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ABSTRACT

In recent years a number of satellite platform remote
sensors have been launched for the purpose of inferring
atmospheric temperature, liquid water, and water vapor. One
problem in the area of remote sensing of these parameters is
the method of parameter retrieval because of the non-linear
effects of the physics involved and the non-stationary
nature of the data fields. This thesis applies the
techniques of modern recursive estimation theory
(Kalman-Bucy filtering) to the problem of estimating these
parameters from data produced by the SCAnning Microwave
Spectrometer (SCAMS; carried on the NIMBUS 6 satellite. Two
primary experiments were conducted in this thesis. The
first was the design and implementation of an extended
Kalman-Bucy filter for estimation of vertical temperature
profiles. The filter of this experiment was operated in
three modes: a causal mode, a non-causal mode and a
precomputed parameter mode. The second experiment was the
design and implementation of an extended Kalman-Bucy filter
for estimation of ligquid water and water vapor columns in
the atmosphere.

The conclusions reached from the results of these
experiments are: The Kalman-Bucy filter is a valuable method
for estimation of the state of the earth's atmosphere based
on passive remote observations. The estimates of
temperature profiles obtained with a causal filter show an
improvement in accuracy over those obtained with a
regression inversion technique. This improvement is greater
with a non~-causal filter. The use of either precomputed
gain or error covariance matrices in the Kalman filter
produces little degradation in the accuracy of the retrieved
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\\
profiles, but produces a épbstantial reduction in the
computational burden of the filter. The use of an extended
Kalman filter in retrievals of liquid water and water vapor
shows a factor of three imphovement over a regression

inversion in a simulation of the data ohbserved by SCAMS.

Thesis supervisor: Dr. D. H. Qtaelin
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Chapter I

Introduction

Remote sensing of the environment is becoming an area
of increasing importance in both application and research.
The ability to determine accurately the state of the
environment on both a global and timely basis is expected to
have profound human and economic impact. As a specific
example, weather predictions are produced with large
numerical models which solve the differential equations that
describe heat, mass and momentum transfer in the earth's
atmosphere. For these models to perform adequately, it is
important that the boundary conditions at the initiation of
the algorithm be as accurate as possible. Historically,
these boundary conditions have been provided by a network of
observing stations that provide infermation about the
earth's upper atmosphere through the release of radiosondes
or the launch of rocketsondes. For logistic and economic
reasons, most of these stations are situated in economically
developed and densely populated land regions., As a result,
the ability to perform accurate long range prognosis has

been severely limited in the past, because of the lack of
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data over a large percentage of the earth's surface.
Fortunately, this situation is changing.

As suggested by Kaplan (1959) in the infrared spectrum
and by Meeks and Lilley (1963) in the microwave, many of the
variables needed for the initialization of weather
prediction models may be inferred by observing the thermal
emission from the earth's atmosphere. 1If the frequency of
observation is chosen to be in « region of absorption or
emission of a uniformly mixed gas such as carbon dioxide or
oxyden, the thermal radiation may be interpreted in terms of
temperature in the atmosphere. If the observed wavelength
lies near a region of absorption by a species whose
concentration in the atmosphere varies, such as water or
ozone, the cohservation may be related to concentration.
Finally, instruments may infer characteristics of the
terrestrial surface by observing it in regions where the
atmosphere has little absorptive effect, Satellites and
ground-based radiometers that observe in one or more of
these spectral regions have been used either experimentally
or operationally for a number of years. It is hoped that
the inclusion of data from these instruments will improve
the skill of numerical forecast models in the future.

The design and implementation of a passive microwave
sound ing system is a multi-discipline effort. The desired

products are in the area of meteorology, the fundamental
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processes are in the realm of physics, the instrument design
and implementation lie with the electrical engineer, and the
interpretation and handling of the resulting data with the
computer scientist and estimation theorist. The
contribution of this thesis is in that final area.

A large body of techniques, both statistical and
non-statistical, have been propocsed for processing data from
remote sounders to produce estimates of the state of the
earth's atmosphere. These method have included the
regression or statistical D method (Rosenkranz et al., 1972,
Waters et al., 1975), the minimum information technique
(Fleming and Smith 1971, Fritz et al. 1972), the empirical
eigenfunction technigque (Smith and Woolf, 1976), and various
numer ical relaxation techniques such as those due to
Chahine. The purpose of this thesis is to introduce into
thie field the methods of modern recursive estimation
theory, specifically, the Xalman-Bucy filter.

While it has been recognized for a period of time now
that the Kalman-Bucy filter is an optimum estimation
technigue and should produce superior estimates based on
radiometer data, no such filter has been sucessfully
implemented. This thesis represents the first successful
implementation of that technique on remote sensing data in
the area of estimation of meteorological processes. As
such, it does not claim to be an advance in either Kalman
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filtering theory or in fundamental remote sensing theory.

It is an advance in the art of the analysis of data from

such remote sensors.

The body of this thesis is divided into a number of
chapters. In Chapter II, the theory of radiative transfer
in the atmosphere is presented. Special emphasis is placed
on those aspects that allow inference of meteorological
parameters. Chapter III discusses Kalman-Bucy filtering
theory in its various aspects. Chapter IV presents the
summary of the results of a temperature profile inverting
Kalman~Bucy filter that operated on data from the SCAnning
Microwave Spectrometer (SCAMS) carried on the Nimbus 6
satellite (Staelin et al., 1975). Chapter V presents the
results of an extended Kalman-Bucy filter for estimation of
water vapor and liquid water columns operating on simulated
SCAMS data.

Appendix A contains the results obtained from the
analysis of the synoptic radiosonde observations of North
America during January and February 1973. The results
contained in Appendix A are interpreted primarily in terms
of the difference between a point senscr {such as a
radiosonde) and an area sensor (such as a radiometer)
temperature profile retrieval in a random temperature
field. The results, however, should be useful in system
identification of plant matrices and the Gandin (1964)

- 26 -



weighting in synoptic analysis. Appendix B considers the
sensitivity of the oxygen temperature weighting function and
microwave absorption coefficient to changes in the
temperature profile. Appendix C is an extensive verbal
description of the Kalman filter algorithm implemented in

this thesis.
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Chapter II
The Radiative Transfer Basis of Passive Remote Sensing
Section A. The equations of radiative transfer

The ability to perform remote sensing derives from the
fact that, by proper selection of observation wavelengths,
the thermal emission radiating from the surface of the earth
and its atmosphere may be measured. The eguations that
describe the production and propagation of this energy are
generally called the equations of radiative transfer.

The particular equation of radiative transfer that is
of greatest interest for this thesis is that for the
received flux seen by an observer looking downward through a
non-scattering absorbing medium toward a partially

reflecting surface. For this case, the flux seen is:

H
uv)=f B, T(h)) K, h) [T (h,H) + RO T(Hg h) TOH,H)dh
H

-1

$ (1 -RINT(Hg H) B, T 2.1

FRIVIT (HgH) lgyy W)
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where

B{(V.,T) is the Plank function at frequency and
temperature T,

H and Hg describe the relative positions of the
observer and the surface,

h traces a ray from the observer to the surface,

I(}/) is the received flux at frequency .

I&”ytlj} is the background flux from behind the surface
directed at the surface,

K(V,k) is the absorption coefficient of the medium at
frequency and position h,

R())) is the reflectivity of the surface boundary,

T(h) is the temperature of the medium at h,

Tg is the temperature of the surface boundary, and

‘T(hl,h;) is the extinction of the medium from h to b

equal to: . \

N

. 2

h
T(h,h) = EXP‘-j k(v h) dh
| )

For microwave frequencies, it is permissable to invoke

the Raleigh-Jeans approximation to simplify 2.1 (e.g.
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Staelin, 1969, Rosenkranz, 1972} to obtain:

H
T W) f T (1) Ky, h)[7(h,H) + RIT (Hgh) T(Hy )] dh
Hy

+(1-RW))T (H,H) T, 2.3

+ ROIT (K, H) Tgy

where Tg (V) is called the brightness temperature and is
equal to the temperature of a black body that will produce a
flux equal to the one observed. Likewise, Tgxy is the
equivalent black body temperature of the background and is

often called the sky temperature.
Section B. Absorption by the atmosphere

In the context of passive remote sensing from
satellites, the equations of radiative transfer 2,1 and 2.3
describe the interaction of the atmosphere, the earth's
surface and cold space with the energy observed by the
down=-looking radiometer. In this case, the absorbing medium
is the atmosphere, the surface boundary is the earth's
sur face, and the background is the cosmic background. This
section will primarily consider the nature of absorption by
the atmosphere in the microwave region of the spectrum. The
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theory of how this absorption occurs will not be discussed
in any detail, but rather, a qualitative feeling will be
sought.

There are two major microwave absorbers of
meteorological interest in the lower microwave region. They
are oxygen and water in both liquid and vapor form. Oxygen,
which is used primarily for temperature profile sensing, has
a series of lines due to magnetic moment transitions, These
transitions form a complex of resonant lines from
approximately 50 Ghz. to 70 GHz. and an isolated line at
118.75 GHz. The line centers for these transitions have
been calculated by a number of experimenters (Wilheit and
Barrett, 1970, Wilheit, 1970, Liebe and Welch, 1977). The
shapes of the individual lines and their interaction are
d~termined by collisional broadening. Numerous expressions
accounting for this effect have been derived over the
years. Some of these have included those derived by Van
Vieck and Weisskopf (1945), Meeks and Lilley (1963), Lenoir
(1965), and Rosenkranz (1975). While it will be noted here
that one of the later oxygen lineshape models derived by
Rosenkranz was used in the experiments of this thesis, a
discussion of the physics of oxygen lineshape is outside its
scope.

The prime consideration in developing a qualitative

feeling for the lineshape is that the broadening of the
- 32 -



oxygen is affected by two guantities; temperature and
pressure. As the pressure increases, the absorption
increases. Over the range cf temperatures encountered in
the terrestrial atmosphere, an increase in temperature
implies a decrease in absorption. empirical fit by Poon
(1976) to several lineshapes gives the form of this relation
for a given fregquency relating the absorption XK to the

pressure P and temperature T as:
K=a P*TY 2.4

where a and x are positive constants and y is a negative
constant over a given pressure temperature domain.

Another important microwave absorber in the earth's
atmosphere is water in both its liguid and vapor forms.
Water vapor in the atmosphere absorbs by means of rotational
energy transitions of an electric dipole contained in an
asymmetric top. These energy transitions produce a series
of resonant lines in the microwave region. The first two
lines (22.235 GHz. and 183.310 GHz.) are of present
practical interest in passiﬁe remote sensing.

The line shape of the water vapor resonances are
affected by collisional broading (Staelin, 1966, Gaut, 1968,
Reifenstein and Gaut, 1971). 1Its spectrum is thus comprised

of a series of broadened lines combined with a non-resonant
- 33 -



component. There is however, an anomalous absorption in its
spectrum that has yet to be adequately explained. It has
been suggested that this is caused by the action of water
vapor dimers, but studies by Poon {1974) have found this
explanation to be inadequate. The one item of importance in
the absorption by water vapor besides the usual collisional
broadening behaviour, is that the expression for the
absorption coefficient contains a quadratic term due to the
higher effectiveness of Hz; O - Hy O collisions when compared
to H, O - O, and H; O - N, collisions in broadening the
line.

The last absorber that will be discussed in this
section is liquid water. Liguid water exists in the
atmosphere in the form of clouds and rain. As such it is in
the form of dielectric spheres and the theory of Mie may be
applied. This theory has been extensively discussed in the
literature (e.g. Van DeHulst, 1957} and so will not be
covered here.

For the cases of interest in this thesis, the
wavelengths of the radiation are much larger than the drop
sizes. 1In this case, it is customary to use the Raleigh
limit to evaluate the absorption. In this limit the

absorption effeciency of a droplet is given by the
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expression:

' )
- [a ")
Q. (r,A,T) = 4K IM{ = K(A,T)} 2.5
where ' ’
~a T -
K1) = Sl 2.6
n{2,T) + 2

~
and n is the complex dielectric coefficient of the sphere
which is a function of wavelength and temperature. A is

the dropsize parameter given by the expression:

A = 2w/ 2.7

where r is the drop radius and ), is the wavelength of
interest. To obtain the absorption by a unit volume we may

integrate the expression:
oo

K(A, T) =fN(r)Q.(r,l,T)1Trz'dr 2.8
)

where N(r) is the number of drops with radius r per unit

volume. Substituting for Qa {r,), +T) we obtain:

’ )
3 ~
K(A,T) =jN(r)8—7;L!M<—-K(l,T) 2.9

° {

‘ o
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Using the fact that the mass density of the drops in the

volume is:

o0
m=‘-4ﬁpf N(r) r3dr 2.10
3 A ’
we obtain: ,' \
omMm ~
KA, T) = IM{ -K(A,T) 2.11

This function has been empirically evaluated by Staelin
(1966), with the result that the absorption due to clouds is

approximately:

-0.0122T

K(AL,T) = 1.71m £ 10 db/km 2.12

where 5‘ is the frequency in GHz., T is the temperature in
degrees Kelvin, and m is the density of the cloud in

gm/ma .
Section C. Sur face effects

The discussion of Section A of this chapter has

- 36 -



indicated that the observed brightness temperature is
primarily a function of three variables: the temperature of
the earth's atmosphere and surface, the absorption of the
earth's atmosphere along the path and finally, the
reflectivity of the earth's surface. This section will
discuss the behaviour of this last variable.

A radiometer viewing the earth sees three major classes
of surfaces: land, ice and snow, and lakes or ocean. Each
of these has its own behaviour with respect to
reflectivity. Land areas act for the most part as nearly
black bodies in the microwave region unless there is
appreciable soil moisture or standing water. Statistics
compiled by Rosenkranz (1971) during flights of a prototype
of the Nimbus E Microwave Spectrometer give a range of
average land emissivity from 0.9 to 0.95. These
emissivities are basically independent of surface
temperature.

The seceond major surface type seen by a radiometer is
ice and snow. The passive remote sensing of this surface is
an area of research in its own right. Emissivity signatures
of different types of snow and ice allow the type of cover
to be inferred. For the purposes of this thesis, it will
suffice to note that the range of emissivities for snow and
ice is from 0.6 to 0.9 and that the emissivity is again

basically insensitive to temperature change.

- 37 -



The final major surface type is open water. The
horizontal and vertical components of the reflectivity from
a calm sea may be determined analytically from the angle of
incidence and the complex dielectric coefficient of
seawater. 8Since the dielectric constant varies with
temperature, the reflectivity does also. The basic form of
this variation is for the emissivity to decrease with
increasing temperature. Over some ranges of frequencies,
the product of the emissivity and the surface temperature
may have a negaetive slope. However, since a decrease in the
emissivity implies an increase in reflectivity, the
percentage of the sky component of the brightness
temperature (radiation from the atmosphere directed at the
earth) that is reflected back to the radiometer increases.
For frequencies of interest in this thesis, the two effects
nearly cancel each other and the sensitivity of the observed
brightness temperature to the sea surface temperature is

small.

Section D. The concept of a temperature weighting

function

In this section, concepts of the continuous and
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discrete temperature weighting functions will be developed.
As these functions are commonly assumed to be independent of
temperature in the case of oxygen, an examination will be
made of this assumption.

To derive the concept of the temperature weighting

function, it will be convenient to rewrite 2.3 as:

T, (V) = T(h) W(h,V,R)db

2,13
+ Ty WslV,R) + Ty W (VR
where:
Wih,y ,R) = K(,h) [ T(hH) + RWT (Hg, h)T (Hg,H)] 2.14
W (v, R) = [t - RW)] T(HyH) 2.15
Wogg (ViR) = RO 7UH H) 2.16

If the absorption coefficient of the atmosphere at freguency
})) does not change with concentration or temperature, but
sclely with height or pressure, these three functions will
be a function only of I/ and the surface reflectivity

R{})). In this case, the functions are called the

continuous temperature weighting functions since they
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describe the relative weight given to the temperature T(h),
the surface temperature T¢ and the sky temperature Tsxg in
the observed brightness temperature.

It is often convenient to model the atmosphere as
composed of a number of slabs. The vertical temperature
within such a slab i is assumed to be determined by the
temperature at some altitude h; and a function such as a

lapse rate. Under these assumptions, 2.13 assumes the form:

N
Tg (V) Z T(h ) W, {y,R)

Ay

2.17

+ Ty WU R) + Tgy Wiy (Vs R)

where W;(J;R) is called the discrete weighting function for

level i and equals:

U.
;
W, (L,R) = F(T(h), T(h;)) w(h,,R) dh 2.18
L
where:

L;,U; are the lower and upper boundaries of an
atmospheric slab whose temperature structure is described by
T(n;) and

E:(T(h),T(hi}) is the function relating T(h) to T{hi)
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within slab i. By defining a vector of temperatures T that

include the T(h;), Ts and Tek and a similar vector W of

y
discrete weighting functions, 2.17 may be expressed as the

matr ix equation:
Tgly) = WT 2.19

The continuous weighting functions for the passive
microwave sounder SCAMS (after Staelin et al., 1975} are
shown in Figure 1. These weighting functions have been
computed under the assumption that the atmosphere is
represented by the U. S. Standard Atmosphere. A number of
curves are given in this figure. The solid lines correspond
to the weighting functions at the nadir look angle. The
dashed cuwrves correspond to the weighting functions at the
extreme scan angle. The outermost curve for a given
frequency and look angle is the weighting function over
ocean, while the inner curve is the weighting function over
land. The area between these two curves is hatched or
dotted. The value of t in this figure is the
extinction through the atmosphere. A similar set of
discrete weighting functions for this instrument are
contained in Table 1. 1In this case, the table contains the
weighting functions computed for a 60 N latitude winter

average atmosphere and the difference between these
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Table 1

_Eb-

Channel 3 Channel 4 Channel 5
(52.85 GHz) (53.85 GHz) (55.45 GHz)
Difference Difference ‘ Difference
Pressure 60° Winter 60° Winter 60° Winter 60° Winter 60° Winter 60° Winter Slab Definition
(mb) 15° Annual 15° Annual 15° Annual (mb)
Surface .285 .032 .078 .010 .000 .000 Surface
1000 .058 -.006 .030 -.001 .009 .000 1013 - 925
856 .135 011 .076 -.003 .001 .000 925 - 775
700 151 -.011 .139 -.006 .007 .000 775 - 500
500 .138 -.004 173 ~,003 .028 -.001 600 - 450
400 .086 -.002 .135 -.004 .058 -.002 450 - 350
300 .059 -.001 .106 -.004 .094 -.002 350 - 275
250 .035 .001 .069 -.001 .103 -.001 275 - 225
200 | .030 .00C .065 . 000 145 -.001 227 - 175
150 .025 .000 .059 - .004 .189 .002 175 - 125
100 .015 .000 .038 .003 .167 ~.003 125 - 85
70 .006 .000 .015 .002 .077 .004 85 - 60
50 .006 .000 .014 001 - .080 .002 60 - 40
30 .003 .000 .007 .001 .042 .002 . 40 - 20

10 001 .000 .002 .000 013 .001 20 - 7.5



weighting functions and those computed for a 15°N latitude
average annual atmosphere. The manner in which these
weighting functions were calculated is described in Chapter
Iv.

Referring to Table 1, it may be seen that the
assumption of invariance of the weighting functions is a
fairly good one in the middle and upper atmosphere. In the
lower atmosphere, the variability of the absorption
coefficient with water vapor concentration introduces a
noticeable effect. However, it should be noted that the
difference in the water vapor concentrations between the two
atmospheres in Table 1 was a factor of twenty, and that both
atmospheres represent extreme conditions. The insensitivity
of the temperature weighting function with regard to the
sensitivity of oxygen absorption to temperature is further

considered in Appendix B.
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Chapter III

Theory of the Discrete Kalman-Bucy Filter

Section A. A heuristic derivation

The theory of the discrete and continuous Kalman-Bucy
filter has been widely discussed (Kalman, 1960, Jazwinski,
1970, Leondes, 1970, Schweppe, 1973, Gelb, 1974). Thus the
purpese of this section and those that follow is to provide
a basic understanding of the discrete Kalman-Bucy filter.
This will be done in order to facilitate an understanding of
the temperature filter experiment and liquid water and water
vapor experiment which comprise the bulk of the experimental
work of this thesis. Only those aspects of the filtering
theory which relate to these experiments will be covered in
this chapter. This section provides a heuristic derivation
of the Kalman filter from a Bayesian estimation viewpoint,
vhile Section B provides a derivation from a structured
viewpoint that assumes a form for the estimator. Section C
agiscusses the properties of the innovations sequence of the
filter and covers the topic of testing the filter using the
innovations sequence. Section D investigates the square
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root algorithm for a covariance filter. Section E describes
the extended Kalman-Bucy filter. Finally, Section F
presents the forward-backward algorithm for non-causal
Kalman filtering.

The notation used in this chapter and those that follow
is that of Gelb {1974). In this notation, quantities are
often fellowed by a minus or plus sign and are subscripted.
The discrete time coordinate of the quantity is determined
by the subscript. The parenthesised minus or plus signs
refer to the values at time i before and after the
processing of data received at time i. As is customary, the
optimum estimate is denoted by a caret (). Thus, the
optimum estimate of A before the processing of data received
at time i is ﬁ;(—). The value of a parameter B after the
processing of data received at time j is B; (+}. It should
be noted that although the coordinate of the data reception
is referred to as "time", it is an arbitrary running
coordinate. For remote profile sensing this coordinate is
both spatial and temporal.

In order to develop the theory of the Kalman-Bucy
filter, we will make the following assumptions: The process
to be estimated is an n vecﬁor X,. This vector is assumed
to have an expectation or mean conditioned on the time of
the start of processing equal to 2‘(-). The error

covariance cof this conditional mean is assumed to be known
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and is a n by n matrix P, (~). The observed process is

represented by a m vector Z; which is related to X:. by the

linear relation:

Z, = H X, + N, 3.1

where H, is a m by n dimensional observation matrix and Ni
is a zero mean white Gaussian process with covariance matrix
R..
' .
Then, given that data has been observed at time 1, the

optimum estimate of- X, using a simple Bayesian approach is:

X, (0) = X (=) +[K Z,-Z(-) 3.2
where:

Z,(=) = HX,(-) 3.3
and

K, = P (=) Hy [HP-)H + R 3.4

The a posteriori error covariance of the estimate will be
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given by:

P (+) [t -k H]P() 3.5
where I is the n by n identity matrix. Being a Bayesian
estimate, the estimate Ql(+) will have the property that it
is a conditional mean of X, where the conditioning is now
additionally on the fact that Z, was observed.

The crucial point in the development of the filter now
occurs if the process Xi is constrained to be a first order
Gauss-Markov process. 1In the discrete case at hand this

impl ies that:

X..= & X + V 3.6

i+l iyt

where &.

it is called the state transition matrix from time
]

i to i+l and represents the deterministic transition of x;.
V; is a zero mean white Gaussian process, independent of x;,
with covariance matrix Q;. It represents the truly random
factors in the transition and is c¢ften called the plant
noise. If a process is a first order Gauss-Markov process,
the conditional mean at time i may be propagated to time i+l

by:

A )
X (=) = &, X, (+) 3.7

it
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and the error covariance of the mean by:

- T :
it (_) - Qi,iﬂpi (+) (bi,iﬂ + Qi 3.8

These two egquations then provide a means of obtaining the a
priori conditional mean and its error covariance at time 2
from the a posteriori conditional mean {the estimate) and
its error covariance at time 1. These quantities provide
the necessary conditions to perform a Bayesian estimate at
time 2. A recursive filter is thus obtained in which the
estimate and its error covariance are fed forward and used
in the next step.

It should be noted that nowhere in the development of
the filter are any assumptions made concerning the
stationarity of the processes. The matrices Q;, H;., R; and
®iJ+! may be time space varying and so non-stationary

processes may be estimated using the Kalman-Bucy filter.
Section B. A structured derivation

One of the many possible approaches of mathematically
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deriving the discrete Kalman-Bucy filter is a structured
derivation. In this approach the linear of the estimator is
assumed a priori. The desired lack of bias and minimum
quadratic cost properties of the estimate combined with the
fact that the process being estimated is a first order
Gauss-Markov process then yield the discrete Kalman-Bucy
filter.

To begin the structured derivation, it will be assumed
that the observation vector Z, is a noisy linear function of

the vector of state:
Z, = H X, + N, 3.1
(REPEATED)

and that the desired estimator is of the form:
~

™~
X A+) = K; X (=) + K, Z 3.9

where K} and Ki are two gains to be determined.

”~ ~
The errors associated with the estimates xi(+) and xi(-)

are:

~e N
X, (+) = xiA(-!-) - X 3.10
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and

~ ~
#(-) = xl(—) - X, 3.1l

Substituting 3.1, 3.10, and 3.11 into 3.9 yields:

~/

2%
X, (+) = [Ki+KH = 1] X, + KX + KN, 3.12

~t
Taking the expectation over Ni and X, (-} on both sides of

~
3.12 and assuming that X. (-) is an unbiased estimate, we

A .
note that xi(+) will be an unbiased estimate only if:
[K!+ KH -1 =0 3.13
| ] [}
Thus it is reguired that:

Ki = 1 —KH, 3.14

Substituting 3.14 into 3,12 and 3.9 yields:

~t

~
X (+) = [I=KH]X )+ KN 3.15
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and
N
R (+) = X + K [2,- H,X.(=) 3.18

The error covariance of 3.16 will be given by the

expectation of 3.15 times its transpose or:
P {+) = [1 - KH IR 1-KH]
+[i - K.H] E{X(-) NTHT
v K E{NX(-)}[1 - K H]

+ KR, K]

3.17

s
Since Ni is assumed to be statistically independent of x;(—)

this simplifies to:
T L}
P(+) = 1 - KH]P(-) [1-KH] + K,rK; 3.18

To choose the optimum value for the gain K we will desire

to minimize the quadratic cost function:
~y f\-'r
J= E{X.(+)SX (+)} 3.19

for any positive definite error weighting matrix S. As this
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may be shown to be equivalent to minimizing the trace of
P, {+), we will choose to optimize the gain to mimimize this
function instead.

Using the relation that:

2 tr{aBAT}= 24B 3.20

3A

for a symmetric matrix B, we differentiate tr{P;(+)} with

respect to K; in 3.18 to vield:

3
x trdP(+)}= 2[1~ KH]P (-) H + 2KR, 3.2

For the extrema of tr{Pi{+)}. we require this to be zero.

Thus:
K. = P.(=) H [H;R(-)H + R]™ 3.22

The second derivative of tr{P; (+)} with respect to K is:

2
—atr{r(n} s 2 pCIHTR] 323

This matrix is positive semi-definite for all H;. Thus the
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gain of 3.22 gives a minimum for the tr{Pi(+)}.
As before, we will now invoke the first order
Gauss-Mar kov assumption on the process X;. This produces

the relation:

Xigr® et X ¥V, 3.6
! (REPEATED)
Taking the expectation of both sides conditioned on the

observation of data through time i yields:

/)Ei-n(") = Pie /)E;("')

3.7
(REPEATED)

Again this describes the propagation of the estimate at one
time to the prior at the next. Subtracting 3.6 from 3,7

yields:

~

—) = X ~ v, 3.24
Xiﬂ( ) Ct)i,i-i-l xi(+) V.
Multiplying 3.24 by its transpose and taking expectations

yields:

Patl™) = &g Pa('*')q’i,n-s + Q 3.8

since Vi is assumed to be independent of X;(+). As before,
this describes the propagation of the error covariance of
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the estimate between measurements.

Section C. The innovations process

The guantity:

V. = Z.-H.X.(~) 3.25

is defined in the literature of Kalman-Bucy filtering as the
innovations process of the observations. Heuristically, it
represents the new information brought into the system by
the measurement z,. If Li;is zero, this information is that
the propagation of Q},|(+) to'Ql(—) was adequate and that
our prior was most likely the correct state. If Ui is not
zero, it means that the value of ;;(—) must be modified to
"explain" the observation. The innovations sequence of the
optimal filter has several valuable properties which may be
used to test the filter and the data. These properties are
that the innovations sequence is a white Gaussian zero mean
process with a known covariance.

It is easily shown that any unbiased prior g?;bﬁ
produces innovations with a zero mean provided that the

observation matrix assumed by the filter corresponds with
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reality. Substituting 3.1 and 3.11 into 3.25 we get:

V.= N, - HXA{=) 3.26

Taking expectations, this will be zero since we have assumed
that the observation noise N is 2zero mean as is the error
of the prior.

It is interesting to note what happens when the
observation model that is assumed by the estimation scheme
is not correct. Let us say that the estimation scheme
assumes that the observation matrix is H; while in reality
it is H.. The innovation is then:

v. = (H.- H;)xi t N - H'.Xi(-) 3.27

; i
' A

Still assuming that x;(-) is an unbiased prior such as a

mean, we find that the mean of the innovations will be zero

if and only if X. is zero mean.

Unfortunately, a2 non-zero mean serves only as a warning
flag that something is not right. It does not unequivocably
point to an incorrect observation model. Many practical
instruments will contain an unknown bias dependent on the

observation matrix H;. The actual observation then becomes:

Z. = H. X, + b(H;) + N, 3.28
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where b is a bias. The innovation here is:

~

v. = b(Hi) + (Hi— H;)x;+ Na_ H'X (-) 3.29

H ] ]
If we examine only the mean of the innovation we have

E{v.}= b(H,) + (H -H)EX | 3.30

and cannot in general discriminate between the two sources.
To determine the covariance of the innovations, we
multiply 3.26 by its transpose and take expectations to

yield:
e{uuT}= HR(-)H] + R, 3.3

To verify the Gaussian nature of the innovations we
will assume that the error of the prior at step i-1 is a

Gaussian random variable. Then
;(i—(""') = ["Ki-uHi-l]xi-r(') + KN, 315
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is a Gaussian random variable since it is the sum of rotated

Gaussian random variables. The one step prediction gives

i~

X (=) =& _ X (4 = V, 3.24
' he (REPEATED)

Again, this is a Gaussian random variable for the same
reasons., Substituting this into 3.26 demonstrates the
Gaussian nature of the innovations.

I£ may be shown that the innovations process must be a
white process in the optimal filter. To do this we first
will multiply 3.26 taken at time i by the transpose of 3.26

taken at time j and take expectations to find:

Efu Tt E{N NI - E{N X)) H]
- - - 3.32
~ HE{X(-) N} + HE{X() X(=)}H,

As N, is a white process the E{N;Ni} is 0 for i ® j, and
since our interest here is exactly i # j, we will dzop it
from further formulae. Restricting our interest to the case

of i > j we note that:

E{N, X(-)} = O 3.33

since the observation noise is independent of all processes
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at earlier times. We will now seek a relation for X (~) in

terms of X (). Substituting 3.15 into 3.24 we get:
X, (=) = - X (- - V. 34
Xl =) ‘d’;,m%[' KHIX (=) + K, N;E v, 3.5

This gives a recursive relation for X4-) in terms of

xi(—). We may expand this recursion to show that:

i n|n+l

X. (=) = {‘iﬁ!'cb (1 — K H] }Sc'j(—)
n=j

il -1
+ { q‘l’?mﬂﬂ - Kn Ha]} qu,kHKk N 3'35
k=)

i—=1 :
i-1
‘*E :{ I ¢nm+l[l“ KJ#J}VR
kz: n=k+l
25
The products here are left matrix multiplications and if the
lower limit exceeds the upper limit, the product is the
appropriate identity matrix. We now substitute this into
3.32 and using the statistical independence of the plant
noise and observation noise, both with respect to each other
and to errors and noises at earlier times we may simplify
3.32 to:
i=1
euvt= W (17 0nnll = KaHy)) -
i A= ¥ !
uT 3.36
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The quantity in braces may be rearranged as:
P(-)HT — K.[H.P(-)H + R] 3.37
) i il i }

If the gain K is the optimal Kalman gain, this reduces 3.37

to
-
T _ v uT yul YU
F’j(')Hj Pj( )H‘. [Hij( )H’.+Rj] [Hin( )Hj+ Rj]

= P(-) H = P(=)HI 3.38
J 2 ] }
=0
Thus, Eilﬂlﬂ) is zero for all i > j previding that the
optimum gain is used at time j.

It is possible to perform a number of tests on both the
data stream and the models assumed in the estimation scheme
using the innovations sequence. As indicated earlier, one
is a simple mean test. If the sample mean of the
innovations is not zero within the confidence indicated by
the variance of I and the number of samples, it indicates
that there are unresolved problems in either the observation
matrices, state propagation, or instrument bias. Likewise
it is possible to test the sample variance of the
innovations tc reveal other problems. Finally, it is
possible to examine the whiteness of the innovations to
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determine if the estimation scheme is suboptimum.

Given that the estimation scheme does not pass these
various tests, it is potentially possible to modify the
estimation scheme by a procedure known as "Adaptive Kalman
Filtering". Some methods for doing this are indicated by
Jazwinski (1970) and Xehra (19734, 1971).

Another set of possible tests that are possible using
the innovations are often called "data reasonableness
tests". The basis of these tests lies in the fact that not
all instruments are well behaved and obey the assumptions
made about them all the time. As a specific example of
interest, consider a sporadicalliy malfunctioning radiometer
observing a dynamic process operating over a digital
transmission link. If everything is operating correctly,
the data link does not produce errors and the observation
noise is determined by the front end noise of the
instrument. The innovations sequence will then be well
behaved and will have the statistical behaviour that we have
derived in this section. If the digital transmission link
produces an error, this fact should be observable from the
fact that ;uch an error is usually as likely to appear on
the most significant bit as the least significant bit. An
error of this sort will usually lead to the reiection of the
hypothesis that the innovation was drawn from a

N(O,H; P; (—)HT +R. ) population, Transmission errors
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may then be detected by innovations testing.

A similar test should identify sporadic mal functions in
the instrument. In such cases it will be assumed that Hi is
known if the instrument is functioning properly, but that
when it malfunctions, it switches into an observation mode
H; . As an example, such a switch may be caused by a
mal functioning automatic gain control. Again we can test
the innovations to see if they are drawn from the population
we expect. If the modes of malfunction are known, another
possibility is to perform what is sometimes termed
"alternative hypothesis testing". That is, under the
hypothesis that the instrurent is observing with one of
several observation matrices Hg » it is possible to test
the innovations to determine which H§ was the most likely
to produce the innovation. This observation matrix may be
then used to process the data. Alternatively, a number of
Kalman filters may be run in parallel and their outputs
combined through a weighting on the probability that their

observation matrices correspond to reality (Athans, 1975),

Section D. The Sgquare Root Algorithm

The numerical characteristics of the Kalman-Bucy filter
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are of vital importance in its implementation. A simplistic
implementation of the formulas given earlier in this chapter
will often lead to a problem known as true divergence when
applied to some systems. This problem is evidenced by the
fact that Pi(+) ceases to be positive definite at some time
in its history, a requirement of any covariance matrix.
After this point, the errors of the filter may grow without
limit. The basic cause of this problem is the fact that
finite length word lengths are used in the computation of
the matrices used by the filter. The problems attendant to
finite word length arithmetic thus occur. This is
especially true in the inversion of the matrix

[H; P, (-)HT + R; 1, which may be ill conditioned in
practice. Since the filter is recursive, numerical errors
in earlier computations may propagate forward with
disasterous results.

One possible "fix" to the problem of numerical
divergence is simply to increase the precision of the
computations by use of multiple precision arithmetic. This
"fix" should be avoided for three reasons: First, the speed
of the algorithm may be seriously degraded. Secondly, the
implementor may still find that the filter continues to
diverge, a now doubly expensive lesson, Finally, the use of
the Square Root Algorithm guarantees that these problems

will never occur.
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The Square Root Algorithm was developed specifically to
circumvent the problems of numerical divergence in Kalman
filters. 1It is algorithmically equivalent to the so called
“batch" algorithm presented earlier in this chapter, but
offers effectively double precision results using single
precision arithmetic. Most importantly, it guarantees that
the error covariance, Pi (+), is positive semi-definite at
any step in the algorithm. Finally, it easily mechanizes
“he use of innovations for data reasonableness tests.

The square root formulation presented in tnis section
follows that of an excellent review paper on the subject by
Kaminski et al. (1971). The reader interested in
implementing a Kalman filter is highly urged to read this
paper and that of Schmidt (1970).

The square root filter has its foundation in two facts:
The first is that any vector of measurements may be included
into the estimation scheme one at a time provided that their
measuremeng noises are independent. If the measurement
noises are not independent, the measurement space may be
rotated to yield such independence. The algorithm processes
the first measurement as if it were the only measurement
that it was ever going to receive. It then processes the
second measurement as if it were the only additional
measurement, etc. The second fact is that since P; {e) is

a positive semi-definite matrix, it may be factored inteo a
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matrix times its transpose. This matrix is often called the
square root of P, {®) and is not a unigue matrix. For the

purposes of this section, it will be assumed that the square
root is a Cholesky decomposition at the beginning of the

algorithm. We will denote this decomposition by:

P{e)

S.(*) ST(*) 3.39
] H
To derive the square root formulation, we will begin

with the covariance update equation 3.5 on the assumption

that we are updating for only a single measurement.

Equation 3.5 then becomes:
P(+) = P(-) — K _H_ P (-) 3.40
4 ] i) iy 1y

where H.j is the jth row of H. and Kii is the gain for

including measurement j equal to:

K, = P.(-) Ht /(Hi’.Pij(—)H;Tj-e- R..) 3.4

'y

where Rii is the measurement noise for channel j. We note
T . .
that Hij P;j(—)H;; + Rii is a scalar for a single

measurement and that it is the variznce of the innovation
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for the jth channel. Defining:
I/a = H_P.(=)H. + R._ 3.42
1} 1) " 13

we will then substitute 3.42 and 3.39 into 3.40 to yield:

P (+) = S.(-)SK-) - as_.(—)sTi(-)H’_'iH.is_i(—)s?;(-) 3.43
" ] o 1 1 TR T I Y

Defining

F.o = Sp(=)H] 3.44

L]

and substituting into 3.43 now gives us:
S (+)S(+) = S(-) [l—aF Fl]s(-) 3.45
1) 1y 1 THE] | ]
It may be shown that [I - aFFT] may be factored as:
- Tl - - T _
[l -aE F)= [-ayF i)l 1-ayF F] 3.46

where:

7= 1/(1+ JyaR;) 3.48
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Thus 3.45 may be factored as:

T
S;(+) = S;(=3 [I - ayF.F, 3.48

ii u

Using 3.39 and 3.42 in 3.41, the gain for measurement j is:
K..= a S.(-)F. 3.49
i 1 1y
The error covariance after the jth measurement is:

P.(+) = S.(+) S{(+) 3.39

i T i (REPEATED)
Since this is a product of a matrix times its transpose,
Pij(+) is guaranteed to be a positive semi-definite matrix.

Operationally, several items should be noted; First,
while it is possible to carry the square root of PH (o)
rather than Pij(') throughout the entire life of the filter,
it is often more convenient to propagate P; (+) to P. (=) by
use of the usual covariance propagation equation 3.8,
decompose it to S;+N-) in order to produce the gains and
covariance update, and then reform it to produce Pi+ﬂ+) for
the next propagation. This is due to two factors, the first
is that the procedures necessary to do the decomposition and
reformation of P. (#) to and from its square root are
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readily available as library subzoutines, while the
procedures necessary to perform the propagation of S; (+)
between measurements are not. More importantly, it is
easier to monitor the predicted performance of the filter by
observing the diagonal elements of Pi (e). The equivalent
information is contained in S; (o) of course, but it is not
so readily available.

A second operational note is that the square root
filter facilitates data reasonableness test of the
individual measurements. As has been noted earlier in this
section, the guantity l/a represents the variance of the
innovation for the measurement being processed. The
hypothesis that the data from that measurement is
"reasonable" is thus easily tested. 1If the measurement is
unreasonable, the gain computation may be aborted, the gain
for that measurement set to zero and S;j(-) returned as
S;j(+). If the data is accepted, the gain may then be
computed and S;j(-) updated for the measurement inclusion,
The gain from the measurement may then be used to update the
state estimate and compute new innovations for the
measurements yet to be processed.

Finally, it should be noted that the operation counts
such as those of Kaminski et al. (1971) are somewhat
misleading. 1In actual fact, a Square Root Covariance I
filter (the form described in this section) may actually run
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faster than a Conventional Covariance filter despite the
apparent increase in operation count. This is due to the
fact that the conventional filter performs all of its
arithmetic using matrices while the square root filter
performs many of its operations using vectors. The access
to any element of a matrix from a higher level language
usually implies a multiply and an add, while a vector
reference does not. As an example, adding two matrix
elements requires 2 multiply and 3 add instructions. A
similar operation with vectors requires a single add. These
hidden operations in the covariance filter may actually make

it more computationally complex than a square root filter.

Saction E. The Extended Kalman Filter

In a great many cases of practical interest, the
observed measurements are non-linear Ffunctions of the
variables to be estimated. That is, the observations are of

the form:
Z.= h(X) + N, 3.50

where h; (®*) is a non-linear, deterministic function of its

- 69 -



argument and Ni is a white Gaussian noise. To derive one
possible estimator for this case, we will follow a
structured development such as given in Section B of this
chapter.

The estimator that we will desire to produce is a

linear function of the observation:
FAN
X (+) = A + K.Z, 3.5
where A; and K. are to be determined. Since we will require
~
the estimator to be unbiised, we substitute for xi(+}' xi'

and Z, to yield:

X(+) +x = A + K[h(x)+N] 352

X.(+) = X(=) = A, + K[h(X) +N] 3.53

Taking expectations over X, and requiring that the prior is
]

unhiased we find that:

VAN
A. = X (=) — K,h(X.) 3.54



Thus the estimator is of the form:

X(+) = 32;(-) + Ki[zi—?n\i(xi)] 3.55

The error of the estimate is:

~

X(+) = X.(-) + K[h(x) - h(x)] + KN, 356

Desiring a minimum variance estimator, we multiply 3.56

times its transpose and take expectations over X. :
]

P(+) = P (=) + K E{[h(X,) - h(x)I[n LX) =

?1\.(X.)]T}|’<-;r + K, R K,
N N 3.57
+ E{X.(=) [h(x) = h(x)IT}KT

+ K, E{[n(x) = h.(x.)] K-}

The derivative of the trace of Pi (+) with respect to K; is:

2 4r p(+) =2 K E{[n(X) ~ h(X)]

oK A
[h.(X) = h(x))}
2 E{X,(=)[hgx,) - h(x,)T}

3.58

2 K,R,
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Setting this to zero gives Ki as:

K, = = E{X(-) h(x) - hex )T}

3.59
[E{tn,x) - Bexdinx) = hoxy+ )™
Again, the second derivative of tr{Pi (+)} is a positive .
semi-definite matrix, thus this is a solution for the
inimum.

Unfortunately, 3.59 is not very useful in determining a
numerical value for the gain due to its dependence on the
probability density of x; . One way to help overcome this
is the approach of expanding a function in terms of its
Taylor series. Choosing to expand h; (x. ) and/g; (X,

around the prior, we get the expressions:

h(X) = h(XD 4+ D = x| Xi-)  3.60

A ~ — 3 i
h(X) = ROXED + D o haX) E{/)f;( )} 3.6
izl X = %.(-)
Defining
o 3
s 2= h(x)| A 3.62
H.(X.(-)) % WOl o

i
- 72 -



we then truncate both series after the first derivative and

substitute into 3.59 to get an approximation to the gain as:
T/\ N T - |

K, = PU=VHIOW=D) [ RN RETHIKED + R, [T 3.63

The form of the estimator using this approximation is then:

N P VAN

X, (+) = X.(=) + K. [Z; - h(X(-))] 3.64

with the covariance update equation:

P(+) = 1= KHX(-N] P (=) 3.65

It should be noted that the covariance update equation of
5.63 yields only an approximation to the actual error
covariance. It will be valid only to the extent that the
truncation of the Taylor series was valid.

The validity of the truncation is determined by the
bandwidth of the process when compared to the higher order
derivatives of hi (X; ). If the product of the bandwidth,
or higher order moments of X. (=), and the higher order
derivatives are relatively large, the approximation will be

invalid. 1In these cases, it is possible to retain more
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terms in the Taylor series to get Second Order, Third Order,
etc. Kalman filters. Another.approach is to iterate the
extended filter to get what is termed the Iterated-Extended
Kalman filter. A discussion of these types of filters is
given by Gelb (1974).

One significant difference between the Extended Kalman
filter and the standard Kalman filter is the dependence of
the gain K; on the prior G;; (=). In the standard filter,
this dependence does not occur. Thus, the gain sequence K;
may be precomputed in the standard filter, but not in the
extended filter. To allow precomputation in the case of the
extended filtef, one must make a further level of
approximation. This approximation is that the future values
of the process X, will lie "close" to a nominal
trajectory. If this zpproximation is used, several variants
of approximate precomputation are possible. The first is to
precompute the covariance of the prior, P; (=), leaving the
actual gain\falculation to depend on the observed priors

A .
X. {(-). The second is to totally precompute K. along the

nominal trajectory. The third is to operate the full
extended Kalman filter for some period of time and then
switch to either of the above strategies. In all cases, one

is hoping to ease the computational burden without a large
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degradation in per formance.

Section F. The non-causal filter

For a number of cases, there is no requirement that
estimates be produced in real time. One of the primary uses
(at least potentially) for remotely sensed temperature
profiles is in the production of synoptic analyses. These
analyses are normally produced for 00002 and 1200Z2. For
this use, there is no requirement that the estimate be
produced in real time. The only requirement is that the
collection of data for input to an analysis scheme cease by
some cutoff time and the results reported. In view of this
requirement, it is then permissible to produce an estimate
at a point based on the totalitv of data collected through
this cutoff. Since temperature profiles are correlated in
time and space, the use of "future" observations will add
information and reduce the error in the estimate. The
purpose of this section is to discuss one form of the
non-causal Kalman filter that allows such processing, the
forward-backward smoother.

As a preparation for defining the non-causal filter, it

will be assumed that there exist two unbiased estimates of
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S A
X. (X! and X! ) having statistically independent
errors. It is then desired to combine these two estimates
to obtain 2 minumum variance estimate of xi by using the

linear scheme:

n
>
x
+
w
x

as
X. 3.66

where A and B are two weighting matrices to be determined.
This scheme will be optimum if the errors ;; and gg are
Gaussian random variables. To determine the relation of A
to B we will demand that 3% be an unbjased estimator. This

condition yields:
E{x,} = E{A(Xx+X)+ B(X.+X)-X}=0 3.67

N VN
Since the estimators x; and X? are unbiased this gives

an expression relating A to B:

A. = | —B. 3.68

Substituting 3.68 into 3.66 obtains the expression for the

Fa®
error of the estimate xi as:

X.= A X + (1-A)X" 3.69



Multiplying this by its transpose and taking expectations

gives the egquation for the error covariance of the estimate

as:
T
P = APA + (I-A)PI(1-A) 3.70
1 [ ] [ ] [}
since we have assumed that the errors gf and X" are

] )

independent. Minimizing the trace of P; by differentiating
the trace of Pi with respect to A; and setting the results

to zero gives:

AP - (I-A)P'=0 3.71
and so:

A= pr[Pr+R!]T 3.72

B.= P [P+ P 3.73

p'= P!7'+ P! 3.74

This defines the optimum variance combination of two
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estimators with independent errors. Note that 3,74
guarantees that such a combination will always be at least
as good as either of the estimators considered separately.
One very simple method of generating two estimates of
xi that meet the requirement of independent errors under
certain conditions is as follows: First partition the data
into two segments. One will consist of all the data through
the point i whose value we wish to estimate. The second
will consist of all the data from time i+l through the
cutoff time n. Next, run a standard Kalman filter on the
data through time i. This will be the first estimate G?E .
Finally, run a Kalman filter backwards in time from time n
to time i+l and then perform a one step "prediction" from
time i+l to timg i. This will be the second estimate ;E .
The form of the Kalman filter running backwards in time
(the backwards filter) is basically the same as that of the *
Kalman filter running forward in time {the forward filter).
The sole exception is that the forward state transition
matrix . .

transition matrix &. . I
l’l-

must be replaced by the reverse state
. It is easy to show that the

reverse state transition matrix is given by:

- =i
CI’;,;---l = P 3.75
Pay A
In the general case, the estimates LY and X"
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obtained by this method will not have independent errors and
50 the assumptions that lead to the weights derived earlier
are violated. There are, however, cases of practical
importance where the errors are either independent or
asymptoticaily so. One case in which the errors will be
independent is the case in which the errors of the priors
3;1 {(-) and G?N (-) for the forward and backward filters are
independent. Such a circumstance will occur if either of
these priors is the result of 2 known state at Xg or XpN4j-
Asymptotic independence of the errors will occur for
processes that may be referred to as lossy long observation
time processes {LLOT). A lossy process is one in which the

state transition matrix is such that:

m TIo.,, =0 3.76
|

i
n-s 0

L

In such processes, the initial state is eventually forgotten
and the state at any point interior to the interval is
determined by the plant noise sequence. Once this has
occurred, the errors of the filters may be regarded as
errors in estimating the plant noise sequence. Since the
plant noise ies a white process, we then argue that the
errors of the two filters will be independent.

Other fcrmulations of non-causal filters such as fixed

lag smoothers are possible. The primary advantage of the
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formulation presented in this section is the generality of
the lag and the reduction in the need for new software. To
produce a backward filter from a forward filter, it is only
necessary to modify it to produce the priors and the
covariance of the priors rather that the estimate and the
covariance of the estimate. This is usually a simple
programming change. To combine the two estimates and
produce the smoothed estimate, it is only necessary to write
a short program to read the results of the two filters and
perform the necessary manipulations. We may guarantee a
long observation time for the process by simply halting
processing using the forward filter at the cutoff time n and

then restarting it as more data becomes available.
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Chapter IV

The Temperature Experiment

Section A. General description

The temperature experiment was concerned with the
design and implementation of a practical Kalman-Bucy filter
for estimating temperatures in the atmosphere from data
produced by the SCAnned Microwave Spectrometer (SCAMS)
carried on the NIMBUS 6 satellite. The experiment was
divided into three major phases: The first was the design
and implementation of an extended filter for the estimation
of the temperature of the surface and the atmosphere at what
are called the 14 mandatory pressure levels at one or more
SCAMS scan angles. These mandatory pressure levels are
located at 1000, 850, 700, 500, 400, 300, 250, 200, 150,
100, 70, 50, 30, and 10 mb of atmospheric pressure. They
are the standard temperature and height fields produced by
the synoptic analysis schemes and are used by numerical
forecast models. The vector of state for a single spot
inversion may be thus described as [TS » Tyooor Teso -
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'1‘700, ce«r T3+ Tygl . For a multi-spot inversion, the
state vector is a concatenation of such single spot

vectors. The second part of this experiment was the
implementation of the forward-backward smoother for
noncausal estimation of these temperature fields. The final
experiment consisted of the implementation of a sub-optimal
filter in which either the covariance or gain history of the
filter was precomputed along a nominal satellite track.

The data used in the experiment were several periods of
actual SCAMS brightness temperatures. These periods of data
spanned an interval from August, 1975 to February, 1976.

The standard of comparison used for verification in the
experiments was the National Meteorological Center (NMC) K27
synoptic analysis grid interpolated to the satellite
position in space and time. This grid consists of an
octagonally shapped mesh covering the northern hemisphere.
The individual cells in the grid are roughly 400 km wide.
This and several other special purpose analyses are produced
for 0Z and 127 each day from all available operational
observations (primarily radiosondes) and represent one of
the best analysis efforts available on an operational

basis. The accuracy of the grid is thought to be better
than 1° K in areas where reporting stations are spatially
dense. These areas have been historically considered to be

Japan, the United States and Canada, and western Europe
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(Waters et al., 1975). These regions are diagrammed in
Figure 2, 1In order to attempt to guarantee validity of
comparisons between the estimates of the Kalman filter and
the verification data, comparisons were restricted to these
areas.

A number of topics will be discussed in this chapter.
Section B will give a brief description of the SCAMS
instrument. Section C will discuss the system
identification aspects of the implementation of an exztended
Kalman-Bucy filter for temperature retrieval. Section D
will discuss the synthesis of the observation matrices. A
general description of the filter program and its
capabilities will be given in Section E. A much more
complete description of the pregram with design philosophies
and descriptions of the flow in each mcdule is given in
Appendix C. Section F will cover the tuning procedures that
were used in the filter and prcblems that occurred in its
implementation. A summary of the results that were obtained
with the causal filter are given in Section G. Section H
will present the results of the non-causal experiment.
Finally, Section I will explore the sub=-optimal but fast

precomputed parameter filter.
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Section B. The SCAMS instrument

The SCAMS instrumernt is a scanning microwave
spectrometer that observed the upwelling radiation from the
earth at five frequencies (Staelin et al., 1975, 1977).
Three of these frequencies (52.85 Ghz., 53.85 GHz., and
35.45 Ghz.) are in an oxygen absorption complex and respond
primarily to the temperature in the earth's atmosphere. The
frequencies have been chosen to produce weighting functions
that peak in the lower, middle and upper atmosphere. The
remaining two channels (22.235 GHz. and 31.65 GHz.) are
situated on a water vapor resonance and in an atmospheric
window respectively. These two channels are used primarily
to produce estimates of liquid water and water vapor over
ocean and surface characteristics of ice pack or land (Grody
and Pelligrino, 1977, Staelin et al., 1977, Ledsham and
Staelin, 1978).

Electrically, the SCAMS instrument uses a separate
Dicke-switched radiometer for each channel. These
radiometers have a noise of about 0.5° K rms for a one
second integration time. The three oxygen band channels
share a common antenna, while the two lower frequencies have
separate antennas. These antennas are positioned in front
of reflectors that are rotated by means of stepping motors,
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These motors drive the reflectors to give thirteen earth
views of roughly one second each in angular increments of
7.2® . They then rotate to provide a view of an ambient
temperature target and cold space for instrumental
calibration purposes. The total scan takes a period of
sixteen seconds which will be called a major frame or frame
in this thesis. All antennas have 7.5° beamwidths at their
half power points.

The total antenna geometry and satellite orbit produce
3 set of linear scans of the earth roughly 2400 km long with
a 100 km separation between the centers of the scans. The
size of the earth view (often called a spot, footprint or
pixel) wvaries from an approximate 144 km circle at the nadir
view to a 221 km downtrack by 361 km crosstrack ellipse at

the extreme scan angles.

Section C. The temperature system identification

As discussed in the chapter on the discrete Kalman-Bucy
filter, several a priori matrices are necessary for the
operation of the filter. Specifically., these matrices are
the state transition matrix ¢ﬁg+r the plant noise covariance

Q. , associated with the message generation process, the
]
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observation matrices H, , the observation noise R; that
describe the message teception. In addition, the mean of
the process at the initiation of processing, G?I (-}, and its
error covariance matrix PI (~) must also be specified. This
section will deal with the determination of ¢3J+I' Q; '
3?;(-), and P, (-). The discussion of H. and R, will be
left to Sections D and F respectively.

Of the two tasks addressed by this section, the
determination of Q} (-) and its covariance matrix was the
easiest to accomplish. A large body of meteorological
experience have led to the specification of what are called
the supplemental standard atmospheres (Valley, 1966}.
Determined for 15 degree intervals in latitude from 15
degrees to 75 degrees for both summer and winter conditions,
these atmospheres are typical of global means. The 15
degree atmosphere is actually defined for only a single
season reflecting the conditions occurring in the tropics,
and the 75 degree winter atmosphere is only defined through
an altitude of 30 km after which it bifurcates into one of
two atmospheres. The prior was taken to be an interpolation
of these atmospheres in latitude.

While the values of the supplemental atmospheres are
specified, their covariance matrix is not. To generate this
matrix, the covariance matrix of the NMC K27 grid was

examined. The analysis along a satellite track for a period
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of two days was retrieved from a merged SCAMS tape. The
covariance around the means derived from the interpolated
supplemental standard atmospheres for the five central SCAMS
spots was then computed. This analysis was performed on
data from January 26-27, 1976, to represent the winter
statistics and from Augusi 7-9, 1975, to represent the
summer statistics. These statistics were computed for 22.5
degree latitude bands.

While this procedure yielded what is felt to be a
reasonable estimate of the covariance of the prior for the
atmosphere, the covariance of the surface temperature had
yet to be determined since the NMC KZ7 grid contains no
information on this quantity. The solution adopted for this
problem was to insert the variance of the surface as twice
that of the 1000 mb temperature along the diagonal of the
covariance matrix and egual to the 1000 mb covariances on
the off diagonal elements. This was felt to be justified by
the rationale that the 1000 mb temperature and the surface
temperature are coupled through convection. However,
because of the variation in ground cover and the fact that
the earth's oceans act as a thermal source/sink, it was
decided to increase the variance of the prior. The manner
in which this was done was consistent with the assumption
that the surface temperature is equal to the 1000 mb

temperature plus an independent noise component.
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The identification of the state transition matrix
and the plant noise Q. should, in theory, be derivable from
the primative equations that describe the transfer of heat,
mass, and momentum in the earth’'s atmosphere. These
equations are unfortunately quite complicated in practice.
The problem of system identification using these eguations
is not unlike the problem of construction of a large scale
computer starting with Maxwell's eguations.

The problem of identification was thus first approached
in a statistical manner similar to that used to derive the
covariance matrix of the prior. A stepwise regression of
each NMC K27 levels at a SCAMS spot was performed with the
entire NMC K27 grid at the previous scan acting as the
predictors. The mean of the predictors was taken to be the
interpolated supplemental atmospheres. As with the
covariance of the prior, the northern hemisphere was divided
into four latitude bands of 22.5 degrees and a separate
regression was performed in each band. Since weather
systems and phenomena vary on a latitudinal basis, this
segmentation is a natural one. The choice of four bands was
arbitrary, but was designed to yield one tropical, one
arctic, one sub-tropical, and one sub-arctic plant. The
regression coefficients were interpreted as the elements of
the state transition matrix and the covariance of the
residuals as the plant noise. The elements of the plant
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noise for the surface were inserted in the same manner as
the covariance of the prior, and the elements of the state
transition matrix for the surface were taken to be the same
as those of 1000 mb. Early experiments using these choices
Of‘biﬁ+l and Q. disclosed that this appoach was
unsatisfactory. Examination of the diagonal elements of the
predicted error covariance matrix, Pi (+), versus the actual
error performance disclosed that the filter was performing
much worse than it "thought™ it was, especially in the
vicinity of tropopause.

A re-examination of the system identification disclosed
the most probable cause. Remembering that the scans of
SCAMS are separated by about 100 km and that the grid cell
is approximately 400 km wide yields the conclusion that it
takes about four scans to cross a grid point. The approach
described above is thus roughly equivalent to the problem of
a grid point predicting itself. This it can do with little
error.

The next approach attempted was used in the actual
filter. An identity state transition matrix was initially
assumed and the resulting error of the prediction five
frames later was then computed. If the choice of an
identity transition was correct, this quantity is five times
the plant noise. Again, the surface elements were assumed

and inserted. While the identity matrix state transition
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was assumed in this plant noise construction and tested in
the filter due to its advantages in the state and error
covariance propagation, it is a physically impossible matrix
in practice. Adjacent temperature layers transfer energy
between themselves in the real atmosphere. Doing so, they
attempt to restore the overall temperature profile to one
consistent with the ideal gas law, solar flux, geostrophic
wind, etc. Thus, it was decided to allow the elements of
the state transition matrix to be adjustable at run time
even though the plant noise was computed using an identity

matrix for &.

;.i¢l + For reasons of practicality, the run time
¥

transition matrix allowed only interaction with nearest
neighbors in pressure. The form of interaction was
constrained to be a weighted average of the deviation of the
temperatures from the climatology as represented by the
interpolated supplemental atmospheres. For most levels at
the center spot of a three spot filter, this interaction is

described by the expression:

i+l j+i
i ooy’ -
T - ZZ WinlTen = Tin )+ Ty 4.1
k==l n=j=-|
where Tij is the temperature at spot i, pressure level j
to be predicted, T! is the estimate at spot k, pressure

kKin
level n from the previous scan, Wen is the weight given to

T' and T is the appropriate interpolated
kn kn
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supplemental atmosphere. For the two edge profiles cf the

three spot filter, the interaction is:

m i+l
T; = E E Win {Ten ™ Tead + T 4.2
k=: n=j-!

where m is either i+l or i-1, dependent on the edge being
predicted. A two spot prediction was considered to be a
case of two such edges. A single spot prediction simply
used the second summation of 4.2,

In all cases, the prediction algorithm must take into
account the fact that the altitude of the surface is a
variable. As an example, an altitude of roughly 1 km places
the surface at a pressure altitude of 925 mb. 1In this case,
the 1000 mb slab no longer exists, except as perhaps a
"virtual®™ one. For these cases, the surface should interact
with the slab above it and not with any "virtual® ones. For
temperatures in the atmosphere, interaction between
"virtual” and real slabs should be permitted to prevent
these "virtual" slabs from being propagated in a pure
prediction mode for long periods of time.

The determination of the weights used in the
implementation of the filter are discussed in the section on
filter tuning. However, it will be mentioned at this time
that the best per formance seemed to be obtained with Wi+l4

and Wi'

. ey = 0.25.

and W . = 0.0, W, . = 0,5 and W. .
l-l W Iyt Vot
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Other possibilities exist for the state indentification
process. One would have been through the use of the
previous SCAMS temperature estimates produced by the
Statistical D inversion method. The second would have
involved the use of an ensemble of radiosondes such as
described in Appendix A. The first was not used in order to
divorce the filter from the present inversion method. The
second was rejected because of the lack of a summer dataset

and the magnitude of effort required.

Section D. Observation matrices

Following the discussion of Chapters II and III, it may
be seen that the discrete weighting functions correspond to
the Kalman-Bucy filter observation matrices. That is, a
noiseless brightness temperature may be computed through the

equation:

T = HIRW)L,H) T 4.3

where the matrix H is a function only of the reflectivity
R(Y) and the surface elevation Hy . For estimation over

land areas, it is reasonable to assume that both R()/) and
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Hs were known to the filter from independert sources. For
temperature estimation over water areas, R(}/) is a
deterministic function of T, in the absence of ocean
roughness. It is thus still possible to use 4.1 to obtain
the predicted brightness temperature, h(gz (-)), by using
the predicted surface temperature to evaluate R()/).
However, since the problem is now nonlinear, we reguire an
extended Kalman-Bucy filter. For this filter we will also

require the matrix:

HAX (=) = —-Z—; x| 3.62
X = X;(") (REPEATED)
This section will be concerned with the determination of
both matrices.
The computation of the observation matrices of eqguation
4.1 is a straight forward matter. For a given atmospheric
state, it is possible to evaluate the equation:

u.

w.(y,R) = F.(T(h),T(h)} W(h,V,R)dh 2.18

(REPEATED)
L

which relates the discrete weighting function to the
continuous weighting function. The matters of judgment in
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this process are: For which atmospheres and reflectivities
should the function be evaluated? What is the form of the
function F. (e) for the slab i, and what are the upper and
lower boundaries of the slab? Finally there is the question
of how surface elevation effects will be handled.

The issue of refiectivities is the easiest to handle.
If we examine the form of the continuous weighting function

we fih. :

W(h,V,R) = K(,h)T(h,H) + RV K(L,h) T(Hh) T(H,H) 4.4

We note that this is a linear function in reflectivity. It
is thus pnssible to obtain a weighting function for any
reflectivity by a simple interpolation between a weighting
function computed for R(Y )= 0 and R{V) =1,

The choice of the atmospheres over which to evaluate
the weighting functions was also an easy one. As noted in
Chapter II, the weighting functions are relatively
insensitive to temperature. However, as a matter of
principle, the atmospheres should be close to the
atmospheric conditions that are expected to be observed.
Given the ready availability of the supplemental standard
atmospheres, it was decided to use them as models for which
the weighting functions were computed. The winter
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atmospheres would provide the weighting functions for the
months of November through April in the northern hemisphere,
and the summer atmospheres would provide the weighting
functions for the other months. The weighting function
whose model was closest in latitude to the observation would
be used with the exception of the region above 60 degrees in
latitude. Here, the 60° latitude atmospheres were used
because of the bifurcation of the 75° winter atmosphere.

In the choice of variables used {o characterize the
atmosphere and observations (the vector of state), it was
decided to use the temperatures at the 14 mandatory pressure
levels and the surface temperature. The sky temperature
(~2.5° K) is well known a priori and so appears as a bias.
After a round trip through the atmosphere, its impact on the
most transparent oxygen channel is a maximum of roughly
0.1° K. The choice of the slab definition to describe the
weighting functions for these variables was somewhat
atbitrary. It was chosen to split the pressure levels in
pressure altitude. The 1000 mb temperature thus
characterized a slab from the surface (1013 mb) to 925 mb,
the 850 mb temperature characterizes a slab from 925 mb to
775 mb, etc. There is undoubtedly a more enlightened slab
definition possible.

The various supplemental atmospheres were then examined

to determine the heights of the various mandatory pressure
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levels and slab definition pressures. These heights are
given in Table 2 and form the L, and U, altitudes for the
integration of the continuous weighting functions. The
above choices give the form of Fi (T(h),T(hi)) as a simple
ratio of T(h) to T{h;).

The final problem that was addressed for the
determination of the discrete weighting functions over land
was the problem of surface elevation. Since the weighting
function for a level is defined in terms of the extinction
from the surface to that level and from the surface to the
radiometer, the surface elevation has an effect on the
continuous (and hence discrete) weighting function. While
it would have been possible to have constructed an elaborate
scheme to interpolate weighting functions to account for
elevation effects, a simple linear interpolation was used in
the filter. This was not because of the linearity of the
weighting functions with surface altitude, but rather the
fact that the elevation information available to the filter
was rather coarse spatially. It was felt that the use of an
elaborate scheme in these circumstances was unjust’fied.

The choice of elevations for which the weighting functions
were evaluated was 0, 0.5, 1.0, 1.5, 2.0, and 3.0 km.

Having made these engineering decisions, the discrete
weighting functions were evaluated over all possible

permutations of of the two reflectivities, two seasons, four
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Pres.
{mb)

7013
1000
225
850
775
700
600
500
450
490
350
300
275
250
225
200
175
150
125
100
85
70
69
50
40
30
20
10
7.5

XX5 implies the summer atmospheres at
XX¥ implies the winter atmospheres at

605
height
(km)
0.0600
0.084
0.734
1.430
2. 180
2.994
4,202
5.601
6.3532
7.235
8. 178
9,234
9.816
10,452
11. 145
11.521
12.803
i3.81s6
15.019
164990
17. 5961
18.841
19.329
21.060
22.529
26,481
27.203
31.968
34.0069

Table 2

Heights of Various Pressure Surfaces

in tie Supplemental Atmospheres

45s
height
{km})
0.0090
0. 115
0.782
1.497
2. 281
3.118
4.357
5.781
6.594
7. 471
8.442
5.534
10. 136
19.784
11.48%
12. 256
13.128
14.101
15.253
16.662
17. 705
18.939
19.413
21.099
22.545
24. 426
27.178
31.893%
33.968

308
height
(km)
0.000
0.718
q.797
1.533
2.313
3.160
h.4016
5.862
6.703
7.593
8.577
9.679
10.286
10.938
11.645
12. 417
13.270
14,226
15. 366
16.702
17.681
18.863
19.318
20.947
22.387
24.227
264873
31.543
33.654

15A
height
(km)
0.000
0.115
0.793
1.517
24302
3.173
b.428
5.865
6.672
7.555
8. 531
5.628
10.232
i0.882
11.586
124 357
13.209
T4.16006
15. 260
16.6706
17.559
18.692
15.132
20.719
22.147
23.978
26.617
31.292
33.295
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30W 45%
height Theight
{km) (km}
0.000 0.000
J.175 0.142
0.826 Ue759
1.528 1. 424
2.299 2.143
3.123 2.927
4,341 4.098
5.736 5.438
b.521 6. 192
T7.380 7020
84330 7.938
9.398 8971
9,986 9.542
10.622 10.173
11.310 10.850
12.099 11,606
12.939 12.461
13.899 13.446
15.020 14.607
16,370 16.025
17.367 17.055
18.530 18B.281
18.974 18.749
20.568 20.439
21.947 21.846
23.783 23.658
26.382 26.211
30.969 30.656
33.034 32.545
latitude XX.
latitade £X.

60U
height
(km)
0. 000
0.1
0.8690
1. 330
2.024
2.783
3.9 10
5.219
5. 950
6.749
T«632
8.652
9.1890
9.736
10. 456
T1.204
12.053
13.033
14.19
15.624
16.654
17.881
18. 348
19.996
217.392
23. 184
25.746
30.089
31.917



latitudes, and six surface elevations for each of the seven
different SCAMS scan angles.

The problem of determining the matrix H, (Q} (-)) was
easily mechanized by the above approach to determining the

discrete weighting functions. The elements

T where
3T, B (
T, is a temperature in the atmosphere) are the same as
those of the discrete weighting functions. The element for
the surface however, must be computed separately. Writing

the brightness temperature as the sum:

14
E T WALRW,T,)) + T, WL,R(V,T,)) 45

Tg(V)

we differentiate to yield:

9 T.)

T T - ZT SR W RO
3

" 3R (V,T)

+ W,(U, RV, T,))

Because of the linear interpolation scheme used in the

w (v, R(L,T,)) — BT —R(V, T,) 4.6

synthesis of the discrete weighting functions for an
arbitrary reflectivity, the evaluation of the differentials
of the weighting functions with respect to reflectivity is

trivial. The derivative of the reflectivity with respect to
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temperature is easily table-driven. For the filter
implemented, this table consisted of 45 entries in one

degree kelvin increments.

Section E. The filter program

The basic requirement adopted for the design and
implementation of the Kalman filter program was that the
overall program be as general as possible. Further, it was
reguired that the program be constructed in a modular
fashion with each module having a readily identifiable
task.

To a large extent, this goal was realized. The program
produced is general enough to handle a great many
temperature profile estimation problems. All the results
contained in this chapter have been produced using a single

program. Specifically, the program is capable of:

1) Handling any inversion scheme from one to thirteen
scan angles. However, as a practical matter . the upper
limit is about five angles due to limits on storage and
complexity. A five scan angle reguired a 75 state filter.

A thirteen spot filter would have required a 195 state
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filter.

2) Running as either a forward or backward filter.

3) Using precomputed gain or covariance matrices.

4) Being used in either a batch or interactive mode

with prompting.

5) Producing print output, at intervals of the user's
selection, of items of interest such as the diagonal of the

error coavariance matrix, the innovations, etc.

6) Performing data reasonableness testing as an

option. The rejection criteria is selectable by the user.

7) Being easily modified to accommodate a different

instr ument.

8) Producing timings of any of the major tasks in the
estimation process such as the gain computation, prediction,

etc. at the user's option.

The program consists of a number of subroutines and a dummy

main routine written in an admixture of PL/I and IBM 370

- 101 -



assembler language. The names and purposes of the routines

are:

FOO ~ This is the dummy main program. Its sole purpose is
tc determine the order of the filter to be run and compute
the amount of storage needed for the program. It also

configures the output files of the filter to conform tc the

filter order. It calls routine KALMAN,

KALMAN - This is the actual "main" program. It allocates
storage for all matrices used in most of the filter, reads
and unpacks the input data and accounts for missing data
points. It creates the initial prior and initializes the
environment by calling routine INIT. It propagates the
estimates and error covariances by calling routine PREDICT
and acquires the observation matrices by calling routine
CMATRIX, after which innovations are computed. The gain is
computed by a call to the routine GAIN and the innovations
and gain are used to update the state. All the timing
options and most of the printing options are implemented in
this routine. The routine also collects per formance

statistics wien run on a merged analysis tape.

INIT ~ This routine initializes the environment in general.
It acquires an initial prior from routine TEMPS, constructs
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a state transition matrix and initializes the error
covariance matrix from a disk file. It also calls all
initialization entry points on routines that require

initialization before they themselves are called.

TEMPS - This routine returns the temperatures, lapse rates.
and pressure surface altitudes for a given latitude using a
cubic spline interpolation of the supplemental standard

atmospheres.

PREDICT - This routine implements the state and error
covariance propagation. If precomputed gain or covariance
matrices are used, the error covariance propagation section

is bypassed. It calls PHIEPHI and STATE.

STATE - This routine returns the plant noise matrix for a

given latitude partition.

PHIEPHI - This routine computes the matrix product
CIJPCbT for sparse & . It is written in assembly

language.

CMATRIX ~ This routine computes the necessary observation
matrices for a given latitude, scan angle, elevation,
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reflectivity, and predicted state vector combination.

GAIN - This is the Square Root gain computation and

covariance update routine. It also performs data

reasonableness testing on the innovation if this option was

requested. If the routine was called with P, (=), rather
than S; (=), it decomposes the covariance into its square
root by calling MFS. It is also capable of reforming the

matrix from its square root by calling SSQUARE.

MFS ~ This is an assembly language version of the SL-MATH
routine of the same name. It performs a Cholesky
decompesition of the covariance matrix. It has been
carefully optimized to perform all operations in a manner
take full advantage of pipelining and the IBM 370
instruction set capabilities., It attempts to maintain all

important variables in registers.

_SSQUARE '~ This routine reforms the matrix P (+) from the
product S; (+)§n (+}. It is written in optimized

assembler.

This completes a short description of the routines in the
program. A more exhaustive description of the program log

is given in Appendix C.
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The modularity of the filter structure has proven
itself in actual usage. The water vapor/liquid water filter
of Chapter V was constructed of many of the above routines.
For the most part, only the observation matrix and
prediction routines were changed to reflect the difference

in the plant and physics of observation.

Section F, Tuning and problems

As with any filter designed to interact with reality,
the filter used in this thesis went through innumerable
revisions, modifications, and tunings. Some of these
revisions were due to a lack of appreciation or a
misunderstanding of the physical processes at work. Others
were somewhat more fundamental to the nature of the process
being estimated. This latter area will be covered in this
section.

One of the more persistent problems in the overall
filter has been the values of the state transition matrix
and the plant noise. The plant noise was computed under the
assumption that the state transition matrix was identity.
However, when the filter was first operated with a unity
state transition matrix, the lack of observability in the
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system quickly manifested itself in the form of a persistent
temperature inversion in the lower atmosphere of the
estimated temperature profiles. A modification of the
prediction precedure to allow smoothing to take place
between the adjacent levels removed this problem. The
amount of smocthing necessary seems to be uncritical and a
rather broad region of good performance seems to exist. The
per formance seems to be optimum at the point where the
weight given the two adjacent levels is about half of the
the weight given tc the level being propagated. This also
appears to be invariant of season. Because of the problems
mentioned in the section on system identification, the plant
noise was not recomputed on this state transition matrix.

As with all practical instruments, there is some
divergence between the observation matrix used by the
instrument and the one used by the filter. The case under
study was no exception. Numerical approximations in the
computation of the observation matrices, instrument biases,
and other unknown causes produced errors when the observed
brightness temperatures were compared with the brightness
temperatures using the observation matrices and the NMC K27
grid. Lacking knowledge of the source, it was decided to
compensate the brightness temperatures by means of an
empirical correction. Several days of observed brightness

temperatures were matched with the brightness temperatures
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produced using the observation matrices and the NMC K27
grid. As the errors had a mild latitudinal and scan angle
dependent character, separate corrections were computed for
each scan angle in 10° 1latitude bands. The first attempt
to use these corrections produced "shock" in the filter at
the points where the correction coefficients were changed.
This problem was eliminated by interpolation of the
correction coefficients,

When the filtering algorithm was first implemented, the
processing order of the observations was left to right,
channel 3 to channel 5. That is, the lowest number spot's
channel 3 was processed first, then the lowest number spot's
channel 4, etc. through the highest number spot's channel
5. Observation of the error performance and the Kalman gain
indicated that this processing order was inappropriate. In
the optimal linear Kalman filter, the order of processing
does not affect the overall accuracy of the final estimate.
The filter of this chapter, however, was neither linear nor
optimal. The observation matrices were determined by the
reflectivity and elevation of the surface, items that were
not known exactly to the filter. As a result, errors in the
predicted observations were "reflected" into the upper
atmosphere and adjacent spots by correlations in the error
covariance matrix, The reduction in the elements of the

covariance matrix due to %the processing of channel 3 at a
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spot then caused the upper atmosphere channel to be given
less weight, although its observation matrix elements were
not subject to the same uncertainty. To reauce this
problem, it was decided to reorder the processing so that
channel 5 was processed first, left to right, then channel
4, left to right, etc. By processing the most linear
channel first, it was hoped that the uncertainties in the
surface character would be reduced. This has proved to be
the case.

Finally, the filter required tuning for observation
noise. The nominal performance of the three oxygen channels
is roughly 0.5° K rms. While this is undoubtedly the actual
per formance, the approximations made in the computation of
the weighting functions and surface effects produce
additional errors. The filter was thus tuned by varying the
observation noise on all charnels and observing the error
per formance on two datasets, one in January, 1976, and one
in August, 1975, The results in both cases were that the
optimal noise for channel 3 was 1.0° K rms. The optimal

noise for channels 4 and 5 was 0.7°K rms.
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Section G, The causal experiment

The temperature Kalman-Bucy filter was exercised in
four modes in the course of this thesis: a causal mode, a
non-causal mode, a precomputed error covariance mode, and »
precomputed gain mode. The data available for these
experiments consisted of SCAMS data for six periods of time
during which it could be merged with the NMC K27 grid.
These periods are listed in Table 3 and span the expected
seasonal variations in climate. January and February are
considered winter months in the northern hemisphere, August
is a summer month and October and December are considered
transition months.

In order to produce as many useful comparisons as
possible at the lowest cost, the data from the merged tapes
was examined, and only those passes over the good
verification regions of Figure 2 were used to exercise the
filter. These segments of data began at least 10 frames
before the satellite entered a verification region.

To test stability of the filter, an unmerged tape was
used as a test input. The filter was run as a single spot
inverter for a period of several thousand frames without
exhibiting instability.

The filter was tested in three basic inversion schemes:
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Tape

Number

Table 3

Coverage

August 7-9, 1975

October 3-5, 1975

October 22-25, 1975

December 5-8, 1975

January 24-25, 1976

February 3-6, 1976
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Approx imate

Number

of Comparisons

240

260

420

400

2590

700



a one, two and three spot inversion. 1In the one spot
inversion, the data from a single scan angle was used to
perform the inversion. In the two and three spot scheme,
data from two and three adjacent scan angles were used as
the observation vector. In order to investigate the effect
of scan angle, both spots at the extreme scan angle and near
nadir were used in the inversions.

The results of these these experiments are given in
Tables 4 - 39. In the single spot portion of these tables,
the performance of the Statistical D method of inversion is
shown as a standard of comparison. The results for the
extreme and nadir scans of the February and August datasets
are shown in Figures 3 - ©, 1In these figures, the solid
line represents the Statistical D inversion results, the
long dashed line represents the one spot inversion, and the
short dashed line represents a three spot inversion.

There are a number of conclusions that may be drawn
from this experiment: First, the performance of the Kalman
filter improves with scan angle. This is probably because
of the fact that as the scan angle increases, the peak of
the weighting functions increase in altitude or 1ift. Thus,
as the scan angles increases, the observation matrices are
less dependent on the character of the surface, and the
components of these matrices that are in the atmosphere

increase. The filter thus observes more of the atmosphere,
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Table 4§
one spot filter retrieval errors, Aug. 7-9, 1975

Extrene scan
{Scan angle Q)

Statistical D Kalman- Bucy
fiean RMS Hean RYUS
Pressure Lrror Error Ercor Ertror

{wb) ( X) { K) ( K} ( )

1000 ~4.8 3.2 Ja2 3.4
a5u -3.2 2.0 0.6 2. 4
740 1.2 1.3 g.e 1.8
500 -G.1 1.1 0.t 1.1
49u -0.1 1.2 -0.2 i.1
304 Uad 2.0 -0.2 1.7
250 2. B 3.6 0.3 2.2
200 1.8 3.0 0.5 2.2
154 13 3.0 0.2 2.6
100 2.3 1.8 1.3 1.8

70 1.0 23 ~0.9 0.9
50 UJ- B 1.1 -0.8 1.2
30 1.2 1.3 -0.5 Ta 4
10 =0.4 Zal 0.3 1.9
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Table 5
One spot filter retrieval errors, Auy. 7-%, 1375

Mid-scan
{Scan angle 3)

Statistical D Kalman- Bucy
Mean RMS #ean RMS
Pressure Lrror Error Ertor Irror
(mb) i K) { K} { K) ( K)
1900 ~4.2 3.1 -0.1 3.1
850 -2+ 3 Ze 1 0.4 2. 1
700 ~{0.t 1.3 (E 1.3
300 0.7 1. 2 0.2 1.2
400 0.4 T1a 2 0.2 1.0
300 0.0 1.8 —0.1 1.2
250 Ua 8 3.3 0.4 1.9
20U U.9 3.4 0.4 2.3
150 0.7 2.6 0.0 2.0
100 0.3 2. 3 1.5 1. 9
740 -1.6 2.3 -3.5 1.1
50 -U. 7 T 4 -1.2 1.1
30 U.6 1.2 ~{.8 1. 0
10 e D 2.0 0.1 1.4
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Tabie 6
dne spot filter reirieval errors, Auag. 7-9, 1975

Naudir
(Scan angle &)

S5tatistical D Kalman-Bucy
Mean RS Mean BMS
Pressure Error Error Bmrror Error
(mb) ( Kj {( K) { K} { £)
EIVIVEY) ~35.7 25 07 2.5
854 -1.8 1.6 J.9 1.7
FRVIV] (.0 1.1 0.5 1.2
500 Ca7 1.3 0.1 Tab
440 U.5 1. 3 -0.3 1.4
3406 -3 1.9 ~0a 1.4
250 Je 3 3.3 Uab 2.0
200 ULl 3.3 0.3 21
150 0.4 3.0 -0.1 2.4
10U Ua 2.7 1.7 2.2
70 2.1 2.4 -0.8 1.4
50 -1.0 1.7 -1.2 1.2
240 0.5 1.4 -3.9 1.1
10 ~0.5 1.8 0.0 1.3

- 118 -



Table 7

-

On2 spot filter retrieval errors, Oct. 3-5, 1975

Extreme scan
(Scan angle 0}

Statistical D Kalman- Bucy
Mmean RHS Mean R 3
Pressure Error grror Error Error
{mb) { KJ { K) ( Ki ( X3
Ta0U ~{,3 4.5 Z2eb 3.8
4540 -0.5 2.8 1.6 2.3
700 Vel 1.7 0.4 1.3
500 -0.8 1.5 0.3 1.4
409 - 1.0 1.5 0.0 1.4
340 -0a.8 1.9 0.9 1.8
250 U. 2 3.4 1-5 2e3
200 g6 3.1 ~-1.2 2.7
150 Zal 2.9 —2.7 3.0
106 P 2o Y4 0.8 2.5
70 Ca7 2.4 0.7 2.0
50 1.1 1.8 Ta2 2.9
30 1. 8 2. 2 Zat T
10 O. i 3.0 T4 5.5
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Table 8
One spot filter cetrieval errors, Oct. 3-5, 1975

Mid-scan
{Scan angle 3)

Statistical D Kalman-bucy
Mean RMS Hean RM4S
Pressure Lrror Error Errcor Error

{inb} { X) { K) ( K) ( K}
1000 J. 0 3.7 2.4 3.3
850 0.3 2.5 1. 8 2.1
704 U.8 1.7 0.3 1.1
500 -V.3 14 -0.7 1.2
400 -J.9 1.7 -N.3 1. 4
300 -1z 2.3 Ga.l 2.0
250 ~-1.9 3.4 0.4 227
200 =04 3.2 -1.8 3.4
150 1-6 2.8 2.1 2.9
100 2.7 3.2 J. 6 2.9
Tu Uad 3.1 1.1 27
50 Ga7 2«1 1.5 3.9
30 C.7 249 2.7 4.9
10 -0.6 2.7 7.3 5.9
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Table 9
une spot filter retrieval errors, Oct. 3-5, 1975

Nadir
(Scan angle b)

Statistical D Kalman-Bucy
¥ean RMS fean RaS
Pressure hrror ECEOrC Lrror Errov
{mb) { K} ( K) { K} ( K)
100U Ua b 3.1 2.8 2.0
35u U. 8 2. 4 1.8 1.8
700 1.2 2-1 0.5 1. 2
500 V. 0 2«3 -0.7 1.4
420 -0.5 2.5 ~Ca3 1.6
3046 -{d.9 Z2al U3 2.5
250 -1.3 3.1 -0.3 2.9
240 -0.2 3.5 ~2.0 3.6
150 1.6 2.5 —-2.4 248
100 le 2 3.3 1. 4 2.8
70 Val 3.6 09 3.2
50 Ja 4 Z2e it} 1.6 Ga5
30 0.5 223 2.7 5.8
10 -1.1 3.4 7.1 6.7
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One spot filter retrieval errors,

Pressuare
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Table 11
Une spot filter retrieval errors, Oct. 22-25, 1975

#id-scan
{Scan angle 3)

Statistical D Kalman-Bucy
Hean gM5 Mean BRHS
Pressure LError Lrror Error arror
(mb) { K) ( ¥X) { K) { K}
1000 2.8 2«9 Sl 3.1
450 a1 1.8 1.5 1.9
700 J.b 1a3 3.3 1.0
530 0.3 1.3 0«1 1.7
434 0.1 1.3 0.7 1.8
340 -(0.8 1.6 0.7 2a1
250 -1. 5 24 6 -Cal 3.4
204 ~0.8 2.3 2.7 3.0
150 Ja. 0 Ta5 4.4 1.9
194 lw? 245 1.3 1.6
70 —0.2 3.5 0.9 3.4
50 U. 8 2.5 2a3 4.3
30 1.7 2.7 Yo7 6.0
10 G.9 4.4 10.8 8.9
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Table 12
One spot filter retrieval errors, 0Octe. 22-25, 1975

Nadir
(Scan angle 6)

Statistical D Kalman— Bucy
ean hMS Mean RS
Pressure kError LELror prror Error

{mb) ( K) { K) ( K) { K
1930 243 2.6 5.0 3.5
8540 Us 0 1.8 1.2 2e 2
70 0.7 1.4 0.3 1.2
5434 Oa U 1.3 0.1 Tab
9y Oa1 1.7 0.7 1.8
304U -1.0 1.7 G.5 2.1
250 -1.9 2.7 -0.5 3.4
200 -1.3 2.4 ~2a7 2+ 8
150 0.0 1.0 4.3 1.9
TJ0 2«8 2a3 1.5 1.7
70 -0a2 3. U 0.8 3.1
50 0.8 2.8 2.1 4.3
30 1.7 2.9 L.3 5.8
10 Va7 4.6 10.0 3.3
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Tabie 13
One swpot filter retrieval errors, Dec. 5-8, 1975

Extreme scatli
{Scan angle 0)

Statistical D Kalman-Bucy
Meau RUS Maoan Revie!
Pressure Error Error gLror irror
(mb) ( K} { K) {( K) { K)
1000 Ga7 BaeZ 3.2 3.7
354 2s 3 3.8 1.8 2.1
7090 U.8 2«1 Taih T.0
500 -1. 4 1.6 0.0 1.5
430 -~ 1.7 1.9 0.4 1.3
300 -2.1 2.9 0.0 2.5
250 2.1 3.5 -0.8 3.1
200 1.2 2.4 -1.1 3.2
150 2.5 2.0 ~1.4 2.1
10U 3.9 2.9 1.9 2.0
70 Ua.0 2ol =042 2o 4
50 1.3 242 -0.4 3.0
3 1. 4 3.5 ~0. 1 3.9
10 -2.1 7.1 0.2 6.5

- 125 -



Table 14
Cne spot filter retrieval errors, Dec. 5-8, 1975

Hid-scan
{5can angle 1)

Statistical D Kalman—3ucy
fMean a5 dean kM s
Pressure Lkrror Lrror Error Error

{mb) ( K) { K} ( £) { K}
ERVIHIV) Gal 5.8 §a1 3.8
350 2.1 3.1 2. 3 2.3
FAHY 1.2 1.6 1.7 1.4
500 —-0. 6 2 1 -0.2 Tath
490 -1.1 2.6 0.4 1.6
300 ~2a1 3.2 1.1 3.0
250 —2.8 3.8 -1.9 3.4
200 -0.6 2.0 2.0 3.2
150 1.4 23 -1.5 1.5
100 3.4 3.5 2.6 2a 1
T4y 0.7 3.8 3.5 3.7
50 1.2 3. 1 1.3 4.7
30 1.5 3.8 2.4 5.6
10 -0.3 6.l 4a3 T.9
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Tabhle 15
One spot filter retrieval errors, pec. 5-8, 1975

Nadir
{(Scan anyle 6)

Statistical D Kalman- Bucy
Mean Ris flean BM3
Pressure Lrror Lrror LTror Errtor
(ib) ( X) {( X} ( K) { K)
1004 .0 5.0 3.4 3.9
850 24 U 2.9 2.0 2.7
700 1.6 1.9 1.6 1.8
500 -0.3 2.0 ~-0.3 Toll
4490 -1.0 2« 6 ~0.4 1.9
340 ~Z+5 3.7 -1.4 3.7
250 -3.2 .1 2.1 3.4
204 —U-8 2.6 -1.9 3.4
150 1«5 2.4 -1.3 1.7
109 3.9 e} Ze9 245
T4 0.8 4.4 Ja.B 4.7
50 1o 3 3.6 Ta7 Gal
349 1.6 4.0 2.7 6. 8
10 0.2 6.7 4.8 9.5
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Table 16
One spot filter retrieval errors, Jan. 24-25, 1376

Extreme scan
{Scan angle 0)

Statistical D Kalman- Bucy
fean RMS Kean R4S
Pressure LTEOr Error Error Error
(mb) { K) { K) { ) { )
1049 B.2 11.6 2.2 £.3
350 2.0 4.6 0.8 24D
700 1«1 3.0 0.6 1.1
5400 Q0.7 2.8 ~0.1 1.6
4049 -1.2 3.0 6.9 1.4
J0wu -1.7 3.5 1.1 2.t
259 -1.9 3.9 -0.3 3.6
20U 0.9 2-4 -1.6 3.0
150 31 1.9 -1.5 1.9
100 5.6 3.3 2.1 1.5
TG 2ol 3.2 0.3 2.4
50 1.8 3.3 O.7 2.2
39 -1.2 4.6 3.5 3.5
10 =101 6. 6 -5.5 7.2
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Table 17
One spot filter retrieval errors, Jan 24-25, 1976

Mid-scan
(Scan angle 3)

Statistical D Kilman-Bucy

hean XS Hean EdS
Pressure orror Lrror Error ECror
(mb) ( ) { K) { K) ( K)
1300 5.5 8.3 1.5 5.9
350 2.3 3.5 1.7 3.3
700 1.5 Za B 1.5 2.0
544 -0.7 2a71 -G.1 1.5
400 -1.8 3.3 0.5 2.2
300 -3.3 4.0 —0.2 3.2
259 -4.3 4.6 -1.6 4,2
200 -1.0 325 ~2.6 3.1
150 2.8 243 -1.5 1.5
100 6.4 3.8 3.0 3.0
70 2.8 3.6 1.4 3.6
50 2.1 4.0 2.1 3.7
30 -1.5 4.8 0.4 d.6
10 -11.5 5.8 -4.5 7-5
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Takie 18
One spot filter retrieval errors, Jan. zZ4-25, 1976

Nadir
(Scan angle &)

Statistical D Kalman- Bucy
Mean RIS Mean R#5
Pressure Error Error Error Error

(b} ( K) ( &} { K) { X)
1000 5.7 Bal 1.7 5.1
859 2.3 3.9 2= 2 3.2
700 1.6 2.3 1.8 2-0
500 0.5 2«0 Ual 1.3
40u -1.3 3.3 0.5 2.0
300 248 4.0 -D.3 3.1
250 -4, 1 4.6 -1.9 4.0
200 ~1.3 3.0 —2.9 2+ 9
150 2.5 2.3 1.4 1.4
100 5.9 3.7 3.3 2.8
T 2+6 ol 1.5 3.5
50 2o 1 4.5 7«9 3.7
30 -1.5 5.2 Qal 4.2
10 -12.3 5.9 -5.4 75
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Table 19
One spot filter retrieval errors, Feb. 3-6, 1976

Extreme s<an
(Scan angle 0)

Statistical D Kalman- Bucy
Mean aMs Hean RMS
Pressure Erfor Lrror Error rrrorc
(mb ] { K) ( ¥) { K} ( X}
1000 Gal 9.4 0.3 3.9
850 1.0 3.7 0.5 2.3
700 G5 2.4 1.0 Ta?
500 -{0.8 2.0 0.2 1.5
4G9 - 7.0 2.2 1.0 1.8
SU -1.4 3.4 J.9 3.1
250 -1.5 3.9 ~0.2 3.5
200 Uab 3.3 -1.7 2.8
150 1.9 2-4 -1.3 1.7
100 4.6 2.7 2.4 2«0
70 1.9 2.7 0.3 220
50 1. 5 3.0 0.3 3.2
34 O3 4.6 0.1 5.1
10 —6.8 9.1 -1.7 10.7
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Table 29
Gne spot filter retrieval ecrors, Feb. 3-6, 1976

Mid-scan
(Scan angles 3)

Statistical D Kalman- Bucy
Hean RMS Hean RUS
Pressure rror Error LrCLor Error
(mb} ( K} { K) ( X) ( K)
1000 bab 7.5 -0.5 4.9
8549 7.5 2.9 0.4 2.9
FRVIY) i P 22 0.9 1.9
500 -Qat 2. 4 -0.2 1.6
4uQ ~1.1 Za7 ¢.5 2a1
300 -2.5 4.0 0.0 3.9
250 - 3.0 4o 1 -0.6 Gob
2040 0.9 3.0 -1.7 3.2
150 1. 4 2.6 -1.1 1.5
100 4.8 3.0 3.0 2.8
70 2.3 3.6 0.6 4o
56 1.9 3. U 1.2 5.9
30 0.7 4.9 1.3 7.7
10 -5.7 8. 4 ) 13.0
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Tahle 21
One spot filter retrieval errors, Feb. 3-6, 13975

Nadir
{Scan angle &)

Statistical D Kalman-Bucy
Yean EMS Mean RS
Pressure LRECOr ELror grror EEEOr
(mb) ( K) ( K) { K) { K)
1000 4.6 7.5 -0.5 4.9
850 1.5 2.9 J. 4 2.9
700 1.2 2a2 0.9 1.9
504 -0. 4 2.4 ~(0a2 1.6
4900 -1 1 2.7 Ua5 Za 1
300 -2<5 ou 0.0 3.9
250 —-3. 1 4.1 -0t 4.4
2040 —U.9 3.0 -1.7 3.2
150 1.4 2=6 -1.1 1.5
100 4.9 3.6 3.0 2.8
70 2.3 .6 0.6 4.1
50 1.9 3 1.2 5.9
30 0.7 4,9 1. 3 7.7
10 -5.7 8.4 0.4 13.0
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Table 22

7-9, 1975

Aug.

Two spot fzlter retrieval errors,

Close scan

Extreme scan

Scan angle 1 Scan angle 5 Scan angle &

Scan angle 0

RNMS
BError

{ £)

Mean

HMS
Error

( K)

Mean

EN5
Error

{ K)

Hean

RNS
Error

Mean
Brror

( K)

Frror

Error
{ K}

{ K}

Error

( K)

Pressure

K)

[mb)
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Table 23

Two spot filter retrieval errors, Oct. 3-5, 1975

Close scan

sCcan

ixtrems

Scan angle 1 Scan angle 5 Scan angle b6

Scan angle 0

Mean RS
Ercor
{( K)

RHMS
Error

Mean
(

RNS
Error

( K}

RMS Mean

Error

Mean

Error

Error Error
{ K) { K)

Error

( K}

Pressure

K)

K)

K)

{(mb}
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Table 24

Two spot tilter retrieval errors, Oct.

1975

Close scan

Extreme scan

Scan angle 1 Scan angle 5 Scan angle 6

Scan angle 0

RMS
Error
{ K)

Mean

Error
{ K)

RHMS
Error
( K)

Mean

RMS Mean R¥S
Error
{ K)

Error
{ K)

Mean

Error Error
{ K} { K)

Error
( K}

Pressure
{mb)
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Tahle 25

Two spot filter retrieval errors,

5-8, 13975

Dec.

Close scan

Extreme scan

Scan angle 5 Scan angle 6

Scan angle 1

Scan angle O

RHS
Error
( K)

Mean
Errcor
{ K}

RM3
Error
{ K)

Mean

RUS
irror
{ K)

RMS Mean

Error
{ K)

Mean
Error
{ K)

Error
( K)

Error
( XK)

Pressure
(mb)
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Table 26

Two spot filter retrieval errors, Jan. 24-25, 1976

Close scan

sCan

Extreme

Scan angle 1 Scan angle 5 Scan angle b

Scan angle 0

RHMS
Grror
( K)

Mean

RMS
Brror
( K)

Hean

RMS Mean RMS
Error
( K)

Brror
{ K)

Mean

Error Error Error
{ K) ( K) { K)

Error
{ K)

Pressure
{mb)
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21

Table

3-6, 1976

feb.

Two spot filter retrieval errors,

Close scan

Extreme scgan

Scan angle 1 Scan angle S Scan angle 6

Scan angle ¢

RMS
Error

{ K)

Mean

RHUS
Erctor

Mean

RNMS
Error

RHS Mean
{ K)

Error

{ K}

Mean

Error

(

Error

( K)

Exror

( K)

frror

{ K)

Pressure

K)

K)

(m)
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Table 28

1975

-9,

Three spot filter retrievals, Aug.

Extreme scan

Scan angle 2

Scan anjie 1

Scan angle 0

RMS
Efror

( X)

Mean

R85
cCCOr

M=2an Mean
T
)

Error

( X}

Error

{ K}

Error

rror
( X}

-
o
]

Pressursa

K}

K)
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Table 29

1975

Three spot fllter retrieval errors, Aug. 7-9,

Close scan

Scan angle 6 S5can angle 7

Scan angle 5

R¥5
Error

RMS Mean R¥5 Mean
Error

Error

Mean

Error Error

Error

{ K)

Pressure

K) ®) { K) K)

K)

{(mb)
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Table 30

1875

3—5’

s, Octa

-

Three spot filter retrieval ervc

Extreme scan

S5can angle 1 Scan angle 2

Scan angle 0

RMS
brror
( K)

Mean

KisS
Error
( K)

Mean

RUS
sCLOL

Tz
-

Mean

Lrror
{ K}

Errocr Error
{ x) { K) { K}

Pressure
(mk)
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Table 31
Three spot retrieval errors, Oct. 3-3, 1975

Close scan

Scan angle 5 Scan angle 6 Scan angle 7

Mean BMS Yean RHES Mean R¥s
Pressure Error Error Error Brror LTTCOE Error
(mb) { X) ( ¥) { K) ( ) ( K) ( K}
1000 2.0 2.5 20 2 2.4 2.2 2.6
850 1.2 1.7 1.3 1.7 1. 3 1« 9
700 0.4 1.2 Q.4 1.2 0.3 1.4
500 -0.5 1al -0 5 1e2 -0.6 Yol
400 D.0 1.3 0.0 1.4 2.0 1.5
300 0.7 2o 0.8 2.2 0.7 2.4
250 0.2 2.9 0.1 3.0 0.0 2.5
200 -1.8 3.9 -1.8 4,9 -1.8 3.8
150 -2.3 2.8 -2. U 2.8 -2.2 2.9
700 1.2 2.8 11 2.7 1.1 2.5
73 0.6 3.6 Ca. 3.6 0.2 3.4
56 Tel 5.0 0.9 4,9 0. 6 4.8
30 2.0 6.l 1. B 6543 1. 4 5.1
10 6.4 7.3 Bl 2 7.2 5.5 7.2
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Table 32

1975

22-25,

Three spot filter retrieval errors, Oct.

Fxtreme scan

Scan angle 1 Scan angle 2

Scan angle 0

RMS
Error
( K

Mean

RMS
ECzor
( )

Mean

BMS
Ercor
(K

MNean

Errcor Error
{ Kj { K)

ECror
{ K)

Pressure
(rk)
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Table 33

Three spot filter retrieval errors, Oct. 22-25, 1975

Close scan

Scan angle 6 Scan anglie 7

Scan angle 5

RHS
Error
( X)

Mean

RMS
Error
{ X)

Mean

RS
Error
{ K)

Mean

rror
{ X)

2
L

Error
( K)

Error
{ ¥)

Pressure
(mb)
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Takle 34

1975

Three spot filter retrieval errors, Dec. 5-9;

Extreme scan

Scan angle 1 5can angle 2

Scan angle 0

2Mus
Error
( K)

Mean RMS Mean
Error
{ K)

RMS
Error
{ K)

Mean

Error Error
( ) ( K)

Error
{ K}

Pressure
(mb)
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Table 35

Three spot filter retrieval etrrors, Dec. 5-8, 1975

Close scan

Scan angle 6 Scan angle 7

Scan angle 5

Yean

RMS
Error

RMS Mean

Error

Mean

Error

{ K)

Error

Error

( X)

Exror

{ K)

Pressure

K)

K)

K)

(mb)
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Table 36

1976

2“'—25’

Three spot filter retrieval errors, Jan.

Extreme scan

Scan angle 1 Scan angle 2

Scan angle 0

E¥S
Error
( K)

Hean

RS
Error
{ K)

BEMS Mean

Error
{ K}

Mean

Error Error
{ X ( K)

Errorc
{ K)

Pressure
{mk)
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Table 37

Three spot filter retrieval errors, Jan. 24-25, 1876

Close scan

Scan angle & Scan angle 7

Scan angle 5

RMS

Mean

RHS

Mean

RMS
Error
( K)

Mean
Error

( )

tTCOrC

-
A

Prassure

K) ( K)

K)

(mi)
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Table 38

Three spot filter retrieval errors, Feb. 3-6, 1976

Extreme scan

Scan angle 1 Scan angle 2

Scan angle 0

RUS5
Err

R&S Mean RAS Mean
Error
{ XK)

Error
{ K)

Mean
Error
{ K}

or
( )

Error
( K)

ECLOT
( K}

Pressure
{mb)

33..0.450,05.41.5871:
9 a 3 g 5 8 [ ]
4ﬁ41.1411J3n41.9_2‘J:40

3ﬂ31.0,0141.7ﬁ45uu.61.6

[ ] L] » Ll » L ] [ »

OAU1.0nUnu0451.?“0nunu0
[N | |

WMINN OO N~ O NONS
[ I T | " % 9 & &F % b [ ]
421#1!1:3321!22350

5921;7;43835.4750
*r & * 5 P & B e 2 F &
00109004&120001

t 1 |

3“.7550.3881!1-330
L] s 0 9 * 0 [ LI ] y ¢ v &
.u.211111332122351.

892297&.9533552
s & 8 N » & g 9 o 5 0 @*
00130001120001
Poro i

13C0
850
700
500
4Cco
350
250
200
150
100
70
50
39
10

- 150 ~



Table 39

Three spot filter retrieval error, Feb. 3-6, 1976

Close scan

Scan angle 6 Scan angle 7

Scan angle 5
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the temperature structure of which is the desired output
product. The observation matrices are also less noisy since
the assumptions made about the surface have less impact.

The second conclusion is that the filter performance
improves with the number of scan angles used in the filter.
This is an expected result. The atmosphere is basically a
low pass process. The temperature profile at one spot
contains a large amount of information about temperature
profiles nearby in space. Thus, the filter is able to use
this information for noise averaging. For multi-spot
retrievals at the higher scan angles, a second important

Phenomenon enters to improve performance. As the scan
angle increases, it has been mentioned that the weighting
functions 1ift. The amount of increase in altitude between
adjacent scan angles is highest at the extreme scan angles.
The three spot inversion scheme at the extreme scan is thus
able to view basically the same atmosphere with three
different sets of weighting functions. At nadir, the three
spot inversion looks at the atmosphere with what amounts to
a single weighting function.

Seasonally, the Kalman filter shows the most
improvement over the Statistical D method during the winter
months. During this season the atmosphere exhibits large
swings in temperature as weather systems move across the

world. Within these systems the atmosphere is still

- 152 -



coherent spatially. The memory of the Kalman filter thus
produces superior results at most levels of the atmosphere.
During the summer, the atmosphere is relativly quiet and the
temperature profile, in general, lies close to the prior
mean. Thus, during the summer months both the Statistical D
and the Kalman filter exhibit rms performance close to the
inherent error of the standard of comparison. It is
important to note that the Statisical D method contains a
mean error that is generally absent in the Kalman filter.

The performance of the filter during the winter months
deserves close attention since it discloses two deficiencies
in the filter. The error performance at the highest levels
{those above 70 mb) is poor at best. At these levels, the
weighting functions do not contain appreciable energy and do
ngt overlap. The filter receives little information about
tﬁe temperature profile at these levels and relies heavily
on its predictions. Errors in the state propaéation“
procedure are thus magnified at these levels. Because the
atmosphere is more varied in winter, this has a graphic
effect on the error performance. These errors also could be
observed in the innovations sequence of the filter. The
innovations sequence of the highest altitude channel was
generally negative and correlated.

The second effect that is shown by the winter data

results is the lack of improvement over the Statisticai D
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method at the crossing point of the weighting functions for
channels 4 and 5. While not strictly a deficiency in the
filter, this demonstrates that even the multi-spot filter
cannot overcome this redundancy of information.

Given these comparisons and observations, it is
possible to speculate on which parts of the Kalman filter
are most responsible for the improvement in performance over
the Statistical D method. The general elimination of the
mean error by the Kalman filter is most likely due to its
correct treatment of the atmosphere as a non-stationary
process. The Statistical D method coefficients have benn
historically been computed using an ensemble of radiosonde
reports from a number of selected stations. This method
*hus treats the atmosphere as a globally stationary process
whose mean and covariance are given by this ensemble. A
change in the global statistics from one year or season to
the next will yield mean errors with this method. Because
the Kalman filter uses means and covariances conditioned on
past data, these biases are generally absent after a short
period of processing,

A second large contributor to the improvement seems to
be the ability fo use the low pass nature of the atmosphere
to perform noise averaging. This is evidenced by the
monotone increase in performance with the number of spots
processed at nadir. It seems to be the case that doubling
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the information avaliable to the filter decreases its error
by roughly ten percent.

The final source of improvement is the use of the
different weighting functions of the instrument at the
extreme scan. It is unclear, however, what portion of the
improvement at the extreme scan comes from this source and
how much comes from the reduced influence of the surface.
It is also unclear to what extent the spatially varying

weighting functions contribute to the overall improvement.

Section H. The non-causal experiment

The second experiment that was per formed was the use
of the filter in its non-causal mode. The forward-backward
filter algorithm of Chapter III was used to perform this
experiment. The results for the three merged tapes on which
this experiment was run are given in Tables 40-51. Figures

7- 8 gdepict the improvement achieved on the October
dataset. These results yield the expected conclusion that
the non-causal filter gives superior per formance when
compared with the causal filter. The improvement in all
scan angles and seasons is of the order of 10% in the rms
and is often acccmpanied by a reduction in the mean error.

This improvement 1is due to two causes. PFirst, there is
- 155 -
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Table 40

one spot filter retrieval errors, Aug. 7-9, 1975

Non-causal filter

Scan angle 3 Scan angle b

Scan angle 0
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Table 41

Gne spot filter retrieval errcor, Oct. 22-25, 1975

Non-causal filter
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Table 42

One spot filter retrieval errors, Jan 24-25, 1976

Non-causal filier

Scan angle 3 Scan angle o

Scan angle 0
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Table 43

Two spot filter retrieval errors, Aug. 7-9, 1975

Non—-causal filter

Hon-causal filter

(Close scan)

(Extreme scan)

Scan angle 5 3can angle &

Scan angle 1

Scan angle 0
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Table 44

Two spot filter retrieval errors, Oct. 22-25, 1975

Non-causal filter Non—causal filter
{(Extreme scan) {(Close scan)
Scan angle 0 Scan angle 1 Scan angle 5 Scan angle 6
Mean RMS Mean RMS Mean E#¥S Mean RMS
Pressure Error Error Error Error Error BrLror Error Error
(mb) { K) ( K} { K} ( K) ( K) {( K) { K) { K)
1000 4.6 2.8 5«1 2.5 4.8 3.1 4.7 3.1
B50 1.0 1.7 1.4 1.6 T. 1 2.0 1.0 2.0
700 0.1 1.1 Dal 1.9 0.2 1.0 0.2 tal
500 t.3 1.4 0.5 1.2 0.2 1.3 0.3 1.3
400 1.3 1.5 1.3 1.2 1.0 1.5 1.3 1.5
300 1.5 1.¢ 1.4 2.0 1.0 1.9 1.0 1.9
250 0.4 3.1 0.2 3.4 0.1 1.2 0.2 3.3
200 2.3 3.1 -2.3 3.0 ~-2.0 2.6 ~2.0 2.7
1590 -4.1 2.1 -4.1 2.0 ~3.8 1.8 ~3.9 1.9
100 1-5 1.6 Tl 1.7 1. 4 1.8 1.3 1.8
70 G. 4 2.6 0.5 2.8 0.0 2.9 0.0 2.8
50 1.0 4.0 1.3 4.3 0.7 3.8 0.6 3.7
30 2.9 5.6 3.2 6.1 2.4 5.0 2.3 4.9
10 8.8 8.7 9.1 3.0 8.0 7.8 7.8 7.5
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Table 46

7-9, 1915

Auge.

Three spot filter retrieval error,

Non-causal filter

{Extreme scan)
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Table 47

1975

Three spot filter retrieval error, Aug. /-9,
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Table 469

Three spot filter retrieval error, Oct. 22-25, 1975

NMon—-causal filter
{Close scan)
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Scan angle 5
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Table 50
Three spot filter retrieval error, Jdan. 24-25, 14$76

Bon—causal filter
(Bxtreme scan)

Scan angle 0 Scan angle 1 Scan angle 2

Mean RM¥S Mean mMS Mean RMS
Pressure Error Error frror irror Error krror
(mb) ( K) ( K) { K] ( K) {( ) { K)
10030 2.2 6.1 2.3 6.0 1. 9 5.5
€50 0.9 2a2 1.7 Zall 1.7 2.5
700 0.9 0.9 1.5 1. 1 1. 6 Tald
500 0.1 1.5 0.2 1.3 0.2 T4
409 1.1 1.4 g.9 1.5 0.8 1.8
300 1.0 2.4 0.4 2.4 9.1 2.5
250 ~J.6 3.6 -1.0 3.5 -1.4 3.4
200 -2.0 2.9 2«3 2.8 -2.4 2.7
158 -1.8 1.8 -1.5 1.7 -1.5 1.7
109 2.0 1.6 2a 6 2.0 2.8 2.2
70 D.7 241 1.1 2.2 1. 3 2.4
50 Tl 1.4 1.7 1.7 1.9 1.9
39 3. 5 2.4 Ga 4 2.7 0.3 3.1
10 -4, 4 6.3 — 4. 4 6.5 4.5 6.8
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Table 51
Three spct filter retireval error, Jan. 24-25, 1976

Non-causal filter
(Close scan)

Scan angle 5 Scan angle ¢ Scan anyle 7
Mean RMS Mean RMS Mean RMS
Pressure  LCLLOr Error Error Error Errcor Error
{mb) { K) { K) { X) { K) { X) { K)
1000 1«5 4.8 1.9 4.7 2e1 5.2
850 2.0 2.9 23 2.8 2.5 3.0
700 1.7 1.9 1.9 1.8 1.9 1.7
500 0.1 1.3 g.u 1.1 -0.1 1.2
449 0.6 1.7 0.4 1.6 0.2 1.8
300 0.1 2.9 ~-0.4 2.9 -0.6 3.0
250 ~1. 6 3.9 -1.9 3.4 -2.2 3.9
209 -2.5 2.5 ~2.8 2.5 -3.0 2.5
1590 -1.3 1.5 -1.2 1.5 -1.1 1.5
100 3.3 2.8 3.5 2.7 3.8 2«7
70 1.5 3.4 1.7 3.z 1.9 3.1
50 1.8 3.1 2.1 2.9 2.2 2.8
30 Ga1 3.6 (0. 4 3.3 0. 4 3.2
13 -5.3 5.2 -5.1 5.3 5.0 5.2
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additional information brought into the filter by the
"future" observations. Secondly, there is "noise averaging”
in the observation matrices over ocean. For this surface,
the observation matrices are a function of the predicted

sur face temperature. The observation matrix error produced
by a descending orbit (one traversing a cold ocean to a warm
ocean} help cancel those of an ascending orbit (one

traversing a warm ocean to a cold one).

Section I. The precomputed sub-optimal filter experiment

The one great disadvantage of the Kalman filter is its
computational burden. For the cases investigated in this
chapter, the complexity of the algorithm is dominated by the
cube of the number of temperatures estimated. For this
reason, it is useful to consider ways in which this
complexity may be reduced. One method is, ¢f course, a
reduction in the number of state variables. Studies made in
the earlier stages of this thesis indicate that this is an
ultimate possibility. The covariance matrix of a the
temperature profile at a single spot and the plant noise
contain eight eigenvectors having significant energy. The

second method, and the one adopted for this thesis, was to
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use the approach of operating a sub-optimal filter that used
a nominal gain or error covariance history. For the case in
which the nominal error covariance history is used, the
entire process of error covariance propagation is
eliminated. Further, since we may just as well precompute
the square root of the covariance, the gain computation is
simplified. The sub-optimal filter that uses precomputed
gains is vastly more simple than the standard filter. In
this case, the filter need only compute the innovations,
update and propagate the state. The cost of this simplicity
is that data reascnableness testing cannot be easly done
since the gains have been computed off line and the error
covariance matrix is not available.

An examination of the error covariance and gain history
of the causal filter suggested that either or both of the
precomputed sub-optimal filters might per form adequately.
Examples of typical gain and error covariance histories of
the causal filter are given in Figures 9 - 11. These figures
depict the gain, error and covariance history of the 850 mb
level of a single spot filter for two ascending orbits
starting at 30 degrees latitude. These orbits were
separated by about 100 degrees of longitude. In these
cases, the filter has reached a steady state after a short
period. After this point, the behaviour of the filter is

dominated by the plant noise.
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The experiment of this section thus consisted of
running the full filter for a period of five frames and then
switching to either a precomputed gain or precomputed
covariance strategy. The precomputed gains and covariances
that were used were obtained from the datasets in the
non-causal experiment. The January matrices were used in
December and February, c¢ne October dataset produced the data
for the other and the August dataset was run cn itself since
this was the only dataset that used the summer plant
matrices. In all cases, the matrices were averaged in 5
latitude bins.

The error per formances of the two filters are given in
Tables 52- 83. The comparative timings of the causal and
precomputed matrix filters are given in Table 84. It is
guite surprising that the performance of the precomputed
gain filter scems to be better than that of the precomputed
error covariance filter. In fact, the performance of the
precomputed gain filter approaches that of the full causal
filter. One possible explanation of this is the fact that
the data used in this experiment is heavily weighted toward
land areas. The filter is linear for such cases. A second
possible explanation is that the ordering of the observation
processing has reduced the non-linear aspects of the
filtering process to the point where they are no longer

important. Finally, ther is the possibility that the
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Table 52
bne spot filter retireval errors, Aug. 7-9, 1975

Precomputed error covariance

Scan angle O Scan angle 3 Scan angle 6
Mean BMS Hean RH¥S Mean RMS
Pressure Error Error Error Ercot Error Error
(mb) { K) { K) { X) { K) ( K) ( K)
1900 Jal 3.4 -Ja 1 3.1 Qa7 2.5
3850 D.e 2.% .4 2.1 0.9 1.7
700 0.6 1.6 0. 4 1.3 0.5 P
500 0.4 1.1 0.2 1.2 2.0 1.5
4900 -0.4 1.1 ~-0.2 1.0 -0.3 1.3
300 -0a3 1.7 -J. 1 1.2 -0a 1 1.4
250 0.3 2.2 Je5 1.6 Ot 1.9
206G U5 2. 2 0. 4 2.3 O.l 2.1
150 Dae2 2.0 Ja 0 249 -0.1 244
100 1.3 1.8 1.4 1.8 1.7 2.2
70 ~-3.9 0.9 -0.9 Ta1 -0.8 1.4
50 -uJ.9 1.2 -1.2 1.1 -1. 2 1.2
30 -U.b 1.3 -0.8 1.0 -1.0 1.1
10 0.3 1.8 0.1 Ta i -0a 1 1.3



Table 53
One spot tilter retrieval error, Aug. 7-9, 1975

Precomputed Kalman gain

scan angle 0 Scan angle 3 Scan angle %
Hean RXS Mean RS ean RMS
Pressure Error Error BError Error Error Frror
(nb) { K) ( X) ( ) { K) ( K) { K)
10390 J.2 3. 4 ~J. 1 3.1 0.7 Z.5
450 Uett 2.5 Ootd 2.1 0.9 1.8
Fuo Ua b 1.6 Ua & 1.3 3.5 Ta2
500 0.4 1.1 0.2 1.2 0.1 1.5
4949 -0.2 1.1 ~0.2 1.0 0.3 1.3
300 -U.3 1.7 -0.1 1.2 -0.1 1.4
254 J.3 2.2 0.5 1.9 0.t 1.9
200 G5 2.2 Ua 4 2.3 0.3 2.1
15¢ d.2 2.5 J.0 2.0 ~-0.1 2.4
190 1.3 1.8 1.5 1.9 1.7 2.2
790 0.9 0.9 -0.9 1.1 -0.8 1.4
50 —J.8 1.2 -1.2 I O -1. 2 1.2
34 -0.5 1.3 ~J.8 1.0 -1.0 1.1
10 0.3 1.8 Je 1. 4 -0.1 1.3
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Table 54
One spot rilter retrieval error, Gct. 3-5, 1475

frecomputed error covariance

scan angle 9 Scan angle 3 Scan angle o6
e an RMS Mean RIS Mean RHUS
Pressiire rnrioor Error pgrror irror nLror Error
(m2) { &) ( ) ( K) { ) ( K) { X)
1390 2.5 3.5 2. b 3.3 2«8 2.6
854 1.6 2.3 1.4 2.1 1.8 1.8
7400 Ul i= 3 0.3 1.1 0 B 1.3
540 ~Ja3 1ol 3.7 1.2 -0.7 T 4
4940 Ual T4 ~-{U.3 T.4 -0.3 1.6
390 JeY 1.8 Oa & 2oV Oa & 2.4
250 1.5 2.3 U.4 27 -0:.2 3.0
200 ~7.2 2.8 -1.8 3.5 2.0 3.9
150 A 3.0 -2a1 2.9 ~ 2ol 2.9
100 UaH 2.5 1.6 2.9 1.3 2.8
76 Ja7 2.0 1.1 2.8 D8 3.5
590 1.2 2.9 1.5 4.0 15 4.8
30 2.7 4.2 2.7 5.1 2.6 6.1
140 7.5 5.6 7.4 e 1 7.0 7.1
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Table 55
Une spot tilter retrieval error, Oct. 3-5, 1975

Precomputed Ralman gain

Jcan angle 0 Scan angle 3 Scan anile &
Hean 84S lean XM3 Mean RHAS
Pressure Error Error aCror Brror rrror Error
{mb} {( K { &) { K) { K) ( K} . { K)
1300 2.6 3.8 2. 4 3.3 3.9 3.0
850 1.8 2.3 ! 241 1.9 2.1
700 0.5 1.3 0.3 1.2 0.6 1.5
500 -0.3 1.4 -0.7 T2 0.6 1e 6
500 Va1 1= 3 -0.4 1.4 0.4 1.8
309 .y 1. d Ue U 2.0 0.5 2.7
250 1.5 £33 Vel 247 -0a 1 3.2
200 -1.2 2al -1l.8 3.5 -1.8 4.1
150 -2.9 3.0 ~Zal 249 2.2 3.0
100 Ja 8 245 1.6 2.5 1.4 2.8
70 0.7 2.1 1. 1 2.4 0.9 3.5
50 1.3 3.0 it 4.0 1.5 4.8
RIVE 2.4 4.1 2.8 5.0 2.5 Gal
10 Ta6 5.5 7.4 6.0 6.3 7.2
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tTabie 56
one spot filter retireval error, Dec. 5-8, 1975

Precomputed error covariance

5can anyle 9 Scan angle 3 Scan angle 6
Hean RAS Mean BMs Kean RMS
Pressure ErrLor Error Error Ertor Error Ercor
{mi) { K) { K) { K) { K) ( K} { KX)
1364 3.4 3.7 g, 1 3.8 3.4 3.9
2850 1.8 241 2.k 2e3 2.0 271
700 1.4 T b 1.7 1.8 1.5 1.8
500 Je U 1.5 -0.2 1.4 -0.3 1. 4
400 Ouwtt 1.3 -J. 4 1.6 it 1.5
304 J.0 2+ 5 -1.1 3.0 -1 4 3.7
250 0.7 3.0 -1.9 3.4 -2.1 3.2
200 -1.1 3.2 -2.9 3.3 -1.9 3.4
150 ~7.4 2.0 -1.5 1.8 -1.3 1.6
100 1.9 2.0 2.6 2+ 1 2.9 2.5
70 -0.2 2. 4 0.6 3.8 0.7 4.7
5¢C —U.h 3.0 1.4 4.3 1.7 6.1
30 -0.1 3.5 2.5 5.7 2.7 6.9
10 Va2 6.6 4,4 8.0 4.8 9.6



Table 57
Cne spot filter retrieval error, Dec. 5-8, 1975

Precomputed Kalman gain

3cain angle Scan angle 3 Scan angle &

M=an RrMS Mean RMS Mean RS
Pressure Error Error wrror Error Error Error
(nb) ( &) ( Kj { K) { K) { ) { ¥)
1000 .3 3.7 4, 2 3.9 3.4 4.0
850 1.8 2.1 2.5 243 2a0 2.7
700 1.4 1. 6 1.8 Tall 1ab 1.8
5040 ga0 1.5 0.2 1.4 —0. 2 1. 4
400 0.4 1.3 -0.4 1.6 -0.4 1.9
300 Ja U 25 -1. 1 3.0 -1.4 3.7
250 ~3.8 3.0 -1.8 3.4 -2.1 3.7
200 -T1.1 3.2 -2.0 3.3 -1.9 3.4
150 1.4 2a 1 -1.5 1.8 -1.3 1.6
1460 1.9 2.0 2.6 2.1 229 2.6
7a -0.2 24 4 0.6 3.8 0.7 4.8
50 -0.4 3.0 1.4 4.8 1.7 6.1
30 -0.1 3.9 2.4 5.7 246 6.9
10 al 6.5 Lot Ba 4.8 9.6
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Table 58
One spot retrieval error, Feb. 3-4, 1976

Precomputed error covariance

Scan angle 0O scan angle 3 Scan angle 6

flean M5 ¥ean RS Mean RHS
Pressure Error Error grror Error krror Error
(nb) { &} { K) {( K) { K} { K} { K)
1049 Uad 3.9 0.3 3.3 -0.5 0.9
850 0.5 243 10 2:7 0.4 2.9
700 1.0 1.7 1. 2 1.8 0.9 1.9
5400 Ul iold -Jat 1.5 -0.2 1.6
4ug 1.0 1.7 0.5 1.9 0.5 2al
300 J.5 3. 1 0.2 3.7 ~0.1 3.4
250 0.2 3.5 0.4 4.3 ~0.b 4.4
2040 -1.7 z= B -1.7 3.1 ~1.6 3.1
150 -1a3 1.7 -1.1 1.5 - 1a 1.5
140 2.4 2al 2+ 245 3.0 2.8
70 0.3 2.4 0.5 3.5 0.6 4.0
50 Ua3 3.2 1.0 5.0 1.1 5.8
30 Jau 5.1 Tal 1.0 1.2 7.0
10 -1.8 19.7 It 2.4 Ja 2 13.0
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Table 59
One spot filter retrieval error, Feb. 3-6, 1976

Precomputed Kalman gain

scan angle 0O Scan angle 3 Scan angle ©
dean RMS Mean RiiS Mean RMS
Pressure Lrror Error grcor Error Error Error
{mb) { K) { K) { X) ( K} { £) { K)
1009 Ja3 3.9 J.3 4.4 -0.5 4.9
750 Jab 2.3 1.0 2.7 0.4 2.9
700 1.0 1.7 1. 2 1.8 1.0 19
50u Dal Telh 0.0 1.5 -0.1 1= 0
4uo Tel Ta7 0.5 1.9 0.6 2.1
309 Ja 3.1 0.2 3.0 0.0 3.9
259 ~Jad 3.5 -0.4 4,3 -Ja.b 4.3
200 ~1.7 2.8 -1.8 3.1 ~-1.7 3.1
150 -1.3 1.7 ~T. 2 1.5 -1-1 1.5
190 ) 2.1 2.7 2.5 3.0 2.8
70 J.3 2.0 0.5 3.5 0.6 4.0
50 0.3 3.2 Ta1 5.0 1.1 5.7
30 0a1 2.2 1.1 Tal 1.3 T+6
15 -1.7 1.7 0.1 12. 4 0.3 12.9
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Table 60

Two spot filter retrieval erver, Aug. 7-9, 1975

Precomputed erroi covariance Precomputed error covariance
(Extreme scan) {Close scan)

Scan angle 0 scan angle 1 Scan anglie 5 Scan angle 6

Kean BHS Hean BRMS Hean RIS Mean RMS
Pressure Error Error Error Error Error Error prror Error
{mb) ( K} { K) { K} ( &) ( K) { K} { K) {( K}
1000 U.0 3.5 Ua 0 3.5 0.2 3.0 0.7 3.2
850 Ua.6 245 0.6 2.6 0.6 2a1 0.9 2.1
700 0.5 1.7 0.4 1.6 0.3 1.3 0.6 1.3
500 0.3 1.2 0.2 1.0 0.0 1.3 0.1 1.5
400 -0.3 T 1 -0.4 0.9 -0.2 1.0 -0.2 1.5
300 -0.2 1.5 -0.3 1.4 =01 1.2 -0 1 1= 6
250 ) 2.1 0.4 1.8 0.6 1.9 0.5 19
200 Ua.7 2.3 G.b 2.3 Ua b 2.1 0.2 Z2e1
150 0.4 2.7 0.9 2.1 0.0 2.4 -0.3 2.3
160 1.4 1.9 1.5 1.5 1.6 2a1 1.6 2.3
70 -1.0 1.0 ~0.d 1.3 -0.8 i. 3 -0.9 1.7
50 -1 0 1.3 -0.9 1.3 1.2 1.2 -1.3 a4
30 =0a7 1.4 -J.6 1. 3 -0.9 1.1 ~1.0 1.2
10 0.1 1.8 0.2 1.8 0.0 1a ~0.1 1.5



Table 61

1975

Two spot filter retrieval error, Aug. 7-9,

Precomputed Kalman gain
(Close scan)

Precomputed Kalman gain
(Extreme scan)

Scan angle 5 Scan angle 6

Scan anygle 1

Scan angle O
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{
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Table 62

Two spot filter retrieval error, Oct. 3-5, 1975

Precomputed error covariance Precomputed error covariance
(Extreme scan) (Close scan)
Scan angle 0 Scan angle 1 Scan angyle b Scan angle 6
Mean RHS Mean RMS Mean RY5 Mean RNMS
Pressuare Brror Error Error Error Lrror Lrror Errcor LAELOC
(mb ) ( K) ( K ( K) ( K) ( K} { K) ( &) {( &)
1660 204 4.1 1.9 4.4 2.3 2.4 2.3 3.6
850 1.5 2.4 1.1 2.7 Tat 1a6 1.5 2.4
700 Uu3 1.2 J.0 1.8 0.3 1.2 0.6 1.4
560 ~0.4 1.4 -0.7 2.0 -0.8 1.3 -0.t 1.6
400 0.1 1.4 0.0 1.7 ~-0a b 1.5 0.2 1.9
300 0.9 1.7 1.2 1.8 0.3 2.2 0.9 2.5
250 1.5 2.1 2.0 2.6 0.0 2.9 0.3 3.3
200 -1.2 2.9 -0.3 3.4 ~1.9 3.9 -1.6 4.0
150 -2.9 3.2 -2.4 3.6 -2.3 3.0 -2.3 4.3
100 0a7 2.6 Ted 245 1.4 2.9 1.1 2.9
70 0.7 2.0 0.4 2.5 0.9 3.5 0.2 4.3
50 1.3 3.1 0.2 4.9 1«5 5.0 0.6 6.6
30 2.8 4.5 0.9 7.3 2.5 Ba D 1.0 8.9
i0 7.6 bat 5.3 9.2 6.9 7.l 6.1 10.5
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Table 63

Two spot filter retrieval errors, Oct. 3-5, 1975

Precomputed Kalman gain Precomputed Kalman gain
{(Extreme =can) {Close scan)
Scan angle 0 Scan angle 1 Scan angie 5 Scan angle b6
Mean RMS Hean RMS Hean RHS Mean RMS
Pressure ©RHrror Error Error Errorc Error Error Error BError
(mb) { K} ( K) ( Kj ( K) { K) ( K) { K) ( K)
10090 2.4 3.9 2a 3 3.3 2.3 2.6 2.8 3.0
850 1.5 2.3 1.4 2.0 1.4 1.8 1.8 242
700 0.4 1.2 Ua3 1.2 0.4 1.2 0.6 1.5
5090 -@.3 Tali ~0.6 1.4 -0.6 1.2 -0.5 1ab
4430 0.1 1.3 Yau 1at 0.2 1.4 0.0 1.8
300 1.0 1.7 0.9 1.7 0.5 2.2 0.7 2.7
250 1.6 2.2 el 2.2 0.1 3.0 0.2 3.5
200 -1.2 2.8 el L) 2.4 ~1.8 4.0 -1.56 4.4
150 -2.9 2.9 =245 2.4 ~243 2.9 2.2 3.0
100 0.7 2.4 1.2 2.5 1.3 2.9 1.3 2.8
70 0.7 1.9 0.3 2.0 UeB 3.7 0.6 3.7
50 1.3 2.9 1.2 3.1 1.3 5.1 T 1 5.1
30 2.8 4.2 240 4.3 2.2 6.5 2.0 6.5
10 7.0 5.6 7.3 5.7 6.0 7.4 6.2 7.6



Table bl

5-8, 1975

Dec.

Two spot filter retrieval error,

Precomputed error covariance
{Close scanj

Precompated errcor covariance
(Extreme scan)

Scan angle 1 S5can angyle 5 Scan anjle 6
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{
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Table 65

Two spot filter retrieval error, Dec. 5-8, 1975

Precomputed Kalman gain Precomputed Kalman gain
(Extreme scan) {Close scan)
Scan angle 0 Scan angle 1 Scan angle 5 Scan angle 6
Mean RMS Mean RES Mean RHS Mean RMS
Pressure Error Lrror Ecror Error Error Ecrcor Error Error
{mb) { K) ( K) { K} { K) { ¥) ( K) ( K} ( K)
1000 3.5 3.6 3.2 3.8 3.7 4,3 3.6 4.0
850 2.0 220 1.4 2.1 2.2 2.9 24 2 2.7
700 1.5 1.5 1.3 j. 4 1.7 1o 1.7 17
500 0.1 1.3 ~0.1 1.4 -0.2 1.2 -0.2 1.2
300 Uali 1.1 0.2 1.3 0.4 1.7 ~0a5 1.8
300 -0a1 2.5 -0.3 2.3 -1.4 3.6 -1.6 3.7
25U -0a9 3.0 -1.4 2.9 -2.1 3.9 -2 3 3.9
200 -1.2 3.2 -1.2 3.2 -2.0 3.6 -2.1 3.6
150 -1.5 2.0 -1. 4 240 -1.3 Ta 7 ~-1.4 1.7
100 1.9 2e1 1.9 240 3.0 2<5 3.0 2.5
70 -0 1 2.6 -0.2 2.6 0.9 4.8 0.9 4.9
50 -3 3.3 -0.2 3.4 1.8 0. 2 2.0 6.4
30 0a1 4.3 0.2 4.5 2.8 7.1 3.1 T3
10 J.14 7.0 1.1 6.8 5.0 3.7 5.2 10.0



Table b6

Two spot filter retrieval error, FPeb. 3-6, 1976

Precomputed error covariance
(Close scan)

Precomputed error covariance
{Extreme scan)
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-
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Table €7

3-6

Two spot filter retrieval error, Feb.

Precomputed Kalman gain
{Close scan)

Precomputed Kalman gain
{Extreme scan)
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Table 638
Three spot filter retrieval error, Auy. 7-9, 1975

Precomputed error covariance
(Extreme scan}

Scan angle 0 Scan anglie 1 Scan angle 2
Mean BMS Mean R¥S Kean EMS
Pressure ELCror Error Error BErrcor Error Error
{(mb} ( K) ( K) ( K} ( &) { K) ( %)
10900 -0.1 3.5 -2.1 3.3 0.1 3.3
850 0.5 2.5 Oa 5 2.5 0.5 2.3
700 0.5 Ta? 0.3 1.6 Q. 4 1.5
500 Ja U 1 2 0.2 1.1 U.1 1.1
400 =-Ja2 1.1 —Q. 4 0.9 = Qe l 1a1
300 -Ua2 16 -0.3 1.4 0.4 1.5
250 0.4 2.1 Ua th 1.9 0.2 1.9
240 dab 2.3 0.6 2o 3 Jo 3 2al
159 0.3 2.7 -Ja1 2«0 =-0.1 1.9
104 1.4 1.9 1. 4 1.5 1.5 1.8
70 -1.V 0.9 -0.8 1.3 ~J.8 1.3
50 -J.9 1.3 -0.9 1.3 -1.0 13
30 ~0.7 1. 4 -0.6 1.3 -0.0 1.2
10 0.2 1.8 D.2 1.8 0.3 1.7
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Table 69
Three spot filter retrieval error, Aug. 7-9, 1975

Precomputed error covariance
(Close scan)

Scan angle 5 Scan angle 6 5can angle 7
fiean EMS Mean 284S Mean RES
Pressure Error Error Error Lrror Error Error
(mb) { K) ( K} { K) { K) ( K) ( K}
1000 vau 2.9 -0a 1 2.9 0.1 29
850 0.7 2.0 0.5 2.1 Ja & 2+0
T006 0.6 1.4 0.4 1.4 0.4 T1e i
500 2.5 e 1 02 1.1 0.0 1.2
400 -0.1 1.1 0.4 G.3 -0.6 0.8
300 ~{J.2 1e b -0.4 1.2 -0.0 1.2
250 0.3 2. i 0.3 1.6 0.0 1.7
200 Oad 2o 0.5 2.3 0.3 2.5
150 Oe1 2.7 0.0 2.0 0.0 1.9
130 1.2 1.8 1.5 1. 4 1.7 1.6
TU -1.0 1.0 -0.7 1.2 -0.96 1.2
50 P 1= 3 -0. 8 1«5 -0.8 1.4
30 -0.6 Telh -0.5 1.6 -0. 4 1.4
10 Ja2 1.8 U 4 2.0 0.4 1.9
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Table 70
Three spot filter retrieval error, Aug. 7-9, 1975

Precomputed Kalman gain
(Extreme scan)

Scan angie 0 Scan anygle 1 Scan angle 2
flean RS liean RMS Mean RMS
Pressure Error Error Error Error Error ErrTor
(nd) ( ¥) ( K) {( K) ( € ( K { K)
1000 J.0 2.9 -0.1 2.9 O 1 2.9
850 Da77 2.0 0.5 21 0.6 2.0
700 0.0 T 4 U 4 1.4 0.4 1.4
500 Je5 1.1 0.2 1.1 0.0 1.2
400 ~Ja 1 1.1 -0.4 0.8 0.6 .8
300 -0a2 1.6 -0 4 1.2 -0.6 1.2
250 Va3 2.1 0.3 1.6 0.0 1.7
290 Q.4 2e 1 U. 5 2<3 0.3 2.5
150 0.1 2l fav 2.0 0.0 1.9
160 1.2 1.6 1.2 1.4 17 1.6
70 - 7.0 1.0 -0.7 1.2 -0.6 12
50 -1.40 1.3 -J.8 1.5 -0.3 1. 4
30 —Ja b Ta 4 —0.5 1.0 -0.4 1.4
10 Q.2 1.8 On b 2.0 0.4 1.9
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Table 71
Tnree spot filter retrieval error, Aug. 7-9, 1975

Precomputed Kalman gain
{Close scan)

Scan angle 5 Scan angle 6 Scan angle 7
Mean Has Yean RHMS5 Mean aMS
Pressure Error Error Error Error Frror Error
(nb) ( K} { K} { K) { K) { K) { X}
1000 043 2.8 0.5 2.5 0.8 2.4
850 0.6 1.9 0.8 1.7 0.9 1.6
700 0.5 1.2 0ub T1a2 0.5 1.2
500 0.2 1. 3 0.1 1 4 0.0 1.4
400 -0.1 1.1 —0.2 1.2 -0.3 1.2
300 U0 1. 3 0.0 1.3 -0.1 1.4
2540 0.7 1.9 0.6 1.9 0.6 2.0
200 el 22V 0.3 2.1 0.3 2.2
i50 -0.2 2a2 -0.2 2.3 - 0.1 2.3
100 Told 2.0 Tab 2.1 1.7 2.1
70 -1.0 1. U ~0.9 1.4 ¢ 1.3
50 -1.3 | P - 1. 3 1.2 ol P 1.1
30 -1.0 1.0 -1.0 T.1 ~0.9 1.0
10 -0.1 1.3 -0. 1 1.3 0.0 1.3
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Table 72
Three spot filter retrieval error, Oct. 3-5, 1875

Precomputed error covariance
(Extreme scan)

Scan angle 0 Scan angle 1 3can angle 2

Mean RS fean E#S Mean RMS
Pressure IError Error LEFror Errcor Lrror Error
(inia) { K) { K) { K) ( X) { K} ( K)
1000 2al 4.1 1.7 a2 2+ 3 4.4
250 1.4 2.5 0.9 225 1.3 2.6
TG00 Ve 3 1. 3 -0.1 Ta7 0.1 Ta6
500 ~J.4 1.5 0.7 2.0 -0.7 1.6
490 Val 1.4 Jul 1.6 0.0 1.4
SV IV 0.9 1.7 1. 2 1.7 1.1 2.0
250 H 2.1 2.0 2.8 1.6 3.2
200 -1. 2 2.9 -{0.8 3.4 1.0 4.1
150 -2.9 3e2 -2.1 3.6 2.1 3.7
104 0.7 2.6 1.3 2.5 1.4 2.4
70 0.6 2+ 0 0.4 2.6 g.5 3.1
540 1.3 3.1 .3 5.0 0.6 6.0
30 2.9 4.5 1a1 T4 1.4 3.7
10 1.7 6.1 5. 6 9.9 5.9 10.9
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Table 73
Three spot fiiter retrieval error, Oct. J3-5, 1975

Precomputed error covariance
{Close scan)

Scan angle 5 Scan angle 6 Scan angle 7
Hean RMS Mean R4S Mean EM3
Pressure LErLror Error Error ECrror Lrror Exrror
(mb) ( K} { K} { K) { K) ( K} { K}
13G0 2.2 2+ 3 1. G 3.8 1.7 3.5
350 1.3 1.5 1.1 2.5 0.9 2.4
700 0.3 1.2 Qa3 1.4 0.1 1.6
500 -0.8 1.4 -3.5 1.5 -J.5 1. 6
4l -{U.3 1.5 0.3 1.8 0.5 1.8
3060 Vel 2. 2 1. £ 2.6 1.5 2.8
250 Ual 2.9 G.3 3.3 Te®d 3.5
200 -1.8 3.9 -1.2 Ha2 -1.0 4.4
150 —2a2 3.0 —2. 4 3.3 -1.5 3.4
190 1.4 2.9 T 3.0 0.7 2.0
70 J.9 3.5 -0.3 4.5 -1.1 4.4
50 1.5 5.0 -0.3 £a8 -1.3 Te 2
30 2«5 6.5 0.1 9.0 ~1.0 9.5
10 6a9 1.6 4.0 11.5 2.9 11.4
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Table 74
Three spot retrieval error, Oct. 3-5, 1975

Precomputed XKalian gain
(Extreme scan}

Scan angle 0 Scan angle 1 Scan angle 2
Mean RS Mean RMS Mean BRMS
Pressure Lrror LLror Error st ror Error LErCror
(mb} { K) ( K} { K} { K) ( Ki ( K)
1000 244 4.0 242 3.5 2a2 3.4
350 Tal 2 it 1.3 2.0 Tal 2.1
7040 Ut 1.2 0.3 1.1 Q.2 1. 1
540 ~0.3 1.4 -0.5 1.2 -0.6 1.2
400 0.2 1. 2 0.0 1.2 -0.1 1= 4
3G90 1.0 1.0 0.9 1.6 0.8 1.9
250 1.6 2« 2 1. 4 2.2 1.2 2.3
200 -1.2 2.8 -1.5 2.5 -1.4 2.6
159 -3.0 2«9 -2.6 2.9 -2.2 2.R
100 Ve 7 2. U 1. 2 2alk 1.5 2.4
76 Ue0 1.9 0.8 Tal 0.9 1.9
56 1.3 2.9 1.3 3.0 1.3 3.3
30 el 4.1 2. 6 e 2 e 4.3
10 7.6 5.6 T4 5.6 7.3 5.6
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Table 75
Three spot retrieval error, Cct. 3-5, 1975

Precomputed Kalman gain
{Close scan}

Scan angle 5 Scan angle 6 Scan angle 7
Mean EMS Aean RMS Mean RS
Pressure Error wrror LI Or Error Errceor Zrror
(mb) { X) ( K) ( K) ( %) { K) { K)
1000 2.0 2.5 2.4 3.0 2.4 3.1
850 1.2 1.7 1. 5 2.1 1.5 Z2e3
7008 0o 1.2 Oa5 1.5 Oa 4 1.7
500 -3.5 1. 1 -J. 4 1.5 -0.5 1.6
4040 Dal T b 0.2 1.7 0.2 1.8
300 Ua7 Ze1 1.0 2.7 0.9 2.7
250 J. 2 2.9 U. 4 3.5 0.2 3.5
200 —1.b 4.0 -1.5 4.5 -1.6 Ha 44
150 -2.4 2~8 -2.2 3.1 -2.1 3.2
100 1.2 2a G 1.2 Le B 1.2 2.7
70 Va6 3.7 .4 3.7 0.2 3.5
50 1. 1 5.2 0.8 5.1 0.5 5.0
30 2.0 6.5 1.7 6.5 Ta 2 6.3
10 bal 7.5 5.9 7.7 5.3 T.6
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Table 78
Three spot filter retrieval error, Dec. 5-8, 1975

Precomputed error covariance
(Extreme scan)

Scain angle 0 Scan angle 1 S5can angle 2
Mean RS Mean R4S Mean RHS
Pressure mrror Error Error Error Error Error
(mb) ( ) ( K) { K) ( K) ( X) ( ¥
1000 2+6 3.7 3. ¢ h.,2 3.6 4.2
854 1ad 2.3 2.3 2.2 2.2 2.5
700 0.9 1.9 1.8 1.6 1.8 1.7
500 -0.3 1.6 0.3 1.7 0.2 1.6
490 D.3 1.2 U.d 1.4 0.2 1.3
330 Gl 2.6 -0a 3 240 0.7 3.1
250 -U.5 3.2 -1.4 3.9 ~1. 8 4.5
240 -0.9 3.4 -1.8 4.3 -2.2 4.9
150 -1.2 242 2.0 3.0 =-2.0 3.2
100 1.9 2.0 1.6 2.2 2.0 2.1
79 -0.3 2.5 0.1 3.6 0.4 4.5
50 -0.7 3.5 0.8 5.8 1.5 7.6
3o 0.5 4.5 1.5 2.4 2.2 10.5
10 -0.3 7.2 3.1 17.8 4.7 13.5
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Table 77

5-8, 1975

Dec.

Three spot filter retrieval error,

Precomputed error covariance

{Close scan)

Scan angle 7
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Table 78
Three spot filter retrieval error, Dec. 5-8, 1975

Precomputed Kalman gain
(Extreme scan)

Scan angle 0 jcan angle 1 Scan angle 2

Mean kMS Mean R45 Mean RMS
Pressure Error Error Lrror Error ETror Error
{md) { K} { K) ( K) { K) { X} { K)
1000 3.5 3.5 3.5 3.6 3.8 3.6
850 2.0 1.9 2.0 1.9 2.1 1.9
700 1.5 1.5 1.5 1.3 1.5 1.2
5006 0.1 1.3 0.9 1.2 -0.1 1.3
400 Ual 1.1 Ua 2 1.1 0.0 1.3
300 ~0.1 2.5 -0.3 2.3 -{.5 2.5
250 -0.9 3.1 ~-1.0 2.9 -1.3 2.8
200 -1.3 3.2 -1.3 3.2 - 1.5 3.0
150 -1.06 2.0 -1.5 2.0 -1.4 1.9
160 1.8 2.1 1.9 2.0 2e2 2.0
74 0.1 2.7 -Ual 2.8 -0.1 2.9
50 =041 3.2 0.0 3.5 0.1 3.0
30 Ja3 4.4 2.5 4.5 0.7 4.6
10 0.7 7.1 1.5 6.9 2.1 6.7
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Three spot filter retrieval error, Dec.
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Table 84
Three spot filter retrieval error, Feb. 3-6, 1976

Precomputed error covariance
{Extreme scan)

Scan angle O S5can angle 1 Scan angle 2
Mearn EMS Mean R4S fean RMS
Pressure Errcoer Error Ercor Error Error Error
(mD) { K) ( %) { K} { K} ( K) { K)
1500 0.4 4.0 .6 4.9 O. 6 5.2
850 0.0 225 1.1 2.8 1.1 3.2
700 1.0 1«9 1.2 Z.0 1.2 22
cQu Va3 1.6 9.1 2.0 0.0 1.8
490 1 1.7 Ja & 1.7 0.5 1.7
300 1.0 3.1 0. 2 3.1 0.1 3.6
250 d § IV 4 3.7 -0.7 4.3 -0.6 4.9
200 1.5 3.0 -2.1 3.9 -1.9 4,1
150 -1a.5 1.8 -1 b 2.4 -1.2 2.8
100 2.2 2a 2e 5 2.3 2-7 2.4
70 Qa2 21 0.7 2.8 Q.6 3.7
50 0.4 3.4 1.1 5.6 0.9 £.5
39 0.3 5. 4 1.0 8.9 0.7 9.7
10 -1 11.0 =0.5 14,2 -0.6 14.8
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Table 861
Three spot filter retrieval error, Feb. 3-6, 1976

Precomputed error covariance
(C lose scan)

Scen angle 5 Scan angle 6 Scan angle 7
Mean RS Mean RHMsS Yean riS
Pressure Error Error Error Ertor Error BError
{mb) ( K) ( X} { K} { K) ( K} { K)
1000 -3 4.5 0.1 €.8 C.0 0.8
850 0.5 2.8 0.5 4.5 0.5 4.3
700 U9 2.0 0.8 2.8 0.7 2.7
500 ~0a2 1. 6 ~-0.5 2.2 -0.5 2e0
400 0.5 2.0 0.3 26 0.2 2.7
300 Ja U 3.7 ~{0.2 4.8 -0.3 5.1
250 -U.6 4, 4 (.5 5.9 -0.7 6.0
200 -1.7 3al ~1.4 4.8 -1.5 4.8
150 -1.1 1.5 ~-3.38 2.9 -7 2.7
160 2.8 2.8 3.1 3.1 3.3 2.9
70 0.6 4,0 d.5 5.5 0.7 5.6
50 1.1 5.8 0.8 9.1 0.9 9.2
30 1.3 77 0.7 1Z2.8 0.9 12.8
10 O.4 12.7 0.3 17 .5 -J. 4 178
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Table B2

1976

Three spot filter retrieval error, Feb. 3-6,

Precomputed Kalman gain

(Extreme scan)

Scan angle 1 Scan angle 2

Scan angle ¢

BRMS Mean RAS Hean B4

Error

{ K}

Mean

Error

Ercor
{ K)

{

Error

{ X)

Error

{ K)

Errcor

Pressire

K)

M OoM IO IO
" » 0 & 9 % g * & 3 N 3 g @
FNrmT MM NT NN O

-

MO NOQOMT DN OO0~
*r 9 % 3 o9 2 3 & 3 B F p e
ST OO =T NOOOO

[N R | 1

MmN oo O MmNMe
s 3 % g % ® 3 ® 3 By o § @
TN e MMeNTNN™MIN O

L

TR S Il o e g S o A IR CR IR TR B L R |
s ' B ¢ F 0 ¥t a2 o 4 p
[ 1

M~ S D QM
L] ] L] L] [ 4 [ L [ ] L) L ] L] » »
Hu41.1.I:J3u41.2q43JR40
]

WHANNO~SFTROMM NN M

- 206 -



Table B3
Three spot filter retrieval error, Fek. 3-6, 19756

Precomputed Kalman gain
{Close scan)

Scan angle 5 Scan angle b Scan angle 7
Mean ) Mean RiS Mean RHMS
Pressure Erros Error Error Error Error Error
{(mb) { X) { K} ( &} { K} ({ K) ( K)
1000 Jai 5.1 =01 5.4 -0.2 5.4
850 J.8 3.1 0.7 3.2 0.5 3.2
700 1.1 1.9 1.0 1.9 0.9 2.0
500 ~Je2 1.5 ~0.3 1.4 -0.3 1. 4
490 U.d 2.0 0.3 2.0 0.3 2.0
300 -0.3 3.8 -0. 4 3.9 -0.3 4.2
2590 ~J.Y 4.y ~0.9 4.6 -1.0 4.7
200 ~2.0 3.2 ~1.9 3.3 -1.8 3.9
150 -1.2 1.6 -1.1 1.6 -1.9 1.6
100 3.0 2.8 31 2.8 3.3 2.7
70 1.0 4.0 0.9 b2 0.9 4.3
50 1.8 5.6 1.6 6.0 1.5 6. 4
3y 2.1 7.5 1.8 8.0 1.8 8.4
10 1.4 12.6 .9 13. 2 Oe b6 13.8
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Table 84

Execution times of various filters (sec.)

Causal Pr ecomputed Pr ecomputed
P(-) Gain
One Spot 0,04 G.02 0.0
Two Spot 0.14 .07 0.01
Three Spot 0.55 0. 20 0.02
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observation matrices themselves are noise because of
improper elevation of emissivity estimates. The averaging

done in the precomputation of the gain has pessibly reduced

this error.
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Chapter V

The Water Vapor and Liguid Water Experiment

Section A. General description

In order to further investigate the capabilities of the
extended Kalman-Bucy filter, it was decided to implement it
as an inversion scheme for retrieval of liguid water and
water vapor column using the two window channels of SCAMS.
This is a more substantially non-linear problem than the
temperature problem. Besides the quadratic term in the
absorption coefficient of water vapor, the two variables
interact significantly with themselves and each other. As
an example, a heavy cloud deck will obscure the radiation
from its lower levels and from the water vaper beneath it.
In the extreme, an increase in the ligquid column will
produce a decrease in the observed brightness temperature
since the cpaque cloud will penetrate further into the
colder high atmosphere.

It is unfortunate, but this experiment could not be run
on actual SCAMS data. While there are independent estimates
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of water vapor columns available, there is no corresponding
ground truth for liquid water. The filter was thus
evaluated on a synthetic dataset constructed to be as close
to reality as possible. While this implies perfect
knowledge of the plant, it is felt that the conclusions of
this chapter are still wvalid.

Section B of this chapter discusses the problem of the
identification of the plant for this filter. The synthesis
of the observation matrices and the evaluation of the
eguations of the equations of radiative transfer at the
prior are discussed in Section C. A description of the
dataset synthesis is given in Section D. Section E presents

the results of the experiment.

Section B, System identification

Because of the lack of independent measurements, the
problem of system identification was a rather difficult
one. The only estimate of liquid water and water vapor
colunmns available on a large scale are those produced by the
inversions of SCAMS itself. It was thus this data that
formed the dataset used in the system identificattion.

A dataset consisting of three days of Bugust 1975 data
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was processed to extract all those scans in which all
thirteen spots were over water, thus allowing water vapor
and liguid water to be estimated. This extracted dataset
was then divided into latitude bands and the mean in each
band computed. The mean of the water vapor showed the
expected behaviour , peaking at about 40 mm precipitable
water at the equator and tapering off to about 10 mm at 60
latitude. Ligquid water columns showed no particular
latitudinal pattern. The mean over the latitudes examined
was approximately 0.2 mm. There was a mild peak of 0.3 to
0.4 mm near the intertropical convergence zone.

Using an interpolation in jlatitude of the water vapor
means and a mean of 0.2 mm for the liquid water columns, the
dataset was then processed to yield the covariance of the
liguid water and water vapor along a scan and the
cross-covariance between a scan and the one following in
space. It was expected that a simple stepwise regression of
one scan on the other would produce a state transition
matrix. Such a regression was attempted. However, when the
results of this regression were used in the simulation of
Section D, certain states began to grow without limit after
roughly 20 scans of pure prediction. Because the intended
use of the plant was both in the filter and in the
simul ation, this state transition matrix was discarded. The
state transition matrix that was finally used was a result
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of the first step of the regression. The regressiun
coefficient for the water vapor states was about 0.95, and
that for the liquid water states was about 0.90. Since
there is no a priori reason to suspect that one spot will be
different from another, these values were used for all spots
in the matrix. The dataset was then reprocessed using this
matrix in the prediction scheme to produce an estimate cf
the plant noise. Both the covariance of the prior and this

plant noise were produced in 10 degree latitude bands.

Section C. Observations and observation matrices

As mentioned earlier in this chapter, the forward
problem for water vapor and liquid water is more non-linear
than the forward problem for oxygen., This is further
compounded by the fact that estimates for liquid water and
water vapor can be reliably produced only when they can be
observed in emission against the cold background of the
ocean. The temperature effects of the sea surface
reflectivity thus enter the problem as do the effects of sea
state. To overcome these problems, an approach believed
novel in remote sensing has been developed and will be

presented in this section.
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The first consideration in the observation process is
to factor out the effect of the surface. Examining the
equation of radiative transfer, we find that the observed
brightness temperature is composed of three parts: the
radiation produced by the atmosphere and observed directly
by the satellite, the radiation produced by the atmosphere
and observed by the satellite after it has been reflected
from the surface, and finally, the emission from the surface
after it has been attenuated by the atmosphere. This is

expressed by the equation:

H
Tg = f"i’(hl K(v,h) T (h,H4)dh
H

s H
+ R(y) fT(h)K(v,h)T(h,H)T(H,,H)dh 5.1
Hs

+ (1= R(Y)) T, T (Hy,H)

This impl ies that we may compute the observed brightness
temperature for an arbitrary surface temperature and
emissivity if we know the values of the two integrals and
the absorption through the atmosphere.

Having factored out the state of the surface from the
equation of radiative transfer, we now seek a fast method
for evaluating the two integrals and the atmospheric
attenuation. There is, of course,; no method to do this

exactly. For a given atmospheric structure, these
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quantities must be evaluated using the full integrals.
Therefore, we will seek a reasonable approximation to the
integrals instead. To accomplish this, we will first
examine the problem to discover if we may make any
simplifying assumptions about the atmosphere.

Assuming that the hydrostatic eguaticen is valid, there
are three guantities that will specify the absorptions in
the integrals of 5.1: temperature, water vapor
concentration, and liquid water concentration., The liquid
water and water vapor are primarily located in the region of
the atmosphere below tropopause. There are rare occasions
in which extreme weather occasions will pump significant
water vapor into the upper atmcsphere, but these conditions
are the exception rather than the rule. The same may be
said of liguid water. 1If the total bandpass of the
radiometer is large enough so that the total brightness
temperature is unaffected by any possible spike in the
spectrum at 22.235 GHz., it is reasonable tc assume that the
region above tropopause is totally dry. We may then

fracture the integrals into upper and lower atmosphere
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pileces. Doing this we obtain:

Tg = |, + T(H,H)I,+ R(u){f(Hs,HT)TwaH)ls

+ T(HS,HT)T(HT,H)I4} 5.2

+ (1= R(Y)) Tg T{Hg, Hy) T (Hy, H)

where
H
l, = fT(h)K(u,h)'r(h,H)dh 5.3
H'l'
He
l, = [T(h)K(v,h)T(Hs,h)dh 5.4
H
s
and
H
1y = [T(h)K(U,h)T(h,H)dh 5.5
H
T
Hy
4 =f T(h) K{p,h)7{h,H )dh 5.6
H
S

where Hy is the height of the tropopause. Of the guantities
in 5.2, II ’ I3 ¢« and 'T(HT (H) are unaffected by liquid
water and water vapor because of our assumption of a dry
troposphere. Their values are affected solely by the
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temperature structure above tropopause. Since the
frequencies used by SCAMS for water vapor and liquid water
estimates are in the far wings of the oxygen complex, the
atmosphere is very nearly transparent above this level.
This leads to the conclusion that it will have little
ultimate impact if the temperature structure above
tropopause is only grossly approximated. For such an
approximation, it is more than reasonable to use the
standard supplemental atmospheres.

To deal with 12 » 14, and T(HS ,HT) requires further
assumptions about the structure of the atmosphere. 1In the
case of the vertical distribution of water vapor, it is
often reasonable to assume that its concentration decays
exponentially with altitude. The scale height usually
associated with this decay is 2.2 km, although a figure of
2.0 km is sometimes used. Under this assumption,
approx imately 86 percent of the total water vapor lies in
the bottom 4.4 km of the atmosphere.

The vertical distribution of liquid water is best
described by its distribution within the many varieties of
clouds that occur in the atmosphere. While clouds display a
continuous behaviour in altitude and liquid water
concentrations, it is possible to classify them into general
categories or cloud models. It is thus common in
meteorology to talk of an alto-stratus, fair weather
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cumulus, etc. clouvd. A catalog of some of the more common
cloud types with their altitudes, drop size distributions,
and densities has been compiled by Reifenstein and Gaut
(1971). To approximate the distribution of liquid water for
a given column it is reasonable to select a cloud model with
a column close to that desired and vary its density
slightly.

The final approximation needed is one for the
temperature structure of the lower atmosphere. 8Since the
region of greatest concern is below 4 km, it is reasonable
to assume that the temperature in this portion of the
atmosphere is given by the temperature at a level such as
850 mb and a lapse rate. The lapse rate used should be a
function of the temperature itself. As an example, a
temperature typical of a sub-arctic winter would imply a
lapse rate typical of that atmosphere.

Given these assumptions, it is possible to evaluate the
integrals I2 | 4 and T(Hs ,HT) for a choice of
temperature and liquid water and water vapor columns. This
is still a rather time-consuming process if it is necessary
each time a retrieval is performed. Thus, we will require a
further level of approximation.

This approximation will be to evaluate the various
parts of 5.1 by means of a bicubic spline in water vapor and
liguid water. The spline coefficients used will be provided
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by an interpelation of those produced for two temperatures
surrounding the desired temperature profile. Thus, we

evaluate a spline for each of the guantities:

S, = L+ T{HpH)I, 5.7
S, = T3(Hg,Hy T(HyH) 13+ T(Hs, H) T(H,H) 1, 5.8

S5 = T(Hg,Hy) T (Hp,H) 5.9

and then combine them with the surface temperature and
reflectivity at run time to produce the brightness
temperature as a function of the prediction.

The knots of the spline were chosen to be on the mesh
(L, ,Wj ), where L, was the liquid water column from the
set {0., 0.2, C.4, 0.6, 0.8, 1.0, 4.G6, 8.0, 16.0, 20.0} mm
precipitable water and wj was the water vapor column in the
set {0.0, 10.0, 20.0, 30.0, 40.0, 50.0, 60,0, 70.0, 80.0,
90.0, 100.0} mm precipitable water vapor. These spline
coefficients were evaluated for temperatures at 1013 mb from
~20.0 to 40.0 degrees centigrade in 5 degree steps. It
should be recognized that certain of these atmospheres are
physically impossible. As an example, a zero water vapor
column will never occur in conjunction with a 20 mm liquid
water column. These knots were evaluated simply to

mechanize the entire process. It should also be noted that
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the values of I, , I2 » and T(H ¢ ,H) need be evaluated only
once for the knot mesh, thus reducing the total computation
required.

Because the predicted brightness temperature is
produced in terms of this bicubic spline, it is a simple
matter to produce the partial derivatives needed for the

evaluation of:

H, (X,(=)) = h(X) 3.62

3 X X=X (=} (REPEATED)
The partial derivatives of each of the splines with respect
to liquid water and water vapor columns are well defined.
One need only combine them in terms of the surface

reflectivity and temperature.
Section D. The simulation

Given the choice of the plant, the simulation of the
observed brightness temperatures is more or less
mechanical. The "orbit" was chosen to be successive passes
from -59° to 59° latitude with all spots at the same
latitude. The temperature of the atmosphere was given by
the interpolated standard atmospheres. The values of liguid
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water and water vapor were produced by decomposing the plant
noise covariance matrix, Q; , into its eigenvectors and
eigenvalues and then driving the eigenvectors with Gaussian
random numbers having variance equal to the eigenvalues.
The surface temperature was taken to be the temperature at
1013 mb, but no less than 273.15°K. The dataset produced
for the experiment was the "position” of the satellite, the
brightness temperatures at all 13 spots corrupted by 0.2°K
rms independent Gaussian random variables and a noisy value
of the atmospheric and surface temperature. These two
temperatures will never be known perfectly to an inversion
scheme. The noise processes added to these temperatures
were chosen to be independent on each surface and
atmospheric temperature. Since the errors in the
temperature estimates will not be white, the errors wvere
produced by a plant with & = 0.98I and Q = (0.57F I.
These statistics were chosen to give a 4K rms error in each
temperature.

To randomize the inital state, the simulation was run

for 60 "frames” before actual data was produced.
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Section E. Results

The results of the inversion of 400 frames of synthetic
data produced by the simulation are gi en in Tables 85-86. For
purposes of comparison, a regression inversion was also
produced for this experiment. This regression inversion was
obtained by regressing the values of liquid water and water
vapor against the brightness temperatures for scan angles 0
through 6 for three orbits of the simulation (368 frames).
Since the D matrix constants are symmetric about nadir, the
constant for scan angle 5 may be used at scan angle 7, and
those for scan angle 0 for scan angle 12, etc. Because the
regressions were performed using the statistics for spots 0
through b6, the error statistics of spots 7 through 12
represent errors obtained on an independent dataset.

Even with this highly inbred standard of comparison,
the extended Kalman-Bucy filter shows its ability to track
the non-linear aspects of the physics. The rms errors of
the filter are roughly one third of the regression
inversion. To show this more graphically, another
simulation with an inbred regression inversion was run with
the plant producing liquid water in cm rather than in mm.
The mean was thus 2mm rather than 0.2 mm. The results of
this simulation are given in Tables 87-88. The error in water
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Table 85

Water Vapor Retrieval Error

Kalman-Bucy
Mean RMS
Error Error
(mm) (om)
0. 246 0.678
-0.297 1.064
0. 054 0.793
-0, 227 0.684
-0,714 0.929
-0. 452 1.051
-0.9039 0.801
-0.210 0.830
-0, 643 0.808
0. 250 0.650
-0, 272 0. 757
-0, 274 0.500
0.738 0.861

Statistical D

Mean

Error
(mm)

0.046
0.159
0.199%
0.179
0. 260
0. 460
0.195
1.895
1.594
0.945
0.967
0.524
0.301
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RMS

Error
(mm)

1.517
2.621
2.013
2.061
2, 427
3.260
2.733
2.835
2.340
1.698
1,684
2,698
1,565



Scan Angle

10
11
12

Table 86

Liquid Water Retrieval Error

Kalman-Bucy

Mean
Error
L mm)
-0, 007
0,013
0.002
0.005
0.01¢
0.010
-0.001
6.006
0.024
-0, 009
0.006
0.009
-0, 020

RMS

Error
( mm)

0.018
0.027
0.021
0.025
0.023
0.029
0.024
0.028
0.027
0.020
0.020
0.015
0,027

Statistical D

Mean
Exrox
(rm)
0.004
-0, 004
-0.004
-0.004
-0.007
-0.020
-0, 009
-0.047
-0.033
0. 000
-0.019
-0.012
-0, 006
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RMS

Error
(mm}

0. 044
0. 065
0.063
0.058
0.060
0.091
0.087
0. 088
0.077
0. 065
0. 055
0. 059
0.041



Table 87

Water vVapor Retrieval Error

(8igh Liguid Water Experiment)

Kalman~Bucy Statistical D

Scan Angle Mean RMS Mean RMS
Error Error Error Error

(ram) (mm) (1om) (rom)
0 -0.556 1.609 ~0.093 4,614
1 -0.666 1.80¢9 -0, 002 4.946
2 -0. 691 1.771 0.158 4.584
3 ~0. 705 1.866 0. 349 4.702
4 -1.191 1.865 0.196 5.314
5 -1.237 2.276 0.760 7. 250
5 -1.147 2,957 0,319 6.342
7 -0.503 2.632 3.614 7.156
8 -0.644 2,295 2.791 5.302
9 -0.57% 1.645 1.922 4.279
10 -0.696 1.3%4 1,025 4,283
11 -0.555 1.272 1,204 5.557
12 -0.497 2.325 1,646 5.597
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Table 88

Liquid Water Retrieval Error

(High Liquid Water Experiment)

Kalman-Bucy Statistical D

Scan Angle Mean RMS Mean RMS
Error Error Error Error

(mm}) {mm) { mm) {mm}

0 -0.01 6. 06 -0.02 0.42
1 0.03 0.08 0.0 0.57
2 0.02 0,07 0.02 0.67
3 0.01 0.08 0.01 0. 61
4 0.02 0.08 -G.01 0.52
5 0.01 0.19 -0.19 0.97
5 0.02 0,10 -0.07 0.64
7 0.00 0.14 -0.18 0.84
8 0.01 0.35 ~0.16 0.93
9 - -0, 02 0.09 0.17 0.58
10 0.02 0.07 0.00 0.64
11 0.03 0.07 ~0.06 0.78
12 0.00 0.15 -0, 14 0.59
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vapor is still one third of the regression inversion, but
the error in liquid water is now one seventh that of the
regression.

Tc show the value of this non-linear tracking ability,
we may consider the plot of Figure 12. This is a plot of
the channel two brightness temperatures as a function of
liquid water for a water vapor column of 25 mm. Assuming
that the liguid water mean is 0.2 mm and that the water
vapor is invariant, a regression inversion will produce an
estimate essentially based on the slope of this curve at 0.2
mm, This estimate will be approximately
L =0,02687(T - 160.9) + 0.2. A received brightness
temperature of 180.9°K will generate an estimate of 0.74
mm for an error of -0.06 mm. The Kalman filter used in the
experiment exhibited innovations in the order of several
degrees. For the purposes of this argument, we will assume
that the prediction was 0.6 mm. The Kalman estimate is thus
roughly L = 0.02988(T - 174.6) + 0.6, For a 180.9%%K
received brightness temperature, the estimate will be 0.79
mm for an error of -0.01 mm. The tracking ability and the
ability to evaluate the derivatives at the prior thus yields
significant advantages.

Since these improvements seem so large, it is
reasonable to inguire beyond the above simple analysis as to

their source. One question that should be asked is how easy
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it is to "derail" the non-linear processing. This question
was addressed by running the filter for a period of time and
then injecting one gram (10mm) of liquid water into the
nadir spot for a period of one frame. The resulting error
per formances are plotted in Figures 13-14, It should be
noted that the filter has recovered in approximately three
frames and has resumed nominal error performance.

A second guestion is how critical the estimates of the
surface and atmospheric temperature are to the estimation
process. To investigate this effect, the filter was run
with a constant atmospheric and surface temperature estimate
of 293.15° K. The results of this experiment are given in
Tables 8395-90. It may be seen that when the filter is denied
temperature information, the performance is degraded to that
of the Statistical D method. The guestion is now which of
the two temperatures is more critical to the processing. To
answer this, the experiment was re~run with the filter being
denied either the atmospheric temperature or the surface
temperature. The results of these two experiments are given
in Tables 91-%4. The cenclusion that may be made from these
experiments is that the knowledge of the atmospheric
tempereature is more important than the knowledge of the
surface temperature, but that if either is lacking, the
per formance is seriously degraded.

A final issue that must be addressed is the sensitivity
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Table 89

Water Vapor Retrieval Error

(No Temperature Knowledge Experiment)

Kalman-Bucy Statistical D

Scan Angle Mean RMS Mean RMS
Error Error Error Error

(mm) {mm) (mm) { mm)
0 1.370 1.292 0.046 1.517
1 0,443 2.954 0.159 2.621
2 1.512 2.607 0.199 2,013
3 1.751 3.519 0.179 2.061
4 2.362 4,632 0. 260 2,427
5 2,260 5.936 0. 460 3.620
6 2.460 4. 145 0.195 2,733
7 2,052 4.946 1.859 2,835
8 1.656 %.130 1.594 2. 340
9 1.216 3. 254 0.945 1.6%8
10 0.980 2.371 0,967 1.684
11 0.258 2,593 0.524 2.698
12 1,242 1,187 0.301 1.565
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Table 90

Ligquid Water Retrieval Error

(No Temperature Knowledge Experiment)

Kalman-Bucy Statistical D

Scan Angle Mean RMS Mean RMS
Ecror Error Error Error

{ mm) (mm) {mu) (mun)
0 -0.002 0. 460 -0.004 0.044
1 0.010 0.101 -0.0604 0. 065
2 -0.001 0, 1G3 -0.004 0.063
3 -0.005 0.122 -0. 004 0.058
4 -0, 004 0. 141 -0.007 0. 060
5 -0.004 0.162 -0.020 G.091
6 -0.008 0.150 -0.009 0.087
7 0.004 0.153 ~0.047 0.058
8 0.009 0.136 -0.033 6.077
9 0.011 0.126 0. 000 0. 065
10 0.007 0. 085 ~-0.019 0.055
11 0.015 0.094 -0.012 0. 059
i2 0.004 0. 046 -0.006 0.041

~ 234 -



Table 91

Water Vapor Retrieval Error

(No Atmospheric Temperature Knowledge Experiment)

Kalman-Bucy Statistical D

Scan Angle Mean RMS M=an RMS
Error Error Error Exror

(mm) (mm) (mm) (man)
0 1.398 2.147 0.046 1.517
1 1.447 1.971 0.159 2.621
2 1,552 2. 454 0.199 2.013
3 1.697 2,452 0.179 2.061
4 1,809 2.930 0,260 2,427
5 1.910 3.631 0. 460 3.620
6 1,643 2.872 0.1%5 2.733
7 1.591 3.281 1.859 2.835
8 1,510 2,629 1.594 2,340
) 1,222 2,267 0.945 1,698
10 1.023 2. 297 C.967 1.684
11 1,204 1,872 0.524 2.698
12 1,413 2.016 6. 301 1.565
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Table g2

Liguid Water Retrieval Error

{(No Atmospheric Temperature Knowledge Experiment)

Kalman-Bucy Statistical D

Scan Angle Mean RMS Mean RMS
Error Error Error Error

{ mm) {mm) (mm) (mm)
G -0.024 0.061 -0.004 0.044
1 -0.026 0.063 -0.004 0.0865
2 -0, 024 0.078 -0.004 0. 063
3 -0.035 0.086 -0.004 0.058
4 -0.033 0,096 -0.007 0.9060
5 -0.0386 0.101 -0.020 0.091
6 -0.033 0.101 -0.003 0.087
7 -0.017 0.107 -0.047 0,088
8 -0.018 0.085 -0.033 0.077
9 -0.016 0. 086 0.060 0. 665
10 -0.017 0.069 -0.019 0.055
11 -0.020 G.062 -0.012 0.059
12 -0.018 0.065 -0.006 0.041

- 236 -~



Table 93

Water Vapor Retrieval Error

{No Surface Temperature Knowledge Experiment)

Kalman~Bucy Statistical b

Scan Angle Mean RMS Mean RMS
Error Error Error Error

{mm) {mmm) { yom} (rom )
0 0.333 1.646 0.046 1.517
1 ~-1.379 1.817 0.159 2.621
2 -0, 026 0.797 G.199 2.013
3 -0. 295 1.324 0.179 2.061
4 -0. 415 1,729 0. 260 2,427
5 -0. 460 2.386 0. 460 3.620
6 0.625 1,450 2.195 2.733
7 0.035 2.358 1.859 2.835
8 -0.684 1,765 1.594 2. 340
9 0.124 1.503 0.945 1.698
10 ~0. 340 0.724 0.967 1.684
11 -1.263 1.651 0.524 2.698
12 0,668 1.517 0.301 1.565
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Table 94

Liquid Water Retrieval Error

{(No Sur face Temperature Knowledge Experiment)

Kalman-Bucy Statistical D

Scan Angle Mean RMS Mean RMS
Error Error Error Error

(mm) (mm) ( mm) {mm)
0 0.017 0.026 -0.004 0.044
1 0. 044 0.043 -0.004 0.065
2 0.021 0.032 -0. 004 0.063
3 0.03¢ 0.043 -0.004 0.058
4 0.034 0.046 -0.007 6.060
5 0.034 J.050 ~0.020 0.091
6 g.018 0.046 -0.0G9 0.087
7 0.022 0.056 -0.047 0.088
8 0.044 0.051 -0.0633 0.077
9 0.013 0.045 0.000 0.065
10 0.027 0.035 ~0,019 0.055
11l 0.042 0.038 -0.012 0.059
i2 0.005 0.025 -0.006 0.041
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of the observation matrices to the assumptions made in their
construction. In particular, their sensitivity to the
assumed water vapor scale height requires attention. To
investigate this, two additional sets of splines were
constructed that represent extreme conditions in the
atmosphere. One set of splines had an assumed water vapor
scale height of 1.0 km and the other had an assumed water
vapcr scale height of 3.0 km. These splines were then used
to create two new synthetic datasets. The filter was then
run on these datasets using the 2.2 km splines for the
forward model. The results of these experiments are given
in Tables95 - 98, The conclusion that may be drawn from
these experiments is that the scale height of water vapor is
a significant factor in the non-linear processing of the
filter. To further test this behaviour, a mixed synthetic
dataset was constructed in which records were randomly
selected from the 2.2 km synthetic dataset with probability
0.6 and from the 1.0 km or 3.0 km dataset with probability
0.2. The filter was then run on this dataset using the

2.2 km splines. The result of this experiment is given in
‘Tables 99-16G0. In this more realistic (but still extreme)
experiment, the filter still continues to perform better
than the Statistical D method retrievals constucted for the
mixed dataset. This improvement is by no means as marked as

when the water vapor scale height was known a priori. It
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Table 95

Water Vapor Retrieval Error

(3.0 km Water Vapor Scale Height Experiment)

Kalman-Bucy Statistical D

Scan Angle Mean RMS Mean RMS
Error Error Error Error

(mm) (mm) (mm) (mm)
0 1.984 1.123 1.553 1.645
1 1.322 3.936 1.071 2.623
2 1.706 1.207 1.279 2.090
3 1.299 0.818 0.998 2.106
4 £.854 0.871 0.992 2.457
5 1.309 1.459 1.232 3.276
6 1.832 1.008 1.147 2.799
7 1.294 1.044 2.598 2.866
8 0.784 0.827 2.322 2.386
9 1,754 0.866 1.786 1.725
10 1.207 1.083 2.044 1.819
11 1,221 0.689 1.420 2.796
12 2.358 1.367 1.799 1.842
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Table 96

Liguid Water Retrieval Error

(3.0 km Water Vapor Scale Height Experiment)

Kalman-Bucy Statistical D

Scan Angle Mean RMS Mean RMS
Error Error Error Error

{mm) {(mm) (mm} {mm)
¢ -G.054 0.G34 -0.04¢4 0.046
1 -0.039 0.025 -0.032 0.063
2 -0.045 0.036 -0.036 0.063
3 -0.042 0.039 -0.031 0.057
4 -0.039 0.033 -0.043 0.060
5 -0.044 0.034 -0, 047 0.090
6 -0.060 0.037 -0.038 0.087
7 -G.,042 0.046 ~0.072 0.088
8 -G.023 0.028 -0.058 0.078
9 -0.053 0.034 -0.026 0.065
10 -0.036 0.033 -0.049 0.597
11 ~0.035 0.028 ~-0,039 0.059
12 -0.062 0.046 -0.045 0.047
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Table 97

Water Vapor Retrieval Error

(1.0 km Water Vapor Scale Height Experiment)

Kalman-Bucy Statistical D

Scan Angle Mean RMS Mean RMS
Error Error Error Error

(mm) (mm) (mm) (mm)
0 -4,358 1.917 -4,269 1,842
1 ~4,754 2.703 -2.495 2.865
2 -4.628 2.194 -2,988 2.332
3 -4,.583 2.471 -2.320 2.309
4 -5.387 2.836 -2.145 2.593
5 -5.546 2.774 -2.134 3.375
6 -5.387 2.660 ~3.450 2.930
7 -4.635 2.072 -0,523 2.868
8 -4,708 2.099 -0.675 2.327
9 -3.952 1.748 -1,551 1.910
10 -4.271 1.591 -2.063 1.618
11 -4,296 1.986 -2.018 2.619
12 -3.072 1.530 -3.938 1.340
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Table 98

Liquid Water Retrieval Error

(1.0 km Water Vapor Scale Height Experiment)

Xalman-Bucy Statistical D

Scan Angle Mean RMS Mean RMS
Error EBrror Error Error

{mm) { mm } (mm} (mm)
0 0.127 0.072 0.096 0.056
1 0.149 0.095 0.065 0.075
2 0.138 0.082 0.076 0.075
3 g.138 0.082 0.063 0.069
4 0.157 0,097 0.061 0.069
5 0.167 0.102 0.048 0.096
6 0.157 0.094 6.063 0.094
7 0.142 0.07¢ 0.013 0,095
8 0.153 0.083 0.029 0.079
S 0.112 0.060 0.066 0.0740
10 0.124 0.064 0.054 0.059
11 0.131 0.069 0.054 0.066
iz 0.101 0.052 0.091 0.044
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Table 99

Water Vapor Retrieval Error

(Mixed Water Vapor Scale Height Experiment)

Kalman-Bucy Statistical D

Scan Angle Mean RMS Mean RMS
Error Error Error Error

{(mm) { mm ) {mm) (mm)
0 -0.527 1.827 0.113 2.447
1 -0.926 2.317 0.171 2.880
2 -0.791 2.124 0.217 2.499
3 -~0.889 2.239 0.173 2.423
4 -1.475 2.478 0.295 2.%79
5 -1.394 2.575 0.524 3.616
6 -0.976 2.503 0.233 3.119
7 -0.883 2,283 1.974 3.088
8 -1.170 2.G57 1.661 2.574
9 -0.484 1.921 0.939 2.120
16 -0.897 1.899 0.831 2.180
11 -0.890 1.578 0,388 3.002
12 0.003 1.793 0.306 2.361
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Table 1060

Ligquid Water Retrieval Error

{(Mixed Water Vapor Scale Height Experimentj

Kalman-Bucy Statistical D

Scan Angle Mean RMS Mean RMS
Error Error Error Errorx

(mm) {mm) (mm) (mm}
0 0.013 0.052 -0.006 0.061
1 0.030 0.069 -0.005 0.071
2 0.025 0.064 -0.005 0.072
3 0.023 0.068 -0.004 0.067
4 0.033 0.075 -0.008 0.073
5 0.034 0.080 -0.021 0.102
6  0.023  0.073 -0.010 0,093
7 0.026 0.068 -0.051 0.09%4
8 0.039 0.0585 -0.036 0.084
9 0.011 0.056 0.0600 0.071
10 0.024 0.056 -0.016 0.065
11 0.026 0.059 -0.029 0.072
12 ~-0,002 0.049 -0.007 0.066
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must then be concluded that the performance achieved in
which the water vapor scale height was known exactly may be
overly optimistic.

In summary, the Extended Kalman-Bucy filter appears to
be a valuable means of producing estimates of liquid water
and water vapor from satellite data. To fully utilize its
potential, it is necessary to incorporate estimates of the
temperature profile and ocean surface temperature. It will
also be desirable to incorporate estimates of the sea
surface state as this parameter also affects the
reflectivity of the sea surface. Finally, the assumptions
made about the water vapor scale height have a critical role

in its per formance.
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Chapter VI

Summary and Recommendations for Future Research

The basic conclusions that may be reached from the
experiments conducted in this thesis are: The extended
Kalman-~Bucy filter offers an improvement in estimation
accuracy over a presently used inversion method for
parameters sensed from passive remote sounders. This
improvement is greatest in the more non-linear problem of
estimating liquid water and water vapor. The degree of
improvement is sufficient to warrant the increased
computational burden.

There are several areas in which further research
should be fruitful: The system identification procedures
used to identify the plant in the filters developed were
specific to the instrument and not very satisfactory. A
more adequate and general indentification will be warranted
before such filters are used operationally. The temperature
filter implemented did not use the two low frequency
channels of SCAMS. Since these two channels contain quite a
bit of information about the surface temperature over land,

one should be able to improve the performance of the filter
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further by including them in an inversion scheme. The
filter should be tried in a number of the other more
non-linear problems of the field. Some of these might
include: temperature inversion using sensors in the infrared
spectrum, a combined inversion using both microwave and
infrared sensors, estimation of sea state in conjunction
with water vapor and liguid water, and liquid water and
water vapor profiling. Finally, the problem of state
reduction for the atmosphere is highly important to reduce

the number of states in the filters used.
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Appendix A

Comparisons Between Point and Area Sounders

One of the problems of the analysis of the results of
any experiment with any passive remcte sounder such as SCAMS
is the lack of independent verification data corresponding
to the parameters being estimated. Historically, the
independent verification sources have been taken to be
either radiosonde reports or an analysis grid such as the
NMC K27 grid used in this thesis. A passive sounder such as
SCAMS measures the parameters of interest averaged over the
antenna beam pattern which has an area on the earth of over
17,000 square kilometers. The radiosonde report consists of
an area average of perhaps a2 few sguare centimeters along
its Line of flight. Because of the manner in which analysis
grids are produced, it is unclear what sort of area average
they represent.

The purpose of this appendix is an attempt to quantify
the apparent error between a comparison of a perfect point
sounding and a perfect area sounding in a homogeneous
isotropic atmosphere. That is, we desire a numerical value

of E{[P, (O]J-PP (dz)]z }, where Pa ((f)) is a perfect area
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sounding of some parameter centered at location Cﬂ and
Pp( O%) is a perfect point sounding of the same parameter

centered at Cfa. We will define the area sounding as:

AN [‘j(d)P(o’)do’ Al

where G( (f ) is the antenna beam pattern and le is the

1

physical space seen by the beam. Taking the expectation of

both sides of A.l, we obtain:

E{p,(a) ] = fe(o') E{P,(0) }dT A.2
le
Since we have assumed a homogeneous field, E{PP (cf)} is a
constant and may be moved out of the integral. Then

assuming that:

[G(d)dd = | A.3
W,

we obtain:
E{p(0)} = E{P.(d,)} A.4

Without loss of generality, we will assume these processes

to be zero mean.

Defining e as our error measure, we expand it to
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obtain:

e = E{ffg)} - 2E{R(0) Rlg,)} + E{PEA)} A.5

The quantity E{Pg (O%)} is simply the variance of
Pp ((,) and is a constant for all 0 due to the
assumption of a homogeneous atmosphere. We will define this
as Var(PP ).

Substituting the definition of the area sounding (A.1)
into A.5 and bringing the expectation into the integrals, we

obtain:

e = Var(P,) —Z[G(O’)E{P,,(o’) P,(d)) }dd
W A6
+ [ [ow6") 616 E{p (0 Pt a0” a0
W

e
Factoring out V’ar(Pp ) from this expression vields:

e = Var(R,) [l - 2[G(O’)R(O' ,O'z) dd
ALA ., . A.7
+[ [0 R0 40 40”]
Wil
where R((f . ) is the correlation coefficient between
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Pp Qf3 and Pp (f%l To evaluate A.7, we require an
expression for G((¢f) and R(o”,d/;.

In order to obtain an expression for R(cfiﬁf?, a large
number of radiosonde reports were examined. These
radiosonde reports spanned the months of January and
February, 1973, and represented tlie majority of the iﬁput
from the global radiosonde network in the NMMC analysis grids
for these months. The number of synoptic reporting times in
this data set was 109. As the number of radiosondes
launched at each syncptic is approximately 800, it was
decided to restrict the study to 300 stations in the United
States and Canada. This smaller dataset was then subjected
to a two-pass outlier rejection procedure to remove reports
with data transmission or reporting errors. The sample mean
and standard deviation was computed for each station and
data points that were further than three standard deviations
from the sample mean were removed.

The dataset was then fractioned into four latitude
bands in which the most populous band had roughly 100
stations. The purpose of this sﬁep was to attempt to assure
the homogeneity of the statistics within each band. These
bands were located at latitudes below 34°, 34° to 44°, 44°
to 54°, and above 54°. Pairwise correlations within each
band were then performed using the local sample statistics

for each station. The distance between each of the stations
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and all others in the latitude band were then computed. The
distances were partitioned into bins of 40 km, and a

weighted average of the asymptotically normal statistic:

1+ R..
Z.. = n A A.8
"y —
| — R,
was performed, where R is the sample correlation

]
coefficient between station i and j. The variance of this

sample statistic is approximately:

I
N.—3

1}

Var(Zij) A A9

where Nij is the number of i,j comparisons entering into
the sample. The weight of each of the Zij was the inverse
of this variance.

Several plots of this estimate of the correlation
coefficient as a function of distance are given in Figures
i5-17. The trend of these curves is consistent with the
behaviour that one expects in the atmosphere. The curves
drop to zero fastest at pressure levels near the sur face and
tropopause. They become very long in the atmosphere above
tropopause and generally increase in correlation length as
one moves toward the equator.

The shape of these curves is suggestive of one of

several functions: a polynomial in distance, a
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sinc(distance) relationship, or a decaying exponential. At
the time the database was first analysed, the immediate need
was in terms of the discussion of this appendix. It was
decided at that time to perform a weighted polynomial fit to
the curves. A list of the regression coefficients produced
by this procedure are given in Tables 101-104., For some of
the cases investigated, the dataset was too sparse or the
scatter too large to produce a significant fit. This
occurred most often in region 4 (below 34° latitude) where
the a priori variance is naturally low and few stations
participated in the fit. For these cases, the table
contains the entry "No Regression". The near field
behaviour of all regressions accepted was generally

linear.

In the context of.producing estimated of the apparent

error between a nearby radiosonde and a radiometer, it is
reasonable to assume that the two are nearly co-incident in
space and time for the comparison to be meaningful. Thus,
it was assumed that the correlation coefficient between two
points in the atmosphere was govermed by the near field
behaviour. This leads to a model of the correlation

coefficient as:

_lg-d1 ALO

R(O'T" = | =

|4

- 257 -



Table 101
Region 1 Correlation Regression Coefficients
(Above 54° Latitude)

R(X) = A, +A, X +2A, X2 +A, X°

Pressure AO A| A2 As
Leval (1673%) (107%) (10719
1000 0.9838 -0.8524 0.5572 -0.1708
850 1.0065 -0,6352 0.0823 0.0000
700 1.0573 -0.6193 0.0626 0.0000
500 1.0266 -0.5621 0.0519 0.,0Q00
400 0.9737 ~G.5111 0.0440 0.0000
300 0.8595 -0.6484 0.1559 0.0000
2590 0.9585 -0.7175 0.1668 0.0000
200 1.0037 -0.4422 0.0737 0.0000
150 0.9863 -0.1950 0.0000 0.0000
100 0.9816 -0.1833 0.0G00 0.0000
70 0.9547 -0.1864 ¢.00C0 0.00600
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Table 102
Region 2 Correlation Regression Coefficients
{Between 54° and 44° Latitude)

= 2 3
R(X) =A_ +A X+A, X2 +A,X

Pressure A, A, B, Az
Level (1073) (107°%) (107'%
1000 No Regression
850 0.9934 ~0,6479 0.0522 9.0000
700 1.0616 -0,5744 0.0000 0.0000
500 1.0406 -0.6061 0.0475 0.0000
400 1.00687 ~0.6618 0.0857 0.0000
300 0.9839 -1,.1430 0.6032 -1.4209
250 0.9775 =0.9721 0.3595 ~-0.4669
200 1.0280 -0.6170 0.1567 0.0000
1590 1.0643 ~0,4346 0.1164 0.0000
100 0.9759 -0G.1307 0.0000 0.0000
70 No Regression
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Table 103
Region 3 Correlation Regression Coefficients
{Between U4° and 34° Latitude)

R(X) = By + &, X + 4, % + A, x3

Pressure Aq A, L Aj
ievel (1073 {10798 (10719

1000 No Regression
850 0.9534 -0.7408 0.2748 -3.5492
700 1.0847 =0.65171 0, 1085 0.0000
500 0.95486 -0.6574 d.0997 0.0000Q
400 0.9819 -0.6950 0.1053 0.0000
30¢C 0.9741 ~0.7437% 0.1245 0.0000
250 1.0084 -0.9525 0.1920 0.0000
200 0.9913 -3.6179 0.1024 0.0000
150 0.9068% -0.5185 0.0000 0.0000
100 0.7852 -0.3024 0.000¢0 0.0000

70 No Regression
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Table 104
Region § Courrelation Regression Coefficients

{Below 34° Latitude)

R(X)=A0+AIX+A2§(2+A3X3
Pressute Ao A, A, Az
Level (1073) (107} (10719
1609 No Regression
850 0.8%86 ~0.4830 0.1138 0.0000
700 0.8651 ~0.3346 0.00G0 0.0000
500 1.0902 ~-0.8574 0. 1854 6.00060
400 0.5136 -0.6633 0.1132 V. 0000
300 0.8033 -0.5785 0.1528 0.0000
250 o Regression
200 No Regression
150 No Regression
100 0.8751 -0.3372 -0.0175 0.0000
740 No Regression



where Rp is the correlation distance cﬁaracteristic of the
pressure level. A list of the near field RP values for the
various levels and regions are given in Table 105,

Having chosen a model for the correlation coefficients,
we now need a model for the antenna pattern. Many
rad iometers such as the Nimbus E Microwave Spectrometer
{NEMS) and SCAMS have circular antennas. The beam patterns
are therefore best described by modified first order Bessel
functions. However, the use of such an exact expression was
not deemed justified in.view of the uncertainties in the
correlation coefficient expression. It was rather chosen to

approximate the beam gain by:

sinca(r/X)
1.2188i48

where X is the distance from the center of the beam to its
first null. This function is much easier to compute in
practice than the Bessel functions. The units of this gain
are inverse beam radii squared.

Having specified the necessary quantities, we may now
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Pressure

Level
{mb)

1000
850
700
500
400
3090
259
200
150
160

70

Table 105

Near Field Correlation Lengths

Region 1

1154

1548

1707

1826

1505

1325

133¢

2261

045

5345

5124

(km)
Region 2 Region 3
954 KR
1533 1287
1847 1557
1717 1452
1524 1412
861 1310
1005 1053
1666 1604
2448 1749
7479 2535
NR NR

NR implies no regression fit.
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NR
186G
2585
1271
1377
1386

NR

HR

MR
2379

HER



return to A.7 and substitute them to yield the expression:

e = Vur(!%) [I

2% | ' ; <5 —
_affsinc(r) “__J 24 rZ -:2:- Tp Cos(9) Ye'de'de A2
1.218815 Rp
.2 u 2, n2_ ton
fsanc(r) sinc (r )“_ P r 2rr_Cos{0-9) r'r"drdadr"dso]
1.218815 1.218815 I~

Re

We have normalized all distances in this equation by the

beam radius X. Rp 1is thus the characteristic length in

beam radii and Ly is the distance of the point sensor from

the beam center in beam radii.

The expression A.12 may be evaluated numerically for

various values of r, . Before this is done, it is desirable

to simplify this expression. Since the integral of the beam

gain over the beam area is one, we find:

. Yar®e) )y 1) A 13
S 2l — 1y
p
where
' —— e sinc (M sinc(r") Jr' 2 2r't"Cos(o) r'r"dodrdr”
o Jo (|2|83|32
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and

Ly
~ 4 .2 ~a 2 ~ '
la(rad = 278815 L'/;smc(r')J o+ r-— 2rr Cos(d) rdrdf A5

Of these two integrals, only I, is dependent on the
separation of the point sensor from the beam center. The
integrals I, and I, are tabulated for several values of
separation ?éin Table 106.

To evaluate the expectation of the error variance
between a point and area senscr, it is simply necessary to
express the correlation distance and the distance from the
beam center in beam radii and perform the calculation of
A.13 using the values in Tablel106. For convenience, it will
be mentioned that to three significant digits, the distance
of the first nulil of a sinc2(0) function is 2.5 times the
distance to the point where it is 0.5. It will also be
cautioned that the near field assumption should not be
violated. It is doubtful that the expression of A.13 has
much value when the separation exceeds 500 km. It will be
further noted that the assumptions of a homogeneous and
isotropic atmosphere may he viclated at even shorter
separations at the higher latitudes. To assist in

evaluating the apparent error, the value of a weighted
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Table 106

Values of the Integrals I; and I

I, = .57335

I,(r)
0.8205
0.8387
0.8523
0.9785
1.0531
1.2310
1.38669
1.5559
1.7339
1.9176
2.1051
2.2951
2.4869
2.6800
2.8741
3.0691
3.2647
3.46408
3.6574
3.8543
4.0516

] B 4 § & K

" 0 5 & & 4 @

DO ok med i ik v o ol wed e OO OO OO D OM

L ¢ & * a3 * 3

O M=V w0 e O~ T E N wQ
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average of the sample variances for the four regions are
given in Table 107.

It is also possible to evaluate the apparent error
between an area sounder and weighted average of point
sensors in an arbitrary configuration using the integrals

I' and Ia . If the error statistic desired is:

efSe - n ]

where W. is the weight of the ith point sensor, we arrive

at the expression:

i n '-6"/§ n ~
e= —if -1 - l(r;)] Var{F,} A.17
[._ Z W W, ' Z 2 P
i=t j=I i iz}
where Eﬁ is the distance between the ith and fh point

sensor.

There is an additional statistic that could in theory
be derived from the analysis of the radiosonde dataset
discussed in this appendix. If we model a radiosonde as a
noisy measurement, the intercept values of the correlation

model will give us a value for the error between two
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Table 107

Sample Variances of Temperatures in the
Atmosphere by Latitude Region

{degrees square Kelvin)

Pressure Region 1 Region 2 Region 3 Region 4
Level
{mb)
100¢ 5%9.5 26.58 13.8 13.5
850 31.8 19.2 2%1.9 13.5
700 26.8  22.1 261 11.7
500 26.2 22.8 17.4 12.4
500 20.9 18.6 184.7 11.9
300 10.5 9.4 11.3 14,2
250 21.7 18.5 20.0 3.8
200 37.4 36.9 23.5 7.0
150 36.4 29.7 4.5 6.7
106 42. 4 23. 1 19.5 1.1
70 62.2 30.1 10.3 14.1
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radiosondes launched at the same point as:
Var(N) = Var(R) [1-R(0,0] A.18

As an exercise, this quantity has been tabulated for three
of the latitude regions in Tablp 108. The values for the
lowest latitude region were not computed because of the
felatively small number of radiosondes in that latitude band
and resulting uncertainty in the value of the intercept.

The values used for the zero separation coefficients were
produced by a separate polynomial regression on the
statistic % of A.8., The reader is cautioned that the
guantities in Table l108are an extrapolation and that they
are conditioned on the validity of the model. It is perhaps
guestionable to consider the model as valid through zero
distance as this would imply identical mesoscale and
microscale behaviour in the atmosphere. The use of the
model for this purpose will probably yield an overly large
estimate of the radiosonde error.

Although it was not done for the temperature filter of
this thesis, an analysis of the sort performed in this
appendix may provide a more accurate system identificatiocn
for the temperature inverting Kalman filter. If we care to
generate models for the cross-covariances of temperatures

with distance, it will be possible to construct matrices
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Table 108

Apparent Radiosonde Error vVariance

(degree square Kelvin)

Pressure Region 1 Region 2 Region 3 Region 4

Level
(mb)

1000 6.613 4.46 2.04 1.97
850 3.52 1.39 2.44 210
700 1.35" 0.62 0.93 1.13
500 1.74 0. 90 1.65 0.5%6
400 2.35 0.97 1.09 1.61
300 1.7¢ 0.74 0.78 1.7
250 2,21 2. 04 1.02 3.11
200 T.62 .43 T2 2.45
150 .1.45 0.59 1. 48 1.17
100 2.27 0.71 1.79 1.39

79 5.90 | 1.57 1.89 4.0
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cross-covariance matrices of temperatures at one remote spot

with another. The elements of this matrix are:

P = JVur(p_)Var(Pj)f[ 6(5,) 6lo,) R(e ,7,) da,d7, 219
’ W T @

This formula alsc gives the covariance matrix of
temperatures at a single spot when the areas w, andw, are
the same.

This approach was considered at times during this
work. It was discarded for the reason that it is a rather
expensive and time-consuming operation. The purpose of this
thesis was what is sometimes called a feasibility study. It
was feit that the available rescurces were better spent in
building a Kalman filter that worked and then exploring the
nature of its behaviour in various configurations, seasons,
etc., than performing an elaborate system identification.

A further possible use of the cross-covariance elements
of temperature would be for "Gandin weighting®™. One of the
persistent problems in the production of synoptic analyses
is the interpolation of reports to produce a value assigned
to a mesh gridpoint. One method proposed by Gandin (1963)
is basically a regression procedure. For this procedure to
operate sucessfully, the correlation of and between levels
as a function of distance is required. The author is

unaware of any study other than the one that appears in this
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appendix that hasz attempted to address even a portion of the

problem.
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Appendix B

Sensitivity of Oxygen Absorprion and Weighting

Functions to Temperature

The temperature weighting function is defined in terms
of the absorption coefficient of the atmosphere and the
reflectivity of the surface. For channels whose weighting
functions peak high in the atmosphere, the water vapor
component of the absorption and the reflectivity of the
surface have little effect. It is therefore instructive to
examine the sensitivity of their weighting functions and
oxygen absorption to temperature.

The off resonance absorption of oxygen is due to
collisional broadening. It is therefore the case that it
will be affected by temperature. Two approaches have been
taken tc guantify this effect. The first is the
exper imental measurement of the absorption by Liebe (1973).
The second is presented in this appendix.

The approach taken here was to perform an analytic
differentiation of the oxygen lineshape of Rosenkranz (1975)
with regards to temperature. To do this, the absorption

routine OZ2ABSB was entered symbolically in the mathematical
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synbolic manipulation langauge MACSYMA. It was then
expanded in terms of its arguments and differentiated with
regards to temperature. This differentiated expression was
then constructed into a function, translated into LISP, and
eventually into machine language.

The relative sensitivity of cthe oxygen absorption to
temperature obtained by this method over a range of
frequencies, temperatures, and pressures are given in Tables
109 - 117. The figures here appear to be in excellent agreement
with those determined by Liebe.

To demonstrate the insensitivity of the weighting
function to temperature, we will make use of a result by
Poon (1974). This result is that, under certain
assumptions, the peak of the weighting function occurs when

the optical depth of the atmosphere is one neper or:

M
f K{s,h")dh" = | B.I
h

where h is the height of the peak of the weighting
function. We will now consider the case in which the entire
temperature profile above the peak increases in temperature
by one degree. Examining Tabies 109 - 117, we see that this
impl ies a change in the absorption coefficient above the

peak of roughly one percent. Re-evaluating B.l after the
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temperature change that this implies:
H
f K'(y,h")dh" ~0.99 B.2
h

where K'(h) is the c¢hanged absorption coefficient. To find
th2 new weighting function peak, we must find the height
that is 0.01 neper deeper into the atmosphere. For
specifics in numbers, we will state that the high altitude
channel of SCAMS (55.45 GHz.) has an absorption coefficient
that is roughly 0.24 neper/km at its peak. Thus, at least
for this frequency, 0.0l neper is roughly 40m deeper into
the atmosphere. This represents an insignificant change in
the height of the peak of the weighting function when it is
remembered that the weighting functions are several km
wide. We thus conclude that the temperature weighting

functions are insensitive to temperature.
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Table 109

Sensitivity of Oxygen Absorption at 300 X, 720 Torr
{Percent change per degree Kelvin)

Freq. 0 1 2 3 4 5 6 7 8 9
{GHz.)
10 -0.965 ~-0.965 =0.965 =0.965 =0.965 -06.965 -0.964 -0.964 -0.964 -0.964

20 -0.963 -0.963 -0.963 -0.962 =-0.962 -0.961 =-0.961 =-0.960 =-0.960 =-0.959
30 -0.958 =0.957 =-0.956 ~0.955 =0.954 -0.953 -0.952 ~0.950 -0.949 -0.947
40 -0.944 =0.942 =-0.938 =-0.934 ~0.930 =-0.923 -0.915 =-0.903 -0.885 ~-0.855
50 ~0.801 =0.717 =0.537 =0.383 -0.341 -0.402 -0.5006 -0.629 -0.737 -0.807
60 -0.813 ~-0.768 -—0.6671 -0.549 =-0.438 =-0.341 =-0.323 -0.427 -0.617 -0.738
790 -0.799 -0.848 -0.875 -0.892 -0.904 -0.913 -0.920 =-0.926 =-9.931 -0.935

80 “0.939 ~0.943 -0.947 -0.,951 -0.954 -0.958 -0.962 -0.966 =-0.971 -0.975

90 -0.981 -0.986 ~-0.992 =-0.999 -1.006 ~-1.013 -1.022 -1.831 -1.040 ~-1.051
100 -1.062 =1.074 =-1.086 =-1.100 -1.114 -1.128 ~-1.143 -1.158 ~-1.172 -1.186
110 -1.199 -1.210 =~1.218 -1.220 =-1.215 -1.196 ~-1.148 ~1.036 ~0.814 -0.713
120 ~0.938 ~1.108 -1.179 -1.211 -1.224 =1.227 =-1.224 =-1.218 -1.209 -1.200
130 -1.189 =-1,178 =-1.167 =1.156 ~-1.145 -1.133 -1.122 =-1112 ~-1.101 -1.091

140 ~1.082 =-1.072 =-1.,063 -1.055 -1.046 =~=-1.038 -1.030 =-1.023 -1.016 -1.009
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Table 110

Sensitivity of Oxygen Absorption at 300 XK, 360 Torr
{(Percent change per degree Kelvin)

Freq. 0 1 2 3 4 5 6 7 8 9
{GHz.)
10 ‘0.966 "0- 966 ‘0.965 *00965 -00965 -00965 _J-gbs —0-96"4 '0-96’4 _05961‘
20 =0.963 -0.963 ~0.963 -0.962 -0.962 =-0.961 =-0.961 -0.960 =-0.959 -0.959

30 -0.958 -0.957 ~0.956 -0.955 -0.954 =-0.952 -0.951 =0.950 -0.947 ~-0.945
40 =0a.942 =-0.939 =-0.936 -0.931 -0.926 =-0.919 =0.910 =0.897 =-0.877 =-0.840
50 =0.732 -0.610 -0.285 -0.083 =-0.107 -9.276 =-0.468 -0.624 =0.781 -0.861
60 -0.876 -0.818 -0.695 =0.537 =-0.336 -0,148 ~=0.041 -0.122 -0.422 -0.627
70 -0.762 -0.832 -0.863 -0.883 -0.896 =-0.906 =0.914 -~0.920 ~-2.926 -0.931
80 =0.935 ~0.939 -0.943 -0.947 =-0.951 =-0.955 =-0.960 -0.964 -0.967 -0.974
90 -0.979 -0.985 =0.991 =-0.997 =1.005 ~-1.013 -=1.021 =1.030 -1.040 =-1.0251
100 ~1.062 ~1.075 =-1.088 -~1.102 -1.116 ~-1.131 =-1.147 -1.163 =-1.179 -1.195
110 =1.210 =-1.224 ~1.237 -1.248 -1.255 -1.257 -1.244 ~1.197 =-0.991 -0.754
120 =1.132 -1.229 -1.254 =-1.259 -1.256 —1.,250 ~1.241 -1.231 =-1.220 -1.208
130 -1.196 -1.184 -1.171 ~-1.159 -—-1.147 -1.136 -1.124 -1.113 -1.103 =-1.092

140 -1.083 -1.073 -1.064 -1.055 -1.0846 =-1.038 =1.030 -1.023 -1.016 =-1.009
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Table 111

Sensitivity of Oxygen Absorption at 300 K, 180 Torr
(Percent change per deyree Kelvin)

Freqa. 0 1 2 3 4 5 6 7 4 9
(GHz.)

10 -0.966 -0.966 ~0.966 =-0.965 -0.965 -0.965 =-0.965 =-0.964 -0.964 -0.%64
20 -0.954 -0.963 -0.963 =~0.962 =~0.962 =-0.961 =-0.961 =0.960 -0.959 -0.958
30 —0.958 ~0.957 =0.956 =-0.955 =0.953 =-0.952 -0.950 ~0.949 -0.947 -0.944
LG -0.942 =0.939 =-0.935 =0.931 =0.925 =0.918 =0.908 =-0.895 -0.874 -0.836

50 —0.637 ~0.382 =0.117 -0.265 -0.073 =-0.246 =-0.522 =-0.540 -0.888 -0.893

60 -0.991 =-0.829 =0.761 -0.465 =-0.259 ~0.077 =-0.126 -0.191 -0.099 -0.423
70 -0.749 =-0.827 -0.860 -0.880 -0.894 ~0.904 ~-2.912 -9.919 =-0.925 -0.930
80 -0.934 =-0.938 ~0.942 =-0.947 =-0.951 ~0.955 -0.959 -0.963 -0.968 -0.973
90 -0.978 -0.984 -0.990 ~-0.997 -1.004 ~1.012 =-1,021 -1.030 ~-1.043 -1.051
100 -1.062 ~-1.075 =1.088 =-1.102 -—-1.117 -1.132 -1.148 -1.164 =1.181 -1.197
110 -1.213 -1.228 =1.242 -1.255 =-1.265 -1,273 ~1.275 -1.265 -1.172 -0.876
120 -1.283 =1.273 =1.276 =-1.272 =-1.265 =1.256 =1.246 -1.234 -1,222 =-1.210
130 ~1.198 ~-1.185 =-1.173 -—-1.160 =—1.148 -1.136 -1.125 -1.114 =-1.103 -1.093

140 -1.083 -1.073 -1.064 -1,055 -1.047 =1.038 -1.030 =-1.023 -1.016 =1.009
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Table 112

Sensitivity of Oxygen Absorption at 250 K, 720 Torr
{Percent change per degree Kelvin)

Freq. 0 i 2 3 4 5 6 7 8 9
(GHz.)
10 =1 157 =-1.157 =1.157 ~1.157 -1.157 -1.157 -1.157 ~1.157 ~-1.157 =-1.157
20 -J.156 ~1.156 =-1.156 -1.156 -1.155 =-1.155 =-1.155 =-1.154 ~1.154 -1.153
30 -1.153 -1.152 -1.152 -1.15% -1.151 =-1.150 -1.149 ~1.148 ~1.147 -1.14¢6
40 -1. 15 -1.%143 -1.141 -1.13% -1.136 -1.132 =-1.127 -1.119% -1,108 ~1.090
50 ~1.060 -0.999 -—-0.864 -0.685 -0.554 -0.536 ~-0.601 -0.719 -0.836 -0.912
60 ~0.919 -0.864 -0.748 -0.636 -0.554 -0.521 =0.599 =-0.772 -0.944 -1.040
70 =1.083 =-1.7110 =-13.128 -1.1%) =-1.149 -1.15 =1.162 -1.167 -1.172 -1.176
80 =1.181 -1.185 -1.190 -1.194 -1.199 -1.204 -1.209 -1.215 =-1.220 =-1.227
90 =1.233 -1.240 =-1.248 -1.256 =-1.265 -1.274 -=1.284 -1.295 -1.306 ~-1.317
100 =1.330 -1.343 =-1.360 =-1.370 -1.384 -1.398 -1.412 -1.425 -1.438 -1.449
110 -T.458 =1.465 ~1.467 =1.4062 -=-1.446 -1.410 -1.,335 -1.186 =-0.944 =-0.851
120 =1.071 -1.273 ~-1.380 -1.434 -1,460 -1.472 =-1,477 =-1,476 ~1.472 =1.467
130 =1.460 ~-1.452 -1.44% -1.435 =-1.426 -1.417 -1.408 -1.399 -1.391 -1,382

140 =1.374 ~1.366 ~1.359 -1.351 =1.3484 -1.337 -1.331 -1.324 -1.318 -1.312
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Table 113

Sensitivity of Oxygen Absorption at 250 K, 360 Torr
(Percent change per degree Kelvin)

Freq. 0 1 2 3 4 5 6 7 B g

(Gz.)
10 -1.159 ~1.158 -1.158 -1.138 -1.158 -1.158 ~-1.158 -1.157 ~-1.157 -1.157
20 ~1.156 -1.156 ~1.156 -1.155 -1,155 -1.155 -1.154 ~-1.154 -1.153 -1.153
30 =1.152 =1.151 ~-1.151 =-1.150 -1.149 ~1,148 ~1.147 -1.146 -1.145 -1.143
40 ~1.1471 ~1.139 ~1.137 =1.134 -1.130 -1.125 =-1.118 =-1.109 -1.096 -1.074
50 =1.029 ~0.949 -0.704 -0.385 ~-0.229 -0.320 -0.510 -0.704 -0.883 -0.991
60 -1.002 =-0.937 -=0.777 -0.598 ~-0.382 -0.222 -0.259 -0.531 -0.847 -0.995
70 =1.056 =1.092 ~1.113 -1.127 -1.137 -1.145 -1.152 -1.153 -1.7164 =1.166
80 -1.174 =1,179 ~3.184 -1.189 -1.195 -1.200 =1.205 -1.211 =-1.217 -1.224
90 -1.231 -1.238 =1.246 -1.255 -1.264 -1.273 -1.284 -1.294 -~1.3096 -1.318
100 =1.331 =1.345 ~1.359 -1.373 -1.383 -1.403 -1.419 -1.434 =1.449 -1.463
110 -1.477 -1.489 -1.498 -1,505 -1.508 -1.502 -1.478 -1.402 -1.131 -0.886
120 =1.309 =1.452 ~1.495 -1.509 -1.512 -1.510 -1.5375 -1.498 ~1.489 -1.480
130 -1.477 —-1.461 ;1.u51 ~1.441 -1.431 =-1.4271 =1.411 -1.402 -1.393 -1.384

140 -1.376 ~1.368B =-1.360 -1.352 -1.345 -1.338 -1.331 -1.325 -1.319 =-1.312
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Table 114

Sensitivity of Oxygen Absorption at 250 X, 180 Torr
{Percent change per degree Kelvin)

Freqga. 0 1 2 3 4 5 6 7 8 9

(GHz.) /
10 -1.159 =1.159 -1.159 =-1.158 =1.158 =1.158 -1.158 =-1.157 =-1,157 =1.157
20 -1.156 =-1.156 =1,15 -1,155 =-1.155 -1.155 =1.154 —-1.154 =1.153 =-1.152
30 =1.152 =1.157 =-1.1517 -1.150 -31.149 -1.1748 ~-1.147 -1.7146 -31.148 -~-1.1743
440 -1.741 -1.138 -3.137 -1.132 -1.128 -1.123 -1.116 —-1.106 -1.093 -1.069
50 ~-1.000 -0.875 —-0.435 -0.038 ~0.0%9 -0.183 -0.528 =-0.619 -0.987 -1.038
60 ~3.126 -0.958 -0.841 -0.533 -0.224 -0.006 =0.070 =-0.200 ~-0.690 -0.935
70 ~J+ 046 1,087 =1.109 =-1.123 -1.134 -1.143 -1.150 =1.15 -1.162 -1.168
80 ~1.173 -1.178 -1.183 =~1.,188 -1.193 -1.199 -1,205 -1.210 -1.2%7 -1.223
90  -1.230 -1.238 -1.246 =-1.2548 -1.263 =1.273 =1.283 -1.293 -1.306 -1.318
100 =1.3317 ~=1.345 -1.359 =-1.374 -1.389 ~-1.405 ~1.421 =~1.436 -1.452 ~-1.467
170 —~1.482 -1.496 -1.507 -1.517 -1.525 =-1.530 =1.528 =~=1.506 —1.364 -1.004
120 =1870 =1.522 =-%.5%371 =1.531 -1.527 =-1.520 ~-1.912 -=-1.503 -—-31.494 -—-1.484
130 -1.473 ~1.463 -1.453 -1.442 =-1.432 ~1.422 -1.412 =-1.403 -1.394 -1.385

140 -1.376 -1.368 =-1.360 =1.352 ~-1.345 -1.338 -1.331 -1.325 -1.318 -1.312
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Table 115

Sensitivity of Oxygen Absorption at 200 K, 720 Torr
(Percent change per degree Kelvin)

Preq. 0 1 2 3 4 5 b 7 B 9

{GHzZ.)
10 “Ta 445 ~1.446 =T1.446 =1.446 ~1.446 —1.4456 =1.446 ~1.446 —1,446 ~1.446
20 =T.446 =1.446 —1.445 —1.445 -1.445 -—-1.445 =1.445 -1.4448 -1.448 —-1,444
30 =T 444 1444 -1.404 ~1.443 =-1.443 -1.443 ~1,.443 =1.443 -1.443 -1.442
49 -1-4842 -1.442 =-1.4417 -1.440 -1.440 -1.&39 -1.437 ~-1.434 -1.429 -%1,427
50 =1.405 =1.370 =-1.293 ~-1,151 =-0.972 -0.839 =-9.806 -0.873 =~0.971 =1.040
60 1. 045 =-0.987 =-0.881 -92.805 -0.811 =-0.902 =~1.072 ~1.245 =-1.360 ~1.418
140 —1.6447  ~l1.464 -1.474 -1.482 -~1.488 =1.494 -1.498 =-1.503 —-1.507 -=-1.521
80 =1.517 -=1.522 -1.527 -1.533 -1.539 -1.545 -1.552 -1.559 -1.567 -1.575
90 =1.584 -1.593 ~1.603 -1.613 -1.624 ~-1.636 =-1.5648 -1.661 -1.674 -1.688
100 =1.702 ~1.7%7 =1.732 -1.747 -1.761 -1.776 =1.739 -1.832 -1.812 -1;821
110 ~1.826 ~-1.826 -1.819 =-1.802 -1.768 =1.704 =1.590 -1.394 -1.140 ~-1.057
1290 =1.266 ~-1.504 -1.657 -1.744 -1.793 ~1.820 =-1.835 =-1.842 -1.844 -1.842
130 -1.839 =1.834 -1.827 -1.820 =-1.212 -1.804 -1.796 -1.788 -=-1,.,780 —-1.7712

140 =1.764 -1.756 ~=d.748 -1.7471 -=-1.734 -=1.727 -1.720 -1.713 ~1.707 -1.701
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Table 116

Sensitivity of Oxygen Absorption at 200 K, 369 Torr
(Percent change per degree Kelvin)

Freq. 0 1 2 3 g 5 6 7 8 9

{(GHz.)
10 ~1.488 —-1.4848 =1.448 =1.447 -1.4487 -1.447 -=1.847 =1.446 =1.446 -1.446
20 -1.4485 =1.445 =-1.445 =1.444 -1.4u84 =1,.444 -71.443 ~-1.443 -1.443 =—1.442
30 -1.442 —1.441 1,441 -1.440 -1.440 =-1.439 -1.438 -1.4370 -1.437 -1.437
49 -1.436 -1.434 -1.433 -1.431 -=1.428 =1.425 =-1.421 =-1.416 -1.408 -1.400
50 -1<375 -1.335 -1.219 -0.965 =0.652 ~0.542 -0.630 -0.829 =1.0828 -1.161
60 12170 =1.093 =0.897 =-0.715% ~0.566 ~0.565 -0.822 -1.136 =1.318 -1,389
70 —1.4719 ~1.438 -1.451 =-1.461 ~1.469 -1.476 -1.483 -1.489 -1.495 -1.501%

80 ~1.506 =1.512 =1.518 =-1.52% -1.532 =1.539 ~-1.546 ~—-1.554 -1.562 -1.571

90 -1.580 =-1.590 =-1.600 -1.611 -1.622 ~1.635 -1.648 -1.6861 =1.675 -1.690
100 =1.705 =1.721 =1.737 =-1.754 -1.770 -1.797 -1.803 ~-1.819 -1.834 -1,847
110 -1.260 =~1.870 =1.876 =1.880 =-1.875 -1.858 -1.811 -1.685 ~-1.328 -1.086
120 -1.548 =1.765 =1.842 =-1.872 -1.884 -1.4887 -1.3886 -1.88% -1.875 -1.867
130 -14859 -1.850 =1.841 -—-1.831 =-1.822 -1.812 -1.B03 =1.794 ~-1.785 ~1.776

40 -1.767 =-1.759 =~1.751 -1.743 =-1.735 -1.728 -1.721 ~=1.714 -1.708 -1.701
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Table 117

Sensitivity of Oxygen Absorption at 200 K, 180 Torr
{Percent change per deygree Kelvin)

Freq. 0 1 2 3 4 5 6 7 ;) 9
{GHZ.)
10 =1.0447 =1.447 =1.447 =1.447 -1.446 =1.,446 =-1.446 ~—1.446 -1.445 =~1.445
20 —1.484 -1.448 -1.080 =1.0043 -3.443  —1.443  ~1.842  -1.942  -1.447 -1.441
30 =1 087 ~1.480 -1.440 =1.439 -1.838 -1.438 =-1.437 =-1.436 ~1.435 -1.434
0 -1.433 -1.831 =1.829 -1.427 -1.424 -1.420 -1.415 =1.409 -1.400 -1.387
50 =1.362 ~-1.314 =1.132 =0.676 =0.201 -0.226 -0.568 -0.733 =~-1.116 ~-1.238
60 -1.305 =1.134 ~0.949 =-0.650 -0.265 =-0.154 =-0.447 <-0.981 =~1.280 -1.373
70 ~0.140 ~1.430 ~1.484 -1,454 =-1.463 =-1.471 =-1.877 -1.484 —1.490 -1.496
80 -1.502 =-1.509 =1.515 =1.522 -1,528 -1.536 -1.543 -1.551 -1.560 -1.568
930 =1.578 ~1.588 =1.598 =1.609 =—1.621 =1.633 =1.646 -1.660 =1.674 -1.689
100 =1.705 =1.721 -1.737 -1.754 -1.771 -1.788 -1.805 -1.822 -1.838 -1.853
110 ~1.867 =-1.880 =1.891 =-1.900 =1.906 =1.907 -1.897 =1.856 =-1.626 ~-1.195
120  =-1.793 =-1.885 =-1.906 =-1.911 =1.909 =-1.904 ~-1.898 ~1.890 =~1.882 =-1.872
130 -1.863 =1.853 =1.843 =1.833 -1.823 -1.813 -1.803 -1.794 -1.784 -1.775

140 -1.767 =1.758 -1.750 ~=1.742 -=-1.724 -1.727 -1.720 =1.713 =-1.706 -1.7990



Appendix C

Program Descriptions

Section A. Introduction

This appendix gives an extensive verbal description of
many of the routines used in the Kalman filters of this
thesis. Because of Institute regulations on thesis
preparation, the listings of the programs are not included.
The programs take full advantage of the 108 character line
lengths allowable in PL/I and therefore do not reproduce
legibly in the format allowed. It is the author's opinion
that the Institute should reexamine its position on this
matter and allow COM originals to be included in future
theses.

This appendix will treat both the temperature and the
water vapor and liguid water programs. Many of the
subroutines are common to botn of these programs. Routines
specific to either program will be so noted. In cases where

minor modifications were made to a routine between the two
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versions, the temperature filter will be covered first and a
_subsection will note the differences between the two
versions. All the routines decribed in this Appendix are
written in PL/I with the exception of the routines PHIEPHI,

SSQUARE, and MF3.

Section B. Main procedure

Name - FOO

Purpose - Compute sizes of data aggregates based on user

specified inversion scheme.

Logic - The program first obtains the leftmost spot, and
rightmost spot of the inversion scheme, the timing option
and the printout options. On the basis of the number of
spots inverted, the size of the output records produced by
the program are determined. If blocked records are to be
written, the blocksize is computed to be optimum for a 3330
disk track. Two output files are produced by the filter.
One consists of the inversions produced by the filter, the
other consists of the error covariance matrix Pi { ) and
the gain K; . Theses files are declared with the
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appropriate DCBs in a begin block. The inversion scheme
options are inserted into appropriate external structures.

The routine also obtains the precomputation options and
inserts them into an external structure. These options are
precomputed P, (— ), precomputed K; , the time (in frames)
for running the full filter before switching to the steady
state gains or covariances, and the use of a precomputed
file of transient gains. These options are then checked for
consistency. The required size for the covariance matrix,
the state transition matrix, and the plant noise matrix is
then computed. If the transient gain option is used, these
matrices are set to a size of 1 lccation since they are not
needed in the balance of the program. Otherwise, the order
of the filter is used for their size. All covariance
matrices are stored in a compressed lower triangular form.
The sizes of the various matrices are inserted into an
external structure.

The program also requests the input/output options to
be used in the program. The program may either read or
write Regional(l) files or sequential files. If a backward
filter is being run, the filter (generally) reads a direct
access file from high key to low key and outputs a direct
access file in the same manner. This allows non-tape
datasets to be read "backwards" in a convenient manner. For
production use one would (hopefully) read a tape backwards
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because of the cost of this approach. A final option that
is requested in the I/O section is the production of a file
of gains and covariances. If a simple filter is being run,
these parameters are not needed. 1If a non-causal filter is
run, the file of covariances is required for its operation.
The file also includes the gains for the purpose of
producing precomputed gain matrices. The I1/0 options are
also inserted into an external structure.

A banner giving the inversion scheme and the options is

printed and the routine KALMAN is called.

Modifications - The number of parameters per footprint

inverted is changed.

Section C. Main processor

Name - Kalman

Purpose - Read input data and write results. Manage general
flow of control. Print user timing and output requests.
Compute innovations and update vector of state. Acquire
additional run time parameters. Collect performance
statistics.
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Lcgic - The routine proceeds with system initialization by
requesting and reading the run size (number of frames to be
processed), the observation noises, the frequency of user
printout and the constant calibration offsets. It also
requests the direction of processing (forward or backward)
and the size of the dataset. This size 1s necessary if
direct access files are used. If sequential files are used,
it acts as a second limit on the run size. It also obtains
the data reasonableness testing flags. These flags
determine whether data reasonableness testing should be
done, whether print output will be produced when a data
point is rejected, and the sigma limit for outliers.

The procedure allocates storage for all variables such
as the vector of state, covariance matrices, etc. in its
declare statements. It also establishes an abnormal
condition that is raised it the predicted error covariance
matrix ceases to be positive definite. Raising this
condition causes the routine to take a "snap-shot" of its
major variables onto a file. It also completes the listing
of the major options of the program and zeros the
statistical gathering arrays.

The program then loops endlessly unless: 1) the end of
file has been reached on the sequential input file, 2) the

current key is outside the range of the specified file size,
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or finally 3) the specified run size has been reached.
Within this loop, the major processing occurs.

The program reads the data from the appropriate file
and unpacks it into a floating point format. It then
determines the frame time in seconds and compares it with
the time of the last frame processed to determine the number
of frames lost since the last data was processed. If the
number of frames lost is greater than five, it will reset
the processing state of the filter. This reset will always
occur the first time through the loop. When this reset
occurs, the filter sets a flag in the output record, defeats
state propagation and calls routine INIT to re-initialize
the filter environment. This reset behaviour is performed
because it is felt that the state propagation cannot be
trusted for long periods of time. If prediction is to be
per formed, the routine calls PREDICT to accomplish this
task.

The filter then checks its direction (backward or
forward). If the filter is a backward filter, the error
covariance of the prior and the contents of the gain array
are written to a output file. Likewise, the prior plus the
various locator data, etc. are written out. If data is
missing (as given by the data missing flag of the S0TA)}, the
filter also performs output if it is a forward filter and

then branches back for more data.
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The routine then call CMATRIX to obtain the observation
matrices and empirical corrections for the average latitude
of the scan. The empirical corrections plus any constant
corrections are then applied to the brightness temperatures
to obtain the observation vector.

The observation vector, vector of st:te, and
observation matrices are then combined to yield the initial
innovations. These innovations will be used in data
reasonableness testing. This is strictly incorrect if the
Square Root Algorithm is used for the gain calculation. The
data reasonableness should be checked after each data
element has been assimilated, rather than at the first
stage.

If the gain is to be calculated, the routine GAIN is
called. Otherwise, the gain is read from a regional(l) file
keyed on latitude partition. The gain is then applied to
update the state with new innovations computed for each
stage.

The filter then collects statistics on the errors
against the NMC K27 grid (since a SOTA' tape is used for
input) and outputs the results, covariance matrix, etc., if
a forward filter is being run, It then loops back for more
data.

Having completed the run, the routine terminates by
computing the error statistics of the run and printing
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them.

Modifications - The water vapor/ligquid water filter
maintains both a Statistical D inversion and a Kalman
inversion. The Statistical D method is applied by calling
routine D MATRIX., The innovations and gains are computed
with a channel/footprint loop by calling INOVATE to obtain
the innovation and observation matrix and then GAIN to
obtain the gain. This is a more correct use of the Square

Roct Algorithm.

Section E. Initialization routine

Name - INIT

Purpose - Initialize the prior and its covariance matrix.
Call all initialization entry points on any routines that
require such calls. Perform any other miscellaneous

initialization necessary.

Logic {Temperature filter) - The procedure first initializes
the prediction routine by calling PINIT. It then obtains

the covariance of the initial estimate from a regional(1l)
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file kKeyed on the average latitude of the scan. The prior
itself is initialized by calling the climateclogy routine
TEMPS at the latitude of each spot. If the initialization
routine has been called before, this completes the necessary
tasks and it returns.

If this is the first time INIT has been called, it
continues with its tasks after toggeling a flag stating that
this initialization is being performed. It then initializes
the observation matrix routine by calling CINIT and obtains
the factors necessary in constructing the state transition
matrix. These factors are a horizontal and vertical
smoothing. The sum of the weight given to the level at the
spot being propagated and any adiacent spots is one minus
the vertical smoothing. The sum of the weight given to the
levels at each of the adjacent spots is the horizontal
smoothing over two. The weight of an adjacent level at an
adjacent spot is thus the horizontal smoothing times the
vertical smoothing over four. The state transition matrix

is then constructed (if necessary) using these weights.

Logiv (Water vapor/liquid water filter) - The initialization
for this filter consists of reading a error covariance from
a direct access file, cailing INOINIT to initalize the
innovations routine, DINIT to initialize the D matrix

toutine and PINIT to initialize the prediction routine. The
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initial prior is oktained from the call to PINIT.

Section F. Propagation routine

Name - PREDICT

Purpose -~ Propagate state vector and error covariance

matrix.

Logic (Temp.rature filter}) - The routine first differences
the state to be propagated and the last climatology. It
then obtains the new climatology by calling TEMPS and adds
this climatology back in. It then completes the state
transition matrix and predicts the new state.

In crder to complete the state transition matrix, the
surface must be accounted for. To do this, the old surface
elements of the state transition matrix are zeroed and the
pressure of the surface found by looping through a list of
pressure surface altitudes for each spot. The weight given
to a slab in predicting the surface is proporticnal to the
amount of the slab not occupied by the surface, but it must
be at least the normal amount of vertical smoothing. The

surface temperature at each spot is “hen smoothed
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vertically.

After the surface has been "found" the atmospheric
temperatures are smoothed vertically using the vertical
smoothing factors. Following this, the horizontal smoothing
is performad, and the horizontal smoothing elements for the
surface are inserted into the state transition matrix.

If the filter is being used in a precomputed gain or
covariance mode, this completes the propagation. If a
precomputed covariance mode is in effect, the filter decides
whether the current value of Pi {-) is wvalid. 1If it is not,
the filter reads the square root of the precomputed
covariance into the array and returns. If covariance matrix
propagation is required, the matrix product @FHbT is
computed by calling PHIEPHI. The current value of the plant
noise is determined by calling STATE and added to this
product to give the new covariance matrix. The routine then
returns.

The initialization for this routine consists of calling
the state routine initialization entry point SINIT and
obtaining a climatology at the initial processing point by
calling TEMPS. &An offset table recuired by PHIEPHI is also

constructed.

Logic (Water vapor/liquid water filter) - This routine does
a simple implementation of the prediction. If necessary, it
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obtains a state traunsition matrix and plant noise from two
regional (1) datasets. It then differences the state and the
0ld climatology and then computes the product ®X . The
covariance update (if necessary) is again performed by
calling PHIEPHI and adding the plant noise.

Initialization simply gets the current climatology and

constructs the offset table.

Section G. State routine (Temperature filter only)

Name - STATE

Purpose - Return the currently valid plant noise.

Logic - The routine checks the current latitude against the

range of validity of the current plant noise matrix. If a

new plant noise is required, it is read from a regional (1)
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file.

Section B, Special matrix routine 1

Name - PHIEPII

Purpcse - Compute the symmetric matrix <$f°¢T for
symmetric P.
)

Logic - This routine first computes the product ¢ P into a
scratch area. Since & is often sparse, it does a LTER
instruction to determine if the producttbﬂﬂk should be
computed. All temporary products and sums are held in
floating point registers. The multiply loops are driven by
BXLE instructions. The offset table is used to eliminate
the constant computation of (I*I-I)/2 in accessing Py .

Cnce ¢P is computed, the temporary scratch matrix

is post-multiplied by dJ . Again, multiplies by zero are
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bypassed.

Section I. Observation matrix routine (Temperature filter

only)

Name - CMATRIX

Purpose - Return the discrete weighting functions,

elements, and the empirical corrections.

Logic - The routine first decides if its current set of
discrete weighting functions are correct for the latitude.
If not, it reads an new set from two regional(l) files.
Since the weighting function array for a latitude band is
larger than a 3330 track, the array is overlayed with two
based variable aggregates and the two parts of the array
separately. The routine then determines the correct knot of
the empirical correction spline and generates the empirical
corrections.

It then constructs the discrete weighting functions and

the Te elements for each channel/spot. If the

dT, B
elevation "map" height is greater than one, it searches the
heights for which the weighting functions were computed to
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determine the interpolation weights in altitude. Having
determined these weights, it bi-laterally interpolates the
weighting functions in altitude and reflectivity. The
—%%1FT§ elements are the same as the discrete weighting
funcéions for this case.

If the surface elevation "map" shows either sea level
land or an altitude greater than three km, the weighting
functions are simply interpolated in refliectivity.

For an ocean surface, the reflectivity of the surface
is determined by the current estimate of the surface
temperature and the 1000 mb temperature. The weighting
functions are then again interpolated in reflectivity. The
~?;??belement for the surface is derived as described in
the section of the observation matrices in Chapter IV. An
additional correction is made to the empirical corrections
for the reflected big bang space background.

Initialization consists of reading the empirical

correction splines and the surface reflectivity file.

Section J. Statistical D routine (Water vapor/liquid

water filter)

Name - D_MATRIX
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Purpose - Generate estimates of liquid water and water vapor

columns using the Statistical D method.

Logic - A simple matrix multiply implementation of the
Statistical D method is used.
Initialization consists of reading the D matrix

constants.

Section K. Innovation routine (Water vapor/liquid water

filter)

Name - INOVATE

Purpose — Solve the forward equation of radiative transfer.
produce sensitivities of the brightness temperature to a

change in liguid water and water vapor columns.

Logic - The routine derives two indices based on the
atmospheric temperature, liqguid water and water vapor
columns. It then checks the indices of the two spline
coefficient arrays in its in-core buffers. If necessary, it

brings a new set of coefficients into one or both buffers
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and sets a pointer for & based overlay for the spline
coefficients. One set of coefficients corresponds to a
temperature above the atmospheric temperature, the other set
corresponds to a temperature below the atmospheric
temperature. Since the coefficients span four knots in
water vapor and liquid water columns, the local region
within the spline coefficients is determined. Coefficients
for the region of interest are found by interpolating the
two sets of spline coefficients in temperature.

Values for the upward brightness temperature, the
downward brightness temperature times the extinction upwards
and the extinction upwards and their derivatives are then
evaluated by calling the IMSL routine DBCEVU. The sea
surface reflectivity is then evaluated using a spline in the
sea surface temperature. The expected brightness
temperature and its partials are then evaluated by combining
the varous integrals, the surface reflectivity, and the
surface temperature. The predicted brightness temperature
is then subtracted from the observed brightness temperature
to obtain the innovation.

Initiation consists of reading the reflectivity
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splines.

Section L. Gain calculation routine

Name - GAIN

Purpose - Compute the Kalman gain using the Square Root

Covariance I algorithm.

Logic -~ This routine follows the algerithm (including the
notation) of Kaminski et al. (1971) and Chapter III. It
first decowposes the covariance using the SLMATH routine MFS
if necessary. It then computes the gain. At the point
where FFT + N is computed, it has the choice of aborting
further calculation if data reasonableness testing is in
effect. The covariance matrix is reformed (if required)

from its sguare root by calling SSQUARE.

Section M. Cholesky decomposition routine

Name -~ MFS



Purpose - Perform a Cholesky decomposition of a positive

definite symmetric matrix.

Logic - This rcutine performs a Cholesky decomposition using
the logic of the SLMATH routine MFS. It has been hand
"compiled" and highly optimized. The square root code is
expanded in-line, but the rouwtine reguires the square root

module for the value of certain "magic constants".

Section M. Special matrix routine 2

Name - SSQUARE

Purpose - Multiply a square matrix times its transpose to

yield a symmetric matrix.

Logic - The routine treats the square matrix as a vector.
The address of its elements is determined by the values of
the registers used in the multiplication loop BXLEs. The
BXLEs run with increment four to step through the matrix in
an appropriate fashion. The accumulation of products is

into a floating point register.
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