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Abstract

This thesis develops an algorithm to estimate the
attitude of an inertial navigation system, FLIMBAL, a floated
inertial reference., The development is based on the apolica-
tion of optimal linear estimation to a linearized system
model. Emphasis is placed on computational efficiency. Its
performance is analyzed in detail, including simulation. A
procedure for determining an initial nominal attitude for
the main linear algorithm is developed. Extensions of the
algorithm to include estimation of system parameters with
anticipated uncertainty are also presented.
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I Introduction

A FLIMBAL (Floated Inertial Measurement Ball) [1]

is an inertial reference system in which the inertial

platform is a ball floated in a fluid and contained in

a close-fitting spherical case (Figure 1). The main

advantage of this design over a gimbal suspension is

improved isolation of the inertial platform from its

environment. However, a problem arises in determining

the attitude of the inertial reference relative to the

vehicle-fixed case since conventional gimbal mounted

resolvers are not present.

One technique for reading the attitude of the iner-

tial platform is the Magnetostrictive Attitude Reference

System (MARS) which is currently under development.

This technique is based on determining geodesic distances

on the case between points whose locations are known on

the inertial platform (drivers) and points whose loca-

tions are known on the case (receivers). These distances

are determined by measuring pulsed acoustic wave propaga-

tion times between the drivers and receivers. A set of

these measurements is taken so that it is unique to the

platform attitude, thus enabling unambiguous determina-

tion of the attitude from this set.

The algorithm that estimates the platform attitude

from the set of measuraments is the concern of this thesis.

-1-



attitude band

inertial-
platform

drivo

receiver

case
(lower hemisphere)

Figure 1.1

er

FLIMBAL

-2-



This problem has been previously addressed by Gail

Bonda [3]. She applied an optimal approach and her

results surpassed the system specifications. However,

her algorithm required excessive computation for im-

plementation in an airborne computer. Thus, a prime

motivation in this algorithm development is a reduc-

tion of the computation requirements.

1.1 MARS

The MARS system was proposed as an eventual re-

placement for the current attitude determining system.

Currently, attitude, as described by a direction cosine

matrix, is determined by sensing the angles between

three mutually orthogonal driver bands (which are on

the inertial platform) and a receiver band (which is

on the case). This technique requires an expensive

precision alignment of these bands which must be removed

to allow access in the inertial platform. MARS avoids

the realignment problems as it uses small drivers on the

ball (inertial platform) which do not interfere with

access in the ball.

The MARS system has eight magnetostrictive drivers

mounted on the ball and four magnetostrictive receivers

mounted on the case. The eight drivers are arrayed

symmetrically as on the corners of a cube inscribed in

-3-



the ball as shown in Figure 1. 2 .The four receivers are

limited to one hemisphere to avoid interference with

other subsystems. The receiver's hemisphere is further

reduced in size by an equatorial band which attenuates

acoustic wave reflections off the seam where the two

hemispheres are joined. The locations of the receivers

are shown in Figure 1.3. The equatorial band is just

narrow enough so that there will always be at least two

drivers in the receiver's hemisphere; two drivers are

the minimum necessary to determine attitude (Knowing

only the position of one driver leaves indeterminate

any rotation about an axis determined by that position).

The magnetostrictive property of the nickel case

(i.e., nickel contracts in a magnetic field) is used to

determine the geodesic distance between a driver and a

receiver. A driver modulates a magnetic field which

excites a pulsed acoustic wave in the case directly

above it. This pulse propagates radially from the point

of excitation in a geodesic manner due to the isotropic

velocity structure of the case. The pulse is detected

by a magnetostrictive receiver mounted on the case as

shown in Figure 1.4. The propagation time of the pulse

is measured. Then the geodesic distance on the case be-

tween the driver and receiver is equal to the measured

time multiplied by the acoustic wave group velocity.

- 4-
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Eight time measurements are taken, each correspond-

ing to a combination of the four receivers and the two

drivers which are guaranteed to be in the receiver's

hemisphere. Since.three measurements are sufficient to

determine a driver's position and the platform attitude

is determined by two drivers, only six measurements are

required and the eight measurements are sufficient.

That only three measurements from a driver are

enough to determine its position can be seen by recog-

nizing a measurement -as a constraint that the driver lie

on a circle centered at the receiver of a radius equal

to the distance determined from the measurement. The

intersections of two such circles leaves an ambiguity

which is resolved by a third measurement (Figure 1.5).

1.2 Thesis Objective

The problem addressed in this thesis is the design

of an algorithm to estimate the attitude of an inertial

platform as represented by a direction cosine matrix (DCM).

The input to the algorithm is the set of measured acous-

tic pulse propagation times. A major objective in the

algorithm design is computational simplicity. Thus, the

estimation is formulated using only the present set of

measurements. Since, as will be shown, this has met the

system specifications (Appendix A) the computational

expense of incorporating the system dynamics into the

-8-
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estimation for optimal mixing of past measurements is

avoided.

Estimation of a DCM is complicated by the six non-

linear constraints of a unitary matrix that its nine

parameters must satisfy. The approach of this thesis

is a linearization of the constraints which is accomplished

by representing the estimated DCM by the product of an

incremental DCM and a nominal DCM. The incremental

DCM is approximated by a matrix containing three uncon-

strained parameters. The rest of the formulation is

linearized and the problem becomes one of unconstrained

linear estimation of three parameters.

This thesis develops and evaluates an estimation

algorithm based on the above approach. Its performance

is characterized by analyses of noise sensitivity and

linearization errors. These results are compared to a

Monte Carlo simulation. As this is a tracking algorithm,

it requires an initialization procedure and so one is

designed.

Errors in the modeled system parameters are assumed

to be negligible after a calibration procedure. However,

some system parameters will still have some anticipated

uncertainty, and thus extensions to the basic algorithm

are developed to include the uncertain parameters in the

estimation.

-10-



II Algorithm Development

This chapter discusses the development of the atti-

tude estimation algorithm. The attitude is represented

by a direction cosine matrix (DCM) which is estimated

from a set of pulse propagation time measurements.

The basis of any estimation algorithm is a model

relating the unknown quantities to those quantities

which can be measured; in this case, these are the DCM

and the pulse propagation times respectively. In the

next section, a model for the pulse propagation times

is developed. The most efficient estimation techniques

are based on linear models. Thus, the model of Section

2.1 is linearized and the resulting increment in attitude

is estimated by minimum mean square estimation. An

efficient method of updating the nominal attitude

by the estimated incremental attitude is selected

in Section 2.4. These results are presented as an

algorithm in Section 2.5. In the last section, the

basic algorithm of Section 2.5 is modified to produce a

more efficient suboptimal algorithm.

2.1 PulsePropagation Time Model

Estimation of the platform attitude is based on

the model of the pulsed acoustic wave propagation time

as developed below.

b i b
Let d , d , r be unit vectors locating drivers in

the body-fixed (case fixed) and in-

-11-



ertial(ball fixed)frames and a receiver

in the inertial frame respectively.

t be the measured pulse propagation time

from driver to receiver.

V be the isotropic acoustic velocity in

the case.

R be the radius of the case.

b b
0 be the angle between db and r

a be the geodesic arc length on the case

between the driver and receiver.

These definitions are illustrated in figure 2.1

Then

t a = R 2.1.1
V V

Since the dot product of two unit vectors is the cosine of

the angle between them

6 = cos 1 (rb d.b) 2.1.2

where 0 is taken at its principle valve.

Let b be the DCM transformation from the inertial frame
1

to the body fixed frame. Then

db = C1di 2.1.3
- 1-
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Combining equation 2.1.1, 2.1.2 and 2.1.3 gives the model

for the pulse propagation time

t= RCos- (rb Cb di) 2.1.4

For this application the variables in equation 2.1.4

are t and C. while R, V, rb and d are known constants which

are assumed to have been accurately calibrated.

2.2 Model Linearization

The model of equation 2.1.4 is both nonlinear and

nonlinearly constrained by the requirement that a DCM

be orthogonal. In order to use the computationally effi-

cient techniques of estimation that apply to linear uncon-

strained mcdels, this model must by made likewise

linear and unconstrained. Our approach will be to first

remove the constraints and then linearize the model.

As a preliminary in anticipation of linearization the

b
DCM C. is expressed as

1

b = cb b' 2.2.1c = c ,C.2..
i b i

b''

where C. is a DCM representing a known nominal attitude1

and C, is a DCM representing the small angle rotation

between the nominal and actual attitudes. The approach

-14-



will be to estimate c b and use it to update

bb
e b b' ..
C. C&I &22.

The six constraints on the nine parameters of Cb

bare avoided by expressing Cb, in terms of three uncon-

strained parameters. If the three parameters are arranged

bin a vector U then Cb' may be expressed a (see Appendix B)

b 0 Mk
Cb' LT. 2.2.3

k=O

where MO is the identity matrix Iland

M = 0 -0zP y 2.2.4

liz 0 -11

-py WX 0

p has an interpretation similar to that of a quaternion

description. The direction of p is the axis of the

brotatation of Cb' and the angle rotated is given by the

magnitude of p.

Applying equations 2.2.1 and 2.2.3 to 2.1.4 gives

the unconstrained model relating the pulse propagation

times t to the incremental attitude p

R -1 [b 0(L M)Cb'di
t = Cos r EC id 2.2.5

k=0

-15-



Now the model will be linearized. A convenient

nominal attitude C. about which to linearize the uncon-

strained model is the attitude estimated from the pre-

vious set of measurements. As the platform rotation

between measurements is small, i.e. less than 20 milli-

radians, error due to linearization about the previous

attitude estimate will also be small.

First Cb, is linearized in the elements

of p by truncating the series of equation 2.2.3 after the

first order term

Cb = I + M 2,2,6

This form of Cb, is also a linearization of the constraint

that a DCM be orthogonal. It satisfies that constraint to

the first order

b bT MT2.7
Cb, Cb' = (I + M) (I + M)T2.2.7

= (I + M) (I - M) 2.2.8

= I - M22.2.9

and M2 contains only second order terms.

-16-



Defining

b' b' id =c a _ 2.2.10

the model becomes

o= Rrb (I+M)db) 2.2.11

Then the inverse cosine is linearized about the nominal

attitude which is represented by Cb, = I

t = - cos rb d
V

-R b .b' 2 -1/2 b . b'
V \1- r_ d r Md

2.2.12

The first term on the right hand side of 2.2.12 is the

model of equation 2.1.4 applied to the nominal attitude.

-17-



Thus a nominal pulse propagation time t' is defined as

= oP - (b db')
V'= gc s (_.d 2.2.13

and the model becomes

A b b')2)-1/2 b b)
At =t- t, = - (1- r .d / /(r . I-d

2.2.14

Here it is useful to note that the skew symmetric

form of the matrix M has the property, such that for a

vector v' expressed in the b frame

M v= ' x v

where ' x'denotes a cross product. Thus

b b' b I b
r . Md = r . u x d_

The triple vector product is rearranged

rb.E x db' '(db x rb). _

2.2.15

2.2.16

2.2.17

-18-



This model is further simplified by noting that

db' x r b =sinO 2.2.18

and

db. rb =cosO 2.2.19

where 0 is the angle between d and r at the nominal

attitude when the b and b' frames coincide. Then

(1 - (rb. d b')2 )-1/ 2  (1 - cos2o)-1/2 2.2.20

= (sinoh' 2.2.21

= Idb x rb-1 2.2.22

Applying equations 2.2.16, 2.2.17 and 2.2.22 to equation

2.2.14 gives the linearized unconstrianed model:

db b

At = - b' b . 2.2.23
Jd xrj

This model has a simple geometric interpretation. To

the first order only a rotation in the plane defined by r

and d will affect a time measurement between r and d. A

rotation in the plane defined by r and d has a principle

axis j where j is a unit vector normal to the plane. Be-

fore the rotation,g is given by

--19-



rb x db'

S Irb x dbl 2.2.24

The angle 09 of rotation in the plane of r and d from a

rotation p is given by

0 = g.P 2.2.25

From equation 2.1.1 the time difference At in a

measurement due to a rotation by 0 is

R
At = - 0 2.2.26

V g

combining equations gives the linear unconstrained model

b b'

At = R xd ' p 2.2.27
V rb x db'

To apply this result to the eight measurements we

will need the following definitions:

t.. is the measured pulse propagation time between
1J

driver i and receiver j.

1 is theth
di is the position unit vector of the i driver

in the inertial frame.

rb is the position unit vector of the threceiver
-J

in the body fixed frame.

-20-



t!. is the nominal pulse propagation time between
i3

driver i and receiver j.

t..= t. . - t, .
13 13 13

Then the model is

b b
r. x d.

At~P R-j -1
U b' b-

Id. x rj
i -3

2.2.28

Forming equation 2.2.28 for all combinations of drivers

and receivers gives a set of eight linear equations, which

may be conveniently expressed as the linear vector equa-

tion:

At = B s 2.2.29

where

t=

At -

At2At1 2

SAt 2 4

2.2.30

b b b'
Vrl xdb

b b,
r x d
-4 -2

.d x r.-- 2 -41

2e2.31

each vector

represents a row

-21-
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2.3 Estimation

In reality additive noise corrupts the measurements.

This is due to random errors in the pulse detector, and to

small deviations from the nominal in the case acoustic

velocity. The approach taken here is to estimate p from

the noisy At using a Moore-Penrose pseudoinverse B+[8], to

invert the relation of equation 2.2.29. The estimate P of

1_ is

p = \B B) B At 2.3.1

= B At

and the estimate of At is defined as 2.3.2

At = B p 2.3.3

This pseudoinverse will always exist as for the proposed

system configuration the matrix B has a rank of 3. This

estimator has the desirable property of minimizing the

root of the sum of the squared errors in At; it minimizes

|At - Atf.

For this application the pseudoinverse can also be

said to be an optimal linear estimator in the Bayesian

sense of minimizing Ejp - P| where E denotes expectation.

This approach requires characterizations of the second

order statistics for w_, a priori, and for the noise. The

-22-



noise sources can be reasonably modeled as additive, in-

dependent, zero mean and equal variance. Thus if n de-

notes the random noise vector and Q is its correlation

matrix then

T 20 = E (nn ) = C nI 2.3.4
- n

2.
where j n2is the variance of the measurement noise.

n

Let P be the a priori covariance matrix for p.

Then the optimal linear estimate of p is [51

T - 11-1 T -l
p = (B Q B + P ) B Q At 2.3.5

Applying equation 2.3.4 to equation 2.3.5

^ BT 2 -1-1 T
= (B B + n P ) B At 2.3.6

n 0

As there is no a priori information on p in this

formulation, p may be considered -to have an extremely

2 -1
large a priori covariance. Thus a P is very small

n o

compared to BTB and the optimal linear estimator be-

comes the pseudoinverse, B+

T -l T
u = (B B) B At 2.3.6

-23-



2.4 Updating the Nominal Attitude

^b b
The estimate C. of C. is computed from

1 1

^b "b g
C. =C C. 2.4.1

1 b i

b
where Gb, is computed from j. In order to reduce

b
computational load an approximate form of Cb; could be

b bused. Use of an approximate Cb; will leave C. non

orthogonal, and will periodically require reorthogonaliza-

tion.

^b
This section presents forms of C bo and orthogonali-

zation procedures, and choses the most computationally

efficient combination.

^b
Cbi is expressed exactly by equation 2.2.3. Easier

to calculate is the following equation from Appendix B

which is based on a four parameter attitude representation.

a= PI2.4,2

v= I/c 2.4.3

^b 2
Cb,=I + sina N + (1-cosa)N 2.4.4

-24-



In the interest of reducing computation a low order

update matrix may be formed directly from p. The first

order update matrix is obtained by truncating the series

of equation 2.2.8 to first order terms

^'b
Cb = I + M 2.4.5

Similarly the second order update matrix is

^'b 2
Cb = I+M + M 2.4.6

After being updated by an approximate Cb the new
b

estimate C. is no longer an orthogonal matrix. To

achieve accuracy it is necessary to periodically orthogonal-

^b ^bize C . Once a C is orthogonalized it is used as the

nominal matrix for the next estimate. Then the next

estimate will contain error due to only one update, and

orthogonalization effectively clears the accumulated error

due to an approximate update.

A straight forward orthogonalization routine is the

Gran-Schmidt procedure [9]. The procedure is described in the

following.



Let C be a 3 x 3 matrix

CN be C after normalization by the Gran-

Schmidt procedure

C be a temporary matrix used in the computation

C, CN and C are partitioned into their three column vectors

e.g.

C = C C2 c 31
2.4.7

Then

N
C1 = C / IC |I

2 2
NN

C2  = 2 21

3 = C3

2N

2.4.8

2.4.9

2.4.10

N N)
3 (02 3

C = C3/ 3

2.4.11

2.4.12

N N
C is normalized to form C. Any component of C in C is

1s1t 
1 2

removed so that C2 is orthogonal to C1 Then C2 is

-26-



normalized to form CN Any components of C 1Nand C2 in

C3 are removed so that C3 is orthogonal to both C and

N N N
C . Then C3 is normalized to form C . Thus C is

composed of mutually orthogonal unit vectors.

That is, since

cN = C C CI

then

T
CN CN CNT

-l
T

N
-2

T
N
3

T
N N
-1- i

T
N N
2 1

T
N N

-3 -l

CN N CM]
-1 2 -3

T
N N

--l 2
T
N N
2 2

T

CN CN
3 2

01

And thus C N satisfies the constraint on an orthogonal matrix.

-27-
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With the goal of improving accuracy, and achieving

greater efficiency another orthogonalization technique,

the 'best fit' method was investigated. The best fit

method finds an orthogonal matrix CN, such that the three

angles between a column C . of C and its corresponding
J

N Ncolumn C. of C are approximately minimized in a least
J

sum of squares sense. This approximation becomes more

exact as C becomes more orthogonal. This method acheives

the minimization by distributing the corrections to the

non-perpendicularity of pairs evenly. For example if C1

and C2 were not orthogonal by an angle of a, C1 and C2

would each be rotated by an angle of a/2. In the follow-

ing description of the best fit method C' and C" are

temporary matrices used in computation, and their sub-

scripts denote columns. First half of the projection of

C2 and C3 or C are removed from C1 which is normalized

to form C

C = C 1/2 (C2 . C1 ) C2 - 1/2 (C3 . C1 ) C3  2.4.17

CN = C!/|Cil 2.4.18

Then the remaining components of C2 that are shared with

N
C1 are removed from C1 2

-28-



c't = C2 - (C . C2)cN

Similarly with C3

C' = C3
N(CN C. N

-( .C3 1

N.Now C1 is perpendicular to the plane of C" and C" ,and12 3

the rest of the procedure involves making C"' and C"2 3

orthogonal. Half the projection of C' on to C' is re-

moved from C"2

C2 = C - 1/2 ' . C 2.4.21

and

C = CL/IC I2 2 2 2.4.22

Then the remaining component of CN in C is removed from

C"O
3

C' = o ' - (C N N)

CNC3 3 |3

2.4.23

2.4.25

-29-
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A form of Cbu and an orthogonalization procedure will

be chosen from the above based on its computational

efficiency. Here computational efficiency is the ability to

provide a level of accuracy with a minimum of computation.

The computation requirements of the above algorithms are

shown in Table 2.1.

The best fit orthogonalization procedure requires

nearly twice the computation of the Gram-Schmidt pro-

cedure. However, when simulated it provided a negligible

increase in accuracy, which was due primarily to the small

angles involved. Thus for this case the Gram-Schmidt

procedure is the more efficient.

In order to chose among the forms of Cb'their accura-

cies are determined. First note that the exact form of

equation 2.4. is orthogonal, and has no corresponding error.

b
As defined in Appendix A the error Cb' associated with the

"b
use of an approximate Cb, is the maximum singular value of

b
the error matrix Eb, where

b b ^b
Eb,= Cb, -Cb' 2.4.26

E bha been computed in Appendix C for the first, and
b ,a

second order update matrices. The maximum error from the

use of a first order update
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Table 1

Computation Requirements for Update Procedures

MULTIPLIES DIVISIONS ADDS/SUBTRACTS MISCELLANEOUS
b

Computation of Cb'

Exact

2nd Order

1 st Order

45

33

18

1 33

30

18

square root, cosine

Orthogonal i zat ion

I

Gram-Schmidt

'Best Fit'

36

54

3

3

21

36

3 square roots

3 square roots

6mI .Ii



is

b = (sin a - a)2 + (1 - cos a) 2 2.4.27
b

The maximum error from the use of a second order update

is

b [(in - 2 2 2
E '=/-(sin a - a) + (1 - cos a - a_) 2.4.28

b2

The maximum rotation of the platform between measurements

is 20 miliradians. For this value of a the first order

error is 2.0 x 10~4, and the second order error is 1.33 x 10-6

These correspond to angular errors of .2 milliradian and 1.3 prad

for the first and second order algorithm respectively.

An upper bound on the error due to a series of updates

in terms of its individual c is developed.

b
b" = max j (C , C ,,-CbCb )Vb I2.4.29

b b' b b b b', b"
= max (EbECb -+ CbEbEE 2.4.30

<max I ~ b' sb CE bI+"2b1b

max|EbVb Cb" '1+ max |C , Eb,,VbJ+ max lEb EbVL, |

V

2.4.31

Since the matrices CbI and Cb, do not change the magnitude

of a vector
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b ,, <bE_ + Ecb + max, E bi Vb' max I bi tb 2.4.32

<Eb + Cb +:b E b 2.4.33b Cb b 6

If the errors are small then the second order term in

equation 2.4.33 is negligible and

b I b + Eb' 2.4.34
b b b'

Thus to first order a bound on the cumulative error is the

sum of the individual bounds. And the error Eb(K) as a

function of the number of updates K is bounded by

e (K) < (2.0 x 10- radians)K 2.4.35

and for the second order matrix

Eb(K) < (1.33 x 106 radians) K 2.4.36

This bound is conservative as it ignores correction of

orthogonal errors that just define a new nominal attitudes

It is anticipated that at least 6.0 x 10~ radians

of the total 2.91 x 10-3 radians error budget can be allo-

cated to update error. For this level of performance the

first order matrix can be used for 3 updates in between

orthogonalizations, and the second order matrix may be used

for 450 updates between orthogonalizations. Comparing re-

quirements for multiplies, the average number per update
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required for the first order matrix is 18 plus a third that

are required for the Gran-Schmidt procedure, 12 giving an

average total of 30. The second order matrix requires an

average total of 33 multiples as the average contribution

of the orthogonalization over 450 updates is negligible.

The exact matrix requires 45 multiplies per update. Based

on the multiply requirements which are indicative of the

overall computation requirements, the exact matrix is the

least efficient in meeting the accuracy requirements even

though it provides no error. The first and second order

are close, but for an update error budget of 6.0 x 10-4

radians or greater the first order matrix is the most

efficient for this estimation algorithm.

2.5 The Algorithm

b
The complete algorithm for estimation of C. is pre-

1

sented in a block diagram in Figure 2.2.This algorithm

solves

T T
B B l=B (t-t') 2.5.1

by Gaussian elimination. This procedure is more efficient

than computing p directly using the matrix inversion of

equation 2.3.1. The linearized model B and the nominal

pulse propagation times t' are computed for the nominal

DCM, C. . The nominal propagation times t' are sub-

tracted from the measured pulse propagation times t, to

give At. Then after forming B B and B At equation 2.5.1
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A b ^

is solved to give P. Cb' is formed from p as I + M and

b' ^ b
is efficiently multiplied by C. to get the estimate C.

Every third iteration C. is orthogonalized by the Gram-

Schmidt procedure. The estimate matrix is used as the

nominal matrix in the, next iteration as represented bv

the delay in Finurp 2.2.

As a prime motivation for this thesis is to reduce

the computation in the estimation algorithm a preliminary

point for evaluation is its computation requirements.

These are presented in Table 2.2, the computational require-

ment of this algorithm is a reduction of an order of

magnitude over the previous algorithm [3] ,which had a re-

quirement typified by a multiplication count in excess of

2500 per attitude estimate. This estimated count was ob-

tained by conservatively enumerating the requirements of

the components of the numerical method as described in

section 4.2 of [3].

2.6 A Suboptimal Algorithm

To reduce computation, the computation of the basic

algorithm was rearranged to produce a less optimal in

noise performance, but computationally simpler algorithm.

Its development begins with the model at equation 2.1.4.

V b b i
cos - t = r - Cb 2.6.1

R i
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Table 2.2

Computational Requirements

for the Basic Algorithm

EQUATION

2.1.3

2.2.13

2.2.31

t-t'

T
B B

BTtB TAt
Gaussian
elimina-
tion

2.2.2

Gram-Schmidt
orthogonali-
zation

TIME CALCULATED

2

8

1

*

MULTIPLIES

18

32

80

72

24

11

18

9

DIVISIONS

8

6

1

ADDS/SUBTRACTS

12

16

40

8

63

21

11

18

7

MISCELLANEOUS

8 cos~-

8 square roots

1 square root

15 196 9 square roots

8 cos'

Averaged over 3 iterations

La)

TOTAL 264



The left hand side is defined as T

T=Cosvt 2.6.

b.
C. is approximated by a product of an incremental, and

1

nominal matrix as in equation 2.2.11,

T=r b- (I + M) C d 2.6.
1 _

rb e db' + rb -0Mdb' 2.6.

where db
b'di

=-C. d .
1 -

The first term of the right hand side is T evaluated at

the attitude represented by the nominal DCM. Thus a

nominal T, T' can be defined as

= cos T -t = r -edbR - 2.6.5

Substituting equation 2.6.5 in equation 2.6.4, and

defining a AT

AT' T-T' = rb M d 2.6.6

Applying equations 2.2.16 and 2.2.17

AT = (db b
x r )- . 2.6.7
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Utilizing the conventions established previously,

and applying equation 2.6.7 to the eight measurements

produces a system of linear equations which is conveniently

expressed in a linear vector equation

AT = Sii 2.6.8

where AT =
7s Mt

R 11

cos R t24

v
- cos -t

R ,1

- cos t'
24

and

b' b
d xr1

b' b
d2 x r

each vector

represents a row

2.6.10

As before the optimal linear estimator of i is

T -l T +
P = (B ) $ AT = AT

i ib'
and the estimated p is used to update C .

2.6.11

-39-
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The actual calculation of this would be done most efficiently

by Gaussian elimination; that is solving

T ^ T
(8 8) [1 = 8 AT 2.6.12

This and the basic algorithm can be approximately

expressed in terms of each other. Linearizing the defini-

tion of T about T'

V V , V .VT = cos - t cos H t - w(sin t') (t-t')RR K R

V V
= R' - (sin t') At

V .VAT = - (sin - t') AtR R

2.6.13

2.6.14

2.6.15

This is fit into the vector form by defining a diagonal

W matrix

A

0
0

- sin( t;4)
R R24

-40-
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AT W At

sin R -t'. =
R 13

d x r9i J
2.6.18

the matrix 6 of the basic algorithm may be factored

B =W B6 2.6.19

or equivalently

S = WB 2.6.20

Applying equations 2.6.17 and 2.6.20 to equation

2.6.8

WAt = WBQ 2.6.21

A solution of equation 2.6.21 by a pseudoinverse will

minimize

I W(t - t) . 2.6.22
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Thus the effect of this formulation is to weight the

least squares procedure. The weighting varies with plat-

form attitude. From equation 2.6.14 it weights the larger

time measurements more heavily. Since the noise model has

identical statistics for all the measurements the optimal

weighting is uniform, i.e. W = I. Thus this weighted

estimator is suboptimal with respect to mean square error.

This loss in performance is to be traded for a de-

crease in algorithm complexity. The algorithm that

computes the weighted estimate is shown in the block dia-

gram of Figure 2.3. The computation requirements are shown

in Table 2.3. This is a reduction of 32 multiplies, 25

adds, 8 divisions and 8 square roots.
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Table 2. 3

Computation Requirements

For the Weighted Algorithm

EQUATION TIMES CALCULATED MULTIPLIES DIVISIONS ADDS/SUBTRACTS

2.6.2

2.1.3

2.6.5

2.6.10

T -'

T

T

Gaussian
elimin-
ation

2.2.2

Gram-
Schmidt
orthogon-
alization

88

2

8

1

18

24

48

72

24

11

18

9

1

*

12

16

24

8

63

21

11

18

7

6

1

8 cosines

1 square
root

180 1 square
root,

8 cosines

Averaged over 3 iterations

4ab

MISCEL-
LANEOUS

TOTAL 232 7



III Algorithm Performance

The estimation algorithm's performance is degraded

by three major error sources: noise, linearization,

and use of an approximate update. A general evaluation

of the error is based on independent analyses of each

source. Analysis of error due to an approximate update

was provided in section 2.4. Algorithm sensitivity and

linearization error are analyzed in sections 3.1 and

3.2 respectively. The algorithm is simulated and the

results are compared to the combination of the indivi-

dual error analyses in section 3.3.

3.1 Noise Sensitivity Analysis

The noise sensitivity of the estimation algorithm

characterizes the response of the algorithm to a noise

.nput. Here, it is specifically the ratio of the rms

value of the error of the output estimate to the rms

value of the input noise.

The noise sources that corrupt the time measure-

ments t are modeled as additive, zero mean and inde-

pendent having equal variances due to the system

symmetry. The noises are represented by the eight

element vector n having a covariance matrix R.
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R = E[nJn = I 3.1.1n

where Gn is the rms value of the input noise.

The estimate of the incremental attitude i is

computed by the pseudoinverse B+ of equation 2.3.1.

The response of the algorithm to noise is

p = B+. 3.1.2

The characterization F of the error rotation will

4e the rms value of its magnitude.

C = Pn I 3.1.3

The mean square value of the error is

E[e2] = E [tr( nP TJ

where tr( ) denotes the trace of a matrix.

E[E 2  = E tr(B+nnTB+T)]

= tr B E nn)B+T]

= a2 tr(B+B+T)
n

3

3.1.4

3.1.5

3.1.6

K

3.1.7

I

I.



The rms value of the error is

Erims = (tr (B+B+T))1/
2

Thus the noise sensitivity S is

S = (tr(B+B+T))1/2

3.1.8

3.1.9

For the basic algorithm

B

B+B +

= TB) lBT

= TB) B TB(BTB)l

= TB)- l

3.1.10

3.1.11

3.1.12

Thus, for the basic algorithm

s = (tr(BTB)-l)l/ 2 3.lo13

For the weighted algorithm from equations 2.6.11

and 2.6.17

11"n
+Wn

3.1.14

-47-
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From the results above:

S 
((+WVT +T)) 1/2

= tr\KwW~ // 3.1.15

From equations 2.6.11 and 2.6.18:

S = (tr[(BTWTWBti BT WT WWB BTWTWB)- 1/2 3.1.16

A lower bound on the optimum sensitivity may be

obtained from a geometric argument. A measurement, t,

between a driver d and a receiver r is a constraint on

rotation about an axis defined by dxr. An error in t

tends to perturb the vector representing the attitude

estimate in the direction of dxr. It can be shown that

a set of eight constraint directions, d xr , that pro-

duce the minimum magnitude of the error perturbation

t due to noises in all constraints, is represented

by the corners of a cube centered at the origin.

The d xr_ are also the directions of the rows of

B, the linearized model. From equation 2.2.29, all

R
rows of B have magnitude 11 ; thus an optimal B based

on the optimal set of directions above is

B = 1 - 3.1.17
LB 1 R

1 1 -1

1 -'1 1

1 -1 -1

-1 1 1

-1 1 -1

-1 -1 ii
-1 -1 -'1].

B



Then

BBBLB)1 3/8 1 0 0 3.1.18

01 00
0 0 1]

and the lower bound SLB on the noise sensitivity is

SLB 3.1.19

Using the specified values of V and R, SLB is 4.20

X 10 radians/sec. As the weighted algorithm is less

optimal than the basic algorithm, this is also a lower

bound for the weighted algorithm.

The sensitivities of both the basic and weighted

algorithms were computed by equations 3.1.13 and 3.1.16

and plotted as a function of platform attitude as de-

scribed by Euler angles. Only Euler angles between

0 and n/4 are considered. This eliminated redundancy

since for an inertial frame as defined in Figure 1.2

the configuration of the drivers is symmetric about

each axis by w/4. The sensitivity is displayed as a

family of curves. The curves are indexed by the first

rotation $ about the x axis and by the second rotation

o about the y axis. Each curve is a function of the

third rotation p about the z axis. A pair of driver lo-

cations is chosen for the estimation, which have the

greatest z component in the b frame. Changing pairs

causes a discontinuity in the sensitivity.
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The RMS value of all the computed sensitivities

was 4.88 x 104 which is 15 percent above the optimal

value. However, the optimal value is valid for only

a few attitudes; an RMS value considering all atti-

tudes would be greater. The maximum and minimum

values were 5.63 x 104 and 4.55 x 104 respectively;

a range of 20 percent.

As expected, the sensitivity of the weighted

algorithm is consistently greater than that of the

basic algorithm. dowever, it represents an increase

of typically seven percent and raises the maximum

value by two percent. This minor increase will be

traded for a savings in computation, and the remain-

der of the analysis in this chapter will deal only

with the weighted algorithm.

3.2 Linearization Error

Linearization error is that error in the es-

timate arising from the use of a linear approxima-

tion in the algorithm development. Because of this

approximation, the estimate will be in error even

though the input time measurements may contain no

noise.

Specifically, the linearization error 8L is the

magnitude of the rotation between p and p, where p_
b ^b

and i define Cb' and Cb' by the series of equation

2.2.3-. The linearization error in the weighted
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b
algorithm is the approximation of Cb, by I+M which

is a truncation of S L. The ith element of this
k=O

series has a no-rn of /n, where the norm is

defined as (trMTM)l/2 . For small |p , the dominant

truncated term is the second order term having a mag-

nitude of (/T/2|)VI2. Thus EL will depend quadrat-

ically on |w|, i.e.

E L KIp_ 2  3.2.1

where K is some constant. A closed form determination

of K is infeasible as it requires a closed form sol-

ution of the original nonlinear problem. Thus, EL

will be characterized computationally.

b
The linearization error for a true attitude Ci,

which is composed of C. and pi, is calculated by im-

plementing the estimation of 1 as shown in Figure 1.

The model of equation 2.6. is used to calculate the

b bpropagation times T and T' for C. and C. respectively.
1 1

B+ cb'
The pseudoinverse B is calculated for C. from equa-

tions 2.6.10 and 2.6.11. Then f is found by

f = B+ (T - ') 3.2.2
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The rotation between p and Q is given by (see Appendix

D)

-1 a . aA- a . a
CL = 2 sin |cos - sin - v + cos - sin - vL ~2 2- 2 2

+ sin sin v^xvI

V = , a = |l

a- - ^

3.2.3

3.2.4

3.2.5

EL was computed for the nominal attitudes defined by

the Euler angle sets (0,0,0) and (7/8,0,/4). At each

attitude, EL was computed for three directions v1 vand

v of j.
- 3

V Hi

0

V =-1 1] [i] 3.2.6

0] [1]

Log (cL) is plotted against log (a) in figures 3.5 and

3.6. These curves are nearly straight with a slope of

2:1, which confirms the quadratic dependance of cL on

a. The curves show little sensitivity of EL to direc-

tion v or nominal attitude. Thus the maximum observed
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value of K = .38 is likely to be close to its actual

maximum value. Thus, for evaluation, it is reasonable

to model EL as

EL = .38a2  a < 1 radian 3.2.7

For the largest platform rotation between measurements,

20 mrad. the linearization error is .15 mrad. This is

about 5% of the maximum allowable error.

These results indicate that even for relatively

large angles, up to one radian, the linearization error

is smaller than the inital error. This implies that

if the algorithm were to be iterated while keeping the

same input measurement, it will converge to an accur-

ate estimate if the initial error ais less than a rad-

ian in magnitude.

3.3 Simulation

A simulation is useful for indicating the over-

sight of any significant error sources and checking

the accuracy of the previous analysis. It also gen-

erates representative results.

The simulation implements the weighted algorithm

according to Figure 2.3 . The simulated input to

the algorithm is based on a sequence of true attitudes

b bC. These C. are generated by

b b
C. (K) = D(K)C.(K-l) 3.3.11 1
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where K is the index of the sequence. The matrix D

is a rotation of magnitude equal to the maximum ro-

tation of the platform between measurements, which

is 20 milliradians. The axis of rotation of D is

selected randomly. The propagation times, t, are

generated from the model of equation 2.4. and ad-

ded with a noise vector n. n has the propertis

assumed in section 2.3; it is normally distributed

with zero mean and covariance matrix a2, where a
n n

is the specified maximum rms value of the input

noise, 1 x 10~8 seconds.

As the simulation will use a first order up-

b
date matrix, the estimate C. will not generally be

orthogonal. Thus, the error will be analyzed as

defined in Appendix C. The error is the maximum sin-

b ^-b
gular value of C. -C..

. 1

The results of the simulation for a few arbi-

b
trarily chosen initial attitudes C.(0) are shown in

1

the plots of Figure 3.7. . The rms values of the

error for each of these simulations is shown in Table

3.1.

For comparison, the errors due to each of the

three major sources were also computed. The rms error

due to noise is given by the input rms noise level,

1 x 10O seconds, multiplied by the algorithm's sen-

sitivity as computed by equation 3.1.15. The linear-
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ization error is computed from equation 3.2.7 for a

20 milliradian platform rotation between measurements.

C is re-orthogonalized every third iteration. As

shown in section 2.4, an upper bound on the update er-

ror is .2 0 milliradians for the first iteration after

orthogonalization, and then .40 and .60 milliradians

on the next two iterations. The rms value of this

sequence of upper bounds is .432 milliradians.

The combination of these individual results de-

pends upon their statistical relationships. If the

error sources are uncorrelated, then the errors are

combined in a rms sense. A worst case combination

assumes that all errors are in the same direction and

the composite magnitude is the algebraic sum of the

individual magnitudes. Both combinations are inclu-

ded in Table 3.1.

The results of each simulation fall between the

two computed composite errors, but much closer to the

composite error based on the assumption that its com-

ponents are uncorrelated. That the computed and

simulated errors have the same relative sizes further

substantiates the validity of the analysis. Also,

assuming a worst case error of three times the rms

error, the simulation results indicate that the

weighted algorithm will surpass its specified per-

formance.
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Table 3.1 Simulation Error Analysis*

Simulation

1

2

3

Initial
Attitude

(Euler angles)

(0,0,0)

(n/8,0,Tr/4)

(7/4 ,T/4 ,/4)

RMS
Noise
Error

.576

.491

.472

RMS
Linearized

Error

.153

.155

.153

RMS
Update

Error

.436

.432

.432

Uncorrelated
Composite

Error

.736

.671

.658

"Worst Case"
Composite

Error

1.008

.923

.904

*All errors are expressed in milliradians

I~
t&)

RMS
Simulated

Error

.773

.704

.681



IV Implementation Considerations

This chapter addresses some of the major consider-

ations for the implementation of the algorithm developed

in chapter 2.

The first section develops an initialization pro-

cedure. As the algorithm is developed from a linearized

model, it requires a nominal attitude upon which to base

its linearization. This nominal attitude is normally

taken to be the previous attitude estimate; however when

the algorithm is started it has no previous estimate.

Thus, as initialization procedure is required to determine

platform attitude to an accuracy that will not cause

excessive linearization error in the main algorithm.

It is anticipated that there might be error in some

parameters of the model that cannot be removed by cali-

bration. To avoid error due to an inaccurate model the

uncertain parameters must be estimated along with the

attitude. Section 4.3 presents the extensions of the

basic algorithm developed in chapter 2 to include estima-

tion of additional parameters, velocity and measurement

time biases.

4.1 Initialization

This initialization procedure is based on the prop-

b berty of the DCM C. that the columns of C. are the base

vectors of the i frame as represented in the b frame.

The representation of a vector v in the b frame is the dot

product of v with the base vectors of the b frame.



ib v

b Jb vv 4.1.1

Kb

If there were receivers r , r ,?and r whose posi-
a b' an chseps-

tion vectors coincided with the orthogonal basis of the

b b b
frame I , J , K then the representation of a driver's

position could be obtained from the measured times, t..

I-J
r - d Cos- t
-a -a R aa

b I
dLb -*d = cos- t 4.1.2
- b a R ab

r-d cos- t
EC -a JR ac,

However, such a configuration is not available as

no receiver position vector is orthogonal to another;

each pair of adjacent receivers forms an angle of 840.

Thus a new body-fixed frame b is defined by application

of the Gram Schmidt procedure to two receiver vectors

r and r. (see figure 4.1).

b
Ib = r. 4.1.3

J =b (rjPr r )I4.1.4

=r * r. 4.1.5

= 

r Pr r.I 4.1.6

Kb = 16 b 4.1.7
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K b= bxJb

60
r.- .

- T.-(r.r.)r
J - J -- -

r.-1

r. 844

I = r

Figure 4.1 b Frame Construction
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bThe representation d. of a driver i in the b frame
-2i

may now be calculated from the time measurements. The x

6 6component d of d. is given by
X -i

d = _I_ *d. r. d. = cos-t 4.1.8X - -1- -1 -1 R i

where t. is the time measurement between d and r..
1 -1

The y component is found from Eq. 4.1.4 by

d = J -*d = *(r - ri rq -d 4.1.9y - - Irj P~riiur]

- (r. - d - pr r)/q 4.1.10

- (cos - t. - p cos - t.)/q 4.1.11
R r R i r

The magnitude of dbis obtained from the fact that db
z

must be a unit vector. The sign of db is determined fromz

the implicit knowledge that a driver lies in the hemisphere

of the receivers above the damping band; otherwise it

would produce no measurement. If the r. and r. are
1 J

chosen to be adjacent and ordered so that r. x r., which

is the direction of Kb, is also in the receivers' hemisphere

then the hemisphere of positive z component in the b frame

includes nearly all of the region in which a driver may

produce a detectable pulse.. The exceptions are avoided

by careful selection of receivers i and j. Thus the sign

6of dz is positive and

db = l-(db )2 + (db )2 4.1.12z x y
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If there were three drivers dl, d2, and d3  that

coincided with the base vectors of the i frame,computation

b
of C. would be the calculation of

C. = dd -d34.1.13

1

where the d1? are calculated by the equations 4.8, 4.11, and

4.12. Due to the presence of the damping band, such a

configuration isn't available without increasing the number

of drivers.

Thus a new inertial frame i is defined by the appli-

cation of the Gram Schmidt procedure to two driver vectors.

This definition is similar to that of the b frame (see

figure 4.1).

I = 4.1.14

-i-

J = (d - Pd qi d 4.1.15

Pd = d. ,id. 4.1.16
d-1 -J

qd = d. - Pd. 4J4.1.17

K = II x J4.1.18

Note that when d and d. are chosen to be adjacent Pd

and 9d are constants.

Now the transformation C between the i and b
i

frames are calculated by
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C -d (d - pd)q d x ( p - db/d 4.1.19

The computation required to compute C from the time

measurements is only 24 multiples, 12 adds, 4 cosines, and

2 square roots.

To utilize C it is necessary to have the trans-

i
formation C} from the i frame to the i frame and the

transformation C9from the b frame to the b frame so that
b

C may be computed as

Cb = Cb Cb C 4.1.20

b 1

The columns of C are the axes of the b frame as rep-

b
resented in the b frame. Thus

rb rbb b1

C r (r) prj/r x(r. r r) 4.1.21bj 'r r~i-rr-i r1

C is similarly computed as its rows are the axes of the

i frame as represented in the i frame. Thus

dJ
-1

C = (d. - d3. d
1_j d-i d1

.d T

(d x (d'- d /iqd

With regard to computational load it should be noted

that Cb and C. need only be recomputed when new receivers
b

or drivers are chosen.



The total computational requirement for this

initialization procedure is 102 multiples, 60 adds,

4 cosines, and 2 square roots. In comparison this is

about one third of the requirements for one iteration

of the main algorithm.

As mentioned above, the receivers r. and r. must

be selected so as to maintain the validity of the

assumption that a driver used by this procedure has a

positive z component in the b frame. Assuming that a

pair of drivers are selected based on audibility (posi-

tioned to produce a detectable pulse) then any driver

may be selected that lies in the receivers' hemisphere

above the damping band. The area in this region that

has a negative z component is illustrated in figure 4.2.

This figure shows that in order for the driver to P

fall into that region, the receivers forming the b

frame must be the closest receivers to that driver. The

approach to receiver selection is then to choose the re-

ceivers furthest away from the drivers. This criterion

is readily available from the time measurements. First,

a receiver is chosen for test from any driver by identify- -

ing the driver receiver pair di, r1 associated with the

largest time measurement. Then the receiver adjacent to

r having the greater distance to the other driver d2 is
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a driver is
audible above
this plane
(z = .2R)

center
of sphere

plane of
j andr

Figure 4.2 Positive z Assumption Failure
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chosen. The selection process is completed by ordering

r and r2 so that the resulting K is in the receiver's

hemisphere.

In order to verify the validity of the initializa-

tion procedure and test it for sensitivity to noise and

computation error, it was simulated. The simulated plat-

form attitudes were generated randomly for each trial

by normalizing a vector of four numbers obtained from a

zero mean gaussian random number generator, and inter-

preting them as a quaternion. Two drivers are then sel-

ected by their audibility, i.e., if the z component of

a driver's position in the b frame was greater than 0.2 R

it was assumed to be sufficiently clear of the damping

band to excite a measureable pulse. This definition of

audibility allows selection of drivers 0.1 R below the

plane defined by the four receivers. Two receivers were

selected as described above. Pulse propagation times

were computed by the model of equation 2.1.4. The error

was evaluated based on the maximum singular value of

b ^b
C. - C.

1 1

The results of a simulation with no noise are

shown in figure 4.3a. These disclose no numerical sen-

sitivities and verify the receiver selection criteria.

Figure 4.3b shows the error resulting from the addition

of noise with the specified rms level of lxlO - seconds to

the simulated pulse propagation times. The rms value of the
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22 44 66 8

iteration
132 154

Figure 4.3 Initialization Procedure Simulations
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resulting error was 0.704 milliradians. This per-

formance is comparable with that of the main algorithm

and will easily satisfy its initialization requirements.

Because of its low computation requirement this al-

gorithm should be considered for use as the main al-

gorithm in future study.

4.2 Estimation of Additional Parameters

The following subsections present the inclusion of

velocity and time measurement biases into the estimation.

4.2.1 Estimation of Velocity Bias

There can be error in the model's velocity para-

meter caused by variations in the acoustic velocity of

the case due to temperature and stress. Inclusion of

this parameter into the estimation still leaves the

redundancy required for estimation. This development

parallels much of the development of chapter 2.

From equation 2.1.4 the model is

R -1 b b it - cos (r - C. d ) 4.2.1
V - -

Using the approximation of equation 2.2.6

=R -l b b' b bt = -cos (r -*d + r -*Md ) 4.2.2V--

b' b' iwhere d = Cb d. From equation 2.2.

= R CoB- 1 (rb db' b'b+ (db x rb 4.2.3
V
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Linearizing about the nominal V = V', p = 0

R -1 (rb db') - R Cos- 1 Crb db)AV
VI(V')2

R ( (r - db) \ (db b-*r) - p

where AV = V - V'

Letting t' be the nominal time that would be obtained from

b b'
the model if C. =C. and using equation 2.2.4

1 1

b b
t t t I V (d b x r ),4,,t= t'i- - t' -R ~b' xr - 4.2.5

jd x r |

or

(d x r )i
At = t- t'= - (b b - - AV 4.2.6|d x r b

Using the definitions of chapter 2

At. .
23-

b' b
R (db -r.)

= .--,- , 1 -
= V' b' b

d. x r9|

t.

- -AV 4.2.7

Combining all measurements into a compact matrix

notation

[ 4 i-; T 'r - - =It 4.2.8
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where B is defined in equation 2.29, At is defined in

equation 2.28 and

t =

Let B = B -t']

and = [ l

t12

24

4.2.9

4.2.10

4.2.11

Then equation 4.2.8 becomes

Bv 2-V = At 4.2.12

This is solved as before by a pseudo inverse

AT T
)IV =(ByV B)v B vAt 4.2.13

Unlike the basic algorithm of chapter 2 the sub-

optimal weighted version of the algorithm above offers no

savings in computation. This is because while the weight-

ing was implicit in the weighted algorithm here it must

be explicitly applied to the column of Bv corresponding to

the velocity bias.

The computational requirements of this algorithm

are presented in Table 4.1.
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Table 4.1 Computation Requirements for the Alqorithm Extended for

Velocity Bias.

equation
times

calculated multiplies divisions add/subtracts miscellaneous

2.1.3

4.2.1

4.2.8

2

8

1

t'

vi

t - t'

B TBV V

B T At
v --

Gaussian
elimina-
tion

2.2.2

8

1

1

1

1

Gram Schmidt
orthogonali-
zation*

18

32

80

8

128

32

26

18

9

8

8

10

1

12

16

40

8 cos-

8 square roots

8

112

28

26

18

7 1 square root

267 9 square roots,

8 cos~

*
averaged over three iterations

Total 351 28



The noise sensitivity of this extended algorithm was

computed as a means of evaluation. The expression for

the sensitivity is developed as in section 3.1. The

covariance matrix Pv for 1v is (see equation 3.111)

-1
P =(BT B ) y2 4.2.14

v v v n

The first three diagonal terms of P are the variances ofv

the elements of M due to noise. The rms value of the mag-

nitude a of M is

a =rms Vv(1,7)TK VTZ + PV(3,3) 4.2.15

Thus the noise sensitivity of a, S is

Sa = xA / 4.2.16
a rmsn

The last diagonal term Pv (4,4) is the mean square error

in 6V due to noise; and the noise sensitivity SAV of AV

is

SAV -= v(4,)/an 4.2.17

The sensitivities of a and AV are computed by

equations 4.2.16 and 4.2.17 and plotted as a function of

platform attitude, as described by the Euler angle set

($, 0, ), and nominal velocity. For a particular nominal

velocity the sensitivity is plotted in two curves where

each curve is a function of $. The two curves correspond

to the pair of Euler angles $, 0 being 0, 0 and Tr/4, i/4.
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These two pairs specify the curves in figures 3.1 and 3.4

that contain the maximum and minimum sensitivities of the

basic algorithm. As this algorithm and the basic algorithm

have the same system geometry, their maximum and minimum

sensitivities should occur at the same respective attitudes.

The sensitivity of a is shown for two nominal velocities,

198,000 inches per second, as specified, and 200,000 inches

per second, which represents an anticipated 1 percent devi-

ation in figures 4.4a and 4.4b respectively. Similarly, the

sensitivity of AV is shown in figure 4.5.

The attitude sensitivity of this algorithm is about

five percent higher than that of the basic algorithm. This

loss in performance is to be compared with the error in

the estimates from the basic algorithm due to a velocity

bias. Preliminary results indicate that for an anti-

pated 2% error in the nominal velocity the extended al-

gorithm is required to provide specified accuracy. A

detailed analysis is left to further study.

4.2.2 Extension for a Driver Bias

Each driver can have a time measurement error bias,

b
tb. This error would be caused by variations in the gap

between the driver and the case. because this bias effects

each measurement made with the same driver equally, redun-

dant measurements can be used to accurately estimate the

bias.
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The bias for driver i is incorporated into the model

of equation 2.4

b R -1 b b it ti +-#cos (r I- C di) 4.2.18

This bias has no effect on the remainder of the linearized

model. From equation 2.26

t..
lj

b' b
(d. xr.)

= . L b' r b
b x -j

4.2.19

Combining all measurements into a compact matrix notation

B TT = At 4.2.20

where

T A

A
U-

.1
I'

'1
B'

'0

'0

bti

b

tb2

0
0
0
0
I
1
1
1

4.2.21

and B, At and y are as

and 2.9 respectively.

defined in equations 4.2.22, 2.28,

The equation 4.2.20 is solved for 1T by a pseudo

inverse
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-1
T T T

-T TB 9T BT At 4.2.23

As with the extended algorithm for the velocity bias

there is no computational advantage with a weighted version

of this algorithm.

The computation requirements are presented in Table

4.2. There is an increase in computation for this algorithm,

which estimates S parameters, over the velocity bias esti-

mation algorithm which estimates 3 parameters, and the

basic algorithm which estimates 3 parameters. This is be-

cause matrix computations, such as multiplications and

Gaussian elimination, tend to increase as the cube of the

size of the matrix.

The noise sensitivity of the algorithm extended for

driver measurement bias is calculated similarly to that

of the algorithm extended for velocity bias. As: in equa-

tion 4.2.14, the covariance matrix for pT is given by

PT (BT B) Ca2  4.2.24
TT T n

The rms value of the magnitude of the w when divided by

a is the noise sensitivity S of attitude estimates

S T (1,1) + PT (2,2) + P T(3.3) 4.2.25

The variance of the two biases are given by the last two

diagonal elements of PT. Thus the noise sensitivities

of t 1 and tb2 are respectively Sbl and Sb2 where
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Table 4.2 Computation Requirements for the Algorithm Extended for

Driver Biases.

eauation
times

calculated multiplies divisions add/subtracts miscellaneous

2.1.3

5.2.1

5.2.4

t - t'

B TB

T T-
T

Gaussian
elimina-
tion

2.2.2

Gram Schmidt
orthogonali-
zation*

2

8

1

1

1

1

1

1

18

32

80

12

24

408

200

40

50

18

9

15

1

8 cos~

8 square roots

8

175

35

50

18

7 1 square root

369 - 9 square roots,

8 cos 1

*
averaged over three iterations

I,

Total 447 24



SbI = PT (4,4) 4.2.26

Sb2  = T(55) 4.2.27

The sensitivities of a, tb , and tb2 are computed as

functions of platform attitude and transducer bias. For

reasons expressed in section 4.2.1, the attitudes consider-

ed in the sensitivity computation, which are described by

the Euler angle set ($, 0, $), have $, 0 equal to 0, 0 and

7/4, i/4' while all values of 4 between 0 and n/4 are in-

cluded. The attitude sensitivity is shown in figure 4.6a

b bfor nominal values of the biases t1 , t2 equal to 0, 0 and

similarly Sbl and Sb2 are shown in figure 4.5b.

The attitude sensitivity is about 10 percent high-

er than that of the basic algorithm. This increase will

still meet system requirements. Analysis of this ex-

tended algorithm in comparison with the basic al-

gorithm awaits further characterization of the biases

and further study.
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V Conclusions and Suggestions for Further Study

5.1 Conclusions

In this thesis an algorithm for the estimation of

the attitude of a floated inertial platform was developed.

It is based on a linearization of a direction cosine sys-

tem attitude model. This approach has enabled a reduction

in computational requirement over the optimal approach of

[3] while continuing to meet system specifications. Its

computational requirements are typified by its multipli-

cation count of 238 per attitude estimate while the pre-

vious nonlinear algorithm's multiplication requirement was

estimated at over 2500 per attitude estimate. No study of

actual computers for implementation of this algorithm has

been made but it is believed that these requirements will

not exceed the capacity of an airborne computer.

The algorithm's performance was analyzed in detail

and compared with a simulation. These results showed

the rms attitude error to be less than 0.75 milliradians.

Defining a worst case error to be three times the rms value

gives a worst case attitude error of 2.40 milliradians

which is better than the specification of 2.91 milliradians.

An initialization procedure was developed to pro-

vide a nominal attitude required by the main algorithm

upon startup due to its linearized formulation. A simu-

lation of this procedure showed a maximum error which was

sufficient to establish a nominal starting attitude. .
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The versatility of the algorithm developed in this

thesis was demonstrated by the extension of the basic al-

gorithm to include estimation of system parameters containing

anticipated uncertainty. A sensitivity analysis of the

extended algorithms showed only a minor decrease in per-

formance from that of the basic algorithm, indicating that

they would also meet the system requirements. A complete

comparison of the extended and basic algorithms while

subject to parameter uncertainty awaits further char-

acterization of the uncertainty and further study.

5.2 Suggestions for Further Study

Further development would be able to decrease the

computational requirements of the algorithm. Use of the

same pseudoinverse, the calculation of which is half the

total of the algorithm, for more than one attitude es-

timate w-uld trade linearization error for less computa-

tion. From the results of the performance analysis it ap-

pears that this would be possible for at least three es-

timates. Algorithm sensitivity could be traded for less

computation by forming the estimator from fewer measure-

ments.

The performance of the initialization procedure met

system specifications. The heart of that procedure has

a low computation requirement. However it requires much

support, e.g., transducer selection. If there is no need

for the versatility of the linearization approach and

its better performance, an evaluation and reduction of the

support to the initialization procedure could provide a main

algorithm with a yet lower computational load.
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Appendix A

Specifications

1. Radius of the case = 5.0 in.

2. Acoustic velocity in the case = 198,000 in./sec.

3. Maximum rotation of the inertial platform between mea-

surements = 20 mrad. This is based on a maximum ro-

tation rate of 2 rad./sec. and an interval of 10 msec.

between measurements.

4. Worst case time measurement error = 3x10- sec.Assuming

a Gaussian distribution, and the worst case represent-

ing a confidence level of 95% the RMS value of the time

measurement noise is 1 x 10-8 sec.

5. Maximum allowable attitude error = 2.91 mrad. (10 min).

This error is the magnitude of a rotation relating the

true and estimate attitudes. However, as the desired

representation of estimated attitude is a direction

cosine matrix (DCM) there may also be error in meeting

the orthogonality constraints of a DCM, and then there

is no pure rotation relating the true and estimate

DCMs. In this case we will define the error c to be

the maximum length of a unit vector v transformed by

an error matrix E which is the difference between the

true DCM C and the estimate DCM C.
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V

As defined above t is the maximum singular value of E:.

Note that as the errors decrease the two definitions of

error are asymptotically equivalent. This definition has

^b.
the interpretation that if C. is used to transform a unit

vector v then the resultant vector will contain an

error vector of magnitude rio greater than r.
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Appendix B

A Three Parameter Attitude Description

This appendix derives the expression for a direction

cosine matrix C based on the three parameter description

p from the expression based on the four parameter descrip-

tion a,v. As derived by Hutchinson in Appendix A of f3

C = I + sin a N + (1-cos a) N Al

where

N = 0 -v v A2
z y

v 0-v
z x

-v v 0
y x

The approach is to expand the functions of a, and

combine them with the N matrices to form the M matrices.

M = aN

First it is necessary to note that with v constrained

to be unit length

N3 = - N A4

N4 = - N A5
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With these two relations any power of N has been expressed

. 2
in N or N , and conversely,

N211 -1N 2 A6

N =2M-1 )M-1N A7

Equation Al is expanded

C = I + a - + -. . .N + -4 a + c$...N2 A8

Applying equations A6 and A7 to equation A8

CE 3 a 5 c a 4 a
C = I + I + RN + N5+.. + N2+ N + N

A9

Letting p = av,and consequently M = aNgives the desired

result.

C= E -kr A10

k=o

where

m =1
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An alternative derivation can be obtained from

the fact that a body's attitude described by a

direction cosine matrix C when undergoing a rotation

defined by the rotational velocity vector o must satis-

fy the following differential equation

C =C

where

0

wo
z

-to
y

-to to
z y

o -tox

to 0
x

For a constant o the solution to this equation over a

time interval 0, T is

CQ=T

Defining

oT = p

gives the desired result

M
C e- E

k=O
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Appendix C

Update Error Calculations

This appendix will calculate the maximum singular values

of the error matrices E1 and E2 where

2+E = (sin a - a)N + (1 - cos a) N

E2 = (sin a - a)N

0

Vz

-v
y

-vo a

0

V
x

2
+ (1- cos a - )N

-v
x

0

Tv v =l1

B2

B3

B4

The singular values of E are the square roots of the

eigenvalues of ETE.

Letting

Ky = sin a - a

K2 = 1 + cos a

22

K3 = 1 - cos a - r

B5

B6

B7
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E T T 2E = (K 1 N +1K2 N 2 T K N + K2 N2)

= -Ky N + K 2 N 2) (K N + K 2 N 2)

2 2 + 2
-K1 N+ 2N

B8

B9

B10

Similarly

T
E E
2 2

2=2 2N4
=- K N +K3 N Bll

The form of the matrix N combined with the constraint

v| = 1 has the property that

4 
2

B12

ETE = K2 2 2
1 1E2= - (K1 +VK )N

E2T E 2= K 12 +K32 N2

B13

B14

The eigenvalues of EIT E are the solutions X to

Det ( - (K12 + K22) N2 - IX) = 0 B15

I

I
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Define

2 2
Ky +K2

B16

Then expanding equation B15 and rearranging it

2 2 2 2 X( 2 2 2)2 X,
2< (v + v +v)- (v +v +Bv ) - =O

x y 2 x y z

B17

Since v is unit length

x'3- 2V'2 + v' = o

V' = 0,1

2 2
A = 0, (K1  + K2 )

The maximum singular value kl, of E, is thus

B18

B19

K = K 2 2= (sina 1 1 2
-a) (1 -cos a)2

B20

Similarly the maximum singular value Z2' of E 2

is

2
12 = K 2+ K3 2= (sin a - a) 2 +(l - a -

2 1 3

B21

-96-

An

I
V

r

Pff

R

I



Appendix D

An Expression for the Rotation Between

Two Attitudes Expressed as Quaternions

This appendix derives a formula for the magnitude a3

of the rotation between two attitudes described by al V 1

and a2' #2 where the ai are rotation angles and the vi are

unit vectors representing rotation axes.

To enable use of Hamilton's quaternion algebra the

attitudes must be described in a quaternion form A, p where

A = Cos DI

p = sin V.D2

The rotation A3 'p3 between A1'rp1 and A2, P 2 is the rotation

formed by first rotating by Ai, i1 and then by the inverse

rotation of A2 , P 2 which is -A2 , . From the quaternion

algebra 12 , 5

3 1X2 - '22D3

E3 A 1'R 2 -A 2 E 1 + P 2 x 1 D4
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There are two basic ways of solving for a3

a3 = 2 cos -lX3 D5

a =2 sin~I | 3I D6

The equation of D6 is used to avoid small angle

computational sensitivity of the inverse cosine at a3 = 0.

Thus from equations Dl, D2, D4 and D6 the desired expression

is

.1 a2 a2. a1 a1a 2a3 = 2sin Icosr sin2 2-cosj?siny-v1+sin-f-sn-2 2 xV1
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Appendix E

Relationships Between Nine and Four Parameter

Attitude Descriptions

The relationship between two orthogonal right handed

coordinate frames that share a common origin is a rotation.

A single rotation, of some magnitude a about some principle

axis v, of one frame will cause it to coincide with the

other. Thus if the former frame is a reference then a and

v describe the attitude of the latter body fixed frame. This

is a four parameter description of the rotation as v is a

three dimensional unit rector.

An equivalent representation of the rotation by a

DCMC is derived by Hutchinson in Appendix A of (3) as

C = I + sina N + (1 - cos a) N2  Fl

where

0 -v V
z y

N = 0 -VF2

z z

-v V 0
y x

The inverse relation is derived from the expansion of

equation Fl.
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- - 2 2 a
1- (-cosa)(v +V ) -v sina+v v (1-cosa)i vysina+v v (1-cosa)

y z z x yI y x z

2 2
v sina+v v (1-cosa) l-(l-cosa) (v +v ) -v sina+v v (1-cosa)

z x y x z x y z

2 2
-v sina+v v (1-cosa) v sina+v v (1-cosa) l-(l-cosa) (v +v

y x z x y z x y

2 sin a v =

32 - c23

|c13

C2 1

- C3 1
- 12

Now a may be expressed in terms of the differences between

the off diagonal elements, t.

Iji = 2 sina Ivi

= 2 sina

Thus

a = sin I2I)

Once a is computed v is easily obtained

2sina
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This formula is not numerically sensitive for small angle

rotations; but it is sensitive for a close to i/2. Then

an alternative formula for a should be used based on the

diagonal elements. The trace of C is

2 2 2
tr(C) = 3-(l-cosa) (2v +2v +vz)

x y z

Since v is a unit vector

tr(C) = 3 - 2(1-cosa)

= 1 + 2cosa

Solving for a gives

a = cos ( (tr(C)-1))
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