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Optimum Retrieval Techniques in Remote Sensing of
Atmospheric Temperature, Liquid Water,

and Water Vapor

by

William Henry Ledsham

Submitted to the Department of Electrical Engineering
and Computer Science

on May 16, 1978 in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

ABSTRACT

In recent years a number of satellite platform remote
sensors have been launched for the purpose of inferring
atmospheric temperature, liquid water, and water vapor. One
problem in the area of remote sensing of these parameters is
the method of parameter retrieval because of the non-linear
effects of the physics involved and the non-stationary
nature of the data fielcs. This thesis applies the
techniques of modern recursive estimation theory
(Kalman-Bucy filtering) to the problem of estimating these
parameters from data produced by the SCAnning Microwave
Spectrometer (SCAMS) carried on the NIMBUS 6 satellite. Two
primary experiments were conducted in this thesis. The
first was the design and implementation of an extended
Kalman-Bucy filter for estimation of vertical temperature
profiles. The filter of this experiment was operated in
three modes: a causal mode, a non-causal mode and a
precomputed parameter mode. The second experiment was the
design and implementation of an extended Kalman-Bucy filter
for estimation of liquid water and water vapor columns in
the atmosphere.

The conclusions reached from the results of these
experiments are: The Kalman-Bucy filter is a valuable method
for estimation of the state of the earth's atmosphere based
on passive remote observations. The estimates of
temperature profiles obtained with a causal filter show an
improvement in accuracy over those obtained with a
regression inversion technique. This improvement is greater
with a non-causal filter. The use of either precomputed
gain or error covariance matrices in the Kalman filter
produces little degradation in the accuracy of the retrieved
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profiles, but produces a substantial reduction in the
computational burden of th? filter,. The use of an extended
Kalman filter in retrievalg of liquid water and water vapor
shows a factor of three implovement over a regression
inversion in a simulation of the data observed by SCAMS.

Thesis supervisor: Dr. D. H. Staelin

Title: Professor of Electrical Engineering

-4 -



To

Leslie and my Parents

-5-



S

0~



ACKNOWLEDGEMENTS

The work represented by this thesis would have not been

possible without the selfless assistance of a large number

of people. Because of limited space, I can not thank all of

these people individually. It is hoped that my personal

thanks in the past will take the place of any omission in

these acknowledgements. Certain people or groups have

contributed so heavily to this work that their omission

would be unforgivable.

My deepest thanks to Dr. D. H. Staelin for his many

years of guidance in remote sensing theory and this thesis,

and for his faith in the results. A great many insights

into modern recursive estimation theory were provided by Dr.

D. Gustafson of Scientific Systems Inc, Cambridge, Ma. Mary

Grace Fowler of Environmental Research and Technology Inc.

provided the raw datasets that have formed the basis for

Appendix A. I also wish to thank Dr. S. Mitter and Dr. J.

Shapiro who are my readers for this thesis. Many members of

the NEMS/SCAMS group have provided very valuable assistance

during the process of problem formulation and solution. Of

this group, I would like to thank Dr. P. W. Rosenkranz in

particular. The oxygen absorption model used in this thesis

(Rosenkranz, 1976) and several other routines are of his

- 7 -



authorship. He also produced the Statistical D method

results used in this thesis.

I would like to thank the staff of Information

Processing Services at the Massachusetts Institute of

Technology in general, and the staff of Operations in

particular for their patience and assistance.

Finally, I wish to thank my wife, Leslie, for her

valuable programming assistance and both her and my parents

for their infinite patience.

The work represented by this thesis was supported in

whole or in part by conract NAS5-21980. The resources

provided by the Macsyma Consortium are also gratefully

acknowledged.

-8-



Table of Contents

List of Figures 13

List of Tables 15

Chapter I - Introduction 23

Chapter II - The Radiative Transfer Basis of

Passive Remote Sensing

A - The equations of radiative transfer 29

B - Absorption by the atmosphere 31

C - Surface effects 36

D - The concept of a temperature

weighting function 38

Chapter III - Theory of the Discrete Kalman-Bucy

Filter

A - A Heuristic derivation 45

B - A structured derivation 49

C - The innovations process 55

D - The Square Root Algorithm 62

E - The Extended Kalman Filter 69

F - The non-causal filter 75

-9-



Chapter IV - The Temperature Experiment

A - General description 81

B - The SCAMS instrument 85

C - The temperature system identification 86

D - Observation matrices 93

E - The filter program 100

F - Tuning and problems 105

G - The causal experiment 109

H - The non-causal experiment 155

I - The precomputed sub-optimal filter

experiment 170

Chapter V - The Water Vapor and Liquid Water

Experiment

A - General description 211

B - System identification 212

C - Observations and observation matrices 214

D - The simulation 221

E - Results 223

- 10 -



Chapter VI - Summary and Recommendations for

Future Research

Appendix A - Comparisons Between Point and

Area Sounders

Appendix B - Sensitivity of Oxygen Absorption and

Weighting Functions to

Temper ature

Appendix C - Program Descriptions

References

Biographical Note

- 11 -

247

249

273

285

305

313



I



Table of Figures

1 - SCAMS Continuous Weighting Functions

2 - SCAMS Verification Areas

3 - Causal Filter Error Performance August 7 - 9, 1975

(Extreme Scan)

4 - Causal Filter Error Performance August 7 - 9, 1975

(Nadir Scan)

5 - Causal Filter Error Performance February 3 - 6, 1976

(Extreme Scan)

6 - Causal Filter Error Performance February 3 - 6, 1976

(Nad ir Scan)

7 - Causal versus Non-causal Filter Error Performance

One Spot Filter , October 22 - 25, 1975

8 - Causal Versus Non-causal Filter Error Performance

Three Spot Filter,, October 22 - 25, 1975

9 - Typical 850 mb Error Covariance History

- 13 -

42

84

112

113

114

115

156

157

172



10 - Typical 850 mb Kalman Gain History

11 - Typical 850 mb Error History

12 - Brightness Temperature at 31.65 GHz. versus

Liquid Water Column

13 - Water Vapor Error Response to a Liquid Water

Impul se

14 - Liquid Water Error Response to a Liquid Water

Impul se

15 - 500 mb Correlation Coefficient versus Distance

Reg ion 2

16 - 300 mb Correlation Model

17 - 850 mb Correlation Model

- 14 -

174

229

231

232

254

255

256

173



List of Tables

1 - SCAMS Discrete Weighting Functions

2 - Heights of Various Pressure Surfaces in the

Supplemental Atmospheres

3 - Periods of Data Used in the Temperature

Experiment

4 - 21 One Spot Causal Filter Performance

Angle 0,

Angle 3,

Angle 6,

Angle 0,

Angle 3,

Angle 6,

Angle 0,

Angle 3,

Angle 6,

Angle 0,

Angle 3,

Angle 6,

Angle 0,

Angle 3,

August 7 - 9,

August 7 - 9,

August 7 - 9,

October 3 - 5,

October 3 - 5,

October 3 - 5,

October 22 -

October 22 -

October 22 -

December 5 -

December 5

December 5 -

January 24 -

January 24 -

1975

1975

1975

1975

1975

1975

25, 1975

25, 1975

25, 1975

8, 1975

8, 1975

8, 1975

25, 1976

25, 1976

- 15 -

43

98

110

4

5

6

7

8

9

11

12

13

14

15

16

17

- Scan

- Scan

- Scan

- Scan

- Scan

- Scan

- Scan

- Scan

Scan

- Scan

- Scan

- Scan

- Scan

- Scan

116

117

118

119

120

121

122

123

124

125

126

127

128

129



18 - Scan Angle 6, January 24 - 25, 1976 130

19 - Scan Angle 0, February 3 - 6, 1976 131

0 - Scan Angle 3, February 3 - 6, 1976 132

21 - Scan Angle 6, February 3 - 6, 1976 133

22 - 2\7 Two Spot Causal Filter Performance

22 - Aug ust 7 - 9, 1975 134

23 - October 3 - 5, 1915 135

24 - October 22 - 25, 1975 136

25 - December 5 - 8, 1975 137

26 - January 24 - 25, 1976 138

27 - February 3 - 6, 1976 139

28 - 39 Three Spot Causal Filter Performance

28 - Extreme Scan, August 7 - 9, 1975 140

29 - Close Scan, August 7 - 9, 1975 141

30 - Extreme Scan, October 3 - 5, 1975 142

31 - Close Scan, ctober 3 - 5, 1975 143

32 - Extreme Scan, October 22 - 25, 1975 144

33 - Close Scan, October 22 - 25, 1975 145

34 - Extreme Scan, December 5 - 8, 1975 146

35 - Close Scan, December 5 - 8, 1975 147

36 - Extreme Scan, January 24 - 25, 1976 148

37 - Close Scan, January 24 - 25, 1976 149

38 - Extreme Scan, February 3 - 6, 1976 150

- 16 -



39 - Close Scan, February 3 - 6, 1976

40 - 42 One Spot Non-causal Filter Performance

40 - August 7 - 9, 1975 158

41 - October 22 - 25, 1975 159

42 - January 24 - 25, 1976 160

43 - 45 Two Spot Non-causal Filter Performance

43 - August 7 - 9, 1975 161

44 - October 22 - 25, 1975 162

45 - January 24 - 25, 1976 163

46 - 51 Three Spot Non-causal Filter Performance

46 - Extreme Scan, August 7 - 9, 1975 164

47 - Close Scan, August 7 - 9, 1975 165

48 - Extreme Scan, October 22 - 25, 1975 166

49 - Close Scan, October 22 - 25, 1975 167

50 - Extreme Scan, January 24 - 25, 1976 168

51 - Close Scan, January 24 - 25, 1976 169

52 - 59 One Spot Precomputed Sub-optimal Filter Performance

52 - Precomputed Covariance, August 7 - 9, 1975 176

53 - Precomputed Gain, August 7 - 9, 1975 177

54 - Precomputed Covariance, October 3 - 5, 1975 178

55 - Precomputed Gain, October 3 - 5, 1975 179

- 17 -

151



56

57

58

59

60

60

61

62

63

64

65

66

67

Covariance, December 5 - 8, 1975

Gain, December 5 - 8, 1975

Covariance, February 3 - 6, 1976

Gain, February 3 - 6, 1976

180

181

182

183

- Precomputed

Precomputed

- Precomputed

- Precomputed

- 67 Two Spot

- Precomputed

- Precomputed

- Precomputed

- Precomputed

- Precomputed

- Precomputed

- Precomputed

- Precomputed

68 - 79 Three Spot Precomputed Sub-optimal Filter

Performance

68 - Precomputed Covariance, Extreme Scan,

August 7 - 9, 1975

69 - Precomputed Covariance, Close Scan,

August 7 - 9, 1975

70 - Precomputed Gain, Extreme Scan, August 7 - 9, 1975

71 - Precomputed Gain, Close Scan, August 7 - 9, 1975

72 - Precomputed Covariance, Extreme Scan,

October 3 - 5, 1975

Precomputed Sub-optimal Filter Performance

Covariance, August 7 - 9, 1975

Gain, August 7 - 9, 1975

Covariance, October 3 - 5, 1975

Gain, October 3 - 5, 1975

Covariance, December 5 - 8, 1975

Gain, December 5 - 8, 1975

Covariance, February 3 - 6, 1976

Gain, February 3 - 6, 1976

- 18 -

184

185

186

187

188

189

190

191

192

193

194

195

196



73 - Precomputed Covariance, Close Scan,

October 3 - 5, 1975 197

74 - Precomputed Gain, Extreme Scan, October 3 - 5, 1975 198

75 - Precomputed Gain, Close Scan, October 3 - 5, 1975 199

76 - Precomputed Covariance, Extreme Scan,

December 5 - 8, 1975 200

77 - Precomputed Covariance, Close Scan,

December 5 - 8, 1975 201

78 - Precomputed Gain, Extreme Scan, December 5 - 8, 1975 202

79 - Precomputed Gain, Close Scan, December 5 - 8, 1975 203

80 - Precomputed Covariance, Extreme Scan,

February 3 - 6, 1976 204

81 - Precomputed Covariance, Close Scan,

February 3 - 6, 1976 205

82 - Precomputed Gain, Extreme Scan, February 3 - 6, 1976 206

83 - Precomputed Gain, Close Scan, February 3 - 6, 1976 207

84 - Comparitive Timings of Various Filters 208

85 - Water Vapor Retrieval Error 224

86 - Liquid Water Retrieval Error 225

87 - Water Vapor Retrieval Error

(High Liquid Water Experiment) 226

- 19 -



88 - Liquid Water Retrieval Error

(High Liquid Water Experiment) 227

89 - Water Vapor Retrieval Error

(No Temperature Knowledge Experiment) 233

90 - Liquid Water Retrieval Error

(No Temperature Knowledge Experiment) 234

91 - Water Vapor Retrieval Error

(No Atmospheric Temperature Knowledge) 235

92 - Liquid Water Retrieval Error

(No Atmospheric Temperature Knowledge) 236

93 - Water Vapor Retrieval Error

(No Surface Temperature Knowledge) 237

94 - Liquid Water Retrieval Error

(No Surface Temperature Knowledge) 238

95 - Water Vapor Retrieval Error

(3 km Water Vapor Scale Height) 240

- 20 -



96 - Liquid Water Retrieval Error

(3 km Water Vapor Scale Height)

97 - Water Vapor Retrieval Error

(1 km Water Vapor Scale Height)

98 - Liquid Water Retrieval Error

(1 km Water Vapor Scale Height)

99 - Water Vapor Retrieval Error

(Mixed Water Vapor Scale Heights)

100 - Liquid Water Retrieval Error

(Mixed Water Vapor Scale Heights)

101 - Region 1 Correlation Regression Coefficients

102 - Region 2 Correlation Regression Coefficients

103 - Region 3 Correlation Regression Coefficients

104 - Region 4 Correlation Regression Coefficients

105 - Near Field Correlation Lengths

- 21

241

242

243

244

245

258

259

260

261

263



106 - Values of the Integrals I and 12

107 - Variances of Temperatures In the Atmosphere 268

108 - Apparent Radiosonde Error Performance 270

109 - 117 Computed Sensitivity of Oxygen Absorbtion to

Temperature From 10 - 150 GHz.

109 - 720 Torr, 300* K 276

110 - 360 Torr, 300* K 277

111 - 180 Torr, 300* K 278

112 - 720 Torr, 2500 K 279

113 - 360 Torr, 2500 K 280

114 - 180 Torr, 2500 K 281

115 - 720 Torr, 200* K 282

116 - 360 Torr, 2000 K 283

117 - 180 Torr, 200* K 284

- 22 -

266



Chapter I

Introduction

Remote sensing of the environment is becoming an area

of increasing importance in both application and research.

The ability to determine accurately the state of the

environment on both a global and timely basis is expected to

have profound human and economic impact. As a specific

example, weather predictions are produced with large

numerical models which solve the differential equations that

describe heat, mass and momentum transfer in the earth's

atmosphere. For these models to perform adequately, it is

important that the boundary conditions at the initiation of

the algorithm be as accurate as possible. Historically,

these boundary conditions have been provided by a network of

observing stations that provide information about the

earth's upper atmosphere through the release of radiosondes

or the launch of rocketsondes. For logistic and economic

reasons, most of these stations are situated in economically

developed and densely populated land regions. As a result,

the ability to perform accurate long range prognosis has

been severely limited in the past, because of the lack of

-23-



data over a large percentage of the earth's surface.

Fortunately, this situation is changing.

As suggested by Kaplan (1959) in the infrared spectrum

and by Meeks and Lilley (1963) in the microwave, many of the

variables needed for the initialization of weather

prediction models may be inferred by observing the thermal

emission from the earth's atmosphere. If the frequency of

observation is chosen to be in a region of absorption or

emission of a uniformly mixed gas such as carbon dioxide or

oxygen, the thermal radiation may be interpreted in terms of

temperature in the atmosphere. If the observed wavelength

lies near a region of absorption by a species whose

concentration in the atmosphere varies, such as water or

ozone, the observation may be related to concentration.

Finally, instruments may infer characteristics of the

terrestrial surface by observing it in regions where the

atmosphere has little absorptive effect. Satellites and

giound-based radiometers that observe in one or more of

these spectral regions have been used either experimentally

or operationally for a number of years. It is hoped that

the inclusion of data from these instruments will improve

the skill of numerical forecast models in the future.

The design and implementation of a passive microwave

sounding system is a multi-discipline effort. The desired

products are in the area of meteorology, the fundamental

- 24 -



processes are in the realm of physics, the instrument design

and implementation lie with the electrical engineer, and the

interpretation and handling of the resulting data with the

computer scientist and estimation theorist. The

contribution of this thesis is in that final area.

A large body of techniques, both statistical and

non-statistical, have been proposed for processing data from

remote sounders to produce estimates of the state of the

earth's atmosphere. These method have included the

regression or statistical D method (Rosenkranz et al., 1972,

Waters et al., 1975), the minimum information technique

(Fleming and Smith 1971, Fritz et al. 1972), the empirical

eigenfunction technique (Smith and Woolf, 1976), and various

numerical relaxation techniques such as those due to

Chahine. The purpose of this thesis is to introduce into

this field the methods of modern recursive estimation

theory, specifically, the Kalman-Bucy filter.

While it has been recognized for a period of time now

that the Kalman-Bucy filter is an optimum estimation

technique and should produce superior estimates based on

radiometer data, no such filter has been sucessfully

implemented. This thesis represents the first successful

implementation of that technique on remote sensing data in

the area of estimation of meteorological processes. As

such, it does not claim to be an advance in either Kalman

- 25 -



filtering theory or in fundamental remote sensing theory.

It is an advance in the art of the analysis of data from

such remote sensors.

The body of this thesis is divided into a number of

chapters. In Chapter II, the theory of radiative transfer

in the atmosphere is presented. Special emphasis is placed

on those aspects that allow inference of meteorological

parameters. Chapter III discusses Kalman-Bucy filtering

theory in its various aspects. Chapter IV presents the

summary of the results of a temperature profile inverting

Kalman-Bucy filter that operated on data from the SCAnning

Microwave Spectrometer (SCAMS) carried on the Nimbus 6

satellite (Staelin et al., 1975). Chapter V presents the

results of an extended Kalman-Bucy filter for estimation of

water vapor and liquid water columns operating on simulated

SCAMS data.

Appendix A contains the results obtained from the

analysis of the synoptic radiosonde observations of North

America during January and February 1973. The results

contained in Appendix A are interpreted primarily in terms

of the difference between a point sensor (such as a

radiosonde) and an area sensor (such as a radiometer)

temperature profile retrieval in a random temperature

field. The results, however, should be useful in system

identification of plant matrices and the Gandin (1964)

- 26 -



weighting in synoptic analysis. Appendix B considers the

sensitivity of the oxygen temperature weighting function and

microwave absorption coefficient to changes in the

temperature profile. Appendix C is an extensive verbal

description of the Kalman filter algorithm implemented in

this thesis.
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Chapter II

The Radiative Transfer Basis of Passive Remote Sensing

Section A. The equations of radiative transfer

The ability to perform remote sensing derives from the

fact that, by proper selection of observation wavelengths,

the thermal emission radiating from the surface of the earth

and its atmosphere may be measured. The equations that

describe the production and propagation of this energy are

generally called the equations of radiative transfer.

The particular equation of radiative transfer that is

of greatest interest for this thesis is that for the

received flux seen by an observer looking downward through a

non-scattering absorbing medium toward a partially

reflecting surface. For this case, the flux seen is:

f 

y HBQ/, T(h)) K (j,h)[T(hH) + R)r(H,h) 7(jH )d h

H
S

+ (1 -R(Q))r(H 5 ,H) B(1ATs) 2.1

+R (V)#r ( HH) Iky
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where

B(L/,T) is the Plank function at frequency and

temperature T,

H and HI describe the relative positions of the

observer and the surface,

h traces a ray from the observer to the surface,

1(/) is the received flux at frequency a,

I (/Q) is the background flux from behind the surface

directed at the surface,

K(I/,h) is the absorption coefficient of the medium at

frequency and position h,

R(V) is the reflectivity of the surface boundary,

T(h) is the temperature of the medium at h,

T 3 is the temperature of the surface boundary, and

'r(h,rh) is the extinction of the medium from h to h

equal to:

T(h,,hz) = E XP{-f K(U,h)dh 2.2

Jh

For microwave frequencies, it is permissable to invoke

the Raleigh-Jeans approximation to simplify 2.1 (e.g.
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Staelin, 1969, Rosenkranz, 1972) to obtain:

T (u) = T() yh)y ,H)+R )(Hs)(H,)d
fH

+(I- R(u))T(HsH) Ts 2.3

t R()r'( Hs, H) Tsky
where T 8  (1/) is called the brightness temperature and is

equal to the temperature of a black body that will produce a

flux equal to the one observed. Likewise, T3,jy is the

equivalent black body temperature of the background and is

often called the sky temperature.

Section B. Absorption by the atmosphere

In the context of passive remote sensing from

satellites, the equations of radiative transfer 2.1 and 2.3

describe the interaction of the atmosphere, the earth's

surface and cold space with the energy observed by the

down-looking radiometer. In this case, the absorbing medium

is the atmosphere, the surface boundary is the earth's

surface, and the background is the cosmic background. This

section will primarily consider the nature of absorption by

the atmosphere in the microwave region of the spectrum. The
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theory of how this absorption occurs will not be discussed

in any detail, but rather, a qualitative feeling will be

sought.

There are two major microwave absorbers of

meteorological interest in the lower microwave region. They

are oxygen and water in both liquid and vapor form. Oxygen,

which is used primarily for temperature profile sensing, has

a series of lines due to magnetic moment transitions. These

transitions form a complex of resonant lines from

approximately 50 Ghz. to 70 GHz. and an isolated line at

118.75 GHz. The line centers for these transitions have

been calculated by a number of experimenters (Wilheit and

Barrett, 1970, Wilheit, 1970, Liebe and Welch, 1977). The

shapes of the individual lines and their interaction are

c-termined by collisional broadening. Numerous expressions

accounting for this effect have been derived over the

years. Some of these have included those derived by Van

Vleck and Weisskopf (1945), Meeks and Lilley (1963), Lenoir

(1965), and Rosenkranz (1975). While it will be noted here

that one of the later oxygen lineshape models derived by

Rosenkranz was used in the experiments of this thesis, a

discussion of the physics of oxygen lineshape is outside its

scope.

The prime consideration in developing a qualitative

feeling for the lineshape is that the broadening of the

- 32 -



oxygen is affected by two quantities; temperature and

pressure. As the pressure increases, the absorption

increases. Over the range of temperatures encountered in

the terrestrial atmosphere, an increase in temperature

implies a decrease in absorption. empirical fit by Poon

(1976) to several lineshapes gives the form of this relation

for a given frequency relating the absorption K to the

pressure P and temperature T as:

K = a P XTY 2.4

where a and x are positive constants and y is a negative

constant over a given pressure temperature domain.

Another important microwave absorber in the earth's

atmosphere is water in both its liquid and vapor forms.

Water vapor in the atmosphere absorbs by means of rotational

energy transitions of an electric dipole contained in an

asymmetric top. These energy transitions produce a series

of resonant lines in the microwave region. The first two

lines (22.235 GHz. and 183.310 GHz.) are of present

practical interest in passive remote sensing.

The line shape of the water vapor resonances are

affected by collisional broading (Staelin, 1966, Gaut, 1968,

Reifenstein and Gaut, 1971). Its spectrum is thus comprised

of a series of broadened lines combined with a non-resonant
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component. There is however, an anomalous absorption in its

spectrum that has yet to be adequately explained. It has

been suggested that this is caused by the action of water

vapor dimers, but studies by Poon (1974) have found this

explanation to be inadequate. The one item of importance in

the absorption by water vapor besides the usual collisional

broadening behaviour, is that the expression for the

absorption coefficient contains a quadratic term due to the

higher effectiveness of Ht 0 - Ht 0 collisions when compared

to Ht 0 - 07 and H. 0 - N collisions in broadening the

line.

The last absorber that will be discussed in this

section is liquid water. Liquid water exists in the

atmosphere in the form of clouds and rain. As such it is in

the form of dielectric spheres and the theory of Mie may be

applied. This theory has been extensively discussed in the

literature (e.g. Van DeHulst, 1957) and so will not be

covered here.

For the cases of interest in this thesis, the

wavelengths of the radiation are much larger than the drop

sizes. In this case, it is customary to use the Raleigh

limit to evaluate the absorption. In this limit the

absorption effeciency of a droplet is given by the

- 34 -



expression:

Q,( r ,X,T)I 2.5

where

~ ri(n ,T)-
K(k,T) = 12.6

n(1,T) + 2

and ri is the complex dielectric coefficient of the sphere

which is a function of wavelength and temperature. 4is

the dropsize parameter given by the expression:

o( = 2ITr/X 2.7

where r is the drop radius and is the wavelength of

interest. To obtain the absorption by a unit volume we may

integrate the expression:

00

K(AT) = N(r)Q(rX, T ) r dr2 8

0

where N(r) is the number of drops with radius r per unit

volume. Substituting for A (r.A ,T) we obtain:

e"p

K (XTf) = ( r I M - K(XT) 2.9

0- 1
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Using the fact that the mass density of the drops in the

volume is:

00

m= N f; (r) r3 d r 2.10
3

we obtain:

K (X, T) = mpAI
^'

IM I - K 4( 8 T )l

This function has been empirically evaluated by Staelin

(1966), with the result that the absorption due to clouds is

approx imately:

K(,T) = 1.71 m fz10T db/km 2.12

where & is the frequency in GHz., T is the temperature in

degrees Kelvin, and m is the density of the cloud in

gm/M3

Section C. Surface effects

The discussion of Section A of this chapter has

- 36 -

2.11



indicated that the observed brightness temperature is

primarily a function of three variables: the temperature of

the earth's atmosphere and surface, the absorption of the

earth's atmosphere along the path and finally, the

reflectivity of the earth's surface. This section will

discuss the behaviour of this last variable.

A radiometer viewing the earth sees three major classes

of surfaces: land, ice and snow, and lakes or ocean. Each

of these has its own behaviour with respect to

reflectivity. Land areas act for the most part as nearly

black bodies in the microwave region unless there is

appreciable soil moisture or standing water. Statistics

compiled by Rosenkranz (1971) during flights of a prototype

of the Nimbus E Microwave Spectrometer give a range of

average land emissivity from 0.9 to 0.95. These

emissivities are basically independent of surface

temperature.

The second major surface type seen by a radiometer is

ice and snow. The passive remote sensing of this surface is

an area of research in its own right. Emissivity signatures

of different types of snow and ice allow the type of cover

to be inferred. For the purposes of this thesis, it will

suffice to note that the range of emissivities for snow and

ice is from 0.6 to 0.9 and that the emissivity is again

basically insensitive to temperature change.
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The final major surface type is open water. The

horizontal and vertical components of the reflectivity from

a calm sea may be determined analytically from the angle of

incidence and the complex dielectric coefficient of

seawater. Since the dielectric constant varies with

temperature, the reflectivity does also. The basic form of

this variation is for the emissivity to decrease with

increasing temperature. Over some ranges of frequencies,

the product of the emissivity and the surface temperature

may have a negative slope. However, since a decrease in the

emissivity implies an increase in reflectivity, the

percentage of the sky component of the brightness

temperature (radiation from the atmosphere directed at the

earth) that is reflected back to the radiometer increases.

For frequencies of interest in this thesis, the two effects

nearly cancel each other and the sensitivity of the observed

brightness temperature to the sea surface temperature is

small.

Section D. The concept of a temperature weighting

function

In this section, concepts of the continuous and
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discrete temperature weighting functions will be developed.

As these functions are commonly assumed to be independent of

temperature in the case of oxygen, an examination will be

made of this assumption.

To derive the concept of the temperature weighting

function, it will be convenient to rewrite 2.3 as:

T (1.) = T(h) W(h,l/,R) dh
B

2.13

-- TsWS (V , R) Tn W(,R)

where:

W(hv ,R) = K(Lh) [7(h,H) + RO(A)(HS5 h)7(HS,H)1 2.14

WS (v,/R ) = [I - R ()] T (HsH) 2.15

W (L,R) = R QATI)z( H ,H) 2.16

If the absorption coefficient of the atmosphere at frequency

1/ does not change with concentration or temperature, but

solely with height or pressure, these three functions will

be a function only of I/ and the surface reflectivity

RQ) ) . In this case, the functions are called the

continuous temperature weighting functions since they
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describe the relative weight given to the temperature T(h) ,

the surface temperature T and the sky temperature T3 g3  in

the observed brightness temperature.

It is often convenient to model the atmosphere as

composed of a number of slabs. The vertical temperature

within such a slab i is assumed to be determined by the

temperature at some altitude h: and a function such as a

lapse rate. Under these assumptions, 2.13 assumes the form:

TB ) = T ( h;) WI (vR) 2.17

+ Ts Ws(vR) + TSKYWSKY ,t4R)

where W, (kR) is called the discrete weighting function for

level i and equals:

U.

W (btR) F(T(h),T(hi)) W(htU/,R) dh 2.18

L.

where:

L2 ,Ug are the lower and upper boundaries of an

atmospheric slab whose temperature structure is described by

T(hi) and

F;(T(h)lT(hg)) is the function relating T(h) to T(h1 )
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within slab i. By defining a vector of temperatures T that

include the T(h;) , TS and TkY and a similar vector W of

discrete weighting functions, 2.17 may be expressed as the

matrix equation:

T9 (v) = W T 2.19

The continuous weighting functions for the passive

microwave sounder SCAMS (after Staelin et al., 1975) are

shown in Figure 1. These weighting functions have been

computed under the assumption that the atmosphere is

represented by the U. S. Standard Atmosphere. A number of

curves are given in this figure. The solid lines correspond

to the weighting functions at the nadir look angle. The

dashed curves correspond to the weighting functions at the

extreme scan angle. The outermost curve for a given

frequency and look angle is the weighting function over

ocean, while the inner curve is the weighting function over

land. The area between these two curves is hatched or

dotted. The value of t in this figure is the

extinction through the atmosphere. A similar set of

discrete weighting functions for this instrument are

contained in Table 1. In this case, the table contains the

weighting functions computed for a 60 N latitude winter

average atmosphere and the difference between these
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Table 1

Channel 3 Channel 4 Channel 5

(52.85 GHz) (53.85 GHZ) (55.45 GHz)

Difference Difference Difference

Pressure 600 Winter 600 Winter 600 .Winter 600 Winter 600 Winter 600 Winter Slab Definition

(mb) 150 Annual 150 Annual 150 Annual (mb)

Surface .285 .032 .078 .010 .000 .000 Surface

1000 .058 -.006 .030 -.001 .000 .000 1013 - 925

850 .135 .011 .076 -.003 .001 .000 925 - 775

700 .151 -.011 .139 ,..006 .007 .000 775 - 500

500 .138 -:004 .173 -.003 .028 -.001 600 - 450

400 .086 -.002 .135 -.004 .058 -.002 450 - 350

300 .059 -.001 .106 -.004 .094 -.002 350 - 275

250 .035 .001 .069 -.001 .103 -.001 275 - 225

200 .030 .000 .065 .000 .145 -.001 227 - 175

150 .025 .000 .059 .004 .189 .002 175 - 125

100 .015 .000 .038 .003 .167 -.003 125 - 85

70 .006 .000 .015 .002 .077 .004 85 - 60

50 .006 .000 .014 .001 .080 .002 60 - 40

30 .003 .000 .007 .001 .042 .002 40 - 20

10 .001 .000 .002 .000 .013 .001 20 - 7.5



weighting functions and those computed for a 150N latitude

average annual atmosphere. The manner in which these

weighting functions were calculated is described in Chapter

IV.

Referring to Table 1, it may be seen that the

assumption of invariance of the weighting functions is a

fairly good one in the middle and upper atmosphere. In the

lower atmosphere, the variability of the absorption

coefficient with water vapor concentration introduces a

noticeable effect. However, it should be noted that the

difference in the water vapor concentrations between the two

atmospheres in Table 1 was a factor of twenty, and that both

atmospheres represent extreme conditions. The insensitivity

of the temperature weighting function with regard to the

sensitivity of oxygen absorption to temperature is further

considered in Appendix B.
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Chapter III

Theory of the Discrete Kalman-Bucy Filter

Section A. A heuristic derivation

The theory of the discrete and continuous Kalman-Bucy

filter has been widely discussed (Kalman, 1960, Jazwinski,

1970, Leondes, 1970, Schweppe, 1973, Gelb, 1974). Thus the

purpose of this section and those that follow is to provide

a basic understanding of the discrete Kalman-Bucy filter.

This will be done in order to facilitate an understanding of

the temperature filter experiment and liquid water and water

vapor experiment which comprise the bulk of the experimental

work of this thesis. Only those aspects of the filtering

theory which relate to these experiments will be covered in

this chapter. This section provides a heuristic derivation

of the Kalman filter from a Bayesian estimation viewpoint,

while Section B provides a derivation from a structured

viewpoint that assumes a form for the estimator. Section C

aiscusses the properties of the innovations sequence of the

filter and covers the topic of testing the filter using the

innovations sequence. Section D investigates the square
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root algorithm for a covariance filter. Section E describes

the extended Kalman-Bucy filter. Finally, Section F

presents the forward-backward algorithm for non-causal

Kalman filtering.

The notation used in this chapter and those that follow

is that of Gelb (1974). In this notation, quantities are

often followed by a minus or plus sign and are subscripted.

The discrete time coordinate of the quantity is determined

by the subscript. The parenthesised minus or plus signs

refer to the values at time i before and after the

processing of data received at time i. As is customary, the

optimum estimate is denoted by a caret (^) 6 Thus, the

optimum estimate of A before the processing of data received
A

at time i is A; (-). The value of a parameter B after the

processing of data received at time j is B (+). It should

be noted that although the coordinate of the data reception

is referred to as "time", it is an arbitrary running

coordinate. For remote profile sensing this coordinate is

both spatial and temporal.

In order to develop the theory of the Kalman-Bucy

filter, we will make the following assumptions: The process

to be estimated is an n vector X;. This vector is assumed

to have an expectation or mean conditioned on the time of

the start of processing equal to X (-). The error

covariance of this conditional mean is assumed to be known

- 46 -



and is a n by n matr ix P, (-) . The observed process is

represented by a m vector Z. which is related to X# by the

linear relation:

Z. = H.X. t N.
C U U

3.1

where H, is a m by n dimensional observation matrix and N.

is a zero mean white Gaussian process with covariance matrix

R..

Then, given that data has been observed at time 1, the

optimum estimate of-X, using a simple Bayesian approach is:

X (4) XU)+[K, Z - Z(-)]

where:

Z (-)= HX 1(-)

3.2

3.3

and

T T
K = P, (-m) H, [HI PI-)HI R] 3.4

The a posteriori error covariance of the estimate will be
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given by:

P(+) = [I-K,H,I IPV)3.5

where I is the n by n identity matrix. Being a Bayesian

estimate, the estimate X, (+) will have the property that it

is a conditional mean of X, where the conditioning is now

additionally on the fact that Z, was observed.

The crucial point in the development of the filter now

occurs if the process X is constrained to be a first order

Gauss-Markov process. In the discrete case at hand this

implies that:

X. =C. X. + V. 3.6
i+1 i-s+m :

where c is called the state transition matrix from time

i to i+l and represents the deterministic transition of X.

V4 is a zero mean white Gaussian process, independent of X.,

wi th covariance matrix Q. It represents the truly random

factors in the transition and is often called the plant

noise. If a process is a first order Gauss-Markov process,

the conditional mean at time i may be propagated to time i+l

by:

A A
X. = .. X U+) 3.7
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and the error covariance of the mean by:

P (-) = 4. P.() .T + 30.'8
itl i1+1I i ji+1

These two equations then provide a means of obtaining the a

priori conditional mean and its error covariance at time 2

from the a posteriori conditional mean (the estimate) and

its error covariance at time 1. These quantities provide

the necessary conditions to perform a Bayesian estimate at

time 2. A recursive filter is thus obtained in which the

estimate and its error covariance are fed forward and used

in the next step.

It should be noted that nowhere in the development of

the filter are any assumptions made concerning the

stationarity of the processes. The matrices Q;, H1 , R; and

.l + may be time space varying and so non-stationary

processes may be estimated using the Kalman-Bucy filter.

Section B. A structured derivation

One of the many possible approaches of mathematically
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deriving the discrete Kalman-Bucy filter is a structured

derivation. In this approach the linear of the estimator is

assumed a priori. The desired lack of bias and minimum

quadratic cost properties of the estimate combined with the

fact that the process being estimated is a first order

Gauss-Mar kov process then yield the discrete Kalman-Bucy

filter .

To begin the structured derivation, it will be assumed

that the observation vector Z. is a noisy linear function of

the vector of state:

Z. = H;X tN1 3.1
(REPEATED)

and that the desired estimator is of the form:

X.(t) = K' X.) + K Z. 3.9

where K and K. are two gains to be determined.
I I

The errors associated with the estimates Xi (+) and X1 (-)

are:

X, (+) = Xit) - 3.10
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and

X (-) = X,(-) - X

Substituting 3.1, 3.10, and 3.11 into 3.9 yields:

3.11

t) = LK>K.H.- 1] X. + K'X.() t KN; 3.12

Taking the expectation over N1 and X. (-) on both sides of

3.12 and assuming that X. (-) is an unbiased estimate, we

note that X. (+) will be an unbiased estimate only if:

[K: + K. H 1) = 0 3.13

Thus it is required that:

3.14K' l-K.H.
I goe

Substituting 3.14 into 3.12 and 3.9 yields:

= [1-KH.]X(-) + K.N 3.15
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and

A A ;[; A )
X= X.-) + K;[Z. H.X.() 3.18

The error covariance of 3.16 will be given by the

expectation of 3.15 times its transpose or:

P + = i K.H ) P.V)[-KH] T

+ [I- K.HJ EX;vN)NT}KT
~T jT 3.17

+ K; E{N;X;(-)}[v K; H]3

+ K R.KY

Since N. is assumed to be statistically independent of X.(-)

this simplifies to:

P.(+) [I - K. H.) P.(-)H -K. H. + K.R.K. 3.18

To choose the optimum value for the gain K we will desire

to minimize the quadratic cost function:

J E X. (+) S X(+) 3.19

for any positive definite error weighting matrix S. As this
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may be shown to be equivalent to minimizing the trace of

P; (+) , we will choose to optimize the gain to mimimize this

function instead.

Using the relation that:

tr{ABA V= 2 AB 3.20
6 A

for a symmetric matrix B, we differentiate tr{P; (+)} with

respect to K; in 3.18 to yield:

ftr{P( (2r1-K.H.1P.w-2HT + 2 K.R. 3.21
2BK ' 'L'i'S'I '

For the extrema of trIP (+fl, we require this to be zero.

Thus:

K. = PHP(-) HT + R3.22

The second derivative of triP (+)} with respect to K is:

.2

tr PI) = 2 [H. P.V(-)H.+ R.] 3.23
SK i # ' ' '

This matrix is positive semi-definite for all H,. Thus the
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gain of 3. 22 gives a minimum for the tri{P6 (+) }.

As before, we will now invoke the first order

Gauss-Markov assumption on the process X,. This produces

the relation:

X = (. . X.+ V. 3.6
(REPEATED)

Taking the expectation of both sides conditioned on the

observation of data through time i yields:

x. (-) =t. X.(+) 3.7
gi'l ',+l ' (REPEATED)

Again this describes the propagation of the estimate at one

time to the prior at the next. Subtracting 3.6 from 3.7

yields:

X - .. X.(+ -V.3. 24

Multiplying 3.24 by its transpose and taking expectations

yields:

P (-)I =W P.(+k + 0 3.8
i+1 it a i

since V. is assumed to be independent of X;(+). As before,

this describes the propagation of the error covariance of
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the estimate between measurements.

Section C. The innovations process

The quantity:

I. = H3.25

is defined in the literature of Kalman-Bucy filtering as the

innovations process of the observations. Heuristically, it

represents the new information brought into the system by

the measurement Z. . If j/; is zero, this information is that

the propagation of X;., (+) to X; (-) was adequate and that

our prior was most likely the correct state. If j/. is not

zero, it means that the value of X (-) must be modified to

"explain" the observation. The innovations sequence of the

optimal filter has several valuable properties which may be

used to test the filter and the data. These properties are

that the innovations sequence is a white Gaussian zero mean

process with a known covariance.

It is easily shown that any unbiased prior X.(-)

produces innovations with a zero mean provided that the

observation matrix assumed by the filter corresponds with
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reality. Substituting 3.1 and 3.11 into 3.25 we get:

I/ = N. - H X(-) 3.26

Taking expectations, this will be zero since we have assumed

that the observation noise N. is zero mean as is the error

of the prior.

It is interesting to note what happens when the

observation model that is assumed by the estimation scheme

is not correct. Let us say that the estimation scheme

assumes that the observation matrix is H! while in reality

it is H.. The innovation is then:

/. = ( H.- HDX. + N. - H'.X.(-) 3.27

Still assuming that X(-) is an unbiased prior such as a

mean, we find that the mean of the innovations will be zero

if and only if X. is zero mean.

Unfortunately, a non-zero mean serves only as a warning

flag that something is not right. It does not unequivocably

point to an incorrect observation model. Many practical

instruments will contain an unknown bias dependent on the

observation matrix H.. The actual observation then becomes:

Z = H;X; + b(H) N; 3.28
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where b is a bias. The innovation here is:

= b(H.) + (H.- H') X.1+ N,- H.'X.(-) 3.29

If we examine only the mean of the innovation we have

E{ } b(H.) + (H-H') E X0 3.30

and cannot in general discriminate between the two sources.

To determine the covariance of the innovations, we

multiply 3.26 by its transpose and take expectations to

yield:

E{W.T= HP.(-)HT + R. 3.31

To verify the Gaussian nature of the innovations we

will assume that the error of the prior at step i-l is a

Gaussian random variable. Then

X_,(t) =[i - K..,Hd X;.1 -) -- K., NI-1 3.15
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is a Gaussian random variable since it is the sum of rotated

Gaussian random variables. The one step prediction gives

us:

X .( ) = D . . X . +) - V ; 3 .2 4

(REPEATED)

Again, this is a Gaussian random variable for the same

reasons. Substituting this into 3.26 demonstrates the

Gaussian nature of the innovations.

It may be shown that the innovations process must be a

white process in the optimal filter. To do this we first

will multiply 3.26 taken at time i by the transpose of 3.26

taken at time j and take expectations to find:

EI/TH EIN.NTI - E{N.XT-)IHT

3.32

- H.EIX.-) NI} + H. EI XA-)X(-)lH.

As N, is a white process the E{N.N.) is 0 for i j, and

since our interest here is exactly i * j, we will drop it

from further formulae. Restricting our interest to the case

of i > j we note that:

0,- T3.33E I Ni X (-) =0 3

since the observation noise is independent of all processes
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at earlier times. We will now seek a relation for X (-) in

terms of X (). Substituting 3.15 into 3.24 we get:

X- K.H.]X.) + K.N. - V. 3.34
i+1 st

This gives a recursive relation for X (-) in terms of

X (-). We may expand this recursion to show that:

HH
X.(-)= TT@ [n - Kn H n] X.(-)

-FZ TT czu - KH]} %,k+]Kk4 N3.35
n=kt

k=

7 cn,,n+l [I - KrIHJ Vk
k j n=kI

The products here are left matrix multiplications and if the

lower limit exceeds the upper limit, the product is the

appropriate identity matrix. We now substitute this into

3. 32 and using the statistical independence of the plant

noise and observation noise, both with respect to each other

and to errors and noises at earlier times we may simplify

3.32 to:

Etl/4= H1  TTt.,[I - K, H]) *n= 1tI

-K R + DI - K H ]P (HHT 3.36
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The quantity in braces may be rearranged as:

T T
P()HT -K.[H.P(-)H + R ] 3.37

If the gain K is the optimal Kalman gain, this reduces 3.37

to

-I
P. H P.)HI[H.P(-) HT+ R] [H.P.(-) H R.]

SP.(-)HT - R(-)HT 3.38

=0
Thus, E{V.t/.} is zero for all i > j providing that the

I j

optimum gain is used at time j.

It is possible to perform a number of tests on both the

data stream and the models assumed in the estimation scheme

using the innovations sequence. As indicated earlier, one

is a simple mean test. If the sample mean of the

innovations is not zero within the confidence indicated by

the variance of 1/ and the number of samples, it indicates

that there are unresolved problems in either the observation

matrices, state propagation, or instrument bias. Likewise

it is possible to test the sample variance of the

innovations to reveal other problems. Finally, it is

possible to examine the whiteness of the innovations to
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determine if the estimation scheme is suboptimum.

Given that the estimation scheme does not pass these

various tests, it is potentially possible to modify the

estimation scheme by a procedure known as "Adaptive Kalman

Filtering". Some methods for doing this are indicated by

Jazwinski (1970) and Mehra (1970, 1971).

Another set of possible tests that are possible using

the innovations are often called "data reasonableness

tests". The basis of these tests lies in the fact that not

all instruments are well behaved and obey the assumptions

made about them all the time. As a specific example of

interest, consider a sporadically malfunctioning radiometer

observing a dynamic process operating over a digital

transmission link. If everything is operating correctly,

the data link does not produce errors and the observation

noise is determined by the front end noise of the

instrument. The innovations sequence will then be well

behaved and will have the statistical behaviour that we have

derived in this section. If the digital transmission link

produces an error, this fact should be observable from the

fact that such an error is usually as likely to appear on

the most significant bit as the least significant bit. An

error of this sort will usually lead to the rejection of the

hypothesis that the innovation was drawn from a

TN(O,H. P. (-)H. + R; ) population, Transmission errors
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may then be detected by innovations testing.

A similar test should identify sporadic malfunctions in

the instrument. In such cases it will be assumed that H, is

known if the instrument is functioning properly, but that

when it malfunctions, it switches into an observation mode

H . As an example, such a switch may be caused by a

malfunctioning automatic gain control. Again we can test

the innovations to see if they are drawn from the population

we expect. If the modes of malfunction are known, another

possibility is to perform what is sometimes termed

"alternative hypothesis testing". That is, under the

hypothesis that the instrument is observing with one of

several observation matrices H! , it is possible to test

the innovations to determine which H was the most likely

to produce the innovation. This observation matrix may be

then used to process the data. Alternatively, a number of

Kalman filters may be run in parallel and their outputs

combined through a weighting on the probability that their

observation matrices correspond to reality (Athans, 1975).

Section D. The Square Root Algorithm

The numerical characteristics of the Kalman-Bucy filter
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are of vital importance in its implementation. A simplistic

implementation of the formulas given earlier in this chapter

will often lead to a problem known as true divergence when

applied to some systems. This problem is evidenced by the

fact that P. (+) ceases to be positive definite at some time

in its history, a requirement of any covariance matrix.

After this point, the errors of the filter may grow without

limit. The basic cause of this problem is the fact that

finite length word lengths are used in the computation of

the matrices used by the filter. The problems attendant to

finite word length arithmetic thus occur. This is

especially true in the inversion of the matrix

T
[H; P; (-)H; + R; 3, which may be ill conditioned in

practice. Since the filter is recursive, numerical errors

in earlier computations may propagate forward with

disasterous results.

One possible "fix" to the problem of numerical

divergence is simply to increase the precision of the

computations by use of multiple precision arithmetic. This

"fix" should be avoided for three reasons: First, the speed

of the algorithm may be seriously degraded. Secondly, the

implementor may still find that the filter continues to

diverge, a now doubly expensive lesson. Finally, the use of

the Square Root Algorithm guarantees that these problems

will never occur.
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The Square Root Algorithm was developed specifically to

circumvent the problems of numerical divergernze in Kalman

filters. It is algorithmically equivalent to the so called

"batch" algorithm presented earlier in this chapter, but

offers effectively double precision results using single

precision arithmetic. Most importantly, it guarantees that

the error covariance, Pi (+), is positive semi-definite at

any step in the algorithm. Finally, it easily mechanizes

the use of innovations for data reasonableness tests.

The square root formulation presented in this section

follows that of an excellent review paper on the subject by

Kaminski et al. (1971). The reader interested in

implementing a Kalman filter is highly urged to read this

paper and that of Schmidt (1970).

The square root filter has its foundation in two facts:

The first is that any vector of measurements may be included

into the estimation scheme one at a time provided that their

measurement noises are independent. If the measurement

noises are not independent, the measurement space may be

rotated to yield such independence. The algorithm processes

the first measurement as if it were the only measurement

that it was ever going to receive. It then processes the

second measurement as if it were the only additional

measurement, etc. The second fact is that since P. ( 9 ) is

a positive semi-definite matrix, it may be factored into a
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matrix times its transpose. This matrix is often called the

square root of P (e ) and is not a unique matrix. For the

purposes of this section, it will be assumed that the square

root is a Cholesky decomposition at the beginning of the

algorithm. We will denote this decomposition by:

P() = SA*) sTn 3.39

To derive the square root formulation, we will begin

with the covariance update equation 3.5 on the assumption

that we are updating for only a single measurement.

Equation 3.5 then becomes:

P..(+) = P..(-)- K 3.40

where H.. is the jth row of H. and K.. is the gain for

including measurement j equal to:

r T
K.. =p.(-)H.. /(H..RP.(-) Hi + R.. ) 3.41

where R.; is the measurement noise for channel j. We note

Tthat Hi; P;. (-)H; + R.. is a scalar for a single

measurement and that it is the variance of the innovation
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for the jth channel. Defining:

I/a = H.. R..C-) HT. + R..
Ii 13 Si I1

3.42

we will then substitute 3.42 and 3.39 into 3.40 to yield:

R.C-+) = S..(-)SX-) - a S..(-)S(-)H.H..S.X-)ST-) 3.43
Ii Sj 63 ' '1 '1 '1 '1 'J

De f ining

= S T-)HT 3.44

and substituting into 3.43 now gives us:

S +) SI(+) = S..(-)
'j ii I

[i- F..FT
Ij ii

3.45S.(-)
tj

It may be shown that [I - aFFT] may be factored as:

S-a F. Fi =[-aOf F. F.7 I - a jrF F 3.46

where:

3.48
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Thus 3.45 may be factored as:

S.( )= S..(-) I -a F.FTl3.41
[Si a 7I;; J3.48

Using 3.39 and 3.42 in 3.41, the gain for measurement j is:

K..= a S(-) F.. 3.49

The error covariance after the jth measurement is:

P .(+) = S..(+) S.-(+) 3.39
'1 '5 (REPEATED)

Since this is a product of a matrix times its transpose,

P.. (+) is guaranteed to be a positive semi-definite matrix.

Operationally, several items should be noted; First,

while it is possible to carry the square root of P.. (e)
*1

rather than P (a) throughout the entire life of the filter,

it is often more convenient to propagate P. (+) to P; ,(-) by

use of the usual covariance propagation equation 3.8,

decompose it to S;.1(-) in order to produce the gains and

covariance update, and then reform it to produce PM(+) for

the next propagation. This is due to two factors, the first

is that the procedures necessary to do the decomposition and

reformation of P; (.) to and from its square root are
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readily available as library subroutines, while the

procedures necessary to perform the propagation of S. (+)

between measurements are not. More importantly, it is

easier to monitor the predicted performance of the filter by

observing the diagonal elements of P. (.). The equivalent

information is contained in S. (e) of course, but it is not

so readily available.

A second operational note is that the square root

filter facilitates data reasonableness test of the

individual measurements. As has been noted earlier in this

section, the quantity 1/a represents the variance of the

innovation for the measurement being processed. The

hypothesis that the data from that measurement is

"reasonable" is thus easily tested. If the measurement is

unreasonable, the gain computation may be aborted, the gain

for that measurement set to zero and S; (-) returned as

S;O (+). If the data is accepted, the gain may then be

computed and S. (-) updated for the measurement inclusion.

The gain from the measurement may then be used to update the

state estimate and compute new innovations for the

measurements yet to be processed.

Finally, it should be noted that the operation counts

such as those of Kaminski et al. (1971) are somewhat

misleading. In actual fact, a Square Root Covariance I

filter (the form described in this section) may actually run
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faster than a Conventional Covariance filter despite the

apparent increase in operation count. This is due to the

fact that the conventional filter performs all of its

arithmetic using matrices while the square root filter

performs many of its operations using vectors. The access

to any element of a matrix from a higher level language

usually implies a multiply and an add, while a vector

reference does not. As an example, adding two matrix

elements requires 2 multiply and 3 add instructions. A

similar operation with vectors requires a single add. These

hidden operations in the covariance filter may actually make

it more computationally complex than a square root filter.

Section E. The Extended Kalman Filter

In a great many cases of practical interest, the

observed measurements are non-linear functions of the

variables to be estimated. That is, the observations are of

the form:

Z = h(X) + N. 3.50

where h. () is a non-linear, deterministic function of its
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argument and N. is a white Gaussian noise. To derive one

possible estimator for this case, we will follow a

structured development such as given in Section B of this

chapter.

The estimator that we will desire to produce is a

linear function of the observation:

x.(+)= A. + K.Z 3.51

where A. and K. are to be determined. Since we will require

the estimator to be unbiased, we substitute for X.(+), X1 ,

and Z. to yield:

X.(i) + X. = A. + K. [h.(X.) + N.] 3.52

X.+) -X() = A. + K.[ uhe(Xr )+No 3.53

Taking expectations over X. and requiring that the prior is

unbiased we find that:

A. = X(-) - K.h.(X.) 3.54
I I
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Thus the estimator is of the form:

x.(+)= Xi(-) + K[Z - h(X)]

The error of the estimate is:

= X.&) + K.[h.(X.) h.(X.)] K.N.

3.55

3.56

Desiring a minimum variance estimator, we multiply 3.56

times its transpose and take expectations over X.

P + ) = P(-) + E {[h.X.) - h.(X.)][h.(X.) -

h. (X.)]4K; + K.R. K.
63 .sa7

+ E{X.h) [h.(X.) - h.(x.]T K5

+ K; E{[h;(X) - h;(X;)] X(-)

The derivative of the trace of P. (+ with respect to K. is:
I a

6 t r P. (+)
6K.

2 K. Ej[h.(X.) - h.(X.)]

[h.(X) - sh(X)]

2 E{X(-)[h;(X;) -h(X.)]

2 K.R.
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Setting this to zero gives K. as:

K. -E X.(-)[h.(X.) - h.(X.)]l

[
' ' ' ' ' ) 3 .5 9

E [h. (X.) - h.( X.)][h.(X.)]RO.I ih$.X)]Tst Rj
Again, the second derivative of tr{P (+)} is a positive

semi-definite matrix, thus this is a solution for the

minimum.

Unfortunately, 3.59 is not very useful in determining a

numerical value for the gain due to its dependence on the

probability density of X. . One way to help overcome this

is the approach of expanding a function in terms of its

Taylor series. Choosing to expand h. (X. ) and h. (X. )

around the prior, we get the expressions:

h.(X)= h.( X.V-)) + h.(X ) X:(- )
' ' 3 i o't"'^

X X = .()x=x.(-)

h.(X)

3.60

h.X.-))+--- h.(X) EIX!(-) 3.61
= ixJ ;I3X61

Def ining

A.X(-)=
--- h. (X ) a

SI x.xC-)
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we then truncate both series after the first derivative and

substitute into 3.59 to get an approximation to the gain as:

K = PH) HT( X )) H;(X;(-)) P.V)H.(X(-)) + R 3.63

The form of the estimator using this approximation is then:

X(+) = X.) + K Z - h;(xV-) 3.64

with the covariance update equation:

P I+) = [ - K;H.(X(V)) p. H) 3.65

It should be noted that the covariance update equation of

5.63 yields only an approximation to the actual error

covariance. It will be valid only to the extent that the

truncation of the Taylor series was valid.

The validity of the truncation is determined by the

bandwidth of the process when compared to the higher order

derivatives of h. (X; ). If the product of the bandwidth,

or higher order moments of X (-), and the higher order

derivatives are relatively large, the approximation will be

invalid. In these cases, it is possible to retain more
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terms in the Taylor series to get Second Order, Third Order,

etc. Kalman filters. Another approach is to iterate the

extended filter to get what is termed the Iterated-Extended

Kalman filter. A discussion of these types of filters is

given by Gelb (1974).

One significant difference between the Extended Kalman

filter and the standard Kalman filter is the dependence of

the gain K. on the prior X; (-). In the standard filter,

this dependence does not occur. Thus, the gain sequence K.

may be precomputed in the standard filter, but not in the

extended filter. To allow precomputation in the case of the

extended filter, one must make a further level of

approximation. This approximation is that the future values

of the process X. will lie "close" to a nominal

trajectory. If this approximation is used, several variants

of approximate precomputation are possible. The first is to

precompute the covariance of the prior, P (-), leaving the

actual galn calculation to depend on the observed priors

X. -). The second is to totally precompute K. along the

nominal trajectory. The third is to operate the full

extended Kalman filter for some period of time and then

switch to either of the above strategies. In all cases, one

is hoping to ease the computational burden without a large
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degradation in performance.

Section F. The non-causal filter

For a number of cases, there is no requirement that

estimates be produced in real time. One of the primary uses

(at least potentially) for remotely sensed temperature

profiles is in the production of synoptic analyses. These

analyses are normally produced for OOOOZ and 1200Z. For

this use, there is no requirement that the estimate be

produced in real time. The only requirement is that the

collection of data for input to an analysis scheme cease by

some cutoff time and the results reported. In view of this

requirement, it is then permissible to produce an estimate

at a point based on the totality of data collected through

this cutoff. Since temperature profiles are correlated in

time and space, the use of "future" observations will add

information and reduce the error in the estimate. The

purpose of this section is to discuss one form of the

non-causal Kalman filter that allows such processing, the

forward-backward smoother.

As a preparation for defining the non-causal filter, it

will be assumed that there exist two unbiased estimates of
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X. (X! and X? ) having statistically independent
i I I

errors. It is then desired to combine these two estimates

to obtain a minumum variance estimate of X. by using the

linear scheme:

X. A.X' + B.X? 3.66

where A and B are two weighting matrices to be determined.

This scheme will be optimum if the errors X! and X! are

Gaussian random variables. To determine the relation of A
A

to B we will demand that X. be an unbiased estimator. This

condition yields:

E{X.} EA.(X.+ X') + B.(X.+ X) -X.J=0 3.67

A A
Since the estimators X! and X!" are unbiased this gives

I I

an expression relating A to B:

A. = I - B. 3.68
1 1

Substituting 3.68 into 3.66 obtains the expression for the

error of the estimate X. as:

X. = A.X + (I-A.)X? 3.69
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Multiplying this by its transpose and taking expectations

gives the equation for the error covariance of the estimate

as:

P. = A. P' AT + (I -A.)P''(I -A.)T 3.70

since we have assumed that the errors X' and X" are

independent. Minimizing the trace of P. by differentiating

the trace of P with respect to A. and setting the results

to zero gives:

A.P - (I-A.)P" = 0 3.71

and so:

rA.=P [P.' + P"3.72

B. = P; [P + P.3.73

p'= Ph+ P."-' 3.74

This defines the optimum variance combination of two
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estimators with independent errors. Note that 3.74

guarantees that such a combination will always be at least

as good as either of the estimators considered separately.

One very simple method of generating two estimates of

X that meet the requirement of independent errors under

certain conditions is as follows: First partition the data

into two segments. One will consist of all the data through

the point i whose value we wish to estimate. The second

will consist of all the data from time i+1 through the

cutoff time n. Next, run a standard Kalman filter on the

data through time i. This will be the first estimate Xt

Finally, run a Kalman filter backwards in time from time n

to time i+1 and then perform a one step "prediction" from

time i+1 to time i. This will be the second estimate X?

The form of the Kalman filter running backwards in time

(the backwards filter) is basically the same as that of the

Kalman filter running forward in time (the forward filter)

The sole exception is that the forward state transition

matrix cP.,.1 must be replaced by the reverse state

transition matrix (j-. . It is easy to show that the

reverse state transition matrix is given by:

= .. 3.75
In the ge, +1

In the gener al case , the estimates X' and V"
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obtained by this method will not have independent errors and

so the assumptions that lead to the weights derived earlier

are violated. There are,, however,, cases of practical

importance where the errors are either independent or

asymptotically so. One case in which the errors will be

independent is the case in which the errors of the priors

X, (-) and XN -) for the forward and backward filters are

independent. Such a circumstance will occur if either of

these priors is the result of a known state at X0 or XN+g-

Asymptotic independence of the errors will occur for

processes that may be referred to as lossy long observation

time processes (LLOT). A lossy process is one in which the

state transition matrix is such that:

n
L i m II ;*I .= 0 3.76

In such processes, the initial state is eventually forgotten

and the state at any point interior to the interval is

determined by the plant noise sequence. Once this has

occurred, the errors of the filters may be regarded as

errors in estimating the plant noise sequence. Since the

plant noise is a white process, we then argue that the

errors of the two filters will be independent.

Other formulations of non-causal filters such as fixed

lag smoothers are possible. The primary advantage of the
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formulation presented in this section is the generality of

the lag and the reduction in the need for new software. To

produce a backward filter from a forward filter, it is only

necessary to modify it to produce the priors and the

covariance of the priors rather that the estimate and the

covariance of the estimate. This is usually a simple

programming change. To combine the two estimates and

produce the smoothed estimate, it is only necessary to write

a short program to read the results of the two filters and

perform the necessary manipulations. We may guarantee a

long observation time for the process by simply halting

processing using the forward filter at the cutoff time n and

then restarting it as more data becomes available.
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Chapter IV

The Temperature Experiment

Section A. General description

The temperature experiment was concerned with the

design and implementation of a practical Kalman-Bucy filter

for estimating temperatures in the atmosphere from data

produced by the SCAnned Microwave Spectrometer (SCAMS)

carried on the NIMBUS 6 satellite. The experiment was

divided into three major phases: The first was the design

and implementation of an extended filter for the estimation

of the temperature of the surface and the atmosphere at what

are called the 14 mandatory pressure levels at one or more

SCAMS scan angles. These mandatory pressure levels are

located at 1000, 850, 700, 500, 400, 300, 250, 200, 150,

100, 70, 50, 30, and 10 mb of atmospheric pressure. They

are the standard temperature and height fields produced by

the synoptic analysis schemes and are used by numerical

forecast models. The vector of state for a single spot

inversion may be thus described as [T 8 , T10 0 0 ' T850 ,
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T Too, ...,T 3 0 , rT 0 ] . For a multi-spot inversion, the

state vector is a concatenation of such single spot

vectors. The second part of this experiment was the

implementation of the forward-backward smoother for

noncausal estimation of these temperature fields. The final

experiment consisted of the implementation of a sub-optimal

filter in which either the covariance or gain history of the

filter was precomputed along a nominal satellite track.

The data used in the experiment were several periods of

actual SCAMS brightness temperatures. These periods of data

spanned an interval from August, 1975 to February, 1976.

The standard of comparison used for verification in the

experiments was the National Meteorological Center (NMC) K27

synoptic analysis grid interpolated to the satellite

position in space and time. This grid consists of an

octagonally shapped mesh covering the northern hemisphere.

The individual cells in the grid are roughly 400 km wide.

This and several other special purpose analyses are produced

for OZ and 12Z each day from all available operational

observations (primarily radiosondes) and represent one of

the best analysis efforts available on an operational

basis. The accuracy of the grid is thought to be better

than l K in areas where reporting stations are spatially

dense. These areas have been historically considered to be

Japan, the United States and Canada, and western Europe

- 82 -



(Waters et al., 1975). These regions are diagrammed in

Figure 2. In order to attempt to guarantee validity of

comparisons between the estimates of the Kalman filter and

the verification data, comparisons were restricted to these

areas.

A number of topics will be discussed in this chapter.

Section B will give a brief description of the SCAMS

instrument. Section C will discuss the system

identification aspects of the implementation of an extended

Kalman-Bucy filter for temperature retrieval. Section D

will discuss the synthesis of the observation matrices. A

general description of the filter program and its

capabilities will be given in Section E. A much more

complete description of the program with design philosophies

and descriptions of the flow in each module is given in

Appendix C. Section F will cover the tuning procedures that

were used in the filter and problems that occurred in its

implementation. A summary of the results that were obtained

with the causal filter are given in Section G. Section H

will present the results of the non-causal experiment.

Finally, Section I will explore the sub-optimal but fast

precomputed parameter filter.
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The SCAMS instrument

The SCAMS instrument is a scanning microwave

spectrometer that observed the upwelling radiation from the

earth at five frequencies (Staelin et al., 1975, 1977).

Three of these frequencies (52.85 Ghz., 53.85 GHz., and

55.45 Ghz.) are in an oxygen absorption complex and respond

primarily to the temperature in the earth's atmosphere. The

frequencies have been chosen to produce weighting functions

that peak in the lower, middle and upper atmosphere. The

remaining two channels (22.235 GHz. and 31.65 GHz.) are

situated on a water vapor resonance and in an atmospheric

window respectively. These two channels are used primarily

to produce estimates of liquid water and water vapor over

ocean and surface characteristics of ice pack or land (Grody

and Pelligrino, 1977, Staelin et al., 1977, Ledsham and

Staelin, 1978).

Electrically, the SCAMS instrument uses a separate

Dicke-switched radiometer for each channel. These

radiometers have a noise of about 0.5e K rms for a one

second integration time. The three oxygen band channels

share a common antenna, while the two lower frequencies have

separate antennas. These antennas are positioned in front

of reflectors that are rotated by means of stepping motors.

- 85 -

Section B.



These motors drive the reflectors to give thirteen earth

views of roughly one second each in angular increments of

7.2*. They then rotate to provide a view of an ambient

temperature target and cold space for instrumental

calibration purposes. The total scan takes a period of

sixteen seconds which will be called a major frame or frame

in this thesis. All antennas have 7.50 beamwidths at their

half power points.

The total antenna geometry and satellite orbit produce

a set of linear scans of the earth roughly 2400 km long with

a 100 km separation between the centers of the scans. The

size of the earth view (often called a spot, footprint or

pixel) varies from an approximate 144 km circle at the nadir

view to a 221 km downtrack by 361 km crosstrack ellipse at

the extreme scan angles.

Section C. The temperature system identification

As discussed in the chapter on the discrete Kalman-Bucy

filter, several a priori matrices are necessary for the

operation of the filter. Specifically, these matrices are

the state transition matrix , the plant noise covariance

Q. , associated with the message generation process, the
I
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observation matrices H; , the observation noise R; that

describe the message reception. In addition, the mean of

the process at the initiation of processing, X1 (-), and its

error covariance matrix P, (-) must also be specified. This

section will deal with the determination of . , '

X (-), and P1 (-). The discussion of H. and R. will be

left to Sections D and F respectively.

Of the two tasks addressed by this section, the

determination of X1 (-) and its covariance matrix was the

easiest to accomplish. A large body of meteorological

experience have led to the specification of what are called

the supplemental standard atmospheres (Valley, 1966).

Determined for 15 degree intervals in latitude from 15

degrees to 75 degrees for both summer and winter conditions,

these atmospheres are typical of global means. The 15

degree atmosphere is actually defined for only a single

season reflecting the conditions occurring in the tropics,

and the 75 degree winter atmosphere is only defined through

an altitude of 30 km after which it bifurcates into one of

two atmospheres. The prior was taken to be an interpolation

of these atmospheres in latitude.

While the values of the supplemental atmospheres are

specified, their covariance matrix is not. To generate this

matrix, the covariance matrix of the NMC K27 grid was

examined. The analysis along a satellite track for a period
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of two days was retrieved from a merged SCAMS tape. The

covariance around the means derived from the interpolated

supplemental standard atmospheres for the five central SCAMS

spots was then computed. This analysis was performed on

data from January 26-27, 1976, to represent the winter

statistics and from August 7-9, 1975, to represent the

summer statistics. These statistics were computed for 22.5

degree latitude bands.

While this procedure yielded what is felt to be a

reasonable estimate of the covariance of the prior for the

atmosphere, the covariance of the surface temperature had

yet to be determined since the NMC K27 grid contains no

information on this quantity. The solution adopted for this

problem was to insert the variance of the surface as twice

that of the 1000 mb temperature along the diagonal of the

covariance matrix and equal to the 1000 mb covariances on

the off diagonal elements. This was felt to be justified by

the rationale that the 1000 mb temperature and the surface

temperature are coupled through convection. However,

because of the variation in ground cover and the fact that

the earth's oceans act as a thermal source/sink, it was

decided to increase the variance of the prior. The manner

in which this was done was consistent with the assumption

that the surface temperature is equal to the 1000 mb

temperature plus an independent noise component.
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The identification of the state transition matrix

and the plant noise Q should, in theory, be derivable from

the primative equations that describe the transfer of heat,

mass, and momentum in the earth's atmosphere. These

equations are unfortunately quite complicated in practice.

The problem of system identification using these equations

is not unlike the problem of construction of a large scale

computer starting with Maxwell's equations.

The problem of identification was thus first approached

in a statistical manner similar to that used to derive the

covariance matrix of the prior. A stepwise regression of

each NMC K27 levels at a SCAMS spot was performed with the

entire NMC K27 grid at the previous scan acting as the

predictors. The mean of the predictors was taken to be the

interpolated supplemental atmospheres. As with the

covariance of the prior, the northern hemisphere was divided

into four latitude bands of 22.5 degrees and a separate

regression was performed in each band. Since weather

systems and phenomena vary on a latitudinal basis, this

segmentation is a natural one. The choice of four bands was

arbitrary, but was designed to yield one tropical, one

arctic, one sub-tropical, and one sub-arctic plant. The

regression coefficients were interpreted as the elements of

the state transition matrix and the covariance of the

residuals as the plant noise. The elements of the plant
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noise for the surface were inserted in the same manner as

the covariance of the prior, and the elements of the state

transition matrix for the surface were taken to be the same

as those of 1000 mb. Early experiments using these choices

of D. and 0 disclosed that this appoach was

unsatisfactory. Examination of the diagonal elements of the

predicted error covariance matrix, P. (+), versus the actual

error performance disclosed that the filter was performing

much worse than it "thought" it was, especially in the

vicinity of tropopause.

A re-examination of the system identification disclosed

the most probable cause. Remembering that the scans of

SCAMS are separated by about 100 km and that the grid cell

is approximately 400 km wide yields the conclusion that it

takes about four scans to cross a grid point. The approach

described above is thus roughly equivalent to the problem of

a grid point predicting itself. This it can do with little

error.

The next approach attempted was used in the actual

filter. An identity state transition matrix was initially

assumed and the resulting error of the prediction five

frames later was then computed. If the choice of an

identity transition was correct, this quantity is five times

the plant noise. Again, the surface elements were assumed

and inserted. While the identity matrix state transition
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was assumed in this plant noise construction and tested in

the filter due to its advantages in the state and error

covariance propagation, it is a physically impossible matrix

in practice. Adjacent temperature layers transfer energy

between themselves in the real atmosphere. Doing so, they

attempt to restore the overall temperature profile to one

consistent with the ideal gas law, solar flux, geostrophic

wind, etc. Thus, it was decided to allow the elements of

the state transition matrix to be adjustable at run time

even though the plant noise was computed using an identity

matrix for b + . For reasons of practicality, the run time

transition matrix allowed only interaction with nearest

neighbors in pressure. The form of interaction was

constrained to be a weighted average of the deviation of the

temperatures from the climatology as represented by the

interpolated supplemental atmospheres. For most levels at

the center spot of a three spot filter, this interaction is

described by the expression:

i-ti j+1

IT ~Wkf( T1,,-T + kn4.1

k=;-I n=j-I

where T; is the temperature at spot i, pressure level j

to be predicted, T'k is the estimate at spot k, pressure

level n from the previous scan, Wkn is the weight given to

T'kn and Tkn is the appropriate interpolated
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supplemental atmosphere. For the two edge profiles of the

three spot filter, the interaction is:

M i+1

T..-=WknT T4) + Tn4.2

k=; n=j-I

where m is either i+l or i-1, dependent on the edge being

predicted. A two spot prediction was considered to be a

case of two such edges. A single spot prediction simply

used the second summation of 4.2.

In all cases, the prediction algorithm must take into

account the fact that the altitude of the surface is a

variable. As an example, an altitude of roughly 1 km places

the surface at a pressure altitude of 925 mb. In this case,

the 1000 mb slab no longer exists, except as perhaps a

"virtual" one. For these cases, the surface should interact

with the slab above it and not with any "virtual" ones. For

temperatures in the atmosphere, interaction between

"virtual" and real slabs should be permitted to prevent

these "vir tual" slabs from being propagated in a pure

prediction mode for long periods of time.

The determination of the weights used in the

implementation of the filter are discussed in the section on

filter tuning. However, it will be mentioned at this time

that the best performance seemed to be obtained with W;

and W. .0,W. . = 0.5 and W.. andW = 0.25.
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Other possibilities exist for the state indentification

process. One would have been through the use of the

previous SCAMS temperature estimates produced by the

Statistical D inversion method. The second would have

involved the use of an ensemble of radiosondes such as

described in Appendix A. The first was not used in order to

divorce the filter from the present inversion method. The

second was rejected because of the lack of a summer dataset

and the magnitude of effort required.

Section D. Observation matrices

Following the discussion of Chapters II and III, it may

be seen that the discrete weighting functions correspond to

the Kalman-Bucy filter observation matrices. That is, a

noiseless brightness temperature may be computed through the

equation:

T = H(RO0A, H ) T 4.3

where the matrix H is a function only of the reflectivity

R(1/) and the surface elevation H. . For estimation over

land areas, it is reasonable to assume that both R(I/) and
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H . were known to the filter from independent sources. For

temperature estimation over water areas, R(j/) is a

deterministic function of Ts in the absence of ocean

roughness. It is thus still possible to use 4.1 to obtain

the predicted brightness temperature,, h(X (-), by using

the predicted surface temperature to evaluate R(U) .

However, since the problem is now nonlinear, we require an

extended Kalman-Bucy filter. For this filter we will also

require the matrix:

H(X(-)) = h.(X) 3.62
X X(REPEATED)

X = X.(-
I

This section will be concerned with the determination of

both matrices.

The computation of the observation matrices of equation

4.1 is a straight forward matter. For a given atmospheric

state, it is possible to evaluate the equation:

U;

W;(,R) =/' F;(T(h),T(h1 )) W(hU,R) dh 2.18

(REPE A TED)

L

which relates the discrete weighting function to the

continuous weighting function. The matters of judgment in
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this process are: For which atmospheres and reflectivities

should the function be evaluated? What is the form of the

function F. (e) for the slab i, and what are the upper and

lower boundaries of the slab? Finally there is the question

of how surface elevation effects will be handled.

The issue of reflectivities is the easiest to handle.

If we examine the form of the continuous weighting function

we fiu,.

W( h, L, R) = K(W,h)r(hH) + R() K(h)r(H,h)r(H,,H) 4.4

We note that this is a linear function in reflectivity. It

is thus possible to obtain a weighting function for any

reflectivity by a simple interpolation between a weighting

function computed for R(Q)= 0 and R(LI) = 1.

The choice of the atmospheres over which to evaluate

the weighting functions was also an easy one. As noted in

Chapter II, the weighting functions are relatively

insensitive to temperature. However, as a matter of

principle, the atmospheres should be close to the

atmospheric conditions that are expected to be-observed.

Given the ready availability of the supplemental standard

atmospheres, it was decided to use them as models for which

the weighting functions were computed. The winter
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atmospheres would provide the weighting functions for the

months of November through April in the northern hemisphere,

and the summer atmospheres would provide the weighting

functions for the other months. The weighting function

whose model was closest in latitude to the observation would

be used with the exception of the region above 60 degrees in

latitude. Here, the 60* latitude atmospheres were used

because of the bifurcation of the 75* winter atmosphere.

In the choice of variables used to characterize the

atmosphere and observations (the vector of state), it was

decided to use the temperatures at the 14 mandatory pressure

levels and the surface temperature. The sky temperature

(~-2.50 K) is well known a priori and so appears as a bias.

After a round trip through the atmosphere, its impact on the

most transparent oxygen channel is a maximum of roughly

0.1* K. The choice of the slab definition to describe the

weighting functions for these variables was somewhat

arbitrary. It was chosen to split the pressure levels in

pressure altitude. The 1000 mb temperature thus

characterized a slab from the surface (1013 mb) to 925 mb,

the 850 mb temperature characterizes a slab from 925 mb to

775 mb, etc. There is undoubtedly a more enlightened slab

definition possible.

The various supplemental atmospheres were then examined

to determine the heights of the various mandatory pressure
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levels and slab definition pressures. These heights are

given in Table 2 and form the L; and U; altitudes for the

integration of the continuous weighting functions. The

above choices give the form of F. (T(h),T(h.)) as a simple

ratio of T(h) to T(h.).

The final problem that was addressed for the

determination of the discrete weighting functions over land

was the problem of surface elevation. Since the weighting

function for a level is defined in terms of the extinction

from the surface to that level and from the surface to the

radiometer, the surface elevation has an effect on the

continuous (and hence discrete) weighting function. While

it would have been possible to have constructed an elaborate

scheme to interpolate weighting functions to account for

elevation effects, a simple linear interpolation was used in

the filter. This was not because of the linearity of the

weighting functions with surface altitude, but rather the

fact that the elevation information available to the filter

was rather coarse spatially. It was felt that the use of an

elaborate scheme in these circumstances was unjust fied.

The choice of elevations for which the weighting functions

were evaluated was 0, 0.5, 1.0, 1.5, 2.0, and 3.0 km.

Having made these engineering decisions, the discrete

weighting functions were evaluated over all possible

permutations of of the two reflectivities, two seasons, four
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Table 2

Heights of Various Pressure Surfaces

in tie Supplemental Atmospheres

Pres. 60S 45S 30S 15A 30W 45W 60W
(mb) height height height height height height height

(k m) (km) (km) (kM) (KM) (km) (km)
1013 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1000 0.084 0.115 0.118 0.115 0.175 0.142 0.101
925 0.734 0.782 0.797 0.793 0.826 0.759 0.690
850 1.430 1.497 1.533 1.517 1.528 1.424 1.330
775 2.180 2.281 2.313 2.302 2.299 2.143 2.024
700 2.994 3.118 3.160 3.173 3.123 2.927 2.783
600 4.202 4.357 4.416 4.428 4.341 4.098 3.910
500 5.601 5.781 5.862 5.865 5.736 5.438 5.219
450 6.3z:2 6.594 6.703 6.672 6.521 6.192 5.950
400 7.235 7.471 7.593 7.555 7.380 7.020 6.749
350 8.178 8.442 8.577 8.531 8.330 7.938 7.632
300 9.234 9.534 9.679 9.628 9.398 8.971 8.652
275 9.816 10.136 10.286 10.232 9.986 9.542 9.180
250 10.452 10.784 10.938 10.882 10.622 10.173 9.736
225 11.145 11.486 11.645 11.586 11.310 10.850 10.456
200 11.921 12.256 12.417 12.357 12.099 11.606 11.204
175 12.803 13.128 1'3.270 13.209 12.939 12.461 12.053
150 13.816 14.101 14.226 14.166 13.899 13.446 13.033
125 15.019 15.253 15.366 15.260 15.020 14.607 14.191
100 16.490 16.662 16.702 16.676 16.370 16.025 15.624
85 17.561 17.705 17.681 17.559 17.367 17.055 16.654
70 18.841 18.939 18.863 18.692 18.530 18.281 17.881
60 19.329 19.413 19.318 19.132 18.974 18.749 18.348
50 21.060 21.099 20.947 20.719 20.568 20.439 19.996
40 22.529 22.545 22.387 22.147 21.947 21.846 21.392
30 24.481 24.426 24.227 23.978 23.783 23.658 23.184
20 27.203 27.178 26.873 26.617 26.382 26.211 25.746
10 31.968 31.899 31.543 31.292 30.969 30.656 30.089

7.5 34.069 33.968 33.654 33.295 33.034 32.545 31.917

XXS implies the summer atmospheres at latitude XX.
XXW implies the winter atmospheres at latitude XX.
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latitudes, and six surface elevations for each of the seven

different SCAMS scan angles.

The problem of determining the matrix H; (X (-)) was

easily mechanized by the above approach to determining the

discrete weighting functions. The elements --- T (where
BT.

I
T- ;is a temperature in the atmosphere) are the same as

those of the discrete weighting functions. The element for

the surface however, must be computed separately. Writing

the brightness temperature as the sum:

14

T8(u) 3 T. W.(/, R (UsT)) + T5 W,(tR(ZT,)) 4.5

.21

we differentiate to yield:

14

-- T () = L.JRLSTT. W.(,VRQTdTR())R T)

+ - ( , R (UT,)) -- R (T) 4.6
6RV4T,) T,

+ Wt, R (AT))
Because of the linear interpolation scheme used in the

synthesis of the discrete weighting functions for an

arbitrary reflectivity, the evaluation of the differentials

of the weighting functions with respect to reflectivity is

trivial. The derivative of the reflectivity with respect to

- 99 -



temperature is easily table-driven. For the filter

implemented, this table consisted of 45 entries in one

degree kelvin increments.

Section E. The filter program

The basic requirement adopted for the design and

implementation of the Kalman filter program was that the

overall program be as general as possible. Further, it was

required that the program be constructed in a modular

fashion with each module having a readily identifiable

task.

To a large extent, this goal was realized. The program

produced is general enough to handle a great many

temperature profile estimation problems. All the results

contained in this chapter have been produced using a single

program. Specifically, the program is capable of:

1) Handling any inversion scheme from one to thirteen

scan angles. However, as a practical matter, the upper

limit is about five angles due to limits on storage and

complexity. A five scan angle required a 75 state filter.

A thirteen spot filter would have required a 195 state
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filter.

2) Running as either a forward or backward filter.

3) Using precomputed gain or covariance matrices.

4) Being used in either a batch or interactive mode

with prompting.

5) Producing print output, at intervals of the user's

selection, of items of interest such as the diagonal of the

error coavariance matrix, the innovations, etc.

6) Performing data reasonableness testing as an

option. The rejection criteria is selectable by the user.

7) Being easily modified to accommodate a different

instrument.

8) Producing timings of any of the major tasks in the

estimation process such as the gain computation, prediction,

etc. at the user's option.

The program consists of a number of subroutines and a dummy

main routine written in an admixture of PL/I and IBM 370

- 101 -



assembler language. The names and purposes of the routines

are:

FOO - This is the dummy main program. Its sole purpose is

to determine the order of the filter to be run and compute

the amount of storage needed for the program. It also

configures the output files of the filter to conform to the

filter order. It calls routine KALMAN.

KALMAN - This is the actual "main" program. It allocates

storage for all matrices used in most of the filter, reads

and unpacks the input data and accounts for missing data

points. It creates the initial prior and initializes the

environment by calling routine INIT. It propagates the

estimates and error covariances by calling routine PREDICT

and acquires the observation matrices by calling routine

CMATRIX, after which innovations are computed. The gain is

computed by a call to the routine GAIN and the innovations

and gain are used to update the state. All the timing

options and most of the printing options are implemented in

this routine. The routine also collects performance

statistics when run on a merged analysis tape.

INIT - This routine initializes the environment in general.

It acquires an initial prior from routine TEMPS, constructs
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a state transition matrix and initializes the error

covariance matrix from a disk file. It also calls all

initialization entry points on routines that require

initialization before they themselves are called.

TEMPS - This routine returns the temperatures, lapse rates.

and pressure surface altitudes for a given latitude using a

cubic spline interpolation of the supplemental standard

atmospheres.

PREDICT - This routine implements the state and error

covariance propagation. If precomputed gain or covariance

matrices are used, the error covariance propagation section

is bypassed. It calls PHIEPHI and STATE.

STATE - This routine returns the plant noise matrix for a

given latitude partition.

PHIEPHI - This routine computes the matrix product

D PD for sparse 4 . It is written in assembly

language.

CMATRIX - This routine computes the necessary observation

matrices for a given latitude, scan angle, elevation,
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reflectivity, and predicted state vector combination.

GAIN - This is the Square Root gain computation and

covariance update routine. It also performs data

reasonableness testing on the innovation if this option was

requested. If the routine was called with P; (-), rather

than S. (-), it decomposes the covariance into its square

root by calling MFS. It is also capable of reforming the

matrix from its square root by calling SSQUARE.

MFS - This is an assembly language version of the SL-MATH

routine of the same name. It performs a Cholesky

decomposition of the covariance matrix. It has been

carefully optimized to perform all operations in a manner to

take full advantage of pipelining and the IBM 370

instruction set capabilities. It attempts to maintain all

important variables in registers.

SSQUARE - This routine reforms the matrix P (+) from the

product S; (+)ST (+). It is written in optimized

assembler.

This completes a short description of the routines in the

program. A more exhaustive description of the program logic

is given in Appendix C.
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The modularity of the filter structure has proven

itself in actual usage. The water vapor/liquid water filter

of Chapter V was constructed of many of the above routines.

For the most part, only the observation matrix and

prediction routines were changed to reflect the difference

in the plant and physics of observation.

Section F. Tuning and problems

As with any filter designed to interact with reality,

the filter used in this thesis went through innumerable

revisions, modifications, and tunings. Some of these

revisions were due to a lack of appreciation or a

misunderstanding of the physical processes at work. Others

were somewhat more fundamental to the nature of the process

being estimated. This latter area will be covered in this

section.

One of the more persistent problems in the overall

filter has been the values of the state transition matrix

and the plant noise. The plant noise was computed under the

assumption that the state transition matrix was identity.

However, when the filter was first operated with a unity

state transition matrix, the lack of observability in the
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system quickly manifested itself in the form of a persistent

temperature inversion in the lower atmosphere of the

estimated temperature profiles. A modification of the

prediction procedure to allow smoothing to take place

between the adjacent levels removed this problem. The

amount of smoothing necessary seems to be uncritical and a

rather broad region of good performance seems to exist. The

performance seems to be optimum at the point where the

weight given the two adjacent levels is about half of the

the weight given to the level being propagated. This also

appears to be invariant of season. Because of the problems

mentioned in the section on system identification, the plant

noise was not recomputed on this state transition matrix.

As with all practical instruments, there is some

divergence between the observation matrix used by the

instrument and the one used by the filter. The case under

study was no exception. Numerical approximations in the

computation of the observation matrices, instrument biases,

and other unknown causes produced errors when the observed

brightness temperatures were compared with the brightness

temperatures using the observation matrices and the NMC K27

grid. Lacking knowledge of the source, it was decided to

compensate the brightness temperatures by means of an

empirical correction. Several days of observed brightness

temperatures were matched with the brightness temperatures
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produced using the observation matrices and the NMC K27

grid. As the errors had a mild latitudinal and scan angle

dependent character, separate corrections were computed for

each scan angle in 10* latitude bands. The first attempt

to use these corrections produced "shock" in the filter at

the points where the correction coefficients were changed.

This problem was eliminated by interpolation of the

correction coefficients.

When the filtering algorithm was first implemented, the

processing order of the observations was left to right,

channel 3 to channel 5. That is, the lowest number spot's

channel 3 was processed first, then the lowest number spot's

channel 4, etc. through the highest number spot's channel

5. Observation of the error performance and the Kalman gain

indicated that this processing order was inappropriate. In

the optimal linear Kalman filter, the order of processing

does not affect the overall accuracy of the final estimate.

The filter of this chapter, however, was neither linear nor

optimal. The observation matrices were determined by the

reflectivity and elevation of the surface, items that were

not known exactly to the filter. As a result, errors in the

predicted observations were "reflected" into the upper

atmosphere and adjacent spots by correlations in the error

covariance matrix. The reduction in the elements of the

covariance matrix due to the processing of channel 3 at a
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spot then caused the upper atmosphere channel to be given

less weight, although its observation matrix elements were

not subject to the same uncertainty. To reduce this

problem, it was decided to reorder the processing so that

channel 5 was processed first, left to right, then channel

4, left to right, etc. By processing the most linear

channel first, it was hoped that the uncertainties in the

surface character would be reduced. This has proved to be

the case.

Finally, the filter required tuning for observation

noise. The nominal performance of the three oxygen channels

is roughly 0.50 K rms. While this is undoubtedly the actual

performance, the approximations made in the computation of

the weighting functions and surface effects produce

additional errors. The filter was thus tuned by '7arying the

observation noise on all channels and observing the error

performance on two datasets, one in January, 1976, and one

in August, 1975. The results in both cases were that the

optimal noise for channel 3 was 1.0 K rms. The optimal

noise for channels 4 and 5 was O.rK rms.
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The causal experiment

The temperature Kalman-Bucy filter was exercised in

four modes in the course of this thesis: a causal mode, a

non-causal mode, a precomputed error covariance mode, and a

precomputed gain mode. The data available for these

experiments consisted of SCAMS data for six periods of time

during which it could be merged with the NMC K27 grid.

These periods are listed in Table 3 and span the expected

seasonal variations in climate. January and February are

considered winter months in the northern hemisphere, August

is a summer month and October and December are considered

transition months.

In order to produce as many useful comparisons as

possible at the lowest cost, the data from the merged tapes

was examined, and only those passes over the good

verification regions of Figure 2 were used to exercise the

filter. These segments of data began at least 10 frames

before the satellite entered a verification region.

To test stability of the filter, an unmerged tape was

used as a test input. The filter was run as a single spot

inverter for a period of several thousand frames without

exhibiting instability.

The filter was tested in three basic inversion schemes:
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Table 3

Coverage Approx imate

Number

of Comparisons

August 7-9, 1975

October 3-5, 1975

October 22-25, 1975

December 5-8, 1975

January 24-25, 1976

February 3-6, 1976
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Tape

Number

1

2

3

240

260

420

4

5

400

6

250

700



a one, two and three spot inversion. In the one spot

inversion, the data from a single scan angle was used to

perform the inversion. In the two and three spot scheme,

data from two and three adjacent scan angles were used as

the observation vector. In order to investigate the effect

of scan angle, both spots at the extreme scan angle and near

nadir were used in the inversions.

The results of these these experiments are given in

Tables 4 - 39. In the single spot portion of these tables,

the performance of the Statistical D method of inversion is

shown as a standard of comparison. The results for the

extreme and nadir scans of the February and August datasets

are shown in Figures 3 - 6. In these figures, the solid

line represents the Statistical D inversion results, the

long dashed line represents the one spot inversion, and the

short dashed line represents a three spot inversion.

There are a number of conclusions that may be drawn

from this experiment: First, the performance of the Kalman

filter improves with scan angle. This is probably because

of the fact that as the scan angle increases, the peak of

the weighting functions increase in altitude or lift. Thus,

as the scan angles increases, the observation matrices are

less dependent on the character of the surface, and the

components of these matrices that are in the atmosphere

increase. The filter thus observes more of the atmosphere,
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Table 4

One spot filter retrieval errors, Aug. 7-9, 1975

Extreme scan
(Scan angle 0)

Statistical D Kalman-Bucy

Pressure
(mb)

1000
850
700
500
400
300
250
200
150
100

70
5U
30
10
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Mean
Error
( K)

-4.8
-3.2
-1.2
-0.1
-0. 1

u;. 5
2.6
1.8
1.3
2.3
1.0
0. 8
1. 2

-0. L

RMS
Error
( K)

3.2
2.0
1.3
1.1
1.2
2.0
3. 6
3.0
3.0
1.8
2.3
1.1
1.3
2.2

Mean
Error
( K)

0.2
0. 8
0.6
0.4

-0.2
-0.2
0.3
0.5
0.2
1. 3

-0.9
-0.8
-0.5

0.3

RMS
Error
( K)

3.4
2. 4
1.6
1.11
i. 1
1.7
2.2
2.2
2.6
1.8
0.9
1 .2
1. 4
1.9



Table 5

One spot filter retrieval errors, Auy. 7-9, 1975

Mid-scan
(Scan angle 3)

Statistical D Kalman- fBucy

Pressure
(mb)

1000
850
700
500
400
3Ju
250
200
150
100
70
50
30
10
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Mean
irror
( K)

-4.2
-2.3
-0.4
0. 7
0.4
0.0
0.8
0.9
0. 7
0.3

-1.6
-0.7

0.6
0. 5

RMS
Error
( K)

3.1
2. 1
1.3
1.2
1.2
1.8
3. 3

2.6
2. 3
2.3
1.4
1. 2
2.0

Mean
Error

( K)

-0. 1
0.4
0.4

-0.2
-0.1
0.4
0.4
0.0
1. 5

-0.9
-1.2
-0.8
0.1

RM S
Error
( K)

3.1
2. 1
1.3
1.2
1.0
1.2
1.9
2. 3
2.0
1. 9
1. 1
1.1
1. 0
1.4



Table 6

One spot filter retrieval errors, Aug. 7-9, 1975

Nadir
(Scan angle 6)

Statistical D Kal-man- Bucy

PLessure
(mb)

1000
850
700
500
400
300
250
200
150
100

70
50
30
10
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Mean
Error
( K)

-3.7
-1.8

u.*O
0.7
0.5

-0.3
0.3
0.4
0.*4
0.0

-2.1
-1.0
0.5

-0.5

EMS
Error
( K)

2.5
1.6
1.1
1.3
1.3
1.9
3. 3
3.3
3.0

2. 7

2.7
2.4
1.7
1.4
1.8

Mean
rdrror
( K)

0.7
0.9
0.5
0.1

-0.3
-0.1

0.5
0.3

-0.1
1. 7

-0.8
-1.2
-0.9

0.0

RMS
Error
(K)

2.5
1. 7
1.2
1.6
1.4
1.4
2.0
2. 1
2.4
2. 2
1.4
1.2
1.1
1.3



Table 7

One spot f ilter retrieval errors, Oct. 3-5, 1975

Extreme scan
(Scan angle 0)

Statistical D Kalman-Bucy

Pressure
(mb)

10 0 U
650
700
500
400
300
250
200
150
100
70
50
30
10
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Mean
Error
( K)

-0.3
-0.5
0.0

-0.8
-1.0
-0.43
0. 2
0.6
2. 1

2.9
0.7
1. 1
1. 6
0.4

RMS
Error
( K)

4.5
2.8
1.7
1.5
1. 5
1.9
3.4
3. 1
2.9
2. 4
2.4
1.8
2. 2
3.0

Mean
Error
( K)

2.6
1.6
0.4

-0.3
0.0
0.9
1.5

-1.2
-2.8
0. 8
0.7
1.2
2.6
7.4

RM S
Error
( K)

3.8
2.3
1.3
1.4
1.4
1.8
2.3
2. 7
3.0
2.5
2.0
2.9
4. 1
5.5



Table 8

One spot filter retrieval errors, Oct. 3-5, 1975

Mid-scan
(Scan angle 3)

Statistical D Kalman-bucy

Pressure
(ab)

1000
850
700
500
400
300
250
200
150
100

7U
50
30
10
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Mean
Error
(K)

0. 0
0.3
0.8

-0.3

-1.2
-1.0

1.6
2.7
0.5
0. 7
0.7

-0.6

RMS
Error
( K)

3.7
2.5
1.7
1. 4
1. 7
2.3
3s 4
3.2
2.8
3. 2
3. 1
2. 1
2. 0
2.7

Mean
Error
( K)

2.4
1. 4
0.3

-0.7
-9.3
0.4
0.4

-1.8
-2. 1
1. 6
1.1
1.5
2. 7
7.3

IRMS
Error

K)

3.3
2. 1
1. 1
1.2
1. 4
2.0
2.7
3. 4
2.9
2. 9
2.7
3.9
4. 9
5.9



Table 9

One spot filter retrieval errors, Oct. 3-5, 1975

Nadir
(Scan angle 6)

Statistical D Kalman- Bucy

Pressure
(mb)

1000
85u
700
500
400
300

OU

2400

150

100
70
50
30
10
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Mea n
Error

( K)

0.4
U.l 8
1.2
0. 0

-0.5
-0.9
-1. 3
-0.2

1.6
2.2
un1
0. 4
0.5

-1. 1

RMS
Zrror

K)

3. 1
2. 4
2.1
2. 3
2. 5
2.7
3. 1
3.5
2.5
3. 3
3.6
2.'4
2.3
3.o4

Me an
Error
( K)

2.8
1. 8
0.5

-0.7
-0.3
0.3

-0.3
-2.0
-2.4

1. 4
049
1.6
2. 7
7.1

RMS
Error
( K)

2.6
1.8
1.2
1.4
1.6
2.5
2.9
3. 8
2.8
2. 8
3.3
4.5
5. 8
6.7



Table 10

One spot filter retrieval errors, Oct. 22-25, 1975

Extreme scan
(Scan angle 0)

Statistical D Kalman- Bucy

Pressure
(inb)

1000
850
700
500
400
300
250
200
150
100
70
50
30
11

- 122 -

Plea n
Error
( K)

2. 1

-1.4
-0. 4
-0. 3
-1.1
1.8

-0.7
0.7
3.6
0.5
1.2
1.7
0.9

R L S
Error

K)

3.8
3. 6
3.9
4.3
4. 3
4.3
4.
3.7
2.1
3. 3
4.9
4.5
5. 6
9.2

Aean
Error
( KC)

4.7
1.1
0.1
0.3
1.3
1.4
0. 1

-2.7
-4.5
1.3
0.6
1.7
4.0
10.0

F PI s
Error
( K)

3.3
2. 0
1.2
1.6
1.7
1.8
3.0
3. 3
2.3
1. 5
2,7
4.s4
6. 3
9.3



Table 11

One spot filter retrieval errors, Oct. 22-25, 1975

Mid-scan
(Scan angle 3)

Statistical D Kalman-Bucy

Pressure
(ib)

1000
65 0
700
500
400
300
250
200
150
100
70
50
30
10

- 123 -

Mean
Error
( K)

2.8
0.1 I
0.6
0. 3
0. 1

-0.8
-1. 5
-0.8

0.00
2.7

-0.2

1.7
0.9

miMS
Error
( K)

2.9
1.8
1.3
1.3
1.3
1.6
2. 6
2.3
1.5
2. 5
3.5
2. 5
2.7
4.4

Mean
2rror
( K)

154
9.3
0. 1
0.7
0.7

-0.4
-2.7
-4.4
1. 3
0.9
2.3
4. 7
10.8

RM S
Error

K)

3.1
1. 9
1.0
1.7
1.8
2. 1
3.4
3.0
1.9
1.6
3.0
4.3
6. 0
8.9



Table 12

One spot filter retrieval errors, Oct. 22-25, 1975

Nadir
(Scan angle 6)

Statistical D Kalman- Bucy

Pressure
(mb)

1000
850
700
500
40u
300
250
200
150
100
70
50
30
10

- 124 -

iean
Error
( K)

2.3
0.0
0.7
0. 4

-1.0
-1.9
-1.3
0.0
2.8

-0.2
O. 8
1.7
0.7

Error
( K)

2.6
1. 8
1.4
1.3
1.7
1.7
2.7
2.4
1.6

3.4
2. 8
2.9
4.6

mean
Error
( K)

5.0
1. 2
0.3
0.1
0.7
0., S

-0.5
--2.7
-4.3
1.5
0.8
2. 1
4. 3
10.0

RMS
Error

K)

3.5
2. 2
1.2
lab
1.8
2.1
3.4
2.8
1.9
1.7
3.0
4.3
5. 8
8.3



Table 13

One spot f ilter retrieval errors, Dec. 5-8, 1975

Extreme scan
(Scan angle 0)

Statistical D Kalman-Bucy

Pressure
(irb)

1000
$50
700
500
400
300
250
200
150
100
70
50
30
10

- 125 -

l al iI
Error

K)

9.7
2. 3
0.8

-1.4
-1.7
-2.1
-2. 1
1.2
2.5
3.9
0.8
1. 3
1.4

-2. 1

RtS
Error
( K)

8.2
3. 8
2. 1
1. 6
1. 9
2.9
3. 5
2.4
2.0
2. 9
2.4
2.2
3. 5
7.1

Mean
ELroc
( K)

3.2
1.8
1.14
0. 0
0.4

1.0 9
-0.2
-0.4
-0. 1

0.2

tLI

2rror
K)

3.7
2. 1
1.6

1. 3
2.5
3.1
3. 2
2.1
2. 0
2. 4
3.0
3.9
6.5



Table 14

One spot f ilter retrieval errors, Dec. 5-8, 1975

Mid-scan
(Scan angle 3)

Statistical D Kalman- Bucy

Pressure
(mb)

1000
850
700
500
400
300
250
200
150
100
70
50
30
10

- 126 -

Mea n
Error
( K)

6.7
2. 1
1.2

-0. 6
-1. 1
-2. 1
-2.8
-0.6
1.4
3.8
0.7
1.2
1.5

-0.3

RMS
Error

K)

5.8
3. 1
1.6
2. 1
2.6
3.2
3. 8
2.6
2.3
3. 5
3.8
3. 1
3.8
6.4

Mean
Error
( K)

4.1
2.4
1.7

-0.2
-0.4
-1.1
-1.9
-2.0
-1.5
2. 6
0.5
1.3
2. 4
4.3

BM S
Error
( K)

3.8
2.3
1.4
1.4
1.6
3.0
3. 4
3.2
1.8
2. 1
3.8
4.7
5.6
7.9



Table 15

One spot filter retrieval errors, Dec. 5-8, 1975

Nadir
(Scan angle 6)

Statistical D Kalman- Bucy

Pressure
(mb)

1000
850
700
500
400
300
250
200
150
100
70
50
30
10

- 127 -

Mea n
Err or
( K)

2.4
1.6

-0.3
-1.0
-2. 5
-3.2
-0.8
1.5
3.9
0.8
1. 3
1. 6
0.2

RMS
Error
( K)

5.0
2. 9
1.9
2. 0
2. 6
3.7
4. 1
2.6
2.4
4. 1
4.4
3. 6
4. 0
6.7

dean
Error

K)

3.4
2.0
1.6

-0.3
-0.4
-1.4
-2. 1
-1.9
-1.3
2. 9
1.8
1.7
2.7
4.8

RMS
Error

K)

3.9
2. 7
1.8
1.4
1. 9
3.7
3.6
3. 4
1V.7
2. 5
4.7
6.1
6. 8
9.5



Table 16

One spot filter retrieval errors, Jan. 24-25, 1976

Extreme scan
(Scan angle 0)

Statistical D Kalrman-Bucy

Pressure
(nib)

1030
650
700
500
400
30 U
250
200
150
100

70
50
30
10

- 128 -

Nea n
Error
( K)

8.2
2.0
1.1

-0.7
-1.2
-1.7
-1.9

0.9
3.1
5.6
2.1
1.8

-1.2
-10.1

EMS
Error
( K)

11.6
4.6
3.0
2.8
3.0
3.5
3.9
2.8
1.9
3. 3
3.2
3. 3

6. 6

Mean
Error
( K)

2.2
0.8
0.6

-0.1
0.9
1.1

-0.3
-1.6
-1.5

2. 1
0.3
0. 7

-0.5
-5.5

RMS
Error

K)

6.3
2. 5
1.1
1.6
1.4
2.4
3.6
3.0
1.9
1. 5
2.4
2. 2
3.5
7.2



Table 17

One spot filter retrieval errors, Jan 24-25, 1976

Mid-scan
(Scan angle 3)

Statistical D

Mean
trror
(K)

5.5
2. 3
1.5

-0.7
-1.6
-3.3
-4.3
-1.0
2.8
6.4
2.8
2.1

-1.5
-11.5

Erro r
K)

6. 3
3.5

2.7
3.3

4.6
J.5
2.3
3.8
3. 6
4.0
4.8
5.8

Kalman-Bucy

ean
Error
( K)

1.5
1.7
1.5

-0.1
0.5

-0.2
-1.6
-2.6
-1.5
3tO0
1.4
2. 1
0.4

-4.5

Error
K)

5.9
3.3
2.0
1. 5
2.2
3.2
4.2
3.1
1.5
3.0
3.6
3.7
4.6
7.5

- 129 -

Dres sure
(inb)

1000
850
700
5 00
400
300
250
200
150
100
70
50
30
10



Table 18

One spot filter retrieval errors, Jan. 24-25, 1976

Nadir
(Scan angle 6)

Statistical D Kalman-Bucy

Pressure
(mib)

1000
850
700
500
400
300
250
200
150
100

70
50
30
10

- 130 -

Mean
Error

K)

5.7
2.3
1.6

-0.5
-1.3
-2.8
-4. 1
-1.3
2,.5
5.9
2.6
2. 1

-1.5
-12.3

R iS
Error
( K)

8. 1
3. 9
2.3
2.6
3. 3
4.0
4.6
3.0
2.3
3. 7
4. 1
4.5
5.2
5.9

te an
Error
( K)

1.7
2.2
1.8
0. 1
0. 5

-0.3
-1.9
-2.9
-1.,4
3.3
1.5
1.9
0.2

-5.4

RMS
E rror
( K)

5.1
3. 2
2.0
1.3
2. 0
3. 1
4. 0
2.9
1.4
2. 8
3. 5
3.7
4.2
7.5



Table 19

One spot filter retrieval errors, Feb. 3-6, 1976

Extreme scan
(Scan angle 0)

Statistical D Kalman-Bucy

Pressure
(rnb)

1000

850
700
500
400
400
250
200
150
100
70
50
30
10

- 131 -

Mea n
Error
( K)

6.7
1.0
0.5

-0.8
-1.0
-1.4
-1.5
0.6
1.9
4.6
1.9
1. 5
0.3

-6.8

R Ns
Error
( K)

9.4
3.7
2.4
2. 0
2.2
3.4
3. 9
3.3
2.4
2.7
2.7
3. 0
4. 6
9.1

Mean
Error
( K)

0.3
0.5
1.0
0.2
1.0
0.9

-0.2
-1.7
-1.3
2. 4
0.3
0.3
0. 1

-1.7

RMS
Error
( K)

3.9
2.3
1.7
1.5
1.8
3.1
3.5
2.8
1.7
2.0
2.0
3.2
5. 1

1 0.7



Table 20

One spot filter retrieval errors1 Feb. 3-6, 1976

Mid-scan
(Scan angie 3)

Statistical D Kalman-Bucy

Pressure
(mb)

1000
850
7J0
500
400
300
/5O
200
150
100

70
50
30
10

- 132 -

Mean
trror
( K)

4.6
1.5
1.2

-0. 4
-1.1
-2.5
-3.0
-0.9

1. 4
4.8
2.3
1.9
0.7

-5.7

RMS
Error
( K)

7.5
2.9
2.2
2. 4
2.7
4. 0
4. 1
3.0
2. 6
3.6
3.6
3. 4
4.9
8. 4

Mean
trror
( K)

-0.5
0.4
0.9

-0.2
0.5
0.0

-0.6
-1.7
-1.1
3.0
0.6
1. 2
1.3
0.4

RI4S
Error

K)

4. 9
2. 9
1.9
1.6
2. 1
3.9
4. 4
3.2
1.5
2.8
4.1
5.9
7.7

13.0



Table 21

One spot filter retrieval errors, Feb. 3-6, 1976

Nadir
(Scan angle 6)

Statistical D Kalman-Bucy

Pressure
(mb)

1000
850
700
500
400
300
250
200
150
100
70
50
30
10

- 133 -

Mea n
Error
( K)

4.6
1. 5
1e2

-0.4
-1.1
-2.5
-3.0
-u.9

1. L

4.8
2.3
1. 9
0.7

-5.7

EMS
Error
( K)

7.5
2. 9
2.2
2. 4
2.7
4. u
4. 1
3..0
2.6
3. 6
3.6
3. 4
4. 9
8.4

Mean
Error
( K)

-0.5
0. 4
0.9

-0.2
0.5
0.0

-0.6
-1.7
-1.1

3. 0
0.6
1.2
1. 3
0.4

RM S
Error
( K)

4.9
2. 9
1.9
1.6
2. 1
3.9
4.4
3. 2
1.5
2. 8
4.1
5.9
7.7

13.0



Table 22

Two spot filter retrieval errors, Aug. 7-9, 1975

Extreme scan Close scan

Scan angle 0 Scan angle I Scan angle 5 Scan angle 6

Pressure
Imb)

1000
850
700
300
400
300
250
200
150
100
70
50
30
10

~~4

Me an
Error
( K)

0.0
0.7
0.6
0.5

-0.2
-0.2

0.3
0.4
0.1
1. 2

-1.0
-0.9
-0.6
0.2

R1MS
Error

K)

2.9
2.1
1.4
1.1
1.0
1. 6
2.1
2. 1
2.7
1 .8
0.9
1.3
1.5
1.9

M ean
Error
( K)

0.0
0.6
0. 4
0. 1

-0.5
-0.4

0.3
0.6
0. 1
1.6

-0.7
-0.8
-0.5
0.3

RMS
Error
( K)

3. 2
2.2
1.5
1. 1
0.8
1.2
1.7
2.3
2.0
1.4
1.2
1.5
1.6
2. 1

Mean
Error
( K)

2.3
1.5
0.4

-0.6
-0.2
0.4
0. 1

-1.9
-2.3
1.3
0.8
1.4 4
2.3
6.7

H MS
Error
( K)

2.6
1.8
1.2
1.2
1.4
2.2
2.9
3.9
2. 9
2.8
3.5
4. 8
6.1
7.T0

Mean
Er ror
( K)

2.6
1. 6
0.5

-0.6
-0.2

0.5
0.0

-1.9
-2.3

1.3
0.6
1. 2
2.2
6.5

-R ms
Error
( K)

2.6
1.8
1.3
1.4
1.5
2.4
3.0
3.9
2.8
2.7
3.6
4.8
6. 1
7.0



Table 23

Two spot filter retrieval errors, Oct. 3-5, 1975

Extreme scan Close scan

Scan angle 0 Scan angle 1 Scan angle 5 Scan angle 6

Mean
Pressure Error

(mb) ( K)

1000
850
700
500
400
300
250
200
150
1 00
70
50
30
10

2.3
1.5
0. 4

-0.3
0.2
1.0
1.6

-1.2
-2.9

0.7
0.7
1.3
2.8
7.6

wA

U,

RMS
Error
( K)

3.9
2.3
1.2
1.4
1.3
1.7
2.2
2.7
2.9
2.4
1.9
2.9
4. 1
5.6

M ean
Error
( K)

2.2
1.3
0.2

-0.6
0.0
0.9
1.4

-1.4
-2.5
1.2
0.8
1.2
2.6
7. 3

aMS
Error

K)

3. 4
2.0
1.2
1. 4
1.4
1.7
2.2
2.4
2.,9
2.5
2.0
3.0
4.2
5. 6

Mean
Error
( K)

2.3
1.5
0.4

-0.6
-0.2
0.4
0.1

-1.9
-2.3

1.3
0.8
1.4
2.3
6.7

RMS
Error
( K)

2.6
1.8
1.2
1.2
1.4
2.2
2.9
3.9
2. 9
2.8
3.5
4. 8
6. 1
7.0

Mean
Error

K)

2.6
1.6
0.5

-0.6
-0.2
0.5
0.00

-1.9
-2.3

1.3
0.6
1.2
2.2
6.5

RMS
E rror
( K)

2.6
1.8
1.3
1.4
1.5
2.4
3.0
3.9
2.8
2.7
3.6
4.8
6. 1
7.0

I



Table 24

Two spot filter retrieval errors, Oct. 22-25, 1975

Extreme scan Close scan

Scan angle 0 Scan angle 1 Scan angle 5 Scan angle 6

Pressure
(mb)

1000
850
700
500
400
300
250
200
150
100
70
50
30
10

Me an
Error
( K)

4.6
1.0
0. 1
0.3
1.3
1.5
0.1

-2.7
-4.5

1.3
0.6
1.7
4.0
10.0

RM s
Error
( K)

3.3
1.9
1.2
1.6
1.7
1.8
3.1
3.5
2. 3
1.5
2.9
4.7
6.6
9.8

Mean
Error
( K)

5. 1
1.3
0.3
0. 4
1.2
1. 2

-0.1
-2.7
-4. 5

1.2
0.7
2.0
4.4

10. 4

RMS
Error
( K)

2. 9
1.8
1.0
1.5
1.5
1.9
3.3
3.4
2. 3
1.5
3.1
5.0
7.0

10. 0

Mean
Error
( K)

4.9
1.1
0.2
0.2
0.9
0.8

-0.4
-2.5
-4.2

1.3
0.5
1.7
4.0
9.7

HMS
Error
( K)

3.4
2. 1
li1
1. 6
1.6
2.0
3.4
3.0
2. 0
1.8
3.3
4. 8
6.4
9.3

Me an
Error
( K)

4.8
1. 1
0.2
0.2
0.9
0.7

-0.3
-2.5
-4.3

1.3
0.5
1.6
3.8
9.4

R s
Error
( K)

3.4
2.2
1 .2
1.6
1.7
2.1
3.5
3.0
2.0
1.7
3.2
4.6
6.2
8.9

I

I



Table 25

Two spot filter retrieval errors, Dec. 5-8, 1975

Extreme scan Close scan

Scan angle 0 Scan angle 1 Scan angie 5 Scan angle 6

Pressure
(mb)

1000
850
700
5Ot
400
300
250
200
150
100
70
50
30
10

Mean
Error
( K)

3.4
2.0
1.5
00.1
0.4

-0.1
-0.9
-1.3
-1.5

1.8
-0.1
-0 .2

0.2
0.6

RN s
Error
( K)

3.6
2.0
1.5
1.3
1.1
2.
3.1
3.2
2.0
2.1
2.6
3.3
4.2
6.9

M ean
Error

K)

3. 2
1.7
1.3

-0.1
0.2

-0.2
-1.0
-1.3
-1.5

1.9

-0.2
0.3
1. 3

RMS
Error
( K)

3.8
2.0
1.4
1.4
1.3
2.3
2.9
3.2
2.0
1.9
2.7
3. 3
4.4
6. 7

Mean
Error
( K)

3.3
1.8
1.3

-0. 5
-0.6
-1.4
-1. 9
-1.7
-1.0

3.2
0.8
1.5
2.2
4.2

A ns
Error
( K)

3.7
2.5
1.8
1.5
1.7
3.5
3.6
3.5
1.7
2. 4
4.6
6. 0
7.0
9.7

Mean
Error
( K)

2.9
1. 4
1.1

-0.3
0.2

-0.3
-0.8
-0.9
-0.9
2.3

-0.9
-0. 7
0.1
2.4

R MS
E rror

K)

5.2
3.6
2.0
1.8
2.5
4.2
4. 5
4.2
2.3
3.3
5.5
7.6
9.5

11.8

2



Table 26

Two spot filter retrieval errors, Jan. 24-25, 1976

Extreme scan Close scan

Scan angle 0 Scan angle 1 Scan angle 5 Scan angle 6

Mean
Pressure Error

(mb) ( K)

1000
850
700
500
400
300
250
200
150
100
70
50
30
10

2.2
0.8
0.6

-0.1
1.0
1. 1

-0.3
-1.6
-1.5

2.1
0.4
1.0

-0.1
-5.0

ODIA
0

RMS
Error
( K)

6. 1
2.2
1. 0
1.6
1.3
2. 5
3.9
3.3
2.2
1.8
2.5
2.3
3.6
7.7

Mean
Error
( K)

2. 2
1.5
1.3
0.0
0.8
0. 4

-0.8
-2.0
-1.5

2.4
0.7
1.2

-0.3
-5.2

RMS
Error
( K)

6. 1
2.3
1.4
1.7
1.5
2. 4
3.8
3.3
1.9
2. 1
2.6
2.6
4.0
8.2

Ie an
Error
( K)

1.5
2.0
1.7
0. 1
0.5

-0.2
-1.7
-2.6
-1.4

3.2
1.5
1.9
0.2

-5.2

RMS
Error
( K)

4.9
3. 1
2.1
1.4
1.8
3.1
4. 1
2.9
1.4
3.0
3.7
3. 9
4.5
7.2

Me an
Error
( K)

1.9
2. 3
1 .8
0. 0
0.3

-0.5
-2.0
-2.9
-1 o 3
3.5
1.8
2.2
0.5

-5.0

aMS
Error
( K)

5.0
3.0
1.9
1.2
1.7
3.0
4. 1
2.9
1.4
2.8
3.5
3.6
4.0
7.3



Table 27

Two spot filter retrieval errors, Feb. 3-6, 1976

Extreme scan Close scan

Scan angle 0 Scan angle 1 Scan angle 5 Scan angle 6

Pressure
(01b)

1000
850
700
500
400
300
250
200
150
100
70
50
30
10

'-I

Me an
Error
( K)

0.7
1.1
0.2
0.9
0.8

-0.3
-1.8
-1.4
2.3
0.3
0.4
0. 3

-1.5

RMS
Error
( K)

4. 1
2.3
1.6
1.5
1.6
3.0
3.5
2.8
1.7
2.1
2.0
3.3
5.2
10.8

M ean
Error
( K)

0. 3
0.8
1. 1
0. 1
0.3
0. 5

-0. 2
-1.7
-1.2

2.5
0.4
0.6
0.4

-1. 2

RMS
Error
( K)

4.3
2.1
1.5
1.4
1.6
2.9
3.4
2.6
1.5
2.0
2.2
3.4
5.3

10.6

Mean
Error
( K)

-0.1
0.6
1.0

-0.2
0.4

-0.2
-0.8
-1.9
-1.1
3.0
0.8
1. 5
1.7
1.0

RMS
Error

K)

4.8
2.9
1.9
1. 4
2. 0
3.8
4. 4
3.2
1.5
2.7
4.0
5.8
7.7
12.9

Mean
Error
( K)

-0.3
0. 5
0.9

-0.3
0.3

-0.2
-0.7
-1.7
-1.0
3. 1
0.8
1. 3
1.5
0.5

RMS
Error

K)

5.1
3.0
11.9
1.5
2.0
3.9
4.5
3.3
1.6
2.7
4.3
6.2
8.3

13.5



Table 28

Three spot filter retrievals,

Extreme scan

Aug. 7-9, 1975

Scan angle 0 Scan angle 1 Scan angle 2

Pressure
(T;b)

1000
850
700
500
400
300
250
200
150
100

70
50
30
10

- 140 -

Me an
Error
( K)

-0. 1
0.6
0. 6
0.5

-0.1
-0. 1

0.4
0.4
0. 1
1.2

-1.1
-1.0
-0.6

0.2

RM S
Error

K)

2.9
2.0
1.4
1.1
1.1
1.6
2. 1
2.0
2.7
1.8
0.9
1.3
1.5
1.9

Mean
Error
( K)

-0. 1
0.5
0. 4
0. 2

-0.4
-0.3

0.3
0.5
0. 0
1.5

-0.7
-0.8
-0.5

0. 3

R m s
Error
( K)

2.9
2.0
1.3

1. 1
0.8
1.2
1. 6
2.2
2.0
1.4
1.2
1. 4
1.6
2. 0

Mea. n
Error
( K)

0. 1
0. 6
0.4
0. 1

-0.5
-0.5

0. 1
0.3
0.0 0
1.7

-0.6
-0.9
-0.5

0.3

RMS
Error
( K)

2.9
2.0
1.4
1.2
0.8
1.2
1.7
2. 4
1.9
1.6
1.1
1.4
1.4
1.9



Table 29

Three spot filter retrieval errors, Aug. 7-9, 1975

Close scan

Scan angle 5 Scan angle 6 Scan angle 7

Pressure
(mb)

1000
850
700
500
400
300
250
200
150
100

70
50
30
10

- 141 -

Mean
Error
( K)

0.2
0.6
0.4
0.2

-0.1
0. 0
0.7
0. 4

-0.2
1.4

-1.0
-1.3
-1.0
-0.1

RMS
Error
(K)

2.8
1.9
1.2
1.14
1.1
1.3
1.9
2.0
2.2
2.1
1.4
1.2
1.0
1.2

Mean
Error
( K)

0. 5
0.8
0.5
0. 1

-0.2
0. 0
0. 6
0.3

-0.2
1.6

-0.9
-1.3
-1.0
-0. 1

RMS
Error
( K)

2.4
1.7
1.1
1.4
1.1
1.3
1.9
2. 1
2.3
2. 1
1.3
1. 1
1.0
1.3

Mean
Error
( K)

0.8
1.0
0. 5
0.0

-0.2
0.0
0. 6
0.3

-0. 1
1. 7

-0.8
-1.1
-0.9
0. 0

RMS
Error
( K)

2.3
1.6
1.1
1.4
1.2
1.4
2. 0
2.2
2.3
2.1
1.3
1.1
140
1.3



Table 30

Three spot filter retrieval erccrs, Oct. 3-5, 1975

Extreme scan

Scan angle 0 Scan angle 1 Scan angle 2

Pressure
(mb)

1000
850
700
500
400
300
250
200
150
100
70
50
30
10

- 142 -

RMS
Error
( K)

Mean
Err or
( K)

2.2
1.3
0.4

-0.2
0.2
1.0
1.6

-1.3
--3. 0

0.7
0. 6
1.3
2.9
7.7

Mean
Error

K)

2. 2
1.3
0.3

-0.5
0. 1
0.9
1. 4

-1.5
-2. 6
1.2
0.8
1. 3
2.6
7. 4

4. 0
2.4
1.2
1.14
1.3
1.6
2.2
2.8
2. 9
2. 4
1.9
2.9
4. 1
5.6

RMS
Error

K)

2. 1
1.1
1. 2
1.2
1.6
2.2
2.5
2. 9
2. 4
1.
2.9-
4.2
5.6

Mean
Error
( K)

2. 1
1.2
0.2

-0.6
-0.1
0.9
1. 2

-1.5
-2.2
1.4
0.9
1.3
2.6
7.4

RMS
Error
( K)

3.4
2. 1
1.1
1.2
1.14
1.9
2.3
2.6
2.8
2.4
1.9
3.1
4.3
5.6

7



Table 31

Three spot retrieval errors, Oct. 3-5, 1975

Close scan

Scan angle 5 Scan angle 6 Scan angle 7

Pressure
(irb)

1000
850
700
500
400
300
250
200
150
100

70
50
30
10

- 143 -

Mean
Error
( K)

2.0
1.2
0.4

-0.5
0.0
0.7
0.2

-1.8
-2.3

1.2
0.6
1. 1
2.0
6.4

RMS
Error
( K)

2. 5
1.7
1.2
1. 1
1.3
2. 1
2.9
3.9
2.8
2.8
3.6
5.0
6.4
7.3

Mean
Error
( K)

2.2
1.3
0.4

-0. 5
0.0
0.8
0. 1

-1.8
-2.4

1. 1
0. 4
0. 9
1. 8
6. 2

RMS
Error
( K)

2. 4
1.7
1.2
1.2
1.4
2.2
3.0
4.0
2.8
2.7
3.6
4.9
6.3
7.2

Mean
Error
( K)

2.2
1. 3
0.3

-0.6
0. 0
0.7
0.0

-1.8
-2.2

1. 1
0.2
0.6
1.4
5.5

RMS
Error
( K)

2.6
1. 9
1.4
1.4
1.5
2.4
2. &
3.8
2.9
2.5
3. 4
4. 8
6. 1
7.2



Table 32

Three spot filter retrieval errors, Oct. 22-25, 1975

Extreme scan

Scan angle 0 Scan angle 1 Scan angle 2

Pressure
(mb)

1000
850
700
500
400
300
250
200
150
100
70
50
30
10

- 144 -

Mean
Error
( K)

4.5
0.9
0. 1
0.4
1.4
1.5
0.2

-2.7
-4.6

1.3
0.5
1.7
4. 1

10.2

RMS
Error
( K)

3. 2
1.9
1.2
1.7
1.8
1.8
3. 1
3.5
2.3
1.5
2.9
4.8
6.9

10.2

Mean
Error
( K)

4. 9
1.2
0.2
0. 4
1.3
1.3
0.o0

-2.7
-4.6
1.1
0. 6
1. 9
4.4

10x5

RMS
Error
( K)

2.8
to8L
1.0
1.5
1.5
1.8
3. j

3.5
2.3
1.6
3.0
5.0
7. 1

10.3

Mean
Error

K)

5.3
1. 4
0.3
0. 3
1.1
1i11

-0. 1
-2.5
-4.4

1. 1
0.6
1.9
4.3

10.4

RMS
Error
( K)

2.9
1.9
110
1.5
1.5
2.0
3. 4
3. 3
2.2
1. 5
3.3
5.2
7.3

10.4



Table 33

Three spot filter retrieval errors, Oct. 22-25, 1975

Close scan

Scan angle 5 Scan angle 6 Scan angle 7

Pressure
(irb)

1000
850
700
500
400
300
250
200
150
100

70
50
30
10

- 145 -

Mean
Error

"K)

4.6
0.9
0.2
0.3
1.0
0.9

-0.3
-2.5
-4.2

1.3
0. 5
1.7
3.9
9.7

R MS
Error
( K)

3.5
2.2
1.1
1.5
1.6
2.0
3. 4
3.0
2.0
1.9
3.5
5. 1
6.8
9.7

Mean
Error
( K)

4. 5
0.9
0.2
0. 3
1. 1
0.9

-0.2
-2.5
-4.4

1.2
0.3
1.4
3.6
9.3

RMS
Error

( K)

3.5
2. 2
1.2
1.5
1.6
2.0
3. 5
3.0
2.0
1.7
3.4
4. 9
6.6
9.2

Mea n
Error
( K)

4.4
0.8
0.1 I
0.2
1.1
1.1
0. 1

-2.4
-4.4

1.0
0. 1
1.2
3. 3
8.8

RMS
Error
( K)

3.5
2.2
1.2
1.5
1.6
2.1
3. 5
3.0
2.0
1. 5
3.3
4.9
6. 4
8.8



Table 34

Three spot filter retrieval errors, Dec. 5-3, 1975

Extreme scan

Scan angle 0 Scan angle 1 Scan angle 2

Pressure
(mb)

1000
850
700
500
400
300
250
200
150
100
70
50
30
10

- 146 -

Mean
Err or

K)

3. 4
2.0
1.5
0.1

-0.1
-0.9
-1.3
-1.6
1.8

-0.1
-0. 1
0.14
0. 8

E.MS
Error
( K)

3.5
1.9
1.5
1.3
14.1
2.6
3. 1
3.2
2. 0
2. 1
2.7
3. 5
4e3
7.0

Mean
Error

K)

3. 5
2. 0
1.5
0.0
0. 2

-0.3
1. 1

-1.3
-1.5
1.9

-0.1
0.0
0.6
1.5

RMS
Error

K)

3.6
1.9
1.3
1.2
1. 1
2.4
2.9
3.1
1.9
1.9
2.8
3.5
4.5
6.8

Mea n
Error
( K)

3.7
2. 1
1.5

-0. 1
0. 0

-0.5
-1.3
-1.5
-1.4
2.2

-0.1
0. 1
0. 7
2. 1

RMS
Error

K)

3.6
1.9
1.2
1.3
1.2
2.4
2.8
3.0
1.9
2.0
2.9
3.5
4.5
6.5



Table 35

Three spot filter retrieval errors, Dec. 5-8, 1975

Close scan

Scan angle 5 Scan angle 6 Scan angle 7

Pressure
(mb)

1000
850
700
500
400
300
250
200
150
100
70
50
30
10

- 147 -

Mean
Error

(K)

3.5
2. 1
1.6

-0.2
-0.4
-1.3
-2.0
-2.0
-1.3

2.9
0. 7
1.6
2.5
4. 5

RMS
Error
( K)

4,w 4

3.0
1.8
1. 1
1.7
3.6
3.9
3.6
1.8
2.5
4.8
6.2
7.2
9.8

Mean
Error

K)

3.6
2.2
1.8

-0. 1
-0.3
-1.4
-2.2
-2.0
-1.3

2. 9
0. 8
1.8
2.7
4.9

RMS
Error
( K)

4. 1
2. 9
1.8
1. 1
1.6
3.7
3.9
3.6
1.7
2.6
5.0
6.5
7.4

10.1

Mean
Error
( K)

3.7
2.3
1.8

-0. 1
-0.4
-1.6
-2.3
-2. 1
-1.3

3.0
1.0
2.2
3.3
5.6

RMS
Error
( K)

3.9
2.7
1.8
1. 1
1.6
3.7
4. 0
3.7
1.7
2.9
5.2
6. 7
7.6

10.6



Table 36

Three spot filter retrieval errors, Jan. 24-25, 1976

Extreme scan

Scan angle 0 Scan angle 1 Scan angle 2

Pressure
(mb)

1000
850
700
500
400
300
250
200
150
100
70
50
30
10

- 148 -

Mean
Error

K)

2. 1
0.7
0.5

-0. 2
0.9
1.1

-0.2
-1.6
-1.4
2. 1
0. 5
1. 0

-0. 1
-5. 1

RMS
Error
( K)

6.3

1.0
1.6
1.3
2.6
4.0
3,.4
2. 2
1.8
2.5
2.4
3.7
7.7

Mean
Error
( K)

2.3
1.6
1.3

-0. 1
0.7
0. 5

-0.7
-1.9
-1.3
2. 5
0.7
1.2

-0.3
-5.2

RMS
Error
( K)

6. 1
2. 3
1.3
1.6
1.4
2.5
3.9
3.3
1. 9
2.2
2.7
2. 6
3.9
8.a0

Mean
Error

K)

2. 1
1. 8
1.5
0.0
0.6
0. 1

-1.2
-2.2
-1.4
2.7
0.9
1. 4

-0.4
-5.3

EMS
Error

K)

5.6
2. 4
1.5
1.6
1.1
2.5
3.8
3.2
1.9
2. 5
2.9
2.9
4. 2
8.5



Table 37

Three spot filter retrieval errors, Jan. 24-25, 1976

close scan

Scan angle 5 Scan angle 6 Scan angle 7

Pressure
(mb)

1000
850
700
500
400
300
250
200
150
100
70
50
30
10

- 149 -

Mean
Err or
( K)

1.6
2. 1
1.7
0.0
0.5

-0.3
-1.8
-2.7
-1.4

3.3
1.6
2. 1
0.5

-4.9

RMS
Error
( K)

4.8
3.0
2.1
1.3
1.7
3.2
4. 2
3.0
1.5
3. 0
3.7
4. 1
4.7
7.2

Mean
Error
( K)

2. 0
2. 4
1.9

-0. 1
0. 3

-0.5
-2.1
-2. 9
-1.3

J. 5
1.9
2.3
0.6

-4, 8

R MS
Error
( K)

4.7
2.9
1.9
1. 1
1. 6
3. 1
4. 2
2.9
1.4
2. 8
3.5
3.7
4.2
7.2

Mean
Error
( K)

2.3
2. 6
2.0

-0. 1
0. 1

-0.7
-2.3
-3. 1
-1.2

3. 8
2. 1
2. 5
0. 8

-4.7

RMS
Error
( K)

5.2
3. 1
1.9
1.2
1. 7
3.1
4.2
2.9
1.5
2. 7
3.3
3.5
3.9
7.1



Table 38

Three spot filter retrieval errors, Feb. 3-6, 1976

Extreme scan

Scan angle 0 Scan angle 1 Scan angle 2

Pressure
(mb)

1000
850
700
500
400
300
250
200
150
100

70
50
30
10

- 150 -

Mean
Error
( K)

0.8
0.9
1.2
0.2
0.9
0.7

-0.4
-1.9
-1.5

2.3
0.3
0.5
0.5

-1.2

RMS
Error
( K)

4.3
2.4
1.7
1.5
1.5
3. 0
3. 5
2.8
1.8
2. 1
2. 1
3,v 3
5.3

11.0

Mean
Error

K)

0. 5
0.9
1.2
0. 1
0.7
0. 4

-0.3
-1.8
-1.3
2.5
0.4
0.7
0.5

-1.0

Ras
Error

K)

4.5
2.3
1.5
1.5
1.6
3.0
3. 5
2.7
1.6
2. 1
2.2
3.3
5.2

10.7

Mean
Error

K)

0.3
0.9
1. 1
0.0
0. 6
0.3

-0.3
-1.7
-1.2
2. 6
0.4
0. 8
0.7

-0.6

RMS
Error
( K)

4.3
2.3
1.6
1.4
1.5
3.0
3.6

2.5
1.4
2. 1
2.5
3. 8
5.7
10.7



Table 39

Three spot filter retrieval error, Feb. 3-6, 1976

Close scan

Scan angle 5 Scan angle 6 Scan angle 7

Pressure
(mb)

1000
850
700
500
400
300
250
200
150
100
70
50
30
10

- 151 -

Mean
Error

K)

0. 0
0. 8
1.0

-0.2
0.3

-0.3
-0.8
-1.9
-1.1
3.0
0.9
1.7
1.9
1. 2

RMS
Error

K)

5.0
3. 1
1.9
1.4
2.0
3.8
4.4
3.2
1.6
2.
4,90
5.7
7.6
12.7

Mean
Error
( K)

-0. 1
0.7
1. 0

-0. 3
0.3

-0.3
-0.8
-1.8
-1.0
3. 1
0.9
1.5
1.7
0. 8

RMS
Error
( K)

5.3
3.2
1.9
1. 4
2.0
3.9
4.6
3.. 4
1.6
2.8
4.2
6. 1
8. 1

13.3

Mean
Error
( K)

-0.2
0.5
0.9

-0.4
0.3

-0.3
-0.9
-1.8
-1.0

3.3
0.9
1.4
1.6
0.4

EMS
Error
( K)

5.3
3.2
2.0
1.4
2.0
4. 1
4.7
3.5
1.6
2.7
4.4
6.5
8.5

13.9



the temperature structure of which is the desired output

product. The observation matrices are also less noisy since

the assumptions made about the surface have less impact.

The second conclusion is that the filter performance

improves with the number of scan angles used in the filter.

This is an expected result. The atmosphere is basically a

low pass process. The temperature profile at one spot

contains a large amount of information about temperature

profiles nearby in space. Thus, the filter is able to use

this information for noise averaging. For multi-spot

retrievals at the higher scan angles, a second important

.phenomenon enters to improve performance. As the scan

angle increases, it has been mentioned that the weighting

functions lift. The amount of increase in altitude between

adjacent scan angles is highest at the extreme scan angles.

The three spot inversion scheme at the extreme scan is thus

able to view basically the same atmosphere with three

different sets of weighting functions. At nadir, the three

spot inversion looks at the atmosphere with what amounts to

a single weighting function.

Seasonally, the Kalman filter shows the most

improvement over the Statistical D method during the winter

months. During this season the atmosphere exhibits large

swings in temperature as weather systems move across the

world. Within these systems the atmosphere is still
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coherent spatially. The memory of the Kalman filter thus

produces superior results at most levels of the atmosphere.

During the summer, the atmosphere is relativly quiet and the

temperature profile, in general, lies close to the prior

mean. Thus, during the summer months both the Statistical D

and the Kalman filter exhibit rms performance close to the

inherent error of the standard of comparison. It is

important to note that the Statisical D method contains a

mean error that is generally absent in the Kalman filter.

The performance of the filter during the winter months

deserves close attention since it discloses two deficiencies

in the filter. The error performance at the highest levels

(those above 70 mb) is poor at best. At these levels, the

weighting functions do not contain appreciable energy and do

not overlap. The filter receives little information about

the temperature profile at these levels and relies heavily

on its predictions. Errors in the state propagation

procedure are thus magnified at these levels. Because the

atmosphere is more varied in winter, this has a graphic

effect on the error performance. These errors also could be

observed in the innovations sequence of the filter. The

innovations sequence of the highest altitude channel was

generally negative and correlated.

The second effect that is shown by the winter data

results is the lack of improvement over the Statistical D
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method at the crossing point of the weighting functions for

channels 4 and 5. While not strictly a deficiency in the

filter, this demonstrates that even the multi-spot filter

cannot overcome this redundancy of information.

Given these comparisons and observations, it is

possible to speculate on which parts of the Kalman filter

are most responsible for the improvement in performance over

the Statistical D method. The general elimination of the

mean error by the Kalman filter is most likely due to its

correct treatment of the atmosphere as a non-stationary

process. The Statistical D method coefficients have benn

historically been computed using an ensemble of radiosonde

reports from a number of selected stations. This method

*hus treats the atmosphere as a globally stationary process

whose mean and covariance are given by this ensemble. A

change in the global statistics from one year or season to

the next will yield mean errors with this method. Because

the Kalman filter uses means and covariances conditioned on

past data, these biases are generally absent after a short

period of processing.

A second large contributor to the improvement seems to

be the ability fo use the low pass nature of the atmosphere

to perform noise averaging. This is evidenced by the

monotone increase in performance with the number of spots

processed at nadir. It seems to be the case that doubling
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the information avaliable to the filter decreases its error

by roughly ten percent.

The final source of improvement is the use of the

different weighting functions of the instrument at the

extreme scan. It is unclear, however, what portion of the

improvement at the extreme scan comes from this source and

how much comes from the reduced influence of the surface.

It is also unclear to what extent the spatially varying

weighting functions contribute to the overall improvement.

Section H. The non-causal experiment

The second experiment that was performed was the use

of the filter in its non-causal mode. The forward-backward

filter algorithm of Chapter III was used to perform this

experiment. The results for the three merged tapes on which

this experiment was run are given in Tables 40-51. Figures

7- 8 depict the improvement achieved on the October

dataset. These results yield the expected conclusion that

the non-causal filter gives superior performance when

compared with the causal filter. The improvement in all

scan angles and seasons is of the order of 10% in the rms

and is often accompanied by a reduction in the mean error.

This improvement is due to two causes. First, there is
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Table 40

One spot filter retrieval errors, Aug. 7-9, 1975

Non-causal filter

Scan angie 0 Scan angle 3 Scan angle 6

Pressure
(mb)

1000
850
700
500
400
300
250
200
150
100
70
50
30
10

- 158 -

Mean
Lrror
( K)

-0.1
0.5
0.4
0.3

-0.3
-0.2
0.6
0.9
0.5
1.3

-1.1
-1.2
-0.9
-0.1

RMS
trror
( K)

2.9
1.9
1.2
0.9
(h9
1.5
2. 2
2.1
2. 6
1.7
0.7
0. 8
1. 1
2.0

Mean
Error
( K)

-0.1
0. 4
0.3
0. 1

-0.3
-0.2
0. 6
0.7
0.2
1 4

-1.1
-1.5
-1.2
-0.3

R M
Zrror
( K)

2.9
1.8
1.0
1.1
0.9
1.2
1.9
2.2
2.0
1.9
101
0.9
0.8
1.4

Mean
Error
( K)

0.7
0. 9
0.5
0.0

-0.3
-0.1
0.6
0.6
0.1
1.7

-1.0
-1.6
-1.4
-0.5

RMS
Error
( K)

2.3
1.5
0.9
1.4
1.1
1.2
11.9
2.0
2.3
2.2
1.4
1.2
1. 1
1.4



Table 41

one spot filter retrieval error, Oct. 22-25, 1975

Non-causal filter

Scan angle 0 Scan angle 3 Scan angle 6

Pressure
(mb)

1000
850
700
500
400
300
250
200
150
100
70
50
30
10

- 159 -

Mean
Error
( K)

4.7
1.2
0.2
0.4
1.3
1.5
0. 4

-2.3
-4. 1
1.6
0.4
1. 0
2.9
8.7

RM
Error
( K)

2.9
1. 8
1.1
1. 3
1.4
1.9
3. 1
3.1
2.1
1. 6
2.4
3.7
5. 3
8. 3

dean
Error
( K)

5.3
1. 4
0.3
0.2
0.9
1.0
0. 1

-2.1
-4. 0

1. 3
0.4
1.2
3.2
9.0

R MS
Error

K)

2.9
1.8
1.0
1.3
1.4
2.1
3.3
2.7
1.8
1.8
2,v7
3.6
5.0
7.7

Mean
Error
( K)

3.0
0. 9
0.7
0.2
0.-4
0. 1

-0.5
-1.3
-1.9

2.1
-1.3
-1.6
-1.4

0.4

RNS
Error

K)

3.1
1.9
1.2
1.3
1.5
119
2.4
2. 4
1.9
1.7
2.8
3.8
4. 5
6.4



Table 42

One spot f ilter retrieval errors, Jan 24-25, 1976

Non-causal filter

Scan angle 0 Scan angle 3 Scan angle 6

Pressure
(mb)

1000
850
700
500
400
300
250
200
150
100
70
50
30
10

- 160 -

Mean
Srror
( K)

2.2
1.0
0.9
0.1
1.1
1.0

-0.5
-1.9
-1.6
2. 1
0.7
1. 3
0.3

-4.6

RMS
Error
( K)

6.4
2.7
1.0
1.4
1. 6
2.4
3. 3
2.7
1.6
1. 5
1.9
1.3
2.2
5.9

Mean
Error
( K)

1.5
1.8
1.6
0.2
0. 7
0.0

-1.6
-2.6
-1.4
3. 1
1.5
2.3
0.6

-4.2

aMS

Error
( K)

5.7
3. 1
1.9
1.5
2.2
3.0
3.7
2.7
1.5
2.7
3.1
2.5
3.2
5.8

Mean
Error
( K)

1.6
2.2
1.9
0.1
0.6

-0.2
-18
-2.8
-1.3

3. 3
1.6
1.8
0.0

-5.5

RMS
E rror
( K)

5.2
3.2
1.9
1.2
2.0
3.0
3.7
2. 6
1.4
2.6
3. 3
3.0
3.4
5.6



Table 43

Two spot filter retrieval errors, Aug. 7-9, 1975

Non-causal filter
(Extreme scan)

Non-causal filter
(Close scan)

Scan angle 0 Scan angle 1 Scan angle 5 Scan angle 6

Pressure
(mb)

1000
850
700
500
400
300
250
200
150
100

70
50
30
10

a'

bean
Error
( K)

-0.2
0.4
0.4
0.3

-0.2
-0.2
0.6
0.8
0.14
1.2

-1.2
-1.2
-0.9
-0.1

R [is
Error
( K)

2.5
1 .6
1.0
1.0
0.9
1.5
2.1
2.0
2.6
1.8
0.7
0.8
1.0
1.9

Mean
Error
( K)

-0.1
0.L4
0.3
0.1

-0.5
-0.3
0.5
1.0
0.3
1.5

-0.9
-1.2

-0.19

RMS
Error
( K)

3. 0
2.0
1.2
0.9
0.7
1. 1
1.7
2. 3
1.9
1.4
1.0
0.9
110
1.8

m ean
Error
( K)

0.3
0.6
0.4
0.1

-0.2
-0.1
0.7
0.6
0. 1
1.5

-1.1
-1.6
-1.3
-0.5

RMS
Error
( K)

2.6
1.7
1.0
1.2
0.9
1. 1
1.8
2.0
2.2
2.0
1.3
1.1
1.0
1.3

IMean

Error
K)

0.6
0.8
0.5
0.0

-0.3
-0. 1
0.6
0.5
0.0

1.7
-1.0 )

-1.5
-1.3
-0.4

RMS
Error
( K)

2.2
1.5
0.9
1.3
1.0
1.2
1.9
2.0
2. 3
2.1
1.3
1.1
1.0

1.3



Table 44

Two spot filter retrieval errors, Oct. 22-25, 1975

Non-causal filter
(Extreme scan)

Non-causal filter
(Close scan)

Scan angle 0 Scan angle 1 Scan angle 5 Scan angle 6

Pressure
(mb)

1000
850
700
500
400
300
250
200
150
100
70
50
30
10

H

Mean
Error
( K)

4.6
1. 0
0.1
0.3
1.3
1.5
0. 4

-2.3
-4.1
1.5
0.4
1.0
2.9
8.8

RMS
Error

K)

2.8
1.7
1.1
1.4
1.5
1.9
3. 1
3.1
2. 1
1.6
2.6
4.0
5.6
8.7

Mean
Error
4 K)

5.1
1 . 4
0.4
0. 5
1.3
1.4
0.2

-2.3
-4.1
1.4
0.5
1.3
3.2
9.1

RMS
Error

K)

2.5
1. 6
1.0
1.2
1.2
2.0
3.4
3.0
2.0
1.7
2.8
4. 3
6. 1
9.0

Mean
Error
( K)

4.8
1. 1
0.2
0.2
1.0
1.0
0. 1

-2-.0
-3.8

1. 4
0.0
0.7
2.4
8.0

RMS
Error
( K)

3.1
2.0
1.0
1.. 3
1.5
1.9
3.2
2.6
1.8
1.8
2.9
3.8
5.0
7.8

Mean
Error
( K)

4.7
1.0
0.2
0.3
1.0
1.0
0.2

-2.0
-3.9
1.3
0.0
0.6
2.3
7.8

RMS
Error
( K)

3.1
2. 0
1. 1
1.3
1.5
1.9
3.3
2.7
1.9
1.8
2.8
3.7
4.9
7.5



Table 45

Two spot filter retrieval errors, Jan. 24-25, 1976

Non-causal filter
(Extreme scan)

Non-causal filter
(Close scan)

Scan angle 0 Scan angle 1 Scan angle 5 Scan angle 6

Pressure
(mb)

1000
850
700
500
400
300
250
200
150
100
70
50
30
10

'-a
0~
tO

Mean
Error
( K)

2. 1
0.9
0.9
0.2
1.1
1.0

-0.6
-2.0
-1.8
2.0
0.7
1.4
0.5

-4.4

RMS
Error

K)

6.0
2.2
0.8

.5
1.4
2.4
3.5
2.9
1..8
1.6
2.0
1.4
2.3
6,.4

Mean
Error
( K)

2. 1
1.5
1.4
0.2
0.9
0.5

-1.0
-2.2
-1.5
2.6
1.1
1.8
0.5

-4.3

RMS
Error

K)

6.1
2.6
1.2
1.4
1.7
2.5
3. 5
2.8
1.6
1.9
2.1
1.7
2.8
6.6

Mean
Error
( K)

1.5
2.0
1.8
0.2
0.7
0.1 1

-1.7
-2.6
-1.14

3.3
1.5
2.0
0.3

-5.1

R MS
Error
( K)

4.8
2.9
1.9
1.3
1.8
2.8
3.8
2.5
1.5
2.7
3.4
3. 0
3.5
5.3

Me an
Error
( K)

1.7
2.3
1.9
0.0
0.4

-0.4
-2.0
-2..9
-1. 3
3.5
1.8
2.3
0.6

-4.8

RMS
Error
( K)

4.9
2.9
1.8
1.2
1117
2.9
3.8
2.5
1.5
2.7
3.3
2.8
3.2
5.4



Table 46

Three spot filter retrieval error, Aug. 7-9, 1975

Non-causal filter
(Extreme scan)

Scan angle 0 Scan angle 1 Scan angle 2

Pressure
(mb)

1000
850
700
500
400
300
250
200
150
100
70
50
30
10

- 164 -

Mean
Error

( K)

-0.3
0.14
0.4
0.3

-0.2
-0.1

0.6
0. 8
0.3
1.2

-1.3
-1.3
-1.0
-0. 1

RMS
Error

K)

2.5
1.6
1.0
1.0
1.0
1.5
2. 1
2. 1
2.6
1.8
0.7
0.9
1. 1
1.9

Mean
Error
( K)

-0.2
0.4
0.3
0. 1

-0.4
-0. 3

0.5
0.9
0. 3
1.5

-1.0
-1.2
-0.9
-0. 1

RMS
Error
( K)

2.8
1.9
1.2
0.9
0.6
14 1
1.6
2.3
1.9
1.4
1.0
0.9
1.0
1.8

Mean
Error
( K)

0.0
0.5
0.3
0.0

-0.6
-0.5

0.2
0.6
0. 2
1.6

-0. 9
-1.2
-0.9
-0. 1

RMS
Error
( K)

2. 7
1.8
1.2
1.0
0.7
1.1
1.7
2.4
14,7
1.6
1.0
0.8
0.8
1. 6



Table 47

Three spot filter retrieval error, Aug. 7-9, 1975

Non-causal filter
(Close scan)

Scan angle 5 Scan angle 6 Scan angle 7

Pressure
(mb)

1000
850
700
500
400
300
250
200
150
100
70
50
30
10

- 165 -

Mean
Error

K)

0. 3
0.6
0.'4
0. 1

-0.2
0.0
0.7
0.6
0. 1
1.4

-1.2
-1.6
-1.4
-0.5

R M
Error
( K)

2,w 6

1.7
1.0
1. 2
0.9
1.0
1.8
2.0
2.2
2.0
1.4
1.2
1.0
1,3

Mean
Error
( K)

0. 5
0.8
0.5
0.0

-0.2
-0. 1

0. 7
05
0. 0
1.6

-1.1
-1.6
-1.4
-0. 4

RMS
Error
( K)

2.3
1.5
1.0
1.2
0.9
1.1
1.8
2.0
2.2
2. 0
1.3
1. 1
1.0
1.3

Mean
Error

K)

0.8
1. 0
0.5
0. 0

-0.3
-0. 1

0.7
0.5
0. 1
1. 7

-1.0
-1.5
-1.3
-0. 4

R N S
Error

K)

2.1
1. 4
0.9
1.2
1.0
1.2
2.0
2. 2
2.3
2.0
1.3
1. 1
1.0
1.3



Table 48

Three spot filter retrieval error, Oct. 22-25, 1975

Non-causal filter
(Extreme scan)

Scan angle 0 Scan angle 1 Scan angle 2

Pressure
(mb)

1000
850
700
500
400
300
250
200
150
100
70
50
30
10

- 166 -

Mean
Error
( K)

4.5
1.0
0.1
0.4
1.3
1.6
0.4

-2.3
-4.2
1.5
0. 3
1. 0
3.0
8.8

RMS
Error
( K)

2.8
1.7
1.1
104
1.6
1.9
3. 1
3. 1
2.1
1.7
2.6
4.10

5. 7
8.8

Mean
Error

K)

4.9
1.2
0.3
0.5
1.3
1. 4
0.2

-2.3
-4.2
1.4
0. 4
1. 2
3. 2
9. 1

RMS
Error
( K)

2.0 4
1.6
1. 0
1.2
1.2
2. 0
3.4
3. 1
2.0
1.7
2. 8
4.3
6. 1
9.0

Mean .
Error
( K)

5. 2
1.4
0. 4
0. 4
1.2
1.3
0. 2

-2.1
-4. 0
1.3
0. 4
1. 2
3.2
9. 1

RMS
Error
( K)

2.5
1.7
1.0
1.2
1.2
2.2
3. 5
3.0
1. 9
1.7
3. 1
4. 5
6.3
9. 1



Table 49

Three spot filter retrieval error, Oct. 22-25, 1975

Non-causal filter
(Close scan)

Scan angle 5 Scan angle 6 Scan angle 7

Pressure
(nib)

1000
850
700
500
400
300
250
200
150
100
70
50
30
10

- 167 -

Mean
Error
{ K)

4.6
1.0
0.2
0. 3
1.1
1.1
0.2

-2.0
-3. 9
1.3
0. 0
0.6
2. 4
7.9

RS
Error

( K)

3. 1
2.0
1.0
1.3
1.4
1.8
3. 2
2.6
1.8
1.9
3.0

,0
5.2
8.0

Mean
Err or

K)

0.9
0.2
0. 3
1.1
1.1
0. 2

-2.0
-4.0
1.2

-0.1
0.5
2m2
7.6

RMS
Error

( K)

3.1
2. 1
1.1
1.3
1.4
1.9
3.3
2.7
1.8
1.8
3.0
4.0
5.2
7.7

Mean
Err or
( K)

4.3
0. 8
0. 1
0. 2
1.1
1.2
0. 5

-1.9
-4. 1
1. 1

-0. 3
00 4
2.0
7.4

RMS
Error
( K)

3.1
2.0
1.1
1.2
1.4
2.0
3.2
2.6
1.8
1.7
3.0
4.0
5. 1
7. 4



Table 50

Three spot f ilter retrieval error, Jan. 24-25, 1976

Non-causal filter
(Extreme scan)

Scan angle 0 Scan angle 1 Scan angle 2

Pressure
(nb)

1000
850
700
500
400
300
250
200
150
109)
70
50
30
10

- 168 -

Mean
Error
( K)

2.2
0. 9
0.9
0. 1
1. 1
1.0

-0.6
-2.0
-1.8
2.0
0.7
1.4
0. 5

-4.4

RMS
Error
( K)

6.1
2.2
0.9
1.5
1.4
2. 4
3.6
2. 9
1.3
1.6
2. 1
1.4
2. 4
6.3

Mean
Error
( K)

2. 3
1.7
1.5
0.2
0. 9
0. 4

-1.0
-2.3

1. 5
2.6
1. 1
1.7
0. 4

-4.4

MS
Error

K)

6.0
2.4
1. 1
1.3
1.5
2. 4
3.5
2.8
1.7
2. 0
2. 2
1.7
2.7
6.5

Mean
Error

K)

1. 9
1.7
1.6
0.2
0.8
0. 1

-1.4
-2.4
-1.5

2.8
1. 3
1.9
0.3

-4.5

RMS
Error

K)

5. 5
2. 5
1.4
1.4
1.8
2. 5
3.4
2.7
1.7
2. 2
2. 4
1.9
3.1
6.8



Table 51

Three spot filter retireval error, Jan. 24-25, 1976

Non-causal filter
(Close scan)

Scan angle 5 Scan angle 6 Scan antle 7

Pressure
(mb)

1000
850
700
500
400
300
250
200
150
100
70
50
30
10

- 169 -

Mean
Error

K)

1. 5
2. 0
1.7
0.1
0.6

-0. 1
-1.6
-2.5
-1.3

3.3
1.5
1.9
0. 1

-5.3

RMS
Error

K)

4.8
2.9
1.9
1.3
1.7
2.9
3. 9
2.5
1.5
2.8
3.4
3.1
3. 6
5.2

Mean
Error

K)

1.9
2.3
1.9
0.0
0.4

-0.4
-1.9
-2.8
-1.2
3.5
1. 7
2. 1
0. 4

-5. 1

EMS
Error
( K)

4.7
2.8
1.8
1. 1
1.6
2. 9
3.9
2.5
1.5
2.7
3.2
2.9
3.3
5.3

Mea n
Err or
( K)

2.1
2. 5
1.9

-0. 1
0.2

-0.6
-2. 2
-3.0
-1. 1
3.8
1.9
2. 2
0.4

-5.0

RMS
Error

K)

5.2
3.0
1.7
1.2
1.8
3.0
3.9
2.5
1.5
2.7
3. 1
2.8
3.2
5.2



additional information brought into the filter by the

"future" observations. Secondly, there is "noise averaging"

in the observation matrices over ocean. For this surface,

the observation matrices are a function of the predicted

surface temperature. The observation matrix error produced

by a descending orbit-(one traversing a cola ocean to a warm

ocean) help cancel those of an ascending orbit (one

traversing a warm ocean to a cold one).

Section I. The precomputed sub-optimal filter experiment

The one great disadvantage of the Kalman filter is its

computational burden. For the cases investigated in this

chapter, the complexity of the algorithm is dominated by the

cube of the number of temperatures estimated. For this

reason, it is useful to consider ways in which this

complexity may be reduced. One method is, of course, a

reduction in the number of state variables. Studies made in

the earlier stages of this thesis indicate that this is an

ultimate possibility. The covariance matrix of a the

temperature profile at a single spot and the plant noise

contain eight eigenvectors having significant energy. The

second method, and the one adopted for this thesis, was to

- 170 -



use the approach of operating a sub-optimal filter that used

a nominal gain or error covariance history. For the case in

which the nominal error covariance history is used, the

entire process of error covariance propagation is

eliminated. Further, since we may just as well precompute

the square root of the covariance, the gain computation is

simplified. The sub-optimal filter that uses precomputed

gains is vastly more simple than the standard filter. In

this case, the filter need only compute the innovations,

update and propagate the state. The cost of this simplicity

is that data reasonableness testing cannot be easly done

since the gains have been computed off line and the error

covariance matrix is not available.

An examination of the error covariance and gain history

of the causal filter suggested that either or both of the

precomputed sub-optimal filters might perform adequately.

Examples of typical gain and error covariance histories of

the causal filter are given in Figures 9 - 11. These figures

depict the gain, error and covariance history of the 850 mb

level of a single spot filter for two ascending orbits

starting at 30 degrees latitude. These orbits were

separated by about 100 degrees of longitude. In these

cases, the filter has reached a steady state after a short

period. After this point, the behaviour of the filter is

dominated by the plant noise.

- 171 -
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The experiment of this section thus consisted of

running the full filter for a period of five frames and then

switching to either a precomputed gain or precomputed

covariance strategy. The precomputed gains and covariances

that were used were obtained from the datasets in the

non-causal experiment. The January matrices were used in

December and February, one -October dataset produced the data

for the other and the August dataset was run on itself since

this was the only dataset that used the summer plant

matrices. In all cases, the matrices were averaged in 5

latitude bins.

The error performances of the two filters are given in

Tables 52- 83. The comparative timings of the causal and

precomputed matrix filters are given in Table 84. It is

quite surprising that the performance of the precomputed

gain filter seems to be better than that of the precomputed

error covariance filter. In fact, the performance of the

precomputed gain filter approaches that of the full causal

filter. One possible explanation of this is the fact that

the data used in this experiment is heavily weighted toward

land areas. The filter is linear for such cases. A second

possible explanation is that the ordering of the observation

processing has reduced the non-linear aspects of the

filtering process to the point where they are no longer

important. Finally, ther is the possibility that the
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Table 52

One spot filter retireval errors, Aug. 7-9, 1975

Precomputed error covariance

Scan angie 0 Scan angle 3 Scan angle 6

Pressure
(mb)

1000
850
700
500
400
300
250
200
150
100

70
50
30
10

- 176 -

Mean
Error
( K)

0.2
0.P,
0.6
0.4

-0.2
-0.3
0.3
0.5
0.2
1.3

-0.9
-0.9
-0. 6

0.3

RM S
Error
( K)

3. 4
2.'4
1. 6
1. 1
1.1
1.7
2.2
2. 2
2. 6
1.8
0.9
1.2
1.3
1.8

Mean
Error
( K)

-0. 1
0.4
0. 4
0.2

-0.2
-0. 1
0.5
0. 4
0.0
1.4
0-.9

-1.2
-0.8

0. 1

RMS
Error
( K)

3.1
2.1
1.3
1.2

1.091.2
1.9
2.3
2.0
1.8

1. 1
1.0
1.4

Mean
Error
( K)

0. 7
0.9
0.5
0.0

-0.3
-0.1

0.6
0.4

-0. 1
1.7

-0.8
-1.2
-1.0
-0.1

R MS
Error
( K)

2.5
1.7
1.2
1. 5
1.3
1.4
1.9
2.1
2. 4
2.2
1.4
1. 2
I1

1.3



Table 53

One spot tilter retrieval error, Aug. 7-9, 1975

Precomputed Kamnan gain

Scan angle 0 Scan angle 3 Scan angle 6

Pressure
(nb)

1000
850
7 00
500
400
300
250
200
150
100

70
50
30
10

- 177 -

Mean
Error

K)

0.2
0.8
0.6
0.4

-0-.2
-0.3

0.3
0.5
0.2
1.3

-0.9
-3.8
-0.5

0.3

B S
Error
( K)

3. 4
2. 5
1. 6
1.1 1
1.1

1.7
2.2
2.2
2.6
1.8
0. 9
1.2
1-.3
1.8

Mean
Error
( K)

-30. 1
0.4
0. 4
0.2

-0.2
-0. 1

0.5
0. 4
0.0
1.5

-0.9
-1.2
-u.8

3. 1

RMS
Error
( K)

3. 1
2.1
1.3
1.2
1.0
1.2
1.9
2.3
2.
1.9
11
1. 1
1.0
1. 4

Mean
Error
( K)

0. 7
0.9
0.5
0. 1

-0.3
-0.1

0.86
0.3

-0. 1
1.7

-0.8
- 1. 2
-1.0
-0.1

R MS
Error
( K)

2.5
1.8
1.2
1. 5
1.3
1-4
1.9
2.1
2.4
2.2
1.4
1. 2
1.11
1.3



Table 54

One spot filter retrieval error, Oct. 3-5, 1975

Qrecomputed error covariance

Scan angle 0 Scan angle 3 Scan angle 6

Pressure
(mb)

1000
850
700
500
400
300
250
200
150
100

70
50
30
10

- 178 -

Me an
nerror
( K)

2.5
1.6
0.4

-0.3
0. 1
1.9
1.5

-1.2
-2.6

0.8
0.7
1 .2
2.7
7.5

R S
Error

(K)

3. 8
2.3
1. 3
1.'4
1.4
1.8
2.3
2. 8
3.0
2.5
2.0
2.9
4. 2
5. 6

M ean
Error

K)

2.'4
1.4
0.3

-0.7
-0.3

0.4
0.4

-1.8
-2.1
1.6
1. 1
1.5
2.7
7. 4

R A S
urror
( K)

3.3
2.1
1.1
1.2
1.4
2.j0
2.7
3.5
2.9
2.9
2.8
4.0
5.1
6. 1

M ean
Error
( K)

2.8
1.8
0.5

-0.7
-0.3

00s 4
-0 2
-2.0
-2.4

1.3
0.8
1.5
2.6
7.0

R MS
Error
( K)

2.6
1.8
1.3
1. 4
1.6
2.4$
3.0
3.9
2.9
2.8
3.5
4.8
6.1
7.1



Table 55

One spot tilter retrieval error, Oct. 3-5, 1975

Precomputed Kalman gain

Scan angle 0 Scan angle 3 Scan anile 6

Pressure
(mb)

1000
8 50
700
500
400
300
250
200
150
100

70
50
30,
10

- 179 -

Me an
Error
( K)

2.6
1.6
0.5

-0.3
0.1
0. 9
1.5

-1.2
-2.9

0.8
0. 7

2.8
7.6

R N s
Error
( K)

3.8
2.3
1. 3
1.'4
1.3
1.8
2.3
2.7
3.0
2.5
2. 1
3.0
4. 1
5.5

Mean

( K)

2. 4
1.4
0. 3

-0.7
-0.4
a. 
0.,4

-1.8
-2.1

1.6
1. 1
1.6
2.8
7.4

i mS
Error
( K)

3. 3
2.1
1.02
1.2
1.14
2.0
2.7
3.5
2.9
2.9
2.8
4.0
5.0
6. 0

Mean
Error
( K)

3. 0
1.9
0.6

-0. 6

0. 5
-0.1
-1.8
-2.2

1.14
0. 9
1. 5
2.5
6. 8

L( MS
Error

K)

3.0
2. 1
1.5
1. 6
1e8
2.7
3.2
4.1
3.0
2.8
3.5
4.8
6. 1
7.2



Table 56

One spot tilter retireval error, Dec. 5-8, 1975

Precomputed error covariance

Scan angle 0 Scan angle 3 Scan angle 6

Pressure
(mb)

1000
850
700
500
400
300
250
200
150
100

70
50
30
10

- 180 -

Mean
Error
( K)

3. L
1 .8
1.4
0.0
0.4
0.0

-0.7
-1.1
-1.14

-0.2
-0.4
-0. 1
0.2

Ris
Error
( K)

3. 7
2.1
1. 6
1.5
1.3
2.5
3.0
3.2
2.0
2. 0
2. 4
3.0
3,9
6-u6

Mean
Error
( K)

2.4
1. 7

-0.2
-0.4
- 1. 1
-1.9
-2. 0
-1.5
2.6
0.6
1.4
2.5
4. 4

RIMS
Error
( K)

3.8
2.3
1.4
1.4
1.6
3. 0
3.4
3.3
1.8
2. 1
3.8
4.8
5.7
8. 0

Mean
Error
( K)

3. 4
2.0
1.5

-0.3
-0.4
-1.4
-2. 1
-1.9
-1.3
2.9
0.7
1. 7
2v.7
4. 8

RMS
Error

K)

3.9
2.7
1.8
1.4
1.9
3.7
3.8
3.4
1.6
2.5
4.7
6. 1
6.9
9.6



Table 57

one spot tilter retrieval error, Dec. 5-8, 1975

Precomputed Kalman gain

Scam angle 0 Scan angle 3 Scan angle 6

Pressure
(mb)

1000
850
700
500
400
300
250
200
150
100
70
50
30
10

- 181 -

Me an
Error
( K)

4.3
I1.8
1.4
04.0
0.4
0.0

-0.43
-1.1
-1.4
1 .9

-0.2
-0.4
-0.1
0.2

i5s
Error
( K)

3.7
2.1
1. 6
1.5
1.3
2. 5
3.0
3. 2
2. 1
2. 0
2. 4
3.0
3.9
6,. 5

M eami
Error

K)

4t. 2

2.5
1.. 8

-0.2

-1. 1
-1.9
-2.0
-1.5
2.6
0. 6
1.4
2.4
4. 4

Rt M S
Error
( K)

3. 8
2.3
1.4
1.4
1.6
3. 0
3.4
3.3
1.8
2. 1
3.8
4.8
5.7
8. 0

jqean
Error
( K)

3.4
2.0
1.6

-0. 2
-0.4
-1.4
-2.1
-1.9
-1.3

2.9
0.7
1. 7
2.6
4.8

R MS
Error

K)

4.0
2.7
1.8
1. 4
1.9
3.7
3.8
3.4
1.6
2.6
4.8
6.1
6.9
9.6



Table 58

One spot retrieval error, Feb. 3-., 1976

Precomputed error covariance

Scan angle 0 Scan angle 3 Scan anjle 6

Pressure
(mb)

1000
850
700
500
400
300
250
200
150
100
70
50
30
10

- 182 -

Me an
Error
( K)

0.3
0.5
1.0
0.2
1.0
0.9

-0.2
-1.7
-1.3
2.4
0. 3
u.3
0. u

-1.8

SiMS
Err or
( K)

3.9
2.3
1. 7
14
1.7
3. 1
-. 5

.8
1.7
2.0
2. 0
3.2
5. 1

10.7

M ean
Error

K)

0. 3
1.0
1.2

-0. 1
0.5
0. 2

-0.4
-1.7
-1. 1

2.7
0.5
1.0
1. 1
0. 0

R MS
Error
( K)

4.3
2,7
1.8
1.45
1.9
3. 0
4.3
3.1
1.5
2.5
3. 5
5.0
7.0
12.4

M ean
Error
( K)

-0.5
0. 4
0.9

-0.2
0.5

-0. 1
-0.6
-1.6
- 1.0
3.0
0. 6
1. 1
1.2
0.2

R IS
Error
( K)

4.9
2.9
1.9
1.6
2. 1
3.8
4. 4
3.1
1.5
2.8
4.0
5. 8
7.6
13.0



Table 59

Ono spot filter retrieval error, Feb. 3-6, 1976

Precormputed Kalman gain

Scan angle 0 Scan angle 3 Scan angle 6

Pressure
(mb)

1000
8R50
700
500
400
303
250
200
150
100

70
50
30
10

- 183 -

Me an
Error

K)

0.3

tou1.0
0.2
1.0
0.9

-0.2
-1.7
-1.3
2.4
0. 3
0.3
0. 1

-1.7

RS

Error
K)

3. 9
2.3
1. 7
1.4
1.7
3. 1
3.5
2. 8
1.7
2. 1
2.0
3.2
5.2

10.7

iLean
Error
( K)

0.3
1.0
1. 2
0.0
0.5
0. 2

-0.4
-1.8
-1.2

2.7
0. 5
1.1
1.1
0. 1

R MS
Error
( K)

4.4
2.7
1.8
1.5
1.9
3. 6
4.3
3.1
1.5
2.5
3.5
5.0
7.0

12.4

M ean
Error
( K)

-0.5
0.4
1.0

-0. 1
0.6
0.0

-0.6
-1.7

-1-103. 0
0.6
1. 1
1.3
0.3

RMS
Error
( K)

4.9
2.9
1.9
1.6
2.1
3.9
4 3
3.1
1.5
2.8
4.0
5.7
7.6

12.9



Table 60

Two spot filter retrieval error, Aug. 7-9, 1975

Precomputed error covariance
(E xtreme sc al)

Precomputed error covariance
(Close scan)

Scan angle 0 Scan angle 1 Scan angle 5 Scan angle 6

Pressure
(mb)

1000
850
700
500
400
300
250
200
150
100
70
50
30
10

I-

le an
Error
( K)

0.0
0.6
0.5
0.3

-0.3
-0.2

0.4
0 .7
0.4
1.4

-1.0
-1.0
-0.7

0.1

R mS
Error

K)

3.5
2. 5
1.7
1.2
1. 1
1.5
2. 1
2.3
2.7
1.9
1.0
1.3
1.4.
1 .8

Mean
Error
( K)

0 0
0. 6
0.4
0.2

-0.4
-0.3

0.4
0.6
OX)
1. 5

-0.8
-0.9
-0.6

0,2

t qs
Error
( K)

3.5
2. 6
1.6

0. 9
1.4
1.8
2. 3
2.1
1.5
1.3
1.3
1. 3
1.8

Mean
Error
( K)

0.2
0.6
0.3
0.0

-0.2
-0.1

0.6
0. 5
0.0
1.6

-0.8
-1 .2
-0.9

0.0

HM 5
E rror
( K)

3.0

2.1
1.3
1.3
1.0
1. 2
1.9
2. 1
2.4
2.1
1. 3
1.2
141s
1. 4

Mean
Error
( K)

0. 7
0.9
0.6
0.1

-0.2
-0. 1

0.5
0.2

-0.3
1.6

-0,0 9
-1.3
-1.0
-0. 1

RMS
Error
( K)

3.2
2.1
1.3
1.5
1.5
1.6
1.9
2. 1
2. 3
2.3
1.7
1.4
1.2
1.5



Table 61

Two spot filter retrieval error, Aug. 7-9, 1975

Precomputed Kalman gain
(Extreme scan)

Precomputed Kalman gain
(Close scan)

scan angle 0 Scan angle 1 Scan angle 5 Scan angle 6

Pressure
(m b)

1000
850
700
500
400
300
250
200
150
100

70
50
30
10

OD
vi

Me an
Error
( K)

0.1
0.7
0.6
0.4

-0.2
-0.2

0.3
0.5
0.2
1.3

-1.0
-0.9
-0.6
0.2

RMS
Error

K)

2.9
2.1
1.4
1.1
1.0
1. 6
2.1
2. 1
2.7
1,.8
1.0
1.3
1.4
1.8

Mean
Error
( K)

Ow 1
0.6
0.4
0. 1

-0.5
-0.5

0.3
0.5
0. 1
1.6

-0.6
-0.8
-0.5

0. 3

EMS
Error
( K)

3.2
2.3
1.5
1. 1
0.8
1. 2
1.6
2.4
2. 1
1.4
1.2
1.5
1.6
2.0

Mean
Error

( K)

0.3
0.7
0.4
0.2

-0.2
-0.1
0.6

-0. 1
1.5

-0.9
- 1. 2
-0.9

0.1

RMS
Error
( K)

2.8
1.9
1.2
1.4
1.2
1.3
1.9
2.0
2.3
2. 1
1.4
1.2
1.1
1.4

Mean
Error
( K)

0.7
0.9
0.5
0. 1

-0.2
-0.1

0. 5
0.3

-0.1
1.7

-0.8
-1.2
-0.9

0.0

EMS
Error
( K)

2.4
1.7
1.2
1. 4
1.2
1 .3
1.9
2. 1
2.4
2.2
1.4
1.2
1. 1
1-4



Table 62

Two spot filter retrieval error, Oct. 3-5, 1975

Precomputed error covariance
(Extreme scan)

Precomputed error covariance
(Close scan)

Scan angle 0 Scan angle 1 Scan angle 5 Scan angle 6

Pressure
(mb)

1000
850
700
500
400
300
250
200
150
100
70
50
30
10

fr.4

0~

Mean
Error

K)

2.4
1.5
0.3

-0.4
0.1
0.9
1.5

-1.2
-2.9
0.7
0.7
1.3
2.8
7.6

R MS
Error
( K)

4.1
2.4
1.2
1.4
1. 4
1.7
2. 1
2.9
3.2
2.6
2.0
3. 1
4.5
6.0

Mean
Error
( K)

1.9
1. 1
0.0

-0.7
0.0
1.2
2. 0

-0.8
-2.0

1.4
0.4
0m2
0.9
5.3

R MS
Error

K)

4.4
2.7
1.8
2.0
1.7
1.8
2.6
3.4
3.6
2.5
2.5
4.9
7.3
9.2

Me an
Error

K)

2.3
1.4
0.3

-0.8
-0.4

0.3
0.0

-1.9
-2.3

1.4
0.9
1.5
2.5
6.9

R M S
Error

K)

2.4
1.6
1.2
1.3
1.5
2.2
2.9
3. 9
3.0
2.9
3. 5
5.0
6.7
7.4

Mean
Error
( K)

2.3
1 .5
0.6

-0.4
0.2
0.9
0.3

-1.6
-2.3

1.1
0.2
0.6
1.6
6. 1

RMS
Error
( it)

3.6
2.4
1.4
1.6
1.9
2. 6
3.3
4.0
3.3
2.9
4. 3
6.6
8.9

10.5



Table 63

Two spot filter retrieval errors, Oct. 3-5, 1975

PrecoRputed Kalman gain
(Extreme scan)

Precomputed Kalman gain
(Close scan)

Scan angle 0 Scan angle 1 Scan angie 5 Scan angle 6

Pressure
(mb)

1000
850
700
500
400
300
250
200
150
100

70
50
30
10

-I-J

Me an
Error

K)

2.4
1.5
0.4

-0.3
0.1
14.0
1 .6

-1.2
-2.9
0.7
0.7
1..3
2.8
7.6

R MS
Error
( K)

3.9
2.3
1.2
1.4
1 .3
1.7
2.2
2.8
2.9
2.4
1.9
2.9
4.2
5.6

M ean
Error
( K)

2.3
1.4
0.3

-0.6
0.0
0.9
1.4

-1.4
-2.5

1.2
0.8
1.2
2.6
7. 3

R MS
Error

K)

3.3
2.0
1.2
1.4
1.4
1. 7
2.2
2.4
2. 6
2.5
2.0
3. 1
4.3
5.7

Mean
Error
( K)

2.3
1.4
0.4

-0.6
-0.2
0.5
0. 1

-1.8
-2.3

1.3
0.8
1.3
2.2
6.6

RMS
Error

K)

2.6
1.8
1.2
1.2
1.4
2.2
3. 0
4.0
2.9
2.9
3.7
5. 1
6.5
7.4

Me a n
Error
( K)

2.8
1.8
0.6

-0.5
0.0
0.7
0. 2

-1.6
-2.2

1.3
0.6
1. 1
2.0
6.2

RMS
E rror

K)

3.0
2.2
1.5
1.6
1.8
2.7
3.5
4.4
3.0
2. 8
3.7
5. 1
6.5
7.6



Table b4

Two spot filter retrieval error, Dec. 5-8, 1975

Precomputed error covariance
(Extreme scan)

Precomputed error covariance
(Close scan)

Scan angle 0 Scan angle 1 Scan angle 5 Scan angle 6

Pressure

(mb)

1000
850
700
500
400
300
250
200
150
100
70
50
30
10

OD
OD

Mean
Error
( K)

2.7
1.3
0.9

-0.3
0.4
0.2

-0.5
-0.8
-1.2
1.9

-0.4
-0.8
-0.7
-0.6

R MS
Error
( K)

3.8
2.4
1.9
1.5
1. 3
2.6
3.2
3.4
2 .2
2.0
2.5
3.5
4. 6
7,,2

Mean
Error
( K)

3.3
1. 7
1.2

-0a1
0.4
0.0

-0.9
-1.3
-1.6
1. 6

-0.3
0. 1
1. 1
2.3

RMS
Error

K)

4.2
2.3
1.7
1 .7
1.5
2.6
3.8
4. 4
3. 1
2.2
3.6
6.0
8.4
11.0

Mean
Error
(K)

3.3
1.8
1.3

-0.6
-0.6
-1.4
-1.8
-1.6
-1.0

3.1
0.7
1 .3
2.0
3.9

fmS
Error
( K)

3.7
2.5
1.0 8
1.5
1.7
3. 5
3.7
3.6
1. 7
2.4
4.7
0.1
7.2
9. 9

Mean
Error

K)

3.0
1 .4
1.1

-0.3
0.2

-0.3
-0.7
-0.8
-0.8

2.3
-1.0
-0.8

0. 0
2.3

RMS
Error
( K)

5.2
3.7
2.0
1.8
2.5
4. 4
4.7
4.3
2. 3
3.4
5.7
7.9
9.7

12.O



Table 65

Two spot filter retrieval error, Dec. 5-8, 1975

Precomputed Kalman gain
(Extreme scan)

Precomputed Kalman gain
(Close scan)

Scan angle 0 Scan angle 1 Scan angle 5 Scan angle 6

me an
Pressure Error

(mrb) ( K)

1000
850
700
500
400
300
250
200
150
100

70
50
30
10

3.5
2.0
1.5
01 1
0 a

-0. 1
-0.9
-1.2
-1.5

1.9
-0.1
-0.3

0.71
0.4

OhD

R MS
Error

K)

3. 6
2.0
1.5
1.3
1.1
2. 5
3.0
3.2
2.0
2.1
2.6
3.3
4.3
7.0

Mean
Error
( K)

3. 2
1.8
1.3

-0. 1
0.2

-0. 3
-1.0
-1.2
-1.4

-0.2
-0.2

3.2
1. 1

RMS
Error
( K)

3.8
2. 1
1.4
1. 4
1.3
2.3
2.9
3.2
2.0
2.0
2.6
3.4
4.5
6.8

Mean
Error
( K)

3.7
2. 2
1.7

-0. 2
-0.4
-1.4
-2. 1
-2.0
-1.3
3.3
0.9
1.8
2.8
5. 0

R MS
Ecror

K)

4.3
2.9
1.7
1.2
1.7
3.6
3.9
3.6
1.7
2.5
4.8
6. 2
7. 1
9.7

Me an
Error
( K)

3.6
2. 2
1.7

-0. 2
-0.5
-1.6
-2.3
-2.1
-1.4

3.0
0.9
2.0
3.1
5.2

R MS
Error
( K)

4.0
2. 7
1.7
1.2
1.8
3.7
3.9
3.6
1.7
2.6
4.9
6.4
7. 3

10.0



Table b6

Two spot filter retrieval error, Feb. 3-6, 1976

Precomputed error covariance
(Extreme scan)

Precomputed error covariance
(Close scan)

Scan angle 0 Scan anyL 1 Scan angle 5 Scan angle 6

Pressure
(mb)

1000
850
700
500
400
300
250
200
150
100
70
50
30
10

'9
0

Mean
Error
( K)

0.4
0.6
1.0
0.2
1.1
1.0

-0.2
-1.7
-1.4
2.3
0.2
0.3
0.2

-1.6

RMS
Error

K)

4.0
2.4

1.6
1.7
3.1
3.7
3.0
1.8
2.0
2.1
3.4
5.3
10.9

Mean
Error
( K)

0.7
1. 2
1.3
0.1
o.5
0.1

-0.7
-2.0
-1.3
2.6
0.7
0.9
0.6

-1.0

RMS
Error
( K)

4.8
2. 7
2.0
1.8
1.7
3.2
4.3
3.7
24.18
2. 4
2.8
5.3
8.7

13.8

Mean
Error
( K)

-0.2
0.5
0.9
-0.2

0.. 5
0.0

-0.5
-1.7
-1.0
2.8
0.5
1.0
1.1
0.2

RM S
Error
( K)

4. 4
2.7
1.9
1.5
2.0
3.8
4.4
3. 1
1.5
2.7
4.0 )

5.7
7. 7

12.8

mean
Error
( K)

-0.6
01
0.5

-0.5
0.4
0. 1

-0.2
-1. 1
-0.6
3.0
0. 2
0.2
0. 0

-1.2

RMS
Error
( K)

6.5
4.2
2.8
2. 1
2.7
5.0
6.0
4.9
3. 0
3.2
5.6
9.2
13.1
17.9



Table 67

Two spot filter retrieval error, Feb. 3-6

Precomputed Kalman gain
(Extreme scan)

Precomputed Kalman gain
(Close scan)

Scan angle 0 Scan angle 1 Scan angle 5 Scan angle 6

Pressure
(mb)

1000
850
700
500
400
300
250
200
150
100
70
50
30
10

5~~5

Mean
Error

K)

0.6
0.8
1.1
0.2
0.9
0.8

-0.4
-1.8
-1.4
2.3
0.3
0.4
0.3

-1.5

RMS
error
( K)

4. 1
2.3
1.6
1.5
1 46
2.9
3.5
2.8
1.7
2.1
2.0
3.3
5.2

10.8

Mean
Error
( K)

0. 3
0.8
1.1
0. 1
0.8
0.5

-0.3
-1.7
-1.3

2.5
0.4
0. 6
0.4

- 1.2

RMS
Error

K)

4.3

2.2
1.5
1. 4
1.6
2.9
3.4
2.6
1.5
2.0
2.2
3.4
5.2

130.5

Mean
Error

K)

0.0
0.7
1.1

-0.2
0.4

-0.2
-0.8
-1.9
-1.1

3.0
0.9
1. 6
1.9
1.2

R MS
Error

K)

4.9
2.9
1.9
1.5
2.0
3.8
4.4
3.2
1. 5
2.8
4. 0
5.7
1.6

12.8

Me an
Error
( K)

-0.2
0.6
1.0

-0.3
0.3

-0.3
-0.8
-1.8
-1.1

3. 1
0.8
1.4
1.6
0.7

RMS
E rror
( K)

5.1
3.0
1.9
1.5
2.0
3.9
4.5
3.3
1.5
2.7

6. 1
8. 2

13.4



Table 68

Three spot filter retrieval error, Aug. 7-9, 1975

Precomputed error covariance
(Extreme scan)

Scan angle 0 Scan angle 1 Scan angle 2

Mean EMS Mean RLMS Mean RMS

Pressuue Error Error Error Error Error Error

(mb) ( K) (K) ( K) (K) ( K) (K)

1000 -0.1 3.5 -0.1 3.3 -0.1 3.3
850 0.5 2.5 0.5 2.5 0.5 2.3
700 0.5 1.7 0.3 1.6 0.4 1.5
500 0.4 1.2 0.2 1.1 0.1 1.1
400 -0.2 1.1 -0.4 0.9 -0.4 1.1

300 -0.2 1.6 -0.3 1.4 -0.4 1.5
250 0.14 2.1 0.4 1.9 0.2 1.9
200 0.6 2.3 0.6 2.3 0.3 2.4

150 0.3 2.7 -0.1 2.0 -0.1 1.9
100 1.4 1.9 1.4 1.5 1.5 1.8

70 -1.0 0.9 -0.8 1.3 -0.8 1.3
50 -0.9 1.3 -0.9 1.3 -1.0 1.3
30 -0.7 1.4 -0.6 1.3 -0.6 1.2

10 0.2 1.8 0.2 1.8 0.3 1.7
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Table 69

Three spot filter retrieval error, Aug. 7-9, 1975

Precomrouted error covariance
(Close scan)

Scan angle 5 Scan angle 6 Scan angle 7

Pressure
(mb)

1000
850
700
500
400
300
250
200
150
100
70
50
30
10

- 193 -

Mean
Error
( K)

0.7
0.6
0.5

-0.1
-0.2
0.3
0.4
0. 1
1.2

-1.0
-1.0
-0.6
0.2

ElMS
Err or
( K)

2.9
2.0
1.4
1. 1
1.1
1.6
2.1
2. 1
2.7
1.8
1.0
1. 3
1.4
1.8

Mean
Error
( K)

-0. 1
0. 5
0.4
0. 2

-0.4
-0.4
0.3
0.5
0. 0
1.5

-0.7
-0.8
-0.5

0. 4

ElS
Error
( K)

2.9
2. 1
1.4
1.1
0.8
1.2
1. 6
2.3
2.0
1.4
1.2
1.5
1.6
2.0

Mean
E rror

K)

0. 1
0.6
0.4
0.o0

-0.6
-0.6
0.0
0.3
0.0
1. 7

-0.6
-0.8
-0.4
0.4

ElMS
E rror

K)

2e9
2.0
1. 4
1.2
0. 8
1.2
1.7
2.5
1.9
1.6
1.2
1.4
1. 4
1.9



Table 70

Three spot filter retrieval error, Aug. 7-9, 1975

Precomputed Kalmnan gain
(Extreme scan)

Scan angle 0 Scan anyle 1 Scan angle 2

Pressure
(mb)

1000
850
700
500
400
300
250
200
150
100

70
50
30
10

- 194 -

Me an
Error

K)

0.0
0.7
0.6
0.5

-0. 1
-0.2
0.3
0.4
0. 1
1 .2

-1.0
-1.0
-0.6
0. 2

RMS
Err or
( K)

2.9
2.0
1.4
1. 1
1.1
1. 6
2.1
2. 1
2.7
1.8
1.0
1.3
1.4
1. 8

Mean
Error
( K)

-0. 1
0.5

0.2
-0.4
-0.4
0.3
0. 5
0.0
1.5

-0.7
-0.8
-0.5

0. 4

RMS
Error
( K)

2.9
2. 1
1e4
1. 1
0.8
1.2
1.6
2.3
2.0
1.4
1.2
1.5
1.b
2. 0

Mean
Error
( K)

0. 1
0.6
0-4
0.0

-0.6
-0.6
0.0
0.3
0.0
1.7

-0.6
-0.8
-0.4
0.4

BMS
Error
( K)

2.9
2.0
1.4
1.2
0.8
1.2
1. 7
2.5
1.9
1.6
1.2
1.4
1..4
1.9



Table 71

Three spot filter retrieval error, Aug. 7-9, 1975

Precomputed Kalman gain
(Close scan)

Scan angie 5 Scan angle 6 Scan angle 7

Pressure
(mb)

1000
850
700
500
400
300
250
200
150
100
70
50
30
10
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Me an
Error
( K)

0.3
0.6
0.5
0.2

-0.1
0.0
0.7
0.4

-0.2
1 .4

-1.0
-1.3
-1.0
-0. 1

PN S
Error
( K)

2.8
1.9
1.2
1. 3
1.1
1. 3
1.9
2. U
2.2
2.0
1.4
1. 2
1.0
1. 3

M ean
Error
( K)

0. 5
0.8
0.5
0. 1

-0.2
0.0
0.6
0.3

-0. 2
1.6

-0.9
-1.3
-1.0
-0. 1

EMS
Error
( K)

2.5
1.7
1 .2
1.4
1.2
1.3
1.9
2.1
2.3
2. 1
1.4
1.2
1.1
1. 3

Mean
Error
( K)

0. 8
0.9
0.5
0. 0

-0.3
-0.1
0. 6
0.3

-0. 1
1.7

-0.b
- 1. 1
-0.9
0. 0

a ms
Error

K)

2.4
1.6
1 .2
1.4
1.2
1.4
2.0
2.2
2.3
2. 1
1.3
1. 1
1.0
1.3



Table 72

Three spot filter retrie val error, Oct. 3-5, 1975

Precomputed error covariance
(Extreme scan)

Scan angle 0 Scan angle 1 Scan angle 2

Mean Rds Mean EMS Mean RMS
Pressure Error Error Error Error Error Error

(inb) ( K) ( K) (K) (K) (K) (K)

1000 2.2 4.1 1.7 4.2 2.3 4.4
850 1.4 2.5 0.9 2.5 1.3 2.6
700 0.3 1.3 -0.1 1.7 0.1 1.6
500 -0.4 1.5 -0.7 2.0 -0.7 1.6
400 0.1 1.4 0.1 1.6 0.0 1.4
300 0.9 1.7 1.2 1.7 1.1 2.0
250 1.6 2.1 2.0 2.8 1.6 3.2
200 -1.2 2.9 -0.8 3.4 -1.0 4.1
150 -2.9 3.2 -2.1 3.6 -2.0 3.7
100 0.7 2.6 1.3 2.5 1.4 2.4

70 0.6 2.0 0.4 2.6 0.5 3.1
50 1.3 3.1 0.3 5.0 0.6 6.0
30 2.9 4.5 1.1 7.4 1.4 8.7
10 7.7 6. 1 5.6 9.9 5.9 10.9
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Table 73

Three spot filter retrieval error, Oc t. 3-5, 1975

Precomputed error covariance
(Close scan)

Scan angle 5 Scan angle 6 Scan angle 7

Pressure
(mb)

1000
850
700
500
400
300
250
200
150
100
70
50
30
10

- 197 -

Mean
Error

K)

2.2
1 .3
0.3

-0.8
-0.3

u.4
0.0

-1.8
-2.2

1.4
0.9
1 .5
2.5
6.9

RMS
Error
( K)

2.3
1.5
1. 2
1.4
1.5
2. 2
2.9
3.9
3.0
2.9
3. 5
5.0
6. 5
7.6

Mean
Error
( K)

1. 9
1.1
0.3

-0.5
0.3
1.2
0.8

-1.2
-2.0

1.0
-0.3
-0.3

0. 1
4. 0

Error
( K)

3.8
2.5
1.4
1.5
1.8
2.6
3.3
4.2
3.3
3.0
4.5
6.8
9.0

le 5

Mean
Error
( K)

1.7
0.9
0.1

-0.5
005
1.5
1. 0

-1.0
- 1.9

0.7
-1.1
- 1. 3
-'1.0

2. 9

RMS
Error
( K)

3.5
2.4
1.6
1.6
1.8
2.8
3. 5
4.4
3. 4
2.6
4.4
7. 2
9.5

11.4



Table 74

Three spot retrieval error, Oct. 3-5, 1975

Precomputed Kalman gain
(Extreme scan)

Scan angle 0 Scan angle 1 Scan angle 2

Pressure
(mb)

1000
850
700
500
400
300
250
200
150
100
70
50
30
10

- 198 -

Lean

Error
K)

1.4
0.4

-0.3
0.2
1 .0
1.6

-1.2
-3.0
0.7
0.6
1.3
2.8
7.6

R S
trror

K)

4. 0
2.4
1.2
1.4
1. 2
1.6
2.2
2. 8
2.9
2. 4
1.9
2.9
4. 1
5.6

Mea n
Erro r
( K)

2.2
1.3
0.3

-0.5
0. 0
0.9
1. 4

-1.55
-2.6

1. 2
0.8
1.3
2. 6
7.4

RMS
Error

K)

3.5
2. 0
1.1
1.2
1.2
1.6
2.2
2.5
2.9
2.4
1.9
3.0
4. 2
5.6

Mean
Error

K)

2.2
1.2
0. 2

-0.6
-0. 1
0.8
1.2

-1.4
-2.2

1.5
0.9
1.3
2.6
7.3

RMS
Error

K)

3.4
2.1
1. 1
1.2
1.14
1.9
2.3
2.6
2.8
2.4
1.9
3.1
4.3
5.6



Table 75

Three spot retrieval error, Oct. 3-5, 1975

Precomputed K-lman gain
(Close scan)

Scan angle 5 Scan angle 6 Scan angle 7

Pressure
(mb)

1000
850
700
500
400
300
250
200
150
100
70
50
30
10
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Mean
Error

K)

2. 0
1.2

0.4-0. 5

0.7
0. 2

-1.6
-2.4

1.2
0.6
1. 1
2.0
6.4

RMS
zrror
(K)

2.5
1.7
1.2
1. 1
1.4
2.1
2.9
4.0
2.8
2.9
3.7
5.2
6.5
7. 5

Mean
Error

K)

2.4
1.
0.5

-0.4
0. 2
1.0
0. 4

-1.5
-2.2

1. 2
0.4
0. 8
1.7
5.9

R MS
Error
(K)

3.0
2. 1
1.5
1.5
1.7
2.7
3.5
4.5
3.1
2.8
3.7
5.1
6.5
7 s7

Mean
Error

K)

2.4
1.5
0.4

-0.5
0. 2
0.9
0.2

-1.6
-2.1
1.2
0.2
0.5
1.2
5.3

Error
( K)

3.1
2.3
1.7
1,.6
1.8
2.7
3.5
4. 4
3.2
2.7
3.5
5.0
6.3
7.6



Table 76

Three spot f ilter retrieval error0 Dec. 5-8, 1975

Precomputed error covariance
(Extreme scan)

Scan angle 0 Scan angle 1 Scan angle 2

Pressure
(mb)

1000
850
700
500
400
300
250
200
150
100

70
50
30
10

- 200 -

Mean
Error

K)

2.6

0.9
-0.3

0.3
(. 1

-0.5
-0.9
-1.2
1 .9

-0.3
-0.7
-0.5
-0.3

R S1
Err or
( K)

3. 7
2.3
1. 9
1.6
1.2
2.6
3.2
3. 4
2.2
2.0
2. 5
3.5
4,5
7. 2

Mean
Error
( K)

3.9
2.3
1.8
0. 3
0.14

-0.3
-1.4
-1.8
-2.0
1.6
0.1
0.8
1.9
3. 1

RN 5
Error
(K)

4.2
2.2
1.6
1.7
1.4
2.6
3.9
4.3
3.0
2.2
3.6
5.8
8.4
11.8

Mean
Error

K)

3. 6
2.2
1.8
0. 2
0.2

-0.7
-1. 8
-2.2
-2.0
2. 0
0.4
1.5
2.9
4.7

RMS
Error

K)

4.2
2.5
1.7
1.6
1.3
3.1
4. 5
4.9
3.2
2. 1
4.5
7.6

10.5
13.5



Table 77

Three spot filter retrieval error, Dec. 5-8, 1975

Precomputed error covariance
(Close scan)

Scan angle 5 Scan angle 6 Scan angle 7

Pressure
(mb)

1000
850
700
500
400
300
250
200
150
100

70
50
30
10
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Ilean
Error
( K)

3.3
1.8
1. 2

-0.7
-1.5
-2.0
-1.8
-1.0
3.3
1.0
1.8
2.7
4.7

RMS
Error
( K)

3. 7
2.6
1.8
1.5
1.7
3.4
3.5
3. 5
1.6
2.4
4. 5
5.9
6. 8
9. 4

Pl.e an
Error
( K)

4. 2
2.w6
2. 0
0.0

-0.2
- 1. 1
-1.7

-1.0-140
2.9
0. 2
0.6
0.8
2. 3

BAS
Error
( K)

5.7
3.8
2. 0
1..8
2.4
4. 1
4.5
4.2
2. 2
3.1
5.5
7,7
9.9

13. 0

M ean
Error
( K)

3. 1
1.9
1.6

-0. 1
0. 0

-0. 9
-1.,4
-1.3
-1.0

2.6
-0.1

0. 5
1.3
3. 4

iNS
Error
( K)

5.3
3.7
2.0
1. 5
2.2
4. 1
4.8
4.5
2.2
3.2
5.8
8.4

10.6
13.6



Table 78

Three spot filter retrieval error, Dec. 5-8, 1975

Precomputed Kaiman gain
(Extreme scan)

Scan angle 0 Scan angle 1 Scan angle 2

Pressure
(mb)

1000
850
700
500
400
300
250
200
150
100

70
50
30
10

- 202 -

Mean
Error
( K)

3.5
2.0
1 .5
0. 1
0.4

-0.1
-0.9
-1.3
-1.6

1.8
-0,1
-0. 1

0.3
0.7

RMS
Error
( K)

3.5
1. 9
1.5
1.3
1. 1
2.5
3. 1
3.2
2.0
2. 1
2.7
3.5
4.4
7.1

Mea n
Error
( K)

3.5
2.0
1.5
0.0
0. 2

-0.3
-1.0
-1.3
-1.5

1.9
-. 1

0.0
0.5
1.5

Ht4S

Error
( K)

3.6
1.9
1.3
1.2
1. 1
2.3
2.9
3. 2
2.0
2.0
2.8
3.5
4. 5
6.9

Mean
Error
( K)

3.8
2.1
1.5

-0.1
0.0

-0.5
-1.3
-1.5
-1.4
2.2

-0. 1
0.1
0. 7
2. 1

EMS
E rror

K)

3.6
1.9
1.2
1.3
1.3
2. 4
2.8
3.0
1.9
2.0
2.9
3.6
4.6
6.7



Table 79

Three spot filter retrieval error, Dec. 5-8, 1975

Precomputed Ktnlman gain
(Close scan)

Scan angle 5 Scan angle 6 Scan angle 7

Mean RS mean RMS Mean EMS
Pressure Error Error Error Error Error Error

(imb) (K) (K) (K) (K) (K) (K)

1000 3.5 4.4 3.6 4.2 3.7 4.0
850 2.1 3.0 2.2 2.9 2.3 2.8
700 1.6 1.7 1.8 1.8 1.9 1.8
500 -0.2 1.2 -0.1 1.1 -0.1 1.2
400 -0.3 1.7 -0.3 1.7 -0.3 1.7
300 -- 1.3 3.6 -1.4 3.7 -1.6 3.7
250 -2.0 3.9 -2.1 4.0 -2.3 4.0
200 -2.0 3.7 -2.0 3.7 -2.1 3.7
150 -1.3 1.8 -1.4 1.7 -1.3 1.7
100 2.9 2.5 2.9 2.7 2.9 2.9

70 0.7 4.8 0.8 5.0 1.0 5.2
50 1.6 6.3 1.8 .5 2.2 6.7
30 2.5 7.3 2.7 7.5 3.3 7.6
10 4.6 9.9 4.9 10.2 5.6 10.6
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Table 80

Three spot filter retrieval error, Feb. 3-6, 1976

Precomputed error covariance
(Extreme scan)

Scan angle 0 Scan angle 1 Scan angle 2

Pressure
(mb)

1000
850
700
500
400
300
250
200
150
100
70
50
30
10

- 204 -

Mean
Error
( K)

0.4
0.6
1.0
0.3
1.1
1.0

-0.2
-1.8
-1.5
2.2
0.2
0.4
0.3

-1.4

RMS
Error

(K)

4.0
2.5
1.9
1.6
1.7
3. 1
3.7
3. 0
1.8
2.0
2. 1
3.4
5.4
11.0

Mean
Error

K)

0.6
1.1
1.2
0. 1
0.6
0.2

-0.7
-2.1
-1.4
2. 5
0.7
1.1
1.0

-0.5

RSi s
Error
( K)

4.9
2.8
2.0
2.0
1 .7
3. 1
4.3
3.9
2.9
2.3
2.8
5.6
8.9
14.2

Mean
Err or

K)

0. 6
1.1
1.2
0.0
0.5
0. 1

-0.6
-1.9
-1.2
2. 7
0.6
0.9
0.7

-0.6

RMS
Error
( K)

5.2
3.2
2.2
1.8
1.7
3.6
4.9
4. 1
2.8
2.4
3.7
6.5
9.7
14.8



Table 81

Three spot filter retrieval error, Feb. 3-6, 1976

Precomputed error covariance
(Close scan)

Scan angle 5 Scan angle 6 Scan angle 7

Pressure

tmb)

1000
850
700
500
400
300
250
200
150
100
70
50
30
10

- 205 -

Mean
Error
( K)

-0.3
0.5
0.9

-0.2
0.5
0. 0

-0.6
-1.7
-1.1
2.8
0. b
1. 1
1.3
0.4

RM s
Error
( K)

4.5
2.8
2.0
1. 6
2.0
3-s7

4. 4
3. 1
1.5
2. 8
4.0
5.8
7.7
12.7

Mean
Error

K)

-0.1
0.5
0.8

-0.5
0.3

-0.2
-0.5
-1.4
-0.8
3. 1
0.5
0. 8
0. 7

-0.3

RMS
Error
( K)

6.8
4. 5
2.8
2.2
2.6
4.8
5.9
4.8
2.9
3. 1
5.5
9.1

12.8
17.5

Mean
Error

K)

0. 0
0. 5
0.7

-0.5
0. 2

-0.3
-0.7
-1.5
-0.7

3.3
0.7
0.9
0.9

-0.4

RN S
Error
( K)

6.8
4.3
2.7
2.0
2.7
5. 1
6.0
4. 8
2.7
2.9
5.6
9.2
12.8
17.8



Table 82

Three spot filter retrieval error, Feb. 3-6, 1976

Precomputed Kalman gain
(Extreme scan)

Scan angle 0 Scan angle 1 Scan angle 2

Pressure
(mb)

1000
850
700
500
400
300
250
200
150
100

70
50
30
10
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Mean
Error
( K)

0.6
0.9
1.2
0.2
0.9
0.7

-0.4
-1.9
-1.5

2.3
0. 3
0.5
0.5

-1.3

RMS
Error
( K)

4.3
2.4
1. 7
1.5
1.5
3. 0
3.5
2. 8
1. 8
2. 1
2. 1
3.3
5.3

10.9

Mean
Error
( K)

0.5
0.9
1.2
0. 1
0.7
0. 4

-0.4
-1.8
-1.3

2. 5
0. 5
0.7
0.5

-1. 0

R As
Error
( K)

4.5
2.3
1.6
1.5
1.6
3.0
3.6
2.7
1. 6
2.1
2.2
3.3
5.2

10.7

Sean
Error
( K)

0.3
049

.2
0.0
0.6
0.3

-0. 4
-1.8
-1.2

2.6
0.4
0.8
0.7

-0.6

EMS
Error

K)

4.3
2.4
1.06
1.3
1.5
3.3

3. 6
2.5
1.4
2.1
2.5
3.8
5.6

10.6



Table 83

Three spot filter retrieval error, Feb. 3-6, 1976

Precomputed Kalman gain
(Close scan)

Scan angle 5 Scan angle 6 Scan angle 7

Pressure
(mb)

1000
850
700
500
400
300
250
200
150
100
70
50
30
10
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Me an
Error

K)

tso

-0.8

-0.20. 4
-0.3
-0.9
-2.0
-1.2
3.0
1.0
1.8
2.1
1.4

Hias
Error
( K)

5. 1
3. 1
1.9
1.5
2. 0
3.8
4.4
3.2
1.6
2.8
4.0
5.6
7.5

12. 6

Mean
Error
( K)

-0. 1
0.7
1. 0

-0.3
0.3

-0. 4
-0.9
-1.9
-1.1

3.1
0.9
1.6
1.8
0. 9

RMS
Error
( K)

5.4
3.2
1.9
1.4
2.0
3.9
4.6
3.3
1.6
2.8
4.2
6.0
8.0

13. 2

Mean
Error
( K)

-0.2
0.5
0.9

-0.3
0.3

-0.3
-1.0
-1.8
- 1. 0

3.3
0.9
1.5
1.8
0. 6

RMS
Error

K)

5.4
3.2
2.0
1. 4
2.0
4.2
4.7
3.5
1.6
2.7
4.3
6. 4
8.4
13.8



Table 84

Execution times of various filters (sec.)

Causal

One Spo t

Two Spot

Three Spot

0.04

0. 14

0.55

Pr ecomputed

P(-1

0.02

0. 07

0. 20

Pr ecomputed

Gain

0.01

0. 01

0.02
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observation matrices themselves are noise because of

improper elevation of emissivity estimates. The averaging

done in the precomputation of the gain has possibly reduced

this error .
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Chapter V

The Water Vapor and Liquid Water Experiment

Section A. General description

In order to further investigate the capabilities of the

extended Kalman-Bucy filter, it was decided to implement it

as an inversion scheme for retrieval of liquid water and

water vapor column using the two window channels of SCAMS.

This is a more substantially non-linear problem than the

temperature problem. Besides the quadratic term in the

absorption coefficient of water vapor, the two variables

interact significantly with themselves and each other. As

an example, a heavy cloud deck will obscure the radiation

from its lower levels and from the water vapor beneath it.

In the extreme, an increase in the liquid column will

produce a decrease in the observed brightness temperature

since the opaque cloud will penetrate further into the

colder high atmosphere.

It is unfortunate, but this experiment could not be run

on actual SCAMS data. While there are independent estimates
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of water vapor columns available, there is no corresponding

ground truth for liquid water. The filter was thus

evaluated on a synthetic dataset constructed to be as close

to reality as possible. While this implies perfect

knowledge of the plant, it is felt that the conclusions of

this chapter are still valid.

Section B of this chapter discusses the problem of the

identification of the plant for this filter. The synthesis

of the observation matrices and the evaluation of the

equations of the equations of radiative transfer at the

prior are discussed in Section C. A description of the

dataset synthesis is given in Section D. Section E presents

the results of the experiment.

Section B. System identification

Because of the lack of independent measurements, the

problem of system identification was a rather difficult

one. The only estimate of liquid water and water vapor

columns available on a large scale are those produced by the

inversions of SCAMS itself. It was thus this data that

formed the dataset used in the system identificattion.

A dataset consisting of three days of August 1975 data
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was processed to extract all those scans in which all

thirteen spots were over water, thus allowing water vapor

and liquid water to be estimated. This extracted dataset

was then divided into latitude bands and the mean in each

band computed. The mean of the water vapor showed the

expected behaviour , peaking at about 40 mm precipitable

water at the equator and tapering off to about 10 mm at 60

latitude. Liquid water columns showed no particular

latitudinal pattern. The mean over the latitudes examined

was approximately 0.2 mm. There was a mild peak of 0.3 to

0.4 mm near the intertropical convergence zone.

Using an interpolation in latitude of the water vapor

means and a mean of 0.2 mm for the liquid water columns, the

dataset was then processed to yield the covariance of the

liquid water and water vapor along a scan and the

cross-covariance between a scan and the one following in

space. It was expected that a simple stepwise regression of

one scan on the other would produce a state transition

matrix. Such a regression was attempted. However, when the

results of this regression were used in the simulation of

Section D, certain states began to grow without limit after

roughly 20 scans of pure prediction. Because the intended

use of the plant was both in the filter and in the

simulation, this state transition matrix was discarded. The

state transition matrix that was finally used was a result
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of the first step of the regression. The regressisn

coefficient for the water vapor states was about 0.95, and

that for the liquid water states was about 0.90. Since

there is no a priori reason to suspect that one spot will be

different from another, these values were used for all spots

in the matrix. The dataset was then reprocessed using this

matrix in the prediction scheme to produce an estimate of

the plant noise. Both the covariance of the prior and this

plant noise were produced in 10 degree latitude bands.

Section C. Observations and observation matrices

As mentioned earlier in this chapter, the forward

problem for water vapor and liquid water is more non-linear

than the forward problem for oxygen. This is further

compounded by the fact that estimates for liquid water and

water vapor can be reliably produced only when they can be

observed in emission against the cold background of the

ocean. The temperature effects of the sea surface

reflectivity thus enter the problem as do the effects of sea

state. To overcome these problems, an approach believed

novel in remote sensing has been developed and will be

presented in this section.
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The first consideration in the observation process is

to factor out the effect of the surface. Examining the

equation of radiative transfer, we find that the observed

brightness temperature is composed of three parts: the

radiation produced by the atmosphere and observed directly

by the satellite, the radiation produced by the atmosphere

and observed by the satellite after it has been reflected

from the surface, and finally, the emission from the surface

after it has been attenuated by the atmosphere. This is

expressed by the equation:

H

T1= T (h) K(V, h) r(h,H) dh

+ R(v) T (h)K h)WhH)(H,,H) dh 5.1
HS

+ (- R(V/)) T,7(H,,H)

This implies that we may compute the observed brightness

temperature for an arbitrary surface temperature and

emissivity if we know the values of the two integrals and

the absorption through the atmosphere.

Having factored out the state of the surface from the

equation of radiative transfer, we now seek a fast method

for evaluating the two integrals and the atmospheric

attenuation. There is, of course, no method to do this

exactly. For a given atmospheric structure., these
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quantities must be evaluated using the full integrals.

Therefore, we will seek a reasonable approximation to the

integrals instead. To accomplish this, we will first

examine the problem to discover if we may make any

simplifying assumptions about the atmosphere.

Assuming that the hydrostatic equation is valid, there

are three quantities that will specify the absorptions in

the integrals of 5.1: temperature, water vapor

concentration, and liquid water concentration. The liquid

water and water vapor are primarily located in the region of

the atmosphere below tropopause. There are rare occasions

in which extreme weather occasions will pump significant

water vapor into the upper atmosphere, but these conditions

are the exception rather than the rule. The same may be

said of liquid water. If the total bandpass of the

radiometer is large enough so that the total brightness

temperature is unaffected by any possible spike in the

spectrum at 22.235 GHz., it is reasonable to assume that the

region above tropopause is totally dry. We may then

fracture the integrals into upper and lower atmosphere
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pieces. Doing this we obtain:

TB = 1, + 7(HT-,H)1 2 + R(v) {AHSSHT)r(H-H) 13

+ r(HSHT)7(HT, H) 14 5.2

+ ( I - R (p)) Ts r(HS, HT)r( HT, H)

where

',= H )K(h)(,)dh 5.3H

13 = JH h)K (Lh -h,H )d h 5.5

HT

H,

12 = T(h) K(1,,h) r( HSh) dh 5.4
H S

and

,= T (h) K(Vjh) -(hH ) dh 5.5
/HT

H T

14 =LHTT(h) K(vh)T(h,H )dh 5.6
/HT

where HT is the height of the tropopause. Of the quantities

in 5.2, 1 , 13 , and T(HT ,H) are unaffected by liquid

water and water vapor because of our assumption of a dry

troposphere. Their values are affected solely by the
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temperature structure above tropopause. Since the

frequencies used by SCAMS for water vapor and liquid water

estimates are in the far wings of the oxygen complex, the

atmosphere is very nearly transparent above this level.

This leads to the conclusion that it will have little

ultimate impact if the temperature structure above

tropopause is only grossly approximated. For such an

approximation, it is more than reasonable to use the

standard supplemental atmospheres.

To deal with 1., 14, and T(Hs ,HT) requires further

assumptions about the structure of the atmosphere. In the

case of the vertical distribution of water vapor, it is

often reasonable to assume that its concentration decays

exponentially with altitude. The scale height usually

associated with this decay is 2.2 km, although a figure of

2.0 km is sometimes used. Under this assumption,

approximately 86 percent of the total water vapor lies in

the bottom 4.4 km of the atmosphere.

The vertical distribution of liquid water is best

described by its distribution within the many varieties of

clouds that occur in the atmosphere. While clouds display a

continuous behaviour in altitude and liquid water

concentrations, it is possible to classify them into general

categories or cloud models. It is thus common in

meteorology to talk of an alto-stratus, fair weather
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cumulus, etc. cloud. A catalog of some of the more common

cloud types with their altitudes, drop size distributions,

and densities has been compiled by Reifenstein and Gaut

(1971). To approximate the distribution of liquid water for

a given column it is reasonable to select a cloud model with

a column close to that desired and vary its density

slightly.

The final approximation needed is one for the

temperature structure of the lower atmosphere. Since the

region of greatest concern is below 4 km, it is reasonable

to assume that the temperature in this portion of the

atmosphere is given by the temperature at a level such as

850 mb and a lapse rate. The lapse rate used should be a

function of the temperature itself. As an example, a

temperature typical of a sub-arctic winter would imply a

lapse rate typical of that atmosphere.

Given these assumptions, it is possible to evaluate the

integrals I. 0 114 and r(Hs ,H T) for a choice of

temperature and liquid water and water vapor columns. This

is still a rather time-consuming process if it is necessary

each time a retrieval is performed. Thus, we will require a

further level of approximation.

This approximation will be to evaluate the various

parts of 5.1 by means of a bicubic spline in water vapor and

liquid water. The spline coefficients used will be provided
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by an interpolation of those produced for two temperatures

surrounding the desired temperature profile. Thus, we

evaluate a spline for each of the quantities:

S1 = l+ r( HT,H) 15.7

S2 T2(Hs,H,)T(HTH)13+r(,H)7(HTH)l4  5.8

S3 r= 7 (HS, H)Tr(HT, H) 5.9

and then combine them with the surface temperature and

reflectivity at run time to produce the brightness

temperature as a function of .the prediction.

The knots of the spline were chosen to be on the mesh

(L1 ,W ), where L was the liquid water column from the

set 10., 0.2, 0.4, 0.6, 0.8, 1.0, 4.0, 8.0, 16.0, 20.0} mm

precipitable water and W. was the water vapor column in the

set 10.0, 10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0,

90.0, 100.0) mm precipitable water vapor. These spline

coefficients were evaluated for temperatures at 1013 mb from

-20.0 to 40.0 degrees centigrade in 5 degree steps. It

should be recognized that certain of these atmospheres are

physically impossible. As an example, a zero water vapor

column will never occur in conjunction with a 20 mm liquid

water column. These knots were evaluated simply to

mechanize the entire process. It should also be noted that
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the values of I, , I and r(HT ,H) need be evaluated only

once for the knot mesh,, thus reducing the total computation

required.

Because the predicted brightness temperature is

produced in terms of this bicubic spline, it is a simple

matter to produce the partial derivatives needed for the

evaluation of:

H.(X.(-)) = h;(X) 3.62

X=X(-) (REPEATED)

The partial derivatives of each of the splines with respect

to liquid water and water vapor columns are well defined.

One need only combine them in terms of the surface

reflectivity and temperature.

Section D. The simulation

Given the choice of the plant, the simulation of the

observed brightness temperatures is more or less

mechanical. The "orbit" was chosen to be successive passes

from -590 to 59@ latitude with all spots at the same

latitude. The temperature of the atmosphere was given by

the interpolated standard atmospheres. The values of liquid
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water and water vapor were produced by decomposing the plant

noise covariance matrix, Q; , into its eigenvectors and

eigenvalues and then driving the eigenvectors with Gaussian

random numbers having variance equal to the eigenvalues.

The surface temperature was taken to be the temperature at

1013 mb, but no less than 273.15*K. The dataset produced

for the experiment was the "position" of the satellite, the

brightness temperatures at all 13 spots corrupted by 0.20 K

rms independent Gaussian random variables and a noisy value

of the atmospheric and surface temperature. These two

temperatures will never be known perfectly to an inversion

scheme. The noise processes added to these temperatures

were chosen to be independent on each surface and

atmospheric temperature. Since the errors in the

temperature estimates will not be white, the errors were

produced by a plant with c = 0.981 and Q = (0.57? 1.

These statistics were chosen to give a 40K rms error in each

temperature.

To randomize the inital state, the simulation was run

for 60 "frames" before actual data was produced.
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Section E. Results

The results of the inversion of 400 frames of synthetic

data produced by the simulation are gi en in Tables 85-86. For

purposes of comparison, a regression inversion was also

produced for this experiment. This regression inversion was

obtained by regressing the values of liquid water and water

vapor against the brightness temperatures for scan angles 0

through 6 for three orbits of the simulation (368 frames).

Since the D matrix constants are symmetric about nadir, the

constant for scan angle 5 may be used at scan angle 7, and

those for scan angle 0 for scan angle 12, etc. Because the

regressions were performed using the statistics for spots 0

through 6, the error statistics of spots 7 through 12

represent errors obtained on an independent dataset.

Even with this highly inbred standard of comparison,

the extended Kalman-Bucy filter shows its ability to track

the non-linear aspects of the physics. The rms errors of

the filter are roughly one third of the regression

inversion. To show this more graphically, another

simulation with an inbred regression inversion was run with

the plant producing liquid water in cm rather than in mm.

The mean was thus 2mm rather than 0.2 mm. The results of

this simulation are given in Tables 87:@8. The error in water

- 223 -



Table 85

Water Vapor Retrieval Error

Scan Angle

0

1

2

3

4

5

6

7

8

9

10

11

12

Kalman-Bucy

Mean RMS

Error Error

(mm) (mm)

0.246 0.678

-0.297 1.064

0.054 0.793

-0.227 0.684

-0.714 0.929

-0.452 1.051

-0.039 0.801

-0.210 0.830

-0.643 0.808

0.250 0.650

-0.272 0.757

-0.274 0.500

0.738 0.861

Statistical D

Mean RMS

Error Error

(mm) (mm)

0.046 1.517

0.159 2.621

0.199 2.013

0.179 2.061

0.260 2.427

0.460 3.260

0.195 2.733

1.895 2.835

1.594 2.340

0.945 1.698

0.967 1.684

0.524 2.698

0.301 1.565
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Table 86

Liquid Water Retrieval Error

Scan Angle

0

1

2

3

4

5

6

7

8

9

10

11

12

Kalman-Bucy

Mean RMS

Error Error

(mm) (mm)

-0.007 0.018

0.013 0.027

0.002 0.021

0.005 0.025

0.010 0.023

0.010 0.029

-0.001 0.024

0.006 0.028

0.024 0.027

-0.009 0.020

0.006 0.020

0.009 0.015

-0.020 0.027

Statistical D

Mean RMS

Error Error

(mm) (mm)

0.004 0.044

-0.004 0.065

-0.004 0.063

-0.004 0.058

-0.007 0.060

-0.020 0.091

-0.009 0.087

-0.047 0.088

-0.033 0.077

0.000 0.065

-0.019 0.055

-0.012 0.059

-0.006 0.041
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Table 87

Water Vapor

(High Liquid

Kalman-Bucy

Scan Angle

0

1

2

3

4

5

6

7

8

9

10

11

12

Mean

Er ror

(mm)

-0.556

-0.666

-0.691

-0.705

-1.191

-1.237

-1.147

-0.503

-0.644

-0.579

-0.696

-0.555

-0.497

R S

Error

(mm)

1.609

1.809

1. 771

1.866

1.865

2.276

2. 957

2. 632

2. 295

1.645

1.394

1.272

2.325

Retrieval Error

Water Experiment)

Statistical D

Mean RMS

Error Error

(mn) (mm)

-0.093 4.614

-0.002 4.946

0.158 4.584

0.349 4.702

0.196 5.314

0.760 7.250

0.319 6.342

3.614 7.156

2.791 5.302

1.922 4.279

1.025 4.283

1.204 5.557

1.646 5.597
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Table 88

Liquid Water Retrieval Error

(High Liquid Water Experiment)

Scan Angle

0

1

2

3

4

5

6

7

8

9 -

10

11

12

Kalman-Bucy

Mean RMS

Error Error

(mm) (mm)

-0.01 0.06

0.03 0.08

0.02 0.07

0.01 0.08

0.02 0.08

0.01 0.19

0.02 0.10

0.00 0.14

0.01 0.35

-0.02 0.09

0.02 0.07

0.03 0.07

0.00 0.15

Statistical D

Mean RMS

Error Error

(mm) (nm)

-0.02 0.42

0.01 0.57

0.02 0.67

0.01 0.61

-0.01 0.52

-0.19 0.97

-0.07 0.64

-0.18 0.84

-0.16 0.93

0.17 0.58

0.00 0.64

-0.06 0.78

-0.14 0.59
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vapor is still one third of the regression inversion, but

the error in liquid water is now one seventh that of the

regression.

To show the value of this non-linear tracking ability,

we may consider the plot of Figure 12. This is a plot of

the channel two brightness temperatures as a function of

liquid water for a water vapor column of 25 mm. Assuming

that the liquid water mean is 0.2 mm and that the water

vapor is invariant, a regression inversion will produce an

estimate essentially based on the slope of this curve at 0.2

mm. This estimate will be approximately

L = 0.02687(T - 160.9) + 0.2. A received brightness

temperature of 180.9*K will generate an estimate of 0.74

mm for an error of -0.06 mm. The Kalman filter used in the

experiment exhibited innovations in the order of several

degrees. For the purposes of this argument, we will assume

that the prediction was 0.6 mm. The Kalman estimate is thus

roughly L = 0.02988(T - 174.6) + 0.6. For a 180.90 K

received brightness temperature, the estimate will be 0.79

mm for an error of -0.01 mm. The tracking ability and the

ability to evaluate the derivatives at the prior thus yields

significant advantages.

Since these improvements seem so large, it is

reasonable to inquire beyond the above simple analysis as to

their source. One question that should be asked is how easy
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it is to "derail" the non-linear processing. This question

was addressed by running the filter for a period of time and

then injecting one gram (10mm) of liquid water into the

nadir spot for a period of one frame. The resulting error

performances are plotted in Figures 13-14. It should be

noted that the filter has recovered in approximately three

frames and has resumed nominal error performance.

A second question is how critical the estimates of the

surface and atmospheric temperature are to the estimation

process. To investigate this effect, the filter was run

with a constant atmospheric and surface temperature estimate

of 293.150 K. The results of this experiment are given in

Tables P9-90. It may be seen that when the filter is denied

temperature information, the performance is degraded to that

of the Statistical D method. The question is now which of

the two temperatures is more critical to the processing. To

answer this, the experiment was re-run with the filter being

denied either the atmospheric temperature or the surface

temperature. The results of these two experiments are given

in Tables 91-94. The conclusion that may be made from these

experiments is that the knowledge of the atmospheric

temperature is more important than the knowledge of the

surface temperature, but that if either is lacking, the

performance is seriously degraded.

A final issue that must be addressed is the sensitivity
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Table 89

Water Vapor Retrieval Error

(No Temperature Knowledge Experiment)

Kalman-Bucy

Scan Angle

0

2

3

4

5

6

7

8

9

10

11

12

Me an

Error

(mm)

1.370

0. 443

1.512

1.751

2.362

2. 260

2.460

2.052

1.656

1.216

0.980

0. 258

1. 242

Ma S

Error

(mm)

1.292

2.954

2.607

3.519L

4.632

5.936

4. 145

4.946

4. 130

3.254

2. 371

2.593

1. 187

Statistical D

Mean RMS

Error Error

(mm) (nm)

0.046 1.517

0.159 2.621

0.199 2.013

0.179 2.061

0.260 2.427

0.460 3.620

0.195 2.733

1.859 2.835

1.594 2.340

0.945 1.698

0.967 1.684

0.524 2.698

0.301 1.565

- 233 -



Table 90

Liquid Water Retrieval Error

(No Temperature Knowledge Experiment)

Kalman-Bucy

Scan Angle

0

1

2

3

4

5

6

7

8

9

10

11

12

Me an

Er ror

(mm)

-0.002

0. 010

-0.001

-0.005

-0.004

-0.004

-0.008

0.004

0.009

0.011

0. 007

0. 015

0. 004

RMS

Error

(mm)

0. 460

0. 101

0. 103

0.122

0. 141

0. 162

0.150

0. 153

0.136

0. 126

0.095

0.094

0. 046

Statistical D

Mean RMS

Error Error

(mm) (mm)

-0.004 0.044

-0.004 0.065

-0.004 0.063

-0.004 0.058

-0.007 0.060

-0.020 0.091

-0.009 0.087

-0.047 0.038

-0.033 0.077

0,000 0.065

-0.019 0.055

-0.012 0.059

-0.006 0.041
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Table 91

Water Vapor Retrieval Error

(No Atmospheric Temperature Knowledge Experiment)

Kalman-Bucy

Scan Angle

0

2

3

4

5

6

7

8

9

10

11

12

Me an

Er ror

(mm)

1. 398

1.447

1. 552

1.697

1.809

1.910

1.643

1.591

1. 510

1.222

1.023

1.204

1. 413

RMS

Error

(mm)

2.147

1.971

2. 454

2.452

2.930

3.631

2.872

3. 281

2.629

2. 267

2. 297

1.872

2*016

Statistical D

Mean RMS

Error Error

(mm) (mm)

0.046 1.517

0.159 2.621

0.199 2.013

0.179 2.061

0.260 2.427

0.460 3.620

0.195 2.733

1.859 2.835

1.594 2.340

0.945 1.698

0.967 1.684

0.524 2.698

0.301 1.565
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Table 92

Liquid Water Retrieval Error

(No Atmospheric Temperature Knowledge Experiment)

Kalman-Bucy

Scan Angle

0

1

2

3

4

5

6

7

8

9

10

11

12

Me an

Er ror

(mm)

-0. 024

-0.026

-0. 024

-0.035

-0.033

-0. 036

-0. 033

-0. 017

-0.018

-0.016

-0.017

-0. 020

-0.018

R1M S

Error

(mm)

0. 061

0.063

0. 078

0.086

0. 096

0.101

0. 101

0.107

0. 085

0. 086

0.069

0. 062

0.065

Statistical D

Mean RMS

Error Error

(mm) (mm)

-0.004 0.044

-0.004 0.065

-0.004 0.063

-0.004 0.058

-0.007 0.060

-0.020 0.091

-0.009 0.087

-0.047 0.088

-0.033 0.077

0.000 0.065

-0.019 0.055

-0.012 0.059

-0.006 0.041
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Table 93

Water Vapor Retrieval Error

(No Surface Temperature Knowledge Experiment)

Kalman-Bucy

Scan Angle

0

1

2

3

4

5

6

7

8

9

10

11

12

Me an

Er ror

(mm)

0. 333

-1. 379

-0.026

-0. 295

-0.415

-0.460

0. 625

0.035

-0.684

0.124

-0.340

-1. 263

0.668

RMS

Error

(mm)

1.646

1.817

0.797

1.324

1.729

2.386

1.450

2.358

1. 765

1. 503

0. 724

1.651

1.517

Statistical D

Mean RMS

Error Error

(m) (mm)

0.046 1.517

0.159 2.621

0.199 2.013

0.179 2.061

0.260 2.427

0.460 3.620

0.195 2.733

1.859 2.835

1.594 2.340

0.945 1.698

0.967 1.684

0.524 2.698

0.301 1.565
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Table 94

Liquid Water Retrieval Error

(No Surface Temperature Knowledge Experiment)

Kalman-Bucy

Scan Angle

0

2

3

4

5

6

7

8

9

10

11

12

Me an

Er ror

(mm)

0.017

0. 044

0. 021

0,030

0. 034

0.034

0.018

0.022

0.044

0.013

0. 027

0. 042

0. 005

RM S

Error

(mm)

0.026

0. 043

0. 032

0. 043

0. 046

0. 050

0.046

0,056

0. 051

0.045

0.035

0. 038

Statistical D

Mean RMS

Error Error

(mm) (mm)

-0.004 0.044

-0.004 0.065

-0.004 0.063

-0.004 0.058

-0.007 0.060

-0.020 0.091

-0.009 0.087

-0.047 0.088

-0.033 0.077

0.000 0.065

-0.019 0.055

-0.012 0.059

0.025 -0.006 0.041
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of the observation matrices to the assumptions made in their

construction. In particular, their sensitivity to the

assumed water vapor scale height requires attention. To

investigate this, two additional sets of splines were

constructed that represent extreme conditions in the

atmosphere. One set of splines had an assumed water vapor

scale height of 1.0 km and the other had an assumed water

vapor scale height of 3.0 km. These splines were then used

to create two new synthetic datasets. The filter was then

run on these datasets using the 2.2 km splines for the

forward model. The results of these experiments are given

in Tables95 - 98. The conclusion that may be drawn from

these experiments is that the scale height of water vapor is

a significant factor in the non-linear processing of the

filter. To further test this behaviour, a mixed synthetic

dataset was constructed in which records were randomly

selected from the 2.2 kin synthetic dataset with probability

0.6 and from the 1.0 kin or 3.0 km dataset with probability

0.2. The filter was then run on this dataset using the

2.2 km splines. The result of this experiment is given in

'Tables 99-100. In this more realistic (but still extreme)

experiment, the filter still continues to perform better

than the Statistical D method retrievals constucted for the

mixed dataset. This improvement is by no means as marked as

when the water vapor scale height was known a priori. It
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Table 95

Watec Vapor

(3.0 km Water Vapor

Kalman-Bucy

Scan Angle

0

1

2

3

4

5

6

7

8

9

10

11

12

Mean

Error

(mm)

1.984

1.322

1.706

1.299

0.854

1.309

1.832

1.294

0.784

1.754

1.207

1.221

2.358

RM S

Error

(mm)

1.123

0.936

1.207

0.818

0.871

1.459

1.008

1.044

0.827

0.866

1.083

0.689

1.367

Retrieval Error

Scale Height Experiment)

Statistical D

Mean RMS

Error Error

(mm) (mm)

1.553 1.645

1.071 2.623

1.279 2.090

0e998 2.106

0.992 2.457

1.232 3.276

1.147 2.799

2.598 2.866

2.322 2.386

1.786 1.725

2.044 1.819

1.420 2.796

1.799 1.842
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Table 96

Liquid Water Retrieval Error

(3.0 km Water Vapor Scale Height Experiment)

Kalhnan-Bucy

Scan Angle

0

2

3

4

5

6

7

8

9

10

11

12

Mean

Error

(mm)

-0.054

-0.039

-0.045

-0.042

-0.039

-0.044

-0.060

-0.042

-0.023

-0.053

-0.036

-0.035

-0.062

RM S

Error

(mm)

0.034

0.025

0.036

0.039

0.033

0.034

0.037

0.040

0.028

0.034

0.033

0.028

0.046

Statistical D

Mean RMS

Error Error

(mm) (mm)

-0.04A 0.046

-0.032 0.063

-0.036 0.063

-0.031 0.057

-0.043 0.060

-0.047 0.090

-0.038 0.087

-0.072 0.088

-0.058 0.078

-0.026 0.065

-0.049 0.597

-0.039 0.059

-0.045 0.047
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Table 97

Water Vapor

(1.0 km Water Vapor

Kalman-Bucy

Scan Angle

0

1

2

3

4

5

6

7

8

9

10

11

12

Mean

Error

(mm)

-4.358

-4.754

-4.628

-4.583

-5.387

-5.546

-5.387

-4.635

-4.708

-3.952

-4.271

-4.296

-3.072

RMS

Error

(mm)

1.917

2.703

2.194

2.471

2.836

2.774

2.660

2.072

2.099

1.748

1.591

1.986

1.530

Retrieval Error

Scale Height Experiment)

Statistical D

Mean RMS

Error Error

(mm) (mm)

-4.269 1.842

-2.495 2.865

-2.988 2.332

-2.320 2.309

-2.145 2.593

-2.134 3.375

-3.450 2.930

-0.523 2.868

-0.675 2.327

-1.551 1.910

-2.063 1.618

-2.018 2.619

-3.938 1.340
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Table 98

Liquid Water Retrieval Error

(1.0 km Water Vapor

Kalman-Bucy

Scan Angle

0

1

2

3

4

5

6

7

8

9

10

11

12

Mean

Error

(mm)

0.127

0.149

0.138

0.138

0.157

0.167

0.157

0.142

0.153

0.112

0.124

0.131

0.101

RM S

Error

(mm)

0.072

0.095

0.082

0.082

0.097

0.102

0.094

0.079

0.083

0.060

0.064

0.069

0.052

Scale Height Experiment)

Statistical D

Mean RMS

Error Error

(mm) (mm)

0.096 0.056

0.065 0.075

0.076 0.075

0.063 0.069

0.061 0.069

0.048 0.096

0.063 0.094

0.013 0.095

0.029 0.079

0.066 0.070

0.054 0.059

04054 0.066

0.091 0.044
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Table 99

Water Vapor Retrieval Error

(Mixed Water Vapor Scale Height Experiment)

Kalman-Bucy

Scan Angle

0

1

2

3

4

5

6

7

8

9

10

11

12

Mean

Error

(mm)

-0.527

-0.926

-0.791

-0.889

-1.475

-1.394

-0.976

-0.883

-1.170

-0.484

-0.897

-0.890

0.003

RM S

Error

(mm)

1.827

2.317

2.124

2.239

2.478

2.575

2.503

2.283

2.057

1.921

1.899

1.978

1.793

Statistical D

Mean RMS

Error Error

(mm) (mm)

0.113 2.447

0.171 2.880

0.217 2.499

0.173 2.423

0.295 2.779

0.524 3.616

0.233 3.119

1.974 3.088

1.661 2.574

0.939 2.120

0.831 2.180

0.388 3.002

0.306 2.361
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Table 100

Liquid Water Retrieval Error

(Mixed Water Vapor

Kalman-Bucy

Scan Angle

0

1

2

3

4

5

6

7

8

9

10

11

12

Mean

Error

(mm)

0.013

0.030

0.025

0.023

0.033

0.034

0.023

0.026

0.039

0.011

0.024

0.026

-0.002

RMS

Error

(mm)

0.052

0.069

0.064

0.068

0.075

0.080

0.073

0.068

0.065

0.056

0.056

0.059

0.049

Scale Height Experiment)

Statistical D

Mean RMS

Error Error

(mm) (mm)

-0.006 0.061

-0.005 0.071

-0.005 0.072

-0.004 0.067

-0.008 0.073

-0.021 0.102

-0.010 0.093

-0.051 0.094

-0.036 0.084

0.000 0.071

-0.016 0.065

-0.029 0.072

-0.007 0.066
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must then be concluded that the performance achieved in

which the water vapor scale height was known exactly may be

overly optimistic.

In summary, the Extended Kalman-Bucy filter appears to

be a valuable means of producing estimates of liquid water

and water vapor from satellite data. To fully utilize its

potential, it is necessary to incorporate estimates of the

temperature profile and ocean surface temperature. It will

also be desirable to incorporate estimates of the sea

surface state as this parameter also affects the

reflectivity of the sea surface. Finally, the assumptions

made about the water vapor scale height have a critical role

in its performance.
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Chapter VI

Summary and Recommendations for Future Research

The basic conclusions that may be reached from the

experiments conducted in this thesis are: The extended

Kalman-Bucy filter offers an improvement in estimation

accuracy over a presently used inversion method for

parameters sensed from passive remote sounders. This

improvement is greatest in the more non-linear problem of

estimating liquid water and water vapor. The degree of

improvement is sufficient to warrant the increased

computational burden.

There are several areas in which further research

should be fruitful: The system identification procedures

used to identify the plant in the filters developed were

specific to the instrument and not very satisfactory. A

more adequate and general indentification will be warranted

before such filters are used operationally. The temperature

filter implemented did not use the two low frequency

channels of SCAMS. Since these two channels contain quite a

bit of information about the surface temperature over land,

one should be able to improve the performance of the filter
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further by including them in an inversion scheme. The

filter should be tried in a number of the other more

non-linear problems of the field. Some of these might

include: temperature inversion using sensors in the infrared

spe.trum, a combined inversion using both microwave and

infrared sensors, estimation of sea state in conjunction

with water vapor and liquid water, and liquid water and

water vapor profiling. Finally, the problem of state

reduction for the atmosphere is highly important to reduce

the number of states in the filters used.
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Appendix A

Comparisons Between Point and Area Sounders

One of the problems of the analysis of the results of

any experiment with any passive remote sounder such as SCAMS

is the lack of independent verification data corresponding

to the parameters being estimated. Historically, the

independent verification sources have been taken to be

either radiosonde reports or an analysis grid such as the

NMC K27 grid used in this thesis. A passive sounder such as

SCAMS measures the parameters of interest averaged over the

antenna beam pattern which has an area on the earth of over

17,000 square kilometers. The radiosonde report consists of

an area average of perhaps a few square centimeters along

its Line of flight. Because of the manner in which analysis

grids are produced, it is unclear what sort of area average

they represent.

The purpose of this appendix is an attempt to quantify

the apparent error between a comparison of a perfect point

sounding and a perfect area sounding in a homogeneous

isotropic atmosphere. That is, we desire a numerical value

of E{[PA (Q,)-Pp (2)1 }, where PA (ag) is a perfect area
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sounding of some parameter centered at location f, and

P'P ( Of.) is a perfect point sounding of the same parameter

centered at cf2 . We will define the area sounding as:

PAJl)= G (f) P ( ) d0 A.1

WI

where G( cf ) is the antenna beam pattern and (U, is the

physical space seen by the beam. Taking the expectation of

both sides of A.l, we obtain:

E PA(O,)} = JG(d) E{P,()}dJ A.2

Since we have assumed a homogeneous field, E {PP (O)} is a

constant and may be moved out of the integral. Then

assuming that:

JG(f) dO = I A.3

we obtain:

E{PA(j) = E P,( )A. 4

Without loss of generality, we will assume these processes

to be zero mean.

Defining e as our error measure, we expand it to
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obtain:

e = E{P2) - 2 E{PA (C,) Pp(2} + E{fP,2(o A.5

The quantity E2 ( (2)}is simply the variance of

PP (Q%2) and is a constant for all (f due to the

assumption of a homogeneous atmosphere. We will define this

as Var (PP ).

Substituting the definition of the area sounding (A.1)

into A.5 and bringing the expectation into the integrals, we

obtain:

e = V a r (P,) - 2fG(C)E{P,(CP,(4)}d

(AJ 4.6

+ f JG() G ( ) E P ) P(cf 4do de d

I I
Factoring out Var(Pp ) from this expression yields:

e = Var(P,) [I - 2fG((f)R(1 1,4d)dcf

1-O A.7

+ G( G ) G(O') R(d d )dd d

where R(C,(f) is the correlation coefficient between
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Pp (3') and Pp cf). To evaluate A.7, we require an

expression for G(J) and R( .

In order to obtain an expression for R(f$(), a large

number of radiosonde reports were examined. These

radiosonde reports spanned the months of January and

February, 1973, and represented the majority of the input

from the global radiosonde network in the NMC analysis grids

for these months. The number of synoptic reporting times in

this data set was 109. As the number of radiosondes

launched at each synoptic is approximately 800, it was

decided to restrict the study to 300 stations in the United

States and Canada. This smaller dataset was then subjected

to a two-pass outlier rejection procedure to remove reports

with data transmission or reporting errors. The sample mean

and standard deviation was computed for each station and

data points that were further than three standard deviations

from the sample mean were removed.

The dataset was then fractioned into four latitude

bands in which the most populous band had roughly 100

stations. The purpose of this step was to attempt to assure

the homogeneity of the statistics within each band. These

bands were located at latitudes below 340, 34- 0to 44*, 440

to 54@, and above 540. Pairwise correlations within each

band were then performed using the local sample statistics

for each station. The distance between each of the stations
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and all others in the latitude band were then computed. The

distances were partitioned into bins of 40 km, and a

weighted average of the asymptotically normal statistic:

Z.. = Ln - --- A.8
'' I - R

was performedo, where R;q is the sample correlation

coefficient between station i and j. The variance of this

sample statistic is approximately:

Var (Z L)~~A.9

where N-. is the number of i,j comparisons entering into
IJ

the sample. The weight of each of the Z;; was the inverse

of this variance.

Several plots of this estimate of the correlation

coefficient as a function of distance are given in Figures

15-17. The trend of these curves is consistent with the

behaviour that one expects in the atmosphere. The curves

drop to zero fastest at pressure levels near the surface and

tropopause. They become very long in the atmosphere above

tropopause and generally increase in correlation length as

one moves toward the equator.

The shape of these curves is suggestive of one of

several functions: a polynomial in distance, a
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sinc(distance) relationship, or a decaying exponential. At

the time the database was first analysed, the immediate need

was in terms of the discussion of this appendix. It was

decided at that time to perform a weighted polynomial fit to

the curves. A list of the regression coefficients produced

by this procedure are given in Tables 101-104. For some of

the cases investigated, the dataset-was too sparse or the

scatter too large to produce a significant fit. This

occurred most often in region 4 (below 340 latitude) where

the a priori variance is naturally low and few stations

participated in the fit. For these cases, the table

contains the entry "No Regression". The near field

behaviour of all regressions accepted was generally

linear.

In the context ofiproducing estimated of the apparent

error between a nearby radiosonde and a radiometer, it is

reasonable to assume that the two are nearly co-incident in

space and time for the comparison to be meaningful. Thus,

it was assumed that the correlation coefficient between two

points in the atmosphere was governed by the near field

behaviour. This leads to a model of the correlation

coefficient as:

R ((f',() =1-A .1 0
RP
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Table 101

Region 1 Correlation Regression Coefficients

(Above 540 Latitude)

R(X) = AO + A1 X + A 2 X 2 + A 3 X 3

Pressure

Leva I

1000

850

700

500

400

300

250

200

150

100

70

A
0

0.9838

1. 0065

1.0573

1.0266

0.9737

0. 8595

0.9585

1.0037

0.9863

0.9816

0.9547

A

(10-3)

-0.8524

-0.6352

-0.6193

-0.5621

-0.5111

-0.6484

-0.7175

-0.4422

-0.1950

-0.1833

-0.1864

A 2

(10-6)

0.5572

0.0823

0.0626

0.0519

0.0440

0.1559

0.1668

0.0737

0.0000

0.0000

0.0000

A 3

(10-b0)

-0.1708

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000
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Table 102

Region 2 Correlation Regression Coefficients

(Between 540 and 440 Latitude)

R(X) = A0 + AI X + A2 X2 + A3 X 3

Pressure

Level

1000

850

700

500

400

300

250

200

150

100

70

Ao

0.9934

1.0616

1.0406

1.0087

0.9839

0.9775

1.0280

1.0643

0.9759

Al A 2

(10-3) (10~6)

No Regression

-0.6479 0.0522

-0.5744 0.0000

-0.6061 0.0475

-0.6618 0.0857

-1.1430 0.6032

-0.9721 0.3595

-0.6170 0.1567

-0.4346 0.1164

-0.1307 0.0000

No Regression
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A 3

(1~'
0 )

0.0000

0.0000

0.0000

0.0000

-1.4209

-0.4669

0.0000

0.0000

0.0000



Table 103

Region 3 Correlation Regression Coefficients

(Between 44* and 340 Latitude)

R(X) = A0 + AI X + A 22 + A3 X3

Pressure

Level

1000

850

700

500

400

300

250

200

150

100

70

A 0

0.9534

1.0847

0.9546

0 .9819

0c9741

1.0084

0.9913

0. 9069

0.7852

A 1  A2

(103) (1- 6)

No Regression

-0.7408 0.2748

-06511 0.1085

-0.6574 0.0997

-0.6950 0.1053

-0.7431 0.1245

-0.9525 0.1920

-0.6179 0.1024

-0.5185 0.0000

-0.3024 0.0000

No Regression
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3

(10~10)

-0.5492

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000



Table 104

Region 4 correlation Regression Coefficients

(Below 340 Latitude)

R (X) = A + A IX + A 2x2 + A3

Pressure

Level

1000

850

700

500

400

300

250

200

150

100

70

A 0  A 1I A 2

(10-3) (106)

No Regression

0.8986 -0.4830 0.1138

0.8651 -0.3346 0.0000

1.0902 -0.8574 0.1854

0.9136 -0.6633 0.1132

0.8033 -0.5795 0.1528

No Regression

No Regression

No Regression

0.8751 -0.3372 -0.0175

No Regression
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A 5

(10~11)

0.0000

0.0000

0.0000

0. 0000

0.0000

0.00000



where RP is the correlation distance characteristic of the

pressure level. A list of the near field RP values for the

various levels and regions are given in Table 105.

Having chosen a model for the correlation coefficients,

we now need a model for the antenna pattern. Many

radiometers such as the Nimbus E Microwave Spectrometer

(NEMS) and SCAMS have circular antennas. The beam patterns

are therefore best described by modified first order Bessel

functions. However, the use of such an exact expression was

not deemed justified in view of the uncertainties in the

correlation coefficient expression. It was rather chosen to

approximate the beam gain by:

2

G(r,9) = sinc (r/X) Ae11
1.2188148

where X is the distance from the center of the beam to its

first null. This function is much easier to compute in

practice than the Bessel functions. The units of this gain

are inverse beam radii squared.

Having specified the necessary quantities, we may now
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Table 105

Near Field Correlation Lengths

(km)

Pressure

Level

Region 1 Region 2 Region 3 Region 4

(mb)

1000

850

700

500

400

300

250

200

150

100

70

1154

1548

1707

1826

1905

1325

1336

2261

5045

5345

5124

954

1533

1847

1717

1524

861

1005

1666

2448

7479

NR

NR

1287

1557

1452

1412

1310

1058

1604

1749

2595

NR

NE

1860

2585

1271

1377

1386

NE

NP

NR

2379

NE

NR implies no regression fit.
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return to A.7 and substitute them to yield the expression:

e Var(P,) 1

- s i n c2(r') r' rCos() A.12

r Ir I 2 , 2 c 2 r") r,2 to r &r" 08(- S

+111 sinc(r) sinc (r') r" t 2rr" Cos(6 -) rrdr'dodr"d9]
o o o 0 1.218815 1.218815

We have normalized all distances in this equation by the

beam radius X. RP is thus the characteristic length in

beam radii and r, is the distance of the point sensor from

the beam center in beam radii.

The expression A.12 may be evaluated numerically for

various values of rp . Before this is done, it is desirable

to simplify this expression. Since the integral of the beam

gain over the beam area is one, we find:

Var(Pp) ( 2 ) i A.13

p

where

(1 /Sin 2(r)fsinc(r") r'4r"2 -2r'r"Cos(o)-r'r'd6dr'dr"

A.14
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and

1-.4 41.21815 f 1sinc(r) r22+ r' - 27 r'Cos(O) r'dr'dO0 A.15

Of these two integrals, only 1 2 is dependent on the

separation of the point sensor from the beam center. The

integrals I, and I2 are tabulated for several values of

separation roin Table 106.

To evaluate the expectation of the error variance

between a point and area sensor, it is simply necessary to

express the correlation distance and the distance from the

beam center in beam radii and perform the calculation of

A.13 using the values in Table106. For convenience, it will

be mentioned that to three significant digits, the distance

of the first null of a sinc2 (e) function is 2.5 times the

distance to the point where it is 0.5. It will also be

cautioned that the near field assumption should not be

violated. It is doubtful that the expression of A.13 has

much value when the separation exceeds 500 km. It will be

further noted that the assumptions of a homogeneous and

isotropic atmosphere may he violated at even shorter

separations at the higher latitudes. To assist in

evaluating the apparent error, the value of a weighted
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Table 106

Values of the Integrals I, and J2

I =57335

r 1 2 (r)
0.0 0.8205
0.1 0.8387
0.2 0.8923
0.3 0.9785
0.w4 1.0931
0.5 1.2310
0.6 1.3869
0.7 1.5559
0.8 1.7339
0.9 1.9176
1.0 2.1051
1.1 2.2951
1.2 2.4869
1.3 2.6800
1.4 2.8741
1.5 3.0691
1.6 3.2647
1.7 3.4608
1.8 3.6574
1.9 3.8543
2.0 4.0516
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average of the sample variances for the four regions are

g iven in Table 107.

It is also possible to evaluate the apparent error

between an area sounder and weighted average of point

sensors in an arbitrary configuration using the integrals

i yand I? . If the error statistic desired is:

e = EIIE42 PA]A.16

th
where W; is the weight of the i point sensor., we arrive

at the expression:

n n ~~n
eR+ I - I -j 12(r)] Var(P,) A.17

=1Jj=11 j=1

th th
where D;i is the distance between the i and j point

sensor.

There is an additional statistic that could in theory

be derived from the analysis of the radiosonde dataset

discussed in this appendix. If we model a radiosonde as a

noisy measurement, the intercept values of the correlation

model will give us a value for the error between two
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Table 107

Sample Variances of Temperatures in the

Atmosphere by Latitude Region

(degrees square Kelvin)

Pressure

Level

(mb)

1000

850

700

500

400

300

250

200

150

100

70

Region 1

59.5

31.8

26.8

26.2

20.9

10.5

21.7

37.4

36.4

42.4

62.2

Region 2

26.8

19.2

22.1

22.8

18.6

9.4

18.5

36.9

29.7

23. 1

30. 1

Region 3

13.8

21.9

24.1

17.4

14.7

11.3

20. 0

23.6

14.5

10.5

10.3

Region 4

13. 5

13.5

11. 7

12.4

11.9

1'4.2

9.8

7.0

6.7

11.1

14.1
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radiosondes launched at the same point as:

Var(N) = Var(P,) I - R(OO)] A.18

As an exercise, this quantity has been tabulated for three

of the latitude regions in Tablp 108. The values for the

lowest latitude region were not computed because of the

relatively small number of radiosondes in that latitude band

and resulting uncertainty in the value of the intercept.

The values used for the zero separation coefficients were

produced by a separate polynomial regression on the

statistic Z of A.8. The reader is cautioned that the

quantities in Table 108are an extrapolation and that they

are conditioned on the validity of the model. It is perhaps

questionable to consider the model as valid through zero

distance as this would imply identical mesoscale and

microscale behaviour in the atmosphere. The use of the

model for this purpose will probably yield an overly large

estimate of the radiosonde error.

Although it was not done for the temperature filter of

this thesis, an analysis of the sort performed in this

appendix may provide a more accurate system identification

for the temperature inverting Kalman filter. If we care to

generate models for the cross-covariances of temperatures

with distance, it will be possible to construct matrices
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Table 108

Apparent Radiosonde Error Variance

(degree square Kelvin)

Pressure

Level

(mb)

1000

850

700

500

400

300

250

200

150

100

70

Region 1

6.63

3.52

1.35-

1.74

2.35

1 .70

2.21

1.62

1 .45

2.27

5.90

Region 2

4.46

1.39

0.62

0.90

0.97

0.74

2.04

1.43

0.59

0.71

1.57

Region 3

2.04

2.44

0.93

1.65

1.09

0.78

1.02

1.42

1.48

1.79

1.99

Region 4

1.97

2.10

1.13

0.56

1.61

1.71

3.11

2.45

1. 17

1.39

4.01
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cross-covariance matrices of temperatures at one remote spot

with another. The elements of this matrix are:

P; = Var( P) Va rG(P )f G(Q)G(o ) R(o,) ddU2  A.19

I 2

This formula also gives the covariance matrix of

temperatures at a single spot when the areas o, and w 2 are

the same.

This approach was considered at times during this

work. It was discarded for the reason that it is a rather

expensive and time-consuming operation. The purpose of this

thesis was what is sometimes called a feasibility study. It

was felt that the available resources were better spent in

building a Kalman filter that worked and then exploring the

nature of its behaviour in various configurations, seasons,

etc., than performing an elaborate system identification.

A further possible use of the cross-covariance elements

of temperature would be for "Gandin weighting". One of the

persistent problems in the production of synoptic analyses

is the interpolation of reports to produce a value assigned

to a mesh gridpoint. One method proposed by Gandin (1963)

is basically a regression procedure. For this procedure to

operate sucessfully, the correlation of and between levels

as a function of distance is required. The author is

unaware of any study other than the one that appears in this
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appendix that has attempted to address even a portion of the

problem.
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Appendix B

Sensitivity of Oxygen Absorption and Weighting

Functions to Temperature

The temperature weighting function is defined in terms

of the absorption coefficient of the atmosphere and the

reflectivity of the surface. For channels whose weighting

functions peak high in the atmosphere, the water vapor

component of the absorption and the reflectivity of the

surface have little effect. It is therefore instructive to

examine the sensitivity of their weighting functions and

oxygen absorption to temperature.

The off resonance absorption of oxygen is due to

collisional broadening. It is therefore the case that it

will be affected by temperature. Two approaches have been

taken tc quantify this effect. The first is the

experimental measurement of the absorption by Liebe (1975).

The second is presented in this appendix.

The approach taken here was to perform an analytic

differentiation of the oxygen lineshape of Rosenkranz (1975)

with regards to temperature. To do this, the absorption

routine 02ABSB was entered symbolically in the mathematical
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symbolic manipulation langauge MACSYMA. It was then

expanded in terms of its arguments and differentiated with

regards to temperature. This differentiated expression was

then constructed into a function, translated into LISP, and

eventually into machine language.

The relative sensitivity of the oxygen absorption to

temperature obtained by this method over a range of

frequencies, temperatures, and pressures are given in Tables

109 - 117. The figures here appear to be in excellent agreement

with those determined by Liebe.

To demonstrate the insensitivity of the weighting

function to temperature, we will make use of a result by

Poon (1974). This result is that, under certain

assumptions, the peak of the weighting function occurs when

the optical depth of the atmosphere is one neper or:

f/K ,h")dh" = I B. I

where h is the height of the peak of the weighting

function. We will now consider the case in which the entire

temperature profile above the peak increases in temperature

by one degree. Examining Tables 109 - 117, we see that this

implies a change in the absorption coefficient above the

peak of roughly one percent. Re-evaluating B.1 after the
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temperature change that this implies:

K'f(Q h") d h" ~ 0.99 B.2
h

where K'(h) is the changed absorption coefficient. To find

th3 new weighting function peak, we must find the height

that is 0.01 neper deeper into the atmosphere. For

specifics in numbers, we will state that the high altitude

channel of SCAMS (55.45 GHz.) has an absorption coefficient

that is roughly 0.24 neper/km at its peak. Thus, at least

for this frequency, 0.01 neper is roughly 40m deeper into

the atmosphere. This represents an insignificant change in

the height of the peak of the weighting function when it is

remembered that the weighting functions are several km

wide. We thus conclude that the temperature weighting

functions are insensitive to temperature.
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Table 109

Sensitivity of Oxygen Absorption at 300 K, 720 Tocr
(Percent change per degree Kelvin)

Freq. 0 1 2 3 4 5 6 7 8 9
(Giz.)

10 -0.965 -0.965 -0.965 -0.965 -0.965 -0.965 -0.964 -0.964 -0.964 -0.964

20 -0.963 -0.963 -0.963 -0.962 -0.962 -0.961 -0.961 -0.960 -0.960 -0.959

30 -0.958 -0.957 -0.956 -0.955 -0.954 -0.953 -0.952 -0.950 -0.949 -0.947

40 -0.944 -0.942 -0.938 -0.934 -0.930 -0.923 -0.915 -0.903 -0.885 -0.855

50 -0.801 -0.717 -0.537 -0.383 -0.341 -0.402 -0. 506 -0.629 -0.737 -0.807

60 -0.813 -0.768 -0.661 -0.549 -0.438 -0.341 -0.323 -0.427 -0.617 -0.738

70 -0.799 -0.848 -0.875 -0.892 -0.904 -0.913 -0.920 -0.926 -0.931 -0.935

80 -0.939 -0.943 -0.947 -0.951 -0.954 -0.958 -0.962 -0.966 -0.971 -0.975

90 -0.981 -0.986 -0.992 -0.999 -1.006 -1.013 -1.022 -1.031 -1.040 -1.051

100 -1.062 -1.074 -1.086 -1.100 -1.114 -1.128 -1.143 -1.158 -1.172 -1.186

110 -1.199 -1.210 -1.218 -1.220 -1.215 -1.196 -1.148 -1.036 -0.814 -0.713

120 -0.938 -1.104 -1.179 -1.211 -1.224 -1.227 -1.224 -1.218 -1.209 -1.200

130 -1.189 -1.178 -1.167 -1.156 -1.145 -1.133 -1.122 -1. 112 -1.101 -1.091

140 -1.082 -1.072 -1.063 -1.055 -1.046 -1.038 -1.030 -1.023 -1.016 -1.009



Table 110

Sensitivity of Oxygen Absorption at 300 K, 360 Torr
(Percent change per degree Kelvin)

Freq. 0 1 2 3 4 5 6 7 8 9
(GHz.)

10 -0.966 -0.966 -0.965 -0.965 -0.965 -0.965 -0.965 -0.964 -0.964 -0.964

20 -0.963 -0.963 -0.963 -0.962 -0.962 -0.961 -0.961 -0.960 -0.959 -0.959

30 -0.958 -0.957 -0.956 -0.955 -0.954 -0.952 -0.951 -0.950 -0.947 -0.945

40 -0.942 -0.939 -0.936 -0.931 -0.926 -0.919 -0.910 -0.897 -0.877 -0.840

50 -0.732 -0.610 -0.285 -0.083 -0.107 -0.276 -0.468 -0.624 -0.781 -0.861

60 -0.876 -0.818 -0.695 -0.537 -0.336 -0.148 -0.041 -0.122 -0.422 -0.627

70 -0.762 -0.832 -0.863 -0.883 -0.896 -0.906 -0.914 -0.920 -3.926 -0.931

80 -0.935 -0.939 -0.943 -0.947 -0.951 -0.955 -0.960 -0.964 -0.967 -0.974

90 -0.979 -0.985 -0.991 -0.997 -1.005 -1.013 -1.021 -1.030 -1.040 -1.051

100 -1.062 -1.075 -1.088 -1.102 -1.116 -1.131 -1.147 -1.163 -1.179 -1.195

110 -1.210 -1.224 -1.237 -1.248 -1.255 -1.257 -1.244 -1.197 -0.991 -0.754

120 -1.132 -1.229 -1.254 -1.259 -1.256 -1.250 -1.241 -1.231 -1.220 -1.208

130 -1.196 -1.184 -1.171 -1.159 -1.147 -1.136 -1.124 -1.113 -1.103 -1.092

140 -1.083 -1.073 -1.064 -1.055 -1.046 -1.038 -1.030 -1.023 -1.016 -1.009



Table 111

Sensitivity of Oxygen Absorption at 300 K, 180 Torr
(Percent change per degree Kelvin)

Freq. 0 1 2 3 4 5 6 7 8 9
(GHz.)

10 -0.966 -0.966 -0.966 -0.965 -0.965 -0.965 -0.965 -0.964 -0.964 -0.964

20 -0.964 -0.963 -0.963 -0.962 -0.962 -0.961 -0.961 -0.960 -0.959 -0.958

30 -0.958 -0.957 -0.956 -0.955 -0.953 -0.952 -0.950 -0.949 -0.947 -0.944

LO -0.942 -0.939 -0.935 -0.931 -0.925 -0.918 -0.908 -0.895 -0.874 -0.836

M 50 -0.637 -0.382 -0.117 -0.265 -0.073 -0.246 -0.522 -0.540 -0.888 -0.893

60 -0.991 -0.829 -0.761 -0.465 -0.259 -0.077 -0.126 -0.191 -0.099 -0.423

70 -0.749 -0.827 -0.860 -0.880 -0.894 -0.904 -0.912 -0.919 -0.925 -0.930

80 -0.934 -0.938 -0.942 -0.947 -0.951 -0.955 -0.959 -0.963 -0.968 -0.973

90 -0.978 -0.984 -0.990 -0.997 -1.004 -1.012 -1.021 -1.030 -1.040 -1.051

100 -1.062 -1.075 -1.088 -1.102 -1.117 -1.132 -1.148 -1.164 -1.181 -1.197

110 -1.213 -1.228 -1.242 -1.255 -1.265 -1.273 -1.275 -1.265 -1.172 -0.876

120 -1.243 -1.273 -1.276 -1.272 -1.265 -1.256 -1.246 -1.234 -1.222 -1.210

130 -1.198 -1.185 -1.173 -1.160 -1.148 -1.136 -1.125 -1.114 -1.103 -1.093

-1.047 -1.038 -1.030 -1.023 -1.016 -1.009140 -1.083 -1.073 -1.064 -1.055



Table 112

Sensitivity of Oxygen Absorption at 250 K, 720 Torr
(Percent change per degree Kelvin)

Freq. 0 1 2 3 4 5 6 7 8 9
(GHz.)

10 -1.157 -1.157 -1.157 -1.157 -1.157 -1.157 -1.157 -1.157 -1.157 -1.157

20 -1.156 -1.156 -1.156 -1.156 -1.155 -1.155 -1.155 -1.154 -1.154 -1.153

30 -1.153 -1.152 -1.152 -1.151 -1.151 -1.150 -1.149 -1. 148 -1.147 -1.146

40 -1.145 -1.143 -1.141 -1.139 -1.136 -1.132 -1.127 -1.119 -1.108 -1.090

50 -1.060 -0.999 -0.864 -0.685 -0.554 -0.536 -0.601 -0.719 -0.836 -0.912

60 -0.919 -0.864 -0.748 -0.636 -0.554 -0.521 -0.599 -0.772 -0.944 -1.040

70 -1.083 -1.110 -1.128 -1.140 -1.149 -1.156 -1.162 -1.167 -1.172 -1.176

80 -1.181 -1.185 -1.190 -1.194 -1.199 -1.204 -1.209 -1.215 -1.220 -1.227

90 -1.233 -1.240 -1.248 -1.256 -1.265 -1.274 -1.284 -1.295 -1.306 -1.317

100 -1.330 -1.343 -1.360 -1.370 -1.384 -1.398 -1.412 -1.425 -1.438 -1.449

110 -1.458 -1.465 -1.467 -1.462 -1.446 -1.410 -1.335 -1.186 -0.944 -0.851

120 -1.071 -1.273 -1.380 -1.434 -1.460 -1.472 -1.477 -1.476 -1.472 -1.467

130 -1.460 -1.452 -1.444 -1.435 -1.426 -1.417 -1.408 -1.399 -1.391 -1.382

140 -1.374 -1.366 -1.359 -1.351 -1.344 -1.337 -1.331 -1.324 -1.318 -1.312



Table 113

Sensitivity of Oxygen Absorption at 250 K, 360 Torr
(Percent change per degree Kelvin)

Freq. 0 1 2 3 4 5 6 7 8 9
(Gilz.)

10 -1.159 -1.158 -1.158 -1.158 -1.158 -1.158 -1.158 -1.157 -1.157 -1.157

20 -1.156 -1.156 -1.156 -1.155 -1.155 -1.155 -1.154 -1.154 -1.153 -1.153

30 -1.152 -1.151 -1.151 -1.150 -1.149 -1.148 -1.147 -1.146 -1.145 -1.143

40 -1.141 -1.139 -1.137 -1.134 -1.130 -1.125 -1.118 -1.109 -1.096 -1.074

50 -1.029 -0.949 -0.704 -0.385 -0.229 -0.320 -0.510 -0.704 -0.883 -0.991

60 -1.002 -0.937 -0.777 -0.598 -0.382 -0.222 -0.259 -0.531 -0.847 -0.995

70 -1.056 -1.092 -1.113 -1.127 -1.137 -1.145 -1.152 -1.159 -1.164 -1.169

80 -1.174 -1.179 -1.184 -1.189 -1.195 -1.200 -1.205 -1.211 -1.217 -1.224

90 -1.231 -1.238 -1.246 -1.255 -1.264 -1.273 -1.284 -1.294 -1.306 -1.318

100 -1.331 -1.345 -1.359 -1.373 -1.388 -1.403 -1.419 -1.434 -1.449 -1.463

110 -1.477 -1.489 -1.498 -1.505 -1.508 -1.502 -1.478 -1.402 -1.131 -0.886

120 -1.309 -1.452 -1.495 -1.509 -1.512 -1.510 -1.5)5 -1.498 -1.489 -1.430

130 -1.471 -1.461 -1.451 -1.441 -1.431 -1.421 -1.411 -1.402 -1.393 -1.384

140 -1.376 -1.368 -1.360 -1.352 -1.345 -1.338 -1.331 -1.325 -1.319 -1.312



Table 114

Sensitivity of Oxygen Absorption at 250 K, 180 Torr
(Percent change per degree Kelvin)

Freq. 0 1 2 3 4 5 6 7 8 9
(GHz.) 1

10 -1.159 -1.159 -1.159 -1.158 -1.158 -1.158 -1.158 -1.157 -1.157 -1.157

20 -1.156 -1.156 -1.156 -1.155 -1.155 -1.155 -1.154 -1.154 -1.153 -1.152

30 -1.152 -1.151 -1.151 -1.150 -1.149 -1.148 -1.147 -1.146 -1.144 -1.143

40 -1.141 -1.138 -1.137 -1.132 -1.128 -1.123 -1.116 -1.106 -1.093 -1.069

50 -1.000 -0.875 -0.435 -0.038 -0.099 -0.183 -0.528 -0.619 -0.987 -1.038
CD

60 -1.126 -0.958 -0.841 -0.533 -0.224 -0.006 -0.070 -0.200 -0.690 -0.935

70 -1.046 -1.087 -1.109 -1.123 -1.134 -1.143 -1.150 -1.156 -1.162 -1.168

80 -1.173 -1.178 -1.183 -1.188 -1.193 -1.199 -1.205 -1.210 -1.217 -1.223

90 -1.230 -1.238 -1.246 -1.254 -1.263 -1.273 -1.283 -1.294 -1.306 -1,318

100 -1.331 -1.345 -1.359 -1.374 -1.389 -1.405 -1.421 -1.436 -1.452 -1.467

110 -1.482 -1.496 -1.507 -1.517 -1.525 -1.530 -1.528 -1.506 -1.364 -1.004

120 -1.470 -1.522 -1.531 -1.531 -1.527 -1.520 -1.512 -1.503 -1.494 -1.484

130 -1.473 -1.463 -1.453 -1.442 -1.432 -1.422 -1.412 -1.403 -1.394 -1.385

140 -1.376 -1.368 -1.360 -1.352 -1.345 -1.338 -1.331 -1.325 -1.318 -1.312



Table 115

Sensitivity of Oxygen Absorption at 200 K, 720 Torr
(Percent change per degree Kelvin)

Freq. 0 1 2 3 4 5 6 7 8 9
jGHz.)

10 -1.445 -1.446 h-1446 -1.446 -1.446 -1.446 -1.446 -1.446 -1.446 -1.446

20 -1.446 -1.446 -1.445 -1.445 -1.445 -1.445 -1.445 -1.444 -1.444 -1.444

30 -1.444 -1.444 -1.444 -1.443 -1.443 -1.443 -1.443 -1.443 -1.443 -1.442

40 -1.442 -1.442 -1.441 -1.440 -1.440 -1.439 -1.437 -1.434 -1.429 -1.421

50 -1.405 -1.370 -1.293 -1.151 -0.972 -0.839 -0.806 -0.873 -0.971 -1.040
CO

60 -1.045 -0.987 -0.881 ti.805 -0.811 -0.902 -1.072 -1.245 -1.360 -1.418

70 -1.447 -1.464 -1.474 -1.482 -1.488 -1.494 -1.498 -1.503 -1.507 -1.521

80 -1.517 -1.522 -1.527 -1.533 -1.539 -1.545 -1.552 -1.559 -1.567 -1.575

90 -1.584 -1.593 -1.603 -1.613 -1.624 -1.636 -1.648 -1.661 -1.674 -1.688

100 -1.702 -1.717 -1.732 -1.747 -1.761 -1.776 -1.789 -1.802 -1.812 -1.821

110 -1.826 -1.826 -1.819 -1.802 -1.768 -1.704 -1.590 -1.394 -1.140 -1.057

120 -1.266 -1.504 -1.657 -1.744 -1.793 -1.820 -1.835 -1.842 -1.844 -1.842

130 -1.839 -1.834 -1.827 -1.820 -1.812 -1.804 -1.796 -1.788 -1.780 -1.772

140 -1.764 -1.756 -1.748 -1.741 -1.734 -1.727 -1.720 -1.713 -1.707 -1.701



Table 116

Sensitivity of Oxygen Absorption at 200 K, 360 Torr
(Percent change per degree Kelvin)

Freq. 0 1 2 3 4 5 6 7 8 9
(GHz.)

10 -1.448 -1.448 -1.448 -1.447 -1.447 -1.447 -1.447 -1.446 -1.446 -1.446

20 -1.445 -1.445 -1.445 -1.444 -1.444 -1.444 -1.443 -1.443 -1.443 -1.442

30 -1.442 -1.441 -1.441 -1.440 -1.440 -1.439 -1.438 -1.438 -1.437 -1.437

40 -1.436 -1.434 -1.433 -1.431 -1.428 -1.425 -1.421 -1.416 -1.408 -1.400

50 -1.375 -1.335 -1.219 -0.965 -0.652 -0.542 -0.630 -0.829 -1.028 -1.161

60 -1.170 -1.093 -0.897 -0.715 -0.566 -0.565 -0.822 -1.136 -1.318 -1.389

70 -1.419 -1.438 -1.451 -1.461 -1.469 -1.476 -1.483 -1.489 -1.495 -1.501

80 -1.506 -1.512 -1.518 -1.525 -1.532 -1.539 -1.546 -1.554 -1.562 -1.571

90 -1.580 -1.590 -1.600 -1.611 -1.622 -1.635 -1.648 -1.661 -1.675 -1.690

100 -1.705 -1.721 -1.737 -1.754 -1.770 -1.797 -1.803 -1.819 -1.834 -1.847

110 -1. C60 -1.870 -1.876 -1.880 -1.875 -1.858 -1.811 -1.685 -1.328 -1.086

120 -1.548 -1.765 -1.842 -1.872 -1.884 -1.887 -1.386 -1.881 -1.875 -1.867

130 -1.859 -1.850 -1.841 -1.831 -1.822 -1.812 -1.803 -1.794 -1.785 -1.776

140 -1.767 -1.759 -1.751 -1.743 -1.735 -1.728 -1.721 -1.714 -1.708 -1.701



Table 117

Sensitivity of Oxygen Absorption at 200 K,
(Percent change per degree Kelvin)

Preq.
(Glf z.)

10

20

30

40

50

60

70

80

90

100

110

120

130

0

-1.447

-1.444

-1.441

-1.433

-1.362

-1.305

-0.140

-1.502

-1.578

-1.705

-1.867

-1.793

-1.863

1

-1.447

-1.444

-1.440

-1.431

-1.314

-1.134

-1.430

-1.509

-1.588

-1.721

-1.880

-1.885

-1.853

42

-1.447

-- 1.444

-1.440

-1.429

-1.132

-0.949

-1.444

--1 . 515

-1. 598

--1.737

--1.891

-1.906

-1.843

63

-1.447

- 1.443

-1.439

-1.427

-0.676

-0.650

-1.454

-1.522

-1.609

-1.754

1.900

- 1.911

-1 .833

-1.446

-1.442

-1.437

-1.415

-0.568

-0.447

-1.477

-1.543

-1.646

-1.805

-1.697

-1.898

-1.803

180 Torr

7

-1.446

-1.442

- 1. 436

-1.409

-0.733

-0.981

-1.484

-1.551

-1.660

-1.822

-1.856

-1.890

-1.794

140 -1.767 -1.758 -1.750 -1.742 -1.734 -1.727 -1.720 -1.713 -1.706 -1.7)0

-1.446

-1.443

-1.438

-1.424

-0.201

-0.265

-1.463

-1.528

-1.621

-1.771

-1.906

-1.909

-1.823

-1.446

-1.443

-1.438

-1.420

-0.226

-0. 154

-1.471

-1.536

-1.633

-1.788

-1.907

-1. 904

-1.813

8

-1.445

-1.441

-1.435

-1.400

-1.116

-1.280

-1.490

-1.560

-1.674

-1.838

-1.626

-1.882

-1.784

9

-1.445

-1.441

- 1.434

-1.387

-1.238

-1.373

-1.496

-1. 568

-1.689

-1.853

-1.195

-1.872

-1.775

I

tQ
OD



Appendix C

Program Descriptions

Section A. Introduction

This appendix gives an extensive verbal description of

many of the routines used in the Kalman filters of this

thesis. Because of Institute regulations on thesis

preparation, the listings of the programs are not included.

The programs take full advantage of the 108 character line

lengths allowable in PL/I and therefore do not reproduce

legibly in the format allowed. It is the author's opinion

that the Institute should reexamine its position on this

matter and allow COM originals to be included in future

theses.

This appendix will treat both the temperature and the

water vapor and liquid water programs. Many of the

subroutines are common to botn of these programs. Routines

specific to either program will be so noted. In cases where

minor modifications were made to a routine between the two
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versions, the temperature filter will be covered first and a

subsection will note the differences between the two

versions. All the routines decribed in this Appendix are

written in PL/I with the exception of the routines PHIEPHI,

SSQUARE, and MFS.

Section B. Main procedure

Name - FOO

Purpose - Compute sizes of data aggregates based on user

specified inversion scheme.

Logic - The program first obtains the leftmost spot, and

rightmost spot of the inversion scheme, the timing option

and the printout options. On the basis of the number of

spots inverted, the size of the output records produced by

the program are determined. If blocked records are to be

written, the blocksize is computed to be optimum for a 3330

disk track. Two output files are produced by the filter.

One consists of the inversions produced by the filter, the

other consists of the error covariance matrix P; ( *) and

the gain K. . Theses files are declared with the
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appropriate DCBs in a begin block. The inversion scheme

options are inserted into appropriate external structures.

The routine also obtains the precomputation options and

inserts them into an external structure. These options are

precomputed P. (- ), precomputed K; , the time (in frames)

for running the full filter before switching to the steady

state gains or covariances, and the use of a precomputed

file of transient gains. These options are then checked for

consistency. The required size for the covariance matrix,

the state transition matrix, and the plant noise matrix is

then computed. If the transient gain option is used, these

matrices are set to a size of 1 location since they are not

needed in the balance of the program. Otherwise, the order

of the filter is used for their size. All covariance

matrices are stored in a compressed lower triangular form.

The sizes of the various matrices are inserted into an

external structure.

The program also requests the input/output options to

be used in the program. The program may either read or

write Regional(l) files or sequential files. If a backward

filter is being run, the filter (generally) reads a direct

access file from high key to low key and outputs a direct

access file in the same manner. This allows non-tape

datasets to be read "backwards" in a convenient manner. For

production use one would (hopefully) read a tape backwards
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because of the cost of this approach. A final option that

is requested in the I/O section is the production of a file

of gains and covariances. If a simple filter is being run,

these parameters are not needed. If a non-causal filter is

run, the file of covariances is required for its operation.

The file also includes the gains for the purpose of

producing precomputed gain matrices. The I/O options are

also inserted into an external structure.

A banner giving the inversion scheme and the options is

printed and the routine KALMAN is called.

Modifications - The number of parameters per footprint

inverted is changed.

Section C. Main processor

Name - Kalman

Purpose - Read input data and write results. Manage general

flow of control. Print user timing and output requests.

Compute innovations and update vector of state. Acquire

additional run time parameters. Collect performance

statistics.
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Logic - The routine proceeds with system initialization by

requesting and reading the run size (number of frames to be

processed), the observation noises, the frequency of user

printout and the constant calibration offsets. It also

requests the direction of processing (forward or backward)

and the size of the dataset. This size is necessary if

direct access files are used. If sequential files are used,

it acts as a second limit on the run size. It also obtains

the data reasonableness testing flags. These flags

determine whether data reasonableness testing should be

done, whether print output will be produced when a data

point is rejected, and the sigma limit for outliers.

The procedure allocates storage for all variables such

as the vector of state, covariance matrices, etc. in its

declare statements. It also establishes an abnormal

condition that is raised it the predicted error covariance

matrix ceases to be positive definite. Raising this

condition causes the routine to take a "snap-shot" of its

major variables onto a file. It also completes the listing

of the major options of the program and zeros the

statistical gathering arrays.

The program then loops endlessly unless: 1) the end of

file has been reached on the sequential input file, 2) the

current key is outside the range of the specified file size,
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or finally 3) the specified run size has been reached.

Within this loop, the major processing occurs.

The program reads the data from the appropriate file

and unpacks it into a floating point format. It then

determines the frame time in seconds and compares it with

the time of the last frame processed to determine the number

of frames lost since the last data was processed. If the

number of frames lost is greater than five, it will reset

the processing state of the filter. This reset will always

occur the first time through the loop. When this reset

occurs, the filter sets a flag in the output record, defeats

state propagation and calls routine INIT to re-initialize

the filter environment. This reset behaviour is performed

because it is felt that the state propagation cannot be

trusted for long periods of time. If prediction is to be

performed, the routine calls PREDICT to accomplish this

task.

The filter then checks its direction (backward or

forward). If the filter is a backward filter, the error

covariance of the priox and the contents of the gain array

are written to a output file. Likewise, the prior plus the

various locator data, etc. are written outs If data is

missing (as given by the data missing flag of the SOTA), the

filter also performs output if it is a forward filter and

then branches back for more data.
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The routine then call CMATRIX to obtain the observation

matrices and empirical corrections for the average latitude

of the scan. The empirical corrections plus any constant

corrections are then applied to the brightness temperatures

to obtain the observation vector.

The observation vector, vector of stte, and

observation matrices are then combined to yield the initial

innovations. These innovations will be used in data

reasonableness testing. This is strictly incorrect if the

Square Root Algorithm is used for the gain calculation. The

data reasonableness should be checked after each data

element has been assimilated, rather than at the first

stage.

If the gain is to be calculated, the routine GAIN is

called. Otherwise, the gain is read from a regional(l) file

keyed on latitude partition. The gain is then applied to

update the state with new innovations computed for each

stage.

The filter then collects statistics on the errors

against the NMC K27 grid (since a SOTA' tape is used for

input) and outputs the results, covariance matrix, etc., if

a forward filter is being run. It then loops back for more

data.

Having completed the run, the routine terminates by

computing the error statistics of the run and printing
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them.

Modifications - The water vapor/liquid water filter

maintains both a Statistical D inversion and a Kalman

inversion. The Statistical D method is applied by calling

routine DMATRIX. The innovations and gains are computed

with a channel/footprint loop by calling INOVATE to obtain

the innovation and observation matrix and then GAIN to

obtain the gain. This is a more correct use of the Square

Root Algorithm.

Section E. Initialization routine

Name - INIT

Purpose - Initialize the prior and its covariance matrix.

Call all initialization entry points on any routines that

require such calls. Perform any other miscellaneous

initialization necessary.

Logic (Temperature filter) - The procedure first initializes

the prediction routine by calling PINIT. It then obtains

the covariance of the initial estimate from a regional(l)
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file keyed on the average latitude of the scan. The prior

itself is initialized by calling the climatology routine

TEMPS at the latitude of each spot. If the initialization

routine has been called before, this completes the necessary

tasks and it returns.

If this is the first time INIT has been called, it

continues with its tasks after toggeling a flag stating that

this initialization is being performed. It then initializes

the observation matrix routine by calling CINIT and obtains

the factors necessary in constructing the state transition

matrix. These factors are a horizontal and vertical

smoothing. The sum of the weight given to the level at the

spot being propagated and any adjacent spots is one minus

the vertical smoothing. The sum of the weight given to the

levels at each of the adjacent spots is the horizontal

smoothing over two. The weight of an adjacent level at an

adjacent spot is thus the horizontal smoothing times the

vertical smoothing over four. The state transition matrix

is then constructed (if necessary) using these weights.

Logic (Water vapor/liquid water filter) - The initialization

for this filter consists of reading a error covariance from

a direct access file, calling INOINIT to initalize the

innovations routine, DINIT to initialize the D matrix

routine and PINIT to initialize the prediction routine. The
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initial prior is obtained from the call to PINIT.

Section F. Propagation routine

Name - PREDICT

Purpose - Propagate state vector and error covariance

matrix.

Logic (Tempcrature filter) - The routine first differences

the state to be propagated and the last climatology. It

then obtains the new climatology by calling TEMPS and adds

this climatology back in. It then completes the state

transition matrix and predicts the new state.

In order to complete the state transition matrix, the

surface must be accounted for. To do this, the old surface

elements of the state transition matrix are zeroed and the

pressure of the surface found by looping through a list of

pressure surface altitudes for each spot. The weight given

to a slab in predicting the surface is proportional to the

amount of the slab not occupied by the surface, but it must

be at least the normal amount of vertical smoothing. The

surface temperature at each spot is '::hen smoothed
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vertically.

After the surface has been "found" the atmospheric

temperatures are smoothed vertically using the vertical

smoothing factors. Following this, the horizontal smoothing

is performed, and the horizontal smoothing elements for the

surface are inserted into the state transition matrix.

If the filter is being used in a precomputed gain or

covariance mode, this completes the propagation. If a

precomputed covariance mode is in effect, the filter decides

whether the current value of P. (-) is valid. If it is not,

the filter reads the square root of the precomputed

covariance into the array and returns. If covariance matrix

propagation is required, the matrix product cPDT is

computed by calling PHIEPHI. The current value of the plant

noise is determined by calling STATE and added to this

product to give the new covariance matrix. The routine then

returns.

The initialization for this routine consists of calling

the state routine initialization entry point SINIT and

obtaining a climatology at the initial processing point by

calling TEMPS. An offset table required by PHIEPHI is also

constructed.

Logic (Water vapor/liquid water filter) - This routine does

a simple implementation of the prediction. If necessary, it
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obtains a state traisition matrix and plant noise from two

regional(l) datasets. It then differences the state and the

old climatology and then computes the product DX . The

covariance update (if necessary) is again performed by

calling PHIEPHI and adding the plant noise.

Initialization simply gets the current climatology and

constructs the offset table.

Section G. State routine (Temperature filter only)

Name - STATE

Purpose - Return the currently valid plant noise.

Logic - The routine checks the current latitude against the

range of validity of the current plant noise matrix. If a

new plant noise is required, it is read from a regional(l)
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file.

Section H. Special matrix routine I

Name - PHIEPHI

Purpose - Compute the symmetric matrix (D P (D for

symmetric P.

Logic - This routine first computes the product ( P into a

scratch area. Since cD is often sparse, it does a LTER

instruction to determine if the product c Pk should be

computed. All temporary products and sums are held in

floating point registers. The multiply loops are driven by

BXLE instructions. The offset table is used to eliminate

the constant computation of (l*I-I)/2 in accessing Pi1

Once '1P is computed, the temporary scratch matrix

Tis post-multiplied by 4(. Again, multiplies by zero are
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bypassed.

Section I. Observation matrix routine (Temperature filter

only)

Name - CMATRIX

Purpose - Return the discrete weighting functions,

elements, and the empirical corrections.

Logic - The routine first decides if its current set of

discrete weighting functions are correct for the latitude.

If not, it reads an new set from two regional(l) files.

Since the weighting function array for a latitude band is

larger than a 3330 track, the array is overlayed with two

based variable aggregates and the two parts of the array

separately. The routine then determines the correct knot of

the empirical correction spline and generates the empirical

corrections.

It then constructs the discrete weighting functions and

the ;--T. elements for each channel/spot. If the
ST

elevation "map" height is greater than one, it searches the

heights for which the weighting functions were computed to

- 298 -



determine the interpolation weights in altitude. Having

determined these weights, it bi-laterally interpolates the

weighting functions in altitude and reflectivity. The

T elements are the same as the discrete weighting
& T; B

functions for this case.

If the surface elevation "map" shows either sea level

land or an altitude greater than three km, the weighting

functions are simply interpolated in reflectivity.

For an ocean surface, the reflectivity of the surface

is determined by the current estimate of the surface

temperature and the 1000 mb temperature. The weighting

functions are then again interpolated in reflectivity. The

T element for the surface is derived as described in
TS B

the section of the observation matrices in Chapter IV. An

additional correction is made to the empirical corrections

for the reflected big bang space background.

Initialization consists of reading the empirical

correction splines and the surface reflectivity file.

Section J. Statistical D routine (Water vapor/liquid

water filter)

Name - DMATRIX
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Purpose - Generate estimates of liquid water and water vapor

columns using the Statistical D method.

Logic - A simple matrix multiply implementation of the

Statistical D method is used.

Initialization consists of reading the D matrix

constants.

Section K. Innovation routine (Water vapor/liquid water

filter)

Name - INOVATE

Purpose - Solve the forward equation of radiative transfer,

produce sensitivities of the brightness temperature to a

change in liquid water and water vapor columns.

Logic - The routine derives two indices based on the

atmospheric temperature, liquid water and water vapor

columns. It then checks the indices of the two spline

coefficient arrays in its in-core buffers. If necessary, it

brings a new set of coefficients into one or both buffers
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and sets a pointer for a based overlay for the spline

coefficients. One set of coefficients corresponds to a

temperature above the atmospheric temperature, the other set

corresponds to a temperature below the atmospheric

temperature. Since the coefficients span four knots in

water vapor and liquid water columns, the local region

within the spline coefficients is determined. Coefficients

for the region of interest are found by interpolating the

two sets of spline coefficients in temperature.

Values for the upward brightness temperature, the

downward brightness temperature times the extinction upwards

and the extinction upwards and their derivatives are then

evaluated by calling the IMSL routine DBCEVU. The sea

surface reflectivity is then evaluated using a spline in the

sea surface temperature. The expected brightness

temperature and its partials are then evaluated by combining

the varous integrals, the surface reflectivity, and the

surface temperature. The predicted brightness temperature

is then subtracted from the observed brightness temperature

to obtain the innovation.

Initiation consists of reading the reflectivity
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splines.

Section L. Gain calculation routine

Name - GAIN

Purpose - Compute the Kalman gain using the Square Root

Covariance I algorithm.

Logic - This routine follows the algorithm (including the

notation) of Kaminski et al. (1971) and Chapter III. It

first decomaposes the covariance using the SLMATH routine MFS

if necessary. It then computes the gain. At the point

where FFr + N is computed, it has the choice of aborting

further calculation if data reasonableness testing is in

effect. The covariance matrix is reformed (if required)

from its square root by calling SSQUARE.

Section M. Cholesky decomposition routine

Name - MFS
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Purpose - Perform a Cholesky decomposition of a positive

definite symmetric matrix.

Logic - This routine performs a Cholesky decomposition using

the logic of the SLMATH routine MFS. It has been hand

"compiled" and highly optimized. The square root code is

expanded in-line, but the routine requires the square root

module for the value of certain "magic constants".

Section M. Special matrix routine 2

Name - SSQUARE

Purpose - Multiply a square matrix times its transpose to

yield a symmetric matrix.

Logic - The routine treats the square matrix as a vector.

The address of its elements is determined by the values of

the registers used in the multiplication loop BXLEs. The

BXLEs run with increment four to step through the matrix in

an appropriate fashion. The accumulation of products is

into a floating point register.
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