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BRBSTRACT

This report contains a methed of approach and theoretical
framework which advances the state of the art in the design of
reliable multivariable contrcl systems, with special emphasis on
actuator failures and necessary actuator redundancy levels.

The mathematical model consists of a linear time invariant
discrete time dynamical system. Configuration changes in the
system dynamics, {such as actuator failures, repairs, introduction
of a back up actuator) are governed by a Markov chain that includes
transition probabilities from one configuration state to another.
The performance index is a standard quadratic cost functional,
over an infinite time interval.

If the dynamic system contains either process white noise
and/or noisy measurements of the state, then the stochastic
optimal control problem reduces, in general, to a dual problem,
and no analytical or efficient algorithmic solution is possible.
Thus, the results are obtained under the assumption of full state
variable measurements, and in the absence of additive process
white noise.

Under the above assumptions, the optimal stochastic control
solution can be obtained. The actual system configuration can
be deduced with an one step delay. The calculation of the optimal
control law requires the solution of a set of highly coupled
Riccati-like matrix difference equations; if these converge (as
the terminal time goes to infinity) one has a reliable design with
switching feedback gains, and, if they diverge, the design is
unreliable and the system cannot be stabilized unless more reliable
actuators or more redundant actuators are employed. For the
reliable designs, the feedback system requires a switching gain
scoluticn, that is, whenever a system change is detected, the feed-
back gains must be reconfigured. On the other hand, the necessary
reconfiguration gains can be precomputed, from the off-line solu-
tions of the Riccati-like matrix difference equations.



Through the use of the matrix discrete minimum principle, a
suboptimal solution can also be obtained. In this approach, one
wishes to avoid the reconfiguration of the feedback system, and
one wishes to know whether or not it is possible to stabilize the
system with a constant feedback gain, which does not change even
if the system changes. Once more this can be deduced from another
set of coupled Riccati-like matrix difference equations. If they
diverge as the terminal time goes to infinity, then a constant
gain implementation is unreliable, because it cannot stabilize the
system. If, on the other hand, there exists an asymptotic sclution
to this set of Riccati-like equations then a reliable control
system without feedback reconfiguration can be obtained. The
implementation requires constant gain state variable feedback, and
the feedback gains can be calculated off-line.

In summary, these results can be used for off-line studies
relating the copen loop dynamics, required performance, actuator
mean time to failure, and functional or identical actuator
redundancy, with and without feedback gain reconfiguration
strategies.

Thesis Supervisor: Michael Athans
Title: Professor of Electrical Engineering and Computer Science
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CHAPTER 1

INTRODUCTION

1.1 Motivation for the Research.

This report addresses some of the current problems in interfacing
systems theory and reliability, and puts this research in perspective
with the open questions in this field. Reliability is a relative concept;
it is, roughly, the probability that a system will perform according
to specifications for a given amount of time. The motivating question
behind this report is: What constitutes a reliable system?

Knowledge of the reliability of a system is crucial. In this
report, a system is reliable if it has a (quantitative) reliability of
one, i.e., if the probability that the system will not perform according
to specifications for a given period of time is zero. Therefore, the
question "What constitutes a reliable system?" can be restated as:

What are the specifications which a system must meet in order to be
reliable?

A system is normally designed in two stages: First, the components
are selected in such a way as to meet the reliability specifications;
second, the control problem is formulated and solved for that configura- .
tion of components. Although this procedure is over-simplified, it
illustrates a second question: Should the control problem influence the
choice of the configuration, and if so, how can this be achieved? The
first part of the question is answered by history: The control problem
influences configuration design now by iteration between the two stages

of design. This is most likely not the best method! If a theory were
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available which allowed a comparison between alternate designs, based

on both the expected system reliability and the expected system perfor-
mance, it would greatly simplify the current design methodology. It is
unfortunate that at present there is nco accepted methodcology for a
determination of expected system performance which accounts for changes
in the performance characteristics due to failure, repair or reconfigura-
tion of system functions. This report presents such a methodology for a

specific class of linear systems with guadratic cost criteria.

1.2 General Nature of the Problem.

This Section presents the general thecoretical framework necessary to
approach the problem of reliable control system design. First, a
discussion of some of the concepts in reliability theory will be present-
ed. The control-theoretic framework for the specific topics covered in
this report will then be developed. Finally, the interrelationships
between systems theory and reliability theory will be explored, leading
to a mathematical formulation of the reliable control system design
problem and a discussion of the general nature of the results presented

in the remainder of this report.

1.2.1 Reliability Theory.

The generally accepted definition of reliability is stated in
Appendix 1. Basically, the reliability of a system is the probability
that the system will perform according to specifications for a given
amount of time. In a system-theoretic context, the specification which
a system must meet is stability; also, since, at least for most mathemati-

cal models of systems, stability is a long-term attribute of the system,
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the amount of time for which the system must remain stable is taken to

be infinite. Therefore, the following definitions of system reliability

are used in this report:

Definition 1: A system (implying the hardware configuration, or mathe-

matical model of that configuration, and its associated control and
estimation structure) has reliability r where r is the probability that

the system will be stable for all time.

Definition 2: A system is sai#l to be reliable if r = 1.

Definition 3: A system design, or configuration, is reliable if it

is stabilizable with probability one.

These definitions of reliability depend on the definition of stability,
and for systems which can have more than one mode of operation, stability
is not that easy to determine. In this report, stability will mean
either mean-square stability (over some random space which will be left
unspecified for the moment), or cost-stability (again, an expectation
over a certain random space), which is basically the property that the
accumulated cost of system operation is bounded with probability one.
{The definition of cost is also deferred.)

The reliability of a system will depend on the reliabilities of its
various components and on their interconnections. Thus, the systems
engineer must have an understanding of the probabilistic mechanisms of
component failure, repair, and system reconfiguration. There are a
multitude of models which can be used for component failure and repair,

and reconfiguration. Two good references to the mechanics of reliability
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theory are [Shooman, 1] and [Green and Bourne, 2].

consider a device which begins operation at time O and can experi-
ence catastrophic (i.e., instantaneous) failure to a non-operational
state. Let the probability of Zailure of this device occuring in the
interval [0,t] be

F(t) = prob., of failure in [0,t] (1.2.1)

This is the definition of the failure distribution function [Shooman, 17].

Define the hazard rate as

dF (t)

_ dat
z(t) = T (1.2.2)

from [Shooman, 1]. The hazard rate is the incremental failure probabil-
ity ‘at time t, given that the device is operational at time t. Now,
suppose the hazard rate of the device is independent of time; i.e., the
probability that the device will fail sometime in a time interval
starting at the present time is independent of how long the device has
been operational. This constant hazard rate

z{t) = c (1.2.3)

results in the exponential failure distribution shown in Figure 1.1.

The constant hazard rate is a close approximation to the actual hazard
rate of many devices. For example, the transistor has a hazard rate
similar to that shown in Figure 1.2, This type of function is guite
commeon [Shooman, 1]. Early failures in Region I of Figure 1.2 are
failures during the "burning-in" of the device; they are associated with
poor assembly, defective materials and other random fluctuaticns in the
manufacturing process. Failures in Region III are due to the wearing cut

of elements in the part. Region II is relatively constant and closely
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Figure 1.1: Exponential failure distribution.
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Figure 1.2:

Typical hazard rate function for a transistor.
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approximates the constant hazard rate function. 1In a large system, parts
are generally "burned-in" before assembly is completed; therefore, the
system begins operation in Region II. As the system ages, periodic
maintenance removes old parts before the hazard rate rises in Region III.
Therefore, the assumpticon of a constant hazard rate is usually justified.
In this report, the constant hazard rate function is used exclusively.
This is due not only to its broad applicability, but also to the fact that
any non-constant hazard rate requires a reliable control system to keep
track of the starting times of the system's mode of operation.

In the discrete-time case, to which this report is confined exclu-
sively, the hazard rate becomes the probability of failure (or repair or
reconfiguration) between time t and time t+l. For a system with many
operating modes, the probability of being in a given mode at a given
time, given some past probability wvector over the various operating
modes, can be modeled by a Markov chain. If Iﬂ: is a vector

L+1

T, ER (1.2.4)

where there are L+1 operating modes, then Ed: is propogated in time by

Tenn 7 ERg (1.2-3)
where
+1 X L+
P = (p,.) e rott7LH (1.2.6)
r ij
and
P = prob. of system being in mode i at time t+4l, given it

13 was in mode j at time t
(1.2.7)
{see [Paz, 3]1). The probability Pij is the discrete-time equivalent of

the hazard rate, and is time-invariant. 1In the future, a time-invari-

ant Markov chain will be assumed as a model of the modes of operation
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and the statistics of the random switchings between modes.

Tt is now necessary to define precisely these modes of operation

and their dynamic transitions. The terms system configuration and

system structure will be used.

Definition 4: System Structure: A possible mode of operation for a

given system; the components, their interconnections, and the informa-

tion flow in the system at a given time.

Definition 5: System Configuration: The original design of the system,

accounting for all modeled modes of operation, and the Markov chain

governing the configuration, or structural, dynamics {(transitions among

the various structures).

An example of three possible structures for a given system is shown
graphically in Figure 1.3. In this report, structures are referenced by
convention by the set of non-negative integers

1 = f{o,1,2,3,...,1} (1.2.8)
The configuration for the design illustrated in Figure 1.3 is depicted
graphically in Figure 1.4. The nodes of the graph in Figure 1.4
represent the system structures of Figure 1.3. The edges of the graéh
represent probabilities of transfer from one node to another, and are
elements of the matrix P.

prob. structure i at time t+1 given structure j at
time t.

Pi+1,541
(1.2.9)

The state of the system configuration at time t is the structure in

which the system is operating at that time.
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comp. 3 comp. 3
comp. 4
structure O structure 1
comp, |
comp. 2
LEGEND:
comp. = COMPONENT
comp. 4

structure 2

Figure 1.3: Three hypothetical system structures.
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k{(t) = structural state at time t (1.2.10Q)

kit) £ I (1.2.11)

This structural state evolves in time to form the structural trajectory

{of length T+1}

X, = (k(0),k(1), . . . k(T)) (1.2.12)
In general, this structural trajectory is a random variable with apriori
probability of occurance

(1.2.13)

P (xq) "k (0),0 Pk () k (0)Px (2)k (1) """ Pk (T)k (T-1)

(Figure 1.5).

1.2.2 Control Theory.

In this report, only linear systems with a quadratic cost index
are considered. At this time, any more general formulaticn is of dubious
value in that the linear quadratic problems can demonstrate many of the
fundamental concepts of reliable control system design. It is
doubtful that any other formulation could be solved without the Kknowledge
gained from the linear guadratic solutions presented in the remainder of
this report. As a further restriction, perfect observation of the system
state‘it' is assumed. The general class of linear systems discussed in

this report is of the form

= + .2,
Zen1 Brey e T Byqo) Ly (L.2.14)
The set of pairs (§J<'54<) describe the possible system structures,
where
k(t) € I (1.2.15)

The remainder of the configuration is specified by the Markov chain

equation (1.2.5). The objective of this research is to develop control
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laws which account for the possible structural trajectories (1.2.12)

while minimizing some function of the cost. The cost function for a

T-1

given random state and control trajectory ({(x, ,u_ ) (X ) is
—t —t "t=0"—T
T T T
= + + .2
Ir X, 9x, +u Ru, X 0%, (1.2.16)

The function of the cost which is minimized is generally taken to be the
expected value of JT over all possible structural trajectories ;E. It
is shown that this class of optimization problems yields solutions
which are sensitive to both system performance and system reliability,
as modeled in the configuration.

In the remainder of the report, only variations in the B-matrix,
or actuators are considered. BAn actuator is a device which transfers
the control input to the system dynamics. The actuator in the B-matrix
may mcdel a physical linkage, such as is found on the control surfaces of
aircraft, or, for example, the effectiveness of a tax reduction on the
economy. A single actuator may fail in many different modes. For
example, the B-matrix can be of the form

b

—1' b1 (1.2.17)

—-J

= bl

2
where the Eﬂi's are actuators which may fail to an actuator having zero
gain with a failure probaility per unit time Pg:

Ei, + 0 (1.2.18}
Then the system structures representing modes of failure would be modeled
as B-matrices having at least one zero column.

This class of linear models can alsc be used as a model for self-

reorganizing systems; the only restriction is that the reorganization,

or reconfiguration, process mist be modeled with a constant hazard rate.
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An important aspect of this research is the study of variocus types
of redundancy. At present, the effect of redundancy on system performance
is poorly understood. There are two basic types of redundancy: component
redundancy and functional redundancy. Component redundancy is the use
of two or more identical components (in this report, actuators) for the
same task. A good example is provided by equation (1.2.17). Suppose
two actuators, Ej_ and Bj , are identical. If Ej_ fails (Equation (1.2.18)),
Ej is still operational, and vice-versa. In order to lose the function
of actuators Qj_ and Ej , both actuators must fail; this event will
have a lower probability of occurance than the event of the failure
of gj_; if Efi were not in the configuration the function of actuator
Ej_ would be lost.

The problem with component redundancy in control theory is how
should the allocation of control resources be allocated to the redun-
dant components, and how should the component reliabilities affect the
choice of an optimal control law? The control methodologies presented
in this report answer the question for a specific class system confi-
gurations.

Functional redundancy implies the overlapping of function of two
or more components in a system. If one of the components fails, part
of its function is still performed by the other (redundant) component(s).
Functionally redundant actuators are modeled in this report in the same
way as component redundancy. The functiconal redundancy is accounted for
in the expectaion of the cost index over the structural trajectories.

The dynamics of repair and reconfiguration are all modeled in this

report as exponential failure distributions (constant hazard rates).



26

As an example, if two actuators (E{) and EJ_) are in a system configura-
ticn and can each fail with probability pf and pf per unit time,
0 1

respectively, to an actuator with zero gain (0}, then the configuration

dynamics are, assuming independence of failures:

= -
B, =0[b,] (1.2.20)
B, = n>0101 (1.2.21)
B, =[0]|0 (1.2.22)
By =+ E]. with probability pf (l-pf ) per unit time (1.2.23)
0 1
> B with probability p_ (l-p. ) per unit time (1.2.24)
—0 —2 f £
. 1 0
B > B with probability p_ p per unit time (1.2.25)
—0 —3 £ f
1 2
B, - §f3 with probability pf per unit time (1.2.26)
2
22 g 53 with probability Py per unit time (1.2.27)
1

From this information, the Markov chain transition matrix P can be formed:

—i—pfo—pfl+pf0pfl 0 0 O_
P = Pfo " pfl ! I_sz ° ’ (1.2.28)
pfl(l—pfo) 0 1-pfl 0
pfo pfl pf2 pfl l—

Repair is considered to be component replacement, and is modeled in the
same manner; e.g.,

0 ~+B with probability pr. pr (1.2.29)

0 1 2



27
Reconfiguration is the restructuring of the (actuator) configuraticn to

compensate for failure, and is modeled as
- i ili (1.2.30
B, §4 with probability P )

where B is a new actuator configuration which will be used on reconfi-

4
guration after failure.
The methodologies presented allow the study of the effects of

failure, repair and reconfiguration on the optimal control of linear

systems; they yield a quantitative analysis of the effectiveness of a

given system design, where effectiveness is a guantity relating both
the performance and the reliability of a configuration design {see

Appendix 1).

1.2;3 General Nature of Results.

There are three classes of reliable controller methodolégies:

I} Passive (Robust) Contreller Design

II} Active (Switching) Controller, Passive Configuration Design

III} Active Controller, Active Configuration Design

This report concentrates entirely on classes I) and II). Class TIII)
methodologies are much more difficult to study. The Markov chain models
of configuration dynamics which work in classes I} and II) do not hold
in class III); as yet, there is no satisfactory way to model the
configuration dynamics of a system in such a way that the control rules
are well-defined.

Class I} methodologies are passive designs. These designs account
for the occurance of failures in the initial selection of the control
law; on~line, this class of designs does not use any current estimate of

the structural state of the configuration. The design is "conservative"
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in that it continues to stabilize the system without regard to the current

structural state. A special sub-class of these designs is the robust
controller designs. A robust controller will stabilize any structure of

the system without regard to the configuration dynamics; i.e., if the

system remains in any structural state forever, it will still be
stabilized. The class I) methodologies are represented by the
non-switching gain methodeclogy of Chapter 5.

Class II) methodologies are active controllers; in some sense,
they are adaptive. From knowledge of the system’s past, these controllers
switch their control law on-line in order to compensate for what they
estimate to be the correct structural state. For deterministic systems,
these controllers can be determined analytically. For stochastic
systems, the optimization problems cannot be solved analytically in
general due to the dual control effect [Fel'dbaum, 4- 7). Thus,
suboptimal control strategies must be used. The class II) methodologies
are represented by the switching gain methodology in Chapter 3 and

its suboptimal extensions in Chapter 4.
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1.3 Relations with Previous Literature.

This research is based on a background knowledge in both reliability
theory and systems theory. Both mathematics and probability theory are
fundamental in these fields. As general references to the techniques
used in this report, in real analysis, and measure and integration
theory, [Rudin,8], [Segal & Kunze, 2], and [Halmos,10] are good; in
matrix theory, [Gantmacher,ll] is the standard reference. In probabil-
ity theory, [Bauer,12] and [Doob,13] are definitive; expansions on the
theory of Markov chains are found in [Chung,14] and [Derman,15].

There are several good texts on reliability theory; of these,
[Greene & Bourne, 2] and [Shooman, 1] are possibly the best. [Cox,16]
and [Corcoran,l17] demonstrate the current methods of the scheduling and
use of redundancy in reliability technology. Other good treatments are
found in [Barlow and Proschan,l8] and [Gnedenko,19].

In control theory, a good treatment of the deterministic linear
quadratic regulator problem is found in the IEEE Transactions Special
Issue edited by [Athans,20], and in [Athans & Falb,21]. The dual
control problem is described in [Fel'dbaum, 4- 7] and several other
publications.

Previously, several authors have studied the optimal control of
systems with randomly varying structure. Most notable among these is
[Wonham,22], where the solution to the continuous time linear regulator
problem with randomly jumping parameters is developed. This solution is
similar to the discrete time switching gain solution presented in
Chapter 3. The random parameters are restricted to be a continuous

time Markov chain. The most notable difference is that in [Wonham,22],
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the assumption is made that the controller has perfect information about
the present state of the random process con-line. The solution switches
gains in a linear state feedback control law whenever the (Markowvian)
random parameter jumps. In the discrete time switching gain solution
presented in Chapter 3, the control law is determined from past cbserva-
tions which allow the deduction of the exact state of the random para-
meter process, and Ehgg the random parameter may switch values according:
to the statistics given by the Markov chain. Thus, the control may be
applied to one of a number of possible structures at the next time
instant. In Wonham's development, the optimal control law is matched
specifically to one structure. The analogous continuous time version
to the sﬁitching gain solution of Chapter 3 would be to assume on-line
perfect observation of the random parameter with a fixed time delay.
Wonham's result has no such time delay.

Wonham alsoc proves an existence result for the steady-state optimal
solution to the control of systems with randomly varying structure.
This result is based on conditions of stabilizability of each system
structure and observability of each structure with respect to the
cost functional. The conclusion is only sufficient; it is not necessary
for existence of a steady-state solution. Similar results were obtained
in [Beard,23] for the existence of a stabilizing gain, where the
structures were of a highly specific form; these results were necessary
and sufficient algebraic conditions, but cannot be readily generalized
to less specific classes of problems.

The time-varying solution of [Wonham,22] is computed using a set of

coupled Riccati-like matrix equations. The coupling is in the form of
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a linear term in thesolution to the matrix equations added to the normal
linear guadratic Riccati equation. The solution can be precomputed by
solving the coupled Riccati-like equations off-line; the control law is
then switched on-line to a gain which corresponds to the current state
of the Markov process. The optimal solution requires perfect knowledge
of the structure.

In reality, the structure is seldom known perfectly, and a noisy
observation of the random process leads to a dual control problem.
Although much of Chapter 3 is based on the fact that the contreoller can
obtain the structural state with one-step delay in the deterministic
discrete time problem, this report makes the connection, for the first
timé, of the existence of a steady-state switching gain controller with
that system's reliability and effectiveness.

[{Sworder, 24] has develéped, using a version of the stochastic
maximum principle, an optimal feedback control law for a class of linear
systems with jump parameters which is almost identical to that of
Wanham, 22); the coupled Riccati-like equations are identical except for
notation. The only difference is Sworder's assumption that the random
process is instantaneously observable from a set of sensors which are
unaffected by the choice of the control law. Using this assumption,
Sworder avoids the problems of dual control.

Sworder alsc comments on the usefulness of linear system models
with jump parameters in modeling possible failures in the system
[Sworder,24]. [Ratner & Luenberger,25] derive a control law for a
continuous time linear system. The system has one failure mode, and a

maximum number of renewals (repairs) can take place. The objective 1is
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to determine apriori the optimal time intervals in which the system
should operate in the failure mode, and the optimal control law, given
the mode of coperation, over a finite time interval. The failure process
is assumed to have an exponential failure distribution (constant hazard
rate); the renewal process is controlled, and is not random. The
control law is of the switching gain type, and the solution is in the
form of two coupled Riccati-like matrix equations quite similar to those
in [Wonham,22] and [Sworder,24]. The optimal control policy and the
cptimal renewal policy can both be calculated off-line. This class of
problems is further investigated by [Sworder,26] to determine over what
region immediate renewal is the optimal policy. Both of these papers
illustrate examples of class III} control methodologies; the structural
state as well as the system state is under the influence of the control-
ler, The simple structure of the class of systems studied by [Ratner &
Luenberger,25] allows a solution. There is need for much more work in
this area.

Still a third approach to the problems associated with multiple-
structure systems is given in [Bar-Shalom & Sivan,27]1. Here, the
measurements of the system state are corrupted by additive noise. The
cpen-loop controller and the open-loop feedback controller are derived
using dynamic programming. Knowledge of the presentstate of the random
process governing the system configuration is not assumed. Therefore,
the (optimal} closed-loop controller would be a dual control law. The
open-loop controller assumes no on-line measurements of the system state;
the open-loop feedback controller assumes future on-line measurements

and thereby improves its performance. There is little correlation
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between this paper and the research on which this report is based.

[Willner,28] developed a suboptimal control scheme, which allowed
for imperfect observation of the random parameter process, known as
multiple-model adaptive control. 1In this method, the parameters could
only take a discrete set of values, a cause of recent disfavor, as MMAC
does not always work well when the parameters var§ continuously and are
approximated by the mathematics. Similar work has been done in {Pierce &
Sworder,29]. The MMAC methodology is optimal one step backward from the
final time, as is the switching gain methodology in the example of
Chapter 2 when applied to systems with additive white control noise.

The dual problem of state estimation with a system with random
parémeter variations over a finite set was studied in [Chang & Athans,30].
It is shown there that the optimal estimator consists of a geometrically
increasing set of Kalman filters, one for each possible structural
trajectory of length t+l1 at time t, and an averaging process to compute
the minimum mean-square error estimate from the filter estimates. It
is also shown that when the parameter process is Markovian, a bank of
N2 estimators is optimal, where there are N possible values of the
parameters. Each estimator is then conditioned on the possible values
of the parameters at the two previous time instants.

Recently, the robustness of the linear guadratic regulator has been
studied in depth. This work is described in [Wong, et. al.,3l] and
in [Safonov & Athans,32]. A long-standing problem with the linear
quadratic design methodology has been the lack of analogs to the various
stability and robustness criteria of classical systems theory. This

research was aimed at characterizations of robust solutions to,
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specifically, the linear quadratic regulator. Supporting research is
repeorted in [Safonov & Athans,33], [Wong & Athans,34], [Wong,35], and
[Safonov,36]. The research in this report is related to the robust
controller problem, but the approach is different in that the performance
criterion is modified to account for possible variations in structure,
such as those caused by failures, rather than depending on certain
properties of the linear guadratic regulator solution to guarantee
robustness. In this research, the concept of stability is related to
the existence of a finite cost soclution to the non-switching gain
problem. For a specific class of configurations, this approach solves
the robust controller problem {(Chapter 5, Section 9).

Thé existence of an uncertainty threshold for the non-switching
controller of Chapter 5, that limit on parameter uncertainty beyond
which no controller can stabilize the system, is proven for an one-
dimensional example. This work is similar to the work by [Athans,
et. al.,37] on the Uncertainty Threshold Principle and the related
papers by [(Ku & Athans,38)] and [Ku, et. al.,39]. This research is
reported in Chapter 2, Section 7.

Lastly, parts of this research have been presented in an unpub-
lished form at the 1977 Joint Automatic Control Conference in San
Francisco, and published for the 1977 IEEE Conference on Decision and

Contrel Thecry in New Orleans [Birdwell & Athans,40].
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1.4 Summary of Main Contributions.

There are two major contributions of this research. First, the

classification of a system design as reliable or unreliable, for the

deterministic variable actuator linear system in Chapter 3, has been
equated with the existence of a steady-state switching gain and cost
for that design. If the steady-state switching gain does not exist,

then the system design cannot be stabilized; hence, it is unreliable.

The only recourse in such a case is to use more reliable components
and/or more redundancy. Reliability of a system design can therefore
be determined by a test for convergence of the set of coupled Riccati-
like equations (3.3.6) as the final time goes to infinity.

A similar result holds for the non-switching gain methodology of
Chapter 5. Here, the system design is classified as reliable or

unreliable with respect to a constant gain linear feedback control law,

depending on the convergence, or divergence, respectively, of equation
(5.6.16} as the final time goes to infinity. If equation (5.6.16)
converges to a limit cycle, then that limit cycle produces a stabilizing
cyclic steady-state gain.

The second major contribution lies in the robustness implications
of the non-switching gain methodology. Precisely, a constant gain fér
a linear feedback control law for a set of linear systems is said to

be robust if that gain stabilizes each linear system individually, i.e.,

without regard to the configuration dynamics. The problem of determining
when such a gain exists, and of finding a robust gain, can be formulated
in the context of the non-switching gain methodology. As a result, the

non-switching gain methodology gives an algorithm for determining a
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robust gain for a set of linear systems which is optimal with respect to
a gquadratic cost criterion. If the algorithm does not converge, then

no robust gain exists.

The following Section of this Chapter will outline the remainder

of this report.

1.5 Outline of Report.

In Chapter 2, several one-dimensional examples are examined as
a clarification and motivation for the methodologies presented in
Chapters 3 through 5. 1In addition, Chapter 2, Section 7, deals with
the relationship between the Uncertainty Threshold Principle and the
existence of a steady-state solution to the non-switching gain problem.
Chapter 3 develops the optimal solution to the class of problems
described in Section 2 of this Chapter. The solution is labeled the

switching gain sclution because the gain of a linear feedback contrcl

law switches in response to the exact observation of the system
structure with one-step delay.

Since Chapter 3 deals entirely with deterministic systems, and the
switching gain solution does not extend optimally to the stochastic
case, Chapter 4 presents scme suboptimal methods which can be used to
extend the switching gain solution to stochastic problems. Two
methodologies are presented. One {(hypothesis testing) is based entirely
on estimation of the structure. The second (dual identification) uses
the dual effect of the control law to determine more precisely what the
structure is with the next cbservation. The coptimal control law would

have some characteristics of both methodologies, as is shown by example
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in Chapter 2, Section 5.

Chapter 5 derives a control law which ignores any on-line informa-
tion which might be gathered about the structural state, and results
in a non-switching gain solution used in a linear feedback control law.
The stability of this non-switching solution is explored, along with
the existence of a steady-state solution, in Secion 7. In Section 9,
the robustness issue is addressed, and the non-switching methodology is
used to define an algorithm which can determine the existence of a
robust gain and calculate an optimal robust gain with respect to a
quadratic cost functional, when one exists.

Chapter 6 focuses on the issues of computer-aided design and the
application of the non-switching gain methodology to design problems.
Two examples are used to demonstrate the effectiveness of the non-
switching methodology in design.

Cﬁapter 7 reviews the results described in the report and suggests

new directions for future research.



38

CHAPTER 2

CLARIFICATION AND MOTIVATION OF RESEARCH

2.1 Intrcduction.

The purpose of this Chapter is to motivate all subsegquent more
general Chapters with simple one-dimensional examples. In particular,
in Section 2, a one-dimensional problem is formulated and solved to
illustrate the optimal (switching gain) deterministic control for
linear quadratic systems with variable actuator configurations.

The effects of process noise on this solution are examined in
Section 3. The dual effects which occur in the stochastic systems
motivaté the suboptimal approaches described in Chapter 4.

The possibility of steady-state control of variable actuator
configuration systems with a single linear independent control law
is discussed in Section 6, motivating the work on the non-switching
gain solution and robust control laws in Chapter 5. In addition,
the possibility of existence of a steady-state stabilizing linear
feedback contrel law with constant gain is compared with the work on
the Uncertainty Threshold Principle [Athans,et.al.,37] in Section 7.
Section 7 contains the only case of this report where exact algebraic
conditions for the existence of a steady-state solution have been
derived. Unfortunately, these results do not readily extend in an
analytical manner to higher dimensions.

The question of existence of a steady-state solution to these
problems is of great importance. A system design is defined to be

reliable with respect to a certain class of control laws if there
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exists a control law from that class for which the infinite time

cost incurred using that control law is finite. Since the switching
and non-switching gain solutions are the optimal solutions for their
respective classes of control laws, if they incur an infinite cost, so
will any other control law from that class. In addition, since the
switching gain solution is the optimal contrel law for the determin-

istic problem, a system design is termed deterministically reliable,

or reliable if and only if the incurred infinite time expected cost
is finite.

In the next Section, a one-dimensional example is presented
which will be used to motivate the remainder of this report by
exaﬁining the ramifications of the switching and non-switching gain

solutions through their specific application to the example.

2.2 A Simple Example--The Optimal Solution.

The following one-dimensional example is used to demonstrate the
switching gain methodology presented in Chapter 3, and to show that
the general stochastic problem is analytically intractable. All proofs

and derivations are given in Appendix 2.

2.2.1 Problem Statement.
Let the discrete-time system be one-dimensional with one control
variable u, and state variable X, related by

X = ax. + b (2.2.1)

t+1 t ke

The value of the control multiplier (bk) is a random variable which

takes on one of two discrete values at each time t.



{ bif k=0
b, (t) = (2.2.2)

l 1/b if k = 1

The random process k(t) is governed by the Markov chain represented

by
Tevr T BT (2.2.3)
where
2
E
T, ER (2.2.4)
P.. P
2
P = 11 (2.2.5)
Pr1 Pap

At any given time t, the following sequence of events occurs:

I) xt is observed exactly, bk(t—l)

set to 0 or 1 depending on bk(t-l)

variable representing the Markov chain;

is computed, and k(t-1l}is

, where k{t-1)is the

I1) may change values to b

Py (t-1) k()

I11) u, is applied.

For any given sample path, the performance index is given by

m
2
J = E (q:t(t + ruz) (2.2.6)
t=0
where {0,1,...,T} is the time set over which the system is to be

controlled. The objective of the control problem is to minimize the

expected cost-to-go at time t, given by

2 2
V(xt,k(t—l),ut,t) = E[Ei% (qu + ruT)[k(t—l) (2.2.7)

where the expectation is taken over all possible sample paths of

k(t), t<T<T,

40
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2.2.2 Summary of Solution.

From Appendix 2.1, we find that the optimal control is given

by
Ye
v +
0.t P8¢ 1,0 @RS
= - 2 5 X, (2.2.8)
+ + s
r WO,t b SO,t ﬁl,t {1/b") 1,t+1
where
i
_ o,t -
T, T = Elt—l (2.2.9)

Thus, the control law is linear in the state xt, and switches between

two precomputable gains, depending on the value of k(t-1).

Given xt, xt—l and ut—l
1 X, —ax
I } if £ty
0 ut—l
m = (2.2.10)
Tl 0 X, —ax
lJ tu t-1 - 1/b
t-1
_ - 1 = ] s = ]
and k(t-1) 0 lf:lt—l [1 0]'" or1 lf:Et—l [0 11"'.
The optimal cost-to-go is
. 2 .
* = =
v (xt,k i,t) xtsi,t (2.2.11}
where S and S are propagated backward in time by the following

0,t 1l,t

equations:
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ing k=0 at time t = '
Assuming 0 a ime t, then Et {pll le] and
rp. .abs +p.(a/b)s 12
P11%2%%0, t41%P21 1,t+1
So,e 97 2 2 2
! +
(4P, 10785 41 *Pyy (1/B7)S) 4]
blp, . abs +p. (a/b) S 1\ ?
v p fa - o11%0,e02 P21 PP a1 |
11 2 2 0,t+l
TP P Sy pe1 Py (1/PTIS) L
bs + (a/b)sS 2
v fa- P11%%%0,¢41"P21 1,t+1 .
21 2 3 1,t+1  (2.2.12)
blr+p) 128y, 41%P2151, e417P !
Assuming k=1 at time t, then T = [p12 922]' and
r[p, .abs +p.. (a/b) S 12
o . P12%%%0, t+1%P22 1,t+1
1.t 2 2 2
+
[x4p, 0 8 1417Pp, (/DTS 4]
bl bs + (a/b)s 1 2
. . P128%°%0, +1" P22 1,t+1
12 2 2 0,t+1
+
T4P 50 Sy g1 P (1708,
ahs + (a/b)s 2
e o | a- 1270, t41 22 1,t+1 <
22 2 2 1,t+1  (2.2.13)
+ +
Plr+p, b Sy 4 17P255) 41/}

Note from equation (2.2.8) that u, switches from one linear gain

t
to another, depending on the value of X, == thus, this solution depends
on an exact knowledge of x,. If knowledge of x, is corrupted by measure-

t t

ment noise (or, if u, is corrupted by control noise), then it will be

shown by example that this becomes a dual control problem.
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2.3 The Dual Control Effect.

To demonstrate the difficulties encountered when white process
noise is present, the optimal solution for the one dimensional
example is derived over the time interval {0,1,2} with additive white
control noise present. The system is now represented by

X = ax, +

£+1 et Py 5 (2.3.1)

Et is discrete time white noise with zero mean, E[EtET] = Eﬁt_T,
probability distribution p(&), and is uncorrelated with xT and k(T)}
for T<t.
* *
Thus, the problem is to find u0 and u1 such that the expected
cost-to-go is minimized.

From Appendix 2.2, the optimal contrcl one step back in time

(at t=1) is

[t 'lTi(lIl)biJ ga

= - {(2.3.2)

1=0
1 5 *1
r + [1= ﬁi(lll)biJ q

where Wi(1|1) is the probability that k. = i, given the information

1

set Z. = {7 X

1 Lo e

,xl}. As expected, this control is of the same

0" 0

form as is the deterministic control law, eguation (2.2.8), since
there is no benefit in trying to determine kl more accurately through
the use of a special control value. In other words, there is no dual
control effect at t = Tf—l {in this example, t=1).

At t=0, the situation is different. Now, the optimal control will

force the system to supply more information through the state at t=1

than it normally would in the absence of the process white noise Et.
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*
In order to compute uo, a numerical minimization of a numerical

*
integration (in general) must be performed. Thus, u, is the

solution of

‘ I YT
vV (x,,0}) = min x g+ ur +:zq
0 a =6 (2 ) l o 0

C 070

L 2 2
+ E xl [q(l+a )
k0=0 k1=0 R(x.)
1
] 2
[Z Tri(l]l)bi] qa’
1=0 l
: - dp(xllkl'kO'ZO)Pklko ﬂko'“}
r + :E: w.(1|1)b. q
i i
1=0
(2.3.3)
where
1 pl{x,-ax_-b.u )T,
My = Y p -2 30 3.0 (2.3.4)
k kj
=0 (x.-ax_-b_u )m
Pix =axy™0; U T; o
1=0
and p(xl|kl,k0,zo) 1s the probability measure of xl over R(xl),

the range of x given k., k_, and Z .

1’ 1 0 0

Equation (2.3.3) is very difficult to solve numerically, and
for any realistically-sized problem would be economically infeasible.
For the limited amount of computation that has been done with equation
(2.3.3), the dual control effect is evident from Table 2.1. Note
that as the process noise variance increases, the trend is for the

*
control u, to increase. This is due to the need for a larger control

to lessen the effect of noise on future estimations of the structure.
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Table 2.1

* —

The optimal control uO versus XO and =.
* T2 3 * -6 * _ o
X, Uy {=2=3) g (z=06) u {==10)
-2.0 2.3170089 2.3188635 2.3201611
-1.6 * 1.8550055 1.8559061
-1.2 1.3898305 1.3907551 1.3912676
-0.8 0.9255912 0.9259997 0.9261950
-0.4 0.4606236 0.4606920 0.4607206

0.0 -0.005 -0.005 -0.005

0.4 ~0.4706236 -0.4706920 -0.4707206
0.8 -0.9355912 -0.9359997 -0.9361950
1.2 -1.3998305 -1.4007551 =-1.4012676
1.6 -1.8635511 -1.8650055 ] -1.8659061

* - calculation did not converge due to numerical errors

The system used in the calculations is described by equation

(2.2.1) where

a = 2.

k(t) is 0 or 1
b0 = 2.
bl=.5

g = 3.

r = 1.

5
3]

Table 2.1 is only intended to demonstrate the difference in the

P =

™ =
—0

optimal control laws at time 0 for a two-stage process; numerical

accuracy is not assured. Specifically, the values of -.005 for

*
Uq (xo = 0) are highly doubtful, as well as the consistent

asymmetry between positive and negative values in the Table.
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2.3.1 A Special Case.

It is interesting that for one specialized probability distribu-
tion p(£), when the optimal control u; is large enough, the optimal
solution is identical with the deterministic solution of Section 2.
From Appendix 2.3, assuming

157%5-, for -V3E < £ < /3E
p(g) = l (2.3.5)
0

otherwise
*
as shown in Figure 2.1, if Uy from the deterministic solution (eguation
2.2.8) satisfies

|(bk - bi)u;I > 2/3%  for kg # 1 (2.3.6)

0
*
then uo‘is also the solution to the stochastic control problem.

Physically, because the noise is amplitude limited, it is easy

to exactly deduce the structure if the control is large enough.
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Figure 2.1: A probability distribution for amplitude-limited
white noise.
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2.4 Existence of a Steady-State Solution.

Although, as will be stated in Chapter 3, little can be said
about the existence of a steady-state sclution to the general n-~dim-
ensional switching gain problem, for the one-dimensional example,
exact conditions for the existence of a steady-state solution can
be found. They are in the form of two simultaneous algebraic equations

which can be solved analytically.

b[pllab+p2l(a/b)h] 2

r = p a -
11 2 2
pllb +p21(l/b Jh
Pllab+921(a/b)h 2
*p,la- 5 5 h (2.4.1)
b[Pllb +leh/b 1
b[plzab+p22(a/b)h] 2
h[' = pp, - 2 2
Plzb +p22(l/b Yh
plzab+p22(a/b)h 2
+ p22 a - 5 3 h (2.4.2)
blplzb +P22h/b ]

The equations are derived in Appendix 2.4. In these equations the

variables I' and h are defined as

SO t
' = 1im ——— (2.4.3)

5
tr— G,t+1

and
S
h = 1lim Sl't (2.4.4)
t>—oo 0,t
whenever both SO £ and Sl & increase without bound as t * -®, as defined
F !’

in equations (2.2.12) and 2.2.13}.



49

Since ' is the limiting value of the ratio of the next value of

. 1 i that
SO,t to the present value SO,t+l 1t 1s necessary a

r>1 (2.4.5)
for

o0 2.4.6

S0,1: ( )

Similarily, if S0 N has a limit, then T can have a maximum value of
r

1. Therefore, a test can be made on the soluticn (h,I') to equations

(2.4.1) and (2.4.2) for the existence of a steady-state solution:

If

h# 0 or = (2.4.7)
then
SO,t' Sl,t+ o if T >1 {2.4.8)
SO,t' Sl,t converge if [ < 1 (2.4.9)
and there is no conclusion if [' = 1.

By way of eliminating all possibilities, as an aside, a limit cycle
to the scolution of equations (2.2.12) and (2.2.13) cannot occur by

Lemma 1 of Chapter 3.

2.5 Conclusions on the Switching Gain Methodology.

The purpose of the last three Sections on the one-dimensional
switching gain example was to clarify the approach of this phase of the
research, and to motivate the approach of Chapters 3 and 4. In this
Section, some implications of the one-dimensional example will be

discussed.
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2.5.1 Implications of the Dual Control Effect.

It was shown in Section 2 that the optimal solution to the deter-
ministic class of variable actuator linear gquadratic control problems,
i.e., the switching gain solution, is conceptually straightforward,
although computationally complex off-line. Unfortunately, in Section 3,
it was demonstrated that the optimal solution of the stochastic version
of the same problem is infeasible. (Witness the problems of calculating
the two-step optimal solution.) Therefore, since the switching gain
deterministic sclution is essentially the only solution which can be
described analytically, the research involved in developing the
n-dimensional switching gain solution is justified. This is exactly
what is presented in Chapter 3.

It then remains to investigate any extensions (which will of
necessity be suboptimal) which may be made to the switching gain
solution to adapt the solution to the stochastic problem. In Chapter
4, a start is made in that direction. These are two basic routes
to follow: The various hypothesis testing algorithms in combination
with the switching gain solution, and a formulation developed in
Chapter 4 which gives the control vector a dual effect; the control
is changed to increase the accuracy of the estimation algorithm.

The optimal control would use techniques from both categories, as the

dual effect is clearly seen in Table 2.1.

2.5.2 Existence of a Steady-State.
Although for the one~dimensional example, it is possible to

determine the condition for convergence of the Riccati-like equations
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(2.2.12) and (2.2.13), this method does not extend to the n-dimen-
sional solution. It is at present unknown under what conditions
the Riccati-like equations for the n-dimensional problem converge;

therefore, there is little comment on conditions for convergence in

the remainder of this report.
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2.6 A Simple Example--The Non-Switching Solution.

In the previous sections of this Chapter, motivation was given
for the development of the optimal (switching) solution to the linear
quadratic variable actuator configuration control problem.
Several problems with the method were pointed out in Section 5.
Specifically, the methodology does not extend optimally to the stochas-
tic case due to the dual control effect. Secondly, the increase in
on-line complexity over the usual linear quadratic contrcl problem
is significant, especially in the suboptimal stochastic schemes.

In many instances, a stabilizing solution to this class of
control problems is desired which exhibits the same complexity as
does the usual linear quadratic controller. For instance, it may be
desired that a control law stabilize a system without requiring
error detection strategies and switching to a new form upon detection
of failure. A subclass of these problems occur when a robust gain
(one which stabilizes each configuration without regard for the
dynamics of structural changes) for a set of linear systems is
desired. The first problem within this subclass deals with the
existence of such a gain. The second problem deals with the choice
of an optimum robust gain with respect to some cost index.

In the following Subsections, an example of non-switching gain
methodology is given as an illustration of the concepts; since the
derivations are quite complex, proofs are deferred until Chapter 5,

where the entire development of the non-switching solution is presented.
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The following formulation is only for the steady-state solution;
in Secticn 7, the conditions for existence of the steady-state solu-
tion will be given and related to the Uncertainty Threshold Principle

[Athans,et. al., ]

2.6.1 Problem Statement
In Chapter 5, the non-switching control problem is solved for
linear systems with variable actuator configurations and quadratic
cost. It was stated in the conclusion of the previous Section that
a relationship exists between the existence of a steady-state solution
and the Uncertainty Threshold Principle. In this Subsection, the
existence of a steady-state non-switching solution to the one dimen-
sional example presented in Section 2 will be studied to illustrate
this relationship.
The system to be used is
xﬁi=axt+b#% (2.6.1)
where x, a, bi and u are scalars, k can be either 0 or 1, and t takes
on integer values.
b if k=0
b, = (2.6.2)
i/b if k=1
The index k represents the structural state of the system, and

is a random variable with statistics generated by the Markov chain
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Tenn- 21 (2.6.3)
P 1-p

o = (2.6.4)
l-p p

where Ei £ is the probability that the structural state is i at time t,

r

given some initial condition wW({T k6 ., ).
- init

The infinite-time, or steady-state non-switching control problem

is formulated by specifing that the sc¢lution e, is to minimize the

[= =]
cost of a trajectory (kt Uy } =T given by the sum
) 5 5 init
J = E qxt+rut (2.6.5)
-1 init

2.6.2 Summary of Solution
The solution is computed, from Chapter 5, equaticns (5.7.17)

and (5.7.18), when it exists, as the solution (So,Sl) of

2 2
. a2 . (s ) (bso+sl/b)bsO X (bsD+sl/b) {(r+b SO)
a 0 L2 2 L2 2 2
s {b so+sl/b Y+r 4(>(b SO+Sl/b Y+r)
(bS_+s_/b)S (bS_+s. /b} % (r+5. /b°)
0 °1 1 o' %1 ey
+ {1-p) { 8 - 2 2 + 2 2 2
L L-
(2 (p"S +S,/b ) +x)b 4(5(b"S +S,/b") +r) _
+q (2.6.6)
(bS_+S./b)bS (bS_+5. /b) % (r+b°S )
2 071 0 01 ' 0
S = a | (=P | 54- 2 > + 2 2 z
; 1
L(b SO+Sl/b Y+r 4 (%3 (b SO+Sl/b Y+1)
(6545, /85 (bS_+S_/b)° (r+S. /b%)
01 1 071 ey
tplS - 2 2 + 2 2 B
% (b SO+Sl/b J+r}b 4(%(b S,+8,/b7)+r)

+q (2.6.7)



55
and the control is given by

(bS _+5./b)a
u* = - o 1 ° X (2.6.8)

2 t
t (r+k (b SO+Sl/b2))

Note that the steady-state solution is a linear feedback control
law with a constant gain which is pre-computable using equations
{(2.6.6) and (2.6.7). The on-line implementation of this solution has
the same complexity as does the usual linear quadratic steady—state

solution.



56

2.7 Existence of a Steady-State Solution and the Uncertainty
Threshold Principle.

In this Section, the existence of a steady-state solution to
equations (2.6.6) and (2.6.7) is related to the Uncertainty Threshold
Principle [Athans et. al.,37]. This Principle states that for a
certain class of systems, there exists a threshold, or bound, on the
degree of uncertainty in the system dynamics beyond which no control
law will stabilize the system. Furthermore, it is noted in
[Athans et. al.,37] that there does exist a "minimizing" control even
though the infinite-time cost in infinite.

For the non-switching gain class of controllers, it will be
shown in this Section that, at least for the one-dimensicnal example
of Sections 2 and 6, such a threshold does exist; furthermore, it will
be explicitly calculated. In addition, it will be demonstrated that
the non-switching control gain converges even when no finite cost

steady-state solution exists.

2.7.1 Formulation of Existence Problem.
The question is now asked: When does the steady state solution

exist? I.e., when is the cost, given by

2

J = %(s o

+ Sl)x (2.7.1)

0
finite?

This problem is solved by showing when the solution does not
exist.

Allowing

Sy > ® ‘ (2.7.2)

and setting
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S
h = lim Sl't (2.7.3)
t>-c0 0,t
s
I' = lim EQLE—— (2.7.4)
t>—= "0, t+1
where SO & and Sl £ are the values of the r.h.s. of equations {(2.6.6)
r !
and (2.6.7) iterated backwards t times from an initial value Si 0=Q,
equations (2.6.6) and (2.6.7) become
2 (b+h/b)b (b+h/b) 2b>
I'= a"[p(l-"— 2. vt T2 2 2
L(b“+h/b") {(b"+h/b")
' (b+h/b) (b+h/b) 2 /b>
+ (1-p) [ h - (2.7.5)
L(b“+h/b“)b (b“+h/b")
2 (b+h/b)b (b+h/b)2b2
= a“ {(l-p) |1 - e Y 55
L(b“+h/b") (b“+h/b")
(b+h/b) (b+h/b) >/b>
tpihll - S (2.7.6)
L{b“+h/b" )b (b"+h/b™)

2.7.2 Summary of Solution.

Equations (2.7.5) and (2.7.6) have 5 solutions. The solutions of h

and I of interest are:

For p # %;

— (p (b (6-2W) -3b°-3) + ((2b"-2) p~b +1)V

+ (4b8—2b4+2 )p2+b8—2b4+1) 7 (2b4

=
I

+2)p2-2pw) (2.7.7)

—
I

L
a’ (=p b (2p%+4p-2) + (b°+1) (p2-2p+1) T 4+ (b¥4+1)p?)

/((62+1) 2 (2p-1) (2.7.8)
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where
v = [b4(p(4—4[b4(2p2+4p—2)+b8(p2-2p+1)+pz-2p+l]%)
+2pz-2)+b8(5p2-2p+1)+p2—2p+1]1/2 (2.7.9)
and

8 4 2 S
W= [{b+2b +1)p +(—2b8+4b4—2)p+b8—2b4+1]2 (2.7.10)

h=1 (2.7.11)

a2(b2—l)2

(2.7.12)
2 (b+1)
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2.7.3 Graphical Illustration of Sclution.

Eqﬁations (2.7.7) through (2.7.12) are too complex for much
information to be gleaned from study. Therefore, their significance
is demonstrated graphically in this section.

These equations are used to compute the absolute values of a
versus b and p above which no stabilizing non-switching control exists;

i.e., since T is the limiting ratioc of S to what threshold

0,t S0,t+1'
value of [a| yields T = 1? Since the system (2.6.1) is a discrete
time one, this threshold gquantifies how unstable the open-loop system

must be for there to be no stabilizing solution. This gquantity is

called the uncertainty threshold value of |a|. For the case p = %,

la| is easy to compute from eguation (2.7.12)

threshold

4 4
[2{b +1)]
Ia‘threshold (2.7.13)

Ip°-1]
For p # %,
2
|althreshold = (b +1) [(2p-1)

1. 1
/(o (b2+1) p- b2 (2p°+4p-2) + (b2+1) (p2-2p+11)) 12
(2.7.14)

A plot of [a| versus p (long axis) and b is shown in Figure 2.2.

threshold
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The ln({b) axis is used because |a| is symmetric with respect

threshold
to ln(b) around zero (ia|threshold(b) = |a]threshold(l/b) ). b varies
from e_2°5 to e_'OS; p varies fromp = 1 to p = .01 . Note that

|a| © ag b * 1 and/or p * 0. This is because as b > 1, the

=
thresheld
system looks more and more like
= + 2.7.1
X ax, but { 5)
which is controllable for all values of a. As p *+ 0, the system is-
switching more and more rapidly between the two structures; therefore,

each structure has less time to influence the system unfavorably and

the system becomes easier to control, leading to |a|threshold >

2.7.4 Best Control with Infinite Cost.

Although the cost may be infinite, a finite gain control exists.
From equation (2.6.8), and allowing S0 -+ o and Sl/S0 -+ h, the control
becomes

u: - _ {bth/bla (2.7.16)

(b”+n/b%)  ©
Note that the control gain does not depend on q or r, but only on p,
a and b, as in the work with the Uncertainty Threshold Principle. A
plot of h versus p (long axis) and b is given in Figures 2.3a and 2.3b,
in the same manner as for I'. MNote that as p + 0+, h + « (except at
b = 1). FPor this boundary, we rely on a symmetric argument, switching

the roles of SO and Sl’ since we only know that S1 - o,

An interesting symmetry exists in h with respect to p. If h is
defined as

h = 1limh (2.7.17)
b0



Figure 2.3a:

h versus p, b.
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then

Roo L

i (2.7.18)
P
Letting p = % + x,
= 1 - 2x
hix) = 1+ 9% (2.7.19)
and
hix) = — (2.7.20)
h{-x)
Thus, ln[EYp)] is symmetric around p = .5 . This solves the boundary

problem, because as p + 1, h -~ 0 {except at b = 1), and the condition

SO + @ ig satisfied (Sl-+0). Since h is symmetric, and h(p,b)-*ﬁfp)

for p~>0, the solution is well-defined at p = 0.
In Figure 2.4, the control gain divided by a, g, is plotted as a

function of p and b.

*

u = -gax

t (2.7.21)

t
+ —
Note that as p > 0 (and h » ®), g + b, and as p > 1 (and h » 0},
+ . .
g + 1/b, and that bO = b and bl = 1/b. Thus, as p ~ 0 , the optimal gain
tends towards the deadbeat controller for the system in structural

state 1, and as p ~ 1 , the optimal gain tends towards the deadbeat

controller for the system in structural state 0.
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Figure 2.4: g versus p, b.
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2.7.5 Conclusion.

In this Section, the steady-state properties of the non-switching
solution to a gpecific example of actuator failure were studied, and
were related to the Uncertainty Thresheold Principle. In particular,
the existence of an uncertainty threshold has been established, and
with the help of the high degree of symmetry in the example, the values

for |a| given b and p, were calculated. It was also shown

threshold’
that the best control with infinite cost is a function only of a, b and
p, a situation analogous to the solution obtained in the papers on the
Uncertainty Threshold Principle [(Athans et. al.,37].

An analogous solution to that presented here should exist for the
switching gain problem, and in fact, the rudiments of such a solution
are given in Section 4. As a guide for future research, it would be
interesting to compare the two methodologies on the basis of these
solutions. Unfortunately, it is mathematically intractable to extend

this result to the multivariable case, although another approach may

be found.

2.8 Summary.
The unifying issue in this research is the interrelationship
between the issues of control and reliability. Section 7 brushes on

the question of when a system design is considered a reliable design.

In Chapter 3, a reliable design will be defined as one in which the
steady-state switching gain solution exists. Therefore, questions
concerning the existence of such solutions become quite important.
Unfortunately, little headway has been made in the development of any

simple test for the existence of the steady-state solution. Only in
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Section 7, in the specific case of the non-switching gain solution,
for a specific (relatively trivial) example, and in Section 4 for the
same example with the optimal solution, have conditions for existence
of a steady-state been resolved. In Section 7, these conditions are
given explicitly; in Section 4, they are given as the solution to two
simultaneous equations. For the general n-dimensional problems in the
remainder of this report, existence can only be tested by iteration of

the sclution equations.
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CHAPTER 3

THE SWITCHING GAIN SOLUTION

3.1 Introduction.

In this Chapter, a control methodology for linear systems with
quadratic cost criteria and variable actuator configurations will be
developed which accounts for the failure, repair and reconfiguration
of the actuators by switching the control gain on detection of a
change in configuration. This problem is viewed as a control problem
rather than as the traditional estimation problem. Therefore, a
deterministic model is assumed, except for the random changes in
configuration, which are modeled by a Markov chain. This methodology
has the advantage that all gain and expected cost calculations are
done off-line. The gains switch on-linewith changes in the configura-
tion, which are observable with one-step delay for almost all values
of u, (i.e., except for a set of measure zero). In addition, the
method is useful in the stochastic case, though not cptimal, in
conjunction with identification methods such as hypothesis testing
and dual identification, which will be described in Chapter 4. The
gain and expected cost calculations can be used as an evaluation
technique in computer-aided design of linear systems. An example
would be in trade-off studies of various redundancy configurations
with respect to performance, reliability, and system effectiveness.

The disadvantages of the technique as it is presented here are that it

requires perfect measurement of the state and that only multiple
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actuator configurations are considered. The multiple sensor configura-
tion problem should be dual to this work. Changes in the A matrix

are a minor extension; however, the general problem allowing variations
in both the actuators and the observers would be a major result.

Previously, several authors have studied the optimal control of
systems with randomly varying structure. Most notable among these is
[Wonham,22], where he develops a solution to the linear regulator
problem with randomly jumping parameters in continuous time. The
solution assumes apriori that the controller has perfect information
about the present state of the random parameter process. Little work
was done on the steady-state existence problem.

‘The solution presented in this Chapter is analogous to that of
Wonham's; however, the discrete time formulation of the problem allows
the controller to observe exactly with cone step delay the value of the
Markov parameter process. Thus, it is shown that for the discrete-
time process, the optimal controller is not dual.

In addition to this conclusion, this research makes the connection,
for the first time, of control and system reliability and effectiveness.
This is the unifying concept in the entire report, and has.been discuss-
ed in detail in Chapter 1.

The procedure for determining the existence of a steady-state
solution to the switching gain control problem divides system designs
into two classes: If a design allows a steady-state solution, then
that solution is stabilizing {(see Section 7, Chapter 5); therefore,

that design is classified as a reliable design. On the other hand, if
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no steady-state solution exists, then that design is classified as
inherently unreliable.

Although no easy test exists for the existence of a steady-state
solution, the computer can always be used to iterate equation {3.3.6)
backward in time and check for stability. Therefore, this methodology
vields a classification of systems into those which are inherently

reliable and those which are not.

3.2 Mathematical Formulation,

In this Section, the n-dimensional extension to the one-dimension-
al switching gain result presented in Chapter 2 will be developed.
The only non-trivial task is to prove that the system structure is

observable for almost all values of the control. The system model is

— + 3.2.
Tear T B2 Y By By (3.2.1)
where
n
2.2
x, € R (3.2.2)
m
U, € R (3.2.3)
>
aerR " (3.2.4)
and, for each k, an element of an indexing set I
keI={0,1,2, ... ,L} (3.2.5)}
x
B g M (3.2.6)
=k
where
B, e {B,}, . (3.2.7)

The index k(t) is a random variable taking values in I which is

governed by a Markov chain and
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_ 3.2.8
Terr - BDy ( )
+
rerPTL (3.2.9)
—t
where ﬂi c is the probability of k(t) = i, given no on-line information

r

about k(t), and T o is the initial distribution over I.

It is assumed that the following sequence of events occurs at
each time t:

1) X, is observed exactly

2) then switches to B

B(e-1)

k(t)
3) then a, is applied.

The contrel interval is assumed to be
{o,1,2, . . . ,7} (3.2.10)

and the cost function is selected as

T-1

JT ( (5t’3t)t=0 'ET)

T=1
{(3.2.11)

[
b
t
O
b
t+
=+
e
|
e
+
%
O

T

1l
<

The objective is to choose a feedback control law, which may

depend on any past informaticon about 54:°r u, , mapping 54: into Et

t
: BT —» R (3.2.12)

%

*
t
*
t

[

. 3.2.
Et_"gt { 13}

such that the expected value of the cost function JT from equation
(3.2.11)

J =E[JT|I

T 1 (3.2.14)

*
is minimized over all possible mappings Qﬁ:atfht'

0
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3.3 The Switching Gain Sclution.

Normally, a control law of the form (3.2.13} must provide both
a control and an estimation function in this type of problem; hence
the label dual control is used. Here, the structure of the problem

and u

allows the exact determination of k(t-1) from sz, Etrl u, 4

for almost all values of u . This result is stated and proved in

t-1
the following theorem.
Theorem 1l: For the set {Ek}

, where the B  's are distinct, the

kel k

L
= + B i i
set {Ek,t+l éjit -—kllt}k=0 has distinct members for almost all

alues of u
v Lt

Proof: See Appendix 3.1.

Ignoring the set of controls of measure zero for which the
members of

L
By, er1 k=0 3.3.1

are not distinct, then for (almost) any contrcl which the optimal

algorithm selects, the resulting state x can be compared with the

£+1

members of the set (3.3.1) for an exact match (of which there is only
one with probability 1), and k(t) is identified as the generator of

that matching member_ik’t+l.

Since perfect identification is the best any algorithm can achieve,
* *

n ¢ {x_)} can be calculated with the

the optimal control law u e

assumption that k(t-1) is known, since this is the case with probability

one. Thus, this solution will be labeled the switching gain solution,

since, for each time t, L+1 optimal solutions are calculated apriori,

and one solution is chosen on-linefor each time t, based on the past



measurements X, X and Ed;' which yield perfect knowledge of

t t-1

k{t-1).
Dynamic programming will be used to derive the optimal switching
gain solution. At each time t, the expected cost-to-go using the

control segquence

* * * 9
Ser Bepnr Bean ’ B (3.3.2)
and given the wvalue of k(t-1l} is defined as
V(Et ;E_t tk(t_l) rt)
T T
‘Etgﬁt*'ﬁtﬁgt
*
+ - .3.
By IV (B g ok(E),E41) | x (t-1)} (3.3.3)

where * denotes the optimum value and v* is the optimal value of V.
Then, by dynamic programming

* . T T
v (x. ,k(t-1),t) = min X Ox_ 4+ u_Ru
=t u, = ¢ (x NTEETE D TEeTe
—t t—t
*
+ ~ .3.

Ek(t){v (x,,, k), t+D) | k(e 1)}) (3.3.4)

It is proved, from Appendix 3.2, that

T
S

*
VoG, k(e t) = xS X (3.3.5)

where the 8 are determined by a set of L+l coupled Riccati-like

k,t

equations (one for each possible configuration):

.
ket = B2 ) 2Pk 84,00
i=0

T -1
- gpikgi,t+1§i {E-F;Pik Ei£i,t+1§i}

A+ Q (3.3.6)

T
s Pix BiSi a1

(=
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The optimal control, given k(t-1) = k, is

u = R + Bl g g, |7t
- k,t | Pik 2iZi,e4124
1=0
T
. B s Ax (3.3.7)
£s Pix 2i2i,e41 2%, -3.
1=0
Writing
*
L, T 8k, Xt (3.3.8)
then
T ~1
Cp,e= " |R* Pix 154, e01 84
1=0
. BT S A (3.3.9)
Pix 2i2; e41 2 -3
1=0
-
Thus, u =(Dt(§¢? is a switching gain linear control law which

depends on k(t-1)}. The variable k(t-1l) is determined by

_ Z - + 3.

k{t-1) i iff X, =Ax - EiEt—l (3.3.10)

Note that the Ei t's and the optimal gains<gk ¢ can be computed
r’ r

off-line and stored. Then, at each time t, the Proper gain is selected

on-line from k(t-1), using equation (3.3.10), as in Figure 3.1.

3.4 Discussion of Results.

The solution in section 3 is quite complex relative to the struc-
ture of the usual linear quadratic solution. Each of the Riccati-like
eguations (3.3.6) involves the same complexity as the Riccati equation
for the linear quadratic solution. 1In addition, there is the on-line
complexity arising from the implementation of gain scheduling. 1In
Chapter 5, a non-switching gain solution will be bresented which has

an identical on-line structure to that of the linear quadratic
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solution, but has similar off-linecomputational complexity to that of
the switching gain solution. Depending on the system requirements,
either solution could be used; the non-switching gain solution is
suboptimal, but requires less on-line complexity. This trade-off may
favor the non-switching solution in some cases.

A steady-state solution to eguation (3.3.6) may exist, but the
conditions for its existence are unknown. The steady-state solution
would have the advantage that a time-invariant set of gains result.
Thus, only one set of gains need be stored on-line, instead of requir-
ing a set of gains to be stored for each time t. Since the steady-
state solution is simply the value to which equation (3.3.6) converges
as it is iterated backward in time, at present, the egquations can
be iterated numerically until either they converge or meet some test
of non-convergence. Unlike the non-switching soclution presented in
Chapter 5, the possibility of limit cycle solutions in the switching

gain computations is excluded by the following lemma:

Lemma 1: If the optimal expected cost-to-go at time t is bounded
for all t, then equation (3.3.6) converges.

Proof: See Appendix 3.3.

Once again, it is stressed that the existence of a steady-state
solution to the switching gain problem establishes a division of
system designs into those which are inherently reliable and those
which are unreliable. Even though conditions to test for the exis-
tence of the steady-state solution are unavailable, software can be

used with iteration for the test.



In Section 5, some numerical examples are given to illustrate

the switching gain solution.

77
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3.5 Examples.

In this Section, a two-dimensiocnal example is presented with three
different switching gain solutions to illustrate the switching gain
computational methodology. The computer routines which are used in
the calculation of the switching gain solution are listed in the
appendix. The primary subroutine is READY; it calls WEIGHT. Any other
routines which are used are from the standard ESL subroutine library.
The main program RDYMAIN ig used to call READY.

Example 3.1 is a two-dimensional system with four structural
states corresponding to the failure modes of two actuators. In this
example, failure of an actuator is modeled as an actuator gain of
Zero. Thus, the four structures are: 1I) Both actuators working QEO );:

ITI) One actuator failed (§_ and Eg ), and III) Both actuators failed

1

(53 Y. The system is controllable in all structures except for the

sturcture represented by 53 .

Actuator failures and repairs are assumed to be independent events
with probabilities of failure and repair, per unit time, of P and P s
respectively, for both actuators.

In Example 3.1, the matrixes @ and R are the gquadratic weighting
matrices for the state §1: and the control 34:, respectively. The
matriz P is the Markov transition matrix, which is calculated from knowl-

edge of the system configuration dynamics, represented graphically

in Figure 3.2.
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Markov transition probabilities for Example 3.1.
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There are three Cases to Example 3.1. Each Case assumes a different
failure rate and repair rate for the actuators. Case i) has a high
probability of failure and a low probability of repair, relative to
Cases 1i) and iii). The switching gain solution is not convergent for
Case i); the gains themselves converge, but the expected costs do not.
Only configuration state 0 is stabilized with its corresponding gain,
G-

Cases ii} and iii) both assume more reliable actuators than does
Case i). Both Cases ii) and iii) have convergent switching gain

solutions. Therefore, both Cases ii) and iii) represent reliable

configuraticn designs, while Case 1) is unreliable. This difference

is due ehtirely to the different component reliabilities. Equivalently,
Cases 1i) and iii) are stabilized by the switching gain solution, while

Case i) is not. Note that in this Example, stabilizability is not

equivalent to stability in each configuration state, or robustness.
For this example, no robust gain exists because the system is
uncontrollable from configuration state 3.

Cases ii) and iii) are also presented in Chapter 5, where their
non-switching gain solutions are given. According to the theory, it
should be more difficult to stabilize a given system with the non-switch-
ing gain than it is with the switching gain, because of the optimality
of the switching gain solution. This is demonstrated for this example;
in Chapter 5, the non-switching gain solution to Case ii} is not

convergent.



Example 3.1:

2.71828 0.0

é:
0.0 .36788
[ 1.71828 1.71828 [0.0 1.71828
By = . B, =
| -.63212 .63212 | 0.0 .63212
11.71828 0.0 (0.0 0.0
B = B =
2 | -.63212 0.0 3 [ 0.0 0.0
14. 8. 1.0 0.0
Q = R =
8. 6 0.0 1.0
1-2p +p° (1-p,.) (1-p.) 2 i
PP 1209 PLIP. P
2
. - pe(1-pg) 1-p-pP tPeP,. P Pg p (1-p )
= 2
pf(l-pf) P Pg l—pf-pr+pfpr pr(l-pr)
2 2
Ps (l—pr)pf (l-pr)pf 1-2p +p_

The system dynamics are

- + B
el ~ 22X P By Be X 1,t *2,t

k(t) € {0,1,2,3}

The cost, which is to be minimized, is



Example 3.1, Case i)

=
I

Non-Convergent; but gains converge:

-.9636

G =
0 -.9134
-.9234

G =
L ]-.8699
~.B094

G _ =
2 -1.020
-.9636

G =
3 -.9134

Stability:

1.094 x 10°°

-5.835 x 10

1.740 x 10

-5.136 x 10

.9186 x 10

-4.05 x 10

.7353 x 10 °

-3.923 x 10

Configuration

0 (B,)
1 (B,)
2 (8,)

3 (B,)

6

6

.49

.21

.21

.09

Stable

ves

no

no

no
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Example 3.1, Case ii)

p. = -l p, = -9

Convergent Coupled Riccatl Equations:

-.8390

G, =
-.7752
25,57

El
8.611

Stability:

.81

.09

.09

.01

- -

.04222

-.09914

8.611

6.398

Configuration
0
(Eol
1 (B
L_l)
2 (B
L—Z)

3(8,)

for i = 0,1,2,3

Stable
yes
no
no

no



Example 3.1, Case iii) —
pe = .01, p_= .98 .9799

.00%9995
-009999

.0001020

e -

Convergent Coupled Riccati Egquations:

.7558 1270
Go=

-.8073 -.1786

15.88 8.105
s =
29

8.105 6.137

- . 7060 .1186
G, <

- .8441 -1.723

[16.06 8.074
5,°

8.074 6.143

-.8375 .1090
G,=

-.7543 -.1669

16.31 8.199

8.1929 6.158




-.7863
G =
-3 -.7926
le.54
S =
3 8.170
Stability:

.1023

-.1l6l9

8.170

6.162

Configuration
B

0 L_O)

1 (Ell

2 (B,)

3(B,)

85

Stable

ves

no

no

no
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3.6 Summary.

In this chapter, the optimal solution to the linear control
problem with variable actuator configuration was developed. It was
shown that the optimal solution uses a linear switching feedback gain
which depends on the previous configuration. This configuration is
directly computable from the past measurements; this fact allows the
development of the switching gain solution by eliminating dual con-
trol considerations. The exact measurement of the configuration with
one~-step delay holds only for the deterministic case, where there is
no corruption of the state or control observations by noise.

In Chapter 4, the use of the switching gain methods will be
demonstrated for stochastic problems in conjunction with two different
forms of identification: Hypothesis testing and dual identification,
a technique for "pushing" the control variable out of the noisy
region, when the noise is amplitude limited, to obtain an exact

identification of the system structure.
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CHAPTER 4

EXTENSIONS TO THE STOCHASTIC CASE

4.1 Intreoduction.

In Chapter 3, the optimal solution to the deterministic linear
quadratic control problem with variable actuator configuration was
developed. It was also demonstrated that the optimal solution of
the general stochastic linear quadratic problem is hopelessly complex
in Chapter 2. Therefore, in this Chapter, extensions to the deter-
ministic solution to allow its operation in a stochastic environment
will be studied.

From the derivation of the switching gain solution, whenever
the structure of the system is known perfectly with one step delay,
and if it is assumed that it will be measured perfectly at the next
time instant, the optimal solution is the deterministic switching
gain solution. 1In designing a suboptimal control system, a method
of identifying the system structure is used, with the assumption that
the identification is perfect, and the appropriate deterministic
gain is selected.

Two conceptually different methods of structure identification
willl be presented in this Chapter. The first is classical hypothesis
testing. It is the easiest to implement, although extensions to
n-step hypothesis testing can be made which are very complex. The

second method is labeled dual identification; the expression is used

because it takes advantage of the dual effect of the control law to

guarantee perfect identification. In this methed, a perturbation
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{which may or may not be that small) to the deterministic control is
introduced which separates the effect of amplitude limited white
control noise from that of the system structure. As a worst case
control law, this perturbation would be applied at each time instant,
but in practice, it would only be applied cnce every n time instances
so that its overall effect on system performance would be lessened.
In the next Section, the system model will be described, and the

hypothesis testing identification algorithm will be presented.

4.2 Hypothesis Testing Identification.

The system model used here is the same as in Chapter 3, but with
the exception that additive white noise is introduced into the

dynamics:

4 (4.2.1)

Ax . +
X St

= B +
Eenn T 2% T 2wy Bt
For the hypothesis testing identification method, §4; is assumed to be
zero mean white noise with probability distribution p(g). It is

assumed to be uncorrelated with k{(t) and 54:' Perfect measurement of

the state is retained.
The basic hypothesis testing method is very simple: At each time
t, one of L+1 hypotheses is chosen, where each hypothesis Hi is
Hi : k(t=1) = 1 (4.2.2)
With each hypothesis Hi' there is a probability of Hi being

correct, given the measurement x_ and the past information:[jt—l[t—l),

t

the probability distribution of k(t-1), given the measurements through

X Then the updated probability (see Appendix 2) ﬂi(t—llt), the
probability of k(t-1) = i, given all measurements through Xyo is
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given by
p(x, -Ax_ . ~-B_.u,_ )7 {t-1]|t-1)
moe-1le) = t t-l —itel 3 (4.2.3)
j=t0 elx, - AXx, ;- Byu ijt*llt-l)

Hypothesis Hi is assumed to be correct if

1Ti(t-l|t) > (t-1|t) for all j # i (4.2.4)
Ties are resolved arbitrarily. Then, given the correct hypothesis Hi'
the corresponding deterministic optimal switching gain is used to
compute the control at time t

u =G, X (4.2.5)
as in equations (3.3.8) and (3.3.9).

The probability distribution is then propagated with the Markov
chain equation

me|t) = PT (t-1]t) (4.2.6)
and the process repeats.

This algorithm can work well if there are significant differences
in the effect of the control variable between configurations. When
the differences are slight, a mistracking will result until the errors
are large enough to be detected through equation (4.2.3). The method
does not exploit any of the dual effect of the control variable on
the measurement of the configuration. The method presented next does
use the dual effect to identify the correct structure. BAnalytically,
it cannot be said which method is best, as the optimal control law
will lie somewhere between the two. It is possible to extend the
hypothesis testing procedure to n-step hypothesis testing where a

hypothesis is made about the last n values of k(t) and is then tested.
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Since this investigation is not within the primary scope of this
research, it is left as an open problem for future research. It is
also possible that a combination of hypothesis testing and dual identi-
fication may be used to gain some of the advantages of both methods;
dual identification yields fast identification of the correct structure,
while hypothesis testing does not sacrifice control of the system

while there is a high probability that the structure is correctly

identified.

4.3 Dual Identification.

The underlying concept of dual identification is to periodically
change the control in order to increase the accuracy of identification
of the structure. 1In the limiting case, the contreol 1s changed
enough to guarantee perfect identification of the current structure
with the next ohservation. For this case only amplitude limited noise
is considered. The system model is

Ax + B

Xepp TRAXL HByu, Y HE, (4.3.1)

where éﬂ: is f-dimensional white noise which takes on values in the
unit sphere with distribution p(£) and is uncorrelated with X, and
k(t). M is an nx { matrix which defines the ellipsoid in R" which
contains Egt'

Normally, if no identification were to be performed, and if k(t-1)

were known, the optimal deterministic switching gain Eﬂq(t—l) £ from

equation (3.3.9) would be used to compute_gz.
*

uy (4.3.2)

Zx(t-1),t >t

In dual identification, the goal is to compute a gain offset U, ¢
r
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such that when the control

*

= +
e T2 T H1e (4.3.3)

is applied to the system, identification of the structure k{t) with

the observation §t+l is guaranteed. To accomplish this, note that,

for a given B X will be in a bounded convex set determined by

k'’ =t+1

Ek and M. Thus,

E(-t'f‘l - éit = Ekgt + Eét (4'3'4)

'3
and & can be any element in the unit sphere S{(R ). Therefore,

t

perfect identification of k(t) is guaranteed if no two of the domains

of x corresponding of the B

41 's have a non-empty open intersection.

k

That is, the following condition must be satisfied for each pair of

\ : ')
Eki 5 and every §1 and §2 of S(R):

(gkl _Ekz)gt +§(§l -E,) #£ 0 (4.3.5)

This condition is the same as

#
|| u By, "By u, il >2

if (B, -B, Ju ¢ N(M

otherwise,

(B, -B, Ju_ #0 (4.3.6)

where ﬂ# 15 the generalized inverse of M and N(M) is the nullspace
of M. Note that the inequality of (4.3.6) can be relaxed to egquality,

since the intersection of the two domains of x would only be at

t+1

the point of tangency, a set of measure zero in either domain.

The objective is to choose El c such that (4.3.6) 1s satisfied
r

for all pairs B and B in the reachable subset of all actuator

k

k
1 2



configurations. The reachable subset refers to the subset of configu-
rations Ej_ which have a non-zero probability of occurance at time t,

given that the configuration was Ek(t—l) at t-1. This is the same as

the condition that

Ej_ is in the reachable subset from Edc(t-l)

i >
if Diypiqy 7O (4.3.7)

Suppose that there are J configqurations in the reachable subset from

Ek(t—l)' Then there are J(J+1)/2 pairs of configurations for which

condition (4.3.6) must be satisfied. BAlso, since El t affects the

, it is reasonable to minimize its effect. Therefore,

state X
—t+1

since the effect of u is modified by B it is reasonable to

=1,t =k(t) '

minimize the norm Oflil £ Thus, the minimization problem is formu-
I

lated subject to the constraints (4.3.6).

minflu, .| °

~-1,t
Uit
subject to

* 2
4 -~ lp ta +u, J7 <o (4.3.8)
where

D - '@, -8,) (4.3.9)
=i+ (j-1)*J - =i 25 3.

Formulating this as a nonlinear programming problem, the

Hamiltonian is

2 * 2
Ha, oA = flug T+ ; A da-flp ta+ay 1]
{(4.3.10)
>
lk-— 0
A if 4- || : 1% < 4.3.11
T 0 i 4-ing o+, 0 (4.3.11)
Differentiating H with respect to A, and solving for u as a

1,t

*
function of U, and the parameter A,
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OH = 0 = 2u - E A DID. [u. + ] 4.3.12
3u %1,¢ k—k—k'2e” %1,¢ (4.3.12)
Y3, k
or,
P -1 T *
= [I - A D .3.
Y9t [z Ek k2 Dy ] Zk MRy Dy (4.3.13)

Now, using (4.3.13) in the constraint equation (4.3.11)
T -1 T * 2
- - <
4-llp, m+ - ADrD 1 2 2oyp dul |12 <o
k k
(4.3.14)

Noting that

[I - A[I + Angl"lng_] = [+ J\QTQ]'l (4.3.15)
then (4.3.14) simplifies to
T -1 *
4 __ ” Ek [.:E - ; AkEkEk] E‘t ” i 0 (4'3'16)

and if (4.3.16) is a strict inequality, then lk 0. 1In general,

a numerical algorithm must be used to solve for A in the set of
equations (4.3.16); this can be a major drawback to the application
of this methodology if the on-line computer resources are unavailable.
Although the computational burden of this technique is a disadvantage,
dual identification would most likely be implemented in combination
with a hypothesis testing algorithm. Dual identification would then
form a test to be performed on the system after some interval of time

to ensure that the hypothesis testing algorithm correctly tracked the

configuration,



94
4.4 Examples.

Tn this Section, the one-dimensional example of Chapter 2, Section 2
is implemented with additive white noise applied to the controi input.
Three suboptimal control algorithms derived from this Chapter are imple-
mented: Hypothesis testing, dual identification, and hypothesis
testing in combination with dual jdentification, which is utilized every
fifth time instant. The purpose of this example is to illustrate the
degrading effect of the dual identification algorithm on the system
state.

The principle subroutine used to generate the computer simulations
of Example 4.1 is SWITCH; it is listed in the Appendix. SWITCH calls
FIG and UCALC, alsc in the Appendix; any other routines which are used
are in the ESL subroutine library.

The system in Example 4.1 has two structures, represented by the

matrices B (b = 2.) and B, (1/b = .5); the Markov transition pxrobabili-

0 1

ties are given by the matrix P. The switching gain solution was calcu-
lated using the software described in Chapter 3, Section 5. Case i)

of the Example corresponds to the hypothesis testing methodology described
in Section 2. The additive white noise was amplitude-limited with zéro
mean and variance & = 1. Case ii) of the example demonstrates the perfor-
mance degradation due to the exclusive use of dual identification. Note
that the variation among the values of the state and control are larger
than in Case i). The advantage of dual identification is that, for
amplitude-limited white noise, perfect identification of the system
structure with one-step delay is guaranteed. 1In Case iii), hypothesis

testing is used four-fifths of the time to partially avoid the degradation
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due to dual identification. The control is more effective in Case iii)
than in Case ii); however, for this example, it is not clear that the
use of dual identification one-fifth of the time is warranted, since a
performance degradation of Case iii) over Case i) is still evident in
this particular simulation. More simulation would have to be carried
out before the proper ratio of the use of hypothesis testing to the

use of dual identification could be determined.
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Example 4.1:

A= 1.414
By = 2000 B, = .5000
0 = 3.000 R = 1.000
.7 .3
P:
.30 .7

Switching Gain Deterministic Sclution:
= -,7569
o

G, = -1.008
1

The system dynamics are

“k(t) e {o0,1}

The cost function which was minimized is
[ae]
2 2
J = E ox- + Ru- | T
t t ' —
t=0

where
T
o= [% %]

Structural transitions are of the form

When dual identification was employed, the control was set to

*
ut = l.25(51gn(ut))
This control was the minimum value required to establish perfect

identification.
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4.5 Summary.

In this Chapter, two methods have been proposed to extend the
deterministic optimal switching gain solution of Chapter 3 to the
stochastic case. The two methods represent the two fundamental
concepts of identification: Estimation and dual control. The
optimal stochastic contreol law, if it could be computed, would rely
on both concepts, using estimation when the control variable is
large (and the state is far from the origin) and dual control to
enhance estimation when the control and state variables are small.

In the dual identification technique presented here, contrel is
sacrificed to obtain an exact observation of the structure. Thus,
the system response would be roughly periodic, with the state being
driven away from the origin in order to obtain an accurate estimate
of the configuration, and decaying back toward zero between identifi-
cations. In the pericd when the control is not modified, hypothesis

testing would be used to track the configuration.

100
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CHAPTER 5

THE NON-SWITCHING GAIN SOLUTION

5.1 Introduction

In the previous two chapters, the switching gain solution was
developed and studied. 1In this chapter, attention will be focused
on obtaining a constant, robust, or non-switching gain which solves
a variable actuator configuration linear quadratic control problem,
with minimum cost for this class of solutions. It must be stressed
that this is a suboptimal solution; for the deterministic case,
Chapter 3 gives the optimal solution. The interest in this chapter
lies in determining a sequence of gains, for a linear control law,
which do not switch in response to the detection of a change in system
structure. For instance, it may be desirable to ensure the stability
of a control system under certain types of failure without creating
the complexity necessary to detect those failures and compensate for
them, as is dene in the switching gain solution.

This class of solutions is related to the overall robustness
problem where fault-tolerant controcl systems are desired. Although
not formulated in this manner, the research described in this Chapter,
as in Chapter 3, is readily extendable to system with variable system
matrices as well; i.e., where the system can he represented as a set
of possible structures (ék’ Ek) over some suitable index, even though

this class of problems is not as directly related to the underlying
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reliability theme of this report.

Non-switching gain sclutions to the variable actuator configura-
tion class of problems can be obtained in different mathematical ways.
Problem A of Section 3 is reformulated as a deterministic control
problem (Preblem AE), and is solved using the necessary conditions of
the Matrix Minimum Principle [Athans,41] in Secticn 5. Unfortunately
this approach, although yielding the necessary conditions for an opti-
mum, does not allow an analytic solution. Therefore, in Section 6,

a second problem (Problem B) is formulated and solved using dynamic
programming.

Section 7 is by far the most detailed and one of the most impor-
tant sections of the report, along with Sections 8 and 9. In Section
7, the concepts of stability and cost-stability are defined and are
used to prove an eguivalence between the infinite-time versions of
Problems AE and B. In Subsection 7.6, the steady-state solutions for
both problems are defined. Unfortunately, nothing in the mathematicé
appears to rule out the possibility of limit cycles in the infinite-
time solution; this is discussed in Subsecticn 7.7. When the constant
steady-state solutions to the two problems exist, it is proved in
Section 8 that they are identical. This is a very important result, as
it allows the steaey-state solution of a complex two-point boundary
value problem which is much more tractable.

In Section 9, it is demonstrated that the general robustness problem

for linear systems (where one wishes to determine a single stabilizing



gain for a set of linear systems) is seolved in this framework for the
class of systems with variable actuator configurations. Examples of
both the non-switching scolution to Problem B and the robustness

result are given in Section 10, and a chapter summary in Section 11.

5.2 Problem Statement.

The objective of the research described in this Chapter is to
form a methodology which will be used to compute apriori a gain G
(either time-varying or steady-state) which minimizes the expectation
of the quadratic performance index over a set of linear systems with
actuator variation and known transition probabilities of structural
change (Problem A). The necessary conditions for minimization are
given which this optimal gain must satisfy; it is shown that these
conditions result in a complex two-point boundary value problem.

A second optimization problem is formulated which is based on

the restriction to non-learning control laws which are precomputed;

i.e., it is assumed that the control law cannot benefit from knowledge

of its past. Although this formulation appears to be much weaker
than that of Problem A, it is shown in Theorem 2 that if steady-state
solutions to the two problems exist, then the steady-state solution

to Problem A is stabilizing (in the sense that the mean square value

of the trajectcry is exponentially bounded) if and only if the steady-

state solution to Problem B yields a system which is exponentially

stable. This result is very significant, in that a Corollary to this

103
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Theorem solves the problem of finding a robust gain for a set of linear
systems and ylelds an explicit procedure for its calculation.

The last Theorem (Theorem 3) of the Chapter proves that the steady-
state solutions to the two optimization problems are identical. This
implies that not only does the procedure mentioned above determine a
robust gain if and only if such a gain exists, but also that the steady-
state gain is optimal with respect to the specified quadratic cost.

criterion.

5.3 Problem A.

Consider the system

o1 T BE T By By (5-3-1)
where
Il
x € R (5.3.2)
I
u, € R (5.3.3)
kit e 1 ={0,1,2,--,L} (5.3.4)

I is an indexing set for the possible actuator strudmmas{§§k€1,
where

B £ R (5.3.5)
k(t) is a random variable with sufficient statistics given by the
Markov transition probabilities Pij' where the matrix

P = (p,.) {5.3.6}

1)

is a stochastic matrix, and the initial probability distribution is
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T, =6, (5.3.7)

Since k(t) is assumed to be a Markov chain, the probability vector

Ty is propagated in time by

=BT (5.3.8)

E't+l t

where there is no real-time observation with which to update Wt

Consider the structure space {§49 el indexed by I. Define the

structural trajectory E}Pto be a sequence of element k(t) in I which

select a specific structure at time t,

o)

ifP: (k(0), k(1),..., k{(T-1)) (5.3.9)

The structural trajectory E}Pis a random variable with probability of

occurance generated from the Markov equation (5.3.8).

_ T-1
plx,) = t1'=[O ﬂk(t),t {5.3.10)
where the control interval is
{0,1,2,...,7-1,T} (5.3.11)

for the finite time problem with terminal time T. Then for a given

T-1 -
state and control trajectory (x 'lit)t—o generated by (5.3.1) and X

t

T-1 . .
from a sequence of controls (Ei:)tﬁ . the cost index is to be the

standard quadratic cost criterion
T-1
- T-1 T T T
= + + - -
Tp e (e v8 ) o) ; XXy U Ry v X, 0x, 0 (50312

The admissible controls are restricted to be of the linear feedback form

Et=§t§t (5.3.13)

* i,e, Ww.= (10 ...0) or (O 10...0) or ... (O O...0 1) .
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and the initial conditions; i.e., it cannot depend 9£-§4;' The objective

is to minimize over the set of admissible controls the expectation of
(5.3.12), where the expectation is taken over the set of possible

structural trajectories
;T e ] L (5.3.14)
T

and the set of initial conditionsiio .

* *
Thus, the optimal control law v, = 94;54; should minimize the
cost
= J |m
Ir E[TI_O]
m_
= E xTQx +uTRu + x_0x I'IT (5.3.15)
“tE==t  —t-—t T==T'—0 h

over the set of admissible controls.

Since the structure of u_= G is fixed, the problem is equiva-

£~ ZeXe

lent to minimizing, in an open-loop sense, the cost function
-

E[JTJILO ] = E x

(5.3.16)

with respect to the gain matrix 91:, t=0,1,...,T-1. Equation {(5.3.16)

is simply obtained by substituting eguation (5.3.13}) into eguation

(5.3.14).

5.4 The Method of Solution.

The matrix minimum principle [Athans,41] will be used to determine

*
the necessary conditions for the existence of u, (or eguivalently,

*
Gt ). To solve the problem using the matrix minimum principle, the
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formulation presented in the last section must be converted into an
equivalent deterministic problem. For this purpose, let the initial
state 5{) be a zero mean random variable which is independent of any

structure. Let

T
I, = E[§_050|10] = Elx_x_] (5.4.1)

be the convariance matrix of Xy
Defining the covariance of X, as
A T
I, = Elx x |71 (5.4.2)

then, by direct calculation, we obtain

TJ

L ] I
= - - . LIS . . T
z:-t. i :E;O . ;Z;% P; P pl i i_,0
-1 0

1 l i i ’
= - _2 - - b
N 1t_20 t-1"t t-2"t-3 10 Q
t-1 t-1 T
. + . +B . .4.3
O @, s, [T @am; 6, (5.4.3)
=0 ] J=0 3

Similarly, if we define

—_ T - =1
D Blx, x |k(t-1)=i,7 ] (5.4.4)

then, we deduce that

i i
i = 20 = -2 Tt=2"t-3 170
1t—l lt—2 0 lt—3 i t t
[ £-2
. +
Too@Bi e ) I oms, sl 2,
0 | 1=0 ]
t-2 1T T
<l II (a+B. G .) (B4+B . G ) (5.4.5)
joo T iy =21 2¢-1
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The matrix_gi . can be defined recursively as
r

T

1 T
= — + - -
L e41 T, Z; Py (B*BLG 0L, (BB GL) (5.4.6)
7, 1= t-1
t
for t > 1.
z = (AM+B .G _JX _(A+B . G )T {(5.4.7)
3,1 = =370 F0 = =350 o
and the relation
= >
_Z_t i: ™ zi,t , 0 (5.4.8)
1=0 t-1

is obvious from direct calculation.

Remark 1l: At this stage, an equivalent deterministic problem (Problem AE)

will be defined with state (_E_i ¢ )Z.':_O for t > 0 and state ZO at t = 0.
, = &

The system dynamics are then defined by equations (5.4.6) and (5.4.7).

Definition (Problem AE): For the system with matrix state (Ei £ )Ii"_0
, =

for t >0 and EO for t = 0 with dynamical equations (5.4.6) and (5.4.7)

and matrix control gt , minimize the equivalent deterministic cost

T-1
over (gt)t=0'
E = T T T
T T BRx X Q2 v 2, G RG xy
0 t=
T
+ -{TQETIZO'EO
- § wrir 0 +cTrRG)1 + tril_ol (5.4.9)
-t = —t==t =T = T
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Note that since the expectation in equation (5.3.13) is over all

structural trajectories x and the initial x . also,

9]

£ o= 3 (5.4.10)

The symbol JT will be used exclusively in the future. The one-stage,

or instantaneous, cost at time t is

t T
JT = tr@t(g1-§tggtn (5.4.11)
Problem AE is completely deterministic in the state (Eli t)?—o ' ZO
, - £l

and control Et .

At this point, the minimization will be decomposed into two parts
using the Principle of Optimality [Athans and Falb, 21]. The first
minimization is over the interwval {1,2,...,T—1}, and for this the matrix
minimum principle will be used. The resulting solution will depend

in general on the choice of 9{) and on the initial conditions E{) and

T _.
—0
*
Let V (E{ﬁ be the optimal cost resulting from the use of ij and
* * *
the optimal sequence L P Grq for the interval {1,2,...,T}.
The second minimization is then over Q{) of the cost
) T *
= + -4.
s trl2 (9 + G RG] vV (G,) (5.4.12)

The Principle of Optimality states that these two minimizations

* -

. T-1
result in the minimizing sequence (gt)t_O for Problem AE.
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From [Athans,41], the Hamiltonian for the minimization over

{1,2,...,7-1} is

L L
BOQ, icor S5, ee1) 5207 C¢)
L T
= tr z;ﬂ I, ,@+G RE )
1= t-1

2 1 L T
+ —_ + 1B | .
tr £ T 1§=;Pjiﬁit_1m BjGt)Zi’t(A jGt) S],t+l

Te
for t £ {1,2,3,...,7-1} (5.4.13)
where the costate matrix is (8 )L
€ 24,t+1 ' =0

Remark: We have now formulated Problem AE-1, which minimizes the accumu-

lated cost over the interval {1,2,...,T} with respect to the sequence

T . . - . . . .
(91:)t=1 using the matrix minimum principle and results in the optimum

*
cost, given G ., V (gio). Problem AE-2 is then the minimization of

o

eguation (5.4.12) over EO .
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5.5 The Necessary Conditions.

The matrix minimum principle yields necessary conditions which
an optimum must satisfy. There are two conditions of importance.
(The third condition yields equation (5.4.6)).

From the necessary condition for the costate,

* 9H
§‘l,t - azl (5.5.1)
—1i,t x
the propogation of Ei_t backward in time is derived.
T
S . = W, + G_RG
—1,t 1t—1 g —t——t
1 T T T
* leﬂ. (2 EjﬁﬁlA 9tEjij,t:-i-l—jgt
1=0 I
T T_ T
+ . . + . 5. .5.2
A g:|,t+l§-3§--t E"-tE]§:|,t+lé] (5.5-2)
. . : . T-1
This equation is well-defined for any sequence {sz}t=0 and t > 0.
The cost V of using this arbitrary sequence over the interval
{1,2,...,7} is given by
T-1
v { (Et)t=0) = tr li;gi,lzi,l {5.5.3)
The total cost over the interval {0,1,...,T} using this sequence is
J. = tr I S z + tr[(Q+GTRG VL] (5.5.4)
T & -i,1—4i,1 = =0--=0"—0 T
T T
= tr {(A+B G_ )L (A+B . G )TS ]+Z (Q+GTRG )
= | ==i—=0"=0 ==i->0 —i,1 -0 = —=0-=0
) (5.5.5)
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59

Then from equations (5.5.6) and (5.5.7)

Jp = trlkgS,l
. T-1 .
Thus, the cost of a given sequence | 94:)t 0 of length T is
Jp = 285 E4 8 e--s8p g} ]
]
For future reference, define the matrix Ej.t by
’
S .
s . 4 Zi.t
—1i,t ﬂi
t-1

and note that equation (5.5.2) becomes

(5.5.7)

(5.5.8}

{5.5.9)

(5.5.10}

(5.5.11)

T 5 : T T _ T
. = +G_ R + LA S, A+G_B.S. B.G
glm £ —t—gt j_oppﬁ— —Jj,t+l— —t—]—J.,t+¥l—3J—t
T T, T
+ . + . 5. A
A gj,i:+1§jgt gtgjgj,t+l_]

From the Hamiltonian minimization necessary condition

the following relation between_gi

.t ij,t+1'

(5.5.12)

and gt, is obtained.

(5.5.13)
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Remark: At this point, a two-point boundary value problem has been
defined with the constraint {(5.5.13) relating eguations (5.5.2) and

{(5.4.6). Eqguation (5.5.13} is not explicitly solvable for Et

because_gi £ cannot be factored out of the sum over j; thus, it cannot

r

be used as a substitution rule in the other two egquations. At this

time, the solution for G_ appears intractable. Thus, although necessary

t
1 - * - " - . >
conditions for the existence of 9«:' the minimizing gain, have been

*
established, they do not readily allow for the solution of 94:' and

certainly do not admit a closed-form expression.



5.6 Problem B: The Non-Switching Solution.

aAlthough the methodology presented in Section 4 yields the
necessary conditions for an optimum, these conditions are not analyti-
cally illuminating. In this section, a second optimization problem
is formulated. An equivalent formulation was presented in [Birdwell &
Athans, 40]. The solution will admit a closed form expression for Et .
Although this solution is not the optimal solution for the first
problem, in that this soluticn does not necessarily satisfy the neces-
sary conditions for problem AE, it will be proved that the two solu-
tions are equivalent in the sense that for the steady-state soclutions,
as defined in Section 7, either both soclutions stabilize the system,
or neither one stabilizes the system. Even better, it will be proved
that the steady-state solutions to the problems are identical.

For the system (5.3.1), the objective is to minimize at each time

t the weighted sum, with respect to T of the expected costs-to-go,

t-1"'

*
=¢ (x ) and Eng—}-T (5_[) for > t, and given

iven the control u
given et 2 t ‘X

t

that the structure at time t-1 was k(t-1) = i, for each i.

Formally, let C be the expected cost-to-go, given x, , U _ , and

t t

k{(t-1) at time t be defined as

Clx_,u_, kit-1), t) = x

T
+ R +
XKool 9x, +u Ru

t

*
[C (x,,

B (1) 1

*
where * denotes the optimum value, and E4zi5 computed as
— 1 ’ - .2
u 3rg_ﬁ:n(x ) (]It_l c(t)) (5.6.2)
—t t —t

cit) (5.6.3)
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Jk(t),t+1) | k(t-1)] (5.6.1)



and
* *
C (gt K(t-1),8) = C(§t Uy SJ(t-1),t) (5.6.4)
where
C(it oL L (E~1)=0,t)
c(t) = (5.6.5)
C(E‘t ’Et rk(t_l)=Lrt)
and
T
X 0%,
c(r) = C*(T) = . {(5.6.6)
_
XpQZXq
Thus} the problem is
. T T
min m, X X, +u
u =¢_(x ) 15 lt-l[htg_t Teot
-t —t —t
* —~1Y=3
+ OB[C*(x k() e+ k(t=1)=i]] (5.6.7)
. T T
= +
':ln= (x ) ; “it_l Et _Q_..}.(_t Et Egt
Le=pe (2
* .
+ JZ;pjic (§§t+§jgt,3,t+l) (5.6.8)

From the formulation, }1t is non-learning in that it depends only on
th-l for its knowledge of the past. Let C* be of the form

* -— =
C(§t,k& 1),t) -itihtit

{(5.6.9)
Then for t =T,

Sep = 2 (5.6.10)
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And equation (5.6.8) becomes

T

min i xT?ch + uTlRu
i TeESe —t——t
1= t-1

Y
T ! 5
+ .. + . . + . .6.11
P2 Py AX, #Byu ) Sy BX, Byuy) ( )
At the minimum, differentiating (5.6.11) with respect to Eﬂ:' we
obtain
o 2 ( ] T ]
= . Ru + Pp.. (B . . B.u + B, S.
S =5 = +1—5 — -5 = +1—=t
= i, t 4= J J—j.,t+tl—3—t j=—Jj,t+l
(5.5.12)
Solving for Et ,
* [ _li v
u = -] R+ m. B. S . B . T, B.S. Ax
—t = —j =3, t+l— j.—3—3j.,t+l ="t
=0 T J—3J B 1= ]t 1—3J
(5.6.13)
and hence the gain matrix is given by
* : ) -1 L [
G = —-]R + mT. B.S . B . m. B.S. A
= -— =9 =9,t+1 — Z; =9 =3,t+1 —
t =1 I 1—13.¢ ] =g ]
(5.6.14)
* *
where Etdgtit
From {5.6.11) and (5.6.4),
T ! T *T *
= +
i: *Ts ! * (5.6.15
+ + . A+B |, 0.
Py BB 6. ) S5 v (4B S )| %y )

1=0
or, since (5.6.15) holds for all Et ’

] *
+ G
-t

l
[x>

*
RG
=2t

T T _ " * oxmoT v
+ + +
< Py B Sy (g B+ R Sy  ByGe Y EE 35 ent

B,.S. B.G,) (5.6.16)
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Thus, (5.6.16) proves by induction that equation {(5.6.9) is valid.
Note that equations (5.6.16) and (5.5.11) are identical.

*
Therefore, the unconditional cost of gt , £=0,1,...,T-1, is, from

(5.5.9)

Jp = tr[§0§0 (-G—O’-G-l""'ET—l )] (5.6.17)
which in this case is simply

I = x°S_(G.,G G, . )x (5.6.18)

T =0=0 =0 '=1"""""'=1-1"20 o

*
The matrices _G_t are called the non-switching, or non-learning gains,
*

and will hereafter be denoted Ens . The label _Cit will be reserved for

t
the solution to equation (5.5.13). The optimal value of the cost-to-go

at time t=0 for this problem will be called the non-switching cost index,

and is given by

J = T, sz. X +xT(Q+GT RG )X (5.6.19)
ns i~1-—i,1-1 -0 = ~ns_, ——ns =0
T 1= 0 0 0
T
- X m (é-'-Ei-cins =S l(ﬂ+Eigns )
1= 0 0 ! 0
T
+Q+ G RG X (5.6.20)
= -ns.——ns —0
0 0
*
Note that 1if g-ns = Et for all time (i.e., if the solutions to the
0

optimal control gain problem and to the non-switching control problem

are the same, then E [J 1 = J_ .
X nsT T
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Summary: In this Section, the non-switching, or non-learning, gains
have been derived. These gains are called non-switching or non-learning
because they do not depend on the past trajectory of X, and u, - but
only on the initial probability vector over I, 1[0 . It was further

shown that if the solutions to Problems AE and B were identical, then

E [J 1 = J (5.6.21)
X, ns,; T
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5.7 Stability'and the Steady-State Solutions.

In this Section, the concept of stability for this class of
systems will be precisely defined. From this, a natural concept of a
steady-state solution to Problems AE and B will be given, and a very
strong result relating the sclutions to the two problems will be

proved.

5.7.1 Stability and Cost-Stability.

For this class of systems, two definitions of stability will Be
tendered. The first is the usual definition of mean-square stability;
the second definition, that of cost-stability, has a strong relation to
the exisﬁence of solutions to the infinite time versions of Problems AE

and B.

Definition 1: (Stability). G is a constant stabilizing gain if and

only if the resulting system given by equation (5.3.1) and repeated here

= A + 5.3.
Peel T REL T By By (5.3.1)
1s mean-sgqguare stable:
T
Efx _ x_1 = 0 as t > o=, (5.7.1)

t—t

Definition 2: (Cost~Stability). The system (5.3.1) is cost-stable

if and only if the scalar random variable

T

00
T
+ < >+ .7.2
t_ZO x . Qx, +u Ru, (5.7.2)

with probability ocne.
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5.7.2 Definition of the Infinite-Time Cost.
In this research, the infinite-time problem is defined as a
minimization of

J = 1lim JT (5.7.3)
T
where JT is the cost function for the corresponding finite-time problem.

The sequences which solve these infinite-time versions of Problems AE

* .
and B are (G )T and (G ) , respectively, when a solution exists.

o
—t " t=0 — =0
t nst t

A solution will exist if there exists a sequence of gains for which the
limit in equation (5.7.3) exists. This definition of the infinite~time
problem is chosen rather than the definition requiring a minimization

of the average cost per unit time

J = 1lim

1 J (5.7.4)
oo

T

|~

because there is a direct correlation between the boundedness of JT
over all T for a constant sequence of gains g_aﬁd mean sguare stability
of the system (5.3.1). It is necessary, however, to prove that the

set of problems for which JT is bounded for some sequence of gains is
not vacucus. This fact is demonstrated by any of the convergent non-
switching gain examples in Section 10.

As further demonstration of the validity of using eguation {5.7.3),
note that if 0 < Jl < @, then the cost per unit time has a non-zero
steady-state value, which implies that the system {5.3.1) is not mean-
square stable since

T

J, = tr[g55 (@ + G__RG )1 (5.7.5])

where Ess and -g-ss are the steady-state values of gt and gt ., when

. . T . L P
they exist, and, since Q + _G_SSEQSS is positive definite, Ess # 0.
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5.7.3 Bounded Cost and Mean-Sguare Stability.

In choosing equation (5.7.3) as the basis for the definition of an
infinite-time problem, a major reguirement was that the existence of
an infinite-time solution, namely of a sequence of gains which vyields a
finite cost in equation (5.7.3), imply mean-square stability. For
the case where the sequence is constant, the following result is

proved.

o0

=0 is mean-sgquare stabiliz-~

Theorem 1: A constant sequence of gains ({(G)
ing if and only if there exists a bound B < @ such that
JT <B for all T (5.7.6)

Proof: See Appendix 5.1.

aQ
<B<®yT implies (gt)t_ is

0

o
Remark: For a sequence (gt)t=0. I

[ =]
mean-square stabilizing, but Qit}t_ mean-square stabilizing does not

0]

imply JT is bounded for all T.

Proof: See Appendix 5.2.

5.7.4 Cost-Stability.
As yet, the definition of cost-stability has not been utilized.

In this Subsection, it will be shown that the system described by

o0

equation (5.3.1) is cost-stabilized by a sequence of gains (gt)t_oif and

enly if J is finite-valued for this sequence. One direction of this

result is proved in the following theorem.

[» 3
Theorem 2: Any seguence (Et) _Ofor which J <« cost-stabilizes (5.3.1)

t
with probability 1.

Procf: See Appendix 5.3.
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The other direction of this result is obvious: If a sequence

is cost-stabilizing with probability one, then the random cost,

€ =0

given by equation (5.7.2), is finite except on a set of structural
trajectories of measure zero. (The appropriate measure on this set 1is
given in the proof to Theorem 2.) Since the expected cost J is the
integral of equation (5.7.2) with respect to the probability measure
on the set of structural trajectories (see Appendix 5.3), then J is‘
finite.

Thus, the cost—stability and the existence of an infinite-time

solution are equivalent.

5.7.5 Equivalence of Problems AE and B.
The first major result of this Chapter will now be stated. This
result establishes a strong equivalence between the solutions to

Problems AE and B.

fev)
Theorem 3: A cost-stabilizing solution (Ens ) exists if and only if

t=0
*too

there exists a cost-stabilizing solution (gt)t_ assuming ﬂi> 0 for

Ol
all i and §0>0.

Proof : See Appendix 5.4.

Remark 1: This result provides a computationally feasible methodo-

logy for arriving at a sequence of gains (G ) which cost-stabilize

o
nst t=0
the original system (5.3.1) with probability 1, whenever such a se-

quence exists. The coupled matrix equations of Problem B (5.6.16) can
be iterated backward in time. If the weighted sum with respect to the

ergodic distribution W converges, then the resulting sequence of gains

cost-stabilizes the system (5.3.1) with probability one.
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5.7.6 The Steady-State Sclution.

A steady-state solution to optimization Problems AE and B can
exist only if there exists a steady-state probability distribution T

over the set of possible configurations indexed by I such that

mT=PTT (56.7.7)
and

limm =7 (5.7.8)

troo t

From equation (5.7.7), it is apparent that for T to exist, the matrix
P must have an eigenvalue at 1, and T must be in the subspace spanned
by the eigenvectors of P corresponding to that eigenvalue. The fol-

lowing lemma states precisely when T exists.

Lemma 1l: 7 exists if and only if one of the following three conditions
is satisfied for each diagonal element ai of the Jordan normal form é

of P, where

P = g_{k_g_l (5.7.9)
a B,
ay B 0
2
A = . B, = 0or 1 (5.7.10)
9 . 1
BL—l
o

For each i,
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i} Ja,| <1
1

ii) o, =1
1

1) Ja,l=1, @ #1, (T 1w ) =0
i i = —0i

Proof: OQbvious.

5.7.6.1 Steady-State Solution to Problem AE.

*

®
Note that for Problem AE, initially, the gains EO ’ El PR

*
14

*
will depend on L -2 ' Zm_y

Lgr and near the final time, the gains ... G

will depend on a time-varying §i £ Thus, the steady-state solution for
Problem AE is defined as the limiting solution to equations (5.4.6)
(5.5.2) and (5.5.13) at time t, first as T*® and then as t3>x, if this

limit exist. The steady-state values for B, §1L' and Ej ., when

they exist, satisfy the following equations:

L, = L p.. ™, {Aa+B. G) X. (§+B.G)T {(5.7.11)
-] T\'j = J1 1 — /] -1 I
5. =T, Q_+GTRG+ p..l [ATS.A-i-GTBII.‘S.B.G+ATS.B.G
-1 i = =2 Ly Vjim, === = =3 — 30
1= ]
T
+ GTB. Al {5.7.12)
224242
Ly T T T

0 =RG i: Trigi +Z;T [B.S.B.G + B.S.A] Zp.iﬂi ;i

= = gt B | =171 =]

(5.7.13)
which are the limit of equations (5.4.6),(5.5.2), and (5.5.13), given
that the limiting solution Ej,t and'g* exist, where T satisfies
equations (5.7.7) and (5.7.8). The cost of this steady-state solution
is

J = lim JT {5.7.14)
T-rc0

as in equation (5.7.3).
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5.7.6.2 Steady-State Solution to Problem B.

The solution to Problem B depends on its past only through the
probability distribution 7(t) over the structure index set I.
Therefore, to develop the steady-state solution, let the initial prxo-

bability distribution T equal the steady-state value 7 from equations

0]
(5.7.7) and (5.7.8). Then the steady-state solution can be defined as
the limit, when it exist, of the gain gTu;.calculated for the problem
ending at time T, and of the solutions to the coupled Riccati-like

equations {5.6.16),‘21'0, as the final time approaches infinite. Let

L

Ens (T) and Ei 0(T)be the solutions at time zerc for Problem B with
O r
final time T. Then
Eﬁs = lim Ens (T) (5.7.15)
T2 0
L) r
§i=lhn§io(ﬂ , 1e1I {(5.7.16)
T !

when the limits exist. The steady-state solution is said to exist
whenever the limits of equation (5.7.16) exist. If these limits exist,

then 91u5 and Ej_ must satisfy, from equations (5.6.14) and (5.6.16).

¢  =-|r+ T.BL S. B, T.BY 5. A (5.7.17)
Zns = & g =735 =

+GT BYs.B.G ) (5.7.18)

The cost of this steady-state sclution, given X, is, when the limit

axists



T
t
J = lim J = X E W.5. X (5.7.19)
s ns — i

5.7.7 The Possibility of Limit Cycles.

The discussions in the last Secticon do not rule out the possibi-
lity of limit cycles in an infinite-time solution. In Problem B,
the expected cost is directly computable from a set of coupled Riccati-
like equations (5.6.16), as is the non-switching gain (5.6.14). If-
these coupled matrix eguations converge whenever the solution is
bounded, then the non-switching gain is always directly computable when
it exists. Boundedness implies convergence of the expected cost
(Lemma 2); however, the possibility of the existence of a limit cycle
in fhe solution to equation {5.6.16)} is not ruled out. It is con-

jectured, but not proved, that such a limit cycle cannot exist.

*
femma 2: If the expected cost JT for Problem A is bounded, then it
converges.
Proof: See Appendix 5.5.

®
Since Ex[JnsT] = JT' JnST also converges.

126



127
5.8 Equality ﬁgns and G

In this Section it will be shown that when a steady-state G and
—ns
* . i i , * *
G exist, with finite cost JrlS and J , the gains are equal. This
result is extremely important in that it yields a method of calculating
the steady-state solution to a two-point boundary value problem as the
limiting solution to an equivalent (in the steady-state) single boundary
value problan. It is taken as a working hypothesis in this Szction that
both problems have asteady-state solution and that the ergodic distribu-

tions of T and Ei , for all i, exist. Then the steady-state cost of the

optimal problem is

*

*® * R ;
JSS_ = tr[go (2+90_R_E0 "o+ pa tr[gigi) {(5.8.1)

For any constant gain G for which the limits exist, the value would

be
T
Jss(g) = tr[§0(2+g RG] + lgtr[gi (g)gi (G)I (5.8.2)
T T
= trlZ (Q+ G RG)I + lé;tr“é@i@éo (A*B, G)'S ; (G)]
{(5.8.3)
T 2 T
= tr| Z ;Q+G RG + {({A+B . G) 'S . (G)(A+B.G){ (5.8.4)
—01= - —_ = —_ — 1 -1 — - — 1

Similarly, equation (5.8.1) becomes

* *
)7°S . (§+§igo)
(5.8.5)

For the non-switching, or non-learning problem, the steady-state cost

for any G for which the gi c converge is, given 50 .
r
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T T T
= + + : 5.8.6}
J.s © x @+ G RGIx, +E E: T.x, 8, @)X, ( ;
55 1=
T T
- EO (2+ E EE)EO
> T
+ xT T.(A+B . G) 'S . (G} (A+B , G)x (5.8.7)
—0 i— =i~ =i = '——1i—"-=0

Taking expectations with respect to x

0'
E|J (G) = trik T
ns = - r[_4)(2 + G RG)I
55
+ ; tril . (A+B ., G)Ts. {G) (Aa+B , G} ] {(5.8.8)
= -0 —=1- —1 — ——1—
or,
E [J (Gﬂ = J_ _(G) (5.8.9)
ns__— 55 —
S5

Thus, the costs are equivalent for any G for which the equations

converge.

By Lemma 3, if the non-switching expected cost is bounded for a single

G, then the equations converge; i.e., there can be no limit cycle.

Lemma 3: For a given gain G, if the expected cost JT(Q) is bounded
then it converges.

Proof: See Appendix 5.6.

Thus, either equation (5.8.9) holds, or both costs are infinite. There-

fore, if the cost is finite for any single G, then there exists a Eopt

which minimizes both costs. Furthermore, given that Grm;(T) converges,
- t

G (Tr) ~ G as T + . This result with an extension is stated in
=nsg = opt

Theorem 4.
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* L}

Theorem 4: Assume the values G, (T), G ()Y, s, {T), S .
—_— -t —ns —1i,t —1i

{T), and
t
t r

r

. converge., Then
—1i,t g

A G (T) > G as T *+ «©, which minimizes equation {5.8.9).
—nSg —opt

&
B) G = (G , where G is the steady-state value of G (T),
—ns - -ns —ns,

* *
and G is the steady-state value of Ew:(T):

* *
lim  lim G (T) = G (5.8.10)

0 o0

Proof: See Appendix 5.7.

Discussion: The result of Theorem 4 B) gives a direct computational

*
procedure for calculating the optimal steady-state gain G as the

limiting gain Ens' There are, however, still some open questions

concerning the existence of limit cycles in the calculation of gns'

oa
Theorem 3, however, guarantees cost-stability using (91“; )t—O if a
t

cost-stabilizing sequence of gains exists.
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5.9 Robustness.
The original problem (Problem A} can be formulated in such a way
that the sequence (9115 )i;o will cost-stabilize a set of linear systems

with different actuator structures individually whenever such a stabiliz-

ing or robust gain exists.

Definition 3: A gain G is robust if

= + 9.
X, - @+B, Glx, (5.9.1)

is stable for all k. This is the same as requiring the matrix (éfgchj

to have eigenvalues inside the unit circle for all k.

Corollary 1l: For the set of L+l systems

Kol = éit 4-Ek2t (5.9.2)
with
P =1I (5.9.3)
_ 1
ﬂj = I+l {5.9.4)

(o]
if a robust gain exists, then (Ens )t—O ig a stabilizing sequence for

(5.2.1) for each k, and if the gains Ens (T} converge, then gns is a
t

robust gain.
Proof: For the expected cost to be finite, for any G, G must be

robust, since each structure is equally likely and no structural changes

* Q0
can occur. Therefore, if a robust E_exists, then certainly (g_t)t_0
(v
will be stabilizing, and by Theorem 3, so will “ins )t—O . Also, if
t
91“; (T) converges as T + @, the Eﬂu; will be robust since it will have
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finite cost J(Eins ), which implies stability, in this case, for all
ke I.

Q.E.D.

Discussion: With Corocllary 1, a specific existence problem for robust
linear gains is solved. Existence of a robust gain is made equivalent
to the existence of a finite cost infinite-time solution to Problem B,

which is readily computable from equations (5.6.14) and (5.6.16).
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5.10 Examples.

In this section, two examples are presented to illustrate the
non-switching gain computational methodology. Example 5.1 is ana-
logous to Example 3.1 of Chapter 3; it demonstrates the effect of
component reliability on system stabilizability with a non-switch-
ing gain control law. The first case of Example 5.1 is not conver=-
gent; the second case is convergent. The only difference between
the two cases is the reliability of the actuators. Case 1) corresponds
to Case ii) of Example 3.1; Case ii) corresponds to Case 11i) of
Example 3.1. Neither case results in a robust control law, but ro-
bustness is not possible because the system is uncentrollable in
structural state 3. As an aside, it is interesting that the "optimal"
non-switching gain in Case'i) ignores state X, the system is decoupled
in that there is no interaction between x_ and x_ . Since state x

1 2 2

has stable dynamics, and the dynamics of state xl are unstable, the

entire control effect is concentrated con state xl.

The computer routines which are used in the calculation of the
non-switching gain solution are listed in the Appendix. The primary
subroutine is AIM; it calls WEIGHT. Any other routines which are

used are from the standard ESL subroutine library.
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Example 5.1:

2.71828 6.0

é:
0.0 .36788
[1.71828  1.71828 (0.0 1.71828
B_ = B. =
=0 =1
-.63212 .63212 [ 0.0 .63212
[1.71828 0.0 (0.0 0.0
> |-.e3212 0.0 > oo 0.0
14. 8. 1.0 0.0
Q= R =
8. 6. g.0 1.0
_1—2 +p° {(1-p.) (1-p_) 2 ]
PP PP, PP, p.
_p> l-p_-p + (1-p.)
Pf pf pf pr pfpr prpf pr pr
P = 5
PPy P P l-pf—pr+prr pr(l-pr)
2 (1-p ) (1-p ) 1-2p +p°
Pe PP, PP, P tP_
The system is
X =Ax_ + B u X = [x x ]T
Zt+1 22t 7 Zk(v) —t =t 1, “2,t

k(t) € {0,1,2,3}

The cost to be minimized is

T
Ru
£ ==

B

o0
T
J=EZ§23& +u |
t=0t t t
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Example 5,1, Case 1i) — -
Pg= -1, P, = .9 .81 WO
.09 Wl
E: =
.09 m,
.01 w
3
L — | -_J
Non-Convergent; but gain converges at
-1.246 0.0
E;-ns -
-1.039 0.0
Stability:
Configuration Stable
0(B,) no
l(El) yes
2(§2) yes
3(23) no

Interpretation: The coupled Riccati equations are unbounded. Note
that since state X, has stable dynamics, the convergent non-switching
gain gﬁus concentrates on stabilizing Xy which is open-loop unstable.
From the above stability table, the control law

u =

Up = EpeXe

stabilizes only configuration states 1 and 2; since the configuration

has a high probability of being in state 0 (unstable), the cost diverges.



Example 5.1, Case ii)

r - [~ T 135
p_= .01, p = .98 .9799 T
f r 0
. 009999 ™
E: =
. 0092999 ﬂz
.0001020 ™
- - 3
Convergent Coupled Riccati Equations.
-.7563 .1266
-gns B
-.8070 -.1784
Stability:
Configuration Stable
0 (_B_O) yes
1
(gl) no
2 (Ez) no
3
(23) no

Interpretation: With more reliable actuators, the non-switching gain
expends less force on the stabilization of configuration states 1 and 2
(unstable); since configuration state 0 is stabilized, and the system
has a (relatively) higher probability of being in configuration state O
than in Case i), the non-switching coupled Riccati equations converge,

resulting in a finite cost.
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Example 5.2 uses the same system dynamics as in Example 5.1;

however, only structures 0,1 and 2 (the controllable structures) are
considered. The configuration dynamics are modeled as being in any
structural state with equal probability of occurance initially and
remaining in that state forever; this model is illustrated graphically
in Figure 5.1.

The state dynamics are

~=Ax_ +B
AXe " Zxie) 2t e 1,t *2,t

i1
k(t) € {0,1,2}

The cost to be minimized is

(=]
T
J = E Z§t2§t+5z52t m
t=0

The non-switching methodology yields a robust control law of the

form
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76265AW030

Figure 5.1: Markov transition probabilities for Example 5.2.



Example 5.2:

2,71828 .0
_}}_ =
0.0 . 3679
[1.71828 1.71828 0.0
B = B =
© |-.63212 .63212 -1 0.0
[~ -
1.71828 0.0 1 0.
B,*=
| -.63212 0.0 p=Jo. 1
6. O
Convergent:
-1.089 -.008413
Ens =
-1.028 -.01444
. 112.8 8.992 A
1=0 8.992 6.835
Stability:
Configuration Stable
0 (EO) yes
1 (1_3_1) yes
2(52) yes
Robust: yes

1.71828

.63212

138



Riccati Solution:

) 109.8
S =
0 2.030
' 114.3
S =
1 ©.285
' 114.4
s =
—2
11.66

9.030

6.821

6.285

6.836

11.66

6.849

139
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The non-switching solution converges for the system in Example 5.2,

and the three resulting configurations are stabilized. Therefore Qns

is a robust gain. Had the solution not converged, by Corollary 1 of

Section 9, no robust gain would exist.

The apriori expected cost (before the configuration state is

known} is, given x

J = x Cx
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5.11 Summary.

In this Chapter, an optimization problem was defined on linear
systems with variable actuator configurations and quadratic cost criteria.
The objective of this approach was to compute apriori a sequence of
gains to be used in linear feedback control which do not depend on
any on-line information about the process. These gains were to
both stabilize the overall system, accounting for the various possible
structures and minimize the expected value of the quadratic cost crite-
rion, where the expectation is taken over the possible sequences of
actuator configurations. This solution depends on both the perfor-
mance, and on the reliability of the various structures, as represented
by the Markov transition prcobabilities between structures.

The matrix minimum principle [Athans,4l] was used to establish the
necessary conditions for optimality of a sclution to an equivalent
deterministic problem to that described above, known as Problem AE in
the Chapter. These conditions unfortunately do not yield an analytic
solution for the gain sequence, but instead yielded an ill-posed two-
point boundary value problem which must be solved numerically (Section 5).
Therefore, a second problem {(Problem B) was formulated which was solvable
analytically using dynamic programming (Section 6}. This solution has
identical cost-stabilizing properties to the solution of Problem AE,
but has the advantage of being directly computable.

The steady-state solutions to the infinite-time versions of both
problems were defined, when they exist, and it was proved that, in addi-
tion to the equivalent stabilizing property of the two solutions, the

steady-state values are identical, and this wvalue is the same as the
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optimal constant gain which minimizes the expected cost over the infinite
time interval.

In addition, the general robustness gquestion of when one gain can
stabilize a set of linear systems with different actuator configurations
was formulated in the context of Problem A and was solved by Problem B.
Thus, a test‘for when a robust gain exists can be performed by iterating
a set of coupled matrix Riccati-like equations and testing for converg-
ence of a function of the solutions. If, in addition, the individual
solutions converge, then the robust gain which minimizes the expected
quadratic cost index can be calculated directly. It was noted that the
extension to systems with variable dynamics (variations in A), as well
as variable actuator structure, is trivial as long as the dimension of
the state is constant.

The major applications of this work are in the calculation of a
robust gain for a set of linear systems and in the calculations of
stabilizing gains for systems with wvariable structure, such as occurs in
failure, repair, or reconfiguration. A second application will be
covered in the next Chapter and involves using these calculations in a
computer-aided design procedure for the determination of the relative

effectiveness of various redundant component configurations.



143

CHAPTER &

COMPUTER-AIDED DESIGN

6.1 Introduction.

In this Chapter, two specific applications of the non-switching
gain methodology to computer-aided design are presented. Example 6.1
illustrates the usefulness of the non~switching gain methodology in
the selection of an actuator design. Five possible designs are
analyzed using the non-switching gain calculations as a basis for ranking
the designs with respect to their expected performance. Example 6.2
compares two actuators, of which one is more reliable, but less
effective (in that it incurs a greater cost for the same action) than
the other. Three cases with various actuator reliabilities are presented
as a study of the trade-off between actuator reliability and effective-
ness.

These two examples are intended to demonstrate the usefulness of
the non-switching gain methodology in design studies. No general method-
ology for computer-aided design using the results presented in this
report is presented. Instead, tools are presented which can be used in

the computer-aided design of system configurations.

6.2 The Design Decision.

A designer often has many means of achieving a desired goal;
however, no unified methodology exists which can be used to choose a
given design that is "better” than any other. At best, a set of tools

can be developed which are applicable to specific situations and classes
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of systems. Of these tools, all that are presently available evaluate

a system either on the basis of performance or on the basis of reliabil-
ity. The methodologies described in this report optimize a performance
index which depends on both system reliability and system performance.
Therefore, it is logical to apply these methodologies to the computer-—
aided design of system configurations.

Example 6.1 is an aid in the design of a linear system for which the
state dynamics are fixed, but the actuator configuration is to be at
most two actuators (one level of either component or functional redundancy)

chosen from two types of actuators. The system in Example 6.1 is de-

fined by
- ax + .2,
k{t)eT (6.2.2)
T . . _ .
where Eﬂ:_ [xl,t' x2't, x3't] . In Cases i) and ii), I = {0,1} ;
in Cases iii), iv), v}, I = {0,1,2,3}. The cost to be minimized is
o0
T T
= + .2.3
I E[;:;Etgit u Ru, | T (6.2.3)

The cost of each actuator (labeled Q() and E]_) is to be the quadratic
cost incurred by the control input to that actuator. These costs are

represented by the quadratic weights r_ and r

0 1’ respectively, and are

equal in Example 6.1. The actuators act on different states of the
system; actuator ijapplies the control force to state X, while El

applies the contrel force to state x Each actuator can fail to an

3
actuator with zero gain, 0. Repair constitutes replacement of the
failed component with a new actuator, identical to the original ac-

tuator. The repair action is modeled using a Markov tramnsition pro-

bability p_r the probability of repair per unit of time. The actuators
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have identical probabilities of failure and repair per unit time, Pe and

P, respectively. The five possible actuator configurations are, in the

order in which they are presented in Example 6.1,

B - b | (6.2.4)
2’ = g (6.2.5)
B = oyl 2y (6.2.6)
8= [b,[ b (6.2.7)
= fb,lb (6.2.8)

Configurations E} and E? have two-state configuration dynamics directly
defined by the failure and repair probabilities per unit time. Con-
figurations g?, gé and E? have four-state configuration dynamics re-
presented graphically by Figure 3.2 of Chapter 3, Section 5. It is

not immediately obvious from the configurations and the state dynamics
which configuration is optimal. When a non-switching gain control is
used, the expected steady-state cost, given by equation (5.7.3), is

a measure of the expected performance of each configuration, and can be

used to rank the five configurations in order of system effectiveness.

System effectiveness is a measure of the expected performance of a
system, taking into account all postulated modes of operation. There-
fore, in Example 6.1, the non-switching gain and expected cost is com-

puted for each of the five design configuraitons.
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Example 6.1:

2.0000 . 5000 . 5000
A = 0.0 0.0 1.000
0.0 -1.000 0.0




Example 6.1 Case i)

By ~ [20]=conf.
_31 = 0 = conf.
l_pf Pr
B =
pf l_Pr
.9899
E = =
.01010

0

1

{conf. é configuration)

Convergent Coupled Riccati Equations:

G = [-4.863 -.2582  -1.733
—ns
[182.5  37.06 57.93
L)
5, = |[37-06 9.943 12.32
57.93  12.32  22.81
188.6 37.39  60.09
1
s, = |37.39 9.961 12.44
60.09 12.44 23.58
182.6  37.07 57.95
! A
m.s. = (37.07 9.943 12.33] = ¢
l=
57.95 12.33 22,82

T

Expected cost = x Cx

147
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Stability:
Configuration Stable
O(EO) yes
1(51) no

Interpretation: The steady-state non-switching gain exists; it
stabilizes configuration()(g{ﬂ , but does not stabilize confiéuration
1 (EJ) . Since the probability of being in configuration 0 (stablé)
(ﬂo ) is much greater than the probability ofbeing in configuration 1
{unstable) (ﬂl), the system configuration is stabilized using the
non-switching gain 91“5 in the control law

u, =G X
—t —ns—t



Example 6.1 Case ii)

B = =
Bo l Ell conf. O
B, = 2] = conf. 1 R = r
1-p, P, .99 .98
E = =
_pf l-pr .01 .02
[. 9899 T
T_T. = = O
.01010
L Trl
Convergent Coupled Riccati Equations:
G = -12.59 -1.484 —4.097}
—ns
1035. 125.0 271.4
L]
54 = 125.0 18.84 33.04
271.4 33.04 73.80
1069. 129.0 282.6
Y = 129.0 19.31 34.34
282.6 34.34 77'43_J
1035. 125.0 271.6
:TF.S. = 125.0 18.85 33.05
& i—1i
271.6 33.05 73.83

=

149
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Stability:
Configuration Stable
0 yes
1 no

Interpretation: The steady-state non-switching gain exists; it
stabilizes configuration O (EI))' but does not stabilize configuration
1 (EJ_). Since the probability of being in configuration O (stablé)

{ WO) is much greater than the probability of being in configuration 1
(unstable) (Wl), the system configuration is stabilized using the
non-switching gain Eins in the control law

u = X
B¢ T Gnst
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Convergent Coupled Riccati Equations:

[—2.469 -.1279 —.8983]

€ns 7 | 5460 -.1279 -.8983
[153.1  32.81 48.01 |
gé) = 32.81 9.050 10.92
48.01 10.92  19.03
(154.4 32.88 48.48
_;_ - |32.88 9.054 10.95
| 48.48  10.95 19.20 |
[~ -
154.4 32.88 48.48
gé = |32.88 9.054 10.95
48.48 10.95 19.20
[155.8  32.95 48.96
g; - |32.95 9.058 10.97
L48.96 10.97  19.38

153.2 32.82 48.02

32.82 9.050 10.92

[
M-
=

}-l-
|
l-—l- -
1}
[T
¥

48.02 10.92 19.04

T
Expected cost = x C

| 4
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Stability:

Configuration Stable
0 (EO) ves
1 (El) no
2 (B,) no
3 (Bj) no

Interpretation: The steady-state non-switching gain exists; it
stabilizes configuration 0 (EO ), but does not stabilize configurations
1,2,or 3. Since the probability of being in configuration O (stable)
(ﬂo) is much greater than the probability of being in any other con-
figuration (ﬂi, i=1,2 or 3) (unstable), the system configuration is
stabilized using the non-swithcing gain G in the control law

ns

u, = x
—t gns—t
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Example 6.1 Case iv)

B, = |—131|—1 = conf. 0 B, = I51|9]=conf.2
B = = . = = .
B |g | b,| = conf. 1 B, Ig | gl conf. 3
X, 0.0] 1.0 0.0
R = =
0.0 r, 0.0 1.0

P and T are the same as for Case iii).



Convergent Coupled Riccati Equations:

—Ins

[-6.097

| -6.097

|—762. 2

95.14

195.1

—
768.7
95.92

197.3

768.7
95.92

197.3
|

775.3

96.71

199.5

T
Expected cost = x C x

-.7347

~.7347

95.14

15.18

24.64

95.92

15.27

24.89

95.92

15.27

24.89

96.71

15.36

25.16

762.3

95.15

195.2

-2.011

-2.011

195.1
24.64

52.13

197.3
24.89

52.83

197.3
24.89

52.83

199.5

25.16

53.55
-

95.15

15.18

24.64

195.2

24.64

52.14

e

155
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Stability:
Configuration Stable
0(B,) yes
1(8,) no
2 (B,) no
3 (B}
B, no
Interpretation: The steady-state non-switching gain exists; it.

stabilizes configuration O (g%ﬂ, but does not stabilize configurations
1, 2, or 3. Since the probability of being in configuration 0 {stable)
(WO) is much greater than the probability of being in any other con-
figuration (ﬁi, i=1,2 or 3) {unstable), the system configuration is

stabilized using the non-switching gain Ewu; in the control law

u, =G b4
—t —ns—t
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Example 6.1 Case v)

= = f. 0 = = .
Bp |20 | ?—lJ con B, b, | _O_l conf. 2
= = conf. 1 = = -
=21 |9 ’ Ell B, o | g] conf. 3
ro 0.0 1.0 0.0
5 = =
0.0 I.'l 0.0 1.0

P and T are the same as for Case iii).
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Convergent Coupled Riccati Equations:

[-3.815 -.1312 —1.106]
G -
—ns [-2.956 -.5815 -1.486
(126.5  24.86 32.32
5;; = 24.86  7.066  6.842
32.32 6.842  10.69
(128.4  24.93  32.88)
__; = {24.93 7.09 6.863
32.88 6.863  10.85
_ _
127.3  25.01 32.72
lgé = J|25.01 7.097 6.921
32.72  6.921  10.89
(129.# 25.08  33.28
5; = 725.08 7.100 6.942
33.28  6.942 11.05

126.5 24.86 32.33

é ﬂiii 24,86 7.067 6.843
l=

32.33 6.843 10.69

I
e

|

T
Expected cost = x C x
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Stability:

Configuration Stable
0 (Bg) yes
1 (B;) no
2 (B,) yes
3(B,) no

Interpretation: The steady-state non-switching gain exists; it stabil-

izes configuration 0 and 2 (B _and B, ). Since the probabilities of

0] 2

being in configuration 1 and 3 (B

1 and 53 } are small (Trl and 1T3)

{(unstable), the system configuration is stabilized during the non-switch-
ing gain Ens in the control law

= G X
Et —ns —t
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From the results in Example 6.1, the design configurations are
ranked as follows, where > is defined as "is better than".

5583581 > %> 52 (6.2.9)

|

. . . . j k., .
One configuration is more desirable than another (E? > B) if

-

k
) i3 j_o'k . .
m8s . - T8, > 0 (negative definite) (6.2.10)
5 1t =0

I}

e

1
This criterion is reasonable; if g? > EF, then the expected cost usiﬁg
design configuration E? is always less than that using §F. If the left
hand side of equation (6.2.10) is not negative definite, but is only
semi~definite, then some other criterion must be used in addition to
(6.2710) to rank the various designs. For example, if one assumes a
uniform distribution of the initial system state X4 in the unit sphere,
and if the elements of the diagonal of the left hand side of equation
{(6.2.10) are all non-positive, then the trace operator may be used as a
ranking function. If the trace of the left hand side of equation (6.2.10)
is negative, then g? > EF. If the left hand side of equation (6.2.10} is
not semi-definite, then the designer must choose which of the state
variables are most important in an effort to eliminate the ambiguity of
equation (6.2.10). In Example 6.1, equation (6.2.10) alone is sufficient
to rank the designs.

The results stated in (6.2.9) are somewhat surprising. First,

consider b  and EJ_. A control input at time t using b enters the

0

1T, At time t+1,

0

d i i , =
system dynamics 1in state x3 where 54: [xl,t x2’t x3't

the same control is applied to state x, with a gain of .5; also,

1

X5 141 = At time t+2, that control is again applied to state x
r

X3 ¢” 1

with a gain of .5 . Now, consider
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the same situation, but with E_ instead of E{). In this case, at time

1

t+1l, the control is applied to state x . With a gain of .5, but

1

x3 e+l Therefore, at time t+2, the negative value of the original
, Aegatve

-x .
2,t

contreol is applied to state Xy thus partially cancelling the effect of

the original input. The same process occurs using E()' but is delayed

one time step; thus, the control affects state X, positively one additional

time step when}zo is used. Because of the added effectiveness of 20

1 2 . 1 4
over EJ_, B > B, and in fact, B" > B. Thus, even after accounting

for component reliability, configuration E}, which has no component
redundancy is more desirable than configuration E? or g? even though
configuration §é employs cne level of component redundancy.

Using this reasoning, one would expect g? to be the optimal design
choice; however, the example demonstrates that this is not the case.
Fromgns for Case iv), note that the control which is applied to EO
depends mostly on the unstable state Xy while more emphasis is given
to states x, and x_ in the calculation of the control for actuator ;11.

3

acts partially to stabilize the dynamics of state x_,

Thus, actuator }_3_0 1

while actuator EJ_ acts partially to counteract the negative effects of
the subsystem of states x, and X This type of control action is an
example of the use of functional redundancy, and is not possible with

. ; . 3 4
design configurations B~ or B .

The non-switching gain analysis of the proposed design configura-
tions yields information not only about the effect of various actuator
configurations but also about the effect of component reliability on

4 . 2 3
the expected performance. Thus, B is more effective than B, and B

. . 4 3 . . .
is more effective than E}; B and B are versions of the configurations
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2 1
B and B, respectively, with one level of component redundancy. Con-

. . 5 .
figuration B” is an example of functional redundancy; both actuators
provide control input to the same system, but are not identical components.

Thus, the additional reliability of component redundancy contributes

to ranking (6.2.9). The trade-off between system performance and system

reliability will be further demonstrated in Section 3.
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6.3 A Trade-Off of System Performance Versus Reliability.

The non-switching gain methodology can be used to study the
relative effects of actuator reliability and actuator effectiveness
on expected system performance. If a designer has a choice between
using a high reliability actuator rather than one with relatively low
reliability, but with a higher effectiveness, on what basis can a
decision be made? 1In Example 6.2, two actuators are considered. Each
actuator may fail to an actuatox of gain zerc (0) and be repaired

(replaced). The probabilities of failure and repair are Pe and P, .
i i

where i=0 or 1 and refers to the actuator (E{) or EJ_, respectively).
One actuator (94)) has good reliability, but the actuator gain is unity.
A second actuator (EJ_) has an actuator gain of ten (higher effective-
ness), and a lower reliability. If the actuators had the same relia-
bility, then actuator E]_ would be preferable--it incurs a smaller cost
for the same effect. In Case i) of Example 6.2, this reasoning is
demonstrated numerically; the steady-state non-switching gain favors
actuator EJ_ (the second column of E{)). {The two rows of the gain

)

matrix are compared; the top row corresponds to actuator ECY

In Cases ii) and iii) of Example 6.2, the reliability of actuator
2]_ is lower than the reliahility of actuator ElO' In Case 1ii) the
probability of failure per unit time of actuator 21' is five times
greater than the probability of failiure per unit time of actuator‘l_)_O ;
in Case 1iii), it is ten times greater. The probabilities of repair per
unit time for actuator E@_ are also lower than for actuator ELO'
Therefore, actuator Ell is significantly less reliable than actuator EC)'

Note that in Case ii), the optimal non-switching steady-state controller
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favors actuator 2() by a gain factor of 2.5 - 2.6; in Case i), actuator

b, is favored by a gain factor of 2.3. 1In Case iii), actuator 310 is
favored by a gain factor of 5.1. Tnus, the non-switching gain calcula-
tions can be quite sensitive to changes in component reliability.

Although the configuration states are identical for all three Cases of
Example 6.2, the configuration dynamics are modified by the changes in
actuator reliability. The effect of modifications in actuator reliability

on the non-switching steady-state gain and cost is pronounced. The

steady-state gain is very sensitive to the actuator reliabilities; the

expected steady-state cost increases as the reliability decreases. A

second effect demonstrated by Example 6.2 is interesting. In Case i),
configuration state 2 is not stabilized by the non-switching gain. As
the reliability of actuator E]_ decreases, the average steady-state
probability that the configuration is state 2 (actuator 94_ failed,
actuator Q{) operational) increases. Therefore, the non-switching gain
solution must concentrate more effort on stabilizing configuration state
2. Note that in Cases ii) and iii), configuration state 2 is stabilized
by the non-switching gain solution. It is interesting to note also that
the non-switching gains in Cases ii) and iii) are robust with respect to

configuration states 0, 1 and 2. ({Configuration state 3 is uncontrolla-

ble.)
The system dynamics in Example 6.2 are
= + . 3.
Tl T RELT By U (6.3.1)
k(t) £ I (6.3.2)
where I = {0,1,2,3} and x = [x X b4 1 T. The set { B }3
—t 1,t " 2,t 3,t —i 'i=0

of configuration states is given in Example 6.2. The cost to be
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minimized is

(6.3.3)
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Example 6.2:

2.0000 . 5000 . 5000
A = 0.0 0.0 1.0000
0.0 -1.0000 0.0
0.0 0.0
= . . = f- O —
B, 0.0  D.0 con B
1.0 10.0
0.0 0.0
gz = 0.0 0.0 = conf. 2 _13_3 =
1.0 0.0
1.0 0.0 0.0
-I.‘S =
Q = 0.0 1.0 0.0
0.0 0.0 1.0
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Example 6.2 Case 1i)

P = .01
f0
= = .01
fl
Convergent:
-.2059
C I
n -.4829
134.5
]
S5 = 30.06
41.49
|
|_134.5
1
= 30.06
=1
41.4¢9
138.5
]
= .27
s, 30
L42.96
138.5
T
= 0.27
42.97

= .98
ot
-.01076
-.02505
30.06  41.49
8.459 9.981
9.981 16.44
30.06  41.49
8.459 9.981
9.981 16.44
30.27 42.96
8.470 10.06
10.06  16.98
30.27  42.97
8.470 10.06
10.06 16.98
—
134.5  30.06
30.06  8.459
41.51  9.982

|=

-.07574

~.1789

41.51

2.982

16.45

It

9799 ]

.009999
.009999

.0001020

L -

!
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T le8
Expected cost = x C x

Stability:
Configuration Stable
0 (By) yes
1 (El) yes
2 (22 ) no
3 (23) no

Interpretations: The system x = [A + Eigqusl x is stable only for

t+1 t

i=0 and 1. The probabilities of the configuration being in states 2 and 3
(ﬁz and W3) are small; the system configuration is stabilized using the

control gain §1u; in the control law

u X
-t —ns =t



Example 6.2 Case ii)

pf = .01 P = .98
Q 0
P = .05 p = .90 m
1 1
Convergent:
-1.041 ~.05848 -.3639
9ns -
-.4058 -.02163 -.1464
176.6 36.37 55.60
1
So = 36.37 9.797 12.06
55.60 12.06 21'81J
176.9 36.39 55.71
L]
S, = 36.39 9.798 12.06
55.71 12.06 21.85
197.4 37.56 62.83
]
s, = 37.56 9.868 12.46
62.83 12.46 24.35
166.4 35.79 52.08
]
§{3 = 35.79 2.762 11.86
52.08 11.86 20.58
177.7 36.43 55.98
)
i Fiii = 36.43 9.801 12.08
1=0
55.98 12.08 21.94

s

.9378

.009212

.05206

.0005316
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T
Expected cost = x C x
Stability:
Configuration

0 (B,)

0

1)

2 (52 )
3 (By)
Interpretation: The system
= + B G
Etﬂ [a —i—nslit
is stable for i = 0,1,2.
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Stable

ves

yes

yes

no

Configuration state 2 is stabilized because the probability of the

configuration state being 2 (EQ ) is larger than in Case 1).



Example 6.2 Case iii)

P = .01 P
fa o
P = .10 P
t 1
Convergent:
-1.729
Ens N
-.3400
210.6 41.
1
55 F 41.04 10.
67.28 13.
213.2 41.
5, = 41.14 10.
68. 26 13.
212.3 41.
]
5, = 41.092 10.
67.92 13.
196.0 40.
= .19 .
§3 40.1 10
62.11 13.
210.7

L}
i m. 5, = 40.99
1—1

67.28

E

6062

1195

= .98
= .90
.09453 -,
.01858  -.
04 67.28
76  13.61
61  26.29
14 68.26 |
75  13.66
66  26.66
_
09 67.92 |
75  13.64
64 26.53 |
19 62.11
70 13.32
32 24.47
40.99
10.75

13.60

67.28

13.60

26.28

>

h8909
.009172

. 09891

- 001010_

Ie]
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T
Expected cost = X' C x

Stability:
Configuration
0 (Bgy)
1 (gl}
2(,)
3 (23 )
Interpretation: The system

=a+B.6 _1x

b 4 G
—t+1l i-—ns -t

is stable for i = 0,1, 2.
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Stable

ves

yes

yes

no

Configuration state 2 is stabilized because the probability of the

configuration state being 2 (Ez ) is larger than in Case 1i).



173

6.4 Summary.

In this Chapter, two applications of the non-switching gain method-
ology to computer-aided design (CAD) were presented. The purpose of
these examples was to demonstrate the usefulness of the non-switching
gain methodology in the design process. CAD has two uses: First, it is
used by the system designer in the evaluation and design of a system.
Second, it is quite useful to the theorist. In this research, for
example, without CAD techniques, a thorough knowledge of the methodologies
presented in this report could not have been gained. The equations
describing the switching and non-switching gain methodologies can be
derived, but their meaning in a specific context cannot be determined
theoretically. The purpose of this research was to study the inter-
actions between system reliability and optimal control. The method-
ologies presented in this report allow this study to proceed. The two
Examples of this Chapter study two specific areas of interaction
between system reliability and control. The door has now been opened to
the answers to questions on reliable control system designs. Computer-

aided design can provide the signposts to these answers.
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CHAPTER 7

CRITIQUE

7.1 Introduction.

In this Chapter, the major results of the report will be summarized.
In Chapters 3 and 4, the switching gain solution was developed and
extended suboptimally to stochastic systems. In Chapter 5, the non-
switching gain solution was developed. The problems associated with
system stability, including definitions of what constitutes a stable
system, and with the steady-state solutions to Problems A (Sections 3
through 5) and B (Section 6) were studied in detail in Section 7. The
equivalence of the two approaches to the non-switching gain solution is
proved in Section 8. The existence of a robust steady-state linear
feedback control system was studied in Section 9.

In the following sections, each major result will be discussed; in
Section 5, some suggestions for future directions in research will

be made.

7.2 The Switching Gain Solution.

The switching gain solution was derived in Chapter 3 as a control
methodology for linear system with quadratic cost criteria and wvariable
actuator configurations. The resulting control law was to account for
the failure, repair and reconfiguration of the actuators by switching
the control gain on detection of a change in configuration. This type
of control law is, from Chapter 1, Section 4, a class II reliable control

methodology; an active (switching)} controller is used with a passive
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configuration design.

7.2.1 Deterministic Cptimal Solution.

The switching gain solution of Chapter 2 is derived as the optimal
solution for the discrete-time deterministic optimal control problem.

It is the optimal contrecl simply because the structure of the discrete-
time system allows perfect observations of the system structure with
one-step delay. Therefore, there is no need for the contrel law to
have a dual effect; in fact, there can be no dual effect, since the
control law does not affect the observation process, for almost all
values of the control.

A minor drawback to the switching gain solution is the computa-
tional burden of iterating the Riccati-like equations (3.3.6), and solving
for the optimal control using equation (3.3.7), backward in time for
each time instant of the control interval, or until the steady-state
solution is achieved, when one exists. Fortunately this computation is
done off-line, and the various optimal gains are then stored for on-line
use. On-line, the controller simply determines which structure the
system was in at the previous time instant and chooses the corresponding
(stored) gain. The control law is then a linear feedback control using

that particular gain.

7.2.2 Non-Extendability to Stochastic Systems.

Unfortunately, the switching-gain solution does not extend optimally
to systems where noise is present. When noise is present, it is no
longer possible (in general) to determine exactly the previous value

of the system structure. It was shown in Section 3 of Chapter 2 that
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in such a case, the optimal control law exhibits a dual effect; i.e.,
the control law influences the measurement of the system structure. In
a real-life situation, it is unlikely that a system with no internal
noise will be found. Unfortunately, the optimal (dual) control law is,
in practice, unsolvable due to the immense computer resources which are

required.

7.2.3 Suboptimal Extensions.

Because of the dual control effect, the deterministic optimal
sclution is the only closed-form solution available. Thus, it is in
our interest to look for suboptimal methodologies which extend the
switching gain solution to the stochastic case. In Chapter 4, two of
these methodologies were studied: Hypothesis testing and dual identi-
fication. While hypothesis testing is a measurement strategy, dual
identification modifies the control in order to guarantee a perfect
observation of the system structure with the next measurement. Both
methodologies are presented in their simplest form, since the problems
of stochastic control of systems with variable structure are not within
the scope of this research. Two comments are in order, however:

First, at least in the form presented in Chapter 4, a dual identifica-
tion algorithm is computationally intensive. Since it is an on-line
algorithm, a significant computational capacity may be regquired in its
implementation. Second, it is observed that the optimal stochastic
control law, if it could be calculated, would rely on both estimation
and dual control, the two concepts which are represented in Chapter 4 by

hypothesis testing and dual identification, respectively.
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In a suboptimal implementation using dual identification, the
algorithm would most likely be used only at intervals; the implementa-
tion would rely on an estimation algorithm for the remainder of the
time. This scheme would attempt to minimize the degrading effect of
dual identification on the state trajectory by using it only to guarantee
that the estimation algorithm was tracking the system configuration
properly. Thus, the system response would be roughly periodic, with
the state being driven away from the origin in order to obtain an
accurate estimate of the configuration, and decaying back toward zero
between uses of the dual identification algorithm.

This type of control strategy deserves some attention in future
research activities. It is similar to the class of self-testing
systems which perform diagnostic testing of their configurations
at intervals. It is also, at present, the only methodology which takes
advantage of the dual property of the control law in systems with

variable, imperfectly observed, structure.
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7.3 The Non-Switching Gain Solution.

The non-switching gain sclution of Chapter 5 was derived as an
alternative to the switching gain solution of Chapter 3. Although
the non-switching solution is, in general, suboptimal, the on-line
complexity of the solution is less demanding than that of the switching
gain solution. On-line, the non-switching gain solution has the same
complexity as does the standard linear quadratic solution. Off-line,
the computational requirements are equivalent to those of the switching

gain solution.

7.3.1 The Necessary Conditions-~Unscolvability.

When the non-switching control problem is formulated as an
equivalent deterministic control problem (Chapter 5, Section 4), the
necessary conditions from the matrix minimum principle [Athans,41]
yield a two-point boundary value problem which is not explicitly
solvable; at the present time, the solution to this problem appears
intractable. The necessary conditions are used, however, in conjunction
with an equivalent problem (Chapter 5, Section 6), to prove scme strong

properties of the solution to the eguivalent problem.

7.3.2 The Equivalent Problem.

The equivalent problem formulated in Section & of Chapter 5 has
the advantage cover the original formulation that a closed-form expression
for the sclution can be readily cbtained. From the necessary conditions
of Section 5 in Chapter 5 for the original formulation, it is shown that
the accumulated costs over the control interval for a specified gain

sequence are identical for the two formulations. From this, in Sectien 8
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of Chapter 5, it is shown that if the steady-state solutions to both
problems exist, then they are identical. This is a major result, since
the steady-state solution to the second formulation is calculable,

while the solution to the first formulation is not.

7.3.3 Existence of a Stabilizing Gain.

Only one major result remains; one would hope that the steady—sﬁate
solution to the second formulation exists if and only is the steady-state
solution to the first formulation exists. In Section 7 of Chapter 5, the
meaning of "steady-state" is precisely defined for both problems. In
order for the concept of a steady-state solution to be well-defined, an
exact definition of stability must be given. Two definitions are present-
ed. Stability is defined as the usual concept of mean-square stability.

A definition of cost-stability is presented as the condition when the

expected cost for the infinite horizon problem (unnormalized by time)
is bounded. It is proved that the solutions to the two formulations
are equivalent in that one solution is cost-stabilizing if and only if
the other is also. Cost stability is shown to imply mean-sguare

stability; the reverse is not necessarily true.

7.3.4 Problems with Convergence.

There are two criticisms of the results of Chapter 5. First,
although cost-stability is not implied by mean-square stability, it is
possible that, for the specific form of the non-switching gain solution,
the two definitions are equivalent. This is a minor point, in that the
equivalence result is already very strong; it yields a procedure for

the calculation of the steady-state solution to the two point boundary
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value problem which converges if and only if that sclution exists.

Second, there is still a minor problem concerning the convergence
of the non-switching gain scolution. The equivalence theorems of
Chapter 5 only require the solution to have a steady-state, which may
be a limit cycle. A limit cycle is still copacetiec, but it is harder
to implement than one gain would be. Therefore, it is desired that
conditions be found for which the possibility of a limit cycle is
ruled out.

Thus, two possible topics for future research are the examination
of the exact relationship between cost-stability and mean-sguare stability
for the non-switching solution and the determination of conditions for

which the possibility of limit c¢ycles as solutions is eliminated.

7.3.5 Existence of a Robust Gain.

A spin-off of the non-switching gain solution of Chapter 5 is
the development of an algorithm which determines when a robust gain
for a set of linear systems exists (Section 9). 1A robust gain is a
gain which stabilizes each mode of the system configuration regard-
less of the configuration dynamics. This algorithm is developed by
noting that the robustness problem can be reformulated as a non-switch-
ing gain problem. Since the non-switching gain is, in the steady-state
case, the solution to the first formulation (Section 4, Chapter 5), and
since it is stabilizing if and only if a stabilizing gain exists, then
by the special structure of the robust formulation (Section 9), the
steady-state non-switching gain is robust when it exists. In additionm,

i1f the non-switching solution is not cost-stabilizing, then no robust
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gain exists. This is a very important result; it is unfortunate that
determination of existence of the robust gain fequires the solution

of the non-switching gain problem. At present, however, no test on a
system exists which determines when the non-switching gain solution

is cost-stabilizing. It is hoped that such a test will be developed in

the future.
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7.4 Computer-Aided Design.

Chapter & demonstrates the usefulness of the non-switching
gain calculations in computer-aided design (CAD). These calculations
provide the backbone for comparison studies on the relative system
effectiveness of various designs. 1In the first example, it is demon-
strated that the non-switching control methodology yields a numerical
value based on the expected performance of a design configuration
over the effect of the structural dynamics. This example demonstrates
that relatively subtle qualities of an actuator can be used to rank
various actuator configurations; in this case, the ranking depends
on the manner in which the control affected the system state and is
not obvious on a casual inspection of the configuration.

The second example demonstrates the ability of the non-switching
gain methodology to observe the trade—off between high reliability and
high effectiveness in an actuator. Both qualities are desirable, but
in this example, one actuator is highly reliable, while the second
actuator is not as reliable, but is highly effective in that it incurs
a much smaller cost in applying the same control effect to the system.
The non-switching gain problem is solved for a range of actuator reli-
abilities for the highly effective sensor. It is demonstrated that
the trend exists to depend more heavily on the high reliability sensor
as the reliability of the highly effective sensor decreases, even
though the operation of the highly reliable sensor incurs more cost.

Chapter & only touches upon the field of computer-aided design.
There is much work to be done in this field, and the purpose of Chapter 6

is only to establish the usefulness of the non-switching gain methodology
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in the design process. In the future, the applicability of the non-
switching gain methodology to CAD should be studied in great detail;
in particular, a comprehensive methodology for the application of the
techniques of Chapter 5 to CAD should be developed. This methodology
should include a strong argument for the validity of using the non-switch-
ing methodology in CAD. Specifically, research needs to be carried out
on the relationship of the costs incurred by various design configurations;
this is similar to justifying the use of the quadratic cost criterion
in the linear quadratic regulator. In order to compare two designs, a
valid basis of comparison, or cost index, must exist. The non-switching
methodology is proposed as being a valid cost index for the class of
systems for which it is applicable; this conjecture should be verified.

In addition to the usefulness of the non-switchipg methodology, it
has been mentioned previously that a valid definition for a reliable

design is that the design is cost-stabilizable. Since, for the deter-

ministic control problem presented in Chapter 3, the switching gain
solution is the optimal solution, the existence of the steady-state

switching gain solution is equivalent to the stabilizability of that

design. Hence, the existence of the steady-state switching gain solution
is necessary and sufficient to classify a design reliable.

In theory, the computation of the steady-state switching gain
soluticn can be used as a method in CAD for determining if a proposed
design meets the minimum requirement of stabilizability. In practice,
however, the proposed design will operate in a stochastic environment;
therefore, the switching gain solution is not an absolute measure of the

stabilizability of the design. 1In the future, research should be
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concentrated on the development of the concept of stabilizability to
more general stochastic systems than has been done previously. A2n
example of work in this direction has been given with the Uncertainty
Threshold Principle [Athans, et. El,,37], which is basically the deter-
mination of conditions of stabilizability for a specific system with a
specific type of control law. The work on the existence of the non-
switching gain solution for a simple system (Chapter 2, Section 7)

is another example. It has been demonstrated in this research that the
concepts of systems reliability and stabilizability are crucially
interconnected. It is left to future research to determine more general
conditions of reliability and stabilizability and to implement these

conditions in computer algorithms which can be used by the designer.
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7.5 Suggestions for Future Research.

Several suggestions for future research have been presented in
Sections 2,3 and 4 of this Chapter. In this Section, a summary of these
suggestions will be given.

In Chapter 1, three classes of reliable control methodologies
were given. These are

I) Passive (Robust) Controller Design

TI} Active (Switching) Controller, Passive Configuration
Design

III) Active Controller, Active Configuraticn Design

Of the methodologies presented in this report, the non-switching
gain design is a class I methodology, and the switching gain design is
a class II methodology. Class III methodologies are not represented
in this report. This class is currently largely in the realm of
"blue sky” theory. Unfortunately, there is as yet no adegquate model
of configuration dynamics which exhibits a state and control structure.
Over the next ten years, one should see much research activity in the
area of class III methodologies and their control structures,

In class IT methodologies, much effort should be concentrated on
extensions, either optimal or suboptimal, of the switching class of
control laws to stochastic systems. At present, most work has been done
in estimation theory, since the difficulties associated with dual
control are widely recognized. The ability of a control law to perform
diagnostic testing for changes in configuration has yet to be exploited
theoretically, although many heuristic algorithms have been used, both

in control systems and in the more established field of fault detection
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and identification in digital systems. Dual control is a form of self-
testing, and can be utilized as such, even if an optimal control is

not known. The dual identification methodology of Chapter 4 is an
example. This field requires a large effort, and should be rich in
research opportunities.

The class I methodologies are represented in this research by the
non-switching gain scolution. The work done in Chapter 5 on mean-square
stability and cost-stability of solutions is not unique to this class of
problems. Much remains to be done in the classification of what consti-
tutes a stabilizable system, whether with respect to a non-switching
contrel law or something more general.

Since reliability can be defined as stabilizability with respect
to some class of control laws, research into the stabilizahility of
dynamic configuration systems is the key issue in reliable control
system designs. Much work, including this research, has been done on
the assumption that the system is stabilizable; however, little progress
has been made in determining why a given design is stabilizable.
Although iterative tests were developed in this report for determining
stabilizability, a thorough understanding of the reason these tests
either converge or fail to converge is lacking. Much work still must be
dene. With this should come a resolution of the problems with limit
cycle steady-state solutions to the non-switching gain methodology.

In Chapter 6, the usefulmess of the non-switching gain solution in
computer-aided design was demonstrated. CAD is a field unto itself; many
opportunities exist for research in this area. Unfortunately, most

research is application-specific. CAD is useful not only to the designer,
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but also to the researcher. It is a powerful tocl in the building of
the concepts of reliable control systems design, and it should be

developed in parallel with any future research.

7.6 Summary.

In summary, the main purpose of this research was to establish a
foundation in reliable control system design methodology which would
provide the basic concept of a reliable control system. In achieving
this goal, the linear gquadratic variable actuator contrcl problem was
studied in some detail. Optimization problems were formulated which
represented both system performance {in the quadratic performance index)
and system reliability (in the expectaticn of the performance index over
all possible structural trajectories). The optimal control law was
solved analytically for the deterministic system; this was the switching
gain solution. It was clearly illustrated by example in Chapter 2 that
the switching gain control law could not be extended analytically to
the control of stochastic systems. This example demonstrated the dual
effect of the contrel law; in general, the control law will influence
the measurement accuracy optimally (in the sense of minimizing expected
cost) when the control can influence the accuracy.

Stochastic extensions to the switching gain methodology were proposed
in Chapter 4. 1In particular, the dual identification algorithm is an

illustration of the self-testing capacity of dual control laws. The

study of the uses of the dual contrcl effect in the design of reliable

control systems is a promising research area of the future.
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In Chapter 5, the non-switching gain sclution was developed. This
solution led to an algorithm for the determination of robust linear
constant gain contreol laws for a set of linear systems with different
actuator configurations. In addition, the resulting gains are optimal
with respect to a given quadratic performance index and exist if and
cnly if any robust gain exists.

In conclusicn, the unifying concept of this report is: What
constitutes a reliable control system, or a reliable design? A major
connection was established in this research between the concepts of
reliability and stabilizability. Iterative procedures were developed
for the determination of whether or not a given linear system of the
type considered in this report is reliable, with respect to both class
I and class II controllers; i.,e., non-switching and switching gain

controllers, respectively.
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DEFINITIONS FROM MIL~STD-721B
25 August 1966

RELIABILITY
The probability that an item will perform its intended function
for a specified interval under stated conditions.

AVAILABILITY

A measure of the degree to which an item is in the operable and
committable state at the start of the mission, when the mission is
called for at an unknown (random) point in time.

DEPENDABILITY

A measure of the item operating condition at one or more points
during the mission, including the effects of Reliability, Maintain
ability and Survivability, given the item condition({s) at the start
of the mission. It may be stated as the probability that an item will
(a) enter or occupy any one of its required operational modes during a
specific mission, (k) perform the functions associated with those
operational modes.

CAPABILITY
A measure of the ability of an item to achieve mission objec-
tives given the conditions during the mission.

OPERABLE
The state of being able to perform the intended function.

MAINTAINABILITY

A characteristic of design and installation which is expressed
as the probability that an item will be retained in or restored to a
specific condition within a given period of time, when the main-
tenance is performed in accordance with prescribed procedures and
resources.

SURVIVABILITY

The measure of the degree to which an item will withstand hostile
man-made environment and not suffer abortive impairment of its
ability to accomplish its designated mission.
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A2.1 Exact Optimal Solution for Deterministic Case, Chapter 2,
Section 2. ’

From (2.2.7) and using dynamic programming, we wish to minimize

2

2
V(xt. k(t-1), u_, t) = E(q:-:t +orug

t

*
+V (ax +b , k(t), t+l] x,) (a2.1.1)

k(t)ut
*
where V (-,k{t), t+l) represents the minimum cost-to-go, given
k(t) at time t+1.
This minimization can be carried out because X, is known exactly
at time t, and therefore_’lt lisknownexactly by equation (2.2.10).
The control u, is computed from

J 2 2 *
0 o (qxt rug Trotv (axt+but,k 0,t+1)

1 t bt

%
+mT. V {(ax_+ lﬂl ,k=l,t+l)) (a2.1.2)
t

and the assumption that

* . _ 2
v (xt,k—l,t) = xtsth (n2.1.3)
resulting in equation (2.2.8). Equations (2.2.12) and (2.2.13) are
then obtained by substitution of (2.2.8) into (A2.1.1); these

equations validate assumption (A2.1.3) by induction.
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AZ.2 Exact Optimal Solution for Stochastic Case, T=0, 1, 2=T
{(1-d example).

The formulation is the same as in A2.1, except the system is
now represented by

X1 = axt+'bk(t) u, + Et {a2.2.1)

Et is white noise with zero mean, variance I, and probability dis-

tribution p(£), which is uncorrelated with any other variable. To

illustrate the complexity of the solution, the time set is chosen as
* *

{0,1,2}. The problem is to find uo and u., such that

1

2 2
Vi(x ,0) = E(J) = E (x2q+ u r}y+x_qlx
0 £ t t 2

r T (R2.2.2)

0 0

*
is minimized. Let V denote the minimum value of V. Assume
ay =0 (2) (A2.2.3)
where ¢t is a mapping from the information at time t (Zt) into the

contreol space.

Z =1 T ’ ==y r LR
. { o' %o’ Yo uL_q xt} (22.2.4)
then
* . [ 2 2 *
vV (x.,0) = min Eix.g+u.r + V (x ,l” Z (A2.2.5)
0 0 =b (2.) {70 0 1 0
C "0 0

by dynamic programming. Also

* . { .2 2 * |
v (x.,1) = min E, x7q + ujr +V (x,2)| 2 (p2.2.6)
1 =6, (2.) | 71 1 2 1]
1 171
* 2
But V (x2,2) = X,4q, SO (A2.2.6) becomes
*
v o(x ,1) = min E Jx2c1+ u2x'+ xzq[Z (a2.2.7)
1 A 1 297
1 11
- - b2 2 2 p
7m1n Elxlq+ ulr+(axl+bk uy +El) qul[
ul—cbl(zl) 1

(a2.2.8)
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now, z, = {E(),xo,uo,xl}, so
(A2.2.8) = min x2q + u2r
u =p_(2) 1 1
1 "1 1
¢+ E 7. (1|1) (ax.+ b.u.+ £,)°q (32.2.9)
= i 1 i1 1

where wi(1]1) is the probability that k,

expectation inside the sum,

(2.2.9) = min xzq + uir
uy =6, (7))

N

+ i Tr.(l|1)(a2x2 + bou +
i 1 1
1=0

= i, given Z Bringing the

1°

=+ 2abixlu1)q (A2.2.10)

Differentiating {A2.2.10) w.r.t. u, and setting the result equal to

Zero:

]
2
0 = 2ru + Z;ﬂi(l|1”2biul+

or

1
[ Z M. (1[1)b, | qa
* 1=
U, = -

:i: 2

r + T. (1| g
1 1

1=0

2abixl)q (a2.2.11)

{n2.2.12)

Substituting (A2.2.12) back into (A2.2.10), define S. and T, as

Tl = =g

s = (a2 + 1)g
2

!
m.lub, | 4
1 1
2 1=
a ]

2
r + :i: T (1| Db | g
1 1
1=0

1 1
(p2.2.13)

(a2.2.14)
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and

*
Vix 1) = x°S. + T (A2.2.15)

A few remarks must be made about the probability distribution over kt,

given Zt or Zt+1'

Notation:
Fi(t|t) = probability that kt = i, given the available information Zt'
ﬂi(t[t+l) = probability that kt = i, given the available information

Ziy1
From the Markov property,
m{t|t) = PT (t-1]¢) (A2.2.16)
Egquation (A2.2.16) is the propagation equation for the distribution T.

The form of the update equation is given and proved in the following

lemma :
Lemma A2.1:
p(x, . -ax,-b.u )W, (t|t)
t+
(et = 1Lt 1t i (A2.2.17)
;z; p(xt+l—axt—bjut)ﬂj(t|t)
Proof:
Note that
plx,  y-ax ~b.u ) = p(xt+l|Zt,ut.k(t)=l)

where ut is not a random variable. Also,

moele) = pkit)=ilz)
_ plRt)=1i,m ,x 0,00 rx)
p(lo rxofuor - th)
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then (A2.2.17) becomes:

Pix, ) 2 m K (0)=1)p(kit)=i]z,)

t+l

t+l - P
(xt+llzt'ut)

pikit)=i|z
which is Bayes rule. 0.E.D.

Returning to equation (A2.2.5), and substituting (a2.2.15),

*
V (x.,0) = min E {xzq + u2r + xzs + T |Z } (A2.2.18)
0 2 = _(Z) 0 0 1 1'"0
0 "0 .0
2 -
= min E{x.q + u2r + =g
u_=b (Z ) 0 0
070

2
:i: 2.2
[ ni(ljl)bi] q“a
1=0

+ xi q(1+a%) - 7, (A2.2.19)
2
r + [ ﬂiu|Uqu
1=
2 -
= min XxXg + ur + HEgq
506 Z ) | °
0
2
2 2
1 L , ; [ _Oﬂi(l|l)bi] qa“a
S5 D3N I FOTCIN
= =0 2
Ko=o [ %] R(x.) r o+ [:i;ﬂ.(l|l)b.] q
1 i i
l:
*dp(x. |k ,k._,Z )p ™ (A2.2.20)
1171770 %0 K k kg0
where
p(x.-ax_-b.u ).
m n = :i: b, T30 (a2.2.21)

J
1=0
1; D(xl ax, biuo)ﬂi,o
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(A2.2.21) is a combination of equations (A2.2.16) and (A2.2.17).
(32.2.20) can only be solved numerically (in general}; this
a numerical minimization of a function the computation of which

four numerical integrations -- a difficult task.
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A2.3 Exact Solution of Stochastic Case Over T =0, 1, 2 =T

for a Specific Form of p(f), Chapter 2, Section 2.3.1.f
Assume, for the problem in A2.2, that
575+ for -/3T < £ < /3F
p(L) = (A2.3.1)

0 , otherwise
Suppose |u0l > 0 1s large enough such that

p((bko—bi)uo + go) =0, i # k, and goe [-¥3%,/3%)

Then

. - =b. u )T,
pijp(xl axO ] O) 3,0

S; T (1|)b, = 1=0 b, (A2.3.2)
i i :i;

i}

p(xl—axo—b u )

k 0 k,0
1 Ve o'
piko 2/3% ko |

= :i; 1 b, (A2.3.3)
= :i: p.. b, (A2.3.4)

= lko i

Similarly,

n.(1|1)b? = B. b2 (a2.3.5)

i i ik 1

1= =0 )

Then, from equation (A2.2.14),

2

Sl(ko) = (a"+l)g - a 5
r + i: P bi]q

(62.3.6)
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From equation (A2.2.20),

* 2 2 -
v (x ,0} = min X g +tu.r+ =g
0 u=b (z) 0 0
0 "0 0
1 1 5
50 DN EERTNEY
k 0 W)
= =0
ko 0 kl 0
R(EO)
2 2
[i; pik b1:| 4
2 2 11= 0
e { (@ +l)g - a dp(Eq) T
k. .,0O
r + b2 klko 0
Pix °3 14
1= 0
(32.3.7)
min x2 + 2 + =
= u_r+ =
u=¢ (Z) 0 % ° ?
o0 O
1
2 2 2 2
+ :i: T :E: P (a x. + b u + 2ab, x.u
=, ko,O = klk0 0 kO 0 ko 00
0 1
2 2
2 2 L— piko b1 @
+Z) (a +1) g- a (A2.3.8)

Differentiating with respect to u and noting that S, does not depend

o’ 1
on UO;
0 9t 0

= —EE'V (xo; )
1 1 R

= 2u_ r+ Zw 2 P (2b° u_ +2ab, x.) S (A2.3.9)

0

o Ky O “ kiky kg O k0" 71

Then,
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(A2.3.10)

This solution is valid only when |u0| >0 is large enough such that

D((bk —bi)u

0 0]

|(bk b ) ug + £y | >V3E, £,€ [-V3E, V351

0

must be satisfied.

i) Assume (bk —bi)u > 0. Then (A2.3.11) is satisfied if

0 0
(b, -b.} = V3E > /3%
ko 1 uo

or

(b, -b.) > 2V/3E
i‘u

ii) Assume (b -bi)u < 0, Then (A2.3.11) is satisfied if

k0 0

(bk _bi)u + V35 < -V3H
0 0]

or

(bk —bi)u < ~2V3E
0 0]

*
Therefore, u, must satisfy

[ (b, =b,)u’ | > 2/3%
ko 10

for (A2.3.10) to hold.

*
Notice also that when (A2.3.10} is the optimal solution, u

identical to the deterministic solution.

+ EO)=0; i#ko and EOE [- V3%, V3%]. Thus,

(A2.3.11)

(a2.3.12)

(A2.3.13)

(A2.3.14)

(r2.3.15)

(a2.3.16)
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A2.4 Existence of Steady-State Solution for 1-d Example.

From Chapter 2, Section 2.2, the coupled Riccati eguations for

5 and S, are

0 1
[p..ab S + (a/b)S 12
rlPy o,t+1 @ Poptd 1,t+1
S =g +
0,t 2 2
+ +
[x + Py b Sy 1q TP (/DS 1142
bs + 2
. L PIP 2D S,y * Py (@DIS) Ll s
11 2 2 0,t+1
+ .
r + pllb So,t+1 le(l/b )Sl,t+l
] + a 2
P1183P5g 14 T Py @IS L
MRZYE P 2 51, t+1
+ 1 '
PIx + Py 0Sy 141 ¥ Py (I/BIS) )
(A2.4.1)
rlp..abs + (a/b)s 12
~ P12%7%0,e41 © Pao 1, t+1
Sp,e -9t 2 T3 2
r
+
[r + P b S 4 ¥ Py (1/BDS) )
+ 2
. . bIp ,abS; g T Pyylarbis (] .
12 2 2 0,t+1
+ +
ot P, PSg pa PPy (/BS,
+ 2
ep {a- P3P 5y 4y ¥ Py 8PS, <
22 2 2 1,t41
+ +
BIT + P10 Sy vyg Py (I/D7YS, )]
(82.4.2)
Define
S
h _ 1't (A2.4.3)
£t 8
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Ft = (p2.4.4)

Dividing both sides of equations (A2.4.1) and (A2.4.2) by SO a1’

manipulating terms, and using equations (A2.4.3) and (A2.4.4) vields:

2
+
) q 1 rlpllab le(a/b)_htﬂ]
Ty = 5 *s 2 2 2
+
0,t+1 0,641 [(x/Sy 1) + Py b° +p, (1/b)h ]
+
blp,,ab+ py, (a/b)h )1 2
TP N? 2 2
+
(/8g,¢41) PP * Py (I/BD)R
. ] pllak3+ p2l(a/b)ht+1 ) 2 .
21 2 2 t+1
+ +
blr/ Sy (1) + Py b +py (/6B
(A2.4.5)
[p,.ab + p._(a/b}h. 12
b -4 . 1 TP1o Pys t+1
tt S0 t+1 50 t+l [r/s + b2 + (l/bz)h ]2
d ! o,t+1 = P12 Pyo t+1
b[pl2ab + 922(a/b)ht+l] 2
toP, e - 2 2
(£/84 41} * PP + Py, (17D
. (a _ P1,3b + py,(a/bdh, )2h
22 2 2 t+l
PUE/Sy 1) * PP + pyohy,/b7)

(r2.4.6)



0,t" T1,t
P (a ) b[Pllab + p2l(a/b)h] ) 2
11 2 2
pllb + p2l(1/b }h
Pllab + le(a/b)h 2
TPy le - 2 7 | b
b[pllb + p21h/b ]
and
b[pl2ab + p22(a/b)h] 2
b= p,la - 2 2
P ,b° * P, (1/b%)n
plzab + p22(a/b)h 2
Py ke - 2 2. 10
blp, b° + p,,h/b"]
Let
o o |F1 Pz _ P2 1-p,
Pa1 Pao 1-p; P,
Then
blplab + (1-p,) (a/b)h] \ 2
r = - 1
P11 2 2
plb + (1-pl)(a/b h
p.ab + (1-p_){a/b)h \2
1 1
+ (l—Pl) a 5 5 h
b[plb + (1—pl)h/b )
and

b[(l—pz)ab + pz(a/b)h]

hl' = (1-p.) (a -
2 (1-p,)b% + p, (1/b") ]

S +2 a5 t > - and ht + h, Ft > T,

)2

(l—pz)ab + p2(a/b)h 2
+ p,la - h

b[(l-pz)b2 + p2(l/b2)h]

204

Then

(r2.4.7)

{(A2.4.8)

(a2.4.9)

(r2.4.10)

(A2.4.11)
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Solving for h and ' from equations (A2.4.10) and &2.4.11), if I > 1,

then there exists no steady-state soclution.
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Assume S S for k#L. Then (Ek— B, )Et—l =0,
which implies Et—l 1s in the null space of _B_k—— Eg ’ N(Ek— ER ).
Now, dimension (N(Ek - By }) <m because the Ek's are distinct.
Therefore,

dimension {J N(B._  -B,))<m (A3.1.1)

-k =L
k, R m
Therefore the set U N(Ek _EEL) has measure zero in R . Q.E.D.

k,%
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A3.2 Optimal Solution for Deterministic Problem.

For the system

= + B A3.2.1
B e{B,} L (A3.2.2)
=k (t) =k k=0
L+l
Tev1 - BT, T.,ER (23.2.3)

where T .
—1,t

r

= probability of Ej_at time t.
Assume that
1) Ew:is observed exactly

2) then changes to B

B k(e-1) Brit)

3) then Eﬂ:is applied

From dynamic programming, the optimal cost-to-go at time t is given

by
* i ’ T T
- = + R
Vix ok(e-1),t) EML¢ o )%ut)litgit u Ry,
—t Tt Tt
*
+ ' Pt n3.2.4
Vix g ok(E), D) [ x ( )
ASsume
V¥ x Lk(t-1),t) = x S, . x (A3.2.5)
=t ’ —t=k,t—t e
Then
) T T
= +
XeSx,e%¢ min X, Qx,+u, Ru,

T
+ .2.
z;pﬂﬂéit‘kﬁiﬂt)§¢,u1(55t*'513t) (3.2.6)
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and
T T
A3.2.6) = { +
( ) 1::1“= x )l it—Q—it EtE—t
LeTR0Ey
L
T T T_T
+ . A'S , + , i .
1; Pik [5t— B, es1 2% YU BiS, B8y
T T T T )
+ A . B . + B . i
Xe2 3 01218y YU B8, 1 BX " (A3.2.7)

Differentiating the r.h.s. of (A3.2.7) w.r.t. u, and setting equal

to zero:
0 = 2Z2Ru + .2BTS B.u + ZBTS Ax
=8y £ Pi| “2i2i,t+12i%¢ 2i2 i, 41 2%
(A3.2.8)
or
* T -1
Uy e-1),¢ - IR F tpikBiSi,t+lBi
1=0
. i: BTS AX (d3.2.9)
&g Pikmi i, e 25 e

*
is the optimal u, given ki{t-1).

Since no noise is present in the system, k(t-1) is obtained from

X and x as

c along with u.

t-1"' 1’

u (A3.2.10)

- = ] 1 = +
k{t-1} i 1iff Et Ax B. -1

——t=-1 i
Substituting (A3.2.9) into (A3.2.7), and eliminating it because the

equation must be true for all X, and the matrix equation is symmetric,



on simplification we obtain

: | i
s = a .S .
2kt 2 l & Pix 24,11
- i: Pik 25, e41 B4
| 1=0

C oy l
T

Pik Bi 85 11 i A

|

=
o

which verifies assumption {A3.2.5)

condition
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L
T -1
+
2 P B Si,e41B4
1=0

+
o

(A3.2.11)

by induction, along with the initial

(r3.2.12)
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A3.3 Proof of Lemma 1.

Consider the optimization of the cost-to-go given k{t-1) at time
t with final time T. This optimal cost~to-go is simply
*
k(t-1), .3.
VT(Et’ (t-1).,t) (A3.3.1)
where T denotes the final time. For the process with final time T+1,

the optimal cost-to-go is

Vo (x, k(t-1),t)

T
I
= E E
=

Since this optimal sequence is not necessarily optimal for the problem

Y

T
Ru, +Xp,0xq, | k(t_l)%

(A3.3.2)

[ 5

T T
+
QX +tul

with final time T, it must not incur less cost over {t,...,T}.

*
Vg (X, ok(E-1),0)

*
Vo (2, k(E-1),t)

+ E{Eggg + k(t—l)} (33.3.3)

x:oox. .|
T —~T+]1 =—T+1
Since the expectation term of equation (A3.3.3) is non-negative,

*

*
- > -
Ve (35t fk{t-1},t) 2 Ve (Et fk(t-1},t) (A3.3.4)
Now, note that
* k T 3.3.5
Vo (g ek(E-1),8) = L (A3.3.5)

and that equation (3.3.6) depends only on the number of iterations

(T~t) for the calculation of_§i £ and therefore,
r
T

* *
Vp (B ok(E-D) =) = v (xGk(801),8) (A3.3.6)
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-0
Therefore, {‘S'i t} A is an increasing sequence in that
5, - 8, >0 {(p3.3.7)
—i,t-1 —i,t —
*
Since, by hypothesis, VT is bounded over t, the §i N converge.
r

0.E.D.



APPENDIX

TO

CHAPTER 5



214
A5.1 Proof of Theorem 1, Chapter 5.

(<)
= T
Jp = tr[Z, (Q+G" RG)] + tr(Z, 9l (a5.1.1)
. T . . .
and JT-<B. Since Q + G RG > 0 and 1s constant for all t, this implies
lim tr( 1 =0 (a5.1.2)
tr0

which is exactly Definition 1.

(=)

From equation (5.4.6), note that

L L
(Z . Y, = F(Z. ). )
—i,t+]l "i=0 i,t7i=0 (A5.1.3)
. . . L
where F(+) is linear in (X . _ ). .
—1i,t "i=0
Since
lim tr([X ] =0 {A5.1.4)
tre T
for any choice of_§0 . || 7 || is bounded and |[F]] < 1. (otherwise,
n
}EO BHF (EO)H_,’ 0')
Then
1 ={ 1 T 1
T Ip = 2 ;tr{j_Lt (Q+G R G)] +;tr[_ZTQ_] (35.1.5)
igﬁtr@t} Lirig+ ¢'ral +Lerrz e (35.1.6)
< MEIE Wzl g+ crell el 2 )l gl (A5.1.7)
=

(A5.1.8)

< SEIIFIIt
T+
1-||F T
*H——-Hﬁ_ = 12,01 g + 6" rall (A5.1.9)

(lz I g+ c™rell)
1
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(A5.1.1Q)

Q.E.D



A 5.2 Proof gg_Remafk on Theorem 1, Chapter 5.

and

?;tr 2,9 <7,

Shwe2>0

T

E tr[Eﬂl] is bounded.
Therefore

tr@t]+0 as treo

The reverse implication is shown to be false by example*

Example 1: (Consider

Xer1 T Y
_JE
e t+1 Tt
Then
2
R S B
Elx =57 %97 O
but

* Example 1 is provided by Dr. D. Castanon of ESL.

1+ tr(Z, 0l

216

{A5.2.1)

{85.2,2)

(a5.2.3)

{A5.2.4)

(A5.2.5)

{r5.2.6)

{(A5.2.7)

(45.2.8)
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A5.3 Proof_9£ Theorem_g, Chapter E:

Let I =10, 1, 2, ..., L} (A5.3.1)
and

R = {x(0), k1), ... k(i)e 1} (A5.3.2)
Define the function U on the cylinder sets of RW(I)

K = {(k(0), k(1), ...)| k(i) fixed for i <T} (35.3.3)

for arbitrary T by

~

(k) {(A5.3.4)

- "k(o)o Prenko)” Prk)” 7 T Primk(e-1)

is the initial probability distribution over I and P = (p, .}

where T
- ij

8]
is the stochastic matrix of transition probabilities for the Markov
chain. By a theorem of Andersen and Jessen [Loeve, p.91,42], this
function defines a measure, || , on the U-algebra of EW(I) generated by
o]
the cylinder sets, U(RW(I)). Since p(f (I)) = 1, from the definition
of u1 on the cylinder sets of Qm(I),
v o]
e o (1)) =+ [0,1] {(a5.3.5)

is a probability measure, and since | extends unigquely from the cylinder

oo
sets, it is the probability of occurance of elements of O (% (I}).

Let
I (%) R" > [0,] (A5.3.6)
Jp0 ) = ), xeQxy * ugRuy
+ ETQ ET (45.3.7)
where
x =AX + B u (A5.3.8)
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4, 7 Gex, {35.3.9)
x = (k(0), k(1), k(2),...) (A5.3.10)
and let
J = 1lim J {A5.3.11)
T T

Since JT is constant on the cylinder sets with fixed sequences of
length T+1, JT is measurable. (There are a finite number of such

sets.) By Theorem A of [Halmos, p.84,10],J is measurable with respect

to u.

J()(x) : £ (D~ [0,%] (A5.3.12)
Let

X, = {x 2" (0] 360 (x) <= for xeR"} (35.3.13)
and

X2 =2 (m -X/ (35.3.14)

a0
Then_Xl andX2 are measurable subsets of £ (I), and therefore

E[J] < = 2 u(Xz) =0 {35.3.15)

= ] . 1
because J(x) is a non-negative function on R .
But

E_[E[T]] = tr[Z S} (A5.3.16)

from equation (5.7.14), and by hypothesis, r.h.s (A5.3.16) is finite.
Therefore, any trajectory X is an element of_X_l with probability 1,

and has finite cost.

oa

Therefore, {Gt}t=0

cost-stabilizes (5.3.1) with probabkility 1. Q.E.D.



A5.4. Proof of Theorem 3, Chapter E.

*
Notation: In the proof, the sequences (gt):_o

*
be referred to by G and §1“; respectively.

Proof:
I) (=>) Suppose Ens is cost-stabilizing.

*

* *
But G minimizes J. Therefore, J(G )< J(gns)::>J(§_)< o,

*
Thus, G 1is cost-stabilizing.

*
II) (<=) Suppose G 1is cost-stabilizing.

* *
J(G) = lim J_(G)
T><0

Since E {J (G)] = a3 _(G),
. b 4 nsT — T —

* * *
JIG) =imE [J _ (G)] =E [T _(G)]
X DST X ns

which implies

*
< oo
Tas S

Since G minimizes J , then
--ns ns

*
J (6 )<J (G) <=
ns —ms — ns —

and, since E [J ] =3 for all T, for fixed G,
X nsT T —

J(G ) < w,
—~ns

which implies that §1u5 is stabilizing.

and (G
—ns

219

will

Then J{G ) < oo,
—ns

*
Then J{G )< ® where

(A5.4.1)

{r5.4.2)

(a5.4.3)

(2A5.4.4)

{r5.4.5)

Q.E.D.
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A5.5 Proof of Lemma 2, Chapter 5.

For the control interval starting at time 0 and ending at time T,

*
the expected cost for the optimal control Gt is

*

Ip = tr[_Z_0§_0] (A5.5.1)

T

from equation (5.5.8), where the subscript T refers to the endpoint
of the control interval. Similarly, for the same process ending at

T+1, the optimal expected cost is

*

J
T+1

tr[gogo (T+1) ] (a5.5.2)

T
_ T * T *
= E tzz Et(g+gt(T+1) ggt(T+l) X,

T
+5T+12 iT"‘l’EO' EO (A5.5.3)

T * T * 1
= E 2 ¥, Q+ G (T+]) RG, (TH) x

R

+E[x (G (T+1) g (T+1) x + 2T E_,m 1]

=T lI‘+1Q T+1I —0 "=0

(A5.5.4)
The first expectation of equation (A5.5.4) is the cost corresponding
to the interval [0,T], and must be greater than or equal to J;; the

second term is positive. Therefore,

* *
Sl 2 I (A5.5.5)

* *
Since JT is bounded by hypothesis for all T, there exists a J such

that
¥
lim 3, = 3 (35.5.6)

0.E.D.



A5.6 Proof of Lemma 3, Chapter 5.

By direct computation,

T T
= J_(G) + Eix G'RG +
Ipep (@ '@ x, CSREx_ *+Xx.,

and since the expectation is positive,

T (8 > I.(G)

Since JT(Q) is bounded, it converges.

221

(A5.6.1)
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A5.7 Proof of Theorem 4, Chapter 5.

A) G —=G

because G converges to the steady-state wvalue
—ns pt —n

t ° St

which minimizes the infinite-time horizon cost Jns , and therefore,
ss

by the argument given above, also minimizes equaticn {5.8.9).

* *
B) Given £€>0, a T> 0 can be chosen which guarantees H Eﬂ:_ G ”< €,

*

1z

ie” Ei*|l<Eand Hlt_ 1T_||<E , for all t>T,

% 00
Then, by the Principle of Optimality, the sequence{ Et:}t—T

minimizes the infinite-horizon cost-to-go at time T. Consider the

problem min Jss(g) for initial condition Ed_' T , which has a solution

G
* * , 00
Ens independent of E-i . In the 1limit as €*0, the sequence { gt }t=T(E)
approaches the constant sequence of gains gf. Suppose 3~G>0 3-v;(€),
the optimal cost-to-go, satisfies
*
Veey S s T S (A5.7.1)

*
Then the sequence of constant gains G would yield a strictly lower
*
cost J_ (G )
58 =

* *
J (G} <J (A5.7.2)
ss — SS

*

since VT(E) approaches the optimal cost-to-go, given the constant

*®
sequence of gains G , in the limit, which is the solution to the

equivalent problem min JSS(Q) for initial conditions Ei . .
G

Therefore
*
G =G (A5.7.3)
— —ns

Q.E.D.
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COMPUTER ROUTINES
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AIM FORTRAN

M n

oo anaaann

SIBROUTINE ATM({NAA,Na, NB, NO, NR, NG, NS, NRA, N, M, LN, 4,B, R, (, P,

1l 38T,E,S5,%8,0,V,d, X, Y, R, PZ, QIORM, RAD, FADINV, BSB,WRK, IPVT, IEND,
2 IPRT)

*# %% DA RAM ETERS 1

INTEGER NAA, DM, N3, NQ, NR, NG, NS, NRA, N, M, KKQN, IPVT ) , IEND, IPRT
DOUBLE PRECISION BSB (NS, NAA, KCON), X NA, N) ,RAD (NRA, N) , RADINV (NRA, N)
DOUBLE PRECISION E (KCQW),SBT (NS, N) ,A(NA,NAA) ,B(NS, NaA, KCON)
DOUBIE FRECISION Q(NQ,N),R(NR,M) ,P (A, KCON),S NS, NAA, KCON)

DOUBLE PRECISION S8 (NS,NAA, K2CN),UMA,N),V(NA,N) ,W(NA,N),Y(MNA,N)
DOUBLE FRECISION PR(N),WORK(N),FZ(N),QIORM (NG, NAA, KCON)

***x%**OCAL VARIABIES:

DOUBIE PRECISION COND

INTEGER KIN, KOUT, I, K, KKM1, KK, J, END, L, KP, M1, ICTM1, IM1]
INTEGER ICOUNT

*¥*%**SBROUTINES CALLED;
MQF ,MAID, MLINE Q, TRNATB , MM UL, MSCAIE ,MATIO, EIGVAL,WEIGHT , TRNATA

------------------------------------------------------------------
------------------------------------------------------------------

* %%k *PJRIOSE :

THIS DOUBLE PRECISION SUBROUTINE COMRJUTES THE STEADY-STATE OPTIMAL
SOLUTION AND THE CCRRESFONDING OPTIMAL GAINS FCR THE PROBIEM
LESCRIBED IN THE PUBLICATION: ' ON THE RELATIONSHIP BETWEEN
RELIABILITY AND LINEAR QUADRATIC OPTIMAL CONTROL'

BY J. DOUGLAS BIRDWELL AND M. ATHANS.

(EQUATIONS (29) AND (33)).

**x*x*DARMETER DESCRIPTION:

(N INPUT:
NAA THE SECND DIMENSION OF THE ARRAYS 5,58, GNORM,
B5B,B AS DECIARED IN THE CALLING PROGRAM
DIMENS ION STATEMENT ;
N, NB, NQ, NR, THE FIRST DIMENSION OF THE ARRAYS
NG, NS, NRA A (AND P,X,U,V,W,Y),B(AND BSB) ,Q, R, QNORM,

S5 (AND SB,33T),RaD (AND RADINV) RESFECTIVELY
AS DECIARED 1IN THE CALLING PROGRAM DIMENSION

STATEMENT ;
N THE NUMBER OF STATES;
M THE NUMBER OF CBSERVATIONS ;
KCON THE NUMBER OF CONFIGURATIONS ;

A N BY N SYSTEM MATRIX;
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AIM PORTRAN
B N BYM BY KCON SET OF INFUT MATRICES;
R M BY M CONTROL WEIGHTING MATRIX;
0 N BY N STATE WEIGHTING MATRIX;
P KCON BY KCON PROBABILITY MATRIX;
E VECTOR OF IENGTH KCON CONTA INING THE NORMALIZED
EIGENVECTOR OF P CORRESFONDING TO THE EIGENVALUE
ONE ;
Qv QUTHRUT:
R, P2 SCRATCH VECTORS OF IENGTH N;
U, V,W,SBT, N BY N SCRATCH ARRAYS ;
X, Y
S N BY N BY KCON SET OF SOLUTIONS;
SB, BSB N BY N BY KCON SCRATCH ARRAYS ;
QIORM NBYM BY KCON ARRAY WHICH WILL CONTAIN THE

QR IN MATRICES FOR THE NORMAL LINEAR QUAIRATIC
A WBSIAN PROBLIEM ;

RAD, RADINV N BY N SCRATCH ARRAYS ;

WORK SCRATCH VECTOR OF LENGTH N;
IFVT SCRATCH VECTOR OF LENGTH N;
IEND NUMBER OF ITERATIONS USED IN SOLVING BOTH THE

LINEAR QUAIRATIC GAUSSIAN PROBLEM AND THE
FROBIEM DESCRIBED ABOVE ;

IPRT FIRST ITERATION AT WHICH THE SOLUTIONS WILL BE
RINTED;

OO0 ONOONoCaOO0nNono OO0 OOoOOaOnNoCO00n

COMMQR /INOU/KIN, KOUT
ICOT = 9
DO 215 KK=l, KCON
DO 4 J=1,N
Do 3 1I=1,N
3 Y(I,J)= 0.y
4 Y@3,d)= 1.0
DO 218 K=1, IEND
CALL M(F (NA,NB,Na, N,M, ¥,B(1, 1, KX) ,U,WORK)



A FORTRAN

QOO0

CALL MADD (NA,NR, N&,M,M, U, R, U)

DO 14 J=1,M

o 13 I=1,M
13 V(I,J)= .0
14 V(J,d)= 1.0

CALL MLINEQ(NA,NA,M,M, U, V,COND, IPVT, WCRK)
CALL TRNATB (NA,NB, N,M,B(1, 1, KK), X)
CALL MMUL (NA, N, N, N,M, N, X, ¥, U)
CALL MMUL (NA, NA, Na, N, M, N, U, 3, X)
CALL M(F (NA, A, NRA, M, N, V, X, RAD, WORK)
CALL MSCAIE (RA, N, N, -1, @D, RAD)
CALL M(F (NA,NA, Ma, N, N, Y, A, U, WCRK)
CALL MAID (MNA, N8, N, N, N, U, Q, U)
CALL MALD (NA,NRA, Ny, N, N, U, RAD, Y)
210  CONTINUE
KKM1 = KK - 1
WRITE (KOUT, 44441)
WRITE (KOUT, 44442) KKM1
CALL MATIO (NA,N,N, Y, 3)
CALL MMUL (NG, NA, N, N, M, M, V, X, QYORM (1, 1, KK))
CALL MSCAIE NG,M, N, -1. @8, QIORM (1, 1, KK))
CALL MMUL (NB, NG, Ny, N, N,M,B(1, 1, KK) ,GQNORM(1, 1, 1), V)
WRITE (KOUT, 6009 )
CALL MATIO (NG,M,N, GWORM(1, 1, KK}, 3)
CALL MADD (NA, Na, NA, N, N, V, A, V)
WRITE (KOUT, 44443)
CALL MATIO fNA, N, N, V, 3)
CALL EIGVAL A, N, V, V, IR, FZ ,WORK, LPVT)
215 CONTINUE
JEND= 1
WRITE (KOUT, 8003)
CALL MATIO (NA, KCQN, ICQW, P, 3)
DO 35 K=1, KON
DO 3@ J=1,N
DO 49 I=1,N
S(1,d,K)= 9.0
40  CONTINUE
3 SWJ,J,K= 1.@06
35 CONTINUE
START ITERATION TO CAICULATE S (1),5(2),. . .S(),GPT

CAICULATE SB
1 CONTINUE
DO 50 K=1, CQN
CALL MMUL NS, N8, N5,M, N, N, S (1, 1, K),B(1, 1, K} ,SB{1, 1, K))
50 CONTINUE :
CALL WEIGHT (NS, NAA, KCON, NS, N, M, E, SB, SBT)

CAICULATE RADICAL

226
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c
c

C
C

DO 55 K=l, KKON

CALL M{F(NS,NB, N8, N,M,5(1,1,K),B(1,1,K),BSB(], 1, K) ,ACRK)

55 CONTINUE

33

54

CALL WEIGHT (NB, NAA, KCON, NRA,M M, E,BSB, RAD)
CALL MADD NRA, NR, My, M,M, RAD, R, D)
DO 54 J=1,M
DO 53 1=1,M
RADINV(I, J)= 0.@0
RADINV{J,J)= 1.0
CALL MLINEQ{NA, NRA,M,M, U, RADINV, COND, IPVT,WCRK)

CAICULATE NEW SI,I=l,2,..... , KCON

1v8

lova

11

1085

12

DO 1228 K=1, KCON
CALL MMUL (NS, NRA, N, M, N,M, SBT, RADINV, U)
CALL WEIGHT (NS, NAA, KCON, N, N,M, P (1, K) ,SB, V)
CALL TRNATB (NA,Na, N,M, V,W)
CALL MMUL (NA, NA, NA, N, N, M, U, W, X)
CALL TRMATB (NA, M, N,M, U,W)
CALL MMUL (NA,Np, N, N, N,M, V,W, Y)
CALL MADD (NA, Na, Ny, N, N, X, Y, X)
CALL MSCAIE (NA, N, N, -1. D8, X)
CALL TRNATA (NA, N, X)
CALL WEIGHT (§A, NAA, KCON, A, N, N, P(1, K) ,S, V)
CALL MATDD (A, NA, N, N, N, X, V, X)
CALL WEIGHT (NB, Naa, KCQN, NA,M,M, P (1, K) ,BSB, Y)
CALL MADD (NA,Na, Na,M,M, Y, R, Y)
CALL MMUL @A, NA, NA, M, N,M, U, Y, V)
CALL MMUL (NA, N, M, N, N, M, V,W, Y)
CALL MALD (NA, NA, N3, N, N, X, Y, X)
CALL M(F (NA,NA, N, N, N, X, A, U, WCRK)
CALL MALCD NQ,NA,NS,N, N, Q, U, S(1, 1,K)}
CONTINUE
IF (ICOUNT-IEND) 11, 12,12
ICOUNT= ICOUNT + 1
IF (ICOUNT. IT. IPRT) GO TO 1
IC™M1 = ICOUNT -1
WRITE (KOUT, 5800) ICTMM1
DO 1805 K=1, KCON
KMl = K-1
WRITE (KOUT, 4022) KM1
CALL MATIO (NS,N,N,S(1,1,K),3)
CONTINUE
@ TO 1
CONTINUE

M
NA,M, N
M, N, N
Ns, N, N

I
L4

CCMPAUTE OPTIMAL COST FWNCTION

CALL WEIGHT (NA,DNBA, KCON, M, N, N, E, 5, U)
WRITE (KOUT, 7403 )
CALL MATIO NA,N,N, U, 2)

227
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C

Q@ TO (23, 22),JEND

¢ CWMMAIIE G OPT

23

217
C

CALL MMUL (NA,DNA, NA, N,M, N,W, 4, U)
CALL MSCAIE NA,N, N, -1. 8, 0)
WRITE (KOUT, 6089 )
CALL MATIO NA,M,N, T, 3)
DO 217 KP=1, KN
CALL MMUL NA,NB, NA, N, N,M,B(1, 1, KP),U, W)
CALL MADD (NA,NA, NA, N, N, A, W, W)
CALL EIGVAL(NA,N,W,W, R, PZ ,WCRK, IPVT)
CONTINUE

C CAICULATE COMARISON WITH QNORM

114
120
139

409

96

95

ICOUNT= @
DO 136 K=1, LN
DO 128 J=i,N
DO 1184 1=},N
5(I,J,K) = 8.D#
CONT INUE
S5&J,J,K) = 1.0
CONTINUE
JEND= 2
CONTINUE
DO 98 K=l,KON
CALL WEIGiT (NS, NAA, KCQN, WA, N, N, P(1,K},S,U)
CALL MCF(NA, A, NA, N ,N,U A, X,WCRK)
DO 9% L=, K™
CALL M(F(NS,MNB,N5,N,M,S(1,1,L),B(1,1,L),SB(1, 1, L) ,WORK)
CONTINUE
CALL WEIGHT (NS, NAA, KON, NA,M,M, P(1,K),SB, Y)
CALL M(F (NA,NA, NA,M, N, Y, QNORM(1, 1, K), U, WORK)
CALL MADD (NA, NA, M, N, N, U, X, X)
DO 95 L=l,KKN
CALL MMUL NS, NB, NS,M,N,N,S5(1,1,L),B(1,1,L),SB(1,1,L))
CONTINUE
CALL WEIGHT (NS, NAA, KCON, MA, N, M, P (1, K),SB, Y)
CALL TRNATB (NA,NA, N,M, Y,W)
CALL TRNATA {NA,N, A)

CALL MMUL (NA, NA, NMA,M, N, N, A, Y, V)
CALL MMUL (NA, NG, NA, N, N,M, V, QNORM (1, 1,K), ¥)
CALL MADD WA, NA, MA, N, N, ¥, X, X)
CALL TRNATB(NG,NA,M, N, QNORM(1, 1,K), V)
CALL MMUL (NA, A, N&, N, N, M, V,W, 1)
CALL TRNATA (NA,N, &)
CALL MMUL (NA,NA, M, N, N, N, U, A, W)
CALL MADD NA,NA, NA, N, N,W, X, X)
CALL MADD (NA,NA, My, N, N, X, Q, X)
M

CALL MC(F (NR, NG, N&,M, N, R, NORM (1, 1, K) , U, WORK)
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CALL MADD (NA,NA, My, N, N, X, U, X)
CALL SAVE NA,NS, N, N, X,51(1, 1, K))
98 CONTINUE
IF (ICOUNT-IEND) 4819, 4911, 4011
491@ ICOUNT= ICOUNT + 1
GO TO 400
4411 WRITE (KOUT, 9803)
CALL M(F (NA, NA, My, N, N, X, A, U, WCRK)
DO 1306 L=1, KN
Ml = L-1
WRITE (KOUT, 4699) IM1
CALL MATIO (NS,N,N,S(1,1,L),2)
1086 CONIINUE
@ T 12
4949 FORMAT (/,41 S, 15,/)
5098 FORMAT (//,11H ITERATION ,13)
6999 FORMAT (//,108 G OPTIMAL )
7800 FORMAT (//, 39 OPTIMAL CCST FINCTION X'CX, WHERE C 1S,/)
8@dd FORMAT (//,H P,/)
9400 FORMAT (//,38d CCST COMFARISON WITH NORMAL SOLUTION }
9529 FORMAT (2D 25. 15)
9603 FORMAT (/,H A )
9799 FORMAT (/,3 Q )
9343 FORMAT (/,H R )
9929 FORMAT (/,H B, 15,/}
44442 FORMAT (/,3H S , I5,/)
44443 FORMAT (/,13H A& + B*GZERQ)
44441 FORMAT (/,45H SOLUTION TO STANDARD OPTIMAL CONTROL PROBIEM)
2 STOP
22 RETURN
END
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SUBROUTINE SWITCH (NA, NB, NC, NG, NAR, NAC, N, IR, NdA, KKON,M, A,B, P,

’ C, G,
1Xd, E, ETEMP, EM,WCRK, Y, U, V,W, W, IPVT, ARRAY, DT', NFOINT, NGRIDH ,MC(y )

)0

** k% *PARAM ETERS :

INTEGER NA, N8, NC, MR, MAC, N, IR, MaA, KCON, M, NFOINT, NG

INTE@R MCOI WPOINT) , IPVT (N}

DOUBLE FRECISION A (NA,N),B(NB,NAA, KCON) ,C(NC,N) , X0 (N)

DOUBLE PRECISION G (NG, NAA, KCON),Y(N) ,WORK N) ,BM(NA,N)

DOUBLE PRECISION U (M) , Wi (NA, KON) ,W(NA,N), V@A, N)

DOUBLE PRECISION ARRAY (NAR, MC) ,P(MA, KK(N) ,E (KCON) ,ETEMP (KCON)

C ***&*[OCAL VARIABIES:
INTEGER IN (27) ,NsW(1),IT (10, 1)}
DOUBLE PRECISION WT(19),SWM, TWOPL, MIN, YMAX, YSF(1@) ,ZERO, XMAX, T, DT
DOUBLE PRECISION DD
DIMENSION R (39)

** k% *SBROUTINES CALLED:
MMUL,MSCALE ,MEXP, SAVE, FIG, THPLT

* %% 4% FUNCTIONS :
GGUB, CAIC

------------------------------------------------------------------
------------------------------------------------------------------

**x***PURFOSE:;

THIS DOUBLE PRECISION SUBROUTINE PERF(RMS THE COMFUTATIONS
AND PRINTS THE DATA FCR SIMULATION OF THE SWITCHING GAIN
FROBIEM RELATING TO THE PUBLICATION: 'ON THE RELATIONSHIP
BETWEEN RELIABILITY AND LINEAR QUALDRATIC COPTIMAL CONTROL'
BY J. DOUGLAS BIRDWELL AND M. ATHANS.

*xkk*PARM ETER DESCRIPTION:
MNA, N8, NC, NG, THE FIRST DIMENSION OF THE ARRAYS A (AND EM,

MAR W,W,V),B,C,G,AND ARRAY RESFECTIVELY AS
[ECIARED IN THE CALLING PROGRAM DIMENSION
STATEMENT ;

NAC COLUMN DIMENSION OF THE ARRAY CQNTA INING ARRAY
AS DECIARED IN THE CAILING PROGRAM DIMENSION
STATEMENT ;

N NUMBER OF STATES;

IR NUMBER OF OUTPUTS ;

NRA THE SECOND DIMENSION OF THE ARRAYS B AND G AS

CECIARED IN THE CALLING PROGRAM DIMENSION
STATEMENT ;

aaoaoooocoaoaonooaoOnaoOOoO0o0OO0OOO0aCannn
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A
&

MCCN

ETEMP

WORK

V'W' VW, EM
IPNT

ARRAY

Dr
NPOINT

NGRIDH

* % %k ¥NOTES «
BOTH 'THE OUTRUT AND THE CONTROL U(T) = -G(I)*X(I') ARE CCMPRJITED.
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THIRD DIMENSION OF THE ARRAYS B AND G AS
DECIARED IN THE CALLING PROGRAM DIMENSION
STATEMENT ;

NUMBER OF CONTROLS ;

NBY N SYSTEM MATRIX;

NBY M BY KCQN SET OF OUTFUT MATRICES:;

IR BY N OUrRUT MATRIX;

M BY N BY KCON SET OF FEEDBACK MATRICES;
INITIAL CONDITION VECTOR OF IENGTH Nj

VECTOR OF LENGTH NPOINT CONTA INING THE EXACT
CONFIGURATION INDICES;

SCRATCH VECTOR OF LENGIH KCON;

SCRATCH VECTOR OF IENGTH KCON;

SCRATCH VECTOR OF LENGTH N:;

VECTOR OF LENGIH N;

VECTOR OF IENGTH M;

N BY N SCRATCH ARRAYS;

SCRATCH VECTOR OF IENGTH N;

NAR BY NAC WORKING ARRAY;

NAR MUBT BE GREATER THAN OR EQUAL TO NSTEFS + 1
MAC MUST BE GREATER THAN OR EQUAL TO IR + M;
STEP SIZE;

NUMBER OF STEFS + 1;

NUMBER OF MAJOR ORDINATE DIVISIONS LGED

IN PLOTTING
NGRIDH MUST BE LESS THAN OR EQUAL TO 12;
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GGUB IS A RANDCOM NIMBER (ENERATOR

WCAIC IS A WBER-SUPPLIED, APPLICATION SECIFIC FINCTION TO
CAICULATE THE CONTROL U.

*k***HISTORY:

WRIIT'TEN BY J.A.K. CARRIG (ELEC. S¥5. IAB., M.I.T.,RM. 35-327,
CAMBRIDGE, MA 62139, Hi,: (617) - 253-2165), JANUARY 1978.
MOST RECENI VERSION: MARCH 22, 1978.

OO0 NOCo00O0on

COMMON /INOU/KIN, KOUT
caN =1
DATA YSF/10*1.@9/,IBIANK/4H  /
DATA TWOPI /3. 1459/
DATA MSC,MAXES, IXY, IEGY, ZERO,MM, NLG, IZERO/1, @, 6, 1, 1. @8, 1, 6, B/
DATA IN(1),IN(2),IN(3),IN(4)/48) , &2 43 ,44 /
DATA IN (5),IN(6),IN(7),IN(8)}/4H5 , 46 ,47 ,48 /
DATA IN(9),IN(1@),IN(11),IN(12)/449 , 419 , 41l ,4H12 /
DATA IN(13),IN(14),IN(15),IN(16)/4H13 ,&14 , 415 , 416 /
DATA IN(17),IN(18),IN(19),IN(28)/4H17 , 418 , 419 , 420 /
DATA IN (21),IN(22),IN(23),IN(24)/4H21 , 4122 , 4423 , 424 /
DATA IN (25),IN(26),IN(27)/4d25 ,4 Y, 8 U/
DATA IF (3,1),Ir(4,1),IT(5,1)/4dVERS, ©IUS T, HIME /
DATA IT 5,1),IT(7,1),IT 8, 1)/4d , & JH
DATA IT (9,1),IT(10,1)/4d ,&H /
1X=35
DO 61 IZ=],NFOINT

61 MCON (IZ)= MCON (IZ) + 1
TWOPL = 2. (DO*PWOPL
NSTEPS = NFOINT -1
T= 9. DY

3¢d1l FORMAT (24 EXACT CONFIGURATION = ,I3)
CALL MMUL (NC,N, N,MM, IR, N, C, X8, Y)
CALL MMUL (NA, N,M,MM,M, N, G(1, 1,MCON (1)) , X8, U)
WRITE (KOUT, 1590)
WRLTE (KOUT, 1200)
WRITE (KOUT, 1392)
WRITE (KOUT, 1080) T
1621 FORMAT (/,12H GAIN MATRIX)
WRITE (KOUT, 1189) (Y (I),I=l,IR)
WRITE (KOUT, 1182) (U{I),I=l,M)
C WRITE (KOUT, 1001)

39 ARRAY(L,J)= Y (J)
DO 49 J=1,M

40 ARRAY (L, IR+J )= U(J)

50 DO 100 K=1,NSTEFS
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72

73

55

56
52

831

882

4031
1902

79

83

%

WRITE (KOUT, 1882) K
IF(N.EQ. 1) GO TO 72

CALL GGUB(IX, 1,R)

WI'(2)= TWOPL*R (1)

CALL GGUB(IX, 1,R)

WI(1) = R(1)*DCO5 (WT(2))
WI(2)= R{1)*DSIN (WT(2}))

GO TV 73

CALL GGU3(IX, 1,R)

WI(l) = (R(1)*2,@D0)-1.@0
CALL MMUL (VA, N, N, MM, N, N, EM, WT, WORK)

CALL MMUL (NA, N, N,MM,N,M,B{1, 1,MCON (X)) ,U, ETEMP)

CALL MALCD (N, N, N, N,MM, ETEMP, WORK, ETEMP)
CALL MMUL (NA, N, N, MM, N, N, A, X8, WORK)
CALL MADD (N, N, N, N,MM, ETEMP, WORK, X&)
DO 52 KK =1, KON
CALL MMUL A, N, N,MM, N, M,B(1, 1, KK),U, Y)
CALL MSUB(N, N, N, N,MM, ETEMP, Y, Y)
SM= @. b
DO 55 ITJ= 1, KN
SIM =SWM + Y (IIJ)*Y (I1J)
SIM = DS{RT (511}
WI(KK) = 8. @0
IF(SWM.LE. 1. @¥) WI(KK) = 1.0
CONTINUE
CALL FIG (KCN, E, ETEMP,WT, LCON)
FORMAT (184 PI('-1/1-1) = ,425.15)
WRITE (KOUT, 681) (E (I0),10=1, KN)
CALL MMUL (NA, KCON, KCON, 1, KON, KKON, P, ETEMP, E)
WRILE (KOOI, 882) (ETEMP(1I0),I0=l, KM}
FORMAT (184 FI (I'-1/T) = ,4D25.15)
ICONM] = LCAN -1
WRIILE (KOUT, 4981) LCONM1
MCONM1 = MCON (K+1) - 1
WRITE (KOUr, 3891) MCOaM1
FORMAT (294 CAICULATED CONFIGURATION = ,13)
FORMAT {/, 10H TIME STEP, 13)
CALL MMUL (NC, N, N,MM, IR, N, C, X&, Y)
CaLL MMUL (NA, N,M,MM,M, N, G(1, 1, LCON) , X3, U)
DO 78 II=1,M
UM = UCAIC(U,EM,B(1,1,1),B(1,1,2))
T= T+ DT
WRITE (KOUT, 110@) (¥ (I),I=l,IR)
WRITE (KOUT, 1182) (U(1),1I=l,M)
DO 8@ J=1,IR
ARRAY (14K, )= Y (1)
Do 9% J=1,M
ARRAY (14K, IR+ }= U J)

109 CONTINUE

233



234
SA ITCH FORTRAN

XIAX = DF LOAT NSTEFS ) *DT
Iw= KOUT
NSW(1l)= 25
IT(1,1)= IN(26)
DO 11¢ J=1, IR
IF(J.LE. 25) IT(2,1)= IN(J)
IF(J.Gr. 25) IT(2,1)= IBIANK
118  CALL THPLT (IW, IEGY, NROINT, ZERO, XMA X, NGRIDH, Y4 IN, YAX, YSF, IT,
1 ARRAY(1,J),MAR, NLG,MSC,MAXES, IXY, NSM)
IT(1, 1)= IN(27)
NSWM(1) = 21
DO 120 J=1,M
IF(J.IE. 25) IT(2,1)= IN{(J)
IF(J.Gr. 25) IT (2, 1)= IBIANK
126  CALL THHALT (IW, IEGY, NFOINT, ZERO, X1AX, NGRIDH, YAIN, WAX, YSF, IT,
1 ARRAY(1,J+IR),MAR, NLG,MSC,MAXES, IXY, NSY™)
1106 FORMAT (4H Y = , 5(2X, 1PD19. 8))
16880 FORMAT (SH T ,F5.2)
1182 FORMAT(4H U = ,5(2X, 1PD19. 8)}
1202 FCORMAT(11H OUTHIT Y)
130¢ FORMAT (12H CONTROL U)
1408 FORMAT (/,28H SIMULATION OF LINEAR SYSTEM, /)
15989 FORMAT (/,31H SIMULATION OF LINEAR REGULATOR,/)
RETURN
END
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SUBROUTINE READY (NAA,Na, NB, NQ, NR, NG, NS, NRA, N, M, KCON, A,B, R, Q, P,

*x*xx*PARAMETERS :

WR,WI1,S, B, 0, V,W, X, Y, QIORM, FAD, RADINV, BB ,WORK, IPVT, IEND, NSTERS }

INTEGER NAA, N3, N8, NO, NR, NG, NS, NRA, N, M, KCON, IPVT (3)

DOUBLE PRECISION A (NA,N),X (N, N),QMNQ, N) ,R(NR, M)

DOUBIE PRECISION S (NS, NAA, KCON),P(NA, KCON) ,SB(NS, NAA, KCON)
DOUBLE PRECISION GNORM (NG, NAA, KCON),BSB(N3,NaA, KCON) ,WRMN) ,WIN)
DOUBLE PRECISION B (N3,NaA, KKON),RAD (NRA, N} , RADINV (RA, N)

DOUBLE PRECISION U (NA,N),V(NA,N) ,#(NA,N),YMNA,N) ,WORK M)

**xk* [ OCAL VARIABIES:
IOUBLE PRECISION COND
INTEGER KIN, KOUT, KL, M1, J, I, K, JEND, NEND, L, IM1

**kEASIRROUTINES CALLED:
MCF,MADD,MLINEQ, TRNATB,MMUL,MSCAIE, EIGVAL, SAVE, WEIGHT

------------------------------------------------------------------
------------------------------------------------------------------

*#%x 4% % PURFOSE:

THIS DOUBLE PRECISION SUBROUT'INE SOLVES THE SWITCHING-GAIN PROBLEM
RELATING '[O THE PUBLICATICN: 'ON THE RELATIONSHIP BEIWEEN
RELIABLILITY AND LINEAR QUAIRATIC OPTIMAL CONTROL'

BY J. DOUGLAS BIRDWELL AND M. ATHANS.

* %%k *PARAMEI'ER DESCRIPTION:

ON INPUT

THE SECOND DIMENSICN OF THE ARRAYS 5,58, QNORM,
BSB,B AS DECIARED IN THE CALLING PROGRAM
DIMENSION STATEMENT ;

THE FIRST DIMENSION OF THE ARRAYS

A {AND P, X, U, V,W,Y),B(AND BSB) ,Q, R, QNORM,

S (AND SB) ,FAD (AND RADINV) RESPECTIVELY

AS DECIARED IN THE CALLING PROGRAM DIMENSION
STATEMENT ;

THE NUMBER OF STATES;

THE NUM3ER OF OBSERVATIONS ;

THE NUMBER OF CONFIGURATIONS ;

N BY N SYSTEM MATRIX;

N BY M BY KCQW SET OF INPUT MATRICES;

M BY M CONTROL WEIGHTING MATRIX;
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Q N BY N STATE WEIGHTING MATRIX;

P KCON BY KCON PROBABILITY MATRIX;
N QUT RJT:

WR,WI SCRATCH VECTORS OF LENGIH N;

5 N 3Y N BY KCAN SET OF SOLUTIONS ;

58,B,B58 NBY N BY KCON SCRATCH ARRAYS ;

O, VvV,W,XY N BY N SCRATCH ARRAYS ;

@IORM N BY M BY KCON ARRAY USED TO STCRE THE
GAIN MATRICES FCR THE NORMAL LINEAR CUALRATIC
GAIBSTIAN PROBIEM. (N RETURN, (NORM CONTAINS THE
(AIN3 ASSOCIATED WITH THE SWITCHING GAIN PRCBIEM ;

RAD, RADINV N BY N SCRATCH ARRAYS ;

WORK SCRATCH VECTOR OF LENGTH N;
IWT SCRATCH VECTOR OF LENGTH N;
IEND NUMBER OF ITERATIONS USED IN SOLVING THE NORMAL
LINEAR QUAIRATIC GAUGSIAN PROBIEM;
NSTEPRS NUMBER OF TIME STERS USED IN CCMPAUTING S
* Xk kR NOTES

THE SOLUTIONS TO THE NORMAL LINEAR QUAIRATIC FROBLEM,

THE EIGENVALUES OF THE MATRICES (A + B(I)*GNORM(ERO))
AS WELL AS THE EIGENVALUES OF THE MATRICES (A + B(I)*G(I))
ARE PRINTED.

**xk*HISTORY:

WRITTEN BY J.A.K. CARRIG (ELEC. S5¥S. IAB., M.I.T., RM. 235-347,
CAMBRIDGE, MA ©2139, H.: (617) - 253-2165), JANUARY 1978.
MOST RECENT VERSION: MARCH 22, 1978.

..................................................................
------------------------------------------------------------------

OO0 NO0O000NOO0OCONOOO00On0NOONOoOO0nnn00OnOnonn

COMN/INOU/KIN, KOUT
WRITE (KOUT, 9%04)

CALL MATIO (NA,N, N, A, 3)
WRITE (KOUT, 9700)
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CALL MATIO (NA,N,N, Q, 3)
WRITE (KOUT, 9802)
CALL MATIO MR, N, N, R, 3)
DO 222 KL=1, KON
KM1 = KL-1
WRITE (KOUT, 9928) KM1
CALL MATIO (N3,N,M,B(1, 1, KL), 3}
DO 4 J=1,N
Do 31=,N
Y (I,J)= 3. D0V
YJ,Jd)= 1. @6
DO 219 X=1, IEND
CALL M(F(NA,NB, M8, N,M, ¥,B(1, 1, KL) , U, WORK)
CALL MADD (NA, NR, NA,M,M, U, R, U)
DO 14 J=1,M
0o 13 1=1,M
13 Vi(I,J)= 0. De
14 ViJ,J)= 1.Dw
CALL MLINEQ(NA, NA,M,M, U, V,COND, IPVT,WCRK)
CALL TRNATB (NB,Ma,N,M,B(1, 1, KL), X)
CALL MMUL (NA, Na, ¥, N, M, N, X, Y, U)
CALL MMUL (NA, NA, M, N,M, N, U, A, X)
CALL M (NA, N&, &, M, N, V, X,W,WORK)
CALL MSCAIE NA,N,N, -1. @D8,W)
CALL M(F (NA,Na, MA, N, N, Y, A, U, WORK)
CALL MALD MNA,MNa, M, N, N, U, Q, U)
CALL MADD (NA, NA, M, N, N, U, W, Y)
219  CONWTINUE
WRITE (KOUT, 44441)
WRITE (KOUT, 44442)
CALL MATIO (NA, N, N, Y, 3)
CALL MMUL (NA, NA, NG, N,M,M, V, X, QIORM(1, 1, KL})
CALL MSCAILE (NA,M, N, ~1. D@, QNORM(1, 1, KL})
WRITE (KOUT, 60068)
CALL MATIO (NG,M, N, QIORM (1, 1, KL}, 2)
CALL MMUL (NB, NG, N, N, N,M,B(1, 1, KL} ,@QIORM(1, 1, 1),V)
CALL MADD (NA, NA, N, N, N, V, A, V)
WRITE (KOUT, 7408)
CALL EIGVAL (WA, N, V, V,WR,WI,W(RK, IPVT)
222 CONTINUE
JEND= 1
26 CONTINUE
WRITE (KOUT, 8823)
CALL MATIO MNA, KON, KON, P, 3)
DO 5 K=l, KON
CALL SAVE NQ,Ns,N,N,Q,S(1,1,K))
5 CONTINUE
DO 91 NEND= 1,NSTEFS
WRITE (KOUT, 4509) NEND

LI
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CONTINUE
D0 99 L=l, KON
DO B¢ K=l, KON
CALL MCF (N3, N8, M8, N,M, S(1, 1,K),B(1, 1,K),BSB(1, 1, K} ,WORK)
CALL MMUL NS, N8, Ns,M, N, N, S (1, 1, K) ,B(1, 1, K),SB(1, 1, K))
CONTINUE
CALL WEIGHT (N3, NAA, KCOW, Na, N,M, P(1, L), SB, V)
CALL WEIGHT (NS, NAA, KCON, Na,M,M, P (1, L) ,BSB, RAD)
CALL MADD (NR, NRA, NA,M,M, R, RAD, U)
DO 98 J=l,M
o 97 I=l,M
RADINV(I, J) = 8. @@
RADINV(J, J)= 1, @0
CALL MLINEQ (NA, NRA,M,M, U, RADINV, CQND, IPVT, WORK)
DO 78 K=l, KCON
DO 68 J=1,N
DO 63 I=1,M
BSB(I, J,K) = SB(J, I, K)
CONTINUE
CALL WEIGHT (NS, NaA, KKON, N,M, N, P(1,L),BSB, U)
CALL MMUL (NRA, Na, NA, N, M,M, FADINY, U, W)
CALL MMUL (NA, Na, M, N, N, M, V, i, Y)
CALL MMUL (NA, NA, NG, N,M, N,W, A, QIORM(1, 1, L))
CALL MSCALE (NG,M, N, -1, @0, QORM(1, 1,L))
IM1 = L-1
WRILE (KOUT, 2005) LM1
CALL MATIO (NG,M, N, QORM(1, 1, L}, 3)
IF (NEND. NE. NSTEFS) GO TO 73
CALL MMUL (NB, NG, Na, N, N,M,B(1,1,L) ,@ORM(1, 1, L) ,W)
CALL MADD (vA, NA, N, N, N, A, W, W)
WRITE (KOUT, 7609) IM1,IM1
CALL EIGVAL (NA, N,W,W,WR,iW I, WRK, IPVT)
CALL MSCAIE M3, N, N, -1. @8, Y)
CALL WEIGHT (NA, NAA, KCON, N, N, N, P(1,L),S, W)
CALL MALD (NA, N3, MA, N, N, W, Y, Y)
CALL MCF (NA, Nb, N, N, N, Y, A, W,WORK)
CALL MADD (NA, NA, NS, N, N,W, G, S (1, 1, L})
WRITE (KOUT, 4603) LM1
CALL MATIO (NS,N,N,S(1,1,L),3)
CONTINUE
CONTINUE
FORMAT (3D 25. 15)
FORMAT (3H S)
FORMAT (4 G, 13)
FORMAT (4 3, I3)
FORMAT (11H TIME= T2 -, I3)
FORMAT (11H TTERATION ,I3)
FORMAT (10H G OPTIMAL )
FORMAT (40d OPTIMAL COST FINCTION X C X, WHERE C IS)

238
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7008 FORMAT (215 A + B(I)*G3TAR (ZERO})
7099 FORMAT (7H A +3,13,51 * G,13)
8403 FORMAT (3 P)
9599 FORMAT (3D 25. 15)
97d¢ FCRMAT (3 Q)
9603 FORMAT (3 A)
93@2 FORMAT (31 R)
99¢J FORMAT (3 B, I3)
44441 FORMAT {/,458 SOLUTION TO STANDARD OPTIMAL CONTROL PROBLEM)
2 STOP
44442 FORMAT (34 S )
RETURN
END
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(oN®!
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SUBROUTINE WEIGHT (NA,NAA, KCON, NX, N,M, E, A, X)

kxkAxkPARMETERS :
INTEQGER NA, NAA, KCON, NX, N, M
LOUBLE PRECISION E (KCON) ,A(NA,NAA, KCON) , X N X, M)

*xxk*[OCAL VARIABIES:
INTEGER I,J,K
DOUBLE PRECISION SM

k% %% *SUBROUTINES CALLED:
NONE

**%**PURFOSE:
THIS SUBROUTINE COMPAUTES THE WEIGHTED SWM

S(MMATION E({I)*A(I,J,K); I=l,N; J=1,M; K=1, KCCN.
**k*x*PARMETER DESCRIPTION:

NA THE FIRST DIMENSION OF THE ARRAY A AS DECIARED IN
‘THE CAILING PROGRAM DIMENSION STATEMENT ;

NAA THE SECOND DIMENSION OF THE ARRAY AS DECIARED IN
THE CALLING PROGRAM DIMENSION STATEMENT ;

KOO THE THIRD DIMENSION OF THE ARRAY A AS DECIARED IN
THE CALLING PROGRAM DIMENSION STATEMENT ;

NX THE FIRST DIMENSION OF THE ARRAY X AS DECIARED IN
CALLING PROGRAM DIMENSION STATEMENT ;

N THE ROW SIZE OF A;

M THE COLUMN SIZE OF A;

E VECTOR OF LENGIH KC(N;

A N BY; M ARRAY

*****HTSTORY:

WRITTEN BY J.A.K. CARRIG (ELEC. SY5. IAB., M,I.T., ™, 35-337,
CAMBRIDGE, MA ©2139, Hl.: (617) - 253-2165), JANUARY 1978.
MCST RECENT VERSION MARCH 22, 1978,

------------------------------------------------------------------
------------------------------------------------------------------

Do 18 J=1,M
o 19 1-,N
X(I,J) =0.@0H
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DO 18 K=1, KON
10 X({I,Jd) = X¥({I,3) + E{K)*A(I,J,K)
RETURN
END
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FINCTION  UCAIC(U,EM,B,QC)

DOUBIE PRECISION U (19, 2) ,EM(19, 2),B(18, 2) ,C(19, 2}
RETURN

END



243

FIG FORTRAN
SUBROUTINE FIG (KCQW, E, ETEMP, WORK, ICQN)
g * %% * % PARAM EFERS :
EDUBLE PREC ISION WORK (KCON) ,E (KCON) , ECEMP (KCON)
g *****[OCAL VARIABIES:

INTEGER MM, LTEMP, IFIAG, KK, IP, IU
DOUBLE PRECISION 5tM

C

C **xkxSIBROUTINES CALLED:

C NONE

C

C DI IIIIIIIIIIIIIrITITITIIIIIIrIlEiIsirsiiiaivrisirairziiiiiacii:
C .

C **xx* PURFOSE:;

C THIS DOUBLE PRECISTION SUBROUTINE IS WSED IN HYPOTHESIS TESTING.
C AT EACH TIME T, QE OF KCON HYPOTHESES IS CHOSEN,

C

C RHO (X (I') — A*X('-1) - B(I)*U(r~1)})*PI (r-1/T-1)
C I

C PI (r-1/T) =

C I '
C SM(RHO (X (T') - A*X (T-1) -B(J)*U(r-1))*PI (r-1/T-1)
C J

C

C HYPOTHESIS H (1) IS ASSIMED TO BE CCRRECT IF

C

C PL (I/T-1) > PI '-1/T) FOR ALL J NOT EQUAL I

C I Jd

C

C TIES ARE RESOLVED ARB ITRARILY.

C

C RHO (X) DENOTES THE FROBABILITY DISTRIBUTION OF X.

C

C *x*AXPARMETER LDESCRIPTION:

C ad INPUT:

C KOO THE NUMBER OF HYPOTHESES :

C

C B VECTOR OF LENGTH KCON CONTAINING PI (T-1/T-1);
C

C WORK VECTOR OF [ENGTH KCON CONTA INING

C RHO X (I') — A*X({T-1) - B(I)*U(T-1));

C

C N OUTHAJT:

cC ETEMP VECTOR OF IENGTH KCON TO STORE PI (I/1-1);

C

C TCON INDICATES WHICH HYPOTHESIS HAS BEEN CHOSEN;
C

C ** kAP ISTORY:



244

FIG FORTRAN

C WRITTEN BY J.A.K. CARRIG (ELEC. S¥S. IAB., M.I.T., Ri. 35-307,

C CAMBRIDGE, MA ©2139, H.: (617) - 253-2165), JANUARY 1978.

C MOET RECENT VERSION MARCH 22, 1978.

C

C TIIIIrIIITIIIlIsIIIIITIIIIIIIIGIIIIIGIIOIorrrsisaisirioiiisiiiiisc:
C

12

29

79
89

60

COMMON/INOU/KIN, KOUT

MM =1
LTEMP = LCCN
SM = Q.Y

DO 18 IP = 1, KCON
S =3 + WORK(IP)*E (IP)
DO 20 IP=1, KN
ETEMP (IP) = WORK (LP)*E (IP) /S
DO 60 KK = 1, KON
IFIAG = @
DO 89 IU= 1, KON
IF(KK.EQ.IU) GO TO 79
IF (ETEMP{KK) .GT.E(IU)) IFIAG = IFIAG + 1
CONTINUE
CONTINUE
IFIAG = IFIAG + 1
IF (IFIAG. EQ. KCON) LCON= KK
CONT'INUE
IF (ICON.EQ. ) LCON = LTEMP
RETURN
END
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C LIATEST VERSION 3/9/77
DOUBLE PRECISION COND,BEE,WR(10),W1(10)
DOUBLE PRECISION A(1@, 3),X(18, 3)

INTEGER MOOMYR (2) ,HRMNSC (2}, VIIME (2} ,RTIME {2}
DOUBIE PRECISION GNORM(1@, 3, 4)
DOUBLE PRECISION BSB (14, 3, 4)
DOUBLE PREC ISION S (18, 3,4),P(18, 4),SB(18, 3, 4)
DOUBLE PRECISION SBT (10,3 ),0(18, 3),R(19, 2),B(14, 3, 4)
DOUBLE PRECISION PR (4),Fl,P2,FZ(4),PD (16, 4),F5 (4)
INTEGER IPVT (19)
DOUBLE PRECISION AZERO,AQNE, ATWO
DUUBLE PRECISION RAD (1@, 3),RADINV(18, 3),U(19, 2
DOUBLE PRECISION V{14, 3),W(1@ ,3),Y(1d, 3),SM,WORK(10)
COMMQN /INOU/KIN, KOUT
NAA= 3
ATWO= -3, (DY
AZERO = -4. D@
ACNE = 6. D8P
Pl= . @500
P2 = .75D0
KIN= 5
KOU'= 6
N= 3
M= 3
N2 =6
KCON = 3
NS= 14
IPRT= 17
IEND= 25
ICOUNT = @
NSTERS = 25
Na= 1¢
NM =NA
MRA= 10
NR= 10
NB= 10
NQ= 19
NG=19
22 IF (ICOUNT.NE. () READ (KIN, 9526,END=2) (PR(I),FPZ{(I),I=1,N)
9500 FORMAT (3D25. 15)
DO 11 JK=1,N

DO 11 JL =1,N
QUL,JK) = 0.@DY
RWJK,JL) = 0. @Y
11 A(JL, JK) = 0. D8
BEE = -1@. @Y
P(l,1) = 1. De-P1
P(2,2) = 1.@B- P2
P(3,3) = 1.D¥Y



P(l,2)
P(1,3)
P(2,1)
P(2,3)
P (3,1}
P (3, 2)

RDYMAIN FORTRAN

0.y
4. Do
Pl
d.Dp
@. Do
P2

A{1l,1)= 4.0
A(2,2)= 6.D0

A(3,3) = -AZERO
A(l,2) = 1.@0
A(2,3) = 1.@0
A(3,1) = -ATWO
A(3,2) = -AONE
Q(l,1)= 3.0

Q(2,2) = 3,06
Q(3,3) = 3.0
R(l,1)= 1.0D0

R(2,2) = 1. @0
R(3,3) = 1.0

B(1l,1,1)= 99.wP

B(2,2,1)

= 0.do

B(Z2,1,1)= 0. @0
B(l,2,1)= 4.@0
B(1,3, 1)= 6.0

B(2,3,1)
B(3,3,1)
B(3,1,1)
B(3,21)
B(l,1,2)
B(2,2,2)
B(2,1,2)
B(1,22)
B(1,3,2)
B(2,232)
B(3,2,2}
B(3,1,2)
B(3,2,2)
B(1,1,3)
B(2,2,3)
B(2,1,3)
B(1,2,3)
B(1,3, 3}
B(2,3,3)
B(3,3,3)
B(3,1,3)

B(3,2,3) =

PR (1)
PR (2)

Hon

P(l,1) = 1.®8 - PR(1)

g. o
1. Db
1.0
1. @9
g. MY
g. Db

2,Du
0. oo
8. Do
d. oo
BEE
1. D9
1.8
Q.o
g. oY
a. o
g. o
4. o
0. DB
2. Dw
1.9

LI L (| | | | A | | ¢ Y | | | {1 T I [ O A [
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P(2,1) = PR(1)
P(3,1) = 0.0
P(,2) = 0. D06
P(l,3) = 3. (D9
P{2,2) = 1.8 - PR(2)
P(3,2) = PR(2)
P(2,3) = 0. D0
P(3,3) = 1.0
C CALL TIME (MDOMYR, HRMN, SC, VI IME, RTIME)

- CALL REATY {NAA, NA, NB, NQ, NR, NG, NS, NRA, N, M, KN, A,B, R, Q, B,
1 WR,WI, S, 58,0, V,W, X, ¥, QIORM, RAD, RADINV, BSB,WCRK, IPVT, IEND,
2 NSTEFS)
2 STOP
END
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C IATEST VERSION 2/17/78
DOUBIE PRECISION E (4),ETEMP(4),SIM, SIGMA, SIGM1, ESINV, ESIGMA, STNWM 1
DOUBLE PREC ISION COND, LUDOLF, LUDINV, DOLFM1, EM(1@, 2), X0 (18) ,DINW1
DOUBLE PREC ISION ARRAY (100, 58), Y2 (18),U8 (10)
DOUBLE PRECISION A(18,3),C(18,3),R1,R2, X(18, 2)
E(l) = 1.0
EM(1,1) = 1.@D
EM(2,2) = 1.0

E{2) = 4. @0
ETEMP(2) = E (2)
E@3) = 8. @D

ETEMP(3) = E (3)
ETEMP(l) = E (1)
E4) = 8. D0
DOUBLE PREC IS ION GNORM (14, 2, 4)
DOUBLE PREC ISION BSB (18, 4, 3)
DOUBLE PRECISION S (18, 3,4),DT, P(10, 4),58(18, 2, 4)
DOUBLE PRECISION WR(4),WI(4),HBH4,4),XX 4, 4),ACL(18, 3)
DOUBLE PRECISION 3BT (16,3 ),Q(19, 3),R(18, 2),B(19,2,4)
DOUBLE PRECISION PR (4),FZ(4),PD (18, 4),F5 (4)
INTEGER IPVT (10),MCON (188) ,NSTERS, NGRIDH, ICON (108)
DOUBIE PRECISION RAD(18, 3),FADINV (18, 3) ,SNEW(1d, 3, 4) ,U (18, 2)
DOUBLE PRECISION V(1d, 3),W (10, 3),W(10 ,2),Y(18, 3),SM,WORK (10)
LOGICAL NOISE
CQMMQI/INOU/KIN, KOUL
Ko=0
Ia =1
READ(5, 11111) NPOINT
33333 READ(5, 11111, END=22222) ITIME, K
11111 FORMAT (21 4)
DO 44444 IXYZ = IA, ITIME
44444 MCON (IX¥Z) = KO
MCON (ITIME)= K
IA = ITIME
Ké= K
GO TO 33333
22222 DO 55555 IX¥Z = ITIME, NFOINT
55555 MCON ([XYZ) = KO
LUDOLF= 2. 718281828459245D0
LUDINV= 1. @8/LUDOLF
[OLFM1 = LUDOLF - 1. @32
DINWM1 = LUDINV - 1. @D8
NAA = 2
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KCON = 4
NH= 4
NS= 10
IPRT= 17
IEND= 53
IPRT = 49
ICOUNT = 3
NA= 10
N3= 10
NM =NA
NRA= 10
NR= 10
NQ= 10
NG=10
PZ(1) = .1DO
PR(l)= . 10O
DO 15 I=2,N
PR(I)= PR (1)

15 PZ(I)= PZ(1)

22 IF (ICOUNT.NE. ) READ(KIN, 952@, END=2) (PR(I),FZ(I),I=1,N)
SIGMA= 1. DD
ESIGMA= LUDOLF**SIGMA
ESINV= LUDINV**SIGMA

C(1l,1) = 1.iDD
C(2,2) = 1.9
C(l,2) = 9. DD
C(2,1) = 9.@Y
DI = 1. DG
NSTEFS = 50
A(l,1)= ESIGMA
NaR= 109

NaC = 50

A(2, 2)= ESINV
A(2,1) = 2, D
A(l,2) =9.D9
0(l,1)= 14. (DD

0(2,1)= 8. @0
Q(,2) = 8. Db
Q(2,2) = 6. DO
R(l,1)= 1.@0
R(2,1) = 2.2
R(l,2) = 9. @b
R(2,2) = 1.0

B(l,1,1)= ESIGQMA -1.@D0
B(2,1,1)= ESINV- 1, D0
B(2,2,1) = -B(2,1,1)
B(1,2,1)= B(1,1,1)
B(1,1,2) = 8. @0
B(2,2,2) = ~DINWM1
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B(Z,1,2)= 9.@0

B(1,2,2) = DOLFM1
8(1,1,3) = DOLFM1
8(1,2,3) = 6.0
B(2,1,3) = DINWM1
B(2,2,3) = 6. DY
PR1 = . IDO

PR2= . ID8

P(l,1) = .81DP
P(2,2) = .B9D6
P(3,2) = 0,890
P(3,3) = .09D%
P(l,2) = .8IDG
P(3,1) = .09D6¢
P(2,1) = .0@9D6
P(l,3) = .BID@
P(2,3) = 9.09D0
P(4,1) = .@lD®
P(l,4) = .8ID®
P(4,2) = .01D@
P(4,3) = .01D@
P(4,4) = .ElD@
P(2,4) = .09DC
P{(3,4) = .0900

WRITE (KOUT, 9903)
CALL MATIO (NA, ICON, KON, P, 3)
C WRITE (KOUT, 46)

46 FORMAT (/,H1 PL,/)

47 FORMAT (3D25. 15)
WRITE (KOUT, 9608)
CALL MATIO (NA,N, N, A, 3)
WRITE (ROUT, 9700)
CALL MATIO ©A,N,N, Q, 3)
WRITE (KOUT, 9828)
CALL MATIO (NR,N, N, R, 2
DO 222 K=1, KN
Kl = K-1
WRITE (ROUT, 9928) KMl

222 WRITE (KOUT, 9588) ({B(I, J,K),J=1,M) ,I=l,N)

44 CONTINUE
o 14 IN=1, 50
LCON (IN) = LCON (1)

14 CONTINUE

667 FORMAT (515)

X@(l) = .02D0
GNORM (1,1, 1)= -1.@6336184D0
GNORM (2, 1, 1)= -7.9015188D-1
GNORM(1, 2, 1)= -1.88787889D 02
GNORM (2, 2, 1)= -5.83582495D-g2
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] oo

nooOo

57

QNORM(1, 1, 2)= —3. 69012096D-41
GNORM (2, 1, 2)= -1. 14816534D0
GNORM (1, 2, 2)= 1.04948339D-01
GNORM(2, 2, 2)= -1. 36388767D-91
GNORM (1, 1, 3)= ~1.42566767D0
GNORM(2, 1, 2)= -2. 87451383D-01
GNORM (1, 2, 3)= 1. 5188428502
GNORM (2, 2, 3)= -7. 27812438D-02
IR =2

NPRPL = 1

DO 57 IK = 1, KCON

IKM1 = IK - 1

WRITE (KOUT, 9992) 1K41

WRITE (KOUT, 9584) ((GNORM(IJ, IL, IK),IL=1,N) , 1J=1,N)
NGRIDH = 5
vil,1l) = B(1,1,1)
Vi2,2) = B(2,2,1)
v, 1) =B(2,11)
Vi, 2) =8(1,2,1)

CALL MMUL (NA, NA, NA, N, N, M, V, GNORM, U)
CALL MALCD NA,NA, N8, N, N, U, 4, ACL)

'CALL MSCALE (NG, N,M, -1. (D3, QIORM)

65

9529
2099
9500
97vd
9844
9940
9323
9942

IONE = 1
CALL MMUL {NC, N, i, IONE, IR, N, C, X@, Y0)
FORMAT (1X, D 25. 15)
CALL DRG3IM(NA,NC, NG, NAR, NAC, N, IR,M, ACL, C, GQNORM, X0, WORK,
1Y, U, IPVT, ARRA Y, DT, NSTEFS, NPRFL )
CALL READY2(NAA, N, NB, NO, NR, NG, NS, NRA, N, M, KCON, A, B, R, O, P,
1 #R,WI, S, B, U, V,W, X, Y, IORM, RAD, RADINV, B33, W(RK, IPVT, IEND)
DT = 1.@0¢
X0(1) = . 6200
CALL MSCAIE @G, N,M, -1. ¥D@, GIORM)
XB(2) = 2.DY
CALL SWITCH (NA, N8, NC, NG, NaR, NAC, N, IR, NBA, KCON, M, A, B, P,
1 C, GNORM, X8, E, ETEMP, M, WCRK, Y@, U@, V,W, Wi, IPVT, ARRAY, OT, NSTEFS,
2 NGRIDH,MCQ)
FORMAT (2D 25. 15)
FORMAT (/, D 25. 15)
FORMAT (/,H A )
FORMAT (/,H Q )
FORMAT (/,H R )
FORMAT (/, H B , 15,/)
FORMAT (/, ¥ P )
FORMAT (/,H G ,15,/)
STOP
END
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C IATEST VERSION 2/17/78

33333
11111

44444

22222
55555

DOUBLE PRECISION E (4),ETEMP(4),SWM, SIGMA, SIGM 1, ESINV, ESIGMA, SINWM 1
DOUBLE PRECISION COND, LUDOLF, LUDINV, DOLFM1, EM(18, 2),X@ (18) ,DINWM1
DOUBLE PRECISION ARRAY (102, 58),Y0 {18) ,U0(18)

DOUBLE PRECISION A(14@, 3),C(1@, 3),R1,R2,X(10, 3)

E(l) = 1. D

EM{1, 1) 1.0

EM(2, 2) 1.@0

E(2) = 4,04

ETEMP(2) = E (2)

E(3) = 3.0

ETEMP (3} = E (3)

ETEMP(l) = E(1)

Ef{4) = 4. @D

DOUBLE PRECISION QNORM(10, 2, 4)

DOUBLE PRECISION BSB(1@, 4, 3)

DOUBLE PRECISION 5 (19, 3, 4),Dr,P(14, 4),SB(10, 3, 4)

DOUBIE PRECISION WR(4) ,WI(4),HH(4,4),XX (4, 4) ,ACL(18, 3)

DOUBLE PRECISION SBT (18,3 ),0(18, 3),R(18, 3),B(18, 2, 4)

DOUBLE PRECISION PR(4),FZ(4),FD (10, 4),FS (4}

INTEGER IPVT (19) ,MCON (182) ,NPOINT, NGRIDH, ICON (160)

DOUBLE PRECISION RAD(18, 3),RADINV (10, 2),SNEW(1@, 3,4),U(1@, 3)
DOUBLE PRECISION V(1@, 3),Ww(1®,2),w(1? ,3),Y(10, 2),SM,WORK(10)
LOGICAL NOISE

COMMON /LNCU/KIN, KOUr

Ko=@

In =1

READ (5, 11111 )NPOINT

READ (5, 11111, END=22222}ITIME, K

FORMAT (21 4)
DO 44444 1XYZ
MCON (IXYZ) =K@
MCON (ITIME)=K
Ia = ITIME
Kb=K

G0 TO 33333
DO 55555 IXYZ
MCON (IXYZ) = K@

LUDOLF= 2. 718281828459245D0
LUDINV= 1. @D8/LUDOLF

DOLFM1 = LUDOLF - 1, @¥
DINWM] = LUDINV - 1. D@
NAA =

Ia, ITIME

ITIME, NPOINT
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15
22

KCON =2
NH= 4

NS= 10
IPRT= 17
IEND= 58
IPRT = 49
ICOUNT = 2
NA= 10
N3= 19
NM =NA
NRA= 10
NR= 19
NQ= 10
NG=1¢ :
PZ(l) = .1D@
PR{l)= .1DB
DO 15 1=2,N
PR{I)= PR(1)
PZ(1L)= PZ(1)

IF (ICOUNT.NE. ) READ(KIN, 9598, END=2) {(PR(I}),PZ(I),I=l,N)

SIMA= 1.DDB
ESIGMA= LUDOLF**SIGMA
ESINV= LUDINV**5IMA

c(l,1) = 1. ®6
C(2,2) = 1. D0
C(1,2) = 8. Do
C(2,1) = 0. @080
Dr = 1,0

A(l,1)= 1.41490DB
NAR= 102

NAC = 50
Q(,1) = 3.6
R(l,1)= 1.0
R(2,1) = 0.6
B(1,1,1)= 2.8
B(1l,1,2)= . Do
P(l,1) = . D0
P(2,2) = .8
P(3,2) = 0,900
P(3,3) = .09D?
P(l,2) = .Dd
P(3,1) = .00
P(2,1) = . Do
P(1,3) = .8lD@
P(2,3) = . 09D0
Pid,1) = .@IDY
P{l,4) = .81D0
P(4,2) = .0LDY
P(4,3) = .01D®

253



254
SAMATZ FCRTRAN

Pi4,4) = .dlDO
P(2,4) = .09D0
Pi(3,4) = .(9D06

WRITE (KOUT, 9923)
CALL MATIO (NA, KCON, KCQN, P, 3)
C WRITE (KOUT, 46)

46 FCRMAT (/,4 PI,/)

47 FORMAT (3D25. 15)
WRITE (KOUIL', 9608)
CALL MATIO (NA, N, N, A, 3)
WRLIE (KOUT, 9709)
CALL MATIO (NA, N, N, Q, 3)
WRITE (KOUI, 9803 )
CALL MATIO (SR, N, N, R, 3)
DO 222 K=l, KCON
K1l = K-1
WRITE (KOUT, 9928) KM1

222 WRITE (KOUT, 9509) ((B(I,J,K),J=1,M),I=1,N)

44 CONTINUE
@WRM(1,1,1)
GNOR4 (1, 2, 1)
GNORM(2, 1, 1)

-1.086336184D0
-1.887878389D-42
7.99151884D-01
GNORM (2, 2, 1) = -5.8358246D-92
GNORM (1, 1, 2) = -3, 692120%D-91
GNORM (1, 2, 2)=1. 04948339091
GNORM (2,1, 2) = -1.14816354D¢
GNORM (2, 2, 2) = -1. 36338767D-~01
GNORM (1, 1, 3)= ~1. 42566767D¢
GNORM (2, 1, 3)= -2,87451308D-91
GNORM(2, 2, 3) = =7.27012438-92

GNORM (1,2, 3) = 1. 51834285D-22
GNORM(1,1,4) = 6. (DD
GNORM (2, 2, 4) = 0. (DG
GNORM (1, 2, 4) = 0. DY
GNORM (1, 2, 4) = 9. D@

DO 14 In=l, 5@
LCOW (IN) = LCAN (1)
14 CONTINUE
667 FORMAT (515)
XP(l) = . 6200
IR =1
NPRFL =1
DO 57 IK =1, KN
IMl =1IK -1
WRITE (KQUT, 2992) IKM1
57  WRITE (KOUT, 9509} ((GNORM(IJ, IL, IK),IL=1,N),I1J=l,N)

NGRIDH =5
V(l, l) = B(l, lrl)
Viz2,2) = B(2,2,1)
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Vi2,1) = 8(2,1,1)
Vi, 2y = B(1,2,1)
CALL MMUL (NA, NA, N, IV, N, M, V, QIORM, U)
CALL MADD (NA,NA, NMA, N, N, U, A, ACL)
CAIL MSCAIE NG, N,M, -1. D&, QNORM)
IONE =1
CALL MMUL (NC, N, N, TONE, IR, N, C, X4, Y8)
66 FORMAT (1X, D 25. 15)
CALL DRGSIM(iNA,NC, NG, NAR, MAC, N, IR,M, ACL,C, QYORM, X8, WORK,
1Y, U, IPVT, ARRAY, DT, NFOINT, NPRPL)
CALL READY?2 (MNAA,MA, N8, NQ, NR, NG, NS, NRA, N,M, KON, A, B, R, Q, P,
1 WR,WI, S, B, U, V,W, X, Y, QNORY, RAD, RADINV, BS3,WORK, IPVT, IEND)
DT = 1.@90
X0 (1) = .0200
CALL MSCAIE (NG, N,M,-1. ™5, QIORM)
X9 (2) = 2.6
CALL SWITCH (NA, N8, NC, NG, NAR, NAC, N, IR, NAA, KON, M, A, B, P,
1 C, GIORM, Xd, E, ETEMP, EM,WCRK, Y8, U8, V,W, VW, IPVT, ARRAY, DT, NFOINT,
Z NGRIDH,MCQ¥)
9549 FORMAT (2D 25. 15)
2229 FORMAT (/, 2 25. 15}
9649 FORMAT (/, M A )
97¢¥d FCRMAT (/,H Q)
9399 FORMAT(/,H R )
9949 FORMAT(/,3 B ,15,/)
9933 FORMAT (/, 3 P )
9942 FORMAT (/,H G ,15,/)
2 STOP
END

(@] [ONOND]
o

e RO ESRS!



(1]

[2]

[3]

[4]

[5]

[6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[151]

{16]

256

LIST OF REFERENCES

Shooman, Martin L., Probabilistic Reliability: An Engincer-
ing Approach. New York: McGraw-Hill, 1968.

Greene, A.E. and Bourne, A.J., Reliability Technology.
London: Wiley-Interscience, 1972,

Paz, Azaria, Introduction to Probabilistic Automata.
New York: Academic Press, 1971.

Fel'dbaum, A.A., "Dual-Control Theory. I," Automation and
Remote Control, vol. 21, no. 9, pp. 874-880, April 1961.

Fel'dbaum, A.A., "Dual Control Theory. II," Autcomation and
Remote Control, vol. 21, no. 11, pp. 1033-1039, 'May 1961.

Fel'dbaum, A.A., "The Theory of Dual Control. III,"
Automation and Remote Contrel, vol. 22, no. 1, pp. 1-12,
Aug. 19¢1.

" Fel'dbaum, A.A., "The Theory of Dual Contrel. IV," Automation

and Remote Control, vol. 22, no. 2, pp. 109-121, Sept. 1961.

Rudin, W., Real and Complex Analysis. 2nd ed. MNew York:
McGraw-Hill, 1974.

Segal, I.E., and Kunze, R.A., Integrals and Operators.
New York: McGraw-Hill, 1968.

Halmos, Paul R., Measure Theory. New York: Springer-Verlag,
1974.

Gantmacher, F.R., The Theory of Matrices, veols. I & II,
New York: Chelsea, 1960.

Bauer, H., Probability Theory and Elements of Measure Theory.
New York: Holt, Rinehart & Winston, 1972.

Doob, J.L., Stochastic Processes. New York: John Wiley, 1953.

Chung, Kai Lai, Markov Chains with Stationary Transition
Probabiliities, 2nd. ed. New York: Springer-Verlag, 1967.

Derman, Cyrus, Finite State Markovian Decision Processes.
New York: Academic Press, 1970.

Cox, D.R., Renewal Theory. London: Methuen, 19270.




[17]

[18]

[19]

[20]

[21]

{22]

(23]

{24]

[25]

[26]

[27]

[28]

[22]

257

Corcoran, Henry, "Optimal Policies in Reliability Problems,"
M.S. Thesis, Dept. of Elec. Engr., M.I,T., Cambridge, Ma,
1964, '

Barlow, R.E. and Proschan, F., Mathematical Theory of
Reliability. New York: John Wiley, 1965.

Gendenko, B.V., Belyayev, Yu. K., Solovgev, A.D., Mathematical

Methods of Reliability Theory. New York: Academic Press,
1969.

Athans, M., ed., Special Issue on the Linear—-Quadratic-Gauss-
ian Estimation and Control Problem. IEEE Trans. on Automatic
Control, vol. AC-16, no. 6, pp. 527-869, Dec. 1971.

Athans, M. and Falb, P.L., Optimal Control. New York:
MeoGraw-Hill, 1966.

Wonham, W.M., "Random Differential Egquations in Control
Theory," from Probabilistic Methods in Applied Mathematics,
vol. II. A.T. Bharucha-Reid, ed. New York: Academic Press,
1970.

Beard, R.V., "Failure Accommodation in Linear Systems
Through Self-Reorganization, Ph.D. Thesis, Dept. of Aero.,
M.I.T., Cambridge, Ma., Feb. 1971.

Sworder, D.D., "Feedback Control of a Class of Linear Systems
with Jump Parameters,"” IEEE Trans. on Butecmatic Centrol,
vol. AC-14, no. 1, pp. 92-14, Feb. 1969.

Ratner, R.S. and Luenberger, D.G., "Performance-Adaptive
Penewal Policies for Linear Systems,"” IEEE Trans. on
Automatic Control, wvol. AC-14, no. 4, pp. 344-351, Aug. 1969.

Sworder, D.D., "Uniform Performance-Adaptive Renewal Policies
for Linear Systems," IEEE Trans. gg_Automatic Control, wvol.
AC-15, no. 5, pp. 581-583, Oct. 1970.

Bar-Shalom, Y. and Sivan, R., "On the Optimal Control of
Discrete-Time Linear Systems with Random Parameters,"

IEEE Trans. on Autcmatic Control, vol. AC-14, no. 1, pp. 3-8,
Feb. 1969.

Willner, Dieter, "Observation and Control of Partially
Unknown Systems,"™ Rpt. No. ESL-R-496, Electronic Systems
Laboratory, M.I.T., Cambridge, Ma., Sept. 1971.

Pierce, B.D. and Sworder, D.D., "Bayes and Minimax Controllers
for a Linear System with Stochastic Jump Parameters," IEEE
Trans. gg_Automatic Control, vol. AC-16, no. 4, pp. 300-307,
Aug. 1971,




258

£30] Chang, C.B. and Athans, M., "Hypothesis Testing and State
Estimation for Discrete Systems with Finite-valued Switching
Parameters,"” Rpt. No. ESL-P-758, Electronic Systems
Laboratory, M.I.T., Cambridge, Ma., June 1977,

[31] Wong, P.-K., Stein, G., Athans, M., "Structural Reliability
and Robustness Properties of Optimal Linear-Quadratic
Multivariable Regqgulators,"™ Rpt. No. ESL-P-745, Electronic
Systems Laboratory, M.I.T., Cambridge, Ma., May 1977.

[32] Safonov, M.G. and Athans, M., "Gain and Phase Margin for
Multiloop LQG Regqulators,™ IEEE Trans. on Automatic Control,
vol. AC-22, no. 2, pp. 173-179, April 1977.

[33] Safonov, M.G. and Athans, M., "Robustness and Computational
Aspects of Nonlinear Stochastic Estimators and Regulators,”
Rpt. No. ESL-P-741, Electronic Systems Laboratory, M.I.T.,
Cambridge, Ma., April 1977.

[34] Wong, P.-K. and Athans, M., "Closed-Loop Structural Stability
for Linear-Quadratic Optimal Systems," IEEE Trans. on
Butomatic Control, vol. AC-22, no. 1, pp. 94-99, Feb. 1977.

[35] Wong, P.-K., "On the Interacticn Structure of Linear Multi-
Input Feedback Control Systems," S.M. Thesis, Dept. of Elec.
Engr. and Comp. Sci., M.I.T., Cambridge, Ma., Sept. 1975.

[36] Safonov, M.G., "Rcobustness and Stability Aspects of Stochastic
Multivariable Feedback System Design," Ph.D. Thesis, Dept. of
Elec. Engr. and Comp. Sci., M.I.T., Cambridge, Ma., Sept. 1977.

[371] Athans, M., Ku, R., Gershwin, S.B., "The Uncertainty
Threshold Principle: Fundamental Limitations of Optimal
Decision Making Under Dynamic Uncertainty," Rpt. No.
ESL-P-688, Electronic Systems Laboratory, M.I.T., Cambridge,
Ma., Oct. 1976.

[38] Ku, R.T. and Athans, M., "Further Results on the Uncertainty
Threshold Principle,” Rpt. No. ESL-P-727, Electronic Systems
Laborateory, M.I.T., Cambridge, Ma., March 1977.

[39] Ku, R., Athans, M., Varaiva, P., "The Effects of Discounted
Cost on the Uncertainty Thresheld Principle," Rpt. No.
ESL-P-749, Electronic Systems Laboratory, M.I.T., Cambridge,
Ma., April 1977.

[40] Birdwell, J.D. and Athans, M., “On the Relationship Between
Reliability and Linear Quadratic Optimal Control,”™ Proc.
1977 IEEE Conference on Decision and Control Theory,
pp. 129-134, Dec. 1977.




259

[41] Athans, M., "The Matrix Minimum Principle,” Information and
Control, vol. 11, pp. 592-606, 1967.

[42] Loeve, Probability Theory. New York: Van Nostrand, 1963.






