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ABSTRACT

Bruhat orders are partially ordered sets which arise in algebraic
geometry during the study of the geometry of semisimple algebraic groups.
As a preliminary step, any Bruhat order arising from a Weyl group is de-
picted with certain weights of a representation of a semisimple Lie alge--
bra.

Classical Bruhat orders are Bruhat orders which arise from the
classical semisimple algebraic groups. We first describe the classical
Bruhat orders with tableaux of integers, allowing any two elements of an
order to be directly compared. These descriptions are then used to show
that the classical Bruhat orders are lexicographically shellable, a prop-
erty concerning the simplicial complexes of chains in the orders. Recent
work of C. Deconcini and V. Lakshmibai which applies this lexicographic
shellability result to algebraic geomntry is briefly discussed. Two oth-
er applications of the lexicographic shellability of the classical orders
are also described: a new means of computing the Mbbius function of the
full classical orders, and a proof that the simplicial complexes of
chains in the classical orders are triangulations of double suspensions
of either spheres or balls. A second application of the tableaux de-
scription is the confirmation of a conjecture of Lusztig concerning the
description of the Bruhat order on the symmetric group with arrays of
dimensions of intersections of pairs of flags of subspaces in specified
relative positions. Finally, one of the families of tableaux obtained
here is related to the tableaux employed by Young in his description of
the representations of the special linear group.

Bruhat lattices are Bruhat orders which a; lattices. First, the
Bruhat lattices are classified. We then employ a recent algebraic geo-
metric result of C.S. Seshadri to show that certain combinatorial gener-
ating functions associated to these lattices can be expressed as the
quotients of certain products. In particular, the same methode provide
new proofs for two plane partition generating function identities as well
as identifying two new exceptional irreducible Gaussian posets. We also
use closely related Lie algebraic techniques to provide a new proof of
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the fact that the Bruhat lattices possess the strong Sperner property, an

extremal combinatorial property concerning the sizes of antichains in

ranked partially ordered sets.

Part of the Lie algebraic proof of the strong Sperner property for
bruhat lattices is abstracted to the context of arbitrary ranked partial-
ly ordered sets and then translated into the language of elementary lin-

ear algebra. A special case of this abstraction, stated for distributive

lattices, is a priori applicable to the Bruhat lattices. Surprisingly,

it is possible to prove that this special case can be applied to no other

distributive lattices. Dynkin diagrams arise naturally in the proof of

this classification theorem. We present a total of five proven or poten-

tial ways of characterizing or describing the Bruhat lattices.

Thesis Supervisor: Richard P. Stanley

Title: Professor of Applied Mathematics
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Chapter I

Introduction and an Example

1. Introduction

This thesis presents several results obtained by exploiting some of

the connections between combinatorics, Lie theory and algebraic geometry

which arise in the study of semisimple algebraic groups. The portion of

Lie theory we shall be concerned with is the theory of representations of

semisimple Lie algebras. The relevant area of algebraic geometry con-

cerns the projective varieties, or flag manifolds, G/P, where G is a

semisimple algebraic group and P is a parabolic subgroup. The mathemati-

cal objects of central concern to us are the Bruhat orders, which are

partially ordered sets arising in both of these subjects. These orders

have played a central role in recent work of Kazhdan and Lusztig [KLu] in

representation theory and of Seshadri, et. al. in algebraic geometry

[LM41 . Bruhat orders are usually defined in terms of the elements of

Weyl groups, which are finite groups whose structures resemble the

structures of the symmetric groups. These orders are therefore of inter-

est to combinatorialists. Some of the most combinatorially interesting

Bruhat orders were in fact defined independently by combinatorialists who

were unaware of the algebraic definitions of the orders.

Which of the six possible logical relationships between combina-

torics, Lie theory and algebraic geometry arise in this thesis? Lie the-

ory and algebraic geometry overlap heavily in the area we are concerned
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with, since semisimple algebraic groups are essentially semisimple Lie

groups with algebraic gecmetric rather than differential geanetric

structures. This area has been extensively studied and is beyond the

scope of this thesis. We shall be concerned with applications to and

from combinatorics on the one hand, and the algebraic subjects on the

other hand. More of the applications are from the representation theory

of semisimple Lie algebras to combinatorics, although each of the other

three possibilities is also represented.

We now describe the two most interesting results of this thesis.

Lexicographic shellability for a partially ordered set is a property

invented by A. Bjbrner [Bj6J as a condition sufficient to insure that the

simplicial complex of chains in the partially ordered set is a "shell-

able" simplicial complex. It is known that this in turn implies that a

certain commutative ring associated to the partially ordered set has the

Cohen-Macaulay property. Utilizing explicit combinatorial descriptions,

we show (Theorem 111.4) that all "classical" Bruhat orders are lexico-

graphically shellable. This extends a theorem of Edelman [Ede] to many

more cases. C. DeConcini and V. Lakshmibai [DeL] have used our result to

show that the canonical embeddings of certain projective varieties are

arithmetically Cohen-Macaulay and arithmetically normal, a result of cur-

rent interest in algebraic geometry.

The description of the other most interesting result of this thesis

begins with a result of R. Stanley. In [StW], Stanley used the hard

Lefschetz theorem of algebraic geometry to show that the Bruhat orders

possess the strong Sperner property, an extremal combinatorial property
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concerning the sizes of antichains in a ranked partially ordered set. We

simplify and generalize Stanley's methods for the special case of dis-

tributive lattices, obtaining a new sufficient condition for a distribu-

tive lattice to have the strong Sperner property. This condition con-

sists of certain linear equations which are specified in terms of the

combinatorial structure of the lattice. Surprisingly, it is possible to

list exactly which distributive lattices satisfy this sufficient condi-

tion. Dynkin diagrams arise naturally during the classification proce-

dure (Theorem VI.3.2). These diagrams, or certain subsets of them, clas-

sify many different kinds of mathematical objects, including semisimple

Lie algebras and Lie groups, point crystallographic groups, and critical

points of functions of several complex variables having no moduli [HHS].

We now quickly introduce some basic terminology and facts necessary

for the remainder of the introduction; the formal definitions will be

given in Chapter II. Henceforth the terms "partially ordered set" and

"partial order" will often be replaced with the word poset. MaI groupa

are finite groups whose presentations have a certain specified form.

They play an important role in the structure theory of semisimple Lie

algebras and semisimple algebraic groups. An irreducible Weyl group is

one which cannot be expressed as the direct product of two smaller Weyl

groups. The irreducible Weyl groups have been completely classified.

There are three infinite families of them, the members of which are re-

spectively denoted by A ,n-1 BCn, and Dn. These groups are called the

ntaaainat Weyl groups. (This is because they arise from the classical

semisimple algebraic groups SL n' so2n+1' 5S2n' S 0 2n.) In addition, there



10

are five exnaptiJnal irreducible Weyl groups, denoted E6 , E7E, E8 , F4 ,

and G2. The Weyl group An-1 is just the nti symmetric group.

It was mentioned earlier that Bruhat orders are defined on the ele-

ments of Weyl groups. However, this can be generalized in two ways.

First, it is possible to extend the definition to Coxeter groups, a class

of groups containing the Weyl groups. Second, an analog of the Bruhat

order can be defined on the elements of certain coset spaces of Weyl or

Coxeter groups obtained by dividing by certain subgroups. In this the-

sis, the term "Bruhat order" shall refer gnly to Bruhat orders defined on

WeyI roups r. their appropriate cos e spaces. Note that all Weyl groups

in this thesis are finite; we shall not consider affine Weyl groups,

which are a special kind of infinite Coxeter group. These restrictions

arise because the Bruhat orders are being studied in their original con-

text of complex semisimple algebraic groups, where finite Weyl groups

play a central role. A Bruhat order f1 tye X is a Bruhat order defined

on an irreducible Weyl group of type X or an appropriate coset space of a

group of type X. A flasi.al Bruhat order is a Bruhat order of type A,

BC, or D.

The remainder of this introduction is an overview of the entire

thesis. In broad terms, this thesis consists of three parts. The first

part, Chapters I and II, contains introductory material and a preliminary

proposition which applies to all Bruhat orders. The second part,

Chapters III and IV, studies the classical Bruhat orders. The third

part, Chapters V and VI, is largely (but not solely) concerned with the

Bruhat orders which are lattices (Brubat lattices). It could be said
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that the classical Bruhat orders are the nicest Bruhat orders from a com-

binatorial viewpoint, but that the Bruhat lattices are the most combina-

torially interesting. The classical Weyl groups are very closely related

to the symmetric groups. As a consequence of this, the classical Bruhat

orders have nice combinatorial descriptions. On the other hand, lattices

are generally more combinatorially interesting than arbitrary posets.

Also, the two families of Bruhat orders previously studied by combina-

torialists for purely combinatorial reasons are in fact Bruhat lattices.

Finally, the Bruhat lattices appear in Lie representation theory in a

particularly advantageous manner, allowing combinatorial conclusions to

be drawn from representation theoretic facts.

For the sake of an example, the most famous kind of Bruhat order is

described in the second section of this chapter. The formal definitions

of Weyl groups and Bruhat orders appear in the first section of

Chapter II. The second section of Chapter II presents a preliminary re-

sult, Proposition 11.2, which is used throughout the thesis. This propo-

sition depicts the Bruhat orders with certain weights of representations

of semisimple Lie algebras, thus producing the connection with Lie repre-

sentation theory.

Chapter III begins the study of the classical Bruhat orders by

employing the aforementioned Proposition 11.2 to obtain descriptions of

the classical Bruhat orders in terms of n-tuples of integers. Except for

this, all of the techniques used in Chapter III are combinatorial. (How-

ever, Chapter III is in some sense entirely combinatorial in content,

since even the n-tuple descriptions may be obtained combinatorially, al-
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heit more slowly.) Both the Weyl group definitions and these n-tuple de-

scriptions do not permit the direct comparison of an arbitrary pair of

elements in one of these orders. This situation is rectified in the

third section of Chapter III with the derivation of tableau descriptions

for the classical orders. The tableau description for orders of type D

is new, whereas the tableau descriptions for orders of types A and BC

turn out to have been known already in Indian algebraic geometry folk-

lore. In the last section of Chapter III, the previously mentioned lex-

icographic shellability of the classical orders is deduced as virtually a

corollary to the tableau descriptions and their proofs.

Chapter IV describes five applications of the two main results of

Chapter III. The applications described in the first two sections of the

chapter are almost entirely due to other people, but are described in

this thesis for the sake of completeness. The first section is a summary

of DeConcini's and Lakshmibai's application of the lexicographic shella-

bility for classical orders to algebraic geometry that was mentioned ear-

lier. Section 2 of Chapter IV briefly describes how a new derivation of

the Mdbius function for the full classical orders can be obtained from

the proof of their lexicographic shellability. Section 2 also describes

how triangulations of spheres and balls can be produced from the classi-

cal Bruhat orders with lexicographic shellability and knowledge of the

Mtbius function. The third section of Chapter IV uses the tableau de-

scriptions for orders of type A to confirm a conjecture of Lusztig's con-

cerning arrays of dimensions of intersections of pairs of flags of sub-

spaces in specified relative positions. As a consequence, a more direct
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description is obtained for the Bruhat orders of type A in their original

contexts, that of Schubert varieties in flag manifolds. rhe last section

of Chapter IV describes the relationship between the tableaux obtained in

Chapter III for orders of type A and the tableaux employed by Young in

his dernription of representations of the special linear group.

Chapter V studies the Bruhat lattices with the representation theo-

ry of complex semisimple Lie algebras. In the second section of

Chapter V, Proposition 11.2 is used to identify which Bruhat orders are

in fact lattices. The third section presents the tools from representa-

tion theory which are needed in the last two sections of the chapter. In

Section 4 (which represents joint work with R.P. Stanley), Weyl's charae-

ter formula is combined with recent algebraic geometric work of Seshadri

[LM3] to show that the rank weighted generating functions for multichains

in Bruhat lattices can be expressed as the quotients of certain products.

In Section 5, principal three dimensional subalgebras are used to provide

a new proof that the Bruhat lattices possess the strong Sperner property.

Both of these results have consequences in more traditional cnmbina-

torics. New proofs of certain plane partition generating function

identities can be obtained as special cases of the first result. Also,

Lindstr6m and Stanley have shown that a conjecture of Erds and Moser in

extremal number theory [Erd] can be proved using a particular case of the

second result [Lin] [StWJ.

Each Bruhat lattice is actually a distributive lattice. It is well

known that distributive lattices are in one-to-one correspondence with

the subposets of their join irreducible elements. We shall call any
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poset that arises from a Bruhat lattice in this manner a ninj&culepaet.

Years before combinatorialists were aware of the Lie theoretic notions

utilized here, Stanley defined the notion of "Gaussian poset" for purely

combinatorial reasons [StO]. ThIs definition concerns the form of a cer-

tain family of generating functions associated to a partially ordered

set. The main result of the fourth section of Chapter V can be rephrased

as: All miniscule posets are Gaussian posets. It is interesting to note

that all known Gaussian posets are miniscule posets, and it seems plausi-

ble that these are all possible Gaussian posets. This is just one of the

five proven or potential ways of describing or characterizing the minis-

cule posets that are presented in Chapters V and VI.

The first main topic of Chapter VI is the abstraction of part of

the Lie algebraic proof of the strong Spernerity of Bruhat lattices.

Sufficient conditions for strong Spernerity are stated in the context of

arbitrary ranked posets, and the relevant part of the Lie algebraic proof

is translated into elementary linear algebra for the benefit of readers

unfamiliar with Lie representation theory. Unfortunately, the most gen-

eral statement of this abstracted sufficient condition is fairly diffi-

cult to work with. A special case of this condition, expressed only in

the context of distributive lattices, is much easier to use. It is known

from the Lie algebraic proof in Chapter V that it is possible to apply

this special case to the Bruhat lattices. This leads to the second topic

of Chapter VI, the classification of the distributive lattices which sat-

isfy thic special sufficient condition. The third section of the chapter

presents a proof that no other lattices beside the Bruhat lattices can
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satisfy the condition in question. As was indicated earlier in this in-

troduction, we consider this result to be one of the two most interesting

results of this thesis, partly because Dynkin diagrams arise naturally in

the course of the proof.

Since distributive lattices are in one-to-one correspondence with

the subposets of their join irreducible elements, the classification the-

orem just described Is also a characterization of the miniscule posets.

The last section of Chapter VI summarizes the four ways in which the min-

iscule posets arise up to that point, and also describes a fifth (empiri-

cal, but interesting) method by which these posets can be described.

2. Example

The most famous Bruhat order can be described as the partially or-

dered set of j-tuples (a,, a2, * *.., a ) satisfying 1 a < a 2 <

< aj .n, with order given by aS. b if and only if a1 _< b1, a2 5. b2f

a - b This partial order has n) elements, and is in fact a

distributive lattice. It is denoted An-1(j) in this thesis. In algebra-

ic geometry, this lattice describes the inclusion relationships of the

Schubert subvarieties of the Grassmannian projective variety of

j-dimensional subspaces of an n-dimensional space [StW]. In Lie repre-

sentation theory, An-1(j) is the partially ordered set of weights of the

i exterior power of the natural representation of sl(n,4). There are

two ways by which this lattice is often described in combinatorics. The

first is as the partially ordered set of all partitions of integers
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into j or fewer parts, with each part no larger than n-j. The second way

is as the lattice of order ideals of the poset which is the product of a

j-element chain with an (n-j)-element chain. Stanley [StWJ denotes this

poset by L(j,n-j).
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Chapter II

Definitions and a Preliminary Result

1. Definitions and Notation

The term "poset" stands for "partially ordered set". If x and y

are elements of a poset P such that x K z < y implies that z equals x,

then we say that y nvers x in P. The Hasse diagram of a finite poset P

is the directed graph whose vertices are the elements of P, and whose

edges are the covering relations of P. Namely, (y,x) is an edge of the

graph if y covers x. An order ideal I of P is a subset I S P such that

y 6. I and x K y imply x 6 I. An order filter is an analogously defined

subset of P, with > replacing K.

NtatiaLn [n] :: {1, 2, - , n}

+fn] := f-n, -n+, - - , -1, 1, 2, - - - , n}

Bruhat partial orders are defined on the elements of Weyl groups.

It is possible to characterize a eyl graI as a finite group with n

designated generators si, 1 2 i K n, whose presentation with respect to

these generators has the form:

< s : s 2 = e, (s s )mi) = e where m 6 {2, 3, 4 6} >.

The designated generators s. are called simpie reflectin. An

irredunible Weyl group is one which cannot be expressed as the direct

product of two smaller Weyl groups. The irreducible Weyl groups have
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been completely classified. There are three infinite families of

clasaical irreducible Weyl groups, denoted with the letters A, BC, and D.

Ignoring designated generators, these three infinite families can be sim-

ply described. The Weyl group of type An- 1 can be depicted with n X n

permutation matrices (symmetric group, order n1), of type BCn with

"signed" permutation matrices (hyperoctahedral group, order 2nnM), and of

type Dn with "signed" permutation matrices which have an even number of

negative ones (order 2 'n!). There are also five exceptional irreduci-

ble Weyl groups. They are denoted E6, E7 , E8 , F4, and G2 -

For any Weyl group W of rank n and any subset J LE[n], the para-

boli'c subgroup W3 is defined to be < s : j & J >. The set of left

cosets, or coset space, W/Wj is denoted W .

Bruhat orders are defined on the coset spaces W as well as on Weyl

groups W, but we must first define the Bruhat orders on Weyl groups. Any

element w e W can be expressed w = s. s. s. . Define the length.
ik 12 2-1

DI I, I(), to be the smallest such k possible. Any conjugate t of a

designated generator, t = wsiw-A, is called a reflection.

Definition. The Bruhat partial order on a Weyl group W is the partial

order defined by:

Mi) The unique maximal element is the identity e.

(ii) For two elements w, w' of W, the relation w K w' holds if and

only if there exist reflections tj, . -.- , tk such that w = tk . . .

t t w' and l(ti+1 . . . t w) > I(t. . - t w) for 1 K i < k.

This definition is the order dual of the usual one, e.g. normally e is

the unique minimal element. We have reversed this convention for the
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sake of much nicer notation in the future. Note that as a result, w w'

implies l(w) . 1(w'). All of this relatively harmless, since the Bruhat

orders are self-dual (Corollary 2).

Given J [n], it is known that each element w 6 W has a unique

expression w = w w where 1(w) l= (w ) + 1(wj), wj 6 Wj, and w is the

unique element of wWj of minimal length. Thus by ignoring the wj part of

each element in a coset in WV, we can identify each coset in W with an

element of W in a natural way. The Bruhat nrder .a ni is defined to be

the induced order under this identification. We will use this subset of

W to depict Wi rather than the cosets themselves. Henceforth the term

Bruhat paset shall refer to a Bruhat order defined on any Weyl group W or

coset space W. The term irreducible Bruhat poset shall refer to a

Bruhat poset defined on any W or W = W/W. for which W is irreducible.

Notation. Let W be an irreducible Weyl group of rank n and of type X,

X 6 {A, BC, D, E, F, G}. If J [n], set Jc = [n] - J. The statements

of our results always require the set Jc rather than the set J. Hence we

shall let Xn(WC) denote the irreducible Bruhat poset W.If J 0

then Xn(j) shall denote the poset W .

2. Dspiction of Bruhat Orders with Weights of Representations

In this section we present a useful preliminary proposition which

depicts the Bruhat orders with certain weights of representations of

semisimple Lie algebras. In addition to giving the connection of Bruhat

orders to representation theory, this depiction facilitates some

computations. It will be used several times in this thesis. Although it
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is possible that some researchers may already know this result, some are

unaware of it, and it does not explicitly appear in the literature.

We assume familiarity with the theory of weights of representations

of semisimple Lie algebras [Hul. Let H be the Cartan subalgebra of a

complex semisimple Lie algebra J of rank n and fix a set of positive

roots + in FiR. Denote the inner product onHE * with (-,-) and let

<-, = 2(,)/(Kaj. Denote the action of an element w of the Weyl

group on a weight I E HR* by wA. Denote the fundamental weights by X1,

where 1 K i n.

Proposition 2,- Let W be the Weyl group of a complex semisimple Lie

algebra 5 of rank n. Let X Z= mii, mi > 0, be a dominant weight for

9 in HR*, and let Jc ={: mi > 01. Define P to be the poset consisting

of the weights wk, w 6 W, with order generated by the relations uX < vX

if vX - uk = ka, where a is a positive root and k > 0. Then P is isomor-

phic to the Bruhat order W . The unique maximal element of P is X.

Reaark. The lattice of weights in HR* is often endowed with an order

given by P w< if and only if a - p is a non-zero sum of positive roots.

Thus the theorem almost states that the set of weights in the orbit WX

ordered by the usual ordering of weights is just W . However, for

uX < vX to imply u < v, we must also require that uk and vX be related by

a sequence of weights wk whose successive differences are positive

multiples of positive roots. The example A3 lXX1 + X3 shows that this

additional requirement is necessary in general. (There is a family of

representations for which the additional assumption is not needed. See

Section V.3.)
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The first of the following lemmas is equivalent to Lemma 8.10 of

Berstein, Gelfand and Gelfand [BGG], and the second is Lemma 3.5 of

Deodhar [Deol.

Lemma 2.1. Let a be any positive root and let t be the corresporiAng re-

flection. Then a 6 wlI+ if and only if 1(tw) > 1(w).

Lemm2.2. Let w C W and w' W7 . Then w < w' if and only if thewW

part of w is K w'.

Proof of Proposition 2. The stabilizing subgroup of W at X is exactly

Wi, so the map w -4 A is a bijection between W and the orbit of X

under W.

The order relations u < v if u = tv and 1(u) > 1(v) generate the

order on W. Let a be the positive root corresponding to t. Lemma 2.1

implies a vi+. Therefore <vX,a> 2 0. Now uk = vX - <vX,a> implies

<vX,m> > 0. Hence uX < vX in the partial order P defined on the

orbit Wk.

Conversely, suppose that vx - uk = ka with a a positive root and

k > 0. Consider the line v + aa where a is real. At most two points on

this line have norm IvxB1 = uXl= Iltv.xll. This implies that uk = tvX

vX - <v,a> , where t corresponds to a. Therefore <vk,a> > 0. So &C

v3 , and Lemma 2.1 implies l(tv) > 1(v). Hence tv < v. Now v 6 W

and u is the W T part of tv. Hence Lemma 2.2 implies that u < v in WY.

The following corollary actually holds for all Bruhat orders aris-

ing from finite Coxeter groups. The proof in the (slightly) more general

case is the same in spirit [Bou, Ex. IV.1.22].
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QrolQary 2-. Bruhat orders are self-dual.

ProW Letw0 denote the unique element of the Weyl group which takes

positive roots to negative roots [Hul, Ex. 10.9]. Apply w0 to the

orbit 1&.
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Chapter III

Combinatorial Descriptions and Lexicographic

Shellability of the Classical Orders

1. Introduotion

The classical Bruhat orders are the nicest Bruhat orders from a

combinatorial viewpoint, because the groups upon which they are defined

are very closely related to the symmetric groups. (See Section II.1) In

the second section of this chapuer, Proposition 11.2 is used to obtain

descriptions of the classical orders in terms of signed multipermuta-

tions.

The rest of the chapter is entirely combinatorial in methods and

content. Neither the original definition of Bruhat order nor the n-tuple

descriptions permit the direct comparison of an arbitrary pair of ele-

ments from one of the classical orders. This is the purpose of the tab-

leau descriptions which are derived in Section 3. These descriptions are

used at the end of Section 3 to help specify which of the order gener-

ating relations given in Section 2 are actually covering relations.

The last section of the chapter uses the proofs of the tableau de-

scriptions to help prove that the classical Bruhat orders are lexico-

graphically shellable (Theorem 4). Given a poset P, let C(P) denote the

set of its covering relations, i.e. C(P) = {(x,y): x covers y). Let IL

be any partially ordered set.
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_ feinft.an. A poset P is said to be lexicographically hellablU if there

exists a map w: C(P) -tfL such that:

(i) For every pair x 2 y in P there exists a unique unrefineable

chain x = zo > > zr = y with W(zi,zt) 2 w(ztzt+) for

1 i t < r.

(ii) If x covers w and w > y, then w(x, z) > ui(x,w), where z, is

defined by (i).

Given any poset P, the order coMplex of P is defined to be the sim-

plicial complex whose vertices are the elements of P and whose faces are

the chains in P. Bjbrner has shown [Bjb] that if a poset is lexicograph-

ically shellable, then the order complex of the poset is a "shellable"

simplicial complex. Roughly speaking, a simplicial complex is "shell-

able" if it can be assembled from its maximal faces in a certain nice se-

quential fashion. Stanley [StC] and Reisner [Reil have shown that if the

order complex of a poset is shellable, then a certain commutative ring

associated to the poset, the "Stanley-Reisner ring", has the

Cohen-Macaulay property. This is the consequence of Theorem 4 that is

used by DeConcini and Lakshmibai in their algebraic geometric application

of lexicographic shellability. This application will be briefly de-

scribed in Section VI.1.

Just as this thesis was being written, Bjbrner and Wachs obtained a

result [BJW) which essentially supersedes the lexicographic shellability

result proved in this chapter. By considering a property slightly weaker

than lexicographic shellability, they have shown that the order complex

of any interval of any Bruhat order on any Coxeter group is shellable.
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Here Proposition 11.2 is used to obtain descriptions of the classi-

cal Bruhat orders in terms of n-tuples and 2n-tuples of integers. The

following is a list of the positive roots and fundamental weights for Lie

algebras of types A, C, and D. Stanley [StWJ obtains these descriptions

directly from the presentations of the classical Weyl groups, but the

method used here is faster and more precise. This way also has the ad-

vantage of explicitly retaining the connection with semisimple Lie alge-

bras, which will be exploited in Chapter V.

A . Positive roots:
n-i

Fundamental weights:

C . Positive roots:

Fundamental weights:

D . Positive roots:

Fundamental weights:

-e. + e ,f1lK i < j n.
1

(-i/n)[e + - + e n- +

r(n-i)/n[e.i+ - - - + e) ] 1 i K n-1.

-e + e ,o 1 K i < J K n; e + e., 1 K i j Kn.

= e n-i+l+ en.+ + -2- - + en1 K i K n.

-e + e , 1 i < j K n; e + e , 1 K i < j K n.

X i en-i+1 + eP+ 2  .--a+ e ,3Ki K n.

a (-e + e + + e
n-1 1 2 n

;k n (e 1+ e 2+--- + e )

The action of a Weyl group on a weight space is generated by re-

flections with respect to the positive roots. Both of the root systems

Bn and Cn generate the same Weyl group BCn; we will use the fundamental

weights of type C because they have nicer coordinates than those of

type B. For the classical root systems, the possible effects on the

2. n-,tu~jle and 2na-tupleg DesgriLptions
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coordinates (a,, a2, , * * t an) of a vector in the weight space from

reflecting with respect to a positive root are:

Root -e. + e., ( j

Root e.
I.

a

(Switch): k () =Up, U a

kk

(Negate): Na

-a

Roo e5+ e, i< j (Switch-Negate): SN (a)= b, bk = a

a k

if k = i,

f k= = j,

otherwise.

if k = i,

otherwise.

if k = i,

if k = J,

otherwise.

A "permutation of an n-tuple" is an n-tuple obtained by rearranging

the components of the original n-tuple. "Signed permutation of an

n-tuple" shall mean the same thing, except that the signs of the compon-

ents may be changed as well. The notation piq -- rk denotes the

n-tuple (p, , p, q, , r, o . , r), where n i + j +

- - - + k.

Proposition 2A. Let J' {j ' 1 2j 2M} with n - 1 ji1 > J2 >

0 ' a > j > 1. The Bruhat order An-1W ) is isomorphic to the poset of

all permutations of the n-tuple e = On-J ii- .... m with order

generating relations S13 (a) < a, i < J, ai < a3 . The maximal element is

the n-tuple e.

Pron S~t n BC. Let J c Q1 929' ' 1 }with n 1 J1>J2 >

> j M>1. The Bruhat order BCn(J c) is isomorphic to the poset of all
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n-js j jj
signed permutations of e 0 1 - M with order generating

relations S (a) < a, i < J, a- <a1 ; SNj(a) < a, ai + aj > 0; and

N (a) < a, ai > 0. The maximal element is the n-tuple e.

C
Propositton 2D. Let J =ii, j2, Jm} with n 2 ji > J 2 > -- 0

> Jm 1. The Bruhat order Dn(JC) is isomorphic to a poset of certain

n-tuples as described below for various J . The order generating rela-

tions for all cases are S (a) < a, i < j, ai < aj and SNjj(a) < a, ai+

a > 0.

cJL

c iCn-1iJC, nJ

n-iC Je n$,JC

n-16JC, neJc

The maximal element

Set of n-tuplea

n-j, j,-i
o 1 m All signed permutations of e.

I m All signed permutations of e

with an even number of negative components.

(i)1 - - -m-m All signed permutations of e

with an odd number of negative components.

0 1 * - (M-1) All signed permutations of e.

in each case is the n-tuple e.

Figure 2 shows D 3 (1,3). The 3-tuples are parsea with commas, and

underlines denote negative numbers.

Proof of Proposition 2D. Choose I as follows and apply Proposition

II.2.

(i) n-1 4J c, n 4 Jc

(ii) n- 1 $J cn .J c

c c(ii) n-i %Jc, n C
(iii) n-i 1 J , n 9 J :

c C
(iv) n-I C J , n c. J :

'a=Z 'Th+
A = 7 4'13
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The n-tuple of coordinates of 2. with respect to the standard basis is e,

and the orbit of 3 under W is the set indicated in the table. The dif-

ference of two weights is a multiple of a positive root if and only if

the respective n-tuples are related by S or SN,1 , i < j. The condi-

tions a, < a and a. + a > 0 respectively hold if and only if a - S (a)
I 1 j ii,-

and a - SN, (a), are positive multiples of positive roots.
ij -

The proofs of Propositions 2A and 2BC are similar, except for

type A one must verify that it is alright to avoid fractional and nega-

tive coordinates by using 'X . = en-i+1 + en-i+2 + + en for 1 i i i

n-1, rather than the value originally given.

There is an alternative way to describe the Bruhat orders of types

BCn and Dn which will be needed in the next section. To each n-tuple

(a ) of integers associate a 2n-tuple (a.). of non-negative

integers according to:

a1  if a1 > 0,
j= i>0: a=

0 otherwise.

-ca if a < 0,

j =-i <0: aj = j;ie
j 0 otherwise.

Note that a. > 0 implies a_ = 0. The 6-tuples in Figure 2 appear

directly beneath the 3-tuples. The following two operations describe

the possible effects of reflecting with respect to a positive root:

a if k = i,

(i) (Switch) Sj(a) = b, i < J, bka. if k = J,

a k otherwise.
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1 2 3
1

H-
HI1
N4
H

Figure 2

4 1,1,2
000112

1,1,2 1 2 3
011002 2

2,1,1 3 1 2
012001 2

2,1,1 2 1 3
102010 2

1,-)1, I2 3 2 1

201010 2

210100

2 13
3

04j
H
H
04j

2 13
1

HH I
04j
H-

3 12
1

H-

H~

312
3

H I

2,1,1
000211

1,2,1
000121

1,2,1 1 2 3
101020 1

,21 3 2 1
0 210 0 1

1,2,132

120100

321
3

4

2,1,1
110200

4 0
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(ii) (Double Jump) DJ (a) = b, i < j, ai = a = 0,

a1  if k = i,

a_1 if k= -j,
bk

ak otherwise.

It is easy to find the appropriate sets of 2n-tuples to describe the

posets BC n(3C) and Dn C). The following corollaries describe the trans-

lation of the generating relations into 2n-tuple notation.

Corollaries 2BCD. If the elements of D n(J) are portrayed with 2n-tuples

as described above, then the relations S (a) < a, i < j, i 9-J,

a = 0, a. < ai, and DJ (a) < a, i < j, i t -j, a a_ 0, a-1 +
-1 1ij ^ -t.g

a > 0 generate the desired partial order. Similarly, these relations

together with S (a) < a, i > 0, a > 0 generate the orders BC 5
when their elements are portrayed with 2n-tuples.

3. Tableau Desoriptions

We now describe the classical Bruhat orders with tableaux of inte-

gers. The tableau description for type D orders is new; the tableau de-

scriptions for orders of types A and BC have apparently existed before

only in the folklore of Indian algebraic geometers.
C

GivenJC = { j>_ j>_ 2 1}, atableauantape _isanar-
21 2 MLisaar

ray of non-zero integers of the form (Tp,d)tpm, ledjP. A standara

tableau is one in which the entries in any row are strictly increasing
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and the entries in any column are non-increasing. The symbol T? will de-

note either the set fTp d1,dsjp or the row vector (Tp ).dAnJp'

extrCmatableauis a tableau such that Tp+1 S T for 1 i p < m. Given

any set of tableau of the same shape Jc, one can define a partial order

SO& thn m Ly Fy rWA L AJW O ; nUL, Ay , U Y V L 1I U p, d ,d ior

1 K p Kim, 1 K d < j . This order will also be used to compare respec-

tive rows of two tableau.

Definition. Define a map ( 2nC ) from the set of n-tuples (2n-tuples)

of non-negative integers to the set of extreme standard tableau by:

(a) = T, where for p > 1,

T =i6([n]: a. p} ( i-[n]: a. >_ p}),

with T ,1 < Tp,2 (

Rotatinnu.Fix U = ((a), V = (b), T = (c) throughout this section.

TheoremIA. Let J = {J, j 2 ' ' ,j } with n- 1 jii> j2>

jM 1 . Let P be the poset of all extreme standard tableau of shape Jc

with entries from [n], with partial order defined by entrywise compari-

son. Then P is isomorphic to the Bruhat poset A (J C)*
n-i

TheoremBC. Let Jc = f *2,j )with n >_J, >
C

M 1. Let P be the poset of all extreme standard tableau of shape J

with entries from t[n] such that both i and -i never occur in the same

tableau, with partial order defined by entrywise comparison. Then P is

isomorphic to the Bruhat poset BCn (I.
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Definitions. A aegnt of a row vector T is a row vector T Pf,g] =

(T ,9TP-)+1, - *-*, T ) for some f and g such that i -,f KJg K j

Segments which occupy the same positions in two tableaux of the same

shape, e.g. UP(f,g] and VP[f,g], are said to be.analogo. A ents. Two

such analogous segments are said to be D-incorpaibie if fivUpa

f . d S gI= {V 4 : f 5 d g} = {1, 2, , g-f+I} and one of

{Up,d: Up,d < 0, f -d< sfg}1, {vad p,d< 0, f d K g}I( is an odd

number while the other one is an even number. Two tableaux are said to

be D-oompatible if they have no analogous D-incompatible segments. The

D-nompatible entrywise comparison partial order on a set of tableau of

the same shape is the usual entrywise comparison partial order together

with the additional stipulation that any two tableaux must be D-compa-

tible in order to be comparable.

Theorem3D. Let J c2, - - - j with n > j 1 > j2>

j >1. Define JC by:
m

+2 n- 1, n CJi+ j2n1On-1,n E JC,

+1 n- J0 , ntJC { ii terwise.

otherwise.

Let P be the poset of all extreme standard tableau of shape J with

entries such that both i and -i never occur in the same tableau, with

partial order defined by D-compatible entrywise comparison. Then P is

isomorphic to the Bruhat poset D (Jt).
n

The isomorphism for Theorem 3A is the map n; the isomorphism for

Theorems 3BCD is the map 2n. These maps are clearly bijective. The
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tableaux for D (1,3) (of shape {3,11) appear to the left of the points in

Figure 2. The proof of Theorem 3A is contained in the proof of

Theorem 3B, since An-1 J) can be identified in an obvious manner with an

interval of BCn Cnc). All ordered tuples in the proofs of Theorems 3BCD

Y-ll 1 1e 2-:n-tuples.

Proof of Theorem 3BC, Suppose that b < a in BC (Jc) by one of the gener-n

ating relations of Corollary 2BC. It is straightforward to show that V

is less than U by componentwise comparison. Conversely, assume that

V < U in P. We shall construct c such that c < a and V K T < U. Apply-

ing induction on the sum of the differences of the respective tableau

entries will complete the proof.

Set 1.(a) = j: j K i, a ad
1~ j I

Let x = max{ah: a h0bhI-n Klh K.n}.

Note: Expressions such as j K h < i refer only to non-zero h.

Let i = min{ h: ah= x, (a bh) or (ah bh and 1a g 1 hb)'

-n i h K n}.

In the following arguments, we can assume x = m and l.(a) 1. (If not,

the locations .h such that ah 2I x and 1h(a) = 1 h(b) can be ignored using

the reduction V 5K U iff V U (h}i KU U {ni.

Let j be such that b x and 1(b) = hja).

Let Y = max~ah: j K h < i}.

If y > 0, let k = max{h: ah = y, j -. h K i.

If y = 0, let z = min{a-h: j K h < i},

-1 if i = 1,
and let k =f4 -i ifK <=t1,

(max~h: a h:z, j 5. h K i} otherwise.
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(i) y > 0; or y = 0, i t 1, z = 0; or y = 0, i = 1.

Set c = S (a). Clearly c < a and T < U. Fix p with y < p K m. Then
- ki0.

T = U - [ii U fk}.
p p

L k r j. if Up , n

Tp d k. Thus T is obtained from U by replacing i with k, with no

shifting of other entries. The various choices made also imply

U < J. Hence V < j. But j C6V . Thus Vpd j k = T .
p,d-l p,d-L ppdpd

We conclude that V T < U.

(ii) y = 0, i 1, z > 0. This can only occur when J < k < i < 0

or 0 < j < k < i. Set c=DJ (a). Note that a. > 0 and kt9 -i.
ki 2

Therefore c < a.

For z < p x, T =U -f{i}Ul[k}.
p p

For 0 < p z, T : U -({i} UL fk)k -f{-k} U {-i}.
p p

Now a = 0 for j1I h <(i, so the replacement of i with k works as in (i),

and the corresponding entry in V is less than k. Suppose 0 < j < k < i;

the case j < k < i < 0 is similar. The first p rows of U contain -i+1,

-1+2, - - -, -j. Since j 6. V, at worst the corresponding elements in V,

for 0 <p zare-i,-i1+1,-,-j-1. ThusT ZV for 0<p z, af-

ter T has been obtained from U by removing -k and inserting -i. Again
p p

we conclude V K T < U.

Proof of TheoreM ID. As in case BC, b < a in D (Jc) by one of the gener-n

ating relations of Corollary 2D implies that U is entrywise less than V.

We verify that U and V are D-compatible in one such situation. Let b
p p

DJ (a) with i < 0 < j, -i < j,a.=a =0, 0 < a < a . Fix p suchij L -j -
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that 0 < p S a . . Suppose there is a segment of length t in V which is

D-incompatible with the analogous segment of U*. This implies both of

these segments must contain one each of &1, 2, - -, t. If -i or j

are in UP, they are replaced by -j and i respectively when passing to VP.

(Some shifting of entries may occur.) This forces t > j. But then this

segment of V has exactly two more negative entries than the analogous

segment of U . Therefore VP and UP are in fact D-compatible. The other

cases are easier. Hence b < a implies V < U in P.

Conversely, suppose that U and V are D-compatible and that V < U by

entrywise comparison. Define li(a), x, i, j, y, z, and k as in the proof

of Theorem 3BC. Proceed as before, unless:

Ci) y =0, i= 1. Let k = max{h: a-h = z, j K h < i}.

Set c= DJ (a).

(ii) J= -1, k = 1. Redefine y = max{ah: 2 K h < i}.

If y > 0, proceed as before. Otherwise, redefine

z = minfa-h: -1 K h < i, h 4 1}

and k = maxfh : -1&K h < i, h9 1, a-h = z.

In both cases, the proofs that T is entrywise greater than or equal to V

are similar to those used for Theorem 3BC.

We verify that the tableaux T and V are D-compatible for one case.

Suppose 0 < j < k < i, y = 0 and z > 0. Then c = DJki(a). The reduction

of the proof of Theorem 3BC which assumes x = m and 1 (a) = 1 is still

valid. To obtain T from U, the entry i > 0 is replaced by k > 0 in a

fixed position in each row, and the entries -(1-1), -(1-2), - -.-v, -k

are replaced by -i, -(i-1), - - - , -(k+1) respectively in each of the

first a-k rows. Fix p, and suppose that TP[f,g] and VP[f,g] are D-incom-
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patible. Set t = g - f + 1. If t < j or t _1 i, it is clear that U [f,g]

and TP[f,g] have the same number of negative entries. Since U and V are

D-compatible by assumption, no D-incompatibilities will arise between TP

and V for these values of t. Thus3 j t < i, implying j occurs in any
P

D-incompatible segment. Let T__= k, Vp J. By the proof of

Theorem 3BC, d _ e. By the choice of k, -j C T 1. Let Tp,c -J. Then

e < d. Now f _J c and e i g, implying d 6 [f,g]. But TI, = k. Thus

each segment must contain one each of +1, 2, '', k, and k > j. By

the choice of k, the entries -4, -(i-i), -- , -kc, --- , -j occur

in T 1. Therefore no h such that k < h < i occur in TP, implying g = d.

(Recall that t < i.) We conclude that any D-incompatible segment must be

of the form T [f,d] = (-h, -h+1, ' **'9, -k, * -I, -j, TP[f+h-j,

d-1J, k), where k < h < and {ITpC 1: f+h-j K c K d-1} = {1, 2,

J-1}. Recall V ,e = j and e I d. But j must appear in VP[f,d], since

J < h. This forces Vp,d = J. We must have Vp _. TPj for fJ c

f+h-j-1 and -j is not available. Thus VP[f, f+h-J-1) = (-h, -h+1,

* 0 , -J-1). Now T [f+h-j, d-1J = U [f+h-j, d-1], and both U and V
Ip p p p

have one each of 1, 2, ' -- I, (J-1) in this segment. The

D-compatiblity of U and V therefore implies the D-compatibility of TP

and VP along the segment [f+h-j, d-1]. The remaining entries in the

segments T Pf,d] and VP[f,d] have identical signs. Hence these larger

segments are actually D-compatible. Thus no D-incompatible segments ex-

ist between T and V. The other cases are easier. Therefore V K T < U

in P, and the proof is complete.
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For the statements of the next results, we revert to n-tuple nota-

tion for cases BCn and Dn. However, retain the correspondence between a

and U, b and V, c and T via the map (2n composed with the equivalence of

n-tuples and 2n-tuples.

CoArollaries 3ABCD.The order generating relations S (a) < a, a. < a
ij - ^- 1

of Propositions 2ABCD are covering relations iff i < k < j implies either

a < a or a > a . The generating relations SN (a) <a, a + a > 0,
k i k j ij I j

of Propositions 2BCD are covering relations iff i < k < j implies

a < -a. or a > a , k < i implies la kI< -min(a ,aj) or laj >
k I k jk

max(a.,a ), and (for case BC, not case D) a a < 0. The relations

N (a) < a, ai> 0, of Proposition 2BC are covers iff k < i implies
I A-

a k> a .

.Proof. All of the "only if" parts can be easily proved by finding

counterexamples to weakenings of the conditions. In the case of type BC

posets, let us prove that b = SN (a) < a, a1 + a > 0 is a covering re-

lation for the case a. < 0, a1 > 0. This implies a > -a . Let K =t{k:

a > a , i < k < J} k: ak > a1 , k < i} U {-k: ak < -a1 , k < i =

kI1 < k2 < .. * <kr}. To obtain the tableau V from the tableau U, re-

place entries k, k2, * - - - kr, j with -4, Ik, k 2,, - - - , k r in rows

-a1 + 1 to ais. Fix p such that -ai < p K aj and let Vpe =- Upj = j.

Suppose there is an extreme standard tableau S such that V < S < U by

entrywise comparison. Let H = {S : e S g K f}. Clearly H C f-i,

-i+1, * . '.,j). If k C. K, then k C Uq for some q > a. ButV q = Uq

forces Sq = U* Thus kc S 5 SP, since S is extreme. Then k 6 H, be-

causeS p>f+1 = Up,f+1 > j. Hence H = K U {h}with -i S hKi j. Note
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that U-a = V -aforces U-ai = S-ai, and -iK U-ai,g j implies
-1  a1 1 1

U-ai 4- K UJ {-i,j}. But h 6 Sai since S is extreme. Therefore

h = -i or h = j, impying T = V or S = U. Proofs of the other cases are

similar in spirit.

4. Lexicographic Shellability

Lexicographic shellability was defined in the introductory section

to this chapter. In [Ede], P. Edelman showed that the Bruhat partial or-

der An-1([n-1) is lexicographically shellable. We extend this result in

two ways: to the other two classical Bruhat orders BC([n]) and Dn([n]),

and also to the coset space Bruhat orders A JC), BCn(J C), and Dn(Jc)

where JC [n]. Much of the proof of the following theorem comes from

the proofs of the tableau descriptions.

Thorem 4. All classical Bruhat orders are lexicographically shellable.

Prof. Orders of types BC and D will described with 2n-tuples indexed

by [n]. Orders of type A will not be treated separately because

An-1 (Jc) is an interval of BCn(Jc)-

Let I be the lexicographic total order on 3 X Z X 3 c Z. For ex-

ample, (2,3,7,1) > (2,3,6,9). Note that the word "lexicographic" is be-

ing used in two entirely different contexts. Given any 2n-tuple

(a i) ,define

ri(a) {j: j> i, aj = ai)

(Recall the similar definition of I1(a) in Section 3.) Define a label-

ling w of the cover relations of the classical orders, i.e.
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C : C(X (JC

If a covers b, set cu(a,b) equal to:

(a , r (a), a1, 11(a)) if b = S (a),

(a , r (a), -a_1 , r j(a)) if b = DJ (a), a = a_ = 0, a > a_1 ,

(a , r (a), -a1i, _ (a)) if b = DJ (a), a = a_ = 0, a. = a_,j< -i,

(a_ , r_(a), -a., rj(a)) if b = DJ1 (a), a = a_ = 0, a < ai,

where i < j. These labels are shown in Figure 2 for D3(1,3); minus signs

are denoted with underscores for typographical convenience.

Most of the content of this proof resides in the manner in which

the definition of the labels above complements the proof of Theorem 3.

We will only outline the rest of the proof, which consists of trivial to

easy (but sometimes tedious) verifications. The tedious aspet arises

because one must consider the. various covering relations or combinations

of covering relations for orders of types BC and D at each step.

Given a > b in a classical Bruhat order, the proof of Theorem 3

recursively constructed a particular chain of elements a =L >c Li>

- > c = b from a to b. In each case, Corollary 3 can be used to
~r AOft. A.

verify that each of the relations ct > t+1 is a covering relation.

Again considering various cases, one can confirm that the choice of two

consecutive elements is always such that w(gc_, c0) > wcct+9). The

third consequence of the construction is that if a covers d and d > b,
0%.

then w(ac) > c(a,d). To see this, note that the tableaux for a and b

imply that the first two entries of the label quadruples are as large as

possible with the choice of a1 = c. The tableaux also imply that the

locations searched in the process of defining y, z, and k are the only
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locations to which the entry x at location i can be moved such that the

resulting 2n-tuple is greater than b. Given these restrictions on the

movement of the entry x at i, the-choice Z = c from the proof of

Theorem 3 is exactly the cioice of Si that maximizes the third and fourth

entries of the label quadruple.

To complete the proof, one must show that no other chain from a

to b has non-increasing covering relation labels. Let a = d 0 >

> dr 4=b be some other chain from a to b. As above, the tableaux

indicate that the entry x at i is the largest entry (in terms of the

first two label entries) which can be moved in any of the 2n-tuples be-

tween a and b. Since it must be moved sometime, and since the labels

must never increase, the entry x at i must be moved first. The tableaux

again restrict the locations to which this entry can be moved. At this

point, various cases for each type of order must be considered in order

to rule out any other "first moves" beside i =c. To treat these cases

for orders of types BC and D, it is helpful to occasionally return to

n-tuple notation and use Corollary 3. Each of these situations essen-

tially follows the same pattern: Moving the entry x at I to location

h < k with either a "switch" or "double jump" is either impossible or not

a covering relation. And if the entry x at i is moved to a location

h > k to produce a 2n-tuple greater than b, one can show that eventually

this entry x must "hop" over location k, which again is not a cover, or

move to location k. This eventual forced move to location k produces an

increase in the labels of the covering relations of the aternative

chain. The proof is complete once all of the apparent alternative "first

moves" for each case have been eliminated.
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Chapter IV

Applications of

Lexicographic Shellability and Tableau Descriptions

1. An Application to Algebraic Geometry due to DeConotni and Lakshmibai

In this section we will briefly describe how DeConcini and

Lakshmibai have used Theorem 111.4 to show that certain embeddings of

certain projective varieties arising in algebraic geometry are arithmeti-

cally Cohen-Macaulay and arithmetically normal [DeL]. Let G be a classi-

cal semisimple algebraic group over an algebraically closed field, and

let P be the j=b, maximal parabolic subgroup of G. Then G/P is a pro-

jective variety. Let R. denote the homogeneous coordinate ring (for the

canonical projective embedding of G/P ) of a Schubert subvariety S(?-) of

G/P . The main result of DeConcini and Lakshmibai is:

Theorem, The ring R7 is Cohen-Macaulay and normal.

For certain choices of G and PJ, there is a straightforward proof

of this result utilizing the theory of algebras with straightening laws

[Bac], [DEP]. For example, if G is of type A n-1 and P is the Jilh maxi-

mal parabolic subgroup of G, then one can use the work of Rota,, et. al.

[DKR] (or other authors) to shuw that the ring R. is a ring with

straightening law over a prinicipal ideal of the poset An- 1 (j), which is

in fact a distributive lattice. A consequence of the theory of algebras

with straightening laws is that R,. is Cohen-Macaulay if the
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Stanley-Reisner ring of this principal ideal is Cohen-Macaulay. But the

Cohen-Macaulayness of this ring follows frm the shellability of the or-

der complex of the principal ideal, which can in turn be deduced from

S. Provan's theorem [Prv] that the order complex of a distributive lat-

tice is shellable.

The more general work of DeConcini and Lakshmibai follows the same

pattern. Two difficulties arise. First, the connection between the

Bruhat poset X (j) and the ring R, for a Schubert variety in G/P6, where

G is of any classical type X n, is not in general as straightforward as

when G is of type A .n-1 DeConcini and Lakshmibai introduce an intermedi-

ate object, called a doset, which is a subset of Xn(j) >( Xn(j). They

then define the concept of an algebra with straightening law over a doset

and show that any ring related by this mechanism to a doset defined on a

poset is Cohen-Macaulay if the Stanley-Reisner ring of the poset is

Cohen-Macaulay. Work of Seshadri, et. al. [LM4] is used to confirm that

the ring RT is an algebra with straightening law over a doset defined on

a principal order ideal of the Bruhat order Xn(j). Hence the problem is

reduced to the question of whether the order complexes of principal order

ideals in the posets Xni(j) are shellable. The second aspect of difficul-

ty for the more general case now arises because the posets Xn(i) are not

distributive lattices in general. However, Bj6rner's proposition [Bj8]

that the lexicographic shellability of the poset implies the shellability

of the order complex can be combined with Theorem 111.4 to complete the

proof.
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In a personal communication, DeConcini has indicated that the

methods of [DeL) together with Theorem III.4 can also be applied to the

Schubert varieties of the flag manifolds G/P which correspond to the

Bruhat posets of the form An(ji, j.Furthermore, DeConcini and

Lakshmibai point out in their paper that their methods also apply to the

Schubert varieties of G/P , with G an exceptional semisimple algebraic

group and P a classical maximal parabolic subgroup, if the order com-

plexes of the corresponding Bruhat posets are lexicographically shell-

able. These order complexes are now known to be shellable by the recent

work of Bjorner and Wachs [BjWJ which was described at the end of

Section 111.1

2. Computation of the Mbius Function

and Triangulations of Balls and Spheres

The Mbius function of a partially ordered set P is a certain inte-

ger valued function on the set P)( P which played a central role in G.-C.

Rota's theory of enumeration with respect the poset P [Rot]. By careful

use of the Coxeter group axioms, D.-N. Verma has shown [VeM] that the

MObius function for the Bruhat order on any full Coxeter group W has the

following expression: ,s(u,v) = (-1)1(u)-1(v). A theorem of Stanley and

Bjbrner [Bjd, Theorem 2.7) for arbitrary posets provides a more concrete

way to obtain this result for the classical Weyl groups by using the la-

belling of the covering relations specified above. A particular case of

their theorem states that if a labelling of the covers satisfies the

requirements for lexicographic shellability, then (-i)r(x)-r(y) (y,x) is

4

4
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the number of chains from x to y which have strictly incraaing labels,

where x > y and r(x)-r(y) is the length of any unrefineable chain from x

to y. With our labelling, it is easy to verify that there is always ex-

actly one such chain for any pair of comparable elements in a classical

Weyl group. With a little more work, one could probably also use the

same methods to obtain (for the classical cases) a more concrete deriva-

tion of Deodhar's expression [Deo] for the Mbius function of the Bruhat

orders defined on the coset spaces W 7 .

Stanley and Edelman have noted that Theorem 111.4 can be combined

with the corollary just described to produce triangulations of spheres

[Ede]. The particular form of the Mbius function for the Bruhat order

X n(n]) on a classical Weyl group combined with the lexicographic shella-

bility of Xn([n]) implies the following: If one deletes the minimal and

maximal elements from X (En]) and forms the order complex of the

resulting poset, then the simplicial complex so obtained is a triangula-

tion of a sphere. The interested reader should consult Edelitan's proof

for the case A (n]). (This proof applies immediately to BCn([n]) and

D ([n]).) In addition, Stanley has pointed out (personal communication)
n

that Deodhar's computation of the Mbbius function for the Bruhat orders

on the coset spaces W can be combined with Theorem 111.4 to produce

triangulations of balls by the same procedure. In summary, this proce-

dure of forming the order complex after deleting the minimal and maximal

elements from a classical Bruhat order W yields a triangulation of .a

sphere when J = 0 and a triangulation of a ball when J # 0. DeConcini

conjectured (personal communication) that this procedure always yields

triangulations of spheres or balls when it is applied to any interval of
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of a Coxeter group. This conjecture was recently confirmed by Bjbrner

and Wachs [BjW]. (See Section III.1.)

3. Relationship with the.Original Definition of Bruhat Order

In this section we use one of the tableau descriptions (Theorem

III.3A) to prove a conjecture of G. Lusztig's (Proposition 3.1) concern-

ing the Bruhat order on the symmetric group and arrays of dimensions of

intersections of pairs of flags of subspaces in specified relative

positions. As a consequence, we obtain a more direct description of the

Bruhat orders of type A in their original contexts.

Definition., Let I be an n-dimensional vector space. A Lazximal flag 2L

subspaces f{ } in *" is a strictly increasing sequence of subpaces 0 C-

2. inO0-.

Notation, Throughout this section W will denote the nth symmetric group,

i.e. the Weyl group of type An-r. Its elements shall be denoted with the

small Greek letters 0, T.

Definition. A maximal flag (44; is said to be in relative.psitionr_

with respect to a fixed maximal flag {OrJ} if and only if

- C(i / L) for 1 &i_<,n.

It is a fact that any two flags are in exactly one relative posi-

tion a' with respect to each other.
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Proposition 3.1. Let { 1-} be a fixed maximal flag in '4t. Let { %t } and

I V } be in relative positions r and - with respect to {O }. Then

r g- in the Bruhat order on W if and only if dim(4t / 4 ) .dim(&44<

/ )) for 1 K i,Ji Sn.

We defer the proof of Proposition 3.1.

Consult [Hu2] as a reference for the following material. Let G

SL(n, C) act on an n-dimensional complex vector space /k. Fix a maximal

torus T and a Borel subgroup containing T. Let {4t i} be the maximal flag

stabilized by B. The points of the manifold G/B correspond to maximal

flags in V. Let NG(T) be the normalizer of T in G. Then NG(T)/T

the Weyl group of G, which is the nbh symmetric group. Let W' be a set

of representatives of NG(T)/T in G. The Bruhat decomposition of the flag

manifold is described with these representatives: G/B =L ,BcrB/B.

The Bruhat order on W was originally defined by inclusion (reverse inclu-

sion for this paper) of the subsets B crB/B (bar denotes topological clo-

sure) of the flag manifold. Hence the following proposition uses Theorem

III.3A to obtain a more direct description of the Bruhat order of type

A n-1 in its original context.

Proposition 3.2. Let G = SL(n, (.) act on 4 and let G/B be the manifold

of maximal flags in *f. Denote the flag stabilized by B with {0/ }. Let

U, C W' as above. If {Z} C Bo-B/B and i45 } 6 B-rB/B are two flags

in two Bruhat cells, then B-tB/B .- BB/B if and only if dim(4 /c

%P.) dim( 4 "f;A#;) for 1S i,j S n.



47

Pro.ofL It can be shown that {(1} & Bo&B/B if and only if ( 1i} is in

relative position a- with respect to {(r21}. The proposition then follows

from the original definition of Bruhat order and Proposition 3.1.

The following definition of relative position is equivalent to the

one given above.

Deflanitian, A maximal flag {(1 } is said to be in relative.position .Cr

with respect to a fixed maximal flag { #} if and only if there exists a

basis { rJ of frsuch that 4%;= [ , r, ' -, AT;] and 4(

IA-,, iA-rrlz)1 , a, 9IArqj) I]

Proof of Proposition 3.1. Pick a basis { u } for OK such that the flags

{Or; } and {f1;} can be described as above. Then dim( 4i, /1 1r3 ) =

j er (k): k ii, o-(k ) .iJ}I. A similar expr ession comput es dim(t'/ /I

4r;) in terms of 'r1. Apply Proposition 3.3.

Proposition 3.3. Let a,7 be permutations on {1, 2, - , n}. Then

7 K a in the Bruhat order on the riht symmetric group if and only if

f 7 (k):k Si, r(k) .i j I &-(k): k i-<, c(k) i}( for

1 . i,j n.

frguf. Modify Theorem III.3A to handle permutations of {1, 2, .. '., n}

rather than {0, 1, -* , n-l}. The resulting tableaux have n rather

than n-1 rows. Let the tableau U correspond to 0, i.e. UP = { i:

v(i) }_ P}. Set m. = (fer(k): k Ki , (k) ilJ}l, m 0 J= Mi,0

M = 0. Define V and n. similarly with respect to '. Note that U =
0,0 1,j p

( i: m mi1 }, and similarly for V . The numbers in prog-
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ress from 0 to p-1 as i runs from 0 to n. There are n-p+1 locations i

such that m 1 1 = m 1  . Since U and V are increasing row vectors,

it is easy to see that V < U by entrywise comparison if and only if
p p

n m for 0 <, i < n. Apply Theorem III.3A to finish the proof.

Choose m integers JC { 1 , .- , j } such that n-1 }_ j ..
1m 1

> jM > 1. A flag of type Jc in an n-dimensional vector space 4 is a

strictly increasing sequence of subspaces 0 C 4 , C- r&Z -I - C

44, % 4V such that dimS = jm-k+1 for 1 .k K m. Fix one such flag and

let P Q G denote its stabilizer. If one gives a definition of relative

position between a flag of type Jc and a fixed maximal flag using ele-

ments of W, then there are appropriate W analogs to each of the results

above. The objects involved are: flags of type Jc, relative positions

from W , manifold G/P of flags of type Jc with Bruhat cells BeP/P, and

multi-permutations (shuffles). Perhaps these results can also be extend-

ed in some fashion to Bruhat orders of types B, C, and D, if the appro-

priate definitions of flags are used.

4. Relationship with Ynung' Tableaux

Alfred Young utilized standard tableau with entries from {1, 2,

n} in his construction of finite dimensional irreducible repre-

sentations of sl(n,C,) [Boe, Theorem 5.3]. The extrane standard tableaux

used in Section 111.3 to describe the Bruhat orders of type A n-1 are a

subset of the tableaux employed by Young. Since it was shown in Section

11.2 that Bruhat orders arise in the context of representations, one
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might ask whether the tableaux used in this paper can be identified in a

natural manner with a subset of the tableaux used by Young.

Proposition 4 gives an affirmative answer to this question.

Refer to Section 11.2 and [Hul] for representation notation and

definitions. Let us briefly describe Young's construction of a finite

dimensional irreducible representation p of sl(n, t ) with highest weight

a = L 'm .. Set N= m1 + m2 + - +mn-. Let v be the natural

representation of sl(n, () on C, and let lr= ®&0 V. Young explicitly

constructed a certain projection P on 7r. Set I/ = P( W). He then

showed that the desired representation p is the map from sl(n, t ) to

gl(4/,() given by 4(x)r = P{[&v](x)rl)= [0"V](x)(PAtr) where

6 e 'U/ ,r= PAr E/, x 6 sl(n,4>). Let ArT denote the element

e ® a e 0 - ®- etN of the usual basis for 4, where T is a tab-

leau with mn-1 rows of length n-I, mn-2 rows of length n-2, - - ' , and

whose entries are ti, t2a- - , tN when the tableaux is read like a

page of English text. Whenever T is a standard tableau, let VT =

P(4r ). Young proved that the set of the vectors 1/g forms a basis for

the representation p of sl(n,40) on V/.

Given a basis vector '/ let ={tr: tr =i} , 1 i K n.

Then trT is a weight vector for P with weight S> (qj+ 1 -qj) ?. Since

the weight of V can be computed in terms of T, and since each wAT

weight space has dimension 1, Young's techniques assign to each

weight wX exactly one standard tableau.

Any rows of the same length in an extreme standard tableau must

have identical entries. If an extreme standard tableau has more than one

row of a given length, then we shall call the second, third, -. -- rows
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of that length repeated rows. Essentially no information is lost if

these rows are deleted from the tableau.

Preposition 4. Let p be the finite dimensional irreducible representa-

tion of sl(n, C) with highest weight R = 2 m and set J=fi:

m > 0}. Let w 6 W, the Weyl group of type An- 1 * Then the standard

tableau T assigned by Young to the weight wX is an extreme tableau.

Furthermore, if any repeated rows in T are deleted, then the resulting

J
tableau is equal to the tableau TW assigned to the coset of w in W by

the constructions of Proposition III.2A and Theorem III.3A.

Proof. The tableau TA corresponding to the highest weight of the repre-

sentation has as many entries as possible equal to n, then as many

entries equal to n-1 as possible, etc. It is easy to see that Ta is an

extreme tableau, and that the tableau Te corresponding to the identity

e E W via the work in Chapter III is obtained when the redundant rows

are deleted from TX. The effect in tableau terms of operating on a

weight A with a simple reflection s. is to replace the entry n-i+1 with

the entry n-i in every row of the tableau TA where n-i does not already

appear. (If U = TA, this corresponds to finding the largest k such that

PESNyik(4r'U)J t 0, where Yi(en-i+ e= n-i.) In the context of

Chapter III, it is easy to show that T is obtained from Tu by exactly
siuu

the same procedure. The proof is complete with the observation that ev-

J
ery element of' W can be expressed as a product of simple reflections.
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Chapter V

Application of Lie Representation Theory to Bruhat Lattices

1. Intrndunction and Combinatorial Definitions

In the introductory chapter to this thesis, we asserted that the

Bruhat lattices were the most interesting Bruhat orders from a combina-

torial point of view. One of the reasons given was that their structures

were particularly susceptible to analysis with Lie algebraic methods.

This chapter will utilize the Lie algebraic notions of miniscule repre-

sentation and principal three dimensional subalgebra to obtain combina-

torial information about the Bruhat lattices.

Section 2 classifies the Bruhat lattices using Proposition 11.2 as

a computational aid. Section 3 presents the Lie algebraic machinery

which will be needed, including the definition of a miniscule representa-

tion of a complex semisimple Lie algebra. The miniscule representations

have been classified, and the list of them is given in Section 3. We de-

fine a "miniscule lattice" to be the poset of weights of a miniscule

representation. It turns out that the set of miniscule lattices is the

same as the set of Bruhat lattices, and the correspondence is almost

"natural" in a certain sense. (See Section 2.) Because of the methods

used in this chapter, these lattices will be referred to as miniscule

lattices. This terminology has the added advantage that certain posets

associated to these lattices can be referred to as "miniscule posets",

rather than as "Bruhat posets".
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Definitions. Let L be a distributive lattice. The 22itJ 1ljoin

irreducibies j(L) of L is defined to be the subposet of all elements of L

which cover exactly one element. Let P be a poset. The (distributive)

lattine .D Lorder idealz J(P) of P is the set of order ideals in P ordered

by inclusion.

It is well known that L= J(j(L)) and P = j(J(P)). A "miniscule

poset" will turn out to be any poset P such that P = j(L), where L is a

Bruhat (miniscule) lattice.

The following sequence of combinatorial definitions are necessary

to explain the content of Section 4.

Definition. Let X= ( , X2  ) with 6 X>2 Xk -I

Let P be a tableau of shape X with non-negative integer entries no larger

than m. If P IP and P >P for all possible p and d, and
P,d p+1,d p,d p,d+1

if the sum of the entries of P is N, then P is a plane partition .LRj

Contained in aw.1aith part .sje. nbunded . a.M.

Definition. The generating function for plane partitions of shape con-

tained in X with part size bounded by m, G(X,m,x), is defined to be:

G(X,m,x) = XPx ,

where the sum is over all such possible plane partitions P and where

IPI = N if P is a plane partition of N.

In his thesis [StO), Stanley abstracted this generating function to

arbitrary posets as follows. A plane partition with part size bounded

by m can be thought of as a non-decreasing sequence of (possibly empty)
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order ideals of the fixed order ideal of "shape X" of the poset IN K ,

whereb& is the natural numbers under their usual ordering. E.g., the

non-negative integer in the upper left hand corner of the tableau counts

the number of non-empty ideals in the sequence, since every non-empty

ideal must contain the unique minimal elemer.t (0,0) of the fixed order

ideal.

DefinItion. Given any finite poset P, the m-nested ideal generatlng

f untion Lf I is defined to be:

F(P,m,x) -_=

where the Ii are order ideals in P.

Definition, A poset P is said to be Gaussian if its m-nested ideal

generating functions have the following form for every non-negative m:

1- hj+M h2+m hr+m

F(P,m,x) 0xhr)
ci-i(1 - xh2) . . . (1 hr

where r and the h are non-negative integers independent of m.

It is easy to see that the direct sum of any two Gaussian posets is

a Gaussian poset. (The converse is also true: Stanley has shown (per-

sonal communication) that if a direct sum is Gaussian, then each of the

summands is Gaussian.) The concept of Gaussian poset was introduced by

Stanley for purely combinatorial reasons years before combinatorialists

studied combinatorial aspects of Lie algebras [StO). Certain plane par-

tition generating function identities motivated the definition of
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Gaussian poset. Propositions 4.1 and 4.2 of this chapter give new proofs

for two of these identities. These proofs are special cases of the main

result of Section 4, which can be succintly stated as: All miniscule

posets are Gaussian posets. The two exceptional irreducible miniscule

posets e6 (6) and e7 (7) are new irreducible Gaussian posets. There are no

known Gaussian posets beside the miniscule posets. (See Section VI.4.)

The m-nested ideal generating functions for the miniscule posets can be

interpreted in an obvious manner as "rank weighted m-multichain" gener-

ating functions for the Bruhat lattices.

We now describe the content of the fifth and last section of this

chapter.

Definition. A ranked poat is a partial order on a set L together with a

partition fLO, L1, U - - , Lr of L into ranka Li such that the elements

of Li+ cover only elements of Li. If x 6 Li, then we say x has rank i

and set r(x) = i.

Definitions. Let a ranked poset L have ranks LO, L1 , .. -,jLre If the

sizes of the ranks are such that ILi I=|Lr-iI for 0 K i K r, then L is

rank axmmgtric. If there is some k such that 0 _. k K r and ILOI IL1 |I

* S .4 KILk 1 * ' * 0>Lr1I L Lrl, then L is rank. unModal.

Definitions. A ranked poset L is said to have the Spgrner .RrantY if no

antichain in L has more elements than the largest rank of L does. The

poset L is k-Sparnar if no union of k antichains in L exceeds the union

of the k largest ranks of L in size. If L has r ranks, then it is said

to be strangly. Sp rner if it is k-Sperner for k = 1, 2, *e', r.

MMOUCULVICM -C aarsw.
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The last section of this chapter presents a new proof that minis-

cule (Bruhat) lattices are rank symmetric, rank unimodal, and strongly

Sperner. Although this proof is more limited in scope than Stanley's

original proof [StW), it leads to a better understanding of how Stanley's

proof works. As noted in the introduction to this thesis, this better

understanding leads to a result in Chapter VI which is more general in

some sense than Stanley's. Another reason for presenting the new proof

is that the Lie algebraic techniques used in Section 5 are very closely

related to the techniques used in Section 4.

This chapter makes heavy use of the representation theory of com-

plex.semisirple Lie algebras as described in [Hull. We should note, how-

ever, that the main result of Section 5 is superseded by Theorem 2.1 of

Chapter VI. The proof of this theorem is presented in purely linear al-

gebraic terms, so it should be accessible to all readers.

2. Classification of Bruhat Lattices

A Bruhat lattine- is a Bruhat poset which is a lattice. Let W be a

Weyl group with simple reflections a 1, s2, " * *, sn, and let 5 be the

corresponding complex semisimple Lie algebra with fixed Cartan subalgebra

H, positive simple roots a 1 , a2 , . . ., an, and fundamental weights X1,

2' Xn. if J' ( En], set X = Z.ijci. Recall that Proposition

11.2 uses the weights wk, w f W, to portray the Bruhat order W . Also

recall that nodes j and k are connected in the Dynkin diagram for 9 if

and only if (aj$ck) < 0.
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kema 2. If there is an element u of'Wi such that uX = n rX with

r = p > 0, rk = q > 0 and (agak) < 0, then W is not a lattice.

Proof For convenient (albeit imprecise) notation, refer to an element w

of WJ with the Jb and kt; coordinates of wX with respect to the basis of

fundamental weights, e.q. u = (p,q). Suppose that (akak) =2(a a ).

Then wX covers sjwX = (-p,p+q) and skwX = (p+2q,-q). In turn, sjwk

covers sksjwX= (p+2q,-p-q) and akwX covers sa kwX = (-p-2q,p+q). Now

l(sksjw) = l(sjsw) =l(sjw) + 1 = 1(sk) + 1. But (sksjsksjsk)sjw

s sw and (sass s)skw = skajw. Hence both sjw and skw cover both

skSjw and sjskW, implying that Wi is not a lattice. The cases (ak' k

(ajtaj) and (akick) = 3 Cajtaj) are similar.

Prapositlan 2. The following is a list of all irreducible Bruhat posets

which are lattices: An-1(j), 1 K j j n-1, BCn(1), BCn(n), DnMl)I

Dn(n-1), Dn(n), E 6 (1), E6 (6), E 7 (7), G 2 (1), G 2 (2). (Simple reflections

numbered as in (Hul, p. 58].) All of these lattices are distributive

lattices.

Pot.. Using tables [Bou, pp. 250-275], one may eliminate all other fi-

nite irreducible Bruhat posets in less than an hour with the following

method. Take an Xn and Jc which do not appear in the list. Set X

, Operate on X with simple reflections until the situation of

Lemma 2 is produced. The poset An-1(J) was described in Section 2 of

Chapter I and is easily seen to be a distributive lattice. The posets

BCn(n), Dn+1(n), Dn+1(n+l) were shown to be isomorphic distributive lat-

tioes by Stanley [StW]. The other posets listed are distributive lattic-
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es by inspection.

Stanley denotes the lattice BC (n) by M(n). We will describe it

explicitly in the proof of Proposition 4.2. The lattices BCn(l), G251)

and G 2 (2) are chains of lengths 2n, 6 and 6 respectively. The lattice

Dn(1) has 2n elements, with two elements in the middle rank and one ele-

ment in every other rank. The lattices E6(1) and E6(6) are isomorphic,

and each has 27 elements. The lattice E7(7) has 56 elements. The Hasse

diagrams for E6(6) and E7(7) appear in Figure 2.2 of Section VI.2.

3. Miniasnle Representations and Principal Thr ee Dimensional Subalgebras

Let 9 be a complex semisimple Lie algebra with fixed Cartan

subalgebra H and Weyl group W. A finite dimensional irreducible repre-

sentation of 2 is completely determined by its "highest weight".

Definitin. Let p be a finite dimensional irreducible representation

of 5" of highest weight X. The representation p is a atniscuJ&

representation if every one of its weights is of the form wX for some

w 6 W.

Fat3J.1. [Hul, Ex. 13.13) If X (a) denotes the finite dimensional
n

irreducible representation of the complex simple Lie algebra of type X,

with highest weight X, then the miniscule representations of complex sim-

ple Lie algebras are: A (n-1X ) 1 t i jKn-1, Bn n), Cn(X),DnAil'

Dn n-1), Dn(Xn), E6 (1), E6(6), E7(X7).
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Recall that a partial order is defined on the weights of any repre-

sentation by: p < w if and only if w - p is a sum of positive roots.

Definitions. A miniaQule lattie is the set of weights of some miniscule

representation ordered by the usual partial order on weights. An

irredUcible minisaule lattice is one which arises from a miniscule repre-

sentation of a simple Lie algebra. An (irreducible) mIntzoiaee.qset is

the partially ordered set of join irreducible elements of some (irreduci-

ble) miniscule lattice.

RBgark. As a consequence of the manner in which representations of semi-

simple Lie algebras can be decomposed into representations of simple Lie

algebras, every miniscule lattice can be expressed as a product of irre-

ducible miniscule lattices.

The upe of the word "lattice" for these posets is justified by the

following lemma.

LeWa3. Each miniscule lattice is just the Druhat poset which corre-

sponds to the miniscule representation as in Proposition 11.2. Hence

each miniscule lattice is in fact a distributive lattice.

frof. Let W G W be the stabilizer of the highest weight X. Suppose

that u i v in WA with u, v 46WJ. Then uX = vX - Zkiai with ki 0,

1 _. i K n. Now I|vx I= ui implies that <vXaj> > 0 for some j. Lemma

11.2.1 then implies that sjv < v in W. Exercise 13.13 of [Hul] states

that <vXaj> = +1, 0, or -1, since X corresponds to a miniscule represen-

tation. Thus sJVX = VX - aj. Apply induction and Lemma 11.2.2 to con-

P

J) fl~

Thft
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elude that u < v in W'k Thus each miniscule lattice is a Bruhat poset.

Comparing the list of miniscule representations of simple Lie algebras

with the list of irreducible Bruhat lattices in Proposition 2, it is evi-

dent that every irreducible miniscule lattice is a distributive lattice.

Taking products implies that every miniscule lattice is distributive.

Note that G2() and G2(2) are Bruhat lattices, but G2 1) and

G2(L2)are not miniscule representations. However, G21) and G 2 (2) are

both six element chains, and A5(1) is a miniscule lattice which is a six

element chain. Therefore, the set of miniscule lattices is the same as

the set of Bruhat lattices, but the correspondence is not quite compati-

ble iPith the Lie representation indexing of the lattices. We shall use

essentially the same notation to describe irreducible miniscule lattices

as was used for irreducible Bruhat lattices. To emphasize the represen-

tation dependent nature of this chapter, a slight change will be made for

type BC orders.

at3.2. The irreducible miniscule lattices are: An-1(j), 1 S j K n-1,

Bn(n), Cn(1), Dn(), Dn (n-1), Dn(n), E6(1), E6(6), E7 (7).

Notattioa. The irreducible miniscule poset corresponding to Xn(J) shall

be denoted xn(i)e

at 34 . The irreducible miniscule posetr are: an-1(j), 1 j K n-1,

bn(n), on(i), dn(l), dn(n-1), dn(n), e6(1), e6(6), e7(7).

The Hasse diagrams for the irreducible miniscule posets are given

in Figure VI.3.8.
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A review of the proof of Lemma 3 reveals that if vX covers uk in a

miniscule lattice W , then vX - u% = aj, a particular positive simple

root. Hence if uk = Zkiai, then the poset rank of uk in WX is given by

Ski up to an additive constant. Let 6v denote the unique element of H1

(the Euclidean space where roots and weights live) such that (ai,6V) = 1

for 1 K. i . n. It is easy to show that ' =aL2Xi/(apaj). If wo is the

unique element of the Weyl group which takes every positive root to a

negative root [Hul, Ex. 10.9], then by Propostion 11.2 wl is the unique

minimal element of WA. Since positive simple roots must pass to negative

simple roots, (w0x,&v) <x,& 'Xv). Hence Wa bas 2(X,BV)+1 ranks as a

ranked poset.

Let p denote the finite dimensional irreducible representation of

with highest weight X. There is a unique element h of the fixed

Cartan subalgebra H of such that p(h)v = (p,6v)v if v is a vector ih

the representation space of weight p. If p is miniscule, a basis for the

representation space can be chosen which is in one-to-one correspondence

with the weights of the representation or the elements of the miniscule

lattice. To determine which rank a lattice element is in, multiply the

corresponding weight basis vector by p(h) and add (X,6v) to the observed

eigenvalue. (Recall that the ranks of a poset are numbered 0, 1, 2,

- - -, r.)

This leads to the second topic of this section, principal three

dimensional subalgebras. It will be useful to define two other elements

x and y in i such that x, y, and h span a subalgebra of Y isomorphic to

s1(2,4). The definition below is from B. Kostant [Kos, p. 996], but the

idea originated with E.B. Dynkin [Dyn, p. 168] and J. de Siebenthal
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[Sie]. First recall that one may find 3n elements {xi, yp, hi} n in

such that any triple {xiq ,y, hi} spans a subalgebra isomorphic to

sl(2,4), where hj E H is defined by Xi(hj) = 6ij [Hul, pp. 37, 112].

Using a (h) = 1, it is easy to show that h =ZF2hi/(a ,aQ).

Definition. Let x = cixi, where ci, c2, a * -, On are any n non-zero

complex numbers. Set y = Z 2y/[c1 (ag,ai)). Then any subalgebra of

conjugate to the subalgebra spanned by x, y, and h is called a principal

three MdiMen Io1aI subalgebra.

It is easy to check that x, y, and h span a subalgebra of 9 iso-

morphic to sl(2,(). Any representation of i induces a representation

of sl(2,A) via this embedding. Principal three dimensional subalgebras

have been employed previously in combinatorics in [Hug], [Lep], and

[Stu].

4. Plarnr Partition Generating Function Identities

This section represents joint work with R. Stanley.

The Weyl character formula is a multivariate generating function

for the dimensions of the weight spaces of a fi Lte dimensional irreduci-

ble representation of a complex semisimple Lie algebra. There is a par-

ticularly nice one variable specialization of this formula for principal

three dimensional subalgebras. Recall that a finite dimensional repre-

sentation of sl(2,t) has weights -r/2, (-r/2)+1, 0 ', (r/2)-1, r/2

for some non-negative integer r.



62

Leammad4,.1 Let p be a finite dimensional irreducible representation

of f with highest weight A. Let T(x) denote the set of weights of p,

and let dp be the dimension of the weight space of weight p. Let di de-

note the dimension of the weight space of weight i for the induced repre-

sentation of a principal three dimensional subalgebra of g. Then

i=r/2djPx IT +(e-x<X+5,a>)

i-/2 I-9 +1-x8,a>

where <-,a> = 2(',a)/(a,a), Is the set of positive roots for 3,

and 8 is the sum of the fundamental weights (or half the sum of the posi-

tive roots).

Proof. The first equality holds because a weight vector for p of weight

p is a weight vector for the induced representation of weight (p,8V), by

the definition of h. For the second equality, use Jacobson's derivation

of Weyl's total degree formula [Jac, p. 256] with 5v rather than 8. No

problem arises for Jacobson since he eventually sets x = 1. Using

Jacobson's original proof has in the past [StUl caused certain generating

functions normally associated with Lie algebras of type B to be labelled

type C, and conversely. (The root systems of types B and C are dual to

each other.)

Lepowsky first resurrected this form of the character formula for

combinatorial identities [Lep]. He calls this identity the "principal

specialization of Weyl's character formula". It has also been used by

Stanley [StU]. When applied to a miniscule representation, this identity

produces an expression for the "rank generating polynomial" of the corre-
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( 1,&91)
sponding miniscule lattice: Bring the factor x to the eft hand

side of the equation, and then the coefficient of x is the number of

elements in the Jji rank of tU lattice.

The following non-trivial lemma is one of the main results of the

recent algebraic geometric paper entitled "G/P-I" by C.S. Seshadri. We

refer instead to "G/P-III" [LM3] (with coauthors V. Lakshmibai and

C. Musili) because it is more readily available.

Lemma4.2. Let X be the highest weight of a miniscule representation of

a complex semisimple Lie algebra 3. Then the dimension of the weight

space of weight p of the finite dimensional irreducible representation

of f of highest weight mX is equal to the number of multichains ujX 4

u2 x < -a*0*04Kud' in the corresponding miniscule lattice such that p =

u1X + u2% + - - - + umX.

We are now ready to prove the main result of this section.

Theri4. Every miniscule poset is a Gaussian poset.

Proot Apply Lemmas 4.1 and 4.2 to the representation of i of highest

weight mx, where A is the highest weight of the corresponding miniscule

representation. After bringing the factor x ') )to the left hand side

of the character formula, the left hand side counts the number of

m-multichains in the corresponding miniscule lattice, weighted by ranks.

Therefore the m-nested ideal generating function for the miniscule poset

is the quotient of two products. However, it must be verified that there

are fixed non-negative integers r and hl, h2 , %*-*, hr such that the
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right hand sides for various values of m have exactly the required form.

Since 6 is a weight, ha = <6,a> is an integer. Cancel the terms in the

product where <Xa> = 0. For each irreducible miniscule representation,

one can verify by hand that <X,a> = 1 whenever <Xa> 4 0. (This is easy;

the worst case E7 (1 7 ) has only 27 positive roots a such that <X7q,a> 0.)

Hence if <Xa> 9 0, then <mX +8,a> = m + ha. Thus each irreducible min-

iscule poset is Gaussian. But every miniscule poset can be expressed as

the direct sum of irreducible miniscule posets, since products of lattic-

es pass to sums of posets when forming posets of join irreducibles. The

proof is complete with the observation that the direct sum of two

Gaussian posets is Gaussian.

The irreducible miniscule posets an- 1 (j), 1 K j K n-1, and bn (n)

(- dn+1 (n+1 ) ! dn+ 1 (n))) were first shown to be Gaussian with intricate

generating function manipulations. We shall work out the details of

these cases below. It is trivial to directly prove that On(1) and dn(l)

are Gaussian. The exceptional irreducible miniscule posets e6 (6)

(Q e6 (1)) and e7 (7) are new Gaussian posets. The miniscule posets are

all known examples of Gaussian posets. They will be shown to be remark-

able in other respects in Chapter VI. We formally pose the following

question.

Problem 4. Is every Gaussian poset a miniscule poset?

New proofs of two plane generating function identities can be ob-

tained by working out the two cases of Theorem 4 mentioned above in de-

tail. The identity for a (n-1(j), 1 K j S n-1, is originally due to
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MacMahon [McM, p. 243]. For a modern treatment of a more general result,

see [StT, Theorem 15.3]. The identity for b (n) was first conjectured by

Bender and Knuth [BKnJ and later proved by Gordon [unpublished], Andrews

[And], and MacDonald [McD, Ex. 1.5.19). Plane partitions contained in A

with part size bounded by m were defined in Section 1, as were their

associated generating functions. Such a plane partition P is called a

.column strict plane partition containeai n 2Lwith part size bounded hy m

if it satisfies Pp,d > Pp,d+1 rather than Pp,d . p,d+'

Proposition 4.1. Let 'Xl= (j, j, * I*,J) be an (n-j)-tuple. Then the

generating function G(X,m,x) for plane partitions contained in X with

part-size bounded by m is:

7 7 'f ( 1 - nxm+p+q-1)

G(X,m,x) P=W = q=1-1
p=1 Vq=pJ-x

Praof. It is easy to see that G(X,m,x) counts m-nested ideals in

a n-1(j),which is the product of a j-chain with an (n-j)-chain. The

right hand side is found using by using Lemma 4.1 for An-1(mi) and com-

puting the values <&,a> for all a such that <tj,a> A 0. The equality of

the two sides follows from Lemma 4.2 and the fact that appropiately

weighted m-multichains in An-1(j) correspond to m-nested ideals in

an-n-ia n1(j).

Proposition 4.2. Let 'A = (n, n, * , n) be an m-tuple. Then the

generating function H(X,n,x) for column strict plane partitions contained

in X with part size bounded by n is:
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- i. ;y p ( I _m+p+q-1)
H(x,n,x) 1 - -l- - - - - - - -

n P p+q-1)
p=1 fq=1

Proof. Using Theorem 5BC, it is easy to show that Bn(n) is the lattice

of all n-tuples a (a) with 0 = a,=a2 : =ar <ar+ <ar+2

< an ,n, 0 r _<n, ordered bya K b iff aKb 1 , 0 , an b

Each column of one of these plane partitions is an element of Bn(n) by

this description and thus each such plane partition is an m-multichain in

Bn(n). (Note that the plane partitions are being "sliced" differently in

this proof when compared to Proposition 4.1.) Apply Lemmas 4.1 and 4.2

to Bn(m~n).

The previously known proofs of these two plane partition identities

are somewhat unsatisfactory from a combinatorial viewpoint because they

involve evaluations of determinants and/or manipulation of symmetric

function identities. The proofs presented here are not "combinatorial".

However, they have a strong algebraic combinatorial flavor. The basis

result of Seshadri can be described in terms of algebras with straight-

ening laws, which have been studied by Rota, Garsia, Eisenbud, Baclawski,

DeConoini and Procesi [Bac] [DEP) [DKRJ. Rota, et. al. in fact provide a

predominantly combinatorial proof of Seshadri's result for the case An-1i

Furthermore, the Weyl character formula has a very combinatorial flavor

when viewed in the proper light, as illustrated by Verma's derivation

utilizing M8bius inversion on the Bruhat order [VeS]. Hence it may be

possible to present a proof of Proposition 4.1 which develops the

necessary Lie theoretic results along the way in a nice algebraic com-
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binatorial fashion, with linear independence essentially being the only

algebraic notion used. It is apparently very hard to give purely com-

binatorial proofs of Propositions 4.1 and 4.2. The cases m = 1 are the

only cases done to date [Sag, p. 31].

5. Bruhat Lattices are Ztrongly Sperner

In this section we prove that every miniscule (Bruhat) lattice is

rank symmetric, rank unimodal, and strongly Sperner.

The following lemma is due to Griggs [Gril:

Lemma&5.1. Let L be a ranked poset. the following two conditions are

equivalent:

(i) L is rank unimodal and has the strong Sperner property.

(ii) If 0 . i jj .Ar, then there exists min{IL ,(LJ}

disjoint chains each containing one element from each of the ranks

Li, Li+1, - - -, L i.

Different versions of (ii) have in the past been referred to as

Property T. We shall refer to it by a more descriptive name, rank

matching rDLYerty.

DAfinitions. If L is a ranked poset with r ranks, let L denote the com-

plex vector space with basis {a, S, ' * * } where [a, b, * * * } are the

elements of L. This vector space can be graded by L = iLi, where Li,

the ih rak aubsaae, is the span of the elements in Li. A linear

operator X on L of degree +1 will be called a raigina aer~ator if X(b) =
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SetLigx(b,c)c, b 6 L 1 , implies x(b,c) = 0 unless a covers b in L. A

lowering operator Y for L is an analogously restricted linear operator of

degree -1.

The following lemma is due to Stanley [StW]:

L=Ma&5.2L Let L be a ranked poset. The following two conditions are

equivalent:

(i) L is rank symmetric and has the rank matching property.

(ii) If 0 S i < r/2, then there exists a raising operator X such

that XP2  i: t -- Lr-i is a vector space isomorphism.

' Both the proof of the following theorem and Section VI.3 will re-

veal that the rank matching property I more relevant to this thesis than

the strong Sperner property. However, the Sperner property is more

well-known.

Iheorm.nti5. Miniscule lattices are rank symmtric, rank unimodal, and

strongly Sperner.

Proof. Let L be a miniscule lattice. Consider the corresponding minis-

cule representation p with highest weight X of a semisimple Lie

algebra g. The representation space has a basis {-wXOw indexed by

the elements of the miniscule lattice, and thus may be denoted L. Recall

that any representation of 9 induces a representation of sl(2,$) onI

via the embedding of the principal three dimensional subalgebra spanned

by x, y, and h. From [Hul, p. 107J, it is possible to deduce that if

p(3uX = tW x(uvw)Tj, then x(uw) = 0 unless wX = uX + a for some
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positive simple root a4. Hence p(x) is a raising operator on L for the

miniscule lattice.

Set r = 2(X,6v). With respect to h, the induced representation has

weight spaces L0 ,Lr with weights -r/2, (-r/2)+1, ,

(r/2)-1, r/2. Since sl(2,4) is semisimple, the induced representation

on E can be expressed as a direct sum of irreducible representations of

sl(2,4). It is well known that the restriction of p(x) to one of these

irreducible subrepresentations composed with itself 2j times (where j is

not too large) is an isomorphism from the one dimensional weight space of

the subrepresentation of weight -j to the one dimensional weight space of

weight +j. These isomorphisms can be combined to show that p(x)r-2is

an isomorphism from Li to tri. The proof is complete with the applica-

tion of Lemmas 4.2 and 4.1.

In his original proof of this theorem for all Bruhat orders,

Stanley used the hard Lefschetz theorem from algebraic geometry to pro-

duce a raising operator with the desired properties. Initially the rela-

tionship of the proof given here to Stanley's proof was not understood,

but it turns out that the hard Lefschetz theorem is sometimes proved with

the same technique used in the proof above: decomposition of a represen-

tation of sl(2,t.) [CGr, p. 44). Thus, in a certain sense, it may seem

that the hard Lefschetz theorem is superfluous. However, that this is

not the case is illustrated by the fact that Stanley's methods apply to

any Bruhat order arising fram a Weyl group, whereas Theorem 5 applies on-

ly to Bruhat lattices. The necessary representations of sl(2,() appar-

ently arise readily in the context of Lie algebras only with miniscule
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representations, whereas the hard Lefschetz theorem of algebraic geometry

supplies the desired representations of sl(2,4) for all Bruhat orders

after some preliminary algebraic geometric work has been done. As

mentioned in the introduction, Section VI.2 will abstract the essential

aspects of the proof of Theorem 5 with arbitrary posets in mind.

For the sake of mathematical culture, we now mention an application

of a particular case of Theorem 5. The truth of a fact closely related

to the following proposition was conjectured by P. Erdfs and L. Moser in

1965 [Erd]. The original conjecture and this proposition were recently

proved with the combined efforts of B. Lindstr6m [Lin] and R. Stanley

[StW]. The element a of a set of real numbers is the sum of the real

numbers in the set.

Propositin,. No set of n positive real numbers has more distinct subsets

with equal element sums than does the set {1, 2, * a , n}.

Prof. Let a < a2 < * * * < an be the real numbers. Associate to any

subset (aii * *, ak ) the element (0, - -, 0, 11, *. 'k) of

Bn(n). (See the proof of Proposition 4.2.) If b < c in B (n), then theAW n

element sum of the subset corresponding to b is strictly less than the

element sum of the subset corresponding to c. Therefore, in order to

have equal element sums, a collection of subsets of real numbers must

correspond to a collection of incomparable elements in Bn(n). The Sper-

ner property puts an upper bound on the number of simueltaneously incom-

parable elements in Bn(n). This bound is attained by the numbers

specified in the statement of the proposition.
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Chapter VI

A Dynkin Diagram Classification

of Certain Partially Ordered Sets

1 Introuotion

Theorem V.5 proved that the Bruhat (miniscule) lattices were rank

symmetric, rank unimodal, and strongly Sperner. (These combinatorial

terms were defined in Section V.1.) In the second section of this chap-

ter we will abstract part of the proof of this theorem to obtain a new

sufficient condition for an arbitrary ranked poset to have these combina-

torial properties. No Lie representation theory will be used in this

chapter, but linear algebra will play a central role via Lemma V.5.2.

This lemma, due to Stanley, was the first step in the proof of Theorem

V.5. It translated the question of whether a ranked poset L was rank

symmetric, rank unimodal, and strongly Sperner into a question concerning

the existence of a certain kind of linear operator on the vector space t

associated to the ranked poset. Lie algebraic techniques were then used

to construct an appropriate linear operator for each Bruhat lattice. A

closer look at this proof reveals that the latter part of it is indepen-

dent of whether the ranked poset is a Bruhat lattice or not. Theorem 2.1

is the promised abstraction of this part of the proof of Theorem V.5.

Its proof uses only elementary linear algebra and hence should be readily

accessible to all readers.

Theorem 2.1 is fairly difficult to use in its full generality. Its
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hypothesis can be restricted in various ways to make it easier to use.

One restricted version, Theorem 2.2, applies only to distributive lattic-

es. The hypothesis of this theorem requires that each edge of the Hasse

diagram of the distributive lattice be assigned a rational number in such

a way that certain simple linear conditions are satisfied. This condi-

tion is not difficult to work with and Theorem 2.2 can in fact be readily

applied to any of the Bruhat lattices without any knowledge of Lie repr-

sentation theory.

Attempting to apply Theorem 2.2 to distributive lattices other than

the Bruhat lattices leads to the next topic of this chapter. It is pos-

sible to express the hypothesis of this theorem in terms of the poset of

join irreducibles of the distributive lattice. The analogous condition

involves assigning a rational number to each element of the poset of join

irreducibles in such a way that certain linear conditions specified by

the combinatorial structure of the poset are satisfied. Recall that the

posets of join irreducibles of Bruhat lattices are called miniscule

posets. The question at hand becomes: Are there any posets beside the

miniscule posets which satisfy this condition? Surprisingly, it is pos-

sible to prove that there are no other such posets. (And thus the Bruhat

lattices are the only lattices satisfying the hypothesis of Theorem 2.2.)

One interesting aspect of the proof is that the key step utilizes a com-

binatorial consequence of Theorem 2.2 itself. Even more interesting is

the natural appearance of a form of Dynkin diagram. Dynkin diagrams mys-

teriously arise in several different branches of mathematics [HHS].

The classification of V-labellable posets can also be considered a

characterization of the miniscule posets. This characterization is the
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fourth description of the miniscule posets presented in this thesis. The

last section of this chapter summarizes these four ways, and additionally

specifies a fifth (empirical, but interesting) description.

2. Sufficient Conditiong for the Strng evrerPrperty

Suppose that L is a ranked poset with ranks LO, L1 , -*-*-, Lr. To

apply Lemma V.5.2, one must find a raising linear operator X on the vec-

r-2i
to" space L such that X-: Li --PLr-i is a vector space isomorphism

for 0 K i < r/2. The proof of Theorem V.5 showed that the raising opera-

tor at hand satisfied this requirement by utilizing two additional opera-

tors: a lowering operator Y and an operator H which multiplied each vec-

tor in ti by (21-r). The three operators obeyed the commutation rela-

tions XY - YX = H, HX - XH = 2X, and HY - YH = -2Y. The following theo-

rem assumes that three such linear operators have been defined on an ar-

bitrary ranked poset.

Theorem 2.1. Let L be a ranked poset with r+1 ranks. Suppose that com-

plex numbers x(b,e) and y(e,b) can be assigned to each covering relation-

ship b < e such that the following equations hold:

For every b 6-Li,

2 y(b,d)x(d,b) - SA x(b,e)y(e,b) 21 - r
b covers d e covers b



74

For every b,c 6 Li,

2 y(b,d)x(d,c) 31 x(b,e)y(e,c) 0

b and a e covers
cover d b and c

Then L is rank symmetric, rank unimodal,' and strongly Sperner.

Pro.af This proof is given in greater detail in [Pro]. Define three

linear operators on L:

For b L1 , x = 21 x(b,e)e,
e covers b

Yb = Z y(bd)d ,
b covers d

and Hb' = (21-r)b.

Then XY -YX = H, HX - XH=2X, and HY - YH=-2Y. (Thus X, Y, andiH span

a representation of sl(2,4 ) on T,.) Choose any minimal element u0 of L,

and let U be the subspace of L spanned by all vectors obtained by acting

on uO with various compositions of X, Y, and H. The commutation rela-

tions can be used together with Yu = 0 to show that u0, Xu0, Xu '

form a basis for U. Let XU9 YU, and HU denote the restrictions of X, Y,

and H to U. Now trace HU = -r + (-r+2) + . . . . But -H = jU-U U t

implying trace HU = 0. Thus t u must be the last non-zero vector in the

sequence. Let j be the smallest integer such that L 1 U i 0. Pick

vC ij such that v1 4 U. Let V be the subspace generated by all actions

of X, Y, and H on uO and vj. By the same reasoning as before, U0, Xu0 ,

4 a 0 r I Xvjr-2Jv
xu'-0 1 V3 v form a basis for V. Continue this

process until a basis is obtained for all of E. It is now easy to see

that the order operator X satisfies the requirements of Lemma V.5.2. Ap-
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ply Lemma V.5.1 to finish the proof.

Note that the proof remains valid if either the condition ( x(b,e)

- 0 when e does not cover b } or the condition ( y(b,d) = 0 when b does

not cover d } is dropped. Both were required so that the theorem could

be more simply stated.

Because of the large number of quadratic equations, Theorem 2.1 is

difficult to apply. However, as noted in Section V.5, Stanley's work

[StWJ and a proof of the hard Lefschetz theorem [CGrJ combine to guaran-

tee that the more general version of Theorem 2.1 just noted can be ap-

plied to all Bruhat orders. Figure 2.1 shows one way that the covering

1 7

y y1Y2

y2 Y, i

1Y33

Y2 2 1 y

1yl 1 Y2

1 7

Y, = 9/2

Y2= 15/2

Y3 =11/15

Y 4=47 /30

y5=46 /15

7

5

3

-1

-3

-5

4M7

Figure 2.1
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relations of the Bruhat order BC3(2) can be assigned appropriate complex

numbers. (The coefficient x(d,b) appears to the left of the edge (b,d),

and the coefficient y(b,d) appears to the right.)

The equations in the statement of Theorem 2.1 become linear equa-

tions if one sets x(b,e) = 1 whenever e covers b in L. Further suppose

that the ranked poset L is "uniquely modular", namely: If b and c both

cover d, then there exists a unique element e which covers both b and c,

and similarly for e covering both b and c. Then requiring y(e,b) =

y(c,d) in such a poset L eliminates the need for the second set of equa-

tions altogether. Finally, we require that the ranked poset actually be

a distributive lattice. Not only does this make the statement of the

definition below simpler, but it also sets the stage for a smooth transi-

tion to the next section of this chapter.

DAfinition. A distributive lattice L with r+1 ranks is E-labellable

(edge labellable) if each covering relationship b < e can be assigned a

rational number y(e,b) such that:

(i) If e covers both b and c, and both b and c cover d, then

y(e,b) = y(c,d), and

(ii) If b S Li, then y(b,d) - Z y(e,b) = 2i-r.
b covers d e covers b

Pictorially, each edge of the Hasse diagram of L is to be labelled

with a rational number such that opposite edges in any square must have

equal labels and such that that the sum of the labels of edges emanating

below an element b minus the sum of the labels of edges emanating above b

must equal 21-r, if b C Li. Figure 2.2 shows the Hasse diagrams for the
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exceptional irreducible Bruhat lattices E(,(6) and E7 (7) with valid

E-labellings. The most interesting special case of Theorem 2.1 can now

be stated.

Theorem 2.2. If a distributive lattice is E-labellable, then it is rank

symmetric, rank unimodal, and strongly Sperner.

Unlike Theorem 2.1, it is not difficult to attempt to apply

Theorem 2.2 to an arbitrary distributive lattice. The proof of Theorem

V.5 implies that the edge labels necessary to apply Theorem 2.2 to the

miniscule (Bruhat) lattices can be found by thka explicit computation of

certain representations of Lie algebras. But it is actually far easier

to compute the necessary edge labels for the irreducible miniscule lat-

tices by directly solving the required equations. This is how the edge

lables shown in Figure 2.2 were obtained. However, the classification

theorem of the next section proves that Theorem 2.2 cannot be applied to

any distributive lattices other than the miniscule lattices!

3. Classification of V-Labellable Posets

In this section we prove that Theorem 2.2 can be applied only to

miniscule lattices. The only possible edge labelling for each irreduci-

ble miniscule lattice will be computed as part of the proof. The main

result of this section can also be viewed as a Dynkin diagram type clas-

sification of the E-labellable distributive lattices, since Dynkin dia-

grams arise in the course of the proof as a natural means of indexing the

possible E-labellable lattices. The objects directly under consideration
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will actually be the posets of join irreducibles of the distributive lat-

tices rather than the distributive lattices themselves. We will thus ob-

tain a characterization of the miniscule posets.

The techniques used in this section are almost entirely elementary

combinatorics and linear algebra. However, it is interesting to note

that Theorem 2.2 itself will be the key non-trivial fact. Despite the

fact that it was possible to express its proof entirely in the language

of elementary linear algebra, it is probably best to view Theorem 2.2 as

an application of elementary facts about representations of sl(2,4).

Not only is it useful to recast the concept of E-labellability of a

distributive lattice L in terms of the poset P = j(L) of join irreduci-

bles, but the resulting condition is also more elegant. The terms "order

ideal" and "order filter" were defined in Section II.1.

Definition. A finite poset P is V-lhbellable if there exists a function

#: P 'tt such that for every antichain A S:P,

ZxAr(x) - IAI ZYIB Y -B

where IA is the order ideal in P with maximal elements A, the number of

in IA is denoted by IAJ, the order filter P - 'A is denoted by IB' and B

is the set of minimal elements of IB'

It is easy to verify that P is V-labellable if and only if L = J(P)

is E-labellable. Thus, the following theorem is a restatement of

Theorem 2.2.
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Zbearm..t If g poset P is V-labellable, then the latti = J(P) of

order ideals of P is rank symmetric, rank unimodal, and strongly Sperner.

A few definitions must be made before the classification theorem

can be stated. Roughly speaking, "Dynkin diagrams" are graphs which

classify complex semisimple Lie algebras (among other things).

Det-tan A .mnnected roated Dnkin diagram X [j] is a connected

Dynkin diagram Xh in which the jih node has been designated as a special

node. A rXQted Dxnkin diaran is a finite disjoint union of connected

1 3 4 5 6

12

1 2 n-1 n

1 3 4 5 6 7

* n-2

n

1 3 4 5 6 7 8
a A a

62

Figure 3.1
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rooted Dynkin diagrams.

The Dynkin diagrams An, Dn, E6, E7 , and E8 are pictured in

Figure 3.1. We shall be concerned with only these Dynkin diagrams (i.e.

not Bn, Cn, F, or G 2 ); this is not unusual [HHS].

Definitions. A poset is irreducible if it cannot be expressed as the di-

rect sum (disjoint union) of two non-empty posets. An irreducible

nompnent of a poset is a maximal irreducible subposet.

Definitions. The basi .trge of an irreducible poset P is the

multi-rooted tree (acyclic graph with special vertices) whose vertices

are the elements x in P such that fy: y K x} is a chain, whose edges are

the covering relations between these vertices, and whose roots (special

vertices) are the minimal elements of P.

It will be shown in the course of the proof that the basic trees of

irreducible V-labellable posets are rooted trees in the usual sense;

namely, they have exactly one special vertex apiece.

The main result of this section can now be stated.

Theorem3.2. The basic tree of each irreducible component of a

V-labellable poset is one of the following rooted Dynkin diagrams:

A n[j]9 1 K j K n, D El]tDn[n-1], Dn)[n E6 [I], E6[6], or E (7]. The

miniscule poset xn(j) is the unique V-labellable poset with basic tree

X n[j]. Hence the direct sums of the miniscule posets an(J), d (1),

dn(n-1), dn(n), e6(1), e6(6), and e7(7) exhaust all possible V-labellable

posets.
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In words, each irreducible V-labellable poset has one of a few pos-

sible connected rooted Dynkin diagrams embedded in the "lower" part of

its Hasse diagram. See Figure 3.8, where the vertices of the basic trees

are denoted with circles ra'her than dots.

The following theorem is a restatement of Theorem 3.2.

Thearm 3.3. The only E-labellable distributive lattices are the

miniscule lattices.

Proof of Theoren 3.2. Unlike some other Dynkin diagram type classifica-

tion procedures, it will not be possible here to immediately reduce to

the case of an irreducible V-labellable poset. (See Corollary 3.) Our

attention will, however, eventually focus on one irreducible component of

a V-labellable poset. After some work which restricts the possible local

structure of a V-labellable poset, a simpler object, the basic tree, is

associated to each irreducible component of the V-labellable poset. Sys-

tems of linear equations closely related to the Cartan matrices of simple

Lie algebras are then used to eliminate all but a handful of rooted trees

as possible basic trees of irreducible components of V-labellable posets.

Finally, by direct construction, almost all of these potential basic

trees are shown to uniquely determine an irreducible V-labellable poset.

It is interesting to note that the six potential basic trees which do not

lead to irreducible components of V-labellable posets are E6[2J, E7 [1),

E7[2], E8[8J, E8 [1], and E8 [2J, all of which correspond to fundamental

representations of semisimple Lie algebras which are not quite miniscule.

The proof of Theorem 3.2 is now presented as a series of lemmas.

Throughout the proof, P will denote a V-labellable poset with p elements



83

and labelling function Ir. For simplicity of notation, the same symbols

x, y, - - - will sometimes be used to refer both to elements of P and to

the vertex labels 9 x), Ny), - - - . Similarly, an upper case latin

letter can refer to either a subset of P or to the sum of the vertex

labels of the elements in the subset.

The following crucial lemma is the only part of the proof which

uses something more (Theorem 3.1) than straightforward combinatorial rea-

soning and linear algebra. This lemma will be used in five distinct

steps later in the proof.

Lgmma3.1. All vertex labels are positive.

Prpofn Consider L = J(P). This distributive lattice has p+1 ranks. The

Hasse diagram of L can be viewed as a network, where a vertex in the itlh

rank of L is a source or sink of (21-r) units of flow, and an edge corre-

sponding to an element x in P carries lr(x) units of flow downward.

Since L is E-labellable, Kirchhoff's first law (conservation of mass) is

satisfied at every vertex of L. Let F 15 L be any order filter of L. By

conservation of mass, the sum of the flows on edges descending from the

minimal vertices of F must equal the sum of the sources and sinks which

are members of F. Sinks are vertices in ranks 0, 1, . ., (p-1)/2 (p

odd) or 0, 1, - .-, (p-2)/ 2 (p even). By Theorem 3.1, L has the rank

matching property. (The strong Sperner property is irrelevant. Ignore

the application of Lemma V.5.1 at the end of the proof of Theorem 2.2.)

Therefore each sink of size (21-r) in F can be matched with a source of

size -(21-r) whicJ ijoa in . Thus the sum of the sources and sinks in F

is non-negative. In particular, let F be the filter in L consisting of
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all order ideals of P which contain the element x. Every edge descending

from a minimal element of F has flow (x), and thus the sum of the

sources and sinks in F is a positive integral multiple of 77(x). The sum

of sources and sinks in F is zero only when F = L, and this F does not

correspond to any poset element x under the construction above. There-

fore ?T(x) must be positive.

The following lemma follows immediately from the definition of

V-labellable.

Lemma 3.2. The poset P is V-labellable if and only if its order dual P*

is V-labellable.

Notatian. The order ideal with maximal elements {b, c, *} shall be

denoted by (b, c, - '-.-).

Lwmm&3.3. The poset P is modular; i.e., if elements b and c both

cover d, then there exists at least one element e which covers both b

and c, and order dually. Hence P is ranked.

Prof.. Let D =(d covered by b andc),

E = e which cover b and c },

F = f covered by c but not b },

G = g covered by b but not c },

S = s which cover b but not c },

T = { t which cover c but not b }.

Finally, let m = 2J(b,c)j - p. Four equations in nine unknowns are

obtained by considering the ideals (b,c), (b,c) - {b}, (b,c) - {c},
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and (b,c) - fb,cJ:

b + c -E -S-T =

b-c +F -S m-2,

-b + c + G -T m-2,

-b-c+D +F +G= m- .

Solving these equations yields E D. Lemma 3.1 implies D > 0. Hence

E is non-empty. Use Lemma 3.2 to obtain the dual result. Apply Theorem

11.16 of [Bir] to conclude that P is ranked.

Lma ... 2La No element ever covers or is covered by three or more other

elements.

Praf. Proceed by induction on the ranks of P. Let q be an element of

minimal rank which covers at least three elements b, c, and d. Let K be

the set of other elements covered by q. Figure 3.2 shows the four possi-

ble situations for the highest three ranks of the ideal (q). It will be-

(ii)

b ,

e

(iv)

q

c d K

d K

Figure 3.2

b cd K

e f 89
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come clear that the existence of the underscored elements is irrelevant.

Assume for now that they exist. It will also become clear that it does

not matter whether any elements in K cover any of the elements shown in

the lowest rank. Assume for now that elements in K do not cover any of

the named elements.

For each case, consider the 8 equations in 17 or 18 unknowns

generated by the ideals (q) - {q}, (q) - {q,b}, (q) - {q,c}, (q) - {q,d},

(q) - {q,b,c}, (q) - {q,b,d}, (q) - {q,c,d}, (q) - (q,b,c,d}. We shall

write out the equations only for case (i); the other cases are similar.

Let Y denote the minimal elements of (q) - {q,b,c,d}, let X denote the

elements which cover b but not c or d, let U denote the elements which

cover b and a but not d, etc. Finally, let R denote the elements other

than q which cover b, c, and d, and let m = 21(v)I - p. Then

b+c+ d +K-q-R-S-T-U-V-W-X-Y = m-2,

b+a+ d +K -S -v-W -Y = -4

b-c+ d +K -T -V -X-Y = -4

b+ c - d + K -U - W - X - Y = m-4,

-b-c+ d+ e +K -V -y m-6,

-b-c-d + f +K -W -Y m-6,

b - c - d + g + K - X - Y = m-6

-b - c - d + e + f + g + K - Y m-8

Add the 2z,, 3rd, 41L, and 8h equations, and then subtract the

lat., 5th, 61, and 7 thequations. The resulting equation is q + R = 0.

For cases (ii) and (iii), the resulting equation is f + q + R 0. In

case (iv), it is e + f + q + R = 0. Apply Lemma 3.1 to obtain contra-
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dictions in all cases. Q.E.D.

The next lemma completes the analysis of the local structure of P.

L.mmaJ.5, No two elements both cover each of two other elements.

Therefore P is "uniquely modular", i.e. if b and e both cover d, then

there exists a unique element e which covers both b and c, and order du-

ally.

Prnof. (See Figure 3.3.) Suppose that d and e both cover b and c. Let

G denote the elements in the rank of d and e beside these two elements,

and similarly for F. Let S (T) be the set of elements covered only by b

(c), and let U (V) be the set of elements covering only d (e). Finally,

let m = 2k-p, where k is the number of elements of P of rank less than or

equal to the rank of b and c. Lemma 3.4 guarantees that the situation

described in Figure 3.3 is sufficiently general. Consider the ideals

(d,F), (e,F), (b,F), and (c,F). Then

d - e + F-G -U = m + 2

d+e+F-G -V = m+2,

U V

e G dcee G

SF eb C eF

s8 N T

Figure 3.3
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b - c + F- G + T m-2,

-b+c +F G+G S =m-2.

Then - S - T - U - V 8 contradicts Lemma 3.1. This proves the first

statement. Combine it with Lemma 3.3 to obtain the second statement.

We now study the global structure of an irreducible component Q of

the V-labellable poset P. Let q denote the number of elements of Q, let

T denote the basic tree of Q, and let n denote the number of elements

of T. The number n could be called the rank of Q, since it will be seen

to be analogous to the rank of a Weyl group or the rank of a semisimple

Lie algebra.

Lamma 1.6. The basic tree of Q has exactly one root and is either a

chain or "Y-shaped", i.e. it has at most one vertex with three or more

adjacent vertices.

*z
2-

Yb@z 2

'7 Z

W.~ Ix

0 l Z

0i

Figure 3.4
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fraa.. Lemma 3.5 precludes the existence of more than one minimal ele-

ment of Q. If there is more than one "branching" in T, use Lemma 3.5 to

produce a vertex in the basic tree which is covered by three or more ele-

ment, contradicting Lemma 3.4.

Notation., (See Figure 3.4.) Set n = b + 1 + t + 1, where t (trunk) is

the number of vertices in the branch of the basic tree T containing the

root ( t = 0 if the root is covered by two elements), and b (branch) and

1 (limb) are the numbers of elements in the other two branches of T. Re-

fer to the elements of T with the letters shown in Figure 3.4.

Lemma.R.7. The following connected rooted Dynkin diagrams are the only

possibilities for the basic tree of the irreducible component Q: A[ j],

1 < j < n, Dn[lt DnEn-1, Dn[nJ, E6[1J, E6[2, E6[6], E7[1J, E7[2],

E7[7J, E8(1, E8 [2], and E8 [8J.

Prgof. Let s equal p minus the sum of the labels of the minimal elements

of P lying outside Q. Consider the empty ideal of P together with the n

ideals of P each generated by one element of the basic tree T of Q. The

following system of n+1 equations in n+1 unknowns is obtained:

S I + S= 0

XIg ox2  +S= 2

Xt -W + s =2t

w-y1  - z +s =2(t+1)

yi- Y2 MEt + s = 2(t+2)
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Yb -Z2 +s = 2(t+b+1)

- y Zi -Z2 + s= 2(t+2)

- y zi + s 2(t+l+1)

The unique solution is:

For 1 K i S t, x = i(s-i+1),

W =(t+1)(s-t),

for 1 S j < b, yj (t+j+1)(s-t-j) - jz1 ,

for 1 . k 5 1, zk (t+k+1)C(s-t-k) - ky1 ,

and

-blt2+blt+bl2+b21+4bl+2bt+21t+b2+12+t2+3b+31+3t+2
s =- -

-blt + b + 1 + t + 2

Since w = (t+1)(s-t), this vertex label will be negative if s - t < 0:

blt+bl2+b 21+4bl+bt+lt+b +1 +3b+31+t+2
s - t =

- blt + b + 1 + t + 2

It is easy to check that the denominator of this expression is positive

only for the following unordered values of b, 1, and t: { {0,j,k}:

0 . j < , 0 5 k < 0)} U { {1,1,k}: 1 K k < Oo} U 1{1,2,2), {1,2,31,

{1,2,4} ). Lemma 3.1 thus implies that no other values are permissible.

Consulting Figure 3.1 reveals that the rooted trees in this list are ex-

actly the rooted Dynkin diagrams listed in the statement of the theorem.

The following lemma is the last step in the proof.
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Lmma3. Each of the basic trees An[j], 1 K j n, Dn[1], Dn[n-1],

n [IJ, E6EiJ, E6E2, and E [7] determines one irreducible V-labellable

poset, which is the miniscule poset x (J) if the basic tree is Xn [j.

None of the rooted Dynkin diagrams E6 [2], E7[1), E7[2], E8 18], E8 [1), or

E8 [2J is a basic tree for an irreducible component of a V-labellable

poset.

froof. If elements b and c both cover d, and e is the unique element re-

quired by Lemma 3.5 which covers both b and c, then the proof of

Lemma 3.3 implies that t(e) =w?(d). This fact, Lemma 3.4, and

Lemma 3.5 will be collectively referred to with the phrase "local struc-

ture".

First consider E6[21, E7[2], and E 8 [2]. Let v be the unique ele-

ment covering both y1 and z1. By considering the ideals (v) and (y ,z,),

one obtains v = (y1 + z)/ 2 + 1. Computing v for these three cases

yields the numbers v = 31, 143/2, and 202. But local structure implies

that v = w = 42, 96, and 270. Thus these three rooted Dynkin diagrams

cannot be basic trees of irreducible components.

Now consider E7[1]. After computing the values for the basic tree

and applying local structure, one can immediately construct as much of

the irreducible component Q as is shown in Figure 3.5(a). Using the ide-

al (962), one finds c = 66. Then the ideal (522) leads to d = 0, imply-

ing that 522 is not covered by such an element. Figure 3.5(b) now

depicts the situation. Using (662), one computes e = 34. Considering

the ideal (v) leads to v = 47. But v = 96 by local structure. Similar

arguments lead to inconsistencies in the 6th. and 12th. ranks of the irre-
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ducible components of E[1] and E8[8].

Next consider An[j] = An[n-J. Local structure implies that Q has

at least the elements which are shown in Figure 3.6. Successively con-

sider the principal ideals ((j-1,r)) for r = 1, 2, *, n-j-i:

(r+1)(n-r) - c - (r+j+1)(n-r-J) + J(n-j+l) 2j(r+i)

In each case, this equation implies c 0. A similar result holds for

the ideals ((r,n-j)) for r = 1, 2, - , j-2. The equation for the ide-

al ((J-1,n-j)) is different in form but leads to the same conclusion.

Thus there are no other elements in Q and q = J(n-j+1) = s.

Now consider Dn[n] = Dn[n-1J with n 4. Denote the elements of Q

as shown in Figure 3.7, and proceed by induction on r. Assume that

If(i,i) = x, for i r. First consider the ideal ((r,r)):

X - C - Zr + s = (r+1)(r+2) ,

a = 2x, - Zr - (r+1)(r+2)

c = 0 .

Next consider the ideal ((r,r+l)):

w - d - Zr+i + s (r+1) (r+4) ,

W - Zr+1 + x, -(r+1) (r+4),

x1 .

And consider the ideal ((r,n-2)) for r K n-4:

Zn-r-3 - e 1 + s

e

r(r+1) - 2(r+1)(n-1) ,

Zn-r-3 + 2(r+1)(n-1) - r(r+1)
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e = 0 .

After consideration of the ideals ((n-3,n-2)) and ((n-2,n-2)), one can

conclude that Q has q = n(n-1)/2 = s elements. The structure of Q can be

described as the lattice of order ideals of the poset which is a product

of a 2-element chain with an (n-2)-element chain.

The constructions of Q for Dn[1J, n 5, E6E1]= E6[6J, and E[7]

are similar and will be omitted. In each case s = q, the number of ele-

ments in Q. This implies that Q is by itself a V-labellable poset. (See

Corollary 3.) The poset Q for Dn[1] has 2n-2 elements on 2n-3 ranks,

with 2 elements on the middle rank. The posets Q for E6[6] and E77]

have 16 and 27 elements respectively. The proofs of Lemma 3.8 and

Theorem 3.2 are now complete.

The proof of Lemma 3.8 showed that each irreducible V-labellable

poset has a unique V-labelling. The possible irreducible V-labellable

posets are shown in Figure 3.8. Vertices of the basic trees are denoted

with circles rather than dots.

The following fact is a consequence of the proof of Theorem 3.2.

CrollaryvZ. A poset is V-labellable if and only if each of its irre-

ducible components is V-labellable.

Prnof. It is conceivable that P = Q Q 2 , with the following equation

holding for every antichain A, Q

IxA Ai yB +

where O, 0, and with a similar equation holding for every antichain
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0 30
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Figure 3.8b
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A2 !Q2. If 0= -t, then P is V-labellable. This kind of situation

is ruled out by the proof of Lemma 3.8, which shows that w-,= 0 for every

possible irreducible component Qi of a V-labellable poset.

4. The Ubiguity of the M inule Po:12-ta

The miniscule posets have been described in four distinct ways in

this thesis. In this section we summarize these four ways and present an

additional, empirical way to describe them. The miniscule posets are:

(a) (Definition) All posets of join irreducibles of the distributive

lattices defined by the weights of miniscule representations of semi-

simple Lie algebras.

(b) All posets of join irreducibles of the Bruhat lattices.

(a) All known Gaussian posets.

(d) All V-labellable posets.

1NtatJaL Let p denote the total order with p elements. Let 0 denote

the operation of direct sum (disjoint union) for posets. Recall that if

P is a poset, then J(P) denotes the lattice of order ideals in P.

The fifth description is:

(e) All direct sums of the posets shown in Table 4, each of which is of

the form t(p q), where r .1 and 0 i p j q.
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Although there is no known "theoretical" significance to this descrip-

tion, it is interesting to note how closely the irreducible miniscule

posets are related by the operation J(-). Except for the chains, each

irreducible miniscule poset appears exactly once in the list. Also note

that p + q + r = n, the rank of the miniscule poset.

Three of the five descriptions of the miniscule posets are empiri-

cal identifications, one is a non-trivial result (Theorem VI.3), and one

is an open problem (Problem V.4). Of the twenty possible aL U o "theo-

retical" implications, only two are known: (a) =. (c) (Theorem V.14) and

(a) *= (d) (Theorem V.5). Of course many of these are fairly unlikely,

but pome would be nice to see, e.g. (a) =; (b) (The set of weights of a

miniscule representation necessarily forms a distributive lattice

* * * ), or useful to have, e.g. (c) =4 (d), which would solve

Problem V.4.
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J(J(Q 0)
a2(1)

J(J(J(Qe )))
a3 (1)

J(O 9)
aq+(l)

JQ 0 1)
a3 (2) =d 3 ( 1)

J(10 2)
a4(2)1

J(105)
a 5(2)

a q+ 2 (2)

J(J( e0)
aqi+2(1)

J(J(CI 1)
d4(1)

J(J(10 2)
d 5(5)

J(J(1 03)
d 6 t6)

J(J(la q)
d q+3(q+3)

J(J(J(Qo q)))
aqi+3( 1)

d5 (1)

J(J(J(16 2)))
e 6(6) ~

J(J(J(J(Qe g))))
aq+4(l)

J(J(J(J(10 1))))
d6(1)

J(J(J(J(e 2))))
e7(7)'

J(2* 2)

J(pe q)
a p+g+1(p+)

Table 4

J(0 eQ)
a1 (1)

J(J( J( J(Q 0)
a4(1)

. . .

0

. .0
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