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A Theory of Syntactic Recognition for Natural Language

by

Mitchell Philip Marcus

Submitted to the Department of Electrical Engineering and
Computer Science on October 13, 1977 in partial fulfillment
of the requirements of the Degree of Doctor of Philosophy.

Abstract

This dissertation investigates the hypothesis that the syntax of
natural language can be parsed by a left-to-right deterministic mechanism
without facilities for parallelism or backup. This determinism hypothesis,
explored in the context of the grammar of English, is shown to lead to a
simple mechanism, a grammar interpreter, having the following properties:

-Simple rules of grammar can be written for this interpreter which
capture the generalizations behind passives, yes/no questions, and other
linguistic phenomena, despite the Intrinsic difficulty of capturing such
generalizations in the framework of a processing model for recognition, as
opposed to a competence model.

-The structure of the grammar interpreter constrains its operation in
such a way that, by and large, grammar rules cannot parse sentences which
violate either of two constraints on rules of grammar currently proposed by
Chomsky. This result depends in part upon the computational use of the
notion of traces and the related notion of Annotated Surface Structure, which
derive from Chomsky's work.

-The grammar interpreter provides a simple explanation for the
difficulty caused by "garden path" sentences, such as "The cotton clothing is
made of grows in Mississippi". Rules can be written for this interpreter to
resolve local struutural ambiguities which might seem to require
nondeterministic parsing; however, the power of such rules depends upon a
parameter of the mechanism. Most structural ambiguities can be resolved,
given an appropriate setting of this parameter, but those which typically
cause garden paths cannot.

To the extent that these properties, all of \which reflect deep
propertier of natural language, follow from the determitism hypothesis, this
paper provides indirect evidence for the truth of this assurpption.

This paper also demonstrates that the determinism hypothesis
necessitates semantic/syntactic interaction to test the comparative semantic
goodness of differing structural postibilities for an input.

Thesis Supervisor: Jonathan Allen

Title: Professor of Electrical Engineering
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Stranger: Then since some will blend, some not, they might be
said to be in the same case with the letters of the alphabet. Some of
these cannot be conjoined; others will fit together.

Theatetus: Of course.
Stranger: And the vowels are specially good at combination - a

sort of bond pervading them all, so that without a vowel the others
cannot be fitted together.

Theatetus: That is so.
Stranger: And does everyone know which can combine with

which, or does one need an art to do it rightly?
Theatetus: It needs art.
Stranger: And that art is?
Theatetus: Grammar.

-Plato, The Sophist
Translated by F.M. Cornford
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Introduction

CHAPTER 1

INTRODUCTION

The Determinism Hypothesis

All current natural language parsers that are adequate to cover a

wide range of syntactic constructions operate by simulating nondeterministic

machines, either by using backtracking or by pseudo-parallelism. On the face

of it, this seems to be necessary, for a cursory examination of natural

language reveals many phenomema that seem to demand nondeterministic

solutions if we restrict our attention to parsers that operate left-to-right.

By "simulates a nondeterministic machine", I mean the following: In

automata theory, a nondeterministic machine is said to accept an input if

there is some legal sequence of transitions between machines states which

leaves the machine in an accepting state when its input is exhausted, even if

there are other legal transition sequences which do not leave the machine in

an accepting state. In much the same way, a typical natural language parser

will parse a given input if there is some sequence of grammar rules

(however such rules are expressed) whose application yields a coherent

analysis of the input, even if other legal sequences of rule application do not

lead to such analyses. Since all physically existing machines must be

deterministic, such a nondeterministic machine must be simulated by causing

a deterministic machine to make "guesses" about what the proper sequence of

actions for a given input should be. For many inputs, this necessarily leads

to the creation of some syntactic substructures which are not constituents in

Chapter 1 9
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whatever final syntactic analysis is assigned to a given input.

To see that such an approach seems to be necessary, consider the

sentences shown in Figure 1.1.1a and 1.1.2a below. In these two sentences,

the phrase "sitting in the box" serves in two very different syntactic roles,

as is evident from examining the corresponding declarative sentences 1.1.1b

and 1.1.2b. In 1.1.1a "sitting in the box" is the VP (verb phrase) of the

major clause, while in 1.1.2a it is a reduced relative clause modifying "the

block".

(1a) Is the block sitting in the box?
(ib) The block is sitting in the box.

(2a) Is the block sitting in the box red?
(2b) The block sitting in the box is red.

Figure 1 .1 - An example which seems to require nondeterministic parsing.

It would seem that to analyze the structure of these sentences in a

left-to-right manner, a parser must necessarily simulate a nondeterministic

process. Not only is it impossible to determine what role the word "sitting"

serves in either 1.1.1a or 1.1.2a upon first encounter, but the two structures

are identical up to the end of the phrase "sitting in the box". There is no

possible way to tell the two structures apart until it becomes clear whether

or not the words following this phrase can serve as the predicate of the

main clause.

For another example of such an ambiguity, consider the following

sentences:

10Chapter 1
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1.2.a Have tha students who missed the exam take the makeup today.
1.2.b Have the students who missed the exam taken the makeup today?

While the first seven words of both of these sentences are identical, their

structures, which correspond to Figures 1.3.a-b are very different. In 1.2.a

"have" is the main verb of an imperative sentence, with the rest of the

sentence a subordinate clause. 1.2.b is a question, with "have" as an

auxiliary of the main verb "taken", and "the students" as the subject of the

main clause. Again, it would seem necessary to use some sort of

nondeterministic process to analyze these sentences, since the first clue as to

the correct structure appears far into the sentence.

S

NP AUX VP

(you) IMPER V S

have

the students who take the makeup
missed the exam today

(a) - The structure of an imperative starting with "have".

S

have the students who taken the makeup
missed the exam today

(b) - The structure of a question starting with "have".

Figure 1.3 - Similar word strings can have very different structures.

Chapter 1 11
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While these examples appear to be quite compelling, it is my belief

that natural language need not be parsed by a mechanism that simulates

nondeterminism, that the seeming necessity for such an approach is an

illusion. This paper is based upon this hypothesis; the central idea behind

the research reported here is that the syntax of any natural language can be

parsed by a mechanism which operates "strictly deterministically" in that it

does not simulate a nondeterministic machine, in a sense which will be

made precise below. (Actually, this paper will investigate this hypothesis

only for the particular case of English; nothing will be said about languages

other than English in what follows below.) I begin by assuming that this

hypothesis is true, and then pursue the consequences of this assumption.

It should be made clear at the outset that I intend to hypothesize

only that the syntactic component operates strictly deterministically; as will

be discussed in Chapter 10, there is a clear necessity for a strictly

deterministic parser to ask questions of semantic/pragmatic components which

by their very nature involve a limited amount of semantic parallelism.

(Some of these semantic tests are comparative tests which involve the

production of two competing structures, one of which will ultimately be

discarded. Because these tests cannot be nested, however, the process is not

combinatoric.) Figure 1.4 below is intended to delimit the scope of the

Determinism Hypothesis; it should give an indication of exactly what

phenomena I believe to be purely syntactic, what phenomena I believe is

primarily syntactic with some semantic interaction, etc. The reader should

note that this figure is intended more to convey an overall gestalt than to

make any claims about specific phenomena. Many of the phenomena

Chapter 1 12
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mentioned here are discussed in this paper and have been investigated within

the framework of the Determinism Hypothesis; others are included here for

the. sake of filling out the global framework. (Exactly what phenomena

have not been investigated will be discussed later in this chapter.)
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Phenomena handled by:
Syntactic Processing

"Basic" Clause Structure
NP Movement:

Passiviza'-ion, NP Preposing with "Seems", etc.
NP Lowering into Complements (i.e. "Raising")

There-Insertion
Yes/No-Questions
Imperatives
Detecting Complement Constructions
"Deletion" of Specific Lexical Items
Reestablishing Subjects of some Complements
Some Lexical Ambiguity

Syntactic Processing with Limited Semantic Interaction

"Gap Finding" in Wh-Questions, Relative Clauses, "Tough Movement", etc.
Noun-Noun Modification
Some Comparatives
Some Lexical Ambiguity

Syntactic and Extensive Semantic Processing

PP Attachment
Conjunction
Reestablishing Subjects of Some Complements

(those with "delta" subjects)
Verb Phrase-Deletion
Some Comparatives
Ellipsis

Primarily Semantic Processing

Pronominalization

Figure 1.4 - An overview of "linguistic" processing.

Chapter 1I 14
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It should also be made clear at the outset that this document will

not attempt to prove that this hypothesis is true, i.e. I will not offer a proof

that there are no constructions in English that violate this hypothesis.

Instead, I will demonstrate that this assumption, which will be referred to as

the Determinism Hypothesis, leads directly to a simple mechanism, a grammar

interpreter, which has the following properties, among others:

-The grammar interpreter allows simple rules to be written which

elegantly capture the significant generalizations behind such phenomena as

passives, yes/no questions, imperatives, and sentences with existential "there".

These rules are reminiscent of the sorts of rules proposed by linguists within

the framework of the theory of generative grammar, despite the fact that the

rules presented here must recover underlying structure given only the

terminal string of the surface form of the sentence. The component of the

grammar interpreter which allows such rules to be formulated follows

directly from the Determinism Hypothesis.

-The structure of the grammar interpreter constrains its operation in

such a way that only very complex, ad hoc grammar rules can parse

sentences which violate several of the constraints on rules of grammar

proposed within the last several years by Chomsky. (The syntactic structures

that the parser creates are by and large Annotated Surface Structures of the

type currently proposed by Chomsky, complete with traces, although each

parse node is also annotated with a set of features a la Winograd. This will

be discussed at length in Chapter 5.) Most of the structural properties of the

Chapter 1 15
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grammar interpreter upon which this result depends are directly motivated by

the Determinism Hypothesis.

-The grammar interpreter provides a simple explanation for the

difficulty caused by "garden path" sentences, sentences like "The horse raced

past the barn fell". In essence, the grammar interpreter allows special

diagnostic rules to be written which can diagnose between the alternative

cases presented in examples 1.1 and 1.3 above (this is the focus of Chapter

9), but there is a limitation on the power of such rules which follows from

a parameter of the mechanism. By appropriately setting this parameter,

sentences like those in 1.1 and 1.3 above can be diagnosed, but those which

typically cause garden paths cannot. The component of the mechanism which

this parameter affects, and whizh is crucial for this diagnostic process, is the

same component that allows the formulation of the linguistic generalizations

discussed above. (These garden path sentences clearly disconfirm one possible

form of the Determinism Hypothesis which would say that all sentences

which are grammatical according to a purely competence grammar can be

parsed strictly deterministically, but the explanation for such sentences

afforded by this model is consistent with a more "psychological" formulation

of the hypothesis: that all sentences which people can parse without

conscious difficulty can be parsed strictly deterministically.)

To the extent that these properties, all of which reflect deep

properties of natural language, follow from the Determinism Hypothesis, and

in this sense are explained by it, this paper provides indirect evidence for

the truth of the hypothesis.

16Chapter 1
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A Note on Methodology

From the properties of the grammar interpreter which this paper

will investigate, it should be clear that the theory presented herein is an

explanatory theory of language, rather than merely a descriptive theory.

(For the distinction between these see [Chomsky 65]. My central concern is

not the particular grammar of English that has been developed in the course

of this work, but rather the general properties of the grammar interpreter

that enable a grammar of this form to be written. Thus, the central focus

of what follows will not be on the particular rules of grammar presented as

examples, but rather on the properties of the interpreter that allow rules like

these to be written. Some of the grammar I present can be viewed as a

formalization of various "perceptual strategies" of the sort suggested by

psychologists [Bever 70]. But again, what is important is not the form of

these strategies, but rather the properties of the grammar interpreter and its

associated grammar language that allow strategies like these to be expressed

and to be properly interpreted. Similarly, the discussion of garden paths

sentences and Chomsky's constraints will focus centrally on relevant

properties of the interpreter and not on particular rules of grammar.

I will also be much concerned with what must be the case, given

certain assumptions, and I will attempt to show wherever possible that the

mechanism I develop necessarily has the properties that it does. I will try

to argue for the general characteristics of the model on the basis of strict

necessity, as opposed to mere efficiency considerations. In the same vein, the

grammar language that will be provided for the grammar interpreter is very

17Chapter 1
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restricted; it quite intentionally includes a minimum of computational frills.

The idea is to try to write a grammar within the most restricted framework

that one can, to try to find the weakest possible machine capable of parsing

English consistent with whatever set of assumptions must be made. In this

respect, I believe this research to be unique within the field of natural

language processing.

Given this focus, this paper will not discuss details of the

implementation of the parser presented here at all, and will only discuss

particular rules of grammar when relevant to a higher level point. From the

point of view of this paper, the implementation of the parser is only of

interest as a "scratchpad" on which the model of the grammar interpreter and

the rules of grammar discussed here can be tested for adequacy. For exactly

the same reasons, the development of a very large grammar was not a focus

of this research; instead, the grammar that was developed concentrates on a

small number of fairly complex grammatical phenomena and, crucially, on

their interaction with one another. The development of a large grammar of

English within this framework - a project to be undertaken quite soon -

will be an important additional empirical test of the Determinism Hypothesis,

but it is a test that would be meaningless unless the model was otherwise

shown to have theoretical content.

This is not to say that the parser has not been implemented; indeed,

all of the snapshots of the parser's operation included in this document are

taken directly from actual traces of the parser's operation and all of the

code for grammar rules presented in this document has been tested in this

18Chapter 1
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implementation. For those interested, some notes on the implementation are

included in Appendices D and E. Included in Appendix D are the current

grammar and a list of sentences that exercises the syntactic phenomena that

are included in this grammar; the list attempts to show that the grammar is

robust enough to handle various complex interactions between these

phenomena. This grammar can be viewed as the seed of an attempt to build

a large, robust grammar of English.

And again, this is not to say that the grammar interpreter does not

have powerful engineering applications, but that these applications are not

relevant to the theoretical issues considered here. Indeed, it should be noted

that an early version of this parser and grammar have been used as a front

end for the Personal Assistant Project at the MIT A.I. Lab [Goldstein &

Roberts 77].

This emphasis upon theory as opposed to grammar deserves some

discussion; there are several fundamental points which must be made.

First of all, the presentation of a long list of sentences which a

given parser handles does not by itself substantiate any claims for the theory

of grammar or of language which that parser is claimed to embody. If the

model has Turing machine power, as most parsers do, it is clear that a

grammar of English can be coded for that mechanism - in principle - which

will parse not only the range of constructions which have been handled to

date, but the full range of English as well. Furthermore, since most of

English can be expressed (although not particularly well) within a context-

Chapter 1 19
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free model of language, a grammar of English can certainly be coded within

mechanisms limited only to the power of push-down automata. (Indeed, the

Harvard Predictive Analyzer [Kuno and Oettinger 62] utilized just such a

grammar.) In short, the presentation of a list of English sentences, by itself,

shows only that some time and effort were devoted to the development of a

grammar for that mechanism.

A further problem with the long list of sentences approach to the

validation of a theory of parsing is well expressed by Petrick Petrick 74],

one of the first to build a parser which was firmly theory-based, although

his comment was originally made in a narrower context:

... it is one matter to handle certain restricted types of sentences...
and it is quite another matter to handle them in a sufficiently
general way to provide for the interpretation of many sentences
where their interaction is complex.

These points are usually acknowledged, at least implicitly, by those

who present new parsing systems, in that appeal is often made to the notions

of "perspicuity" and "extensibility" as the yardsticks against which a given

theory of parsing is to be judged. It should be stressed that these notions

are good and appropriate yardsticks for a parser when considered from an

engineering viewpoint; these attributes are important attributes for any

system which is to be used as a tool by others. These attributes are not so

useful as yardsticks against which to judge a theory, however. The problem

with the notion of "extensible" is that it is typically coupled to the notion

of "flexible", and this later notion, while at the core of good engineering, is

the antithesis of the notion of theory. The notion of "perspicuity" is

problematic because there is no objective measure by which this quality can

20Chapter 1
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be judged. Perspicuity, like the notion of "plausibility" and all other

subjective notions of naturalness, is a useful adjunct by which to judge a

theory for which one has other evidence, but it cannot stand as a primary

yardstick against which a theory can be measured.

The position that I take here is similar to that of Petrick [Petrick

74], who argues that the primary measure of a particular parser as an

embodiment of a theory of language is:

whether that particular way of organizing a ... machine is well

suited for meeting the criteria of adequacy which linguists require
of models of natural language

which he states is equivalent to:

the extent to which this model makes possible the expression and

explanation of linguistic generalizations.

I take Petrick's position as a starting point, with one important

modification:

The justification of a theory must indeed be in terms of its

explanatory power (taking this term now in a wider sense than it is used in

the theory of generative grammar) and the generalizations and universals of

the competence linguists are one important form of explanation. However,

any theory of parsing is necessarily a performance theory of language, in

Chomsky's use of the term, and clearly not a competence theory [Chomsky

65]. To express this same distinction in terms which are perhaps more

intuitive, any theory of parsing states how language is to be processed,

going from the surface string to some underlying representation, while the

theory of generative grammar is essentially a "proof checker" which states,

21Chapter 1
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formally, how to decide if some given string of tree structures (or, more

precisely, phrase markers) is a legal derivation, in the formal-language

theoretic sense of "derivation". As a performance theory, there are criteria of

adequacy for a parsing theory which go beyond - as well as include - the

criteria which competence linguists impose upon generative theories of

language.

Thus, it is true that a parsing theory should attempt to capture

wherever possible the sorts of generalizations that linguistic competence

theories capture; there is no reason in principle why these generalizations

should not be expressible in performance terms. On the other hand, a

parsing theory can also be justified in terms of additional criteria including

such issues as the adequacy of the theory as a psychological model, and the

computational properties of the mechanism. These computational properties

can include formal limitations on resource utilization such as the time and

space complexity of the computation, as well as less formal characterizations

of such properties (e.g. the Determinism Hypothesis), etc. (It should be noted

that the tradeoff between time and space bounds cannot make sense within a

purely competence model.) Other computational properties can include such

issues as the net effect of interactions between various subsystems upon the

overall computational complexity of the problem, viewed formally or

informally. The point is that a parsing theory should be justified in terms

of both these sorts of criteria.

The key point to be made, however, is that the search should be a

search for universals, even - and perhaps especially - in the performance

22Chapter 1
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domain. For it would seem that the strongest parsing theory is one which

says that the grammar interpreter itself is a universal mechanism, i.e. that

there is one grammar interpreter which is the appropriate machine for

parsing all natural languages. If this is true, then properties of that machine

itself should be reflected in the structure of each language. And if a

particular machine could be shown to capture such properties, and to have

processing behavior which could be confirmed by psychological experiment,

such a theory would be a giant leap forward toward an understanding of the

cognitive processes which go on in the human mind.

The Notion of "Strictly Deterministic"

In the discussion above, the Determinism Hypothesis was loosely

formulated as follows:

Natural language can be parsed by a mechanism that operates
"strictly deterministically" in that it does not simulate a
nondeterministic machine...".

The notion of "strictly deterministic" is central to the meaning of this

hypothesis; exactly what does it mean?

To avoid any possible misunderstanding, let me state explicitly at the

outset that the Determinism Hypothesis cannot mean simply that language can

be parsed by a deterministic machine. As noted above, any computational

mechanism that physically exists is deterministic in the automata theoretic

sense, and thus any process which is specified by an algorithm for such a

machine must be deterministic in this sense. From this it follows that any

parser, whether it simulates a nondeterministic machine or not, must itself be

deterministic. (The reader should note that "deterministic" does not mean

Chapter 1
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non-probabilistic, nor does "nondeterministic" mean probabilistic. A

nondeterministic machine, instead, can be conceptualized as a machine which

has a magical oracle which tells it the right decision to make at any point at

which its course of action is not strictly determined by the input and the

state of the machine.)

Rather than attempting to formulate any rigorous, general

explanation of what it means to "not simulate a nondeterministic machine", I

will focus instead on several specific properties of the grammar interpreter

which will be the focus of this paper. These properties are special in that

they will prevent this interpruter from simulating nondeterminism by

blocking the implementation of either backtracking or pseudo-parallelism.

This discussion is not intended to be definitional, but rather to give the

reader a better grasp of the computational restrictions which will be

embodied in the grammar interpreter, whose structure will be sketched in

the next section.

The first crucial property of the grammar interpreter is that all

syntactic substructures created by the machine are permanent. This

eliminates the possibility of simulating determinism by "backtracking", i.e by

undoing the actions that were done while pursuing a guess that turns out to

be incorrect. In terms of the sorts of structures that the interpreter creates

and manipulates, this will mean that once a parse node is created, it cannot

be destroyed; that once a node is labelled with a given grammatical feature,

that feature cannot be removed; and that once one node is attached to

another node as its daughter, that attachment cannot be broken.
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The second crucial property of the interpreter is that all syntactic

substructures created by the machine for a given input must be output as

part of the syntactic structure assigned to that input. Since the structure

the grammar interpreter will assign to a given input expresses exactly one

syntactic analysis, this property eliminates the possibility of simulating

nondeterminism via pseudo-parallelism. If a machine were to simulate

nondeterminism in this manner, it would necessarily create structures for the

alternative analyses that would result from each of the paths such a machine

pursues in parallel. By insisting that all structure created by the machine

must be output as part of a single, coherent analysis, this sort of pseudo-

parallelism is prohibited.

(The reader may wonder how such an interpreter can handle true

global ambiguity. The answer is that while such a machine can only build

one syntactic analysis for a given input, and thus can only represent one

interpretation of the input, it can also observe that the input was ambiguous,

and flag the output analysis to indicate that this analysis is only one of a

range of coherent analyses. This is equivalent to saying "The input is

ambiguous, but here is its primary interpretation:...... Some external

mechanism will then be needed to force the interpreter to reparse the input,

taking a different analysis path, if the other consistent analyses are desired.)

The third and final crucial property of the interpreter is that the

internal state of the mechanism must be constrained in such a way that no

temporary syntactic structures are encoded within the internal state of the
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machine. While this does not mean that the machine's internal state must be

limited to a finite state control (the grammar interpreter to be presented

below uses a push-down stack, among other control structures), it must be

limited - at least in its use - in such a way that structure is not hidden in

the state of the machine.

One important implication of all this is that a grammar for any

interpreter which embodies these properties must constrain that interpreter

from ever making a mistake, since the interpreter can only correctly analyze

a given input if it never creates any incorrect structure. This means that

such a grammar must at least implicitly specify how to decide what the

grammar interpreter should do next, i.e. it can never leave the grammar

interpreter with more than one alternative. Since the grammar interpreter

can only correctly analyze a given input if it never creates any incorrect

structure, the grammar must constrain the interpreter from ever making a

mistake.

This property of any adequate grammar for such a mechanism gets

to the heart of what is intended by the notion of "strictly deterministic".

Taken by itself, a grammar for a grammar interpreter which can simulate

nondeterminism may specify a machine which is truly nondeterministic in

that more than one grammar rule may legally apply at any point during the

parsing process. It is up to the interpreter for such a grammar to convert it

to a deterministic specification either 1) by imposing additional constraints

upon the interpretation process (e.g. a gratuitous rule ordering), 2) by

providing some algorithm which chooses one of the alternatives at such a
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juncture, providing some mechanism for backup, or 3) by intepreting the

grammar as a specification of a deterministic, parallel machine, where such a

juncture is interpreted as an indication that the process should split into a

collection of parallel processes, each attempting one of the alternatives.

On the other hand, the grammar for a strictly deterministic machine

must itself specify a deterministic machine, since the grammar must specify

exactly what action the interpreter should take at each and every point in

the analysis process. The interpreter cannot use some general rule to take a

nondeterministic grammar specification and impose arbitrary constraints to

convert it to a deterministic specification (unless, of course, there is some

general rule which will always lead to the correct decision in such a case).

Such a grammar must therefore be inherently deterministic itself; it must

absolutely determine what is to be done next at each point in the parsing

process. In this sense, such a grammar cannot be a competence description of

a language; it must completely constrain the performance of the parsing

process. (One caveat to the above discussion must be noted: A grammar for

a strictly deterministic machine need not be locally deterministic in those

cases where either of two rules may apply first, neither of which affects

the successive application of the other.)

The Structure of the Parser - Motivation

Taking the Determinism Hypothesis as a given, an examination of

natural language quickly leads to a further set of properties which any

deterministic grammar interpreter must embody. (Henceforth, I will use the

word "deterministic" to mean "strictly deterministic" in the sense discussed
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above. Please note this usage.) It is easy to show that any such interpreter

must have the following properties:

1) It must be at least partially data driven, BUT....

2) It must be able to reflect expectations that follow from general

grammatical properties of the partial structures built up during the

parsing process.

3) It must have some sort of "look-ahead" facility, even if it is basically

left-to-right.

To show that each of these properties is necessary, it suffices to show a pair

of sentences of English that cannot be distinguished by a mechanism without

the given property, but which speakers of English understand without

difficulty. The sentences shown in Figure 1.5 below provide crucial pairs

for each of the properties listed above.

The parser must:

Be partially data driven.
(1a) John went to the store.
(1b) How much is the doggle in the window?

Reflect expectations.
(2a) I called [NP John] [S to make Sue feel better].
(2b) I wanted [s John to make Sue feel better].

Have some sort of look-ahead.
(3a) Have [s the boys take the exam today].
(3b) Have [NP the boys] [vptaken the exam today].

Figure 1.5 - Some examples which motivate the structure of the parser.
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As will be demonstrated in the next chapter, a hypothesis driven

parser cannot be deterministic, almost by definition, and thus a deterministic

parser must necessarily be at least partially data driven. The essence of the

problem is that any parser which is purely hypothesis driven, i.e. which is

purely top-down, must hypothesize several nested levels of 'structure before

positing any constituents which can be checked against the input string

itself.

For example, a top-down parser, newly given an input, might begin

by hypothesizing that the input is a sentence. It might then hypothesize

that the input is a declarative, and therefore hypothesize that the input

begins with a noun phrase. Assuming that the input begins with a noun

phrase, it might finally hypothesize that the NP begins with a determiner, a

hypothesis which is testable against the input string. At this point, the

parser has created structures that correspond to the S and the NP, which will

necessarily have to be discarded for at least some inputs. (These structures

might be implicit in the state of the machine, but this is simply a matter of

how the constituents are represented at this point in the parsing process.) To

take a concrete example, even so different a pair of sentences as 1.5.1a and

1.5.1b above cannot be deterministically analyzed by a hypothesis driven

parser. The problem, of course, is simply that any hypothesis driven parser

must either attempt to parse a given input as a declarative sentence,

beginning, say, with an NP, before it attempts to parse it as a question,

beginning with an auxiliary, or vice versa. Whatever order the parser

imposes upon these two possibilities relative to each other, the clause type

attempted first must be at least occasionally wrong. It is clear that if a
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parser is to be deterministic, it must look before it leaps.

A deterministic parser cannot be entirely bottom-up, however. (Let

me remind the reader once more that by "deterministic", I mean strictly

deterministic.) Any parser that is purely bottom-up must initially misparse

one of the two sentences given as (2a) and (2b) above. The problem is that

the string "John to make Sue feel better" can be analyzed in two different

ways: as one constituent that is an infinitive complement, as in (2b), or as

two unrelated constituents, as in (2a), with the NP "John" the object of the

verb and the phrase "to make Sue feel better" an adverbial "purpose" clause.

The difference in structure between (2a) and (2b) can be predicted, however,

if the parser can note that "want" typically takes an infinitive complement,

while "call" cannot take such a complement. Thus, a deterministic parser

must have some capacity to use whatever information and expectations can

be gleaned from an examination of the structures that have been built up at

any given point in the parsing process. If a parser is to operate

deterministically, it must use such information to constrain the analysis

imposed on the remainder of the input.

Finally, if a deterministic parser is to correctly analyze such pairs of

sentences as (3a) and (3b) above, it cannot operate in an entirely left-to-right

manner. As was discussed earlier in this chapter, it is impossible to

distinguish between this pair of sentences before examining the morphology

of the verb following the NP "the boys". These sentences can be

distinguished, however, if the parser has a large enough "window" on the

clause to see this verb; if the verb ends in "en" (in the simple case
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presented here), then the clause is an imperative, otherwise it is a yes/no

question.. Thus, if a parser is to be deterministic, it must have some facility

for look-ahead. It must be stressed, however, that this look-ahead ability

must be constrained in some manner; otherwise the determinism claim is

vacuous.

The Structure of the Parser - an Overview

This paper will present a grammar interpreter called PARSIFAL,

whose structure is motivated by tne three principles discussed above. To

show the relation between these principles and the structure of PARSIFAL. I

will briefly sketch the structure of the parser here; this description will be

expanded at length in Chapters 3 and 4. The diagrams presented here are

taken from these later chapters; they are intended to give the reader an

overall gestalt for the parser and contain detail that will not be explained

here.

PARSIFAL maintains two major data structures: a push down stack

of incomplete constituents called the active node stack, and a small

constituent buffer which contains constituents which are complete, but

whose higher level grammatical function is as yet uncertain. While the

length of the buffer will eventually be expanded to five cells in Chapter 8,

it will be assumed in the next several chapters that the buffer is only three

cells long. As one sort of constituent whose function has not yet been

determined, the individual words which make up the parser's input first

come to the parser's attention when they are automatically inserted into the

buffer as needed in the course of the parsing process.
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Figure 1.6 below shows a snapshot of the parser's data structures

taken while parsing the sentence "John should have scheduled the meeting.".

At the bottom of the stack is an auxiliary node labelled with the features

modal, past, among others, which has as a daughter the modal "should".

(This stack grows downward, so that the structure of the stack reflects the

structure of the emerging parse tree.) Above the bottom of the stack is an S

node with an NP as a daughter, dominating the word "John". There are two

words in the buffer, the verb "have" in the first buffer cell and the word

"scheduled" in the second. The two words "the meeting" have not yet come

to the attention of the parser.

The Active Node Stack

S1 (S DECL MAJOR S) / (PARSE-AUX CPOOL)
NP : (John)

AUX1 (MODAL PAST VSPL AUX) / (BUILD-AUX)
MODAL : (should)

The Buffer

1 : WORD3 (HAVE VERB TNSLESS AUXVERB PRES V-3S) : (have)
2 : WORO4 ("SCHEDULE COMP-OBJ VERB INF-OBJ v-3s

ED=EN EN PART PAST ED) : (scheduled)

Yet unseen words: the meeting .

Figure 1.6 - PARSIFAL's two major data structures.

These data structures are acted upon by a grammar which is made

up of pattern/action rules whose patterns match against the constituents in

the buffer and a specific subset of the constituents in the push down stack,

as shown in Figure 1.7.a below. These rules are partially ordered by a
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priority scheme, and are organized into packets of rules. At any given time

during the parsing process, the grammar interpreter only attempts to match

those rules which are in active packets. Any grammar rule can activate a

packet by associating that packet with the constituent at the bottom of the

active node stack. If a node at the bottom of the stack is pushed into the

stack, the active packets remain associated with it, but are only active when

that node is again at the bottom of the stack. For example, in Figure 1.6

above, the packet BUILD-AUX is associated with the bottom of the stack, and

is thus active, while the packets PARSE-AUX and CPOOL are associated with

the S node above the auxiliary. Some rules that make up the packet PARSE-

AUX are shown in Figure 1.7.b below. The rules are written in an English-

like grammar language called PIDGIN; they will be explained in detail in

Chapter 4.
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The grammar:

The grammar:
Matched

Priority

Against The Buffer and the Stack.

Pattern Action

PACKET1

J c [
] C ]([

PACKET2

I

J
J

-- > ACTION 1
-- > ACTION2
-- > ACTION3

-- > ACTION4
[ ] --> ACTION5

5: [ ] C I
PACKET3

-- > ACTION6

THE BUFFER:

1st 1 2nd 3rd

(a) - The structure of-the grammar.

(RULE START-AUX PRIORITY: 10. IN PARSE-AUX
[=verb] -- >
Create a new aux node.
Label C with the meet of the features of 1st and pres,

past, future, tnsless.
Activate build-aux.}

(RULE TO-!NFINITIVE PRIORITY: 10. IN PARSE-AUX
[="to, auxverb] [=tnsless] -- >
Label a new aux node inf.
Attach 1st to C as to.
Activate build-aux.)

(RULE AUX-ATTACH PRIORITY: 10. IN PARSE-AUX
[=aux] -- >
Attach 1st to C as aux.
Activete parse-vp. Deactivate parse-aux.)

(b) - Some sample grammar rules that initiate and attach auxiliaries.

Figure 1.7 - The structure of the grammar and some example rules.

5:
10: C
10: [

10: C
15:

[C

[(

[

J
J
]

J
J
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The parser (i.e. the grammar interpreter interpreting some grammar)

operates by attaching constituents from the buffer to the constituent at the

bottom of the stack until that constituent is complete, at which time it is

popped from the stack. If the constituents in the buffer provide clear

evidence that a constituent of a given type should be initiated, a new node

of that type can be created and pushed onto the stack; this new node can

also be attached to the node currently at the bottom of the stack before the

stack is pushed, if the grammatical function of the new constituent is clear

at the time it is created. When popped, a constituent either remains attached

to its parent, if it was attached to some larger constituent when it was

created, or else it falls into the constituent buffer (which will cause an

error if the buffer was already full).

This structure embodies the principles discussed above in the

following ways:

1) A deterministic parser must be at least partially data driven. A

grammar for PARSIFAL is made up of pattern/action rules which are

triggered, in part, when lexical items or unattached higher level

constituents fulfilling specific descriptions appear in the buffer.

Thus, the parser is directly responsive to the input it is given.

2) A deterministic parser must be able to reflect expectations that

follow from the partial structures built up during the parsing

process. Since PARSIFAL only attempts to match rules that are in

active packets, grammar rules can activate and deactivate packets of

rules to reflect the properties of the constituents in the active node

stack. Thus grammar rules can easily be written that are
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constrained by whatever structure the parser in attempting to

complete.

3) A deterministic parser must have some sort of constrained look-

ahead facility. PARSIFAL's buffer provides this constrained look-

ahead. Because the buffer can hold several constituents, a grammar

rule can examine the context that follows the first constituent in

the buffer before deciding what grammatical role it fills in a higher

level structure. This document will argue that a buffer of quite

limited length suffices to allow deterministic parsing. The key idea

is that the size of the buffer can be sharply constrained if each

location in the buffer can hold a single complete constituent,

regardless of that constituent's size.

Is This Machine Really Strictly Deterministic?

While I demonstrate above that PARSIFAL embodies the secondary

characteristics that follow from the Determinism Hypothesis, it does not

necessarily follow that such a machine really does operate strictly

deterministically. In this section, I will argue that the grammar interpreter,

given the sort of grammar which will be discussed in succeeding chapters,

operates in such a way that it does fulfill the three central criteria for a

strictly deterministic machine presented early in this chapter.

First of all, once PARSIFAL has completed the analysis of an input

sentence, all the syntactic structure it has on hand is part of the output,

fulfilling the first of the three determinism criteria. While a perverse

grammar could be written which intentionally left structure in the stack or
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sitting in the buffer when an analysis was complete, it is clear that the

interpreter does not have the sorts of data structures which would easily

allow the simulation of a parallel mechanism, which was the original

motivation for this restriction.

That PARSIFAL does not destroy syntactic structure in the course of

its operation may be less clear, but it is in fact true that the grammar

interpreter fulfills this criterion as well. Because the reader may suspect

that implicit backup lurks in either the pattern matching process or the

simple existence of the buffer, I will discuss these matters in some detail.

The crucial fact about the pattern matching process is that a pattern

that triggers on a specific constituent, say an NP or an S, does not cause the

parser to attempt to parse a constituent of that sort. Instead, to a first

approximation, the pattern will trigger only if a constituent of that sort :s

already in the specified buffer location. This should be contrasted with the

"PUSH" arc of Woods' ATN formalism which is exactly and precisely a

nondeterministic subroutine call (this will be discussed at length in Chapter

8).

Because the mechanism by which noun phrases are parsed will not

be discussed until Chapter 8, I should particularly assure the reader that a

pattern that triggers on an NP does not cause the parser to attempt to parse

an NP, i.e. such a pattern does not amount to a function call to an NP

parsing mechanism, much less to a call to any mechanism that may fail,

requiring some sort of backup. The question of the formation of NPs can be
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factored out from the operation of "clause-level" processes because the process

of parsing NPs is totally bottom-up, i.e. totally data-driven, and operates in

such a way that it is transparent to clause-level processes. It must be said

that the parser may abort the "clause-level" pattern matching process to

construct an NP, but this is not initiated by any particular details of the

clause-level patterns being matched, nor is any structure lost when the

pattern matching process is aborted.

This last point gets at the heart of why the particular sort of

pattern matching that PARSIFAL uses does not hide a form of backup, and

thus the simulation of a nondeterministic machine. The pattern matching

process would necessarily incorporate a form of backup if it involved any

actions that had side-effects that had to be undone if a pattern match failed,

but this is not the case. The pattern of each rule is actually nothing more

than a Boolean predicate on the state of the grammar interpreter; there are,

for example, no variables in rule patterns that would force the pattern

matcher into a search process to find consistent values for the variables in a

given pattern. In this sense, the pattern matching process can be

conceptualized as nothing more than evaluating a large conditional expression,

an expression of the form "If <predicatel> then <actioni> else if <p2> then

<a2> else ... if <pn> then <an>". The grammar interpreter can be viewed as

operating by first imposing some full ordering on all rules in active packets

that is consistent with the partial order imposed by the priorities, forming a

large conditional expression from the ordered rules, evaluating that expression

and then repeating the process.
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(This model is not quite accurate in that the grammar interpreter

will cause a lexical item to be input into the buffer if a pattern attempts to

examine the contents of a previously empty buffer cell, but this has no

effect upon the underlying conceptual structure of the pattern matching

process. The crucial fact here is that once a lexical item has been input into

a buffer cell, it stays there.)

One last place that the reader may suspect that the equivalent of

backup lurks is in the buffer itself. A machine with arbitrary look-ahead

would seem to be equivalent to a machine with arbitrary backup. Thus, if

PARSIFAL's buffer was arbitrarily long, the claim of strict determinacy would

be completely vacuous. If the size of the buffer is limited, the reader may

feel, the extent of the backup may be limited, but it remains backup just

the same, and thus the machine is simulating a machine which is

nondeterministic in some limited sense.

The fallacy with this viewpoint is that it assumes that the test of

whether a system is doing backup or not is a question of how much of the

input the system can examine at any given point in the parsing process. It

is exactly true that advancing an input pointer three tokens into the input

string while noting what the tokens are, then backing up three tokens is

exactly equivalent to looking ahead three tokens, given that the same

computations are allowed in either case. What this viewpoint fails to realize

is that the key question as to whether a system is doing backup - in the

sense of using this technique to simulate a nondeterministic process - is

whether or not the system can either discard structure or ignore some of the
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structure that it generates.

If a system can either discard or ignore structure, then it can

simulate a nondeterministic machine, and whether the process is called

backup or look-ahead is quite irrelevant. As Martin Kay has so aptly put it,

a system is doing backup whether or not one considers there to be a "You

Are Here" pointer which advances and then backs up in the course of the

parsing process.

If. on the other hand, a system neither discards nor ignores any of

the structure that it creates, then it would seem that such a machine is not

doing backup by doing look-ahead. It cannot simulate what it will know

about the next token of its input when it has advanced several tokens

further into the input because it cannot build and then discard the structures

that would have to be constructed to simulate its state when it advanced

those extra steps.

Indeed, it might be a mistake to use the term "look-ahead" at all to

describe such a machine. Perhaps a better image might be that of a window

of a fixed size that scans across the input string. Just as the transition

function of a typical deterministic automaton is determined by its current

state and the next token of the input string, so PARSIFAL's transition

function is determined by its internal state and the next "windowful" of the

input string. It is true that each "windowful" for PARSIFAL consists of

several constituents, not of several tokens, but the image is essentially the

same. The central point is that there is in some sense a simple function that
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pairs the initial state of the machine, including the contents of the buffer,

with a resultant state, and that this function can be computed without any

side effects except for those inherent in the change of state itself.

From a slightly different point of view, PARSIFAL does not operate

using look-ahead at all. Instead, it maintains two rather symmetric data

structures, one - the stack - for constituents that it is currently attempting

to add daughters to, and another - the buffer - for constituents whose

daughters it knows, but whose mother must be determined. Just as it is

necessary to simultaneously hold onto many nodes whose daughters have not

yet been fully determined, so it is necessary to hold onto several nodes

whose mothers have not yet been determined. To determine the mother of a

given node in the buffer or the next daughter of the node at the bottom of

the stack, it turns out to be more useful to examine more of the nodes in

the buffer than the nodes in the stack, but the differences in the functional

role of the two structures are not so great as they first appear.

The Limits of This Research

To conclude this chapter, it is appropriate to list exactly which of

the phenomena listed in Figure 1.4 above will not be discussed in this paper:

-Comparatives will not be discussed. The syntax of these

constructions is most complex; for a most insightful discussion, see [Bresnan

73].

-Only some of the phenomena included as purely syntactic in that

figure will be discussed; most of the phenomena listed there have been

41 Introdu-Ction



Introduction

incorporated in the existing grammar for this parser, but are not particularly

relevant to the more general points to be discussed in this paper. As noted

above, the existing grammar does not have extensive coverage; instead it

handles a range of fairly difficult phenomena, and is intended to robustly

handle all interactions between these phenomena. (I should note that though

the grammar is very small, the range of "clause-level" constructions handled

by this grammar, including, in particular, complement constructions, exceeds

the coverage of either the LUNAR or SHRDLU grammars. This is because both

of these grammars concentrate primarily upon "phrase-level" phenomena.

-No phenomena listed in Figure 1.4 above as requiring "extensive

semantic" processing, such as conjunction, or PP attachment will be

discussed. These phenomena await future work; I believe that they will

require mechanisms outside of the basic grammar interpreter presented here.

It should be noted that Woods does not handle these two phenomena within

the framework of his ATN mechanism itself, but rather he posits special

purpose mechanisms to deal with them. I share his intuitions.

-I will not discuss lexical ambiguity, but rather will focus on

structural ambiguity. An ambiguity is structural when two different

structures can be built up out of smaller constituents of the same given

structure and type; an ambiguity is lexical when one word can serve as

various parts of speech. While part of the solution to this very pervasive

problem seems to involve notions of discourse context, I believe that much

of the problem can be solved using the techniques presented in this paper,

but have not yet investigated this problem.
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-While not included in Figure 1.4 above, it is appropriate to note

here that I will not discuss the psychological difficulty caused by center

embedded sentences such as "The rat the cat the dog chased bit ate the

cheese.". For a recent theory of this phenomena which is consistent with

the model presented here, see [Cowper 76]. (This paper includes an excellent

critique of why any parsing model which operates in a purely top-down, i.e.

purely hypothesis driven, manner cannot account for this phenomena.)

The Structure of this Paper

This paper consists of a central core, followed by a series of topics.

Each of these topics investigates some related set of insights into the

structure of natural language that follow from the Determinism Hypothesis

and the structure of the grammar interpreter. While the topics are not

totally independent, the reader should be able to read some subset of them, if

he so chooses, with little difficulty. Whereever there are interdependencies

between topics, they are clearly indicated in the text.

The following is a rough outline of the contents of the rest of this

paper:

-Chapter 2 provides a historical perspective on this research. It also

documents the motivations that led to this work.

-Chapters 3 and 4 present in detail the grammar interpreter itself.

These chapters are prerequisite for understanding the chapters that follow.
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-Chapters 5, 6 and 7 discuss the implications of the Determinism

Hypothesis and the structure of the grammar interpreter vis a vis the theory

of generative grammar. Chapter 5 demonstrates that the grammar interpreter

makes possible the formulation of individual rules of grammar that have

much the same descriptive power and formal elegance as the transformations

of the theory of generative grammar. Chapters 6 and 7 show that many of

the phenomena that are accounted for by the constraints of Chomsky's

current theory of grammar fall out from the structure of the grammar

interpreter, suggesting that these purported linguistic universals have their

roots in a performance theory of language.

-Chapter 8 extends the core of the paper, extending the grammar

mechanism to parse noun phrases in a manner transparent to "clause-level"

processes. This chapter is prerequisite to understanding Chapter 9.

-Chapter 9 turns to a purely performance phenomenon, the

perceptual difficulty caused by so-called "garden path" sentences. This

chapter presents a theory to account for why it is that these sentences cause

difficulty when read.

-Chapter 10 demonstrates that one consequence of the Determinism

Hypothesis is the necessity for certain types of semantic/syntactic

interactions. This chapter investigates the interactions necessary to allow

deterministic "ungapping" of wh-questions and relative clauses.
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-Chapter 11 summarizes what has gone before, and points the way

to future research.



Historical Perspective

CHAPTER 2

HISTORICAL PERSPECTIVE -

A CRITIQUE OF HYPOTHESIS-DRIVEN PARSING

Introduction

As was discussed early in Chapter 1, it would seem that the syntax

of natural language must be parsed by some mechanism which simulates a

nondeterministic machine. This chapter will present the "classical" solution

to this problem, the paradigm of top-down, hypothesis-driven search, and

will discuss some of the inefficiencies that are inherent in this paradigm.

The point of this chapter is not only to provide historical and intellectual

perspective, but also to give the reader a feel for exactly where the grammar

interpreter to be presented in the immediately succeeding chapters differs

from this classical model. The research that underlies this paper resulted

originally from the author's frustration in watching just such a system

blindly backtracking when it seemed so clear - from the outside - just what

the right course of action should be. This chapter is also an attempt to

convey exactly where the source of this frustration lies.

The Classical Solution - Hypothesis-Driven Search

While there are many possible computational methods of handling

this seeming nondeterminism, almost all of the most powerful existing

natural language parsers use approximately the same approach. The STRING

system of Naomi Sager [Sager 73], the LUNAR system of Bill Woods [Woods

72]. and Terry Winograd's SHRDLU [Winograd 71] all use parsers which can
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be characterized as top-down, depth-first search algorithms. To say the same

thing a little differently, all three are purely hypothesis-driven, and simulate

nondeterminism by providing some sort of backtracking mechanism, a general

style which can be termed guess-and-then-backup. Since Woods' Augmented

Transition Network (ATN) model [Woods 70] provides the clearest model of

this paradigm, and is the best known of the three parsers, I will briefly

outline its control structure as an exemplar of the entire class. (I will

ignore the fact that Woods' ATN, as implemented, is also capable of operating

in a top-down pseudo-parallel mode. Pseudo-parallel search is less efficient

than depth-first search, if a good a priori ordering can be given to the

alternatives at each point in the search, which seems to be true of natural

language.)

The ATN mechanism can be derived by successive augmentations of

the finite state transition graph representation of the finite state machine

model. Such a mechanism consists of a set of states, each of which is

connected to other states by an ordered set of arcs. On each of the arcs is a

test, which specifies the conditions under which this arc should be traversed

by the parser, and an action, which specifies what the parser should do

when it does traverse the arc. Tests in this model consist of simple

predicates on the next word in the input string.

Since finite state machines are computationally too weak to

adequately characterize natural language, this finite state model is augmented

to yield what Woods calls a Recursive Transition Network (RTN). In an

RTN, an arc may consist of a call to a sub-network which is an independent
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RTN, and this subnetwork can in turn have arcs which call sub-networks.

These pushes to sub-networks can be recursive in that a network may have

arcs which push to the same network or to other networks which can

themselves push to that network. The addition of this recursive mechanism

yields a model with the formal power of a context free grammar.

The RTN model is augmented once more by providing sets of

registers which can be set and examined by the tests and actions of the

grammar, yielding an Augmented Transition Network (ATN). The ATN

mechanism has Turing machine power, if totally arbitrary functions are

allowed as tests and actions on arcs, or it can be limited to recursive

computations, if only recursive functions are allowed as tests and actions and

no cycles of arcs are allowed that do not advance the input pointer (i.e. no

cycles of what Woods terms jump arcs are allowed). The resulting ATN

model is clearly theoretically adequate to parse natural language, if natural

language is parsable by any Turing machine at all.

An ATN grammar, i.e. a particular ATN mechanism, can be viewed in

the abstract as accepting a sentence if there is some path through the state

network which exhausts the input and ends in a final state. (One action

that can be placed on an arc is an operation called BUILDQ which builds a

tree fragment out of tree fragments stored in the ATN's registers. An ATN

parses while accepting by executing the BUILDQ operations placed on its arcs

by the grammar writer.) Such a grammar is inherently non-deterministic,

however, in that many arcs at any given state may be traversable at the

same time, given the same input. Thus, an ATN grammar, viewed abstractly,

48Chapter 2



Historical Perspective

may be said to accept an input if for each state reached during a derivation

(however the grammar is interpreted) there is some arc leaving that state

which if taken will lead to a final state with the input string exhausted.

As stated above, the interpreter of an ATN must simulate this inherently non-

deterministic machine with an appropriate computational mechanism, and the

mechanism of choice seems to be some variation of a backtracking control

structure, which utilizes the a priori ordering of the arcs leaving each state

to make the search process reasonably efficient.

Given a grammar of the form specified above, an ATN interpreter

begins at a distinguished initial state and evaluates the tests on the arcs out

of that state in the order that the grammar writer has imposed on the arcs.

When a test on one of these arcs succeeds, the interpreter executes the action

on the arc and proceeds from the original state to whatever state the arc

specifies as a successor state. Before executing the action, however, the

interpreter creates a fail-point by pushing a "possibilities list" of the

remaining untested arcs onto a stack of untried possibilities.

The interpreter proceeds in this manner until it either exhausts the

input string and simultaneously arrives at a final state in the network, thus

completing a grammatical analysis, or it reaches a state where there is no arc

whose test succeeds. This indicates that the grammatical analysis

corresponding to the path that the interpreter was following is in fact

incorrect, and that an alternative analysis must be found. The interpreter

then turns to the most recently added set of alternatives on the stack of

untried possibilities, restores the environment that existed when that fail-
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point was created, and proceeds to test the untried arcs from the state the

parser has now backed up to. The interpreter proceeds in this fashion until

it either completes an analysis or it has backed up through all the stored

fail-points, which indicates that the input string cannot be recognized by this

particular ATN.

This mechanism can be viewed as operating by picking one of the

set of hypotheses which is consistent with both its current state and the

next word in the input string and attempting to push this hypothesis

through to completion. Since this hypothesis must be at best a guess, the

ATN interpreter will back up and choose the most recent alternate hypothesis

if it discovers evidence which puts the current hypothesis into doubt. If the

a priori ordering of the hypotheses with respect to likeliness is accurate,

initial hypotheses will often turn out to be right, and large amounts of

backup can be avoided.

I believe that it is fair to conceptualize an ATN grammar as a

specification of a space of grammatical possibilities which says relatively

little about how to search that space. The ordering of arcs, the only explicit

control information in an ATN grammar, is quite minimal compared with the

arc tests and actions that make up the bulk of the grammar. By and large,

an ATN grammar specifies what is a grammatical sentence while saying little

about how to find one of them. It is up to the interpreter to decide how to

utilize what the grammar has to say. In the straightforward top-down

depth-first search paradigm I discuss here, the interpreter does this by

imposing a general, totally uniform control structure on top of the grammar
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that guarantees to exhaust the search space specified by the grammar. (One

could speak of this division of knowledge into separate grammar and

interpreter components as a kind of competence vs. performance distinction

a la Chomsky [Chomsky 65], but I would like to avoid these terms, the

source of much confusion, unless they are used in a well defined sense.)

While much of this paper argues, at least implicitly. against dividing

knowledge into how and what components, one important practical advantage

of an ATN system is that the writer of an ATN grammar need only worry

about specifying the right space of possible grammatical structures for his

application; the interpreter frees him of the need to say much about how to

search this space. While most earlier parsing systems also have this property

(since they too have grammars that specify non-deterministic machines), the

ATN notion is historically significant in that it, for the first time, coupled

this property with a grammar formalism that seems to be adequate for

representing the space of grammatical possibilities of natural language. From

a theoretical point of view, the ATN model is significant in that it is an

excellent representation for effectively and perspicuously representing the

search space of the syntax of natural language. The understanding such a

representation engenders is an essential prerequisite to any investigation into

what underlying structure there might be that can be utilized to efficiently

search the space of grammatical possibilities.

A Critique of Hypothesis-Driven Parsing

One problem with such a scheme is that some sentences, such as the

sentences 2.1.1 and 2.1.2 below, repeated from Figure 1.1, will lead the
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parser arbitrarily far afield before the parser realizes that something is amiss.

2.1.1 Is the block sitting in the box red?
2.1.2 Is the block sitting in the box?

'Vhen this happens, there is no way for the mechanism to know exactly

where it made the wrong turn. This is because at any given time the parser

is investigating not one hypothesis, but a whole set of hypotheses

simultaneously; each time the parser takes an arc from a state and leaves

the others untried it is committing itself to an additional hypothesis. When

the parser eventually does realize that something is amiss, it may have to

back up arbitrarily far until it falls back to a point where its entire set of

hypotheses is correct. This is of course true of any backtracking control

structure, but the nature of language greatly amplifies the problem because

the number of states that a parser must go through to analyze a sentence,

and thus the number of hypotheses to which the parser is simultaneously

committed is usually very large.

Consider for example, the number of hypotheses that the parser will

have to reject if it initially attempts to analyze 2.1.2 above as if it were

2. 1. 1, i.e. if it tried to analyze "sitting in the box", the predicate of the

major clause, as if the participial phrase were a reduced relative clause

modifying "the block".

The parse will proceed without problem until the parser reaches the

final punctuation mark, with "the block sitting in the box" misparsed as a

single NP. The parser will then try to parse this punctuation mark as the

predicate of the question, and fail. The parser must now back up to where
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it went astray and then find the correct path. In terms of the transition

network model, this means that the parser must back up over each arc that

it traversed while it analyzed "sitting in the box", one at a time, the most

recent first. For each state in the network that the interpreter visited

during this analysis, it must attempt to take each of the remaining untried

arcs from that state. The interpreter must attempt to find an alternate

hypothesis that proceeds from that state and completes the sentence,

exhausting the arc set, before it can finally back up to the immediately

previous state and repeat the process. This will continue until it has backed

up to the state at which it had just finished parsing "block" as the head of

the (as yet incomplete) NP "the block".

Specifically, the parser will have to attempt all alternative ways of

parsing "the box" as a noun phrase and necessarily fail, since the original

analysis was quite correct, before attempting to find some alternative analysis

which completes the participial phrase "sitting...". This too will fail, since

the original analysis was exactly right here too. The parser must then

attempt to find some alternative analysis, starting with "sitting", which will

produce a verb phrase completing the reduced relative clause. It will next

attempt to find some alternative way to parse a relative clause, and then,

finally, discard the hypothesis that "sitting" starts a relative clause at all.

Since the interpreter has no idea where it went astray, it must

successively discard the right hypotheses made in parsing subconstituents

until it finally discards the higher level hypothesis which was originally in

error. (Note, by the way, that the well formed substring table notion does
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not make this hypothesis discarding process any easier; keeping track of

these substrings helps later, when the parser, pushing forward after the

incorrect hypothesis is discarded, would otherwise have to reconstruct many

of the valid structures earlier cast aside. The problem is not so much that

valid hypotheses are discarded as it is that much effort must be spent in

attempting to find some other analysis for what was in fact a correct

structure.)

But this is not the only inefficiency of the hypothesis-driven

paradigm. While it was implicitly assumed above that the interpreter could

always trivially reject bad hypotheses by examining the next word in the

input string, this is often not the case. This is because many arcs in the

network do not actually attempt to utilize the next word in the input at all,

but rather push to a subnetwork that will attempt to build some multi-word

constituent, as when the noun phrase network attempts to parse a relative

clause by pushing for a sentence. Often this push itself will push for a

smaller multi-word constituent, as when the push for a relative clause is

itself immediately followed in the sentence network by a push for an NP.

Only within the NP network will tests on arcs actually look to the next

word in the input string, trying to find a role for it in the hypothesized NP.

It may take some effort to discover that the next word in the input string is

not consistent with the NP hypothesis at all, and a larger amount of effort

to discover, perhaps, that this word is not even consistent with the relative

clause hypothesis that gave rise to the NP hypothesis originally. This

inefficiency follows necessarily from the fact that the guess-and-then-back-

up paradigm is entirely hypothesis driven, i.e. that it is totally top-down.
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Thus, such a parser must generate subgoal under subgoal, until a hypothesis

is suggested at the bottom of the hypothesis tree that can actually be tested

immediately against the input string.

Because of this property, rejecting a high level hypothesis which is

quite obviously wrong can take a fair amount of time. This is compounded

with the fact that as ATN, being entirely hypothesis-driven, can utilize

information about properties of the next word in the input string only by

asking questions which will show if the next word is or is not consistent

with the next hypothesis enumerated in the grammar. In essence, an ATN

must play a game of Twenty Questions with its environment to discover

what grammatical possibilities the next word in the input string allows.

Consider the behavior of the parser in the "sitting in the box"

example discussed above, at the point when the parser has just completed

(mis)parsing "the block sitting in the box" as a single NP. At this point the

parser is attempting to parse the final punctuation mark as some sort of

predicate. While it is obvious that a final punctuation mark cannot initiate

any sort of predicate phrase at all, there are many, many sorts of predicate

phrases that it does NOT start, and each of these must be attempted and

rejected in turn. The final punctuation mark will of course block every

attempted hypothesis reasonably quickly, but a large number of hypotheses

must be rejected before the hypothesis that a predicate phrase starts here

will finally prove to be untenable.

One patch that may suggest itself to the reader is to put in a test
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which explicitly disconfirms this high level hypothesis. Thus, an arc might

be added to the grammar which embodies the information that if a predicate

phrase is about to be parsed and the next thing in the input string is a final

punctuation mark, then immediately reject the predicate phrase hypothesis.

One problem with any such patch as a general solution to this class of

problems is simply that while there are many ways of beginning a given

high level constituent, there are even more ways of not beginning such a

constituent, and it would be expensive to test for all the terminal symbols

which do NOT start a constituent of a given sort.

Another problem that this, and any such patch, fails to come to

terms with is that there is a limitation on the utility of being able to look

only one terminal symbol ahead in general. As it turns out, a single symbol

often does little to constrain the sorts of constituents that it can begin. It is

true that a word like "the" provides solid evidence that a noun phrase must

immediately follow in the input string, but many words do not have this

property; as Figure 2.2 below shows, for example, the word "as" can initiate

as many as five different sorts of constituents: subordinate clauses (2.2.a),

quantifiers (2.2.b), adjectives (2.2.c), adverbs (2.2.d), and prepositional phrases

(2.2.e):

(a) As these examples show, "As" initiates various constituents.
(b) As many as ten different explanations were proffered.
(c) No one could ever be as big as big bad John.
(d) He left as quickly as he could.
(e) Bill offered his advice as an expert in such matters.

Figure 2.2 - "As" can initiate many types of constituents.

56Chapter 2



Historical Perspective

As Figure 2.3 below shows, even a simple number like "five" can initiate

adverbs (2.3.a), adjectives (2.3.b), and of course quantifiers (2.3.c):

(a) Theses get written five times more slowly than I thought possible.
(b) He tried to jump a five foot high wall.
(c) There are five good reasons for not even trying.

Figure 2.3 - Even "five" can initiate many sorts of constituents.

So while the word currently available in the input string can provide some

constraint on what hypothesis should be tested next, it provides a much less

certain constraint than might appear to be the case at first glance.

Summary

To summarize the above discussion, it seems that the inefficiencies

of the guess-and-then-back-up paradigm follow mainly from two interrelated

properties of the paradigm: 1) this paradigm is totally hypothesis driven, and

therefore irresponsive to the actual data; 2) even if the paradigm was

modified to make it more data driven, one word does not seem to be an

adequate unit of context against which to test the plausibility of any given

hypothesis.

These observations suggest several possibilities to improve the

efficiency of a natural language parser. If a parser was less hypothesis

driven, and somehow more sensitive to the data, perhaps the parser could be

kept from posing high level hypotheses that require several levels of

subhypotheses before the data can provide any confirmation of the top level

hypothesis at all. Perhaps it is somehow possible to get a better indication
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of what lies ahead in the input string than simply by looking at the next

word, thereby providing a much stronger filter for suggested hypotheses.

This might mean, for example, attempting to parse a little bit ahead in the

input string to get a better view of what sort of constituent in fact lies

ahead. In short, if a parser could be more directly sensitive to the input

data, and if that data could be made to reveal solid information about what

sort of syntactic context lay ahead, then perhaps these inefficiencies could be

overcome. These characteristics, of course, are embodied in the grammar

interpreter which was sketched in the last chapter, and which is the central

focus of this paper.
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CHAPTER 3

THE GRAMMAR INTERPRETER

PARSIFAL's Major Data Structures

With the motivation for the parser's structure behind us, I will

focus on the parser's two major data structures in the remainder of this

chapter, and the structure of the grammar in the next.

For reasons of exposition, I will assume in this and the immediately

following chapters that all noun phrases are constructed by processes that are

transparent to the basic grammar interpreter. This will allow the discussion

to focus on "clause-level" processes before considering the mechanisms by

which noun phrases are constructed. As we shall see in Chapter 8, a

straightforward extension of the interpreter described in this chapter will

take the magic out of this assumption.

The remainder of this chapter will discuss the two major data

structures of the grammar interpreter, the push-down stack of incomplete

constituents, and the three place constituent buffer that the interpreter uses

as a workspace.

The Active Node Stack

I will call the first-in first-out stack of incomplete constituents the

active node stack, thinking of the topmost node of each incomplete

constituent as being in some sense active. This stack allows the parser to
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deal with the well known recursive properties of natural language in much

the same way that the stack of a push-down automaton enables that

mechanism to deal with the recursive properties of context free languages.

The parser operates by attempting to add constituents to the node at the

bottom of the stack (thinking of the stack as growing downwards). It will

push this incomplete constituent into the stack while it is building the

lower level constituents that are its daughters. When a node is completed, it

is popped from the stack, and the parser will then continue adding

constituents to the node which was immediately above it in the stack. Thus,

in general, if one node is immediately under another node in the parse tree,

it will be immediately under that other node in the active node stack as

well.

(Note, by the way, that the fact that the parser can handle the

recursive properties of natural language does not entail that the grammar

interpreter itself be recursive. In much the same way that the finite state

control of a push-down automaton need not be recursively invoked for that

mechanism to parse recursively embedded context free languages, there does

not seem to be any need for recursive invocation of the grammar interpreter.)

For the sake of illustration, a snapshot of the active node stack is

shown in Figure 3.1.a below, with the corresponding completed parse tree

shown in Figure 3.1.b. (It should be noted that this figure is simplified for

expository reasons; much information contained in the active node stack and

the parse tree is not shown in this diagram.) In this snapshot, there are two

nodes in the active node stack, the node VP22, at the bottom of the stack,
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and the node S20, at the top of the stack above VP22. At the time this

snapshot was taken, S20 had 3 daughters attached to it, one of which is

VP22, and VP22 had one daughter attached. Since VP22 was at the bottom

of the stack at the time this snapshot was taken, the parser was attempting

to add constituents to VP22 at that time. Once VP22 is complete, the parser

will pop the node from the stack, and continue to add constituents to 520.

One can see from Figure 3.1.b that S20 will remain above VP22 in the

completed parse tree.

The Active Node Stack

I S20
I NP : (i)
I AUX : (will)
I VP : I

I VP22
I VERB : (schedule) I

(a) - A snapshot of the active node stack.

S20
NP47 i
AUX20

WORD 112 will
VP22

WORD1 13 schedule
NP50 a meeting

WORD 11 e.

(b) - The finished parse tree.

Figure 3.1 - The active node stack and a completed parse tree.
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There are only two nodes in the active node stack that the parser

can modify or directly examine. These two nodes are the bottom node on

the stack, which will be referred to as the current active node, and the S or

NP node closest to the bottom of the stack which will be called the

dominating cyclic node, following the terminology of generative grammar, or

sometimes the current cyclic node or, if an S, the current S node. (In

transformational theory, S and NP nodes are distinguished in that the

transformational mechanism is applied cyclically to the constituents under

each node of these two types; these nodes are thus called cyclic nodes. A

node which is above another node in constituent structure is said to

dominate that node. Thus, I will call the nearest cyclic node above the

current active node the dominating cyclic node.) In Figure 3.1 above, VP22

is the current active node, and S20 is the current S node.

Besides these two nodes, the parser is also free to examine their

descendents, i.e. the nodes they dominate, although the parser cannot modify

them. Since some of the descendents of the current cyclic node will most

likely still be in the active node stack, the parser can in fact examine more

than two nodes in the stack, although in the case of descendents, it cannot

tell whether or not they are in the stack. As we shall see later, making the

dominating cyclic node explicitly available for examination and modification

seems to eliminate the need for any tree climbing operations that ascend tree

structures. Empirically, there seems to be no need for the parser to examine

any nodes already incorporated into the parse tree except for those which are

dominated by the current cyclic node.
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Nodes

The primary data type in this parser is the parse node.

Grammatical structures are represented by tree structures of parse nodes, each

node representing one grammatical constituent. Each node in a complete tree

is of a given type (NP, VP, S, etc.), has a parent (except for the root of the

tree), a list of daughters, and an associated set of grammatical features.

Each node also has a name by which we can refer to it, a system generated

symbol like "NP35", "WORD10", etc.

The set of grammatical features of a node summarize the primary

grammatical properties of the constituent it represents. These properties are

typically those that are important in deciding the grammatical role of the

node (i.e. the node's attachment) in a larger constituent, or that affect the

overall grammatical behavior of whatever larger constituent the node itself is

attached to. For example, the sorts of complements a given verb takes, i.e.

whether its objects are simple NPs, infinitive phrases, that-complements, or

the like, greatly affects the grammatical behavior of the VP it is part of, and

so features that mark these different options are included in the feature set

of the verb. The general idea is that a constituent's grammatical features

include whatever properties should be visible at a glance to processes dealing

with higher level constituents. In line with this philosophy, the type of a

node will also be one of its features. (From this point onwards, I will not

distinguish between a node and the constituent that it represents, but will

use the two words interchangebly.)

As an example of the use of features to label parse nodes, the tree
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shown above in Figure 3.1.b is repeated below in Figure 3.2, with features

added. Thus, node S20 is labelled S, DECL, and MAJOR, indicating that it is

a declarative, major S. NP47 is labelled as an NP, which is singular (NS),

first person (NIP), an NP which dominates a pronoun (PRON-NP) and which

is therefore not modifiable (NOT-MODIFIABLE). Similarly, the auxiliary node

AUX20 is labelled as an auxiliary which is future tense, and will agree with

any NP subject, either singular or plural (VSPL), and the NP NP50 is labelled

as a singular, determined, indefinite NP.

S20 (DECL MAJOR S)
NP47 (NS N1P PRON-NP NOT-MODIFIABLE NP)

AUX20 (FUTURE VSPL AUX)
WORD1 12 will

VP22 (VP)
WORD1i13 schedule
NP50 (NS INDEF DET NP)

a meeting
WORD116 .

Figure 3.2 - A parse tree showing the features on nodes.

The Buffer

The constituent buffer is really the heart of the grammar

interpreter; it is the central feature that distinguishes this parser from all

others. The words that make up the parser's input first come to its attention

when they appear at the end of this buffer after morphological analysis.

After the parser builds these words into some larger grammatical structure at

the bottom of the active node stack, it may then pop the new constituent

from the active node stack and insert it into the buffer if the grammatical

role of this larger structure is as yet undetermined. The parser is free to
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examine the constituents in this buffer, to act upon them, and to otherwise

use the buffer as a workspace.

In general, the parser uses the buffer in a first-in, first-out fashion

(although, as we shall see, there is no necessity that it do so). It typically

decides what to do with the constituent in the leftmost buffer position after

taking the opportunity to examine its immediate neighbors to the right. The

availability of the buffer allows the parser to defer using a word or a larger

constituent that fills a single buffer cell until it has a chance to examine

some of the right context of the constituent in question. Thus, for example,

the parser must often decide whether the word "have" at the beginning of a

clause initiates a yes/no question such as in fig. 3.3.a below or an

imperative as in fig. 3.3.b. This issue must be resolved before the

grammatical role of "have" can be decided because in the first case "have" is

an auxiliary verb, while in the second case it is the main verb of the major

clause. (A similar example, complete with parse trees, can be found in

Chapter 1.) The parser can often correctly decide what sort of clause it has

encountered, and thus how to use the initial verb, by allowing several

constituents to "pile up" in the buffer. Consider for example, the snapshot

of the buffer shown in Figure 3.3.c below. By waiting until the NP "the

boys", NP25, is formed, filling the 2nd buffer position, and WORD37, the

verb "do", enters the buffer, filling the 3rd buffer position, the parser can

see that the clause must be an imperative, and that "have" is therefore the

main verb of the major clause. (The details of this diagnostic process can be

found in Chapter 9.)
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(a) Have the boys done it yet?
(b) Have the boys do it.

I W0RD32 I NP25 I WOR037 I
I HAVE I THE BOYS j DO I

(c) - A snapshot of the parser's buffer.

Figure 3.3 - The buffer allows the parser to examine local context.

The Buffer as a Virtual Machine

To make the buffer and the operations associated with it more

precise, it will be useful to think of the buffer as a kind of virtual

machine. This section will present a general class of mechanisms which will

be further constrained in later sections to provide the precise mechanism

utilized by this parser. First, a mechanism called a random-access,

compacting buffer will be presented, and then that mechanism will be

extended to yield a random-access, compacting buffer with offset. In the

course of the discussion, both mechanisms will be referred to merely as

buffers, as long as the type of mechanism is made clear by context.

The data structure underlying both sorts of buffer is a linear list of

length n. By linear list I mean (following Knuth (Knuth 68], but changing

terminology slightly to avoid conflicts):

a set of n > 0 cells x[1], x[2], ... x[n] whose structural properties
involve only the linear (one-dimensional) relative positions of the
cells: the facts that, if n > 0, x[1] is the first cell; when 1 < k <
n, the kth cell x[k] is preceded by x[k-1] and followed by x[k+1];
and xnJ is the last cell.
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x[1 ] x x[2 x[3J 1 ....... Ix[n] I

Figure 3.4 - A linear list of length n.

Each cell in the linear list of the buffer mechanism may either be

occupied, containing data, or it may be empty, being free of data. As we

shall see below, the operations that are performed on the buffer are such

that all the cells in the buffer that contain data are contiguous, beginning

with cell x[1]. Thus there will always be a cell x[limit], 1 limit c n,

which is the last occupied cell, i.e. that for i : limit, x[i] is occupied and

for limit < j n, x[j] is empty. For this reason, I will call the buffer

mechanism a compacting buffer.

There are three operations that the buffer will perform on command.

These three operations are:

Read(i): Return the item in cell x[i].

Delete(i): Delete the item in cell x[i] and then shift
the contents of the cells to the right of x[i]
to fill the "gap".

Insert(w,i): Insert the item w into cell x[i] after shifting left
to create a "gap" in the buffer.

Each of these operations will now be described in detail. Pseudo-code for

each of these operations is given in Figure 3.5 below. Note that data can be

read from, inserted into or deleted from any cell in the buffer. For this

reason, I will call the buffer mechanism a random access buffer, thus the

mechanism described in this section can be termed a random access,

compacting buffer.
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The command Read(i) causes the buffer to return the item in cell

x[i] as long as x[i] is occupied, i.e. as long as i 5 limit, where limit is the

index of the last occupied cell. If x[i] is not occupied, i.e. i > limit, then

the buffer will take successive "unused" items from an input list (see below)

and insert these items into successive unoccupied cells until x[i] is occupied,

at which point its contents are returned.

Associated with the buffer is an auxiliary linear list called an input

list, into which some external process places the items which are to be input

into the buffer. The buffer maintains a pointer into this list, initially

pointing to the first element in the list, and inserts the item pointed at into

the buffer whenever it needs to fill an unoccupied cell, as described above.

It does this using the auxiliary buffer command Input (i), for which pseudo-

code is given in Figure 3.5 below. The buffer increments this pointer each

time it "uses" an item in the input list. The buffer also has the index of

the last occupied cell in the input list; it is an error to cause the buffer to

attempt to read past the end of the input list. In the pseudo-code below, the

contents of the cells of the input list are the values the input-list[i], the

pointer into the input list is the value of input-pointer, and the index of

the last occupied cell in the input list is input-limit.

The command Delete(i) deletes the item in cell x~i] by shifting the

contents of all occupied cells to the right of x[i] one cell to the left

(thinking of x[1] as the leftmost cell), thus filling x[j] with the data item

previously in x[j+1], for i 5j < limit. I will say that the Delete operation
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compacts the buffer to refer to the fact that after the contents of x[i] have

been deleted, the previous contents of x[i-1] and x[i+1] are in adjacent

buffer cells.

The command Insert(w,i) inserts w into cell x[i] by shifting the

contents of x[i] and of all cells to the right of x1] one cell to the right and

then inserting w into x[i].

Read (i)
tag:

Input

if i c limit then return x[i]
if i > n then error
if limit < i < n then

Insert (input (), x[limit+1])
go to tag

if input-pointer > input-limit then error
input-pointer <- input-pointer + 1
return input-listli)

Delete (i)
if i > limit then error
for k = i + 1 step 1 until k = limit

x[k] <- x[k+1)
limit <- limit - 1

Insert (w,i)
if i > limit + 1 then error
for k = limit step -1 until k < i

x[k+1] <- x[k]
limit <- limit + 1
x[i] <- w

Initially:
limit = 0
input-pointer = 0
input-limit = (the index of the last occupied cell in input-list)

Figure 3.5 - Pseudo-code for the buffer commands.
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A Buffer with Offset

While the buffer mechanism presented above will suffice for the

construction of the basic parser model that will be presented in the

remainder of this chapter, and in the immediately following chapters, the

complete parser model will require one further extension of this mechanism.

This extension will cause the index given to the Read, Insert, and Delete

commands to refer to a cell whose location is offset from the beginning of

the buffer by some fixed amount. This offset is specified by a new

command Offset(j), which causes the offset parameter m to be set to the sum

of j plus the old value of the offset parameter. (The offset parameter m is

initially stipulated to be 0.) After a command of this form has been executed,

the command Read(i), for example, will return the item in cell x[i+m] rather

than the item in cell x[i]. (This offset mechanism will ultimately be used

to allow the parser to "shift its attention" from the beginning of the buffer

to the beginning of a suspected noun phrase by offsetting the buffer by an

appropriate amount.)

The offset mechanism will in fact be coupled to a push-down stack

of such offsets, so that offsets may be pushed and popped from the stack.

This stack, the third data structure of the full parser model, will be referred

to as the buffer pointer stack, or, more often, just as the pointer stack.

The current offset parameter m is thus the offset at the bottom of the buffer

pointer stack, again thinking of the stack as growing downward. This means

that two new commands are needed for this extended buffer mechanism:

Offset(j): Push the sum of j and m, the current value of the bottom
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of the pointer stack, onto the pointer stack, making me the new
offset.

Pop-offset: Pop the current value off the pointer stack, making the
previous value pushed onto the stack the current offset. If the top
of the stack has already been reached, executing this command
causes an error.

By stipulating that the stack is initialized with an offset parameter of 0, this

extended mechanism will behave exactly like the buffer mechanism presented

above as long as no Offset commands are executed.

Note that the Read, Insert, and Delete commands are constrained even

in this extended buffer model to take only positive buffer indices. Thus, if

the current offset is m, there is no way to read, insert or delete any item in

cells x[i], for i s m. Furthermore, since no mechanism is provided to

examine the pointer stack itself, there is no way to even note whether there

is any offset at all, e.g. whether the command Read (1) will return the item

in x[1] or some other cell. Because it will often be useful to refer to the

effective beginning of the buffer, i.e. the cell whose contents are returned

by the command Read(1), I will often use the terms the effective buffer

start to refer to this cell. When discussing the extended buffer model, this

cell will be referred to as "the first buffer cell", rather than the absolute

first cell in the buffer; in general, "the ith buffer cell" will refer to the

cell whose contents are returned by the buffer command Read (I) rather than

the cell x[i].

Below in Figure 3.6 is pseudo-code which specifies the operations

performed by the three basic commands in this extended model.
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Given that m is the value at the bottom of the pointer stack:

Read (i)
tag: if i+m : limit then return x[i+m]

if i'm > n then error
if limit < i+m : n then go to tag

Delete (i)
if i+m > limit then error
for k = i+m + 1 step 1 until k = limit

x[k] <- x[k+1]
limit <- limit - 1

Insert (wi)
if i+m > limit+1 then error
for k = limit step -1 until k < i+m

x[k+1] <- x[k]
limit <- limit + 1
x[i+m] <- w

Figure 3.6 - Pseudo-code for the buffer commands given an offset m.

The Buffer as Utilized by the Parser

The virtual machine model presented above is very general; details

like the length of the buffer, what the data items in the buffer are, etc.

remain to be specified for the buffer mechanism utilized by the parser.

As mentioned above, the complete parsing mechanism will be

developed in two steps: the mechanism presented in this chapter assumes

that noun phrases enter the buffer fully parsed, the complete parser extends

this mechanism in such a way that noun phrases are built in a manner

which is transparent to the sorts of "clause-level" processes that will be

discussed in this chapter. In the full parser, the buffer is stipulated to be

five cells long for empirical reasons that will be discussed in Chapter 8.

However, the parser is further constrained such that it can only access the
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first three cells after the offset, again for empirical reasons: this is done by

stipulating that the parser can only use the indices 1,2,3 in commands to the

buffer. The simplified mechanism presented in this chapter differs from the

complete model primarily in that the offset mechanism does not come into

play. Given the stipulation that only the first three cells after the offset

can be accessed, this means that for the time being the reader can think of

the buffer as being exactly three cells long.

Each cell in the buffer can hold a grammatical constituent of any

type, from a single word to a complete subordinate clause. The input list in

the parser holds lexical items that have undergone morphological processing,

thus, from the point of view of grammatical processing, lexical items enter

the end of the buffer on demand. It should be noted that each buffer cell

can hold exactly one constituent, no more and no less, where by constituent

I mean any tree that the parser has constructed under a single root node.

The size of the structure underneath the node is immaterial; both "that" and

"that the big green cookie monster's toe got stubbed" are perfectly good

constituents once the parser has constructed the latter phrase into a

subordinate clause. After the parser has decided that the current active node

is complete, it is always free to insert that node into a single buffer cell and

then pop the node from the active node stack if it does not know what

higher level structure the newly completed current active node is attached

to. (This will be discussed in far more detail below.) The crucial point is

that once such a constituent has been constructed, the size of the tree under

the root node is totally irrelevant.
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Building Structure is Irrevocable

The key limitation on what the parser can build as a single

constituent and then drop into the buffer is thus not the length of the

constituent, but rather the fact that there is no facility within the grammar

interpreter for backtracking of any kind. The only way the parser can

construct a constituent is to attach all subconstituents to the topmost node of

that constituent; there are no registers or other mechanisms that the parser

can use to declare the bounds of a constituent while storing its pieces until

the parser is sure of their role. The parser must be absolutely sure that the

structure it is going to assign to a constituent is correct before building it.

Thus, the parser can build a constituent only at the peril of being mistaken

about its internal structure. A further restriction on the parser is that

feature assignment as well as node attachment is permanent; features can be

added to a node but not removed.

This is the sense in which this parser can be said to be

deterministic, that the structure assigned to any constituent in terms of

subconstituent attachment and feature labelling is final and irrevocable. The

ability to buffer constituents potentially gives the parser a great deal of

information to use in deciding what higher level role should be assigned to a

constituent, but there is no recourse should the parser make a wrong

decision.

The Buffer and the Stack Reflect Different Aspects of the

Parser's Operation

The reader might wonder why it is that the parser is based upon
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two, rather than one, data structures.

Most parsers work in one of two modes: top-down (hypothesis

driven) or bottom-up (data driven). For each of these modes, there are data

structures that are natural and convenient. Thus, a push-down stack is a

natural data structure upon which to base a top-down parser. Such a parser

is constantly attempting to add subconstituents to some specific node in the

parse tree, which it does by postulating a subconstituent of that node and

recursively repeating the process until it postulates as a subconstituent some

terminal category that can be checked against the input string. This can be

naturally implemented by using a push-down stack, treating the node most

recently pushed onto the stack as the node to which subconstituents must be

added. For each possible subconstituent of that node, a node of the

appropriate type can be pushed onto the stack, and the mechanism, if

appropriately constructed, will automatically attempt to complete it in similar

fashion. When a node is complete, it can be popped from the stack and

attached to its immediate predecessor on the stack, after which the parser

will automatically continue to add further constituents to its predecessor.

Similarly, for a bottom-up parser, the data structures which are

most natural are those which allow easy access to contiguous constituents.

Such a parser typically operates by attempting to incorporate a sequence of

contiguous constituents into a higher level constituent, repeating the process

until a root node has been constructed that incorporates all the terminals in

the input string. (See, for example, the Cocke-Kasami-Younger algorithm

[Aho & Ullman 72] and Pratt's elegant modification of that algorithm [Pratt
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75).) One of the key operations in such a parser is the process of examining

a sequence of contiguous constituents in the course of establishing whether

or not they form some higher level constituent. A data structure that allows

random access to contiguous constituents is the natural choice for

implementing such a process.

The parser that is the central focus of this document has both top-

down and bottom-up aspects, and for this reason it is most clearly

conceptualized as using two different data structures.

The active node stack captures the top-down aspect of the parser. A

node is pushed onto the active node stack when the parser is actively

attempting to find its subconstituents, to add to its internal structure.

However, even here, rather than postulating possible sub-constituents of the

current active node and then attempting to complete their internal structures

in a purely top-down manner, the parser activates a number of pattern-action

rules that attempt to recognize and then build subconstituents of the current

active node by examining contiguous sequences of constituents in the buffer.

The activation of rules which recognize appropriate subconstituents for a

given current active node is a top-down process, while the triggering of

these rules once activated is bottom-up. Thus, this process itself has both

bottom-up and top-down aspects. (By "activate", I mean that the grammar

interpreter will only attempt to match rules that are declared to be "active".

The operation of the parser will be specified in detail in the following

chapter. The discussion here is meant to give only a quick sketch of the

parser's operation.)
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Constituents can also be initiated in a purely bottom-up manner by

pattern-action rules that are always active regardless of the features of the

current active node. Such a rule recognizes the presence of a constituent by

noting a sequence of buffered subconstituents that starts a given sort of

constituent regardless of the current grammatical environment. However,

once a constituent is started by such a rule, it is pushed onto the active node

stack where the parser will then operate in the mixed mode described

immediately above, attempting to complete its internal structure by activating

pattern-action rules appropriate for that type of node.

In short, the parser maintains two different sorts of data structures

because each is a natural structure for one aspect of the parser's operation.

The active node stack contains nodes to which the parser is attempting to add

daughters, an essentially top-down process; the buffer contains nodes for

which the parser is attempting to find a father, an essentially bottom-up

process. While there are single data structures which can be used for both

types of operation, such as Martin Kay's charts [Kay 73]. using two separate

data structures helps to keep the two aspects of the parser's operation

conceptually clear.

A Snapshot of the Parser

Figure 3.8 is a snapshot of the parser, providing an overall view of

the parser's data structures. It was taken while the parser was processing

the sentence 3.7 at the point when the parser has seen the initial segment

"John should have scheduled...":
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3.7 John should have scheduled the meeting.

At this point there are two nodes in the active node stack, an S node, Si,

and the current active node, AUX1. There are two constituents in the buffer,

WORD3, the verb "have", and WORD4, the verb "schedule".

The Active Node Stack

S1 (S DECL MAJOR)
NP : (John)

C: AUX1 (MODAL PAST VSPL AUX)
MODAL : (should)

The Buffer

1 : WORD3 ("HAVE VERB TNSLESS AUXVERB PRES V-3S) : (have)
2 : WORD4 ("SCHEDULE COMP-OBJ VERB INF-OBJ V-3S

ED=EN EN PART PAST ED) : (scheduled)

Yet unseen words: the meeting .

Figure 3.8 - A snapshot of the state of the parser.

Before explaining this figure in detail, a few words about the

representation of parse nodes in this and following snapshots will be helpful.

The buffer will be displayed vertically with x[1] on top, with the absolute

index of the cell on the far left. Each node in the buffer is represented in

the diagram by a configuration of the form of Figure 3.9.a, while each node

in the active node stack is represented by a configuration of the form of

3.9.b:
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(<nodename> <features> : <terminal word string>
(a) - The representation of nodes in the buffer

(nodename> <features>
<type of daughter> : <terminal string under daughter>

<type of daughter> (:terminal string under daughter>
(b) - The representation of nodes in the active node stack

Figure 3.9 - Node configurations in parser snapshots.

At the instant that the snapshot of Figure 3.8 was taken, the parser

is in the process of building AUX1, the current active node, which is an

AUX (auxiliary) node with the word "should" attached as a MODAL. This

node has been labelled with the person feature VSPL (i.e. this verb agrees

with any NP, either Singular or PLural) and the tense feature PAST (past

tense). (An auxiliary is more or less the clump of helping verbs that

precedes the main verb of a clause, plus the tense marking of the entire verb

cluster.) The node Si, a DECL (declarative) MAJOR S (sentence) with the NP

"John" attached to it, has been pushed into the interior of the active node

stack. The first position in the buffer is filled by WORD3, the VERB "have",

with the root HAVE ( 3 have is a feature meaning "has the root have"). It can

be an AUXVERB (an auxiliary verb, i.e. a "helping verb"), and it can either

be a tensed verb with the features V-3S (it agrees with any NP that is not

3rd singular) and PRES (present tense) or it can be TNSLESS (tenseless). The

second word in the buffer is WORD4 "scheduled", which is labelled COMP-

OBJ, INF-OBJ (it takes infinitive phrases as complement objects), ED, EN,

ED=EN (this verb is the "ed" form of the verb, but since the "en" and "ed"

forms are equivalent, it is also the "en" form, and PART (participle).
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The Basic Operations of the Parser

At each point in the parsing process, there are fundamentally only

three things that the parser can do in terms of building structure:

1) The parser can attach a constituent in the buffer to the current

active node (which I will henceforth refer to as C). The parser attaches a

node X to a node Y by making X the rightmost daughter of Y; i.e. it right-

adjoins X to the rightmost daughter of Y, in the sense of Peters & Ritchie

[Peters & Ritchie 73]. In the simplified parse model presented here, as soon

as the grammar interpreter notices that a constituent in some cell x[i] in the

buffer has been attached, it removes it from the buffer by executing the

command Delete(i). Most often, grammar rules will use the buffer as if it

were a first-in, first-out mechanism, thus the first constituent in the buffer,

rather than the second or third constituent, will most commonly be the

constituent attached to C.

2) The parser can decide that the first constituent or constituents in

the buffer begin a new constituent, in which case it will create a new

active node. A node is created by pushing a new node of a specified type

onto the active node stack, which means that each new node immediately

becomes C, the current active node. A newly created node has a previously

unused name, and no properties other than its type; it has no daughters, no

father, and no features, although it may be attached immediately after its

creation (see immediately below). The parser is then free to attach.

constituents to this new active node and to assign it features.
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3) The parser can decide that the current active node is complete,

and pop it from the active node stack, resulting in one of the two following

configurations:

The parser often knows exactly what the higher level role of a

constituent is at the time that the node is first created. In this case, the

parser can attach the newly created node to the old current active node at

the instant of its creation. This happens before the active node stack is

pushed, and the new node itself becomes C. When this node is completed and

popped off of the stack, it remains attached to its parent, as would be

expected.

Sometimes, however, the parser can be sure that the constituents in

the buffer begin a higher level constituent of a given sort without knowing

what the higher level role of that constituent is. Often the problem is that

the parser cannot be sure that the newly created node attaches to the node

immediately above it on the stack. This happens, for example, when the

newly created constituent may in fact attach to some active constituent above

its immediate predecessor on the stack. In this case, the newly created node

pushes the stack and becomes C, but without being attached to any higher

node at all.

When such a node is completed and popped from the stack, it surely

cannot remain hanging from its nonexistent parent node. Instead, the

grammar interpreter inserts the node into the first buffer cell by executing
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the instruction Insert(C,1), and then popping the node from the stack, a

composite operation which I will call dropping a node into the buffer.

Usually, this occurs immediately after the last daughter of the node has been

attached, so the node can be thought of as filling the buffer position that its

last daughter just vacated. The grammar interpreter does not provide explicit

commands in the grammar writing language for inserting nodes on the active

node stack into the buffer, nor for popping a node from the active node

stack, thus this operation of dropping C into the buffer is the only operation

the interpreter allows for moving constituents from the active node stack

into the buffer. The grammar interpreter has been constrained to only allow

constituents to be inserted into the first buffer cell because, empirically, it

seems that the extra degree of freedom is simply not necessary.

A good example of this sort of situation is the problem of

prepositional phrase attachment. In sentence 3.10.a, for example, the parser

can be sure that "with" starts a prepositional phrase when this word enters

the buffer, but it cannot possibly decide at that time whether the resulting

PP should be attached to "the man" (the correct reading here) or to the

clause itself, as is the most plausible reading of 3.10.b.

3.1 O.a I saw the man with the red hair.

3.1 Q.b I saw the man with the telescope.

To solve this attachment problem deterministically requires access to

some sort of semantic (or if the reader prefers, pragmatic,) reasoning

capability, but a necessary precursor to the application of this knowledge is

the ability to first parse the prepositional phrase independent of its higher
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level role. This part of the problem can be solved simply by creating an

unattached PP node when the preposition comes into the first buffer position.

attaching its preposition and object, and dropping the resulting PP into the

buffer, where whatever rules will bring non-syntactic knowledge into play

can examine the PP at their leisure.

Another good example of a situation of this sort is provided by 1.1.

repeated here as 3.11

3.1 1.a Is the block sitting in the box?
3.11b Is the block sitting in the box red?

In these sentences, as discussed at length in Chapter 1, the function of

"sitting in the box" cannot be decided until the following grammatical

context can be examined. But note that in either case, we can be sure that

"sitting in the box" can be parsed as a VP. This VP can then be attached as

either the VP of a relative clause attached to "the block", or as the VP of

the major clause itself.

The ability to parse a constituent before its higher level grammatical

role can be determined and then drop that constituent back into the buffer is

exactly the mechanism needed to cut through the seeming nondeterminism of

the problem above. The full solution will be formulated in a later chapter,

but I will sketch the general outline of the solution here. (I will take some

liberties with the sketch to avoid some details of the parser that have not

yet been discussed.)

I will assume here that the parser has recognized that the input
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sentence is a yes-no question, with "is" as auxiliary. I will also assume that

the parser is in the process of parsing the NP beginning with "the block"

when it encounters the participle "sitting" in the buffer. I will also assume

that the parser has already attached the incomplete NP "the block" to the

clause as subject.

Given these assumptions, the parse can solve the participial phrase

problem by proceeding as follows: First, the parser builds an unattached VP

with the participle as main verb. When this VP is complete (ignoring here

the general problem of how this is to be decided), the parser drops it back

into the buffer, where it will take up the first of the three buffer positions.

Now the parser can examine the constituent that follows the participial

phrase. If the following constituent can serve as the main predicate of the

clause (as "red" can), then the parser should attach a reduced relative clause

to the NP which will be the current active node at this point, and attach

the participial phrase as its VP. If the following constituent cannot serve as

the main predicate of the clause (as "?" certainly cannot), then the parser

should complete the NP by popping it off of the active node stack, leaving

the S node as the current active node. The parser can then attach the

participial phrase as the VP of the major clause, and continue on its way.
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CHAPTER 4

THE STRUCTURE OF THE GRAMMAR

Introduction

In the previous chapter, I discussed the structure of the grammar

interpreter itself. In this chapter, I will first discuss the format for

grammars that this interpreter expects, and then some of the details of a

particular grammar for English written for this mechanism. The emphasis

here will not be on the complexities of the grammar, but rather on the form

of the grammar in broad outline and on the details of interpreting such a

grammar.

To this end, the last two-thirds of the chapter consists of two

examples of increasing complexity. The first discusses the parsing of an

auxiliary phrase, involving only a small handful of simple grammar rules.

This example primarily stresses the details of the interpreter's functioning.

The second example traces the parsing of a simple declarative sentence. Here

the focus is not only on the functioning of the interpreter, but also on the

overall organization of a set of grammar rules sufficient for parsing an entire

sentence, albeit a simple one. The reader should be warned that these

examples discuss the parsing process in fine detail, and therefore are fairly

lengthy; in subsequent chapters I will assume that the reader is familiar

with these details, and will focus on the details of a grammar of English

written within this framework.
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The Grammar

A grammar for this parser is made up of pattern/action rules, and

can be viewed as an augmented form of Newell and Simon's production

systems [Newell & Simon 72]. Each rule is made up of a pattern, which is

matched against some subset of the constituents of the buffer and the

current active node, and an action, a sequence of operations which acts on

these constituents. Each rule is assigned a numerical priority, which the

grammar interpreter uses to arbitrate simultaneous matches. The grammar as

a whole is further structured into rule packets, clumps of grammar rules

which can be turned on and off as a group; the grammar interpreter only

attempts to match rules in packets that have been activated by the grammar.

These rules are written in a language called PIDGIN, an English-like formal

language that is translated into LISP by a simple grammar translator based on

Pratt's notion of top-down operator precedence [Pratt 73]. Figure 4.1 gives a

schematic overview of the organization of the grammar.
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The grammar:
Packets Of Pattern/Action Rules
Matched Against The Buffer, the Current Active Node,

and the Current Cyclic Node
Ordered By Priority

Priority Pattern Action
Description of:

1st 2nd 3rd C
PACKET1

5: ( J [: [ J -- > ACTION1
10: ( J [ J ->ACTION2
10: C ] [ [ C [I I -- >ACTION3

PACKET2

10: C I C I ->ACTION4
15: C [ C I [>ACTION5

PACKET3
5: [ I [ ] ->ACTION6
15: C I C I I -- >ACTION7

THE BUFFER:

I 1est | 2nd 1 3rd I

Figure 4.1 - The structure of the grammar.

Grammar Rules

The pattern of a grammar rule is made up of a list of partial

descriptions of parse nodes which must all be fulfilled if the pattern is to

match. There can be up to five partial descriptions in each pattern: one to

match against each of the three nodes in the buffer, and two to match

against the two accessible nodes in the active node stack, the current active

node and the current cyclic node. (Actually, the grammar notation is such

that the two node specifications which are matched against the stack are

combined into one pattern.) Each description is made up of a Boolean
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combination of tests for given grammatical features, equivalent in power to

an arbitrary expression in the propositional calculus (as distinguished, of

course, from the predicate calculus). Each description can also include

boolean feature tests on the daughters of the target node; the grammar

language provides a tree walking notation for indicating specific daughters of

a node. While this richness of specification seems to be necessary, it should

be noted that the majority of rules in even a moderately complex grammar

have patterns which consist only of tests for the positive presence of given

features.

Rule actions consist of rudimentary programs that do the actual

work of building constituent structures. These actions are built up of

primitives that perform such actions as:

-creating a new parse node.

-inserting a specific lexical item into a specific buffer cell.

-attaching a newly created node or a node in the buffer to the current
active node or the current cyclic node, causing the grammar
interpreter to remove the node from the buffer.

-popping the current active node from the active node stack, causing it
to be dropped into the buffer if it is not attached.

-assigning features to a node in the buffer or one of the accessible nodes
in the stack. (PIDGIN also provides an operator which returns a
pointer to a specific daughter of a given node (specified by type),
allowing features to be assigned to these nodes as well.)

-activating and deactivating packets of rules.

PIDGIN also provides primitives from which boolean tests of the features of a

node can be constructed, as mentioned above. These predicates can be used

within conditional "if...then...else..." expressions to conditionally perform
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various operations.

With the exception of allowing conditional expressions, PIDGIN rules

fall into the simple class of programs that Goldstein [Goldstein 74] calls

fixed-instruction programs. The PIDGIN language imposes the following

constraints on rule actions:

1) There are no variables within the rule actions. The constituents

in the first three buffer cells are available as the values of the parameters

Zst, 2nd and 3rd within each rule, but these parameters are given values by

the grammar interpreter before each rule action is called, and are not

resettable within an action. The values of the parameters C and the current

cyclic node do change within a rule as nodes are pushed and popped from

the active node stack, but their values cannot be set by a grammar rule.

2) PIDGIN allows no user-defined functions; the only functions

within actions are PIDGIN primitives. (There is a limited ability for a rule

to circumvent the pattern-matching process by explicitly naming its

successor, but this is formally only a device for rule abbreviation, since the

specification of the successor rule could simply be replaced with the code for

the action of the rule named.)

3) While conditional "if...then....else..." expressions are allowed,

there is no recursion or iteration within actions.

4) The only structure building operations in PIDGIN are a) attaching
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one node to another, and b) adding features from a node's feature set. In

particular, the list building primitives of LISP are not available in PIDGIN.

For a complete specification of PIDGIN, see Appendix B.

Each grammar rule is assigned a numerical priority; these priorities

impose a partial ordering on the rules in the grammar. (Priorities are

assigned as non-negative integers, with 0 the highest priority.) At each

point in the parsing process, the parser executes the action of the rule of

highest priority whose pattern matches. If there is more than one rule with

this priority that matches, then the parser is free to arbitrarily choose one of

them. (If this happens, presumably, the rules involved do not interact with

each other, the other rules will be executed on following pattern matches,

and thus the order of their execution is irrelevant.) In the present grammar,

with a few exceptions, three numeric values that correspond roughly to

high, low, and normal priorities seem to suffice to order the grammar rules.

Most often, this priority mechanism is used when the pattern of a rule R is

a further specification of the pattern of a rule R2. In this case, R, will only

match if R 2 does as well, and yet in such a situation it is almost always

true that the rule with the more detailed pattern should be executed. By

giving R, a higher priority than that assigned to R 2, the grammar interpreter

will execute R, when both rules potentially match. During the pattern

matching process, words enter the end of the buffer as they are needed, so a

rule is never blocked from matching because the buffer does not contain

sufficient constituents to match its pattern.
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Note that instead of this numeric priority scheme, priorities could

have been implemented by explicitly representing pairwise which rules have

priority over other given rules if more than one rule can potentially match.

In essence, the numeric scheme used here is a compiled form of such a

pairwise scheme.

Packets of Rules

The grammar as a whole is structured into packets of rules, each of

which is activated or deactivated as a unit. This packeting mechanism

allows the parser to dynamically add and remove rules from the active

grammar during the course of processing a sentence. This is useful because

most grammar rules are applicable only under particular circumstances which

usually reflect global properties of the structures built up so far. At any

time, the parser only attempts to match rules in active packets, thus ignoring

all rules known to be irrelevant to the current global environment. (This

notion of packets derives here from [Fahlman 73]; the idea of segmenting

sets of productions (into "run modes") appeared independently in the PAS-II

system of Waterman and Newell [Waterman & Newell 73].)

To see how the rules in the grammar are partitioned into packets,

consider Figure 4.2 below. Under each of the two simple phrase structure

rules given are the names of the packets that can be thought of as being

associated with that node. (The symbol COMP in (2) stands for the various

NPs, PPs and Ss that can complete a VP.) Packets associated with the left

hand side of a rule include rules that are generally applicable while parsing
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the subconstituents to the right hand side of the rule; packets associated

with a symbol on the right hand side of a rule either initiate a constituent

of that type or handle grammatical phenomena that are best considered at

approximately that point in the parsing process.

1) S -> NP AUX VP (PP)*

CPOOL PARSE-SUBJ PARSE-AUX PARSE-VP SS-FINAL
EMB,-S-FINAL

2) VP -> VERB COMP

SUBJ-VERB SS-VP, EMBEDOED-S-VP
LH-VP, INF-COMP
THAT-COMP, ...

Figure 4.2 - Packets can be associated with phrase structure rules.

Here are some examples of the types of rules contained within

some of the packets shown in Figure 4.2:

-The packet PARSE-SUBJ contains the grammar rules which pick out

the subjects of various types of clauses.

-The packet CPOOL contains rules that are active whenever any

clause level constituent (as opposed to an NP) is being parsed. It contains

rules that start NPs, pick up adverbs, and the like.

-SS-FINAL contains rules that attach final PPs (and the like) to

simple sentences; EMB-S-FINAL is similar, except that it contains rules that

must decide whether a given PP attaches to an embedded clause currently

Chapter 4 92



The Grammar

under construction or to some higher level constituent. Exactly one of these

two packets will be activated for any given clause.

-The packets WH-VP, EMBEDDED-S-VP, and SS-VP all parse the

objects of the verb as well as PPs dominated by the VP node; they differ in

that the first is activated for clauses which have WH-heads that must be

"put back" (i.e. for clauses which are WH-questions, relative clauses, etc.),

the second for embedded clauses that are not relative clauses or indirect

questions, and the third for major clauses that are not WH-questions.

-The packets INF-COMP and THAT-COMP contain rules that initiate

infinitive complements and that complements. Note that more than one

packet will often be active to pick up the objects and complements of a verb,

since many verbs (e.g. "believe") can take either a simple object or any of

various sorts of complements.

(It should be noted that the explicit association of packets with node

types in phrase structure rules is not part of the current implementation of

the parser. This association could be made explicit, I believe, relegating the

question of packet switching, currently done explicitly in grammar rules, to

the grammar interpreter. This potential extension of the parser is also

interesting in that it would add a component analogous to the generative

grammarian's base component to the parsing model. As it is, this component

can be considered to implicitly exist in the current parser. A characterization

of the set of grammar rules introduced in this chapter will be given at the

end of the chapter in the form of a diagram like that shown in Figure 4.2
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above; such a diagram can be considered as the equivalent of an ATN

transition diagram for this sort of parser.)

Given this motivation for partitioning the grammar rules into

packets, it should not be surprising that a packet is not activate.d or

deactivated globally, but rather with respect to a given active node.

Associated with each node in the active node stack is a set of packets to

which grammar rules can add or subtract packets. These packets will be said

to be associated with that active node. When an active node is the current

active node, the packets associated with that node are also active, in that the

grammar interpreter will attempt to match the rules in those packets and

only those packets. Thus, whenever the active node stack is popped and a

node previously pushed into the stack becomes the current active node, all

the packets previously associated with that node become active. If a new

node is created, pushing the previous current active node back into the stack,

the packets associated with the previous current active node are no longer

active until either they are associated with the new current active node or

the new node is popped off the stack, restoring the old current active node

to the bottom of the stack.

Figure 4.3 below is a more complete version of the snapshot shown

in Figure 3.8. The packets associated with each active node are shown after

the node description, following a slash. At the time this snapshot was taken,

the packets PARSE-AUX and CPOOL have been associated with S1, the top

level clause. The packet BUILD-AUX, associated with AUX1, the current

active node, is the only packet active. The rules in this packet, written in
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PIDGIN, are shown in Figure 4.4; the rule PERFECTIVE had matched and was

about to be run when the snapshot was taken.

The Active Node Stack (1. deep)

S1 (S DECL MAJOR S) / (PARSE-AUX CPOOL)
NP : (John)

C: AUX1 (MODAL PAST VSPL AUX) / (BUILD-AUX)
MODAL : (should)

The Buffer

1 : WORD3 ("HAVE VERB TNSLESS AUXVERB PRES V-3S) : (have)
2 : WORD4 ("SCHEDULE COMP-OBJ VERB INF-OBJ v-3s

ED=EN EN PART PAST ED) : (scheduled)

Yet unseen words: the meeting .

Figure 4.3 - A set of packets is associated with each active node.

(RULE PERFECTIVE PRIORITY: 10. IN BUILD-AUX
="have] [=en] -- > Attach 1 st to c as perf. Label c perf.}

(RULE PROGRESSIVE PRIORITY: 10. IN BUILD-AUX
[=be] [=ing] -- > Attach 1st to c as prog. Label c prog.)

(RULE PASSIVE-AUX PRIORITY: 10. IN BUILD-AUX
[="be] [=en] -- > Attach 1st to c as passive. Label c passive.)

(RULE MODAL PRIORITY: 10. IN BUILD-AUX
[=modal] [=tnsless] -- > Attach 1st to c as modal. Label c modal.)

(RULE DO-SUPPORT PRIORITY: 10. IN BUILD-AUX
[= 1do] [=tnsless] -- > Attach 1st to c as do.)

(RULE AUX-COMPLETE PRIORITY: 15. iN BUILD-AUX
[t] -- > Drop c into the buffer.)

Figure 4.4 - Some rules that build auxiliaries.
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The grammar rules above should be by and large self-explanatory,

but a few comments on the grammar notation are in order. The general

form of each grammar rule in this example is:

(Rule (name> priority: <priority> in (packet>
<pattern> -- > <action>)

Each pattern is of the form :

[<description of 1st buffer constituent> [(<2nd>] (<3rd>]

The symbol "=", used only in pattern descriptions, is to be read as "has the

feature(s)". Features of the form "'<word>" mean "has the root <word>", e.g.

"'HAVE" means "has the root "have"". The tokens "1st", "2nd", "3rd" and "C"

(or "c") refer to the constituents in the 1st, 2nd, 3rd buffer positions and the

current active node, respectively. (I will also use these tags in the text

below as names for their respective constituents.) The "t" used in the

pattern of AUX-COMPLETE is a predicate that is true of any node, thus "[t)-"

is the always true description. The PIDGIN code of the rule actions should

otherwise be fairly self-explanatory.

The rules used here and in the first example which will be

presented in the following sections are taken from a fairly large grammar,

and are not "toy" rules. However, this first example has been carefully

chosen so that only rules that use a small subset of PIDGIN are involved.

These rules should not be taken as representative in their simplicity. The

final example presented in this chapter will use rules more representative in

their complexity.
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The Packeting Mechanism is Redundant

While the division of the grammar into packets increases both the

perspicuity of the grammar and the efficiency of the pattern matching

process, it should be noted that the packeting mechanism is not, strictly

speaking, necessary. While each packet reflects some global property of the

grammatical structure currently under construction, this property can without

exception be detected by a boolean combination of feature tests on nodes

accessible to a grammar rule. In this sense, each packet can be considered to

be a shorthand for a predicate testing global properties of the structure under

the current cyclic node. For example, the pattern of each rule in the packet

PARSE-SUBJ mentioned above could test to see if there was an NP under the

current S node; these rules are only applicable if there is no such NP.

Similarly, the patterns of rules in packet SS-FINAL could include a test for

the presence of a VP node under the current S, and the rules in packet

CPOOL would include no such test at all.

To note that the packeting mechanism is not a necessity is not to

say that this mechanism is purely an efficiency measure. First of all, the

division of the grammar into packets of rules adds perspicuity to the

grammar and aids in conceptualizing how the grammar operates. Secondly,

the packeting mechanism is made redundant only by the availability of

powerful operations that allow grammar rules to: 1) examine much of the

tree structure built up so far, 2) to test for the presence and absence of

daughters of a given type attached to a given node, and 3) to perform

arbitrary boolean feature tests on the accessible nodes. If it is possible to do

so while still capturing a concise grammar of English, one would like to
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further restrict the grammar mechanism by eliminating some of these

operations. In this sense, it is useful to think of the grammar mechanism

presented here as an extension of a simpler mechanism without some of these

operations, and therefore in which the packeting mechanism is a necessity.

In short, while the packeting mechanism is redundant, it is not entirely

peripheral.

In this regard, it is interesting to note that the states of an ATN are

redundant in exactly this sense, given the register mechanism that the ATN

model provides. All the state information in an ATN can be encoded into the

register mechanism, leaving a one-state ATN. To dispense with the states of

a given "source" ATN, the following procedure can be executed: First,

construct a one-state ATN with a register named Si corresponding to each

state S, in the source machine. For each arc ARC; in the original ATN, call

the state it leaves state Smta-. and the state it goes to state SOtof-i- Now, for

each arc ARC, in the original machine, construct an arc ARC in the one-state

machine whose test is identical to the test of ARC except that it also tests to

see that register Snlo.1 has been set non-zero. The action of ARC is identical

to the action of ARC except that it also 1) sets register -Sinto-i to zero and 2)

sets register Soutof., non-zero. This one-state ATN is initialized with all

registers S, set to zero, except for the register which corresponds to the

starting state of the original ATN.

It is clear that this one-state ATN encodes the state of the

equivalent multi-state ATN in its registers by simply setting, at each point in

the parsing process, exactly one of its "state registers" non-zero, corresponding
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to the state that the source machine is in at the analogous point in its

parsing process. While the state mechanism is essential for the underlying

finite state machine mechanism that the ATN extends, the addition of the

registers to the model has made the state mechanism redundant. Again, the

key point here is not that the states of an ATN should be discarded as

unnecessary, but rather that they play an important role in simplifying the

structure of the ATN's grammar and in conceptualizing the operation of the

machine.

An Example

To illustrate the operation of the parser I will trace the construction

of the auxiliary of sentence 4.5 repeated below, which was almost complete

when the snapshot in Figure 4.3 above was taken.

4.5 John should have scheduled the meeting.

We start our example with the parser in the state depicted in

snapshot 4.6. At this point, S1 is the current active node, and WORD2

"should" is in the 1st buffer position. The NP "John" has been attached to

node Si as its subject. The packets PARSE-AUJX and CPOOL are both

associated with the current active node, and thus both are currently active.

(The packet CPOOL does not enter into our example and it will be ignored

below.)
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About to run: STARTAUX

The Active Node Stack ( 0. deep)

C: S1 (S DECL MAJOR S) / (PARSE-AUX CPOOL)
NP : (John)

The Buffer

1 WORD2 ("SHOULD VERB AUXVERB MODAL VSPL PAST) : (should)

Yet unseen words: have scheduled the meeting .

Figure 4.6 - Before the auxiliary is initiated.

The active packet PARSE-AUX, shown in Figure 4.7 below, contains

three rules: START-AUX, TO-INFINITIVE, AND AUX-ATTACH. The first two

of these rules initiate the building of two different sorts of auxiliaries; the

third rule attaches completed auxiliaries to the dominating S node. Since the

three rules are all of the same priority, priority considerations have no effect

on the pattern matching process when only these rules are applicable. (Note

that the first two of these rules could equally well have been written so

that the AUX node was attached when created. They are written otherwise

mainly to illustrate the operation of the parser.)

The reader is reminded that Appendix B discusses the details of

PIDGIN syntax. Also, Appendix C contains a compendium of all the rules that

are mentioned in this chapter, organized by packet.

Given the contents of the buffer in Figure 4.6, the rule START-AUX

will match, since "should" is indeed labelled an AUXVERB. The rules AUX-

ATTACH and TO-INFINITIVE cannot match, since WORD2 is neither "TO, nor
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AUX. Since only START-AUX can match, it does match, and its action is run.

(RULE START-AUX PRIORITY: 10. IN PARSE-AUX
[=verb] -- >
Create a new aux node.
Label C with the meet of the features of 1st and vspl, v1s,

v+13s, vpl+2s, v-3s, v3s.
%(The above features are "person/number codes", e.g. "vpl+2s"
means that this verb goes with any plural or 2nd person singular
np as subject. The verb "are" has this feature.)%
Label C with the meet of the features of 1st and pres,

past, future, tnsless.
Activate build-aux.}

(RULE TO-INFINITIVE PRIORITY: 10. IN PARSE-AUX
[=to, auxverb] [=tnsless] -- >
Label a new aux node inf.
Attach 1st to c as to.
Activate build-aux.)

(RULE AUX-ATTACH PRIORITY: 10. IN PARSE-AUX
[=aux] -- >
Attach 1st to c as aux.
Activate parse-vp. Deactivate parse-aux.}

Figure 4.7 - Some rules that initiate and attach auxiliaries.

START-AUX first creates a new aux node, node AUX1 in fig. 4.8,

which thus becomes C, the current active node. Since this node is newly

created, no packets are associated with AUX1, i.e. no packets are active, until

START-AUX activates the packet BUILD-AUX, thus associating it with AUX1.

The rule action next labels the new aux node with the tense and

person/number features of 1st, WORD2, the auxiliary "should". It does this

by intersecting the features of WORD2 with a full set of person/number

features and labelling AUX1 with the resulting intersection. Similarly, the

intersection of the features of WORD2 and a full set of tense features is

added to the feature set of AUX1. This leaves C in the state shown in fig.
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4.8 below, with no daughters, but labelled with the tense feature PAST, the

person/number feature VSPL, and the type feature AUX.

It should be pointed out that the snapshots used in this example

were taken immediately before a rule action was about to run, after the

pattern matching process which triggered it, and not immediately after the

previous rule finished. While the active node stack is not affected at all by

the pattern matching process, the buffer is. Two things happen to the

buffer between the finish of one rule action and the beginning of the next:

1) After every rule action reaches completion, the grammar interpreter scans

the buffer to remove nodes attached by the previous rule action. 2) During

the pattern matching process new words enter the buffer as they are needed

to match against pattern descriptions. Thus, we will see in a moment that

WORD3, shown in the second buffer position in Figure 4.8, enters the buffer

during the pattern matching process following the completion of the action

of START-AUX.

About to run: MODAL

The Active Node Stack (1. deep)

S1 (S DECL MAJOR S) / (PARSE-AUX CPOOL)
NP : (John)

C: AUX1 (PAST VSPL AUX) / (BUILD-AUX)

The Buffer

1 : WORD2 (XSHOULD VERB AUXVERB MODAL VSPL PAST) : (should)
2 : WORD3 (T HAVE VERB TNSLESS AUXVERB PRES V-3S) : (have)

Yet unseen words: scheduled the meeting .
Figure 4.8 - After rule START-AUX has been run.
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Packet BUILD-AUX is now the only packet active. It contains the

rules shown in Figure 4.4 earlier in this chapter.

Note that as long as this packet is active, the rule AUX-COMPLETE

will potentially always match, since its vacuous description is met by any

constituent that fills the first buffer position. However, since AUX-

COMPLETE, with a priority of 15, has a lower priority than any other rule

in this packet, it will only match if the pattern of no higher prioritied rule

is fulfilled by the contents of the buffer. This rule, with always true

pattern and low priority, serves as a default action; when no other rule

applies, this rule will trigger, completing the auxiliary by dropping it into

the buffer.

After the action of START-AUX is complete, WORD2 "should" fills

the 1st buffer position and no constituent fills either 2nd or 3rd. The rule

MODAL is now the only rule in BUILD-AUX whose pattern is consistent with

the contents of the buffer, since WORDZ is labelled with the feature MODAL.

After the description of 1st in MODAL's pattern has been fulfilled, there is

now demand for the next word in the input string to fill 2nd, and WORD3,

"have", enters the buffer. WORD3 fulfills the description of 2nd in MODAL's

pattern, since it is labelled with the feature TNSLESS (tenseless). MODAL's

pattern thus matches, with the buffer now exactly in the configuration

shown in fig. 4.8 above.

The action of MODAL now runs, attaching WORD2 to AUX 1 as a
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MODAL, and labelling AUX1 with the feature MODAL. This leaves C as

shown in Figure 4.9.

About to run: PERFECTIVE

The Active Node Stack (1. deep)

S1 (S DECL MAJOR S) / (PARSE-AUX CPOOL)
NP : (John)

C: AUX1 (MODAL PAST VSPL AUX) / (BUILD-AUX)
MODAL : (should)

The Buffer

1 : WORD3 ("HAVE VERB TNSLESS AUXVERB PRES V-3S) : (have)
2 : WORD4 ("SCHEDULE COMP-OBJ VERB INF-OBJ v-3s

ED=EN EN PART PAST ED) : (scheduled)

Yet unseen words: the meeting .
Figure 4.9 - After rule MODAL has been run.

After MODAL is finished, the grammar interpreter notices that

WORD2 has been attached, and removes it from the buffer, thus leaving

WORD3, "have", as 1st.

The rule PERFECTIVE now matches, its pattern fulfilled by WORD3

with the feature OHAVE, and WORD4 "scheduled", entering the buffer on

demand, with the feature EN. (Note that the strong verbs of English, like

"scheduled", have "en" forms that are morphologically equivalent to their "ed"

forms, thus the feature ED=EN on WORD4.) The action of PERFECTIVE now

attaches WORD3 to AUX1, and labels AUX1 with the feature PERF. The

grammar interpreter, upon the completion of the rule, removes WORD3 from

the buffer, leaving the parser in the- state depicted in Figure 4.10, which is

the same state depicted in Figure 4.3 above.

Chapter 4 104



The Grammar

About to run: AUX-COMPLETE

The Active Node Stack ( 1. deep)

S1 (S DECL MAJOR S) / (PARSE-AUX CPOOL)
NP : (John)

C: AUX1 (PERF MODAL PAST VSPL AUX) / (BUILD-AUX)
MODAL : (should)
PERF : (have)

The Buffer

1 : WORD4 ("SCHEDULE COMP-OBJ VERB INF-OBJ v-3s
ED=EN EN PART PAST ED) : (scheduled)

Yet unseen words: the meeting .
Figure 4.10 - After the rule PERFECTIVE has been run.

The rule PERFECTIVE provides a good example of how the parser

uses the ability to buffer constituents to help decide what grammatical role a

constituent in the buffer fills.

At the instant the snapshot 4.9 was taken, the parser is implicitly

confronted with the problem of deciding if WORD3 "have" serves here as an

auxiliary verb, as in 4.11.1 below, or as the main verb of the clause, as in

4.11.2:

4.11.1 John had left yesterday.
4.11.2 John had a book.

Note that a simple test will serve to decide the issue, if the parser can only

look at the word following "have": if the following word has the features

VERB and EN then "have" is an auxiliary, otherwise it is the main verb of

the clause. WORD4, "scheduled", the second word in the buffer in this

example, does have the features VERB, and EN, so by this test "have" serves
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as auxiliary in our example.

Now note that the rule PERFECTIVE will match in exactly the case

when "have" or one of its forms is followed by a verb which fulfills the

perfective branch of the test above. The action of this rule will then attach

"have" as an auxiliary verb marking the perfective. Otherwise, the rule

AUX-COMPLETE will apply, completing the auxiliary without attaching

"have". Later rules will then interpret "have" as the main verb of the

clause.

It is thus the case that the simple rules shown in this example

embody the test discussed immediately above, but do so in an implicit form

that causes the right structure to simply "fall out" in most cases. There are

cases where this test fails, as in sentences like 4.12 below, causing the

parser to misparse its input, but most interestingly, most people will make

exactly the same mistake as the grammar presented here when first reading

such a sentence. For more on this sort of "diagnostic failure", see Chapter 9,

which discusses the phenomenon of "garden path sentences".

4.12 The store has assembled models, as well as kits, in stock.

Returning to our example, we now see that none of the rules in

packet BUILD-AUX with the normal priority of 10 can apply. Since no rule

of higher priority matches, the default rule AUX-COMPLETE triggers at long

last. This rule pops the current active node, AUXI, from the the active node

stack. Since AUX1 is not attached as daughter to any other node, it drops

into the first position in the buffer, as discussed earlier, shifting WORD4 into
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the second buffer position. Node S1 is once again the current active r

and the packets PARSE-AUX and CPOOL associated with S1 are once again

active packets. This situation is shown in Figure 4.13.

About to run: AUX-ATTACH

The Active Node Stack ( 0. deep)

C: S1 (S DECL MAJOR S) / (PARSE-AUX CPOOL)
NP : (John)

The Buffer

1 : AUX1 (PERF MODAL PAST VSPL AUX) : (should have)
S2: WORD4 ("SCHEDULE COMP-OBJ VERB INF-OBJ v-3s

ED=EN EN PART PAST ED) : (scheduled)

Yet unseen words: the meeting .
Figure 4.13 - After the rule AUX-COMPLETE has been run.

The rule AUX-ATTACH in packet PARSE-AUX will now match,

will attach AUX1 to S1. It will then deactivate PARSE-AUX and activate

* packet PARSE-VP, which will initiate the parsing of the verb phrase of

sentence, as its name implies. After the rule AUX-ATTACH is done,

grammar interpreter will remove AUXi from the buffer, leaving the pa.

* in the state depicted in Figure 4.14, and bringing our example to a close.

S

9
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About to run: MVB

The Active Node Stack ( 0. deep)

C: S1 (S DECL MAJOR S) / (PARSE-VP CPOOL)
NP : (John)
AUX : (should have)

The Buffer

1 : WORD4 (3SCHEDULE COMP-OBJ VERB INF-OBJ v-3s
ED=EN EN PART PAST ED) : (scheduled)

Yet unseen words: the meeting .
Figure 4.14 - After AUX-ATTACH has been run, completing the auxiliary.

As a final point, it is worthwhile to consider the auxiliary structure

that the rules discussed above produce if the verb cluster consists of a single

verb, as in the sentence given as Figure 4.15.a below. The observant reader

may have noted that in this case an auxiliary node will be created and

dropped into the buffer with no daughters attached at all; he might not

have noticed that this result is entirely correct. Given the sentence of

4.15.a, the parser will be in the state shown in Figure 4.15.b after rule

START-AUX has been executed. The action of this rule has (quite correctly)

not attached any terminal to the aux node, but it has marked the auxiliary

with the tense and person/number codes of the verb. (The reader should

note that the pattern for START-AUX triggers on any verb at all, not only

auxiliaries.) At this point the packet BUILD-AUX is active, but the only rule

that matches is AUX-COMPLETE. This rule will drop the auxiliary into the

buffer, resulting in the state shown in Figure 4.15.c. But this state is

completely correct; the state shown in 4.15.c is completely analogous to that

depicted in Figure 4.13 of the previous example. The auxiliary carries the
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tense and person/number codes, as it should, and also carries the aspect

features of the verb cluster, in this case a null set of features.

(a) John scheduled the meeting for Wednesday.

The Active Node Stack (1. deep)

S1 (S DECL MAJOR S) / (PARSE-AUX CPOOL)
NP : (John)

C: AUX1 (PAST V-3S AUX) / (BUILD-AUX)

The Buffer

1 : WORD2 ("SCHEDULE COMP-OBJ VERB INF-OBJ V-3S ... ) : (scheduled)

Yet unseen words: the meeting for Wednesday .

(b) - After START-AUX has been run.

The Active Node Stack ( 0. deep)

C: S1 (S DECL MAJOR S) / (PARSE-AUX CPOOL)
NP : (John)

The Buffer

1 : AUXI (PAST V-3S AUX) : NIL
2 : WORD2 (*SCHEDULE COMP-OBJ VERB INF-OBJ V-3S ... ) : (scheduled)

Yet unseen words: the meeting for Wednesday .

(c) - After AUX-COMPLETE has been run.

Figure 4.15 - Parsing a verb cluster with no auxiliary verbs.

Parsing a Simple Declarative Sentence - A Small Grammar

Let us now turn our attention to a more extensive example. In this

section, T will present a small grammar which is just sufficient to parse a

very simple declarative sentence, and then trace through the process of

parsing the sentence 4.16 immediately below, given this grammar.

Chapter 4 109



The Grammar

4.16 John has scheduled the meeting for Wednesday.

This will be the last example in which I will trace through the particulars

of the grammar interpreter's operation in detail. In the examples given in

subsequent chapters, the focus will be on the grammar rules and how they

interact; the operation of the interpreter will be taken for granted.

As a convention, the parser begins every parse by calling the

grammar rule named INITIAL-RULE. This rule creates an S node and activates

two packets: CPOOL (Clause POOL), which contains those rules which are

always active at the clause level, and SS-START (Simple Sentence-START),

which contains rules which decide on the type of simple sentences. The

parser's state after this rule is executed is depicted in Figure 4.17. At this

point there is no current active node and nothing in the buffer. (The LISP

expression "(setq s c)" in rule INITIAL-RULE sets the LISP variable S to the

newly created S node. After the parser is finished the parsed structure will

remain hanging from this variable for later examination by other subsystems

of a full natural language understanding system. This operation cannot, and

should not be expressible in PIDGIN, so LISP is used here. While I could edit

out such implementation details in the examples given below, I do not; all

the rules given below are exactly as they are in the implementation at the

time the relevant examples were parsed.)
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The Active Node Stack ( 0. deep)

C: S16 (S) / (CPOOL SS-START)

The Buffer

(RULE INITIAL-RULE IN NOWHERE
[t] -- >
Create a new s node.
!(setq s c).
Activate cpool, ss-start.}

Figure 4.17 - After INITIAL-RULE has been run.

The packet CPOOL will be ignored in the discussion below; it

contains no rules which bear on our example. Furthermore, the contents of

the packets shown below will not be exhaustively displayed; only those

rules relevant to the discussion will be exhibited. The current grammar, in

its complete form, is included as an appendix to this document.

I remind the reader once again of the grammar interpreter's

matching rules: that before the grammar interpreter will attempt to match a

rule of a given priority, all higher prioritied rules must explicitly fail to

match. The reader should also remember that constituents enter the buffer

on demand; i.e. that the buffer mechanism will get the next constituent

from the sentence list when a rule pattern must be matched against a buffer

cell that is currently empty. Thus, throughout the course of the examples

in this chapter, constituents will often enter the buffer for no apparent

reason. These constituents were requested by rules that then failed to match,

leaving no trace of why each constituent entered the buffer. I will not

comment further on the entry of constituents into the buffer.
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The packet SS-START, some of whose rules are shown in Figure 4.18

below, contains rules which determine the type of a major clause. If the

clause begins with an NP followed by a verb, then the clause is labelled a

declarative; if it begins with an auxiliary verb followed by an NP, it is

labelled a yes/no question. If the clause begins with a tenseless verb, then

not only is the clause labelled an imperative, but the word "you" is inserted

into the buffer, where it appears at the beginning of the buffer by

convention. In this example we will investigate how a simple declarative is

parsed; in Chapter 5 we will see what the effect of the rules IMPERATIVE

and YES-NO-Q is.

(RULE MAJOR-DECL-S IN SS-START
[=np] [=verb] -- >
Label c s, deci, major.
Deactivate ss-start. Activate parse-subj.)

(RULE YES-NO-Q IN SS-START
[=auxverb][=np] -- >
Label c s, quest, ynquest, major.
Deactivate ss-start. Activate parse-subj.)

(RULE IMPERATIVE IN SS-START
[=tnsless] -- >
Label c s, imper, major.
Insert the word 'you' into the buffer.
Deactivate ss-start. Activate parse-subj.)

Figure 4.18 - Some rules that determine sentence type.

After INITIAL-RULE has been executed and packet SS-START has been

activated, the rule MAJOR-DECL-S matches. The action of the rule is now

run, labelling the clause a major declarative clause, deactivating the packet

SS-START, and activating the packet PARSE-SUBJ. The result of this is
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shown in Figure 4.19 below.

The Active Node Stack ( 0. deep)

C: S16 (S) / (CPOOL SS-START)

The Buffer

1 : NP40 (NP NAME NS N3P) : (John)
2 : WORD125 ("HAVE VERB AUXVERB PRES V3S) : (has)

Yet unseen words: scheduled a meeting for Wednesday .

Figure 4.19 - After the rule MAJOR-DECL-S is run.

The packet PARSE-SUBJ contains rules whose job it is to find and

attach the subject of the clause under construction. It contains two major

rules which are shown in Figure 4.20 below. The rule UNMARKED-ORDER

picks out the subject in clauses where the subject appears before the verb in

surface order; the rule AUX-INVERSION picks out the subject in clauses

where an element of the auxiliary occurs before the subject. As we will see

later, the rule UNMARKED-ORDER not only suffices for declarative clauses,

but also for imperatives. Though the relevant rules will not be discussed

here, the rule UNMARKED-ORDER will pick up the subject of WH-questions

where the subject of the clause is questioned, while AUX-INVERSION will

pick up the subject of WH-questions that question other than the subject of

the clause.
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(RULE UNMARKED-ORDER IN PARSE-SUBJ

(=np] [=verb] -- >

Attach 1st to c as np.
Deactivate parse-subj.
Activate parse-aux.}

(RULE AUX-INVERSION IN PARSE-SUBJ
[=auxverb] [=np]-->
Attach 2nd to c as np.
Deactivate parse-subj. Activate parse-aux.}

Figure 4.20 - Two subject-parsing rules.

At this point in the parse, the rule UNMARKED-ORDER now matches,

and its action is run. This rule attaches 1st, i.e. NP40, the NP "John", to C,

the node 516, as subject. It also activates the packet PARSE-AUX after

deactivating PARSE-SUBJ. After this rule has been executed, the interpreter

notices that the NP has been attached, and removes it from the buffer.

Figure 4.21 shows the state of the parser after this rule is executed.

The Active Node Stack (0. deep)

C: S 16 (S DECL MAJOR S) / (PARSE-AUX CPOOL)
NP : (John)

The Buffer

1 WORD125 (T HAVE VERB AUXVERB PRES V3S) : (has)

Yet unseen words: scheduled a meeting for Wednesday .

Figure 4.21 - After UNMARKED-ORDER has been executed.
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The process of parsing the auxiliary verbs in this example is exactly

parallel to the previous example. Rather than repeat an identical commentary

here, the reader is referred to that example. Figure 4.22 is a trace of the

application of rules during the parsing of the auxiliary phrase, through the

attachment of the auxiliary to the VP node. All the rules referred to in the

trace are included in Figures 4.4 and 4.7 in previous sections.

It should be noted that the rules of packet BUILD-AUX, shown

previously in Figure 4.4, are the equivalent of the transformational rule of

affix-hopping. Note that these rules concisely state the relation between

each auxiliary verb and its related affix by taking advantage of the ability

to buffer both each auxiliary verb and the following verb. It might seem

that some patch is needed to these rules to handle question constructions in

which, typically, the verb cluster is discontinuous, but this is not the case,

as will be shown in the Chapter 5.

About to run: STARTAUX

The Active Node Stack ( 0. deep)

C: S16 (S DECL MAJOR S) / (PARSE-AUX CPOOL)
NP : (John)

The Buffer

1 : WORD125 ("HAVE VERB AUXVERB PRES V3S) : (has)

Yet unseen words: scheduled a meeting for Wednesday .
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About to run: PERFECTIVE

The Active Node Stack ( 1. deep)

S16 (S DECL MAJOR S) / (PARSE-AUX CPOOL)
NP : (John)

C: AUX14 (PRES V3S AUX) / (BUILD-AUX)

The Buffer

1 : WORD 125 ("HAVE VERB AUXVERB PRES V3S) : (has)
2 : WORD1 26 (3SCHEDULE COMP-OBJ VERB INF-OBJ V-3S ... ) (scheduled)

Yet unseen words: a meeting for Wednesday

About to run: AUX-COMPLETE

The Active Node Stack ( 1. deep)

S16 (S DECL MAJOR S) / (PARSE-AUX CPOOL)
NP : (John)

C: AUX14 (PERF PRES V3S AUX) / (BUILD-AUX)
PERF : (has)

The Buffer

1 : WORD 126 (xSCHEDULE COMP-OBJ VERB INF-OBJ V-3S ... ) (scheduled)

Yet unseen words: a meeting for Wednesday

About to run: AUX-ATTACH

The Active Node Stack ( 0. deep)

C: S16 (S DECL MAJOR S)/ (PARSE-AUX CPOOL)
NP : (John)

The Buffer

1 : AUX14 (PERF PRES V3S AUX) : (has)
2 : WORD 126 (ZSCHEDULE COMP-OBJ VERB INF-OBJ V-3S ... ) (scheduled)

Yet unseen words: a meeting for Wednesday .
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The Active Node Stack ( 0. deep)

C: S16 (S DECL MAJOR S) / (PARSE-VP CPOOL)
NP : (John)
AUX : (has)

The Buffer

1 : WORD126 ("SCHEDULE COMP-OBJ VERB INF-OBJ V-3S ...) (scheduled)

Yet unseen words: a meeting for Wednesday .

Figure 4.22 - Parsing the auxiliary of 4.16.

The packet PARSE-VP is now active. This packet contains, among

other rules, the rule MVB (Main VerB), which creates and attaches a VP node

and then attaches the main verb to it. This rule now matches and is run.

'While the action of this rule is rather simple grammatically, it clearly

demonstrates the behavior of the active node stack and the association

between packet activation and the current active node. For this reason, we

will examine the action of this rule rather closely. The rule itself, and the

resulting state of the parser, is shown in Figure 4.23 below.
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(RULE MVB IN PARSE-VP
[=verb] -- >
Deactivate parse-vp.
If c is major then activate ss-final else
If c is sec then activate emb-s-final.
Attach a new vp node to c as vp.
Attach 1 st to c %which is now the vp% as verb.
Activate subj-verb, cpool.}

The Active Node Stack ( 1. deep)

S16 (S DECL MAJOR S) / (SS-FINAL CPOOL)
NP : (John)
AUX (has)
VP :

C: VP1 4 (VP) / (SUBJ-VERB CPOOL)
VERB; :(scheduled)

The Buffer

1 WORD127 (It A NGSTART DET NS N3P ... ) : (a)

Yet unseen words: meeting for Wednesday .

Figure 4.23 - The rule MVB and the parser's state after Its execution

At the time MVB is executed, the packets PARSE-VP and CPOOL are

associated with S16, the current active node, as shown in the last frame of

Figure 4.22. The action of MVB first deactivates the packet PARSE-VP, then

activates either SS-FINAL, if C is a major clause, or EMB-S-FINAL, if it is an

embedded clause. As mentioned earlier in Chapter 3, these two packets both

contain rules that parse clause-level modifiers such as prepositional phrases,

adverbs, and the like (which is not to say that all PPs and adverbs are

clause modifiers). They differ in that the rules in EMB-S-FINAL must decide

whether a given modifier should be attached to the current clause, or left in

the buffer to be attached to a constituent higher up in the parse tree after

the current active node is completed. Whatever packet is activated, the
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newly activated packet will be associated with C, 516, and thus the grammar

interpreter will attempt to match the rules in it whenever 516 is the

current active node.

The next line in MVB, which reads "Attach a new vp node to c as vp."',

is a special PIDGIN construction. Normally, whenever a new node is created,

as is done by the phrase "a new vp node", the new node is pushed onto the

active node stack immediately after its creation, thus immediately becoming a

new current active node. If this were always true, however, there would

be no way to immediately attach a new node to the node that was the

current active node at the time of its creation. It would be necessary to

always drop the new node into the buffer and only then attach it to the old

(and once again) current active node. Thus, the construction

Attach a new (type> node to c as (type>

is specially defined to mean that 1) a new node should be created but not

immediately pushed onto the stack, after which 2) it should be attached to

the current active node, and only then 3) it should be pushed onto the active

node stack, becoming the new current active node. The execution of the

instance of this construction in the action of MVB results in a new VP node,

VP14, attached to S16 and now the current active node, while 516 is

immediately above it in the stack.

WORD126, the verb "scheduled" is now attached to the VP.

Finally, the action of MVB activates the packets SUBJ-VERB and

CPOOL. As is always the case with packet activation, these are associated
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with the node which is the current active node at the time of their

activation, in this case VP14. Thus, this rule leaves the parser with the

packets CPOOL and SS-FINAL associated with S16 (the prior association of

CPOOL with S16 having been unaltered by the execution of this rule), and

the packets CPOOL and SUBJ-VERB associated with VP14. Since VP14 is the

current active node, CPOOL and SUBJ-VERB are now active. Once VP14 is

popped from the stack, leaving S16 the current active node, CPOOL and SS-

FINAL will be active.

The packet SUBJ-VERB contains rules which involve the deep

grammatical relation of the surface subject of the clause to the verb, and

which set up the proper environment for parsing the objects of the verb.

The major rule in this packet, the rule SUBJ-VERB is shown in Figure 4.24

below. (More of the rules in this packet will be presented in later sections.)

While most of the code of the action of the rule SUBJ-VERB does not apply

to our example, I have refrained from abbreviating this rule to give a feel

for the power of PIDGIN.
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(RULE SUBJ-VERB PRIORITY: 15. IN SUBJ-VERB
[t] -- >
%The next line really belongs in the case frame demons.
It appears here for reasons having to do with implementation
peculiarities and will not be discussed in the text.%
If c is not np-preposed

and there is a np of the s above c then
it fills the subj slot of the cf of c.

%Activate packets to parse objects and complements.%
If the verb of c is inf-obj then activate inf-comp.
If the verb of c is to-less-inf-obj then activate to-less-inf-comp.
If the verb of c is that-obj then activate that-comp.
If there is a wh-comp of the s above c

and it is not utilized then activate wh-vp
else If the s above c is major then activate ss-vp
else activate embedded-s-vp.

Deactivate subj-verb.)

Figure 4.24 - The rule SUBJ-VERB.

The rule SUBJ-VERB is now the rule of highest priority that

matches, so its action is now executed. The action of this rule is rather

complex (indeed, it is currently the most complex rule in the grammar), so I

will discuss what it does in some detail.

The first sentence of the rule actually does not belong in this rule

at all; it should be part of the case frame mechanism, which is discussed

briefly in Appendix E. This sentence appears in this rule because of a

weakness in that mechanism which is irrelevant to the issues discussed in

this paper, and nothing more will be said about it.

Most of the remainder of the rule activates the appropriate packets

to parse the objects and complements of a clause, some of which depend on

the verb of the clause and some of which depend on global properties of the
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clause. Thus, the next several lines of the action activate packets for

various sorts of complement constructions that a verb might take: infinitive

phrases in general (the packet INF-COMP), infinitive phrases that are not

flagged by "to", e.g. "I saw John give Jane a kiss." (the packet TO-LESS-INF-

COMP in addition to INTF-COMP), and that-phrases (the packet THAT-COMP).

The next long clause activates one of a number of packets which will attach

the objects of the verb. The packet activated depends on the clause type:

whether this clause still has a WH-head that needs to be utilized (WH-VP),

whether this clause is secondary without a WH-head (EMBEDDED-S-VP), or

whether this clause is a major clause (SS-VP).

This rule provides a good example of one difference between the

packets used to organize this grammar and the states of an ATN. Packets do

not simply correspond to ATN states, for several packets will typically be

active at a time. For instance, if parsing the sentence "Who did John see

Jane kiss?", this rule would activate three packets in addition to CPOOL:

INF-COMP, TO-LESS-INF-COMP, and WH-VP.

Of the complement-initiating packets, only the packet INF-COMP is

activated in our example, since "schedule" can take infinitive complements, as

in "Schedule John to give a lecture on Tuesday.". The packet SS-VP is then

activated to attach the verb's objects, the packet SUBJ-VERB is deactivated,

and the rule SUBJ-VERB is through. This rule thus changes the state of the

parser only by activating and deactivating packets; the packets now

associated with the current active node are shown in Figure 4.25, the state

of the parser after SUBJ-VERB has been executed.
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The Active Node Stack ( 1. deep)

S16 (S DECL MAJOR S) / (SS-FINAL CPOOL)
NP : (John)
AUX (has)
VP :4

C: VP14 (VP) / (SS-VP INF-COMP CPOOL)
VERB : (scheduled)

The Buffer

1 : NP41 (MODIBLE NS INDEF DET NP) : (a meeting)
2 : PP1 1 (PP) : (for Wednesday)
3 : WORD133 (". FINALPUNC PUNC) (.)

Yet unseen words: (none)

Figure 4.25 - After the rule SUBJ-VERB has been executed.

The packet SS-VP is shown below in Figure 4.26; all of its rules

will come into play in the example below. Note that this packet contains a

default rule, the rule VP-DONE, which will become active when no other

rule can apply, completing the VP.

(RULE OBJECTS IN SS-VP
(=np] -- >
Attach 1 st to c as np.)

(RULE VP-DONE PRIORITY: 20 IN SS-VP
[t] -- > Drop c.}

(RULE PP-UNDER-VP-1 IN SS-VP
[=ppJ -- >
If 1st fits a pp slot of the cf of c

then attach 1 st to c as pp
else run vp-done next.)

Figure 4.26
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The rule OBJECTS is now triggered by NP41, and attaches the NP to

VP14. The state of the parser at this point is shown in Figure 4.27 below.

The Active Node Stack ( 1. deep)

S16 (S DECL MAJOR S) / (SS-FINAL CPOOL)
NP : (John)
AUX (has)
VP :4

C: VP14 (VP) / (SS-VP INF-COMP CPOOL)
VERB : (scheduled)
NP : (a meeting)

The Buffer

1 PP1 1 (PP) : (for Wednesday)
2 : WORD133 (". FINALPUNC PUNC): (.)

Yet unseen words: (none)

Figure 4.27 - After the rule OBJECTS has been run.

Now the rule PP-UNDER-VP-1 is triggered by PP11 sitting at the

beginning of the buffer. This rule is one of a large set of PP attachment

rules. These rules have the responsibility for calling semantics to decide

whether a given PP is appropriate at a given location in the parse tree or

whether that PP is best attached elsewhere. This rule is the simplest of the

set, since a PP that is encountered while parsing the VP of a major, i.e.

"toplevel", clause, must either attach to the VP or to the S node above it.

(The difference in attachment points, briefly, is this: If a PP attaches to a

VP node, then it fills an "intrinsic case" slot of the verb that is the head of

the VP. If it attaches to the S node, then it serves as a general modifier of

the clause. As examples, PPs that serve as general place and time modifiers

attach to the S node, while PPs that serve as Instruments, Datives, and the

like attach to the VP node. It should be noted that "schedule" takes a time
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both as an intrinsic case, and as a modifier, thus the time phrase in 4.28.a

below serves as intrinsic time in that sentence's primary reading, i.e. it fills

a case slot of schedule, while the time phrase in 4.28.b serves as a general

modifier of the event itself, parallel to the role filled by the time phrase in

4.28.c. Some people may get a secondary reading for 4.28.a that is a

paraphrase of 4.28.b, but that is rare.

a) Schedule an appointment for John before 5 o'clock today.
b) Before 5 o'clock today, schedule an appointment for John.
c) Take out the garbage before 5 o'clock today.

Figure 4.28

The rule PP-UNDER-VP-1 includes a test that calls semantics to see

if 1st, i.e. the PP, can serve semantically in any of the (intrinsic) case slots

of the case frame associated with the VP node. If it can, it is attached to

the VP, otherwise it is left for clause level PP rules to pick up. Essentially,

this rule states that if a PP can serve as a case filler of the verb of a major

clause, then it will always serve as a case filler even if it could serve as a

modifier of the entire clause. Sentence 4.28.1 serves as evidence that this

rule is approximately correct. As was pointed out above, one of the intrinsic

cases of the verb "schedule" is a TIME, and this PP can serve to fill this slot,

so the semantic test succeeds, and the PP is attached to the VP. The result

of this rule is shown in Figure 4.29 below.

It should be noted that the form of semantic test involved in this

rule is the simplest of the range of tests that seem to be necessary to do

deterministic parsing. As noted in Chapter 1, the general problem of PP
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attachment seems to require extremely complex semantic interactions, and

will not be taken up in this paper. For discussion of some of the types of

semantic interactions that are necessary for a deterministic parser and that

have been included in this research, see Chapter 10 and Appendix A.

The Active Node Stack ( 1. deep)

S16 (S DECL MAJOR S) / (SS-FINAL CPOOL)
NP : (John)
AUX : (has)
VP :4

C: VP14 (VP) / (SS-VP INF-COMP CPOOL)
VERB : (scheduled)
NP : (a meeting)
PP : (for Wednesday)

The Buffer

1 WORD133 (". FINALPUNC PUNC) :.)

Yet unseen words: (none)

Figure 4.29 - After rule PP-UNDER-VP-1 has been executed.

Completing the parse is now a simple matter. The default rule in

packet SS-VP, VP-DONE now triggers, popping the VP node from the active

node stack. Since VP14 is attached to 516, the S node above it on the stack,

it remains hanging from the S node. The resulting state of the parser is

shown in Figure 4.30.a. The S node is once again the current active node,

and packet SS-FINAL is now active. The default rule in this packet, SS-

DONE, shown in Figure 4.30.b, immediately triggers. This rule attaches the

final punctuation mark to the clause, pops the S node from the stack, and

signals the grammar interpreter that the parse is now complete. This final

state is shown in Figure 4.30.c.
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The Active Node Stack ( 0. deep)

C: S16 (S DECL MAJOR S) / (SS-FINAL CPOOL)
NP : (John)
AUX : (has)
VP : (scheduled a meeting for Wednesday)

The Buffer

1 : WORD133 (". FINALPUNC PUNC) : (.)

Yet unseen words: (none)

(a) - Before the rule S-DONE is executed.

(RULE S-DONE IN SS-FINAL
[=finalpunc) -- >
Attach 1st to c as finalpunc.
%The next line is really part of the cf mechanism.%
Finalize the cf of s.
Parse is finished.)

(b) - The rule S-DONE

The Active Node Stack C 0. deep)

C: S16 (S DECL MAJOR S) / (SS-FINAL CPOOL)
NP : (John)
AUX : (has)
VP : (scheduled a meeting for Wednesday)

FINALPUNC: (.)

The Buffer

Yet unseen words: (none)

(c) - After S-DONE has been run, completing the parse.

Figure 4.30
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In conclusion, Figure 4.31 below is a summary of the rules

introduced in this chapter presented in the format introduced in Figure 4.2.

Node types and packets are shown in upper case; rule names are shown in

lower. Priorities are only shown for rules with a priority other than the

default priority of 10. The asterisk marks rules that were used in this

chapter.

TYPE

SS-START
*ma jor--dec I -s
yes-no-s
imperative

VP

PARSE-VP
*mvb

V

SUBJ-VERB
15: *subj-verb

NP

PARSE-SUBJ
*unmarked-order
aux-i nvers ion

(PP)*

SS-FINAL
* s-done

COMP

SS-VP
*objects
*vp-done
*pp-under-vp-1

AUX ....

PARSE-AUX
*s tar t-aux
to-infini tive

*aux-at tach

AUX ->

BU I LO-AUX
*per fec t i ve
progressive
pass i ve-aux

*moda I
do-suppor t

15: *aux-comp I ete

Figure 4.31 - The structure of the rules presented in this chapter.

S-

VP ->
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Capturing Generalizations

CHAPTER 5

CAPTURING LINGUISTIC GENERALIZATIONS

Introduction

In this chapter we will shift our attention from the grammar

interpreter to the organization of the grammar Itself and the form of the

linguistic structures that it builds, In the first part of the chapter, I will

discuss the general grammatical framework upon which the grammar rests.

The following several sections will show that the grammar formalism is

capable of capturing many of the same generalizations that are captured by

traditional generative grammar, with much the same elegance.

As I argued in Chapter 1, showing that a parser for English can

parse a range of English sentences cannot by itself serve as an argument for

any particular parsing technique. What must also be demonstrated is that

the parsing technique lends itself to the writing of grammars that succinctly

capture the generalizations that underlie the grammar of the language. This

chapter is intended to be the first part of a demonstration of exactly this

point. The demonstration will continue with the next two chapters, in

which I will argue that two of the three constraints on transformations that

stand at the core of Chomsky's current theory of grammar [Chomsky 73, 75a,

76, to appear; Chomsky & Lasnik 77] fall out naturally from the structure

of the grammar interpreter, at least in part.

Chapter 5 130



Capturing Generalizations

The General Grammatical Framework

The form of the structures that the current grammar builds is based

on the notion of Annotated Surface Structure. This term has been used in

two different senses by Winograd [Winograd 71] and Chomsky [Chomsky 73,

etc].; the usage of the term here can be thought of as a synthesis of the

two concepts. Following Winograd, this term will be used to refer to a

notion of surface structure annotated by the addition of a set of features to

each node in a parse tree. Following Chomsky, the term will be used to

refer to a notion of surface structure annotated by the addition of an element

called trace to indicate the "underlying position" of "shifted" NPs. I believe

that a grammatical representation that is annotated in both these ways can be

made to explicitly represent more grammatical information for use in

subsequent semantic processing than can be captured by either annotation

method in isolation.

In an interesting convergence of viewpoints, the belief that the

semantic interpretation of grammatical structure is best done from a properly

annotated surface structure analysis, rather than a deep structure analysis,

now seems to be shared by both linguists and workers in artificial

intelligence. Winograd rejected an explicit deep structure analysis as the

basis for semantic interpretation in favor of an annotated surface structure in

1970; Chomsky took the same step, although for different reasons, and with

a different style of annotation several years later. (It should be noted,

however, that most linguists and many natural language researchers still

regard deep structure as the proper level for semantic analysis.)
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There are several reasons for choosing a properly annotated surface

structure as a primary output representation for syntactic analysis. While a

deeper analysis is needed to recover the predicate/argument structure of a

sentence (either in terms of Fillmore case relations [Fillmore 68] or

Gruber/Jackendoff "thematic relations" [Gruber 65; Jackendoff 72]),

phenomena such as focus, theme, pronominal reference, scope of

quantification, and the like can be recovered only from the surface structure

of a sentence. By means of proper annotation, it is possible to encode in the

surface structure the "deep" syntactic information necessary to recover

underlying predicate/argument relations, and thus to encode in the same

formalism both deep syntactic relations and the surface order needed for

pronominal reference and the like. This realization has led Chomsky to

advocate semantic analysis from annotated surface structure, although a level

of deep structure still figures prominently in his current formulation of

grammatical theory.

(It should be mentioned that while both surface order and deep

grammatical relations are encoded in the surface structure of the sentence,

the parsing system that I have implemented includes a component that builds

an explicit case representation of the sentence in parallel with building an

annotated surface structure. Rather than continually decoding the case

information implicitly available in the annotated surface structure, it makes

sense in terms of system design to explicitly represent this case information

in a separate representation. The case frame mechanism also provides a

computational check that the predicate-argument structure of an utterance

can in fact be easily retrieved from an annotated surface structure
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representation. In this sense, the output of the parsing system is both an

annotated surface structure representation and a case frame representation of

the input sentence.

The case frame builder runs in parallel with the parser by means of

a set of programs that monitor some of the types of actions the parser can

take; a monitor program can be written so that it will be executed

whenever a node of a given type is created or whenever a node of type A is

attached to a node of type B. These monitors are written in an extension of

PIDGIN that amounts to a command language for an independent case frame

interpreter. The case frame interpreter accesses case frame and semantic

marker information stored in the parser's lexicon. All interaction with "deep

semantics" that occurs during the parsing process (as will be discussed in

Chapter 10) is done with this case frame component as intermediary. See

Appendix E for further description of the case frame component; however

the structure of this case frame mechanism is independent of the issues

discussed here.)

Winograd's Use of Features

Winograd uses the term annotated surface structure to refer to

surface structures in which deep grammatical relations are encoded by the

inclusion of a set of grammatical features at each node of the parse tree.

These features encode both grammatical properties of the constituent under

that node, and the functional use of the constituent in the surrounding

grammatical context. (I should note here that Winograd uses features within

a grammatical framework based on the theory of systemic grammar developed
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by Halliday and others of the London school of linguistics [Halliday 67;

Hudson 71]. Explicit reasons why this approach was not utilized in this

work will be mentioned throughout the chapter as they become relevant.)

As an example of Winograd's use of features, consider the features,

shown in Figure 5.1.b below, that his system assigns to the relative clause

shown in 5. 1.a. The relative clause as a whole is marked as a CLAUSE that

serves functionally as a Rank Shifted Qualifier (RSQ), by virtue of being a

WH-phrase (WHRS). The feature DOWNREL flags the fact that the relative

head has been "moved" from a lower clause, in this case the infinitive phrase

"to pick up". The infinitive phrase itself is given the feature RSNG to flag

the fact that it serves functionally as a Rank Shifted Noun Group. The

features UPREL and OBJIREL encode the fact that this clause utilizes the

relative head of a dominating clause as this clause's first object.

(a) ... which I wanted you to pick up

(b) (CLAUSE RSQ WHRS ... DOWNREL)
which I wanted you to pick up

(CLAUSE RSNG ... UPREL OBJ1 UPREL)
to pick up

Figure 5.1 - An example of Winograd's use of features.

The use that PARSIFAL makes of features is somewhat different than

Winograd's. Features are used here neither to indicate the functional use of

constituents in a larger context (which can be termed the "extrinsic"

grammatical properties of a constituent, following Sussman & Brown's

terminology in the domain of electronics [Sussman & Brown 74]) nor to

encode the position of deleted constituents. The primary use of features is to
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summarize the important grammatical properties of a constituent's internal

structure (its "intrinsic" grammatical properties) in easily accessible form.

The idea is that a constituent's feature set should include markers for all

those grammatical properties that later syntactic and semantic analysis

routines may wish to have visible at a glance without the need to examine

the constituent's internal structure. In a sense these features are explicitly

included for the sake of efficiency; rather than have programs check sets of

features, one could provide a set of predicates that actively compute whether

a given feature is or is not true of any given grammatical structure.

Including feature sets has the added advantage that those grammatical

properties about which the system has knowledge are explicitly, rather than

implicitly, present.

One reason that functional information is not encoded in a

constituent's feature set is that the grammatical function of a constituent

seems to be clearly indicated by its position in tree structure. (In this I

follow [Chomsky 65].) Thus, the subject of a sentence is taken to be the NP

directly under the S node; a direct object is taken to be the rightmost NP

directly dominated by the VP under S. Similarly, an indirect object is an NP

directly dominated by VP that is between the verb and an NP node. It

would seem that Winograd chose to encode this information in the feature

system because the tree structures that systemic grammar advocates are far

shallower and bushier than the trees that are typically advocated by

generative grammarians. The net result is that the position of a constituent

in a tree provides far less information about its functional role, thus

necessitating some auxiliary method for encoding functional relations.
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Traces and Annotated Surface Structure

As an alternative to Winograd's use of features to indicate the

position of constituents that have been "displaced" from their underlying

positions, the grammar uses the device of traces, first argued for by Robert

Fiengo [Fiengo 74]. In current linguistic theory, a trace is essentially a

"phonologically null" NP in the surface structure representation of a sentence

that has no daughters but is "bound" to the NP that filled that position at

some level of "underlying structure". In a sense, a trace can be thought of

as a "dummy" NP that serves as a placeholder for the NP that earlier filled

that position; in the same sense, the trace's binding can be thought of as

simply a pointer to that NP. It should be stressed at the outset, however,

that a trace is indistinguishable from a normal NP in terms of normal

grammatical processes; a trace is an NP, even though it is an NP that

dominates no lexical material.

Some examples of the use of trace are given in Figure 5.2

immediately below.
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(la) What did John give to Sue?
(1b) What did John give t to Sue?

I _ _ _ _ _ _ I
(1c) John gave what to Sue.

(2a) A book was given Sue.
(2b) A book was given Sue t.

I _ _ _ _ _ _I

(2c) V gave Sue a book.

(3a) John was believed to be happy.

(3b) John was believed [S t to be happy].

(3c) V believed John to be happy.

(4a) John was believed to have been shot.

(4b) John was believed (S t to have been shot tz] .
1 1 I I

(4c) V believed 7 to have shot John.

(4d) V be I i eved (S John to have been shot 2-

Figure 5.2 - Some examples of the use of trace.

One use of trace is to indicate the underlying position of the wh-

head of a question or relative clause. Thus, the structure built by the parser

for 5.2.1a would include the trace shown in 5.2.1b, with the trace's binding

shown by the line under the sentence. The position of the trace indicates

that 5.2.1a has an underlying predicate/argument structure analogous to the

overt surface structure of 5.2.1c. (The declarative form is used in 5.2.1c

only because it most simply illustrates the underlying predicate/argument

structure of the original sentence; the predicate/argument structure of a

clause clearly has nothing whatever to do with whether the clause is a

declarative or a question, or whatever.)

Another use of trace is to indicate the underlying position of the

surface subject of a passivized clause (or, technically speaking, any np-
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preposed clause). For example, 5.2.2a will be parsed into a structure that

includes a trace as shown as 5.2.2b; this trace indicates that the subject of

the passive has the underlying position shown in 5.2.2c. The symbol "V"

signifies the fact that the subject position of (2c) is empty in underlying

structure; it is filled by an NP that dominates no lexical structure. (Again,

following Chomsky, I assume that a passive sentence in fact has no

underlying subject, that an agentive "by NP" prepositional phrase originates

as such in underlying structure.) The trace in (3b) indicates that the phrase

"to be happy", which the brackets show is really an embedded clause, has an

underlying subject which is identical with the surface subject of the matrix

S. (By matrix S, I mean a clause that dominates an embedded complement.)

As (3c) shows, what is conceptually the underlying subject of the embedded

clause has been passivized into subject position of the matrix S, a

phenomenon commonly called "raising". The analysis of this phenomenon

assumed here derives from [Chomsky 73]; it is an alternative to the classic

analysis which involves "raising" the subject of the embedded clause into

object position of the matrix S before passivization (for details of this later

analysis see [Postal 74]). I will have much to say about this phenomenon

later in this chapter.

As the example presented in 5.2.4a-d shows, traces can be bound to

other traces. In this case, 5.2.4a has the annotated surface structure

indicated by (4b), with trace t2 bound to trace ti, and t, bound to the NP

"John". The underlying structure of this sentence is as shown in (4c).

Adopting the viewpoint of generative grammar for the moment, looking at

the transformational derivation of an annotated surface structure from an
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underlying deep structure, these two traces arise in the following manner:

First, the NP "John" is moved from its underlying position into the subject

position of the embedded S by the passivization of the embedded clause,

leaving behind t2 . This is shown in (4d). Then the matrix S is passivized,

moving the NP "John" again, this time leaving behind trace ti, and resulting

in the structure indicated by (4b). (This explanation ignores much important

detail for the sake of simplicity.) Note that I was speaking rather loosely

above when I referred to a trace as pointing to the NP that filled that

position in underlying structure. In point of fact, a trace may very well

point to an NP that filled that position temporarily in the course of the

transformational derivation.

It should be noted that the information that these traces encode is

easily used by a semantic component to recover the underlying

predicate/argument structure of an utterance. Once a parser has constructed

the annotated surface structure of a sentence, it is not too large a jump to

compute its predicate/argument structure. For example, all that needs to be

done to recover the predicate/argument structures of the (b) sentences above

(where the predicate/argument structure is taken here loosely to be analogous

to the structure of the (c) sentences) is to repeatedly replace each trace with

its binding until all traces have been eliminated, and to ignore the surface

subjects of passivized clauses.

While the notion of a trace and its binding is discussed above in

terms of the theory of generative grammar, later sections of this chapter will

show a version of this notion to be extremely powerful within the theory of
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parsing presented here. In the context of this theory of parsing, I will

define a trace simply to be an NP which has no daughters and which has

associated with it a binding register which can be set to a pointer to

another NP. (Within the grammar presented below, a trace will also be

flagged by the feature TRACE.) This register can be set by the PIDGIN code

Set the binding of <node> to <controlling node>.

The NP to which a trace's binding register points will be referred to as the

binding of the trace. (Note: It should be noted that a trace is not a pointer

in the current generative formulation of trace theory; why this is so is too

complex a matter to discuss here. Suffice it to say that I have not seen a

published coherent formalization of exactly what the binding of a trace is,

and therefore feel free to take the position that I do here.)

Because the binding of a trace will often be another trace, it will

be useful to define a notion of the binding' of a trace. By binding, I

mean the transitive closure of the binding relationship, defined recursively as

follows: The binding' of an NP that is not a trace is the NP itself; the

binding' of a trace is the binding' of its binding. Thus, in the example of

5.2.4b above, the binding and the binding5 of t1 is the NP "John", the

binding of t2 is t1 while its binding' is "John", and the binding5 of the NP

"John" is itself, although it has no binding. The binding' of a node is

returned as the value of the PIDGIN phrase

the binding of <node>.

There is no PIDGIN which returns the simple binding of a node because I

have not found a need for such a primitive.
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Before leaving this topic, I should indicate why traces were chosen

over Winograd's use of features to encode the underlying position of

displaced constituents. There are two primary reasons; each will be

discussed in turn.

Consider the example of Winograd's use of traces to encode this

information given in Figure 5.1, repeated below for convenience.

(a) ... which I wanted you to pick up

(b) (CLAUSE RSQ WHRS ... DOWNREL)
which I wanted you to pick up

(CLAUSE RSNG ... UPREL OBJ1UPREL)
to pick up

Figure 5.1 (repeated) - An example of Winograd's use of features.

The ultimate purpose of these features is to allow the underlying position of

the displaced constituent to be computed. Let us examine how they must be

used to do this computation. The feature DOWNREL tells a hypothetical

semantic interpreter that it must find an embedded clause and look within it

to find the underlying site of the WH-head. Finding an embedded clause and

looking there, the semantic interpreter finds the feature UPREL, which

confirms that this is the clause from which the WH-head has been displaced.

It then finds the feature OBJIUPREL, which indicates that the WH-head has

been displaced from the first object position following the verb. Now it

knows that the underlying object of this clause is in fact the WH-head. But

this is exactly what a trace tells us immediately. The point is that the facts

encoded by Winograd's features, that the head of this relative clause is used

in a lower clause, or that a relative head used in the lower clause originated
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in a higher clause are only of secondary importance; they are useful only to

help deduce the primary fact - exactly where in the underlying tree

structure the WE-head has been displaced from.

The central argument, however, for the use of traces in the context

of PARSIFAL has to do not so much with the simplicity of the structure that

results once the parser has completed its analysis, but rather with one central

property of traces in terms of the parsing process itself: Once a trace has

been attached to a constituent, or dropped into the buffer by a grammar rule,

later grammatical processes will be unaware that an NP did not actually

appear in this position in the input structure. Furthermore, by dropping a

trace into the buffer, a grammar rule can assert, in effect, that an NP

underlyingly appears at a given linear position in the input string without

committing itself to the position of this NP in the underlying tree structure.

While this may appear to be of dubious value out of context, this fact is

crucial to the formulation of the grammar rules which will be presented in

the remainder of this chapter. As will be demonstrated in what follows, this

fact allows extremely simple grammar rules to capture complex

generalizations about the structure of natural language.

The Grammar Elegantly Captures Linguistic

Generalizations

Given the grammatical devices described above and the grammar

formalism for rules described in earlier chapters, rules of grammar can be

formulated that elegantly capture a wide range of linguistic phenomena. As

will be demonstrated below, rules can be be written for the grammar
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interpreter that explicitly capture, on nearly a one-to-one basis, the same

generalizations that are typically captured by classical transformational rules.

(By "classical", I mean the set of transformations commonly accepted in '68.

'69 before the fragmentation of generative grammar into several widely

divergent camps; such a set of transformations is presented in [Akmajian &

Heny 75]). The central point I hope to make is that the availability of the

buffer as a work space, in conjunction with a grammar written in the form

of pattern-action rules, makes possible several techniques for writing simple,

concise grammar rules that have the net effect of explicitly "undoing" the

generative grammarian's transformations, thus capturing many of the same

linguistic generalizations.

I should make it clear at the outset that not all grammatical

processes which are typically expressed as single rules within the generative

framework can be so captured within the grammar for this, or - I believe -

any, parser. Such processes include the general phenomenon of "WH-

movement", which accounts for the structure of WH-questions and relative

clauses (at the least), and the problem of prepositional phrase attachment.

Thus, whije there is a wide range of grammatical generalizations that can be

captured within a parsing grammar, it must be conceded that there are

important generalizations that cannot be captured within this framework.

In the following sections we will explore a small range of the rules

in the current grammar by focusing on the process of parsing the sentences

shown in Figure 5.3 below:
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(a) John has scheduled the meeting for Wednesday.
(b) Has John scheduled the meeting for Wednesday?
(c) Schedule the meeting for Wednesday.
(d) The meeting was scheduled for Wednesday.
(e) The meeting seems to have been scheduled for Wednesday.

Figure 5.3 - The key examples of this chapter.

The sentence given as 5.3.a above was discussed earlier in Chapter 4; it will

serve as a benchmark against which the complexity of the parsing process

for the remaining sentences will be judged. Once again, it will be assumed

that NPs are built by the parser in a manner transparent to the processes that

we consider here; we will investigate only the clause level parsing processes

in this example. It will also be assumed that PPs as well as NPs are

constructed before they come to the attention of the processes we consider

here.

There are several techniques made possible by the buffer that will

be used repeatedly to capture linguistic phenomena within fairly simple rule

formulations. They are:

1) The ability to remove some constituent other than the first from

the constituent buffer, using the Delete buffer primitive, compacting the

buffer and thereby reuniting discontinuous constituents. In natural language,

it is often the case that some third structure intervenes between two parts of

what is intuitively one constituent. For example, in yes-no questions like

5.3.b above, the verb cluster is divided into two pieces with the subject

intervening. In most parsers, special provisions must be made in the

144Chapter 5



Capturing Generalizations

grammar for handling such situations. As will be demonstrated below, the

buffer mechanism makes this unnecessary.

2) The ability to place specific lexical items into the input stream

using the Insert primitive, thereby allowing one set of rules to operate on

only superficially different cases. Many grammatical constructions in natural

language are best analyzed as slight variants of other constructions, differing

only in the occurrence of an additional specific lexical item or two. Several

examples are shown in Figure 5.4 below. Given the buffer mechanism, such

constructions can be easily handled by doing a simple insertion of the

appropriate lexical items into the shorter form of the construction,

"transforming" the shorter form into the longer form, allowing both cases to

then be handled by the same grammar rule.

1(a) all the boys
(b) all of the boys

2(a) I helped John pick it up.
(b) I helped John to pick it up.

3(a) John seems happy.
(b) John seems to be happy.

Figure 5.4

3) The ability to place a trace by inserting it into the buffer rather

than by directly attaching it to a tree fragment. The explanation of exactly

why this is a powerful and useful ability will be the central theme - at

least implicitly - of the next two chapters as well as much of this chapter.
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As the reader will soon see, this is perhaps the most significant single

property of the grammar interpreter.

We will see examples of the use of these abilities in the sections

that follow.

Parsing a Yes-No Question

In this section I will show that the syntactic difference between

declaratives and yes-no questions can be captured briefly and perspicuously in

the parsing grammar. As will be demonstrated below, the analysis of a yes-

no question differs from the analysis of the related declarative only in the

execution of two rules for each sentence type. While declaratives trigger

the two rules shown in Figure 5.5.a below, yes-no questions trigger the two

rules shown in Figure 5.5.b. These rules, which differ only in their patterns

and in two lines of code (underlined in fig. 5.5), embody the only

differences between the analyses of declaratives and yes-no questions.
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(RULE MAJOR-DECL-S IN SS-START (RULE YES-NO-Q IN SS-START
f=np [=verbl -- > f=auxverb] [=np]-->
Label c s, decl, major. Label c s, quest, ynquest, major.
Deactivate ss-start. Deactivate ss-start.
Activate parse-subj.) Activate parse-subj.)

(RULE UNMARKED-ORDER (RULE AUX-INVERSION
IN PARSE-SUBJ IN PARSE-SUBJ

r=np][=verb]--> =auxverb]f =np] -- >
Attach 1 st to c as np. Attach 2nd to c as np.
Deactivate parse-subj. Deactivate parse-subj.
Activate parse-aux.} Activate parse-aux.}

DECLARATIVES YES-NO QUESTIONS
(a) (b)

Figure 5.5 - Grammar rules for yes-no questions and declaratives.

The differences between the two sets of rules above are the

following: 1) MAJOR-DECL-S will label a clause beginning with an NP

followed by a verb as declarative; YES-NO-Q will label a clause beginning

with an auxiliary verb followed by an NP as a yes-no question. 2)

UNMARKED-ORDER will trigger if an NP is followed by a verb at the

beginning of a clause, and will parse the NP as the subject of the clause;

AUX-INVERSION triggers if an auxiliary verb is followed by an NP, and

parses the NP as subject. It should be noted that if these rules were being

written to handle only declaratives and yes-no questions, the two rules for

each clause type could be conflated into one rule for each type. However,

the two subject parsing rules also handle imperatives (as we will see in the

following section) and wh-questions, and thus a generalization is captured by

initiating the parsing of a major clause in two steps.

What is surprising about these rules is that they obviate the need
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for the grammar to contain special provisions to handle the discontinuity of

the verb cluster in yes-no questions. Consider the following sentence,

previously given in Figure 5.3.b above:

5.3.b) Has John scheduled the meeting for Wednesday?

One of the auxiliary parsing rules that should be triggered during the course

of the analysis of this sentence is the rule PERFECTIVE, repeated below in

Figure 5.6. This rule will attach any form of "have" to the auxiliary and

label the auxiliary perfective if the following word (implicitly a verb) has

the feature en. It would seem that some provision must be made for the

fact that in a yes-no question these two words might be separated by the

subject NP, as in our example where the verb "scheduled" (which does carry

the feature en, since en is morphologically realized with this verb as "-ed")

does not follow "has", but rather follows an intervening NP. As we shall see

immediately below, however, no special patch is needed to handle this

discontinuity at all.

(RULE PERFECTIVE PRIORITY: 10. IN BUILD-AUX
[=Khave] [=en] -- > Attach 1st to c as perf. Label c perf.}

Figure 5.6 - The PERFECTIVE rule requires contiguous verbs.

Let us now trace through the initial steps of parsing 5.3.b and see

why it is that no changes to the auxiliary parsing rules are required to parse

yes-no questions. We will focus only on significant details of the analysis

in this and the following examples. Again, I remind the reader that

Appendix B discusses the details of PIDGIN, and Appendix C contains a

compendium, organized by packet, of all the rules referenced in this chapter.
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We begin with the parser in the state shown in Figure 5.7.a below,

with the packet SS-START active. The rule YES-NO-Q matches and is

executed, labelling S17 with features that indicate that it is a yes-no

question, as shown in Figure 5.7.b below. (The buffer, not shown again,

remains unchanged.) This step of the parsing process is quite analogous to

the analysis process for declaratives.

The Active Node Stack ( 0. deep)

C: S17 (S) / (CPOOL SS-START)

The Buffer

1 : WORD134 ("HAVE VERB AUXVERB PRES V3S) : (Has)
2 : NP43 (NP NAME NS N3P) : (John)
3 : WORD136 (T SCHEDULE COMP-OBJ VERB INF-OBJ V-3S ... ) : (scheduled)

Yet unseen words: a meeting for Wednesday ?

(a) - Before YES-NO-Q has been executed.

The Active Node Stack ( 0. deep)

C: S1 7 (S QUEST YNQUEST MAJOR) / (PARSE-SUBJ CPOOL)

(b) - The Active Node Stack after YES-NO-Q is executed.

Figure 5.7

The packet PARSE-SUBJ is now active, and rule AUX-INVERSION

matches and is executed; it attaches NP43 to S17. After AUX-INVERSION has

been executed, the grammar interpreter notices that NP43 is attached and it

therefore removes NP43 from the buffer. But now that the subject of the

clause has been removed from the buffer, the pieces of the verb cluster "has

scheduled" are no longer discontinuous, as the word "has" is now in the 1st

buffer cell, and "scheduled" is in the 2nd cell. This is shown in Figure 5.8
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below. In effect, the rule AUX-INVERSION, merely by picking out the

subject of the clause, has "undone" the "inversion" of the subject of the

clause and the first element of the auxiliary which signals the presence of a

question. The configuration of the parser at this point is now

indistinguishable from what its state would have been had the sentence been

a declarative rather than a yes/no question, with the obvious exception of

the question features with which the clause node S17 has been labelled.

This can be seen by comparing Figure 5.8 below with Figure 4.21, a

snapshot of the parsing of the declarative which "underlies" this yes-no

question.

The Active Node Stack ( 0. deep)

C: S17 (S QUEST YNQUEST MAJOR) / (PARSE-AUX CPOOL)
NP : (John)

The Buffer

1 : WORD134 ("HAVE VERB AUXVERB PRES V3S) : (Has)
2 : WORD136 (RSCHEDULE COMP-OBJ VERB INF-OBJ V-3S ... ) : (scheduled)

Yet unseen words: a meeting for Wednesday ?

Figure 5.8 - After AUX-INVERSION has been executed.

From this example, we see that the ability to delete constituents

from other than the first place in the buffer, in conjunction with the fact

that deletion always compacts the contents of the buffer, allows a key

generalization to be captured. Most interestingly, the removal of the subject

NP in this case was not specifically stipulated by the grammar rule, which

merely specified that the second NP in the buffer was to be attached to the

dominating S. The deletion followed instead from general principles of the
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grammar interpreter's operation. This latter point is crucial; given a simple

statement of the structure of yes-no questions in English. the proper behavior

follows from much more general principles. We will see more examples of

generalizations captured via general properties of the parsing mechanism in

the examples that follow.

Parsing an Imperative

In the last section it was demonstrated that the analysis process for

declaratives and yes-no questions differed in the execution of exactly two

rules. In this section I will demonstrate that the analysis process for

declaratives and imperatives differs in exactly one rule of grammar. While

declaratives trigger the rule MAJOR-DECL-S in the packet SS-START,

imperatives will trigger the rule IMPERATIVE. After one or the other of

these two rules has run, the remaining analysis process is essentially

identical for both imperatives and declaratives.

As shown in Figure 5.9 below, the rule IMPERATIVE differs from

MAJOR-DECL-S in the following ways: 1) MAJOR-DECL-S triggers on an NP

followed by a verb; IMPERATIVE triggers on a tenseless verb. 2) The two

rules assign different type features to the clause. 3) The rule IMPERATIVE

includes the PIDGIN code

Insert the word 'you' into the buffer.

This code is the crucial difference between these two rules; we must

examine exactly what its execution accomplishes.
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(RULE MAJOR-DECL-S IN SS-START (RULE IMPERATIVE IN SS-START
f=npl f=verb] -- > [=tnslessl -- >
Label c s, decl, major. Label c s, Imper, major.

.... ~Insert the word 'you' into the buffer.
Deactivate ss-start. Deactivate ss-start.
Activate parse-subj.) Activate parse-subj.)

DECLARATIVES IMPERATIVES
(a) (b)

Figure 5.9 - Differences between declarative and imperative rules.

In general, the PIDGIN construct

Insert the word '<word>' into the buffer (before <position>)

inserts <word> into the buffer before <position>, which may be either 1st,

2nd, or 3rd. If the position is not specified, as in the rule IMPERATIVE, the

default is before 1st. The insert is done using the virtual buffer machine

command insert (<word>, (position>). Thus, the previous contents of the

buffer cell corresponding to (position>, as well as all constituents in the

buffer to the right of that cell, are shifted one cell further to the right

before <word> is put into the buffer. Note that this command allows only

specific lexical items to be inserted into the buffer. Except for the initial

entry of words into the buffer from the input list, all other constituent

structure built up by the parser can only enter the buffer by being dropped

from the stack into the buffer, where it is inserted, by definition, into the

first buffer cell.

Once a word is inserted into the buffer by this command, it is

indistinguishable from any other lexical item that has been inserted into the

buffer from the input list. In the case of the word "you", this means that
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the processes that build NPs in a manner transparent to clause level processes

will immediately construct an NP node which dominates the pronoun "you".

Thus, from the point of view of the processes that we are considering in

this chapter, the net effect of this code will be to insert an NP dominating

the pronoun "you" into the 1st position of the buffer.

Let us now trace through the initial steps of the following sentence,

shown previously in Figure 5.3.c above, to see exactly what the full effect

of the rule IMPERATIVE is:

5.3.c Schedule the meeting for Wednesday.

The parser's initial state is shown in Figure 5.10.a below; the packet SS-

START, which contains IMPERATIVE, is active. The rule IMPERATIVE

matches, and its action is executed, leaving the parser in the state shown in

Figure 5.10.b. The node S20 has been labelled imperative, major, and a new

NP node, NP46, which dominates the pronoun "you" is now in the first

position in the buffer. The rule IMPERATIVE has deactivated the packet SS-

START and activated the packet PARSE-SUBJ. Note that the parser is in a

state which is essentially equivalent to the state that it would be in, given

a declarative clause as input, following the execution of the rule MAJOR-

DECL-S.
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The Active Node Stack (0. deep)

C: S20 (S) / (CPOOL SS-START)

The Buffer

1 : WORD 144 ("SCHEDULE COMP-OBJ VERB PRES TNSLESS ... ) (Schedule)

Yet unseen words: a meeting for Wednesday .

(a) - Before IMPERATIVE has been executed.

The Active Node Stack ( 0. deep)

C: S20 (S IMPER MAJOR) / (PARSE-SUBJ CPOOL)

The Buffer

1 : NP46 (NS NPL N2P NP PRON-NP) : (YOU)
2 : WORD 144 ("SCHEDULE COMP-OBJ VERB PRES TNSLESS ... ) (Schedule)

Yet unseen words: a meeting for Wednesday .

(b) - After IMPERATIVE has been executed.

Figure 5.10 - The action of the rule IMPERATIVE.

Just as if the original sentence were a declarative, the rule

UNMARKED-ORDER will trigger next, attaching NP46 to S20 as its subject.

The rest of the analysis process will be exactly parallel to the process that

would follow from a declarative sentence. Thus, the only difference in the

analyses of imperatives and declaratives will be in the execution of one rule:

declaratives will trigger MAJOR-DECL-S, while imperatives will trigger

IMPERATIVE. (The reader might wonder how it is that the tenseless verb

"schedule" will properly interact with the auxiliary parsing rules. As

pointed out in Chapter 3, in a clause with a simple verb, i.e. a verb cluster

consisting of only a main verb with no auxiliaries, the auxiliary node will
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not dominate any lexical items, but will carry the tense and person/number

codes of the verb. In the case of a tenseless verb, the auxiliary will thus be

marked as tenseless, with no person/number codes.)

The crucial point of this example is that by merely inserting the

word "you" into an appropriate position in the buffer, the rule IMPERATIVE

has created a subject for the imperative clause, reestablishing the subject-

verb order which typically initiates "unmarked" clauses like major declarative

clauses and all subordinate clauses. As in the case of yes-no questions, it has

thus been demonstrated that an important grammatical generalization can be

easily captured within the framework of the grammar interpreter. And once

again, it turns out to be the case that the relevant grammar rule need only

briefly specify part of what the grammar interpreter should do; the bulk of

what needs to be done (in this case the creation of an NP that dominates the

pronoun) follows automatically from mechanisms not connected with this

grammar rule, mechanisms that are independently motivated.

(The observant reader might wonder how the parser handles

sentences like 5.11.a and b below, since "have" is potentially both tenseless

and an auxiliary, triggering both YES-NO-Q and IMPERATIVE. The answer is

the central focus of Chapter 9. In short, the problem is solved by introducing

a "diagnostic" rule that decides (if it can) between potential conflicts by

examining the number features of the following NP and the morphology of

the verb in the 3rd buffer cell.
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(a) Have the boys arrive today.
(b) Have the boys arrived today?

Figure 5.11 - Two sentences that trigger both YES-NO-Q and IMPERATIVE.
)

Parsing Passives - A Simple Example

Earlier in this chapter, the notion of a trace was introduced as a

mechanism to encode the underlying predicate/argument structure of an

utterance in a surface structure representation. As shown earlier in Figure

5.2, traces can be used to encode where in an utterance a wh-phrase can be

said to belong in terms of predicate/argument relations, which NP in a

higher clause "controls" the subject of an embedded S, as well as to indicate

the fact that the surface subject of a passive clause is really its "underlying"

object. In this section, we will investigate the question of how the grammar

deals with simple passive constructions, and then in the following section

investigate the phenomenon known in the transformational literature as

"raising" [Postal 74], sentences in which what seems to be the subject of an

embedded complement is passivized into the subject position of the higher

clause. We will also see how the grammar handles verbs like "seem", which

seem to allow the subject of an embedded clause to shift into subject position

in the higher clause.

Let us begin by examining a simple case of passivization, as

embodied in the following sentence, which was given above as 5.3.d:

5.3.d The meeting was scheduled for Wednesday.

We will begin our example with the parser in the state shown in Figure
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5.12 below. The analysis process for the sentence prior to this point is

essentially parallel to the analysis of any simple declarative with one

exception: the rule PASSIVE-AUX in packet BUILD-AUX has decoded the

passive morphology in the auxiliary and given the auxiliary the feature

passive (although this feature is not visible in Figure 5.12). At the point

we begin our example, the rule MVB has just been executed, and the packet

SUBJ-VERB is active.

The Active Node Stack (1. deep)

S21 (S DECL MAJOR) / (SS-FINAL CPOOL)
NP : (The meeting)
AUX (has been)
VP :4

C: VP17 (VP) / (SUBJ-VERB CPQOL)
VERB : (scheduled)

The Buffer

1 : PP14 (PP) : (for Wednesday)
2 : WORD162 (x. FINALPUNC PUNC) :)

Yet unseen words: (none)

Figure 5.12 - Analysis of a passive after the verb has been attached.

Besides the rule SUBJ-VERB, the packet SUBJ-VERB also contains the

rule PASSIVE, shown in Figure 5.13 below. As I will show, this rule by

itself is sufficient to account for many of the phenomena that accompany

clause-level passivization (including, as I will show in the next section, the

phenomenon of raising). The pattern of this rule is fulfilled if the auxiliary

of the S node dominating the current active node (which will always be a

VP node if packet SUBJ-VERB is active) has the feature passive, and the S

node has not yet been labelled np-preposed. (The feature np-preposed,
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which means that the subject NP has been conceptually "preposed" from an

"underlying" position immediately after the verb, is used to label not only

passives, but also clauses with main verbs like "seem", as in "John seems to

be happy".) The action of the rule PASSIVE creates a trace, sets the binding

of the trace to the subject of the dominating s node, and then drops the new

trace into the buffer.

(RULE PASSIVE IN SUBJ-VERB
" c; the aux of the s above " is passive;

the s above 1 is not np-preposed] --
Label the s above c np-preposed.
Create a new np node labelled trace.
Set the binding of c to the np of the s above c.
Drop c.}

Figure 5.13 - PASSIVE captures np-preposing in 4 lines of code.

Returning to our example, the packet SUBJ-VERB, containing both

the rules SUBJ-VERB and PASSIVE, is now active. The patterns of both rules

are fulfilled by the current parse tree: PASSIVE matches since the auxiliary

of 521 is indeed labelled passive, and 521 itself is not labelled np-preposed;

SUBJ-VERB will always match since it is a "default" rule with a dummy

pattern which is always true. (Such a default rule always has a low

priority so it matches if and only if no rules of higher priority match.)

Since both rules can match, and PASSIVE has higher priority than SUBJ-

VERB, the action of PASSIVE is run next.

PASSIVE first adds the feature np-preposed to 521; not only does

this feature signal that the sentence has a preposed subject, but it also blocks

the rule PASSIVE from applying repeatedly, since the pattern of the rule will
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only match if this feature is absent. It next creates a trace, binds it to the

subject of the sentence, in this case the NP "The meeting", and then drops

the trace into the buffer. Since the verb of the clause has just been

attached by the previous rule, this has the effect of inserting the trace into

the surface string immediately after the verb. One will note that this is not

at all equivalent to immediately attaching the trace as the object of the verb,

as will become clear in the following section. The state of the parser after

this rule has been executed is shown in Figure 5.14 below. S21 is now

labelled with the feature np-preposed, and there is a trace, NP53, in the first

buffer position. NP53, as a trace, has no daughters, but is bound to the

subject of S21.

The Active Node Stack ( 1. deep)

S21 (NP-PREPOSED S DECL MAJOR) / (SS-FINAL CPOOL)
NP : (The meeting)
AUX (has been)
VP :

C: VP1 7 (VP) / (SUBJ-VERB CPOOL)
VERB (scheduled)

The Buffer

1 : NP53 (NP TRACE) : bound to: (The meeting)
2 : PP14 (PP) : (for Wednesday)
3 : WORD162 (c. FINALPUNC PUNC) : (.)

Yet unseen words: (none)

Figure 5.14 - After PASSIVE has been executed.

After PASSIVE has been executed, the packet SUBJ-VERB is still

active, but now the rule PASSIVE is blocked from matching by the presence

of the feature np-preposed, so the rule SUBJ-VERB matches and is run next.

After it has been executed the parser is in virtually the same state as in
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Figure 5.14 above, with the exception that a different set of packets is now

associated with VP17; SUBJ-VERB has deactivated the packet SUBJ-VERB and,

in this case, activated the packets SS-VP and INF-COMP.

Sitting in packet SS-VP is the rule OBJECTS, which is now triggered

by the trace NP53 in the first buffer cell. This rule attaches the trace to

the VP, VP17, making the trace the object of the verb "scheduled". This

flags the fact that the clause's apparent subject is really the underlying

object of the verb, just as trace was used to mark the passive in Figure

5.2.2 above. In this sense, the passive has been "undone". The state of the

parser at this point is shown in Figure 5.15 below.

The Active Node Stack ( 1. deep)

S21 (NP-PREPOSED S DECL MAJOR) / (SS-FINAL CPOOL)
NP : (The meeting)
AUX (has been)
VP :4

C: VP1 7 (VP) / (SS-VP INF-COMP CPOOL)
VERB : (scheduled)
NP : bound to: (The meeting)

The Buffer

1 : PP14 (PP) : (for Wednesday)
2 : WORD162 (K. FINALPUNC PUNC) : (.)

Yet unseen words: (none)

Figure 5.15 - After OBJECTS has attached the trace to VP17.

Note that the rule OBJECTS is totally indifferent both to the fact

that NP53 was not a regular NP, but rather a trace, and the fact that NP53

did not originate in the input string, but was placed into the buffer by

grammatical processes. In the simple declarative example discussed previously
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in Chapter 4, this rule was triggered in an identical manner by the NP "the

meeting" which was in this case the actual surface object of the verb.

Thus, whether or not this rule is executed is absolutely unaffected by

differences between an active sentence and its passive form; the analysis

process for either is identical as of this point in the parsing process.

Furthermore, after this rule has been executed, the state of the parser as

captured in Figure 5.15 above is essentially identical to its state after the

object of the verb was attached in the earlier simple declarative example.

Thus, the analysis process will be exactly parallel in both cases after the

object has been attached. In point of fact, the analysis process for a passive

sentence, outside of picking up the passive morphology in the auxiliary

phrase, differs from the processing of an active clause only in the execution

of the rule PASSIVE; the remainder of the analysis process is exactly

parallel. (I remind the reader that the analysis of passive that is assumed

above does not assume a process of "agent deletion", "subject postposing" or

the like. As stated earlier in this chapter, I follow Chomsky is assuming

that passive sentences have no underlying subject.)

Passives and Embedded Complements

In the previous section, we investigated how simple passives were

handled by the parser. In this section we will investigate how the parser

handles much more complicated passives, such as the sentence presented in an

earlier section as 5.2.4a, repeated below for convenience. The desired

analysis of this sentence, as shown in 5.2.4b, analyzes "to be happy" as an

embedded S whose subject is a trace bound to the subject of the higher

clause. Such an analysis views (4b) as deriving conceptually from an
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underlying form similar to (4c), where the subject of the underlying clause

has been passivized into subject position in the upper clause. In this section

I will show how the parser builds such an analysis.

(4a) John was believed to be happy.
(4b) John was believed [s t to be happy].

(4c) V believed John to be happy.

Figure 5.2 (repeated) - The intended analysis for a complex passive

The reader may have wondered why the PASSIVE rule introduced in

the previous section was formulated to drop the trace it creates into the

buffer rather than immediately attaching the new trace to the VP node. As I

will show in this section, such a formulation of PASSIVE also correctly

analyzes passives like (4a) in Figure 5.2 above which involve "raising" with

no additional complexity added to the grammar. Thus, a simple statement of

passivization will have been shown to correctly capture a generalization about

a range of grammatical phenomena. To fully show the range of the

generalization, the example which we will investigate in this section,

sentence (1) in Figure 5.16 below, is yet a level more complex than (4a)

above; its analysis is shown schematically in 5.16.2. In this example there

are two traces: the first, the subject of the embedded clause, is bound to

the subject of the major clause, the second, the object of the embedded S, is

bound to the first trace, and is thus ultimately bound to the subject of the

higher S as well. Thus the underlying position of the NP "the meeting" can

be viewed as being the object position of the embedded S, parallel to the

overt surface structure of (3) in Figure 5.16. This analysis presupposes that a

clause with main verb "seems" behaves as if the verb were passive; I will
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show in the following example how this generalization can be easily

captured.

(1)The meeting seems to have been scheduled for Wednesday.

(2)The meeting seems [St to have been scheduled t for Wednesday].
1 11 1 1|

(3) It seems [S that V scheduled the meeting for Wednesday].

Figure 5.16 - The example which will be discussed in this section.

Before the analysis of (1) above can be discussed, it is necessary for

the reader to understand how a simple embedded complement is initiated. Let

us briefly look at how the complement in sentence 5.17 below is initiated.

5.17 We wanted John to schedule a meeting for Wednesday.

We will start this brief digression with the parser in the state depicted

below in Figure 5.18. The rule SUBJ-VERB has just been executed and has

activated the packets SS-VP and INF-COMP.
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The Active Node Stack ( 1. deep)

S3 (S DECL MAJOR) / (SS-FINAL CPOOL)
NP : (We)
AUX : NIL
VP :4

C: VP3 (VP) / (SS-VP INF-COMP CPOOL)
VERB : (wanted)

The Buffer

1 : NP6 (NP NAME NS N3P) : (John)
2 : WORD14 (xTO PREP AUXVERB) : (to)
3 : WORD 15 (t SCHEDULE COMP-OBJ VERB PRES TNSLESS ... ) : (schedule)

Yet unseen words: a meeting for Wednesday .

Figure 5.18 - Parsing a simple complement - After SUBJ-VERB has run.

One of the rules in the packet INF-COMP is the rule INF-START1,

shown below in Figure 5.19. This rule will trigger if there is an NP in the

buffer, followed by the word "to", followed by a tenseless verb. It will

create a new S node, labelled as an infinitive, and attach the NP to the S

node. This rule must be assigned a priority of 5 because this packet is often

active at the same time that the packet SS-VP, which contains the rule

OBJECTS, is active. OBJECTS is triggered by a single NP, so that the pattern

of OBJECTS will match whenever the pattern of INF-S-START1 will. By

giving INF-S-START1 a higher priority than OBJECTS, INF-S-START1, and not

OBJECTS, will be executed by the grammar interpreter if both rules match,

which is the desired behavior. (Note that it would be easy in this case for

an algorithm to detect that the pattern of INF-S-START1 is a further

specification of the pattern of OBJECTS, and thus must be assigned a higher

priority, given the heuristic that a rule whose pattern is a further

specification of another should receive higher priority than that other rule.)
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(The reader might find it useful at this point to glance ahead to

Figure 5.30 at the end of the penultimate section of this chapter. This

figure shows the overall organization of the set of grammar rules presented

through the end of the chapter. This figure clearly shows, for example, that

the rules OBJECTS and INF-S-START1 are in packets which are closely

related, although it doesn't indicate that they may be active at the same

time.)

(RULE INF-S-START1 PRIORITY: 5. IN INF-COMP
(=np] [=*to,auxverb] [=tnsIess] ->

Label a new s node sec, inf-s.
Attach 1st to c as np.
Activate cpool, parse-aux.}

Figure 5.19 - One rule which starts infinitives.

With the parser in the state shown in Figure 5.18 above, the packet

INF-COMP, containing the rule INF-S-START1, is active, and this rule now

matches and is executed by the grammar interpreter. After this rule is run,

the parser is in the state shown in Figure 5.20 below. Now the subordinate

clause has been initiated and will be completed by grammatical processes

similar to those that have been discussed in previous examples. After the

embedded clause is completed, it will be dropped into the buffer where it

will trigger another rule in the packet INF-COMP which will attach it to an

NP attached to the dominating VP.
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The Active Node Stack ( 2. deep)

S3 (S DECL MAJOR) / (SS-FINAL CPOOL)
NP : (We)
AUX : NIL
VP : 4

VP3 (VP) / (SS-VP INF-COMP CPOOL)
VERB : (wanted)

C: S4 (SEC INF-S S) / (CPOOL PARSE-AUX)
NP : (John)

The Buffer

1 : WORD14 ("TO PREP AUXVERB) : (to)
2 : WORD15 (5SCHEDULE COMP-OBJ VERB PRES TNSLESS ... ) (schedule)

Yet unseen words: a meeting for Wednesday .

Figure 5.20 - After INF-S-START1 has been executed.

With this preliminary out of the way, we can now begin our

investigation of the analysis process for (a) in Figure 5.16 above.

We begin our example, once again, right after the rule MVB has

been executed, attaching "seems" to VP20, the current active node, as shown

in Figure 5.21 below.
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The Active Node Stack (1. deep)

S22 (S DECL MAJOR) / (SS-FINAL CPOOL)
NP : (The meeting)
AUX : NIL
VP :4I

C: VP2O(VP) / (SUBJ-VERB CPOOL)
VERB :(seems)

The Buffer

1 : WORD166 ("TO PREP AUXVERB) : (to)
2 : WORD167 (WHAVE VERB TNSLESS AUXVERB PRES ...) : (have)

Yet unseen words: been scheduled for Wednesday .

Figure 5.21 - The example begins after MVB has been executed.

Following Chomsky (as referenced in [Fiengo 74]), I will analyze

"seem" as coming from an underlying source like (1) in Figure 5.22 below,

where the symbol V indicates that the source has no underlying subject. If

the complement is a that-clause, the subject position will be filled by the

word "it" as in (2); if the complement is an infinitive, the subject of the

complement will be preposed into the subject position of the higher clause,

as in (3), leaving behind a trace. For the infinitive case, as in our example,

this means that the parser must create a trace bound to the subject of the

upper clause and place it into position in the lower clause.

(1) V seems [s John be happy].
(2) It seems [S that John is happy].
(3) John seems [S t to be happy].

Figure 5.22 - The underlying form of clauses with verb "seem".
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I will show that the rule SEEMS, shown below in Figure 5.23, is

the only additional rule that is needed to handle this phenomenon. This rule

simply says that if the contents of the buffer clearly indicate an infinitive,

and if the main verb is a verb like "seems" which can be "subject-less", and

if the NP preposing hasn't been undone yet (adding the feature np-preposed

as a flag), then do the same thing that the PASSIVE rule does. The essence

of this rule is that there is one simple action to handle the general

phenomenon of NP preposing, but that two different situations flag the fact

that the subject NP has been preposed. Thus our current example will

demonstrate two points: 1) that the action of the PASSIVE rule is sufficient

to handle several cases of NP preposing; and 2) that this rule correctly

handles preposing even if the NP that has been preposed originated in a

lower clause.

(RULE SEEMS IN SUBJ-VERB
[="to] [=tnsless]

Lmo c; the verb of " is no-subj;
the s above x is not np-preposed] --

*/.This simple form won't handle "John seems happy."%
Run passive next.}

Figure 5.23

With the parser in the state indicated in Figure 5.21 above, the

packet SUBJ-VERB, which contains SEEMS, is active, and this rule's pattern is

fulfilled, so the rule is executed. SEEMS does nothing but signal the

grammar interpreter to execute PASSIVE, so PASSIVE is now executed. This

rule, as stated above, creates a trace, binds it to the subject of the current

clause, and drops the trace into the first cell in the buffer. The resulting

state is shown in Figure 5.24 below.
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The Active Node Stack ( 1. deep)

S22 (NP-PREPOSED S DECL MAJOR) / (SS-FINAL CPOOL)
NP : (The meeting)
AUX: NIL
VP :

C: VP20 (VP) / (SUBJ-VERB CPOOL)
VERB: (seems)

The Buffer

1 : NP55 (NP TRACE) : bound to: (The meeting)
2 : WORD166 ("TO PREP AUXVERB) : (to)
3 : WORD167 ("HAVE VERB TNSLESS AUXVERB PRES ... ) : (have)

Yet unseen words: been scheduled for Wednesday .

Figure 5.24 - After SEEMS has caused PASSIVE to be executed.

The rule SUBJ-VERB is now triggered, and deactivates the packet

SUBJ-VERB and activates the packets SS-VP (which contains the rule

OBJECTS) and INF-COMP (which contains INF-S-STA.RT1), among others. But

now the patterns of OBJECTS and INF-S-START1 will both match, and INF-S-

START1, will be executed by the interpreter since it has the higher priority.

(Note once again that a trace is a perfectly normal NP from the point view

of a rule's pattern.) Thus this rule now creates a new S node labeled

infinitive and attaches the trace NP55 to the new infinitive as its subject.

The resulting state is shown in Figure 5.25 below.
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The Active Node Stack ( 2. deep)

S22 (NP-PREPOSED S DECL MAJOR) / (SS-FINAL CPOOL)
NP : (The meeting)
AUX: NIL
VP :4

VP20 (VP) / (SS-VP THAT-COMP INF-COMP CPOOL)
VERB : (seems)

C: S23 (SEC INF-S S) / (CPOOL PARSE-AUX)
NP : bound to: (The meeting)

The Buffer

1 WORD166 (KTO PREP AUXVERB) : (to)
2 : WORD167 ("HAVE VERB TNSLESS AUXVERB PRES ... ) (have)

Yet unseen words: been scheduled for Wednesday .

Figure 5.25 - After INF-S-START1 has been executed.

We are now well on our way to the desired analysis. An embedded

infinitive has been initiated, and a trace bound to the subject of the

dominating S has been attached as its subject. Furthermore, the parser is

now in a state analogous to the state depicted in Figure 5.20 after the parser

has attached the subject of a simple infinitive complement. The key

difference, of course, is that the NP that serves as the subject of the

infinitive clause is in this case a trace.

The parser will now proceed, exactly as in earlier examples, to build

the auxiliary, attach it, and attach the verb "scheduled" to a new VP node.

After the rules that accomplish this have been executed, the parser is left in

the state depicted in Figure 5.26 below. (Note that for the sake of brevity,

only the 3 bottommost nodes in the active node stack will be shown in this

and all successive diagrams.) The infinitive auxiliary has been parsed and
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attached, and VP21 is now the current active node, with the verb

"scheduled" as main verb of the clause. It should be noted that the auxiliary

has been assigned the feature passive by the auxiliary parsing rules,

although this is not shown in the figure below.

The Active Node Stack ( 3. deep)

VP20 (VP) / (SS-VP THAT-COMP INF-COMP CPOOL)
VERB : (seems)

S23 (SEC INF-S S) / (EMB-S-FINAL CPOOL)
NP : bound to: (The meeting)
AUX (to have been)
VP :4

C: VP21 (VP) / (SUBJ-VERB CPOOL)
VERB : (scheduled)

The Buffer

1 : PP15 (PP) : (for Wednesday)
2 : WORD1 74 (". FINALPUNC PUNC) :.)

Yet unseen words:

Figure 5.26 - After the auxiliary and main verb have been parsed.

The packet SUBJ-VERB, containing the rules PASSIVE and SUBJ-

VERB, is now active. Once again PASSIVE's pattern matches and this rule is

executed, creating a trace, binding it to the subject of the clause, (which is

in this case itself a trace), and dropping the new trace into the buffer. And

again, it labels the dominating S node, in this case S23, with the feature np-

preposed, blocking the PASSIVE rule from reapplying. This is shown in

Figure 5.27 below. Note that in this figure, as in earlier figures, the

binding of each trace is indicated.
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The Active Node Stack ( 3. deep)

VP20 (VP) / (SS-VP THAT-COMP INF-COMP CPOOL)
VERB : (seems)

S23 (NP-PREPOSED SEC INF-S S) / (EMB-S-FINAL CPOOL)
NP : bound to: (The meeting)
AUX : (to have been)
VP :4

C: VP21 (VP) / (SUBJ-VERB CPOOL)
VERB : (scheduled)

The Buffer

1 : NP57 (NP TRACE) : bound to: (The meeting)
2 : PP15 (PP) : (for Wednesday)
3 : WORD 174 (". FINALPUNC PUNC) : (.)

Yet unseen words: (none)

Figure 5.27 - After PASSIVE has run on the lower clause.

Now the rule SUBJ-VERB will be executed, activating in this case

the packets INF-COMP, containing INF-S-STARTl, and EMB-S-VP, which

contains the rule OBJ-IN-EMBEDDED-S. The rule OBJ-IN-EMBEDDED-S is

similar to the rule OBJECTS except that it does a semantic test before

attaching its triggering NP to the VP, to assure that the NP is semantically

acceptable with this verb. If the NP is not semantically acceptable with this

verb, it advises the grammar interpreter to finish the VP, leaving the NP in

the buffer to be attached later to some higher S. This rule is shown in

Figure 5.28.a below. (Since INF-S-START1 has a higher priority than OBJ-

IN-EMBEDDED-S, the grammar interpreter attempts to match the former rule

before the latter, but INF-S-START1 fails to match, while OBJ-IN-EMBEDDED-

S matches successfully.) OBJ-IN-EMBEDDED-S is now run, the semantic test

is successful, we will assume, and the trace is attached to VP21. The
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resulting state is shown in 5.28.b below.

{RULE OBJ-IN-EMBEDDED-S IN EMBEDDED-S-VP
[=np] -- >
If 1st fits an obj slot of the cf of c

then attach 1st to c as np
else run embedded-vp-done next.}

(a) - The embedded clause version of the rule OBJECTS.

The Active Node Stack ( 3. deep)

VP20 (VP) / (SS-VP THAT-COMP INF-COMP CPOOL)
VERB : (seems)

S23 (NP-PREPOSED SEC INF-S S) / (EMB-S-FINAL CPOOL)
NP : bound to: (The meeting)
AUX (to have been)
VP :4

C: VP21 (VP) / (EMBEDDED-S-VP INF-COMP CPOOL)
VERB : (scheduled)
NP : bound to: (The meeting)

The Buffer

1 : PP15 (PP) : (for Wednesday)
2 : WORD 174 (". FINALPUNC PUNC) :.)

Yet unseen words: (none)

(b) - After OBJ-IN-EMBEDDED-S has been executed.

Figure 5.28

The remainder of the parsing process proceeds in a fashion similar to

the simple infinitive example discussed above. Once the infinitive is

completed, it is dropped into the buffer, where it triggers a grammar rule

which attachs it to an NP node attached to the VP of the major clause. The

tree structure which results after the parse is complete is shown in Figure

5.29.a below. (For the sake of brevity, most features have been deleted from

this tree and the following case frame structure.) A trace is indicated in
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this tree by giving the terminal string of its ultimate binding in parentheses.

To give the reader an idea of what the underlying structure of this sentence

is taken to be, an condensed version of the output of the case-frame

component that processes the output of this parser is shown in Figure 5.29.b.

This case frame indicates that the toplevel predicate SEEM has one argument

in the NEUTRAL case which is itself a proposition. The predicate of this

embedded proposition is SCHEDULE and it has two arguments, a NEUTRAL

which is "The meeting" and a TIME which is "Wednesday" with the marker

"for". The predicate SCHEDULE also takes an AGENT, but the example does

not specify who the AGENT is, so no AGENT can be given in the case frame

analysis. The case frame component derives this case representation, in

essence, by ignoring the surface subjects of all np-preposed clauses, and

replacing all traces with their ultimate bindings.
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(NP-PREPOSED S DECL MAJOR)
NP: (MODIBLE NP DEF DET NP)

DET: The
NBAR: (NS NBAR)

NOUN: meeting
AUX: (PRES V3S AUX)
VP: (VP)

VERB: seems
NP: (NP COMP)

S: (NP-PREPOSED SEC INF-S S)
NP: (NP TRACE)

(bound" to: The meeting)
AUX: (PASSIVE PERF INF AUX)

TO: to
PERF: have
PASSIVE: been

VP: (VP)
VERB: scheduled
NP: (NP TRACE)

(bound" to: The meeting)
PP: (PP)

PREP: for
NP: (NP TIME DOW)

NOUN: Wednesday
FINALPUNC:

(a) - The tree structure resulting from parsing 5.3.d.

PRED: SEEM
NEUT: MARKER: OBJ

(NP COMP)
PRED : SCHEDULE
NEUT: MARKER: OBJ

(NP TRACE)
(bound" to:The meeting)

TIME: MARKER: FOR
(NP TIME DOW)

(3WEDNESDAY NGSTART NOUN NS N3P DAY-OF-WEEK TIME)
Wednesday

(b) - The Case Frame resulting from a case analysis of (a) above.

Figure 5.29
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The crucial point to be drawn from this example is that the simple

formulation of the PASSIVE rule presented above, interacting with other

simply formulated grammatical rules for parsing objects and initiating

embedded infinitives, allows a trace to be attached either as the object of a

verb or as the subject of an embedded infinitive, whichever is the

appropriate analysis for a given grammatical situation. The PASSIVE rule is

formulated in such a way that it drops the trace it creates into the buffer,

rather than attaching the trace somewhere in particular in the tree. Because

of this, later rules, already formulated to trigger on an NP in the buffer,

will analyze sentences with NP-preposing exactly the same as those without

a preposed subject. The PASSIVE rule, formulated as it is, elegantly captures

the notion that the "underlying" location of a preposed NP is, in fact,

immediately after the verb in the underlying terminal string, regardless of

its position in the underlying tree. Once again, we see that the availability

of the buffer mechanism is crucial to capturing this generalization; such a

generalization can only be stated by a parser with a mechanism much like

the buffer used here.

To summarize the grammatical processes discussed in this chapter,

Figure 5.30 presents the full set of grammar rules presented in this and the

previous chapter. The notation is the same as that of Figure 4.31, with the

following extensions: Rules in simple lower case were first presented in

Chapter 4; rules in italics were newly presented in this chapter.
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S-

VP -- >

NP

PARSE-SUBJ
unmarked-order

aux-invers i on

AUX . . . .

PARSE-AUX
star t-aux
to-inf i ni t ive
aux-attach

TYPE

SS-S TART
ma jor-dec1-s
yes-no-q
imperative

VP

PARSE-VP
Mrvb

V

SUBJ-VERB
passive
seems

15: subj-verb

AUX ->

BUILO-AUX
perfect i ve
progress i ve
pass i ve-aux
modal
do-suppor t

15: aux-compI e t e

Figure 5.30 - The set of grammar rules as extended in this chapter.

On the Discovery of These Generalizations

As a historical note, I should mention that I was surprised to

discover that grammar rules could be written so as to elegantly capture these

generalizations. I must admit that this was not initially a foreseen result of

this research. An earlier grammar of English, written in terms of a prior

(PP)

SS-FINAL
s-done

COMP

SS-VP
objects
vp-done
pp-under-vp-1

INF-COMP
5: inf-s-startl

EMBEODED-S-VP
obj-in-embedded -
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implementation of a similar grammar interpreter, utilized rules that captured

none of these generalizations, although (or perhaps because) these earlier

rules were individually much more powerful computationally than the rules

of the current grammar. It was only after severely restricting the grammar

language that the current style of writing rules was discovered. After

discarding the use of registers to store tree fragments, restricting the number

of constituents that a single rule could access, and totally eliminating the use

of variables in the grammar rules, it became necessary to reformulate much

of the grammar to fit the tighter constraints of the current implementation.

These constraints forced me to find methods of manipulating grammatical

structures that soon led to a much simpler formulation of many grammatical

rules by taking greater advantage of the buffer mechanism.

I restricted the richer computational structure of the earlier

implementation because of a desire to approach the minimal computational

mechanism necessary to parse English. Perhaps the seeming paradox that a

more restricted mechanism led to a more elegant grammar should have come

as no great surprise.
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CHAPTER 8

THE GRAMMAR INTERPRETER

AND CHOMSKY'S CONSTRAINTS

Introduction

In a series of papers over the last several years, Noam Chomsky has

argued for several specific properties of language which he claims are

universal to all human languages [Chomsky 73, 75, 76]. These properties,

which form one of the cornerstones of his current linguistic theory, are

embodied in a set of constraints on language, a set of restrictions on the

operation of rules of grammar.

In this chapter and the next, I will show that important sub-cases

of two of these constraints fall out naturally from the structure of the

grammar interpreter. I will then show that many of the properties of the

interpreter which are crucial to capturing these universals are motivated by

the determinism hypothesis. Thus, I will demonstrate that significant sub-

cases of Chomsky's universals follow naturally from the determinism

hypothesis and in this sense are explained by it. Furthermore, if Chomsky's

claims of universality are true, this demonstration shows that the

mechanisms of the grammar interpreter capture a number of generalizations

which are purportedly universal to all human languages. Such a

demonstration provides further evidence in favor of the determinism

hypothesis.
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(It should be noted that these constraints are far from universally

accepted. They are currently the source of much controversy; for various

critiques of Chomsky's position see [Postal 74; Bresnan 76]. I will not argue

for these constraints in this chapter but will accept them as more or less

accurate, with several reservations which will be stated in the discussion

that follows.)

As a preliminary to the following discussion, a few technical terms

must be defined. The following are the standard linguistic definitions of

dominates and immediately dominates: "If we can trace a path up the tree

from a given node X to a given node Y, then we say X is dominated by Y,

or equivalently, Y dominates X." If Y dominates X, and no other nodes

intervene (i.e. X is a daughter of Y), then Y immediately (or directly)

dominates X. [Akmajian & Heny 75]. One non-standard definition will prove

useful: I will say that if Y dominates X, and Y is a cyclic node, i.e. an S or

NP node, and there is no other cyclic node Z such that Y dominates Z and Z

dominates X (i.e. there is no intervening cyclic node Z between Y and X)

then Y Dominates X.

An Outline of Chomsky's Theory

Noam Chomsky's current theory of generative grammar differs in

important respects from both the theory of generative grammar presented in

Aspects of the Theory of Syntax [Chomsky 65], the so-called "standard

theory" (ST), or the extension of that theory proposed in the papers collected

in [Chomsky 72], otherwise known as the "extended standard theory" (EST).

Because this theory is not yet widely known, the following section provides

180Chapter 6



Constraints

a short summary of the aspects of this theory relevant to the focus of this

chapter.

The standard theory proposes (in part) that there is a level of

linguistic structure called "deep structure" which is mapped by an ordered

set of grammatical transformations, the transformational component, onto a

level of linguistic structure called "surface structure". The transformational

component consists of such transformations as Passive, Dative Shift, Question

Formation, Auxiliary Inversion, and the like. Both the level of deep

structure and surface structure (as well as intermediate structures produced

by the transformational component) have the form of phrase markers,

which, loosely speaking, correspond to the tree structures of formal language

theory, and each transformation maps the phrase marker which is its input

onto another phrase marker. The level of surface structure is distinguished

in that it is both the output of the transformational component, and the level

of representation which is mapped by the phonological component onto a

representation which can be mapped onto the acoustic waveform. The level

of deep structure is distinguished in that it is both the level of structure

which is the input to the transformational component and the level of

linguistic structure which is appropriate for semantic interpretation.

The extended standard theory accepts the bulk of the standard

theory as stated above. One of the crucial differences between the ST and

EST is that the EST rejects the notion that the level of deep structure, by

itself, is an appropriate level of representation for semantic interpretation.

The EST takes into account the fact that some important semantic properties
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of an utterance, such as scope of quantification and restrictions on

pronominal reference, can only be deduced by examining the structure of the

surface structure tree, including the left-to-right order of its terminals, as

well as its deep structure. The EST proposes that the semantic interpretation

of an utterance must derive from both its surface structure and its deep

structure. (For a good tutorial comparison of these two theories, as well as

the theories of such linguists as Lakoff and Fillmore, see (Maclay 71]. The

volume in which this paper appears ([Steinberg & Jakobovitz 71]) also

reprints the paper in which Chomsky first proposes the modification of the

standard theory discussed here.)

Chomsky's current theory, as first presented in (Chomsky 73, 76]

and currently being modified in such papers as [Chomsky to appear;

Chomsky & Lasnik 77], dramatically alters the EST, extensively revising some

of the ccrnerstones of the two earlier theories. (The version of Chomsky's

theory presented here, which represents the current form of the theory to

the best of my knowledge, derives not only from the papers cited, but also

from lecture notes [Chomsky 75a; Freidin 77], and many conversations with

several linguists (in particular C. Thiersch). For an early formulation of the

theory intended for the non-technical public, see Chap. 3 of [Chomsky 75].)

As discussed in Chapter 5, the current theory, which I will call the

Annotated Surface Structure Theory (ASST), entirely rejects the notion that

the level of deep structure provides an input to the semantic component at

all. As in the standard theory, semantic interpretation once again has but

one level of linguistic representation as input, but in the ASST, this level is
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the level of surface structure, annotated by the addition of traces. The key

realization leading to this aspect of the ASST is that the only aspect of

semantic information easily accessible from the level of deep structure, the

predicate/argument structure of the utterance, can be encoded into surface

structure by the addition of traces, "placemarkers" which show the

underlying locations of the various NPs which have been shifted by the

transformational component. This can be done quite naturally by having all

the rules of the transformational component leave behind such a trace each

time an NP is moved. As explained in Chapter 5, a trace consists merely of

an NP which dominates no lexical material, but which is bound to the NP

that originated in that location.

The ASST differs from Chomsky's two earlier theories in one other

revolutionary manner. Outside of what can be called "housekeeping"

transformations, transformations which handle various small details of

grammatical form, the transformational component consists of exactly two

transformations, which can be stated as the rules "MOVE NP" and "MOVE

WH-phrase". Furthermore, in contrast to the transformations of the earlier

theories, which consisted of fairly detailed patterns, called "structural

descriptions" and actions, called "structural changes", these two rules are

exceedingly general. In fact, the statement of the two rules given above,

simply "Move Np" and "Move Wh-phrase", contains approximately the full

level of detail that these rules provide. Stated informally, the rule MOVE NP

takes an NP, any NP, and moves it anywhere. The rule MOVE WH-phrase

takes a constituent which is labelled "+WH", i.e. an NP like "which boy" or

"who" or a PP which has such an NP as its object, and moves it under a

Chapter 6 183



Chapter 6

node called "COMP" which also dominates complementizers like "that" and

"for" (as in "for John to do it").

Clearly, these two rules unconstrained would allow all sorts of

ungrammatical sentences to be derived, but the slack in the statement of the

rules is taken up by a set of constraints which are claimed to be

grammatical universals. Four of these constraints in particular are crucial to

the theory; I will briefly discuss all of them here.

The Structure Preserving Hypothesis

Perhaps the least technical of these constraints is what is called the

Structure Preserving Hypothesis (SPH), first proposed by Emonds (Emonds 70,

76]. The SPH states that a transformation can only move a constituent into

a position where a constituent of that type could have been generated at the

level of deep structure and which is currently unfilled by a constituent that

dominates lexical material (i.e. constituents can be moved into a position that

is filled by a trace). (This constraint does not apply to transformations such

as the rule of Auxiliary Inversion which can only apply to what Emonds

calls "root sentences", a category which includes major clauses and perhaps a

few other environments.)

The SPH constrains the rule MOVE NP so that it can only move NPs

into locations where an NP could have been generated at the level of deep

structure. For example, if it is assumed that passive sentences are generated

in underlying structure without subjects, as in Chapter 5, then the rule of

MOVE NP can move one of the objects of the clause into the previously
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unfilled subject position of that clause, but it cannot move an NP into the

middle of the auxiliary where an NP cannot appear in underlying structure,

thus eliminating such ungrammatical sentences as that given as 6.1.a

immediately below, which would be derived from the structure that

underlies 6.1.b:

6.1.afJohn could have Mary given a book.

6.1 .b John could have given Mary a book.

While I will have nothing further to say about the SPH below, it is

worthy of mention in this context because the theory of deterministic

parsing can provide a general sort of motivation for this constraint, although

I have no specific proof of its necessity. The SPH, if true, greatly reduces

the number of possibilities between which a deterministic parser must choose

as it analyses syntactic structures. The SPH implies that there is a fixed

order in which a parser can look for the subconstituents of any constituent

except for a root S. Since a constituent can only be moved into a position

where a constituent of that type could have been generated in underlying

structure, the order in which a parser must search for constituents in

surface structure is constrained to be simply the order in which they can be

generated in the base. While the deep grammatical function of a constituent

cannot be deduced merely from its surface position, the SPH serves to factor

into two separate subtasks the problems of finding the structure of an

utterance and deciding upon the deep grammatical function of its constituents

once found.

From this same point of view, it is interesting to note that the
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environment in which non-structure preserving operations can take place, i.e.

the environment of root Ss, is the one environment in which a deterministic

parser does not have to deal with the problem of where one constituent ends

and a higher constituent begins. One cannot help but notice that the one

environment in which the SPH does not "operate", thereby increasing the

computational burden on a deterministic parser, is exactly the one

environment in which another large computational burden is absent.

Subjacency

The three other constraints that Chomsky proposes are all fairly

technical in nature. They are 1) the principle of Subjacency, 2) the

Specified Subject Constraint, 3) the Tensed S Constraint (also called the

Propositional Island Constraint). I will discuss each one briefly in turn.

Before doing so, however, I must note that these three constraints

are not intended to merely constrain syntactic rules, i.e. transformations, but

also the rules of superficial semantic interpretation that Chomsky calls

"Semantic Interpretation I" (SI-1) rules, also called "rules of construal". SI-1

rules are rules of semantic interpretation that map annotated surface

structures onto a level of structure that Chomsky calls "logical form". These

rules differ from later semantic interpretation rules, called "Semantic

Interpretation 2" (SI-2) rules, in that SI-2 rules can also take into account

pragmatic and discourse information; the rules of SI-1, according to

Chomsky's theory, have only the annotated surface structure as input. Since

processes of semantic interpretation are outside the scope of this document, in

what follows I will largely ignore the fact that these rules are intended to
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apply to semantic processes as well as purely syntactic processes. For more

on all of this, the non-linguist is again encouraged to read Chapter 3 of

[Chomsky 75], which is an introductory presentation of the notions outlined

here.

The principle of Subjacency, informally stated, says that no rule can

involve constituents that are separated by more than one cyclic node. Let us

say that a node X is subjacent to a node Y if there is at most one cyclic

node, i.e. at most one NP or S node, between the cyclic node that Dominates

Y and the node X. (To say the same thing in another way, X is subjacent to

Y iff X and Y are either Dominated by the same cyclic node or if the cyclic

node that Dominates X is itself Dominated by the cyclic node that Dominates

Y.) Given this definition, the Subjacency principal says that no rule can

involve constituents that are not subjacent.

Restricting our attention to the two transformations mentioned above,

the Subjacency principal implies that the rules MOVE NP and MOVE WH-

phrase are constrained so that they can move a constituent only into positions

that the constituent was subjacent to. This means that if a, 0, and c in

Figure 6.2 are cyclic nodes, no rule can move a constituent from position X

to either of the positions Y, where E....X...] is distinct from [CX].

r ... Yj...j[yo...r e io...XX...dY...ni...Yu...ur

Figure 6.2 - Subjacency: no rule can involve X and Y in this structure.
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Subjacency implies that if a constituent is to be "lifted" up more

than one level in constituent structure, that this operation must be done by

repeated operations. Thus, to use one of Chomsky's examples, the sentence

given in Figure 6.3.a, with a deep structure analogous to 6.3.b, must be

derived as follows (assuming that "is certain", like "seems", has no subject in

underlying structure): The deep structure must first undergo a movement

operation that results in a structure analogous to 6.3.c, and then another

movement operation that results in 6.3.d, each of these movements leaving a

trace as shown. That 6.3.c is in fact an intermediate structure is supported

by the existence of sentences such as 6.3.e, which purportedly result when

the V in the matrix S is replaced by the lexical item "it", and the embedded

S is tensed rather than infinitival. The structure given in 6.3.1 is ruled out

as a possible annotated surface structure, because the single trace could only

be left if the NP "John" was moved in one fell swoop from its underlying

position to its position in surface structure, which would violate subjacency.

(a) John seems to be certain to win.
(b) 7 seems [s V to be certain [s John to win]]
(c) V seems [S John to be certain Es t to win))
(d) John seems [s t to be certain [S t to win]]
C() It seems that John is certain to win.
(f) John seems [s V to be certain [S t to win]]

Figure 6.3 - An example demonstrating subjacency.

The Specified Subject Constraint

The Specified Subject Constraint (SSC), stated informally, says that

no rule may involve two constituents that are Dominated by different cyclic

nodes unless the lower of the two is the subject of its S or NP (taking the
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head of an NP to be its subject). -Thus, no rule may involve constituents X

and Y in the structure shown in Figure 6.4 below, if a and a are cyclic

nodes and Z is the subject of a, Z distinct from Y.

113... Y...(locZ...X ... ]... ]... Y...]

Figure 6.4 - SSC: No rule can involve X and Y in this structure.

The SSC explains why the surface subject position of verbs like

"seems" and "is certain" which have no underlying subject can be filled only

by the subject and not the object of the embedded S: The rule MOVE NP is

free to shift any NP into the empty subject position, but is constrained by

the SSC so that the object of the embedded S cannot be moved out of that

clause. This explains why (a) in Figure 6.5 below, but not 6.5.b, can be

derived from 6.5.c; the derivation of 6.5.c would violate the SSC. (The SSC

also implies that the derivations of sentences which exhibit what is known

as Tough-movement must involve some rule other than MOVE NP; see

[Chomsky to appear] for more on this.)

(a) John seems to like Mary.
(b)"Mary seems John to like.
(c) V seems [s John to like Mary]

Figure 6.5 - Some examples illustrating the SSC.

The Tensed S Constraint

Finally, we come to the last of the four constraints, the Tensed S

Constraint (TSC). The TSC, informally stated, says that no rule can involve

two constituents X and Y Dominated by different cyclic nodes, if the "lower"
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of them is Dominated by a tensed S, i.e. no rule can involve X and Y in the

structure shown in (a) in Figure 6.6 below, if a is a tensed S. The TSC

accounts for why 6.6.b can be derived from 6.6.c, while 6.6.d, which is

derived from 6.6.e is ungrammatical. The structure depicted by 6.6.e is

identical to that depicted by 6.6.c except for the fact that 6.6.e is tensed and

6.6.c is infinitival, but exactly this fact causes the TSC to block the

derivation. (The structure depicted by 6.6.e can give rise to the quite

acceptable sentence given as 6.6.f, where the V has been replaced by the

lexical item "it".)

(a) [ 4 ...Y...[e...X...)...J...Y...]
(b) John seems to like Mary.
(c) 7 seems [s John to like Mary]
(d)mJohn seems likes Mary.
(e) V seems [s John likes Mary]
(f) It seems John likes Mary.

Figure 6.6 - Some examples illustrating the Tensed S Constraint.

The Constraints Imposed by the Grammar Interpreter

We now turn to the aspects of these constraints that are accounted

for by the operation of the grammar interpreter.

It should be stated at the outset that the range of phenomena

which are accounted for by the structure of the grammar interpreter is more

limited than that accounted for by Chomsky's constraints. I will show only

that the structure of the interpreter constrains the class of syntactic processes

which Chomsky characterizes by the competence rules "MOVE-NP" (in this

chapter) and "MOVE WH-phrase" (in the next). As stated above, Chomsky's
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constraints are intended to apply to all "rules of grammar", both syntactic

rules (i.e. "transformations") and those rules of semantic interpretation which

Chomsky now calls "rules of construal", a set of "shallow semantic" rules

which govern anaphoric processes Chomsky to appear]. The discussion here

will only touch on purely syntactic phenomena; the question of how rules

of semantic interpretation can be meshed with the framework presented in

this document is beyond the range of the present research. This would seem

to be a fertile area for future investigation.

Another important limitation of this work is that the arguments to

be presented below deal only with English, and in fact depend strongly upon

several facts about English syntax (e.g. the fact that English is subject-

initial). Whether these arguments can be successfully extended to other

languages is an open question, and to this extent this work must be

considered exploratory.

I will not show that these constraints must be true without

exception; as we will see, there are various situations in which the

constraints imposed by the grammar interpreter can be circumvented. Most

of these situations, though, will be shown to demand much more complex

grammar formulations than those typically needed in the grammar so far

constructed. In this sense, the constraints discussed here will not be violated

by "typical" grammar rules and the situations in which the constraints are

violated will be quite atypical in that they demand grammar rules far more

complex than the typical rule. This is quite in keeping with the suggestion

made by Chomsky [Chomsky to appear] that the constraints are not
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necessarily without exception, but rather that exceptions will be "highly

marked" and therefore will count heavily against any grammar that includes

them. If the degree of markedness is equated with rule complexity (as

assigned by an appropriate metric), this falls out immediately from the

discussion below. For the sake of convenience, I will often speak of these

constraints in the following sections as if they were without exception;

where I use "must" the reader should substitute "almost always will".

Finally, I should note that this chapter deals only with those

grammatical processes characterized by the competence rule "MOVE NP"; the

next chapter will deal with those processes characterized by the rule "MOVE

WH-phrase". The reason for this is the following: As Chomsky notes, the

phenomena he characterizes by the rule "MOVE WH-phrase" do not, in fact,

appear to observe his constraints. Instead, Chomsky argues that his

constraints account for the behavior stipulated by another more specific

constraint, Ross's Complex NP Constraint ERoss 67]. What I will show in the

next chapter is that the behavior characterized by the Complex NP Constraint

itself follows directly from the structure of the grammar interpreter for

rather different reasons than the behavior considered in this chapter. The

claim then, is that the grammar interpreter accounts for the same range of

behavior (given the caveats above) that Chomsky's two constraints account

for, but in rather different ways for MOVE NP and MOVE Wh-phrase

phenomena.
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The Specified Subject Constraint and the Grammar

Interpreter

In an earlier section, I pointed out that within Chomsky's

framework, the Specified Subject Constraint constrains the rule "MOVE NP" in

such a way that only the subject of a clause can be moved out of that

clause into a position in a higher S. Thus, if a trace in an annotated surface

structure is bound to an NP Dominated by a higher S, that trace must fill

the subject position of the lower clause. In this section I will show that

the grammar interpreter constrains grammatical processes in such a way that

annotated surface structures constructed by the grammar interpreter will have

this same property.

In terms of the parsing process, this means that if a trace is

"lowered" from one clause to another during the parsing process, then it will

be attached as the subject of the second clause, unless it is created by a WH-

movement process. To be more precise, if a trace is attached so that it is

Dominated by S1, and the trace is bound to an NP Dominated by some other S

node S2, then that trace will necessarily be attached so that it fills the

subject position of S1. This is depicted in Figure 6.7 below. This will be

true presupposing the structural analyses for passivization and other

constructions involving traces presented in previous chapters and assuming,

again, that the grammar does not violate a small set of restrictions.
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The Active Node Stack

S2.../...

NP2

C: S1 ... f...
NP: NP1 (NP TRACE) : bound to NP2

Figure 6.7 - NP1 must be attached as the subject of SI
since it is bound to an NP Dominated by a higher S.

Consider the process by which the trace lI in (1) below is created,

bound to the NP "the meeting", and attached as the subject of the embedded

clause.

(1) The meeting seems (S LI to have been scheduled for Wednesdayl.

I _ _ _ _ _ _ I

(The process of parsing this example, originally given in Figure 5.16, was

thoroughly discussed in that chapter. The reader might find it helpful at

this point to review that discussion, especially the discussion between Figures

5.21 and 5.25.) Immediately after the verb "seems" is attached to the VP of

the major clause, the PASSIVE rule is executed on the advice of the rule

SEEMS. This rule creates a trace, binds it to the subject of the dominant S,

and then drops this new trace into the first position in the buffer. If this

was a simple passive, the OBJECT rule would now attach the trace to the VP

of the current clause. In this case, however, the rule INF-S-START1, with

pattern

[=np] [="to] [=tnsless]

will trigger, creating a new S node and then attaching the trace to that S

node as its subject. The essence of the process is as follows: create and

mm
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properly bind a trace while the major S is the current S; drop the trace into

the buffer; create a subordinate S; attach the trace to the newly created S.

The end result of this process is that a trace bound to an NP in a

higher S has been attached as the subject of an embedded S without having

been explicitly "lowered" from one S to the other. The original point of the

"seems" example, of course, was that the rather simple PASSIVE rule handles

both this case and the case of simple passives without the need for some

mechanism to explicitly lower the NP. The PASSIVE rule captures this

generalization by dropping the trace it creates into the buffer (after

appropriately binding the trace), thus allowing other rules written to handle

normal NPs to correctly place the trace.

This statement of PASSIVE does more, however, than simply capture

a generalization about a specific construction. As I will argue in detail

below, the behavior specified by both the Specified Subject Constraint and

Subjacency follows almost immediately from this formulation. I will also

argue that this formulation of PASSIVE is the only simple, non-ad hoc,

formulation of this rule possible, and that all other rules characterized by the

competence rule "MOVE NP" must operate similarly; I will attempt to show

that all other possible formulations are blocked by the nature of the grammar

interpreter. If this is true, then the behavior characterized by these

constraints in enforced, in essence, by the grammar interpreter.

While it is easy to show that the behavior characterized by the SSC

follows from the PASSIVE rule as stated here, the demonstration that other
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possible formulations of PASSIVE are blocked by the structure of the grammar

interpreter is quite tedious because other possible formulations of this rule

must be ruled out one at a time. It will also be necessary to impose a

subsidiary constraint on the operation of the grammar interpreter, which I

will call the Left-to-Right Constraint, which says, in essence, that

constituents must be removed from the buffer in left-to-right order. Because

of this, I will present the basis of the argument assuming these two points

to be true, and will then go back and discuss the two "lemmas". The two

lemmas, stated informally, are the following:

The "Lowering" Lemma: the only reasonable method for "lowering" a
trace bound to an NP in one clause into a lower clause is to do so
implicitly by dropping the trace into the buffer.

The Left-to-Right Constraint: the constituents in the buffer are (almost
always) attached to higher level constituents in left-to-right order,
i.e. the first constituent in the buffer is (almost always) attached
before the second constituent.

Given these lemmas, it is easy to show that a trace bound to an NP

in one clause can only serve as the subject of a clause dominated by that

first clause.

By the Lowering Lemma, a trace can be "lowered" into one clause

from another only by the indirect route of dropping it into the buffer before

the subordinate clause node is created, i.e. a trace can be "lowered" only by

the method that is embodied in the formulation of the Passive rule. This

means that the ordering of the operations is crucially: 1) create a trace and

drop it into the buffer, 2) create a subordinate S node, 3) attach the trace to

the newly created S node. The key point here is that at the time that the

subordinate clause node is created and becomes the current active node, the
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trace must be sitting in the buffer, filling one of the three buffer positions.

Thus, the parser must be in one of the three states shown in Figure 6.8

below. The configuration shown in Figure 6.8.a is the most likely state that

the parser will be in at this time, since the states shown in (b) will occur

only if other nodes have been created and dropped into the buffer after the

trace was. (The reader is reminded that a node dropped from the active node

stack into the buffer always goes into the first buffer position.)

The Active Node Stack

C: S123 (S SEC ... )f...

The Buffer

1 : NP123 (NP TRACE) : bound to NP in S above S123
2:
3:

(a) Most likely parser state

The Buffer

1:
2 : NP123 (NP TRACE) : bound to NP in S above S123
3:

The Buffer

1:
2:
3 : NP123 (NP TRACE) : bound to NP in S above S123

(b) Other possible configurations of the buffer

Figure 6.8 - Possible parser states after embedded S created.
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Now, given the L-to-R Constraint, a trace which is in the buffer at

the time that an embedded S node is first created must be one of the first

several constituents attached to the S node or its daughter nodes. From the

structure of English, we know that the leftmost three constituents of an

embedded S node, ignoring topicalized constituents, must either be

COMP NP AUX or NP AUX [vp VERB ... ].

(The COMP node will dominate flags like "that" or "for" that mark the

beginning of a complement clause.) But then, if a trace, itself an NP, is one

of the first several constituents attached to an embedded clause, the only

position it can fill will be the subject of the clause.

This is all that must be demonstrated to capture the behavior

characterized by the SSC. I have shown that any trace bound to an NP in a

higher clause which is attached to a lower clause can only be attached as

the subject of that clause. This is exactly the empirical consequence of

Chomsky's Specified Subject Constraint in such cases as explained above.

The L-to-R Constraint and the Lowering Lemma

I will me now discuss the two lemmas assumed in the previous

argument one at a time. (On a first reading, the reader may wish to skip

this section and continue with the discussion of Subjacency.)

The crux of the Lowering Lemma is that the only way to place a

trace bound to an NP in a clause S, into a second clause dominated by S, is

by dropping it into the buffer. I will first point out that if a trace is to be

lowered into an embedded S at all, then it must be dropped into the buffer.
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I will then show that there are no other possible alternatives to lowering

such a trace.

First of all, the buffer is the only mechanism in the grammar

interpreter in which a constituent can be stored; this model includes

nothing similar to the registers of an ATN. (The registers included in PIDGIN

(see Appendix B) are a programming convenience for the sake of semantics;

they are unused by grammatical processes. The reader can check that the

contents of the registers in the current grammar have no effect at all upon

the operation of the parser.) Since the interpreter mechanism includes

nothing like the registers of an ATN, there can be no analog of the "SENDR"

action of an ATN by which the contents of a register at one level of the

ATN network can be lowered into a lower level of the ATN. Thus, there is

no mechanism which would make it possible to lower a trace which is

created and bound while one S is the current S into a subordinate clause and

then to attach the trace to a node Dominated by the lower S.

I will now go through the range of alternatives to "lowering" a

bound trace one at a time, showing each to be infeasible in turn. An

exhaustive listing of the range of alternatives is shown in Figure 6.9 below

in terms of when the trace is created and bound with respect to the

processing of the subordinate clause to which the trace is eventually

attached. As Figure 6.9 shows, there are only six possible combinations.

Each of these will be considered in turn.
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Create time Binding time
1) t1 t
2) t t2
3) ti t3
4) t2 t2
5) t2 t3
6) t3 t3

t1: Before the embedded S is created
t2: After the embedded S is created, while it is in the stack.
t3: After the embedded S is created, after it is popped from the stack.

Figure 6.9 - All possible creation and binding times for an embedded trace.

Possibility (1) in Figure 6.9, that the trace is both created and

bound before the embedded S node is created, is exactly the combination

embodied in the passive rule. If a trace is created before the S node which

will become its father, then it must be dropped into the buffer before that S

is created. Otherwise, it will be dropped into the buffer after the S has

been popped from the active node stack, and some grammar rule will be

forced to attach it to a node which is sitting in the buffer. This possibility

is ruled out by the following constraint imposed by the grammar interpreter:

the only nodes to which nodes can be attached are the the current active

node and the current S. This constraint reflects the functions of the buffer

and the stack as discussed in Chapter 3, viz. the presence of a node in the

stack signals that the parser is attempting to determine its daughters, while

the presence of a node in the buffer signals that the parser is attempting to

to determine its father. Note also that this amounts to the following

restriction: the grammar interpreter does not provide a general two place

command "Attach x to y", but rather two one place commands "Attach-to-C

x" and "Attach-to-the-current-S x". This alternative formulation is quite in
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keeping with the goal of restricting as much as possible the formalism for

writing grammar rules, restricting as much as possible the class of possible

grammar rules.

Possibilities (2) and (3) differ from (1) only in that the trace is to

be bound at some later time. Since both of these possibilities share with

possibility (1) the fact that the trace is created before the embedded S, and

therefore must be dropped into the buffer if the trace is to be properly

attached, they are both consistent with the lowering lemma, and need not be

shown infeasible. (Actually, both are infeasible, but this can be left as an

exercise for the reader.)

One possible alternative to lowering a trace might be to create a

trace while the embedded S node is in the stack, consistent with possibilities

(4) and (5) in Figure 6.9. This alternative is blocked by the fact that a trace

should only be created if the higher clause is passive or has some other

specific property that calls for the creation of a trace. Because the only

nodes in the active node stack that are specifically accessible to the grammar

interpreter are the current active node and the current S node, no grammar

rule can possibly access the higher node to check whether a higher S node is

passive or not. For the same reasons, even if a grammar rule could somehow

create a trace only when appropriate, it could not access the subject of the

higher clause to properly bind the newly created trace.

Note that this limitation of the grammar interpreter cannot be

considered a constraint in the usage of this word within current linguistic
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theory in that this limitation does not follow from any stipulated restriction

upon the operation of the interpreter. Instead, this limitation stems from the

fact that there is no tree-climbing operator in PIDGIN, i.e. that there is no

operator which accesses the father of a given node. If the absence of a

particular operation in a mechanism is to be considered a constraint, then the

weaker the mechanism, the more implicit constraints it involves. This

position is clearly nonsensical.

The last alternative is to defer creating the trace until the

subordinate clause has been parsed and the subordinate S node has been

popped from the active node stack, consistent with possibility (6) in Figure

6.9. A trace could then be created and attached to the subordinate clause,

now presumably attached to the VP of the current S. This possibility is ruled

out by the constraint stated above which allows attachment only to the

current active node and the current S.

Since all possibilities inconsistent with the Lowering Lemma have

been shown to be impossible, and since the PASSIVE rule clearly does allow

traces to be lowered, the Lowering Lemma follows.

I will now turn to the Left-to-Rght Constraint. I will not attempt

to prove that this constraint must be true, but merely to show why it is

plausible.

For the grammar of English included in Appendix D, and, it would

seem, for any grammar of English that attempts to capture the same range of
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generalizations as this grammar, the constituents in the buffer are attached to

the current active node (and thus are removed from the buffer by the

grammar interpreter) in left-to-right order, with a small range of exceptions.

This usage is clearly not enforced by the grammar interpreter as presently

implemented; it is quite possible to write a set of grammar rules that

specifically ignores a constituent in the buffer until some arbitrary point in

the clause, though such a set of rules would be highly ad-hoc. As we will

soon see, however, the assumption that constituents are removed from the

buffer in left-to-right order will turn out to be crucial not only for the

argument presented here, but also for the demonstration in the next section

that the grammar interpreter enforces Subjacency as well as the SSC.

For this reason, I will make the following assumption in the

discussion that follows: the constituents in the buffer are almost always

attached to higher level constituents in left-to-right order, i.e. the first

constituent in the buffer is almost always attached before the second

constituent. The one exception to this seems to be that a constituent C, may

be attached before the constituent to its left, C 1 , if C does not appear in

surface structure in its underlying position (or, if one prefers, in its

unmarked position) and if its removal from the buffer reestablishes the

unmarked order of the remaining constituents. The primary exceptions to

left-to-right attachment in the current grammar are the rule AUX-INVERSION,

discussed in Chapter 5, and the various rules for adverb attachment that will

be discussed in Chapter 8. These rules all reestablish the unmarked order of

the clause. In the discussion that follows, I will refer to the assumption

stated here as the Left-to-Right (L-to-R) Constraint.
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(A possible reformulation of the L-to-R Constraint which may

include the exceptions mentioned above is the following: All constituents

must be attached to higher level constituents according to the left-to-right

order of constituents in the unmarked case of that constituent's structure.

While I have no strong evidence for this restatement, it does seem to handle

the above exceptions, if it is assumed that adverbs attach at the beginning of

the constituents that they modify.

This reformulation is interesting in that it is a natural consequence

of the operation of the grammar interpreter if the association of packets with

phrase structure rules suggested in Chapter 4 were implemented. This

scheme would add a "base component" of phrase structure rules to the

grammar. A packet of grammar rules would then be explicitly associated

with each symbol on the right hand side of each phrase structure rule. A

structure of a given type would then be constructed by activating the

packets associated with each node type of the appropriate phrase structure

rule in left-to-right order. Since these base rules would reflect the

unmarked 1-to-r order of constituents, the constraint suggested here would

then simply fall out of the interpreter mechanism.)

Subjacency and the Grammar Interpreter

Chomsky's Subjacency constraint, stated informally, says that no rule

can affect constituents in two distinct clauses (or more generally, two cyclic

constituents) S1 and S2 unless S1 Dominates S2 (i.e. S1 dominates S2 and

there is no third clause 53 that "comes between" S1 and S2). In terms of
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the competence rule "MOVE-NP", this means that an NP can be moved only

within the clause in which it originates, or into the clause that Dominates

that clause. In this section I will show that the parsing correlate of this

constraint follows from the structure of the grammar interpreter.

Specifically, I will show that there are only limited cases in which a trace

can be "lowered" more than one clause, i.e. that a trace created and bound

while any given S is current must almost always be attached either to that S

or to an S which is Dominated by that S.

Let us begin by examining what it would mean to lower a trace

more than one clause. Given that a trace can only be "lowered" by dropping

it into the buffer and then creating a subordinate S node, as discussed above,

lowering a trace more than one clause necessarily implies the following

sequence of events, depicted in Figure 6.10 below: First, a trace NP1 must

be created with some S node, S1, as the current S, bound to some NP

Dominated by that S and then dropped into the buffer. By definition, it will

be inserted into the first cell in the buffer. (This is shown in Figure

6.10.a). Note that throughout this figure the current S is shown as the

current active node for the sake of clarity.) Then a second S, S2, must be

created, supplanting S1 as the current S (fig. 6.10.b). (NP1 is no longer

necessarily in the first buffer position.) Next, a third S, S3, must be created,

becoming the current S (fig. 6.10.c). During all these steps, the trace NP1

remains sitting in the buffer. Finally, NP1 is attached under S3 (fig.

6.10.d). By the Specified Subject Constraint, NP1 must then attach to S3 as

its subject.
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The Active Node Stack

C: S1 ...

The Buffer

1st: NP1 (NP TRACE) : bound to NP Dominated by S1

(a) - NP1 is dropped into the buffer while S1 is the current S.

The Active Node Stack

S1 ... / ..

C: S2 ... /

The Buffer

NP1 (NP TRACE) : bound to NP Dominated by S1

(b) - S2 is created and becomes the current S.

The Active Node Stack

S12.../...
S2 ... /..

C: S3.../...

The Buffer

NP1 (NP TRACE) : bound to NP Dominated by S1

(c) - S3 is created, with NP1 still in the buffer.

The Active Node Stack

S1 ... /...
S2 ... /..

C: S3 ...
NP: NP1 (NP TRACE) : bound to NP Dominated by S1

The Buffer

(d) - NP1 is attached to S3 as its subject (by the SSC).

Figure 6.10 - Lowering a trace more than 1 clause
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I will show in what follows that this sequence of events is

impossible. The essence of the argument is this: Nothing in the buffer can

change between the time that S2 is created and S3 is created if NP1 remains

in the buffer. This follows from the fact that NP1, like any other node that

is dropped from the active node stack into the buffer, is inserted into the

first buffer position, coupled with the fact that by the L-to-R Constraint,

nothing to the right of NP1 can be attached to a higher level constituent

until NPl is attached. But if nothing in the buffer changes between the

time that S2 is created and S3 is created, then there is no motivation for

creating both of these clauses from the same input data. Therefore, there is

no motivation for generating S3, and NP1 will thus be attached to S2.

I now turn to the details of the argument. (The reader may wish

to skip to the concluding paragraph of this section on the first reading.)

To make the argument rigorous, one assumption not stated above is

needed: that no grammatical processes will Insert any constituents into the

buffer between the time that NP1 is dropped into the buffer and the creation

of S2. While I cannot prove that this must be the case, there are a number

of reasons which make this assumption plausible. If this assumption were

not true, then either 1) some constituent was constructed between the time

that the trace was dropped into the buffer and S2 was created or else 2) a

previously complete constituent was kept on the active node stack until after

the trace was created and dropped. Case (1) is ruled out by the L-to-R

Constraint; the newly constructed constituent must necessarily be built up
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of constituents to the right of NP1, which is forbidden by the L-to-R

constraint. Case (2) is in fact possible, but it assumes a purely gratuitous

action: retaining a complete constituent on the active node stack until the

trace was created instead of simply popping the completed constituent from

the active node stack when first completed. Thus, outside of this one rather

implausible possibility, this assumption seems valid.

Given this assumption, the desired result follows rather quickly.

First of all, the contents of the buffer will remain unchanged

between the time that S2 is created and the time that S3 is created if NP 1

remains in the buffer. As was shown in the immediately preceding

discussion, it is most unlikely that constituents will enter the buffer after

NP1 is inserted in the buffer, and thus NP1 will remain in the first buffer

position. But if NP1 is not removed from the buffer, then no constituents to

its right can be removed, by the L-to-R constraint. Thus, the contents of the

buffer cannot change.

But if the contents of the buffer do not change between the

creation of S2 and S3, then what can possibly motivate the creation of both

52 and S3? The contents of the buffer must necessarily provide clear

evidence that both of these clauses are present, since, by the determinism

hypothesis, the parser must be correct if it initiates a constituent. Thus, the

same three constituents in the buffer must provide convincing evidence not

only for the creation of S2 but also for S3. Furthermore, if NP1 is to become

the subject of S3, and if 52 Dominates S3, then it would seem that the
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constituents that follow NP1 in the buffer must also be constituents of S3,

since S3 must be completed before it is dropped from the active node stack

and constituents can then be attached to S2. But then S2 must be created

entirely on the basis of evidence provided by the constituents of another

clause (unless S3 has less than three constituents). Thus, it would seem that

the contents of the buffer cannot provide evidence for the presence of both

clauses unless the presence of S3, by itself, is enough to provide confirming

evidence for the presence of S2. This would be the case only if there were,

say, a clausal construction that could only appear (perhaps in a particular

environment) as the initial constituent of a higher clause. In this case, Lf

there are such constructions, a violation of subjacency should be possible.

With the one exception just mentioned, there is no motivation for

creating two clauses in such a situation, and thus the initiation of only one

such clause can be motivated. But if only one clause is initiated before NP1

is attached, then NP1 must be attached to this clause, and this clause is

necessarily subjacent to the clause which Dominates the NP to which it is

bound. Thus, the grammar interpreter enforces the Subjacency Constraint.

There is, in fact, one situation in which structural subjacency can

be violated without a trace being lowered more than one clause. Assume

that the above argument is correct, and that NP1 must attach to S2, i.e. that

It must attach to an S subjacent to the S under which it was created. But

even if this is true, after S2 is constructed, it might then be dropped back

into the buffer. (This, of course, will only happen if S2 is not attached to

some higher level constituent at the time of its creation.) At this point, a
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rule might trigger on the contents of the buffer, which now may include

not only S2, but two succeeding constituents as well. This hypothetical rule

might then create another S node, S4, and then attach S2 to S4. Since NP1 is

not bound to an NP Dominated by S4, subjacency has been violated. The

point is that subjacent in terms of the grammar interpreter mechanism means

subjacent in terms of processing, which is not necessarily the same as

subjacency in terms of final attachment.

This situation, which seems not unlikely, is made less likely by the

following observation: Note that when NPI is dropped into the buffer, it

will necessarily fill the first buffer position. But this means that it must be

the leftmost constituent of the S to which it is attached, S2, if that S is

created after NP 1 is dropped into the buffer. In particular, this means that

S2 cannot have an explicit complementizer. Now, assume that S2 is now

dropped into the buffer, filling the first buffer position. Then, by the same

argument, if the contents of the buffer now trigger the creation of another

S, S4, then S4 cannot have an explicit complementizer either. Thus, the

resulting structure will have an embedded S as the first constituent of

another S neither of which begin with explicit complementizers. Thus,

neither sentence will begin with any explicit flag to indicate that they are

subordinate clauses.

This situation is impossible for English; a clause which is the

initial constituent of another clause must be marked by a complementizer.

One widely known explanation for this is simply that the parser must know

at the time the clause is initiated whether or not it is a subordinate clause.
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If the embedded clause follows the verb of the matrix S, then the parser can

expect the embedded clause and an explicit flag is unnecessary. But if the

embedded clause is an initial constituent of the matrix S, then the embedded

S must contain an explicit flag to signal the fact that it is a subordinate S.

This seems to indicate that the creation of an S that is not attached at the

time of creation is a "highly marked" action, at least for English. If this

were not true, a parser could always wait until the end of the clause to

decide whether a particular clause was embedded or not.

As a concluding point, it is worthy of note that while the grammar

interpreter appears to behave exactly as if it were constrained by the

subjacency principle, it is in fact constrained by a version of the Clausemate

Constraint! (The Clausemate Constraint, long tacitly assumed by linguists but

first explicitly stated, I believe, by Postal (Postal 64], states that a

transformation can only involve constituents that are Dominated by the same

cyclic node. This constraint is at the heart of Postal's attack on the

constraints that are discussed above and his argument for a "raising"

analysis.) The grammar interpreter, as was repeatedly stated above, limits

grammar rules from examining any node in the active node stack higher

than the current cyclic node, which is to say that it can only examine

clausemates. This parsing version of the clausemate constraint, in fact, is

crucial to the argument presented above showing that subjacency is a natural

consequence of the grammar interpreter. The trick is that a trace is created

and bound while it is a "clausemate" of the NP to which it is bound in that

the current cyclic node at that time is the node to which that NP is

attached. The trace is then dropped into the buffer and another S node is
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created, thereby destroying the clausemate relationship. The trace is then

attached to this new S node. Thus, in a sense, the trace is lowered from

one clause to another. The crucial point is that while this lowering goes on

as a result of the operation of the grammar interpreter, it is only implicitly

lowered in that 1) the trace was never attached to the higher S and 2) it is

not dropped into the buffer because of any realization that it must be

"lowered"; in fact it may end up attached as a clausemate of the NP to

which it is bound - as the passive examples of Chapter 4 made clear. The

trace is simply dropped into the buffer because its grammatical function is

not clear, and the creation of the second S follows from other independently

motivated grammatical processes. From the point of view of this performance

theory, we can thus have our cake and eat it too; to the extent that it

makes sense to map results from the realm of performance into the realm of

competence, in a sense both the clausemate/"raising" and the subjacency

positions are correct.

These Arguments as Evidence in Support of the

Determinism Hypothesis

In closing, I would like to show that the properties of the grammar

interpreter crucial to capturing the behavior of Chomsky's constraints were

originally motivated by the determinism hypothesis, and thus, to some extent,

the determinism hypothesis explains Chomsky's constraints. The extent to

which the determinism hypothesis provides an explanation for Chomsky's

constraints itself provides support for this hypothesis; to the extent that his

constraints follow from a single more general principle, they no longer need

to be stipulated, and thus linguistic theory (meaning here the amalgam of
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performance and competence theories) is simplified.

The strongest form of such an argument, of course, would be to

show that (a) either Ci) the grammar interpreter accounts for all of

Chomsky's constraints in a manner which is conclusively universal or (ii) the

constraints that it will not account for are wrong and that Cb) the properties

of the grammar interpreter which were crucial for this proof were forced

by the determinism hypothesis. (To show necessity, of course, it must be

demonstrated either that no other mechanism would serve to implement a

deterministic parser or that any such mechanism would lead to fundamentally

the same results.) If such an argument could be made, it would show that

those of Chomsky's constraints which are valid follow from the determinism

hypothesis, giving strong confirmation to the determinism hypothesis.

I have shown none of the above, and thus my claims must be

proportionately more modest. I have argued only that important sub-cases of

Chomsky's constraints follow from the grammar interpreter, and while I can

show that the determinism hypothesis strongly motivates the mechanisms

from which these arguments follow, I cannot show necessity. The extent to

which this argument provides evidence for the determinism hypothesis must

thus be left to the reader; no objective measure exists for such matters.

The ability to drop a trace into the buffer is at the heart of the

arguments presented above for subjacency and the SSC as consequences of the

functioning of the grammar interpreter; this is the central operation upon

which the above arguments are based. Also crucial to the arguments are
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various restrictions upon the operation of the grammar interpreter, such as

the fact that there is no way to access any nodes in the active node stack

except for the current active node and the current cyclic node.

As discussed at the beginning of Chapter 3, the buffer itself, and the

fact that a constituent can be dropped into the buffer if its grammatical

function is uncertain, are directly motivated by the determinism hypothesis.

It was argued in that chapter that a parser must necessarily provide some

sort of lookahead mechanism if it is to function deterministically. It was

also argued that this lookahead must be constrained in some manner if the

determinism claim was to have any content, but that this constraint must be

based on some number of constituents, rather than some fixed number of

lexical items. It is easy to see that such a requirement also necessarily

implies an ability to construct constituents and - in some sense or other -

buffer them; the example given in that earlier discussion demonstrated the

necessity of holding on to the first three constituents of a clause before the

grammatical role of the first could be determined. Given these attributes

which a deterministic parser must fulfill, the buffer mechanism intuitively

seems to be one of the simplest computational devices that fulfills these

specifications. In this sense, it seems clear that the buffer mechanism and

the ability to drop constituents from the active node stack into the buffer

follow naturally and directly from the general principles which a

deterministic parser must fulfill.

Again, as for the limitations on the grammar interpreter which

prevent it from examining any node on the active node stack above the
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current cyclic node, there is nothing here to motivate or explain. What

demands explanation and motivation is why a given facility is included in

the model; the goal of a computational theory of linguistic performance

should be to account for a given range of phenomena using the weakest

computational mechanisms possible. Thus, there is no need to explain why a

mechanism of only limited power has been implemented if it can be shown

that the mechanism is powerful enough to do the job that is required.

It is thus the case that the aspects of the grammar interpreter

which are crucial to the arguments presented above, namely the buffer

mechanism and its ability to buffer a constituent until its grammatical

function is clear, are directly motivated by the determinism hypothesis.

Given this, it is fair to claim that if Chomsky's constraints follow from the

operation of the grammar interpreter, then they are strongly linked to the

determinism hypothesis. If Chomsky's constraints are in fact true, then the

arguments presented in this chapter provide solid evidence in support of the

determinism hypothesis.
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CHAPTER 7

PARSING RELATIVE CLAUSES -

ROSS'S COMPLEX NP CONSTRAINT

Introduction

In the preceding chapter, I argued that the grammar interpreter

behaves as if it obeys two of Chomsky's constraints for the class of syntactic

processes which Chomsky characterizes by the competence rule "MOVE-NP".

In this chapter, I will turn to those processes characterized within his theory

by the competence rule "MOVE-WH-phrase" and show that, for these

constructions, the grammar interpreter enforces the behavior stipulated by

Ross's Complex NP Constraint (CNPC).

If this is true, it is in some sense irrelevant whether or not the

grammar interpreter parallels Chomsky's constraints for "MOVE-WH-phrase"

phenomena at all. While Chomsky argues that his constraints apply both to

MOVE-NP and MOVE-WH phenomena, he concedes that the MOVE-WH

phenomena do not appear to obey his constraints at all. Instead, he shows

that his constraints account for the behavior stipulated by the CNPC. If it

can be demonstrated that this behavior follows from mechanisms of the

grammar interpreter that were motivated by the determinism hypothesis, then

much the same range of phenomena for both "MOVE-NP" and "MOVE-WH-

phrase" cases has been shown to follow directly or indirectly from the

determinism hypothesis.
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An Analysis of "Wh-clauses"

Before discussing this issue, it is necessary to present the general

outline of an analysis of those constructions which are characterized by the

rule "MOVE-WH-phrase", i.e. relative clauses, wh-questions and other

constructions that have "displaced" wh-phrases. Something like this analysis

must be assumed if any grammar rules are to be written at all for the

grammar interpreter which will parse these "wh-clauses", as I will show

below. This analysis derives from Chomsky's analysis [Chomsky to appear],

and assumes much the same structure as that assumed by his analysis, as we

will see.

Wh-clauses cause difficulty because the "gap" in a wh-clause, i.e.

the site from which the wh-phrase has been shifted and into which the

parser must place a trace, can be arbitrarily far away from its surface

location. This is problematic because there may be several intervening S

nodes between the wh-phrase and the clause in which the gap appears.

Thus, in the sentence shown in Figure 7.1.a below, there are three

intervening S nodes between the wh-phrase and the gap, as the analysis

shown in 7.1.b reveals; the location of the gap in 7.1.a is marked by a

trace which is bound to "Who".
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(a) Who did Joe say that Bill had claimed that Bob had told to go jump off a
bridge?

(b) [s1 [CaMP Who] did Joe say S2 that Bill had claimed [S3 that Bob had told [s4 t
to go jump off a bridge]]]?]

Figure 7.1 - The gap in wh-constructions can be deeply embedded.

These intervening S nodes are problematic in the context of

PARSIFAL because once the S node which Dominates the wh-phrase is no

longer the current cyclic node, grammar rules can access neither this S node

nor the wh-phrase it Dominates. As the reader should now remember,

PARSIFAL does not allow grammar rules to access any nodes on the active

node stack except for the current active node and the current cyclic node.

Thus, once there is an S node intervening between the S node which

Dominates the wh-phrase and the bottom of the active node stack, the

intervening S node becomes the current cyclic node and both the wh-phrase

and the S that Dominates it become inaccessible.

One solution to this problem, and the solution which I will adopt

here, is to simply assign wh-clauses an internal structure similar to that

assigned by Chomsky's current analysis of wh-movement, the so-called cyclic

analysis of wh-movement. In the non-cyclic analysis given in 7.1.b above,

the wh-phrase has been attached to the S node via a node called COMP

which will also dominate complementizers like "for", "that", etc. I will call

such a wh-phrase attached to COMP a Wh-comp. The cyclic analysis assigns

to each S node intervening between the S node Dominating the Wh-comp and

the site of the gap a structure similar to that assigned to the top-level S of a
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wh-clause, with one major difference: each intervening S node has as its

Wh-comp not the Wh-phrase itself, but a trace which is bound to the Vh-

comp of the next higher S. Thus, the structure of 7. 1.a above is something

like that shown in 7.2 below, with two COMP nodes dominating both a Wh-

comp and the complementizer "that". Each trace in this structure is bound to

the Wh-comp that is immediately to its left. The gap-filling trace is

underlined for clarity.

Es EComp Who] did Joe say [S ECOMp t that] Bill had claimed [S ECOMp t that] Bob had
told [S ECOMP t) to go jump off a bridge]]]?]

Figure 7.2 - A cyclic analysis of wh-movement.

Because the binding' of each Wh-comp is the wh-phrase itself

(where "binding"' is the transitive closure of the binding relation, as defined

in Chapter 5), and because grammar rules can access the binding of nodes

that are themselves accessible, this "cyclic" approach makes the wh-phrase

accessible in each S intervening between the wh-phrase and the site of the

gap. Thus this approach provides a first step in circumventing the

inaccessibility problem.

(I should note here that Chomsky's own analysis assumes the

existence of an additional node called S-bar which dominates the COMP node

and the S node itself. This node is motivated, at least in part, by

considerations that are not applicable in the context of this parser, as I will

discuss below, and therefore the existence of this node is not assumed in the

analysis presented above for the sake of simplicity. If other motivations for

this S-bar node are taken as compelling (e.g. Bresnan's original motivation for
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the S-bar node (see [Bresnan 73])), the structures presented here and

elsewhere can be modified appropriately; the difference in structure is

irrelevant to any of the arguments presented in this document.)

Note that any grammar which uses this analysis must create and

appropriately bind a trace that is to serve as a Wh-comp for some S before

that S node is itself created, a fact which will be crucial in what follows

below. After an S node is created, that S node itself is the "nearest" S node,

and therefore the Wh-comp of the higher S will be inaccessible. A

convenient scheme to circumvent this problem is to create the COMP node,

attach the complementizer and the Wh-comp (creating and binding a trace, if

necessary), drop the newly parsed COMP into the buffer, and then create the

S node.

One nice feature of this analysis, as developed so far is that no

additional mechanisms have been added to the grammar interpreter to make

the Wh-phrase accessible in embedded Ss. Unfortunately, there is one

important class of wh-clauses which the grammar interpreter cannot handle

without extension.

The problematic case occurs when an NP node intervenes between

the S node nearest the bottom of the stack and the location of the gap, as in

the following sentence:

7.3 [S1 [Comp What] is that ENPI a copy of tJ]?

In this case, the gap must be detected by the parser while the NP is the

current cyclic node, and therefore the Wh-comp of the major S must be
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accessible at that time. This mrsans that it will be necessary to access a

daughter of a node (i.e. the Wh-comp of S1 in the example above) which is

higher in the active node stack than the current cyclic node, in this case the

NP node (here, NP1).

One way out of this bind would be to consider NPs to be non-cyclic

nodes, and for various reasons such a solution looks rather attractive. Such a

decision, however, would have far reaching linguistic implications. For

example, this analysis would predict that passivized NPs are not

"unpassivized" by the parser, but rather would be handled by later semantic

processing. (This is equivalent to saying that such passives would be base

generated within the context of the theory of generative grammar.) While

such implications seem quite reasonable, such an analysis cannot be assu-med

without a careful and detailed linguistic analysis of the full range of

implications, a task which is beyond the scope of this document.

Another possible solution would be to allow access to the current

cyclic node and the cyclic node above that; i.e. to accept Chomsky's

subjacency analysis. If such an analysis is unnecessary elsewhere, however,

it would seem that allowing access to two cyclic nodes rather than one is

conceding a substantial increase in the power of the parser for the sake of

solving only this one problem.

Having stated these options, I will now note that there is an

unsolved problem here, and provide a special mechanism to circumvent the

problem for the time being. This mechanism, in essence, considers NPs to be
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non-cyclic nodes for the sole purpose of accessing the Wh-comp of a node.

This mechanism is implemented by providing a special phrase in PIDGIN

which returns as its value the node which is the "nearest" Wh-comp, the

PIDGIN phrase

(the) Wh-comp

where the "the" is optional, as indicated by the parentheses. More precisely,

this phrase returns the node which is the Wh-comp of the S node closest to

the bottom of the active node stack. If intervening NPs are ignored, this is

exactly equivalent to returning the Wh-comp of the "current S node".

Ross's Complex NP Constraint

In the next section, I will demonstrate that the determinism

hypothesis forces behavior which accounts for much of the phenomena

accounted for by Ross's Complex NP Constraint (CNPC) [Ross 67), given the

structural analysis of wh-clauses developed above. Before doing so, let me

briefly review Ross's formulation of this constraint.

Consider the sentences shown in Figure 7.4 below. Note that 1(b)

and 2(b), each a relativized form of the corresponding (a) sentence, differ in

that the wh-phrase in 1(b), but not 2(b), has been extracted from a relative

clause. Sentence 2(b) is very acceptable, while 1(b) is extremely bad.

Similarly, 3(b) and 4(b), each a relativized form of the corresponding (a)

sentence, differ in that the wh-phrase in 3(b), but not 4(b), has been

extracted from a "noun complement". And here sentence 4(b) is acceptable

while 3(b) is not. (By "noun complement", I mean the S which often

follows such nuuns as "report", "claim", "rumor", etc.)
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1(a) I read a statement which was about that man.
1 (b) m The man who I read a statement which was about Is sick.

2(a) I read a statement about that man.
2(b) The man who I read a statement about is sick.

3(a) I believed the claim that Otto was wearing this hat.
3(b)"The hat which I believed the claim that Otto was wearing is red.

4(a) I believed that Otto was wearing this hat.
4(b) The hat which I believed that Otto was wearing is red.

Figure 7.4 - Some sentences which motivate the Complex NP Constraint.

Within the framework of generative grammar, one could attempt to

explain this data by stipulating that nothing can be moved from within a

relative clause, and that nothing can be moved from within a noun

complement. These constraints can be combined into one constraint, however,

if it is noticed that both relative clauses and noun complements share one

important structural property: Both relative clauses and noun complements

are clauses which are Dominated by an NP node. Thus, the structures of the

relevant NPs in 7.4.1a and 7.5.3a above can be taken to be as shown in

Figure 7.6.a and 7.6.b below, respectively. As these analyses show, the

crucial difference between relative clauses and noun complements are that 1)

a relative clause dominates a trace which is bound to the Wh-comp, and 2) a

relative clause is a daughter of an S node, while a noun complement is the

daughter of a node called NBAR which is itself dominated by NP. In either

case, however, the embedded S is Dominated by the node NP.
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(a) I read [NP John's [NBAR EN statement]] [S [COMp WhiCh] t was about that man]].

(b) I believed [NP John's [NBAR [N claim] [S that Otto was wearing this hat]]].

(c) I believed [s that John [Vp [v claims] [s that Otto was wearing this hat]]]

Figure 7.5 - NP Dominates both relative clauses and noun complements.

(The reason for this NBAR node, by the way, is as follows: if we

look at an NP as being analogous to an S node at some level, and a noun as

similarly analogous to a verb, then we need a node that serves as a "verb

phrase" node to complete the analogy. The NBAR node serves this function.

Thus, the NP whose structure is shown in 7.5.b is very much analogous in

structure to the S whose structure is shown in 7.6.c, although their semantic

functions are quite different. This follows from the so-called "X-bar

convention", first suggested by Chomsky [Chomsky 70], and well explained

in [Jackendoff 74].)

Given this generalization about the structures of relative clauses and

noun complements, a combined constraint can be stated which is far more

general than either of the "special purpose" constraints stated above. This

constraint, stated below in Figure 7.7, is the Complex NP Constraint, as stated

by Ross.

No element contained in a sentence dominated by an NP with a lexical head
noun may be moved out of that NP by a transformation.

Figure 7.7 - The Complex NP Constraint
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It must be noted that the CNPC, as stated by Ross, is gratuitously

broad. Ross's data, as presented in his thesis, only supports a weaker form of

this constraint, and, as far as I know, no broader argument for the CNPC has

been presented. Briefly stated, Ross's data shows only that an NP cannot be

moved out of a sentence dominated by an NP with a lexical head by

whatever grammatical rules form questions and relative clauses. It is this

weaker form of the CNPC that I will deal with below.

The CNPC and the Determinism Hypothesis

Given the analysis of wh-clauses presented in the previous section,

it is now easy to show that the behavior described by the (weakened) CNPC

follows in part from the structure of the grammar interpreter and in part

directly from the determinism hypothesis.

The CNPC for relative clauses can be dispensed with quite easily.

(The form of the following argument is very similar to that presented by

Chomsky in [Chomsky 73].)

Consider Figure 7.4.1b, repeated below as Figure 7.8.1. It would

seem that the intended analysis of this sentence is as given in 7.8.2, where

t1 to be bound to "which" and t 2 to be bound to "who". To parse this

sentence, however, the parser must somehow have access to the COMP of S,

while in S 2, or else the binding of t2 could not be accomplished, as discussed

at length in the last chapter. But this is impossible, since neither S, nor its

COMP is accessible from within S2. Thus, as long as the COMP node can

dominate at most one Wh-comp, the only possible NP to which a gap-filling
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trace can be bound is the Wh-comp of the current S node. This means that

only one NP in a relative clause can be replaced by the grammar interpreter.

(1 )t The man who I read a statement which was about is sick.

(2)xThe man Es, [CoMP who] I read a statement [S2 (CoMP which] t was about 2]]
is sick.

Figure 7.8

I will now turn to the case of noun complements and show that

they must behave in accordance with the CNPC.

I will assume below that the grammar must "recover" the "deleted"

Wh-comp of a reduced relative clause by inserting some lexical item which

serves as the Wh-comp. It is necessary to replace the Wh-comp because the

gap-filling trace must be bound to the Wh-comp of the clause, which, of

course, makes it necessary that there be one. I will rather arbitrarily use

the lexical item "which" for this purpose, simply because it is the only wh-

word that does not make an animate/inanimate distinction.

The essence of the argument to be presented below is the following:

Because the initial segments of relative clauses and noun complements can be

identical, the parser can only be certain that a potential noun complement is

not in fact a relative clause when it completes the analysis of such a clause

without discovering a gap to fill. This means that a Wh-comp must be

attached to the COMP node of the clause if and when it turns out that the

clause is a relative clause. Because the clause must be treated as a reduced
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relative (the word "that" is always parsed as a complementizer). this Wh-

comp must be the reduced relative marker "which". But this means that the

Wh-comp cannot be set to a trace which is bound to the Wh-comp of the

next higher S. because the Wh-comp must be reserved for the reduced

relative marker. Thus, any "higher level" Wh-comps are inaccessible within

the clause, whether or not the clause turns out to be a noun complement.

resulting in exactly the observed behavior stated by the CNPC. In short.

since the parser can't tell a noun complement from a relative clause until it

is finished with the clause, it must leave open the option that the clause is

a reduced relative clause, with the reduced relative marker as Wh-comp. and

thus cannot initially fill the Wh-comp with a trace that would make a

"higher level" Wh-comp accessible within the clause.

The remainder of this section will develop this argument is full

detail.

Consider the two sentences 1(a) and 2(a) shown in Figure 7.9 below.

The sentence shown in 7.9.1a contains a relative clause, while that shown in

7.9.2a contains a noun complement. These two sentences are identical

through the last word of the embedded S, yet the two Ss have different

structures, as do the two dominating NPs; the structure of 1(a) is as shown

in 1(b) below, while the structure of 2(a) is shown in 2(b). (Note that in

1(b) the COMP node dominates both the complementizer "that" and an inserted

"which" as a Wh-comp. Here I follow Chomsky in assuming that "that' is

not the Wh-head, but rather a complemeutizer, and' that a relative clause

flagged by "that" is in fact a reduced relative clause.)
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1(a) I showed John the report that a stranger had taken.
1(b) I showed John [NP the ENBAR report] [s [CaMP which that] a stranger had
taken t]].

2(a) I showed John the report that a stranger had taken the plans.
2(b) 1 showed John [NP the [NBAR report [S comp that) a stranger had taken the
plans.]]].

Figure 7.9 - Relative clauses and noun complements can be almost identical.

Given this similarity, it would seem that a deterministic parser

confronted with a potential noun complement can only determine the internal

structure of the clause by attempting to find a gap into which a trace can be

placed, just in case the clause is a relative clause. (Exactly what is involved

in detecting such a gap deterministically is the focus of Chapter 10; for now

I will simply assume that this can be done somehow-or-other.) If no gap is

found, the clause is a noun complement; if a gap is detected, the clause is a

reduced relative.

This implies that the reduced relative marker must be attached as

the Wh-comp of the potential noun complement when and if a gap is

discovered. (Note that the internal structure of the reduced relative clause

of 7.9.1b above differs from that of the noun complement of 7.9.2b only in

that the relative clause has a gap-filling trace and the reduced relative

marker serving as a Wh-comp. Otherwise, the two internal structures are

identical.) Attaching a Wh-comp after a gap is detected might seem to

violate the left-to-right constraint stated in the previous chapter, but a

careful examination of the constraint shows that this is not the case. As

formulated in Chapter 6, the L-to-R constraint states, roughly, that
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constituents must be removed from the buffer in left-to-right order. Since

the Wh-comp must be attached long after a COMP node dominating the

complementizer "that" has been attached to the S, it would be pointless to

drop the "which" into the buffer, expecting normal grammatical processes to

do the attachment. Instead, the reduced relative marker must be directly

attached to the COMP node by a special purpose grammar rule. While this is

clearly ad hoc, it seems unavoidable, and violates no constraints imposed by

the grammar interpreter.

But now note that a gap within this potential noun complement

might not indicate that the clause is a reduced relative at all, if the clause is

itself dominated by a wh-clause. Ignoring the CNPC, the clause might be a

noun complement even if it contains a gap, with this gap "belonging" to a

dominating wh-clause. For example, were it not for the CNPC (the violation

of which makes this sentence very bad, of course), the sentence shown in

Figure 7.10.1 below might be interpreted to have the structure shown in

7.10.2. Under this interpretation, S is a noun complement and the binding"

of t, is the Wh-comp of the major S. Note, by the way, that the structure

here is exactly parallel to the structure shown in Figure 7.2 except for the

violation of the CNPC.
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(1) Who did John tell us the report that Herbert had met?

(2) [s [Comp Who] did John tell us [NP the ENBAR report [SI [COMP t that] Herbert
had met t2 ]]]]

Figure 7.10 - A gap in a possible noun complement could result from a
dominating wh-clause (ignoring the CNPC).

Thus, it would seem that a gap in a potential noun complement

which is dominated by a wh-clause can indicate one of two possibilities,

which I will refer to as possibility RELCL and possibility NCOMP. They are:

Possibility RELCL - that the potential noun complement is actually a
relative clause.

Possibility NCOMP - that the clause is a noun complement with the gap
resulting from the dominating wh-clause.

As I will now show, however, the parser must necessarily commit itself to

one possibility or the other before beginning to analyze the potential noun

complement; one of these possibilities must be rejected out of hand.

The problem is simply that if possibility NCOMP above is to be left

open, then a trace bound to the Wh-comp of the next higher S must be

created before the node which is the potential noun complement is created.

Once the noun complement node is created, the next higher S is no longer

accessible to the grammar interpreter, and a trace which is to serve as the

Wh-comp cannot be appropriately bound. Thus, either a trace bound to the

Wh-comp of the next higher S must be created and bound before the

potential noun complement is created or possibility NCOMP is permanently

blocked.
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But consider what follows if such a trace is created and bound.

If this trace is created, then, by the determinism hypothesis, it must

be used in the analysis of the sentence. But if this trace must serve as the

Wh-comp of the potential noun complement (what else could one do with

it?), then possibility RELCL above is necessarily blocked. If the potential

noun complement is to be a reduced relative, then it must have the reduced

relative marker as its Wh-comp, not the trace. Thus, the creation of a trace

to serve as Wh-comp if possibility NCOMP is not to be discarded out of hand

eliminates possibility RELCL, since once the trace is created, it must become

the Wh-comp.

It is thus clear that the grammar interpreter cannot leave open both

possibility RELCL and possibility NCOMP simultaneously. If possibility NCOMP

is to remain open, a trace must be created before the potential noun

complement is initiated to serve as Wh-comp. But creating this trace

commits the parser to its use, thus blocking possibility RELCL. Clearly, then,

one of these possibilities must be arbitrarily eliminated from consideration by

the grammar interpreter. The question to be answered now, of course, is

which.

There seems to be a simple criteria which yields a very plausible

answer to this question. If possibility RELCL is ruled out, then a trace must

always be created to serve as Wh-comp whenever a noun complement

dominated by a wh-clause is initiated, just in case it should turn out that

the complement contains the gap. However, if it turns out that the
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complement does not contain the gap, then the trace is gratuitous. If

possibility NCOMP is ruled out, on the other hand, then the lexical item

"which" can be attached as Wh-comp if and only if it turns out that a

potential noun complement is, in fact, a reduced relative. Thus, ruling out

possibility RELCL will lead on occasion to the production of a gratuitous

parse node, contrary to the determinism hypothesis, while ruling out

possibility NCOMP leads to no such result. Therefore, ruling out possibility

RELCL is clearly preferable.

This result leads to exactly the behavior stipulated by the CNPC. If

possibility RELCL is ruled out, then no NPs can every be moved out of a

noun complement by wh-movement processes. But this means that exactly

the behavior stipulated in this case by the CNPC is forced by the determinism

hypothesis, as claimed.

It has thus been demonstrated that the behavior stipulated by the

CNPC for both relative clauses and noun complements follows in part from

the structure of the grammar interpreter and in part directly from the

determinism hypothesis, given the analysis of relative clauses and noun

complements stated in this chapter.

Chomsky's Analysis - a Comparison

It should be noted that the analysis given above differs in one key

respect from Chomsky's analysis, which, in essence, derives the CNPC from

Subjacency. There is one key case which Chomsky's analysis rules out

which is eliminated by neither the CNPC nor the analysis presented above.
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As I will show, it is at least questionable whether this case should be ruled

out by the same analysis as those cases which fall under Ross's CNPC.

Chomsky shows that within the generative framework, the behavior

stipulated by the CNPC falls out of his Subjacency principal, by and large.

The rule of MOVE-WH-phrase itself, in one formulation, moves any NP into

the COMP of any S. Since this rule is constrained to obey Subjacency,

however, MOVE-WH-phrase can only move a given NP into a COMP that the

NP is subjacent to, i.e. into the COMP of the S that Dominates that NP or

into the COMP of the next higher S. But this blocks the movement of a WH-

phrase from inside either a relative clause or a noun complement into the

COMP of the next higher S, as Figure 7.11 below shows. The structure

shown in 7.11.1, for instance, would be derived by moving the NP "who"

first into the COMP of S2 (leaving trace 2) and then into the COMP of S 1.

But this final step violates Subjacency, since NPI intervenes between S, and

S2, and thus the COMP of S2 is not subjacent to the COMP of S1. Similarly,

the structure shown in 7.11.2 would be derived by moving the NP "who"

into the COMP of S2 and then into the COMP of S. Again, NP1 intervenes

between S, and S2, and thus the COMP of S2 is not subjacent to the COMP of

S1.
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(1) *The man [Si [coMP who] I read INP a statement [S2 [COMp Which] t1 Was
about 2]]] is sick

(2) z[sl [coMP Who] did John tell us [NPI the [NAR report [S2 [COMp that] Herbert
had met 2]]]]

Figure 7.11 - Subjacency subsumes the CNPC
for relative clauses and noun complements.

But now consider the sentences shown in Figure 7.12 below.

(Sentences 7.12.1a and 7.12.2 are taken from [Chomsky 73]; 7.12.4 is from

[Ross 67].) Chomsky argues that the ungrammaticality of 7.12.1a can be

accounted for exactly in the same way as the sentences shown in Figure

7.11 above, since the structure for this sentence, shown in 7.12.b, would be

derived by moving "who" from inside NP2 into the COMP of S in one fell

swoop, violating Subjacency. This explanation accounts for the

ungrammaticallity of 7.12.2 in exactly the same way. Thus, Chomsky claims

that the CNPC is in fact subsumed by Subjacency, with the additional bonus

that Subjacency accounts for the ungrammaticality of sentences like these,

which do not fall under the CNPC as stated by Ross.

(1 )a"Who did you hear stories about a picture of?

(1 )b [s [COMP Who] did you hear [NP; stories about [NP2 a picture of t]]]

(2)xWhat do you receive requests for articles about?

(3) What did Pres. Wiesner forbid the printing of articles about?

(4) What books does the government prescribe the height of the lettering on?

Figure 7.12 - Subjacency predicts that all of these sentences should be bad.
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As Chomsky himself notes, however, there is a problem with this

analysis. While Subjacency accurately predicts that 7.12.1a and 7.12.2

should be unacceptable, it also predicts that 7.12.3 and 7.12.4 should be

equally bad, for exactly the same reasons. Unfortunately, this is not the

case. While both (3) and (4) are unacceptable for some speakers, most of

these speakers judge them to much better than 7.11.1 and 7.11.2 above.

Furthermore, these sentences are quite acceptable for many speakers. While

it is not clear why 7.12.1 and 7.11.2 are unacceptable, the Subjacency

theory does not seem to adequately characterize what is going on here.

The analysis presented earlier in this chapter does not run into this

difficulty; it accounts for the same range of data as the CNPC and says

nothing at all about why 7.12.1 and 7.11.2 should be unacceptable. Thus,

in this sense, the analysis presented earlier in this chapter is more

descriptively adequate than Chomsky's analysis.

(I must note that the success of my analysis hinges crucially upon

the stipulation embodied in the grammar interpreter that, in essence.

considers only Ss to be cyclic nodes for the purposes of parsing Wh-clauses,

and that, therefore, the result is far less strong than it would otherwise be.

However, it should be noted that there is no possibility of patching the

Subjacency analysis in the same way. If NPs were to be considered non-

cyclic within Chomsky's framework, then Subjacency would no longer

capture any of the phenomena captured by the CNPC.)
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Woods' Hold-list Mechanism - A Comparison

To conclude this discussion, I will compare the approach taken here

with the hold-list mechanism of Woods' ATN [Woods 72; Kaplan 72]. The

hold-list is a push-down stack appended to the basic ATN interpreter that

holds wh-phrases for which matching gaps have not yet been found. The

ATN interpreter uses the bottom of the hold-list (thinking of the stack as

growing downwards) to fill a hypothesized gap whenever it traverses a

special sort of arc called a "virtual NP arc" in the grammar. A virtual NP

arc returns the NP at the bottom of the hold-list just as if such this NP had

just been constructed by the ATN interpreter from the lexical items after the

input pointer. Thus, a grammar designer for an ATN can place a virtual'NP

arc into the grammar wherever there is the possibility of a gap in a wh-

clause, and the ATN mechanism will non-deterministically explore the

implications of each choice for a given wh-clause. After an NP at the

bottom of the hold-list is utilized in this way, it is popped from the hold-

list.

Something like this mechanism could be grafted onto PARSIFAL,

perhaps pushing pointers to Wh-comps onto this hold-list which could then

be used to appropriately bind a trace whenever the corresponding gap was

discovered by the parser. Since the bottom of the hold-list is accessible

anywhere in the grammar, Woods' formulation also solves the inaccessibility

problem described above. Because the parser is deterministic, of course,

something less hypothesis driven would necessarily replace the "virtual NP

arc" notion, but this is irrelevant to the current discussion. (This issue is

discussed at length in Chapter 9.)
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The principal objection to such an approach is simply that the

addition of such a powerful additional mechanism is unnecessary within the

context of PARSIFAL. As noted above, the approach taken here requires very

little in the way of additional mechanisms, and certainly nothing as complex

as an additional push-down stack. The hold-list/virtual-NP-arc mechanism

represents a fairly major extension of the ATN framework, and it is a point

in favor of the framework adopted here that the same phenomena can be

handled with only an extension to allow access to the Wh-comp of the next

higher S. It should also be noted that the ATN mechanism, as implemented by

Woods, freely allows violations of the CNPC, and thus has no theoretical

implications in so far as this phenomena is concerned.
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CHAPTER 8

PARSING NOUN PHRASES -

EXTENDING THE GRAMMAR INTERPRETER

Introduction

In the preceding chapters, it was assumed that noun phrases came

into the buffer parsed by some mechanism which was transparent to the

"clause-level" rules which were the focus of those chapters. In this section

that assumption will be revoked, and extensions to the basic grammar

interpreter will be introduced that allow for the parsing of noun phrases. I

will also make clear why these extensions are necessary.

The grammar interpreter will be extended in this chapter by

introducing a new class of grammar rules which I will call Attention

Shifting rules (AS rules). (Rules which are not AS rules, i.e. all the rules

introduced in previous chapters, I will henceforth call Normal rules.)

Attention shifting rules, as the name implies, allow the grammar interpreter

to "shift its attention" from the first constituent in the buffer to some later

constituent, if there is evidence that the later constituent initiates a higher-

level constituent of a given sort. Most typically in the current grammar,

this mechanism is used to initiate NPs, although other sorts of constituents

can be initiated using AS rules, as we shall see. The parser can then

immediately construct the detected constituent, and then "shift its attention"

back to the beginning of the buffer, with the newly parsed constituent now
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in the buffer, providing contextual clues as to how the constituents in

preceding buffer cells should be utilized.

Attention Shifting Rules - Motivation

In the grammar for English discussed in previous chapters, the two

rules shown in Figure 8.1 below were introduced to recognize and flag

simple declarative sentences and yes-no questions. The rule MAJOR-DECL-S

will label the current active node a declarative if an NP followed by a verb

appears in the buffer, while the rule YES-NO-Q will label the current active

node a yes-no question if an auxiliary verb followed by an NP appears in

the buffer. It seems plausible that two rules much like these rules must be

included in any grammar of English.

(RULE MAJOR-DECL-S IN SS-START
[=np] [=verb] -- >
Label c s, deci, major.
Deactivate ss-start. Activate parse-subj.)

(RULE YES-NO-Q IN SS-START
[=auxverb][=np] -- >
Label c s, quest, ynquest, major.
Deactivate ss-start. Activate parse-subj.)

Figure 8.1 - These two rules treat NPs as primitive.

Note that the patterns of both of these rules will trigger only if

there is an NP somewhere in the buffer and thus, in a sense, both patterns

treat NPs as "primitive" constituents. Yet while the other constituents in

these patterns are lexical items, and are in this sense truly primitive

(morphology being done before the parser is called), NPs are much larger

constituents that must be constructed before they can be used by other

processes.
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As will now be demonstrated, it is impossible to formulate a

grammar which constructs these NPs at the proper time in other than an ad

hoc manner.

In the case of MAJOR-DECL-S, which triggers on an NP filling the

first buffer position, formulating a set of grammar rules which constructs

the NP is quite easy. A rule like START-NP' in Figure 8.2 below can be

added to the packet CPOOL, the packet which is (nearly) always active. This

rule will trigger if any word which can start an NP appears in the first

buffer position. (The feature npstart is given to all determiners, adjectives,

nouns, etc., i.e. to members of all word classes that can start NPs.) This

rule, once activated, creates an NP node and activates the appropriate packet

to initiate building the NP. When the NP is finished, it will be dropped

into the buffer, at which point the rule MAJOR-DECL-S will trigger if the

NP is followed by a verb.

(RULE START-NP' IN CPOOL
[=npstart] -- >
Create a new np node.
If 1st is det then activate parse-det

else activate parse-qp-1.
Activate npool.}

Figure 8.2 - A proposed rule for initiating NPs.

Note that this formulation depends crucially on the fact that it is

possible to detect the "leading edge" of an NP, and thus initiate its

construction, with no prior expectation of the presence of that NP. (This is

also true of all the refinements of this formulation which will be discussed
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below.) To say the same thing a little differently, the construction of an NP

can be initiated in a totally data-directed manner (totally data-directed in that

the packet containing this rule is always active) because the leading edge of

an NP is so clearly marked syntactically. Thus, not only is it extremely

useful to treat NPs as "primitive" constituents at the clause level, it is also

quite possible, given that these constituents can be initiated in a data-driven

manner.

While the rule START-NP' works fine for NPs whose first

constituent appears in the first buffer cell, this rule will not work at all in

the case of an NP which is to serve as the subject of a yes-no question or,

more generally, in the case of any NP which must be constructed before its

"leading edge" reaches the first buffer position. The problem is simply that

the rule START-NP only examines the constituent in the first buffer position,

and thus will not trigger if the NP's leading edge appears in the second or

third buffer cell.

One possible solution to this problem might be to trigger a rule like

YES-NO-Q on any word in the second buffer position that can initiate an NP,

i.e. to re-write the rule YES-NO-Q with a pattern like that shown in Figure

8.3:

(RULE YES-NO-Q' IN SS-START
Eauxverb] f[npstart] -- > ..... )

Figure 8.3 - A possible alternative to YES-NO-Q.
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The problem with this patch, as well as with the first formulation, is simply

that many words that can initiate NPs often don't and that many words that

rarely initiate NPs sometimes do, as was discussed in Chapter 1. For example,

the word "five" usually initiates an NP, as in the example shown in Figure

8.4.a below, but sometimes it simply doesn't, as in 8.4.b. Similarly, while the

word "as" can start an NP, as shown in 8.4.c, it can also start a subordinate

clause equally well, as in 8.4.d.

(a) There are five good reasons for not even trying.
(b) Theses get written five times more slowly than I thought possible.
(c) As many as ten different explanations were proffered.
(d) As these examples show, "As" initiates various constituents.

Figure 8.4 - One word doesn't determine constituent type.

Another possible solution to this problem might be to have a second

rule much like START-NP' except that it would trigger explicitly on the

constituent in the second buffer cell. (Such a rule would have a pattern

like

[t] [=npstart]

which would simply accept anything at all in the first buffer cell.) This

rule (call it START-NP") would then activate packets of rules identical to the

rules activated by START-NP' except that these alternate rules would

carefully ignore the contents of the first buffer position. In a sense, these

rules would treat the buffer as if it began with the second buffer cell.

While this solution is obviously ad hoc, it could in fact be made to work.

Furthermore, in many ways it seems to be on the right track.

The solution to this problem which I will adopt is in a sense a
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variant of this last suggestion. The problem will be solved by introducing a

rule called START-NP, shown in Figure 8.5 below, which is identical to

START-NP' except that is flagged (by writing it as an "AS RULE") as a special

sort of rule which I will call an Attention Shifting rule. Attention shifting

rules are rules that can cause the grammar interpreter to shift the parser's

"attention" from the actual start of the buffer to some later buffer cell.

When such a rule is envoked, the grammar interpreter shifts the effective

start of the buffer by creating a "virtual buffer start" that later rules will

see as the beginning of the buffer. Once the constituent initiated by the

attention shift is completed, it can be dropped into the buffer and the virtual

buffer start can be discarded by the grammar interpreter. The parsing

process will then continue as if that constituent had simply appeared in the

buffer fully formed, justifying the assumption made in previous chapters.

(The problems raised by the sentences in Figure 8.4 above can in fact also be

solved within this framework. I will outline a common solution to this set

of problems later in the chapter.)

{AS RULE START-NP IN CPOOL
[=npstart] -- >
Create a new np node.
If 1st is det then activate parse-det

else activate parse-qp-1.
Activate npool.)

Figure 8.5 - The final version of the NP-initiating rule.

While this mechanism may solve the problem of initiating NPs, it

raises several new questions. Among them are:

-How is this new sort of rule to be matched against the buffer?

-What sort of mechanism can be used to "shift" the buffer start, and
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how can the buffer later be shifted back to its original state?

-Can the length of the buffer still be limited to only three buffer cells

if the effective start of the buffer might conceivably shift to the

third buffer position?

These questions will be answered in the following several sections.

Attention Shifting - Implementation

In this section I will outline the implementation of the attention

shifting mechanism in terms of the virtual buffer mechanism developed in

chapter 3. This implementation can be easily accomplished by using the

extended buffer mechanism with offset which was introduced in that

chapter, using the offset mechanism to implement the "attention shift".

To refresh the reader's memory, repeated below is the key portion of

the description of the offset mechanism:

[The offset mechanism causes] the index given to the Read,
Insert, and Delete commands to refer to a cell whose location is
offset from the beginning of the buffer by some fixed amount.
This offset is specified by a new command Offset(j), which causes
the offset parameter m to be set to the sum of J and the previous
value of m. (The offset parameter m is initially stipulated to be 0.)
After a command of this form has been executed, the command
Read(i), for example, will return the item in cell x[i+m] rather than
the item in cell x[i].

The offset mechanism is in fact coupled to a push down
stack of such offsets, so that offsets may be pushed and popped
from the stack. This stack, the third data structure of the full
parser model, is referred to as the buffer pointer stack, or just as
the pointer stack. The current offset parameter m is thus the
offset at the bottom of the buffer pointer stack, again thinking of
the stack as growing downwards. This means that two new
commands are needed for this extended buffer mechanism:

Offset(j): Push the sum of j and mod, the current value of the
bottom of the pointer stack, onto the pointer stack, making
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Mnstthe new offset.

Pop-offset: Pop the current value off the pointer stack, making

the previous value pushed onto the stack the current offset.
If the top of the stack has already been reached, executing
this command causes an error.

By stipulating that the stack is initialized with an offset parameter

of 0, this extended mechanism will behave exactly like the

unextended buffer mechanism as long as no Offset commands are
executed.

Note that the Read, Insert, and Delete commands are

constrained even in this extended buffer model to take only positive

buffer indices. Thus, if the current offset is m, there is no way to
read, insert or delete any item in cells x[i], for i s m. Furthermore,
since no mechanism is provided to examine the pointer stack itself,

there is no way to even note whether there is any offset at all, e.g.

whether the command Read (1) will return the item in x[l] or some

other cell. Because it will often be useful to refer to the effective
beginning of the buffer, i.e. the cell whose contents are returned by
the command Read(1), I will often use the terms the effective
buffer start to refer to this cell. When discussing the extended
buffer model, this cell will be referred to as "the first buffer cell",

rather than the absolute first cell in the buffer, and in general, "the

ith buffer cell" refers to the cell whose contents are returned by
the buffer command Read(i) rather than the cell x[i].

Given this offset mechanism, attention shifting is conceptually

implemented in the grammar interpreter as follows (the actual implementation

is less straightforward and considerably more efficient, although equivalent

in behavior):

Each attention shifting rule, flagged in PIDGIN by an initial "(AS

RULE ...... )", has a pattern which consists of exactly one node description.

Each time the grammar interpreter attempts to match the pattern of any

normal rule, before it attempts to match each node description in the pattern

against the relevant constituent in the buffer, it checks to see if the pattern

of any AS rule in any active packet matches against that node. (AS rules are
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only matched against constituents in the buffer, not against either of the

accessible nodes in the active node stack.) If at least one AS rule does match

against a node, then the grammar interpreter does the following: If the

constituent that triggered the AS rule was in the nth buffer cell, the

grammar interpreter first executes the buffer command Offset(n). This shifts

the effective buffer start to the cell that was previously the nth cell in the

buffer, i.e. the constituent that was previously Nth is now 1st. The

grammar interpreter then aborts the normal rule matching process and runs

the AS rule with the highest priority of those AS rules that matched.

(The grammar interpreter checks each pattern against the

constituents in the buffer in left-to-right order, so that if two constituents

in the buffer will potentially trigger active AS rules, it will be the leftmost

constituent of these two that will first trigger an AS rule.)

As mentioned above, after the buffer start has been shifted, those

constituents before the effective buffer start will be invisible to succeeding

normal rules. These rules will view the constituent in the buffer cell

pointed to by the new bottom of the buffer pointer stack as 1st, the

constituent in the cell after it as 2nd, and the constituent in the cell after

2nd as 3rd. There is absolutely no way in which succeeding rules can

access the constituents in cells to the left of the buffer pointer as long as

that buffer pointer is on the bottom of the stack, or, for that matter, in the

stack, since (as the reader may have observed) the Offset mechanism can only

push increasingly large offsets onto the stack. Initially, of course, the

effective buffer start is identical with the contents of buffer cell x[1].
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After a constituent that was being built during an attention shift is

completed and has been dropped from the stack into the buffer by some

grammar rule, that rule should "dismiss" the attention shift by popping the

current buffer pointer from the bottom of the buffer pointer stack. This is

done by the PIDGIN code

Restore the buffer.

Executing this command will restore the effective buffer start to its previous

location by popping the buffer stack, returning the previous buffer pointer to

the bottom of the stack. After the attention shift has been dismissed, the

grammar interpreter will again match rules against the previous effective

buffer start and the constituents that follow it. Note that it is imperative

that the newly constructed node be dropped into the buffer before the buffer

pointer stack is popped. Since a node dropped from the active node stack

into the buffer is inserted into the buffer by executing the buffer command

Insert (c,1), the node will be inserted into the cell which is the current

effective buffer start. If the node is dropped into the buffer after the

buffer pointer stack is popped, it will not be inserted into the buffer at the

proper location.

One might think that rather than attempting to match AS rules

against buffer constituents each time that the grammar interpreter attempts to

do "normal rule" pattern matching, that AS rules could be matched only once

against each constituent in the buffer, say, when it first enters the buffer.

This would be sufficient except for the fact that grammar rules are

continually activating and deactivating packets of rules. Thus, when a given
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constituent first enters the buffer, no AS rule in the packets that are active

at that time might match. The next grammar rule that is executed just

might activate a packet which does contain an AS rule that will match

against that constituent, however. Thus, it is necessary to constantly check

to see whether AS rules in any active packets match against each constituent.

The reader might also wonder why it is necessary to allow for a

stack of buffer pointers, rather than a single shifting pointer. As it turns

out, it is often necessary to allow attention shifts within attention shifts,

thus making it necessary to allow for a stack of buffer pointers. For

example, NPs must be constructed by an attention shifting process, as was

discussed in the first section of this chapter. Within NPs, however, it is

necessary to build number phrases (e.g. "four hundred thirty-five") by an

attention shifting process, as will be demonstrated in a later section. Thus,

there is need for an attention shift to build the number phrase within the

attention shift to build the NP.

It should be pointed out that often the process of attention shifting

results in only a logical shift of the effective buffer start. This will occur

whenever an attention shifting rule triggers on a constituent that filis the

current first buffer position. In this case, a new pointer will be pushed

onto the buffer pointer stack, but the new pointer will point to the same

buffer position as the pointer now immediately below it on the stack.
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The ATN PUSH Arc - A Comparison

Before turning to some examples that demonstrate the operation of

the Attention Shifting mechanism, let me digress to compare the operation of

the AS mechanism with the PUSH arc mechanism of Woods' ATN. This

comparison will make clear exactly where the AS mechanism differs from

this standard method for forming subordinate constituents. (As Winograd

points out [Winograd 71], his PARSE function is essentially equivalent to the

PUSH arc, so here, as in Chapter 2, I will use the ATN as an exemplar of a

larger class of parsers.)

As a first approximation, the ATN PUSH arc can be thought of as a

simple recursive function call. A PUSH arc in an ATN grammar tells the

parser to push to a specific subgrammar, which is to produce a constituent of

a given type. If the subgrammar succeeds, it will return such a constituent,

which can then be utilized by the higher level grammar. In essence, this

amounts to calling a subroutine which returns as its value a constituent of a

given sort. Since a network A can contain PUSHes to a network B that in

turn pushes to A, the whole mechanism is recursive. (For example, the NP

network pushes to the S network, which contains PUSHes to the NP

network.)

This first approximation must be slightly modified - at least in

focus - in that the ATN operates by simulating a nondeterministic mechanism.

Thus, the execution of a given PUSH arc may or may not succeed in that a

failure from the lower network may propagate back through the PUSH arc

and cause the arc to fail. In light of this, and as stressed in Chapter 2, a
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PUSH arc must be viewed as an encoding of a hypothesis that a constituent

of a given sort can be found at a particular point in the input string. For

example, an ATN grammar will include a PUSH to the NP network, say, at a

given point in the grammar if it is reasonable, under some circumstance or

other, to hypothesize the existence of an NP at this point in the input string.

It should be stressed that this hypothesis is dependent only on that part of

the input string which the parser has fully analyzed; it is not

preconditioned upon any properties of what follows in the input string; the

PUSH arc is an entirely top-down mechanism.

On the other hand, an AS rule is entirely data-driven, i.e. entirely

bottom-up. Almost all AS rules are in packets that are always active while a

constituent of a given sort is being parsed (typically, either an S or an NP);

the rule START-NP of the previous section, for example, is always active

when an S node or a VP node is the current active node. Thus, there is

little top-down control of the AS rule mechanism. Instead, an AS rule is

triggered on the basis of features of the next word (or, more

generally,constituent) in the input string which will mark (if the AS rule is

a correct rule of grammar) the "leading edge" of a given sort of constituent.

To say the same thing in a different way, an AS rule is triggered almost

entirely on the basis of bottom-up evidence for the presence of a constituent

of a given sort.

To make this point clear, it is worth noting that the activation of

an AS rule has much more in common with the computer science notion of

an interrupt than it does with the notion of a function call. The triggering
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of an AS rule is like an interrupt in that both the triggering of the rule and

all processing that is done before the buffer pointer is restored is transparent

to "normal" processing. Also like an interrupt, a special mechanism is

required to shift the processor's "attention" from the previous task and then,

when appropriate, shift the processor's "attention" back, all without the

knowledge of the background task. While the fact that attention shifts can

be recursively nested might lead one to believe that something similar to

recursive function calls is going on, the notion of nested interrupts is a

better model.

An Example of Attention Shifting

An example should help to make this attention shifting mechanism a

little more clear. Let us see how the initial segment of the sentence shown

as 8.6 below is constructed by the parser, focusing on the processes by

which the NP "a meeting" is constructed:

8.6 Is a meeting scheduled for Monday?

The example will begin after the rule INITIAL-RULE has been

executed, leaving the parser in the state depicted in Figure 8.7 below, with

the packet SS-START active. This state is exactly equivalent to that depicted

in Figure 4.17, so there is no need here for further comment on the action

of the rule INITIAL-RULE. Several changes to the format of parser state

snapshots in this and all following figures should be noted, however. First

of all, the pointer stack is depicted as a list of absolute buffer indices, with

the bottom of the list at the extreme left. The effective buffer start, the

buffer cell whose absolute index is the bottom of the pointer list, is also

Chapter 8 251



Parsing NPs

flagged by the symbol "=====" in the line immediately before it. To say the

same thing in another way, the constituent shown in the line following the

symbol "=====" is 1st.

The Active Node Stack ( 0. deep)

C: S22 (S) / (CPOOL SS-START)

The Buffer (Pointer stack: (1))

Yet unseen words: is a meeting scheduled for monday 7

Figure 8.7 - The example begins after INITIAL-RULE has been run.

Af ter the rule INITIAL-RULE has been executed, the grammar

interpreter begins the pattern matching process. The grammar interpreter

checks to see whether the pattern of any normal rule in an active packet

matches against the constituents in the buffer and the active node stack,

starting with the rules of highest priority. Among the rules in the packet

SS-STA.RT, which is currently active, is the rule YES-NO-Q, with the pattern

[=auxverb] [=np].

Let us assume that the grammar interpreter begins the pattern matching

process by attempting to match this rule against the contents of the buffer.

Because there is no constituent in the first buffer cell, the grammar

interpreter inserts the first word from the input list, the word "is", into the

buffer. Before attempting to match the first node description of the pattern

of YES-NO-Q against 1st, the grammar interpreter checks to see if this

constituent fulfills the pattern of any active AS rule, which, let us assume,

is not the case. The grammar interpreter now discovers that the first

description in YES-NO-Q's pattern is fulfilled by 1st, so the interpreter moves
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on to the next node description in the pattern of YES-NO-Q. The second

buffer cell is also empty, so another word from the input list is inserted into

this cell. The state of the parser at this point is depicted in Figure 8.8. Note

that the numbers to the far left of each buffer entry is the absolute index

of the corresponding buffer cell.

The Active Node Stack ( 0. deep)

C: S22 (S) / (CPOOL SS-START)

The Buffer (Pointer stack: (1) )

1 : WORD155 ('BE VERB AUXVERB PRES V3S) : (is)
2 : WORD156 ("A NPSTART DET NS N3P INDEF) : (a)

Yet unseen words: meeting scheduled for monday7

Figure 8.8 - During the process of matching the pattern of YES-NO-Q.

Again, before the interpreter checks to see if the next node

description in the pattern of YES-NO-Q is fulfilled by the corresponding

constituent in the buffer, in this case 2nd, it checks to see if any AS rule is

triggered by that constituent. This time the interpreter discovers that an AS

rule is triggered, the word "a" fulfilling the pattern of the rule START-NP

presented above. Because this constituent triggers an AS rule, the buffer

interpreter shifts its attention to the cell it occupies by executing the buffer

command Offset (2), since the constituent that triggered the AS rule was in

the 2nd buffer position relative to the effective buffer start. This state is

depicted in Figure 8.9.
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About to run: STARTNP

The Active Node Stack ( 0. deep)

C: S22 (S) / (CPOOL SS-START)

The Buffer (Pointer stack: (2 1))

1 : WORD 155 ("BE VERB AUXVERB PRES V3S) : (is)

2 . WORD 156 (xA NPSTART DET NS N3P INDEF) : (a)

Yet unseen words: meeting scheduled for monday ?

Figure 8.9 - After the rule STARTNP has been triggered,
the grammar interpreter shifts the effective buffer start.

After the effective buffer start is shifted, the action of rule

STARTNP is run. Besides creating an NP node, NP40 in Figure 8.10 below,

this rule activates the packets PARSE-DET, a packet of rules that initiate

determiner structures, and NPOOL (Noun phrase POOL), which contains rules

that are always to be active whenever an NP is being parsed. The state of

the parser after this rule is executed is shown in Figure 8.10.

The Active Node Stack ( 1. deep)

S22 (S) / (CPOOL SS-START)
C: NP40 (NP) / (NPOOL PARSE-DET)

The Buffer (Pointer stack: (2 1))

1 : WORD155 ("BE VERB AUXVERB PRES V3S) : (is)

2 : WORD156 ("A NPSTART DET NS N3P INDEF) : (a)

Yet unseen words: meeting scheduled for monday ?

Figure 8.10 - After rule START-NP has been executed.

The interpreter now continues matching rules against the contents of
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the buffer, beginning with the effective buffer start, which is now the

second absolute buffer position. The pattern of the rule DETERMINER in the

active packet PARSE-DET now matches against 1st and the action of this rule

is run. DETERMINER is shown in Figure 8.11 below. This rule attaches the

determiner to the NP, adds some features to the NP, and switches on the

packet PARSE-NOUN after deactivating PARSE-DET. The interpreter now

notices that the determiner "a" has been attached, and removes it from the

buffer.

(RULE DETERMINER IN PARSE-DET
[=det] -- >
Attach 1st to c as det.
Label c det.
Transfer the features indef, def, wh from 1st to c.
Deactivate parse-det.
Activate %for the sake of the example% parse-noun.)

Figure 8.11 - The rule DETERMINER In the packet PARSE-DET.

The rule NOUN matches next, after WORD157 "meeting", the next

word in the input list, enters the buffer. The state of the parser after NOUN

has matched, but before its action is run, is depicted in Figure 8.12 below.

Note that WORD155, "is", remains invisible before the effective buffer start,

totally unaffected by all of this.
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About to run: NOUN

The Active Node Stack ( 1. deep)

S22 (S) / (CPOOL SS-START)
C: NP40 (INDEF DET NP) / (PARSE-NOUN NPOOL)

DET : (a)

The Buffer (Pointer stack: (2 1))

1 : WORD155 (XBE VERB AUXVERB PRES V3S) (is)

2 : WORD157 (T MEETING NPSTART NOUN NS): (meeting)

Yet unseen words: scheduled for monday ?

(RULE NOUN IN PARSE-NOUN
[=noun] -- >

%Simplified for the sake of this example.%
Attach a new nbar node to c as nbar.
%Note that c is now the nbar node.%
Attach 1 st to c as noun.
Transfer the features massn, time, ns, npl from 1st to a.
Drop c %i.e. the nbar node%.
Drop c %i.e. the np node%.
Restore the buffer.)

Figure 8.12 - Before the rule NOUN is executed.

The rule NOUN first attaches an NBAR node to the NP, then attaches

the noun "meeting" to the NBAR. (The reason for this NBAR node is as

follows: if we look at an NP as being analogous to an S node at some level,

and a noun as similarly analogous to a verb, then we need a node that serves

as a "verb phrase" node to complete the analogy. The NBAR node serves this

function. This follows from the so-called "X-bar convention", first suggested

by Chomsky [Chomsky 70], and well explained in [Jackendoff 74].) The

NBAR node is then popped from the active node stack, and then the NP node

is popped. Since the NP ncde is not attached to any larger node, it is
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dropped into the buffer, where it is inserted, by definition, before 1st, i.e. it

is inserted at the effective beginning of the buffer. The state of the parser

at this point is shown in Figure 8.13.a. Finally, the buffer pointer is restored

to its earlier state with the execution of the PIDGIN code "Restore the buffer",

which pops the buffer pointer stack. The state of the buffer after the NP is

dropped and the pointer stack is popped is shown in Figure 8.13.b.

The Active Node Stack ( 0. deep)

C: S22 (S) / (CPOOL SS-START)

The Buffer (Pointer stack: (2 1))

1 : WORD155 ('BE VERB AUXVERB PRES V3S) : (is)

2 : NP40 (MODIBLE NS INDEF DET NP) : (a meeting)

Yet unseen words: scheduled for monday ?

(a) - After the finished NP is dropped into the buffer.

The Buffer (Pointer stack: (1) )

1 : WORD 155 ("BE VERB AUXVERB PRES V3S) : (is)
2 : NP40 (MODIBLE NS INDEF DET NP) : (a meeting)

(b) - The buffer after the pointer stack has been popped.

Figure 8.13 - Dismissing the attention shift.

Now NP40, the new NP, appears in the buffer as a complete

constituent. From the point of view of normal rules, the NP will seem to

have simply appeared in the buffer as if it were in the input list already

parsed. The interpreter will now once again match normal rules against the

absolute beginning of the buffer, since the absolute beginning is now also

the effective buffer start.
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The interpreter now begins to match the rule YES-NO-Q against the

constituent buffer once again. Once again, the grammar interpreter checks to

see whether 1st triggers any AS rules before checking to see that it fulfills

the first node description in the pattern of YES-NO-Q. After no AS rules are

triggered by 1st and the corresponding node description is fulfilled, the

interpreter checks to see that 2nd, now the NP NP40, does not trigger an AS

rule before checking to see that the NP fulfills the second node description

in the pattern of the rule YES-NO-Q.

The pattern of this rule will now match, since the constituents

which are 1st and 2nd now fulfill the two descriptions of the pattern of

YES-NO-Q. The action of this rule will then be run, labelling C with

features that indicate that it is a yes/no question, resulting in the state

shown in Figure 8.14. Since normal rules will now continue the parse for a

while, the example will be terminated at this point.

The Active Node Stack ( 0. deep)

C: S22 (S QUEST YNQUEST MAJOR) / (CPOOL PARSE-SUBJ)

The Buffer (Pointer stack: (1) )

1 : WORD 155 ("BE VERB AUXVERB PRES V3S) : (is)
2 : NP40 (MODIBLE NS INDEF DET NP) : (a meeting)

Yet unseen words: scheduled for monday ?

Figure 8.14 - After the rule YES-NO-Q has been run.
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Another Example of Attention Shifting

As another example of attention shifting, this section will

investigate the question of how a deterministic grammar can distinguish

between the wide range of constituents that start with the word "as". This

problem has been used in several previous sections as evidence against any

scheme that attempts to use one word lookahead to indicate what constituent

begins next. Up to this time, however, the grammar mechanism was not

sufficiently developed to allow discussion as to how this problem can be

solved within the context of PARSIFAL. As we shall see, the solution is

quite simple and natural given the attention shifting mechanism. This

section shall show that once again, a seemingly non-deterministic process has

a totally deterministic solution.

First of all, note that the type of a constituent that begins with "as"

can be determined, by and large, by examining the two constituents after

that word. Consider the sentences in Figure 8.15 below (which appeared

earlier as Figure 2.2):

(a) As these examples show, "As" initiates various constituents.
(b) As many as ten different explanations were proffered.
(c) No one could ever be as big as big bad John.
(d) He left as quickly as he could.
(e) Bill offered his advice as an expert in such matters.
(f) Who could believe he caught as big a fish as that?

Figure 8.15 - "As" can initiate many different constituent types.
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If the constituent after "as" is a quantifier, an adjective, or an adverb, each

followed by "as", as in 8.15 b, c, and d, then the entire phrase will be a

phrase of that type. (The relevant diagnostic for each of the examples given

is summarized schematically in Figure 8.16 below; the lettering of the

diagnostics corresponds to the lettering of the examples above.) If the

constituent after "as" is an NP, as in 8.15 a and e, then the entire entity

will be a prepositional phrase, with "as" serving as a preposition. (Note that

I treat most subordinate clauses initiated by "subordinators" such as "but",

"when", "after" as prepositional phrases with clauses as objects. Thus,

although these two sentences differ in that the NP following 'as" serves as

prepositional object in 8.15.e, but as the subject of a clause which is itself

the prepositional object in 8.15.a, they have the same higher-level structure.

Other rules can then distinguish between these two subcases.) Finally, if

"as" is followed by an adjective which is followed by an indefinite singular

NP, as in 8.15.f, then the entire construction will be an NP. The NP will

also be followed by the word "as", but there is no need to see this fourth

constituent to diagnose the correct structure.

(a, e) [=*as] [=npJ -> PP
(b) [=*as] =quantJ [=*as] -> QUANT
(c) [=*as] [=adjJ [=*as] -> ADJ
(d) [=*as] E=adv] [=*as] -> ADY
(f) [=*as] E=adj] [=*np, indef, ns] -> NP

Figure 8.16 - diagnosing phrases which begin with "as".
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Now note that if a phrase initiated by "as" is part of an NP, then it

either initiates the NP or else it immediately follows the head noun of the

NP. The examples of Figure 8.17 below are illustrative:

(a) three boys as big as Herbert
(b)"three as big as Herbert boys
(c) as many as three hundred boys
(d)"the as many as three hundred boys

Figure 8.1 7 - A phrase beginning with "as" can only appear in NPs
initially or immediately after the head noun.

These facts lead to the following solution to the problem of "as":

An AS rule should be added to the grammar that triggers on "as" and placed

in the packet CPOOL which is always active during "clause-level" processing.

After this rule has triggered, it should activate a packet of rules each of

which is sensitive to one of the types of constituents that can begin with

"as", as shown above. The correct structures can be initiated by these rules,

completed by packets which they in turn activate, and dropped into the

buffer. (I ignore here - and have no solution for - the problem of how to

parse the sorts of highly ellided structures that often follow "as"; e.g. "Sam

had written as many words this year as John books last year." (see [Bresnan

73]).) If the completed structure itself initiates an NP, for instance, the AS

rule that begins NPs will then be triggered by this new constituent. Thus,

the grammar can construct phrases beginning with "as" in an entirely data-

driven (i.e. bottom-up) manner, and these completed phrases can then trigger

still higher level constituents in a data-driven manner if (and only if) that is

appropriate.
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Why There Must be a Stack of Buffer Pointers

A good test for whether a constituent should be initiated by an

attention shifting rule seems to be whether or not that constituent must be

constructed before it reaches the front of the constituent buffer; i.e.

whether or not there is a grammar rule that depends on the existence of

that constituent at some position in the buffer other than 1st. Thus, the

original motivation for attention shifting rules was the fact that the subject

of a yes-no question must be constructed before it can reach the front of the

buffer, i.e. that it must be initiated while its "leading edge" is still in the

second buffer cell.

In this section I will use this test to show that attention shifts

must be allowed within attention shifts.

Consider the following two noun phrases:

8.18.a a hundred boys
8.18.b a hundred pound rock

In 8. 1&.a, note that "a" is not the determiner of the NP, but rather part of

the number phrase (NUMP) "a hundred", while in 8.18.b "a" serves as the

determiner of the NP and "hundred" is part of the adjective phrase (ADJP)

'hundred pound". The structures of these phrases are shown in Figure 8.19

below (suppressing unimportant detail).
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,.-NP-- ,.,
NUMP N DET A PN

ao"uNdred boys a hundred pound rock

(a) (b)

Figure 8.19 - The word "a" can serve in two very different roles.

Now note that the following test will decide whether or not the

determiner "a", if followed by a number like "hundred" or "thousand" (which

I will call "big number words" or "bignums"), serves as a determiner or as

part of a NUMP: If the word following the number is a singular "measure"

word like "pound", "ton", "foot", etc., as in 8.19.b above, then the number

serves as part of the ADJP, and the determiner serves as the determiner of

the NP. (The rule pattern which would recognize this structure is

[I=a] [=bignum] [=noun, ns, measure].)

If the word following the number is not a singular measure word, as in

8.19.a, the determiner and the number form a number phrase. The crucial

point here is that it is necessary to examine the third constituent in the

buffer, assuming that "a" is 1st, to determine the role of 1st. (I will come

back to this example in Chapter 9 in which the general subject of

diagnostics of this type will be discussed.)

Now note that this diagnostic must be applied not only to single

number words, but also to entire number phrases that begin with "big

number words". Thus, 8.20.a and 8.20.b below are parallel to 8.18.a and

8.18.b above:

8.20.a a hundred and thirty-seven boys
8.20.b a hundred and thirty-seven pound rock
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This provides evidence that the NUMP "hundred and thirty-seven" must be

constructed before the role of the preceding determiner can be established.

Since the NUMP must be constructed before its leading constituents reach the

front of the buffer, such number phrases must be initiated by an attention

shifting rule. However, the grammar interpreter will only notice the

presence of the "leading edge" of this structure after it has initiated the NP

by which it is dominated. Since this NP itself will have been initiated by

an attention shifting rule, the grammar interpreter must allow for nested

attention shifts.

AS Rules and the Length of the Buffer

As the reader will have realized, the buffer shifting mechanism

forces some increase in the total length of the constituent buffer beyond the

three buffered constituents I have previously assumed. If all normal rules

can access up to three constituents, and if the buffer pointer may be shifted

to the second or third absolute location in the buffer, then the buffer must

necessarily be longer than three constituents. This leaves the question: To

what length must the buffer be allowed to grow if a grammar utilizes the

attention shifting mechanism?

While the buffer could be allowed to grow to arbitrary lengths, it

seems empirically that a buffer of only five (or so) constituents is quite

adequate for parsing almost all of English. (While I will not pursue the

matter here, it seems to be the case that those sentences which do require

more than five simultaneously buffered constituents fall into the class of
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"center embedded sentences" which are well known to cause serious

perceptual difficulties for speakers of English. (An example of such a

sentence is "The rat the cat the dog chased bit ate the cheese.".) A promising

area for future research would be to investigate whether this model can

account for the full range of performance phenomena that fall under the

rubric of center embedding problems.)

Below is a brief plausibility argument that an absolute buffer length

of five constituents is sufficient for English, given that no grammar rule can

access more than three constituents. It is intended only to give the reader a

feel for the empirical considerations that lead me to believe that a total

buffer length of five is sufficient.

The purpose of attention shifting, fundamentally, is to allow "lower

level" constituents to be constructed in a manner which is transparent to

whatever "higher level" constituent is presently under construction. Thus,

given that the pattern of a grammar rule may be made up of three node

descriptions, each of which may match against a constituent of a type that

must be initiated by an attention shifting rule, the grammar interpreter must

provide enough space in the buffer to allow up to three consecutive

constituents to be constructed by attention shifting processes.

If it were the case that there was no need for nested attention

shifts, then a buffer of exactly five constituents would be adequate: The

worst case will be when the constituent starting in the third buffer position

must be initiated by an attention shifting rule; after the attention shift, the
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third buffer cell from the absolute beginning of the buffer is 1st, and the

fifth buffer cell is 3rd. This is shown below in Figure 8.21.

The Buffer (pointer stack (3 1))
1: ...
2:..

3: ... (1 st)
4: ... (2nd)
5: ... (3rd)

Figure 8.21 - A buffer of 5 cells is sufficient if only
one attention shift at a time is possible

As we have seen, however, there is call for nested attention shifts.

Thus, it might seem that a five cell buffer is simply not adequate. Two

empirical observations, however, taken together, imply that a buffer of

length five is in fact adequate. These two observations are that: I have yet

to find either 1) a grammar rule whose pattern matches against a constituent

in the 3rd buffer cell that must be initiated by an attention shifting rule, or

2) a triply-nested attention shift where all three attention shifts actually do

shift the buffer pointer. (Sometimes an attention shift will be triggered by

the constituent already in the 1st buffer cell. Such an attention shift will

not physically change the effective buffer start.) If there are at most two

attention shifts that actually move the effective buffer start, and if both of

these attention shifts move the effective buffer start to the constituent that

was in the 2nd (relative) buffer position before the shift, then a buffer

length of five is adequate. After the first shift to the second position, the

absolute second position is 1st and the absolute third position is 2nd, as

shown in Figure 8.22.a below. Shifting again to the relative second position

shifts the effective buffer start to the absolute third position, and again the
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fifth absolute position is 3rd, as shown in 8.22.b. While situations that

might require larger buffers than this could arise in principle, the situation

discussed here seems to be the worst situation that arises in practice.

The Buffer (pointer stack (2 1))
1:..

2: ... (1st)
3: ... (2nd)

(a) - The buffer after one shift to 2nd.

The Buffer (pointer stack (3 2 1))
1: ...
2:..

3: ... (1st)
4: ... (2nd)
5: ... (3rd)

(b) - The buffer after two consecutive shifts to 2nd.

Figure 8.22 - A buffer length of 5 suffices for two shifts
to the relative 2nd buffer position.

The reader may wonder why I bother to argue for limits on the

length of the buffer at all. Clearly, the main constraint on the ability of a

grammar to deterministically build proper analyses of input sentences is the

limitation that no single grammar rule is allowed to examine more than

three constituents. (I discount here the possibility that through clever rule

encodings, using intentional attention shifts, that arbitrary lookahead could be

effected.) Any limitation on the length of the buffer can thus be considered

a secondary limitation on the power of the parser.

My primary reason for trying to constrain the length of the buffer
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is primarily for the sake of possible future investigations into the

psychological plausibility of this model. As I mentioned above, I believe that

an account of center embedding phenomena which is at least initially

plausible may derive from limiting the buffer to three high level

constituents, and five constituents total. Furthermore, five happens to fall

nicely within the range of seven plus or minus two, thus leaving open the

possibility that the buffer might be equated with the psychologist's notion of

short term memory. In terms of the present state of the model, however,

the limitations which I impose here must be considered to be largely

arbitrary, although quite adequate, it seems, for all but the most contorted

English sentences.

In Conclusion

To close the discussion of attention shifting rules, let me emphasize

the data-driven nature of these rules. The constituents that are initiated by

AS processes, such as NPs and the various sorts of "as" phrases discussed

above, can appear almost anywhere within a clause, and thus a grammar

cannot be constructed that efficiently incorporates strong expectations about

where such constituents may or may not appear. In both of these cases,

however, we have seen that the presence of such constituents is strongly

marked by the constituents that serve as their "leading edges!'. Thus, both of

these sorts of constituents can be initiated with high accuracy in a purely

data-driven manner. I have also demonstrated that by initiating these

constituents bottom-up, a class of apparent exceptions to the data-driven

initiation of NPs, namely the problem of "as" as an inconclusive trigger,

simply disappears. Given the approach discussed above, a grammar can build
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a quantifier phrase initiated by "as", for example, in a data-driven manner,

and then let the completed QP trigger the NP that it certainly initiates.

While "as" may initiate many different sorts of higher level structures, it is

fairly certain that the resulting quantifier phrase does in fact initiate an NP.

I believe that the trade-off exhibited here between the ability to

accurately predict the presence of a constituent on the basis of prior

expectation and the ability to easily detect the presence of a constituent by

the clear marking of its leading edge is a general feature of the grammar of

English and perhaps of natural language in general. It is easy to see that

this property necessarily follows from the claim that the parsing of syntactic

structure must be a deterministic process. I therefore claim that the

observation of clear examples of this tradeoff can be taken as evidence in

support of the determinism hypothesis.

The existence of this phenomenon provides strong evidence that

syntactic processing should be done by a combination of expectation- and

data-driven methods. There is no good method by which a purely

hypothesis-driven parser can take advantage of the grammatical properties

that have been investigated in this chapter. Whether or not the "leading

edge" of an NP is clearly marked, such a parser must necessarily hypothesize

the existence of an NP at every point at which such a constituent could

possibly occur. Given the model of syntactic processing presented in this

document, the existence of such constructions with well marked "leading

edges" allows analysis to proceed in an efficient data-driven manner

whenever clearly indicated. Such constructions, however, are necessarily a
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cause of inefficiency in a purely hypothesis-driven parsing model. In short,

it is impossible for a purely hypothesis-driven parser to take advantage of

these clear-cut guides to syntactic processing which are encoded in the input

string itself.



Garden Paths

CHAPTER 9

DIFFERENTIAL DIAGNOSIS

AND GARDEN PATH SENTENCES

Introduction

As the observant reader has probably noted, there are sentences in

English which seem to indicate that people don't parse English

deterministically, quite independently of any claim that English can be parsed

that way. While such sentences are not a priori counterexamples to the

determinism hypothesis as stated in Chapter 1, they seem to call into question

the validity of the determinism hypothesis as a basis for any sort of

psychological modelling. In this chapter I will present some anecdotal

evidence which supports speculation that such sentences are in fact the

exception that proves the rule, given one small modification of the

determinism hypothesis. The revised determinism hypothesis, in essence,

states that any English sentence which a native speaker analyzes without

conscious effort can be parsed deterministically.

This chapter will present a potential explanation for the difficulty

caused by so-called "garden path" sentences, sentences which have perfectly

acceptable syntactic structures, yet which many readers initially attempt to

analyze as some other sort of construction, i.e. sentences which lead the

reader "down the garden path". (Some examples of garden path (GP)

sentences are given in Figure 9.1 below.) This theory will derive from an

investigation of several situations in which a deterministic parser is presented
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with an input which contains a local structural ambiguity. (An ambiguity is

local if it can be resolved by examining the grammatical context provided by

the entire sentence; an ambiguity is structural if two different structures

can be built up out of a string of smaller constituents each of a given type.)

To handle each of these ambiguities, a special purpose grammar rule will be

presented which can differentially diagnose between the two structural

possibilities. I will show that some ambiguities can be diagnosed with

assurance by PARSIFAL's grammar rules while it seems that diagnosing other

ambiguities requires a buffer "window" larger than the three constituent

maximum which each rule is allowed to examine. These latter ambiguities, I

suggest, are exactly those which cause garden paths.

(a) The grocery store always orders a hundred pound bags of sugar.
(b) I told the boy the dog bit Sue would help him.
(c) The horse raced past the barn fell.

Figure 9.1 - Some examples of garden path sentences.

It must be stressed that the theory which will be presented here is

highly speculative, and that the evidence presented for it is either anecdotal

or the result of informal experiment. Hopefully, such "armchair psycho-

linguistics" will provide incentive for future research in this area which

will yield more substantial evidence for or against the speculations presented

below.

A Theory of Re-analyzing Garden Path Sentences

Before approaching the question of differential diagnosis and its

relation to garden path sentences, it is necessary to sketch the overall
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framework of a system which can "recover" from garden path sentences.

The fundamental assumption of the theory which will be presented later in

this chapter is that the grammar interpreter, by itself, should not be able to

recover from a garden path, i.e. that the grammar interpreter, given a garden

path sentence as input, should take the garden path and then become "stuck".

Because this immediately raises the crucial question of how such sentences

can be handled, I will digress to sketch a speculative theory of how this can

be done in the context of a natural language understanding system which

uses the parser as a subsystem. After this general theory has been presented,

I will then return to the specific question of the nature of diagnostic rules

and their relation to the phenomena of garden path sentences.

A deterministic parser should be viewed, I believe, as a fast, "stupid"

black box. According to this view, the grammar of English is really quite

simple (which doesn't imply that finding the correct grammar is simple), and

it costs very little computationally to syntactically analyze a sentence.

Because of this simplicity, such a parser is much too weak a mechanism to

be able to recover by itself if it runs into difficulty and cannot fully

analyze a sentence.

When functioning as part of a larger scale system, given a garden

path sentence as input, a deterministic parser ideally should take the garden

path and become "stuck" at the point at which people become conscious that

they have been misled, for reasons which will be made clear below. (By

"stuck", I mean that no grammar rule in any active packet applies.) Clearly,

if this is true, then there are grammatical English sentences which cannot be
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parsed deterministically, so the determinism hypothesis must be modified

appropriately. The following modification of the determinism hypothesis is

in keeping with this suggestion:

There is enough information in the structure of natural language in
general, and in English in particular, to allow left-to-right
deterministic parsing of those sentences which a native speaker can
analyze without conscious effort.

The following is a highly speculative theory of how a natural

language understanding system should reanalyze those sentences which have

led the parser itself down a garden path, assuming that the behavior of the

parser conforms to the modified determinism hypothesis:

When the parser cannot analyze a given input, it will fail with

some portion of the input analyzed in some fashion, correct or incorrect.

(Note that a non-deterministic parser typically fails after it has searched the

entire space of utterances defined by its grammar, and has arrived at the root

node of the search tree with no alternatives left. When such a parser fails,

it can give no partial analysis at all, only an indication that its search space

has been exhausted, unless it has stored all of its attempted analyses.)

At this point, some higher level "conscious" grammatical problem

solving component comes into play. This component restarts the parser on

the remainder of the input after activating a special packet of rules which

allow the initiation of grammatical fragments. (This packet will contain

rules which encode information like "If a tensed verb which is not an

auxiliary appears at the beginning of the buffer without a prior subject,

then begin a sentence fragment that lacks a subject".) The parser may be
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restarted once or twice, say, producing a string of two or three grammatical

fragments which correspond to the original utterance. Thus, even though

the parser cannot successfully analyze the input into a single coherent

grammatical structure, it can be used to reduce the input into several

coherent pieces which can be given to a higher level analysis process.

Once the original input has been "chunked" into fragments, the

higher level problem solver uses a set of grammatical heuristics to attempt to

discover where the parser initially went astray. An example of such a

heuristic is given in Figure 9.2 below; for a discussion of parsing using

'clever" backtracking which I believe can easily be reinterpreted to yield a

set of such heuristics, see Hill [Hill 72]. The problem solver manipulates the

fragments using these heuristics until either some solution is found, or the

set of available heuristics is exhausted. I believe that a speaker of a

language is aware that this latter process is taking place (although certainly

not aware of exactly what the process entails).

Given two consecutive sentence fragments, if the first fragment is a
sentence that is complete through some part of the verb phrase and the
second fragment is a clause that lacks a subject, then see if the bulk of
the first fragment can be turned into a relative clause of some type (using
another set of heuristics), thereby converting the entire fragment into a
single NP which will become the subject of the second fragment.

Figure 9.2 - A heuristic for recovering from a garden path.

To try to add some plausibility to this theory, let me suggest that

the reader perform the following introspective experiment: After reading this

paragraph, look at the garden path sentence given below in Figure 9.3 and

try to find the correct analysis while attempting to introspect about your
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thought processes while doing so:

The cotton clothing is made of grows in Mississippi.

Figure 9.3 - Try to introspect while reading this sentence.

When the author first looked at this sentence, it seemed as if the

following happened (all of which, not surprisingly, is consistent with the

above theory): The sentence read easily until the word "grows" was

encountered. At that point it became clear that I had been led down the

garden path, and had misanalyzed the sentence to have the structure shown

in (a) of Figure 9.4 below. I completed reading the sentence, and the rest of

the sentence took on the structure shown in 9.4.b. At this point, a fair

amount of time passed while I studied these two grammatical fragments. I

was conscious of exerting quite a bit of mental energy, but unaware of the

exact nature of the internal process. Suddenly, I was aware that the phrase

"clothing is made of" was a relative clause, and reanalyzed the first fragment

as shown in 9.4.c. Given this structure, it immediately became clear that the

overall structure was as shown in 9.4.d. (The heuristic used to solve this

problem was that stated in Figure 9.2 above, I believe.)

(a) [s [Np The cotton clothing] [Vp is made [pp of [NP ????))))
(b) Es [NP ????] [Vp grows in Mississippi]]
(c) [Np The cotton [S clothing is made of ]

(d) [s [Np The cotton [ clothing is made of ]) [vp grows in Mississippi]]

Figure 9.4 - Introspective stages of analyzing 9.3 above.
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The key points of this account are: 1) The initial analysis of the

sentence proceeded some distance into the sentence and then stopped quite

suddenly with an initial fragment of the sentence (mis)analyzed; 2) The

processing seemed to continue until the sentence was analyzed into two

fragments; 3) The process of reconstructing the correct analysis was (i) done

with conscious effort, and (ii) was based on the fragmentary initial analysis,

not on a new analysis of the input sentence. All of this, if at all accurate,

lends some credence to the theory stated above.

Diagnosing Between Imperatives and Yes/No Questions

With the question of how a complete natural language understanding

system can recover from garden path sentences behind us, I will now turn

back to the central issue of this chapter: a theory of what causes a sentence

to cause the parser to take a garden path in the first place. This will be

done in the context of a specific structural ambiguity and the diagnostic rule

which attempts to resolve it. A consideration of where and why this rule

fails will lead directly to a theory of garden paths.

Consider the following sentences, first presented in Chapter 1:

9.5.a Have the students who missed the exam take the exam today.
9.5.b Have the students who missed the exam taken the exam today?

Note that even though 9.5.a is an imperative sentence and 9.5.b is a yes/no

question, the initial segments of these two sentences are exactly identical.

The difference in sentence type is further reflected in the differing

structural analyses assigned to these identical initial segments, as was

illustrated in Figure 1.3. That figure shows that in the imperative
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construction the word "have" serves as the main verb of the matrix S, while

the NP "the students who missed the exam" serves as the subject of an

embedded complement "the students...take the exam today". In the yes/no

question, "have" serves as an auxiliary verb, while the NP "the students who

missed the exam" is the subject of the major clause; there is no embedded

complement in the analysis of the yes/no question. Because these two

constituents serve in different grammatical roles in the two different

constructions, neither of these two constituents can be utilized by a

deterministic parser until it is determined whether the sentence is an

imperative or a yes/no question.

Within the framework of the PARSIFAL grammar interpreter, we can

say that an input sentence is ambiguous if at some point in the parsing

process there are at least two rules of identical priority whose patterns are

fulfilled by the state of the parser, and there are no rules of higher priority

whose patterns match. Thus, given the set of rules presented in Chapter 5,

the initial segment of these sentences is ambiguous in that it fulfills the

patterns of both IMPERATIVE and YES/NO-QUESTION. This is because the

word "have" (and, it may be noted, only the word "have") can be both an

auxiliary verb, fulfilling the first node description in the pattern of YES/NO-

QUESTION, or a tenseless verb, fulfilling the first node description in the

pattern of IMPERATIVE. To resolve this ambiguity, either an additional

diagnostic rule must be added to the grammar or else one of tnese two rules

must be changed to eliminate the ambiguity altogether. In some sense, the

two choices are equivalent, but the first is conceptually the cleaner of the

two solutions, and it is this option which will be developed in the discussion
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that follows.

Rather than merely presenting a diagnostic rule "sprung full grown

from the head of Zeus", as it were, I will try to motivate the structure of

the diagnostic one step at a time, trying to give the reader a feeling for the

range of information that is used to distinguish between the two alternative

analyses.

To begin with, it is clear that this diagnostic rule must apply

whenever both IMPERATIVE and YES/NO-QUESTION are applicable, i.e. exactly

when the word "have" appears in the first buffer position and an NP appears

in the second position, as discussed above. Furthermore, the diagnostic must

have access to the constituent in the third buffer location, since the pair of

sentences given in Figure 9.5 above differ only in this third position. Given

this, the pattern of the diagnostic rule, which I will call HAVE-DIAGNOSTIC,

must be:

[=have, tnsless] [=np] [t]

(The form of the word "have" that is tenseless is the word "have", so the

feature auxverb need not be specified in this pattern.)

Second, it is clear that a sentence which fulfills this pattern can be

a yes/no question only if the NP, which will be the subject of the sentence,

agrees with the initial verb in person and number. Since the verb "have"

will agree with an NP of any person and number except 3rd person singular,

if the NP is 3rd person singular, the sentence must be an imperative. For

example, in Figure 9.6 below, any clause whose initial segment is as shown

Chapter 9 279



Garden Paths

in (a) must be an imperative, while any clause whose initial segment is as

shown in 9.6.b may be either an imperative or a yes/no-question. (It should

be noted that this is the first mention of person/number agreement in this

document. Usually, it is unnecessary to use agreement information to decide

upon the proper interpretation of a sentence, and so agreement can usually be

safely ignored. Where it seems to be of value is in resolving various

ambiguous situations such as this. I believe that agreement information will

become highly important when an attempt is made to resolve lexical

ambiguity deterministically, but that issue is outside the scope of this

document.)

(a) Have the student who missed the exam.
(b) Have the students who missed the exam

Figure 9.6 - Sentence (a) must be an imperative.

If the NP is not 3rd person singular, then HAVE-DIAGNOSTIC must

examine the constituent in the 3rd buffer position and try to determine the

correct analysis for the input sentence on the basis of its features. If 3rd is

an NP, then the sentence is a yes/no-question, as in Figure 9.7.a below. If

3rd is tnsless (i.e. tenseless), then the sentence is an imperative, as in 9.7.b.

(a) Have the boys a dollar between them?
(b) Have the students who missed the exam take it today.

Figure 9.7 - Diagnosis on the basis of the 3rd constituent.
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One might suppose that if 3rd is en, as in 9.5.b above, that the

sentence must be a yes/no-question, but this is not the case, as the following

sentence shows:

9.8 Have the students who booed taken to the principal!

If this feature occurs, the sentence is either a yes/no-question, or else an

imperative with a passive subordinate clause, but one cannot tell which

without examining more of the sentence. Indeed, it is possible for such a

sentence to be globally ambiguous (ignoring final punctuation), as the

sentences 9.9.a and 9.9.b show:

9.9.a Have all of the eggs broken?
9.9.b Have all of the eggs broken!

In terms of the grammar interpreter, it is clear that more than three

constituents must be examined to diagnose such pairs of sentences (using

final punctuation to resolve the above pair). This seems to call into question

the constraint which allows a grammar rules to examine only the first three

constituents in the grammar interpreter's buffer.

For reasons which will become clear below, I will ignore this newly

revealed problem, and simply stipulate, for the moment, that if HAVE-

DIAGNOSTIC cannot determine what the structure of a given input sentence is

on the basis of the three constituents that it can examine, then it will guess

that the sentence is a yes/no-question. Assuming that the diagnostic tests

discussed above reveal as much information as can be gleaned from an

examination of only the first three buffer constituents, the code for the rule

HAVE-DIAGNOSTIC can now be given; this diagnostic is shown in Figure

9.10 below. Since this rule must be run instead of either YES/NO-QUESTION
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or IMPERATIVE if all three are applicable, it must be in the same packet as

they, and it must have higher priority than either of them.

(RULE HAVE-DIAG PRIORITY: 5 IN SS-START

[=have, tnsless] [=np] [t] -->
If 2nd is ns, n3p or 3rd is tnsless

then run imperative next else
If 3rd is not verb then run yes-no-q next else
%If not sure, assume it's a y/n-q and%

run yes-no-q next.)

Figure 9.10 - HAVE-DIAGNOSTIC summarizes the diagnostics discussed above.

Garden Paths and a Three Constituent Window

Let us now turn to the stipulation that each grammar rule can only

examine the first three constituents in the buffer.

In this section and the next, I will present some evidence which

supports the contention that this stipulation is empirically justified. This

evidence results from a series of experiments conducted by the author during

the course of this research. These experiments were highly informal in

nature, and therefore the conclusions presented below can be taken as highly

suggestive at best, although the results were typically quite clear.

In each of these experiments, some number of people were asked to

read a sentence or a series of sentences typed on a sheet of paper. After

reading each sentence, each person was asked if he encountered any

difficulty while reading the sentence, or, if he was familiar with the notion,

if the sentence was a garden path. At least 15 people were asked to look at
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each of these sentences, unless the first four or five people who were asked

to examine a particular sentence either all took a garden path or none took a

garden path on that sentence. Somewhere over twenty such experiments

were conducted, at frequent intervals, over a three year period, as I

discovered more and more possible garden paths while developing grammar

rules. About two thirds of the sentences people were asked to read led to

garden paths for at least half the people asked. Approximately 50 or 60

people total participated in at least one of these experiments; most were

students or staff at the MIT Artificial Intelligence Laboratory.

Let me now claim, on the basis of several of these experiments, that

the diagnostic rule HAVE-DIAGNOSTIC resolves the relevant ambiguity

approximately as well as many people, i.e. that many people, given a sentence

which would trigger this diagnostic if input to the parser, will arbitrarily

analyze it as a yes/no-question if they cannot diagnose its structure on the

basis of the first three constituents. If the sentence is actually an

imperative, these people will eventually realize that they were led down the

garden path, and will consciously reanalyze the sentence.

In the most surprising of the relevant experiments, approximately 40

people were asked to read the following sentence, and then asked if they had

any difficulty the first time they read the sentence, i.e. whether they

noticed taking a garden path on the sentence:

9.11 Have the packages delivered tomorrow.

Of the 40 people asked, 20 reported misanalyzing the sentence as a question

at least for an instant, and more than a few were quite startled when they
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first realized that this simple sentence did not have the structure they had

supposed. (It should be noted, by the way, that the sentence is entirely

anomalous if interpreted as a yes/no question, yet still fully half the people

shown this sentence misanalyzed it initially. This provides some evidence

that high level semantic analysis is not employed to diagnose such

ambiguities. Several people, when asked about this, mentioned imagining an

image of a package giving birth to little packages in an attempt to

semantically reconcile the false yes/no-question interpretation!)

This result immediately leads one to ask why half the people shown

sentence 9.11 do analyze the sentence correctly. One possible explanation is

that people simply choose one of the two possibilities at random when they

are faced with such an undiagnosable ambiguity. If this is true, those people

who did not notice taking a garden path while analyzing the sentence 9.11

simply happened to guess the correct structure initially, which seems quite

plausible.

Unfortunately, this simple explanation seems to be wrong, as the

following experiment shows. About fifteen people were asked to read the

sentence 9.12 below, and see if they had any difficulty in understanding

what it meant:

9.12 Have the soldiers given their medals by their sweethearts.

Only two of the fifteen had no difficulty with this sentence, and four or

five had to be shown the correct analysis. (The sentence can be paraphrased

"Have their sweethearts give the soldiers their medals.".) Almost without

exception, everyone shown the sentence tried to interpret it as a yes/no
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question. This result is consistent with other experiments involving this

ambiguity as well; people almost never seem to mistakenly interpret an

imperative as a yes/no question. Thus, almost without exception, if a person

cannot resolve this ambiguity, he assumes the yes/no-question interpretation.

This result disproves the simple "random-guess" theory suggested above.

One explanation consistent with both the above experiments seems to

be the following, although I have no evidence to offer in its favor: The

number of buffer cells that can be examined by a grammar rule, and perhaps

the total number of cells in the buffer as a whole, is not a universal of

language, but in fact varies from individual to individual, and perhaps varies

consistently from speakers of one language to speakers of another. Thus, a

given language, say English, might require, for reasonably full comprehension

of spoken language, that grammar rules must be allowed to examine up to

three buffer cells. Some speakers of English, however, for unknown reasons,

may develop the ability to examine four, or perhaps even five cells at a

time. These individuals can thus diagnose any local structural ambiguity

which can be resolved within a "window" of that size.

Such an explanation nicely accounts for why half of those asked to

read the sentence 9.11 above could correctly diagnose its structure, while

only some small percentage of those asked to read 9.12 could do so. As the

reader can verify for himself, 9.11 can be accurately diagnosed by a grammar

rule that can examine four buffer cells simultaneously, while resolving the

structure of 9.12 requires a rule that examines five buffer cells. The

results presented above imply that half of those who participated in these
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experiments can access only three buffer cells at a time, most of the

remainder can access four cells, and a few individuals can access up to five

cells. (This, of course, implies that it should be the same few people who

correctly analyze potential garden paths in each of these experiments. This

seems to be exactly the case.)

As a final note, I should mention that the sentences which I

typically asked people to examine were examples which specifically embodied

structural ambiguities for which I could not find a fool-proof diagnostic rule.

Almost without exception, if I could not find a diagnostic rule which decided

between structural analyses A and B for sentences embodying a given

ambiguity, at least half the people who were shown example sentences

would attempt to analyze all such sentences as if they were examples of

structure A, i.e. they took the garden path on all sentences which were

examples of structure B. Thus, this theory of garden paths seems to have

fairly good predictive value, as least as measured by informal means such as

this.

John Lifted A Hundred Pound Bags.

To show that the theory presented above has at least a degree of

generality, this section presents another structural ambiguity which can lead

to garden path sentences, and shows once again that garden paths occur in

exactly those sentences for which full diagnosis would require examination

of more than three buffer constituents within the framework of the

grammar interpreter.
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In an experiment similar to those discussed above, about twenty

people were asked to read the sentence presented as the section heading

immediately above, repeated below as 9.13. Approximately half of these

people were led down the garden path by this sentence. As I will

demonstrate in the remainder of this section, no rule that can only examine

three buffer locations can correctly diagnose the structure of this sentence,

which provides an explanation for the garden path in terms of the theory

presented in the previous section.

9.13 John lifted a hundred pound bags.

The problematic segment of this sentence is the NP "a hundred

pound bags"; this construction was discussed in general terms in Chapter 8,

so I will briefly review the discussion presented in that chapter.

As Chapter 8 points out, any NP which begins with an indefinite

pronoun (like "a") or indefinite quantifier (like "any"), followed by a word

like "hundred" or "thousand" is locally ambiguous. The ambiguity can be

diagnosed in general, I claimed in that chapter, by noting whether or not the

following word is a singular "measure" noun, i.e. a word like "pound", "ton",

and the like. If the following word is not a singular measure noun, then

the determiner or quantifier is part of a number phrase; thus the phrase

shown in Figure 9.14.a below is assigned the structure shown in 9.14.a'. If

the following word is a singular measure noun, then the determiner is the

determiner of the NP and the number word and measure word form an

adjective phrase; this test will assign the structure 9.14.b' to the phrase

9.14.b.
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(a) a hundred boys
(a') [NP [NUMp a hundred] [N boys]]

(b) a hundred pound rock
(b') [NP [DET a] [ADJP hundred pound] [N rock)]

Figure 9.14 - Another ambiguity requiring a diagnostic rule.

Actually, the situation is slightly more complicated than this. As

discussed in Chapter 8, the diagnostic rule which embodies the test discussed

above must apply not only to inputs containing just the word "hundred" but

also to number phrases (NUMPs) which begin with this word or "bignums"

like "thousand", "million", etc. (For reasons not relevant to this discussion, it

is necessary to distinguish the word "hundred" from words like "thousand" or

"million", which are labelled with the feature bignum.) Because of this,

number phrases must be initiated by an attention shifting rule, and thus

even the word "hundred" in isolation will be attached to a dominating

number phrase node before the diagnostic rule will be triggered. Ignoring

the details of the structure that the grammar assigns to number phrases, it is

sufficient to say only that before the diagnostic, which I will call A-

HUNDRED-DIAG, is executed, the word "hundred" will have been attached as

the num.n1 of the num 1 of the number phrase. Thus the pattern of this rule

must test to see whether the numi of the numi of 2nd is either the word

"hundred" or a bignum. If this rule matches and the third constituent in

the buffer is a singular measure noun, then this rule causes the determiner

to be attached to the NP, resulting eventually in the structure shown in

9.14.b'; if not, then it attaches the determiner to the NUMP, resulting in

the structure shown in 9.14.a'. The code for A-HUNDRED-DIAG is given
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immediately below in Figure 9.15.

(RULE A-HUNDRED-DIAG PRIORITY: 5. IN PARSE-DET
[=a]
[=num, bignumg; the numi of the numi of 1 is any of "hundred, bignum] [t] -- >
If 3rd is noun, ns, measure

then run determiner next
else attach 1st to the num1 of 2nd as numO;

deactivate parse-det;
activate parse-qp-1.}

Figure 9.15 - The diagnostic rule A-HUNDRED-DIAG.

With this diagnostic as a starting point, let us turn our attention

back to sentence 9.13, and try to explain why this sentence is a garden path.

While the diagnostic presented above correctly resolves the local

ambiguity in the phrases shown in Figure 9.14 above, it is not in fact

generally correct. For example, the diagnostic will incorrectly analyze the

phrase shown in Figure 9.16.a below, assigning it the incorrect structure

shown in 9.16.b; the correct analysis is shown is 9.16.c. (Let me note

parenthetically that this misanalysis is identical to that assigned the final NP

of 9.13 by those who took the garden path, according to introspective

reports.) The question to be answered, of course, is whether the diagnostic

can be fixed, and if so how.

(a) a hundred pound rocks
(b) [NP [DET a] [ADJP hundred pound] [N rocks]]
(c) [NP [NUMp a hundred] [ADJP pound] [N rocks]]

Figure 9.16 - The diagnostic above analyzes (a) as (b), not (c).
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Compare for the moment the phrase given in Figure 9. 14.b above,

whose structure is shown in 9.14.b', and the phrase given in 9.16.a above,

with the structure shown in 9.16.c. These two phrases begin with the same

three words "a hundred pound", yet the grammatical function of each of the

two words "a" and "hundred" is totally different in 9.14.a' and 9.14.b' above.

Since both of these words have different grammatical functions in these two

phrases, neither of these two words can be utilized and removed from the

buffer until the ambiguity between the two structures 9.14.b' and 9.16.c is

somehow resolved. But since the following constituent of both of these

phrases is identical, any diagnostic which will resolve these two structures

must examine a fourth constituent. This of course means that 9.14.a and

9.16.a cannot be differentiated on the basis of any diagnostic rule that can

only examine three buffer positions.

Given the theory presented in the previous section, this last fact

predicts that one of the two phrases 9.14.b and 9.16.a must necessarily lead

to a garden path for those people who can be modelled as having a buffer

window of length three. This prediction is borne out by the results of the

experiment presented at the beginning of this section. And this, of course,

provides another bit of evidence in favor of the "buffer window of length

three" theory of garden path sentences.

Most Garden Paths Cause No Difficulty in Spoken

Language

One potential objection to a fundamental premise of the above

discussion is that the sentence shown in Figure 9.3, and, indeed, all the
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examples listed in Figure 9.1 above, are garden paths only in written

language; that the garden path effect, at least for these sentences, is an

artifact of the written language. If spoken with proper intonation, none of

these sentences is a garden path.

This objection is fundamentally correct, I believe, if one accepts the

reasonable premise that speech is more fundamental than written language.

But this objection, though correct, is in fact no objection at all! (The same

holds true for the objection that these sentences are taken out of context,

although I believe that for many of these sentences, a reader will take the

garden path even if given strong contextual clues.)

As Simon has pointed out [Simon 69], as long as a mechanism works

correctly, one can only learn about the structure of the task that it performs

from its input/output behavior; one learns little about the internal structure

of the mechanism itself. It is only by pushing the mechanism until its

performance begins to degrade that one can learn about the structure of the

mechanism itself. If a mechanism is a sealed black box, the only way to

determine how a mechanism works is to determine how it begins to fail.

The phenomenon I discuss here is thus artificial by necessity; by

throwing away prosodic information, the performance of the syntactic

analysis mechanism degrades, and some of its internal characteristics may be

deduced from the form of this degradation. The garden path phenomenon

might be largely artifact, but I believe it is an artifact that yields important

clues about the real nature of the process of syntactic recognition.
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Diagnostic vs. Non-diagnostic Rules

Before concluding this discussion of structural ambiguity, it is

interesting to note that the diagnostic rules developed above and the grammar

rules discussed in previous chapters differ in fairly significant ways.

As discussed above, the purpose of diagnostic rules is to explicitly

decide between two possible constructions. These two constructions,

typically, are entirely unrelated, but just happen to result in terminal strings

whose initial segments are identical in special cases. Diagnostic rules

recognize and resolve these special cases, and therefore diagnostic riles are

typically "special purpose". This is in marked contrast to the grammar rules

presented in earlier chapters; each of these earlier rules is written to

embody a broad grammatical generalization as independently of other

grammatical phenomena as possible.

Another difference between diagnostic rules and the grammar rules

presented in previous chapters is that the rules presented earlier can be

constrained to utilize a limited range of syntactic operations, while diagnostic

rules must, it seems, perform a much wider range of syntactic operations.

For example, the diagnostic A-HUNDRED-DIAG must attach a node in the

buffer to another node in the buffer, contrary to a constraint which seems to

hold for all "general" (i.e. non-diagnostic) grammar rules. (One might

speculate that this can be accounted for in terms of a developmental theory

of language recognition in which general rules are learned early and are

highly constrained in the possible operations they can be composed of. Later,
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the need for diagnostic rules is recognized and diagnostic rules are acquired,

but now a much richer set of operations is allowed. If this suggestion is

correct, it should be possible to find young children who can parse

unambiguous cases of each of the two constructions between which a given

diagnostic distinguishes, but who always interpret a sentence ambiguous

between the two as consistently being one or the other of the two

constructions, i.e. who always take the garden path for one or the other of

the two constructions.)

In short, the rules which will be presented in this chapter are ugly

rules to handle ugly situations. While I do not know whether the

complexity of these rules is intrinsic to the process of deterministic syntactic

analysis or merely an indication that the approach I take in this chapter is

mistaken, it does seem that the residual problems which diagnostic rules

attempt to solve are real and highly idiosyncratic.

As one last point, it should be noted that in the initial formulations

of the theory of deterministic parsing presented in [Marcus 74], these

diagnostic rules were seen to hold a crucial position in the theory. It is

now my opinion that these rules are actually at the periphery, in that their

role is to "patch" those situations where two highly general rules just

happen to overlap in applicability. It is crucial to the theory that such rules

can be written which adequately handle such cases, but by their very

nature, few generalizations can be stated about such rules themselves.
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CHAPTER 10

ON THE NECESSITY OF SOME

SEMANTIC/SYNTACTIC INTERACTIONS

Introduction

In the previous chapter, I investigated the use of purely syntactic

criteria to resolve local structural ambiguities. As is well known, however,

syntactic criteria alone are insufficient to constrain the parsing process;

many analyses that are possible on purely syntactic grounds will be ruled out

by semantic processing as anomalous. Therefore, if language is to be parsed

deterministically, there must be some interaction between syntax and

semantics to rule out these anomalous interpretations before they are

constructed by the parser. This chapter is intended as an exploratory

investigation into the sorts of syntactic/semantic interactions that are

necessary to deterministically parse English.

I will show in this chapter that simple semantic well-formedness

tests are not sufficient to allow deterministic parsing of grammatical

structure. Given the assumption that the determinism hypothesis is true, I

will argue that there are necessarily interactions between the syntactic and

semantic components of a natural language understanding system, and that

such interactions must have specific sorts of properties, many of which are

not currently embodied in any existing natural language understanding

systems.
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It should emphasized at the outset that this approach differs

fundamentally from earlier explorations in the use of syntactic/semantic

interaction in that the investigations which follow are based on argument

from necessity, not argument from efficiency. The use of syntactic/semantic

interaction in previous natural language understanding systems (which will

be discussed below) has been motivated in terms of the resulting

improvement in the efficiency of the parsing process. This chapter will

demonstrate the necessity for such interactions as consequences of the

determinism hypothesis, and will show, based on linguistic data, that it is

necessary for such interactions to have certain properties.

In the following pages, I will attempt to demonstrate:

-That tests of comparative semantic goodness are necessary, i.e. that a
deterministic parser must be able to ask a semantic component not only
whether a given constituent is acceptable in a particular syntactic role,
but also how good it is in that role.

-That the grammar itself must embody, at least implicitly, the same notion of
degree of goodness in the syntactic realm.

-That diagnostic rules must take into account the relative strength of both
these sorts of bias, i.e. that syntactic decisions are influenced by
relatively subtle interactions of syntactic and semantic biases.

This chapter will not present a full theory of semantic/syntactic

interaction, but rather a series of observations which I believe lead toward

such a theory. While I will argue for general properties that such a theory

must have, my observations are based upon the investigation of only a

handful of specific syntactic constructions; before a more complete theory

can be formulated with any great certainty, a much wider range of such

constructions must be investigated. Another limitation of the present
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investigation is that there are no existing semantic/pragmatic components

capable of answering semantic questions of relative goodness, to the best of

my knowledge, nor is it entirely clear how a reasoning component can be

implemented that answers these sorts of questions. Until this is done, a full

theory of such interactions cannot be formulated. It is interesting that some

deep properties of such a theory can be demonstrated before specific theories

themselves can be proved or disproved.

As a general framework for the investigations that follow, I should

note that this work is based on the general conjecture that syntax and

semantics can be characterized as what Simon calls nearly-decomposable

subsystems [Simon 69], that there is a fixed small set of possible interactions

between the syntactic and semantic components, and that the bandwidth

required by these interactions is small. (Note, by the way, that such a

suggestion is quite consistent with the so-called "autonomy of syntax"

hypothesis assumed by those who study linguistic competence.) Thus, this

chapter is the first step of a larger research plan to find syntactic situations

where semantic/syntactic interactions must occur, given the determinism

hypothesis, and then to characterize as small a set of types of interaction as

possible. (See Appendix A for a further study of this sort.)

Historical Perspective

For the sake of comparison, it will be useful to contrast the nature

of the syntactic/semantic interactions that will be presented below with the

type of interactions utilized in two earlier natural language understanding

systems of seminal importance. In this section I will briefly present the
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mechanisms for syntactic/semantic interaction embodied in Woods' LUNAR

system [Woods 72], the first widely known system to use semantics to

control the parsing component, and Winograd's SHRDLU [Winograd 71], the

first system to interleave syntactic and semantic analysis, allowing much

tighter control of the parsing process by the semantic component. I will also

separately discuss Woods' Selective Modifier Placement Facility, an addition to

the basic ATN framework and still one of the most sophisticated uses of

semantic/syntactic interaction in any existing program.

In the LUNAR system, after the parser has generated a complete

syntactic analysis for a given input, the syntactic structure is handed over to

the semantic analyzer which then attempts to build a semantic interpretation

for that structure. The state of the parser, i.e. its stack of untested

hypotheses, is not discarded at this time; the stack is saved until semantic

analysis is complete. If the semantic component is successful, the resulting

interpretation will be given to the "understanding" component, in this system

an information retrieval mechanism, and the parser's state will be discarded.

If the semantic component cannot build a semantic interpretation for the

sentence, i.e. if it determines that the given syntactic analysis is anomalous,

it signals this anomaly to the parser by causing a failure to propagate back

from the parser's final state. This "failure signal" causes the parser to reject

the hypothesis that the parse as it stands is complete, i.e. to backup across

the arc that caused the parse to terminate. This, in turn, will cause the

parser to continue to search through the remaining set of unattempted arcs

until another syntactic analysis is found, as was discussed earlier in Chapter

1.
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The LUNAR system's use of semantics as a postfilter to control the

production of alternate syntactic analyses was an important advance, but this

technique is only a step toward tight semantic/syntactic interaction. While

LUNAR's semantics can reject a parse on non-syntactic grounds, it is only able

to accept or reject complete analyses, and cannot signal which part of a parse

is unacceptable if analysis fails.

Consider, for example, the behavior of this system if an NP near the

beginning of an input string is (mis)parsed in a way that is syntactically

plausible but semantically anomalous.

One possibility is that the parser will find a consistent syntactic

analysis for the rest of the input despite the misanalysis of that NP. In this

case, the mistaken analysis will not be ruled out on semantic grounds until

the parse has been completed. Furthermore, the only information that is

passed back to the parser is a signal that the parse as a whole is

unacceptable. Thus the parser can only correct its error by proceeding

blindly through the entire space of remaining grammatical possibilities until

it chances upon another analysis for the NP. Before it can do this however,

it must attempt to reanalyze every structure built later in the parsing

process.

The other (more likely) possibility in this situation is that the

parser will not find a consistent syntactic analysis for the remainder of the

input after having misanalyzed the NP initially. In this case, of course, the
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anomaly will never come to the attention of semantic processes.

Nevertheless, the parser may struggle on bravely for some time until it backs

up and finds a correct analysis for the NP. The parser is forced to rule out

the parse on syntactic grounds when there was earlier clear semantic

evidence that the analysis must be wrong.

To utilize semantic information more effectively, Winograd's SHRDLU

was designed to incrementally call for semantic analysis during the course of

syntactic analysis. Winograd's system calls upon semantics to judge the

semantic well-formedness of proposed NPs at two separate points during

parsing, first after the head noun has been found, then after all modifiers

have been assigned. SHRDLU's parser also calls semantics after each

subordinate clause has been constructed to confirm that the clause is

semantically well-formed. Winograd's system thus uses semantics not only to

accept or reject syntactic analyses, but also to actively prune the space of

grammatical possibilities.

(Woods makes one counterargument to Winograd's technique that is

worthy of note [Woods 73]: Current techniques for semantic analysis are far

slower than current techniques for syntactic parsing. Thus, from an

engineering standpoint, it is currently less efficient to use semantics as an

interactive filter for the syntactic component than it is to simply let syntax

filter what it can, calling semantics only after a syntactic analysis has been

completed and it must be subjected to semantic interpretation. From an

engineering viewpoint, assuming a non-deterministic system, Woods' argument

is hard to refute.)
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While the bulk of the semantic filtering in both Woods' and

Winograd's systems rests on purely semantic restrictions which are expressed

in terms of semantic marker systems [Katz & Fodor 64], Winograd's system

uses one form of pragmatic filtering as well. If an NP is found to be

definite, e.g. "the block which is sitting in the box", then the system tests

the corresponding semantic interpretation against its internal world model to

see if the interpretation has exactly one referent. If the phrase is found to

have more than one referent, discourse heuristics are applied to limit the list

of referents; if this is unsuccessful, the syntactic analysis is rejected.

While such a filter works in Winograd's toy domain, it should be noted that

this filter is in general wrong, especially as a test of syntactic well-

formedness. Thus, 10.1 below is both syntactically and semantically

acceptable, even if the hearer does not know who the speaker is referring to.

Likewise, 10.2 is perfectly acceptable even if the hearer, again, does not

know who the speaker is referring to.

10.1 Did you see the guy who wandered in here ten minutes ago?
10.2 The guy who wandered in here ten minutes ago was obviously

drunk.

While not used as part of the LUNAR system per se, Woods' parsing

system includes an experimental facility outside of the basic ATN framework

for doing what he calls Selective Modifier Placement (SMP) [Woods 73].

This facility is called by the ATN system whenever a prepositional phrase has

been parsed by the grammar. The SMP mechanism computes a list of all

possible attachment points for the PP, and then uses a semantic component
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based on case frames and semantic markers to decide which of these

attachment points must take a modifier of the PP's semantic type, which can

optionally take such a modifier, and which cannot take such a modifier. It

then chooses the alternative which is "the closest candidate that needs the

modifier most".

I will argue below that a mechanism of exactly this sort is more

than a good idea; something like Woods' SMP facility is necessary to any

system that attempts to parse language deterministically. In this sense, the

SMP facility is the first syntactic/semantic interaction mechanism of adequate

power to handle natural language. however, this mechanism is merely a

special case of a much larger class of mechanisms of much the same sort.

Thus, what is needed is a natural language understanding system where such

strategies can be expressed as an integral part of the parsing mechanism,

rather than as special purpose boxes patched onto some other mechanism.

The Problem of Wh-Questions and Indirect Objects

One fairly difficult problem that a deterministic grammar must

handle is that of deciding from where in a relative clause or wh-question

the wh-head has been "moved". In the current parser, this means deciding

where to place a trace in the annotated surface structure that the parser is

building if there is an unutilized wh-comp, as explained in Chapter 7. While

the placement of traces that result from operations like NP-preposing (i.e

passivization and the like) simply falls out from the structure of the

grammar, as demonstrated in Chapter 5, the discovery of the "gaps" left by

WH-movement cannot be so automatic, as will be thoroughly demonstrated
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below.

Often the "WH ungapping" problem is fairly simple as in 10.3.a

below; given that "throw" is a transitive verb, it is clear that its object is

missing and thus that the wh-comp must serve as object with the analysis as

approximately represented in 10.3.b, where "t" represents a trace bound to

"what".

Sometimes, however, the problem is much harder; consider, for

example, the problem presented by sentences like 10.4.a and 10.5.a. These

two superficially identical sentences, it turns out, have quite different

analyses. In 10.4.a the wh-comp serves as the direct object (DO), the entity

which John gave, with the analysis indicated by 10.4.b, while in 10.5.a it

serves as the indirect object (10), the entity to whom something was given,

with the analysis indicated by 10.5.b. From this example, it is clear that for

a parser to diagnose the correct structure of a wh-question of this sort, some

sort of syntactic/semantic interaction must be involved. The question that

must now be answered is exactly what form this interaction must take. (Let

me caution the reader about one common misapprehension: the assumption

that the word "whom" explicitly flags the indirect object of a verb. In fact,

"whom" can flag the direct object as well, as in "Whom did the knight feed

to the dragon?".)

Chapter 10 302



Semantic/Syntactic Interaction

1 0.3.a What did John throw to Bill?
10.3.b What did John throw t to Bill?

1 0.4.a What did John give Bill?
1 0.4.b What did John give Bill t?

1 0.5.a Whom did John give the extra tickets?
1 0.5.b Whom did John give t the extra tickets?

Before beginning this investigation, it is necessary to formulate more

precisely the syntactic question that must be answered to resolve the

structures of 10.4 and 10.5 above. This question, first of all, arises at the

point in the parsing process right after the parser has determined that "give"

is the main verb of the WH-question. At this point, it is clear that the verb

must take both a direct object (a DO) and an indirect object (an 10), given

that both the following constituent and the question phrase, the wh-comp,

are NPs. What must be decided is whether the wh-comp or the NP

following the verb serves as 10. (There are, of course, alternate ways of

putting this same question.) Note, by the way, that this question falls under

the definition of structural ambiguity presented in Chapter 9, and therefore

that the grammatical rules that resolve this issue can be considered

diagnostics. In the following discussion, I will refer to the NP following the

verb as NEXT and the question phrase as the WH-COMP.

Some Inadequate Explanations

First of all, let me show that even if one rejects the determinism

hypothesis, the types of semantic/syutactic interaction used by Woods' and

Winograd's systems are inadequate (with the exception of Woods' SMP). In
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both systems, it is assumed that the semantic tests of well-formedness are

based primarily on the underlying grammatical relations between a verb and

its associated NPs. This can be shown to be an inadequate theory.

Consider 10.6-10.9 below. The judgements of acceptability shown

are shared by many people who were questioned by the author, although

there are several other common dialects. (Approximately 20 people were

informally questioned about these sentences.) The judgements reflect people's

first reactions to these sentences; often an individual's judgements change

over several minutes reflection. """ indicates a sentence that is completely

unacceptable, while "?" indicates that the sentence is somewhat

unacceptable. "(?)" is used to indicate that a sentence is somewhat

questionable for some speakers, and perfectly fine for others. Note that such

judgements in themselves make no statement about why a sentence is

unacceptable. The "b" sentences are the declaratives which correspond to the

primary interpretations which people initially give the "a" sentences.

10.6.a "Which boy did the knight give the dragon?
1 0.6.b The knight gave the dragon a boy.

1 0.7.a Which dragon did the knight give the boy?
10.7.b The knight gave the boy a dragon.

1 0.8.a (?)Which boy did the knight give the sword?
10.8.b The knight gave a boy the sword.

1 0.9.a Which sword did the knight give the boy?
1 0.9.b The knight gave the boy a sword.
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Note that 10.6.a cannot be unacceptable on purely syntactic grounds;

the primary (initial) reading of 10.6.a, that parallel to 10.6.b, has the same

syntactic structure as 10.7.a, which is perfectly acceptable. Furthermore,

10.6.a cannot be unacceptable on purely semantic grounds involving

predicate/argument relations; the primary reading of 10.6.a has the same

predicate/argument structure as 10.6.b, which is perfectly fine. If 10.6.a is

thus syntactically well formed, and is acceptable in terms of underlying

semantic relations, its unacceptability must be due to the fact that

constituents filling various semantic roles appear in particular positions in the

surface syntactic structure of the sentence.

These facts show that the primary form of semantic/syntactic

interaction used by Woods and Winograd is necessarily inadequate. Since

10.6.a is syntactically well-formed, it will pass through the syntactic

component of either of their systems and since it has a sensible semantic

interpretation, it will pass through their semantic components as well. There

is simply no facility in either system for directly relating semantic role to

surface syntactic position. It should be noted, however, that these

observations are consistent with the determinism hypothesis, since some sort

of semantic test must be performed at a level which is aware of surface

structure position to decide whether NEXT or the WH-COMP will serve as

the indirect object.

It can now be demonstrated that any filter that attempts to

characterize what sentences are unacceptable in terms of the properties of

any single NP In isolation is inadequate, even if it takes into account the
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semantic role, semantic properties, and surface position of the NP. I will

show that for each of the two NPs which are NEXT and WH-COMP in

10.6.a, that there is a much better sentence with that NP in the same

semantic and syntactic role as in the primary interpretation of 10.6.a. Thus,

it cannot be the case that 10.6.a is unacceptable because of some simple filter

which declares a sentence to be unacceptable if it includes an NP of given

semantic properties in given semantic and surface syntactic roles.

For such a filter to be correct, 10.6.a would have to be unacceptable

for one of two reasons: either (i) "boy" cannot serve as DO while appearing

as the WH-COMP, as it does in 10.6.a, or (ii) "dragon" cannot serve as 10

while appearing as NEXT, as it does in 10.6.a. But consider 10.10 and 10.11

below. (The judgements on these sentences are agreed upon by those whose

judgements are reflected in 10.6-10.9. It should be noted that while 10.10 is

not perfect, informants judge it to be only slightly funny; it is much

better, for instance, than 10.8.a.) While 10.10 is not perfect, it is almost

acceptable, and certainly much better than 10.6.a. Yet in 10.10, "which boy"

fills exactly the same syntactic and semantic roles as it does in the initial,

bad reading of 10.6.a. This rules out (i) above as a possible reason that

10.6.a is bad. Similarly in 10.11, "the dragon" has exactly the same

semantic and syntactic role as it does in 10.6.a, yet 10.11 is perfectly

acceptable. Thus, (ii) above cannot be the reason that 10.6.a is unacceptable.

Furthermore, if either (i) or (ii) were correct, it is not clear why 10.6.a

would not then receive an initial interpretation parallel to 10.8.a and be

perfectly acceptable.
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10.10 (?)Which boy did the knight give the cannibals?
10.11 What did the knight give the dragon?

From this argument, it can be concluded that any theory that tries

to account for the unacceptability of 10.6.a by constraining only one of the

two NP positions must be wrong, even if such a theory takes into account

both surface position and underlying role of the NP. Any adequate theory

must thus crucially involve the relationship between the two NPs that serve

as NEXT and the WH-COMP.

The Notion of Syntactic and Semantic Biases

I will now argue that what is needed are comparative tests of some

sort between the two NPs. I will show that the judgements given for the

sentences discussed above can be accounted for given the related notions of

syntactic and semantic biases. The idea behind the notion of semantic bias

is that one possible semantic interpretation of a sentence might be preferable

to another, although both are acceptable. Similarly, the notion of syntactic

bias captures the idea that one syntactic analysis of a sentence might be

preferable to another, even though both are grammatical. Thus, the fact

discussed in Chapter 9 that almost all speakers who take a garden path on

sentences ambiguous between yes/no-question and imperative interpretations

misanalyze imperatives as yes/no-questions, but not vice-versa, can be

characterized by saying that speakers have a syntactic bias for yes/no-

questions over imperatives. (The notion of syntactic bias was first developed

by Bever [Bever 70].) Given these notions, it will be demonstrated that the
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extent to which any of these sentences is acceptable depends upon the extent

to which these biases agree, or if they disagree the extent to which one bias

is strong enough to totally override the other.

It is clear that there is some sort of syntactic preference for NEXT

to serve as indirect object in the sorts of sentences discussed above. Thus

both 10.6.a and 10.7.a, repeated below as 10.12 and 10.13, receive primary

interpretations that assign NEXT as I, even though 10.12 is judged to be

unacceptable, and may then be reinterpreted to have much the same meaning

as 10.13. Yet it is not the case that NEXT must always serve as indirect

object for all speakers; thus among speakers who find 10.12 bad and 10.13

good, 10.8.a, repeated here as 10.14, is acceptable for some, and is almost

acceptable for all. Thus it seems necessary to posit a notion of syntactic bias

(to be differentiated from any notions of syntactic requirements), and more

generally a notion of degree of goodness along a given dimension. Note that

such a notion is different from the notion of degree of grammaticallity;

speakers who accept 10.13 as well formed and reject 10.12 clearly exhibit

this syntactic bias, yet some such speakers do not judge 10.14 to be

ungrammatical, even though the syntactic bias which they demonstrate has

been overriden.

Let me once more approach the question of why 10.12 is

10.1 2 TWhich boy did the knight give the dragon?
10.13 Which dragon did the knight give the boy?

10.14 (?)Which boy did the knight give the sword?
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unacceptable, beginning with a review of what has been shown above. First,

as was demonstrated immediately above, the initial interpretation given to

10.12 assigns the NP "the dragon" as the 10, which is exactly in keeping

with the preferred syntactic structure. Thus 10.12 cannot be bad for

syntactic reasons. Second, it has been demonstrated that sentences similar to

10.12 which retain exactly one of the two NPs that are NEXT and the WH-

COMP in 10.12 in the same syntactic position and semantic role as in that

sentence are much better than 10.12. Thus 10.12 cannot be bad because of

any restriction on single NPs in isolation. Third, as was shown early in this

chapter, the initial reading given to 10.12 (i.e. the reading parallel to the

declarative repeated below as 10.15.a) is perfectly acceptable semantically.

Thus 10.12 cannot be bad because its semantic interpretation is unacceptable.

What factors are left which can account for the unacceptability of 10.12?

And why is 10.12 bad while its corresponding declarative is qute acceptable?

10.15.a The knight gave the dragon the boy.
10.1 5.b The knight gave the boy the dragon.

One possibility is to state that it is the combination of the NP

"Which boy" as WH-COMP serving as DO, and the NP "the dragon" as NEXT

serving as 10 which makes this sentence bad, which seems to be exactly the

case. But such a declaration by itself amounts to stating that 10.12 is bad

because 10.12 is bad. By extending the notion of bias to include semantic

bias as well, an explanation of why this combination is bad is is immediately

forthcoming, as I will now show.

Let me suggest that while 10.15.a and 10.15.b, the declaratives
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corresponding to the two possible semantic interpretations of 10.12, are both

semantically acceptable, that 10.15.b is in some sense semantically preferable

to 10.15.a. If this is true, then the unacceptability of 10.12 might have

something to do with the fact that the the reading which is semantically

preferable (that parallel to 10.15.b) is the second choice syntactically. Thus

10.12 will be unacceptable because the syntactic and semantic biases conflict.

(In either of the corresponding declaratives 10.15a-b, syntax does not present

a bias, but rather dictates that exactly one syntactic structure is acceptable,

and thus both are acceptable.)

Given the notion of bias, we are now well on our way to

explaining why 10.12 is bad. What remains to be done is (i) to formulate a

precise rule which will account for the judgements given for the range of

sentences discussed above, and (ii) to determine exactly what it is about the

interpretation of 10.15.b that is semantically preferable to 10.15.a. The

remainder of this chapter will focus on (i); issues relating to (ii) will be

discussed only briefly. This seems to be an interesting area for future

investigation.

A Solution to the Problem

There are several possibilities as to what strategy might be used to

discover that one reading of a sentence like 10.6-10.10 is preferable to

another. While I will mention two such options here, I are not prepared at

this time to argue for one as opposed to another. The data discussed above

does not distinguish between these possibilities; there are other phenomena

that provide some such evidence, as will be discussed in Appendix A, but

310Chapter 10



Semantic/Syntactic Interaction

that evidence is far from conclusive.

One such strategy would be for the grammar to decide to use either

NEXT or the WH-COMP as the 10 without using the knowledge that

whichever is not chosen as 10 will then serve as DO. Such a strategy might

ask semantics which of the two it prefers as the 10 or it might ask by how

much semantics prefers one or the other as tO. The semantic decision might

be based (for the sake of example) on criteria such as the fact that higher

animate entities, i.e. people, are more often given something than merely

animate entities, which in turn are given something more often than

inanimate entities. This might be thought of as a preference scale which can

be expressed graphically as

higher animate > animate > Inanimate.

Another possibility, which seems more plausible intuitively, might

be to ask semantics which of the two possible orderings of the two NPs as

indirect and direct object it prefers. It is this possibility that will be

pursued in detail below. For the sake of simplicity, a system of semantic

markers like that assumed implicitly in the preceding paragraph will be used

as the basis for semantic tests, although it is easy to show that a semantic

marker representation of the detail shown above is not adequate for the sorts

of judgements that must be made to correctly handle all such sentences. It

must be stressed that I intend to make no claims for the adequacy of

semantic markers for such a task.

Given the assumption that the semantic tests will be done on
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possible assignments of both the 10 and DO jointly, and also given a set of

presumed semantic preferences, I can now present an algorithm that produces

the correct judgements on sentences 10.6.a-10.9.a, and 10.10-10.11. Let me

first present the algorithm and then state the semantic judgements I assume.

Let us refer to the analysis of these sentences with NEXT as 10 and

the WH-COMP as DO as the NEXT-as-IC analysis, and the alternate analysis as

the W{H-COMP-as-IO analysis. Then to decide which analysis of a sentence of

the form of 10.6-10.10 is correct, the following algorithm can be executed

at the point at which the sentence up to the verb has been parsed and NEXT

has been encountered, parsed as an NP and is waiting to be assigned a

syntactic role:

1) If exactly one analysis is not semantically acceptable, choose the
alternative analysis.

la) (For dialects that find 10.14 somewhat unacceptable:) If the analysis
chosen by rule (1) is not NEXT-as-IO, then the sentence is mildly
bad.

2) If the semantic interpretation of the NEXT-as-IO analysis is
semantically preferable to the interpretation of the WH-COMP-as-IO
analysis, choose the NEXT-as-IO analysis.

3) Otherwise, the sentence is bad, but try the NEXT-as-IO analysis.

Restating this algorithm in terms of semantic and syntactic

preferences makes the logic of the algorithm a little more transparent

(remember that the NEXT-as-IO analysis is syntactically preferred to the WH-

COMP-as-IO analysis):
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1) If exactly one analysis is not semantically acceptable, choose the
alternative analysis.

la) (For dialects that find 10.14 somewhat unacceptable:) If the analysis
chosen by rule (1) is not the syntactically preferred analysis, then
the sentence is mildly bad.

2) If the syntactically preferred analysis is also semantically preferred,
choose it.

3) Otherwise, the sentence is bad, but choose the syntactically preferred
analysis.

We can now investigate how this algorithm accounts for the

judgments of our test cases and what semantic preferences these judgements

assume. Each of the sentences 10.6 - 10.10 above will be considered in

turn. I will first give each sentence and the assignment of NEXT and the

WH-COMP to the 10 and DO roles that this algorithm produces, and then give

the analysis that results in this assignment:

10.6.a aWhich boy did the knight give the dragon?
Assignment: (DO) (IO)

-- Assumed semantic forms:

(sf1): X gives animate entity to higher animate entity.

(sf2): X gives higher animate entity to animate entity.

-- Assumed result of semantic tests:

(resultl1): (sf1) is acceptable.

(result2): (sf2) is acceptable.

(result3): (sf1) is preferable to (sf2).

-- Analysis: Rule 1 is inapplicable since both (sf1) and (sf2), the two possible
interpretations of 10.6.a, are semantically acceptable. Rule 2 is
inapplicable since the interpretation corresponding to the NEXT-as-IO
analysis, (sf2), is not preferable to (sf1), the interpretation of the
WH-COMP-as-IO analysis. Therefore rule 3 applies; the sentence is
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bad and NEXT is initially interpreted as 10.

10.7.a Which dragon did the knight give the boy?
Assignment: DO I0

-- Assumed semantic forms: (sfl), (sf2)

-- Assumed result of semantic tests: (resulti), (result2), (result3)

-- Analysis: Rule 1 is inapplicable, since (sf1) and (sf2) are both acceptable.
Rule 2 applies since the interpretation corresponding to NEXT-as-10
is semantically preferable to that corresponding to WH-COMP-as-I0
by test (result3). Thus, the analysis is NEXT-as-I0 and the sentence
is good.

10.8.a (?) Which boy did the knight give the sword?
Assignment: IO DO

-- Assumed semantic forms:

(sf3): X gives inanimate entity to animate entity.

(sf4): X gives animate entity to inanimate entity.

-- Assumed result of semantic tests:

(result4): (sf3) is acceptable.

(result5): (sf4) is unacceptable.

-- Analysis: Rule 1 applies; the only acceptable semantic analysis is (sf3),
which corresponds to the WH-COMP-as-IO syntactic analysis. Thus,
the analysis is WH-COMP-as-I0. If the speaker has Rule la, the
sentence is mildly bad.

10.9.a Which sword did the knight give the-boy?
Assignment: DO I0

-- Assumed semantic forms: (sf3), (sf4)

-- Assumed result of semantic tests: (result4), (result5)

-- Analysis: Rule 1 applies; the only acceptable semantic analysis corresponds
to NEXT-as-IO.
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10.11 What did the knight give the dragon?
Assignment: DO I0

-- Same analysis as 10.9.a.

I believe that all of the above semantic assumptions are intuitively

quite reasonable.

While the set of rules stated above adequately handles the cases

discussed immediately above, it is not subtle enough to pick out the slight

unacceptability of 10.10. 10.10 also poses a problem in that the necessary

"semantic markers" are clearly ad hoc:

10.10 C?) Which boy did the knight give the cannibals?
Assignment: DO 10

-- Assumed semantic forms:

(sf5): X gives higher animate entity to higher-animate-eating entity.

(sf6): X gives higher-animate-eating entity to higher animate entity.

-- Assumed result of semantic tests:

(result6): (sf5) is acceptable.

(result7): (sf6) is acceptable.

(result8): (sf5) is preferable to (sf6).

Analysis: Rule 1 is inapplicable. Rule 2 applies; the sentence is good, with
the analysis being NEXT-as-IO.
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There is a bug in the analysis of 10.10 here: The rules stated

above do not pick out the fact that this sentence is subtly bad. What seems

to be happening is that while (sf5) is preferable to (sf6) (given some

representation that adequately represents (sf5) and (sf6)), it is not preferable

by much. Thus, one can conjecture that the semantic bias in such cases

must have a certain strength before a sentence is judged to be totally

acceptable, even if that bias is in support of the syntactic bias. This is a

question for future investigation.

Conclusions

It is now time to summarize exactly what has been established.

While the analysis presented above is built upon several assumptions, its

success in accounting for the range of judgements exhibited hinges on the

notions of comparative semantic tests and comparative syntactic bias. If such

notions are crucial to explaining these judgements, then any processing model

that fails to implement these notions in some way is necessarily an incorrect

model of human language processing. As was argued above, any parser based

upon the determinism hypothesis must embody mechanisms of this sort, since

alternative structural possibilities must be diagnosed by some means or other.

The nature of the syntactic interactions involved in WH-ungapping

has been previously investigated, it should be noted, by Wanner et al.

[Wanner, Kaplan & Shiner 74; Wanner & Maratsos 74]. Wanner's research in

this area has been done within the hypothesis-driven ATN framework using

example sentences much like those presented above. (It should be noted that

using ATNs as psychological models derives from [Kaplan 72].) Wanner
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expresses the syntactic bias stipulated above, that NEXT is preferred over the

WH-COMP as the 10, by ordering the arc which utilizes the ATN equivalent

of the WH-COMP (as explained in Chapter 7) after the arc which attempts to

find a new NP. He presents the results of several reaction-time experiments

which are consistent with the theory that one first hypothesizes that NEXT

is the 10 and then, if wrong, backs up and tries the WH-head as the IO.

While a full critique of Wanner's studies is beyond the scope of this

document, several comments should be made. (For critiques of Wanner's

studies, see [Drescher & Hornstein 76] and [Rich 75].)

Most importantly, Wanner's incorporation of what he terms a

"passive" ungapping strategy by using arc order within the ATN is simply

another way to stipulate the same syntactic bias captured in the algorithm

stated above, with one exception. The one difference between Wanner's

expression of the stipulation and the expression of this stipulation in the

algorithm above is that Wanner's formulation is more general, and therefore

somewhat more interesting, if true. By encoding the choice to utilize the

WH-COMP within the NP subnetwork, Wanner claims that if there is a

choice between using a following NP and using the WH-COMP in any

situation at all, that the bias is to use the NP instead.

Second, it should be noted that Wanner's ATN model captures only

the syntactic bias; it gives no explanation for why that bias should

sometimes be overcome by semantic biases, if the ATN's original analysis is in

fact syntactically and semantically acceptable. Wanner admits that semantic
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biases interact with syntactic biases to affect the preferred parsing of some

sentences, as well as the reaction times to respond to various sorts of tests,

but he takes this as a problem in experimental design to be overcome if

reaction time confirmation of the syntactic bias is to be obtained.

Furthermore, he does not discuss the problem of acceptability judgements at

all.

As a concluding point, it is worth repeating the fact that semantic

preference is not the sole key to the primary interpretation of the sentences

investigated above. This clearly contradicts any theory that would suggest

that syntax "throws up its hands" and hands the options off to semantics for

resolution when there is not enough purely syntactic information for the

parser to make a decision single-handedly. Of course, one can argue that the

syntactic bias might be encoded in the information handed to semantics, but

such a theory is no more than a shift of the analysis presented above from

the status of a "syntactic" processing rule to that of a "semantic" processing

rule. Such a shift might in fact be correct, but it is necessary to argue that

such a shift is for some reason preferable to the "syntactic" theory presented

above.

For the same reasons, these findings also contradict theories that

argue that semantic processing is primary, in that syntactic processing is used

only when some sort of direct semantic analysis is confused, or else is used

only a post-filter for a proposed semantic analysis. A fortiori, these findings

also contradict theories (e.g. the general framework proposed by Schank and

Riesbeck [Schank 75]) which argue that there is no syntactic processing, only
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semantic processing. Such theories are untenable in the face of the evidence

presented above.



Chapter 11

CHAPTER 11

CONCLUSIONS

Many different topics have been discussed in the preceding pages -

among them linguistic universals, psychological phenomena, and the nature of

syntactic/semantic interaction. All have shared one common property, that

significant insights into each topic have followed from the Determinism

Hypothesis and the structure of the grammar interpreter. Because of the

range of the topics investigated in the preceding pages, it would seem to be

useful to include a brief, explicit summary of the arguments presented in

earlier chapters so that the reader might be better able to see the forest after

having spent much time looking at the trees.

Before presenting this summary, however, I would like to make one

point explicit that has been implicit in much of the discussion presented

above: that a performance theory of syntactic recognition can have important

implications for a competence theory of grammar. I will consider this latter

point at some length, and then return to present a summary of this research,

followed by suggestions for future research.

Chomsky's Constraints: Competence or Performance

Phenomena?

In this section, I will discuss some implications for the theory of

generative grammar of the account of the phenomena underlying those of

Chomsky's constraints discussed in Chapters 6 and 7.
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It is important to realize that the constraints on rules of grammar

proposed by Chomsky, like the earlier constraints of Ross and others, are

stipulations, plain and simple. These constraints are special in that they are

claimed to hold for all possible human languages, and - if these claims of

universality are true - are in this sense general principles of language.

Thus, these constraints explain the structure of particular languages in that

whatever phenomena follow from these constraints in a particular language

follow, by definition, from general principles. Nevertheless, these constraints

themselves remain stipulations, stipulations which are universal in scope, but

stipulations none the less.

This fact, in and of itself, is not necessarily problematic. As

Chomsky has stated Chomsky 75a], the explanation for these constraints

themselves might fall out not from any science of language, but rather from

biological or evolutionary considerations. Underlying all theories are facts

which cannot be explained, but which are taken as axiomatic; they are

justified not by appeal to deeper principles, but by appeal to (a) the size of

the body of empirical data that the resultant theory explains and (b) the

simplicity of the theory which derives from these axioms. Some of these

axioms might themselves be explained in terms of some broader theory, but

if this reduction does not shed light on the original theory itself, then it is

appropriate to take them as axiomatic, relative to that theory.

There is, however, always the possibility that some of these axioms

can themselves be derived from broader theories, and that this derivation will
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shed light on the original theory as well.

I believe that this research makes this possibility plausible, perhaps

for the first time, and furthermore, that the performance model of syntactic

recognition presented in this paper already sheds considerable light upon the

constraints of generative grammar. It does so by providing explanations for

these phenomena within the context of a performance theory, linking them

to properties of the grammar interpreter some of which - crucially - are

motivated by the Determinism Hypothesis. To the extent that these

phenomena follow from the Determinism Hypothesis, they are motivated by a

constraint which can itself be motivated by extremely plausible criteria of

computational simplicity for which psychological verification can be sought.

I hasten to add that the link between the explanations provided and the

Determinism Hypothesis is somewhat indirect, and to this extent my claims

must be correspondingly modest.

To say the same thing in a different way, this research provides

some evidence that the constraints of competence linguistics are

epiphenomenal, in a sense, thereby explaining the seemingly arbitrary nature

of the constraints. Specifically, this research suggests that Chomsky's

constraints are the result of projecting upon the competence domain

performance phenomena that are straightforwardly motivated within this

latter domain. If this is true (and I have demonstrated only the plausibility

of this hypothesis), then an overall theory of language - one which includes

both competence and performance - will classify the constraints as

performance phenomena; by cutting the pie in this way, the overall theory
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is simpler than otherwise.

A generative grammarian might respond by saying that if this is

true, then it simply implies that these constraints are not in fact part of the

theory of (competence) grammar at all, that a sentence that violates a

constraint is not unacceptable grammatically, but rather unacceptable due to

performance considerations. This statement is true (given the generative

grammarian's restricted use of the word "grammar" to apply only tp

competence phenomena), but It misses the central point: that unless the

generative grammarian extends his interest to include performance models

as well as competence models, he cannot be sure that what he believes to

be a competence phenomena cannot be more elegantly explained within the

domain of performance. Without considering the alternatives, there is no

way to know a priori what formulation of a phenomena is the simplest.

(This point is also made by Jackendoff [Jackendoff 74a], in his investigation

of sentences like "Herbert placed the blame on John for the accident.", where

it would seem that "the blame for the accident" should be a constituent in

underlying structure.) Jackendoff points out that though it is possible to

formulate a purely grammatical solution to this problem, a solution which

accounts for such sentences within the semantic component will be the

simplest overall. As he points out, one cannot relegate a phenomenon to one

component or another without considering the effect of this decision upon

the complexity of the entire system.)

In terms of this argument, it is ultimately irrelevant that I have not

conclusively shown that Chomsky's constraints are best explained within the
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performance domain; just making this possibility plausible is enough. For

once the possibility is raised that what seem to be competence phenomena at

first blush might in fact best be accounted for within the domain of

performance, then it is necessary to consider both possibilities, for otherwise

how will one know? And from this it follows that the generative

grammarian cannot focus his attention entirely on competence models; he

cannot presuppose that a phenomenon falls within the domain he has defined

for himself.

In Summary

I now turn to a summary of the results of this paper.

This summary will focus on those features of the grammar

interpreter which are key to capturing the results presented in this paper. It

will attempt to convey exactly which aspects of the grammar interpreter lie

at the heart of each of the results established in this paper. This point of

view should convey exactly which aspects of PARSIFAL are unique to this

parser, and exactly why they are important.

The central idea behind this research is the Determinism Hypothesis,

the thesis that the syntax of any natural language can be parsed by a

mechanism which operates "strictly deterministically" in that it does not

simulate a non-deterministic machine. I have attempted to argue for this

thesis only indirectly, by assuming that the Determinism Hypothesis is true,

and then seeing what follows from this assumption. If significant insights

into the nature of natural language follow from this assumption, and I
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believe that I have shown that they do, then these insights provide evidence,

albeit indirect evidence, for the Determinism Hypothesis.

In fact, most of the arguments presented are one step removed from

the hypothesis itself.

In general, I do not show that the results of this paper follow

directly from the Determinism Hypothesis, but rather follow from the

structure of the grammar interpreter, whose structure in turn is motivated

by the Determinism Hypothesis. The structure of PARSIFAL reflects three

general principles that follow from the Determinism Hypothesis in

conjunction with an examination of the syntax of natural language: that

any strictly deterministic parser

-must be at least partially data driven, but

-must reflect expectations that follow from the partial structures

built up during the parsing process; and

-must have some sort of restricted "look-ahead" facility.

PARSIFAL reflects these principles rather directly. The grammar is made up

of pattern/action rules, allowing the parser to be data directed. These rules

themselves are clustered in packets, which can be activated and deactivated to

reflect global expectations. The grammar interpreter's constituent buffer

gives it a small window through which to view the input string, allowing

restricted look-ahead.

The grammar interpreter also includes a stack of active nodes which

captures the recursive aspects of the syntax of natural language. This stack
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is unusual in that the interpreter can access not only the bottom of the stack

but also the cyclic node nearest the bottom. Empirically, this seems to

eliminate any need for a primitive that can access the father of a given

node; indeed, the lack of such a primitive, which restricts the parser from

accessing any node which is not a daughter of the current cyclic node,

contributes in part to many of the results derived in this paper. This

limitation, which I will call the "Clausemate Limitation" in what follows

below, leads directly to one result: it explains the behavior which is

stipulated within the framework of competence linguistics by Ross's Complex

NP Constraint for the case of relative clauses. (As I pointed out in Chapter

6, this lack of a primitive within the interpreter model is not a constraint as

the term is typically used in linguistic theory; thus the use of the word

"limitation".)

Of the structures that make up the grammar interpreter, however, it

is the constituent buffer which is most central to the results that are

presented in this document. The most important of these results follow from

the sorts of grammar operations that the buffer makes feasible; others

follow from the limitations that its fixed length imposes. All however,

hinge crucially upon the existence of the buffer. This data structure, I

submit, is the primary source of the power of the parser.

For example:

-Because insertion of specific lexical items into the buffer is possible, one

four-line rule of grammar can capture the difference between
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imperatives and the "unmarked" constituent order of declarative

sentences. The imperative rule is formulated so that it inserts the word

"you" into the buffer, taking advantage of the fact that a full NP will

be produced from the pronoun by the attention shifting mechanism.

After this occurs, the buffer will contain an NP followed by a verb, the

unmarked declarative order.

-Because the buffer automatically compacts upon the attachment of the

constituents that it contains, the parsing of a yes/no question and the

related declarative will differ in one rule of grammar, with the key

difference restricted to the rule patterns and one line of the rules'

actions. The yes/no question rule explicitly states only that the NP in

the second buffer cell should be attached as the subject of the clause.

Because the buffer will then compact, auxiliary parsing rules that expect

the terminals of the verb cluster to be contiguous will then apply

without need for modification.

-Because the buffer provides a three-constituent window on the structure of

a clause, diagnostic rules can be formulated that allow the differential

diagnosis of pairs of constructions that would seem to be

indistinguishable by a deterministic parser without such a buffer. Thus,

evidence that would seem to imply that natural language must be parsed

non-deterministically can be explained away.

-Because the buffer can only contain a limited number of constituents, the

power of these diagnostic rules is limited, leading to a principled
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distinction between sentences which are perceived as garden paths and

those which are not. This explanation for why certain sentences cause

garden paths is consistent with the informal experiments presented in

Chapter 9. Furthermore, this theory led to the counter-intuitive

prediction that as simple a sentence as "Have the packages delivered

tomorrow." would cause a garden path, a prediction which was

confirmed by informal experiment.

In short, this one mechanism not only allows the formulation of

rules of syntax that elegantly capture linguistic generalizations; it also

provides the underpinnings for a psychological theory that seems to have

high initial plausibility.

Another important source of power is the use of traces, especially in

conjunction with the use of the buffer. Especially important is the fact that

a trace can be dropped into the buffer, thereby indicating its underlying

position in a factorization of the terminal string without specifying its

position in the underlying tree. From this follows:

-a simple formulation of passive which accounts for the phenomenon of

"raising". The essence of the passive rule - create a trace, bind it to the

subject of the current s, drop it into the buffer - is noteworthy in its

simplicity. Again, the availability of the buffer yields a very simple

solution to a seemingly complex linguistic phenomenon.

-an explanation for the phenomena which underlie Chomsky's Specified
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Subject Constraint and Subjacency Principle, in conjunction with the

Clausemate Limitation. It is most interesting that the simple formulation

of Passive presented here - perhaps the simplest possible formulation of

this rule within the framework of PARSIFAL - behaves exactly as if

these constraints were true; i.e. that the formulation presented here, by

itself and with no extraneous stipulations, leads to the behavior that

these constraints attempt to specify. It is also true that it is impossible

to formulate a passive rule that would behave otherwise, given the

Clausemate Limitation and the Left-to-Right Constraint presented in

Chapter 6.

The Determinism Hypothesis itself does figure directly in two of the

results presented in this paper. The Determinism Hypothesis is crucial in the

argument for semantic/syntactic interaction presented in Chapter 10.

Furthermore, in conjunction with the Clausemate Limitation, it leads to

behavior in the grammar interpreter which accounts for the phenomenon

characterized by the Complex NP Constraint for noun complements.

Directions for Future Work

Throughout this paper, I have tried to point out the limitations of

this research, as well as important issues that have remained untouched.

Rather than repeat these limitations and issues at length, I will provide a

brief list here of those issues that have been raised by this paper that

deserve further study; the reader is referred to Chapter 1 for a listing of

important questions that this research has not addressed.
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Three issues in particular call for further study. Further work is

called for:

-to study the entire question of semantic/syntactic interaction. What

other sorts of interactions are there? Is there a natural limit to the

sorts of interactions necessary? What is the bandwidth of these

interactions?

-to extend the grammar. What is the range of syntactic phenomena for

which grammar rules can be found that share the simplicity of the

rules presented in this paper?

-to carefully test the explanation for garden path sentences proposed in

Chapter 9. Will this model account for a wide range of garden paths

under careful scrutiny?
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Noun-Noun Modification

APPENDIX A

AN APPROACH TO NOUN-NOUN MODIFICATION

This appendix briefly sketches a possible approach for diagnosing the

internal structure of noun-noun modifier strings using interacting syntactic

and semantic biases, as discussed in Chapter 9. Following Chapter 10, this

approach presupposes that a buffer "window" of three constituents is

sufficient for analyzing noun-noun modifier strings deterministically.

This discussion is relegated to an appendix because the diagnostic for

noun-noun modifiers requires fairly semantic subtle judgements, and

therefore the judgements that must be assumed to test this approach on

specific examples are necessarily suspect. This is especially true because

semantic judgements of this type seem to vary widely between individuals.

Because of this, it is somewhat difficult to assess the extent to which this

approach is adequate and in exactly what ways it fails to be a general

solution.

Despite these problems, I include this discussion because of the

intrinsic interest of the problem of parsing noun-noun modifiers. While the

semantics of noun-noun modifier strings has been previously investigated

(see, for example, [Russell 72]), no parser that I know of has attempted to

resolve the internal structure of noun-noun modifier strings. Typically,

where this phenomenon has been handled by a natural language parser, each

noun in the string of modifiers has been parsed as an independent daughter
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of some common node. This ignores the fact that there is much internal

structure to a noun-noun modifier string. For example, the noun string

shown in Figure A.1.a, taken from Winograd [Winograd 71], has the internal

structure shown in A.1.b, where each parenthesized entity, each listed in

A.1.c, can be considered to be a "complex noun".

(a) water meter cover adjustment screw
(b) [[[water meter] cover] [adjustment screw]]
(c) 1) water meter
(c) 2) water meter cover
(c) 3) adjustment screw

Figure A.1 - The internal structure of a noun-noun modifier string.

In the discussion below, I will ignore such issues as the fact that

different sorts of noun-noun modification seem to have different syntactic

properties, as evidenced by the difference in intonation given to the two

noun-noun pairs "maternity dress" and "paternity suit". I also ignore the fact

that not all contiguous nouns are part of one noun-noun modifier string, as

in "The cat was hungry, so I gave the cat food.". Clearly, these issues must

be dealt with, but the problem attacked here is a prerequisite for any

solution to these further problems.

A Rule to Parse Noun-Noun Modifier Strings

Given the caveats stated above, I will now present a diagnostic

procedure that will analyze arbitrarily long noun-noun modifier strings,

present a few examples of its operation, and then show a few ways in

which it is deficient. (Because I know of no technique which can to

answer the necessary semantic questions, this procedure has not been
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implemented.)

The procedure is based upon two crucial assumptions, the first of

which is that a semantic component can decide upon the relative "goodness"

of two possible noun-noun modifier pairs. Thus, it is assumed that a

semantic component can decide, for example, that "adjustment screw" in the

string shown in A.1 is a better noun-noun pair than "cover adjustment",

although both pairs are acceptable.

It is not clear, I should admit, whether this semantic is adequate for

the diagnostic presented here, or whether it must further take into account

the remaining noun, somehow incorporating the knowledge that this noun

may modify or be modified by whatever noun-noun pair is constructed first.

I will assume the simpler form in what follows below, although there is

some evidence that this assumption is wrong. How any of these judgements

can be made, of course, is very much an open question.

The second assumption is that an arbitrarily long modifier string can

be analyzed by iteratively examining only the three leftmost nouns in the

modifier string, i.e. that local decisions are sufficient to accurately determine

the global structure of the modifier string. The diagnostic rule will operate

by reducing the leftmost three nouns in a modifier string, N1 , N2 , and N3 , to

a string of two nouns either by creating a new complex noun from N, and

N2 (which I will denote as [NI N 2]) or from N2 and N3 (the complex noun

[N2 N3 ]). If there are at least three nouns remaining, including the newly

formed complex noun, the diagnostic rule will be triggered again. Otherwise,
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an additional rule will construct the remaining two nouns into a complex

noun if the resulting complex noun is semantically acceptable.

The essence of the diagnostic is as follows: Given a string of three

consecutive nouns N1 , N2, and N 3, if both noun-noun pairs [NI N2 ] and [N 2

N3] are semantically acceptable, there is a syntactic bias for the first two

nouns to form a complex noun that may modify the third noun, yielding the

structure shown in Figure A.2.a below, rather than for the second and third

to form a complex noun that may be modified by the first, giving the

structure shown in A.2.b. This syntactic bias can be overcome, however, if

the noun-noun pair [N2 N3] is semantically preferred to the pair [NI N2 ]. In

this later case, the analysis is as shown in A.2.b. In short, the syntactic bias

is the default, but it is easily overriden by semantic preference. (If both

pairs are semantically unacceptable, then no complex noun is formed.)

(a) [N3 N 2] N3
(b) N, [N 2 N3 ]

Figure A.2 - There is a syntactic bias for (a) over (b).

A careful statement of the algorithm is given in Figure A.3 below.
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Given two nouns N, and N 2 in the first two buffer cells and a non-noun in the third
buffer cell:

If [NJ N 2 ] is semantically acceptable, then build [NI N 2 ]-

Given three nouns NJ, N 2, N3 in the first three buffer cells:

1) If either [NI N 2 ] or [N2 N 3 ] is not semantically acceptable, then build the
alternative structure; else...

2) If [N2 N 3] is semantically preferable to [N1 N2 ], then build (N 2 N3 ];

3) Otherwise, build [N1 N2 ]-

Figure A.3 - The algorithm for constructing noun-noun pairs.

Let us see how this algorithm analyses the examples presented in

Figure A.4 below. (The first example is Winograd's; the second and third

were found in JPL's bibliography of 1972 publications [JPL 73].) The

semantic judgements in these examples are strictly my own; other people's

judgements may differ. If the reader's judgements differ from the

judgements given here, the reader should apply the analysis algorithm for

himself, substituting his own judgements, and see if the resulting analysis is

consistent with his own intuition of what the underlying structure should

be. What is crucial here is not the specific judgements given, nor the

particular analyses that result from those judgements, but rather the

relationship between the relevant semantic judgements and the resulting

analysis. (The symbol ">" should be read "is semantically better than".
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The Buffer [N, NA> [N1 N,?

1) water j meter j cover no
2) [water meter] cover adjustment no
3) [[water meter] cover] j adjustment Iscrew yes
4) [[water meter] cover] I [adjustment screw] (Rule for 2 nouns applies)
5) [[[water meter] cover][adjustment screw]] (Finished)

(a) - Water Meter Cover Adjustment Screw

The Buffer [N, N&] > fN N,I?

1) ion I thruster I performance no
2) [ion thruster] j performance | calibration yes
3) [ion thruster] I [performance calibration] (2-noun rule applies)
4) [[ion thruster][performance calibration] (Finished)

(b) - Ion Thruster Performance Calibration

The Buffer [N, NI> [N1 N,1?

1) boronIepoxy rocket no
2) [boron epoxy] f rocket | motor yes
3) [boron epoxy] j [rocket motor] I chambers yes
4) [boron epoxy] | [[rocket motor] chambers] (2-noun rule applies)
5) [[boron epoxy][[rocket motor] chambers]] (Finished)

(c) - Boron Epoxy Rocket Motor Chambers

Figure A.4 - Three example analyses.

The first example, shown in A.4.a, demonstrates the analysis of the

noun-noun string "water meter cover adjustment screw". The analysis begins

with the leftmost three nouns entering the buffer, as shown in A.4.a1. Both

[NI N 2 ), "water meter", and [N2 N 3 ], "meter cover", are semantically

acceptable, so step (1) in the algorithm does not apply. The pair "meter

cover" is not semantically preferable to the pair "water meter", so (2) does

not apply. Step (3) thus applies by default, building the complex noun

[water meter]. The noun "adjustment" now enters the buffer, as shown in
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A.4.a2, and the algorithm is retriggered. Again, [NI N 2], "water meter cover",

and [N 2 N 3 ), "water meter adjustment" are acceptable, and [N 2 N3 ] is not

preferable to [NI N 2 ], so step (3) applies again, building [[water meter]

cover]. The noun "screw" now enters the buffer, and the algorithm is

triggered again. This time [N 2 N 3 ], "adjustment screw", is semantically

preferable to [NI N2], "water meter cover adjustment", so step (2) of the

algorithm applies, constructing [N 2 N 3). There are now two complex nouns

in the buffer, as shown in Figure A.4.a4, with no following noun, so the 2-

noun rule applies, and because [NI N2 ] is semantically acceptable, the

structure shown in A.4.a5 results, concluding the example.

Because the analyses of A.4.b and A.4.c are both similar to the above

analysis and should be self-explanatory, the reader should be able to work

through these last two examples without much trouble. Again, some of the

semantic judgements given may be questionable for the reader, in which case

the reader should complete the analysis using his own judgements.

Coverage

The noun-noun algorithm was tusted by hand-simulating it on the

list of examples presented below in Figure A.1; all the examples were found

in the JPL 1972 bibliography. While I will not present the analyses here,

the algorithm seems to correctly analyze all these examples included in A.l.a.
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a) ion thruster performance calibration
b) ground communications facility operations chief
c) two-station interferometer analog input channel
d) spacecraft ion beam noise effects
e) water flow vizualization studies
f) telecommunications systems design techniques handbook
g) antenna drive system performance evaluation
h) subcarrier recording equipment implementation
i) boron epoxy rocket motor chambers
j) filament winding fabrication difficulties

Figure A.1 - Some modifier strings parsable by the noun-noun algorithm.

The algorithm correctly analyzes these examples as well as all the

others I could find in the JPL bibliography, with one exception; the

following noun-noun string is not correctly analyzed by this algorithm:

1970 balloon flight solar cell standardization program

The essence of the difficulty is that the initial noun "1970" must modify the

entire remaining string; the correct analysis of this string is

[1970 [[balloon flight][[solar-cell standardization] program]]]

where "1970" modifies the rest of the noun-noun string. (I take "solar cell"

to be a single noun here.) If the algorithm is to successfully analyze such a

string, the first noun must be held in the buffer until the remaining

structure has been completed. This will leave only two cells available for

succeeding nouns, which means that the remainder of the string should be

strictly left-branching, since at each application of the algorithm, the

complex noun pair EN2 N3 ] must be constructed if another noun is to enter

the buffer. While it is possible that "1970" is not part of the noun-noun

modifier string, my intuition is that it is, and that this is a counterexample

to the algorithm proposed above. I will not attempt to patch the algorithm,

however, until more counterexamples can be found and examined.
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APPENDIX B

THE GRAMMAR LANGUAGE

This appendix provides a description of PIDGIN, PARSIFAL's grammar

input notation.

PIDGIN is a formal language that reads much like English, although

its syntax is very restrictive and completely artificial. There are several

advantages to using an English-like formal language as the grammar

language. By putting the grammar into an English-like notation, the

grammar can be intrinsically self-documenting. Because it does read much

like English, PIDGIN code should be highly perspicuous both to those with

computational backgrounds and to those linguists and psychologists not

familiar with LISP syntax; in short, it attempts to be a Perspicuous,

Intrinsically Documented Grammar Input Notation. The language also

conveniently enforces a strict set of constraints on the form of legal grammar

rules. By the simple expedient of not including the standard LISP primitives

of CAR, CDR, CONS, etc. in the grammar language, we can strictly limit the

sorts of operations that can be used within the grammar.

PIDGIN is internally converted to LISP by a parser which is based on

Pratt's notion of top-down operator precedence parsing [Pratt 73], which

provides a powerful framework for constructing grammars for simple token-

based deterministic computer languages. Indeed, much of the code which

underlies the PIDGIN parser derives from Pratt's implementation of his CGOL
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language [Pratt 76]. It is worthy of mention that the implementation of

CGOL, a language designed as an alternate external representation for general

LISP code, was very easily adapted for PIDGIN, a language with a very

different purpose and external appearance.

(It should also be noted that the cost of using this non-LISP syntax

is not very high. The top-down operator precedence parser is very fast and

efficient, and by using the read macro facility of MACLISP [Moon 74], one

can read in PIDGIN code through the normal LISP reader with little

difficulty. Indeed, it is easy to get the MACLISP compiler to directly compile

PIDGIN code into machine language instructions.)

Each grammar rule in PIDGIN is of the general form:

(Rule <name> (Priority: <numeric priority>) in <packet list>
<pattern> --> <action>}

Each rule is delimited by "( )", by curly brackets, and includes a rule name,

an optional priority, a list of the packets the rule is part of, and a pattern

and an action. Rule and packet names can be any legal LISP atom containing

at least one non-numeric character, but not spaces, tabs, carriage returns or

any of the special characters "I [ ] / ( ) ( ) ' ; , = I % ! .". These special

characters delimit names, and need not be separated from them. The priority

can be any positive integer, where 1 is the highest priority and 1000 the

lowest priority. If no priority is specified for a rule, it is assigned a default

priority of 10. The packet list consists of either one name or else a series of

names separated by commas. Note that a rule can be in more than one

packet; it will be active if any packet it is in is active.
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The following sections present the core of PIDGIN syntax. I will

first present the syntax of patterns and the subset of PIDGIN commands legal

in patterns, then the remainder of basic PIDGIN command which are of use

primarily in rule actions.

Patterns

Patterns are written in PIDGIN as a list of descriptions, where each

description is enclosed in square brackets. The first three descriptions in a

pattern are taken by default to refer to the constituents in the first, second,

and third buffer positions, referred to in PIDGIN as 1st, 2nd, and 3rd

respectively. The following pattern is a typical example of a simple pattern,

which looks for an auxiliary verb followed by an NP:

[" is verb, auxverb] [" is NP]

This pattern will be satisfied if 1st, the constituent in the first buffer

position, has the features verb and auxverb, and 2nd, the constituent in the

second buffer position, has the feature NP. This pattern does not impose any

conditions on 3rd; indeed, there need be no constituent in the third position

at all for this pattern to match. The predicate "is" tests that the node named

by its first argument is labelled with all the features in the feature list that

follows the predicate. "" within a description refers to the node that the

description refers to.

Since descriptions so often test for the positive presence of sets of

features, PIDGIN allows the notation "= (feature list>" in patterns as a

shorthand for "" is (feature list>", where (feature list> is either a single
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feature, or a list of features separated by commas.

A description that refers to C, the current active node, begins with

the label ""1 C" followed by a semi-colon. The following pattern will match

if C has the features S and ynquest (yes-no-question) and 1st has the feature

NP:

[=NP] [**C; =s, ynquest]

PIDGIN provides several other predicates besides "is" which test for

the presence or absence of sets of features of a node. These predicates are:

(node> is (all of) (feature list>

<node> is any of (feature list>

(node> is not (all of) (feature list>

<node> is none of <feature list>
OR

<node> is not any of (feature list>

Note that the last two predicates above are synonymous constructs; PIDGIN

tries to provide synonymous constructs whenever there seems to be more

than one simple natural way to express an operation.

In this figure and below, I will use angle brackets to indicate meta-

syntactic strings. Words surrounded by parentheses are optional; they make

be used or not, at the option of the grammar writer. Also, PIDGIN totally

ignores the tokens "the", "a" and "an"; these can be used freely in the

grammar to increase readability and will be used in examples below without

further comment.
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These predicates can be combined with logical operators to form

arbitrary boolean feature tests. A fairly complex test might look like:

B. 1 1 st is not an auxverb or 3rd is a verb.

The logical operations allowed, and their corresponding PIDGIN expressions

are:

conjunction: <predi> and (pred2> and ... and (predn>

OR (in patterns)

<predi>; (pred2>; .... ; <predn>

disjunction: <predi> or (pred2> or ... or (predn>

negation: it isn't true that (pred>

A precedence ordering is imposed on these operators to allow proper scoping

in most cases without parentheses. The precedence order is:

"it isn't true that" > "and" > "or" > ";".

Thus, for example B.2a below has as its meaning B.2b:

B.2a <p1> or <p2> and it isn't true that <p3>; <p5> or <p8>

B.2a ((p1> v (<p2> A -<p3>]) A (<p5> v <p6>)

The idea behind the semi-colon conjunctions is that semi-colons separate the

set of predications that make up each pattern description; all of these

predicates must be true to satisfy the description. Note that the "It isn't true

that" operator takes narrow scope. Thus B.3 is equivalent to B.1 above:

B.3 it isn't true that 1st is an auxverb or 3rd is a verb.

If the other sense is desired, parentheses can be used to specify the proper

scopes. Thus, to get the wide scope negation sense of B.3 one would say

it isn't true that (1st is an auxverb or 3rd is a verb).

While parentheses can be used to change the "natural" scopes of these
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operators, there really shouldn't be much need to do so. This is especially

true given that there are two operators for logical conjunction in patterns,

and the wide range of feature testing predicates.

To complete the subset of PIDGIN used in pattern descriptions, the

phrase below is a tree traversing operator which can be used to name the

sons of a node:

<type> of (fathernode>

This phrase returns as its value the node attached to <fathernode> as <type>,

or the rightmost node attached as (type> if there is more than one. This

construct is right associative, e.g. the two phrases below are equivalent:

the NOUN of the NP of the S above "

(the NOUN of (the NP of (the S above ")))

These expressions go up to the current S node and then down through the

NP attached to the S, i.e. through its subject, to the NOUN under the NP

node.

One last primitive that must be mentioned is the primitive "t",

which can be thought of as a predicate which is always true. A description

made up of only this primitive will match any node, but such a description

in a pattern will force the matcher to wait until some constituent fills the

corresponding buffer position before the pattern will match. This is

important because each of the parameters 1st, 2nd and 3rd has a value

within the action of a rule only if the pattern of that rule has a description
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for the corresponding buffer position.

A few example patterns should help to make the use of all of this

syntax clear.

Here is a pattern from a rule intended to do "passive-shift", to make

the subject of a passive sentence that sentence's functional object:

["" c; " is a VP; the AUX of the S above " is passive; m is not np-preposed]

This pattern looks at the current active node (i.e. C), the current cyclic node

(the S above "), and some of their daughters. It will match if C is a verb

phrase, if the auxiliary attached to the current S has the feature passive,

and C itself does not have the feature np-preposed (which is used to

indicate that "passive-shift" has already taken place). Note that PIDGIN

completely ignores the "a" in "" is a VP".

The following pattern will match against the first node in the

buffer if it has the feature pp, i.e. it is a prepositional phrase, and its

preposition is marked with the feature mof, indicating that the root of the

word under the prep node is "of":

[=pp; the prep of m is "of] [t]

This pattern will match any node in the second buffer position, but it will

not match until there is some node in the second buffer position. Unless

2nd was referenced by this pattern, the action of the rule of which this is

the pattern would be unable to examine this constituent.

The rule which starts infinitive complements without overt subjects
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(phrases like "to buy a car") after verbs which take such a complement, e.g.

the verb "want" as in "I want to buy a car", has the following pattern:

[="to] [=tnsless] ["" c; the verb of " is subj-less-inf-comp]

This pattern will match if 1st is the word "to", 2nd is a tenseless verb, and

C, implicitly assumed here to be a VP, has the feature subj-less-inf-comp,

indicating that it takes subject-less infinitive complements.

The Basic Pidgin Primitives - Actions

In this section, we present the central core of PIDGIN. This section

will include the PIDGIN primitives for creating and attaching nodes, and the

primitives for labelling parse nodes with features. It will also include parser

control primitives and PIDGIN conditional expressions. Pointers to PIDGIN

commands described at length in earlier chapters will be provided.

Actions On Nodes

The basic action commands in PIDGIN operate on nodes; these

commands create them, attach them, and pop them from the active node

stack.

The basic command for creating new parse nodes is:

Create a (new) <type> node (labelled (feature set>)

which creates a new node of type (type>, makes it the current active node,

and optionally labels it with the features in (feature set>. An alternative

way of saying the same thing is:

a new (type> node (labelled (feature set>)

This construct for node creation returns the name of the newly created node
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as its value. It can thus be used in composition with other primitive

operations such as attachment. Note that here the token "new" is obligatory

here.

One very useful grammatical operation is replacing "deleted" lexical

items. For example, the same general parsing rules can be made to apply In

both cases if "all the boys" can be transformed into "all of the boys" by

simply putting the "of" back after the word "all". To facilitate this sort of

operation, PIDGIN provides a composite command which inserts a node

dominating a particular lexical item into the buffer in a specified position:

Insert the word '<lexical item>' (into the buffer) (before (position>)

This command inserts a node dominating (lexical item> into the buffer before

<position>, which can be any of 1st, 2nd, or 3rd. If <position> is not

specified, then the node is inserted into the buffer before 1st. Thus, the

PIDGIN code to convert "all the" into "all of the", assuming all is Ist and "o'

2nd would be:

Insert the word 'of' into the buffer before 2nd.

Later rules will then process the input as if 'of' appeared in the original

input string.

To attach <node> to <fathernode>, PIDGIN provides the command:

Attach <node> to (fathernode> as (type>

For the time being, <type> can be considered to be a redundant specification

of the type of the new daughter node.

As a special case, the semantics of the form
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Attach a new <type> node ... to C as (type>

are defined to mean: Create a new <type> node, attach it to the old current

active node, and then make the new node the current active node. This

definition solves by fiat the problem of whether "C" refers to the newly

created node or the old current active node.

Once the parser is finished with a current active node, it must pop

the active node stack. The "drop" command does this:

Drop c (into the buffer).

If C is attached to some other node, this command simply pops C from the

active node stack. If C is not attached, this command pops it of f the active

node stack and drops it into the buffer in the 1st buffer position, shifting

the other buffered constituents one to the right. Note that the optional

phrase "into the buffer" carries no significance whatever to the PIDGIN reader.

It can be used for the sake of perspicuity and self-documentation, if the

grammar writer knows that the node about to be dropped is not attached to

another node.

One last operation on nodes that is most useful is the ability to test

if a node has a daughter of a given type. For instance, a grammar of

English must check to see if a NP has a determiner when checking the

person and number of the NP. If there is a determiner and it is "a" or "an",

then the head noun must also be singular if the NP is grammatical. In

PIDGIN, given that the NP in question is C, the predicate of this test will be

simply

there is a DET of C and it is 4a.
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The "there is" predicate is of form

there is (node>

where <node> is most likely to be a complex specification for a node. The

predicate is true if (node> exists and false otherwise. Since (node> is most

likely a long expression, PIDGIN provides the convenience that the token "it"

refers to the node found by the last "there is" predicate evaluated. If the last

"there is" test failed, then "it" has as its value the LISP atom NIL. All

predicates applied to NIL are false. (This device was borrowed from CGOL.)

Feature Manipulating Primitives

PIDGIN provides many primitives for manipulating features. The

most basic of these add, and, for the moment, remove given features.

The command

Label <node> with (the feature(s)) (feature set>

adds the features in (feature set> to the features of (node>. Note, by the

way, that the two clauses below are exactly equivalent:

Label a new S node with the features deci, major.

Create a new S node labelled decl, major.

Although I believe that the constraint that features never be removed can be

enforced, PIDGIN provides the command

Remove (the feature(s)) (feature set> from <node>

as a utility for grammar formulation.

A very common operation is "transferring" some general class of

features from a daughter node to its parent, labelling the parent with those
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features of the daughter node that are in a given set. To facilitate this

operation, PIDGIN provides the construct:

B.4 Transfer (the feature(s)) (feature set> from <nodel1> to (node2>.

This construct adds to the features of <node2> the intersection of the

features of <node1> and (feature set>. Thus, for example, one can shift the

singular-plural features ns, noun singular, and npl, noun plural, and the 1st,

2nd, and 3rd person features nip, n2p, and n3p from a NOUN to its parent

NP (which we'll assume is 1st) with the command:

Transfer the features ns, npl, n1p, n2p, n3p from the NOUN of 1st to 1st.

Besides specifying feature lists literally, several operations exist for

manipulating feature lists themselves. These operations allow the grammar to

access the feature set of a particular node, and to take the meet of two

separate feature lists.

To directly access the features of a node, PIDGIN provides the phrase:

the features of <node>.

which returns the feature set of <node>. To set the features of a node, one

uses the command:

Set the features of <node> to (feature set>.

To take the intersection of two feature sets, one uses the phrase:

the meet of (feature set> and (feature set>.

PIDGIN allows the use of "meet" and "feature" phrases everywhere it allows

literal feature sets. Thus, B.4 above can be seen as an abbreviation for

Label (node2> with the meet of the features of <node1I> and

(feature set>.
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Conditionals

While PIDGIN provides no control primitives allowing iteration

within rules, or calls to subroutines, it does allow conditional expressions.

The basic form of a conditional is

if <boolean expression> then (complex action> (else <complex

action>).

The <boolean expression> can be made up of any logical composition of

predicates. The (complex action>s can be either 1) primitive actions, 2)

conditionals (allowing for nested conditionals) or 3) a sequence of complex

actions separated by semi-colons i.e.

<complex action 1>; (complex action2>;.....;<complex actionn>.

Such a complex action sequence (a LISP "PROGN") is executed, as would be

expected, from left to right (or, if you prefer, top to bottom).

It is important to note that semi-colons have a different meaning in

actions than in patterns. Semi-colons in patterns have the sense of logical

conjunction. In actions, they separate the primitive actions of complex action

sequences and do not have this logical sense. They cannot be used in actions

to make up complex predicates.

Given that there can be nested conditionals, i.e. conditionals of the

form

If <pred1> then if <pred2> then <actioni> else <action2>,

there must be rules for scoping the nested conditionals. As is commonly

done, "else" clauses are scoped by the nearest "if", thus the phrase above is
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equivalent to:

If <predi> then (if <pred2> then <action1> else <action2>))j.

Similarly, complex action sequences are scoped to the nearest conditional.

Thus, B.5.a below means the same as B.5.b but not B.5.c.

B.5.a If <p1> then <acti>; if <p2> then <act3>; <act4>.

B.5.b If <p1> then (acti); (if <p2> then <act3>; <act4>).

B.5.c If <p1> then <acti>; (if (p2> then (act3>); <act4>.

Parentheses, as used in B.5.a-c, are legal here as elsewhere to specify scope.

However, their use is discouraged; the philosophy of PIDGIN is to encourage

the user to write code that reads like English.

Parser Control

In this section I will present the PIDGIN primitives which can be

used in grammar rules to control the parser itself. Two of these primitives

activate and deactivate packets, a third is used to indicate that the parse is

finished, and a fourth provides a very limited inter-rule control facility.

The two PIDGIN commands to activate and deactivate packets are, as

one would expect,

Activate <packet list>

Deactivate <packet list>.

In each of these two commands <packet list> may be a single packet name or

a list of packet names separated by commas.

When a grammar rule action concludes that the parse is complete

upon hitting some sort of final punctuation character, it signals the grammar

357 PIDGIN



Appendix B

interpreter with the command

The parse is finished.

Executing this command sets a flag which the grammar interpreter checks

after each rule action is finished. If the flag is set, the interpreter returns

control to whatever higher level process originally called the grammar

interpreter. Note that the parse does not terminate immediately upon

execution of this command, but rather after the rule it is part of has

finished.

A rule can determine its own successor, circumventing the pattern

matching process, with the command

Run (rule> next.

This command sets another flag to the name of the rule to be run next. The

grammar interpreter checks this flag after the completion of each rule. If

the flag is set to a rule name, the grammar interpreter runs that rule instead

of pattern matching to find out what rule to run next. Only those

parameters of 1st, 2nd, and 3rd which had values within the action of the

calling rule have values in the action of the called rule (remembering that

each of these parameters normally only has a value within a rule if there is

a corresponding description in the pattern of that rule).

Note that this mechanism is essentially a device for abbreviating

grammar rules and allowing the grammar writer to capture generalizations.

This mechanism allows the grammar writer to abbreviate several rules that

end with the same code by making the common code a separate rule and

having each of the original rules run it after they are done. Empirically, it
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seems that there is usually independent motivation for the common code to

be a rule in its own right, so forcing the common code to be a separate rule

rather than using some sort of macro expansion mechanism seems to be

appropriate. In either case, since this mechanism is purely abbreviatory, it

adds no real power to the form of grammar rules.

Comments

PIDGIN allows grammar writers to add comments anywhere within

rule actions and patterns. Comments in PIDGIN consist of any text

surrounded by "W"s. (To include a "%" in a comment, type two of them.) It

is perfectly legal for a single comment to run on for several lines.

Actions

Grammar rule actions are made up of a sequence of instructions,

where each instruction is either one of the primitive commands discussed

above or an "if..then...else..." conditional expression. Each instruction in an

action ends with a period. These instructions are executed sequentially from

first to last; each action is thus equivalent to a LISP "PROGN".

How to Throw In the Kitchen Sink

In a natural language front end for a large application- oriented

system, it is often convenient to cross the line between syntax and semantics

and embed some low level semantic processing in the grammar itself. To

allow this to be done where it may be useful, PIDGIN includes some

primitives to set and fetch registers, and to allow arbitrary LISP code to be
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embedded in PIDGIN rules. It should be stressed that this facility should not

be used anywhere in the grammar in any way that affects the resulting

parse. It should be possible to isolate all PIDGIN code that is "'semantic" and

remove it from the grammar without affecting the overall behavior of the

parser for any input in any way. All uses of the following primitives

should be restricted to such "semantic" code.

One can embed pure LISP code inside a grammar rule by simply

prefixing any S-expression with "!". To include PIDGIN code inside the LISP

code, simply surround the PIDGIN code with "(}". An example of such

mixed code is:

If 1st is a vp then !(PRINT (the verb of 1st)).

PIDGIN also provides a means for calling arbitrary LISP functions

without leaving the PIDGIN reader. To call a LISP function, simply use the

"FORTRAN" function syntax. Thus, the LISP code

(plus 3 4 5)

is equivalent to the PIDGIN code

plus(3, 4, 5)

Registers

While the grammar model does not formally include such a

mechanism, it is possible to place and retrieve registers on parse nodes.

PIDGIN provides primitives for setting and retrieving the values of registers.

The command to set a register is

Set the (register> of <node> to <value>.
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The phrase whose value is the contents of a register is

the <register> register of <node>.

Traces

See Chapter 5 for a description of the following commands:

Set the binding of <node> to <controlling node>.

the binding of (node>

Attention Shifting

See Chapter 8 for a description of the following command:

Restore the buffer.
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APPENDIX C

GRAMMAR RULES REFERENCED

IN THE TEXT

This appendix is a compendium of all the rules which are invoked

in the examples of Chapters 4 and 5. The rules are organized by packets, and

the packets are organized approximately in the order that they are activated

during the processing of a sentence.

(rule INITIAL-RULE in nowhere
[t] -- >
Create a new s node.
!(setq s c).
Activate cpool, ss-start.)

SS-START

(rule MAJOR-DECL-S in ss-start
(=np] [=verb] -- >
Label c s, decl, major.
Deactivate ss-start. Activate parse-subj.)

(rule YES-NO-Q in ss-start
[=auxverb] [=np] -- >
Label c s, quest, ynquest, major.
Deactivate ss-start. Activate parse-subj.)

(rule IMPERATIVE in ss-start
[=tnsless] -- >
Label c s. imper, major.
Insert the word 'you' into the buffer.
Deactivate ss-start. Activate parse-subj.)
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PARSE-SUBJ

(rule UNMARKED-ORDER in parse-subj
[=np] [=verb] -- >
Attach 1st to c as np.
Deactivate parse-subj.
Activate parse-aux.)

(rule AUX-INVERSION in parse-subj
[=auxverb] [=np] -- >
Attach 2nd to c as np.
Deactivate parse-subj. Activate parse-aux.)

PARSE-AUX

(rule START-AUX priority: 10. in parse-aux
[=verb] -- >
Create a new aux node.
Label C with the meet of the features of 1st and vspl, vis,

v+13s, vpl+2s, v-3s, v3s.
%(The above features are "person/number codes", e.g. "vpl+zts"
means that this verb goes with any plural or 2nd person singular
np as subject. The verb "are" has this feature.)%
Label C with the meet of the features of 1st and pres,

past, future, tnsless.
Activate build-aux.)

(rule TO-INFINITIVE priority: 10. in parse-aux
[=Kto, auxverb] [=tnsless] -- >
Label a new aux node inf.
Attach 1st to c as to.
Activate build-aux.}

(rule AUX-ATTACH priority: 10. in parse-aux
(=aux ]-->
Attach 1st to c as aux.
Activate parse-vp. Deactivate parse-aux.)
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BUILD-AUX

(rule PERFECTIVE priority: 10. in build-aux

[=*have] [=en] -- > Attach 1st to c as perf. Label c perf.)

(rule PROGRESSIVE priority: 10. in build-aux

[=be] [=ing] -- > Attach 1st to c as prog. Label c prog.)

(rule PASSIVE-AUX priority: 10. in build-aux
[='be] [=en] -- > Attach 1st to c as passive. Label c passive.)

(rule MODAL priority: 10. in build-aux
[=modal] [=tnsless] -- > Attach 1st to c as modal. Label c modal.)

(rule DO-SUPPORT priority: 10. in build-aux
[=do] [=tnsless] -- > Attach 1st to c as do.)

(rule AUX-COMPLETE priority: 15. in build-aux
[t] -- > Drop c into the buffer.)

PARSE-VP

(rule MVB in parse-vp
[=verb] -- >
Deactivate parse-vp.
If c is major then activate ss-final else
If c is sec then activate emb-s-final.
Attach a new vp node to c as vp.
Attach 1st to c %which is now the vp% as verb.
Activate subj-verb, cpool.)
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SUBJ-VERB

(rule SUBJ-VERB priority: 15. in subj-verb
[t] -- >
%The next line really belongs in the case frame demons.
It appears here for reasons having to do with implementation
peculiarities and will not be discussed in the text.%
If c is not np-preposed

and there is a np of the s above c then
it fills the subj slot of the cf of c.

%Activate packets to parse objects and complements.%
If the verb of c is inf-obj then activate inf-comp.
If the verb of c is to-less-inf-obj then activate to-less-inf-comp.
If the verb of c is that-obj then activate that-comp.
If there is a wh-comp of the s above c

and it is not utilized then activate wh-vp
else If the s above c is major then activate ss-vp
else activate embedded-s-vp.

Deactivate subj-verb.)

(rule PASSIVE in subj-verb
[" c; the aux of the s above is passive;

the s above K is not np-preposed] ->

Label the s above c np-preposed.
Create a new np node labelled trace.
Set the binding of c to the np of the s above c.
Drop c.)

(rule SEEMS in subj-verb
[=Xto] [=tnsless]
[.1 c; the verb of is no-subj;

the s above 2 is not np-preposed] -- >
%This simple form won't handle "John seems happy."%
Run passive next.)
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SS-VP

(rule OBJECTS in ss-vp
[=np] -- >
Attach 1st to c as np.)

(rule VP-DONE priority: 20 in ss-vp
[t] -- > Drop c.)

(rule PP-UNDER-VP-1 in ss-vp
=p] -- >

If 1st fits a pp slot of the cf of c
then attach 1st to c as pp

else run vp-done next.)

INF-COMP

(rule IN F-S-START1 priority: 5. in inf-comp
[=np] [=*toauxverb] [=tnsless] -- >
Label a new s node sec, inf-s.
Attach 1st to c as np.
Activate cpool, parse-aux.)

EMBEDDED-S-VP

(rule OBJ-IN-EMBEDDED-S in embedded-s-Vp
f=np] -- >
If 1st fits an obj slot of the cf of c

then attach 1st to c as ap
else run embedded-vp-done next.)

SS-FINAL

(rule S-DONE in ss-final
[=finalpunc] -- >
Attach 1st to c as finalpunc.
%The next line is really part of the cf mechanism.%
Finalize the cf of s.
Parse is finished.)
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APPENDIX D

THE CURRENT GRAMMAR

This appendix documents the current grammar written for PARSIFAL.

This grammar has served two purposes; it has served as a testbed for

grammar rule development, and it is also the grammar used by the natural

language understanding system which serves as front end for the MIT AI Lab

Personal Assistant Project. The NP-level rules in this grammar typically were

written for the particular needs of the Personal Assistant, and for these rules

I claim little generality; the clause-level rules, on the other hand, typically

attempt to capture significant linguistic generalizations. Indeed, wherever a

generalization has been missed, the grammar will typically so note.

I make no claims for the size of this grammar; less than two

months work has gone into the coding of this particular set of rules. It

should be noted, however, that much of this grammar derives from an earlier

grammar written for an earlier parser of the same sort. This grammar was

the product of approximately four months effort. Much of the grammar for

this earlier parser has yet to be recoded; it has not been relevant to the PA

project.

Special effort has gone into assuring that the clause-level grammar

is robust; I have attempted to test the grammar on fairly complex cases

involving the interaction of many different rules. The first section of this

appendix includes an example set of sentences that the parser can handle; it
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should be clear to the reader exactly what phenomena each sentence is

attempting to test.

A note about the running time of this parser is in order. For this

grammar, running in MACLISP [Moon 74] on the KA-lO version of the PDP-

10 computer, these sentences take less then .1 sec/word to parse, including

the time taken by the case frame interpreter documented in Appendix D. The

reader should note that because the parser operates strictly deterministically,

the time taken to parse any given sentence handled by this grammar is

approximately a linear function of the number of words in the sentence.
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Some Example Sentences
These sentences were all successfully parsed by the grammar

included in the next section. The emphasis in this set of examples is to
show that a few complex linguistic phenomena are handled robustly by the
parser.

i told that boy that boys should do it.
the jar seems broken.
there seems to be a jar broken.
i wanted john to do it.
i want to do it.
i persuaded john to do it.
there seems to have been a meeting scheduled for friday.
schedule a meeting for friday.
is there a meeting scheduled for friday?
does there seem to be a meeting scheduled for friday?
a meeting seems to have been scheduled for Friday.
i told the boy that i saw sue.
i told sue you would schedule the meeting.
i told the girl that you would schedule the meeting.
the boy who wanted to meet you scheduled the meeting.
the boy who met you scheduled the meeting.
the boy who you met scheduled the meeting.
the boy you met scheduled the meeting.
who did john see?
who broke the jar?
what did bob give to sue?
who did bob give the book?
who did bob give the book to?
what did bob give to sue?
what did bob give sue?
i promised john to do it.
who did you say that bill told?
you promised to give the book to john.
who did you promise to give the book to?
who did you promise to schedule the meeting?
who did you say scheduled the meeting?
who did you persuade to do it?
what did you give sue yesterday?
who did you give the book yesterday?
who did you ask to schedule the meeting?
who do you want to give a book to tomorrow?
who did you want to give a book to sue?
i gave the boy who you wanted to give the books to three books.
who did you promise to give the book to tomorrow?
who did you promise to give the book to sue tomorrow?
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The Grammar as of 7/77

;;/THE PARSER, BY CONVENTION, INITIALLY CALLS THE RULE INITAL-RULE.Z

IRULE INITIAL-RULE IN NOWHERE
[t] -- >

Create a new s node.
'(setq s c).
Activate cpool, ss-start.1

;;/R RULE TO GRAB SINGLE NPS AS UTTERANCESX

(RULE NP-UTTERANCE IN SS-START
E=np] [ufinalpunci -- >
Label c np-utterance.
Attach 1st to cas np.
Attach "nd to C as finalpunC.
The parse is finished.(

(RULE PP-UTTERANCE IN SS-START
[rpp [= finalpuncl -- >

Label c pp-utterance.
Attach Ist to c as pp.
Attach 2nd to c as fanalpunc.
The parse is finished.(

;;/RULES TO INITIATE MAJOR CLAUSES.1
(Comment Initiate major clauses)
RULE fMAJOR-DECL-S IN SS-START
kinp] [=erb) -- >

Label c deci, major.
Deactivate ss-start. Activate parse-subj.l

(RULE YES-ND-Q IN SS-START
[=auxverb] [znp -- >
Label c quest, ynquest, major.
Deactivate ss-start. Activate parse-subj.l

IRULE IMPERATIVE IN SS-START
(mtnsless] -- >

Label c imper, major.
Insert the word 'you' into the buffer.
Deacti~ate ss-start. Activate parse-subj.l

RULE HAVE-ClAD PRIORITY: 5 IN SS-START
[=shave, tnsless] [=np] [t) -- >

/If can't prove it's not a yes-no-q then assume it is.Z
If 2nd is ns, n3p or 3rd is not verb or 3rd is Insless

then run imperative next else
run yes-no-q next.l

RULE WH-QUEST PRIORITY: 5 IN SS-START
[rwh] [=verb] -- >

Label c major, quest, wh-quest.
Attach Ist to c as whcomp.
If 1s t is a pp then label c pp-quest else
If Ist is a np then label c np-quest.
Deactivate ss-start. Activate parse-subj, wh-pool.I
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(comment Subject parsing)
(RULE UNMARKED-ORDER IN PARSE-SUBJ
[.np [=verb] -- >

Attach 1st to c as np.
Deactivate parse-subj. Activate parse-aux.

(RULE AUX-INVERSION IN PARSE-SUBJ
[mauxverbi (unpi -- P

Attach 2nd to c as np.
Deactivate parse-subj. Activate parse-aux.i

(RULE SUBJ-QUEST' PRIORITY: 5. IN PARSE-SUBJ
Everbi [s* c; -Wis np-quest] [unp] [t] -- o

If ist is not auxverb or 3rd is not verb
then create a new np node labelled trace,

set the binding of c to wh-comp;
drop c;
label wh-comp util :ed

else run aux-inversion next.1
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(COMMENT RULES FOR BUILDING AUXILIARIES)
;;/RULES FOR BUILDING AUXILIARIES/
;;/predicate adjectives and propositions should be parsed as verbsZ

IRULE STARTAUX IN PARSE-AUX
[mverbi -- >

Create a new aux node.
Transfer vspl, vis, v+13s, vpl+2s, v-3s, v3s from let to c.
I(The above features are "person/number codes", e.g. "vpl+2."
means that this verb goes with any plural or 2nd person singular
np as subject. The verb "are" has this feature.)Z
Transfer pres, past, future, tnsless from 1st to c.
Activate buid-aux, cpool.l

RULE TO-INFINITIVE IN PARSE-AUX
[rtto, auxerb] [=tnsless) --

Label a new aux node inf.
Attach Ist to c as to.
Activate build-aux, cpool.l

RULE AUX-ATTACH TN PARSE-AUX
(zaux) -- >

At tach Ist to c as aux.
Act ate parse-vp. Deactivate parse-aux.l

IRULE PERFECTIVE IN BUILD-AUX
tsthave] eer.i -- > Attach 1st to c as perf. Label c perf.l

(RULE PRORESSIVE IN BUILD-AUX
[cbej [=ingi -- > Attach Ist to c as prog. Label c prog.l

IPULE PASSIVE-AUX IN BUILD-AUX
[m:bej [men] -- > Attach 1st to c as passive. Label 2nd passive.I

(RULE MODAL IN BUILD-AUX
[Emodal) [=tnsless] -- > Attach 1st to c as modal. Label c modal.l

RULE FUTURE IN BUILO-AUX
(atwillj t =tnsiess] -- > Attach Ist to c as will. Label c future.I

RULE 00-SUPPORT IN BUILD-AUX
[=:;do] [=tnsless] -- > Attach 1st to c as do.1

IRULE BE-PRED IN BUILD-AUX
[=:be] [z is any of prep, adj; * is not part] -- ,
Attach 1st to c as copula.
Label c copula.
Label 2nd serb, pred-verb.1

RULE AUX-CJ"PLETE PRIORITY: 15. IN BUILD-AUX
[t] -- > Orop c into the buffer.l

(RULE THERE IN BUILD-RUX
[E:be] [=npi
[*= c; the noun of the nbar of the binding of the np of the current s is etherel --

Label the current s existential.
Attach 2nd to the current s as np.l
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(Comment Verb processing)

(RULE main-verb IN PARSE-VP
[uverbi -- >

/Set up state of S node/
Deactivate parse-vp.
If c is major then activate ss-final else
If c is sec then activate emb-s-final.

ZAttach VP and V.J
Attach a new vp node to c as vp.
Attach 1st to c /which is now the vpZ as verb.
Activate cpool.

7fActvate packets to parse objects and complements.Z
If there is a verb of c and it is passive

then activate passive; run passive next.
ZThe following is close to an explicit system of verb types.
If it is inf-obj then

if it is to-less-inf-obj then activate to-less-inf-comp andthen
if it is to-be-less-inf-obj then activate to-be-less-inf-comp andthen
if it is 2-obj-inf-obj then activate 2-obj-inf-comp

else activate inf-comp;
if it is subj-less-inf-obj then activate subj-less-inf-comp alse
if it is no-subj then activate no-subj.

If it is that-obj then activate that-comp.

/Activate correct packet for regular objects.Z
If there is a wh-comp and it is not utilized

then activate wh-vp else
If the current s is major then activate si-vp else
Activate embedded-s-vp.I

IATTACHMENT CRULE VP-VERB VP OVER VERB
Associate a now case frame with the upper node.
Associate the case frame of the upper node with the * above upper.
The aux of the s above upper fills the spec slot of upper.
The lower node fills the pred slot of upper.

If the lower node is none of no-subj, passive
and there is a binding of the np of the s above upper
then it fills the subj slot of upper.I

IRULE PREOP IN parse-verb
( is any of pp /more to come/I -- >
Deactivate parse-verb.
If c is major then activate ss-final else
If c is sec then activate emb-s-final.
Label 1st predp.
Attach 1st to c as predp.l

(RULE PASSIVE PRIORITY: 5 IN PASSIVE
ZActivated by MVB if verb is labelled passive.Z
t -- >

Label the current s np-proposed.
Create a new np node labelled trace, not-modifiable.
Set the binding of c to the np of the current s.
Drop c.
Deactivate passive.I

IRULE SEEMS IN NO-SUBJ
Ceeto] (minsless) --

Deactivate no-subj.
Run passive next.1
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(Comment Parse simple objects)
;;'Parsing the objects of simple sentencesZ

(RULE OBJECTS IN SS-VP

[unp) -- >
At tach Ist to c as np.I

IRULE VP-DONE PRIORITY: 20 IN SS-VP
[t) -- > Drop c.1

IRULE S-DONE IN SS-FINAL
[sfinalpuncJ -- >

Attach Ist to c as finalpunc.
Finalize the cf of c.
Parse is finished.l

;;/Parsing the objects of embedded clauses.%

IRULE OBJ-IN-EBEDDED-S IN EMBEDDED-S-VP
[npl -- >

If Ist fits an obj slot of the cf of c
then attach ist to c as np

else run embedded-vp-done next.l

IATTACHMENT CRULE VP-NP VP OVER NP
The lower node fills an obj slot of the upper.
/With no-subj verbs, can't know that the subject really is the subject until
we see the complement.!
If the .erb of the upper node is no-subj

and the s above the upper node is not np-preposed
then the np of the s above the upper node

fills the subj slot of upper.
/We can bind delta subjects and finalize the case frames of infinitive
clauses only after they are attached to the clause, allowing all the
wh-placement stuff to have done whatever it will do.
See the rules on "Infinites with delta subjects for more on this.Z
If there is an s of lower and the np of it is delta then

if the verb of the upper node is obj-binds-delta then
set the binding of the np of the s of lower

to the indirect object of upper
elso

if the verb of the upper node is subj-binds-delta
or
the verb of the upper node is subj-less-inf-obj
and it isn't true that

there is a binding of the np of the s of the lower node
then set the binding of the np of the s of lower

to the np of the current s.
If there is an s of lower and the np of it is delta then

the np of the s of lower f ills the subj slot of the s of lower;
finalize the cf of the s of lower.I

IRULE EMBEDDED-VP-OONE PRIORITY: 15. IN EMBEDE-S-VP
[t] -- >

Drop c.
Activate embedded-s-f inal.l

RULE EMBEDOED-S-OONE PRIORITY: 28 IN EMBEDDED-S-FINAL
It] -- >

Finalize the cf of c.
Drop c.l
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;;Rules to start relative clauses
(Comment Relative clauses)

IRULE WH-RELATIVE-CLAUSE IN NP-COMPLETE
Erelpron-npl [t] -- >

Label c modified.
Attach a new s node labelled sec, relative to C as s.
Activate cpool, parse-subj, wh-pool.
/Note that the node is attached as "whcomp"; "wh-comp" refers to
the special wh register./
Attach 1st to c as whcomp.
Set the binding of 1st to the np above c.
If 2nd is a verb then

create a new np node labelled trace, not-modifiable;
Set the binding of c to wh-comp;
Label the binding of c utilized;
Orop c into the buffer.I

RULE REDUCED-RELATIVE IN NP-COMPLETE
[znp; c is not relpron-np][averb] -- >

Insert the word 'wh-' into the buffer before lst.1

IRULE WHICH-DIAGN IN CPOOL
Cawhich; * is not any of quant, relpron) -o

If the np above c is not modified then
label Ist pronoun, relpron, wh
else label 1st quant, ngstart, ns, npl, wh.l

IRULE WHAT-DIAG priority: 15 IN npool
[=:whatl it] -- >
iThis won't worK for cleft sentences: what little fish eat is little worms
(but are these garden paths?)'
If 2nd is nqstart and 2nd is not det

then label Ist det, ns, npl, n3p, wh;
activate parse-det
else label Ist pronoun, relpron, wh.i
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(comment The wh-comp mechanism of the grammar interpreter)
;This impiliments a mechanism that is different in efficiency, but otherwise
;exactly equivalent to the mechanism documented in chapter 7. I use a
;register to cache the wh-comp. It can be considered an implimentation of
; that mechanism.

ATTRCHMENT CRULE S-WHCOMP S OVER WHCOMP
rThis crule and the next should really be a part of the grammar
interpreter, hardwired and universal. I put them here so that
they are clearly visible. The effect is exactly equivalent.
This rule primes the wh-comp mechanism./
Set the :wh-comp of the upper node to the lower node.)

iCREATION CRULE S-CREATE S
'This is ugly and adhoc. It simply embodies a form of
the complex NP constraint, which is adhoc and ugly.
That this rule should be a putative universal doesn't help much.
The rule: scan up the active node stack until you come to either an NP
or an S. If an NP, that's it. If an S, copy its wh-comp. This IS
really a piece of the interpreter, and must be written in LISP.Z

Set the :wh-comp of c to find-wh-comp (the node above c)l

(defun find-wh-comp (node-variable)
;Now into PICIN
1if there is not a node-variable or

the node-variable is an np then nil else
if the node-'ar'able is an S

then tihe :rwh-comp register of the node-variable else find-wh-comp
(the node above node-variable)l)
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(comment WK placement)

;These rules differ somewhat from those discussed in chapter 18, mainly

;because the semantic mechanism that is actually implemented is weaker

;than that assumed in chapter 13. For an explanation of how the 'prefer

;tes t really works, see appendix E.

IRULE WH-WITH-END-NEXT PRIORITY: IS. IN wh-vp
t -->

If the greatest possible number of objects of c is equal to 8
or

it isn't true that the wh-comp fits an obj slot of the ci of the current s

and the verb of c is not comp-obj
then run too-many-rips next

else run create-wh-trace next.)

IRULE WH-WITH-NP-NEXT IN WH-VP
[anp] -- >

7This rule decides whether or not to use the wh-comp if there is an NP

next. Note that if the NP is followed by a PP, then a different rule

will run. Running an object rule next indicates that the wh-comp is not

to be used, while running creJte-wh-trace indicates the wh-comp is to be
used./

If the greatest possible number of objects of c is less than 2
/i.e. the current verb can only take I objectZ
then if the current s is major then run objects next

else run obj-in-embedded-5 next

else
7There are 2 object slots available; we'll use both.Z

The number of objects of c will be 2;

If semantics prefers 1st fil ling an obj slot of c somewhat
better than wh-comp filling an obj slot of c then

run objects next else

If semantics prefers the wh-comp filling an obj slot of c much
better than 1st filling an obj slot of c then
label the current s slightly-bad;

run create-wh-trace next else

If semantics prefers 1st filling an obj slot of c no

better than the wh-comp filling an obj slot of c then
label the current s slightly-bad;
run objects next else

label the current s very-bad;

run create-wh-trace next.)

iRULE WH-WITH-NP-PP-NEXT PRIORITY: 7 IN UW-VP
[enpi [prep) -- >

If the greatest possible number of objects of c is greater than I
and a prepositional phrase of 2nd and the wh-comp fits a pp slot of c
or

the greatest possible number of objects of C is equal to I

and a prepositional phrase of 2nd and the wh-comp fits a pp slot of the current s
then run objects next else

If the greatest possible number of objects of c is greater than I
then run wh-with-np-next next else

Run too-many-nps next.)

I
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IRULE WH-WITH-PP-NEXT PRIORITY: 5 IN WK-VP
(=prep] [=np] -- >

If a prepositional phrase of 1st and 2nd fits a pp slot of C
IThe syntactic preference is for simple pps.%

then run pp next else
If it isn't true that

a prepositional phrase of Ist and the wh-comp fits a pp slet of c
/i.e it's true that the wh-comp can't serve as the object of the prepZ
then if greatest possible number of objects of c is greater than I

/i.e. if the wh-comp can serve as an object then%
then run create-wh-trace next
else 'Hopefully the trace is a time wordZ

run too-many-nps next

else
If the lowest possible number of objects of c is greater than I

/i.e. this .erb MUST take an objectZ
then run create-wh-trace next else
run wh-pp-build nextl

(RULE WH-PP-BUILO IN CPOOL
[sprep] [: is not npl
Cz: c; there is a wh-comp and it is not utilized] -
Attach Ist to a new pp node as prep.
Attach a new np node labelled trace to C as np.
Set the b;nding of c to the wh-comp.
Label the wh-comp utilized.
Droo c 'i.e. the trace/.
Drop c /i.e. the pp/.l

RULE WH-WITH-PP-2 IN CPOOL
[=prep] [=npl

C : c; there is a wh-comp and it is not utilized] -
If c is any of nbar, np and

a preposi iona| phrase of 1st and 2nd fits a pp slet of c
then run pp next /building the simple ppZ
e Ise

If a prepositional phrase of ist and the wh-comp fits a pp slot of c
then run wh-pp-build next 7building a pp with the wh-comp% else

7the current constituent is donet
If c is an nbar then run nbar-done next else
If c is an np then run np-done next else
run pp next.l

fRULE WH-RESOLVED PRIORITY: 5 IN wh-vp
[: c; the wn-comp is utilized I
Deactivate wh-vp.

If the current s is major
then activate ss-,p
else activate embedded-s-vp.l

RULE TOO-nRNY-NPS PRIORITY: 15 IN WP-VP
lcnpl
[C: c; the greates: possible number of objects of c is less than 21 -
%This is just a start, clearly/
if there is not a whcomp of the current s

[i.e the wh-comp originated from higher up
then run wh-resolved next
else I(warn 1. too-many-nps loses).J

RULE CREATE-4H-TRACE PRIORITY: 14 IN WH-POOL
T -- >

Create a new np node labelled trace, not-modifiable.
Set the binding of c to the wh-comp.
LabeI the wh-comp utilized.
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Drop c into the buffer.

IRULE WH-RESOLVED-1 PRIORITY: S IN WH-POOL
C t c; the wh-comp as utilized] --

Deactivate wh-pool.1
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;;Rules for that clauses
(comment That clauses)

RULE THAT-S-START PRIORITY: 5 IN CPOOL
[aComp, -that] Inp) [nzerb] -- >
/Handles the marked case;always active.Z
LabeI a new s node sac, comp-s, that-s.
Attach 1st to c as comp.
Attach 2nd to c as np.
Activate cpool, parse-aux.l

(RULE THAT-S-START-1 PRIORITY: S. IN THAT-COMP
tanpi tsverb] -- >

Label a new s node sac, camp-s, that-s.
Attach Ist to c as np.
Activate cpool, parse-aux.l

(RULE CCMP-TO-NP IN CPOOL
(.C0MP-SJ -- >

Attach 1st to a new NP node labelled comp-np, not-modifiable as s.
Orop c into the ouffer.)

(RULE that-diag-1 in cpool
[=:that; : is none of comp, dat, pronoun) [unp2 ->

JTh:s rule diagnoses whether "that' is a camp or a determiner or a
re tat iwe pronoun. This rule will misdiagnose
aThat deer ate eerything in my garden surprised me."
but then again so did you.
T he diagnostic is: if "that" must be a det, it is.
If c is nbar, i.e. we're under an np, assume "thate Starts a relative clause.Z
If there is not a det of 2nd

and there is not a qp of 2nd
and the nbar of 2nd is none of npl, massn
and 2nd is not not-modifiable

then attach 1st to 2nd as det;
label Ist dat, ns

else I f c is a nbar then label 1st pronoun, reIpron
else label Ist comrp.l

(RULE THAT-OIAC-2 PRIORITY: 13 IN CPOOL
/If there's nothing else to do with that, it's a pronoun.%
Csvthat; c is not pronoun) -- >

Label Ist pronoun.1

IRULE THAT-OIAC-3 PRIORITY: 5 IN NBAR-COMPLETE
[&.that; : is none of pronoun, comp] [anp]

[:* c; the verb of the vp of the current s is that-obj;
the lowest possible number of objects of the current a is equal to 21

Label 1st comp.1
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;;/Rules to do infinitive clauses./
(Comment Infinitive clauses)

IRULE TO-DIAG PRIORITY: S. IN INF-COMP, 2-OBJ-INF-COMP
(*to, auxverb, prep] (utnsless]
C c; there is a wh-comp and it is not utilized] --

7Zoes this really belong in this packet or in Cpool?
Should the fact that an inf-comp is expected serve as evidence?%
if a pp of Ist and wh-comp

fits a pp slot of the cf of the current a
then remove the feature auxverb from ist
else ren-ve the feature prep from Ist.l

(RULE INF-S-START PRIORITY: S. IN CPOOL
[==for] (unpl (uCto] -- >

YHandles the marked case; always active%
Label a new s node sec, comp-s, inf-s.
Attach 1st to c as comp.
Attach 2nd to c as np.
Rctivate cpool, parse-aux.l

IRULE INF-S-START1 PRIORITY: S. IN INF-COMP
lThe COMP can only be dropped if the complement is expected.Z
[znp] [:to,auxverb) [utnsless] -- >

Label a new s node sec, comp-s, inf-s.
Attach 1st to c as np.
Activate cpool, parse-aux.I

IRULE INSERT-TO IN TO-LESS-INF-COMP
TThis rule and INSERT-TO-BE must be in different packets
- consider "help" vs. "seems"Z

(=np] [utnsless] -- >

Insert the word 'to' into the buffer before 2nd.1

(RULE INSERT-TO-1 IN TO-LESS-INF-COMP
ZI've clearly missed a generalization somewhere.%

[utnsless) ->

Insert the word 'to' into the buffer before ist.i

(RULE INSERT-TO-BE IN TO-BE-LESS-INF-COMP
[anp] (* is any of en, adjil --

Ywon't work for adjectives until interpreter chanqedZ
Insert the word 'be' into the buffer before 2nd.
Insert the word 'to' into the buffer before 2nd.l

(RULE INSERT-TO-BE-1 IN TO-BE-LESS- INF-COMP
(* is any of en, adjl -- >

ZAgain, I've missed the generalization
Insert the word 'be' into the buffer before lst.
Insert the word 'to' into the buffer before Ist.1
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(comment Infinitives with delta subjects)

IRULE CREATE-DELTA-SUBJ IN 2-0BJ-INF-CMP
(ttto, auxverb] [=tnsless) -- >
ZThis rule handles verbs like promise and persuade. The analysis
I'm adopting assumes that the subject of the complement 1- a delta
(i.e. a "base-generated" trace), which is not bound by syntactic rules,
but by later semantic processing. The binding is done in the crule
vp-np/
Create an np node labelled trace, not-modifiable, delta.

Drop c into the buffer.
Deactivate 2-obj-inf-comp. Activate inf-comp.1

IRULE create-del ta-subj-1 IN SUBJ-LESS-INF-COMP
(uto, auxverb] (=tnsless] -- >
/Handles verbs ilke "want" that may have an explicit subject
or may have a delta subject. These cases are hard
if they interact with wh-movement.Z
Create an np node labelled trace, not-modifiable.
Drop c into the buffer.1

[RULE SUBJECT-IS-DELTA-DIAG PRIORITY: 15. IN EMBEDDED-S-FINAL
c*c c; the np of c is trace; the np of c is not delta;

there is not a binding of the np of ci --.

ZThis rule finishes the analysis of embedded clauses of verbs like
"want", deciding whether the subject is a bound trace or a delta.Z
If there is a wh-comp and it is not utilized

then set the binding of the np of c to wh-comp;
/This next belongs in the case mechanism, but its simpler here.
Life would be simpler if "want" took 2 objects.Z
the np of c fIlls the subj slot of the cf of c;
label the wh-comp utilized
else label the np of c delta.l

IRULE DELTR-SUBJ-S-DONE PRIORITY: 15. IN EMBEDDEO-S-FINAL
[c: C; THE NR OF C IS DELTA] -- o
;This rule overrides embedded-s-done; and does not finalize the cf.Z
Drop c into the buffer.1

(ATTACHMENT CRULE NP-S NP OVER S
If lower is inf-s then set the markers register of upper to !'(inf-comp).

If lower is that-s then set the marKers of upper to !'(that-comp).
If lower is relative

then lower fills a mod slot of the upper node
else associate the case frame of lower with the upper node.l
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;;7NP CREATING RULES/
(Comment Mainline np parsing)

IRS RULE STARTNP IN CPOOL
[sngstart] -- >

Create a new np node.
If 1st is det then activate parse-det

else activate parse-qp-1.
Act ivate npool.l

ICREATION CRULE NP-START NP
if c s none of propn-np, pron-np, name, complex-noun-np, trace, *,

coirp
then associate a new case frame with c.1

;;this should be a finalize rule.
;; (ATTACHMENT CRULE NP-QP NP OVER QP
;;The lower node fills the spec slot of upper.I

IRULE DETERMINER IN PARSE-DET
(=det -- >
Attach 1st to c as det.
Label c det.
Transfer the features indef, def, wh from 1st to c.

Oeactivate parse-det. Activate parse-qp-2.I

IRULE A-HUNDRED-DIRG PRIORITY: S. IN PARSE-DET
(Sea3
[num, bignumg; the numi of the numi of * is any
If 3rd is noun, ns, measure

then run determiner next

else attach 1st to the numl of 2nd as numB;

deactivate parse-dot;
activate parse-qp-1.1

of shundred, bignum] tl --

(RULE ALL-THE PRIORITY: 5 IN PRRSE-OP-1
[uta11] (mdet,defl -- >
?Another similar rule needed to cover "half the boys", "half A bottle"

Also there may be a timing problem with "all G-d's children.X
Insert the word 'of' into the buffer before 2nd.l

IRULE QUANT IN PARSE-QP-1

[cquant] -->
Attach a new qp node to c as qp.
Attach Ist to c as quant.
If Ist is num then label c numqp.
Transfer ns, npl from 1st to c.
Transfer the feature wh from 1st to the np above c.

Drop c.
Run quant-done next.I

(RULE QUANT-DONE PRIORITY: 15 IN PRRSE-OP-1
[t]-->

Deactivate parse-qp-I. Activate parse-adji.1

(RULE ORDINAL IN PARSE-OP-2
[mord, complete-num] It] -- >
Attach a new qp node labelled ordqp to c as qp.

Attach 1st to c as ord.

If 2nd is num then attach 2nd to c as num;

label c numqp;
transfer ns, npl from 1st to c

else label c ns, npl.
Drop c.
Deactivate parse-qp-2. activate parse-adj.I
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IRULE DET-QUANT IN PARSE-OP-2
[=quant; W'is any of detq, num) -
/There should be a less ad-hoc way than the feature "detq" to distinguish
quantifiers that can follow determiners (like 'many') from those which don't
(like "some).../
At tach a new qp node to c as qp.
Attach Ist to c as quant.
If 1st is num then label c numqp.
Transfer ns, npl from ist to c.
Drop c.
Run dst-quant-done next.1

RULE DET-QURNT-OONE PRIORITY: 15 IN PARSE-QP-2
[t] -- >
Deactivate parse-qp-2. Activate parse-adj.1

;;will need a rule that does "next <time> " when np stuff is fixed.
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(RULE ADJ IN PRRSE-ADJ
Ct] -- >

If Ist is adj then attach 1st to c as adj
else if IsIt Is /, then attach let to c as comma

else deactivate parse-adj; activate parse-noun.I

IATTACHMENT CRULE NP-RDJ NP OVER ADJ
/Note that this does not handle non-attributive adjectives like "main"%
Associate a new mod case frame with the lower node.
The lower node fills a mod slot of the upper node.
The lower node fills the pred slot of lower.
Create a new : node LabellIed np.
Set the binding of c to the upper node.
C fills the subj slot of lower.
Finalize the cf of lower.
Drop c.l

(RULE NOUN IN PRRSE-NOUN
Cmnoun] -- >

Attach Ist to a new nbar node as noun.
Transfer the features massn, time, ns, npl,

nip, n2p, n3p from Ist to c.
Drop c.1

(RULE NBAR IN PARSE-NOUN
[cnbarJ -- >

Attach Ist to c as nbar.
If the noun of Ist is any of propnoun, pseudopropnoun then label c not-modifiable.
Transfer the features time, place, nip, n2p, n3p from lot to c.
Deactivate npool, parse-noun.
/The next line has to do with the Node reactivation mechanism, about which
see below.7
Drop c into the buffer.
Restore the buffer.I

(ATTACHMENT CRULE NP-NBAR NP OVER NBAR
Associate the case frame of the upper node with the lower node.
If there is a case frame of upper and

there is a noun of the lower node
then it fills the pred slot of upper.I
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(comment Incomplete nps)
IRULE INCOMPLETE-NP PRIORITY: 15. IN PARSE-NOUN
t -- >

Attach a new nbar node to c as nbar.
Attach a new noun node labelled trace, not-modifiable, delta to c as noun.
Crop c.
Crop c.
Deactivate npool, parse-noun.
If there is a qp of c

then label c quant-np; activate quant-np-complete, cpool
else drop c;
restore the buffer.l

iRULE AL.-OF-THE-BOYS IN QUANT-NP-COMPLETE
[=pp; the prep of * is :of -- >

Attach Ist to c as pp.
Set the binding of the noun of the nbar of c to

the noun of the nbar of the np of 1st.
Run quant-np-done next.I

IRULE QUANT-NP-DONE PRIORITY: 15. IN QUANT-NP-COMPLETE
t --. p
Deactivate quant-np-complete.
Activate np-corrplete.l

(comment NBAR-react i vat ion)

iNR RULE NBRR-COt-PLETE IN CPOOL
:Thes is an experimental type of rule not discussed in the thesis.
The experiment is still in progress, and I suspect this type of rule is not
motivated. This type of rule, called a Node-Reactivation rule, is similar
to an Attention Shifting rule. The mechanism is briefly discussed in ef.
my ACM paper.0
[enbar] -- >

Activate cpool, nbar-complete.l

IRULE NBAR-DONE PRIORITY: IS. IN NBRR-COMPLETE
t -->
Drop c.
Restore the buffer.l

(corn-cnt Np-react ivat ion)
hNR RULE NP-CO1PLETE IN CPOOL

[=np; = is none of modified, not-modifiable) --

/NUMBER AGREETENT/
If there is not a det of c and there is not a qp of c then

if the nbar of c is npl then label c npl else
if the noun of the nbar of c is propnoun then label c prop-np else
if the nbar of c is massn, ns then label c massnp else
if the nbar of c is time and the ord of the qp of c is general-ord

then label c next-time-np else
if the noun of the nbar of c is none of pseudopropnoun then

iabe ic bad.
If there is a de of c or there is a qp of c then

transfer the meet of
(if there is a det of c then the features of it else ns,npl)

and (if there is a pp of c then the features of it else ne,npl)
from the nbar of c to c;

if c is none of ns,npl then label c bad.
Activate cpool, n-complete.1

RULE NP-DONE PRIORITY: IS. IN NP-COMPLETE
t -- >
If there is a case frame of c then finalize the cf of c.

Orop c.
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Restore the buffer.I
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(Comment Numbers)
;;/Rules to parse numbers?

IRS RULE NUMBER IN NPOOL
[anum ; a is not complete-num) -- >
Deactivate npool.
Activate build-number.I

IRULE NUMBER-DONE PRIORITY: 12. IN BUILD-NUMBER
[t] -- >

Label Ist complete-num.
If ist is not ord then label 1st quant.
If 1st is none of ns,npl then label 1st npl.
Deac t ivat a bu ild-number.
Activate npool.
Restore the buffer.1

(RULE OROINRL-OONE PRIORITY: S. IN BUILD-NUMBER
[word) It c; .;-s not num] -- >
Run number-done next.l

IRULE NINETY-NINE IN BUILD-NUMBER
(stens) [=ones) -- >

Label a new num node 99s.
Attach 1st to c as numl.
Attach 2nd to c as num2.
Set the quant o c to

plus(the quint register of 1st, the quant register of 2nd).
Transfer ord from 2nd to c.
Drop c.1

(RULE TWO-HUNDRED IN BUILO-NUMBER
[ * is any of ones, ;ten, *18, 99s; 5is not ordl [mhundred -- ,
Label a new num node hundred+.
Attach 1st to c as nul.
Attach 2nd to c as num2.
Set the quant of c to

times(the quaint register of 1st, the quant register of 2nd).
Transfer ord from 2nd to c.
Drop c.l

IRULE HUNDRED IN BUILO-NUMBER
(sthundred] -- >

Labe I a new num node hundred+.
Attach 1st to c as numi.
Set the quant register of c to the quant register of 1st.
Transfer ord from Ist to c.
Drop c.1

RULE HC.DRECS-STARTS-BINUMC IN BUILD-NUMBER
C = is any of hundred., bignum.; * is not ord) --

Create a new nun node labelled bignumg.
Attach Ist to c as numl.
Activate build-number.I

(RULE 99S-ATTRCH IN BUILO-NUMBER
(t] I;: c; = bignumgl -- >

If there is a conj of c or Ist is any of 99s, tens, ones then
Attach Ist to c as num2;
Transfer ord from Ist to c;

Set the quant of c to
plus (the quant register of numl of c,
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the quant register of lat)
else set the quant register of c to the quant register of numi of c.

Drop c.1

IRULE HUNDRED-ANO IN BUILD-NUMBER
[=*and] [Cc C; sbignumgJ --

Attach 1st to c as conj.
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(RULE BIGNUM IN BUILO-NUMBER
Enum; is not bignumg , or dfbignum; * is not ehundred) -- v
Create a new num node labelled bignum+.
Attach Ist to c as numl.
Attach 2nd to c as nume.
Set the quant of c to

times(the quant register of Ist, the quant register of 2nd).
Transfer ord from Ist to c.
Drop c.1

(RULE TEN-TWENTY IN BUILD-NUMBER
[c is any of ones, 99s, :ten]

(c is any of 99s. tens; s is not ord) --

Create a new num node labelled listnum.
At tach 1st to c as numl.
Activate build-number.)

IRULE TEN-TWENTY-FINISH IN BUILD-NUMBER
[.* c; * Iistnum)
[: is any of 99s, tens; is not ord] -- >
At tach Is t to c as num2.
Set the quant register of c to

plus (times (106., the quant register of numL of ),
the quant register of lit).

Crop c.l
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;;/Special time np constructions/
(Comment Time)

IR( LE TWO-OCLOCK PRIORITY: 5 IN NPOOL
wnbml( [ c is any of *o/'clock, va/.im/., .p/.m/. I

Create a new noun nods labelled time, hour, complex-noun, propnoun.
At tach a new np node labelled time, complex-noun-np to c as np.
At tach Ist to c /which is now the npL as hour.
Activate build-hour.l

RULE TWO-THIRTY PRIORITY: 5 IN NPOOL
[snum] [=::) (=num] -
Create a new noun node labelled time, hour, complex-noun, propnoun.
Attach a new np node labelled time, complex-noun-np to c as np.
Rttach 1st to c /which is now the np/ as hour.
Attach 2nd to c as colon.
Attach 3rd to c as minute.
Activate build-hour.l

IRULE HOUR-COMPLETE IN BUILD-HOUR
C t] -- >

If Ist is any of :o/'clock, *a/.m/., op/.M/.
then attach 1st to c as oclock.

Drop c /i.e. the complex-noun-np I1.
/For the sake of semantics, all the following:Z
Set the time register of c to 'hour'.
Label c hour.
Set the hours register of c

to the quant register of the hour of the np of c.

Set the minutes register of c to
(if there is a minute register of the np of c

then quant register of it else 8).
If there is an oclock register of the np of c

then set the time-of-day register of c to it
else set the time-of-day register of c to the word

Set the markers register of c to !'(time).
Finalize the cf of c.
Drop c.1

o/'clock'.

IRULE MONTH PRIORITY: S. IN NPOOL
Camonth; a is not complex-np] -- >
Create a new noun node labelled time, complex-np, propnown.
A t tach a new np node labelled t ime, complex-noun-np to c as np.
Attach Ist to c as noun.
Activate npool, month-build.I

(RULE JUNE-IST IN MONTH-BUILO
[=complete-numl -- >

ZAgain, using fact that ORDs have NUM feature.4
Attach a new qp node to c as qp.
Attach Ist to c /i.e. the qpZ as ord.
If 1st is not ord then label c ord.
Drop c.
Run month-complete next.I

IRULE JUNE-THE-IST IN MONTH-BUILD
[-the] (word] -- >

Attach a new qp node to c as qp.
Attach 1st to c as det.
Attach 2nd to c as ord.
Drop c.
Run month-complete next.)

(RULE THE-FIRST-OF-JUNE PRIORITY:
(word) (w*of] [=month] -- >

5 IN PARSE-QP-2
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Create a new noun node labelled time, complex-np, propnoun, ns.
Attach a new np node labelled time, complex-noun-np to c as np.

Attach a new qp node to c as qp;
Attach Ist to c as ord;
Drop c.

Attach 2nd to c as of.
Attach 3rd to c as noun.
Run month-complete next.1
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IRULE MONTH-COMPLETE PRIORITY: 15. IN MONTH-BUILO
It] -- >

Drop c 7 i.e. the time np , so c is now the nounX.
Set the month register of c to the noun of the np of c.
Set the markers register of c to ''(time).

If there is not a qp of the np of c
then set the time register of c to 'month'; label c month

else set the time register of c to 'date'; label c date;
set the day register of c to

the quant register of the ord of the qp of the np of c.
Finalize the cf of c.
Orop c.1

IRULE NUMBER-TO-YEAR IN OUANT-NP-COMPLETE
(a* c; * is quant-np; * is not time; the quant of the qp of e is listnum]

Label c time,year.
Set the markers register of c to ''(time).

Set the time register of c to 'year'.

Set the year register of c to the quant register of the quant of the qp of c.l

IRS RULE MONDAY PRIORITY: 5 IN CPOOL
(snoun, day-of-week] -- >
Attach Ist to a new np node labelled time, dow as noun.
Set the time register of 1st to 'dow'.
Set the dow register of Ist to Ist.
Set the markers register of c to !'(time).

Drop c.
Restore the buffer.l

IRS RULE MONDAY-REGISTERS PRIORITY: S IN NPOOL
(noun, day-of-week; it isn't true that there is a time of *1 --

tSets some registers for semanticst
Set the time register of 1st to 'dow'.

Set the dow register of ist to 1st.
Restore the buffer.1

(NR RULE TIME-FINISH IN CPOOL
[Inp, time] -- >

Activate time-complete, cpool.l

IRULE MONDAY-THE-F IRST IN TIME-COMPLETE
(: C; *is dow [Iu:/,]

[wnp, t ime; the noun of * is date] I is not verb] --

Attach Ist to c as comma.
Attach 2nd to c as date.
If 3rd is ;/, then attach 3rd to c as comma.
Remove the feature dow from c.
Label c date.
Set the time register of the noun of c to 'date'.
Set the month register of the noun of c to

the month register of the noun of 2nd.
Set the year register of the noun of c to

the year register of the noun of 2nd.
Set the day register of the noun of c to

the day register of the noun of 2nd.!
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IRULE JUNE-FIRST-1976 IN TIME-COMPLETE
c C; the noun of z is date] [. /,] [unp, the noun of e is year)

[C is not verb] -- >

Attach Ist to c as comma.
Attach 2nd to c as year.
If 3rd is */, then attach 3rd to c as comma.
Set the year register of the noun of c to

the year register of the noun of 2nd.l

IRULE TIME-ONE PRIORITY: 15. IN TIME-COMPLETE
I -- >

FinaliZe the cf of c.
Drop c.
Restore the buffer.1

(RULE NUMBER-TO-TIME PRIORITY: 12. IN OURNT-NP-COMPLETE
[=: c; :cheap-hacks; t is quant-np; c is not time] -- >
7An e lu sion hack. Clearly special purpose for the PR domain.
A better approximation would be only to use this hack if the
incomplete np followed a prep that marked time, e.g. on the first",

but even Itnat, obviously, could be wrong. Recovering ellisions, as
opposed to detecting them, really shouldn't be in the grammar.%

If there is a qp of c and it is ordqp /e.g. "the firstoZ
then run month-complete next else

If it is numqp and there is not a dot of the np above it
then (if lessp (the quant register of the quint of it, 13.) Ze.g. *tenlZ

then run hour-complete next else
if lessp (1908., the quant register of the quant of it, 268*.) Zeg. "1976"Z

then run number-to-year next
else run np-done next)

else run np-done next.1

(RULE TIME-NP-TO-PP PRIORITY: 5 IN CPOOL
/This rule needs to be controlled, but right zeroeth approxZ
Cnp, time] -- >
Insert the word 'during' into the buffer before 1sti
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;;/Pronouns, proper names, etc.1
(Comment Pronouns, proper names, etc.)

IRULE PRONOUN IN npool
[=pronoun] -- >
Attach Ist to c as pronoun.
Label c pron-np, not-modifiable.
Transfer ns, npI, nip, n2p, n3p, wh from Ist to c.
If 1st is relpron then label c relpron-np.
Drop c.
Restore the but fer.1

AS RULE POSS-PRONOUN PRIORITY: 5 IN CPOOL
[uposs-pronoun] ->

Create a new det node labelled def, poss-det, ngstart, na, npl, n3p.
At tach a new np node label led pron-np, poss-np to c as np.
Attach Ist to c as pronoun.
Transfer ns, npl, nIp, n2p, n3p from 1st to c.
Drop c. Vihe np node/
Drop c. /the det nodeZ
Restore the buffer.l

IRS RULE PROPNAME PRIORITY: S5 IN CPOOL
(unamel -- >

Create a np node labelled name, ns ,n3p, not-modifiable.
Activate build-name.l

IRS RULE TITLE PRIORITY: 5 IN CPOOL
(stifle) -- >

Create a np node labelled name, ns, n3p.
Attach 1st to c as title.
Set the title register of c to Ist. 7set register for PA semantics
Activate build-name.i

IRULE NAME IN BUILD-NAME
[(name] -- >

At tach Ist to c as noun.
Set the names register of c to

'(cons Ist (the names register of ci). Zior pa semantics7l

(RULE END-OF-NAME PRIORITY: IS. IN BUILO-NAME
[(1 ->

If I(> (length ithe names register of cl) 1)
or there is a title of c

then set the last-name register of c to
!(car (the names register of ci);

set the names register of c to
!(cdr (the names register of ci). Zfor pa semantics%

Set the names register of c to
'(nreverse (the names register of ci).

Drop c.
Restore the buffer.i

(RS RULE PROPNOUN PRIORITY: S IN CPOOL
(.propnoun; ;:is not name] -- >
Attach Ist to a new np node labelled propn-np, ns, n3p, not-modifiable as noun.

Drop c.
Restore the buffer.1
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(Comment Pp attachment rules)
;;/PP rules/

IRULE PP IN CPOOL
[aprep; is not pred-verb] [unpI

[:4 c; there is not a wh-comp or the wh-comp is utilized)
7for WH-placement PP rules, see WH-placement rulehl

Attach Ist to a new pp node as prep.
Attach 2nd to c as np.
Drop c.l

IRULE NBAR-PP-UNOER-S IN NBAR-COMPLETE
(app] (:t c: the node aboe the np above a is si --l

If Ist fits a pp slot of the cf of C
then attach Ist to c as pp
else run nbar-done next.!

(RULE OF-PP IN NBAR-COMPLETE
(app; the prep of -- is of] -- >

Attach ist to c as pp.!

(RULE NBAR-PP-LNDER-VP IN NBAR-COMPLETE
Lcpp] (t[ c; the node above the np above * is vp] ->

If 1st fits a pp slot of the cf of the node above the np above c
then run nbar-done next
else run nbar-pp-under-S next.1

IRTTRCHENT CRULE NBAR-PP NBAR OVER PP
If the prep of the lower node is zof

then the np of the lower node fills a obj slot of the upper node
else the lower node fiIlls a pp slot of the upper node.!

(RULE NP-PP-UNDER-VP IN NP-COMPLETE
(app) [:-* c; the node above is vp] --

if it isn't true that 1st fits a pp slot of the cf of C

or Ist fits a pp slot of the cf of the vp above c
then run np-done next
else attach 1st to c as pp.1

IPFLE NP-PP-GNDER-PP 'N NP-CC"PLETE
Lappi [': c ; the node aboe * is po] --

/For now, NPs only get a PP if the above VP or S does't want it.
which s wrong, but a zeroeth order approximation.
Will get wrong "Can we meet on the friday after the party
Unless there is a notion of "mustmod"/

/For now, / if the node above the pp above c is vp
then run np-pp-under-vp next else

i f the node above the pp above c is 5
and Ist fits a pp slot of the Cf of the s above the pp above c

then run np-done next
else attach Ist to c as pp.!

IRULE NP-PP-DEFAULT PRIORITY: 15. IN NP-COMPLETE
(app] -- >

/This module is intended to run only when the NP in clause initial.Z

Attach Ist to c as pp.l

(RTTACHMENT CRULE NP-PP NP OVER PP
Associate a new mod case frame with the lower node.
The lower node fills a mod slot of the upper node.
The prep of the lower node fills the pred slot of lower.
The np of lower fills an obj slot of lower.
Create a new a node labelled np.
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Set the binding of c to the upper node.
C fills the subj slot of lower.
Finalize the cf of lower.
Drop c.1
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IRULE PP-UNDER-VP-1 IN SS-VP
(.pp] -- >
If 1st fits a pp slot of the cf of C

then attach 1st to C &S pp
else run vp-done next.1

IRULE PP-UNDER-S-1 IN SS-FINAL
(app] -- >
If 1st fits a pp slot of the cf of C

then attach Ist to c as pp
alse /what else can we do)/ attach Ist to c 15 pP.l

IRULE PP-UNDER-S-2 IN EMBEDED-S-FINAL
[app] -- >
If 1st fits a pp slot of the cf of C

then attach Ist to c as pp
else run embedded-s-done next.l

IATTACHMENT CRULE S-PREOP S OVER PREOP
If the lower node is pp then

Associate a new case frame with the lower node;
The prep of the lower node fills the pred slot of lower;

The np of lower fills an obj slot of lower.

Associate the case frame of lower with the s above lower.
The np of the S above lower fills the subj slot of lower.I

IATTACHMENT CRULE S-PP S OVER PP
Associate a new mod case frame with the lower node.
The lower node fills a mod slot of the upper node.
The prep of the lower node fills the pred slot of lower.
The np of lower fills an obj slot of lower.
Create a new : node labelled s.
Set the binding of c to the upper node.
C fills the subj slot of lower.
Finalize the cf of lower.
Drop c.1

ICRERTICN CRULE :-DUMMY
/Al I- nodes should disappear when dropped, so we make them looK attached.%
Set the father of c to t.1

RULE PP-UNDER-VP-2 IN EMBEDDED-S-VP
(app] -- >

If ist fits a pp slot of the cf of c
then attach Ist to c as pp

else run embedded-vp-done next.l

IATTACHMENT CRULE VP-PP VP OVER PP
The lower nods filis a pp slot of the upper node.I
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APPENDIX E

THE CASE FRAME INTERPRETER

This appendix describes a case frame interpreter which monitors the

construction of the Annotated Surface Structures described in this paper and

constructs a Predicate/Argument representation of the utterance from the

parser's output.

The discussion of this mechanism demonstrates three things: First it

should demonstrate to readers who are unfamiliar with the Annotated Surface

Structures discussed in this document that, given these structures, it is easy

to compute a "deeper" representation with which the reader is perhaps more

familiar. Second, it also demonstrates the simple semantic mechanism that

was used to test preliminary versions of the theory of semantic/syntactic

interaction for Wh-ungapping described in Chapter 10. Finally, the discussion

will briefly touch on how this representation can be converted to a deeper

"knowledge" representation for use in the Personal Assistant Project of the

MIT Al Lab [Goldstein & Roberts 77].

I should stress at the outset that no linguistic claims are made for

this mechanism, although I believe the mechanism to be of interest from an

engineering viewpoint. In particular, this mechanism does not attempt to be

deterministic; the algorithm for case mapping that it uses was directly taken

from the approach of Stockwell, Schacter, and Partee [Stockwell, Schacter &

Partee 73]. The semantic mechanism is more elaborate is some ways than
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the semantic marker systems commonly used in many natural language

understanding systems, but it was implemented primarily to provide a

convenient test bed for answering semantic inquiries of the sort investigated

in Chapter 10.

This appendix will first discuss the case frame mechanism itself. It

will then turn to a discussion of the mechanism which monitors the

construction of Annotated Surface Structures, and actually constructs case

frames. The rules which drive this mechanism are interspersed with the

grammar rules of Appendix D. It will then discuss the semantic marker

component and the semantic preference mechanism. And finally, it will

present an annotated trace of the case frame interpreter running on a simple

example.

The Case Frame Interpreter

(The following discussion is taken from [Levin 77] which discusses

and critiques the case frame interpreter and the algorithm which it

implements. I should note that this paper also discusses and critiques

alternative formulations of case frame notions, and presents an original set of

rules for case frame interprecation, none of which is included here. I also

include the general introduction to case frames from this paper; I agree

with the position taken there. This text is used here with Levin's

permission.

I should also note that the current version of the case frame

interpreter was programmed by Kurt VanLehn; the original version was
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programmed by the author.)

Section 1: Introduction

A case frame makes predicate-argument relations in a sentence

explicit, but how are these relations extracted from an English sentence?

And given a case frame, what arrangements of its cases can be found in

sentences?

Describing these processes is not a trivial task. The information in a

case frame may be expressed in a variety of ways in an English sentence.

The verb present allows the following choices:

(1) The judge presented the prize to the boy.
(2) The judge presented the boy with the prize.
k3) The judge presented the boy the prize.

The example above also shows that the position of noun phrases with respect

to a verb is not usually sufficient to uniquely determine what case it fills.

Active-passive sentence pairs are another example of this: the grammatical

subject of an active sentence and of its corresponding passive form do not fill

the same case. Even prepositions, which are supposed to signal cases, can

mark more than one case. With can mark the neutral, comitative,

instrument, and manner cases. Before a case frame can be filled, the proper

case frame must be chosen since some words have several:

(4) The committee met with the visitor.
(5) The proposal met with disapproval.

In (4), meet has an agent as subject, while in (5) it takes a neutral. With

marks the neutral and manner cases respectively, in (4) and (5). Choosing
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the right case frame is a part of the word sense problem that must be solved

at the case frame level. [This is not done by the current case frame

interpreter; the case frames used are in some sense the union of the

relevant word senses - MM)

Section 2: Case Frames: A Semantic or Syntactic Representation?

The case representation discussed here is only intended to capture

predicate-argument relations and word-sense disambiguation, but no deeper

semantic generalizations. Case frames are an intermediate level in the

mapping from an English sentence to its deep semantic representation.

Although the case frame builder in a natural language system may interact

with the semantic component to resolve word sense questions, case frames

allow the semantic component to remain unaware of how predicate-argument

relations are expressed in the sentence.

The purpose of a case frame representation as an intermediate step in

the mapping from a sentence to its semantic representation is similar to that

of functional decomposition. The case frame component can use a limited

number of cases, enough to capture the different behaviors present in English

sentences. Each case should embody a particular type of behavior in the case

frame-grammatical relation mapping. Cases are not expected to reflect

semantic roles; the slot names of the deep semantic frame may be chosen

according to the frame's function. The process of lexical decomposition can

be done, if desired, in the mapping from case frames to deep frames.
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This theory of the place of case frames in a natural language system

has been embedded in the natural language understander for the Personal

Assistant project [Bullwinkle 1977, Goldstein and Roberts 1977]. The

example below compares the case frame and deep frames for the verb

schedule in sentence (1).

(1) I want to schedule a meeting at 3 p.m. Tuesday.

The case frame for schedule is on the left. The resulting deep frames are on

the right.

schedule 1 schedule36
agt I actor
neut meeting activity meeting37
time 3 p.m. Tuesday

meeting37
when 3 p.m. Tuesday

The case frame for schedule fills slots of the deep frames of both schedule

and meeting. In the PA domain, the mapping is done by means of simple

functions such as the one below:

(SET-MAP (SCHEDULE1 SCHEDULE)
(> AGT (FILL ACTOR))
(> NEUT (FILL ACTIVITY))
(=> TIME (INSERT-INTO NEUT WHEN))
(=> PLACE (INSERT-INTO NEUT WHERE)))

This function maps the SCHEDULE1 word sense of schedule onto an instance

of the deep SCHEDULE frame. The function FILL fills the actor slot of the

deep frame with the agent of the case frame. The INSERT-INTO function

puts the time and place cases into the when and where slots respectively of

a frame created for the neutral case.
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Section 3: Filling a Case Frame

Mitchell Marcus has implemented a case frame builder to convert

the annotated surface structure produced by his parser [Marcus 1976] to a

case frame representation. Marcus' case frames consist of four components:

1. Predicate: the root of the word whose case frame it is.

2. Specializers: added information about the predicate such as the auxiliaries

preceding a verb or the determiner preceding a noun.

3. Cases: the filled cases present in this use of the predicate.

4. Modifiers: phrases which are case frames themselves used to modify an
entire case frame rather than to specify a case. Modifiers are optional
sentence level comments such as time or location.

The parser communicates with the case frame builder via messages informing

it to fill in any of the four components, check that the obligatory slots of a

case frame are filled, and check if a node of the annotated surface structure

fits in a case frame. The problem of determining whether a prepositional

phrase is a case or a modifier, a decision which may require semantic

interaction, will not be discussed here. The concern is the means employed

to fill the case slots of a case frame.

When Marcus' case frame builder is asked to fill a case slot of a

case frame, the parser specifies the grammatical role of the node which is to

be inserted: subject, object, or prepositional phrase. The case frame builder

must be able to generate all possible cases that can have the specified

grammatical role from the predicate's case frame. The interdependence of

cases and grammatical roles means that each candidate must be paired with

the cases which remain to be filled if it is chosen.
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This results in a fifth component of a case frame which is used

during the case filling process: a list of hypotheses describing the different

ways to fill the case frame. Each hypothesis has two parts: the cases filled

so far and the cases which remain to be filled. Initially, there is only one

hypothesis consisting of no filled cases and the case frame from the

predicate's lexical entry. Each time the case frame builder is asked to fill a

slot with a certain grammatical role, the remaining cases in each hypothesis

are examined for cases that can fill the role. Each such case results in a

new hypothesis in which the chosen case is added to the hypothesis' filled

case list. If no cases remain in the hypothesis or none of the cases

remaining can fill that grammatical role, the hypothesis is discarded. This

can also happen if an obligatory slot is left unfilled after the subject, objects,

and prepositional phrases associated with the predicate have been found.

Choices between certain hypotheses will have to be made according to

semantic criteria, for example, the decision whether the rock is agent or

instrument in "The rock broke the window." This ability is not part of the

case frame builder, but the decision will be made by asking questions of the

semantics component. [See the next section - MM]

The case frame builder must be able to generate all possible

candidates for a grammatical role from a case frame; this information can be

extracted from the results of the process which maps an underlying case

frame to the alternative sequences of cases appearing in sentences.

Section 5: B. Stockwell, Schacter, and Partee's Approach
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SS&P [1973] use a transformational framework to formalize their

solution to the mapping problem. Their mechanism is based on a set of rules

for finding the grammatical relations of subject and object and prepositional

phrases from an ordered list of cases. ... In Marcus' case frame builder, the

three most fundamental of SS&P's rules are incorporated into the functions

that generate the cases that a grammatical role may fill.

The case frame in a verb's lexical entry consists of a subset of the

ordered list of cases below:

(neutral) (dative) (locative) (instrument) (agent)

Each case present in the case frame is marked optional or obligatory

(parentheses around the name of a case will indicate that it is optional, none

indicate that it is obligatory). To turn the case frame into the possible

sequences appearing in English sentences, the following rules, which were

expressed in transformational terms by SS&P, are used:

(R1) Finding the Subject: the rightmost case must become the subject if it is
obligatory. If it is optional, it may be discarded and the rule applied to the
remaining cases.

(R2) Finding the Objects: the objects are found by reading from left to right
until the number of objects is used up. The objects occur with no
preposition.

(R3) Prepositional Phrases: the remaining cases occur marked by prepositions.
Each case has a default marking preposition associated with it. If a verb
requires some other preposition, it must be specified in the verb's lexical
entry.

As an example of the use of the rules, consider the verb break:

(4) The boy (A) broke the window (N) with a rock (I).
(5) The rock (1) broke the window (N).
(6) The window (N) broke.
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SS&P's case frame for break is: N (I) (A) . The neutral is obligatory, but

the other cases are optional. [This is exactly the notation used for cases by

the case frame interpreter - MM] None of break's cases are marked by

unusual prepositions. Applying (Ri), the agent, the rightmost case, can

become the subject. Then by (R2), the neutral, the leftmost case, will be the

object, and by (R3) the instrument will be marked by with. This gives the

structure in (7) which is that of (4):

(7) A break N with I.

Alternatively, since the agent is optional, it could have been discarded by

(Ri) leaving the instrument case as the rightmost case, and therefore, a

candidate for subject. Once again by (R2) the neutral will be the object

resulting in the pattern underlying (5):

(8) 1 break N.

(R1) could have been applied in a third way: both the agent and instrument,

which are optional, could have been omitted leaving the neutral as the

subject and no other cases as in (6). Sentence (9) cannot occur since by (R1)

the instrument must be deleted from the case frame if the neutral occurs as

subject.

(9) 1 The window (N) broke with a rock (I).

The first obligatory case must be chosen as the subject; this prevents break

from occuring with no subject. It also allows verbs to have neutrals which

do not occur in subject position by having an obligatory case to the right of

the neutral in the case frame.

The rules described so far are independent of the verb and the cases

present in the case frame; as a result they are inadequate. There is no way
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of allowing the neutral to follow a dative or locative object as in give or

smear, and no way for a neutral subject to precede a dative or locative as

with swarm, familiar, and drop. Verbs like hang allow a neutral subject

and a locative marked by a prepositional phrase, but not a locative subject

followed by a neutral marked by a prepositional phrase. The rules will

generate the latter sequence, but not the former. These problems can be

handled in several ways:

1. allow verbs to have more than one case frame
2. have two underlying case orders
3. formulate rules that allow the case frame to be reordered

a. these rules can depend on grammatical relations
b. these rules can depend on the cases

The first two possibilities preserve the independence of the rules from the

verb and case configuration, but are unsatisfactory for other reasons.... The

method adopted by SS&P to overcome the inadequacies is that of (3a): rules

(transformations in their framework) that allow certain cases to become

subjects or objects, overriding (R)-(R3).

SS&P's subjectivalization and objectivalization transformations can be

considered general functions that move a case into subject or object position.

The lexical entry of a verb must indicate whether either of the

transformations apply to it, as well as specifying the case which is to be

moved and the preposition which is to mark the case that would have

occupied that position. Swarm allows its locative to subjectivalize while

smear's locative objectivalizes. In both verbs, the neutral will be marked by

with. In Dative Shift verbs such as give, the dative objectivalizes.

Subjectivalization is not used for ergative verbs like drop, instead SS&P

modify (R1): if the next choice for subject is a marked locative, then the
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first choice for object becomes the choice for subject. This treatment is

inadequate because ergative verbs show the same behavior with datives, for

example the verb ring:

(10) He (A) rang the bell (N) for class (D).
(11) The bell (N) rang for class (D).

The underlying case order and rules (R1)-(R3) give special properties

to the neutral and agent since they occur at either end of the list. The

subjectivalization and objectivalization transformations which SS&P propose

allow the behavior of any verb to be duplicated. The mechanism is so

general that any cases could be put in subject or object position even if they

are never found there. The use of subjectivalization and objectivalization on

verbs with neutrals that shift could be combined into one process if a

transformation formulated in terms of cases were used. SS&P are concerned

with mapping cases to the grammatical relations of subject and object, so

their transformations are formulated in these terms.

[end of quotation from [Levin 77]]

The Annotated Surface Structure Monitors

The case frame builder runs in parallel with the parser by means of

a set of programs that monitor some of the types of actions the parser can

take; a monitor program can be written so that it will be executed

whenever a node of a given type is created or whenever a node of type A is

attached to a node of type B. (There is also need for monitors which fire

when nodes are completed, but this is currently not implemented.) These

monitors are written in an extension of PIDGIN that amounts to a command
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language for an independent case frame interpreter.

Several such monitors are exhibitted below in Figure E.1. Rather

than explain the monitor mechanism in general, I will explain each of these

monitors in particular; the examples chosen are sufficiently comprehensive,

and the mechanism is simple enough, that this should serve as an adequate

explanation of the monitor mechanism.

(ATTACHMENT CRULE VP-VERB VP OVER VERB
Associate a new case frame with the upper node.
Associate the case frame of the upper node with the s above upper.
The aux of the s above upper fills the spec slot of upper.
The lower node fills the pred slot of upper.
If the lower node is none of no-subj, passive

and there is a binding of the np of the s above upper
then it fills the subj slot of upper.)

(CREATION CRULE NP-START NP
if c is none of propn-np, pron-np, name, complex-noun-np, trace, ,

comp
then associate a new case frame with c.)

(ATTACHMENT CRULE NP-ADJ NP OVER ADJ
%Note that this does not handle non-attributive adjectives like "main"%
Associate a new mod case frame with the lower node.
The lower node fills a mod slot of the upper node.
The lower node fills the pred slot of lower.
Create a new R node labelled np.
Set the binding of c to the upper node.
C fills the subj slot of lower.
Finalize the cf of lower.
Drop c.)

Figure E.1 - Some example surface structure monitors.

The first of these monitors, the attachment monitor VP-VERB, is

triggered whenever a VP is attached over a VERB, as its "pattern" indicates.

This rule begins the case frame for a clause, fills the specifier of the case

frame with the auxiliary of the clause, the predicate of the case frame with
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the verb of the clause, and then tells the case frame interpreter that the

surface subject of the clause serves as "deep" subject as long as the verb has

neither of the features passive or no-subj (i.e. it is not a verb like "seem")

and the subject itself has been determined.

Note that case frames (cfs) themselves are associated with specific

parse nodes (although the mapping is many-to-one, i.e. many parse nodes can

be associated with the same cf), and a cf is referred to by a node that it is

associated with. The extension of PIDGIN which serves as the case frame

interpreter's command language refers to the slots a constituent fills in terms

of the grammatical function of the constituent. It is the case frame

interpreter's job to map this function into possible case roles. The PIDGIN to

inform the case frame interpreter of a constituent's role is thus

(nodel1> fills the <role> slot of the cf of <node2>.

The second monitor in Figure E.1 is a creation monitor, in this case

a monitor which is executed immediately after an NP node is created. This

monitor, called NP-START, will associate a cf with an NP node if the NP is

not initially labelled with a feature indicating that it will not have a lexical

noun as a head. (I should note that it is purely gratuitous that the name of

this rule is the same as the attention shifting grammar rule discussed in

Chapter 8.)

The third monitor, the attachment monitor NP-ADJ, indicates how

modifiers are handled by the case frame interpreter. Modifiers are the case

frame equivalent of constituents like adjectives and relative clauses with
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respect to NPs, and sentential adverbials and prepositional phrases directly

dominated by an S (as opposed to those directly dominated by a VP.) A cf is

created to represent the modifier, in this case an adjective, and this cf is

associated with the adjective. This case frame then fills a special modifier

slot of the NP itself. Finally, a special type of non-grammatical node called

a "' node' is created, bound to the NP node and used to fill the appropriate

slot in the case frame of the adjective. (For reasons which I will not pursue

here, the cf interpreter considers this to be a subject slot. The usage is not

overly important.)

Note that the mechanisms of the parser are used to create and

manipulate this "0" node; this is done mainly for the sake of convenience.

Because a node was created, however, the line "Drop C." must be executed to

pop this node from the active node stack. The "Drop" mechanism has been

programmed to handle "" nodes specially, and will not insert them into the

buffer. Thus, the parser itself will never be aware that its mechanisms

were usurped for the purposes of the case frame interpreter.

The Semantic Marker Component

To decide whether or not a given NP can fill a given case slot,

there is need for some form of semantic test. The case frame interpreter,

like many other natural language understanding systems, uses a semantic

filter based upon a set of Fodor-Katz semantic markers [Katz & Fodor 64].

Associated with each noun in the lexicon is a set of semantic markers; for

example, associated with "boy" are the markers HANIM (higher animate)

ANIM (animate) and PHYSOB (physical. object). Associated with each case is a
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similar set of markers; associated with the AGENT case, for instance, are the

markers HANIM and ANIM. If the intersection of the marker set of the head

nouna of a given NP and the marker set of a given case is nonempty, then

that NP can fill that case. Because any given case may be semantically

constrained with respect to a particular verb, a set of markers can be

associated with any case with respect to that verb. The case frame

interpreter, when deciding whether an NP can fill a given case role for a

particular verb, first checks to see whether that case has a marker set with

respect to that verb; if there is a marker set, the case frame interpreter will

use it, if not, it will use the general set of markers for that case. All of

this is typical of many natural language understanding systems, and is quite

unremarkable.

While this approach is sufficient to decide the yes/no question of

whether a given NP can fill a given case role for a particular verb, it is not

sufficient to answer the preference questions of Chapter 10. In that chapter,

I argued that a deterministic parser must ask questions of comparative

semantic goodness; i.e. it must be able to ask not only whether a given

constituent is acceptable in a particular syntactic role, but also how good it

is in that role. (Of course, the case frame interpreter translates questions

about syntactic roles into questions about case roles, using the SS&P

algorithm discussed above.) The simple semantic marker representation

discussed above will not suffice for such tests.

To allow comparative tests to be performed while still using a fairly

simple semantic marker representation, the following scheme was used:
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Instead of simply providing an undifferentiated set of markers for each case,

as indicated above, each marker set was divided into two "bins", the first a

set of markers that signify a good semantic "fit", and the second a set of

markers signify an "ok" semantic fit. Figure E.2 below indicates the marker

sets for a representative sample of the cases used in the system; each set is

of the form

( ("good" markers> # C"ok" markers>).

It should be noted that I make no claims for the correctness of these

divisions, nor for the particular features chosen.

AGENT: (HANIM # ANIM)
DATIVE: (HANIM # ANIM)
EXCHANGE: (MONEY # PHYSOB ANIM INANIM HANIM)
BENEFACTIVE: (HANIM # ANIM INANIM PHYSOB)
LOCATIVE: (PLACE # INANIM)

Figure E.2 - Marker "bins" for some example cases.

Given this division, tests of comparative goodness can be performed

as follows (note that this is not quite the method outlined in Chapter 10):

First of all, to determine how well a given NP fills a given case

slot, its marker set is intersected with both the "good" and the "ok" marker

sets. If the intersection with the "good" set is nonempty, the fit is good,

otherwise if the intersection with the "ok" set is nonempty, the fit is ok,

otherwise the fit is bad. Now to perform a comparative test of the semantic

preference for NP1 in Semantic-Role 1 over NP 2 in Semantic-Role 2 , the system

first computes the relative goodness of each NP in its respective semantic

role, and compares the results according to the following rule:
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-If the acceptability of both NPI and NP2 is identical, there is no

preference.

-If NP2 is bad, and NPI is not, NPI is strongly preferred to NP 2 .

-If NP, is good, and NP2 is ok, then NPI is mildly preferred to NP2 -

While this test is not truly comparative, it has sufficed as a test bed for

semantic rules like those discussed in Chapter 10, and will suffice until a

more adequate scheme for comparative tests can be devised.
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An Example

This section includes an annotated trace of the functioning of the

case frame interpreter. The trace shows (1) what monitors are run, (2) the

messages that the case frame interpreter sends to deeper semantics, passing on

its analysis, and (3) the current state of the cf interpreter's internal

hypotheses. The annotation is enclosed in square brackets. Messages

concernitna the internal structure of the N~s have been deleted. The possible

mappings from subject to the case frame considered by the case frame

interpreter for the verb "break" are exactly those enumerated by Levin in her

discussion of the SS&P algorithm.
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> the rock broke the window.
PARSING

Running create-rule S-CREATE
Running attach-rule VP-VERB

To semantics: NEWFRAME CASEFR26 (VP10. 1) NORMAL
[a newcaseframe, CASEFR6, is created and associated with the node

VP10. Note that these are messages sent from the cf
interpreter to deeper semantics, not from the monitors to
the cf interpreter.]

To semantics: HEAD (WORD55 . 1) CASEFR26
[its head is WORD55, the word "broke"]

New frames for (VP10. 1)
[after the cf is told NP16, "the rock" is its subject]
PRED BREAK

HYPO-SLOTS ((((NEUT OBLIG)) ((INS (NP16 . 3) SUBJ)))
[either NP16 is an INSTRUMENT, with the NEUTRAL unfill

(NIL ((NEUT (NP16 . 3) SUBJ))))
[or it is the NEUTRAL, with no more cases to come,

as in "The rock broke."]

CASES NIL [No cases are known for sure]

Running attach-rule VP-NP
[Now the cf is told NP17, "the window" is its object. This rules

out the possibility that NP16 can by NEUTRAL, because this
would leave no more case to fill]

To semantics: CASE (INS (NP16 . 3) SUBJ) CASEFR26
[It's sure that NP16 is INSTRUMENT]

To semantics: CASE (NEUT (NP17 . 1) OBJ) CASEFR26
[And that NP17 is NEUTRAL]

New frames for (VP1O. 1)
PRED BREAK
HYPO-SLOTS (((NIL) ((NEUT (NP17. 1) OBJ) (INS (NP16 . 3) SUBJ))))

[Now there's only one hypothesis, with no cases unfilled]

CASES ((INS (NP16 .3) SUBJ) (NEUT (NP17 . 1) OBJ))
[These cases it's sure of]

To semantics: FINALIZE-THE-FRAME CASEFR26
[Later code signals the end of the sentence, and semantics is told

of this]
DONE
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