
""' .

NATURAL LANGUAGE PRODUCTION

AS A PROCESS OF DECISION·MAl(ING UNDER CONSTRAINTS

by

David Daniel Mc Donald
~

S.B. Massachusetts Institute of Technology
(1972)

M.S. Massachusetts Institute ofTcchnology
(1976)

Submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

at the

Massachusetts Institute of Technology

August 1980

© Massachusetts Institute of Technology

- 1 -

Signature redacted
Signature of A uthor __ ---::::i==rl#----'---.......;;;..-----"----_...;;..-----------------· ----=-----------

Department of Electrical Engineering and Computer Science
~

Signature redacted
Certified by , , v - - - , I v:, v v "'Y Y\l6:'/ v

Professor Ma in M. Minsky, Thesis Supervisor
~) /7// ~) / /,)

Acceptedb{/' V _Signature redacted
Chaim, n, Departmental Committee on Graduate Students

· 'ARCHIVES
MASSACHUSETTS INSTITUTE

OF TECHNOLOGY

NOV 3 1980

LIBRARIES .

I

Abstract -2-

Natural Language Production as a Process of Decsion-making Under Constraint
by

David Daniel McDonald

Submitted to the Department of Electrical Engineering and Computer Science on August 8, 1980
in partial fulfillment of the requirements of the Degree of Doctor of Philosophy.

Abstract

A theory of the llnguistic conponent of the language production process has been
developed, and has been used as the basis of a computer program ("MUNIBLE") that produces
texts for five experimental "micro-speakers".

The theory is based on a view of production as a goal-directed, decision-making process.
The speakers goals ("messages") are interpreted as a program of decisions to be made, ordered
according to their relative importance and dependencies. An explicit representation of the results
of earlier decisions is used to constrain later ones.

Goals may be described to the linguistic component using any representation the designer
chooses provided they can be enumerated as a hierarchy of relations in a fixed vocabulary. A
dictionary and set of interface ftnctions must be written to interpret the vocabulary for the
linguistic component. Pending decisions and the results of earlier decisions are represented as a
surface-level, syntactic constituent siructure.

Texts are produced by realizing each goal-relation in turn according to the decision-
procedure given by its dictionary entry. Decisions specify a sequence of linguistic actions that
may be described as the instantiation and traversal of a phrasal schema selected from the
grammar. The relation's arguments are mapped into the leaves of the phrase which is then
traversed interpreted top-down and left-to-right by a uniform, data-directed controller that
produces the text by executing the actions specified by the phrase.

All decisions are local to the linguistic context at the position of the controller. Decisions
must be indelible, i.e. not retractable-the controller does not backup. Because of these
properties, the process is subject to structurally-induced linguistic constrains that govern when a
decision can be made, the kinds of information it may appeal to, and what it may effect. Given
certain assumptions about how the speaker structures its input goals, the process can be
guarenteed to run at a bounded rate and in linear time with the size of the input.

The use of an explicit linguistic structure as the representation of given and planned
decisions, makes it possible to write general purpose rules and heuristics that apply directly in
terms of the representational structure and need know nothing about its semantic content. An
elaborate grammar has been written including rules for word order and morphology, agreement,
subordination, thematic transformations, ellipsis, wh-movement, and subsequent reference.

Thesis Supervisor: Marvin M. Minsky

Title: l)onner Professor of Electircal Engineering and Computer Science

Abstract

4 .aau~.a .'.r...a amAbbUih.huIdL.. asa bn a.a. ..* ~ semite anaaa..jp.P. ..auIM*b~Mfl&flMUl. .%tW tISbktkI Ia&teM.e .e~hCbtmi~,.......as6rImh.mb dr.~ea. t

Abstract -3-

PREFACE

This paper presents a theory of how a particular human ability-the goal-directed

production of natural language texts-may be formalized for implementation on a computer. Its

focus is on issues and alternatives in the design of the theory, and on specific problems in natural

language that any theory of production must handle if it is to be adequate. The paper is not a

cookbook: the reader will not be given a set of specific instructions for the construction of their

own dictionaries and interfaces, nor will the complete grammar or the dictionaries of the

completed micro-speakers be included in the text.) This is because once one goes to that level of

detail the alternatives are no longer forced by the theory but can be fixed according to the stylistic

preferences of the individual designer. Instead the paper will use its specific examples as a way to

illustrate the generic problems that a designer will encounter, and will describe the alternative

solutions that have been tried with their relative merits and trade-offs.

The paper is divided into four large chapters. The first defines the problem: what has been

included and what has been left out. It introduces the theory and the relation of the production

component to the other components that make up a complete speaker, and sketches a brief

example.

The second chapter is a complete exposition of the specifics of the theory. The

representational devices and basic procedures are developed "bottom-up"-begining with the

definitions of the data-types for linguistic objects and the dictionary, then describing the control

structure and facilities for attached procedures, followed by the principles of the grammar. The

exposition is exaustive, and the reader may wish to skim it. Reading the first paragraph of each

subsection should provide enough of an overview to make it possible to read the later chapters

without having to follow all of the detail.

Chapter three looks at specific phenomena in the grammar of English. The emphasis is not

so much on the analyses themselves as on how an analysis must be interpreted in order to be

incorporated into this theory of production. The dependency of alternative analyses on the ability

of the speaker to supply messages with a particular structure is explored.

Chapter four looks at the design of the dictionary. A taxonomy of message elements is

developed in terms of how they are interfaced to the linguistic component. A range of

representational devices for the dictionary is given with examples of their use, and with regard to

the possibilites for sharing parts of the dictionary, ultimately leading to development of an

1. The programs for the grammar, dictionaries, and control are presently being revised to bring them into line with the
refinements that arose while writing this thesis. People who are interested in the actual code should write to me after the
beginning of 1981.

Preface

a~ShnmShi&mOnSup &w..aaajsns b.,.eauenumeMa.s mm.cagb*aSiIhha#flA. Gcs..*C&It.miy ~a. .uama~miS~%db .b aJauAsanaL.mA. 4S~ SMbmtWast..,.ubuas~saddqsum&Ibuv

. Preface -4

interlingua of commonly understood relations. Specific experiences with the micro-speakers are

discussed in an appendix.

Subjects covered elsewhere

The literature in language production by machine is reviewed in a separate paper,

[ddn..past]. That review covers the period tip to August of 1977, and is presently being updated.

Some discussion of how the computational theory described here might be used as the basis of a

psycholinguistic model of human language production can be found in [model], with some initial

observations appearing in [aclO]. This is for me an area of active research, working with evidence

from naturally occuring errors in speech and sonic inferences about on-line processing drawn

from hesitations and klf-editing. However, the research is preliminary and will not be reported

on in this thesis.

Preface

- 5-

Table of Contents

Abstract 2
Preface 7

CHAPTER ONE Introduction 9

f. A Computational Model 9
1.1. Language production.as decision-making - two alternatives 10
1.2. What kind of production to model 12

2. The Linguistic Component 13
2.1. Between the speaker and the audience 14
2.2. A cascade of two transducers 16
2.3. Representing linguistic context - the tree 18
2.4. The Controller 22
2.5. From message to text - an example 24
2.6. Relation to previous work 32

3. Micro-Speakers 34
3.1. Why 'micro' speakers? 34
3.2. The LOGIC Domain 36
3.3. KL-ONE-ncts-as-objects 40
3.4. The 'Macbeth' Domain - an example speaker and expert program 43

4. When should MUMBLE be used? 48
5. What MUNM! BLE can't do 49
6. Intellectual roots so
7. Contributions of this thesis 51

CHAPTER TWO DEFINITIONS 53

1. Terminology 53
1.1. Properties common to all types of objects 54

2. The Control Structure 56
2.1. Constituent Structure 57
2.2. TH E Tree 60
2.3. The controller 60
2.4. Attached procedures 66

3. Conventions in the grammar 67
3.1. What is a Grammar? 68
3.2. Why use constituent structure at all? 69
3.3. Decisions as plans 69
3.4. Incremental realization 72
3.5. Constituent structure design for production 74
3.6. Message structure 74
3.7. An active grammar 75
3.8. The 2-color hypothesis 76
3.9. The meaning of grammatical objects 77
3.10. Symbols 77
3.11. Procedural attachment points and Data-types 78

4. Representational Devices for the Grammar 80
4.1. CONSTiTUENT-SCIIlEMATA 80
4.2. Grammar routines 88
4.3. Graninar-decisions 90
4.4. Attachments and default-decisions 91

Table ofCoienls

I.. -.- . --- , - ,- w as n*-esa&ma.

Table of Contents - 6-

4.5. HOOKs 93
4.6. Transformations 94
4.7. Fine points 97
4.8. Controller variables 100

5. The Interface 103
I. Invoking the linguistic component 103

5.1. Using the speaker's own representation 104
5.2. Messages 105

i. Message-element enumeration order 106
5.3. Interface ftnctions 107

ii. Creating instances 109
6. Realization 110

6.1. Possible Realizations 110
6.2. The Dictionary 112

vi. The road-time syntax of the dictionary 119
vii. Stepping through an example 121

6.3. The Realization Procedure 123
i. The Entry-Interpreter 128
ii. The decision-interpreter 129
iii. The decision-rule-interpreter 130
iv. The transformation-interpreter 130
v. Choice-evaluator 131
vi. Default decisions 132
vii. Recording the results 133
viii. Deviations from the 'normal' procedure 133

CHAPTER THREE SOME ENGLISH CONSTRUCTIONS 135

1. Special considerations in linguistic analyses for production 136
1.1. Ontological differences between domains 137
1.2. The well-formedness constraint on messages 137

2. Thematic relations 141
2.1. Focus 142
2.2. Given/new 145

3. Embedded Clauses 149
3.1. The facts 149
3.2. Sentential subjects 152
3.3. Sentential objects 155
3.4. Complements 155
3.5. Sentential adjuncts 157
3.6. Restrictions on realizations 158

4. WI--moveinent 160
4.1. The basic facts 160
4.2. The basic analysis 161

i. Positioning the wh-phrase -. 162
ii. Creating the gap 163

4.3. Properties of the wh-phrase 167
i. ie need for an adequate message-level representation 168
ii. An indexing scheme to facilitate 'lookahead' 171-

4.4. The specifics of the diferent wh-constructions 173
i. Wh-question 174
ii. Relative clause 175
iii. leadless relative 176

Table of Contents

Table of Contents

iv. Topicalization. 176
v. Left-dislocation 177
vi. Generic relative 177
vii. Cleft & Pseudo-cleft 177
viii. Tough-movement 178

4.5. Planning by the speaker: obeying 'island constraints' 179
1. Heavy-phrase shift 184
2. Ellipsis 187

2.1. Coordinate structure 188
2.2. Triggering conditions for ellipsis 189
2.3. Reduction at different levels 190
2.4. Coordinating alternate ellipsis strategies 195

3. The Verb Group 197
3.1. Assembling the verb group 198
3.2. The role of the Morphology Routine 203
3.3. Computing 'tense' 205
3.4. subject-verb inversion 208
3.5. Tag questions 211
3.6. Existential there 2L1
3.7. Adverbs 213

4. Prononinal subsequent reference 216
4.1. Coordination with the realization procedure 216
4.2. Describing anaphoric relations 218
4.3. Evaluating the pronorninalization heuristics 219
4.4. Reasoning about distracting references 220
4.5. Pronominalizing predicates 222

5. Discourse Predicates 224
5.1. Evaluating relative position 224
5.2. Scope 229
5.3. Detecting structural ambiguities 232

6. Reasoning about possible ChiOCEs 234
6.1. The technique in brief 235
6.2. Will-be versus could-be 235
6.3. Derived predicates 236

CHAPTER FOUR DICTIONARY DESIGN 240

1. Issues at the Interface 241
1.1. Bridging the gap between modules 241

2. Technical constraints on the interface 249
2.1. First class objects 249
2.2. The msg-elmt to entry link 251

3..Designing entrys 253
3.1. Basics 253
3.2. Syntactic devices to help in entry writing 260

4. Multi-decision 263
4.1. Factoring out common actions 263
4.2. Overriding default decisions 264
4.3. Contingent Decisions 264
4.4. Domain centered decisions . 265
4.5. drammatically annotated decisions 266

5. Entrys for shopping-list isg-ehnts 268
5.1. Interpreting shopping lists - 268

Table of Contents

-7 -

Table of Contents -8-

6. The beginnings of an Interlingua 271
6.1. Concepts unique to language 271
6.2. Conventions 275

7. Non-prononinal sul)sequent reference 279
7.1. Alternatives to pronouns 279
7.2. Subsequent descriptions 282
7.3. Planning subsequent descriptions 285
7.4. Coordinated references 287
7.5. Predictable facts . 289

CHAPTER SEVEN Appendices 291

1. The Program 291
1.1. History 291
1.2. Program Statistics 292

2. Their representations and interfaces 293
2.1. The logic domain 293
2.2. KIrONE-nets-as-objects 297
2.3. The Macbeth domain 300

3. Grammar-variables - binding discipline 303
4. The Discourse History 304

4.1. Garbage collection and the compaction of the discourse history 306
5. The miorphology routine 307

Table of Conients

CHA PTER ONE

Introduction

1. A Computational Model

The ability to speak is as natural to us as the ability to see or to use our hands to grasp

objects. We are fast,1 we are accurate,2 and we are unaware of the mechanics of how we do it. By

studying language production as a computational problem, as by studying any other natural

ability with these properties such as vision or manipulation, we can gain insights into the workings

of the mind.

As easy as it is for us to speak, we know from linguistic and ethnomethodological analysis

that the process is complex. Even if we leave aside the question of how we arrive at the thoughts

behind our words and look just at the "linguistic" part of the process-selecting words and

constructions, applying grammatical rules, and producing the words (phones) in sequence-it is

clear that very sophisticated rules are being followed. Somehow we select one lexical/syntactic

combination from the many possible alternatives, managing somehow to attend simultaniously to

the potentials of the different constructions, our multiple goals, and the constraints arbitrarily

imposed by our grammar. We follow conventions of direct utility only to our audiences and

actively maintain elaborate coherency relations across large stretches of discourse.

Our ability to do all this with such facility, needs to be explained. For this, a static

description of the rules being followed will not be sufficient: we must explain what it is about the

way these rules are represented and manipulated that insures that the process of language

production is tractable and gives the process the character that it has. In short, we must develop a

computational model.

t. The Guine.is Book of Records speed record For reading nglish is 400 words per minute. A normal speaking rate is in
excess of 160 words per minuteor 8 to 10 sylables per second.
2. A study by labov [labov...eveyday...gramaticality] has shown that 75% of everyday speech is grammatical by any
criterion. If general rules for ellipsis and self-editing are added, this figure rises to 90% for non-academic speakers talking
about everyday experience.

A compufational model

-. , , . '. .. . P, - " - - . ' - ., . A- -r. .. , I ̂ . ., J

.

-10-

If our model is to be compelling, we must limit its computational power very carefully. A

computational model that permitted.the use of arbitrary procedures-a turing machine-would

not be interesting as the basis of a theory because all that it would explain would be that language

production was computable; something we already believe. We must look for the weakest

representational devices that can do the work: devices from whose computational properties the

characteristics of human language production will inexorably follow. By doing this, by restricting

the kinds of behavior that our model is capable of, we can extract predictions from it and make it

subject to empirical tests.

The theory that I will propose in this thesis revolves around the specification of a processor,

an abstract device that controls every aspect of the timing, the scope, and the access to information

of all actions that occur during the linguistic part of the production process. Trhis processor has

specific limits to its abilities, limitations that follow directly from the way in which it represents its

computational state (i.e. its plans, its history, its current context) and its state-transition algorithm.

We can describe these limitations succinctly with the following hypothesis:

Language production is perforned by an indelible3 process that produces texts
incrementally and in their natural order. As a consequence of these constraints as
embodied in the control structure of the proposed theory, production takes place at a
bounded rate and in time proportional to the size of the message to be conveyed.

In specifying how the process is controlled, the theory does not attempt to delimit either the

facts of English grammar that process obeys or the specific usage heuristics that dictate what will

be said in given situation. They are too large a problem for one researcher or even one generation

of researchers to presume to solve. Instead, the processor is designed as an interpreter: a constant
"kernal" process that appeals to an outside grammar and body of heuristics for the specifics of

what it will do. The theory dictates how the grammar and usage-heuristics are to be represented

and thereby how they interact within the process; Fixing the representation they can use has the

effect of indirectly specifing the facts themselves, since not every fact that one might imagine can

actually be expressed.

1.1 Language production as decision-making - two alternatives

As part of the model, we must characterize what kind of a computational problem we take

language production to be. Is it a search process that explores a space of possible output texts? Is

it a recursive evaluation process that operates without a global context? Different

characterizations have lead - to very different process architectures and very different

representations for the same facts. As should be clear from the title of this thesis, I am modeling

3. In an indelible process, no working structures may ever be changed once they have been miade-they have been
written with "indelible ink". The theory of natural language parsing developed by Mitch Marcus [Marcus.book]
incorporates this same notion or indelibility as an integral part.

production as decision-inaking 1.1.1

a. ... ~.. tm'n. - n .maaamIflWfldaabi.weMSc~nasn. a... .. -- .Lsaaaun.m nhimaS flmmWMhSPIAIIflISY WSIAItmflhjuE.gAVAdhnk a *- stnsbflJMh.Mab. ~ei 'a

production as a decision-making process. The properties of decision-making then will dictate

what the theory must be concerned with.

Making a decision requires information, both generic and particular, which can vary in its

accessibility and its form according to the state of the process; A decision may be the joint product

of several information sources, each of whose contributions may be differently affected by

context; The outcome of a decision must have a representation, one that prominantly indicates

what further actions and decisions are to be taken; Individual decisions may be dependent of the

outcomes of other decisions and may not be able to function or may have very different outcomes

if made before those other decisions.

As a consequence of these properties of decision-making, the theory will be very concerned

about modularities in dic distribution of the needed information; representational levels will be

dictated by what kinds of information are needed simultaniously. The usual linguistic

representational devices-constituent structure, syntactic categories, grammatical relations,

transformations, morphological rules-will be reinterpreted as constraints on decisions. The

design of the control structure that dictates when the individual decisions will be made will have

enormous theoretical significance since it will be what determines whether decisional-

dependencies are followed or worked against.

As we shall see, the indelibility hypothesis is a strong forcing function on the control

structure of a decision-making process: under it decisions may not ever be retracted (though they

may be refined and embellished). Consequently if decisions are to be made optimally, the control

structure must see to it that no individual decision is made before all of the other decisions on

which it depends are complete. This fact has the important corollary that many of the standard

computational decision-procedures are unsuitable for use in language production, at least as they

are ordinarily formulated; these include: relaxation,4 hill-climbing, hypothesis and test with

backup, and backwards chaining from goals. Without these techniques it is not obvious, a priori,

that goal-directed language production is possible under such a hypothesis. The theory and

program of this paper are offered as evidence of its sufficiency.

4. Any parallel algorithm for decision-making must cope with the fact that the dependencies between decisions in
production-constraints imposed by earlier parts of the discourse and by the more important goals of each
message-impose a very nearly sequential ordering on the decisions if they are to be indelible. A parallel progressive
refinement technique such as Mark Stelik [steik] has developed that uses .he posting of constraints between many
sitnultanious active decision-nakers to narrow down its choice set could possibly be used in an indelible language
production model provided that some natural way could be found to insure that texts appeared in their natural order
rather than just according to which decision completed First. lie fact that people do not appear to employ progressive
refinement at least over large large bodies of text (i.e. multiple clauses, see page (planning.versus.editing>) is probably
related more to the kinds of intermediate representations actually available to people than to theoretical difficulties with its
control structure.

what kind ofproduction 1L~l. t

- 12-

1.2 What kind of production to model

The character and time-course. of human production varies tremendously according to die

circumstances, e.g. from writing a difficult essay to fuzzy conversations over breakfast. This

variation involves speed, the possibilities for editing, the availability of external memory, and die

speaker's conscious involvement in the process. Rather than attempt to capture the entire

spectrum of language production in a single theory, I have singled out what I take to be the

"basic" production process, and assume that the variations come about through interactions

between the basic process and other processes such as the speaker's language comprehension

process ("listening to oneself') or a planning process with a source of external memory (e.g. pencil

and paper). It is suggestive to heuristically identify the basic process with the subjective

"immediate mode" described below. Bear in mind however,.that introspection and existing

psycholinguistic data do not even begin to determine the details of any effective processing model.

The identification is therefore only intended to focus the readers expectations when assessing this

theory.

In everyday conversation, we operate in immediate mode-we speak without rehearsing

what we will say and with only a rough sketch of what we will say next. Similarly, when writing a

paper or reflecting on what to say, it is a common experience for phrases or even multi-sentence

texts to "spring to mind" in their final form as though we were actually hearing them, and without

our having made any conscious effort to form them from their constituent parts. If, on reflection,

we decide a phrase will not do, we do not consciously break it down and fashion the changes,

rather, a new phrase appears in our mind with something like the modifications we want.

The identification of immediate mode as the guideline for determining the proper level of

capabilities for the "basic" process is a post-hoc judgment. My original work on die computer

program was not intended to match any particular human behavior hut just to provide for the'

necessary decision-making within a suitable environment. It developed that the features of the

program's design which made it favorable for decision-making lead to inherent mliitations on the

amount and kinds of information that were available from moment to moment. These limitations

parallel those of people in immediate mode, e.g. words can not be taken back; there is only a

limited lookahead;5 and the program, like a person, sometimes talks itself into a corner. This

coincidence of abilities, as coarse as it is, is intuitive evidence that this synthetically derived theory

is plausible as a theory of the human production process as well as for language production in the

abstract.

5. In referring to lookahead limitations in people, I am considering phenomena like these: while writing the first draft of
a paper you reach the end of a complex sentence and realize that the sentence would work better if it began with the
phrase that you just ended it with: or, later in the paper after you make 'a particular point, you'realize that for that point to
be properly understood, you must go back to a much earlier paragraph and expand some definition. With unlimited
lookahead capabilities, these problems would have been foreseen and handled correctly tIhe first time.

The Linguistic Component I.1.2

-13-

2. The Linguistic Component

At the basis of this research is the hypothesis that die linguistic part of production can be
legitimately and profitably established as a separate component within the process. For this
separation to be sensible, it must be the case that the interaction between the "linguistic

component" and the rest of the process can be precisely specified and that the amouit of "cross-

talk".between them-the degree to which they must share assumptions about representations and

contingencies-is small.

The other components of the process-the expert program, the speaker, and the language

understanding componbent-are not developed in this thesis except to the extent required to

support the "micro-speakers" (next section) used to test the linguistic component.

'the expert program From a practical point of view, the driving force behind the development

of a sophisticated language production capability has been the emergence of interactive,

knowledge-based consultant systems. Programs like MYCIN [nycinj,)IG [digitalis], and MCSYMA

[macsyma-refl, to name just a few, must communicate fluently with user-specialists who do not

necessarily have the time or the motivation to learn programming languages or a special keyword

syntax. Consequently, as the mountain to Mohamed, it is the program that must learn a natural

languages rather than the casual human user a computer language. The computer program I have

written to demonstrate and experiment with the model In psychoogicalterms, we can think of the

expert program as the locus of all of the non-linguistic motives, concepts, representations, and
decision-procedures that ever come into play in production.

The speaker_. The primary function of these expert programs is to solve problems in their own

domains-not to speak English. The data structures they use and the procedures they follow will

have been designed for the convenience of solving their particular problems and will not, by and

large, already incorporate procedures for formulating well chosen remarks to the user at

appropriate points. Instead, I will assume that such procedures are incorporated into a separate

component which I will call the speaker. (This is a conceptual distinction; whether or not the

speaker and the expert program are physically separate programs is not relevant to any of this

work.)

For the most part, a speaker component will be specialized to the domain and

conversational situation of a single expert program. Its job will to know when something should

be said and to plan the content of the utterance(s) (a representation of this plan is what will be

sent to the linguistic component as the "message"). It will decide what propositional content and

speech act(s) to express, which details must be included in the utterance and which can be

assumed as common knowledge, and whether any other constraints such as ordering, highlighting,

The Linguistic Component 1.2

14-

or even word choice, must be imposed in order that the utterance will have its intended effect on

its particular audience. (See [cohen-thesis] for discussion of how this planning could be done.)

The language understanding component Presumably, any program that can speak to its users

in English can also understand it, and will include facilities for parsing and semantic

interpretation. However, I will have nothing to say about such facilities in this thesis.

Conventional wisdom says that the two are closely related and it has been suggested that they

should use the same grammar [kay-shared...grammarJ, but no practical proposals have been put

forward. My own inclination is to believe that a process-neutral encoding of the relation between

the possible natural language constructions and the speaker's intentions-what the constructions

can be used for-could, be profitably shared,6 however, the translation of a grammar into actions

will necessarily be different for production and comprehension if we are to take advantage of

efficient algorithms.

In other respects, there appears to be a growing convergence of the theoretical claims that

are being made about the computational power of the language processor. Like this generator,

the parser designed by Mitch Marcus [mitchsthesistbook]is indelible-never retracting a decision

once it has been made, and both theories make critical use of David Marr's "Principle of Least

Commitment" [marrleast-commit] to control how much information they try to decide at each

point. The fact that such highly constrained processors can be made to work is support for

hypotheses that the structure of natural language is sensitive to processing constraints.

2.1 Between the speaker and the audience

Functionally, the linguistic component lies on the path between the speaker and its

audience. The speaker decides what it wants to say, constructs a representation of its goals and

references-a nessage-and passes it to the linguistic component.

6. In the present design, this is the information that is represented in the dictionary,

The Linguistic Component 1.2.1

* .*.. ~in *.s S..a * .t9.~*fl a. te iSOhUWtiUAAm'44S.d*,.. N.h b....&it.sdeLbbI.aSMLN.nflmhmdimnna.
matSflSmnAI&iiI

4
.A*UI.

15- Is

Speaker-Expert-program

B F ;the "message"
C D

B? E? C?

A Ev B - C
FD

Linguistic component

-. Audiencet-
Figure One

The linguistic component understands the messages it receives as programs that dictate

what decisions must be made in order to produce an English7 texta that expresses what the

speaker has intended. As in any program, the hierarchical structure of the elements in the

message is critical. The initial, more important or more encompassing elements will be realized

first, creating an environment that constraints, grammatically and rhetorically, the options

available for later elements. In the sketched message in figure one, element A is most important

(perhaps it identifies special roles that B, E, and F are to play) and it will be realized first. The

message is decomposed one level at a time, with lower levels remaining unseen until they are

reached; thus A is realized in terms of some linguistic expression involving B, E, and F, but

without any awareness at all of B's "subelements": C and D.

While it is decomposing the message, thd linguistic component is not completely cut off

from the speaker. As diagramed in the figure, the component may at any point ask the speaker

questions about a specific message element in order to determine facts that are important only to

it (for example "person" and "number") or to further decompose some element, in effect

extending the message. The speaker is always accessible but the timing and the computational

7. This research has only looked at one natural language, English. In the future, it will be very important to see how this
theory of production is affected by facts from other languages, particularly SOV languages such as Japanese or Dutch.
Unfortunately however, building a production facility that is fluent and appropriate requires designers of native fluency in
the language used, and I am only IluenI in English.
8. For practical reasons, this research has involved only the production of texts. The further problems of producing

actual actual acoustic signals with approiriate stress and intonation have been considered but the work is too premature to
be discussed here.

The Linguistic Component -1.2.1

%Lm~. .inh.~... -. ..aU.imJmm.d~Sm'S~.b*h.m&eiJhi..Lsj. i..~. -. ~ ,. 2...~. .mP*&.wd~.M4Ias1n.u. ~'~"- ~-S.nSasas~aSSiLSiti

16-

context in which the speaker is consulted are dictated entirely by the linguistic component.

'[he speaker has no control over the actions of the linguistic component beyond supplying it

with messages. Whether it continues to be active while the component is operating is not

important to the theory. Whether it should have the ability to interrupt the linguistic component,

perhaps in reaction to what it hears while "listening" to the component's output or monitdring it

in some. other way, is a question I will leave open. There are some eventualities (such as structural

ambiguities) that are difficult to foresee when developing a plan for execution by a linguistic

component of this design, and there are also possible divisions of effort within the speakers

planning process which might benefit from a "feedback" design of this sort.9 Before developing

such a design, however, it is critical to have a clear understanding of the kinds of linguistic

information that are naturally available at different stages in the production process and of how

they relate to the vocabulary of the speaker's planning process-one of the concerns of my

research.

The output of the linguistic component-tlie English text-is produced in a continual

stream during the whole time that the message is being realized. Left-to-right order is reflected in

the order of subsequent decisions and refinemenits from the first moinent that it appears in the

linguistic plan, since already spoken text is an important source of constraints on later decisions.

2.2 A cascade of two transducers

As an automata, the linguistic component is best described in terms of two transducers, with

the output of the first becoming the input of the second. The first transducer goes from the

message to a surface structure level representation of the utterance to be produced-the

"working" data structure of the linguistic component-and the second goes from the surface

structure produced by the first to English text.

9. A very interesting model of the production of psychoanalytic developed by Clippinger and Brown
[clippingere-rma...-inap[clippingersrnma-bood1 [brown..erma made critical use of such a feedback design, with the result
that it was able to produce very natural hesitations and restarts in its monologue.

The Linguistic Component 1.2.2 -

- 17-

Message
to

DictionarySurface
Structure

Surface
Structure

(Grammar to
Text

Figure two

Both the message and the surface structure are treated as totally ordered sequential streams'

of data; only a single token is processed at a time, and it is processed only once. The two streams

are processed "on-line", the output from the first transducer for one token being completely

consumed by the second transducer beore the first moves on to its next token. The individual

transducers are simple finite state machines-they have the ability to traverse their input streams

and bind contextual variables but little else. Their transducing powers come from two bodies of

permanent information, the "dictionary" and the "grammar", to which the transducers will

dispatch according to what they find in their input streams. The procedures and schemata in

these two "libraries" are what do all of the real work of the linguistic component; the transducers

are responsible for the controlling when the libraries are used and for maintaining the linguistic

context to which they will refer. Since, as we will see, the definition of the context and the order

in which actions are taken are the key to the linguistic component's representation, the structure

of these transducers will be all important to the theory.

The "decisions", whose dispositions are so important to this theory, are made almost

exclusively by the first transducer; they are the decisions that realize the individual message

elements of the message through the selection of particular surface structure phrases (or refine

existing ones). The second transducer in effect "executes" the decisions of the first by interpreting

the surface structure as a' program of "linguistic actions": printing words, annotating the

grammatical context, recording the history of the process,' and propagating grammatical

constraints.

The Linguistic Component 1.2.2

usna.&nmmaab~hmmSbssn 6*~ ~ -. ..~*g** saa.ShUbt *dsitsflihstthbtd&i.....fl.b.e..ssbs4b.bIj,61..das.*as*ahdh.h.aa..h..,..a.mdba.Ia a..

-18-

Two transducers, one controller The special property of this cascade is that the two

transducers have been folded into a single process: the traversal of the surface structure. The

message starts out as the sole constituent of the root node of the surface structure tree; it is
replaced in that position by its realization, with the realizing phrase incorporating at its fringe the

next level of message subelements. A single controller traverses the surface structure in the

normal top-down, left-to-right order, dispatching to the grammar for the execution of its linguistic

content and to the dictionary for the realization of the embedded message elements. If a fringe

constituent is a word, it is printed out as part of die text; if it is a message element, it is realized,
replaced in the tree by the new phrase, and the new phrase then traversed as an extension of the

surface structure.

The two transducers can be reliably folded together because of a stipulation on the

structure of messages (the "well-formed-ness condition", page <wellformed-nesscondition>)
which dictates that the enumeration order of a message (the order in which its elements will be

realized-a reflection of its hierarchical structure) must be such that any message element that will

make reference to other elements in its realization must in fact be realized before any of those

elements-there can be no loops in the enumeration. With the enumeration of a message

guarenteed to be a tree, we can embed its realization within another tree and be assured that its

traversal will be continuous.

2.3 Representing linguistic context - the tree

In order to understand the two transducers we must understand the data structure that

binds them together, the surface structure representation of the utterance under construction

known for short as Mhe tree. Once we have seen its notation and understood its relationship to the

grammar and the realization process (i.e. the dictionary), we will move on to a sketch of the

controller, showing exactly how it traverses the tree and how the tree is used to indicate the proper

routines to dispatch to in the grammar and dictionary. When that is done, we will look closely at

how the tree and the controller are used as the linguistic component processes a simple example

message.

Figure three is a diagram illustrating the representation used for the tree. (it is not a

snapshot of the tree itself; we will not see one of those until page <snapshot.aftersrivial-msg>.)

Two kinds of structures are indicated: constituent structure to define how the pieces are connected

and how the controller is to traverse them, and and grammatical labels to describe the linguistic

properties it is intended to have.

The Linguistic Component 1.2.3

'sa . .i ~ tn .. '.0 A,'.) ... w.'a' a...".- ; -..*.

-19-

Grammatical Labels Constituent structure

"Category" ase,."d"clause

"slot"
[subjectJ[predicateJ

f"slotname' s"_ _

[mvb J [(objecti I [(complement j

Figure three

Constituent structure is indicated graphically by the pattern of trapazoids and brackets: the

trapazoids indicate "nodes", and the brackets positions of possible constituents referred to as

"slots" or "constituent slots". The actual constituents themselves are the slots'. "contents". The

node labeled "vp" is the "predicate 'constituent" (also abbreviated "[predicate]") of the "clause

node". Besides being a node, the contents of a slot may be a word, or a message element, or they

may be empty. A node consists of its categories and the slots for its "immediate constituents" (i.e.

just those at the bottom of the trapazoid). A subtree from a given node to the fringe of the tree

will be referred to as a phrase.

Grammatical labels will either label nodes, in which case they will be called "categories"

and printed just above the trapizoid; or they will label constituent slots, in which case they will be

called "slotnames" and printed.inside the brackets. A node or slot may have more than one label.

This constituent structure representation is different than most others in die linguistic literature

because it explicitly labels the constituent positions, rather than just defining them in terms of the

relative position of nodes (this is also done in so-called "relational grammar" [relationalgrammarl

and was used in some early phrase structure systems [posta.phrase..str.seview]). The "subject"

constituent, for example, would be defined as the noun phrase node directly under a clause node.

Slotnames are very important however because they are what carry the grammatical properties of

the constituent positions; a comparably powerful relative position scheme would either an

unbounded computation as the tree grew in depth or an undue multiplication of category

names-the use of slotnames is a more natural treatement of grammatical functions.

The consituent structure is only really used by the controller. It defines the path it will take

through the tree: a standard, depth-first search pattern as shown.

The Linguistic Component 1.2.3 -

t ~ 2 *...~4ti~V tii4%%4.4 2

-20-

The importance of this path is not in the nodes and slots it traverses but in the sequence of

grammatical labels that it defines and in the contents of the slots at die tree's fringe. Each label is

associated in die grammar with a set of procedures, either of it own or procedures of other labels

that are contingent on it; these procedures are referred to as grammar-routines. The slotname

subject, for example, has grammar routines of its own (i.e. triggered by the controller when the

[subject] is reached, see below) that handle such things as the inversion of subject and verb in

questions and the insertion of the function word "it" in extraposed clauses such as "f's easy to be

confused by all the terminology". The constituent labeled subject is looked for specifically by the

grammar-routine that performs subject-verb agreement in tensed clauses, and by the morphology

routine when it needs to determine whether a pronoun should be in the nominative case. i

Growing the tree

The tree is a temporary structure created by the r6alization process (the first transducer)

and garbage collected once it has been used. Figure five shows the initial configuration of the tree

just as a message (the trivial one we will use as the example) is being added to it to start the

linguistic component processing.

root-node

[root-constituent]

(lady-macbeth (persuades (macbeth (action))))

(macbeth (murder (duncan)))

Figure five

The "root-node" and its one "root-constituent" are the only permanent parts of the tree. They

have no grammatical properties and are just a way to "tie off" the tree in a consistent manner.

A preview or the realization process The tree is extended whenever the controller reaches a

message element at the fringe of the tree (actually an "instance" of a message element, see section

<elmt-instance>) and the element is replaced as the contents of its slot by a newly created node.

The Linguistic Component 4.2.3

-21-

This node appears as the last step in the realization process, which begins (if this is the first time

the message element has appeared) with the interpretation of the element's dictionay entry. (The

realization process may also result in a single word. or in another message element.)

A dictionary entry consists of a set of possible "choices" and a set of "decision-rules" to
pick between them, where a choices is a symbolic specification of phrases, words, or subelements

of the element being realized, and a decision-nde is a list of predicates that may examine both the
linguistic context and the context of the speaker and the choice that should be selected if those

predicates are true. The bulk of the realization process consists of interpreting the decision-rules

to select a choice, then possibly going through further sets of decision-rules to see if the

grammatical or rhetorical context dictates that the choice should be transformed (see

pg.(transformations.intro>).

Extensions to the tree occur when the selected choice specifies a phrase. The vocabulary of

the specification comes from the permanent knowledge base in the grammar, part of which is a

listing of all of the legitimate categories in the language, and for each category, of the the
legitimate sequences of slotnames that it can have. These listings are organized in terms of
"constituent schemas". Every choice has (at least) three parts: (1) a "phrase-schema" that defines

a tree of constituent-schemas possibly augmented by additional slotnames or categories (often

referred to as "category-features" and "slot-features", or just "features") and by specific words

from the English vocabulary; (2) a list of formal parameters that will be used. to pick out

subelements of the message element being realized; and (3) a mapping from parameters to slots at
the fringe of the specified phrase. Figure six lists all of the structures from the grammar and. the

dictionary that would go into the realization of the example message element.

To produce new' constituent structure from the choice, its phrase-schema must be

instantiated and the mapping applied to it. The result for this example (now knit into the tree) is

shown in figure seven.

root-node

[root-constituent]
clause

[subject I [predicate
ady-macbet c

[verb J [objecti] [complement I
persuade macbeth

(macbeth (murder (duncan)))

Figure seven

The Linguistic Component 12.3

~*~*

Message Eolement

Dictionary Entry

the Choice.

-22-

(lady-macbeth (persuades (macbeth (action)))).
(macbeth (murder (duncan)))

(define-entry persuade-entry (frame)
variables ((persuader (car frame))

(persuadee (cadadr frame))
(action (cdadr (cadadr frame)))

default
(clause-DO-COMP.persuade persuader

persuadee
action))

(define-choice clause-DO-COMP.persuade
parameters (subj do comp)
jphrase (basic-clause 0

predicate (vp-do-comp 0
verb "persuade"))

map ((subi . (subject))
(do . (predicate object1))
(comp . (predicate complement))))

(define-schema basic-clause
categories (clause)
slots (subject predicate))

(define-schema vp-do-comp
categories (clause)
slots (verb objecti complement))

Figure six

2.4 The Controller

The controller has two functions: (1) to execute the "plans" defined by the input data to the

two transducers, and (2) to maintain the computational environment expected by the procedures

in the dictionary and grammar. Only the knowledge base for the first ftnction needs to be part of

the actual controller, as the maintance of the environment will really be done by the grammar-

routines with the controller acting only as a repository. Even the plan execution is very simple,

since all that the controller must know is how to traverse the tree and how to access.the grammar

and dictionary based on what it reads in the tree.

The tree-traversal algorithm is given by the flowchart in figure eight.

The Linguistic Component

Constituent-
schemas

1.2.4

-23 -

Moving from one step to the next in this algorithm is a matter of reading-off the appropariate

properties from the nodes and slots in order to determine where next to go. (The complete

flowchart for the controller is given in chapter two on page..)

The first transducer is taken tip exclusively in the dispatch to the function "realize". Every

message element that is embedded in the tree must eventually pass through this step of the
controller, at which point it will be passed to the realization process via that ftetion. After the

message element's' realization-i.e. the node, word, or other message element returned by
realize-is knit into the tree, the controller loops around and repeats the dispatch on the new

contents of the slot.

The second transducer is a bit more widely distributed. Every grammar-routine is

associated with two items: (1) a label from the set of constituent structure labels, and (2) an

"tevent" within the controller. There are five generic events in controller; they are defined in

terms of controller's passage through the constituent structure and correspond, naturally enough,

to the different kinds of constituent structure labels.

The Linguistic Component

process-
node

process-
slot-

dispatch on contents.

msg-eimt => REALIZE

word => f=>"sayit"

node => process-node.

Figure eight

4.2.4

- . . - - .. ~. ~.. ~-.-,CW~2'G.;~,.d&~Aa,, ~ r& &;~A~2 .,~A-~C4~ WA~kt ~

-24-

ENTER-NODE' LEAVE-NODE

ENTER-SLOT . LE AVE-SLOT

AFTE R-REALIZATION

Figure nine

The attachment of the events to the arrows between the boxes is really a pedagogical exageration;

the boxes are really constituted of nothing more than the execution of the routines associated with

these events. X-node and X-slot events are associated only with categories and slotnames

respectively; after-realization events are associated with slotnames.

The current context The rules of grammar embedded within the grammar routines, will be

couched in a vocabulary that is always interpreted with respect to the current position of the

controller in the tree. This position is defined in terms of the values of three variables: current-

node, current-slot, and current-contents, which are set and reset as the controller moves.

Grammatically important facts about the tree-the vocabulary of the grammar rules-are

represented in terms of a set of variables that are bound by the tree but have their values set and

reset by of specific grammar-routines. The first three variables are referred to as controller-

variables, and the second, open-ended set as graminar-variables. In addition to the variables, the

controller maintains a discourse history, consisting of records of all important events that have

occured, including the realization of every message element instance, every selected choice, and

every decision brought about by the grammar (pgXgrammar-decisions>).

In summary, the current context of the lingustic component can be viewed as a four

dimentional array consisting of (1) the name of the controller event or subroutine presently being

executed, (2) the values of the three controller-variables, (3) the values of the grammar-variables,

and (4) the records of the discourse history.

2.5 From message to text - an example

At this point, we have accumulated enough machinery and terminology to follow an

example message through from beginning to end. The message I will use is the one we saw earlier

about Macbeth and Lady Macbeth. The transparency of its contents will be an advantage since it

means that we will not have to dwell on domain-specific decision procedures and can concentrate

on the linguistic processing. The message comes from the "Macbeth Domain" described in the

The Linguistic Component I.2.5

fl -uIai'aaflfl~.~mS -- -. .- -~ ---- -. -a-fl;

25-

next section of the introduction. It was originally part of a frame describing the properties of

Lady Macbeth as a character ih the play. Taken out of context like this, the property does not

draw any thematic transformations and thus will be realized as a text with almost the identical

"content" as its message:

"Lad)' Macbeth persuades Afacbeth o murder Duncan."

Roughly all that has happened is that we now have mixed case English words where we formerly

had hypenated ust' atoms; the verb "persuade" appears in the present tense singular agreeing

with "Lady Macbeeh"; there is punctuation; and the embedded property, "Macbeth murders

Duncan", has been subordinated.

With this simple example, we can proceed via very close snapshots and still list practically

all aspects of the current context each time. We will begin the example at the point just after the

original message has been realized (as described above) and before the controller has begun to

traverse it.

Controller State
(I) event: aterrealization
(3) Granintar-riables: undefined
(-) Discourse history: { (lady-macbeth...) ". "}

(2) Controller-variables:

"current-node"

-s" o t ":sr o t- n d e
currents rootconstituentl

"ecurrent-content" cam

[subjectI [predicate]
- lady -mac bet

[verb J [obecti I [complement .
persuade macbeth

(macbeth (murder (duncan)))

Figure ten

Only one event has happened so far, the realization of the message as a single clause phrase

embedding three subelements. This event is recorded in the discourse history but I will not

confuse the reader by including the details of the record; it is discussed in section

(discourse...history>.

with the controller in this state, the next thing that happens is the dispatch on the "type" of

the value of the variable current-contents. As this type is "node", the controller calls its process-

node routine recursively and we proceed to look for any grammar-routines that are indexed by the

The Linguistic Component 1.2.5 -

.,&. a -

-26-

event "enter-node" and the category "clause". There are several of these, and their effect is to set
various grammar-variables. The next snapshot shows the state of the controller after we have

passed through die clause node and subject slot and are about to send the current-

contents-lady-macbeth-to the realization routine.

Controller State
(1) event: realize
(4) Discourse history: unchanged

(3) Grammar-variables: current-subject - lady-macbeth
current-senence
current-clause

root-node
(2) Controller-variables:

[root-constituenti
"current-node" clause "CIs"

"curren (-slot" e ujet] [prediae

"current-cotents"-----' lady-macbeth VP

[verb J [objecti I [complement J
persuade macbeth

(macbeth (murder (duncan)))

Figure eleven

Two fine points: the value of the "current-subject" will always be the message element that

originally filled the slot rather than the noun phrase that replaces it. This is because the

grammatical properties of the subject with which we are most concerned, here the influence of the

subject on die embedded property, revolve around the subject's identity at the message level; by
making our record of "current-subject" when that level is readily available to us, we have a

simpler and more efficient process. The second point is that the two other grammar-variables are

pointing not to clause node itself, but to a record of it. The nodes and slots of constituent

structure are strictly temporary objects that may be garbage collected as soon as the controller has

passed through them, while the records of the nodes include only that information that the

grammar writer believes will be useful grammatically and will be retained until they are no longer

referenced by any of the parts of the controller.

The message element lady-macbeth is realized trivially by an entry comparable to the one

shown for the whole property. It has no decision-rules only a default choice, namely to use die

The Linguistic Component 1.2.5

m~&ffitfla.am..fl . - .flflflfl~LSdAA'P'S'dhflSbS..m4....X. * * ~,, pa.a'.cawn a iaeSiIMfl.a iw'Jba .tassaw.cajA. a...IAi4~,,.itdtffib&, .~,,.

-27-

word "Lady Afacbeth".10 A dictionary entry this simple can and should be schematized to ease

the job of the dictionary designer; the designer writes down the first expression below and when

the system is loaded it is expanded into the second expression with the customary load-time

syntax for entrys.

(def-word-entry lady-macbeth ILady Macbeth)

(define-entry lady-macbeth.entry 0
(matrix

default (use-word "Lady Afacbeth'))))

Once this word is returned and knit into the tree, the controller immediately loops around and

passes it to the morphology routine to be printed out.

The next snapshot catches the linguistic component several constituents further along, after

it has left the [subject], entered the [predicate], and passed through the first two of its constituents.

10. "Lady Macbeth" appears in the vocabulary as a single word even though it is printed out as two. Because it is
"atomic", the linguistic component is unable to notice that that the lastname "Afacbeah" will appear twice in this text,
and thus will not automatically consider using an alternate phrasing such as "her husband' as a stylistic variation even
though a speaker like the Macbeth domain would be able to supply the necessary supporting information. Rules of this
sort can be expressed in the linguistic component through.the use of well-aiinotated dictionary entries and the shared
"subsequent reference" routine within the realization process. See section L.C.3.1 for further discussion.

The Linguistic Component 1.2.5

-28-

Controller State
(1) event: realize
(4) Discourse history: (macbeth "..."

lady-macbeth "...

(lady-macbeth (persuade...)) ". }

(3) Graininar-variahles: only those relevant to [complmenJ's
current-subject - lady-macbeth
current-verb - "persuade"
curren-objeclt - macbeth

root-node

root-constituent

clause
(2) Coniroller-variables:

[subject [predicate I
lady-macbeth V1e"current-node"

[verb J [objecti] [complement J+--"current-slot"
persuade macbeth "Current-conents"

(macbeth (murder (duncan)))

"Lady Macbeth persuades Macbeth... //"
Figure twelve

rube dictionary entry for a murder consists only of a default choice, just like the earlier

entrys. The difference is that clauses in a complement slot must undergo some kind of

"embedding transformation" if they are to be grammatical. The need for the transformation has

nothing to do with the properties of the message element leading to the clause (though the

particular choice of transformation may be sensitive to them); consequently, we should have the

transformation process apply transparently to the entry-based realization process. TUhis is done by

introduction tests for transformations and their application as a regular step in the realization

procedure, as we can see from the flowchart in figure nine.

The first thing that occurs in the realization procedure is a test to determine whether or not

this is the first instance of the message element to appear in the tree, which it is. Had it been a

subsequent reference, we would have taken the other fork of the procedure and tested whether we

could have used a pronoun. Within the "main stream" we interpret the clement's dictionary entry

in order to arrive at the realization. Every entry has a "matrix" decision, the one that determines

what category of phrase will be used, e.g. noun phrase or clause, and may have an arbitrary

number of other "refining" decisions that can add additional features to the phrase or add

optional constituents. The entrys of this example, of course, have only matrix decisions.

The Linguistic Component 1.2.5 -

I .

aaa~amw.m. us ..~ .hs~SSIdSflU~tddtmAWlad iSWflUbUh.~ OS .. S OSfl&**S~ sfl Si ~ *S SI*OtiS&gItIbIbSSSIEjip*DflWSSdIShbMbbjhIt &.u~iS,.SMIhSAUi.L't

-29 -

ELAf-INSTANCE

MAIN mie iond
STREAM <rrr .~fore?' yes

make a
DECISION

CIIOICE-APPLICATJON

matrix
e? yes apply-transforpations

no

~n
"Yes csons?

no I

make default-decisions

CIIOICE-APPLICATION

evaluat-choice

POSSIBLE-REA LIZATON

Figure thirteen

SU BSEQUENT
REFERENCE

select is a
subseq. no /pronoun

ref. strategy Wpossible.

yes

6-

Once the matrix decision has been selected, here by default, the "entry-interpreter" looks to

see what transformations, if any, are associated with the choice. This association is on the basis of

the pattern of slotnames specified in the phrase-schema as shown in figure fourteen. Because the

phrase-schema includes an objectl slot, it may be subject to the passive transformation; because it

includes a predicte slot, it may be subject to verb phrase deletion; because it includes a subject

slot, it may be subject to equivalent noun phrase deletion; and so on. Just as with the regular

decisions of an entry, each of these potentially applicable transformations is associated in the

grammar with a set of decision-rules. At the time the grammar and dictionary are initialized, a -

postprocessor is run over the entrys and their choices in order to compile one monolithic decision

procedure for each combination of potential transformations that ever applies to a choice. Within

this procedure the order in which the different transformations are considered is fixed and

provisions are made to allow new transformations to be included after the .application of a

The Linguistic Component

I'

1.2.5

I 22

-30-

transformation changes the constituent structure labels of the choice so as to make those
transformations possible (i.e. more than one transformation can be applied to the choice).

In this case, passive will not apply because the element is not appearing in a thematically
marked context (section 111.1.2), and verb phrase deletion will not apply because it is not within a
conjunction or other "coordinated slot" (section <ellipsis>). Eguivalent noun phrase deletion
could apply, however, because the current-slot is [complement] and complements take only
subordinated clauses as constituents. Because the subordinating slot is [complementJ and die
grammar of complements is distributed between the slotname and the complement-taking verbs
(section <encoding-factsintosloLtnames.versusfinding-themjinthe-contcxt>), the decision
procedure now looks to the properties of the current-verb to determine what the range of
legitimate subordinating transformations actually is.

Complements to die verb "persuade", may either be "that-complements": "I persuaded
myself that I should go home and go io bed' or "infinitive complements": "Ipersuaded myselfto go

home and go to bed'. The choice between them is presently analyzed as a "marked"-"unmarked"

distinction: the that-complement is selected if the message element being realized is explicitly
marked to express tense or modality, otherwise the infinitive coriplement is selected, as it is in this

example.

APPLYING TRANSFORMATIONS

(1) Make the "matrix" decision of the entry
default (clause-OBJECT1..murder..)

(2) Is the phrase-schema of the choice associated with any a transformations ?

[subject] -> "equivalent-np-deletion"
[predicate] -> "verb phrase deletion"
[verb] -> "gapping"
[object1} .-> "passive"

(3a) Evaluate the combined decision-procedure for the transformations

{... } -> "equivalent-np-deletion"

(3b) and apply any transformations whose conditions are satisfied.

BEFORE AFTER
Phrase: (basic-clause 0 Phrase: (vp-obectl 0

predicate (vp-objectl) verb persuade)
verb persuade)) Map: ((obj . (objecti))

Map: ((subj . (subject))
(obj . (predicate objecti)))

Figure fourteen

The Linguistic Component 1.2.5

- 31 -

Transformations do their job by editing a copy of the choice that they apply to. In the case

of "equi", the editing removeS the dominating clause node from the phrase-schema and the

subject constituent from the map, leaving only the schema for the verb phrase to be instantiated as

the realization of (macbeth (murder (duncan))).

Subordinated clauses often must 'be prefixed with-a "complementizer", a word from a close

class of alternatives including, in this case, "thal" and "to". We can not put the responsibility for

this complementizer in the dictionary because we are specifically abstracting die dictionary's

linguistic specifications away from the peculiarities of individual grammatical contexts. The

responsibility cannot be given to the transformation that does the subordinating, since for

theoretical reasons the transformations do not have the ability to manipulate the so-called

"function words" directly (see section <2colorhypothesis>). This leaves only one other

place-the grammar routines. Which grammar-routine should be responsible, i.e. what would be

the correct constituent structure label and contorller event to index it by can be shifted by changes

in the design trade-offs taken by the grammar writer; my present analysis

(pg.<attachmentupoints-and..data.types>) is that it should be associaed with the slotname

"complement" and the controller event "after-realization".

Tl'he last snapshot catches the controller at just this point, after the verb phrase has been

instantiated and knit into the tree but before the controller has begun to traverse it.

[root-constituent]

[subject] C predicate]
lady-macbeth VP"currenode"

[verb] [objecti] [complement] .. "current-slot"
persuade n 'eth v ...- current-contents"

[verb] [objecti]
murder duncan

"Lady Aacbeth persuades Macbeth... //"

(define-label complement
after-realization

(IF (equals 'clause (category curent-node))
(THEN (decide-whether-to-say-"that"))

(ELSEIF (equals 'vp (category current-node))
(THEN (say "to")))))

Figure eleven

The Linguistic Component 1.2.5

~ ~ ~ .4 4
4
A~.4h 4. ~444~ .44~4J44~-t~~.4S .~ /444 ~ .~,.4kX 4. ,~. ~ A~4~4~ .4444 444 ~

4 4
4,J444hib

-32-

The grammar-routine first checks to see which of the two possible subordination strategies

was actually picked." 1 If it was 6qui, then the grammar-routine has the word "to" entered directly

into the text without ever occupying a slot or being processed by the morphology routine.12 If the

choice was that-complement, then the grammar-routine must initiate a further decision since the

complementizer "that" is usually optional. This "decision" is no different in form from die

decisions that make up the entrys in die dictionary, except for the place from which it is made.

individual dictionary designers may replace the grammar-supplied decision with one of their own

if they wish.

The remainder of this example is straight-forward. The controller moves into the new verb

phrase, eventually reassigning the variable current-verb but never current-subject, since it is

"managed" by clause nodes only and the clause node that might have dominated complement

constituent was stripped away by the transformation. The verb "murder" is left in the infinitive

because of the rule embedded into the morphology routine making it sensitive to the slot that

contains the current verb phrase. The final punctuation-a sometimes non-trivial detail, since it is

associated with the definition of a sentence's boundaries and these may not be decided upon until

the controller has actually reathed the next constituent-is realized when the controller has fihally

wound its way back up through the tree and "leaves" the "node" that is the "current-sentence".

2.6 Relation to previous work

Two other perspectives have been taken in other computational studies of production; they

are discused at length in another paper [tupast]. Briefly, there is one school that.we could term

"grammar-controlled lineari'zation and translation" [simmons_&_slochum1[goldmanI [wong]

[heirdornibestuproduction-re f[shapiro75][shapiro79l, and another, larger if less linguistically

sophisticated school that we could term "production directly from program data" [shrdlu

[Swartout][mycin..production-referencc][chester][roberts-frLgeneration]. (Two other important

systems: [erma] and [davey], fall into neither of these categories as they both employ extensive

grammars and vest control into non-grammatical processes; unfortunately, neither has been

further developed.)

11. It might be "safer" to couch this test directly in terms of the names of the alternate transformations (which will have
been included as part of the discourse history). As it stands, any subordinating transformation that produced a clause

could draw the "that" even if it was intended as a "obj-inf' construction as in " Your counIty expects every man to
do his duty". In the present grammar, a "raising to object" construction such as that must be analyzed as involving two

separate arguments at the message-level, the sources for "evey man" and "(evety man) do his duly" if it is to be
handled without changing the existing [complement after-realization] routine.
12. 1 lere we have an example of an indirect constraint by the linguistic component's design on the meaning of its terms.

All and only closed class vocabulary words are printed by grammar routines: since the "output" from a grammnar-routine
goes directly to the text without the possibility of being processed by the morphology routine, this establishes the defacto
requirement that any word that undergoes morphological adjustmeints to its orthographic form depending on the
grammatical context cannot ever be a closeed class word-a restriction which agrees with the linguistic concensus.

The Linguistic Component 1.2.6

-33-

The grammar-controlled school vests total control of the process in a topdown generative

grammar typically given as an ATN. The grammar hypothesizes a way that the message might be

realized, tests the message to see if that way would work, then constructs that part of the text if the

tests suceed, otherwise backs up and test the next grammatical possibility. Texts are produced as a

side-effect of traversing the AUN. Compared with using the message itself to control the process,

this technique is inefficient at best. More importantly, this design allows the possibility of

producing totally con fused text should the ATN ever backup over an arc-path that produced words

(i.e. it would start repeating itself without regard for context). Historically, it is the case that none

of these systems has ever had occasion to backup [Steward Shapiro, personal communication

19791: 1 conjecture that the reason for this is that the space of possible message configurations that

these systems have daNAlt with is relatively small, allowing it to be encodedd as tests for all the

possible contingencies directly on the arcs of die AIN grammar; I predict that when the

contingencies become too diverse to anticipate, the grammar-controlled systems will

metamorphose into a more message-controlled style.

The "direct production" school is much closer to my own philosophy. Their approach is to

start with a data structure of the expert program (their "message") and, in effect, evaluate it with a

special "text production" evaluator just as in other circumstances they might evaluate it with, e.g.,

the normal uLSP evaluator in order to perform some function. The structure of the message

governs what production processes are run and in what sequence (usually a strict, depth-first

sequince, evaluating arguments before functions and using the internal program stack to record

what to do next and what to do with "subtexts" as they are constructed). The "production

functions" for individual kinds of program objects assemble texts by embedding texts produced

for their sub-objects in a matrix text-entirely the same role, conceptually, as played by dictionary

entrys in my model. I believe that the difficulties these systems facc-almost virtual grammatical

naivete and an inability to produce text that is not absolutely isomorphic in structure to its

message- could be overcome, I hold, if they were to adopt an intermediate, linguistically

motivated representation in terms of which to realize the elements of their messages and which,

suitably interpreted, could then serve as a ready description of context and a mechanism for the

automatic (i.e. not expressly mentioned in the message) application of general rules (a policy

which, not uncoincidentally, is die central theme of the present theory).

test Micro-speakers 3.2.6

aaes.flS.w. m..m%
4
h..A.s.....m..... as.. a ..d -' . .. flI.IU.U~bSMSAU ...a.P.....I4S~h.d..hiIdl4.bh.hSUdUIMhbS~SbAd,' * .1

-34-

3. Micro-Speakers

One cannot develop a theory of a transducer without having some model of the input the

process will recieve and the motivations behind its structure. 'IThis part of this introduction will

present the micro-speakers that I devleloped to serve as this model. We will look at the kinds of

messages they produced and the texts that my program, MUMBIE, 13 produced from diem.

MUUNIIIJ is an experimental implementation of the my theory of natural language production and

serves as an experimental vehicle for exploring different analyses of linguistic constructinos and

the heuristics for using them. Its technical specifications are given briefly in appendix A.

3.1 Why 'micro' speakers?

Compared with the quality of texts being produced by other programs in the literature, this

linguistic component has been- intended from the outset to facilitate very sophisticated

production, e.g. the motivated use of: embedded clauses, ellipsis, pronominal and non-

pronominal subsequent reference, adverbial phrases, heavy-noun-phrase-shift, arbitrarily

embedded wh-movement, thematic relations such as focus and given/new, and the complete verb

group. (These are the contents of chapter three.)

To appropriately utilize such capabilities, an equally sophisticated speaker/expert-program

combination is required. However, while the basic linguistic theory to support the design has

been available for some time, the operational programs which would act as a test bed have not

been. At the MIT Artificial Intelligence I.ab the closest to an adequate program was the

"Personal Assistant" project, PAL [candy...pal; unfortunately it was never given a motivated

speaker component.

As a consequence of the lack of suitably powerful "real" speakers developed by others, I

was forced to develop test-bed micro-speakers by myself, with corresponding less ambitious goals

since the thrust of this research has been toward linguistic rather than pragmatic problems. To

date, five micro-speakers with minimal expert-programs have been experimented with. Each

provides examples of different kinds of linguistic problems. Each uses a very different style of

representation. (They are all are written in Isr, however, as is the linguistic component) This

variation of representation is very deliberate. It is appropriate because the linguistic component is

intended as such-one module that is to be combined with other modules written by other

designers. I have considered it very important to demonstrate the viability of the linguistic

component with speakers employing very different kinds of representations. The results of the

experiments with the five speakers are presented as evidence of this.

13. This is not an acronym.

test A!ficro-speakers 1.3.1-

.35-

In this section, we will look at the three most thoroughly developed micro-speakers: the

logic domain, the Kl-ONE-nets-as-objects-domaifl, and the Macbeth domain. We will look a

representative samples of their messages and the texts realized from them, and we will take

advantage of those examples to point out some the linguistic problems that MUMNBLE is capable of

dealing with. Below is a brief sketch of all of the micro-speakers that were developed in the

course of this research.

The logic domain Here, well-formed formulas in the predicate calculus, are supplied directly

to MUMmE, e.g. from V(x) man(x) - mortal(x) we get: "All men are morta". The domain is an

opportunity to study the decoding of message-level conventions such as expressing quantifiers as

determiners or type predicates as class nouns, as well as coherency in discourse, and the symbolic

analysis of possible realizations.

K L-ONE nets as literal objects KLONE is a highly structured semantic net formalism under

development at B1N [brachman.tihesis][currenut.kl-on&..req. In this experiment, Kin-ONE nets

were given directly to MUMBLE to be understood as literal descriptions of "concepts", "roles", and

"subconcepts", the primitives of the K-ONE representation. 14 From one net would be produced a

multi-paragraph text-one paragraph per concept, following a depth-first traversal of the net from

concept to subconcepts. '[his domain provided an opportunity to study stylistic variation, the use

of the thematic relations focus and given/new, and of the use of ellipsis and indefinite anaphora

including the automatic collapsing of conjoined predicates at the message-level.

Tic-tac-toe This domain is still in the early stages of development, however it already

provides useful examples. It is modeled after the work of Anthony Davey [davey], whose thesis at

Edinburgh presented a program that gave fluent commentaries of games of tic-tac-toe that it had

either played or read. My version employs a object-based representation (as opposed to the

representation of the KIMONE domain, which is relational), and provides an opportunity to study

how rhetorical intentions can control descriptions: e.g. whether to say "the corner opposite the one

you just took" or just "a corner".

The Digitalis Advisor The work on this domain was done by Ken Church part-time during

the fall of 1978. The inputs to MUMBLE were literal procedures taken from DIG, the digitalis

therapy advisor developed originally by Howard Silverman [originaldig] and was reimplemented

14. This is as opposed to using the concepts represented by a KIrONE net as a source of descriptions for individual
objects defined in terms of them. This is the intended use of the K-ONE representation; the micro-speaker has just been
a device for producing large texts (i.e. dozens of paragraphs) for the purpose of linguistic experiments without undergoing
the overhead of actually developing a speaker program that could independently motivate comparably sized texts. A
dictionary for this more natural use of K-ONE is being prepared but has not yet reached the stage where it can be
reported. I lowever, individual examples from this dictionary will be used later in the thesis when they are the best source
of examples on a given point.

test Micro-speakers 1.3. t

M'~a IS~flStSmbmdij4qa a...~. - V. ~ I~s~li ~m~eb* ~ ~ ~ ~ ~ ~ ~ ~ ~~~- .A',s.dSnbSW :.nJ.nd s

36-

for explanations by Bill Swartout using the language OWL [owL.reQ. The resulting texts were

comparable to, though not quite as smooth as, the texts originally obtained by Swartout in his

Master's thesis. Church's work demonstrated what had been suspected earlier, namely that

because its one-pass control structure is biased to expect rhetorically pre-planned input, MUMBLE

is not a good place to stage large-scale reanalyses of a domain's conceptual structure.

An earlier version of MUMNLE (circa. 1976) worked from issolated, hypothetical messages

drawn from the Personal Assistant Project, the Blocks World [shrdlu[winston.book], and the

MACSYMA Advisor developed by Michael Genesereth [genesereth]. Occasional examples will be

drawn from this work when they are appropriate.

3.2 The LOGIC Domain

in any study of language production, it is important that the message-level representation

with which the process starts is a credible one. It would be questionable, for example, whether a

production program that started from a dictionary of fragments of English sentences could be said

to have solved any significant problems. The predicate calculus is a very credible message

representation in this regard. It is an accepted, comfortable "internal representation" for the

programs of a large part of the artifical intelligence community; it has a universally agreed upon

interpretation; and it is sufficiently unlike natural language in form that ready demonstrations of

the vYork that one's linguistic component has done are possible.

The logic domain consists of a representation for well-formed formulas in predicate logic

(described in the next appendix), routines for translating formulas typed by a user into this

representation and storing them, and a dictionary with fixed entrys for the logical connectives and

inference rules and a set of conventions for new entrys that the user 'may write for particular

predicates, constants, and typed variables. There is no speaker or expert program perse, all of the

interpretation of conventions and application of discourse heuristics that a "speaker" would do

being embedded directly in the entrys of the dictionary.

The original work with the logic domain consisted simply of presenting MUMBLE with a

single wff and having it produce an English rendering. For example

V(b) V(s) space-for(s,b) ++ (table(s) V cleartop(s))

was rendered as:

"There is space on a surface for a block if and only if that surface is the table or it has a
clear top."

Different conventional interpretations of formulas Were experimented with, originally under

explicit control of the designer and later under program control using the analysis technique

described in reasoningjibotLpossible.choices...y.w. and simple tests of the contents of the

expressions to determine that the interpretation would go through. The same formula, say:

the logic domain 1.3.2

-37-

V(x) man(x) - mortal(x)

can be understood conventionally and rendered as:

"All men are mortal."

or understood.literally and rendered as:

"For any thing, if that thing is a man, then it is mortal."

it does not take long, however, to exaust the linguistic insights to be gained from looking at

single formulas in isolation. A predicate calculus formula is vague with respect to the more

sophisticated forms of reference and quantification supported by natural languages, and its

connectives and predicates can usually be given many equally plausible renderings. When

formulas appear in isolation, there is no motivation for using one rendering or one interpretation

of a quantifier over another.

One way to provide the needed motivation is to look at formulas in the context of a proof.

The accompanying figure shows a natural deduction proof with the text that the logic domain's

dictionary selected for it. (The first line is a statement of the "barber paradox" created by

Bertrand Russell as a popular rendition of the set of all sets paradox.)

line1: premis
3x (barber(x) A Vy(shaves(x,y) ++ ,shaves(y,y)))

line2: existential instantiation (1)
barber(g) A Vy(shaves(g,y) +nshaves(y,y))

line3: prop. calc. (2)
Vy shaves(g,y) ++ nshaves(y,y)

linc4: universal instantiation (3)
shaves(g,g) <-> ,shaves(g,g)

line5: prop. calc. (4)
shaves(g,g) A 'shaves(g;g)

linc6: conditionalization (5,1)
3x (barber(x) A Vy(shaves(x,y) ++ ,shaves(y,y)))

- (shaves(g,g) A ,shaves(g,g))
line7: prop. calc. (6)

,Vx (barber(x) A Vy(shaves(x,y) ++ ,shaves(y,y)))

AssInte that there is some barber who shaves everyone who doesn't shave himself(and no
one else). Call him Giuseppi. Now, anyone who doesn't shave himself would be shaved by
Giuseppi. This would include Giuseppi himself That is, he would shave himself; if and
only if he did not shave himself; which is a contradiction. This means that the assumption
leads to a contradiction.

The lines of the proof are passed to NIulI, in sequence. rI'hc rendering selected for earlier lines

provides a discourse context to narrow the choices available to later ones for subsequent

the logic domain 1.3.2 -

* * ** **-~--*..*u- '.1
.. dMhSbtlhd* '....t * .emi.'P.c.mmSii.I.. .. IQI I flhtt.flShiyktV w.U.v. .. w.audAMbiM&..

-38-

references to constants, variables interpreted as generic references, and predicates and formulas

used as descriptions. Further motivation is provided by the labels that can be attached to certain

lines to reflect their role in the structure of the proof: "the assumption", "a contradiction", and by

the inference rules that derived the lines: a large part of the rendering of the proof must be an

explanation, guided by the in ference rules, of how each line follows from the earlier ones.

The proofs that were used in the logic domain were selected from a set of proofs that had

been used by Dan Chester [chesteri in virtually the same task. The choice was made deliberately

to permit a direct comparison of the output of the two systems on the same material-something

that is relatively rare in studies of language production. Chester's version of the "barber proof" is

as follows:15

Suppose that there is some barber such that for evety person the barber shaves the person
iff the person does not shave himself Let A denote such a barber. Now he shaves himself

iff he does not share himself therefore a contradiction follows. Therefore if there is is some
barber such that for every person the barber shaves the person iff the person does not shave
himself then a conmradicion folloivs. Thus there is no barber such that for evey person the
barber shaves the person iff the person does not shave himself

Chester's program used the common technique of recursive replacement in conjunction

with an ad-hoc grammar. (Comparable techniques were used in the explanation systems

developed for MYCIN [mycin-explanation.ref, for Swartout's Digitalis Advisor [swartout and for

Weiner's BMI system [weincrthesis.) The key difference between this technique and my own is

its lack of any explicit representation of the linguistic structures it is producing: this is reflected in

Chester's minimal treatment of subsequent reference and the occasional abruptness of transition

from line to line (i.e. his program has nothing to look at to tell it that the conclusion of one line is

not obvious from earlier ones). A more extensive description of the differences between our two

programs is given in [ddmpast].

At this point, I will use the example of the barber proof to point out some of MUMBLE'S

accomplishments.

The ability to go beyond the literal content MuMinW processes a proof by scanning its

formulas in order top down, starting with the inference rule for the line and ending with the

individual variables and constants.16 .The contents of the formulas are not translated

mechanically, but rather at each step along the way, a context-sensitive decision is made as to how

(or whether) a logical connective is to be realized. and which (if any) of the subelements of the

present formula are to be involved in that realization. Line three has no corresponding sentence

15. My source for Chester's results is a personal conimunicalion with him ii November of 1975; the major effort on the
logic domain for MUNI I.E was completed in December of 1977.
16. In other words, the enumeration order used by the logic domain's entrys

(pg.<message.clement.enuneration...ordertn.y.w.>) is dictated by the construction axioms of the predicate calculus.

the logic domain L3.2

-39-

because we can assume17 that that step in the proof would be automatic to any audience. Line

four, on the other hand, has been expanded into three sentences because the substitution of a

second instance of the same constant is assumed to be liable to confuse the audience. The three

sentence subargument is constructed by putting a special rhetorical twist on line three (to define

the set), adding a new formula based on the variable being substituted (sentence four), and

concluding with the formula from line four. (The construction of this argument is discussed on

pg.32.)

rle logical conjuction of line one is interpreted as a conventional way of denoting the type

of the variable "x"; similarly the two quantifiers of that line are realized in the determiners of

their variables ("some barber", "everyone") rather than as "for" phrases. (Chester does this some

of the time.)

Subsequent reference Knowing when not to use a pronoun is very important to the

production of understandable texts. Thus while the barber is identified and given a name in first

two sentences, he is not pronominalized in the third and fourth because those sentences are part

of a new new discourse structure (the "subargument" composed to ease the transition to line 4)

where the discourse focus (section focusj.y.w.) is on the universally quantified variable 'y"

rather than "Guiseppi". When the focus shifts to him in sentence five as a result of the use of the

intensifying reflexive ("Guiseppi himself' ie can then be pronominalized in his four instances of

sentence six.

Descriptions may be "pronominalized" as well as references. At the end of sentence one,

the original description of "y" (i.e. "everyone who doesn't shave himself') is recapituated in the

description of the complement set as: "no one else". Then in the final sentence, the original

complex description of the barber is reduced to just the adjective "such". (Both are discussed in

section lV.C.3.1.)

Functional labels The premis finctions in the proof as "an assumption" that is to be shown to

be false because it leads to a contradiction. Since this role is known to the audience (we began by

saying "Assume that... "), we can use the label later (sentence seven) as a succinct reference to the

entire first line. The logical schema A A ,A is similarly labeled as "a contradiction". Part of the

concept of a label is the ability to include a literal rendering of the labeled expression as an

appositive (line eight). In the logic domain's dictionary, appositives are triggered if the last literal

rendering was not in the same paragraph or, as in this case, if the line is the conclusion of an

argument.

Context sensitive realizations Part of the linguistic context that is produced to guide the

17. T"is is an implicit, conventional assumption: (here is no simulation model of the user.

the logic domain 1.3.2,

decisions for the output text is a rhetorical description of the discourse structure. The different

terms of this structure will guide decisions at syntactic and morphological levels: in sentences one

and three a contraction is used ("doesn't shave") while the same logical structure in the fonnal

context created by the conclusion sentence of the subargument is not contracted. Similarly the

connective ++ is spelled out in a formal context (sentence five), but in an unmarked informal

context, it is understood as a restriction on a variable and expressed as a relative clause.

The same quantified variable ("y") is realized in the unmarked context of sentence one as

"evetyone", but when marked in sentence three as identifying a set it is realized as "anyone". Part

of the discourse context is just the distance between phrases: when, as in line five, a contradiction

is deduced from the immediately previous line, the identification of that deduction is given in the

most direct way possible by adjoining a relative clause to the last sentence (sentence five); when

the dependency line is much earlier (line six), the fornula from the line is repeated and the phrase

"leads to" is used.

Attempts to avoid aniiguity In sentence one, the interpretation of "." as a restriction on a

variable's range must include soie phrase to indicate that the entire range has been specified and

not just a part of it. Consequently the iff-entry elects to say "<restriction> and <coniplement of

restriction>". (An equivalent technique would have been to replace the universal quantifier in

"everyone" with "all and only those men who... ") Because the presentation of this combined

restriction should be done carefully, a special monitoring routine is activated in an attempt to

avoid introducing scope ambiguites in the conjunction. It notes the point where the conjunction

is attached (i.e. at the direct object of "some barber who shaves "), the projected contents of the

second arn of the conjunction (a noun phrase), and the fact that the first arm has ended with a

direct object, and then decides that it is possible that the second arm will be missinterpreted as

conjoining with the more immediate, lower direct object rather than to the intended one. It

causes the parentheses to be added around the second arm as one way available to it in this case to

try and forestall missinterpretation.

3.3 KLONE-nets-as-objeCts

A KIrONE net consists of a set of named objects of various types (only concepts and roles

are shown here), linked together by the relations: subconcept, has-role, value-restriction, and

others not shown. The KL-ONE-nels-as-objects domain takes such a network as input and produces

an English description of its literal contents. That is, rather than interpret the net as a

representation of certain facts (e.g. "ever)' phrase has a head, a modifier, and an inlerprelalion..."),

it is interpreted at its literal level as a collection of KICONE objects (e.g. "The concept phgse is the

top ofthe net, it has a head" role that...")).

Kl-ONE networks

-w40 -

1.3.3

-41-

Has-Role
PHRASE

Value-Restricti

Sub-Concept interp

heamodifier

a--- NP 4AE-

PP
pobi

prep

ppobi

ABOUTSUBJP

cFP&SONPP

'The utility of this domain has been largely as a means for me to become familiar with the

KL-ONE language in preparation for developing a dictionary and interface for a speaker based on
"real" KL-ONE (some of the intial results for which appear in section (dictionaryjfor-realkI-
one>). Beyond this, the KL-ONE-ncts-as-objects domain was my first experience in producing
multi-paragraph (if boringly uniform) texts, and it is potentially useful in itself as an alternative
"read-out" mechanism for use in debugging KDrONE networks.8

The figure shows the first paragraphs of the text constructed for one of the development
networks in use at BBN during the spring of 1979: a first pass at a conceptualization of an English
grammar. The text was created by scanning the net depth-ftrst following its subconcept links,
devoting one paragraph to each concept. Each paragraph mentions (or assumes-see below) three
facts about about its concept: (1) the name of the concept(s) it is a subconcept of, (2) the names
of its roles and the value-restrictions they are subject to, and (3) the names of its own
subconcepts if any. (The fact that each paragraph will present a new concept is taken to be
already known to the audience, and as a consequence, the information that, e.g., "atrase is a
concept" is omitted as already given.).

The four and a third paragraphs shown in the figure are sufficient to illustrate the stylistic
heuristics that the dictionary for this domain incorporates. (Like the logic domain, KI-ONE-nets-
as-objects has no speaker as such; its messages are comprised directly of KL-ONE nets or coherent

18. This mechanism has not yet been built. Two things have stood in its way: one is the fact that K1.-ONE is in a constant
state of redesign and is thus a "moving target"; and the other is that the chosen implementation of KL-ONE has made it
awkward to treat the basic relationships of a Kl-ONE net as first-class objects because of the large amount of "meta-level"
structure required (see pg.<artificial..irst.class.objects>).

KL-ONIF networks

on

1.3.3

a .na. iSab a l.a a.... U.tW.%Ifli *.&.fle fldflebwut..e 'e' .0 Jaa~~d..

-42-

Phrase is the top of the net. Its inteqi role must be a concept, and its modifier role

and its head role nust be phrses. Its subconcepts are pp,. i. adiunct. indobilause and

word.

J! has the roles: pobi pep, interp. and vobI.L P.iobi must be a no.vten a prep, intro

a relation and opobi a pg. L>'s subconcepts are ofpersonpp. jinsieczwp. locationop. and

aboutsubiecb po.

Ofoersonnv has a vobi role which must be a human. and a ue role which must be

anlpf
Insibiedcuu'spobj role must be a subiecInv. its prjwole an i. and its intern role a

subject

... [[further paragraphs for the rest of pp's subconcepts]]

No is another subconcept of phrse=..

... [[further paragraphs for the rest of phrase's subconcepts and the subconcpts of each of those in

turn]-

subnetworks.)

Varying the paragraph structure In each of the first three paragraphs, the presentation of the

concept's roles and their value-restrictions is given in a different style. Is is done by having the

concept-defining-entry (pg.<concept.defining..ntry>) vary its choice according to the number of

roles there are: in the first paragraph, phrase has three roles and the style chosen puts each role in

a separate sentence: "<role> must be <<value-restriction>". The second paragraph's concept has more

than three roles, leading to the use of a summarizing sentence to identify them as its roles before

giving their value-restrictions. The third paragraph, with only two roles, uses sentences based on

the has-role relation, with each value-restriction embedded as a relative clause.

Omitting "given" information Note that the second, third, and fourth paragraphs do not start

with a sentence about what their concept is a subconcept of. This is because that information

appears in the text already in such places that the concept-defining-entry assumes that it will be

still remembered. Similarly in the second paragraph, where there is a summary sentence listing

ps's roles, the has-role facts have been left off of the later sentences. Not doing that would have

led to a noticeably redundant text (see section <given/new>).

Varying descriptions with context The noun phrases constructed to describe roles vary along

the same lines as paragraphs, i.e. they include facts or leave them out depending on what facts

K L- ONA net works .1.3.3-

-43-

have already appeared in their paragraph and what remain to be given. Thus we go from using

just a name to introduce a role (paragraph three) to giving the concept that owns it, its name, and

the fact that it is a "role" (in paragraph four). The entry for roles appears on page
<roleentryn.y.w.>.

Using ellipsis Throughout the example text, grammatically-driven ellipsis is applied to reduce

redundant verbs (paragraph two), and to merge relations with common arguments (paragraph

one). These are general purpose transformations, triggered by the syntactic and lexical properties

of the texts, independently from their content (see section <ellipsis>).

ump.state "ax..2"

The "Macbeth domain" is the newest of all the micro-speakers. The representation it uses

(frames, "almost English" assertions) is a common one for present day Al programs, suggesting

that its treatment by MU~mI may be typical of what could be done for the many programs like it.

Consequently I will discuss this domain in greater detail than the previous two.

3.4 The 'Macbeth' Domain - an example speaker and expert program

Patrick Winston has developed a program for making and evaluating analogies

[winston-analogies]. It takes two descriptions, represented in a variant of FIRL 9 ("Frame

Representation Language"), and establishes a correspondence between them as for example

between the laws of fluid flow and ohm's law. Winston is interested in how differences in the

vocabulary of the descriptions: choice of. property names, the availability of an "a-kind-or'

hierarchy or of one-step inferences, the use of backpointers, and so on, effect the ability to make

analogies and generalizations based on them.

Winston has written FRL "synopses" of several of Shakespeare's plays in terms offrames for

the major characters and scenes. By considering facts such as whether a king is murdered or

whether there is a marriage, the program will conclude that "Macbeth" and "Hamlet" are more

alike than, say, "Macbeth" and "The Taming of the Shrew".

From nu to English

At the moment, Winston's program presents its results as tables of correspondences and

confidence values. Ultimately, we would like these presentations to be in English, and to include

plot summaries and explanations of the program's reasoning. This will require the development

19. FRI was developed by Roberts and Goldstein [frLrmanualllfr.primer to explore some of the ideas in Minsky's
'FRANIES' paper [minsky.frames]. Unlike other "frames" systems such as fkrl...paperj which are entirely new
programming languages/environments, FR is a relatively uncomplicated, direct extension of the property-list mechanism
of lISP.

KL-ONA' networks 1.3.4

-44-

of a speaker program to bridge the gap between Winston's program (which knows nothing about

natural language) and MUMBLE with its knowledge of English grammar and production

constraints.

A proper speaker for this domain has not yet been designed, though the first necessary step,

the capability to go from the analogy program's data structures to individually coherent English

texts, has been taken. This involved the design of a set of interfacefueions that interpreted the

FRIL representation for MUMBLE and a minimal dictionary that mNUMItLE used to interpret

individual frames, the common analogy vocabulary, and the special vocabulary for specific topics.

A dictionary for Winston's synopsis of "Macbeth" was developed in July of 1979 in approximately

one week. The figure shows the frames for the synopsis of "Macbeth" (abbreviated MA) and for

the character "Lady Macbeth".

(ma (ako (story)) (lady-macbeth (part-of (ma))
(part (macbeth) .. (married-to (macbeth))

(lady-macbeth) (hq (greedy)

(duncan) - (ambitious))
(macduff)) (persuade (macbeth (see persuade-ma)))

(subpart (heath-scene) (cause (murder-ma)))
(murder-scene) .
(battle-scene)) .

Every frame is a uLSP list and consists of the name of the frame followed by its properties, each of

which is itself a list consisting of the name of the property (e.g. ako-"a kind of", or hq-"has

quality") followed by its argument(s). If a property has more arguments than just one, or if it is

referred to by some other property, then it is represented by a frame of its own, e.g. murder-ma,

persuade-ma (given on pg.(murderma>)

As you can see, these frames are designed to already be quite close to English in their

structure and the level of their conceptual vocabulary. Each property of a frame already has the

approximate form of a declarative English clause, i.e.

[clause Isubject ma] (verbako] [ObjIctstory]l

Because of its simplicity, the minimal dictionary for the Macbeth domain needs to have only two

entrys:

whole-frarneentry: - builds a paragraph about the frame, mapping each of its
properties into a separate sentence.

20. i.e. the name of the frame (e.g. ma) becomes the discou.se focus of the paragraph; see below.

KL-ONE networks 1.3.4

-45 -

default-property-entry: - maps the components of a frame property into the constituent
positions of a simple clause. (A listing of this E'NTtY as used in
1UNIE appears on page (default_property-entryX)"

T'hese two basic ICNTRYs are then supplemented with trivial, schematicized ENTilYs for the

particular vocabulary of the Macbeth domain, which allow us to, e.g., say "lis a character in" in

place of the FRI property part-of (see pg.(part-of entry>).

Given this much of a dictionary, we can produce texts like the one below, which was

created directly from the frame MA shown above. has handled all of the grammatical details

(agreement, sentence-initial capitalization, commas inside lists, determiners for the predicate

nominatives, and colons for the list apposatives) and has heuristically applied stylistic

transformations. to make the text more readable (conjunction

reduction-pg.<conjunction-reduction>, and "predicate

merging"-pg.<predicate-merging-lexicaLversion>).

"Alacbeth" is a story. It has four characters: Macbeth, Lady Macbeth, Duncan, and
AlacDuff and three scenes: the heath scene, the murderscene, and the battle scene.

This ability to take combinations of simple propositions and realize them as a fluent, coherent text

is possible only because of the extensive linguistic description that mUMIII-E brings to those

propositions which makes it possible to apply general purpose rules to the descriptions themselves

without having to know anything about the propositions.

'he special job of a 'speaker'

The speaker is the "mouth-piece" of the expert program. Its function is to communicate

selected information and intentional attitudes of the expert to the human user, which it does by

passing expressions ("messages") to MUMIHE. Messages are descriptions of the speaker's goals,

interpreted in terms of English texts. In many cases, the simplest description of tie information to

be communicated is the same data structure that the expert uses internally to represent it.

However, that is not always true, and this is where the special position and knowledge of the

speaker come into play.

The representational priorities of an expert program are seldom the same as those of people

using natural language. Both will refer to the same information, yet, because it is used to different

ends, the information's form, degree of redundancy, and modes of access will be different. For

example, it is convenient for the analogies program to maintain redundant backpointers between

frames. The last two properties of the lady-macbeth frame (repeated below with with the

referenced frames spelled out) are an example of this as each points indirectly at the other.

KL-ONE networks L3.4

.1 *eA~WSW'S

-46 -

(lady-macbeth (persuade (macbeth (see persuade-ma))) (cause (murder-ma (see cause-ma)))

(murder-ma (backpointer (frame (macbeth)) (property (murder)) (value (duncan))) (caused-by

lady-macbeth)) (coagent (lady-macbeth)) (motive (ma-become-king)) (instrument (knife)) (time

murder-scene)))

(persuade-ma ;backpointer omitted (purpose (cause-ma)) (act (murder-ma))

(cause-ma ;backpointer omitted (method (persuade-ma)))

While this redundant representation is very convenient for the analogies program (it makes it easy

to trace association links through the frames using a marker-passing style search), if taken as a

literal description of what to say, it leads to a very awkward English text as shown below:

Lady At acbedh persuades Macbeth to nurder Duncan il order to cause Duncan's Murder.
She causes i by persuading him to do it.

The text is awkward because its source message is not appropriate-it does not follow the

expected conventions. When using natural language, you do not feed the audience facts as if you

were loading a program. People react to each item as they hear (read) it, and expect to be

continually adding to a coherent picture according to a discernible chain of reasoning. (Hence the

problem with this "literal" text: the second sentence has no plausible motivation.) Order of

presentation is important; what is explicitly said versus left to be inferred is important; and the

foregrounding and backgrounding of individual items is important-natural language is a

sequential rather than a relational medium and it must be actively parsed; it thus requires

adherance to conventional signals if the audience is to have an easy time of it.

The job of the speaker is to understand how the representation of information and

intentions in a text and in a (particular) computer program differ and to formulate messages

which bridge the gap. The expert's data structures can still be used as the raw material of

messages, except that now they are embedded in a matrix of relations that are special to natural

language based communication. The expert's facts have been "cut and pasted" into a new

expression based on different representational principles.

The figure shows how the (hypothetical) rhetorical schema on the left would be

instantiated by individual frame properties (on the right) in order to make a point about the play

(i.e. why Macbeth murdered Duncan) in a way that an audience would understand.

KL-ONE networks 1.3.4

-47 -

rhetorical relations relations from FRL frames

AA-BECOQ E-KING
. central 4 Z e

event AIURDER-MA

reason purpose

for event - PERSUADE-MA

relevant propery-of-one-of-its-

arguments

incidental fact
AAIBITIOUS-LAI

In addition to this "propositional content", the conventions of English require the speaker

to decide in what order the propositions are to appear, how they relate to each other, and what

temporal point-of-view to adopt. Furthermore, since we are constructing a discourse, we must

specify its focus-what it is "about". The message below conveys all of this information, and is a

good example of the sort of message that MUMILE has been designed to handle. (This message

has the form of an FiRL frame. This is convenient for this domain but not essential.)

(message (sequence (macbeth (murder (duncan))) ;"murder-ma" (macbeth (become

(king))) ;"Ma-become-king" (lady-macbeth (persuade (macbeth (action murder-ma))))

;"persuade-ma" (lady-macbeth (hq (ambitious))) ;"ambitious-lm" (time-frame

(before-time-of-speech)) (fqcs(macbeth)) (gncillar- factv((murder-ma (motive (na-become-king)))) (

(persuade-ma (purpose (cause (murder-ma))))) ((lady-macbeth (modifis (amblilous-m))))))

Given the present dictionary, MUMniE realizes this message as:

Afacbeth murdered Duncan in order to become king. He was persuaded to do it by Lady
Macbeth, who was ambilious.

The reader should appreciate that this example message was assembled "by hand" for the

purpose of exercising MUMBLE's capabilities. Its function is to illustrate what could be doe-to
show where MUMBLE is expected to begin its part of the production process. 'le technical details

of constructing such a message can be subsumed by schematic subroutines and should not get in

K L-ONE networks 1.3.4

-48-

the way of the decision processes once the speaker's job has been understood sufficiently to

formalize the principles behind a message like this and to permit the design of a serious speaker

program (as opposed to the mini-speaker experiments undertaken thus far)

4. When should MUMBLE be used?

Preparing an interface between a new expert program and MUMBLE is not a trivial

undertaking. Creating the dictionary will require the designer to provide explicit representations

for relations that are left implicit in many expert programs. Thought must be given to the

mechanics of message construction and to the practical exigencies of dealing with another

independent program. If all that a person wanted to do was to take already highly sugared

expressions directly from his or her program's. data structures and produce pleasant looking

"linearizations" of them, then it is questionable whether they should go to the effort of using

MUMN1 as there is already an established technology for producing "English-like" output from
well-structured data that requires considerably less overhead (see for example

[roberts.frLtosenglishl).

MU~nLE's strong point is its ability to combine disparate data on the basis of linguistic

descriptions to produce cohesive, context-sensitive texts. If, to choose an extreme example, all of

the remarks that some program would ever have to make could be anticipated at the time the

program was written, then there would be no point in using MUMBLE to produce them; on the

other hand, if the program is continually entering into new discourse situations, learning about

new objects and relations, and forced to dynamically configure its remarks to the audience and

situation, then using MUMNL1 (or something like it) is a necessity.

To be specific, a program that needs to produce texts with any of the following

characteristics should benefit by using MUMBLE.

o Embedded clauses: Any relation that is used as part of a description, or is modified by
or is an argument to another relation, for example the propositional arguments of
modal predicates such as "believe" or "possible", will appear as some form of
embedded clause when rendered in English. The grammar of these constructions
involves complex syntax rules coordinating adjustments to the text of the relation and
to the matrix it is embedded in.

o Coherence relations in multi-sentence texts: Text that is part of a larger discourse must
obey certain linguistic conventions that have no counterparts in the purely conceptual
structure of the information being conveyed, e.g. the use of pronouns or definate noun
phrases for subsequent references to the same objects, the ellipsis of predictable
phrases, segmentation into sentences and paragraphs, the subordination or focusing of
individual items, and the deliberate use of ordering or explicit relational connectives

approprialness 1.4 -

49-

to present complex relations sequentially.

0 Context sensitive realizations: Within a program it is often possible (even desirable) to
be vague about whether an expression denotes an object, a relation, or a predicate.
What the corresponding linguistic choice should be (e.g. noun phrase, clause, or verb
phrase) often depends on how the expression is being used in a given instance, as
determined by its context in the message or by the linguistic context into which it is
introduced.

o Describing objects from their prol)erties: When a program is continually creating or
being told about new objects, pre-stored texts for object descriptions must be
abandoned in favor of algorithms that will construct descriptions from properties. For
general algorithms, linguistic descriptions of the properties are required so that only
grammatical phrases are built. Planning is required to judge how thorough a
description must be and how that will effect grammatical structure, for example
whether one can say: (I pUt an X on) the adjacent corner or must say: ... the corner
adjacent to the one you just took.

5. WhatMUMBLE can't do

Efficiency has its price. In this case, it is intrinsic restrictions on the capability of the
linguistic component. These are taken not as a failing, but as the necessary result of a deliberate

distribution of tasks according to what components are most suited to performing them. I will

claim that the bulk of what this linguistic component cannot do can be done better by other the
components that it will interact with.

o Creative expression-fitting old words to new situations: MUMBLE does not know
what words mean. From its dictionary it could compute in what circumstances a word
could be used, but it has no means of its own for interpreting these "circumstances"
and generalizing. (flow could it if it is able to be used with expert programs with
different conceptualizations?) Dictionary ENTRYs select words reflexively according to
precomputed possibilities. In particular, they do not use any sort of pattern-matching
on "semantic features", both because of the computational expense and because they
are unlikely to ever be refined enough to select individual words.

o Monitoring itself: It is generally easier to anticipate and forestall problems by
planning than to monitor for them and then have to edit an ongoing procedure.
MUMBLE capitalizes on this rule of thumb by omitting from its process architecture
the expensive state history that would make editing through backup possible. The
kinds of unwanted effects that are difficult to avoid through planning (because they
would require essentially full simulation) are coincidental structural or lexical
ambiguities. These require a multi-constituent buffer (the sort which is natural to
parsers) to detect and are thus better noticed by "listening to oneself" and interrupting
the generator with new, instructions when needed, rather then burdening that process
with a large buffer which will otherwise go unused.

0 Recognizing when a message will unavoidably lead to awkward or ungraitnatical text:

what AIUMBLE can't do 1.5

a n a.T..ti

-50-

Again, at the linguistic-level this possibility cannot be foreseen without a complete
simulation (i.e. rehearsing. to oneself). Either the speaker's message-building
heuristics will be such that these problems just will not occur (this is almost inevitable
when messages are planned and motivated in detail) or, by planning the message in
terms of "interlingual" predicates like modifies and focus, potential awkwardness can
be foreseen and planned around by general rules.

0 Reasoning through trade-offs caused by limited expressibility: It can happen that the
inability to simultaniously express, e.g., modality and subordinateness, will not
become apparent until the realization of the message is already begun. For MUNILE
to be able to reassess the relative importance of the message elements that prompt
those aspects (1) it needs a common vocabulary with the speaker in which to express
the problem (since what should be done is ultimately the speaker's decision); and (2) it
needs to be aware of the potential problem early enough to be able to plan alternatives
(see pg<alternativestoislantdviolations>). Without sucli a vocabulary, MNUMBLE
must rely on the ordering provided initially in the message and die speaker must be
prepared for not all of its messages to be realized.

O Planning by backwards chaining from desired linguistic effects: One cannot give a
specific grammatical relation as a high-level goal in a message and expect MUMBU to
perform the ends-means reasoning required to bring it about, e.g. one cannot tell it:
"the subject of what I say next should be the same as the direct object that I just said".
Such reasoning can require exponential time and a high processing overhead. On the
other hand, in writing the dictionary the designer could precompute the decision-
space such a goal would entail and then incorporate it into MUMBLE as a set of rules in
the grammar. ('[hat goal is roughly equivalent to the existing focus heuristic for
example.)

Additionally, MUMBLE has no analysis for some English constructions simply because none

of the micro-speakers were able to motivate them. These include productive compounding of

pre/suf-ixes, comparatives, and quantifier scope.

6. Intellectual roots

'he initial seeds of this research were planted while working with Terry Winograd on die

SIRDLU program [shrdluj. The basic linguistic principles of the present design: the organization

of the grammar around systems of choices, basing descriptions on feature systems, and the general

approach of viewing natural language as a tool used to perform a communicative function were

also part Winograd's work and are emphasized by the theory of systemic grammar on which it was.

based.

My undergraduate training was in linguistics at MIT. The influence of transformational

generative grammar is evident in my choice of linguistic vocabulary, and, more importantly, in a

concern for "capturing generalizations" and a metatheoretical bias that the constraints on a

process should follow inescapably f-om the structure of the device which impletnents it.

intellectual roots 1.6

S51-

It is harder to properly attribute the computational principles of the design: data-driven
programming, procedural attachment, symbolic description, and the extensive use of interpreters

and schematic data-structures. Much of it is an outgrowth of the programming style encouraged

by LISP [mccarthy...recursion-paper]. Other specific influences are Hewitt's PLANNER
[microplannermanualj, the work of Sandewall [sandewall biblioqpaperj, that of Sussman

[art.of-theinterpreterj, and of course the incredible atmosphere of the MIT Artificial

Intelligence Laboratory as a whole.

This research does not derive from any of the earlier direct work on language production

either in Artificial Intelligence or psychology, although some of die recent design details have

been inspired by psycholinguistic findings of Merrill Garrett [three...garret-papers].

7. Contributions of this thesis

UMBU is the most linguistically competent natural language production program that has

been written to date. This is due primarily to the advances in the computational theory of

production reported in this thesis, which have simplified the process of representing linguistic

rules and usage-heuristics. This is the first theory to be specifically designed for use with

programs with different representational systems.21 This is the first theory to be grounded on

pycholinguistically plausible hypotheses such as left to right refinement and production of text,22

a limited working buffer, and indelible decisions. Specific improvements over earlier systems

include:

o Production is driven directly by the message to be expressed, not by the hierarchical
structure of the grammar. This is more efficient, and facilitates die conceptualization
of messages as descriptions of effects to be achieved by the text.

o The linguistic structure of the text being produced is explicitly represented.23

Grammatical. rules can be implemented directly as manipulations of linguistic
descriptions, thereby gaining generality and perspicuity. Details of the structure of
produced and planned text may be referenced directly and used as the basis of usage
decisions.

o The possible realizations of each element of a message are explicitly represented and
are available for inspection or special-case manipulation.

21. The atn-based generator originally developed by Simmons and Slochum I[simmons.&..slochuml and later adopted by
Goldman [godmani has been used with many. different programs: [margieltlehnert-thesis]
[yale.repoit.,wschinese.generator[mechan..thesisJ, however, all of these employed the same representational system:
conceptual dependency [schank.goudcd-ref].
22. Gerard Kempen [kempen...march.1977J writes that production shoulk be incremental and left to right, however, his
program as described [Kempen.1979J actually refines the constituents oeach clause in parallel.
23. This was true also or the German-to-English translation program of Gretchen Brown (gretchen.thesisJ, and locally
true in the systemic grammar used by Anthony Davey [davey].

contrabutions I.7 -

-52 -

conirabutions 1.7

'p. .a~*t~'M~haa...n,.m..swSa~eaubm .A.a~a~ .. ~ Wa&.~t~ns~s~, . Ltg,. I L~w~nebiw~du 4. ~n AZAP,~

-53

CHAPTER TWO

DEFINITIONS

In this chapter we will look at the basic algorithms of the theory and at the types of objects

that they manipulate. These are the building blocks out of which specific grammatical and

stylistic rules will be fashioned, and their properties will determine the limits of the production

process's capability. Specific analyses may change as our understanding of them grows, but the

algorithms and data types of this chapter will not change, or at least not drastically, unless the

theory is found to be intractable.

1. Terminology

Throughout this paper, I will distinguish between "language production", the "linguistic

component" and the "program MUMBLE". Language production is the activity which ensues

between the time when the speaker (human or machine) first realizes s/he has something to

communicate and the utterance is completed. The phrase is to be a pretheoretical term, which, in

particular, does not presuppose how the process breaks down into subprocesses or how the use of

linguistic decision-criteria is distributed.

The linguistic component is the subject of this thesis. I am proposing an analysis of the

production process wherein all of the language-specific knowledge is resident in one subprocess,

the "linguistic" component, which operates after the content of the utterance has been decided

upon and does the actual production of the text. The linguistic component will be defined in

terms of an abstract specification (the subject of this chapter), whose semantics will ultimately be

grounded in terms ofC.si data types and operations.

tenninology 11.1

Definitions -54-

The LISP program named MILE is a particular instantiation of the linguistic component
for which a specific English grammar and various dictionaries have been written. The grammar
and dictionaries are defined in terms of the theoretical vocabulary of the linguistic component,
but they derive from analyses that, while designed for that component, are not the only
conceivable ones which could be used.

The linguistic component functions as one component in a larger system that includes at
least (1) an expert program-presumably the reason why all of the programs are assembled
together in the first place, the other programs being just an extended "user interface"); and (2) the
speaker who formulates the messages to be communicated to the user.1 In this paper, the speaker

and expert program together will sometimes be referred to as the domain, as in "the logic domain"

or "the Macbeth domain". This term is intended to focus on the contrast between linguistic and
non-linguistic representations or operations, the former residing all the the linguistic component

and the latter all in a domain.'

Two classes of human beings have dealings with the system: designers and users. Designers
write the programs that make tip the system. Users are the people for whose benefit the system is

built-the people with whom the system will be communicating. Designers may be further
subdivided into dictionary designers and grammar writers: grammar writers must usually be
sensitive to the decisions of the dictionary designer (see for example

pg.<ontological.differences-between-domainsn.y.w.>).

1.1 Properties common to all types of objects

The rest of this chapter is devoted to specifying the individual characteristics of the data

types of the theory. This section will discuss what they have in common.

The linguistic component's fixed procedures manipulate individual objects-tokens of the.
defined data types. The term object will be used throughout the paper as a place holder
whenever data-type specific properties are not relevant to the discussion, or when the intended
type(s) are deliberately being left vague. Just what objects will exist in any one instance of the

linguistic component (such as MUMBLE) will be a matter of what speaker and expert program the

component is working with and what grammatical analyses are employed. On the other hand,
what data types there are is fixed as a matter of language production theory.

The linguistic component is an independent process within the larger system. While it is

only active for the time during which it is realizing messages, its computational state is maintained

across the dormant periods. Against this background, we can distinguish temporary from

1. The "complete" system would presumably include a language understanding component, which should
share its description of English grammar the linguistic component and must share its record of past
discourse. However, I will have nothing specific to say about the relationship of the two
components in this paper

terminology 11.1.1

Definitions -55-

permanent objects. Pennanent objects make up the grammar and dictionary. They. represent
facts, relations, etc. which will not change from message to message. Temporary objects, on the
other hand, are the stuff of which the linguistic component's working structures and context are
made. '[hey are typically instances of generic, permanent objects, created as needed at specified
points within the process and later explicitly expunged when the information they record is no
longer needed in the same detail (see section (expunging..temporary..objects>).

Objects are to be understood as bundles of properties. More formally, each object is
defined to be a vector of other objects (the recursion terminates on objects of type SYMB0L), and
properties are selector functions against such vectors. Two properties in particular, data-type
(occasionally abbreviated to "type")' and name, must be included with every object. (Accordingly,
they will be omitted from the individual data-type specifications.) The data-type determines what
other properties the object may have; the name determines its uniqueness, i.e. objects of the same
type will be.seen as identical if and only if they have the same name. Data-types will be used to
two ends. The first is primary: every object used by the linguistic component has a data-type that
defines its properties and large-scale behavior (see [I.3.xi). 'he second is expository: several
"syntactic" types will be defined to aid in grouping objects (each with its own "primary" data-
type) in terms of the operations that create them or manipulate them.

The possible values of each of an object's properties are restricted to be objects of some
specified data-type(s), this specification being the principle part of the definition of the object's
own data-type. Most of these types will be defined within the linguistic component, but others,
such as name or data-type, will be taken as primitive and defined only at the implementation
level. For example, in the MACLISP implementation of MuMBLE, objects are implemented as

"atoms", and their names as "pnaines"-strings of ascii characters. Properties are either fields in
records (if there are a fixed number of them) or tag-value pairs on the atom's property list.

Needless to say, specific operations are included in the linguistic component to create and
expunge objects and to set, interrogate, and delete their properties both individually and by class.
A listing of these operations will not be included with the definitions unless the discussion
requires it; for example, classes of expressions are occasionally given a data-type in order to single
out a class of operations with a common domain and range. The interpreter(s) that evaluate such
expressions will be taken to be primitive. When there is a need to identify a specific
interpreter-usually because of the special computatational environment in which it does its

evaluations-it will be referred to by a specific name. Just as some of the data-types are primitive,
the syntax of expressions involving them will not be relevant to the theory, but only to specific
implementations such as MUMm and its specific interpreters. When there is occasion to refer to
expressions in this text, usP syntax will be used, i.e. parenthesized lists where the first item of
each list is the operator and subsequent items are its arguments:

<expression>::= (<operator><argument>*)

terminology 11.1.1

Definitions. -56-

In terms of program structure, a designer will see MUMBLE as a series of files containing the
primitive operations and basic procedures defined as uSP functions, followed by files defining the
grammar and dictionaries. These consist of calls to object-creating macros, one for each object to
be defined. At system load time, these macros take the schematic structures written by the
designer and expand them: filling in defaults, creating functions, converting to more convenient
machine formats, and accumulating cross-indexing information. rhis is augmented by a
postprocessor which runs after all of the files have been loaded and takes notice of information
that cannot be decided earlier.

Contrasts between computations performed at load-time versus those at run-time are
intentional and reflect more than just the vagaries of using computer programs. Computations at
load-time are a one-time expense that can be ignored later when the system is actually being used.
Generally speaking, run-time computations are optimized for efficiency in time at the expense of
a large memory requirement to contain precomputed facts and redundant run-time records.

2. The Control Structure

Unlike any of the previous language production programs that incorporated a grammar,

this linguistic component is controlled directly by its input message. It takes no actions, tests no
predicates, nor builds any structures that do not immediately forward the realization of that

message. Furthermore, none of its actions are redundant; each one will contribute to the form of
the final text. Its ability to do this rests on the use of a data-directed control structure to

dynamically con figure the component's actions with each new message.

Data-directed control In a system that employs data-directed control structures (also known as
"syntax-directed"), there is no predetermined execution sequence. The set of all possible

execution steps is predetermined, of course, but the steps are embodied in independent, unit
programs that are not connected by any fixed sequencing links. Instead, the 'sequencing
information is provided by the context. Each unit program is associated with a token or pattern of

tokens that can appear in the "directing" data. The overall configuration of tokens in the data
determines the execution sequence of the program. This association between data token and unit
program is maintained by a controller, a relatively small, fixed procedure that controls the order

and sometimes also the environment in which actions occur. The controller scans the directing

data, following a predetermined path. When it reaches a data token that has (or may have) an

associated action, the action is looked for, and if found, accessed and executed.

control structure 11.2

Definitions 57

rhe key to understanding the design of this program is understanding the controllers
algorithm: what is its directing data? what are its specific reactions in response to data tokens of
different types? And how are these reactions related to each other temporally and

computationally? Such is the subject of this section. First we will look at the directing data, the

constituent structure of the tree. Following that we will go through the properties of the

controller, including a complete flowchart of its algorithm.

2.1 Constituent Structure

The constituent structure of the tree is distinct from the grammatical labels that annotate it.

Constituent structure defines the route that the controller follows as it traverses the tree. It

defines "positions" rather than grammatical properties, grammatical properties accrue indirectly'

to it to the extent that grammatical labels are attaced to individual objects of constituent structure.

Constituent structure is made up of two kinds of objects, nodes and slots. These are

temporary objects and come into existence only in the context of the tree as a result of the

instantiation of of phrase-schema that are part of choices selected in the realization process.
Below are the definitions of the nodes and slots, i.e. a listing of their properties. A diagram of a

reasonably complicated constituent structure will follow, after the syntax of phrase-schemas has

been discussed.

Data type: NODE

NODEs can be thought of as instances of grammatical categories. Their primary function,

however, is to define a subtree from the node to the fringe of the tree over which region-features

associated with the node will be in effect, and to define (via its 'associated slots) a list of

"immediate constituents" that will be important for their grammatical relationship to the category

associated with the node. They have the following properties:

category A category as defined by some constituent-schema from the grammar
(pg.(constituent.schema>), i.e. one of the usual descriptive terms: clause, np,
pp, etc..

features A list of category-features or region-features, including at least the name of
the constituent-schema that was used to instantiate the node and the node's
category. A category-feature describes properties of the node itself, while A
region-feature describes properties of the entire subtree that the node
dominates. See section <categorys.and.slots>.

immediate-constituents A list of one or more slots.

hooks A property-list used to hold extra-constituent information, such as tense,
aspect, or modality; see section 11.4.5.

Record A record (pg.discourse..history>) listing the gammar-variables bound at

control structure

-57 -

11.2.1

Definitions

the level of this node and the values they had. It serves to represent the node in
the discourse history after the actual constituent structure has been expunged.

Data type: SLOT

The immediate constituents of a node are organized in terms of a sequence of labeled
positions: objects of type slot (as in "constituent slot"). The constituents per se are contained in
the contents properties of the individual slots. Slots can be thought of as instances of slot-names.
They have two obligatory properties and one optional.

slot-name A slot-name such as "subject" or "adj-complement".

contents One object whose type may be either "node", "elmt-instance" "word-
instance" (which includes traces), or else the constant symbol "empty".

features A list of slot-features and/or region-features at least including the slot's
slotname

Data type: Phrase-schema

Phrase-schema are used by choices in the dictionary entrys to specify the constituent
structure that is to be instantiated if the choice is selected. They are permanent objects and are
conceptually part of the grammar even though the are only associated with the dictionary.
Phrase-schema may be defined in issolation and given a name and in that way can be shared
among several choices.

Phrase-schema do not have properties per se but are expressions that are defined in terms of
the following grammar.

control structure

-058 -

11.2.1

Defnilions

The grammar ofphrases

P1IRASE: = (coNsTUENT-sc lEMA (CATEGORY-FEATUR*)
I hook S <hook-assignments>}
<constituent>*)

<constituent> = SLOT-NAME If I ure S <additional-slot-features>} (contents>
<contents> = { WORD PIIIASE i TTRACE}

<hook-assignments> = ((I lOOK { ACCESS-EXPRFSSION jSYMBOL

This is a context free grammar. Non-terminals are given in lowercase in the normal text font. Type names in

SMALL CAPITAIS may be replaced by any object of that type. Words in s a n - s e are literals.

Parentheses, 0, are also literal. Kleene star (*) indicates that the expression it follows may appear zero or more
times without limit. The plus (+) requires the expression to appear at least once. Expressions bounded by
curls ("-") are optional. When curls bound a series of items set apart by vertical bars (""), those items
constitute a choice set from which one and only one of their number is to be picked.

Phrases are constructed recursively in units of a non-terminal node plus its immediate

constituents. These units are called "constituent-schema" and they are defined as part of the
grammar. Below is P1 IRASE that was used in the Macbeth domain.

(define-phrase is-a-character-in

(vp.predicate-nominative (
pred-nom (regular-np 0

head character
qualifiers (regular-prepp 0

prep in))))

Phrase-schemas are typically very "sparse", specifying explicit values for only a few of the

total set of slots that their constituent-schemas will create when instantiated. This sparce-ness is

natural since phrase-schems function as abbreviations, describing what constituent-schemata are
to be combined, what words are included and where, and defining a set of "gaps" given implicitly

by the SLOT-NAMEs they do not mention. Phrase-schema are used a means of defining idiomatic
phrases broadly construed (see [becker] for an excellent elaboration), in such a way that they can

be specialized for different grammatical contexts. In the "is a character in" schema for example,
the number of the verb and the predicate nominative constituent have not been fixed, it could be
modified by adverbs or modals, or part of it suppressed by ellipsis. All of these actions would be
brought about automatically (i.e. without designer intervention) by grammar-routines associated

with the grammatical labels in the schema or in the context it is inserted into in the tree. When
the phrase-schema is instantiated, the "gaps" left where a constituent-schema specified a slot that

the phrase-schema didn't mention are filled with elit-instances selected by the choice in which

control structure

-m59 -

'11.2.1

Definitions

the phrase-schema appears.

2.2 THE Tree

Functionally, the tree is a representation of what the linguistic component has done in the
past and the plan of what it will do in the. future. Formally, it is a structure comprised of NODES
and sL.OTs, Graphically, the tree will grow down from its root node and from left to right in the
usual manner for syntactic trees in the linguistics literature.

The root NODE of the tree is constant throughout the operation of the linguistic component
(i.e. it is preserved across successive messages). It does not have any linguistic significance and is
just a way to collect the.trees of successive messages into one tree for technical convenience. It has
the name root-node. Messages are introduced as immediate constituents of root-node-contents of
root-constituent.

There is no general facility for walking through the tree to examine its contents. This
prohibition is enforced by the design of die tree itself, which is threaded only from nodes to their
constituents and from left daughter to adjacent rightward sibling. .That is the route that the
controller follows; no other direct associations between parts of the tree need to be maintained.

Only two locations within the tree are continuously accessible. They are "the present
position of the controller" (see below), and "the next available sLOT for a message" (defined on
page <arbitrary-lengtluschenias>). Any others, for example "the place where the last instance of
(murder duncan) was positioned" or "the locations of all noun phrases whose determiners are

the", are not defined by the tree or the controller themselves. That is, there is no general facility
for going from an ELNT-INSTANCE, or a CATEGORY to a location or set of locations in the tree. If

some such locations are important in the linguistic or pragmatic analysis, they will be either

expressly remembered or, more likely, a description of the relevant aspects of the location will be
compiled at the time when the controller is at that location and the location itself forgotten.
Grammatically important locations in the tree are always relative to the current position of the

controller.

*2.3 'Tlie controller

The algorithm for the controller is given over the next several pages. This flowchart covers
its initialization and its the three subroutines: process-node, process-slot, and dispatch. Included

are the locations of the "controller events" to which grammar-routines may be attached, the points
where controller-variables are set, and the location of calls to the realization procedure and
morphology routine.

control structure

4060 -

11.2.3

Definitions -61 -

INITIALIZATION

MUMBLE (message)

argument: a message
return value: none

The initial tree: root-node

[root-constituent]

the-next-available-slot-for-a-message

STA RT

Initialize the environment:

current-grammatical-filters <= 'empty
discourse-history <= 'empty
<all grammatical-variables> <= 'undefined

Initialize Controller Variables: 'I
current-node <= 'root-node
current-slot <= 'root-constituent
current-contents <= (Make-elmt-instance message)

Start the Controller at
Dispatch on current-contents

cofltfl)l structure
1123

Deftnitions -61-.

control structure l i.2.3 -

The.Controller

PraodeSs-ndurent-nodeL

argument: a node

return value: none

Enter-node: (Foreach feature of current-node
do (evaluate (get-grammar-routine 'enter-node feature))

(Foreach slot in (constituents current-node)
do (process-slot slot))

Leave-node: (Foreach feature of current-node
do (evaluate (get-grammar-routine 'leave-node feature),

c"O I'R N _ _

Process-slot (current-slot)

argument: a slot
retirn value: none

current-contents <= (contents current-slot)

Enter-slot: (Foreach feature of current-slot
do (evaluate (get-grammar- routine 'enter-slot feature))).

(Dispatch current-contents)

Leave-slot: (Foreach feature of current-slot

cant rot sinecture
ff2.3

)

Definitions -62 -

conitrol slructure 11.2.3

Definitions 63.;

do (evaluate (get-grammar-routine 'leave-slot. feature)))

RE'I

control structure 11.23

DefinitinsN-64A

IDepending on the type

. Dispatch (current-contents)

argument type: either 'empty, a word-instance, a node, or an elimt-ins

return value: none

of Current-contents do:

'empty- - RETURN

a WOR)-INSTANCE) (Morphology-routine current-contents)
:adjunct the word's print name and "say" it

RETURN

a NODE . (Process-node current-contents)

RETURN

an ELMT-INSTANCE > current-contents < (Realization-procedure current-content

After-Realization

(Foreach feature of current-slot
do (evaluate (get-grammar-routine 'after-realization fea

(Dispatch current-contents)

I
ERROR

4
RET1U RN

Initialization
When a new message is passed to the linguistic component, it becomes the contents of the

slot "root-constituent' If, at that time, the component has finished realizing the earlier messages,
then the current position of the controller will have returned to the top of the tree and the

Lance

Is)

lure)))

control sinicture

Definitions -64 -

.1.2.3

Definitions -65-

realization of the new message is begun immediately. If, on die other hand, the controller is still

positioned in an earlier part of the tree, then nothing happens to the new message immediately:

the controller continues to traverse the tree and to bring about the realization of the earlier

message(s) without disruption until the top of the tree is finally reached. (This technique of
reusing the same slot is only feasible if the speaker and die linguistic component are operating

online, i.e. if the speaker will not accumulate messages faster than the linguistic component can

realize them.)

The Tree-traversal Algorithm

The core of the cOntroller is a tree-traversal algorithm. It defines the order in which the

parts of the tree will be visited, and directly controls the two basic operations of the component:

realizing embedded message elements and printing out the words of the text as they are reached.

Interwoven within the traversal algorithm are the data-directed dispatch system that controls the

active aspects of the grammar, and the system of grammar-variables that maintain the deitic

aspects of the linguistic context.

The tree-traversal algorithm itself is unusual since at die same time that the controller is

traversing the tree, it is extending it: replacing message element leaves with more constituent

structure.. The "extension step" of the algorithm is the recursive call to dispatch made in the lmt-
instance case of that same procedure. In effect, the traversal process pauses at each embedded

msg-eImt while the realization procedure is run to compute the portion of the tree on which the

traversal is to continue. This property of the algorithm is important because it is the basis of

progressive refinement and consequently central to the design. At the same time, it raises die

algorithmic question of guaranteeing termination: can we be sure that the extension will ever

stop?

The extension stops when the phrases being selected by the realization procedure no longer

contain embedded EI4NIT-INSTANCEs. This makes termination the responsibility of the message

enumeration function, i.e. if the number of elements in a given message is finite and their

enumeration acyclic, then the realization procedure will eventually exhaust them and the

expansion will terminate.- Notice that this is a speaker-related criterion, not a linguistic one. If the

speaker could somehow arrange to transfer an "infinite" message to the linguistic component, the

component would not complain and would try valiantly to complete a realization of the message.

In fact, if the text resulting from the message were right or left recursive, the component could not

even tell that anything was out of the ordinary. Center embedded text, however, could raise

stylistic flags pg.(<centerembedding>).

control structure 11.2.3

Defnitions

2.4 Attached procedures

The controller's travel through the tree may be naturally decomposed into a sequence of

generic events defined in terms of specific points in the tree traversal algorithm. In this theory,

these generic events play the same role as "making an assertion" or "deleting an assertion" do in

PLANNER-style data-bases, namely they are points for procedural alachinent. In the linguistic

component, attached procedures are used exclusively by the active aspects of the grammar and the

procedures are thus known as grammar-routines.

Grammar-routines are attached to individual grammatical categorys, constituent slot-

names, and the features associated with them (see section grammar-routines..n.y.w.), and are

specific to individual controller events chosen from the following "generic" events:2 "entering a

NOI)E", "entering a SLOT", "after realizing a MSG-EIINT", "leaving a SLOt", and "leaving a NODE".

These associations will be clear in the way grammar-routines will be referred to in this text,

namely as the combination of grammatical label and generic event enclosed in square brackets,

e.g. [clause enter-node], [cI leave-sloti, etc..

Generally speaking, the execution of a GRAMMAII-ROUTINE can cause any or all of the

following classes of actions. This is discussed in more detail in section grammar...routines..n.y.w..

(1) The immediate print-out of a function word, without the word ever having occupied a
slot.

(2) A GRAMMAR-VARIABLE (see below) to be set to some value that the routine computes.

(3) Refining the current-contents by adding hooks to nodes or attachments to elmt-
instances. "Lowering" the current-contents into a slot of a new phrase that the
grammar routine builds.

(4) The annotation of some part of the tree or some part of the discourse history.

Non-specific GRAMMAR-ROUTINES

The bulk of the grammar-routine s in MUMBLE's grammar are associated with specific

constituent-structure-label. However, there are grammatical phenomena whose implementation

calls for a routine that will run on every occasion of a given controller event, not just those where

a particular feature is present. One such is the definition of a sentence, on pg.(sentencesn.y.w.>.

These routines (there can at most be five of them, MUMnLE uses two) are indicated as [<event>

always].

2. In this vein, the 110OKs for extra-constituent information (sect 11.4.5) can be seen as the attachment points for
default-decisionsigeneric events inside the reaization-procedure.

control structure

o-66 -

11.2.4

Controller variables

The controller maintains three variables: current-node, current-slot, and current-contents,

that may be referenced by the grammar-routines. As the flowchart shows, these variables are set

and reset recursively as the controller calls its subroutines.

Grammar variables

Without exception, all actions performed by the linguistic component are performed with

respect to the current position of the controller within the tree. rhis is inevitable given the data-

directed design since all dispatches: to the morphology routine, to GRAMMAR-ROUTINES, or to the

realization procedure, are perforned by the controller. This is the single most compelling fact for

the design of the grammar since it severly limits what can be a used for the representation of

context. Grammatical facts and generalizations must be represented in such a way that the objects

to which they apply can always be determined even though the point of view from which these

objects would be described is constantly changing.

The key to this deictic representation of context is a set of GRAMNIAR-VARIABLES, whose

values range over objects in the tree. They are set, reset, and remembered during recursions by

explicit commands that are part of grammar-routines. What variables there are and how they

should be maintained is a question of how one chooses to do the grammatical analysis, and will be

taken up extensively in chapter three. The broad philosophy of how they should be used is

discussed later in this chapter in section grammarvariablesn.y.w..

3. Conventions in the grammar

The linguistic component deals with information in three different representational levels:

the message, the surface level syntactic structure of the tree, and the pnames of WOR)s. At each

of these levels, certain relations must hold if the output texts arc to be legitimate English. These

relations are described by the grammar.3 The goal of the rest of this chapter is to review the

representational devices that make up a grammar for the linguistic component, and to explain the

conventions that govern the assignment of particular devices to particular phenomena and their

motivation by the particular exigencies of language production.

3. N.b. message-level relations are not considered part of the grammar o the linguistic component even though the
well-formedness condition on messages or any constraints that might be formulated in an interlingua are critical to the
component's design. This is because messages are constructed by the speaker and it is therefore the speaker that is
responsible for representing and obeying any "message grammar".

grammar conventions

-m67 -Definitions

.i . .3-

lThe grammatical conventions for surface structure will occupy the bulk of the discussion.

Surface structure is the level that carrys the greatest burden, being used both to determine the

execution sequence of the component as a whole and to represent the current intentional and

grammatical context for decision-making. At the end, the morphology routine will be described.

In MUNIILE's text-based implementation, this routine is very simple; however, if actual speech

were being produced, much more elaborate processes would be required: in particular, a very

close interface to the syntactic structure would be required if intonation contours were to be

produced incrementally as texts currently are.

This section begins by discussing what a grammar is and what, it is to account for in the

production process. The point will be made that the meaning of a grammatical term is given by

the expressions that refdr to it and, ultimately, by the actions that happen when these expressions

are interpreted. Following in this line, we next will look closely at why an explicit syntactic

structure is so important in this linguistic component, and then, expanding on the principles

developed there, The specific representational devices of the grammar and the conventions

governing their use are the subject of the section following this one.

3.1 What is a Grammar?

In this theory, a grammar is a set of objects of certain types. 4 Nothing else need be

specified since the behavior and possible interactions of all of the objects follow from the already

established definitions of their generic types.

Of course, merely defining a set of objects does not automatically make it a grammar of the

English language. The content of a descriptive grammar of English such as [onions],

[quirk.&...greenbaum] or [fowleri is not in its choice of terms, e.g. subject, predicate nominative,

participle, etc., but in the statements that relate those tenns: "a predicate nominative agrees in

number with its subject", "the implied subject of a participle used as a clause adjunct is the

subject of the clause to which it is adjoined". So it is.when a grammar is used to constrain

production. Here, the equivalents of the descriptive statements are the fixed control and

realization procedures and the patterns of PREDICATEs and ACCESS-1FUNCTIONS in the DECISIONS

and GRAMNIIAR-ROUTINEs. The properties of the objects in the grammar must be carefully chosen

so that the relations that tie them together are appropriate to English.

Adequacy

4. Every object in the linguistic component is a member of one of three possible "reahns': the dictionary, the grammar,
or the context. The data-types of objects which are part of the grammar are: CATEGORv, CONSTITUENT-
SCIIENIATA, SDLOT-NAME CATlEGORY-IFEATUR E, SLOT-FEATURE, lRltCION-FEATURE, 1100K, GRAMMAR-
ROUTINE, DEFAULT-DECISION, grammar-decision, C(1101E, 11IRASE, MAP, SI.OT-PATIl, MARKING-
ACTION, TRANSFORIMATION

grammar conventions

-w68 -Definitiois

11.3.1

Obviously the grammar must be so designed that the texts the linguistic component

produces are grammatical 5 English:'verbs must agree with subjects and not objects, predicates

must follow subjects and not visa versa, and so on. This descriptive adequacy is a requirement that

all language systems: production systems, comprehension systems, and "competence" systems

(such as the many types of transformational generative grammar) must satisfy.

However, when we come to the "invisible" underlying linguistic relations of the text such as

the choice of categories or the precise patterns of the constituent structure, it is not so clear what

relations the grammar is supposed to enforce. Is there a verb phrase? Is the constituent structure

of the auxiliary flat or a right-recursive tree? Questions such as these are part of long-standing

disputes in the linguistics literature. Their answers are predicated on differing meta-theoretical

decisions which assign different explanatory roles to the same representational devices. One

cannot determine whether or not the underlying grammatical representations posited by a given

grammar are adequate for English without first determining the theoretical framework according

to which the grammar was designed. Establishing this framework is thus first order of business:

3.2 Why use constituent structure at all?

Practically all goal-directed language production programs prior to the present one did not

bother to build an explicit constituent structure for the texts they produced.6 One must then ask

why constituent structure is so important in this design. This is really two questions: (1) why must

any structure be built at all?-why can't the words be produced directly? and (2) if one should be

built, why an essentially classic grammatical constituent structure?

3.3 Decisions as plans

Any natural language producer, human or machine, is only capable of saying one word at a

time; yet, nearly every decision that is made in the course of production entails die simultaneous

specification of temporal and grammatical relations involving more than one word (or more.

abstract units). It follows that there must be some provision in the system for remembering what

has been decided until such time as all the actions required to realize those relations have been

carried out (i.e. until all of the words involved have been given the right morphological markings

and have been printed). Unless some record is kept, the system will either forget what it has

planned to do and stop talking, or it will be continually "re-making" its decisions, with the
7

possibility of inconsistency.

5. This statement requires a caveat. if the process in which the grammar operates is not responsible for certain aspects of
the final text--such as its length-then there is no way that it can, or should, be able to insure the "grammaticality" of
those aspects. In particular, I will argue later (ross.constraintsn.y.w.) that the component's grammar should not be
responsible for Ross's island constraints because they are best realized at the level where messages are constructed.
6. To the best of my knowledge, the only exceptions as of August 1979 have been [gretchen.german] and in some
res)ects l)aveyl. Sce [ddmspast].
7. The production model of [kempeni1979] is such a case: Iis notion of "piecemeal sentence production" calls for the
continual regeneration of the earlier parts of each sentence as successive conceptual elements are added to it. See also
[henry-thompson].

granimar conventions I.3.3

-069 -Definitions

Definitions

grammar conventions

-070 -

I1.3.3

Definitions -71-

grammar conventions 11.3.3

grammar conventions 11.3.3

Definitions - 72-

In this context, a "decision" is always a decision to perform some action(s): utter a word,
create a grammatical relation, realize a subelement, and so on. (N.b. one can especially decide to

schedule further decisions!) In effect, a decision is a commitment to execute a certain (minimally

specified) procedure at a certain time. In a data-directed system, this commitment is made by
building the requisite data structure (e.g. a NODE) and positioning it in the path of the controller at

the appropriate point with respect to all the other things one has planned to do.

ATN-based production programs (e.g. [slochuJm][goldman][wong[shapiro...acl791) avoid

constructing an record by using an ATN in which all of the alternative execution path segments

that could be selected have already been multiplied through and are part of the explicit state space

of the transition network The advantages of the data-directed technique are: (1) the record is
vastly easier to inspect;(2) being declarative, it can be easily changed if necessary (e.g. for in-line

heavy phrase shift); and (3) as they are usually designed, an ATN that was both to be indelible

and tobe controlled by the contents of the message (rather than using the standard, grammar-

based search) would have an incredibly large state space, so much so as to make its design
impractical. 8

3.4 Incremental realization

Even if some structure must be built to record decisions, why must it be a grammatical one?

Earlier production programs such as [chester or [shrdluj kept their records in the form of nested

lists of calls to production functions-what is the purpose of a grammatically annotated record?

The most obvious utility of a grammatically annotated record is that it can be inspected by

decision making routines, thereby allowing the grammatical context to directly influence the

decision making. However, this is actually only a corollary oftthe more important reason which
involves how one implements a policy of incremental realization in a data-directed system.

The cornerstone of incremental realization is Marr's "Principle of Least Commitment"

[marrieast...commitmentl (rephrased for production rather than analysis).

No decision-maker should be forced to specify more detail in its decisions than can actually
be justified on the basis of the readily available information.

This principle has two kinds of force here. First of all it is die basis of constraints in the theory

governing what knowledge resources an ENTRY should need to appeal to, i.e. (1) no ENTRY should

be forced to know any of the details of English grammar (this is the point of having a linguistic

component); and (2a) ENTiYs should not need to know anything about die structure of

subelements that have their own ENTRYs; (2b) linguistic generalizations over subelements (e.g.
TRANSFORMATIONS) should treat them as atomic objects.

8. By "usual design" I have in mind equating NIUNIlE's dictionary entries with AN subnetworks (as though they
were np's or clauses in an ATN parsing grammar) with.the decision-rules becoming the tests on the arcs and the
phrase-schema becoming suboetworks that the atn would traverse.

grannar conventions 11.3.4

The second force of the principle is as a call for modularity: no decision-maker should

make a decision that one of its subordinates would have to make anyway in other circumstances.

Instead of making the "redundant" subordinate decision itself, each ENTRY will include a token(s)

in the record of its decisions that will trigger a subordinate decision-maker at a later point.

Modularity in the design of the decision-makers reduces the amount of redundant decision-

making knowledge in the system and reduces the number of dependencies on the individual

decisions because each will require less ihformation to function.

As a concrete example, consider the problem of recordinR a decision to select a simple

subject-predicate construction. (e.g. deciding to map man (x) and mort al(X) into

All men - are mortal) In making this decision, an ENTRY should not have to simultaniously mark

the number of the verb instead, the fact that this action is needed should be part of the record.

This is because the verb cannot be marked before the number of the subject is known, a datum

which, at the time when the decision is made, could be learned only by having the ENTRY look

ahead to see how the subelement that is targeted for the subject position will be realized. Such

look ahead is a violation of the incremental realization constraint because it would require the

ENTRY to incorporate extensive, redundant information about the- internal structure of that

element (i.e. enough to determine its number-sometimes effectively its whole ENTRY). Why

should an ENTRY have to go to this effort if the marking of the verb can be postponed until after

the subject has been realized and its number is trivially available?

However, if the verb-marking action is to be postponed, the record of a "clause-subject-

predicate" decision will have to be specially labeled so that when the time comes the controller

will know to initiate the postponed action. Just recording die two elements as a list (essentially

what is done in systems based on nested function calls) is not sufficient; the annotation on the

"list" must at least be rich enough to identify which element will carry the number marking and

which element it is to agree with.

Of course, the labeling does not have to be as specific as do-number-agreement. All that is

required is that the chosen label(s) imply the specific label through some system of intermediate

actions and conventions. If the decision-recording language is sufficiently rich, an ENTRY can

specify entire systems of later decisions without having to know what they are individually. This,

of course, is the point of a grammar. Grammatical terms like clause or noun phrase stand for

extensive sets of actions and contingent decisions which ENTRYs do not have to know anything

about. This function of grammars has long recognized and emphasized by researchers in the

systemic grammar paradigm. [-lalliday...big....paper][hFalliday...modality....mood][shrdlul

[HlIuddleston..generation][daveyl.

A text in the English language must obey the constraints of English grammar. It follows

that the relations that linguists have selected for describing those constraints should be directly

grammar conventions

-073 -Defiitions

.1.3A

applicable to production.9 A data-directed control structure allows the designer of a production

system to take advantage of linguists' results directly by using the very relations that the linguists

have decided upon as part of the decision-making record.

At the same time, the design decision to employ a classic grammatical constituent structure

as the record was not made for its own sake. MUMNIBLE's constituent structure is less extensively

annotated than many of those in the linguistics literature and will often differ from them in

significant ways (see below). 'lhis is because the metatheoretical role of constituent structure here,

i.e. to record decisions, is not the same as it is in, e.g., the Aspects model of transformational

grammar [aspects]. The grammatical facts that must be accounted for are the same and therefore

the notations have a great deal in common: however, the way in which the linguistic component

uses them is particular to production.

3.5 Constituent structure (lesign for production

3.6 Message structure

The most important function of the constituent structure is to be the repository of yet to be

realized message elements. This means that the conceptual structure of the messages-how they

decompose into message elements-constrains the shape of constituent structure in a very specific

way. Message elements (or more precisely ELMmT-NSTANCEs) will occupy Sixvs in the tree-one

message clement, one slot-therefore, when an ENTRY decomposes a given message element into,

say, three subelements, it must select a PlRASE with three free StOTs to put them in.

When there is a conflict between the decomposition pattern of a message and the pattern of

nodes in the usual constituent analysis of the English construction selected for it, the requirements

of the message structure take precedence over the grammatical analysis and a different technique

is used to achieve the grammatical effects.

A case in point is the treatment of noun phrases for the Digitalis Advisor. A phrase like:

"potential potassium loss due to diuretics" would be analysed in a systemic grammar (for example

[shrdluJ pg.56]) with an almost "flat" constituent struCtUre, i.e.

9. This is provided, of course, that it is possIble to interpret the terminology of descriptive granmmars of English in terms
of potential decisions or actions .111 the- language production prmess. Certain modern transformational-generative
representational devices, such as "over-generate and filter" Ichomsky_&.Jasnikl, cannot be accommodated without
severely violating the indelibility constraint.

grammar conventions

do 74 -Definitions '

11.3.6

[adjective][classifier][head][qualifier]
potential potassium loss pp

[prep][pobj]
due-to iuretics

But the owu expression which engenders that noun phrase is a deep binary tree. Each node of

that tree is an Owl. "concept", either atomic or comprised of a "generalizer" and a "specializer",

each of which is itself a concept. The natural way to realize such a structure is one concept at a

time, embedding the generalizer and specializer at each level into their own constituent structure

SLOTS.

This means the final constituent

concept, as shown in the figure.

[(((loss ((to due)
diuretics))

potassium)
potential)J

structure will have one syntactic NODE for each OWL

np-1

[modifier][head]
potential np-2

[modifierJ(head]
potassiu n-

[head][qualifieri
loss pt

[prep][pobil
cm nd diuretics

cu-t[cm-2
due t

Any potential aesthetic "strain" on the set of "normal" syntactic categories is offset by the

simplicity of realization process that is gained thereby.

3.7 An active grammnar

Earlier sections of this chapter described several representational devices: GRAMMATICAL-

DECISIONS, DEFAUL;r-DICCISIONS, and GIAMNIMAI-OUTINEs, that have the power to evaluate

expressions that test the current context and perform contingent actions that may print texts

directly or modify the tree. These devices are quite unlike ordinary passive devices such as

CATEGORYs or SI-K"ATUREs Which can only "act"' indirectly by influencing the outcome of

DECISIONs that reference them. One may ask why active devices are needed-why wouldn't it be

grammar conventions

-75 -Defin itions -

.11.3.7

Definitions -76-

possible to avoid later active elaborations to the constituent structure by building a more elaborate

structure in the first place? The reason is that it is typically impossible to build more elaborate

structures at decision-time because their underpinnings-the sentence-initial words to be

capitalized, the pronouns to be marked for case, the head nouns to be marked plural, etc.-do not

yet existand cannot exist because they depend upon decisions that have yet to be made. This is,

of course, a consequence of the incremental realization constraint. Active devices in the grammar

are the price one pays for being able td avoid redundant lookahead and anticipation at decision-

making time.

Grammatical actions can only take place when triggered by events in the controller

(<eventsin...the.controller>). If the first word of each sentence is to be capitalized, then there

must be an event that can be associated with the beginnings of sentences; if there is to be a comma

after every item in a list, then there must be some way to mark lists as such and to note the end of

every item in them. This aspect of the design becomes important whenever decisions are to be

made whose defining conditions are strictly linguistic. Two such decisions are "particle

movement" (saying put down the block versus put the block jown) and "extraposition" (Persuading

Macbeth was easy versus It was easy to persuade Macbeth). Both of these sets of alternate

orderings are only relevant for certain prior choices of main verb, consequently their triggering

events must take place after the verb' has been selected but before the phrases are begun.

In general, we would like decisions like particle movement or extraposition to be an

automatic part of the grammar--something that individual ENTRYs do not have to be concerned

with. To make this possible, we must make certain that the ENTRYS choose PHIlRASEs whose

structure (i.e. choice of CATEGORY-FEATUREs, choice of SIOT-NAMES, etc.) insures that the

triggering events for these decisions will take place. This aspect of the design is the one most

responsible for fixing the details of the grammar.

3.8 The 2-color hypothesis

Once the principle of an active linguistic representation has been established, it is a short

step to the 2-color hypothesis:

The only objects that may legitimately occupy SLOTs in constituent structure are EMT--
INSTANCEs or wORINSTANCEs explicitly chosen by a dictionaty ENTRY.

This is a psycholinguistic hypothesis rather than a computational one and has been incorporated

into this theory as a discipline to guide otherwise open design choices about which closed class

words should appear directly in the tree and which should be an implicit part of the constituent

structure.

This hypothesis appears in the linguistic component as a constraint on the designers of the

grammar and dictionaries forcing them to insure that constituent structure slots are occupied only

by objects specifically selected by some ENTRY. In operational terms, that means that the only

gralnmar conventions

F - w

11.3.-8

Definitions -77-

way into a constituent slot is as an argument in a CiOICEAPPLICATION. No woims or morphemes

selected by the grammar are to occupy sLOTs at any time; they are all to be printed directly by

GRAMMAIR-ROLTINEs. Closed class words and morphemes become, in effect, a direct extension of

the syntactic structure: they may not be passed through the morphology routine or further

modified by grammatical context in any way, and there will not be any independent record of

their presence in the text-only what can be deduced from the record of what CiOICEs were

made.

The hypothesis is prompted by the differing distributional patterns of open and closed class

words in speech errors, particularly full word exchanges: Whaw kind of hungr are you going to be

foo&for?, and errors that "strand" grammatical morphemes: ... you can see my friend checking

cashes. Error data like these (taken from my own collection) lend themselves to an interpretation

as shifts of salient words relative to a fixed phrasal matrix. (See [garrett-latest][KlatL&_grrorsJ

[ddn..squibsj for elaboration.) The simplest explanation of any error is that it is caused by the

malfunction of some part of the normal processing mechanism. Consequently, if open-class words

and grammatical matrixes are as differentially effected by speech errors as seems to be the case,

then we will hypothesize that, in normal processing, the two are represented differently and

manipulated by different operations. Metaphorically speaking, they are painted two different

colors.

t is not obvious a priori that this hypothesis can be incorporated into the linguistic

component in a way that is consistent with other design goals such incremental realization or the

direct use of data structures from the expert program. But if, in fact, a coherent analysis is

possible (as appears provisionally to be the case with MUMBLE) then we will have computational

evidence for the sufficiency of the 2-color hypothesis as a psycholinguistic model.

3.9 The meaning of grammatical objects

The objects used to label constituent structure: CATEGORYs, SLOT-NAMEs, CATEGORY-

FEATUREs, SLOT-FEATUREs, and HOOKS, all take on meanings in two different ways: as symbols

and as attachment points for GRANIMAR-ROUTINES ((attachedprocedures>).

3.10 Symbols

In any formal system, the 'meaning of a symbol derives from the axioms in which it is

mentioned [Hayesdefenseofi.ogici. Correspondingly, in the linguistic component the meaning

of an object qua symbol derives from the expressions: DECISIONS and GRAMIAR-ROUTINEs, in

which it is mentioned, where being "mentioned" means that the object's name is a literal part 'of

the expression. The predicateentry (pg.209) is a good example. Its decision-rules make reference

to several SLOT-NAIIs (modfier, head, predicale) and SIOT-FEATU1W (clausal, nominaL); in so

doing, they add to the definition of those labels by specifying ChOICEs which they will trigger, and

grammar conventions 11.3.10

Definitions

(implicitly) that they are a disjoint, discriminatory set.

In any system, the most "interesting" symbols are those that control entire systems of

choices, the major grammatical categories such as clause or noun phrase being well known

examples. However, there are many, more subtle examples. One such is MUMBLE's REGION-

FEATURE formal, originally developed for the logic domain. As its name suggests, it is intended to

influence the style of the text-that vague dimension on Which breakfast conversations and legal

contracts fall at opposite poles. Its meaning in MUMilE however is not at all vague, though it is

certainly incomplete.

Formal presently controls two effects: the use of contractions and the realization of the

logical connective IFF. The contraction of not to auxiliary verbs or of modals to subjects occurs or

does not occur depenling on the CiOICE of a GRANMATICAL-IECISION made within the

morphology routine. (Each contraction opportunity entails a new decision.) At the moment,

contractions will go through unlessfornzal is present, i.e. the decision used is:

(define-decision use..acontraction?
gating-condition (not formal)
default (use...contraction))

Similarly, the ENTRY iffenury (212) includes a ChlOICE-FILTER which, when (not formal) is true,

eliminates realize-consequent...asrestrictive-relative as a possible C101CE.

Eventually, one would expect phenomena such as the use of who versus whom, or of

dangling prepositions, or even certain word choices, to come within the system controlled by

formal. Whether this would in fact be a correct analysis depends on whether these phenomena

form a coherent set and should be controlled by a single atomic decision, i.e. is it always that case

that all of these phenomena are appropriate when any of them are? Consider: the dictionary for

the logic domain only assigns the feature formal to regions dominated by sLOTs with the feature

conclusion (in the sense of "the conclusion of an argument" see pg.(uiargument....y.w.>) In so

doing the dictionary has associated the intentional description conclusion with a set of particular

linguistic behaviors. If it should turn out that future "conclusion" texts produced by this

dictionary do not have the intended effect on their readers, then we will then have evidence

(perhaps the only possible kind of evidence) that the system forformal must be redesigned.

3.11 Procedural attachnient points and Data-types

lData-types are analogous to names in the way they acquire meanings. In effect, they are

second order symbols since, by using operations that make reference to specific data-types, the

definitions of the fixed procedures create schematic expressions that dictate the meaning that

objects take on by virtue of their data-type. Probably the most important part of this "meaning"

grammar conventions

up 8 "

II.3.11

is the difference between objects of different data-types as places to attach GRAMMAR-ROUTINES.

CATEGolls and SLOT-NAMES are parts of differently placed events in the controller and as a

consequence, their attached procedures will differ in the parts of the tree they may effect; the

kinds of information their PRIEICATEs will have ready access to; the timing of their actions

compared to others'; and other questions of that sort.

[Enter-slot] and [after-realization] are a good example. The figure on page

<attachedproceduresjigure> shows that, from the point of view of the final text, these two

attachment points are assigned to contiguous events, i.e. they take place after all of the text

dominated by the previous sLoT has been printed and before any printing for the current SLOT

has begun. As far as the final text is concerned, they are equivalent sources for function words;

however, from the point of view of what kinds of information are readily available when such

routines run, they are quite different.

To put some flesh on this example, let us consider the particular case of the SLOT-NAME

complement. Verbs like expect and persuade take "sentential complements"-message elements

that would become regular clauses if they were not embedded. Depending on whether the subject

of the embedded clause is (would have been) the same as subject of the main verb and on whether.

modal or tense are used, these complements will appear as infinitive verb phrases introduced by to

or as clauses (optionally) introduced by that:

Lady Afacbezh expected Macbeth to become king."

"Lad)' Macbeth expected that Macbeth would soon be king."

In MUMNBLE, -such message elements appear in [complement] slots (but see 11.4.7). Consequently,

the function words to and that must be produced by GRAMMAR-ROUTINEs attached to the SLOT-

NAME complement. The question is, should they be attached at [complement enter-slot] or at

[complement after-realization]?

The choice of to versus that depends upon whether message element in [complement] is

realized as a verb phrase or as a clause. If the attachment were made at [complement enter-slot],

this realization would not yet have happened (cf. diagram on

pg.(attachedprocedures-within-controller>). Conceivably, the GRAMMAR-ROUTINE could know

how to look ahead and deduce what the realization would be (see, for example, section

<analysisjroutines>). On the other hand, if we were just to wait and attach the routine to

[complement after-realization], the needed information would be trivially available and the

routine can be very simple, i.e.

grammar conventions

-w 79 ONDefinitions

11.3.11-

Definitions 80

(define-label to-that
after-realization

(lambda (contents)
(cond ((eq (category-of contents) 'clause)

(make-and-execute-decision 'whether-to-say.that.before-complement))
((eq (category-of contents) 'vp)
(mprint '11ol)))))

4. Representational Devices for the Grammar

By the 2-color hypothesis (pg.2-color.hypothesis>), whenever an ENTRY makes a (matrix)

mIOICE, it is selecting a parameterized structure, L [1 , e2, .. , where "L" is an extended surface

structure and the subscripted "e"'s are message elements. Extended surface structure is, the term I.

will use in the rest of this paper to describe the linguistic level of representation given in the tree.

The form of the tree specifies all the linguistic relations among its constituents: syntactic,

discourse, and intentional, all the function words and grammatical morphemes that will appear in

the text, and all grammatical constraints on the realization of any ELMT-INSTANCE embedded

within it.

This section will first show how the different kinds of constituent-structure-labels are

defined and what they may be used for. It then looks at GRAMMAR-ROUTINEs and how they are

used to extend the usual notion of surface structure. Finally, certain fine points in die

specification of constituent structures will be considered--the different ways of specifying an

extended surface structure will be shown to correspond to the different times at which decisions

are made in the realization of a message and what decision-recording structures can be expected

to exist then.

4.1 CONSTITUENT-SCI[EMATA

CATEGORYS and SLOT-NAMES, the generic grammatical objects corresponding to the NODIES

and SLOTs of constituent structure, are defined in terms of CONSTITUENT-SCHlEMAS. These, you

will recall, are the representational device used by PHRASES to specify immediate constituent

structure; they are thus the means (the only means) whereby particular CATECORYS or SLOT-

NAMEs become part of the tree. CONSTTUEN-SCIENIA have the following properties.

name A CATEGORY-FEATIRE, automatically part' of the features of any NODE
created by instantiating the schema.

grammar conventions 11.4.1

Definitions - Si

features A list of zero or more CATEGORY-FEATURES or REGION-FEATUREs which
also will become part' of the features of any NODES instantiated from the
schema.

category A CATEGORY.

slots A list of one or more SLOT-NAMES.

In MUMBLE, CONSTITUENT-SCIIENIAS are specified with the load-time operator define-schema.

(define-schema vp.predicate-nominative (vp)
slots (mvb pred-nom))

(define-schema regular-np (np)
slots (det modifiers head qualifiers))

(define-schema regular-pp (pp)
slots (prep prep-obj))

Instantiating a CONSTITUENT-SCIIEMA NODEs are created from CONSTUTUENT-SCIlEMAs by a

simple process. First, a new object of type NODE is created. (Note, '[his is the only way that

NODES come into existance.) By convention in MUMBLE, its name is created by appending the

next available number (from the sequence used for this purpose) to the name of the category of

the CONSTITUENT-SCIIEMA ("schema" for short). The features property of the new NODE is a

newly created list consisting of the schema's category, its name, and its features if there are any, in

that order.

Then the new NODE'S immediate-constituents property is set. This is done by taking each

S1OT-NAME on the schema's slots property and creating a new object of type SLOT with that soT-

NAME as the value of its slot-name property and a empty contents property (i.e. its value is the

SYNlOl, nibO. These SL0Ts are accumulated in a list, maintaining the order given by the schema's

slots property, and the list, when complete, is installed as the NODE'S immediate-constituents.

Newly created NODES have empty SLOTs, and no hooks or record properties. All of these

are supplied by P1 IIASES (or by subsequent TRANSFORMATIONS or GRANMAR-ROUTINES).

Instantiating a PIIRASE consists of instantiating its first CONSTITUENT-SCHEMA, then filling each of

the indicated SLOTS applying the process recursively when the indicated contents are another

CONSTITUENT-SCIHEMA. llhe features property of each created SLOT is copied from that of its slot-

name plus any features specified locally with the PH1RASE.

Schema as constituent structure labels The name of a CONSTITUENT-SCIIEMA can be used

directly as a symbol of the pattern of SLOT-NAMES it denotes. So for example, if a program knows

that some constituent is a regular-np; its does not have to explicitly scan its immediate-constituents

graimnar conventions 11.4.1

I -a

Definitions -82-

in order to learn that it has a [determiner]. That fact is implicit in the name of die CONSTITUENT-

SCIhEMA.

CONSTrTUENT-SCI IEMAs are also die logical place to attach any GRAMNIAR-OUTINEs that

may be necessary to signal decisions about this pattern of constituents that must be postponed

until after the schema has been instantiated. This is why the schema's name is automatically a

feature of any NODES created from it. For example, the default main verb of a predicate

nominative construction is always the copula be. This fact is represented by the [pred-nom after-

realization]GRAMMAI-ROUTINE:

(define-label vp.predicate-nominative
after-realization

(lambda (the-node)
(cond ((not (getslot 'mvb the-node)) the slot is empty

(filIslot 'be 'mvb the-node)))))

Similarly, when "derived" message elements are created through the merger of almost identical

relations at the message level (mergigmessagelevel-relations.n.y.w.), their number properties

will not be known untill the dust settles (as it were). Texts like,

"Pp has jMeroles: .pobi. prep. inetep. an(vobi."

are built by this grammar:

(define-schema np-name (np)
slots (det head name))

(define-label np-name
enter-node

(lambda (the-node)
(cond ((and (nodep (getslot 'name the-node))

(eq (category the-node) 'conjunct)))
;if there are several "names"
;they will have been seen earlier and
;made into a constituent.

(set-hook the-node 'number 'plural))

Constraints on CONSTITUEN-SCIIIEMA

Each slots property may have only one instance of a given SLOT-NAME. This restriction is

necessary to insure that SLOT-NAMES define unique positions in a NODIE's immediate constituent

structure. The SLOT-PAThS used in CHOICIs to define the mapping between their parameters and

positions in constituent structure are given entirely in terms of SLOT-NAMEs; thus this restriction is

11.4.-grammar conven tons

Definitions 83'-

necessary to ifsure that the I'll RASE instantiation operation can be consistantly defined.10 (Any

cases where duplicating a SLOT-NAME within one schema might seem to be useful.,as a way to

encode some common property are better handled by assigning the property to SOT-FEATURE

which can then be assigned to all of the individual SLOT-NAMES.)

It is impossible in this theory to introduce a CATEGORY or a SLOT-NAME into the grammar

except via a CONSTI'UENT-SCIIENIA that relates them." One cannot define a CATcORY without

simultaniously specifying at least one set of SLOT-NAMES for.its immediate constituents. Similary,

one cannot define a SLOTNAME without simultaniously specifying its temporal order with respect

to the SLOT-NAMEs of at least one other constituent-schema.

Schema with arbitrary numbers of constituents Conjunctions and simple discourses are

atypical grammatical categories in that they may have any number of constituents, all of which

have identical properties (except possibly the first and the last). These unorthodox CAT EGORYs

call for unorthodox CONSTITUENT-SClENIAS. In MUMBLE, they are defined in terms of a "kernal-

slot-name") (e.g. "c" for conjunctions), from which individual SLOT-NAMEs are created by

appending a number; new SLOT-NAMES will always be created in the same order (i.e. [cI], jc2, ..

To assemble a, e.g., conjunction NODE from a list of(proto-) constituents, each constituent is taken

in turn, paired with the next-slot-name in a newly created SLOT, and the swl's accumulated in

the NOnE's immediate-conStituents property.

The operation of computing the next slot-name of a node with one of these schema can be

done incrementally while the process is running. That is a function has been defined, call it next-

slot-name, which is given a node as input, updates its next-slot-name, construction a slot to which

it gives that slot-name, and adds it to the node's constituents in the appropriate place. Defined in

this way, new constituents can be added to arbitrary-length CONSTITl'ENT-SCiDEIA at'any time.

The constituents of root-node are an important case in point. New messages are introduced into

the lingustic component by putting them into "the next available SLOT for a message", which is

computed as needed by this function.

Schema as productions CONS TITUENT-SCIlEMAS are akin' to the productions of a phrase

structure grammar ("PSG") in that they specify (albeit indirectly) the set of phrase structure trees

permitted by the grammar. That is, where a PSG would use a rule like:

clause -> NP + VP

10. Alternatively, we COuld define multiple instances o' the same SLOT-NAME in a CONSTI'tUENT-SCl IEMA to
mean that any EINT-INSTANCE mapped into such a "position" is to be placed in all of the SLOTs with that name.
This capability, however, has not proved to be of any utility in M UMBLE.
Ii. Actually, this is not strictly true from the designer's point of view; The section on."fine points" will discuss the use of

TlANSFORIATIONs and GtlMAtitltINESs to activate "latent" constituent slots, permiting "regular"
CONSlITUENT-SCI IENlAs to be augmented in predictable ways.

114.1grammar conventions

Definitions

to specify that the first constituent of a clause must be of category NP, MUMBLE would use the

comparable CONSTITUENT-SChtEMA:

(define-schema basic-clause (clause)
slots (subject predicate))

in conjunction with the following CiIOICE-FiI;fER on subject:

(define-slot subject
choice-filters ((or 'np 'tenseless)))

This filter applies during the realization of any EIAMT-INSTANCE contained in a SLOT whose slot-

name subject, where it is interpreted to permit only cuioICEs whose phrases include either of the

category-features ip or tenseless.12 to be selected.

CATEGORYs and SLOT-NAMES CATEGORYs are labels on NODEs. From the dictionary

designer's point of view they can be used for encoding facts or intentions about any subelements

that are constituents (immediate or distant) of the same NODE or about the entire region of the

tree that the node dominates.

That a msg-clnt)'s subelements will all be grouped under the same CATEGORY follows

inevitably from the definition of realization as a substitution operation: all msg-elmts are realized

as single-rooted trees (except, of course, those that become WORIs) and the root node must have a

cATEGOR Y. Choice of CATEGORY is thus trivially a way of encoding the fact that certain EAlT-

INSTANCES were derived from the same message element. However, to just determine common

ancestry it is sufficent to know that the ELNIT-INSTANCES were dominated by a common NODE,

regardless of its CATEGORY.13

Every NOJE in the tree dominates a contiguous section of the final text, and, by the same

token, "dominates" the realization decisions that lead to that text. Such regions can be

described-the decisions within them constrained-by the CATEGORY (and REGION-FEATURES) of

the NODES that define them. The effects of the region will be implemented by GRAMMAR-

VARIABLES or by direct references to the CATEGORY as a symbol. The "ceiling" on a region is, of

course, the NODE to which the category is assigned. Its "floor" will be reached either when the

controller enters another occurance of the same CATEGORY (since controller variables are

12. In NIMMt1lE, gerunds, participles, and norninalized clauses are given the CATEGORY-FEATUR E tenseless.
13. Indeed, in MUMJNIIILE, grouping seems to be important only when it gets in the way, e.g. the case of dynamically

adjoined phrases where dummy NODEs must be created to, satisfy the formality that SIAY1s may contain only one object
and are then "ignored" by the grammar because they have no grammatical properties.

grammar conventions

do8Qd-

11.4.1

Definitions

recursive (pg.<controller...variables>)), or when a lower region is entered that is an alternative in

the same grammatical system. SubOrdinate clauses are "floors" for major clause regions, for

example.

Typicially, this description of a region is linguistic: a realization is labeled as a certain type

of syntactic object-a NP or a clause-and properties of the region covered by the realization

follow froim that label. Thus from the point of view of the grammar, CATIGoRYs have their usual

meaning: they are context free descriptions of constituents (NODEs), identifying the properties

that they have by warrant of their form rather than because of their position or function relative to

other constituents.

The principle context sensitive description of a constituent is given by its SLOT-NAME. The

constituent in the [subject] of a clause, for example, enters into certain grammatical relations with

the constituent in the [predicate] or in any [adjunct]; these relations described in the grammar

strictly by reference to those SLOT-NAMES. (Because SLOT-NAMEs are defined in terms of CON-

STITUENT-SCIJEMAS, the scope of this description is limited to the region dominated by the

covering CATEGORY. The designer may arrange that a SLOT-NAME has a meaning relative to other

SLOT-NAMEs not in the same schema, but this must be done by tacit naming conventions in the

grammar, and is not governed by the theory.)

SLOT-NAMEs in MUMBLE are the primary representation of a constituent's grammatical

ftnction, labeling constituents according to their role with respect to the regions that contain them

(e.g. the "objects" of verbs, "determiner" and "head" of NP's, the "object" of a prepositional

phrase, and so on). The morphology routine uses this information to determine the case form of

pronouns (<determining.pronouncase-in themorphology.routine>); various GRAMMAR-

ROUTINEs use it to define number concord; and the thematic TRANSFORMATIONs depend upon it

as their basic vocabulary.

SLOT-NAMEs also define regions, although, unlike CATEGORYs, these regions are based on

relations relative to sibling regions and not on being part of a containing region. For example,

within conjunctions, the GRAMMAR-ROUTINEs assigned to the individual conjunction slot-names

maintain the GRAMMA R-VA RIABLES current-conjuncl and previous-conunct. Another example is in

the logic domain, where the top-level discourse structure is based on the.sequence of lines in the
proofs: each line is contained in an individual SLOT and grammar-variables are defined for the

current-line and previous-line.

Because they have direct effects on the text or on later decisions, SLOT-NAMES are a natural

way to encode any message-level relations among subelements that are to be carried over into the

linguistic representation. (This is particularly true when the speaker uses a "context-based"

representation (<context.-basecdrepresentations>).) An interesting example of this kind of

encoding appears in the logic domain. The third through fifth sentences of the example on page

<barber-proof> (repeated below for convenience) comprise a "subargutent"-a pattern of

grammar conventions

do85 -

11.4.1-

Definitions

statements intended to introduce some fact, make an observation, and draw a conclusion.

Now, anyone who doesn't shave himself would be shaved by Guiseppi. This would include
Guiseppi himself That is, he would shave himself if and only if he did not shave himself

These sentences have a rhetorical structure comparable with the syntactic structure interior to

sentences-something that can be represented by a CONSTLTUENT-SCIIEMA

(define-schema argument-typel (discourse)
slots (fact statement restatement))

This example argument was constructed by taking three relatively neutral logical expressions and

embedding them in the context created by that schema, using the Cl RICE below. The

CONSTITUENT-SCIEMA itself is responsible for the "preambles": "now, " (from subargument) and

"that is, " (from restaiement), and for the inhibition of contraction and the spelled out connective

in the third sentence (from the formal feature on conclusion). The C' IOICE augments the context

by adding a marked focus (which has kept the second sentence from coming out as "Guiseppi

woldd be a member of tha: se", which would have shifted the focus), casting the entire argtment

in a modal context, and instigating special effects in the later realization of the first two

expressions 14 that lead to the use of any and the reflexive himself

(define-choice spellouLuniversaLreasoning (univ-formula set-membership-stmt line)

phrase (subargument-typel (subargument)
hooks ((focus univ-formula)

(modality 'conditional)))

map ((univ-formula . fact)
(set-membership-stmt .statement)
(line .(restatement)))

actions ((attach-to univ-formula 'express-as-a-set)
(attach-to (substituted-constant line)

;ghis returns the constant substituted for the
;universal variable by the "universal instantiation" rule.

'intensify ;the tag
nil ;the value - irrelevent in this case
'((eq current-discourse-slot 'statement))

;This argument will fill tie TARGET-ELAT property
;of this early-instance.

14. This ClIlCE was created "by hand". The conceptual base of the speaker in the logic domain is very small, and not
capable of deducing on its own that those linguistic devices were the right ones to use. This will be the case for many
generations of program speakers to come.

grammar conventions

- 86 -

11.4.1.

Definitions

Preambles made up of idiomatic phrases or grammatical function words such as these are

exclusively associated with SLOT-NAMEs and SLOT-FEATUREs rather than CATEGORYs.15 This is for

several reasons. Preambles are often used to specialize a general unit for a particular discourse

purpose. Since the usual signal that a unit is special is that it is the contents of a special SLOT, this

makes the slot-name the. natural place to attach any preamble. Also, preambles that might have

been attached to a CATEGORY are often easier to express as parts of P IlRASES. (This is the only

way preambles can be encoded at all when their texts are sensitive to variable grammatical

relations.)

When two or more SLOT-NAMES or CATEGORYS share some part of their meaning, this

should be captured through the use of a feature. The attached procedures or direct, symbolic

effects that implement the shared effects are then given to the common feature and omitted from

die individual objects. If the effects are a permanent of die object's definition, the feature should

be included as part of its intrinsic-features, otherwise feature can be specified explicitly as part of

a Ph1RASE.

Examples of such features in MUNIBLE are nominal and clausal. These are used to tell

ENTRYS whether they should use noun phrases or clauses for their realization (see, for example,

die predicate-entry on page 209). Coordinate and subordinate are used by the pronominalization

heuristics (pg.166). The effects of coordination in providing enviroments for clipsis and for

parallel ChlOICEs are common to many more constructions than just conjoined lists, including "if-

then", conjunctions with but, and clause adjuncts. These are captured by the SLOT-FEATURE

coordinated-slot.

The structure-manipulating feature subject-auxinversion (page (subject-auxinversion>)

occurs in other constructions than questions, including "pointing" clauses: On the left is the living

room, and a literary use of negation: Never have I seen such exemplary conduct.- The grammatical

properties of the various complements, their use of complementizers and the TRANSFORMATIONS

they subject to, are given by a system of labels: subject-to-equi, obj-inf-comp, to.or-that (section

<embedded-clauses>).

Operationally, there is no difference between CATEGORYs and CATEGORY-FEATURES (or

SLOT-NAMEs and SLOT-FEATUR ES) in terms of the options for encoding grammatical or intentional

facts.16 Both have die same possibilties for attached procedures and both may be directly tested

for their presence or absence with equal facility. If we look at NODEs and SLOTs as representing

position only, i.e. a total ordering of events in the controller, then all four data-types act uniformly

as labels that describe the grammatical characteristics of those positions. The motive behind

15. The constituent structure label subargument is properly a SLOT-FEA TURE, not a CATEGORY-FETUIE as it
is here, because it describes the relation of its contents to surrounding constituents at that level in the discourse rather than
describing the structure of the contex ts internally.
16. In the implementation of MNIUlILE, CATEGORYs are distinguished from CA'lEGORY-FEATUR Es only by being

the first item on a NODE's features list.

grammar conventions

-87 -

It.A-1

singling out one of the features in the list as "more significant" is a heuristic judgement about the

clustering of grammatical facts-that knowing just that one feature will tell you most of what you

need to know about the NODE or SLOT, and that for purposes of casual inspections the other

features can safely be neglected most of the time.

The meaning of a constituent-structure-label (the' collective type for cATEGORYS,

CATEGOIY-FEATURES, SLOT-NAMES, and SLOT-FEATURCs) can be encoded either via direct

references to the label's name or via expressions in the label's attached GRAMNIAR-ROUTlNEs-the

subject of the next section. Direct references will always take the form of comparisons-identity

checks-between a label's name (or a disjunctive list of names) and the value of a GRAMMAR-

VARIABLE (or a LOCAL-VARIABLE derived from a GRAMMAR-VARIAtLE). In mUmILE, there are

four GRAMNIMAR-VARIARLEs whose values are constituent-structure-labels: current-node, current-

slot, mother-node, and vertical-context. The first three are self-explanatory, the last is a list of

alternating CATEGORYs and SI.OT'NAMEs which describes the direct path through the tree to the

present position of the controller. It is used in calculations of parallel context. The variables are

all maintained by the controller itself (non...specificgramnar.routines.n.y.w.).

4.2 Grammar routines

Form In MUMBLE, GRAMNMAR-ROUT'NEs are attached to particular constituent features by the

same load-time operators as are used to specify the features themselves and their intrinsic-

features, examples of which have already appeared in the last' several pages. The routines

themselves are written as LISP procedures: Each routine is given as a sequence of expressions

enclosed in a lambda expression. The lambda assigns a local variable name to the input

parameter supplied to the GRANMAR-iROUTINE by the controller (page

<argumentsjo...granimar.routines>). Any of die operators that manipulate linguistic.component

data types may be used in the expression, as well as any PREDICATES that test accessible properties

of the tree or the discourse history. The lisP conditional (cond)- is used to encode contingent or

alternative actions, and the usiP "let" expression is used to define and provide initial values to any

local variables that might be needed in addition to the input.

graimnar conventions

-00Definitions

11I.4.2

(define-schema if-then-schema (clause complex)
slots (if-slot then-slot))

. (define-label if-slot
intrinsic-features (clausal coordinated-slot)
enter-slot

(lambda (contents)
(mprint 'lift) ;vertical bars delimit strings

(define-label then-slot
intrinsic-features (clausal coordinated-slot)
enter-slot

(lamba (contents)
(mprint 'Itheni)))

GIAMMAR-ROUTINES employ a number of special operators. Mprint, used above, is the

operator used to have words printed out directly without being first positioned in a sor or going

through the morphology routine. Its argument is a STRING. Other special operators provide the

capability to set and reset GRAMMAR-VARIABLES, to make GRAMMATJCAL-)ECISONs, and to alter

the contents of current-slot in various ways. These will be defined in succeding sections as those

aspects are discussed.

Function When an ENTRY makes a choice of extended surface structure, it uses a IlIRASE to

create a path for the controller-a temporal pattern of events. If there were no postponed

decisions embedded in this path, there would be no need for GRAMMAI-JOUTINEs. This is

because if there were no postponed decisions, there would be no later additions of new events to

the path-all of the grammatically and rhetorically relevant events would already be

present-consequently, any predictable morphological, lexical, or positional adjustments could be

performed at the time the path is created. But of course, postponed decisions are central to this

design. Consequently GRAMMAR-ROUTINES are essential as a means of actualizing the dormant

effects of decisions that have already been made but could not be implemented because the

projected events that they referred to were not yet present in the path of the controller.

GRAMMAR-ROUTINES act as soon as the target events appear such as when a comma is

printed during a [coordinated-slot leave-slot]event. Their actions fall into four classes:

(t) direct additions to the text (via. mprint);

(2) maintance of the deitic aspects of the state of the linguistic component by setting and
resetting the values of controller variables;

(3) embellishments to the tree in front of the current position of the controller, this
(exaustively) includes:

(1) making attachments to or ammending the DECISIONS of ELNIT-INSTANCES,

grammar conventions 11.4.2

- 89 -Definitions

Definitions

(2) moving attached items off ELMT-INSTANCEs and into the tree as constituents,

(3) creating new NODEs'and SLOTs as permitted by the rules of "latent constituent
slots" discussed below,

(4) moving constituents already in place to "transformationally equivalent" positions,
in the tree;

(4) making grammatical decisions (which may, in turn, perform any of the above
actions).

4.3 Grammar-decisions

A RANIMATICA-IDECISION is a I)ECISION made from within a GRAMMA-uROuINE. Such

DECISIONS exist (1) because many available options in the grammar have no direct counterpart in

the concepts of the speaker or expert program yet still must be selected among, if only on indirect,

heuristic grounds, and (2) because this is not always true-what is unmotivated in one domain

may be motiviated in another-therefore, using DECISIONs to represent the criteria (rather than

expressing them directly in the GRAMMAR-ROUTINEs as conditionals) provides the designer with a

clean interface. Designers may change or augment the GRAMMATICAE-IECISIONs on the same

basis as they write ENTR Ys for a dictionary.

GRAMMATICA-I)ECISTONs are used in conjunction with a special operator, make-and-

execute, This operator acts much like the entry-interpreter: it makes the DECISION, evaluates its

CHOICE, and makes a RECORD of the event for the discourse-history. The example below is typical

in separating the preconditions of the decision from the designer-governed, enabling conditions.

-(define-label coordinated-slot

after-realization
(lambda (contents)

(cond ((and previous-conjunct
(reduceable-category (category-of contents))
(same-msg-elmt (first-constituent-of previous-conjunct)

(first-constituent-of contents)))
(decide 'reduce-category)))))

The structure and manner of definition of a GIAMMAICAtlDECISION is the same as for a regular

DECISION with one exception. As a matter of convention and designer discipline, GRAMMATICAL,-

DECISIONs and their CiOICEs have no parameters. This means that the only objects that they can

effect are those pointed to by grammar-variables. Thus the ci 0lCE used below, suppress-irst-

constituent, implicitly means "suppress (i.e. replace with a TRACE) the first constituent of the

NODE created as the result of the just finished realization".

grammar conventions

.090 -

11.43

Definifons - 9! -

(define-decision reduce-category

default (supress-first-constituent)
;Le. do it unless there's a reason not to.

((member 'do-not-supress-first-constituent)
(strategies- used-during previous-conjunct)

(do-not-supress-first-constituent))
((was-excessively-long previous-conjunct)
(do-not-supress-first-constituent))

((reduction-is-expressly-blocked)
(do-not-supress-first-constituent))
)-

L ike regular DECISIONS, GRARIMA'UICAL-DECSIONs can be modified by IMPURE-DECISIONS..

These impure-decisions will typically be "pre-defined", i.e. created at system-load time rather

than while the linguistic component is running. One such object, used by the DEAUlTr-DECISION

discussed just below, is inhibit-contraction.

(define-impure-decision inhibit-contraction
preempting-choice (don't-contract))

4.4 Attachments and default-decisions

When an ENTRY makes a decision that cannot be implemented immediately because of

references to linguistic events that are planned but do not yet exist, it still must make some

addition to. the tree so that its decision will be remembered and acted on later. This addition is

typically an attachment to some ELM-INSTANCE. Consider this example. In the proof on page

(barber.proof>, we have a situation where an ENTRY that acts very early makes a decision that

cannot be manifested in the text until the realization process has gone through five sucessive

recursions. The initial situation is as below.

[line6] [line7J

Rule: Reductio-ad-absurdum
wif: negationl06

We are at the last line of the proof, interpreting the ENTRY for the inference rule of reductio-ad-

absurdum. Being, as it is, the conclusion of the proof, this ENTRY wants to somehow emphasize

the difference in polarity between its formula ("A") and the first line of the proof, i.e. the

assumption that has now been proven to' lead to a contradiction ("not A"). However, all of the

grammar conventions 11.4.-4

linguistic C101CEs that would "emphasize-polarity" depend for their selection on how the formula

will be expressed in English-a datum which is obviously not yet available.

Faced with this predicament, the ENTRY does the best that it can do: it returns an instance

of die formula as its immediate realization and attaches to that instance the IARK emphasize-

polarity with the VALUE negative indicating the direction to be emphasized.

[line7]

negation106
Iemphasize-polarity negative

The ENTRY expects that some later routine (it does not know which one) will react to the

attachment and carry out its intent.

MUMiwE's grammar has a strategy for emphasizing polarity, namely to use the "emphatic

do"-"Juiseppi des shave all those people" for positive polarity, or for negative polarity to

"stress" the word not it by printing it in capital letters and not contractiig it. Since this is a

general strategy, it is represented in such a way that it can be applied to any clause, without having

to add anything to the ENTRY which created the clause, i.e. it is a DEFAULT-DECISION.

(define-default-decision emphasize-polarity

relevant-when (has-feature matrix 'clause)
gating-condition

(has-attachment the-elmt-instance 'emphasize-polarity)

((eq (attachment-value the-elmt-instance 'emphasize-polarity)
'negative)

(stress-the-negation matrix))
((eq (attachment-value the-elmt-instance 'emphasize-polarity)

'positive)
(emphatic-door.stress-copula matrix)))

This particular IEF,AUIL-DECISION is only relevant when the realization is a clause; yet in

this example and many others, the ELMT-INSTANCE on which the attachment is made goes through

several interveening realizations before the clause is realized. if the decision is going to be

remembered long enough to be implemented, its attachments must be "passed along" from

ELMT-INSTANCE to further embedded El AI-iNSTANCE, for which purpose every attachable TAG

has a trivial DEFA ULT-DECISION like this one:

grammar conventions

Definilions -o 92 -

IIA-44

(define-default-decision emphasize-polarity

relevant-when (eq 'elmt-instance (type-of matrix))
gating-condition (has-attachment the-elmt-instance 'emphasize-polarity)
default (pass-through-attachment 'emphasize-polarity))

(define-choice pass-through-attachment (mark)
mode refiner
extras (attach-to matrix mark (attachment-value mark matrix)))

Of course, the whole point of "default" decisions is that they can be overridden when an

ENTRY has a specific aternative. Such is die case in this example. The ENiltY for quantified

formulas (pg.207) in the logic domain has its own DECISION' with decision-name emphasize-

polarity. Its choice of realization is to express die negation as the determiner "no" on the np that

expresses the quantified variable: "there is no barber...". The presence of this regular DECISION

preempts the DEFAULT-DECISION.

MUMBLE's grammar includes DEFAULT-DECISJONS for negation, polarity, adjuncts, tense

and aspect, plurals, modifiers and qualifiers to np's, and intensive reflexives. What these

phenomena all have in common is that, at the message level, they can all appear as relational

operators. Their sources are not integral data-structures in the expert program but attitudes

toward those structures adopted by the speaker. Consequently, their realization will be controlled

largely not by their own ENTRYs but by actions parasitic on tdie ENTRYs of expert program

structures. DEFAULT-DECISJONs, because they are transparent to regular DECISIONs, are thus a

natural design choice for them.

4.5 I!oOs

Early in the course of this research, it became clear that the form of certain grammatical

categories, in particular the verb group, was so intricate and so dependent on the contingencies of

what items were or were not present that they were best constructed in two phases. First, as the

items were decided upon they would be accumulated in a central location, organized relationally.

Then, once all the items were present, the rules of the grammar would be applied and the

appropriate constituent structure for that particular combination of items constructed.

Subsequently, with the development of the 2-color hypothesis, it was found that in many cases the

use of explicit constituent structure could be be avoided in favor of direct insertions into the text

by the morphology routine.

The relational organization of extra-constituent items in the tree is provided by hOOKs.

HOOs are part of a lROIERTY-1ST mechanism comparable to the one used for the attachments

on ELMT-INSTANCEs. Every NODE may have hooks property, consisting of any number. of

grammar conventions

-w 93'-Definitions

11.4.5

1100K-VALUE pairs. II00K-VALUEs are always WORD-INSTANCES or IIOOLEAN. For example, the

verb group involves the following hooks: modal, have+en, be+ing, be+en, past pre-auxi-

adverb, post-auxl-adverb, pre-mvb-adverb, and post-mvb-adverb. These may be placed on whatever

NODE is available at the time the decision to use them is made, so long as that NODE is somewhere

on the path from the-root to the verb group where it is to have its.effect.

4.6 Trasfornations

When an ENTRY makes a matrix CI 0ICE, it itself has selected a certain choice of Wons and

subelements and a mapping of these onto roles in specific syntactic relations. If the CiOWaE has a

property however, then those relations describe a set of possible constituent structures.

Further decisions must be made, this time on the basis of grammatical rules and usage heuristics

that are common to all of the ENTRYS in the dictionary. This commonality makes

TRANSFORMATIONs an integral of the implementation of the interlingua between speaker and

lingustic component.

TRANSFORMATIONs are one of the devices available to the designer for abstracting common

decision-criteria away from individual ENTIYs and into a uniform, independent mechanism,

thereby relieving the individual ENTRYs of the need to explicitly include them. They are based on

the linguistic notion of equivalence classes of syntactic constructions [harrisi, or, as I will rerer to

them here, transfonnationalfamilies. The idea is that we can identify patterns of CATEGORYs and

SLOT-NAMES such that texts which employ them are, on that basis alone, uniformly subject to

certain grammatically or intentionally induced variations.

For example, in MUMBLE, every ChOICE that specifies a PIRASE with both a [subject] and a

[objecti] ("direct object") is subject to TRANSFORMATIONS in this family:

unmarked: "Al acbeth murdered Duncan."
passive: " Duncan was murdered by Macbeth.
passive.no-agent: " Duncan was murdered"
nominal1: "Macbeth's murder of Duncan."
nominal2: "Duncan's murder by Macbeth."
nominalLno-agent: "Duncan's murder."

Other transformational families that have been developed are embedded clauses with [subject]

and [predicate], extraposition from [subject] ("Pleasing John is easy.", "It is easy to please John."),

the genitive-possive alternation in noun phrases and alternate orderings of constituents in the

verb phrase, both under the control of a new information-old information distinction.

(Questions, relative clauses, clefting, and right and left dislocations, and ripping or copying rules

in general are not analyzed as transformations. See section <control-vs_unbounded.move.ment>.)

17. These last four I10OKs have BOOLEAN VALUESs. They are part of a very low-level analysis of the verb group.
ligher-level descriptions such as narrative-past would be translated into these terms by dictionary subroutines (see
intertlingu.tverb..group...n.y.w.). -

grammar conventions

40 94 -Definitions

{{.4.6-

Selecting TRANSFORMATIONS The value of a Ci lO:E's transformations property is a relatively

complex object created from thIe TRANSFORMA'IONAI-FAMIAs that apply to the C OICE. The

TRANSFORMATIONAL-FAMILYs have one important property:

conditions A list of one or more CONDITION-SETs

Below are the conditions of the [subject-[objectl] family as they were used for the example in

the introduction.18 The PREDICATEs these CONDITION-SETS employ fall into three groups: (1)

those that test properties internal to the CIIOICE-APPLICATION ("will the [subject be filled?"), (2)

those that test thenatic relations that apply to the message elements involved ("are we talking

about Duncan or about Macbeth?") and (3) those that test the larger context in which the

instantiated PHRASE will appear ("will it be an independent sentence, a [subject], a [complement]

?")

((slot-will-be-empty 'subject)
(not (is-true 'possible-sentence-start))
(viewed-as-an-eient the-eimt-instance)
(nominal2.no-agent))

((slot-will-be-empty 'subject)
(is-true 'possible-sentence-start)
(passiveno-agent))

((eq (unmarked -slot-for-argument (argument-in-focus))
'objecti)

(passive))

((eq (unmarked -slot-for-argument (argument-in-focus))
'subject)

(unmarked))

A brief inspection of this family will reveal (1) that it has a very real ordering (the last two

thematic transformations make no sense if the constituent is only going to have one noun phrase),

and (2) that it has obvious gaps (what happens, for example, in the case where passive is applied in

a non-sentential context). hllese two aspects are sorted out when the CONITION-SETs of a

CI01E.'s applicable TIIANSFORMATIONAL-FAMIiYs are merged to create its transformations

property. The rules for inter-family ordering, for example that a "thematically" controlled

TRANSFORMATION like passive must be allowed to apply before a "grammatically" controlled one

like equivalent-noun--phrase-deletion, are encoded ad-hoc directly into the postprocessor that

18. You will notice that there is no CONDITION-SET that selects either "nominal-I" or the full version of "nominal-2"
above. Even though they are a part of the family linguistically, the conceptualizations available in the Macbeth domain
were inadequate pragmatically to pick out those TRIANSFIORNIATIONs for any reason other than variation for variation's
sake. This is a common problem for the designer. The best solutifn 'is probably always to omit lihgustic alternatives that
the domain cannot justify rather than to include them and risk the program saying something that it did not mean.

grammar conventions

-095 -Definitions

11.4.6

Definitions

builds the transformations properties.

The object in a transformatiois property is similar to a transition network. Its starting state

is the ChOiCE it is a property of. Transitions between states are defined by discrimination nets

constituted from the PIIEDICATES of the CONDITION-SETs of the TRANSFORMATIONAL-FAMILYS

that apply to the CHOICE. Each state is assigned one TRANSFORMATION. When tie state is

reached, its TIANSFORMATION is applied. Any necessary adjustments to.the set of applicable

TRANSFORMATIONAL-FAMI11S brought on by the application of a particular TRANSFORMATION

are already taken into account in the descrimination net leaving that node.

This encoding technique obviates the need to search the grammar in order to apply

transformation, the "search" having been done at system-load time when the transformations

properties are compiled.

Applying TRANSFORMATIONS

A TRANSFORMATION is a specification of an "editing" procedure that is applied to the

properties of a ChOICE. In MUMBLE, edits to the phrase property are given as a list of operations

(all implicitly parameterized by the original xpr(phrase)) and edits to the map as a mapping from

the SLOT-PATHS of the old map to new SLOT-PATIs. For example, below is the transformation

that subordinates clause complements and adjuncts whose subject's are the same as the subject of

the main clause.

(define-transformation equi-np-deletion

phrase ((return-only-the-predicate))
map (((subject). nil)))

It is quite simple: all parts of the old phrase except for the specified contents of the [predicate] are

to be excised, and die item in the map that specified what parameter was to be positioned in the

[subject] is to be removed. The definition of passive with agent is more complex, calling for

adjustments to the specified CONSTI-rUENt-SChIEMAS:

(define-transformation passive..with.by-phrase

phrase ((adjoin.by-phrase.to.vp)
(origina.vpsubmergedinto-an.ad-comp))

(map (((subject) . (predicate pred-adj by-obj))
((predicate mvb) . (predicate pred-ad mvb))
((predicate obecti) . (predicate pred-ad objecti))))

The accompanying diagram illustrates what this *TRANSFORNIATION does using constituent trees.

grannar conventions

-% -

I1.4.6 -

Definitions

Remember, however, that the transformation-interpreter actually manipulates symbolic

expressions and that the constituent structure is only created once all of the TRANSFORMATIONS

have been applied.

TRANSFORMATIONS may make three kinds of adjustments to the patterns of constituent

structure that the ENTRYs select:

(1) prine away all constituents but one;

(2) embed the whole phrase or one of its constituents within a new structure substituted
for it in the same location (as done above with the VP);

(3) "vitalize" a latent constituent slot (see below).

These same adjustmens 'can also be done by GRAMMARROUTINEs. See, for example, the

discussion of heavy-phrase shift (heavy...phrase-shiftn.y.w.), "predicate lowering" (111.3.7), or the

filter on verb particle placement (particle-filter-n.y.w.).

4.7 Fine points

Dynamically created patterns of constituents We have seen how in this theory the design of

the constituent structure has been made to reflect the "chunk-size" of elements in the message.

Another important, if more subtle, consideration is timing. Consider: every clause has a main

verb and, depending on what the verb is, some number of objects. One of die reasons for not

having the CONSTIIUENTSCHIENIAs for clauses always include the the verb and its objects is that

oftentimes when it is known that a clause is needed, it is not known what its verb will be and

therefore what pattern of objects will be needed. By dividing the clause into a[subject and a

[predicate] we can postpone the decision about the objects until the verb becomes known.

There is also, of course, the question of modularity and generality in the representation.

Verb phrases can appear outside of clauses; consequently independent CONSTITUENr-ScIIEmAs

for them will always be needed. If the grammar included a "flat" schema for every clause as well

as one composed from some verb phrase schema and a "basic" clause schema, its size would grow

considerably but with little increase in real information. This is not an issolated phenomena. A

"basic" clause can be part of a WH or a tag question,

[subjectl[predicate] [subject][predicate][adjunct1J

[mvb][obect1] [mvbl[conplernent] [prep][prep-obiJ
V 0 be jyj 2 by S

[nfvb][objectil
V

grammar conventions

197

BAT4-

clause-1 clause-1

[wh] [main-clause [main-clause] [tag]
Why clause-2 clause-2 don't they?

do hobbits have hairy feet? Hobbits have hairy feet,

noun phrases can have trailing apposatives or intensive reflexives, basic clauses may have any

number of leading or trailing adverbial adjuncts-most any adjective can have a complement

("murdered b Afacbeh")-and so on.

When the generalization involves a nesting of categories, it can be dealt with by using

PIIIIASEs, as with basic clauses and the different kinds of verb phrase. The question remains of

what to do when (1) the newly needed constituent is at the same level as an established schema,

and (2) the fact that it will be not needed is not known when the original schema is created but

only becomes known later. Here there are two choices open to the designer: either all

CONSTIjUENT-SCIIEMA are maximal to begin with (this will lead to a multiplication of the number

of schema in the grammar even though most of the time many of their constituent slots will be

empty), or, SLOT-NAMES may be added to already instantiated schema (this is perhaps

unaesthetic).

I have opted for the second design. There are "constituent adding" operations in

MUMNLE's grammar that "activate" conceptually latent slots. Add-by-phrase-to-vp, used by the

passive TRANSFORNIATION, is one such operation. At this writing, there has yet to be a declarative

representation designed to describe what slots are "latent". Instead, the procedure that adds the

new SLOTs to constituent structure directly incorporates those rules that have been identified.

Where do verbs go? Open-class, "content" words originate in ENTRYS. If this is all that

matters, then it is for the most part a matter of taste whether verbs appear there as arguments to

C iocios or as part of the Ci101CEs themselves. That is, one could either write:

"(clause-one-object 'murder'macbeth 'duncan)"

or

"(murder-clause 'macbeth 'duncan)"

where murler-clause would be defined as:

grammar conventions

-98 -Definilions

11,4.7

(define-choice murder-clause (s o)

- phrase (basic-clause 0
. predicate (vp.objectl 0

mvb murder))
map ((s . (subject))

(o - (predicate objecti))))

Certain things do follow differently from the two alternatives. The "verbs as arguments"

design requires fewer CilOICEs altogether. However, this should not be of any concern I think. As

a practical matter, most of the CuolCEs that a "verbs as choices" design calls for will be almost

identical and can be iritten quickly through the use of macros; in addition, the overall design is

already heavily biased toward "space expensive" design alternatives so as to gain speed at run-

time. More.to the point perhaps, there is already an independent need to keep a history of what

ChOICEs have been made. The "verbs as arguments" alternative would require increasing the size

of this record enormously to accomodate recording the CHIOICES with each of their arguments,

while the "verbs as choices" alternative would require no change at all. In addition, there is much

to be said for holding to the discipline of designing operations so that their logical properties are

not changed when their arguments change. Automatic reasoning (such as the symbolic analysis of

an ENTRY's alternatives of the design of the postprocessor which constructs transformations

properties) is greatly simplified when the arguments in an expression may be safely ignored.

Encoding facts into the SLOT-NAMES versus finding them in the context Earlier examples have

referred to single [complement] slot, rather than to an [infintive-complement] plus a [report-

complement] plus a [for-to-complement], etc.. In so doing, they have reflected a design decision

about the relation between a SLOT-NAME, its associated GRAMMAR-ROUTINEs, and the context they

appear in.

In grammars of English, the term "complement" covers aspects of both form and function.

On the one hand, a complement is some argument to a verb (or to an adjective) that is not a noun

phrase. Thus we have "subject complements": "AMacbeth grew unharnw", and "object

complements": "They considered hii unworiy'", depending on whether the complement tells us

something about the subject or the object. On the other hand, complements are also named

according to their form. We have "nominal complements": "Macbeth became kfgt",

"prepositional complements": John kept hingrea shalce", and so on according to the category of

the complement constituent. What does this nomenclature mean in production terms and how

should S.OT-NAMES reflect it?

One of the functions of a SLOT-NAME is to directly influence the decision-making of the

ENTRYs of the message elements it will contain. Thus the point of using a prepositional-

granmmar conventions

- 99 -Definitions

11.4.7

Definitions

complement would be to use CIOICE-FIITRs to "force" the message clement to be realized as a

prepositional phrase. The experience with MNUMBLE, however, has been that such forcing has not

been necessary or was even detrimental, i.e. whether the complement is an noun phrase or an

adjective phrase is often irrelevant to the ENTRY that chooses the CONSITUENT-SCIIEMA that

positions it-the ENTRY may only care that it is a description of the [subject].

A further role of a SLOT-NANIE is to describe how the element its slot contains is related

linguistically to the other elements in the immediate context. For example the TRANSFORMATION

that deletes the (potential) subjects of subordinate clauses if they are identical a noun phrase in

the main clause will function differently depending on whether a subject or an object complement

is involved. Even here though, the information need not be encoded in the SLOT-NAME.

MUNmIILE's grammar uses a single SLOT-NAME, complement, choosing to encode the specification

of subject versus object as a property of the main verb. Instead of specializing the PtIEDICATrEs of

the relevant 'TRANSFOilMATIONAL-FAMIIYs to SLOT-NAMEs, they are made to test for a common

property on the main verb (readily available as the controller variable current-verb). Its value is

the CRAMMATICAI-I)ECISION that will select among the possible TRANSFORMATIONS for that type

of complement.

4.8 Controller variables

The extended surface structure plays two roles: (1) it is a record for the controller of the

actions that the ENTRYs and GRAMMAR-ROUTINES have planned: and (2) it defines the lingulstic

context in which any further decisions will be made. The role of the deitic variables maintained

by the controller is to structure the linguistic context so as to simplify the problem of reasoning

about it. By using variables to point directly to facts about the extended surface structure as soon

as they appear, the active procedures of the grammar are relieved of any need. to search the

structure by scanning or pattern matching.

Legitimate values

- The values of controller variables may range over: constituent-structure-labels ELMT-

INSTANCES and WORD-INSTANCES, RECORDS in the discourse history, and booleans (used to mark

progress through the tree, see below). NODEs or SLOTs are not legitimate values. ,rie value a

variable takes is dependent (obviously enough) on the point where it is set. Consider the case of

the variables in the record of a clause.

grammar conventions

- 100 -

11.4.8

(define-label basic-clause
enter-node

(lambda (the-clause)
(shallow-bind 'current-subject ;:he name of the variable

(getslot 'subject the-clause) ;calculation of its value
the-clause) ;the zed whose record this is added to

When [basic-clause enter-node] runs, the contents of die [subject] will be an ELMT-

INSTANCE. This is exactly the right level of representation at which to refer to "the subject" in the

grammar. Practically all rules which refer to the current-subject (e.g. reflexives: "anyone who

shaves himself', and embeded clauses: "Macbeth wanted to be king") use it in an identity test, e.g.

comparing the current-subject with a subelement of the message element that leads to the

embedded clause. Since this test happens at the message level while the transformations are being

applied, it is simply a matter of checking if two ElAIT-INSTANCEs are instances of the same msg-

clnt. One can argue that for doing number-agreement, die optimal value for current-subject is

die final contents of [subject], rather than the initial. However, if the interface ftnction elmt-

pluralp is implemented as a "marked-unmarked" relation, i.e. plural if known to be plural,

otherwise singular, then there would be no extra benefit to having the final value.

(define-label mvb ;"main verb"
leave-slot

(lambda (the-verb-group) ;see II.24
(shallow-bind 'current-mvb

(4.2c)(getslot 'main-verb the-verb-group)
current-clause)

On the other hand, it is the lexical form of the main verb that is grammatically important rather

than the message element that lead to it. Consequently, the proper time to fix the value of

current-mvb is when we can be sure that the contents will be a word. (It may occur to the reader

that, because current-mvb is not set until so late in the clause, it will not be available for use in

questions for subject-verb inversion. This is indeed the case and a limited form of lookahead can

be required. See section subject.auxinversion-n.y.w..)

Grammatical relations over variables rather than tree-structure

The definition of the grammatical notion of, e.g., "subject" as variable maintained by the

shallow-binding discipline of section shallow-binding.n.y.w., rather than as a relative position in

a tree or a p-marker, has unexpected side-effects: i.e. current-subject retains its value after the

controller leaves the region of the clause that contains it. It will change only when the next clause

grammnar conventions

- 101-Definitions

11.4.9

is entered. It happens that this."side-effect" conforms nicely with the constraint that the chunk-

size of the message is the determining factor in the design of constituent structure.

Consider the definition of a "sentence" in MUMBLE's grammar. The notion of a sentence is

a strictly linguistic one with no counterpart in the data-structures of an expert program.9

Consequently, sentence boundaries will be placed by the grammar rather than by ENTRYS. In

MUMBLE, this is done in the following way. Part of [*always* enter-node] monitors the passage of

the controller through the tree tor the first occurance of a NODE with a syntactic CATEGORY (e.g.

not discourse) on the path down from root node. The record of this this NODE is made the value of

current-sentence. When this NODE is finally left, [*always* leave-node], noticing that fact, turns on

the boolean grammar-variable (see below) potenfial-sentence-start. The morphology routine is

sensitive to this variable and when it is true will preceed the next word it receives with sentence-

terminating punctuation. That is, the visible manifestation of potential-sentence-start does not

occur until the first word of the next sentence (unless that is the end of the message).

This delay provides a period of limbo during which the ENTRY for the right-sibling of the

just finished sentence or a GRAMMAR-ROUTINE associated with its slot has the option to decide

that the realization for that sibling clmt-instance should be adjoined to the previous sentence

rather than starting a new one. (C.f. example in the introduction, page

<merging-becomes...king.n.y.w.>. To do this, it has only to set potential-sentence-start to false

and, of course, initiate the appropriate adjunction transformation. The end of the sentence will

thus be "postponed" until the siblings realization is complete.

During the limbo period, clause-level grammar-variables retain the value they had, even

though their clause has been completed (in terms of tree structure). This is because the shallow-

binding algorithm, realizing that there were (at that time) no ftirther constituents in that clause,

did not have to rebind them to their former values-they had no "former" values. Because the

values have not changed, the subordination transformations (pg.105) can freely refer to current-

subject, just as though the adjoining message element had been another constituent of the clause.

Flags for grammatical events

Certain of the rules of English that are the responsibility of the morphology routine,

including the expression of tense, the position of the first auxiliary verb in questions, and the

definition of sentences tinder the above analysis, are associated not with particular words but with

certain events defined by the extended surface structure. In order to inform the morphology

routine of when these events occur, MUMBLE uses grammar-variables with boolean

values-"flags". The GRAMMAR-ROUTINE associated with the event, for example [mvb enter-slot]

(pg.(mvbenterslotn.y.w.>) or [subject enter-slot] (pg.<subjecenter.sloLn.y.w.>), set the

19. A speaker, on the other hand, will doubtless have heuristics about the proper length of a sentence and or possible
trade-offs in the decomposition of a discourse into sentences. See [gretchen.thesis for some discussion.

grammar conventions

-102--Definiuions

11-4.

Definitions

appropriate variable to true. The morphology routine, which is constantly monitoring for these

variables, notices when they become true, reacts according to its rules, and then sets them tofalse.

5. The Interface

This section defines the relationship of the linguistic component to the other components of

the system. It discusses the merits of couching messages in the same representation as used in die

speaker and expert-program, and delineates which aspects.of a message's structure are critical for

its use by the linguistic component. Interface functions and ELMT-INSTANCEs are introduced as

technical devices which allow the component to manipulate externally defined objects without

having to know how they are implemented.

i. Invoking the linguistic component

To the rest of the system, the linguistic component is a subroutine-a subprocess which the

speaker activates when necessary to perform a specific task (and which cannot function except

when explicitly activated). Once activated, die linguistic.component runs independently of the

rest of the system in that it is not designed to be either monitored or interrupted by outside

processes. However, parts of the linguistic component (specifically the PREICATEs and ACCESS-

FUNCIONS used in DECISIONs (pg. <computational-environment>)) need access to the

computational state of the speaker and expert program.

The form of the task is always the same: "take this specification-the message-and

produce the corresponding English text". The message is passed to the linguistic component as its

one explicit parameter, and the text produced as a side-effect. No importance is placed on the

value which the linguistic component returns to the process that activated it, as any actions or

computations of long term significance will have been already entered by side-effect into the

discourse history (pg.(discourse...history>), a data base maintained jointly with die system's

language comprehension facilities.

There is no presumption that calls to the linguistic component should result in texts of any

one fixed size. Single calls to MUMBLE have, for various micro-speakers, produced texts ranging

from single exclamations to multi-page texts. Nor do single calls have to be equated with

complete turns in the conversation, as die linguistic state of the component is preserved between

-calls and the text can be "picked up where it left off". (See 11.2.3.)

the interface 1.5.1

-o 103 -

Definitions

5.1 Using the speaker's own representation

I'he linguistic component is a transducer.0 It takes an expression given in one

medium-the internal representation of the speaker, and creates a corresponding expression in

another medium-English text. To be able to do this, the linguistic component must (1)

understand the structure of the language in which the input specifications (messages) are couched,

and (2) have some way to determine the correspondences between the individual elements of the

messages and English phrases.

These requirements imply that the linguistic component has a great deal of speaker-specific

knowledge, yet, at the same time, the design criteria require that the component be a transportable

module that can be used by many different speakers without major modification. This means that

it can have no intrinsic preconceptions about the form of a speaker's representation-it must have

some way of holding message elements "at arm's length" while it decides upon their English

realization.

One way to accomplish this might be to require that all speakers use the same message

language, i.e. a common set of representational conventions, comion non-linguistic concepts,

and, by implication, a common ontology. A single dictionary would be written expressing the

correspondence between that common message language and English. This approach is the one

that has been adopted (at least implicitly) by virtually all of the other language production
programs developed thus far, because they are all designed to work from only one kind of

underlying representation (see [ddmpast]).

It is an inescapable fact that the range of representations presently in use in expert

programs is incredibly large (see the survey in [Ron_&Brian]). Thus if one linguistic component

is to serve multiple expert programs, some accomodation must be made; the question is where.

One must ask whether the effort of translating from the representation of a new expert program to

a common message language would be any smaller than that of translating directly to English,

avoiding the middle-man.

I have elected to avoid the middleman. When a speaker assembles a message, it will be in

terms of the actual data structures used in the expert program. To make make these structures

inteligible to the linguistic component, a dictionary must be written for each new domain that the

linguistic component is to be combined with. The dictionary gives the correspondence between

the new message representation and the linguistic component's uniform language for describing

(constructing) English phrases. Putting this another way, we can look at a speaker's messages as

sentences in an ideosyncratic message language where the dictionary defines the language's

semantics, determining its interpretation into texts.

20. "TransdUcer" is used instead or "translator" because of its more approprifate connotations. Transduction can involve
very dissimilar media, whereas translation is between tokens that are both expressions in sonic language--implying a
commonality of structure that is not assumed here.

the ineetface

-w 104 -

11.5.1

The dictionaries for two different domains will be similar to each other (i.e. will share

components) to die same extent that their two representational systems and ontologies are similar

(i.e. have the same form and are intended to be rendered into English in similar ways). The

structures employed by different expert programs are, of course, designed for problem solving in

different real world domains: medicine, symbolic' mathematics, programming, etc., and

consequently will necessarily correspond to different open-class vocabularies. However, the ways

in which two systems choosc to .talk about what they know-structures special to their

speakers-may well have much in common. In particular, certain relations such as: "modifies",

"follows", and "conjoined with" (which are a part of the linguistic component's internal

vocabulary) appear to also be a natural part of the message-level vocabulary of the speakers that

have been studied. Such relation may well constitute an interlingua ultimately common to both

parts of the language production process. (See also section (beginnings-of.an.interlingua>.)

The resulting picture of messages is that they are comprised of a combination of data

structures from the expert program (some possibly assembled just for the purpose of that

message) and symbols known to both speaker and linguistic component. The syntax can be

whatever is convenient for the speaker.

5.2 Messages

Messages are expected to be compositional structures ever a common vocabulary that the

dictionary can interpret. The composition can be expressed in an arbitrary syntax because the

linguistic component does its decompositino of messages through in!eficefiunctions implemented

especially for each speaker. A convenient, unassuming abstract model for message structure is a

tree of composed n-airy relations, as shown schematically in the figure below.

Each individual relation into which a message can be decomposed will be called a message

element. In the figure, el(e2, e6, e7), e2(e3, e4), e3, xe4(e5), etc. are each elements of the

message; the subelements of xel are e2, e6, and e7, the subelements of e2 are e3 and e4, etc..

Message elements (and messages themselves) will be treated as members of a common data type,

MSC-ELMr. Because they are objects defined and maintained by an entirely separate program, the

properties of their data-type are of necessity specified indirectly, i.e.

An object is a NISG-EJN1 T if and only if it can be given as valid argument to all of the

el

e2 e6 e7

e3Z e4

e5

the interface

Definilions -4 105-

11.5.1

Definitions

interface functions.

This is the only formal restriction on their structure or mode of implementation though there are,

however, "informal" restrictions which will determine how easy it is to develop a dictionary (see.

section <designing..an.interface>).

I. Message-element enumeration order

The linguistic component has been designed as a serial rather than a parallel process. As a

consequence, only one message element will be realized at a time. The order in which the

elements of a message are realized will be termed its enumeration order. This order is total and

fully determined at the, time the message is passed to the linguistic component (assuming, of

course, that the speakei'and expert programs do not change state while the component is active).

An enumeration order is not a property of the message per se but of the dictionary ENTRYs

that will process it. This is because it is the individual ENTRYs that determine which potential

subelements will be realized and which will not; furthermore, these decisions will be contingent

on earlier decisions and on the linguistic context. For example in the figure, if the decision for el

is to realize the subelements of e6 and e7 as sequences, then the enumeration order would be the

same as the indexes. If, on the other hand, e6 and e7 were instructions describing how e2 was to

be realized (as in the example in the introduction), then the order might be (el e6 e7 e2 ...).

[he enumeration order of correctly assembled messages will meet a well-formedness

condition. This condition will be stated formally in section well.formedness.condition..y.w.

after more of the theory has been presented, Informally, it requires that the realization decision

for each message element must be made early enough, compared to those of die elements to

which it is related, that it can be implemented without having to change any of the decisions that

have already been made. If satisfied, this constraint guarantees that die linguistic component will

be able to find a realizing text for the message that is grammatical and that expresses all of its

elements.21 It does not, and cannot, guarantee that the text will be beautiful prose-that is the

responsibility of the dictionary.

An algorithm for testing messages against the condition can be written; however, because of

the extensive search required and the fact that the algorithm cannot provide corrective advice

when deviations are detected, speakers are not expected to use it except as a theoretical device.

Instead, I expect that a straight-forward set of conventions can be devised to govern message

construction that will have the same effect; these will be discussed throughout succeeding

chapters.

21. within the limits imposed by' the dictionaries ability to handle island constraints, see
planning.byj.hespeakerobeying.island.constraints.n.y.w.

the intetface

-106 -

11.5.2.A

Definitions

5.3 Interface functions

Domain-specific information that the linguistic component needs to know about a message

or a message element is acquired through a specific set of inteifacefinczions written specially for

the domain involved. The interface functions are functions from objects defined by die speaker

and expert program to objects defined by the linguistics component. Their design and their

operation with various domain representations is taken up in detail in section

issues.atcthe..interfacen.y.w., and sample definitions from the micro-speakers are given in

appendix VI.B.1.3. At this point, I will only list them individualy with a brief description of their

use. All but one are functions of one argument of type mSG-ELTr.

entry-for Returns the dictionary entry that is to be used for that rnsg-elmt.

entry-arguments-for Returns the msg-elmt(s) that are to be assigned to the entry's
parameters when it is processed. Entrys are typically shared by entire classes of
msg-elmts and consequently may require access to the individual instances for
particularizing information.

rnsg-elmtp A type-predicate. It tests whether or not its argument is of type MSG-
ELMT.

same-msg-elmt Takes two arguments, each a NISG-ELMT or an ELMT-INSTANCE, and
tests whether they are (or represent) the same object.

elmt-pluralp lTests whether the element will need to be marked plural if it is realized
as a noun phrase.

elint-gender Returns one of the SYnois: masculine, feminine, neutral-gender.

elrnt-reference-type Used by the pronominalization routine. Returns one of
reference, description, or other.

distinguishable-kind Also used by the pronominalization routine. Takes two
message elements as its arguments and determines whether they are members
of disjoint conceptual categories that will not be mistaken for each other if
pronominalized.

elmt-discourse-history, set-elint-discourse-history Access ftnctions associating
msg-elmt with descriptions of how they have been used in the text thus far.

In addition to these access functions, an interface includes a domain-evaluator, that must be

able to evaluate an expression with respect to the computational environment of the speaker, even

though it will be called from inside the linguistic component.

the interface

- 107 -

I1.5.3

Data type: ELMT-INSTANCE

Much of the linguistic component's power comes from being able to manipulate individual

message elements: to embed them within linguistic structures, to have them decomposed into

subelements, to look at their properties, to mark them for individual linguistic roles, and to record

their linguistic history. But, because the implementational structure of a message element will

vary from domain to domain, what the component actually manipulates are "stand in's" for

message elements-objects of type ELMTl-UNSTANCE.

[he use of ELMT-INSTANCEs has several benefits: (1) it promotes the transportability of the

linguistic component as a whole; (2) it provides a way to mark a message element for special

effects and to record its linguistic history without simultaniously affecting the "real" data structure.

within the expert program or presuming upon the expert's choice of implementation; and (3) it

makes it possible to distinguish the separate occasions when the same message element appears in

a text, i.e. each is represented by a different EiNMT-INSTANCE and thus may have distinct markings

and history.

The properties of EI 4MT-INSTANCEs reflect their functions. The first three properties are set

when the instance is created. Their information is redundant (i.e. it could be read from the

message element) and is here as a clerical convenience (although it can be edited to achieve

certain special effects, see, for example, pg.(variablesntryn.y.w.>). The rest of the properties,

however, represent optional new information which will override or embellish the old. They are

the means by which instances may be marked to achieve ideosyncratic effects.

real-msg-elmt The MSG-ELMT to which the instance corresponds.

. entry-for The ENTRiY for this instance. The value of the entry-for property of the
instance's real-msg-elmt.

entry-arguments-for Similarly, a copy of the property of the same name on the
entry.

decisions-to7-make Again, typically copied from the entry's own version, but it may
. be changed to achieve various effects: see meta.entrys.n.y.w..

new-decisions A list22 of zero or more DECISIONs not already included with those of
the entry, and which are interpreted affter the entry's own decisions.

amended-decisions A list of zero or more IMPURE-DECISIONS. 'hese correspond by
name to DECiSIONs of the entry and augment or override parts of their actions.

22. As used here, the critical property of a list as a data-structures is that it is a sequence whose items are in a fixed order.
Nothing is presumed about how the "sequentialness" of the items is determiner.

the inletface

Definitions -p 108 -

11.5.3-

attachments A PIOPERT-LIST23 of zero or more mark-object pairs. Each pair
will be referred to as ai anachnent. The set of possible marks is determined by
the analyses employed in the dictionary. The ttachments property is a facility
for "marking" individual ELMT-INSTANCES in a way which later can be
recognized and acted upon by some DECISION or GRAMMAl-RIOUIiNE.

targeLetmt A CONDITiON-SET tested when the instance has been created in order to
insure its correct positioning within the tree.

CONIrioN-sE's DECISIONs and IMPUREI-DECISIONs are all defined later in the discussion of the

realization procedure. ORAMNIMAR-ROUTINEs are introduced in section <attached.procedures>.

ii. Creating instances

EMr-INSTANCEs are created for MSG-ELNrrs only when they are needed. This will be either

when the element is about to be added to the tree, or when it must be marked in some way before

it has been added. The first case is the most common. MSG-ELMrrs only enter the tree by being.

arguments to ChIOICEs, consequently, the work is done within the choice-interpreter (pg.

<choice-evaluator>) and the new EIAIT-INSTANCE is immediately stored in its intended place in

the tree.

The various procedures that mark instances accept as their arguments either ELMT-

INSIANCES or mSG-ELMr's. If given the later, they will immediately create an ELNIT-INSTANCE

provided no such "early-instance" corresponding to that MSG-ELJMT already exists. ELMT-

INSTANCEs created at such times have no natural storage place and are kept with their MSG-ELMTs

on an ASSOCIATION-LIST 24 reserved for that purpose. Subsequent references to "the instance" of

that MSC-ELMT are routed to this instance rather than causing another to be created. Such msg-

elmts that have been referenced before they would otherwise have appeared in the normal

enumeration order are called EARLY-INSTANCEs.

EiMT-INSTANCEs are removed from the list when they are finally added to the tree. This

removal occurs if and only if the CONDITION-SET of the target of the ELMT-INSTANCE is true at

that time, otherwise, a new one is created. These provisions for EAlRLY-INSTANCEs are necessitated

by the incremental realization constraint (pg.<incremental-realizationn.y.w.>) and extensively

discussed in section problems-with-incremental-refinement-.y.w..

23. A RIOPERTY-LIST is a means of associating an arbitrary number of objects referred to as "values" with one object
by pairing them with symbols referred to as "tags" Given an object and a tag, the associated VALUE may be retrieved.
I lowever, one cannot retrieve an object given a tag-value pair. This is the same notion of "property list" as used LISP
except that here there is no significance to the linear ordering of the items on the list.
24. This is the same use of "association list" as in IlISt' except, of course, that linear order within the list is not relevant.

ASSOCIATION-1 2 SI's behave like variables in that they are named-one adds items to a specilic list-and they are
bound to a specific part of the process. in this case, the list is bound to the EZML'T-INSTANCE creating process itself and
therefore cannot be contextually rebound.

realization

-m 109 -Defintilions

11.5.3.i

Definitions

6. Realization

Linguists in the Prague and Firthian schools speak about "realizing" a concept as a phrase

in a natural language. They use the verb "realize" in preference to the possibly more common

verb "generate" because of an important difference in connotation. The term generate is used by

people in formal language theory and transformation generative linguistics and has acquired a

connotation as a "blind" enumeration of sentences, guided only by the structure of tie grammar.

Realize, on the other hand, is intended for the special (some would say more natural)

circumstances of producing a particular phrase for a particular concept in a particular pragmatic

and intgntional context:

6.1 Possible Realizations

I will use the noun "realization" with a studied ambiguity. It will mean either (1) the result

of the application of the realization procedure to a msg-elmt, or (2) the English text that

corresponds to some iressage element in some context. In other words, the text which realizes a

given msg-elmt (meaning 2) is the transitive closure of the to realize a msg-elna relation (meaning

1).

he realization procedure can return any of three kinds of objects: clint-instances, nodes,

and word-instances. The first two have already been discussed. Here is how "words" are treated,

along with the treatment of "traces" which are treated by the controller as thought they were

words.

Data type: WORD

English words are represented by objects of type wol). All such objects have the two

properties below, and some of them, particularly the verbs, may have additional properties that

further describe their morphological structure. MUMBLE is capable of typographic output only,

and consequently has no representation of phonemes, syllabic structure, or intonation.

Pname A string of characters in mixed case. It is always the word's primary
typographical manifestation-the "root" form. The term derives from "Print
name".

Features A list of zero or more objects of type WORD-FEATURE. The total set of
such objects is determined by the grammar.

The exact form that a word takes when printed is determined by the morphology routine

(<themorphology.procedurcn.y.w.>) which uses the WORD's pname as the base form and

applies a uniform set of spelling rules to specialize the pname according to the grammatical

realization

- 110 -

11.60.1

context and the grammatical properties of the WORD as specified by its features. Unpredictable

irregularities in conjugational or declensional paradigms are flagged by optional properties whose

values are the appropriate character strings (e.g. the string "h a d" is stored as the past-tense of

"have").

There is no restriction that the pname of a word necessarily consist of only one "word" in

the usual sense. wORIs may be as complex as the designer chooses. For example,in the

vocabulary of the Macbeth domain, "is a character in" could be one word (presumably an

intransitive verb). However, whatever is represented as a WORD will be treated as one, i.e. the

morphology routine will manipulate it as one unit. For example, if it appears in the position of a

main verb, tense or agreement will be affixed to the .engd of its pname's string. This could be

catastrophic, e.g."Rosencrantz and Guildenstern is a character in llanlet".

Notice that there is no provision for any "semantic" annotation of woRDs. One cannot look

at the properties of a wolI) and tell what message element classes it could be a realization of.

Such backpointers do not exist anywhere in the linguistic component. This is because (1) they

would be impossible to construct in a transportable component without a common message

language; and (2) they are not needed, because individual woRs are selected directly as part of

preexisting CHoIlCEs <choices> and not as the result of any sort of pattern-matching process.

There is also no concept of an "ambiguous word" in the linguistic component. There may

well be several distinct woms tht have the same pname, but there is not any way to determine for'

a given pname what those wORIs are.

Whenever a WORD is selected as a realization, a new WORDINSTANCE corresponding to it is

created and placed in the tree for it. All of a word-instance's properties are copied directly from

its WORD. In this text-based version of the linguistic component, the role of such WORD-

INSTANCEs is largely technical: it is convenient in the implementation, of MUMNBLE's discourse-

history to treat WORDS in the same way as MSG-ELMTS. However, in a speech-based system, it

seems likely that WORD-INSTANCEs would be needed as a place to ground per-instance markings

governing relative stress, duration, and pitch contour.

Data type: TRACE

As their name suggests; TRACES are remnants or records of other objects which formerly

held (or would have held) their position in the constituent structure. The notion of a "trace" was

introduced into linguistics by Chomsky [chomsky.traces..irst][chomskytraces....bestj as part of

"annotated surface structure". My use of the term is not significantly different than his.

TRACEs are operationally equivalent to %Vowus, and have the following two properties:

Pname Identical in specification to the pname of WORDS. Most TRACEs have a
pname of zero characters, i.e. they do not appear in the output text.

realization

-III-Definilions

11.6.1

Link The object that the TRACE has replaced.

The generic objects to which TRACES correspond are certain CHOICEs, i.e. certain realization

decisions. See section 11.6.2.iv.

Data type: PIRASE

A PHRASE is a specijfilcation of a linguistically annotated tree structure whose nonterminal

nodes will be instances of grammatical categories and whose terminals will be either ELMT-

INSTANCES, WORD-INSTANCEs, or TRACES. The trees that phrases specify have all of the formal

properties which are normally associated with constituent trees in formal language theory even

though they are not defined by a generative grammar. In particular, the "is a constituent

of'-"dominates" relationship is defined, and there is a unique, total ordering of the tree's fringe.

[[??provide a formal exposition and definition (perhaps later)??1I

When a PHRASE is selected as the realization of a message element, it is instantiated, and the

resulting constituent stiructure substituted into the tree in place of the original elmt-instance. This

process will be described in section instantiating...phrases...n.y.w.. Constituent structure is

discussed in the next section.

IIIIRASEs do not have properties per se. They are expressions, and have a structure defined

by the grammar in the accompanying figure. @@.

6.2 The Dictionary

The job of the linguistics component is to decide what text to select for a given message.

This decision can be broken down into a large number of smaller decisions, each of which is an

instance of a "generic" decision-part of the component's long term knowledge about production.

That knowledge can be loosely divided into three kinds.

(1) knowledge of use: how can objects be described in a natural language; what are the
criterion that determine the choice of wording, syntactic organization, and degree of
specificity and detail for a given object in a given pragmatic and intentional context?

(2) knowledge of control: what are the dependencies between the decisions involved in
realizing a message; in what order should they be made if the evaluation sequence is
to be optimal, i.e. one that requires no wasted effort?

(3) knowledge of grammar: what are the legitimate patterns of linguistic relations
among the words of a text; what is the form required of a specific text if it is to
express specific linguistic relations in a specific linguistic context?

Virtually all of the linguistic component's knowledge of the first kind is contained in its

dictionary, the subject of this section. ([The others are covered in the two following sections.) TIbhis

section will discuss how "usage-knowledge" is packaged within the dictionary and how it is

manipulated by the realization procedure. Later, in chapter four, several notational elaborations

-112 -Definitions

11.6.2realizalion

Definitions

of the dictionary's structure will be introduced to permit the knowledge to be conveniently

shared, and in chapter three, a technique for using the dictionary as the basis of predictive

symbolic reasoning will be described.

The structure of the dictionary

The dictionary consists entirely of individual entrys, one for each distinct object or object

class which may occur in a message. In programming terms, it is a heap: a random-access

memory store. Its internal structure-the "glue" holding together the entrys-needs to be no

more extensive than is required to implement the interface function entry-for.

First the relationship of entrys to the domains for which they are written will be discussed.

Then the data-types of the dictionary: ENTRY'S DECISIONS, DECISION-RULEs, and Ch0oicEs, are

described. The "load-time syntax" for these types as currently used in MUMBLE will be included

to provide a convenient way to present entries in the chapters to follow. Several examples of

entries will then be given and walked through before moving on to the discussion of the

realization procedure.

Computational environment

Conceptually, entrys are extensions of the speaker that have been embedded within the

linguistic component. They straddle the line between the two decision-making domains, using

pragmatic criteria to decide among linguistic options. However, it is the linguistic component that

controls when an entry will be used, and consequently provisions must be made (1) in the entrys

themselves to provide a representation-of their decision procedure that the linguistics component

can manipulate, and (2) in the realization procedure to incorporate an evaluator which is matched

to the representation the speaker employs and has access to the speaker's environment.

Within entrys, expressions that test the state of either of the decision-making domains will

be objects of type PREDICATE. Because of their potential breadth, the functionality of these

expressions (when evaluated) can only be given indirectly. That is, their domain is those objects

that are the values of accessible local-variables, controller-variables, or ACCESS-EXPRESSION (i.e.

all of their syntactically possible arguments), and their range is IIOOLEANs. Beyond their

functionality, of course, nothing can be said about them except in the context of a specific speaker

and expert program.

In MUMBLE, the two provisions have been easily arranged, since both the linguistic

component and all of the micro-speakers have been written in a common programming language,

ISP. Entry s) incorporate code fragments embodying the test and data access they required, and

the realization-procedure uses the standard uISP ftnction eval. To provide access to necessary

data in the speaker, the full system either runs in a common address space, or this is simulated (see

section (computationaLenvironment>).

realizalion 11.6.2

Decomposing message elements

It is in the entrys that the decomposition of composite msg-clmts takes place. Any entry

that does this must be written so as to contain or to be able to access the necessary decomposition

procedures, employing the customary expressions of the domain to do so as discussed earlier

(pg.50) Once the subelements have been obtained, they will typically need to be tested for various

linguistic and domain-specific properties and will ultimately be positioned in the tree by a

CHOICE. This necessitates some means of refering to them while they are being manipulated. In

MUMBLE, this is done through the use of local-variables. When an entry is interpreted for some

EINrT-INSTANCE, that ELMNT-INSTANCE is made the value of the ENTIFY's input parameter where it

can be used as an argument to decomposition functions in the defining expressions of the other

local-variables. Such expressions will be objects of data-type ACCESS-EXPRESSION; their input

domain is the same as for PREDICATEs and their output is a NISG-EL MT. Once given values

(through the evaluation of their corresponding ACCESS-EXPRESSIONS) local-variables can then be

used as arguments to the various testing PREDICATES in the DECISION-RULES and ultimately the

selected CaIOICE.

Data type: ENTRY

The ENTRY for a msg-elmt describes what the possible realizations of that element are and

under what conditions each of those possibilities is to be selected. Apart from the information

extracted by the interface functions for use in pronominalization, these are the only properties of

MSG-ELMTs that are of interest to the linguistics component. In particular, any semantic or

-pragmatic generalizations among the elements will not be noticed except insofar as they are

compiled into the structure of the dictionary.

A single entry may serve an arbitrary number of distinct MSG-EiVMTs; indeed, in the

experience with MUMBLE, this has been the usual case-each entry is designed to serve a natural

class within the system's domain, e.g. "logical implications" or "tic-tac-toe moves". This is

arranged by having the function entry-for so designed that all elements in that class are assigned

to the same entry, and making the particular msg-elmt involved in each case accessible within the

entry via a pre-determined parameter.

Like the dictionary, each entry is largely only a shell-a placeholder where other objects

can be put. The structure can be summarized as follows:

An ENTRY consists of one or more nECISIONs. Each DECISION consists of one or more
DECISION-RULES, which, in turn, consist of zero or more PREDICATES and a COICE.

The point of this multi-level design for ENTRY'S is to make them ,easier to inspect

symbolically and to bring them under contextual control. It is a formalism for encoding a

decision-procedure, specifically a discrimination network, as a declarative structure that can be

readily analysed by special purpose predicates as well as be interpreted or compiled into an

-1I14 -Definitions

I1.6.2 -realization

Definitions -I15-

efficiently executing procedure. The compiler will not be discussed; the interpreter is the

realization procedure to be discussed shortly (itself a collection of interpreters for the various

data-types); and the special purpose predicates will be discussed in section <analysissoutines>.

The entry itself has the following properties:

Decisions-to-make An ordered list of one or more DECISIONS. An ENTRY's
decisions are evaluated sequentially, following the order given by this list. The
matrix decision is always first.

Parameters A list of one or more LOCAL-VARIABLEs, bound whenever the entry is
interpreted to the input parameters of the entry as determined by interface
ftnction entry-arguments-for.

Entry-level-varial)les Optional. A VARIABLE-DEFINITION-TABLE (a list of LOCAL-
VARIABLE-ACCESS-EXPRESSION pairs) used for the decomposition of message
elements.

mode A symbol: either unit or sequence Used by the entry-interpreter to determine
how to combine the CHI1CES of the ENTrItY's DECISIONs. If omitted from an
ENI'RY's specification, unilis assumed.

will-be or could-he Either a list of constituent-structure-labels that describe the
possible-realization that the entry will select, or a list of such lists, describing
the selections that it could make.

Data type: DECISION

DECISIONs are a mechanism for facilitating the' introduction of modularity and useful

generalizations into the decision-making process. In some strict sense, they are unnecessary, since

entries designed using Multiple decisions can always be "straightened out" into one large decision

by multiplying out their choices and conditions However, it has been my experience with the

micro-speakers that the process of analysing message elements and constructing realizations

decomposes naturally into sets of loosely-coupled decisions.

Individual DECISIONS are made up of the following properties:

decision-name A NAME. DEIISIONS are typically not independent objects but are
defined relative to a particular ENTRY. Shared Decision-names often have a
functional significance: DECISIONs with the same name in different ENTRYs will
perform comparable parts of the work. Those DECiSIONs defined
independently (either because the identical one will be used in many ENTRYs or
because it is a GRANIIATICAI-DECISION (see grammaticaLdecisionsn.y.w.),
will have names (as all objects do), but will not have decision-names unless
actually associated with an ENTRY.

gating-condition A PREICATE. If it is true, the decision will be made, otherwise the
entry-interpreter 'will skip over it. If omitted, the)ECISION is assumed to
always be applicable.

realization 11.6.2

Definitions

decision-rules A list of DECISION-RULES.

filters A list of CiIOICE-FILTERS.

default A CIIOICE-APPIJCATION. Optional unless no DECISION-RULES are specified.

decision-level-variables An optional VAIIAIIL-DEFINITION-TABLE

The relationship of decisions to entry modes

'[he interpretion of an entry results in the constructionof a single object of type possible-

realization. This is even though the process may involve the making of an arbitrary number of

decisions-each with its own choice-according to the value of the entry's decisions-to-make

property. Obviously tic construction efforts of the individual decisions must be merged. Two

kinds of merging have proved useful: (1) having every decision add to a common "matrix"-this

the mode unit, and (2) interpreting the decisions as adding sucessive items to a sequence-the

mode sequence. In both cases, the entry must have a decision with the decision-name matrix,

whose job it is to select the common object to which the other decisions will refer. Within unit

entrys, this object is accessible to the other decisions via the local-variable matrix (bound by the

entry-interpreter), whereas within sequence entrys, no explicit references need to be made because

the construction of the sequence is done behind the scenes by the entry-interpreter. The matrix

decision of a sequence entry will always select a phrase involving a constituent-schema that may

have an arbitrary number of constituents

(pg.<schema-with_arbitrary-numbers.of-constituent5sn.y.w.>).

Data type: DECISION-RULE

conditions A list of zero or more PREDICATES that the decision-rule-interpreter is
able to evaluate.

choice A CIIOICE-APPLICATION.

A l)ECISION-RUIE is a specification of the conditions under which its choice may be selected

by the DECISION(S) of which the DECISION-RULE is a member, namely only if all of the conditions

of the DECISION-RULE are satisfied. Note that this is a specification of necessary conditions, not

sufficient ones. The relative order of the DECISION-RULE relative to the others in the DECISION

will ultimately determine which otherwise plausible COICE is selected.

realization 11.6.2

Definitions

Data type: C10ICE

Choices are the specifications of POSSIBLE-REALIZATJONS. They play several roles:

expressing generalizations about usage, organizing and simplifying the decision-making process,

and abstracting that process away from the largely irrelevant details of constructing the

realizations themselves. ClKOICEs are parameterized objects, each potentially shared by many

ENTRY'S. (A ChImCE may even be repeated several times within a single ENTRY if different

CONDITION-SEs select the same one.)

What actually appears in the entries is not a CHOICE but a C1 OlCI-APlICATION--an

expression with the following structure:

CIIOICE-APPLICATION ::= (<operator><argument*
<operator> ::= { choice I decision-extension 2 5

<argument>::= { LOCAI-VAIIABIJK I ACCESS-EXIPRFSSION }

A CiIOICE-APPLICATION is interpreted by the choice-interpreter, which determines the

values of its arguments and applies them to the COICE. Thus the domain of cnOicrEs is. the set of

objects which can be the values of current LOCAIgVARIABLES or which can be computed by the

available ACCESS-EXPRESSIONS. Loosely speaking, their range is single POSSIBLE-REALIZATIONS.

(In mult-decision entrys, most of the choices are interpreted for their side-effects on the matrix.)

It follows that any ENTRY that has a decision with more than one choice constitutes a non-

deterministic ftnction from one msg-elmt (the one being realized) to one of several POSSIBLE-

REALIZATIONs. As choices may be shared by an arbitrary number of entrys, neither of these

functions are bijections, i.e. the same POSSIBLE-R EALIZATION may be selected as the realization of

more than one msg-elmt.

All choices have the following properties:

choice-will-be A list of one or more symbols describing the realization to which the
choice corresponds.

parameters A list of zero or more LOCAL-VARIABLES, used by the other properties of
the choice to stand for instances of message elements. The choice-interpreter
will assign values to these parameters in accordance with the order of message
elements specified by particular ciIOICI-APPLICATIONS.

25. In the spirit or programming clarity, a designer may wte C1OICE-APPLICATIONs whose operators, instead of
being C1 JOICUs, are the names of entire ENTIYs or decisions (lumped together as the syntactic type decision-extension).
In such cases, what would otherwise be PREDICATEs duplicated by many DECISION-RULEs have been grouped into
one, with the varying predicates (and the choices they eventually pick out) moved into their own unit, that may now be
used as a subroutine. ln effect, instead of selecting a unit action, the DECISION is selecting a whole new set of
D)ECISIONs. This technique is also useful in designing the DISCOURSE-1IIlTORY, since the "choice" that is recorded
for a DECISION can be made to be at a more appropriate level of abstraction. For elaboration and examples see section
<decision...extensions>.

realization

1 17 -

11.6.2-

marking-actions A list of zero or more MARKING-ACTIONS (expressions involving
operators that add attachments to an cimt-instance or add new or impure
DECISIONs). These will be evaluated for their side-effects on ELMT-INSTANCES
being embedded in the phrase.

mode A SYMBOL: either matrix or refiner. The mode property indicates whether
the choice will cause a new object to be contructed or will instead refine a
specific existing one.

Choices that construct possible-realizations

A DECISIONS with the decision-name matrix (of which there is one per entry) and any

DECISIONS in an ENTRY whose mode is sequence will employ CIIOICEs whose mode is ,anrix.

Such CIIOICEs have special properties according to the type of POSSIII1JE-REALIZATION that they

construct. The choice-interpreter distinguishes between them on the basis of which of these

properties they have.

Most matrix CIICES construct an instance of a PhRASE (i.e. a NODE) for which purpose

they have these properties:

phrase A PIIRASE.

map A map-an ASSOCIATION-LIST pairing parameters of the ChIOICE with SLOT-
PATilS.

associated-transformations A list of TR ANSFORMATIONS. See 11.4.5.

Ci.JOICEs that result in ELMT-INSTANCES are quite simple. rhe source NISC-ELMT is given as

an argument in the CIIOICE-APPLICAiON and identified within the CHOiCE as the value of the

LOCAL-VARIABLE specified by the property:

elenent-returned A LOCAL-VARIABLE.

ChOICEs that result in TRACES are treated as special cases, and specific, constant CHOICES

are used, i.e. null word, nulLutterance, npd.race, and eiipsed.verbal; (T[he names of ChiOICE s are,

by convention, chosen to be short descriptions of the realization the specify. Nothing anywhere in

the linguistic component will react to these symbols except to compare them with other names,

thus the choice of wording for a name is totally at the convenience of the designer.) Each trace-

leaving choice takes a single argument: the object to be realized by the TRACE. The reason for

four CI IOICES where one would suffice logically is to provide an annotation of the reason why the

selection was made; see <choices..as.-annotation>.

realization

- I18 -Definitions

11.6.2

Definitions

Choices that refine possible-realizations

As their name implies, refiner CIlOlCEs act upon POSSIBLE-REALIZATIONs that have already

been constructed by a matrix CHOICE. They may add properties, fill empty SLOTs, mark

argument clmt-instaces, or make certain non-destructive modifications to constituent structure

(see pg.44). They may not delete or change any already established properties. The only linguistic

object that these ChOIcEs may refer to is the one created by the matrix DECISION of their ENTRY

(and possibly augmented by later DECISIONs). It is accessible through the LOCAL-VARIABLE

matrix.

At this writing, refiner ChlOICEs in MUMBLE are relatively instructured. They have one

property:

Actions A list of expressions each of which, when evaluated, will add to die
properties of an object indicated by one of their arguments.

This (admittedly vague) specification acts to rule out the use of arbitrary programs. All

expressions must employ property adding operators directly, making it feasible to automatically

analyze the effects of a refiner CHOICE, given a separate annotation'of the effect of each of die

operators it employs.

Data type: CHOICE-FILTER

conditions A list of PREDICATES.

choices-to-be-removed Either an explicit list of CHOICE names or a PREDICATE
testing properties of PJlRASEs.

CicICE-FITERs are a means of controlling entire systems of ColCEs at once on the basis

of their properties. They are associated in the grammar with certain CATEGORYs and SLOT-NAMES

and may be included in DECISIONs. An example of a chice-filter appears on page 31.

vi. The load-time syntax of the dictionary

The accompanying figure gives the grammar of the load-time syntax currently used in

MUMBLE to specify ENTRYS, DECISIONS, DECISION-RULE and CHOICEs. It is summarized as

follows. All defining expressions are filly parenthesized, i.e. they are legitimate LISP S-

expressions. The first token is always the name of an object-creating macro. The second token is

always the object's name; if the object has a parameters property its value will be on the same line.
hle object's other properties follow, paired with a key-word.

realization

- 119 -

11.6.2.vi

Definilions .20.

THE LOAD-TIME SYNTAX OF THE DICTIONARY

ENTRY - (define- entry NAME <parameter-list>

(variables VARIABLE-DERNITION-TABLE)

4 mode (unitisequence)}
<decision-form>*)

<parameter-list> :- (LOCAL-VARIABLE*)

VARIABLE-DEFINITION-TABLE - (<variable-definition>*)

<variable-definition> :- (LOCAL-VARIABLE ACCESS-EXPRESSION)

<decision-form> ::- (decision-name(NAME<decision-body>4)
DECISION :- (define-decisiOn NAME <decision-form>)

<desion-body>::- (define-decision NAME

{variables VARIABLE-DEFINITION-BLOCK)
(gating-condition PREDICATE)
{default CHOICE-APPLICATION)

DECISION-RULE*)

DECISION-RULE : (PREDICATE* CHOICE-APPLICATION

choice ::= (define-choice name <parameter-list>
(mode{matrixtrefiner)
(((phrase phrase)

(map map))
S{element-returned local-variable)
I(actions(expression*)))

(marking-actions (marking-actio*))

realization II.6.2.vi

Definitions

vii. Stepping through an example

At this point, it will be useful to put some flesh on these definitions by looking at some

actual dictionary entrys. The ENTRY below, implcatiOenity, was developed for the logic

domain. As its name suggests, it is the ENTRY for the logical connective "-";

(define-entry implication.entry (wit)

variables ((antec (antecedant wff))
(conseq (consequent wff)))

(matrix
default (if-then antec conseq)
((A-is-a-subject-for-predicate-B antec conseq)
(subj-pred antec conseq))

((propositionp antec)
(implies antec conseq))))

Implicationtentry has two LOCAL-VARIABLEs: antec and conseq, and has one DECISION: matrix,

with a default and two DECISION-RULEs, each with one predicate

Let us suppose that the ELNIT-INSTANCE to be realized was an instance of the time-worn

proposition.

man(socrates) - mortal(socrates)

The first thing that would happen is evaluation of the VA'IABwE-DEFINrON-TABLE to bind die

two LOCAL-VARIABLEs. The value of antec would become man(socrates), and of conseq

mortal(socrates). Then the DECISION is looked at: There is no specified gating-condition,

therefore by default the decision is to be made, and we go on to evaluate its DECISION-RULES in

order.

The first DECISION-RULE (and the second as well) has only one predicate. A-is-a-subject-for-

predicate-B is described in detail on page <ais..asubject.for_predicate..bn.y.w.>. It is a general

predicate that examines the ENTRYs of its two arguments to see if is possible to realize the first as

the [subject] of the second as in "all men are mortal". In this case the antec(dent) can only be

expressed as a clause and the predicate fails. Going on to the second DECISION-RULE, it too fails

because of the particular way "proposition" is defined in the logic domain.

This means that die default is taken. Its CIIOICE-APPLICAThON consists of the C101CE if- then

applied to the two subelements picked out by tie LOCAL-VARIABLEs. Carrying through this

application results in the construction of the complex clause below.

realization

-0121 -

iL6.2.vii

Definitions

clause

[if-slot] [then-slot)
man(socrates) mortal(socrates)

A more complex entry
The ENTRY below, concepi-definingentry, is typical of the more complex entrys that have.

been written for the micro-speakers. It is from the KLONE-nets-as-objects domain-each of the
paragraphs of the sample texts on page <klone.sample.n.y.w.> were constructed by it. It is a
discourse ENTRY, organized around the internal structure of the message elements it realizes
(KLONE "concepts"): each of its three non-trivial DECISIONs is responsible for the realization of a
different kind of subelement. (The pattern-matching syntax used here is explained on
pgXroleentryn.y.w).)

(define-entry concept-defining.entry (concept)
mode sequence
(matrix

default (discourse-with-focus concept))
- (describe-super-concepts

variables ((superc-relation (collect !(subconcept ,concept ??))
default (say-fact superc-relation)
((given superc-relation)
(say-nothing)))

(describe-roles
variables ((roles nil) ;set by side-effect of next access-expression

(role-relations (collect t(has-role ,concept >roles)))
default (givethe-restrictions-withjthejroles roles role-relations)

(describe-any.subconcepts
condition (collect l(subconcept?? ,concept))
variables ((daughters nil)

(subc-relations (collect !(subconcept >daughters ,concept)))
default (push.subconcepts-no-summary daughters)
((all-trivial-concepts daughters)
(summarize-don'tpusl-subconcepts subc- relations))))

realization

-122 -

11.6.2.vii

Definitions

6.3 The Realization Procedure

The realization procedure takes a single ELMT-INSTANCE as input and selects a single

POSSIBLE-REALIZATION as its output. It is itself embedded within the controller, which

determines what ELMT-INSTANCES the realization procedure will receive and where the POSSIBLE-

REALIZATIONS it produces will be embedded.

Conceptually, all of the information needed to decide upon the realization should be found

in the entry for the clmt-instance. However, in actual practice, it is expedient to extract material

that would otherwise be common to every entry and install it as sharable modules. This has been

done for subsequent reference and for syntactic transformations. The result is shown in this

flowchart.

realization

- 123 -

II.6.3 -

The Realization Procedure (current-instance)

argument: an elmt-instance

return value: a word-instance, a node, or a new clmt-instance

STA RT

current-msg-etmt <= (msg-elmt current-instance)

is currcnt-rnsg-elint

MS 4r a'Iready in the SR
discourse history? ?

;initial reference "main stream"*;"subsequent reference"

realization

-w 124 -Definilions

11.6.3

Definilions - 125 -

Subsequent Reference

Classify the relationship between

the last instance of the current-msg-elmt

and the current grammatical context.

Score the pronominalization heuristics

Ye,!3 can a pronoun
be used ?

dect the pronoun Can so6ie other
00e

ke-word-instance R) subsequent reference

strategy be used

Modify current-instance to

incorporate the instructions

for the selected strategy

I-a

realization

R <= Se
R <= (Mat

RPTL

- 125 -Deftnilions

11.6.3

Defnitions

Main Stream Realization

entry < (dictionary-entry-for current-instance)
refinements = (refinement-decisions current-instance)

compute the subelements of currentmsg-elmt

and bind any local variables declared by entry

matrix <= (Make-decision (get-matrix-decision entry))
;returns a symbolic "choice"

Mak&-decision will update the variable "decisions-made

;of the discourse history.

matrix < (Apply-transformations matrix)

:may "edit" the choice

matrix <= (Choice-evaluator matrix)

Depending on the type of matrix do:

a msg-elmt -* matrix <= (Make-elmt-instance matrix)

a word matrix (= (Make-word-instance matrix)

a node - (Foreach decision of refinements -

do (choice-evaluator

(Make-decision (or (get-decision decision current-iinstance

(get-decision decision entry)))

;hese decisions are made for their side-effects, and are evaluated immedly

realization

-w 126 -p

H.6.3 -

(Foreach decision-rule of D whose choice has not been filtered out

do 1. (Foreach predicate of the condition-set of the decision-rule
do 1. evaluate the predicate -

2. if it is satisfied, continue;
if it is not satisfied, escape from this loop

If every predicate in the decision-rule was satisfied,

RETURN (choice decision-rule)

If no decision-rule has succeded, then cither

-'p.-

argument: a decision
return value: a choice-application

bind any locar variables declired by D

choice-set = (choices D)

choice-set <= (Apply-filters current-grammatical-filters choice-set)
;Any choice for which one of the filters evaluates to "trueis

;omitted from the new choice-set.

-m127-Definitions

(Foreach decision of (default-decisions (category matrix))
do (or (member decision decisions-made)

(make-decision decision matrix)))

Unbind any local variables defined during the processing of
the entry and any decisions

Make-decision (9)

11.6.3. realiza flon

Definitions

a. .(default D) is defined in which case
RETURN (choice (default D))

b. or ERROR

As you can see, subsequent reference (i.e. textual references to an object after it has been

introduced into the discourse) is a separate path through the procedure, completely divergent for

pronominalization but eventually merging with the "main stream" for the other forms. I will

postpone any discussion of this pathway until the next chapter (VII.B.1.1).

The realization procedure is made up of a set of independent interpreters, following the

decomposition of usage-knowledge into the different data-types of the dictionary. Their

functionality is given below.

entry-interpreter ELMT-INSTANCE to POSSIBLE-REALIZATION
decision-interpreter DECISION to Cl IOICIC&APPLICATION
decision-rule-interpreter DECISION-RULE to BOOLEAN
transformation-interpreter (CIIOIC-APPI.lCAiON to CiIOICE-APPULCATION
choice-evaluator CIIOICE-APPLICATION to POSSIBLE-REALIZATION

What follows is die description of the "normal case" procedure. Deviations caused by

marked ELMT-INSTANCEs are discussed at the end in section

<deviationsfromhdie.'nonnal'.procedure>.

i. The Entry-Interpreter

The entry-interpreter plays a managerial role, coordinating the actions of the other parts of

the realization procedure. It itself is responsible for the following tasks:

(1) binding the ENTRY's parameters to the MSG-ELNITs specified by the entry-
arguments-for property of the EMT-INSTANCE;

(2) computing any needed subelements of the ELMT-INSTANCE by evaluating the
variable-definition-table if there is one.

(3) applying the decision-interpreter to each of the decisions on thedecisions-to-make
property of the clmt-instance.

(4) Applying the transformation-interperter to each choice-application that involves a
choice whose mode is matrix.

(5) applying the choice-evaluator to the choice-applications the decision-interpreter
returns and combining the results according to the mode of the entry. These actions
are done in line-the selection of the previous decision is completely processed
before the next decision is begun.

(6) binding the local-variable matrix to the possible-realization constructed by
processing the selection, of the matrix decision.

(7) making any applicable- IEFAULTDECiSIONS that have not been overridden by

realization

do128 -

11.6.3.1

Definitions

specific DECISIONS already made (see pg.(default.decisions>);

(8) having a record made of the results of this effort: decision-name-name of the.
CiiOICE made for them pairs. (These names implicitly include a record of any
transformations that were applied).

Energizing variables

As we are dealing here with an 'interpreter", explicit provisions must be made to insure

that any variables defined by an ENTRY are given their appropriate values by the time that they

referenced in any expressions. Using the VARIABIE-DEFINITION-TABLE as input, this operation

takes each of its LOCAL-VARIABLES in turn and binds it to the value returned by evaluating the

ACCESS-FUNCTION with which it is paired in the table. This binding remains in effect until the

interpretation of the xNnRY is completed. local-variables are defined and bound in the order that

they appear in the table; later access- functions may refer to the values of earlier local-variables.

Some predicates that text properties of msg-elmts will need to reference the current elmt-

instance associated with the msg-elmt rather than the msg-clrnt itself. Cases where this is needed

can be detected at system load-time by the postprocessor and their expessions are edited slightly

to, provide instances rather than elements when finally evaluated.

ACCESS-FUNCTIONs and non-linguistic PREDICATES are evaluated with *the 'domain-

evaluator-part of the interface that must potentially be redesigned for each new domain. Unlike

the other parts of the realization procedure (which understand the 'objects in the dictionary only

syntactically) this evaluator must have access to their computational meanings as well, i.e. access

to the computational state of the speaker and expert program which the expressions will probe.

ii. The decision-interpreter

The decision-interpreter first checks that the DECISION is applicable by evaluating its

gating-condition. If it is not, the interpreter immediately returns a "dummy" CHOICE-

APPLICAION named decision-not-applicable for the benefit of record keeping.

If the DECISION is applicable, it is filtered (see below) and then each of its remaining

DECISION-RULES in turn is passed to the condition-set-interpreter until one of them is satisfied.

The choice of the satisfied DECISION-RULE is then returned. If none of the DECISION-RULES are

satisfied, the DECISION's default is returned. If flone are satisfied and there is no. default, then

there has been an error in design.

Applying CIIOICE-FILTERS CHOICE-FII;IERS come from two sources: the grammar and the

DECISION itself. (The set grammatical filters that applies will change from moment to moment as

the grammatical context changes. Consequently they are accessed through the controller-variable,

gramnmaiical-condiiion-on-choices, whose value is a list of CI iOIlE-FiI;ERS.) PAtch filter is tested

for applicability by evaluating its predicates in the same way one evaluates the predicates of

realization

- 129 -

II.6.3.ii

DECISION-RULEs (i.e. all of them must be satisfied if the filter is to be applied). The choices-to-be-

removed of applicable filters are then compared with the set of possible CHIOICEs of the DECISION,

either by a literal match against names or in terms of a PREDICATE testing properties of the phrase

of the CHOICE.

All DECISION-RULES that Select CHOICEs that meet the filter are then removed from the set

of "viable" DECISION-RULEs that can be used as the basis of the decision. (In NiUMinLE, its job is

made easier by an extensive body of cross-indexes compiled at system load time. Trading off

space for time, these provide a direct link from each maximally transformed CHOICE to the

DECISION-RULES that would select it.)

If all of a DECISION's CHOICEs are filtered out, there has been a design error somewhere

"upstream" in the decision-making process-the message element that now cannot be realized

should never have been put in this context. Analysis routines to help avoid this condition are

discussed in section <analysis.routines>.

iii. The decision-rule-interpreter

The action of this interpreter could be described in LISP terms as applying the function

AND to the list of conditions and returning the result-true, if each of the PREDICATES in the list

evaluated to true, otherwise false. The PREDICATEs are evaluated in the order that they appear in

the list.

iv. The transformation-interpreter

TRANSFORMATIONs (see 11.4.5) are functions from CIIOICE-APPL1CATlONS to COIC-

APPLICATIONS, their output CHOICE-APPLICATIONs being applications of a new COICE to the same

arguments as appeared in the old choice-application. Each C1101CE has a transformations

property, that is effectively a list of all of the TRANSFORMATIONS that could ever apply to it on the

basis of patterns of SLOT-NAMEs and CATECORYs w ithin those PIIRASES, e.g. [subject with [object-

1] for active to passive, or a noun phrase with [ofl for genitive to possessive. In MUmIE, this list

is compiled at system-load time by a postprocessor.

Each TRANSFORMATION has an associated list of CONDrIoN-SETs, that define the

grammatical, thematic, and discourse contexts in which it applies. The interpreter evaluates these

lists as though they were part of a l)IECISION, (which, in effect, they are-decisions whether to use

a given transformation or not). If one of the DECISION-RULEs is satisfied, the interpreter applies

the TRANSFORMATION. '[here is no limit to the number ofTRANSFORNiATIONs may be applied.

Transformations selective modify CIOICEs. They are defined in terms of copying and

editing operations that take the phrase and map of the ChOICE to be transformed and produce a

new phrase and map, identical to the originals except for. local alterations specified by the

transformation. (For details, see<applIyingjtransformations>.). Note that these "transformations"

realization

Definitions 4w130 -

11.6.3.iv

act upon specifications for constituent structure rather than upon constituent structure itself, as

they take place before the specification is instantiated.

When a TRANSFORMATION is applied, the new CHOICE that results becomes the basis of the

list of (further) TRANSFORMATIONS to be tested. The reason for this can be shown by this

hypothetical example: Suppose the "basic" ChOICE for a certain message element (the one given

in the ENTRY before any TRANSFORMATIONS have been applied) calls for using the English verb

expect e.g. say the message element could be modeled as:

(expect <somebody> <do-something>))

Suppose that the identity of the (somebody> is not relevant and that consequently the first

TRANSFORMATION to be applied is passive. If we stopped there, we might get the text:

"Ysomething being done. was expected."

However, the grammatical relations in that text have now assumed a pattern that would permit us

to now also apply the (sometimes stylistic) TRANSFORMATION extraposition to get:

"It was expected that (something was done)."

If the set of applicable TRANSFORMATION did not change as die choice changed, possibilities like

this would constantly be missed.

v. Choice-evaluator

The choice-evaluator is partly an applicative order evaluator and partly an interpreter of

CHOICES. The first thing it does is to process the arguments in the CHOICE-APPLICATION. LOCAL-

VARIABLES are replaced by the elmt-instances that are their current values; ACCESS-EXPRESSIONS

are evaluated with the domain-evaluator, to yield MSG-ELMTS and the MSG-ELNITs are then

replaced by ELMT-INSTANCEs. These are then paired with their sequence order counter-parts in

the parameters property of the CHOICE. (Note, the argument expressions should not have side-

effects. Furthermore, neither how the choice is interpreted nor die form of the output may be

conditional on specific arguments except trivially in that those are the arguments mapped into the

output.)

From this point, how the ChiOICE will be interpreted depends upon its properties. If it is to

return a TRACE, then the link property of a new TRACE of the appropriate sort is set to the object

which is the (sole) argument to the CHOICE-APPLICATION. CHIOICES with Celment-returned

properties will return the ELMT-INSTANCE that is paired with the LOCAL-VARIABLE that is the value

of that property, and any marking-actions there may be are evaluated.

If a ChOICE has a PHRASE, first that PHRASE is instantiated, creating a structure of NODEs,

and then the MAP is interpreted. Each ELMT-INSTANCE now paired with a parameter in the MAP

becomes the contents of a SLOTin the instantiated PiRASE according to the directions given in the

SLOT-PATh IS associated with the parameter in' the MAP. Finally, the marking-actions, if any, are

realization I[.6.3.v

-131-Definitions

evaluated, adding attachments or IMPURE-DECISIONS to the newly embedded ELMT-INSTANCES.

The instantiated phrase is whatis returned.

For example, below is the CHOICE written for the Macbeth domain to encode the "sentence

builder"26 idiom "X is a character in Y".

(define-choice part-o.choice (value) .
phrase (vppredicate-rnominative 0

pred-nom (regular-np (
head "character"
qualifiers (regular-prepp 0

prep in))))

map ((value . (pred-nom qualifiers prep-obi))))

To evaluate this C IOICE, we first instantiate the PIIRASE is-a-character-in, yielding a newly created

constituent structure identical in pattern to the one on page

<isacharacter-in-constituent-structure.n.y..>. To interpret part-of-choice's map, the value of

the local-variable in the first (and only) argument position of the CHOICE-APPLICATON being

evaluated is looked up and a ELMT-INSTANCE created for it if there is not one already. That elmt-

instance is then positioned in the constituent structure as the contents of the SLOT indicated by

the SIOT-PATII (pred-nom qualifiers prep-obj). This involves using the SLOT-PATtI to pick out

successive SLOrs in the immediate constituents of each successively further embedded NODE

starting from the root NODE (i.e. the verb phrase).

This CHOICE has no marking-actions (but see the ChOICE on page

<universalinstantiationtchoicen.y.w.>). Consequently the evaluation process is finished and the

newly constructed constituent structure is returned.

vi. Default decisions

Like TRANSFORMATIONS, DEFAULT-DECISIONs are another facility for representing

generalizations in the decision-making process. They are intended to deal with details or locally

unpredictable events that individual ENTRYs should not be burdened with. Examples include:

setting the relative-head hook on noun phrases with relative clauses-a detail; and reacting to

attachments calling for intensifying a NP with a reflexive ("Giuseppi himself') or for marking

polar contrast in a clause ("Some barber does shave everyone who...")-both unpredictable events.

26. A term due to Becker from his insightful paper The Phrasal Lexicon [bccker.phrasa~lexiconl.
27. The (1qIOICE specifies a verb phrase (rather than the fill clause that the idiom appears to call for) because of the way
the default-framelet-entry (page <default-framelet-entry>) is designed to function. This C IGCE will be used as the
realization of die "property", (part-of MA). rather than the whole framelet (macbeth (part-of MA)).

realization

- 132 -Definilions

11.6..3.vi

Definitions

Conceptually, default-decisions are another variety of GRANMARROUTINE-a procedure

associated with a constituentzstructure-label. But because their triggering conditions are so

different from the other GRAINIAR-ROUTINEs, they have their own type. (See section

<attachments.anddefault~decisions> for examples and a discussion of the operations they can

employ.)

DEFAULT-DECISIONS fall into classes according to the matrix CIIOIE of the ENTRY.

MUMBLE, for example, has three classes: those for when a clause is chosen, those for a noun

phrase, and those for an ELMT-INSTANCE. The class of a DEFAULT-DECISION is given by the

property:

Relevant-when . A PREDICATE testing some property of the coi OCE made by the
matrix DECISION. The predicate must be satisfied if the DEFAULT-DEICISION is
to be made.

The other properties of DEFAULT-DECISIONs are the same as those of "regular" DECISIONs.

The entry-interpreter makes DEFAULT-DECISIONs after it has made all of the regular

bIECISIONs (recall the diagram on page <realization-procedure-.diagram-n.y.w.>). If any of the

regular DECISIONS have the same decision-name as one of the DEFAULT-DECISIONs, the regular

DECISION takes precedence and the default isnot made-hence the name.

vii. Recording the results

In natural language production, a critically important decision-making resource is a record

of past decisions. The entry-enterpreter adds to this record every time an ELMT-INSTANCE is

realized as a linguistic object. While DECISIONs are being made for a given elint-instance, the

interpreter compiles an ASSOCIATION-LIST, pairing, the decision-name of each DECISION with the

name of the CHJOICE that it made on this occasion. When the lint-instance is finally realized, this

list is passed as an argument to a InISTORY-TAKER (history-takern.y.w.), where it becomes part of

the RECORD that is compiled for the ELMT-INSTANCE'S msg-elmt in the long term discourse-

history.

viii. Deviations fromn the 'normal' procedure

In writing a dictionary, a profitable approach is to begin by developing ENTRYs for the

natural classes of objects in the domain, and then to move on to those objects which, because of

intentional or discourse context, are similar to die objects in the natural classes "but not quite".

The new-decisions and amended-decisions properties on ELMT-INSTANCEs are a mechanism for

dealing' with such objects. MARKING-ACTIONS in CIIOICEs.are used to set these properties on

ELMT-INSTANCES as the instances are being embedded in the realization. I.ater, the realization of

their will be 'done partly by I)ECISIONS from the "normal" ENTRY associated with them by

. rI.6.3.viii

-133 -

realizafion

Definitions -134-

entry-for, and partly by new DICISIONS or augmented IMPURE-DECISIONs attached to them by the

CIICES.

New-decisions are made after the 'nonnal" DECISIONS and before any DEFAULT-

DECISIONs, and therefore may override defaults. Amended-decisions are instructions for

modifying or preempting certain of the normal DECISIONs. They are organized as objects of type

IMPUREI-DECISIONS with the following two properties:

Decision-name Must correspond with the decision-name of one of the normal
DECISIONS.

Preempting-choice A CIOICE-APPLICATION.

UNIPURE DECISIONs are looked for by the decision-interpreter on the basis of common

decision-names. If one if found and there is a preempting-choice, then none of the DECiSION-

RULES of the corresponding normal DECISION are tested and the CIIOICE-APPLICATION of the

preempting-choice returned instead. Preempted-choices are a device for avoiding redundant

effort when sonic later I)ECSION is a predictable-consequence of an earlier one. See for example

<emphasize.polarity>.

28. In earlier versions of this theory, there were also properties for new decision-rules to be added to existing decisions at
various places with respect to those already there. Ilowever, the "meta-decision" facility descaibed in section
meta-decisions..n.y.w. proved to be a clearer way to accomplish the same goals.

rl I.6.3.viiirealization

-135

CHAPTER THREE

SOME ENGLISH CONSTRUCTIONS

As any reader of the last chapter will attest, the linguistic component is complex. It

employs twenty six different data types, builds a full-scale tree of linguistic relations over the texts

it produces, and independently records the history of each of the objects it realizes and the

grammar decisions it makes. For an investment of this size, one would expect to get a

considerable return in linguistic ability. Such is the subject of this chapter.

We will look at the major classes of English syntactic phenomena thematic relations,

embedded clauses, questions and related phenomena, heavy phrase movement, ellipsis and other

kinds of conjunction reduction, {{the verb group}}, pronominalization {{fand discourse

contextl. We will see how the different constructions are implemented, focusing primarily on

how the exigencies of language production effect the way that the constructions may be analyzed,

particularly the effects of variations at the message-level.

preview 1-10

English Constructions

1.Special considerations in linguistic analyses for production

Every English construction, from the passive voice to reflexive pronouns to focus, is

ultimately manifest as a particular pattern of open and closed class morphernes in a text. This

much of the analyses is common to all kinds of linguistics whether it is done by generative

grammarians, parser writers, or grade-school iEnglish teachers. However, beyond this simple

description of sentential forms, the analysis of natural language constructions for use in

production requires certain special considerations. Obviously there are differences in the kinds of

representational devices available-the fact that this theory provides only one level on which

purely linguistic relations can be arrayed ("extended surface structure") is already very

significant: many grammatical facts which, in TG, would appear as facts about "deep structure"

or "logical form I", appear here as facts about the structure of messages.

However, the more important differences do not involve the form of constructions so much

as their function. The speaker has certain goals and employs the constructions it does entirely for

the purpose of meeting those goals. It follow that every construction that is used in a text must be

expressly motivated by the message.1 This puts the constructions in a special light and requires its

to determine as part of every analysis:

What kinis of message structures will motivate the Ilse of this construction?

The answer to this question will tell its in what size "chunks" the message elements will arrive for

embedding in the construttction, and the chunk-size will tell its what kind of decisions we will be

able to make on the basis of the chunks themselves without having to wait Until their sibClemets

become visible.

Still more important is the fact that the production process takes place over time. The

linguistic component is not aware of all of the speaker's goals simultaniously, rather, goals become

known as the message elements that represent thetn appear in a message's enumeration order.
T hus another important part of every analysis will be to determine:

When will the need for the construction becotne known;
What will the state of the tree)e at that time?

It would make -a marked difference in the analysis of, e.g., an adverbial modifier whether its

placement was decided upon at the same its tuatrix clause was created, or as an "afterthought"

that happened while the clause was being traversed by the controller.

1. Tlie one class of exceptions is constructions that are a grammatical reflex or some constnction that is expressly
motivated,. Subject-verb agreement is an example.

111.1'preview

- 136 -

English Construeions

1.1 Ontological differences between domains

Obvious, but also very important, is the fact that the ontology used by different

speakers/expert-programs ("domains") can be different. The analysis of the kinds of operations

needed to bring about some construction will vary according to the conceptualizations involved.

For example, two domains may both have the relation,.expects(A B[A]), with dictionary entrys

that cause the relation to be expressed as A expects 8 in both cases (as in Macbeth expects to be

king), leading to identical configurations in the tree:

clause-1

isubject][predicate]
A vp-I

[mvb] [compiment]
expect I[Al

But one of the domains might conceptualize B[A] as a future event with a A as its explicit subject:

(macbeth ako king), while the other conceptualizes it as an abstract predicate applicable to A:

(lambda x. (x ako king)). Abstract predicates can be realized directly as verb phrases (e.g. to be

king), but an event in the same context would require the application of a TRANSFORMATION to

prune away" its superfluous subject (see pg.<suhjectpruning-transformationin.y.w.>) and

produce the same verb phrase. A very basic difference in the representational style of the domain

is effecting the kinds of grammatical operations required to realize their messages.

1.2 The well-forniedness constraint on nessages

Not every message with the same semantic content can be realized using the same

constructions. Because of the way that messages are interpreted, differences in pattern of

intentional, communications-oriented goals in the message (or just in the pattern of semantic

relations) can make a enormous difference in what realizations are possible. For example, of the

two messages A and B below, 2

2. Both of these messages are expressed as formulas in predicate logic and are intended to be processed as if by the
dictionary of the logic domain (VlI.2), i.e. depth-first decomposition of the formula according to the usual construction
axions of the predicate calculus.

preview

-137 -

Ill-t-2

English Constructions

[A] was.reported (is-likely (move-toswiss.hospital (the-Shah, future-time)))

[131 say-about (the-Shah,
1 . was.reported (is-likely (moveto.swisshwspital (the-Shal, future-time))))

only message B is a possible source for a text about "the Shah", e.g.

"The Shah is reported to be likely to move to a hospital in Switzerland.

'This is true even though message A could be realized as any of the variants below (as could

message B)

"It is reported (by government sources) that it is likely that the Shah will be moved to a
hospital in Sd'itzerland.

"Movement ofthe Shah to a hospital in Switzerland is likely3 it was reported."

"That it is likely that the Shah will be moved to a hospital in Switzerland was reported

(today)."
T he kind of unbounded searching and transformation that would be required to

understand message A as saying something about "the Shah" is not possible if the linguistic

component is to be guarenteed to realize messages in linear time. Linear time depends on

needing to make any decision only once, which in turn depends on the linguistic component

knowing the relative importance and the relatedness of the speaker's goals, which information is,

by design, to be encoded in the enumeration order. We can see this summarized in the well-

formedness condition on messages, which is stated below.

The Well-forntedness Constraint on Messages:
"Every message element must be realized before any of the message elements to which its
realization refers."

Ym) mE{messages}

V(e) eqenumeration(m)}
thc(r) r = therealization(e)

V(es) esE {referredtoby(r)) A e$ (enumeration(m)1

preceeds(e, es, enumeration(m))

For every message "m", for every element "e" in the enumeration order of m, the
realization "r" of e must be such that e preceeds in the enumeration order of m each of

4
those of its subelements, "es" that r refers to.

3. Notice that it can be necessary to ignore highly subordinated goals (in this case realizing future-time) when earlier
decisions create linguistic contexts whose grammatical constraints make those goals unrealiable. See section
restrictionson.realizations-.y.w. for discussion.
4. If "realizations" are identified with choice-applications. then the ftnction referred-toby would return all of the
message elements (if any) which are given as arguments in choice-applications. his is not, however, the actual way that
the function is defined due to a technicality in the actual definition of "realization". [[?? do you want to know the real
blood & gore ??j

preview

- 138 -

I 11. t.2

English Constructions

To see why message A cannot be realized with the Shah as [subject] of its major clause, we

first consider why one might want to use that construction and when the linguistic component

could become aware of those reasons. We will then see that because of characteristics of the

component's behavior that the well-formedness condition captures, iti will not become aware of

those reasons until i/ is too hue to act on them.

If the Shah is to be motivated as [subject], it will be either because of some property of the

linguistic context in which message A appears, for example that the Shah is the current focus of

the discourse, or because it is a goal of the message. In message 11 it is an explicit goal; i.nimessage

A it would have to be implicit-the element the Shah might have an associated property (as as

part of its dictionary ENTRY), e.g., that the Shah is always important and should be the [subject] of

any sentence it appears in.

If the Shah were in focus, this would be signaled by a relation, either directly in the message

or implied by one of its elements to the effect that:

. (focus (elmt-in-focus> <nsg-source-of -clause>)

which in this case will refer to the-Shah and to wasreported. If making the Shah the toplevel

[subject were a standing order, this would involve a CIOICI-FIITIR in the ENTRY for the Shah,

roughly:

(choice....must.map the-Shah into ([subject] current-major-clause))

The filter refers to a symbolic constituent structure position and thus indirectly to the message

element whose realization incorporates that position-in this case again wasreported.

The enumeration order of the elements in message A (repeated below) follows from its

relational structure, and is:

was.reported > isjlikely > [moveto_swisshospital, future-time} > the-Shah

,A] wasgreported (isjlikely (move-toswisshospital (the-Shah, future-time)))

Was-reported will be realized first. Since either of the motivations that would position the Shah

as toplCvCl [subject] refer to was-reported, they must be noticed and acted on now if the well-

formedness condition is to be satified. This however cannot happen given the structure of

message A. The second case is ruled out immediately because the-Shah is three elements beyond

wasreported in message A's enumeration order and must, therefore, be realized later. The first

case is ruled out because by the principle of incremental realization (pg.

<incremental-realization-n.y.w.>), TRANSFORMATIONs are able to refer only to .immediate

subelements, i.e. isilikely. The-Shah is invisible from was-reported and focus thus cannot

apply.

preview

- 139 -

Ill-t-2

English Constructions

The well-formediness condition is not a stipulation but a necessary consequence of the

designed flow of control in the linguistic component. Consider what would happen if we applied

the CIIOICE-FILTER once the-Shah had been reached by the controller and there somehow was a

ciOICE remaining that would do the mapping. hlie tree at that point would look like this (or

some equally embedded equivalent).

* clause-i

[subject[predicate]
i vp-2

[mvb][pred-adi]
be d,-

[adjective][complement]
reporled clause-4

[subjectl[predicatel -- >
it vp-5

[mvbl[pred-adil
be a'-

[adective][complement
likely -l clatu w

moalIill

[subject] [predicate]
the-Shah move-to-swiss-hospital

Everything in the hashed region of the figure to the left of the are has been traversed once by the

controller and will not be traversed again. Consequently even if a change were somehow made in

that region it would not change either die text or controller variable values since the controller will

never "see" it.

Corollaries for message structure The linguisic component is intended for planned, fluent

speech. Achieving this goal as an inevitable consequence of the design rather than by stipulation

entails imposing constraints on die designer. Not every conceivable extended surface structure

can be made to produce a desired construction just by writing the appropriate GRIAMNIAR-

ROUTINEs, and not every conceivable message can be made to produce a desired extended surface

structure just by writing the appropriate ENTRVs.

The well-formedness condition reflects the fact that die message-level of representation is

not the same as a semantic level or even the level(s) used by tie expert program. It has its own

motivation. As "message-builder", the speaker must be aware that the expressions it builds will

be used directly to control the linguistic component's action. 'IHey will dictate the relative

preview

- 140 -

111.1.2

English Constructions

importance of different goals through position in the enumeration order, and specify decisional

dependencies through what subelements they make available to the iiNTRYs in its dictionary.

Message B (repeated below) has an enumeration order which gives the E.N1itY for say-about

access to enough of the message at once to be able to make a reasoned decision about what

construction to employ (see section <blindsubject-predicateschoice> for details).

say)about > { the-Shah, (was.reported > islikely
> fmove-to-swiss.hospital, future-timel > the-Shah) I

[D] say.about (the-Shah,
was.re)Orted (is-likely move....to.swisslospital (the-Shah, future-time)))

Even message B is less than optimal from the dictionary designer's point of view because of

the "narrow" enumeration order that it has if the composition rules of the predicate calculus really

are used. A structure that marked wasreported and isjlikely as modifiers to the proposition

and had all three elements visible simultaniously. would permit the Shah to be focused by a

transformation and would provide maximum flexibility for the realization of the iodifirs. [?? I

suppose you'd like to see how that's done?? -- where in the text??]]

2. Thematic relations

Among the languages of the world, English is notable for its fixed word order. Language

like Russian or Finnish with their extensive case-markings can present the. arguments to a verb in

almost any order, while linglish is for the most part restricted to the order: "subject, verb,

(indirect object,) direct object, adjuncts". In Russian (and in other languages with a so-called

"scrambling" rule), the alternative orderings are not synonymous, but reflect discourse-level

relationships between the constituents, the speaker, the audience, and the rest of the discourse.

Such thematic relations are also at work in English (though here they are harder to analyze) and

are taken to be responsible for those order-adjusting constructions that English does have, i.e.

passive, dative-shift, alternations orderings within the verb phrase, introductory adjuncts,

topicalization,5 and right or left dislocation.6

5. These last three constructions involve grammatical relations across unbounded amounts or text and are discussed in the
section on WI I-movement.
6. i.e. "A4I 4mght, ljse is sich a ondeifut gir--some noun phrase either sentence intial (left-dislocation) or final
(right-) with a pronoun appearing where the noun phrase would have been.

thematic relations

- 141 -

111I.2

English Constructions

rhis section will not present a theory of thematic relations. There are already many such

theories in existance, developed in varying detail and from varying metatheoretical viewpoints,

which could be adapted for production; see for example: [sga.etuall[halliday...&Jassanj

[martin.kay-functional s-p[gruherjthemadicselationsj [grosz.focusj[sidner-thesis]

[hobbscoherence]. Instead, it will discuss how thematic rules (whatever they actually turn out to

be) would be integrated into the production process. Two examples of possible thematic rules will

be looked at: "focus" and the "given/new" distinction. The emphasis will be on at the point(s)

where the rules are noticed and the kinds actions they control, rather than on the details of their

analysis.

2.1 Focus

MUMBLE incorporates a very simple notion of discourse focus It has clearinadequacies, but

is an interesting place to start; its intended use is in domains with minimal speakers that do little

or no explicit planning. An I;NTY can specify that a given message element is "in focus" within a

region of the tree. As a consequence, any sentence within that region will have the focused

element as its [subject] (if it mentions it at all as an argument of the verb). Additionally, the

pronominalization of a focussed message element will be encouraged (pg.166), and the element

will be always taken as "given" (see below).

Properly written text is coherent; which is to say that it obeys certain conventions like the

use of focus and given/new. As a designer, one would like to know how much of this coherency

must be explicitly planned (i.e. present in the message) and how much Will "fall out" from general

principles. The implemented version of focus is designed as a "general principle" in that its effect

is felt through the transformational system and is thus transparent to the dictionary designer. Its

use in the "Macbeth domain" is typical. Suppose the speaker (specifically the whole-frae..eniry)

wants to produce a text that is focused on a particular character. What it does is to arrange that

the source for the text (some sequence of FL frames) is realized Under one covering NODE of

category discourse. That NODE is then marked with a "ficus" 1100K whose value is the character

to be focussed. The rest of the work is done entirely by the grammar.

Let us look at how this process was applied in the example from the introduction. There

message involved a "sequence" of four properties (repeated below) dominated by the same NODE,

and with afocus I lOOK whose value is macbeth.

(macheth (murder (duncan))) ;"murder-na"
(macbeth (become (king))) ;"ako-ma-2"
(lady-macheth (persuade (macbeth (act (murder-ia))))) ;"persuade-rna"
(lady-macbeth (hq (ambitious))) ;"ambwous-Im"

hematic relations

- 142 -

111.2.1-

English Constructions

A "focus-transformation" applies as each property is realized, triggered by the focus 1100K

and the fact that the realizations are simple clauses. In the first two instances, the entry's

unmarked ClOICE is sanctioned because it already positions macbeth as [subject] (i.e. Macbeth

murdered Duncan in order _. to become king). The unrnarked cilOcWE for persuade-ma,

however, has lady-macbeth as its [subject] and must be transformed. Since the unmarked

position of macbeth would have been direct object (i.e. [objectl]), The grammar dictates that

passive applies, producing "He was persuaded to du it by Lady Macbeth".

The last property, ambitious-tm, does not mention macbeth at all and might be a problem

to "focus". However, there is a further option, namely to adjoin it to the phrase Lady Macbeth

(the last noun phrase of the previous sentence) as a non-restrictive relative clause. Were it left

instead as a separate sentence, the fact that it says something about lady-macbeth rather than her

husband would cause a defacto shift in focus.7

The focus mechanism In order to notice potential violations of focus, those

TRANSI"OIINIATIONs that are capable of "moving" an element to [subject] are indexed according to

the positions being "moved from" in the corresponding unmarked Cl lORs-one CONDITION-SET

per "bad" position. For example, passive and extraposition-ftom-subject can be triggered by these

two "focus-detecting" CONDIrIION-SETs.8

((has-hook current-discourse 'focus) ;s anything in focus?
(argument-in-focus) ;Js it one of'ours?
(equal 'object 1 iiithe argument going to [objecti]?

(unmarked-constituent-for-arg (argnuent-in-focus)))
(passive))

((has-hook current-discourse 'focus)
(argument-in-focus)
(equal'(predicate pred-adj adjective)

(unmarked-constituent-for-arg (argument-in-focus)))
(extraposition-from-suhject))

Passive thus notices the focussed element being positioned in [objectl], and extraposition-from-

subject notices it going to ([predicate][p-ed-adjJ[adjective1) 9

7. Suspicions that "something is rotten in Denmark" are not ill-founded. As hinted at earlier, this framework for
implementing focus as a "general principle" has definite limitations. First.of all, its ability to transform texts to fit is
predicated on being able to have both the unmarked position of the locus element and the [subject position visible
simultaniously. More importantly, because it is a linguistic principle, it is in no position to insure that the message-level
sources for the text in fact are about the focus (which am bitious-tin certainly is not) Itris really because of a deficiency of
the particular message formalism and the planning (or lack of it) at that level that ambitious-In appears in a sequence of
properties about macbeth and is not already subordinated at the message-level (i.e. marked specifically as a description
of lady-mac be th and left out of the sequence).
8. These TR ANSVOIIMA'IONs can, of course, have other triggers when they serve other functions.
9. lixtraposition can be used to focus adjectives by rendering the [subject] semantically null: It's easy to please JIohn.

ihematic relations

- 143 - -

S111.2.1

nglisli (Constictions

Details: reasoning about CHOICEs symbolically

These CONDITION-SETs have first of all to be able to detect whether the current context

includes a focus, and if so, which message element it is and whether it is one of the arguments of

die CIIOICE-APPLICATION being considered for transformation, This is done all in one operation

by the PREDICATE argument-in-focus. which returns nil if any of those conditions are false and

otherwise returns the parameter of the CI1lO0E which corresponds to the focussed element.

This choice of return value may at first seem obscure, but, in fact, it is forced on us. To

perforn this test we have to comparc information given in two vocabUlaries: that of the message,

and that of the c1ilowE. .The specification of focus is necessarily given in die message-level

vocabulary because it identifies a specific message element. On the other hand, the specification

of what elements will be mapped into what positions is given indirectly in terms of a vocabulary of

parameter names local to the ci iow-. Argument-in-focus must determine how these two

vocabularies correspond in a given instance. First it determines what element is in focus by

looking at the frcus I fooK of the current-discourse-node, It then looks at the Cl01CE-APIICATION

being considered for transformation. The application's arguments are I QCAL-VAIIIAILEs of the

ENTiRY being interpreted (part of yet a third vocabulary). At this point in the realization

process, the message elements which correspond to these variables are known, and argument-in-

focus can determine if the focussed element is one of diem. Assuming that is so, it now

symbolically simulates part of tie process of applying cioicvs to their arguments, and by this

determines which of the itii'c's parameters corresponds to the FATRY variable bound to the

focussed message element. The predicate unmarked-constituent- for-arg takes that parameter,

goes to the Cl IlCE's map property, and looks ip which constituent position corresponds to that

parameter.

Other focussing constructions

Certain constructions syntactically mark a constituent as focussed. The text below (from

[candy...thesis] page 90) uses there-insertion in sentence one to introduce strawberries as the focus,

and then uses cleft in sentence four to shift the focus to Aark. Notice how the interveening

sentences use pronouns for the focussed items and make them the [subject] wherever

pragmatically possible.

1. Last week there were some nice strawberries in the refigerator.
2. They came from our food co-op and were iusually fresh.
3. 1 went to use them fir dinner, but someone had eaten them all.
4. Later I discovered it was Mark who had eaten them.
5. Ile has a hollow leg, and it's impossible to keep food around when his stomach needs

filling

The constraints on MUMIm.E's design are such that it is not possible to treat focus-

introducting constructions in the same way as "focus-maintaining" ones-there is not way to

thematic relations

- 144 -

111.2.1

I'nglish Constructions

create a hook with the meaning: "choose sonic construction that would introduce strawberries

given this matrix".

2.2 Given/new

The given/new distinction is a standard part of the functionalist's repetoire (for example see

[given...new.references]). It is usually analyzed on a sentence by sentence basis, and divides the

text of the each sentence into an initial segment which is given-relating information already

known to the audience, and a final segment which is newinformation that is being introduced

for the first time or highlighted. Again, only a very simple notion of given/new has been imple-

mented in IuMmI1E as an automatic part of the grammar. IUMNLE will notice when a message

element is "given", and choose between pairs of constructions on that basis.

The analysis of given is entirely analogous to the one for focus: We would like the text to

reflect sonic principle without having to redundantly state it in every dictionary ENTRY. To do

this we must (1) create at test to tell when the principle applies (for focus this was the presence of

a focus 1100), and (2) determine where the principle is to have its effect and thus where to

position the test. (for focos this was during the evaluation of TRANSFORMiATIONs controlling

constituent order within the clause).

The present test is crude: an clement appearing at sonic position in a text is "given" at that

position if it has been mentioned before and is not "stae"-the basic conditions for

pronominalization. As with focus, given has its effect during the evaluation of transformational

alternatives to an ENTRY's choice; this at the moment influences three specific transformational-

families (immediately below) and one schematic one (next subsection).

particle movement: "...picked up the ballvs. picked it up"

possessiVCe/geiti1e alternation: " The subconcepts of Pp vs. Pp's subconcepts"

dative shift: "...give a problem to Dan vs....give him a problem"

in keeping with the marked/unmarked style of analysis that I have adopted throughout the

grammar, one member of each family is taken to be the unmarked "default": in this case the ones

on the left. [[why??]J The transformation to the marked form is triggered when a particular one of

the message elements involved is noticed (by the grammar) to be given (these are the direct object,

the object of "of', and the indirect object respectively). 10 The same style condition-sets are used

as for focus: the critical message element, identified by its position in the unmarked construction,

is tested for being given, and if that is the case, the transformation is applied. Below is die

'IRANSIFOAIiATiONAL-FAMiI N for the possessive/genitive alternation.

10. Some readers will recognize these three transformations fron the linguistic literature where they are typically
analyzed as "obligatory" when the shift-able constituent is a Ironoun. They are glossed here here as under the control of a
general thematic principle because (1) pronouns are just an extreme form of "given" infomation and (2) when we look
ahead to the time when more thoroughly planned input is available from speakers, "given" may be a label attached when a.
message is assembled-making the assessment even easier than it is now.

thematic relations

-145 -

l i i.2.2

English Constructions

(define-transformational-family possessle-genitive

((given (argument-that-will-be-in .'of-obj))
(of-obj= =>determiner)))

Using "given" inside entrys

An important aspect of coherent discourse is that it does not repeat the obvious. Insuring

this is, for the most part,. a matter of exercising pragmatic judgement while assembling the

message: the speaker examines its model of tile audience and leaves out those facts that it believes

they already know. However, it has a linguistic aspect as well, since it is usually safe to assume

that the audience knowseverything that has been said recently.

To a first approximation, an entry can safely omit any parts of a description that are "given"

by warrant of having been recently mentioned. Alternatively one can use phrases like "another"

or "such", and, in tie limiting case, use a pronoun-indeed, this whole process of reacting to

"given" information is another way to look at subsequent reference. The difference is that the

subsequent reference routine is general purpose,i.e. it depends entirely on relations that can be

formalized uniformly within the linguistic component; on the other hand, individual entrys can

be written so as to take advantage of their special semantic knowledge by testing for and reacting

to "given-ness" directly.

We can see some examples of the possessive/genitive alternation and individual "onlission"

decisions by ENTRYS in the first two paragraphs of the KLONE-net-as-object example (repeated

below). The relevant phrases are picked out by superscripts.

Phrase is the top o P the net. Its.l interp role must be a concept, and UiP) modifier

role and itsI2 head role must be phrases. 1ts2) subconcepts are pp, tip, adjunct,
indobjclause, and word.

j3) Pp has the roles: pobj, prep, interp, and ppobj. Pobj(4) must be a ip preP(4) a

prep, interP4) a relation, and ppobi4) a pp. Pp's subconcepts(2) are ojpersonpp
insubjectpp, locationpp. and aboutsubjectpp..

Phrase (1) appears in the genitive because this is the beginning of the discourse and net has

never been mentioned before-it is "new". All of the (2) phrases, however, appear in the

possessive because their "possessor" (the concept phrase in the first paragraph and pp in the

second) is "given" by warrant of being focus of the paragraph and thus emmenently

pronominalizable. For comparison, see how disjointed the text is when the genitive is used

instead:

thematic relations

- 146 -

111t.2.2

English Constuctions .-

Phrase is the top of the net. The ilc/tp role of phrase miust be a concept, and the
iodifier role oj phrase and the head role of phrase must be phrases...

The phrases marked (3) and (4) are interesting because of what they leave out. (3) marks

where the sentence Pp is a subconcepi ofphrase would have been except that the sentence just

before it has already listed the "subconcepts of phrase", making the content of (3) "given" and

therefore redundant. Similarly, the descriptions of roles marked as (4) are proper names rather

than noun phrases (e.g. the pobj role' of pp) because the fact that they are "roles of pp" was given

by the summary sentence that begins the second paragraph.

Superscript (3) marks the omission of the sentence "Pp is a subconcet ofphrase.". This was

an explicit option of the describesub-conceps I)ECISION of concept-deflning-eniry

(pg.<conceptudefiningsentry>). Similarly the (4)s mark the omission the fact that "pobj", prep",

etc. are "roles" and furthermore roles of the concept pp-that fact having been already given by

the summary sentence that started the paragraph. (The regular entry used for roles in shown on

page <role.entry-n.y.w.>.) An alternative way to arrive at the same decision would be via a

subsequent reference heuristic to the effect that once an object has been referred to via a proper

name, that name should continue to be used until the reference is stale

(pg.<nameinameiieuristicn.y.w.>).

Given/new in the answers to questions The primary difficulty with moving more of the

responsibility for given or other thematic relations into the grammar and out of."hand-crafted"

ENTRYs is the lack of effective formal criteria to decide when the relations apply. The linguistic

component cannot on its own apply any semantic or pragmatic criteria because it knows nothing

abotit them-it does not "understand" what it is saying in any significant sense.

Another, quasi-syntactic way to know that some fact is "given" is for it to be part of a

question that the speaker is answering. None of die micro-speakers that I have developed

answered questions (none of them ever had dialogues), but it is easy enough to construct an

example for purposes of illustration.

Anticipating a later example of question formation, we can imagine that the KLONE-based

program of section 1M.4.3.i has been asked the question:

"What states do jnp arcs go toftom S/NP?"

Note the order of the prepositional phrases inside the verb phrase: first "to" then "from"; this

order should be reversed in a full-sentence answer:

"Junp arcs go from S/NP to S/IDCL. l

thematic relations

- 147 -

111.2.2

English Conslnections

This order concentrates the given information at the beginning of the sentence and positions the

new in formation-the answer-at the end, the unmarked position for sentence stress.

In order for the order of arguments within the verb phrase to be subject to transformational

control, the alternative orderings must be part of a transformational-family, and given/new must

be cast as a reason for deviating from the unmarked order. For example:

(define-transformational-family go-from/to
;the unmarked order is taken to be "..go from A to B"
((and (given from-arg)

(not (given to-arg)))
(go-to/from)))

(Note that by serendiputous chance, the unmarked form already has the appropriate order in this

example and the transformation does not apply.) By using a transformational-family-a

procedural device-to represent these facts, rather than some kind of declarative constraint, I have

effectively decided that no decision-maker will need to know about this constraint, but only to

behave in accordance with it. That is, when the given/new constraint is represented by a

transformational-family, the decision-makers can not know about it even should the designer

(changing his mind) want them to, because the information is not in a manipulable form: it has

been compiled into the decision-trees of the entrys that .select the affected constructions.

Performing the compilation makes the process faster because there is less interpretation involved,

but more important is the fact that it makes the decision unconscious. Perhaps it should not be:

perhaps in certain modes of production one is able to reason in terms of given/new alternatives.

If so,.the design will have to be changed. Regardless of what turns out to be the case after further

analysis, couching the difference directly in terms of incompatable data-types of the theory is an

effective design heuristic that fosters clear distinctions in hypotheses.

11. A better way to phrase this answer would probably be to say: "Jump arcsfrom S/NP go to S/DIC". This bunches
the "given" information more closely and avoids the impression somehow impatied by that answer that it is giving us the
information for the first time. I lowever shifting information from a predication to a reference is too much of a semantic
shill for a linguistic transformation to perforiM and woUld have to be done earlier at the message-level.

Embedded clauses

- 148 -

l i t.2.2

Eivnglish Consiructions

3. Embedded Clauses

ITe grammar, of embedded clauses is characterized by idiosyncratic details and nearly

synonomous alternatives. Consequently we would like it to be as transparent to the dictionary

designer as possible-something that they would get "for free" by using this linguistic component

to construct their texts. I will begin by describing the facts that their analysis must cover, then

show how the facts are represented in NUNls grammar generally and for specific cases,

including what the designer has to specify when adding new vocabulary. Finally, I will look at a

general problem of message interpretation that these constructions provide a clear example of.

3.1 The facts

A clause may appear either by itself (i.e. as an "independent sentence" or "main clause") or as a

constituent of another, "higher" clause, in which case we will refer to it as an embedded clause

(also "dependent sentence" or "subordinate clause"). Embedded clauses can assume essentially

any clausal function except that of verb. Thus we can have sentential subjects:

" For A lacbeth to murder Duncan was a horrible deed."

direct objects:

"No one knew thai A lachebh murdered Duncan.

"Al1acDuffJarled the man who nurdered Duncan."

"complements" to verbs, prepositions, adjectives, and nouns:

"Lady Afacbeth pesuaded A !acbehi that he should hurder Duncan."

"They swore vengence upon whoever had murdered Duncan."

and clause modifiers:

"1' niurderine Dunca, Aacbeth became king."

"M facbeTh became king because hie murdered Duncan."

Looking at these examples, all alternate realizations of the ni expression: (macbeth

(murder (duncan))), we see that the content of a clause when embedded is essentially the same as

when it acts as a main clause: die order of its constituents is unchanged, as are the words that can

be used. This suggests that the proper analysis of these constructions should involve

TRiANSFORMATIONs. That is, all of the variants of a clause (including, as we will see later,

questions and thematic variations) should share the "early" portion of a clause-building ENiY's

decision-procedure, i.e. the choice of verb, number of objects, and the mapping from subelements

to constituent positions, and should differ only in what "later" 'iANSFORnAITIONS apply.

12. mbedded clauses based on relative clauses (such as this one and "whocver..." below it) involve grammatical relations
over unbounded distances and are discussed in the section on wit-movement.

Embeded clauses-

- 149 -

111.3.1

LEnglish Construcaions - 150 -

Another observation is that there are many different syntactic and mophological

alternatives for the form of an embedded clause. These are correlated to a certain extent with the

different embedding positions, but there are usually still several alternatives for each position,

alternatives which, to the casual observer, appear to be synonomous:

"That Macbeth nwrdered Duncan was central to the story"

"For Macbeth to nurder Duncan was central to the story."

"Macbeth murdering Duncan nws central to the story."

"Macbeth's murder of Duncan was central to the story"

The "synonomy" is not complete however. The alternatives differ in their possibilities for

expressing tense, aspect, and modality; they assign different, if subtle, degrees of "agent-hood" to

Macbeth; and their metrical structures are very different. Consequently the analysis must (1) be

able to discriminate among the different embedding positions and do so in a way that allows them

to be annotated according to what alternatives they permit, and (2) provide a facility to the

designer for making specific selections when there is a reason.

The analysis From the point of view ofthe dictionary designer, ENTRYS choose "clauses", not

"major clauses" or "einbedded clauses".13 hat distinction is a grammatical one, embodied in the

TRANSFORMATIONAl-LAMI L "embedded-clause-transformations". This family is assigned to

every CiOICE whose phrase mentions the slOT-NAMEs subject and predicate. Itris where the

different embedding contexts are detected and where the selection of a suitable embedding

transformation is staged.

If a clause is to be embedded, this will be indicated by the current-slot: subject, object,

adjunct, and complement are the labels currently used in MUMILEC. PREnicATEs in the

CONIDITION-SETS of embedded-clause-transformations look for these specific constituent-

structure-labels and select corresponding graimatical-decisions to make the selection of

embedding transformation.

13. Note that after postprucessing. the set of possible matrix choices of an entry is effectively the transitive closure of the
choices provided by the dictionary designer and the transformations associated with them in the grammar. rherefore in
the run-time environment this statement is no longer strictly true.

Inbedded clauses 111.-3.1

I;nglish Constructions

(define-transformational-fanily embedded -clause-transformations

((is-slot 'subject)
(sentential-subject-possibilities))

((is-slot 'object)
(sentential-object-possibilities))

((is-slot 'adjunct)
(sentential-adjunct-possibilities)) -

((is-slot 'complement)
(complement-decision-for current-mvb)))

Note that while the first three contexts needed no additional information to select the correct set

of alternative constructions; [complement) contexts are further specified according to properties

of the cur-en-nvb (see below).

At this writing, none of the existing micro-speakers have been able to motivate conceptual

distinctions anong the alternative embedding transformations. Consequently, all that the selected

grammar-decisions do is to use a general-purpose {entry-level} subroutine for managing sets of

synonomous constructions (see section synomynu.set.n.y.w.). The one exception to this is a check

to see if the speaker explicitly wanted to express tense or modality in the clause, in which case the

"report clause" construction is selected when it is included in the synonym-set. The dictionary

designer may augment or override the "default" Gwuu lAA- IsloNs by replacing them

with new ones incorporating whatever usage-heuristics the designer wants. Below is the decision

for sentential subjects.

(define-grammatical-decision sentential-subject-default
default (synonym-set '(that-report

poss.ing
for.to
ob..inf
participle))

((has-attachment instance-being-realized
'(tense modal))

(that.report)))

Commonalities in the transformation and refinement of embedded clauses are captured by having

the individual TRANSFOMATIONs refer to common editing subroutines and employ the same

constituent structure labels in their output.

I will now go through each of the embedding contexts and subordinating alternatives as

presently analyzed in \lUMIBLE. The specific mechanisms that bring about the different

morphological patterns will be explained and the assumptions about message-level chunkings will

Embedded clauses

- 151 -

111.3.1-

English Constructions

be discussed.

3.2 Sentential subjects

Any clause-specifying cnoii selected for an EAIT-INSTANCE in a [subject] SLOT must be

transformed by one of ihaturepori, objif ,forto, gcriul, or possting.

that.report

There is no grammatical difference between properties of a major clause and of an embedded

clause complementized by "that" beyond the complementizer itself. Consequently the

T'IANSFOWI\ATION that-report is quite trivial: it merely adds the NODE-FEIATI- optional-that14

to the features of clause-node being specified by the choice undergoing transformation:

(define-transformation that.report
phrase ((add-feature-to-schema-instance 'optional- that

'basic-clause))

objinf

The only difference in the grammatical properties of a major clause and one embedded using

for.to involve the morphological properties of its [subject] np which appears in the oblique case

rather than the nominative) and of the "tense-carrying" verbal element (which appears in the

infinitive obligatorily preceeded by the function word "to"; neither tense nor modality can be

expressed, although aspect can). In particular, as in a major clause, subsequent references to the

"subject" message element must be realized as reflexive pronouns (pg.

<reflexive.pronounsl.y.W.>), and the verb may take a [Complement]. These facts (among others)

imply that if the grammar is not to be unduely complicated, the (ONIROILlI-VARIAIIES

associated with major clauses must be present with their normal meanings.

The analysis is again to supplement the usual constituent structure labels with specializing

features. 15 To the [subject] we add the feature oblique, and to the [predicate] we add the feature

infinitive. "Roth SIT-IFCATUREs are signals to the morphology routine: they create marked

contexts that override the unmarked, default morphological reflexes to always select pronouns in

14. Actually, when that..report is applied in a [subjecti, the initial "that" is not optional: it must be present if the
audience is not to "take a garden path" and missinterpret the sentential subject as the main clause of the sentence.
I lowexer, there is something to be said for using the identical transformation in both Isuhiect and [complement] (where
the that is optional). In any event, a conditional test against the current-slot would be required somewhere regardless of
the analysis, and I have elected to place it in [optional-that after-realization] which is the routine tht will print the' "that" if
it is included.
15. Note, these features will appear in the features property of the local SIlOTs; they do not change the permanent list
of features of the SLOT-NANIls.

Emnbdded clauses

-t 152 -

111.3.2

Knglish Constructions

the nominal case and to express the tense of the clause on the first element of the verb grou. p.

(define-transformation ob.inf
phrase ((add-feature-to-slot 'oblique

'(subject basic-clause))
(add-feature-to-slot 'infinitive

'(predicate basic-clause))))

The slot-feature infinitive also filters out any (Ii1lCEs that would add nooKs for tense or

modality to the constituent in the [predicatel; see section (filteringoutuparts..of_the .message>

below.

for-to

The foruto construction is the same as the obj-iuf except that now the [subject] is preceeded by

the complementizer "fn-". It can thus be implemented simply by taking the specification for

objinf and adding an instruction to add the feature sayjfor to the [subject].

(define-label sayjor
enter-slot

(lambda (contents)
(mprint 'fo0))

gerund & possing

A gerund can be thought of as a verb phrase with the surface syntax of a noun phrase. It can

employ certain of the same determiners: "your singing in the shower is waking the neighbors", and

can be qualified with a relative clause: "The sacking of Rome thatlaccomanied the migration of

the Vis goihs in iMe 5th centur' IAD. was particularly zthoough.".

(define-transformation possting
phrase ((replace.A.with.B basic-clause regular-np)

(add-feature-to-slot 'subject
'(determiner))

(add -feature-to-node 'clause
t) ;add the feature to the top node (the Ni)

map (((subject) . (determiner))
((predicate) - (head))
((adjuncts) . (qualifiers)))

fmbedded clauses

- 153 -

I I U..2

English Constructions

If the clause-specification of the .NTnz's (1IoicE: includes a [subject], it is mapped into the

[determiner] slot where the morphology procedure will cause it to be marked as possessive. If
there is no [subject], a default-decision associated with the [determincr slot

(pg.<default-decision-for-determiners>) will be made and select a determiner on its own. A
[subject] may be "missing" either because the ENTRY decided that it was not relevant for this

instance, or (what amounts to the same thing) because the source of the gerund was an "abstract

predicate"-an actor-less action whose conceptualization in the expert program never included a

"subject"; see 111.2.3.

Because the addition of the labels clause and subject effectively create a clausal context (at

least as regards controller-variables) the reflexivization routine will apply in its normal fashion

when a subject is present:

"AMayor Whie denying himsefa raise twice in a row is very unlikely."

However, subject-less predicates can pose a problem.

"In an election year, giving himself a raise is a dangerous move for a politician."

The grammar insists on certain mInimal information in order to determine the morphology of the

reflexive pronoun, specifically the person, number, and gender of presumptive subject. Domains

whose representations provide generic default information (such as KLONE) can provide this sort

of information in a natural way, others will require possibly awkward ad hoc extentions to their

- dictionaries or may be forced to avoid the use of gerunds with reflexives entirely.

noininalization

The distance between a gerund and a true nominalization is relatively small: essentially a

transformation from the unmarked direct object to the genitive relation and a dramatic extention

of the morphological options available to create nominal forms of the verb beyond just "-ing".

gerund: "Macbeth's murdering Duncan was the key action of the second act."

nominal: "Alacbetih's murder of Duncan was the key action ofthe second act.

To the extent that the nominal form of the verb is predictable (or is consistent-it can be listed as

- an explicit property analogous to irregular plurals or past participles), nominalization can be

treated as a transformation transparent to individual entrys. Except for the different source of the

actual nominalized verb, its form is essentially the same as the transformation for possting.

However, I have not chosen to include nominalization with the other clause-embedding

transformations because its difference in "emphasis" or "perspective" seems be too large to truely

be transparent to an entry's semantically-based decision. In the one domain where it is presently

available as an option, the Macbeth domain, nominalization is selected only in response to a
specific attachment on the source message element that indicates that it is to be viewed as a

unitary "event" rather than an action by an actor.

,IEmbedded clauses

- 154 -

U1.3.2

English Constructions - 155 -

3.3 Sentential objects

Semantically, most of the sentential argunents to verbs are propositions, events, or actions
rather than objects. They are analyzed here as appearing in a slots marked with the slot-feature

complement (discussed below) while proper objects appear in slots marked object. Object will

apply either a noun phrase or a so-called "headless relative":

"Piut a red block into the box."

"Put into the box whaterer 4b/ocks are at ihefint of the table."

This, of course, is not a transformational distinction but rather an alternation that is available to an

entry. The headless relative is appropriate whenever an indirect description of the object is

desired or is all that is possible. In heavily planned messages, these two alternatives would have

different message-level sources. (The headless relative construction involves "wh-movement" and

is discussed in section 111.3.6.)

Verbs such as "like" or "know" that take both objects and propositions are analyzed as

having both slot-features as features of its [objcctlj slot. 16

(define-choice like.clause (s o)
phrase (basic-clause ()

predicate (vp-obectl)
mvb like -
objecti features (complement object)))

map ((s . (subject))

(o. (predicate objecti)))

{thus} depending on whether the message element contained in this [objectl is realized as a noun

phrase or a clause, one of the two features will have no work to do.

3.4 Complements

All of the TRANSFORMATIONS that apply to sentential subjects are also possible for

complements. However, individual verbs will typically take only a few alternatives, their

particular set being indicated by the property complement-type that every verb used with a

[complementl-including constituent-schema must have. The value of this property is always a
grammatical-decision; a declarative enumeration of a verb's alternatives (should one be wanted) is

always available from the inversion of the decision that is computed by the postprocessor at load-

time (see pg. 182) [Complementj's have one additional transformation that they do not (and could

not) share with [subjecti's, namely "equi".

finbedded clauses

16. Alternatively one could have two "conceptual" sources ror such verbs.

111.3.4

English Constructions

Equivalent noun phrase deletion

Equi is one of the "classic" transfonations of transformational-generative grammars. There it

deleted the subjects of embedded clauses under lexical identity with the subject of the main clause

(see, for example, [burt][Permuctter&_Soames]). It performs essentially the same function in

LNIUMIBLE-reducing embedded subjects-but with one critical difference: here it performs its

comparison at the message-level rather than at a linguistic level. [[claborate on the differences??--

mumble's version applies much more widely, subsuming subject-/object- raising as well]i

The message element that would be mapped into 'the [ubjCCtI of the clause being

embedded is compared with the curren.-subject (or % ith the current-direct-object, depending on
the verb). If the two elements are the same, then the new, would-be [subject] must be supressed,

i.e. it may not appear in the output text. This can be done either by arranging for it to be realized

as a trace, or by pruning the clause transformationally so that only the contents of its [predicate]

are actually returned as the realization. These two techniques differ (1) in when they can be

effected-the trace could be laid-down as at late a point as the realization of the subject, while the

transformation must take place during the realization of the source for the embedded "clause",

and (2) in the "derived constituent structure" that they leave-in the one case there is a clause
node, in the other there 'is not. These variations propagate through to the statement of other

grammatical rules, particularly reflex ivization. I have opted for the pruning transformation

because it has the action closest to the point of decision.

Fqui is the only transformation to apply to [complements and not to [subjectis. It is also

one of the few that is obligatory: if its conditions are met, it preempts all alternatives except

that.report. This fact must be reflected in the order of the condition-sets within the complement-

type decision, as is whether the comparison is made with the matrix [subject] or matrix [object].

An interesting case arises with verbs whose control relation (i.e. whether the comparison is

made with [subject] or [object]) can change depending on their voice. The [complement]
"persuade", for example, is controlled by "persuade"'s [object] in the active mode (" we persuaded

Bill... -to let the doctor examine him"), but by the [subject] in the passive ("Bill was persuaded.

to let the doctor exwnine him"). There are two ways of dealing with this.17 Either we remember

what logical case "Bill" had (i.e. which number argument it was to its containing relation at the

message level), which would be the first time such a thing had been needed, or we have the
grammatical-decision actively look for whether or not the passive had been applied as it is

running.

17. Actually the simplest way is when the speaker conceptualizes "persuade" as three place predicate involving a final
predicate, rather than a final event. e.g. lambda x. let-the-doctor-examine-somebody(x) rather than
let-the-doctor-examine-somebody(Bill, tinie-t). In such a case (he "equi" has already been done in the
construction of the message.

EImbedded clauses

-i 156 -

11I1.3.4

Pnglish Constructions

Yet another possibility for encoding this dependency would involve redefining where the

grammatical-decision was to be Found. This possibility is particularly interesting because it

illustrates the potential of the constituent structure as a succinct representation for implicit rules.

Consider that adjective complements, just like persuade in the passive, always involve control by

the [subjectj, e.g. "Bill is easy to please ._" If we said that the controlling verb in the passive case

was not "persuade" but "be", then we would have the effect we need without requiring a special,

ad-hoct) check within the decision since complements of "be" are dways controlled by he/ [subjectj.

(NKb. the constitueni structure of the passive is taken here to be the same as the structure of a

predicate adjective; see the snapshoi below.)

[subject][predicate]
Billv

[mvb[adj-comp]

* ~be Vp-3........~ps
F tiepast

[mvb][objectlj[complementj
persuade let-tihe-doctor-examine-soneone(Bill)

How then does the predicate used by equi know what veib to look to for its instrctions?-ii

uses the controller-)variable current-verb, which is maintained by mfnvb leave-slot. If that grammar-

routine is made sensitive to its context such that, say, it would recursively reset he variable only if

the clause was tensed, then it would "automatically" point to the verb with the correct control

relation.

3.5 Sentential adjuncts

Adjuncts appear either with or Without initial subordinating co junctions or prepositions. If a

subordinator is present, it will dictate the set of embedding transfonnations available, using the

device of a complement-type hook completely analogous to that used for verbs and their

[complementjs. The principle difference is that equi is no longer obligatogy.

"Before he got marrie. John was a gad-about.

"With golti reachig hei*ces it/s, dentists are looking for new ways to cap teeth."

"In order forus to continue to make atreasonable return, we must regretably raise our prices
by 15% during the next calandar year."

These adjuncts are analyzed either as two-slot "adjunct" nodes where the "binding" conjunction

appears explicitly, or as the contents of special slots where the conjunction is effectively part of the

syntactic context. The choice depends primarily on whether .the conjunction has an explicit

source at the message-level.

hinbedded clauses

- 157 -

111 .3.5,

English Construclions

[adjunct] [in-order.adjunct
adjunct-i nm-become-king

[binder] [boundj
in-order mia-heconie-king

When there is no subordinating conjunction the embedded [subject] is invariably 18 the

same as the matrix [subject] and equi applies obligatorily. The remaining verb phrase takes a

participial form, rather than the infinitive form it takes in complements. (The implementation of
this grammatical detail is discussed in the section on the verb group, 111.2.4.)

In some domains (e.g. Macbeth), the chunking of the message is such that adjuncts and

"main-clauses" are introduced into the tree as sibling constituents (example on

pg.<backwards..anaphorta..snapshot>). In these cases, introductory adjuncts are completely

realized before the controller ever reaches the main [subject]. This raises thie question of how equi

can be tested for within the introductory adjunct without a [subjecti to compare with. if the check

is to always be nade, then the answer is "only with considerable planning". However, equi is.

optional in tlese contexts, one could easily believe that people only use tile construction when in

fact they have planned what the main [subject] will be; this analysis would remove reduced

introductory adjuncts from tile list of option stylistic constructions to be used when possible and

make them keyed to specific rhetorical goals in a message.

3.6 Restrictions on realizations

The linguistic component cannot be aware of all of the speaker's goals simultaniously-the

decision made for one message element is not the result of a gestalt appreciation of all of the other

elements in tile message but only of those that are realized before it. The properties of natural

languages as representations make it inevitable that the number of available realizations for more

and more deeply embedded message elements will be reduced and constrained, so much so that -
sonic of the speaker's later goals may have to be abandoned as unrealizable. Consequently, more

important goals (message elements) must precced less important ones in the enumeration order.

An example of this is the earlier case where the time-future specification of message A
(pg.86) was omitted in an embedded clause. time-future is intended to be realized by the model

auxiliay "will", but tile clause it would have been part of was pruned away because it appeared in

18. As with similar "proscriptions". this grammatical lhi can be implemented in two ways. Most directly, a choice-filter
can be associated with adjunct slots that would inhibit it contents from being realized as an inbound clause. This has the
drawback that it may be too much W4 expect the effected entrys to have both bound and unbound alternatives available to
them-such a filter might often as not inhibit any realization at all. Alternatively. one can attempt to insure that only
bound clauses (or their message-level precursors) are ever put in an [adjunct] Islot}. As [adjuncls are clause-modifiers
semantically, this means insuring l[by... 11 that only (propositionsl with a lexically realizable relation to the "main" clause
are even used.

Embedded clauses

-158 -

111.3.6'

English Constructions

the [complement] of is.jikely, thus forcing the main verb to be in the infinitive which is

grammatically incompatable with a modal. If potentially-abandoned elements are available early

enough, then a reasoned decision can be made. (it this case, is.Jikely must be visible when the

decision is made about the choice of complement structure for the realization of

move-to-Switzerland, which it is.) If this is not possible or if an explicit choice is made to

abandon the element (as above), then nCE1010; :-FIIitEs in the grainmar will apply and eliminate all

of the realizations available.

[[[provide an explicit example/snapshot of this filtering ??Jfj

People will often use these grammatical restrictions to advantage: I can recall once while

planning a talk coming up with the sentence "the speaker knows what he wants to say", only to get

a negative reaction froni some internal editor to the effect of "why should the speaker be male?".

I then tried again and got "...what she wanis to say". That prompted an equally negative reaction,

and lead me finally to "...what to say"' which settled the problem by keeping it from coming up.
II a program it WOuld be more natural to have all three possibilities equally available from the

start as a set of choices and to then deliberate between them as a group. The fact that most people

apparantly do not have them equally available and instead must enumerate them in a mode of

generate and test may signify something about the human language facility.

A further fact about subordinated clauses is that so-called "root transformations" such as

topicalization, tag questions, clefting, or preposed directional adverbs [emonds.roouransfl

cannot apply to them. For example, one cannot say:

"*Peter expects on the left there to be an antique lamp."

"*He ivent in the springtime where you like to go."

but instead have to say:

"Peter expects there to be an antique lamp on the left."

"le went where you like to go in the springtime."

iis grammatical rule can be enforced easily enough through the use of Ci IoICE-FITEIs:

we label every clause-embedding context (except [complement] which can take report clauses not

subject to this constraint) with a feature-no-root-transfonnations--and associate with it choice-

filters attuned by name to the individual root transformations

However, it is not obvious that in fact one wants root tranformations to be filtered out

unthinkingly. Consider that with a speaker that throughly plans its messages root transformations

(Which are always the marked case) would not be considered without some specific message-based

motivation. In such cases, rather than apply a filter automatically a better idea would be for the

dictionary designer to explicitly anticipate the places of possible grammar-goal conflict and to

develop decision procedures to handle them.

WI'h-movement 1

-t 159 -

111 .3.6

English Constructions

4. WH-movement

For the constructions of the previous sections, the linguistic component was required to

implement or test for grammatical relations that involved constituents within the same clause, or,

at most, within two hierarchically adjacent clauses. This section looks at an important class of

constructions, those involving so-called i'H-mnovemen,19 whose implementation requires

sensitivity to grammatical relations spanning nearly arbitrary distances. Such constructions could

[be expected to] pose a problem [in this frameworki because, on their face, they require a kind of

processing that is antithetical to the incremental processing philosophy of 'this linguistic

component.

The analysis that I will propose for wh-movcment makes particularly strong demands on

the speaker to provide a suitably indexed mesage-level source stucture. I will argue (1) that,

however acquired, the index information is an absolute requirement if die construction is to be

employed as broadly as it is by people, and (2) that even if we ignored the limitations of the

linguistic component's control structure, the needed information can be more easily obtained by

die speaker than by the linguistic component. This kind of argument has strong implications for

what would constitute an adequate design for a speaker program.

4.1 The basic facts

Wh-movement is a part of many different English constructions. All of them involve

clauses; all of them have an initial "wh-phrase" in a pre-subject position that has no counterpart

in the constituent positions of an unmarked (declarative) clause; and all of them have a "gap" (or

an obligatory resumptive pronoun) at some point within the clause which, in die unmarked

clause, would be filled by a phrase that corresponds to the wh-phrase.

question: "Who was Macbeth persuaded to murder ?'

relative clause: "Anyone thatGiseyjpishaves - does not shave himself"

heatless relatives: "WThoever doesnv shave himself is shaved byGuiseppi.

generic relatives: " Anyone who doesn' Ysha'e himsel'is shaved by Guiseppi.

topicalization: "A "B" I would never have expected to get - in that course."

19. This term originated in the transformational literature of the early 1970's (wh.as.movemen.rell. at which point it
had a literal meaning in terms of the transformational cycle. It is a useful term because it ties together otherwise diverse
constructions according to a common grammatical property. In the analysis of the time, questions Set at. originated as
sentences that had a "WI I" word or symbol (i.e.8,who. Swhat, Swhere. SwIten, Rwhich, or Show) embedded in the position
that the equivalent op would have had in a declarative version of the sentence. With sucessive applications of the
bottom-up transformational cycle. this WI I item then moved up through the sentence (either in one leap or in I)er-cause
stages accor(ling to the particular analysis) until it reached its ultimate destination. More recent analyses (e.g.

[wh..ascontroll) have dropped any.notion of explicit motion in favor of a notion of a grammatical "control" relation that
holds between thc sentence-inital WI I phrase and a variable at the embedded position.

111.4.1

-o 160 -

English Costructions

left dislocation: "7Tat stranger your brother should never hare loandlhitti any money."

Cleft: "What I got __. in that course was a "B.

pseudo-cleft: "It was a "B" itat i got _... in that course.
"tough" movement: "Aticro-ccononics is tough for undergraduates to take their

freshman year."

The wh-phrase and the gap have grammatical properties and restrictions on their occurance that
are of critical importance to the details of the implementation and of how they are planned by the

speaker. These will be considered after the basic parts of the analysis have been presented.

Common semantic hasis As diverse as these constructions are, they share a common semantic

basis. They involve the abstraction of some item from a proposition in order to create a

description. This abstraction process can be used as a way to avoid having to mention the

abstracted item;

"Put this block whCre QivuviaCtheI1ast one..

or as the basis of a question:

"IVhere did you put the Ilast block'

or as a predicate:

"The box is where I put the last block.

or as a description:

the place whereiut the last block."

In every case essentially the same semantic operation has been performed, with the construction

taking different syntactic forms depending on the function to which it is put.

The point is that, because of this common semantics, we should expect the message-level

source for wh-constructions to always be a relation over a pair of message elements: the wh-itein

and the proposition it was abstracted from. The form that the two elements can or should take is

another question entirely and, as we will see later. depends on the kind of information the

grammar requires and the sophistication of the speaker's representation. For present purposes, I
will assume a straight-forward, assertion-based representation like the one used in Winograd's

SIIRDLJ program (based on 'mICROPIJANNER [julicroplan ner_..nanuali) or in my version of the

KLONE-nets-as-objects domain. The message source for the last set of sentences would then be

some variation on this:

(<abstracting-relation> $?loc (shrdlu :put :hlock6 $?loc))

4.2 The basic analysis

To handle the basic properties of wh-constructions we need (1) to relate the position of the

wh-phrase to that of the rest of the constituents of the clause, and (2) to have some way to create

the gap.

WI/I-movement

- 161 -

111.4.2

English Constructions

i. Positioning the wh-phrase

All but the last three of the list of wh-constructions above are clauses with an initial "wh-

phrase". Given the 2-color hypotheses that .function words are to originate directly from the

grammar rather than from a slot, one might initially imagine that the same should be true for the

interogatory or relative pronouns of these constructions. That is, there might be a "W1" feature

(or perhaps a I100K) on a clause NOIE (as below) and the pronoun printed by [wvh enter-nodel.

clause-1 (wh-movement)\

wh: why
[subjectj [predicate]

np-2 vp-3

the chicken cross the road

This analysis, however, can not be maintained because the wh-phrasc is often multi-word and can

even embed pronouns-properties which in other cases have been implemented using regular

constituent SLOTs.

"liv' m1an' red pc)Ners did you put ini that sauce?"

"Iowi man' of them are fresh?"

More importantly, by using a feature on an already realized main clause, the "wh as feature"

analysis implies that, at the message-level, these constructions stand in the same relation to the

main clause as an adverb or an adjunct, which seems plainly inappropriate.

Instead, the constituent structure analysis that has been adopted draws directly from the

notion of the wh-construction originating in a "two chunk" message-level relation. The wh-

phrase and the main clause are taken to derive from the abstracted item and the matrix

respectively. They are introduced into the tree at the same level as the only immediate

constituents of a complex clause using a constituent-schema (named wh-movement) with two slot-

names: fronted and matrix.

Interpreted psycliolinguistically, this decision to maintain two distinct chunks in the

constituent structure predicts that a person should be able to begin one of these constructions and

titter the entire wh-phrase without having to complete their decision about what main clause to

use, which is in agreement with intuition.

To simplify the rest of this initial section, it will be convenient to use topicalization as the

example because it involves none of. the complicating grammatical side-issues sich as case-

agreement or subject-verb inversion. We can start from the poiit where die (1Ioiie: of

20. This is probably equivalent to the category "S-bar" of X-bar theory [ackendof.x.barl: however, I hesitate to use that
terminology beftore doing more analysis and comparison(of the systems.

111.4.2.iW1I-movement'

- 162 -

Enhglish Constructions

topicalization has been made, i.e. with the Cl I1CE-APPLlCATION:

(topicalize ':block6 '(shrdlu :putin :block6 :box :t-1))21

which becomes:

clau(cmplex frontedZ

[fronted) [matrix]
.block6 (slirdli :putin :block6 :box :time..t-1)

ii. Creating the gap

According to this analysis, the abstracted item appears twice in the message-level source for

a wh-construction. Once by itself to identify which message element is being abstracted, and (at

least) once in the expression it is abstracted from (the "matrix"). The problem of creating the gap

is thus to arrange that the textually first occurance of the abstracted message element within the

realization of the matrix is either suppressed (i.e. realized as a TRACE) or forced to be a resumptive

pronoun, according to the graimnar of die particular construction.

We have seen in the analysis of embedded clauses how a 'I RANSFORIATION could be used

to suppress or modify the [subject] of the subordinated clause. TRANSFORMATONS do their work

at the moment a construction is first laid down as constituent structure, either by changing the

mapping of arguments to simyrs or by editing the PHRAS-: to remove a S0OT altogether. They

therefore depend for their effectiveness on having all of the relevant item's visible at the time that

the TRANSFORMATION is triggered. This property makes them unusable as creators of gaps

because the element to be suppressed would have to be one of the arguments to the CHOICE.

Instead, it will be a subelement (possibly many times removed) of the matrix and thus quite

invisible when the clause (fronted) is created. (To prove the point that the gap may appear at an

arbitrary distance from the initial wh-phrase, linguists will "construct" clauses like: WIhich movie

did the cr/ics suggest that the audiences would never believe that the producers expected /.../..

would have believable special effects? These "extensible" clauses, while implausible, are quite

grammatical.)

To create the gap, we need a device that will react to the first instance of the abstracted

element within the [main-clausel, wherever it may appear. One candidate is pronominalization

routine (section pronominal subsequenctreference.n.y.w.). As part of the realization procedure,

it already tests every message element as soon as the controller reaches it. A special case could

easily be added which noticcd if the previous instance of the element was realized as a wh-phrase.

21. This will be realized as 8Block-6 I just put into the box.

W'/J-movement

-'163 -

111.4.2. ii

English Consiructions

Producing a gap would then be a grammar-determined alternative to using a proNOUn. The

problem with using a special case of pronominalization to create gaps is that it is too inspecific. As

we will see, there are syntactic contexts within the matrix which require the use of an interrogative

pronoun rather than a gap, or which are insensitive to the influence of wh-movement altogether.

Detecting these cases in the context of the pronominalization routine would require setting tip

extensive contextual checks that have no counter-parts in the normal pronominalization

heuristics.

A special-purpose routine Instead, a special-purpose segment wh-segment is added to the

realization procedure as a third option, considered before prononiinalization or "the main

stream". If this option is taken. (i.e. if the EIAIl-INSTANCIC is another instance of the message

element that was abstracted and positioned in [fronted]) then the EIAT-INSIANCE is realized as a

TRACE (or whatever, according to the grammar of the construction involved). The necessary

sensitivity to context is implemented via two (tNlH lEI&VAJIAIIS: wt-element and wh-trigger,

which are recursively bound by all NOl)Es with the category-feature fronted. (I.e. whenever such a

NODE is entered, the earlier values of the variables are saved and then restored when that NODE is

left; see pg.<shallow.binding-n.y.w.>.) They are also bound by the sinOrs [fronted] and [subjecti

as discussed later.

The value of wh-elemeni2 is the current abstracted message element. Wh-trigger on the

other hand will have one of the values: wh-do-nothing, wh-trace, wh-relatire-pronoun, or wh-

interrogatdve-pronoun. It is the flag that tells the wh-segment what action it should take each

time an instance of the "wh-element" is passed to it for realization. The snapshot below shows the

topicalization example just at the moment that the gap is to be created.

22. A controller-variable is used here rather than a hook because a "controller-variable") can be accessed freely without
having to know where it is bound while a hook is only accessed with respect to the node is associated with. Using a hook
WOUld still require having a controller-variable that was dedicated to pointing out "the current clause(wh-movement)" and
this category of node has not been found to be important enough in the grammiar to merit it.

Wi H-movement

- 164 -

111i.4.2.i i

English Const rucions

clause-1 (complex fronted)

[fronted] [matrix)
block-6 clause-.

b flhf- tadverb just
[subject][predicate]

S[mvb][objectl][obect-ocl
put :block6 :box

wh-element = :iock6
wh-trigger = wh-trace

"Block-6 1 just put..."

When the controller passes this instance of:block6 to the realization procedure, the fact

that wh-itrigger has a value activates the wh-segment, which proceeds to compare the current-

instance being realized with the wh-element. If these. were not the same-mnsg-elmt

(pg.<same.ii..sg..lmtzn.y.w.)), then we would go on to the procedure's other segments. However,

in this case they are the same, and wh-segment decides what realization decision to make by

dispatching on the current value of wh-trigger. As this example is a topicalization construction,

that value is wh-race, and the CiolCE null-word is made accordingly. In addition, wh-trigger,

having served its function, is "turned off" by being set to wh-d-nothing. Subsequently, when the

wh-segment sees this value, it will know that the gap has already been made and the realization

decision should be made by the subsequent reference routine. Below is topicalization example

just after this operation.

WiI-movement *.114.2.ii

- 165-

English Constiuctions - 166-

cbuse-1 (complex fronted)

fronted) [matrix)
block-6j1au2

; adverb just
- [subjectl[predicate

- [mvbl[obiectl[object-locl
put *trace* :box

- linIk iblock6

wh-element = block6-
wh-trigger = *action-completed'

"Block-6 Ijust put

Summary and preview At the message-level, wh-constructions are descriptions created by

abstracting one element from a propositional matrix; they become two slot constituents:

abstracted element followed by its matrix; the matrix is then grammatically marked by being

realized with a "gap" where the element would have appeared.

rhis basic picture must now be sharpened and complicated. We will begin by looking in

detail at the kind of information that the speaker must supply in order to correctly specify the wh-

phrase in the general case; this will motivate an indexing scheme by which the position of the

abstracted element within the matrix can be described. We will then see how details in the "gap-

creating" apparatus are varied in order to produce particular wh-constructions, using the indexing

scheme to advantage in order to avoid violations of the so-called "island-constraints". Along the

way we will consider how this construction interacts with thematic and clause-embedding

* WH-segnent

same-msg-elmt
(wh-element. current-instance)

Cases of WI--trigger

if whi-do-nolihing - go on to subsequent reference

if wl-luc170Jytlive-prolotf - select an interrogative pronoun and return it

ii t -irace - construct a trace for the elmt-instance and return it

u wh-realrc-pronoun - make and execute the grammar-decision to determine

IIIH-movenent I I.4.2.ii

English Consnictions

transformations.

4.3 Properties of the wh-phrase

In "proper" English one uses the oblique form of the relative pronoun whenever the gap is

positioned in an oblique context:

"Whom do you wish to speak to.._"

thus implying that the position of the gap within the matrix can be known before the controller

even enters the [matrix] slot. The only established way of accounting for this "prescience" of the
wh-phrase is die literal movement analysis from transforniational-generative grammar (see

footnote # #); however the linguistic component cannot use it. [[expand on why??]]

Of course, this pirricular usage is disappearing in modern English23 and one could imagine

designing the grammar so as to ignore it entirely and use only the nominative form. However in

other languages it remains very strong. (In Russian for example, the relative pronoun is

obligatory and must be in the same case as the gap across the entire declentional paradigm.)

Furthermore, we have other evidence that some kind of "pre-planning" of the matrix can be

required. The wh-phrase is often a prepositional phrase "extracted" from the matrix:

"With whom do you wish to speak?"

-"That is the kind of nonsense tip with which I will not put!" (V. Churchill)

Then there is the choice of the wording of the wh-phrase, which may depend on what realization

ClioicE is made for the clause containing the gap.

"Where does the jump arc from S/NEG go to?"

"What node does the jump arc fom S/NEG lead to?"

The question is whether this kind of information can be detennined without a full-scale

realization and buffering of the matrix proposition as a finishedi surface structure-something that

would be anathema for the incrementality{-ness} of the linguistic component. This will be

answered in the affirmative, but not without placing requirements on the message-level

representation.

We will first look at the kind of information that we need to determine just the content of a

wh-phrase, and then at an example of a question being)lanned by a speaker wvho uses an

adequate representation. That example will take us into the question of "prescience" and one way

to find out what we. need to know about the context of the gap with only a minimum of actual

lookahead.

23. This is particularly true in colloquial speech. There is an interesting discussion in [linde.therejagreenent] suggesting
that this phenomena may be related to the also collkuial habit of always using singular number agreement in
"there-insertion" construct ions (pg.<there-iisertion.n.y.w.>). Ikth may be tactics that allow the speaker to begin
speaking without having to plan the remainder of the clauscan ability which could be readily modeled by a conjunction
of this theory of production with a model of resource limitations.

W H!-niovenent 11

- 167 -

111 .4.3

English Consinrcwions

i. The need for an adequate message-level representation

Some kind of description of the generic properties of the abstracted element must be
available if wh-phrases are to be properly constructed. Even the simplest phrases-solitary
interrogative pronouns-require knowing the element's number, animacy, and/or semantic case.
As a consequence, representations that use only uninterpreted variables to denote an abstraction

(such as MNICRO-PLANNER) are inadequate. They can be Used only if supplementary descriptions

are included ad hoc in the linguistic component's dictionary. Thus in order to use, say, (question
$?obj (location $?obj :box)) asthe source for what is in the box?, the dictionary designer would

have to make an explicit link between the message-level token "$?obj" and the interrogative
pronoun what, and yet another link would be required to be able to say what blocks instead.

Just such links were used to augment the representation. employed in the logic domain.

There, predicate calculus variables were used as the basis of "generic" descriptions, e.g. "...anyone

who...", "...all those who...", or "...a thing which is...". A set of features just sufficient to distinguish
the different English prounouns (e.g. human, animate, nale, singula) was created and attached to

the individual variables as constants that were accessible to the common dictionary entry variable-

entry. (This is described in the appendix pg.<ad.hocfeatures..onvariables>.) As is the wont of

ad hoc techniques, a baroque system was needed to manage these features dynamically in an effort

to make up for the fundamental vagueness of standardly quantified variables when compared

with English pronouns (see section VII.B.2.1).

On the other hand, if some description of $?obj's generic properties or of the range of
possible candiates is available as a natural part of the message representation (or available on

demand from the expert program), then the wh-phrase can be constructed from that description

directly, without adding anything to the dictionary. Modern, "frame-based" knowledge-

representations can supply just that kind of information through their annotations of"defaults".

An example from KILONE The accompanying figure shows an example of these defaults as they

appear in KLONE. (See page (klonesyntaxn.y.w.) for a description of KLONE syntax.) Imagine

that we have a program that builds ATNs according to the specifications of its human user. The

figure reflects the relevant parts of the program's knowledge state after it has asked Are there any

jump-arcs leaving S/NP? and received the (uncharitable) reply: Yes.

As a result of the user's instruction, a new individual concept has been created, C205, to

represent the set of jump arcs leaving from the state S/NP. The KflONIC notation distinguishes

what we know about C205 as a specific individual (namely that it has a source-state: C114,

whose name is S/NP) From what we can deduce about it because of the way it has been described,

i.e. By warrant of being an "ARC", C205 must have a test, an action, and an arc-type, and, by

warrant of being a "CONNECTING-ARC", it must have a next-state (the crux of the following

example). We do not know the value of C205's next-state (it is represented as an unknown

Wll-movement

-168 -

1.11.4.3.i

English Constructions

test
action value- restriction

(AR Q>arc-type
[N -~~----- source-state.-

* I STATE
name

CONNECTING-ARC > a next-state"

JUMPJ\RC>/

1 S/NP

C205 (i

individual), however, we do know that it must be a STATE, since that is the value-restriction

indicated by the generic concept of CONNECTING-A RC.

Aspects of the dictionary for KIONE (an aside) Given the descriptive mechanisms of KLONE,

there is a straight-forward procedure for describing anonomous individuals like the one denoted

by C205. We begin with a reference to the concept it is an instance of ("a jump arc") and then

add restricting phrases according to the relations it specifically participates in (e.g. ... eavingfiom

S/NP"). Similarly, we can describe unknown individuals in terms of the value restrictions they

are known to satisfy and an appropriate relation. 'Te step from descriptions to questions is very

short since, given the ability, say, to form the English phrase "a state" from the generic concept

state, it is a simple matter to substitute the interrogative "what" for the indefinate determiner "a"

and form the wh-phrase "what state".

The ENTitYs for generic concepts and their roles are "inherited" by the generic and

individual concepts that specialize them. 'lhe generic JUMP-ARC, for example, has a "local"

ENTRY to contribute the classifier jump, and inherits ENTRYS (actually DECISIONs) from CON-

NECTING-ARC, ARC, and all of their attached generic roles. Generally speaking, the ENTRYs for

generic concepts contribute open class vocabulary (often including sets of synomyms) and define

what combinations of relations can be used in descriptions. 'thus staying strictly at the generic

level, one can say:

"A juip arc connects (1 source state and a next state."

"Jump ates gofrom source states to next states."

"A jump arc (from a source state) lewds to some next state."

- 169 -

111.4.3. iW il-movement

inglish Constructiows 7

To then specialize a generic ENTkY so as to describe a given individual concept, One UsCs the same

set of 01101Es and simply substitutes specific descriptions of the individual and its roles. for the

equivalent generic descriptions. "Mixed" versions are also possible of course; e.g.

"C205fron C114 lead(s) to (v/r C303 STATE)."

becomes:

"The jump arcs from S/NP lead to particular next sates."

A phrase like "the jump arcs from S/NP" is produced by a "shopping-list" ENTRY

(pg.<shopping.jist-style...ntrys..n.y.w.>) which has been directed to produce a noun phrase using

a specific list of properties: e.g.

(Describe 'C205
'((C205 specializes JUMP-ARC) :source of 'jump arc"

(type C205 generic) source or "the...s"
(source-state C205 C303))) :source of "fjo S/NP"

At the speaker's option, the description of objects the message mentions may either be explicitly

planned (as C205 is here) or left to the discretion of default ENTRYS.

An example of a planned question Our hypothetical ATN building program will want its user to

provide a value for the next-state role of C205; this will lead it to asking the user the obvious

question, the construction of which we will look at in considerable detail in the suceeding

subsections. First of all it assembles the semantic basis of the question:

(1) the individual C303 which it wants the user to identify, and

(2) its chosen description of C303-let us say:

(describe 'C303
'((value-restriction C303 STATE)

(next-state C205 C303))

These decisions made, the question-formation task is taken over by the linguistic component in

the form of the UIOicE wh-question2 4 applied to the two message elements. This is the routine

that is responsible for constructing the initial two swT wh-movement type node and, in

particular, for determining the form of the fronted wh-element.

24. As opposed to poiw-question ("Are There any, arcs leaving S/N?") or tag-question ("There aren'! any arcs leaving
S/NP , awe re?).

WII-movement

- 170 -

If 1 .4.3.*1

English Constructions

ii. An indexing scheme to flcilitate 'lookahead'

To form the wh-phrase correctly, wh-question nust know where and how die abstracted element

(C303) would be realized within the matrix. To find this out either it can guess (e.g. always say

who: see footnote 23) or it can lookahead into the matrix, find the message element that contains

C303, make realization decision for that element (symbolically), and look at the result.

Explicit lookahead is not as awkward as it may seem at first, provided that Me nessage-level

representation includes an index from objects to the relations that mention ihem.'. Such an index is

trivial to compile if, as in this case of KINE, messages are constructed by explicitly combining

kernal propositions according to a fixed relational vocabulary: each composition operation

includes a step that incrementally augments the index. The index is a table with one entry for

each referring object mentioned in the message.2 Each entry has two fields: the first is the

message element controlling the realization of that object, and the second is a trace describing

how that element is embedded within the message as a whole. In the case of the present example,

the first field contains the entire matrix relation (i.e. "(and (value-restriction...)(next-state...

))") and the second is empty since the that relation is not contained in any other. [[forward

pointer to a more involved example]

Making the realization decision without producing a realization When we "lookahead" to

make the realization decision, we do not want to actually build constituent structure. (Since the

controller is not present, there would be no place to position the constituent structure after is had

been built.) Instead, the realization procedure is only taken as far as the selection of the ChICE

(including any TRANSFORMATIONS), and this result preserved by the device of an. EARLY-

INSTANCE. [[[expand??]]]

The realization of this matrix is straight-forward: the message-level relation is and-a

relation in the interlingua which instructs the linguistic component to combine its arguments in

such a way that all of their information is expressed, bUt which leaves the decision on just how

that is to be done to general heuristics based on its arguments' linguistic properties. In this regard,

the first argument to the and is "a description of C303" and the second "a proposition involving

C303". There are several conventional ways to realize this combination of arguments: One can

build a noun phrase ("A <description> that <proposition>"); one can use the noun phrase to build an

existential ("There is a <description> that <proposition>"); or one can build a clause from the

proposition, embedding the description with it.

25. At this writing, this index is used only for wh-movement and several, rough-cut discourse heuristics: consequently,
maintaining an index for all of the references in a message is probably wasteful. On the other hand, it is presently simpler
at the message level to index all objects indiscriminantly than to have the foresight to know which particular one we will
want to know about later. Subsequent, more deliberate speakers will doubtless be able to construct more efficient tables.

W4'II-movement

-.171 -

lIf .4.3. i i

Lglish Constnuctions

In the present instance, we make the realization decision knowing that our intention is to

use the result as the basis of a question; this rules out the first Cl1RCE automatically (i.e. questions

are based on clauses). The second is reserved for circumstances that call for focussing on the np's

existance, which this is not: this leaves the third C1101C ("embedding the description within the

proposition"). If the second choice had been made that would have determined the linguistic

context of tle gap sufficiently and we could have stopped our lookahead at that point. Instead we

must continue on and symbolically realize (next-state C205 C303) (the embedded proposition).

For brevity let us immediately say that it selects the c1howCE below ("C205 leads to C303'). For

case of exposition, the C1101CE is shown as a constituent structure. Remember that it is actually a

symbolic description in terms of a phrase and a map.

clause-1

[subject] [predicate]
C205 vp-2

[mvb][to-obiJ
lead C303

With C303 now mapped into a known slot theilokahead is finished. Its instigator, the

choice wh-question, symbolically examines the realization and extracts the information it needs,

namely that C303 would have appeared in an obligue context. Of course, since C303 is non-

human, the selection of interrogative pronouns open for it does not distinguish nominative from

oblique case (i.e. the only possibilities are "what" or "which"); thus it might appear that this

lookahead could have been dispensed with. However, as C303 would have been the object of the

preposition "to", the marked argument of the selected verb, "lead', English grammar gives its yet

another possibility for the wh-phrase: wh-question must now decide whether to "pied-pipe" 26 the

preposition up into the wh-phrase or to leave it with the matrix, i.e.

"To what states does S/NP lead?" versus

"What states does S/NP lead to?"

I have no idea of the usage-heuristics that might select between these two alternatives beyond an

impression that the preposed version is marked for "high" style. Nixmmis treates them as a

synonym set. For this example, let us say that the preposed version is choosen. This means that

the 8101FEAURE that produces the preposition to is. added to [fronted] and "removed" from the

26. The term pied-piping was coined by Ross. I this thesis [ross.thesis] pg.1091. the covered a largcr nunber of
constructions than it does here. 'there, it included wh-elements in the qualifier phrase of a subject noun phrase, a
construction that I analyse as having inhibited any movement and thus handled by a completely different mechanism. An

example would be "Reports [the lettering on the coves of whiichl' thegovernment prescribes theight of are a

shocking waste of public funds").

Wi1--movement

-172-

111.4.3.ii

I i

40173-English Consziuctions

matrix (i.e. not added to the slot in the first placc).

The final result of wh-questioWs deliberations-the initial constituent structure for this

question-is shown below. The usually implicit EIAIT-INSTANCES (inst-1. inst-2) arc shown

explicitly this dine to poiit out where the message elements have been modified.

clause-3 (complex fronted)

(fronted'1)[matrix-
to-obj

inst-I Inst-2

Lns-t-
reat-msg-eiit C303
aniacl'nents

(describe-as
(value-restriction C303 STATE))

real-msg-elmt (and (value-rest ric tion C303 STATE)
(next-state C205 C303))

a nmectic usious .--

(matrix imnpure-decision-S
preenspling-cttoice rlausejca:-o..lWh=o-obj

4.4 The specifics of the different uh-constructions

The nine wh-constructions on page 160 can be produced from the same bai consthuent-

schema by varying die value given to the variable wh-trigger when the controller enters the two

toplevel slots: [fronted] and [matrix]. That value can be dictated by using slot-features to tailor

those slots at the time they are created; it is rebound by the action of the enter-slot routines of

features corresponding to each of the values that wh-trigger is to assume. T"he names of the

features are: i.e. wh-do-nothing, wh-trace, wh-relative-pronoun, wh-interrogative-pronoun.

Each construction is initiated by its own choice, the arguments to which are always the

matrix and focus-message clements. Each choice will refer to its own phrase for the instantiation

of a suitably tailored version of the basic constituent structure. but the lookahead procedure

("determine-wh-phrase") is shared. If the lookahead determines*that the wh-phrase should

consist of more that just the focus, then the change in the mapping is made before instantiating

the phrase. (The lookahead thus appears in the actions property or die choice.)

Determine-wh-phrase and the wh-routinc as a whole incorporate a set of grammatical

restrictions on the relative location of the "gap". As a result of these restrictions, die [fronted]

constituent may be supressed in favor of an "echo" (" You put it where?!"), or there may be a

forced, radical departure from the matrix's deFault realizAltion. Discussion. of these so-called

"constraints on movement" will be postponed until after the individual constructions.

(Adjustments will occur only ir die message-level representation is suficiently sophisticated to

support them; if it is not, no corrective actions can be taken and there may be granunatical errors

in die output texj- -

lW'1I-mo'ement 111-4-A

English Constructions

i. Wh-question

fronted: interrogative-prohoun
matrix: trace

As this is the first wh-construction to be discussed, we will look at it in some detail. The

full-scale choice looks like this:

(define-choice wh-question (focus matrix)

phrase (wh-movement (subi-aux- inversion)
fronted features (wh-interrogative-pronoun)
matrix features (wh-trace))

map ((focus. (fronted))
(matrix . (matrix)))

actions.((determine-wh-phrase focus matrix)))

This is the choice that produced the constituent structure of the earlier example. If we now look

at a snapshot of that same tree just a little farther along, we can see how setting wh-trigger to wt-

interrogative-pronoun will have its effect.

wh-movement (subi-aux-inversion)

[fronted to-obi] [matrix]
np-4._.inst-2

c plural T
[determiner][head]

C303 state

"To... "

When the controller reaches C303 in [determiner, it passes it off to the realization

procedure, where the wh-routine is activated because wh-element and current-instance are the

same msg-ent. The wh-trigger now has its effect: as the diagram on page 113 shows, it indicates

than an interrogative pronoun should be selected.

All pronoun selection is done by the same subroutine on the basis of information collected

by interface functions to determine number and gender (in this case inanimate and plural), and by

determine-wh-phrase to detennine the syntactic context within the matrix (in this case oblique).

With the fact that we need an interogative pronoun, this is enough to narrow the choice to "what"

versus "which". Which of these to pick is not entirely a grammatical question, and so the choice is

made by a grammar-decision, presently on the basis of whether or not the wh-element is a

member of a predetermined set: if so, then "which" is used, else "what".

The slot-feature subj-anx-inversion triggers the "inversion" of subject and verbal auxiliary

that characterizes the commnon form of English questions. This operation is described on page

155.

WYI-moviement

- 174 -

111 .4.4.i

English Conswructions

ii. Relative clause'

fronted: wh-relative-pronoun np
matrix: wh-trace

[determiner][head][qualifier]
a man wh-movement

fronted][matrixj
who clause

is easy to please

The only substantial difference between between relative clauses and questions is that in a

relative clause one often has the option of omitting the relative pronoun. For this reason, the wh-

trace case of the wh-routine includes a grammatical-decision with the option to select the null-

word instead of a relative pronoun. There are grammatical restrictions on this option however:

pied-piping cannot have applied (i.e. one cannot say "the house in -i. my grandfather lived... ");

and tensed relative clauses that modily tile [subjecCtj must always retain their relativizers, as the

omission of the relativizer should not create any ambiguity as to what the main verb of the

sentence is.27 These restrictions aside, there are no heuristics established in the literature to

govern this decision; and at this writing, the two possibilities have been tied together in MUMBLE

as a synonym set, insuring, at least, that they will be treated uniformly in coordinated contexts.

The putative transformation "WHIS-deletion" ("who is") has not been included. It

optionally reduces the subject and copular verb of relative clauses, producing "the girl climbing

the tree" from "the girl who is climbing thei tree". This omission is for two reasons: (1) The

metrical/stylistic differences between these two phrasings are considerable and. should be
planned at a much higher level than a transformational decision would imply: (2) Given that the

speaker and expert program are very likely to have abstract predicates already in their internal

ontology, the transfornation is not needed to "account" for the existance of the reduced

relatives-they can be produced directly. (Indeed, it is more likely that one would want a

"WH IS-addition" transformation.)

The designer will occasionally want to use a "non-standard" relative pronoun in a situation

where the conceptual structure of the domain will not motivate it naturally. For example, in the

KLON-nets-as-objects domain, the entry designer has a very good reason to use "where" as the

relative pronoun, as in: "A clause is a phrase where i/e head role is taken by a verb and the modifier

role by a subject.". This can be accomplished ad-hoc by having an entry preempt that determine-

wh-phrase decision at the time when the containing construction is instantiated.

27. This statement of the constraint as a "filter" on the relativizer decision is entirely analogous to the "surface structure
filter" proposed by Chomsky and I asnick [filters..andcontroll. It is interesting to note that the filter which they observed
"shoult" be in the language but was not- the one that would block the production of, e.g.. "the horse mni past the barn
felf'-is prohibitively difficult to state with the formal devices available to a production grammar of the present design
because of the extensive amount of lookahead required.

WIl-movement

- 175 -

111 .4.4.i

English Constructions

iii. Headless relative

fronted wh-inierrogwi's'e-pronoun . clause

matrix wh-trace

[subje ctf[predicatej

zvp
the U.S.

e [ind-objj[complemen]

doestit tell Mob-

[frontedj[matrixl

usho clause

it should sell oil to ..

Headless relatives are simply relative clause that stand by themselves rather lhan qualifying some

("head") noun. They are realized in the same way as a relative clause except that they have fewer possibilities

for relative pronouns. Pied-piping is not allowed; this is arranged by having the choice that produces the

construction apply a choice-filter to the standard relative clause decision determine-wh-phrase inhibiting it from

selecting the pied-piping variations.

Grammatically, headless relatives are interesting because they can appear in syntactic contexts where

equi-np-deletion must be applied to their [matrix] constituent. For example in

"The Ayae'olla (old his minislers who.__no! 10 sell oil to...

the instance of "his ininislers" that would have appeared as the [subject of the headless relative

was suppressed because the relative is the [complenent] of the verb "tol". This is arranged for

by adding the node-feature pass-through-higher-slot-features to the matrix slot as is already done

for the slots of conjunctions. In this way, the lower region coies to look like the higher one and

the appropriate transformations are triggered.

iv. Topicalization

fronted: wh-no-acion
matrix: wh-trace

Subject to the general constraints on the location of gaps, any constituent of a clause can be

topicalized. This way of looking at topicalization brings under its "umbrella" constructions with

preposed adverbial phrases and even introductory adjunct clauses.

"Tommorrow tmorning I' be asleep.

"By taking an adjacent corner instead ofte center, you left yourselfopen to afork.

in the usual analysis, topicalization is said to have applied only if the preposed phrase and matrix

are spoken without any interveening pause (as vould be marked by a comma). The difference

iere is a guestion of derivation: if the source for preposed phrase is part of the matrix expression

fli1-movement

- 176 -

11i1.4.4.iv

English (onstrucions

at the message-level, then the construction is effectively topicalization regardless of whether a

comma is included or not because once in the [matrix], the suppression of the recurring

"topicalized" element will still be required. On the other hand, if the two elements are being

brought together just for the purposes of the one speech-act, then the element will not need to be
supressed in the matrix becatise it will not ever appear there at the message-level and the wh-

movement aparatus will be superfluous.

v. Left-dislocation

fronted: wh-do-nothing
*matrix: wh-do-nothing

This construction is largely restricted to speech and is included here only for completeness.

vi. Generic relative

This construction (and the three that follow) does not use the standard wh-construction

constituent-schema. Instead, it uses the "raw material" of wh-movcment, i.e. the features and the

grammar-routines, to algorithmically construct a constituent structure appropriate to its needs, in

this case, one formed by using a second instance of the focus to construct a generic noun phrase to

which a "normal" relative clause is attached. [echnically, this is accomplished in NuMituL by
having the choice assemble a special clint-instance analogous to those created for shopping-list

message elements (pg.<cntrys.for shoppingilist-nsg..elmts>). The example below is from the

barber proof (pg.<barber...proot>); here the parameters to generic-relative were the universally

quantified variable y as focus (with the features: human and male) and the predicate

nshaves(y,y); the final realization was "anyone who doesn'I shave himself'.

Elmt-instance
real-sg-clt y ;for the benelt of the discourse-history
nt ry-for generic-pronominal-reference ;produces the "anyone"
entry-arguucuts-for y

-atlachients qualifier clause-I
wh-rnovement

[fronted subject] [matrix]
y ,sihaves(y,y)

vii. Cleft & Pseudo-cleft

These two constructions are thematic variations on a technique for focussing an arbitrary

element of a proposition. They thus involve choices with thrge parameters: the element, what is

to be said about it, and the proposition that describes it. The clement and proposition become the

foctis and matrix of a headless relative (or a generic relative, or a relative clause who relative

pronoun' is 'thai"), and the headless relative is. then made the [subjectj of a predicate adjective

W!1-movement

- 177

lI .4.4.vii-

English Constructions

construction with "what is to be said about the element" as the predicate adjective. A pseudo-
cleft sentence is an extraposed version (pge.<xtraposition>) of a cleft sentence.

cleft: "The person Who persuaded Macbeoh io murder Duncan was Lady Macbeth.
pseudo-cleft: "It was L.ady acbe/it who persuaded Macbeth to nunler Duncan."

clause _ past I

[sect [predicate]

[verb] [pred-adj] [right-shifted-position]
wh-movement

be Lady Macbeth
[fronted subject][matrix]

who clause

pe7suaded Afacbet to murder Duncan

The "fine-tuning" of these constructions (e.g. determining what kind of relative is best, or
knowing to avoid stylistically awkward variations) has not been developed in lMIUmLE. because
the present micro-speakers are unable to motivate that kind of focussing.

viii. Tough-movement
In classic transformational-generative analyses, tough-movement is placed in the same

transformational family as extraposition. (Opinions are changing however; see [ochrle-li10.4).

unmarked: "P/easing .ohn is easy."
extraposed: "It is easy to please John."
tough-movement: "John is easy to please."

In the present analysis however, the transforniations cannot be in the same family because their
sources vary in the number of message chunks involved. Here because the message is always
realized top-down and left-to-right, a transforniationally derived subject muist always be an
independent chunk at the same level in the message as the rest of the clause (i.e. the same level as
die chunks for "easy" and "to please X") because if the "subject" originated inside a predicate
chuck, it could never be noticed in time to move it to [subject] position.

MUMilE presently has two versions of tough-movement: one expecting two parameters

("John" and "easy to please lohn") and the other expecting three (".Iohn", "easy", and "to please
John"). 'he choice for the second is shown below. The ganiniatical devices implementing wh-
movement are impressed upon, the basic predicate adjective construction by adding features: the

H'1I-movemen l

- 178 -

111.4.4.viii

Eniglish Constrzctions - 179-

clause is labeled wh-construction in order to set up the two controller-variables; 28 and the

[complement]is labeled wh-trace. All of that is expressed as shown below:

(define-choice tough-rmovement-3 (s a c)
phrase (basic-clause (wh-construction)

predicate (vp-pred-adj)
pred-adj (basic-adjective-phrase 0

complement features (wh-trace))))
map ((s - (subject))

(a - (predicate pred-ad adjective))
(c . (predicate pred-adi ad-complement))
(a . (*hook* basic-clause wh-focus))))

4.5 Planning by the speaker: obeying 'island constraints'

In his seminal thesis Constraints on Variables in Syntax [rossithesisj, Haj Ross identified

four syntactic configurations" that he described as 'islands": regions that are grammatically

"insulated" from the rest of the sentence, and in particular are opaque to wh-movement.

Complex Noun Phrases:
"Sigfried killed the dragon that guarded the tireasure of the ring."
"* What treasure did Sigiried kill the td-agon that guardedtrJ

Coordinate Structures:
"Arthur rewarded Gawain and Pe'ecal for their ques."
"* Who did Aithur reward __.. and Perceval for their quests."

Sentential Subjects:
"RescuutintLair maidens everr da requires stamina."
"* Who does rescuing._ evegy day require stamina?"

NP's that are enibedded as the leftmost branches of other NP's:
"The flowers were wilted by the dr-gon'sfiety breath."

*...the dragon whose the flowers were wilted by _fiery breath...30 "

The import of these constraints for production is very different from what it is for linguistic

competence. In production, one does not have the option of marking a sentence "ungrammatical"

and starting over; instead, the syntactic configurations identified by constraints like, these must

somehow be avoided in the first place: grammar is a prior constraint-not a postfacto censor. The

constraints on movement are in this way no different that other principles of grammar, only less

28. The mechanism used in MUMIL E to "tell" the wh-element what value it is to have in these cases is more than a little
ugly. A hook is attached to the clause node with the desired value; a default-decision then "activates" the variable once
the controller reaches that node. This awkwardness is largely due to not allowing controller-variables to be set directly by
the evaluation of choices: should it continue to crop up, this awkwardness would be a good motive for reanalyzing the
original motivations behind that detail of the design.
29. Since their original description, Ross's constraints have been reinterpreted and redescribed many times in Iresponse to
empirical observations and changes in linguistic fashion. It would be besides the point to discuss the merits of these
changes or even to review then since the planning problem that the constraints pose for production remains the saime
regardless of the details of the constraints' formulation in transformational terms.
30. The effect of this constraint is to require that the entire containing Nl be pied-piped to [fronted] along with the focus,

i.c. "...the dragon whose fiery breath leflowers were willed by".

V!-movement 111 .4.5

English Constructions

obvious.

Logically, this "avoidance" could occur either at the level of message assembly (we never

think to say anything that would be a violation) or at the level of message realization (messages

that would lead to violations are detected and treated specially). Of the two, the first is certainly

the simplest from the linguistic component's point of view, since if it is true, there is no need for
linguistic detection and transformnation facilities. However, it is unlikely that this would happen

just by serendipity. Rather, it would mean that complex-NP's, coordinate structure, sentential

subjects, and left-recursive NP's are somehow directly selected by whatever non-linguistic

prinicples of communication speakers obey when they decide what to say.

On the other hand, if the constraints do not have a cognitive basis. (and we are not presently

in a position to know cither way), then they are just further "channel characteristics".that the

linguistic component must impose on messages as they are realized, just as agreement and word

order are imposed. Should this be the case, the question of how much search the linguistic

component must undertake in order to notice. potential violations in time to forestall them

becomes very important if a linear-time process is to be maintained. The rest of this section will

describe a combination of message indexing'and grammatical alternatives to wh-movemeeni that,

for the most sophisticated micro-speakers, appears to accomodate the constraints while incurring

only a constant overhead.

Right-thinking Since the linguistic component selects constructions only when they are

motivated by the message, we can reinterpret this question of constraint violations as a question of

the speakers motivations: "what would -motivate the speaker to want to say something that would

violate a movement constraint?". If the necessary combination of motivations never exists, then

messages that lead to violations will never be produced and there is no problem. Consider the

famous overly embedded sentence:

"The rat the cat the log chased killed ate he cheese.

If we assume that the motive for making a message clement the [subject] of its clause is that we

want to say something about it, then this sentence is the result.of the bizzare plan to use a fact

focussed on the cat in order to identify the rat (and similarly for the cat, to identify her by means

of a fact focussed on the dog). A more sensible plan would insist that restrictive relative clauses

must be focussed on the objects they qualify. This would yield the far more understandable

formulation:3

"The rat that was killed by the cat that was chascd by the dog atle thecheese."

31. 'The remaining awkwardness is due to embedding one description directly within another, in effect distracting the
audience from the fact that our subject is really the rat--a side-effect that could be predicted from the fact that speech is
produced as a sequential stream. If a description of the cal is a necessity, then perhaps a reasonable reformulation would
be " Thei rt that ate the cheese was ithe one that was killed by the cat. That cat, in turn, was the one that nns chased by M/e
dog.

JVII-movement

- 180 -

111.4.5 -

English Construcions

Violations of the movement constraints appear to have a similar analysis; certainly it is the

case that any sentence that violates the constraints will invariably have an alternative formulation

where the role of the wh-clement is markedly different. Thus for:

"* What treasure did Sigfied kill the dragon that guarded?'

we can instead say:

"What treasure was guarded by a dragon that Sigfried killed?"

or for:

"* Who did Arthur reward cand Perceval for their quests?'

we can say:

I lho besides Perceval did Arthur rewardfor their quests?'

When complex-NlP is violated, it is because the wh-element's role in the matrix was extremely

minor, i.e. part of a qualifying description. Similarly in violations of coordinate structure, the wh-

element is part of a list in the matrix and thus indistinguishable from its fellows.

Unfortunately however, conjectures about the motives of human speakers are difficult to

substantiate (except perhaps for linguists who are telepaths), and those programmed speakers that

do exist are as yet too simple to be a base for convincing synthetic experiments. I can therefore

only observe that there appear to be no compeling reasons why a speaker should ever want to

describe a wh-clement in so indirect a manner that a violation of a movement constraint would

occur. If that is in fact the case, then the linguistic component need not worry about them.

Dictionary-level alternatives While it may well be that a speaker would never plan to violate

the constraints, it is more typically the case (at least with the micro-speakers) that the speaker does

not plan at all. Instead there is only a top-level directive to, e.g., "describe S/NP" using the facts

"(next-state C205 S/DCL)" and "(source-state C205 S/NP)". It then falls on the shoulders of

the dictionary to try to realize those facts in such a way that the constraints are not violated.

If the contents of the [matrix] are really a proposition, i.e. if their internal structure is

invisible to the both its entry and the linguistic component, then there can be problems. Either

the entry can guess that there will be no violation and go through with its default realization,

taking their chances with grammar-level alternatives described below (this yields an apposative:

"...S/NP, the jump arcfrom it leads to S/DCL"-not as pleasing, in most cases, as a relative clause

would have been), or it can step outside the linguistic component's design constraints and perform

a thorough forward simulation and backup (Cffectively what is sometimes done in the logic

domain; see section reasoning-about-possiblehoicelsn.y.w.).

On the other hand, if instead of as an opaque proposition, the matrix is presented as a

network of kernal propositions that some entry would have to "flatten but" anyway, then it is

possible to ini effect cmlbed a respect for the movement constraints directly into the flattening

procedure. Il this particular case of 0205 this would happen as follows.

VI-movement

10181--

111.L4.5

English Constructions

@@@@First of all because this description is to function as the [qualifierj of an noun
phrase, there is an associated transformational-family to screen the entry's choices. It will filter
out any choice that violates a movement constraint provided, of course, that the potential violation

is visible to it. The conjunction-entry (developed originally for the logic domain) consults the
object/position index and determines that because the two propositions have a common element
as their default [subjectj's, they may be merged into one clause by making one of them a relative
clause. If has, however, no a priori preference for Which to merge.

This is the point where the transformational-family steps in. It knows from the position of
this realization in the tree that movement constraints apply to S/NP, and from the index that

S/NP is a subelement of (source-state C205 S/NP). This is sufficient information to know to
filter out any choice thit positions that proposition in an island.

Computationally, the index is used as a means of avoiding a scansion of the message during
the lingustic processing in preference to scanning. while the message is assembled and

remembering the results. In domains where the message is compiled by the aglomeration of
relatively small propositions from the expert, there is almost no redundant scansion required,

since the information can be compiled at a one-time constant additive cost by being piggy-backed

onto the message-assembly process.

Alternatives at the grannatical-level If the speaker's representation is unable to support an
object/position index, is there any recourse available to the linguistic component short of a
dictionary-based simulation? What would happen if the speaker were "taken on faith" and
expected to instigate only occasional violations? The answer is that while the violations cannot be

forestalled, it can be arranged that the errors that result are die same as the ones made by people.
For example from errors collected by David Fay [fay] we have: "Look at those clouds are moving

how fast" and "Linda, do j'ou talk on the phone with which ear?', and from my own collection: "I

have all its memorabilia that I have to decide what to do with it".

The key to this arangement was aluded to in the initial discussion of the mechanism for
creating gaps, namely the association of wh-trigger-controlling constituent-structure-labels to the

syntactic configurations that define islands. For versiMilitude, the kind of enter-slot routines with

the labels are made conditional on the type of wh-movement going on: questions and headless
relatives get wh-interrogative-pronoun, and the others wh-do-nothing which has the effect of

triggering an ordinary pronoun.

s/np, the jump arc from which leads to s/dcl

A case like Ross's famous "pied-piping" sentences (footnote 172), where the wh-elenent is

overly embedded within the qualifier to a noun phrase, requires the element to be realized as a

interrogative pronoun. [[[as in this examplell whereas A case where the element appears

"unexpectedly" in an apposative that happens to preceed its "real" position in the clause calls for

Wl-movement

- 182 -

111 .4.5

English Constructions .

using a pronoun. 'This example was made by myself in writing this paper:

- "...counter-parts in MUmLE's design which, to the extent that the design is independently
motivated _. may provide an explanation for them."

The development of a system of grammar-level alternatives to planned wh-movement is

still very under development. Recent research in to wh-phenomena (a very busy area in

linguistics at the moment) suggests that among languages, English is unusual for allowing

"movement" across such enormous spans of constituent structure. Other languages are far more

restrictive, often allowing only the primary constituents of the clause to bc. moved. Even in

English, it may be more reasonable to mark those constituent positions that permit movement

through themselves than their to mark those that prohibit it (see [kosterlij and the references he

cites). If this is the case and those markings depend on relations that have consistent correlates at

the message level, then the transformational technique should work well.

111.4.5

- 183 -

W Hl-mlovemtent

- I-

1. Heavy-phrase shift

Some linguists hold that there is a stylistic rule in English and other languages whose

function is to increase the intelligibility of a text by causing "heavy" phrases to appear to the right

of their "normal" positions [Yngve model-&.hypothesis][Ross-t.hesis]. For example, when the

direct object of a verb that takes a particle is short, the particle can appear either before or after

the object:

"Ile saw the matler through. - le sawhonugh the matter."

But when the direct object is very long, the particle must precede it if the sentence is not to be

awkward or eveu unintelligible: (example from [Yngve-iodel &-hypothesis])

"lie saw through the maler that has caused him so much aiixiely iin foner years when he
was employed as an efficiency expert by ithe company.

* Heavy-phrase shift is also held to be a sometimes source for: extraposition from subject

" is not true that there is some barber who shaies all atid oni those who shave
themselves."

extraposition of np qualifiers

"The review just arrived of that booklvou wanted to read"

"There is usually an issomorphism between i/e data structures and the desired English texts
that a cictionar' can be designed to capitalize on."

and the order of prepositional phrases in a verb phrase:

"They dismissed as too costly a plan for the state to build a sidewalk from Dartmouth to
Smith.

"A record is kept, by slot,1 f 1ihe elements that were jinnerly embedded there."

These constructions are, of course, also used in response to thematic criteria, and it is

sometimes difficult to say which is the controlling principle. When more thorough analyses are

made, heavy-phrase shift may turn out not be an important factor after all. The point of this

section is not to tke a stand on that question but rather to show how heavy-phrase shift could be

incorporated into the grammar if one wanted it, and what limitations there would be on when and

how it applied.

lesign options In general, any phenomenon that depends for its trigger on the linguistic

properties of a message element can be implemented in either of two ways. One can wait until the

controller reaches it within the tree and test its properties after it has been realized (but before the

realization has been attached to the tree), or one can anticipate its properties either by looking at

1. A definite "comma intonation", akin to that used for parentheticals and apposatives, is needed in some cases. In a
speech-based theory, the need to plan this intonation and its'physiological preparation might be a force against the
"last-minute decision" analysis of heavy-shill and in favor of planning the decision at least at the level of the verb phrase.

heavy-phrase shift 1,1.1

- 185

message-level correlates or by actually performing some or all of the linguistic decision-making

"in advance" and remembering the results. In the first case, one is certain of what the properties

are while in the second, there can be some uncertainty-some decisions (such as

pronominalization) cannot be made properly until the entire linguistic context up to the element's

position has been fixed. On the other hand, there is a great difference in the lattitude of action

permitted in the two cases: waiting "until the last minute" means that only those parts of the tree

that are in advance of the controller's position can be affected, everything that came earlier would

have already been spoken and could not be changed; anticipating the situation means wider

possibilites for actions: the element's own realization can be influenced as well as its position

relative to the constituents before it, or an different construction selected altogether.

Part of the choice of implementation for heavy-phrase shift depends on how "heaviness" is

measured. Lett us assume for the sake of discussion that noun phrase is heavy if it dominates a

clause. (This is tie criteiioii of[rossthesisl pg.28J.) The "easiest" way to test for the presence of a

relative clause is to wait until the message element in question has actually been realized (but not

yet placed in the tree) and to inspect it directly. If, for example, we were using this technique to

test whether to do extraposition from subject, we would perlorm the test as part of the (subject

after-realization] GtAIIAI-IOLJlNI. The action of this routine is illustrated in the diagram

below. The message element ill the [subject] has been realized but not yet introduced into the

tree. Because the realization is a clause, it is shifted to a newly created latent slot

(pg.<dynamically.created-patterns.ofconstituents>) with the slot-name' right-shifted-position.

The "it" that then appears to. fill the [subjecti is actually a directly-printed grammatical reflex of

the fact that the [subjectl is empty and the CONSITILINT-Sc(ilIEMA is what it is. (The shapshot

shows the effect of heavy-np-shift at [subject after-realization] for the last line of the barber proof

(pg.(barber.proof>): "(therefore) it is false: there is no such barber".)

2. Actually, one would want to put it on a slot-feature, heavy-shift, that the [subject slot would share with [objectIl and
with the [qualifiersl of noun phrases. A shift from any of these slots will go to the same position--just after the verb
phrase. Since not every [subject] can be extraposed (only those in predicate adjective constructions), this feature would be
added to the [subject] by clause-level CONS'IITUENT-8CI IEMA of the appropriate sort.

111.1hety-phrase shiff

- 186 -

clause-I

[subject][predicatelright-shifted-position
forrnula89 vp-2 A,

realized as rb[red-adj]
be false

clause-3

[subject][predicatel shifted to
there Vp-4

[mvbl[obectl
be conj88

(define-label heavy-shift
after-realization

(cond ((or (equal 'clause (category current-contents))
(and (equal 'tip (category current-contents))

(will-be (get-slot 'qualifiers current-contents)
'clause)))

;then per/brmn w Izey shf?
(set-current-contents nil)
(fillslot current-contents 'right-shifted-position current-clause)))

Alternatively, heaviness could be assessed at the message-level, provided, of course, that the

representation for messages made that information easy to extract. For simple entrys, this might

mean just reading out their will-be properties directly, but entrys with more contingent behavior

could require a simLllation (see section reasoni ngsibou tpossiblechoicest.y.w.).

Grammatically forced shift In English, it is ungrammatical to sinultaniously use an preposed

auxiliary and a sentential subject. (This is known as the "internal S condition" [rossthesisl)

* Did thai you became a linguist swprise Ianyune?"

As with other "constraints" that linguists have identified, the question for production is to

determine what steps can be taken to avoid these constructions (assuming that, in fact, their

precursors are actually motivated by speakers). In this case there is a straight-forward "patch"

that can be applied should a text ever be in danger of violating this constraint, namely

extraposition to the end of the clause. the constraint is thus translated into production terms as

an obligatory, 'grammar-controlled transformation, tested for as part of [subject after-realizationl.

Planning versus editing Introspective evidence suggests that, at least for humans, it is easier to

make a working assulmption a)out how a text should be ordered, produce it, and then examine

and edit the results rather than to attempt to predict all of the relevant relations in advance in

some abstract planning space. This is particularly true when subtle evaluations of relative

heaviness are involved.

heavy-plrase shif? 111AI.

- 187 -

Sentence one below shows a "first cut" at a sentence written for this report that was then

edited as shown in two.

(1) "Stich constraints are possible because messages are expected to be planned, relecting
the relative importance of the speaker's several goals and their dependencies directly in
the structure."

(2) "...reflecting directly in the structure the relative importaince of the speaker's several

goals and their dependencies."

I made the edit in part because of the length of the direct object, but more to avoid the potential

ambiguity of die original where the second instance of "their" might have been construed as

referring to "dependencies" rather than to "messages" as intended. '[his ambiguity was one I

would never have anticipated before actually producing the utterance, and underscores the

subtleties that can go into these decisions in real life.

With some effort, NIMBAIE's planning facilities could be extended to predict a problem that

far away from the controller. This would require using the object/position index, the could-be

properties of the entrys (assuming they were not too contingent), and some kind of presentational

buffer that would make it possible to formulat& questions about the relative order of projected

texts. One might even be able to argue that the, planning not withstanding, MMBLE would even

still function as an indelible process, but incrementality would be much harder to salvage. It is

questionable whether one would actually want to implement this kind of extension-it might not

be cost effective when compared to post-facto editing and restarting. It is intriguing to speculate

that there is something about the manner in which language is represented in the human mind

that makes that kind of abstract planning so difficult for us.

2. Ellipsis

Certain natural languages constructions permit segments of their text to be optionally

omitted, presUmably because the periodic structure of the remaining text makes those segments

predictable. English has many such elliptical constructions; the first four below have been

incorporated into MUMILE's grammar; the others have not yet been motivated by any of the

micro-speakers.

subject reuction: "Ile left the party early and. went to bed."

verb reduction: " ihacbeth murdered Duncan by himself and Banquo and ileance /1"
by the action ofhis action of his henchmen."

verb phrase deletion: "Iflitch has an exanim, then Kurt does- too."

Ellipsis 111.2

- 188 -

gapping: "Pobj must be a tip, prep a prep, interp.- a relation, and ppobj._.a pp."

slucing: "He's seeing someone, but I dont know who

comparatives: "Pansies smell better than vibleis do.....

comparative elision: "Sadat is mom willing to get along with Begin than Begin with
Sadat.

left-peripheral deletion: " The union leaders met with management on Thursday, and ..

(wih) the arbitrator on Friday,

What the "proper" message-level sources for these constructions should be is probably a

matter of taste and ultimately of what is convenient for the designer of the speaker/expert-

program. Either the speaker will prefer to pass complete propositions that the linguistic

component will then suppress parts of, or it will prefer passing only the pieces, in effect removing

the redundancies at the time the message is assembled (e.g. smell-better(pansies, violets)).3

Producing ellipsed constructions from specific, already selected elements is quite straight-forward:

one simply designs the necessary "piece-wise" CONSlITUENt-SC EMAs and. (imIOEs with the

appropriate maps. Consequently, in this section I will only consider cases where the linguistic

component must actively "reduce" strUictures at the message-level.

2.1 Coordinate structure

The periodicity of the text that makes ellipsis possible is usually the result of some kind of

conjoined or otherwise coordinated constituent structure. It will be useful then to digress

momententarily to describe NltMUllILE's treatment of coordinate structure.

Conjunctions are ubiquitous. lvery position in constituent structure that can contain a

single phrase can contain a conjunction of phrases-all of the same category-and every category

of constituents can form conjunctions of any length, limited only by pragmatic considerations.

Conjunctions are analyzed here as a their own syntactic category; they can have an arbitrary

number of constituents (pg.<schema with...arbitrary...numbers-of_Constituents-n.y.w.>) based on

the kernal-slot-name "c", e.g.

np- I
-- onumber plural

[determiner] [head] [name]
the role conjunction-2

[c] [c2J [c3] [c4
po~j prel) inter) p1o~j

3. lhcre is also, of course, "the middle way". For the Constrtlction of coordinated referring phrases in the tic-tac-toe
(tomain, I have experimented with passing both the complete propositions and an instruction specifying-along what
dimension to contrast the two references, e.g. "'Lour threat counterdm-ine."; see instructions..for.csontrastu.yw.. Similar
tactics could be used to explicitly plan other kinds of ellipsis.

hillipsis 111.2.1,

- 189-

Conjunction NODEs are effectively transparent to grammatical relations:4 the case of
pronouns is inherited, access to nooKs is passed through, and function words are repeated
(subject to the same heuristics that govern category reduction (pg.38). Any active grammatical
properties of the si1o, containing the conjunction are applied to each of the conjunction's
constituents after the properties of the conjunction itself. These effects are brought about by die
controller itself because of the feature, pass-through-higher-slot-feawres, that is included on each
slot.

[or the garden-variety "list" type conjunctions, there is a set of GIAMNIAR-ROUTINES
associated with the "C" SLOT-NAIMEs which implement the trailing commas and ultimate
conjunction. Moreover, the more "interesting" properties of conjunctions, in particular the

facilities for managing parallel structure and for triggering ellipsis, are associated with special
SLT-FEIlUEs because they are found with CONSTITUENT-SCI (IMAs other than just lists; for

example one can say:

"Since A!itch has an exam, Kurt must also."

"If Mitch has an exam, (then) Kurt does too.

"Atfitch has an exam, so Kurt does too."

The CONTROlLER-VARIMW1C previous-conjunct is managed by routines attached to the sLOT-

FEAITURIE coordinated-slot, one of the intrinsic features -of, e.g., [if-slot] and [then-slot]

(pg.<definition.ofifthen>). Its value is the iwCoim compiled for the NODE in the immediately
previous SLOT of the conjunction. (When the controller is in the first s.1 of the conjunction, the

value of previous-conjunct is nil. This fact can be used as a test to inhibit tests for ellipsis inside

that first item.)

2.2 Triggering conditions for ellipsis

The trigger for ellipsis is a confluence of events that are external to the decision-making of
individual ENTRYs. Since semantics plays no part (except to say that two message elements are or

are riot the same), the responsibility for detecting these events and making the decision to employ
ellipsis belongs outside the ENTIs-the question is whether ellipsis should be a general
alternative to pronominalization or only associated with particular structural configurations in the

tree.

The pronominalization approach has both good an bad points. Ellipsis is in many ways an
anaphoric relation triggered "just" by the potential repetition of a constituent. Also, as the verb

phrase deletion ("VPD") examples below show (from [sagthesis]), the range of structures that
permit ellipsis is quite large. Seeding them all with individual grannar-routines to look for

possible VPD at different structural locations seems soniehow excessive.

4. All [passive tests] against the tree include special checks for the case where a conjunction is involved.

klllipsis 111 .2.2

- 190 -

main clause to adjunct:
"Gwen hi single after .Sandy did.

deeply enihedded subject relative clause to complement:
"The faci that liill said she did't break the window makes me wonder who did

One person's question to another's answer:
"Wh/o hit the hmm' rn? Bletsy did ."

predicate to self-embedded (!!) relative clause:
"I kissed'eve)WI 30you told nc I shoaIld

On the other hand, there are definite limitations to the types of realizations permitted in

pronominally triggered VPD. Consider this snap-shot of the tree (from tic-tac- toe).

conjunction-I

[ci] [c2J
clausea2 cause-5S

ltense past Itense past

[subject][predicate] [subject] [predicate]
you vp-3 .Iniss-opportunity

[mvb][objectI1)
miss np-4

an opportunity

You missed an opportunit, and I//

If we were to wait on ite ellipsis decision until the second instance of miss-opportunity was

actually reached, we would have lost the option to use the phrase "...and so did I" because the

position where the "so" would have appeared has been passed, i.e. the only choice available would

be "...and I did (too)". If both of these are to be "equivalent" grammatical options, then the test

must be made earlier, say at [coordinated-slot after-realizationj.

Of course, the two options may not be equivalent. Complex sentences with although or but

are readily planned as a unit (see [daveyl). If so is treated the same way, then there would be an

explicit Feature on the tree at the level of the sLOT [c21 to implement that specific form of ellipsis.

(The p-onominal trigger would still apply serendipitously to handle the unplanned cases of VPD;

see pi-onominalizing..predicates.n.y.w. for details.)

2.3 Reduction at different levels

Ellipsis should be detected and implemented at the point where this can be most easily

arranged. This has been different for different inicro-speakers, according to the representation

they employed.

Ellipsis il1.2.3

-191-

entry-level decision First of all, detection and implementation cannot always be performed

together. For the case of the "misscd oportunites". the observation that the two predicates are
identical and the decision to use the "...so does" construction would be made very early before

either of the conjoined clauses was actually built. It would be made by the entry for

"coincidences"-the relation, in the tic-tac-toc domain that is the message-level source for the

whole sentence, shown below. (The actual data structure has many more details describing the

moves which have been omitted for clarity.) At the time when the decision is made, it is

impossible (and not appropriate) to actually implement the ellipsis because the morphemes

involved are still latent in message-level structures. Instead, an attachment is added to the lmt-

instance that is created for the second conjunct; its efect is to trigger the "...so does"

TRANSFORMATION when the instance is finally realized.

coincidence ((you miss-opportunity)
(me miss-opportunity)) AISSA GE-L EVEL

conjunction-1)REALIZED AS...

[c1 [c2l
(you miss-opportuitiy) (me niiss-opp~ortmnity);)

attachments
(explicitly- requested-transformation

so-does-subject)

Grammar-level decision Glapping, on the other hand, is tested for and implemented at the

same time (i.e the last possible moment). Its distribution is more restricted than VPl)---list-type

conjunctions only-accordingly, it is made part of the GRAlNIAMA-ROUTINE jmvb enter-slot].

lBelow is the test for gapping presently used by MI1NILE and a snapshot showing the state of the

tree at the time when it would be applied. This snapshot is from the KLONE.-nets-as-objects

domain, and the test is essentially the same as Used for category-reduction in general. (Tie name

"vg-# " stands for "verb group". This category and its automatic construction by the grammar are

discussed in section 111.2.4.

E5llipsis 111.2.3

- 192-

discourse-1

[dl] [d2] [d31
clause-2 clause-6 (value- rest ric tion ppobj pp)

modal must Imodal must
[subject][predicate] [subject][predicate]

pobj vp-3 interp vp-7

[verb][pred-nomj . [verb][prJd-nom]
vgL-4be relation

a rp
m alifmain-verbJ just realized by [verb enter-slotJ as
must be

vg-8

[modal] [rnvb]
must be

(define-grammar-decision do-gapping-if-possible

condition ((same-contents (verb-group.ij..previous-conjunct) vg-4
current-contents)) ;/c vg just constructed: vg-8

default (gap) ;do it unless /here is a reason not to.
((member 'do-not-gap (strategiesjusedin..previous-conjunct))
(do-not-gap))

((was-excessively-long previous-conjunct) ;e.g. included an apposative
(do-not-gap))
((gapping- expressly-blocked) ;see section <coorinating....altwrnate-sllipsi..stategies) below
(do-not-gap)))

Message-level reduction From the same domain, we have a good exampfe of performing the

reductions at the message -level. Consider that speaker's job: to create an English "read out" of a
KLONE net. These nets (example on pgXcxampeklone.net>).are comprised of arbitrary
numbers of very similar relations. Because of this, reductions of the text will always be
appropriate, the question is how to organize them. My decision was to make the dictionary-level

operations as simple as possible: all that coitcepli-(efiiig-etlly' (pg.<conceputdefining..ntry>)

does, for example, is to collect relations of the same type and make them the constituents of a
discourse node. It is then left to a discourse-level GRANIMA-RIOUTINE to scan the relations for

reducible patterns. We can see this in the constituent structure below: a snapshot taken just after

it was constructed by that entry but before the merger operations were.applied. (Note the NODE-
Aruiw ii erge-relaons: it is its grammar-routine that performs the scanning and reducing. "vr"

is an abbreviation for value-restriction.)

Ellipsis (I23111.2.3

- 193-

discourse-i (merge-relations)

[d{J [d2J [d3]
(vr :rinterp :c:concept) (vr :r:modifier :c:phrase) (vr :r:head :c:phrase)

[Merge-relations enter-slot] will make as large a reduction as is possible without changing the

order of the relations. Its output is a new immediate-constituent property for the NODE, with the

actual assertions modified as shown below.5 This eventually becomes the text: "Its interp role

must be a concept, and its modifier role and its head role nus be phiases.".

discourse-i (merge-relations)

[dl] [d2]

(vr :r:interp :c:concept) (vr conjunct- :c:phrase)

ci] [c2]
:r:modifier :r:head

This practice of constructing derived message elements within the linguistic component is an

expediency that broadens the range of constructions open to the speaker of conceptually simple

expert programs. The l ONE representation 'language, for example, has no primitives for

expressing the abstraction "is a subconcept of X" directly, and thus has no natural source for

statements such as: "lP is one subconcepi of phrase and 1p 'is another." However, these

abstractions can be constructed by the dictionary as a by-product of its normal operation. Given

the assertion: (subconcept :c:phrase :c:pp), the subconcept-entry builds the NODE below,

creating a derived message element by the simple mechanism of duplicating the assertion while

replacing :c:phrase with the symbol ??.

clause-I

[subject] [predicate]
:c:pp (suheoncept :c:phrase ?)

The derived message element is realized by the original rNn, which expliciily looks for the??

symbol and produces the appropriate reduced phrase when it is found (in this case a verb phrase).

Bending the rules for the sake of the speaker In all of the earlier examples, the fundamental

criterion for reduction was the presence of two elint-instances of the saie msg-elmt at

linguistically significant positions in the tree The different levels corresponded to different times

when the linguistic significance of the positions could first be recognized. Linguistic studies

(specifically [sag.thesis]) have demonstrated that coherent equality-based rules for ellipsis can be

stated only if non-linguistically represented abstract predicates are used as the representation over

5. Since entry for relations treat their arguments as atomic, they will not notice this substitution of a linguistic node for a
message clement.

Efl1ipsis 1112.

- 194 -

which the equalities are defined. Attempts to formulate ellipsis phenomena in terms of the string-

matching of morphemes or of p-markers (syntactic trees) will miss significant generalizations (not

to mention being incompatible with indelible production procedures).

However, as a practical matter, the internal representations used by sonic speakers for their

messages conceal regularities which appear only once the message elements involved have been

realized but which should be subjected to ellipsis if the resulting text is to be natural Einglish. A

case in point comes from the Macbeth domain: One of the texts from the introduction (repeated

below) originated from different message-level relations (i.e. part and subpart) and still

underwent subject and verb reduction.

diJcourse-1 (merge- relations)

TcT 2 ~-td3l
(ma (ako (story))) (ma (part (conjunct-2))) (ma (subpart (con ct-3)))

[ctrF'~h2J (c3]J [c4] [cif [c2] [3]
macheth lady-macbeth duncan macduff heath-scene murder-scene battle-scene

" lacbeth" is a soty.
It hasfour characters: A fachedh, .ady A facheth, Duncan, and Aiacdiff-
and three scenes: the heath scene, the nrder scene, and the battle scene.

It turns out that both part and subpart are realized with the verb have; however, we can not know

that until both realization decisions have been made. Consequently, to perform the reductions we

have to use a. late-acting GRAMMAR-ROUIINE, specifically [coordinated-slot after-realization]. (In

MUMIIi's grammar, the constituent sLmT's of any discourse node with the feature merge-relations

are all given the feature coordinated-slot.)

Doing the tests for ellipsis at the surface-structure level requires considerably more

apparatus than doing them at the message-level.. The snapshot below shows the tree at the point

when the test is made. 'The new [subject], macbeth is compared with the original (message-level)

contents of the [subject] as given in the the twcom for the p)revious-conjunct; since they are

identical, the routine then looks ahead slightly to determine if their [verbj's will also be the same

(see pg. 186); in this case they will be, and [coordinated-slot after-realization] performs the subject

reduction by marking that instance of macbeth for transformation into a TRACE and marking the

[predicate] to force a similar suppression of the verb (discussed below). (The category adjoined-

conjiuict is a device for having the contents of the two SOTS [d2J and [d3 combined into one

sentence using ", anf'.)

Ellipsis If 1.2.3

- 195-

discourse-1 (merge-relations)

[d2]

clause-7

[subject][predicate]

Macbeth vp-8

[verb][object]

have np-9

four characters..

[d3J

(ma (subpart (conjunct-3)))
ki

realizedas

clause-10

[sub jecti [predicate]

macbeth (subpart (conjunc

projecte

previous-conjultlct -> [clause-7]

record-type node-constructed

category (clause)

subject macbeth

verb hare

appended-conjunct-11

clause-10

after ellipsis

[subject [predicate]

macbeth (subpart...)
4 4.-

J-3)) rorce- force-

trace y-reduction
d to be

vp-11

[verb]

have

Not only are the trigger conditions more complicated to test for, but, because the decisions

are made "early" special records must be kept. These are the two attachments abbreviated force-

trace and force-vb-reduction. We could alternitively do without these attachments by pruning
clause-/C there and then, leaving only its direct object. However, to do this would be effectively

to erase all evidence that the [subject] and [verb] had ever been present, and would make it
impossible to trigger the reduction of following clauses that had a parallel structure.

2.4 Coordinating alternate ellipsis strategies

There are often many alternative ways to reduce the same text: the examples below range

from subject-merging through VPD and gapping to "one's pronominalization", and still leave out

many possible variations.

"Both of us took a corner."
"Botlh you and Itook a corner.6

"I look a corner and so cidyou."

6. It seems to be an unwritten law of English-perhaps of hnglish politeness--that whenever.the nominal personal
pronouns "you" and "" are in conjunction they may appear in only that order. If we assume that this convention is not
the j)rOdUCt of continual conscious deliberation, then it must be integrated into the grammar so that it can apply without
specific directives froi the message. Thii we can do by establishing the appropriate test as part of [conjunct
after-realization]: we look al the contents of two constituent conjunctions and if they are the pronouns in question (or their
message-level precursors, which would require some initial collaboration with each domain as the urmiar is assembled)
and if they are in the wrong order we switch them. This routine is a "surftce filter" in the sense of [pernutter...thesis]
[chomskyjasnik].

E//ipsis H 1i.2.4

-196-

"I took a corner and you 1id too."

"I look one corner and you .anothcr (one)."

"I look a cowner and you took another one."

The problem is how these alternatives are to be controlled. Consider what would happen if

we made them part of the "automatic" grammar-selected every time they were applicable: since

their natural triggering sites are ordered top-down within the tree, the first to apply will always be

subject-merging. But any time that subject-merging would apply, the others could have applied

as well, except that by being first subject-merging will always have preempted them. Obviously, if

the other constructions are ever to be used, the system of choices must be brought under some

kind of coordinated control-there must be a common site for the decision where the alternatives

can be deliberated over as a system.

I must admit to not having iny clever ideas about how this coordination is to be brought

about. 'The technique presently used in imuEmu-: is assign each of the constructions a specific

controller-variable. (Actually the assignment is to the grammatical-decisions that trigger them.)

By including a test of this variable in the gating-conditions of each decision, it is possible to

prohibit the selection of a construction on a per-context basis. A specific construction is selected

by prohibiting tie selection of all those that would preempt it.

As with most other choice systems in the grammar, the reasons one could have for selecting

one kind of ellipsis over another are very difficult for people to articulate. One can point to a few

differences: the first ("both ofus...") is clearly marked because it drops all mention of the order in

which the events took place; also the second to last (" I took one corner aniyau another") seems to

emphasize the description "corner". But, at least for the moment, the others can only be treated

as a synonym-set.

One would like to believe that when rhetorical goals and writing style are better understood

it will be possible to eliminate this awkward coordination system in favor of specific goal-directed

selection. That is, if we could determine what rhetorical effects are best served by each

construction, and could label the context in the same vocabulary according to ties speaker's goals,

then we would have very specific triggers where there is now only the most general trigger-"do it

if you can".

the verb group 111.2.4

-'97 -

3. The Verb Group

The verb group has arguably the most complex set of realization constraints of any system

in English grammar: its word order is ridgedly fixed; it has its own conventional intonation

pattern [jon.&..??aux.intonationi; it draws its elements from a uniquely wide range of semantic

sources; and it has a set of filters that inhibit the simultanious realization of many combinations of

those sources. To incorporate such a complex grammar into the linguistic component, you need a

complex implementation-the implementation of the verb group is the most complex of all the

grammatical phenomena handled by muMmltC.

The term "verb group" is part of the theoretical vocabulary of systemic grammarians. In

the text of an unmarked declarative clause, it COrresponds to the region beginning at the end of

the subject (plus any apposatives) and continuing until the beginning of the first object (or

complement). All verb groups in this paragraph havebgn7 underlined.

Tle primary difference between the systemic analysis and the average transformational one

(there are a great many transformational analyses of the verbal system) is that it employs a flat

constituent structure whereas the transformationalists employ a hierarchical one. This is

illustrated below for the clause: "They could have been firing planes". The hierarchical example is

adapted from [akmajian-li_10.1i pg.35]; notice that its "verb group" is not an independent

constituent.

7. The linguistically sophisticated reader will have noticed that "uudeiiined' was not included in the verb group even
though it is a "passivized verb". 1his is because passives are being analyzed as adjective complements, capturing the

similarity between, e.g. "John was beaten" and ".Iohn wvs black and blue" and relecting it in a common
constituent structure. This analysis says that the two texts are derived from comparable functional structures at the
message-level. Transformationaly derived passives are created by the device of "predicate lowering" described later in this
section.

the verb group HIS

- 198-

FLAT HIERARCHICAL

vgS

[modal][perfectJ[progressivel[main-verb] NP AUX V"

could have be fly
- Modal V"

V.

V NP

they could have be fly pines

There is considerable motivation for adopting the flat analysis when writing a grammar for

language production. As discussed earlier (<constituent__structure-designiLor..production>),

constituent structure slots in the tree correspond one for one with msg-ehnts in the message the

tree is realizing. The number of slots that are available in each newly instantiated constituent

should correspond to the nuniber of subelements of the msg-clmts being realized. If a

hierarchical constituent structure were going to be appropriate for the verb group, it would be

because the message-level decisions that lead to a verb group unfolded in an equally hierarchical

pattern. On the contrary however, in the present analysis the constituents of the verb group are

assembled simultaniously, making a flat structure the most motivated.

3.1 Assembling the verb group

The basic problem of the verb group is that its constituents are decided upon at widely
different times but cannot be brought together into their eventual surface structure bronat until

the very last moment because the grammatical constraints that govern the format are defined only

in terms of all constituents at once. 'his means that in the early stages, all decisions that affect the

verb group, such as the selection of an adverb or the specification of tense or aspect, must be
recorded on hooks attached to one of the nodes that will dominate the eventual verb group.

When the controller finally reaches the [verb] slot, the records are scanned and reformulated as a

constituent by a grammar-routine that is triggered as the slot is entered. Finally, once the new

constituent has been incorported into the tree, the morphology routine applies a series of left to

right adjustments as the words are produced.

the verb group 111 .3.1

- 199-

In this section We will look at the mechanics of assembling a serb. group, detailing the

actions of the morphology routine on the output of [verb enter-slot]. I will only give one example

here of accumulating specifications: the interesting cases will follow later.

Vocabulary

Theories of the human conceptualization of time and events abound in the literature8 There

is an agreement of sorts that speaker's point of view, the character of the time course of the event

(completed, ongoing, instantanious, etc.), and the presence or absence of other temporal reference

points are all involved,.but there is no agreement aboit what primitives to use in characterizing

these influences or what their relative importance is for the speaker vith specific intentions in a

specific pragmatic context. Certainly anyone who might adopt one of these theories for use ant

interactive program would be doing so experimentally.

In UMll, I have taken a conservdtive stance and elected not to adopt any of the

competing theories, but rather to couch the grammar in a purely syntactic vocabulary: a slight

elaboration of Chomsky's phrase structure (escription of the auxiliary [sit] pg.232].

VPaux -> { past! count }<Modal> <have + en> <be + ing> <be + en>

Present dictionaries will mark a clause haie+en or be-1-ing, rather than use a semantic vocabulary

and mark it "habitual" or "limited" (terms taken from [quirk...&..greenbauml). In any case, any

"semantic" time relations would have to be translated into this.syntactic vocabulary at some point

during their realization, and thus grammar developed here will remain useful regardless of what

"higher" theory is eventually adopted. 9

The time-specifications presently accepted by ilINm E are listed below in the order in,

which they appear in the fitljverb-group constituent-schema.

8. 1 personally have been influenced by at least [kahnimell3pt.time.rellI illoretime..lectu re[pink-imniebook]
[wosensehageLtimel.
9. Specifications of time relations that involve the speaker's point of view and her or his goals would naturally be a part of

the message. the incorporation of one of these theories into the grammar would effectively constitute an claboration of
the intemlingua ((thebginning.ofan...interli gua>) and would im olve the presumption that all of the speakers that used
the linguistic component would be comfortable witiil that conceptualization.

l i t-3-1the verb group

- 200 -

SLOT-NAA: L EGITI AT J CONT ENTS

[pre-aux-adv] an adverb, an adverbial phrase

[modal] will, would. can, could. should, etc.

[have + en] hare

[be +ingj be

(be + en] be

[mvb] a verb

[post-mvb-adv] an adverb, an adverbial phrase

DYNAIICA1L. Y POSITIONED SPICS.

HOOK: not not

HOOK: post-aux-adv an adverb

One case of a "higher-level" time specification does appear in MUMBL:, namely the

instruction to "emphasize polarity" (pg.<attachmenttsanddefault decisions>). There the entry

making the decision that the positiveness (or negativeness) of the text should be specially marked

is not itself in a position to implement the marking in its ultimate vocabulary (i.e. stress-a-word,

add-"do"-to-vg, inhibit-contraction) because the locations in the tree where the marking would

have to be made do not yet exist. What the entry does instead is to add a hook, emphasize-

polarity at closest location that does exist; expecting a grammar-routine(s) from the general

purpose grammar to later notice the hook and continue the marking process.

Strictly speaking, the ultimate vocabulary of emphasizing polarity is known only to the

morphology routine in the sense that it is the only part of the linguistic component that is able to

stress a word by capitalizing it or to add "do" to the verb group. Thus the interpretation of the

high-level specification "emphasize-polarity" would be done by the morphology routine as a

variation within its normal task of assembling and printing words associated with the first word of

the verb group. Other high-level specifications would be handled in an analogous manner: first

introduced into the tree as an uninterpreted symbol (a hook), then noticed and translated into the

purely syntactic vocabulary by ? grammar-routine acting at a point where that vocabulary makes

sense. The fact that emphasize-polarity cannot be realized except by the morphology routine

(acting at the last minute as it were) is probably unusual; a concept like the "narrative past" or

"habitual" could be translated into a syntactic vocabulary at a much earlier point, e.g. at the clause

level, and would then use the normal routines br the rest of its implementation.

Mhe verb group 111.3.1

- 201 -

Sources for the specifications

Basically speaking, there are two kinds of message-level sources for verb group

specifications: the event or action that is the basis of the [predicate], and modifications to that

event (specializations, negations, modalizations, qualifications, temporal relativizations). Events

(or more typically, abstract predicates) can specify more than just what verb will be used: In a

domain like the Personal Assistant, predicates can naturally include an aspect specification as in

to-have-just-been-at-a-meeting, which is intrinsically perfect ("have-+ en") and modified by an

adverb. (This predicate would be quite useful: from it die Assistant could directly infer that

people to whom it applied would be (1) tired, (2) cither exilarated or frustrated but in any case not

emotionally normal, and (3) unlikely to be interested in going directly to another meeting.) Below

is a snapshot of what the phrase for that predicate would look like if it were instantiated in

issolation.

VP Ihave+en T

Ipost-aux-adv just

[verb] (objecti

be-at a-meeting

Modifications to this predicate can conic from many sources. If it is used to describe an

event, the time of the event relative to the time of speech (somehow encoded in the message)

would add tense or modal specifications above the verb phrase which the [verb enter-slot] routine

to take into account. Specifications could also come from linguistic context, as when the verb

phrase is the context of an [adjunct] or a [complement].

tie verb group 111.3.1

- 202-

clause ..4past T

* 65jibjc-Ej[predicatej

he VP

have-just-been.

clause

[subjec i [predicate]

have-Lust-been... is-a-good-reason..

Q ause .

[subject) [predicate]

np VP

[det][headj [quals] c ia- home...

any one clause___

lnddal will

[subject][predicate]

trace vp

have-just-been...

"He had just been at a meeting.

"Ilaving just been at a meeting is a good

reason not to want to go to another one.

"A nyone who will have jus' been at a meeting

can Stay home the next day.

From hooks to constituent structure

Once the controller has reached the [verb] slot, it is no longer possible to add specifications

to the verb group: no further msg-elmts will be realized before the controller has passed through

the verb group and it has been printed into the text. At this point, a grammar-routine is triggered

whose function is to accumulate the specifications recorded on the hooks, apply the grammatical

constraints, and construct a verb group constituent accordingly.

Given that the responsibility for producing the ultimate text for a verb group is divided

between this grammar-routine and the morphology routine, only one kind of grammatical

constraint needs to be fixed at this. point, and that is constituent order. Order, as always, is

implemented through the use of a constituent-schema that embodies the correct order of

constituents. In the case of verb groups, order is never contingent on the presence or absense of

constituents and thus only one maximal constituent-schema need be used (assuming we are not

the verb group 11 1.3.1

-203 -

disquieted by empty slots). The schema was given earlier in the discussion of the proper

vocabulary. Of the last three examples, the first' two lead to the same pattern:

vg

[pre-aux-advJ[moT6izj[1h3ve Ven][be + ing](ti e+d5iijnbjfr~dst-mvb-advj

hare be-at

and the third is only slightly different:

[pre-aux-adv][modall[have + en][be + ing][be + en][mvbj[post-mvb-adv

- will have be-at

In performing its "gathering" function, the [verb enter-slot] routine must be sensitive to the

grammatical context in which the verb group appears. Not all contexts will support all possible

elements of the verb group: infinitive contexts, for example, may not have modals. Whether, in

the long run, one will actually have to actively check for these conditions is an interesting

question: is there a consistent semantic or pragmatic quality about what is syntactically an

"infinitive context" that may already be part of a speaker's message vocabulary? If that is the

case, then the "no modals" constraint would already be implicit at the message level and not need

to be stated within the grammar of the linguistic component. If, on the other hand, infinitives

were an artifact of the English language qua language, then the constraint would be required and

the question of whether its application thwarted the speaker's intentions, perhaps requiring sonic

kind of deliberation over alternatives, would become important.

3.2 The role of the Morphology Routine

The morphology'routine is responsible for two aspects of the implementation of the verb

group: (1) verbal elements whose position is defined relative to "the first word of the verb group,

e.g. tense, negation, and some adverbs; and (2) "aux-hopping", arranging that the aspectual and

passive suffixes ("+en" and "+ ing") are attached to the appropriate verbs. The rules that govern

both of these phenomena are encoded directly into the morphology routine rather than involving

a declarative representation and an interpreter as is the case with most syntactic facts; this is in

keeping with the policy that no other parts of the linguistic component are expected to need to

reason about these aspects of morphology.

the verb group 111 .3.2

- 204 -

Aux-hopping

The morphology routine is con figured as a finite state transducer: it receives words one at a

time as they are passed to it by the controller, buffers them (to apply contractions and ultimately

to stage allophonic variations), and them passes. them to the output stream for printing.

Whenever it receives a word it may notice either to the identity of the word or to some fact about

the linguistic context (e.g. the identity of the current-slot) and then react by changing its state so

that it will behave specially -when receiving the next word. This property of the routine makes it a

natural place to implement aux-hopping.

The phenomena of aux-hopping derives its name from the transformation proposed by

Chonisky as part of his original analysis by which the suffixes of the "words" positioned by his

phrase structure rule, e.g. have /- en, be-ng, and be+en. (The morpheme "en" represents the

past Participle form and will be realized as "edl' or "en" depending on the specific word they are

adjoined to.) The transformation took each suffix in turn starting at the left and "hopped" it over

the next word and adjoined to it.

"They <past can+ ahave+et be+ing fly planes."

"They could have been flying planes."

To translate this transformation into the form of a finite state transducer, we note the value

of the current-slot of each word of the verb group in turn and use it to specify what suffix to

adjoin to the next word that is received. Ieaving aside the case of the first word of the verb group

for the moment, let us look at the example: "could have been flying".

Event # Current State W ord Received Word Prinied . New State

I. <first-word-of-vg> can could null-suffix

2. null-suffix have have en-suffix

3. en-suffix be been ing-suffix-

4. ing-suffix fly flying null-suffix

The morphology routine is the only part of the linguistic component that has a text-level

description of context rather than syntactic, constituent structure-level description-it notices only

the sequence of lexical leaves of the tree and none of the complex relations that led to their

selection. 'Ihis means that linguistic plieionlena that depend -only textual sequence can be

advantagously stated at this level.

the verb group 111.3.2

- 205 -

Dynamically positioned elements

In addition to receiving words from the controller, the morphology routine receives notice.

of the passage of the controller through syntactic regions, e.g. it is told when the controller begins

to traverse the constituents of the verb group.10 Given this information, the routine can trivially

define the grammatically important concept "first word of the verb group", namely that it is the

next word the routine receives after it has been notified that the verb group has been entered.

When this word is recieved, a special set of processes are activated that scan the tree (via

controller-variables) looking for hooks indicating the specification of past tense, negation, or a

post-aux advert). The past tense is used to arrive at the correct print name for the "first word of

the verb group" (provided it is not overruled by the linguistic context; see below). The adverb,

when present, is printed directly by the morphology routine after it prints the word it received and

before receiving the next.

The grammar rules for negation are more complex. When there is an auxiliary present, the

negative 1orpheme follows it as "not" or inay be contracted to it; however, when there is only

one word in the verb group-the main verb- the rule changes and die word "do" artificially

introduced as the first. word of the group' which the negative then follows. In MU~nIs

morphology routine, these rules are represented procedurally and are entwined with the rules for

contraction and polarity which also refer to negation. The complexity of the contingencies

involved make this one place in the grammar where a well conceived procedure is more

perspicuous to the human designer than any declarative listing of the rules.

3.3 Computing 'tense'

The printed (or spoken) form of the first word of the verb group varies according to the

grammatical context of the verb phrase containing it. In mUAItLE's grammar, all that has been

necessary to define this context has been a controller-variable pointing to the slot that contained

the verb phrase; the slot's features indicated the kind "tensing" that was to be performed.

As elsewhere, the grammar writer's selection of features involves a tradeoff that is partly a

matter of physical labor and partly a matter of representing generalizations. On the one hand we

could identify die specific locations where embedded verb phrases (and therefore embedded

verbs) could occur, and incorporate a list of those slot-names into the morphology routine.

Anytime that we later added a new slot-name to the grammar we would have to ask whether a slot

so labeled would ever contain a verb phrase and if so what form its verb should have. Should it

happen than the same slot-name (appearing presumably in different constituent-schemas) can

10. In NIUMBIE, this notice is implemented by a controller-sariable that is set as part of [verb enter-slot and read by the
morphology routine when it receives the next word. In a machine implementation that permitted the morphology routine
to function in parallel with the controller (a design that would be appropriate for speech production where the amount of
work the routine would have to do would be much higher) the notice might be given by message passing just as though the
information was a word itself.

the verb group 111.-3.3

- 206 -

contain verb phrases with more than one kind of tensing then this "literal list" technique would

no longer be sustainable and we would be forced to move to the alternative technique where a

fixed set of slot-features is created-one for each different kind of tensing required

morphologically-and then added to the features properties of the slot-names actually used to

contain the verb phrases should they be different. Here, each time a new verb phrase containing

slot-name is added we must ask which of our fixed set of features corresponds to the kind of

tensing it requires and then add that slot-feature to it. If it can use multiple kinds of tensing, we

do not add any of the features permanently but instead arrange that the contextual contingencies

which dictate the choice be associated with a grammar-routine that will add the appropriate

feature once we know what it should be.

In the course of developing NiummiIC there has been a shift from using specific slot-names

to using a fixed set of syntactically motivated slot-features. A concession to utility (adding the

features is a fair amount of work) has been the adoption of a marked-unmarked convention

whereby a feature only has to be added when a form is required other than the "unmarked"

declarative form that allows modals and past. I make no claims for the optimality of this set of

features.

MUMBLE presently uses the following features to control the form of the so-called "tense-

carrier", the first word of the verb group (pro-aux-adverbs discounted of course). Note that this is

actually a feature "system" in that some of the features permits the further choices: participle

requires a choice between "ing" and "en", taking the later when the embedded verb phrase has

the hook be+ en indicating passive; the unmarked case shows the past tense if it is present,

otherwise is shows person and number agreement with the current-subject.

<no feature>

participle

infinitive

ing-f orm

head

(past, subject-number }

+ +ing, +en}

<unmarked form> ;ze "to" is supplied by a gramnzar-routine

+ ing

+lag ;av in "head of a noun phrase" Gerunds and the complements of

verbs such as "like" are analyzed as verb phrases that have undergone

- a transformation into noun phrase&

Tlo see briefly how this system works, let us look at part of an example that we will return to

later (pg.<isomorphic..essagesementsn.y.w.>); it is the output of a very simple entry that

answered a "how" question by specializing a neutrally represented list of expressions from an

internal action history by)ltting them in a linguistic context (a canned phrase) that would

correctly adjust their tense and aspect. B1ecause it is an answer to a question, the body of the

the verb group .1133-

- 207 -

question (i.e. "how did you do it?")can be assumed in die answering text and all that need be given

its die new information: "(1 did it) by pulling a large red block on the table then leuing go of it.".

The canned phrase used is an adverbial phrase beginning with one constituent "bound" by the

function word "by" and continuing with an arbitrary number of constituents bound by "then"

(the definition of arbitrary length constituent-schemas is on page

(schema.with-irbitraryi....umbers of-constituentstn.y.w.>). The snapshot below shows this

phrase just after it has been instantiated with two nsg-elmts representing actions from the history.

Notice how the labeling of the slots does the double duty of (1) arranging for the printout of the

function words, and (2) indicating the proper form of the verb.

advp-1

[by-co'ii~iiin-c6r-nil1 ihen-comp ing-form J
(puton :86 :table) (ungrasp :86)

In the next snapshot, the first msg-elmt has been realized, the controller has passed through [verb

enter-sloti, and we see the current context as viewed by the morphology routine.

advp-1

[by-comp ing-form 1 [then-comp ing-form J
cuirrent-subjectvp-2 (ungrasp :86)

context-of-the-proposition

[verb][object]I

vg-3 :86

[mvb] :the oti- six slots are empty and have been left out

put

The morphology routine knows that "put" is the first word of the verb group, consequently

it applies its its "tense-computing" procedure, using the controller-variable context-of-the-

proposition to access the slot that contains the verb phrase and from that slot the features that

control tense. In this case the relevent feature is ing-ftrm; it initiates a morphographemic process

that adjoins the suffix "i n g" to the puarne of the verb. (In MUMBLE, verb pnanes are stored in

their infinitive forn.) A common process is used for the adjunction, and it is there that

morphographemic combination rules such as doubling final consonants after stressed vowels are

stored.

the verb group 111.3.3

- 208-

Reduced verb phrases
Operations such as ellipsis or equi-np-deletion create situations where only a fragment of

the normal verb group specification is present. For example we can say:

"Nicoli might have questioned our motives, but Sasha did'"

"I kissedveryone you told me I should."
"You ccin't tell thent who not to sell their oil to."

Except for the last case involving negation and equi (whose implementation is admittedly
baroque; see pg.<cqui_neg>), these cases of reduced verb phrases can be implemented within the

present technique with only one addition, namely modifying the morphology routine to treat an
empty verb group as though it were a virtual main verb, i.e. having it draw the auxiliary verb "do"

as a carrier for tense, count, or negation. Consider the first example:

conjunction-I

Initial Tree [cI]- [c2 but-6ifij

clause-2 Irnodal might clause-3 Ineg T
Ihave+en T lpast T

[subjecti [predicate] lpast T [subject] [predicate]

Nicoli questioned-our-motives Sasha questioned-our-motives

Verb phrase deletion will be triggered when the controller reaches the second conjunct and

notices (in the subsequent reference routine, pg.(prononiinalizing.predicatesn.y.w.>) that

questioned-our-motives has appeared before and could be safely omitted. The subsequent
reference routine imlplements this ellipsis by returning a trivial verb phrase that consists of only

one constituent, a [verb] with null contents. When the morphology routine sees the combination

of an empty verb group and a unmarked context specifying negation and past tense, it introduces

the word "do" and finally produces the pname "doesn't".

3.4 subject-verb inversion

In.indo-european languages, questions can be formed textually by exchanging the position
of the subject of a clause and its verb. In modern English, only the "first word of the verb group"
is exchanged rather than the whole group, and if there is only a single main verb in the verb, the

auxiliary "do" is exchanged and the main verb left in its place. Of course, as the reader must by
now have anticipated, in this theory there cannot be a literal "exchanging" operation but rather

some annotation special to questions must arrange that this "preposed auxiliary" and the subject
appear in their ultimate positions from the start.

The realization of the preposed auxiliary is done by a grammar-routine triggered at [subject

the verb group 111 .3.4

- 209 -

enter-slot.) 1Below is a further snapshot from the sequence used to illustrate wh-questions

(pg.121). It is taken just at the moment when the [subject] is entered.

clause-3 (wh-movement subj-aux-inversion)

[fronted to-obj) [matrix]

np--4clause-5

1plural T

[determiner][head] [subiect[predicate]

what state S/NP vp-6

[verb) [J :n. b. the second constituent has no slot-features

lead trace

"TO what state... //"

The "preposed" (also called "displaced") auxiliary is a classic example of a "discontinuous

constituent": it consists of two segments, separated in the text by the intcrveening subject noun

phrase. IDiscontinuous constituents have always been a nuisance for grammar writers and the

present case is no exception: what was a tidy algorithm for the contiguous case now becomes

awkward and ad-hoc. The problem revolves around access to information: In the earlier

contiguous case, we did not begin to assemble the verb group until all of its specifications had

lbeen completed and the lexical form of the main verb identified; in the discontinuous case, we are

forced to "lookahead" for facts like subjCCt number, intrinsic modality or aspect of the predicate,
or the mode of the main verb (i.e. is it pronominalized with "be" or "do"?).

If the needed information were available directly from the message-level representations of

the subject and predicate, then the stipulation of incremental realization would not be "damaged"

since no realizations would have to be performed ahead of their natural order as established by

the structure of the tree. (Recall that the [subject] and [predicate] constituents are readily

available at the point in the tree where the information would be needed.) This would mean,

however, that concepts like lexical number,1 2 modality, aspect, and state versus action ("be" vs.

"do") would have to be either part of the interlingua or readlily computed from tihe relevent

entrys in the dictionary-something that does not seem unreasonable, and which is already true to

a certain extent in the Macbeth domain and the KL,-ONi domain.. If the information is not

11. Depending on the grammar writer's proclivities toward permiting contingencies within grammar-routines as opposed
to having slot-features added to lower slots by higher nodes or slots, the routine for creating the preposed auxiliary may
either he a standard part of the actions associated with a "subject" or it may be associated with a special feature that
"migrates" down Ibrm vwh-moveiewcnt. I have elected the former.
12. A critical case would be the determination ofwhether a choice such as the one between saying "these bananas are
ripe" versus "this butch of banawV is ipe" is made by the speaker and encoded in the message or made in the
dictionary and not made until the subject is actually realized. My intuitions suggest that it is made by the speaker.

the verb group i i1.3.4

- 210 -

available, then there is no choice but to perform the lookahead, perhaps managing to stop with

the verb group and not continuing on into the rest of the verb phrase. This would not be

irreparable damage to the stipulation since the left to right dependencies between the subject and

the verb group and the subject are minimal and it might be argued that they could be realized in

parallel. It would not, however, be easy to perform this lookahead operation with the present

control structure.

Technically, the preposed auxiliary would be constructed by having the initiating grammar-

routine on [subject enter-slot] create an expeditious but grammatically invisible' 3 node that

"lowered" the contents of the given [subject] into a "new" [sUbjectl slot which was the second of

the two constituents of the new node, the first being [verb].

clause-5

[subect] [predicate]

[verb] [subject] [verb] [I

nil S/NP lead trace

"To what sie... //

By using the same slot-name for the preposed auxiliary as we use for the "normal" verb

group, we will activate the same grammar-routines and send the same initializing signal to the

morphology routine. The only difference is that now we are presuming that the operations used

to access hooks like past or have + en are able to extract their information from clint-instances as

well as nodes. In order to complete this technique, one further item of state information must be

provided to the morphology routine, namely a "switch" to insure that the "first word of the verb

group" is realized only once, i.e. it must not be repeated once the controller has moved inside the

[predicate] and the rest of the verb group is resumed.

Now that this considerable amount of machinery has been developed to deal with subject-

verb inversion, it can he applied to other phenomena. The remaining parts of this section will

Cach illustrate a different case. Linguists might feel that this technique of submerging constituents

and having state infornation in the morphology routine is unwarrantedly baroque, but I would

argue to the contrary that it is highly motivated by the special circumstances of language

production (at least as I understand them) and is no more baroque than many of the intermediate

constituent structures that linguists have themselves proposed over thle years.

13. It would have no features and thus no graninar-routines.

tie verb group i l i.3.4

-211-

Subject-verb inversion occurs in other constructions besides questions, all of which appear

to be some kind of topicalization:

"Never have I been so humiliated."
"1...and so did you."

"Oi die left is a second bathroom."

"H alf-hidden by the ist was a iall, one-eyed man with a raven oi his shoulder.

These constructions can be implemented by the same device as questions are, namely having their

transformation add the feature subj-aux-inversion to the clause.

3.5 Tag questions

A "tag" question -consists of a declarative clause followed by a phrase made tip of the "first

verb" of the clause, now with opposite polarity, followed by a pronominal copy of the clause's

subject.

"You are going to pay me back, aren't you?"

"You wont 7forget about our appointnent, will'rou?"

Psychologically, tag questions are particularly interesting because with certain intonations they are

very probably the result of a last-minute decision by the speaker to change their hesitant

statement into a definate question.

Given the apparatus just described, a tag phrase can be constructed by adjoining to the end

of the clause a node with the feature sub-aux-inversion and the hook neg; the node will have one

constituent, a copy of the current-subject specially marked pronomninalice (pg.164). Provided the

grammar-variables of the clause are still accessible

(pg.<grammatical-relations.over variables_ratherjthan..treestructures.y.w.>), this new node

will be expanded just as if it were the regular subject of a question and the correct text for the tag

will be produced.

3.6 IExistenthil there

The facts Existential "there" has, like passive or indirect object movement, been a part of the

central syntactic analyses of every significant school of linguistics (at least since the late 1950's).

The concensus appears to be that semantically the construction derives from a for some reason

unrealizable intransitive predication of "to be" or "to exist", as in:

exists("a mouse in the house") => "There's a mouse in the house." -

There is not, however, any concensus or even much discussion of whether "thee" is acting as an

operator, i.e. its, argument is a natural unit that could be realized on its own, or is acting as a

predicate, in which case we would not expect its argument(s) make sense as a init. I will take it to

be an operator.

the verb group \\\.3.6

- 212 -

Syntactically, the word "dere" functions as the subject of its clause, e.g. it rorms tags:
"there's a mouse in the house, isn't ihece?', while at the same time, the verb that follows "there"

(invariably an auxiliary rather than a main verb) agrees in number with the "direct object" (if that

is its correct description), e.g. "There are dozeis of mice in this house.". This "direct object" is*
invariably indefinate: though it is not at all clear whether this is due to a syntactic constraint or to
a uniform policy by the speaker to only apply the operator to descriptions of generic objects. I
will take it to be the speaker's policy.

The analysis Ilaving taken existential "there" to be an operator, it is natural to implement it as

a transformation, thereby making it largely independent of the realization of the object
description that is being declared to exist. As an example, imagine that the speaker started with

an observation that might be realized as "Someone had sighted some lions yesterday", 4 and recast

it to focus on the lions: "Some lions were sighed yesterday". This would initially appear in the

tree as shown below (assuming, of course, that it was to appear as a toplevel sentence).

<someone)-sights-lions focus lions

[past T

lhave+en T
[final-adv yesterday

which-becomes:

clause-i [focus lions

[past T
[have+en T

[subject] [preclicatel

lions sights(

[final-adv yesterday

Now imagine that the speaker wants to apply the "existential-there" operator to that initial clht-

instance. Technically we can say that this is done by adding yet another hook, however the

precise technique used doesn't matter so long as the decision-rules of the "there-insertion

transformation" are triggered when that clint-instance is realized. The transformation will apply

after the "basic" realization of the element has been selected, i.e. the clause shown above, and will

function by editing the schematic description of that clause so that when the entry's choice is

finally instantiated and put in the tree, the transformed version will be present from the start.

14. Conmrastive stress on "had'.

the verb group lil.3.6

- 213 -

The editing operation consists of the creation of a new clause node with a [subject] slot and

a [predicatej slot, and filling the [predicate] with a verb phrase node with a [verb] slot whose

contents are the word "be", and a (non-passivizable) [object] slot. Ihe [subject] is filled with the

trace "There",15 and the trace linked to the contents of the original [subject]. 'his device will
implement the necessary number agreement. Any temporal hooks on the original clause are

transferred to the new, clause: crutially however, any hooks that might be visible on the contents

of the [predicatel remain where they are. The transferred hooks will now be realized as part of the

verb group of the new clause. Ilie original [subject] and [predicatel constituents are very

throughly rearranged: the contents of the original [subject] slot are mapped into the new [object

slot, and the contents of the original [predicate] are mapped into a hook on the original subject
clmt-instance marked qua!fier whose effect will be to make the original predicate a relative clause

of the subject.

clause-1 jpast T

jhave+en T

- [subjectj{predicatej

there vp-2

[verb] [object]

vg-3 lions-

qUalifier sights -

[have + en][mvbJ final-adv yesterday

have be

"There had been lions sighed yesterday."

3.7 Adverbs

The subject of adverbs and their placement in a text is much more extensive than I have

been able to analyse or implement in MUNII. A simple facility was installed whereby an

adverbial modifier to an entire clause could be positioned at either beginning, post-auxiliary, pre-

or post-verb, or final positions as decided by synonym-set. A hedge like "possibly" would be
realized in this way, the decision presumably coming as part of a shopping-list for the proposition

being hedged and applying after the matrix of the clause had been created. However it is quite

clear that the positioning decision for an adverbial phrase depends upon subtle but crutial

differences in scope, intention, and discourse context. Differences that I am only dimly conscious

15. The analysis of existential "ithere" as a trace appears in some of the transformational literature, e.g. Dresher and
I lornstein [dresher.&ThornsteiUl.10-1] pg.671 analyze it as a rightward movement (w.r.t. a string) of the original subject
NP over its verlb, which leaves a trace that is then covered by the lexical item "e/wre".

M/e verb group . '111.3.7

- 214 -

of as a writer even though I make such decisions all oP the time.

Early on in this research ho ever, I did notice one phenomenon that does not seen to have

been noticed elsewhere in the lingusitic literature: this is a commonality between post-auxiliary

adverbs and the so-called "raising verbs" that I have analyzed as involvinn a grammatically

triggered adjustment transformation I call predicate lowering.

Consider this set of sentences, all of which involve the modification of a common predicate

along a dimension we could call "extent of progress made".

"I 'M starting to write my thesis."
"I'M rapidly writing mj thesis."
"1'm in the midst of wriling my thesis."
"I seem tY be writiirg my thesis 24 hours a lay!"-

Only one of these modifiers, "rapidly", would be normally be called an adverb, yet all four (and

dozens upon dozens like them) are performing an adverbial function. If their functions are the

same, is it not reasonable to expect that their origins in the message will be the same as well?

Would it be reasonable for a speaker to want to derive "raising verbs" like "seems" or "be
reported' as though they were modifiers like "rapidly" rather than verbs like "write"? I would say

yes, though some people would disagree.

Iven if (some) raising verbs are treated functionally as adverbs, it remains true that

syntactically they appear in the text as true verbs: they are affected morphologically by the same

contexts, and they participate with other verbs in aux-hopping (e.g. "4f I have seemed unusually

tired today it's because I was wiiing my thesis all night."). However, as elsewhere in this

linguistics component, this disparity between message- level function and surface-level form can

be reconciled by the judicious use of procedures attached to the functional vocabulary that are

empowered to adjust the tree to bring about the correct form.

The procedure for predicate lowering is in this case attached to post-aux-adv, which is

effectively an event within the morphology routine comparable with enter-slot or after-realization

in the controller. This routine looks at die properties of the "adverb" say it is "be reported', and

determines whether it has a complement-type property; "report" will, and its decision will list one

default transformation, namely marking the [complenient] ininitive (see

pg.<messageilevcLcquLin.y.w.>). At this point, the morphology routine applies predicate

lowering: The details of what the transformation does are quite baroque and I will not burden the

reader with them here; those interested will find them in the appendix. Suffice it to say that once

the dust has settled the constituent structure has been modified to be as. we see it below. "Be

the verb group 111.3.7

- 215 -

reported' is applied to the earlier sentence about the lions.16

- clause-I . past T

jhave+en T

[subject] [predicate]

there vp-2

[verb] [adi-comp]

[vg-3

(have + en][mnvb]

v -4

[veTrblc6ipI pe ment

have be reported vp-2

[verb][object)

be lions-

Jqualifier sightso.

(final-adv yestenday

"There had been reported to be... //"

'lis sort of adjustment transformation can be used elsewhere as well, for example iii the
placement of an "adverb" like "I think Mal ()", or in sentence. level adjunction. Futher examples
are developed in the appendix (pg.<adjustmenu. transformations>).

16. If one insists thit "report" derives from a predication of the same stature as (and hierarchically superior to)
<soneone>Sights-lions in the message, with the exists operator applying to the whole gimish, then given the -
stipulations of this process, the message-level relatation report must have multiple arguments- it must pick out at the
message-level what is being repoited on and what is being reported about it. Given this explicit breakdown, the nonnal
"there-insertion" transformation would produce the desired constituent structure: howe er, lions and sightsO would
now be independent and a different analysis would be needA to construct the noun phrase-qualitier phrase constituent
structure, or more to the point, to also be able to construct the transformational alternatie with extraposition: "It was
reported that lions had bee sighted yesterday.".

pronomina/i 111.3.7

- 216 -

4. Pronorninal subsequent reference

Whenever the speaker wants to refer to some entity or proposition, it must find a phrase

that will both provide an.adequate description and be appropriate to the context. This process of
producing references17 will vary according to whether the reference is initial and subsequent.

Initial references introduce new entities into the discourse, while subsequeta references are later

instances of already introduced entities. An initial reference can take almost any form so long as

the audience will be able to recognize it. Choosing this form, however, can be very difficult: the

speaker must be certain of the "mutual knowledge" [best mutual-knowledge-refl it shares with

the audience in order to make a judicious choice of which properties to use in the description.

How this is done is very poorly understood. When talking or writing about un familiar things or to

unfamiliar audiences, it is even difficult for people. Subsequent references are another matter.

They are very highly gramrnaticised: involving specialized forms and restrictive conventions, and

their use is automatic and remarkably consistant. Because of these properties, techniques for

making subsequent references are a logical candidate for incorporation into the linguistic

component as another "automatic" facility that dictionary designers can take for granted.

4.1 Coordination with the realization procedure

As charted on page (flowchart-of-the-realizationproceduresn.y.w.>, the realization

procedure divides initially into two separate paths depending on whether on not the message

element being realized has ever been mentioned before. If it has never been mentioned, control is

directed to the "main stream" where the element's entire ENTRY is interpreted following the

procedure described in section ll.6.2.vii. (N.b. xi RYs should be written with the expectation of

producing "initial" references.) If it has been mentioned, then one of three. things happens: (a)

the heuristics of the pronominalization routine decide that a pronoun can be used and do so; (b)

the heuristics decide against a pronoun but there is some other subsequent reference strategy that

can be used (this usually entails rejoining the main stream after selectively modifying sonic
DCISIONs); or (c) there is no subsequent reference strategy available and the regular main stream

realization is used as a default. This section will describe how the decision to use or not use a

pronoun is made; alternate subsequent reference strategies (e.g. definite determiners or adjectives

like such or tinoihe) are the subject of section non.-pronominal-subsequen L.reference-A.y.w. in

the next chapter.

lhe decision to think a)Out making a decision The heuristics that govern whether a pronoun

is used are evaluated in two stages according to how difficult the ro.:DicATEs are to compute. The

17. Researchers in speech-act theory refer to the- making of "reference acts": see for- example
lbrian-torontol[cohen...hesisl.

pronominali

- 217 -

first stage is based on a set of very simple tests against immediately available data. Very often the

pronominalization decision can be determined from these tests alone, and the not-inconsiderable

overhead of the second-stage heuristics can be avoided.

The tests fall in to four categories:

(1) Is the ELIIT-INSTANCE specifically marked (via an attachment) either to be
pronominalized or not? Because of special rhetorical circumstances, the
pronominalization decision is occasionally made as part of a much earlier c(luocE.
Recording that decision for implementation now that the instance has been reached
avoids redundant recomputations.

(2) Is the message element this is an instance of ontologically of a sort that cannot be
pronominalized? For purposes of reference, message elements can be divided into
"references", ."descriptions", or "other" according to their role in the expert
program's model of the world. Of these, only references denote something of the
sort that a pronoun can be used for. Descriptions have their own sort of
"pronominalization" (e.g. one and such) and this test will dispatch to a routine for
them (pg.230). Under "other" come those message elements that act directly as
ilstructiOfs to the linguistic component or to a specific entry and some that acted as
"1aliases" hr other message elements. None of these are ever realized initially as
phrases and thus never subsequently as pronouns. 'This kind of ontological
iiinformation is usually not explicit in the element's structure and is determined by
an interface function: elm -reference-type, which can use speaker or expert specific
criteria to determine which is the case.

(3) Can we tell from the SlOT in which the IAIrINSTANCE appears that a pronoun
cannot be used grammatically? Pronouns are a kind df noun, and consequently can
appear only where it would be grammatical for a noun or noun phrase to appear.
This property is indicated in MUMIuIL by the SI0T-EATULJIE nominal-any SLOT
without this feature cannot take a pronoun. Some of these Sots will, however, be
plausible sites for verb phrase deletion or other sorts of pro-forms and the routines
for making those decisions are dispatched to when they are the curent-slot.

(4) Finally, is this a subsequent reference to the message element-does. it have a
liuROi) that can be accessed via ehnt-discourse-histoty? If this is true and none of
the previous tests apply, then we move on to the second stage for more elaborate
tests. Otherwise, this EIMT-INSTANCE' is an inital reference and the main stream
realization process is used.

The reader may have noticed that all of these tests are for anaphoric reference, i.e. the full

noun phrase always preceeds the pronoun. Iln restricted syntactic circumstances, English does

permit the optional use of cataphoric reference (so-called "backwards pronominalization"), as in:

"hi his house, John smokes pot.

"Because Lady Macbeth persuaded him to do it, Mcbeth nurdered Duncan."

However, this usage is so restricted and so rhetorically motivated, that it is not used in iu mnic

unless explicitly planned for via attachments to the affected element.

pronominali 111.4.1

- 218-

42 Describing anaphoric relations

The decision of whether or not to use a pronoun is based on an analysis of the relationship

of the present instance of the message element to its previous instances and a consideration of any

nearby potentially distracting references to other entities. The current context as described by the

CON'OILEIIt-VARIZAB,-:s is compared with the properties recorded on the element's discourse-
history, and then evaluated according to the weighted votes of a body of heuristics such as: "not

most recent", or "was pronominalized last time".

The first step in this analysis is the derivation of a set of abstractfeatures from the raw data

of the CONTROLLET-VA IlAL S and I-WCORIs. Ihis intermediate step greatly simplifies the

statement of the heuristics by abstracting away irrelevant details and separating the data-access

routines from the actual heuristics. 18 For example, it is all the same to the present heuristics

whether the previous instance was actually realized as a noun phrase, a trace, or a nominalized.

clause. Consequently the feature-analysis merges all three cases into one feature: was-a-thing

(which the heuristics distinguish from was-a-proposition).

Other features that NIUMIILE computes include:

0 Measures of recency: The antecedent is either in the same-clause, same-sentence,
same-paragraph, or "stale" relative to the current-instance. (Stale is arbitrarily defined
as in the same paragraph but earlier than the previous sentence. It is a crude but
plausible meaning-independent measure of when a message element will have to be

.reintroduced.)

0 Intra-sentential syntactic relations: the antecedent either commands the current-
instance (i.e. it is a constituent of (one 00) the node(s) that dominates the current
position of the controller) or it is relatively-subordinate (every other case, e.g. the
earlier instance is part of an introductory adjunct or a sentential subject). English
grammar dictates" that when comands holds a pronouni must always be used, even if
an ambiguity might result, e.g. the clause: "A ufortimer persuaded Feudinand that lhe was
the best man for the job" is grammatical even though it is ambiguous out of context,
while "Alortimer persuaded Ferdinand that A fortimer was the best man for the job" is
unacceptable unless there are two people named Alorimer.

O low the antecedent was realized: was-a-thing. was-a-proposition, or iias-a-pronoun.

O Relative position in coordinated regions: when the current-instance occupies a parallel
position to its antecedent in the previous-conjunct, the identification between the two
is typically strengthened. "Parallelism" is defined in terms of occupying smTs with
the same slot-name at identical depths within adjacent clauses of the conjunction. Of
course, when the antecedant was part of a conjunction and the instance is not,
pronominalization is ruled out.

O Discourse status: all subsequent references to the current intended discourse focus are

18. It also makes it unnecessary to ewrite the heuristics every time there is a change to the design of the records or a new
delinition ola eature, which is of enormous practical benefit.
19. This is the familiar "precedes and commands" rule of I angacker langacke.laindc]. Recall that because of the way

that the controller traverses the tree earlier instances will nccesarily precede the current instance in the left to right
sequence of the text.

pronominali i l i.4.2 -

- 219 -

pronominalized as part of the definition of focus. An unfocussed antecedent that
occurs in a constituent positions that is one of the preferred points for the introduction
of a new focus: subject, direct object (theme), or syntactically marked positions like
the object of existential There, are marked as a potential-focus.

In multi-sentence discourses, a given message element may accumulate several "non-stale"

RE-:CORc s in its discourse history, at which point -it beComes important to have a "composite"

description of the anaphoric relations. For example, in the "barber proof" on page

<barber.proofY the barber Giuseppi is mentioned four times in the fifth sentence.

That is, he would share himself (i and only if[he] did not shave himself

An earlier version of iunm,: which only looked at the immediately previous instance refused to

use a pronoun at the point given in brackets, because the if and only Whad created a parallel

construction and the just previous instance of Giuseppi occupied [objectl] and not the parallel

[subject] position. The present version corrects this oversight by an ad-hoc modification to the
feature-analysis procedure and the discourse history: whenever the next RECORD of a particular

message element's discourse history is from a "less prominent" position than the previous RE.CORD

(as in this example), this fact is noted and taken into account in subsequent feature-analyses; only

special cases of "less prominent" have been implemented however.

4.3 Evaluating the l)ronominalization heuristics

'Stated in tefrs of the computed set of abstract features, the actual heuristics are structurally

trivial: they are simply checks for the presence or absence of certain features. Several of
NIUMBIt~s heuristics are given below as examples. A heuristic either applies or it does not. If it

applies, it contributes a "vote" into the pool;, this vote may be either for or against using a

pronoun, and at the moment may take one of three strengths: "necessary" (white-ball vs. black-

all, strong evidence (strong-for vs. strong-against), or weak evidence (weak-Jbr vs. weak-against).

Equial strength votes of opposite polarity cancel and ties are interpreted conservatively (i.e. against

pronominalization).

pronominali 111.4.3

- 220 -

(defline-proz-heuristic introuccd-in-subordinalte-context

vote, strong-against

condition (and parl-qf qualifier

(not same-clause))) i.e. we aren't in the same qualifier

(define-proz-heuristic prononminalized-last-time.

vote strong-for

condition was-a-pronoun)

(define-proz-heuristic mentioned-once-already

vote weak-for

conditioii) ;t e.always true

Examples where pronominalization is ruled out are somehow more interesting than

examples where it goes through. Below is a Fragment of a description of a tic-tac-toc game

(originally from [davey]). We want to look at the decision whether to pronominalize the second

instance of the line "I" am threatening to complete-the decision-point is in brackets.

The game began with my taking a corner and your taking an adjacent corner. I threatened
* you by taking the square next to my corner and on the line opposite ytis,)but you blocked'
[it / tat line] (... and simultaniously threatened ine along the diagonal.)

The relationship between the two instances triggers the following heuristics in MUMBLE:

Mentioned-once-already (weak-for)
not-most-recent (weak-against)
introduced-in-subordinate-context (strong-against)

The only vote in favor of pronominalization is the minimal one that is always present, and there

two votes against it-one of them a strong one. Consequently, pronominalization is ruled out and
another form of subsequent reference is selected ("that line").

4.4 Reasoning about distracting references

Except when the precede-and-command rule applies, linguistic relations alone are never

enough to dictate whether or not a message element should be. pronominalized. 0 Fxtranious
referents in nearby regions of the text can lead to ambiguities for the audience when they are not

considered in the pronominalization decision. The problem is, of course, that whether an

ambiguity will actually occur depends on the semantic and pragmatic properties of the objects

involved-properties that the lingustic component, by its nature, cannot know anything about.

20. While syntactic retationis are certainly not sufficient, discourse relations (e.g. focus) might well be unless the speaker
were using a very conservative strategy. Tis question should be investigated by testing different combinations of
heuristics with a speaker/expert-program combinat iot that is Capalle of producing large amounts nC motivated text.

pronominali 111.4.4

- 221 -

'This is illustrated by the example below (from a hypothetical personal assistant program).
Imagine that the linguistic component has reached the point given in brackets and must now

decide whether to say "her" or "C(andy's".

"Candy has come in late. Can (Carol reschedule 1her Candy,s mteeting or the
qfternoon?'

Whether the pronoun 'Would be ambiguous will depend on the particular audience and what they

know. If they know that Carol is a group secretary and that Candy is a person who might call a

meeting then they will correctly understand the pronoun because only one assignment of the

relations will make sense. On the other hand, an audience that did not know who Candy and

Carol were would be confused at best and more likely would make the wrong assignment because

of the defaults.

Knowledge about group secretaries and meetings is much too domain specific to include in

the pronominalization heuristics of an independent linguistic component. Instead, an appeal is

made directly to the speaker program, via the, interface function distinguishable-kinds. 'lie

arguments to this "oracle".are the message element being realized and set of possibly distractoring

message elements (see below); its output is that subset of the distractors that it judges could

confuse the audience. 21 In this example, distinguishable-kinds would return the empty set if the

audience knew who Candy and Carol were, otherwise it would return the singleton set { Carol }.

When "speaker-certi Fied" distracting references are present, the pronominalization routine

presently employs a simple (if time-consuming) heuristic to "second-guess" how the audience

would interpret a pronoun if one were used. Each of the distractors is run through the

pronomninalization heuristics as if it were the current-instance and their total votes compared. If

one of the distractors has more heuristics in its favor than the actual current-instance, then it is

assumed that the audience would take it as the antecedent for the pronoun and an alternative

form of subsequent reference is looked for instead. In this example, the existing heuristics

indicate that Carol would be the more likely antecedent because there are relatively stronger

reasons to pronominalize it and consequently vote against pronominalization

Candk Carol

not-most-recent (weak-against) ----

mentioned-once-already (weak-fo) mentioned-once-already (weak-for)

------ most-recent-/IJ) (weak-for)

potential-ator-focus (strong-foi') proz-ableccurren-subject (strong-for)

--- proceedl-& -comniand (white-ball)

21. In some applications, it might he pertinent to add the current message-level context as a third argument. lhis has not
been necessary with any of the present micro-speakers.

pronominali 11i1.4.4

- 222 -

Computing the set of "potential distractors" The extensive research on natural language

understanding notwithstanding, there are no established formal algorithms for firmly delimiting

the set of potential antecedents of pronoin. Real texts can readily be found where in one case a

pronoun is perfectly well understood even though separated from its antecedent by eight

sentences, while, at the other end of the spectrum. a single interveening distractor will give the

pronoun an unintended interpretation'2 The best strategiem in this circumstance (and many

others) is to experiment with many different heuristics and attempt to determine, by using the

heuristics to control the production of many different discourses, which ones lead to the most

natural results. Such experiments are still very much in progress; they are hampered at the

moment by the lack of a (micro-)speaker that is both verbose and richly intentioned.

The present heuristics label as distractors any earlier references in the current sentence as

long as they are not relat'vely-subordinaie, the direct object ("theme") subject and verb phrase of

the previous sentence, and the current focus of the discourse. ''his set is continuously updated by
GRANMAR-ROUTIINs as the controller moves through the tree.

Before being passed to distinguishable-kinds, the set of potential distractors is filtered to

remove those elements that can be distinguished from the currenl-instance on purely linguistic

grounds. Broadly speaking, any element that is a distractor on positional grounds can be safely

ignored if, were it the one to be pronominalized, it would result in a different pronoun than the

actual current-inslance will. This includes not only the obvious person, number, and gender

differences (queried by the interface functions clit-person, clint-gender, and elmt-pluralp) but

also more subtle grammatical effects. The reason why Trenmon is not a distractor in "Trenon

didn 'I expect him up and running so soon" is that had it been the antecedent, the

TRANSFORNMATION equi would have applied and the sentence would have read: Trenon: didn't

expect to be up and running so soon".

4.5 Pronominalizing predicates

Predicates (more precisely: verb plhrases) can be pronominalized on the same basis as noun
phrases,2 3 and using virtually the same decision process. The only difference comes in the

definition of ignorable distractors, to which we can now add any message element that wasn't

realized as a verb phrase. The actual "pronoun" used may be either the null-word (which will

22. A good discussion of this problem can be found in [hirsupn.survey] section foUr. le points out how even the
st rtgest semantic restrictions can be (humorously)set aside apparently by just the recency heuristic, e.g.

If an incendiary bomb drops near yoi, don't lose jourhead. Put it in an bucket and covert iwit sand

ibis is a clear case of where distinguishable-kind needs to be sensitive to context, since while "bombs" and "heads"
are have otherwise very different semantic properties, both can be "put in buckets". Note, however, that the possibility

that the antecedant might be "you" never even comes up.

23. Clauses may also be pronominaliied of course. Ilowever, the monologues of the existing nicro-speakers have nt
pros ided any well-motivated examples.

pronominali 1.11.4.5.

- 223-

draw "do" if the clause is specified negative or modal) or the phrase "do it". In MU 1M1II, these

two choices are treated as synonomous. An example of verb phrase pronominalization is:

"Macbeth murdered Duncan because Lady Macbe/h persuadel him to

If this text were the beginning of a discourse, then there would be one distractor, "persuade

him...", which, according to the heuristics discussed thus far, would be preferred over the intended

antecedent because it is most recent. However, the situation is more complex than that as we shall

now see.

'Self-containing antecedants' Generally speaking, there is no facility for recursive reference in

a natural language: phrases must be finished before they can function as antecedants. This is why

we can discount "persuade him... " as a potential distractor:. if it were the real antecedant, it would

have to be able to be read as "Lady Macbeth persuaded him to persuade himself to persuade

himself:..", which is clearly not likely.

The record of which phrases have been completed and which are still in progress is

maintained as part of the discourse history. At the moment an elit-instance is realized, its record

is placed on a special list named pending-realizations. Only when the controller has finished

traversing its realizing phrase is it finally removed from that list and added to the discourse history

proper. In the example above, this means that at the point when the test for pronominalization is

made, "persuade him..." will not even be visible. There are other circumstances, however, where a

recursion of sorts is quite reasonable. One of these occurs when a message element has both a

"label" and literal meaning, one example is labeling the formula that is to be disproved in a proof

by contradiction "the assumption". 'here are typically several ways to express a label, some of

which involve repeating the labeled element within the expression, e.g.

"Therefore the assumption is false: there is no such barber."

In these cases, special measures are taken (described in section labelsn.y.w.) 'to insure that the

correct entrys are used.

discourse predicates 111.4.5

- 224 -

5. Discourse Predicates

Since its resurgence in the mid-cighteen hundreds with the discovery of Indol'uropean,
Linguistics has undergone a steady progression ill the size of the units it has considered for study.
The very first work was done on the smallest units: phones and phonemes, with the scope of the

analyses grew gradually to include morphemes and words; however. largely because of the
enormous influence (in America) of logical positivism, it was not until the advent of Chomsky's

generative grammar paradigm (1957) that any serious work was done on the syntax of the

sentence.

Unfortunately, the subsequent twenty-odd years have seen little further progression: for too

many linguists "grammar" remains synonomous with "sentence grammar"--we do not have a

system of rules for discourses in. any way comparable in richness or credibility with what we have

for issolated sentences, nor is this situation likely to change soon. As a result, any rules of
discourse grammar-larger than sentence-level constraints on decisions-that are proposed in

conjunction with my theory of language -production inmusst be understood as speculative

experiments that will probably require total revision as our appreciation of the correct primitives

of discourse structure improves.

In this section we will look at three different kinds of problems: (1) how to define

predicates that refer to relative positions within the discourse; (2) how to implement grammatical

scope: constraints propagating leftward from certain words or phrases, especially quantifiers; and

(3) how one would monitor for phrase-level ambiguities and whether one should. As always, the

emphasis will be on the representational devices available to the designer and the trade-offs

inherent in their use. The particular examples that will be shown have all been implemented in

MUMBE, but I have no commitment to continuing them should improved analyses become

available.

5.1 Evaluating relative position

Discourse predicates are used to settle questions of style: Our high school English teacher

tells us not to use the same adverb twice in the same paragraph, e.g. "veij"; we translate this rule

into a test that we apply every time we are contemplating using "very", in which we look back

through the paragraph to determine whether we've used the word. 'liat search (or perhaps just a

direct lookup) is an example of a discourse predicate: if it is true, then we choose another word

than "very"; if it is not, we do choose "very" (or maybe we do not, bUt for independent reasons).

discourse predicates 111 .5.1

- 225-

'Happened-during'

The formalization of a deliberation like this revolves around a record-the "discourse

history" pg.<the..discourseiistory>-that associates events (e.g. msg-elits realized, grammar-

decisions made, choices selected) with regions that are identified in terms of relative position from

the controller. Examination of this record fundamentally involves the same kind of test in every

case:

(happened-du ring <event> <region>)

where happened-during returns true or false. In specific predicates we might also need to know

some of the details of the events, however, the most important in formation will remain "how long

ago did this happen", since it is the primary determinant of the relevance of a past event for

current decision-making. This kind of information is the same as we saw being used to decide

whether to pronominalize, the only difference being that now we will ask a broader range of

questions about both events and regions. Let us look at the general problem of computing

happened-during and then at a real example from MUIRLE.

Since each region will invariably contain many events, efficiency considerations (i.e.

employing associative lookup rather than search) dictate that happened-during access the record

of the event first and use that record to identify the region it occured in, rather than first accessing

the event. The record of an event is compiled at the time the event occurs (section record.n.y.w.)

and then associated with the generic form of the event (the msg-elmt or the decision or the choice)

as part of its history. Within the record, we include the regions in which the event occured,

identified by their absolute position (e.g. from the start of the discourse). 2 4 In mIJNIutL regions

invariably corresponded with constituent structure nodes, making - the node's record

(pg.<node...n.y.w.>) the obvious object to use to represent the regions in the discourse history.

While regions are recorded in the discourse history in absolute terms, the discourse

predicates-being, as they are, part of general heuristic rules-must refer to regions in relative

terms that they can be sure will always be applicable. To this end, we have the controller maintain

a set of controller-variables that pick out the regions we are interested in, and have them updated

by grammar-routines as the controller moves. NIUMBLE, for most domains, kept track of the

following variables (in rank order by size): previous-conjunct, current-sentence, previous-

sentence, current-discourse-unit, previous-discourse-unit, current-paragraph, and previous-

paragraph.

24. It would not be possible to nmint-ain the alternative scheme of recording the identity of regions by their position
relative to the controller. As the controller continually moves into new regions, all the old records would have to be edited
to correctly reflect the new relationships between the events and the controller. In the course of realizing a message, this
editing and reed iting would be happening continually, consuming exponential time, and thus the alternative is counter to
the stipulations of the theory.

discourse I)edicales I I I.S. t

- 226 -

The values of these controller- variables are always the records of the nodes that defined the

regions-the same records as are used to define the regions where events occured in the discourse

history. Thus to test happened-during we retrieve the record of the event, extract the name of the

size region we are interested in, and conpare it with the value of the controller-variable given as

the argument to be tested against.

Which is' versus'leads to'

In designing the dictionary for the logic domain, I had to decide how to realize the case
where a formula in the proof denoted a contradiction. Following Chester's lead [chester], I

elected to have the fbrmula expressed as a meta-comment about the proof. That is, rather than

expressing a literal relation over its subelements (e.g. "he both shaves and doesn't shave himself'),

it will express a dependency relation between sonie earlier formula and this special event in the

proof. (in natural deduction proofs, each line is annotated with the inference rule used to derive

it and the numbers of the earlier lines that the rule referred to in making its deduction.)

Two phrases came to mind as ways to express this relation, and the relevant decision criteria

involved the structure of die discourse. '[hey were treated as a marked-unmarked pair: in the

unmarked case, the phrase was:

"<arlier nfl lleads to a contradiction"

In marked case, where the earlier formula was "the source of the previous sentence", a special

syntactic nianouver was made and the phrase attached as a relative clause:

"o<sentence for earlier my)> which is a contradiction"

Testing whether a candidate formula is "the sourse of the previous sentence" is an instance

of the limit case of happened-during. We start with the earlier formula, say conj102, and look up

its last record in the discourse history. From the record we extract die sentence field of its

position property (example on pg.<macbeth-discourse.recordt.n.y.w.>); it will be the record of

some sentence-level clause node. To answer the predicate, we test whether this record is the same

individual as is currently the value of the controller-variable previous-sentence.

Structuring the Discourse History

A little introspection into one's own writing style will be sufficient to reveal that a "finer

grain" is required for the discourse that just noting- sentences and paragraphs. In the

pronominalization routine, for example, NIMImn: makes its decision about what the potential

distractors are by looking within the previous sentence at die message-level sourses of the direct
object (theme), the subject, and the predicate. Rather than point to these with individual

controller-variables that are unlikely to be used anywhere else in the grammar, we make them part

of the record of the clause that contains them, and have the pronominalization routine's test

proceed by an indirect route via that record.

discourse predicates

* *'*, S

111 .5.1

-227-

Similarly but on a larger scale, we have the paragraph structure used in the KL-ONF-nets-as-

objects domain: I experimented there with having references made in the first or last sentences of

a paragraph "decay" at a much slower rate than references elsewhere in the paragraph. The effect

of the difference was felt by the predicate that determined whether a msg-elmt was "given". The

working definition of given was "mentioned but not yet stale" (i.e. not yet forgotten; see section

given.new.n.y.w. for the full discussion), where the boundaries of when a reference became

"stale" were now tied to paragraph structure.

To support this experiment, the record for a paragraph was given two properties: topic-

sentence and last-sentence, whose values were the records of those sentences. The properties

would be entered into the record as the sentences were completed, using paragraph-level

grammar-routines to dO the processing. The record for the first paragraph of the text on page

<given.kloneexamplen.y.w.> is shown below.

Paral

topic-Senltence Clause2

subject phrase

theme top-of-the-net

predicate (superconcept X top-of-the-net)

final-sentence Clause24

subject phrase

theme conjunction27

In determining whether a msg-clnit is given, we use this record from the bottom up as it

were: first we define the region relative to the controller within which we will.say that a reference

will still be remembered (i.e. "is not yet stale"); then we look to the history of the element we are

interested in and compare the name of the sentence that contains it with the names of sentences in

that region. In the experiment, a msg-clmt was "given" if:

(1) The controller was in the first sentence of a new paragraph and the last reference to it
appeared either:

(a) in the last sentence of the previous sentence, or

(b) in any of the earlier topic sentences;

(2) Or if the controller was in body of the paragraph and the last reference appeared
anywhere within that same paragraph.

This scheme produced satisfactory results on the material of the KL-ONE nets. I lowever this

Iaterial was very uniform (it rapidly became boring to read), and, in particular, it never was the

discourse predicates 111 .5.1

- 228-

case that a reference from within the body of a paragraph (i.e. in neither the first or the last

sentence) was ever repeated in later texts, thereby making the definition of given adequate

tautologically.

Synonym-set

The most sophisticated use of the discourse history that had appeared thus far in MUMBLE

is the decision procedure synonym-set: a decision-extension that may be used whenever the

designer has a set of choices for which s/he can find no distinguishing criteria other than a

variation for variation's sake. A good example of such a set might be the class of phrases George

Lakoff termed "hedges" [lakoff..&gordon...hdges], phrases that we use to temper or soften our

statements (as in "hedging a bet"). For example:

"Professor Vinsion will probabl! be bus)' all afternoon."

"I tink that Professor Wins/on wil! be bus' all afternoon."

At least at first glance, these phrases mean the same thing, and as designers we would like a

uniforn routine that will capture this synonomy.

Synonym-set is a share-able decision that will randomly select one choice from the set given

it as an argument, subject to two conditions:

(1) The same choice is not selected twice in a row.

(2) In coordinated contexts the same choice is made in every conjunct.

Within an entry, synonym-set is written as though it were a choice, e.g.

(define-entry (some entry>
<earlier DECISIONs that construct the matrix)...

(hedge ; the decison-name
default (synonym-set (probably.post-aux-adv matrix)

(speakerthinks-tha.pre-sentence-adv matrix))))

Formally, however, synonym-set is a decision-a critical fact since the results of decisions are kept

in the discourse history and thus we do not need a special device just to record the activity of

synomym-sets. We satisfy the first condition by referring back to the record of the most recent

occasion when the synonym-set decision was made and seeing which choice it made then and thus

which choice to avoid this time. 2 5 The second condition is handled similarly, testing for whether a

previous instance of the decision occurred in within the region defined by the controller-variable

25. The careful reader will have noticed that there may well be several instances of the synonym-set decision in the
discourse history but with different sets of choices. This potential ambiguity is forstalled by the expedient of having 'the
load-time postprocessor give each instance or the same set a unique name. The postprocessor is also used to construct the
actual decisions by expanding fixed schema sc) as to Customize them to, e.g., the number of choices in the set, and thereby
make the computations more efficient.

discourse predicaies II .i.5.1

- 229-

previous-conjunct, and this time making the same choice.

5.2 Scope

The intriguing phenomena of the scope of grammatical operators has been given short

schrift in this thesis. The blame, if that is the right word, lies with the choice of domains for the

speakers and expert programs, since none of them had naturally motivated occasions to use

scoping operators; in particular, none of them made any non-trivial use of quantification. We

have seen in other sections how the details of the message-level representation have deeply

influenced the ways in which linguistic analyses should be made: I accordingly elected not to look

at phenomena for which there was no independently derived representation in the domain.26

Two small cases of scoped operators did conic tip in mNUNlILE however, and they may be

sufficient to indicate the way in which the problem of scope could be delt with: these are the

"some" to "any" "transformation" in the presence of "not", and one case of attributive adverbs.

soie' versus 'any'

it has been observed at least since the tirnd of Klima's important paper on negation Iklirnal

that in certain enviroments the quantifier "some" can not be used and that "any" should be used

in its stead.

"John has sone money." "Johi doesii'f hale any money."

"John is too poor to buy anything (* something)."

"IfJohn has any (* some) money, he's luckier than I am."

This generalization has many "holes" in it however, as neatly pointed out by Robin Lakoff

[lakoff.some.anyj: it often is preferable to use "some" in those context, and the belicfs and

presuppositions of the participants involved in the speech-act must be taken into account in order

to make the decision. Consider the total difference in intent of these two statements that might be

made by people at a picnic upon seeing a chipmunk come up to the edge of die blanket: (Example

due to Terry Winograd.)

"Ifyou don't give him some food, he'll go away" (i.e. Give him die food!)

"Ifyou don't give him any food, he'll go away." (i.e. Don't give him the food!)

Still, for all its faults die rule remains accurate in many specific cases. The one that turned

up in mUMllIoE involved the use of an automatically generated pronoun to stand for the case of the

generic individual.

26. This is unfortunate since the problems presented by quantifier scope are among the most complex that people still
manage to deal with sucessfully. The question of what kind of planning and 'lookahead" one needs in order to insure that
one has' conveyed one's intended meaning in a text like "Some Lastern Airlines flighi goes to eveiy city in the
Carribean" is very intriguing.

discourse predicates 111t.5.2

- 230 -

"There is some barber who shaves evcryone who doesn'"I shave himseW"

"There isn't gny barber who...

"Lad)' Alacbeth did not kill anyon."

In order to accomodate this context-dependent variation, the message-level precursors of

these generic individuals: quantified variables in the logic domain and wildcard matching

variables in the Macbeth domain, are realized by their dictionary entrys as what is in effect

another nisg-elmt, call it some/any.' The point of setting up this extra "level" between the

speaker's quantifier and the English vocabulary is to decouple the basic realization decision to use

a pronoun and the grammatically motivated decision (or "reaction") to being in a negative scope;

as the designer, one could not guarentec that the scope information would be available at the

point where the decision is made, nor should one try to since the two decisions are of very

different sorts and ought not be combined.

If the boundaries of the scope of operators like "noi" correspond to constituents, then the

"being in the scope of" predicate can be readily modeled by a region-feature. An action is added

to the grammar-routine that enters the operator into the tree; its effect is to add the feature, say

negation-active, to the node for the appropriate constituent. The presence of that feature is then

detected by affected decision-makers such as the entry for some/any. This situation is shown in

the snapshot below, taken just at the point when some/any is about to be realized.

clause-I

[subject] [predicatel

Lady lMacbeth vp-2 (negation-active)-

Inot T

[verb] [objectT

murder some/any

- "Lady Macbeth didn't murder... 1/"

Everything within the region dominated by verb phrase two (the shaded region) is in the scope of

the negation. (A separate feature is used, rather the neg hook which already exists, because we

presumably want this triggering condition to apply to other contexts besides an explicit "no:",

such as hypotheticals or questions.) When the entry for some/any (below) is interpreted, it looks

27. Some/any realty is a msg-e!mt in that it is a valid argument to the interface functions (i.e. it has an entry, has a
name, has a reference-type, and so on). At the same time, of course, the representation used to implement some/any
wouldn't necessarily be the same as the expert program's and thus could require some designer tinkering with the interface
function definitions.

discourse predicates If 1.5.2

- 231 -

for the presence of the feature, and selects "any" if it finds it, otherwise "some".

(define-entry some/anyentry (

default (use-word "some")

((is-true 'negation-active)

(use-word "an}y")))

The scope or the 'Opinion-holder'

Perhaps the most rewarding moments in doing this kind of research come when your rules

"break" because you've stumbled across a fact about the language that wasn't obvious before.

They are particularly valuable when one is faced with a set of apparently "synonomous" phrases

and is trying, because of a prejudice that complete synonorny does not exist, to find the contexts

or the intentions that set them apart from each other. One such moment occurred with the earlier

synonym set: "I think ithat..." versus "...probably...". These two phrases can be categorized

functionally as "attributive adverbs": they are used to bind the opinion expressed by a proposition

to a particular person, in this case the speaker. On their face, they both serve this function equally

well, which is why I originally encoded them as a synonym set. However, it turns out that there is

a kind of context in which the two are not equivalent, and the difference turns on a matter of

scope. Consider these texts, taken from some preliminary work with a program that modeled

commodities transactions [sirreadingcommoditics paper].

" According to G rai n Market Review, wheat will be cheaper."

"I think that according to Grain Market Review, whea will be cheaper."

"According to Grain Market Review, wheat wi probably be cheaper."

The second and third sentences were produced by applying the synonym set to the proposition

given in the first, with the intented goal of "hedging" the speaker's opinion (perhaps they only

skimmed that issue of Grain Market Review and are not really sure of what it said). Notice

however that the third sentence does not hedge the speaker's opinion but the magazine's!

It turns out that there is something like a "current opinion holder" present as part of the

linguistic context of every text: propositions that are matters of opinion are attributed to this

authority unless the text contains explicit instructions to the contrary. The default assignment of

the "current opinion holder" is typically to the speaker, but a phrase like "according to... " will

reassign it to the indicated authority (in this case the magazine), at which point the new

assignment stays in effect until there is another explicit change or that discourse unit conics to an

end.

discourse predicaies 151 11.5.2

S232 -

The implementation of the hedge "I think that... " (pg.<I-think-that-adverb.n.y.w.>)

always puts the phrase at the beginning of the sentence, and thereby effortlessly avoiding any

confusion introduced by any subsequent attributive modifiers to the sentence. The

implementation of "possibly" (pg.160), on the other hand, is done with respect to the main verb of

the clause (e.g. "be cheaper"), with the effect that something analogous to "variable capture" in

programming languages will occur and the speaker's intent will be thwarted. The "fix"' to this

problem is (1) to augment the English grammar by introducing a controller-variable for the

current opinion holder along with managing grammar-routines to be associated with the

attributive modifier function as appropriate; and (2) to remove the two hedges from the synonym-

set and reinstate them as a regular decision with a explicit check that the preconditions for the

effective use of "probably" are met.

5.3 Detecting structural ambiguities

As a linguist sees them, texts are grouped into larger and larger units organized into a tree

structure. This is also true for the speaker (at least given the present model) since it is exactly that

tree structure that is being used to control the whole production process. Unfortunately however,

when a person is reading a text the units are not visible but must be deduced, and there is no

guarentee, given the inherent ambiguity of natural language texts, that the reader will deduce the

same tree structure for a text as the speaker used in producing it. (This is not generally true of

speech: when a text is being heard, the pauses and intonation contours are usually sufficient to

mark the units explicitly.)

The lack of any guarentee that the audience will parse a text in exactly the way that he

produced it poses a quandry for the speaker: how much effort should be devoted to avoiding

unintended ambiguities, and where will it be best placed? I will argue here that very little effort

can be devoted on-line because of an intrinsic limitation deriving from the fact that at the time

when a potential problem could be noticed it will nearly always be impossible to do something

about it. Furthermore the overhead of burdening the linguistic component with monitors for

these potential ambiguities is very high; were I already in possession of a theory of how the

speaker's own comprehension system reacts and feeds back to the production process, I would

present it here and argue that the task of detecting a structural ambiguity is done best by a device

that is suited to it-a parser that buffers many constituents at one, rather than a generator with a

single point of action. However I do not have such a theory (though I hope to develop one).

Consider this sentence, which I wrote (and then edited) in preparing this document:

"Unless preplanned, sentence-chunking decisions are made at each "pocen!ial-sentence-
start" as defined by the granunar.

In the parsing literature, that sentence would be referred to as a "garden path": All the while

following a perfectly normal parsing strategy, the reader will interpret "preplanned' as an

discourse predicates 111t.5.3

-233-

adjective modifying "decisions" when in fact I intended it to be the end of an introductory phrase.

The reader mistakenly extends the introductory reduced clause "unless preplanned' through the
rest of the sentence, fails to find a main verb, and becomes con fused. Thle "fix" requires

rephrasing the introduction so that its function is unmistakable:

"Unless they are preplanned, sentence-chunking decisions are made at each "potential-
sentence-start" as defined by the grammar.

If we were going to write a monitor to "catch" such an ambiguity while still staying within

the theory's stipulations (e.g. no simulation and backup), then we simply could not arrange to use

the fix that I used in the text. The trigger condition for the monitor would be the occasion of an

introductory adjunct ending in an adjective, followed by a noun phrase in the [subject] which

could reasonably be modified by that adjective. T[he critical p'oblem is that the fact of the adjunct

terminating in an adjunct can not become known until after the adjunct has been completely

produced; a monitor stationed as, e.g., part of the [enter-slot subject] grammar-routine would not

be triggered until it was too late to make the obvious edit, and the ambiguity would go through.

One can imagine how refinements to the way the linguistic components were described

might make it possible to forestall die ambiguity by detecting the possibility that it might arise

before any commitments to specific texts had been made. If, for example, we had a functional

characterization of the introductory adjunct described it as attributing some property to the

subject, then at the time that the adjunct's message-level precursor was positioned in the tree we

could predict the possibility of the ambiguity and proceed to iifluence the amount of ellipsis that

the adjunct could undergo.

This technique can be more difficult for the designer that using a monitor might have been:

it requires careful additions to the conceptual base of the grammar, and the undertaking of a

proper analysis to insure that the additions are suitably general. However the rewards-are worth

the effort since the freedom of action available "above" the site of a potential ambiguity and

before any of the text has been realized is enormously greater than that available "to the right" of

the sight after most of the relevant text has already been spoken.

reasoning about Ci)ICIes 111.5.3

- 234 -

6. Reasoning about possibIe ChORES

A subtle but telling point of difference between the present design and the alternative

school of "production directly from program data" exemplified by [swartout..nasters][chesterl

[roberts.d irect.production] is the way arguments to a message level relation are treated. Direct

production schemes invariably follow a strict depth-first evaluation protocall, i.e. they compute
the realization of the arguments before the realization of the relation itself. The present design

reverses that order, realizing the relation before its argument, a technique that is sometimes

referred to a delayed binding. The evaluation of the relation creates a program (expressed as a
surface-level, English constituent structure) with places for the evaluation of each of the

arguments embedded, within it.

The advantage of this form of delayed binding is that individual arguments are not realized

until the linguistic context in which they will appear has been fully created and is available to
influence and constrain the computation. At the same time however, the decision-process that

realizes the relation is now denied the "precognition" available in thedlirect production scheme: it

cannot know what English phrases will be selected for its arguments-at least not as a literal text

string or constituent structure. Tliis is where the ability to symbolically analyse dictionary entrys

comes into play.

One of the places where his ability is particularly important is a conceptually sparce domain

such as the logic domain (VIL.112). Here the speaker's goal is to always use as "fluent" a

construction as the logical expressions will permit. The implicationient y (pg. 205), for example,

includes the test:

(A-is-a-subject-for-predicate- B antec conseq)

If this test succeds, then die ENTRY has license to use the most fluent construction it knows of,

namely mapping the antecedant and consequent into the [subject] and [predicatel constituents of a

single clause (as in "All men are mortal"). If the test fails, then the ENTRY must fall back on more

literal constructions such as "A implies 1?" or "if A, then X".

Generally speaking, answering a question like this requires search. Specifically, a search

that chains backwards from a desired realization, through the decision-rules that select it, to the

present state of the tree and discourse-history-the determinant of which of the possible chains of

predicates are (or could be) true. The linguistic component is not designed to support this kind of

search in its most general form because it requires a non-deterministic control structure, leading to'

a process that more resembles hill-climbing than the oncpass refinement of a tree. However,

certain limited forms of this search can be precomputed once and for and then used without

encurring additional costs at run-time. FNTRYs can use this precomputed information essentially

as a sort of "linguistic type-checking" to help them decide between alternativeealizatio s

reasoning about CI OICEs 11I I .6

-235-

6.1 The technique in brief

The schematic design of a dictionary ENIRY makes it relatively straight-forward to compute

a symbolic answer to questions of the form "what kinds of realizations will this ENTRY choose".

(Indeed, that was one of its design criteria.) At load-time, the postprocessor computes .an

inversion of the matrix l)EISION 28 of each ENT RY-I will refer to such tables as choice-inversions.

They have the following fields:

(1) a summary of the linguistic properties of each (tIOCE

(2) the choice-application itself (for the few occasions when more detailed information is
needed),

(3) a list of the predicates that must be true if that clioicr is to be selected and not some
other.

(The inversion includes the modified CIiOCEs created by T'IANSFORMATIONs. It consequently is

quite large and is specially designed for maximal sharing and efficiency.)

The most common questions, e.g. "will the ENTRY select a noun phrase given an 'IT-

INSTANCE in a nominal context?", can be answered quickly from the pre-computed summaries.

More elaborate questions, such as "for a given ELNlT-NSTANCE will it select a clause whose

[subject] is, e.g., man(x)", can have their answers computed on demand by a selective symbolic

evaluation of the cloICE. This results in a set of candidate choices, each of which is then checked
for plausibility by testing if the predicates it is paired with are or will be true. 'Iis is the

potentially unbounded step of the procedure: when the selection of a choice is contingent on facts

that are not already known (such as how one of the elint-instance's subelements will be realized),

those facts must be expressly computed. If the new computations in turn require still futher

computations and assumptions, then the process begins to look like forward simulation rather

than precomputed lookup.

6.2 Will-be versus could-be

At this writing, reasoning about possible choices is done in only two places: in the entrys for

the logic domain, and in the shopping-list entrys of the tic-tac-toc donain and the real KLONE

domain. In the logic domain, it is a necessity if the more fluent constructions are to be selected

only where they are appropriate, but the extreme "narrowness" of the predicate calculus formulas

and the many contingencies of their entrys can make the search very deep and very broad.

Shopping-list entrys, on the other hand, are used entirely in domains where the entrys for the

kernal propositions being tested are always simple and the tests can be made on the basis of a

"will-be" based analysis rather than the less bounded "could-be".

28. 'lo include any of ihe contingent or refining decisions in the invertion would add combinatorically to the size or the
final structure without adding any information that it is useful-to anticipate at least that is the experience at this point in
the research.

reasoning about (IjioICEs 11.11.6.2

- 236-

Trivial entrys, such as the ones that were written for the Macbeth domain, consist only of a

default choice, and thus have an entirely predictable output. The choice-inversion of such an

entry will always be found under the entry's will-be property. Reasonably enough then, the

could-be property is reserved for entrys with multiple Choices. (In NIL\ILE at die moment, none

of the heuristics that look at this predictive information need to know anything more specific than

a phrase's category. This permits the simplification of treating multi-choice entrys where the

choices all involve realizations of the same category as though they were single-choice and using

the will-be property.)

Corresponding to the two cases are two different predicates for actual use in the decision-

rules of the entrys.

(will-be <elnt-instance> <category>)

(could-be (elnt-inslance> <category> <conditions)

Will-be can be evaluated just by comparing the given category to the one given in choice-

inversion of the elnit-instance. Will-be is consequently quite inexpensive-it is could-be that can

initiate the potentially unbounded search.29 If could-be is true, it returns the set of all those

choice-applications that satisfy the conditions, otherwise it returns nil to indicate "false". Will-be

just returns Tif it is true or nil if false.

At this writing, die notion of just what can be a "condition" to could-be is not settled. It

must be some property of the linguistic context that the entry making the test either knows is true

already at the time the test is made, or one that the entry is in a position to bring about. The only

condition actually used in the dictionaries of the micro-speakers was the specification of the slot in

which the elmt-instance will be contained; conceivably however, it might be useful to also use

specifications of the values of various grammar-variables or of attachments that the elit-instance

involved will have.

6.3 fDerived predicates

A "derived predicate" like A-is-a-subject-for-predicate-Il is defined in terms of the basic

predicates will-be and could-be. At the moment, there are no limitations or common patterns on

die kinds of control structures that derived predicates may employ and consequently they are

couched directly in usr as procedures. The flowchart below is typical. (A and B are elmt-

instances.)

29. Strictly speaking, the maximum number ofentrys that could ever be searched must 1)e less than or eqoal to the size or
the branch of the enumeration order that starts at the msg-clnt in whose future we were originally interested. Th1e only
problem comes when we hm e to ask the ame question several times while traversing the same branch (which does happen
in the logic domain). If there is a scheme to remember the forecasts as they are first computed--a well-formed-substring
table in effect--then the time requirement can be kept to poynominal.

reasoning about CI1l-:s l[63111.6.3

- 237 -

A-is-a-subject-for-predcljat-B (A, B)

(w<~iill-be B 'verb- phrase)'casa)

(couldi-e '(clause simple) if-slot-equals 'clausal))

tr e

:persumably then it could

take any subject whatever.

true 4 - there areno satisfyingCIIOICEs tt-4r$ A ' TAt CAc

Jjalse
Foreach satisfying CHOICE-APPLICATION, Choice, do:

Subj <= (evenlual-subject-of Choice)

;computed fiom its phrase and map

false .- (I-iill-b - -rferr - - Subj A)

;anohere6rived predicate

true

Accumulate the CHOICE-APPLICATION

TRUE FALSE

An example of how deep a analysis will go Below is the well-formed-formula that. constitutes

the first line of the barber proof (pg.(barber.proof>).

3x (barber(x) A Vy(shaves(x,y) +-> shaves(y,y)))

In an unmarked discourse context, it is realized as: "There is sote barber who shaves all and only

those men who don't shave themselves". With the existing dictionary of the logic domain, the

selection of this text requires the evaluation of nine basic predictive predicates in four different

derived predicates, recaursively embedding the analysis down five levels, and eventually reaching

reaching all of the leaf predicates and constants of the formula. I lere is trace of the process,

followed by a prose description.

reasoning about C lUis 161\\.6.3

238 -

The reason for this depth is not difficult to see. The realization of the existential quantifier

as a "there" clause depended on being able to realize the conjunct as a noun phrase; that in turn

depended on (1) both of its clauses being realizable as saying something about the same variable
(""X"), and (2) the first clause being realizable as a name for that variable. Evaluating the second

criteria simply required a one-level lookup-could the predication barber(x) lead to a noun

phrase naming x? (answer "yes")-but evaluting the first cirteria lead to a recursive analysis, i.e. it

required determining that the second clause, the niversal formula, could be realized as a clause

(with the variable as its [subjectJ) leading us to a recursive examination of formula-entry (pg.207).

The realization of the universal formula depends on that of the biconditional, i.e. to meet the

criteria it must be expressible as a simple clause, which will happen only if (1) its antecedant

subexpression can be a clause, and (2) its consequent can be interpreted as a restriction on the

range of one of the variables in the antecedant, in which case the consequent can be embedded

within the realization of the antecedent as a restrictive relative clause on that variable. (The

predicate that tests for this condition is referred to as merge-var.) The (local) first criteria depends

on whether the predication that makes tip the biconditional's antecedant can be realized as a

clause, which depends on what the predicate involved ("shaves") will be in a clausal context. In

this case it will be a clause, giving us the first case of a test in this chain that yielded a direct yes-no

answer and not a recursion. Similarly, the merge-var text gives a direct answer (it looks at the

patterns of variables within the expressions and does not ask linguistic questions). Finally now we

can unwind this stack of functions and ultimately answer yes: the there clause can be used.

Limitations on symbolic analyses As a practical matter, this kind of analysis can become quite

involved: Once one begins to apply predictive linguistic predicates to the subelements of

subelements, the search space becomes awkwardly large, taking considerable time to explore, and

the amount of simulation involved becomes excessive to maintain without claborate overhead.

On a more theoretical level, any symbolic exploration of how the tree will be (or could be)

refined from some point will be fundamentally limited in the kinds of information it can find out

unless it involves a real forward traversal by the controller (and thus the production of real

constitUient structure). Only the controller is able to notice and execute the grammar-routines

associated with the linguistic properties of the tree and only the controller is able to utilize the

subsequent reference as well as the main stream routes through the realization procedure.30 With

out the controller then, there will be no information about function words, morphology, many

elliptical phenomena, readjustment rules, verbal auxiliaries, gaps due to wh-movement,. or (and

this last is particularly important) grammatical constraints on the realizations.

30. This constraint is nearly tautological since those two abilities are defined to be part of what it means to be the
- controller. Only the depth-first left to right traversal pattern, the extension or lte tree by substitution of realiation for

realizee, and the actual printing of the words were left out. I lowever. the)y too must be included when you consider that
the grammar and discourse heuristics were written with the expectation that they would be part of the process;
consequently the grammar-routines would be likely to produce subtly wrong actions were any other conventions used.

reasoning about ClioICEs Ill.6.3

- 239 -

"Predictions" arrived at by symbolic analysis of entrys can be believed only to the extent

that they do not depend on controller-based linguistic information. In general this means that

only very small portions of the enumerat ion order can be analysed reliably, perhaps no more than

one msg-clmt and its subelements. The enormous analyses of the logic domain succed as well as

they do because the reasoning its dictionary does is not very dependent on linguistic context; It is

possible that certain narrow, grammatically defined regions of the tree may be reliably "predicted

across". Once the controller is entering the [subjecti for example, it is probably "safe" to look

ahead to the msg-elint in the [predicate] and predict what main verb will be used. Even there

however there are possibilies for unforseen interactions if, say, a length relative clause or

apposative interveened.

One can only be absolutely certain of decisions that have already been made and on future

decisions that depend solely on those decisions. This is not a small number since decisions that

specify discourse-Ievl features such as focus or given/new can have a very pervasive effect on

decisions within their regions. Thlile number and subtlety of discourse-level specifications that will

be in use will greatly increase as our experience with production grows: effective predictive ability

then may come to rest not in syntactic lCvCl simulations that are guarenteed to be incomplete but

in detuctions from established discourse level facts.

reasoning about Cli i(s '116s 111.6.3

-240

CHAPTER FOUR

DICTIONARY DESIGN

Dictionary design has three aspects:

(1) developing the interface between the representation of the new domain and that of
the linguistic component

(2) writing the actual. entrys: deciding on the appropriate way to decompose expressions
from the domain and customizing the linguistic component's choices, looking for
modularity in the decisions

(3) taking advantage of, and extending, the interlingua: the conventions and subroutines
of the dictionary that can be shared between domains.

This chapter devotes a section to each of these aspects. As before, the emphasis will be on

the problems and the trade-offs among their solutions. We will not look at an entire dictionary

(the specific problems of specific micro-speakers have been put off to appendix VI..13.13) We will

look at individual entrys, each drawn from the micro-speaker that provides the best example of

some generally-applicable technique. The details of any- single dictionary are dictated the

particular ontology and representation of that domain-the dictionary for, e.g., the logic domain

will tell us more about logic than it will about- dictionaries. In addition to these problems of

parocialism, the actual dictionaries are all experimental, i.e. new techniques were continually

under development and there was no attempt to enforce consistency upon old dictionaries as the

design matured.

inletfce issues IV.0

Diciionay design

1. Issues at the Interface

If the linguistic component were being used with only one speaker and expert program then

there would be no need for an interface:' all of the speaker's conventions and the linguistic

component's requirements could be integrated, and the responsibility for maintaining them

distributed evenly across a seamless merger of the two decision-makers. An explicit message (with

its implied message constructor and message interpreter) would be required only when it was

necessary to represent goals that referred to it (e.g. "don't be long-winded" or "don't use technical

vocabulary"). But of course the opposite is true: linguistic component is intended as a separable

module, computationally as well as conceptually, and a uniform interface is thus required to

smooth over the differences between domains.

This section is concerned with the conceptual and technical requirements on the interface

and the problems they derive from. It looks at what kinds of access are required of the common

computational enviroment, and divides message elements into three categories on the basis of

their relationship to the other data structures of the speaker and to their entrys. The highly

important question of how much specification the speaker can or should include in their messages

rather than leave to the defaults of the linguistic component is then raised, but answered only

pragmatically. Finally, the technical question of exactly how a message element--sonething that

the sicaker's dictionary knows how to describe-can be identified as such, and what' the "lower

limits" are on that process.

1.1 Bridging the gap between modules

The linguistic component is not telepathic: it does not automatically know what a speaker

will want to say, nor, since it works with many speakers, can it even have a priori assumptions

about the kinds of things will want to be said or how they will be expressed. Instead, (ie speaker

must construct an explicit description of what it wants done (i.e. the message), and must pass it to

the linguistic component along a well delined channel (pg.<initialization...n.y.w.>). Let us look at

some of the contingencies that govern what messages can be constructed from.

First of all, we must appreciate that ultimately the designer is allowed to structure messages

in anyway she or he pleases. This is due to a fundamental "out" designed into the framework of

the interface, namely that the enumeration order of a message-the "glue" between its

elements-is determined by the access-functions that the designer chooses to use in the dictionary

and not by the controller or any other fixed part of the linguistic component. It is dynamically

1. It is very likely that the whole idea of a functionally defined interface has no relevancy to the human "implementation"
of language production. There would remain, however, a fundamental difference in the kinds of relations and object that
had to be represented in the human equivalents of the speaker and the lingusitic component and thus sone kind of
physical separation and interface remains plausibile as a hypothesis.

interfce issues

--0241- -

I -1-1

Diclionary design

interpreted rather than set down once and for all time. Since we cannot now anticipate all of the

kinds of representations and system. configurations that future designers may want to use, we

should provide this "out" and deline the form of the interface as flex ibly as we can: by functional

specifications rather than structural ones. Except for a kernal of technical requirements

(described at the end of this section), the designer may use virtually any conventions they wish in

bridging the gap provided that the conventions of the dictionary are matched to them.

Computational environment

Making decisions that are dependent on context requires (1) having an examinable

representation of the context, and (2) being able to test predicates that refer to it. The

computational process -of maintaining and updating the representation and of evaluating the

predicates can be limited in its accessibility. If we. consider all of the information that a process

can access at a given moment, call this its compulational environmient, then we can picture this

environment as being segmentable-parts of it may being added or taken away as time passes

with the process's ability to access information changing accordingly.

The speaker/expert-program and the linguistic component live in disjoint cbmputational

environments: they know different facts, they employ different representations, and they solve

different kinds of problems. (ihat is the only reason why they can sensibly be different modules.)

T[he dictionary, on the other hand, is a different matter: it by definition is the place where the two

modules come together; the decisions made by the dictionary typically involve accessing both

computational environments. Accordingly, the relative configuration of the two environments

can matter a great deal.

The linguistic component may or may not be in the same computational environment as its

domain. (Among the micro-speakers, logic, Macbeth, and tic-tac-toc shared the environment,

while the Digitalis Advisor and KLONE-nets-as-objects (lid not.) When environments are shared,
the speaker may construct the messages directly from the expert's data structures (possibly adding

structures of its own). This is the ideal design, and has made for the technically simplest messages

and interface functions. When domain and linguistic component are independent programs,

some artificiality must be added: the speaker's message must be converted into some external

form (e.g. a text string) and then parsed when it reaches the linguistic component; similarly, the

interface functions must apply across the gap, requiring an external form by which to name

message elements. But while separate environments may complicate the interface technically,

they do not force conceptual changes in the elements as they cross the gap.

inteiface issues

-l 242 -

IV.1.1

Dictionaty design

Message-element Categories
We can classify nessage elements (and by extension messages) into three categories

according to their relationship to their realizing texts: "issomorphic", "shopping-list", and
"arbitrary". Issomorphic message elements are composites and have a structural correspondence
with the phrases of their texts. Shopping-list message elements are pointers-names-that can be
used to access a conventionally organized body of facts about the element; their entrys consult a
speaker-supplied or default list of these facts to determine which should be used in a given
realization. Abitraty message elements have no structural relationship to their realizations: they
are a device to pick out phrases that the designer thinks should be used to express sonic state of
the domain. We will look at each category in turn, drawing on cases studies from earlier programs
for examples.

Arbitrary message-elements These derive their name from the fact that none of the properties
that they may have either for the speaker or the expert program have any effect on the way the
linguistic component realizes them. Their entrys do not decompose them nor do they use them as
a way to access other objects from the domain. Arbitrary message elements are such either
because they are primitives in the domain-atomic names are a good example, or because they are
being used as a stop-gap measure to identify some condition or state that the designer would like
the speaker to be able to talk about but for which the program does not yet have a name or

representing data structure.

Winograd's SlI1111 program [shrdlul provides a good example of an arbitrary message
clement. S um1 had a "failsafe" heuristic for the resolution of pronoun references: when it was
not certain of its user's intended antecedent, it would anounce the assumption it was making by

saying:

"B)' "IC I assume you mean the block whCh is aller than te one I aIholdil.2
SJ11mU did not have an explicit representation for the "mental state" that prompted these
announcements, i.e. there was no assertion such as (assuming-antecedent "i" blocki) ever
added to its data base. Instead, the semantic specialist within SiWUx that made the assumption
initiated a procedure call directly to the answer routines, with the pronoun and assumed
antecedents as arguments. Thus the only representation of the assumption and the intention to
communicate it was a transitory pattern in the program's flow of control.

If we were going to reformulated this part of si Ds output in terms of MUMiUtE, we

would have to do very much the same thing. Triggered, perhaps, by the same pattern of

procedure calls, would be a routine, conceptually part of the speaker, that would be responsible
for setting up the message and sending it to NIIIMIILJC. To construct the message, it would need

2. 1SillD) was not capable of producing a relative clause on its own. Ibis one is a paraphrase constructed from the
user's input sentence.

inteiface issues

I 243-.

Iy.1.1

Diciionaty design

some object(s) for MuMY-: to interpret. but since no existing object that already stands for the

assumption (i.e. it is only a process state), the message-building routine would have to make one

tip. It doesn't matter what kind of object the routine chooses as long as (1) the object is linked to

the entry that knows how to say "fy X I assume you mean "', and (2) sonic provision is made for

die two argument subelements. A list such as (G006 "it" blocki), would be perfectly adequate.

G006 would have no meaning anywhere except in MUmNrlqs Blocks World dictionary, where it

would be interpreted as an imperative to run the "I assume..." entry with the rest of the list as the

subelements. (The interface for the KIOM-nets-as-objects domain is based on lists like this; see

pg.<associating..assertions..with...entry-s>.)

Issonorphic message elements These are the "classic" message elements: logical formulas,

frames, data-base assertions. They are composite expressions that will be decomposed by their

entrys into a set of "subelements" with their realization given as a mapping of those elements into

the open slots of some phrase. The open phrases in the realization (as opposed to the phrase's

fixed text) correspond completely to the variable sublelements of the original element-hense the

name. The usual issomorphic message element is recursively constructed object with many

levels-corresponding ultimately to equally many calls to entrys-all of which constitute one

cofltigttotis object from the point of view of the expert program which if printed would display all

of the levels of deconiposition at once, as in:

(frame (duncan (part-of (value ma (see (relation8))))
(ako (value (king (see (relation24)))))
(hq (value (dead (see (relation47)))))))

Here, frame is realized il terms of its single subelement (duncan ...), which in turn is realized i
terms of its three subelements, and they by their own single subehements until the base of the

composition is reached and we shift to arbitrary message elements like king ordead.

The reqUirement that an issomorphic element decompose into subelements that become

part of the tree does not mean that the decomposition has to strictly follow the syntax of the

expert program, only that the number of subelements is fixed (it is declared as part of the entry)

and that the access routines used to find the subelements within the comppsite expression are also

fixed. The decomposition of the (part-of ...) expression above, for example, ignores the "extra"

level of list strIcture imposed by the token value and decomposes directly into the single element

ma. Value and see are constant parts of the FRI. syntax and can and should be factored out of the

message enUmeration process since they do not contribute any real information.

Issomorphic message elements like these properties are very common in the micro-speakers

that have been experimented with. Probably because they are a very common representational

style in artificial intelligence research. From the speaker's point of view they are very easy to work

with since they can be taken over into standard linguistic matricies that are then specialized by

default coherency rules-the speaker is able to initate reasonable quality texts without needing to

inteiface isues

-0244 -

IV.ll

Dictionary design

think about the details. (This is very true for the KLONE-nets-as-objects domain.) On the other

hand, a dependence on issomorphic message elements will lock the speaker into a single

enumeration mechanism and thereby into a single level of abstraction, i.e. the one that the

designer of the expert program uses for its internal calculations. This can be awkward and can

require multiple representations of the same domain information-redundancies from the

expert's point of view-in order to be able to describe that information at multiple levels of

abstraction. An alternative design is to employ "shopping list" message elements and have the

levels of abstraction defined only within the dictionary or the speaker.

Shopping list message elements Like issoniorphic elements, these elements are realized in

terms of other "sub" elements. The difference is that the number of subelements is not fixed-it

may differ from instance to instance-and further that the relationship between the element and

its subelements may be far more arbitrary: the speaker may have brought them together only for

the occasion of one speech-act. The subelenients are either selected as the element is being

realized by default reasoning within the element's entry (as in the entry for KI-ONE "roles",

pg.(roleentryn.y.w.>), or well be fore then by the actions of some earlier entry or'of the speaker.

In this later case, the form of one of the element in the message is also unusual: it consists of

a pairing of the element itself with a list of other message elements-the shopping list-which are

the sublements from which the realization is to be constituted. The pairing is created through

the application of a general purpose choice3 with the name describe as shown below with the

example from page <c3O-example>.

(describe '03
((value-restriction C303 state)
(next-state C205 C303)))

C303 is the "shopping-list message element" and the two assertions: "(value-restriction ...)") and

(next-state ...) are the "shopping list" that has been choosen to describe it this time.

The "blocks" of smuuw's 1Blocks World are prime examples of shopping list message

elements. Each block has a name, e.g. :26, and that name appears in a predictable set of

assertions that collectively serve to characterize it, e.g. (isa :66 # block), (color :B6 red), (size

:66 (200 300 300)), and (#support :table :6). A description of :66 can either The entry for

blocks (pg.<blockentry>) has one decision for each different kind of assertion that could ever

apply to a block: one looks for isa assertions and knows that the third item in the assertion can be

used as the sourse for a head noun, one looks fOri support assertions and knows that they are

3. Choices of course are actions taken by etrys, thus we are assuming that this examnple originated as the decision of an
entry: if instead it originated with the. message builder-who presumably does not share our taste in program
devices-then the pairing could be brought about by something else with the same ultimate effect: an elint-instance for
the element with the describing subelements as one of its attachments.

interface issues

- 24.5 -

IV-1-.

Dictionaty design

realized as clauses and should be mapped into the qualifier slot, and so on. A specific shopping

list will pick out a particular subsect of the complete set ans use them, via these decisions, to form

a phrase.

Since the set of assertion-types that can describe blocks is both small and largely unique to

blocks, the blocks-entry is designed as a maximal set of decisions that will be filtered by the

shopping-list for each block instance. Further, since every shopping-list was created by another

entry (i.e. they did not occur in messages), then a special device-meta-decisions-was used to

perform the filtering and to capitalize on the fact that the reasoning was done entirely internally to

the lingustic component. If, on the other hand, the shopping-lists are created earlier or the

message elements in them can appear in many contexts and have well-developed entrys of their

own, then an alternative form of entry is used, one that is completely general purpose, deciding

only where the subelements should be positioned with respect to a'common matrix and then

employing the subelement's own entrys to do the actual realizing (as with C303, page

<c303_entry>). Both cases . are taken tip at some length later in section

<entrys.for.shoppi ngilist-jnsgselmts>.

Conscious versus unconscious speakers

Technical matters aside, the point of having a separable linguistics component is so that the

speaker can be unconscious of the linguistic rules that are being followed as it produces a text. I

mean this in a very specific sense. Even though a message that the speaker sends to the lingusitic

component is couched in a domain-based, non-linguistic vocabulary, its meaning is linguistic, i.e.

it isa program of instructions to the linguistic component, which, after interpretation by the

dictionary, will initiate a sequence of linguistic actions. Were the speaker required to be conscious

of linguistic rules, it would then be required in the construction of its messages to take into

account the kinds of linguistic actions the parts of the message would initiate and the constraints

imposed on those 'actions by linguistic rules such as "[subject preceeds [predicate]" and

"passivization effects what will be the [subjecti". In saying that the speaker is allowed to be

unconscious of such rules, I am saying that it is possible for a speaker to plan a message solely on

the basis of non-linguistic facts about the parts of its messages; the linguistic component's

understanding of the message vocabulary, of its conceptual structure and of the relations that

compose it into whole messages, will be sufficient for the component to coordinate the realization

of the message with the constraints of the linguistic rules without further deliberate planning by

the speaker.

'he idea that the speaker and lingiistic coinponent's should be separate modules--separate

"planning-engines" as it were-is based on the intuition that there are different conceptual

vocabularies and different plan representations involved, and that conflating them into one

process is 'a mistake'. This is enforced in the design of the linguistic component by the lack of any

interfaee issues

10246 -

IV-1-.

Diciionary design

provisions for monitoring of linguistic procedures, editing of the message once sent, or of

scanning the linguistic plan (i.e. the surface structure tree).

Since the speaker is to plan (i.e. constraint) its message4 solely on the basis of its own

conceptual vocabulary, the fluency of its texts will be only so great as that vocabulary allows. So

for example, if we were the speaker for the Macbeth domain and all we had available as our

message vocabulary was nil. structures and the primitive vocabulary of the domain, then our

output would be no better than, e.g. -

Lady Macbelh persuaded Alacbeth to murder Duncan in order to cause his mutder She
caused his murder by persuading him to do it.

(From the example on page <clumsyna>.) But if we were to add to our vocabulary notions such

as focussing a text on a character or relation, or that different parts of a frame could have a

different relative importance in individual rhetorical contexts, or that the large-scale order of the

text made a difference in how people received it, then we could take the same "raw material" and

say something like:

Because Lady Alacbedh persuaded him to do it, Macbeth nmrdered Duncan.

Of course I am not prepared, today, to present a list of the rhetorical concepts (plus their models)

that should be added to every speaker, though I have written about experiments in this direction

(e.g. section 111.1.2, [victorj). B ut I believe strongly that such a list can be developed by empirical

study and synthetic experiment (i.e. testing micro-speakers), and that speech-acts can be planned

in terms of this "interlingua" with the speaker assured solely on the basis of its understanding of

interlingua that its message-level plans can have coherent linguistic realitations.

Pitfalls of unconsciously composed messages

The speaker's concepts in the message and the linguistic concepts in the text need bear no

semantic relationship to each other-the actual alorithms of the linguistic component cannot

enforce a relationship and cannot even notice if there is one. Since messages are always

interpreted by their dictionary, it. is ultimately not the the message that matters in the selection of

the text, but the entrys that the message triggers. One could design messages as trees of entry

names or of abstract symbols with no counterparts elsewhere in the domain, so long as their

enumeration orders "picked out" the entrys that one intended should go with that state of the

domain. If its messages were this arbitrary with respect to the conceptual structure of the domain,

we can say that the speaker (the message-builder rather than the dictionary) is entirely

4. Of the micro-speakers, logic and digitalis definately did not plan their messages, neither did the minimal text version of
Macbeth although the projected version used for the example in the introduction is expected to plan. T1e larger-scale
entrys or the KlA)NFnets-as-objects domatin did plan, in tha they made tests and delibeated (unconsciously) over the
effects that different numbers of propositions would have on the readability of the text, The tic-tac-toe domain is expected
to make extensive use of plan schema to constrain the amount of detail that is included in. the text according to the
rhetorical situation; see [victor for an initial discussion.

interface issues

- 247 -

iv.t.1

Dictionaty design

unconscious of what it is planning to say.

'[his ability to use "arbitrary" message elements gives the human designer a great deal of

power to compensate for conceptually impoverished domains by "putting words into their

mouths" via the dictionary. I used it on several occasions with the micro-speakers. In the logic

domain, for example, the unitary concept of"universal quantifier" was expanded in the dictionary

to discriminate number and choice, i.e. "each", "every"/"all", "any" (see

pg.(conceptual-augment>). Similarly, none of the rhetorical effects in the barber proof

subargunent that was used to justify the universal instantiation (pg.32) were motivated from the

literal text of the proof but instead were specified only in the entry of the universal instantiation

inference rule. In a more sophisticated logic program, one could imagine that these two

"compensations" might be unnecesary; though other kinds of compensations (such as the

assignment of the name "Giuseppi" to the constant g) are likely to always be needed.

The indiscriminant use of arbitrary message elements to "trigger" complex phrases can be

dangerous. The designer fixes the choice of phrasing to suit a particular program-audience

context; if that context changes without a corresponding change in the message then the wrong

information will be cornunicated. The subtle "non-synonomy' of the two hedges, "I think that..."

and "possibly" are an example (pg.178). Everyday computer programs that produce natural

language texts through the use of templates are using a technique entirely analogous to arbitrary

message elements. By fortuitous circumstances, the "conversational situations" of these programs

are very simple (i.e. single sentences, no conversations, no indirect references, no contingent

modifications), and consequently they do not stiffer too badly from the lack of flexibility that

always accompanies this technique; see [ddnupast] for an elaboration.

in the actual experience of the more complex expert programs however, completely

arbitrary messages are a rare extreme. More often it is the case that those particulars of the state

of the domain that the designer would want to communicate are already represented in the

domain by explicit data structures that the speaker can manipulate. Furthermore, there is usually

an issomorphism between the data structures and the desired English texts that'a dictionary can

be designed to capitalize on; in which case the easiest way to proceed is to have the message

assembled directly from those structures, and to design the interface functions to link them to the

entrys.

intetifce issues

0- 248 -

.l -t1

Dictionary design

2. Technical constraints onthe interface

The principal job of an interface is to associate message elements with entrys.5 Its other

jobs divide into two classes: (1) manipulating the elements for linguistic purposes, and (2) asking

linguistically motivated questions about them. As discussed in section interface.functions...y.w.,

these jobs are broken down into separate functions, i.e. when an entry or a grammar-routine needs

some information about a msg-clmt, it applies the appropriate interface function to the msg-elmt

and receives the needed information as the value of the function. The functions that make up the

interface are the only ones in the entire linguistic component that must actually "touch" objects in

the domain of the speaker and expert program. For this reason, I expect that they will have to be

rewritten with each new domain, or, more precisely, with each change of representational

conventions and implementation language. -How the functions should operate internally is left to

the convenience of the designers of the various domains so long as the input/output behavior

meets the specifications of the theory (pg.<interface..functions.n.y.w.>).

We will first look at the notion of a "first class object", taking it has a succinct statement of

the properties that a message representation must have if an interface is to be written for it. We

will close the section by considering some of the ways that have been used for form the link

between message element and entry.

2.1 First class objects

When we cone down to the level of a specific implementation of the linguistic component

such as MUmRlEu, the choice of a functionally-defined interface places one unbendable restriction

on the implementation of msg-eimts, namely that they must able to be passed to and returned by

a function; in the jargon of computer science, they must befirst cass objects".6

Abstracted away from implementation terms, the interface demands that a msg-clmt be a

sign or name that can be dependably used over sucessive messages to pick out the same 7 object in

the domain. The principle motivation behind this demand is the fact that the subsequent

reference routine specifically looks for subsequent instances of "the same" msg-elmt as its signal

to consider the use of a pronoun.

5. The job of decomposing the message-oF identifying what the message elements are-is arguably prior; however, it
can be left to the entrys. See section <decomposing...nessage...lemets>.
6. Arrays are first class objects in AP1 , strings are in SNOIOL, only numbers are in FORTRAN, and practically
everything is in 181.
7. To be precise, the linguistic component's notion "same msg-elnit" may also be defined by on a "per-domain" basis as it

is vested in the interface function same-msg-Clmt. 'thus giving (lie designer the ability to use as idiosyncratic a definition
as they lind necessary.

inietface issues

- 249 -

IV.2.t -

Dictionaty design

The first class object restriction is not always met. Inside there expert program certain

kinds of data structures may serve their representational functions perfectly well and yet be

completely unacceptable in that function once removed from the program and its implicit context.

In these cases, the only recourse for the designer is to constructs an artificial set of first class

objects to stand in for the original data and to use these in the messages. T'his was done for K-

ONE-nets-as-objects domain (pg.<arti ficiaLfi rstuclassobjects>) when certain critical relations in

the KI-ONE nets were found to be represented by unmanipulable table entries. Let us look at this

problem of "underprivilaged data" as it could arise in the well known LUNAR program.

An exanl)le of a non-first-class object

'he LUNAR program [lunarsl t__rCl][lunarifinal-report] used data collected on the

A1POLLO-1 moon landing to answer questions about lunar geology. Its knowledge was given in

the form of tables of numbers indexed by mineral and sample. The user would ask, e.g., "What is

the average plagioclase content in crystaline rocks?', and LUNAR would reply: "26.02778". (Taken

from [l narjfinal-report] pg.031.)

As far as LUNAR itself was concerned, "26:02778" had no me'ning. It was just a number,.

the value of the quantified expression constructed from the parse of the geologist's question, and

it existed in the program only long enough to be printed out. On the other hand, to the geologist

who asked the question, 26.02778 was the extension of the concept "the average content of

plagioclase in crystaline rocks". Suppose that we wanted LUNAR to be able to use this concept in

its output, and j)roposed to do so by writing an entry based on the concept taking the number as a

parameter. What would we associate this entry with? It couldn't be with the specific number

26.02778 if only because that number was the result of a calculation-it had no manifestation in

LUNAR before the question was asked. Nor could it be with the data type "number", since that

would tar with the same brush the individual numbers for "aluminum in breccias", for

"potassium/rubidium ratios", and so.on. For the same reason, it couldn't be with the variable

that the number was the value of (X10, below).

The right kind of object would be one that (1) was a single expression, and (2) was

sufficiently specific that it could not be mistaken by entry-for for any of the other geological

concepts in LUNAR's memory. The one potential candidate is the expression Irom which 26.02778

was calculated, shown below.

itutetface issues

-0250 -

IV.2.1

Dicuionaty design

(for te XIO/
(seqi (average XII /

(ssunion X12 /
(seq volcanics): T;
(dataline (whqfile X12) X12 overall (npr* X13 'pag)))

t))

(printout XIO))

The difficulty with using this expression is again its form: it specifies a procedure, specifically an

instance of a general schema for evaluating quantified expressions. As such, it bears little direct

resemblance to any text we might want to use and thus would have to be scanned to extract the

parameters that determine which geological concept it is dealing with (e.g. volcanics, average,

and plag). The rest of the expression would essentially be thrown away. 'Ihis problem of having

to filter out procedurally oriented structure before being able to make a declarative statement also

came up in the work with the Digitalis Advisor.8

2.2 The msg-elmt to entry link

Because the dictionaiy entrys are so central to the operation of the linguistic component,

the link from an msg-elmt to its entry is the most important of all those in the interface. It is also

the one most liable to change as the representation and conventions of the domain change, hense

its definition in terms of an interface function, entry-for.

All implementations of entry-for have in common an explicit association between each

message element and the name of the int that is designated to realize it. They differ in how the

association is implemented: It may be given as an immediate part of the element (i.e. as a property

or as one of the fields in its record), or it may be only an association list or a discrimination net

within entry-for proper. It may be direct, referring specifically to individual elements, or indirect,

defining the association in terms of element types rather than individual elements.

Regardless of which technique is used, the link is constrained to depend only on the

characteristics of the individual message element. The context of the element's position within the

message or details of the state of the expert program may not influence which entry is used.

(Though that context may influence what the entry decides to do once it has been selected.) The

reason why there can be no reference to context is that the treatment of msg-elmts within the

linguistic component will not support it: the component decomposes messages, scattering their

elements to separate positions within the selected linguistic matrixes, and does not keep a record

8. At this point we can see another, unrelated problem that would have to be deal with il this expression were to be used
as the source. of a message. The geologist's vocatulary underwent some cannonicalization on route to the expression.
Unless the cannonical terms cani be linked back to the geologist's original expressions, we would not know which of the
several :nglish phrases that LUNAR interprets a4s, e.g.. volcanics should be used in the reply and there would be a
danger of being incoherent--giving the listening geologist the impression that we understood something other than what
she said.

inietice issues

4D 251 -

IV.2.2

Dictionaiy design

of the elements' former positions (bedause there is no independent need to).9 With minor

exceptions, the only part of the component to actually trace out the msg-clmt--entry link is the

controller, and it does so only when an lint-instance is encountered at a leaf of the tree,

necessarily in issolation from the other elements. Thus as a requirement of the interface the link

must be defined strictly on the same issolated basis as the message element itself is.

Contextually-defined message elements

When a message element can be identified-linked to its entry-solely on the basis of its

computational properties in issolation, it will be referred to as self-defined. Thus far, practically

every message element of the micro-speakers has met this criterion, but there have been

exceptions of a predictable sort: many programs manipulate complex objects whose parts acquire

a special meaning by warrant of being part of the complex without having any explicit annotation

of the fact. This can happen whenever a program deals with the parts only in the context of the

whole complex; the FiL "frames" (pg.<contex tuaLdefinitions>) are a good example. When one

of these complexes is passed to the linguistic component and then decomposed, finding entrys for

its contexitually-defined parts can be a problem. This problem is simply that the literal

manifestation of a coiltextually defined message clenilt has nothing to do with its meaning.

Any attempt to tie the two together just with a dictionary entry (e.g. as an "arbitrary" message

clement) may succeed in a few special cases, bUtt more often than not, it will be frustrated by

overgenerality (e.g. interpreting every number as a plagioclase content) or by the need for

baroque excursions into the expert program in order to glean enough specific information to be

certain of which entry to use.

In these cases, the correct fix is first to designate some entry(s) to be selected by whatever

specificity does remain in the parts. (The dictionary for the Macbeth domain, for example, begins

with just the distinction between LISP atons and non-atoms.) This entry functions as a dispatcher,

looking for a specific set of clues. The remaining part of the fix is to arrange for the placement of

further clues: At the tifle the "parent" message element for the contextually-defined element is

realized, we have a record of the meanings of its parts stored in the tree in some form. The record

could be as literal as adding an attachment to the lint-instances of each of its subelements, or as

subtle as positioning a sublementin a nominal slot rather than a clausal one.

9. Aside from as a means of further specifying entrys, why might a record of an element's relationship to its message be
useful? One possible reason (not developed here) would be to lacilitate bargaining between the linguistic component and
-the speaker: The speaker might post several goals in its message only to have the linguistic component rind that syntactic
or rhetorical restrictions made it impossible to realized them all. At that point, rather than carry out its own triage policies
(as done presently), the linguistic component would "ask" the speaker which of its goals it would preler to give up. T1e
mechanics of barganing are non-trivial. just to pose such a question there would have to be a language for describing the
relation of the elements in question to the message as a whole. lII the simples cases a unique index for each message

.element might suffice; however, reasoning about the message structure and the linguistic constraints would require
structural descriptions and an abstract "metarlevel" vocabulary for messages -something that would require considerable
research to develop.

interface issues

-.252 -

IV.2.2

Dictionaiy design

This technique turns out to be really no different from what happens when an entry makes

a realization decision that cannot be immediately acted on and must store the decision in the tree

until the controller reaches it. The only potential difference would be in the vocabulary of the

records: descriptions of delayed realizations are by their nature linguistic, while the description of

a message element would presumably be in terms of the concepts of the expert program.

A case in point is the "assurmption" label in the transcription of a natural deduction proof as

on page (barber.proof>. A formula can be called "the assumption" if it is the formula of the line

of the proofs prernis (and, of course, we are dealing with a "proof by contradiction"). Nothing

about the formula itself indicates its special function, only its position within the proof. The

dictionary that interprets proofs for MUNIBI.E realizes a line's inference rule before its formula (the

formula is passed to the rule's entry as a parameter). This means that it is the entry for

"premises" that must be responsible for preserving the information that its formula is "the

assumption", which responsibility it discharges straight-forwardly by assigning the label to the

formula (the details of how the label is attached are given on page <conceptuaLaugment). Label

assigned, the formula is now associated with an set of entrys, that will make the decision about

whether to use its literal or its labeled realization.

3. Designing entrys

3.1 Basics

As has been said many times before, the basic mission of an entry is to describe how the

msg-elnits linked to it by entry-for can be realized. In this section we will look at the several ways

this has been done, and will look at the first steps for providing a common, transformable

representation for entrys analogous to the representation for surface structure.

Conceptually, dictionary entrys have three parts:

(1) the decomposition of the msg-eint into (instances of) its proper subelements.

(2) the set of choice-applications from which the realization is selected.

(3) the list of decision-rules that test the current context and dictate the selection to make.

Accordingly, to design an entry you must: decide how its msg-elmt (or class of msg-clmts)

decomposes; decide how it could be expressed in English in terms of that decomposition; then

decide how the different choices of expression vary with context. These facts and contingencies

are the information the entry is to represent, and making those decisions is the bulk of the effort.

The remainder of the effort goes, of course, into couching the information in the linguistic

component's notation, something that is not intended to be a burden.

enty (esign

- 253 -

IV.3.t

The Dictionay

-Decomposition

Exactly what "decomposition" means depends on the category of msg-elmt that we are dealing

with. If it is an arbitrary element, its meaning for production is not explicitly represented

anywhere in the domain (only in the designer's mind) and thus it does not decompose at all. IfWit

is an issomorphic element, its structure matches that of the eventual utterance; decomposing it is a

matter of identifying the "contentful" subexpressions uwithin the body of the element and

extracting them from their relational matrix. The experience with issomorphic msg-clmts in the

micro-speakers has been that they were always decomposed in the same way regardless of context.

'[his made it possible to retrieve and declare the subelements all in one block at the beginning of

the entry. If, on the other hand, it is a shopping-list element, its decomposition will tended to vary

according to the speaker's intentions. This is because computationally, shopping-list msg-clmts

are just pointers back into the domain-they have a potentially unbounded set of subclements.

Since the decision of which subelements to include is intertwined with the selection of the

realization, the process of retrieving the subeletrients and defining them within the entry is

dispersed among its individual decisions.

In both the issomorphic and shopping-list cases, however, the same syntactic device is used

in NmmLE to declare ("name") the subelements and and the expressions that calculate them,

namely a table of local-variable-access-expression pairs (a "variable-definition-table"; see the

grammar for read-time entry expressions, page <entry-bnf>). The local-variables are just a

syntactic means of referring to the subelements from within the decision-rules, and thus may have

any names the designer finds menmonic. Their scope extends only as far as the decision or entry

in which their variable-definition-table appears. The access-expressions that compute the

subelements should use whatever functions would be appropriate for dissecting the msg-elmt in

its own domain, reflecting the fact that the entrys are conceptually part of the speaker. All

access-cxpressions are evaluated by a special part of the entry-interpreter, die extra-linguistic-

evaluator, which is formally part of the interface and would be rewriten as required .for new

expert programs.

As an illustration let us look at the entry defaulutproperty-entry from the dictionary for the

Macbeth domain.- As you may recall from the discussion in . section

winston-sanalogy-progranmn.y.w.,- the nsg-elrnts of this domain are already very close to

English in structure, and when in an unmarked context can be realized simply by mapping their

subelements into a single-object clause. a typical msg-elmt from the Macbeth domain is

(macbeth (murder (value (duncan))))

10. When the linguistic component and the expert program do not share the saute comyutational environient, some
provision must be made to "transport" the access-expression and its calculated value between the two. Since this transport
can he handled by a general mechanism in the extra-linguisic-cvaluator, there is no reason why at least the names o the
expert's own functionts shouldn't still be used for convenience.

entry design

-0 254 -

IV.3.1

which is implemented as a iisi' list structure just as shown. Below is the entry that performs the

mapping from list structure to clause:

(define-entry defaul tproperty-entry (property)

variables ((frame-name (car property))
(property (caadr property))
(value (caadr (cadadr property))))

default (clause-one-object frame-name property value))

The variable-definition-table is indicated by die key word variables. It declares three local-

variables: frame-name, property, and value, and defines them in terms ofisr list-structure

decomposing functions that use the local-variable "property" (the entry's parameter) to reference

the msg-elmt to be decomposed.

Choice-applications

The determination of how a insg-elmt should be decomposed is made hand in hand with the

determination of what texts could be used to realize it. Initially, this means setting down

alternative texts given just tie meaning of the msg-elmt inside its domain. The next step has

usually been to how these alternatives relate to tie identifiable subelements of the msg-

elmt-what are the "variable segments" within the texts? This leads to the identification of what

in linguistic circles would be referred to as sentential forms for the variablized texts: schematic

descriptions of the syntactic strulcture relating the selected words and variable segments. Using

tdese, one picks out the choices in the established grammar that have a matching structure and

paranieterization, which become the basis of the choice-applications that appear in the entry. (Of

C0urse 011Calso needs to relate the alternatives to context, which we will take lp below.)

To a human, any interesting object in an expert program will suggest many alternative

realizations. A toy block from Winograd's Blocks World, for example, can be described in dozens

of ways just by varying the in formation that is included, and leaving aside variations in determiner

choice and pronominalization. H erc are seven: "a block", "the block named superbock", "a i-ed

one", "the big block", "the big red block", "the big red block to the right ofithe box", "the block i/sat

supports one of the green cubes". This wealth of possibilities may seem impossible to formalize;

however, a few moments consideration will reveal an underlying pattern to these alternatives that

one can exploit in the entry design. (As Blocks-World blocks are shopping-list style msg-elmts, I

will delay discussing then until we have looked at the simpler case of issomorphic msg-elmts.)

Consider how we might realize a logical implication. Implications have two subelements,

an "antecedent" and a "consequent", that will be what fill the variable segments-what we must

now specify for the entry is the linguistic relationship between them. From the logician's

vocabulary we get two iiinediate suggestions: a compound sentence based on "if-then", and a

single-clause sentence based on the verb "iniplies". A little more thought will bring up the

enty design

The Diclionaty do 255 -

IV.3.

conventional use of the implication as restriction on class membership (i.e. "tll men are moral").

From here one can expand the set of alternatives to include "transformational variations" such as

exchanging the order of the if-clause and the then-clause, or to include "synonomous variations"

on the lexical choices: recasting the if-clause as an embedded question, or saying "has as a

consequence that" in place of "implies".

Once the alternatives have been laid out, they must be formalized-translated into the

representation of the linguistic component: choices, parameters, maps, phrases, words, and

constituent-structure-labels. When the designer is working with a mature grammar, there will be

a library of predefined choices to select from. When working with a still growing grammar

however, entry design will influence choice design, not so much in terms of the linguistic analyses

used, but in the choice of parameterizations. Whether the verb "implies" should appear as one of

the choice's parameters or as part of the phrase, for example, is largely a question of which design

will be most efficient for the dictionary designer to use (also see pg.45). The formalization of the

alternatives proceeds as follows: (see also the accompanying figure)

(1) The parameterization is decided upon. This determines the sentential forms.

(2) The linguistic structure that the sentential forms should have is analyzed.

(3) The corresponding choice is found in the grammar. If it does not yet exist, it is
constructed from constituent-schemas, constituent-structure-labels, and hooks as
necessary.

(4) Finally, the local-variables in the entry that denote its parameters are brought

together with the choice to form the choice-application.

Decision-rules

Generally speaking, it is dangerous to provide a program with alternatives without

simultaniously giving it some criteria by which it can determine which to use in a given situation.

Texts that appear at first glance seem to be synonomous often reveal subtle but telling differences

in meaning once they are used in a certain marked context or made to interact with certain

modifiers (Recall the example of "possibly" and "I think tha(..."; page 178.)

The experience with the micro-speakers was that alternative texts would come to mind; I

would try them out in several discourse contexts, trying to imagine whether or not I would want to

use them were I the speaker in that context and why; and eventually some explicit, computable,

criteria would become apparent if only as an experiment. So, for example, the implication.entry

was designed first to relect a stylistic ordering on the three alternatives: subject-predicate sounds

better than A-implies-C, which in turn is better than if-A-then-C, second to reflect (tentative)

restrictions on logical and linguistic properties that the subelements must have if a specific choice

is to be usable. These criteria appear as predicates in the "load-time" representation as shown

below. (Note the use oa default to insure that the decision will always make a selection.)

enity design

The Dictionary -0256 -

IV.3.'l

The Diciionamy

PARAMETERIZATION

"If A then C."
"A implies C."

A C."

LINGUISTIC STRUCTURE

clause-i (complex)
clause-1

[if-slot coordinated-slot][then-slot coordinated-slot) clause-I
A C [subject][predicate]

A vp-2 [subject[predicate]
A C

[mivbllobjcctll
implies -C

CHOICE- AIPLICA TIONS

(if-then-clause A C)
(A-implies-B AC)

(subj-pred A C)

(define-entry implication.entry (wff)

variables ((antec (antecedant wff))
(conseq (consequent wff)))

(matrix
default (if-then antec conseq)
((A-is-a-subject-for-predicate-B antec conseq)
(subi-pred antec conseq))

((propositionp antec)
(implies antec conseq))))

It was not always possible to find usable criteria: In general, even though as a hurnan

language user one may feel that two alternatives differ in a certain way, it is (1) difficult to convert

one's "feeling" into objective criteria, and (2) still harder to find within the expert program the

aOnceptual distinctions needed to support those criteria. This comes as no surprise since it is only

rarely that we are aware of making these decisions ourselves and our scientific understanding of

these proximal causes for utterances is effectively nonexistent. Consequently the assignments of

"contextual contingencies" to choices should be treated more as synthetic

experiments--hypotheses about language use-than as facts about how people use language.

Criteria for ordering the decision-rules

In compiled entrys, the usage criteria of a decision are organized as a discriminaion net, i.e.

as a single rooted, binary branching, acyclic directed network of predicates, with choice-

enity design

-257 -

I-V-I

The Dictionary

applications as its terminals. To make a decision, the decision-interpreter traverses the net starting

at the root, selecting branchs on' the basis of the value in the present context of the predicate at the

branch point: the decision is the choice-application on the particular terminal reached.

What actually must appear in a decision on the other hand is a list of decision-rules: a

flatened and clumped discrimination net. The reason for not using an actual discrimination net is

that tree structures are far more difficult to scan and cross-index than single-level lists. They are

also more difficult to edit and display-important considerations for the designer who must

actually build the entrys.

A specification of the syntax of a decision expression was given in the definitions section on

page <decision>. The choice-applications and their selecting predicates are organized into

decision-rules as a typographic device. Two remnants of procedural structure of the

discrimination net remain: (1) the predicates are ordered within their decision-rules; and (2) the

decision-rules are ordered within the decision. Since the decision-interpreter follows this

ordering, moving on to the next decision-rule whenever one predicate is false and selecting the

choice-application of the first decision-rule whose predicates are all true, this order must be taken

seriously, by the designer.

Decision-rules must be ordered within a decision so that those choice-applications that are

most desirable (all other things being equal) are earlier in the list than those that are less desirable.

As an additional matter of efficiency, decision-rules whose predicates are completely disjoint in

the decision space (i.e. the truth or falsity of one has no implications for that of the other) should

be ordered so that the most easily evaluated predicates are earliest in the order. In non-trivial

decisions, there will inevitably be instances of predicates repeated across decision-rules; one either

puts tip with this inconvenience or uses one of the "syntactic sugaring" techniques discussed

below. In any event the redundancy will go away when the entry is compiled.

As a rule of thumb, the order of predicates within a decision has been:

(1) special cases that are explicitly marked

(2) easily tested general cases

(3) elaborate or potentially time-consuming cases

Since decisions must produce values, there must be a default choice-application if the predicates

of the decision-rules are not guarenteed to catch all possible cases. If for some reason a decision is

trudy "undefined" in some.context, then the proper way to express that fact would be to use

gating-condition to control the use of the decision as a whole.

We can see this order reflected in formula-entry from the logic domain, shown below.

11. This entry handles both existential and universally quantified formulas: this design choice was made bcause it

allowed the default text ('for<quantifier> <variable>, <body>") to be shared. (ivei the two quantifier-particular choices
in the decision. an equally good argument could be made for their separation.

ently design

- 258 -

IV.3.

The Dictionaty

Only the matrix decision of this entry is actually spelled out here; the other three will be taken up

later in the section on multiple-decision entrys.

(define-entry formula-entry (wff)

variables ((body (sentence wil))
(var (var-bound wff))
(quantifier (qtype wff)))

(matrix

default (for-x-clause var body)
((has-attachment wif 'is-a-definition>
(force-litteral-iff body))

((focus-on-variable var)
(focussed-clause body var))

((equal quantifier 'universal)
(has-attachment wit 'characterize-as-a-set)
(focussed-clause body var))

((equal quantifier 'existential)
(in-a-nominal-context-will-be-an-np body)
(there-is-an-X body))

((in -a-clausal-context-will-be-a-simple-clause body)
(clause body)))

(express-quantification ..)

(negation)

(emphasize-polarity ...)

The first decision-rule ("(has-attachmen .)") is used to detect and implement a decision

that may already have been made by some earlier entry, namely that the Formula is to be

understood as a definition, e.g. "there is space on a swface frr a block if and only ifitat suface is

the table or i has a clear top"; it was the responsibility of the routine that choose to treat the

formula as a definition to insure that it was a biconditional. The present choice acts by marking

the biconditional so as to preempt the forthcoming matrix decision of its entry; see

pg.<forcc..literal.iffn.y.w.> For elaboration.

The second and third decision-rules also detect earlier decisions, though less specific ones:

"focus" and "set-ness"; formula-entry is in effect interpreting those decisions for the specific case

of a quantified formula. Note that they both selected the same choice-application.

'the last tWO decision-rules involve potentially lengthy "simulations" of the logico-linguistic

properties of the formula's body (see section reasoni ng...bouttpossibleschoicesn.y.w.). That is

one of the reaisons for their rear-guard position, another is that the cotditions they test for are not

necessarily disjoint with those of the earlier (ecision-rutles and special cases must be ordered

entry design

- 259 -

IV.3.

The Diciionary

before general ones.

3.2 Syntactic devices to help in entry writing

Once one understands how a dictionary for a given domain should be designed, there still

remains a great deal of physical labor in entering the actual entrys. T['his labor can be lessened by

the use of some simple programming devices whose common effect is to abbreviate the amount of

information that the designer must explicitly specify. The abbreviations take'two forms: (1)

"schema" that parameterize entire entrys, and (2) decision-extension "macros" that enable the

common parts .of a decision's decision-rules to be presented as such in the load-time

representation but expanded out into the normal, time-efficient-space-consuming representation

at run-time.

Entry schema Every micro-speaker dictionary has included dozens of "trivial" entrys, i.e.

entrys that were short (e.g. just a default) and predictable (e.g. all of ten entrys might be identical

except for one term). A typical example would be the entry from the Macbeth domain that

associated the word "Lady Alacheth" with the internal token lady-macbeth. (The entry itself

does little more than formalize the use of the proper name. iThe actual "association" is

incorporated into entry-for (see pg.<contextual-definition>), causing it to select this entry in

response to the token lady-macbeth.)

(define-entry lady-macbeth.entry (atom)
(matrix

default (use-proper-name 'jLady Macbethi)))

The Macbeth domain has one of these entrys for every token in the domain that could be named,

i.e. every character, scene, location, or attribute-everything but the relations. Given this

regularity, a load-time function was written to, in effect, define a schema for this "class" of entry.

The function is applied to the parameter pairs, e.g.

(name-entry 'lady-macbeth 'ILady Macbeth)

and produces their entry by instantiating the schenia. It also installs the association in entry-for.

The same thing can, of course, be done for the relations as well, except that these

functions/schema are necessarily more complex because of the need to extract arguments from

the msg-elmts and to describe the order in which they are to appear. Arguments are coordinated

by the expedient of estabishing a uniform naming convention for the local-variables that will be

referred to by the entrys for, e.g., issolated F;lm properties, and following that convention in

naming the arguments to the function. Thus, for example', a property for which the designer

wanted to use a special phrase, e.g. part-of, needs to reference the "value" field of the property

ently design

- 260 -

I V.3.2

The Diciionaty

but nothing more.12 In the expression that the designer writes for part-of (given below), the

value is referenced via a local-variable of the same name. (As a further simplification, we lighten

the designer's burden by allowing the expression to directly define the phrase, and map, leaving

the implied choice to be constructed by the function. T his is appropriate in cases where the

choice is used in only one entry.)

(define-vp-entry 'part-of
phrase (vp.predicate-nominative 0

pred-nom (regular-np)
head "character
qualifiers (regular-prepp 0

prep "ll")))
map ((value . (pred nom qualifiers prep-obi)))

When the function define-vp-entry has finished it work, the result is the ." full-fledged"

entry below. 'ihis entry is designed by convention to realize "[predicatel's", i.e. if the FRIl

property were (duncan (part-of (value (mc)))), then part-of-entry's parameter would be (part-of

(value (mc))).

(define-entry pa; t-o-entry (property-namevalue)
variables ((value (car (cadadr property-name.value))))

default (pait-of.choice value)) ;this C10IE is shown on pg.80

Decision-extensions The major problem with not using an actual network representation for

the descrimination nets is the inability to share common predicates. To be sure, one can make tip

for the extra labor this implies through the liberal use of a good text editor; however, the results

are not aesthetic and can be confusing to the casual (human) observer.

As a partial solution to this problem, some "syntactic sugar" has been added to the load-

time design of entrys in the form of decision-extensions. Computationally, decision-extensions

are subroutines (or better, macros); they make it possible to introduce a tree structure of a sort

into the textual form of a decision's decision-rules, while preserving the computational efficiency

of the decision once it is conpiled. Syntactically, decision-extensions are independently defined

entrys or decisions, i.e. lists of decision-rules, possibily with additional variable-definition-blocks.

They are used in place of a choice-application inside a decision-rule of the original decision. This

allows them to, in effect, distribute the predicates of the "calling" decision-rule over the new

decision-rules of the "called" decision-ex tension.

A prime example of decision-extensions at work is afforded by the predicate-entry in the

logic domain, shown in (he accompanying figure. Ihis entry consists of a nmatrix decision that

12. By further convention, the frame-name is always made the [subcctl of the realization and consequently only a
verb phrase needs to be specified.

entry design

- 261 -

IV.3.2 -

The Dicmary 262

(define-entry predicate-entry (wff)
variables ((name (predicate-name wff)))

(matrix
((is-slot 'clausal)
(predicate-as-clause wft))

((is-slot 'predicate)
(predicate-as-clause wtf)) :EQUI-NP-DWE.ETJON applies obligatorily

((is-slot 'nominal)
(predicate-as-np wff))

- ((is-slot 'modifiers)
(predicate-as-np-mod wff))

((is-slot 'head)
(head...gets.name name current-np))))

(define-decision predicate-as-clause (wif)
variables ((arguments (arguments-of wff)))

((will-be name 'clause) :e.g. "sha'es"

(return- application-of-entry-to-args name (entry-for name) arguments))
- ((will-be name 'np) :e.g. "barber"

(clause-predicate-nominative name))
((will-be name '(adjp adjective classifier))
(clause-pred icate'adjective name)))

(define-decision predicate-as-np (wfi)
variables ((var (single-argument-to wf f)))
((will-be name 'np)
(variable-described-as-name var name)))

(define-decision predicate-as-mod (wfi)
variables ((var (single-argument-to vff)))
default (return-application-of-entiy-to-args name var))

does a dispatch on the Features of the current-slot, accompanied by three independent decisions

acting as decision-extensions that handle all the decision-making that depends on properties of

logical expressions.

elt ry design

- 262 -

IV.3.2

The Dictionary

4. Multi-decision

Making one decision means selecting one choice. Allowing entrys to have multiple

decisions is thus a way to enable the single "choice" of an entry to be constructed by the

combined effects of many, general-purpose choices, rather than by requiring the creation of a

single, special-purpose choice which would have the same effects but which would not serve more

than its own entry. Without multi-decision entrys, it would be impossible to put a bound on the

number of special-purpose choices that would be needed since (presumably) it would grow with

the number of entrys in the dictionary. On the other hand, the use of general-purpose choices,

combined as needed through the device of multi-decision entrys, holds out the strong possibility

of arriving at a fixed choices vocabulary.

4.1 Factoring out common actions

As an example of modularity in entry design consider the express-quantification in

formula-Ctry (pg.207). The matrix decision of that entry had five possible choices for the

specification of its matrix, i.e. for the specification of the linguistic structure that replaces the

formula in the tree as its realization. Regardless of which choice was selected, the variable

instance bound by the lormula was to be marked by an attachment that would insure that when it

was finally realized, the choice of determiner would be based on the quantifier of the formula.

Rather than create five new choices consisting of the originals plus the determiner-fixing action, I

instead added a second decision to the entry which applied regardless of what the matrix decision

had been.

(define-entry formula-entry (wif)

variables ((body (sentence wff))
(var (var-bound wff))
(quantifier (qtype wff)))

(matrix...)

(express-quantification
default (mark-as-quantified var quantifier))

(define-choice mark-as-quantified (object type)
actions ((attach-to object 'quantified-by type)))

entry design

- 263 -

IV-4-

The Dictionaty -264-

4.2 Overriding default (lecisions

Default-decisions are a means of dealing with locally unpredictable relations such as

negation or intensification, or of supplying default information not always given in the message

such as determiners or tense; see sections <default-decisions> and

<attachments-.and.default-decisions>. default-decisions are "owned" directly by the entry-

interpreter rather than individual entrys and they apply after all of the decisions of the entry's

have been completed. That they are "defaults" means that they may be overriden in specific

cases. '[his is done simply by including a decision of the same decision-name with the entry.

One of Mm's default-decisions emphasizes the polarity of a clause when signaled to do

so by an attachment on the elit-instance being realized (e.g. "Lady Macbeth did NOT kill

anyone"). The choices-of this decision (i.e. emphatic "do" and stressed "not") will not always be

the best ones for an entry's constructions however, at which times the default should be

overridden. The final two decisions of the formula-entry are a good example: that entry

sometimes uses an existential "there" construction, and. when that happens, negation is best

emphasized by forcing the determiner of the direct object to be "no", e.g. "there is no such

bather"

(define-entry formula-entry (wff)

(matrix...)

(emphasize-poldrity
gating-condition (and (has-attachment current-instance 'emphasize-polarity)

(has-attachment current-instance 'negated)
(matrix-choice-was 'there-is-an-X))

default (negate-variable var))

(negation
gating-condition (decision-was-made 'emphasize-polarity)
default (do-nothing)) :Le. Me DECISION was already made by "enphlasize-polarity"

4.3 Contingent Decisions

The two decisions above are intimately connected: the second is made if and only if the first

was, and the first is itself contingent on the choice selected by the matrix. That connection is there

to avoid making a decision twice; in the example below, two decisions are connected in order to

continue what is effectively a multi-decision choice, i.e. having made one decision, the speaker is

now forced to make another as well.

enity design I V.4.3

The Dicuimnary

(define-entry iff-entry (wff)
variables ((antec (antecedant wff))

(conseq (consequent wff))
(merge-var (merge-able wff))) :descibe on pg.I8S

(matrix
default (literal-iff antec conseq)
((is-region 'formal)
(literal-if antec conseq))

((merge-abe wff)
(not (equal merge-var 'constant))
(iff-restricted-relative antec

conseq
(variable-to-merge-on wff))))

(realiz the..only-if
gating-condition (matrix-choice-was 'iff-restricted-relative)
default (synonym -set '((all -and -only merge-var)

(and-none-else merge-var))))

When you design in terms of multiple decisions, you invariably need some kind of "inter-

decisional control"-some way of making the use of a decision contingent upon the context. The

technique illustrated in the three decisions above makes a decision rather like a decision-rule, i.e.

a set of predicates (the gating-condition) is used to define the preconditions under which the

decision can be made.

While the technique is adequate to the job, its dependence on the execution order of the

decisions in the entry and its unconstrained power (i.e. any predicate can be used in a gating-

condition) mean that the control)aths it defines are liable to be obscure (i.e. difficult for another

designer to follow in the text of the entiy) and that it will not structurally distinguish control

regimens that are principled from those that are ad-hoc.

On the other hand, unless the semantic distribution of the decisions-the semantic,

syntactic, or rhetorical contributions of the individual decisions to the entry as a whole-are

themselves principled, it will be impossible to design a rational improvement to the gating-

condition technique. A candidate rational improvemerit will be discussed momentarily.

4A Domain centered decisions

A very natural way to organize an entry is in terms of the domain facts or attributes that are

to be included in the realization: one fact -- one decision. 'One starts with the class of objects to

be described, say "blocks" in the Blocks World, and proceeds to list the attributes by which they

can be described, e.g. their color, their size, their location, their support relationships, and the fact

that they are a "block" rather than a "pyramid" or a "ball". Each attribute is established in its

own decision, with a variable-definition-block to extract Front the domain the value of the

attribute for an individual instances of blocks, and matrix decision by which to determine how to

express the value with respect to ia matrix construction-a noun phrase in the case of blocks. The

enfly design

- 205 -

IV.4.4

The Diciionary

result is shown below. 13

(define-entry blocks-entry (block)
(matrix

default (regular-noun-phrase))
(block-ness

default (head.gets block matrix))
(color

variables ((color-name *duny*)
(assertion !(color ,block >color-name)))

default (modifiers..gets color-name matrix))
(size

variables ((size (quantize-size !(size block >dimensions))))
default (modifiers.gets size matrix))

(location
variables ((oc '(describe-location !(size ,block >dimensions))))
default (qualifiers.gets loc matrix))

(support-relation
variables ((relation (or !(supports ,block >other-block)

!(supports >other-block block))))
default (qualifiers.gets relation matrix))

(determiner -
default (determiner.gets the)))

When this entry is interpreted, the matrix is constructed first-empty of any constituents.

When the other decisions are interpreted, each either fills one of the slots defined by the -matrix or

adds to the constituents already there (assuming .those slots are designed with hooks and

grammar- routines so as to cache the constituents (e.g. multiple adjectives) as they are recieved).

As written here, the blocks-entry always produces maximal realizations (e.g "The big red

block h(a is at the lefi-rear of the table and th supporas 13>"), and has omitted several ways of

describing blocks that wiere mututally incompatable with this "main sequence". We need some

means of controlling which decisions are used, perhaps grouping them into families. This would

be very awkward to do just with gating-conditions, especially as soon as we try to factor in

discourse predicates that would, say, cause attributes to be omitted if the audience already knew

them. "Meta-decisions" will be introduced later as a just such an alternative controlling device.

4.5 Grammatically annotated (ldecisions

When decisions arc annotated in grammatical terms, it is possible to manipulate them using

rules that are triggered by the grammatical annotation alone, without requiring any knowledge of

their conceptu:'l content. In the section on the "interlingua", we will look at grammar-guided

13. Thee "", ",", and ">" characters in the access-expressions are a notation or lpattern matching: %ariables prefixed with
"' arc instantiated by the pattern matching operation, and %ariables prefixed with "" have their values employed as
literals just like all the non- ariables in the expression. The matching operation returns lie set of matching assertions that
it finds and binds any instantiated .variables as a side-efrect, hense the "*dummy*" binding in the
variable-definition-bkcks of the color d(CiSioni.

IV.4.5cnity design

-0266 -

The Dictionary

manipulation that is associated with subsequent reference and uses meta-decisions. Here we will

look at one that is special to the design of the dictionary of the logic domain (though it would be

applicable in analogous situations).

In the logic domain, variables are introduced into the tree either in issolation ("fyeryhi/iig

ha is a man is moral") or as the argument of some categorical predicate ("Allm en are mortal").

In both cases, the reference that is entered into the discourse history for the benefit of later

pronominalization is to the variable, never the predication; instead, the predicate is interpreted as

a way to describe the variable, and entered into the history as a modifier. This interpretation is

done very literally by taking the very decision that the predicate itself employs in issolation (e.g.

"There is aman.") and using it to replace the equivalent decision of the variable's.

Below are the "normal" entrys for variables and for the predicate man. Note that the

decision-names used are identical to the slot-names affected by their respective decisions.

(define-entry variable-entry (var)

(matrix default (regular-noun-phrase))

(head
default (head.gets thing matrix)
((humanp var)
(headgets person matrix)))

(determiner
default (mark-as-quantified var quantifier))) ;this is a decision-extcnsion

(define-entry manentry)
(matrix default (regular-noun-phrase))
(head default (head.gets.classnaime 'mnan matrix)))
;de deterninwr is provided by grammatical defiults

When realizing a predicatation like man(x) as a noun phrase (pg.209), the choice variable-

described-as-name will be selected. This choice takes the elint-instance of the variable and "edits"

its decisions-to-make property so as to substitute the head decision of the entry for the predicate

(mantentry) for the original head decision of the variable..ntry.

(define-choice variable-described-as-name (var name)

element-returned var
actions ((substitute-the-decision (get-decision 'head name)

for 'head
in var)))

As a result of this action, that particular instance of the variable will now be realized using

the head decision of an entry about which it had no a priori knowledge-an event that is possible

only because the term "head" was used conventionally in that dictionary, thereby assuring that

there would be no unwanted interaction between the new decision and the remaining originals in

the variable-entry. entry conventions like this one are the key to the development of entry-

entry design

-267 -

.1 V.4.5

The Diclionary -268-

manipulating rules such as tised for non-pronominal subsequent reference.

5. Entrys for shopping-list msg-elmts

All of the entrys looked at thus far have either been for issomorphic msg-elmts or shopping-

list msg-ehnts whose subelements were selected on the basis of defaults embedded in their entrys

(i.e. their shopping lists were "implicit"). Another alternative is a shopping-list msg-elmt where

the decision as to what properties should be used to describe the element is made by the speaker

or by an earlier choice before the element's own entry is ever reached. The decision is supplied to

the entry as a list of subelements-an "explicit" shopping list. For example, earlier on page

(describec205> a hypothetical entry decided to have the IuNE concept C205 described in

terms of three facts about it, using the general purpose choice describe.

(Describe 'C205
'((specializes C205 JUMP-ARC)14 ;source of '"mmp ar"

(type C205 generic) :source of "the...s"
(source-state C205 C303))) ;source of "..fn S/NP"

5.1 Interpreting shopping lists

When a msg-clmt is used as part of a shopping list, its meaning (to the linguistic

component) may be only distantly related to its meaning when it is used in issolation. For

example, (specializes C205 JUMP-ARC) by itself will become the clause ""C205" is a kind of

jnp arc", but when part of a list of facts selected to describe C205, its meaning is instead the

contribution of the generic name "jump arc" to a noun phrase.

While one can imagine designing a manipulation of the entry for specializes that might be

able to extract a usable "(say jump arc')" decision analogous to the earlier case where predicate-

entry was canibalized to describe logical variables, it is unlikely that this could be done for all of

the msg-clmt classes that might appear in a shopping list. Instead, it seems that the entrys of

message elements that could ever be part of a shopping list should be designed from the start with

the need to support chat role in mind. Two different techniques for designing this support have

been explored in the micro-speakers. Both will be discussed after the, common part of the

procedure has been described.

14. The possibility of structuring lists of "kernal propositions" such as this by using boolean ictions or discourse
relations (as in the example in the introduction) then delining transformations in terms of that coiniion relational
vocabulary is being developed as part of die next step in this research.

entoy design I V.S. I

The Dictionary

Multiplying a common decision in the chnt-instance From a technical point of view,'the most.
striking fact about a shopping list description of a message element is that the number of

describing facts can vary arbitrarily. It implies that an entirely new technique for associating

decisions with entrys must be used in order to accomadate this arbitrariness. As we will see, the

tcchnique adopted is essentially the same as will be usedifor meta-decisions.

Within the realization procedure, the entry-interpreter uses the clit-instance's property

decisions-to-make to determine what decisions it should use and in what order. This property is

usually a copy of the one on the clit-instance's entry, however, it need not be: it can be set to an

arbitrary list of decisions at any time before the elint-instance's realization is begun. [The

unmarked choice for defining a shopping list, describe, uses this facility to insure that arbitrary

numbers of facts can -be accomadated. Describe takes two parameters, the msg-elmt to be

described-the one that the resulting linguistic structure will denote-and the list of msg-clmts

that are to be its description. Its body consists of one purpose action that builds a "custom" clmnt-
instance whose real-rnsg-elnit is, e.g., C205, whose entry-for is shopping-list-NP-entry, 15 whose

entry-arguments-for is the shopping list-the list of msg-elmts being picked as the description,

and whose decisions-to-make is a list consisting of as many copies of the common decision
(below) as there are msg-elmts in the shopping list.

inst-1
real-msg-elmt C205
entry-for shopping-list-NP-entry
entry-arguments-for ((specializes C205.JUMP-ARC)

(type C205 generic)
(sourse-slale C205 C303))

decisions-to-make '(fancy-shopper fancy-shopper fancy-shopper fancy-shopper)

(define-entry shopping-list-NP-entry (the-shopping-list)

variables ((shopping-list the-shopping-list))

(matrix
default (regular-np)))

An unmarked, itterable decision for a shopping list Exactly what the itterated decision consists

of depends on the otCome of the design decision as to how the entrys for the msg-elmts ott a

shopping list are to contribute to the realization process. One possibility is that each message

element on the list can be adequately realized as one word or phrase. This would allow the

simplest possible itterated decision, call it ("simple-shopper"), since all it would do would be to

position each element in the matrix, leaving its realization to its own entry. The only work that

would have to be done would be deciding which element went into, which slot, and this can be

done on the basis of their entrys' will-be properties.

15. We know that the realization must be a noun phrase because nC its context in the tree.

enIty design

-0269 -

IV.5.1

The Dictionary

The tic-tac-toe domain can use simple-shopper. There the phrase "the corner below mine
and opposite yours", for example, comes froti the shopping list:

(describe 'square-9
'((corner square-9)

(below sqnare-3 sqnare-9)
(opposite square-I sqnare-9)))

via the constituent structure:

np-I

[determiner] [head] (qualifier]-
(corner square-9)

MUltiple-contents ((below square-3 square-9)
(opposite square-1 square-9))

---- patch----------------

which is built by iteration of this simple-shopper @

In this technique of "positioning intact", entrys must be designed so as to notice when their

elit-instances are the contents of, e.g., the [head] of a noun phrase, rather that, e.g, in a slot

marked clausal. The predicate-entry on page 209 is an example of this.

If there is no reason why a given cint-instance should find itself in this kind of embedded

context other than because it is part of a shopping list, then perhaps the proper context to be

noticed isn't a slot-name but the fact of being part of the shopping list. This is especially true

when the element's meaning is different when it is functioning as part of a shopping list than

when it appears by itself, at least to judge from my initial experience's with the real KLONE

domain.

In such cases, there is little reason to avoid actually realizing these cint-instances during the

realization of the shopping list. That is, rather than have an intermediate stage where the items on

the list occupy slots in the linguistic matrix, we go directly from the positioning decision to their

realization decisions, and fill tle slots with words and phrases. In any case, this alternate

technique of "positioning by riealizing" nmst be used when an element cannot be realized as a

unitary object but instead effects several aspects of the matrix at once, such as (type C205

generic) above which is responsible for both determiner and number.

The same archetecture of a repeated common decision would still be used, -"with the

addition that the "fancy-shopper" decision must be empowered to call the realization procedure

recursively within the entry where it is operating. This constitutes a non-trivial extension of the

theory given in chapter two, but if suitably constrained, could be very pwerful. It may, for

example, permit one to write a dictionary for the generic concepts of a semantic net-inhritance

enimy design

- 270 -

IV.5.1

The Dic'ionary

hierachy-in such a way that entrys for individual instances can be compiled automatically from

the network without human intervention. On the other hand, this style of operation is very new in

this research and must be considerably shaken-down and developed before it can be reported on

in any detail

6. The beginnings of an Interlingua

An inerlingua is a language used "between", in this case between the speaker and the

linguistic component: the linguistic component speaks a language of grammatical rules and

linguistic actions; the speakers use the language of their expert programs, whatever that may be.

It is because the languages-representations and conceptualizations-of the expert programs will

inevitably be different from each other that the design decision was made not to develop a general

interlingua for messages but instead to use the data structures of the different programs directly.

If the message languages of individual domains vary this much (the whole system of

interface functions, for example, is predicated on the inevitability of possibly drastic differences),

what is the point of an entire section on "the beginnings of an interlingua"? One general reason is

that in the future there need not be differences: If the designers of new expert programs have

natural language processing in mind, they may be able to shift their free design decisions so as to

make production easier, given, of course, an adequate description of what "easier" would amount

to; this is discussed with respect to specific representations in appendix VII.B.l.3.

Without waiting for future programs, we can look at two sources of specific phenomena

that may lead to the aggregation of an interlingua from the bottom as it were. The first of these is

linguistic concepts that have no counter-parts in the expert programs, and the second is "abstract"

linguistic structures created via subroutines and common labels within the dictionary. Both of

these depend (as does any language) on strict adherance to convention, and we will see in this

section what some of those conventions could be.

6.1 Concepts unique to language

The fact that this. research has been about programs rather than people may have

introdiiced "unnatural" problems as a result of the relative conceptual impoverishment of the

programs. When working with programs, one must "fortify" their messages with additional

assumptions and defaults in order to support decisions required to fully specify natural language

texts. People, one believes, already have the, needed concepts of discourse and linguistic

communication it hand when they decide what to say and thus go to their "lingustie components"

the interlingua

-.271 -

IV.6.t

The Dictionaty

with messages fully specified.16

In order to make up for the deficiencies of individual programs, the linguistic component

includes a number of decisions associated by default with linguistic events such as determiner

selection, the calculation of agreement, or the selection (or omission) of a relative

pronoun-eCnts which one does not expect your garden-variety expert program to care about let

alone know how to decide. If the identical decisions could be used from expert to expert, they

would effectively constitute an interlingua. There are enough hooksI in the design of the

linguistic component to allow a designer to create entrys with choices so thorough that a message

could specify every linguistic detail of the text down to the word order and morphology. (Perhaps

these would be useful to a poet.) The fact that such choices would have to preempt a great many

grammar-decisions and constituent-schemas demonstrates that the existing grammar already has

prcconceptions about the level of decision-making that its speakers will choose to make via their

dictionaries.

A uniformity between speakers could come about for either of two reasons: either the test

criteria of die decisions might be entirely linguistic and thus insulated from the speakers' different

representations, or they might be tested via a common set of predicates, effectively expanding the

set of interface functions that must be defined with each new speaker/expert-program

combination.

There were not many attempts to develop an actual interlinguaamong the existing micro-

speakers. This was more because of their sequential development and differing linguistic

contents, than because of intrinsic difficulties. The cases below are practically the entire

repetoire; they should, however, be taken as examples of what can be done, and not as a maximal

list of what is possible.

Determiners for pre'dicate nominatives In texts like "Socrates is a man" or "Duncan is a

character in "Al acbeh"",. the predicate noun phrase is cast by the language into the role of a

description or label. This means that regardless of its ontological position in their expert

programs, the message source for "man" or "character" is interpreted here as though it was the

name of a generic concept. As this interpretation was forced by linguistic context, that same

circumstance should be able to insure that the noun phrases have the correct form for generics, i.e.

have the correct determiners.

16. Of course it is only an ssunption that people have the conceptual basis to support the distinctions they make in
language. Consider that if evidence of these concepts should appear nowhere else in human behavior except in language
use, then given the presently impoverished stat6 of neuropsychology we can not prose that those concepts are not solely
the products of linguistic processing.
17. The word "hook" is used here in a technical sense des eloped by 1rik Sandewall and myself to describe provisions in a

program's design that allow the smooth integration of ideosyncratic specializing information into a common control
structure. Specific prograninling constructs and disciplines are discussed in IsandewalLhooks].

tMe interlingua

- 272 -

IV.6.t

The Diclionaty

A default "determiner" decision was added to the grammar to cover this case. it can be

written as:

(define-decision default-determiner (np-matrix)

gating-condition ((is-slot 'pred-nom))
((elmt-pluralp current-subject)
(attach-to np-matrix 'plural t))

((not (elmt-pluralp current-subject))
(determiner-gets "a")))

This decision was one of the default-decisions associated with noun phrases (n.b. proper names

were not analysed as noun phrases), and thus applied in every case where a noun phrase was

produced as the contents of a [pred-nonilslot and the entry involved had no determiner decision

of its own. In the two domains where it was used: logic and Macbeth, there was no notion of a

generic/instance distinction except for this linguistic one, and this default was the sole source of

determiners.

In a domain, that did have its own generic/instance concept (e.g. Kb-ONE), this default

would be superfluous as written-there would be no need to fortify the domain in this way-and

would be replaced by a default at a higher level, e.g. having the speaker build its messages in such

a way that predicate nominative constructions were only made with generic message elements. If

that could not be guarenteed-if it were possible that non-generic or "neutral" elements might be

used at some times-it would be very difficult to reinstate the linguistic default since it would now

have to be coordinated with already existing decision-rules in the element's own determiner

decision, (i.e. that that discriminated that neutrals fiom the generics) and that is very difficult to

do automatically.

Uniform criteria for determiner selection The beginings of an example of conventions

enforced by augmenting the interface functions appears in the tic-tac-toe domain. Here the goal

is to define a general put-pose determiner decision-one that would apply to every referring object

in the domain without the need for special cases. The strategim adopted is to design a set of

predicates--concepts really-that will define the system of choices that are involved in the proper

use of a determiner; special cases are then to be "pushed off' to the definitions of these

predicates. The enterprise is still underway, i.e. the existing "determiner system" is adequate to

the present needs of the tic-tac-toe domain, but obviously inadequate as a formalization of the

criteria behind determiner choices given the full range of choices permitted by English. The

system is shown below.

In the ontology of the tic-tac-toe domain, the only relevant object types are specific

individuals (e.g. the squares, or the diagonals), virtual individuals (i.e. the variables in

rules--ultiniately boo ud to specific individuals), and generic labels (i.e. descriptions applied to

individuals). One would like, but usually cannot arrange, for these distinctions to be carried over

the inet-lingua

-273 -

I V.6. I

The Diciitmary

into the determiner system: English has its own ideas about what is important.

<specific individual>

<with no desc-ription>no determiner: "square one"

(with some description>

<only one that fits description> f-"hg corner

<more than one fits description> /

L l Rhetorical goals
<distinguish coordinated instances>

add the description "other"

<distinguish by senuence>

(<virtual individual>

select

synomym -set:
the corner"
corners"

& add description: "first", "nexVfollowing", "las?"

Ile examples above have been cases where the demands of natural language forced

conceptual distinctions that were present in a given domain. These lead to an interlingua of sorts

based on a common set of grammar-supplied defaults to handle the distinctions, and a set of

common conventions in their triggering-a discipline in message construction-to insure that the

intentional contexts leading to these defaults would in fact be the ones expected when they were

designed.

Another way in which linguistic phenomena will prompt an interlingua is by supplying a

richer conceptal vocabulary for message construction. These would be concepts involved in

communication via natural language rather than the coihcepts of linguistic form which are, of

course, left to the linguistic component. For example, we can look back to the example message

from the Macbeth domain and see the concepts "sequence", "time-frame", and "focus", used by

the (projected) speaker in its messages.even though they are not native to the Analogy program's

own conceptual base. More subticly, natural languages provide compact, powerful pronominal

expressions like "each other" or "respeciively" which permit the succinct expression .of sonie

otherwise complex relationships and thereby could encourage their use in a message.

1T))be properly part of an interlingua, concepts like these woild have to have a common.

meaning across speakers: in grouping a set of propositions as, say, a "sequeneC", each speaker

would have to intend that the linguistic component understand the "sequence relation" in the

the interlingua .6

-w 274 -

.I V.6. I

The Diciionaiy

same way: construct the same linguistic mnatrix, consult the same decisions. This "meaning" can

be subtle: What defaults are left to the linguistic component when it sees "sequence" in a

message? Can it make its own decisions as to how propositions will be clumped into sentences?

Will its criteria for sentencehood be the same from speaker to speaker? What kinds of reduction

or merging of common seqments are allowed?

At this point, I am not in a position to suggest how suggest how a concept like "sequence"

should be formalized since the emphasis of the present research has been with the linguistic

component and not with speakers. It has elaborated what such a formalism must address-a

necessary first step-but it call make no specific offerings until several extensive, independently

principled speakers have been investigated.

6.2 Conventions

With no exceptions, every choice discussed in this paper specifies some literal aspect of

extended surface structure: a pattern of specific auxiliaries rather than "the narrative past" or "the

hypothetical future"; the words "the" or "a" rather than "specific" or "generic" determiners. This

"concretism" is a way to avoid undo generalization of the. message element-linguistic construct

links: A concept like the hypothetical future is an abstraction whose behavior and constitution

linguistics may disagree about; "could be being", on the other hand, is an indisputable English

auxiliary phrase about whose use in a given textual context one can have a definate stylistic or

grammatical opinion. By maintaining this kind of theoretical conservatism, one can be sure that

tie theories of language use (i.e. dictionaries) that one develops, while surely too small, are at least

not houses of cards.

But having begun conservatively, we should nevertheless take advantage of generalizations

when they arise. In particular, when sucessive nicro-speakers are found to make the same choices

in response to the same circumstances, we should take steps to capture this regularity in some kind

of structure and rule combination. We can, oil this basis, build up from the theoretically certain

but conceptually impoverished level of extended surface structure to a level which, while more

abstract and questionable ontologically, would be closer to the level at which the micro-speakers

actually reason and thus be more powerful.

In practical terms, what this amounts to is an extension of the grammar-the conventional

knowledge about production common to all speakers. A not implausible example might be for

every speaker to share the entrys for locial AND or for .predication. For this to be possible, the

micro-speakers would have to first share conventions about how, e.g., a predication was

represented: how its arguments were accessed, how the name of the predicate was associated with

an entry; then they would have to agree on what a predication meant: how it could be interpreted

in terms of linguistic constructions, and what contextual contingencies were relevant-for

example the description/predication paradigm 'Would have to be shared (e.g. man(x) is realizable

the interlingua

- 275 -

IV.6.2

The Dictionary

as both "a man" and "X is a man"). If these conventions, these consistencies in notation and

intention, were sucessfully propagated among the micro-speakers, then they could be left as

details for the rule system, just as at the present time the details of what it means to use a clause or

how one signals number agreement in a verb is left to the rules of English grammar. They would

no longer be points of difference whose details had to be specified with each new speaker.

Entrys manipulating other entrys

One of the tenets of this theory of language production is incremental processing: each

decision-maker should be responsible for no more that it can justify on the basis on what it

knows; as a corollary, each decision-maker should also make as large a decision as it knows how

to. The key, of course, is the specification of what an entry can "know". The natural limitation on

the application of a general rule (e.g. a transformation) during the realization procedure is the

subclements of the msg-clrmt.being realized-one level of breadth only (plus the limitations on

access to grammatical context dictated by the controller); but what should the limits on the

"statis" knowledge that one entry can have of the other parts of the dictionary? how much should

an, entry know about the criteria and potential decisions of other entrys in the dictionary? In

particular, should it be able to know that the entry for one of its subelements is able to make a

particular choice?

A case in point is formula-entry (pg.207): its matrix decision includes a choice-application

that preempts the later matrix choice of the entry for biconditionals 212), forcing it to be literal-iff.

Now this action makes no sense unless that entry in fact has literal-iff as one of its normal

possibilities; indeed, since MUMIBLEimplements the preemption without any checking, a "miss-

judgenient" by formula-entry would cause a fatal error. Still, formula-entry does not first check

that its action is legitimate; it effectively presumes its legitimacy, based on the omniscience of its

designer.

This kind of handcrafted dependency between entrys is dangerous in the long haul: (1)

because it is prone to human error; and (2) because it is ad-hoc: there are no systematic, grammar-

based constraints on what parts of one entry may be known to others-no reason to believe that

the connections would have any generality. Communication between entrys via attachments is an

improvement, especially when the mark may be placed by several different entrys and leaves open

exactly how the instruction is to be implemented in a given case (as was true with the case of

marking a proposition for "emphasized polarity", pg.(emphasizpolarity>).

In the case above, the preemption was made in response to an attachment on the formula

indicating that it was intended to be "a definition". Formula-entry was the first place in the

enumeration of the message where the attachment would be noticed, making it the place where it

had to be acted on. If the dictionary for this logic domain had not been strictly based on predicate.

calculus operators and inference rules, the better thing to have done would have been to define an

the interlingua

- 276 -

IV.6.2 -

'The Dictionary

internal "type" to represent definitions and then to give it an entry of its own. As it stands, we

have the effect of a separate entry by means of this ad-hoc attachment and preemption spanning

two "regular" entrys.

Ifeta-decis ions

Besides these ad-hoc cases, there are many times in the designing of a dictionary that the

most general way to express some linguistic phenomena is as a filtering or editing operation on the

decisions of existing entrys. If the phenomena is to be incorporated into the grammar of the

linguistic component, e.g. as part of the subsequent reference heuristics, then this ability is a

requirement. The device I have settled on for this I call a mea-DECISION.

A meta-decision is no different syntactically or functionally from any other decision; the

difference lies in what its choices do. You may recall that what decisions a msg-elmt's entry will

make, as well as their order, is actually determined by the decisions-to-make property of the msg-

dint's individual clint-instances. Usually this property is a copy of the property of the same name

on the entry; however, part of the specialization of an clint-instance can be the specialization of its

decisions-to-make property: some decisions might be left off, others replaced by different

versions, or new ones added. Using this technique, one can write choices that do this kind of

"editing" as part of their marking-actions, returning clmit-instances whose entry's will perform

very differently from the normal case. (Recall the use of this technique with logical variables

described by predicates (pg.<variablesentry.n.y.w.>).)

For a quick example of how a meta-entry is used (there will be longer ones in the discussion

of subsequent reference) we can !ook back to the blocks-entry of page (blocks.entry>. That entry

has one decision for each different property a block could have in Winograd's Blocks World, i.e.

being a "block", having a color, a size, or a location, and a support relation.t8 To use a meta-

decision, we change entry-for to link specific blocks (e.g. B, B3) to a new entry, call it block--

strategy-entry. Block-strategy-entry is given an instance of, e.g. B6 as its parameter and returns

the same instance as its realization except that now the elmt-instance's entry-for property has been

changed to blocks-entry and its decisions-to-make property is some specifically selected set of

decisions.

Among the choices one could write for blocks-strategy-entry would be one that picked out

the matrix, plus block-ness, plus color, plts size, plus determiner to produce (after blocks-entry

was finished): "f/e big red block", or one that picked just the "having a name" decision to produce

"superblock". With some computation to determine the state of the domain, one could duplicate

Winograd's original style-criterion, namely mentioning only so many ofa block's properties as are

18. Now that there is a facility for using only subsets of the entry's decisions, one can add decisions for "having a name"
and "sequence within a related set of blocks" as in "one ofthc green cubes" or "another ofthe blocks in the
box".

tie interlingua

-0277 -

IV.6.2

The Dictionaty

necessary to disambiguate it from all of the other blocks in the domain given an a priori ordering

of preferences. The computation would yield a list of decisions, one for each property needed,

which would be installed as the decisions-to-make of the lint-instance being realized, thus

"filtering" the blocks-entry so that it uses the minimum of its decisions. After claborating sonic of

blocks-entry's decisions, particularly the determiner decision, one could even define generic

"subconcepts" solely within the dictionary. That is, given an individual from the blocks world,

one could construct generic abstractions of it, e.g. "a small block", "a block that supports another

block", solely on the basis of earlier decisions by the speaker.

One "problem" with meta-decisions is that the computations one is typically interested in,

such as the computation above of the minimum number of properties needed to disambiguate

some object, is very avkward to couch in terms of decision-tree selecting from a fixed set of

possible choices. The space of choices is very large, possibly the powerset of the entry's list of

decisions, and the decision-trees equally so, since they would require explicitly representing every

state in the FSM model of the decision algorithm. What I have found myself doing to avoid this

is clumping choices together, e.g. having a single choice, say one named minimum-

disanhiguation-strategy, and then "burying" die computations needed to select the precise list of

decisions into the actions of this choice. This turns out to be not too missguided a technique

since, in developing heuristics to reason about past decisions, I find that one is only interested in

choices at just such an abstract, "strategic" level, with the details of precisely which pattern was

selected an why not being important.

The idea of operating on an entry at a meta-level that can resolve individual decisions but

not their contents is an attempt to answer, in a disciplined way, the question of how much of the

internal contingencies and options of an entry should be known by either a grammar-routine or

by another entry. It seems to me to be possible to develop a closed theoretical vocabulary for

annotating decisions: one can relate them to syntactic or rhetorical categories they create for

example, or to generalizations about the kinds of subClements they expect. On the other hand, it

scoms extremely unlikely that a comparable taxonomy could be devised for predicates and

decision-trees, but without any coherent description of a decision's "substructure", it will be

impossible to develop a rule-governed, automatic means of manipulating or reasoning about

them.

I have not yet.developed a vocabulary for decisions, indeed, many of the ideas in this

section were not even thought of until this document was being written. However, I believe that

the "experiments" conducted thus far with individual entrys in individual micro-speakers have

shown the general outline that the vocabulary will take. In particular, the fact that the

experiments have centered around the statement of general rules for subsequent

reference-probably the place where the linguistic grammar extends most deeply into the

pragmatic domain of the speaker-should be evidence that the techniques will be extendable.

the interingua

- 278 -

IV.6.2

The Dictionary

7. Non-pronominal subsequent reference

7.1 Alternatives to pronouns

In order for a text to be coherent, it must treat subsequent references to an object

differently from initial ones. 'Ihis is because a natural language text is expected to reflect the fact

that its audience has assimilated what it has read, remembers it, and need not be told it again and

again. This is not a logical requirement-programming languages, for example, do not follow

it-rather it is a convention, part of a larger trade-off that dictates that the descriptive devices of a

natural language are to be. used as an intentionally controlled focusing mechanism: like the

camera in a well-directed movie, language highlights what the speaker thinks is new and

important and diminishes what is old and conventional.

Normally we think of this process in terms of pronominalization, but really a pronoun is

just the limiting case-a pointing mechanism with minimal semantic content that can and should

be used wherever pointing is sufficient. There are many other possible realizations, especially in

situations where a pronoun would be ambiguousor difficult to interpret. These include dropping

modifiers, using demonstrative pronouns ("this" and "that"), and various pronominalizations of

"sense", all of them markedly less informative than their original references.

The link to the pronominalization decision if you were to look back to the flowchart on page

(flowcharitof-realization-proceduref.y.w.>, you would see a decision-point in the subsequent

reference module labeled "is a pronoun possible" and referring to the process described in section

pronominal-subsequent reference...n.y.w.. The "yes" path fron that decision leads to pronoun

selection and thense out of the realization process, while the "no" path-the one that we are

interested in-leads to a box labeled "select subsequent reference strategy" and thense into die

"main stream". In other words, non-pronominal subsequent reference strategies are considered

only after the use of a pronoun has been ruled out, and then as a kind of "filter" on the main

stream, i.e. "initial reference", realization process.

.The selection of a non-pronominal subsequent reference depends on the analysis made

during the pronominal part of the process. That process, to review, runs as follows: 'he entrance

condition into the overall subsequent reference procedure is defined by set of easily evaluated

predicates (pg.<decision-to__thinkaboutnakingc-adecision)) that boil down to determining (1)

that the msg-elmt has passed though the realization procedure at least once before (i.e. it has a

discourse history) and (2) that it is the kind of object that can be pronominalized. That is followed

by a "fact-finding" period during which a set of features is compiled to describe the relationship

between the current instance of the message element and the previous ones. Heuristics couched

in terms of that description are then used to actually make the pronominalization decision.

Should that decision be "no", we are shunted to the non-pronominal part of the process.

IV.7.-the interlingua

-279-

Subsequent reference strategies The form that a non-pronominal subsequent reference takes

depends upon two things: (1) die reason why the message element couldn't be pronominalized,

and (2) the way it was realized initially. The first kind of information can be read almost directly

from the list of pronominalization heuristics that were applied (particularly those that voted

"against"). The second kind comes from the element's history. In MNIUMBII at the moment, there

are so few strategies in use that the two information sources are accessed and evaluated in one

operation by an ad-hoc decision tree. When the "grammar" of subsequent reference has been

elaborated, a more systemic, declarative representation will presumably be possible.

Consider the excerpt below from the barber proof. Here the logical constant G, realized

initially as "Giuseppi", appears seven times as indicated by the numbers.

... Call him Giuseppi(. Now, anyone who doesn't shave himself would be shaved by

Giuseppi(2 This would include Guiseppiu) himself That is, he would shave himself4
Cisewi(4)Ol

if[and only ([he did not shave himself4, which is a contradiction.

Pronominalization is blocked in die second instance because another object was in focus (the

"anyone..."), and in the third because of a likely' ambiguity with that same object. In both cases,

the emit-instances foi G were passed on to 'the non-pronominal section of the process with the

reason for their "non-pronominalization" given as "ambiguity" (obviously a gross simplification).

This reason was then combined, trivially it turns out, with the possibilities given by the entry for

realizations of G intermediate between the initial one and a pronoun. Of course there are no

intermediate forms between a name and a pronoun (at least not in English), and all that can be

done is to again use the name. (This is recognized directly from the entry-its will-be property is

proper-name.)

When the entry has more possibilities and the history indicates that the initial instance was

a "noun phrase with modifiers", then ambiguity can be countered with a very productive strategy

that is more interesting for present purposes. That strategy is to omit all of the modifiers initially

used, leaving only the head noun (describing the object's class) and some definate determiner.

There was an example in the section on pronominal reference (pg.167) taken from the tic-tac-toe

domain where the initial reference was "the line opposite yours", and the subsequent reference

"that line".

The mechanics of this strategy involve a neia-dccision: The subsequent reference routine

applies a special choice to the clint-instance it is given. The choice edits the decision-to-make

property of the instance, in this case removing all of its decisions except the matrix and the head

and substituting a special determiner decision to introduce a demonstrative.

the inwerlingua

-028o -The Dictionary

IV-7-1

The Dictionary

(define-choice that-head (instance)
element-returned instance
marking-actions- ((edit-decisions-to-make instance

retain '(matrix head)
ad '(definite-determiner))))

Presently in MUMBLE only the demonstrative "Mhai" is ever used because I do not understand the

distinctions involved in deciding between "that", "this", and "the" well enough to write a decision

that any of the micro-speakers could motivate. For the first version of the logic domain, Filmore's

distinction between "this" and "that" was tried, i.e. use "this" when the audience and the speaker

share the reference, otherwise "that" [filmore...dexis2J: but the domain was not really tip to it.

Requirements for having subsequent reference rules

Non-pronominal-subsequent reference can be understood as a set of conventions governing

the ways in which the. amount of information conveyed with a reference can be minimized while -

still making identification possible. Strategies for this include pronominalizing the descriptions

from earlier instances or just leaving facts out. A prerequisite to any formalization of this

minimization process is a unilorm grammar for decisions, i.e. a conventional nomenclature and

semantics. That is, the sophistication of the job one is able to do in a general-purpose subsequent

reference procedure depends critically on the extent to which the dictionary (and the discourse

history) follows some set of linguistic, pragmatic, and intentional principles. Below is an example

of the kind of facility that can be developed and shared between domains as part of an interlingua.

A general technique for filtering entrys by "given" If the dictionary designer holds to certain

conventions, it is possible to do the kind of "per-entry" analysis of given information discussed in

section given.newA.y.w. as a general part of the subsequent reference routine. The requirements

are three: (1) the facts that each entry might mention must be organized one per decision (because

the filtering will be done at that level); (2) each decision must identify the fact it is responsible for

in some way, e.g. as a conventionally labeled access-expression; (3) the region of the discourse

over which the test is to apply may not be idiosyncratic.

An entry that meets these criteria is roleentry below from the KIONE-nets-as-objects

domain. It was responsible for all of the descriptions of roles that appear in the text on page

<klonesxamplen.y.w.>.

(define-entry role.entry (role) (matrix default (genitive-np)) (role-ness variables ((fact !(isa

,role role))) default (head-gets role matrix)) (name features

(proper-name) variables ((name nil) (fact !(name-of role >name)))

default (modifiers.gets name matrix)) (concept variables ((concept nil) (fact !(has-role >concept ,role)))

default (of-gets concept)) (determiner default (determiner-gets the)))

the interlingua

-281 -

IV.7.1

The Dictionary

The general-purpose filter acts by computing the "fact" for each decision, then checking the discourse

history to see if it has been already mentioned within the "non-stale" region of the text. (in that domain, this

region was defined as the current paragraph, plus the last sentence of the previous paragraph if the current

position was within the topic sentence.) If the fact had been mentioned, the decision could be omitted, i.e.

edited out by the meta-decision, with the restriction that something must remain. As writen, the restriction was

just an ad-hoc listing of the allowable minimal combinations of decisions (e.g. "matrix + role-ness + determiner"

or just "name"); in the long run, this restriction will likely be found to be related to the patterns of decisions

that can be used in subsequent reference strategies.

7.2 Subsequent descriptions

To the extent that' a "description"-"thing described" distinction is maintained in the message

expressions, it can be detected and realized by the subsequent reference routine in terms of

pronominalization of sense: phrases like "one", "anothe", and "such". The organization of this

procedure is identical to that of "normal" pronominalization, except, of course, for its realization

choices. We enter the subsequent reference routine at the same place: the inexpensive tests; these

use the interface function emit-reference-type to detect that they are dealing with a description

rather than a reference, causing a dispatch to a special routine for prononminalization of sense.

Among the micro-speakers this distinction was not common: the logic domain did not have

it at all, nor did KLONE-nets-as-objects; with the digitalis advisor or the Macbeth domain it could

be computed with some effort and search. Only in tic-tac-toe (or the real version of KLONE) was

the needed information directly available as part of an object's type. As a consequence, there has

been little practice in realizing subsequent descriptions-the analyses have been long in

alternatives and short in distinctions. About all that appears certain is that alternatives for

realizing subsequent descriptions within noun phrases are intimately related to die alternatives

within clauses: the ellipsis phenomena of section <ellipsis>-they are intertwined within die same

decisional systems (pg.<coordinating-alternate-ellipsis.strtegies>). Consequently one needs to

be able to describe the alternatives-design their choices-in such a way that they can be planned

some time in advance of when the controller actually reaching the nominal msg-elmts affected; we

will take this up in a moment.

Consider the simple case of:

"You took a corner and I took one too."

The message-level sources for these two "corners" are shopping lists:

(describe 'square-I ;iLe. the upper left-hand corner
'((corner square-1)))

(describe 'square-3 ;upper right-hand corner

'((corner square-3)))

The shopping-list format distinguishes the specification of reference (the first argument to

the interlingua

- 282-

I V.7.2

The Dictionary

describe) from the specification of descriptions (the second). Each message element in the

description specification (here there is only one) is entered into the discourse history just like the

references. In this case the first instance of the corner relation will lead to a record describing the

location where it was realized, especially that it was in the head slot, and that it was realized as a

non-function word.

When the second instance of corner is reached at its own head slot later in the text, a

feature-based analysis of the two positions is made, just as with references. The heuristics that

access the analysis are also of the same design as for references. (In MumMIlE at the moment they

are identical!). The only adjustment is to the interface function that acts as the oracle to

determine whether potentially distracting descriptions noted on the basis of their syntactic

position really are such -pragmatically. In this example, there is no distractor, the two descriptions

are in parallel positions in conjoined clauses, and the anaphoric relation is certainly not stale, thus

the pronominalization goes through and the English pronoun for noun phrase head's, "one". is

selected as the realization.t 9

The key to a sucessful subsequent description facility is a ricli network of generic concepts

within the expert program. Consider that a few paragraphs ago I wrote "...thefirst argument to

describe, ... the second'. For such a reduction to go through in this linguistic component, there

must be a single message clement representing the concept: "argument<s> to describe". Otherwise

we would be required to search the history of the multi-level composite message structure that

was the source of the ongoing noun phrase in order to recognize a recurrence of the sequence.

Such searches were experimented with in an early version of' NUMLIlt, and it was found that an

incredible complication of the discourse history was required to make even the simplest cases

efficient. When you then see that modern-day knowledge representations all use generic

networks ("AKO" hierarchies) as their basic elements-automatically supplying the needed unit

objects to represent composite actions-you have a strong motivation to eliminate the search

entirely and just let the less sophisticted domains do without.

A notion of"minimalNlP remnant"-operates with subsequent decisions just as it does with

subsequent references. If there is there is some prenominal modifier remaining beyond the

common generic part, especially if it is a point of contrast like "second' was above, then the [head]

can be left empty. Of course even in such a case the [head] can still be filled with "one"; this is

another of the subtle, poorly understood stylistic alternatives of English.

Deducing description from structure The barber proof (pg.(barber-proof>) was produced

from a representation that has no reference-description distinction, the predicate calculus. Yet it

19. When the pronoun "one" is used and there are no pre-head niodifiers, the otherwise ubiquitous English determiner
must not be present, e.g. "one who is wise in thei ways of the world'. This detail is encoded into the subsequent
description routine as a continvent reaction to the "pronominaliie the [head?" decision.

the interlingua

-0 283 -

IV-7.2

The Dictionary

includes descriptive pronouns like "such" and "else". flow? The answer is by (laboriously)

interpreting structural facts about individual clnt-instances and including them in the discourse

history-in effect manufacturing the needed distinctions solely within the linguistic component.

Consider the use of "such". This pronoun replaces all of die modifiers of a "noun phrase

with modifiers", leaving only the determiner and the head, e.g.

"Assune that there is some barber who shaves eveyone who doesn' shave himself(and no
one else). .. Therefore. it is flse: there is no such barber.

In both instances of die message clement for "the barber", the configuration of attachments on

the clint-instance for the existentially quantified variable was identical at the point when it was.

realized. Specifically it was:

EAIT-INS'IANCE-#
real-msg-elmt X
entry-for variable-entry
entry-arguments-for X
declsions-to-make (matrix head determiner)

:n.b. these have been shifted see pg. <i-riabledeseibed..as.namej...y. w.)
attachments (qualifier formnula87)

The subsequent reference routine notices tie second instance of X. The first instance is six

sentences back, much too far for a pronoun but not too far for sone intermediate subsequent

reference strategy. The several strategies given above do not "fit" well because of the ad-hoc way

in which the qualifying formula is associated with the instance (in one of the richer domains it

would have been added to a shopping-list); instead, a special-purpose subroutine was written to

scan the properties of the elint-instance and collect any attachments or new decisions known a

priori to be modifiers or qualifiers. This is then compared with a similarly collected list included

in the record of tile last instance. In this case they match entirely, which is a precondition for the

use of "such". 0

The "else" phrase: "...shaves everyone who... and no one else" is not properly formalized at

all in MUtNLE. It was encoded directly as a unitary choice, an alternative way to realize the "only

if" aspect of the biconditional. That may well be all that needs to be said about how to express the

20. The other precondition is that the noun phrase must be based on a generic description. That is determined from the
idiosyncratic fact that predicate-entry was used and that it invariably deals with generics. Facts like these fall out explicitly
from the message-level representation of richer domains, but must be pieced together athoc in simpler ones that have
been "augmented" by their dictionaries.

The intriguing syntactic properties of "SUCh" have not beeni throiighly analyzed here. 'the word is analyzed as a
function word, i.e. it is taken to not ever occupy a slot in a noun phrase but rather to be associated as an attahment under
the control of grammar-routines of the [determiner] which react to whether the determiner is "no", in which case they

produce "no such barber': otherwise they produce "such a bat-bet". I have no doubt that there is a more integrated
analysis to be found with more study.

the interlingua

-0284 -

IV.7.2-

The Dictionary

complement of a set using a pronoun, but one would presumably like to be able to decompose the

phrase into pronoun and "e/se" in a way that would pennit more general rules to select it. The

constituent-schema used was the same as for "Giuseppi himself".

7.3 Planning subsequent descriptions

Thus far I have talked about subsequent reference as though it functioned totally on a

"standing order"/"targets of opportunity" basis only, i.e. every reference and description that

passes through the realization process is monitored: subsequent reference strategies apply in every

case possible, and take effect immediately. This is true but missleading. One does want a

background process that will realize general linguistic coherency relations automatically without

the speaker needing to think about it. However, the best texts, those most effective rhetorically,

are the result of thorough planning 2 1 all the way down to the level of subsequent reference

strategies.

The planning has two aspects: the specification of clausal choices (or larger) that involve

specific subsequent description patterns, and the specification of the contrasts or of specific kinds

of descriptions to be used across a set of msg-elnts. The first aspect is straight-forward: we want

to be able to write choices that have sufficient depth as to differentiate say " You took one corner

and I another" from " You took a corner and I took another one", so that they can be selected as

integral combinations rather than produced only through the chance coincidence of the output of

several synonym-sets.

This is simple to do on a case by case basis, the question is how to do it with some

generality. Case by case you would write a new choice for each combination of(a) the syntactic

structure of the two matrix clauses, (b) the clause-level ellipsis desired, (c) the location of the

contrasting noun phrases within the matrixes and (d) the desired pairs of nominal descriptions.

This would lead to an enormous blowup in the number of choices in die grammar and in the end

would be awkward to write decisions for. A far better tech nique-if the speaker's messages can

support it-is to factor out at least the matrices, and to establish them all as distinct decisions.

'This can be done by using a default-decision such as used for operators like negation or

contrastive-polarity (pg.<enphasizepolarity>), or better by including the coordination goal(s) as

part of a shopping list. Such a shopping list might look like this:22

21. 1 do not mean to suggest that the space of alternatives is explicitly reasoned through on each occasion. More likely, it
seenis to me, is that "pflanning" is done in terms of the selection of large, highly parameterized plan schemata that are
selected on the basis of a small alternatives space involving relativel little deliberation. phrases are perfect example of
plan schema at a linguistic level as they (1) define procedures, and (2) are parameterized by msg-elmts and by grammatical
context. I suspect that ful-scale "planning" only takes place incrementally over time through adjustments to the schema
or to the criteria in the atternat es space, and should be thought of as a kind of learning.
22. This is taken from the fledgling tic-tac-toc domain. lie proper level of conceptual abstraction to use here-i.e. what
the tic-tac-toc kibitzer actually notices such that leads to a text like this-is still being experimented with.

the interlingua

-p 285 -

IV.7.3

The Dictionary 286 -

(discourse-unit '((sequence (takes player-one square-1)
(takes player-two square-3))

(describe 'square-i
((corner square-1)))

(describe 'square-3
((corner square-3))) -

(coordinate sequence '(emphasize corner))))

In this shopping list, all of the planning to pick out a subsequent reference strategy has been

gathered into the last iten ("(coordinate...)"). which dictates that the sequence of the list is to

have some coordination strategy applied to it such that concept corner is emphasized. Rhe entry

for coordinate applies after the other three items, at which point we have:

discourse

(di3 2
(takes player-one one) (takes player-two three)

elmt-instance
- real-msg-elmt (corner one)

entry-for corner-entry

elmt-instance
-real-msg-eimt (corner three)
entry-for. corner-entry

Agains this background, the entry for "coordinate" selects the "one-class-and-gap-another-

blank" choice (below). At the moment, it is selected just by an association with the key-word

"emphasize" and the knowledge that corner will be realized as a head noun (which it gleans from

corner's entry). Behind this association (but presently known only to the designer) is the notion

that a term can be emphasized by leaving it out in a place where it is predictable. Note that this

choice functions entirely by side-effects

(define-choice one-class-and-gap-another-blank (inst-1 inst-2)

actions ((preempt-decision [mvb enter-slot) :whose decision to preempt
'do-gapping-if-possible :name of decision preempted

S'(gap) ;CIIOICE it is to now use
'(member 'd2 'vet tica-context)) ;text to speci- which instance of the decision

(preempt-decision inst-1
'determiner
'(determiner-gets one))

(add-decision inst-2 -
'modifier
'(modifier-gets othe)) -

(preempt-decision inst-2
'head
'(do-nothing))))

Comparable choices would to pick out others of the many other coordinating combinations that

are possible.

the interlingua IV.7.3

The Dictionary

The only point to having choices like this one is that there are specific reasons, known early

at the level of the containing conjunction or discourse node to the effect that one or another

combination of effects is preferable to those would be selected automatically by separate later

decisions made much closer to their points of effect. If the lowlevel decisions arc just random

selections from a synonym-set (as they are at the moment in MUMBLE), then they will probably

not be superior to a highlevel decision, even for all the trouble it can be to write them.

7.4 Coordinated references

The last example involved a coordinated reference: the realizations or the two instances of

"corner" were fixed in advance of either being reached by the controller, and as the result of a

common choice. Coordinated references are important to the design of the linguistic component

because of the restrictions placed on them by the stipulations of the theory, i.e. all texts are

produced in one indelible realizing pass top-down and left-to-right through the tree. This means:

(1) Unless marked for coordination by an earlier decision that dominates both instances,
the first instance reached will have no idea that there is a second to follow and will
select its realization freely without any thought to coordination.

(2) Once the second instance is reached, the need to coordinate or distinguish the two
could be noticed. However, since the process is indelible-the.controller is not about
to backup-there is no way for the realization of the first instance to be changed
retroactively.

Certain kinds of distinctions can be noticed and implemented "on the fly". One could, for

example, have a standing order that objects with the same generic description were to be

distinguished whenever found within a certain distance of each other in a text, e.g.

"First I picked up a green block and put it into the box, then I picked up another one."

This can be done as part of the subsequent description routine. Here, after noticing a second

occurance of the description "green block", it adds a modifier decision to include the word

"other".23

If we wanted instead to leave a standing order that, say, successive blocks were to be

constrasted according to the set membership, e.g.

"...one of the green blocks ... and... the other one"

we would be unable to implement the order unless we were prepared to have every issolated block

come out as "one ofthe ... blocks...", which I[takc to be excessive.

Instructions for contrast Every coordinated description must be indicated as such either in the

23. The Blocks.World, like the tic-tac-toe domain, uses a deftult-decision to choose its determiners (see the system on
pg.<deterniinersystem>) which, in this case, will select the determiner "a" because there is more than one object in the
Blocks World that matches the description "green block". The morphology routine will then adjoin the "a" and the
"other' to form "another'.

the interlingua

.- 287 -

IV-71--

The Dictionary 2

message or as a decision made some time before the description is to appear in the text-there is

no alternative in this theory if the .texts are to have any variety. One might argue that this

restriction causes a problem-that it is evidence that the indelibility stipulation should somehow

be lifted. I would reply that it merely indicates that the linguistic component is not able to

perform miracles, and I would further argue that the information needed to notice a contrast is

easier to collect and reason about at the level of the speaker and in the expert's representation

than online within the linguistic component (i.c in the midst of realizing a message) and using

extended surface structure.

In a domain where the speaker arrives at messages by building them up from smaller

propositions and relations (e.g. tic-tac-toe or the real KLONE) the speaker will inevitably "touch"

all of the elements involved in any coordinated description. This puts it in a natural position to

record, then and there, any rhetorical goals or relation that tic those elements together and might

motivate their coordinated description.

Consider the description of moves in tic-tac-toc. A move can be described at many many

levels, from the position of the square taken to the move's ftnction in a strategic plan. Reasoning

about these possibilities and their ramifications for the style of a text is the largest part of the tic-

tac-toe kibitzer's job, and is presently formalized in terms of a hierarchy of entrys that dictate the

structure of the next level down by selecting among alternate shopping lists. For example, if the

tic-tac-toe kibitzer wanted to realize some observation only at the level of threats and counters, it

would specify only that level in die shopping list, including those identifying propertiesdiat are

appropriate to that lccl and leaving out the others, as below. The instructions for contrast are

thus given explicitly by the speaker in terms of wvhat it has included and excluded.

(describe 'event-2
'((countered move-4 move-3)

(describe 'move-4
'((threat move-4)

(player nove-4 player-one)))
(describe 'move-3

'((threat move-3)
(player move-3 player-two)))

This message element will be realized as:

"Your ihreal countered fmine / my threat}."

The only remaining free stylistic parameter ("mine" vs. "my threat") is, not coincidentally, one

that can be decided in one pass by a default-decision within the subsequent description routine.

the interlingua

- e2t

IV.7.4

The Dictionary

7.5 Predictable facts

So far, all of the subsequent references have been decidable just by using criteria that the

lingustic component could easily keep track of, i.e. the identity of the insg-elnts that have been

realized so far. However, there are other dependencies at work in natural language besides just

identity with a previous instance: there is an information flow from the speaker to the audience

and set of inferences that the audience can be expected to make based on the pragmatic content24

of what they hear. My first experience of such inferences with MUMlL involved a text from a

"chess" speaker with which 1 was dabbleing before leaving it for the easier domain of tic-tac-toc..

How do we write an entry for chess pieces that can say:

"The black queen can now take a pawn."

The situation is analogous to the others: a property in the first reference to a chess piece, namely

its color, has been left out in the second reference because it is redundant. The problem is that the

linguistic component, being what it is, has no idea of what pragmatic inferences an an audience

will or will not make, and thus is blind to the redundancy. We could, of course, incorporte a

specific check into the entry, but the question is what can it look for?

The trigger above was the use of a "color-polarizing" verb: "lhke"; but there are too many

such verbs to imagine listing them in the entry, and there are too many syntactic nitches where the

verb (or adjective, or...) might be located to imagine keeping track of them just for the benefit of

one entry. To cut down this diversity, the trigger should be posed at fie message level: we define

a concept of "color-polarizing" relation within the expert program, and, provided the message

representation is suitably rich, define it in such a way that the fact that some relation is a color-

polarizer will be part of the message whenever the relation is and can have its own entry or

default-decision.

Fhe next ingredient needed is some cannonical "place" for the entry to look to see if color-

polarization is in effect. The most appropriate representational device to use appears to be an ad-

hoc region-feature (i.e. one that would be special to the dictionary used rather than part of the

general purpose grammar). It would be set by the entry for "color-polarization", which would

associate it with the region of the tree defined by whatever was the current node of the tree at the

time. It would, of course, then become undefined when that node was left.

The final ingredient is some means of telling which instances of chess pieces are

"subsequent" with respect to this color-polarizing relation. If the scope of the relation (i.e. the

domain of the region-feature) corresponds to one of the already defined discourse regions such as

the current clause, current sentence, this-and-the-last sentence, or tile current paragraph, then

24. The rhetorical, stylistic and intentional content (in so far as the audience can guess it) are surely also the basis of
inferences, probably involving emotional and interpersoillmodels. they are, however, too subtle to attempt to formalize
now.

the inierlingua

-289 -

IV.7.5

The Dictionary

"not being the first piece" can be defined as being in a region (of the appropriate kind) where the

concept of chess piece has been mentioned.

This kind of analysis of the mechanism by which pragmatic inferences influence production

leave the door open for a vast number of pragmatically motivated region-features to flood the

tree. This may not be wrong, but it is surely unaCsthetic. What it suggests as an alternative that

"discourse scope" is defined over more than just linguistic objects. It suggests that the

computational context on the speaker's side of the line-the context where the predicates of

entrys are evaluated-is a tree issomorphic to the one on the lingustic side, though probably with

less detail. This is a question to study in the future.

i/e interlingua

-290 -

IV.7.5

29 1-

CHAPTER SEVEN

Appendices

1. The Program

1.1 History

The basic design of the linguistic component was developed during the 1974-1975 academic

year and was described in my Master's thesis [ddm...masters]. The design described there has not

changed in its basic points: a grammar as a library of choices with both declarative and procedural

aspects, the direct control of the process by a non-linguistic message, the use of a dictionary to

decozbpose messages into their shared elements, dictionary entries as context-sensitive decision-

procedures, and the construction of a surface-level constituent structure to control the process and

provide a linguistic context for the entries were all present in some form.

The implementation was begun during the summer of 1975, and the first texts were

produced the following spring using short, ad-hoc messages inspired by the Personal Assistant

project. The first micro-speaker, the logic domain, was developed during 1977, and occasioned a

complete revision of the linguistic side of the implementation; the "barber proof" used as the

development set for that effort was completed in December 1977. Several conference papers were

written at that point describing the interleaving of the realization decisions and the grammatical

processing [bergen], the treatient of reference [tinlap], and the use of an interpreter to introduce

conventional decisions and grammatical filtering into the dictionary [toronto].

During the 1978-1979 academic year, the design of the dictionary was totally revised,

leading to the schematic format with multiple interpreters that is presented here. Also during that

time, the work on other micro-speakers was begun: Ken Church developed a preliminary

dictionary for Swartout's Digitalis Therapy Advisor during the fall of 1978; the KIONE-ncts-as-

objects dictionary was written the following spring, and the Macbeth domain was written in July

1979. The program has not been worked on since July 1979. All the examples reported on here

were either running at that time or were simulated by hand on the basis of the existing grammar

and dictionaries and straight-forward extensions.

VILI--the progrant

With the conclusion of this thesis, a third major revision of the program is planned. The

goals of that project will be:

O projection back into the implementation of the changes in terminology and analyses
that were made in the course of writing this document;

O standarization of the implementation of the various data-types with the intention of

making it possible to move the program to different species of uiSP (the present
implementation reflects four years of changing conventions);

O incorporation of on-line cross-indexing information for the grammar and dictionary
with dynamic crror-checking to facilitate the extention of the program by people other
than its author.

1.2 Program Statistics

Programming language MUNIBL is written entirely in MACUS!' [moonual, the version of ISP

developed at MIT for the PDP-10.

Size The file space required to store the ASCII text of the program with its in-line commentary

is distributed as follows: (in thousands of iw-1ifwords)

Basic system:
Defining all data-types 24.8
Controller & Entry-interpreters 8.7
Extensions to uSP 5.5
Debugging aids 9.8

Grammar 32.3
Dictionaries

Logic 11.2

KLONE 7.6
Macbeth 3.9

When loaded into an otherwise empty isp (size 57k), MUMBLE proper occupies an

additional 40k words (uncompiled). The dictionary for the Macbeth domain, after expansion by

the entry-postprocessor, adds a further 30k words.

Execution speed At this writing, only interpreted versions of NiMmLE have ever been tested.

(The frequency with which the code was augmented and edited made incremental compilation

using the PDP-10 too awkward to be profitable.) Also, the entry-compiler has not been

implemented. With these handicaps, MUNIMaI. has produced text at an average of about three

seconds per word. ('he median speed is more like a half-second per word given the large delays

incurred at major discourse boundaries while the text is planned.) The conventional wisdom is

that compilation alone will cause a a factor of ten speedup.

"represen/ations and interfaces"

A ppendix - 292 -

V J1.1.2 -

Appendix

2. Their representations and interfaces

Beyond the fact that they are all implemented in iiSP, the message representations of the

micro-speakers have very little in conimon. Following the categories developed in chapter four,

we can make the following summary:

o The logic domain: self-defined objects in issomorphic messages.

o KI1NIC-nets-as-objects: a mixture of self-defined and contextually-defined assertions
in shopping-list messages.

o The Macbeth domain: contextually defined objects in shopping-list messages.

o The Digitalis Advisor: twenty-questions objects in issomorphic messages.

In this appendix, I will go through each of the domains in turn., outline their

representations, and show how that determined the form of their interface functions.

2.1 The logic domain

Unlike any of the other domains, the implementation of the logic domain was designed

with only the convenience of the linguistic component in mind. Let us consider what this

convenience amounts to. Messages in the logic domain are well-formed formulas (or proofs) in

the predicate calculus. They are issomorphic. to their realizations, i.e. every subexpression in the

message formula will have a corresponding English phrase and no phrases will be used that do not

correspond to some part of the message expression as passed to the linguistic component. This

means that we should use a representation for formulas that is easy for the linguistic component to

manipulate and that gives it ready access to the particular information it needs.

What the representation must include

The only "manipulation" that the linguistic component does with a message element is (1)

to ask various questions of it, and (2) to construct chlt-instances for it and to position these as

constituents in the tree. The minimum requirement then is that there is sonic way to "name" the

element so that it can be given as an argument to an interface ftnction or be remembered as a

property in an clit-instance, and that this name will continue to access the same object within the

domain for the entire life of a discourse. ''his is accomplished in the logic domain by creating a

permanent, distinct lisr object to represent each wff and its subexpressions (see below), and using

a iISIP pointer to the object as its "name".

What information does the linguistic component need? Basically it needs to know only one

kind of thing: "what entry is it expected to use to realize a particular wft?". Thus we make that

fact one part ol' any LsI object that denotes a %ff. Next, as this is a domain of issomorphic

messages and practically every choice will involve embedding logical subformulas into a just-

"represenlations and intethees" .V.2.1

- 293 -

: p

Appendix

selected, linguistic matrix, the most important thing that the entry needs to know is what a wfs

subelements will be. We make that answer easy to determine by making those subelements also

an immediate part of each wffs representation.

Another category of information that somei entrys will need is a. means of answering

interface functions such as elmt-plurap or clm t-gender that depend upon "extra-logical"

information. Since in this logic domain there is no expert program or knowledge base that might

also use such information or from which it might be derived, the simplest way to supply the

answers is provide a feature-list as part of a wffs representation, and to define those interface

functions directly in terms of features like male, or plural.

The final category of information is "identity" information: are two expressions, appearing,

say, in different lines ofta proof, two instances of the same wft? 'his a complicated question. We

presumably want two wffs that are lexically identical except for the names of their bound

variables to be considered completely equivalent; yet do we want the two species of variables to

pronominalize each other? The tact I have selected is to answer yes and no respectively. Every

instance of a quantifier defines a "new" variable that may have multiple instances in the rest of

that wff. The tricky part comes when a variable is used as the basis of a generic, e.g. "some

barber". Thus far, the tack has held up; it seems possible however that some proofs will call for

subsequent references to these generics across formulae, in which case a more sophisticted

definition of "previous instance"- will be required.

The representation

People typically deal with wffs as character strings. Doing the same here, however, would

mean including a parser with each entry in order to pick out subexpressions. Instead, a formula

that the user wants IUNIBL to process is parsed only once, as it is typed in by the user, and the

results are captured in a set of records1 that is organized into a tree structure exactly mirroring the

logical structure denoted by the original character string. Below is the set of records that represent

the first line of the barber proof.

1. To be precise; MACISP "hunks"-contiguous blocks of memory that are accessed by a numerical index.
Property-lists or ordinaiy list-st ructure would have done just as well.

'representations and inteifaces"

- 294 -

V11 .2.1

Line 1: 3x (barber(x) A Vy(shaves(x,y) ++ ,shaves(y,y))) premis

linel = [line . () formula89 . premis
formula89 = [formula . (. conj88 . (x) J
conj88 = [conjunction . (. 2. (pred82 formula87) I
pred82 = [predication . . barber . (xi)
barber = [name.()
x1 = [variable . (. formula89 . x
x = [name. (male person) I
formula87 = [formula .). if186 . (yl) I
ifft86 = [iff .) . pred83. neg85 I
pred83 = [predication .) . shaves . (xI yl) I
shaves =[name.0J
y1 = [variable . (formula87 . y J
y . = [name . (male person)]
neg85 = (negation . (. pred84 I
pred84 = [predication . (. shaves . (yl y1) I

For case of manipulation, each record is made the value of a u.1sr atom (linel, fornula89,

etc.), whose name is then used as the name of the record. The equivalence of two lexical

expressions is determined at the time they are typed in, and is reflected in the reuse of the same

record as shown above for the variables. The first field of a record is always its object's logical

type, and the second is always its feature-list; the rest of the fields vary from type to type.

Linking wffs to their entrys

The dictionary for the logic domain is based on common entrys for the logical vocabulary

and individual entrys for particular predicates, variables, and constants. Thus the first step in

linking wffs to their entrys in this domain is always to look at the type of their record. If it is part

of the common vocabulary, then the type itself tells us which entry to use. If the type is name, the

catchall for individuals, then we know to find the entry directly associated with the individual.

Exactly how the "association" is performed is a matter of preferred programming style.

The ftnction below was the one that was actually used: it uses table lookup for the logical

vocabulary (largely because the number of items is small and fixed), and a direct association by

attached properties for the individual. When the dictionary itself defines the properties (i.e. for

"marked-to-play-a-role"), an additional indirect step is required. l'ntry-for returns the name of

the entry it finds.

VII.2.1

- 295 -Appendix

"represetalions and itetfaces"

Appendix

(defun entry-for (exp)
(cond ((and (bound p exp) ;fiit lest that it is he correct kind of LISP object

(atom exp)
(hunkp (symeval exp)))

I(cond ((get exp 'marked-to-play-a-rote)
(let ((role (get exp 'marked-to-play-a-role)))

(get role 'dictionary-entry)))
((eq (type exp) 'name)
(get exp 'lexical-entry))

(t (cadr (assoc (type exp)
((proof proof-entry)
(paragraph paragraph-entry)
(line line-entry)
(formula formula-entry)
(neg compose-negation)
(predicate predicate-entry)
(if-then if-then-entry)
(iff iff-entry)
(conjunct conjunct-entry)
(disjunct disjunct-entry)
(variable variable-entry)
(proposition proposition-entry)
(constant constant-entry)))))))

(t (print "'entry-for: don't know how to find an entry for EXP")
nil)))

The clause of the conditional that tested if exp was "marked-to-play-a-role" is part of the

domain's facility for labels, and will be discussed later with the labeling facilities of other domains.

Other interface functions

There are no surprises with these functions: all of the potential difficulties of definition

have been relegated to the wff parser, or are ignored entirely and supplied ad hoc by the designer.

entry-argumnents-for Trivially defined to be the real-msg-elmt of the clnt-instance being
realized.

msg-elintp Equivalent to entry-for, which returns nil if the object has no entry.

same-nisg-elint Since all message elements are lIsP atoms, this is just the usi eq.

elift-)luritl)/elIlmt-geIler Usually, this in formation is just read out from the features field
on the message element, but see below.

elnt-reference-type Not used.

elmt-discourse-history Since the "speaker" is trivially in the same computational
environment as the lingustic component, the history is maintained as (1) a chronologically
ordered list of logical objects realized, plus (2) "discourse-history" properties on tle
individual objects summarizing their own chronologies.

distinguislable-kind Not used.

"represenlations and inletfices"

-0296 -

1 .2.1

Artificially augmenting a domain's cOncelptS
Any attempt to give the logic domain a greater fluency with English quantifiers is

immediately confronted with the fact -tiat the act of making the decision between "alt" and
"each" (or "any") adds information to the logical formulas that was not there to begin with,
namely whether the exemplar being used for a given quantifier is plural or singular. Once

decided, this information must be remembered, and remembered in way that does not change the
original formula.

The technique used was an obvious if inelegant one: an association-list was maintained
where formulae whose quantifiers had undergone one of these decisions were stored, paired with
a record of what had been decided. Then the interface function clHnt-number was written to lodk
first to this list of specializing information before going to the logical formula itself.

The fact that the predicate calculus supplies only two quantifier.symbols while English
supplies (at least) four, is not a deficiency of the underlying representation so much as it is an
indication that a special body of rhetorical criteria will be needed to decide how to pin down the

extra descriptive dimensions available in natural language-richer intentional motives are needed,
not necessarily a richer senantics. In general, deciding between a singular or a plural version of
the universal quantifier is non-trivial and often can't be done in one pass. In this sentence (taken

from earlier in the paper), I had originally used the plural form (given first in the pairs), but went
back and changed what I had written to use the singular form because that should (I reasoned)
reduce the potential for a distributive/collective ambiguity in the final phrase "their total votes".

"(All/each) of the distractors (are/is) run through the pronominalization heuristics as if
(iheiy/it)(were/was) the current-insiance and their total votes compared"

2.2 Ki-ONE-nets-as-ojects

The dictionary and interface functions of this domain are not designed to process actual Ku-

ONE-nets. Instead, the network to be processed is first passed through an interface program that

transcribes it as a set of assertions. (The diagram below shows the assertions that were created to

describe the pp concept shown in the figure on page (example.kl-one-net>.) These assertions

follow the usual syntactic conventions of pattern-matching languages such as MICROPLANNER

[microplanner.manuall: list-structures with the name of the relation first followed by its

arguments, and were indeed accessed by their entrys via pattern-matching.

"representations and interfaees"

A ppendix - 297 -

VlII.2.2

Appendix

(subconcept :c:pp :c:phrase)
(has-role :c:pp :r:pobjfpp))
(has-role :c:pp :r:prep(pp})
(has-role :c:pp :r:interp(pp})
(has-role :c:pp :r:ppobj(pp))
(value-restriction :r:pobj(ppl :c:np)
(value-restriction :r:prep~pp} :c:prep)
(value-restriction :r:interp(pp} :c:relation)
(value-restriction :r:ppob{ppl :c:pp)
(subcor-cept :c:ofpersonpp :c:pp)
(subconcept :c:insubjectpp :c:pp)
(subconcept :c:locationpp :c:pp)
(subconcept :c:aboutsubjectpp :c:pp)

The initial motivation for this "intermediate" assertion language was technical convenience.

Because of the limited address space of the i'iw-10, the K1ONE programs and NmflIBIAC were

forced to be resident in different forks and able to communicate only by external files-a

translation of some sort was thus inevitable.

Artificial first class objects

Even on a machine with a larger address however, a shadow, assertion-based representation

would have its place in this domain. The present implementation of KIONE has a unique internal

object to represent each formal object that is at the end of a link; it does not however have

internal objects corresponding to the links themselves. For example, there is no object to denote

the relation (has-role :c:pp :r:pobjpp)); instead, that information is given in a table that is part

of the object for :c:pp and again in a table with :r:pobjfpp}.

This is a problem because an entry in a table is not a very versitile object: there is no way to

make it part of an clit-instance, no way to add properties to it to record its discourse-history, no

way to apply an interface function to it, and no way to associate it with an entry. In short,.it is not

a first class object (pg.<firstuclassobjects>).

Since KL-ONE does not have first class objects for its basic relations it is necessary for its

speaker to construct them. The assertions are stand in's for the unmanipulable primitive relations

of lI-ONE nets.

2. This assessment of Kl-ONE is not entirely fair. The K WONE representation has explicit provisions for first class
objects to represent these relations, namely individual concepts on a "mera-level". xactly such meta-level

concepts will be used in "real" dictionary for KI-ONE where the objects to be realized are not the nets themselves but
the "real world objects" in the program's model that the nets represent. I lowever, in the K(L- ONE-nets-as-objects domain,
one of these meta-level concepts would be needed for evrs relation in the net, which would be an intolerable
oserhead.

"representations and intetjaces"

-298 -

V 11.2.2

Associating assertions with entrys

The convention of making the name of the relation the first item in an assertion can be

taken over directly into entry-for: we associate entrys with relation names, and then determine

that the entry for an assertion will be the entry for its relation.

The arguments to a vo,-:N-nets-as-objects relation will always be objects from the KIONE

nct.3 Thesc of course do have first-class objects to represent them (they are the source of the

colon-filled names print-nanles), but the Rubicon has been crossed, and they are represented in

the assertion language by new atoms with corresponding print-names. The entrys for these atoms

are associated with them at the same time they are created: the entry's name is put on their

property-list, e.g.

Iciclause - name [word . (proper-name classifier) . clause I
type concept
entry concept-entry

The entry-for function thus has two cases: when the object is an assertion (i.e. a uSP list) it

looks ip the entry on the property-list of its first element; and when the object is a KL-ONE entity

(i.e. a LISP atom) it looks up the entry on the object's own property-list.

The other interface functions

entry-arguments-for Because this is an assertion-based domain, the arguments to a
relation are trivially available (they are the rest of the elements of the assertion). It is thus
more efficient to package them at the point when the elint-instance is being assembled
than to have the entry make a redundant access operation later.

msg-ehntp This can always be defined as entry-for(assertion).

same-nisg-ehnt I isr equal, which compares lists recursively at all of their.levels.

elint-pluralp, clit-gender, elmt-reference-type Since all objects in the domain were either
relations or proper names, these functions were defined to just return constant values.

distinguishable-kind Defined to be identical to die type of the object, i.e. "concept" or
"role".

Representing an unbounded search in the tree

The simplest way to integrate the depth-first traversal of the concepts in the net with the process

that reads them out in English would be to have the search take place in directly the the tree's

computation environment and to connect the output stream of the search directly to the the tree's

"next available slot for a message" (see section initializationn.y.w.). The tree would be extended

incrementally, even to the point of growing and embedding new discourse nodes automatically by

3. With the exception that when a series of assertions have been merged (see message.Jeve.reduction....y.w.), the
argument merged on will be replaced with a conjunction node.

"representations and interfaces"

Appendix - 299 -

VII-2.2

Appendix

enriching the vocabulary of the search procccss's output to note when a new set of subconcepts

was entered.

'[his, of course, is not possible in this case because the two processes actually lived in

computationally independent forks. Instead, it was simulated by using pattern-matching within

the major entrys to accumulate the assertions on demand concept by concept (see for example

the concept-defining..ntry pg.<concept-deliningsentry>). The text was planned and realized one

paragraph at a time, with the known pending concepts ("paragraphs") stored in special-purpose

"state-assertion" message elements at the right fringe of the tree.

2.3 'le Macbeth domain

The internal representation of the Macbeth domain is a.version of the language rl (see

footnote pg.(frlreferencesn.y.w.>). The primary objects of this language are "frames": multi-

level, "augmented property-lists" that support default values, inheritance, and the attachment of

access-triggered procedures. Within FRI, the user always manipulates a frame by using special-

purpose access functions, and thus need know nothing about how a frame is constructed. The
interface to MUMBLE, on the other hand, must know about the internal structure of a frame

because it expects to build messages directly from frame properties and values.

As FRL is implemented, a frame is accessed by its name, e.g. macbeth or murder-ma,

which is implemented as a lISP atom. The frame proper is found on the atom's property list

under the tag frame; it is a list, structure, and uses level of embedding to implement the
frame>pwopertics>values>faccts distinction. The frame for duncan is shown below as displayed

by a pretty printer.

4. Note, this figure is exactly what the interface and dictionary were written to manipulate. The frames shown in the
introduction were "cleaned up" to avoid irrelevant details.

"representafions and intetifces"

.0300 -

V 11l.2.3

Appendix

[duncan]
frame (duncan (part-of (value ma (see (relation8)))))

(ako (value (king (see (relation24)))))
(hq (value (dead (see relation47)))))

:the frames "relation8" and "relation24" are just back pointers

[relation47l
frame (relation47 (frame (value (duncan)))

(slot (value (hq)))
(value (value (dead)))
(caused-by (value (relation46))))

[relation46]
frame (relation46 (frame (value (macbeth)))

(slot (value (kill)))
(value (value (duncan)))
(cause (value (relation47)))
(caused-by (value (murder-ma))))

Contextual Definition

All iiw, functions deal with frames as wholes: one cannot break down a frame into, say,
individual properties and still expect FR L to be able to understand them as such. Outside of their
frame, individual properties and their values are just so many lists and atoms, with no markings to
indicate that they have sonic special interpretation.

Because 11 objects, i.e. properties, slot-value pairs acting as abstract predicates, constant
symbols acting as values, and frames acting as values, cannot be identified as such in issolaion, I
will say they are coniexiually defined. Contextual definition is an inconvenience for the interface
but not an insurmountable one: whenever we want to extract one of these objects from its frame,
say because we are decomposing the frame and positioning its parts in the tree, we must be sure to
mark each piece (or the piece's context in the tree) in some way that will record the object's FRL-
identity. Let us look at some examples of this.

When the message is an entire frame (as in the play summary, pg.(m.framejextnyw.),
the frame is broken up by whole-frame-entry into its individual properties, and these are then
positioned in the tree to be sentences in a paragraph. As extracted, these properties are the same
lists that are used for abstract predicates, e.g. (ako (value (king))) or (hq (value (dead))). By
taking the properties away from their context, we have removed the usual means of determining
(1) what frame they were properties of, and (2) that they were frame properties and not abstract
predicates or just random lists. Thus before positioning the properties, the entry adds to each list
the name of their frame and the specially recognized indicator property, yielding: (property
(duncan (ako (value (king))))), (property (duncan (hq (value (dead))))).

"representa/ ions and inietfuces"

-

4 301 -

VIL.2.3-

The difference between; e.g.. duncan as a value and duncan as an independent frame (the

first becomes a proper name and the second an entire paragraph) is handled by context, i.e. the

paragraph interpretation is used only when the linguistic context-the type of slot that the elmt-

instance is embedded in-is one that permits paragraph-sized structures, otherwise a summary is

used. Whether the sumary is to be a proper noun ("'uncan") or a simple clause (e.g. "Macbeth

murdered Duncan") is determined by examining the frames (which we can do because our

message element here is the atom the frame is attached to) and using a clause whenever the frame

includes backpointer properties, otherwise using a proper noun formed from the atom's print-

name.

All FR objects are either atoms are lists. The atoms always stand for frames, and have just

been discussed. I.ists are either properties or abstract predicates: but since a property will always

begin with the reserved atom property, we can safely interpret any other lists that are encountered

as abstract predicates by default, and need not mark them specially.

Interface functions

Entry-for Because of its intentional resemblance to English, the internal representation of the

Macbeth domain is one of the simplest to write a dictionary for. As a first approximation, there

need to be only three general purpose entrys, one for each type of nRi object. These entrys

extract elements from uniform positions in the objects and apply them to equally uniform choices.

(See sections fromn.frl-toenglislh.n.y.w., and <defauluproperty.entry>.)

Deviations from these defaults are arranged by associating a special-purpose entry 5 with

some predictable subelement of the object, e.g. the atom denoting a frame, or the atom that names

the property in a property or an abstract predicate. The "association" is implemented by putting

the name of the entry on the property list of the affected atom under a tag that indicates when it is

to be used (e.g. predicate-entry or summary-entry).

The Macbeth domain version of entry-for first determines which of the three kinds of FRL

object it is working with, and then looks further to see if there is a special-purpose entry that'

should be used instead of the default.

entry-arguments-for As in the logic domain, it is the object itself. The decomposition is
handled within the entrys.

msg-elntp Again, just using entry-for is sufficient.
same-msg-elnt The usr equal predicate.

clit-pluralp, clit-gender Presently objects- with marked properties (i.e. plural or
feminine) are given a feature by hand in the dictionary to indicate that. With some
searching through the rut network and some linguistic annotation of generic concepts,
Such information should be computable directly fromt the domain.

S. More likely it would be an entry-schema that is used, see pg.<entry.schemajn..acbeth...domain),

"representations and interfaces"

Appendix -*302 -

V II.2.3

clhnt-reference-type Trivialized at the moment since there were no pronominalizable
descriptions used.

distinguishable-kind Again marked by hand in the dictionary; "actor", "event", and
"action" were distinguished..

3. Grammar-variables - binding discipline

CON'TIonER-vARIAnFs are recursive. This means that if, for example, we want the variables

curent-subjea and current-mvb ("main ver") to be defined in every clause, then we must have

some provision to "save" the former values of these variables whenever we move temporarily into

an embedded clause, for example when we enter a relative clause off of the subject NP of the

"original" clause. There are several established ways to save the early values of recursive

variables; I have elected to use "shallow binding".

Shallow-binding is a standard variable maintenance technique where the value of a variable

is always accessed in the same way regardless of how many recursive embeddings it has

undergone. Former values, values that will have to be reinstated when the program leaves the

embedded region, are stored on a push-down stack. The details of the stack mechanism are not

relevant here except that in MUnulI; they make essential use of the record properties on the

NODEs, which are also used by the IIISFORY-TAKEIs as summaries for use after the actual

constituent structure has been expunged.

Grammar-variables are managed exclusively by GIIAl-ROUINEs. Region entering

routines set the variables; region leaving routines reset them to their former values. The [clause

enter-node] routine in NIJMBLE:, for example, sets the variables current-clause and current-subject.

Its counter-part, [clause leave-node], resets them to their former values. These routines avail

themselves of a common variable settingiresetting protocal which gives each variable its own

shallow-binding stack.

Center-embedding

Note that no way has been provided (thus far) for a GRANIRIAR-ROUTINE to know how

deeply or (even whether) it is embedded. kvery time [clause enter-node] is activated, it can

sample other grammar-variables such as current-slot or current-mother-node, . but these are also-

deitic variables that "move" with the controller. There are no variables in the linguistic

component that count absolute depth or any other absolute quantity. This "non-feature" is based

on a hypothesis that such information is not needed in the grammar. (N.b. one can design a

routine in a III'TO1IAKER that counts. 'his has been done for several of the experimental

"representlations and intetfhces"

Appendix -0303 -

V11 .3

Appendix

speakers as the basis of stylistic-heuristics designed to limit production with depth.)

But, while the grammar should not need to count, there may be other, more qualitiative
aspects of embedding that would be relevant to it. I am indebted to Ken Church for pointing out
a simple variation on the stack maintenance discipline that makes it possible to distinguish cases
of left and right embedding from center embedding. This is important because while the first two
cases can be parsed with a finite state device, center embedded texts require a pushdown
automataiintrinsically more powerful. Where there is an option in choice of embedding, choosing
left or right over center embedding should simplify the job of the audience reading the text. (An
example of a right embedded text is: the dog that chased the cat that killed the rat that ate the
cheese...; of left embedded text is: the dog's cat's rat's cheese...; and of center embedded text: the
rat the cat the dog chased killed ate the cheese.)

The variation is based on the observation that in both left and right embeddings there is no
need to save the former values of controller variables because the context in which they are valid
will not be visited againionly in the case of true center-embedded phrases is a stack necessary. If
there is no "former value" of the variable (which would be the case, for example, when starting an
entire message), then there is no need to begin a stack. If there are no constuents remaining at

the level of the embedded constituent to be returned to when it is finished, then there is no
reassign the old values to the variables. Only if there are constituents of the current constituent

current sentence remaining to the right of the current position and thus no yet realized is a stack
necessary. The test for whether one is currently center embedded is simply whether or not the
embedding variable (e.g. current-clause) has a stack.

4. The Discourse History

The linguistics component keeps a record of every realization and every grammar-decision"
that is made in the course of its processing. The purpose of this.record is to facilitate subsequent
decisions about pronominalizations, parallel contexts, stylistic variation among synonyms, and
usage options in general. For this reason, it is (1) organized as a random access store, and (2)
given in terms of generic descriptions of the events: a "noun phrase" was created, rather than
NP3; the choice persuade-type-clause was selected, rather than the choice-application
(persuade-type-clause 'persuade 'lady-macbeth 'macbeth '(macbeth murder duncan)).

One may ask why a separate record is needed when all of the infornation is already present
in the treed (or would be if derivational annotations were added). It is because one cannot
divorce a data representation from the kinds of operations that are used to access it. 'he
information is indeed "already" in the tree, but the form that it takes there is awkward to

"representaionsand inteiftces"

w 304 -

.V11 .4

manipulate. Consider, there are only two ways to access information that is stored in a tree: to
scan it, item by item following the constituent structure until the wanted information is found, or,
having scanned it once, to explicitly'remember all information that might prove relevant. The
first method is not used at all in this theory because of its intrinsic inefficiency. (Recognizing the
information can require parsing the tree and performing deductions, and possibly polynomial
search times could be required, jepordizing the linear time property of the overall process.)

The second method is used to good effect by the GRAMMAWVA.\IAtLES; however, it has
limitations of distance (one does not generally need deitic information about "the fifth sentence
back"), and of specificity (GIANIRA Ixnhrs use a grammatical vocabulary: "the current
subject". The pronominalization routine lust be more more specific: "the last occurence of
macbeth"). In a discourse history, where what is wanted is infonnation about specific objects
involved in past events with an arbitrary relationship to the current position, what is needed is an

associative record, separate from the tree and compiled at the time the events occured.

The discourse history is compiled as follows. Whenever an event needs to be recorded, a
1IISTORY-TAKER operation will be applied. The IHSTORY-TAKI.: compiles a Iwcoiw describing
the event, which it then has added to the ulsTORY of the object involved. (When the object is an
EL\IT-INSTANCE, extra-linguistic operations may be involved to make the association between the

message element, this instance of it, and its HSmoUY. l'Yhese are performed by the interface
functions clmit-discourse-history and set-clint-discourse-history which respectively retrieve and
augment message element I IsroIs.)

Data type: RECORD

Exactly what properties a rcoiw should have is a question of analysis. It is clear however

that the properties will vary depending on the type of event whose history is being described. As a
consequence, every RECoIl) will have an event-type property that will be used to determine what

other properties can be expected. Mtzuumt: has four event-types: msg-e/trealized (when was

macbeth last mentioned?, how was it realized then?, what was its discourse role?); decisionuade

(did we do VP-deletion the last time we had a conjoined verb phrase?); choice.selecied(when was

the last time we selected head-classninme ?) and node-constructed (what was the focus of the last

paragraph?). Because of space limitations on the program, IUMiBLE only makes RECORI s of
selected DECISIONs, CoIlEs and CATE CORYS for which it has speci fic usage heuristics.

Generally speaking, a inconw will note the position of the event in the tree, a description
of the outcome of the event, and possibly a description of the more important reasons why the

outcome was what it was. Rcoi1s will consist either of lists of descriptive features or of pointers

to other REcoRms. The information in a Rrol) should not be constituent structure (i.e. slo s or

NODEs) for the simple reason that one expects the rECO.i) to be.remembered.considerably longer

than any constituent structure it would refer to.

"representations and intetfices"

Appendix -0305 -

V I l.

Appendix

Beyond these general observations, it is not clear, at this stage in'the research, what specific
facts will need to be recorded and what choice of properties would structure them in the best way.
This is because the facts are both a function of what questionsidiscourse predicatesLwill need to
be asked (something that is just beginning to be explored), and of the operations that could be
used to go from the absolute positional infotrmation in the RECoRIs to the relative positional
information that the predicates will actually use. Discourse predicates invariably ask deictic
questions: "has this event ever occured within this paragiaph?" or "was the VP deleted in the
previous conjunct?". At the moment there are too many degrees of freedom available to the
designer to make a cogent decision on this matter; consequently, in lMUMlE many different
designs are being experimented with. Below is the REcoN) made by Nmuuinr for the realization
of the first instance of the message element macbeth in the example on page
<macbeth.example.n.y.w.>.

[macbeth RI1

Position: clause index c55 depth I
containing slot: [subjectJ
sentential context: toplevef-noninal

Realized as: (Inroper-name)
Strategies used: (word-enliy32 use-word)

The information collected in iivcoiws like this is never accessed directly. Instead, discourse

PREDICATEs are written that compare the information in two RECoCRs or between a RECoIOI) and

the current context, and then return a description of how the two are related. The most thorough

example of this process appears in the section on subsequent reference (V[LB.l.1).

The same considerations apply to ilIsTORYs as apply to RECoRDs. A hISTORY is a body of
RECO)s about the same generic event, structured in such a way that one can recover properties

such as the temporal order or recent instances, whether or not there was an instance in, say, the
last paragraph, what role the event played the first time it occured in the discourse, and so on.

The proper structure for a ISTonY is even less clear at this stage than that of a RICORI). It

is clear that the simplest structure, a sequence of REcoRDs in chronological order, would be
enormously inefficient to search once the discourse was longer than a few paragraphs. A compact,
predicate oriented description is necessary if i [sTORYs are to be reasonable objects to reason with.

4.1 Garbage collection and the compaction of the discourse history

Even if memory size were not limited, it would still be important to compact the
information in the discourse history at regular intervals. The reason is very simple: as an event

recedes into the past, its relevance to current decisions becomes smaller. At the same time, the

"represcniaions and inetfaces"

-b 306 -

V11{.4.1

Appendix

space of past events that discourse predicates have to search becomes larger, and a premium is

placed on succinct description.

Constituent structure can be garbage collected (expunged) as soon as the controller has

passed through it. That is, every time the controller leaves a NODE, 6 that NODE, its immediate

constituent SLOTs, their contents, and any other temporary objects below them in the tree can be

expunged from the systemithe storage space they occupy is returned to the system free storage list

and the objects cease to be defined.

- The discourse history cannot be garbage collected so glibly. Past events should not

disappear altogether, but should fade slowly. Each addition of a new RECOl) to a ISTORY

should cause die rest of it.to contract, e.g. when a paragraph ends, the individual IIEcoRIs for

each of its sentences should be expunged and replaced functionally by properties on the RECORD

for the paragraph.

5. The morphology routine

All words that originate in constituent stars pass through the morphology routine before

they are printed. The routine receives a WoRD, examines its pname and its position in the tree,

and produces a pname with the appropriate morphographemic shape which is then immediately

sent to the output stream for printout.

As the name suggests, the morphology routine is the part of the linguistic component that

knows the mophological facts of English. In MUMBLE, this knowledge is not extensive. The

routine knows the productive verb forms, plurals, Possessives, and contractions with not. some

adjustments to determiners (e.g. "a" + "other" -> "another") and the structure of the verbal

auxiliaries ("aux-hopping"). Its knowledge of morphological adjustment rules is limited to such

things as "change the y to i and add es" and the doubling of final consonants after stressed vowels

(marked as such by a property on the wOR)). It does not know anything about creating new

words from old via semi-productive morphemes such as un- or -ment.

'he morphology routine is the only part of the linguistic component that deals with

pnames, i.e. the only part to employ a sequential, character string based representation. By

contrast, the message level is a conceptually-based network structured by the enumeration

function, and the extended surface structure level is a (heavily annotated) syntactic tree accessed

by deitic variables. This is because it is only in this last stage of the production process-just prior

6. As a convenience for debugging, MUMBLE typically waits until entire sentences are left before garbage collecting
them. This is a load--time parameter.

"representations and intetfaces"

- 307 -

V1i1.5

Appendix

to actually printing the text-that character string information is needed. Before that time, it is

easier to reason in terms of a Wou's name and the individual features of the linguistic context,

especially SLOT-NAMEs. (Even a poetry program would find it more convenient to manipulate a

schematic representation of sylable structure and rhyme patterns than to work with the pnames

directly, if only because that avoids needing to know how to spell!)

A simple transducer

* The ENTIRYs select WOR)s and position them in a grammatical frame. The morphology

routine receives these words, one at a time, along with a description of their position. In MUMmL,

the description is conveyed by grammar-variables. especially current-slot, and context-ofThe-

proposition, and is used. for determining how the first word of the verb group (the "tense bearer")

should be treated. On the basis of that information (and a small amount of state in formation, see

below), it then determines what pname to have printed. It is effectively one large conditional

- procedure, e.g. one of its cases willbe: "if the current-slot is [head] and the curren-NIP has the

hook plural, compute or lookup the correct plural form for the word and use it instead of the

regular pnanie.

Re)resenting 'the last thing said' The morphology routine does not pass pnames through to

the printer as soon as they are received and processed. Rather, it maintains a "buffer", presently

one pname long, which it uses in testing for pname-pnarne interactions. In MUMBLE, only

certain WoI) classes, marked by a feature, are actually buffered. This is done for economy

reasons since the grammatical phenomena that the buffer is used to test for effect only a few word

classes. In a speech-based system however, the buffer would be in constant use because of the

need to stage contextually induced allophonic variations.

Because of this buffer, the morphology routine is the most convenient place to define the

relation "the last word said", that plays such a critical function in the grammar of the English

auxiliary. The buffer is also used for contractions and adjustments to determiners (i.e. "a + other

=> another", "any + (person) => anyone"). Unlike the'auxiliary, these actions are matters of

free choice, not requirements of English grammar, and as a consequence, the morphology routine

applies full-fledged GRANIMATICAL-lI)CISIONS to decide whether or not to make the combinations.

State infonnation from the controller As discussed earlier in section

(flagsjfor-grammaticaLevents...n.y.w.>, the morphology routine must be sensitive to certain

events that are defined by the passage of the controller across certain syntactic "landmarks"

rather than by the' reception of certain wOIs. For IIMN E, these are: the end of the

[determineri (to mark the possessive), the beginning of the [subjecti (for inverted auxiliaries), the

first word of the verb phrase (for tense, negation, and initial adverbs), and the end of one

sentence-beginning of the next (for final punctuation and captializing the first word of the next

rereesentations and interfices"" V.5

'-I

- 308 -

