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ABSTRACT

With an abrupt termination of the blood supply (acute
ischemia) to heart muscle (myocardium), electrical d-c
potentials will arise and appear as shifts in the baseline of
the electrocardiogram (ECG). These potentials are important
because they contain information regarding the ex.ent of the
ischemic myocardium, and thus can be used to evaluate the
effectiveness of various interventions intended to improve
the state of ischemic mycocardial cells. The purpose of this
thesis is to develop a model to describe the the d-c baseline
shift, measured on the heart surface, as it arises from a
given ischemic source distribution.

One difficulty for modeling pctentials measured on the
heart is that the distance scales involved are very large
compared to the length of a single cell. Consequently,
branching tree networks, which have been developed to
describe cell-to-cell interactions, are not very practical
for describing the large population of cells comprising the
heart, because of the enormous numerical complexity. At the
same time, because the potentials arz measured on the heart
surface, "far-field™ (e.g. dipole) modeis are inadequate.
Consequently, a model in the intermediate region is needed.

We develop the concept that myocardium is a member of a
class of tissue systems whose electrical properties can be
appropriately described in terms of a "bi-dcmain structure”.
Bi~domain, volume-conductive structures differ from classical
voiume conductors (mono-domain structures) in that a
distinction is made between current flow in the extracellular
space and current flow in the intracellular space. This
distinction is justified by the physical presence of a high
resistance membrane separating the two spaces, together with
the fact that the intracellular spaces are electrically
couipled through low resistance, intercellular connections.
With a bi-domain structure, Ohm's law and charge conservation
can be modified to account for the presence of the other



domain, and boundary conditions must then altered.

Classical mono-domain structures can be considered to be
a degenerate case of bi-domain structures. This is a nratural
consequence of the fact that the equations governing a
bi-domain structure permit solutions corresponding to those
of a mono-domain structure. The general solutions for the
extracellular or intracellular potential in a bi-domain
structure are composed of two terms -- one shared by
mono-domain structures (a solution to Laplace's equation),
and the other unique to bi-domain structures (a solution to
the Helmholtz equation). The first term represents a
"common-mode" interpretation for the current density, while
the second represents a "differential-mode" interxpretation.
The relative magnitude of these two terms determines the
appropriate model for a given tissue system. We use the
bi-domain model here to describe the ischemic myocardial d-c
potential.

We compare the results of the bi-domain model for
ischemic myocardium to those cf the "solid angle model". This
model is the only quantitative model now in use for
describing ischemic potentiais. We show that the solid angle
model can be derived from the bi-domain model only under a
number of limiting assumpftions which are not generally
satisfied by the experimental situation.

Finally, we study a number of cases involving a variety
of ischemic source distributions, in the hope of obtaining
some insight into the effect of various physical parameters
(such as bulk resistivity or width of the ischemic/healthy
border) on the shape of the potential distributicn at the
heart surface. We then use our theoretical results to
interpret a number of experimental findings.
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INTRODUCTION

The potentials which arise when heart muscle
(myccardium) loses its blood supply (i.e. becomes ischemic)
are of experimental interest, as it may be possible to use
these potentials as an index of the extent and severity of
ischemic myocardial injury. A popular candidate has been
deviations in that portion of the electrocardiogram (ECG)
commonly referred to as the "ST segment", which has long been
associated with sudden (acute) myocardial ischemia. In the
last decade there has been a renewed interest in mapping the
ST segment directly on che heart surface of open-chest
animals in the hope of prcviding information regarding
changes in the extent and severity of the ischemic injury,
particularly when a pharmacologic, metabolic, or hemodynamic
intervention has been applied.

Over the years, the theory for myocardial ischemic
potentials has evolved into a "solid angle®™ model by the
extrapolation of results from one science (electrostatic
field theory) to another (cardiac electrophysiology). No
identification has been made between the parameters and
sources of the solid angle model on the one hand, and the
physical structure of the myocardium on the cther. 1In
addition, the assumptions underlying the mocdel have never
been tested, nor have *the predictions of the model been

verified. However, investigators currently use the model in
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a quantitative fashion to interpret their experimental
findings.

If we search the literature for other models which
describe the electrical activity of heart muscle (not
necessarily applied to ischemic conditions), we find that
many of the models typically describe the "far-field"
behavior -- that is, they describe the electrocardiogram on
the chest wall at locations well removed from the myocardial
electrical source. The equivalent sources for these models
are represented by a dipole, multipole, or dipole sheet
description. The solid angle model described earlier is
basically a member of this class of "far-field" models,
although it has been applied to describe potentials close to
the heart (in fact, directly on the heart surface).

In addition to the class of "far—-field"™ models, there
exist several classes of models at the opposite end of the
spatial scale which describe the electrical activity of
myocardial cells on a cell by cell basis. One class of
models takes a field-theoretic approach to describe the
extracellular potential of a single cell, lying in a
homogeneous volume ccnductor, in terms of the electrical
behavior at the cell membrane. By assuming that the cells in
the myocardium do not interact, superposition can be used to
arrive at the composite potential. Unfortunately, since
these models are inherently microscopic in nature, they

require a detailed description of the position of each cell
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and its membrane. Another class of models takes a network
approach and describes the geometry of the tissue structure
as a closed, branching tree network, with each cell forming a
branch of the network. Because of their numerical
complexity, these models are useful only in describing
potentials over distances which are at most on the order of
several hundred cell lengths. In practice, these models are
incapable of describing potentials in myocardial tissue,
consisting of several million cells in a volume of several
cubic centimeters.

However, the experimental situation under consideration
is the exposed heart in the open-chest, a preparation which
is typically used in the study of the local electrical
changes which accompany myocardial ischemia. Signals on the
heart surface are directly measured with gross electrodes,
having dimensions which are typically on the order of several
hundred cell lengths. These multicellular, or "macroscopic",
surface potentials arise from a very large population of
cells and are not suitably described by any of the classes of
models previously mentioned. The "bi-domain model"™ described
in this work has been created to fill this need, and
approaches the problem by averaging the cellular sources to
obtain an equivalent macroscopic source from which the
macroscopic potential can be derived. It utilizes the fact
that cardiac cells are a member of a class of tissue systems

whose cellular components are electrically interconnected.
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In addition, it attempts to account for the physical
structure of the myocardium in the definition of its
parameters and sources.

We will begin by providing background information
regarding the changes in the ECG which arise from myocardial
ischemia, and we will define the ischemic potential of
interest (Chapter 1). We will then summarize the various
classes of electrical models which have been formulated to
describe the electrical activity of myocardium (Chapter 2)
and focus specifically on the solid angle model (Chapter 3).
Following a discussion of the present day use and limitations
of the solid angle model, we will proceed to formulate the
bi-domain model, taking the physical structure of the
myocardium into account (Chapter 4). The parareters of the
model will correspond to macroscopic, measurable quantities.
Using the bi-domain model, we will study several cases in
which the various parameters of the model are varied, in
order to determine the effect they have on the shape of the
surface potential distribution (Chapter 5). Next, we will
turn back to the solid angle model and show that under a
number of limiting assumptions, the solid angle modeil can be
derived from the bi-domain model (Chapter 6). Varicus cases
will be considered in which the two models are compared
(Chapter 7). Then, we will compare the theoretical results
of Chapters 5 and 7 to the experimental results reported in

the literature (Chapter 8). Finally, we will conclude by
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suggesting a number of topics for future research (Chapter

9).
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CHAPTER 1l: The Ischemic Myocardial Potential

In this chapter we provide a general bacxground
regarding the electrical potentials which arise following the
sudden onset of myocardial ischemia, which is a loss of the
blood supply for heart muscle. We shall be discussing
spatial distributions of changes in the electrocardiogram
(ECG), measured on the outer surface of the heart
(epicardium), as opposea to the inner surface of the heart
(endocardium), illustrated in Fig. 1.1 [Netter (1969)]. 1In
particular, we focus on the changes in the height of the
portion of the ECG known as the "ST segment". The magnitude
of the ST segment has usually been measured with respect to
the baseline (the "TQ segment"). This relative difference
will hereafter be referred to as the "ST-TQ segment", and is
the quantity measured by (a-c coupled) clinical ECG
recorders. In Fig. 1.2 we illustrate the normal and
ischemic epicardial surface electrogram (SEG), measured in
open-chest animals. Changes in the height of the ST-TQ
segment have been recorded quite extensively. In summarizing
the data, we would like to direct the reader's attention to
the polarity (positive or negative) and concavity (location
of relative maximimum or minimum) of the spatial distribution
of the ST-TQ segment shift, since these will be the features
of interest in the theoretical calculations performed later

in Chapters 5 and 7. We shall conclude this chapter by
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designating shifts in the baseline (TQ) component of the
ST-TQ shift, rather than the total ST-TQ segment, as the
"ischemic potential®™. A model which is suitable for
describing the spatial distribution of the ischemic
potential, and which takes into account the physical

structure of the myocardium, is the subject of this work.

1-a. Time line

studies of changes in the ST-TQ segment following the
sudden onset of (acute) ischemia date back to 1918 when Smith
recorded ST-TQ segment elevation in dogs, and to 1920 when
Pardee recorded similar potentials in humans. Today, these
studies continue in the form of spatial ST-TQ segment maps.,
both on the surface of exposed animal hearts and on the chest
of human patients [Maroko et al (1972), Nielsen (1973).,
Madias and Hood (1974), Reid et al (1974), Muller et al
(1975,1977), Flaherty (1976)]. In this section we summarize
the various historical highlights regarding the ischemic
ST-TQ segment, illustrated in Fig. 1.3. Aalso shown in
Fig. 1.3 are the highlights regarding the development of the
*“solid angle"™ theory, currently used to describe the spatial
distribution of the ST-TQ segment. We will return to a
discussion of these theoretical highlights in Chapter 3.

In 1945 Wolferth et al observed ST-TQ elevation at
epicardial sites over a region of ischemic injury, and a

simultaneous ST-TQ depression at epicardial sites on the wall
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of the heart opposite to the wall containing the ischemic
region, in the manner illustrated in Fig. 1.1. They
described the ST-TG depression as a "reciprocal" phenomenon
which was somehow related to the occurrence of the "primary"
ST-TQ elevation. Hellerstein and Katz (1948) also reported
reciprocal ST depression not only on the epicardial and
endocardial surfaces of the wall of the heart opposite to the
wall containing the ischemic zone, but also on the surface of
the same wall of the heart subjacent to the ischemic region -
i.e. on the endocardium for a subepicardial ischemic zone,
and on the epicardium for a subendocardial ischemic zone
(Fig. 1.4). BHowever in 1954 Rakita et al reported that
single polarity, monotonic, spatial distributions of ST-TQ
segment elevation generally resulted from acute ischemia,
without reciprocal ST-TQ depression (Fig. 1.5).

Occasionally, however, islands of ST-TQ segment depression
were observed at the ischemic border, but their magnitude
fluctuated with time and apparently bore no relationship to
the amount of ST-TQ elevation.

In 1960 Katcher et al and Samson and Scher used d-c
coupled amplifiers to record the d-~c components of ST-TQ
segment shifts arising from ischemia. They observed that the
ST-TC shift, as measured by clinical a-c coupled amplifiers,
was composed of both baseline (TQ) and ST shifts. Fig. l.6
summarizes the various combinations of TQ and ST shifts which

were observed by Katcher et al.
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In 1961 Prinzmetal et al advanced the notion of two
forms of ischemia - a "mild"™ form, exhibited primarily by TQ
segment elevation and a "severe" form, exhibited primarily by
TQ depression (Fig. 1.7). This notion lends a different
interpretation to cases where ST-TQ depression is observed in
the vicinity of the ischemic zone.

In 1971-2 Maroko et al developed the technique of
epicardial or precordial ST-TQ segment mapping at a discrete
number of sites as a means for predicting chances in the
extent and severity of the ischemic zone. The technicue is
illustrated in Fig. 1.3, taken from Braunwald and Maroko
(1974). The intent was to identify those regions of
myocardium which were potentially salvageable and to test the
effectiveness of various pharmacologic or hemcdynamic
interventions [for a review, see Hillis and Braunwald
(1977a,1977b,1977c;]1. Ischemia was induced by the ligation
(kying off or clamping) of a coronary artery, ang the
behavior of the ST-TQ segment was then monitored in both the
ischemic and non-ischemic regions. The ligation was then
removed, and the intervention was administered. Again, the
coronary artery was ligated. Changes in the total number of
sites having an ST-TQ shift, and changes in the sum of the
magnitudes of the ST-TQ shifts taken over all the sites, were
then used as electrical indices to predict changes in the
amount of eventually dead (necrotic) myocardium.

Since then much effort has been devoted to test the
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validity of the ST-TQ index by studying the relationship
between epicardial ST-TQ segment maps and other indices of
myocardial ischemia measured simultaneously, indices such as
metabolic or histologic changes, or changes in the regional
myocardial blood flow [Kjekshus et al (1972), Karlsson et al
(1973), sSmith et al (1975), Lekven et al (1975), Bodenheimer
et al (1976), Irvin and Cobb (1977)]. However, to the
present time an indisputable correlation has yet to be
obtained. One reason for this, as we shall discuss in more
detail in Chapter &, is that the two components of the ST-TQ
seqment (the TQ baseline and ST segment) are sensitive to
different factors, and therefore can act independently.
Hence, it may be the case that in the experiments mentioned
above, sufficient control of the various factors was not
achieved. Other studies have also been made to examine the
relationship between precordial ST-TQ segment maps and other
myocardial ischemic indices [Muller et al (1975), Selwyn et
al (1977)1.

Finally, the use of the ST-TQ segment as an index of the
extent and severity of the ischemi~ zone ncw appears to be
controversial [Braunwald and Maroko (1976}, Fozzard and
DasGupta (1976), Holland and Brooks (1977a), Surawicz (1977),
Muller et al (1978)]. A focal point for the controversy is
illustrated in Fig. 1.9, taken from Muller et al (1975).
Although it is generally the case (as in panel 24) that the

ST-TQ segment shift is maximal at the center of the ischemic
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zone (suggesting a correlation to the degree of ischemia},
occasionally the maximal ST-TQ shift occurs instead at the
border of the ischemic zone (as in panel B), particularly in
cases of local conduction block. Consequently, there is
apparently a limitation to the usefulness of the ST-TQ
segment as an ischemic index.

1-B. Deviations in the d—-c baseline of the ECG as the
ischemic myocardial potential

There has long been an interest in the relative
importance of the d-c baseline component corpared to the
total ST-TQ shift. In 1897 Burdon—Sanderson and Page
demonstrated the existence of an "injury potential", a d-c
shift in the extracellular potential of exposed frog
ventricular muscle, following mechanically induced or
chemically induced injury to the muscle. Using a capillarv
electrometer, they found that injured areas became
electrically negative with respect to uninjured areas. In
1943 Nahum et al performed a clever experiment to determine
during which portion of the cardiac cycle significant
ischemic current occurred. They alternately connected and
disconnected an electrical pathway between the ischemic
myocardium and the body, and observed the resulting changes
in the precordial electrocardiogram (Fig. 1.10). A
significant change resulted during the baseline interval
("electrical diastole”), whereas the potential during the

interval of the ST segment ("electrical systole™) remained



—-25—
isoelectric. Consequently they were among the first to
conclude that the baseline shift might be the predominant
component of the ST-TQ shift.

In 1960 Katcher et al and Samson and Scher used d-c
coupled amplifiers to measure both the baseline and ST
components of the ST-TQ segment accompanying acute myocardial
ischemia (Fig. 1.11l). Samson and Scher reported a greater
contribution to the ST-TQ segment due to the ST segment,
while Katcher et al reported the opposite, a greater
contribution due to the TQ segment. However, the most recent
evidence regarding the relative importance of the TQ vs. ST
segment identifies the TQ segment as the predominant
component in acute ischemia. Experiments by Cohen and
Kaufman (1975), using magnetocardiograms to detect d-c
currents, have concluded that the most consistent component
of the ischemic shift in the ST-TQ segment is baseline
depression (Fig. 1.12). Vincent et al (1977) focused their
efforts to specifically obtain quantitative d—-c measurements
of the TQ and ST segment shifts. They found that shifts in
the ST segment were absent in early ischemia, in contrast to
a significant amount of TQ shift (Fig. 1.13). Wittig and
Williams (1977) and Janse et al (1977) have reported similar
observations of a baseline shift in the initial stages of
ischemia, preceding an ST shift.

It is fortunate that the evidence in the literature

suggests that the shift in the d-c baseline, rather than the
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total ST-TQ shift, is the predominant "ischemic potential”,
since there are a number of practical advantages in using
this electrical index. First, it is much more easily defined
than the ST segment, and is therefore subject to less
measurement error. Second, the time course of the TQ shift
following a coronary occlusion appears to be consistent and
predictable, whereas the appearance of the ST shift occurs at
variable time intervals [Katcher et al (1960), Samson and
Scher (1960)]. Third, the magnitude of the ST shift is
sensitive to local conduction block, which affects the
sequence of cellular activation, and this block often arises
if the ischemic region is very large [Muller et al (19753)].
Fourth, since the baseline is at a d-c frequency, we can use
a simple, resistive model to represent the passive cell
membrane behavior, and we can impose a static condition on
the parameters of the system. And fiftn, more information is
available regarding the membrane properties during the
resting phase (electrical diastole) than during the active
phase (electrical systole), so that the membrane behavior can
be better described during the TQ interval. Consequently, in
this work we shall consider shifts in the TQ baseline of the
ECG, to be the "ischemic potential."™ The theories to be
discussed are directed at this quantity.

Finally, we view the problem of the genesis of the
ischemic potential in terms of two sub-problems. The first

sub-problem is to relate the electrical activity on the
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multicellular, or tissue, level {recorded as epicardial
electrograms) to the electrical activity on the cellular
level. The other sub-prcblem is sequential to the first and
consists of relating the deviations from the normal
electrical state of single, ischemic myocardial cells to the
biochemistry of ischemia. We will deal with only the first
aspect of the overall problem in this work. There exists
some direct evidence which links changes in the transmembrane
resting potential (TRP) and transmembrane action potential
(TAP) to shifts in the TQ and ST segments respectively
[Samson and Scher (1960), Prinzmetal et al (1961), Prinzmetal
et al (1962), Prinzmetal et al (1968), Johnson (1976)]1, as
illustrated in Fig. 1.2. Using flexibly mounted
microelectrodes, Samson and Scher (1960) observed that under
ischemic conditions, a reduction in the magnitude of the
transmembrane resting potential (TRP), and a reduction and
shortening of the plateau of the action potential, occurred.
These changes were correlated with changes in the TQ and ST
segments respectively. In 1961, contrary to conventional
assumptions, Prinzmetal et al suggested that ischemic cells
are not always hypopolarized during diastole but rather may
sometimes be hyperpolarized in states of "mild" ischemia. A
hyperpolarized condition was associated with TQ elevation,
while a hypopolarized condition was associated with TQ
depression (Fig. 1.7). Prinzmetal et al (1962) also made

simultaneous intracellular and extracellular d-c recordings,
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which showed that at all recording sites with ST-TQ
elevation, a reduction was seen in the TRP of individual
cells. Furthermore, TQ depressicn accounted for at least 80%
of the total ST-TQ elevation, and there was a consistent
correlation between TQ depression and decreased TRP. The
magnitude of TQ depression was approximately 1/4 of the
reduction in the TRP.

Other indirect evidence exists for the relationship
between baseline and TRP. Studies have shown that factors
altering the cellular resting potential, such as changes in
electrolyte concentrations ([Prinzmetal et al (1959)], result
in electrocardiograms with ST-TQ shifts. Infusion of
myocardium with hypertonic potassium or hypotonic sodium
solutions (decreasing the TRP) results in ST-TQ elevation,
while infusion with hypotonic potassium or hypertonic sodium
solutions (increasing the TRP) results in ST-TQ depression.

Therefore, in this work we will consider factors which
alter the transmembrane resting potential to be the "input"”
variables to the ischemic myocardial system, and the shift in
the baseline (TQ segment) to be the "output" variable. The
subject of this work, the "bi-domair model", attempts to link
electrical potentials on a macroscopic, multicellular level
to the electrical activity of the membrane on a cellular

level.
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FIGURE 1.1 - The ischemic epicardial electrogram [Netter
(1969)]. Note: The figure illustrates an advanced stage
of myocardial ischemia, in which the center of the
ischemic zone has died (become infarcted). In this work
we are concerned only with the early stage of ischemia,
before any cells have died. Our definition for ischemia
is broader than the one used by Netter (simply defined
on a morphological basis as an inversion of the T wave),
and includes all electrocardiographic changes due to a
loss of the blood supply. Thus, we would refer to
Netter's "zone of ischemia" combined with his "zone of
injury" as our "zone of ischemia”.
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NORMAL ISCHEMIC
SEG
— Q R ST

depression T elevation
.
P 0 4 —-. ___71: ---g—-- zero d-c
s T 12
ST-TQ elevation

TAP

e '1"zero d-¢ ~---"-- - — - —=—---2ero d-c
TRP

coemensm oo o o v wem

ATRP

SEG unipolar epicardial surface electrogram
TAP = cellular tranesmembrane action potential
TRP = cellular transmembrane resting potential

ST shift = absolute measurement of the height of the ST
segment with respect to zero d-c

TQ shift = absolute measurement of the height of the TQ
segment with respect to zero d-c

ST-TQ shift = relative measurement of the height of the ST
sagment with respect to the TQ segment

FIGURE 1.2 - Diagram of normal and
ischemic cardiac waveforms
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EXPERIMENTAL OBSERVATIONS

-—--=-= Vincent et al (baseline shifts)
-~=== Muller et al (local conduction
(local conduction block)
----- Maroko et al

- (ST-TQ mapping)

---=~ Prinzmetal et al (mild ischemia)
--=—= Samson & Scher; Katcher et al
(d=c coupled amplifiers)

----- Rakita et al
{monotonic ST-TQ map)

-~~-= Wolferth et al
(reciprocal ST-TQ depression)

-~—-~=- Pardee (ST-TQ in human)
===~ Smith (ST-TQ in dog)

FIGURE 1.3 - Historical

highlights of the solid angle

model and ischemic ST-TQ segment
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Fik. 17, Dingrammat e reprossntation of tho offeet of injury in various locations on t he ST displace-
ment,  ‘Tho blackened areg in vach of the uine figures locates the Injured area.  Ntippling indicates
reglons of {njury intermingled with uninjured regions, Network Indicates extension of hemorrhagic
reglons beyond injury,  Plus ( +) means K-T elevation: zero (0), lsonlectric 8-T: minus (—), S-T depres-
ston: the thickness of plus and minus signs gives an Indox of the relative magnitudes of the R-T devia-
tlons. A s anterior; P, posterfor; R, right; and L, iofi. Discussed in text.

FIGURE 1.4 - Polarities observed for theAST—TQ segment
[Hellerstein and Katz (1948)]. Note that "s-p» in the
desc:iption refers to the relative ST-TQ segment.




Fig. 6.—Epicardfal jaads from injured area and adjacent normal-sppearing muscle. Black circle
in disgram of coronary shows location of ligature. Stippling represents cyanosis which developed after
ligation, delineating injured epicardial area. S-T segment elavation is most marked in leads from center
of injury and decreases gradually toward the margins. Isoelectric 8-T segments are recorded from nor-
mal-appearing epicardium outside the margins of injury. The circled complex in the lower left-hand
corner is recorded from the posterior surface and illustrates reciprocal 8-T ssgment depression.

FIGURE 1.5 - Monotonic spatial distribution for the
ischemic ST-TQ segment [Rakita et al (1954)]

-33~



-34-

Table 1
Quolitatively Different Patterns of KRS-T Segment Shift and Baseline Shift Obtainable
with Cclpm ilance- (’tmplwl as ( 'nm puud with Direct-Coupled Am pl:/lm' S:N« mx*

Lupleltunee—cuuvlml . DC A"“P“m‘"
(AC) Amplifier: RS-T Tlinses
RS-T segment Sexment line ercumaunce- of Ohlervntiun
+ - (1)) curly ischemia
frauma
~ center of ischemic areus
5 + 0 (2 horders of ischemic areay
% Inte in ischemin ut center of ischemie aren
_-.: + > 4 (3) roleaso of prolonged ocelusion
- 0 — ( 4) truuma
immediatoly nfter occlusion
—_—< — (h) tnnmcnlly umnvdmtoly uftcr 0(‘L|lHIOH
- + (&) about murging of nndmunv areas (pmk musele)**
centers or horders after release of short ocelusion
£33 - 0 (T norcpinephrine injections
£% islands hoyond margins of ischemic arens (pink musele)**
'5 E centers or borders after release of short occlusion
% 5 0 + (8 pusterior surface of heart during ischemic period
—_ — (9 not observed
+ + (10) 1ot observed
+ 4+ (11 release of prolonged occlusion
-_ — (12) transiently innediately after veclusion
(0 0) (nany normals)

“eOireumstances under which these patterns were obtuined experimentally. Ten of the pos-
sible twelve patterns were observed, resulting in u greater than threefold gain jn precision over
the AC mmplifier,

SARNCT depression may inerense teauniontly after release.

FIGURE 1.6 - ST, TQ combinations
[Katcher et al (1960)]
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>
SEG: g
N
3
TAP:
3
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8Ts O mv. 10.5mvV.
MRP -9 i mV «-73mV.
TAs 107 mV. s2mv.
ISCHEMIA WITH
B. CONTROL o3 eprESSION
E
SEG: 9
>
€
TAP: 3

. -

200msec.
STs O mv. ~4.6 mvV,
MRP = -89 mV. ~98 mv,
TA=s 104 mV. 1 3mv

FIGURE 1.7 - "Mild" and "severe" ischemia: changes in
the cardiac waveforms [Prinzmetal et al (1971)]. The
"S-T segment" and the "MRP" referred to in the figure
above are called the "ST-TQ segment” and the "TRP" in
this work. Case A is from a "severely" ischemic area,
in which the TRP is reduced in magnitude and the TQ
segment is depressed (ST-TQ elevation). Case B is from
a "mildly" ischemic area, in which the TRP is increased
in magnitude and the TQ segment is elevated (ST-TQ
depression).
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Figure 8

The spatial characteristics of infarction block. Panel A) The epicardial elecirogram as the electrode is swept continuously
Srumi a nanischemic area (1), to the center of an (schenmiic area (2), to a nontschemic area (3) i a dog without infarction
block Putiel B A sweep from a nonischemic area (1) to the margin of the tschenie area (2). to the center of the ischemic
area 3 o the opposite margin of the ischemic area (4) to a nonischemic area (5) in a dog with a localized intraventricular

comdus tion disturhance  Note the QRS pml(mgamm'aud lack of ST scgment elevation in the center of the area of
tae henaa .

FIGURE 1.9 - Continuous a-c sweep recording of the
epicardial electrogram during ischemia [Muller et al
(1975)]. Panel A shows a maximum ST-TQ shift at the
center of the ischemic zone, while panel B shows a

maximm ST-TQ shift at the border of the ischemic
zone.




-38—-

Fig.2. \, B, C. Xouvember 3, 1942. Dog9.0 kgm. Dial ancsthesia. [nfarct on posterior
surfnce of left ventricle near apex. A. Small infaret totally insulated by small insulation
size of plates (2.0 em. in din.). Between arrows the insulation was short-circuited. B.
Larger infarct not totally covered by insulation the same size as short-circuiting plates.
Between arrows the insulation was short-circuited. C. Large infarct totally covered by
insulation much greater in aren than the short-circuiting plates. Between arrows the
insulution wus short-circuited. D. September 9, 1042. Dog, 8.0 kgm. Dial unesthesia.
Insulation of burned areu on left apex 1.5 cm. in diameter. Between nrrows the insulstion
was short-circuited. All records are lead ILI.

FIGURE 1.10 - Early evidence for d-c baseline currents
during ischemia [Nalum et al (1943)]. Panels A and C
are for ischemic zones which were totally insulated
and then connected to the body. Panel B is for an
ischemic zone only partially insulated, and panel D
is for injury due to burmning.
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FIGURE 1.1l - Continucus d-c sweep recording of the
epicardial electrogram during ischemia [Katcher et al
(1960) 1. Both TQ and ST shifts are seen in the
ischemic zone, with maxdimum deviations at the center
of the zone.
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CHAPTER 2: Previous Analytical Models

Previous models used to describe the potential
distribution in cardiac muscle can be classified into the
following four categories: 1) cable models; 2) branching
networks; 3) biologically microscopic field models; and 4)
biologically macroscopic field models. In this chapter we
review, class by class, a number of the models reported in
the literature. The models of greatest applicability to
recordings made by the experimental cardiologist are the
macroscopic field models, since these models describe the
potentials which arise from a large population of cells, as
measured by gross electrodes having dimensions ca the order

of 10% cell lengths.

2-A. Cable models

Many of the thecretical models which have been used to
interpret experimental, electrical measurements obtained
under the conditions of electrotogus (passive spread) or
excitation in the wventricular myocardium are based on the
one—-dimensional, distributed cable model developed
specifically for nerve axons [Hodgkin and Rushton (1946).,
Lorente de No (1947)]. <Similar models have recently been
used to describe the electrical behavior of isolated.,
cylindrical preparations of ventricular myccardium (either

trabecular or papillary muscle). A one-dimensional cable
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model was used by Weidmann to derive cable parameters for
sheep trabeculae (1970). Lieberman et al (1975) used a more
extravagent model, incorporating membrane folding and other
morphological parameters to obtain cable parameters for
cultured strands of chick myocardium. Clerc (1976) used
one—dimensional analysis in two orthogonal directions to
obtain directional cable parameters for anisotropic calf
trabeculae.

A two-dimensional cable-like model was proposed by
Woodbury and Crill (1961l) to describe the passive spread of
current in a thin-walled, atrial myocardial preparation.
Their "flat plane" model described the intracellular space as
a plane and the extracellular space as two adjacent, parallel
planes, one on either side of the intracellular plane. Shiba
and Kanno (1971) refined this model to account for anisotropy
and for microelectrode point sources of current. Joyner et
al (1975) developed a two-dimensional cable model in
conjunction with the Hodgkin-Huxley (1952) equations to
simulate the propagation of action potentials.

Three-dimensional models have only recently been
proposed by Jack et al (1975) for electrically connected, but
sourceless tissues; Barr and Jakobsson (1976) for sourceless,
radially symmetric, smooth muscle, and Tung (1976) for
cardiac muscle with a generalized (non-symmetric) geometry

and source distribution.
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2-B. Branching networks

A second type of model is the lattice array, or
branching network. This is typified by the models of Georage
(1961), Berkinblit et al (1965), Tanaka and Sasaki (1966},
Smolyaninov (1971), and Eifler and Plonsey (1975). Each
branch corresponds to a single myocardial cell (length on the
order of .1 mm). These models consist of two- or
three-dimensional nodal networks, with branches described
either as lumped circuits or as distributed cables. These
models were derived not only to describe electrotonic spread
or activation from point sources, but also to estimate the
dependence of the input resistance of intracellular
microelectrodes upon the membrane resistance. The
extracellular potentials can be computed on a point by point
basis, using matrix algebra and numerical techniques.
Unfortunately, in practice these models are incapable of
describing potential distributions over volumes whose

dimensions are on the order of 1-10 cm.

2~C. Biologically microscopic field models

A third type of model is the electrical field model
intended to describe the current and potential distributions
inside single cells resulting from the injection of current
via microelectrodes. The mathematical techniques used have
included eigenfunction expansions and singular perturbation

analysis [Hellerstein (1968), Eisenberg and Johnson (1970},
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Engel et al (1972), Peskoff and Eisenberg (1973,1975),
Peskoff et al (1976)] for cases of cylindrical, spherical,
and rectangular symmetry. These solutions are particularly
important in interpreting microelectrode recordings of

potentials arising from intracellular microelectrode current

sources.

2-D. Biologically macroscopic field models

These field models differ from the microscopic models of
the previous section in that the particular volume
distribution of the cellular membrane is not considered,
because the local behavior around the membrane over
dimensions on the order of a cell lengﬁh is not of interest.
Instead, the potentials of interest are those arising in a
volume of tissue containing on the order of 10° - 10% cells,
measured with electrodes which span on the order of 10* cells
in cross section. One such macroscopic model is the solid
angle model, a model most commonly used by experimental
cardiologists to describe the distribution of ischemic ST-TQ
segment shifts. These potentials are measured by gross
surface electrodes either on the epicardium or on the chest.
The cellular sources are taken to be on a surface which forms
the border between ischemic and healthy tissue, and the
magnitude of ST-TQ shift is taken to be proportional to the
solid angle subtended by that surface as viewed from the

recording site. We shall describe this model in greater
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detail in the next chapter.

The subject of this thesis, the bi-domain model, is a
hybrid between a biologically macroscopic field formulation
and a three-dimensional cable formulation. As a macroscopic
model, it describes the electric fields arising from a
generalized source geometry, taking into account the effects
of boundaries. As a three—-dimensional cable, it
differentiates current flow between that in intracellular
space and that in extracellular space. The cellular membrane
acts as an insulator between the two spaces, and a parameter
analogous to the "space constant" parameter of cable theory
can be defined. We shall discuss the basis and derivation of

the bi-domain model in full detail in Chapter 4.
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CHAPTER 3: Use of the "Solid Angle" Model

We refer to the model most commonly used to describe the
ischemic ST-TQ segment shift as the "solid angle" model,
because in this model the ischemic shift is predicted to be
directly proportional to the solid angle subtended by the
border surface of an ischemic zone as seen from the recording
electrode [illustrated in Fig. 3.1, taken from Holland and
Brooks (1977a)]. This border surface is assumed to lie at
the interface between healthy and ischemic myocardium. The
polarity of the ischemic shift depends on the side of the
border surface on which the recording electrode lies. The
solid angle model is derived from classical electrostatic
field theory for the situation of potentials arising in a
volume conductor with a dipole layer source distributed over
a surface. In this chapter we describe the significance and
utiiity of the solid angle model to the cardiologist, and in
Chapter 6 we shall examine in detail the basic physical and

mathematical assumptions that underlie the model.

3-A. Historical development

The theory for the electrical origin of the ST-TQ
segment shift was slow to evolve (refer to the time line,
Fig. 1.3). Perhaps the earliest formalization was the theory
for "currents of injury", proposed by Wilson et al in 1933

for single myocardial fibers. Injury was defined as a state
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of myocardium resulting in complete cellular depolarization
during the entire cardiac cycle. Solid angle theory was used
to obtain a quantitative relationship between the observed
extracellular injury potential and an eguivalent source,
taken to be a current dipole layer distributed over a disk,
lying across the intracellular space and separating the
injured and healthy regions of the fiber. The source
strength was taken to be proportional to the healthy membrane
potential. However, three assumptions were made. First, the
fiber was taken to be lying in an infinite conductive medium.
Second, the intracellular and extracellular resistivities
were assumed to be the same, and third, the width of the
interface between healthy and injured myocardium was taken to
pe very small (much smaller than the fiber diameter).

In 1958, Bayley developed these concepts, Iirst to
extend Wilson's arguments for a single, injured fiber lying
in an infinite medium to the complex fiber network found in
myocardium, and second to identify the injury potential as
the change in the height of the ST-TQ segment. The same
three assumptions were implicitly made - the heart was taken
to lie in an infinite medium; the heart and surrounding
medium resistivities were taken tc be the same; and the
border between injured and healthy myocardium was taken to be
abrupt {compared to the dimensions of the heart). As we
noted in Chapter 1, the ST-TQ segment distribution can

display both positive (primary) and negative (reciprccal)
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polarities. Bayley's explanation for these polarities was
complicated by the fact that the polarity of the source
(positive or negative) could be defined at two instants of
time (the TQ interval or the ST interval); hence, four
possible combinations of source time-polarity were possible,
although in practice onrly one combination -~ positive over the
TQ interval and negative over the ST interval - was used. An
equivalent source was assumed at the interface between
healthy and injured tissue; this source was taken to be a
dipole sheet during diastole (TQ interval) and another dipole
sheet reversed in polarity during systole (ST interval). The
reversal in the source polarity was to account for the fact
that when the membranes of healthy cells depolarize, the
gradient between the membrane potentials of healthy and
injured cells reverses direction, provided that the injured
cell membrane depolarizes incompletely. As we shall see in
Chapter 6, this gradient in membrane potential acts as an
equivalent current source. As a result, injury potentials
with opposite polarities were predicted for the diastolic and
systolic time intervals, with the difference in their wvalues
appearing as the ST-TQ segment. Depending on the shape of
the injured zone and the relative location of the re-ording
electrode (Fig. 3.2), different polarities could be predicted
for the injury potential. Bayley depicted his equivalent
sources as charge dipcle sources, although it is more common

to describe sources in conductive media as current sources.
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He did not, however, describe the physical interpretation of
his sources in detail, and this lack of a physical
description for the sources is common among all of the models
used to describe ischemic potentials.

A summary of the solid angle theory by Scher (Handbook
of Physiology, 1962) presented a very confused picture for
the electrical sources (Fig. 3.3). Charge dipoles were drawn
at the epicardial (outside) and endocardial (inside) surfaces
of the heart, although they were apparently intended to
depict sources at the surface of the cell membrane,
separating the inside and outside of a cell, rather than the
inside and outside of the heart.

In 1965, Plonsey provided a theory more complex than
that of Wilson et al by applying the Green's theorem to a
microscopic description of individual cell membrane surfaces
(see Appendix E). Although his formulation was intended to
describe activation, we bring it into the discussion since it
has been adapted by others to describe ischemia. Equivalent
membrane sources were derived as a function of the
intracellular and extracellular potentials at the membrane,
although their relationship to physical processes at the
membrane was not discussed. The extracellular potential was
shown to be proportional to the solid angle subtended by the
equivalent source, and the intracellular and extracellular
resistivities were not constrained to be the same.

Unfortunately, the resulting formulation was not very useful,
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since the extracellular potential at the observation point
was an implicit function of both the intracellular and the
extracellular potentials at the membrane throughout space.
In addition, Plonsey's sources were composed of terms which
could not be interpreted physically. In a later paper
(1974), Plonsey bypassed this restriction by ultimately
resorting to a set of cable relationships between
intracellular, extracellular, and transmembrane potentials,
to obtain a source whose magnitude was proportional to the

transmembrane potential.

3-B. Recent applications

Today, primarily through the efforts of Holland and
Brooks (1975,1977a,1977b), the solid angle model is used to
describe the ischemic ST-TQ segment shift in both precordial
(chest) and epicardial surface leads. Holland and Brooks
used solid angle analysis, but without the appropriate
boundary conditions, to obtain quantitative spatial
distributions of precordial and epicardial ischemic
potentials in the pig. The theory for the analysis was
adapted for ischemia from Plonsey‘'s results (1974), which we
recall described models of activation. Simple trigonometric
models for various geometries of ischemic zones permitted
calculations of the potential profiles. One significant
result was the prediction that the ischemic ST-TQ segment

shift, measured on the epicardium, decreases in magnitude
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(note the concavity) as the center of the ischemic zonre is
approached (Fig. 3.4) [Holland and Brooks (1977b)]- This
clearly has direct implications to those investigators who
hope to use the magnitude of the ST-TQ segment as an index of
local myocardial ischemia. The work of Muller et al (1975)
(cf£. Fig. 1.9) was cited as evidence supporting this
prediction. Another consequence of the solid angle model is
that ischemic zones entirely embedded in a healthy region of
tissue (i.e. intramural ischemic zones) should be
"electrically silent". That is, a zero potential will be
observed at an electrode placed outside the ischemic zone,
since the total solid angle subtended at the electrode is
zero. We shall return to a discussion of these issues in
Chapter 8.

Finally, we note that there seems tc be a growing trend
to use the solid angle model [Fozzard and DasGupta (1976) .,
Richeson et al (1977)] without regard for the assumptions
underlying the model. Holland and Arnsdorf (1977) published
a paper describing "physiologic and quantitative
interpretations"” of both ischemic and activation potentials,
using the solid angle model. In their rather brief
discussion of the theory, they dismissed the limitations of
the model. We shall summarize these limitations in the next
section, and conclude that the assumptions underlying the
solid angle model are inadequate for the experimental

situations we have described in Chapter 1.
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3-C. Difficulties with the solid angle model

Despite the present popularity of the solid angle model,
its predictions have not yet been validated in experiments in
which control of the geometry of the ischemic zone was
attempted. Yet, this model has been commonly accepted to
such a degree that it has been used by various investigators
(Holland and Brooks (1975,1977a,1977b] to lend "theoretical"
credence to the interpretations of their data. Ironically,
we note that from a theoretical point of view (Chapter 6) .,
the solid angle model is inadequate in several respects. We
summarize those results here.

The cardiac medium under consideration is not infinite,
and this is particularly so for the open chest preparation.
Even in the closed chest, where we allow for current £low
through the surrounding body tissue and approximate the
composite heart/body system as an "infinite" medium, changes
in conductivity across the epicardial and endocardial
surfaces will alter the flow of current. Consequently we
have the objection that boundary conditions are ignored.
Other investigators have shown significant effects of the
body and the blood in the intraventricular cavity on the ECG
[McFee and Rush (1967), Nagata (1970)].

We also conclude that it is not sufficient tc describe
the ischemic sources as a current dipole layer for several
reasons. First, (as we shall discuss in Chapter 6-B) there

are cases in which conservation of charge will be violated by



such a representation. Second, the representation of the
ischemic sources at the border between ischemic and healthy
tissue lacks a physical interpretation. Moreover, we seek a
source description which is wvolume-distributed and which
reflects the local ischemic condition, on a point by point
basis. And third, we would like to be able to represent a
diffuse border for the ischemic zone, which cannot now be
described using the solid angle model. Such a representation
is motivated by recent research into the width of the border
zone. The volume of myocardium comprising the border zone
represents the region of myocardium which is most likely to
be potentially salvageable, if the proper hemodynamic or
pharmacologic intervention could be found. There are
investigators who regard the ischemic border as being abrupt.,
having a width of 1-2 mm [Hirzel et al (1977), Factor et al
(1977)], and those who regard the border as being diffuse,
having a width of 5-8 mm [Becker et al (1973), Hearse et al
(1977)1].

The bi-domain model which i1s proposed in the next
chapter meets the various objections listed above. We shall
return to the detailed mathematics of the solid angle model

and its relationship to the bi-domain model in Chapter 6.
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Fic. 9:2.1

Fic. 9:2.2

Fic. 9:2.4

Fic. 9:2.1. Intramural injury where the double [ayver of injury
is depicted during systole in the form of a closed surface.

Fic. 9:2.2. Epicardial surface injury. At P the solid angle
Q, subtended by the epicardial surface boundary of the double
layer of injury is positive duriag systole.

Fi1G. 9:2.3. Endocardial surface injury. At P the solid angle
Q, subtended by the endocardial surface boundary of the doubl=
[ayer of injury is ncgative during systofe.

Fic. 9:2.4. Transmural injury. The double layer of injury is
of the third kind [2:10] with boundaries b; and by at the
epicardial and at the endocardial surfaces respectively. The
solid angle at P is positive, a difference in the two indicated solid
angles. The distribution is that ordinarily suggested for acute
myocardial infarction.

Fic. 9:2.5. Transmural injury. Aside from the solid angle at
P, thc magnitude of the injury ctfect is proportional to the ditfer-
ence in the intensity of subnormal polarization at the two surfaces.

Fic. 9:2.5

FIGURE 3.2 - The ischemic zones of interest: subepi-
cardial, subendocardial, transmural, and intramural

[Bayley (1958)].



Fic. gr. Three possible mechanisms for S-T segment changes.
In the top drawing, the base line is depressed. at rese, ie., during
the T-Q interval. Since the injured cells are partiafly depo-
larized during this period, current tows into cthem. When all -
cells are uniformly dcpolarized during the S-T interval, the
base [ine is at truc zero. [n the second case, the base line is
normal at rest but elevated during the S-T interval due to a
shortening of the action potential duration in the injured cells.
In the third case, the injured cells cannot depolarize: A wave
of activity ccaches the border of the injured region but cannot
invade it, so that the S-T segmenc is ¢levated. The sccond of
these states occurs carly in experimental infarction and is
followed by the Arst

FIGURE 3.3 - The theory for the ischemic ST-TQ
segment in 1962 [Scher (1962)]

—57—



‘9UOZ DTWAYDST 3U3 JO ISIUSD SYJ IDAO WNUTUTW SATIRTSI B UITM ’S0BIINS I9pIOQ SY3 ISAO0

S93TS Je umTpaedTds 3Y3 UO 3IITYS JI-IS Po3IOTPaxd umutxew ® ST 8X9y3 3Jey3 930N ‘oThue pITOS oYy o3
TeuoT3xzodoxd 3q 03 paumsse ST 3IITYS JI-IS OTWOYOST oYz pue ‘pajjoTd ST 9oeIINS I9pIOq otweyossT ay3 Aq
papusiqns aTbue PITOS oYL " [(qLLET) SY0OId pue PURTIOH] SOUOZ DTWSYSST JO SodA] SNOTIEA 103 Juswbas
OL-1S OTWAYOST SY3l 103 SUOTINQTIISTP 90eFIns TeTpIeotds pue (Isayo) TeTprooaad PIlOTPaId - b°f FHNOIL

|
@
T

“uOIB31 JNUAYDSY BY) JO sanfea ajRur pijos aanisod A jo spnyuBvu
Sy ur uouONpas ¥ 21dsap eAsE JIWIYDSH Ul SISEAIOUI Yum apnjiuSew ur asearour uoiBa
druayosiuou sy ul sanjea d[3ue pijos aageSau ay wnipieads ay e e aoN Liep
~Liog O1uaydst Jo uid g°( utyiim says Jerpredtda e sanjea aj3ue pijos AJuuaps smouy ‘Kiepunoq
OHUBYDST 2y Jo Audia i uy pue wnipaeads ayy je sonfea aSue Plios jo Aurenpaoun
dedlpul saus| payse(q (S|OQUIAS JE3]D) SUOIBDL DNUIYSIUCU [[ W01y PIpPIodA dre <onpea
sanedau wnip1eoids ayy e 31ya AIPPUNOY AU} WO} JULISIP SIS 3B INID0 sanjea 3j3u= pijos
aayedou ‘wniprodaxd awp uQp TUONEDO[ 13if3id 3v sanjea afdue pros aagisod asey Am_enEA,m
P!]0s) suoiZa1 d1wayast Buif[1aA0 SIPONDII] ‘SLIIT dNLAYIST UL 10§ suonedo| jeipiedida
Pue jeip1osoid ye papndwod 3j3ur piyos a jo sprjuRews pue Kuejod Ay uo (aul] [edRIaA
Paysep) Arepunoq duuaydst a3 oy 13dsar yiwm uoyisod APOIP3[3 Jo JduINguU] p FAUADIY

.. {280- ! | 2300~
—\\. “
% :
1 i A,
! {2vo- | {s200- |
A . |
t ] _
' 1 % W
: ! 5 |
ron Y A
5z St o1 ) 00 953 o s0 o 5
4 “ ?
. ” m *
{ayp " 14200 |

6LWO0251001 » 90
(LUOP0LI L0 & v'w
(;M20€1) 050 « @0
{y"26¢ 1620 r 20

.

o o e G e

PP e e PN
L--

WIGHYIId3 TVIGH0D3Hd




-59—

CHAPTER 4: The Bi-Domain Model

We begin this chapter by describing the physical basis
for the bi-domain model and modifying the notions of Ohm's
law and charge conservation (sections 4-A and 4-B). We are
then able to describe the ischemic myocardium by a general
set of bi-domain equations (section 4-C), whose general
solutions are derived (section 4-D) subject to the
appropriate boundary conditions (section 4-E). We examnine
two examples which illustrate the two modes of operation of
the bi-domain model (section 4-F). Finally, we show that a
mono-domain is a degenerate case of a bi-domain (section

4-G) . The results are summarized in section 4-H.

4-A. Electrically coupled cells and interpenetrating domains

In Chapter 2-D we discussed the applicability of
biologically macroscopic field models to a class of
experimental situations. We will shortly discuss precisely
what we mean by "macroscopic" as opposed to "microscopic" in
the context of the bi-domain model, but first we would like
to describe one approach which has been used to derive a
biologically macroscopic field model from an essentially
microscopic field description. It begins with a description
of a single nerve or muscle cell lying in an infinite,
homogeneous, isotropic, volume conductor. Assuming that the

cell acts as an electrical source, the resulting
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extracelluiar potential can be derived. If all the cellular
elements in the tissue are independent of one another
(L.e. there are no cellular interactions), superposition can
be applied to the individual microscopic cellular
descriptions to arrive at the composite macroscopic model.
The model thus derived is generally mathematically complex,
and since it is derived from a microscopic description, it
requires a detailed knowledge of the underlying microscopic
structure. An example of such a model is Plonsey's solid
angle formulation, described in Appendix E.

However, for a number of tissue systems the cellular
sources are not independent of each other but rather are
interactive, since the intracellular spaces are electrically
interconnected via low resistance membrane junctions. For
example, in cardiac muscle the electrical connections appear
to occur at the nexuses of the intercalated discs [Berger
(1972)]1. Several classical studies have demonstrated
functional cell-to-cell coupling. Woodbury and Crill (1961)
obtained a two-dimensional electrotonic spread of current
from a microelectrode point source in a sheet of atrial
myocardium. Barr and Berger (1964) used a sucrose gap
preparation to test whether activity was propagated across an
isolated myocardial fiber via chemical or electrical means.
The sucrose gap prevented the flow of electrical current in
the extracellular space, and action potentials were unable to

propagate across the gap. However, when an external return
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path for current was provided across the gap., action
potentials were able to propagate, strongly suggesting that
the intracellular spaces of the myocardial cells were
electrically interconnected. Weidmann (1966) used radio-—
active potassium to measure the longitudinal intracellular
diffusion time to obtain a low estimated value for the cell-
to-cell resistance. Other examples of electrically coupled
tissue systems are epithelial tissue and smooth muscle.

In general, electrically coupled tissue systems consist
of an intertwining of electrically connected extracellular
and intracellular spaces separated by a complicated.
"crinkled" membrane boundary. Consequently, the structure is
a complex, passive ohmic conductor whose various
extracellular and intracellular spaces permit the flow of
ionic currents in the neighborhood of individual cells.
However, we are not concerned with the local behavior of
potential or current density around single cells. Instead,
electrical signals of clinical interest are generally
potentials arising from large (10°% - 107) populations of
cells, measured with electrodes which span perhaps 102 cells
in cross-section. We refer to these potentials as
"macroscopic" potentials, a spatial average of the local,
"microscopic® potentials which would be measured on a
cellular level with microelectrodes. We shall also be
concerned with the "macroscopic” current dersity defined over

cross—sectional areas hundreds of cells in diameter. This
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"macroscopic” current density, oriented alcng the macroscopic
electric field, is to be distinguished from the "microscopic"”
current density, defined over a distance scale on the order
of a cell length and oriented along the individual myocardial
cell axis. The bi-domain model to be discussed attempts to
describe the spatial distribution of the "macroscopic"
potential as it is measured on the heart surface.

If there is a sufficiently complex microstructure in
which the extracellular and intracellular spaces are
interconnected, highly packed (with respect to macroscopic
dimensions) . and randomly oriented, we consider each space
separately as a distinct, homogeneous mono-domain structure,
for the purposes of describing a macroscopic potential and
current density in that domain. In this work we will use the
word "space"™ to refer to the convoluted, microscopic
description for the intracellular and extracellular volumes,
and the word "domain" to refer to the homogeneous,
macroscopic description. We then distinguish between the
potential and current flow in the intracellular space, and
the potential and current flow in the extracellular space, as
illustrated in Fig. 4.1. Although the two spaces are
physically separate, their description as macroscopic domains
will require that they occupy the same 3-D space and overlap
at every point. The coupling between domains is through the
cell membrane, macroscopically viewed as a volume-distributed

insulating boundary which separates the two domains. We
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refer to the composite structure as a "bi-domain structure®.
The bi-domain structure developed here 1is a detailed,
quantitative realization of the concept of interpenetrating
domains, described qualitatively by Schmitt (1969). The
development which follows is both an extension of cable
theory into three dimensions and a field-theoretic
description.

Inasmuch as we are pursuing a macroscopic bi-domain
model, it will be necessary to convert the microscopic
electrical variables into macroscopic variables. We shall
take the macroscopic (dimensions on the order of several »
hundred cell lengths) potential ¢ and current density J to be
spatial averages of the microscopic (dimensions on the order
of a cell length) quantities 5 and 3. In order to be
consistent with classical volume conductor descriptions, the
potential and current density in each of the two domains must
satisfy a constitutive law of conduction and charge
conservation. We will return to the statement of charge
conservation in the next section and turn now to the
constitutive conduction relationship between potential and
current density, which takes the form of Ohm's law,

-V¢ = PJ (4.1)
where P has the usual dimensions of resistivity, ohm~cm. The
macroscopic resistivity (P) can be related to the microscopic
resistivity (p) for each of the two domains by a geometric

factor (a) which depends on cell orientation. We proceed to
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derive this geometric factor here for cells whose
longitudinal axes are aligned in parallel. In doing so we
will need to make some assumptions regarding the relationship
between the macroscopvic wvariables % and J, and the
microscopic variables g and 3. We will then argue how these
results are modified for cells which are randomly oriented.
In the discussion which follows, the subscript "o" will be
used to denote the extracellular medium, the subscript "i"
the intraceliular medium, and the subscript "m" the cell
membrane.

We begir by defining more precisely the scale of
distance implicit in our use of the terms "macroscopic" and
"microscopic". The following discussion is complicated, since
there are three characteristic dimensions of importance - the
cell membrane thickness (on the order of 10”™% cm), the cell
diameter or length (on the order of 10”?-10"%? cm), and the
recording electrode diameter (on the order of 1 cm).
Potential variations over dimensions on the order of the
membrane thickness have usually been ignored in the
literature, even for microelectrode measurements. Therefore
we will neglect potential variations over distances on this
scale. In fact, we shall assume that the actual
intracellular or extracellular potential is constant over
distances on the order of a cell length and varies only over
distances on the order of 1-1C cell lengths. Consequently,

we formally identify the microscopic potential with the
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potential which varies over dimensions on the order of
several cell lengths, and the macroscopic potential as an
average of the potential over several tens of cell lengths,
varying over macroscopic dimensions on the order of 10%-103
cell lengths. We make our first identification, namely that
the macroscopic potential is equal to the average value of
the microscopic potential over a volume large compared to
microscopic dimensions, but small compared to macroscopic
dimensions.

The relationship between the current densities J and 3
can be established as follows. We construct the following
arguments with respect to the intracellular space, although
analogous arguments can be made with respect to the
extracellular space. Suppose we consider the intracellular
space to be contained within a set of parallel tubes or
pipes, with a single tube representing the membrane of a
single myocardial cell. Each tube has a cross—-sectional area
A and only slightly "leaky" walls, so that current is
constrained to flow primarily in a direction parallel to the
walls (althcugh over many cells the total leakage is
appreciable on a macroscopic scale). We refer to the current
per cross-sectional area of the cell &s the "microscopic"”,
intracellular current density. In the following discussion
we shall assume no doubling back of the microscopic current.
Consequently in a typical cross-section we have the situation

shown in Fig. 4.2. The longitudinal axis of each incremental
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cellular tube has an orientation directed along the z-axis.
The "macroscopic"™ current density is the sum of the currents
(charge transferred per unit time) taken over all the
intracellular cross-sectional areas, divided by the total sum
of intracellular and extracellular cross-—-sectional areas (the

macroscopic cross-sectional area). Also taking the potential

gradient to be aligned along the z-axis, so that the
macroscopic potential is given by'@2 at z = Z, and @l at z =
Z+dz, we write for the magnitude of the macroscopic current

density (directed along the z-axis),

M ~
Ji = kil (Ji)kA (4.2)

where M = number of cell intersections in a unit macroscopic,
cross—-sectional area. Since the length of each tube is given

by dz, we have,

. _ _ 1 T2 "
(Ji)k = 3 = 5, 3z (4.3)

Consequently we can express J; in the form,

(¢, - ¢_)/d=z =78 .
J = 2 L ~ i (4.4)
i P. P.
i i
where:
2. J.
P = X = (4.5a)
i MA a

The dimensionless geometric factor a; is simply the
proportion of intracellular space in a random cross section

of tissue. In a similar manner, we relate the macroscopic
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and microscopic resistivities for the extracellular space as,

82
P, = E‘—’ (4.5b)
o

where a is the proportion of extracellular space in a random
cross section of tissue.

For the more complicated case where the fiber axes are
randomly oriented, we argue that the geometric factors ao_.ai
are 1/3 the proportion of the respective space in a random
cross section of tissue. This is because on the average,
only 1/3 of the fibers are oriented along the axis of the
macroscopic electric field, while 2/3 of the fibers are
oriented in a direction normal to the field axis. Thus, the
effective cross-sectional area through which current can pass
is reduced by a factor of 1/3 compared to the case for
parallel fibers. Since the sum of the proportions of

intracellular and extracellular cross-sectional areas must be

1, we then have the relations:

a + a. =1 , parallel orientation (4.6a)
a + a; = 1/3 , random orient=ztion (4.6b)
The total macrcscopic resistance Q in either domain for a

block of tissue is given by the usual relation:

F
= _ Ciom (4.7)
“i,o Ay,

where: & = macroscopic length
= macroscopic cross-sectional area
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4-B. Membrane current flow

We turn now to the treatment of the current flow between
domains. To simplify the discussion, we shall assume d-c
situations. Unlike the case for classical, mono-domain
structures, the divergence of current density in either one
of the domains alone is no longer zero for static conditions,
since current can pass from one domain to the other. Hence
conservation of charge takes the form:

7T = Uh (4.8)
where the "volumetric current density" Um represents the flow
of current from one domain to the other ana has the
dimensions of amp/cm®. In additicn to membrane current
sources, electrical sources of current (divergence of current
density) can arise from externally introduced current scurces
(i.e. from microelectrodes). Whatever the source of current,
current within either space will either "appear" or
"disappear". In our initial discussion, we shall take the
externally introduced sources to be zero and focus on the
inter-domain currents which couple the two domains together.

As before, we wish to relate the macroscopic variables
to the microscopic variables. This time, we are concerned
with an inter-domain "volumetric current density", to be
compared to the microscopic membrane current density. The
microscopic membrane current density is distinguished into
active and passive components. The active membrane current

results from some sort of active process at the cell membrane
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which converts chemical energy to electrical energy, and
behaves as an active current source, J_ with units of
amp/cm?, to maintain the intracellular and extracellular
ionic balance. The source may be explained in terms of a
Hodgkin~Huxley (1952) battery created by the ionic gradients
across the membrane, or as an active, electrogenic (sodium)
pump [Thomas (1972)]. To complete the membrane description
on a microscopic level, we take the passive component of the
inter-domain current to be directly proportional to the
membrane potential (according to an area-specific membrane
resistance r with units of ohm-cm?). The total,
large-signal current-voltage relationship for the membrane
can be derived from either the empirical Hodgkin-Huxley
equations or the theoretical constant-field Goldman
equations. The equivalent Norton circuit representation for
the cell membrane is illustrated in Fig. 4.3. The vector 4
is directed normal to the membrane surface and has a
magnitude d equal to the membrane thickness. We will shortly
assume a random orientation for d, so that only the magnitude
of d will enter the formulation. However, other authors
generally retain the vector d to justify models containing
dipole sources.

In applying the model of Fig. 4.3 to ischemia, we shall
consider the ischemic condition to be a perturbation around
the normal (healthy) state. This notion is supported by the

observation that the effects of ischemia are initially
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reversible. We incorporate the effect of ischemia in the

bi-domain model as a reduction of the intensity of the active

membrane current [Kardesch et al (1958)]. Thus, we ares
concerned with a "small-signal"™ model in which the normal
current sources are subtracted out, and we are left with the
ischemic deviations. Since we shall assume that the ischemic
condition results in a reduction of Ja, we are l=ft with a
source distribution Jns Which has a polarity opposite to that
of J,, as shown in Fig. 4.4. Consequently, the d-c ischemic
potentials are deviations in the normal baseline potential
(usually taken to be zero, or "isocelectric").

Suppose we now consider the distribution of currents
arising from membrane current sources distributed in a
three-dimensional (3-D) bi-domain structure. We argue that
over dimensions small on the macroscopic scale, but large on
the microscopic scale [i.e. on the order of 10 cell lengths].,
the orientations of the individual current sources in a given
local region will cancel each other out due to the random
structure. Hence, the macroscopic membrane current source
which represents the sum of the local microscopic current
sources has no net orientation with respect to the spatial
coordinates of either domain (i.e. it is "normal"™ to both
domains). This is equivalent, from the viewpoint of either
domain, to modeling the source as a scalar, and not a vector,
quantity. It is only the intensity of the macroscopic

current source which will determine the resulting
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extracellular or intracellular distribution, and any
directionality in the distribution can only arise from
boundary effects or from gradients in the source intensity.

Hence, we think of current flow across the "volumetric
surface" of the membrane, "normal" to 3-D space. We depict
this situation in Fig. 4.5 for a differential membrane
current source, U . From the viewpoint of each domain, there
is in effect a monopole current source at point Q, without a
complementary source or sink of current anywhere else in the
domain. However, charge conservation is preserved, since in
the overall bi-domain system the complementary source or sink
does exist and lies at the corresponding point in the other
domain. We note that the current flow in either domain is
radially symmetric around the source point. In a manner
analogous to the microscopic situation depicted in Fig. 4.4,
we take Um, which we shall refer tc as the macroscopic
"volumetric current density"”, to be composed of two compo-
nents (having the same dimensions of amp/cm?) —-— a component
(Ums) due to the active transport of ions across the
membrane, and a component (Ump) resulting from the passive
flow of ions down their electrochemical gradients across the
membrane. In this work, Ums is taken to be a current source
whose magnitude is independent of the transmembrane potential
difference e (= @i - @o), while Ump is a resistive current
proportional to Om. We illustrate the resulting macroscopic,

Norton equivalent membrane circuit in Fig. 4.6.
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The volumetric current density U,s emerges as a monopole
current source in one domain with a coupled, complementary
monopole sink at the corresponding location in the other
domain. The relationship between Ump and Qm is assumed to
take the following (resistive) form:

U = f& (4.9)
mp Rm
where R_ has the dimensions of ohm-cm?®. We will refer to R
as the "volume-specific membrane resistance.”

Finally, we relate the macroscopic volume-specific
membrane resistance (Rm) to the microsopic area-specific
membrane resistance (rm = omd). Just as in the microscopic
case, where the total membrane resistance between domains for
an area AT is equal to the area-specific resistance divided
by the membrane surface area, we take for the macroscopic
case a total, inter-domain resistance i%lacross all of the

membrane area "crinkled up”" in a volume VT:
Rm

s T (4.10)
vf

where VT 1s the total volume. The macroscopic and
microscopic membrane specific resistances are then related in
the following manner:

o d
o

(4.11)

r

R = 2 =

m &
m

HW
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total "crinkled" membrane surface area per unit
volume of tissue

where: ap

rn, = membrane area-specific resistance
pm = membrane resistivity
d = membrane thickness

With this definition, we are able to think of the membrane as
a geometrically simple, continuous, volume-~distributed boun-—
dary, instead of a complicated, "crinkled", boundary surface.

The geometric factor a_ is independent of cell
orientation and is proportional to N (the average cell
density), 2 (the average cell length) and C (the average cell
circumference) :

a = N2C (4.12)
m

4-C. General equations

Having redefined Ohm's law and charge conservation for a
bi-domain structure, together with the appropriate
macroscopic variables, we can now derive the mathematical
model which describes the electrical behavior. We shall show
that a simple macroscopic model can be derived to describe
the extracellular potential. Mathematically, we shall see
that although potentials in a volume conductive, mono-domain
system must satisfy Poisson's equation, those in a vo lume
conductive, bi-domain system must satisfy a coupled set of
scalar inhomogeneous Helmholtz equations. Consequently., the
properties of a bi-domain system, as viewed from either
domain, differ from, yet at the same time encompass those of

a mono-domain.



We take the case where: each domain subsystem is
homogeneous and isotropic, a resistive coupling describes the
passive interaction between domains, and a volumetric current
source distribution describes the active interaction between
domains. Summarizing the results of the previocus two

sections, we have:

o=o ° -t + Ohm's Law
7 = U -uU 73, = -U_+0U (4.14a), (4.14b)
-0 mp ms L mp ™S charge Conservation
b
= =
Uﬁp ® (4.15a)
m
6 = 6. — 0 (4.15b)
m b (o]
EXTRA- INTRA-
| € - - - - -
| <~ cELIULAR™> | <TMEMBRANE=>|<-cprryrap >

Equations 4.13 describe Ohm's Law, and equations 4.14
describe charge conservation for the intracellular and
extracellular domains. Equations 4.1l5 describe the membrane
coupling between the two domains. Because the bi-domain
system has been assumed to have completely random cellular
orientations, we take the geometric parameters A
and d to be independent of orientation. We shall also assume
that po and pi are spatially constant, so that Po and Pi
describe domains which are isotropic volume conductors.

Finally, for the purposes of simplifying the analysis, we

have restricted our discussion to ischemic conditions which
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are perturbations around the normal steady-state, so that we
may take R to be spatially constant. 1In addition, since the
model describes "small-signals", it cannot be used to
describe action potentials, although such a model could be
derived by incorporating a different set of coupling
equations (such as the Hodgkin—-Huxley model) to describe the
membrane behavior (equations 4.15).

Eliminating the current densities from equations

4.13~4.15 yields:

-2 _ 1 _

7 :Dm 2 @m (PO + Pi) Ums (4.16a)

, —Po -P

; = _C - o 2

7 Qo R d?m + PoUms P T D v tbm (4.16Db)
m (o] L
P, B,

72 = _* - - 1 g2

7 @l R @m PiUms B T D v @m (4.16c)
m o i

where:
Rm 1/ 2
« = space constant = L W] (4.17)

Equations 4.16 have been written in parametric form, with Qm
as the parameter, and equation 4.l6a can be recognized as the
scalar form of the inhomogeneous Helmholtz equation.

If we examine the homogeneous solutions to equations

4.16, writing ® = ¢, (a solution to the scalar inhomogeneous

Helmholtz equation), we see that:

P

@ ) = O (4.18a)
(o] L
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P.
=2 _ L ; —_
'(Qi P+ D %9 0 (4.18Db)
o b
so that:
fpm = {DH (4.19a)
_Po
‘@o = §—+_P.@H+®L (4.19Db)
o L
Pi
‘Di = %P QH + '@L (4.19c)
o L
where QL is a solution to Laplace's equation. The two

Laplace terms in equations 4.19b and 4.19c must be identical,
since ¢ = ¢; - ¢ . Therefore ¢  reflects the mono—-domain
characteristics of the system, since @L does not distinguish
between the extracellular and intracellular domain, appearing
in both ¢, and ¢;., and is independent of the behavior of @m.
The Helmholtz terms in equations 4.19b and 4.19c result from
the coupling of @o and @i to @m and reflect the bi-domain
nature of the system. We shall return to a discussion of the
Laplace and Helmholtz terms in section F.

External, non-membrane current sources can be introduced
into a bi-domain tissue system either through surface plate
or point electrodes. We can treat situaticons involving
surface plate electrodes as boundary value problems (see
section E); however it will be convenient to allow for

externally applied, imbedded, current sources. Consequently

we write:
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TI = U U 73, = -O +U,; (4.20a),(4.20b}
u, = 0_-0_ u, = U, *+U_ (4.21a), (4.21b)

to replace equations 4.14. er is an externally applied
volumetric current source in the extracellular domain, and

U,; an externally applied source in the intracellular domain.

Uso is the total extracellular volumetric current source, and

U the total intracellular volumetric current source. The

si

general equations 4.l16 now become:

L
2 = — —
7 Qm A2 @m * PoUso PiUﬁi (4.22a)
z == ————————————— -—
v CDO - PQ + Pi v (pm P]:L(U’so + Usi) (4.22Db)
?i ,
o2 - ——— _
- v Qi PO + Pi v ‘Dm Ph.(Uso + Usi) (4.22¢c)

The formulation above describes potentials in a bi-domain
system which contains both active membrane and externally
applied current sources. As we shall see in the next
section, the extra source terms in equations 4.22b and 4.22c

will give rise to solutions to Poisson's equation.

4-D. General solutions

In this section we derive the general solutions to the
ti-domain Helmholtz equations (4.16). We begin by finding
the solutions to a membrane point source (the Green's

function solutions) for the two domains, and then apply
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superposition to obtain the general solutions.

The solutions for the potentials arising from a membrane
point source (a monopole source in each domain) are radially
symmetric, since the source is a scalar, with no preferred
direction. Consequently, the homogeneous solutions to
equations 4.16 for r # 0 take the form of equations 4.19

with:

_ A _-r/x B _r/A
e (r) ce + e- (4.23a)

£ D (4.23b)

allp

¢ () =

where A, B, C, and D are constants. Since equations 4.14 can
be written together as:
T +J.) = 0 (4.24}
-0 -1

this permits,
4m:2[J°(r) +J,(r)] = constant = I (4.25)

where I is a constant, net, radial current. Substituting

equations 4.13, 4.19, and 4.23 into 4.25 yields for the value

of C:
P.I
c = —2—“ (4.26)
where:
PoPi
Ph = equivalent myocardial bulk resistivity = z—{_—?i- (4.27)

Ph is the parallel combination of the macroscopic bulk
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and Pi' and can be

Lnterpreted as the equivalent bulk resistivity for the

myocardium as measured by surface electrodes.

We will

discuss this physical interpretation in greater detail in

section F.

We now proceed to find the particular solution to

equations 4.16 for a coupled pair of membrane point sources.

We can then use superposition to find the solution to a

general distribution of current sources.

[the 3-D spatial impulse function].

conditions,

lim 4nr?J (r)
-0 °

lim -'ETFrZJi {r)
0

lﬁn@oﬁﬂ =
r’-m

We set U =TI 6(r)
ms S

Applying the boundary

= —Is (4.28a)
= Is (4.28Db)
lim @i xry =0 (4.28c)

g o

to the radially symmetric, homogeneous solutions, we obtain:

P +P.)I
- Q i7" s -x/A 4.2
Qm(r) — &= ¢ ( 9a)
-P I
_ o's _-r/A
~Do(r) = yr— e (4.29b)
b (x) = Pils e/ (4.29¢c)
i TnT -

The Laplace term of equation 4.23b does not appear in

equations 4.29b and 4.29c,

since the net radial current I is

zero, and the potential at infinity is zero.
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Using equations 4.29, we can apply superposition to find
the particular solutions to equations 4.16 for the general
source distribution U, . Consequently, the membrane

potential is given by,

(P _+P.) “Top’?
@m(gp) = % J{VQU[“S ({:Q) e—rZT_ av (4.30a)
the extracellular potential is given by,
-P “Top/*
%(5,) = 4 }(V Us () %;dv (4.30b)
and the intracellular potential is given by,
B e—ﬂﬁ/w
@i(r;‘p) = Ir Jv Ums(l;:g) ?!P——dv (4.30c¢c)

Q
where P is the observation point, Q is a source point, and Vé

is the volume containing the source distribution.

We reiterate the fact that equations 4.16, and their
corresponding solutions, form a macroscopic description of
the electrical behavior of a bi-domain system containing
active membrane current sources. This differs from
conventional descriptions of mono-domain systems i1n that the
divergence of extracellular or intracellular current density
is non—-zero even in the absence of externally introduced
sources .

In a manner similar to that used to arrive at equations
4.30, we can find the general solutions to equations 4.22 for
the case where both active membrane and externally introduced

current sources are present. For a point source in
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extracellular space, we employ equations 4.23, 4.26, and 4.27

and set Uso = Ioo(r), Usi =0, and I = Io. Applying the

boundary conditions,

1im 4mr®J (r) = I (4.31la)
r+0 (o] (o]

Iim 41?3 (r) = 0 (4.31b)
0 °

lim ¢ (r) = Ilim ¢_(r) = O (4.31c)
e ° e L

to the radially symmetric, homogeneous solutions, we obtain:

-P I
o o

- _90o /A 4.32
@m(r) e © ( a)
PP I P.I
. o ho -r/X h o
150 xr) = _4Tl’r9i e + e (4.32b)
-2, I B. L
Jn = ho -r/A h™ o
2, (r) e * T (4.32c)
Similarly, for an intracellular point source, we set Uso = 0,
U _ =1I.53(r), and I = I_.. We obtain,
S1 p 1
P.I
_ i1 _-r/X
b = e (4.33a)
-P. I P I.
_ h i -r/A h'i
90 (r) = e © * Inr (4.33b)
PP I P I.
, i Ri _-r/X hi
2. = e ¥ Inr (4.33c)

(o]
From equations 4.32-4.33 we can write the particular solution
to equations 4.22 for potentials in a bi-domain system

containing both active membrane and external sources:
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{ {-POUSO(EQ) + Piﬂgi(géll e—:QP/A .

@m(fQ) = iy 4m:QP (4.34a)
Q
P [(® /P )U (r)-0__( )] -Tr /A
h i’ "so =9 si =9 QP
QO(EQ) = [ Q i e dvQ
s opP
PU (xr) +U0 ()]
f h ™ so - si -0
R -3
Q
P [-U () + ®./P)U__(r)] -T /A
- h so -Q i’ "o’ Tsi =Q QP
éi‘EQ) - [ < dnr e dVQ
Vg op
P[U (r) +U0_ . ()l
[ h™ so -Q si -Q
i, W, ) (4.34c)

Q
We see that equations 4.34 take the form of equations 4.19,

and when er = Uei = 0, equations 4.34 reduce to equations
4.30, as expected. The latter, mono-domain term of equations
4.34b and 4.34c is the general solution to Poisson's
equation. It arises when external electrodes are applied and
cannot arise from membrane sources alone. Note also that

this mono-domain term does not appear in the description of

@m, a purely bi-domain quantity.

4—E. Boundary conditions

The effect of boundary conditions must be taken into
account to describe the discontinuity from a bi-domain to a
mono-domain structure, or any discontinuity in conductance at
the tissue boundaries. For example, in the case of heart
muscle (h), in which the myocardium is bounded on one side by

the sourceless intramyocardial cavity (c) and on the other
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side by the sourceless body tissue (b) , we write the general

system equations as follows:

Vzéb = 0 (4.35a)
Vz&bc = 0 (4.35Db)
2¢ = L, 6 + ®PU_-PU) (4.22a)
m X% 'm o so i“si -cca

2 _PO 2
v Qo = ‘PT'('_P_:L \' Qm - Ph(USO + Usi) (4.22Db)

z Pi 2
v ¢, = fo_'-(? v Qm B Ph(Uso * Usi) (4.22c)

subject to the following boundary conditions at the
heart/body (H/B) interface, where o is the unit surface
normal directed from heart to body, and Pb is the bulk

resistivity of the body tissue:

od

1 o 1 b
H/B: 35 An = wae— (4.36a)
Po 3nb Pb 3nb

(4.36Db)

L
I
o

@o = & {(4.36c)

and the boundary conditions at the heart/cavity (H/C)
interface, where n_ is the unit surface normal directed from

heart to cavity, and P_ is the bulk resistivity of the

cavity:

H/C: (4.364)
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Q.
o

I 1 _ (4.36e)
P. sn
P [o4
s = & (4.36fF)
o (o4

Physically, the boundary conditions specify that the ncrmal

component of the current flow in the extracellular space must

be continuous with the normal component of the adjacent

mono—domain current across both the H/B and H/C interfaces.

The normal component of current flow in the intracellular

space must be zero at the H/B and H/C interfaces

(i.e. current terminates there). Also, the extracellular

potential of the bi-domain must be continuous with the

adjacent mono-domain potential across the H/B and H/C
interfaces. With these boundary conditions, a unique
solution for Qo, @i, and @m will be obtained (see Appendix A
on unigueness) .

In general, the boundary conditions of equations 4.28
will lead to solutions with discontinuities in the electric
field at the boundaries. Ccnsequently a surface charge

layer, a_r is set up at the boundaries and is given by:

SQO SQb
H/B: iy T En . b anb (4.37a)
D
5@0 5¢c
H/C: u'sc = €h§r1—— sc anc (4.37b)
C

where € is the permittivity constant.
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4-F. "pifferential®™ and "common" modes

If either the Helmholtz or the Laplace components of the
bi-domain model dominate, we obtain a simplifying case which
has a useful physical interpretation. In the former case, we
show that the two domain currents will flow in opposite
directions at any given point in space. The bi-domain
Helmholtz equations (4.16) reduce to a set of bi-domain
Poisson equations. In the latter case, the domain currents
will flow in the same direction, and the bi-domain can be
approximated as a mono-domain, provided that the appropriate
boundary conditions are chosen. For each case we shall
consider a specific, one-dimensional example. In general, a
combination of the modes illustrated by the two cases will
arise for the various ischemic zones of interest, illustrated

in Fig. 3.2.

Case 1) Helmholtz components dominate: "differential™ mode
We recall that the Laplace components arise from the

boundary conditions. If their effects can be neglected (as

in the case where the boundaries are at infinity only) so

that 6. = 0, then equations 4.16 reduce to the set of

L
uncoupled equations:
L
2 — - +
Ve = T2 & (Po Pi) U (4.38a)

Vo = %z o, +BU__ (4.38b)



-86-

V26, = 5 0, - BU (4.38¢c)

Qm, = QH (4.39a)
-Po
‘Po = WQH (4.39b)
o b
Pi
Qi = P_"-'_P_.QH (4.390)
Qo 1

We see from equations 4.39 that the two domains have
potentials which are opposite in sign and are proportional to
each other. Furthermore, the two domain current densities
are equal in magnitude but oppositely directed at each point
in space. We refer to this situation as the
"differential-mode" of the bi-domain model.

To illustrate the concepts presented above, we analyze
the one-dimensional example shown in Fig. 4.7. A rectangular
membrane current source distribution is assumed in an
infinite medium, and the intracellular and extracellular
potential and current density distributions are derived. The
one-dimensional equations corresponding to equations 4.38 are

given by:

dzdém 1
N = 12 @m - (Po + Pi) 9] (4.40a)
dze
o L
- @o + PoUms (4.40Db)
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- R, -PU (4.40c)

d)(z
The solutions to equations 4.40 for the source
distribution illustrated in Fig. 4.7b are shown in Fig. 4.7c
and are given by equations 4.39 with:

b, = (4.41)

r[l-e-mﬂcxm.mal R U_ . Ix[ <L
H 4{

sinh L/A e‘i"f"’amuo . lx[ > L
Because there are no local boundary constraints, @L = 0.

We observe that the exact solution, equations 4.39 and
4.41, can be approximated by the solutions shown as dotted
lines in Fig. 4.7c, where ®, 1s approxinated by:

] (4.42)

(
! mo
.

[0 x| > L
These solutions are identical to those which satisfy
Poisson's equation with a dipole current source at x = +L.
We will generalize this approximation to the bi-domain
Helmholtz equations, by solutions to a set of bi-domain

Poisson equations, in Chapter 6.

Case 2) Laplace components dominate: "common"™ mode

If there 1s no current flow due to membrane current
sources, but rather flow arising from the boundaries, then
over most of the volume of the bi-domain system (except at

the boundaries), the Laplace components will dominate,
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H
° = 0 (4.43a)
= 0 (4.43b)
o, = o (4.430)

For most of the volume (bulk) of the bi-domain system, the
two domains have potentials which are identical to one
another. In addition, the two domain current densities are
proportional in magnitude and directed in parallel.
Consequently, we refer to this situation as the "common-mode™
of the bi-domain model. Only in a region within a distance
of A, the space constant, from the boundary will the
Helmholtz currents be significant. Therefore, in this region
equations 4.43 will no longer be valid aporoximations.

In particular, we examine the case where Chs = 0:
i.e. there are no cellular scurces within the system. We

have,

VZQO = VZQL = VZQi = 0 (4.44)
in the bulk. The appropriate boundary conditions for normal
current can be derived from the general boundary conditions,

equations 4.36a-b, which become (Sh is the heart surface):

LBl 1 o
P on P 3n - 234
o Sh b '—Sh

1 29

7 3n = 0 (4.45b)
i S
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Combining equations 4.45b and 4.19c,

P, a0 36_ \
h h

and therefore, from equations 4.19b and 4.46,

30 P 3¢L
— = (L +=") — (4.47)
oan o P.” 9n s
h + h
Finally, from equations 4.45a and 4.47,
A I LN
= = = = — (4.48)
Ph an | Pb an.[s
h h

where the equivalent bulk resistivity Py is given by equation
4.27. Consequently we expect to be able to describe the bulk
of the bi-domain as a mono-domain with a bulk resistivity
given by Ph and with a potential given by @L.

However, the behavior of the bulk at the boundaries is
complicated, due to the fact that the Helmholtz component of
b plays a large role. We point out that in observing the
bi-domain system from the boundaries, we cannot select the
mono~domain bulk resistivity as P, rather than Py, while
selecting the mono-domain potential as ®;.. The reason for
this is that although QL may be a good approximation to ¢, in
the bulk and even on the boundary (we shall soon discuss this
shortly in equation 4.49), the normal gradient of ¢, is not a
good approximation to the normal gradient of ¢, at the
boundary. We see from equation 4.46 that the normal gradient
of the Helmholtz component is comparable in magnitude to the

normal gradient of the Laplace component and therefore cannot
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be neglected.

We have shown that the continuity equation for the
normal gradient of current density is given by equation 4.48.
We now derive the continuity equation for the potential. The

general, bi-domain boundary condition is:

-p i I
= o (4.49)

2, s, TP _+pP, %Iish s,
Unfortunately, @o may not be well approximated by @L on the
boundary, since this is precisely where @H is large.
However, if equation 4.43b is a good approximation in the

bulk, then we can approximate @o on the boundary by using

equation 4.47 and a Taylor series expansion:

8@0 | Po * Pi ;¢Tr
s | = o ex=2| = sl e ) =
fe) o an L P. m
Sy bulk Sy, btk i s,
3¢ P 3
S R RN -
bulk s i ls.
h n
Po SQL
= QL + A (?) In (4.50)
S 1 Sh

h
Thus, the boundary condition for continuity of potential,
equation 4.36c, becomes:

3

Po L
o, + A &) 33 1g
i h

@blsh (4.51)

In conclusion, we note that for the case we have been
discussing, the behavior of the bi-domain is well described
as a mono-domain with bulk resistivity Ph with regard to the

normal current boundary conditions. Unfortunately, we can
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only approximate the potential boundary conditions using Srr
since at the boundary the actual extracellular potential
deviates from @L in the manner of equation 4.50. If this
deviation is small, howewver, then we can fully describe the
behavior of the bi-domain as a mono—-domain whose potential
distribution satisfies Laplace's equation and whose normal
current and potential constraints at the boundaries take the
classical form.

We take a simple, one-dimensional example to illustrate
the concepts presented above. For the case shown in
Fig. 4.8, there are no membrane sources in the bi-domain
system. However, a flow of current is introduced across the
boundaries at x = +L. The boundary conditions, equations

4.45, become:

, de_ ae_

x = =Lz —goa-i =1 :: F = 0 (4.52a), (4.52b)
1 390 in

x= L: 7p & I ¢ xF -0 (4.53a), (4.53b)

Consequently, the potentials must satisfy the general
equations (4.40) and the boundary conditions (4.52 and 4.53)

and take the form of equations 4.19 with:

' _ sinh L/A .
bH ZXPOI Sinh 2L/% sinh x/A (4.54a)
be = - PhIx (4.54b)

For most of the bulk, except near x = +L, QH << QL; that is,
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we can approximate ¢, and ¢; by QL (see Fig. 4.8b) as in
equations 4.43. We note that equation 4.48 is satisfied:

1 9%

-§ha—x = I (4.55)

x=*L
In this example the potential at the boundary is not
constrained, so that continuity of potential, expressed by
equation 4.49, is not required. However, we note that ¢°
satisfies the approximation of equation 4.50, since,

-P P

= _O_ = - A _O -
"bo(L) = D, QH(L) + '@L(L) A(P_)PhI PhD:.
o 1 X
A%DdQL
= __P_.—&. + @L(L) (4.56)
1 x=L

for L >> A. Therefore we find that at the bcundary
electrodes, the input resistivity is given by:

-6 (L) AP
° = P (1+=2 (4.57)

IL h P
i

If L >> A, we see that the bi-domain, measured by boundary
electrodes, can be approximated by a mono-domain with bulk
resistivity given by Py-

Thus, we conclude that since the intracellular and
extracellular potentials in the bulk are aporoximately the
same, and since the bi-domain appears to act as a mono—-domain
to the boundaries, we can effectively replace the bi-domain
by- a mono-domain description. This "common-mode",
mono-domain description is valid, however, only in the

absence of active membrane sources and only where the
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dimensions of the bi-domain system are much greater than the

space constant.

4-G. The mono-domain and the bi-domain

We show that the classical volume conductor (a
mono-domain) can be considered to be a degenerate case of a
bi-domain system. Taking a myocardial bi-domain system, if
we let the membrane resistance R  go to zero, this will
effectively "short out" the membrane current sources.
Furthermore, the transmembrane potential (@m) will go to
zero. Ccnsequently, the general equations (4.22) for a
bi-domain system containing both active membrane and
externally applied current sources become,

VZQO = v’-@i = B, (U__ +7U_,) (4.58)
where we have used equations 4.21 to express the sources of
equation 4.58 as externally applied current sources only.
Equation 4.58 is in the form of Poisson's equation, and its
solution can be written accordingly. Alternatively, we can
reduce the general solutions (4.34) of equations 4.22, for
the case where Rm goes to zero. Since A (cf. equation 4.17)

-r/ A

and therefore e will go to zero, we obtain from equations

4.34 the general solution for equation 4.58:

%E- Q. av,, (4.59)
Q0 o

PO (r) +U _(x)]
- h = el
e () = ¢, (5) = fv eo

Equations 4.58 and its solution 4.59 describe a mono-domain

having a bulk resistivity equal to Ph (the parallel
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combination of the intracellular and extracellular bulk
resistivities). Thus, we can refer to Phras the "myocardial
bulk resistivity."

As we have already stated, Qm_will go to zero as Rm goes
to zero. From the definition of Qm, this implies that @o and
Qi become equal to each other. Thus, the boundary conditions
(equations 4.36a-c) can be combined and rewritten for the

heart/body interface as,

Pp 30y Py, ony
o) = ¢ (4.60b)

which we recognize as the classical boundary conditions for a
volume conductor having a bulk resistivity Ph‘

Thus, we conclude that the classical volume conductor (a
mono~domain), described by the usual Poisson's equation and
boundary conditions, is a degenerate case of a bi-domain

system (where Rm is zero).

4-H. Summary

In this chapter, we discussed the concepts of
macroscopic potential and current density, and related these
quantities to the microscopic potential and current density.
This viewpoint, together with evidence for intercellular
electrical connections which result in an electrically

continuous intracellular space, led to the notion of two
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interpenetrating mono-domains separated by a
volume-distributed boundary. Ohm's law and charge
conservation were modified to account for the new physical
structure, and the electrical membrane behavior was described
by a Norton equivalent circuit. Consequently, a set of
general equations was derived for the case of active
membrane current sources, and for the case of both active
membrane and externally introduced current sources. The
general solutions were obtained from the Green's function
solutions, subject to a set of boundary conditions reflecting
the physical nature of the bi-domain structure. The
electrical behavior of a bi-domain system could be separated
into a "common-mode" or a "differential-mode." Finally, the
classical volume conductor (a mono-domain) can be considered

to be a degenerate case of a bi-domain system.
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le—— 100y ——=f

“ Intercalated Disk

Myocardial
Cell

FIGURE 4.1 - Current flow i1in the intracellular and
extracellular spaces [original drawing from Sonnenblick
(1974)]. Note that current in the two spaces can flow
in grossly different directions.
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FIGURE 4.3 - Equivalent "large signal”™ model
for the cell membrane separating the intra-
cellular and extracellular spaces
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FIGURE 4.4 - Equivalent "small-signal”™ model
for the cell membrane separating the Lntra-
cellular and extracellular spaces
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Features:
1) Source in one domain coupled to sink in the other
2) Current flow in each domain is radially symmetric

3) Sources are scalar, monopole current sources

FIGURE 4.5 - Complementary monopole source pair,
representing the flow of membrane current between
domains
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r P ., Jd., P,
it =i Ui

9] R '
mp m :

O v
m
/U
ms

extracellular intracellular
'-70.2’0 = -V-Q‘i = Um (Charge Conservation)
- —_ L 1 s " ks
Um = Ump UmS volumetric current density" (amp/cm ?)
Ums -~ active membrane current source, independent of @m
é
- = _ i
Ump Rm = passive menmbrane current
R = "volume-specific membrane resistance” (ohm—cm *)
o d
= Z (p. = membrane resistivity: d = membrane
m m thickness)
a = total membrane surface area/unit volume of tissue

FIGURE 4.6 — Equivalent "small-signal” model for the
cell membrane separating the intracellular and
extracellular domains
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a) Circuit model
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b) Source distribution
‘U
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g
o
-T, L - x
c) Potential distribution
- X

FIGURE 4.7 - Example illustrating the "differential-
mode" of the bi-domain structure
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a) Circuit model
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b) Potential distribution
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FIGURE 4.8 - Example illustrating the "common-

mode™ of the bi-domain structure
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CHAPTER 5: Case Studies Using the Bi-Domain Model

In this chapter we study the effect of various source
geometries, boundary conditions, and ischemic border widths
on the shape of the ischemic potential distribution. We will
focus on the features of polarity and concavity, often
described for epicardial ST-TQ maps (cf. Chapter 1-Aj. We
shall use the term "monophasic" to refer to a potential
distribution which has a single polarity relative to the
reference potential (usually taken to be the value of the
distribution at ianfinity), and the term "biphasic" to refer
to a distribution which is both positive and negative with
respect to the reference potential. The general bi-domain
model can be used with any distribution of cellular sources,
having either diffuse (thick) or abrupt (thin) borders. We
assume that the cells are uniformly ischemic in the region
enclosed by the border, with a transition to the normal state
occurring across the border zone. In section 5-A we analvze
the case of a rectangular source distribution with an abrupt
border, using the bi-domain Helmholtz equations of Chapter 4.
In sections 5-B and 5-C, we consider diffuse border cases,
again using the bi-domain equations. The results of these
three sections are summarized in section 5-D, where we show
that depending on the width and location of the border zone,
the convavity and polarity of the surface ischemic potential

distribution can be altered.
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5-A. Rectangular, transmural, ischemic zone with abrupt
borders

In this section we consider a rectangular source
distribution with an abrupt border. Using the bi-domain
equations developed in Chapter 4, we propose to find the
spatial distribution of the ischemic potential for the case
of a myocardial strip (taken to be infinite in the
z-direction) in contact with a conductive fluid on one side,
and air (non-conductive) on the other (illustrated in
Fig. 5.1). This case corresponds to the free wall of
myocardium in the exposed heart preparation, with blood on
one side and air on the other. We are particularly
interested in the potential distribution over the upper
(exposed) surface, as this corresponds to epicardial
potential maps. Cases for spherical geometries, which
correspond more closely to the geometry of the heart, are
considered in Chapter 7.

To solve this problem, we use the method of imaging and
analyze instead the problem illustrated in Fig. 5.2. A

myocardial strip twice as thick as the original strip is

totally immersed in a conductive fluid having the same
conductivity as before. The boundary conditions at the lower
surface are the same as before. In addition, by symmetry the
gradients of @o and of @i are both zero in the y-direction at
the x—axis (y=0). These are precisely the boundary

constraints at the upper surface of the myocardial strip in



-105-

our original problem (Fig. 5.1). Thus, the potentials of
Fig. 5.2 for the region y < 0 (the symmetrical, image case)
can be identified with the potentials of Fig. 5.1 for the
region y < b (the desired, asymmetrical case). Formally
stated,

? (x,y) | = o (x,y-b) (5.1)

sym asym

Thus, we proceed to solve for the potentials for the
symmetrical case of Fig. 5.2, and from equation 5.1 we can
solve for the potentials for the asymmetrical case of
Fig. 5.1.

To begin, we take the source Ums to have the
distribution shown in Fig. 5.3a. Because of symmetry the
potentials are independent of z, and we can solve the
two-dimensional, instead of the three-dimensional, Helmholtz

equations (cf. equations 4.16):

d%m dz¢ 1
-+ = =, ¢ -@® +P)U (5.2a)
dx2 dyz A m o i ms
dzrpo dzd;o -P_ d%¢ d%s
* -~ rxe (T f—) (5-2b)
dx? dy? o i ax? dy?
dzai dznzsi P dz¢ d?%¢
* v we (g vt (5-2¢)
ax? dy? o i ax? dy?

The solutions to equations 5.2 take the form of equations
4.19, and we choose to rewrite @H of equation 4.19a as a

) sclution to the

homogeneous (@hH) and particular (@PH

Helmholtz equation. The reason for separating @E into these
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two components is that in the next chapter on the solid angle
model approximation to the bi-domain model, we show that ?DH

is approximated by a solution to Poisson's equation, while

@hH is neglected. Equations 4.19 become:
'Dm = QE{ = PppH+¢hH (5.3a)
-P Po Po
g = ~ & -_ —— + = -
?o B+ D YPH B T D ¢hH @L on B ¥ D QhH+ QL (5. 3b)
o r o 1 o] L
PJ'. Pi Pi
Q b o L o I

where @po is the particular solution for the extracellular
doriain and épi is the particular solution for the

intracellular domain:

-p
b = —2
po P+ P, o (5.42)
E’.i.
'@Pi = - \5—) CDDO (5.4Db)
o F
Thus we have:
ds
pE _ L _ _
oo =2 @pH (Po + Pi) Ums (5.5a)
d2¢po 1
= ¢ +PU {5.5b)
X% “po o ms ¢
d}(z
From equations 5.5, we obtain for ¢ g
2
-a/A .
[VQJ%[I-e cosh x/A] . ixl <a
: (5.6a)

o _(x) = ]
PH - '/l
| RU,sioh a/A e bl . x| >a
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ana for @

[1- e-a/;‘crbh. x/x] x| < a
(5.6b)

'f;)v
S N—
'U

-P_A*U_ sinh a/) e =lxl/a ;o lx] > a

Cur approach to solving equations 5.2 is through the
eigenfunction expansions (cosine integrals) for @m, @O, and
ﬁi, or equivalently, ’DH and @L. Anticipating the need, we

can expand on as a Fourier cosine integral:

'%m)=%£AMasm& (5.7a)

Ak) = ’a@ (x) cos kx dx (5.7b)
Jg "Po

If we write U as a Fourier cosine integrzl,
ms

rm
U (x) = %Jf Ek) cos kx dk (5.8a)
Q

B Uosinka
Ek) = < (5.8Db)

we can substitute equations 5.7a and 5.8a into 5.5b to

obtain,
—POAZ
Ak) = ————E(k) (5.9)
L+ (ka)2
We can also obtain equation 5.9 by direct integration, using

equation 5.7b.

We use a separation of variables on @L and express the

eigenfunctions of Laplace's equation as: cos kx cosh ky.
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Consequently, we can write @L as a Fourier cosine integral

expansion along the x-direction:

b (xy) = 2 r B(k) cosh ky cos kx dk (5.10)
3 Q

Similarly, we can express ¢, as:

]

e ®UYI™®) e kx dk (5.11)

=

3 (x,y) = F‘CGO
p XY T g

where e X (l¥[-b) replaces cosh ky, since we require %, -> 0
as |y|[ —> =.
We also use a separation of variables on .y tO express

the eigenfunctions of the homogeneous Helmholtz equation as:

cosh /k +(1L/A2)y cos ky. Thus we can express 5, as:

5 (ay) - %F D(k) cosh yvk + (L/A2) cos kx dk (5.12)

Substituting equations 5.3b, 5.7a, and 5.10-5.12 into the

boundary conditions (cf. equaticns 4.36},

s (x,b) = ©?_(x,/b) (5.13a)
o b
30 1]

1 7o L b

= =— = 5 3= (5.13b)

PO ay v=b PD Yy !.Y=b
30 .

1 i -

5 -37 0 {(5.13c)

i +=b
we obtain,
P
Ak) - 5 {_’; xosh 3 D(k) + cosh a« B(k) C(k) (5.14a)

(o] L
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..P - k
L {2 3 simh 3 I = -3 ) (5.14b)
=i — sinh 3 D(k) + kK sinh o B(k)] B C k) d
PLE* b N

P.
%[PH; %sinn 3 D(k) + k sinh a Bk)] = 0 (5.14c)
i o 1

where,
2 = kb (5.15a)

s = A2+ an?d b (5.15b)

Solving ecuations 5.14 together with 5.8b and 5.9 for A(k),
B(k), C(k), and D(k), we obtain,

- 2 :
Pakt% sin ka

{JPH: Ak) = >~ k (5.16a)
_ -4 (k)
> : Bk = = 5 — (5.16b)
z cosh a + (gb) sinh a + (o) (& Einh o,
Ph Pi 8¢ *tanh B

P
5 Ck) = - 5= sinh a B(k) (5.16c)
° h

PO(xsiM1a
i)hH: Dk) = - g E_tanI‘_IBB(k) (5.164)

where Ph 1s given by equation 4.16, and y is given by:
r = 1L+ (kN2 (5.17)

From the Fourier cosine coefficients A (k), B(k), Ckk), and
D(k), we can use the transformations of equations 5.7a and
5.10-5.12 to obtain the potential distributions for @po, @L,
bb' and Qha' In making the transformation, we can use the
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FFT to reduce computation time (see Appendix F)}. Finally, we
use equation 5.3b to obtain the spatial distribution for 2,
(which we recall is for the symmetrical case) and then use
equation 5.1 to obtain ¢ for the original asymmetrical
problem of Fig. 5.1.

We take a specific case in which a = 2 cm, B = .5 cm,
Pi = 3P°, P = 4Pb, and POAZUO has been normalized to 1. The
results for @o(x,y) in the original problem of Fig. 5.1 are
shown in Fig. 5.4a in the form of an equipotential plot, and
in Fig. 5.4b as spatial distributions over the two surfaces
of the strip. Since the distributions are symmetric about
the y-axis, we have plotted them only for x z 0. We see that
the magnitude of the potential distribution over the exposed
surface displays a local minimum at the center of the
ischemic zone, a local maximum at the border of the ischemic
zone, and an overall biphasic behavior. This behavior is due
to the large Laplace current flowing across the boundaries.
The Laplace potential is opposite in polarity to the
particular solution @Po and has the greatest amplitude at x =
0. If the lower surface had also been in contact with a
non-conducting medium, there would be no Laplace current
flow, and 00 would then be identical to @po-PoéhH/(Po+Pi)

(cf. equation 5.3b), which when evaluated, 1s a monophasic

distribution. The potential distribution for the
intracellular potential, if it could be measured, is shown in

Fig. 5.4c. In this plot we have normalized Pileo = 1. We
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see that the Laplace potential augments rather than subtracts
from ®,;r and thus a monophasic potential results. 1In
addition, because of the boundary conditions (5.13c) at y =
b, the gradient ofdﬂﬁ_is primarily in the x-direction.

5-B. Rectangular, transmural, ischemic zone with lateral
diffuse borders

We take the geometry of Fig. 5.1 of a myocardial strip
in contact with a conductive medium on one side and air on
the other, but where the source Uﬁs now has a diffuse, rather
than an abrupt, border. We expect that this will be a more
realistic model of the ischemic zone. Taking the

distribution of Fig. 5.3b, we have,

{ 1 - e-a/ls cosh x/ls
| a/\

1-e s ;
U x) = 5.18)
ns sinh«wﬂg,efle/ls

l—ea/ls

As before, we solve the image problem of Fig. 5.2.
Expressing U,s @S a Fourier cosine integral (eq. 5.8a), we

have,

U .
Ek) = o sin ka 1 (5.19)

L - e_a/'\s k 1+ ('kks)2

Hence, from equation 5.9,

— A 2
Ak) = PoA-Uo‘\ sinkka 1 L (5.20)
1 - e g L+ RMZ L+ ()2

The relationship of B(k), C(k), and D(k) to A(k) remain
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unchanged (equations 5.16b-d), since the boundary conditions,
and therefore equations 5.14, are unaltered. Hence, we can
use equations 5.16b-d and 5.20 to obtain A(k), B(k), C(k).,
and D(k), from which we can determine ngr ©Lr Qbr and o g 2S
before. Taking the same values for the parameters as in the
abrupt case, we obtain results which are shown in Fig. 5.5a
as an equipotential plot and Fig. 5.5b as the surface
potential distributions. The potentials of the image problem
have been translated, as before, to the potentials of the
original problem via equation 5.l1. Comparing Fig.'s 5.5 to
5.4, we see that the concavity of the exposed surface
distribution of @o has changed. There is now a local maximum
of the magnitude of the ischemic potential at the center of
the ischemic zone, although the maximum magnitude has
decreased. Nevertheless, the distribution retains its
biphasic nature. As expected, in the case where ls -> 0, the
distributions of Fig.‘'s 5.5 reduce to those of Fig.'s 5.4.

We shall explore more fully in section 5-D the effects of a
varying, lateral border width on the exposed surface
potential distribution. In the next section we shall see
that it is possible for the distribution to become
monophasic.

5-C. Rectangular ischemic zone with both lateral and
transverse diffuse borders

We now consider the more general case where the ischemic

zone has both lateral and transverse diffuse borders -—-
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i.e. where there is a y- as well as an x-derendence. Again,
we take the case of Fig. 5.1, where Uﬁs is given by the

distribution of Fig. 5.3c:

; 1-e cxﬂlx/ls<xs:ﬁ6rb) x| <a
; b4 _a/ls 2b - -
L - e s
U _(xyi = | x|/ (5.21;;
" . -ix|/ asymmetrica
| siah a/ig e S mg-b) - |( o
— cos ¢ roiX
!{ 1 -e a/As s

As before, we solve the image problem for a new~Uhs, given

by,
C 1 - eTa/Ag cosh x/A . o
= = cos-gg , ix| < a
1 - e-a/ s s )
g _Gy) = { . (5.21b)
ms sinh a/A e fxl/ag (symmetrical)
= T cos %E x| > a
1 1 - e—a/ s s

and express the new U s as a Fourier cosine integral along
m

the x-direction,

RN

ra(k) cos 2 cos kx dk (5.22)
0

g s (x,y) = b

where E{k) is given in equation 5.19.

We now express Q? as:
(o]

- 2 Iy 5.23
on (x,v) = E A(k) cos oo cos kx dk ( )

Substituting equations 5.22 and 5.23 into 5.5b, we obtain

(compare to equation 5.9):
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—POAZ
Ak} = Ek) (5.24)

i+ ibi)z +
I+ (kA 2

=
‘25
S

Substitution of ecuations 5.3, 5.7a, and 5.10-5.12 into the

boundary conditions 5.13 yield:

P
b __©° a . _ (5.25a)
cos ZbAAGd P‘fP,(th'“ D(k) + cosh =« B(k) Ck)
s o L
L sin ™Ak __o 3 inh 8 D(k
P ! 2p St o P +p_ p >k )
o s Q L
+ksioha BRI - -5 ce (5-250)
o)
9 P
l - five)
5 [Eswnnuﬁg(- ) Ak) + =— P+P t)SlMﬂB D (k)
i s s
+ ksinh a B)] = 0 (5.25c)

where a and 3 are as before. Solving egquaticns 5.25 torether

with equations 5.19 and 5.24, we obtain for a(k), B(k), C(k),

and D(k) :
-P A%U .
o o sinka l 1 -~
' H = - = 5.26a
_ b . _b sin 1b/Zbg
(cos 2_* Wb_ tarh 3 ) 52601
b = Bk) = Ak) .
L cosh<1+»@Jq51mh;1+-(gO)GQSUilg
h
P
L ck)y = - P—Dsi.nh a B(k) (5.26c)
n
P - P TDh sin =—
, . - _ _0_1_ sinh « - 2b 1
*her® D (k) B_Zsimhg o TP 28b_sinh 3 Ak) (5.26d)

where,
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v = 1L+ &2+ (%)’- (5.27)

Y

S
As in the previous two cases, we can apply the Fourier cosine
transformations of equations 5.23 and 5.10-5.12 to obtain
on' @L, @b, and,ohﬁ. Taking the same values for the
parameters as before, we obtain the results shown in
Fig.'s 5.6a,b. We see that Fig.'s 5.6 are similar to
Fig.'s 5.5, but now the exposed surface distributions can
become monophasic (and monotonic) for suitable values of bs.
This has significance in explaining the results of Rakita et
al (1954), discussed in Chapter 8-A. In the case where by

becomes very large, the distributions of Fig.'s 5.6 reduce to

those of Fig.'s 5.5.

5-D. Sensitivity analysis

In this section we will summarize and compare the
results of the previous three sections by exploring the
sensitivity of the ischemic potential distributicn, taken on
the exposed surface, to the parameter values. We propose to
vary one parameter at a time, holding the others fixed, and
see what changes result in the exposed surface distribution.
When varying PO, Pi’ and A, we choose to examine the abrupt
border case of section 5-A, since this will indicate any
changes in the high frequency behavior. When varying ks and
bs, we must of course consider the diffuse border cases of

sections 5-B and 5-C.
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We begin the analysis by examining the magnitude of the
ischemic potential. We recall that the distributions for the
ischemic potential were all normalized, with POAZUb = 1.
However, the amplitude for the ischemic potential is directly
proportional to POXZUO, or from the definition of i, to:

PoRmU

=2 mo
P + P,
o i

; - o
[ (5.22)

Changes in the wvalues of P, P.., R r or U  will influence the

i
magnitude of the ischemic potential according to the
relationship of eguation 5.28.

We turn now to changes in the shape of the potential
distribution on the exposed surface; in particular we focus
on changes in concavity and changes in polarity. These
features are particularly important, because tunev have been
used to make qualitative statements regarding the shape and
extent of the ischemic zone (see Chapter 8-A). We start by
examining the changes which resﬁlt by varying P, the
extracellular bulk resistivity. In Fig. 5.7, P, has been
varied over a 9:1 range, yet the shane of the distribution is
not greatly affected, and the concavity is only sligatly
altered. We note that the curves have been normalized to
remove the dependence of the magnitude on Po/(Po+Pi)' as
given by equation 5.28. In Fig. 5.8, Pi has been variea over
a 9:1 range; again the shape of the distribution is not

greatly affected, although the changes are greater than in

the previous case.
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In Fig. 5.9, P (= PoPi/(Po+Pi)) has been varied, with
Po = Pi' We see that there is a fairly large sensitivity of
the concavity of the potential to the value of Ph (relative
to Pb). To test whether it is Ph or the particular value of
Po or Pi which is important, we varied the ratio (Po/Pi)' as
in Fig. 5.10, holding P fixed. The distribution is almost
unchanged. Thus, we conclude that Ph is the sensitive
parameter.

In Fig. 5.11, we see the effects of varying the space
constant, iA. As expected, with increasing A there is a
decrease in the high frequency content of the distribution.,
and the transition in polarity at the border becomes more
rounded. This "rounding off" effect is most pronounced for
ischemic zones with abrupt borders. When the source
distribution varies slowly instead of abruptly across the
Horder zone, we expect that there will be a minimal effect of
. on the distribution. We verify this hypothesis in
Fig. 5.12 for an ischemic zone with a lateral diffuse border.

In Fig. 5.13 we examine the effect of varying the
lateral border width. As the width increases, the concavity
of the potential distribution for x < a reverses polarity and
then decreases in magnitude. For x > a, the concavity
decreases in magnitude without a change in polarity. We see
that when A _ equals the thickness of the myocardial strip
(2b) , the potential distribution becomes monotonic for the

region x < a. The overall potential distribution remains
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biphasic, however, for all values of AS.

Finally. in Fig. 5.14 we examine the effect of varying
the transverse border width at the lower boundarv. When b_
becomes sufficiently small, the potential distribution

becomes monophasic. This is because the Laplace current flow

at the lower boundary has been reduced to the pecint where it
no longer can produce a reversal in the polarity of ﬁo;

We conclude that the amplitude of the ischemic potential
distribution at the surface of a myocardial strip is directly
influenced by Por Py R, - and Ué. The concavity of the
distribution is affected primarily by the ratio (Ph/Pb)’ the
lateral border widtih, and the space constant. The polarity
of the distribution is affected primarily by the transverse

border width.
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a) Abrupt borders

c) Lateral and transverse

diffuse borders g x
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~
V4
-a
-b h
a

FIGURE 5.3 - The rectangular source distribution, Ums
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CHAPTER 6: The Solid Angle Model, Derived from the

Bi-Domain Mocel

There are a number of cases in which the bi-domain model
can be simplified. In this chapter, the "solid angle"” model
described in Chapter 3 is shown to be an approximation to the
bi-domain model and to be valid only under limited

conditions.

6-24. Assumptions of the solid angle model

The so-called "solid angle" model which is commonly used
in the literature to describe myocardial ischemic potentials
describes a potential in a mono-domain and takes the form
(cf. Appendix E) .,

M () ae, = - _Jf ESS(EQ)'V L, da, (6.1)

S, QP

where @e 1s the equivalent monc—-domain potential, P is the
observation point, 7 is the usual differential operator
(taken with respect to the P coordinate), P, 1s the
equivalent mono-domain bulk resistivity, S, is the surface
bordering the ischemic zone, and M. is a current dipole
moment/unit volume distributed over the incremental volume
surrounding S, and directed normal to the surface, with a
magnitude proportional to the degree of ischemia. In this
section we show that under three limiting assumptions, the

solid angle model can be derived from the bi-domain model in
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the manner illustrated in Fig. 6.1. In the derivation the
first assumption is that of a low spatial fregquency behavior
for the distribution of the active membrane current source
(Ums). This results in a simplification of the bi-domain
llelmholtz equations to a set of bi-domain Poisson equations.
The second assumption is that of a distribution for Ums such
that the intensity of Uns is everywhere constant, except 1in
the neighborhood of the surface 5,. The Poisscn ecuations
reduce still further to a set of bi-domain Laplace equations
for regions excluding the border. Finally, with a third
assumption of a spatially infinite medium, we arrive at the
solid angle model in the form of eguation 6.1.

We begin with the form of the bi-domain model for wihich
there are no externally introduced sources of current (as
from microelectrodes) in the bulk material. The only sources

of current are thcse at the cellular membrane (Ums).

-'Z(D J—

1
= 2 o - (Po +-Pi) Uﬁs (4.16a)

m

72@0 = P_+°—P_ VZ@m (4.16b;
pu

2 - L o2 ¥
7 @i = §“I‘§T’7 ?n (4.16¢c)
o 1
Observing that since the parameters P_, P;, and R are

assumed to be spatially constant, we can write the general

solutions to equaticns 4.16 in the form of egquations 4.19,
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-p
voo= S __ 5 o+ 3 (4.19b}
‘o P +P m ‘L - !
o L
P.i.
5, = P‘ﬁ% + o (4.19c)

where Py i1s a solution to the inhomogeneous Helrholtz
equation, and QL is a solution to Laplace's equation. We
proceed with our first assumpticn:

ASSUMPTION l: HIGH SPATIAL FREQUENCIES IN U ARE
NEGLIGIBLE. as

The preceding statement is equivalent to:
72¢m <= @m {6.2)

That is, 1f we think of *n in terms of its spatial Fourier
components, we are assuming that e is primarily composed of
frequency terms with periods much greater than the space
constant. Alternatively, since e is the forced response
from the driving function U,s r We are assuming that Uhs is
primarily composed of frequency terms with periods much
greater than the space constant. Thus, from equatiorn 4.l6a,
%2 @m = (Po +>Pi)Uﬁs (6.3)
independent of boundary conditions.

An equivalent way to obtain equation 6.3 1s to assume

that U,- the total membrane current, is much less than the

active component Ums (c£. Fig. 4.4). We have:

& = RU = RWU +U ) = RU (6.4)
m m mp m m mns m msS
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Since 1% = R /(P +P;), eguations 6.3 and 6.4 are identical.

Applying equation 6.4 to equations 4.19, we have:

2 - RU (6.5a)
e oI ms

3 = =P i<y + b (6.5Db)
o o ms L

v - P_wU _ + b (6.5c)
x L ms L

Equations 6.5 can be expressed in the form cf Poisson's

equation,
; (Po * P")Pe
e - —25 (V-M) (6.6a)
o
7% - =P (VM) (6.6k)
(] 2 -S
l?iPe
-2, = -
7 Qi 5 v @g) (6.6C)
(9]
Lf we take:
- — v 2
?egé = PQA VUms (6.7)

ol has the units of amp/cm< and can be interpreted as a
volume density of dipole current sources (dipole moment/unit

veolume) . Thus, we could define:

P - P (6.8a)

= A77U (6.8b)

7

tquation 6.7 forms the equivalence relationship between
the sources of the bi-domain Helmholtz model and the

bi-domain Poisson model. We note that the magnitude of the
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equivalent source cannot be chosen uniquely, as it is the
product P M which is constrained. We cculd, for example,

choose:

(6.9a)

o
®
I
o
=

M = (6.9Db)

-s

"
d

We shall see in section 6-C that the definition of equations
6.9 will be the more useful.

Thus, from the viewpoint of either domain, we can
equivalently represent the active membrane current sources
Uhs as a dipole moment/unit volume gs whose magnitude is
given by equation 6.7. A bi-domain representation is still
essential for the overall picture, since opposite polarity
dipole sources will exist at the corresponding locations in
the two domains, and consequently the intracellular and
extracellular current densities will have oppositely directed
components.

We can write the general solution to equation 6.6b in

the following form:

P (x,)
o (5) = I:?f ——EQ—PQ—dv + e () (6.10)
v

Using the vector identity for the divergence of a product.,

and the fact that M, vanishes at infinity, we then have:

o () = 4«[ u, (g,)* V‘r_“’ av, + o (5,) (6.11)
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Comparing equation 6.11 to 6.1, we see that the only sources
are at the incremental volume formed by the surface Spr
naving an incremental thickness. Therefore, since the
eguivalent sources are defined from the spatial gradient of
U__, we have our second assumption.

mns

ASSUMPTION 2: MAGMITUDE OF MEMBRANE CURRENT SOURCE Ums
CHANGES ONLY ACROSS A BORDER SURFACE.

Conserjuently, Ums experiences a change in value across the
surface Sy and otherwise has a constant value. Since Ums is
identified as the ischemic membrane current source leading to
changes in the resting potential (cf. Chapcter 4-B), we take
the value for U,_ to be zero foritEqions bounied by S, and
infinity (i.e. for the healthy myocardium).

In addition, we see that the term @L in eguation 6.11 is
neglected. Therefore we have our third assumotion.

ASGUMPTICN 3: HNO LOCAL 30UNDARY CONSTRAINTS.

This means that the myocardium is considered to be an
infinite medium.

In a manner sianilar to the derivation of egquation 6.11,

we can show that under the same three assumptions listed

above, a solid angle model can describe the intracellular

ootential distribution. The equivalence relation (ecquation
6.7) becomes,
A — - A2
Péés PiA m&s (6.12)

for the 1ntracellular domain.

To conclude, we see that three assumptions are made to
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reduce the general bi-~domain model of eguations 4.16 to the
so-called "solid angle”™ model of equation 6.1. These are: 1)
low spatial fregquency behavior in the active membrane source
iistribution, 2) a change in the active membrane source
intensity only at a border surface, and 3) no local boundary
constraints. This implies that in the absence of local
boundary constraints, the mathematical solutions for the
bi-domain model ana the solid angle model differ only in the
high spatial frequency terms (i.e. for freguencies with
wavelength less than the space constant), provided that the
sources follow a suitable equivalence relaticnship (equation
6.7). Consequently, for source distributions which chance
slowly in magnitude over distances much greater than a space
constant, the solid angle moael yields reasonably accurate
solutions, but only if local boundary constraints can be
neglected. In general, the ischemic zones of interest which
are illustrated in Fig. 3.2 have boundary constraints wnich
cannot be neglected, but nevertheless the solid angle model
has been applied incorrectly to these situations.

We will have occasion in Chapter 7 to use the bi-domain
model under Assumptions 1 and 2 only (equation 6.11, taken
with sources at the incremental volume around Sb' subject to
the appropriate boundary conditions), and we will refer to

this simplified model as the "bi-domain Poisson model. "™
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6-B. Equivalence relationships between solid angle and
bi-domain sources

We would like now to discuss the physical differences
between the source representations for the bi-domain model
and for the solid angle model, as it is currently used. Let
us begin by examining the source representations for an
intramural ischemic zone, one which is entirely embedded in
the myocardium, as shown in Fig. 6.2a. According to the
solid angle model, there is a uniformly dense, current dipole
layer situated on the boundary sb’ directing current into the
enclosed volume. Immediately, there is a problem with charge
conservation; in steady state a constant flow of current into
the enclosed volume cannot be sustained without an infinite

buildup of charge. Hence the source representation used by

the solid angle model violates physical constraints.

dowever, the bi-domain model can support a constant flow of

current into an enclosed volume of the extracellular domain,

since a return path for the current is provided through the

intracellular domain. Although the potentials determined by

the two models are the same (except at high spatial
frequencies), charge conscrvation is preserved by the
bi-domain mcdel and violated by the solid angle model.

Let us consider another case - that of a subepbicardial
ischemic zone, illustrated in Fig. 6.2b, where the epicardium
1s In contact with air (a zero conductive medium). Again,

with the solid angle model there is a uniformly dense,
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current dipole layer situated on the boundary Sg and directed
toward the epicardium. Although there is physically a
boundary at the epicardium which prevents a flow of normal
current, the solid angle model assumes that the medium 1is
infinite, as in Fig. 6.2c. Consequently, the surface S, is
not taken to be closed, and charge conservation is preserved.
But now, the physical boundary constraint at the epicardium
is violated. However, the bi-domain model again provides a
self-consistent physical description for the current
distribution. The epicardial boundary constraint is taken
into account, and as in the case of the intramural ischemic
zone, the return path for the current (now taken to be in the

extracellular domain) is provided through the intracellular

domain. Hence charge conservation and the bouncary
constraints are satisfied by the bi-domalin model, whereas
charge conservation but not the boundary constraints are
satisfied by the solid angle model.

Let us now consider in more detail the equivalence
relationship of equation 6.7. The sources gs of the
bi-domain Poisson model have been equated to the spatial
gradient of the active membrane current source distribution,
times a proportionality factor. Since gs is defined as a
gradient of a scalar function, the curl of %s must be zero.
This implies that the line integral of gs around a closed

contour in space must also be zero. Alternatively, the line

integral of Ms from point A to point B must be independent of
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the path. If we take point A to be on one side of the border
surface Sy and point B to be on the other side of Sb' then
the above constraint implies that the surface Sb must be
closed in an infinite medium (as shown in Fig. 6.2a). We
reason this as follows. The only contribution to the line
integral of M_ is at Sp- If the surface S, were not closed
(as in Fig. 6.2c), then two paths from A to B could be chosen
such that one path traversed the surface Sb and the other did
not. In that case, the two line integrals would not be the
same. If the medium i3 not infinite, then the surface Sb
need not be closed, but the surface S, must then terminate at
the boundary of the medium, as illustrated in Fig. 6.2b. The
curl equal zero constraint would then still be satisfied,
since the line integral between points A and B, chosen
anywhere in the myocardium on either side of Sb, must
traverse Sy and is therefore constant. Consequently, the
bi-domain Poisson model has in part a solid angile-—like
appearance but nevertheless satisfies the physical conditions
of charge conservation and boundary constraints.

We conclude from this discussion that there are cases
of 1ischemic zones for which the solid angle model violates
either charge conservation or boundaryv constraints. The
bi~domain model, however, is a self-consistent model which
satisfies both physical conditions. An equivalent density of
current dipole sources, gs, can be derived to simplify the

bi-domain Helmholtz equations to a set of bi-domain Poisson
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equations. Because of the nature of the equivalence
relationship between gs and Ums, gs is defined only over
closed surfaces or over open surfaces which are terminated on

the boundary surface of the myocardium.

6—-C. Boundary conditions

In the case where Assumptions 1 and 2 are valid but
where boundary conditions can significantly alter the
distribution of current, the bi-domain Poisson model, rather
than the solid angle model, must be used. As before,
provided that the appropriate equivalence relationship is
used for the source, and the appropriate boundarv conditions
are carefully selected, the mathematical solutions for the
bi-domain Poisson model will approximate those for the
complete bi-domain Helmholtz model. We consider thke
situation shown in Fig. 6.3 in which the border surface meets
a boundary between bi-domain and mono-domain media.

As we discussed 1in the previous section, in the presence
of local boundary conditions, it may now be the case that the
equivalent current dipole sheet of the bi-domain Poisson
model does not form a closed surface. Consequently
extracellular current loops can now close throuagh the
adjacent mono-domain, in addition to the intracellular
domain. Since there will then be a net current flowing out
of the bi-domain into the adjacent mono-domain, this current

will take the form of a Laplace ("common—-mode"™) current
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(refer to the discussion of Chapter 4-~F). Using the notation
of equations 5.3, the boundary conditions of equation 4.36a,b

(accounting for the flow of normal current) can be written

as

P
o

oo ~ B 2. Phut L) 30
o i 1L b (6.13a)
sn Pb sn

g (¢

O'UIH

= 0 (6.13b)

Combining equations 6.13 and using the relationship of

equation 5.4b, we obtain,

® 36
1 ‘%
nL - 5 (6.14)

h b

Q)

ro| -
Q

The above boundary condition differs significantly from the
classical boundary condition for the normal gradient of

potential in a mono-domain with bulk resistivity Po,

A Y L B W
o an Pb on (6.15)
Sh Sn

(Qpe is the particular solution) and from the same boundary

condition for a mono-domain with bulk resistivity Ph:

_ 1 2%
P, 9n

Sh b
The term ope of equations 6.15 and 6.16 can be identified as

L a(@pc+ @L)

Ph an

(6.16)

Sh

the low frequency approximation to on' since the sources for

~

b and @90 are related by the equivalence relation (equation
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6.7). Because the normal gradient of QH 1s large at the
boundary (even though @hﬂ itself may be small), we cannot
ignore BQhH/Bn to obtain equation 6.15 directly from equation
6.13a. However, in the case where the normal gradient of the
particular solution is zero at the boundary we can use
equation 6.16 to approximate the bi-domain behavior (equation
6.14) by a classical mono-domain with bulk resistivity Ph'
For ischemic zones with abrupt borders, we can in general
obtain a particular solution which satisfies this condition.

For the intracellular domain, there is no simple
representation of the intracellular potential by a
mono-domain. The reason for this is that the Laplace
potential QL is determined by the combination of the
intracellular and extracellular boundary conditions which
lead to equation 6.14. There is no way to convert the
intracellular boundary condition of equation 6.13b to the
form of equation 6.14, as we did for the extracellular
domain. Hence, the Laplace potential can be found only by
solving for the extracellular potential. The resulting @L
can then be added to the intracellular particular solution
@pi to arrive at the total solution (where we take the term
QhH to be negligible).

We conclude that under Assumptions 1 and 2 only, a
bi-domain Poisson model of the form of equation 6.11,
incorporating the boundary condition of equation 6.14,

approximates the behavior of the complete bi-domain Helmholtz
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model. Under Assumption 1 only, we have the more general
condition of a source distribution which is not limited to
the neighborhood of a surface and can be volume-distributed.
We can summarize the results of this section for this general
condition by expressing ﬁe, the potential of the equivalent
mono—-domain which approximates the extracellular potential of

the bi-domain, as a particular and homogeneous solution to

Poisson's equation:

5 - >+ b (6.17a)
(=3 pe ne
T2 = - - M
7 Qpe Ph(V‘gé, (6.17b)
72 = 0 (6.17c)
e
82 can be identified as the low frequency approximation to

ee

ﬁoo of the bi-domain model (equation S.3b), and Qhe as @L.

The term @hH of equation 5.3b is totally neglected. The

boundary conditions are then given by:

[¢pe N mhels - les (6.18a)
n o
b, | ad_|
1 °“he 1 b
Eh an " P. an (6.18Db)
Sh b Sh

6-D. Applicability of the solid angle model

The solid angle model, commonly used to intepret
ischemic ST-TQ shifts in the electrocardiogram (see Chapter

3), 1s a model in which local boundary conditions arec
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ignored. Consequently, for the majority of source
distributions of interest (subepicardial, suberdocardial,
transmural), we expect that with the use of Assumption 3,
that of negligible boundary effects, large errors will
result. A study of these errors is the subject of Chapter 7.

Furthermore, there is little justification for
Assumption 2, that of an abrupt ischemic border, which leads
to the representation of the source as a current dipole layer
distributed over a surface. The original motivation for such
a dipole representation [Wilson et al (1933)] was not to
explain the "injury"™ current but rather to explain the
"activation”" current at the border between polarized and
depolarized myocardial cells. A dipole layer at the (moving)
activation border may be a valid equivalent source
representation, because there is a relatively abrupt snatial
gradient in transmembrane potential, due to the rapid
depolarization of the cell membrane compared to the transit
time of the activaticn border across the myocardium.

However, unlike the case for activation there is no physical
basis for assuming an abrupt spatial transition in
transmembrane potential due to ischemia.

To conclude, we expect only Assumption 1 to be wvalid for
most situations. Thus we take the bi-domain Poisson ecuation
approximation (equations 6.17), rather than the solid angle
model, to be the more appropriate model for most cases of

experimental interest.
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Bi-domain Helmholtz
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l Low spatial frequency

Bi-domain Poisson l
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! Abrupt ischemic border
13

Bi—-domain Laplace
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1

E infinite boundary
v

Solid angle
model

FIGURE 6.1 - The derivation of the solid angle model

from the bi-domain Helmholtz model
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Mono-domain

(¢, ,P,)
(¢, ,P,)
(¢, R_)

Bi-domain
(Vh)

ischemic
zZone

(@b,Pb) = (potential, resistivity)

FIGURE 6.3 — Boundary conditions for the bi-

domain Poisson model
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CHAPTER 7= Case Studies Comparing the Bi-Domain and Solid

Angle Models

Four primary source distributions (cf. Fig. 3.2) are
commonly described in the literature in open—-chest animal
experiments: subepicardial, subendocardial, transmural, and
intramural. It is of experimental, and ultimately clinical,
interest to determine to what extent the "inverse" problem
can be solved, i.e. what kind of information can be obktained
from epicardial or precordial recordings of the ischermic
potential regarding the shape and extent, or more
specifically the area and depth, of the ischemic zone. This
information could potentially be used to assess the
effectiveness of various interventions following an acute
coronary occlusion.

We shall be considering various cases of ischemic zones
with abrupt borders. Since the ischemic zone contains a
constant intensity source (Ums) which changes value only at
the border, there is no gradient in G_ . at the epicardial or
endocardial boundaries (which are not considered to be border
surfaces) for subepicardial, subendocardial, or transmural
ischemic zones. This implies that the gradient of on normal
to the boundaries can be taken to be zero, so that we can
apply the bi-domain, Poisson approximation, equations
6.17-6.18.

Before we begin, we would like to make a point regarding
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the reference potential. The potential distributions derived
in this chapter assume that the reference potential is taken
at infinity. However, this is not the potential implicitly
used by the cardiologist. In the open-chest preparation in
which the heart is exposed and is in contact with the body
only over part of its surface, the reference potential is
usually taken to be Wilson's central terminal, a potential
which is an averaqge of the limb potentials. If the ischemic
zone 1is entirely contained within the exposed myocardium,
then most of the ischemic current will be confined to the
heart and very little will leak through the body. Therefore,
the limb potentials will be nearly equal to the potential of

the portion of the heart surface which is in contact with the

body. Therefore, to interpret the distributions for the
ischemic potential which are derived in this chapter, it will
be necessary to treat some potential on the heart surface as

the "real-world" reference potential. If the ischemic zone

1s centered around 6 = 0 (as in Fig. 7.4a), and only the
epicardium around & = w is in contact with the body, then the
epicardial potential at 86 = T becomes the "real-world"

reference potential. When we refer to a potential
distributicon as being "monophasic®" or "biphasic®", so that we
can relate our theoretical results here to the experimertal
results in the. literature, we are then taking the epicardial
potential at 4 = w, rather than the potential at infinity, to

be the reference potential. Difficulties in the
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interpretation of the epicardial potential distribution can
arise however, particularly when a portion of the ischemic
zone comes into contact with the body, so that an appreciable
amount of current can be shunted through the body. Not only
will this affect the current distribution within the heart,
but it will also alter what is taken to be the "real-world"
reference potential. For simplicity, we shall assume that
the ischemic zone is confined to the exposed portion of the
heart, and that the "real-world" reference potential is taken
to be the potential on the epicardial surface of the wall of

the heart ogpposite to the ischemic zone.

A. Subepicardial ischemic zone

In this section, we derive the epicardial surface
potential distribution arising from a subepicardial ischemic
zone, taking the reference potential to be at infinity. We
shall show that the surface distribution directly reflects
the area (but not the depth) of the underlying source
distribution. We take the geometry of Fig. 7.la, where we
assume an axial symmetry in spherical co-ordinates, so that
the potentials will not have a ¢-dependence. We define the
cavity potential (@c) for the region r < Rc, the homogeneous

(¢, ) and particular (Qpe) solution potentials for the region

he
Rc <r < Rb' and the body potential (Qb) for r > Rb'

Consequently we have (cf. equations 6.17),

$ = ¢ + ¢ (7.1la)
e pe he
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2 = - -

A P, (VM) (7.1b)
2 —_ 2 p— 2 — R
vze, = Ve v = 0 (7.1c)

where the homogeneous (@he) and particular (@Pe) solutions,
when added together, form the complete solution (@e), and
where V-gs is a dipole layer distributed over the surface

located at 8 = 6 (R
a a

A

r <R) and at £ = R_ (0 £ 8 < 8.)-

b)
The solutions to equations 7.1 are subject to the boundary

conditions (cf. equations 6.18),

r=R_: Ce e = % (7.2a)
L 2he _ 1 %o (7.2b
B T3r P 3¢ - 2b)
h c

r = Rb: Qpe + Qhe = Qb (7.2c)
1 e _ 1 % (7.2d)
Ph ar Pb ar

We choose the particular solution (@pe) as follows,
using a separation of variables:
Qpe(r,e) = Ql(r) 02(8) (7.3a)

where,

(7.3b)

@2(9) = (7.3c)
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The solution 7.3a corresponds to the complete solution for
the region R_ < r < R, when the boundary at R is extended
to infinity. From physical arguments, we expect that in
fact, this solution is equal to the complete sclution! The
reason for this is that &pe satisfies all the required
boundary conditions (equations 7.2). Specifically, the
normal derivative of @De 1s zero at both the endocardium and
epicardium, as 1s the normal derivative of Qpi' In addition,
the wvalue of Qpe is zero at the endocardium, permitting a
solution to Laplace's equation of a constant (zero) value in
the intraventricular cavity (r < R.). Hence, by uniqueness,
@pe must be the complete solution (Qe). However, a more
complex technique will be needed in the later sections for
the cases of subendocardial and transmural ischemic zones, so
we develop the method here in this section. We can then
check our computed answer against our physically motivated
answer.

We proceed to solve the given problem in a manner
analogous to the method of Chapter 5, by finding the solution
in terms of its eigenfunction expansion. We anticipate the
need to expand 62(6) in terms of an infinite series of

Legendre polynomials (the spherical eigenfunctions along ¢,

in the case of axial symmetry). Hence,

2,(0) = kgo E P, (cos @) (7.4a)

We can invert the above expansion to obtain,
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f: @2(9) Pk(cos 8) sin 6 de

E, =
fﬁ P2(cos 68) sin 6 de
o K

Zk+1
2

[ﬁ ®_(8) P, (cos 0) sin 6 d6 (7.4b)
0 2 k

by using the orthogonal properties of P, (cos 8):

[ 0 rn#m
" P (cos 8) P (cos 8) sin 6 d8 = (7.5)
10 n m 2

WL rRIm

Substituting for @2(6), equation 7.4b becomes:

(cns g -1
—_—
2
Ek = (7.6)
P (cos 8 ) - P (cos 9 )
k+1 a 5 k-1 a M Ikil

M r k=0

We use a separation of variables on @he(r,e) and express the

eigenfunctions of Laplace's equation as: rkPk(cos 8) and

r-(k+l)Pk(cos 8). Thus, we can express @he(r,e) as:
[--]

R
— r .k k+1
¢  (x8) = kgo [Aﬁ((—Rb) +B @1 B, _(cos 6) (7.7)

In a similar manner, we can expand @b(r,e) and @c(r,e) as

Legendre polynomial expansions along 0:

_ pos R k+1
o, (r.6) = kzo C. (EE) P, _(cos 8) (7.8)
¢.(x.®) = [ p_EIF P, (cos 6) (7.9)
k=0 “e

Substituting equations 7.3, 7.4a, and 7.7-7.9 into the
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boundary conditions 7.2, and solving for Ak’ Bk' Ck’ and Dk'

we obtain:

k=0 = A =D = E (7.10ca)
[ (o] [e]
B = ¢C =0 (7.10b)
o] (o]
- &b,
_ b
k>1: Pk—ff_ff(R )2k+].Ek (7.10c)
1 4 23‘c/RD
k + 1L k
( VE_ (R )
B = L -2» aq%mad.gk (7.10d)
£15, ~ 5 ER/RY)
R
- oy k+l
C, E +A_* Bk(Rb) (7.10e)
D = (E)K*'B 7.10£
k %Rb k (7. )
where,
£ = k;l*‘§ (7.11la)
b h
_k _k
fz TP P (7.11b)
c h
g, - S5E-E21L (7.11c)
b h
-k k+1
£y P Y (7.11d)
c h

Using equations 7.6 and 7.10, we can find Ak’ B ., Ck, anct Dk'

k
From equations 7.4a, and 7.7-7.9, we can then obtain Oz(r,ﬂ),

Qh (x.,8), Qb(r,e), and Qc(r,e). In evaluating the Legendre
e

polynomial expansions, we first convert the Legendre
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polynomial of each term of the expansion into its Fourier
cosine series expansion (see Appendiz G). Thus, the Legendre

polynomial expansion of the form,

Fir,9) = fp(r,k) Pk(cns g) (7.12)

Il &~

k=0
1s expressed as a Fourier cosine series by expanding each

Pk(cos %) into a Fourler cosine series:
Pk(cos g)y = p(j-k) cos je& (7.13)

Substituting equation 7.13 into 7.12, we obtain,

F(r,3) = E_(r,j) cos 3o (7.14)
3=0

where:

1 8

E_(£.3) = £, (k) p(, k) (7.15)

i~

k=0
We then use the FFT to invert each cosine series expansion
(cf. Appendix F). In tihls manner we can improve accuracy and
reduce computation time. Finally, from equations 7.la and
7.3, we can find the ischemic potential, ¢e(r,e).

We take a specific case where R = 2 cm, R = 2.5 cm, Rb
(o4 a
=3 cm, P, = 3 P, and P = 1000 P (simulating an air
h c b h
interface). Despite the complex method, a very simple
distribution is obtained for the epicardial potential, as
expected. From the results of the computation, we see that a

uniform, non-zero ischemic potential will be observed within

the ischemic zone, and a zero potential observed outside the
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ischemic zone (Fig. 7.2). As in Chapter 5, the magnitude M
of the source has been normalized to 1. Because of the
air-interface at the epicardial boundary, no current can
traverse the boundary. Consequently there is nc flow of
Laplace ("common-mode"™) current, and the ischemic potential
is identically equal to @pe. This result dramatically
illustrates the difference between the bi-domain and solid
angle models. The results predicted by the solid angile mode L
can be obtained by setting P_ = P, = Pc and are shown in
Fig. 7.3a as an equipotential plot and in Fig. 7.3b as
potential distributions on the epicardial and endocardial
surfaces. Because the boundary is ignored by the solid an~le
model, the results of Fig. 7.3b differ significantly from

those of Fig. 7.2. We see that the Poisson approximation to

the bi-domain model predicts a monophasic, epicardial

ischemic gotential distribution, while the solid ancle model
predicts a biphasic distribution.
A second result of interest is the fact that the

epicardial surface potential distribution is independent of

the location of the transverse border for the ischemic zone
(given by the radius Ra). There is no provision 1n the
boundary conditions (equations 7.2) for the parameter Ra, and
therefore the coefficients for the Legendre polynomial
expansions of the wvarious potentials (equations 7.10) have no
dependence on Ra. Consequently for subepicardial ischemic

zones, the ischemic potential distribution is a poor
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indicator of the depth of the ischemic zcne. In section 7-C
we will discuss what happens in the limit where the parameter

R goes to Rc, the radius of the endocardial surface.

B. Subendocardial ischemic zone

In open—chest preparations we show that the influence of
subendocardial ischemic zones on the epicardial
electrocardiogram is larger than what the solid angle model
would predict, since significant boundary effects arise at
the epicardium.

We proceed in a manner exactly analogous to the method
of the previous section. We assume the geometry shown in
Fig. 7.1b. We redefine ¢L(r) of equation 7.3b to be:

[
' r R_<r <R
c a

1
2, () = 4{ (7.16)
fo , otherwise
Substituting equations 7.3a, 7.3c, 7.4a, 7.7-7.9, and 7.16
into the boundary conditions 7.2, we can solve for Ak’ Bk’

Ck, and Dk to obtain:

K=0: D = E (7.17a)
A = Bo = Cc, =0 (7.17b)
X x+1
(E;)fzﬁg/Rb)

T T %+l B (7-17¢)
“i%4 fzfz(Rc/Rb)

P
| N
'—.
"
Ps'l‘
|
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&

7 )E)
B = S 3
k _ 2L Tk (7.17¢)
£,£, - 5£,R/R)
C, - A +8 Ok (
K At B R (7.17e)
R
D, = B tAEI +p (7.17£)
k kR x e

where fl, £_ . f3, and f4 are defined as before, in equations

2
7.11. From equations 7.17 we can obtain the various

P $

potentials, Py, her

pr and ®_, from which we can obtain che
complete solution ¢e. Again, we solve a specific example for
the same parameter values used in the example of Fig. 7.2,
and the results of the computation are shown in

Fig.'s 7.4a,b. The precise area of the ischemic zone appears
as a "blurred™ image in the potential distribution at the
epicardial surface. As before, by setting Pb = Ph = Pc, we
can obtain the results predicted by the solid ancle model
(shown in Fig.'s 7.5a,b). In both cases, a monophasic
potential distribution can be observed on the epicardium;
however its polarity will be opposite to that for the

subepicardial case (recall that a positive ischemic potential

indicates a positive baseline shift, or a negative ST-TQ

shift). Due to the boundary effects, however, we see that a
larger potential is obtained on the epicardium than that
predicted by the solid angle model.

In addition, we see that as in the subepicardial case,
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the epicardial surface potential distribution is independent
of the location of the transverse border (given by the radius
Ra) of the ischemié zone. Referring to Fig. 7.4a, a shift ir
the location of the border at Ra will not affect the
distribution of the equipotential lines, which we note are
continuous in slope through the border surface; it will
merely shift the location at which the jump in potential from
one equipotential line to its continuous counterpart (having
a potential difference of 1) will occur. Consequently, the
epicardial ischemic potential is a poor indicator of the
depth of a subendocardial ischemic zone. However, we have
been assuming an abrupt border for the ischemic zone. If the
border is diffuse, we would then expect a better sensitivity

to the depth (cf. Chapter 5-D).

C. Transmural ischemic zone

We take the same procedure used in the previous two
sections to find the potential distribution arising from a
transmural source distribution (Fig. 7.1c). We shkall see
that the amplitude of the potential distribution is larger
than what the solid angle model would predict, although the
two distribuctions are qualitatively similar.

We redefine éfr) of equation 7.3b to be:

e @ =1 (7.18)
and substitute equations 7.3a, 7.3c¢, 7.4a, 7.7-7.9, and 7.18

into the boundary conditions 7.2 to obtain:
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k=20 : Ab = —Eo (7.19a)
. ; Bo = C0 = Do = 0 (7.1%b)
K>1: a - —=< 5 E, (7.19¢)
— _ 2k+1 k
flf4 Ezf3(Rb/Rb)
S ;, l)fz(Ro/Rc)‘ B (g Ve
B, = - Zkfi E (7.19d)
e & *
55 - H5HR/RY
+A +B (—E-{i:-)“‘“l (7.19
Ck Ek Ak k:Rb -19e)
%:k

where fl' fz' f3, and f4 are defined as befcre, in equations

7.11.

We again solve for @e(r,a) for the same parameters as
for the case of Fig. 7.2, and the results are shown in
Fig.'s 7.6a,b. &as before, we can compare these results to
the predictions of solid angle model by setting Pb = Ph = Pc

(Fig.'s 7.7a,b). We show that transmural ischemic zones with

abrupt borders will yield a decreasing (in magnitude)

ischemic potential toward the center of the zone. The
epicardial, ischemic potential distribution will be biphasic,
with a reversal in polarity at the border. Due to the
boundary effects, the distribution is larger than that
predicted by the solid angle model.

From the discussion of Chapter 5-B, we expect that
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lateral diffuse borders for transmural ischemizc zones can

yield an increasing (in magnitude) ischemic potential toward

the center of the zone, despite the presence of Laplace
current flow across the endocardial boundary. However, the
ischemic potential distribution or: the epicardium will still
be biphasic, with one polarity at the center of the zone, and
an opposite (reciprocal) polarity at some distance away from
the center, although the magnitude of the reciprocal
potential can be much smaller than that of the primary
potential (as in Fig. 5.5b). The reciprocal potential will
not decay to zero but will instead decay to some constant,
non-zero value at 6 = nm, where the "real-world" reference
potential is taken. This will serve to reduce the effective
magnitude of the reciprocal pctential even further. If, as
in Chapter 5-C, there is also a transverse diffuse border at
the endocardium, it is then possible for the ischemic

potential distribution to be monophasic (as in Fig. 5.6b).

Thus, we expect that the width of the transverse border at
the endocardium will play a major role in the shape of the
epicardial potential distribution.

Tinally, we make one more observation. In 1942 Bayley
proposed that a thin layer of the subendocardium adjacent to
the cavity escapes the ischemic condition. From our
analysis, we see that this could have a rather large effect
of determining whether the epicardial potential distribution

is monophasic or biphasic. If we have a subepicardial
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ischemic zone whose transverse ischemic border (located at
radius R,) approaches the endocardial surface, we expect to
go abruptly from the distribution of Fig. 7.2 to the
distribution of Fig. 7.6b. Apparently, there is a
discontinuity involved. But this arises because we have
approximated the complete bi-domain Helmholtz model by the
bi-domain Poisson equations. Had we included the high
spatial frequency terms neglected in the Poisson formulation,
we would see a smooth transition from one distribution to the

other as the transverse border approaches the endocardium.

D. Intramural ischemic zone

In chapter 6-B we discussed the case of an ischemic zone
whose border surface is completely closed. This, in fact, is

the definition of an intramural ischemic zone. A non-zero,

uniform ischemic potential will be obtained inside the 2zone,
and a zero potential outside the zone. Consequently, the
Poisson approximation predicts that intramural ischemic zones
will be "invisible"™ to the epicardial electrode. However,
from the complete, Helmholtz bi-domain model we expect a
"diffusion”"™ of potential from the ischemic border over
distances on the order of the space constant, A

(cf. Fig. 4.7). Therefore, if an intramural zone were to
approach either the epicardial or endocardial boundary to
within a space constant, we would then expect to be able to

detect its presence from epicardial measurements.
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a) Subepicardial zone

/

Qb'Pb ischemic zone " conductive body
: medium
5 ; 7 cardiac
e ! / tissue
o - .
®_,P_ . i a / conductive
- : ?3’ cavity fluid

b) Subendocardial zone

c)

FIGURE 7.1 - Ischemic zones lying in the
spherical myocardial wall
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FIGURE 7.3a — Equipotential lines for the extracellular poten-—
tial for the case of a subepicardial ischemic zone, using the

solid angle model.
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‘.00
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a

PO = (.08 PIL = 3.900 PB = (@60.0@ PC = _25

3.00

R (CM)
2,00

1.00
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FIGURE 7.4a - Equipotential lines for the extracellular
potential for the case of a subendocardial ischemic zZone,
using the bi-domain Poisson model
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FIGURE 7.5a - Equipotential lines for the extracellular
potential for the case of a subendocardial ischemic zone,
using the solid angle model.
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FIGURE 7.6a - Equipotential lines for the extracellular
potential for the case of a transmural ischemic zone,
using the bi-domain model.
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FIGURE 7.7a - Equipotential lines for the extracellular
potential for the case of a transmural ischemic zone,
using the solid angle model
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CHAPTER 8: Issues of Experimental Interest

In reviewing the electrocardiological and
electrophysiological literature for both theoretical and
experimental results regarding electrical models for
myocardial ischemia, a number of issues become evident.
First, there clearly is an experimental and clinical interest
in developing a reliable electrical measurement which
reflects the extent and severity of an ischemic myocardial
region. Such a measurement would be convenient, since it
would then be relatively easy to perform and would provide
instantaneous information. It could be used, for example, to
measure the effectiveness of a drug intervention. Second,
experimental measurements of myocardial electrical signals
are obtained through a wvariety of techniques. These
techniques can be divided into two categories: those
consisting of biologically microscopic (e.g. microelectrode)
and those consisting of biologically macroscopic (e.g. cotton
wick electrode) recordings. The precise nature of the
microscopic potential distribution is a question only
recently being asked (cf. Chapter 2-C), whereas the
macroscopic potential distribution has long been measured
clinically. Third, much weight has been given to evidence
using the magnetocardiogram [Cohen and Kaufman (1975)] which
identifies shifts in the baseline of the ECG as the primary

electrical event associated with myocardial ischemia. In
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this chapter we propose to explore each of these three issues

in detail in the light of the bi-domain model.

8-A. ST-TQ spatial maps and the "inverse" problem

As we have briefly discussed above, an electrical
technique to measure the extent and/or the severity of an
ischemic zone would be both valuable and convenient. In
electrical field theory, this is known as the "inverse"”
problem; i.e. what information can be obtained regarding the
sources by measuring the potentials arising from those same
sources? A spatial map of an electrical index which reflects
the local ischemic myocardial condition might prove to be
such a technique, at least for solving the spatial aspect
(extent) of the inverse problem.

Recently, the ST-TQ segment of the ECG has been used as
an ischemic index in conjunction with mapping techniques, as
described in Chapter 1-A, although the technique of ST-TQ
mapping is now a controversial one. We point out here that

the use of ST-TQ maps as they have been applied to myocardial

ischemia, and the use of these same maps to solve the inverse
problem, are not the same. The difference is that ST-TQ
segment maps have been experimentally used as qualitative
indices as to the improvement or worsening of the "ischemic
condition™, a condition which is not defined except as the

amount of necrotic (dead) myocardium at some future time.

This is at variance with the usual "input-output" concepts in
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engineering, in which the electrical output variable (ST-TQ

segment) is related to some other input variable at the same

instant of time (assuming no delay in the system).

Consequently, we are led to a usage and interpretation of
spatial ST-TQ maps which differs from that of the
experimental cardiologist. Ideally, we would like to measure
two-dimensional spatial maps which are continuous over the
epicardium and have coordinates which are quantified. On the
other hand, the cardiologist would, for simplicity, like to
have a minimal sampling of epicardial poctentials which yields
a single number (whether it be the sum of sites having ST-TQ
elevation, or the total ST-TQ elevation summed over all the
sites) sufficient to tell him whether or not the overall
ischemic ccndition has worsened or improved.

Justification of mapping procedures to attack the
inverse problem involves a two-step process. First, an
electrical index must be found which can be correlated to an
independent, alternative, localized index of ischemia (e.g. a
metabolic, histologic, enzymatic, or pathologic index) ([for a
review of myocardial indices, see Hillis and Braunwald
(1977a,b)]. Second, a theoretical electrical model must be
developed in order to make statements regarding the inverse
problem. We would like to be able to discuss issues such as
the sensitivity of an epicardial electrode to cellular
sources located far away from the electrode. We note that in

practice, the inverse problem of translating a spatial map to
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a source distribution is made even more difficult since
spatial maps cannot be performed in three dimensions
throughout the myocardium; they can be made only on the
epicardial or possibly on the endocardial surface.
Unfortunately, the parameter of the ST-TQ segment, used
as an ischemic index, is not one which lends itself to
theoretical support, since it involves the difference in
potential at two different times. All the theoretical
multicellular models described in Chapter 2, including the
solid angle model, are essentially quasi-static models, and
predict the potential distribution arising from a given

distribution of sources at one instant of time. The height

of the ST-TQ segment, however, is the difference in

potentials at two instants of time - the interval of the TQ

segment (electrical diastole) and the interval of the ST
segment {electrical systole). Consequently the ST-TQ map
results from a combination of the source distributions at two
instants of time, and these distributions may act
independently. In addition the plateau of the cellular
transmembrane action potential has a time-varying amplitude,
suggesting that one of the two source distributions is not
stable in time (the one during electrical systole). This :s
reflected in the difficulty in defining the level of the ST
segment. By focussing as we did on just the TQ segment, we
avoided the problem of measuring a potential which arises

from two possibly independent source distributions.
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There is, however, one obvious condition in which we
would expect the source distributions to be the same during
electrical diastole and electrical systole. That is the
condition where the ischemic membrane is completely inert;
i.e. Uns is zero. Hence the spatial distribution of the
ischemic zone will remain fixed during the cardiac cycle and
will not change as metabolic conditions change. However,
from the results of Prinzmetal et al (1961,1962), an inert
condition does not accompany acute ischemia, as the ischemic
cell is still electrically quite active.

There is another condition in which the ST-TQ map may
indeed reflect the source distribution, and that is when one
of the components of the ST-TQ segment dominates over the
other. As we discussed earlier in Chapter 1-C, there is
evidence that the baseline shift is consistently the
predominant component of the ischemic ST-TQ shift.
Unfortunately, there have not been many investigators who
have used d-c electrodes to measure changes in the TQ segment
with ischemia. Thus we underline the need for obtaining d-c
data.

Then, regarding electrical models, investigators such as
Holland and Brooks (1975,1977a,1977b) and Holland and
Arnsdorf (1977) have attempted to apply the solid angle model
to provide, in their words, a "theoretical basis™ for the
ischemic ST-TQ shift. As we have already discussed in

Chapter 6-D, there are difficulties in using the model even
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for the appropriate potential, much less when it is used in
relation to the ST-TQ shift (as in Chapter 3-B). Thus, we
have the situation cf a poor model being used to describe a
somewhat erratic potential, hardly the basis for a
"theoretical™ discussion. On the other hand, the bi-domain
model described in this work avoids the limitations inherent
in the solid angle model, having been constructed with the
physical structure of the myocardium in mind.

Despite the problems with defining the electrical
ischemic index, we are left with several interesting
theoretical questions. Let us presume for the moment that
the ischemic ST-TQ distribution is similar to the TQ
distribution which would be measured by d-c electrodes, a
valid assumption if the TQ shift is the major component of
the ST-TQ shift (as it appears to be). Using the results of
the bi-domain model obtained in Chapters 5 and 7, we can
interpret various data in the literature for the following
areas: l) reciprocal ST-TQ shifts; 2) monophasic epicardial
potential distributions; and 3) sensitivity of the ST-TQ
segment to local tissue changes. We recall that the figures
of Chapters 5 and 7 plot the distribution of the predicted
ischemic potential (TQ shift). Negative values for the TQ
shift in these figures correspond to positive values for the

ST-TQ shift.
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1) Mcnophasic epicardial potential distributions

Studies by Rakita et al (1954) - Fig. 1.5, and Katcher
et al (1960) - Fig. 1.11, on exposed canine hearts reported
spatial distributions of ST-TQ shifts on the epicardium which
were monophasic, slowly monotonic, and positive, with a
maximum over the center of the ischemic zone. From the cases
studied in Chapters 5 and 7, we saw that positive, monophasic
ST-TQ distributions (or negative TQ distributions) could
arise either from hypopolarized (positive Uﬁs) subepicardial
ischemic zones, or from hyperpolarized (negative Uﬁs)
subendocardial ischemic zones. In the former case, the
potential distribution directly reflected the nature of the
underlying source distribution (Fig. 7.2). Thus, to explain
the results of Rakita et al and Katcher et al, we would
conclude that the ischemic zone must have a diffuse border,
since no abrupt transition in the ischemic potential was
observed. In the latter case, it would not be necessary for
the ischemic border to be diffuse in order to obtain a slow
transition in the ischemic potential, since the epicardial
image of the ischemic zone 1s one which is spatially filtered
(Fig. 7.4b).

In order to differentiate between the two cases, another
measurement must be performed. We suggest that if an
endocardial map of the spatial distribution could be
obtained, the shape of the ischemic zone could be identified.

If the zone were subepicardial, the endocardial potential
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distribution would be nearly isoelectric (Fig. 7.2). On the
other hand, if the zone were subendocardial, the distribution
would reflect the nature of the underlying source
distribution (Fig. 7.4b).

We include here some other observations which may be
relevant. In their studies which recorded simultaneous
transmembrane resting potentials and d—-c TQ-segment levels,
Prinzmetal et al (1961l) observed that in cases which they
classified as "mild" ischemia, cellular hyperpolarization
occurred, while in cases of severe ischemia, Ezggpolarization
occurred (Fig. 1.7). This result, if not supportive of the
two possible cases described above, at least does not
contradict either possibility. On the other hand, all the
intracellular recordings taken from the in vivo heart are
necessarily from the epicardium, so that the behavior
described by Prinzmetal et al for "mild" and "severe”

ischemia is not necessarily indicative of endocardial cells.

2) Reciprocal ST-TQ shifts

The early results of Wolferth et al (1945) reported the
existence of "reciprocal" ST-TQ shifts on the side of the
heart opposite to the ischemic zone. The ST-TQ shift over
the ischemic zone was generally elevated, while the
"reciprocal”" shift was depressed. Rakita et al (1954).,
Katcher et al (1960), and Prinzmetal et al (1961) all

reported the occasional appearance of "reciprocal"™ ST-TQ
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depression at the epicardial borders of the ischemic zone.
Other studies have been performed into the nature of ST-TQ
depression [Ekmekci et al (1961l), Sayen et al (1961),
Toyoshima et al (1964), Kato et al (1968), Guyton et al
(1977)1].

The experiments of Sayen et al (1961l) are particularly
interesting. They observed that epicardial ischemic
potential recordings contained reciprocal ST-TQ shifts only
if the ischemic zone came into contact with the body, where
the reference potential was taken. We can interpret these
findings from the results of Chapter 7. In the following
discussion, we assume as we did in Chapter 7 that the
poolarity of Uﬁs is positive, corresponding to the case where
the ischemic membrane is hypopolarized.

Apparently, there are two effects involved. First,
reciprocal shifts will be observed across the border of
transmural ischemic zones, since the distributions are
biphasic (Fig. 7.6b). As we described in Chapter 7-C, the
biphasic nature arises because of the Laplace current flow
across the endocardial boundary into the intraventricular
cavity. Second, we concluded in Chapter 7-aA,B that the
distributions for subepicardial and subendocardial zones will
be monophasic, although with opposite polarity (Fig.'s

7.2,7.4b). This implies, however, that reciprocal shifts

will be observed if an epicardial potential other than the

one at & = 7 is taken as the reference potential. For
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example, in the case of a subepicardial ischemic zone, if a
portion of the zone comes into contact with the body, a
potential somewhere between the maximum and minimum of the
monophasic epicardial distribution will effectively become
the reference potential (refer to the discussion at the
beginning of Chapter 7). Consegquently, a biphasic
distribution will be measured, although for the reasons just

stated it will in part be an artifact of the recording

system. Furthermore, current loops can close from the
extracellular domain across the epicardial boundary into the
body. This will contribute further to a biphasic
distribution (refer to Fig. 5.14) in which varying degrees of
current, resulting from a varying transverse border width,
can flow across the myocardial boundary.

We can differentiate between these two interpretations
by performing the following measurement. We propose to
insulate the heart from the body by interposing a suitable
sheet of non-conductive material, thereby altering the
location of the reference potential. We then remeasure the
epicardial potential distribution. If the zone is
transmural, reciprocal ST-TQ depression will still be
observed. However, if the zone is either subepicardial or
subendocardial, the reciprocal depression will disappear, as
the only heart/body connection is through the great vessels,

which we presume are connected to non-ischemic myocardium.
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3) Sensitivity of the ST-TQ segment to local tissue changes

aAs we discussed in Chapter 6-B, the active membrane
sources are given by U,s- In an infinite medium the
extracellular ischemic potential will directly reflect the
source distribution, provided that there is no Laplace
current flow and that the source distribution changes slowly
over distances much greater than a space constant. In the
presence of an air interface at the epicardium, this
relationship will still hold for subepicardial ischemic zones
but not for transmural zones or for subendocardial zones.
From Fig. 7.2, we saw that the ischemic shift will directly
reflect the lateral distribution (area), but not depth, of
the underlying subepicardial zone, since the air interface at
the epicardium will prevent any Laplace current flow.
However, this relationship will be corrupted for transmural
zones (Fig. 7.6b), due to the Laplace current flow across the
endocardial boundary. Finally, an image of a subendocardial
ischemic zone will be observed on the epicardium (Fig. 7.4b),
but it will be spatially filtered and have a polarity
opposite to that of the source. In addition, the magnitude
of the epicardial potential will be considerable, indicating
that the subendocardial layers are not, as previously
thought, "electrically silent". Thus, we conclude that the
epicardial potential distribution may or may not represent
the lateral distribution of the underlying isckhemic zone,

depending on the relative location of the ischemic zone to
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the epicardium, and is a poor indicator of the depth of the

ischemic zone, at least in the case of abrupt ischemic
borders.

Finally, we mention the experiments of Muller et al
(1975), in which a monophasic, positive distribution was
obtained for the ST-TQ segment, but where a local minimum was
observed over the center of the ischemic zone (Fig. 1.9).
This distribution does not match any of the distributions
obtained in Chapter 7, and we come back to a point discussed
earlier. This is the fact that the ST-TQ segment reflects
the source distribution at two different instants of time.
The decrease of the ST-TQ segment at the center of the
ischemic zone is not necessarily a response to the source
distribution or the result of boundary effects, but possibly
the result of potentials at two different times becoming
similar for independent reasons. This is especially
suggested by the evident widening of the QRS complex of the
SEG, indicating local conduction block, which alters the
sequence of repolarization (ST-T wave) but does not affect

the potentials during the TQ segment.

8~B. Biologically microscopic vs. macroscopic measurements

In summarizing the literature regarding experimental
measurements of the space constant from in vitro preparations
of myocardium, Sperelakis (1969) noted a discrepancy between

microscopic and macroscopic measurements. There was up to an
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order of magnitude difference in the values obtained,
depending on whether the technique used involved current
introduced and potential measured through a microelectrode,
or current introduced and potential measured through
electrodes in the surrounding bath. Thus, we are introduced
to the two different classes of electrode measurements —
those taken with microelectrodes having dimensions on +<che
order of a cell length, and those taken with gross (macro)
electrodes having dimensions on the order of 10-100 cell
lengths.

The wvarious models described in Chapter 2 also fall into
two similar categories. We could classify the branching
network and biologically microscopic field models as models
which describe the local potential on the cellular level,
while the cable and biologically macroscopic field models
describe the global, multicellular (tissue) potential. There
has been little attempt to bridge the gap between these two
extremes. However, George (1961l) used a hybrid model
consisting of a lumped parameter model to describe the
potential distribution "near"™ the microelectrode source, and
a continuum to describe the potential distribution "far™ from
the source. We recognize that the bi-domain model discussed
in this work falls into the category of biologically
macroscopic field models. Therefore, in order to apply the
bi-domain model to cases in which microelectrodes are used as

stimulating electrodes, a hybrid model similar to that of
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George may be necessary to describe the fields around the
source. The bi-domain model is limited in that it cannot be
used to describe the various parameters measured with a
microelectrode source, such as the input impedance (used to
determine the membrane impedance). However, we feel that the
model appropriately describes preparations with dimensions
down to lengths on the order of a space constant, such as

those used in an in vitro sucrose gap.

8-C. Magnetocardiograms

Cohen and Kaufman (1975) used magnetocardiographic
techniques to determine whether the ischemic ST-TQ potential
arises from diastolic (TQ) or systolic (ST) current flow
(Fig. 1.12). Using an "out-in-out" technique, consisting of
a continuous, magnetic scan of ischemic, closed-chest dogs
from one end of the body to the other, they were able to
detect the flow of d-c current arising from the heart. They
concluded that significant ischemic current occurred only
during electrical diastole and resulted in a baseline shift.

We can inte?pret these findings in the light of the
bi-domain model. As we discussed in Chapter 4-F, currents
arising from primary cellular sources will give rise to
Helmholtz ("differential-mode®™) currents. Because of their
differential nature, these currents might not be expected to
generate an externally observable magnetic field. However,

in the presence of current flow across the epicardial
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boundary in the closed chest, Laplace ("common-mode™)
currents will arise and can account for the observed magnetic
shift. We could test this hypothesis with an experiment
modeled after that of Nahum et al (1943) (see Chapter 1-C).
We predict that if an insulating sheet were interposed
between the heart and the body, the observed magnetic shift
would disappear, provided that the Laplace current flow
across the endocardial boundary were small enough (e.g. with
a primarily subepicardial ischemic zone), so that the
generated magnetic field is undetectable.

In addition, we take the position that Ampere's law,
relating the curl of the magnetic field to the current
density, must be written with the current density being equal
to the sum of the current densities for the two domains --—
l1.e. (J +J;). This definition for the magnetic field is
consistent with equation 4.24 (which requires that the
divergence of (go+gi) be zero), since the divergence of a
curl must always be zero. On this basis, we also conclude
that two separate magnetic fields, H  and H;, cannot be
independently defined from the current densities {o and qi'
since the divergence of either J, ©r J; 1is not equal to zero

but is equal to the inter-domain volumetric current density

U, (cf. equation 4.8).
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CHAPTER 9: Future Experiments

During the course of the research described in this
thesis, it became evident that there is a lack of
experimental data from which theoretical models can be
evaluated. 1In this chapter we outline several directions

along which future research would be useful.

9-A. D-C spatial maps

As we discussed in Chapter 8-A, the ST-TQ segment of the
electrocardiogram cannot be expected to be an electrical
index which can be consistently correlated with simultaneous
measurements of a single, alternative ischemic index. We
suggested that the TQ segment may prove to be a more reliable
index. However, this necessitates the use of a d-c recording
system. As we mentioned in Chapter 1-C, there is currently
an effort to make this type of measurement, and these

1} the

—a !

(]

measurements will yield valuable informaticn regardin
relative weight of the TG segment to the ST-TQ segment, and
2) the correlation between TQ shifts and the ischemic
condition.

9-B. Changes in potential distribution with altered boundary
conditions

As we discussed in Chapter 8-A, the inverse problem can
be solved more completely 1f additional measurements were

available. We restrict ourselves to measurements which do
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not physically traumatize the myocardium; i.e. intramural,
"plunge electrodes"™ are not permissible. Two approaches are
suggested here.

First, we can alter the epicardial boundary condition
and observe the changes in the epicardial potential
distribution. For example, we could place a saline soaked
pad on the epicardium, permitting the flow of Laplace current
across the epicardial boundary. The greatest change in the
potential distribution would be seen for subepicardial
ischemic zones, followed by subendocardial and then
transmural ischemic zones. Alternatively, we could interpose
a non-conductive sheet between the heart and body. The
greatest change in the potential distribution would occur for
the case where the ischemic zone is in contact with the body,
in which case "reciprocal" eiffects would be eliminated.

Second, we could attempt to obtain an endocardial map of
the ischemic potential. Despite the presence of the
conductive cavity, these potentials should be large enough to
be measured by conventional ECG amplifiers. This measurement
would provide the greatest resolution between subepicardial

and subendocardial ischemic zones.

9-C. Measurements of electrical parameters during ischemia

The discussion of Chapters 4 and 6 on the bi-domain and
solid angle models assume that the bulk parameters Po, Pi’

and Rm are temporally and spatially constant throughout the
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healthy and ischemic myocardium. Under prolonged or severely
ischemic conditions, we expect that these parameters may
change (for a discussion, see Appendix B-4). From the
sensitivity analysis of Chapter 5-D, we have seen that the
the most important factors in determining the concavity and
polarity of the epicardial ischemic potential distribution
are 1) the ratio of P, to P_ (i.e. ratio of the resistivities
of bulk myocardium to blood); 2) the width of the border zone
(xs and bs); and 3) the space constant i (but only for large
values, on the order of several millimeters}. Consequently
interpretations of the epicardial spatial map must be
moderated by a knowledge of the effects resulting from
changes in these parameters.

The myocardial bulk resistivity can be measured with a
four-electrode, impedance technicue [for a review, see Rush
(1963)]. However, it will be difficult to estimate the
changes in space constant and in border width with in vivo
microelectrode recordings, since the heart moves over
relatively enormous distances. It may be necessary to
measure these parameters in isolated preparations freshly

obtained from ischemic myocardium.

9-D. In vitro experiments

A study of the fine detail of the ischemic zone
(i.e. values for space constant, width of the border zone,

electrical connections between cells, intracellular and
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extracellular electrolyte concentrations, membrane
properties, homogeneity of ischemic cells) may necessitate
the use of in vitro, isolated preparations. In these
preparations, a variety of techniques can be applied. The
sucrose gap is a biologically macroscopic technique used to
examine membrane properties by forcing extracellular current
to enter the intracellular space in order to complete an
electrical circuit. Ion selective microelectrodes can
provide estimates for ionic flux across the cell membrane.
Flourescent dyes have been used to indicate quantities such
as calcium levels or the transmembrane potential.
Iontophoresis can be used to inject specific ions into the
intracellular space.

With this array of techniques and with the greater
control of experimental wvariables inherent with in vitro
preparations, the fine detail of the ischemic zone can be
studied to an extent much greater than for the in vivo, open
heart preparation. We conclude that studies of the basic
mechanisms £for ischemia at the cellular level must ultimately

resort to these types of in vitro experiments.
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SUMMARY

We discussed open~—-chest animal preparations in which the
relative ST-TQ segment of the epicardial electrogram has been
used as an electrical index of myocardial ischemia. If this
index can be justified, it could prove to be an extremely
valuable technique for the experimental cardiologist and
possibly for the physician as well, as it would nct onliy
provide an instantaneous measurement of ischemia, but could
be easily measured. Unfortunately, there are practical as
well as theoretical reasons which discourage the use cf the
ST-TQ segment as the ischemic index. We cited evidence which
suggests that the d-c baseline, rather than the ST-TQ
segment, is a more appropriate index. There are practical
advantages as well for using the d~c baseline.

We then summarized a number of models which have been
used to describe electrical potentials in myocardium. Among
these models, the solid angle model stands out, since it is
currently the only model which has been applied to myocardial
ischemia. It is attractive, since it is relatively simple to
use and provides the framework for a theoretical discussion.
Unfortunately, a hard look at the assumptions underlying the
solid angle model results in the inescapable conclusion that
the model is inadequate for describing the open-heart,

experimental situation.

As an alternative, we formulated the bi-domain model, a
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general model for describing electrical potentials in
electrically coupled cellular systems, of which myocardium is
a member. This model is a hybrid between three-dimensional
cable models and field-theoretic models. As a cable model,
it differentiates between current flow in the intracellular
space and current flow in the extracellular space. As a
field-theoretic model, it describes the electric fields which
arise from a generalized source distribution, taking into
account the effects of the myocardial boundaries.
Conceptually, the bi-domain system is constructed from two
mono-domain systems (classical vclume conductors) which:

1) represent the intracellular and extracellular domains,

2) overlap each other at every point, and 3) thus occupy the
same three-dimensional volume. Consequently, the bi-domain
model differs from classical (mono-domain) volume conductor
models in its descriptiocn of the volume conductive medium and
in its treatment of the sources. In fact, the mono-domain
can be considered to be a degenerate case of a bi-domain. A
theory analogous to classical electrostatic field theory was
developed to describe the extracellular and intracellular
potential distributions, as well as boundary conditions,
uniqueness, and anisotropy. Because of the bi-domain
structure, current flow in the system could be described as
"common-mode" in which the currents in the two domains are

parallel, or as "differential-mode" in which the currents in

the two domains are opposed.
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We then applied the bi—-domain model to analyze a number
of cases involving various ischemic zones of interest. Since
the parameters of the model were identified with physically
measurable quantities, they were assigned reasonable values
based on experimental data. We were primarily interested in
the effect of these parameters on the shape of the surface
distribution of the ischemic potential. This later erabled
us to interpret experimental, ischemic ST-TQ segment maps.

We concluded that the concavity of the ischemic potential
distribution is determined primarily by the ratio of the
resistivity of bulk myocardium to blood, the width of the
lateral ischemic border, and the space constant. The
polarity (positive or negative) is determined by the shape of
the ischemic zone (subepicardial, subendocardial, or
transmural), the relative position of the recording electrode
to the zone, and the polarity of the ischemic source (Ums).
The monophasic or biphasic nature of the potential
distribution is determined primarily by the width of the
transverse ischemic border at the endccardium.

We then related the solid angle model to the bi-domain
model, showing that it is an approximation to the bi-domain
model under certain assumptions. Not all these assumptions
are satisfied, however, for the open-heart preparation to
which the solid angle model has been applied. We concluded
that a Poisson approximation to the general bi-domain

equations is justified and can be used instead.
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We showed that the difference between the bi-domain
Poisson and the solid angle models was greatest for
subepicardial zones, less for subendocardial zones, even less
for transmural zones, until finally not at all for intramural
zones. The greatest difference in the potential
distributions occurred between the distribution arising for
the subepicardial and the distribution for the subendocardial
ischemic zone. In addition, the epicardial surface potential
distribution for these two zones was a good indicator of the
area of the zone, but a poor indicator of the depth.

We discussed the general issues related tc using the
ST-TQ epicardial spatial map as a data base to solve the
inverse problem of determining the ischemic membrane source
distribution. In particular, we focused on the questions of
"reciprocal" ST-TQ shifts, monophasic epicardial potential
distributions, and the sensitivity of ST-TQ shifts to local
as opposed to distant ischemic sources. We also briefly
discussed the suitability of the bi-domain model to
biologically microscopic measurements, and the "common-mode"
feature of the bi-domain model which enables an externally
observable magnetic field to arise.

Finally, we outlined a number of topics for future
experimental research. We feel that the ischemic source
distribution can be estimated more consistently from d-c
measurements. More information can be obtained about the

source distribution with the use of endocardial as well as
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epicardial maps. Regarding the parameters of the bi-domain
model, it is likely that they will change during prolonged or
severe ischemia, and it would be useful in the application of
the bi-domain model to know ir: what way these parameters
change. Ultimately, a study of the basic cellular mechanisms
underlying ischemia must consist of studies involving
isolated, in vitro preparations, in which the experimental
variables are well controlled, and a variety of techniques

are available.
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APPENDIX A: Uniqueness

In Chapter 4-E we proposéd a set of extracellular and
intracellular boundary conditions which must be specified in
order to completely determine the potential distributions for
a given problem. From the physical situation we postulated
that the extracellular potential or its normal derivative is
constrained by the adjacent medium. Furthermore, we assumed
an implicit boundary condition at the edge of the bi-domain
structure -- namely that the normal component of the
intracellular current is zero, or equivalently, that the
normal gradient of the intracellular potential is zero. In
this section we show that a specification of the
extracellular potential or its normal derivative, together
with the implicit constraint on the normal derivative of the
intracellular potential, uniquely specifies the homogeneous
extracellular and intracellular potential distributions.

From equations 4.19 we can write,

Pl = 7 (Ala)
m H
-Po
T e ety (ALD)
o L
Pi

and,
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72¢ — VZQ — ;Z ) (Aa2a)
m H A H
2 -Po -Po 2b
P = —— ZA = —_— A
'7¢o ) -PP-'7QH R - ( )
o i m
2 Pi Pi
- 2z - _* A2
ey P +p5. % R %m (a2e)
o i m

We demonstrate uniqueness in a manner similar to that for
Laplace's egquaticn. We consider three cases: 1) a simply
connected surface enclosing a bi-domain structure: 2) a
simply connected surface enclosing a bi-domain structure in
contact with a mono-domain structure; and 3) multiply

connected surfaces enclosing a bi-domain structure.

A-1l. Simply connected surface enclosing a bi-domain
structure (Fig. Al)

We assume two solutions ¢ 1 and Qoz which satisfy the
o

general constraint on @o and a¢°/an at the boundary:
ad

__.o — rAB
a¢_ + b = c (A3)

consequently the difference solution Qod = Qol - ©02 and its

normal derivative are constrained to satisfy,
ad
Tod

a¢m1+-b an 0 ¢ )

at the boundary. We write Qod in terms of its Helmholtz

(@da) and Laplace (@dL) components,

4 . = 5506 _+0 (asa)
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so we can then write:

_ i
%a = B +p %mt % (A5b)
o] 1
e = QdH (AS5c)

The divergence theorem can be used to describe @o r @ ir and
@m, provided that these potential distributions and their
partial derivatives are continuous over the 3-D volume V and
on the surface S enclosing V, and that S is piecewise smooth.
Consequently we can apply the first form of Green's theorem

to % and P _ to obtain:
od id

f 72 . - . A6
iy (@ 7% 4 + V&_,-7%_.) dv %s ¢_,Ve_ . -da (A6a)
f 52

JV (QidV Qid + Vcﬁid V@id) dv = 3€s oldvo ~da (A6Db)
Note that for equation A6b, the implicit boundary condition
3¢i/3n = 0 will imply that acpid/an = 0 over S. In addition,

applying equations Al, A2, A4, and A5 to equations A6 yields:

r PP B P.|? 2p
, : _ o “h . _"n )
g5 o 8.+ Ve Ve B, ve Ve

by P R dH Rm dH dL Pi
+ .5 2 = (A7a)
V@dL 7¢d.L]dV+§S ab@odda. 0
r P.P P (e, v
J, “PR %am "R %arlar * IP Wda Vear ¥ B au "0ar
7 om m "o o
. = (A7b)
+ thdL V@dL] dv o

Multiplying equation A7a by P, and equation A7b by Po and
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then adding the two equations yields:

E{[P—°P—i¢2 +BP 70 T2+ (P +P)7E__-Th._ ] dv
. R~ "dH a'"dH " TaH o i1’ 7aL 4L
f
+ 0 abP ¢ da = 0 (A8)
I o od

Uniqueness is demonstrated in the case where a and b possess
the same sign, since then all the integrands of equation A8
are positive definite. This implies that g = O TQdH = 0,
and VQdL = 0. For those cases in which only the normal
derivative of ®_ is specified on the boundary (leumann
condition), we expect ®_ to be uniquely specified, and @5 to

be specified to within an additive constant.

A-2. Simply connected surface enclosing a bi-domain in
contact with a mono-domain structure (Fig. A2)

We take the general boundary condition A9 over S1 and

AlQ0 over Sz:

50,
3% a9y ¥ b, a0 S (A3)
50
S,: ae +b, == = c, (A10)

2
together with the implicit boundary condition on @i over S,
and 33. We also specify continuity of potential and its

normal derivative across S3 in the following manner:

- = (
s 3% 2y @O (Alla)
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a
2]
=

3@0
= - (Allb)

nl 3n2

n
[

(1]
Q)

As before, we assume two solutions which satisfy the given
boundary conditions and construct the difference solution:
2amr %0ar
now satisfy boundary conditions of the form of equation A4.

and @id. The difference solutions QdM and Qod must

lying Green's thecrem to @dM and using the
fact that the Laplacian of @w and therefore of QdM is zero,

we obtain,

r : r
s RV L ) = ks . - ! T -
Ly (7°dM 7edM) dv }s {dM7¢dM da + js t. .7 da (Al2)

L 1 3

Applying Green's theorem to Qod and Qid’ we obtain,

f f
( 72 -+ LY = t kv / - / -
;v.‘¢odﬁ @od 7®Od 7@°d) dv j @od'Qod da + J @od7¢od da (Al3a)
- S S
pa 2 3
2 ; o =
| (@id7 Qid + 7¢id 7¢id) av 0 (Al13b)

72
<

Combining equations All-Al3 in a manner analogous to used for
obtaining equation A8, we arrive at:

P P.

f - { 2 Qo 1L 2
Po Jv,(VQdM 7¢dM) dv + Eo Js alledM da + [V E—E__ QdH
1 1 2 "
- kY .7 [ 2 =
+ Ph7°dH VQdH + (Po + Pi)7QdL IQdL] dv + Po }S a.2b2®od da 0 (Al4)
2

where Py is defined in equation 4.27. We note that the
contributions on S, by Qod7¢cd and @, ,V®,, cancel each other
out in obtaining equation Al4. As in case A-1, provided that

a; and bL (and a, and bz) both possess the same sign, all the



-210-

integrands in equaticn Al4 are positive definite, implying

that each term in each integrand must be zero and again

proving uniqueness.

A-3. Multiply connected surfaces enclosing a bi-domain
structure (Pig. A3)
Finally, the case of multiply connected surfaces can be

treated as in mono-domain

imaginary cut between the

systems by constructing an

two surfaces Sl and 82 to form a

simply connected surface. The result, however, is not quite

equivalent to case A-1l, since we do not assume the implicit

boundary condition on 53 and 54, but rather a continuity of

intracellular potential and its normal derivative. The

analogous equation to equation A6b would be:

[ : 1 r

Jv (@id7 ¢id + VQLd-V¢id) dv = jc @id7©id-d§ + jc QLdTQLd-dg (AlS5)
! “4

However, the contributions from surfaces S3 and S4 on either

side of the cut will cancel each other out, so that equation

AlS will reduce to equation Aéb. For the extracellular

potential, the analogous equation to equation A6a is
identical to A6a, except that S is replaced by Sl+52+53+s4-
Since the extracellular potential and its normal derivative

are continuous across S3 and 34, the contributions from S3

and 54 will again cancel out. Thus we are left with equation

A6a, with S replaced by SL+52' The proof for uniqueness then

proceeds exactly as in case A-1l.
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FIGURE Al - Simply comnnected surface enclosing a
bi-domain structure

FIGURE A2 - Simply connected surface enclosing a
bi-domain in contact with a mono-domain structure

FIGURE A3 — Multiply connected surfaces enclosing a
bi-domain structure
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APPENDIX B: Experimental Values for the Parameters of the

Bi-Domain Model

The passive components of the bi-domain model consist of
three resistive bulk parametars - P s Pi’ and Rm. These
parameters are derived from three morphological parameters
(ao, a ., %m) and three resistivity parameters (oo,pi , and
Pm ) » which have been estimated by a variety of techniques.

In this appendix we summarize a number of experiments which
estimate the morpnological and electrical parameters and

which suggest how these parameters might change under

conditions of prolonged ischemia.

B-1l. Morphological parameters

Estimates for the proportion of extracellular space
(equal to 3(a,) for randomly oriented fibers, or a, for
parallel fibers] are not numerous and appear to be species
dependent. These estimates vary from 12% [Polimeni (1974),
on rat trabeculae], to 26% [Lieberman et al (1975), on
cultured strands of embryonic chick cells] to 30% [Page
(1962), on cat ventricle]. The proportion of intracellular
space can be approximated as l-3(a°) for rancomly oriented
fibers, and l—ao for parallel fibers (cf. Chapter 4-A).

Estimates for the ratio of membrane surface to total
volume (am) are also few in number and again appear to be

dependent on the preparation. They range from 2.0 x 10° cm "



-213-

[@erived from Weidmann (1970) on sheep trabeculae], to 3.0 x
10° cm ™ [Page and Niedergerke (1972) on frog ventricle] to

8.76 x 10 * cm~! [Lieberman et al (1975) on cultured strands

of embryonic chick cells].

B—-2. Electrical parameters

In the following experiments, the bulk (macroscopic)
cable parametfters corresponding to P s Pi' and Rm of the
bi-domain model were generally measured. The microscopic
resistivities By Py v and r, were then obtained by

estimating values for the morphological parameters (recall
that 5; = Piai, oy = Po ar £, = Rmam) . Unfortunately the
microscopic, rather than the macroscopic, parameters are
usually reported. The rather wide scatter of the values of
the microscopic electrical parameters reported in the
literature is probably primarily due to the wide variation in
the estimates for the morphological parameters.

In a study on sheep trabeculae, Weidmann (1970) obtained
estimates for the intracellular and extracellular
resistivities (also referred to in the literature as
"specific resistivities®"). The wvalue for o, was estimated to
be 47 2-cm, while that for p; to be 470 Q-cm. The estimate
for the membrane resistivity, normalized for membrane
thickness, was 9.1 x 10% @Q-cm?. The space constant obtaired
was .088 cm.

In a separate study, Clerc (1976) used plate electrodes
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to measure directional intracellular and extracellular
resistivities, which depended on the orientation of the
electrodes with respect to the fibers in the tissue sample.
For the purposes of analysis, he assumed the same geometry in
both the longitudinal and transverse directions --

i.e. parallel cylindrical rods in a conductive medium. The
intracellular resistivity had a mean value of 402 2 -cm in the
longitudinal direction and 36202 -cm in the transverse
direction. The extracellular resistivity varied from 48 3 -cm
in the longitudinal direction to 127 2-cm in the transverse
direction. We note here that the bi-domain model can be
written as in Appendix D to describe tissue anisotropy in

both domains.

B-3. Impedance measurements

In a paper by Geddes and Baker (1267) a summary of
various measurements of the resistivity of myocardial tissue
was given. Most of the techniques listed usea two electrodes
both to pass the source current and to record the resulting
voltage. In general, these techniques are sensitive to small
variations in the precise spatial distribution of current at
the electrodes. However, Rush (1963) used a four-electrode
technique on dog hearts to obtain a more uniform current
distribution. He obtained estimates for the tissue
resistivity in directions both parallel and perpendicular to

the axis of the underlying fibers. The longitudinal
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resistivity was given as 252 2-cm, while the transverse
resistivity was 563 Q -cm. These values are approximately
equal to, but a factor of 2.0 in the longitudinal direction
and 1.4 in the transverse direction higher than, those
calculated from the results cf Clerc (1976) using the

bi-domain model (125 Q -cm and 391 @ -cm, respectively) .

B-4. Expected changes under severely ischemic conditions

As the cell membrane loses its permselective properties,
we expect that potassium will flow out of the cell and sodium
into the cell. Consequently there will be some alteration of
the intracellular and extracellular conductivities, which are
proportional to the ionic concentrations. However, since the
total conductivity is the sum of the individual ionic
conductivities, the changes in the potassium and sodium
conductivities in each domain will be offsetting. Thus, we
expect that changes in conductivity will be a second order
effect. A change in the membrane conductance will most
likely be the predominant effect; however from the
sensitivity analysis of Chapter 5-D we show that changes in
Ry will affect the spatial distribution of the ischemic
potential only through the space constant parameter, and that
this effect will be small for typical values of } .

Recently Whalen et al (1974) has shown that cells
undergoing acute ischemia for a period of forty minutes or

more apparently lose their ability to requlate their volume,
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and swell. Studies by Leaf (1973) and DiBona and Powell
(1977) have arrived at similar conclusions, although there
appears to be some evidence to the contrary [Pine et al
(1977)]. If cellular swelling does occur, this should have
the effect of increasing the morphological parameter a;, and
consequently reducing the value of P, .

However, this increase in P, will most likely be masked
by increases in the resistivity of the intercalated disks.
Evidence which supports this hypothesis consists of the
observation that myocardial cells uncouple following
intracellular injection of sodium [De Mello (1976)], in
hypoxia and hypothermia [Sperelakis (1969)], and in
conditions which cause cellular swelling, such as infusion
with hypertonic sucrose [Barr et al (1965)]. In addition,
local conduction disturbances often arise in severely
ischemic myocardium [Muller et al (1975)], suggesting a
disruption of the normal cell-to-cell, electrical
connections. Since in severe ischemia the myocardial free
wall undergoes systolic bulging [Xatcher et al (1960)]1, the
myocardial cells may undergo excessive stretch, causing
changes in the propagation velocity and shape of the cellular
action potential [Penefsky and Moore (1963), Spear and Moore
(1972)]. This may also contribute to cell-to-cell
uncoupling. Therefore it seems likely that at some time
before or during cell necrosis (death), complete uncoupling

occurs. This will have the effect of substantially
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increasing P;,. Stated another way, the bi-domain will reduce
to a mono-domain with imbedded, independent, cellular
Structures having high impedance boundaries (similar to the
situation for blood) .

A rather surprising result, reported by Polimeni and
Al-sadir (1975) in studies with rat myocardium, is that the
extracellular space in normal tissue surrounding an infarcted
(necrotic) area apparently expands by about 15%. This means
that at the periphery of an infarct, the parameter a_  will
increase, resulting in a decrease in P . This may or may not
be related to studies which claim that there 15 a region of
hyperperfused myocardium Surrounding an infarce [Rees and
Redding (1969), Becker et al (1973)].

Finally, studies by Iseri et al (1952), Jennings (1965),
and Bodenheimer (1976) indicate that the total potassium
content of ischemic tissue slowly'decreases, with a time
constant on tne order of 1 hr. This suggests that it is not
changes in the total ionic content of the tissue which
generates the early ischemic potential but rather the
distribution of ions between intracellular and extracellular
Spaces. However, in the late stages of ischemia in which
there is a breakdown of the cell membrane, the extracellular
and intracellular ionic concentrations can be expected to
equilibrate, as the cells uncouple and the transmembrane
potential goes to zero. The ischemic potential may still

arise, however, in the form of liquid junction potentials due
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to ionic concentration gradients in the extracellular space.
These potentials will eventually disappear either from the
diffusion of ions into the healthy, myocardial region or from
the development of collateral circulation, which would "flush
out” the extracellular space and which might explain long
term ST-TQ segment elevations which decay over a period of
hours to days. Although estimates have been made for the
ionic, compartmental distribution in healthy tissue [Iseri et
al (1952), Hecht (1961l), Sodi-Pallares et al (l1966), Polimeni
(1974) ], there appears to be little data for the distribution

in ischemic cells.
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APPENDIX C: The Integral Form of the Bi-~-Domain Model

In this appendix we obtain the integral form of
egquations 4.16 for bi-domain structures. We consider the
biologically microscopic structure shown in Fig. Cl. We take
S, +S; to be the macroscopic boundary surface S, and §; to be
the volume distributed membrane surface. We shall show that
just as Gauss' law leads to the integral form of Laplace's
equation for sourceless mono-domains, Gauss' law leads
"to the integral form of the Helmholtz equation for sourceless
bi-domains.

We begin with the divergence theorem (Gauss' law),

written for the structure of Fig. Cl,

f ~ ~
? I_E_:O-dg = f v-go dv = 0 (Cla)
S _+S v

(o] m o

4 ~ r ~
? E -da = J 7E. dv = 0 (Clb)
S.+S V.

L m PR

where we have taken V-ﬁg = v=ﬁi = 0 in the absence.of a free

charge distribution. The corresponding macroscopic equations

take the form,

f
E -da = Jf 7-E_ dv (C2a)
s © v °
[
 Ejda = f 7-E. dv (C2b)
s ~* v L

where the expressions above are non-zero even for media

without a free charge distribution, since charge can appear
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and disappear from one domain to the other across Sm.

Equations Cl can be rewritten as:

(- _ - _ o

o E-da = b E,jda = - e J, -da (C3a)
o m m

( ~ ~ ” ~
E.-da = - f E.-da = -p. : J. +da

Jg =t 7= s -t - Ti Jg =t = (C3b)
i m m

We can apply the membrane equivalent circuit of Fig. 4.4
relating the membrane current density to the transmembrane
potential @m, the membrane resistivity P 7 the membrane

thickness d, and the membrane sources Jﬁs to obtain,

At ~ | ~ ID -~
J = { = J = =E_73 (C4)
if olg m ;de ns

m
Thus, equations C3 together with C4 become:

‘[ E -da — o f 5 da- o f T da
s ©° - p d js m ‘o]s ms (C5a)
(o] m m
Beda = —i( 3 gGatol 3 aa
f E; ~5d). % °:) Jns (CSb)
. m sm Sm

At this point we convert the microscopic description to a
macroscopic description, using the morphological parameters

a,r, a;, a,; (defined in equations 4.5 and 4.11), and assuming

o m

that the microscopic variables for the potential and current
density are relatively constant over macroscopic, incremental
dimensions (a valid approximation, since the characteristic
space constant iIs many times a cell length). Thus, from the
definition of a_ and a, as the ratios SO/S and Si/S respec-—

tively, we convert the left hand side of equations CS5 to:
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r - -

s E,-da = aoLE'dé (Céa)
o

jr E,-da = a‘f E;-da (Céb)

s r L s -1 -

From the definition of a;, we convert the right hand side of

equations C5 to:

;r ¢ da = a_J' ¢ dv (C7a)
IS i3 i v o -
m
[ 3 da = | g av (C7b)
= C
JS ms Jv ms
m
Combining equations C5-C7 we obtain:
[ 76 -aa PO[@dv P[Udv (c8a)
- tda = o - a
JS ° Rm v B ° 7 ms
(
- 76.«da = =— +
b ¢, -da Rm Y @m dv Pifv Ums dav (c8b)

Finally, applying the definition that ¢ = 4?]._ -¢, , we

okbtain,

r P + P.
J 7¢ -da = OR_J‘J’ ¢ dv - (P +P_)f U dv (C9a)
s m n v m Q s v ns
f 7¢ +da = i 7% -da 9b
} o - 2 +P. m - (C9B)
S o 1 ‘S

Pi r
{ 7®.-da = F——F%— 76 -da (C9c)
js i Po + Pi JS m -

which we recognize as the integral form of equations 4.16.

We conclude this appendix with a brief discussion of the

macroscopic form of Green's thecrem for bi-domains. For
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microscopic mono-domain systems, we have,

f 2, _ 2 _ F sy _ 3¢
JV (eV2y — pV20) dv = js (¢ an-‘uﬁ)da (Cl0)

Taking ¢ = ¢ W= l/rQP, vV = Vor S = So-!-Sm, we have

z - - 725 = .
7 (l/rQP) 41r6(£9) and 7 'bo 0. Thus:
3¢ ()
-1 3 , 1 1 7% ‘=0
P (r) = — ¢ (r ) ===/ - = ] da (C1l1l)
o -P 4u S°+Sm -Q° 5n rQP rQP an o]

The equivalent sources are all on the boundary and represent
sources external to V,. The macroscopic Green's theorem for
bi-domains takes the same form as equation Cl0. Again, we

take ¢=¢_, ¢v= 1/rgp » with V2 (1/c = -4mwd(ry), but now

op )

2 = - 2 .
v ¢, (Po/(Po+PL)) v Qm. Thus, we have:

- a® (r))
-1 5 1 1 “"o'=o
e (&) = —I ¢ (r)) =— ) — = da
o =P 47 s C o(-Q) an(fQPI rQP sn I o)
P 76 ()
L__o [ _m=9g
- = av (Cl2)
4w Po + Pi } r:QP Q

The extra term on the right hand side of equation Cl2
represents a source distribution throughout V which arises
from the appearance or disappearance of current in the

extracellular domain due to flow across the membrane.
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FIGURE Cl - The microscopic structure of a
bi-domain system
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APPENDIX D: Anisotropy

In this apppendix we rewrite the general equations 4.16
to account for anisotropy (in one dimension, along the
z—axis) in the intracellular and extracellular media. We
begin by rewriting equations 4.13 to account for directional

differences in the medium resistivity:

2
©
2]
Q)
©n

~ [ SN ~

1 %% 7 1 o . 1 o .

et =] = e = ) L
o ox ax x Poy Iy =y Poz 3Z z

3 a@. A 3¢
1 °%i 2 L i? 1 i?
"l’- = - —— — 1 - ——— 1 - 0 1 (le)

i P. 3 x PiY Yy =~y Piz 5z =~z

The macroscopic, bulk resistivities P, and P; are now written
with x, y, and z components. Equations 4.14 and 4.15 remain

unchanged. Therefore, we obtain:

2 2 2
p 3%, dfe, | ate, fm-u -
- T 3 > R ms a)
ox 3x? oy ay? oz 3z m
2 ~2 2 £
1 9 Qi 1 ° Qi 1 3 Qi _ Ep S (G2b
TP TP - P 2 R = “ms b )
ix ax? iy ay? iz 3z m

Because we are assuming isotropy in the x-y plane, we have:

(D3a)

ox oy
Pix = Piy (D3b)

Thus, we obtain from equations D2 the coupled equations,
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32@0 azoo 1 320 B
= + = = —— (. - ¢ )+ P_U D4a
ax2 ay? % 3z2 R o me ‘ )
326, 3%6. 32%¢. =2
Lty 1,1t o -o)-PB U (D4b)
ax? ay? % 3z2 Rp 1 °
where:
P
a = POZ_ (D5a)
° ox
P.
@, = Pﬁ (D5b)
ix

In the case where the degree of anisotropy is the same in

both domains, @, = a; = a , and equations D4 can be written

in a form analogous to equations 4.16:

2 = 1 -
7‘x@m Ti Qm (Pox * Pix) Ums (D6a)
-po
72 — 2
7a.(bo P + P. Va(ﬁm (Déb)
o i
Pi
z — 2
Va.@i Po + Pi Va.@m (Déc)

where the operator V2 is given by:

-2 _ 8 3 13
7a %2 © 3y ? Y x93z N (B7)
and:
1 R 11/2
e (08)
ox ix

The resulting potential distribution appears as a

"stretched-out" version of the distribution in an isotropic
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medium.

The (Green's function) solutions to equations D6 for a
membrane point source, Ums = Isd(r), take the form (compare
to equations 4.29):

P +P.) I -r/A
® _ o i se o x (D9a)

_ o’'s o "x
@o = 3 e (D9b)
[e 3
P.I -r /A
— 1L s s X X
Qi e a e (D9c)

where:

r = (x% + v + azZ)L/Z (D10)
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APPENDIX E: Microscopic to Macroscopic Description

plonsey (1965) derived a biologically microscopic,
partial space description for the extracellular potential
using Green's theorem. This formulation was in the form of a
"solid angle™ model. with an equivalent dipole current source
distributed over the volume of the myocardium.
Unfortunately, the source intensity was expressed as a
function not only of the intracellular potential, but the
extracellular potential as well. In a later paper- Plonsey
(1974) used cable relations., which expressed the
intracellular and extracellular potentials as a function of
the transmembrane potential, to extricate himself from this
complication. In this appendix, we rewrite Plonsey's
original formulation according to the notation used in this
work. We then show that starting from this formulation, it
is possible to arrive at not the complete, but rather a
portion of the bi-domain model. The membrane sources are not
included in the following derivation, except indirectly
through the transmembrane potential. This is not necessarily
a restrictive condition, since we have shown that in the case
where high spatial frequencies can be neglected (cf. Chapter
6-A) , the transmembrane potential can pe taken to be
proportional to Upgr the cellular transmembrane current
source. In addition, the following derivation 1is made for an

infinite medium.
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We begin by finding the extracellular potential arising
from a single, myccardial cell [adapted from Plonsey (1965)].
The point P is th2 observation point which remains in the
extracellular space, and Q is an arbitrary point which for
the first case at hand will remain in the intracellular space
(see Fig. El). The variable rQP is equal to the distance
between points P and Q. Writing the second form of Green's

theorem, we have:

f 2, _ o2 _ [ L5 56
JV,(¢V Y - yvVee) dv = js (¢ =~ 55) da (EL1)

Taking the volume V to be Vi' bounded by Si, and letting % =
® and ¢ = 1/r , we have V3(l/r ) = 0 inside V., since r
oP QP i

L
cannot be zero there. Furthermore, V?¢ = 0, assuming no
L

QP

microelectrode sources. Thus:

3 , 1 f 1 i'=s
0 = [ . (r) ==(=) da_ - | — L+ 45 (E2)
s, i'=g 3n.rQP o} JS;EQP 3n Q
Writing,
ad

where Di is the intracellular resistivity, and Jm is the net
outward membrane current density, we can combine equations E2

and E3 to obtain:

J (c.)
3 1 m
0 = f ®. (L) +—(=—) da +o_f 20 4 (E4)
s, i'=Q L 5) i s, Top o}

We now apply equation El1 to the extracellular space.

Taking the volume V to be V , bounded by So and infinity, and
[e]
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letting ¢ = ¢ and ¥ = l/er' Q is now in V_ and rop can be

zero. Furthermore, we have vz(l/rQP) = —4“5(§P—§Q), and
VZQO = 0. Therefore:
3¢ (r )
L 1 L
0 5) = g | 0 (Ey) S day - & ———Q—da (ES)
o =P 4 s_ 8- QP Q 4r s QP an

The normal n has been taken to be _nward into vV, (see
Fig. El), and the surface integral taken to vanish at

infinity. Writing,

3@0
- E s N DOJm (EG)
o
we have:
~ J ()
- 1 s 1 1 m =0
Qo(Eb) 4m f % (& Q) an‘rQP) daQ MR s Top daQ (ET)

We can combine equations E4 and E7 to arrive at:

=1 Po
NS 1 fs o () an(rQP) aa, - f 0, &) 6 QP) aa
J. @' J ()
+—[[ da, - | 22 aa) (E8)
s. Top Q

Since the surface So is located an incremental distance d
away from the surface Si’ we can rewrite equation E8 as an

Integral over the mean membrane surface Sn:

-1 ’o 1
» - == =2 5, -0 7 (=) -
o (Ep) e [Sm[ 5, L(EQ) o(EQ)] (IQP) daQ
%)
2 | T (£)d7 ) -dg (E9)
4t m =Q P =Q

Recognizing that,
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L 1
- V(—)'da = - V(—) og (h. = dxz (BlO)
Toe  Q Top 0 2

where dQ is the solid angle subtended by the surface element

da as seen from point P, we obtain:

- L o N
o () = 4 fs 5005 (Ey) = 8, (g = o7 (x)d | a2, (EL1)

r
m

For typical values for the various parameters in equation
Eli, the last term can be neglected compared to the first two
terms, since d (the thickness of the cell membrane) is verv
small, on the order of 10°° cm. This is equivalent to the
statement that the equivalent ohmic potential drop due to the
membrane current density over a distance of the cell membrane
thickness is small compared to the magnitude of the potential
function which forms the first two terms under the integral

of equation Ell. Therefore we take:

L o
e (&) = = (—¢. ()~ (r)] da (E12)
o -P 4T s pi 1 -Q o -Q Q
m

We extend the above formulation for a single cell to a
formulation for the potential in the extracellular, partial
space for a collection of cells by using superposition,
taking S now to be the total cellular membrane surface.

o 0orta-

Starting with equation El2, an essentially microscopilc

description, we now proceed to obtain a macroscopic

description [adapted from Plonsey (1974)]. We rewrite

equation El2 into the following form,
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p
— o - _1

¢o (.EP) = I [s rgs(gQ) V(r,,p) daQ (EL1L3)
m s

where m_ is the microscopic surface dipole moment/unit area
density:

¢ () & ()
m() = [=2 -0 1, (E14)

-s -Q oy py

We invoke one of the basic assumptions of the bi-domain
model, namely that the cells are highly packed and randomly
oriented. We can then replace m, with a macroscopic, dipole
moment/unit volume density, m, -

m (z)) = 3a; Vim (g)! (ELS)
where the factor a; enters because of the existence of
"holes"™ in the volume density due to the extracellular space.
The above relationship can be made somewhat clearer by
considering the one-dimensional case with cells aligned in
parallel, as illustrated in Fig. E2.

Over each differential region dx, the integral over ds
can be replaced by the negative of an equivalent integral
over the two end surfaces da(x) and da(x+dx), since the solid
angle subtended by the three surfaces is zero. The
equivalent dipole moment/volume source distribution can be
found from the relation:

m (x) Adx = [ms(x+dx) - m(x)] a;, A (E16)
A generalization of equation El6 for three dimensions results
in equation El5. The extra factor of 3 enters because a; is

only 1/3 the intracellular cross-sectional area for randomly
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oriented fibers (cf. Chapter 4-A). Changing equation E13 to

a volume integral, and using equation E15, we obtain:

P
o (r) - —°[ m (r)-v av
o =P 4w v v rQP 0
3a.p ¢ (r.) ¢.(r.)
= —l—°f 7222 - 120 .9l av (E17)
4m v ey o Top o)

Exploiting the relationships between the microscopic and

macroscopic parameters o and P,
o, = a, P (E18a)

p. = a P. (E18b)

we obtain:

3a.a P ¢ (r.) ¢. () .
5 () =#£j vp 222 - 120 vl &
v

o ‘=p 4t a.oPo a.]._Pi op Q
aPpPaé. (r.)
3 o o i =Q 1
= — 7(a.¢ () - 1-V(=—) av (E19)
4 v io =Q Pi rQP Q

We can transform the integral of El19 from one involving a

vector quantity to one involving a scalar quantity. Thus:

-3 1 2 aOPOQi (E ) (EZO )
¢ (x) = =| Lt vtae @) - 22122 av
o =P 4w v rQP 1o ™=Q Pi Q

From the second form of Green's theorem applied over an

infinite medium, we have:

-l l 2
¢ () = —J = V2¢_(r.) 4v (E21)
o ‘=P 4 V.EQP o =Q Q

Equating the integrands of equations E20 and E21, we obtain:
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vie, = 3 Vi(a;6 - a 3> o.) (£22)

Using the identity,
a,ta = L/3 (E23)
for randomly oriented fibers (cf. equation 4.6b), equation

E22 becomes:

-P
2 — o g2
"4 (bo < v @i (E24)
P
Since we have defined,
@m = @i - ¢o (E25)

we have,

2 - 2 — g2

v q’m =V oi v 4>o (E26)

Finally, combining equations E24 and E26, we obtain:

72¢ = —2__ y2¢ (E27a)

g2 - i 2
7 Qi Po -y v gm (E27b)

The formulation obtained above places no constraint on
the variable Qm. If we take the transmembrane potential to
be proportional to the membrane current source Uhs (see
Chapter 6-a),

gm. = Rm Ums (E28)
and substitute this relationship into equations E27, we

obtain the macroscopic, bi-domain Poisson equations which

describe the spatial, low frequency behavior.



-234-

FIGURE El1 - Extracellular potential arising

from a single cell
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X x+dx
extracellular : m’s (x) : m (x+dx) !
IS ANEIERER
intrace l ‘ l i /
: }l&l,//n////J/, LA
* cEal b
f da (x) '/dax-(-dx) :
/ / / | a
m_"(x: a;a
25 ﬁﬁ o
. - A
: ; 1

i 4 W//@F

: :m (xxt+dx) -m - (x)

FIGURE E2 - Replacing the surface density by a volume
density. Over each differential region dx, the solid
angle subtended by dSy having a source with intensity
mg (x) can be replaced by the negative of the solid angle
subtended by the two end surfaces da(x) and da (x+dx) ,
since the total solid angle subtended by the three
surfaces is zero. The now opposing differential sources
for the regions x and x+dx can be combined into a net
source mg (x+dx)-mg(x)-
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APPENDIX F: The FFT, Fourier Cosine Integral, and Fourier

Cosine Series

The Fourier cosine transformations of Chapters 5 and 7
are of the integral form and the series form. We wish to use
the FFT (Fast, discrete, Fourier Transform) to reduce
computation time. In this appendix, we derive the
normalization coefficients which relate the series terms of
the FFT to the discrete Fourier transform representing either

the Fourier cosine integral or the Fourier cosine series.

F-1. The Fourier cosine integral

For real, even functions, the Fourier cosine integral

transformation takes the form:

fa(XJ = %f:l?a(x) cos kx dk (Fla)
E‘a(k) = J{: Ea(x) cos kx dx {F1lb)

We take the case where Fa(k) can be derived analytically, but
the inverse transformation is performed using the DFT
(Discrete Fourier Transform). Consequently, we take 2N
samples of Fa(k) such that (refer to Fig. Fl):

Fm] = F (m —Nzx—) , Nl <m < N (F2)
?[ml is a periodic function, with period 2N. We define %[n],

the spatial complement to %[m], as:
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N . 2N-1 .
¥in] = ¥ Fml & 7™VN - 7 Fm e I™/N (F3a)
-N+1 (0]
2N-1 .
¥m] = ENL y ¥l &™/N (F3b)
0

We can find the approximate relationship (ignoring aliasing
effects) between g[n] and fa (x) by assuming that E‘a (k) 1is
bandlimited between (1-N)r/(NAx) and w/Ax, and that N is

large. In that case, we have:

- 2 _ 1 -jkx
fa(x) = ?FJ:Fa(k) cos kx dk = FEFa.G() e dk

F_ (k) e Ikx g

1}
= |-

J T/Ax

(1-N) 7/ (NAx)

P mm, _-jmmx/ (NAx) , T
-.r_me_F 2 © oz

2N-1 .
_N%Y Z Ea. c ﬂ) e~ Immx/ (NAx) (F4)
0
Consequently, we can identify & [n] as:
¥n] = Nax £ (nax) (F5)
Alternatively, if we premultiply Fm] by 1/ (NAx), the

resulting ¥in] will approximate fa (NAx) .

F-2. The Fourier cosine series

For real, even functions, the Fourier cosine series

transformation takes the form:

£ @ - [ cos k6 (F6a)
a oo B
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~
0
o

f%fﬂ ) de ,
0

1\( = (F6b)
5 (T
F’f £(8) cos ¢ de F k21
o}

We can find Ak analytically, and we again wish to use the DFT
to invert the transformation. We wish to find a periodic set
?[m] from the Ak such that when the DFT (or FFT) is applied
to %[m], the resulting %[nl is a period sampling of fa(e).
In other words, we wish to find a F[m] such that by using the
transformation of equation F3a, the resulting %[nl iszs

finl = £ & (F7)
From equations Féb and F7, we have,

L

A |
0

fa&me)ae r k=0

|~

(
| ™ oL
= (F8)
A i oJknae . -jknA6
[ £ (nag) [ 148 ,k>1
o @ 2 —

o]
!

T
o]

e

| 1

i

We rewrite equation F8 using the fact that £(g) is even,

(N—l)
Ir%% £ (na8) as , k=0
—(N—L)
Ak { (F9)
@) .
[ £ (nag) e IKnA® L k> 1
—(N-J.) @

where A8 = w/N. Since f£(8) 1s a periodic function, equation

F9 becomes:
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L

2N-
ﬁl O£ ED , k=0
0
(F10)
2N~1
L om,  ~jrkn/N
lNg £ e s k2>1

Comparing equation Fl10 to F3b, we obtain the desired

relationship:

s ,
Flm] = {t (F11)
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FIGURE Fl1 - Sampling of the analog waveform
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APPENDIX G: Legendre Polynomials and Fourier Cosine Series

If we express a function F(r,3) as a Legendre polynomial

expansion of the form,

F(r,8) = ) £ (r k) P_(cos 3) (G1)
k=0 P

we discover that the coefficients fp(r,k) decrease very
slowly in magnitude as k increases. Computationally, this is
important, since the truncation error obtained by
approximating the infinite series by a finite series can be
large. Furthermore, the computational time for each term in
the series increases roughly as k2, since each Pk(cose) must
be computed from a series expression (equations G4).

The reason for the slow decay in fp(r,k) is evident if
we use the orthogonal properties of Legendre polynomials to

solve for fo(r,k):

o I
£ (k) = &42—_1} F(r,8) B_(cos 8) sin & do (G2)
~ 9]

In general, P (cos@) has an oscillatory nature which decays
slowly with increasing k, and contains Fourier cosine
components (either all odd or all even frequencies) from zero
to k (see Fig. Gl). F(r,0) contains Fourier cosine
components which in general, decay at a rate depending on the
frequency spectrum of the signal. However, the decay in the
integrand is offset to some degree by the factor ((2k+l)/2),

which increases with k.



-242-
Therefore we are motivated to rewrite equation Gl in

terms of a Fourier cosine series, which as far as we know has
not been done before, in the hope of reducing both truncation
error and computation time. We proceed by expressing F(r,3)
as a Fourier cosine expansion, assuming that F(r,3) is an
even function over 9:

(> -]

F(r,6) = J £ (r,k) P (cos 8) = 7 £ (r,i) cos i5 (G3)

[ p k = b -

We can express the kth order Legendre polynomial in terms of

its Fourier cosine expansion [Wylie (1966)]:

P (cos 8) = ) p(.k) cos je (G4a)
) 2o
where,
( 0 r J¥k or (j—k) odd
1e 3.+ (25-1) _
o Y N5 . J=k
P(jlk) = { 1) 1-3 (k ) l) (G4b)
lo 3... (k—j— ) e Jo oo +J— ) .
Y I = ) R Y SR s ) » <k and (3-k) even
l-3eee(k=1),, _
l[2‘4"'(k) 1 » 7=0 and k even

The coefficients p(j,k) are such that if k is odd (even),
P(j.k) is non—zero only for j odd (even) < k. For k even,
the Legendre polynomial will contaln a d-c term egual to
[L+3-++(k-1)/(2+4-+-k)]%?. We have tabulated the values for
p(j.k) for 0<k<10 in Fig. GI.

Substituting equation G4a into G3, we obtain:



-243-

F(r,8) - [ E (x,k) [ p(ik) cos jé
k=0 P j=0
- 7 L I E (r,k) p(ik)lcos j9 (G5)
j=0 k=0 F
ilence we identify:
£ (c,3) = ¢ E (£,k) pG.k) (G6)
- k=0 P

Consequently, from equations G4b and G6, we can write:

’)-" (Li3te- (ki)
- 2+4-++ (K)

12£ (r,k) ,3=0
p

1-3---(27-1)
2y !

fp (x,J)

R . i T I

e ey 2 1-3%-- (k=j=1), (L-3--- (ktj-1) -
E(r,3) =4 + 27 [ — 12y E (x, , G7
o f k=‘% 22.4...(1(__3) 1[2.4‘..(k+3) 4 P(r k) ] Odd ( )
; k odd
2 )

= L°3°cc {k=j-1): 1-3--- (k+j-1)
T 2 L [ o e e e — jl[ o e oo v ]

k=j+22 4 (k—-3) 24 k+3)
K even

%ﬁr*ﬂ , j even

e

We can rewrite and combine the latter two expressions of

equation G7 by substituting,

k-3 = 2i . k+3j = 21+ 23 , 1L > 1 (G8)

in which case,
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f 1-3--+(2i-1)

T 2 . _
fp(r,O) + ii 5= T3 (20) ] f?(r,zu , =0
(r,j) = 1-3---(2j-1) ) c9
c * 25 16 (e 3) (G9)
2 1-3---(2i-1), L1-3---(2i+2j-1) . .
| + 2 z [2.4... 21) | [2‘4.“ (21+Zj) lfp(rrh‘f‘j} r ]_l

i=1

Finally, if we define the function,

1.1..-[2_._ 1[ {21 4

g(i) = == - L) (G10)
274--e (2] (2% (i)1]2
then,
( 2 .. i
£ (r,0) + 7 g?()Ef_(r,2i) ., 3=0
c o J P = :
(k1) = P o (GL1)
{2 [g(J)f (r,jy + 1 q(1)q(1+3)f (r,2i+3)] , j~L
1=1

The factors g2(i) and g(i)g(i+j) reduce the magnitude of the
truncation error (obtained by limiting L<i<I}, since they
decay as ((2i-1)/i)? and ((2i-1)/21i) ((21i+23-1)/(21+21))
respectively. Furthermore, by computing a finite number of
fc(r,j), with 0<j<N-1, we can use the technigues of the FFT
to quickly compute N equally spaced samples of F(r,3), with

0<6<w.
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APPENDIX H: Computer Programs

A number of programs were written to implement the

equations described in chapters 5 and 7, and Appendices F and

G. The programs are briefly described below, and selected

programs are followed by their complete listings.

RBDKXP

RAXPLT

RBDKP

Rectangular geometry; Bi-Domain model; K
(frequency) and X (spatial) wvalues computed:;
output Plotted as equipotential lines.
Implements equations 5.3b, 5.7a, 5.10-5.12,
5.16-17, 5.19-5.20, 5.22-24, 5.26-5.27, F5.

Input variables: source—-type (ITYPE: abrupt,
lateral diffuse, lateral and transverse
diffuse), NPTS (length of coefficient arrays),
AA (scurce width along x-cordinate), UMSC
(lateral border width), BB (height of
rectangular zone), PO (extracellular bulk
resistivity), PI (intracellular bulk
resistivity), PB (bath bulk resistivity),
SPACEC (space constant), STEPX (distance
between spatial sample points), YBEG (value
for y at lower edge of plot), YEND (value of y
at upper edge of plot), and STEPY (incremental
value for y).

Data files: DATAK stores the Fourier cosine
expansion coefficients, ISOCON stcres the
equipotential values.

Additional programs needed: subroutine FOUR2,
INIPLT, CONPLT, and PLOT.LB package.

Rectangular geometry; AXis PLoT. Plots output of
RBDKXP as equipotential lines.

Input variables: XMAX,YMIN,YMAX (axis dimensions) .,
XAXIS,YAXIS (graph dimensions), XORIG,YORIG
(graph origin).

Data files: DATAX contains the computed sampled
spatial distribution.

Additional programs needed: plotting package
PLOT.LB

Similar to RBDEKXP, but plots output as surface
potential distributions [not listed].



SSAK

SSaxp

SAXPLT

SSAKP

FOUR2

EKCOST
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Spherical geometry; Solid Angle model; K
(frequency) values computed. Implements
equations 7.6, 7.10-7.11, 7.17, 7.19.

Input variables: source-type (ITYPE:
subepicardial, subendocardial, or transmural),
LASTN (length of Legendre polynomial
expansion), THETAA (anqular extent of ischemic
zone), PO (extracellular bulk resistivity), PI
(intracellular bulk resistivity), PB (body
bulk resistivity), PC (intraventricular cavity
bulk resistivity), RB (epicardial diameter) .,
RC (endocardial diameter), RA (radius of
intramural boundary of ischemic zone).

Data files: similar to REDKXP

Additional programs needed: subroutine EKCOST.

Spherical geometry; Solid Angle model; X (spatial)
values computed; output Plotted as
equipotential lines. Implements the eguations
7.1a, 7.3, 7.4a, 7.7-7.9, 7.12-7.16, 7.18,
Fll.

Input parameters: NPTS (length of Fourier cosine
expansion), RMIN (lowest plotted value for r),
RMAX (highest plotted value of r), STEPR
(incremental value for r).

Data files: similar to RBDKXP.

Additional programs needed: subroutines FCOEFF,
SPLT, SCNPLT, and FOUR2

Spherical geometry; AXis PLoT. Similar to RAXPLT
[not listed].

Spherical geometry: Solid Angle model; K (frequency
values) computed; output Plotted. Similar to
RBDKP [not listed].

Fast Fourier Transform, adapted from FOURLl [Brenner
(1967)] for real, even arrays.

Input variables: FX (input array), NPTS (length of
array FK -1), IEXP (forward or inverse
transformation) .

Data files: none.

Additional programs needed: none.

Array E, coefficient K; the Legendre polynomial
expansion of a rectangular function; a
function of COSine Theta. Implements equation
7.6.

Input variables: THETAA (angular extent of
ischemic zone), E (output array containing the



PCOS2

FCOEFF

INIPLT

CONPLT

SPLT

SCNPLT
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values of the Legendre polynomial expansion
coefficients), LASTN (length of array E -1),
JFLAG (flag for new or old coefficients) .

Data files: ENTA, which stores the computed values
of E(k).

Additional programs needed: function PCOS2.

PN (COSine (theta)), the nth order Legendre
polynomial, evaluated at THETA.

Input variables: N (order of Legendre polynomial) ,
THETA (value at which the polynomial is to be
evaluated.

Data files: none.

Additicnal programs needed: none.

Fourier COEFFicients. Converts a Legendre
polynomial expansion into a Fourier cosine
expansion. Implements equation G1I1.

Input variables: FX (input/output array of
coefficients), NPTS (length of Fourier cosine
expansion), LASTN (length of Legendre
polynomial expansion).

Data files: GKTAB, which stores an array of
factorial-like expressions, given by equation
Glo.

Additional programs needed: none.

INItialization for rectangular coordinate PLOT.

Input/output variables: XAXIS,YAXIS (graph
dimensions), XLFT,XRHY,YTOP,YBOT (page
coordinates), YMIN,YMAX (upper and lower
values for y on axis).

Data files: none

aAdditional programs needed: none.

CONtour PLoOT for rectangular geometry. Plots
output of RBDKXP.

Input variables: FX,FXX (input arrays) . CON, LENCON
(contour values), NEND (length of data array) .
XLFT,XRHT, YBOT,YTOP (page coordinates) ,
YMIN,YMAX {lower and upper graph values for
y) ., STEPY (incremental step 1in y) , YCURR
(current value of Y). ISYM (symmetry of plot).

Data files: none

additional programs neaded: none.

§pherical initialization PLOT? similar to INIPLT
[not listed].

§pherical CoNtour PLOT; similar to CONPLT [not
listed].



NDOOOOOOOOONOON

noOoo

20
21

2s

000

RBDKXP -249

THIS PROGRAM TABULATES THE COEFFICIENTS OF THE EIGENFUNCTIONS FOR
THE POTENTIAL DISTRIBUTION ARISING FROM A RECTANGULAR ISCHEMIC ZONE.
USING THE BI-DOMAIN MODEL. STORING THE VALUES IN DATAK.

ONE OF THREE SCOURCES CAN BE SELECTED FOR UMS:

UMS(K) = UO (iXi<AR). B CIXi>AA) Q)
UMS(X) = [ 1-EXP (~R-/UMSC)COSH (X UMSC) VT I-EXP (-A/UMSC) ]
= [SINHCR/UMSC)EXP (—IX}/UMSC) VT 1-EXP (-A-UMSC) 1 2)
UMS(X.Y) = COS(PIxY/2.%8S) % [UMSC#2] 3
WHERE POUQXSPACEC»«2 IS NCRMALIZED TO 1.

THE SPATIAL DISTRIBUTION FOR FX(X) IS FOUND FOR A RANGE OF Y VALUES.

THE EQUIPOTENTIAL CONTOURS FOR FX(X.Y) ARE THEN PLOTTED.

ADDITIONAL SUBROUTINES REQ@-D: FOUR2. INIPLT. CONPLT, PLOT.LB

DIMENSION R(B:256).B(B:256).C(B:256).D(B:256)
DIMENSION FX(B:256).FXX(0:256) .CON(25)

PICON = 3.141592654

PISAQRT = SURT(PICON)

ACCEPT *NEW K-X-VALUES (1). OR X-VALUES (2)? ".JFLAG
IF (JFLAG.EQ.2) GO TO 288

ACCEPT “SOURCE-TYPE: L(ABRUPT). 2(LAT.DIFF.).

I 3CLAT.TRANS.DIFF.)? “.ITYPE

THIS PART OF THE PROGRAM COMPUTES THE FOURIER COEFFICIENTS

GO TO (18.15.28).ITYPE

WRITE (18.11)

FORMATC(~ TYPE IN VALUES FOR NPTS.A.B8.P0.P1.PB.SPACEC.STEPX: °)
READ (11) NPTS.AR.BB.PO0.PI.PB.SPACEC.STEPX

umsc = 8.

BS = 39.

GO TO 25

WRITE (18.16)

FORMAT(” TYPE IN VALUES FOR NPTS.A.UMSC.B.P0.PI.PB.SPACEC.STEPX:")
READ Ci1) NPTS.AA.UMSC.BB.PO.PI.PB.SPRCEC.STEPX

BS = 99.

GO TO 25

WRITE (18.201)

FORMATC(” TYPE IN VALUES FOR NPTS.A.UMSC.B.BS.PO.PI.PB.
1SPACEC.STEPX: ")

READ (11) NPTS.AA.UMSC.BB.BS.P0.PI.PB.SPACEC.STEPX
SINPIB = SINCPICON%BB-/(2.x8S5))

COSPIB = COSCPICONABB/(2.%8S))

PH = POXPI/(PO+PI)

CNORM = 1./ (STEPXxFLORT(NPTS))

STEPK = PICONACNORM

FOURIER COEFFICIENTS ARE STORED IN DATAK
CALL DFILWC"DATAK". [ERR)

CALL CFILWC*DATAK®". 1. IERR)
CALL OPENC(4. *DATAK".2.ERR)
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LRITE (4.46> NPTS.AA.UMSC.BB.BS.PO0.PI.PB.SPACEC.STEPX. [TYPE
FORMAT(4X, [3,.9(2X.FS5.2).2X. I 1)

SK = B.

FRCZ2 = 1.

IF CITYPE.EQ.3) FACZ = [.+PICON*P ICON*SPRCEC*SPACEC./(4.%BS%BS)
ENORM = 1.

IF CITYPE.NE.1> ENORM = L. C(1.-EXP(-AA-UMSC))

DO 188 K=8.NPTS

IF (K.GT.8) GO TO 46

COMPUTE D-C TERMS

AC(B) = -ARXENORM/FAC2

B(B) = -A(d)

c =9.

D(@) = 0.

IF CITYPE.NE.3) GO TO 85

FAC4 = P ICON®SPACECXSINPIB/(2.%8S)

B(B) = (COSPIB+FAC4)*B(8)

D(@) = —-PIFACHHR (D)~ (PHxSINH(BB/SPACEC))
GO TO 85

COMPUTE ALL OTHER FREQUENCIES

GRMMAR = FAC2+SK*SK*SPACECXSPACEC

GAMMAZ = [.+SKxSKAUMSCxUMSC

ACK) = —-ENORMxSIN(SK¥AAR) ~(GAMMIRKSKAGAMIAZ)
ALPHA = SKx8B

HSINA = SINHCALPHRA)

HCOSA = SQRTC(I.+HS INAXHSINA)

BETA = BBASART(SK*SK+(1./(SPACEC*SPACEC)))
HSINB = SINH(BETR)

HTANB = TANH(BETA)

FAC1 = POxALPHAXHS INA/BETA

DEN = HCOSA+(PB/PH)*HS INR+FAC I/ (HTAHBAP [)
B(K) = -ACK)-DEN

DIK) = 8.

IF (ITYPE.NE.3) GO TO 88

FAC3 = PICON%SINP IB*BB/(2.*BETAXBS)

B(K) = (COSPIB+AC3/HTANB)*B (K)

DIK) = =P IxFAC3*A (K) /7 (PH*HSINB)

C(K) = =(PB/PH)x*HS INAXB (K)

D(K) = D(K)-FAC1xB (K) ~(HSINB*PH)

WRITE (4> A(K).BC(K).C(K).D(K)

8K = SK+STEPK

CONTINUE

GO TO 228

CALL OPEN(4. "DATAK". 1. IERR)

COME HERE [F THE FOURIER COEFFICIENTS ARE ALREADY AVAILABLE
IN DATAK

RERD (4.281) NPTS.AA.UMSC.BB.BS.PO.PIL.PB.SPACEC.STEPX. [TYPE
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FORMAT(3X.I3.9(2X.F3.2).2X.I1)
DO 218 J=B.NPTS

RERD (4.285) ACJ).B(I).C(J).DC)
FORMAT(4(3X.E13.63)

CONTINUE

CNORM = ./ (STEPXKFLOAT(NPTS))

STEPK = P ICON%CNORM

ACCEPT *SYMMETRICAL (1) OR ASYMMETRICAL (2) PLOT? *.ISYM
ACCEPT *AXIS: XMAX? *.XMAX

ACCEPT "AXIS: YMIN.YMAX? ".YMIN.YMAX
NEND = [FIXCOIRX/STEPX)

WE INCREMENT IN STEPS OF STEPYH UP TO -(BY+STEPYH)., THEN IN STEPS
OF STEPYL UP TO (BY+STEPYH). THEN BACK TO STEPS OF STEPYH.

ACCEPT *PLOT: YBEG.-YEND.STEPY-LOW.STEPY-HIGH? *.YBEG.YEND.
ISTEPYL.STEPYH

BY = BB

IF CISYM.EQ.2) BY = BB-2.

YB2 = BY+STEPYH

YBl = -YB2

THE FILE ISOCON CONTARINS THE EQUIPOTENTIAL VALUES. THE FIRST
ENTRY IS LENCON., THE LENGTH OF THE ARRAY.

CALL OPENC(S., *ISOCON". 1. IERR)
READ (9.224) LENCON
FORMAT(3X-12)

DO 228 J=1.LENCON

READ (9.226) COMCI)
FORMART(3X.F7.5)

CONTINUE

CALL CLOSE(S.IERR)

INITIALIZE GRAPH
CALL INIPLT(XMAX. YMIN. YMAX.XLFT.XRHT.YTOP.YBOT)

THIS PART OF THE PROGRAM COMPUTES THE SPATIAL DISTRIBUTIONS

Y = YBEG

SY = 9.

[F C(ISYM.EQ.2) SY = BY-YBEG

COSYB = I.

IRUN = |

IF CITYPE.EQ.1.OR.ITYPE.EQ.2) GO TO 258
COSYB = COS(PICONXSY/(2.%85))

SK = @.

DO 268 K=8.NPTS

IF (SY.GT.BB) GO TO 258

SKSY = SYXSQRT(SK*SK+C(1 ./ (SPACECXSPACEC)}))
SKY = SKxSY

HCOSKY = .S%(EXP (SKY)+EXP (~SKY))
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HCOSKSY = .Sx(EXP (SKSY)+EXP (-SKSY))
FX(K) = (COSYB*A (K)-POxD (K)*HCOSKSY/ (PC+P [)+B(K) *HCOSKY) *CNORM
GO TOo 258
256 VALUE = ABS(SK%(SY-BB))
FX(K) = C(K)»EXF (-VALUE) *CNCRM
258 SK = SK+STEPK
268 CONTINUE

c
c EVALUATE FOURIER INTEGRAL
[
CALL FOUR2(FX.NPTS. 1)
IF CIRUN.EG.1) GO TO 498
c
c WRITE OUT CONTOUR INTO REDKXP.SC
c

CALL. CONPLT(FX.FXX,CON.LENCON.NEND.XL_FT.XRHT.YBOT.YTOP.
IYMIN. YMAX.STEPY. Y. ISYM)
4@ IRUN = IRUN+1
TYPE "Y = ".Y.". SY = *.SY
STEPY = STEPYH
IF C(Y.GE.YBI.AND.Y.LT.YB2) STEPY = STEPYL
Y = Y+STEPY
IF (Y.GT.YEND) GO TO See
IF CISYM.EQ.2) GO TO 420
SY = SY+STEPY
GC TO 43a

428 SY = SY-STEPY

c

c ARRAY FXX(N) CONTAINS THE VALUES OF FX(N) FOR THE PREVIOUS
c VALUE OF Y. THIS IS TO ENARBLE THE EQUIPOTENTIAL PLOT

c TO BE DRAWMN.

c

438 DO 450 N=8.NEND

FXXIN) = FX(N)
458 CONTINUE

GO TO (258.258.238).ITYPE
Sea CALL PLOT(B..8..999)

CALL CLOSE(4.LERR)

END
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THIS PROGRAM PLOTS THE AXES FOR RECTANGULAR COORDINATES.
IT IS USED IN CONJUMCTION WITH RBDKXP.

TWO MODES OF OPERATIOM ARE POSSIBLE: A SYMMETRICAL PLOT AROUND THE
X-AXIS. WHERE FX(X.Y) = FX(X.-Y). OR AN ASYMETRICAL PLOT
AROUND THE X-AXIS. IN WHICH CASE THE UPPER. Y-BOUNDARY
IS ASSUMED TO BE AGAINST A ZERO CONDUCTIVE MEDIUM.

CALL OPEN(4. "DATAK". 1. [ERR)

READ (4.281) NPTS.AA.UMSC.BB.BS.P0.PI.PB.SPACEC.STEPX. ITYPE
FORMAT(3X. [3.9(2X.F5.2).2X,. [ 1)

CALL CLOSE(4. IERR)

HCCEPT *SYMMETRICAL (1) OR ASYMMETRICAL (2) PLOT? *.ISYM
ACCEPT "AXIS: XMAX? ".XMAX

ACCEPT *AXIS: YMIN. YMAX? *,YMIN.YMAX

ACCEPT *“GRAPH DIMENSIONS (X-AXIS.Y-AXIS) IN INCHES? *".XAXIS.YRXIS
ACCEPT °*PLOT: XORIG.YORIG? *.XORIG.YORIG

CALL PLOTS(2.*RAXPLT.SC*.7)

CALL ROTATE(98..8..8.)

XDEL = XMAX/XAXIS

YDEL = C(YMAX-YMIN) - YAXIS

MLFT = XORIG

XRHT = XLFT+XAXIS

YBOT = YORIG+YMINAYDEL

YTOP = YBOT+YAXIS

CALL. AXIS(XORIG.YORIG. *X (CM) *.-6.XAXIS.8..8..XDEL)
CALL AXIS{XORIG.YBOT."Y (CM) ".6.YAXIS.98..YMIN.YDEL)
BY = BB

[F (ISYM.EQ.2) BY = BY 2.

EPIBY = YORIG+BY/YDEL

ENDOBY = YORIG-BY-YDEL

CALL PLOT(XORIG.EPIBY.3)

CALL PLOT(XRHT.EPIBY.2)

CALL PLOT(XDRIG.ENDOBY.3)

CALL PLOT(XRHT.ENDOBY.2)

CALL SYMBOL(S5..6.25..87." A = “.8..5)

CALL NUMBER(999..999...87.AA.0..1)

CALL SYMBOL(98S..999...87.° = *.8..9)

CALL NUMBER(999..3999...87.UMSC.8..1)

CALL SYMBOL(999..939..,.87." B = *.0..18)

CALL NUMBER(999..995...87.BY.0..1)

CALL SYMBOL(S893..999...87." BS = *.8..18)

CALL NUMBER(999..999...87.8S.8..1)

CALL SYMBOL(S..6...87."P0 = *.8..5)

CALL NUMBER(99S5..999...87.P0.8..2)

CALL SYMBOL (S9S..999...87.° Pl =« *.8..9)

CALL NUMBER(S99..99S...87.P1.8..2)

CALL SYMBOL(999..999...87." PB = *.8..39)

CALL NUMBER(999..999...87.PB.8.-2)

CALL SYMBOL(99S..993...87."* = “.8..9

CALL NUMBER(99S..999...87.SPRCEC.8..1)

CALL PLOT(8..8..993)

END
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THIS PROGRAM TABULATES THE COEFFICIENTS OF THE EIGENFUNCTIONS FOR
THE POTENTIAL DISTRIBUTION ARISING FROM A SPHERICAL ISCHEMIC ZONE.
USING THE BI-DOMAIN POISSON MODEL. STORING THE VALUES IN

DATAK.

ONE OF THREE SOURCES CAN BE SELECTED FOR MS = —(RM/PI)XGRAD(UMS):
SUBEPI: UMSCR.T) = | (RA<KRCRB: ITICTA). B8 (OTHERWISE) 99;
SUBENDO: UMSC(R.T) = 1 (RC<KRCRA:!TI<TA). 8 (OTHERWISE) 2>
TRANS: UMSCR.T) = 1 (RCKRCRB:ITi<TA). B8 (DTHERWISE) 33

WHERE PH*(RMPI)*UQ [S NORMALIZED TO I[.
ADDITIONAL SUBROUTINES REQ“D: EKCOST. PCOS2.

DIMENSION ACB:S512).B(A:512).C(A:512).D(9:512).E(@:512).FX(8:312).
ICONC(C213 .FXX(B:256)

PICON = 3.141592654

ACCEPT "NEW T/K/X-VALUES (1), K/X-VALUES (2)? ".JFLAG

ACCEPT "SOURCE-TYPE: 1(SUBEPI.). 2(SUBENDO.). 3(TRANS.)? *.ITYPE
ENFAC = 1.

EPFAC = [.

THE VARIABLES ENFAC AND EPFAC DETERMINE THE TYPE OF ISCHEMIC ZONE

IF CITYPE.EQ.L1) ENFAC = 8.

[F CITYPE.EQ.2) EPFAC = 8.

GO TC (18.28).JFLAG

ACCEPT *LASTN (588)? THETAR? *.LASTN.THETAR

OBTAIN COEFF ICIENTS OF LEGENDRE POLYNOMIAL EXPANSION FOR
RECTANGULAR FUNCTION

CALL EKCOST(THETAA.E.LASTN.JFLAG)
IF (ITYPE.EQ.3) GO TO 38
ACCEPT *P0O.PI.PB.PC.RB.RC.RA? *.P0.PI.PB.PC.RB.RC.RA

GO TO 35
ACCEPT *PO.PI.PB.PC.RB.RC? *.PO.PI.PB.PC.RB.RC

RA = 3.
PH = POxPL/(PO+PI)

STORE CALCULATED COEFFICIENTS OF LEGENDRE POLYNOMIAL EXPANS ION
IN DATAK

CALL DFILW(“DATAK".IERR)

CALL CFILW("DATAK*. 1., [ERR)

CALL OPENC(4. "DATRK*.2. [ERR)

WRITE (4.48) LASTN. THETAA.PO.P[.PB.PC.RB.RC.RA. [TYPE
FORMAT(4X. [3.3X.F5.2.4C(1X.F7.2) -3(3X.F5.2).3X. [ 1D

RCB = RC/RB

WE INITIALIZE RCBK AND RCBK! FOR K=1.

RCBK = RCB
RCBK1 = RCB*RCB
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DO 188 K=0.LASTN
IF (K.GT.8) GO TO S@

COrPUTE D-C TERMS

ACA) —EPFACXE (8)

B(@®) = 8.

c@ =~ a.

D@ (ENFAC-EPFRC) %E(8)

GO TO 85
IF (RCBK.LT..0008080a1) GO TG 78

CALCULATE ALL OTHER FREQUENCIES

PBK = K-PB

PBK1 = PBK+(1./PB)
PHK = KAPH

PHKI = PHK+C1./PH)
PCK = K/PC

PCK1 = PCK+(I./PC)
FAC1 = PBKI+PHK
FAC2 = PBKI1-PHK!
FAC3 = PCK-PHK
FAC4 = PCK+PHKI

RCB2K1 = RCBK*RCBKI1
DEN = FACI®FAC4-FAC24FAC3I*RCB2KI
R(K) = (ENFAC*PCK»AC24RCBK 1-EPFACHPBK L*%FAC4H) »E (IK) /DEN

B(K) = (EPFRC*PBK I#FAC3*RCBK-ENFACHKCK*FAC 1) *E (K) /DEN
CIK} = EPFRCE (K)+A(K)+B (K)*RCBK1
DK) = ENFACXE (K)+A (K) *RCBK+8 (K)
RCBK = RCBK#*RCB

RCBKI = RCBKI1*RCB

GO TO 85

ACK) = -EPFACPBKI¥E(K) /FACL

B(K) = -ENFACXPCKHE (K> /FACA

C(K) « ACK)+EPFACKE (K)

DK} = B(C(K)+ENFACHE (K3

WRITE (4.98) ACK).B(K).C(K).D(K).ECK)
FORMAT(IX.S(2X.F9.6))

CONTINUE

CALL CLOSE(C4.LERR)

END
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THIS PROGRAM IS USED IN CONJUNCTION WITH SSAK

THE SPATIAL DISTRIBUTION FOR FX(R.T) IS FOUND FOR A RANGE OF R
VALUES. THE ISOCONTOURS FOR FX(R.T) ARE THEN PLOTTED.

ADDITIONAL SUBROUTINES REQ°D: SPLT. SCNPLT. FCOEFF
FOUR2. PLOT.LB.

DIMENSION A(B:512).B(B:512).C(B:512).D(B:512).E(B:512).FX(8:512).
1CON(25) .FXX(B:25€6)

PICON = 3.141592654

JFLAG = 3

CALL OPEN(4."DATAK". 1. [ERR)

READ STORED VALUES OF COEFFICIENTS FOR LEGENDRE POLYNOMIAL
EXPANS [ON

RERD (4.281)> LASTN.THETARR.PO.PI.PB.PC.RB.RC.RA. [TYPE
FOGRMAT(3X. [3.3X.F5.2.4C1X.F7.2).3(3X.F5.2).3X. [ 1)
ENFAC = 1.

EPFAC = I.

THE VRARIABLES ENFAC AND EPFAC DETERMINE THE TYPE OF ISCHEMIC
ZONE

[F (ITYPE.EQ.I) ENFAC = 8.

IF (ITYPE.EQ.2) EPFAC = 0.

DO 203 J=8.LASTN

READ (4.282) AR .B(N.CWIN.DWIN.EWDN

FORMAT(S(2X.F9.6))

CONTINUE

ACCEPT *NPTS (=188.,STEPT)? “.NPTS

STEPT = 180./FLOAT(NPTS)

ACCEPT *RMIN.RMAX.STEPR-LOW.STEPR-HIGH? *.RMIN.RMAX.STEPRL.STEPRH

WE INCREMENT I[N STEPS OF STEPRH UP TQ RC-STEPRH. THEN [N STEPS OF
STEPRL UP TQ RB+STEPRH. THEN BACK TO STEPS OF STEPRH.

RCSR = RC-STEFPRH
RBSR = RB+STEPRH

THE FILE ISOCON CONTAINS THE EQUIPOTENTIAL VALUES. THE
FIRST ENTRY IS LENCON. THE LENGTH OF THE ARRAY.

CALL OPENC(S. "ISOCON*".!.IERR)
READ (9.218) LENCON
FORMAT(3X. I2)

DO 228 J=1.LENCON

READ (S.215) CONWD)
FORMAT(3X.F?.5)

CONTINUE

CALL CLOSE(9.IERR)
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INITIRLIZE GRAPH

CALL SPLT(RMAX.XL.FT.XRHT.YTOP,.YBOT. THETAAR.RB.RC.RA.
1P0.P1.PB.PC. ITYPE)

IRUN = [

R = RMIN+.0001

RRC = R/RC

RRB = R/RB

THIS PART OF THE PROGRAM COMPUTES THE SPATIAL DISTRIBUTIONS

IF (R.GE.RB) GO TO 268
IF (R.GT.RC) GO TO 258
RRCK = .

DO 245 K=8.LASTN

FX(K) = D(K)¥»RRCK

IF (RRCK.LT..08088881) GO TO 245
RRCK = RRCK¥RRC
CONTINUE

GO TO 288

RRBK = I.

RCRK]1 = [./RRC

DETERMINE THE LEGENDRE EXPANSION COEFFICIENTS FOR THE
PROPER TYPE OF ZONE

DO 255 K=8.LASTN

FX(K) = ACK)»RRBK+B (K)*RCRK1

IF (R.LT.RR) FX(K) = FX(K)+ENFRC*E(K)
IF (R.EQ.RR) FX(K) = FX(K)+EK)

IF (R.GT.RA) FX(K) = FX(K)+EPFAC*E ()
IF (RRBK.LT..88880081) GO TO 254
RRBK = RRBK*RRB

IF (RCRKI1.LT..008888881) GO TO 255
RCRKI = RCRKI/RRC

CONTINUE

GO TO 288

RBRK1 = [./RRB

DO 265 K=8.LASTN

FX(K) = CC(K)*RBRK1

IF (RBRK1.LT..e08088881> GO TO 265
RBRK1 = RBRK!/RRB

CONTINUE

WE CONVERT THE LEGENDRE POLYNOMIAL EXPANSION TO A FOURIER
COSINE SERIES EXPANSION.

CALL FCOEFF (FX.NPTS.LASTN)
WE NORMAL IZE FX(K) I[N PREPARATION FOR THE FOURIER TRANSFORM

DO 282 K=8.NPTS
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IF (K.EQ.8) GO TO 282
FX(K) = .S5¥FX(K)
CONTINUE

WE EVALUATE THE FOURIER SERIES EXPANSION

CALL FOURZ(FX.NPTS. 1)
IF CIRUN.EQ.1) GO TO 400

WRITE OUT CONTOUR INTO SSAXP.SC

CALL SCNPLT(FX.FXX.CON.LENCON.NPTS.XLFT.XRHT.YBOT. YTOP.
{RMAX.STEPR.R)

IRUN = IRUN+1

TYPE "R = *.R

STEPR = STEPRH

IF (R.GE.RCSR.AND.R.LT.RBSR) STEPR = STEPRL

R = R+STEPR

[F (R.GT.RMAX) GO TO See8

ARRAY FXX(N) CONTRINS THE VALUES OF FX(N) FOR THE PREVIOUS
VALUE OF Y. THIS IS TO ENABLE THE EQUIPOTENTIAL PLOT

TO BE DRAWN.

DO 458 N=@8.NPTS
FXXC(N) = FX(N)
CONTINUE

GO TO 238

CALL CLOSE(4.LERR)
CALL PLOT(B..8..999)
END
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SUBROUTINE FOUR2(FX.NPTS. [EXP)

THIS PROGRAM COMPUTES THE FAST FOURIER TRANSFORM FOR A

ODOO

18

28
30

S8

60
4-]

90

108

REAL. EVEN ARRAY.

DIMENSION FT(1:2.8:511).FX(8:256)

PI = 3.141592654
NN = 2xNPTS

N = 2NN

DO S [=.NPTS
FT(L1.I) = FXCI)

IF (I.EQ.8.0R.I.EQ.NPTS) GO TO 4

II = NN-I
FT(2.II) = @.
FT(2.1) = 8.
CONTINUE

J =1

DO 58 I[=~I.N.2

[F (I-1) 18.28.20
TEMPR = FT(I)
TEMPI = FT(J+1)
FTMI) = FT(D
FT(IJ+1) = FTCI+D)
FTCI) = TEMPR
FTCI+1) = TEMPI
M= N2

J = J-M

M= M2

[F (M2) S0.308.30
J = J+M1

MAX = 2

IF (MAX-N) 78.90.98
[STEP = 2xtAX
DO 80 M=1.MRX.2

THETR = PIXFLOATCIEXP*(M-1)) /FLOAT(MERAX)

WR = COSCTHETR)

WI = SINCTHETR)

DO 88 I[=M.N.ISTEP

J = I+#tAxX

TEMPR = WRAFT(J) -WIKFTCI+D)
TEMPI = WRXFT(J+L1)+UINETCI)
FT(J) = FTCI)-TEMPR
FTC(J+1) = FT(I+D)-TEMPI
FTCD) = FT(D) +TEMPR
FTCI+1) = FTCI+1)+TEMPI
MRAX = [STEP

GO TO 6@

DO 188 I-8.NPTS

FX(I) = FTCL. D

CONTINUE

RETURN

END
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THIS PROGRAM COMPUTES THE FIRST (LASTN+1) COEFFICIENTS OF THE
LEGENDRE POLYNOMIAL EXPANSION OF A RECTANGULAR FUNCTION WITH
A WIDTH OF 2xTHETARA. IF NEW COEFFICIENTS ARE NOT TO BE
COMPUTED. SET JFLAG =2: OTHERWISE JFLAG = 1.

ADDITIONAL FILES REQ@“D: ENTA

SUBROUTINE EKCOST(THETRA.E.LASTN.JFLAG)
DIMENSION E(B:512)

CALL OPENC(7.*EMTR®.Z.KERR)
IF (JFLAG.EQ.2) GO TO 188
WRITE (7.18) THETAA,.LASTN
FORMAT(4X.F6.3,3X.13)

DO S8 K=8.,LASTN

IF (K.GT.8) GO TO 28

E(B) = (COSCTHETRR)-1.)-72.
GO TO Se

K@ = K-1

Kl = K+1

E(K) = C(PCOS2(K1l.THETAR)-PCOS2(KB.THETAA)) 2.
CONTINUE

DO 78 K=8.LASTN

WRITE (7) ECK)

CONTINUE

CALL CLOSE(?7.JERR)

RETURN

READ (7.118) THETAR.LASTN
FORMAT(3X.F6.3.,3X.13)

DO 1S58 K=8.LASTN

RERD (7.129) EK)
FORMAT(3X.E13.6)

CONTINUE

CALL CLOSE(7.JERR)

RETURN

END



o000

20
2e

35

90

-261-

PCOS2

FUNCTION PCOS2(N.THETAR)

WE EVALUATE THE NTH ORDER LEGENDRE POLYNOMIAL. PN(COSINECTHETAR)) .

IF (N.EQ.®> GO TO 98

SN = FLOAT(ND

ILAST = IFIX(SNA2.)

pCOSz = a.

[ =8

N2 = 2xN

N3 = N2-1

FAC1 = 2.

FRC2 = 1.

FARC3 = 1.

D0 28 J=1.N3.2

FAC2 = FAC2xFLOAT(J) /FLOATCI+1)
CONTINUE

12 = 2xI

IF (I.EQ.® GO TO 35S

IF CI2.EQ.N) FAC3 = .S

FAC1 = FACI¥FLOATC(I2-1)/FLOATC(IZ)
EAC2 = FAC2AFLOAT(N2-I2+2) /FLOAT(N2-12+1)
PCOS2 = PCOS2+FACIXFAC2XFAC3ACOS (FLOAT(N-I2) *THETR)
I = [+1

IF CI.LE.ILAST) GO TO 38

RETURN

PCOSz = 1.

RETURN

END
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FCOEFF

THIS PROGRAM CONVERTS A LEGENDRE POLYNOMIAL EXPANSION
FOURIER COSINE EXPRNSION.

ADDITIONAL FILES REQ°D: GKTAB

SUBROUTINE FCOEFF (FX.NPTS.LASTN)
DIMENSION G(B:512).FC(B:256) .FX(B:512)
CALL OPEN(B.*GKTAB".1.IERR)

THE FILE °*GKTAB® CONTARINS THE VALUES:
GCI) = (2%[-1)(2%[-3)...C(1)/T@2x[) (2x[-2)...(2) 1]

LASTI = (LASTH+NPTS) 2
DO 28 [=8.LASTI

READ (8.18) GC(D)
FORMAT(3X.E13.6)
CONTINUE

DO 288 J=8.NPTS

IF (J.GT.8) GO TO 68
FC(B) = FX(@)

DO 38 [2=2.LASTN.2

[ = [22

FCCB) = FC(AI+GCII#G (1) ¥FX(I2)
CONTINUE

GG TO 209

FCCI) = FX(I*GCT)
LASTI = LASTN-J

DO 188 [2=2.LASTI.Z2

[ = [272

FC(J) = FCCN+FXCI2+NAGCDIAG [+
CONTINUE

FC(I) = 2.%FCD
CONTINUE

DO 388 K=8.NPTS

EX(K) = FCK)

CONTINUE

CALL CLOSE(8. [ERR)
RETURN

END
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INIPLT

THIS PROGRAM INITIALIZES THE PLOT FOR RECTANGULAR COORDINATES

TWO MODES OF OPERATION ARE POSSIBLE: A SYMETRICAL PLOT AROUND THE
X-AXIS. WHERE FX(X.Y) = FX(X.-Y). OR AN ASYMETRICAL PLOT
SROUND THE X-AXIS. IN WHICH CASE THE UPPER. Y-BOUNDARY
IS ASSUMED TO BE AGAINST A ZERO CONDUCTIVE MEDIUM.

SUBROUTINE INIPLTCMAX. YMIN. YMAX. XLFT.XRHT. YTOP., YBOT)
ACCEPT "GRAPH DIMENSIONS (X-AXIS.Y-AXIS) IN INCHES? *.XAXIS.YRXIS
CALL PLOTS(2. *RBDKXP.SC".7)

CALL ROTATE(98..8..8.)

XDEL = XMAX/XAXIS

YDEL = C(YMAX-YMIN) ~YAXIS

XLFT = S.-(XAXIS/2.)

XORIG = XLFT

MRHT = XLFT+XAXIS

YBOT = 3.5-(YRXIS 2.)

YORIG = YBOT-YMIN/YDPEL

YTOP = YBOT+YAXIS

RETURN

END
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CONPLT

THIS SUBROUTINE PLOTS ISOCONTOURS ON A GRID WITH DIMENSIONS
XAXIS.YAXIS.

THE ARRRAY FX CONMTARINS VALUES AT THE CURRENT VRLUE OF SY. WHILE
THE RARRAY FXX CONTRINS VALUES AT THE VRLUE OF SY-STEPY.

THE ARRAY CON (LENGTH CONLEN)> CONTARINS THE VALUES FOR THE
ISOCONTOURS.

THE X-AXIS EXTENDS FROM 8 TO XRX. WHILE THE Y-AXIS EXTENDS
FROM —-YMAX TO YMAX.

XP.YP aRE THE PLOT DIMEHSIONS,. [H IHCHES.

SUBROUTINE CONPLT(FX.,FXX.CON.LENCON.NEND.XLFT.XRHT.YBOT, YTOP.
LYMIN. YMAX. STEPY. YCURR. ISYM)

DIMENSION FX(8:256).FXX(8:256) ,CON(25)
XORIG = XLFT

YORIG = YBOT-YMIN%((YTOP-YBOT) ~(YMAX-YMIN))
DELX = (XRHT-XLFT) FLOAT(NEND)

DELY = (YTOP-YBOT)*STEPY/(YMAX-YMIN)
Y = YORIG+YCURRX(YTOP-YBOT) ~CYMRX~YMIN)
X = XDRIG+DELX

DO 189 I=1.NEND

FX1 = FXXCI-1)

FX2 = FXXCI)

FX3 = FXC(I-D)

FX4 = FXCI)

DO 98 K=I1.LENCON

FXCON = CONCK)

ICASE =

IF (FXCON.GT.FXI) ICASE = I[CASE+l

IF (FXCON.GT.FX2) ICARSE [CASE+2

[F (FXCON.GT.FX3) ICRSE ICASE+4

IF (FXCON.GT.FX4) ICASE = 9-ICRSE

GO TO (98.18.28.38.48.58.68.78) . [CASE
X1 = X-DELXx(FX2-FXCON) / (FX2-FX1)

Y1l = Y-DELY

X2 = X-DELX

Y2 = Y-DELY*(FX3-FXCON) 7 (FX3-FX1)

GQ TO sa

X1 = X-DELX«(FX2-FXCON) - (FX2-FX1)

Yl = Y-DELY

X2 = X

Y2 = Y-DEL'Y*(FX4-FXCON) ~(FX4-FX2)

GO TO se

X1 = X-DELX

Yl = Y-DELYx(FX3-FXCON) ~(FX3-FX1)

X2 =X

Y2 = Y-DELY%(FX4-FXCON) 7 (FX4-FX2)

GO TO 8@

X1 = X-DELX

Y1l = Y-DELY%(FX3-FXCON) 7 (FX3-FX1)

X2 = X~-DELXx(FX4~-FXCON) / (FX4~-FX3)

Y2 = Y

GO TO se



CONPLT

Se X1 = X=DELXx(FX2-FXCON) 7 (FX2~-FX1)
Y1l = Y-DELY
X2 = X=-DELXk(FX4-FXCON) 7 (FX4-FX3)
Y2 = Y
GO TO B8

60 X1 = X=DELX&(FX2-FXCON) /7 (FX2-FX1)
¥l = Y-DELY
X2 = X-DELX
Y2 = Y-DELY%(FX3-FXCON) /(FX3-FX1)

’e

g8

1ea

CALL PLOT(Xi.Y1.3)

CALL PLOT(X2.Y2.2)

IF (ISYM.EQ.2) GO TO 78
Y3 = 2.%YORIG-Y!1

Y4 = 2_%YORIG-Y2

CALL PLOT(X1.Y3.3)

CALL PLOT(XZ2.Y4.2)

X1 = X-DELX&(FX4-FXCON) 7/ (FX4-FX3)
YL = Y

X =X

Y2 = Y-DELYX(FX4-FXCON>/(FX4-FX2)
CALL PLOT(XI.Y1.3)

CALL PLOT(X2.Y2.2)

[F (ISYM.EQ.2) GO TO 9@
Y3 = 2.xYORIG-Y1

Y4 = 2.xYORIG-Y2

CALL PLOT(X1.Y3.3)

CALL PLOT(X2.Y4.2)
CONTINUE

X = X+DELX

CONTINUE

RETURN

END
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