
-1-

DECENTRALIZED ALGORITHMS

FOR OPTIMIZATION OF

SINGLE COMMODITY FLOWS

by

Isidro Marcos Castileyra Figueredo

Ingeniero Electr6nico, Universidad Sim6n Bolivar,

Caracas, Venezuela (1976)

SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May, 1980

c Isidro Marcos Castineyra Figueredo
The author hereby grants to M.I.T. permission to reproduce and

to distribute copies of this thesis document in whole or in part

Signature of Author
Department of Electrical Engineering and
Computer Science, May 20, 1980

Certified by.............Pie rea.. s
Pierre A. Humblet, Thesis Supervisor

Accepted by.....
Arthur C . Smith, Chairman, Departmental
Comittee on Graduate Students

MiTLibraries
Document Services

Room 14-0551
77 Massachusetts Avenue
Cambridge, MA 02139
Ph: 617.253.5668 Fax: 617.253.1690
Email: docs@mit.edu
http://libraries.mit. edu/docs

DISCLAIMER OF QUALITY

Due to the condition of the original material, there are unavoidable
flaws in this reproduction. We have made every effort possible to
provide you with the best copy available. If you are dissatisfied with
this product and find it unusable, please contact Document Services as
soon as possible.

Thank you.

Due to the poor quality of the original document, there is
some spotting or background shading in this document.

-2-

DECENTRALIZED ALGORITHMS
FOR OPTIMIZATION OF

SINGLE COMMODITY FLOWS

by

Isidro Marcos Castileyra Figueredo

Submitted to the Department of Electrical Engineering and

Computer Science in Partial Fulfillment of the Requirements for

the Degree of Master of Science, May 20 1980.

ABSTRACT

In this work we study message routing in a data

communication network in which all messages are addressed to the

same node of the network. We approach this problem by the
minimization of a linear, increasing function of the message flow
in the links of the network. In this minimization we consider
explicitly the capacities of the links.

We present two algorithms which can be executed in a
distributed manner, i~e. the data processing facilities at the
nodes of the network cooperate in this minimization by
interchanging messages and processing them.

One of the algorithms is an adaptation of the primal simplex
method of linear programming. The other is an adaptation of D.R.
Fulkerson's "out-of-kilter" algorithm. We give simulation
results of the performance of the first algorithm, and a bound on
the total number of messages required by the second algorithm.

Thesis Supervisor: Pierre A. Humblet

Title: Assistant Professor of Electrical Engineering.

-3-

ACKNOWLEDGEMENTS:

I take this opportunity to thank Prof. Pierre Humblet for

suggesting this thesis topic. His interest and suggestions made

the research rewarding.

The research was carried out at the M.I.T. Laboratory for

Information and Decision Systems with support from CONICIT

(Venezuela's Consejo Nacional de Investigaciones Cientificas y

Tecnol6gicas). Funds for the computer simulations were provided

by ARPA.

TABLE OF CONTENTS

CHAPTER PAGE

I.* Introduction......**.........................

II. An adaptation of the primal simplex method for
decentralized operation...............................11

II,1 Introduction.. 6.6.......................6.6.11

11.2 Overview of the primal simplex method...............12
II.2.2 Initialization.......66.............6.....15

11.2.2.1 Centralized operation.......66..... 16
11.2.2.2 Decentralized operation....... 16

11.2.3 Iteration...... 17
11.3 Centralized description of the algorithm............20
11.4 Decentralized execution.............................25

I1.4.1 Preliminaries......6 66... 66 . .. 25
11.4.2 Formation of the initial basic solution......25
I1.4.3 Iteration.......................26

11.4.3.1 Election-by-depth rule...........666.26
11.4.3.2 Election-by-reduced-cost rule.........28

11.5 Performance evaluation...........................
11.6 Small changes in the node requirements.............32

III The Out-of-Kilter Algorithm........... 33

111.1 Introduction.. 666..363

111.2 Centralized description of the out-of-kilter
algorithm.....a.................6.............41

111.3 Decentralized implementation....................66.44
111.3.1 Control spanning tree formation.............44
111.3.2 Initial flow and node number set definition.44
111.3.3 Selecting and out-of-kilter link............45
111.3.4 Bringing a link 1 into kilter............ 45

111.4 Possible variants of the out-of-kilter algorithm...48
111.4.1 Node splitting............................49
111.4.2 Flow augmentation...........................50
111.4.3 Flow augmentation along shortest paths......52

IV. Conclusions......66 55

References.........666...........................5

-5-

CHAPTER I

Introduction:

Consider a computer network, consisting of geographically

distant computers which can communicate by exchanging messages

along transmission links, Users are situated at each node, i.e.

at each computer site in the network. The network acts as a

communication medium between the users.

In this work we focus on message routing, i.e. how to

arrange for each message to be transported between its entry and

destination nodes.

The network is characterized by its topology and the

characteristics of the links, i.e. their capacities and other

physical constraints. At any instant in time the users'

requirements are characterized by the amount of messages that

each node wants to transmit to every other node in the network.

In general there exists more than one way to satisfy the

users' requirements, messages can go from one node to another

following several different paths. One is then interested in

finding a pattern of message flow which will minimize the total

cost of transmission, where the cost is determined by the

particular economics of the situation. The average message

transmission delay in the network has been frequently chosen as

the cost function to be minimized. Finding a realistic

-6-

approximation to the average delay in the network is a point

where one meets some latitude. The most commonly used

approximation is that given by Kleinrock [1]. It has been

noticed [15], though, that in practice the particular choice of

the function to be minimized does not affect too much the

resulting flow as long as this function satisfies certain

reasonable conditions. Namely, the function should be a

continuous, increasing, convex cup function of the link flows.

The minimization to which we have referred above can be

realized either in a centralized or in a distributed manner. In

the former case all the information about the network and users'

requirements must be collected in a central facility in which the

minimization takes place. The result of this must then be

broadcast to all nodes in the network. In the latter case the

nodes must cooperate in an organized manner to perform the

minimization. The nodes utilize local information and resources,

progressing towards a global solution by interchanging messages

and processing them. -In the case of a computer, or data

communication, network the information about the network besides

being geographically distributed changes while the network

operates, as nodes and links become and cease to be operational.

It might be also the case that none of the computing facilities

at any of the nodes is capable of solving by itself the resulting

minimization problem in a reasonable amount of time. These

considerations strongly recommend the decentralized approach.

-7-

In this work we shall assume that the users' requirements

change slowly relative to the time it takes to perform the

minimization. Therefore, we can characterize a users'

requirement by the number of bits per unit time to be sent to

every other node in the network. The solution will be given in

terms of number of bits per unit time destined for each different

node flowing in each link of the network.

The assumptions here chosen result in what is called global

quasi-static optimization. Global because we are trying to

minimize a function of the whole network, as opposed to

strategies which chose to minimize a cost function for every

message sent. Quasi-static because we are assuming that the

users' requirements change slowly in time. Other assumptions and

goals result in different strategies, for example the routing

algorithm described by Heart et al. in [14].

The data transmission networks group at the Massachusetts

Institute of Technology Laboratory for Information and Decision

Systems has worked on similar problems under the same constraints

of geographical distribution of information. Members of the

group have obtained algorithms for the minimum cost spanning tree

problem [2], the shortest path problem [3], and the assignment

problem [4]. In the first two of the problems mentioned above

the nodes collaborate only by sharing information. The

assignment problem has a different flavor, the difference being

that there is need for a stronger coordination between the nodes

-8-

as the problem is one of resource sharing. In this respect, the

minimum cost problem discussed here strongly resembles the

assignment problem.

In [5], R. Gallager presents an iterative decentralized

algorithm for the multicommodity, when every node sends messages

to every other node, minimum cost network flow problem. The

function to be minimized is a continuous, non-linear, increasing

convex cup function of the link flows. It also has the

characteristic that when the flow in the link approaches capacity

the function grows unboundedly. This makes unnecessary the

explicit introduction of the link capacity constraints in the

formulation of the problem. Only non-negative flows are allowed.

The non-linearity of the function, and its fast growth when

approaching capacity have the consequence that to guarantee

convergence only very small changes of the flows are allowed at

each iteration of the algorithm. In [7] D. Bertsekas has proposed

generalizations of this algorithm which use the second

derivatives of the cost function .

In this work we are going to investigate decentralized

algorithms for the single-commodity, i.e. only one node in the

network receives messages, minimum cost network flow problem. The

cost function will be an increasing linear function of the link

flows, subject to non-negativity and explicit capacity

constraints.

-9-

The original rationale for choosing this cost function is to

see whether its simplicity suggests a minimization algorithm with

faster convergence and which produces a solution reasonably close

to that obtained by optimizing a more realistic approximation to

the average delay per bit sent. We are exchanging nonlinearity

of the function for explicit consideration of the capacity

constraints. The results which will be shown here cannot be

readily compared to others like those in [6,71, because we have

studied only the single-commodity case. Not until this approach

is extended to the multi-commodity case will a comparison be

possible.

Three chapters follow, of the first two each is dedicated to

a different algorithm, the last chapter will draw conclusions and

contain some general comments. The first algorithm to be

considered is an adaptation of the primal simplex method of

linear programming. The second is an adaptation of the

"out-of-kilter" algorithm. The first one has been given more

attention because it seemed to make better use of the

opportunities for parallel computation.

The main contribution of this work are: We show that the

simplex and the out-of-kilter algorithms can be implemented in a

distributed fashion. We give results bearing on the performance

of the two algorithms presented here: simulation runs for the

simplex, and a theoretical bound on the number of message needed

bny the out-of-kilter adaptation algorithm. A simulation program

-10-

was developed which can be utilized in further experiments to

study the performance of the simplex algorithm.

-11-

CHAPTER II.

"An Adaptation of the Primal Simplex Algorithm for

Decentralized operation"

II.1 Introduction:

Let G = (N, L) denote a connected network, with a set of

nodes N, and a set of directed links L. For 1 in L write h(l)

(resp. t(l)), to denote the head (resp. the tail) of link 1. So,

if for 1 in L, x and y in N, h(l) = y, and t(l) = x, we say that

there is a link going from node x to node y.

Let M be any subset of N, i.e. a set of nodes. By definition

the cutset CS(M) is the set of those links which have one end in

M and the other in (N-M). CSplus(M) (resp. CSminus(M)) will

denote the set of links in CS(M) which go from M to (N-M) (resp.

from (N-M) to M).

Let c = (c(j) : j in L) be a real vector, b = (b(i): i in N)

be an integer vector, and u = (u(j): j in L) be a positive

integer vector.

Let p = (p(i): i in I) be a given vector, let J be a subset

of I, we abbreviate g(p(j): j in J) as p(J).

The linear program (2.1) below is usually called the minimum

cost flow problem:

-12-

minimize c.f (2.1.1)

Subject to

f(CSplus(n))-f(CSminus(n)) = b(n) for all n in N (2.1.2)

0 <= f <= u for all 1 in L (2.1.3)

where f = (f(l): 1 in L) is a real vector, f(l) is the flow in

link 1. The vector u is the vector of link capacities

(upper-bounds). The vector c is the vector of link costs.

A node n in N for which b(n) >0 is usually called a source

node, i.e. messages are injected in the network at node n. If

b(n)<0, n is called a sink node. If b(n) = 0 it is called a

transshipment node. As applied to a communication network only

one node has negative b, all other nodes are either source or

transshipment nodes. The algorithms given below do not make

assumptions about b unless stated otherwise. Equation (2.1.2)

expresses a message conservation law that must be satisfied in

each of the nodes.

11.2 Overview the Primal Simplex Algorithm:

11.2.1 Generalities:

Any flow f that satisfies conditions (2.1.2) and (2.1.3) is

called a feasible flow. The primal simplex algorithm begins

considering an initial feasible flow and progresses from feasible

flow to feasible flow until an optimal flow is found, i.e. a flow

for which the value of the objective function (2.1.1) is minimal.

-13-

To begin, the algorithm tries to find an initial feasible flow,

if this is not possible the problem is said to be infeasible.

The algorithm also detects if there is no finite minimum.

Other solution techniques like the dual simplex algorithm do

not produce a feasible flow until the optimal solution has been

found. In contrast to this, during most of the execution of the

primal simplex algorithm there is always a feasible solution

available. If it were necessary to terminate the execution of

the algorithm before optimality is reached one can use the

non-optimal, but feasible, current solution.

To describe the algorithm we must specify the following

points:

a) Initialization: How to find the initial feasible

solution to start execution with.

b) How to go from feasible solution to feasible solution in

a way that guarantees that an optimal solution is going to be

found in a finite number of steps. In the class of network

problems with integer capacities and node supply numbers this is

complicated by the fact that the 'problems can be highly

degenerate in a sense to be made clear below.

c) How to detect that a proposed solution is optimal.

If fl and f2 are feasible flows, any convex combination of

the two is also a fesible flow, i.e.

if f3=a.fl+(1-a).f2, 0<=a<=1

-'14-~

then f3 satisfies equations (2.1.2) and (2.1.3) if fl and f2 do.

A basic feasible solution is a feasible flow f which cannot be

written as a convex combination of any two other feasible flows

f' and f'', where f' =/=f'', f'=/=f, f''=/=f'. A standard result

of linear programming theory [8], guarantees that if there is an

optimal feasible solution there also exists an optimal basic

feasible solution, therefore we can restrict ourselves to

consider only basic feasible solutions.

As in the general purpose simplex method we are going to

consider only basic feasible flows. A non-degenerate basic

feasible flow is a feasible flow such that the set of all links 1

in L for which O<f(l)<u(l) forms an undirected spanning tree of

the network G. In a degenerate basic feasible solution it is

necessary to add some links with f(l)=O or f(l)=u(l) to form a

spanning tree. Every basic solution to the single-commodity

problem is a flow f where f(j) = u(j) for j in S, f(j) = 0 for j

not in T and j not in S, where T is the undirected spanning tree

of G, and S is a subset of (L-T). The flows in those links which

are in this spanning tree are called the basic variables. The

set of these flows is called the current basis.

Later we shall see that a further refinement in the

characterization of the basic feasible solutions is necessary to

be able to deal with degeneracy.

-15-

11.2.2 Initialization:

Finding an initial basic feasible flow is usually not a

trivial task. In the centralized implementation of the algorithm

this is usually done by introducing artificial links of infinite

capacity, and creating a feasible basic solution which utilizes

flows on those artificial links as the basis.

The algorithm is made to progress in such a way that at the

optimum the flows in the artificial links are zero. This

elimination of the flows in the artificial links is accomplished

by one of two methods: either the two-phase simplex method, or

the so called "big-M" method.

In the two-phase simplex method one forgets temporarily the

original cost function, and one minimizes the sum of the flow in

the artificial links. If the optimal value of this minimization

is zero, then the resulting flow is a basic feasible solution for

the original problem, if not the original problem is proved to be

infeasible.

In the "big-M" method one associates a very large cost per

message, M, with the artificial links. For M sufficiently large,

(M >c(L) can be shown to be large enough), if the original

problem is feasible, then the value of the flow in the artificial

links will be zero at the optimal solution.

-16-

Note that in both methods artificial links may remain in the

basis, but if the problem is feasible the flow in these links

will be zero.

11.2.2.1 Centralized operation:

In centralized algorithms an artificial node is created,

the artificial links go between this node and the other nodes. A

basic feasible solution can always be found in the following way:

if "a" is the artificial node, for every other node i do:

a) If b(i) >=O create a link 1 with t(l) = i, h(l) = a and

f(l) = b(i).

b) If b(i)< 0 create a link 1 with t(l) = a, h(l) = i and

f(l) = -b(i).

If b(N) = 0, as it should if there is going to be a feasible

solution, this flow is feasible and the links associated with it

form a spanning tree.

11.2.2.2 Decentralized operation:

For a decentralized implementation the artificial links

should go only between nodes already joined by a link. The

creation of an artificial node, or of links that go between two

nodes that cannot communicate, unduly complicates the problem.

A basic feasible solution can be found in the following

distributed way:

a) Create a spanning tree in the original network G.

b) Take r, any of the nodes of this tree and consider it to

-17-

be the "root" of the tree. This election can be facilitated by

assigning permanently different numbers to every node in the

network and taking as the root the highest numbered of the nodes

that are operational at the moment of initialization. To every

node in the tree we can assign a depth, this depth is given by

the number of links between the node and the root in the unique

path in the tree that exists between the node and the root. If

depth (j) = depth(i) +1, and there is in the tree a link between

nodes i and j we say that j is a son of i. For i=/=r the father

of i is the unique node j that can claim i as a son.

c) Alongside every link 1 in the tree create an artificial

link 1' with flow f(l') in the following way:

Beginning from those nodes which have no sons and

progressing towards the root define

total(i) =b(i)+ Z(f(l'):lT artificial and h(l')=i)-

2Xf(l'): 1' artificial and t(l') = i).

if total(i) >= 0 create a link 1' with t(l') = i, h(l') =

the father of i, and f(l')=total (i). If total(i)<0 create a

link 1' with t(l') = the father of i, h(l') = i , and f(l')

= -total (i). If b(N) = 0 then b(r) is equal to the net

flow of those artificial links that go between the root and

the rest of the tree. Note that the flows do not depend on

which node is the root, only on the particular tree chosen.

11.2.3 Iteration:

The simplex method proceeds from basic feasible solution to

-18-.

basic feasible solution by dropping one of the links in the basis

and incorporating one of the links not in the basis. Once the

new basis is chosen the feasible solution associated with it is

calculated.

The number of bases is finite, therefore to guarantee that

an optimal solution is found in a finite number of steps it is

sufficient to show that the algorithm will examine consecutively

only basic feasible solutions, and that once a basis has been

examined it shall not be examined again.

If the algorithm generates basic feasible solutions in order

of nondecreasing associated cost then, every time we make a

change to a basis with strictly lower associated objective

function value, we are guaranteeing that the old basis shall not

be considered again,

When we change to a basis with the same objective function

value in order to prevent the possibility of "cycling" in a group

of bases all with identical objective function value, we must

guarantee in other way that this basis shall not be considered

again. One way to guarantee this is by the use of "strongly

feasible bases" as described by W. H. Cunningham in [9], and

further below.

A feasible flow f' is called a strongly feasible basis if

each 1 in T with f'(l) = 0 is directed away from the root, and

-19-

each 1 in T with f'(l) = u(l) is directed towards the root in T.

A link 1 is said to be directed away (resp. towards) the root if

when traversing, beginning from the root, the unique path

consisting only of links in the tree that joins t(l) and h(l) to

the root one finds t(l) (resp. h(l)) first.

When using strongly feasible bases, every time there is a

change of basis that results in the same objective function value

the incoming link can be chosen in a way that guarantees that the

sum of the distances from the root to the nodes will decrease.

Let P(i) be the set of those links in the unique path from the

root of the tree to node i. Let Pt(i) (resp. Pa(i)) be the set

of links in P(i) that look towards i (resp. away from the root).

The distance d(i) from node i to the root r is defined as

d(i)=c(Pt(i))-c(Pa(i)). For every spanning tree d(N) is uniquely

defined. Therefore, we can guarantee that in a sequence of bases

with strictly decreasing d(N) no basis will be repeated.

Let T be the spanning tree of the current set of basic

variables. If 1 is a link not in T, define C(T,l) to be the

subset of L consisting of 1 with all the links of the unique path

from h(l) to t(1) in T. Let Cs(T,l) (resp, Cr(T,1)) be the set

of links in C(T,l) oriented in the same (resp. reversed)

direction as 1 when one travels around the the cycle C(T,1).

For 1 in L, 1 not in T, let join(l) be the node of largest

depth belonging to both P(h(l)) and P(t(l)).

-20-

A node n is said to be a descendant of node n', or to be

below n' in the tree, if the path consisting only of links which

belong to the tree which joins n to the root touches n'. A node

n is said to know about link 1 if either node t(l) or node h(l),

or both, are descendants of n.

11.3 Centralized description of the algorithm:

Step 0: (Initialization). The algorithm is initialized with a

strongly feasible basis T, the basis is formed only of artificial

links. For every artificial link c(l) = M (M> c(L)), and u(l) >

Zlc(l):1 in LI. If f(l)=0 we orient the link away from the

root, so as to form a strongly feasible basis.

Step 1: (Defining the reduced costs.) for every 1 not in T define

the reduced cost associated with that link 1 as redcost(l)= c(l)

+ d(t(l)) - d(h(l)).

Step 2: (Defining the set of candidate links.) Let Cinc denote

the set of links that are candidates for flow increase: Cinc =

{1: 1 in (L-(T U S)) and redcost(l) <0}. Let Cdec denote the

set of links that are candidates for flow decrease: Cdec = {1: 1

in (L-T) f(l) >0 and red cost(l) >01.

Step 3: (Selecting between the candidates.) Several election

rules are possible, At any iteration we choose to elect a set E

-21 -

of links in Cand, only if for any two links 1 and 1', C(T,l) and

C(T,l') are disjoint. This guarantees that one can operate on the

links on C(T,l) and C(T,l') independently. One could do otherwise

but this would result in a more complex algorithm which does not

make as much use of the opportunities for parallel computation.

One might be interested in a set E which will produce the maximum

decrease in the cost function, but this is not easy to compute,

specially when distributed decision making is used. To facilitate

distributed operation the election rule should require of a node

only knowledge about that part of the network which is below the

node.

Two rules suggest themselves:

Election by depth rule: To select those links whose flow is

going to be changed perform the following coloring operation:

3.0 Initially all links in L are not colored. E, the set of

elected links is empty.

3.1 Select one 1 from Cand, the set of candidates Cand= Cdec

U Cinc, such that depth(join(l)) <=depth (join(j)) for all j

in Cand, and all links in C(T,l) are uncolored. If two links

have the same node as their join, break the tie by electing

first that link whose election would result in the largest

decrease of the cost function. Add 1 to the set E. Replace

Cand by Cand-{li. Color all links in the cycle C(T,1). If

there is initially no 1 satisfying these conditions then

stop, the set of candidates is empty and we are optimal,

-22-

this is guaranteed by a standard result of linear

programming theory, see [8]. Otherwise repeat 3.1 until we

cannot add any more links to E. If we were to look at the

colored graph we would notice that no link is in two

different colored cycles. Electing candidates in order of

maximum depth is not necessary but facilitates the

decentralized operation of the algorithm.

Election by reduced cost rule:

3.1.0 Initially all links are uncolored. The set E of

elected links is empty.

3.1.1 For every node n, in order of decreasing depth,

resolving ties in any way do:

Let C'(n) be the set of candidate links 1 known by node n

such that no link in C(T,l) has been colored. Let max(n) be

the maximum redcost of links in C'(n). Delete from C'(n)

and from Cand all links 1 in C'(n) such that

redcost(l)<max(n). For any 1 in C'(n) such that join(l)=n,

include 1 in E, colour all links in C(T,1). Repeat 3.1.1

until no candidate links are found.

The trade-offs between these two rules are not clear. When

using the election by depth rule one would expect that more links

are elected than when one uses the election by reduced cost rule.

Essentially because every node elects as many links as it can.

On the other hand, one might expect a larger change per elected

link when using the second rule.

-23-

The election by depth rule will result in a larger

communication cost per iteration because a node transmits as much

information as posible to its father, but the election by reduced

cost rule might need more iterations to reach optimality. Some

of these effects can be observed in the simulation results

presented in section 11.5.

The choice of the root node has no bearing on the candidate

set, the candidate set does depend on the tree of basic variable

in use. But the choice of the root node can influence which

links are elected.

Step 4: (Changing the flows.) For every link 1 in E, if 1 is in

Cinc do 4.1 else if 1 is in Cdec do 4.2.

4.1 Let s = min ({f(j): j in Cr(T,1)} U {u(j)-f(j):j in

Cs(T,1)})

For all j in L do:

If j in Cr(T,l) then let f'(j) = f(j)-s.

Else if j in Cs(T,l) then let f'(j) = f(j)+s.

Otherwise f'(j) = f(j).

Let F = {j: j in Cr(T,l) and f'(j)=O} U {j: j in Cs(T,1),

f'(j) = u(j)}. Choose m to be the first member of F

encountered in traversing C(T,l) in the direction of 1 and

beginning at join(l). T' = (T U {l})-{m}. if f'(m) = 0 then

let S' = S, if f'(m) = u(m) then let S' = S U {m}. Replace

T by T'. S by S' and f by f'. 4.2 Let s = min ({f(j): j in

Cs(Tl)} U {u(j)-f(j): j in Cr(T,1)}). For all j in L do:

If j in Cs(T,l) then let f'(j) = f(j)-s.

Else if j in Cr(T,l) then let f'(j) = f(j)+s.

Otherwise f'(j) = f(j).

Let F = {j: j in Cs(T,1), f'(j) = 01 U {j: j in Cr(T,1),

f'(j) = u(j)}. Choose me to be the first member of F

encountered when traversing C(T,l) in the direction opposite

to 1, when the traversal is began at join (1). Let T' = (T

U {l})-{m}. If f'(m) = 0 let S'=S, if f'(m) = u(m) let S'= S

U {m}. Replace T by T', S by S', and f by fV.

4.3 Go to 1.

The reader can convince himself that with this rule the

resulting basis is strongly feasible, and that in the case

of a degenerate change of basis d(N) decreases as claimed

earlier.

This algorithm is a modification of the MUSA as presented in

[9]. The modification allows change of the flow in more than one

cycle, (C(T,l) for some 1), in each execution of the main loop;

this reflects decentralized execution. This algorithm, as MUSA,

can be shown to terminate in a finite number of steps and to

encounter only strongly feasible bases during its execution. In

the next section we show what actions should be performed by each

node in order that their interaction will result in performing

this algorithm. We consider that although the links are

directed, there exists always two-way communication for control

purposes whenever a link joins two nodes.

-24-

-25-

11.4 Decentralized execution:

11.4.1 Preliminaries:

The following algorithm can be considered to be a procedure

to locate in the network cycles with the characteristic that by

shifting the flow around the cycle, in the appropriate direction,

one gets a net decrease of the objective function value. The

organizational, and as we shall see communication device, is the

rooted tree of the basic variables. With reference to this

spanning tree every link 1 not in the tree defines a cycle,

redcost(l) is the value of the length of this cycle.

11.4.2 Formation of the initial basic solution:

A node j is said to be a neighbour of node i if there is

either a link going from i to j or a link going from j to i or

both. Initially the root node sends messages to all of its

neighbour nodes asking them to attach themselves to the tree by

the link joining them. A node will accept the first invitation

it receives, it will then answer any other invitation negatively.

Once a node has accepted an invitation it will wait to answer

affirmatively until it has invited its other neighbours and

received their answers. In this way, once the root node has

received answers from every node to which it sent invitations

every node in the network is attached to the spanning tree, its

father in the spanning tree is that node whose invitation it

accepted, its sons (if any) are those nodes which accepted

invitations issued by itself. The algorithm given by R. Gallager

in [12], is another way to construct a spanning tree in a

-26-

decentralized way. Distributed shortest path algorithms also can

be used to this end.

The root node can now initiate the calculation of the

initial basic feasible solution. The root node requires of each

of its sons information about the orientation and flow in the

artificial link 11 joining them. If a node has no sons it can

come up with that answer right away. If it has sons, it will have

to ask its sons the same information about the link joining them.

This query propagates from the root to the leaves, (a leaf is a

node with no sons), of the tree, and from the leaves back to the

root. This process of initial solution calculation can take

place simultaneously with the formation of the spanning tree.

11.4.3 Iteration:

11.4.3.1 Election by depth rule:

The simplex algorithm can now proceed. Starting with the

root, when a node n knows d(n) it sends it to each of its

neighbours. Let f(n) be the father of node n, when node n

receives d(f(n)) it calculates d(n). A node n which knows the

value of d(i) for every neighbour node i can calculate the

reduced costs of all links 1 that touch node n, i.e. all links 1

such that either t(l)=n or h(l)=n. Node n can determine if a link

1 is a candidate once it has calculated link l's reduced cost.

A node m which has no sons cannot be the join of a candidate

link, therefore it cannot elect any link. Such a node will send

-27-

to its father the list of all candidate links 1 which touch m.

At the same time the node at the other extreme of candidate link

1 will have performed the same operation.

A node which has sons will receive candidate lists from its

sons. If it finds that two different sons declare the same link

to be a candidate, or that a son declares one of the node's own

candidates, then it knows that the node itself is the join node

for that candidate. The node will proceed to send the

appropriate instructions for changing the flow in all those links

belonging to the cycle C(T,m) of the candidate link m. To be

able to do this a node n which declares a link 1 to be a

candidate will have to tell the node's father besides the

identity of the candidate link also whether the link is a

candidate for increase or decrease, the maximum allowable amount

of flow change, and whether t(l)=n or h(l)=n.

A node which passes to its father information about a

candidate link received from one of its sons, needs to update the

maximum allowable amount of flow change information related to

that link. It does this considering the flow, capacity and

direction of the link between the node and the node's father.

The flow has been changed, the tree is also to be changed,

and information pertaining to candidate links which touched the

affected cycle is no longer valid, therefore this information is

not transmitted towards the root node.

-28-

Once the root node has received the report from its sons and

reacted upon it the distances are recalculated and the process

repeated. The process stops when no candidate link can be found.

TT.4.3.2 Election by reduced cost rule:

This is very similar to the execution of the rule just

described, The basic change is that once a node has the

information about that part of the network below it, it will

consider only those candidate links with the largest reduced

cost. If the node is the join for one of these, the node

proceeds to change the flow in the links in C(T,1), where 1 is

the candidate link. Otherwise information about these links with

largest reduced cost is sent to the node's father.

11.5 Performance evaluation:

The two approaches to decentralized execution of the primal

simplex algorithm were simulated by a PL/I program running under

M.I.T.'s MULTICS. The results correspond to application of the

"big-M" method. We shall give the results for two networks.

11.5.2 Networki:

A fully connected network of twenty nodes. Link capacities

uniformly distributed between 10 and 100 bits/sec. Link costs

uniformly distributed between 1 and 10. Results will be given

for different loads in the network. One node is a sink node, the

other nineteen are source nodes. All source node send the same

amount to the sink node. In table II.1 we show the simulation

results for the "election by depth" rule. Column one shows the

amount every source node is sending. Column two, the number of

iterations needed for reaching optimality. Column three, the

total time needed, the time unit is the time it takes a message

to be transmitted from a node to one of its neighbours. Here we

suppose that all messages take the same time. In an actual

network control messages might be given priority, therefore this

time would not include queueing delay. Column four shows, the

total number of message units sent, a message unit is an integer

number. Column five, the iteration number for which the flow was

feasible for the first time. In table 2.2 we show the simulation

results when using the second rule suggested in 11.3.

11.5.3 Network2: see fig. 2.1.

The topology corresponds to that of the ARPA network circa

1978, as given in [15].

The link costs are uniformly distributed between one and

five. The capacities are all equal to 100 bits/sec, except those

of links touching the sink node, which is node 59. As in

Networki all source nodes send equal amounts. Table 2.3 shows

the results for the election-by-depth rule. Table 2,4 results

for the election-by-reduced cost rule.

As we can observe from this results, the two rules seem to

have equivalent performance. The election-by-depth rule being,

perhaps, marginally faster. Feasibility is reached earlier with

-29-

30 57

5 49 40 9 58 46 29 50 27 20 41 42

31 39

37
19 61

6 441 8 14

59 55 26 8 28 17

47595

24 53 13

12

38

3 35 7 52

122

Fig. 2.1 Network2

1 1. 10111. lip" lop III jiglo 1. I PRIMM lliz mop" 0!

-M30-m

Src. req.

20

40

60

70

Iter.
8

7

20

8

Time Msg. sent It. to feas

99 5010 1

73 4830 1

377 22061 4
91 6878

Table II.1. Election-by-depth. Networkl

Src. req.

5

6

7

8

9

Iter.

6

7
8

9

13

Time Msg.

193
249

310
354

576

sent It. to feas

3486 1

4324 1

4559 3

5385 4

5554 5

Table 11.2. Election-by-depth. Network2

Src. req.-

20

40

60

70

Iter.
11

10

19

15

Time Msg. sent It. to

138 6108

S91 5670
196 11524
101 8471

Table 11.3. Election-by-reduced-cost. Networki

Src. req.

5

6

7

8

9

Iter.

7

8

8

11

10

Time Msg. sent It. to feas

224 3689 1

265 4095 1

231 4000 3
395 5836 4

571 5474 7

Table 11.4. Election-by-reduced-cost. Network2

feas
1

5

18

-o3 1-

-32-

the election-by-depth rule. More detailed simulation results

show that, on the average, the election-by-depth rule produces a

larger number of elected links in each iteration than the

election-by-reduced cost rule, but this latter rule produces a

larger change in the cost function per elected link

11.6 Small changes in the node requirements.

If after having found the optimal solution there are small

changes in the node requirements, instead of repeating the

complete process one can form an initial solution for the new

problem by perturbing the current solution. This can be done as

in section 11.2.2.2 with the difference that instead of using any

spanning tree one uses the current tree of basic variables. The

perturbation in node requirements propagates from the leaves to

the root of the tree. If at any moment the change in flow makes

infeasible the flow at a link 1 an artificial link adequately

oriented is created between t(1) and h(l), the excess flow is

shunted to it. We associate with this artificial link a cost high

enough to guarantee that if this new problem has a finite optimal

solution, then the flow in this artificial link will be zero at

the optimum. The simplex iteration can then begin. If the

perturbations are such that no artificial link needs to be

created, then this initial flow will be optimal for the perturbed

problem.

-33-

CHAPTER 3

The Out-Qf-Kilter Algorithm:

III,1 Introduction:

The "out-of-kilter" algorithm for the solution of the

minimum cost single-commodity network flow problem was published

by D. R. Fulkerson in 1961 [10]. Its most distinctive

characteristics are: monotone process, possibility of starting

with a non-feasible flow, and of altering network parameters

during the computation.

In this section we give an informal description of the

"out-of-kilter" algorithm. In section 111.2 we give a more

detailed description of the centralized implementation of this

algorithm. In section 111.3 we give a decentralized version. In

section III.4 we suggest some variant decentralized

implementations.

The rationale behind the out-of-kilter algorithm comes from

the duality theory of linear programming. It can also be

understood by considering an optimal solution obtained by the

primal-simplex algorithm . Let T be the tree of the basic

variable in such an optimal solution. With every node i we

associate a number d(i), which in the primal-simplex algorithm is

calculated as the distance from the root node to node i, distance

as given by the length of a path consisting only of links in T.

-34-

If the associated flow f has optimal objective function value,

then we must have for every link 1 not in T that

redcost(l) = c(l)+d(t(1))-d(h(l))<0 implies f(l) = 0 (3.1)

and

redcost(l) >0 implies f(l) = u(l). (3.2)

That is, the set of candidate links is empty. For a link 1 in T

we have that

red_cost(l) = c(l)+d(t(l))-d(h(1)) =0 and 0<=f(l)<=u(l) (3.3)

Any set of node numbers d and flow f satisfying the above

relations is necessarily an optimal solution for the minimum cost

problem defined by the cost coefficients vector c.

The out-of-kilter algorithm tries to find such node numbers

d and flow f, making at no point during its execution reference

to a tree of basic variables.

The algorithm is initialized with any node number set d, and

any flow f that satisfies the node supply constraints (2.2).

Some formulation of this algorithm like Lawler's [11] require

the initial flow to be a "circulation", i.e. a flow where all

nodes are transshipment nodes. One can show that this is

equivalent to the approach presented here by conceptually adding

an artificial node and artificial links with flows as in

11.2.2.2.

At every step one of the two number sets, d or f, is

changed. The "out-of-kilter" algorithm either finds an optimal

-35-

solution in a finite number of steps, or shows that there is not

one by proving either that the problem is not feasible or that

there is no finite optimal solution.

The optimality conditions are: given node numbers d and a

flow f for all links 1 in L

d(h(l))-d(t(l)) <= c(l) if f(l) = 0 (3,4.1)

d(h(l))-d(t(l)) = c(l) if 0< f(l) < u(l) (3.4,2)

d(h(l))-d(t(l)) >= c(l) if f(l) = u(l) (3.4.3).

This conditions are referred to as "Kilter conditions". A link

which satisfies them is said to be "in-kilter", otherwise it is

said to be "out-of-kilter". Given node numbers d and a flow f,

we assign to each link 1 a kilter number K(l) equal to the

absolute value of the change in f(l) necessary to bring the link

into kilter, Thus,

K(1)= (3.5)

1f(1)11 if d(h(l))-d(t(l))<=c(l)

-f(l) if d(h(l))-d(t(l)) =c(l) and f(l)<0

f(l)-u(1) if d(h(l))-d(t(l)) =c(l) and u(l)<f(l)

0 ifd(h(l))-d(t(l)) =@(l) and O<=f(l)<= u(l)

1f(l)-U(l1| if d(h(l))-d(t(l)) >c(l).

If all links satisfy conditions (3.4), then the sum of all

kilter numbers is zero. All kilter numbers are positive,

therefore their sum can be taken as an indication of the progress

towards a solution.

-36-

Beginning from an initial flow that satisfies (2.2) the

out-of-kilter algorithm changes the node numbers d and flow f in

a way that monotonically decreases the sum of the kilter

numbers. Only changes that result in a non-increase of the

kilter numbers of any link are allowed. Figure 4.1 indicates the

permissible change directions and the maximum ranges of movement

for a link 1, this graph is called the kilter diagram.

All points (f(l),d(h(l))-d(t(l))) in the crooked line are in

kilter. The points are moved either horizontally (by changing

f(l)), or vertically (by changing d(h(l)-d(t(l))). If a point is

in the line one is allowed to move it only in a way that will

keep it in the line. If a point is out-of-kilter, horizontal

movements towards the line by an amount no larger than its kilter

number are allowed. The only kind of allowed vertical movement

directions for an out-of-kilter link are those for which the

kilter number cannot possibly increase, no matter how big the

displacement.

The algorithm begins by selecting any out-of-kilter link,

and then making changes in the node numbers and flows until the

link is brought into kilter or until it is shown that this is

impossible. Once that link is brought into kilter another link

which is out-of-kilter is selected. The same process is repeated

until all links are in kilter. Bringing a link into-kilter will

leave all previously in kilter links still in kilter, no kilter

number will have been increased.

-37-

-

c(i)

A4

u(l)

Fig.

Allowed

d(h(l))-d(t(l))

C(1

t

4
p 9

3.1.1
horizontal changes

7-i u(l)

Fig. 3.1.2

Allowed vertical

f(l)

changes

IM A I .-"-MPMM .MM . .qwnm%
MO!, ...I p

plllp !o

-38-

To bring a link i intb kilter, the algorithm tries to change

the flow in that link until it is in kilter. The flow is changed

without disturbing the node supply constraints. To do this, the

algorithm tries to locate a path P going between t(i) and h(i)

such that: the flow in every link 1 in P can be appropriately

changed without increasing its kilter number; and this change of

the flow in the cycle formed by path P and link i will result in

a decrease in K(i).

If to decrease K(i) we need to increase (resp. to decrease)

f(i), then the algorithm tries to build a path P from node h(i)

(resp. t(i)) trying to reach t(i) (resp. h(i)). The node from

which the path is begun will be called the origin. That node we

are trying to reach will be called the destination. The

algorithm tries to contact the destination node by extending the

path P from node to node.

A path P can be extended from node m to node n if either

there exists a link 1 such that t(l)=m, h(l)=n and f(l) can be

increased by a non-zero amount without increasing K(l), or there

exists a link 1 such that t(l)=n, h(l)=m and f(l) can be

decreased by a non-zero amount without increasing K(l). The path

P is called a kilter reducing path.

Let M be the set of all those nodes to which there exists a

kilter reducing path beginning at the origin, if the destination

node belongs to this set M, we have the required path. Otherwise

**pow, *PF11, INMkR"

-39-

consider the set CS(M), for every link in CSplus(M) we can affirm

that the point (f(l), d(h(l)-d(t(l)) is on the zone P'+, fig.

3.2. For every link in CSminus(M) we can affirm that it is in

the zone P'-.

The flows in the links in CSplus(M) (resp. CSminus(M))

cannot be increased (resp. decreased) without increasing their

kilter numbers. On the other hand, links in CSplus(M) (resp. in

CSminus(m)) can have the difference d(h(i))-d(t(i)) increased

(resp. decreased) without increasing their kilter numbers, no

matter by how much that difference is changed. Some of them

could even be brought into kilter by such operation, e.g. points

like a or b in fig. 3.2.

This change in d(h(i))-d(t(i)) can be accomplished without

affecting the rest of the network by either decreasing the node

numbers of those nodes in M, or increasing the node numbers of

the nodes in NJM. Let us take the first alternative, we can

decrease the node numbers of all nodes in M by an amount x large

enough to bring into kilter a link like b or a (fig. 3.2),or

bring a link like c or d to the bend in the kilter diagram.

Then, the set M can be extended from that link's extreme in N-M.

If x can be as large as desired without bringing any link into

kilter, or bringing a link like c or d to the bend, then all

links in CS(M) are like links e and f (fig. 3.2), and it can then

be shown that there is no feasible solution, see [11].

-40--

p-U

a
CI

9

'U 'U N 'U~ \' ' ' 'U~'

'U

'U

K

K
''U

K
"U

u(i)

Fig. 3.2

I'

I
c&L)

a

N

N

'U

'U

r'U

ci

f()
-66 Pt

pp-

d(h(l))-d(t(i))A

If the destination node is in M, there exists a flow

agumenting path from the origin node to the destination node.

This path together with the link i which we are trying to bring

into kilter form a cycle in the network. Increasing from the

origin node to the destination node the flow around this cycle

will decrease K(l) without increasing any other kilter number.

The flow around the cycle can be increased until either one of

the links in the cycle is brought into kilter or the flow of a

link already in kilter cannot be increased further without taking

it out of kilter. If the flow can be increased as much as

desired, then there is no finite optimal solution [11].

By a repetition of this two procedures either an optimal

finite flow is found, or it is shown that one does not exist. In

the next section we present a more detailed description of this

algorithm.

111.2 Centralized Description of the Out-of-Kilter Algorithm:

Step 0: (Start) Let f be any flow, possibly infeasible,

satisfying the node supply constraints. Let d be any set of node

numbers.

ittpi1: (Labeling)

-42-

(1.0) If all links are in kilter, halt. The existing flow

is optimal. Otherwise select any out-of-kilter link 1. If

to bring 1 into kilter one needs to increase (resp.

decrease) the flow in 1, i.e. the point defined by (f(l),

d(t(l))-d(h(l))) is to the left (resp. right) of the kilter

line of link 1, then label node h(l) (res. t(l)) with (+).

So far, only this node has a label.

(1.1) If all labeled nodes have been scanned (in a sense to

be made clear immediately) go to Step 3. Otherwise find a

labeled but unscanned node i, and scan it as follows: Give

the label (i) to all unlabeled nodes j such that either

there exists a link m with tail(m) = i, head Cm) = j and the

point (f(m), d(h(l))-d(t(l))) is to the right of the kilter

line for link m; or there exists a link m with head(m) = i,

tail(m) = j and the point (f(m), d(h(l))-d(t(l)))is to the

left of the kilter line for link m.

(1.2) If the destination node has been labeled, go to Step

2, otherwise go to step 1.1.

Step 2: (Changing the flows) There exists a kilter reducing path

P going from the origin node to the destination node. The links

in this path can be determined by using the label in the

destination node and backtracking to the origin node. Let Ps

(resp. Pr) be the subset of those links in P that point towards

the destination (resp. origin) node. The point defined by (f(m),

-43-

d(h(m))-d(t(m))) for all links in Ps (resp. Pr) is to the left

(resp. to the right) of the kilter line. Let s(m) be the

horizontal distance to the kilter line (or to a bend in the

kilter line for those links in P already in kilter) for this

point. Let sl= min (s(m): for m in P). Let s= min (sl,s2), where

s2 is the absolute value of the amount by which f(l) must be

changed to bring link 1 into kilter. For all m in Ps increase

f(m) by s. For all 1 in Pr decrease f(m) by s. Erase all labels

and go to step (1.0).

Step 3: (Changing the node numbers) Let M contain all labeled

nodes. Let sl= min(c(j)-d(h(j))+d(t(j)): 1 in CSplus (M) and

0<=f(l)<=u(l)). Let s2 = min (d(h(j))-d(t(j))-c(j): j in

CSminus(M) and 0<=f(l)<=u(l)). Let s = min(sl,s2). If s is not

finite then it can be proved [11] that there is no feasible

solution, in this case halt. For every node i in M substract s

from d(i). Label all those nodes i in N-M for which there is an

1 in CSplus(M) such that h(l)=i, d(h(l))-d(t(l))=c(l), and

0<=f(l)<=u(l) with (t(l)). Label all those nodes i in N-M for

which there is an 1 in CSminus(M) such that t(l)=i,

d(h(l))-d(t(l)) = c(l), and 0<=f(l)<=u(l) with (h(l)). Include

those nodes just labeled in M. Go to Step 1.

Let K be the sum of the kilter numbers for the initial flow.

Let m be the number of links in the network. In [111 it is proved

that the number of times the labeling procedure has to be applied

is bounded by O(mK).

111.3 Decentralized Implementation:

A node communicates with its neighbours by sending messages

along the links that touch the node. We consider that a message

sent to a neighbouring node is like a call to a subroutine, i.e.

the node that sent the message waits for the answer, and

execution of the procedure responsible for sending the message is

suspended until the arrival of this answer. The node that sent

the message is not interested in the actions that the recipient

of this takes in order to be able to answer. These actions may

include sending messages to neighbours and waiting for their

answers before proceeding.

The computation must be organized to avoid circular

message-passing patterns. This is accomplished by defining a

rooted spanning tree in the network alongside which messages are

sent and received.

We now describe the main steps of the algorithm:

111.3.1- Control spanning tree formation:

Like the initial tree formation of the distributed

implementation of the simplex-algorithm described in Chapter II.

111.3.2- Initial flow and node number set definition;

As in the primal-simplex method. Section 11.4.2.

-45-

111.3.3- Selecting an out-of-kilter link:

This step does not present any major difficulty, it can be

done in several ways. One can, for example, give to every link in

the network a permanent identification number. Of all

out-of-kilter links, we decide to bring into kilter the one with

the highest link number. To find this link the control spanning

tree is used.

III.3.4- Bringing a link 1 into kilter:

The labeling procedure previously described is initiated by

either node t(l) or node h(l) as the case requires. During the

labeling process the links in the tree that connects labeled

nodes are used to interchange control messages. The control

spanning tree is put aside until the next iteration, when it is

again used to select the next link to be brought into kilter.

A link 1 is said to be labeling from node i, with a net

capacity n(l) if either one of the following conditions holds:

a) t(l) = i, d(h(l))-d(t(l))< c(l), and f(l)<O, then n(l)=-f(l)

b) = i, >=c(l), <u(l), =u(1)-f(l)

c) h(l) = i, > c(l), >u(l), =f(l)-u(l)

s) = i, > 0 , >0 , =f(l)

Once a node i has been labeled it tries to label all nodes j

for which there is a link 1 such that either t(l)=i, h(l)=j and

f(l)<u(l) ; or t(l)=j, h(l)=i and f(l)>O.

-46-

The label in a node indicates the node from which it was

labeled and the net capacity of the path existing from the origin

node to the labeled node.

A node i which is trying to label a neighbouring node j,

will send a message to j indicating d(i) and the capacity of the

path existing from the origin node to i. If node j is already

labeled it will answer immediately saying so. If d(j) is such

that link 1 is not a labeling link from i it will answer

indicating the amount by which d(i) has to change to make link 1

a labeling link. If d(j) is such that link 1 is a labeling link

and node j is not yet labeled, then node j will accept the label

given by i.

A node j who accepts a label from node i will not answer

immediately but first it will try to label the acceptable

neighbouring nodes.

If a node succeds in labeling the destination node it will

inform the node which labeled it of its success, indicating also

the capacity of the path existing between the origin and the

destination.

If a node i does not succeed in labeling any of its

neighbours it will send to the node that labeled it a message

indicating the minimum absolute amount by which d(i) must change

before one of its neighbours will accept a label from i.

-47-

Once node i has received the answers from all the nodes it

tried to label it can form its answer to the node which labeled

it. In this answer it will be indicated whether there is a kilter

reducing path going from node i to the destination node, Or it

will be indicated the minimum amount by which the node numbers of

the already labeled nodes should be changed before any node will

accept being labeled from the subtree below node i.

When the origin node receives the answer from all the nodes

it tried to label, it will know whether there exists a path from

itself to the destination, or it will know by what amount the

node numbers of already labeled nodes must be changed. The first

case is called a breakthrough.

In case of a breakthrough the origin node will order the

flow in those links in the kilter reducing path from origin to

destination changed, erasing the labels of that subtree which is

attached to the main tree by the link having reached either

f(l)=O of f(l)=u(l), which is closest to the origin.

In the case of non-breakthrough the origin node will order

the node numbers of all labeled nodes to be decreased by the

appropriate amount. As a result of this change one or more nodes

will attach themselves to the tree, these will be those nodes

labeled at the end of step 3 of the centralized description of

the algorithm, The labeling and flow augmentation is continued

until the target link is brought into kilter. Another

out-of-kilter link is selected and the operation is repeated

until all links are in kilter.

By arguments similar to those in [11] one can show that the

total number of message sent during the distributed execution of

this version of the out-of-kilter algorithm is esentially bounded

by O(n K), n is the number of nodes, K the sum of the kilter

numbers for the initial flow. This bound appears to be rather

pessimistic.

TII.4 Possible variants of the out-of-kilter algorithm:

The decentralized version of the out-of-kilter algorithm

given in the previous section does not seem to make as much use

of the opportunities for parallel computation as one might think

possible.

At any moment during its execution one is trying to reduce

the kilter number of only one link. While it is true that as a

result of this other kilter numbers might be reduced it might be

possible to do better. The adaptation of the simplex method

given in chapter II seems to do better with respect to

parallelism.

We shall now give three variants of the out-of-kilter

algorithm. The first two were developed with the previous

considerations in mind, but at first sight none of them seems to

overcome this lack of parallelism.

The first variant tries to reduce the kilter number of all

the links which touch a given node at the same time. The second

one generalizes the ideas of the version given in section 111.3.

The third one arrives to an algorithm proposed by Floyd and

Fulkerson in [10] by choosing particular values of the initial

flow and node numbers, it is interesting because it offers some

insight in the operation of the algorithm.

111.4.1- Node splitting:

Select in any convenient way a node n which is touched by at

least one link 1 with non-zero kilter number, and such that by

pushing flow from node n through that link its kilter number is

reduced. If t(l)=n this means that K(l) is reduced by increasing

f(l), and if h(l)=n we reduce K(l) by decreasing f(l). Split

node n into two artificial nodes n' and n''.

Associate with n' all links 1 such that either t(l)=n and

K(l) is reduced by increasing f(l), or h(l)=n and K(l) is reduced

by decreasing f(l).

Associate with n1' all links 1 such that either t(l)=n and

K(l) is not increased by decreasing f(l), or h(l)=n and K(l) is

not increased by increasing f(l).

-50-

Try to reduce the kilter numbers of the links touching n' by

finding a kilter reducing path P from n' to n'', If such a path

is found, we change appropriatedly the flow in the links in P.

Otherwise we proceed to change the node numbers and extend the

kilter reducing paths from node to node until one is established

between n' and n''.

We continue to do this until the kilter numbers of all links

touching n' are reduced to zero, or until either infeasibility or

unboundedness is shown. This process is repeated until all links

are in kilter.

III.4.2- Flow augmentation:

This variant can be used either with the standard form of

the problem described in sections 11.2 and 111.3, or in a

problem produced by the transformation in 111.4.1.

Given a network G with link set L and node set N, on which a

flow f has been established define a new network G' in the

following fashion:

For every link 1 in L

Define 1', with t(l')=t(l), h(l')=h(l>. If 1 is in

kilter, then let u(l') be the maximum amount by which f(l)

can be increased without increasing K(1). If 1 is

out-of-kilter and f(l) can be increased without increasing

-51-

K(l), then let u(l')=K(l) otherwise let u(l')=O;

Define 111 with t(l'')=h(l), h(l'')=t(l). If 1 is in

kilter, then let u(l'') be the maximum amount by which f(l)

can be decreased without increasing K(l). If 1 is

out-of-kilter and f(l) can be decreased without increasing

K(l), then let u(l'') be K(l), otherwise let u(l'')=O.

Let m be the link we are trying to bring into kilter.

Create an artificial node o, create a link n going from o to

the origin node, let u(n) be the absolute value of the

amount by which the flow in m has to be changed in order to

bring link m into kilter.

Suppose there is in G a flow augmenting path from the origin

node to the destination node, otherwise we need to change the

node numbers until this is the case. Then, we can find in G' a

non-zero flow f' from node o to the destination node. Form f''

in the following way: if the origin node is t(m) let

f''(m)=f(m)+f'(n), otherwise let f''(m)=f(m)-f'(n). For every

other link 1 in the network let f''(1)= f(l)+f'(1')-f'(l''), If

f satisfies the node supply constraints of the network then f''

satisfies them too. The sum of the kilter numbers will have

decreased at least by an amount corresponding to the flow in n,

and possibly by more,

-52-

We shall use the following definition immediately: Let P be

and undirected path P from the origin node to the destination

node. P is said to be a flow augmenting path with respect to a

given flow f if f(l)<u(l) for all links 1 in P which look towards

the destination, and f(l)>O for all links 1 which look away the

destination.

One gets variants of the out-of-kilter algorithm depending on

how f'I is determined. If f' consists of an agumenting path flow,

then one has the usual algorithm as described in 111.3. Other

variants can be obtained by using a maximum flow algorithm in G',

Distributed versions of several maximum flow algorithms are given

in [12].

As a generalization of this variant, one might try to find a

feasible flow in G' which maximizes f'(L), i.e. which maximizes

the sum of the flows ins all links, but we know of no distributed

algorithm to this efficiently.

111.4.3 Agumenting along shortest paths.

The following approach to using the out-of-kilter algorithms

results in an algorithm given by Jewell in [13], and also

discussed in [11]. In this algorithm one does need to have a

single sink node: Create an initial flow which uses only

artificial links of very high associated cost, as in the "big-M"

method of chapter II. We make the artificial links go from an

artificial node to every node in the network, with flow as in

-53-

11.2.2.2. As node number d we initially use zero for every node.

The non-artificial links are initially in kilter. Therefore,

only the artificial links will ever be out-of-kilter.

Choose as first link to be brought into kilter the link 1

that goes between the artificial node and s the sink node of the

network. When we succeed to bring 1 into kilter, f(l) will be

zero if c(l) is large enough (as in the "big-M" method c(l)>c(L)

can be proved to be large enough). At this moment the flow in

the rest of the artificial links will be zero too, and all links

will be in kilter. Node s will always be the destination node of

the kilter reducing path, One can reverse the usual operation of

the algorithm and begin the generation of the kilter reducing

path from the destination node, this leaves node s in control of

the execution of the algorithm.

The operation of this variant of the out-of-kilter algorithm

can be interpreted in the following way: At any iteration one

tries to find a minimum-length flow augmenting path going from

any source node to the sink node. The length of a path is given

by the costs and orientation of its component links. Once that

path is located, as much flow as possible is sent along it. The

process is repeated until the sink node is receiving all the flow

destined to it.

Increases along minimum length paths guarantee the

optimality of the resulting flow [10]. If after having reached

-54-

optimality there is an increase in b(n) for any source or

transshipment node n, one can proceed with this version of the

out-of-kilter algorithm using the node numbers associated with

the current solution,

If there is a decrease in some b(n) for a given node n, the

flow must be reduced on the longest path going from any source

node to the destination node. Unfortunately the length in this

case is not defined as the length used to find flow-augmenting

paths.

-55-

CHAPTER IV

Conclusions

In this work we approach the problem of message routing in a

data communication network by the minimization of a linear,

increasing function of the links' flows. In this minimization the

links' capacities are considered explicitly.

We give two algorithms which can be executed in a

distributed manner, i.e. the data processing facilities at the

nodes of the network cooperate in this minimization by

interchanging messages and processing them.

One of the algorithms is an adaptation of the primal simplex

method of linear programming. The other is an adaptation of DR.

Fulkersons's "out-of-kilter" algorithm. We give simulation

results of the performance of the first algorithm, and a bound on

the total number of messages required by the second algorithm.

In this work we have considered that all messages are

addressed to the same node of the network. Further work is

necessary to remove this restriction before this routing approach

can be meaningfully compared to other routing strategies.

Though in Chapter II we give a a bound on the total number

of messages required by the adaptation of the out-of-kilter

-56-

algorithm, this bound seems to be too pessimistic. Simulating

this algorithm would give a better idea of its performance, It

would also be interesting to simulate the behaviour of the

simplex-like algorithm when calculating the solution of a

perturbed problem by the procedure suggested in 11.6.

-57-

References

[1] Kleinrock L., Communication Nets: Stochastic
Message Flow and Delay. New York: McGraw-HIll, 1964

[2] Gallager R., Humblet P., "A Decentralized Minimum
Spanning Tree Algorithm", Massachusetts Institute
of Technology Laboratory for Information and De-
cision Systems (MIT LIDS) Working Paper, 1979

[3] Humblet P., "A Distributed Shortest Path Algorithm"
Int. Telemetry Conf., Los Angeles CA, Nov. 14, 1978
also MIT LIDS Report ESL-P-847

[4] Bertsekas D.P., "A Distributed Algorithm for the As-

signment Problem:, MIT LIDS Working Papaer, March 1979

[5] Gallager R., "A Minimum Delay Algorithm Using Distri-
buted Computation", IEEE Transactions on Communications,
VOL. COM-25, No. 1, Jan 1977

[6] Poulos J. ,"Simulation of a Minimum Delay Distributed
Routing Algorithm", MIT LIDS Report ESL-R-795

[7] Bertsekas D., Gafni E., Vastola K, "Validation of
Algorithms for Optimal Routing of Flow in Networks",
in 1978 IEEE Conference on Decision and Control

[8] Dantzig G., Linear Programming and Extensions, Princeton
University Press 1963

[9] Cunningham W.,"A Network Simplex Method", Mathematical
Programming vol. 11, 1976

[10] Ford L., Fulkerson D., Flows in Networks, Princenton
N.J., Princenton University Press, 1962

[11] Lawler E., Combinatorial Optimization: Networks and
Matroids. New York: Holt Rinehart and Winston, 1976

[12] Segall A., "Decentralized Maximum Flow Algorithms",
MIT LIDS Report LIDS-P-915, May 1979

[13] Jewell W., "Optimal Flow through Networks", Interim
Technical Report No. 8 MIT

-58-

[14] Heart F. et al., "The Interface Message Processor for
the ARPA Computer Network", 1970 Spring Joint
Conference, AFIPS Conference Proceedings, vol. 30
1972, pp. 551-567

[15] Vastola K., "A Numerical Study of Two Measures of Delay
for Network Routing", University of Illinois at Urbana,
Technical Report UILU-ENG 78-2252, 1979

'I

