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ABSTRACT

Control and estimation problems for circulant and Toeplitz systems
are studied using spatial transform techniques. In the finite-dimensional
case, the discrete Fourier transform is used to provide a complete treat-
ment of the system theoretic properties of circulant systems in terms of
lower dimensional, transformed subsystems, The centralized and decentral-
ized control and estimation problems for circulant systems are approached
in the spatial frequency domain. Efficient off-line and on-line solutions
to the optimal centralized problem are obtained. For the decentralized
problem, subcptimal design procedures are proposed by analogy with the
design of finite impulse response digital filters.

In the infinite-dimensional case, the z-transform is employed to
solve the Toeplitz estimation problem. Motivated by recent work in the
image processing field dealing with recursive estimation based on two-
parameter models, the update step of a discrete-time Kalman filter for
a Toeplitz system is shown to be equivalent to a smoothing problem. An
investigation of the smoothing problem yields new insight into the two-
filter smoother and yields formulas for sensitivity analysis and reduced
order smoother analysis. This new two-filter smoother is then used to
perform the filter update step for Teeplitz systems. Some implementation
issues of such a filter are then discussed. Finally, the contrcol problem
dual of the fixed-interval smoothing problem is posed and solwved.

Spatial transformations play a crucial, fundamental role throughout
this dissertation. The spatial fregquency domain is found to ke quite
appealing when addressing control and estimation problems for spatially
symmetric large-scale systems.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

There has been a great deal of recent activity in the area of
large-scale systems [1]-[3]. These systems are found in such diverse
fields as power gystems [4]-[6], transportation systems [7]-[%], eco-
nometric systems [10), [11], and packet switched data networks [12]-
[14]1. For large-scale systems, the control and estimation problems
are often of such great complexity that the standard modern techniques
are computationally intractable. This intractébility may be because of
either the on-line or off-line computational reguirements. One concludes
that the adjective large as used in "large-scale systems" usually has
the meaning of too large.

Various techniques have been proposed to reduce the computational
burden for control and estimation problems by exploiting special struc-
tural properties frequently found in large-scale systems. TFor example,
singular perturbation theory has been successfully employed to construct
simplified controllers and estimators for systems having multiple time
scales [151-[18]. Also, systems composed of weakly coupled subsystems
have been attacked by nonsingular perturbation theory to obtain
decentralized controllers [19], [20] or off-line computaticnal savings
[21], [22]). Finally, there have been numerous approaches for determining
the stability of a large-scale system on the basis of the properties of

its individual subsystems and the nature of their interactions.
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Decomposition and decentralization are two crucial elements in
large-scale system theory. Decentralization is directed toward the
reduction of on-line computational réquirements and intersubsystem
communication. The price of the advantages, however, is often increased
off-line complexity. As pointed out in [23], other proposed benefits
of decentralization, such as increased reliability or increased adap-
tability, may be more imagined than real. The decomposition issue
concerns reducing the off-line computational burden associated with
obtaining a desired controller or estimator. A discussion of decom-
position vis-a-vis decentralization is found in [24].

It is often natural and useful to view a large-scale system as an
interconnection of much simpler subsystems. In many cases these sub-
systems are actually distinct physical entities, while in other cases
they are merely chosen for mathematical convenience. Decomposition
procedures are frequently based at the subsystem level. The nonsingular
perturbation decomposition and the stability tests for interconnected
systems, for instance, are based on a tearing of the system into sub-
systemé which are usually distinct entities. The singular perturbation
methods, on the other hand, usually involve fast and slow subsystems
which are chosen on the basis of physical insight for mathematical
convenience. In the case of a decentralized controller or estimator;
the partitioning of inputs and outputs is also freguently done at the
subsystem level.

Concurrent with this work in large-scale systems has been the
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substantial activity in the image processing field. The estimation of
discrete-space images from cbservations corrupted by additive noise
using techniques such as two-dimensional Wiener filtering result in
enormous computational burdens. Thus one of the primary objectives of
work in this area-is the discovery of computationally tractable esti-
mation formulas. One approach toward the recursive estimation of
images has been motivated by the success of model based estimators
such as the Kalman filter [25]. Of interest here is the use of two-
dimensional models for the image process [26], [27].

Attasi [28] has considered least squares recursive estimation of

an image z(i,k) under noisy observations

Y(irk) = Z(i,k) + V(l:k) (1.1)

where the image is generated by the two-parameter model

x(i,k) F X(i—lfk) + F2 x(i:k—l) - F

i

le x(i—l,k—l).+ w{i-1,k-1}

z(i,k) " x(i,k) {1.2)

11

with the requirement Fle = F2F1. The problem is to determine the op-
timal estimate ;(i,k) of %x(i,k) given the observations y{m,n) fox

m < i and all n. This estimate is shown to be obtained from a two
step procedure. First a predicted value %(i,k) is computed from the

~
estimates x(i-1,n) for all n, as

%(i, k) = Fy Xi-1,k). (1.3)
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The error e(i,k) is now defined as e(i,k) = x(i,k) - x(i,k). Then the

estimation problem is solved by

R0i,k) = x(i,k) + e(i, k) (1.4)

where a(i,k) is the solution of the one-parameter smoothing problem
to estimate e(i,n), for all n, given v{i,n) for all n [28]. This
smoothing problem is solved by two Kalman filters, one moving in the
positive n direction and one in the negative n direction.

Two-parameter models such as Attasi's have had mixed success when
used for recursive estimation of images. Attasi’'s model will noﬁ be
considered in the context of large-scale systems.

Suppoée that the vector quantity x(i,k) in Attasi's model is
interpreted as the state of subs&stem k at time i. The term state is
used loosely here since the dynamics (l1.2) are not standard state space
dynamics. Nevertheless, view Attasi's model as an infinite-dimensional
system propagating in time. His estimation problem, then, is just the
filtering problem for this infinite-dimensional system given observa-
tions up to the present. The update step of this filtering problem is
solved by one Kalman filter moving up the line of subsystems and one
Kalmaﬁ filter moving down the line. The Kalman filter moving up the
line can be implemented by having each subsystem (say subsystem k)
perform a measurement update and then transmit this estimate to the
next (k+1) subsystem. Likewise, implementation of the Kalman filter

moving down the line involves a measurement update at each subsystem
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and then communication of this estimate to the previous (k-1) sub-
system. This update procedure is not decentralized, but it is quite
efficient and interesting.

As discusséd by Willsky [29], the proof of Attasi's estimation
algorithm employs a bilatgral z—-transform along the k direction and
treats the i direction as the time variable. In terms of the inter-
pretation of the model as an infinite-dimensional system, this cor-
responds to taking a z-transform with respect to subsystem index
{essentially a spatial z-transform). In this manner, Attasi obtains
independent subproblems indexed by the variable z. That is to say,
this problem is very nicely decomposed by the z-transform.

The same approach of taking spatial z-transforms has alsc been
used to address control problems for infinite-dimensional one-

parameter systems of the form

4eo

x(i,3) = 2, By XU-1,k) + By, u(i-1,k) (1.5)

=0

Melzer and Kuo [30] design optimal centralized regulators in this
manner for spatially invariant gquadratic cost functions. Optimal cons-
trained decentralized regulators for the same class of cost functions
are similarly designed by Chu [31]. The important result, at least in
the centralized case, is that the optimal control problem decomposes
into a set of optimal control problems of dimension equal tﬁ the

dimension of the substates x(i,j) and indexed by the variable z.

v



-13-.

In both the estimation problem of Attasi and the control problems
of Melzer and Kuo and of Chu, the key step is the use of the spatial
z-transform to decompose the problem. It is possible to use the
z-transform in these cases because the systems are spatially invariant,
i.e. all the subsystems are identical and the influence of subsystem
k on subsystem £ depends on only k-%. The objective of this thesis is
to examine in depth large-scale systems possessing the structural pro-

perty of spatial symmetry. Specifically, the control and estimation

problems for infinite-dimensional Toeplitz systems [see (1.5)] and their
finite-dimensional analog are studied. Such finite-dimensional systems
are called circulant systems. In the case of cixculant systems, the
discrete Fourier transform will be found to be the analog of the
z-transform used for Toeplitz systems.

The spatially symmetric systems studied in this thesis are
obviously an extremely special type of large-scale system. The purpose
in studying such a special class of systems is to determine just how
far one can go in exploiting spatial symmetry to obtain efficient on-
line implementations of conﬁrollers and estimators, or separating a
large problem into more tractable subproblems. The issue of decentra-
lization and decomposition, therefore, are erucial throughout the thesis,
Also, for spatially invariant systems one can study such phenomena as
the spatial propagation of disturbances which are obviously present

here.
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There has apparently been only very limited work done on circulant
systems. Dickerson and Erickson [32] have obtained some weak stabilitf
results concerning circulant systems, and these are analyzed in the
sequel. Some areas where circulant matrices have been used include
the study of certaln binary codes [33], [34], the generation of Markov
chains used as digital signals [35], the generalization of Clarke com-
ponents for polyphase networks [36], and the spherical model of a
ferromagnet [37]. Circulant matrices have had extensive use in the
field of digital image processing [38]-[40].

Let the image radiant energy at the peint (x,y) be represented as
g{x,y) and the object radiant energy as f(x,y). Then. the image and
cbject distributions are modelled as obeying an integral equation in-

volving the point spread function h as follows:

400 o
g(x,y) =f f hix,y,u,v,£{u,v))dudv {1.6)

By making the simplifying assumptions that

(i) h acts as a scalar multiplier, i.e,

h(x,y,u,v,f(u,v)) = h(X;qurV)f(urv)

(ii) h is spatially invariant, i.e. hix,y,u,v)= h(x-u,;y-v)

one reduces (1.6) to the two-dimensional convolution

I ‘ ‘
glx,y) = f fh(x-u,y—v)f(u,v)dudv (1.7)
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The image restoration problem is to estimate f from possibly noisy mea-
surements of g. One digital approach to this problem is to sample g at
points on a rectangular grid and then form a vector gi'by.lexicographi—
cally ordering these samples. A vector fi is similarly obtained from £

and the relationship expressed by (1.7) may be approximated as

g, = H £, {(1.8)

where the matrix HT is block Toeplitz with Toeplitz blocks [40]. By

using a circulant approximation H_ to H_, effective and computationally

C T
tractable algorithms for the inversion of (1.8) have been obtained [38],
[39]. The key to these algorithms is the use of the fast Fourier Trans-

form to diagonalize circulant matrices. This same diagonalization

procedure is used heavily in the sequel to study circulant systems.

1.2 Summary

Chapter 2 introduces circulant systems and develops many of their
properties. Circulant systems are linear systems defined in terms of
(block) circulant matrices. Such matrices are discussed in Appendix A
where it is shown that the eigenvectorsof a circulant matrix are fixed
by its dimension. This property is then used to develop the diagonalizing
property of the discrete Fourier transform. Using this transformation,
various' system theoretic results are obtained for circulant systems, and
circulant Riccati and Lyapunov are efficiently decomposed. Chapter 2

also shows how symmetric and antisymmetric block tridiagonal systems can

’
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be imbedded in circulant systems roughly two or four times as
large. Further, examples of circulant systems and tridiagonal systems
that can be imbedded in circulant systems are giwven.

The control and estimation problems for circulant systems are
the subject of Chapter 3. For the most part, Chapter 3 deals directly
with the control problem; the estimation problem is treated by duality
in Section 3.5. The centralized linear-guadratic control preoblem is
shown to (i) decompose into low order control problems and (ii} have
an efficient on-line implementation employing parallel processing.
Both these results are obtained by using the spatial transformation
introduced in Chapter 2. The fixed structure decentralized control
problem is treated in Section 3.2. Necessary conditions for the op-
timal decentralized gains are obtainea but are not found to decompose.
Suboptimal decentralized controllers are then proposed by considering
the analogous situation of the design of finite impulse response di-
gital filters. Various digital filter design techniques are discussed
for designing decentralized control gains. A computer example of cir-
culant control for a rectangular membrane is also included. The pos-
sibility of using a circulant control law for a general large-scale
system is examined in Section 3.4. Throughout Chapter 3 an attemptr
is made to use the spatial transformconcepts to obtain centralized
and decentralized controllers. That this goes much further than just
using transforms ﬁo decompose the centralized problem can be clearly

seen in Section 3.2.3. In this section, the spatial frequency
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viewpoint is essential for understanding the suboptimal deﬁentralized
control laws that are presentea.

It has been stated that the update step for Attasi's estimation
problem is equivalent to a smoothing problem. This statement will be
generalized in Chapter 5. The purpose of Chapter 4, however, is to
carefully study the fixed-interval smoothing problem. In particular,
the Mayne-Fraser two-filter smoother is studied here. Section 4.2
présents an historical review of the two-filter smoother, discussing
the work of Mayne [41}, Fraser [42], and Mehra [43]. By using reversed-
time Markov models, a new solution to the fixed-interval smoothing
problem is ébtained which clearly demonstrates the use of (i} a
priori data, (ii) past measurements, and (iii} future measurements in
computiné the smoothed estimate. Using this new solution, a sensitivity
analysis and an analysis of reduced order smoothers are performed. Also,
using the insight gained in this approach, a new change of initial con-
ditions fofmula for the smoothed estimate is obtained.

Chapter 5 deais with the control and estimation problems for
infinite-dimensional Toeplitz systems. The view here is to consider
explicitly the filtering problem and then treat the optimal control
problem by duality in Section 5.4. After defining Toeplitz systems,
the work of Melzer and Kuo [30] and Chu [31] on optimal control of
Toeplitz systems is reviewed. Attasi's [28] estimation problem is
then considered, and the model (1.2) is shown to correspond to a

Toeplitz system. Motivated by-Attasi's work, the filtering problem
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for general Toeplitz systems is then treated. It is shown that the
update step in this case is equivalent to a smoothing problem along the
subsystems. Finite-dimensional realizations of the update operation
are presented and the implications of these realizations for filtering
in large-scale systems are discussed. Also, some filter implementation
issues are examined. Chapter 5 tries to give a cohesive treatment of
Toeplitz systems and the associated control and estimation problems
by employing a spatial z-transform. This treatment is much deeper than
that of Melzer and Kuo or Chu in that the spatial transform is not
merely used for decomposition purposes. Rather, the spatial frequency
domain provides the necessary insight for the préposed filters and
controllers inlchapter 5.

In conclusion, Chapter 6 presents the contributions of this thesis
and suggestions for future research. In listing the contributions

of this work, a summary of the thesis is also provided.
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CHAPTER 2

CIRCULANT SYSTEMS

2.1 Introduction to Circulant Systems

2.1.1 Definition

A circulant matrix is a square NXN matrix in which each row is a

circular right shift of the row directly above it, i.e. a matrix of the

form

8 ;-1 -2t A
al a.o aN_l.-o a2
A = {2.1)
) ! 8p =" 33
i a da. a, - §
N-1 @N-2 N-3 0

The right shift of each row is called a circular shift because the ele-
ment that is shifted out on the right side re-enters the matrix on the
left. Block circulant matrices are defined similarly, with the elements
ak being replaced by submatrices Ak. A matrix is called block circulant
of order ¥ if it can be partitioned into N2 blocks Ak such that the re-

sulting structure is the same as (2.1).

Deterministic continuous-time circulant systems are defined in terms

of block circulant matrices as follows: the state of a circulant system

evolves according to the differential equation
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%:- x{t) = A x(t) + B u(t) (2.2)

and the output is given by

y(t) = C x(t) _ {2.3)
where
n .
x(t) e ® is the state wvector
miN . .
uf(t) e R is the input vector
=N i
y(t) € is the output wvector
nN>xnN | . .
AE R is a block circulant matrix of order N
NN XmN R . .
Be R is a block circulant matrix of order N
% X . ,
Cc e I{pN ns is a block c¢irculant matrix of order N

This circulant system is just a finite-dimensional linear system for
which the system, input, and ocutput matrices are all block circulant.
Discrete-time circulant systems are similarly defined.

The state x(t) of a circulant system may be viewed as consisting of

N substates xk(t} e nzn, k=0,1,... N-1, according to the partition

r xo(t) ‘
xl(t)

x(t) = % {t) (2.4}

roe e B

\ -1 (¢ ‘
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Likewise, the input u(t) and the output v(t) consist of subinputs

uk(t) e ®" and suboutputs yk(t) e:m?. The system equations (2.2} and

(2.3) may be written in component form as

N-1
d
EE-xk(t) = gg; Ai x(k—i)mod N(t) +_Bi B i) mod N(t) (2.5)
-1
y (e = § €5 Y(e-1)moa n'V (2.6)

where the notation (k-i)mod N is used to denote the unigque integer j in
the set {O,l,...,N-l} such that (k-i)+) is divisible by N. Figure 2.1
illustrates the unforced dynamics of a circulant system. All of the
subsystems are identical in the sense that each substate xk(t) has

® the same self-dynamics A
0

(t).

® for any i, the same interaction with substate X (k+i)mod N

Also, for any i, the subinput u (t} affects each xk(t) in the

(k+i)mod N
same way, and each xk(t) contributes equally to the suboutput
y(k+i)mod N(t). Thus circulant systems may be calied spatially symmetric
where spatial refers to the subsystem index number. One way to view

this is that someone located at subsystem X looking out at the rest of

the subsystem, cbsexrves behavior that is independent of k.

2.1.2 A Useful Spatial Transformation

As discussed in Appendix A, a circulant matrix of dimenslon N has
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83702AW073

subsystem

subsystem

Figure 2.1 The unforced dynamics of a circulant system

with three subsystems .
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fixed eigenvectors given by

o, = | ¥ , k=0,1,...,N-1 (2.7

(N-1)k
W N :

5 .
where Wﬁ = exp( lﬁﬂ), Since the N values WNk, k=0,1,...,N-1, are all

distinect, the eigenvectors ¢k form a linearly independent set, and so

any circulant matrix can be diagonalized. If 9 is the matrix of eigen-

vectors,

I 1
‘I’=(¢0 ¢ ¢2 E'":¢’N-1) (2.8)

-1 . . . .
then & A & is diagonal, i.e.

A=907" A 0d (2.9)
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It is easily shown [ 44] that the eigenvalues Ak of A may be computed

from
A = :E: N (2.10)

This equation means that the finite sequences_(Ao,ll;..,,hN_l) and
(ao,al,...,aN_l) are related by the discrete Fourier transform (DFT).
‘Thus the eigenvalues of a circulant matrix can be obtained by applying
the fast Fourier transform (FFT) algorithm to the top row of the matrix.
Consider now a block circulant matrix A where the blocks Ak have
dimensions rXs. In analogy with the circulant case, the partitioned

matrix @r is defined as

I h I PP I
r r r r
2 -1
I WL W, e w:]’ T
2 4 2(N-1})
= .« s » ‘11
¢r Ir WNIr WNIr Wﬁ Ir (2 )
N-1 2(N-1) . (N-1) (N-1)
Ir WN Ir WN Ir Wﬁ Ir

where Ir is the rxr identity matrix. In Appendix A it is shown that

i
f
HIH
=4
=

(2.12)




e

where the blocks E% on the diagonal are rXs matrices satisfying
N-1
=ki

That is, in the block circulant case, the elements of the block diagonal

form are the DFT of the top block row of the block circulant matrix.

A very useful change of basis can now be defined for circulant sys-

tems. Let

x(t) = q:;l x(t) (2.14)
— -1
ult) = @m ult) (2.15)
- -1
y(t) = cbp v(t) {2.16)

It is to be noted that ®n§1t) = x(t) or, in component form,

N-1
— ki
xk(t) = g;; xi(t) WN (2.17)

i.e, the substates'{xk(t)} are the inverse DFT of the'{;k(t)}. Thus,
the substates {;k(t)}, subinputs {G%(t)}, and suboutputs {;#(t)} are

simply the respective DFT's of {xk(t)}, {uk(t)}, and {yk(t)}

where the transform is taken with respect to the index k., The trans-

formed system is described by

d —
E‘Ex(t)

H]
—
'9‘1
=
]
Lol
ja]
N
%
o
rt
S
+
=1
[~
[
1]
o
=
S
gl
r—
*

=n x(t) + B ult) (2.18)
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I

v () (@'lc ) );(t)
P n

c x(t) (2.19)

where KZ Ex C are block diagonal matrices whose elements are given by
(2.13).

Under this change of basis, the system is composed of N completely
independent complex-valued subsystems

EE'xk(t)

A xk(k)' + ‘Ek Fk(t) (2.20)

Cp xk(t) , k=0,1,...,8-1 - (2.21)

n

y]"{(t)

This independence is in the "frequency domain", however, and is not
directly applicable to decentralized control or estimation problems
since each transformed subsystem ;%(t) depends on all of the subsystems

,-+e,N-1. Computation of the transition matrix, on the

xi(t), i=0,1
other hand, has been decomposed into the computation of the N lower
dimensional transition matrices of the Ek. Since the change of basis

in (2.14)-{2.16) and the determination of Ek, §L, and Ck are easily
done using the FFT, the dynamic behavior of a circulant system is much
easier to determine than that of a general nN-dimensional system.

In order to gain further insight as to why the transformed dynamics
are uncoupled, consider the dynamics of the kth'substate,

N-1
d
Ez-xk(t) = Eé; Ai x(k—i)mod N(t) + Bi Y k—i)mod N(t) (2.5)
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Notice that each of the two terms on the RHS of (2.5) is a circular con-
volution sum. Because of the relatlionship batween convolution and Fourier
transformation, one expects (2.5) to be decoupled in the frequency domain.

This result is obtained by multiplying (2.19) by W;kg and summing over k,

T
[ o

N-1 N-1
a X3 ) )
ae %Wy = 2 2 {Aix(k—i)modN(t)WN * Bi¥k-i)mod 0 H My }

i
0

k=0 i=o

N-1 N-1

_ _if (i-k) &
= Z {AiWN }E{x(k-—i)mod NSy } *

1=0 k=0

N-1 N-1

_ (i-k) 9,}
Z {u(k-'i)mod 18 ¥y
k=0 :

(2.22)
But (2.22} is just an expanded version of

a — = -
ac xg(t) = Agxg(t) + Bgug(t) (2.18)

The key element here is the fact that a circulant matrix times a vector
equals the circular convolution of the top row of the matrix with the
vector. The Fourier transfoxrm is then appliesd to convert convolution
into "multiplication in the spatial frequency domain".

Before concluding this discussion of the spatial transformation,
several identities will be presented here for easy reference throughout
the chapter. Consider first a real block circulant matrix A and the re-

lationship between Ei and E&-k' From (2,13},



- RQ[KN-] (2.23)

Similarly,

wln] = el 20 0 7]

= —Im[AN_k (2.24)

Equations (2,23) and (2.24) just state the well—knoﬁn property of the DFT
that real-valued sequences have transforms with real parts that are even
and imaginary parts that are odd. The seguence {Re[Ek]} is called even
because Re[Ak] = Re[A_k] where the indices are modulo N. The sequence
'{Im[ﬁil} is odd since Im[EL] = —Im[alk]. Next, identities for a symmetric
block circulant matrix Q will be obtained. The symmetry of @ is equiva-

lent to the following condition on the blocks Qk:
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Therefore,
: N-1
= ~ki
Re [Qk] § Qi Re [WN ]
N-1

- ' ki
- E Q(-i)mod N Be I}qN]

1=0
N-1
= Z o} Re[Wl:;k‘Q’] , L= (-i)mod N

f=0

= Re[?;] (2.26)

Similarly,

N-1

— | _ . -ki
Im[Qk] - Z 2(-i)mod N Im[WN ]

i=o

= —Im[-Q—};] (2.27)

Combining (2.23) and (2.26) for the real part of §k and (2.24) and (2.27}

for the imaginary part of §k vields

RelQ | = Re|Qp . (2.28)
I 51 - 50 ]
mLQk_ = ImLQN_k_ (2.29)

The final identity relates the transforms of A and A'_, If A is a block

circulant matrix and B=A', then B is also block circulant. Partitioning
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B di . L.
according to (2.1), block Bk equals AN-k Thus
N-1

Re[ﬁk] :.z-—-:o B, Re [w;ki]

N-1

DIt

i=o

= Z ] ReE;*I;k ]

- Re[g;] (2.30)

(5]~ 2 Ay m[]

Also,

- _Im[gi] (2.31)
Combining (2.30) and (2.31) yields

———

(A7) = a* (2.32)

where * denotes Hermitian, i.e. the transposed complex conjugate. These

identities will be heavily used in Sections 2.4 and 2.5.

2.2 Imbedding Tridiagonal Systems in Circulant Systems

The usefulness of circulant models is increased by showing how sym-—

metric and antisymmetric tridiagonal systems can be imbedded in circulant



-31-

systems. Symmetric tridiagonal systems are linear systems for which

the system matrix is block tridiagonal and the blocks on the subdiagonal
and superdiagonal are equal. For antisymmetric tridiagonal systems, the
blockslon the subdiagonal are the negative of the blocks on the super-
diagonal. Brockett and Willems [ 45 ] have shown how a symmetric tridiag-
onal system could be imbedded in a circulant system roughly twice as
large. The imbedding of an antisymmetric tridiagonal system is new, but
strongly motivated by Brockett and Willems.

Before presenting the imbedding methods, it is interesting to con-
sider why one would desire an imbedding of this type. One reason might
be the computational advantages associated with determining the eigen—
values or solving a Riccati equation (see Section 2.5) for a circulant
system. The work of Jain and Angel [26 ], however, suggests that similar
savings can arise from a direct analysis of these tridiagonal systems. It
is in the area of decentralized control and estimation that the motiva-
tion for this imbedding is found. Consider a decentralized control
structure where feedback is allowed not just from the nearest neighbors
but from the first and second nearest neighbor on each side. The re-
sulting closed loop system matrix is no longer tridiagonal — it is still
circulant if the system has been imbedded in a circulant system. This is
because, as is shown in Appendix A, the product or sum of circulant ma-
trices is still circulant. Therefore, since feedback can destroy the
tridiagonal property but not the circulant property, it is useful to

imbed a tridiagonal system within a circulant system.
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2.2.1 Symmetric Tridiagonal Systems

The unforced symmetric tridiagonal system under consideration is

given by

‘gE-z(t) = F z(t)
’ Fy B ‘ {zl(t”
Fl FO Fl(:::) zz(t)
" Fy ...'_ .
L P, |
\ (:::) Fy F0} zN(t)} (2.33)

where z (L) GZBFN. This system is close to being circulant; all that is

needed is for the upper right hand corner block and the lower left hand

corner block of F to he Fl instead of zero. What this means physically is

that the symmetric tridiagonal system fails to be circulant because the
two end subsystems do not directly interact with each other,
The system (2.33) is imbedded in the following circulant system of

dimension 2n(N+1):

x(t)

e
I
bl
"
G

! F, F Fil [ 2,60
F F F ::: xl(t)

l F, F, FO} x2N+l(t)J (2.34)
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The jidea here is for xl(t),...,xN(t) to equal zl(t),...,zN(t), respec~
tively, for all time %. In order for xl(t} to equal zl(t), it is neces-
sary that

4

=<
go X (8) = 3z, (v) (2.35)

leo(t) + Foxl(t) + lez(t) = Fozl(t) + Flzz(t)

Equation (2.35) implies that xo(t) must be identically zero. Demanding
that xN(t) equal zN(t) implies, by the same argument, that xN+1(t) must
also be identically zero. Now the question becomes how can xo(t) and

. ’ . .
xN+1(t) be made to remain at zero? For xN+l(t) to be identically zero,

it derivative must also be zero for all %,

d
EE'xN+1(t) =F, xN(t) + FO N+l(t) +F, 3N+2(t) (2.36)
= Fl[%N(t) + xN+2(t{l (since xN+l(t)=0)
=0
Clearly a sufficient condition is xN+2(t) = —xN(t} = -zN(t) for all t.

3 3 3 " 11
That is, if Xy and Xt exert equal but opposite "forces" on Xor1r then

- will remain at zero. Similarly, for x_ to remain at zero it suffices

0

to hawe x2N+l(t) = -xl(t) = -zl(t) for all t. Continuing this line of

reascning for xN+2' xN+3,... and x x2N"" yields the cenclusicn

2N+1°

that if the initial state z{(o) is extended in an odd way, i.e.
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xo(o) = 0 (2.37)
:ﬁ((O) = zk(O)
xN_l_l(o) =0
x2N+2_k(o) = —zk(OJ , k=1,2,...,N

then for all time t, the substates xo(t) and xN+l(t) remain fixed at

zero and zk(t) = xk(t) = (t), k=1,2,...,N. This extension is

“*an+2-k
illustrated in Figure 2.2 for an example with scalar subsystems. In
this manner, a symmetric tridiagonal system can be imbedded in a circu-—
lant system.

This imbedding procedure is analogous to a method used to determine
the transverse displacement of a finite string [ 46 ]. The displacement
of a string having fixed ends at O and L is given by the one-dimensiocnal
wave equation. In the case of an infinite string, the solution of the
wave eguation is the well known d'Alembert  solution. The displacement
of the finite string can be obtained from the infinite string analysis
by means of the following procedure. The initial displacement of the
finite string is extended to an odd periodic function of period 2L. The
initial velocity is also extended in the same way. The resulting dis-
placement between O and L of an infinite string having these extended
initial displacement and velocity is identical to the displacement of

the finite string. Thus the behavior of a finite string can be cbtained

from d'Alembert's solution to the infinite string problem. This odd

Fl
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substate
A
Xy=
z
3 =
xl [ Xg
Zl Z5
%=
22 Xp =
I o 7 8 g 10 11
o l . > subsystem
1 2 3 5 6 l index
10~
-z
2 X..=
x.f—- ® 11
~zg - “Z3
* -
_ 3
Xg=
-z

Figure 2.2 When a symmetric tridiagonal system is imbedded in

a circulant system,

the initial state must he

extended In an odd manner.
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periodic extension of the initial displacement and velocity is essentially
the same procedure as the imbedding formula (2.37).
The idea of this imbedding procedure is alsc somewhat similar to

the idea behind the method of images used in electrostatics. The method
of images can be used; for example, to solve the problem of a point charge
g placed near a perfect conducting plane of infinite extent. The method
replaces the conducting plane with a point charge -g located at the mirror
image of charge q. The pofential of these two charges is zero where the
conducting plane was located. In the case of imbedding a symmetric tri-

(t)

diagonal system in a circulant system, the substates xo(t) and X0l
are identically zero, The mirror image of the state z(t) (see (2.37)) is
used to ensure that these two subsystems remain at zero,

The case of the tridiagonal system with scalar subsystems, i.e. n=1,

will be studied further. First, a nonsymmetric tridiagonal matrix

o Tna
1 %o o
P o= £ £ . (2.38)

can be transformed into a symmetric tridiagonal matrix by a similarity

transformation if fl and fN__1 are both nonzero.
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If

2 (2.39)
Fnr/t)

-1, .'
then PFP is symmetric,

[ % /AR
YEE 1 Er
1 17N-1 £ YEifna .
PFP " = . (2.40)
YEE £, .
. - * L . flfN_l
VE £, £,

Hence the assumption that F = F' can be made without loss of generality.
Next the eigenvalues and eigenvectors of the symmetric tridiagonal
matrix F will be found from the eigenvalues and eigenvectors of a circu-
lant. Let A be the 2(N+1) x2(N+1) circulant matrix obtained from F
N 2(N+1)

according to (2,34). The linear transformation § : R =+ R is de~

fined componentwise as follows:
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0 , k=0 or N+1
(5w)k = Vi . k=1,2,...,N (2.41)
W edk k=N+2,...,2N+1

N . - . . . '
where w € IR . Clearly S is just the linear transformation used to imbed
a tridiagonal system within a circulant system, i.e. x(0) = S z(0). For

any vector w e:my, it is trivially verified that
SFw=ASwW (2.42)

The equation SF= AS is the aggregation equation that arises in large-
scale system analysis when an aggregated model is being constructed. 1In
the context of aggregation, the state z is the state of a large-scale
system, and F is the corresponding system matrix. The transformation §
maps z into an aggregated state x = Sz where the system matrix for x is
A and must satisfy the aggregation equation. It is well-known that the
eigenvalues of the aggregated system matrix are a subset of the eigen-
values of the large-scale system matrix. In the context of imbedding
a tridiagonal system within a circulant system, the eguation SF=FA can
be thought of a a "disaggregation” egquation since the resulting state is
of higher order than the state of the original model,

If w is an eigenvector of F corresponding to eigenvalue A, then

A(Sw) =S Fw= Als w) (2.43)
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Hence A is also an eigenvalue of A with eignevector S w. What are the

. : ' th . .
eigenvalues of A? From (2.10), the k  eigenvalue is

-k +k
M T % P T Yonee T 5 Yo
kIl
= %J + 2f1 cos <N+l) r K=0,1,...,2N+1 (2.44)
Thus there are only N+2 distinct eigenvalues -- eigenvalues lo = f0 + 2f1
and AN+1 = f0 - 2fl are not repeated; the other N eigenvalues occur twice.

Can AO also be an eigenvalue of F? Since the corresponding eigenvector

is

o
1]
-

{2.45)

Iy

and ¢0 is obviously not in the range space of §, AO cannot be an eigen-

value of F. Similarly, eigenvalue kN+ of A has eigenvector

1
[ 41 |
-1

¢N+l= {2.46)
+1
[—1

and, since ¢ cannot be in the range space of 8, A is not an eigen-

N+l N+1

value of F. The only remaining candidates for eigenvalues of F are the



repeated eigenvalue

12N+2—k'

be written as a linear combination of the eigenvectors ¢k and ¢

N+l

N+1

(ot B)

(k(N+1)
o3y ——_

(k(2N+1)

—40-;

s of A,

n): i feEn T
St W T

17),
- j sin

k(2N+1) T
N+1L

(o+B)

(c+B) cos(ggi) + 3 (B~)

(a+B) cos(%%%) + j (B-0)

(a+f) cos (kn) + 3 (B

k(2y+1) T . )
COS(“‘ﬁI{"‘)*'J (B-a)

Consider the pair of eigenvalues A

k{Ns+1) T
oo,

N+1

os(k(2N+11ﬂ)+

sin KT
N+1

sin kT
i+l

s ()

N+1

(k(2N+l)W)
n—-—-—-ﬁ—-—-—-—-———

k and

Any eigenvector Xk of A corresponding to this eigenvalue can

2N+2-%'

in k(N+1)T
N+1

N+l

. sin(k(2N+12W)

(2.47}
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. . th
For Xk to be in the range of S regquires, from {(2.41), that the O and

th . '
the (N+1) components of X, be zero, i.e. (¢+B) = 0 and (0+B)cos(km = Q.

Therefore, choosing o = -B yields an eigenvector wk of 7, i.e.
X = SWk (2.48)
A purely real eigenvectox is obtained by letting @ = -8 = j/2,
’ sin(hx-)‘
N+1
51n-§%g)
Y = ) (2.49)
\ sin(ZRNﬂm
N+1

components 1 through N of Xk * The corresponding eigenvalue of wk is

_ Ak = fo + 2f1 cos(%%i).

From the above analysis, it is clear that the eigenvalues of a sym-
metric tridiagonal (finite) Toeplitz matrix can be found using the FFT
algorithm, This is proved more directly in [26 ] by Jain and Angel.
Using the DFT to efficiently diagonalize symmetric tridiagonal matrices,
Jain and Angel are able to decompose the vector filtering equations
arising in the restoration of images into a set of uncoupled scalar fil-
tering equations. This is completely analogous to the decomposition of -
Lyapuncv and Riccati equations in Section 2.5, 1In fact, their results
on efficient algorithms for image processing were one of the motivating

factors for undertaking the work presented here.
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Finally, it is noted that the idea of imbedding a symmetric tri-

diagonal system within a circulant system can be extended to higher di-

mensions.

a zz(t) ] Fl FO .
dt - * - ¢ L]
: . - B

’zl(tJ‘ ’FO P, . (::) 1

Consider a tridiagonal system

|

where each substate zk(t} is itself composed of g sub-substates,

zN(tw l (::) F, FOJ

’ zl(t)w

zz(t)

zN(t)

L

, k=1,2,... N

’ zkl(t)‘
z, . (t)
k2
2, (8) = i
|
and the matrices FO and F1 have the special forms
’ Foo Fop (:::) ‘
Foi  Foo "
F =
0 - . - . Fol
.l(:::) FOl FOO J

{2.50)

(2.51)

(2.52)
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{2.53)

Since the individual subsystems are symmetric tridiagonal systems, the

imbedding procedure can be applied at the subsystem level to yield

f xltt)‘
5 xz(t)
ac |

kxN(t)]

[ %

Al.o‘

f xl(t)1

x2(t)

\’&q(t)‘

(2.54)

where the substates xk(t) are composed of (2g+2) sub-substates, xk(t)= Sz (t)

and

F

00

ol

(2.55)
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Flo O
. F

10

a = O . | (2.56)
F ' k

| 10

For this imbedding to be wvalid, it is necessary that xk(ft) and X, q+1(t)
. 3 r

be identically zero. Writing out (2.54) for xk(ft),
r

d _
at % oft) T Fio¥e 1 o) + FoiX oqun (B + FypX olE)+

+ .
Fo1%, 11 * F1o%41,0 (2.57)
A consistent solution is obtained if xk-l,O(t)' xk,O(t)' xk+1,0(t) are
all zero and xk,l(t) = —Xk,2q+2(t)' Similarly, one sees that all the

X q+l(t) are identically zero, and so this imbedding is valid. The re-
r
sulting system (2.54), moreover, is itself a symmetric tridiagonal system.

Applying the imbedding procedure to it yields

’ xo(t) \ , A, A O Al‘ ’ xo(t)
x, () Ay A, Ay ) _ x, (£)
d . . .. .
Fre : = O . " a : (2.58)
\xzmz (t)l By i | lxzmz (t) /

a circulant system whexe the l:iocks of the system matrix are themselves

block circulant matrices. The original system of order ngN is imbedded
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in a circulant system of order 4n{g+l} (N+l). 1In Section 2.3, an example

of such a symmetric tridiagonal system will be described.

2.2.2 Antisymmetric Tridiagonal Systems

An unforced antisymmetric tridiagonal system has the form

aE-z(t) = F z(t)
F, -F, O ’zl (£) ‘
F, F, -F, z, ()
= r, . .. (2.59)
O . . ) -F,
\ F,F, ‘ lzN(t)

N . . . .
where z(t) e '. It will be shown that there are two different imbedding

procedures for antisymmetric tridiagonal systems depending on whether N,
the number of subsystems, is even or odd. For odd N, the proper circu=
lant system has order 2n(N+1), just as in the symmetric tridisjonal case.
For even N, however, a circulant system of order 4n(N+l) is necessary.
The éituation when N is odd will be considered first. .The candidate

circulant system is
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d —
prs x(t) = A x(t)
' Fo -Fl O Fl ’ xo(t)
Fl Fo _Fl xl(t)
= Py . K E (2.60)
O o=
\-Fl F, Py l \x2N+l(t)1

This circulant system is very similar to the circulant system {2.34) used
for imbedding symmetric tridiagonal systems, Just as in the symmetric
case, the substates xl(t)r...,xN(t) equal zl(t),..;,zN(t), respectively,
for all time. This immediately implies that xo(t) and xN+l(t) must be

identically zero. Since xN+1(t) is zero,

d
3 (B

Fl xN(t) + F0 xn+1(t) - Fl xN+2(t) {2.61)

Fl[%N(t) - xN+2(ti] (since xN+l(t) = 0}

A sufficient condition here is that xN+2(t) = xN(t) = zN(t), in contrast

to the symmetric case, Once again, Xy and K42 exert equal but opposite

forces on LY, but in the antisymmetric case this requires xN+2(t)=xN(t).

Examination of the derivative of xo(t) quickly leads to the conclusion

that x2N+l(t) = xl(t) = zl(t)_‘ In order to clearly illustrate the differ-—
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ence between the symmetric and antisymmetric cases, the argument will be

continued for xN+2(t) and x2N+1(t)' The requirement is that xN+2(t)=xN(t);

hence

d d
e xN+2(t) =3t xN(t) (2.62)

(t)

F) X (B + Fg X, (8 -

F1 "3 Frigap (8 Fo 2 (8) =7y x4

Fo Xnea(t) = Fp % 5080 = F) xm;ltt) *Fg X (8

{since xN+l(t) = Q)

Requiring xN+3(t) = -xN_l(t) = —zN_l(t) obviously suffices. The condition
x2N(t) = —xz(t) = -zz(t) is obtained similarly by considering x2N+1(t).
Continuing this argument leads to the conclusion that if

x (0) = 0 | (2.63)

i |

|
5O = 5,0
Fe1 () = O

_ k+1 _
Xoneap 0 = (-1) zk(o) , k=1,2,...,N

then xl(t),...,xN(t) will equal zl(t),...,zN(t), respectively, for all t.
Pigure 2,3 illustrates this extension in the antisymmetric case for the

same system shown in Figure 2.2. It is to be noted that this procedurxe

only works for odd N. From (2_63),



=-48-

substate
A
x4=
=z
X, = 4 X =
3 . 9
xl : x5 x7 xll
™
. %5 “s %1
' 2
l %3 X6~
0
I subsystem
=¥ Ll 1 1 # 1 4 1 >
] index
L J
x10=

Figure 2.3 Imbedding an antisyrmetric tridiagonal system with an

odd number of subsystems in a circulant system.
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Nl
>5\I+2(0) = (-1) zN(o) (2.64)

and so the requirement that xN+2(t) equals zN(t) is only met for odd N.
Imbedding an antisymmetric tridiagonal system in a circulant system
vhen N is even will now be discussed. Suppose the system matrix of the
circulant system in which this antisymmetric system is imbedded has the
same form as the system matrix A in (2.60), only now the order of the
circulant system is as yet unspecified. It is further supposed that sub-
states xl(t),...,xN(t) of the circulant system are to equal zl(t),...,zN(t),
respectively, for all time. Of course, the immediate implication is that
xo(t) and xN+l(t) are both identically zero. By examining the derivatives

of xN+1(t),...,x2N(t), the following relations are obtained:

Xy (B = z (1) (2.65)

il
|
3

X3 8 n-1'®)

Xea (B = 29 g

I
N
——
*

x2N(t) = zz(t)

Ko (B = 72 ()

For odd N, the identity is x (t) = zl(t), and so subsystems Q0 and

2N+1
{(2N+1) could ke "tied together”™ to complete the circulant system. In

the case of even N being considered here, tying together subsystems O

and (2N+1) fails since this would imply



-50-

x. (t) F xo(t) - F {(t) (2.686)

-d—t- 0 0 Xl(t) + F

1 1 Fon+l

= -Fl [xl(t) - x2N+l(tﬂ (since xo(t) = 0}

= --Fl A (t))

1(t) + zl(t)] (since xl(t) = zl(t) =

‘x2N+1

a contradiction. Since the subsystems 0 and (2N+1) cannot be joined,
additional subsystems are added to the circulant model. Using the device

(t)

of examining derivatives for x (t) yields the following:

2+ S e Xy

x2N+2(t) =0 (2.67a)
Xom3 (€} = =2, (8)

x2N+4(t) = -zz(t)

Xaar (B = 2 (8)

x3N+2(t) = -zN(t)

Unfortunately, subsystem (3N+2) cannot be joined to subsystem 0 and have

xo(t) remain equal to zero since x3N+2(t) = zN(t) and xl(t) = zl(t).

Therefore, another N+l subsystems are added to the circulant model,

x3N+3(t) =0 (2.67Db)

Xanea (B) = -2y (E)



X3nes () = 2y (8)
X (8 = 2, ()
X a3t = 2, (0)

Now subsystem (4N+3)

d
dt

xo(t) F xo(t)

0
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- F

1 1

= _Fl[%l(t) - x4N+3(tﬂ

= 0

Summarizing, an antisymmetric

xl(t) + F. x

an3 )

can be joined to subsystem O since this yields

(2.68)

tridiagonal system with an even number of

subsystems can be imbedded in the following circulant system of order

4n(N+l) .
( xo(t) ! FO —Fl
xl(t) Fl Fy
a_ . _ F
at : a i 1
F4N+3(t” | F1
where
xo(oJ = zk(O)
xk(O) = zk(O)

’ xo(t?
xl(t)

\x4m+3(t”

{2.69)
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Xoww2-x (0 = (P17 z (9l

Xam2(® =0

Xone2+k (O = 7 (0)

X n+a—x (O = (-1 z, (o) , k=1,2,...,N

This extension is illustrated in Figure 2.4 for a system having only two

subsystems,

2.3 Examples

Circulant models have rarely been used in the literature on dynamical
linear systems. Dickerson and Erickson [ 32], however, are authoré who
have employed circulant systems to investigate the stability of a closed
loop of vehicles. Their model will be presented first, and then their
stability results will be discussed in light of Section 2.1. The under-
lying physical situvation is a string of a large number of vehicles moving
along a single lane, e.g. a personal rapid transit system. The string
is modelled as a closed loop in order to avoid difficulties associated
with the ends of the string and in order to obtain controllers which are
identical for each vehicle.

Figure 2.5 illustrates the vehicle traffic loop and is taken from

f 32]. The loop consists of N identical cars moving around a circular

Fl
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substate
xl= z2 22 x11=
z _ - = z
1 x3— x6 x9 1
I ° ° ° I subsystem
= @ T ' + f ' + ! } +$ 1 i b
1 l index
-z -z _ -
1 1 xB xlO
25 25
Figure 2.4

Imbedding an antisymmetric tridiagonal system with an even

number of subsystems requires a circulant system roughly
four times as large.
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Figure 2.5 (from [32}). Illustration of the classical

vehicle traffic loop.
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track. It is desired to regulate the system so that the cars traverse
the track with a nominal angular velocity V and a nominal separation'ﬁlg
Assuming linearly proportiocnal feedback from the position and velocity
of the nearest fore and aft neighbors and its own position and velocity,
a simplified description of the moticn of the kth car is given by

at _ 2% a
= 0 = x [ek+1( ) - 9 (t) ‘E‘]* e [dt 0, (€)= dtOk(t)]

2m d
+ 1%[ ko1 (8) = G (x) + ¢ ]+ Gb[dt O 1 (V) -3 k(t)]

k2w d
+ K [Vt - E) (t) + —N—-:I + G[ = k(t)] (2.70}

where all indices are modulo N; The K*s are gains on positions, and the
G's are gains on velocities. The resulting model is clearly a circulant
system, Moreover, the fact that the feedback was restricted to be from
the nearest neighbors is not crucial for obtaining a circulant meodel.
The important characteristic is that the loop is closed in that cars 1
and N interact in the same way as (say) cars 1 and 2.

The infinite-dimensional version of this problem has been studied
by several authors [ 30}, [31], [47]. The problem is to requlate an
infinite string of identical systems moving in a straight line, Of
course the model is a Toeplitz system (the subject of Chapter 5) and
not a circulant system. However, these authors claim that "the infinite
object theory accurately describes the properties of the typical vehicle

controller in a long finite string" [30 ], Typical vehicles are those
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having many vehicles in front and behind them, i.e. ones not near the.ends
of the string. But typical vehicles could alternatively be described by

a circulant model obtained by connecting the two ends of the finite string.
This procedure yields the approximate circulant model of Dickerson and
Erikson which does not model the behavior of objects near the ends. But
if the behavior of objects near the ends is of no particular interest,

or if this behavior can be determined in seme ad hoc fashion, or if it

is desired to equip all the vehicles with the same céntroller (for sim-
pPlicity of design, for easy replacement of any vehicle, etec.), then the
circulant model could be quite useful.

The stability results of Dickerson and Erickson [32 ] for circulant
systems will now be discussed keeping in mind the decoupling property of
the DFT. That is, since the DFT converts a block circulant matrix into
a block diagonal matrix, the stability of the overall system can be deter-
mined from the stability of the individual spatial subsystems. TIf all the
subsystems are stable, then the system is stable; if one subsystem is
unstable, then the system is unstable. This elementary cbservation to-
gether with the formula (2.13) for the diagonal blocks will explain two
of the three stability results found in [32 }. The third is just a direct
application of Lyapunov's direct method and will not be considered fur-
ther.

Dickerson and Erickson's first stability condition is given in terms

of the measure p of a matrix. For any matrix norm such that H I” = 1,

the measure of a matrix A is defined by



-57-

u(a) = lim% [||1 +hal - 1] (2.71)
hlo

It is easily shown that for any eigenvalue A of A,
Re[A] < p(a) (2.72)

If ¢ is an eigenvector of A corresponding to A with norm 1, then

1 | 1
lim = dl[a@+ o] - {[¢]l] = 1im=]]|1 + n2] - 1| = re[N]
nio I [” - | ] nlo B [ ]
(2.73)
But,
un k[l v o - o 1] < vin 2 [7 4 mal] - 1] - ua)
h|0 hlo 2.72)

Thus (2.72) is wvalid. Using this result, Dickerson and Erickson give

the following stability criterion: the circulant system (2.2) is stable if

N-1

WA + Z: ||Ak | <o (2.75)

k=1
The condition (2.75) will now be obtained by considering the stability

of each diagonal block. Recall that the kth diagonal block is

-1
- -ik
Ak = fi-;, Al WN (2.13)
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Then

| N-1
HE) = P(AO + E A W;le) (2.76)

i=1

N-1

< u(AO) + l!gg; A, W;ik]| (triangle ineguality)

N-1
Sp(AO) + 121 ” A, W;ikn (triangle inequality)

N-1
<uag) + 2l |
i=1 *

<0 {(by (2.75))

That is, if (2.75) holds, then each subsystem is stable. This immediately
implies that the overall circulant system is stable. It is obvious that
the sufficient condition (2.75) for stability is simply derived by using
the formula (2.13) for the diagonal blocks of a circulant matrix.

A sufficient condition for instability is also presented by Dickerson

and Erickson. Consider the first diagonal block,
N-1 :
A, = Z: a, (2.77)
i=o

Clearly, if AO is not a stability matrix, then the system must be unstable.

AO is not a stability matrix if there exists an eigenvalue A of 2 having

0

real part greater than or equal to zero. Hence if there exists a A with
N-1 ‘

RQUM = 0 such that AT - 2: Ai is not one-to-one, then the circulant
=

s
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system (2.2) is unstable. But this last statement is just Theorem 3 in

[32]. The diagonalization property of the DFT, therefore, provides an

easy means of obtaining the stebility conditions of Dickerson and Erick-
son.

Condition (2.75) has an interesting interpretation when the circu—
lant system is viewed as an interconnection of subsystems. Since U(AO)
is required to be negative, each isolated subsystem is stable. Moreover,
the interactions Ak' k=1,...,8-1 with other subsystems are considered to
be only destabilizing forces in (2.7%). Given this interpretation, the
sufficient condition (2.75) is reminiscent of stability formulas Ffor
diagonally dominant large-scale systems, see for example [ 48 1, where
each subsystem is required to be stable and the interactions with other
subsystems are only considered to be destabilizing.

In some cases, only some of the matrices A, k=0,...,N-1 are non-
zero. For example, Ak = 0 for k # 0,1,N-1 corresponds to only nearest
neighbor interactions. In these cases, the stability condition (2.75)
and the instability condition provide tests which are independent of the
number N of subsystems. Thus if condition (2.75) is satisfied, the
circulant system is stable no matter how many subsystems are included.
This cobservation was first made in [ 32].

As shown in Section 2.2, circulant models can be used to study sym-
metric and antisymmetric tridiagonal systems. There are many examples of
tridiagonal systems; one is the longitudinal power system depicted in

Figure 2.6, This system is similar to one analyzed by Arcidiacono,
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L Lo O

Figure 2.6 A uniform longitudinal power system consisting

of N generators [49].
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Ferrari, and Saccomanno [ 49] for low frequency electromechanical oscilla-
tions, A simplified linear model will now be obtained based on the
modelling assumptions made in [49 ].

Each generator is medelled by an e.m.f. Ei and phase angle Gi' and
it is assumed that the Ei are constant. For small variations, each gener-

ator has the second order model

AP . - AP . = m AS, (2.78)
mL al 1

where m is an inertia coefficient and APmJ'; and APei are changes in the
mechanical and electrical power, respectively, at generator i. Linear-

zing, the electrical power variation Apei is written

N
op .
Ap . = :E: S} a8, ' (2.79)
&L 321\ 2a8; J
N
= E K. . Ad
=

where the partial derivatives are evaluated at the nominal values of

their arguments. From the static load flow equations [50],

-% E.E. cos (3

3 i 63.) , J=i+l (2.80)

ij

o

, otherwise

for the uniform longitudinal system in Figure 2.6. The mechanical power

variation APmi is expressed as
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rp = ap O, pp¥) (2.81)
mi,

ml mL

where the second term represents speed governor action. It is assumed

that in the frequency range of interest,
(r) _ . |
Apmi. = —d Aﬁi {2.82)

Using (2.79)-(2.82), the model (2.78) may be written in vector form as

MAE + DAS + KAS = Ap:’) (2.83)
where
". O tL O
M= e , D= q.
(:) o m (:) d
> - 0
-k 0 k
K = k.-
o
-k
and k = —(%) E1E2c05(6l - 62). Equation (2.83) can be written in state

AS,
1
space form by defining a state vectoxr x of substates x, = (Aai) ’

x(t) = F x(t) + B AP;O}(t) {2.84)
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where the system matrix F is antisymmetric tridiagonal as in (2_59) with

01) (00) ,
FO = (0 d/m and Fl = 0 uk/m . This uniform longitudinal system,

therefore; does have a tridiagonal linear model and can, accerding to
Section 2.2.2, be imbedded in a circulant system.

Tridiagonal systems can also arise when a finite difference method
is applied to partial differential equations. Consider the one-dimeﬁsional

wave equation

2 2
v _ 2 _a_:_ = E(y,t) (2.85)

at? . Ay

for 0 < y < L and t > 0 that describes the small displacement motion of a
vibrating string of length L subject to an external force E(y,t). The

ends of the string are fixed, hence the boundary conditions
v{o,t) = v(L,t) =0 : {2.86)
The initial conditions
V(y;OJ = f(ly) (2.87)
;r(y,o) = g(y) - (2.88)

mean that at time 0 the displacement and velocity of the string are given
by f(y} and g(y), respectively.
The method of finite differences can be used to obtain an approxi-

mate solution to the vibrating string problem. Let
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di(t) = v(——~ t) (2.89)

. 2
for i=1 2,...,N. Replacing the partial derivative %;;‘in {2.85) with

the approximating difference quotient {31 ],

di+1(t) —-2di(t) + di(t)

()

yields the following egquation:

2 2 :
_ c (N+1}) 1L
————Eiiﬂ(t) - 23, (1) + di_l(t)] + E(—— t)(2.90)

q, () N+1’

1.2

In state space form, these equations are

x(t) = F x(t) + B E(t) (2.91)

d. (t)

éi(t)) ; F is of the form

where x({t) consists of substates xi(t) = (

(2.33) with

0 1 0 0

Fo = e By T '
~2c2 (N+1) ? J c2(N+1) 2 0

LZ L2

and the input E(t) is

E({t) =
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This finite difference nethod, therefore, produces a symmetric tridiagonal
system that approximates the solution of the one-dimensicnal wave egqua-
tion.

The two-dimensional wave equation

2 2 2 :

. 2 29

0V _ 23V 128V piy.ab) (2.92)

at? ay® 3z”

where 0 < y €< 1 and 0 < z < 1, can be similarly approximated. This

equation describes the vibrating motion of a sguare membrane having fixed
2 2

edges. If b does not equal c

, then the membrane is nonhomogenecus in

that its physical characteristics differ in the y and z directions. Let

i 3
= 2 2.9
d; %) V(N+1' M1’ t) (2.93)

for i=1,2,.._,N and j=1,2,...,M. Using difference quotients to approxi-

mate the two spatial partial derivatives in (2.92) yields

e 2 2

=c - . + d, . +
4 50 =cu) [di+l’j(t) 2a; 4(8) dl_l’J(t)]

+ bz(M+l)2 d (t) - 24 (t) + 4 (t)] +

i,3+41 i,J i,3-1
S
*E (N+l" M+l’t) (2.94)
d, .(t)
Letting x, .(t) = .l’J and lexicographically ordering the points yields
r

the following lumped model:
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and the forcing function E has been taken to be zero. This system can be

descriked as block tridiagonal where
® the blocks on the diagonal are themselves block tridiagonal
and their super— and sub-diagonal blocks are equal

® the blocks on the super- and sub-diagonals are egual and block

diagonal.

Consequently, this system has the same form as (2,50), and therefore the
original 2NM dimensional system can be imbedded in a circulant system of

order 8(WN+1) (M+l) as described in Section 2.2.1.

2.4 System Theoretic Results

The question of controllability and cbservability and the problems of
minimal realizations, pole placement, and state reconstruction will be
examined for circulant systems. In each case, the spatial transformation
of Section 2.1.2 will be used to decompose the usual tests or procedures
into a series of lower oxder tests or procedures on complex-valued sys-
tems. Since the algebraic theory of linear systems may be performed over
arbitrary fields (see [ 521}, considering complex systems instead of real

systems presents no inherent difficulty.

2.4.1 Controllability and Obsexrvability

The block circulant pair under consideration is (a4,B). 8ince con-
trollability is invariant under a change of basis for either the state

or the input, the pair (A,B) is controllable if and only 1f the pair
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(K}B) is controllable, i.e.

“‘m'lia”] (2.96)

rank[B, AB,...,AnN-lB] = rank[ﬁ, KE',...,A

But the matrices B and B are block diagonal. Thus. controllability of (Eiﬁi
is equivalent to controllability of each pair (E%,ﬁ;), k=0,1,...,N-1.
Therefore, the controllability of (A,B) can be determined from the follow-

ing procedure:

{1.) wuse the FFT to obtain A and B
(2.) test if each (Einﬁ-) is contrecllable
{3.) conclude (A,B) is controllable if and only if each (Ak B } is
contrellable.
Because of the identities (2.23) and (2,.24) presented in Section
2.1.1, subsystem k is controllable if and only if subsystem N-k is. DPre-
cisely, the controllability matrix [ K Ak k’ "’Ak B ] is the complex

-n-1l=
conjugate of the controllability matrlx[ N k' Nk N—k""’A -kBN—k]'

Hence the two controllability matrices have equal rank, and so (Ak B, } is

controllable if and only if (A ) is, This means that in step (2.}

N- k' N -k

N
above, controllability must be examined only for (Ak,B ), k=0,1,...,[51

N . . N
where [5] denctes the largest integer in TR _

By considering subsystems k and N-k together, it is possible to ob-

tain a test involving purely real matrices. Define the linear transforma-

tion TE : C22X2£ > ngle b

T = (2.97)
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b
Then for o and B inimg P, it is to be noted that

d+j8 0 o B
T T = {2.98)
. 0 o=3if P -8B o

It is of interest to determine if the pair (Ek'ik) is controllable, where

A 0
ik = (2.99)

0 Ak

and B, is defined analogously. But from (2.23) and (2.24), ik and Ek are

a+jB 0 _
of the form [ o d—jB] . Hence (Ak,Bk) is controllable if and only if

. ~ =1 ~ =1 .
the real pair (T AkT 1, T B T ") is contrellable. The test Ffor controll-
——— n n n m

k
ability of (aA,B) is, therefore, reduced to testing for the controllability
of [g] 4+ 1 real subsystems of order 2n.

An interesting special case of the above procedure is when the sub-
systems are scalars, i.e., A and B are composed of 1Xx1 blocks. In this
case, the transformed subsystem pair (E%,E;) is controllable if and only
if E; is nonzero. 'Thus controllability of (A,B) is equivalent to the
DFT of the top row of B having no zero elements. Since A and B are dia-
gonal, the image of A B is contained in B. The controllable subspace,
therefore, is particularly easy to determine. A vector x will lie in
the controllable subspace if and only if gk-is zero whenever EL is zero.

Observability for the pair (C,A) follows by duality from considering

controllability for (aA',C').
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2.4.2 Minimal Realizations

Given a transfer matrix H(s), the realization problem is to deter~
mine a linear system defined by the triple (A,B,C) such that the transfer
matrix of the system C(sI—A)-lB equals H{(s). A minimal realization is
one that has the lowest possible dimension for the system matrix A. The
McMillan degree [53 ] of a transfer function is the order of any minimal
realization of the transfer function.

Consider a block circulant transfer function H(s) GZBPNXmN. That
is, H(s) is partitioned into N2 blocks Hk(s) according to the pattern of
(2.1) and each Hk(s) is an element of:m?xm. Then H{s) = @;1H(s)®m is a
complex block diagonal transfer matrix. Since they are related hy a
linear transformation, H(s) has a finite-dimensional realization if and
only if H(s) has one. If H(s) has a finite-dimensional realization, then
each block ﬁL(s) on the diagonal is also realizabhle by a finite-dimen-~
sional linear system, Conversely, assume each block ﬁ;(s) has a reali-
zation (E£,§L,E£) where E? E:mﬁxn, EL e:m?xm, E% e:mpxn. Then a

realization of H(s) is given by (a,B,C) where A = diag(ik), B = diag(ﬁ%),

C = diag(E#). Now

H(s)

& His) 3% (2.100)
P m :

o [E(sz-i) '13] ot
P m

Il
HH
s
ol
o
-~
——
4]
H
1
o
=]
bl
©H
j= I |
=
——
1
[ and
—
e
w|
L= ]
51
i
i
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-1 - 1
,B=% B®", ¢c=% c® ", If the block diagonal ma-
n n m P 'n

L=

for A=9% A
n
trices E} E} E-satisfy the identities (2.23) and (2,24}, then A, B, C will
be real-valued and block circulant. Since the original transfer function
H{s] is a matrix of polynomials in s with real coefficients, the blocks

Ek(s) will satisfy (2.23) and (2.24), i.e.

Re[ﬁ%(s)]

= Re[HN_k(s}] (2.101)
Im[Hk(s)] = —Im[HN_k(s)] (2.102)
Therefore, the triple (E&—k' Eﬁ—k' Eﬁ—k) that realizes ﬁﬁ_k(s) can be

taken to be the complex conjugate of the triple (E&, E&, E%) that real-
izes ﬁk(s). In this way, the £ransfer function H(s) can be realized by
the real, block circulant triple (A, B, C). Summarizing, in order to
determine if the block circulant transfer function H(s} has a finite-
dimensional realization and, if so, to find such a realization, the
following procedure may be employed:
(1.) wuse the FFT to obtain Eks)
(2.) test if each bleck Hk(s] has a finite-dimensional realizatién
—— if so, continue with step (3.)
—- if not, conclude that H(s) does not have such a realization
(3.) determine a realization (E#, E%f Ek) vaﬁk(sl for k=0,1,...[§]

(4.) use (2.23) and (2.24) to obtain (A, ) from

N-k' BN—k' CN-—k
(pk' B, C)

(5.) use the FFT to cbtain (R, B, C), a realization of H(s)

It is possible to avoid habing to realize a complex transfer func-
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ticon ﬁk(s) by considering the transfer functions EL(S) and E&_k(s) to-
~gether and using the linear transformation T defined in Section 2.3.1.
The procedure is straightforward and the details are omitted.

A circulant transfer function has been shown to have a circulant
realization. But is this circulant realization minimal? No, not unless
each realization (iﬁ, B, Ek) of H#(s) is minimal. In general, the ﬁ;(s)
will not all have the same McMillan degree, and thus not all of the reali-

zations will be minimal.

Proposition 2.1 The block circulant transfer function H(s) has a mini-

mal realization as a circulant system if and only if the diagonal

blocks EL(S) 2ll have the same McMillan degree.

The following example demonstrates what can go wrong.

s+l -1
2 2
Example 2.1 Consider the circulant transfer function H(s) = s 1.
1. s+1
52 s2
Then
s+1 1
1 1 o2 o2 1 1
¢l 0 = =
1 s+1
1 -1 =2 e 1 -1
s+2
s2 0
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In this case, ﬁ;(s) has a second-order realization and ﬁfs) has
a first order realization. Thus H(s) does not have any circulént
minimal realization.

Even in the cases where no minimal circulant realization exists, however,

there are nonminal circulant realizations.

2.4.3 Pole Allocation and State Reconstruction

Since pole allocation and state reconstruction are known to be dual
problems, only the pole allocation problem will be explicitly dealt with
here. BAll the results, of course, are applicable to the state reconstruc—
tion or obsexrver problem.

The pole allocation problem is to determine a full-state feedback map
G : x(t) = u(t) such that the resulting cloéed‘loop system matrix fA—BG)
has speéified eigenvalues. It is well known that the closed-loop eigen-
values can be specified arbitrarily if and only if the system is controll-
able. Actually, to be precise, if only a real-valued gain matrix G is
permitted, then the specified closed-loop eigenvalues must occur in com-
plex conjugate pairs., Consider then a controllable circulant pair (A,B),
and suppose that the desired closed-loop eigenvalues are the set A 1t
is assumed that if the complex number o is in A, then o e A.

Since (A,B) is controllable; the traﬁsformed pair (E} B) is con-
trollable, and so is each pair (E£, E?). Hence it is possible to assign
the poles of each transformed subsystem. Let Ak denote the set of closed

t
locp peles which are to be associated with the k htransformed subsystem.



—74-

N-1
Of course, & = U lk. Given Ak' the pole placement problem is solved for
k=0

each pair (Ekg EL) to yield the complex feedback gain matrix Ek. 1f

G = diag(Ek), then G = @m a-@;l solves the overall problem, i.e. the set
of eigenvalues of (A-BG) equals A. The feedback matrix obtained by this
procedure will, in general, be complex. In order to obtain a real-valued

G, the transformed subsystem gains E£ must obey (2.23) and (2.24). This

means the closed-loop poles of subsystem N-k must be the complex conju-

E *
. gates of the closed-loop poles of subsystem k, i.e. A = {o Ia € Kk}.

N-k

If the sets Ak are chosen such that this requirement is met, then the

gains E;'k will satisfy (2.23) and (2.24). The resulting state feedback

gain matrix G will be real-valued and block circulant. The procedure

for pole placement for circulant systems is

(1.) 1use the FFT to obtain (K, E}
. N-1
={a[ae)\k}andﬂ=ul

(2.) choose the sets Ak such that AN—
k=0

k k
(3.) solve the pole placement problem for each subsystem, thereby
obtaining EL
(4.) wuse the FFT to cbtain G
Just as in the test for controllakility or the procedure for obtaining
a minimal realization, pole placement can be done without considering com-—
plex systems by treating subsystems k and N-k together. Once again, how-

ever, the detalls are cmitted.

In the case of scalar subsystems, the pole allocation problem = becomes

I3
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particularly easy. Suppose the desired closed-loop poles are Ak'
k=0,1,...,N-1. Note that it is possible to specify not only these eigen-
values but also which particular closed loop eigenvector, as given by
(2.7}, is associated with each eigenvalue. Assuming it is desired to

associate lo with ¢o, etc., then the transformed closed-loop system matrix
is

R-5¢

1
g=
w
L=y

ja]

|
L=l

B¢ & 1 G ¢ (2.103)

The transformed feedback gains are simply

Ek =i_—})i ’ k=0,l,...,N—l (2-104)

Py
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Note that this reguires all of the 5% to be nonzero. But this is exactly
the condition for controllability of the system as seen in Section 2.3.1.

The scalar case, therefore, clearly illustrates both the necessity and

the sufficiency of controllability for pole allocation.

2.5 Decomposition of Lvapunov and Riccati Equations via the Spatial

Transformation

Large computational savings can arise in the solution of Lyapunov
and Riccati equations for circulant systems. These savings are obtained
by using the transformation introduced in Section 2.1.2 to decompose the original
equation into a series of uncoupled lower-order equations of the same type.
The lower-order problems are then sclved independently, and the scolutions
are combined to yield the overall solution. Only Lyapunov and Riccati
equations are explicitly considered, but the same technigue works for
other (e.g. Sylvester) eguations.

Consider first the time-varying Lyapunov eguation

g—tp(t) = AP(t) + P{t)A' + Q (2.105)

where A, Q, and P(0) are all block circulant matrices of order N. Pre-

and post-multiplying by @n_l and @n,respectively, yields

a .. -1 N -1 -1 -1 -1,

d—E[rbn P(t)cbn] = [<1>n A @n] [@n P(t)cbn] +[<I>n P(t)cbn] [@n N <I>n] +
+ [0 7700 )

g—tf»TE) = APt +P(®) (B) + Q (2.106)
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Since A is circulant, so is A'. Hence (ET) as well as A and 5} is block
diagonal. Together with the fact that 5?63 is block diagonal, this implies
that 5??3 is also block diagonal for all t. 1In other words, P(t) is a
block circulant matrix. Of course, the conclusion that P(t) must be
block circulant can be arrived at by purely physical reascning.

Recall that the matrix (&°) in (2.106) is not equal to E.,-but by
(2.32), equals Kii Therefore (2.106) is equivalent to the following set
of uncoupled complex-valued Lyapunov equations:

- = — —%
— P (t) = AkPk(t) + Pk(t)Ak(t) +0 k=0,1,..., N-1 (2.107)

k
The solution P(t) of the original equation (2.105)} is simply

1

P(t) = ¢nP(t)@n {2.108)

where P(t) = aiag[Ek(t)] )

The Riccati equation is decomposed in a completely analogous fashion.
Consider the equation

gE-P(t) = A P(t) + P(B)A"'" + Q - P(t)C'RdlCP(t) (2.109)

where the matrices A,C,0,R, and P{0) are all block circulant of order N.

Following the same approach as that used for the Lyapunov eguation yields

S5) =AaP(t) +P(t) () +0 - Pl)@E) (RY) CPe) (2.110)

Thus, P{t) is a block circulant matrix, as was clear from the symmetry

1 1

of the physical problem underlying (2.109). Morecover, since (R_ ) = (E)_ ’
the transformed Riccati equation may be written as the following set of

lower—order equations:
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_d___." - 2D P o - = Tk ="
At Pk(t) = AkPk(t) + Pk(t)Ak + Q- Pk(t)c R

1E‘E£(t) . k=0,1,...,N-1

_ _1 (2.111)
The quantity P(t) = QnP(t)Qn is the solution of

(2.109).

If the matrices A,C,Q,R in the Lyapunov and Riccati equations are
all real-valued matrices, then the solution must be real-valued also.
Thus, if the lower-order complex-valued Lyapunov and Riccati equations
(2.105) and (2.109) are solved for k = 0,1,...,[21 , then the identities
(2.23) and {2.24) can be used to obtain the remaining N - Fg] - 1 terms.
Lyapunov and Riccati equations for circulant systems have been shown
to decompose into a set of uncoupled lower-order Lyapunov and Riccati
equations, respectively. These lower-order eguations, however, are complex-—
valued equations. Real-valued equations suitable for seclution using stand-
ard computer software can be obtained by considering the kth and (N—k)th

equations together. In the case of the Lyapunov equation, these two equa-

tions can be trivially written as a complex Lyapunov equation of order 2n:

Pk(t) 0 Ak 0 Pk(t) 0
a4 - +
at 5 - =
o P (¢ 0 A, o B ()
Pk(t) 0 Ak 0 Qk 0
+ _ _ + _
0o B[t o A, | o ek

(2.112)
' . -1 .
Pre- and post-multiplying by the matrices Tn and Tn , respectively, that

were introduced in Section 2.3.1 yields:
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5 RePk(t) ImPk(t} ReAk ImAk RePk(t) ImPk(t)
—_— am +
at -ImPk(t) Re k(t) ~Lma, Reh, —Imﬁk(t) Regk(t)
ReEk(t) ImEL(t) Rei# -ImEL ReﬁL Imﬁ%
+ + {2.113)
—ImEk(t) ReE?(t) Imzi Rei£ -Imﬁ# ReéL

wheré (2.23) and {2.24) have been used. In its present form, (2.113} is
not a Lyapunov equation, since the driving matrix and the unknown matrix

are not symmetric. But (2.26) and (2.27) demand that Refk(t) = Reﬁi(t)

and Imgk(t) = —ImEﬁ(t), so (2.113) becomes
RePk(t) ImPk(t) ReAk ImAk RePk(t) ImPk(t)
d _ . = _ _ _ _ +
ar Imp) (t)  RePy (t) -ImA,  ReA ImPé(t) ReP, (t)
[ ]
RePk(t) ImPk(t) ReA, ImA, ReQ, TmQy
+ . _ _ + _ _ (2.114)
ImPi(t) RePk(t) -Ima, Reh, Iin ReQ,

a standard Lyapunov equation of order 2n. The set of complex-valued
Riccati equations (2.111) can be converted into real-valued equations
analogous to {2.114) in exactly the same way.

It is quite clear that the algebraic Lyapunov and Riccati equations
which give the steady-state solution to (2.105) and (2.109) can also be
decomposed into complex-valued algebraic equations and then combined into

real-valued equations of order 2n.
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Just how large are the computational savings asscociated with
decomposing a circulant Lyapunov or Riccati equation? In either case,
standard solution technigques reguire 0 (n3n3) operations, i.e., the
number of operations is proportional to (ni) 3 for large values of (nN).
In the circulant case, the DFT takes O(nleogzN) operations, and
the solution of each transformed eguation takes 0 (n%) operations.

The total computations regquired are, therefore, O(nleog N + nSN).
Thus, for a fixed subsystem order, the necessary computations increase
only as NlogzN in the circulant case. This presents a tremendous

saving over the O(n3) cperations generally required.

2.6 Sumnary and Conclusions

Circulant systems have been introduced in this chapter, and their
properties have been developed. The key element here has been the use
of the DFT to diagonalize a circulant matrix, For a circulant system,
this transformation yields a set of uncoupled spatial subsystems. The
diagonalizing property of the DFT was exploited to study system theoretic
issues in Section 2.4, and to decompose Lyapunov and Ricecati equations
in Section 2.5.

Both symmetric and antisymmetric tridiagonal systems can be imbedded
in circulant systems by the methods described in Section 2.2. Section
2.3 contained some examples of circulant and tridiagonal systems, and
also discussed some stability results of Dickerson and Erickson for cir-
culant systems in view of the diagonalization of circulants by the DFT.
Throughout this chapter, only continucus-time systems were explicitly

considered, but the same techniques also work in discrete time.
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Because of the decomposition of Lyapunov and Riccati equations,
control and estimation problems for circulant, large-scale systems can
be solved very efficiently off-line. The on-line implementation of
these solutions, however, employs a centralized controller or estimator.

Chapter 3 will consider using the spatial frequency domain for

ﬁ‘efficient implementation of centralized processors

J:—design of decentralized processors
In both cases, the fact that circulant matrices are diagonalized by the
DFT will be crucial.

For a large-scale system to be circulant, it is necessary that

all of its subsystems are identical. In an actual large-scale system,
it might be the case that the subsystems are similar, but not identical.
One could consider approximating the large-scale system by a circulant
system in such a case, however, because of the tremendous computaticnal
advantages associated with circulant systems. Of course, the resulting
controller or estimator will be suboptiﬁal. .If the primary interest is
in interactions among subsystems, as opposed to the detailed behavior
of individual subsystems, then it is expected that the approximate circu-
lant model could be very helpful. Some preliminary results along this

line are found in Chapter 3.
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CHAPTER 3

CONTROI AND ESTIMATION FOR CIRCULANT SYSTEMS

The linear-quadratic regulator problem and its dual filtering problem
are now considered for circulant systems. Sectlion 3.1 deals with the cen-
tralized regulator and uses the spatial transformation to decompose the problem
and to obtain an efficient on~line implementation of the control law. . Section
3.2 attacks the fixed-structure decentralized control problem. Both optimal
and suboptimal decentralized control gains are considered in this section.
Using the imbedding procedure introduced in Section 2.2, centralized and de-
centralized control laws for a rectangular membrane are computed in Section
3.3 to illustrate the preceding development. Some preliminary work toward
using circulant controllers for a general large-scale system is presented
in Section 3.4. The filtering problem is then treated in Section 3.5 by
duality. The chapter concludes with a summary and brief discussion in
Section 3.6.

The decomposition of the centralized circulant control problem in Sec-
tion 3.1 is essentially just the finite-dimensional analog of the procedure
used by Melzer and Kuo [ 30 ] to decompose Toeplitz control problems (see
Section 5.1.2). Where the spatial transform concepts are used in a funda-
mentally new way is in Section 3.2, more specifically, in Section 3.2.3,
to obtain suboptimal decentralized feedback gains from thé optimal centralized
gains. From the perspective of the spatial frequency response, this problem
is observed to be analogous to the design of finite-impulse response digital
filters from infinite-impulse filters. Thus, some digital filter design tech-

nigques are adapted in Section 3.2.3 to the design of decentralized controllers.
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3.1 Centralized Control

The vehicle used for studying centralized control of circulant
systems will be the standard linear-guadratic regulator problem. For the
circulant system {2.2), the regulator problem consists of the detefmination
of the input time function u(t) which minimizes the gquadratic cost

functional
T

J=%#WWMm+%J x'(B)o(t)x{t) + u' (B)R(t)ult) dt (3.1)

o

where F > 0 and for all t €[0,T], Q(t} > 0 and R(t) > 0. The optimizing

input u(t) can be expressed in linear state-variable feedback form as
- .
u(t) = - G {t)x(t) (3.2)

where Gc(t) is a time-varying gain matrix, The centralized gain is given

by
cCt) = R L{t)B'K(t) (3.3)

where K{t) is the unique symmetric matrix solving the Riccati equation

a
EE'K(t)

subject to K(T)

~ K(t)A - A'K(t) - Q(t) + K(£)B R L(£)B'K(t) (3.4)

F.

The problem is called a regulator problem because the objective is to
choose the input so as to regulate the state near zero. The weighting matri-
ces, F,0(t) and R(t) reflect the tradeoff between deviations of the state

from zero and the level of control used to reduce these deviations. Consider
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first the state weighting matrix Q(t), and suppose it is partitioned

into N2 nxn submatrices;

Qll(t) le(t) . . . QlN(t) ‘
QZl(t) sz(t) .- .. QZN(t)

o(t) = . . . (3.5)
N1 (t) QN2 (t) - (t) 1

The state vector x(t) of the circulant system is composed of N sub-
states, X i=2o0,1,...,8-1, and the weighting matrix for each substate
X, is Qii(t)_ As discussed in Chapter 2, all of the subsystenms are
identical. Therefore, it is gquite reasonable to propose that all the
blocks Qii(t) on the diagonal of 0(t} be equal. In general, the block
Qik(t) is the cross-weighting between subsystems i and k} i.e., the term
xi(t)Qik(t)xk(t) appears in the integrand of (3.1). The dynamic inter-
actions between subsystems i and k, however, depend only on (i-k)mod HN.
Hence, it is proposed the Qik(t) should be a function of only (i-k)mod N.
That is to say, in the case of circulant systems, it is physically reas-
onable to restrict the state weighting matrix Q(t) to being a block
circulant matrix. Similar arguments, of course, apply to the weighting
matrices F and R(t). Therefore, throughout this chapter, all cf the
weighting matrices in the gquadratic cost functicnal (3.1) will be taken
to be block circulant matrices.

Since all of the matrices in the Riccatl eguation (3.4) are block

circulant, the analysis of Section 2.5 can be applied to decompose (3.4)
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into the following set of Riccati equations of order n:

_ — - —k— — — — — -1 —
Ki(t) = - Ki(t)Ai AiKi(t)- Qi(t) + X, (£)B R, (t)BiKi(t)
(3.6)

subject to the terminal condition Ei(T) = E&. loreover, the gain matrix

Gc(t) is also circulant and can be computed as

c _ —=c -1
G (t) = @m G (t) Qn. (3.7)

where the ith block Ef {t) of the block diagonal matrix Ec(t) is given

by
—C _.._1 _— -
Gi (ty = Ri (t)Bi Ki(t) . 7 {3.8)

It is clear that the circulant quadratic regulator requires much less off-
line computational effort to compute the gain matrix Gc(t) than is required
in the general case.

The on-line implementation of this feedback law can also be per-—
formed efficiently by using the FFT. Consider the discrete-time version
of the regulator problem where at time k the input u(k) equals - Gc(k)x(k).
Since Gc(k) is a circulant matrix, this matrix multiplication can be per-
formed by

(i} wusing the FFT to compute the Ei(k) from the xi(k)

(ii} computing Gi(k) = - E;:(k)gi(k)

{(iii) wusing the inverse FFT to Compute the ui(kj from the Ei(k) .

Figure 3.1 illustrates the structure of this centralized controller.
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Figure 3.1 By using the FFT, the circulant regulator has an efficient

on-line implementation employing parallel processing.
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The computational advantages of the circulant regulator can be
more clearly understcod by recalling from {2.20} that the transformed

circulant system is composed of N uncoupled subsystems,

o () = Ax (6) + B, (8) i=0,1, ... ,N-1 (3.9)

Specifying the circulant cost matrices F,Q(t), and R{t) is the same as
specifying the cost matrices Fi,ﬁi(t), and Ei(t) for the individual trans-
formed subsystems. This means that restricting the cost matrices in

- {3.1) to being circulant is equivalent to proposing independent subprob-
lems for each of the N transformed subsystems. The minimizing control

ﬁi(t) for the ith subproblem is just
— —c —
ui(t) = - Gi (t)xi(t) {(3.10)

where the Ef (t) are given by (3.8).
A time-invariant controller can be found by considering the cost

functional

J = %—J x' ()0 x(t) + uw'(t)Ru(t) dt (3.11)
O

where ¢ > 0 and R > 0. Under the conditions that (A,B) is controllable

1
and (A,Q72) is observable, the minimizing u{t) is given by

ult) = - 6% x(t) (3.12)

. -1 . .
where the constant feedback gain G° equals - R "B'K and K is the unigue
positive definite matrix soléing the azlgebraic Riccati eguation

0= A'K - KA - O + KBR 'B'K (3.13)
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3
As discussed in Section 2.4.1, (A,B) controllable and (A,Q ) observable
R — — =1
implies (Ai,Bi) controllable and (.Zl.i,Qi/2 } observable for all i. The

low-order algebraic Riccati equations

0= - A*K, - K.A, - 0, + K,B,R."B* K, (3.14)
1l X 1 1 1 1 1 X 1 1

therefore, have unique positive definite seolutions ?&. Of course, the
solution K of (3.13) can be easily obtained from the E;.

The time-invariant state feedback law (3.12} is centralized in that
each subinput ui(t) will, in general, depend upon every substate xk(t),
k=20,1, ..., N=-1. The decentralized linear state feedback problem is

the subject of the next section.
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3.2 Decentralized Control

3.2.1 Introduction

Under a decentralized state feedback control law, each subinput
is a function of some fixed subset of the substates. Only linear, non-—
dynamic feedback maps will be considered here. This means that the
structure of the decentralized controller is fixed so as to require the

input u(t) to be of the form

alt) = - 6% x(t) (3.15)

where the decentralized feedback matrix Gd is block circulant and subject

to the constraints
a )
G, = 0 v ig¢a < {0,1, ..., N-1} (3.16)

Under these conditions, the subinput uo(t) is just a linear combination
of the substates xi(t), i€a. In fact, for any k, the subinput uk(t)

is the same linear combination of the substates X (t), 1iea .

(i+k)modN
The set ¢ specifies which substates can be used in the computation

of the individual subinputs. The usual situation is that the number of.

elements in o will be much less than N. As an example, consider the case

of decentralized control with only nearest neighnor feedback. This corres-

: . : a . .
ponds to ¢ = {0,1,N-1} , and so the gain matrix G is constrainted to

have the form
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d a d
{ Go GN—l Gl
d d d
Gl Go GN—l
d d . '
G = G1 . {(3.17)
. -d
. GN—l
Gd d a /
N~1 G. G
i [o}

Given the set 6, the remaining problem is to determine the feed-
back gains qf r 1 € a. Section 3.2.2 proposes choosing the gains which
minimize the infinite-hoxizon cost functional (3.12). The approach taken
in §3.2.2 is to obtain a set of necessary conditions for the optimal
decentralized gains. Suboptimal controllers are considered in Section 3.2.3.
The spatial transform domain is used to obtain suboptimal decentralized

feedback gains from the optimal centralized gains of Section 3.1

3.2.2 Optimal Decentralized Controller

It is desired to f£ind the feedback matrix Gd which minimizes the

cost functional (3.12) subject to the constraints (3.16). Substituting

uf{t) = - de(t) into (3.12) yields the guadratic cost functional
e 1
7= %I x' (£)[Q + & RG] x(t) dt (3.18)
o

Minimization of (3.18) will yield a result which, in general, depends

upon the initial state x(0). In order to obtain ardecentralized feed-
back matrix Gd which is not a function of the initial state, it is assumed
that x(0) is a zerc-mean random variable with circulant covariance ZO.

The problem then is to find the Gd (if it exists) which minimizes the
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expected value of the cost (3.18).
Many authors have solved variocus versions of closely related prob-

lems [54] -~ {61 }. In [61 1 it is shown that

E {3} = %-trace [P(Q + Gd.R Gd)] : (3.194)
= 1y [KE ] (3.198)
= 3 trace o -1

where the matrices P and X obey

a-8H p+rr@a-Bd) v = 0 (3.20)
L}
a-ed)'k+x(a-8Y + 0+ rReYH = 0 . (3.21)
It is necessary that the optimal decentralized gain Gd satisfy [ 1:
] d . ‘
— E[J{G, + AG.] = 0 ¥ AG, ¥iEg€ad - (3.22)
dE i i i

e=0

Using (3.19), it can be shown [ 61 ] that the necessary condition (3.22)

ig equivalent to

erace { o[ - keac™ - a6 ek + ¢ ract + s R 1} =0

{3.23)
(i)

where AG is used to denote
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1 (1N—i+1)th column

AGi

AG

(i} ‘ :
AG . AGl i Yow

G T row—s 8G,
AG

. (3.24)
AG

(N-i) PP column

The condition (3.23) can be manipulated further and written component-

wise as
N-1 N-1
25 [ EE ¢ J
P, G -XKB .| =0 v i€ a. (3.25)
L Teivk | & 2R T KBy

The necessary conditions (3.20)}, (3.21), (3.25) for the optimal decent-
ralized feedback gain Gd are seen to be a set of coupled nonlinear
equations.

Prom the Lyapunov equation (3.20), the closed-loop system is stable
if and only if P is positive definite. If (A - BGd) is unstable, then Gd
is certainly not minimizing, even though it satisfies the necessary con-
ditions, since the expected value of the cost (3.18) is infinite. It may
be the case that no stabilizing gain Gd exists, and hence the optimization

problem is ill-posed. This fact is discussed in the sequel. Fram (3.22},
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the matrix K is clearly positive definite and has the interpretation

of the cost matrix for the closed-loop system, i.e.,

L s oykx(0) =

: J x" ey [0 + ¢ RY] x(trat (3.26)

0

N

In contrast to the centralized case and the corresponding Riccati egua-
tion, the necessary conditions in the decentralized case may have more
than one solution, such that P and K are positive definite.
The necessary conditions (3.20), (3.21}, (3.25) can also be written
in the transform domain since K and P are both circulant., The resulting
equations are the finite-dimensional analog of the necessary condition
for decentralized control of Toeplitz systems cbtained by Chu [31 1.
Chu's results will be discussed in Section 5.1.2. The two Lyapunov equations \\

(3.20) and {3.21) decompose in the transform domzin as was shown in

Chapter 2,
—_— ‘—'—d *.... _d
(Ak- Bka ) Kk K.k( k ) + {Qk + Gk RkG =0 (3.27)
j— — _d f— J— [— —_ .._d * p—
(Ak—- Bka )Pk + Pk(Ak - Bka ) + ():0)k = 0 {(3.28)

for k = 0,1, ..., N-1. After some tedius algebraic manipulations, the

third necessary condition (3.25)} may be written as

N-1 _
— - -ik .
z P, (Gk rﬁ{ KkBk) wN = 0 ¥ i€ o {3.29)

k=0

It is noteworthy that these necessary conditions remain coupled in the

. d . R
transform domain. This is because the constraint Gi =0 ¥ i€ o intro-

. —d .
duces a dependency amonyg the transformed gains Gk . For example, if a

{0}, then all the 5:1 must be equal. It is impossible, therefore, to
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solve the decentralized problem by considering isolated, transformed
subproblems as was the case for the centralized problem.

Determinining the optimal gain matrix Gd from the necessary conditions
{(3.20), (3.21), (3.25) or (3.27) - (3.29) is a formidable problem. This
observation in the general (as opposed to circulant) case led Kosut [ 556 ]
to consider suboptimal decentralized feedhack gains. Kosut proposed two
suboptimal controllers -- both defined in terms of the optimal centralized
controller. His basic idea was to approximate (in some sense) the optimal -
gain matrix c° by a decentralized gain matrix Gd. For example, one pro-
posal was to choose Gd so as to minimize the sum of the sqﬁares of GC-Gd.
This philosophy of using the decentralized gains to approximate the
centralized gains will be the basis for the suboptimal decentralized con-
trollers considered in Section 3.2.3.

Before leaving the optimal decentralized controller, it is interest-
ing to note that even if (A,B) is controllable and (1‘&,(_21/2 ) is detectable,
it might happen that no stabilizing Gd exists which satisfies the constraints
(3.16). This is shown by the following rather trivial example.

10 10
0 l) and B —( o1 )and suppoge a = {1}. The

. . 0 G
gain matrix then is of the form ¢d = g &
1

Example 3.1. Let A =(

). But for any

choice of Gd : the closed-loop matrix a - Bgd is unstable.

When the B matrix is diagonal, however, and (AO, Bo) is controllable, then
. a stabilizing gain will exist if local feedback is allowed; i.e., 0 € G.
The restriction that B is diagonal means that each subinput uk(t) only

directly influences subsystem k. If (AO, BO) is controllable, then it
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is possible to choose Gj’ s0 that the measure ulas defined by (2.71)]
d . . . .

of Ao - BoG is as negative as desired. In particular, Gf can be chosen
o

such that the sufficient stability condition (2.75) holds.

3.2.3 Suboptimal Decentralized Contrcller

Since obtaining the optimal decentralized cgzins from the associated

necessary conditions is such a difficult tasgk, it is useful to consider
suboptimal decentralized gains which are much more readily computed.
Kosut [ 56 ] has proposed choosing suboptimal decentralized gains on the
basis of some approximation to the centralized gains. This approach will
now be expanded for circulant systems by making heavy use of the diagonal-
izing spatial transformation defined in Chapter 2.

In order to gain insight intc the approximation of the centralized
controller, consider a circulant system {A,B) with scalar subsystems and
centralized feedback matrix G°. The closed-loop system matrix (A-BGC) has
the transform (E—- Eéc) -that is a diagonal matrix with elements (Ei— E;EI:).
These elements are just the eigenvalues of the closed-loop system matrix.
Since the Eﬁ and E; are fixed by the system, the closed-loop eigenvalues
are located by the Ef . The decentralized closed-loop system matrix
{(p - BGd) has transform (K-- Ead) and eigenvalues (Ei— E-Egﬂ). If the
transformed decentralized gains Ef closely approximate the transformed
centralized gains E;:, then the decentralized and centralized closed-loop
eigenvalues will be closely matched. The performance of the decentralized
system, in this case, would be quite similar to the optimal centralized
system.

it is very important to realize that the above claim that the perfor-

mance of two closed-loop circulant systems will be similar if the feedback
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gains are approximately equal, is not true for a general noncirculant

system. Consider the following example:

Example 3.2. Let A, B, Glbe n*n matrices

| § y \ 1
- |

A-BG =

and has all n eigenvalues equal to zero. Iet G2 be a second feedback

matrix, close to Gl,

10" 1
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Example 3.2 {cont'd)

The resulting closed-loop system matrix is

A-BG = .

and has as its n eigenvalues the n roots of 10", All these eigen-

) -1 .
values have magnitude 10 -- not particularly close to zero.

The point of this example is that small perturbations of the elements of

an ill-conditioned matrix can result in large changes in the matrix's
eigenvalueg. Thus, approximating the centralized gain oo by a decental-
ized gain Gd does not, in general, yield similar closed-loop systems and
is nof an especially good approach. For circulant systems -- at least, for
circulant systems with scalar subsystems —-- this difficulty cannot occur,
as was discussed previously. The centralized and decentralized closed-locop

—_ —_— —_ —_— —C
peles are (A, - B.GF:) and (A& - B.Gé); if G, is close to G, , then the
i ii ivi i i

corresponding poles are also close. In the case of vector subsystems, if

— —C — — —=d
the Gf are close to the Gi . then the blocks (Ai - B.G

;Cs }  on the diag-

onal of the transformed closed-loop system matrix will be close to the

blocks (Ei - E}Ef )} . Since - -these are low-order blocks, the centralized
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closed~loop system. As is well known, the side lobes of the rectangular
and decentralized closed-loop systems should be gquite similax.

The decentralized control problem, therefore, is being viewed as
an approximation of the set {Ef } by the transformed decentralized gains
{Efl} . This problem is almost identical to the design of finite impulse
response (FIR) digital filters from infinite impulse response (IIR) filters
[ 62 1. In digital-signal processing, it often happens that the ideal
desired frequency response of a filter has a unit sample response that is
of infinite duration. Because of implementation considerations, however,
it may be desired to have an FIR filter that has a frequency response
closely approximating that of the ideal IIR filter. There are a variety of
techniques for constructing FIR filters from IIR filters [ 62 ). The use
of some of these technicques for solving the decentralized control problem
will now be considered.

The well known windowing technique is a popular and straightforward
method for designing FIR filters from IIR filters. In.this approach, the
unit sample response hF(i) of the FIR filter is expressed as the product

of the IIR filter unit sample response hI(i) times a window w(i),

hF(i) = hI(i)' w(i) (3.30)

where the window is identically zero for all i outside some interval
(say) 0 < i < M. The frequency response of the resulting FIR filter is
the convolution of the IIR filter frequency response and the frequency
response of the window. The frequency response of the window consists
of a main lobe and decreasing side lobes. When convolved with the fre-

quency response of the IIR fiiter, this yields a FIR filter having a
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frequency response which is a smeared version of that of the IIR filter.
The Blackman, Hamming, Hanning, ftriangular, and rectangular windows are
all described in [ 62 ]. These windows have a variety of desirable prop-
erties which makes them useful in the design of FIR filters.

Return now to the decentralized control problem, and suppose GC is
the optimal centralized feedback matrix for some quadratic cost functional.
Also, supposa o is'{O,l, ..., M} where M < N. Then a suboptimal decentral-

ized controller can be obtained from windowing by defining
¢ = we.© (3.31)
i i

where w(i) is an appropriate window function. The transform Eid of these
decentralized gains will be the convolution of the transform w(i) of the
window and the transform E;C of the centralized gains. The transformed

-d . . : = C .
gain G; , therefore, will be a smearing of the gains Gi about is
o

o
G- z wik) G° (3.32)
1=k

i
k=0

. =d . - .
It is expected that Gi will be close to Gf if
o o
{i) the transformed centralized gains do not vary too rapidly
as a function of i

{ii) ;(0) is near one and the other w(i} are near zero.

. . = € .
If the GiC are slowly varying, then their inverse transform, Gi , Will

be concentrated around i = 0. This means that the windowing approach can
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e expected to be most successful when the system interactions and
penalty matrices are spatially localized. For example, a system charac-
terized by nearest-neighbor interactions would be a good candidate for

using windowing to obtain decentralized control gains.

- da = . . —riy s
If G = Gic ¥ i , then the transformed window w{i} is Gi o and so
r
the window itself is w(i) =1 ¥ i, Of course, this does not yield a de-
centralized controller. For any window that does yield a decentralized

controller, some of the w(i) will be nonzero when i is nonzero. For i# 0,
a nonzero w(i) is part of a side lobe of the transformed window [e2 1.

As the height of the side lcbes increases, the decentralized gains E;d
become a more smeared version of the centralized gains Eic- A window
having smaller side lobes, therefore, is to be preferred to one having

larger side lobes.

Example 3.3. This example will be used throughout the remainder of
this section to illustrate the various frequency-domain techniques

_— o . d
for obtaining a decentralized feedback gain G . Let

-3 % 3 o o o
%_4% % 3% o 1 0 0
S (S e S O L I T SR
%— 3% %—-4% \o 0 0 1

Then, after taking the spatial transformation,
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Example 3.3 (cont'd)

0 0 0 0] \ 1 o 0 o

0 -8 0 0 0 1 0] 0
K = r E =

O o -2 0 9] 0 i 0

0 0 o -8 0] 0 0 1

Cpen-loop poles are at 0, -8, -2, -8B. Suppose the optimal closed-loop
pole locations are -g, -1G, -10, -10 where ¢ is a small positive con-

stant. The transformed centralized feedback matrix is therefore

“d

\ 0 0 0 2

and hence,

1 1 1 1
’ 7 £+3 2 €2 2 E+1 Z—s 2 \
1 1 1 1
— g—2 = e+3 = £-2 = e+
o g ® 4 4 a =1
G =
1 1 1 1
a g+l 2 g-2 7 e+3 2 £~2
1 1 1 1
Z—E—2 E-E+l Z‘E*Z E‘E+3

The decentralized feedback is restricted to nearest-neighbor feed-
back -- i.e., a = {0,1,3} or, eguivalently, G£i= 0. The first candidate

decentralized controller will be cobtained by windowing with a
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Example 3.3 (cont'd)

rectangular window.

(I.) RECTANGULAR WINDOWING

The rectangular window wR(i) is defined by

1 , 1i=10,1,3
w_(i) =
R 0 ,i=2
The decentralized contrel gain is \
i 1 1
Z, e+3 ry £-2 0] z e=2 \
1 1 1
Z‘E—2 2 e+3 2 E-2 Q
GR=
1 1 1
o m -2 2 e+3 2 g-2
1 1 1
\ 4 e=2 0 2 e-2 2 g+3 }
and the transformed gain is
3
2 g-1 0 0 0 ‘
1
Y .O 7 et+3 0 G
G =
\ 0 0 vy e+7 0
7 |
= e+
0 0 0] 2 e+3

3 1
The resulting closed-loop poles are then (l - Z—g), (Lll—z-g),

(} 9 + %e), (— i1~ %‘E)’ -—-— unstable for small e .

In Example 3.3, using a rectangular window gives rise to an unstable
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closed~loocp sy:-=m. As is well known, the side lobes of the rectangular
window are relatively large and not at all insignificant [ 62].
Other windows, with a less abrupt transition ta zero, have smaller side

lobes.

Example 3.3 (continued)
(II) TRIANGULAR {(BARTILETT) WINDOWING

The triangular window is more smoothly tapered than the rectangular

window,
1 s 1 =0
. 1
wT{1) = 3 f1=12,3
0 s 1= 2

This results in the decentralized gain matrix

1 1 1
{ 2 e+3 3 e-1 0 3 e=-1
1 1 1
. 8 e-1 y e+3 3 e-1 0
G =
1 1 1
0 g-e—l Z—a+3 8 e—~1
1 1 1
- £- — g- = g+
a -1 0 8 e-1 a et+3 }

and transformed gain

1
= g+ o
5 e+l 8] 0
0 E'€+3 0 0
ot =
0 0 5 O
l }
— g+
Q 0 0 Z et 3
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Example 3.3 {cont'd.)

The closed-loop poles are now (- 1 - %f), (- 11 - %e) r (=7,

(- 1l—~% g€), —-- stable.
The idea of this section is to choose the decentralized gain matrix
Gd on the basis of approximating the optimal centralized gain c°. an
alternative to the windowing technique is the following least-squares
type of approach. It is desired that the diagonal blocks of the trans-
formed decentralized closed-loop system closely match the diagonal blocks

of the transformed centralized system. Consider then the cost functional

N-1 _ e a2
Srs = z dill (a, - B,G, ) - (&, - B,G, ) i . (3.33)
i=
N-1 2
_ - —d =c
= 25 diH B, (G, ~ G ) ||
i=0

The di are simply weights that are assigned to the various blocks. The
dominant or critical blocks, naturally, would be assigned a larger weight.
A suboptimal decentralized controller can be obtained by using the Gd
which minimizes the cost functional JWLS' The minimizing gain could be
obtained from an iterative procedure such as Newton's method implemented
on a digital computer.

The case of the weighted least-squares approach for scalar subsystems

will be examined further. If the subsystems are scalars, then the funct- -

ional (3.33) can be written as



-105-

N-1
*

_ Hd_—c--—d —cC
JWLS = ?_;0 d; (GjL Gy }(Gi -Gy ) {3.34)

where the ﬁi have been incorporated into the di' If all the di in (3.34)
are equal, then the result from Fourier series is that the minimizing Gd

is given by

Gi r1EQ (3.35)

s, 1 ew

This is nothing but using a rectangular window to obtain Gd from c°©.

Kosut [ 56 1 refers to this particular décentralized gain as the "minimum

norm" controller because this choice of G° minimizes ” G° - Gd” .
Assigning all the weights di to be egqual, howevef, may not result in

a good closed-lcop system. The reasoning here is as follows. Suppose the

centralized closed-loop system has a very slow pole (K;- E; E;:) Z—Ao and
a very fast pole (Ki - Ei Ef ) = Al. For the decentralized closed-loop

system to approximate the centralized closed-loop system, it is much more

important that (E; - B d) be close to Ao than it is that (K-— B Ed

o 0 1 171 ) be

@

close to -Al ~- if for no other reason than the stability of the closed-loop
system. Indeed, this is exactly the situation in Example 3.3 when a rectang-
ular window is used. The four decentralized closed-~loop poles all differ from
their centralized counterparts by the sare amount, 1 -+ %-s. For the very

slow pole at - g, this difference results in an unstable mode. It is clear,

therefore, that the choice of identically equal di is not particularly wise

in general . Rather, the di should be chosen so that the critical elements
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(a, - E;Ef ) are more closely approximated by the decentralized feed-

back than some other elements.

Example 3.3 (continued)

In this part of the example, the constant e is taken to be 1 for

computational simplicity.

{({ITI.) WEIGHTED LEAST-SQUARES

Consider the assignment of weights

, 1=0

, 1=1,2,3

Then the cost functional to be minimized is

WLS

_ =W
J = {lO(l GO)

where it is

min {10(1 - e¥- 262+ 226"
fo) 1 o

w . W
Go'Gl

After some

be
¢’ =
o
W
Gl =
The closed-

(- 6.5839},

2 — w, 2 =W —~w 2}
+(2—Gl) +(8—G2)+(2—G3)

assumed that le = G,". The problem then is

3

2 W w,2
+ (8-—GO + 2Gl ) }

tedious calculations, the minimizing gains are found to

2.6211
-0.9814

loop poles in this case are: (- 0.6584), {(- 10.6211},

(- 10.6211}.

’
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There are various other computer-based design procedures for FIR
filters that could be tried for designing decentralized feedback gains.
The freguency-sampling design and equripple approximation are two such
procedures that will be considered here. The idea of the frequency-
sampling design is this: if an FIR filter has an impulse response h(i)
that is zero outside 0 < i < L-1, then the frequency response of the
filter can be exactly specified at L frequencies. The filter response
at any other freguency is then fixed from these L frequency samples. In
the case of the decentralized control problem, the corresponding approach
is to exactly specify k transformed feedback gains (if o has k members) .
For scalar subsystem, this is eguivalent to specifying k closed-loop
poles. This specification results in a unique decentralized gain Gd,
and so there are no remaining degrees of freedom left for the other N-k
transformed feedback gains. There is a very real danger here that the
unspecified N-k gains may result in closed-loop poles that are far from
their desired locations, but the frequency-sampling technigue does have
the advantage of allowing the exact placement of some critical closed-

ioop poles.

Example 3.3 (continued)
(Iv.} FREQUENCY-SAMPLING DESIGN
Closed-loop poles 0,1,3 are specified to be -¢, -1l1, -11, respect-—
ively. This means that the transformed gains are

EFS

= E
o
—F8
= 3
Gl
EFS‘ - 3

3
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Example 3.3 (cont'd)

FS | y . FS .
and G is unspecified. Since G is constrained to zero, it is

2 2
' . FS F FS
possible to solve for G0 . GlS . G3 from the three specified
. —FS
transformed gains. G2 may then be computed. Since Gfs== G§s R
&% = » 6™ +2e - ¢
o o 1
_FS FS
G = 3 -+ G = 3
1 o
. Fs 3 -¢€
6 a 2 :
. —=Fs | |
Transformed gain G, is just
—FS FS FS FS F5
= - + -
G2 G0 Gi G2 G3

The closed-loop poles are (-¢), (-11}, (-8+¢c), (-11) .

In the equiripple approximation of an ideal frequency response, the
filter designer specifies a passband and stopband tolerance and the length
of the filter impulse response [ 62 ]. An iterative scheme is then employed
to find the digital filter with the narrowest transition region for the
given tolerances. The design is called an "eguiripple filter" because the
ripples in the passband (stopband) frequency response all have the same
height. An interpretation of this procedure is that rather than exactly
specifying the frequency response at selected frequencies (as in the fre-
guency-sampling approach), one specifies an acceptable interval in which

the frequency response must lie. With this interpretation, the equiripple
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or "interval specification” approach can be applied to the decentralized
control problem. The idea is that the control designer specifies an
interval for each closed-loop pole, in the case of scalar subsystems.
Presumably slower or critical poles will have smaller specified intervals
than other less crucial poles. In all cases, of course, to guarantee sta-

bility, the intervals should be entirely in the left-half plane.

Example 3.3 (continued)

(V.} EQUIRIPPLE DESIGN (INTERVAL SPECIFICATION)
Suppose pole 0 is required to be very near - g, and the other three
poles are required to be between - 2 and - 11. In fact, suppose pole

0 must be exactly at -& . Then the conditions on the transformed feed-

back gains are

G = €
(o3
—5
< <
1 —-Gl <3
= E
<
7 < 5 <9
—E
< <
1 ___Gl <3
. E E- E E
In terms of the gains G0 and Gl {recall that G2 = 0 and G3 = G1 Y,
GE+2GE = E
o 1
1<GE< 3
-.._-O—--
7<6® - 26F <o
- %o i —

Clearly, these constraints cannot all be satisfied simultaneously.

This illustrates a difficulty with this method; if the specified
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intervals are too small, then there will not be any decentralized

gain which meets

acceptable gain can be found.

to be between -8%

G - ¢
o
1.GE <4
2—"1 — 72
1 —E 1
—_— & < Q=
65 < G, <95
1.GE < 3i
2—-—"1 — 2
Hence
E E
Go +2Gl
1 1l
= e =
2 —-Go E-32
1
— -
65 < G, - 26,

Cne satisfactory

resulting closed-

1
(-—lla- + 2},

the specifications. By enlarging the interwvals, an

Suppose now that poles 1,2,3 be required

and —ll%—. Then
£
1
<
=%
choice is GE = LE] + & and GE = - 13 .« The
© 4 1 8

loop poles are {-t€ ), (—ll%—+ e£), (—8%-+e) ’

It is important to realize that there is no guarantee of stability for

any of the decentralized control system designs proposed here.

true of the suboptimal

This was also

controllers proposed by Kosut [ 56 ]. Of course,

there is no guarantee that any stabilizing decentralized gains exist, as was

pointed cut in Section

3.2.2 when the optimal decentralized controller was

discussed. The problem is that the set o may be too small {or not contain
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the right members) to stabilize the system. The frequency domain approaches
discussed in this subsection, however, provide some insight as to how o
should be chosen so that the transformed decentralized gains Ei approximate
the transformed centralized gains Ef . This is an important consideration,
since the control designer typically has some freedom in specifying which
substates are known to each controller, i.e. where communication can take
place. By using the transformed centralized gains Ef , it is felt that
one can make judgments as to which indices should be included in 0.

The next secticn applies some of these ideas on decentralized control
to an example of the circulant control of a rectangular membrane.

3.3 Computer Example: Circulant Contreol of a Rectangular Membrane

The physical system to be considered in this section is a wvibrating
membrane having fixed edges [46]. The vibrational motion is assumed to be

described by the two-dimensional wave equation

v 2 3%v 2 3%v
Yy 2 c 5;_'2‘ - b 322 = E(y,z,t) (3.36).

where 0 <y <1, 0 <z <1, and E{y,z,t) is an external force applied to
the membrane. The approach taken here will be to use difference quotients
to approximate the two spatial partial derivatives in (3.36). BAn alternate
approach would be to use modal analysis to design a controller. In [63],
Creedon and Lindgren use modal techniques for the control of the vibrational
motion of a thin rectangular plate {as opposed to a membrane}). This work,
as applied to the control of a deformable mirror, is successful in obtaining
a centralized control. In the Present section, decentralized as well as

centralized laws are obtained.
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The wave equation (3.36) is discretized at N points in the y direc-
tion and M points in the z direction. Letting N=9 and M=14, the displacement

d, .(t) is simpl
1,3( ply

4 st = v(-— 3 t) (3.37)

for i=1, ..., 9and j =1, ..., 14, For control purposes, it is assumed
that there is an ideal actuator located at each of the points on the dis-

cretized rectangular grid. If u, j(t) is the applied force at the point
r

- 1 I

v and j 15

10 , then the finite difference approximation of (3.36) is

(taking c=b=0.1),

Ly

d, j(t) = 1'00[§i+l,j i,

(t) - 2d; (&) + di_l'j(t)] + (3.38)

+ 2. . - 24, .(t)y +4d, . t + u, L(C
25[d1,3+l(t) 1,3( ) 1,]—1( )] ullj( )
di . (B)
By letting x, . {t) = . -] and lexicographically ordering the points
ted 4, (&)
i3

yields the lumped-parameter model (2.95) where now

0 1
3.39
= -3.25 0 ( A)
0

0 0
Fl = 2.25 0] (3.398)

0 0
F2 = 1.00 0 (3.39C)

As discussed in Section 2.2, this system can be imbedded in a circulant
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system of order 8(N+1) (M+l) = 1200, This circulant system is composed
of circulant blocks and is the basis of the control laws now obtained.
Before addressing the control problem, however, it is somewhat

striking to note that when a tridiagonal system is imbedded in a circu-
lant system (see Section 2.2), the circulant system can be unstablé, even
if the original tridiagonal system is stable. For the circulant system
being considered here, the system matrix can be put in block diagonal
form with 2% 2 blocks by taking two spatial transforms. If this is done,

the initial (uppexr lefthand corner) block is easily found to be

+3.25 0

obviously unstable.

A centralized linear-guadratic regulator will now be obtained
for this (doubly} circulant system. A steady-state regulator is desired,
and the weighting matrices @ and R are both chosen equal to the identity,
for simplicity. Employing two spatial transforms, the (1200 x 1200) Riccati
equation is decomposed into (2x 2) complex-valued Riccati equations, as
shown in (2.110). Solving these low-order Riccati eguations and taking
two inverse spatial transformations yvields the solution of the original
eguation.

All the centralized closed-loop poles, of course, are in the left-
half-plane. The real parts of these eigenvalues are all between -2.3 and
-0.5. Almost all of the poles with real parts less than -1 are purely

real. Conversely, essentially all the poles with real parts greater than
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~1 are underdamped, having nonzero imaginary components. The poles that
have real parts around -0.5 are the most underdamped — some of the
imaginary parts of these poles are as large as 3.1.

Two decentralized controllers were also computed for this system.
Both controllers were obtained from the centralized solution by using
the windowing technique as described in Section 3.2.3. A square and a
triangular window were both used, and the allowable feedback was taken to
be local feedback and feedback from the two nearest heighbors on both
sides and in both directions. Also, the optimal centralized local feed-
back gains on position and velocity were 0.870 and 1.498, respectively.
For the first nearest neighbors in the y direction, the two gains were

0.659 and 0.332, and for the second neighbors, 0.369 and 0.165. Also,

in the z direction, the gains on the first nearest neighbor were 0.453
and 0.210, and 0.363 and 0.156 for the second-nearest neighbor.
The square-windowed decentralized controller uses these gains
directly; all other feedback gains are identically zero. This results
in a stable closed-loop system with the closed-loop eigenvalues having -
real parts from -~1.67 to -0.317. The decentralized system, therefore, is
slower than the optimal centralized one. BAlso, the poles with the largest
real parts (those around -0.32) are quite underdampea, having imaginary
components as large as 5.2. BAlso, in this decentralized case, purely
real poles are found to the right of the -1 point, again in contrast to
the centralized case. The slowest real pole, in fact, is equal to -0.472,
A second decentralized controller is obtained by using a triangular

window. This decentralized controller is obtained by multiplying the
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local gains by 1, the nearest-neighbor gains by 2/3, and the second
nearest-neighbor gains by 1/3. Once again, the resulting closed-loop
system is found to be stable. The real parts of these poles lie between
-1.71 and -0.086. The relatively slow pole at -0.08, in fact, is purely
real. Most of these closed-loop poles have nonzero complex parts, and
the complex parts range up to 5.6.

In comparing these three control laws, the centralized controller
produces a closed-loop system that is faster than either of the two de-
centralized closed-loop systems. The performance of the square-windowed
decentralized controller, however, is quite comparable to that of the
centralized controller and could well be acceptable. The triangular-
windowed decentralized controller, on the other hand, is substantially
slower than the other two. This might be compensated for by multiplying
(say) 3/2, 1, 1/2 instead of 1, 2/3, 1/3 when computing the windowed
gains. What this does is preserve the triangular shape of the window
while increasing the level of local feedback — thereby, it is hoped,
increasing the speed of response of the closed-loop system.

It is interesting to conjecture why the centralized controller
should be quicker to respond that the decentralized controllers are. The
centralized controller at any subsystem iz aware of disturbances which
are propagating toward the subsystem. It can, therefore, apply the appro-
priate control to compensate for this disturbance before the disturbance
significantly affects the local subsystem. Decentralized controllers,
however, are limited to only much more localized information, and hence
may not take any appropriate ;ontrol action until the disturbance is upon

the local subsystem.
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In conclusion, it is noted that the assumption that control
actuators were present at every subsystem is not at all necessary. What
this assumption allows, however, is consideration of only second-order
subsystems. If one desired to employ a finer spatial discretization,
for example, the resulting system could still be imbedded in a circulant.
The dimension of the subsystems, it should be realized, will have to

increase from two.
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3.4 Circulant Control of Large-Scale Systems

The linear-quadratic control problem for circulant systems was
shown in Section 3.1 to have efficient soluticns both on-line and off-
line. The off-line savings were due to the fact that the problem de-
composes into smaller, independent subproblems. The on-line savings
were a result of using the FFT to implement the multiplication of a
circulant matrix times a vector. The purpose of this section is to
propose using a circulant controller for a general large-scale system,
thereby realizing at least scme of the computational benefits just
mentioned.

For the large-scale system

d
ac x(t) = ALx(t) + BLu(t) (3.40)

the control problem of interest is to determine the input u(t) so as
to minimize the gquadratic cost functicnal

T

JL = x'(T)FLx(T) + J x‘(t)QL(t)x(t) + u'(t)RL(t)u(t)dt {3.41})

o]

where FL > 0, QL(t) > 0, and RL(t) > 0. McClamroch [ 64 1 has adduced

the guestion of what happens if, instead of a_,B_,F_,Q

7B, (t) and RL(t),

L "L

the matrices Aa' Ba’ Fa, Qa(t) and Ra(t), respectively, are used to
compute a control law for the system (3.40}. Let Ja denote the optimal
cost of the approximate system (Aa, Ba) with weighting matrices Fa, Qa(t),

and Ra(t), and let Ka(t) be the solution of the Riccati equation
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d = - oA -1 '
EEKa(t) = Ka(t)Aa AaKa(t)— Qa(t)+ Ka(t)BaRa (t)BaKa(t) (3.42)
Ka[T) = Fa

The control u{t) = - R;l(t}Bé Ka(t)x(t) is then applied to the original

large-scale system (3.40 ). McClamroch is now able to bound the cost JL
when this suboptimal control is applied. For any real number p satis-

fying
(pul)[Ka(t)BaR;l(t)BéKa(t)4-Qa(t)] +
-p K (£) [(A- A)) - (BL—Ba)R;l(t)Bat K (£)] +
- E(a-A)) - (B-B)R_(£)B K_(£)1'K_(£) o +
- K_(£)B_R_N(£) (R (£)-R_(£}IR,(£)B) K_(£) + (9-0) > O  (3.43)

¥ 0<t<T
and

(p-1)F_ - (F -F) > O (3.44)

the following condition holds for all x(0):
J. < pd (3.45)

Thus, the cost when using a control designed for the approximate system
on the original system is bounded by p times the cost for the approx-
imate system.

Bailey and Ramapriyan [ 20 ] simplify the imposing conditions
{ 3.43) and (3.44 ) for the infinite-horizon problem. They also impose

the additional restrictions that Ba = BL' Qa = QL' and Ra = RL. Bailey
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and Ramapriyan study the dual problem alsc, and thereby obtain a
lower, as well as an upper, bound for JL. After some manipulation,
condition { 3.43 ) reduces to finding the two smallest values of
such that

L ~1g * ~
(1 5 ) [KaBLRL B K_+ QL] I [Ka(AL— A + (AL-Aa) K1 2>0 (3.46)

Bailey and Ramapriyan show that these two values of p are given by the

maximum (OM) and the minimum ( gn) eigenvalues of
L

-1_, -1 .
[KaBLRL BLKa+-QL] [Ka(AL— Aa) + (AL-Aa) Ka] (3.47)

The conclusion is that if -1 < 9 £ o0 < 1, then the feedback designed

M

from the approximate system is stabilizing and the cost satisfies

1
l1-ag ) Ja
m

(1+0 )T < JLO < J 5( (3.48)

where Ji’ denotes the optimal cost for the original problemn.

One might very well ask at this point what the above machinations
have done to reduce the computational load. .The important observation
is that if the approximating matrix Aa is purposefully chosen to be
circulant (and the other matrices BL' QL’ RL are also circulant), then
{ 3.48 ) can provide guite a useful result. First, the Riccati equation
( 3.42) giving the Ka may be decomposed as shown in Chapter 2. Second,

the control gain (—R]:l

BiKa) is circulant, and therefore can be efficiently
implemented using the FFT. The remaining prceblem of computing the eigen-—

values of { 3.47 ), however, is still a difficult task. It should be
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noted that rather than inverting the matrix [K B R_lB‘ K.+ 0] multi-
alLlL L a L
plying, and then solving for the eigenvalues, one can instead solve the

so-called "generalized eigenvalue problem", i.e., in the present case, find
scalars X and x such that
1

A[KaBLRL BI: K+ QL]x = IKa(AL—AaH(AL— Aa) 'Ka]x (3. 49)

the matrix on the LHS of (3.492) 1is & circulant, and this may present some
computational advantages. Finally, to ensure stability, all that is needed

is that the eigenvalues Um and o, have magnitude less than one.

M
Developing bounds on the performance index that are simpler than
either (3.43} and (3.44) or {(3.47) 1is an area where fruitful research
could be conducted. Ancother issue concerns the approximating circulant
system matrix A . The above analysis assumed that Aa was given. How this
matrix should be chosen is acrucial question and warrants further investiga-
tion. -
One class of systems for which it seems particularly easy to obtain
a good circulant approximation is a finite string of subsystems having a
Toeplitz system matrix. The idea here is simply to tie together the two
ends of the system, thereby turning the Toeplitz system matrix into a cir-
culant cne. The tridiagonal systems examined in Section 2.2 fall into this
class. These tridiagonal systems could be imbedded in higher-order circulant
systems, so the utility of a circulant approximation is guestionable. But,
in the general case of a finite string described by a Teoeplitz matrix, the

circulant approximation could be very useful. The question of how well the

circulant approximation works for designing feedback gains is still open.
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3.5 The bual Filtering Problem

All the results of this chapter on the linear-quadratic control
problem for circulant systems are also applicable to the dual filtering
problem. The stochastic circulant system under consideration is

d

ac x(t) = A'x{t) + w(t) (3.50)

y(t) = B" x(t) + v(t) (3.51)

where x(0), w(t) and v)t) are all independent, zero-mean, Gaussian

random variables, and E x(0)x'(0) = Z(0), E w(t)w' (1) = Q(t)é(t—T}r.and

E vit)c'(t) = R(t)S({t-T). The matrices A,B,Z(0), R(t}, Q(t) are all
assumed to be block circulant. The argument used in Section 3.1 to
justify the use of only block circulant weighting matrices can be applied
here to show why it is physically reasonable to demand that covariance
matrices are all block circulant. The filtering problem is to compute

the Bayesian estimate ;(t|t) of x{t) given the observations y({1) from time

zero to t, i.e.,
x(t|t) = Elx(t)| y(r), 0< 1 <t) (3.52)
The sclution to this problem is, ©of course, the Kalman filter

%E;(tlt) = a'x(tlt)y + P(t}BR_l(t) [y (t)-B'x(t]|t)] (3.53)

where the error covariance P(t) is given by the Riccati equation

g?P(t) — A'P(t) + P(L)A + Q(t) - P(t)BRE T(t) B'B(t) (3.54)
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subject to P(0) = E{(0). Comparing (3.4) and (3.54 ), it is obvious
thatlif %(0) = F, then the error covariance P({t) equals the cost-to-
go K(r-t) for all t € [0,T]. Thus, the filter gain matrix P(t)B'Rﬁl(t)
is just the transpose of the feedback matrix Gd(T—t). It is clear that
this filtering problem is the dual of the optimal control problem
addressed in Section 3.1.

The circulant filtering problem in the transform domain, then, con-
sists of N independent subproblems. The regquired off-line computation
is greatly reduced; only the lower-oxder Riccati equations (3.6) need to
be solved. The FFT can be used to reduce the on-line computations just as
in the case of the centralized optimal controller. That is, a structure
analogous to that of Figure 3.1 can be used to implement the update step
of the discrete-time Kalman filter. The point here is that the circulant
filter enjoys all of the computational advantages of the circulant regu-
lator.

A time-invariant filter can be obtained if the covariances Q(t) and
R(t) are constant and observations are available from the infinite past.
The filter gain is PBR_l where P satisfies the algebraic Riccati equation
(3.14). It is to be noted that the resulting estimate is the minimum
variance estimate of x{t), i.e., the gain PBR_l minimizes the error covar-—
iance over the set of all filter gains. This observation is the key to
understanding the filtering dual of the decentralized controllers discussed
in Section 3.2,

The dual of the decentralized control problem will now be considered.

~

The dual filter produces an estimate x(t) according to

~

4 %o =2 x(t) + 6Ty -x(D) (3.55)
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where the filter gain Gf is block circulant and subject to the con-

straints
G, = 0 ¥ iego {3.56)

This filter has a fixed structure, and the problem is to choose Gf to
minimize the resulting error covariance P. The error covariance can be

computed as a function of the gain Gf from the Lyapunov equation

] 1 T
(A—BGf Y P O+ P(A—BGf) + (Q+GfRGf) = 0 (3.57)

f'l‘

provided (A-BG™ } is a stability matrix. The optimal Gf minimizes

%—trace [P] = %—trace [Pr1I] (3.58)

where I is the identity. Comparing the cost functional (3.58) with
{3.19B) and the ILyapunov equations (3.57) and (3.21}, it is obvious
that the problem of computing the optimal fixed-structure filter gain
Gf is equivalent to the decentralized contrel problem of Section 3.2.2.
ar

The necessary identifications are Gf = G and Zo = I. The equivalence

is completed by defining K from

fl fll
(A-BG YK+ K(BA-BG j +I = 0 (3.59)

and then associating this K and the error covariance P with the matrices
P and K, respectively, in the decentralized control problem, (3.20) and

{3.21). Therefore, from (3.25), the optimal filter gain Gf satisfies
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N-1 D%l
£
z K, (65, Reym BB, | = 0 Vv oiea (3.60)
= i-k ﬁ;a £ Rk L L k-2
where K and P are given by (3.57) and (3.59) . Alternatively,

these necessary conditions can be written in the transform domain as
(3.27) - (3.29).

A1)l the comments in Section 3.2.2 concerning existence and uniqueness
of solutions of the necessary conditions are relevant here. Obtaining

the optimal fixed-structure filter gain ot

s therefore, is quite difficult.
'A suboptimal gain, however, can be found using the frequency-domain tech-
nigues presented in Section 3.2.3. These frequency—domain techniques
attempt to approximate the spatial transform of the optimal centralized
filter gain by a suboptimal filter gain that satisfies the constraints
{ 3.56),

It is not entirely clear that the fixed-structure filter considered
here should be referred to as a decentralized filter. for the dual opti-
mal control problem, this interpretation was very natural, since each
subinput could be computed by a local controller., The fixed-structure
filtex (3.55), cn the other hand, appears centralized. Consider the
discrete-time version of this filter. Then the propagation step is cen-
tralized; in fact, the propagation step is exactly the same as for the
optimal centralized filter. For a general system mat?ix, the propagated
estimate of each substate involves the estimates of all the other sub-
states. The measurement update step, however, is decentralized. Conse-

quently, local filters can be used to compute the updated estimate at



-125-

subsystem k from the observations y(i+k)mod N i€ o, Only in that
the measurement update step is decentralized may the fixed-structure
filter be said to be a decentralized filter. However, if the system
matrix A is sparse, then the propagation step involves limited inter-
subsystem communication. For example, a tridiagonal system matrix

means that the propagation step can be implemented by simply having each
subsystem transmit its own substate estimate to its two nearest neighbors.

3.6 Summary and Discussion

The main theme of this chapter has been the use of the spatial fre-
quency domain for design of controllers and estimators for circulant
systems. Both the centralized and decentralized cases were considered.

1
In the centralized case, the spatial transform decomposed the original
problem into a number of low-order problems of the same type. Also, the
centralized soluticon was shown to have an efficient on-line implementa-
tion employing the FFT. Optimal and suboptimal decentralized regulators
wexr. covered in Section 3.2. The most interesting results here are in
Section 3.2.3, where suboptimal decentralized regulators are designed
from the optimal centralized regulator. The key step in this development
is the use of the spatial freguency domain to draw the analogy between
the problem at hand and the design of finite-impulse résponse digital
filters from infinite-impulse response filters. Section 3.3 provides an
example of centralized and decentralized circulant controllers for a

rectangular membrane having fixed edges. The dual filtering problem is

covered in Section 3.5.
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Section 3.4 represents some first steps in attempting to obtain
the off-line or on-line advantages of a circulant control system for
a general large-scale system. A fundamental problem here is the
choice of an appropriate circulant system matrix Aa to approximate
the large-scale system matrix A, An immediate candidate for the
circulant approximation A, is a matrix consisting of the average sub-

system interactions, i.e., the ith block of Aa is given by

N-1
(r). = = E A (3.61)
i~ N i+ )
a f=p rk.k
where the indices are modulo N. Intuitively, if Ai+k k is close to
’

{a_). for each k, then this approach would work well. Therefore, ﬁer—
Sa'i
haps & functicnal such as the variance

N-1

1
V=ﬁ ”A

FORMR RN (3.62)

will be important in determining when the circulant control law is
stabilizing, or in bounding the suboptimal cost. These suggestions are
just speculative, and much work remains to be done before one can say
whether or not the average interactions (3.61) and the variance (3.62)

are useful quantities.
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CHAPTER 4

THE FIXED-TIHTERVAL SMOOTHING PROZLEM

4.1 Introduction

The fixed-interval (FI} smoothing problem is of particular interest
in post-experimental data analysis and has received considerable attention
[ 651, [ 66 ]. This study of the smoothing problem, however, has gquite
a different motivation; namely, some recent results of Attasi [ 28 ] on
discrete-time filtering for Toeplitz systems {defined in Chapter 5}.
Actually Attasi's work is concerned with recursive estimation for images,
but it is shown in Chapter 5 how his results apply to Teoeplitz systems.
Attasi has shown that the update cycle of the discrete-time Kalman filtef
for some Toeplitz systems is eéuivalent to a smocthing problem. Thus the
update operation may be implemented by a smoother -- in particular, the
Mayne-Fraser two-filter smoother [ 41 ), [ 42 ]. The implicaticns of
this result for filtering of large-scale systems are examined in detail
in Chapter 5. The purpose of this chapter is to carefully study the two-
filter smoother.

Smoothing refers to estimating a state vector at a time point inter-
mediate to a span Of measurements. Consequently, there is an essential
element of noncausality in smcothing since scme of the measurements occur
in the future. Fixed interval smoothing involves measurements over a
given, fixed time interval. Estimates of the state are desired through-

out this time interval.
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Consider the continucus-time linear dynamic system

g—t x(t) = A(E)x(t) + wlt) | | (4.1)

with observations
y(t) = c(t)x(t) + v{t) (4.2)
where x{o) = xo and
Ex =Ew(t) =Ev(t) =0, Exx "= ZI{o),
o oo
E w{t)w' (1) = Q) 8(t-T), E v(£)v'(T) = R(t) &(t-T),
Exw'(t) =E x v'(t) =E w(t)v'(T) = 0
o) o

Also it is assumed that all the random variables xo, wit), vi{t) are
Gaussian. The FI smoothing problem is to compute, for all t € [0,T], the
conditional expectation of x(t) given the observations over [0,T), i.e.

the smoothed estimate is

fa)

R () = Elx(t) |[y(m), 0 < © < T} (4.3)

and the corresponding smoothed error covariance is

P {t)} = E{[%(t) - X (tﬂ [x(t) - X (t{]'} {(4.4)
5 5 3

As is well-known, the estimate ﬁs(t] is a linear functicnal of the observa-
tions and is also the maximum a posferioidi estimate and the linear least-

squares estimate.
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In order to gain some insight into the smoothing problem, consider
the time-invariant vcrsion of the smoothing problem with observations over
the interval (-, +®). In the sequel, this will be referred to as the
time-invariant infinite-lag smoothing problem. Also, it is assumed here

that x and y are scalar random processes and

y(t) = x(t) + v(t) : (4.5)

The Wiener filter will be used to examine the relationship between past
and future observations in estimating x(t).

The Wiener filter provides an estimate of x(t) given‘y(T), T < %, in
terms of a éonvolution integral as

t
R(t]t) =f h(t-T) y(T)dT - (4.6)

-0

where the filter impluse response cbheys the Wiener-Hopf Equation,
t
R__(t-0) =_f hi{t-t)R (1-0)d1 , 0 < t (4.7}
Xy y

=0

with Rky(t) = Efx(t)y{o)] and Ry(t) = Efy(t)y(o)]. A similar anti-causal
expression can be cbtained to provide an estimate ﬁr(tlt) of x(t) from

future observations,

[

2 (t]e) = fh(t-T)y(T)dT (4.8)
t

where the reversed-time filter cobeys the Wiener-Hopf equation

oo

R (t-0) = f h (£-T)R (T-0)dT , O > t  (4.9)
Xy & r Y
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It is easily shown that the cross-correlaticon function between x(t) and

v{t) is an even function of time,
ny(t) = E[x{t)y(o}] (4.10)
= E[x(t)x{o) + x(t)v{o)]
= E[x2(t)x(o)]
= E[x{-t)x{c}]
= R, (-t}

Xy

This fact can now be used to relate the filter impulse responses h{t)

and hr(t),
t
- = - o<t .
J/‘ hi{t T)Ry(T—G)dT ny(t } R < (4.11)
-0
= ny(t-s) , s~t = t-0

0

u/; {(t-T}R (T-s}at , from {(4.9)
t ¥ ¥

]

g
f hr(t+u)Ry(p+s)du y W= =T

-0

Il

t
f hr(—t+1') Ry(s-2t+‘|.')d1.‘ , T = 2+

-0

t
=f hr(—t+T)Ry(T-O') daTt

-

= h(t-T) = hr(T—t) (4.12)
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Equation (4.12) says that the weight h{-T) given to y(T) in forming
ﬁ(o!o) is the same as the weight hr(T} given to y{(-T) in forming ﬁr(o]o).
In this sense, the Eggg_linear filter is used to estimate x(t) from either
the past or the future observations. The only place that the assumption
x(t) and v(t} are scalar processes is used is for the relation Rx(t)=Rx(—t).
Whenever Rx(t) = Rkl(t)’ it follows that Rx(t) is an even function of time,
and so the same proof will work for vector processes in this case. The
vector case is addressed more completely in Section 4.3.5. As far as
their relative performance, it is straightforward to show that both
estimates Q(t|t) and ﬁr(t[t) have the same mean-sgquare error. Therefore
the past and future contain egual amounts of information about x(t), and
one would expect equal weightings on both when forming the smoothed esti—
mate.

That this is exactly the case can be seen from the Wiener smoother.

The smoothed estimate is

+m .
% (t) =:£ h_(t~T) y(T)dT (4.13)
where }
F{r (D)
Fin(n)} = —X
F{Ry(t)}

and the operator F{*} is the Fourier transform. Since ny(t) and Ry(t)
are even functions of t, their transforms will be purely real. Thus the
transform of h(t}) will also be real, and so h(t} must be even. This

proves that the past and future contribute equally to the smoothed estimate

l
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of x(t}).

In Section 4.2, the Mayne-Fraser two-filter smoother will be pre-
sented. Section 4.2 provides an historical review of the two-filter
smoother discussing the work of Mayne, Fraser, and Mehra. The two—filter
smoother gives the smoothed estimate asra combination of a forward and a
backward estimate. Both estimates comz from Kalman filters. A surprising
fact, however, is that in the infinite-lag case when the state dimension
equals one, the steady-state covariance of the backward is always larger
than the covariance of the forward filter. (See (4.40) for the backwards
covariance.}) This seems to contradict the previous development where the
past and future cobservations were seen to be equally valuable in esti-
mating x(t).

The reason for this apparent contradiction is that the Mayne-Fraser
two~-filter smoother has a built-in asymmetry that is absent from the
original problem. In Section 4.3, it is shown that this asymmetry is due
to the way in which the a piloil information enters into the estimate of
x{(t). New forms of the two-filter smoother will be presented which are
symmetric with respect to forward- and reversed-time. It is to be hoped
that the analysis and discussion of Section 4.3 will provide a clear
understanding of how future observations are used in the FI smoothing
problem.

Section 4.4 uses one of the new forms of the two-filter smoother to

analyze reduced-order smoothers and to perform a sensitivity analysis.
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This introductory section closes with two well-known results from
probability theory. The first deals with combining estimates that have

independent errors.

Proposition 4.1. Let x, Y, and Y, be zero-mean Gaussian random variables,
and let ﬁl and ﬁz be the Bayesian (maximum likelihood) estimates of x
given Yy and Yoo respectively, with associated error covariances Pl and P2'

If the errors x—ﬁl and x—ﬁz are independent, then the Bayesian (maximum

likelihood) estimate of x given both ' and Y, is

R = P[PIlﬁ + p g (4.14)

1 2 72
where the error covariance P is given by

. 1 -1
p = [Pll + le] (4.15)

proof: see Schweppe [ 67 j.

By abuse of terminology, the estimates %1 and §2 are often referred to as
independent estimates. The second result is simply the formula for the

conditional expectaiion of a Gaussian random variable.

Proposition 4.2. Let x be a Gaussian random variable with mean m and

covariance &, and let y be an cobservation of x,

Yy =Hx + v (4.16)

where v is a zero-mean Gaussian random variable with covariance R that is
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independent of x. The Bayesian estimate of x given y is

Elx|y] (4.17)

wur
Il

P[(H‘R—l

I

iy + Ehlm]

where the error covariance P satisfies

-1.-1

sx ] (4.18)

P = [(H'RTH)™

and it is assumed that the rank of E equals the dimension of x.

preocof: see Schweppe [ 67 ].

It is noted that Proposition 4.2 can be interpreted as meaning that the
Bayesian estimate of x given y equals the maxinum likelihood estimate of

X given both y and the @ pA{¢A{ mean m and covariance L. This interpre-
tation is obtained by forming two independent maximum likelihood esfimates
of x, one based on y and one based on m and I. Combining these two maxi-

mum likelihood estimates by Proposition 4.1 yields {(4.17) and (4.18).

4.2 Historical Review of the Two-Filter Smoothex

The first person to express the solution of the FI smoothing problem
as a combinatiocn of two estimates was David Mayne [ 41 ] in 1966. The

system under consideration is a discrete-time analcog of (4.1) and (4.2),
®(kt+t1l} = & (k+1l,k)x(k} + w(ik) (4.19)

y(k) = c(k)x(k) + v(k) {(4.20}
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where x{(o) = xO and

E X, = Ewlk) =Evk) =0 , Exx'"=1=L

(ol e] o]

E w(ilw' (k) = Q(k)di k + E v{i)vt (k) = R(k)6i k

r r

E xow'(k) = E xov'(k) =EBE w(i)v'(k) = 0

Mayne's starting point was the conditional probability density of the

states given the observations,

p(x(o),...,x(T)|y(o),...,y(T))

_ PUy(o), -,y (1) [x(0) ;o x (T p(x(0) , ..., x(T))

plyfe) ..., v(T))
(4.21)

Because of the independence of the observation noise process {v(k)}, the

likelihood function p(y(o),...,y(T)Ix(o),...,x(T)) may be written as

T
ply (o) ,...,y(T) [x(0),...,x(T)) = I I p(y (k) |x(k))
k=0
T
' 1 2
= K I I exp{— Syt -ctxua ], } (4.22)
k=0 R (k)
Also, since the sequence {x{k)} is a Markov process,
T-1 -
p(x(o) ,...,x(T)) = p(x(o))l l p(x(Xk+1) [ x (X))
k=0
-1 :
= K exp{_ ll ]X(O) l [2 } exp{_ il ]X(k+l) - O{k+1,k) I [2 }
2 2 -1 l l Z -1
z Q (K
(o k=o

(4.23)
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Therefore, substituting into (4.21) and realizing that p{y(o),...,v(T))

is just a normalization constant yields

p(x(o),...,x(T)]y(o),...,y(T)) = K3 exp{— l-[|x(o)[|2 +
2 2—1

T (o}
1 2 ‘
- g-jzllly(k) - ctIxt) [ +
k=o R (k)
T-1
1 : 2 ‘
- 5 2| =G - e Gl Ry x(R)] [ (4.24)
k=0 Q (k)
where Kl' K2, and K3 are constants. The optimal smoothed estimates

{Q(k|T)} maximize the conditional density given in (4.24).
Consider now the negative of the exponent in the right-hand-side of

(4.24),

2z 2
T(x(0), ..., x(T)) = = Flxt)[] 4+ L 2 :||y(k) - ck)x(k) || +
2 ;12 -1

k=0 R (k)
o
T-1
2
+ %—lex(]wl) - Pl || (4.25)
k=0 o " (k)

The smoothed estimates can be obtained from the minimization of the Ffunc-

tional J. Mayne's approach to this minimization was to consider some

fixed ¥ between O and T and to define

J {x{x)) = min J(x{o),...,x(T)) ' (4.26)
o {x ) |k}

Jr(x(r)) will be a guadiatic form in x(r), and therefore given Jr(x(r))

it is an easy matter to compute Q(r[T) and P(r|T). Hence the problem of
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interest is the determination of an expression for J (x(r)).
r
Mayne decomposes the minimization over {x(k)|k#r} into two separate

minimizations -- one over {x(o),...,x(r-l)} and the other over

'{x(r+l),...,x(T)}. Thus

Jr(x(r)) = Jo,r(x(r)) + Jr’T(x(r)) (4.27)
where
2
g _{x(r)) = min {—;— Hxto) ]| )+
d {x€c), ..., x(x-1)} Zo
r-1 >
—;E:||y(k)~c(k)x(k)[| % :E: [0y = 201,000 [ }
=0 k=0 0 (k)
(4.28)
and
I (x(r) = min { :E:IIY(k) - c(k)x(k)ll +
r,T
{x(x+1},...,x()}? Lk
71
1 2
t s | |x(k+1) - @ (k+1,k)x(k) ]| 1 } (4.29)
k=r Q " (k)

Both Jo r(x(r)) and Jr T(x(r)) are quadratic forms in x{(r}, (say)

i r

|

J (x(r))
o,r

I

x{x)!' F0 rx(r) + gé v x{r) + h0 v (4, 30)

r r r

3, px() ; () F_ x(x) +g' x(x) +h (4.31)

’ r,T r,t

Therefore,
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1 ‘
Jr(x(r)) = E-X(r) (Fo + F T)x(r) + (go

+ '2(r) +
e x, r gr,T) (r)

r

+ (h 4+ h ) (4.32)

Hi
1
—
T
+
o}

fS(r) (g +g ) {4.33)

I
)
+
'y
St

Ps(r) (4.34}

What remains is to determine recursive expressions for JO r(x(r)) and
r

J .
r,T(x(r))
First consider JO r(x(r) defined by (4.28), Note that this is just
r

the cost functional one would minimize to obtain the maximum a posterichi

estimate %(r|r-1), i.e.

z x(r)'E, x(x) + gl x(x) = %{x{r) - %ele-11 e el -1y
« [x(x) - ;(rlr-l)] + constant (4.35)
Therefore,
-1
F _ =P (r|r-1) (4.36)
o,r
= 2"l e-1 R(x|r-1) (4.37)
qo,r '

and hr o is of no real interest. Moreover, the Kalman filter provides a
r

recursive computation of ﬁ(r‘r—l) and P(rlr-l). Thus recursive expressions

for F
o,r

and g are available.
r ol’r
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Second, consider Jr T(x(r)). Clearly,
r

(X)) = min { :Z:||y(k) - C(k)x(k)[l +
{x(r+l),...,x(T)} (k)
T
%-:E:le(k+l) - O(ktl, k)x(k)ll 1 }
=r Q “(k)
=  min { ZHy(k) - C(k)x(k)l[ +
{w(r), ..., wiz-1) 112 Lx)
T-1 )
v 324 |lwoo ], } (4.38)
k=r 0 (k)

subject to the constraint x{k+1l) = &(k+1,k)x({k) + w(k), k=x,...,T-1. But
(4.28) is just a linear—quadratic optimal control problem and can be solved
using dynamic programming from T backwards to r. The well-known solution
to this problem yvields a recursion for Fr,T and gr,T (hr,T is of no inter-

est}) in terms of F and y(r). Thus there exist recursive

r+1,7" Jr+1,77
relations for J_  (x(r)) and T, px(x)), and so 2(r|T) and P(r|T) can be
found from (4.33} and (4.34).

This approach to the FI smoothing problem is easily extended to the
continuous—-time case. The details may be found in [ 41 ].

Mayne interprets this solution of the smoothing problem as a combina—
tion of two estimates. One estimate is based on past observations and is

obtained from Kalman filtering; optimal control theory is used to obtain

a second estimate from future observations. From (4.28), the estimate
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based on past observations is a Bayesian estimate, but Mayne does not

say what kind of estimate the one based on future observations is. 1In
Section 4.3, this second estimate will be shown té be a maximum likelihood
estimate. The idea of expressing the smoothed estimate as a linear com—
bination of the two estimates was pursued in 1967 by Donald Fraser [42 ]}
for both continuous-time and discrete-time.

One of Fraser's two estimates is based on past observations. This
estimate and the corresponding covariance are just the outputs of a
standard Kalman filter working forward over the data. Fraser's second
estimate is obtained from a backwards Kalman filter, i.e. a filter opera-
ting on future observations from T to the present time t. The idea is
te then combine these two estimates using the formulas (4.14) and (4.15)
for the optimal combination of independent estimates.

The appropriate continuous-time backward filter is [ 42 ]

d - : ~ . -1 o ~
-3t xb(t) = -A(t)xb(t) + Pb(t)C ()R " () [y(L) c(t)xb(t)]
(4.39)
d _ _ '
- EE'Pb(t} = A(t)Pb(t) Pb(t)A {(t) + Q(t) +
. -1
- pb(t)c (t)R (t)C(t)Pb(t) {4.40)

where P;l(T) = 0 and lim [P;l(t)ﬁb(t)] = 0. The interpretation given by
t T

Fraser and Potter [ 68 ] is that ﬁb(t) is, "...the best estimate of the

state at time t based upon all'the measurements from time t to the end of
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the data interval." The terminal condition of an infinite covariance ma-
trix is intended to reflect complete uncertainty about the state estimate
at time T because of the complete lack of information about x(T).
Thus no terminal estimate can be made; only the limit of P;l(t)ﬁb(t) can
be specified. Because of these initial conditions, the filter must be
implemented in the so-called "information filter" form [ 68 1.

The smoothed estimate is formed by combining the "independent" past

and future estimates according to (4,14} and (4.15), viz.

”~ —1 ~ - A~
x (t) = p_(B)[P (tlarxe]e + Pbl(tb%(t)} (4.41)

b

p_(t) = PNt + BN (0)] (4.42)

This is the same formula as Mayne's (4.33) and (4.34) in continuous-time

if Pgl(t) = and P;l(t)ﬁb(t) = Rather than showing these two

F - .
t,T 9,1

equalities, Fraser's method of proof consists of re-deriving the smoothing
formulas of Rauch, Tung, Striebel [ €9 ] from (4.39)-(4.42) and the usual
Kalman filter equations. This is certainly a valid methed of proof, and
it does show that the smoothed estimate is given by (4.41) and (4.42).
What is not clear, however, is why the estimates %(t|t) and §b(t) can be
combined by (4.41) and (4.42) or why the estimate ﬁb(t) is given by the
backward Kalman filter (4.39) and (4.40). It would be desirable to answer

these guestions starting from basic principles.
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Raman Mehra [ 43 ] attempts to clarify these points in his doctoral
thesis. First consider the backward filtering equations (4.39) and (4.40).

By multiplying the state equation (4.1) times -1, Mehra obtains

d —
= g ¥t} = [-A(R) Ix(t) - w(t) (4.43)

He then applies the usual Kalman filter egquations to this backwards sys-—
tem by letting T=T-t and thereby obtains (4.39) and (4.40). This same
argument was later adopted by Kailath and Frost [ 70 J. It is incorrect,
however, because "future” (with respect to T) values of the driving noise
w are correlated with the present state (see Ljung and Kailath [ 71 )
where this observation was first made). That is, {4.43) is not a usual
state-space realization. Therefore, it is not possible to blindly apply
the Kalman filter to (4.43) and obtain the backward filter (4.39) and
(4.40) .

Mehra also addresses the question of independence of the estimates
ﬁ(tlt).and Qb(t). His approach is to write the differential equations

for the forward error ;(tlt) and the backward error ;b(t),

g—E"(t[t) = [A(t) - K(£)C(E)IR(E][E) + wit) - K(t)v(t) (4.44)
ad - _ - — - - - [
- ST R0 = A - K (OCE®IF (E) - wt) = K (£)v(t) (4.45)

Equation (4.44) is integrated from 0 to t while (4.45) is integrated from

T to t. Thus Mehra points out that ﬁ(tlt) depends on {w(T),v(T)lo < T f_t}
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and kb(t) depends on {w(T),v(T)lt <71 E_T} —- two independent sets of
noises. Is this sufficient for the conclusicn that ﬁ(t[t) and gb(t) are
independent? Obviously not, ﬁ(t]t) and ib(t) may be dependent because

of their initial values. For example, the random variable x(o} is corre-—

lated.with (in fact, equal to)} X(o|o) and therefore with X(t[t). Is ﬁb(T)
also correlated with x(o)? Mehra can't say because at this point in his
development he has not specified any initial values for §b(T) or Pb(T).

It should be clear that without such a specification, the independence of
X{t|t) and ;b(t) is indeterminate. WNevertheless, Mehra prematurely de-
clares that they are independent because they are functions of independent
sets of noilses. The independence of these two estimates will be eramined
further in Section 4.3.

The behavior of the the two-filter smoother when there are errors in
the various model parameters (such as the system matrix or initial covari-
ance) was also considered by Mehra [43]. Following the work of Nishimura
[72 1 and Fitzgerald [73 ], Mehra performs a sensitivity analysis to ob-
tain an expression for the covariance of the errors of the forward and
backward Kalman filters, In order to obtain the smoothed error covari-

ance, he combines these two covariances assuming the forward and back-

ward errors of the mismatched filters are uncorrelated! ©Of course this

is not the case, and in Section 4.4 an expression for the smoothed error
covariance is found which includes the correlaticn between the forward
and backward errors.

In surmmary, this section has presented the two-filter smoother as
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developed by Mayne [41 ] and Fraser [ 42 ]. This solution of the FI
smoothing problem is unique compared to the Rauch, Tung, Striebel [ 69 ]
smoother, and others [66 ], in that it is not given as a correction to
the Kalman filter estimate at the same point. Rather, it takes the form
of a combination of two optimal linear filter estimates. The work of
Mehra [ 43 ] was primarily directed toward deriving this smoother from
basic principles. Unfortunately, as discussed above, this derivation is
incorrect. It must be realized, in fairness to Mehra, that the reversed-
time Markov models which are so crucial to the development in the next
secticon, were not availahle when he performed the work in [ 43 ]. Sec-
tion 4.3 presents a second attempt at obtaining the two-filter smoother
from basic principles by carefully considering the use of future obser-

vations for estimating the present state.

4.3 A New Sclution to the Fixed-Interval Smoothing Problem

4.3.1 Motivation
When forming the smoothed Bayesian estimate of x(t), there are three

separate sets of information,

{i.) a prioii data, E x(t) = 0 and E x(t)x'(t) = I(t)
(ii.) past observations, {y(T)IO <1 i_t}
(iii.) future observations, {y{(T)}|t < 1 E_T}

Intutitvely, the smoothed estimate should incorporate each of these sets
exactly once. One of the main contributions of Section 4.3 will be to

show how this incorporation takes place in the two-filter smocther.
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The filtered estimate x(t|t) is based on the a priord data and the
past observations. 'This is easily obtained via the Kalman filter. Also,
it is a simple matter to form an estimate of x(t) from just the a prioii
data, i.e. the estimate is zero and the covariance is Z(t). What is less
well-known, however, is how to use future observations in forming an
estimate of x{t). To this end, reversed-time Markov models will be in-
troduced in the next subsection. When combined with the Kalman filter,
these reversed-time models yield the expression for a Bayesian estimate
of x(t) based on a prioil data and future observations.

Only the continuous-time problem is considered in Section 4.3. The
analogous results for the discrete-time version are presented in Appen-
dix B, Note that with respect to the continuous-time problem, the pre-
sent cobservation y(t) is a linear measurement of x(t) corrupted by addi-
tive noise having an infinite covariance. Thus the isolated observation
y(t) contains no information about the process x(t). This remark is
purely formal, of course, as is the entire development of this section.
These arguments can be made rigorous through the use of Ito calculus,
but for ease of presentation and understanding, a formal development
is deemed perferable. The future observations, therefore, can be defined
as {y(T)[t <T E_T}, where now y{t) is included in the future obserwva-
tions, without altering the analysis. This is in contrast to the dis-
crete-time case where the present observation contains non-zero informa-
tion and is the major cause of any differences between the equations of

Section 3 and those of Appendix B.
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4.3.2 Reversed-Time Markov Models

Essentially simultansously in the summer of 1976, several authors
introduced reversed-time Markov models [ 71 }, [ 74 1, 1 75 1. Corres-

ponding to the forward system of (4.1), consider the reversed-time model

d -1
- gp % (B = -RE) - o) T(E)Ix (£) + E(t) (4.486)

where

Ex (T) =0, EE(t) =0, Ex (Tx'(T) = x(T)
Y r r
E E()E (1) = Q(t)6(t-T) , E E()x: (T) =0

Equation (4,46) is meant to denote that the reversed-time process xr(t)
propagates backwards from T to @, i.e. xr(t) is a Gauss-Markov process

in negative time,

Theorem 4.1. The stochastic process x(t) of {4.1) and the stochastic

process xr(t) of (4.46) have the same covariance function.
proof: A simple algebraic proof is given in [ 711].

Since x and x, are both zero-mean, Theorem 4.1 states that they are
equivalent up to second order properties. If both processes are Gaussian,
then they have the same joint probability density functions. Thérefore,
{(4.1) and (4.46) can be viewed as two realizations of the same stochastic
process. That is, x and xr are stochastically indistinguishable., This

does not mean, however, that x and xr have the same sample paths. One
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implication of this equivalence is that the observations yr(t),
yr(t) = C(t)xr(t) +7V(t) (4.47)

are stochastically equivalent to the observations y(t) on x(t}. BAnother
implication of this equivalence is any least-squares linear estimator
of x(t) is also a least-sguares linear estimator fof xr(t), and vice
versa. That is, given any set of observations, the estimate of x(t) is
the same functional on these observations as is the estimate of xr(t).
Tais is a key point in the development of the seqguel.

Recall the time-varying Lyapunov equation &escribing the state co-

variance L (t),

%zw)=mumu+z&mwu+gw) (4. 48)

, . -1
Using this equation, the reversed-time system matrix -A(t)-Q(t)Z = (t)

may be written as
-A(t)-Qct)z“ltt) = Ett)A'tt)z"ltt) + (- gz-z“l(t))z(t} {4.49)

The stability of the reversed-time system can now be examined from.(4.49).
Consider first the case of a time-invariant system in the steady-state.
Then the reversed-time system matrix is simply ZA'Z_l. But & must be a
stability matrix and has the same eigenvalues as A'. Moreover, ZA'E_l ié

just a similarity transformation of A' and therefore has the same eigen-

values. The conclusion then is that the reversed-time system matrix
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ZA‘Z—l is also a stability matrix and has the same eigenvalues as the
forward system matrix A. Therefore the forward-time process x(t) and the
reversed-time process xr(t) both have stable realizations.

In the time-varying case, it is necessary to consider the adjoint

system of (4.1),

d —_— 1
- g Pty =21 (t)p(t) (4.50)

This system propagating backwards in time has the same stability proper-

ties as the original forward system. Let z(t) = L{t)p(t). Then

d , -1 4 -1
~ I z(t) = [Z(t)A (tYE ~(t)y + (— 78 Z(tgz (t)] z{t) (4.51)

The resulting reversed-time system matrix is, according to (4.49), the
same as tﬁe system matrix for the reversed-time process X . The system
{4.46) will have the same stability properties as (4.50), and hence as
(4.1), if z(t) = Z(t)p(t) is a Lyapunov traﬁsformation [ 53 ]. For this
transformation to be a Lyapunov transformation, the following cecnditions

must hold [ 53 1:

{i.) ¥ has a continuous derivative

- d

(ii.) L and EEE are bounded

(i1i.) there exists a constant m such that 0 < m E_Idet Z(t)l, ¥t

Assuming these conditions are met, the forward- and reversed-time realiza-

tions (4.1) and (4.46) possess identical stability properties.



~149~

4.3.3 ban Estimate Based on Future Obsexvations Plus

A Priond Information

The conditional expectation of xr(t) (or x(t)) given the future ob-

sexvations is denoted Qr(tlt),
% (et = Elx () [y(m), £ 2T <1} (4.52)

The process xr(t) is a Gauss-Markov process in reversed-time as given
by {(4.46). Therefore, this Bayesian estimate can be computed from the

Kalman filter for the reversed-time system model. Explicitly,

d - -1 ~
-5 % (t]t) = [-a(E)-0(e)Z (t)]xr(t|t)+
+ K (B) Iy (t)—C(t)SEr tt]e) (4.53)
- L b t]t) = AW 0@ T R E) 1R (t]e) +
dt . r
+ prttit)[—A(t)-Q(t)z‘lct)]' + 0(t) 4
- Pr(t[t)C'(t)R_l(t)C(t)Pr(tlt) (4.54)
K (t) = P_(t|t)c' (£)R T(t) (4.55)
X r

where %r(T[T) = 0 and Pr(T) = Z(T). Note that the conditions at time
T for this filter are finite, in contrast with the initial conditions of
Fraser's backward filter (4.39) and (4.40).

The Bayesian estimate ﬁr(t|t) of x(t) is a combination of a prloii
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information and the future observations. Of course, it is possible to

estimate x(t) from only the a palornd data,

® {t)

i
o

(4.56)

g

-

A
I

Z{t) (4.57)

Consider now a maximum likelihood estimate of x{t) based only on the
future observations, i.e. an estimate that uses the future observatiocns

but not a phioili data. Denote this estimate as quture(t) and the co-

variance as P {(t). The error x(t) - % (t) in this estimate is
future future

solely due to the driving noise and the observation noise over the inter-

val [t,T]. Therefore, the estimates % o (t) and %a o (t) have inde-

futur

pendent errors. This means that

~

xfuture(t)

x{t) + V(t) (4.58}

where E V{t)}V'(t) = (t) and E x(t)V' () = 0. Equation {4.58)

P
future

treats the random variable X (t} as a noisy observation of x(t).

xfuture

By preoposition 4.2, the Bayesian estimate of x(t) given Xfuture(t) {or,

equivalently, given the future observations} is

~ _ -1 ~ -1 ~
Xr(tlt) B Pr(t[t)[Pfuture(t) xfuture(t) I (t)xa.p-(t{]
=2 (t]oy p2F o & (t) (4.59)
r future future ’
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P (t]t) = p 1 W) + I Yy = (4.60)
¥ future B

An interesting feature of (4.5%) and (4.60) is that they are inver-

tible in that it is possible to solve for % {t) and p (t) in
future future

terms of the other quantities. This yields

2 _ -1 -
xfuture(t) B Pfuture(t)Pr (t]t)xr(t|t) (4.61)
-1 . -1 -1 ’ -
P (£) = [p (tft)y - & (t)} (4.62)
future r

Differentiating (4.61} and (4.62) with respect to -t yields differential

equations for the maximum likelihood estimate ¥ (t) and P

future future(t}

propagating backwards from T. This is precisely what is done in the

proof of
Theorem 4.2, The maximum likelihood estimate ﬁfuture(t) and covariance
» - 11 P
Pfuture(t) are identically equal to Fraser's xb(t) and Pb(t)'
That is,
% (6) = P (P (t[)x_(t]t) (4.63)
xb b r Y
-1 -1 ]t
P, (t) = [P (eft) -2 (t)} (4.64)
b r

proof: Explicit dependence on t is suppressed throughout this proof.

. ; -1 -1 - .
{(covariance) It is shown that Py equals P - D) 1. At time T,

P;l(T[T) — X_l(T) =0 = P;l(T), so it suffices to show that the derivatives

are equal.



proof: (contd.)
a -1 _-1 a -1
at b "~ b [' & Pb] p

-1 -1 -1 -1 -1
A ' - '
Pb + A Pb Pb 0 Pb + C'R "C from (4.40)

(-1 -1 o=t o1 -1 -1 -1 -
—(Pr -5 )A+A(Pr x )'(Pr -z )Q(Pr - I )+

-1
+ C'R "C by hypothesis

-1 -1 -1y -1 -1 _-1 vl
Pr(A+QZ )+(A+Q‘Z )Pr -P QP 4+ C'R C+

-1 -1 -1 -1
—T A-A'T T -F% Q1 rearranging
_d -1 a _-1
.= .a.t_pr + a?z from (4.48) and (4.54)
d -1 -1
=" az[l’r 2 ]

{estimate) The proecf is completed by showing Pglhxb equals P;lﬁr. Once
again, it suffices to demonstrate the equality of the derivatives since

the quantities are equzal at time T.

d [.~1a a _-1\a . -l/ d =
_E-E[Pbxb} (_EEPb )xb+Pb (-E)‘b)

1§

1

-1 S B B | ,—1)~
(p A+ A'P PLQP +CR CJx  +

b b

+ P;l (_A;Lb 5 PbC‘R-l[y - C;’b]) from (4.39) and (4.40)

(A' - P;lQ) P;l%o + C'R_l}r combining terms
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proof: (contd.)

d =1~ _ ' —l_ E_l ~1a A .
I [?b th = (A - [Pr : }Q) Pr xr + C'R 'y by hypothesis

I

~-17’ -1 ~1a ra— L .
A+ QOF - Pr Q Pr xr + C'R ¥y rearranglng terms

-1 -1 -17.,-1 -1 _-1 eo—1 )A
_(Pr [A+Q§_‘, ]+[A+Q}j ]P PrQPr+CR er+

r

-1 =11~ v~ L _
+ Pr ([}A - 0% ]xr + PrC R [y Cx?])
._lA

. - 1 - ~
adding and subtracting Pr [A + QF l]xr + C'R Cx
r

- ~ -1 A
= [- é—-P 1 X + P - g-—-x from (4.53) and (4.54)
r r dt r

O.E.D.

This result says that the a pil{ox{ information can be "subtracted out"
from the conditional expectation of x(t) to form the backward estimate.
Moreover, this backward estimate is the maximum likelihood estimate of
x({t). The conditiocnal expectation comes from a reversed-time Kalman fil-
ter. Using this Kalman filter together with the Lyapunov equaticon for
the state covariance has yielded a differential equation for the maximum

likelihood estimate of =({t) based on future observations.
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4.3.4 The Seclution

Theorem 4,3, The smoothed Bayesian estimate and covariance satisfy

X (t) = p_(t) [P—l(tlt);(tlt) + P_I(tlt)Q (tlt)] (4.65)
s S r r

P_(t) [P'l(tlt) + P;l(t]t) - z"l(t)] (4.66)

proof: There are two realizations of the process x(7), a forward-time
realization {4.1) and a reversed-time realization (4.46}). A third reali-
zation is introduced in this proof which combines (4.1} and (4.46) to
propagate xc(t) forward and backward from time t. The process xc(T) is

generated by

a

ar xc(T) = A(T)XC(T) + w(T) , T >t

a_ (T)-[-A()— oz o] x o+ e <t
- ar xc = T olT T ] xc T T r T

where E xc(t) =¢, Ew(t) =0, E&(t) =0, E xc(t)xé(t) = L(t),

E w(T)w' (0} = o(1)8(1-0), E E(T)E'(0) = o(T)8(T-0),

E W(T)xé(t) E amxé(t) = Ew(m&'(0) =0

These differential egquations are meant to denote that xc(T) may be written

as



-155-!

T

T
f A{C)x (o)do +fdw(d) + x {t) , T > t
t ¢ t ¢

x (T)Y =
C

T T
f [—A(o)-g(o)z_l (0)] xc(c)do +f dc{o) + xc(t), T < t
t t

The process xc(T) is easily shown to be stochastically equivalent to x{(T)
and x_(r). Let % {t) and P (t) be the maximum likelihood estimate

r past past
of x(t) and the error covariance given the past observations. By applying

the same argument that was used in Section 4.3.3 for X {(t) and
future

P (t) to X {(t) and P {(t) one obtains
future past past

~

xpast

(1) = » (0 Tt okt v
past

-1

(t) [P_l(t]t) - z'l(t)]

Ppast

Consider now the third realization, i.e. the process XC(T). The errors

in the maximum likelihood estimates X (t) and % (t) are caused
past future

by {£(1), viD)]o < 7 < t} and {w(t), v(t)|e < T < T}, respectively.

Therefore these estimates are independent estimates, and Proposition 4.1

can be used to obtain the maximum likelihood estimate of xc(t) {or x(t))

given all the observations,

~ —l ~ —1 A
xML(t) PML(t) [Ppast(t)xpast(t) + Pfuture(t)xfuture(t)]

-1 -1 -1
PML(t) = [Ppast(t) + Pfuture(t)]
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From Proposition 4.2, the smoothed Bayesian estimate is

A -1 ~
Ss(t) = Ps(t)PML(tJ$ML(t)
=p (e (& () + PN ()% ()
s past’ xpast * future xfuture ]
= p_(t) [P“l(tlt)ﬁ(tlt) + N0 R (tlt)]
s r b
-1
.- -1
P_(t) = [PML(t) + (t)]

-1

-1 -1 -1
[Ppast(t) * Pfutugg)+ L (t)]

H

[p'_l(tlt) + P;l(tlt} - E‘l(t)]
0.E.D.

Aside: BAn alternate proof of Theorem 4.3 is to note that substitution

of (4.63) into (4.41) yields (4.65) and substitution of (4.64) into

(4.42) yields (4.66).

This theorem expresses the smoothed estimate as a combination of two
filtered estimates
e one estimate from a forward Kalman filter for the forward
system model
s one estimate from a reversed-time Kalman filter fer the
reversed-time model.
These estimates are not independent, however, because they both include

the a phiofd information. The two different sets (past and future)
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of cobservations may be said to be independent observations of xc(t) be-
cause the cbservation noise processes are independent. Schoute, et al.

[ 76 1 have obtained very similar expressions to (4.65) and (4.66) for
the smoothed estimate of a discrete-time system in the steady-state.
Their approach is closely related to the approach taken here in that they
employ a reversed-time model and Kalman filter.

One striking characteristic of the smoother Theorem 4.3 is the com—-
plete symmetry with respect to forward-time vs. reversed-time. Equations
(4.65) and (4.66) are called symmetric because both estimates ﬁ(t[t) and
ﬁr(t[t) are conditional expectations of x(t)} given the past and the future
observations, respectively. This is certainly in contrast with the usual
two-filter smoother. The symmetry between forward- and reversed-time will
be developed and discussed further in Section 4.3.6.

another important characteristic of this smoother is that both the
forward and backward models used in forming the two Kalman filters are
stable (assuming the original forward realization is stable) . This fea-
ture will allow a sensitivity analysis in Section 4.4 that requires the
integration of only stable differential equations.

Finally, it is noted that even though this.development assumed the
random process x(t) was zero-mean, the case of a nonzero-mean process is
easily handled. Letting z(t)} equal x(t) minus the mean value of x({t)
yields a zero-mean process obeying the same state equation (4.1). Then
taking as observations of z(t} the observations y{t} minus the mean value

of y(t} produces a smoothing precblem of the form studied here. The
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smoothed estimate of x(t) is simply the smoothed estimate of z(t) plus

the mean of x(t).

4.3.5 The Linear Time-Invariant Infinite-Lag Case

For the special cas: of smoothing over the intexval (%, +°) with a
time-invariant system, it is possible to invesﬁigate the symmetry between
forward- and reversed-time in detail. If the system matrix A is a scalar,
then the reversed-time system matrix Tarz ™t equals A, That is, from
(4.48) , the reversed-time realization is identical to the forward-time
realization. Thus the two Kalman filters are identical, and so the two
steady-state error covariances P and Pr are equal. From (4. g5 }, it
is clear that this implies the two estimates X(t[t) and Qr(tlt) are
weighted equally in forming the smocothed estimate, This confirms the
intuitive expectation of Section 4.1 that the future and past should be
equivalent.

The follewing proposition extends the above result beyond the scalar

case:

Proposition 4.3, The reversed-time system (4.46) equals the forward-time

system (4.1) in the time-invariant infinite-lag case if and only if
. ; ; . . -1 .
the autocorrelation function of x is symmetric, i.e. IA'L = = A if

. _ e
and conly if Rx(t) Rx(t).

proof: (if) By assumption Rx(t} = R;(t), hence
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1
Aty g 2t vt
At Att_-1 zA'z"lt
= e =F e ¥ =e
A= zA'z"l
(only if) R (t) = e"'p
(}:A'z_lt
=g )E {(by assumption)
=5 P (®
= 1
Rx{t)
Q.E.D.

0f course Rx(t) = R;(t) is equivalent to Rx(t) = th—t), the condition
needed in Section 4.1 to show that the same Wiener filter can be used to
estimate x{t) from either the future or the past. From Proposition 4.3,
whenever the autocorrelation functicn is even, the future and past ch-
servations are equally wvaluable in forming an estimate of thé present.
Theorem 4.3 expresses the smocthed estimate of x{t} as a linear
combination of a causal filter estimate and an anti-causal filter esti-
mate. In the LTI infinite-lag case, the Wiener filter and smoother can
also be used tc obtain these estimates. From Theorem 4.3, an identity

between the Wiener filter znd smoother can be derived.
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Let Hf(s) be the transfer function of the Wiener filter for esti-
mating x(t). Then [ 77 ]}
1 SXY(S)

H_{s) = (4.67})
£ st s) {sT(s)
Y y

+

where Sy(s) = bilateral Laplace transform of the autocorrelation function

of vy
Sxy(s) = bilateral Laplace transform of the cross-correlaticn
function between x and y
m
{s-z.)
|
+ i=1 m n )
s -
y(s) - for {zi}l ({Pi}l the 1HP zeros (poles) of Sy(s)
j (s—pi)
i=]
S (s)
- +
s (s) =L— = 5, (-8)
S (s}
¥

and the operator {'}+ is uniguely defined by

oo

+ij= st _
fot- [ [ e ]
J

~ o

i.e. the transform of the causal part of the inverse transform of F(s}.
The transfer function of the Wiener smcother is simply

Sxy(s) .
H (s) = =——r (4.68)

SY(S)
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From (4.65), the causal part of the Wiener smoother must equal P P_1
s

times the Wiener filter since they are the same function of the observa-

tions. That is,

_ -1
{Hs(s}}+ = PP " H(s) (4.69)
This completes the proof of the next proposition.

1 sxy(s) ) 1 Sxy(S)

- 4. P Xy
Proposition 4.4 PS Sy(s)

= - -
+ Sy(s) Sy(o) +

Of course a similar identity exists between the anti~causal Wiener filter
and the anti-causal part of the smoother. Proposition 4.4 says that the
Wiener filter has the same poles as the causal part of the Wiener

smoother; the zeros, however, are different.

4.3.6 Digcussion
Two key ingredients of the two-filter smocther are the maximum like-

lihood estimates ﬁpast(t) and % (t). Theorem 4.2 showed that

future
X (t) equals Fraser's backward estimate ﬁb(t). There is also a back-
future
wards estimate ﬁr {(t) of the reversed-time process xr(t). The estimate

b
ﬁr (t) is based on the observations {y(T)|O <T f_t} and may be shown
b

(by repeating the proof of Theorem 4.2) to egual ﬁpast(t)' The differ-

ential eguations for Qb(t) and Pr (t) are just Fraser's ({4.39) and (4.40)
b
with the reversed-time system matrix in place of the forward system ma-

trix,
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d. ~ - _ "'l ~ _ ~
& % ) - [-2m-0me @ ] MR Krb(t)[y(t) C(t)xrb(tﬂ
(4.70)
D p g = [cam-owz ] p o) +p ) -am 0wz gl '+
G Py () - [-a0-2 ] . . @[ -2®iT @] g

—P_ (£)C' ()R T(t)C(t)P. (t) (4.71)
s Y

1

Il

where K (i)

. - -1 _ . -1 . A L
r Pr (eyc ()R “(t) , Pr {o) = 0, and 1im [%r (t)xrb(tﬂ = 0,

b b b 0 b

This filter must be implemented as an information filter because of the

initial conditions.

Using the estimate ﬁr , it is possible to obtain another version of

b
the two-filter smoother
R_(6) = P_(t) [Prb(t)xrb{t) + P (t[t)xr(t|t)] (4.72)
- - -1
P (t) = [P Y +p l(t|t)] (4.73)
s rb r

This is essentially Fraser's smoother (4.41) and (4.42) applied to the
reversed-time realization instead of the usual forward realization. The
G prioidi information is combined with the future cbservations to form one
estimate; the second estimate is formed from the past observations alcne.
All of the smoothing algorithms presented by Sidhu and Desai [ 74 ] are

in this same spirit — they are obtained by applying a standard smoothing
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algorithm to the reversed-time model.

Consider now the problem of filtering for a linear system where the
initial covariance X(o) is unknown when the cbservation begins. One would
like to operate a Kalman filter to obtain the estimate ﬁ(t[t}, but the
initial conditions for the filter are unknown. At first glance, it appears
that it is possible to propagate ﬁrb(t) and then later, 1f the covariance
L(c) became known, use (4.17) and (4.18) to construct the filtered esti-
rate %(t|t). Indeed, applying the smoothing formula (4.72) and (4.73) at

time T, the filtered estimate egquals the smoothed estimate and can be

written as

20| = peefmr R (m) (4.74)
T, r,
-1 -1 -1
P(T|T) = [Pr (T) + % (T)] (4.75)
b

Certainly (4.74) and (4.7%) seem to accomplish what was just proposed.
This scheme, however, does not quite work because of the equation

for X (t). From (4.70), the computation of this estimate involves the
X,
b
. -1 . A
reversed-time system matrix -A(t)-Q(t)Z ~(t). That is to say, ‘X_ {t}
b
depends on the covariance Z£, and if the covariance were unknown, then it

would be impossible to compute ﬁr . The point here is that ﬁr (t) is a
b b
maximum likelihood estimate of xr(t) based on its "future" observations

(future with respect to —t, i.e. {y(T)|t > T i_O}). When the covariance

of x(t}) is Z(t) as used in the reversed-time realization, the two pro-
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cesses x(t) and xr(t) are stochastically eqﬁivalent. But if L (o) is un-
known, then one does not know which reversed-time model to use in the
computation of X_ (t).

b

One conclusion from the above analysis is that the smoothing formulas
developed here do not yield a simple change of initial conditions result
for the filtered estimate. It will now be shown that such a result can be
obtained for the smocthed estimate xs(o).

The problem of interest is to compute the smoothed estimate of x (o}
by first processing the observations assuming Z(e) is unknown and then
correcting this result to account for the known value of Z(o). But this
is exactly what Fraser's two—-filter smoother (4.41) and (4.42) does. The
observations are used to compute ;b(o), and then the smoothed estimate is

just

1l

~ -1 A
xS(O) PS(O)Pb (O)xb(o) (4.76)

1§

-1 -1 -1
P (o) = |27 ) + P (o)] (4.77)
s b

since the filtered estimate x(o|o) is just the a paloii zero value with
covariance E (o).

A closely related problem is the following: suppose the smoothed
estimate QSH(O) of x(o) is obtained assuming that E x({o)x' (o) = (o).
The true initial covariance is r{o), however. Is it possible to obtain
the optimal smoothed estimate Qs(o) from QSH(O) without further reference

to the observations? HNote that this is truly a change of initial condi-
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tions question. The answer to this question is yes,and the result is
easily obtained from (4.76} and (4.77). BApplying these equations with

the incorrect initial covariance ll{s) yields

w
e
]

I -1, .~
P (o)Pb (o)xb(o) (4.78)

' -1
p Loy [H Loy + P;l(o)] | (4.79)

. ~ I I _
Thus given X (o) and Ps (0}, the backward guantities may be computed as

I

It ’lﬁsn(o) (4.80)

xb(o) Pb(o)PS (o)
' -1
[pSH(o)'l - H_lfo)] (4.81)

Pb(o)

Substituting into {4.76) and (4.77) yields the simple relationship

i -1~
b (o) o) 1 Moy (4.82)
s = 5

% {(0)
s

Ps(o) [Psn(o)_1 - H_l(o) + Z“l(o)] {(4.83)

The very natural interpretation of this result is that the incorrect
covariance I[{o) is removed from the estimate ;sn(o) and then the correct
covariance I{0o) is added. Egquations (4.82) and (4.83) are much simplef
than the change of initial conditions formula for smoothed estimates pre-
sented by Ljung and Kailath in [ 78 ].

An important implication of this last result deals with the reversed-

time estimate xr(t|t). Recall that xr(t|t) is the filtered estimate of
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the reversed-time process xr(t) given observations from T to t. Thus
x (o) = % (o] o) ' (4.84)
s r

Now suppose that the backwards Kalman filter is designed for the reversed-

time system

S8 Ty - [—A(t)—gtt)ﬁ'l(t)]x Ty + £ (4.85)
dt r r
where E x H(T)x 1-[('I‘)‘ = [[(T) and
r X
g;ﬂ(t) < a()T(E) + T(E)a' (£) + ole) (4.86)

instead of the reversed-time system (4.46). This amounts to replacing I,
the true state covariance, with I, a quantity which also obeys the Lya-
punov eqguation. The output of this reversed-time Xalman filter, initia-
lized at time T with covariance I (t}, is just_grn(t|t)_ 7he smcothed esti-
mate ;s(o) can now be found from tﬁe output of this (incorrect) Kalman
filter by using (4.82) and (4.83}.

It should be realized that the time 0 is not special in this develop-
ment, and (4.78)-(4.85) can all be appropriately altered to be valid for
any time t. The smoothed estimate and covariance can then be expreésed

. ‘ ~ 1l
in terms of the reversed-time estimate X, (t) as

~ - ~ -1~ T
% () = p_(t) [p Lejokele + 0 lelo ™% "'(t[t)] (4.87)
s s r Y

P_(t) [phl ey + 2o - n“lct)] (4.88)
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Equations (4.87) and (4.88) are a generalization of (4.65) and (4.66) of
Theorem 4.3 in that the covariance I has been replaced by an arbitrary
function Il satisfying {4.86)}.

Consider the implementation implications of this last observation.
Basically any legitimate covariance function can be used in the reversed-
time system matrix and Kalman filter. This added flexibility may be gquite
useful, especially when the forward system is time-invariant. In this
case, one could use the steady-state covariance and thereby attain a
time—invariapt reversed-time model. This eliminates some of the problems

involved with directly implementing the reversed-time filter,

4.4 Sensitivity Analysis and Reduced Order Smoothers

Sensitivity analysis is concerned with the increase in the smoothed
error covariance caused by using incorrect model parameters. For example,
if a smoother is implemented with the system matrix A* (t) in place of the
correct matrix A(t), what is the resulting error covariance? Reduced
order smoothing refers to smoothing with a modei of lower dimensional
than the actual system {(4.1). Griffin and Sage [ 79 ] have treated the
sensiti?ity problem, but not the reduced order smoother,rfor only discrete-
time processes by considering the Rauch, Tung, Striebel smoother [ 69 ].
The analysis given here is thought to be the first correct treatment of
the two-filter smoother and is performed for both continuous- and dis-
crete—-time (see Appendix B for the discrete-time results). The reduced

order smoothing problem will be treated first, and then the results will
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be specialized to perform sensitivity analysis. Throughout this section,
explicit time dependence will often be suppressed for ease of presenta-
tion.

The model used by the reduced order smoother for the dynamics and

observations is

* * *

— X = A"X +yw {4.89)

c*x* o+ v (4.90)

d
1

where w* and v* are independent white noise processes with covariances
0* and R*, respectively and E x* (c)x*'(0) = £¥* (o). The superscript as-
terisk will be used consistently to denote model parameters as distin-
guished from the trué system parameters. It is assumed that there is an

output z of the actual system defined by

z = H X (4.91}

which is approximated by the output z* of the model,
z" = H'x (4.92)

The only restrictions imposed on the model are that y* and z* have the
same dimensions as y and z, respectively.

A smoothed estimate of the output is obtained as z; = ¥

Sk
X, and the
s
-~
question is, "What is the covariance of z - z* ?" In order to determine
s

a expression for this covariance, first the forward-time system and
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filter are jointly analyzed, and then a similar analysis is performed
for the reversed-time system and filter. WNext, the correlation between
the forward- and reversed-time estimates are obtained. BAll these re-

sults are finally combined to yield the output error covariance.

Forward-Time System and Filter - The model (4.89) and (4.90) can be

used to design a reduced order Kalman filter,

g—t;;* = A%%* & K*ly - C*x¥] (4.93)
K* = prc*rR T (4.94)
d * *_k * . x * * ok okl k%

a’g P = A"P" + P'AT' + Q0 - PC'R c"P (4.95)

where % (0) = 0 and P’ (o) = ¥ (o). Notice that the input to this filter
is the actual observations y, of course. By combining the estimate oy
with the actual state %, one obtains an augmented state vector having

dynamics

ble A 0 X u
d
hastil = + 4,96
dt ~ * * %k ik * ( )
Y k'c a*-xc* X K*v

The covariance of this augmented state is defined as

z M X [x‘ ;*l]
= E (4.97)
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and must obey the Lyapunov eguation

L M A 0 z M )X M A 0
a _
at - + . +
M' N k*c a*x*c™ Lm w M wndlx’c atx"c®
Q 0
N (4.98)
0 r'm*r '

Reversed-Time Syvstem and Filter - The reduced order reversed-time

system corresponding to the model (4.89) is
_ ._-x; = [-A* - Q*Z*'l] x; + EX . (4.99)

* . . . . *
where £" is a white nolse process with covariance Q ,

*
E xr(T)x;'(T) = Z*(T), and E* is given by

*

d ¥ kok ok,
-d—t-Z = AL + LA + Q (4.100)

By analogy with the forward-time case, there exists a reduced-order

reversed-time Kalman filter having gain K; and producing the estimate

~

* . .
x" . The reversed-time augmented system 1s
r

X -A—QZ_l 0 x_ £
_ 4 - + (4.101)
dt ® ok k=1 * Nk
%7 ' -a¥-0 ¥ T x’c % K v
xr r
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Let the covariance be

1
t

n
t1
1
3
R -
>
H %
—

(4.102)
&
X
r
since x and X, are stochastically indistinguishable. Then
5 M —a-grt X M
) q T 0 .
T at - . *
M' N K*C A -0*r* Tx*c* LM N
X - r X
- -1 '
z M| |-2-QK 0 Q
+ + {4.103)
mt o~ Ll x*e  aat-0'rFract] Lo kM
Ir r r )

Cross—Correlation of x* and x; - The preceding analysis has shown

how solving the two Lyapunov equations (4.98) and (4.103) vields the co-
-~ ~ . -
variances of x*and x; and their creoss-correlations with x. Before one
can obtain an expression for the smoothed error covariance, it is also
. i ™ x ; A
necessary to know the cross-correlation of x© and X . The estimate x
can be written in integral form from the variation of constants formula

as
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t
x*(6) =f @A*_K*C*(t,G)K*(O'.) y(g) do (4.104)
O

where ®A*—K*C* is the state transition matrix of the forward Kalmen fil-

ter,

d

a;’@

ox(t,0)  (4.105)

akogron (£,0) = [A*(t) - K*(t)c*(t)] Dpx

with the identity initial condition % x{o0,0} = I. Similarly, the

a*-g*c

reversed-time estimate can be written

t

;:;(t) =f‘F -1 (t,T)K;(T) y{t) ar (4.106)
T -rT-™tT-kIc

where

- g—-w (£, T) = [—A*(t)ﬂg*(t)Z*—l(tﬂ'¥ (£,T)

dt _A*_Q*Z*'l_K;C* -A*-Q*E*-l'K;C*
(4.107)

and Y 1 (T,T) = I. Combining the integral expressions (4.104)

* kT

-a*Q%y -K;C*

and (4.1086) and taking the expectation yields
T t

B XN OR(©) =f _Tf 8 *_oxor (£,00K" (o) E[y(G)y'(T)] K2 () -
s

N 1
b _A*_Q*E*_l_K*c*(t'T) ardg (4.108)
r

The autocorrelation function of y is evaluated in the following lemma:
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Lemma 4.1 For O < T,

E y(@y'{T) = cla)¥ (G,t)Z(t)@A(T,t)C'(T) + R{g)dlc-1)

—A-— 'i‘_l
Qe (4.109)
where t € [0,T] and
d.
—_—— = ® = .
e @A(T,t) a1} -A(r,t) P 0 (E,E) = T (4.110)
d -1 w
-5 b L lo,e) =] -2(0)-0() T )| _qlo8)
-A-Q% ~A-Qr
Yy _l(t,t) =TI (4.111)
-A-Q%
i.e. ® ana V¥ -1 are the state transition matrices of the forward- and
-A-QF

reversed-time systems, respectively.

proof: E y(o)y' (1) = E{[C(G)X(G) + v(c)] [c(-r)xm ¥ vm] }

]

c({g) E {x(O)x'(T)} c'{t) + E {v(d)v'(T)}

L

(o) E{[‘P CAS x(t)] [@A(T,t)x(t)} }c-m + R(0)8 (g-1)
-A-QL

Il

Clo)Y _p o8] 2(E) &) (T,t) C' (1) + RIS (0-T)
-A-QFT

0.E.D.
Egquation (4.109) can now be substituted into (4.108). ©Note that the term
involving the delta function drops out because of the limits on the dou-

ble integral. Thus
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t T

E X" (£)%M(E) = _}r _}f B % _pxon (£,0)KT (0)C(0)Y (0,8 I (t) -
r . r A KC -A—QE—I

"8 (T, 0)C (DK (1) ¥ 1 (t,r) drdo (4.112)
-a¥-Q*r* T-x*c*
r
This result is now expressed as
Lemma 4.2 B &% (t);::' (£) = o™ (B)Z ()8 (L) (4.113)
where £ ‘
o¥(t) = f @A*bK*C*(t,U)K*(G)C(G)‘i’ _ylo,t) do (4.114)
o -A-Q%
T
B*(t) = f ¢, (r, 81! (T)K:'(T)‘P' -1 (t,7) drt
t -a*-g*c* -—K;C*

{4.115)
proof: Lemma 4.2 is an immediate consequence of (4.112).
The integral expressions for a* and B* may be replaced by differential
equations.

Lemma 4.3 g? a™ (L) = [A*-K*c*] o™ (t) + a¥(t) [-A-Qﬁhl] + ¥*C
(4.116)

d * _ v * kel o s ]! _—
-erw =[] o s o[ ek

{(4.117)

with initial conditions a®(o) = 0 and B*(T) = O.
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proof: Differentiating (4.114) with respect to t yields

t
d d
a—a*(t) =f d—t-{@A*_K*C*(t,G)K*(o)c(G)W _l(cr,t)}ch K* (t)C(t)
o ~A-QL
t
* * * * .
= {[A (£)-K7(t)C (t)]@A* * % (L, YK {C)Cc(o)Y (o,8)+
-K'C -1
e} ~A-QL
+ @A*_K*C*(t,o)x*(o)c(d)¥ _l(d,t)[fA(t)-Q(t)E‘l(ti]}dc
~A-QL '

+ KT (t)C(k)
= [A*(t) —K*(t)c*(t)]a*(t) A a¥ () [—A(t)‘Q(t)Z_l(t)jl+ K* (v)c(r)

Equation (4.117) is obtained in a completely analogous fashion.

Q.E.D.

The cross—correlation between x*(t) and x;(t) is given by the
relatively simpl - expression {(4.113) of Lemma 4.2 where a* and B* obey
differential equations of the Lyapunov type. The coefficients of a* and

B* in these equations are
qd
* * _ % - . . .
e A -KC + forward-time filter matrix

1

o -A-0OL reversed-time system matrix

* A : forward-time system matrix transposed

-1 ' . . .
® [}A*—Q*E* —K:C*] : reversed-time filter matrix transposed.
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‘Notice the symmetry. In the linear time-invariant infinite-lag case, all
four of these matrices are stability matrices. The steady-state alge—
braic versions of (4.116) and (4.117) will, therefore, always have unique
solutions.

Everything necessary for the evaluation of the smoothed output error

covariance is now available. The next theorem puts it all together.

Theorem 4.4 The error covariance of the reduced-order smoothed output

estimate is given by

ok = o pg¥ek *—1 ' *—1 ' " #=1 *=1] % %
cov[z(t) zs(t)] HIH st[p M' + P Mr]H H[MP +MFP I HY +

+ H*z*[P*-lNP*_1+ P*-lﬁ* 'ZQ*'p*_1+ P*-la*ZB*P*"l_'_ P*—lN P*—l]»E*H*I
s r r r rr s

{4.118)
where L, M, N come from (4.97); Mr and Nr come from (4.102); and a¢* and

8* come from (4.116) and (4.117).

proof: cov|z(t) - Eg(ti] = cov[H X - H*Q;]

—_— L

*
=| H -H ] E

=H E{x x'}H' - B E{;:;x'}H' - H E{x x;} g+

Fa .Y
+ H* E{x*x*'} H*'
s 8
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[
H
td
s,
b
"
\ﬁl—’
1l
™
m %
£
r——
o
»*
1
H
b
*
+
L)
*
1
=
"
*
| S
w
N

=z [P*FlM‘ + P;'lmé] from (4.97) and (4.102)
(1IT.) E{Q*Q*'} - 1* E.{[p*“1§* ¥ p*'IQ*J[%*"IQ* ¥ p*'lQ*:l}z*
s s S r r r r S

-1 -1 —_ 1 T - . * o * - -
=¥ [P* Ne* g pr e rg ety ol pe e Ty pF Ty B l]z*
r r r rrx s

from (4.97), (4.102) and (4.113)

cov[z—g*] = HIH'~ H*Z*[P*'lm' + p*‘lm'] H'- H[MP*'1+ M P*"l]E*H*' +
. =3 s r r rr s

- - -— [ - - - -— - !
+ g*rt [P* lyp* 7Ly pr=lgsigorprl, prmlorzgrprTly puly p I]E*H*
s r X r r r s
0.E.D.

This theorem is the main result of this section. Certainly (4.118) is a
messy expression for the error covariance. The only difficult part of
the derivation, however, was finding an expression for E §*§;'. All the
other steps were guite straight-forward.

Before leaving the reduced-order smoother for the sensitivity ana-
lysis, notice that the cross-correlation between %* and x could have
been evaluated in an analogous fashion to the way (4.112) was obtained,

This yields
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t
g _ *
E x (£)x'(t) -f q’A*-K*c*(t'O)K (o)c(o) ¥ _l(G,t)Z(tJdt
o -A-QL
= g*% (4.119)

But E x*(t)x'(t) = M'(t} from (4.97). Therefore,

a* = M'Z ' (4.120)

Similarly,

Il
1
=

g* (4.121)

Since the Lyapunov equations (4.98) and (4.103) have to be solved and
yield M and Mr' (4.120) and (4.121) allow the evaluation of the output
covariance without the solution of the additional equations (4.116) and
(4.117) for o’ ana B*.

‘'The solution of the sensitivity analysis problem is easily obtained

*
from Theorem 4.4 by simply setting H and H equal to the identity.

Corollary 4.1 cov[x(t) - ?:*(t)] =z -.):;[p*'ln' + p:'lml'_] +

- [ et o s
rr s

* - - *_ ' LR | -] *_ % *_] - *-_1 ]
+ ZS[P* 1NP* l+ Pr ls* To* P* +P* 1 *=1 ]z

a IB P + P N P
b oy r
(4.122)

The expression for the smoothed error covariance could also be obtained
by expressing the smoothed error as a linear combination of three errors

-- forward error, reversed-time error, and a prioArl error,
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_ 0% _ p* %=1 A =1 _ aky _ pa-l
X - x_ = Esl:P (x -~ x) + P’ (x xr) z (x)] (4.123)

The covariances of these errors and their cross—correlations can be
found from (4.98), {4.103), and (4.113). By making these substitutions
and performing some tedious algebraic manipulations, one is able to
arrive at {(4.122) from (4.123). The details are omitted.

In summary, this section has addressed the problem of FI smoothing
using an incorrect model. In the case of a reduced-order smcother, the
actual smoothed output error covariance is given in Theorem 4.4. A
special case of this result is the senstivity analysis expression (4.122).
To use either equation, it is necessary to solve the forward- and reversed-
time Lyapunov equations (4.98) and (4.103). The quantities a* and
B* also obey Lyapunov equations, but can be computed (perhaps more con-

veniently) from (4.120) and (4.121).

4.5 Conclusions

The two-filter smoother expresses the smoothed state estimate as a
linear combination of two optimal estimates. One of the main contri-
butions of this chapter has been to obtain this smoother from first prin-
ciples. Other derivations of the two-filter smoother have proceeded by
showing equivalence with some other smoothing algorithms. Because of
these derivations, it has never been clear exactly what type of estimate
the backwards estimate ;b(t) is. Therefore, perhaps more important than

the derivation of a new two—filter smoother in this chapter is the in-
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sight gained from this approach. The backwards estimate is simply the
maximum likelihood estimate. The backwards filter.comes from removing
the a pnioni information from a reversed-time Kalman filter. This re-
versed~-time Kalman filter, a key element throughout the chapter, is de-
signed from a reversed-time realization of the state process. Other
authors, e.g. [ 74 ], have used the reversed-time model to obtain
smoothing formulas, but these results essentially just applied standard
smoothing formulas to the reversed-time model. Section 4.3 used the
reversed-time filter in conjunction with the forward filter to obtain
the resulting expression for the smoothed estimate. It should be noted
that some of the equations in Section 4.3 are guite similar to ones cb-
tained by Ljung and Kailath [ 65 ] by using the relationship between lin-
ear least-sqguares estimation and scattering theory. The approach taken
here seems to be a much more natural one for addressing the smoothing
problem and yields the very simple change of initial conditions formula
(4.82) and (4.83) for ?:s(o).

The smoothing formulas presented here are symmetric with respect to
forward-time vs. reversed-time. This is not meant to imply that the twe
filter error covariances P{t) and Pr(t) are egual, but rather the form
of the smoother is the same for both the past and the future. For ex-
ample, the two estimates Q(tlt) and §r(t|t) that are comblned to produce
the smoothed estimate are both conditional expectations of x(t). As
discussed in Sectlon 4.1, intuitively there is an equivalence between

past and future observations., .Where the difference between forward- and
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reversed-time become apparent was in Section 4.3.6 when the gquestion of
uncertain initial covariance was considered. The reversed-time system
matrix -A(t)—Q(t}EHl(t) obviously depends on the state covariance; the
forward system matrix A(t), of course, is independent of IL. Therefore,
when considering change of initial covariance problems, the fact that
the original system model is given in forward-time introduces a distinc-—
tion between forward- and reversed-time. Using the forward model, one
can form a maximuem likelihood estimate of x(oc) which can be combined with
the d priohi data to provide a change of initial condition formula for
the smoothed estimate gs(o). There does not exist an analogous formula
for the filtered estimate §(t|t) because the reversed-time system matrix
is a function of the state covariance.

In order to implement the two-filter smoother given in Theorem 4.3,
it is very convenient to use the information filter form of the forward-—
and reversed-time Kalman filters. This means one should compute Pﬁl(t|t),
P;l(tlt), P_l(t|t)§(t|t), and P;l(tlt}ﬁr(t]t) instead of the usuval Kalman
filter estimate andrcovariance. If these quantities are available, then
only one matrix inversion is needed in the computation of the smoothed
estimate -- the inverse of [P_l(tlt) + P;l(tlt) - Z_l(ti] is all that is
required.

The final contribution of this chapter is the analysis of reduced-
crder smoothers and the sensitivity of two-filter smoothers. The approach
taken here is similar to that of Mehra [ 43 ] except that Mehra errone-
ously assumed the forward and backward filtered errcors were uncorrelated.

Hence the main contribution of Section 4.4 is Lemma 4.2 which gives the
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cross—-correlation between 2*(t) and ;;(t), the forward- and reversed-time
estimates, Another important aspect of the analysis in Section 4.4 is
that both Lyapunov equations (4.98) and (4.103) can correspond to stable
systems. In particular, for the time-invariant infinite-lag problem,

the forward- and reversed-time augmented systems are both stable.
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CHAPTER 5

CONTROL AND ESTIMATION FOR TOEPLITZ SYSTEMS

5.1 Introduction to Toeplitz Systems

5.1.1 Definition

Toeplitz systems are infinite-dimensional, spatially-invariant linear
systems. They are composed of an infinite number of identical subsystems
and are the natural infinite-dimensional analog of circulant systems.
Primary attention will be paid to stationary discrete-time Toeplitz sys-
tems, although continucus-time systems will alsoc be used on occasion.

The dynamics of the kth subsystem in a deterministic Toeplitz system

are given by

4o
x, (i+1) = :L:,; A _oXo (i) + B, _ou, (i) (5.1}

where k=0,+1,... . The state of the kth subsystem at time i is xk(i)EJRn,

and uk(i)e]Rm is the local control. The kth output is

4o
y, (i) = x, (1) (5.2)
S P
P

where k=0,+1,... and yk(i)EIR . For notational simplicity, the infinite-

dimensional state, input, and output vectors are defined,



x_o (3) | u_im‘ f y_;ci)\
2 =[x |, e = {u@ | ov@ = |y
rl(i’ u (5) y, (D)

In terms of these vectors, the infinite set of equations represented by

(5.1) and (5.2) are written as
x(i+l) = A x(i) + B u(i) (5.3)
v(i) = C x(i) (5.4)

where the Toeplitz system matrix is

A A \
AO A—l -2 A—3
Al AO A-—l A_2
A=
A2 Al AO A—l
A3 A2 A1 A0

The Toeplitz input and ocutput matrices B and C are of the same form. The
mutual interaction between subsystems k and % depends only on k-2, as can

be seen from (5.1). It is in this sense that Toeplitz systems are called
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spatially-invariant.
The z-transform can be used to decouple Toeplitz systems in very
ruch the same way the DFT was used to decouple circulant systems in Chap-

ter 2. The z-transform of the state vector x(i) is

x(i,z)

Z[xk(i)]

e (5.5)
-~k
:E: x (i)=z
k=—o k

The transforms y(i,z) and u{i,z) are defined similarly. The transform of

the system matrix is

A(z) = Z[Ak]

oo
-k
= A
2 nz

k:-CD

(5.6)

The nXm matrix B(z) and the pXn matrix C(z) are defined similarly from

B and C.

The system dynamics (5.1) and output (5.2) eguations can be rewritten
in the z dcmain. Using the property of the z-transform for convolution

sums [ 80 ] yields
x{i+l,z) = A{z) x(i,z2) + B(z) u(i,z) (5.7}

y(i,z) = C(z) x(i,z=) {5.8)

These eguations indicate that the Toeplitz system is composed of indepen-
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dent subsystems, where the subsystems are indexed by the complex variable
z. Compare with (2.17) and (2.18), the subsystem dynamics and output for
circulant systems. There is an important difference between Toeplitz and
circulant systems, however. The Toeplitz subsystems are indexed by a
continuous complex variable; the circulant subsysten index has only a
finite number of values.

In the case of an unforced system, the Toeplitz matrix A is an oper-
ator mapping the sequence {xk(i)} into the seguence {xk(i+l)}- For the
operator A to be a bounded operator on the space of square surmmable se-
quences, the induced norm of A must be finite. Widom [ 81 1 has shown

that the operator norm of A& is related to the z-transform A(z) by

|]A[| = gsgsg sup||A(z)||2 (5.9)
zevu

where the set U is the unit circle in the complex plane. Since only
bounded operators A are of interest as the system matrix for a Toeplitz
system, it is assumed that the z transform of A does exist and that the
region of convergence includes the unit circle. The region of conver-
gence of A(z} is an annulus in the complex plane consisting of all =z for
which the defining sum (5.7) is absolutely convergent. Likewise, the
transforms B(z) and C(z) are also assumed to exist and to have regioﬁs
of convergence containing the unit circle. Melzer and Kuo [30 ] and
Chu [ 31 ) have studied these systems and mistakenly claim that a suffi-

cient condition for the existence of (say) A(z} is that lim Ak = 0.
koo
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Of course this condition is neither necessary no- sufficient;'what does
suffice is that the sequence geometrically approach zero in at least one
direction.

A further assumption that will be useful throughout this chapterx
is that all the z-transforms of the matrices used in the Toeplitz model
are rational functions of z. This assumption is not necessary fér much
cf the develcopment, and it will be explicitly noted when the rationality
assumption is used. What this assumption allows, howevér, is the construe-
tion of an efficient procedure for optimal linear filtering or optimal

control. In summary,

Assumrption 5.1. All the z-transforms of matrices used in Toeplitz models

are assumed to exist, to have regions of convergence including the

unit circle, and to be rational functione of the complex variable z.

Survey of Chapter 5 - The remainder of this section will present the

results of Melzer and Kuo [ 307 and Chu [31 ] on the optimal control of
continuous-time Toeplitz systems. Their work deals with the use of the
z—transform for the off-line design of centralized and decentralized
feedback controllers. Section 5.2 discusses attasi's [ 28 ] work in re-
cursive processing of noisy images, Attasi's model and filtering solution
are presented and related to Teeplitz systems. This solution employs the
z-transform to obtain an efficient on-line implementation of the filter,.
The estimation problem for general Toeplitz systems is then posed and

solved in Section 5.3. The goal of this section is a filter which has an
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efficient on-line implementation. The key to obtaining such an efficient
processor is the use of the spatial dynamics of the Toeplitz systems as
they appear in the spatial z-transform. The implications of this result
for filtering of large-scale systems and some implementation issues of such
a filter are also covered in Section 5.3. The coptimal control problem is
addressed in Section 5.4 as the dual of the Toeplitz estimation problem.
For Toeplitz systems having a block diagonal input matrix, i.e.,
Bk = Boak,o , the optimal control for each subsystem is expressed in a

novel and interesting fashion. Section 5.5 contains some concluding

remarks about the chapter.

5.1.2 Optimal Control via z-Transforms

Motivated by the infinite string of vehicles problem (see 2.1.3),
Melzer and Kuo [ 30) investigated the optimal regulator problem for
Toeplitz systems. They considered a quadratic performance index and ob-
tained the centralized, full-state feedback solution. This solution was
arrived at by using the z-transform to decompose the original problem
into decoupled lower-order problems indexed by z.

Melzer and Kuo consider the continuous-time version of the dynamics

(5.1),

4+
d =
ac ’Hc(t) —j;mp.k_ixi(t) + B, _;u, (€) (5.10)
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The optimal control problem is to find the sequence of control vectors

which minimizes the performance index
T

1
J =%x'(T)F x(T) + Py fx'(t)Q x{t) + u'" ()R uft) dt (5.1L)
" o
for arbitrary initial conditions x(o) where F, @, R are Toeplitz matrices.
The notation x'(t)Q x(t) is defined by
40 400
1 = t
x'(t)Q x(t) Z Exi(t)gi_kxk(t) (5.12)

j=—stck=—0

Also, it is assumed that F 290, Q>0, and R> 0, i.e. for example

400 oo

[ ] >
X Fi—k X >0 (5.13)

1=wt0 K=—0o

for all seguences {xk}. By assumption 5.1, the matrices F, Q, R are
assumed'to have rational z-transforms.

This problem is the infinite-dimensional version of the standard
linear-quadratic regulator problem. Using the maximum principle, Melzer
and Kuo obtain a solution which is formally the same as the linear-guad-
ratic regulator solution. In the z-domain, the optimal control at time

t is just
uf{t,z) = Gi{t,z) x{t,z) (5.14)
when the feedback gain G(t,z) 1is given by

G(t,z) = —R—l(z)B'(z-l)K{t,z) ‘ (5.15)
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K{t,z) is obtained from a Riccati eguation,

S K(t,2) = K(t,2)Al2) - A'(z DK(t,2) - 0z)
-1 -1
-K{t,z)B(z)R ~(2)B'{z ")K{t,=z) {5.16)
where K{T,z) = F(z). Taking the inverse transfcrm yields the optimal

controller in the spatial or index domain,

il

u(t) G(t) x(t)

RYBTOK(E) x(t) (5.17)

where G(t) and K(it} are block Toeplitz matrices whose elements are given
by the inverse z-transform of G(t,z) and K(t,z}, respectively. The
matrix K{t) is symmetric and positive semi-definite just as in the
finite-dimensional case,.

The solution of the Toeplitz regulator problem is, from the Riccati
equation (5.16), decomposed into the solution of lower-order, indespendent

subproblems. Each subinput, however, depends upon all the substates,
+0
uk(t) =Z Gy (8) =, (1) (5.18)
j_=—oo ~1 €

That is, this solution requires that the information of all the states
be available to every subsystem. The efficient implementation of this
operation will be discussed later. Chu [ 31 ] moved beyond this centra-

lized problem and considered optimal regqgulation when the individual sub-
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inputs were only a function of some "local" information.
In Chu's decentralized regulator, the information available to the
th . th
k controller is assumed tc be only the k suboutput yk(t). For
example, if the information structure were knowledge of the state of

the local subsystem and the two nearest neighbors, thén
X t ‘
k—l()

Yk(t) = Xk(t) (5.19)

(t)
lxk"rl |

i.e. Ci = I for i=0,1,-1 and zero otherwise. The control is constrained

to be a linear, nondynanic function of yk,
uk(t) = Goyk(t} ' (5.20)

The design problem 1s to determine the nXp matrix GO, thereby specifying
the controller for all the subsystems. Chu considers the infinite-

horizon version of the cost {5.1),

o

J = % fx‘(t)Q x{t) + u' ()R u(t) 4at (5.21)
o

and proposes choosing GO to minimize this cost. WNote that even for con-
trollable systems, there is no guarantee that é minimizing or stabilizing
GO exists because of the constraints imposeé on the control system.

The closed-loop system is still Toeplitz and has dynamics

d

TS x{t) = [A + BGC] x(t) (5.22)
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or

x(t) = exp{[A + BGC]t} x(o) (5.23)
where G 1s a block diagonal Toeplitz matrix with diagenal element GO.
In the transformed domain,

x{t,z) = exp{[A(z) + B(z)GOC(z)]t}x(O;z) (5.24)

The transformed version of the ceost is
1 . -1 -1
J = 5 <x'(t,z )Q(z)x(t,z)>o + <u'(t,=z )R(z)u(t,z)>o dt (5.25)
o

where < >O denotes the zeroth element of the inverse z-transform, i.e.

<x(t,z}>o = x(t,z) z_l dz (5.26)

2173

Substituting (5.24) into the expression for the cost yields

==

1 ' -1 1 -1 ' '
—f <x'(t,z ){Q(z) + C'(z )GO R(z)GOC {z)}x(t,z)>o dt

2
o

]
If

Il

.;:.fq{' (o,z"l)exp{[f-\(z_l) + B(z_l)GOC(z_l) ] 't}{m(z}} X
C

X exp{[A(z) + B(z)GOC(z)]t} x(o,.z)‘r"0 dt (5.27}
where M{z) = Q(z) + C' (z-l)Gc') R(z) GOC(Z) . Interchanging integration with

respect t and z and using the vector identity x'y = tr(yx) gives

J = <%’- tr {OfeXP[ACL(z_l)t]' M(z)exp[ACL(z)t]X(O,Z)x‘ {o,2) dt}>D

(5.28)
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where ACL(z) = Az} + B(z)GOC(z) is the transformed closed-loop system
| matrix.

The minimization of J over G0 produces a result which from (5.28)
will in general depend upon x{o,z). In order to eliminate this depen-
dence, the initial disturbances are assumed to be random variables with
zero mean and transformed covariance X(o,z). (see [ 55 ]}. The opti-

mization problem, then, is to choose Go to minimize

oG

1 - _
J =<“2“ trafexp[ACL(z l) 'tIM(z) exp[ACL(z)t]X(o,z) dt> (5.29)

Chu gives the following necessary condition for the optimal feed-

back gain GO:

<R(Z)GOC(Z)P(Z)C‘(2-1)>O + <B'(z hKk()Plz)C' (2 5> = 0

where K(z) and P(z) are given by
K(2) By, (2) + Aci(z_l)K(z) + M(z) =0 (5.31)
P(z)Acitz_l) + ACL(z)P(z) + X(o,z) =0 {(5.32)

Note that ACL and M are functions of Go' so that this necessary condition
is a coupled set of nonlinear equations. The proof of this result is
similar to the proof of the circulant case discussed in Section 3.2,

The details may be found in [31 ].

This necessary condition for the optimal decentralized regulator
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is not nearly as nice as the solution given by Melzer and Kuo for the
centralized regulator. The z-transform does nat decompose the decentra-
lized problem. In both cases, it should be realized, the solutions mush
be obtained analytically and not numerically. This is because the in-
dexing variable z is a continuous variable. This requirement makes the
solution of either problem so difficult that the only examples published
in the literature are for first and second order subsystems. Further-
more, the on-line aspects of these solutions have been neglected. Thus
these solutions to the centralized and decentralized regulator problems
are somewhat less than satisfactory. In particular, it is still of
interest to determine an efficient solution of the regulator problem that
is applicable to as general a class of Toeplitz systems as is possible.
Analcgous results can be obtained for trhe discrete—-time centralized
and decentralized regulator problems. Also, by duality, the linear
least~squares estimetion problem for Toeplitz éystems can be treated
similarly. Attasi [ 28 ] has treated the estination problem for a special
type of Toeplitz system. The next section discusses Attasi's work with
emphasis on his efficient filtering algorithm. With the insight gained
from this algorithm, the gsneral Toeplitz estimation problem is solved.
The efficient solution of the optimal control problem is then obtained

by duality.
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5.2 Attasi's Work in Image Processing

The z-transform has been shown to be a wvehicle for the off-line
solution of linear-guadratic optimal control problems. The work of
Melzer and Kuo discussed in 5.1.2 was directed toward the computation
of optimal feedback gains via the z-transform. This transformation is
also useful for considering the on-line solution of these problens.
BAttasi [ 28 ] has used z-transform technigques to cbtain an efficient
algorithm for filtering in a very special type of Toeplitz system. The
overall objective of this chapter is to use the z~transform in both parts
of control and estimation problems. That is, the transform domain will be
used to obtain, off-line, a solution which has an efficient on—liﬁe im-
plementation.

There has been much work in the image processing field directed
toward the recursive estimation of discretized images from observations
corrupted by additive noise [ 25 ]. In the search for computationally
tractable estimation formulas, the use of two-parameter models for images
has proved helpful [ 27 ]. Of primary interest in this section is the
two-parameter model intfoduced by Attasi [ 28 ]. This model will be
shown to give rise to a very efficient recursive estimation procedure.

Attasi has considered least-squares estimation of an image z(i,3j}

under noisy chservations

y(i,3) = 2{i,3) + v(i,]) (5.33)

where the image is generated by
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z(i,3) = H x(i,3) (5.34)

x(i,3) = le(i—l,j) + F2x(i,j~1) - Flex(i-l,j~l) + w{i-1,3)

{(5.35)

with the restriction that Fle = FZFl' Here x{i,]}) EIRn, yv(i,3) EJRP
and w(i,j) and v(i,3j) are independent, zero-mean, Gaussian white noise
processes with covariances Q and R, respectively. Equations (5.33}-(5.38)
are a stochastic realization of the doubly indexed segquence of vectors
{vd, 1.

The estimation problem is to compute the estimate ;(i,j) of x(i,3)

given the observations y(k,%) for k < i and all &, i.e.
x(i,j) = E {x(i,j)|y(k,2), k <iand 2= 0, il,...} (5.36)

. . . . . . . .th _, .
This is "line-by-line" filtering since the entire i line {x(i,9)}

j=0,t1,...
is estimated from the observations of all the lines to the
left of line i. An estimate of the image z(i,j) is then simply
z(i,3) = H x(i,3) {(5.37)

The filtered estimate x(1,j) is obtained by Attasi from a tweo siap
procedure analogous to discrete-time Kalman filtering. First, the pre-

dicted value x(i,j) is defined as

x(i,3) = E{x(i,j)|y(k,ﬂ,), k <3 and £ = 0,4_:1,...} (5.38)
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and may be computed from
X(i,3) = F x(i-1,3) (5.39

At this point, it is unclear why x%(i,j) is given by (5.39); this will
become obvious shortly. 7The second step is the estimation of the error

e(i,j) in the predicted value,
e(i,j) = x(i,3) - %x(i,3) _ (5.40)

from the cbservations of line i. COnce the estimate g(i,j) is available,
the filtered estimate of x(i,]) is just
x(i,3) = ®(i,3) + e(i,3) (5.41)

The remaining problem, therefore, is computing the estimate of the

error from the observations {Y(i,j)}._ along line i. Define the

=0,+1,...
innovations on line i as
I(i,3) = y{i,3) - H X(i, (5.42)
Then it is immediate that
1(i,3) = H e(i,d) + v{i,]) {(5.43)

i.e. the innovations are noisy measurements of the ervors. Thus the
innovations along line i can be used te produce e(i,j) as the solution of
& sroothing problem along the line. This smoothing problem is easily

solved once the autocorrelation function Efe(i,2) e'(i,k)} of the pre-
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dicted error of line i has been determined. Attasi is able to specify
the error autocorrelation function by finding a recursive equation for
the spectrum of the error [ 28 J. The details cf using the spectrum to
perform smoothing and thereby obtain ;(i,j} are given in Section 5.3,
The filtering algorithm is illustrated in Figure 5.1.

This two step filtering procedure, consisting of prediction by
(5.39) and then smoothing, was developed by Attasi for the two-parzmaeter
model (5.33)-{(5.35). The nature of filtering orocedure, however, is
suggestive of an infinite -dimensional one-parameter model -- infinite-
dimensional because each line has infinite extent, one-parameter because the
lines are handled one at a time., It will nowv be shown that (5.33)-(5.35)
are eguivalent to a Toeplitz system. 1In Section 5.3, Attasi's two step
filtering procedure will be extended to a much wider class of Toeplitz
systems.

Define the infinite-dimensional state and driving noise vectors as

xii,-l)\ wii,=1) (5.44)
x(i) = | x(3,0) L wi) =] owi, o
x(i,1) w(i,1)

Also, two Toeplitz matrices are defined,
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a.) uncoupled prediction

b.)

~

[ ]
X(i,k) = %(i,k) + e(i, k)

smoothing along line i

yvields ef{i,k)

Figure 5.1 Attasi's two step filtering procedure consists of

predicting ahead from line i-1 to line i and then

smocthing along line i.
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5= F (5.46)

Then it is claimed that the dynamics of Attasi's model may be written

as
T x(i+l) = T 8 x2(i} + w(i} {(5.47)
. . . .th
This is easily proved by writing out the j component of (5.47),

—sz(i+l,j-l) + x(i+l,3) = —F2F1 x{i,j-1) + le(i,j) + wi{i,q)

(5.48)

Recalling that F1 and F2 commute, it is easily secen that (5.48) is
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identical to (5.35). Pre-Multiplying (5.47) by T-1 yields the Toeplitz

system

x(i+1) = s x(i) + T * w(i) (5.49)

where

T = F I (5.50)

Note that this requires that all the eigenvalues of F2 lie inside the

unit cirxcle. Componentwise, the dynamics (5.49) are

0
. _ , L .
xk(1+1) = lek(l) + EELFZ wk-g(l) {5.51)

Thus the two-parameter model used by Attasi can be considered to be
a Toeplitz system. Also, from (5.49) it is clear why the predictien
step is just (5.39) —-- the system matrix is diagonal. Once the dynamics
are written as (5.49), it is possible to use Attasi's filtering algoritﬁm
even if Fl and F2 do not commute.

Those Toeplitz systems which correspond to aAttasi's two-parameter

model are a very special class within the set of all Toeplitz systems.

- One might ask whether this class could be enlarged and still permit
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filtering by prediction and smoothing. This is the subject of the next

section.

5.3 The Estimation Prcblem

5.3.1 TFormulation and Solutiecn

Motivated by the work of Attasi on estimation for two-parameter mo-

dels, the problem of obtaining minimum wvariance estimates for Toeplitz

systems is addressed. The cobjective is to use z-transforms to determine

a filter which has an efficient on-line implementation.

A stochastic discrete-time Toeplitz system is one of the form

400 .
xk(i+1) = E Ak._g,xg,(i) + Dk—ﬂ,wli(i) (5.52)
L=wco .
400
Yk(i) =é§;ick_£x£(i) + Vk(i) {5.53)

where k = O,tl,tZ,... . Here the noises wz(i) and vg{i) are independent

zero—nmean Gaussian white noise processes,

E{Wk‘i’“i‘j)} % %15 %2 (5.54)

E{vk(i)vi(j)} R, 6, L5, (5.55)

The initial state xk(O) is also assumed to be zerc-mean and Gaussian and

is independent of the driving and cbservation noises. In terms of the

infinite~dimensional state vector x and observation vector y, (5.51) and

(5.52) are written as
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x(i+l) = A %x(i) + D w(i) (5.56)
y(i) = ¢ x(i) + v(i) (5.57)

where A, C, D are Toeplitz matrices. The interpretation here is that
xk{i) is the state of subsystem k at time i.

The filtering problem is to obtain the minimum variance estimate
Qk(ifi) of xk(i) given all the observations up to and including time i,
{v,(3){0 £ 3 < i and a11 &}, Under the condition of detectability for
the system (5.56) and (5.57), Hager and Horowitz [ 82 ] have shown that

the solution to this problem is a Kalman filter,

X(i]1) = %(i]i-1) + K@) [y(3) - ¢ x(i]i-1)] (5.58)
X(i]i-1) = a %(i-1]i-1) | (5.59)
K(i) = P(i]i-1)c'[c p(i]i-1)c* + r]7T (5.60)
P(ili) = [I - k(i)clp(i]i-1) (5.61)
P(i]i-1) = A P(i-1li-1)A’ + DOD!  (5.62)

where the matrices P(i]i) and P(i]i—l) are covariance matrices of the
filtered.error ;(i|i) - x{i) and the predicted error ﬁ(ili—l) - x(i),
respectively. Equaticns (5.58), (5.60}, (5.61) define the measure-—
ment update step; the prediction step is given by (5.59) and (5.62)

If the initial state covariance matrix P(O[—l) is Toeplitz, then
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K(i), P(ili), and P(i{i-1) will be Toeplitz matrices for all i. Thus the .

Kalman filter can be written in the z-transform domain,
R(i,z|1) = &(,z|i-1) + K1, 2ly(i,2) - C(2)R(L,z]i-1)) (5.63)
x(i,z|i-1) = A(2) =(i-1,z]i-1) {5.64)
K(i,z) = P(i,z] i-1)c*(2) [c(z)P(i,z]i-1)c*(2) + R(z)} * (5.65)
P(i,z|1) = [T - K(i,z)c(=)1P(i,z|i-1) (5.66)
P(i,z|i-1) = A(z) P{i-1,z|i-1) A*(2)+ D(z)Q{(z)D*(z) (5.67)

The z-transforms P(i,zli] and P(i,zli—l) are the spectra of the filtered
and predicted errors, respectively.
It is to be noted that the Kalman filtering equations (5.63)-(5.67)

can bhe formally thought of as defining the optimal filter for the system
x{i+l,z} = A(=2) x{i,z) + D(z) w{i,=z) (5.68)
y(i,z) = clz) x{(i,z) + v(i,z) (5.69)

where the noises w and v are white noises in both 1 and z, i.e.

Il

Elwli,z )w' {3,z )] = @ 5(21—22)6i'j (5.70)

Il

E[v(i,zl)v'(j,zz)] Rb 6(21_22)5i,j (5.71)

These equations, of course, are purely formal. But in the transform

domain, the dynamics and observations are decoupled and the noises are
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independent. Thus the filtering problems for different values of z are
independent of one another, e.g. the estimate ﬁ(i,zoli) depends only aon
the observations y(j,zo), j € i. The solution to the filtering problem,
therefore, is just a set of low-order Kalman filters, (5.63)~(5.67),
indexed by the continuous transform variable z.

In order to determine how the Kalman filﬁer (5.58}-(5.62) can be
efficieﬁtly implemented, the prediction and update cycles of the discrete-—
time filter will be addressed separately. First, the measurement update

Procedure will be considered. The predicted error of substate k at time

i is definred as
e (i) = x (i) - & (i]i-1) (5.72)

It is immediately seen that the innovations process Ik(i) is related to

the predicted error by

400
I (i) =y, () -Emck_gfcg(i[i-l)

+oo

rg;mck_ﬂeg(i) + v (9) (5.73)

By the Orthogonal Projection Theorem of Hilbext Space Theory [ 83 1,

the estimate ﬁk(ili) is simply the sum of ﬁk(ili—l) and Ek(i), the
optimal estimate of ek(i). Thus the problem of interest is to determine
the estimate ﬁk(i). By (5.58), the optimal estimate of ek(i) is just
the convolution of the filter gains {Kk(i)} with the innovations process

{Ik(i}}.
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g (1) = Ko (1) T4 | (5.74)

Schoute,'gz;g;, [ 76 ] have given a recursive realization of a Toe-
plitz operator such as the filter gain K(i) in (5.74). The context in
which they worked was recursive estimation of images. They modeled ‘an
image as the output of a stochastic, discrete-time Toeplitz system (5.52)
and (5.53). The Toeplitz systems considered, however, were of a very |
special tfpe -- the substates were scalars, the output Yk(i) was just
x&ﬁi) + vk(i) (i.e. Ck = Gk'o), and the system matri# A was just p (a
scalar between 0 and 1) times the identity. The image enhancement prob-
lem was then solved by performing filteriﬁg for the Toeplitz model.

Schoute, EE;EE' observed that if the linear dynamical system S has

impulse response'{xk(i)} (i is fixed), then by (5.74) the esti-
- k=0,+1,...

mates ak(i) are the output of S when the input is Ik(i). The system S,
however, is not a causal system since Kk(i) is not zero for all negative
k. It is possible to express the impulse response of § as the sum of

a causal and an anticausal part,

'{Kk(i)}='{h;} +'{h;} | (5.75)
where

{a} = {.0.,0,0,0K (1), X[ (5), Xy (8.}

{..ox_ (1), x_ (1), (1-0)K (i),0,0,...}

a1}

+, - .
and o is an arbitrary scalar. Let S (S ) be a causal (anticausal) dynam-
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+ -
ical system with impulse response {hk} ({hk}). Then
, +
e, (1) = Ek + £ ‘ (5.76)

¥, - + -
where Ek (Ek)is the output of S (S ) when the input is Ik(i). The system

S 1is anticausal for increasing %k, but causal for decreasing k. That is,
if 8 is viewed as a linear system running backward over k, then it is
causal. The estimate @k(i) is the sum of the outputs of two linear dy-
namical systems -- one (S+) running forward over k and one (S ) running
backward. This provides a recursive method for implementing (5.74).
Moreover, under Assumption 5.1 that the transforms a(z), C(z), D{z), and
P ,z]—l} are all rational, the transformed filter gain K(i,z} is also
rational for all i. This implies that the sequences {h;} and'{h;} have
rational z-transforms and, therefore, the linear systems S+ and § have
finite-dimensional realizations. It is to be noted that Assumption 5.1
is only needed to insure that there exist finite-dimensional realizations

+ -
of 5§ and § .

For the special type of Toeplitz systems considered by Schoute, et al.,

the filter gain matrix is symmetric, K = K'. This means that
+ —_— .
= 5.76
hk h_k ( )

for all non-zero k. Equation (5.76) holds for all k including zero if a

. 1 . +
is taken to be o In this case, the forward system 5 and the backward

system S are equal. Thus the same finite-dimensional realization can be



-208-

used to compute € and E;.

+
k

Summarizing the development this far, the update cycle of the filter
congists of the following steps:

(1.) propagate the error spectrum by (5.65)-(5.67)

X . . + -
(2.) obtain realizations for S and §
+ .
{3.) run the forward and backward systems S and S with
input Ik(i)
(4.) combine the two outputs by (5.76) to get gk(i)

(5.) the updated estimate is x (i]i) = x (i]i-1) + e (1),

The spectrum propagation and realization preblem can be done off-line.
Frem (5.73), it is clear that the innovations are nothing but linear
observations of ek(i) corrupted by additive noise., 1In general, each Ik(i)
depends on all the eg(i). In the special case when C(z) = CO, the inno-
vation Ik(i) is simply a nolsy observation of ek(i). Then determining
{ek(i)} from {Ik(i)} is a smcothing problem. It is interesting to note
that the models of both Attasi [28 ] and Schoute, et al. [ 76 ] satisfy
this condition on C(z}. The physical interpretation of this assumpticon
is that each subsystem observes a suboutput which i1s a funcition of only

the local substate.

; - . - ) . . — 6
Assumption 5.2 C(z) Co' i.e Ck CO X, o0

Even with assumption 5.2, the optimal estimate ak(i) cannot be made

(1)

on the basis of Tk(i} alone since the predicted errors ek(i} and e

L

are correlated. The cross-correlation is given by
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P, _g(ili-1) = Elep(iye ()] (5.77)

and so P(i,zli—l) is the spectrum of the predicted error process., For
all i, P(i,z'i-l) will be a rational function of z if Assumption 5.1 is
valid. In other words, the stationary discrete process ek(i), as a
function of k, has a rational spectrum. Therefore, by the spectral fac-
torization theorem [ 84 ], there exists a finite-dimensional linear

time-invariant system

E;kﬂ(i) = ¢(i) Ek(i) + T(i)uk(i) (5.78)

g (1) = (1) Ek(i) (5.79)

driven by the vector white noise process uk(i) having identity covariance,
such that the spectrum of Ck(i) equals P(i,zli-l). That is to say, the
seguence ek(i) can be identified with the segquence gk(i) and viewed as
the output of the above system. Then the innovaﬁions Ik(i) are simly

noisy linear observations of the state gk(i),
Ik(l) = COO(l) gk(l) + Vk(l) (5.80)

and can be used to estimate it. The optimal estimate ék(i) is now
O(i) Ek(i) where Ek(i) is the smoothed estimate of Ek(i).

There are many ways te obtain the smoothed estimate Ej(i); the
discrete-time two-filter smoother described in Appendix B is one alterna-

tive. Using this smoother, the estimate is
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~ ~ ~ :
. . -1, f . -1, . r .
= P + .
Ek(lJ Ps(l)[ £ (1) €k|k(l) P_(4) Ek|k+l(l):| (5.81)
-1
. -1, -1, . -1
=| P - .
Ps(l) [ £ (i) + Pr (1} 4] (1)] (5.82)
where
) .
f , . . .

Eklk(l) = the forward Kalman filter estimate of Ek(l)

Ar

£k|k+l(i) = the reversed-time Kalman filter one-step-ahead
predicted estimate of Ek(i)

Pf(i) = the steady=-state covariance of the forward
Kalman filter estimate

Pr(i) = the steady-state covariance of the reversasd-time
Kalman filter predicted estimate

Ps(i) = the smoothed error covariance

o(i) = the steady-state a4 piloii system covariance

of (5.78)
The forward Kalman filter operates in the positive k direction; the
reversed-time Kalman filter operates in the negative k direction. Both
filters are in the steady-state since the k index extends to plus and
minus infinity. This smoother may be interpreted as realizing the filter
gain watrix by two caﬁsal dynamical systems, as proposed by Schoute, et al.,
by choosing the parameter o in (5.75) equal to one.

Under Assumptions 5.1 and 5.2, the update cycle of the filter can be
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summarized as
(1.) propagate the erxor spectrum by (5.65)~(5.67)
(2.) obtain a realization (2(i),T(i),0(i)) of P(i,z|i-1)
(3.} perform forward and backward Kalman filtering for this
system
(4.) combine the filtered estimates according to (5.81) to
get the smoothed estimate
(5.) the updated estimate is ﬁj(ili) = ﬁj(i[i—l) + O(i)gj(i)
Implementation considerations for this algorithm will be discussed in
Section 5.3.3. For now it suffices to note that the first two steps
of this procedure can be performed off-line.
The remaining step in the filtering algorithm is prediction. 1In
the spatial domain, the prediction étep will ke a convelution sum,

+oo
R (1]1-1) = >

2=_mAk_R§£(i-l|i—l) (5.83)
One noteworthy feature of this expression is that if the dynamics of
each sybsystem depend directly on only a finite number of other sub-
systems, then the convolution sum (5.83) will be a finite sum. That is,
suppose Ag is non-zero for only a finite nuwber of values, say % € J.
Then the predicted estimate ﬁk(i|i-l) can be computed from only
{ﬁk_g(i—lli—l)lﬂ €J} , a finite set. 1In the general case, the Toeplitz
operator A can be realized by the procedure introduced earlier for the

operator K(i}. Namely, consider the sequence {Ak} to be the impulse response

of a linear system and then express this response as the sum of a causal
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~and an anti-causal part. In this way the predicted estimate ﬁk(i[i—l) is
obtained as the sum of the outputs of a forward and a backward linear
system. These systems have inputs Qk(i—lli—l) and have a finite-dimen-
sional realization if A(z) is rational.

In summary, the prediction and update steps of the Toeplitz Kalman
filter can both be realized by forward and backward linear dynamical
Systemé. Under Assumption 5.1, these systems are finite-dimensional for
all i. The prediction step can be obtained as a finite sum whenever there
are only a finite number of subsystem interactions. Under Assumption 5.2,
the update step is equivalent to a smoothing problem and can be realized
by forward and backward Kalman filters.

The models used by Attasi [ 28 ] and Schoute, et al. [ 76 ] for
image processing fit inte this framework very nicely. In both cases
(see (5.49)), the Toeplitz system matrices are block diagonal and so
prediction is particularly simple, Also, both classes of models employ
a block diagonal C matrix; hence Assumption 5.2 is satisfied, and smocoth-
ing can be done to update the estimates. The substates in the model of
Schoute, et _al. were constrained to be scalars because they were con-
sidering enhancement of monochromatic images. For color pictures, it is
necessary to have vector substates. The development of Section 5.3.1
can:therefore, be viewed as extending the algorithm of Schoute, et al.

to coler pictures. This was left as an open problem in [ 76 ].
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5.3.2 Implications for Filtering in Large-Scale Systems

The Kalman filter for a large-scale system requires, in general, the
totally centralized processing of all the subsystem outputs. In the case
of a large-scale system modelled as a Toeplitz system by (5.52) and (5.53),
the filter has a special structure. 1In particular, the éreceding devel-
cpment will be applied to show how the Kalman filter can be implemented
with only very limited inter-subsystem communication.

Consider first the measurement update step for a Toeplitz system
satisfying Assumption 5.2, In this case, the update step is equivalent
to a smoothing problem and is accomplished by two steady-state Kalman
filters. In order to better understand the update procedure, consider
subsystem k as it estimates ek(i}. Subsystem k-1 computes the forward

. of . . . . .
estimate £ (i) and communicates it to subsystem k. The estimate
k-1[k-1
l\f .
Ek[k(l) can now be computed as

SE L af
Eklk(l) = ¢(1) & (i) + K

(1) [Ik(i) - C O(i) B(L)ET (i)]
k-1fk-1 °

£ x-1[k-1

(5.84)
where Kf(i) is the steady-state gain of the forward filter. This esti-
mate is then furnished to subsystem k+1, and the forward filter continues
up the line. Meanwhile, the reversed-time filter is operating down the
line independently of the forward filter. At some point, the reversed-time
filter reaches subsystem k+l. The one-step-ahead predicted estimate for

the reversed-time filter, {i), is then furnished to subsystem k from

zr
£k|k+l
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subsystem k+l. The next estimate is computed from

~ ~

ro oy ox o frr . oy e oArsy £ .
gk—l‘k(l) = @r(l){Ek e (1)t Kr(l)[Ik(l) COO(l) Eklk+1(lﬂ}

{5.85)

where Kr{i) is the steady-state gain of the reversed-time filter and

the reversed-time system matrix is @r(i) = U(i)_@'(i) G_l(i). The re-—
versed-time filter then continues in the negative k direction. Subsystem
k can now use (5.81) and (5.82) to obtain the smoothed estimate‘gk(i) and
then 8 (i) = 0(i) £ ().

The striking aspect of the update step of this Kalman filter is the
very limited communication between adjacent subsystems. All that is re-
quired is that each subsystem furnish its tweo nearest neighbors with es-
timates of the process Ek(i). When Assumption 5.2 is.not valid, the up-
date step can be realized by a causal and an anticausal dynamrical systei.
These two systems do not have the interpretation of Kalman filters, but
they can be implemented by the same inter-subsystem communication pattern
described above. Therefore, the update step reguires only limited com-
munication between adjacent subsystems, regardless of whether Assumption
5.2 holds.

The prediction cycle of the Kelman filter is implemented by the.con—
volution sum (5.83). Consider the important case of a Toeplitz system
with only nearest neighbor interactions, i.e. Ak=0, k# -1,0,1. The

Predicted estimate of substate k is then simply
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ﬁk(ili—l) = A (i-1]i-1) + AR (i-1]3-1) + a & _ (i-1]i-1)

~17%k+1 1

(5.886)

This means that subsystem k can form the predicted estimate of its own
state from the state estimates of its two nearest neighbors. That is,
each sybsystem can predict optimally with only nearest neighbor communi-
cation of local estimates. Of course, whenever the subsystem interactions
are localized spatially, a similar result holds. Indeed for systems of
the type considered by Attasi or Schoute, each subsystem is able to pre-—
dict independently of all others. 1In the general case, the operator &

can be realized by two linear dynamical systems. The prediction step,
then, requires only communication hbetween adjacent subsystems, the same

inter-subsystem communication pattern as for the update step.

-5.3.3 Filter Implementation Issues

The optimal centralized Kalman filter for Toeplitz systems satisfying
Assumption 5.1 has prediction and update cycles which involve a very in-
teresting communication pattern among the subsystems. The purpose of
section 5.3.3 is to examine in depth some of the isswves that arxe involwved
in implementing this Xalman filter.

The optimal filter, of course, will be time-~varying. For the update
step, this implies that for each time i, a realization problem must be
solved for S+ and Sh, the two finite-dimensional linear systems which
are used to implement the operator X(i). The computational problem of

determining these two realizations can be done off-line. The transformed



-216-

filter gain K{i,z) is recursively computed from the discrete-time Riccati
equation (5.65)-(5.67), and hence the degree of K(i,z} as a rational
function of z grows rapidly with increasing i. 1In cther words, the com-—
plicating fact in this filtering procedure is that the order of the
realizations S+ and § is guickly increasing with i. One is lead, there-
fore, to consider a time-invariant suboptimal filter.

The time-invariant steady-state Kalman filter is specified by the
steady-state predicted error ccvariance P. The corresponding spectrum
P(z) is given by the discrete-time algebraic Riccati equation in the

transform domain,
P(z) = A(Z){P(Z) - p{z)c*(z) [C(z}P(z)C*(z) + R]—IC(Z)P(Z)} aA*{z} +
+ D{z)Q D*(z) (5.87;}

The difficulty here is that even though P(i,z|i—l) is a rational function
of z for all i, in general, the limiting value P{z) will not be a xa-
tionzl function. There are cases when P{z) is raticnal, as the following

example demonstrates.

Example 5.1. The Toeplitz system in this example has scalar subsystems

and dynamics given by
xﬁi+1} = axk_l(l) + xk(l) + wk_l(l) + wk(l)

The output Yy is just the substate xk(i) plus nolse, and the driving and

observation ncises have covariances equal to one. Thus
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Example 5.1. (contd.)

B(z) = z T+ 1
C{z}) = 1

D(z) =2+ +1
0=1

R =1

‘In the scalar case, (5.75) reduces to
[C(Z)C*(Z)]PZ(Z) + [R-A{z}A*(z)R - C(z)C*(z)D{(z)D*(z2)Q]P{z)
- D(z)D*{z)QR = O
Substituting,
p(2) + [ - (02 D41 (az+l) - (2 T#1) (z+1) 1P(z) - (2 741} (z+1) = 0
p2(z) - [(o+l)z+ (0242) +(o+l)z 2IB(z) - (4242 1) = O

From the quadratic formula,

- 112 1
P{z) = %‘{[(a-i-l)z-l-(otz-{-?_)-l-(ot-{-l)z l:|+\/[(oa+1)z+(a2+2)+(u+1)z l] +4(z+2+z l)}

e P

{Ea+l)z+(u2+2)+(a+l)z“l] +

|

2
3 2 - 2
+ (a2+2a+l)z2+(2a3+2u2+4u+8}z+(u4+6a2+4a+14)+(2a +20 +40+8) =z i(a +20+) = }

<:‘Ns
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Example 5.1. (contd.)
. . 3 2 .
For ¢ between zero and one satisfying o -¢"-20+1 = 0, the expression

~172
under the radical is [(a+l}z+(—u2+4u+2)+(a+l)z l} . Then P(z} is

P(z)

%-{Ea+1)z+(a2+2}+(a+1)z-%]+l}a+l)z+(—u2+4a+2)+(a+1)z—1]}

(0+1)z + 2(a+l) + (arl)z ©

In this case, P{z) is a rational function of z. One realization of

this gpectrum is

El(k+1) 0 1 El(k)
= + ufk)
Ez(k+l) ¢ 0 Ez{k)
k
El( )
= 1]
Ez(k)
0] 9]
where E u(k)pu'(k) = . The steady-state covariance g of this
0 o+l
system satisfies
o
1 02 0 1 o, o, o o 0 0
= +
02 03 0 0 02 03 1 0 0 o+l
0, 0
0 o+l




-219-

Example 5.1 (contd.)

o1 0
Hepce O = - From Appendix B, the reversed-time system
C o+l
matrix is
o] 0
¢r = q¢'0 1 =
1 0

and the reversed-time driving nocise Process ur has covariance

Q. =0 - ¢.040
1 0 O offo 131 o
= (o+1) - {o+1)
0 1 1 oo olto 1
a+l O
0 0

The predicted error covariance of the forward steady-state Kalman

is obviously of the form
p 0 -
0 o+l

where p 1s to be determined. The gain matrix is then

1

b
Il

Pf(-)O' [@Pf(-)@ + R}

i
L
—
¢
+
)

0 otl 1 0 o+l 1
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Example 5.1. (contd.)

Kg = ('5%;5) ,:0:1]

The updated error covariance P_{+) is given by
4,

1

pf(+) [ - KfO]Pf(—)

1 0
_(_2.;.1+_) i 1 1) "0
o 1 P¥C /ot 0 a+l
1 pla+2)  -plo+l) ]
(2+p+“ )[—p(aﬂ) (p+1) (a+1)

Then Pf(—) must obey

P.(-) = ) Pf(+)¢' + 0
[0 1]( L |:.O{0t+2) —p(a+1) ][o o]
0 o 2+p+°") peeryy (e (el o
_ (1+0) (14p)
0 0 } _ (2+p+0} ©
+ =
[0 o+l 0 a+l

Therefore, p is given by

_ (1+¢) (1+p)
(2+p+0)

p = - %—+ %-\/5+-a'
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Example 5.1. (contd.)

"Similarly, the covariance and gain matrices for the reversed-time

filter are formed to be

o+l 0
P (-} =
0 P
{p+1) (a+1) —p{o+1)
Pr(t) - (2+l+0 )
pro. ~p(o+1) plo+2)
() ()
24p+c
r o] 0

The estimates of these two filters are then combined according to

(5.81) and (5.82).

Example 5.1 shows that is is possible for the steady-state error spec-
trum P(z}, and hence the filter gain K(z), to be a rational function of =z.
Characterizing precisely when this is the case is still an cpen problem.

It is expected, howéver, that the cccurrence of a rational P(z) and,
therefore, a finite-dimensional realization of the update step will be
quite rare.

When P(z) is irrational, some approximation must be made in order to
cbtain a finite-dimensional realization of K(z). Let Pa(z) be a rational
approximation of P(z}). The corresponding approximate filter gain Ka(z)

is given by

K (z) = P (2)C*(2) [C(2)P (2)C*{z) + R(z)] " (5.88)
l €l a
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Alternatively, one could directly approximate K(z) by some rational
Ka(z) without the intermediate ster of obtaining Pa(z). In either case,

Schoute, et al. [ 76] suggest dzfining the relative approximation error

€x by

e - x|

e = -
K [ K[[ (5.89)
where the norms here are the induced operator norms introduced in Section

5.1.1. By (5.9), the relative approximation error can be computed from

the z-transforms of K and Ka'

ess sup| K(z)—Ka(Z)”2

zEU
EK = (5.920)

ess sup [ k(2] ],
zZE€U

Of more interest than the relative approximation error, however, is
the steady-state covariance that results when Ka(z) is used as the filter

gain. The predicted error is given by

]

e(i+l) = x(i+l) - =(i+l]i) (5.91)

{A x(i) + Dw(i)} - A{;(ili—1)+ Ka[y(i)-C;(i]i-l)]}

A[I-—KaC]e(i) + Dwi(i) - AKav(i)

ILf the filter system matrix A[I - KaC] is stable, then the predicted erxor
covariance reaches a steady-state value. The resulting predicted error

‘spectrum Pp(z) is given by
_ _ _ Fox *
PP(ZJ = A(z)[1 Ka(z)C(z)]Pp(z)[I.Ka(z)C(z)] AT (z) + D(z)D(z)D" (z2) +

+ Al(z)}E (Z2)R(z)E*(z)2%{z) {5.92)
=) a
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Bquation (5.92) is just the steady-state Lyvapunov equation for the
system described by (5.21). In terms of Pp(z), the filtered error spec-

trum Pf(z} is simply

P (2) = [I-K_(2)C(z)] Pp(z)[z-xa(z)c(z)]*+ K_(2)R(2)K:(z) (5.93)

The suboptimality of the approximate filter gain Ka(z) can be evaluated,
therefore, from (5.92) and (5.93).

The update step when Assumption 5.2 holds, i.e., C(z) = C_ . will now
be examined further. Recall that in this case the update step is eguiva-
lent to a smoothing problem and can be realized by two Kalman filters.

Let Pa(z) be a rational function of z which very closely approximates

P(z). The corresponding finite-dimensional linear system (@a,Fa,Oa} might
have a very high dimension. Assume that this is the case. The idea here
is not to use (@a,Fa,Oa) to implement the smoothing of the predicted
errors, but rataer to use it as a benchmark against which reduced order
smoothers can be compared. Consider the reduced-order model (@r,Fr,Or ).
Then the suboptimality of smoothing with this reduced order model linstead
of the higher-order model can be evaluated from the results in Appendix B--—
assuming that the spectrum Pa(z) is the actual predicted erxror spectrum.

Of course, Pa(z) only approximates the actual spectrum P{z}, and so the
above procedure yields only the approximate suboptimality of using the
reduced-order model. Nevertheless, if Pa(z) is chosen to be an accurate
representation of P(z), this approach will provide a useful measure of the

suboptimality of the reduced-order smoother.
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The above discussion has centered on approximating the irrational
function of =z, K{z}, by a rational function Ka(z). The rational filterv
gain can then be implemented by two finite~dimensional linear systems.

This approximation necessarily introduces a degree of suboptimality into
the filter. There is a second possible source of suboptimality which will
now be discussed.

The estimate ;k(i) of the error at subsysﬁem k depends, in general,
on the innovations Tg(i) all along the line, i.e., ¥ &. This centralized
estimate is obtained from two Kalman filters, both starting infinitely far
away from subsystem k. Clearly, this implementation has some undesirable
properties, e.g., an infinite delay is required to compute ék(i). Consider,
therefore, estimating ek(i) from only a finite number of the innovations
Iz(i) at neighboring subsystems. Tﬁis correspcnds to using a filter gain
Ka which has only a finite nunber of nonzerc elements. Any such gain Ké
has a transform Ka(z) which is a rational function of z, and hence (5.92)
and (5.93) can be used to evaluate the suboptimality of using only a finite
nurber of measurements to update each substate estimate ;k(i]i).

In general, it is not particularly clear how such a Ka’ with only a
finite number of nonzero elements, should be chosen. But under Assumption
5.2, it is guite obvious how to handle this situation. Suppose the estimate
ék(i) is restricted to being a function of Ig(i) for k—le_i < ki,

This is neothing but a finite interval smoothing proklem. Thus, the esti-
mate ék(i) can be obtained as the cutput of two Kalman filters -- the

forward one starting at k-N, and the reversed-time one starting at k+N2.

1

The two filters are not in the steady state, but are time(space)-varying.
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The covariance of the estimate ek(i) can be chtained from the reduced
order smoother results of Appendix B assuming that Pa(z) is the spectrum
cof the process ek(i).

The implementation of the finite-interval smoother will now be con-

A

sidered. Since the estimate ek(i) is obtained from two XKalman filters,
only the forward filter will be explicitly ceonsidered. Similar comments
apply to the reversed-time filter.

The forward estimate of ek(i) is based on Iz(i) for k-N,< & < k.

1

This estimate is obtained from a forward Kalman filter starting at sub-

system k—Nl. If the forward estimate of ek+l(i) is based on the same

number of innovations, i.e., Ig(i) for k-N, + 1 < & < k+ 1, then another

1

Kalman filter starting at subsystem k-N. + 1 is reguired. Continuing this

1

argument, it is clear that if each estimate uses exactly N.+1 of the

1
innovations, then it is necessary to start a forward Kalman filter at each
subsystem. Also, each innovation Iﬂ(i) is used to update Nl+l different
forward Kalman filters. Figure 5.2 illustrates the use of a separate
filter to obtain each estimate. The number of updates required to compute
the forward estimate of ek(i), of course, is also Nl+-l.

Since each estimate is computed from a separate forward Kalman filter,
this is a totally parallel computational scheme. Consider now the proces-~
sing that cccurs at each subsystem as this parallel filtering is performed.
The innovations I, (i} at subrystem k are used Nl+l times to update Nl+l

k

different filters, as previously noted. 3Subsystem k transmits Nl of these

~

estimates to subsystem k+1; the other estimate yields ek(i). The
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computational burden at each sybsystem under this parallel filtering
procedure, therefore, is very wuch different from the computational burden
when all the forward estimates are computed from one filter starting at
minus infinite -- essentially a totally serial computational scheme. 1In
the latter case, the innovation Ik(i) is used to update only one filter,
and only one estimate is transmitted from subsystem k to subsystem k+1.
The conclusion is that the parallel scheme greatly increases both the
number of times each subsystem must update a filter, and the number of
transmissions between subsystems.

By altering the requirement that each forward estimate must be based
on exactly N1+l of the innovations, it is possible to obtain a tradeoff
between: {i) the computations and transmissicns required at each sub-
system, and (ii) the delay in computing all the forward estimates. Delay
here refers teo the maximum number of updates and transmissions needed to
compute any particular estimate. This will become more clear shortly.
Suppose the requirement is that at least Nl+l innovations are used for
every forward estimate and a new Kalman filter is started every Ml sub-
systems. This implementation is shown in Figure 5.3. Under the totally
parallel scheme, Ml was equal to one.

If a new filter happens to be started at subsystem ko’ this filter

provides its first estimate (based on N1+1 innovations) at subsys® a

ko + Ny . The next filter starts at subsystem ko+ Ml and provides its
first estimate at subsystem k0+ M14-Nl. The filter that started at sub-
systém ko, therefore, must provide estimates at subsystems ko+Ml, ko+Ml+l,
cen kO+Ml+N1-1 -- a total of M1 estimates. This last estimate (the one
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at subsystem kO+M +Nl—l) is based on N_+M, innovations. This means

1 171

that the delay in obtaining this estimate is dus to updates at Nl+Ml

subsystems and transmissions between N1+Ml—l subsystems. When a new
Kalman filter is begun at every subsystem, i.e., My = 1, its last (in

fact only) estimate reguires just Nl+1 updates and Nl transmissions.

Choosing M, greater than one, therefore, increases the delay in obtain-

1

ing the forward estimates.

However, what is the effect of increasing Hl on the computational

burden of each subsystem? Consider the choice ﬁl=3 and Ml=5 as depicted

in Figure 5.3. If a new filter is begun at subsystem ko' than subsystems
ko, k0+1, and ko+2 must update two different filters, and subsystems ko
and ko+1 must transmit two estimates apiece. The remaining subsystems

update only one filter and transmit only one estimate. For general Nl

and M simple counting arguments may be used to determine how many updates

ll‘
and transmissions must be wverformed by the various subsystems. The point

here is that the computational burden at the individual subsystems is

reduced by increasing M., the separation betwsen adjacent Kalman filters.

lf

Increasing M., however, was previously chserved to result in an increased

lr

delay before the last estimate of a Kalman filter was available. Therefore

the parameter M, can be used to perform a tradecii between (i) computations

1
and transmissions, and (ii) delay, as was desired.
The above discussion has dealt with a subogptimal update step that

uses only a finite number of the innovations to update each subsystem.

How many innovations are required to yield a good estimate of.ek(i)?
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Recall that the process {ek(i)} is viewed as thz output of the linecar
system [$¢(i),T (i}, ©(i)). 1If the innovations used to estimate ek(i)
'extend about subsystem k for several of the slcwest time (space) constants
of ¢(i}, then the resulting estimate should be guite good. There are,
therefore, two time scales of interest here. First, of course, is the
actual time index of the system. For example, cne may ask how large i
must be before the system can be considered to hs in the steady state.

The second time scale is actuwally a spatial scals. The quéstion here is
how many neighboring subsystems must be used to mrovide an accurate
estimate of a substate.

It is important to realize that as more nsighboring subsystems are
used to compute a substate estimate, i.e., as tne number of space constants
is increased, the time required to perform ths ucdate step is alsc increased.
This means the space and time indices of the srystem directly interact in
the filtering process. There is an interesting and important tradeoff,
therefore, between (i) the actual time period zt which the cbservations
are sampled, and (ii) the number of neighboring subsystems used to update

a substate estimate. Work in the area of filtering for systems with

this tradeoff.

5.4 The Dual Control Problem

The Toeplitz optimal control problem which is the dual of the estima-
tion problem in Section 5.3 will be solved in this section. The dynamics
of the deterministic discrete-time Toeplitz system under consideration are

given in terms of the infinite-dimensicnal stats vector x and input vector

oas

x{i+l) = A'x(1) + C'u(i) (5.24)
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For subsystem x the dynamics are written

kl‘
4+ o
. » T . ' .
x(1+l)—§£ A—k+2 x(i} + C—k+2u(l) (5.95)
2:—(‘.‘0
where the subsystem matrices Alk+£ and input matrices Clk+£ are
reversed as well as transposed. The quadratic cost functional to be
minimized is
1 1 &t |
J = = x'{T)sx(T) + 3 z [(x" (L)DQD'x({i) + u' (i)Ru(i)] (5.906)
i=0

\

where S = 5' is a positive definite Toeplitz cperator.

The optimal contreol problem consists of determining the input time
function w{i) which minimizes the cost functicnal J. If the system
(5.94) is stabilizable, then Hager and Horowitz [ 82 ] have shown that

the optimal control at time i is given by
u(i) = - G{i)Aa'"x(i) (5.97)
where the gain G(i) is
. . -1 .
G(i) = [R + CL(i+1)C'] CL{i+1) (5.98)

and L(i} is given by the Riccati eguation

A L{i+1)-L(i+1)C' [R+ CL(i+l)C‘]_1CL(i+l) R' + DOD'
{(5.99)

L(1)

it

I
[65]

L(T)

The operator L(i) yields the cost-to-go since

|

7-1
L0 (L) x() = min | s (Tysx(m) + S e (DD x () +
o] 3=1
1

+ u' (§)Ru"5) ] (5.100)
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Suppese the cost operator § is chosen egual to P(Ol—l), the
initial state covariance in the estimation prcslem. Then it is easily

shown from (5.60)-(5.62) and (5.99) that

L(i) = P(7-i|T-i-1) (5.101)

for all i between O and T. Moreover, comparing (5.98) with (5.60) yields

G{i) = K'(t-1) (5.102)

i.e., the contrel gain at time i equals the transposed filter gain at
time T-i. Because of the equalities in (5.101) and (5.102), the optimal
control problem defined by (5.95) and (5.96) is called the dual of the
estimation problem covered in Section 5.3.

For notatiocnal convenience, let xp(i) equal A'x(i). Then the optimal
control uk(i) is the convolution of the control gains {Gk(i)} with the

projected process {:ﬁf (1)}

+
w (i) = z G g (1) (1) (5.103)
==

The Toeplitz operator G(i), of course, can bas recursively realized by a
causal and an anticausal linear system, as explained in Section 5.3.1.

- . + o, -
Denote these two linear systems by S+ and S , respectively, and let Uk (Uk)

o]

+ oo . . .
be the output of 5§ (5§ ) when the input is x_ (i}. Then

w

+
iy = 5.104
uk(l) Mo oM | ( )
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The various comments made in Section 5.3.1 concerning this realization
and the discussion in Sections 5.3.2 and 5.3.3 are equally applicable
here and will not be repeated.

Systems which satisfy Assumption 5.2, howsver, will be investigated
further. Recall that Assumption 5.2 was that C. = COG in the

% x,0 '

context of the optimal control problem, this means that the input matrix
is block diagonal; i.e., the input directly affects only the local sub-
system. Under this assumption, the smoothed estimate of ek(i) was found
to be a weighted sum of two filtered estimates [see (5.81)]. It will
now be shown that the optimal control uk(i) is just the sum of two opti-
mal controls — one contrcl is for a system operating in the positive k
direction, the other control is for a system opsrating in the negative k
direction. This proof will proceed by first resconsidering the dual filt-
ering problem at time T-i and then proposing the forward and backward
control problems which yield uk(i).

Recall that because P(T—i,z]T—i-l), the spectrum of the predicied
error process, was a rational function of z, it was possible to view
ek(T—i) as the output of the linear system defined by the triple

[O(T-1),T{T-1),0(T-1)]. 1In order to obtain the smoothed estimate of

. £
ek(T—i), the forward estimate £

k'k(T_i) and revarsed-time estimate

é;ﬁk+l(T—i) were both needed. The forward estimate is computed by the

usual Kalman filter (explicit dependence on T-i now is suppressed),

~f ~f =
- - ol 5.105

Ek+1|k+1 ®Ek|k * Kf[Ik+l (C,9) = ’kik] _ (5.105a)
- r - ] ].—l 5 -

K, = P_ (C_0) I(CO@)Pf (c 8" + R (5.1058)
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+ -
P, = [1-K.(C0)IP, (5.105¢)
P = op) o + T |

. = ep ¢ (5.105D)

+ - .
Herxe Pf and Pf denote the steady-state filter and cne-step-ahead
predictor error covariances, respectively. In Section 5.3, only the

. . + ]
filter error covariance was needed, and so P_ was simply denoted as Pe.
.

Using the variation of constants formula together with (5.1052), the

~

filter estimate £ may be written as

|k

k|k E [{I-K.C 0 ] Ke T o _ {5.106)

~

.. . . r
Similarly, the reversed-time estimate £

k]k*l is computed by a reversed-

time one-step~azhead predictor,

“r PN _ l
ke e P 2t Kr[Ik+l (c O)Ek-ﬂ hct2 (5.107a)
-— ] - _l
K =P (C_0) [(coe)pr (c 0 + Rb] (5.107B)
+ -
Pr = [I 'Kr(coR”Pr (5.107C)
P~ =0 P +T.T. (5.107D)
r r'r rr '

where the matrices @r and Pr are computed from the formulas (B.3) and

+ . -
{(B.4) in Appendix B. Once again, Pr and Pr denote the steady-state
filter and one-step-ahead predictor exror covariances, respectively. In

Section 5.3, Pr = P;-' Alternatively,
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oo
~y ) ] 5
= E P (I-K
gk[k"‘l ¢=0 [ r( rco@) ] @rKrIk+:;+l (5-108)

Therefore, using (5.81),

~

. -1° f S ]
ek(l) = OPS (P_ ) Eklk + (pr) gk!Hl (5.109)
+ @
= OP I G) & o 1
—'£=o s[( - Kfco )¢l Kf k-7 *

+ =
E 2 .
& -
+L=OOPs[‘r(I Krcoe)] QrKrIk+£+l

Since ek(T~i) is known from (5.74) to be the convolution of the filter
gains {Kk(T—i)} with the innovations {Ik(i}}, (5.109) implies that the
filter gains are
-1
P -—
@PS £ [ {I-K

.k
fCOG)@] Kf , k>0

Kk(T—i) = (5.110)

- ket
er P Mo (1-k c 01 ¥ kL k <0
s I r r o Y

A forward-time and a reversed-time optimal control problem will now

be posed, solved, and related to the two filters used in the previocus para-

graph. First, consider the following forward-time system:

X . 4 r
= IS
il o' + (CO ) u

; g (5.111)

with the infinite-horizon quadratic cost functional
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. 7' ! r r' r
J = 21 r + T 1
. N ( rrr ) n, u Rb u (5.112)
k=0
The superscript r was used in the dual filterirng problem to denote

reversed-time gquantities. Hence in the control problem, the superscript

r denotes the forward-time state nr and contrcl

X The realtization in

5

(5.111) may be viewed as coming from a factorization of the cost-to-go
matrix L(i}. The well known solution to. this control problem is that

; r ., .
the optimal control u, is given by

k
r , X
uk = = Gr Qr nk (5.113)
where the gain Gr is
vo=1
= 8 i 5.
G {R0+ (coe)Lr(coo) ] (CO@) . (5.314)

and the cost-to-go Lr satisfies the algebraic Riccati equation

L =@ L& +TT"' -06L (CO'IR+ (C )L (CO)'1(C OYL &
r r r r r r o O o r © (@] rr

r r
(5.115)
The closed-loop system, therefore, is
¥ - r
_ _ v L11
n, = W -e¢G)eln | (5.116)
Next, consider the reversed-time system
£ , E v f
= + @ 5.117
Ny P N (COOQ) L ( )

with the infinite-hoxrizon cost functional
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—_ 0

5=

k=0

£ ) f ' . f o _1f £ £
[nk + (COO) w 1 (TT )[nk + (Cou)bk] *u. Ru.

The solution to this problem is

where the control gain Ge is

-1
L

G, = (Co@)[© L&' + TF'](COG) + Ro (COS)[GLf®' + T'T"]

f

and the cost-to-go Lf is given by

L_ = [I—G%(COO)][Q Lf®'+ TF'][I—(COE)'Gf} + G'ROG

£ f f

The resulting closzd-loop system is

f

f , N
n_ = [&'({i-0 cO Gf)] Ny

k

(5.118)

(5.119)

{5.120)

(5.121)

{(5.122)

The forward- and reversed-time optimal conztrol systems are now related

~

to the two filters which yield the smoothed estimate e, . First, eliminat-

k
ing P: from (5.1078)- (5.107D) yields

H

P. (COO)'[(COO)Pr (cor + =&l

~
1l

-1

g
Il

(5.123)

¢ P 9' +TT' =« & P (CO) [(C )2 (CON+R ] (C E)P_ 9"
rr r rr' o o T o o o r r

(5.124)
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A comparison of (5.115) with (5.124) shows tha:z

L = p , (5.125)

Therefore, from (5.114) and (5.123), the control gain equals the trans-

posed filter gain,

Gr = KI | {(5.126)

Likewise, eliminating Pg- from (5.105B) - (5.105D) vields
+ + -1
= r | T a & Ié'+ —r '

Kf [‘IJPf &t 4+ IT ](COO) (COO)[,Pf Z 71 ](Co@) + RO (5.127)

Pl = [I-K_(C 0)][¢P ©' + IT’] (5.128

f- Ve e £ : )
It is not obvious that P;- eguals Lf. Howsver, from (5.121),

=
1l

e ] ' — 2yt o+ '
[z Gf(coe)][@Lf® + I'T'J]I[1 (Cov) G.] G RG

Y LI 1 ] TT'] - ~ 5 1 skl
[@Lfé + TT'] Gf (COO)[QLf¢ + it [GLf@ + I'T ](COO) Gf +

1 1 =3L -
+ Gf (COB)[QLE¢ + I'T ](COO) +R_ [ G

¥ _ ' = H 1 TT
[@Lfé + I'T'] Gf (Co@)[QLf@ + ']

il

[I—Gf (CO@)][QLfé' + I'T'j {(5.129)

Now, comparing (5.128} with (5.129) and (5.127) with (5.120), one sees
that

I = P , (5.130)
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Consider the closed-loop systems (5.112) and (5.122) where now
xp enters these systems as a disturbance. Toat is,

k

r -1 el

N = HI=8'C I KDe Iny  +(P TP O") ko (5.132)
£ £ -1
n, = [@'(r-e'c) K2 )Ing .+ (PP ") xf’ (5.133)

where K£ and Kf have been substituted for Gr and Gf, respectively.

From the wvariation of constants formula,

r Jr?i\ 2=1 -1 jo!
= I-Q'C'K')d o} N L1
"k 2 HE-OiC K ey 1 (B R =l (5.134)
=0
4o
f . £ -1 T
- ' - 1 ] t o] ajgl = .
n, z [er{z-0'cs X )1 (PP O] x, . (5.135)
=0
From {5.103), the optimal input w, is the negative of the convolution

of the control gains {Gk} with the projectsd ctrocess {xi} . Furthermore,

from (5.102) G = K' and so, using (5.11C0},

k -k
K [&' (I-0'C' K! )P .'p @ kK <0
£ o  f f s ! —
G = . (5.136)
K'd'[(I-O'C'K')0'} P P & , k>0
r r o Ir r r s

But, from (5.113, (5.119),(5.134) and (5.132),<the optimal controls u;- and

f
LH{ are
~+co
r__ z [ 1 _nt 1 1 ‘|"‘:"—l/:_l oyl P -
W L K'e ! [(I-0'c) K )e ' 17 7z TPOx o (5.137)
teo
f_ ' ' _Qte ' 2 o "o o P
uk——l Ko [97(1-07Cc KID1T (B.72 fix . (5.138)
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A comparison of (5.137) and (5.138) with the two parts of (5.136) shows

that
uk = uk + uk (5.139)

That is to say, the optimal input uk(i) to subsystem k at time i is
simply the sum of two inputs -- the one u;:, the input for a system
propagating in positive k; the other u;f, the input for a system prop-
agating in negative k. Interestingly enouglh, this is not a weighted
sum of the forward and backward inputs, but simply their algebraic sum.

~

The weights which are used to combine the two estimates £ o

and €k|k+l

f
k|
in the dual smoothing problem are found on the process xi) as it
enters as a disturbance in (5.132) and (5.133).

In summary, this sectiog has considered the dual optimal control
prceblem to the Toeplitz sstimation problem covered in Section 5.3. The
realization of a Teoeplitz operator given in Section 5.3.) and the dis-
cussion in Secticns 5.3.2 and 5.3.3 are, by duality, also applicable
to the dual control problem. The most interesting result in this
section, however, concerns the optimal control problem for systems satis-
fying Assumption 5.2. The update step of the dual filtering problem
in this case was shown in Section 5.3 to bz essentially a smoothing

problem. By dynamic programming, one step of the optimal control problem

consists of the following minimization:
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4o + .
. 1 " B 1 LI P '
min zg u, Rouk + 21 l(xk + Co uk) Lk—i(xz + CO ug) (5.140)
{uk} k==w = -

The minimizing . has been expressed as the sum of the cptimal ceontrol
for a forward-time system plus the optimal cornirol for a reversed-time
system. This appears to be a novel solution o the dual of the standard

smoothing problem.
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CHAPTER &

CONTRIBUTIONS AND SUGGESTIQNS

Throughout this dissertation, spatial transformations have been
used to provide a deep, cocherent treatment of spatially invariant linear
systems and the associated control and estimation problems. Both finite—
dimensional circulant systems and infinite-dimensional Toeplitz systems
were investigated. It is strongly felt that the results in this disser-
tation demonstrate the utility of viewing control and estimation prob-
lems from the spatial freguency domain., The major contributions of this
work follow:

(1) The complete treatment of circulant systems, their systen
theoretic properties, and the associated Lyapur»v and Riccati eqguations
by using the spatial DFT to perform decomposition.

(2) The procedure for imbedding in circulant systems both symmetric
and antisymmetric tridiagonal systems, such as those arising from some
discretized partial differential equations or systems having longitudinal
structure.

{3) The development of design procedures for suboptimal decentral-
ized control gains from the optimal centralized control gains by analogy
with digital filter design.

{4) The study of the two-filter smoother and the resulting increased
understanding of the role and nature of the backwards filter in computing

the smoothed estimate.
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(5) The development of a sensitivity analivsis and a reduced-
order smoother analysis for the two-filter smoother and change of
initial conditions formulas for smoothed estimztes.

(6) The application of the spatial transZorm together with the
two-filter smoother to solve the filtering problem for certain Toeplitz
systems.,

(7) The formulation and solution of the optimal control problem
which is the dual of the fixed-interval smcothing problem.

Some of the possible topics for future research related to the
results cobtained and approaches deveioped in this disseration are the
following:

(1) The inbedding of other classes of linear systems within cir-
culant systems, e.g., can more general tridiagconal systems be imbedded
in circulant systems by combining the results for symmetric and anti-
symmetric tridiagonal systems?

(2 The characterization of when a circulant decentralized-controller
is stabilizing and the development of bounds on the resulting subortimal-
ity.

(3} The development of procedures for determining the appropriate
circulant approximation to a given large-sczle system for purposes of

control and estimation; the characterization ¢ the stability of the

Hi

resulting closed-loop system; and the bounding of the suboptimality of
the circulant controller or estimator.
(4) A study of the numerical properties oI the new two-filter

smoothing formulas and the eguations for sensitivity analysis and reduced-

order smoother analysis.



(5} A theoretical study of the use of reversed-time realizations
and the reversed~time innovations process.

(6) An examination of the space-time intazrplay that occurs in.
filtering for Teeplitz systems, e.g., the trad=off between the number of
innovations used to estimate the state of szach subsystem and the time
interval at which observations are made.

{7) The development of the finite-dimesnsional version of the fil-

tering results cbtained for Toeplitz systems.
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APPENDIX A. CIRCULANT MATRICES

ILet A be an N X N c¢irculant matrix

( aO aN—l aN_2 .. al
23 39 b Y L
A= (A.1}
a.2 al ao “ s a3
fn-1 Fn-2 -3 "0 P /

The eigenvalues and eigenvectors of A will now he found following the proof

th

given by Bellman [ 44 ]. If WN = exp(jgﬂ) ., then W;k is one of the N

. . -kiN
roots of unity, i.e., (W )l = 1. Let

N
N-1 .
i -
= z ai(ka) (a.2)

i=0
From (A.2) and the fact that w;k is an Nth root of unity, it is obvious

that Ak satisfies the following set of egquations:

. 2 N-1
- ' X . ) -
7 )\k = aD + aN—l(w]I\{I)-I- aN-.?(‘”N}-F cv. -k al(w‘; (. 3)

-1
d k x , k
_ )Lk(v;f;)r ay + aO(WN)+ a1 (WN)Z + ... F az(WNj\]

° 2 N-1
k
aN—l + aN__2 (W;)+ aN-—3(‘“N> + ...+ ao(w];)

] N-1

‘
)\k(WN )



1 \ ’ 2, ag_y - . ay ’ 1
k
WN ay ay - - ay WE (a.4)
. Ak -' = ) : -
(N-1L)k (N-1)k
\ "y l N-1 “w-2 - ao} "N J
or
A =
% A, _ (A.5)
where the eigenvector ¢k is simply
’ 1
N
2k
¢k = WN | (a.6)
(N-1)k
\ WN
The eigenvalues lk of the circulant matrix A are given by (A.2) —- the

elements of the discrete Fourier transform of the top row of A. The eigecn-

vectors ¢k are observed to depend only on N and not on the elements of A.
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Let ¢ be the matrix of eigenvectors,

1 1 1 . e . 1
1 2 (1-1)
1 wN wN . wN
2 4 (N=-2)
& = 1 WN WN ) ) WN (n.7)
(N-1) _(N-2) {N-1) (N—l))
\ 1 wN WN v e . WN

This matrix is invertible, since its inverse can beexplicitly written as

1 1 1 1
{N-1) (N-2)
1 WN WN WN
— =4
-1 1 1 wI\(TN 2 W;]N ) wl\‘?
& - = (a.8)
N . . .
1 2 (N-1)
\1 wN WN wN

Hence, the eigenvectors of a circulant matrix form a linearly independent

set, and so any circulant matrix can be diagonalized,

1
& Aad = (a.9)
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Consider now the bleck circulant matrix A where the blocks Ak

have dimensions rxs,

. . . A
’ By Ba-1 Pnea 1
A .. .
By ) Ay-1 B,
A = {(A.10)
I
2 A .. }
N-1 N-2  PN-3 Bo
The partitioned rN XN matrix fDr is defined as
I I I . I
r in r Y
1 2 N-1
T e
I W W . Wy oI
I, wlilr wilr . . wfq (N-1) I
@r = {r.11)

o _W(N—l) (N—l)I
x N r N T

where Ir is the rx r identity matrix. By analogy with (A.8), the inverse

of @r can be explicitly written as

/ b I T ... I
r X r r
1 Wl W2y . Wit
-1 1 r N r N r N r
q) = -—
v N -2 N-4 2 (A.12)
¥ W ...
I_ JE I b I W I
\I WS T wor oWy J
¥ by r r
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In the case of 1% 1 blocks, the matrix ¢ or @1 has the inter-
pretation of the matrix of eigenvectors. The matrices @r or Qs' of course,
do not have this interpretation. Nevertheless, @r and ¢S can be used to

block diagonalize the matrix A.

Proposition A.1. If A is a block circulant matrix with rx s blocks, then
@;IJAQS is block diagonal,
A= e tae
x s
Ay \
By
A2
\ AN_1}
N-1
- -ki
where Ak = ;E Ai WN
1=0

Procf: The (k,%) block of A@S is

N-1
(o ) = > ), (@)
s K, % = k.1 s 1,8
gi}
il
= Z Ak—i WN
i=0

where k,%2 = 0,1, ..., N-1 and the indices are modulo N. The (m, 2) block

of @r_lh ®s can now be written,



(@r a @s)

The converse of Proposition A.l 1s also true.

N-1
-1 i
(d } (A@S)
k=0 m,k k, L
. w-1
AN Lymk : it
N N ~ Bes My
k=0 1
N-1 N-1
i 2—mlk
AW
-1 N
k=0 i=0
N- —_
L L Nt (k-n) f-rk
E AanT
k=0 n=0 *
N-1 N-1
1 - -
= z A WNDQ’( z ka( m)}
ﬂ=0 =0
N-1
-1
AW , B =nm
= n N
0 , L #Fm

Q.E.D.

Namely, if A is a block

diagonal matrix, then @I?A %_1 is block circulant. The details are omitted,

Using this converse, it is easily shown that the product of two block cix-

culant matrices

A

and B 1s also block circulant,

- =1 ~1 i, -1
o [0t ae e o] o]

(.13}
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where it is assumed that & has rx s blocks and B has s xr blocks. The
matrix AAB is block diagonal, since both AA and AB are, and sco AB is block

circulant. Similarly, the inverse of a block circulant matrix is still

block circulant,

2t - s et atey ot (3.14)
=3 5 r

Let Cr be the set of all block circulant matrices of order N having

r Xxr blocks. Then, since the sum of two block circulant matrices is

cbviously a block circulant, Cr is an associative ring with respect to
the operations of matrix addition and multiplication., The unit element is

just the rN xrN identity matrix. Cl is alsoc a commutative ring, but none of

the other Cr is.
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APPENDIX B. DISCRETE-TIME SMOOTHING FORMULAS

Consider the discrete-time linear systen

x{k+1) = ¢(k+1,kIx(k) + w(k) (.1}

yvik) = C(k)x(k) + v(k) . (B.2)

where x(0)}, w(k), and v(k) are all independsnt, zero-mean, Gaussian random

variables and

E x{(0)x"(0) = (0}, Ewlk}w' (i) = Q(k)8 E vik)v'(i) = R(k)ﬁi

ik sk

The discrete~time FI smoothing problem is to compute the conditional expecta-
tion of x(k) given the observations {y(i)| 0 2 i < Tl. The estimate is

denoted xs(k) and the error covariance is Ps{k). The system covariance

Ex{k)x'(k} at time k is denoted by Z(k}.

The reversed-time system corresponding to (B.1l) is

x_ (k) [ Z(k)¢'(k+1,k)2—l(k+l)] x (k+1) + E(k+1)

¢r(k,k+l)xr(k+l) + L (k+l) (B.3)

where the covariance of the reversed-time white noise driving process is

Qr(k+l)

il

E Er(k+l)g'r(k+l)

I

S(k) - T(K)O' (k+1 ,%)E T (k+1) ¢ (k+1,k) I(K) (B.4)

If the state transition matrix $(k+1,k) is invertible, this covariance may

be written as
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il

Q0D = 3008 (kLK) DTN RH1)Q 0K (k1K) (8.5)

¢r(krk+l)Q(k)¢_l(k+l,}:) !

The random variables xr(T) and £ (k) are independent, zero-mean, Gaussian
and E xr(T)xr'(T) = Z(T). Under these conditions, the processes x(k) of
(B.1) and xr(k) of (B.3) have the same covariance function and, therefore,
the same joint probability density functions. It should‘be noted that
Friedlander, Kailath, ILjung [ 851 and Sidhu, Desai [74 ] have previously
given reversed-time realizations of the discrete-time process x(k). The
reversed-time systems in both these papers, however, are incorrect, and
it is believed that (B.3) and (B.4) are the first correct equations for a
discrete-time reversed-time realization.

For the smoothing problem, there are four disjoint sets of information

about x{k},
1) past observations: '{y{i)] 0 < i<k}
2) future observations: {y(i)] k <i<T}
3) present observation: {y(kx)}
4) a prioil data: mean O and covariance I (k)

By grouping these sets of information in various ways, one arrives at the
variety of estimated quantities below:
Kalman filter estimate g(klk)= 1) + 3) + 4)
Kalman filter one-step predictor ;(k|k-1) = 1} + &)

reversed-time Kalman filter estimate %r(klk) = 2)+ 3)+ 4).
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reversed-time Kalman filter one-step predictor ;r(klk+l)= 2) + 4)

backwards estimate % (k[k) = 2) + 3)
present conditional expectation QP A P(ka) = 3) + 4)
a priori estimate ﬁa o (k) = 4)

and others. The reversed-time Kalman filter estimate and one-step predicted
estimate are cobtained from applying the Kalman filter equations to the
reversed-time realization (B.3). The estimate ;P- .p-(k) is just E[x(k)]y(k)].
The backwards estimate ;b(klk) is used in the discrete-time Mayne-Fraser
smoother.

The smoothed estimate, of course, must incorporate all four sets of

information exactly once. There cbviously exists a plethora of ways to com-

bine these various estimates to obtain xs(k),

. 1 . - .
x_(k) = EI_(x)[P (k|x)x(k]x) + Pk k+l)xb(k|k+l)] (B.6A)
= Zs(k)[P—l(klk);(klk) + P;l(klk+1)§r(k|k+1)1 (B.73)
= I P Nk xr&o+ 2Tk or k- P radox  o]en
5 r r P-a.pe PP
(B.8A)
= 2 (0 7k [k-1)x O] k1) Pl k[ k1% (k[keD) +
+pt (k|%) % (x[x)1 (B.9A)
p.a.p. p.a.D.
B e A N Lo N (B.6B)
= [p'l(klk) + P;l(k]k+1) -z heor Tt (B.7R)
-1 -1 -1 -1
= [P (k|k) + P (k) - Po . (x[x)] (B.8B)
= [p'l(klk—1)+ Pl 2 T (k) - 2x gt (B.9B)
r p.a.p
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The proof of these results is analogous to the proof of Theorem 4.3
and is omitted. Egquation (B.6) is just the Mayne-Fraser two-filter
smoother. Equation (B.7) expresses the smocthed estimate as a combination
of two Kalman filter estimates. The other two formulas, (3.8) and (B.9),
are included to show that the smoothed estimate can be written in terms of
an expression that is symmetric with respect to forward- and reversed-time.
There are, of course, many other possibilities besides (B.6)-(B.9) for
giving the smoothed estimate.

For the reduced-order smocther analysis, the formula (B.7) will be
used. Notice that this expression is asymmetric with respect to forward-
and reversed-time, and so it is to be anticipated that the resulting reduced-
order covariance expressions will also have somg asymmetry. It is assumad

that the model used in reduced-order smoothing is-

x* (kt1) = ¢* (k+1,k)x* (k) + w* (k) (B.10)
y* (k) = C*(k)x*(k) + v*(k) (B.11)

z* (k} = H*{k)x* (k) (B.12}
The actual process x(k) and observations y(k) are generated by (B.1l) and
(B.2), and the actual output z(k) is given by

z(k) = H(k)x (k) {(B.13)

The approach and assumptions are the same as in Section 4.4. 2lso, explicit

dependence on time will be suppressed.

Forward-Time System and Filter - A reduced-order Kalman filter is designed

on the basis of the model {B.10} and (B.1ll). Let K* be the gain of this

filter. Then consider the augmented state vector consisting of x and x*,
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“x (k+1) - o} -0 x (k) I 0 ulk)
= +
x* (k1| k1) kecy  (r-xrehed Lxecfil Lwre  wed Loy
(B.14)
Let
Z M X ~
=g [x" x*1] {B.15)
M’ N 2

This augmented state covariance is given by the discrete-time Lyapunov

egquation.

Reversed-'"ime System and Filter — Let K; be the filter gain of the reduced-

order, reversed-time Kalman filter. Then

1
+ i +
xr(k) ¢r 0 xr{k 1) I 0 lEr(k n
ok e * I * - * gEjod
x* (k| k1) PEKIC ¢* (I-x% C 1 x* (kL] k+2) 0 E X} LY{k+1)
(B.1l6)
Let the corresponding system covariance be
2 Mr *r
= E [x °* x*'] (B.17)
r r
Mm! N x*
r r r

Cross-Correlation of x*(x|k) and x* (k|ktl) — Using the discrete-time versions

of the arguments given in Section 4.4 for continuous time yields

B Der Oef)x® (k[ Kb 1) ] = a% (00 200 8% () (B.18)
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where o* and B* are recursively computed from

a* (k) = K*(k)Cc(k) + {II—K*(k)c*(k)]¢*(k,k—l)}u*(k—l){Z(k-1)¢'(k,k—l)z"l(k)}
(B.19)
and
B* (k) = ¢'(k+l,k)C(k)K;(k+l)Z*_l(k+l)¢*(k+l,k)Z*(k) +

+ {¢' (k+1,k) }B* (k+1) { z*{k)é*'(k+1,k)z*"l(k+1)[I—K*(k+1)c*(k+1)]}'
r

(B.20)
with initial conditions o*(-1) = B*{T) = 0.
The smoothed output error covariance is therefore
x(k) |I[x' (k) x;'(k)] H'
coviz(k) - 2z*(k)] = [H - H*] E||_ (B.21)
%7 (k) H* !
s
= HIH' - H*E{x:x'}H' - H E{xﬁz'} H*' + H*E {%; x;'} H* '
Using (B.7) for the smoothed estimate,
‘ ~ ‘ ~ - nk b -1 *
*y = ; *'D* 1 + *
E{x x7 } E {x[x*'P X, P ] ZS } (B.22)
= e+t o+ mopthy g
rx
and
NS = . . Tt Setpr—ly Sa 'paTd *
E{xs xs} HE{ZS[P x* + PY x*] [x*'P + x* p¥ 1 Lk } (B.23)
= zrier Lot Tt 4 R grozarpt T 4 P laxzpeprl 4
s
w2t e g
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Substituting (B.22) and (B.23) into (B.21) yvields

1

covz(k)-z*(k)] = HEH'-H*L% [P*_lM' ye* o ygr- H{MP* "T+M P*_l]E FOERT 4
S ¥ r Y r 5

+ mrox [pemlypr Ly pr lgwiggaipatly pacl axzaxp*~t 4 prl oy px 1y prps
=3 r Y r rr 5 S5

(B.24)

The sensitivity analysis problem is solved by taking H and H* equal to

the identity matrix.
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