassed as
A(wang) = X(wan)(w) = & ] Hlayng) W) (5.8)

= 217 i g’[l'_ / -
F"'E Hr(“’k’"o) H(w"mk) + ] P E Hi (d)k!no)w(w wk)
In the time domain, (5.8) is equivalent to multiplying (i.e. windowing)

x(n) with a sequence given by

w(n) = [5'in(rrn/P)/7rn]2 (5.9)

‘We say that the unwrapped phase of H(@,no) is tracked by ﬁ(w,no)
at w=w, when the unwrapped phase of ﬁ(mk.no) equals the unwrapped phase
of H(wk,no): |
eﬁ(uk) = eh(wk) (5.10)
Aiternatively, we refer to (5.10) as the preservation of the unwrapped

phase envelope.
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From (5.2), the phase difference Aeh(mk) between two successive samples
of eh(m) is written as

Aeh(mk) 2 eh(mk) - eh(“k-l)
= o wy) - opluyq) + g oy - v y)

= 46p (mk) + 21rno/P (5.11)

We shall show that a necessary and sufficient condition for ﬁ(w,no) to track

the unwrapped phase of H(m,no) at wIwy ¥k is given by

eﬁ(mk) = eh(mk) ¥ if and only if

|Aeh(wk)| = |Aeﬁ(mk) + Zﬂﬂo/PI <m¥ (5.12)

To prove this condition we first note from (5.8) that a linear trajec-
tory is followed by the real and imaginary components of ﬁ(m,no) over each
interval [mk,wk+]]. The polar piot of ﬁ(m,no) for we[mk,mk+1] therefore
also follows a linear trajectory as depicted by trajectories T1 and T2 in
" Figs. 5.1a and 5.1b. Furthermore, we see from Fig. 5.1a that when
|A0h(mk)|<n, the polar plot of ﬁ(m,no) is of type T;, and therefore
Aeﬁ(”k)'beh(”k)' On the other hand, when |agy (v )|>m, the polar plot of
ﬁ(u.no) is of type T,, and therefore Aﬂﬁ(wk)=ABh(wk)+2an where M, is an
integer.

eﬁ(wk) can now be exﬁressed by the following running sum:

Bﬁ(wk) = QZO Aeﬁ(mz)

. e e — _



b ..
H(%\“_") < H{wkeNo!
&
P d
// g(m.ﬂoi
:: .
I | i Re
L — T
I 7 \ 2
/
¥ 4
fl
{
\\ H{wg+1170)
-
\‘~'_‘.—l" -
(b)
R (wy)
Fig. 5.1 (a) potar ¥ ?rf Hwsng) foraey (o)




97
K

k
= lZO Aeh(wz) + QZQ ZHMR,
= 6, () + 0, () - (5.13)

where eZn(“k) termed the "2m error accumulator function" is given by
k

ogalop) = 21 1 M, (5.14)

Thus if IAeh(wk)l'< m ¥, from above M =0 ¥, and so from (5.14) 92v(“k)=0
¥ Therefore, from (5.13) eﬁ(mk)=6h(mk) %, On the other hand, if
IAeh(mk)|>v for some particular k, M, #0, and from (5.14) ezﬂ(mk)#o ¥ -
Finally, from (5.13) eﬁ(mk)feh(wk) %o and our proposition is proven.

Since, in general, Aeﬁ(mk)=A0h(mk)+2an and from Fig. 5.1, |Aeﬁ(wk)|<ﬂ,
we conclude from (2.12b) that Aeﬁ(mk)=PV[Aeh(mk)] where PV denotes "prin-

cipal Value of". From 5.13 we then have
(w) § PV[ae, (w,)] (5.15)
00 (w,) = Viae, (w 5.15
h*"k =0 h'" e

We see from conditiqn (5.12) that the linear phase component nyw plays
a major role in phase fracking. That is, the position of x(n) relative to
the window's center is significant in preserving the unwrapped phase at har-
monics. In Chapter 6, we shall find that the condition IABB(mk)l<ﬂ is
"almost always" true for speechlike harmonics. Under this constraint, it
directly follows from (5.12) that a necessary and sufficient condition for

phase tracking can be stated as
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eﬁ(mk) = eh(mk) if and only 1f Ny falls within the

range given by
(5.16)

- B/2 - Pminsep(w )/2m < nj < P/2 - Pmaxaey (w, ) /2w

where min and max denote "minimum or maximum value of", respectively.

When n, falls within the bounds of (5.16) we say that x(n) is
"aligned" with our defined origin. If nofo, but satisfies (5.16), the
unwrapped phase of eh(wk) is tracked and includes the linear phase component

M@y« We can however remove this term to cbtain eﬁ(mk) since from (5.2)

. |
ng = 8plw)/| (5.17)

wy =T

We thus far have investigated the behavior of the unwrapped phase of
ﬁ(m,no) at harmonics. We now shall demonstrate that Gﬁ(m) follows a mono-
tonic trajectory across each interval [mk,mk+]]. To see this we consider
the phase derivative, éﬁ(w) weighted by the squared magnitude of ﬁ(m,no).
From (2.14), lﬁ(m,no)lzéﬁ(u) is expressed by

(Awang )Pop () = MM (ww) + (a0 )]
(5.18)

- MP[Mi (U‘Nk) + ﬁi (mk,ﬂo)]: we[wk‘,mk_'_]]

—
We assume P is even so that H(m,no) is sampled at w=m,
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where Mr and M1 are slopes of the real and imaginary components of ﬁ(w,no)

in the interval [mk’“k+1][28]’ Expanding (5,18), we cbtain
|A(wany} 1267 (0) = A (wyon My = Ay Can M

2 ¢ . me[mk,wkﬂ] (5.19)

where c is a constant. Since |ﬁ(m,n°)|2 >0, 5ﬁ(w) from (5.19), is
either always positive, negative, or zero in the interval [mk,wk+]].
Because eﬁ(m) is given by integration of the phase derivative, Oﬁ(m) is
therefore either monotone increasing or decreasing in our specified inter-
val, and we have proven our proposition.

Throughout this section we have assumed knowledge of samples of H(m,no).
We may however apply linear interpolation directly to samples of the
all-pass fuﬁctidn H(w)/|H(w)| and thus discard the magnitude information
altogether in our procedure. Clearly, the unwrapped phase at samples de-
rived from both schemes is identical. The difference in the estimate lies

in the precise path of the monotonic trajectory from sample to sample.

5.1.1.1 Examples

Figure 5.2a depicts an unwrapped phase function eh(m) = Gﬁ(w) +n_w

0
of an all-pass system function H(m,no), with n°=0, which consists of factors
of the form (2.22). In the following example, we consider estimation of
eh(u) by linear interpolation of H(“k’"o) for various sampling frequencies

27/P and 1inear phase components n_w. Any linear phase in the estimate

)
Bﬁ(m) is removed by subtracting meﬁ(n)/n to obtain an estimate of Bﬁ(w).

Example 5,1

For a sampling frequency of 2x/P < 2+/130, LAeﬁ(wk)| > 7 at roughly
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1.5 radians which occurs in the decreasing region of eﬁ(w) depicted in
Fig. 5.2a. Furthermore, eﬁ(w) is such that |Aeﬁ(wk)| < 2m ¥ so that
IAeﬁ(wk)i > = for one and only one value of k within this region, Figures
5.2b and 5.2c illustrate the estimate Oﬁ(w) (with any linear phase comporient
removed) for sémpling frequencies 27/130 and 2n/129, respectively. Note
the 2 error at approximately 1.5 radians for sampling frequency 2m/129.
With P = 150, IAeﬁ(mk)| < m ¥ .. Changing n  then illustrates the
effect of the linear phase term n w in (5.2). We saw from (5.16) that n, is
constrained within a certain range for phase tracking, In particular, for

our example, n_ can be shown to be restricted roughly to the set noe[-6,72]

o
by computing approximate minimum and maximum increments of Aeﬁ(wk) for
P=150. Specifically, consider the lower bound. Figures 5.2d and 5.2e
illustrate the 2r error which arises when n  decreases from -6 to -7.
This example illustrates the extreme sensitivity of the estimate

Gﬁ(m) to changing either P or n, by as little as one point,

5.1.2 Windowing in the Time Domain

The linear interpolation procedure of the previous section can be
interpreted in the time domain as multiplication of x(n) by the window
given in (5,9). Consider now the same window but which is not necessarily

a function of the pitch period:
wM(n) = [sin(nn/M)/nn]2 | (5.20)

where the parameter M is variable. The Fourier transform of wM(n),
NM(w) is given by the triangular function of (5.7) where P is replaced by

M. Before proceeding to more general windows, we first show that when
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P <M< 2P, the unwrapped phase at harmonics derived from multiplication by
wM(n) is identical to that derived in the frequency domain from the 1inear
interpoiation scheme of the previous section.
Figure 5.3a illustrates the real component of ﬁ(m,no) in (5.8) where
successive weighted transforms WM(w-wk) are partially overlapping, i.e.
P<M«<2P. In a region of no overlap, because NM(“) is real and positive

the unwrapped phase of ﬁ(w,no), as depicted in Fig. 5.3b, is constant:

Hlaang) = Hlwang) Wylu-uy) lumu] < e/2 (5.21a)
and so

eﬁ(w) = Bﬁ(wk) |w-wk| < g/2 (5.21b)

where ¢ equals the length of the nonoverlapping region. Therefore, in
regions of no overlap, Bﬁ(w) exhibits what we shall refer to as "harmonic
rlateaus”.

As in section 5.1.1 a 1inear trajectory is followed by the real and
imaginary components of ﬁ(m,no) in each region of overlap, as depicted in
Fig. 5.3a. Therefore, a linear trajectory is also followed by the polar
plot of ﬁ(w,no) in these regions, From (5.21a), the magnitude of ﬁ(m,no)
at the endpoints of the overlapping region is scaled equally. Consequently,
the polar plot of ﬁ(m.no) is a scaled version with the samé slope of that de-
rived by linear interpolation of harmonics (i.e., M=P). The unwrapped phase
at each harmonic plateau therefore must equal the unwrapped phase derived
from our procedure with M=P. Thus, all properties given in section 5.1.1
hold also for P < M < 2P,

Let us now suppose that we are given an arbitrary finite length sym-

metric window, with Fourier transform W(w). From (5.8) we can view window-
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Fig. 5.3 (a) ﬁr(m,no) derived from the window
wM(n) in (5.20)

(b) Approximate unwrapped phase
corresponding to (a)
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ing itself as a phase estimation procedure. The phase trajectory between
harmonics is determined by the mainlobe and sidelobe structure of W(w) and
the degree to which N(m-mk) and N(m-mk+}) overlap. If we approximate the
trajectory of ﬁ(w,no) as 1inear in a region where mainlobes "significantiy”
overlap, and if we assume that outside this region the phase is constant as
in (5.21b), then the phase trajectory follows that derived with wM(n).

For example, the Fourier transform of a Hamming window has a mainlobe
which can be approximated roughly by the triangular function wM(m); Fur-
thermore, the duration of a Hamming window should be less than about four
pitch periods. Otherwise there is nc region of mainiobe overlap and the
phase trajectory is determined primarily by sidelobe strucfure, and weights
H(wk,no) and H(wk+],n°). We have found such approximations to be useful in
describing the empirical behavior of the unwrapped phasé of a periodic wave-

form multiplied by a Hamming window.

5.1.2.1 Examples

In the following é&ample we consider the estimation of the unwrapped
phase function eh(m)=95(m) * ngw of H(w) from example 4.1, and which is de-
picted in Fig. 5.4a with n°=0. We apply a Hamming window and demonstrate
the effect of modifying its duration and and its position with respect to
fhe periodic waveform x(n)=h(n) * p(n) where p(n) has a period of 50 points.

eﬁ(w) is such that IAGE(uk)I < m, ¥k'

Example 5.2
Figures 5.4b and 5.4c depict the continuous unwrapped phase estimates

obtained with application of a Hamming window of length 2 and 3.9 pitch

periods, respectively, and where n°=0. Note that when P equals two pitch
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periods, the phase trajectory is generally monotenic between regjons where
the phase 15 roughly constant near harmonics.

Figure 5.4d depicts the error function Se(m) given by
Ge(m) = Oﬁ(w) - eh(m) (5.22)

for the unwrappec phase derived with a Hanming window of duration two pitch

‘" periods, but where N, = -20. (5.22) may be viewed as a continuous counter-

part to the 2r error accumulator function of (5.14) where ee(mk) n 62n(“k)'
From Fiy. 5.4d we deduce that un, is such that |A°h(“k)|-‘Aeﬂ(wk)

+ Znno/P| > 7 in the region of a minimum phase pole (denoted by P) and a

maximum phase zero (denoted by Z). Consequently, there arises an error of

27 in both regions.

5.1.3 Comments on Comparing Magnitude and Phase Estimation by Windowing

We have seen in sections 5.1.7 and 5.1.2 that linear interpolation of
samples of a Fourier transform through windowing with wM(n) generates a
monotonic phase trajectory in the interval [mk,wk+]]. Such monotonicity is
typical of speechlike phase between harmonics. That is, we do not expect
"ripplas" in the phase function, but a "smooth" behavior between successive
harmonics.

Let us now address magnitude estimation by this interpolation procedure.
In particular, let us suppose that we are given two successive samples of
H(m.no). one to the right and one to the left of a pole located close to
the unit circle. Furthermore, we assume n, =0 and that |A9h(wk)|
= |Aeﬁ(uk)| 3w,

From Fig, 5.1, we see that the magnitude of ﬁ(w.no) generates a null

where in fact there exists a peak in H(u.no) due to the presence of a pole.
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Such "pole splitting”" is therefore potentially a problem with this tech-
nique. Linear interpolation applied directly to magnitude samples may thus

be preferred in such cases.

5.2 On The Problem of Alignment

In section 5.1.1 we derived the bound (5.16) on ng to ensure phase
tracking under the constraint |Aeﬁ(mk)| < m¥. We referred to this con-
dition as alignment of x(n). A number of examples were given in the pre-
vious sections illustrating the importance of this requirement. Our main
purpose in this section is to demonstrate that alignment is an inherently
ambiguous process with the sole constraint that IAGE(“k)I < m. Thus without
additional a priori knowledge, an alignment guess must be made.

In section 5.2.2 a method is described for phase tracking without the
need of alignment, under appropriate constraints on the second difference
of Gg(mk).

5.2,1 Alignment Ambiquity

With the constraint [Aeﬁ(wk)l < 7 %, we would Tike to determine by
inspection of eﬁ(“k) whether N, falls within the bounds of (5.16) so that
phase tracking is guaranteed. From (5.13) our problem is equivalent to
detecting the presence of eZn(“k) which is zero if and only if LA satisfies
(5.16).

One situation which can arise and lead to an erroneous conciusion
about alignment is the case where eﬁ(n)-o which accurs when n =0. However,

suppose n_ = =~ ezﬂ(n)/n. Then from (5,13) the 2w error accumulator function

o
°2u(“k) cancels the 1inear phase component at w=m, Therefore, eﬁ(n)ao is

not a necessary condition for no-o, nor for phase tracking.

|
i
|
{
|
|
i
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This case is indicative of the problem of alignment ambiguity. More
generally, we see from Fig. 5.1 that without additional a priori knowledge,
we cannot determine whether the true/net phase trajgctory between harmonics
is clockwise or counterclockwise. This ambiguity arises since when nyv is
sufficiently large, IAeh(mk)I >,

In conclusiun, we cannot detect the presence of ezn(mk) from only
eﬂ(wk).

5.2.2 Phase Tracking Without Alignment

One method of phase tracking which does not depend on alignment capi-
talizes‘on the constraint that the second difference of eﬂ(“k) dces not
.exceed w. This constraint is natural for speechlike phase because it re-
moves the possibility of "large" ripples in the unwrapped phase function.
Our technique provides a way to undo the effect of misalignment and relies
primarily on the fact that second differencing of samples of the unwrapped
phase effectively eliminates the lfnéar phase contribution at each sample.

With some algebraic manipulation the second difference of eﬁ(mk) can
be expressed by

a%67 (u) = 887 (w) = 897wy 1) (5.23)
= 2%:(w,) + N w 8w, - o)
h'\%k 0”19 T 9

+ 8y lw) = 28, (w 1) + 8y (wy o)

and so the linear phase component is removed except at m=w]=2n/P.

With the constraints,

IAzeﬁ(wk)l < (5.24a)
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21mO
67 (wy) + = | < (5.24b)

and, the initial condition,
Azeﬁ(cml) 2 Aﬁﬁ(m]) = Gﬁ(u)‘l) (5.25)

we can write the principal value of Azeﬂ(mk) as

2 2 2 2y

A ¢E(mk) = PY[a Bﬁ(wk)] = A eﬁ(mk) * —p— G(mk-w1) (5.26)
The running sum of (5.26) is taken to obtain

) L Zﬂno
agp () = aeplu ) + —5— (5.27)

Repeating for (5.27), we have the desired unwrapped phase at harmonics
op(w) = op(w) = 8plw ) + njw | (5.28)

Note that PV [Azﬂﬁ(mk)] need not be computed by unwrapping and differencing,

but rather directly through

-1 Sin[AZBﬁ(mk)]
cos[Azeﬁ(wk)]

PV [Azeﬁ(wk)] = tan (5.29)

since sin[Azeﬁ(mk)] and cos[Azeﬁ(uk)] can be expressed in terms of

cos[eﬁ(mk)] and sin[eﬁ(uk)].
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CHAPTER 6

APPLICATION OF PHASE TRACKING TO
SPEECH ANALYSIS~SYNTHESIS

In this chapter, we apply the techniques of phase tracking of the pre-
vious chapter in introducirg a mixed phase estimate within two speech anal-
ysis-synthesis systems:

(1) The homomorphic system proposed by Oppenheim{23]

(i1) The spectral enveiope system proposed by Paul[26]

With a simple model of the phase of the vocal tract frequency response, we
first demonstrate that speechlike bandwidths are such that an unwrapped
phase increment across successive harmonics generally does not exceed = ,
i.e., |Aeﬁ(mk)| < 7. Many of the results of the previous chapter are there-
fore applicable in the analysis of voiced speech when modeled over a short
duration as asegment of a periodic waveform.

The concept of short-time homomorphic analysis of a periodic waveform
is introduced and is shown to rely strongly on the nature of the window in
the time domain. A Hamming window, with a pitch-adapted duration, and
appropriately aligned, is applied to improve the phase estimate derived from
homomorphic deconvolution. 'Such a windowing procedure, results in the addi-
tional property that our analysis-synthesis system is, potentially, an
identity system with respect to a periodic waveform.

Finally, linear interpolation of section (5.1.1) is directly applied
in deriving a phase estimate which is incorporated wjthin the spectral en-
velope system. The original scheme based on magnitude only relies on deter-

mining harmonic locations by peak picking, and thus is compatible with our
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interpolation procedure for phase tracking.
Informal iistening tests indicate a small but perceptible improvement
in "quality" within these systems when a mixed phase estimate repiaces the

minimum phase counterpart.

6.1 Bandwidth-Pitch Period Constraints

The maximum phase increment due to a single pole or zero approaches @
as either comes close to the unit circle. The increment will nect exceed T,
so that in these simple cases lABﬁ(mk)| < m. The geometry of a more compli-
cated pole-zero pattern, however, might be such that |Aaﬁ(wk)| > . It is
the purpose of this section to derive bounds on the bandwidth of poles and
zeros of a z-transform for which this constraint is satisfied, and to show
that typical speech bandwidths fall within these bounds.

Fig. 6.1 depicts two regions. A and B, of an elemental phase function,
6(w) which corresponds to a real maximum phase zero with Fourier transform
H(w) = 1 - aexp[juw], O<a<l . Any complex pole or zero contributes a phase
which is a shifted and/or negated version of that in Fig. 6.1. An arbitrary
phase increment Aeﬁ(mk) can, therefore, be represented by a sum of incre-
ments derived from 8(w).

To obtain bounds on this sum, we consider the phase derivative of 8(w):

5(u) = (a? - acosw)/(a® - 2acosw +1) (6.1)

The maximum of 8(w) in region B occurs at w = * = @

= a/(a+1) (6.2)
ws+w

= é(w)
B

max 6(w)

and the minimum in region A occurs at w = 0:
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Unwrapped phase of
1 - aexp[juw]

Fig. 6.1
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= a/(a-1) (6.3)
w=0

= §(u)
A

min 8(w)

For simplicity and mathematical tractability, we express a phase incre-
ment over the interval [mk’“kﬂl as a sum of increments from region A and
from region B. A minimum phase pole or maximum phase zero contributes a
phase of the form e(m-mo). A minimum phase zero contributes a phase of the
form -O(w-wo) S0 that the contribution to a phase increment from region A
or B may therefore be negated.

Since e(w) is monotonic in region A or B, from (6. 2) and (6.3) bounds

on an increment Ae(wk) in the two regions are given by:

-1 i 5 /P)
> -2tan []_: 202 :P ] > - (6.4)

0> Ae(wk)

A
and

0 < Ae(mk) <n/P < (6.5)

B

We consider two cases which are clearly not exhaustive, but indicative
of bandwidth constraints:

Case 1 (sparsely spaced poles and zeros):

When the poles and zeros of H(z) are sparsely spaced, we shall assume
that any interval of Gﬁ(m) consists of either the sum of contributions from
only B regiohs, or the sum of contributions from all B regions and at most
one A region.

When only B regions overlap, from (6.5) laﬁ(wk)l < m because we assumz
the number of poles and zeros to be 1ess than P. When there exists one A
region, we assume the sum of contributions from B regions to be positive

and less than r. The positivity constraint holds since for speechlike
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spectra, the number of poles is greater than the number of zeros. There-

fore, since 0 > Ae(mk) > - 7, we have lAeﬂ(“k)l < T .
A
Case 2 (closely spaced poles and zeros):

Consider the overlap of two A regions (e.g., two closely spaced poles or
a closely spaced pele and maximum phase zero) and an arbitrary number of B
regions. Since we assume the net contribution of the B regions is positive,

from (6.4) and (6.5), we write the following approximate constraint

|86 (0, )| <|2 tan™! [t:z—‘é'ﬁ%J -Kn/2P|<n (6.6)

where Kr/2P is the "average" contribution from K B regions and

-1 a sin(w/P
2 tan [1-a cosiﬂ/P;J

is the "average" contribution from two A regions, where we have assumed
equal variable bandwidths.
With some algebraic manipulation our constraint can be expressed in
terms of half power bandwidth o [5] by
F
a = z—ernla"]’

FS

>-2?Ln

cos(n/P) + sin(n/P) tan[(F{1+k/2P))"'1|  (6.7)

where Fs is the A/D sampling frequency.

Table 6.1 gives values of a for typical values of P and possible values
of K corresponding to four or five real or complex pole pairs, and one or
two real or complex zero pairs. Table 6.2 gives average measured bandwidths

for the first three formants of vowel utterances for three male subjects
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TABLE 6.1

Computed half-power bandwidths required for phase tracking

K 1 2 3 4 5 6 7 8 9 19
P
4 msec 83 8 ® 79 78 77 76 78 73 72
6 msec 58 57 5 56 55 54 54 53 53 52
8 msec 44 43 43 42 42 4 a1 4 41 40
0 msec 36 35 35 ¥ 34 34 3 33 33 33
TABLE 6.2

Mezan half-power bandwidths (B?
for the first three reso
Three male subjects (S1,
tions with two

» B2, B3) in cycles per second

nances of vocal tract configurations.
$2, S3) used eight vowel configura-

glottal conditions (after House and Stevens[11]).

Band Open Glottis Closed Glottis
Width S 52 $3  Mean S 52 S3  Mean
B1 79 75 67 73 56 50 56 54
B2 88 82 75 81 67 62 61 65
33 97 98 83 94 - 76 66 64 70
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with open and closed glottis[11]. Since during a vowel utterance the glottis
is partly open and partly closed, the actual bandwidths probably 1ie some-
where between those measured for the open and closed glottis. It is clear
that these bandwidths often fall within the derived lower bounds. It is
conceivable, however, that spectra of high-pitched speakers with closely

spaced formants may yield a phase 1ncremeqt outside of our desired constraint

(i.e., [Aeﬁ(mk)|<ﬂ).

6.2 Pre- and Post-Alignment

Alignment of x(n) = h(n)*p(n) so that n, falls within the constraints of
(5.16) will be referred to as pre-alignment. Under this constraint ‘
|Aeh(uk)|<n so that windowing in the time domain or performing linear inter-
_polation in the frequency domain tracks the desired unwrapped phase at har-

monics. Since n°=eﬁ(n)/w, the linear nhase term n_w can be eiiminated by

0
subtraction -- a procedure we shall refer to as post-alignment. This oper-
ation generates an estimate of Gﬁ(w) which equais the desired unwrapped

phase at harmonics when (5.16) holds, and is an accurate approximation to

the desired unwrapped bhase between harmonics. Althouch pre-alignment may
guarantee that (5.16) holds, the value of n, may not be consistent from frame-

to-frame. Consequently, when n_ is not removed "pitch jitter" can arise at

()
frame boundaries after signal reconstruction, causing degradation in the
synthesized speech. That is, the arbitrary displacement of the vocal tract
impulse response estimate results in a random change in pitch from frame-
to~-frame.

In practice, however, estimation and removal of N, is complicated by
deviations from the assumed harmonic structure of X(m,no) in (5.6) in high-

frequency regions. Two causes for such deviations are: (1) low-pass filter-
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ing the speech waveform before A/D conversion, and (ii) a mixed-source
excitation at.the glottis which is harmonic in a low-frequency region and
flat in a high-frequency region[i¢. . Therefore, deriving Ng from eﬁ(w)
is not recommended.

One simple way of repiwsenting high-frequency degradation in the case
of low=-pass filtering ic :hrough a model of x(n) given by

x(n) = iin)*g(n)*p(n) (6.8)

where g(n) is a low-pass filter. Ideally, g(n) introduces a linear phase
component within the phase of H(w). The high-frequency energy of g{n) is,
however, quite Tow and o in practice, the unwrapped phase of g(n) beyond
its low-frequency cutoff is erratic due, for example, to quantization noise.
Consequently, zh2 value of eﬁ(n) is unpredictable and may have no relation-
ship to the nriginal linear phase of H(w). Subtraction of weﬁ(ﬂ)/w, there-
foré, arbitrarily shiv:s the estimate of h(n) and results in "pitch jitter"
at frame boundaries. Theie exist then two cauges of "pitch jitter": (i)
inconsistent pre-alignment, and (ii) erroneous post-alignment.

For the purpose of waveform reconstruction, it is necessary to obtain
only relative delays between successive impulse resnonse estimates. An
alternative method of post-alignment invokes the cross-correlation function
of two successive estimates. Given that two successive estimates ﬁk(n)
and ﬁk+1(n) are slowly varying except for a delay, their cross;correlation

function is given roughly by

R(n)

ﬁk(")*ﬁk+1('")

1

[h(n)*s(n-n, )*g(n)I*[h(-n)*s(-n-n,  )*a(-n)]

Rﬁ(n)*Rg(n)*G(n-(nk-nk+])) (6.9)
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where Rﬁ(n) and Rg(n) are the autocorrelatian functions of ﬁ(n), our de-
sired response, and g{n), respectively, and ny and M4y are the delays in
h(n) due to the pre-alignment orocess. Therefere, the location of the peak
in R(n) is an estimate of MM s and does not rely on the unwrapped phase
at wsr. We can then perform accurate post-alignment by shifting the (k+1)st

impulse response estimate by M= 4] points.

6.3 Homomerphic Speech Analysis-Synthesis

In this section we first review the minis~ phase homomorphic speech
analysis-synthesis system proposed by Oppenheim. With the results of
Chapter 5 and sections €.1 and 6.2 as a foundation, we then develop a high-

quality homomorphic system which incorporates a mixed phase estimate.

6.3.1 Minimum Phase Analysis-Synthesis

The analyzer of the minimum phase system consists of Fourier trans-
forming a short-time speech segment, computing the logmagnitude of its
Fourier transform, and inverse transforming to generate the real cepstrum.
Pitch information is obtained with a cepstral pitch detector[3] which
utilizes cepstral peak-picking, and energy and zero-crossing measurements.
Three and five point median smoothing[3] was applied to estimate one and
two peint isolated singularities due to pitch doubling and halving, or
voiced/unvoiced errors. Some hand editing was performed at voiced/unvoiced
transitions.

The minimum phase impulse response estimate is derived by multiplying
the real cepstrum with a 3.2 msec. low-time gate of the form in (4.15).
The result {s then transformed, exponentiated, and inverse transformed.

The w.voform is synthesized by explicitly convolving the impulse re-

sponse esti..ate and excitation. During voicing, the excitation consists
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of a train of unit impulses with spacing equal to the pitch period. During
unvoiced intervals, a noiselike waveform of random polarity with spacing
1 msec. is used. Linear interpoiation of the pitch period and impulse
response was performed to avoid sudden changes in pitch and spectral infor-
mation. Such interpolation leads to enhanced quality[23,28]. This system
was simulated on a PDP/11-55 computer with floating point arithmetic.
6db/actave pre- and de-emphasis was used, and the input speech was low-pass
filtered at 4.8 kHz.

The resulting synthetic speech is of high quality, natural sounding, and

provides a reference point for the mixed phase simulations to follow.

6.3.2 Mixed Phase Analysis _

The firsf attempt to introduce a mixed phase estimate within the homo-
morphic scheme through the complex cepstrum, as defined through (4.1) and
(4.2) resulted in large sensitivity of the phase estimate to the position
and duration of the time-domain window[31,35]. The system generated synthetic
speech characterized by a "hoarse" quality. This sensitivity is clear in
light of section 5.1.

The reason for the hoarseness is that neither pre- nor postfa11gnment
was performed and the window duration was in general greater than four
times the pitch period. Consequently, both phase degradation and pitch
jitter are introduced within the reconstructed waveform. Furthermore, our
results illustrate that smoothing the phase through the complex cepstrum
is meaningful only when the envelope of the phase of H(m,no) is preserved;
that is, when phase tracking is guaranteed by appropriate windowing. The

requirements on the window, however, are such that the windowed speech
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waveform may not follow a convolutional model[31,35] -~ a phenomenon

which can be easily seen from the results of section 5.1. Therefore, pitch
and impuise response information in the complex cepstrum are not neces- |
sarily additive. Empirical results indicate that for an arbitrary window
the breakdown of the additivity assumption occurs severly with respect to
phase, but far less so with respect to magnitude.

Applying a low-time gate to the complex cepstrum mey bé alternatively
interpreted as a method of bandlimiting the complex logarithm, and thus
smoothing the logmagnitude and phase. When the phase is not tracked at har-
monics as, for example, when x(n) does not fall within the constraints of
(5.16) or the window is excessively long, large erroneous trends are intro-
duced into the phase function as depicted in Figs. 5.2 and 5.4. In the
former case, these trends are due largely to the 2m error accumulator func-
tion, ezﬂ(m). It is reasonable to assume that smoothing ezﬂ(w) can alter the
principal value of the desired phase in high energy regions or at harmonics.
Therefore, with respect to either h(n) or a reconstruction of the original
waveform x(n), signal distortion due to phase distortion may be large.

Such distortion has, in fact, been observed empirically in both the estimate

of h(n)[28,35] and the reconstructed waveform.

6.3.3 Short-Time Reconstruction

Ti.2 notion of bandlimiting the complex logarithm is an interesting one
since it implies an important alternative interpretation of the synthesis
procedure. As the cepstral window approaches unity the original windowed
waveform is preserved. Therefore, when the windowed waveform has primarily

a low-time cépstral composition, gating its complex cepstrum maintains its
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basic characteristics.

Furthermore, when a Harming window is two pitch periods in extent, and
positioned identically with respect to h(n) in successive frames, the syn-
thesis procedure reconstructs a perfodic waveform exactly and thus acts as
an identity system. This is because a Hamming window of two pitch periods
in length has zeros at the spectral harmonics. Equivalently, a Hamming win-
dow when repeatedly added to itself delayed by a pitch period results in
unity[28]. The identity system, however, does not rely on satisfying the
alignment requirement of (5.16) but simply a consisient positioning of the
window from frame-to-frame. The overall éna]ysis-synthesis system 1s de-
picted in Fig. 6.2.

An example of the output of this system for a real speech input is
il1lustrated in Fig. 6.3 for 51.2 msec. of data across three frame boundaries
with a 20 msec. frame rate. The cepstral window in this particular case 1is
of duration .8 P (where P equals the pitch period), demonstrating the scheme's
potential as an identity system. The pre-alignment process is heuristic,
consisting of picking the maximum absolute value within the second pitch
period from the current frame number and back tracking 10% of the pitch
period. The synthesis includes also post-alignment by cross-correlation

of section 6.3.

6.3.4 Informal Listening Tests
An analysis-synthesis system incorporating a mixed phase estimate was

designed and evaluated. A Hamming window of two pitch periods in duration
was applied in the analysis. Our requirements on window length, pre-align-
ment and post-alignment for periodic segments reduced the characteristic

hoarseness of this system. Removal of any one of these requirements increased
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Synthetic speech segment derived

from the system in Fig. 6.2

(b)

Fig. 6.3 (a) Original speech segment
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hoarseness. A fixed 20 msec. time window was applied to unvoiced segments,
and a symmetric rectangular low-time gate with cutoff 3.2 msec. was appiied
to the complex cepstrum.

When compared with its mfnimum phase counterpart, the system with mixed
phase produced small, but audibie, improvement in "quality". The two systeins
were identical except for the method of introducing phase and the elimination
of post-alignment in the minimum phase version.

An informal A/B listening test was performed where each listener was
asked to choose the synthetic speech passage closest to the original. Ten
Tisteners and eight sentences with 5 male and 3 female speakers were used.

The system with mixed phase was judged roughly 45% of the time to be
closer in quality to the original than its minimum phase counterpart, the
minimum phase version 10% of the time was judged closer, and 45% of the time
the two were indistinguishable. When preferred, the system with phase was
often judged by experienced listeners, to reduce "buzziness" of the mini-
mum phase reconstruction.

With an adaptive cepstral gate of .8P for voiced speech and a ixed
9 msec. cepstral gate for unvoiced speech, no significant differences were
noted from use of a fixed 3.2 msec. gate. Consequently, it appears thatany
phase errors in the impulse response estimate may not be "noticed" because
of the overlap-addition property of the Hamming window discussed in section
6.3.3, and since the windowed waveform has a low-time complex cepstrum.

" We argued in Section 5.1.3 that the windowing procedure used here may
not be suitable for spectral magnitude estimation. From Fig. 5.1 linear
interpolation of complex harmonic samples possibly results in a null in the
magnitude between harmonics when the phase increment is near n. When the

pitch estimate is inaccurate, these nulls may in fact be sampled upon reccn-
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struction. This unfortunate situation suggests that the magnitude should
perhaps be cbtained in a different manner from that of the phase. The
spectral envelope system to be discussed, in fact, applies this philosophy.

In spite of this possibility, however, we have found that the use of
a Hamming window, of duration twice a pitch period, within a minimum phase
system derived from the magnitude only, generates higher quality synthetic
speach than a system where a Tonger window of duration 40 msec.is applied
[28]. A longer window introduces other forms of degradation which have been
investigated by the author in a study conducted in parallel with this thesis
[28].

6.4 Spectral Envelope Speech Analysis-Synthesis

In this section we first briefly reviéw the structure of the spectral
envelope speech analysis-synthesis system proposed by Paul[26]. Thi§vsystem
relies on a magnitude estimate only and is based on the harmonic samples of
the Fourier transform of the windowed speech waveform. A phase estimate of
the vocal tract system function is then introduced by the linear interpola-

tion scheme of section 5.1.1, also based on harmonic samples. This phase

estimation procedureé is therefore easily appended to Paul's original system.

6.4.1 Minimum Phase Analysis-Synthesis

Conceptually, the minimum phase spectral envelope analysis-synthesis
system is similar to the homomorphic configuration of section 6.3.1. The
primary difference 1ies in the magnitude estimation procedure. An outline
of this scheme is given as follows:

(1) Apply a Hamming window to the speech waveform.

(11) Find the location and value of the harmonic peaks of the magni-
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tude (or logmagnitude) of the resuiting Fourier transform
by peak picking. A pitch adaptive pesk picking algorithm
is used.
(iii) Linearly interpolate the :harmonic samples of the magnitude
(or logmagnitude).
A minimum phase estimate is obtained by applying the causal sequence

of the form in (4.13) to the real cepstrum.

6.4.2 Phase Envelope Estimation By Linear Interpolation

Step (ii) above gives the locations of harmonic peaks. We can use
these locations to find the values of H(w) at harmonics. Given these values
we then directly apply the linear interpolation scheme of section 5.1.1 to
obtain a phase estimate which preserves the desired phase envelope.

We must of course align the waveform.so that condition (5.16) is sat-
isfied. In particular, the heuristic pre-alignment process of section 6.3.3
is utilized. The precise duration of the window, however, is not crucial
since we do not rely on the window itself to perfoirm interpolation in the
frequency domain. _In our analysis, we choose a window length of twice the
pitch period which approximately preserves the harmonic values and is short

enough so that stationarity of the speech waveform approximately holds.

6.4.3 Short-Time Reconstruction

With our analysis scheme, the synthesizer of section 6.3.1 will in
theory recover a periodic waveform exactly, and thus acts as an identity
system for such waveforms. This is because the analysis preserves the

harmonic values which completely characterizes a periodic waveform. Note
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that when pre-alignment is such that condition (5.16) is not satisfied, but
the alignment is consistent from frame to frame, the identity, nevertheless,

holds.

6.4.4 Informai Listening Tests

¥hen compared wich its minimum phase counterpart, the system with mixed
phase provided sma]i, but audible, improvemént in quality. The two systems
vere identical in both the analysis and synthesis stages except for the
phase estiiiation procedure in the analysis and the elimination of post-
alignment in the mihimum phase version. In both schemes the magnitude esti-
mate is derived by linear interpolation of samples of the magnitude of H(w)
at harmonics.,

The informal A/B listening test of section 6.3.4 was performed. The
system with mixed phase was judged roughly 53% of the time to be closer in
quality to the original than its minimum phase counterpart, the minimum phase
version 10% of the time was judged closer, and 37% of the time the two were

indistinquishable.
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CHAPTER 7

SUMMARY AND FUTURE RESEARCH

In this chapter we summarize the major results of the thesis and dis-

cuss a number of directions for future research.

7.1 Summary

In this dissertation we have considered techniques of phase estimation
for the purpose of speech analysis and synthesis. Our methods fall rough-
ly within the categories of direct and indirect approaches.

A number of indirect techniques generate the phase of a Fourier Trans-
form from its magnitude and a priori knowledge of the desired sequence or
phase. Both closed form and iterative solutions were developed for phase
retrieval from magnitude under various constraints. An alternate indirect
means of estimating phase from a magnitude relies on transformation of the
speech waveform to create a minimum phase impulse response whose magnitude
is estimated. An inverse operation provides an estimate of the'origina1
phase function.

Direct approaches do not require an estimate of a magnitude function,
but require samples of the desired system function or partial knowledge of
its phase derived from the speech waveform. In particular, phase estimates
based on harmoﬁic samples of the desired system function were incorporated
within two speech analysis-synthesis systems with the result of high-quality
synthetic speech. |

We have also developed an iterative technique for magnitude retrieval
from phase. This algorithm provides an alternative to the Hilbert trans-
form for obtaining the magnitude from the phase of a minimum phase sequence.
The technique does not require an unwrapped phase, but simply its principal

value. The iteration also provides a means for magnitude recovery when
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only the phase of a finite length mixed phase sequence is given. Further-

more, the iterative minimum phase signal reconstruction serves as the major
component within a new phase unwrapping algorithm which does not require
module 2r considerations.

This study represents only an initial step in developing techniques
of phase estimation in the realm of speech analysis and perhaps, equally
important, in other-areas such as image restoration where an accurate phase
estimate may be particularly significant.

Below we outline a number of possible directions for future research.

7.2 Suqggestions For Future Research

Sensitivity Analysis

The methods of phase and magnitude retrieval in sections 3.2 and 4.2
rely on exact knowledge of a magnitude or phase function, or values of a
sequence. Sensitivity of either the closed form or iterative solutions to
noise or other degradation is not completely understood. A number of obser-
vations, however, can be made. When causality and phase continuity con-
straints are imposed, clearly the uniqueness argument of section 4.2 still
holds. That is, given a degraded phase there exists one degraded magnitude
which corresponds to a minimum phase sequence. With a similar argument, we
conclude that under a finite length constraint there exists one magnitude
function for a given distorted phase.

In fact, with phase distortion, our iterative algorithm to recover
magnitude from phase converges to the unique predicted magnitude. The
magnitude function, however, may differ significantly from the original
distortionless magnitude. For example, in minimum phase reconstruction

by iteration, a maximum phase zero lying near the unit circle may become



v

a minimum phase zero in the presence of noise rather than a minimum phase
pole as determined by (2.28). This phanomenon, however, is not a function
of the iterative procedure, but of the constraints imposed.

The sensitivity of the dual problem of recovery of phase from magni-
tude is more difficult to characterize. An ambiguity arises since addition
of noise may cause the breakdown of our assumed rational models and con-
ditions of section 3.2.

Another sensitivity issue involves the effect of noise or other degrada-
tion on the technique of secticn 4.1.4 where a phase estimate is abtained
by transformation of a quasi-periodic waveform. We illustrated one example
of this approach to improve the phase estimate over a direct procedure in
the presence of noise. However, the mapping of magnitude degradation through

an inverse transformation to phase degradation is not understood.

Convergence Issues

Ihe iterative algorithm for phase and magnitude retrieval were found
in practive to generate converging solutions sometimes slowly (e.g., after
several hundred iterations) and sometimes quickly (e.g., after alfew iter-
ations). Consequently, determining rates of convergence in terms of spec-
tral structure, and methods for quickening convergence are useful areas of
research.

Another question involves the existence of rigorous proofs demonstrat-
in§ unique convergence of 6y(w) and My (w) derived from the iterative algor-

ithms.

Alternative Constraints for Phase Retrieval

Given a magnitude function, we might consider constraints for unambig-

uous phase retrieval where specific nonzero values of h(n) are not required.
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Consider, for example, the minimum and maximum values of h(n) or eh(w).
A question which naturally foilows 1s whether such constraints can be

imposed within an itarative scheme.

Partial Maanitude - Partial Phase

In sections 3.1 and 4.2.1 samples of the magnitude or phase along with
certain nonzero values of h(n) were sufficient for phase or magnitude re-
trieval. One obvious extension of this result concerns signal reconstiuc-
tion from samples of both magnitude and phase. We might consider possible
ways to distribute such samples to unambiquously recover the entire magni-
tude and phase functions. In the context of coding, certain sampling dis-

tributions may cause little degradation of the reconstructed signal.

"Optimal" Transformations

In section 4.3 we have only touched upon the use of transformations in
phase estimation, What is needed is a method for designing "optimal"”
transformations which create minimum phase sequences with specific desir-
able properties. For example, in the context of homomorphic deconvolution
the real cepstrum of the modified sequence should be as low time, as pos-
sible, but not susceptible to quantization noise as occurs with exponential
weighting. These properties are also useful in coding samples of the log-
magnitude function. In the context of signal enhancement, the transforma-
tion should be such that the resulting magnitude function is suitable to

estimation by a specific noise reduction scheme such as spectral subtraction

Phase Modeling

Suppose an accurate estimate of the unwrapped phase is available. If

this phase as well as magnitude function is to be efficiently transmitted
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in, for example, a speech communications system, a small parameter set
must be derived which represents the entire phase function. When the un-
wrapped phase is bandlimited, samples of the phase are adequate. Alter-
nately, we may consider ways to directly model the phase, or phase deriva-

tive, by a rational function.

A Phase-0Only Vocuder

We saw in section 6.3.3 that the homomorphic analysis-synthesis schema
is an identity system with respect to a periodic waveform when an adaptive
Hamming window is applied. The quality of the overall cystem does not sig-
nificantly differ when a low-time or unity cepsural ga:e is applied since
the complex logarithm is nearly bandlimited. Aligning the Hamming windcw
and adapting its duration to the pitch period yields lognagnitude and un-
wrapped phase functions whose slowly varying components approximately re-
present the windowed waveform.

Since the windowed waveform is of finite extent, from section 4.2 the
phase is sufficient for complete waveform characterization. Therefore,
coding samples or a small set of model parameters of the bandlimited phase

function may be adequate for signal reconstruction.
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