INTERACTIONS BETWEEN COMBINATORICS, LIE THEORY AND ALGEBRAIC GEOMETRY

VIA THE BRUHAT ORDERS
by

Robert Alan Proctor

B.S., University of Arizona
(1976)

SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE
DEGREE OF
DOCTOR OF PHILOSOPHY
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 1981

© Robert Alan Proctor 1980

The author hereby grants to M.I.T. permission to reproduce and
to distribute copies of this thesis document in whole or in part.

Signature redacted

Signature of Author s = st el
Department of Mathematics
October 17, 1980

" Signature redacted

Certified by - - - b A
;; Richard P. Stanley

Thesis Supervisor

Signature redacted

Steven L. Kleiman
y ARCHIVES Chairman, Department Committee
ASSACHUSE
OF TECHROLOY 1
JUL 23 198l

Accepted by




INTERACTIONS BETWEEN COMBINATORICS, LIE THEORY
AND ALGEBRAIC GEOMETRY VIA THE BRUHAT ORDERS
by

Robert Alan Proctor

Submitted to the Department of Mathematics on October 17, 1980
in partial fulfillment of the requirements for the
Degree of Doctor of Philoscophy in Mathematies.

ABSTRACT

Bruhat orders are partially ordered sets which arise in algebraic
geometry during the study of the geometry of semisimple algebraic groups.
As a preliminary step, any Bruhat order arising from az Weyl group is de-
plcted with certain weights of a representation of & semisimple Lie alge-
bra.

Classical Bruhat orders are Bruhat orders which arise from the
classical semisimple algebraic groups, We first descoribe the classical
Bruhat orders with tableaux of integers, allowing any two elements of an
order to be directly compared. These descriptions are then used to show
that the classical Bruhat orders are lexicographically shellable, a prop-
erty concerning the simpliclal complexes of chains in the orders. Recent
work of C. Deconeini and V. Lakshmibai which applies this lexicographic
shellabllity result te algebraic geometry l1s briefly discussed., Two oth-
er applications of the lexicographic shellability of the classical orders
are also described: a new means of computing the Mobius function of the
full classical orders, and a proof that the simpliecizl complexes of
chains in the classical orders are triangulations of double suspensions
of either spheres or balls. A second application of the tableaux de-
scripticn is the confirmation of a conjecture of Lusztig concerning the
description of the Bruhat order on the symmetric group with arrays of
dimensions of intersections of palrs of flags of subspaces in specified
relative positions. Finally, one of the families of tableaux obtained
here is related to the tableaux employed by Young in his description of
the representations of the special linear group.

Bruhat lattices are Bruhat orders which a; : lattices. First, the
Bruhat lattices are classified. We then employ a recent algebraic geo-
metric result of C.8. Seshadri to show that certain combinatorial gener-
ating functions associated to these lattices can be expressed as the
quotients of certain products. In particular, the same methods provide
new proofs for two plane partition generating function identities as well
as ildentifying two new exceptional irreducible Gaussian posets. We also
use closely related Lie algebraic techniques to provide a new proof of



the fact that the Bruhat lattices possess the strong Sperner property, an
extremal combinatorial property concerning the sizes of antichains in
ranked partially ordered sets.

Part of the Lie algebraic proof of the strong Sperner property for
bBruhat lattices is abstracted to the context of arbitrary ranked partial-
ly ordered sets and then translated into the language of elementary lin-
ear algebra. A special case of this abstraction, stated for distributive
lattices, is a priori applicable to the Bruhat lattices. Surprisingly,
it is possible to prove that this special case can be applied to no other
distributive lattices. Dynkin diagrams arise naturally in the proof of
this classification theorem. We present a total of five proven or poten-
tial ways of characterizing or describing the Bruhat lattices.

Thesis Supervisor: Richard P. Stanley

Title: Professor of Applied Mathematics
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Chapter I

Introduction and an Example

1. Introduction

This thesis presents several results obtained by exploiting some of
the connections between combinatories, Lie theory and algebraic geometry
which arise in the study of semisimple algebraic groups. The portion of
Lie theory we shall be concerned with is the theory of representations of
semisimple Lie algebras. The relevant area of algebraic geometry con-
cerns the projective varieties, or flag manifolds, G/P, where G is =
semisimple algebraic group and P is a parabolic subgroup. The mathemati-
cal objects of central concern to us are the Bruhat orders, which are
partially ordered sets arising in both of these subjects. These orders
have played a central role in recent work of Kazhdan and Lusztig [KLul in
representation theory and of Seshadri, et. al. in algebraic geometry
[LM4]. Bruhat orders are usually defined in terms of the elements of
Weyl groups, which are finite groups whose structures resemble the
structures of the symmetric groups. These orders are therefore of inter-
est to combinatorialists. Some of the most combinatorially interesting
Bruhat orders were in fact defined independently by combinatorialists who

were unaware of the algebraic definitions of the orders.

Which of the six possible logical relationships between combina=-
torics, Lie theory and algebraic geometry arise in this thesis? Lie the-

ory and algebralc geometry overlap heavily in the area we are concerned



with, since semisimple algebraic groups are essentially semisimple Lie
groups with algebraic geametric rather than differential geometric
structures. This area has been extensively studied and is beyond the
scope of this thesis. We shall be concerned with applications to and
from combinatorics on the one hand, and the algebraic subjects on the
other hand. More of the applications are from the irepresentation theory
cf semisimple Lie algebras to combinatorics, although each of the other

three possibilities is also represented.

We now describe the two most interesting results of this thesis.
Lexicographic shellability for a partially ordered set is a property
invented by A. Bjorner [Bj6] as a condition sufficient to insure that the
simplicial complex of chains in the partially ordered set 1s a "shell-
able" simplicial complex. It is known that this in turn implies that a
certain commutative ring associated to the partially ordered set has the
Cohen~Macaulay property. Utilizing explicit combinatorial desariptions,
we show (Theorem III.Y) that all "elassical™ Bruhat orders are lexico-
graphically shellable. This extends a theorem of Edelman [Ede] to many
more cases, C. DeConeini and V. Lakshmibai [DelL] have used our result to
show that the canonical embeddings of certain projective varieties are
arithmetically Cohen-Macaulay and arithmetically normal, a result of cur=-

rent interest in algebraic geometry.

The description of the other most interesting result of this thesis
begins with a result of R. Stanley. In [StW], Stanley used the hard
Lefschetz theorem of algebraic geometry to show that the Bruhat orders

possess the strong Sperner property, an extremal combinatorial property



concerning the sizes of antichains in a ranked partially ordered set. We
simplify and generalize Stanley's methods for the special case of dise
tributive lattices, obtaining a new sufficient condition for a distribu-
tive lattice to have the strong Sperner property. This condition con~
sists of certain linear equations which are specified in terms of the
combinatorial structure of the lattice. Surprisingly, it is possible to
list exactly which distributive lattices satisfy this sufficient condi-
tion. Dynkin diagrams arise naturally during the classification proce-
dure (Theorem VI.3.2). These diagrams, or certain subsets of them, clas-
sify many different kinds of mathematical objects, including semisimple
Lie algebras and Lie groups, point crystallographic groups, and critical

points of functions of several complex varlables having no moduli [HHS].

We now quickly introduce scme basic terminology and facts necessary
for the remainder of the introduction; the formal definitions will be
glven in Chapter II. Henceforth the terms "partially ordered set® and
"partial order™ will often be replaced with the word posef. Hevl groups
are finlte groups whose presentations have a certain specified form.
They play an important role in the structure theory of semisimple Lie
algebras and semisimple algebraic groups. An irreducible Weyl group is
one which ecannot be expressed as the direct product of two smaller Weyl
groups., The irreducible Weyl groups have been completely classified.
There are three infinite families of them, the members of which are re-
spectively denoted by An—1’ BC,, and D,. These groups are called the
olassioal Weyl groups. (This is because they arise from the classical

semisimple algebraic groups SLn' S0, .97 Sp2n, SOan.) In addition, there
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are five exceptiopnal irreducible Weyl groups, denoted EB’ ET’ EB' Fu,

and G2. The Weyl group An-1 is just the nth symmetric group.

It was mentioned earlier that Bruhat orders are defined on the ele-
ments of Weyl groups. However, this can be generalized in two ways.
First, it is possible to extend the definition to Coxeter groups, a class
of groups containing the Weyl groups. Second, an analog of the Bruhat
order can be defined on the elements of certain coset spaces of Weyl or
Coxeter groups obtained by dividing by certain subgroups. In this the-
sis, the term "Bruhat order® shall refer only to Bruhat orders defined on
Hevl groups or their appropriate coset spaces. Note that all Weyl groups
in this thesis are finite; we shall not consider affine Weyl groups,
which are a special kind of infinite Coxeter group. These restrictions
arise because the Bruhat orders are being studied in their original con-
text of complex semisimple algebraic groups, where finite Weyl groups
play a central role. A Bruhat order of type X is a Bruhat order defined
on an irreducible Weyl group of type X or an appropriate coset space of a
group of type X. A glassical Bruhat order is a Bruhat order of type 4,

BC, or D,

The remainder of this introduction is an overview of the entire
theais. 1In broad terms, this thesis consists of three parts. The first
part, Chapters I and II, contains introductory material and a preliminary
proposition which applies to all Bruhat orders. The second part,
Chapters IIT and IV, studies the classical Bruhat orders. The third
part, Chapters V and VI, is largely (but not solely) concerned with the

Bruhat orders which are lattices (Bruhat lattices). It could be said
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that the classical Bruhat orders are the nicest Bruhat orders from a com-
binatorial viewpoint, but that the Bruhat lattices are the most combina-
torially interesting. The classical Weyl groups are very closely related
to the symmetric groups. As a consequence of this, the classical Bruhat
orders have nice combinatorial descriptions. On the other hand, lattices
are generally more combinatorially interesting than arbitrary posets.
Alsc, the two families of Bruhat orders previously studied by combina=-
torialists for purely combinatorial reasons are in fact Bruhat lattices.
Finally, the Bruhat lattices appear in Lie representation theory in a
particularly advantageous manner, allowing combinatorial conclusions to

be drawn from representation theoretic facts.

For the sake of an example, the most famous kind of Bruhat order is
described in the second section of this chapter. The formal definitions
of Weyl groups and Bruhat orders appear in the first section of
Chapter II. The second section of Chapter II presents a preliminary re-
sult, Proposition II.2, which is used throughout the thesis. This propo-
sition depicts the Bruhat orders with certain weights of representations
of semisimple Lie algebras, thus producing the connection with Lie repre-

sentation theory.

Chapter II1 begins the study of the classical Bruhat orders by
employing the aforementioned Proposition II.2 to obtain descriptions of
the classical Bruhat orders in terms of n-tuples of integers. Except for
this, all of the techniques used in Chapter III are combinatorial. (How=-
ever, Chapter III is in some sense entirely combinatorial in content,

since even the n-tuple descriptions may be obtained combinatorially, al-
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beit more slowly.) Both the Weyl group definitions and these n-tuple de-
scriptions do not permit the direct comparison of an arbitrary pair of
elements in one of these orders. This situation is rectified in the
third section of Chapter YII with the derivation of tableau descriptions
for the clzssical orders. The tableau description for orders of type D
is new, whereas the tableau descriptions for orders of types A and BC
turn out to have been known already in Indian algebraic geometry folk-
lore. In the last section of Chapter III, the previously mentioned lex~
icographic shellability of the classical orders is deduced as virtually a

corollary to the tableau descriptions and their proofs.

-

Chapter IV describes five applications of the two main results of
Chapter III. The applications described in the first two sections of the
chapter are almost entirely due to other people, but are described in
this thesis for the sake of completeness. The first section is a summary
of DeConcini's and Lakshmibai's application of the lexicographic shella-
bility for classical orders to algebraic geometry that was mentioned ear-
lier. Section 2 of Chapter IV briefly describes how a new derivation of
the M8bius function for the full classical orders can be obtained from
the proof of their lexicographic shellability. Section 2 also describes
how triangulations of spheres and balls can be produced from the classi-
cal Bruhat orders with lexicographic shellability and knowledge of the
M8bius function. The third section of Chapter IV uses the tableau de-
seriptions for orders of type A to confirm a conjecture of' Lusztig's con-
cerning arrays of dimensions of intersections of pairs of flags of sub-

spaces in specified relative positions. As a consequence, a more direct



description is obtained for the Bruhat orders of type A in theilr original
contexts, that of Schubert varieties in flag manifolds. The last sectior
of Chapter IV describes the relationship between the tableaux obtained in
Chapter III for orders of type A and the tableaux employed by Young in

his desnription of representations of the special linear group.

Chapter V studies the Bruhat lattices with the representation theo-
ry of complex semisimple Lie algebras. In the second section of
Chapter V, Proposition II.2 is used to identify which Bruhat orders are
in fact lattices. The third section presents the tools from representa-
tion theory which ars needed in the last twc sections of the chapter. 1In
Section 4 (which represents joint work with R.P. Stanley), Weyl's charac-
ter formula is combiried with recent algebraic geomeiric work of Seshadri
[LM3] to show that the rank weighted generating functions for multichains
in Bruhat lattices can be expressed as the guotients of certain products.
In Section 5, principal three dimensional subalgebras are used to provide
a new proof that the Bruhat lattices possess the strong Sperner property.
Both of these results have consequences in more traditional cnmbina=-
tories. New proofs of certain plane partition generating function
identities can be obtalned as special cases of the first result. Also,
Lindstrém and Stanley have shown that a conjecture of Erdds and Moser in
extremal number theory [Erd] can be proved using a particular case of the

second result [Lin] [StWw].

Each Bruhat lattice is actually a distributive lattice. It is well
known that distributive lattices are in one=to-one correspondence with

the subposets of their join irreducible elements. We shall call any
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poset that arises from a Bruhat lattice in this manner a minlscule poset.
Years before combinatorialists were aware of the Lie theoretic notions
utilized here, Stanley defined the notion of "Gaussian poset" for purely
combinatorial reasons [St0]. Thls definition concerns the form of a cer-
tain family of generating functions associated to a partially ordered
set. The main result of'the fourth section of Chapter V can be rephrased
as: All miniscule posets are Gaussian posets. It is interesting to note
that all known Gsussian posets are miniscule posets, and it seems pilausi-
ble that these are all possible Gausaian posets. This is Jjust one of the
five proven or potential ways of describing or characterizing the minis-

cule posets that are presented in Chapters V and VI.

The first main topie of Chapter VI is the abstraction of part of
the Lie algebraic proof of the strong Spernerity of Bruhat lattices.
Sufficient conditions for strong Spernerity are stated in the context of
arbitrary ranked posets, and the relevant part of the Lie algebraic proof
is translated into elementary linear algebra for the benefit of readers
unfamiliar with Lie representation thecry. Unfortunately, the most gen-
eral statement of this abstracted sufficient condition is fairly diffi-
cult to work with. A special case of this condition, expressed only in
the context of distributive lattices, is much easier to use, It is known
from the Lie algebraic proof in Chapter V that it is possible to apply
this special case to the Bruhat lattices. This leads to the second topic
of Chapter VI, the classification of the distributive lattices which sat-
isfy thiz special sufficient condition. The third section of the chapter

presents a proof that no other lattices beside the Brubhat lattices can



satisfy the condition in question. As was indicated earlier in this in-
troduction, we consider this result to be one of the two most interesting
results of this thesis, partly because Dynkin diagrams arise naturally in

the course of the proof.

Since distributive lattices are in one~to-one correspondence with
the subposets of their join irreducible elements, the classification the-
orem just described is also a characterization of the miniscule posets.
The last section of Chapter VI summarizes the four ways in which the min-
jscule posets arise up to that point, and also describes a fifth (empiri-

cal, but interesting) method by which these posets can be described.

2. Exanmple

The most famous Bruhat order can be described as the partially or-

dered set of j-tuples (a1, a *, a.) satisfying 1 $_a1 <a, <+

2! J 2

< aj'g n, with order given by a < b if and only if a, £ b1, a, s_b2,
o s ., aj S-bj' This partial order has (g) elements, and is in fact a

distributive lattice. It is denoted An_1(j) in this thesis. 1In algebra-
ic geometry, this lattice describes the inclusion relationships of the
Schubert subvarieties of the Grassmannian projective variety of
J=dimensional subspaces of an n-dimensional space [StW]l. In Lie repre-
sentation theory, An_1(j) is the partially ordered set of weights of the
jth exterior power of the natural representation of sl(n,ﬁl). There are
two ways by which this lattice is often described in combinatories. The

first is as the partially ordered set of all partitions of integers
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into J or fewer parts, with each part no larger than n-j. The second way
is as the lattice of order ideals of the posef which iz the preoduct of a
j-element chain with an (n-j)~element chain., Stanley [StW] denotes this

poset by L{j,n-j).
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Chapter II

Definitions and a Preliminary Result

1. Definitions and Notation

The term "poset® stands for "partially ordered set". If x and y
are elements of a poset P such that x  z < y implles that z equals x,
then we say that y covers x in P. The Hasse disgram of a finite poset P
is the directed graph whose vertices are the elements of P, and whose
edges are the covering relations of P. Namely, (y,x) is an edge of the
graph if y covers x. An gorder ideal I of P is a subset I < P such that
y€1Iand x {y imply x € I, An order filter is an analogously defined

subset of P, with 2> replacing X£.

Notation: [n] := {1, 2, = =+, n}

#fn] ¢= {-n, =n+1, - -+, =1, 1,2, + + +, n}

Bruhat partial orders are defined on the elements of Veyl groups.
It is possible to characterize a Heyl group as a finite group with n
designated generators S5 1 £1 < n, whose presentation with respect to

these generators has the form:

m.
4 8; ! sie = e, (sisj) 15 - & where mi,Jé 2, 3, 4, 6} >.

The designated generators s, are called simple reflections. An
irreducible Weyl group is one which cannot be expressed as the direct

product of two smaller Weyl groups. The irreducible Weyl groups have
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been completely classified. There are three infinite familles of
classical irreducible Weyl groups, denoted with the letters A, BC, and D.
Ignoring designated generators, these three infinite families can be sim-
ply described. The Weyl group of type A, can be depicted with n X n
permutation matrices (symmetric group, order nl), of type BC with
"signed” permutation matrices (hyperoctahedral group, order 2nn!), and of
type D, with "signed" permutation matrices which have an even number of
negative ones (order 2n—1n!). There are also five exgeptional irreduci-
ble Weyl groups. They are denoted Eg, ET' Eg, Fy, and Go.

For any Weyl group W of rank n and any subset J < {nl, the para-
bolic subgroup Wy is defined to be < 8y ¢ J € J >. The set of left
cosets, or coset space, W/W; is denoted WJ.

Bruhat orders are defined on the coset spaces WJ as well as on Weyl
groups W, but we must first define the Bruhat orders on Weyl groups. Any
element w € W can be expressed w = sik S sizsil. Define the length
of ¥, 1{W), to be the smallest such k possible. Any conjugate t of a

designated generator, t = wsiw‘l, is called a reflection.

Pefinition, The Bruhat partial order on a Weyl group W 1s the partial
order defined by:

(i) The unique maximal element is the identity e.

(1i) For two elements w, w' of W, the relation w £ w' holds if and
only if there exist reflections tp, * * * , ty such that w = ty

' - * - » - -
tetlw and l(t',i+l tlw) > l(ti tly) for 1 £ 1 < k.

This definition is the order dual of the usual one, e.g. normally e is

the unique minimal element. We have reversed this convention for the
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sake of much nicer notation in the future., Note that as a result, w { v'
implies 1(w) > 1(w'). Al of this relatively harmless, since the Bruhat
orders are self-dual (Corollary 2).

Given J & [nl], it is known that each element w € W has a unique
expression w = wJﬂr where 1(w)} = l(wJ) + 1wy, wy € Wy and w? is the
unique element of wWJ of minimal length. Thus by ignoring the w; part of
each element in a coset in WJ, we can identify each coset in WJ.with an
element of W in a natural way. The Ezuha&_gnﬂgz_gnﬂﬂf is defined to be
the induced order under this identification. We will use this subset of
W to depict #Y rather than the cosets themselves, Henceforth the term
Bruhat poset shall refer to a Bruhat order defined on any Weyl group W or
coset space WJ. The term irreducible Bruhat poset shall refer to a

Bruhat poset defined on any W or WJ = H/WJ for which W is irreduecible.

Notation, Let W be an irreducible Weyl group of rank n and of type X,
X € {A, BC, D, E, F, G}. IfJ & [n], set 7%= [n] - J. The statements
of our results always require the set J¢ rather than the set J. Hence we
shall let X (J°) denote the irreducible Bruhat poset wd, 17 3% = (3},

then Xn(j) shall denote the poset WJ.

2. Depiction of Bruhat Orders with Weights of Representations

In this section we present a useful preliminary proposition which
depicts the Bruhat orders with certain weights of representations of
semisimple Lie algebras. In addition to giving the connection of Bruhat
orders to representation theory, this depiction facilitates some

computations, It will be used several times in this thesis. Although it
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is possible that some researchers may already know this result, some are
unaware of it, and it does not explicitly appear in the literature,

We assume familiarity with the theory of weights of representations
of semisimple Lie algebras [Hul]. Let H be the Cartan subalgebra of a
complex semisimple Lie algebra E] of rank n and fix a set of posltive
roots ]E+ in qB*. Denote the inner product on HR* with (+,*) and let
< ,&> = 2(*,w)/(x,x)., Denote the action of an element w of the Weyl
group on a weight 3 € HR" by wA. Denote the fundamental weights by As .

where 1 {1 € n.

Proposjtion 2. Let W be the Weyl group of a complex semisimple Lie
algebra Ef of rank n. Let ) = Z:mixi, my 2 0, be a dominant weight for
0 in Hg*, and let J© = {i: m; > O}, Define P to be the poset consisting
of the weights wi, w € W, with order generated by the relations up < v
if vA = ul = ka, where @ is a positive root and k > 0. Then P is isomor-

phic to the Bruhat order wJ. The unique maximal element of P is A.

Hemark, The lattice of weights in HR* is often endowed with an order
given by B < v if and only if 4 - p is a non-zZero sum of positive roots.
Thus the theorem almost states that the set of welights in the orbit Wi
ordered by the usual ordering of weights is just WJ; However, for

ud < vi to imply u < v, we must also require that ul and vA be related by
a sequence of weights w) whose successive differences are positive
multiples of positive roots. The example A3, A= ll + l3 shows that this
additional requirement is necessary in general. (There is a family of
representations for which the additional assumption is not needed. See

Section V.3.)
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The first of the following lemmas is equivalent to Lemma 8.10 of
Berstein, Gelfand and Gelfand [BGG], and the second is Lemma 3.5 of

Deodhar [Dec].

Lemma 2.1. Let g be any positive root and let t be the correspori.ng re~

+
flection. Then o € w® if and only if 1(tw) > 1(w).

Lemma 2.2. Let w € Wand w' € WY, Thenw < w' if and only if the w’

part of w is £ w'.

Proof of Propositicn 2. The stabilizing subgroup of W at A is exactly

Wy, so the map w ¥* wA is a bijection between WJ and the orbit of &
under W.

The order relations u < v if u = tv and 1(u) > 1(v) generate the
order on W:r. Let ¢ be the positive root corresponding to t. Lemma 2.1
implies a € VI+- Therefore <vi,a> 2 0. Now ud = vi ~ <vi,c> implies
<vA,&> > 0. Hence uh < vi in the partial order P defined on the
orbit WA.

Conversely, suppose that vA - u) = ka with e a positive root and
k > 0. Consider the line v + ae where a is real. At most two points on
this line have norm {[valf = Jlual] = |ltvall. This implies that ur = tva =
vh = <vA,a> , where t corresponds to a. Therefore <vi,a> > 0. So &« €
VI+, and Lemma 2.1 implies 1(tv) > 1(v). Hence tv < v. Now v € Wy,

and u is the WY part of tv. Hence Lemma 2.2 implies that u < v in WT,

The following corollary actually holds for all Bruhat orders aris-
ing from finite Coxeter groups. The proof in the (slightly) more general

case is the same in spirit [Bou, Ex. IV.1.22].
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Corpllary 2. Bruhat orders are self-dual.

Proof, Let LA denote the unique element of the Weyl group which takes
positive roots to negative roots [Hul, Ex. 10.9]. Apply ¥ to the

orbit W .
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Chapter III

Combinatorial Descriptions and Lexicographic

Shellabillity of the Classical Orders

J. Introduction

The classical Bruhat orders are the nicest Bruhat orders from a
combinatorial viewpoint, because the groups upon which they are defined
are very closely related to the symmetric groups. (See Section II.1) 1n
the second section of this chapuer, Proposition II.2 is used to obtain
descriptions of the classical orders in terms of signed multipermuta-~
tions.

The rest of the chapter is entirely combinatorial in methods and
content. Neither the original definition of Bruhat order nor the n«tuple
descriptions permit the direct comparison of an arbitrary pair of ele-
ments from cone of the classical orders. This is the purpose of the tab-
leau descriptions which are derived in Section 3. These descriptions are
used at the end of Section 3 to help specify which of the order gener-
ating relations given in Section 2 are actually covering relations.

The last section of the chapter uses the proofs of the tableau de-
scriptions to help prove that the classical Bruhat orders are lexico-
graphically shellable (Theorem 4). Given a poset P, let C{P) denote the
set of its covering relaticns, i.e. C(P) = {(x,y): x covers y}. Let fL

be any partially ordered set.
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Definition. A poset P is said to be lexicographically shellable if there
exists a map w: c(p) —>_{} such that:

(1) For every pair x 2 ¥y in P there exists a unique unrefineable
chain x = 25 > 2 >+ * >z, =y with ua(zt_l,zt) 2,Lu(zt,zt+1) for
1Tt <r.

(ii) If x covers w and w 2 y, then uu(x,zl) > wi(x,w), where z, is

defined by (1i).

Given any poset P, the order complex of P is defined to be the sim-
plicial complex whose vertices are the elements of P and whose faces are
the chains in P. Bjorner has shown [Bjo] that if a poset is lexicograph-
icaliy shellable, then the order complex of the poset is a "shellable"
simplicial complex. Roughly speaking, a simpliclal complex is "shell-
able™ if it can be assembled from its maximal faces in a certain nice se-
quential fashion. Stanley [StC] and Reisner [Rei] have shown that if the
order complex of a poset is shellable, then a certain commutative ring
associated to the poset, the "Stanley-Reisner ring", has the
Cohen-Macaulay property. This is the consequence of Theorem 4 that is
used by DeConcini and Lakshmibai in their algebraic geometric application
of lexicographic shellability. This application will be briefly de-
scribed in Section VI.1.

Just as this thesis was being written, Bjorner and Wachs obtained a
result [BjW] which essentially supersedes the lexicographic shellability
result proved in this chapter. By conaideriné a property slightly weaker
than lexicographic shellability, they have shown that the order complex

of any interval of any Bruhat order on any Coxeter group is shellable.
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- —t;

Here Propesition II.2 is used to obtainldescriptions of the classi-
cal Bruhat orders in terms of n-tuples and 2n-tuples of Integers. The
following 1s a list of the positive roots and fundamental welghts for lLie
algebras of types A, C, and D. Stanley 'sStW] obtains these descriptions
directly from the presentations of the classical Weyl groups, but the
method used here is faster and more precise. This way also has the ad-
vantage of explicitly retaining the connection with semisimple Lie alge-

bras, which will be exploited in Chapter V.

An—-l' rositive roots: -ei + ej, 1 <1< 3 £ n.
Fundamental weights: A, = (~i/n)e, + - - - +e_ ]+
i 1 n-1i
[(n-i)/n][en__i+l+ e+ en], 1 <31 £ n=1.

cC. Positive roots: —e, + ej, 1£1<]jL<n; e, + ej, 11 J<&n.

. = e 1
Fundamental weights: a_i € i+l te ot +e, ! £1iLn.
D . Positive roots: -ei + ej, 1£1 < JLn; e, + eJ, 1£1<CjL&n,
Fundamental weights: ,11 = en-_i+1 + en-i+2 + . .+ en, 3<1iLgn.
= (- e
ln-l- 7 ( e, + e, + +en)

i
an 2_(el-l- e2+ .« . o+ eg

The action of a Weyl group on a weight space is generated by re-
fiections with respect to the positive roots. Both of the root systems
Bn and Cn generate the same Weyl group BC ; we will use the fundamental
welghts of type C becsuse they have nicer coordinates than those of

type B. For the classical root systems, the possible effects on the
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coordinates (a;, ap, - - -, 2y) of a vector in the weight space from

reflecting with respect to a positive root are:

faj if x = 1,
Root e, + ey 1<} (Switech}: Sijfg) = b, by :-\\iﬂ_ if k= 3,
a, otherwise.

~a, 1if k = 1,

Root e (Negate): N.{a) = b, b, =
1 1l ~ - k
a, otherwise.
--Ellj if k = 1,
Root e, + eJ, i < j (Switch=Negate): SNij(g) =b, by =4 ~a; if k = J,

a, otherwise.

& "permutation of an n-tuple™ is an n-tuple obtained by rearranging
the components of the original n-tuple. "Signed permutation of an

n-tuple™ shall mean the same thing, except that the signs of the compon-

ents may be changed as well. The notation piqj .. -rk denotes the
n-tuple (p, * + * 4y Py Qy * * * 4 Py * + « 4y r), Wwheren = 1 + j +
'+ko

Proposition 2A. Let J° = {j;, Jp © ° " Jg} Withn = 12§71 > jo>
©> 3§ 2 1. The Brunat order A__;(J°) 1is isomorphic to the poset of

n—j,131“ Jpoeees mj“ with order

all permutations of the n-tuple e = 0
generating relations 313(2) <a, 1<} a;<aj The maximal element is

the n-tuple e.

Propasition 2BC, Leth={Jlo Jg: A | Jm} with n 2 jy > j2>

c
> Jm,z 1. The Bruhat order BCn(J )} is isomorphic to the poset of all
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n_jq 31'_:),_ ‘jﬂ
signed permutations of e = 0 1 + =+ m  with order generating

relations Sij(f‘:‘) <a, i<J, g < aj; SNij(g) <a, a; + aj >0; and

Ni(g) < a, a; > 0. The maximal element 1s the n-tuple e.

c , "
Proposition 2D, Let J = {jj, Jo, + - - s Jm} withn 2 Jq > Jo > -
> Jm 2 1. The Bruhat order Dn(Jc) is isomorphic to a poset of certain
n-tuples as described below for various Jc. The order generating rela-

tions for all cases are Si (g) <a, 1<, a; < ajy and SNij(?) <a, aj+

J
a‘j > C.
a8 e Set of n-tuples
n-1 ﬁ-Jc, nf.Jc On—j,1j1—31 - mjm All signed permutations of e.
n-1¢ Jc, neJ’ 1‘jl_j1' oo m‘jn All signed permutatlions of e
with an even numher of negative components.
n-1€J3€ negd® (-1)113‘_31 .o -m""' All signed permtations of e
with an odd number of negative componeuts.
n-1€J% ned® 01131“3‘" '(m-‘l)'jm All signed permutations of e.

The maximal element in each case is the n-tuple e.

Figure 2 shows D3(1,3). The 3=-tuples are parseq with commas, and

underlines denote negative numbers.,

Proof of Proposition 2D, Choose A as follows and apply Proposition
II.2.

(1) n-1 € 35, n € 35 o7

Tt

an + 25‘1‘11"
K,._,"' Z'J g:r‘)._,'!

(] C
(1) n-1 &€ J, n € J:

A
A
(141) n-1 € 355 n €3 A
A

M

c c
(iv) n-1 € J ,n e J: g hie
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The n-tuple of coordinates of A with respect to the standard basis is e,
and the orbit of A under W is the set indicated in the table. The dif-
ference of two welghts is & multiple of a positive root if and only if
the respective n-tuples are related by S_H or SNij, i < j. The condi-

tions a < aJ and a, + a > 0 respectively hold if and only if a = Sij(a>
1 ~ ~

J
and a - SNij(a)' are positive multiples of positive roots.

The proofs of Propositions 24 and 2BC are similar, except for
type A one must verify that it is alright to avoid fractional and nega-

tive coordinates by using 7Li = e - + e, for 1 <1 X%

. + e . + -
n—-i+l n—-i+2

n-1, rather than the value originally given.
There 1s an alternative way to describe the Bruhat orders of types
BCn and Dn which will be needed in the next section. To each n-tuple

(a.)
1

of integers associate a 2n-tuple (ai)i e +[1] of non-negative

i€ [n]

integers according to:

a; 1if a;, > 0,

j= 1> 0: a

J 0 otherwise.
=a, 1if a. < 0,

j=+-1<0: .':1.j = * *
0 otherwise.

Note that a, > 0 implies a_; = 0. The 6-tuples in Figure 2 appear

directly beneath the 3~tuples. The following two operations describe

—. the possible effects of reflecting with respect to a positive root:

2 j if k = 1,

(1) (Switch) SiJ(E) =b, 1 <} bk = a, if k = 3,

ak otherwise.
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1211

2112

1211

2111
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1,1,2
201010
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o

1,1,2
210100

Figure 2

\ 000121

1,2,%

120100

2,1,1
000211

2,1,1
110200
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(11) (Double Jump) DJ;4(a) =k, 4 < J, 85 = a_y =0,
aj if ¥ = 1,

a_q if k

n
]
[H

-

44 1. -
whd

(\ak' otherwise.

It is easy to find the appropriate sets of 2n-tuples to describe the
posets BCn(Jc) and Dn(Jc). The following corollaries describe the trans-

lation of the generating relations into 2n-tuple notation.

Corollaries 2BCD. If the elements of Dn(Jc) are portrayed with 2n-tuples

as described above, then the relations Sij(g) <a, 1 <J, 1#~J,

-1

a . =0, a, < a, and DJi (a) < a, £ <3, 1 #-J, 2, = a_yx 0, 2 .+

J J

aJ > 0 generate the desired partial order. Similarly, these relations

together with S i iﬁg) <a, 1>0, 8> 0 generate the orders BCI$J(3
—ds

when their elements are portrayed with 2n-tuples.

3. Tableau Descriptions

We now describe the classical Bruhat orders with tableaux of inte-
gers. The tableau description for type D orders is new; the tableau de-
seriptions for orders of types A and BC have apparently existed before
only in the folklore of Indian algebraic geometers.

Given J% = {3 23,2 - - * 2 ). & ableau of shape 4 is an ar-
ray of non-zero integers of the form (T, 4)1¢psm, 1244 A stapndard

tableay is one in which the entries in any row are strictly increasing
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and the entries in any column are non-increasing. The symbol Tp will de-
} or the row vector (T

,d’ 1€d=], P:d)lsdsjp.
axireme tablean is a tableau such that Tp+l‘(= TP for 1 £ p < m. Given

note either the set {TP in

any set of tableau of the same shape Jc, one can define a partial order

T LA 44

U N ¥
p,d p,d

Antwnwriyd oa AsamEo sl moaae _‘.._ely’ U S. 1vr iff

LEN RY SLLUYWL oS CONDIArASON,

4]

(2
>
2|
v
H

o for

1{pLm, 1£dX Jp. This order will also be used to compare respec-

tive rows of two tableau.

Definition., Define a map En ( ?2:(1) from the set of n-tuples (2n-tuples)
of non-negative integers to the set of extreme standard tableau by:

3 (c) = T, where for p > 1,
T ={1€&([n): a;2p} ({ié€2ln]: a;2ph),

p
with Tp,l < Tp,g < v e

Notation, Fix U = §(a), V= §(b), T = §(c) throughout this section.

o4
Iheorem 3A. = e - j ; . e
Let J {jl, 52, s jm} withn1>_31> 32> >
sz 1. Let P be the poset of all extreme standard tableau of shape Jc
with entries from [n], with partial order defined by entrywise compari-

son., Then P is isomorphic to the Bruhat poset An_l(J .

. Let J {Jl, 32, ,jm} with n 2 §; > 35> >
jm 2 1. Let P be the poset of all extreme standard tableau of shape JC
with entries from #[n} such that both i and -i never occur in the same
tableau, with partial order defined by entrywise comparison. Then P is

isomorphic to the Bruhat poset BCn(Jc).
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Definitions, A gegment of a row vector TP is a row vector Tp[f,g] =

.t Tp,f+1’ ..y, TP,S) for some f and g such that 1  f < g < J.

Segments which occupy the same positions in two tableaux of the same

(T

shape, €.g. Urﬁf,g] and Vrﬁf,g], are said to be analogous segments. Two

y - . $a a o w om a4y an £ .
Such analogous Segmernus are Sdid Lo De U=AnCoupalliDle Al { lUP d}‘;
3

f<d<gl= {IVP d|: f<d<gl=1{1,2, -+ -, g-f+1} and one of
f{UP,d: U, 4< 0 r<agel], [V, ¢ v, 4<0, £<dgel| s an odd
number while the other one is an even number. Two tableaux are said to

be D=compatible if they have no analogous D=-incompatible segmenta. The

D-compatible entrvwise comparison partial order on a set of tableau of

the same shape is the usual entrywise comparison partial order together
with the additional stipulation that any two tableaux must be D=compa~-

tible in order to be comparable.

] . .
Iheorem 3D, Let J ={Jl, Jop v ',Jml withn2 j,2> jo2 *~ " "2
/7
jJ 2 1. Define J¢ by:
m

32 n-1’ ne Jc o
jt e Joe 1 0t € Jc n‘Jc T ) ji'i'l n-1,n € J ,
1" 1 ’ I<igm ~
ji otherwise.
jl otherwise.

/
Let P be the poset of all extreme standard tableau of shape JC with

entries such that both 1 and -1 never occur in the same tableau,; with
partial order defined by D-compatible entrywise comparison. Then P is

isomorphic to the Bruhat poset DrfJ‘ﬁ.

The isomorphism for Theorem 34 is the map ?n; the isomorphism for

Theorems 3BCD is the map § ope These maps are clearly bijective. The
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tableaux for D3(1,3) {(of shape {3,1}) appear to the left of the points in
Figure 2. The proof of Theorem 3A is contained in the proof of

Theorem 3B, since An__l(Jc) can be identified in an obvious manner with an
interval of BCn(Jc). All ordered tuples in the proofs of Theorems 3BCD

i1l ha Snaotn
FTaase o2 Z0D-~T0

Proof of Theorem 3BC, Suppose that b < a in BCn(JC) by one of the gener-
ating relations of Corollary 2BC. It is straightforward to show that V
is less than U by componentwise comparison. Conversely, assume that
V<U in P, We shall construct ¢ such that ¢ < a and V £ T < U, Apply-
ing induction on the sum of the differences of the respective tableau
entries will complete the proof.

Set li(g) = {j: j£i, a, = ai} .

J
Let x = max{ah: ahaf bh’ ~n £h £ n}.
Note: Expressions such as j £ h < 1 refer only to non-zero h.
Let 1 = min{ h: ay = x, (aha! bh) or (ah = bh and 1h(§) # lh(g)),

-n £ h £ n}.

In the followling arguments, we can assume x = m and 11(3) = 1. (If not,
the locations th such that a, > x and 1,(a) = 1,(b) can be ignored using
the reduction V. U_4iff VU {h u n}.

et psp P {}ipU{n}

Let } be such that b, = x and 13(}3) = 1.(a).

J
Let y = max{ah: jJ£h<i}.

If y > 0, let k = max{h: a, =y, J<h<i}.

If vy = 0, let 2 min{a_h: J£h <1},

~11f 1 =1,
and let k

max{h: a_ =2 J £ h <1} otherwise.
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(1) y>0; 0ry=0,1#1,2=0;0ry=20,1=1.

(a). Clearly c < aand T < U, Fix p withy <p {m. Then

ki~
T =U_- (1} U {k}.
b P
The cholce of k dimplies h ‘;‘. LP, Jah £31i, BHenes if Up q° i, then
b

T q = k. Thus T is obtained from U by replacing i with k, with no
Ps

shifting of other entries. The various cholces made also imply

U < j. Hence V < j, But j € V. Thus V i £ k =
p.d-1 . p,d-1 J J p Psds L

We conclude that V { T < U.

T »
p.d

(i1) y=0, 1 £ 1, 2> 0. This can only occur when j < k < i < 0
or 0-< J<k<1. Set ¢= DJki(g). Note that a; >0 and k # =i,
Therefore e < a.

For z < p £ x, szupu{i}U{k}.

For 0 <p<z T, =0, - {i} U {k} - {-k} U {-i}.
Now ah =0 for £ h<1i, so the replacement of i with k works as in (i),
and the corresponding entry in V is less than k. Suppose 0 < j < k < i;
the case j < k < i < 0 is similar. The first p rows of U contain -i+1,
~i+2, + - +, =j. BSince J &€ V, at worst the corresponding elements in V,
for 0 < p £ 2 are =1, =i+1, * * *, =3=1. Thus.’,'[p }_Vp for 0 < p £ z, af-
ter Tp has been obtained from Up by removing -k and inserting -i. Again

we conclude V L T < U.

Broof of Theorem 3D. As in case BC, b < a in Dn(JC) by one of the gener-
ating relations of Corollary 2D implies that U is entrywise less than V.
We verify that UP and VP are D=compatible in one such situation. Let b=

DJi(a)withi<0<J,-i<j,ai=a =0,0<ai<aj. Fix p such

-J



that 0 < p s_a_i. Suppose there is a segment of length t in Vp which is
D-incompatible with the analogous segment of UP' This implies both of
these segments must contain one each of %1, 2, - - -, £t. If =i or j
are in UP' they are replaced by -j and i respectively when passing to Vp.
(Some shifting of entries may occur.) This forces t > j. But then this
segment of Vp has exactly two more negative entries than the analogous
segment of UP. Therefore Vp and Up are in fact D~compatible, The cther
cases are easler. Hence R < a implies V < U in P.

Conversely, suppose that U and V are D-compatible and that V < U by
entrywise comparison. Define li(g), X, i, 3§, ¥, 2z, and k as in the proof

of Theorem 3BC. Proceed as before, unless:

(i) y=0, 1

1« Let k = max{h: a_y = Z jJ<h<il.
Set ¢ = DJki(E).
(11) j = =1, k = 1. Redefine y = max{a}f 2 £h <i}.

If y > 0, proceed as before, Otherwise, redefine

z = minfa_.: -1 < h<i, h# 1}

"
and k =max{ h: -1 h<i, h#1, a_j = z}.
In both cases, the proofs that T is entrywise greater than or equal to V
are similar to those used for Theorem 3BC.
We verify that the tableaux T and V are D-compatible for one case.
Suppose 0 < J <k <i, y=0 and z > 0. Theng = DJki(g). The reduction

of the proof of Theorem 3BC which assumes x = m and 1iﬂ§) = 1 is still

valid. To obtain T from U, the entry 1 > 0 is replaced by k > 0 in a

fixed position in each row, and the entries ~(i-1), ~(i-2), - - -, -k
are replaced by ~i, =(i-1), - - + , =(k+1) respectively in each of the
firat a_, rows. Fix p, and suppose that TP[f.EJ and Vrlf.sl are D-incom~
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patible. Set t =g -f + 1, If t < Jor t 2 i, it is clear that Up[f,g]
and Tp[f,g] have the same nuaber of negative entries., Since U and V are
D=-compatible by assumption, no D-incompatibilities will arise between TP
and VP for these values of t. Thus j £t < i, implying +j occurs in any
D-incompatible segment, Let Tpid = k, VP;e = j. By the proof of

Theorem 3BC, d £ e. By the choice of k, -J & Tq. Let Tp,e = =3+ Then
e {<d. Now f {c and e g, implying d € [f,g]. But Tp,d = k. Thus
each segment must contain one each of +1, 2, - - +« , %k, and k > j. By
the choice of k, the entries -i, -(i=t), - - +, =k, - +» -, =3 occur

in T;} Therefore no h such that ¥k < h { i occur in Tp, implying g = d.
(Recsll that t < i.) We conclude that any D-incompatible segment must be
of the form Tp[f,d] = (=h, «h+¢1, *~ * ° , =k, * ° °, =], Tp[f+h-j,

d-11, k), where k < h < i and {ITP,C|: f+hej < ¢ £ d-1} = {1, 2, = *
J=1}. Recall Vp’e = jand e » d. But xj must appear in Vp[f,d], since

J < h. This forces Vp,d = j. We must have V g_Tp o for f < c £

psC
f+h-3=-1 and -3 is not available. Thus Vrlf, f+h=3j=1] = (=~h, =h+1,

*y =J=1). Now Tp[f+h-j, d=1] = Urﬁf+h-3, d-1], and both Up and Vp
have one each of +1, #2, * * * , £(Jj=1) in this segment. The
D=compatiblity of U and V therefore implies the D=compatibility of 'I‘p
and VP along the segment [f+h-j, d=1]. The remaining entries in the
segments Tp[f,d] and Vp[f,d] have identical signs. Hence these larger
segments are actually D=compatible. Thus no D=incompatible segments ex-

ist between T and V. The other cases are easier. Therefore V T < U

in P, and the proof is complete.
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For the statements of the next results, we revert to n-tuple nota-
tior for cases BCnrand Dn. However, retain the correspondence between a
and U, band ¥V, ¢ and T via the map f?n composed with the equivalence of

n-tuples and 2n-tuples.

Lorollaries 3ABCD, The order generating relations S,

(a) < a, a_. <a,
i3~ ~

3 i

LY

of Propositions ZABCD are covering relations iff i < k < J implies either
a <a ora >a . The generating relations SN (a) < a, a_ + a_ > G,

k i k J iy - -~ i J

of Propositions 2BCD are covering relations 1ff i < k < J implies

a <-a ora >a, k<iimplies |la | < «min(a;,a:) or Ja >

X 5 X j’ p l k‘ ( i J) | k‘

max(a_,a ), and (for case BC, not case D) a,aJ < 0. The relations
i i

N_(ai < a, a; > 0, of Proposition 2BC are covers iff k < i implies
i~ ~

la I >a..
k i

Rroof. All of the "only if"™ parts can be easily proved by finding

counterexanples to weakenings of the conditions. In the case of type BC
posets, let us prove that E = SNiJ(g) < a, a; + a'j > 0 is a covering re-
lation for the case a; <0, a.j > 0., This implies aJ > -a,. Let K = {k:

ay > 3y 1<k < 3} U {k: ay > 2y k ¢ i} U {-k: a, < ~a 5 k < i} =

{kl <k <ov o K kr}. To obtain the tableau V from the tableau U, re-

place entries kq, k2, e ey kr’ J with -1, kl’ k2, ey, kr in rows
-a; + 1 to ajye Fix p such that -a; < p s_aj and let Vp,e = -1, Up,f = j.
Suppose there is an extreme standard tableau S such that V < S < U by

entrywise comparison. Let H = {S : e g £f}. Clearly H € {-1,

P8
-i#1, * ° *, j}. If k € K, thenk € U, for some q¢ > a . But V = U,

forceas Sq = Uq. Thus k € SqE-.. SP’ since S is extreme. Then k € H, be-

cause S = U > J. Hence H =K U {h}, with -1 < h £ j. Note
pyf+l

P.T+l
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that U_ai = V"ai forces U—ai = S-ai’ and -1 £ U"&iag X j implies

U & € K U{-i,j}. But h €& S_g. since S is extreme. Therefore
~8g 1

h=z=1orh=J]j, implying T = Vor S = U. Proofs of the other cases are

similar in spirit.

b, Lexicographic Shellability

Lexicographic shellability was defined in the introductory section
to this chapter. In [Ede], P. Fdelman showed that the Bruhat partial or-
der An_l([n-‘l]) is lexicographically shellable. We extend this result in
two ways: to the other two classical Bruhat orders BC I[nl) and D ([nl},

c ¢ ¢
and also to the coset space Bruhat orders A (J7), BC,(J7), and Dy(J 7},
where J¢ € [n]. Much of the proof of the following theorem comes from

the proofs of the tableau desecriptions.
Theorem 4, All classical Bruhat orders are lexicographically shellable.

Proof, Orders of types BC and D will described with 2n-tuples indexed
by +[nl}. Orders of type A will not be treated separately because
A, 1(J%) is an interval of BC(J°).

Let fL be the lexicographic total order on 2 X Z X % x Z. For ex-
ample, (2,3,7,1) > (2,3,6,9). Note that the word "lexicographie" is be-
ing used in two entirely different contexts. Given any 2n-tuple
(ai)iétﬂn]’ define ‘

ri(a) = {j: 321, ayj= a3} .
(Recall the similar definition of li(E) in Section 3.) Define a label-

ling w of the cover relations of the classical orders, i.e.
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W C(xn(J"))-——»Jl.

if a covers b, set wf(a,b) equal to:

(aJ, rj(g), ajy 13(a)) if b = Sij(g),

(aj, rJ(E), -a_;, r_;(a)) if b = DJij(E)’ a; = a_y = 0, 2y > a_q,

(ay, ry(a), -a_j, p_;(a)) if b =DJ;s(a), a; = a 5=0,a;=a ;5 J<-i,
(a_i, r_,(a), ~a rj(g)) if b = DJiJ(E)’ a; = a_y=0, ay <a_sg,

vhere 1 < j. These labels are shown in Figure 2 for D3(1,3); minus signs
are denoted with underscores for typographical convenience.

Most of the content of this proof resides in the manner in which
the definition of the labels above complements the proof of Theorem 3.
We will only outline the rest of the proof, which consists of trivial to
easy (but sometimes tedious) verifications. The tedious aspeat arises
because one must consider the various covering relations or combinaticns
of covering relations for corders of types BC and D at each step.

Given a > b in a classical Bruhat order, the proof of Theorem 3
recursively constructed a particular chain of elements a = 25 > <23 >
- - > e. = b from a to E. In each case, Corollary 3 can be used to

verify that each of the relations Sy > e is a covering relation.

<1+l
Again considering various cases, one can confirm that the choice of two
consecutive elements is always such that cu(st_l,gt) > “”(Et’9t+l)' The
third consequence of the construction is that if a covers d and d > b,
then cu(g,gl) > wla,d). To see this, note that the tableaux for a and b
imply that the first two entries of the label quadruples are as large as
possible with the cholce of g, = 8- The tableaux also imply that the

locations searched in the process of defining y, 2, and k are the only
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locations to which the entry x at location i can be moved such that the
resulting 2n-tuple is greater than b. Given these restrictions on the
movement of the entry x at i, the.choice e, = ¢ from the proof of
Theorem 3 is exactly the chnice of [ that maximizes the third and fourth
entries of the label guadruple.

To complete the proof, one must show that no other chain from_g
to B has non-increasing covering relation labels. Let a-= EO > El >

- > 4d

d, = R.be some other chain from a to b. As above, the tableaux

indicate that the entry x at i is the largest entry (in terms of the
first two label entries) which can be moved in any of the 2n-tuples be~
tween a and 2. Since it must be moved sometime, and since the labels
must never increase, the entry x at i must be moved first. The tableaux
again restrict the locations to which this entry can be moved. At this
point, various cases for each type of order must be considered in order
to rule out any other "first moves"™ beside El = ¢. To treat these cases
for orders of types BC and D, it is helpful to occasionally return to
n=-tuple notation and use Corollary 3. Each of these situations essen-
tially follows the same pattern: Moving the entry x at i to location

h < k with either a "switch"™ or "double jump"™ is either impossible or not
a covering relation. And if the entry x at i is moved to a location

h > k to produce a 2n-tuple greater than b, one can show that eventually
this entry x must "hop" over location k, which again is not a cover, or
move to location k. This eventual forced move to location k produces an
increase in the labels of the covering relations of the alternative
chain. The proof is complete once all of the apparent alternative "first

moves" for each case have been eliminated.
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Chapter IV

Applications of

Lexicographic Shellability and Tableau Descriptions

1. An Applicati to Algebraic G I e to DeConcini | Lakshmibaj

In this section we will briefly describe how DeConecini and
Lakshmibai have used Theorem III.J4 to show that certain embeddings of
certain projective varieties arising in algebraic geometry are arithmeti-
cally Cohen-Macaulay and arithmetically normal [DelL]. Let G be a classi-
cal semisimple algebraic group over an algebraically closed field, and
let Pj be the jih maximal parabelic subgroup of G. Then G/PJ is a pro-
Jjective variety. Let R? denote the homogeneous coordinate ring (for the

canonical projective embedding of G/Pj) of a Schubert subvariety S(~) of

G/PJ. The main result of DeConcini and Lakshmibai is:

Iheorem, The ring RT is Cohen-Macaulay and normal.

For certain cholices of G and PJ' there is a straightforward proof
of this result utilizing the theory of algebras with straightening laws
[Bac], [DEP]. For example, if G is of type Apr_and PJ is the jih maxi-
mal parabolic subgroup of G, then one can use the work of Rota, et. al.
[DKR] (or other authors) to shcw that the ring R, is a ring with
straightening law over a prinicipal ideal of the poset An_l(j), which is
in fact a distritutive lattice, A consequence of the theory of algebras

with straightening laws is that R, is Cohen-Macaulay if the
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Stanley-Reisner ring of this principal ideal is Cohen-Macaulay. But the
Cohen-Macaulayness of this ring follows from the shellability of the or-
der complex of the principal ideal, whieh can in turn be deduced from

S. Provan's theorem [Prv] that the order complex of a distributive lat-

tice is shellable.

The more general work of DeConcini and Lakshmibai follows the same
pattern. Two difficulties arise. First, the connection between the
Bruhat poset Xn(j) and the ring R, for a Schubert variety in G/Pj, where
G is of any classical type Xn, is not in general as straightforward as

when G is of type An DeConecini and Lakshmibai introduce an intermedi-

-1
ate object, called a doset, which is a subset of Xn(j) X Xn(j). They
then define the concept of an algebra with straightening law over a doset
and show that any ring related by this mechanism to a doset defined on a
poset is Cohen-=-Macaulay if the Stanley~Reisner ring of the poset is
Cohen-Macaulay. Work of Seshadri, et. al. [LMY] is used to confirm that
the ring R, is an algebra with straightening law over a doset defined on
a principal order ideal of the Bruhat order Xn(j). Hence the problem is
reduced to the question of whether the order complexes of principal order
ideals in the posets xrﬁj) are shellable. The second aspect of difficul-
ty for the more general case now arises because the posets xn(j) are not
distributive lattices in general. However, Bjdrner's proposition [Bj5]
that the lexicographic shellability of the poset implies the shellability

of the order complex can be combined with Theorem III.Y4 to complete the

proof.



In a personal communication, DeConcini has indicated that the
methods of [DelL] together with Theorem III.4 can also be applied to the
Schubert varieties of the flag manifolds G/P which correspond tc the
Bruhat posets of the fornm Aqufjjszg‘ Furthermore, Deloncinl and
Lakshmibai point out in their paper that their methods also apply to the
Schubert varieties of G/PJ, with G an exceptional semisimple algebraic
group and Pj a classical maximal parabolic subgroup, if the order com-
plexes of the corresponding Bruhat posets are lexicographically shell-
able. These order complexes are now known to be shellable by the recent
work of Bjorner and Wachs [BjW] which was described at the end of

Section III.?.

2. Computation of the Mobius Function
and Triangulations of Balls and Spheres

The Mébius function of a partially ordered set P is a certain inte-
ger valued function on the set P X P which played a central role in G.-C.
Rota's theory of enumeration with respect the poset P [Rot]. By careful
use of the Coxeter group axioms, D.-N. Verma has shown [VeM] that the
Mobius function for the Bruhat order on any full Coxeter group W has the
following expression: m(u,v) = (-1)2w)-1(¥) 4 theorem of Stanley and
Bjorner [Bj6, Theorem 2.7] for arbitrary posets provides a more concrete
way to obtain this result for the classical Weyl groups by using the la-
belling of the covering relacions specified above. A particular case of
their theorem states that if a labelling of the covers satisfies the

requirements for lexicographic shellability, then (-1)r(x)"r(y2uiy,x) is
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the number of chains from x to y which have strictly increagsing labels,
where x > y and r{x)-r(y) is the length of any unrefineable chain from x
to y. With our labelling, it is easy to verify that there is always ex-
actly one such chain for any pair of comparable elements in a classical
Weyl group. With a little more work, one could probably also use the
same methods to obtain (for the classical cases) a more concrete deriva-
tion of Deodhar's expression [Deo] for the Mébius function of the Bruhat
orders defined on the coset spaces w.

Stanley and Edelman have noted that Theorem III.4 can be combined
with the corollary Jjust described to produce triangulations of spheres
[Ede]. The particular form of the M&bius fuancticon for the Bruhat order
Xn([n]) on a classical Weyl group combined with the lexicographic shella-
bility of Xn([n]) implies the following: If one deletes the minimal and
maximal elements from X (Inl) and forms the order complex of the
resulting poset, then the simplicial complex s¢ obtained is a triangula-~
tion of a sphere. The interested reader should consult Edelaan's proof
for the case AI§[n]). (This proof applies immediately to BCIJ[n]) and
Dnﬁ[n]).) In addition, Stanley has pointed out (personal communication)
that Deodhar's computation of the Mébius function for the Bruhat orders
on the coset spaces WJ-can be combined with Theorem III.4 to produce
triangulations of balls by the same procedure. In summary, this proce-
dure of forming the order complex after deleting the minimal and maximal
elements from a classical Bruhat order wéryields a triangulation of a
sphere when J = ¢ and a triangulation of a ball when d # #. DeConcini
conjectured (personal communication) that this procedure always yields

triangulations of spheres or balls when it is applied to any interval of



a Bruhat order defined on z Coxeter group or an appropriate coset space
of a Coxeter group. This conjecture was recently confirmed by Bjdrner

and Wachs [BjW]. (See Section III.1.)

3. Relationship with the Original Definition of Bruhat Order

In this section we use one of the tableau deseriptions (Theorem
II1.3A) to prove a conjecture of G. Lusztig's (Proposition 3.1) concern-
ing the Bruhat order on the symmetric group and arrays of dimensions of
intersections of pairs of flags of subspaces in specified relative
positions, As a consequence, we obtain a more direct description of the

Bruhat orders of type A in their original contexts.

Definition., Let % be an n-dimensional vector space. A maximal flag of
Subspaces {#:) in % is a strictly increasing sequence of subpaces 0 <

B, EMy, & - - - B =W in W,

Notation., Throughout this section W will denote the nth symmetric group,

i.e. the Weyl group of type An-l’ Its elements shall be dencoted with the

small Greek letters o, T.

Definition, A maximal flag {4¢;} is said to be in relative position ¢
with respect to a fixed maximal flag { #;} if and only if

4’.‘ N %0"(”-4 c W" 4| %o-”Ci.) for 1 S_ i S, n.

It is a fact that any two flags are in exactly one relative posi-

tion & with respect to each other.
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Proposition 3.1. Let { ;) be a fixed maximal flag in #. Let {%;} and
{4,] be in relative positions ¢« and 7 with respect to {#7:}. Then
T £ o in the Bruhat order on W if and only if dim( 4, A 2 ) £ dim( 2%,

f\ﬂrj)for'1s_i,j,gn.

We defer the procf of Proposition 3.1,

Consult [Hu2] as a reference for the following material. Let G =
SL(n,€ ) act on an n-dimensional complex vector space #. Fix a uwaximal
torus T and a Borel subgroup containing T. Let {4} be the maximal flag
stabilized by B. The points of the manifold G/B correspond to maximal
flags in %. Let NG(T) be the normalizer of T in G. Then MG(T)/T = W,
the ﬁeyl group of G, which is the nth symmetric group. Let W' be a set
of representatives of NG(T)/T in G. The Bruhat decomposition of the flag
manifold is described with these representatives: G/B = téew'B‘rB/B'

The Bruhat order on W was originally defined by inclusion (reverse inclu-
sion for this paper) of the subsets 57;575 (bar denotes topological clo-
sure) of the flag manifold. Hence the following propositicn uses Theorem
IIT.3A to obtain a more direct description of the Bruhat order of type

A 1 in its original context.

Proposition 3.2, Let G = SL(n, {) act on % and let G/B be the manifold
of maximal flags in %. Denote the flag stabilized by B with {#;}. Let
U, T € W' as above., If {%;} € BeoB/B and {#;)} &€ B+B/B are two flags
in two Bruhat cells, then B7B/B 2 BoB/B if and only if dim(4; n

%)gdim( M, Nm;) for 1 £1,3 < n.



Proof, It can be shown that { %} € BeoB/B if and only if { %;} is in
relative position o with respect to {#;}. The proposition then follows

from the original definition of Bruhat order and Proposition 3.1.

The following definition of relative position is equivalent to the

one given above.

Definition. A maximal flag {4;} is said to be in relative position o
with respect to a fixed maximal flag {4#,;} if and only if there exists a

basis {«,} of 7 such that #; = [, , 4, - - -, ;] and 4, =

{b',.(|,: AT gezyr T T ,w-,,m]-

Proof of Proposition 3.1, Pick a basis {ar;} for % such that the flags
{M;) and { %;} can be described as above. Then dim( #; N %) =

’{a'(k): k <i, (k) < j}]. & similar expression computes dim( %/, AN

Wj) in terms of . Apply Proposition 3.3.

Proposition 3.3, Let 4,7 be permutations on {1, 2, - = °, n}. Then

7 £ o in the Bruhat order on the nth symmetric group if and only if
Hro: k<1, 1) <3 € Hek): k<1, olk) <} for
1£41i,j £ n.

Proof. Modify Theorem ITI.3A to handle permutations of {1, 2, - * °, n}

rather than {0, 1, * * *, n=1}. The resulting tableaux have n rather

than n-1 rows. Let the tableau U correspond to o, i.e. U

"

{ i:

e (1) > p}. Set m; 4 F [{ox): k<i, k) < JH, my =Wy T

m = 0. Define V and n similarly with respect to 7. Note that U_ =
0,0 i,d P

{ 1: My o1 F mi-l,p—l}’ and similarly for VP. The numbers my o1 Prog-
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ress from O to p~1 2as i runs from 0 to n. There are n-p+1 locations i

such that nm, = m, . Since U and V_ are increasing row vectors,
i,p=-1 i-1,p-1 D r

it is easy to see that Vp_g UP by entrywise comparison if and only if

ni’p_1 S'mi,p-l for 0 <1 £ n. Apply Theorem III.3A tc finish the proof.

Choose m integers J€ = {jl, - e ey jm} such that n-1 2,jl,z .
> jm,z 1. A flag of type J°€ in an n-dimensional vector space # is a
strietly increuasing sequence of subspaces 0 < 4?, < 4{1 O R S o

A, = M such that dika = j for 1 £ k < m. Fix one such flag and

m-k+1
let P &« G denote its stabilizer. If one gives a definition of relative
position between a flag of type J° and a fixed maximal flag using ele-
ments of HJ, then there are appropriate WJ analogs to each of the resultis
above. The objects involved are: flags of type JC, relative positions
from WJ, manifold G/P of flags of type J® with Bruhat cells BoPF/P, and
multi-permutations {shuffles). Perhaps these results can alzo be extend-

ed in some fashion to Bruhat orders of types B, C, and D, if the appro-

priate definitions of flags are used.

4 = 1qg T

Alfred Young utilized standard tableau with entries from {1, 2,
+ « « , n} ip his construction of finite dimensional irrejucible repre-
sentations of sl(n, ) [Boe, Theorem 5.3]. The extreme standard tableaux
used in Section III.3 tc describe the Bruhat orders of type An_l_are a

subset of the tableaux employed by Young. Since it was shown in Section

II.2 that Bruhat crders arise in the context of representations, one
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might ask whether the tableaux used in this paper can be identified in a
naturai manner with a subset of the tableaux used by Young.
Proposition 84 gives an affirmative answer to this question.

Refer to Section II.2 and [Hu?l] for representation notation and
definitions. Let us briefly describe Young'®s construction of a finite
dimensionzl irreducible representation p of sl(n, ¢ ) with highest weight

A= L7 mA,. SetN=m + + - +m _,. Let v be the patural

1+
representation of sl(n, {,) on C", and let #= ® £". Young explicitly
constructed a certain projection P on 4. Set % = P(#). He then
showed that the desired representation p is the map from sl(n,di) to
gl(#/,4) given by o (x)a = P{{®"»)(x)a} = [®" ] (x)(Pu) where
w eV, r=Paur EV, x € sl{n, ). Let a, denote the element
et1® et2 ® ... etN of the usual basis for #, where T is a tab-
leau with m_q rows of length n-1, my » rows of length n-2, * * -, and
whose entries are tl’ t.2, + + + 4y tywhen the tableaux is read like a
page of English text. Whenever T is a standard tableau, let ”T =
P(UT). Young proved that the set of the vectors 1/'.1, forms a basis for
the representation £ of sl(n, ¢) on V.

Given a basis vector Vg, let q, = I{tr: b= 43}, 1 <1 < n.
Then v, 18 a weight vector for p with weight EJ"::(QJ+1—q3) 7Aj. Since
the weight of ’VT can be computed in terms of T, and since each wA
weight space has dimensinn 1, Young's techniques assign to each
welght wp exactly one standard tableau.

Any rows of the same length in an extreme standard tableau must

have identical entries. If an extreme standard tableau has more than one

rov of a given length, then we shall call the second, third, . .- - rows
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of that length repeated rows. Essentially no information is lost if

these rows are deleted from the tableau.

Preposition 4, Let £ be the finite dimensional irreducible reprcesenta-
tion of sl(n, ) with highest weight A = Z?;'I mJF\J and set 4% = {j:

mJ > 0}. Let w € W, the Weyl group of type A1 Then the standard
tableau Twa assigned by Young to the weight wA is an extreme tableau.

Furthermore, if any repeated rows in T are deleted, then the resulting

WA
J
tableau is equal to the tableau Tw_assigned to the coset of w in W by

the constructions of Proposition III.2A and Theorem TII.3A.

Proof, The tableau T, corresponding to the highest weight of the repre-
sentation has as many entries as possible equal to n, then as many
entries equal to n-1 as possible, etc. It is easy to see that T, is an
extreme tableau, and that the tableau T, corresponding to the identity

e € W via the work in Chapter III is obtained when the redundant rows
are deleted from T,. The effect in tableau terms of operating on a
weight‘; with a simple reflection Si is to replace the entry n-i+1 with
the entry n-i in every row of the tableau T“ where n-1 does not already
appear. (If U = T»’ this corresponds to finding the largest k such that
P[@NYik(w-'U)] # 0, where Y;(e, ;.q) = e, ;.) In the context of
Chapter III, it 1s easy to show that TSiu is obtained from Tu by exactly
the same procedure. The proof is complete with the observation that ev~

J
ery element of W can be expressed as a product of simple reflections.
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Chapter V

Application of Lie Representation Theory to Bruhat Lattices

1. Introduction and Combinatorial Definitions

In the introductory chapter to this thesis, we asserted that the
Bruhat lattices were the most interesting Bruhat orders from a combina~
torial point of view. One of the reasons given was that their structures
were particularly susceptible to analysis with Lie algebraic methods.
This chapter will utilize the Lie algebraic notions of miniscule repre-
sentation and principal three dimensional subalgebra to obtain combina-
torial information about the Bruhat lattices.

Section 2 classifies the Bruhat lattices using Proposition II.2 as
a computational aid. Section 3 presents the Lie algebraic machinery
which will be needed, including the definition of a miniscule representa-
tion of a complex semisimple Lie algebra. The miniscule representations
have been classified, and the list of them is given in Section 3. We de-
fine a "miniscule lattice" to be the poset of weights of a miniscule
representation. It turns out that the set of miniscule lattices is the
same as the set of Bruhat lattices, and the correspondence is almost
"natural®™ in a certain sense. (See Section 2.) Because of the methods
used in this chapter, these lattices will be referred to as miniscule
lattices. This terminology has the added advantage that certain posets
associated to these lattices can be referred to as "miniscule posets™,

rather than as "Bruhat posets".
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Definitions. Let L be a distributive lattiece. The possti of Join
irreducibles 3j(L) of L is defined to be the subposet of all elements of L
which cover exactly one element. Let P be a poset. The (distributive)

laitice of order jdesls J(P) of P is the set of order ideals in P ordered

by inclusion.

It is well known that L = J(j(L}) and P = jJ{(J(P)). A M"miniscule
poset” will turn out to be any poset P such that P = j(L), where L is a
Bruhat (miniscule) lattice.

The following sequence of combinatorial definitions are necessary

to explain the content of Section 4.

= " . 4 - - L ] > -
Definition. Let A tll, A , xk) with 11 2_12 2 z_lk 21

2!

Let P be a tableau of shape A with non-negative integer entries no larger

than m. If P 2 P and P 2P for all possibie p and d, and
p:d p+lad p,d p,d+1

if the sum of the entries of P is N, then P is a plane partitiop of N

sontained in A with part size bounded by m.

Definition. The generating function for plane partitions of shape con-

tained in ) with part size bounded by m, G(A,m,x), is defined to be:
G(A,m,x) = EPXIPI 5

where the sum is over all such possible plane partitions P and where

Pl = N if P is a plane partition of N.

In his thesis [St0], Stanley abstracted this generating function to
arbitrary posets as follows. A plane partition with part size bounded

by m can be thought of as & non~decreasing sequence of (possibly empty)
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order ideals of the fixed order ideal of "shape A" of the poset W X I,
where N is the natural numbers under their usual ordering. E.g., the
non-negative integer in the upper left hand corner of the tableau counts
the number of non-empty ideals in the sequence, since every non-empty
ideal must contain the unique minimal elemert (0,0) of the fixed order

ideal.

Definjtion., Given any finite poset P, the m-nested ideal generating
function of P is defined to be:

NPT = AW
F(P,m,x) = > xlx.mrm [

etz .21,

where the I; are order ideals in P,

Definition, A poset P is said to be Gaugsian if its m-nested ideal

generating functions have the following form for every non-negative m:

h++m ho+m hp+m
1 x 2 + « « (1exT

(1 -x 1 - )

F(P,m,x) =
(1 - xhj) (1 - xhz) © e e (1 = xhr) .

where r and the hi are non-negative integers independent of m.

It is easy to see that the direct sum of any two Gaussian posets is
a Gaussian poset. (The converse is also true: Stanley has shown (per-
sonal communication) that if a direct sum is Gaussian, then each of the
summands is Gaussian.) The concept of Gaussian poset was introduced by
Stanley for purely combinatorial reasons years before combinatorialists
studied combinatorial aspects of Lie algebras [St0]. Certain plane par-

tition generating function identities motivated the definition of
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Gaussian poset. Propositions 4.1 and 4.2 of this chapter give new proofs
for two of these identities. These proofs are special cases of the main
result of Section 4, which can be sucecintly stated as: All miniscule
posets are Gaussian posets. The two exceptional irreducible miniscule
posets 36(6) and e7(7) are new irreducible Gaussian posets. There are no
known Gaussian posets beside the miniscule posets. (See Section VI.4.)
The m-nested ideal generating functions for the miniscule posets can be
interpreted in an obvious manner as "rank weighted m-multichain™ gener-
ating functions for the Bruhat lattices.

We now describe the content of the fifth and last section of this

chapter.

Definition. A ranked poset 1s a partial order on a set L together with a
partition {Lg, Lq, * * * , Lp} of L into papnks L, such that the elements
of Li+1 cover only elements of Li' If x:é.Li, then we say x has rank 1

and set r(x) = i.

Definitions, Let a ranked poset L have ranks LO’ L1, « + + L. If the
sizes of the ranks are such that |Lj| = |L,_4l for 0 < i <r, thenl is
rank symmetric. If there is some k such that 0 < k < r and |Lgl< L4
MR 4 ’Lkl 2"t 2 'Lr._1|2 lLrly then L is rank unimodal .

Definitions. A ranked poset L is said to have the Sperner prcperty if no
antichain in L has more elements than the largest rank of L does. The
poset L 1is k=Sperner if no union of k antichains in L exceeds the union

of the k largest ranks of L in size. If L has r ranks, then it is said

to be atrongly Sparper if it is k-Sperner for k =1, 2, * * *, r.
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The last section of this chapter presents a new proof that minis-
cule (Bruhat) lattices are rank symmetric, rank unimodal, and strongly
Sperner. Although this proof is more limited in scope than Stanley's
original proof [StW], it leads to a better understanding of how Stanley's
proof works. As noted in the introduction to this thesis, this better
understanding leads to a result in Chapter VI which is more general in
some sense than Stanley's. Another reason for presenting the new proof
is that the Lie algebraic techniques used in Section 5 are very closely
related to the techniques used in Section 4.

This chapter makXes heavy use of the representation theory of com-
ple%;semisiwple Lie algebras as described in [Hul]. Ve should note, how-
ever, that the main result of Section 5 1s superseded by Theorem 2.1 of
Chapter VI. The oroof of this theorem is presented in purely linear al-

gebralc terms, so it should be accessible to all readers.

2. Classification of Bruhat Lattices

A Bruhat lattice is a Bruhat poset which is a lattice. Let W be a
Weyl group with simple reflections 811 By * ' %y 8, and let g bs the
corresponding complex gsemisimple Lie algebra with fixed Cartan subalgebra
H, positive simple roots eq, @5, - + +, @p, and fundamental weights A,
Ay + + vy Ao If J° & [n), set A = Zjc chy. Recall that Proposition
I1.2 uses the weights wi, w € W, to portray the Eruhat order WJ. Also
recall that nodes } and k are connected in the Dynkin diagram for 3 if

and only 1if (“j'“k) < 0.
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Lemma 2, If there is an element u of WJ such that ua = 531?1 rili with

rJ =p >0, re=Q > 0 and (“j’“k) < 0, then WJ is not a lattice.

Proof. For convenient (albeit imprecise) notation, refer to an element w
of WJ with the jih and kth coordinates of wA with respect to the basis of
fundamental weights, e.q. u = (p,q). Suppose that (eyp,a;) = 2(aj,aj).
Then wi covers 84wk = (-p,p+q) and sywi = (p+29,-q). In turn, sywk
covers sksjwl = (p+2q,-p~q) and skwl covers sjskwl z (=-p-2q,p+q). Now
l(sksjw) = l(stkw) = l(sjw) + 1 = 1(sw) + 1. But (sksjsksjsk)sjw =
sdskw and (sjsksjsksj)skw = sksjw. Hence both st and 8, W cover both
Sksj" and sjskw, implying that WY is not a lattice. The cases (uk,a

i)
(ajsuj) and (ak.ak) = 3(uj,uj) are similar.

Proposition 2, The following is a list of all irreducible Bruhat posets
which are lattices: An_1(j), 1£ 34 n-1, BCn(1), BCn(n), Dn(1),
Dn(n-1), Dn(n), E6(1), E6(6), ET(T)' G5(1), Go(2). (Simple reflections
numbered as in [Hul, p. 58).) All of these lattices are distributive

lattices.

Proof, Using tables [Bou, pp. 250-275], one may eliminate all other fi-
nite irreducible Bruhat posets in less than an hour with the following

method. Take an xn and J® which do not appear in the list. Set A =

X.

-FJ‘ai‘ Operate on A with simple reflections until the situation of

Lemma 2 is produced. The poset An_1(J) was desoribed in Section 2 of
Chapter I and is easily seen to be a distributive lattice. The posets

BCn(n), D_..{(n), Dn+1(n+1) we. e shown to be isomorphic distributive lat-

n+1

tices by Stanley [StW]. The other posets listed are distributive lattic-
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es by inspection.

Stanley denotes the lattice BCn(n) by M(n). We will describe it
explicitly in the proof of Proposition B.2. The lattices BCn(1), G2(1)
and 62(2) are chains of lengths 2n, & and 6 respectively. The lattice
Dn(1) has 2n elements, with two elements in the middle rank and one ele-
ment in every other rank. The lattices E6(1) and E6(6) are isomorphic,
and each has 27 elements. The lattice ET(T) has 56 elements. The Hasse

diagrams for E6(6) and ET(T) appear in Figure 2.2 of Section VI.Z2.

Let 9 be a complex semisimple Lie algebra with fixed Cartan

subalgebra H and Weyl group W. A finite dimensional irreducible repre-

sentation of 3 is completely determined by its "highest weight™".

Definifion, Let p be a finite dimensional irreducible representation
of 3’ of highest weight A. The representation p is a miniscule
representation if every one of its weights 1s of the form wi for some

v EW,

Fact 3.1, [BHul, Ex. 13.13] 1If xn(a) denotes the finite dimensional
irreducible representation of the complex simple Lie algebra of type X,,
with highest weight A, then the miniscule representations of complex sime-

ple Lie algebras are: An-1(1 Yy 1£J<£n-1, Bn(ln), C(2y)s Dn(11),

J
Dn(’tn_1)! Dn(kn}l EG(l-I)I Eﬁ(l\é)' E7(17)0
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Recall that a partial order is defined on the weights of any repre-

sentation by: p £ o if and only if w - p is a sum of positive roots.

Definitions, A miniscule lattice is the set of weights of some miniscule
representation ordered by the usual partial order on weights. An
irreducible miniscule lattice is one which arises from a miniscule repre-
sentation of a simple Lie algebra. An (irreducible) miniscule poset is
the partially ordered set of join irreducible elements of some (irreduci-

ble) miniscule lattice.

Bemark, As a consequence of the manner in which representations of semi-
simple Lie algebras can be decomposed intec representations of simple Lie
algebras, every miniscule lattice can be expressed as a product of irre-

ducible miniscule lattices.

The uge of the word "lattice™ for these posets is justified by the

feollowing lemma.

Lemma 3., Each miniscule lattice is just the Bruhat poset which corre-
sponds to the miniscule representation as in Proposition II.2. Hence

each miniscule lattice is in fact a distributive lattice.

Proof, Let WJ € W be the stabilizer of the highest weight A. Suppose
that uh < vA in WA with u, v € WJ. Then ud = vA - Zkiai with ky 2 0,
1<£1<n. Now Ivall = Hurll implies that <vA,aj> > 0 for some j. Lemma
I1.2.1 then implies that 8 4V < v in W. Exercise 13.13 of [Hul] states
that <Vl,aj> = +1, 0, or -1, since A corresponds tc a miniscule represen-

tation. Thus SJVl = VA - @y Apply induction and Lemma II.2.2 to con-
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¢clude that u < v in WJ. Thus each miniscule lattice is a Bruhat poset.
Comparing the list of miniscule representations of simple Lie algebras
with the list of irreducible Bruhat lattices in Proposition 2, it is evi-
dent that every irreducible miniscule lattice is a distributive lattice,

Taking products implies that every miniscule lattice is distributive.

Note that 62(1) and G,(2) are Bruhat lattices, but G,o(2,) and
Gz(Rz) are not miniscule representations, However, G,(1) and G,(2) are
both six element chains, and A5(1) is a miniscule lattice which is a six
element chain. Therefore, the set of miniscule lattices is the same as
the set of Bruhat lattices, but the correspondence is not quite compati-
ble with the Lie representation indexing of the lattices. We shall use
essentially the same notation to describe irreducible miniscule lattices
as was used for irreducible Bruhat lattices. To emphasize the represen-
tation dependent nature of this chapter, a slight change will be made for

type BC orders.

Fact 3.2. The irreducible miniscule lattices are: An_1(j), 1£3£0n-1,

By(n)y Cp(1), Dy(1), D (n=1), D(n), Eg(1}, Eg(6), Eq(7).

Notation., The irreducible miniscule poset corresponding to Xn(j) shall

be denoted xn(j).

Fact 3,3: The irreducible miniscule posets are: an_1(j), 1£ 3£ n-1,

bp(n), ep(1), dp(1), dp(n=1), dy(n), eg(1), ec(6), eq (7).

The Hasse diagrams for the irreducible miniscule posets are given

in Figure VI.3.8.
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A review of the proof of Lemma 3 reveals that if vi covers uX in a
miniscule lattice WJ, then vA - ud = ajy a particular positive simple
root. Hence if ur = Zk;ay, then the poset rank of uh in WA is given by
Eki up to an additive constant. Let 8Y denote the unigue element of H,;
(the Euclidean space where roots and weights live) such that (ai,BV) =1
for 1 < i < n. It is easy to show that 5" = Z.2li/(ai,ai). If wy is the
unique element of the Weyl group which fakes every positive root to a
negative root [Hu?l, Ex. 10.9], then by Propostion II.2 wdR is the unique
minimal element of WA. Since positive simple roots must pass to negative
simple roots, (wol,sv) = ~f2,5Y). Hence WA has 2(l,ﬁv)+1 ranks as a
ranked poset.

Let p denote the finite dimensiconal irreducible representation of
3 with highest weight A. There is a unique element h of the fixed
Cartan subalgebra H of § such that p(h)v = (u,8Y)v if v is a vector in
the representation space of weight p. If p is miniscule, a basls for the
representation space can be chosen which is in one-to-one correspondence
with the weights of the representation or the elements of the miniscule
lattice. To determine which rank a lattice element is in, multiply the
corresponding weight basis vector by p(h) and add (A,8") to the observed
eigenvalue. (Recall that the ranks of a poset are numbered 0, 1, 2,

« s e, 1)

This leads to the second topic of this section, principal three
dimensional subalgebras. It will be useful to define two other elements
x and y in g such that x, y, and h span a subalgebra of g i=somorphic to
51(2,§). The definition below is from B, Kostant [Kos, p. 9961, but the

idea originated with E.B. Dynkin [Dyn, p. 168] and J. de Siebenthal
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[Sie]. First recall that one may find 3n elements {xi, Yy hi}i:1 in H
such that any triple {xi, Yy hi} spans a subalgebra izcmorphic to
s1(2,§), where hj € H is defined by ri(hy = 5ij [Hu1, pp. 37, 112].

Using e,(h) = 1, it is easy to show that h = Z2hg/(ag,0q).

Definition, Let x = Zlcixi, where Cqy Cpy ° * °, Cp @re any n non-zero
complex numbers. Set y = &2y,/[c,(a;,a;)]. Then any subalgebra of

conjugate to the subalgebra spanned by x, ¥y, and h is called a principal

three dimensional subalgebra.

It is easy to check that x, ¥y, and h span a subalgebra of 9 iso-
morphic to s1(2,{). Any representation of g induces a representation
of s1(2,&€) via this embedding. Principal three dimensional subalgebras
have been employed previously in combinatorics in [Hug], [Lep], and

[StUul.

4. Plane Partition Generating Function Identities

This section represents joint work with R. Stanley.

The Weyl character formula is a multivariate generating function
for the dimensions of the weight spaces of a fi ite dimensional irreduci-
ble representation of a complex semisimple Lie algebra. There is a par-
ticularly nice one variable specialization of this formula for principal
three dimensional subalgebras. Recall that a finite dimensional repre-
sentation of s1(2,&) has weights -r/2, (-r/2)+1, °~ * ° , (¢/2)=1, r/2

for some non-negative integer r.
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Lemma 4,1, Let p be a finite dimensional irreducible representation

of § with highest weight 1. Let W()») denote the set of weights of p,
and let dp be the dimension of the weight space of weight p. Let di de-
note the dimension of the welght space of weight i for the induced repre-

sentation of a principal three dimensional subalgebra of 9 Then

>

+
where <*,a> = 2(*,a)/(a,a), & 1s the set of positive roots for H,

e SAHD Y
(1,8 x—(l.BV)TTuEI""H * )

-rraéi.#(‘b_x(a,ﬂ))

iz=p/2

i _
i:-r/odix ) Z“‘ﬂ("’)dux

and & is the sum of the fundamental weights (or half the sum of the posi-

tive roots).

Proof, The first equality holds because a weight vector for p of weight
p is a weight vector for the induced representation of weight {p,Bv), by
the definition of h., For the second equallty, use Jacobson's derivation
of Weyl's total degree formula [Jac, p. 256] with 8Y rather than 6. No
problem arises for Jacobson since he eventually sets x = 1. Using
Jacobson's original proof has in the past [StU] caused certain generating
functions normally associated with Lie algebras of type B to be labelled
type C, and conversely. (The root systems of types B and C are dual to

each other,)

Lepowsky first resurrected this form of tne character formula for
combinatorial identities [Lep]. He calls this identity the "prineipal
specialization of Weyl's character formula"™, It has also been used by
Stenley [StU]. When applied to a miniscule representation, this identity

produces an expression for the "rank generating polynomial®" of the corre-
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L3
»87)
sponding miniscule lattice: Bring the factor x to the ieft hand

3

side of the equation, and then the coefficient of x* is the number of

elements in the Jjih rank of t'-~ lattice.

The following non~trivial lemma is one of the main results of the
recent algebralc geometric paper entitled "G/P-I" by C.S. Seshadri. We
refer instead to "G/P~IXII" [LM3] (with coauthors V. Lakshmibai and

C. Musili) because it is more readily available.

Lemma 4.2, Let ) be the highest weight of a miniscule representation of
a complex semiszimple Lie algebra E}. Then the dimension of the weight
space of weight p of the finite dimensional irreducible representation
of 3’ of highest weight mA is equal to the rumber of multichains uqd £
us), £ S_uﬁh in the corresponding miniscule lattice such that u =

u1l + uzl + 4 uml.
We are now ready to prove the main result of this section.
Theorem 8, Every miniscule poset is a Gaussian poset.

Proof, Apply Lemmas 4.1 and 4.2 to the representation of H of highest
weight m), where A is the highest weight of the eorresponding miniscule
representation, After bringing the factor x(ml'sv) to the left hand side
of the character formula, the left hand side counts the number of
m-multichains in the corresponding miniscule attice, weighted by pranks.
Therefore the m-nested ideal generating function for the miniscule poset
is the quotient of two products. However, it must be verified that there

are fixed non-negative integers r and h1, hoy * 0 % hr such that the
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right hand sides for various values of m have exacily the required form,
Since 5 is a weight, h, = <5,a”> is an integer. Cancel the terms in the
product where <{A,e> = 0. For each irreducible miniscule representation,
one can verify by hand that <i,a> = 1 whenever <A,a> # 0. (This is easy;
the worst case E7(17) has only 27 positive roots g such that <l7,a> £ 0.)
Hence if <p,a> # 0, then <mA +6,e> = m + hy. Thus each irreducible min-
iscule poset is Gaussian. But every miniscule poset can be expressed as
the direct sum of irreducible miniscule posets, since products of lattic-
es pass to sums of posets when forming posets of joir irreducibles. The
proof is complete with the observation that the direct sum of two

Gaussian posets 1s Gaussian.,

The irreducible miniscule posets an—T(j)’ 1£J<n-1, and bn(n)
(= dp.q(n+1) =.d..,(n))) were first shown to be Gaussian with intricate
generating function manlpulations. We shall work out the details of
these cases below. It is trivial to directly prove that cn(T) and dn(1)
are Gaussian. The exceptional irreducible miniscule posets 96(6)
(= e6(1)) and e7(7) are new Gausslan posets. The miniscule posets are
all known examples of Gaussian posets. They will be shown to be remark-
able in other respects in Chapter VI. We formally pose the following

question.
Problem 4. Is every Gaussian poset a miniscule poset?

New proofs of two plane generating function identities can be ob-
tained by working out the two cases of Theorem 4 mentioned above in de-

tail. The identity for an 1(J), 1£J<n-1, is originally due to
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MacMahon [MeM, p. 243]. For a modern treatment of a more general result,
see [StT, Theorem 15.3]. The identity for bn(n) was first conjectured by
Bender and Knuth [BKn] and later proved by Gordon [unpublished], Andrews
[And], and MacDonald [MeD, Ex. I.5.19]. Plane partitions contained in A
with part size bounded by m were defined In Section 1, as were their
assoclated generating functions. Such a plane partition P is called a
column strict plane partition contained in A with part size bounded by m

if it satisfies P d > P

rather than P
Py

p,d+1 p,d 2~Pp,d+1'

Proposition 4.1, Let A= (j, 3, * * *, J) be an (n-j)~tuple. Then the

generating function G(A,m,x) for plane partitions contained in A with
part-size bounded by m is:

Jd nj( q o xmep+g-1)
G(r,m,x) = ;IIAEJ:E;51

7Tpi111-:? (1= xp+q-1) .

Proof, It is easy to see that G(A,m,x) counts m~nested ideals ia
an_1(j), which is the product of a j-chain with an (n-j)-chain. The
right hand side is found using by using Lemma 4.1 for An-T(mAj) and com~-
puting the values <8,a> for all e such that <{Aj,2> £ 0. The equality of
the two sides follows from Lemma 4.2 and the fact that appropiately

weighted m-multichains in An 1(3) correspond to m-nested ideals in

Proposition 4,2, Let A= (n, n, * * *, n) be an m=~tuple. Then the

generating function H(A,n,x) for column strict plane partitions contained

in A with part size bounded by n is:
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-Tr n 1T P(1- xm+p+q--1)

H(a,n,x) = ---R31.@zl . . . __________

Procof, Using Theorem S5BC, it is easy to show that Bn(n) is the lattice
of all n-tuples a = (a;) with 0 = a; = a5, = + + » = 8, < ap,q < ap,s <

r v e L an_g n, 0 £r £ n, ordered by a {b iff ay $_b1, ot a, £ bn'
Each column of one of these plane partitions is an element of Bn(n) by
this description and thus each such plane partition is an m-multichain in
Bn(n). (Note that the plane partitions are being "sliced" differently in
this proof when compared to Proposition 4.1.) Apply Lemmas 4.1 and 4.2

to Bn(mn) .

The previously known proofs of these two plane partition identities
are somewhat unsatisfactory from a combinatorial viewpoint because they
involve evaluations of determinants and/or manipulation of symmetric
function identities. The proofs presented here are not "combinatorial™.
However, they have a strong algebraic combinatorial flavor. The basis
result of Seshadri can be described in terms of algebras with straight-
ening laws, which have been studied by Rota, Garsia, Eisenbud, Baclawski,
DeConeini and Procesi [Bac] [DEP] [DKR]. Rota, et. al. in fact provide a
predominantly combinatorial proof of Seshadri's result for the case An-1'
Furthermore, the Weyl character formula has a very combinatorial flavor
when viewed in the proper light, as illustrated by Vermats derivation
utilizing Mébiusg inversion on the Bruhat order [VeS]. Hence it may be
possible to present a proof of Proposition 4.1 which develops the

necessary Lie theoretic results along the way in a nice algebraic com-
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binatorial fashion, with linear independence essentially belng the only
algebraic notion used. It is apparently very hard to give purely com-
binatorial proofs of Propositions 4.1 and 4.2. The cases m = 1 are the

only cases done to date [Sag, p. 31].

5. Bruhat Lattices are Strongly Sperner

In this section we prove that every miniscule (Bruhat) lattice is
rank symmetric, rank unimeodal, and strongly Sperner.

The following lemma is due to Griggs [Gril:

Lemma 5.1, Let L be a ranked poset. the following two conditions are
equivalent:
(1) L is rank unimodal and has the strong Sperner property.
(41) If 0<1 £ j < r, then there exists min{'Lil,ILj|}
disjoint chains each containing one element from each of the ranks

Li’ Li+1’ L ., LJ.

Different versions of (ii) have in the past been referred to as

Property T. We shall refer to it by a more descriptive name, prapk

matching property.

Definitions. If I, is a ranked poset with r ranks, let T denote the com-
plex vector space with basis {2, b, * *+ « } where {a, b, * - * } are the
elements of L. This vector space can be graded by L = QBigoii, where ti'
the ith rank subspace, is the span of the elements in Li‘ A linear

operator X on L of degree +1 will be called a ralsing operator if X(b) =
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Zd,_i“x(b,c)'é', b € Li’ implies x(b,e) = 0 unless c covers b in L. A
lowering operator Y for T is an analogously restricted linear operator of

degree =1,
The following lemma is due to Stanley [StW]:

Lemma 5.2, Let L be a ranked poset. The following two conditions are
equivalent:
(1) L is rank symmetric and has the rank matching property.
(ii) If 0 £ i < r/2, then there exists a raising operator X such

that xT2i, ii-? Er-i is a vector space isomorphism,

* Both the proof of the following theorem and Section VI.3 will re-
veal that the rank matching property i~ more relevant to this thesis than
the strong Sperner property. However, the Sperner property is more

wel l=known.

Theorem 5, Miniscule lattices are rank symmetric, rank unimodal, and

strongly Sperner,

Proof., Let L be a miniscule lattice. Consider the corresponding minis-
cule representation p with highest weight A of a semisimple Lie

algebra 9 The representation space has a basis {'v".‘l}w W indexed by
the elements of the miniscule lattice, and thus may be denoted T. Recall
that any representation of 9 induces a representation of s1(2,{) on T
via the embedding of the principal three dimensional subalgebra spanned
by x, y, and h. From [Hul, p. 107], it i= possible to deduce that if

p(x) ¥,y = L ewx(u,w)?,,, then x(u,w) = 0 unless wh = ur + @, for scme

i
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positive simple root a,. Hence p(x) is a railsing operator on T for the
miniscule lattice.

Set r = Z(R,BV). With respect to h, the induced representation has
weight spaces io, i1, ey ir with weights =r/2, (-r/2)+1, * * * ,
{r/2}-1, r/2. Since s1(2,§) is semisimple, the induced representation
on L can be expressed as a direct sum of irreducible representations of
s1(2,€). It is well known that the restriction of p(x) to one of these
irreducible subrepresentations composed with itself 2j times (where j is
not too large) is an isomorphism from the one dimensional weight space of
the subrepresentation of weight -j to the one dimensional weight space of
weight +j. These isomorphisms can be combined to show that p(}\:)r"2i is
an isomorphism from 11 to tr-i' The proof 1s complete with the applica-~

tion of Lemmas 4.2 and 4.1,

In his original proof of this theorem for all Bruhat orders,
Stanley used the hard Lefschetz theorem from algebraic geometry to pro-
duce a raising operator with the desired properties. Initially the rela-
tionship of the proof given here to Stanley's proof was not understood,
but it turns out that the hard Lefschetz theorem is sometimes proved with
the same technique used in the proof above: decomposition of a represen-
tation of sl1(2,¢ ) [CGr, p. 44]. Thus, in a certain sense, it may seem
that the hard Lefschetz theorem is superfluous. However, that this is
not the case is illustrated by the fact that Stanley's methods apply to
any Bruhat order arising from a Weyl group, whereas Theorem 5 applies on-
1y to Bruhat lattices. The necessary representations of sl(2,4 ) appar-

ently arise readily in the context of Lie algebras only with miniscule
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representations, whereas the hard Lefschetz theorem of algebraic geometry
supplies the desired representations of sl(2,‘:) for all Bruhat orders
after some preliminary algebraic geometric work has been done. As
mentioned in the introduction, Section VI.2 will abstract the essential
aspects of the proof of Theorem 5 with arbitrary posets in mind.

For the sake of mathematical culture, we now mention an application
of a particular case of Theorem 5. The truth of a fact closely related
to the following proposition was conjectured by P. Erdds and L. Moser in
1965 [Erd]. The original conjecture and this proposition were recently
proved with the combined efforts of B. Lindstrdém [Lin] and R. Stanley
[StW]. The element sum of a set of real numbers is the sum of the real

numbers in the set.

Proposition. No set of n positive real numbers has more distinet subsets

with equal element sums than does the set {1, 2, y nl.

Proof., Let a1 < a2 <+ L an be the real numbers., Associate to any
subset (ai‘, ey, aik) the element (0, * + +, 0, 14, * " °, 1) of
Bp(n). (See the proof of Proposition 4.2.) If b<g¢in Bn(n), then the
element sum of the subset corresponding to b is strictly less than the
element sum of the subset corresponding to ¢. Therefore, in order to
have equal element sums, a collection of subsets of real numbers must
correspond to a collection of incomparable elements in Bn(n). The Sper-
ner property puts an upper bound on the number of simueltaneously incom-
parable elements in Bn(n). This bound is attained by the mumbers

specified in the statement of the proposition.
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Chapter VI

A Dynkin Diagram Classification

of Certain Partially Ordered Sets

1. Introcuction

Theorem V.5 proved that the Bruhat (miniscule) lattices were rank
symmetric, rank unimodal, and strongly Sperner. (These combinatorial
terms were defined in Section V.1.) 1In the second section of this chap-
ter we will abstract part of the proof of this theorem to obtain a new
sufficient condition for an arbitrary ranked poset to have these combina-
torial properties. No Lie representation theory will be used in this
chapter, but linear algebra will play & central role via Lemma V.5.2.
This lemma, due to Stanley, was the first step in the proof of Theorem
V.5. It translated the question of whether a ranked poset L was rank
symmetric, rank unimodal, and strongly Sperner into a question concerning
the existence of a certain kind of linear operator on the vector space L
associated to the ranked poset. Lie algebraic techniques were then used
to construct an appropriate linear operator for each Bruhat lattice. A
closer look at this proof reveals that the latter part of it is indepen~
dent of whether the ranked poset is a Bruhat lattice or not. Theorem 2.1
i3 the promised abstraction of this part of the proof of Theorem V.5.

Its proof uses only elementary linear algebra and hence should be readily
accessible to all readers.

Theorem 2.1 is fairly difficult to use in its full generality. Its
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hypothesis can be restricted in various ways to make 1t easier to use.
One restricted version, Theorem 2.2, applies only to distributive lattic~
es. The hypnthesis of this theorem requires that each edge of the Hasse
diagram of the distributive lattice be assigned a rational number in such
a way that certain simple linear conditions are satisfied. This condi-
tion is not diffieult to work with and Theorem 2.2 can in fact be roudily
applied to any of the Bruhat lattices without any knowledge of Liez repr o
sentation theory.

Attempting to apply Theorem 2.2 to distributive lattices other than
the Bruhat lattices leads to the next topic of this chapter. It is pos-
sible to express the hypothesis of this theorem in terms of the poset of
Join irreducibles of the distributive lattice. The analogous condition
involves assigning a rational number to each element of the poset of Join
irreducibles in such a way that certain linear conditions specified by
the combinatorial structure of the poset are satisfied. FKRecall that the
posets of Jjoin irreducibles of Bruhat lattices are called miniscule
posets. The question at hand becomes: Are there any posets beside the
miniscule posets which satisfy this econdition? Surprisingly, i1t is pos-
sible to preve that there are no other such posets. (And thus the Bruhat
lattices are the only lattices satisfying the hypothesis of Theorem 2.2.)
One interesting aspect of the proof is that the key step utilizes a com-
binatorial consequence of Theorem 2.2 itself. Even more interesting 1s
the natural appearance of a form of Dynkin diagram. Dynkin diagrams mys-
tericusly arise in several different branches of mathematics [HHS].

The classification of V-labellable posets can alsc be considered a

characterization of the miniscule posets. This characterization is the
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fourth description of the miniscule posets presented in this thesis. The
last section of this chapter summarizes these four ways, and additionally

specifies a fifth (empirical, but interesting) descriptiion.

2., 8 C ner

Suppose that L is a ranked poset with ranks Ly, L3, © * *y Lyr. To
apply Lemma V.5.2, one must f'ind a raising linear operator X on the vec-
tom space L such that Xr_zi: T3 — L,_i is a vector space isomorphism
for 0 1 < r/2. The proof of Thecrem V.5 showed that the raising opera-
tor at hand satisfied this requirement by utilizing two additional onpera-
tors: a lowering operator Y and an operator H which multiplied each vec-
tor in'fi by (2i-r). The three operators obeyed the commutation rela-
tions XY - YX = H, HX = XH = 2X, and HY - YH = =2Y. The following theo-

rem assutes that three such linear operators have been defined on an ar-

bitrary ranked poset.

Theorem 2,1. Let L be a ranked poset with r+1 ranks. Suppose that com=-
plex numbers x{b,e) and y(e,b) can be assigned to each covering relation-

ship b < e such that the following equations hold:

For every b € Li’

2 y(b,d)x(d,b) =~ = x(b,e)y{e,b) = 2i - r .
b covers d e covers b
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For every b,c € L;»

2 Y(b'd)x(dQC) - z x(b,e)y(e,e) = 0.
b and ¢ e covers
cover d b and ¢

Ther L is rank symmetric, rank unimodal,‘and strongly Sperner.

Prnof, This proof is giver in greater detail in [Prc]. Define three

linear operators on L:

For b € L, v = Z x(b,e)e ,
e covers b
Yo = Z Y(b:d)a ’
b covers d
’ and Bb = (2i-r)b .

Then X7 =YX = H, HX - XH = 2%, and HY - YH = -2Y. (Thus X, Y, and H span
a representation of 31(2,4:) on L.) Choose any minimal element Uy of L,
and let U be the subspace of T spanned by all vectors obtained by acting
on u, with various compositions of X, ¥, and H. The commutation rela-
tions can be used together with Yuo = 0 to show that Uys xuo, J?uo,

form a basis for U. Let XU, YU’ and HU denote the restrictions of X, Y,
and H to U. Nowtraceﬂuz-r'+(-r-+2)+. . e . ButHU =XUYU-YUKU,
implying trace HU = 0, Thus xruo must be the last non-zero vector in the
sequence. Let j be the smallest integer such that EJ /Y U#@. Piek

vy € 'ﬁj such that v, 4 U. Let V be the subspace generated by all actions
of X, ¥, and H on Uy and vJ. By the same reasoning as before, Uy s Xuo,
T, xruo, IR Y, xt‘-2‘1vJ form a basis for V. Continue this

process until a basis is obtained for all of T. It is now easy to see

that the order operator X satisfies the requirements of Lemma V.5.2. Ap~
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ply Lemma V.5.1 to finish the proof.

Note that the proof remains valid if either the condition { x(b,e)
=z 0 when e does not cover b } or the condition { y(b,d) = 0 when b does
not cover d } is dropped. DBoth were required so that the theorem could
be more simply stated.

Because of the large number of quadratlc equations, Theorem 2.1 is
difficult to apply. BHowever, as noted in Section V.5, Stanley's work
[StW] and a proof of the hard Lefschetz theorem [CGr] combine to guaran-
tee that the more general version of Theorem 2.1 just noted can be ap=-

plied to all Bruhat orders. TFigure 2.1 shows one way that the covering

T

5

3

y:|_= 9/2 1
y2= 15/2
y3=11/15

Yh=h7/30 -1
y5=h6/15

-3

-5

-7

Figure 2.1
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relations of the Bruhat order BCB(E) can be assigned appropriate complex
numbers. (The coefficient x(d,b) appears to the left of the edge (b,d),
and the coefficlent y(b,d) appears to the right.)

The equations in the statement of Theorem 2.1 become linear equa-
tions if one sets x(b,e) = 1 whenever e covers b in L. Further suppose
that the ranked poset L is "uniguely modular", namely: If b and ¢ both
cover d, then there exists a unique element e which covers both b and c,
and similarly for e covering both b and e¢. Then requiring y(e,b) =
y(ec,d) in such a poset L eliminates the need for the second set of equa-
tions altogether. Finally, we require that the ranked poset actually be
a distributive lattice. Not only does this make the statement of the
definition below simpler, but it also sets the stage for a smooth transi-

tion to the next section of this chapter.

Definition, A distributive lattice L with r+1 ranks is E=labellable
{edge labellable) if each covering relationship b < e can be assigned a
rational number y(e,b) such that:

(1) If e covers both b and ¢, and boeth b and ¢ cover d, then

y(e,b) = y{c,d), and
(11) IfbE L, then 2. y(b,d) - 2= yle,b) = 2i-r,
b covers d e covers b

Pictorially, each edge of the Hasse diagram of L is to be labelled
with a rational number such that opposite edges in any square must have
equal labels and such that that the sum of the labels of edges emanating
below an element b minus the sum of the labels of edges emanating above b

must equal 2i-r, if b € L,. Figure 2.2 shows the Hasse dlagrams for the
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exceptional irreducible Bruhat lattices E‘(G) and ET(7) with valid

E=-labellings, The most interesting special case of Theorem 2.1 can now

be stated.

Iheorem 2.2, If a distributive lattice is E~labellable, then it is rank

symmetric, rank unimodal, and strongly Sperner.

Unlike Theorem 2.1, it 1s not difficult to attempt to apply
Theorem 2.2 to an arbitrary distributive lattice, The proof of Theorem
V.5 implies that the edge labels necessary to apply Theorem 2.2 to the
miniscule (Bruhat) lattices can be found by the explicit computation of
certain representations of Lie algebras. But it is actually far easier
to compute the necessary edge labels for the irreducible miniscule lat-
tices by directly solving the required eguations. This is huw the edge
lables shown in Figure 2.2 were obtained. However, the classification
theorem of the next section proves that Theorem 2.2 cannot be applied to

any distributive lattices other than the nminiscule lattices!

3. Classification of V-Labellable Posets

In this section we prove that Theorem 2.2 can be applied only to
miniscule lattices. The only possible edge labelling for each irreduci-
ble miniscule lattice will be computed as part of the proof. The main
result of this section can also be viewed as a Dynkin diagram type clas-
sification of the E-~labellable distributive lattices, since Dynkin dia-
grams arise in the course of the proof as a natural means of indexing the

possible E-labellable lattices. The objects directly under consideration
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will actually be the posets of Join irreducibles of the distributive lat-
tices rather than the distributive lattices themselves. We will thus ob-
tain a characterization of the miniscule posets.

The techniques used in this section are almost entirely elementary
combinatorics and linear algebra. However, it is interesting to note
that Theorem 2.2 itself will be the key non-trivial fact. Desplte the
fact that it was possible to express its proof entirely in the language
of elementary linear algebra, it is probably best to view Theorem 2.2 asz
an application of elementary facts about representations of s1(2,&).

Hot only is it useful to recast the concept of E-labellability of a
distributive lattice L in terms of the poset P = j(L) of join irreduci-
bles, but the resulting condition is alsoc more elegant. The terms "order

ideal™ and "order filter"™ were defined in Section II.1.

Definition, A finlte poset P is ¥-labellable if there exists a function

7r: P — §& such that for every antichain & & P,

where IA is the order ideal in P with maximal elements A, the number of
in IA is denoted by IIAI, the order filter P - IA is denoted by LB, and B

is the set of minimal elements of IB'

It is easy to verify that P is V-labellable if and only if L = J(P)
is E=labellable. Thus, the following theorem is a restatement of

Theorem 2.2.
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Thearsm 3.1. If & poset P is V-lmbellable, then the lattic = = J(P) of

order ideals of P iz rank symmetric, rank unimodal, and strongly Sperner.

A few definitions must be made before the classification theoraem
can be stated. Roughly speaking, "Dynkin diagrams" are graphs which

classify complex semisimple Lie algebras (among other things).

Defipition., A econnected rooted Dvnkin diagram Xn[J] is a connected

Dyrkin diagram Xh in which the jith node has been designated as a special

node. A rooted Dvnkin diggram is a finite disjoint union of connected

1 3 b 5 6
Pl 5 B
2
1 2 n-1 n
Qo) » ¢ ¢ Greurmel
1 3 y 5 6 T
e e D
n-1 2

n-3

@
[ ]
]
]

n-2

Figure 3.1
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rooted Dynkin diagrams.

The Dynkin diagrams A, D,, Eg, ET’ and Eg are pictured in
Figure 3.1. We shall be concerned with only these Dynkin diagrams (i.e.

not B, C_, F;, or G,); this is not unusual [HHS].
n* “n' “h 2

Definitions. A poset is jrreducible if it cannct be expressed as the di-
rect sum {disjoint union) of twc non-empty posets. An lrreducible

component of a poset 1s a maximal irreducible subposet.

Definitions. The hasic tree of an irreducible poset P is the

multi-rooted tree (acyclic graph with special vertices) whose vertices
are the elements x in P such that {y: ¥y < x} is a chain, whose edges are
the covering relations between these vertices, and whose roots (special

vertices) are the minimal elements of P.

It will be shown in the course of the proof that the basic trees of
irreducible V=1labellable posets are rooted trees in the usual sense;
namely, they have exactly one speclal vertex apiece.

The main result of this section can now be stated.

Theorem 3.2, The basic tree of each irreducible component of a
V-labellable poset is one of the following rooted Dynkin diagrams:

alil, 1< 3§ <n, (1], D [n-1], D [nl, E[1], ES[6], or E [7]. The
miniscule poset xn(j) is the unique V=-labellable poset with basic tree
xn[J]. Hence the direct sums of the miniscule posets an(J), dn(1),
dn(n-1), dn(n), e6(1), 96(6), and eT(T) exhaust all possible V-labellable

posets.
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In words, each irreducible V-labellable poset has one of a few pos-
sible connected rooted Dynkin diagrams embedded in the "lower" part of
its Hasse diagram. See Figure 3.8, where the vertices of the basic trees
are denoted with cirecles ra*her than dots.

The following theorem is a restatement of Theorem 3.2.

Theorem 3.3. The only E-labellable dlstributive lattices are the

miniscule lattices.

Proof of Theprem 3.2, Unlike some other Dynkin diagram type classifica-
tion procedures, it will not be possible here toc immedlately reduce to
the case of an irreducible V-labellable poset. (See Corollary 3.) Our
attention will, however, eventually focus on one irreduclible component of
a V-labellable poset. After some work which restricts the possible loeal
structure of a V-labellable poset, a simpler object, the basic tree, is
assoclated to each irreducible component of the V-labellable poset. Sys-
tems of linear equations closely related to the Cartan matrices of simple
Lie algebras are then used to eliminate all but a handful of rooted trees
as possible basic trees of irreducible components of V-labellable posets.
Finally, by direct construection, almost all of these potential basic
trees are shown to uniquely determine an irreducible V-labellable poset.
It is interesting to note that the six potential basie trees which do not
lead to irreducible components of V-labellable posets are E6[2], E7[1],
ET[2], EB[SJ, E8[1], and E8[2]' all of which correspond to fundamental
representations of semisimple Lie algebras which are not quite miniscule.
The proof of Theorem 3.2 is now presented as a series of lemmas,

Throughout the proof, P will denote a V-labellable poset with p elements
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and labelling function Y. For simplicity of notation, the same symbols
Xy, ¥y * + - will sometimes be used to refer both to elements of P and to
the vertex labels 72<{x), 7y); + - - . Similarly, an upper case latin
letter can refer to either a subset of P or to the sum of the vertex
labels of the elements in the subset.

The following cruclal lemma is the only part of the proof which
uses something more {Theorem 3.1) than straightforward combinatorial rea-
soning and linear algebra. This lemma will be used in filve distinct

steps later in the proof.
Lemma 3.1, All vertex labels are positive.

Proof. Consider L = J(P). This distributive lattice has p+1 ranks. The
Hasse diagram of L can be viewed as a network, where a vertex in the ith
rank of L is a source or sink of (2i-r) units of flow, and an edge corre~
sponding to «n element x in P carries T(x) units of flow downward.

Since L is E-labellable, Kirchheff's first law (conservation of mass) is
satisfied at every vertex of L. Let F & L be any order filter of L. Ry
conservation of mass, the sum of the flows on edges descending from the
minimal vertices of F must equal the sum of the sources and sinks which
are members of F. 8inks are vertices in ranks 0, 1, . . ., (p=1)/2 (p
odd) or 0, 1, + « +, (p=2)/2 (p even). By Theorem 3.1, L has the rank
matching property. (The strong Sperner property is irrelevant. Ignore
the application of Lemma V.5.1 at the end of the proof of Theorem 2.2,)
Therefore each sink of size (2i-r) in F can be matched with a source of
size -(21i~r) which lies in F. Thus the sum of the sources and sinks in F

is non~negative. 1In particular, let F be the filter in L consisting of
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all order ideals of P which contaln the element x. Every edge descending
from a minimal element of F has flow 7(x), and thus the sum of the
sources and sinks in F is a positive integral multiple of 7 (x). The sum
of sources and sinks in F is zero only when F = L, and this F does not

correspond to any poset element x under the construction above. There-

fore 7r(x) must be positive.

The foliowing lemma follows immediately from the definition of

V-labellable.

Lemma 3.2, The poset P is V-labellable if and only if its order dual pH

is V=-labellable.

Notation, The order ideal with maximal elements {b, ¢, - - -} shall be

denoted by (b, ¢, - - ‘).

Lemms 3,3, The poset P is modular; i.e., if elements b and c both
cover d, then there exists at least one element e which covers both b

and c, and order dually. Hence P is ranked.

Proof., Let D =1{ d covered by b and ¢ },
E = { e which cover b and ¢ },
F = { f covered by ¢ but not b },
G ={ g covered by b but not ¢ },

S = { = which cover b but not ¢ },
T = { t which cover ¢ but not b }.
Finally, let m = 2'(b,c)l - p. Four equations in nine unknowns are

obtained by considering the ideals {(b,c), (b,e) - {b}, (b,e) - {e},
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and (b,c) « {b,c}:

b+ec - E =S «T = m,

b=-c¢c + F -8 = me-2,
~b+ec + G -T = m-2,
-b-c+ 1D + F + & = m= 4 .

Solving these equations ylelds E = D. Lemma 3.1 implies D > 0. Hence
E is non-empty. Use Lemma 3.2 to obtain the dual result. Apply Theorem

II.16 of [Bir] to conclude that P is ranked.

Lemma 3.4. No element ever covers or is covered by three or more other

elements.

Proof, Proceed by induction on the ranks of P. Let g be an element of
minimal rark which covers at least three elements b, ¢, and d. Let K be
the set of other elements covered by q. Figure 3.2 shows the four possi-

ble situations for the highest three ranks of the ideal {(q). It will be-

(ii)

Figure 3.2



86

come clear that the existence of the underscored elements is irrelevant.

Assume for now that they exist,

It will also become clear that it does

not matter whether any elements in K cover any of the elements shown in

the lowest rank.

the named

elements.

Assume for now that elements in K do not cover any of

For each case, consider the 8 equations in 17 or 18 unknowns

generated by the ideals (q) - {g}, (gq) - {gq,b}, (q) - {g,c}, {q) - {g,d},

(q) - {a,b,e}, (q) - {q,b,d}, (@) - {q,c,d}, (q) - {g,b,c,d}. We shall

write out the equations only for case (1i);

the

other cases are similar.

Let Y denote the minimal elements of (gq) - {q,b,c,d}, let X denote the

elements which cover b but not ¢ or d, let U denote the elements which

cover b and ¢ but not d, ete.

than q which cover b, ¢, and d, and let m

Add
ist, 5th,
For cases

case (iv), it is e+ f + q+ R = 0,

d +
d +
d +
d +
d + e +
d + f +
d + g +
d+e+f+rg+

K-q-R-8-

K

K

Finally, let R denote the elements other

- S

2|(v)‘ - p. Then

- U

the 2nd, 3rd, 4th, and 8th equations,

6th, and Tth equations.

- V-W~-X-Y = 2,
-V -W -Y = mb,
-V -X=Y = md4,
-W-X=~-Y = md,

-V -Y = mb ,
- W -Y = m=b,
-X-Y = mb6,

- Y = m-B °

and then subtract the

The resulting equation is q + R = 0.

(1i) and (4iii), the resulting equation iz f + q+ R = 0. 1In

Apply Lemma 3.1 to obtain contra-
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dictions in all cases. Q.E.D.

The next lemma completes the analysis of the local structure of P,

Lemma 3,5, No two elements both cover each of two other elements.
Therefore P is "uniquely modular®, i.e. if b and 2 both cover d, then
there exists a unique element e which covers both b and ¢, and order du~

ally.

Preaof,. (See Figure 3.3.) Suppose that d and e both cover b and e¢. Let
G denote the elements in the rank of d and e beside these two elements,
and similarly for F. Let S (T) be the set of elements covered only by b
(¢), and let U (V) be the set of elements covering only d {e). Finally,
let m = 2k-p, where k is the number of elements of P of rank less than or
equal to the rank of b and ¢. Lemma 3.4 guarantees that the situation
described in Figure 3.3 is sufficiently general. Consider the ideals

(4,F), (e,F), {(b,F), and {(¢,F). Then

d-e+ F~-G - U = m+ 2,
d+e+F~-G -V = m+2,
v
. G e
. F o
T

Figure 3.3
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b-=¢c + F=-2GC + T m-2 ,

"

- b+ + F=0G+ 8 m-2 .

Then « S =T« U~V = 8 contradicts Lemma 3.1. This proves the first

statement. Combine it with Lemma 3.3 to obtain the second statement.

We now study the global structure of an irreducible component Q of
the V-labellable poset P. Let q denote the number of elements of Q, let
T denote the basic tree of Q, and let n denote the number of elements
of T. The number n could be called the rank of Q, since it will be seen
to be analogous to the rank of a Weyl group or the rank of a semisimple

Lie algebra.

Lemma 3.6, The basic tree of Q has exactly one root and is either a
chain or "Y=-shaped®”, i.e. it has at most one vertex with three or more

adjacent vertices.

Figure 3.4
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Proaf. Lemma 3.5 precludes the existence of more than one minimal ele-
ment of Q. If there is more than cne "branching® in T, use Lemma 3.5 to
procduce a vertex in the basic tree which is ocovered by three or more ele-

ment, contradicting Lemma 3.4.

Notation, (See Figure 3.4.) Set n= b + 1 + t + 1, where t (trunk) is
the number of vertices in the branch of the basic tree T containing the
root ( t = 0 if the root is covered by two elements), and b (branch) and
1 (limb) are the numbers of elements in the other two branches of T. Re-

fer to the elements of T with the letters shown in Figure 3.4.

Lemma 3,7, The following connected rooted Dynkin diagrams are the only
possibilities for the basic tree of the irreducible component Q: A,[j],
1£3<&n, Dn[‘*]n Dn[n'1], Dn[nla E6[1]’ E6[2]’ E6[6]’ E7[1]’ ET[EL
ET['{], Egl11, Egl2], and Egl8].

Proof., Let s equal p minus the sum of the labels of the minimal elements
of P lying outside Q. Consider the empty ideal of P together with the n
ideals of P each generated by one element of the basic tree T of Q. The

following system of n+1 equations in n+?1 unknowns is obtained:

-x.I + 8 = 0
x1 - x2 +8 = 2
Xg= W + 8 = 2t

W= ¥, - Zq +8 = 2(t+1)

2(t+2)

w@
1]

Y= Y2 =% +
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Yp ~ % + 8 = 2(t+b+1)
- ¥y Zq = Zp +s5 = 2(t+2)
- ¥ Z)] + 8 = 2(t+1+1)
The unique solution is:
For 1 L1 <%, x5=1i(s~i1+1),

W

i

(t+1) (S-t)|

(t+3+1) (s=t=]3) = Jz4,

for 1 £ J£b, Y3

for 1<k L1, 2z

(t+k+1) (5-t=k) - ky,,

and

2 2

—b1t24blt+blo+bo1+4bl42bt+21 t4+b 4124t +3b+31+3t42

- blt+ b+ 1+t +2
Since w = (t+1)(s-t), this vertex label will be negative if s ~ t < O:

blt+b12+b21+ubl+bt+1t+b2+12+3b+31+t+2

-~ blt+ b+ 1+t +2 .

It is easy to check that the denominator of this expression is positive
only for the following unordered values of b, 1, and t: { {0,3,k}:

0 j<00,0<k<o} U {1,1,kl: 1<k <o} U { {1,2,2}, {1,2,3},
{1,2,4} }. Lemma 3.1 thus implies that no other values are permissible.
Consulting Figure 3.1 reveals that the rooted trees in this list are ex-

actly the rooted Dynkin diagrams listed in the statement of the theorem.

The following lemma is the last step in the proof.
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Lemma 3,4, Fach of the basic trees An[J]. 1€ 3<n, Dn[1], Dn[n-1],
Dn[n], "6'1], “6[6], and ETET] determines one irreducibie V-~labellable
poset, which is the miniscule poset xn(j) if the basic tree is Xn[j].
None of the rooted Dynkin diagrams E6[2], E7[1], ET[E], EB[B], E8[1], or
E8[2] is a basic tree for an irreducible component of a V-labellable

poset.

Propf., If elements b and ¢ both cover d, and e 1s the unique element re-
quired by Lemma 3.5 which covers both b and ¢, then the proof of
Lemma 3.3 implies that %(e) = f#(d). This fact, Lemma 3.4, and
Lemma 3.5 will be collectively referred to with the phrase "local struc-
ture”.

First consider E6[2], ET[EJ, and EB[E]. Let v be the unique ele-

ment covering buth ¥, and z By considering the ideals (v) and (yi,z1),

1
one obtalns v = (y1 + 21)/2 + 1. Computing v for these three cases:
yields the numbers v = 31, 143/2, and 202. But local structure implies
that v = w = 42, 96, and 270. Thus these three rooted Dynkin diagrams
cannot be basic trees of irreducible components.

Now consider E7[1]. After computing the values for the basic tree
and applying local structure, one can immediately construct as much of
the irreducible component Q as is shown in Figure 3.5(a). Using the ide-
al (962), one finds ¢ = 66. Then the ideal (52,) leads to d = 0, imply-
ing that 522 is not covered by such an element. Figure 3.5(b) now
depicts the situation. Using (66,), one computes e = 34. Considering

the ideal (v) leads to v = 47. But v = 96 by local structure., Similar

arguments lead to inconaistencies in the 6fh and 12th ranks of the irre-
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ducible components of EB[1] and Eg[8].

Next consider An[J] = An[n-j]. Local structure implies that Q has
at least the elements which are shown in Figure 3.6. Successively con-

sider the principal ideals ((j-1,r)) for r = 1, 2, = - *, n~J-1:
{(r+1)(n=r) = ¢ =« {rej+1}(p~r=3) + j(n=-3+1) = 23i(r+i1) .

In each case, this equation implies ¢ = 0., A similar result holds for
the ideals ({r,n~j)) for r = 1, 2, * * *, j=2. The equation for the ide-
al ((j=1,n-3)) is different in form but leads to the same conclusion.
Thus there are no other elements in Q and q = J(n=J+1) = s.

Now consider D,[n] = D,[n=1] with n > 4. Denote the elements of Q
as shown in Figure 3.7, and proceed by induction on r. Assume that

7(1,i) = x4 for 1 { r. First consider the ideal ((r,r)):

Xy ~¢ -2.+5 = (r+1)(r+2) ,
e = 2x1 - 2. = (r+1)(r+2) ,
e = 0.

Next consider the ideal ((r,r+1))

(r+1) (red)

d

W Zyyg + X - (r+1) {r+4) ,

d=X1.

And consider the ideal ((r,n=-2)) for r £ n-4:

z ~e- X +8 r(r+1) - 2(r+1}(n-1) ,

n-r-3

e = z, . 3+ 2(r+e1)(n-1) - r(r+1) ,
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After consideration of the ideals ((n-3,n-2)) and ((n-2,n~2)), one can
conclude that Q has q = n(n~1)/2 = 5 elements. The structure of Q can be
described as the lattice of order ideals of the poset which is a product
of a 2-element chain with an (n-2)-element chain,

The constructions of Q for D,[1], n > 5, E6[1] = E[6], and E?[7J
are similar and will be omitted. In each case & = q, the number of ele~
ments in Q. This implies that Q is by itself a V-labellable poset. (See
Corollary 3.) The poset Q for Dn[1] has 2n-2 elements on 2n-3 ranks,
with 2 elements on the middle rank. The posets Q for E6[6] and ET[YJ
have 16 and 27 elements respectively. The proofs of Lemma 3.8 and

Theorez 3.2 are now complete.

The proof of Lemma 3.8 showed that each irreducible V-=-labellable
poset has a unique V-labelling. The possible irreducible V-labellable
posets are shown in Figure 3.8. Vertices of the basic trees are denoted
wiyp circles rather than dots.

The following fact is a consequence of the proof of Theorem 3.2.

Corollary 3. A poset is V-labellable if and only if each of its irre-

ducible components is V-~labellable.

Eroof, It is conceivable that P = Q1 @ Q2, with the following equation

holding for every antichain A, = Q,:
2"“*1 (x) - |1A1l -Z,eB1 (y) +lIB1| = 0y

where &, # 0, and with a similar equation holding for every antichain
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A2 = 02. If o, = -«,, then P 1s V=labellable. This kind of situation

is ruled out by the proof of Lemma 3.8, which shows that «; = 0 for every

possible irreducible component Qi of a V-labellable poset.

Y4, The Ubiquity of the Miniscule Posets

The miniscule posets have been described in four distinet ways in
this thesis. In this section we summarize these four ways and present an

additional, empirical way to describe them. The miniscule posets are:

(a) (Definition) All posets of joiln irreducibles of the distributive
lattices defined by the weights of miniscule representations of semi-

simple Lie algebras.

(b) All posets of join irreducibles of the Bruhat lattices.
(e¢) All known Gaussian posets.

(d) All v-labellable posets.

Notation, Let 'p_ denote the total order with p elements. Let @& denote
the operation of direct sum (disjoint union) for posets. Recall that if

P is a poset, then J{P) denotes the lattice of order ideals in P.
The fifth description is:

(e} All direct sums of the posets shown in Table 4, each of which is of

the form Jr(pOS_), wherer 2 1 and 0 L p £ q.
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Although there is no known "theoretical" significance to this descrip-
tion, it is interesting to note how closely the irreducible miniscule
posets are related by the operation J(-). Except for the chains, each
irreducible miniscule poset appears exactly cnce in the list. Alsc note
that p+ @ + r = n, the rank of the miniscule poset.

Three of the five descriptions of the miniscule posets are empiri-
cal identifications, one is a non~trivial result (Theorem VI.3), and one
is an open problem (Problem V.4). Of the twenty possible a priori "theo-
retical® implications, only two are known: (a) =» (c¢) (Theorem V.4) and
(a) =» (d) (Theorem V.5). Of course many of these are fairly unlikely,
but some would be nice to see, e.g. (a) =2 (b) (The set of weights of a
miniscule representation necessarily forms a distributive lattice
* * ), or useful to have, e.g. (¢) = (d), which would solve

Problem V.4.

X



J(0®eQ)
2, (1)

J(ge q)
aq+1(1)

J(18 1)
83(2)=d3(1)

J(18 2}
a)(2)

3(3(0@ 0)
32(1)

J(3(0e g)

J(J(1e@ 1)
dhf1)

J(J(1e 2)
d5(5)

J(J(193)

d6(6)-

J(J(1eq)
d g+3(a+3)
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J(J(J(0e@0}))
33(1)

J(J(J(Qo?)))
aq+3(1

J(II(1e1)))
d5(1)

J(J(J(182)}))
66(6)

Table 4

J(J(J(J(0@ 0))))
ay(1)

J(J(I(J(p® ?))))
ag+h (1

J(I(I(I(18®1))))
dg(1)

JIII(1@2))))
ET(T)
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