
LEARNING STRUCTURAL DESCIUPTIONS
OF GRAMMAR RULES FROM EXAMPLES

by

Robert Cregar Berwick

A.B., lfarvard College
(1976)

Submitted in Partial Fulfillment
of the Requirements for the Degree of

Master of Science

at the

Massachuset.ts Institute of Technology
June 1980

© Massachusetts Institute ofTechnology, 1980

_./) - ~

Signature redacted
Signature of Aui.hor __ ~, ____ -___ v_--l---.~--__...~~..,..._ _____ _

Dcparunen fElcctrical Engineering and Computer Science
May 9, 1980

Signature redacted
Certified by ___ _.;;..• -IC:!".~K1.-MVH ____ iir'"-l.,,, ___ ... ~ __ ._....;.r..-;v;...;i:t~? _ __a;..r;_.;:iv:;a;._.dl""":~.ar..1r:M'IA::C-P-a ... tra.Ji;:--~k-l lc_n_ry--W-in-ston

/~~~~ ~ ,~z The!lisSupcrvlsor
Signature redacted

Accepted by _.:1~<.::.:>"=:::::~~--~___;;;;._ ___ ~~~~c=:,:-::::::::~.:;,__---=,..,.---:;,__-...;:;....-._.L....::~~....:::::>~L--------

~CHIVE~_ .-..
MAS5ACHLiS(iT5 IN51 I, Li 1 ~

OF TECHNOLOt;Y

JUN 2 0 1980

uaRA~IES

Arthur C. Smith
Chairman, Departmental Committee on Graduate Students

- 2-

LEARNING STRUCTURAL DESCRIPTIONS
OF GRAMMAR RULES FROM EXAMPLES

by
Robert Cregar Berwick

Submitted to the Department of Electrical Engineering and Computer Science
on May 9, 1980 in partial fulfillment of the requirements

for the Degree of Master of Science

A bstract
A principal goal of modern linguistics is to account for the apparently rapid and uniform acquisition
of syntactic knowledge, given the relatively impoverished input that evidently serves as the basis for
the induction of that knowledge -- the so-called projection problem. At least since Chomsky, the usual
response to the projection problem has been to characterize knowledge of language as a grammar,
and then proceed by restricting so severely the class of grammars available for acquisition that the
induction task is greatly simplified -- perhaps trivialized.

The work reported here describes an implemented LISP program that explicitly reproduces this
methodological approach to acquisition in a computational setting. It asks: what constraints on a
computational system are required to ensure die acquisition of syntactic knowledge, given relatively
plausible restrictions on input examples (only positive data of limited complexity). The linguistic
approach requires as the output of acquisition a representation of adult knowledge in the form of a
grammar. In this research, an existing parser for English, Marcus' PARSIFAL, acts as the grammar.
We mimic the acquisition process by fixing a stripped-down version of the PARSIFAL interpreter,
thereby assuming an initial set of abilities. Only the simple pattern-action grammar rules of
PARSIFAL are acquired, on the basis of induction from grammatical sentences with a degree of
embedding of two or less.

To date, the accomplishments of the research are two-fold. First, from an engineering standpoint, the
program succeeds admirably; starting without any grammar rules, the currently implemented
acquisition version of PARSIFAL (dubbed LPARSIFAL) acquires from positive examples many of
the rules in a "core grammar" of English originally written by Marcus. These include both base
phrase siructure rules that handle constituents arranged in canonical English phrase structure order
and grammar rules such as subject-auxiliary verb inversion that handle deviations from canonical
order and constituent movements. Second and more importantly, to ease the computational burden
of acquisition it was found necessary to place certain constraints on grammar rule form and on rule
application. The constraints on phrase structure rule form are adopted from the X-bar theory of
phrase structure schemata, developed by Chomsky and Jackendoff. The constraints on rule
application can be formulated as specific localiiy prinoioles that govern the operation of the parser
and the acquisition procedure. ibese LPARSlFAL constraints appear to be the computational
analogues of locality restrictions proposed in several current theories of transformational grammar.

Thesis Supervisor: Patrick Henry Winston

Title: Associate Professor of Electrical Engineering and Computer Science

-3-

ACKNOWLEDGEMENTS

This thesis is about how a constrained coniputational representation for syntactic knowledge leads
directly to a theory about how such knowledge could be acquired. Its moral is simple: a constrained
rcpresentation makes the acquisition easy, eliminating countless false steps that a learner might
otherwise make.

Ironically, the same moral applies to the research itself. Only in a structured setting like the MIT
Artificial Intelligence Laboratory could the inductive leap to the research described here have been
made. In particular I am indebted to the following people:

--to Mitch Marcus. It was Mitch's design for a constrained parser that
made asking questions about the acquisition of syntactic knowledge even
thinkable. Ilut Mitch contributed much more than just the
representational foundation for this research. Ile has served as my
nominal thesis advisor; as an unending source of good ideas (many to be
found on other pages of this thesis); and as a friend.

--to Patrick Winston. Advisor of this thesis, and therefore by analogy,
many of the same things that Mitch has been: friend and colleague.

--to my many friends at the Artificial Intelligence Laboratory and
elsewhere, who have supplied support, green Pilot pen corrections on
drafts, and other things that friends are for: Candy Sidner, Marilyn Matz,
Brian Smith, Beth Levin, Mike Brady, Craig Thiersch, Kurt Vant ehn, and
Marvin Minsky. And a special "Bureaucrats Anonymous" award to Candy
for her administrative assistance.

--to the many members of the linguistic and artificial intelligence
community who contributed time and conversation to this research:
Noamn Choinsky, Howard I.asnik, Ken Church, Ken Wexler, Steve
Pinker, Bob lFrieden, Aravind Joshi, Robbie Moll, and particularly Jay
Keyser.

--and finally, to my parents, for providing the right initial constraints.

A Model of Syntactic Acquisition

1.1 Linguistic Constraints, Computation, and Language Acquisition

One of the important goals of modern linguistic theory is to explain why children's acquisition of
language appears to be so easy. On many accounts, the "evidence" that children receive to learn
language is quite impoverished and reinforcement by caretakers haphazard and ineffective. Placed
against this backdrop of scattered data the strikingly unifonn process of language acquisition seems
doubly mysterious. Children with enormously disparate sensory environments -- nonnal children,
deaf children of normal parents, deaf children of deaf parents, normal children of deaf parents, blind
children -- all seem, at least initially, to learn the sam parts of what linguists call a grammar

[Newport, Gleitman, and Gleitman, 1978]. Such robust performance in the midst of raging
environmental variation poses a severe challenge for any theory of syntactic acquisition based only

upon general learning principles.

Modern linguistics has countered with a research strategy that neatly overcomes the learning
challenge; it attempts to constrain so severely the class of possible human grammars that the language
learner's burden is eased, perhaps trivialized. In Chomsky's metaphor, grammars should be
"sufficiently scattered" so that children can easily select the one correctly corresponding to the
language of their caretakers [Chomsky, 1965]. Such restrictions aid the learner because countless
hypotheses about which possible grammar might cover the data at hand are ruled out. Consequently,
many linguistic proposals for organizing grammars are motivated and evaluated with this learnability
principle in mind. For example, suppose there was but a single human grammar. Such a situation
would be optimal from the standpoint of language learnability: no matter how complex, the grammar
could be built-in, and no learning required. More realistically, but for the same reason, many current
theories of transformational grammar restrict the set of possible transformations to just a few actions
plus universal constraints on their application. The business of linguistics for the past several years
has been to uncover these universal principles from the "data" of grammaticality judgments, and so
advance, indirectly, an explanation for language learnability.

The research reported on here attacks the acquisition problem from the standpoint of computation. It
asks: What computationalconstraints are necessary in order to ensure the easy acquisition of a system
of syntactic knowledge? The answer is provided by explicit construction of a LISP program that can
acquire a variety of syntactic rules solely from grammatical example sentences. From an engineering
viewpoint, the currently implemented program succeeds admirably; the majority of the rules in a

"core grammar" of English have been acquired. But most importantly, it demonstrates that the goal
of easy learnability is attainable ff the form of the acquired grammars is tightly constrained. What
makes the grammar easy to acquire is that the choices the learner must make are few. The acquisition
program is limited to constructing only rules of a certain kind, built from a handful of possible

Introduction: Syntactic Acquisition - 4 -a Section 11,1

Introduction: Syntactic Acquisition

actions. The success of this approach thus confirms what is becoming a truisn, in artificial

intelligence: having the right representation makes learning simple. What gives further support to
this key finding is that the computationally-motivated restrictions have been independently derived

via a purely linguistic-mathematical route by Culicover and Wexler [1980].

In the computational analogue to linguistics adopted here, the acquisition program must assume

some "right" initial linguistic knowledge. The program developed in this research uses as its initial

structure a streamlined version of PARSIFAL, Marcus' parser for English [1980]. PARSIFAL was

primarily designed to handle syntactic phenomena, producing as output a modified form of the

annotated surface structures of current transformational linguistics [Chomsky, 1973; 1976; Fiengo,

1974; 1977]. In the abstract, PARSIFAL is simply a function that takes strings of words to labelled

bracketings (in the equivalent form of parse trees). Semantic processing is not a concern of

PARSIFAL's, though it can be dealt with in a parallel fashion using the structures that PARSIFAL

builds.

Computationally, PARSIFAL acts as an interpreter for grammar rules of a particularly simple

pattern-action form. The patterns are triggers that determine when their associated actions should be

executed; the actions are the basic operations that build the parse tree. Considered in this

particularly general fonn, the linguistic expertise of the Marcus parser divides into two parts, a basic

interpreter and the simple programs -- grammar rules -- that the interpreter executes. Figure 1.1

immediately below illustrates the division. Given this modularity, the natural way to model the

acquisition of syntactic rules is to take the basic operation of the interpreter as fixed, corresponding to

an initial set of abilities. Two sorts of rules are acguired:

* Context-free phrase structure rules. (Also called base rules.)
These rules determine the basic constituent order of the language, for
example, that English sentences are of the form, Noun phrase-Verb
Phrase, or that a Noun phrase may consist of a Detenniner possibly
followed by a series of Adjectives, then a Noun.

* Pattern-action grammar rules.
'These correspond to syntactic rules such as subject-auxiliary verb
inversion and passive.

- 5 -m Section 1.1

Introduction: Syntactic Acquisition

What must be initially provided as the "basic operation" of the interpreter includes: 1

* The major data structures and the basic control loop of the parser; the
utility programs that maintain the data structures and perform routine
matching tasks;

* A dictionary that can minimally classify words as either nouns, verbs, or
other,

* Two skeleton phrase structure schemas, one for Noun Phrases and one
for Verb Phrases.

* A rudimentary well-formedness constraint dictating that a sentence
contain at least a minimal predicate-argument structure (at least a (Verb)
"predicate" pilus (Noun Phrase) "arguments").

surface string

I I I I I
I INTERPRETIR L---runs--->IGRAMMAR RULESI------*1

I I I I I

annotated surface structure

Lexicon
Two skeleton base rules
Data structures
Rule execution loop

Pattern-action grammar rules
Expanded context-free base rules

Figure 1.1 - PARSIFA L's interpreter is fixed;
grammar rules and expansions of base rules acquired.

Finally, it is assumed that a child, and therefore this program, uses as evidence for its hypotheses only

grammatical example sentences, so-called positive data. Ruled out are presentations of

ungrammatical sentences, followed by an indication that the example was ungrammatical, or even

explicit correction of the learners syntactic mistakes. Such pairing of ungrammatical sentences

1. A point-by-point specification or the initial state of the interpreter is laid out In Chapter 3.

Section 1.1

followed by an indication of non-grammaticality is termed negative data. Although the assumption

of positive-only data may well be false, on the other hand, most psycholinguistic experiments indicate

that it is not [Brown and Hanlon, 1970; Newport, Gleitman, and Gleitman, 1978; summary in

Culicover and Wexler, 1980]. Given our still uncertain knowledge about the linguistic evidence input

to the child, the assumption of positive-only data is the strongest and safest claim we can make. If

acquisition can proceed using only positive data, then it would seem completely unnecessary to move

to an enrichment of the input data that is as yet unsupported by psycholinguistic evidence.

Postulating negative reinforcement is dangerous on yet another ground. From formal language

theory results, it is known that positive and negative examples paired with the appropriate labels

"grammatical" and "ungrammatical" enable one to learn almost any language [see Gold, 1967j. While

this result might seem fortunate, implying that negative evidence would be a boon, it also implies the

existence of an informant who is carefully guiding the learner through some reinforcement schedule.

Almost everything that is known about the early acquisition of syntax indicates that children do not

ordinarily receive reinforcement of this kind. Interestingly as well, the assumption of informant

presentation would implicitly place the burden of language learning on the adult, not the child, since

in order to determine the next piece of data to present, the adult then must somehow know the

internal state of the child's grammar.2

The reliance upon positive-only evidence sharply distinguishes the acquisition model of this research

from most other artificial intelligence models of learning, for example, the concept-learning theory of

Winston [1975]. Winston's program made essential use of negative examples as powerful evidence

for hypothesis formation.3 Perhaps the most important discovery of the research is that the limitation

to positive-only evidence is not debilitating. In fact, quite the reverse is true. One can make

considerable progress by thinking deeply about what sorts of constraints must take up the slack that

negative evidence (supposedly) provided.

Clearly the design choices made above set aside many other difficult problems ordinarily considered

to be part of language learning: How do children acquire the meanings of words? How do they know

what sentences mean? This is not to belittle the importance of such questions; on the contrary, it

seems obvious that the acquisition of the lexicon and the accumulation of knowledge about how

linguistic utterances connect to the world should interact in significant and interesting ways with the

2. As pointed out in Newport, Glelman, and Gleitman [1978) and Cullcover and Wexler [1980 page xxx. They also note

that children do receive negative evidence (or semantile well-formedness (e.g., the adult says "I1uh?").
3. For further discussion of the mathematical theory of language leanmability see Chapter 2.

Introduction: Syntactic Acquisition Section 1.1- 7 -

Introduction: Syntactic Acquisition

acquisition of syntactic rules, further scattering the class of humanly possible grammars.4

But one must start somewhere. Assembling a theory that forces one to have a complete model of

human cognitive development before being able to account for any distinctive aspect of human

language learning seems hopeless. In contrast, a modular research strategy -- the usual scientific plan

-- has at least some chance of success. For this reason, simplifying assumptions were made in order

to focus on the problem of interest, namely, the acquisition of base phrase structure rules and

grammar rules. The parallel acquisition and development of other cognitive faculties that interact

with language have been largely ignored. Some comfort may be taken in this hard choice: unlike the

realm of syntax, there are no outright superior candidates for a theory about "language and the

world" anyway, and so no firm representational bedrock on which to ground a theory for the

acquisition of such knowledge.

The decomposition of PARSIFAL into interpreter-plus-grammar rules can be carried one step

further, a fact that allows us to push this modularity strategy further as well. To do this, one exploits

the sub-systems posited by theories of generative grammar, identifying modular components in the

grammar with modular components in the PARSIFAL parser. More specifically, the association

between surface strings and meanings that a generative grammar provides is typically broken down

into several steps. Foremost among these is a mapping between two sorts of representations, base

structures -- the level at which predicate-argument and thematic relations such as subject, agent, and

object are easily recovered -- and annotated surface structures -- an abstract representation that is

much closer to the surface string's final phonological form. The base component is a set of

context-free phrase structure rules that delimit the set of possible base structures, roughly the

canonical ordering for constituents in a language; e.g., that basic English sentences are of the form

Noun Phrase-Verb Phrase. The transformational component is a function that takes the structures so

generated into annotated surface structures; transformations provide a means for dealing with

deviations from the base-generated order of phrases.

It was noted above that PARSIFAL divides cleanly into two parts, an interpreter and the rules that

the interpreter executes. In the original PARSIFAL, the interpreter's role was limited to the actual
execution of rules and the maintenance of the resulting structure-building actions, not the actual

decision of when rules should run. Almost all control of rules, in particular simple eligibility for

4. The current model for the acquisition of context-free phrase ructure rules necessarily includes sonic notion about how
words are acquired -- the model constructs the basic phrase siructure rules via projection of the features of lexical categories.
Reversing this projection. we get a preliminary wedge into the study of the lexical acquisition problem. For recent studies of
lexical acquisition, the reader is referred to the work done at the University of Massachusetts: II. Goodluck and L Solan
(eds.). Papers in the Structure and Development of Child language. University of Massachusetts Occasional Papers in
Linguistics, volume 4, 1978; T. Roeper. J. Bing, S. Iapointe, S. Tavakolian. A lexical Approach to1 language Acquisition,
Department of Unguistics, University of Massachusetts, Amherst, May, 1979.

a-8 -a Section 1.1

TRANSFORMATIONAL
GRAMMAR

Surface Structure

(-Transformations

Base Component
S-4NP VP

PARSIFAL

Surface string >Surface structure

.Grammar rules

Base Rule Control
S--+NP VP

INTERPRETER

Figure 1.2 - Associating grammar rule control
with the Base of a Transfonnational Grammar.

If the modularization is in fact practical, 5 then this control component of the parser's knowledge need

not be learned as part of grammar rule acquisition itself; we can study die acquisition of grammar

rules and the base phrase structure rules separately.

The history of the research has in fact proceeded along roughly these lines. First, a specific base

component -- a fill set of phrase structure rules for Linglish -- wasfixed. Then the acquisition of just

grammar rules (minus die factored out control information) was studied.

Note, however, that by the flxjng base we assume that whatcvcr set of phrase structure rules is

employed is not acquired, but pre-specified for the learner, ibis idealiiation is almost certainly false.

S. As first demonstrated by Shipman [19791 and described in Chapter 3. sections 3.2 and 3.3.

9

I

execution, was encoded explicitly in the body of the rules themselves. If so, this would seem to imply
that this nile control should be acquired.

However, as Marcus [1980, page 60] pointed out, by identifying die eligibility conditions for the
execution of grammar rules with phrase structure rules, one should be able to factor this particular
part of grammar rule control out of die body of die grammar rules themselves, as the figure below

indicates:

Introduction: Syntactic Acquisition - 9 - Section 1.1

I -

|
|
I

|
|

Introduction: Syntactic Acquisition

Base phrase structure rules appear to vary from language to language, and so should be set within a

theory that does not demand their rigid pre-specification.

To accomodate this empirically observed variation, a phrase structure acquisition component imust be

added. The obvious candidate for a theory of phrase structure acquisition is the X-har theory of

phrase structure rule schemata, originally proposed by Chomsky [1970J and developed by Jackendoff

[1977] and others. The X-bar theory is a good candidate for an acquisition model of phrase structure

because it tightly constrains the set of (humanly) hypothesizable phrase structure rules to just a small,

finite number of basic "skeletons", dubbed X-har schemas. The original motivation for such a view

came from the observation that, at a certain level of abstraction, the context-free rules for Noun

Phrases and Verb Phrases look very much alike:

Noun Phrase=>. . .Noun
Verb Phrase=>...Verb...

'[he theory proposes to combine the two rules into a single abstract schema, with an "X" replacing

the specific terms "noun" and "verb":

X Phrase=....X...

More precisely, it claims that every possible phrase structure nile for human grammars has the

skeleton form:
e.g.: Noun P rase

(Y)l(Z) Determiner Noun

...words... the book

where the "XP" is some category, defined by the distinctive features of the "X" beneath it, and the

flanking "Y" and "Z" are optional elements, usually "X"' categories themselves, All of these

constraints were first prompted by empirical observations about English phrase structure, though

they are intended to be constraints holding for all languages. That is, the X-bar theory purports to

describe part of what makes a language a human language and not some arbitrary string-to-stricture

mapping.

- 10 - Section 1.1

Introduction: Syntactic Acquisition

The theory is restrictive because it rules out many a priori possible rules, e.g.,

X Phrase=>...X XP... (e.g., Noun Phrase=>Noun NounPhrase) 6

Given the X-bar restrictions, an acquisition procedure can apparently easily induce the right phrase

structure rules for the particular language at hand from just simple positive example sentences. For

example, suppose that one already knows the basic expansion rule for English sentences, i.e.,

something of the form, S=>NounPhrase VerbPhrase. Now the problem is to determine whether the

proper expansion for a Verb Phrase rule is Verb Phrase=:>NounPhrase Verb or Verb Phrase=>Verb

Noun Phrase. Ignoring some presently unimportant detail,7 a single positive example such as Sue

kissed Mitch will serve to fix the right result. For the possible pair of rules S=NounPhrase Verb

Phrase; VerbPhrase=>NounPhrase Verb generates strings looking like:

NounPhrase-NounPhrase-Verb

and so cannot he fit against the given example string; however, the other possible expansion,

VerbPhrase=>Verb NounPhrase, matches the example perfectly.

Importantly, the success of the X-bar theory as an acquisition model also tells us that if the initial

state of the base phrase structure system is structured enough, there need be no correlation at all

between the complexity of the decision process to set the parameters of the system and the

complexity of the attained state. The triggering itself can be simple, but the acquired set of phrase

structure rules quite intricate.8

Let us return now to the other sort of syntactic knowledge to be acquired -- the grammar rules. Since

grammar rules consist of patterns and actions, acquisition of these rules can be boiled down to the

construction of correct patterns and actions. The central metaphor is that formulating a correct

PARSIFAL grammar rule is like writing a correct computer program. Grammar rule actions

correspond to the parts of a program that say what to do, and patterns to those parts that say when to

6. Note that there are many English phrases where two nouns occur together, e.g.. baby dolt, garden path -- so-called

Noun-Noun modification. mlerc. one noun serves in role of an adjective (a modifier) for the other; this suggests that there Is

sonic process that modifies the Libelling of a lexical or item of category N so that it can fit as an adjective. The X-bar theory as

outlined in this chapter cannot deal with the complicutions of Noun-Noun nmdiliczttion, but see iter in this section where
some suggestions are made as to how category conversion might take place.
7. I-or a full acount of the sme example, see the next section.
8. ihis point is often overlooked: consider by way of analogy the bootstrapping of a computer, where simple 3C1os can have
quite profound results.

- 11 - Section 1.1

Introduction: Syntactic Acquisition

do it. In general, writing correct programs can be extremely difficult. But in the specific case of

PARSIFAL programs, if the rule actions are assumed atomic, the situation is not quite so grim.

The sought-after property that makes debugging a system of rules simple is finite error detectability

the effects of rule actions, and in particular actions that go astray, should be locally and immediately

detectable as the parse tree is being built. Effects of rule actions should not propagate veryfar. This

will enable an acquisition procedure to be extraordinarily simple-minded; if at some point in the

parse no currently known grammar rules apply (or some known rule is in error), the procedure need

consider as new candidate rules only actions applicable at the current point of failure.

To achieve the desired radius bound on rule effects, two general violation possibilities must be

considered and dismissed. must be considered. First, a single grammar rule could directly affect the

environment of the parse in some non-local way. This in turn could be the result of either a rule's

pattern or its action having an essentially unbounded character.

To see what an unbounded pattern might look like, consider the following possible example

sentence: 9

WoJ did Sue tell Bob to ask Mitch to kiss?

Presumably, the learner must deduce that the underlying form of this sentence is something like:

Did Sue tell Bob to ask Mitch to kiss who?

That is, the learner must hypothesize a who-movement rule something like the following

("NP" =Noun Phrase; "VP"= Verb Phrase):

who NP VP NP VP NP VP=>NP VP NP VP NP VP who

But the triggering context for this who movement is potentially unbounded -- there can be any

number of intervening Noun Phrases and Verb Phrases between the spot where we first encounter

the who and the place where it must be lodged.

9. Taken from Pinker [1979, page 2651

Section 1.1- 12-0

Introduction: Syntactic Acquisition

To write the grammar rule pattern for such an action would necessitate a potentially unbounded set

of predicate tests:

If <who NP VP NP >
then (NP VP NP .. . who>

We want to rule out such a possibility by flat. That is, we simply stinulate that no sngle rule pattern

can make reference to unbounded context, as the who-movement rule did. Rules trigger on just local

context.10 The claim here is that this local triggering property actually characterizes tie class of

(learnable) human languages. In other words, one of the properties of human languages may be that

they o not contain unbounded context rules, a property that makes them both easily learnabie ard

easily parsable. If this is so, a procedure that limits itself to just bounded triggering rules will still be

able to acquire a set of rules sufficient to parse English.11

The who-movement rule also illustrates how a rule action might be unbounded: it required

placement of a token at some arbijay distance away from the point where the parser was currently

building structure. This too we wish to ban outright, and for exactly the same reason. If a rule action

could affect the parser's state arbitrarily "far away," then a potentially infinite chain of intervening

grammar rules might apply before the effects of that rule action were discovered; if these effects were

undesirable, unless there were an arbitrary backtracking facility, there would be no way to unwind

all the intermediate states to uncover the guilty rule. In brief, single grammar rule actions and

patterns must be local.

The possibility of chains of grammar rules leads us to the last way in which the effects of grammar

rules might propagate in an unbounded fashion. Even allowing only local changes in the parser state

by grammar rules, if later grammar rules use that altered state to trigger their actions, then earlier

rules can still cause later ones to go astray. At first, this would seem to once again entail a great deal

of laborious backtracking. Suppose that the correct parse of a sentence is represented by some correct

sequence of rule applications, R,R2...,R. A rule executed early in the game can theoretically cause

the demise of a rule firing very much later. In this example, let us assume that R9 is somehow

detected as wrong (because it performs an incorrect action), but that it was R2 that set up the

10. Note that this di g mean that people (and the proposed system) Onngj acquire a rule to handle this example. It
merely says that one cannot acquire certain kinds or rules to handle such an example. In fact, the apparently "long distance"
who movement can be dealt with by laiting a rule that iterates locally (operates "successive cyclically" as the linguists put it):
who Nl VP NlVP...-->NP V1 who NP VP..-->NP VP NP VP who...
11. 'ihis assumption receives strong suppofl from work by Culicover, I lamnburger, and Wexler (1975, 1977, 1980j. ihey D.

that. fnite (local) error detectability dues In fact suffice for the learning of a transformatlonal grammar. See the last section of
this chapter and Chapter 4 for further diCussioA.

- t3- Section 1.1

Introduction: Syntactic Acquisition

environment of the interpreter that later caused R9 to be misapplied. Now it becomes very difficult

to find out what has gone wrong: one must tediously back up from R9, undoing the action of each

previous rule action step by step. At each point, all possible altcinative rule actions must be tried out

to see which one fixes the error at R9-- a method that has die potential to explode combinatorially,

since all possible chains of rules leading from R2 to 1R9 must be explored before the error is unwound.

The principal constraint that enforces the "no propagation" condition above follows from a

stipulation Marcus originally placed on his PARSIFAL parser -- the Determinisn Hypothesis. By

deeerninism Marcus meant that all intemiediate portions of the structure built in the course of a

complete parse are assumed to be correct. That is, once the interpreter decides to construct a piece of

the parse tree via some grammar nile action, the structure that is built is indelible. Backtracking is

forbidden; one cannot undo structurc-building guesses which later turn out to have beeni misguided.

PARS IFAL never builds any incorrect structure.

The acquisition version of PARSIFAL -- LPARSIFAL -- adopts this claim of determinism. How

does this help? Detemiinism aids in the itsignment of blame to whatever rule directly causes an

error. Although the demonstration of this claim must await Chapter 3 and a deeper presentation of

the details of the acquisition procedure, a rough answer is as follows. By determinism, previously run

rules are assumed to build correct structure. Suppose nuw that cascaded effects cannot propagate

beyond a certain local radius, more particularly, that earlier rules cannot influence the

mis-application of later ones (where later means some structural distance metric appropriately

defined over phrase markers). Then if an error occurs in a parse, it cannot have been the fault of any

distantly run grammar rule; only the current (or a "recently" fired) rule must be in error. If in turn

the set of possible alternative actions is finite, we have achieved the desired goal of local and finite

error detectability.

The two "if" conditions in the preceding paragraph pinpoint the additional stipulations that must be

added before finite error detection becomes a real possibility. The first condition is the elimination

of propagation errors; the second, the trimming of structural or triggering error possibilities.

-t 14 - Section 1.1

Introduction: Syntactic Acquisition

A major claim of this research is to demonstrate that the necessary pruning can be carried out by:

Reducing the number of grammar rule actions to just a few atomic
operations.

Storing as grammar rule patterns only the current local context of the state
of the interpreter.

Stipulating that rule actions can modify only extremely local context.

Once all this is accomplished, the acquisition procedure itself is simple. Suppose that the program

reaches a point in its parse where none of its known rules apply. Given determinism and grammar

rules built from just a few (and, as it turns out, mutually exclusive) actions, to build a new rule that

dngs work onc need only try each of the actions in turn at the point where failure was first detected

and save the one that succeeds. Finally, the current (local) state of the interpreter can be stored as the

triggering pattern for the new rule. This astonishingly simple procedure forms the heart of the

acquisition program. The stipulations that permit such a simple plan to succeed -- the determinism

and locality constraints -- appear to be the computational analogues of many currently proposed

restrictions on transformational grammars.

a 15"- Sec tion 1.1

Simple Scenarios

1.2 Two Simple Scenarios

The best way to grasp how the acquisition program works in detail is to put it through its paces. A

typical acquisition session consists of the presentation of a series of example sentences. The program

attempts to parse each one; every ime it gets stuck, it tries to construct a new rule. In this section,

two scenarios will be presented that illustrate different aspects of syntactic acquisition, corresponding

to the distinct base and grammar rule modules.

The first example shows how the X-bar theory can be used in a data-driven fashion to constrain the

task of inducing a new phrase structure rule for Verb Phrases. A short epilogue to this story indicates

how the same theory can be turned around in a predictive mode as a possible theory for the

acquisition of new lexical items and new phrase structure categories.

The second scenario demonstrates how, given the base rules and grammar rules to handle simple

declarative sentences, a rule of Subject-Auxiliary inversion for some English questions can be built,

Both scenarios omit irrelevant details. In particular, in an effort to concentrate on just phrase

structure acquisition, the X-bar example ignores almost all of the specific operations of the actual

parser.

The section then closes with a brief, pseudo-algorithmic listing of the entire acquisition procedure.

1.2.1 Acquiring a Verb Phrase Rule

To see exactly how the X-bar constraints can simplify the phrase structure induction task, suppose

that the procedure has already acquired the phrase structure rule for English sentences, i.e., it knows

the expansion,

Sentence= Noun Phrase Verb Phrase

Knowing this rule also means knowing when the rule applies, namely, that it is triggered (in English)

by die presence of a Noun Phrasc-Verb cluster in die input stream. Suppose further that a Noun

Phrase rule to handle proper names is known:

Noun Phrase= Proper Nane

However, the rest of the expansion for an English Verb phrase is not yet known:

Verb Phrase=??

Section 1.2- 16 -

Simple Scenarios

The X-bar theory cuts through the maze of possible expansions for the right-hand side of this rule

because it stipulates that all phrase structure rules are of the form,

"X"Phrase=>(Y) X (Z)

where the "X" stands for an obligatory, already-known category, such as Noun or Verb, and "Y" and

" are optionally filled slots ffir ibsi categpries different m 1 2 If we replace the "X" with the

category "Verb", and further assume that Noun Phrases ("NounPs") are the only other known

category type, the X-bar theory tells us that the only possible configurations for a Verb Phrase rule

are:

VerbP=*NounP Verb

VerbP=>*Verb NounP

VerbP=:'NounP Verb NounP

Note that if the X-bar restrictions were not at our disposal, nothing could rule out bizarre hypotheses

such as:
VerbP=* Verb VerbP NounP

VerbP=oNounP

Finally, suppose that the acquisition procedure can classify basic word tokens as nouns, verbs, or

other.

Now the procedure is given the sentence Sue kissed Mitch, and commences its parse. Ignoring details

about how tokens of the input stream come to the attention of the parser, note that the first token of

the input, Sue, meets the known conditions for a Noun Phrase, and that the second token, kissed, is a

Verb.

12. This is not quite accurate, but will do mr this simple example.

Section 1.2a 17 -a

Simple Scenarios

This sparks a nrediction that the Sentence phrase structure rule has been entered, and the

corresponding skeleton tree is formed: 13

NP V

Input string: Sue kissed Mitch.

Since sue meets all conditions for Noun Phrase-hood, it is atlached to the NP node of this tree. (This

action is actually performed by a grammar rule.) This leaves the parser in the following state, still

undecided as to which of the three possible VP expansions to take:

(a) (b) (c)

NP P
s'e ???

V NP

NP P
sue ???

NP V

NA
sue ???

NP V NP

Input st-ring: kissed Mitch.

But clearly the correct route can be quickly deduced. The next item in the input stream, kissed, is a

verb, hence not a possible Noun Phrase. This facti rules out possibilities (b) and (c) above, but

permits (a), since in (a) kissedcould be attached as the Verb portion of the tree:

13. That is, the Sentence srhenra is triggered in a ra-drlvrn fashion by the presence of the Noun Phrase and the (tensed)
verb. Ibis is a modification of the original PARSi VAL parser. In Marcus' scheme, the main sentence was created predictively,
that is. the parser always assumed that it was handling at least a sentence. and so automatically entered the S schema upon
detecting the very first word of the input stream. I lowever, since Marcus required data-driven Sentence creating rules anyway
-- to handle embedded sentences -- it is natural to extend the data-driven triggering of Sentenpa to main Sentences as well.
See Chapter Three for additional discussion.

- 18 - Section 1.2

Simple Scenarios

(a) (b) (c)

NP V N N P N 1NPN<

INT(I? ? ? ? ?
sue kissed mitch sue kissed mitch sue kissed mitch
(N) (V) (N)

The conclusion: only one Verb Phrase expansion can successfully apply to the given string, Verb

Phrase=* Verb(V) Noun Phrase(NP). This is exactly the right result for English. 14

In the example above, the X-bar constraints were used in a purely data-driven fashion; that is, the

distinguishing features of the words in the input stream were used to force a particular category

ordering (phrase structure tree). But the theory can also be employed in the opposite direction --

top-down or predictively -- as a way to classify words whose features are currently unknown.

This dual use of the X-bar theory is still under exploration. However, since the basic idea is so

promising, a brief example will be given.

If we already know that we have hold of a phrase of type "X", then an unknown word in the input

stream that is in the right spot to fill the "X" position of the expansion mus have all the features of

the type "X" category. For example, given the string, the tove kissed Mitch, if the article the is known

to unambiguously initiate Noun Phrases, then the schema for an NP will insist that some "N" be

found immediately. Only tove will do the trick.15 The new lexical item is therefore labelled with all

the properties of NP-hood (whatever these might be).

This remarkably simple insight into how new words might be categorized has all kinds of profound

implications, only some of which can be covered in this report. First, it is an embryonic theory of

lexical ambiguity: items of a category "X"-- say, Nouns -- can be converted into items of another

category "Y" -- say, Verbs-- simply by the addition of surrounding context items drawn from

category "Y", those items being simple morphemes, such as affixes, or full words. For example,

English nouns can be "verbed" by adding the ed morphology typical of verbs; likewise, verbs can be

forced into the NP category by mere appearance in an unambiguously NP context: the broken bottle.

14. Note that if the language were basically Subject-Object-Verb, the appropriake input example Sue MUch kissed would also
serve to fix who right expansion, namely VP-->NP V.

15. Attaching tov as some sort of adjective, and waiting for the main Noun can only lead to disaster, since no main verb
remains to fit the S-->NP VP expansion.

- 19M- Section 1.2

Simple Scenarios

In this light, there is no "mystery" about the ubiquity of lexical ambiguity; all items that can appear

in main "X" positions are categorically labile. Work is underway exploring this position.

Second, the predictive-mode X-bar theory suggests how new phrase structure categories are formed.

Consider by way of example the Noun Phrase fragment, the book behind the table. If this string is
somehow known to be a Noun Phrase (perhaps by appearance in proper argument position with a

predicate, e.g., NP is re), then the unknown token behind poses a problem for the NP X-bar schwiaa.

Recall that by the conventions of the X-bar schema the items flanking the "N" oust themselves be

"X P" categories.

Assume now that the book has already been fit into an Noun Phrase schema:

NP

(Y6(Z)??
I I

the book

Input string: behind the table

Let us make the further (reasonable) assumption that behind comes labelled as neirhcr Noun nor

Verb. Where is this item to go? By the conventions of the X-bar theory, if behind is to fill the "Z"

slot of the Noun Phrase schema above, it must actually be part of a whole new "ZP" schema:

NP

Y N ZP
I I

the book U Z V

behind

The new "ZP" category cannot itself be an NP (a Noun Phrase), for this would violate die restrictions

on all "XP" rules that just a single "X" -- not another XP -- can be the immediate descendant of an

XP. What are the remaining choices for the new ZP nile? Behind might be fit as the "U" portion,

but that would leave only the (supposedly known) NP, the table, as the main "Z" filler. Tihis would

be fatal, because then, by definition, the new '" category would have all properties of an NP, and

we would have produced an expansion of the form, NP-->N NP -- exacdy the form that is taboo. The

- 20a- Section 1.2

Simple Scenarios

only recourse is to set behind as the basis for defining a new "ZP" phrase structure category, inserting

the NP the table as the "V" portion of the new phrase structure rule:

N

Y P.

(=NP)
the book I

behind the table

And of course this is exactly the right result; the procedure has acquired its own notion of a

Prepositional Phrase. (This part of the acquisition system is still experimental: the predictive

operating mode has not yet been implemented as part of the currently running LISP program.) 16

Even in this brief outline, the contribution of the X-bar theory to a theory of language acquisition

should be apparent: its constraints provide a key to many previously inaccessible problems. The

induction of context free phrase structure rules is known to be extremely difficult in general; the

X-bar theory cracks this problem by showing that we need not consider the induction for cases "in

general," but rather only for highly specific situations where particular assumptions about

hypothesizable phrase structure configurations can be made.

16. There are several other issues to settle; for example, How does one decide whether to operate predictively or not? Is the

distinction between predictive vs. data-driven procesing reflected in the structure of the lexicon, e.g. in the difference

between lexical items such as nouns and verbs (so-called open clas items because there are a potentially unbounded number of
them) vs. function words such as that or prepositions (closedclamitems)?

Section 1.2- 21 -a

Simple Scenarios

1.2.2 Acquiring a Subject-Auxiliary Verb Inversion Rule

So much for the acquisition of phrase structure rules. What about the second part of LPARSIFAL's

knowledge of syntax, the grammar rules? These rules provide a means for dealing with deviations
from the canonical base-generated order of phrases. Consider one such deviation: in certain English

questions, what is usually called the auxiliary verb (or helping verb in some elementary school

dialects) appears before the Subject of the sentence:

Did Sue kiss Mitch?

The scenario below shows how the acquisition procedure can acquire a single grammar rule to deal

with this situation. It opens at a point where the only grammar rules known to the program are those

for parsing simple declarative sentences -- Sue kissed A!itch or Sue did kiss Mitch can be handled.

Now assume that the program receives the sentence, Did Sue kiss Mitch?, a question that can be

answered with a yes or a no.

To understand how the acquisition works, some of the inner workings of PARSIFAL must first be
sketched; after this, the narrative returns to the main business at hand. (The reader already familiar
with PARSIFAL can advance directly to page 28.)

PARSIFAL is fashioned around two major data structures, motivated by the theoretical soal of
determinism (described above) and the more practical goal of building a parsed representation of the

input sentence. As a parser, PARSIFAL outputs syntactic trees closely resembling the annotated

surface structures of current transformational theory. 17 A tree structure for Sue did kiss Mitch might

look like that in Figure 1.3 (a) on the next page. Part (b) of this figure shows a snapshot of this same
tree as represented in PARSIFAL by a stack of constituent nodes. The S(entence) node (labelled
"S20") is on the top of the stack;18 underneath it lie the already completed Noun Phrase (NP) and

Auxiliary Verb (AUX) nodes. As pictured here, the Sentence is not yet completely parsed -- in
PARSIFAL terminology, it is still active -- and the same is true of the Verb Phrase node VP22 (the
Noun Phrase object Mitch has not yet been attached to the Verb Phrase). It is because there are Iwo
as-yet-unfinished constituents that we need a slack of active nodes. VP22, at the bottom of the
stack, has become for the moment the focus of the parser's efforts. That is, the Verb Phrase node Is
the tcrEn active node (denoted C), and grammar rules that fire will attempt to build structure under

17. The distinction being that PARSIFAL trees are labelled with additional features and encode the effects of certain local.
so-called "minor movement" rules directly.
18. Marcus inverted the usual convention that the top element of a stack refers to the first accessible item; in PARSIFAL, it Is

the bottom item on the stack that is the locus for a push or a pop. This was done so as to comport with the graphic convention
that a parse tree is built top-down, with the accessible frontier of the tree at the bottom.

m 22a- Section 1.2

Simple Scenarios

this Verb Phrase node. Notice that the verb node (kiss) underneath the verb phrase has already been

attached, but not, as mentioned, the Noun Phrase Mitch. When the Verb Phrase node is complete,

the parser will attach it to its place in the S node above, removing it from the stack of active nodes,

and assigning the S node the status of current active node.

NP AX P

V P

Sue did kiss Mitch

(a) Surface structure tree

I 520
I NP : (sue) -Top of stack

AUX : (did) I

I VP22
I VERB : (kiss) < (-Bottomof stack

(b) Emerging node stack representation ofitree.

Figure 1.3 - Surface structure tree and

snapshot of PA RSIFAI1 stack representation.

The second major data structure of PARSIFAL, reflecting the concerns of the Determinism

Hypothesis, is a small, three-cell constituent buffer. It is the buffer that holds incoming words from

the sentence string, or phrases whose grammatical function has not yet been completely determined.

As Figure 1.4 below illustrates, each cell in the buffer can hold a single word or several, if these words

all lie under a single node (such as a noun phrase nmle).

Section 1.2-023M-

Simple Scenarios

Have the boys done it yet?

IWORD32 I NP27 f WORD37 I
I HAVE I THE BOYSj DONE I

Figure 1.4 - PARSIFAL's bufker holds words or constituents.

The buffer aids the cause of determinism via its ability to hold upcoming words or phrases that are

not yet completely parsed. PARSIFAL delays deciding about what syntactic structure should be

built -- that is, what nodes or tokens to attach to what other nodes in the active node stack -- until it

has had the opportunity to use (if necessary) the local context information in the buffer. The

determinism hypothesis claims that by postponing structure-building decisions in this fashion, no

choices will ever have to be undone. The necessity for such a look-ahead facility in a parser that

operates left-to-right can be seen from a cursory examination of pairs of sentences like those below,

from Marcus [1980J:19

(a) Have the boys who missed the exam take the makeup today.

(b) [S[p Have [S the boys who ... take the makeup todayj]

(a) Have the boys who missed the exam taken the makeup today?

(b)[[[AUX Havel[NP the boys who ... llp taken the exam todayjj

To quote Marcus,

It is impossible to distinguish between this pair of sentences before
examining the morphology of the verb following the [noun phrase] "the

boys". These sentences can be distinguished, however, if the parser has a

large enough "window" on the clause to see this verb; if the verb ends in

"en" (in the simple case presented here), then the clause is a yes/no
question, otherwise it is an imperative. Thus, if a parser is to be
deterministic, it must have some constrained facility for look-ahead.
[1980, page 171

The typical action of grammar rules is to remove items from die first cell of the buffer and attach

19. The Marcus device might be classified as roughly an I.R(k) parser, that is, a left-to-right, bottom-up parser that utilizes a
k-token look-ahead. In the usual definition of LR(k) parsers, the k-token look-ahead refers to actual lexical items, eg.,
individual words. In the Marcus scheme, the notion "token" is broadened to include complete constitu sas well.

-h 240- Section 1.2

Simple Scenarios

them to the current active node -- the lowest item on the active node stack. In addition, if the

grammatical role of a constituent is undetermined, rules can insert such items back into the buffer.

Recall as well that grammar rules fire if and only if their associated patterns are true of the current

environment of the machine. More specifically, a pattern is some combination of features predicated

of the items in the buffer and the current active node. Eatures are typically grammatical descriptive

elements recovered from the lexical retrieval of items in the sentence string or added by the parser's

own actions; they include morphological items like number (plural/singular); tense

(past/present/future); and verb subcategorization (transitive/intransitive). Figure 1.5 below displays

a prototypical pattern and action for operating on an auxiliary verb, first in English, and then In an

abbreviated notation (close to the form actually used by the PARSIFAL interpreter).

Rule Pattern
ife nxamied feature l match against
current active node Major sentence
1st buffer cell Auxiliary verb
2nd buffer cell none
3rd buffer cell none

Rule action
Attach first item in buffer to current active node.

(a) Pattern and action for an auxiliary verb parsing rule.

Pattern: Current active node (C)

[n*c; * is S MAJOR]
Action: attach Ist to c.

buff or
Ist 2nd 3rd

(uAUX][[

(b) Abbreviated form.

Figure 1.5 - A typical rule pattern and its abbreviated form.

In simple English, the rule in Figure 1.5 says that if the first item in the buffer has the feature

auxiliary and the current active node is an S(entence), then attach the first item in the buffer to the

current active node. ([lie items currendy in cells 2 and 3, if any, will automatically slide over to take

up the slack space.) Importantly, the limited horizon of pattern matching supports the locality goal

discussed above: only immediate context (buffer plus current active node) is examined to determine

whether a given grammar rule should apply.

linally, functionally related grammar rules are grouped'into packets. It is the packet system that

implements what was casually referred to previously as "eligibility conditions" for grammar rules:

a 256- Section 1.2

Simple Scenarios

grouping niles into packets provides a way of controlling whether whole sets of rules should be made

available for matching against the buffer items. For example, all the rules that parse Noun Phrases

can be clumped together, and unless this Noun Phrase packet is activated, the parser will not even

attempt to match the rules in this packet against the buffer. Naturally, packets must at times be

deactivated. As described briefly in the previous section, this on-and-off switching of sets of grammar

rules is carried out by associating each packet with one or more of die components of the base (phrase

structure) rules of a generative grammar.

In somewhat more detail, the actual association of packets with base rules is carried out by literally

pairing a packet name with each part of an X-bar schema:

packet packet packet
namel name2 name3

The X-bar tree imposes an ordering on the activation/deactivation of packets. After a schema is

entered, packets are activated left-to-right as specified by the tree. In the simplified skeleton tree

above, this would mean that if the XP schema were entered, the packet associated with the "Y"

portion of the tree -- presumably, a packet containing grammar rules to parse "Y" constituents --

would be activated. After Y was built (or skipped, since, it may be recalled, the "Y"' component of

rte tree is optional), packetl would be de-activated and the next packet in line, packet2, activated.

What happens when we come to the end of a schema? There are three possibilities. First, we might

have completely built the "XP" sub-tree, and also have determined where it should be attached in the

main parse tree under construction. If so, all is well; the parse just continues. 2 On the other hand,

the "XP" might have been completely built, but its attachment to any higher nodes as yet undecided.

if this condition holds, die parser simply drops the completely built XP node into the first cell of the

buffer, shoving the current occupants of die first through third buffer cells (if any) to the right by one

position. The parse then proceeds. 21 Finally, it might happen that we run off the end of the phrase

structure schema without completing the XP construction. Ibis spells trouble; we have run out of

rules to build the constituent, yet the constituent is not yet in its final form. If the parser were not an

acquisition model, this incident would suggest an error somewhere, either an ungrammatical sentence

20. In more detail, completion of the "XP" will pop "XP" as the top no'de in the "current active node sLack" and uncover the

next node down as the new current active node, along with any associated active packets.
21. l lere too the active node tack is popped.

Section 1.2-0260-

Simple Scenarios

or some flaw in the packet construction or grammar ruls. But in an acquisition mode, it would seem
more plausible that this situation would arise from an incomplete set of rules than from an

ungrammatical sentence. In short, it is the learner who shoulders the responsibility for errors, not the

adults supplying the example sentences. Since this research is about acquisition, the current

procedure adopts the second option: if the end of an X-schema is encountered, it plunges ahead and

drops whatever part of the "XP" structure it has built back into the buffer.

A specific example will illustrate. Suppose that the phrase structure rule for starting sentences looks
like:

S-->+ NP VP
Parse-S Parse-SubjectNP Parse-VP

This base rule is to be interpreted as follows. If the Sentence phrase structure rule is entered (recall

that it is usually triggered in a data-driven fashion by the elements NounPhrase-Verb), then the

packet associated with the S(entence), Parse-S, is automatically activated; the current active node --

the locus of the parser's construction efforts-- is also set to be the S. In addition, a pointer is set to the

NP component of the base rule, activating the associated packet Parse-SubjectNP. Now several
things can happen. If a rule in this packet detects in a data-driven way the presence of an Noun

Phrase -- by noting, say, the existence of an unambiguous flag for a Noun Phrase such as the

determiner the in the book -- then additional action must be taken; since the NP is itself an X-bar

schema, the packet system must be invoked a second time. To do this, the program maintains a stack

of pointers to active nodes and active packets. In the case at hand, it simply pushes the current active

node and its associated packets, S--(Parse-S; Purse-Subjec(NP) o nto a stack and sets the new current

active node-packet cluster to NP--(Parse-NP Purse-Y), where "Parse-Y" refers to whatever packet is

associated with the left-most production of the X-bar expansion for NP's, ic., NP-->Y NP Z.

After all possible rules in the NP-associated packets have had a chance to match and run, a Noun
Phrase will supposedly have been successfully built. The active node stack will be popped,

uncovering the "S" once again as the current active node, and the packet system for S as the active

packet; the Noun Phrase will be dropped into the buffer. At this point, if one assumes a "mature"

parser, a grammar rule in the S-associated packet should fire and attach the Noun Phrase just
dropped to the S, as desired. Then, the pointer for the S system will be stepped to the next part of

the base rule, activating the Verb Phrase packet.

With the the Verb Phrase packet activated, the process repeats itself. If a Verb Phrase truly follows

the Noun Phrase, it will ultimately be completely built, and finally attached to the "S". As usual, the

pointer to the S schema will be incremented, but this time, the step takes the pointer past the end of

the S schema. If the sentence is also at an end, well and good.

-0270- Section 1.2

Simple Scenarios

(If it is not, the situation is more complex; the S just built may be part of an embedded sentence. This
particular outcome will not be covered in this Chapter.)

With this explanation in mind, we can now return to the acquisition of the yes-no question rule.
Given the sentence Did Sue kiss Mitch? the parser immediately bogs down. Why? Recall first that by

assumption the parser's grammar rules include all and only the rules to parse simple declarative
sentences. But the current state of the first buffer cell for the example sentence is something like:

1st: [Did, Auxverb.....]
2nd: [Sue, NP....]

As can be seen from the features in the second buffer cell above, this analysis presupposes that the

Noun Phrase sue has already been parsed and automatically returned to the second buffer cell

labelled as such ("NP"). This is an automatic feature of the original PARSIFAL parser, but the
ability of the parser to to "shift its attention" in this way in order to pre-package Noun Phrases

requires some additional bookkeeping that will not be described here; for further discussion, see

Chapter 3.

Continuing, because the S(entence) phrase structure schema has presumably been triggered,3 the
following packets are active as well:

S-+4 NP VP
t t

Parse-S Parse-SubjectNP

What must grammar rules in either of these packets look like? First, observe that the Parse-S packet
will not contain any rules. This is because the Parse-S grammar rules must (by definition) be those

that link S(entences) to other S(entences) -- that is, they are rules that handle embedded sentences.
Since only declarative sentences have been assumed to be currently parsable, there are no such rules

22. Otherwise, the current active node could not be "S". Ilow is this actually done? The tense of did and the NP Sue are
enough to do the trick.

0

-028a- Section 1.2

Simple Scenarios

currently in the procedure's database.23 What about rules in the Parse-SubjectNP packet? Their
patterns must match on features typical of the "leading edges" of declarative sentences. That is, they

must have patterns something like:

Buffer:
1st: [NP] (as In Sue kissed...)
2nd: [some combination of features]
3rd: [some combination of features]

current
active
node: [S(entence)]

The program will strive in vain to match rules with triggering patterns like [NP)[verbJ against a buffer
that has the features [auxverb, verb][NPJ. The parser is stuck; a new grammar rule must be
hypothesized. As we know now, specifying a rule means providing a workable action, a pattern, and

an associated packet.

The last two are easy. We assume that the place to build a new rule is the place where the parser has

gotten mired, and so the packet to put the new rule into is the one that was active at the ine of

failure. In this example, an NP-attaching packet, Parse-SubjectNP, is currently active. Note that

being able to pinpoint errors in this way is dependent upon two properties: no backtracking, adopted

in PARSIFAL; and no error propagation, a claim of this thesis. The right pattern to save must be one

that ensures the firing of the new rule if the situation that caused the parser to get stuck ever arises

again. What could be simpler than to literally store the features of the buffer and current active node

as the new rule pattern? 24 This will force any future duplication of the error-causing environment to

23. As an example, consider For John to kiss Sue would be unusual This (complex) sentence consists of wo smller
sentences:

Sentence 1: NP--would be unusual

Sentence 2: John-kiss-Sue

The complete sentence is composed out of these two smaller core element S's by first converting the second S into a Noun
Phrase via an extension of the same X-bar conversion device described in the previous section; we add the context elementfr

for-S=*Noun Phrase
and then using the resulting NP to fill the slot demanded by the first sentence. It is the for-S sort of rule that we might expect
to find in the Parse-S packet. Ilowever, since by assumption the only rules the program knows about are those that can parse
simple declarative sentences, no such S-composing rules exist. The Parse-S packet is empty,
24. The complete implementation additionally stores the features of the cyclic node (Noun Phrase or Sentence node, if any)
immediately above the current active node. In the case at hand, there are no nodes above the current S node, so the pattern for
the cyclic node is set to nIL

-0290- Section 1.2

Simple Scenarios

run the right extricating rule. 25 Having specified the packet and the pattern, one is left with
discovering the right action. It is time to raise the curtain on the possible choices for rule actions.

They are:

1. Attach the first item in the buffer to the current active node.

2. Switch (interchange) the first and second items in the buffer.

3. lnser one of a small number of specific lexical items into the first cell of
the buffer. (e.g., of, to)

4. Drg2 a special dummy node, called a trace, into the first cell of the
buffer.

Note that the arguments to actions 1, 2, and 4 -- which elements the action operates on and where --

are ied. When performing a switch the program does not need to learn which buffer elements are

interchanged. Only in the case of insert (lexical item) must the proper argument (the lexical item

inserted) be learned.26 To finish off the new grammar rule, the acquisition program must select one

of these four actions. It does so in the most obvious way, trying each of them in turn until one

succeeds. Such a procedure entails a notion of success and failure for each action:

Attach is subject to type checking via the X-bar theory. That is, a node or
word must be attached to a node of a compatible category, in a sense
defined by the conventions of the X-bar account; Nouns can fit under
Noun Phrase nodes, Verbs under Verb nodes, Prepositions cannot be
attached under noun nodes, and so forth.

Switch succeeds if interchanging the items in the first and second cells
enables an already known rule to run or an attach to succeed (the attach
being subject to the same X-bar checks as any attach). Likewise, insert
(lexical item) must result in the immediate triggering of a known rule or a
valid attach. The insistence that either of these actions must be followed
by the execution of a known rule or an attach is intended to ensure that

25. The pattern (did, auxverb ...llsue, NP, . will also be enaelizd by future instances of subject-auxiliary verb inversion;
see footnote 26 below.
26. Nothing more particular will be said in this introductory scenario about the insert and drop actions. I lowever, a word
about traces. They are intended to function as in Choinsky's theory of annotated surface structure [Chomsky, 1977; fiengo
1974. 19771, and mark the place fmm which certain constituents, like noun phrases, have been moved. 'Their binding -- e.g.,
which NP they are a placemarker for -- is determined after the initial parsing by a bomponent that is exogenous to the
syntactic theory presented here. For the most part it appears that the bindings can be calculated quite simply front syntactic
and lexical considerations [Chomsky. On Binding. 1980). Consequently. interfacing such a component to the parser poses no
special computational problems: the details do not bear on the acquisition program implemented here and will not be further
discussed in this introductory Chapter.

- 30 - Section 1.2

Simple Scenarios

the acquisition procedure is not applied recursively. In addition, switch
obeys a locality constraint: roughly, it can only exchange nodes adjacent
within a local domain. For insert, test items are chosen in succession
from a small list of insertable elements, adopting the same type checking
as for attach.

Drop (trace) works if the annotated surface structure that would be built
can have its trace bindings correctly determined by a set of semani
intrpration rules (not specified in this research). Note that since trace
interpretation operates "at a distance", this last rule has an unbounded
character that might pose some difficulties for a purely local rule
refinement scheme. However, the apparent trouble evaporates upon
careful analysis. As will be shown in Chapter 3, the effect of ordering drop
trace after the other rule actions provides an appropriate reign on the
non-local behavior of traces.

We now return to the rule bottleneck in the example sentence. Considering each potential action in

turn, the acquisition program first tries attach. But attach must fail, for the auxiliary verb did cannot

be placed under the current noun phrase node the parser is building; auxiliary verbs are not part of

noun phrase constituents. The next choice, switch, is more fortunate. Did is exchanged for Sue and

the buffer now looks like:

1st: [Sue NP, Noun...]
2nd: [did, Auxverb. .]

Now the machine is in precisely the state of parsing a simple declarative sentence. By assumption, the

parser can handle this kind of sentence; consequently, the same rule that attaches Sue as the Subject

Noun Phrase in the sentence Sue did kiss Miuch must now be able to successfully match against the

new buffer state. The switch has succeeded.

27. More precisely, only nodes that c-command each other in a cyclic environment. For the exact formulation of this
constraint, see Chapter 3. section 4.

- 31 -a Section 1.2

Simple Scenarios

Celebrating its success, the program saves the new rule:

RULE-<name> in packet Parse-SubjectNP
PATTERN:

Current
active [S(entence)]
node

IST: [did...]
2ND: [Sue...]
3RD: [empty]

ACTION: switch

(The <name> of the new rule is suppIlied by some
external agency formnemonic purposes.)

Finally, the program must add a new feature to the current active node (here, the S node): the name

of the rule just applied. The reader may have noticed that such an encoding is necessary. Otherwise

the structure built for switched sentence would be identical to that for the corresponding simple

declarative; there would be no way to determine that the sentence was originally a yes-no question.

Labelling the S node with the name of the switch rule records the event of auxiliary inversion so that

this distinction can be maintained for later use.

Note also that the newly stored rule is as specific as possible: its triggering pattern incorporates every

possible feature associated with the tokens did and Sue. Literally speaking, the newly acquired rule
can only handle an exact repetition of the sample sentence. The way out of this bind is for the
procedure to encounter additional positive examples; later instances of Subject-Auxiliary verb
inversion can be used to relax the over-specificity. Briefly, if at a later time another auxiliary-verb
inversion sentence is presented, say, Has the dog bitten Mitch?, the acquisition procedure will

eventually find itself constructing a new switch rule to be placed in the packet Parse-SubjectNP. But

before actually storing the new rule, it will first check to see whether any other rules in the packet

perform the same action; if so, it will Ugg= the rules with common actions by intersecting their
patterns into a generalized form. In the switch case, the acquisition procedure will indeed discover

another rule in the Parse-SubjectNP packet that performs a switch.

-0320- Section 1.2

Simple Scenarios

Intersecting the rule pattern features of the old rule and the corresponding rule produces a

generalized switch:

old rule new rula merged rule
1st: [did, auxverb...]+[has, auxverb...]-->[auxverb...]
2nd: [sue, NP...]+[the dog, NP...]-->[NP...]
3rd: [something]+[something else]-->[anything]
current
active [sentence]+[sentence]-->[sentence]
node

Action: switch

The resulting merged pattern is exactly that of the actual yes-no question rule as implemented by

Marcus [1980.3

28. Actually, the above account has omits several key elements of the generalization process. First, all the patterns discussed
in this intrcductory chapter have omitted reference to an additional component of rule patterns, the cyclic node above the
current active node -- ie., an immediately higher S(entence) or Noun Phrase, if any. This extra node can play an important role
in certain rule patterns. In the case at hand, it distinguishes between gain (Los) sentences, where there is no "higher" cyclic
node (e.g., simple sentences like Sue did kiss Mitch; the cyclic node above the main S would thus be Nil.), and nbedded
sentences, where there is a higher cyclic node (usually, a Noun Phrase or another sentence), as in I wonder who kissed Mitch?.
The distinction between root and non-root sentences is important for auxiliary verb inversion because the inversion rule does
jgt generalize to embedded sentences: 01 wonder did Sue kiss Mitch. Since no such sentence will ever be among the positive
examples the program receives, given an inversion rule for main Sentences with a pattern stipulating an =iwiY cyclic node, the
program will never change its feature system so as to trigger on the embedded-sentence case -- Cyclic node: S or NP.
Second, only the features of items in the guffgj play a part in feature generalization. iTs is because making a variety of rule
discriminations correctly depends upon labelling the active node and cyclic node above it, llaving used these two nodes to
encode distinctions, it is generally a step backwards to wash out the distinctions by feature intersection.
Briefly, the program generalizes rules only when positive evidence is received that initiat6es rle merger -- that is, when another
instance of the rule is created based on a (different) grammatical example sentence. Pattern merger proceeds by set
intersection of the features of each pattern, governed by hierarchic conditions imposed by the context-free base. Ibis

approach is not without flaws; see C.. Baker.The Projection Problem, Unguislic Inquiry, 10, 1979. For a full discussion of the
generalization issue, see Chapter Three.

- 33 - Section 1.2

Simple Scenarios

Having given specific examples of the acquisition procedure in action, perhaps it is best to close this

section with a brief, but complete listing of the algorithm as it is implemented. For an expanded

version of the same listing, see Chapter Three.

Sten L Read in new (grammatical) example sentence.
Step 2. Attempt to parse the sentence, using modified PARSIFAL parser.
2.1 Any phrase structure schema rules apply?

2.1.1 YFS: Apply the rule; Go to Step 2.2
2.1.2 NO: Go to Step 2.2

2.2 Any grammar rules apply?
(<pattern> of rule matches current parser state)

2.2.1 YES: apply rule <action>; (continue parse)
Go to Step 2.1.

2.2.2 NO: no known rules apply;
Parse finished?

YES: (Get another sentence) Go to Step 1.
NO: parse is stuck

Acquisition Procedure already invoked?
YES: (failure of current parse or
acquisition) Go to Step 3.4 or Steps 3.2.3/3.2.4.
NO: (Attempt acquisition) Go to Step 3.

2= . Acquisition Procedure
3.1 Mark Acquisition Procedure as invoked.
3.2 Attempt to construct new granimar rule

3.2.2 Try attach
Success: (Save new rule) Go to Step 3.3
Failure: (try next action) Go to Step 3.2.3

3.2.3 'Try to switch first and second buffer cell
items.
Success: (Save new rule) Go to Step 3.3.
Failure: (Restore buffer and try next action)

Re-switch buffer cells; Go to Step
3.2.4

3.2.4 Try insert trace.
Success: (Save new rule) Go to Step 3.3.
Failure: (End of acquisition phase) Go to Step 3.4.

3.3 (Successful acquisition)
Store new rule: <packet, pattern, action>
If another rule in this packet with
same <action>, generalize by intersection of buffer features.
Go to Step 2.1.

3.4 (Failure of acquisition)
3.4.1 (Optional phrase structure rule)

(Continue parse) Advance past- current
phrase structure nile; Go to Step 2.1.

3.4.2 (Failure of parse) Stop parse; Go to Step 1.

-034 - Section 1.2

Simple Scenarios

1.3 Accomplishments and Limitations

What then are the contributions of the research? An easy way to classify the results is to group them

into one of two broad concerns of artificial intelligence research:

Engineering. Can we actually build a system that achieves the specified
performance; in this case, acquires syntactic knowledge?

Cognitive science. Can we obtain better explanations (build better
theories) for human abilities, in this case, how people acquire their
syntactic knowledge?

Both aims have been furthered by the results of this research. Let us consider first the engineering

side, and then take up the intriguing question of human competence.

1.3.1 Engineering

RULFS ACQUIRED
In some circles, the ultimate criterion for a successful engineering project is simply whether a
proposed implementation works. How many rules can the system acquire?

Grammar Rule

A good standard for scoring the success of grammar rule acquisition might be to compare the rules

that LPARSIFAL can acquire on its own against the rules that were hand-coded by Marcus for the

original PARSIFAL. Perhaps the most surprising result here is that the "stupid" acquisition
procedure can acquire a rich and varied set of syntactic rules, as indicated below and in Figure 1.6.

Many of the "core" set of rules in Marcus' grammar can be acquired.

Highlights of the acquired rules include:

--Imperatives: Throw the ball!

--Affix hopping: Mitch should havyb k kissing Sue.
--Adverb preposing: Nexa have I seen such a mess!

Ther1e goes the truck!
--Passives: The glass was broken by Alitch.

--Simple Wh Jn did U itch kiss?
movement

Many of these rules correspond to the acquisition of the proper grammar rule actions for base
structures expanded via the X-bar schemas (for example, the do-support rule that checks whether do

- 35 - Section 1.2

Accomplishments and Limitations

can be attached as an auxiliary verb.) The fleshing out of base nile schemata turns out not to be
straightforward; as we shall see, local context for each must be remembered and properly generalized.

The other rules of Figure 1.6 fall into two classes: local and non-local rules. Local rules include

auxiliary-inversion, affix-hopping, and adverb preposing. They are accomplished via switch, attach,
and insert lexical item, the local operators. Among die non-local rules are passive and simple

wh-movement, implemented via insert-trace. Some rules, such as the adverb preposing rule that

copes with a topic modifier like never at the front of a sentence, are originals that were not in

PARSIFA L's set of grammar rules.

Phrase Stucture Rules

Many major phrase structure rules can also be acquired by expanding the initially provided N and V

schemas. These include rules for Noun Phrases, including adjectives, articles, and some noun

complements; Verb Phrases, inclhding some verb complements; substantial derails of the English

auxiliary verb system. Other categories, such as Prepositional Phrases, could be acquired via simple

extensions of the X-bar procedure as discussed at the end of section 1.2.1.

It also appears that the acquisition of embedded sentences with explicit complementizers, e.g., For

Sue to kiss Alitch would be interesting, is within easy grasp of the current system. The key here is an

extended use of the X-bar system described in footnote 17 above.

In brief, the procedure works reasonably well within the realm of its design; many of the grammar

rules written by hand in Marcus' system can be acquired automatically.

-036 - Section 1.3

Accomplisuncnts and Limitations

Ruka Dsarition at itunlin handled

unmarked-order simple declarative sentence, NP-VP
aux-inversion
imperative
modal
future
perfective
progressive
do-support
passive
wh-move
insert-to
objects
parse-pp
noun
propnoun
propname
parse-det
parse-adj
s-done
adverb-pre

inversion of auxiliary and subject
missing subject in imperative sentence

affix hopping

use of auxiliary do
simple passive sentences with by phrases
simple wh movement, Who did Mitch kiss?
insertion of 1o e.g., I helped John & do IL
objects of sentences
prepositional phrases

noun parsing

determiners
adjectives
final punctuation
negative adverb preposing (Never have I
such a mess)

Figure 1.6 - LPARSIFAL acquires a wide
range of rules.

Section 1.3- 37 -a

Accomplishments and niltatlons

COMPUTATIONAl. j FlCINy
Although questions about the efficiency of a procedure should probably not be adressed until the
fundamental issue of descriptive adequacy has been settled, in some ways the acquisition procedure

depends ftndamentally upon constraints that (trivially) ensure efficient, as well as successfl,
acquisition. There are two brief points to be made here.

Use of partial parsing
By adopting Marcus' Determinism Hypothesis, as much of the sentence as
possible will be parsed without invoking the acquisition component. This
means that as much already-built structural context as possible is made
available as a source of information for the acquisition procedure.

Finite number of rule hypotheses
The space of possible grammar rules itself is finite. Consider the entire set
of new rules available for hypothesis when a bottleneck has been
encountered. Any rule consists of a finite number of actions (three or so)
conjoined to a pattern. The pattern in turn is composed of set of feature
tests defined over five cells (the three buffer cells, the current active node,
and the cyclic node above the current active node). If the number of
feature tests is finite (i.e., the total length of a pattern is finite), then the
total number of possible grammar riles ever available to the system is the
cross-product of the number of rules times the number of possible
patterns. What is the cardinality of the set of feature tests? Clearly, it is
finite, for both practical and theoretical reasons. Practically speaking,
since the total length of any grammar rule pattern is finite -- bounded by
address space of the machine -- the set of all patterns is finite. This is
hardly "proof" that the set of patterns is finite in principle, however. More
to the point, the features tests deployed are all either checks for category
membership, e.g., is the current active node of type NP? or else for specific
features of lexical items, e.g., is bgd singular or plural?. Since almost all
proposals for context-free phrase structure base of natural languages have
assumed a finite number of phrase structure categories there are only a
(small) finite number of possible category checks. Demonstrating that
there are only a finite number of possible "specific lexical features" is
somewhat more difficult, but indications are that it too can be
independently established. 29

29. Such proofs could be based. for example, on connections to "semantics"; e.g.. a theory of "Substantive Universals"; see
Pinker. Grimshaw, and Bresnan [to appear].

a 380- Section 1.3

Accomplishiments and Ilmitations

1.3.2 Cognitive Science

Research in artificial intelligence has been claimed as a window into human competence, a way of

consiructing theories about "mental computation." Here, the achievements of the research are not so

clear-cut. The chief difficulty is that our theories of mental computation can be no stronger than our
theories about computation in general and our methods of evaluating (and verifying) competing

computationally-based theories. Existing computational theories of language use or language

acquisition falter on both counts.

On the one hand, it might be argued that our existing models of computation -- at least as applied to
language -- are far too specific. For example, many computational linguists employ the tools of

"natural" complexity measures as a way to evaluate competing algorithms for language processing;
such measures are inherently based on the step-counting performed by serial processors. Given our

relative ignorance about the machinery of the brain involved in language processing, it would seem

wise to develop a machine independent theory of computation. To evaluate processing theories of

language use with measures that depend crucially on possibly false assumptions -- say, serial

processing -- is to insist on the wrong evaluation measures. In this view, the confirmation of

computationally-oriented theories about language acquisition (and processing) should come "from

above", that is, from a more abstract notion of computation. Here one could perhaps exploit the

machinery of abstract complexity theory as developed since Blum 11967].30 Of course, one could take

an even weaker stance, and forego any claims about the connections between one's characterization

of "knowledge of language" and how that knowledge is actually put to use. Chomsky's reliance on

competence theories (as opposed to theories of language use, or performance) exemplifies this

position. A competence theory is intended to abstract away from the domain of computation
altogether; it provides only a-compuational conditions that the neural structures for language must
meet In this sense, Chomsky has made the weakest possible commitment to a particular

computational device for language processing.

On the other hand, confirmation of computationally-oriented linguistic theories might come "from
below" -- that is, by using data drawn from empirical observation. While such data as measurements
of processing load and reaction time are in principle available to the computational linguist, for the

most part the predictions offered by current computational theories of language are too broad to be

30. In facL the obvious proposals have already been attempted. Feldman (1972) adopted the Ilum complexity approach
wholesale as a way to measure grammatical "simplicity"; for example, he used derivational complexity as a lium measure,
providing a kind of "Occam's razor" on grammar slection.

-F ^9- Section 1.3

Accomplishments and Limitations

effectively separated by such data.31

The dilemma is that one would prefer falsifiable computational theories of language, set at a level of
abstraction corresponding to available evidence. Unfortunately, many current computational

linguistic theories somehow strike just the wrong middle ground. Still, there is at least a gross level
of "psychological plausibility" that can be used as a yardstick to evaluate language acquisition
theories. Perhaps the most important measure for a psychologically interesting theory is that it be at
least compatible with what is known to be true of children's acquisition of language. Here, the
current model gets high marks.

Foremost among these plausibility conditions -- though it would seem so obvious as to hardly need
stating -- is that what is acquired should in fact correspond to an adult's "knowledge of language".

That is, the model must be powerful enough to actually acquire (an ability to parse) natural
languages. Put another way, the final states attained by the model should at least be plausible

representations of an adult's linguistic abilities. After all, if a theory of language acquisition does not
account for how language is acquired, then what else is it for? Remarkably, many proposals in the
literature do not meet even this simple demand. For example, this criterion immediately rules out
proposals that can attain only representations with a weak generative capacity equivalent to that of

finite state machines.32 In particular, it dismisses procedures that can acquire only the competence to

correctly order two or three word strings. Such finite combinatory devices are well known to be
inherently incapable of representing adult linguistic knowledge.

In contrast, the acquisition model developed in this research has at least the potential to acquire the
"right" sort of final state, namely, a parser for the observed syntactic phenomena of English (and,
given additional research into X-bar theory, perhaps other languages as well).
This would seem to be a significant step beyond models that can acquire only the rules to

concatentate three or so words.33

31. There are exceptions, particularly where the choice is between theories whose predictions about the time and space
resources required to perform a particular computation are vastly different -- finite vs. infinite. Assuming that the brain has
finite resources, a choice can then be made. But unless the alternative theories diverge in this way, in the case of language
hopes dim that enough will be known about the relevant compuational-psychological details -- independent of probably
wrong assumptions about the machinery of the brain -- to distinguish between them.
See Berwick, Coniputational Complexity, Evalualion Measures, and Learnability [1980 in preparation] for further discussion.
32. Recall that . generative capacity refers simply to the set of strings that a device can produce; Etn2 generative capacity

to the set of structural descriptions (labelled bracketings) of those strings.
33. However, it seems likely that the current model will be unable to acquire the rules to parse strictly context-sensitive
constuctions. 'lhis is poses a problem. 11 would be an even more serious problem if natural languages depended heavily upon
context-sensitive machinery. Fortunately, however, they apparently do not See Joshi and Levy [1977j: Gazdar [1979J. As
often pointed out by Chomsky [1%5 page 62j. the question of weak generative capacity is largely orthogonal to the issue of
learnability. For example, all other things being equal. the X-bar theory contributes far more to easy learnability than any
gross change from context-sensitive to context-free generative capacity.

-0408- Section 1.3

Accomplishments and Limitations

Besides being potentially powerful enough, the acquisition model of this research also meets four
other "plausibility" criteria as set forth by Pinker [1979]:

* Appropriate Input. Any plausible acquisition model should use just the
input data that can be granted to be available to the child. Children
appear to receive only positive example sentences as reinforcement for
syntactic inductions. So does this model.

* Finite Convergence Time. Children appear to converge to the "right"
grammar for their language rather rapidly, without (in general) making
gross phrase structure or major transformational mistakes. In other words,
convergence is in finite time, rather than probabilistically in the limit. As
the short section on computational complexity above showed, the
proposed model can hypothesize only a finite number of grammar rules; it
too fixes upon its grammar in a non-probabilistic manner, in finite time.
Of course, convergence times for the model cannot be construed as
carrying any psychological import beyond this gross level of confirmation.

* Developmental Fidelity. Any psychologically interesting model should
at least roughly reproduce the developmental course of human
acouisition, both its staging and its errors. As to the stages in acquisition,
although the data is far from clear, children's abilities unfold in a general
simple-to-complex fashion, from the capability to handle two or three
word sentences, to simple sentences, to more complex inversions and
embeddings. Once fixing upon major components of a grammar -- such as
basic constituent order as imposed by phrase structure -- they do not
generally renege. That is, children appear to acquire grammars
rule-by-rule, building upon what they already know. Children's errors
largely center around mistakes with affixes and morphology (e.g., I goed
home) or obvious omission of proper feature tests (e.g., for agreement
between subject and verb) rather than gross transformational mistakes.

Here too, the current model fares well. It also incrementally refines its
rule base, adding at most one rule for each invocation of the acquisition
procedure. "Radical reorganization" of its knowledge is not possible. The
model acquires rules to handle gross aspects of phrase structure -- two and
three word sentences -- before an ability to parse auxiliary verb inversion
or passives; given a sentence beyond its current ability, it simply parses
what it can, and ignores the rest. Refinement of already known rules lies
mostly in fine tuning of the features brought into the trigger patterns for
rules, thus at least leaving open the possibility of the same kind of
apparent fine tuning that children go through. In fact, the current
procedure generally goes through three stages in acquisition of a grammar
rule: (1) an overly specific stage, where the rule is tailored to trigger
exactly in the appropriate circumstances; (2) an overly general stage,

Section 1.3

Accomplishments and Limitations

where the conditions on the specific rule are relaxed; and finally (as more
evidence is accumulated) (3) the reappearance of some specific conditions
on the rule's execution. Although the comparison should not be taken too

seriously, this sequencing of specific-general-specific is strongly

reminiscent of observed (rule-governed) linguistic behavior in children.

* Cognitive Capacity. Any plausible model should not require more

memory, attention, and other "cognitive factors" than can reasonably be

demanded of a developing child. Given our ignorance about just what the

cognitive capacities of children are, it may be inappropriate to state this

condition more precisely. However, the following maxim would seem to

be sensible: a language acquisition model should make the weakest

demands possible on memory and attention, compatible with the goal of

actually acquiring a rich enough language. In this light, the current model

does quite well. It assumes na memory for past sentences; only the
current sentence, as well as the rule database, figure in the construction of
new rules.3 4

A major goal for future research will be to evaluate more carefully the faithfulness of the current

model to these criteria.

34. In contrast, the requirement that the procedure be able to store a full rule database without memory loss is a reasonable
idealization for both the program and people: without it, one could probably neither approach nor retain adult linguistic
abilities.

Section 1.3-0420-

Accomplishments and Limitations

1.3.3 Limitations and the Future

The research succeeds in its basic aim -- demonstrating that a weak, but psychologically interesting

procedure can successfuily acquire syntactic knowledge. However, this success should not be taken

as a sign that all problems have been solved. The current model is in some sense both incomplete

and incorrect, failings that arise for practical and theoretical reasons.

The theoretical limitations are of two sorts. First, this research has concentrated largely on syntactic
issues, a focus that leaves untouched most questions about the interaction between purely syntactic

knowledge and other cognitive systems. Ibis point deserves some comment.

The goal of the syntactic component as defined in this research is to provide an ability to map

between a surface string and a more abstract structure from which one can recover whatever

information is necessary for "semantics" -- being deliberately vague now about just what "semantics"

might be. Some have proposed that the information to be encoded for semantics should include a
kind of "predicate-argument" structure (in the Fregean sense), a pairing of name-like arguments to

predicates. This view would hold that the minimum representation of a string such as Sue kissed
Mitch should be an abstract structure such that the corresponding predicate form, Kiss (Sue Mitch),
can be directly "read off'. It also seems useful for the representation so generated to capture some
notion of thenatic role, e.g., that in Sue kissed Mitch, Sue is the Agent of the predicate kiss and Mitch

the Recipient.

If this much is so, then part of the acquisition of language must involve the system of
predicate-argument relations, notions of default thematic role assignments, and methods to
distinguish among arguments. At the very least, for example, we must learn that some verbs do not
require a Noun Phrase object: Sue cried. Some of the constraints that might aid in the acquisition of

such knowledge could come fromcompaability restrictions with syntactic structures; we might use the
X-bar theory as a way to support proposed restrictions on possible thematic roles. In the other

direction, thematic role constraints might play a part in restricting syntactic possibilities, and so aid
acquisition. In any case, this entire area remains open for study.35

Second, it is important to stress that the current system acquires only knowledge about how to parse.

There is good reason to doubt that this provides a full characterization of a person's "knowledge of

language." To see this, consider the class of "Garden Path" sentences:

The horse raced past the barn fell.

35. If we add the requirement that the information encoded should include a representation of quantifier scope, focus. or
presupposition, then these items too become a topic for analysis via their interaction with the syntactic component.

-B43M- Section 1.3

Accomplishments and Limitations

Though this sentence is fully grammatical (compare, the article published in the journal stank.), if
given to the current acquisition procedure the program will simply charge ahead as people do,

building the horse as the subject Noun Phrase and raced past the barn as the Verb Phrase:

NP VP

the horse raced past the barn

Input string: fell

But this is all wrong -- the program has been led down the garden path -- since it leaves the parser

holding onto the verb fell and nothing to do with it. As the reader may verify, the acquisition

procedure too will fail, and the sentence will be rejected. Since in contrast most people (eventually)

can handle such sentences, the current acquisition program is incomplete.

The source of the difficulty is the procedure's insistence on no backtracking. Since the locus of the

parser's construction efforts generally moves left-to-right through the input string, it gets only one

chance at resolving a local predicament. Intuitively at least, people seem to handle the garden path

sentences by "backing up" and re-attempting a parse. Without taking this intuition too serously, the

ability to re-try a parse in a "careful mode" would seem to be a useful addition to the current

acquisition procedure as well.

There are many possible ways to add in such a facility. One obvious method incorporates the theory

of predicate-argument relations described above. The basic idea is that the annotated surface

structure is actually given an interpretation to be checked for validity against the situational context at

hand (or, rather, some independently assigned interpretation of the situation). For example, in the

horse raced case, if some "thematic component" assigned the main predicate structure of the sentence

as Raced (Horse), but the learner (somehow) reconstructed from situational context the structure

Fall(Horse), then this clash of parse against predicate could serve to signal a re-try, perhaps with

particular pointer to the construction of the main Verb Phrase.

Since the gist of the parser's error above was a failure to look far enough ahead and discover that

there was a choice between the verbs raced and fell as main verbs for the sentence, the error most

likely would have arisen from using to bigad a rule trigger pattern -- i.e., too few cells or too general a

set of feature tests. To remedy this, the recovery phase would probably find it useful to automatically

expand the number of cells its known rule patterns should consider.

Following lines of this sort, one is in fact led to what Marcus called diagnostic rules. The next few

paragraphs sketch out the beginnings of a theory of such rules. The sketch is just that: a beginning.

-0440- Section 1.3

Accomplishments and Limitations

It is not intended as final word on how such niles might be acquired, but rather to suggest ways that
the acquisition procedure could be extended to deal with the problems of lexical ambiguity and
conflicting rules.

In Marcus' thesis, diagnostic rules were typically pairs of grammar rules that adjudicated between
alternative category labellings for lexical items. For example, consider the sentences presented earlier
in Section 1.2.2 (page 20):

(Question) Have the boys who missed the exam taken the exam today?
(Imperat ive) Have the boys who missed the exam take the exam today!

The token at the beginning of each string, have, can be either an auxiliary verb (as in the first
sentence: the boys have taken...) or a main verb (as in the second sentence: (You) have the boys..).
The choice -- really a decision between alternative phrase structure categorizations for have --

depends upon the morphology of the verb after the Noun Phrase the boys: if it is tenscd, as in the first
sentence (takgeg), have must be an auxiliary verb; an untensed take indicates the alternative choice.

The en ending thus serves as a diagnostic for the categorization decision; the patterns of the grammar
rules Marcus wrote to encode the diagnostic look exactly alike except for the presence of the tell-tale

diagnostic aid:

Rule 1(Aux-verb have): [have][NP][verb+en]
Rule 2(Main verb have): [have][NP][verb tenseless]

The acquisition procedure will typically acquire Rule 1 above almost as given -- except its trigger
pattern will be one appropriate for a generalized auxiliary inversion rule, with no conditions to be
met on the third buffer cell:

[Auxverb, verb][NP][J

Since sentences with auxiliary inversion can safely be assumed to be encountered before rarely heard
sentences where Rule 2 is applicable, let us assume that some such aux-inversion rule as listed above
is known to the system. Now when a sentence like have the boys take... comes along, the existing and
overly-general aux-inversion rule will erroncoitly trigger. Have will be attached the auxiliary verb
of the sentence, a real error.

-045 - Section 1.3

One way out of this dilemma is to invoke the back-up procedure sketched above: assume that the

error is detected by a failure to match situational context against the interpretation of the annotated

surface structure corresponding to the faulty parse. In the case at hand, since the learner has made

the serious mistake of confusing a question with a command, there should be no trouble at all

detecting that something has gone wrong. (For example, any attempt to respond felicitously to the

sentence will probably go astray if its "meaning" is so severely misconstrued.) Having detected an

error, the system will attempt a re-parse, but with the following difference: it uses the (faulty) parse

tree just built to look for alternative categorization choices that might have led it astray. This is just

the right approach, because it appears that many diagnostic rules (and "garden path" problems) arise

out of faulty category assignments -- classifying an item as an auxiliary verb rather than main verb,

for example. Again considering the specific example sentence troubling the acquisition procedure,

we see that its (incorrect) parse tree has labelled have as an auxiliary verb, whereas the dictionary

entry for have indicates that it an be a main verb.

Suppose then that the acquisition procedure, knowing it has gone astray and knowing that its first

(and only) alternative lexical categorization is to make have a main verb, does so. Assuming that the

standard acquisition procedure can take matters from there -- and discover that you must be inserted
as an understood subject -- 36 then this choice will eventually succeed. We must further assume that,
since the procedure is working in a "careful" mode, it saves the feature details of everything it can get

its hands on -- that is, the features of items in all the buffer cells:

pattern: [have][NP][take tenseless]
action: insertyou

This is the right answer -- given one additional stipulation. The patterns for the rule just built and the

existing aux-inversion rule conflict. Clearly we do not want to merge the two patterns -- and indeed,

since the two rules have different actions (switch and insert (you)) the acquisition procedure does not
merge them. But how can the procedure decide which of the two should have priority? Note that

both rules still match against the string, Have the boys take the....

To settle this dispute appeal is made to the general principle that more specific rules should trigger

before more general rules. In this case, the insert rule is the more specific, since it refers to all three

buffer cells and the switch rule to just two. Tihis gives the right result, but one might question the
validity of die additional stipulation. Actually, the constraint can be motivated on quite general

36. This is not straightforward; for details. see ChapterThree.

Accomplishments and Limitations - 46 -a Section 1.3

Accomplishments and Limitations

grounds. The triggering of specific before general rules is a widely recognized principle in both the

linguistic and production system literature. 31

In addition, without such a principle it is difficult to see how a diagnostic rule could ever trigger -
unless some explicit information about rule ordering were placed into the system. But explicit

ordering is exactly what is to be avoided. As Baker points out [1979], any such extrinsic ordering

information may demand negative evidence for its acquisition. In a system where rules can be

optionally or obligatorily applied, in order to learn that Rule A Mia precede Rule B an example

must be presented showing the mistake of the reverse Rule B-Rule A ordering. The procedure

presented in this research side-steps this difficulty by being ordering rules intrinsically: rules are fired

in a data-driven fashion based upon the current context of the parse -- and the specificity principle --
and not upon any explicitly coded information.

It is interesting to note that the addition of the specific-before-general device also provides a way to

eliminate incorrect rules. This is important, because up till now the procedure could always a4 new

rules to its database but there was no provision for removing rules. To dispose of an unwanted rule,

one simply formulates another rule (the "right" rule) with an appropriate "more specific" pattern,

and the wayward rule will never be able to trigger.

So far, limitations hinging mostly on the system's inattention to lexical disambiguation have been

discussed. There is a final limitation of the current acquisition procedure that falls out of a specific

design decision. For the moment, there is but .n grammar rule action that deals with displaced

constituents: insert trace. Though this action was designed to deal with movements of Noun Phrases,

it also handles other constituent movements, in particular, wh movements, as in,

Who did Mitch kiss u.

But this is a potential problem. Since there is no distinguished device to keep Noun Phrase and wh

movements separate, there can be no way to distinguish the traces each leaves behind. In sentences

where both sorts of movement occur, this can lead to difficulties in interpretation. Consider the

37. In linguistics, the principle has been explicitly formulated by Kiparsty 119731 and Lasnik and Kupin [1977j. In
production systems, exactly the same proposals have been advanced by McDermott and Forgy [1978j and Rychener and
Newell [1977j. Alternatively, as the Rychener and Newell article notes, one might simply impose a lexicographic ordering on
the set o production rules, and stipulate that recently formulated rules take priority over older rules. If the more-specific
diagnostic rules are always constructed in response to the failure of more general rules, then this tack amounts to roughly the
specific-before-general constraini
In fact, liraine [1971] has proposed a language acquisition model based upon the recency principle that lends to just this
"specific before general" ordering for rules.

-0478- Section 1.3

Accomplishments and Limitations

following sentence from Fodor [1978J, where the Noun Phrase you and the wh word who are both

displaced:

Who did you expectr to make a pothol der for trace

A sentence presumably derived from some form such as,

[did you expect [you to make a potholder for who]]

Without some additional mechanism, there seems to be no way to discover the proper bindings of the

two traces; how could one know, for example, that the sentence did not mean, did you expect who to

make a potholder for you?

In fact, there is good linguistic evidence that wh movement is not subject to the same restrictions as

Noun Phrase movement. If so, this too would suggest positing distinguished machinery for wh

movemenL This is just what Marcus did in the original PARSIFAL; there was a separate stack to

hold displaced wh phrases. (This proposal was in fact first made by Woods [19691 for his ATN

parser.) An obvious extension to the acquisition proced-ire is to factor the distinguished wh stack

back into the picture; at present, the lack of such a device means that interactions between wit and

Noun Phrase movements cannot be acquired, nor certain cases where wh-movements do not comply

with the restrictions on Noun Phrase movement?8

38. A variety of other syntactic rules have not been tackled. For example, there-insertion (There seems to be a lion sighted)
troubles U)ARSIIL lowever, good evidence exists that such sentences are generated by the base phrase structure
componeni. See Ochrle [1974J. In fact, the inability of the acquisition procedure to handle there-insertion might be taken as
good evidence that such formis are base generated.

-048 - Section 1.3

Accomplishments and Limitations

1.3.4 Connections to Linguistic Theory

With these accomplishments and difficulties in mind, it should be noted that the aim of the thesis is

not to develop a computer program that can acquire rules to handle all syntactic phenomena.

Although this is a laudable goal, its feasibility appears closely yoked to our understanding of those

phenomena. For example, if there is no satisfactory descriptive account of conjunction, then

explaining how to acquire conjunction seems futile. Without knowing what structure is to be

acquired, the learner is at sea. Instead, the syntactic abilities that are within the acquisition program's

grasp have been carefully scrutinized, to see how the processing restrictions imposed toward

computational ends compare to the structural constraints on generative grammars proposed by

linguists.

Perhaps most importantly then, the computational assumptions of the acquisition procedure parallel

the structure of two of the most tightly formalized versions of transformational grammar, those of

Culicover and Wexler [1980] and Lasnik and Kupin [19771. The match is laid out briefly in Figure 1.7

below; for a complete discussion, see Chapter Four. On the left hand side of the diagram are some of

the assumptions and restrictions of the linguistic theories; on the right, those of the acquisition

procedure. Even though the linguistic work was done independently of this research, the two sets of

stipulations are identical.

Culicover and Wexler assume a simple learning procedure that postulates only one new rule at a

time. From this starting point, quite similar to the LPARSIFAL's, they attempt to arrive at

constraints ;ufficient to ensure that the procedure converges to the adult's transformational grammar

in a finite time. Importantly, a further assumption is that the learner's grammar must be acquired on

the basis of only simple data, that is, grammatical examples whose depth of sentence embedding is

two or less. Culicover and Wexler achieve convergence in finite time by keeping the number of

hypothesized rules small, a situation guaranteed by restricting the context of rule application.

Context restriction is accomplished through a host of stipulations, among them, those that Culicover

and Wexler call the Binary Freezing, and Raisina principles. Without going into extensive detail

about the exact formulation of these principles, their rough intent is to limit die scope of rule effects

to a small radius about the rule's point of action. As Chapter Four demonstrates in detail, the

constraints advanced for die LPARSIFAL acquisition procedure apparently subsume die Culicover

and Wexler stipulations.

Lasnik and Kupin's [1977j mathematically formalized version of transformational grammar attempts

to "present a particular theory of syntax in a precise way." As such, it stipulates certain very exact

conditions on a transformational grammar, conditions compatible with many current proposals in

linguistics. Their restrictions guarantee a small number of simple rule actions and uniquely applicable

rule patterns, precisely the intent of LPARSIFAL. Once again, as can be seen from Figure 1.7 below,

-0490- Section 13

Accomplishments and Limitations - 50 - Section 1.3

these limitations correspond quite closely to those independently motivatcd by the design of the LISP
program.

In brief, the following advances have been made:

* Development of a working computer program that can acquire
substantial syntactic knowledge of English under restrictions faithful to
what is known about human acquisition.

* Demonstration that constraint plays a crucial role in the success of the
acquisition procedure. Importantly, the same constraints that ensure
efficient parsing -- the Determinism Hypothesis and locality constraints
on rule patterns and actions -- also play a key role in acquisition.

* Discovery that the locality constraints proposed for the acquisition
model mirror the structural constraints advanced in several current
linguistic theories.

* Formulation of a proposal for the acquisition of phrase structure rules,
baced upon the "X-bar" theory. Exploration into the use of the X-bar
theory as a model for lexical acquisition and as a source of testable
hypotheses for the actual developmental course of human acquisition.

Accomplishments and Limitations

Culicorand Mkr Constrain Acuisition cduConstraints

Incremental rule acquisition Incremental rule acquisition

Universal base (can be weakened Universal base (can be weakened
assuming a theory of base rule assuming a theory of base rule
base rule acquisition) acquisition)

NO negative external evidence NO negative external evidence

Only current sentence used to Only current sentence used to
construct new rule construct new rule

Small number of new rules Small number of new rules
available for hypothesis available for hypothesis

Rule construction based on Rule construction based on
"simple" data: depth of "simple" data: depth of
embedding at most two embedding at most two

Binary principle
Determinism plus locality

Freezing principle restrictions imposed by buffer
and active node stack

Raising principle

Figure 1. 7 (a) Constraints advanced by Culicover and Wexler
vs. those of the acquisition procedure.

Section 1.3- 51 -a

Accomplishments and Limitations

Lasnik aard KUQIICon ains

Only one action per rule, affecting
at most two constituents

Rules not marked as optional or
obligatory (no evirinsic
ordering)

Rule patterns use only one
string condition; no arbitrary
Boolean conditions

Subjacency

More specific rules fire before
more general ones

Small number of actions

Acouisition Procedur Cnstraiuts

Only one action per rule, affecting
at most two constituents

Rules not marked as optional or
obligatory (no extrinsic
ordering)

Rule patterns use only one
string condition; no arbitrary
Boolean conditions

Local acccss to active node stack

More specific rules fire before
more general ones

Small number of actions

Figure 1.7 (b) Constraints advanced by Lasnik and Kupin
vs. those of the acquisition procedure.

Figure 1.7 - Comparison of linguistic
and computer program constraints.

- 52 - Section 1.3

Outline of Chapters

1.4 The rest of the thesis

Chapter 2, Theoretical and Psycholinguistic Foundations, aims to provide a sound underpinning for
the assumptions about the acquisition model presented in Chapter One. To do so, it first outlines a
basic framework to evaluate theories of language acquisition. Second, it covers psycholinguistic

results about what information children receive as "input" for acquisition. Third, it briefly reviews

relevant formal language theory results, and several previous computational models of language

acqzisition.

Chapter 3, LPARSIFAL: The Acquisition Procedure, is the heart of the thesis, presenting a

full-fledged description of the acquisition procedure along with several step-by-step examples of its

functioning.

- 53a- Section 1.4

Theoretical Framework

Theoretical Foundations

2.1 A Framework for Language Acquisition Theories

The acquisition procedure unveiled in the introduction rests upon a number of very specific

assumptions about the nature of acquisition. Among all these assumptions, a linguistic one

predominates: belief that (1) the acquisition of syntactic knowledge is mediated by the extensive

pre-exisring knowledge of the structure of language and (2) the final state of knowledge can be

represented as a set of rules, a grammar. Starting from this cornerstone, Chapter Two will first

present a framework for (any) theory of the acquisition of syntactic knowledge, and then, using that

framework as a gauge, survey previous computational, psycho-linguistic, and mathematical language

learnability results.

What should a theory of the acquisition of syntactic knowledge look like? Certain ingredients would

seem to be inescapable. At the very least, the learner receives some inut from the environment, and

then constructs (or selects) some grammar from the set of possible grammars. Finally, the very idea

of a construction process presupposes a procedure to compute the desired grammar. Schematically,

the situation is as pictured in Figure 2.1 below. Input -1 simply refers to whatever external

environmental factors bear on syntactic acquisition; P to any procedure adopted to find the propet

grammar g; and G to the possible class of (so far) unrestricted grammars.

Procedure P -Env i ronmental Input I

Grammars G

Syntactic
Knowledge

Figure 2.1 - Syntactic acquisition :an be blocked into three components.

These three components -- input 1, grammar , and learning procedure e -- form the basis for a

thcory of language acquisition. To these three components WexIcr [19781 has added three criteria of

adequacy. First, the class of grammars acquired must be rich enough to cover the observed

phenomena of natural languages -- that is, Q must consist of a sufficient number of descriptively

adequate grammars. Next, the external information I that the child draws upon to construct (or

select) a grammar must be empirically true. In other words, input I must not specify more

- 54 - Section 2.1

Theoretical Framework

information about which grammar to select than is actually available to the child. Finally, every

grammar in Q that is indeed a humanly possible (hence learnable) grammar can be learned by

procedure P from the external information I.

The virtues of these criteria seem beyond question. Take the condition on external information: it is

hard to imagine how any reasonable theory of learning syntax could require an infornation set Ithat

is stronger than that available to children. Such a theory would have two flaws. First, it would no

longer be an empirically true theory of human syntactic acquisition; and second, it would place the

burden of selecting the right grammar on an external adult (or environment). For suppose that one

rejects strict adherence to what is known empirically about the evidence children get for syntactic

acquisition. Then there is nothing -- in principle -- to prevent adopting extremely powerful sorts of

structured input, such that any grammar, no matter how bizarrt. might be acquired.1 Of course no

one would in practice suggest that children learn language on the basis of such a rigid, severely

structured input, where the burden of learning syntax is placed on the adults who must encode the

grammar. But, as mentioned briefly in the first chapter, even a seemingly less drastic choice than a

direct encoding has dramatic theoretical implications for language learning. The results of Gold

[1967j show that, given only grammatical example sentences, no infinite cardinality language is
learnable, but, by adding an infonnant who pairs each example sentence with the labels grammatical

and ungrammatical almost any language (formally, any recursively enumerable set of recursive

languages) is learnable.2 The choice of I in any theory of syntactic acquisition thus has strong
consequences for its remaining content -- _Q and P. If one opts for both positive and negative external

evidence then the structured form of the input I suffices to ensure learnability; L and P play a

minimal role. With only positive evidence, one must rely on L and P to take up the slack left open

by dropping negative examples.

Now consider the assumptions behind the requirement for a descriptively adequate class of grammars

G. Because one is aiming for a learnability theory of an adul linguistic ability, it seems natural that
the structure acquired should correspond to what is known about that ability. Since the best theory
of syntactic abilities we now have (for better or worse) is some version of transformational grammar,3

it is clear that a reasonable theory should explain the acquisition of grammars -- in particular, the
abilities implied by transformational grammars or some computational analogue of their capabilitics.

Any other theory of syntactic acquisition must first argue what it is, besides a grammar, that an adult

acquir s when such learning takes place. Although it is possible to imagine plausible options for

1. Consider an encoding of die grammar in the input informalion 1, or. even simpler, an adult just telling the learner what the
right grammar is.
2. See Appendix 2 of this chapter (or a brief list of these theorems.
3, Including all its recent descendants, the so-called ExtendalStandard Theory of Chomsky and the functional-lexical theory
of J. iBresnan. Scc llresnan [19781, [1980].

- 55 - Section 2.1

Theoretical Framework

alternatives, there are none that have been worked out to the level of descriptive adequacy or even

simple refutability necessary to qualify as a serious replacement for transformational grammar.

Thus, requiring that transformational grammars be acquired would seem to be simply a matter of

good sense, enlisting the most powerful and structured theory we now have in the explanation of the

difficult research problem of language learnability. A structured theory helps, because the more

detailed and principled the theory, the more we might expect it to provide correspondingly powerful

(and more easily refutable) constraints on learnability conjectures. In this fashion, the assumptions of

a syntactic theory mesh to furnish very precise structural restrictions on grammars, a source of

constraints and predictions that can be readily tested.

Surprisingly, this is not how work with computational models of language acquisition has proceeded.

Instead of being grammatically based, several proposals have represented an adult's knowledge of

syntax as part of a large network of highly interacting "packets". In these theories, the conceptual

content of words is blended with proposals about causal inference and "pragmatic" information -- in

short, the gamut of cognitive abilities. Although this is an initially plausible, even attractive

hypothesis for language acquisition, what does this strategy imply for a theory of syntactic

acquisition?

First, one is left with the job of building a complicated theory about language and human cognition,

yet one that must at least duplicate the structural principles of transformational grammar. To this

theory must be added a specific proposal for (at best) making precise the informal notions of

"concept" and "pragmatic knowledge." But still we are not done. Because the representation of the

adult state in such a theory now embraces almost all cognitive faculties, we have placed ourselves in

the uneasy position of having to explain the acquisition of most human cognitive abilities. It would be

as if in biology one had to explain the functioning of the heart -- and design experiments to test such

explanations -- on the basis of a theory of DNA replication. In the end, because the organism is one

system, it should be true that the two are at some level "connected", and the functioning of the heart

"explainable" in terms of DNA. 4 But no one would imagine using this ultimate reductionist goal as a

day-to-day working research strategy. One cannot imagine a more difficult scientific position.

Consequently, this research adopts Wexler's criteria of adequacy as the touchstone for theories of

language acquisition, comparing alternative proposals and research by considering how each specifies

the set of grammars G, the infunnation set , or the learning procedure, fL. Existing work on language

acquisition reviewed in this chapter divides neatly into which of these three, G, 1, or E, are focussed

4. Ibe notion that a reductionist srmegy should be set at a level of decomposition appropriate to the explanatory task at hand
has been explicated by Putnam [19731 and Fodor f1968.

- 56 - Section 2.1

Theoretical Framework

upon:

--G (class of grammars): Formal language theory results

--I (information input): Psycholinguistic studies of young children

--P (learning procedure): Computational models

Although Wexler's requirements for adequacy would seem to be the bare minimum for any theory of

syntactic acquisition, we shall discover in the critical analysis to follow that few other computational

models have adopted even his three stipulations.5

2.2 P: Other Computational Models

Previous computational theories of language acquisition fall roughly into two classes: those based on

general learning heuristics and those motivated from linguistic principles. The a-linguistic theories

depend upon such methods as general pattern-matching procedures to induce acquired knowledge.

The linguistically-oriented acquisition models in turn are of two sorts, those relying upon some

specific linguistic representation, perhaps computationally-oriented, e.g., augmented transition

networks [Woods, 1969] or even finite-state machines [Selfridge, 1979] for their target representation

of grammatical knowledge; and those models that use statistical or distributional methods to infer

their knowledge. To illustrate the general characteristics of both the linguistic and a-linguistic

approaches, one exemplar of each sort is discussed below; several other examples are surveyed in

Appendix 1 to this chapter.

2.2.1 Linguistically based models

Anderson's Language Acquisition System [19771]("LAS") represents one of the most fully worked out

language acquisition programs, one that does in fact attempt to attain some measure of descriptive

and empirical adequacy. For input I to the program, Anderson assumes only positive examples

paired with a "meaning" representation in the form of a semantic network of the concepts in the

sentence. A lexicon is presupposed. Th outpUt of LAS is a context-Free grammar, structured as an

augmented transition network (ATN), that can both parse and generate a class of sentences covering

the set of presented example sentences.

LAS is quite similar to 1.PARSIFAI. in some ways. like LPARSIFAL, I.AS drives its acquisition via

5. A n excellent survey of compuiationally-oriented models of language acquisition has recently appeared. See S. Pinker,
Formal Models of language Learning. Cognillon, 7, 1979. pp.217-253.

-057 - Section 2.1

Computational models

attempted analyses of positive example sentences. And just like LPARSIFAL, LAS too uses

whatever rules have succeeded as the focus for its new rule-bulding efforts.

However, unlike LPARSIFAL, LAS is semantically based. Anderson assumes that the semantic

representation (roughly, predicate-argument structure) of a sentence corresponds quite closely to its

syntactic form. Given this partial match, if the acquisition program is assumed to have (or be able to

infer from "situational context) the predicate-argument tree corresponding to the input string, it will

be able to easily in fer the syntactic structure of the string.

To see how this works, consider the string, the girl kissed Mitch. It has more-or-less the

predicate-argument structure, Kiss (the girl, Mitch), and would be represented in the LAS semantic

network roughly as,

gi k9 - itch

Note that this structure -- save for the omission of items such as the -- is virtually isomorphic to the

constituent structure for the same string:

IPVP
the girl kissed Mitch

Thus, by simply twisting the semantic network slightly, LAS can deform the semantic network it

already has into the syntactic structure it wants.

Anderson must advance additional stipulations on possible semantic networks in order for LAS to

proceed this far. Foremost among these is what Anderson calls the graph deformiation condition.

Briefly, this restriction is designed to ensure that semantic networks and their corresponding syntactic

structures must indeed be nearly isomorphic: one cannot convert a semantic network into a syntactic

one by any deformation that would necessitate crossing die links of the semantic net. In addition,

since the semantic network includes no direct places for non-meaning bearing items -- articles,

inlections, conjunctions, and so forttt -- the program must ignore these items when it builds the

semantic network for a given input string.

-058 - Section 2.2

Coniputational models

Given the assumption of virtual isomorphism between syntactic and semantical structures, it is easy

to find assumptions in Anderson's program that reflect the syntactic constraints proposed by

transformational accounts. For instance, consider Anderson's program BRACKET that does the

actual job of converting an input string into its properly nested propositional bracketing. As its first

step, the program actually outputs the labelled bracketing below:

(a) The man who robbed the bank had a bloody nose. =S
(b) [[the[]man[who robbed[the[]bank[]]]]had[a[bl oody]nose[]]]

As one can see from this example, the BRACKEF program presumes significant syntactic knowledge.

For example, the empty pairs of parentheses in the above bracketing assumes knowledge of a phrase

structure schema for Noun Phrases of the form,

Noun Phrase=(optional modifier) noun morphemes (optionalmodifier)
Modif ier=>proposition (opt ional modif ier)

Given this schema, empty brackets denote unfilled optional modifier slots. Anderson mentions that

this schema implies some restrictions on the structure of language, e.g., that a Noun Phrase is

composed of at least a noun. Of course, this observation follows trivially from virtually every

formulation of phrase structure rules; compare the X-bar theory.

Likewise, the graph deformation condition mirrors the context-free restrictions adopted in almost

every careful formulation of phrase structure rules.

Once BRACKET converts die input sentence to its nested form, LAS enters its actual acquisition

phase. The learning component of LAS sets up an ATN network corresponding to die bracketing
provided, then labels die states of the ATN network by referring to the lexical features retrieved from

the word tokens, and collapsing the new network with previous, stored forms on the basis of

common category features.

At first glance, LAS's capabilities parallel the acquisition procedure of die research reported here.

But crucially, the bracketing program -- the component that maps between surface string and

predicate-argument structure -- is assumed.

- 59 - Section 2.2

Computational models

Consider an input string where constituents are displaced from their canonical positions:

(a) (surface string)
(b) (canonical)
(c) (predicate-argument)

Who didJohn tell Bill to kiss?
John did tell Bill to kisswho?
(tell (John, Bill (kiss (bill, who)))

LAS assumes an ability to construct the canonical form (c) from the input string and situational

context alone (given the graph deformation condition and certain other restrictions). The view that

LAS assumes a knowledge of syntax is reinforced by its focus on just content words -- nouns and

verbs -- rather than grammatical function words. It is generally agreed that function words such as

the in the red book serve in the recognition of constituent phrases -- this is just how PARSIFAL

works. While it is true that function words by and large do not "bear meaning",6 they do bear

syntactic weight; presumably, that is their function.

Thus, LAS really does little acquisition of syntactic transformations. Rather, LAS acquires the ability

to cluster content words into equivalence classes corresponding to the labels on an

already-constructed bracketing, and can also extend simple phrase structure rules into more complex

(and recursive) expansions. In brief, LAS can acquire part of the base component of a grammar, not

its transformational component; to this extent it overlaps with the X-bar theory of phrase structure

acquisition presented in Chapter One. However, additional theoretical machinery must be imported

to account for the acquisition of the rules that are quintessentially human -- rules such as

Subject-Auxiliary verb inversion in English.7

6. Although even this is not quite so: consider the relationship between quantification and articles: the book vs. a book.
7. For a more detailed analysis of the strengths and weakenesses of LAS. see Pinker (1979 cf. footnote 4 above.

-060 - Sedion 2.2

Computational models

2.2.2 Induction theories

Where Anderson's approach is based on a specific computational representation of language, other

strategies for language acquisition by computer presume that learning can proceed using a very

general inductive apparatus, a specialized extension of string pattern-matching. In Wexler's

framework, this strategy throws the burden of learning onto the acquisition procedure P and possibly

the properties of the information 1. Structural restrictions on the form of grammars Q play next to no

role -- in fact, as one might expect from a strategy grounded in induction, the game is played

backwards. All the properties of grammars are deduced from P, rather than first determining the

structure of grammars and then formulating a P. String induction thus ignores any special

characteristics of human languages that might restrict the hypotheses that P must ponder; to take up

this slack, theories of this type are ineluctably drawn to elaborate learning procedures or heroic

information training sequences.

All "inductive inference" methods rest on a foundation of generalize-generate-and-test (g-g-t):

1. Start with a set of grammatical examples provided by a teacher.

2. Generalize (usually, as abstract as possible) a set of rules from (1).

3. (Opronal) Prune the search for possible plausible rules in (2), using

some metric (e.g., generality).

4. Generate a set of candidate strings from the rules of(2).

5. T01 the candidates, submitting them for review to the teacher.

6. Iterate, returning to step (2).

Not surprisingly, this six-step procedure parallels -- with the addition of feedback -- artificial

intelligence search techniques e.g.,in chess; (2) and (3) are like a plausible move generator, and (4) and

(5) together act like an evaluation measure for the possibilities enumerated by (2). Just as in computer

chess, the practical success of this method hinges upon good heuristics for discarding the enormous

number of blind alleys opened up by the move generator. Perhaps more surprisingly, the g-g-t

technique has a tradition of being periodically "discovered", even though it is quite "ancient"

(Solomonoff [19581 or Miller and Chomsky [1963]). For example, Knobe and Knobe's A Methodfor

Inferring Context-free Grammars [19761 follows essentially die Solomonoff technique

point- for-point.8

8. See Appendix 1 for details or the Knobe and Knobe work.

-61- Section 2,2

Computational models

Clearly -- again just as in computer chess -- the pruning heuristics of step 3 need not correspond in

any way to the procedures people actually use to acquire language. In fact, ignoring the known

structural constraints on human languages practically precludes psychological validity. Without such

constraints, "g-g-t" syntactic acquisition algorithms must remain variations on a basic six-strp theme;

their incorporation of psycho-linguistically implausible training sequences and negative

reinforcement seriously undermines their linguistic soundness.

Finally, what sorts of languages do these methods actually acquire? For those string induction

programs that do not represent their knowledge as a grammar, evaluation poses difficulties; only the

set of successfully processed strings can serve as a gauge, and such a list is usually not available in

published reports. For g-g-t programs that build a grammar-like corpus of rules, while interesting

context-free programming languages and very restricted subsets of natural languages have been

tackled, no program has approached the acquisition of a descriptively adequate grammar for natural

language.

Solomonoff: Discovering phrase structur nikU L958 19591

Solomonoffs idea for inducing a set of phrase structure rules from a subset of example strings

presents the prototypical g-g-t strategy; several others arc presented in Appendix 1. The core idea

can be presented with an extended quote from his original 1959 paper:

The method used for phrase structure languages consists of "factoring" the set of
acceptable sentences into the (Boolean) union of "products" of certain sets of phrases.
Here, we use the term "product" to denote concatenation. If a1 is a member of the set of

phrases A, and b is a member of the set of phrases B, than ab. (the concatenation of a.
and b.) will be a member of the set of phrases designated by A x B. For example, suppose

the set of acceptable sentences as a b, a c, b b, and b c. We could completely factor this
set into the "product" of the sets A =(a, b) and B=(b, c).
The method of factoring that is used here involves a "teacher". If it is suspected that all
of the members of A x I are acceptable sentences, and only a few of these members have
been given to the machine -- (say a c and b b) -- then to verify this "suspicion" the
machine would have to ask die teacher if a b and b.c were acceptable sentences....
Usually, it will not be possible to find a single pair of factors that yield the entire set of

acceptable sentences, so we will then use the union of several such products. ... We shall
assign more utility to those factor pairs that produce die largest numbers of acceptable
sentences.... It is clear that we will soon have an enormous number of factor sets. We will

use the utility concept to reduce this number to manageable proportions by giving prior
consideration to sets of high utility. (1959, pages 7 and 8).

Note that the Solomonoff method incorporates each of the six steps of the g-g-t procedure.

-62 - Section 2.2

Computational models

Solomonoff offers as well several alternatives for pruning factor trees and refining plausible move

generation. Alternative factors can be cut by a Bayesian probabilistic utility formula or by a simple

numeric weighting (if IAI = number of elements in a set of phrases A then just use IAIIBI). The

number of factors to consider can be trimmed by adopting a suggestion of Miller's and Chomsky's

[1963] to search for "cycles", ordered pairs of phrases that can be arbitrarily inserted or deleted in a

string because one remains in the same "state" of the phrase structure rule. The learning program

takes this invariance as evidence for phrase structure constituents, but of course it must generate each

possibility and submit it to the teacher for confirmation. (The need to test a hypothesized rule via

teacher confirmation is common to most g-g-t procedures; see Appendix 1 to this chapter for

additional examples.)

A second, related device works in conjunction with the rule generator to hunt differentially for

recursive rules. For example, suppose the presented example string was John is the boy that kissed

the girl, and further suppose that the system could classify this string as the containing the pattern,

Noun Verb Noun that Verb Noun. The procedure would then start deleting items from the sample

string and submitting the truncations to the teacher for verification until it found the smallest unit

still grammatical -- here, the sequence Noun-Verb-Noun (John is the boy). Next it would use this

minimal grammatical set of items to generate new test combinations, testing for recursion by adding

repetitions of the items previously deleted and again handing the results to the teacher for judgment.

In our example, it would add back repetitions of die sequence that Verb Noun to its core triplet

Noun-Verb-Noun; that is, it would generate strings such as John is the boy that kissed the girl that

kissed me. If the teacher ruled the new string grammatical, the system would infer the rule,

X=>Xthae N V; X=bN V -- about the right rule for right-branching sentences of this sort. Infinite

recursion would be deduced on the basis of just a few appropriate examples.9

While this approach seems very powerful, as Solomonoff himself notes it relies on a deliberately

designed training sequence -- including negative examples -- for its success. This is because in order

to avoid missing any possibly recursive rules, the program is designed to over-generalize wildly. It

does not pay attention to the structural characteristics of the strings so generated, but only the

recursive properties of the strings as simple sequences of tokens. This spells trouble for die

Solomonoff procedure because, as Chomsky was the first to demonstrate, two strings can be almost

identical in terms of surface word order, and yet be radically different in meaning.

9. Although Solomonoff did not computer implement these procedures.,a close kin of (he Solomonoff mehod was utilized by
livar and Finkelsein [1964] for the induction of integer string sequences. For other examples. see lliermann and Feldman.
1972; Fu and Booth, 1975.

Section 2.2-0630-

Computational models - 64 - Section 2.2

Consider the examples from Chomsky (1965, page 22:

Iexpected John to be examined by a special ist.
I persuaded John to be examined by a special ist.

Although these two strings are almost identical, and would probably be analyzed as such by

Solomonoffs procedure, they clearly are different in meaning; in the first example, a specialist is the

direct object of the verb expected and John is the direct object of examine (something roughly like, I

expected a specialist -- a specialist will examine John). But in the second sentence, John is the direct

object of the main verb (I persuaded John -- a specialist will examine John). The problem is one that

has been noted previously: in the first sentence, the proper argument of the verb expected~specialist)

has been moved from its canonical position. Since the Solomonoff procedure can only accept the

surface order of tokens as the evidence on which to base its rules, it can draw no conclusions about

displaced elements. Thus, by design, it cannot deal with an important class of syntactic phenomena;

at best, it could only acquire the base phrase structure rules of a grammar.

The moral here should be apparent. A program that cannot represent important knowledge of

grammatical structure cannot acquire such knowledge.

2.2.3 Systems Based on Distributional Evidence

Some of the earliest conputational models for language acquisition employed a style quite different

from the "generate, generalize, and test" methods. Most of these were statistically or distributionally

based. That is, they drew inferences about how words could be arranged in strings on the basis of

statistical or distributional evidence provided by example strings.

Typical of this line of attack was an early program by Kelley [1967]. Kelley's procedure was designed

to deal with the very earliest stages of human acquisition -- the production of just two or three word

utterances. The program developed a classification strategy of words by attempting to categorize the

observed words of sentences provided by the outside world into two categories -- things (nouns) and

actions (verbs) -- and receiving explicit positive and negative feedback about its success from the

programmer. Grammatical function words were ignored.

For instance, if sam ple strings such as Sue kissed Aitch, Aiitch kissed the dog, the dog kissed Atitch,

and so forth were observed, a distributionally-based system would conclude that Sue, Aitch, and the

dog were all in one equivalence class, since they all preceded or all (almost) followed the word kissed.

If we dubbed this equivalence class a "NounPhrase" the such a procedure might be said to acquire a

Computational models

rudimentary rule, Sentence=t>NounPhrasc Verb.

Because distributional procedures such as Kelley's are fundamentally based on experience with large

amounts of data without any underpinning in grammatical structure, the objections to Solomonof's

procedure apply to them as well. Perhaps more tellingly, the fundamental assumption on which

distributional procedures are based presume that the important generalizations about the structure of

a language can be defined on the basis of concatenations of equivalence classes of words. Although

some facts about language can be captured by a concatenation analysis, its applicability as a complete

model for syntactic acquisition is in doubt. Since Chomsky's early work it is well-known that rules

about what words precede and follow one another cannot be a sufficient account of our "knowledge

of language".

To summarize, most computationally-based theories of language acquisition do not meet the three

Wexler criteria for an adequate theory of acquisition. They fail to account for the acquisition of

human syntactic abilities as represented by grammars, and so do not meet the test of descriptive

adequacy. The reason is revealing. Most computationally-based theories rely heavily on

computational rather than grammatical constraints for their success. By systematically ignoring what

is known about (human) syntactic structure, one almost inevitably arrives at a theory that is at least

syntactically descriptively inadequate.

- 65 - Section 2.2

Input to the Child

2.3 1: The Linguistic input to the Child

Every growing child receives a barrage of experiences from the environment, and yet somehow

emerges from this welter of information with the sophisticated and coherent behavior called

language.

Considering this experience, one should distinguish between two sorts of information that might aid

the language learner in the acquisition of syntactic knowledge. The environment might provide

direct syntactic information, either in the form of grammatical sentences uttered by adults, or

(possibly) negative reinforcement via correction of the child's syntactic mistakes. But, as is well

known, a sentence has additional structure beyond its purely syntactic form-- namely what the

sentence means. If the child can enlist the semantic interpretation of a sentence to determine whether

the syntax makes sense, then this knowledge could furnish beneficial feedback.

Incorporating the aid of this interpretation process makes perfect sense within the framework of

current linguistics. In these theories, semantic interpretation takes place in a component that utilizes

one of several alternative syntactic forms, e.g., the d=Wistucure of a sentence [Katz & Fodor, 1964],

or an annotated surface structuE [Chomsky, 1973]. Whether these theories are correct is of no

concern for the moment. What is crucial to note is that they describe the process of interpretation as

a mapping between a syntactic form and its "meaning." Therefore, If child can somehow "make

sense" of an utterance even while (perhaps) not comprehending its syntax, one piece out of three

(syntactic form, mapping, meaning) is now known; in principle, this information is of value in

constructing the other two, that is, in learning syntax.

The introduction of a semanic intEretation process is important for another reason. Some may

have felt uncomfortable at the first chapter's near silence regarding other sorts of learning that

children clearly engage in-- e.g, the acquisition of what might be loosely called "concepts"-- for

example, what "over" or "a red blek" means. Don't these abilities play some part in learning

syntax? Of course; notice that to solve the task of "making sense" of an utterance, one can invoke

the entire arsenal of a child's cognitive devices. In fact, it is precisely here, in the interpretation of

situations, that the enormious "conceptual" abilities of the child probably play their role. But neither

is it true that these "other" abilities suffice for language, as Culicover and Wexler stress:

.. we do not intend anything like die suggestion that syntax isn't necessary because
people can understand from situations. It is obvious that adults understand the structUre
of sentences so that they can correctly interpret utterances even when, for example, the
referents are distant in time and space and there is nothing in die non-linguistic
environment to hint at the interpretation to be given to die utterance. It is the learning of
this ability that has to be explained. (1980, page 2-67)

- 66 - Section 2.3

Input to the Child

As pointed out in Chapter One, it is not the primary business of this report to engage the questions of

general conceptual learning directly. Explaining syntactic acquisition seems difficult enough;

whatever general abilities are necessary to discover the "meanings" of utterances are simply assumed.

What then of the purely syntactic evidence a child employs to construct a grammar? Here one would

expect psycho-linguistics-- the observation of young children-- to provide the answers.

Unfortunately the history of early child language studies is an ambiguous and stormy one. Debate

rages over the functional role of a mother's speech to her child. Are children "corrected" for making

mistakes in language? Does a mother's simplified spoken "baby talk" (alias motherese) lead the child

through a sort of guided learning syntax course? Settling these questions would have important

consequences for any empirically motivated theory of syntactic acquisition.

We shall call the correction question the problem of negative information, i.e., of negative

reinforcement (by the mother) of ungrammatical utterances by the child. (The fact that children

receive positive or grammatical examples has not seriously been questioned.) The second issue, the

effect motherese, presumably derives from the first-hand casual observation of mothers talking to

their babies or perhaps the suspicion that child language acquisition should parallel the adult

experience in learning a new language via a sequence of graduated exercises. To anticipate the

conclusions, to the best of our current knowledge, children receive little in the way of explicit correction

for syntax, and small benefit from simplified motherese.

Negative Information

Clearly parents do not present sentences to their children in a systematic or tutorial fashion, explicitly

pairing examples with the labels "grammatical" or "ungrammatical." Even so, many computational

models of language acquisition have ignored this fact, and stipulated such training sequences. The

program reported on in this research abides strictly by the empirical evidence, and does not admit of

this kind of teaching. 10 However, negative information might be presented more indirectly, in the

form of explicit correction of the child's speech. Recall that this is an important point because of the

enormous gap between the class of (otherwise unconstrained) grammars learnable by only positive

data and the class learnable by both positive and negative reinforcement [Gold, 1967). With only
positive data, almost no (otherwise unconstrained) grammar is learnable; but negative and positive

examples permit almost any grammar to be learnable. What then are the facts concerning parental

correction of child speech?

Very few child language studies have confronted the issue of parental reinforcement directly; a

10. Negative information was also used in Winston's concept-learning program. 'Ibe programni built up a network-structured
concept of, .y, an arch by making powerful use of a teacher's presentaion of non-arches coupled with the warning, ftis it
no, an arch

-067 - Section 2.3

Input to the Child

summary of most of these is displayed in Figure 2.2 below. Their conclusion is nearly unequivocal:

there is but meagre adult correction of children's syntax. Approval and disapproval are not primarily
linked to the grammatical form of an utterance, but rather to its meaningfu/ness [Braine, 1971, pages

159-161, anecdotal evidence; Brown and Hanlon, 1970J.

The Brown and Hanlon study in fact tested for the possibility of correction directly, comparing the

proportion of syntactically right/wrong utterances (drawn from a corpus of child speech) against the

corresponding occurrence of parental approval/disapproval. Statistically, there was no effect of

correction. Further, mothers seemed to understand ungrammatical utterances perfectly well, and so

were not likely to even respond differentially to them. On the other hand, meaningless sentences

tended to evoke a correction. They present several examples that summarize the statistical results:

child utterance parental response
Draw a boot paper. That's right. Draw a boot on paper.

(approval)

There's the animal No, that's a lighthouse.
farmhouse. (disapproval)

The remaining studies listed in Figure 2.2 concur; adults correct the semantic, not the syntactic errors

of children. Though the final answer is not yet in, given the nearly total absence of evidence for

negative reinforcement of children's syntactic errors, it would seem wise to avoid such an assumption.

-068 - Section 2.3

Input to the Child

Properties of the mother Responsiveness of the child

Correction

Well-formed-
ness and
meaningfulness

Explict-
ness or
literalness

Repetitive-
ness

Expansion

Brown and Hanlon, 1970

Newport, 1976; Newport,
Gleitman, 1978

Schneiderman, Shatz,
Gleitman, 1979

Newport, Gleitman,
Gleitman, 1977

Newport, Gleitman, and
Gleitman, 1977

McNeill, 1966 (anecdotal)

Shipley, Smith, and
Gleitman, 1969;
Hluttcnlocher, 1975;
Sachs and Truswell, 1978;
Gleitman, Glcitrnan,
Shipley, 1972

Schneiderman, Shatz, and
Gleitrnan, 1979; Shatz,
197x

Newport and H. Gleitman,
1978; Francese, Newport,
and Gleitman

Cazdcn, 1979; Nelson and
Bonvillian, 1979

Figure 2.2 - Studies examining possible adult influence
on language growth.

(from Gleitrman, 1979)

Molicrese: specialized input?

An oft-promoted idea is that "babytalk" -- mothers speaking in special, simplified ways to their

children -- might be a major determinant of syntactic acquisition.11 In its strongest form this
proposal asks, can the external environment be so structured as to eliminate the need for constraints
on possible grammars or a sophisticated acquisition procedure? A weaker result would be to discover
that babytalk merely bolsters syntactic acquisition while still necessitating constraints on grammars
and the acquisition procedure. This facilitation might be revealed, say, by changes in the rate of
acquisition. In principle, a spectrum of surface effects might be observable, ranging from large shifts
to modest ripples in the course of acquisition.

When one considers the evidence carefully, the effects of motherese appear slight. On the theoretical
side, by simplifying the input to the child we only restrict the information available to construct a full
grammar:

11. The basic framework for this section is adopted from Culicover and Wexler's discussion, Chapter 2[19801.

-069 - Section 2.3

Input to the Child

Simply, less information is being given to the learner tWan before. . . . information is

being restricted. Thus, limiting input will make a stronger nativist case, rather than a
weaker one....
We do not mean to claim that sequential characteristics of the input can play no role in

learning. Rather we are claiming that such aspects of the input cannot play such a major

role in learning that there is no need for special linguistic constraints.
[Culicover and Wexler, Chapter 2j

Of course, one might object that perhaps a (supposed) carefully tailored sequential form of motherese

could case the path of syntactic acquisition, leading the language learner by short steps to adult

grammar. However, here too the evidence points the other way. The most thoughtful empirical work

demonstrates that motherese does not greatly aid the course of syntactic acquisition -- despite claims

made to the contrary. Here, as Culicover and Wexler state, there are three possible empirical findings

which

would demonstrate the crucial role of [motheresel in language acquisition, doing away

with the need for special structural principles: (1) speech to children is simple (compared

to speech to adults) (2) speech to children becomes more complex as a child's

psycholinguistic abilities increase (in a causal sense) and (3) the more that a mother uses

the special (simple) properties of [motherese] the more will her child develop language.

The best, most carefli consideration of all three questions is to be found in Newport, Gleitman, and

Gleitman, Mother, I'd mther do it myself some effects and non-effects of maternal speech style, [19771.

In particular, they examined closely a whole host of complex statistical issues that arise in

developmental studies of this kind, most prominently the possibility of spurious correlation. This

error comes from mistaking a correlation for a causal relationship, here the possibly incidental

connection between characteristics of maternal speech and child language growth. For example, a

child's language abilities presumably grow faster when a child is younger, and at the same time the

mother's speech becomes more "complex" (at least in the sense of length). The two factors are thus

highly correlated, but there need be no causal relationship between the two -- they simply co-vary.

This fallacy is distinctly possible with motherese effects, unless other intervening developmental

variables are held constant. Most studies have neglected this pitfall; Newport, Gleitman, and

Gleitman focussed upon it:

Notice that the finding that Motherese exists cannot by itself show that it influences

language growth, or even that this special style is necessary to acquisition-- despite

frequent interpretations to this effect that have appeared in the literature. (page 112)

- 70 - Section 2.3

Input to the Child

When Newport, Gleitman, and Gleitman controlled for other possible variables influencing language

growth, they discovered that motherese shaped the child's language acquisition only modestly:

... certain highly limited aspects of the mother's speech do have an effect on
correspondingly limited aspects of the child's learning. Many other identifiable special

properties of Motherese have no discernible effect on the child's language growth. The

maternal environment seems to exert its influence on the child only with respect to

language-specific structures (surface morphology and syntactic elements that vary over

the languages of the world), and even then only through the filter of the child's selective
attention to portions of the speech stream...
(page 131)

The assumption that the simplicity of a mother's speech to her child is asset for learning language is

likewise just an assumption. After trying out a variety of different measures of "simplicity", they

conclude that motherese contains more optional movement and deletion transformations than adult

speech:

Overall, then, "syntactic simplicity" is a pretty messy way to characterize Motherese.

(page 151)

Newport, Gleitman, and Gleitman therefore reported,

. . The point is that demonstrating that speech to children is different from other speech

does not show that it is better for the language learner. Most investigators have jumped

from the finding of a difference, here replicated, to the conclusion that Motherese is

somehow simple for inducing the grammar... (page 159)

Other evidence supports NGG'S finding. Perhaps most importantly, early syntactic acquisition seems

unperturbed by major disruption of the input I. Gleitman [1979J has assembled a summary of

research on subjects whose input I is sharply limited compared to nonnal children, reproduced as

Figure 2.3 below. For example, deaf children of normal parents presumably cannot receive even the

example sentences that normal children can. Yet they seem to spontaneously produce via

home-grown sign language ("home sign") the same rudiments of early syntactic rules as normal

children, in the same developmental sequence. The course of language acquisition in other

handicapped children and in other cultures (represented by the other entries of the Figure 2.3)

confirms this finding over a range of input limitations.

Section 2.3- 71 -a

Input to the Child

When all of the best current evidence is thus taken ogether, it points to a single, easily stated result: a

minimal role for input I in syntactic acquisilon.

Modality
Presumed
Condition

Speech Sign Language

base/surface English: Newport 1976 Dearchildren of signing
string pairs Tamil: Williamson, parents: Newport cl aL 1977

under normal 1978
conditions Newport, Gleitman, and

Gleitman, 1977

Diminished Newport, Gleitman, Isolated deaf children:
opportunity Gleitman, 1977 Feldman, Goldin-Meadow,
for (certain mothers) Gleitman, 1978
determining
surface Hard-of-hearing: Dutton
structure and Gleitman, 1979

Diminished
opportunity blind: Landau and blind child of signing
for Gleitman parents (no examples)
determining
appropriate base

Also Snow [19721: Cross [1977]; Blount [19751; Nelson [1978].

Figure 2.3 - Populations with varying opportunities to receive inpul
(from Glcitman, 1979)

- 72 - Section 2.3

Formal Luguage Theory

2.4 Q: Formal Language Theory Results

Because of the well-known isomorphism between formalized mathematical models of certain

grammars and classes of computable functions (e.g., context free grammars and push-down stack

automata), language learnability theorems can be obtained by exploiting the decideability results of

recursive function theory. Care must be taken, however. The power of the mathematics can blind one

to the abstract character of the learning situations so modeled. Until the work of Hamburger,

Culicover and Wexler, [1975, 19801 the formalized models deployed for learnability results did not

incorporate many of the restrictions usually imposed in precise accounts of transformational

grammar; as a result, most sufficiently rich gran :Iars were found to be "unlearnable." Even so, these

idealizations provide upper and lower bounds on what is or is not learnable, delimiting rough

boundaries that can serve as guideliies to more empirically based theories. For example, the

theorems of Gold [1967] were invoked earlier to show the power of negative reinforcement in

learning; likewise, the Gold results demonstrate that, even considering an ideal learner with no

memory or attentional limits, transformational grammars are aoi learnable from only positive data.

The earliest theorems on formal learnability derive from this seminal work of Gold [1967]; these are

listed in Appendix Two below. What do these results say? If the class of languages available for

hypothesis by the learner includes at least one language of infinite cardinality (that is, at least one

language that consists of a potentially infinite set of strings, such as English), then the learning
procedure Cano settle upon the correct language if it has only positixc evidence to draw upon. The

result hoids even if the acquisition procedure has infinite time and computational resources at its

command. The "target" set is simply to large -- even if that target is any of the usual languages of the
generative hierarchy (finite state languages, context-free languages, or beyond). In contrast, if

negative data is admitted, then any recursively enumerable set of recursive languages is learnable in

the limit

While numerous extensions and modifications have been made to Gold's basic results, 12 their basic

import still seems clear: Brute computation alone does not solve the problem of language

acquisition.

What then is to be done to achieve learnability? Turning to our tri-partite theoretical framework, the

only alternatives are to modify either C 1, or E.

12. For a review, see Pinker [19791. Among these are: allowing an approximation to Ihe right language [Feldman 1972;
liermann and Feldman, 19721: [Wharton, 19741: ordering the presentation of examples (Feldman, 19721; use of filtering or
evaluation measures [Wharton. 19771 in the enumeration itself. Some of these tacks lead to modest improvements: certain
simple languages can be identified "in the limil" [Out the efficiency of these procedures is still extraordinarily low, and they
still presume that the learner can store all the sentences (strings) ever encountered.

-M730- Section 2.4

Formal Language Theory

Increasing the power ofE is probably futile, for two reason that Wexler points out. First, by the usual

definition of effective computability (Church's thesis), we know that there is no stronger sense of

computable procedure than the one we have now. Therefore, once we have shown that there is no

effective procedure for selecting a grammar using positive-only data, all hope must be abandoned for

a more powerful P that might work. Yet things are even worse than this. Not only is there no

computable function to learn from unconstrained classes of grammars, there is simply no function at

all. [Culicover and Wexler, 1980, page 2-34] Thus, moving to more powerful P's -- even
non-computable P's -- is doubly fruitless.

The learning procedure adopted in the Gold proofs is unreasonable in yet another way. In the Gold
paradigm, the learner hypothesizes and rejects entire grammars for a language at each step. This

seems manifestly to conflict with what is known about children; they seem to more gradually march

to a correct grammar for a language [Brown, 1973J. Further, the Gold method of guessing a grammar

based on the entire sample of sentences requires that the learner keep in memory all the sentences

(strings) encountered so far, a memory requirement that borders on the absurd.

What about I? This chapter's section on the linguistic input to the child demonstrates that, on

empirical grounds, the data input cannot be enriched to include negative reinforcement (presentation

of ungrammatical example sentences). However, the outlook brightens if other kinds of input

enrichment are presumed. Namely, if one supposes that the child can build some structure

corresponding to the "underlying meaning" of an utterance (from, say, situational context) then
Hamburger and Wexler [19751 have proved that a transformational grammar is learnable. This

amounts to proposing that the learner is presented with the g&g< (b, s> where s is the surface string of
words of the sentence, and b the "deep structure" [or perhaps a closely related predicate-argument

structure].

At last we have a positivc learnability result, one at least compatible with the kinds of empirical
observations that were made in this chapter's section on linguistic input to the child. Unfortunately,
the Hamburger and Wexler result clashes with empirical reasonableness in another way: the example

sentences required for learning are enormously complex. The number of nested clauses in the

presented example sentences (their "degree of embedding") must be huge, on the order of several
hundred thousand, for the procedure to work. One can safely assume that no child ever hears

sentences of this complex. Even this positive result fails to pass on empirical grounds.

There is but one remaining alternative: to supply additional restrictions on the class of possible
grammars that the acquisition procedure can hypoihesize. As Chomnsky puts it, perhaps "the child

approaches the data with the presumption that they are drawn from a language of an antecedently
well-defined type." [1965, page 27] lhe goal of this research is to fill in the details of Chomsky's

statement, to find out just .wbo antecedently defined type the child presumes a language to be.

-0740- Section 2.4

Fornal Language Theory - 75- Section 2.4

Ideally, this means we would like to completely characterize the class of possible natural languages,

determining just what properties they possess that make them learnable. Further, the orientation of

this research demands that the resulting model should be computationally and psychologically

plausible.

Having laid down these theoretical criteria, the next chapter outlines the design of an algorithm that

is intended to meet them.

Appendix 1: Other computational language acquisition models.

There is not space enough in this chapter to mention all the models of language acquisition that have

appeared in the literature. For an excellent survey of formal models of language acquisition, the

reader is referred to Pinker's article in Cognition [1979].

To give some idea of the variety of other work that has appeared in this vein, below are sketched

other g-g-t, distributional, and "heuristic" acquisition models.

1..UhriM

Uhr's language acquisition program is statistically-based. As summarized by Siklossy [19721,

By a process of string matching and statistical learning, Uhr's programs attempt to
translate strings from one [natural language(NL1) into strings of another (NL2). The
programs are insufficiently documented to explain their structure in detail, but from the
output exhibited, several limits appear: the idiosyncrasies of NLI create difficulties for
the program, and cyclical behavior instead of continuous learning sometimes develops.
[page 2891'

2. Knobe and Knob,.122
Knobe and Knobe's Methodfor hferring Context-free Girammars presents a g-g-t procedure in more

modern dress, viewing the problem from the vantage point of computer science, not linguistics:

We can view the [grammatical inference] problem as an example of the general inference
problem. We chose to take as broad a view as we could. Thus, the part of our work that
is specific to grammatical inference rather than inference as a whole, is our notation,
BNFIBackus-Naur form]. This notation has been used in many other contexts with
considerable success, and we therefore do not consider it a significant restriction. ... We
try to make as few assumptions as possible based on observations of the use of languages.
(1976, pages 129, 130).

Given this viewpoint, it might be expected that Knobe and Knobe would adhere to a strict g-g-t

approach. They do; their program:

13. The original reference is not reviewed herc, but Uhr's program probably resembles his other work: a statistical weighting
scheme to adjust coefacInt.

Other computational models -076 - Appendix 2.1

Other computational models

--starts with examples supplied by a teacher

--abstracts from the examples to find plausible rules

--prunes the rules by applying a metric of relative generality:
(a) prefer short rules to long rules
(b) prefer a large terminal to non-terminal ratio
(c) prefer recursive to non-recursive rules

--tests the rules by submitting a randomly selected
subset or an exhaustively generated sub-sample of strings
to a teacher for review.

Knobe and Knobe introduce additional heuristics to repair over- and under-generalizations, by

backpatching. Each time a new rule is added, the program examines AUJ previous rules to determine
whether revisions are necessary; this entails a thorough check of all rules that interact with the newly
acquired one.

Through these enhancements to a basic g-g-t, the program succeeds in mastering interesting context
free grammars, e.g., arithmetic expressions with simple variables and function calls. On the other
hand, left untackled are complex context free grammars or the combinatorial dilemmas involved in
backtracking to fix rules. As with Solomonoffs method, the program relies on a teacher, a good

teacher, for its accomplishments.

3. Siklossvy.2I
ZBIE, Siklossy's program, receives as input paired natural language strings and their representation in
a functional language, FL. FL serves in the role of Anderson's network memory representation,
providing an "underlying form" that attempts to capture a kind of pictorial semantics. For example,

the sentence,

the hat and the book are in the drawer

would have as its FL form,

(be(in((and hat book))((drawer)))

As its "grammar" the program outputs a set of translation rules that map the presented language
strings to forms in FL. Siklossy's learning prcedure P thus must construct new translation rules by
recursively matching FL forms to NL suings. This matching occurs even down to the level of

- 77 - Appendix 2.1

Other computational models

individual words; for example, the program infers lexical entries by simply pairing off tokens in the
input string with FL. Given the initial rule:

girl is here-4
(be (girl) here)

The program will acquire:

boy is here
(be (boy) here)--4
is (-+be
here4-- here
boy+--4 boy

Unfortunately, the program requires a 1-1 mapping between tokens in FL and NL -- it will fail on the

string, a boytis here.

ZBIE basically acquires labels for words. This must be so, because FL forms come already parsed;

the acquisition of syntactic rules is not addressed at all. Even as a token-to-token mapper, the

program's repertoire is limited, mastering only simple phrases. As Siklossy states, ZBIE was simply

not designed to simulate the language learning behavior of human beings.

-0780- Appendix 2.1

Formal learnability results

Appendix 2: A Brief list of Gold's formal language learnability results

Theorem [after Gold, 1967J: No recursively enumerable list of recursive
languages is learnable from positive-only examples.

Theorem [Gold, 1967: Any recursively enumerable list of recursive
languages is learnable from positive and negative examples (so-called
informant presentation).

Theorem [Peters and Richie, 1973]: Unconstrained transformational
grammars on a single phrase structure base form a recursively enumerable
set of recursive languages.

Conclusion: Unconstrained transformational grammars are not learnable
from positive-only (grammatical) examples (so-called text presentation).

Semi-formalized versions of the terms "learnable" "text presentation", "informant presentation", and

"learning procedure":

Learnable: A procedure P larns a language L if and only if after time tn P
guosses a grammar Gi that generates L and then never changes its guess.
[or changes only finitely often] (= "identifiable in the limit" in Gold's
terminology)

Text presentation: First, discretize time to %, t1 , . . . At each ti, P is

presented with only grammatical examples (postive instances of strings
from the language L).

Informant pieseniagin: At each time step t, P is presented with an
example string from the language along with an indication that the
example is or is not a member of the language L

ILearning procedure E: After each example is presented, P has the option
to select a new grammar as the hypothesized generator of L or else retain
the grammar currently hypothesized.

-079 - A ppendix 2.2

Overview of the Chapter

The Acquisition Procedure

3.1 Introduction and Overview to the Chapter

The first two chapters set out the particular methodology of this research:

First, to adopt the generative grammarian's view that syntactic knowledge
can be represented as a grammar or a roughly equivalent computational
form;

Second, to posit that the acquisition of syntactic knowledge means
(roughly) the acquisition of a grammar;

Third, to aim for a minimally psychologically plausible acquisition
procedure, one that relies only upon the evidence known to be available to
children for syntactic acquisition.

This chapter presents the details of a LISP-implemented acquisition algorithm tailored after this

approach. To illustrate the algorithm the simple Verb Phrase base rule and auxiliary verb inversion

scenarios covered in Chapter One will be covered in detail. Recall that the procedure acquires its

new rules by attempting to parse presented sentences. The system will acquire its first base rules by

working its way through the sentence, Sue did kiss Mitch. About a dozen base rules will be acquired

along the way. After acquiring the rules to handle this sentence, in the second scenario the procedure

will be presented with the auxiliary-inverted form of the same declarative, i.e., Did Sue kiss Mitch?

Here, a single new switch rule will suffice to convert the question into a fonn parsable by the

grammar rules already acquired in the first scenario.

-0 - Section 3.1

Declarative sentence scenario

3.2 The Declarative Sentence Scenario

To begin, suppose that the LPARSIFAL system starts its life with ng grammar rules and just the two

bare X-bar schemas for nouns and verbs, as well as some way to label each lexical item as noun, verb,

or other.

More precisely, this research shall adopt a version of Jackendoffs X-bar system, and presume that the

initially provided base schema rules are:1

Noun Schema
N"

Specifi-ler-N" ' Complement-N"

Specifier-N' noun Complement-N'

Verb Schema
V"

Specifier-V" V' Comp ement-V"

Specifier-V' verb Complement-V'

And as stated in Chapter One, we associate packt-names with each component of the two schemas:

Phrasal category:
Associated packet-name: Pa se-N"

(speci ier-N") (comp ement-N")
Parse-specifier- Parse-complement-N"

(specifier-N') N (comp ement-N')
Parse-specifier-N' Parse-N Parse-complement-N'

As discussed earlier, this set of packet-names would be activated and deactivated in a control

sequence determined by the structure of the tree above. That is, the typical flow of packet activation

is:
Parse-specifier-N"=>Parse-specifier-N'= Parse-N=>

Parse-complement-N'= :Parse-complement-N"

1. The choice of tw ilveLs of "X" simcture for the schemas can he justified on the basIs of empirical data drawn from
linglish. 11e supporting arguments for this claim will not be covered in this report: see JackendolT (19771 for further
discussion.

- 81 -m Section 3.2

Declarative sentence scenario

Since specifiers and complements are optional, a parse is permitted to advance to a new packet if no

grammar rule can be built to deal with a potential specifier or complement; this feature will prove to

be important in the scenarios to come.

Converting this system to LISP is straightforward. To keep track of the current part of the schema

under expansion, the variable Ps-pntr is set to the name corresponding to the appropriate part of the

X-bar schema. Since the original PARSIFAL had to suspend processing certain phrases (like

sentences) while it parsed other phrases (for example, Noun Phrases), this method actually requires a

stack of Ps-pntrs, one pointer for each pending X" under active construction.

The data structure that the pointer steps along is likewise a straightforward mirroring of the X-bar

tree structure. The added twist is that in order to capture the evident nesting between the X" and X'

levels, one must add a corresponding bracketing in the list structure:

Parse-X" schema: (Parse-specifier-X (Parse-X') Parse-complement-X")

Parse-X' schema: (Parse-specifier-X' Parse-X Parse-complement-X')

Let us step through this structure to see how the list structure mimics that of the X-bar tree.

Recall first that PARSIFAL already creates certain nodes on demand -- Noun Phrase nodes are

created when the parser detects a "leading edge" of a Noun Phrase in the buffer. However, this was

done via the execution of grammar rules. We can replace this function of grammar rules by utilizing

the the phrase structure schemas in exactly the same way. That is, whenever an "X" schema is

entered (as sparked by the "leading edge" for a category of type X), a node of type X" is created and

pushed onto the current active node stack as the current active node. At the same time, Ps-pntr is set

to the first item-of the Parse-X" schema list, Parse-specifier-X", activating any grammar rules

associated with this packet. The Parse-specifier-X" portion will eventually be processed, with either

some tokens in the buffer successfully attached as the specifier of X" or else the X" specifier will be

left empty (the attachment of course is via the triggering of associated grammar rules). Because

specifiers are optional, the creation of the Specifier-X' attachment point itself is done purely on

demand: when a token is about to be attached to the X" as a specifier, it is joined via an intermediate

SpecifierX" node. If no X" specifier is discovered, then no such specifier node will be created (the

node will be non-existent in the final parse tree). Either way, an aach or the failure to trigger any

know grammar rules will increment Ps-pntr, setting it to the next portion of the Parse-X" schema,

(Pursc-X').

At this point, the next possible attachment must be an X' specifier to an X' node. Since the X' node is

obligatory in any case, the proper step is to automatically create an X' node and set it as die current

active node. This is done by exploiting the already-encoded bracketing around Parse-X' as a trigger:

-082-0 Section 3.2

Declarative sentence scenario

when Ps-pntr is advanced so as to encounter the left parenthesis around Parse-X', an X' node is

automatically created and pushed onto the active node stack. (In turn this shoves the current active

node, X", one level down. The X" becomes the current cyclic node above the current active node,

and so is still available as a trigger for rule pattern matching.)

Grammar rules associated with the first packet of the X' schema, Parse-specifier-X' are now free to do

their work, possibly attaching an X' specifier to the X'. In turn, the main lexical item X and a

(possible) complement to the X' node are dealt with. As soon as the X' complement parse is

completed, the construction of the X' node must likewise be at an end. Now LPARSIFAL can rely

on the automatic procedures of the original PARSIFAL. Detecting the end of the X' sub-schema (as

indicated by the closing right parenthesis in the schema data structure), the completed but as yet

unattached X' node can be dropped into the first buffer position, and then promptly attached by a

grammar rule to the X" node. The active node stack will be popped, revealing X" once again as the

current active node, and the Ps-Pntr can be advanced to the Parse-Complement-X" portion of the

base schema. Provided that phrase structure schemas can be properly triggered, this method provides

just the right set of phrase structure nodes so that grammar rules can operate. 2

A final word about the distinction between the X-bar and traditional phrase structure category labels.

It may have been noticed that the X-bar system has no distinguished "S"(entence) category label.

Instead, the node V" corresponds to the S. This move is not without theoretical ramifications (it has

been disputed in the linguistic literature). A full analysis cannot be presented here; however, some

justification for eliminating the special "S" node will be presented in the scenario immediately to

come. In any case, the correspondence between X-bar and the more traditional notation is as follows:

X-bar notation Traditional notation
V" S

V' VP (Verb Phrase)

N" NP (Noun Phrase)

With this preamble about the X-bar system implementation out of the way, suppose then that the

system is given the following sentence to parse:

2. 'Te original Shipman-Marcus packc-phrase structure scherne also employed explict flags to mark the optionality or
obligatoriness of particular phrase stricture components. In contrast. the X-tar method eliminates the need for this
information, since it is already encoded as part of the mi egory name iCitf, (Specifiers and complements are optional.) In
addition, a third flag that Shipman used to indicate the piasible arbitary repetition of certain phrase structure elements (e.g.,
adjectives) could probably be eliminated as part of the distinctive feature system of the X-bar theory.

083 - Ser.tion 3.2

Declarative sentence scenario -84 - Section 3.2

Sue did kiss Mitch.

Let us trace through the actions of LPARSIFAL as it works its way left-to-right through this

sentence. Before plunging ahead, it might be best to lay out just what rules LPARSIFAL will acquire

in interpeting this simple example sentence. Observe first that the sentence is in a canonical (for

English) Subject-Verb-Object order. No constituent movements are in sighL The grammar rules that

I PA RSIFAL acquires must reflect this simplicity; it should not acquire switches or insert traces that

mirror constituent movements. In fact, the procedure will have to acquire about eleven niles in

handling this initial sentence, as listed on the next page.

Declarative sentence scenario

The goal of the scenario is to show how these rules and no others will be acquired:

1&2. Noun attach rule #1:
Attach Sue as a Noun to an N', and then N' to the N" (Noun Phrase).

3. Subject attach rule:
Attach the Noun Phrase to the V".

4. Verb attach rule #1:
Attach the verb did to the Verb Phrase (V').

5. Verb attach rule #2:
Attach the verb kissed to a V'; generalize with Verb attach rule #1.

6&7. Noun Phrase rule #2:
Attach Mitch as a Noun to an N'; attach the N' to the N"; generalize with
Noun rule #1.

8. Object attach rule:
Attach the N" (Afitch) to the V' complement.

9. V' attach nile:
Attach the V'(kissed Mitch) to the V'.

10. V" attach rule:
Attach the V" (kissed Mitch) to the V' complement (did)

11. V' attach rule #2:
Attach the V'(did kiss Mitch) to the V"; generalize with V' nile #1.

- 85 -0 Section 3.2

Declarative sentence scenario

The numbering scheme in the list above refers to the order in which constituents will be attached in
the parse tree to be built for this sentence:

V"
3 1

1 0

2 1 4 "
N' V

did VKN8
sue 5\ N"

V 1 7
kiss N'

6
N

mitch

Given this sentence, the parser's active node stack and buffer are initially empty:

>Sue kissed Mitch.

Ihi Active Node St k

C: NILNIL/NIL

The Bubar
(empty)

Yet unseenwords: sue did kissmitch.

RULES ACQUIRED THIS SESSION:

(none)

Figure 3.1 - The initial stack and buffer state when
parsing a declarative.

LPARSIFAL must first engage in a special start-up operation, automatically filling the first buffer
position with the first token of the input stream. ibis procedure deviates from the original

-t86 - Section 3.2

I

Declarative sentence scenario

PARSIFAL design, but it is clearly necessary. The original PARSIFAL moved items from the input
stream into the buffer on demand -- that is, only when a grammar rule triggering pattern called for a
pattern match against the first, second, or third buffer cells. For example, suppose some of the
grammar rules in a currently active packet called for pattern matches against the first buffer cell, and
other rules demanded matches against the first and second buffer cells. To ajudicate such a match, at

least the first two items in the input stream must be pulled into the first two slots of the buffer.

However, since LPARSIFAL currently has no grammar rules, there is nothing to demand that any
input tokens to be read into the buffer at all. Without some way of automatically reading in at least

one token, the parser will simply stop dead.

The procedure must also create some initial current active node. Otherwise, there will be no node

available as an attachment point for items in the buffer. In the original PARSIFAL system, this

start-up difficulty was handled by a special initializing rule that created an S(entence) node to prod

the parse into motion, and as a side-effect set up that S node as the initial current active node and

activated two grammar rule packets as well:

(RULE INITIAL-RULE IN NOWHERE
[t] -- >
Create a new s node.
l(setq s c).
Activate cpool, ss-start.}

This solution seems ad hoc. For one thing, having a special rule to create S-nodes just for the initial

setup of a parse is unmotivated (and unnecessary) if in a! other cases "ordinary" grammar rules can

be used to spark the appropriate creation of S's. As mentioned previously, it is certainly true that S

nodes are created all the time in a data-driven fashion; as an example, take any embedded sentence,
such as Sue thought that I was kissing Mitch. Here, the embedded S I was kissing U itch initiates the

creation of an S node -- yet no special rule does the trick. Rather, a data-driven grammar nile detects
the tell-tale "leading edge" of an S -- a Noun Phrase followed by a verb -- and so creates a new S
node. Listed below are some of Marcus' PARSIFAL rules that dealt with the creation of S nodes in a
data-driven fashion:

-087 - Section 3.2

Declarative sentence scenario -88 - Section 3.2

{RULE WH-RELAT IVE -CLAUSE IN NP-COMPLETE
[=relpron-np] [t]-->
Label C modified.
Attach anew s node labelled sec, relative to c as s.
Activate cpool, parse-subj. wh-pool.

(RULE THAT-S-START PRIORITY: 5 IN CPOOL
[=comp, *that] [=np] [=verb] -- >
Label anew snode sec, comp-s, that-s.
Attach 1st to c as comp.
Attach 2nd to c as np.
Activate cpool, parse-aux.}

(RULE INF-S-START PRIORITY: 5. IN CPOOL
[=*for][=np] [=*to] -- >
M~andles the marked case; always active%
Label anewsnode sec, comp-s, inf-s.
Attach 1st to c as comp.
Attach 2nd to c as np.
Activate cpool, parse-aux.}

(RULE INF-S-START1 PRIORITY: 5. IN INF-COMP
%The COMP can only be dropped if the
complement isexpected.%
[=np][=*to,auxverb][=tnsless]-->
Label anewsnode sec, comp-s, inf-s.
Attach 1st to c as np.
Activate cpool, parse-aux.}

With all these ordinary grammar rules to create S nodes, why should the very first S node created
have any different status?

As further support for this position, note that the original PARSIFAL parser created other category
nodes -- Noun Phrase nodes -- in exactly the same data driven fashion as the S node creation rules
above. Certain "leading edge" triggers for Noun Phrases (e.g., articles such as the) prompted the

automatic generation of Noun Phrase nodes -- just as in the S node case. What seems to be going on
is that when enough of the X-bar structure (for a particular category X) has been encountered to
unambiguously determine which X category has been entered, a node is created of that category
type. Here, for example, is a PARSIFA L rule that triggered the creation of noun phrases; it utilized a

Declarative sentence scenario

special feature marker on words, Ngsiart, to flag items such as articles (the, an...) that trigger die start

of a Noun Phrase:

(AS RULE STARTNP IN CPOOL
[=ngstart] -- >
Create a new np node.
If 1st is det then activate parse-det

else activate parse-qp-.
Activate npool .1

Note: "np"= Noun Phrase; "det"=Determiner;
"qp"=Quantif ier Phrase (e.g. , alpeople) ; "npool"= Noun Phrase packet

If one adopts this data-driven creation of nodes as the normal way of life for LPARSIFAL, then no

initializing rule is needed. Instead, the program simply creates X" nodes of the proper type as they

show themselves (unambiguously) in the input stream. Just two such triggering rules have to be

assumed. The first is just a re-statement of the X-bar convention; the second is probably derivable

from some other assumptions about the nature of predicate-argument structure (the syntax of "logical

form"), although this demonstration will not be given here. The two rules are:

1. X" creation: If a token in the input stream is of type X", and the
currently active node is not of type X", create a node of type X" and set it
as the current active node.

2. Predicate creation: If the first item in the buffer is of type N" and the
second is of type V" (a predicate), then create a V" node and set it as the
current active node.

Note that the second rule says that if a Noun Phrase-Verb combination is detected, it must signal the

presence of an S node (a V" in the X-bar system adopted here). Likewise, the first rule states that

article or a noun must trigger die creation of an N" node.

Returning then to the main story, the automatic start-up action fills the first buffer position with the

token Sue. By assumption, the program can classify Sue as + Noun, more particularly as a name.3

With an item unambiguously of the category +Noun in die first buffer cell, die (known) X-bar

schema for N" is triggered. .lPA RSIFAL automatically creates an N" node, pushes this node onto
the active node stack as die current active node (since die stack was empty this has no other visible

3, Recall that some other cognit ive machinery accomplishes this, perhaps by noting that Sue is a "thing" -- an object.

- 89 - Section 3.2

Declarative sentence scenario

effect), and activates the corresponding initial packet in the phrase structure schema for N",

Parse-specifier-N". Note that this series of actions is equivalent to those that the original PARSIFAL

would perform upon detecting a Noun Phrase "leading edge." It leaves the parser in the state shown

below.

ib& Actisv kOde Stack
C: N"2 (N")/ (PARSE-SPECIFIER-N")

Tha Buf ffr

1: WORDil(*SUE +NOUN NS N3P PROPNOUN NAME) : (sue)

Yetunseenwords: didkissmitch.

Figure 3.2 - Starting to construct a Noun Phrase.

Note however that where the original PARSIFAL would execut' tw grammar rules -- Initial-rule to

setup the parse imd StartNP to initiate an Noun Phrase "attention shift" -- [PARSIFAL invokes no

grammar rules at all to arrive at the corresponding stage of the parse. The X-bar system suffices.

Now that a grammar rule packet has been activated, LPARSIFAL can attempt to match any

grammar rules in that packet (Parse-specifier-N") against the features of Sue in the first buffer cell.

(These features are listed to the right of the lexical items in the figure above.) But since there are no

grammar rules in the packet Parse-specifier-N" (there are no grammar rules known at all), no rules

can successfully match against the buffer. LPARSIFAL must enter its acquisition phase.

Recall that LPARSIFAL's acquisition procedure is to simply attempt each possible grammar rule

action (subject to certain conditions), and save the first one that works. LPARSIFAL cannot do more

than this, nor can it invoke the acquisition procedure a second time; if no determination can be made

on the basis of current rules and items currently in the buffer, the acquisition procedure simply fails.

One other fact is important for the current example. LPARSIFAL is attempting to build a new

grammar rule for a specifier packet, and specifiers are by definition optional. So, if all attempted

fixes fail (as they will in this case), LPARSIFAL will simply advance to the next possible packet,

Parse-N'.

Following its acquisition procedure, LPARSIFAL first tries to attach the item in the first buffer cell,

Sue, to the current active node, the N", as the specifier of the N". It must therefore evaluate this

Section 3.2-0904-

Declarative sentence scenario - 91 - Section 3.2

potential attach. But Sue is marked as a name -- a definitive N" -- and by the X-bar Convention,

cannot go in the specifier slot of the N". (This woUld violate the X-bar convention that an N" cannot

go underneath an N".)

A potential switch is next up for consideration. Since there is as yet no item in the second buffer

position to even switch, at the minimum LPARSIFAL must pull at least the next item of the input

stream, did, into the buffer. (in fact, an attempted switch must always demand the filling of the

second buffer cell if it is not already occupied.) Recall however that if a switch is attempted

LPARSIFAL must often do more work than just this minimal filling of the second buffer slot. In

particular, the item just entered into the buffer might itself be the "leading edge" of a whole new

constituent. This is true of did - assuming it is marked + V (for verb), the token is really the start of

the verb phrase did kiss Alitch, and should therefore prompt the creation of a new V". As noted

earlier in Chapter One, this could cause problems because switch must flip entire constituents, not

just single tokens, and LPARSIFAL doesn't know at this point how far the constituent that starts with

didextends.

In order to deal with this problem, LPARSIFAL's next move would normally be to completely parse

the V" constituent that starts with the leading edge did. That is, LPARSIFAL would would enter the

V" schema, and begin testing grammar rules of the Parse-specifier-V" packet (if any) for matches

against the buffer. But LPARSIFAL's evaluation of the switch via construction of the V" would

immediately run aground. Why? To build any part of the V", LPARSIFAL must at least attach the

verb did as the backbone of the V" schema, and then (perhaps) kiss and Mitch. Since there are no

existing grammar rules to do the job, and since LPARSIFAL cannot re-enter its acquisition
procedure, the construction of the V", hence the entire switch, must fail.4 The construction of the V"

beginning with switch is hence out on at least one count.

However, in this case there is another, more important reason why the switch is blocked. Kissed

initiates a V" constituent -- that much is certain. By the locality gonstraint on switch, interchange is
possible only if the flip preserves local syntactic domains, according to known X-bar constraints. This

constraint blocks the switch. Why? The V", by definition of predicate-argument structure,
constituent-commands (c-commands) any N"s in the parse tree; N" cannot c-command V'.

4. As shown below in Section 3.3. the prohibition on re-entry into the acquisition procedure may have to be weakened slightly
for such attention-shifts; one may have to allow the acquisition procedure to be entered one more time. Fortunately, since this
switch is invalid for another reason, this modulation has no effect on the current analysis.

Declarative sentence scenario

This is because the rules for phrase structure specify that N"s cannot directly dominate V"s:

V" not: N

I I I I
sue kissed kissed sue

The success criterion for switch is that promptly after the V" is swapped into the first buffer slot, it

should be attachable to the N". This would violate the primary rule of constituent-command of N"s

by V"s. A V" simply cannot be moved by switch into an N" domain.5

Because the c-command test is a kJnl check on the application of switch -- it proceeds without

constructing new material -- it is a test that LPARSIFAL can perform before it engages in a possibly

redundant forward check. Faced with Sue in the first buffer slot and did in the second, LPARSIFAL

can thus eliminate a candidate switch before ever trying to build a complete V".

Finally, LPARSIFAL will try an insert trace. But since a trace too is a sort of name -- a bare N" -- it

too cannot be attached as a specifier of N".

In short, Ail attempted actions have failed. Because the currently active packet is optional, all is not

lost; LPARSIFAL advances setting the current value of Ps-pntr to the next packet in the N" schema,

Parse-N'.

On entry into the N' portion of the X-bar schema, LPARSIFAL has some additional housekeeping

chores. Recall that although the N' specifier may be optional, the N' is not. The procedure's first

action is therefore to create an N' node to serve as an attachment point for a possible specdier and an

obligatory N. N' is pushed onto the active node stack as the current active node, displacing the N".

The N" becomes the cyclic node above the current active node; as such, it is still accessible to rule

patterns and actions. Finally, the first part of the N' sub-schema, Parse-specifier-N', is activated.

Unfortunately, once again there are no grammar rules in the currently pointed at packet,

Parse-specifier-N'. LPARSIFAL enters its acquisition phase. Since the syntactic relationships

5. Note that this restriction would g prohibit such sequences (in English) as boiled chicken, where the V" precedes the N" in
surface structure It just bans the use of switch to arrive at such a sequence. This use of + V items in non-V" phrase structures
(here, adjectival positions) is a thesis topic in its own right. It might still be possible to attach the V" boiled as part of the N". if
there is a way to "de-verbalize" the V". converting it into a category marked + N. These category conversion rues (so-called
because they convert an item of one X-bar category into another) have systematicities of their own (see Jackendoff, 1977).
Work is underway to integrate theory of such rules with a theory of lexical ambiguity.

Section 3.2-0920-

Declarative sentence scenario

between all specifier items and head X-bar items is approximately the same, one would expect that

the acquisidion attempt with packet Parse-specifier-N' should fail just as for Parse-specifier-N"; Sue
cannot be attached as a specifier, the switch fails, and so on.6

The failure of the acquisition procedure is once again not fatal, because the specifier is optional.

LPARSIFAL can advance; the procedure moves on to next packet, Parse-N, and activates it. As with

the previous packets, there are no grammar rules currently in packet Parse-N, and LPARSIFAL must
turn to its acquisition procedure for help.

Here LPARSIFAL must first determine whether an attach of Sue to the N' portion of the N" X-bar
skeleton is possible. By the X-bar convention it is; the lexical item Sue is known as +N, and so can

be attached to the N'. Since the attach succeeds (the first right thing LPARSIFAL has done), the
action is saved permanently by storing the pattern of the buffer and active node stack as a new

grammar rule trigger, and attach as the new rule action. This is LPARSIFAL's very first acquired

grammar rule. Below are shown a trace of the acquisition of this rule, followed by a snapshot or the

parser state as this new attach rule is about to be executed.

6. This is not quite true. In particular, it glosses over one remaining difficulty in handling the initial sentence. Why can't a
known name like Sue be attached as the N' specifier? This would not be a direct violation of the X-bar constraints: consider
noun-noun combinations in English. where one noun obviously is a specifier of the other. such as baby doll. garden path lut
clearly the noun-noun case doesn't apply with the example sentence, since the first item is the noun Sue and the second is the
verb kised. One possible fix might be to let the procedure attempt to attach Sue as a specifier, and then discover either that
the next item is not a noun, or else that it cannot built a valid predicate-argument structure, benuse it will "use up" the verb to
rill a noun slot.

- 93 -w Section 3.2

Declarative sentence scenario

GIVE ME A NAME FOR A RULE
BEINGCREATED IN PACKETPARSE-N

pattern of rule is:

CYCLIC NODE:
C:

IST:
2ND:
3RD:

(N")
(N')
(*SUE NGSTART +NOUN NS N3P PROPNOUN NAME)
(*DID +VERB +TENSE PAST VSPL)
empty

>attach-nounl

-- >About to run: RULE 1(ATTACH-NOUNi)

fm Active S Stank
N"2 (N")/ (PARSE-N')

N'1 (N')/ (PARSE-N)

flmBfitf

WORD11(*SUE NGSTART +NOUN NS N3P...) : (sue)
WORD12(*DID+VERB +TENSE PAST VSPL) :(did)

Yet unseen words: kissmitch.

RULESACQUIRED THISSESSION:
RULE 1ATTACH-NOUNi

Figure 3.3- About to run the noun-building rule.

C:

1:
2:

-094 - Section 3.2

Declarative sentence scenario

As usual, the attachment of the first buffer cell item (Sue) to the current active node automatically

moves did into the first buffer cell slot.

Having successfully attached an item to the N' of the N" schema, LPARS1FAL now steps past the

currently active packet Parse-N, turning it off, and moves on to activate the next possible packet,

Parse-complement-N'. Since there are no grammar rules currently in this packet, LPARSIFAL must

try its hand at acquisition.

Deploying its by now familiar and tedious methods, LPARSIFAL first attempts to attach the first

item in the buffer (did) as the complement of the N'. Since did is known by assumption to be marked

+ V. the c-command constraint on ,ossible phrase structure constructions again comes into play.

Bare V"s cannot be (directly) attached to Ns; the attach fails.

What about a switch or a trace? The first action would leave us in rather the same position as before

the interchange, with the verb kissed in the first buffer position, and no way to attach the verb. A

trace would result in direct attachment of an N" to the N", and so is ruled out. Fortunately, the

currently active packet Parse-complement-N' is optional. LPARSIFAL advances its phrase structure

pointer, and promptly runs into the end of die N' sub-schema:

(Parse-specifier-N' Parse-N Parse-complement-N') ?
t

As always, the current active node and all its associated structure -- the N' with the attached noun Sue

-- is automatically dropped into the first buffer cell, restoring N" as the current active node, and

Parse-N' as the active packet. With no further X-bar actions to perform, and with no grammar rules

in packet Parse-N', LPARSIFAL will attempt to acquire a grammar rule. Only a synopsis of this

particular acquisition will be presented. First, LPARSIFAL will try to attach the N' in the first buffer

cell to the N". This action meets all X-bar conditions for well-formedness, so the procedure will in

fact construct such a rule (RULE2), and attach the N' to the N", did sliding over once again to take

up the buffer slot left behind.

Having attached an item, the procedure advances the Ps-pntr to the next X-bar component down the

line, Parse-complement-N". Here matters proceed roughly as they did when Parse-complement-N'

was the active packet; the X-bar checks will thwart all attempts at a successful attachment of did (as

-095 - Section 3.2

Declarative sentence scenario

the reader may verify). LPARSIFAL marches onwards to the next portion of the N" schema:

(Parse-specifier-N" Parse-N' Parse-complement-N") ?.
t

However, there is no next part to the N" schema; LPARSIFAL discovers that it has run off the end

of the N" packet list. The program responds to the end-of-list indication by assuming that the X"

item it was constructing is complete, and as usual it drops all completed (but unattached) nodes like

this one into the first buffer position, sliding the word did previously in the first position over to the

right by one:

I &tgActive Node Stak
NIL

Ibi utnr

1: N"2 (N"2 +NOUN NAME NS N3P NOT-MODIFIABLE) : (sue)
2: WORD12 (*DID+VERB+TENSE PAST VSPL) :(did)

Yet unseen words: kiss mitch.

Figure 3.4 - After the N" is dropped into the buffer.

If nothing further could transpire, LPARSIFAL would now be stymied. There are no active packets,

and so no way to even see whether a known grammar rule might work. However, by the predicate

formation rule, the presence of an N" in the first buffer position and a + V item in the second (did)

announces the existence of a V". LPARSIFAL responds by creating a new V" node and making it the

current active node; the first packet associated with the V" schema, Parse-specifier-V", becomes Lhe

currently active packet.

With an active packet and an active node, LPARSIFAL is back in business. Not for long, however;

there are no known grammar rules in the Parse-specifier-V" packet. LPARSIFAL must enter its

acquisition phase yet again. As its first attempted remddial move, LPARSIFAI. tries to see whether

die first buffer cell item, N", is permitted as the V" specifier. Since N" is indeed a permitted

daughter of V", die attach check succeeds. l.PARSIFAL saves die resulting rule. Note that this rule

is the (acquired) equivalent of an "unmarked-order" rulefor normal English declarative sentences --

one of the sought-after "canonical order' rules.

Q-% -a Section 3.2

Declarative sentence scenario

GIVE ME A NAME FOR A RULE
BEING CREATED IN PACKET PARSE-SPECIFIER-V"
pattern of rule is:

CYCLIC NODE: NIL
C: (V")

1ST: (N" NAME h.S N3P NOT-MODIFIABLE)
2ND: (*DID+VERB +TENSE PAST VSPL)
3RD: empty

action of rule is:
ATTACH

>unmarked-order

-- > About to run: RULE3 (UNMARKED-ORDER)

IjiA Active Node Stack
C: V"2 (V") / (PARSE-SPECIFIER-V")

JiA uffor

1: N"2 (N" NAME NSN3P NOT-MODIFIABLE) : (sue)
2: WORD12(*DID +VERB +TENSE PAST VSPL) :(did)

RULES ACQUIRED THIS SESSION:
RULE3 UNMARKED-ORDER
RULE2 N'-AT TACHi
RULE 1ATTACH-NOUN 1

Figure 3.5 - About to attach the N" to the V" node.

With the attachment of the N", LPARSIFAI deactivates the Parse-specifier-V" packet and enters the

sub-schema for V'. The usual actions ensue: V' is made the current active node; V" becomes the

current cyclic node: and the packet Parse-specifier-V' is activated. Finally, did slides left to take up

the spot vacated by the attached N".

Since there are no grammar rules in the Specifier-V' packet, 1.PA RSIFAL. starts testing candidate

actions. First, can an attachi of the + V item did to the V' succeed? No: by the X-bar rules, a + V

(lexical) item fits only under die V slot of die bar system, not the V' portion (the V' specifier or

complement). Next, a switch must be evaluated. ILPARS1FAL notes that the second buffer slot is

currently empty, so in preparation for an exchange it pulls in the next token of the input stream, kiss,

-0970- Section 3.2

Declarative sentence scenario

and fills the second buffer cell. Note however that kiss is marked + V, and so is the possible edge of
a larger constituent. In order to test the switch, the procedure must first attempt to build a complete

constituent that starts with kiss. Although the first packet activated upon entry into the V" schema,

Parse-specifier-V", does have at least one rule in it -- the unmarked-order rule just acquired --
unfortunately it is a rule that attaches N"s to V"s, and consequently has a trigger pattern that

demands a N" in the first buffer slot. Since kiss is not an N", there are no rules to proceed any

further. Thus the potential switch cannot be evaluated, and fails.

Finally, a trace is up for consideration. It too fails; there is no known grammar rule to attach an N" to

the active V' node.7

Having exhausted iis options for acquisition, the procedure steps past the optional Parse-specifler-V'

packet, activating the next packet, Parse-V. Here too there are no known grammar rules to execute,

but fortunately, the first acquisition action attempted succeeds: did is marked +V, and so can fit

under the now available V' slot of the X-bar schema:

GIVE ME A NAME FOR RULE
BEING CREATED IN PACKET PARSE-VERB
pattern of rule is:

CYCLIC NODE: (V")
C: (V')

1ST: (*DID+VERB +TENSE PAST VSPL)
2ND: (KISS+VERB -TENSE PRESV-3S)
3RD: empty

>parse-verb

Figure 3.6 - Acquiring the did attach rule.

7. In addition. the only known bindee olthe truce would be the N" immediately to the leit -- Sue. Whether this would lead to
problems for semantic interpretation remains to be sen.

- 98 - Section 3.2

Declarative sentence scenario

-- >About to run: RULE4 (PARSE-VERB)

LIUActmive Node iack
V"2 (V") /(PARSE-V')

N" (Sue)

C: V'2 (V') / (PARSE-V)

lam.uffr

1: WORD12 (*DID +VERB +TENSE PAST VSPL):(did)
2: WORD13(*KISS +VERB -TENSE PRESV3S) : (kiss)
3:

Yetunseenwords: mitch.

RULES ACQUIRED THIS SESSION:
RULE4 PARSE-VERB
RULE3 UNMARKED-ORDER
RULE2 N'-ATTACH1
RULE1 ATTACH-NOUNi

Figure 3.7 - About to attach the verb did.

One important point to note about the attachment of did is that it prompts the copying or all of its
special features -- in particular, +TENSE -- to its mother (or Head) node, the V'. This feature, called
Percolation to the Head (or PTH) can be motivated by the X-bar convention; for a full discussion,

see Williams [1979; forthcoming in Linguistic Inquiry]. PTH replaces PARSIFAL's method of

employing grammar rule actions to label of nodes with features. (In fact, the same percolation
principle was applied above when the noun Sue was attached to the N', and the N' to the N"; the N"
received all the special person-number features of the lexical item Sue.)

As usual, after performing the attach, LPARSIFAL advances its Ps-pntr to the next possible packet,
Parse-cornplement-V'; V' is still the current active node. Finally, with did attached, the token in the
second buffer cell, kiss, slides over to occupy die first buffer slot. At this point the procedure notes
that the item now in the first buffer cell in fact triggers the start of a V". Since it is currently njl in its
acquisition phase, this means that a full attention shift 6an be performed. That is, LPARSIFAL will
temporarily suspend the parse of the current active node, the V', and attempt to parse a complete
constituent that begins with the token kiss. It actions are analogous to those for an N" parse. It
moves the virtual start of buffer window to coincide with the leading edge trigger of the V", then
creates a new V" node and pushes it onto the active node stack as the new current active node. Since

- 99 - Section 3.2

Declarative sentence scenario

the left-most edge of the buffer already coincides with the triggering kiss, in this case an actual shift
of the left-edge of the buffer itself will not be necessary. However, a new V", V"3, will be created
and the V" schema entered a second time.

The parser's state is now as follows:

Ibi A SctQiivNode tack
V"2 (V") / (PARSE-V')

N" : (Sue)
V'2 (V'I+TENSE) / (PARSE-COMPLEMENT-V')

V : (did)

C: V"3 (V") /(PARSE-SPECIFIER-V")

j1b1 Buf f r

1: WORD13(*KISS+VERB -TENSE PRESV3S) : (kiss)
2:
3:

Yet unseen words: mitch.

Figure 3.8 - After did is attached.

With the active packet set to Parse-specifier-V", the procedure at least has a candidate rule to check
against the buffer, for this packet is no longer empty. It contains the newly-acquired unmarked-order

rule, RULE3. Once again however, since the item in the first buffer position is a verb, and the
pattern of RULE3 calls for an N" in the corresponding spot, RULE) fails to match and run.
Attempting acquisition, the procedure first tries to attach the verb, but cannot due to the usual X-bar
restriction.

A switch is next in line for evaluation. LPARSIFA L notes that hte second buffer slot is currently
empty, so it pulls in the next token of the input stream, Aiich. Next it must make sure that the item
in the second buffer position is a complete constituent. In the case at hand, Mitch unambiguously
triggers an N", so the procedure must perform another attention shift, temporarily suspending
consideration of the V" parse so that it can try to build a complete N" constituent in the second
buffer position.

This N" parse proceeds roughly as the with the parse of the initial N" Sue -- with of course the
exception that LPARSIAL. now has one noun building rule (RULEl) in packet Parse-N. All this is
to no avail however; even supposing that the N" were built, after a switch no known rule could

a 100 - Section 3.2

Declarative sentence scenario

trigger to attach the N" to the V". (The only N" attaching rule known requires a NIL cyclic node

trigger, and the cyclic node is now set to V"; see the discussion immediately below.) Hence the switch

is out.

Finally, there is the matter of a trace. At first glance, this action seems to pass all tests, for bare N"s

(such as a trace) can certainly fit under V"s. In addition, there is in indeed an N" attaching rule

already known to the system -- namely, RULE3, the rule that attached the N" Sue to the main V". In

fact such a result would not be entirely objectionable; interpreting the trace binding by co-indexing

with the only N" to its left, Sue, the form of the sentence would be roughly, [Sue did [Sue kiss

Alitch]]. Thus the sentence would be structurally analogous to embedded sentences such as, I

thought Sue kissed Mitch.

The problem of course is the same one that plagued the attempted switch: the system cannot yet deal

with embedded sentences, as careful study of RULE3 reveals. Consider again the pattern for

RULE3:

CYCLIC NODE: NIL
C: (V")

1st: (N" NAME NSN3PNOT-MODIFIABLE)
2nd: (*DID+VERB +TENSE PAST VSPL)
3rd empty

Ignore for the moment the fact that even the first and second buffer cell patterns for RULE3 do not

trigger on the current machine state (and so put aside the question of rule generalization). The key

problem is that RULE3's pattern specifies a NIL cyclic node -- a non-embedded sentence. The

current predicament consists of a non-NIL cyclic node (V"2), and so RUlE3 cannot be applied. At

least for now, LPARSIFAIL cannot drop a trace.

Advancing then past the optional Parse-specifier-V" packet, the procedure encounters the Parse-V'

X-bar component. With going into detail about the process, a V' is created as a new current active

node, the Parse-specifier-V' packet is activated, and the acquisition procedure fails in its attempt to

build a rule that will execute with this packet. Then, packet Parse-V is triggered. Matters here are

more fortunate. The item in the first buffer cell, kissed, is marked + V, and so can fit under the

currently active part of the X-bar schema. Note that even though I.PARSIFAI. has a verb-attaching

rule in this packet (RULE4, the rule that attached did as a verb), it must build a new version of this

- 101 - Section 3.2

Declarative sentence scenario

rule. This is because the pattern for RULE4 and the current machine state do not match:

RULE4 PATTERN MACHINE STATE
CYCLIC NODE: (V") (V")

C: (V') (V')
1st: (*did +verb +tense...) (*Kiss+verb -tense...)
2nd: (*kiss +verb -tense...) (*mitch+noun)
3rd: empty empty

PACKET: PARSE-V PARSE-V

LPARSIFAL constructs a new attach rule, with the current machine state as its pattern. However,
before storing the newly won rule (RULE5) into the packet Parse-V, LPARSIFAL checks to see
whether any other rules in the packet perform the same sort of action (attach). RULE4 does.
Consequently, LPARSIFAL merae RULE4 and RULE5 into RULE6 by intersecting the feature
tests called for in their bufer patterns:

GIVE ME A NAME FOR
RULE BEING CREATED IN PACKET PARSE-V

Re-indexing RULE5 in packets (PARSE-V)
Re-indexing RULE4 in packets (PARSE-V)
pattern of (merged) rule is:

CYCLIC NODE: (V")
C: (V')

1ST: (+VERB)
2ND: NIL
3RD: empty

action of rule is:
ATTACH

>verb-attach2

Figure 3.9 - Generalizing the vrb attachment rule.

LPARSIFA L then goes ahead and attaches the verb kiss to the V', as desired. Ps-pntr is updated and
set to the next packet, Parse-coniplement-V' -- note that wd have not yet finished with the parse of the
current V' or V". Finally, with kiss removed, Mitch slides over from its second buffer position to

- 102- Section 3.2

Declarative sentence scenario

occupy the first buffer cell.

The presence of the N" triggering item Mitch now in the first buffer cell prompts the usual entry into
an N" schema; an N" is formed, and made the current active node. Clearly, the parse of this new N"
will proceed just as with the parse of the first N". It is left as an exercise to demonstrate that both
specifier packets will be skipped, just as before. However, when LPARSIFAL finally activates the
packet Parse-N, it will encounter a novel condition: the packet is not empty, but now holds the noun
attachment nile RUlEl. LPARSIFAL must test to see whether this known rule matches against the
current buffer and active node features. Unfortunately, it does not: the item in the first buffer cell,
Alitch, matches well enough (ignoring for the moment the issue of whether the presence of the
specific token *sue in RULEI's pattern also blocks a match), but die second item in the buffer is the
final pUnctuation mark "." (forced in from the input stream as demanded by the pattern match).
Comparing the pattern of RULEl against the machine state we have:

RULEl PATTERN MACHINE STATE
CYCLIC NODE: N" N"

C: N' N'
1st: (*sue ngstart ...) (*mitch ngstart ..

2nd: (kiss +verb ...) (e. finalpunc ...)
3rd: empty empty

PACKET: PARSE-N PARSE-N

Since RULE] fails, LPARSIFAL must proceed to acquire a new grammar nile, RULE7. Details
aside, it should be clear that an attach of Mitch to the N' will succeed. However, before storing the
newly won RULE7 into the current packet (Parse-N), LPARSIFAL checks to see whether any other
rules in the packet perform the same sort of action (attach). RULEl does. Consequently,
LPARSIFAL merges RUI EL and RULE7 and then runs the resulting rule, as shown in the figures
on die next two pages.

- 103 - Section 3.2

Declarative sentence scenario

GIVE ME A NAME FOR RULE
BEING CREATED INPACKET PARSE-N

Re-indexing RULE7 in packets (PARSE-N)
Re-indexing RULEl in packets (PARSE-N)
pattern of (merged) rule is:

CYCLIC: (N")
C: (N')

1ST: (NGSTART +NOUN
2ND: NIL
3RD: NIL

NS N3PPROPNOUN NAME)

>attach-noun2

Figure 3.10 - Generalizing the Noun attach rule.

- 104 - Section 3.2

Declarative sentence scenario

-- >About to run: RULE8 (ATTACH-NOUN2)

A. Active KoeStack
V"2 (V") /(PARSE-V')

N" (Sue)
V'2 (V'+TENSE) / (PARSE-COMPLEMENT -V')

V : (did)
V"3 (V") /(PARSE-V')
V'3 (V') /(PARSE-COMPLEMENT-V')

V : (kiss)
N"3 (N") /(PARSE-N')

C: N'3 (N') /(PARSE-N)

IM Buf fLr

1: WORD14(*MITCHNGSTART+NOUNNSN3P ...) : (mitch)

2: WORD15(0.FINALPUNCPUNC) :(.)

Yet unseen words:

RULES ACQUIRED THIS SESSION:
RULE8 ATTACH-NOUN2 (MERGED FROM: RULE7 RULE1)
RULE7

RULE6ATTACH-VERB2 (MERGED FROM: RULED RULE4)
RULE5

RULE4 PARSE-VERB
RULE3 UNMARKED-ORDER
RULE2 N'-ATTACH1
RULEI1 ATTACH-NOUNI

Figure 3.11 - About to attach Mitch.

After Mitch has been attached to the N', Ps-pntr is stepped to the packet Parse-complementN'.

Without going into the by-now familiar process, the acquisition procedure will be invoked and fail,

for the item now in the first buffer cell is the terminator punctuation mark ".", which cannot be

attached (by flat) to the N'.

With the failure of any action in packet Parse-complement-N', IPA RSIFAL starts to unwind the now

deep list of pending. partially parsed items on its active node stack. The end of the schema for the

currently active N' prompts lJPARSIFAL to drop the N' with the attached token mitch into the

buffer, popping the active node stack so that N"3 is revealed once more as the current active node,

and Parse-N' as the current active packeL. The N' now in the first buffer cell is of course attachable to

Section 3.2-0105 -8

Declarative sentence scenario

the N"; a rule is built to handle this situation (RULE9). Since there is already an N'-attaching rule
known to the system in this packet -- RULE2 -- RULE9 and RULE2 will be merged into RULE10.8

With the N' now attached, the X-bar schema pointer is advanced to the packet

Parse-complement-N". Here there are no known grammar rules, but an invocation of the acquisition

procedure will come up empty handed; once again the punctuation mark will resist all attempts at

attachment. As a result, the X-bar schema for the N" will be at an end, and N"3 will be automatically

dropped into the first buffer spot. V'3 (with the attached verb kissed) and the packet
Parse-complement-V') are now active. The active node stack has been unwound somewhat; the

parser state is now as shown below.

.. i Act ive Node StAck
V"2 (V") / (PARSE-V')

N" : (Sue)
V'2 (V'+TENSE) / (PARSE-COMPLEMENT-V')

(did)
V"3 (V") / (PARSE-V')

C: V'3 (V') / (PARSE-COMPLEMENT--V')
V : (kiss)

JI& lDuafr

1: N "3 (N" +NOUN NS N3P ...) (mitch)
2: WORD16(0.FINALPUNCPUNC):(.)

Yet unseen words:

Figure 3.12 - Parser state after dropping the object
N" into the buffer.

The parse is nearly at an end. The acquisition procedure allows an attach of the N" (Mitch) to the V'

node, storing a new RULElI. 'is new grammar rule is the the equivalent of a rule that attaches

canonical-position object Noun Phrases to the complement of a Verb Phrase. (The rule is placed into

packet Parse-complenient-V'.) With this attachment, the base schema for V'3 is also at an end, so the

8. The details ar mostly uninteresting. but he effect of the buffer feature merger will be to generalize the pattern demanded
for the second buffer cell from*Ki*...] to NIL

- 106 - Section 3.2

Declarative sentence renario - 107- Section 3.2

V' is dropped into the first cell of the buffer. The parse has now progressed:

flhe Act ive Node Stack
V"2 (V") / (PARSE-V')

N" : (Sue)
V'2 (V' +TENSE) / (PARSE-COMPLEMENT-V')

V : (did)

C: (V") /(PARSE-V')

The Buf f e

1: V'3 (V'+VERB.....)(kissmitch)
2: WORD15 (*. FINALPUNC PUNC) :(.)

Figure 3.13 - Parser state after the object N" is attached
and the completed V' dropped into the buffer.

The acquisition procedure now allows the atach of the V' in the first buffer slot to the currently

active V" node; the result is saved as a new rule, RULFI2. 'ibis completes the construction of the

V"3 -- it is now the complete constituent kiss Alitch -- and so the V" too is now dropped into the

buffer, leaving the current active node as V'2 (the node with did currently attached) and

Parse-complement-V' as the active packet:

Tie Active NodeStack
V"2 (V") /(PARSE-V')

N" : (Sue)

C: V'2 (V' +TENSE),/ (PARSE-COMPLEMENT-V')
V. : (did)

Ih& Buf f er

1: V"3 (V" +VERB.....) (kiss mitch)
2: WORD15 (0.FINALPUNC PUNC) : (.)

Figure 3.14 - Parser state after the V' is attached
and the completed V" dropped into the buffer.

Tirclessly, LPARSIFAIL will construct a new rule to attach the V" (kiss Mitch) as the complement of

Declarative sentence scenario

V'2, RULE13. This completes the construction of V'2, so the entire sub-tre below V'2 - the

completed Verb Phrase -- is dropped into the buffer. This action at last restores the top-most V" as

the current active node:

mhg.A.ctJ eNode S&ack
C: V"2 (V") /(PARSE-V')

N" : (Sue)

.IM BUff er

1: V'2(V'+VERB.....)(did kissmitch)
2: WORD15 (*. FINALPUNCPUNC) : (.)

Figure 3.15 - Parser state after the V' (verb phrase) is attached
and the completed V" dropped into the buffer.

The procedure finishes in a rush, adding a new rule to attach the V' to the top-level V" (a merger of

the previous V'-V" attach rule); the features of ', in particular +TENSE, finally percolate (via the
PTH convention) to reside in the V" node, as required. The action still leaves the final punctuation

mark dangling in the first buffer cell:

IJAAclive Node Sack
C: V'1 (V"+TENSE) / (PARSE-COMPLEMENT-V")

N" : (Sue)
V,': (did)

V" : (kiss)
N" : (Mitch)

I1JM Quf f r

1: WORD15(0. FINALPUNC PUNC) :(.)

Figure 3.16 - Parser state after the main V' is finished.

There seems to be no way to acquire a rule to attach the final punctuation mark, unless one adds a

special provision that the punctuation mark can be attached to the V"-conplement when the cyclic
node above the current active node is Nil.. But this is certainly ad hoc; it seems to be just another

way of defning the notion of "final punctuation." In any case, this does not seem to be a serious

matter. The parse is complete.

- 108 - Section 3.2

Declarative sentence scenario

How has LPARSIFAL done? Though exhausting, the first sentence prompted the creation of exactly

the right grammar rules -- the rules for handling English declarative sentences that follow

base-generated (canonical) phrase structure order. No constituent movement rules were acquired. A
comparison of the rules acquired during this session and the checklist of eleven rules listed at

beginning of this section reveals that LPARSIFAL has indeed acquired all the appropriate rules.9

9. In addition, the rule generalizations that were nade were satisfactory, though the de oils cannot be covered here. Finally,
the tree that has been just been built is intriguing from a linguistic viewpoint: it corresponds to an analysis of the auxiliary verb
system that was Initially proposed over ten years ago. 'The structure go built appears to account for a number of the properties
of the English auxiliary verb system, in particular, the ordering of auxiliaries. do-suppora, and auxiliary verb inversion,

- 109 - Section 3.2

Auxiliary verb inversion

3.3 The Auxiliary Verb Inversion Scenario

Having handled its first sentence, suppose now that LPARSIFAL is given the sentence,

Did Sue kiss Mitch?

LPARSIFAL now has most of the rules to parse this sentence -- save for the twist at the start.
Consequently, the analysis of the parse for this new example will be carried out only to the point
where the new grammar rule to deal with the auxiliary verb inversion is acquired. The rest of the
parse proceeds just as though the sentence were a simple declarative, and will not be described here.

The initial state of the parse after the initial token did is pulled into the first buffer cell is as below:

>Did Sue kiss Mitch?

I Acti Nadi Stack

C:

1:

NIL NIL /NIL

i Buffer'

WORD27(*D0+VERB+TENSE PAST VSPL) : (did)

Yet unseen words: Sue kiss mitch?

Figure 3.17 - Initial parser state for aux inversion.

With the + V item did in the first buffer cell, the V" schema is triggered. A V" node is created and
set as the current active node; Parse-specifier-V" becomes the current active packet. Recall that there
is one grammar rule in this packet, RULE3. This rule was acquired in the previous example
sentence, and was designed to attach a subject N" (a Noun Phrase) to a V". LPARSIFAI. must check
to see whether its pattern matches against the current machine state:

RULE3 PATTERN
Cyclic node:

C:
Ist:
2nd:

NIL
V"
N"

did

MACHINE STATE
NIL

V"
did
empty

- 110 - Sectior 3.3

Auxiliary verb inversion

The features of the item curreniiy in the parser's buffer cells do not match the pattern of RULE3.
LPARSIFAL therefore enters its acquisition phase. First, it tries to attach did to the V" specifier; this

is out since did is marked + V and so can only fit under the V portion of the X-bar schema,

A switch is next up for consideration. Since there is no token currently in the second buffer slot to

even perform a swihch, LPARSIFAL pulls one in: Sue is placed into the second buffer cell. As usual,

the entry of the item prompts the procedure to check whether this item requires an attention shift so

that it may be built as a complete constituent before a switch. Because Sue is assumed marked as + N
(a name), the N" schema is entered:

The Active 1Qd Stack
V"4 (V") / (PARSE-SPECIFIER-V")

C: N"6 (N") / (PARSE-SPECIFIER-N")

T Bhflier
1: WORD27(*DO+VERB+TENSEPASTVSPL) :(did)

2: WORD30(*SUE NGSTART+NOUNNSN3P...) :(sue)
3:

Yet unseen words: kiss mitch ?

Figure 3.18 - Attention shift to build the N" Mitch.

Although the details of the N" parse will be omitted here, LPARSIFAL clearly has already acquired

the grammar rules to handle the N" analysis. In particular, RULE8 and RULE10 will correctly

trigger and attach Sue as the noun to the N' and then the N' to the N". (The reader may verify that

the triggering patterns for both rules require only that an N (respectively, an N') be in the first buffer

cell, and any item whatsoever in the second buffer cell.) After the attachment via RULE10 of N' to

the N", the N" schema will advance to Parse-complement-N", but since the next item in line, kiss, is

marked +V, it cannot be attached to the N"; N" construction is at an end.

- 111 - Section 3.3

Auxiliary verb inversion

The N" is thus dropped back into the buffer: 10

Thg Active Node SAlk
V"4 (V") / (PARSE-SPECIFIER-V")

~i Buffer

1:
2:
3:

WORD27 (*DO+VERB +TENSE PAST VSPL) : (did)
N"6 (N" NAME NSN3PNOT-MODIFIABLE) : (sue)
WORD31 (*KISS +VERB -TENSE PRES V-3S) :(kiss)

Yetunseen words: mitch?

Figure 3.19 - Parser state after attention shift
construction of the N" sue.

There is one more condition to meet: the constituent-command constraint on swich. The
interchange cannot destroy a local syntactic domain. Fortunately, all is well in this case, for the swic/h
of the N" into tl first buffer ccli preserves the domination of N"s by V"s:

did N"

switch=* V"

N" did

10. ibis analysis again reveals one difficulty. In order to know that kiss cannot be so allached. the attention shill musi be able
to use the X-bar constraints. 'IbLis appears to be a relaxation of the ban on invoking the acquisition procedure tests more than
once for any given try at acquiring a new Mie, It may be that attention stifls that siati in the second or third buffer cell may
themselves be allowed to try the acquisition procedure once, and then no more. 'iis problem is related to the problem of
"nested attention shifts" that Marcus encountered. We would like to stipulate some tipper limit on the passible nesting, eLse
the look-ahead can probe arbitarily far ahead. 'his potential unboundedness pases a corresponding problem for acquisition.
In any case, knowing just when a constitucnt is "complete" remains a difficult problem; die methods adopted here do nut
always work.

a 112 - Section 3.3

k

Auxiliary verb inversion

At last then the switch can be performed:

The Act i Node Stack
V"4 (V") / (PARSE-SPECIFIER-V")

hmBufffr

1: N"6 (N" NAME NSN3P NOT-MODIFIABLE) : (sue)
2: WORD27 (*DO+VERB+TENSE PAST VSPL) : (did)
3: WORD31(*KISS+VERB -TENSE PRESV-3S):(kiss)

Yetunseen words: mitch?

Figure 3.20 - Parser state after an auxiliary
verb switch.

Note that nfA the buffer and current active node features match the pattern of RULE3 exactly.
RULE3 runs, attaching the N" Sue to the currently active V" node:

GIVE ME A NAME FOR
RULE BEING CREATED IN PACKET PARSE-SPECIFIER-V"

pattern of rule is:

CYCLIC NODE: NIL
C: (V")

1ST:(*DO+VERB+TENSE PAST VSPL)
2ND: (N' NAME NS N3P NOT-MODIFIABLE)
3RD: (*KISS VEIB PRES V-3STNS.ESs)

action of rule is:
SWIT CH

>aux- invers ion

Figure 3.21 - Saving the auxiliery verb inversion rile.

Finally, .PARSJFAL labels the attached node with lh, rules invoked to build it, in this way
recording the fact of auxiliary inversion for any "interpretatii; " nle that, night ".cd to distinguish
between an inverted sentence and its canonical order counterpart.

- 113 IA Section 3.3

Auxiliary verb inversion

Clearly, the parser now finds itself in exactly the same state as if it had been parsing Sue did kiss

Mitch all along; an N" is attached as the specifier of a V", and the tokens did and kiss occupy the first

and second buffer cells. Because LPARSIFAL has no memory for what has gone before, the the

parse will simply finish without incident, just as if a simple declarative were being analyzed.

This completes LAPRSIFAL's acquisition of its first auxiliary verb inversion sentence. Clearly, other

auxiliary verb inverted sentences of the same general form but with different auxiliary verbs will lead

to a generalization of the switch rule via pattern generalization. For example, if LPARSIFAL is now

given the sentence,

Could the dog biteSue?

the presence of the modal auxiliary could will prompt the creation of a new switch rule. Because this

switch will also be formed in packet Parse-compleient-V", its pattern features will be merged with

those of the older switch to arrive at the following generalized inversion rule:

PACKET: PARSE-SUBJ

Cyclic node: NIL
C: V"

1st: (+VERB)
2nd: (N")

3rd:(+VERB -TENSE)-->

SWITCH

This form of the auxiliary verb inversion rule is now both general enough to be extended to

additional auxiliary verb inversion cases and specific enough p to trigger in the wrong contexts.

Significantly, the rule will W run in an embedded sentence. For note that the trigger pattern for the

rule demands that the current cyclic node be NIL, and only main Sentences (V"s) will possess this

feature. -

Since embedded sentences always have a non-NIL cyclic node, the auxiliar verb inversion rule will

fQ trigger on non-grammatical embedded auxiliary verb inversions such as:

*I think that did Sue kiss Mitch?

- 114 - Section 3.3

Auxiliary verb inversion

This is exactly the desired result. Since LPARSIFAL will never receive a io-grammatical sentence,

it will never encounter any evidence that aux-inversion is permitted in embedded sentences, and so
will never make an incorrect inductive leap.

To summarize, LPARSIFAL has acquired exactly the right form for an auxiliary verb inversion nle,

one that can handle many English auxiliaries. Further, the rule does not trigger exactly when the
resulting inversion would be ungrammatical for English speakers, thus also accounting for a class of

ungrammatical auxiliary verb inversions. Although the current scenario has illustrated the

acquisition of just a single new grammar rule to handle a single sort of deviation from a
canonically-ordered sentence, it has highlighted those features of the acquisition procedure that were
claimed as crucial for easy acquisition: local rule construction and finite error detectability. The

importance of these constraints holds for the acquisition of a whole variety of other grammar rules,
ranging from simple passives to topicalization. All of these rules can be acquired from positive

examples using only local refinement, in this manner characterizing the range of syntactic knowledge

about parsing that can be easily acquired.

- 115 - Section 3.3

-116-

References

Anderson, J. R., (1977) Induction of Augmented Transition Networks, Cognitive Science, 1,
pp.125-157.

Baker, C. L., (1979) Syntactic Theory and the Projection Problem, Linguistic Inquiry, 10, number 4,
pp. 533-582.

Berwick R. C., (1980) Computational Complexity, Evaluation Metrics, and Learnability, in

preparation.

Biermann, A. and Feldman, J. (1972) A Survey of Results in Grammatical Inference, in S. Watanabe,
(ed.) Frontiers in Pattern Recognition. New York: Academic Press.

Braine, M. D. S., (1971) On Two Types of Models of the Internalization of Grammars, in D.I. Slobin,
(ed.), TIe Ontogenesis of Grammar: A Theoretical Symposiumn. New York: Academic Press.

Bresnan, J. (1972)Theory of Complementation in English Syntax. Unpublished doctoral dissertation,
Department of Linguistics, MIT, Cambridge, MA.

Bresnan, J. (1978) A Realistic Transformational Grammar, in M. Halle, J. Bresnan, and G. Miller,

(eds.), Linguistic Theory and Psychological Reality. Cambridge, MA: MIT Press.

Bresnan, J. (1980) Polyadicity. Cambridge, MA: Center for Cognitive Studies.

Bresnan, J. and Kaplan, R. (1979) A Formal System for Grammatical Representation, in J. Bresnan
(ed.), The Mental Representation of Granimatical Relations. Cambridge, MA: MIT Press (to appear).

Brown, R. (1973) A First language: The Early Stages, Cambridge, MA: Harvard University Press.

Brown, R., and Hanlon, C., (1970) Derivational Complexity and Order of Acquisition in Child Speech,

in J.R. Hayes, (ed.), Cognition and the Development of language. New York: John Wiley and Sons.

Carey, S. (1978) The Child as Word Learner in M. Halle, J. Bresnan, and G. Miller, (eds.), linguistic
Theory and Psychological Reality. Cambridge MA: MIT Press.

Chomsky, N. (1957) Syntactic Structures. The Hague: Mouton.

Chomsky, N. (1959) On Certain Formal Properties of Grammars, in R.D. Luce, R. Bush, and E.
Galanter (eds.) Readings in Mathematical Psychology, Vol. 2. New York: Wiley, 1965.

- 117-

Chomsky, N. (1965) Aspects of the Theory of Syntax. Cambridge, MA: MIT Press.

Chomsky, N. (1970) Remarks on Nominalization, in R.A. Jacobs and P.S. Rosenbaum, (eds.),

Readings in English Transfornational Grammar. Waltham, MA: Ginn.

Chomsky, N. (1973) Conditions on Transformations, in S.R. Anderson and P. Kiparsky, (eds.), A
Festschrift for Morris Halle. New York: Holt, Rinehart and Winston.

Choinsky, N. (1976) Conditions on Rules of Grammar, Linguistic Analysis, 2, 303-351.

Chomsky, N. (1980) On Binding, Linguistic Inquiry, 11, pp. 1-46.

Cross, '. (1977) Mothers' Speech Adjustments: The Contribution of Selected Child Listener Variables,

in C. Snow and C. Ferguson (eds.), Talking to Children: Input and Acquisition. New York:
Cambridge University Press.

Culicover, P.W., and Wexler, K. (1977) Some Syntactic Implications for a Theory of Learnability, in

P.W. Culicover, T. Wasow, and A. Akmajian, (eds.), Formal Syntax. New York: Academic Press.

Culicover, P.W., and Wexler, K. (1980) Formal Principles of Language Aiquisition. Cambridge, MA:

MIT Press.

Emonds, J. (1976) A Transformational Approach to English Syntax. New York: Academic Press.

Feldman, J. (1972) Some Decidability Results on Grammatical Inference and Complexity, Infornation

and Control, 20, pp. 244-262.

Fiengo, R. (1974) Semantic Conditions on Surface Structure, unpublished doctoral dissertation,

Department of Linguistics, MIT, Cambridge, MA.

Fiengo, R. (1977) On Trace Theory, Linguistic Inquiry, 8, no. 1, pp. 35-61.

Fodor, 1. (1968) Psychological Explanation: An Introduction to lie Philosophy of Psychology. New

York: Random House.

Fodor, J.D. (1978) Parsing Strategies and Constraints 6n Transfonnations, Linguistic Inquiry, 9, pp.

427-474.

Frieden, R. (1978) Cyclicity and the Theory of Grammar, Linguistic Inquiry, 9, pp. 519-550.

-118-

Fu, K. and Booth, T. (1975) Grammatical Inference: Introduction and Survey, IEEE Transactions
Systems, Man, and Cybernetics, SMC-5(1), pp. 95-111; SMC-5(4), pp. 409-423.

Gazdar, G. (1979) Constituent Structures. Sussex: University of Sussex, School of Social Sciences.

Gleitman, L. (1979) Talk at University of California Workshop on Language Learnability, Irvine,
CA.

Gold, E.M. (1967) Language Identification in the Limit, Infonnation and Control, 10, pp. 447-474.

Goodluck, H., and Solan, L. (1978) (eds.) Papers on the Structure and Development of Child
Language, University of Massachusetts Occasional Papers in Linguistics, volume 4. Amherst, MA:

University of Massachusetts.

Hamburger H. and Wexler, K. (1975) A Mathematical Theory of Learning Transformational

Grammar, Journal of Mathematical Psychology, 12, pp. 137-177.

Jackendoff, R. (1977) X-bar Syntax: A Study of Phrase Structure. Cambridge, MA: MIT Press.

Joshi, A.K. and Levy, L.S. (1977) Constraints on Structural Descriptions: Local Transfonnations,

SIAM Jounral of Computing, June.

Katz, J. and Fodor, J.A. (1964) The Structure ofa Semantic Theory, in J.A. Fodor and J.J. Katz,(Eds.)
The Structure of Language. Englewood Cliffs, NJ: Prentice-Hall.

Kelley, K. (1967) Early Syntactic Acquisition (Report No. P-3719). Santa Monica, CA: The Rand
Corporation.

Kiparsky, P. (1973) Elsewhere in Phonology, in S.R. Anderson and P. Kiparsky (eds.), A Festschrift

for Morris Halle. New York: Holt, Rinehart, and Winston.

Knobe B. and Knobe, K. (1977) A Methodfor Inferring Context-free Grammars, Information and

Control, 31, pp. 129-146.

Koster, J. (1978) Locality Principles in Syntax. Dordrecht, the Netherlands: Foris Publications.

Losnik, H. and Kupin, J. (1977) A Restrictive Theory of Transfonnational Grammar, Theoretical

Linguistics, 4, no. 3, pp. 173-1%.

- 119-

Marcus, M., (1980) A theory of Syntactic Recognition for Natural Language. Cambridge, MA: MIT
Press.

Mayer, J., Erreich, A., and Valian, V. (1978) Transformations Basic Operations, and Language
Acquisition, Cognition, 6, pp. 1-14.

McDermott, J. and Forgy, C. (1978) OPS, A Domain Independent Production System Language, in D.
Watennan and F. 1layes-Roth (eds.) Pattern-Directed Inference Systems. New York: Academic

Press.

McNeill, D. (1966) Developmental Psycholinguistics, in F. Smith and 0. Miller (eds.) The Genesis of

Language. Cambridge, MA: MIT Press.

Miller, G., and Chomsky, N. (1963) Finitary Models of Language Users. in R.D. Luce, R. Bush, and
E. Galawter (eds.) Readings in Mathematical Psychology, Vol. 2. New York: Wilcy, 1965.

Newport, E., Glcitman, H1., and Gleitman, L. (1977) Mother, I'd Rather do it Myse/W Some Effects
and Non-efftcts of Maternal Speech Style. in C. Snow and C. Ferguson, Talking to Children: Input
and Acquisition, New York: Cambridge University Press.

Oehrle, R. (1974) The Grammatical Status of the English I)ative Alternation. Unpublished doctoral
dissertation, MIT Department of Linguistics, Cambridge, MA.

Peters, S. and Richie, R. (1973) On the Generative Power of Transfonnational Grammar, Information

Science, 6, pp. 49-83.

Pinker, S. (1979) Fonnal Models of Language Learning, Cognition, 7, pp. 217-283.

Pinker, S., Grimshaw, J., and Bresnan, J. (to appear) Language Acquisition and Lexical
Representation (tentative title), in J. Bresnan (ed.), The Mental Representation of Grammatical

Relations. Cambridge, MA: MIT Press.

Putnam, H. (1973) Philosophy and Our Mental Life, in H. Putnam, Mind, Language, and Reality,
Philosophical Papers Volume II. New York: Cambridge University Press, 1975.

Roeper, T., Bing, J., Lapointe, S., Tavakolian, S. (1979) A Lexical Approach to Language Acquisition,
Department of Linguistics, Amherst, MA: University of Massachusetts..

-120-

Rychener, M.D., and Newell, A. (1977) An Instructible Production System: Basic Design Issues, in D.

Waterman and F. Hayes-Roth (eds.) Pattern-Directed Inference Systems. New York: Academic

Press, 1978.

Shipman, D. (1979) Phrase Structure Rules for Parsifal, Working Paper 182. Cambridge, MA: MIT

Artificial Intelligence Laboratory.

Siklossy, L. (1972) Natural Language Learning by Computer, in H. Simon and L. Siklossy (eds.),

Representation and Meaning: Experiments with Information- Processing Systems. Englewood Cliffs,

NJ: Prentice-Hall.

Snow, C. (1972) Alothers'Speech to Children Learning Language, Child Development, 43, 549-565.

Solomonoff, R. (1958) The Mechanization of Linguistic Learning, Proceedings of the Second

International Congress on Cybernetics, Belgium, September 3-10, 1958.

Solomonoff, R. (1959) A New Method for Discovering the Grammars of Phrase Structure Languages,

AFOSR TN 59-110, Washington, D.C.: Ofice of Scientific Research, United States Air Force, April,

1959.

Thiersch, C. (1978) Topics in German Syntax. Unpublished doctoral dissertation, MIT Department

of Linguistics. Cambridge, MA.

Wexler, K. (1978) A Principle Theory for Language Acquisition. Irvine, CA: University of Social

Sciences Research Report number 20.

Wharton, R. (1974) Approximate Language IdentificationInfonnation and Control, 26, pp. 236-255.

Wharton, R. (1977) Grammar Enumeration and inference, Infonnation and Control, 33, pp. 253-272.

Williams, E. (1980) On the Notions "Lexically Related" and Head of a Word, Linguistic Inquiry (to

appear).

Winston, P. (1975) Learning Structural Descriptions from Examples, in P. Winston (ed.), The

Psychology of Computer Vision. New York: McGraw-Hill.

Woods W., (1969) Transition Network Grammarsfor Natural Language Analysis, Communications of

the ACM, 13, pp. 591-606.

