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ABSTRACT

Control and estimation problems for circulant and Toeplitz systems

are studied using spatial transform techniques. In the finite-dimensional

case, the discrete Fourier transform is used to provide a complete treat-

ment of the system theoretic properties of circulant systems in terms of

lower dimensional, transformed subsystems. The centralized and decentral-

ized control and estimation problems for circulant systems are approached

in the spatial frequency domain. Efficient off-line and on-line solutions

to the optimal centralized problem are obtained. For the decentralized

problem, suboptimal design procedures are proposed by analogy with the

design of finite impulse response digital filters.

In the infinite-dimensional case, the z-transform is employed to

solve the Toeplitz estimation problem. Motivated by recent work in the

image processing field dealing with recursive estimation based on two-

parameter models, the update step of a discrete-time Kalman filter for
a Toeplitz system is shown to be equivalent to a smoothing problem. An

investigation of the smoothing problem yields new insight into the two-

filter smoother and yields formulas for sensitivity analysis and reduced

order smoother analysis. This new two-filter smoother is then used to

perform the filter update step for Toeplitz systems. Some implementation
issues of such a filter are then discussed. Finally, the control problem

dual of the fixed-interval smoothing problem is posed and solved.

Spatial transformations play a crucial, fundamental role throughout

this dissertation. The spatial frequency domain is found to be quite

appealing when addressing control and estimation problems for spatially

symmetric large-scale systems.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

There has been a great deal of recent activity in the area of

large-scale systems [1]-[3]. These systems are found in such diverse

fields as power systems [4]-[6), transportation systems [7]-[9], eco-

nometric systems [10], [11], and packet switched data networks [12]-

[14]. For large-scale systems, the control and estimation problems

are often of such great complexity that the standard modern techniques

are computationally intractable. This intractability may be because of

either the on-line or off-line computational requirements. One concludes

that the adjective large as used in "large-scale systems" usually has

the meaning of too large.

Various techniques have been proposed to reduce the computational

burden for control and estimation problems by exploiting special struc-

tural properties frequently found in large-scale systems. For example,

singular perturbation theory has been successfully employed to construct

simplified controllers and estimators for systems having multiple time

scales [15-[18]. Also, systems composed of weakly coupled subsystems

have been attacked by nonsingular perturbation theory to obtain

decentralized controllers [19], [20] or off-line computational savings

[21], [22]. Finally, there have been numerous approaches for determining

the stability of a large-scale system on the basis of the properties of

its individual subsystems and the nature of their interactions.
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Decomposition and decentralization are two crucial elements in

large-scale system theory. Decentralization is directed toward the

reduction of on-line computational requirements and intersubsystem

communication. The price of the advantages, however, is often increased

off-line complexity. As pointed out in [23], other proposed benefits

of decentralization, such as increased reliability or increased adap-

tability, may be more imagined than real. The decomposition issue

concerns reducing the off-line computational burden associated with

obtaining a desired controller or estimator. A discussion of decom-

position vis-a-vis decentralization is found in [24].

It is often natural and useful to view a large-scale system as an

interconnection of much simpler subsystems. In many cases these sub-

systems are actually distinct physical entities, while in other cases

they are merely chosen for mathematical convenience, Decomposition

procedures are frequently based at the subsystem level. The nonsingular

perturbation decomposition and the stability tests for interconnected

systems, for instance, are based on a tearing of the system into sub-

systems which are usually distinct entities. The singular perturbation

methods, on the other hand, usually involve fast and slow subsystems

which are chosen on the basis of physical insight for mathematical

convenience. In the case of a decentralized controller or estimator,

the partitioning of inputs and outputs is also frequently done at the

subsystem level.

Concurrent with this work in large-scale systems has been the



substantial activity in the image processing field. The estimation of

discrete-space images from observations corrupted by additive noise

using techniques such as two-dimensional Wiener filtering result in

enormous computational burdens. Thus one of the primary objectives of

work in this area is the discovery of computationally tractable esti-

mation formulas. One approach toward the recursive estimation of

images has been motivated by the success of model based estimators

such as the Kalman filter [253. of interest here is the use of two-

dimensional models for the image process [26], [27].

Attasi [28) has considered least squares recursive estimation of

an image z(i,k) under noisy observations

y(1,k)= z(i,k) + v(ik) (1.1)

where the image is generated by the two-parameter model

x(i,k) = F x(i-l,k) + F x(ik-1) - F F x(i-l,k-1) + w(i-lk-l)
12 1 2

z(i,k) H x(i,k) (1.2)

with the requirement F F F2. The problem is to determine the op-
12 21l

timal estimate x(i,k) of x(i,k) given the observations y(m,n) for

m < i and all n. This estimate is shown to be obtained from a two

step procedure. First a predicted value u(i,k) is computed from the

estimates x(i-1,n) for all n, as

(1-3)ii(i,k) = F 'ji-l,k).
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The error e(i,k) is now defined as e(i,k) = x(i,k) - i(i,k). Then the

estimation problem is solved by

x(i,k) = x(i,k) + e(i,k) (1.4)

where e(i,k) is the solution of the one-parameter smoothing problem

to estimate e(i,n), for all n, given y(i,n) for all n [28]. This

smoothing problem is solved by two Kalman filters, one moving in the

positive n direction and one in the negative n direction.

Two-parameter models such as Attasi's have had mixed success when

used for recursive estimation of images. Attasi's model will now be

considered in the context of large-scale systems.

Suppose that the vector quantity x(i,k) in Attasi's model is

interpreted as the state of subsystem k at time i. The term state is

used loosely here since the dynamics (1.2) are not standard state space

dynamics. Nevertheless, view Attasi's model as an infinite-dimensional

system propagating in time. His estimation problem, then, is just the

filtering problem for this infinite-dimensional system given observa-

tions up to the present. The update step of this filtering problem is

solved by one Kalman filter moving up the line of subsystems and one

Kalman filter moving down the line. The Kalman filter moving up the

line can be implemented by having each subsystem (say subsystem k)

perform a measurement update and then transmit this estimate to the

next (k+l) subsystem. Likewise, implementation of the Kalman filter

moving down the line involves a measurement update at each subsystem
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and then communication of this estimate to the previous (k-1) sub-

system. This update procedure is not decentralized, but it is quite

efficient and interesting.

As discussed by Willsky [29], the proof of Attasi's estimation

algorithm employs a bilateral z-transform along the k direction and

treats the i direction as the time variable. In terms of the inter-

pretation of the model as an infinite-dimensional system, this cor-

responds to taking a z-transform with respect to subsystem index

(essentially a spatial z-transform). In this manner, Attasi obtains

independent subproblems indexed by the variable z. That is to say,

this problem is very nicely decomposed by the z-transform.

The same approach of taking spatial z-transforms has also been

used to address control problems for infinite-dimensional one-

parameter systems of the form

+Mo

x(i,j) = Z A x(i-l,k) + B u(i-l,k) (1.5)
k= j-k j-kk=-00

Melzer and Kuo [30] design optimal centralized regulators in this

manner for spatially invariant quadratic cost functions. Optimal cons-

trained decentralized regulators for the same class of cost functions

are similarly designed by Chu [31]. The important result, at least in

the centralized case, is that the optimal control problem decomposes

into a set of optimal control problems of dimension equal to the

dimension of the substates x(i,j) and indexed by the variable z.
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In both the estimation problem of Attasi and the control problems

of Melzer and Kuo and of Chu, the key step is the use of the spatial

z-transform to decompose the problem. It is possible to use the

z-transform in these cases because the systems are spatially invariant,

i.e. all the subsystems are identical and the influence of subsystem

k on subsystem depends on only k-Z. The objective of this thesis is

to examine in depth large-scale systems possessing the structural pro-

perty of spatial symmetry. Specifically, the control and estimation

problems for infinite-dimensional Toeplitz systems [see (1.5)] and their

finite-dimensional analog are studied. Such finite-dimensional systems

are called circulant systems. In the case of circulant systems, the

discrete Fourier transform will be found to be the analog of the

z-transform used for Toeplitz systems.

The spatially symmetric systems studied in this thesis are

obviously an extremely special type of large-scale system. The purpose

in studying such a special class of systems is to determine just how

far one can go in exploiting spatial symmetry to obtain efficient on-

line implementations of controllers and estimators, or separating a

large problem into more tractable subproblems. The issue of decentra-

lization and decomposition, therefore, are crucial throughout the thesis.

Also, for spatially invariant systems one can study such phenomena as

the spatial propagation of disturbances which are obviously present

here.



-14-

There has apparently been only very limited work done on circulant

systems. Dickerson and Erickson [32] have obtained some weak stability

results concerning circulant systems, and these are analyzed in the

sequel. Some areas where circulant matrices have been used include

the study of certain binary codes [33], [34], the generation of Markov

chains used as digital signals [35], the generalization of Clarke com-

ponents for polyphase networks [36], and the spherical model of a

ferromagnet [37]. Circulant matrices have had extensive use in the

field of digital image processing [38]-[40].

Let the image radiant energy at the point (x,y) be represented as

g(x,y) and the object radiant energy as f(x,y). Then the image and

object distributions are modelled as obeying an integral equation in-

volving the point spread function h as follows:

g(xy) = fh(x, y, u,v, f (u, v) ) dudv (1.6)

By making the simplifying assumptions that

(i) h acts as a scalar multiplier, i.e,

h(x,y,u,v,f(u,v)) = h(x,y,u,v)f(u,v)

(ii) h is spatially invariant, i.e. h(x,y,u,v)= h(x-uiy-v)

one reduces (1.6) to the two-dimensional convolution

g(x,y) f f h (x-u, y-v) f (u,v) dudv (1.7)

CO-c C O-cI
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The image restoration problem is to estimate f from possibly noisy mea-

surements of g. One digital approach to this problem is to sample g at

points on a rectangular grid and then form a vector g. by lexicographi-

cally ordering these samples. A vector f. is similarly obtained from f

and the relationship expressed by (1.7) may be approximated as

g. = H f. (1.8)
i T i

where the matrix H is block Toeplitz with Toeplitz blocks [40]. By
T

using a circulant approximation HC to HT, effective and computationally

tractable algorithms for the inversion of (1.8) have been obtained [38],

[39]. The key to these algorithms is the use of the fast Fourier Trans-

form to diagonalize circulant matrices. This same diagonalization

procedure is used heavily in the sequel to study circulant systems.

1.2 Summary

Chapter 2 introduces circulant systems and develops many of their

properties. Circulant systems are linear systems defined in terms of

(block) circulant matrices. Such matrices are discussed in Appendix A

where it is shown that the eigenvectorsof a circulant matrix are fixed

by its dimension. This property is then used to develop the diagonalizing

property of the discrete Fourier transform. Using this transformation,

various' system theoretic results are obtained for circulant systems, and

circulant Riccati and Lyapunov are efficiently decomposed. Chapter 2

also shows how symmetric and antisymmetric block tridiagonal systems can
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be imbedded in circulant systems roughly two or four times as

large. Further, examples of circulant systems and tridiagonal systems

that can be imbedded in circulant systems are given.

The control and estimation problems for circulant systems are

the subject of Chapter 3. For the most part, Chapter 3 deals directly

with the control problem; the estimation problem is treated by duality

in Section 3.5. The centralized linear-quadratic control problem is

shown to (i) decompose into low order control problems and (ii) have

an efficient on-line implementation employing parallel processing.

Both these results are obtained by using the spatial transformation

introduced in Chapter 2. The fixed structure decentralized control

problem is treated in Section 3.2. Necessary conditions for the op-

timal decentralized gains are obtained but are not found to decompose.

Suboptimal decentralized controllers are then proposed by considering

the analogous situation of the design of finite impulse response di-

gital filters. Various digital filter design techniques are discussed

for designing decentralized control gains. A computer example of cir-

culant control for a rectangular membrane is also included. The pos-

sibility of using a circulant control law for a general large-scale

system is examined in Section 3.4. Throughout Chapter 3 an attempt

is made to use the spatial transfonnconcepts to obtain centralized

and decentralized controllers. That this goes much further than just

using transforms to decompose the centralized problem can be clearly

seen in Section 3.2.3. In this section, the spatial frequency
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viewpoint is essential for understanding the suboptimal decentralized

control laws that are presented.

It has been stated that the update step for Attasi's estimation

problem is equivalent to a smoothing problem. This statement will be

generalized in Chapter 5. The purpose of Chapter 4, however, is to

carefully study the fixed-interval smoothing problem. In particular,

the Mayne-Fraser two-filter smoother is studied here. Section 4.2

presents an historical review of the two-filter smoother, discussing

the work of Mayne [413, Fraser [42], and Mehra [43]. By using reversed-

time Markov models, 4 new solution to the fixed-interval smoothing

problem is obtained which clearly demonstrates the use of (i) a

priori data, (ii) past measurements, and (iii) future measurements in

computing the smoothed estimate. Using this new solution, a sensitivity

analysis and an analysis of reduced order smoothers are performed. Also,

using the insight gained in this approach, a new change of initial con-

ditions formula for the smoothed estimate is obtained.

Chapter 5 deals with the control and estimation problems for

infinite-dimensional Toeplitz systems. The view here is to consider

explicitly the filtering problem and then treat the optimal control

problem by duality in Section 5.4. After defining Toeplitz systems,

the work of Melzer and Kuo [30] and Chu [31] on optimal control of

Toeplitz systems is reviewed. Attasi's [28] estimation problem is

then considered, and the model (1.2) is shown to correspond to a

Toeplitz system. Motivated by'Attasi's work, the filtering problem
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for general Toeplitz systems is then treated. It is shown that the

update step in this case is equivalent to a smoothing problem along the

subsystems. Finite-dimensional realizations of the update operation

are presented and the implications of these realizations for filtering

in large-scale systems are discussed. Also, some filter implementation

issues are examined. Chapter 5 tries to give a cohesive treatment of

Toeplitz systems and the associated control and estimation problems

by employing a spatial z-transform. This treatment is much deeper than

that of Melzer and Kuo or Chu in that the spatial transform is not

merely used for decomposition purposes. Rather, the spatial frequency

domain provides the necessary insight for the proposed filters and

controllers in Chapter 5.

In conclusion, Chapter 6 presents the contributions of this thesis

and suggestions for future research. In listing the contributions

of this work, a summary of the thesis is also provided.
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CHAPTER 2

CIRCULANT SYSTEMS

2.1 Introduction to Circulant Systems

2.1.1 Definition

A circulant matrix is a square NXN matrix in which each row is a

circular right shift of the row directly above it, i.e. a matrix of the

form

a0 -J aN-2... a

a a0 aN-l... a2

A= (2.1)

a a a ... a
2 1 0 3

aN-1 aN-2 aN-3. 0.a

The right shift of each row is called a circular shift because the ele-

ment that is shifted out on the right side re-enters the matrix on the

left. Block circulant matrices are defined similarly, with the elements

ak being replaced by submatrices Ak. A matrix is called block circulant

of order N if it can be partitioned into N2 blocks A such that the re-

sulting structure is the same as (2.1).

Deterministic continuous-time circulant systems are defined in terms

of block circulant matrices as follows: the state of a circulant system

evolves according to the differential equation
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(2.2)x(t) = A x(t) + B u(t)

and the output is given by

y(t) = C x(t) (2.3)

where

x(t) e 3Rnt is the state vector

u(t) e 3R is the input vector

y(t) e xtN is the output vector

nNXnN
A S IR is a block circulant matrix of order N

B e 3R is a block circulant matrix of order N

C G ]R pNxnN is a .block circulant matrix of order N

This circulant system is just a finite-dimensional linear system for

which the system, input, and output matrices are all block circulant.

Discrete-time circulant systems are similarly defined.

The state x(t) of a circulant system may be viewed as consisting of

N substates xk(t) R n, k=0, l,.. .,N-1, according to the partition

x(t) =

x0 (t)

x (t)

x (t)

x-(t)

(2.4)



Likewise, the input u(t) and the output y(t) consist of subinputs

uk(t) em and suboutputs Yk(t) eM. The system equations (2.2) and

(2.3) may be written in component form as

N-1

x (t) = E A x . (t) + B. u (t) (2.5)dt k . i (k-i)mod N i (k-i)mod N

N-1

y (t) =>C3  y. (t)(2)k = t E(k-i)mod N (2.6) i=o

where the notation (k-i)mod N is used to denote the unique integer j in

the set {O,,. ... ,N-1 such that (k-i)+j is divisible by N. Figure 2.1

illustrates the unforced dynamics of a circulant system. All of the

subsystems are identical in the sense that each substate xk(t) has

* the same self-dynamics A
0

* for any i. the same interaction with substate x (k.)d N (t).

Also, for any i, the subinput u(k+i) d N(t) affects each x.(t) in the

same way, and each xk (t) contributes equally to the suboutput

yk+i)mod N t). Thus circulant systems may be called spatially symmetric

where spatial refers to the subsystem index number. One way to view

this is that someone located at subsystem k looking out at the rest of

the subsystem, observes behavior that is independent of k.

2.1.2 A Useful Spatial Transformation

As discussed in Appendix A, a circulant matrix of dimension N has
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fixed eigenvectors given by

k
N

w
2k
N

W (N-1)k
N

, k=O,1,...,N-1 (2.7)

where W ex( -i. Since the N values W , k=0,1...,N-l, are all
NN N' .. Nl r l

distinct, the eigenvectors 4k form a linearly independent set, and so

any circulant matrix can be diagonalized. If 0 is the matrix of eigen-

vectors,

O 1 2

then 4 A Vis diagonal, i.e.

A = A @

N-l

I I

21Q

(2.8)

(2.9)

I I
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It is easily shown [ 44] that the eigenvalues Xk of A may be computed

from

N-1

Ak .Z aWk (2.10)
i=oiN

This equation means that the finite sequences (A0 ' l 1 , '., -1 ) and

(aO1a1 ,...,aN-l) are related by the discrete Fourier transform (DFT).

Thus the eigenvalues of a circulant matrix can be obtained by applying

the fast Fourier transform (FFT) algorithm to the top row of the matrix.

Consider now a block circulant matrix A where the blocks A have

dimensions rxs. In analogy with the circulant case, the partitioned

matrix (D is defined as
r

I -I e00
r r

w w 2
W I WI ...
N r Nr

2 4
W I WI
N r N r

N-1 2 (N-1)
W I W I -N r N r

r

WN-lI
N r

2(N-1)
W I

N r

(N-1) (N-i)
WI

N:

where Ir is the rxr identity matrix. In Appendix A it is shown that

- -l
A r A S

yo'lC

A
2 ,

N.

N-lK)

(2.12)

I
r

I

I
r

I
r

I
r

(2.11)
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where the blocks Ak on the diagonal are rxs matrices satisfying

N-1

A = A. W (2.13)
j=o

That is, in the block circulant case, the elements of the block diagonal

form are the DFT of the top block row of the block circulant matrix.

A very useful change of basis can. now be defined for circulant sys-

tems. Let

x(t) = n x(t) (2.14)
n

-1u(t) = D u(t) (2.15)

y(t) = 0 y(t) (2.16)
p

It is to be noted that n x(t) = x(t) or, in component form,
n

N-1
- ki

x (t) = x.(t) W (2.17)
k i I N

1=0

i.e. the substates {x(t)} are the inverse DFT of the {ykt). Thus,

the substates {x (t), subinputs {w (t)}, and suboutputs Iyk (t)} are

simply the respective DFT's of {x (t)}, {uk(t)}, and {yk(t)}

where the transform is taken with respect to the index k. The trans-

formed system is described by

x(t) = (4- A (nx(t) + ( B 0)n)(t)

= A x(t) + BI 2(t) (.)(2.18)
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y(t) = ~C1Cn) x(t)

= C x(t) (2.19)

where A, B, C are block diagonal matrices whose elements are given by

(2.13).

Under this change of basis, the system is composed of N completely

independent complex-valued subsystems

ftxk (t) = Ak xk(k) + Bkuk(t) (2.20)

Yk(t) = Ck xk(t) , k=0,l,...,N-1 (2.21)

This independence is in the "frequency domain", however, and is not

directly applicable to decentralized control or estimation problems

since each transformed subsystem xk1(t) depends on all of the subsystems

x. (t), i=0,l,...,N-l. Computation of the transition matrix, on the

other hand, has been decomposed into the computation of the N lower

dimensional transition matrices of the Ak. Since the change of basis

in (2.14)-(2.16) and the determination of Ak' k, and Ck are easily

done using the FFT, the dynamic behavior of a circulant system is much

easier to determine than that of a general nN-dimensional system.

In order to gain further insight as to why the transformed dynamics

are uncoupled, consider the dynamics of the kth substate,

N-1
dx(t) A. x (t) + B. u (t) (2.5)
dt k . 1  (k-i)mod N i (k-i)mod N

1=0
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Notice that each of the two terms on the RHS of (2.5) is a circular con-

volution sum. Because of the relationship between convolution and Fourier

transformation, one expects (2.5) to be decoupled in the frequency domain.

--ktThis result is obtained by multiplying (2.19) by W and summing over k,
N

N-1
d ()-k?.
--- xk (t) WN

N-1N-1

-kZ ak 9
=ZZ A.x mo dt) Wk +j u . t) W

k=o i=o0 x (k-i) WN + Biu(k-i) mod 4 N

N-1 N-i

E A.W x ) t)W+-k)
SN (k-i) mod NNi=0 k=o

N-1 N-1

Z B i } >7( w (i-k)9
. N (k-i) mod N Ni=0 k=o

(2.22)

But (2.22) is just an expanded version of

-x jt) = Ax(t) + Bzuz(t) (2.18)

The key element here is the fact that a circulant matrix times a vector

equals the circular convolution of the top row of the matrix with the

vector. The Fourier transform is then applied to convert convolution

into "multiplication in the spatial frequency domain".

Before concluding this discussion of the spatial transformation,

several identities will be presented here for easy reference throughout

the chapter. Consider first a real block circulant matrix A and the re-

lationship between Ak and AN-k. From (2.13),
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N-1

Re[ = ReZ AWN-ki

i=0

N-1

= 1A. Re1--ki
j=o

N-1

= A. Re W(N-k)1i
. 1 N

j=0

= Re[N-k (2.23)

Similarly,

N-1

Im[Ak = Im A . i]

N-1

= -rm ZA.W (N-k)i

1=0

= -Im k l (2.24)

Equations (2.23) and (2.24) just state the well-known property of the DFT

that real-valued sequences have transforms with real parts that are even

and imaginary parts that are odd. The sequence {Re[AJ} is called even

because Re [Ak] = Re[Ak] where the indices are modulo N. The sequence

{Im[Ak} is odd since Im[A] = -Im[Ak]. Next,. identities for a symmetric

block circulant matrix Q will be obtained. The symmetry of Q is equiva-

lent to the following condition on the blocks Qk:

(2.25)k (-k) mod N
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Therefore,

N-1

ReEWN-ki
i=o. [

N-1

S (-i)mod N

N-1

Q Re[WN-kg]
k=o k I

Re Wki
N

, =(-i) mod N

= Re[Qk] (2.26)

Similarly,

N-1

IQ1Q = Q' ImiW
Ikm Q (-i)mod N N

N=i

N-1

=-Q Im W-kk

(2.27)

Combining (2.23) and (2.26) for the real part of Q and (2.24) and (2.27)

for the imaginary part of Qk yields

Re [k = Re[Q-k1

Im k= Im -k]

(2.28)

(2.29)

The final identity relates the transforms of A and A'. If A is a block

circulant matrix and B=A', then B is also block circulant. Partitioning

Re %
I

I

I
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B according to (2.1), bl

N-1

ReBkl= B.

i=O

N-1

=At

N-i
i=O.

N-1

=At
Y=O

=Re A1J

Also,

ock B equals A'k. Thus
k N-ko

-ki

Re W k
[N

Re W ki
-k Re N

Re 1 k

(2.30)

N-1

Im B s= A'Im -ki
. N-k Ni=O

N-1

=-E A' Im W-kk

k=O k [

= -Im kl (2.31)

Combining (2.30) and (2.31) yields

(A') = (2.32)

where * denotes Hermitian, i.e. the transposed complex conjugate. These

identities will be heavily used in Sections 2.4 and 2.5.

2.2 Imbedding Tridiagonal Systems in Circulant Systems

The usefulness of circulant models is increased by showing how sym-

metric and antisymmetric tridiagonal systems can be imbedded in circulant
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systems. Symmetric tridiagonal systems are linear systems for which

the system matrix is block tridiagonal and the blocks on the subdiagonal

and superdiagonal are equal. For antisymmetric tridiagonal systems, the

blocks on the subdiagonal are the negative of the blocks on the super-

diagonal. Brockett and Willems [ 45 ] have shown how a symmetric tridiag-

onal system could be imbedded in a circulant system roughly twice as

large. The imbedding of an antisymmetric tridiagonal system is new, but

strongly motivated by Brockett and Willems.

Before presenting the imbedding methods, it is interesting to con-

sider why one would desire an imbedding of this type. One reason might

be the computational advantages associated with determining the eigen-

values or solving a Riccati equation (see Section 2.5) for a circulant

system. The work of Jain and Angel [26 1, however, suggests that similar

savings can arise from a direct analysis of these tridiagonal systems. It

is in the area of decentralized control and estimation that the motiva-

tion for this imbedding is found. Consider a decentralized control

structure where feedback is allowed not just from the nearest neighbors

but from the first and second nearest neighbor on each side. The re-

sulting closed loop system matrix is no longer tridiagonal - it is still

circulant if the system has been imbedded in a circulant system. This is

because, as is shown in Appendix A, the product or sum of circulant ma-

trices is still circulant. Therefore, since feedback can destroy the

tridiagonal property but not the circulant property, it is useful to

imbed a tridiagonal system within a circulant system.
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2.2.1 Symmetric Tridiagonal Systems

The unforced symmetric tridiagonal system under consideration is

given by

d
z (t) =F Z (t)

F F z (t)
0 11

F F F J z2 (t)

F *

1 F

F F z(t) (2.33)~1II~1 0 N (.3

nNwhere z(t) eR . This system is close to being circulant; all that is

needed is for the upper right hand corner block and the lower left hand

corner block of F to be F1 instead of zero. What this means physically is

that the symmetric tridiagonal system fails to be circulant because the

two end subsystems do not directly interact with each other.

The system (2.33) is imbedded in the following circulant system of

dimension 2n(N+l):

d
x (t) =A x (t)

F F F x0 (t)

F F F x (t)
1 0 1

F .

0 
F

F F1 F0 2N+ (t) (2.34)
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The idea here is for x1(t),...,xN (t) to equal z1(t),...,z N (t), respec-

tively, for all time t. In order for x1 (t) to equal z1(t), it is neces-

sary that

d d
-x (t) =-z Ct) (2.35)dt 1X dt 1

F x (t) + F x (t) + F x2(t) = Fz(t) + F z2(t)1 0(t 0 x1  1 2 0 1 1 2

Equation (2.35) implies that x0 (t) must be identically zero. Demanding

that x (t) equal z (t) implies, by the same argument, that x (t) must
N N N+1

also be identically zero. Now the question becomes how can x Ct) and

xN+jt) be made to remain at zero? For x+l(t) to be identically zero,

it derivative must also be zero for all t,

d
r-xl (t) = F X (t) + F x Mt) + F X (tI (2.36)
dt N+l 1 N ON+l 1 N+2

= F xN(t) + x(t)l (since xN+l(t)=0)

-0

Clearly a sufficient condition is xN+2(t) = -xN(t) = -zN(t) for all t.

That is, if xN and 2 N+2 exert equal but opposite "forces" on xN+l' then

+1 will remain at zero. Similarly, for x0 to remain at zero it suffices

to have x 2N+ t) = -x1(t) = -z (t) for all t. Continuing this line of

reasoning for N+2, XN+3, .-. and x2N+l' X2N, yields the conclusion

that if the initial state z(o) is extended in an odd way, i.e.
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x (o) = 0 (2.37)
0

xk(o) = zk(o)

xN+Il(o) 0

x (o) = -z Co) ,k=l, 2 ... N
2N+2-k k( '

then for all time t, the substates x0 (t) and xN+l(t) remain fixed at

zero and zk(t) = Xk(t) = -x2N+2-k(t), k=1,2,...,N. This extension is

illustrated in Figure 2.2 for an example with scalar subsystems. In

this manner, a symmetric tridiagonal system can be imbedded in a circu-

lant system.

This imbedding procedure is analogous to a method used to determine

the transverse displacement of a finite string [ 46 3. The displacement

of a string having fixed ends at 0 and L is given by the one-dimensional

wave equation. In the case of an infinite string, the solution of the

wave equation is the well known d'Alembert solution. The displacement

of the finite string can be obtained from the infinite string analysis

by means of the following procedure. The initial displacement of the

finite string is extended to an odd periodic function of period 2L. The

initial velocity is also extended in the same way. The resulting dis-

placement between 0 and L of an infinite string having these extended

initial displacement and velocity is identical to the displacement of

the finite string. Thus the behavior of a finite string can be obtained

from d'Alembert's solution to the infinite string problem. This odd
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substate

A

X,=
1

Zji

z
X2

Z2

x3

Z-z3
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4

z 
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z5

'4 5

6
0
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a - -a-

61

XT

-- 5

x10

-z2

subsystem

index

-9

-z 
3

X8

-z4

Figure 2.2 When a symmetric tridiagonal1 system is imbedded in

a circulant system, the initial state must be

extended in an odd manner.

x =0
0

L -
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periodic extension of the initial displacement and velocity is essentially

the same procedure as the imbedding formula (2.37).

The idea of this imbedding procedure is also somewhat similar to

the idea behind the method of images used in electrostatics. The method.

of images can be used, for example, to solve the problem of a point charge

q placed near a perfect conducting plane of infinite extent. The method

replaces the conducting plane with a point charge -q located at the mirror

image of charge q. The potential of these two charges is zero where the

conducting plane was located. In the case of imbedding a symmetric tri-

diagonal system in a circulant system, the substates x0Mt) and xN+l(t)

are identically zero. The mirror image of the state z(t) (see (2.37)) is

used to ensure that these two subsystems remain at zero.

The case of the tridiagonal system with scalar subsystems, i.e. n=l,

will be studied further. First, a nonsymmetric tridiagonal matrix

0 N-1

f f f 0
1 0 N.J

F = 1 0 (2.38)

* f

N- 

i

f f0
1 0

can be transformed into a symmetric tridiagonal matrix by a similarity

transformation if f1 and fN-1 are both nonzero.
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If

N-1 1
2

(fN-1 1 2

0 N-1

(f 1/f1

-t 
Fthen PFP IS symmetric,

f
0 1 N-i

f N- f0
f f

N-i 0

1 N-1

0
1 N-i

0

0
f1N f f

1 N-2if

Hence the assumption that F = F' can be made without loss of generality.

Next the eigenvalues and eigenvectors of the symmetric tridiagonal

matrix F will be found from the eigenvalues and eigenvectors of a circu-

lant. Let A be the 2(N+i) x2(N+i) circulant matrix obtained from F

N 2(N+l)
according to (2.34). The linear transformation S : R -+ R is de-

fined componentwise as follows:

I 1

(2.39)

-l
PFP =

1

(2.40)
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0, k=O or N+l

(SW)= w , k=l,2,...,N (2.41)

-W2N+2-k ' k=N+2,...,2N+1

N
where w e3R . Clearly S is just the linear transformation used to imbed

a tridiagonal system within a circulant system, i.e. x(o) = S z(o). For

N
any vector w 6 R , it is trivially verified that

SFw= A S w (2.42)

The equation SF = AS is the aggregation equation that arises in large-

scale system analysis when an aggregated model is being constructed. In

the context of aggregation, the state z is the state of a large-scale

system, and F is the corresponding system matrix. The transformation S

maps z into an aggregated state x = Sz where the system matrix for x is

A and must satisfy the aggregation equation. It is well-known that the

eigenvalues of the aggregated system matrix are a subset of the eigen-

values of the large-scale system matrix. In the context of imbedding

a tridiagonal system within a circulant system, the equation SF=FA can

be thought of a a "disaggregation" equation since the resulting state is

of higher order than the state of the original model.

If w is an eigenvector of F corresponding to eigenvalue X, then

A(S w) = S F w = X(s w) (2.43)
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Hence X is also an eigenvalue of A with eignevector S w. What are the

th
eigenvalues of A? From (2.10), the k eigenvalue is

S=f + f W f Wk 0 1 2N+2 1 2N+2

f + 2f cos , k=0,lr...,2N+l (2.44)
0 1 \N+l

Thus there are only N+2 distinct eigenvalues -- eigenvalues X 0 f0 + 2f

and A f - 2f are not repeated; the other N eigenvalues occur twice.1+1 0 1

Can A0 also be an eigenvalue of F? Since the corresponding eigenvector

is

1 (2.45)

and c0 is obviously not in the range space of s, X cannot be an eigen-

value of F. Similarly, eigenvalue XN+ Of A has eigenvector

+1

-l

= (2.46)N+l

+1

-1

and, since N+1 cannot be in the range space of S, XN+1 is not an eigen-

value of F. The only remaining candidates for eigenvalues of F are the
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repeated eigenvalues of A. Consider the pair of eigenvalues Xk and

X2N+2-k* Any eigenvector Xk of A corresponding to this eigenvalue can

be written as a linear combination of the eigenvectors ck and 42N+2-k'

k/20020k

Cos k2Tr j sin k2Tr

(N+l / - l

Csk (N+l1 j .i. k (N+l) IT
cos FN+ r - j sin ( + l

cosk (2N+) Tr) . k (2N+1) T)

co( N+l sn N+1

Cos(I +

COS N +

k (N+1) 7
cos N+1)+

(k (2N+l) Tr\
N+l

j sin

sin ( 14+

.i. k (N+I) 7
( 

i N+l

. i . k ( 2N+1Tj sin(iN+)

(2.47)

(a+S)

(C+s) cos

(0,+0) S 2k

(a+f) Cos kTr)

(a-f) cos k(2N+1)Tr)+ j (-)

Xk = a

+ j (S-t)

+ j (5-a)

+ j (S-t)

sin(-j)

sin

sin kT)

Si k (2N1) Tr
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For Xk to be in the range of S requires, from (2.41) , that the 0 th and

th
the (N+l) components of Xk be zero, i.e. (c+6) = 0 and (a+ )cos(kr) = 0.

Therefore, choosing a = -s yields an eigenvector ik of F, i.e.

Xk.=sTk (2.48)

A purely real eigenvector is obtained by letting a/ = - =2

sini--
\N+l,

S/2kwT\
sin i--

k= sin +l,(2.49)k.

. 2kNTr
sin(N+

components 1 through N of Xk. The corresponding eigenvalue of kis

Xk = f + 2f1 cos(---.

From the above analysis, it is clear that the eigenvalues of a sym-

metric tridiagonal (finite) Toeplitz matrix can be found using the FFT

algorithm. This is. proved more directly in [ 26 ] by Jain and Angel.

Using the DFT to efficiently diagonalize symmetric tridiagonal matrices,

Jain and Angel are able to decompose the vector filtering equations

arising in the restoration of images into a set of uncoupled scalar fil-

tering equations. This is completely analogous to the decomposition of

Lyapunov and Riccati equations in Section 2.5. In fact, their results

on efficient algorithms for image processing were one of the motivating

factors for undertaking the work presented here.



-42-

Finally, it is noted that the idea of imbedding a symmetric tri-

diagonal system within a circulant system can be extended to higher di-

mensions. Consider a tridiagonal system

z (t) F F z1(t}1 0 11

d z2(t) F FO z2(t)d 2 1 0 *02 (2.50)
dt .* F

zN(t) F1  F0 0 zN(t)

where each substate zk(t) is itself composed of q sub-substates,

zkl(t)

zk(t) = zk2 (t) , k=l,2,...,N (2.51)

zkg(t)

and the matrices F0 and F have the special forms

00

F01 F00
F O F0(2.52)

0 F . F01

F01 F00
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F1 0

Fb2
10

1, (2.53)

0~F 10

Since the individual subsystems are symmetric tridiagonal systems, the

imbedding procedure can be applied at the subsystem level to yield

x(t) A A1x(t

x2 A A . x(t)
xdt) 1 0 *2

dt -(2.54)
. .0 AA1

xN (t) A1 A0 N (t)

where the substates x(t) are composed of (2q+2) sub-substates, xk(t) = Szk(t)

and

F F F00 01 01

F01 F00 F01

A0 F0 1  F0 0  F (2.55)

F0 1

F01 F01 F00
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F Q
10

A = (2.56)

10

For this imbedding to be valid, it is necessary that xk,0(t) and x (t)

be identically zero. Writing out (2.54) for xk,(t) ,

d

dt 0(t) = F1 0 -1,0 (t) + F 0 1 ,2 q+ 2 (t) + F00 ,0(t)+

+ F01 ,l(t) + F1 0 \+1,0  (2.57)

A consistent solution is obtained if x-1,0(t), x 0 (t) , xk+,0o(t) are

all zero and Xk 1(t) = - ,2q+2 (t). Similarly, one sees that all the

,q+l(t) are identically zero, and so this imbedding is valid. The re-

sulting system (2.54), moreover, is itself a symmetric tridiagonal system.

Applying the imbedding procedure to it yields

x (t) A A1 A1  x(t)
0 C)1 0

x1(t) A1 A A1 0 "x1(t)

d- (2.58)
dt . . * A .5

. , 1

2N+2 (t) A 1 0 2N+2

a circulant system where the h Locks of the system matrix are themselves

block circulant matrices. The original system of order nqN is imbedded
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in a circulant system of order 4n (q+1) (N+1). In Section 2.3, an example

of such a symmetric tridiagonal system will be described.

2.2.2 Antisymmetric Tridiagonal Systems

An unforced antisymmetric tridiagonal system has the form

a
-z(t) = F z(t)
dt

F -F zM(t)
0 1

F F -F z2(t)
1 0 1 2

=F- (2.59)

.- F
. 1

F F z(t)
1 0 N

nN
where z(t) eaR . It will be shown that there are two different imbedding

procedures for antisymmetric tridiagonal systems depending on whether N,

the number of subsystems, is even or odd. For odd N, the proper circu-

lant system has order 2n (N+1), just as in the symmetric tridiag- onal case.

For even N, however, a circulant system of order 4n(N+l) is necessary.

The situation when N is odd will be considered first. The candidate

circulant system is
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d
x(t) = A x(t)

F0  -F1  (I F1  x0(t)

F1 F -F x1(t)

F -1 (2.60)

-F1  F F0 2N+1(t

This circulant system is very similar to the circulant system (2.34) used

for imbedding symmetric tridiagonal systems. Just as in the symmetric

case, the substates x 1 (t) ,ree,xN(t) equal zl(t) ,. ,zN(t) , respectively,

for all time. This immediately implies that x0 (t) and x N+1t) must be

identically zero. Since xN+1(t) is zero,

d +t=F x t(t)=F(t)t-) (2.61)JE N+l 1 N F0 xN+jt) 1 xN+2 t

= F1[x(t) - x2(t)l (since xN+(t) 0)

-0

A sufficient condition here is that xN+2(t) = xN(t) = zN(t)', in contrast

to the symmetric case. Once again, XN and x+ 2 exert equal but opposite

forces on XN+1, but in the antisymmetric case this requires XN+2(t)=xN(t).

Examination of the derivative of x (t) quickly leads to the conclusion
0

that x 2N+1 Wt = x 1 (t) = z 1(t),'In order to clearly illust rate the differ-
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ence between the symmetric and antisymmetric cases, the argument will be

continued for 'N+ 2 (t) and x2N+1(t). The requirement is that xN+2 (t)=xN (t);

hence

d d
d 2(t) =. xW(t) (2.62)

F xN+j(t) + F0 XN+2 (t) - F 1 XN+3 (t) =FxNj(t) + F0 XN(t) - F +1t)

F0 xN+2(t) - F1 xN+3 ( t) =F (t) + F x (t)

(since xN+1(t) = 0)

Requiring N+ 3 (t) = -xN-Ct) = -zN-1(t) obviously suffices. The condition

X2N t) =-x2 (t) = -z2 t) is obtained similarly by considering x2N+1 (t).

Continuing this argument leads to the conclusion that if

x(o) = 0(2.63)

xk(o) =z

k+l
x2N+2-k (o) = (-) zk o) k=1, 2 ,...,N

then x (t),...,xN (t) will equal z (t) ...,zN (t) , respectively, for all t.

Figure 2.3 illustrates this extension in the antisymmetric case for the

same system shown in Figure 2.2. It is to be noted that this procedure

only works for odd N. From (2.,63),
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substate
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Figure 2.3 Imbedding an antisymetric tridiagonal system with an
odd number of subsystems in a circulant system.

x 4=

4z 4

x5=
z5

x 3=3
z
3

9

x2=

z 2

0
I I I I I



-49-

'N+2(0 = N+-1 )(2.64)

and so the requirement that N+ 2 (t) equals zN (t) is only met for odd N.

Imbedding an antisymmetric tridiagonal system in a circulant system

when N is even will now be discussed. Suppose the system matrix of the

circulant system in which this antisymmetric system is imbedded has the

same form as the system matrix A in (2.60), only now the order of the

circulant system is as yet unspecified. It is further supposed that sub-

states x1 (t) ,... ,xN(t) of the circulant system are to equal z 1 (t) ,. . .,ZN(t)?

respectively, for all time. Of course, the immediate implication is that

x (t) and N+i(t) are both identically zero. By examining the derivatives

of xN+1t) ,....,x 2N (t), the following relations are obtained:

xN+ 2 (t) = zN (t) (2.65)

x (t) = -zN-l(t)

xN t) = N-t)
'N+4 N-2

X2N (t) =z2 (t)

x2l (t) = -z (t)X2N+l M -ZI1t

For odd N, the identity is x2N+l(t) = z (t), and so subsystems 0 and

(2N+l) could be "tied together" to complete the circulant system. In

the case of even N being considered here, tying together subsystems 0

and (2N+l) fails since this would imply
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a x0 (t) = WF0 x (t) -F x (t) +F x (t) (2.66)ut 000 1 1 1 2N+1

-F 1 [x(t) -x 2 N+(t)] (since x0 (t) = 0)

-F 1 [ 1I(t)+ zit)] (sincex( =Z(t) = -x2N+lz +() t=x t

a contradiction. Since the subsystems 0 and (2N+l) cannot be joined,

additional subsystems are added to the circulant model. Using the device

of examining derivatives for x2N+l Ct),... ,x3 +1C(t) yields the following:

x2N+2(t)=0 (2.67a)

2N+3 1

x2N+4(t)=-z2(t)

x3NClt) = -zN-(t)x3N1+1 W 1Z -1

x3N+2t) =-z t)

Unfortunately, subsystem (3N+2) cannot be joined to subsystem 0 and have

x0 (t) remain equal to zero since x3N+2 (t) = z Ct) and x (t) = z1(t)&.

Therefore, another N+1 subsystems are added to the circulant model,

x33t)=0 (2.67b)3N+3

3N+4 (t)= -ZN (t)



x3N+5()

x 4N+ 2 (t)=

x 4N+3(t)=

Now subsystem (4N+3)-can be joined to subsystem 0 since this yields

S.x otdt
F0 0 (t) - F1 x1(t) + F1 x4N+3(t)

= -F1 l(t) - X 4 N+ 3 (ti

0

Summarizing, an antisymmetric tridiagonal system with an even number of

subsystems can be imbedded in the following circulant system of order

4n(N+1):

-F (111
1F

F F

(t)

x Ct

\ 4N+ 3 (t)

x0 (o) = zk()

xk (o) = zk()

-51-

z N-1(t)

-i

-z2 (t)

z (t)

(2.68)

d
at

x (t)

x (t)

4N+3t)

F -F1

F F 0

F

1F 0F1

-F1

where

(2.69)=
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() = 0

X2N+2-k(O k zk

x (o) = 02N+2

X2N+2+k (o) -Zk (0)

x3N+3(o) =0

k+lX4N+4-k (O) (-1) z '() k=l, 2 ,...,N

This extension is illustrated in Figure 2.4 for a system having only two

subsystems.

2.3 Examples

Circulant models have rarely been used in the literature on dynamical

linear systems. Dickerson and Erickson [ 32), however, are authors who

have employed circulant systems to investigate the stability of a closed

loop of vehicles. Their model will be presented first, and then their

stability results will be discussed in light of Section 2.1. The under-

lying physical situation is a string of a large number of vehicles moving

along a single lane, e.g. a personal rapid transit system. The string

is modelled as a closed loop in order to avoid difficulties -associated

with the ends of the string and in order to obtain controllers which are

identical for each vehicle.

Figure 2.5 illustrates the vehicle traffic loop and is taken from

1 32]. The loop consists of N identical cars moving around a circular
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substate

x4=

z2

x =

-

11
z

x 6=6
0 -
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4 1T

x 7=

tx8 =

-z
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0
subsystem

x 
=

-Z 2

I -~

index

Figure 2.4 Imbedding an antisymmetric tridiagonal system with an even

number of subsystems requires a circulant system roughly

four times as large.
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Figure 2.5 (from [32]) . Illustration of the classical

vehicle traffic loop.
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track. It is desired to regulate the system so that the cars traverse

the track with a nominal angular velocity V and a nominal separation2.
N

Assuming linearly proportional feedback from the position and velocity

of the nearest fore and aft neighbors and its own position and velocity,

a simplified description of the motion of the kth car is given by

t)= Ck+1(t) - ( - 2 +G d® t)--tfl]

dt kkkl d

kl(t) - Ok(t) +.iL]+ Gb k-l(t) dk(t)l

+ K [Vt - ek(t) + + G[V -+ek(t) (2.70)

where all indices are modulo N. The K's are gains on positions, and the

G's are gains on velocities. The resulting model is clearly a circulant

system. Moreover, the fact that the feedback was restricted to be from

the nearest neighbors is not crucial for obtaining a circulant model.

The important characteristic is that the loop is closed in that cars 1

and N interact in the same way as (say) cars 1 and 2.

The infinite-dimensional version of this problem has been studied

by several authors [ 303, [31 3, [47 ]. The problem is to regulate an

infinite string of identical systems moving in a straight line. Of

course the model is a Toeplitz system (the subject of Chapter 5) and

not a circulant system. However, these authors claim that "the infinite

object theory accurately describes the properties of the typical vehicle

controller in a long finite string" [30 1. Typical vehicles are those
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having many vehicles in front and behind them, i.e. ones not near the ends

of the string. But typical vehicles could alternatively be described by

a circulant model obtained by connecting the two ends of the finite string.

This procedure yields the approximate circulant model of Dickerson and

Erikson which -does not model the behavior of objects near the ends. But

if the behavior of objects near the ends is of no particular interest,

or if this behavior can be determined in some adhoc. fashion, or if it

is desired to equip all the vehicles with the same controller (for sim-

plicity of design, for easy replacement of any vehicle, etc.),, then the

circulant model could be quite useful.

The stability results of Dickerson and Erickson [32 ] for circulant

systems will now be discussed keeping in mind the decoupling property of

the DFT. That is, since the DFT converts a block circulant matrix into

a block diagonal matrix, the stability of the overall system can be deter-

mined from the stability of the individual spatial subsystems. If all the

subsystems are stable, then the system is stable; if one subsystem is

unstable, then the system is unstable. This elementary observation to-

gether with the formula (2.13) for the diagonal blocks will explain two

of the three stability results found in [32 1. The third is just a direct

application of Lyapunov's direct method and will not be considered fur-

ther.

Dickerson and Erickson's first stability condition is given in terms

of the measure p of a matrix. For any matrix norm such that 11 = 1,

the measure of a matrix A is defined by
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P(A) = lim III + hA - 1] (2.71)
hIO

It is easily shown that for any eigenvalueAof A,

Re[XJ _ p(A) (2.72)

If # is an eigenvector of A corresponding to A with norm 1, then

lim (I + hA) i = lim 1 + hXI -l1=Re[X]
h h hIOh

(2.73)

But,

lim (I + hA) _< lim I + hA -i= A)
4O hth h(2.74)

Thus (2.72) is valid. Using this result, Dickerson and Erickson give

the following stability criterion: the circulant system (2.2) is stable if

N-1

'(A 0) +E IIA, 11 < 0 (2.75)
k=l

The condition (2.75) will now be obtained by considering the stability

of each diagonal block. Recall that tbje kth diagonal block is

N-1

Ak .E A 1 WN (2.13)
i=o
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Then

N-i

P(Ac) = A . A1 WN k) (2.76)
i=1

N-1

<p(A .+ A. Wik (triangle inequality)
- 0 iN

N-1
W-ik

p(A0 ) + A WN (triangle inequality)

N-1

<;E(A0 ) + A,

<0 (by (2.75))

That is, if (2.75) holds, then each subsystem is stable. This immediately

implies that the overall circulant system is stable. It is obvious that

the sufficient condition (2.75) for stability is simply derived by using

the formula (2.13) for the diagonal blocks of a circulant matrix.

A sufficient condition for instability is also presented by Dickerson

and Erickson. Consider the first diagonal block,

N-1

A0  . A. (2.77)
3_=O

Clearly, if A0 is not a stability matrix, then the system must be unstable.

A is not a stability matrix if there exists an eigenvalue X of A having0 0

real part greater than or equal to zero. Hence if there exists a X with
N-1

Re (X) 0 such that XI - A. is not one-to-one, then the circulant
i=O
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system (2.2) is unstable. But this last statement is just Theorem 3in

[32]. The diagonalization property of the DFT, therefore, provides an

easy means of obtaining the stability conditions of Dickerson and Erick-

son.

Condition (2.75) has an interesting interpretation when the circu-

lant system is viewed as an interconnection of subsystems. Since p(A0 )

is required to be negative, each isolated subsystem is stable. Moreover,

the interactions A., k=l,...,N-1 with other subsystems are considered to

be only destabilizing forces in (2.75). Given this interpretation, the

sufficient condition (2.75) is reminiscent of stability formulas for

diagonally dominant large-scale systems, see for example [ 48 ], where

each subsystem is required to be stable and the interactions with other

subsystems are only considered to be destabilizing.

In some cases, only some of the matrices Ak, k=0,...,N-1 are non-

zero. For example, Ak = 0 for k y 0,1,N-1 corresponds to only nearest

neighbor interactions. In these cases, the stability condition (2.75)

and the instability condition provide tests which are independent of the

number N of subsystems. Thus if condition (2.75) is satisfied, the

circulant system is stable no matter how many subsystems are included.

This observation was first made in [ 32 ].

As shown in Section 2.2, circulant models can be used to study sym-

metric and antisymmetric tridiagonal systems. There are many examples of

tridiagonal systems; one is the longitudinal power system depicted in

Figure 2.6. This system is similar to one analyzed by Arcidiacono,
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Ferrari, and Saccomanno [ 49] for low frequency electromechanical oscilla-

tions. A simplified linear model will now be obtained based on the

modelling assumptions made in [(49 3.

Each generator is modelled by an e.m.f. E. and phase angle 6., and

it is assumed that the E . are constant. For small variations, each gener-

ator has the second order model

Pi. -Ap. = m A . (2.78)

where m is an inertia coefficient and AP . and Ap . are changes in the
Ml el

mechanical and electrical power, respectively, at generator i. Linear-

zing, the electrical power variation AP. is written

Nla

aP .i=E e. (2.79)
1 \j=l a ji

N

=Z K.. A6.

j- 1) 3j=1

where the partial derivatives are evaluated at the nominal values of

their arguments. From the static load flow equations [50],

- E.E. cos (6. - 6.) , j=i+l (2.80)

0E , otherwise

for the uniform longitudinal system in Figure 2.6. The mechanical power

variation AP . is expressed as
MI
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AP = APo+ APmi ml mi
(2.81)

where the second term represents speed governor action. It is assumed

that in the frequency range of interest,

AP =r) -d 1:6.
mi -I

(2.82)

Using (2.79)--(2.82), the model (2.78) may be written in vector form as

mA$ + DA& + KM C = APm (2.83)

m

M=I in

0

-k

K =-

C

k

0 k

and k = -( E 1 E 2 cos (6 - 62) .

space form by defining a state

Equation (2.83) can be written in state

vector x of substates x=k AS.

x(t) = F x~t) + B AP (t)

where

d

)
(2.84)
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where the system matrix F is antisymmetric tridiagonal as in (2.59) with

F0  Q m and F1 = \ 0 -k/ . This uniform longitudinal system,

therefore, does have a tridiagonal linear model and can, according to

Section 2.2.2, be imbedded in a circulant system.

Tridiagonal systems can also arise when a finite difference method

i.s applied to partial differential equations. Consider the one-dimensional

wave equation

2-V 2 .91-v
c = E(y,t) (2.85)

at2  a 2

for 0 < y < L and t > 0 that describes the small displacement motion of a

vibrating string of length L subject to an external force E (y,t) . The

ends of the string are fixed. hence the boundary conditions

v(ot) = v(L,t) = 0 (2.86)

The initial conditions

v(y, o) = f (y) (2.87)

v(y,o) = g(y) (2.88)

mean that at time 0 the displacement and velocity of the string are given

by f (y) and g(y), respectively.

The method of finite differences can be used to obtain an approxi-

mate solution to the vibrating string problem. Let
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d.(t) = v(--rt) (2.89)

for i=1,2,,..,N. Replacing the partial derivative 7rin (2.85) with

the approximating difference quotient [51 3

d. (t) -2d. (t) +d.(t)

(L2

yields the following equation:

d.(t) = c-(N+ 1 d.[d (t) - 2d.(t) + d. 1 (t) + E --- t (2.90)
L2 i+l -1 N+'

In state space form, these equations are

c(t) = F x(t) + B E(t) (2.91)

d. (t)
where x(t) consists of substates x.(t) - , F is of the form

(2.33) with

S0 0 0

F = ,F 1
F (-2c; (N+1)2 2 (N+l) )

0 0

L2 L2

and the input E(t) is

E (L't)
N+1'

E ( , j t

E (t) =
NL

E N+1' t
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This finite difference nethod, therefore, produces a symmetric tridiagonal

system that approximates the solution of the one-dimensional wave equa-

tion.

The two-dimensional wave equation

.alv 2.3 2v 2.92 v
-c--- - b - E(Y,z,t) (2.92)

at2  9Y2 3z2

where 0 < y C 1 and 0 < z < 1, can be similarly approximated. This

equation describes the vibrating motion of a square membrane having fixed

2 2
edges. If b does- not equal c , then the membrane is nonhomogeneous in

that its physical characteristics differ in the y and z directions. Let

i
d. (t) = v(~1~ 1  U~~ t (2.93)

1,jN+l' M+l'/

for i=1, 2,..*.,N and j=1,2,. .. , M. Using difference quotients to approxi-

mate the two spatial partial derivatives in (2.92) yields

2 2
d.2.(t) = c-(N+ l) d (t) - 2d. .(t) + d. (t)
ILJ Li+1,-

+ b 2 (M+1) [d,. 1 (t) - 2d. .(t) + d+

+ E t (2.94)
N+1' M+l

Letting x. (t) = 't\and lexicographically ordering the points yields

(d. ..(t))
1,Jm

the following luirped model:



x (t)

x 12(t)

2M(t)
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x2M(t)
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K39 F[Q <F0

0

where F = - 2 2- 2 2
(-2c (N+1) -2b CM+1)

0

, F2 = b2M+ 1) 2
F2 (02?+1) 2

d
dt

(
0

x (t)

x 12Ct)

22

x 2M(t)
x 1 (t)

N2

'NM(t)

(2.95)

0
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and the forcing function E has been taken to be zero. This system can be

described as block tridiagonal where

* the blocks on the diagonal are themselves block tridiagonal

and their super- and sub-diagonal blocks are equal

* the blocks on the super- and sub-diagonals are equal and block

diagonal.

Consequently, this system has the same form as (2.50), and therefore the

original 2NM dimensional system can be imbedded in a circulant system of

order 8(N+l) (M+l) as described in Section 2.2.1.

2.4 System Theoretic Results

The question of controllability and observability and the problems of

minimal realizations, pole placement, and state reconstruction will be

examined for circulant systems. In each case, the spatial transformation

of Section 2.1.2 will be used to decompose the usual tests or procedures

into a series of lower order tests or procedures on complex-valued sys-

tems. Since the algebraic theory of linear systems may be performed over

arbitrary fields (see [ 521), considering complex systems instead of real

systems presents no inherent difficulty.

2.4.1 Controllability and Observability

The block circulant pair under consideration is (AB). Since con-

trollability is invariant under a change of basis for either the state

or the input, the pair (A,B) is- controllable if and only if the pair
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(A,B) is controllable, i.e.

rank[BAB,...,A B = rankjB, A B,...., lB] (2.96)

But the matrices A and B are block diagonal. Thus controllability of (A,B)

is equivalent to controllability of each pair (Airk) ,k=O,l,...,Nl.

Therefore, the controllability of (AB) can be determined from the follow-

ing procedure:

(l.) use the FFT to obtain A andB

(2.) test if each (AkFBk) is controllable

(3.) conclude (AB) is controllable if and only if each (Ak fk) is

controllable.

Because of the identities (2.23) and (2.24) presented in Section

2.1.1, subsystem k is controllable if and only if subsystem N-k is. Pre-

F-- n-lF]cisely, the controllability matrix Lk'Ak Bk .. k Bk is the complex

conjugate of the controllability matrix BkA kB . . 7A B 1.
N-k' N-k N-k' N-k N-kl

Hence the two controllability matrices have equal rank, and so (AY,Bk) is

controllable if and only if (A ,B ) is. This means that in step (2.)N-k'N-k
above, controllability must be examined only for (CAkBk)1, k=0,l,... .

where - denotes the largest integer in -.

By considering subsystems k and N-k together, it is possible to ob-

tain a test involving purely real matrices. Define the linear transforma-

tion T :C +k C by

T= L(2.97)

LIk -jI k
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Then for a and $ in R , it is to be noted that

CL+j 0
T T (2.98)

It is of interest to determine if the pair (Ak,Bk) is controllable, where

A k 0 7

A1 (2.99)

0 A-k-

and Bk is defined analogously. But from (2.23) and (2.24), A and Bk are

of the form 0 . Hence (ANBk) is controllable if and only if

the real pair (T\TF, TBkT ) is controllable. The test for controll-

ability of (A,B) is, therefore, reduced to testing for the controllability

of + 1 real subsystems of order 2n.
21

An interesting special case of the above procedure is when the sub-

systems are scalars, i.e. A and B are composed of lxl blocks. In this

case, the transformed subsystem pair (AkBk) is controllable if and only

if B is nonzero. Thus controllability of (A,B) is equivalent to the

DFT of the top row of B having no zero elements. Since A and B are dia-

gonal, the image of A B is contained in B. The controllable subspace,

therefore, is particularly easy to determine. A vector x will lie in

the controllable subspace if and only if xkis zero whenever Bk is zero.

Observability for the pair (C,A) follows by duality from considering

controllability for (A',C').
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2.4.2 Minimal Realizations

Given a transfer matrix H(s), the realization problem is to deter-

mine a linear system defined by the triple (A,B,C) such that the transfer

matrix of the system C(sI-A) B equals H(s). A minimal realization is

one that has the lowest possible dimension for the system matrix A. The

McMillan degree ' 53 ) of a transfer function is the order of any minimal

realization of the transfer function.

Consider a block circulant transfer function H (s) e IE&>. That

is, H(s) is partitioned into N blocks Hk(s) according to the pattern of

pxm _s = -1HsOi(2.1) and each k(s) is an element of 1Pm Then H(s) = pH (s) is a
K p m

complex block diagonal transfer matrix. Since they are related by a

linear transformation, H(s) has a finite-dimensional realization if and

only if H(s) has one. If H(s) has a finite-dimensional realization, then

each block Hk(s) on the diagonal is also realizable by a finite-dimen-

sional linear system. Conversely, assume each block Hk(s) has a reali-

nXn - pm-- nn
zation (AkBkCk) -Bewheren FA , Bk . JR , Ck PFIR Then a

realization of H(s) is given by (A,B,C) where A = diag(A) , B = diag(B )

C =diag (C ).Now

H(s) = @ H(s) (2.100)
p M

= C(sI-A) B
P m

= C @ si - @A B

=C sI-A B
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for A = AC ,B = B , C=4 C . If the block diagonal ma-
n n n m p n

trices A, B, C satisfy the identities (2.23) and (2.24), then A, B, C will

be real-valued and block circulant. Since the original transfer function

H(s) is a matrix of polynomials in s with real coefficients, the blocks

H k(s) will satisfy (2.23) and (2.24), i.e.

Re[H (s)] = Re[H s)] (2.101)

k N-k

Im[H (s)] = -Im[H (s)] (2.102)

k N-k

Therefore, the triple (AN-k, BN-k, C )N-k that realizes HN-k(s) can be

taken to be the complex conjugate of the triple (Ak Bk C) that real-

izes H (s). In this way, the transfer function H(s) can be realized by

the real, block circulant triple (A, B, C). Summarizing, in order to

determine if the block circulant transfer function H(s) has a finite-

dimensional realization and, if so, to find such a realization, the

following procedure may be employed:

(1.) use the FFT to obtain H(s)

(2.) test if each block Hk(s) has a finite-dimensional realization

-- if so, continue with step (3.)

-- if not, conclude that H(s) does not have such a realization

(3.) determine a realization (A , C k of (s) for k=0,l,.j.
Akc k'.Ck k 21

(4.) use (2.23)- and (2.24) to obtain (AN-k, BN-k, CN-k) from

(N'k''Bkk Ck

(5.) use the FFT to obtain (A, B, C), a realization of H(s)

It is possible to avoid having to realize a complex transfer func-
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tion H (s) by considering the transfer functions H (s) and H (s) to-k k N-k

gether and using the linear transformation T defined in Section 2.3.1.

The procedure is straightforward and the details are omitted.

A circulant transfer function has been shown to have a circulant

realization. But is this circulant realization minimal? No, not unless

each realization (AkBk, Ck) of Hk(s) is minimal. In general, the H (s)

will not all have the same McMillan degree, and thus not all of the reali-

zations will be minimal.

Proposition 2.1 The block circulant transfer function H(s) has a mini-

mal realization as a circulant system if and only if the diagonal

blocks H k (s) all have the same McMillan degree.

The following example demonstrates what can go wrong.

s21 121
Example 2.1 Consider the circulant transfer function H(s)

l_ s+1
shS2

Then-

S2 2

-21 S

H (s) 2=1 'S-
1 -1L s 1 JL --'

-ss2 s

0 -
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In this case, if (s) has a second-order realization and ff (S) has

a first order realization. Thus H(s) does not have any circulant

minimal realization.

Even in the cases where no minimal circulant realization exists, however,

there are nonminal circulant realizations.

2.4.3 Pole Allocation and State Reconstruction

Since pole allocation and state reconstruction are known to be dual

problems, only the pole allocation problem will be explicitly dealt with

here. All the results, of course, are applicable to the state reconstruc-

tion or observer problem.

The pole allocation problem is to determine a full-state feedback map

G : x(t) + u(t) such that the resulting closed-loop system matrix (A-BG)

has specified eigenvalues. It is well known that the closed-loop eigen-

values can be specified arbitrarily if and only if the system is controll-

able. Actually, to be precise, if only a real-valued gain matrix G is

permitted, then the specified closed-loop eigenvalues must occur in com-

plex conjugate pairs. Consider then a controllable circulant pair (A,B),

and suppose that the desired closed-loop eigenvalues are the set A. it

is assumed that if the complex number ax is in A, then a e A.

Since (AB) is controllable, the transformed pair (A, B) is con-

trollable, and so is each pair (Ak, Bk). Hence it is possible to assign

the poles of each transformed subsystem. Let X denote the set of closed

loop poles which are to be associated with the kth transformed subsystem.
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N-1
Of course, A = kiven the pole placement problem is solved for

k=O

each pair ( Bk) to yield the complex feedback gain matrix Gk if

-- -l
G = diag(Gk), then G = 4' G 0' solves the overall problem, i.e. the set

km n

of eigenvalues of (A-BG) equals A. The feedback matrix obtained by this

procedure will, in general, be complex. In order to obtain a real-valued

G, the transformed subsystem gains Gk must obey (2.23) and (2.24). This

means the closed-loop poles of subsystem N-k must be the complex conju-

gates of the closed-loop poles of subsystem k, i.e. =N-k fa a e A -.

If the sets A are chosen such that this requirement is met, then the

gains Gk will satisfy (2.23) and (2.24). The resulting state feedback

gain matrix G will be real-valued and block circulant. The procedure

for pole placement for circulant systems is

(1.) use the FFT to obtain (A, B)

N-1
(2.) choose the sets such that A = {c*a e Ak} and A = U X

N-k k k
k=o

(3.) solve the pole placement problem for each subsystem, thereby

obtaining G
k

(4.) use the FFT to obtain G

Just as in the test for controllability or the procedure for obtaining

a minimal realization, pole placement can be done without considering com-

plex systems by treating subsystems k and N-k together. Once again, how-

ever, the details are omitted.

In the case of scalar subsystems, the pole allocation problem becomes
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particularly easy. Suppose the desired closed-loop poles are Ak'

k=0,1,...,N-l. Note that it is possible to specify not only these eigen-

values but also which particular closed-loop eigenvector, as given by

(2.7), is associated with each eigenvalue. Assuming it is desired to

associate X with c , etc., then the transformed closed-loop system matrix
0 o0

is
-- - - -l -l -l

A-B G = A - B G (2.103)
n n n m m n

b-b
a2 b g

aN-l- bN-19N-1

A0

2

N-1

The transformed feedback gains are simply

g= -, k=01,...,N-l (2.104)

bk
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Note that this requires all of the b to be nonzero. But this is exactlyk

the condition for controllability of the system as seen in Section 2.3.1.

The scalar case, therefore, clearly illustrates both the necessity and

the sufficiency of controllability for pole allocation.

2.5 Decomposition of Lyapunov and Riccati Equations via the Spatia

Transformation

Large computational savings can arise in the solution of Lyapunov

and Riccati equations for circulant systems. These savings are obtained

by using the transformation introduced in Section 2.1.2. to decompose the original

equation into a series of uncoupled lower-order equations of the same type.

The lower-order problems are then solved independently, and the solutions

are combined to yield the overall solution. Only Lyapunov and Riccati

equations are explicitly considered, but the same technique works for

other (e.g. Sylvester) equations.

Consider first the time-varying Lyapunov equation

--- P(t)= AP(t) +P(t)A' +Q(2.105)
dt

where A, Q, and P(O) are all block circulant matrices of order N. Pre-

-l
and post-multiplying by 4 and nrespectively, yields

d -l -l -1 - -1-[k P(t)@ ] = I[G A P ]P[P P(t)@ ] +E4 P (t)P ]J[' A'4@ ]+
dt n n n n n n n n n n

+ [4 'QP I
n n

d -_ '_-- -

--P (t) = A P(t) + P(t) (A' ) + Q (2.106)
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Since A is circulant, so is A'. Hence (A') as well as A and Q, is block

diagonal. Together with the fact that P(0) is block diagonal, this implies

that P(t) is also block diagonal for all t. In other words, P(t) is a

block circulant matrix. Of course, the conclusion that P(t) must be

block circulant can be arrived at by purely physical reasoning.

Recall that the matrix (A') in (2.106) is not equal to A , but by

(2.32), equals A . Therefore (2.106) is equivalent to the following set

of uncoupled complex-valued Lyapunov equations:

d PAk(t)= Akk(t) + P (t)A(t) + Qk , k = 0,1,...., N-1 (2.107)

The solution P(t) of the original equation (2.105) is simply

-- 1
P(t) = nlP(t)n (2.108)

where P(t) = diag [Pk(t) .

The Riccati equation is decomposed in a completely analogous fashion.

Consider the equation

d -1
dt P(t) = A P(t) + P(t)A' + Q - P(t)C'R CP(t) (2.109)

where the matrices A,C,Q,R, and P(0) are all block circulant of order N.

Following the same approach as that used for the Lyapunov equation yields

(t) = A P(t) + P(t) (A') + Q - P(t)(C') (R C P(t) (2.110)
dt

Thus, P(t) is a block circulant matrix, as was clear from the symmetry

-l - -1
of the physical problem underlying (2.109). Moreover, since (R ) = (R)

the transformed Riccati equation may be written as the following set of

lower-order equations:
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d- - -* -- l

JPk(t) = A k(t) + Pk(t) + Qk Pk(t)C R C Pk(t) , k=0,l,...,N-1

(2.111)
The quantity P(t) =In P (t)O -n is the solution of

n n

(2.109).

If the matrices A,C,Q, R in the Lyapunov and Riccati equations are

all real-valued matrices, then the solution must be real-valued also.

Thus, if the lower-order complex-valued Lyapunov and Riccati equations

(2.105) and (2.109) are solved for k = 0,1,... , , then the identities

(2.23) and (2.24) can be used to obtain the remaining N - - 1 terms.

Lyapunov and Riccati equations for circulant systems have been shown

to decompose into a set of uncoupled lower-order Lyapunov and Riccati

equations, respectively. These lower-order equations, however, are complex-

valued equations. Real-valued equations suitable for solution using stand-

ard computer software can be obtained by considering the kth and (N-k) th

equations together. In the case of the Lyapunov equation, these two equa-

tions can be trivially written as a complex Lyapunov equation of order 2n:

Pk (t) 0 Ak 0 k (t) 0

d
dt - -0 P Nk(t)l = [L0 N-i r Pkt) Nk (t)-1

P k (t) 0 Ak 0 Qk 0

0 P+J ]L (t) 0 A ] + [0 Q-k

(2.112)

Pre- and post-multiplying by the matrices Tn and Tn 1, respectively, that

were introduced in Section 2.3.1 yields:
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ReP (t) ImPk (t) ReAk ImAk RePk (t)

dt

L-IMP k (t) Rep k (t) -ImA k ReA k ImPk (t)

ReP (t) ImPk (t) ReAk -Im ReQk

ImPk(t) RePk(t) IReA '] -ImQk

ImPk (t)1

RePk (t)

(2.113)

ReQk

where (2.23) and (2.24) have been used. In its present form, (2.113) is

not a Lyapunov equation, since the driving matrix and the unknown matrix

are not symmetric. But (2.26) and (2.27) demand that ReP (t) = ReP (t)

and ImP (t) = -ImP'(t) , so (2.113) becomes
k k

ReP k (t) IMPk (t) ReA ImAkIIReP (t) IMPk(t)

d1+
t IM (t) RePk (t) -Im ReA ImP (t) Re Pk(t)

ReQ

IMQ

RePk (t) ) ReAk ImA

ImP' (t) ReP (t) L-ImAk ReAk

I k

ReQk]

(2.114)

a standard Lyapunov equation of order 2n. The set of complex-valued

Riccati equations (2.111) can be converted into real-valued equations

analogous to (2.114) in exactly the same way.

It is quite clear that the algebraic Lyapunov and Riccati equations

which give the steady-state solution to (2.105) and (2.109) can also be

decomposed into complex-valued algebraic equations and then combined into

real-valued equations of order 2n.
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Just how large are the computational savings associated with

decomposing a circulant Lyapunov or Riccati equation? In either case,

standard solution techniques require 0(n3 N3 ) operations, i.e., the

number of operations is proportional to (nN)3 for large values of (nN).

In the circulant case, the DFT takes 0(n2 Nlog N) operations, and
2

the solution of each transformed equation takes O(n3) operations.

The total computations required are, therefore, O(n2 Nlog N + n3N).

Thus, for a fixed subsystem order, the necessary computations increase

only as Niog2N in the circulant case. This presents a tremendous

saving over the O(N3) operations generally required.

2.6 Sunmary and Conclusions

Circulant systems have been introduced in this chapter, and their

properties have been developed. The key element here has been the use

of the DFT to diagonalize a circulant matrix. For a circulant system,

this transformation yields a set of uncoupled spatial subsystems. The

diagonalizing property of the DFT was exploited to study system theoretic

issues in Section 2.4, and to decompose Lyapunov and Riccati equations

in Section 2.5.

Both symmetric and antisymmetric tridiagonal systems can be imbedded

in circulant systems by the methods described in Section 2.2. Section

2.3 contained some examples of circulant and tridiagonal systems, and

also discussed some stability results of Dickerson and Erickson for cir-

culant systems in view of the diagonalization of circulants by the DFT.

Throughout this chapter, only continuous-time systems were explicitly

considered, but the same techniques also work in discrete time.
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Because of the decomposition of Lyapunov and Riccati equations,

control and estimation problems for circulant, large-scale systems can

be solved very efficiently off-line. The on-line implementation of

these solutions, however, employs a centralized controller or estimator.

Chapter 3 will consider using the spatial frequency domain for

Iefficient implementation of centralized processors

.- design of decentralized processors

In both cases, the fact that circulant matrices are diagonalized by the

DFT will be crucial.

For a large-scale system to be circulant, it is necessary that

all of its subsystems are identical. In an actual large-scale system,

it might be the case that the subsystems are similar, but not identical.

One could consider approximating the large-scale system by a circulant

system in such a case, however, because of the tremendous computational

advantages associated with circulant systems. Of course, the resulting

controller or estimator will be suboptimal. If the primary interest is

in interactions among subsystems, as opposed to the detailed behavior

of individual subsystems, then it is expected that the approximate circu-

lant model could be very helpful. Some preliminary results along this

line are found in Chapter 3.
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CHAPTER 3

CONTROL AND ESTIMATION FOR CIRCULIANT SYSTEMS

The linear-quadratic regulator problem and its dual filtering problem

are now considered for circulant systems. Section 3.1 deals with the cen-

tralized regulator and uses the spatial transformation to decompose the problem

and to obtain an efficient on-line implementation of the control law. Section

3.2 attacks the fixed-structure decentralized control problem. Both optimal

and suboptimal decentralized control gains are considered in this section.

Using the imbedding procedure introduced in Section 2.2, centralized and de-

centralized control laws for a rectangular membrane are computed in Section

3.3 to illustrate the preceding development. Some preliminary work toward

using circulant controllers for a general large-scale system is presented

in Section 3.4. The filtering problem is then treated in Section 3.5 by

duality. The chapter concludes with a summary and brief discussion in

Section 3.6.

The decomposition of the centralized circulant control problem in Sec-

tion 3.1 is essentially just the finite-dimensional analog of the procedure

used by Melzer and Kuo [ 30 ] to decompose Toeplitz control problems (see

Section 5.1.2). Where the spatial transform concepts are used in a funda-

mentally new way is in Section 3.2, more specifically, in Section 3.2.3,

to obtain suboptimal decentralized feedback gains from the optimal centralized

gains. From the perspective of the spatial frequency response, this problem

is observed to be analogous to the design of finite-impulse response digital

filters from infinite-impulse filters. Thus, some digital filter design tech-

niques are adapted in Section 3.2.3 to the design of decentralized controllers.
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3.1 Centralized Control

The vehicle used for studying centralized control of circulant

systems will be the standard linear-quadratic regulator problem. For the

circulant system (2.2), the regulator problem consists of the determination -

of the input time function u(t) which minimizes the quadratic cost

functional

T

J= 2x' (T)Fx(T) + x' (t)Q(t)x(t) + u' (t)R(t)u(t) dt (3.1)

0

where F > 0 and for all t S[0,T], Q(t) > 0 and R(t) > 0. The optimizing

input u(t) can be expressed in linear state-variable feedback form as

u(t) = - G (t)x(t) (3.2)

where G (t) is a time-varying gain matrix. The centralized gain is given

by

Gc (t)=R~1(t)B'K(t) (3.3)

where K(t) is the unique symmetric matrix solving the Riccati equation

d -1
-- K(t) = - K(t)A - A'K(t) - Q(t) + K(t)B R (t)B'K(t) (3.4)

dt

subject to K(T) = F.

The problem is called a regulator problem because the objective is to

choose the input so as to regulate the state near zero. The weighting matri-

ces, F,Q(t) and R(t) reflect the tradeoff between deviations of the state

from zero and the level of control used to reduce these deviations. Consider
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first the state weighting matrix Q(t), and suppose it is partitioned

2
into N nxn submatrices;

Q1 1 (t) Q1 2 (t) . . . Q (t)

Q 2 (t) Q2 2 (t) . . . Q2N(t)

Q(t)= .(3.5)

QN1 (t) '2N2 (t) QN (t)

The state vector x (t) of the circulant system is composed of N sub-

states, xi, i = 0,1,...,N-1, and the weighting matrix for each substate

x. is Q. .(t). As discussed in Chapter 2, all of the subsystems are

identical. Therefore, it is quite reasonable to propose that all the

blocks Q (t) on the diagonal of Q(t) be equal. In general, the block

Qik (t) is the cross-weighting between subsystems i and k; i.e., the term

x (t)Qik(t)x(t) appears in the integrand of (3.1). The dynamic inter-

actions between subsystems i and k, however, depend only on (i-k)mod N.

Hence, it is proposed the Q(t) should be a function of only (i-k)mod N.
ik

That is to say, in the case of circulant systems, it is physically reas-

onable to restrict the state weighting matrix Q(t) to being a block

circulant matrix. Similar arguments, of course, apply to the weighting

matrices F and R(t). Therefore, throughout this chapter, all of the

weighting matrices in the quadratic cost functional (3.1) will be taken

to be block circulant matrices.

Since all of the matrices in the Riccati equation (3.4) are block

circulant, the analysis of Section 2.5 can be applied to decompose (3.4)
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into the following set of Riccati equations of order n:

- K (t) = - K. (t)A. - A.K. Wt)_- . (t) + K. (t)B. R. (t)B.K. (t)
dt i 3. i i l

(3.6)

subject to the terminal condition K. (T) = F. Moreover, the gain matrix

G C(t) is also circulant and can be computed as

c -c -
G (t) = 0 G (t) -(3.7)

m n

~th bokc
where the i block. (t) of the block diagonal matrix G C(t) is given

by

-c -- 1 -* -
G. C(t) = R. (t)B. K.(t) . (3.8)

It is clear that the circulant quadratic regulator requires much less of f-

line computational effort to compute the gain matrix Gc (t) than is required

in the general case.

The on-line implementation of this feedback law can also be per-

formed efficiently by using the FFT. Consider the discrete-time version

of the regulator problem where at time k the input u(k) equals - Gc (k)x(k).

Since Gc (k) is a circulant matrix, this matrix multiplication can be per-

formed by

(i) using the FFT to compute the x. (k) from the x (k)

(ii) computing u. Ck) = - G x(k)
1 1 1

(iii) using the inverse FFT to compute the ui(k) from the u.(k)

Figure 3.1 illustrates the structure of this centralized controller.
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The computational advantages of the circulant regulator can be

more clearly understood by recalling from (2.20) that the transformed

circulant system is composed of N uncoupled subsystems,

--- x. (t) = A.x. (t) + B.u. (t) i = 0,1, ... ,N-1 (3.9)
dt i 3 1 i i

Specifying the circulant cost matrices F,Q(t), and R(t) is the same as

specifying the cost matrices F.,Q. (t), and II (t) for the individual trans-

formed subsystems. This means that restricting the cost matrices in

(3.1) to being circulant is equivalent to proposing independent subprob-

lems for each of the N transformed subsystems. The minimizing control

th
ii. (t) for the i subproblem is just
1

- - c -
u.(t) = - G. (t)x.(t) (3.10)

:i. 1 1

-c
where the G. (t) are given by (3.8).

A time-invariant controller can be found by considering the cost

functional

J = -fx' (t)Q x(t) + u' (t) Ru(t) dt (3.11)
2

0

where Q > 0 and R > 0. Under the conditions that (AB) is controllable

and (A,Q 2) is observable, the minimizing u(t) is given by

u(t) = - G x(t) (3.12)

where the constant feedback gain G equals - R 1B'K and K is the unique

positive definite matrix solving the algebraic Riccati equation

0=- A'K - KA - Q + KBR 1 B'K (3.13)
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;2
As discussed in Section 2.4.1, (AB) controllable and (A,Q ) observable

-1
implies (A.,B.) controllable and (A,,Q 2 observable for all i. The

low-order algebraic Riccati equations

0 = - A*K. - K.A. - Q. + K.B.R. B* K. (3.14)
3-1 11 1 1J11 1 1

therefore, have unique positive definite solutions K.. Of course, the

solution K of (3.13) can be easily obtained from the K..

The time-invariant state feedback law (3.12) is centralized in that

each subinput u. (t) will, in general, depend upon every substate xk(t)t,

k = 0,1, ... , N-I. The decentralized linear state feedback problem is

the subject of the next section.
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3.2 Decentralized Control

3.2.1 Introduction

Under a decentralized state feedback control law, each subinput

is a function of some fixed subset of the substates. Only linear, non-

dynamic feedback maps will be considered here. This means that the

structure of the decentralized controller is fixed so as to require the

input u(t) to be of the form

d
u(t) = - G x(t) (3.15)

where the decentralized feedback matrix Gd is block circulant and subject

to the constraints

G = 0 V aC wo0,1, ... , N-li (3.16)

Under these conditions, the subinput u0 (t) is just a linear combination

of the substates x. (t), i ea . In fact, for any k, the subinput uk (t)

is the same linear combination of the substates x (i+k)modNt)iea

The set a specifies which substates can be used in the computation

of the individual subinputs. The usual situation is that the number of

elements in a will be much less than N. As an example, consider the case

of decentralized control with only nearest neighnor feedback. This corres-

d
ponds to a= {0,1,N-1}1 and so the gain matrix G is constrainted to

have the form
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d d dG Gw G

d d d
1 GN-i

G G .(3.17)

d

d

GN-1 G.d Gd
1 0

Given the set a, the remaining problem is to determine the feed-

d
back gains G. , i e a. Section 3.2.2 proposes choosing the gains which

minimize the infinite-horizon cost functional (3.12). The approach taken

in 3.2.2 is to obtain a set of necessary conditions for the optimal

decentralized gains. Suboptimal controllers are considered in Section 3.2.3.

The spatial transform domain is used to obtain suboptimal decentralized

feedback gains from the optimal centralized gains of Section 3.1

3.2.2 Optimal Decentralized Controller

It is desired to find the feedback matrix G which minimizes the

cost functional (3.12) subject to the constraints (3.16). Substituting

u(t) = - Gdx(t) inLto (3.12) yields the quadratic cost functional

ii a' a
J = - j x' (t) [9 + G RG ) x(t) dt (3.18)

0

Minimization of (3.18) will yield a result which, in general, depends

upon the initial state x(O). In order to obtain a decentralized feed-

d
back matrix G which is not a function of the initial state, it is assumed

that x(O) is a zero-mean random variable with circulant covariance E 0 .

dThe problem then is to find the G (if it exists) which minimizes the
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expected value of the cost (3.18).

Many authors have solved various versions of closely related prob-

lems [54] - (61 ]. In [61 1 it is shown that

1 d' d
EI{J} = trace [PC(Q + G RG)] (3.19A)

2

1
- trace [KE ]

2 0

where the matrices P and K obey

(A - BGd) P + P(A - BGd) + E0 = 0

(A - BGd) 'K + K(A - BGd) + ( + Gd ' RGd) = 0

It is necessary that the optimal decentralized gain Gd satisfy

d
E[J(G. + AG.] = 0 V AG. Vi e a .

Using (3.19), it can be shown (61 ] that the necessary condition

is equivalent to

trace { P[ - KBAG - AG B'K + Gd'RAGi) + AG(i)IGd

(3.19B)

(3.20)

(3.21)

3:

(3.22)

(3.22)

= 0

(3.23)

where AG i is used to denote



-92-

(N-i+l)th column

AGA

AG.

th(i AG. O-i row
AG

(i+l) row-. AG.

AG 0

(3.24)

SAG.

I't

(N-i)th column

The condition (3.23) can be manipulated further and written component-

wise as

N-1 N-1

-i-k 7lGdR - KBk-] = 0 V ie a. (3.25)
k=0 I Y=O

The necessary conditions (3.20), (3.21), (3.25) for the optimal decent-

ralized feedback gain Gd are seen to be a set of coupled nonlinear

equations.

From the Lyapunov equation (3.20), the closed-loop system is stable

dd
if and only if P is positive definite. If (A - BG) is unstable, then G

is certainly not minimizing, even though it satisfies the necessary con-

ditions, since the expected value of the cost (3.18) is infinite. It may

be the case that no stabilizing gain Gd exists, andhence the optimization

problem is ill-posed. This fact is discussed in the sequel. From (3.22),
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the matrix K is clearly positive definite and has the interpretation

of the cost matrix for the closed-loop system, i.e.,

1 d' dx' (0)Kx (0) = x' (t) [Q + G RG x (t) dt (3.26)
2 2

0

In contrast to the centralized case and the corresponding Riccati equa-

tion, the necessary conditions in the decentralized case may have more

than one solution, such that P and K are positive definite.

The necessary conditions (3.20), (3.21), (3.25) can also be written

in the transform domain since K and P are both circulant. The resulting

equations are the finite-dimensional analog of the necessary condition

for decentralized control of Toeplitz systems obtained by Chu [31 1.

Chu's results will be discussed in Section 5.1.2. The two Lyapunov equations

(3.20) and (3.21) decompose in the transform domain as was shown in

Chapter 2,

- - d - -d* - -- d

(Ak- Bk)k Kk +Kk (k -'kGk +(Qk + Gk RkGk ) =0 (3.27)

(A+-FBkGk)Pk k (Ak - BkGk *+ k) = 0 (3.28)

for k = 0,1, ... , N-l. After some tedius algebraic manipulations, the

third necessary condition (3.25) may be written as

N-I

3 Fk(Y k k k -) WiN = 0 V ie a (3.29)

k=0

It is noteworthy that these necessary conditions remain coupled in the

d
transform domain. This is because the constraint G = 0 V i8 e aintro-

-d
duces a dependency among the transformed gains G . For example, if a =

k

-d
{0}, then all the Gk must be equal. It is impossible, therefore, to
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solve the decentralized problem by considering isolated, transformed

subproblems as was the case for the centralized problem.

Determinining the optimal gain matrix Gd from the necessary conditions

(3.20), (3.21), (3.25) or (3.27) - (3.29) is a formidable problem. This

observation in the general (as opposed to circulant) case led Kosut [ 56 1

to consider suboptimal decentralized feedback gains. Kosut proposed two

suboptimal controllers -- both defined in terms of the optimal centralized

controller. His basic idea was to approximate (in some sense) the optimal

gain matrix G by a decentralized gain matrix G. For example, one pro-

d c d
posal was to choose G so as to minimize the sum of the squares of G -G

This philosophy of using the decentralized gains to approximate the

centralized gains will be the basis for the suboptimal decentralized con-

trollers considered in Section 3.2.3.

Before leaving the optimal decentralized controller, it is interest-

ing to note that even if (A,B) is controllable and (A,Q ) is detectable,

it might happen that no stabilizing Gd exists which satisfies the constraints

(3.16). This is shown by the following rather trivial example.

Example 3.1. Let A = (0)and B =( 1 fland suppose a = {l}. The
( 0 1 0 1 d

gain matrix then is of the form Gd = d ). But for any

choice of Gd , the closed-loop matrix A - BGd is unstable.

When the B matrix is diagonal, however, and (A0, B ) is controllable, then

a stabilizing gain will exist if local feedback is allowed; i.e., 0 e a.

The restriction that B is diagonal means that each subinput uk(t) only

directly influences subsystem k. If (A0, B ) is controllable, then it
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d
is possible to choose G so that the measure pi[as defined by (2.71)]

0

d dof A - B G is as negative as desired. In particular, G can be chosen
0 00 0

such that the sufficient stability condition (2.75) holds.

3.2.3 Sub22timal Decentralized Controller

Since obtaining the optimal decentralized gains from the associated

necessary conditions is such a difficult task, it is useful to consider

suboptimal decentralized gains which are much more readily computed..

Kosut [ 56 1 has proposed choosing suboptimal decentralized gains on the

basis of some approximation to the centralized gains. This approach will

now be expanded for circulant systems by making heavy use of the diagonal-

izing spatial transformation defined in Chapter 2.

In order to gain insight into the approximation of the centralized

controller, consider a circulant system (A,B) with scalar subsystems and

centralized feedback matrix Gc. The closed-loop system matrix (A-BGc) has

the transform (A - BC ) that is a diagonal matrix with elements (A.- B.C. ).
1 1 1

These elements are just the eigenvalues of the closed-loop system matrix.

Since the A. and B. are fixed by the system, the closed-loop eigenvalues
1 1

-c
are located by the G. . The decentralized closed-loop system matrix

d - -- d - ---d
(A - BG ) has transform (A - BG ) and eigenvalues (A.- B G. ). If the

1 1

-d
transformed decentralized gains G. closely approximate the transformed

-c
centralized gains C. , then the decentralized and centralized closed-loop

eigenvalues will be closely matched. The performance of the decentralized

system, in this case, would be quite similar to the optimal centralized

system.

It is very important to realize that the above claim that the perfor-

mance of two closed-loop circulant systems will be similar if the feedback
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gains are approximately equal, is not true for a general noncirculant

system. Consider the following example:

Example 3.2. Let A, B, G+be n X n matrices

1 1

0 1 1

1

V
1

0

0
1

1

The closed-loop system matrix is

A-BG

1\
and has

matrix,

G 2=

0 1

O 1

0

0
0

all n eigenvalues equal to zero. Let G2 be a second feedback

close tQ G1,

1

1

0
0

10-n
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Example 3.2 (cont'd)

The resulting closed-loop system matrix is

o 1

0
0 1

A-BC 2

10-n 0

and has as its n eigenvalues the n roots of 10-n. All these eigen-

values have magnitude 10 -- not particularly close to zero.

The point of this example is that small perturbations of the elements of

an ill-conditioned matrix can result in large changes in the matrix's

eigenvalues. Thus, approximating the centralized gain Gc by a decental-

a
ized gain G does not, in general, yield similar closed-loop systems and

is not an especially good approach. For circulant systems -- at least, for

circulant systems with scalar subsystems -- this difficulty cannot occur,

as was discussed previously. The centralized and decentralized closed-loop

- --- c - -a- -d -c
poles are (A. - B.C. ) and (A - B.C. ); if G. is close to G. ,then the

corresponding poles are also close. In the case of vector subsystems, if

-d -c -d
the G. are close to the G. , then the blocks (A. - B.G. ) on the diag-

1 1 :i 3-J

onal of the transformed closed-loop system matrix will be close to the

c
blocks (A. - B.G. ) . Since these are low-order blocks, the centralized

1 11l
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closed-loop system. As is well known, the side lobes of the rectangular

and decentralized closed-loop systems should be quite similar.

The decentralized control problem, therefore, is being viewed as

an approximation of the set {G2 I by the transformed decentralized gains

-d{G I . This problem is almost identical to the design of finite impulse

response (FIR) digital filters from infinite impulse response (IIR) filters

[ 62 1. In digital-signal processing, it often happens that the ideal

desired frequency response of a filter has a unit sample response that is

of infinite duration. Because of implementation considerations, however,

it may be desired to have an FIR filter that has a frequency response

closely approximating that of the ideal IIR filter. There are a variety of

techniques for constructing FIR filters from IIR filters [ 62 J. The use

of some of these techniques for solving the decentralized control problem

will now be considered.

The well known windowing technique is a popular and straightforward

method for designing FIR filters from IIR filters. In this approach, the

unit sample response hF(i) of the FIR filter is expressed as the product

of the IIR filter unit sample response h (i) times a window w(i),I

hF(i) = hI(i)' w(i) (3.30)

where the window is identically zero for all i outside some interval

(say) 0 < i < M. The frequency response of the resulting FIR filter is

the convolution of the IIR filter frequency response and the frequency

response of the window. The frequency response of the window consists

of a main lobe and decreasing side lobes. When convolved with the fre-

quency response of the IIR filter, this yields a FIR filter having a
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frequency response which is a smeared version of that of the IIR filter.

The Blackman, Hamming, Hanning, triangular, and rectangular windows are

all described in [ 62 J. These windows have a variety of desirable prop-

erties which makes them useful in the design of FIR filters.

Return now to the decentralized control problem, and suppose G is

the optimal centralized feedback matrix for some quadratic cost functional.

Also, suppose a is' {0,1, ... , MI where M < N. Then a suboptimal decentral-

ized controller can be obtained from windowing by defining

dc
G. = w(i)G.c (3.31)

-d
where w(i) is an appropriate window function. The transform G. of these

decentralized gains will be the convolution of the transform w(i) of the

- c
window and the transform G. of the centralized gains. The transformed

d -c
gain Gi , therefore, will be a smearing of the gains C. about i0,

N-1
G.= w(k) G (3.32)

2. i-k
k=Q

d -c
It is expected that C. will be close to G. if

0 0

(i) the transformed centralized gains do not vary too rapidly

as a function of i

(ii) w(Q) is near one and the other w(i) are near zero.

c -c
If the G are slowly varying, then their inverse transform, , will

be concentrated around i = 0. This means that the windowing approach can
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be expected to be most successful when the system interactions and

penalty matrices -are spatially localized. For example, a system charac-

terized by nearest-neighbor interactions would be a good candidate for

using windowing to obtain decentralized control gains.

-d - c
If G. = . V i then the transformed window Wi(i) is 6 . and so

the window itself is w(i) = 1 V i. Of course, this does not yield a de-

centralized controller. For any window that does yield a decentralized

controller, some of the w(i) will be nonzero when i is nonzero. For i/O,

a nonzero w(i) is part of a side lobe of the transformed window [ 62 1-

-d
As the height of the side lobes increases, the decentralized gains G.

-c
become a more smeared version of the centralized gains G. . A window

having smaller side lobes, therefore, is to be preferred to one having

larger side lobes.

Example 3.3. This example will be used throughout the remainder of

this section to illustrate the various frequency-domain techniques

d
for obtaining a decentralized feedback gain G. Let

41 1 3 1 1 1 0 0 0
2 2 2 2

1 1 1 1
S -4 3- 0 1 0 0
2 2 2 2

3 -4- 0 0 1 0
2 2 2 2

1 1 1 1
3 4 -41 0 0 0 1 2 2 2 2

Then, after taking the spatial transformation,
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Example 3. 3 (cont'd)

0 0 0

-8 -0 0

o -2 0

o o -8

01 0 0

o 0 1

0 0 0 1

Qpen-loop poles are at 0, -8, -2, -8. Suppose the optimal closed-loop

pole locations are -s, -10, -10, -10 where e is a small positive con-

stant. The transformed centralized feedback matrix is therefore

c 0 0 0

0 2 0 0

0 0 8 0

0 0 0 2

and hence

1 e+3
4

1
- s-2
4

1
4

1
4

- s-2
4

1
4:+3

1
- c+l

1-
4

1 1c
- -2 -s+3
4 4

1
1 c-2
4

I

- E+
4

-- E-2
4

1 1 1
-E+ -s-2 -E+3i
4 4 4

The decentralized feedback is rzestricted to nearest-neighbor feed-

d
back -- i.e., a = {0,1,3} or, equivalently, G2 = 0. The first candidate

decentralized controller will be obtained by windowing with a

0

0

0

0

C
G0=
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Example '3.3 (cont'd)

rectangular window.

(I.) RECTANGULAR WINDOWING

The rectangular window w (i) is defined by.1 R

1

wR 1

, i = 0,1,3

i=2

The decentralized control gain is

1

-e'-2
4

0

1
- E-2

- e+34

0

1
- s-2
4

1 1c
- -2 -s+3
4 4

1
-e-2 0

1
- e-24

c-2

0

1
- E-2
4

1
- s+3
4 I

and the transformed gain is

3
4

0-sc+3
4

0

0

0

0 -- E+7
4

0

0

0 0 0 1Es+34 1

The resulting closed-loop poles are then (i - 4 0, (-ll- 4) ,

-9 + , - 11- E ) --- unstable for small .

In Example 3.3, using a rectangular window gives rise to an unstable

GR_

-R
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closed-loop sysem. As is well known, the side lobes of the rectangular

window are relatively large and not at all insignificant [ 62].

Other windows, with a less abrupt transition to zero, have smaller side

lobes.

Example 3.3 (continued)

(114 TRIANGULAR (BARTLETT) WINDOWING

The triangular window is more smoothly tapered than the rectangular

window,

1,i =0

w (i) =i 1,3
T2

0 ,i =2

This results in the decentralized gain matrix

1 11
-+3 - E-1 0 -E-1
4 8 8

1 1 1- -i -sE+3 - E-1 0
8 4 8

T
G=

1 1
0 -E- 1 -E+3 -- i

4 8

1 1 1
E-1 01 -s-i -sE+3

88 4

and transformed gain

E+1 0 0 0
2

0 -c+3 0 0
T 4

0 0 5 0

1
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Example 3.3 (cont'd.)

1 1
The closed-loop poles are now (- 1 - -), (- 11 - -e) , (-7)

2 4

(- 11- s) , -- stable.
4

The idea of this section is to choose the decentralized gain matrix

Gd on the basis of approximating the optimal centralized gain Gc. An

alternative to the windowing technique is the following least-squares

type of approach. It is desired that the diagonal blocks of the trans-

formed decentralized closed-loop system closely match the diagonal blocks

of the transformed centralized system. Consider then the cost functional

N-1 --- d 2

= d (A. - cB.G. - A.-B.G (3.33)
WLS1 B ) (A.

i=0

N-1 2
d3 B -(d c

d. 2.(G.L - 3. )

i=0

The d. are simply weights that are assigned to the various blocks. The

dominant or critical blocks, naturally, would be assigned a larger weight.

A suboptimal decentralized controller can be obtained by using the Gd

which minimizes the cost functional JWLS. The minimizing gain could be

obtained from an iterative procedure such as Newton's method implemented

on a digital computer.

The case of the weighted least-squares approach for scalar subsystems

will be examined further. If the subsystems are scalars, then the funct-

ional (3.33) can be written as
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N-1

= a. (G. -G.c)(G. - ) (3.34)WLS1 i 3

where the B. have been incorporated into the d.. If all the d. in (3.34)

are equal, then the result from Fourier series is that the minimizing G

is given by

G.C , i e a (3.35)d
G.=

0 , i e a

This is nothing but using a rectangular window to obtain Gd from Gc

Kosut [ 56 ] refers to this particular decentralized gain as the "minimum

norm" controller because this choice of Gc minimizes G Gc - Gd

Assigning all the weights d. to be equal, however, may not result in

a good closed-loop system. The reasoning here is as follows. Suppose the

centralized closed-loop system has a very slow pole (A-B G ) = A and
0 0 0 0

- - -c
a very fast pole (A1 - B G ) = X . For the decentralized closed-loop

system to approximate the centralized closed-loop system, it is much more

-d d
important that (A 0 - B0 G ) be close to X than it is that (A - B Gbe

close to -- if for no other reason than the stability of the closed-loop

system. Indeed, this is exactly the situation in Example 3.3 when a rectang-

ular window is used. The four decentralized closed-loop poles all differ from

their centralized counterparts by the same amount, 1 + - s. For the very4

slow pole at - e, this difference results in an unstable mode. It is clear,

therefore, that the choice of identically equal d is not particularly wise

in general. Rather, the d. should be chosen so that the critical elements
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(A. - B.G.?) are more closely approximated by the decentralized feed-
1 1 i

back than some other elements.

Example 3. 3 (continued)

In this part of the example, the constant E is taken to be 1 for

computational simplicity.

(III.) WEIGHTED LEAST-SQUARES

Consider the assignment of weights

10 i=0

i=l,2,3

Then the cost functional to be minimized is

10(1 - Gw)2 + (2G- G ) + ( 8 - GW) + (2-G )
WLS 0 1 2 .3

where it is assumed that G1W = G3. The problem then is

min 10(1 - G - 2 G) + 2(2 -G
0 1 0

w w
G , G1ol1

After some tedious calculations, the

be
w

2 w w 21S+ (8-G +2G
o0 I

minimizing gains are found to

= 2.6211

w
G = -0.9814

The closed-loop poles in this case are: (- 0.6584), (- 10.6211),

(- 6.5839), (- 10.6211).
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There are various other computer-based design procedures for FIR

filters that could be tried for designing decentralized feedback gains.

The frequency-sampling design and equripple approximation are two such

procedures that will be considered here. The idea of the frequency-

sampling design is this: if an FIR filter has an impulse response h(i)

that is zero outside 0 < i < L-1, then the frequency response of the

filter can be exactly specified at L frequencies. The filter response

at any other frequency is then fixed from these L frequency samples. In

the case of the decentralized control problem, the corresponding approach

is to exactly specify k transformed feedback gains (if ax has k members).

For scalar subsystem, this is equivalent to specifying k closed-loop

d
poles. This specification results in a unique decentralized gain G

and so there are no remaining degrees of freedom left for the other N-k

transformed feedback gains. There is a very real danger here that the

unspecified N-k gains may result in closed-loop poles that are far from

their desired locations, but the frequency-sampling technique does have

the advantage of allowing the exact placement of some critical closed-

loop poles.

Example 3.3 (continued)

(IV.) FREQUENCY-SAMPLING DESIGN

Closed-loop poles 0,1,3 are specified to be - e, -11, -11, respect-

ively. This means that the transformed gains are

-FS
G = E
0

-FS
G = 3

-FS
G3 = 3
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Example 3. 3 (cont'd)

-FS .FSand G2F is unspecified. Since G PS is constrained to zero, it is

FS FS FS
possible to solve for G , G , G from the three specified

C1  , 3

-FS FS FS
transformed gains. G2 may then be computed. Since G = GC

-FS FS FS
G =E + G + 2G = E

0 0 1

FS

C = . FS 3

1 2

-FS
Transformed gain G 2  is just

-FS FS FS FS FS
C2 = C -CG. + G - G
2o i 2 3

The closed-loop poles are (-s ), (-11), (-8+C), (-11)

In the equiripple approximation of an ideal frequency response, the

filter designer specifies a passband and stopband tolerance and the length

of the filter impulse response [ 62 ]. An iterative scheme is then employed

to find the digital filter with the narrowest transition region for the

given tolerances. The design is called an "equiripple filter" because the

ripples in the passband (stopband) frequency response all have the same

height. An interpretation of this procedure is that rather than exactly

specifying the frequency response at selected frequencies (as in the fre-

quency-sampling approach), one specifies an acceptable interval in which

the frequency response must lie. With this interpretation, the equiripple
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or "interval specification" approach can be applied to the decentralized

control problem. The idea is that the control designer specifies an

interval for each closed-loop pole, in the case of scalar subsystems.

Presumably slower or critical poles will have smaller specified intervals

than other less crucial poles. In all cases, of course, to guarantee sta-

bility, the intervals should be entirely in the left-half plane.

Example 3.3 (continued)

(V.) EQUIRIPPLE DESIGN (INTERVAL SPECIFICATION)

Suppose pole 0 is required to be very near - c, and the other three

poles are required to be between - 9 and - 11. In fact, suppose pole

0 must be exactly at - E . Then the conditions on the transformed feed-

back gains are

- E
0

-1-
- E

7 < G < 9
-2 -

-E
1 < G < 3

E E E E E
In terms of the gains G and G (recallithatG G =0 andG =0 G)o 1 2 3 1

E E
G0 + 2G
o 1

1 < G E< 3

E E
7 0 -20 <

7 < GE - 2GE < 9
0 1 -

Clearly, these constraints cannot all be satisfied simultaneously.

This illustrates a difficulty with this method; if the specified
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Example 3.3 (cont'd.)

intervals are too small, then there will not be any decentralized

gain which meets the specifications. By enlarging the intervals, an

acceptable gain can be found. Suppose now that poles 1,2,3 be required

1 1
to be between -8- and -11- . Then2 2

-E
G =

0

1 -E 1
-<G < 3-
2- 1 - 2

1 -E 1
6-< G <9-
2- 2 - 2

1 -E 1
-<G <3-
2- 1 - 2

Hence

E E
G + 2G = E
0 1

1< G <3
2 - - 2

6- < G -2G <9-
2 - o 1- 2

E 13 E 13
One satisfactory choice is G = - + and G = . The

0 4 1 8

resulting closed-loop poles are (-6+ )), , + E

(--, ( i + E).
4

It is important to realize that there is no guarantee of stability for

any of the decentralized control system designs proposed here. This was also

true of the suboptimal controllers proposed by Kosut [ 56 3. Of course,

there is no guarantee that any stabilizing decentralized gains exist, as was

pointed out in Section 3.2.2 when the optimal decentralized controller was

discussed. The problem is that the set a may be too small (or not contain
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the right members) to stabilize the system. The frequency domain approaches

discussed in this subsection, however, provide some insight as to how a

-d
should be chosen so that the transformed decentralized gains G. approximate

the transformed centralized gains G . This is an important consideration,

since the control designer typically has some freedom in specifying which

substates are known to each controller, i.e. where communication can take

place. By using the transformed centralized gains G , it is felt that

one can make judgments as to which indices should be included in a.

The next section applies some of these ideas on decentralized control

to an example of the circulant control of a rectangular membrane.

3.3 Computer Example: Circulant Control of a Rectangular Membrane

The physical system to be considered in this section is a vibrating

membrane having fixed edges [46]. The vibrational motion is assumed to be

described by the two-dimensional wave equation

32V 2 92v 2 32V
2 - c 2 - b = E(y,z,t) (3.36)

where 0 < y < 1, 0 < z < 1, and E(y,z,t) is an external force applied to

the membrane. The approach taken here will be.to use difference quotients

to approximate the two spatial partial derivatives in (3.36). An alternate

approach would be to use modal analysis to design a controller. In [63],

Creedon and Lindgren use modal techniques for the control of the vibrational

motion of a thin rectangular plate (as opposed to a membrane). This work,

as applied to the control of a deformable mirror, is successful in obtaining

a centralized control. In the present section, decentralized as well as

centralized laws are obtained.
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The wave equation (3.36) is discretized at N points in the y direc-

tion and M points in the z direction. Letting N=9 and 1=14, the displacement

d. , (t) is simply

d.(t)= v( , 1 t(3.37)
1,' 15 t)

for i=l, ... , 9 and j = 1, ... , 14. For control purposes, it is assumed

that there is an ideal actuator located at each of the points on the dis-

cretized rectangular grid. If u. .(t) is the applied force at the point
1,j

and j = then the finite difference approximation of (3.36) is
1Ylo15

(taking c=b=0.1),

d..(t)= 1.00[di+,(t) - 2d. .(t) + d. .(t)] + (3.38)

+ 2.25[d..+i(t)- 2d1 . (t) + d. .(t)] + u..3(t)

/d. . (t)\
By letting x. . (t) = I, ' and lexicographically ordering the points

d..(t))

yields the lumped-parameter model (2.95) where now

0 1
(3. 39A)

F =(3.25 0(
0

0 0

F= 2.25 0 (3.39B)

0 0

F = (1.00 0) (3.39C)

As discussed in Section 2.2, this system can be imbedded in a circulant
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system of order 8(N+1) (M+l) = 1200. This circulant system is composed

of circulant blocks and is the basis of the control laws now obtained.

Before addressing the control problem, however, it is somewhat

striking to note that when a tridiagonal system is imbedded in a circu-

lant system (see Section 2.2), the circulant system can be unstable, even

if the original tridiagonal system is stable. For the circulant system

being considered here, the system matrix can be put in block diagonal

form with 2 X 2 blocks by taking two spatial transforms. If this is done,

the initial (upper lefthand corner) block is easily found to be

0 1

+3.25 0

obviously unstable.

A centralized linear-quadratic regulator will now be obtained

for this (doubly) circulant system. A steady-state regulator is desired,

and the weighting matrices Q and R are both chosen equal to the identity,

for simplicity. Employing two spatial transforms, the (1200x 1200) Riccati

equation is decomposed into (2 x 2) complex-valued Riccati equations, as

shown in (2.110). Solving these low-order Riccati equations and taking

two inverse spatial transformations yields the solution of the original

equation.

All the centralized closed-loop poles, of course, are in the left-

half-plane. The real parts of these eigenvalues are all between -2.3 and

-0.5. Almost all of the poles, with real parts less than -1 are purely

real. Conversely, essentially all the poles with real parts greater than
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-l are underdamped, having nonzero imaginary components. The poles that

have real parts around -0.5 are the most underdamped - some of the

imaginary parts of these poles are as large as 3.1.

Two decentralized controllers were also computed for this system.

Both controllers were obtained from the centralized solution by using

the windowing technique as described in Section 3.2.3. A square and a

triangular window were both used, and the allowable feedback was taken to

be local feedback and feedback from the two nearest neighbors on both

sides and in both directions. Also, the optimal centralized local feed-

back gains on position and velocity were 0.870 and 1.498, respectively.

For the first nearest neighbors in the y direction, the two gains were

0.659 and 0.339, and for the second neighbors, 0.369 and 0.165. Also,

in the z direction, the gains on the first nearest neighbor were 0.453

and 0.210, and 0.363 and 0.156 for the second-nearest neighbor.

The square-windowed decentralized controller uses these gains

directly; all other feedback gains are identically zero. This results

in a stable closed-loop system with the closed-loop eigenvalues having

real parts from -1.67 to -0.317. The decentralized system, therefore, is

slower than the optimal centralized one. Also, the poles with the largest

real parts (those around -0.32) are quite underdamped, having imaginary

components as large as 5.2. Also, in this decentralized case, purely

real poles are found to the right- of the -1 point, again in contrast to

the centralized case. The slowest real pole, in fact, is equal to -0.472.

A second decentralized controller is obtained by using a triangular

window. This decentralized controller is obtained by multiplying the
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local gains by 1, the nearest-neighbor gains by 2/3, and the second

nearest-neighbor gains by 1/3. Once again, the resulting closed-loop

system is found to be stable. The real parts of these poles lie between

-1.71 and -0.086. The relatively slow pole at -0.08, in fact, is purely

real. Most of these closed-loop poles have nonzero complex parts, and

the complex parts range up to 5.6.

In comparing these three control laws, the centralized controller

produces a closed-loop system that is faster than either of the two de-

centralized closed-loop systems. The performance of the square-windowed

decentralized controller, however, is quite comparable to that of the

centralized controller and could well be acceptable. The triangular-

windowed decentralized controller, on the other hand, is substantially

slower than the other two.. This might be compensated for by multiplying

(say) 3/2, 1, 1/2 instead of 1, 2/3, 1/3 when computing the windowed

gains. What this does is preserve the triangular shape of the window

while increasing the level of local feedback - thereby, it is hoped,

increasing the speed of response of the closed-loop system.

It is interesting to conjecture why the centralized controller

should be quicker to respond that the decentralized controllers are. The

centralized controller at any subsystem is aware of disturbances which

are propagating toward the subsystem. It can, therefore, apply the appro-

priate control to compensate for this disturbance before the disturbance

significantly affects the local subsystem. Decentralized controllers,

however, are limited to only much more localized information, and hence

may not take any appropriate control action until the disturbance is upon

the local subsystem.



-116-

In conclusion, it is noted that the assumption that control

actuators were present at every subsystem is not at all necessary. What

this assumption allows, however, is consideration of only second-order

subsystems. If one desired to employ a finer spatial discretization,

for example, the resulting system could still be imbedded in a circulant.

The dimension of the subsystems, it should be realized, will have to

increase from two.
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3.4 Circulant Control of Large-Scale Systems

The linear-quadratic control problem for circulant systems was

shown in Section 3.1 to have efficient solutions both on-line and off-

line. The off-line savings were due to the fact that the problem de-

composes into smaller, independent subproblems. The on-line savings

were a result of using the FFT to implement the multiplication of a

circulant matrix times a vector. The purpose of this section is to

propose using a circulant controller for a general large-scale system,

thereby realizing at least some of the computational benefits just

mentioned.

For the large-scale system

d
x(t) = ALx(t) + BLu(t) (3.40)

the control problem of interest is to determine the input u(t) so as

to minimize the quadratic cost functional

T

JL = x'(T)FLx(T) + Jx' (t)QL(t)x(t) + u' (t)R (t)u(t)dt (3.41)

0

where F > 0, QL (t) > 0, and R (tI > 0. McClamroch [ 64 1 has adduced

the question of what happens if, instead of ALBL,FL LL(t) and RL (t),

the matrices Aa, B , F , Q (t) and R (t), respectively, are used to
a a a a

compute a control law for the system (3.40). Let J denote the optimala

cost of the approximate system (Aa, Ba) with weighting matrices Fa' Qa(t),

and R (t), and let K (t) be the solution of the Riccati equationa a
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d -1K(t) = - K (t)A - A'K (t)- Q (t)+ K (t)B R (t)B'K (t) (3.42)
dta a a a a a a aa

Ka (T) = Fa

The control u(t) = - R 1(t)B' Ka(t)x(t) is then applied to the originala a a

large-scale system (3.40 ). McClamroch is now able to bound the cost J
L

when this suboptimal control is applied. For any real number p satis-

fying

-l
(p-1)[K (t)BR1 (t)B'K (t) + QaMt]+a- a a a a a

-l
-P K (t)[(A - A ) - (B -B )R (t)B' K (t)] +

a L a L a a a a

- [(A -Aa) - a(B-Ba)Ra(t)B' Ka(t)]'Ka(t) p +

-l -l
- K (t)B R (t)[R (t)-R (t)]R (t)B' K (t) + - )> 0 (3.43)

a a a L a a a a aL

V 0 < t < T

and

(p-1)Fa - (F -Fa ) > 0 (3.44)

the following condition holds for all x(O):

J < p J (3.45)
L-- a

Thus, the cost when using a control designed for the approximate system

on the original system is bounded by p times the cost for the approx-

imate system.

Bailey and Ramapriyan [ 20 ] simplify the imposing conditions

3.43) and (3.44 ) for the infinite-horizon problem. They also impose

the additional restrictions that Ba = BL' a=L, and Ra =R . Bailey
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and Ramapriyan study the dual problem also, and thereby obtain a

lower, as well as an upper, bound for J After some manipulation,

condition ( 3.43 ) reduces to finding the two smallest values of

such that

1 -l
(1--) [K B R B' K + Q] i [K (A - A ) + (A-A )'K ] > 0 (3.46)p aLL La L a L a La a

Bailey and Ramapriyan show that these two values of p are given by the

maximum (aM) and the minimum ( am) eigenvalues of

- 1 - 1 L A ' I
[K B R B'K + Q][K (A -A ) + (A - A )'K (3.47)

a L L L a L a L a L a a

The conclusion is that if -1 < a < a < 1, then the feedback designed
m - M

from the approximate system is stabilizing and the cost satisfies

(1+a )J < J 0 < JK( j (3.48)m a - L - L -l-aG a
m

where J0 denotes the optimal cost for the original problem.L

One might very well ask at this point what the above machinations

have done to reduce the computational load. The important observation

is that if the approximating matrix Aa is purposefully chosen to be

circulant (and the other matrices BL' L', RL are also circulant), then

( 3.48 ) can provide quite a useful result. First, the Riccati equation

( 3.42) giving the Ka may be decomposed as shown in Chapter 2. Second,

the control gain (-R. B'Ka) is circulant, and therefore can be efficiently

implemented using the FFT. The remaining problem of computing the eigen-

values of ( 3.47 ), however, is still a difficult task. It should be
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-lnoted that rather than inverting the matrix [K B R B' K + Q ] multi-
a L L L a L

plying, and then solving for the eigenvalues, one can instead solve the

so-called "generalized eigenvalue problem", i.e., in the present case, find

scalars X and x such that

-1
X[K B R B' K + 9 x = [K (A -A )+(A -A )'K lx (3.49)

aLL L a L a L.a L a a

the matrix on the LHS of (3. 49) is a circulant, and this may present some

computational advantages. Finally, to ensure stability, all that is needed

is that the eigenvalues a and a have magnitude less than one.
mM

Developing bounds on the performance index that are simpler than

either (3. 43) and (3. 44) or (3. 47) is an area where fruitful research

could be conducted. Another issue concerns the approximating circulant

system matrix Aa. The above analysis assumed that Aa was given. How this

matrix should be chosen is a crucial question and warrants further investiga-

tion.

One class of systems for which it seems particularly easy to obtain

a good circulant approximation is a finite string of subsystems having a

Toeplitz system matrix. The idea here is simply to tie together the two

ends of the system, thereby turning the Toeplitz system matrix into a cir-

culant one. The tridiagonal systems examined in Section 2.2 fall into this

class. These tridiagonal systems could be imbedded in higher-order circulant

systems, so the utility of a circulant approximation is questionable. But,

in the general case of a finite string described by a Toeplitz matrix, the

circulant approximation could be very useful. The question of how well the

circulant approximation works for designing feedback gains is still open.
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3.5 The Dual Filtering Problem

All the results of this chapter on the linear-quadratic control

problem for circulant systems are also applicable to the dual filtering

problem. The stochastic circulant system under consideration is

-- x(t) A'x(t) + w(t) (3.50)
dt

y(t) = B' x(t) + v(t) (3.51)

where x(O), w(t) and v)t) are all independent, zero-mean, Gaussian

random variables, and E x(O)x'(0) = E(O), E w(t)w' (T) = Q(t)c6(t-T), and

E v(t) c' (T) = R(t) 6(t-T). The matrices A,B, E (0) , R(t) , Q (t) are all

assumed to be block circulant. The argument used in Section 3.1 to

justify the use of only block circulant weighting matrices can be applied

here to show why it is physically reasonable to demand that covariance

matrices are all block circulant. The filtering problem is to compute

the Bayesian estimate x(tjt) of x(t) given the observations y(T) from time

zero to t, i.e.,

x(tlt) = E[x(t)I y(T), 0 < T < t] (3.52)

The solution to this problem is, of course, the Kalman filter

N7 x(tjt) = A'x(tlt) + P(t)BR (t) [y(t)-B'x(tIt)] (3.53)

where the error covariance P(t) is given by the Riccati equation

a+-1
t)=APt +PtA+ ()-PtB (tBPt) (54
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subject to P(0) = Z(O). Comparing (3.4) and (3.54 ), it is obvious

that if E(O) = F, then the error covariance P(t) equals the cost-to-

go K(T-t) for all t 6 [0,T). Thus, the filter gain matrix P(t)B'R (t)

is just the transpose of the feedback matrix G (T-t). It is clear that

this filtering problem is the dual of the optimal control problem

addressed in Section 3.1.

The circulant filtering problem in the transform domain, then, con-

sists of N independent subproblems. The required off-line computation

is greatly reduced; only the lower-order Riccati equations (3.6) need to

be solved. The FFT can be used to reduce the on-line computations just as

in the case of the centralized optimal controller. That is, a structure

analogous to that of Figure 3.1 can be used to implement the update step

of the discrete-time Kalman filter. The point here is that the circulant

filter enjoys all of the computational advantages of the circulant regu-

lator.

A time-invariant filter can be obtained if the covariances Q(t) and

R(t) are constant and observations are available from the infinite past.

The filter gain is PBR 1 where P satisfies the algebraic Riccati equation

(3.14). It is to be noted that the resulting estimate is the minimum

-l
variance estimate of x(t), i.e., the gain PBR minimizes the error covar-

iance over the set of all filter gains. This observation is the key to

understanding the filtering dual of the decentralized controllers discussed

in Section 3.2.

The dual of the decentralized control problem will now be considered.

The dual filter produces an estimate x(t) according to

d Af

d- x(t) = A' x(t) + G [y(t)-x(t)] (3.55)
dtU
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where the filter gain G is block circulant and subject to the con-

straints

f
G.= 0 V i e a (3.56)

f 
.

This filter has a fixed structure, and the problem is to choose G to

minimize the resulting error covariance P. The error covariance can be

computed as a function of the gain G from the Lyapunov equation

(A -BGf')P + P(A-BG ) + (Q+ G RG ) = 0 (3.57)

provided (A- BG ) is a stability matrix. The optimal G minimizes

1 1
- trace (P] = - trace [P-I) (3.58)
2 2

where I is the identity. Comparing the cost functional (3.58) with

(3.19B) and the Lyapunov equations (3.57) and (3.21), it is obvious

that the problem of computing the optimal fixed-structure filter gain

G is equivalent to the decentralized control problem of Section 3.2.2.

f dThe necessary identifications are G = G and E = I. The equivalence
0

is completed by defining K from

fl
(A- BG )K + K(A- BG ) +1 = 0 (3.59)

and then associating this K and the error covariance P with the matrices

P and K, respectively, in the decentralized control problem, (3.20) and

(3.21). Therefore, from (3.25), the optimal filter gain G satisfies
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N-1 N-1

K-i-k RGk - PBkZ- = 0 V i e a (3.60)
k=O Z=0

where K and P are given by (3.57) and (3.59) . Alternatively,

these necessary conditions can be written in the transform domain as

(3.27) - (3.29).

All the comments in Section 3.2.2 concerning existence and uniqueness

of solutions of the necessary conditions are relevant here. Obtaining

the optimal fixed-structure filter gain Gf, therefore, is quite difficult.

A suboptimal gain, however, can be found using the frequency-domain tech-

niques presented in Section 3.2.3. These frequency-domain techniques

attempt to approximate the spatial transform of the optimal centralized

filter gain by a suboptimal filter gain that satisfies the constraints

3.56).

It is not entirely clear that the fixed-structure filter considered

here should be referred to as a decentralized filter. For the dual opti-

mal control problem, this interpretation was very natural, since each

subinput could be computed by a local controller. The fixed-structure

filter (3.55), on the other hand, appears centralized. Consider the

discrete-time version of this filter. Then the propagation step is cen-

tralized; in fact, the propagation step is exactly the same as for the

optimal centralized filter. For a general system matrix, the propagated

estimate of each substate involves the estimates of all the other sub-

states. The measurement update step, however, is decentralized. Conse-

quently, local filters can be used to compute the updated estimate at
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subsystem k from the observations yN i e a. Only in that

the measurement update step is decentralized may the fixed-structure

filter be said to be a decentralized filter. However, if the system

matrix A is sparse, then the propagation step involves limited inter-

subsystem communication. For example, a tridiagonal system matrix

means that the propagation step can be implemented by simply having each

subsystem transmit its own substate estimate to its two nearest neighbors.

3.6 Summary and Discussion

The main theme of this chapter has been the use of the spatial fre-

quency domain for design of controllers and estimators for circulant

systems. Both the centralized and decentralized cases were considered.

In the centralized case, the spatial transform decomposed the original

problem into a number of low-order problems of the same type. Also, the

centralized solution was shown to have an efficient on-line implementa-

tion employing the FFT. Optimal and suboptimal decentralized regulators

were covered in Section 3.2. The most interesting results here are in

Section 3.2.3, where suboptimal decentralized regulators are designed

from the optimal centralized regulator. The key step in this development

is the use of the spatial frequency domain to draw the analogy between

the problem at hand and the design of finite-impulse response digital

filters from infinite-impulse response filters. Section 3.3 provides an

example of centralized and decentralized circulant controllers for a

rectangular membrane having fixed edges. The dual filtering problem is

covered in Section 3.5.
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Section 3.4 represents some first steps in attempting to obtain

the off-line or on-line advantages of a circulant control system for

a general large-scale system. A fundamental problem here is the

choice of an appropriate circulant system matrix A to approximate

the large-scale system matrix A. An immediate candidate for the

circulant approximation Aa is a matrix consisting of the average sub-

system interactions, i.e., the ith block of A is given by

N-1

(AA) 7 (3.61)
a i N i+k,k

k=0

where the indices are modulo N. Intuitively, if A. is close toi+k ,k

(A i for each k, then this approach would work well. Therefore, per-.a

haps a functional such as the variance

N-1

V. Z Aik - (Aa). (3.62)
1. N k=O +k.,k a)i

will be important in determining when the circulant control law is

stabilizing, or in bounding the suboptimal cost. These suggestions are

just speculative, and much work remains to be done before one can say

whether or not the average interactions (3.61) and the variance (3.62)

are useful quantities.
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QHAPTER 4

THE FIXED-INTERVAL SMOOTHING PROBLEM

4.1 Introduction

The fixed-interval (FI) smoothing problem is of particular interest

in post-experimental data analysis and has received considerable attention

[ 65 ], [ 66 1. This study of the smoothing problem, however, has quite

a different motivation; namely, some recent results of Attasi [ 28 ] on

discrete-time filtering for Toeplitz systems (defined in Chapter 5).

Actually Attasi's work is concerned with recursive estimation for images,

but it is shown in Chapter 5 how his results apply to Toeplitz systems.

Attasi has shown that the update cycle of the discrete-time Kalman filter

for some Toeplitz systems is equivalent to a smoothing problem. Thus the

update operation may be implemented by a smoother -- in particular, the

Mayne-Fraser two-filter smoother [ 41 J, [ 42 1. The implications of

this result for filtering of large-scale systems are examined in detail

in Chapter 5. The purpose of this chapter is to carefully study the two-

filter smoother.

Smoothing refers to estimating a state vector at a time point inter-

mediate to a span of measurements. Consequently, there is an essential

element of noncausality in smoothing since some of the measurements occur

in the future. Fixed interval smoothing involves measurements over a

given, fixed time interval. Estimates of the state are desired through-

out this time interval.
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Consider the continuous-time linear dynamic system

d
dx(t) = A(t)x(t) + w(t) (4.1)dt

with observations

y(t) = C(t)x(t) + v(t) (4.2)

where x(o) = x and
0

E x = E w(t) = E v(t) = 0, E x x ' =E(o),
o 00o

E w(t) w' (T) = Q(t) 6 (t-T) , E v (t) v' (T) = R(t) 6(t-T),

E x0w' (t) = E x0v'(t) = E w(t)v'(T) = 0

Also it is assumed that all the random variables x , w(t), v(t) are

Gaussian. The FI smoothing problem is to compute, for all t e [0,T], the

conditional expectation of x(t) given the observations over [0,T], i.e.

the smoothed estimate is

x (t) = EIx(t) Iy(T), 0 < T C T} (4.3)

and the corresponding smoothed error covariance is

P (t) = E [x(t) - s(ti x(t) - s(t)(4.4)

As is well-known, the estimate X^ (t) is a linear functional of the observa-
s

tions and is also the maximum a pO4teAitOi estimate and the linear least-

squares estimate.
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In order to gain some insight into the smoothing problem, consider

the time-invariant version of the smoothing problem with observations over

the interval (-., 4o). In the sequel, this will be referred to as the

time-invariant infinite-lag smoothing problem. Also, it is assumed here

that x and y are scalar random processes and

y(t);- x t) + v(t) (4.5)

The Wiener filter will be used to examine the relationship between past

and future observations in estimating x(t).

The Wiener filter provides an estimate of x(t) given y(T), T < t, in

terms of a convolution integral as

t

x(tft) = h(t-T) y (T) dT (4.6)

where the filter impluse response obeys the Wiener-Hopf Equation,

t

R (t-) h (t-T) R (T-c)dT , a t (4.7)
xy fy

with R (t) = E[x(t)y(o)] and R (t) = E [y(t)y(o)]. A similar anti-causal
xy y

expression can be obtained to provide an estimate Zr (tft) of x(t) from

future observations,

$r(tit) = fh(t-T )y(T)dT (4.8)
t

where the reversed-time filter obeys the Wiener-Hopf equation

CO

R (t-G) h (t-T)R (T-G)dT , CY>t (4.9)
xy t r I y
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It is easily shown that the cross-correlation function between x(t) and

y(t) is an even function of time,

R (t) = E[x(t)y(o)] (4.10)

= E Ix(t) x(o) + x(t) v(o)]

= E[x(t)x(o)]

= E[x(-t)x(o)]

R. (-t)
xy

This fact can now be used to relate the filter impulse responses h(t)

and h (t),
r

t
h(t-T)nR (T-c)cd

> h(t-T) = h (T-t)
r

= R (t-C) ,cX (t (4.11)
xy

= R (t-s) , s-t = t-cr
xy

fVr(t-T)R(T-s)dT , from (4.9)
r y

-t

=1 hr(t+V) Ry (v+s)dw ,y = -T

t

= h (-t+T) R (s-2t+T)dT , T=2t+

t

= h r(-t+T)R (T-O)dT
rcy

(4.12)
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Equation (4.12) says that the weight h(-T) given to y(T) in forming

2(olo) is the same as the weight hr (T) given to y(-T) in forming Xr(OlO).

In this sense, the same linear filter is used to estimate x(t) from either

the past or the future observations. The only place that the assumption

x(t) and y(t) are scalar processes is used is for the relation R (t)=R (-t).
x x

Whenever R (t) = R C'(t), it follows that R (t) is an even function of time,

and so the same proof will work for vector processes in this case. The

vector case is addressed more completely in Section 4.3.5. As far as

their relative performance, it is straightforward to show that both

estimates x(tlt) and Sr(tit) have the same mean-square error. Therefore

the past and future contain equal amounts of information about x(t), and

one would expect equal weightings on both when forming the smoothed esti-

mate.

That this is exactly the case can be seen from the Wiener smoother.

The smoothed estimate is

4oo

x (t) =f h(t-T)y(T)dT (4.13)

where

F{R (t)}
F{h(t)} = x

F{R (t)}
y

and the operator F{-} is the Fourier transform. Since R (t) and R (t)
xy y

are even functions of t, their transforms will be purely real. Thus the

transform of h(t) will also be real, and so h(t) must be even. This

proves that the past and future contribute equally to the smoothed estimate
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of x(t).

In Section 4.2, the Mayne-Fraser two-filter smoother will be pre-

sented. Section 4.2 provides an historical review of the two-filter

smoother discussing the work of Mayne, Fraser, and Mehra. The two-filter

smoother gives the smoothed estimate as a combination of a forward and a

backward estimate. Both estimates come from Kalman filters. A surprising

fact, however, is that in the infinite-lag case when the state dimension

equals one, the steady-state covariance of the backward is always larger

than the covariance of the forward filter. (See (4.40) for the backwards

covariance.) This seems to contradict the previous development where the

past and future observations were seen to be equally valuable in esti-

mating x(t).

The reason for this apparent contradiction is that the Mayne-Fraser

two-filter smoother has a built-in asymmetry that is absent from the

original problem. In Section 4.3, it is shown that this asymmetry is due

to the way in which the a piuLoitZ information enters into the estimate of

x(t). New forms of the two-filter smoother will be presented which are

symmetric with respect to forward- and reversed-time. It is to be hoped

that the analysis and discussion of Section 4.3 will provide a clear

understanding of how future observations are used in the FI smoothing

problem.

Section 4.4 uses one of the new forms of the two-filter smoother to

analyze reduced-order smoothers and to perform a sensitivity analysis.
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This introductory section closes with two well-known results from

probability theory. The first deals with combining estimates that have

independent errors.

Proposition 4.1. Let x, y1 and y2 be zero-mean Gaussian random variables,

and let X" and 22 be the Bayesian (maximum likelihood) estimates of x

given y1 and y2 , respectively, with associated error covariances P and P2

If the errors x-1 and x-22 are independent, then the Bayesian (maximum

1 2likelihood) estimate of x given both y1 and y2 i

S-lN -NaX=P[P 1  1+ P2 x 2] (4.14)

where the error covariance P is given by

-l -1-1P=[P +P2 (4.15)1 2

proof: see Schweppe [ 67 J.

By abuse of terminology, the estimates 2 and 2 are often referred to as

independent estimates. The second result is simply the formula for the

conditional expectalion of a Gaussian random variable.

Proposition 4.2. Let x be a Gaussian random variable with mean m and

covariance Z, and let y be an observation of x,

y = Hx + v (4.16)

where v is a zero-mean Gaussian random variable with covariance R that is
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independent of x. The Bayesian estimate of x given y is

x =E[xy] (4.17)

-1 -SP[(H'R )y +Zm]

where the error covariance P satisfies

P = [(H'Ru) +H-1+ (4.18)

and it is assumed that the rank of H equals the dimension of x.

proof: see Schweppe 1 67 J.

It is noted that Proposition 4.2 can be interpreted as meaning that the

Bayesian estimate of x given y equals the maximum likelihood estimate of

x given both y and the a pftLohi mean m and covariance E. This interpre-

tation is obtained by forming two independent maximum likelihood estimates

of x, one based on y and one based on m and X. Combining these two maxi-

mum likelihood estimates by Proposition 4.1 yields (4.17) and (4.18).

4.2 Historical Review of the Two-Filter Smoother

The first person to express the solution of the FI smoothing problem

as a combination of two estimates was David Mayne [ 41 3 in 1966. The

system under consideration is a discrete-time analog of (4.1) and (4.2),

x(k+1) = (Dk+1,k)x(k) + w(k) (4.19)

y(k) = C(k)x(k) + v(k) (4.20)
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where x(o) = x and
0

E x = E w(k) = E v(k) = 0 , E x x=
o 0 0 0

E w(i)w'(k) = Q(k) 6 i ,E v(i)v'(k) = R(k)6.
irk irk

E x w'(k) = E x0v'(k) = E w(i)v'(k) = 0

Mayne's starting point was the conditional probability density of the

states given the observations,

p(x(o) ,...,x(T)Iy(o),...,y(T))

p(y(o),...,y(T)Ix(o),---,x(T))p(x(o),...,x(T))

p(y(o) , ... ,y(T))
(4.21)

Because of the independence of the observation noise process {v(k)}, the

likelihood function p(y(o),...,y(T)jx(o)r,...,x(T)) may be written as

T

p(y(o) ,...,y(T) x(o) ,...,x(T))I = p(y(k) |x(k) )
k=o

T

K 1
1 7 1Iexp{- fy(k) - C(k) x (k)f 12 (4.22)
k=o R (k)

Also, since the sequence {x(k) } is a Markov process,
T-1

p(x(o),...,x(T)) = P(x(o))JHjP(x(k+l)Ix(k))

k=o
T-1

=K2 2exp{9Ix(o)Iexp1- x(k+1) - 0P(k+l,k)[2

0 k=o

(4.23)
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Therefore, substituting into (4.21) and realizing that p(y(o),....,y(T))

is just a normalization constant yields

p(x(o),...,x(T)ly(o),...,y(T)) = K3 exp{ - Ix()II2 +
3 2E-1

T

- l y (k) - C (k)x (k)II +
2 -1

k=o R (k)

T-1

wtEIIx (k+) - (k+i, k) x (k) 112 (4.24)

Lk=oQ (k)

where K1 , K2 , and K3 are constants. The optimal smoothed estimates

{ (k IT)} maximize the conditional density given in (4.24).

Consider now the negative of the exponent in the right-hand-side of

(4.24)

T

J(x(o),.x(T))== -lixo)! 2_ +1y(k) - C(k)x(k)j 2 +
k=o R1(k)

0

T-l

+ x(k+1) - (k+l,k)x(k) 1  (4.25)
2k=o Q (k)

The smoothed estimates can be obtained from the minimization of the func-

tional J. Mayne's approach to this minimization was to consider some

fixed r between 0 and T and to define

Jr (x(r)) = min J(x(o),...,x(T)) (4.26)
r {x(k)jk/r}

Jr (x(r)) will be a quadiatic form in x(r), and therefore given Jr (x(r))
r r

it is an easy matter to compute x(rjT) and P (r|T). ~Hence the problem of
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interest is the determination of an expression for J (x(r)).
r

Mayne decomposes the minimization over {x(k) k/rl into two separate

minimizations -- one over {x(o),...,x(r-1)} and the other over

fx(r+1),...,x(T)}. Thus

J (x(r)) = J (x(r)) + J (x(r))
r o,r r,T (4.27)

Ja r (x(r) ) =1
1 2

min <- Ix(o)I +
Ix (o),...x(r-1)}2E

r-1 r-1

+ Ily(k)-C(k)x(k) i 2_1 + 14 ix(k+1) - (k+1,k)x(k) j2
k=o R (k) k=o p (k)

(4.28)

and
T

J,(x(r)) = min y(k) - C(k)x(k)I 2_
rTfx(r+l),...,x(T) 2 k=r R- (k

T--1

+ IL>7 IIx(k+1) - (k+1,k)x(k) 2

k=r (k)

Both Jo,r (x(r)) and Jr,T (x(r)) are quadratic forms in x(r), (say)

+

(4.29)

J (x(r)) =-x(r)'
o,r 2

J,(x(r)) =-x(r)'r,T 2

F x(r) + g' x(r) + ho,r or o,r

F x(r) + g' x(r) + h
r,T r,T r, t

Therefore,

where

(4.30)

(4.31)



-138-

J (x(r)) = -x(r) ' (F +F ) x(r) + (g + g ) 'x(r) +
r 2 or r,T or r,T

+ (h0' + h ) (4.32)
o,r r,T

and so the smoothed estimate and covariance are simply

X (r) = -(F + F )(gO + g ) (4.33)
s o,r rT o,r r,T

PS(r) = (F +F )l (4.34)
s o,r rT

What remains is to determine recursive expressions for Jr(x(r)) and

JrT (x(r)).

First consider J (x(r) defined by (4.28). Note that this is just
o,r

the cost functional one would minimize to obtain the maximum a. povtvticix

estimate 2(rIr-1), i.e.

1 x(r) 'F x(r) + g' x(r) = -[x(r)-x(r r-1) 'P (r r-1)
xr orr o,r 2

[x(r) - x(rIr-1)] + constant (4.35)

Therefore,

F = P-1(r r-l) (4.36)
or

g = P 1 (rIr-1)2x(rIr-1) (4.37)
o,r

and h is of no real interest. Moreover, the Kalman filter provides a
r,o

recursive computation of Q(rlr-l) and P(rlr-i) . Thus recursive expressions

for F and g are available.o,r o,r
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Second, consider Jr, T (x(r)). Clearly,

T

JrT(x(r)) = min {y(k) - C(k)x(k) 2  +

Sx(r+1) , . . . ,x (T) 2 k=r R (k)

T

+ }LE Ix(k+l) - D(k+l,k)x(k)1 2  }
k=r (k)

T

= rmin ,w l} y(k) - C(k)x(k) I2 +w(r) ,---,w(T-1)If 2 k=r R (k)

T-12

+-> wk) 2 (4.38)
k=rp (k)

subject to the constraint x(k+l) = 4(k+l,k)x(k) + w(k), k=r,...,T-1. But

(4.38) is just a linear-quadratic optimal control problem and can be solved

using dynamic programming from T backwards to r. The well-known solution

to this problem yields a recursion for Fr,T and grT (hr,T is of no inter-

est) in terms of Fgr+,T' r+l,T, and y(r). Thus there exist recursive

relations for Jo,r(x(r)) and JrT(x(r)), and so x(rIT) and P(rIT) can be

found from (4.33) and (4.34).

This approach to the FI smoothing problem is easily extended to the

continuous-time case. The details may be found in [ 41 1.

Mayne interprets this solution of the smoothing problem as a combina-

tion of two estimates. One estimate is based on past observations and is

obtained from Kalman filtering; optimal control theory is used to obtain

a second estimate from future observations. From (4.28), the estimate
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based on past observations is a Bayesian estimate, but Mayne does not

say what kind of estimate the one based on future observations is. In

Section 4.3, this second estimate will be shown to be a maximum likelihood

estimate. The idea of expressing the smoothed estimate as a linear com-

bination of the two estimates was pursued in 1967 by Donald Fraser [42

for both continuous-time and discrete-time.

One of Fraser's two estimates is based on past observations. This

estimate and the corresponding covariance are just the outputs of a

standard Kalman filter working forward over the data. Fraser's second

estimate is obtained from a backwards Kalman filter, i.e. a filter opera-

ting on future observations from T to the present time t. The idea is

to then combine these two estimates using the formulas (4.14) and (4.15)

for the optimal combination of independent estimates.

The appropriate continuous-time backward filter is [ 42

- d%(t) = -A(t)(t) + Pb(t)C'(t)R' (t) [y(t)- C (t) xb(t)

(4.39)

- Pb(t) = -A (t) P (t) - Pb(t) A'(t) + Q(t) +dt b b b

- Pb (t)C'(t)R 1(t) C (t)PCb (t) (4.40)

where Pb (T) = 0 and lim [Pb1 (t)x (t)] = 0. The interpretation given by

Fraser and Potter [ 68 ] is that Xb(t) is, "...the best estimate of the

state at time t based upon all'the measurements from time t to the end of
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the data interval." The terminal condition of an infinite covariance ma-

trix is intended to reflect complete uncertainty about the state estimate

at time T because of the complete lack of information about x(T).

-l
Thus no terminal estimate can be made; only the limit of Pb Ct)t(t) can

be specified. Because of these initial conditions, the filter must be

implemented in the so-called "information filter" form [ 68].

The smoothed estimate is formed by combining the "independent" past

and future estimates according to (4.14) and (4.15), viz.

x(t) = P [ (tjt)X'(tI t) + P (t)xb(t)] (4.41)

-l -l
P (t) = [P (tlt) + P (t)) (4.42)

s .b

This is the same formula as Mayne's (4.33) and (4.34) in continuous-time

-l -l -
if Pb (t)=FtT and Pbtxb(t) = -gt,T. Rather than showing these two

equalities, Fraser's method of proof consists of re-deriving the smoothing

formulas of Rauch, Tung, Striebel [ 69 ] from (4.39)-(4.42) and the usual

Kalman filter equations. This is certainly a valid method of proof, and

it does show that the smoothed estimate is given by (4.41) and (4.42).

What is not clear, however, is why the estimates x(tIt) and %(t) can be

combined by (4.41) and (4.42) or why the estimate j(t) is given by the

backward Kalman filter (4.39) and (4.40). It would be desirable to answer

these questions starting from basic principles.



-142-

Raman Mehra [ 43 ] attempts to clarify these points in his doctoral

thesis. First consider the backward filtering equations (4.39) and (4.40).

By multiplying the state equation (4.1) times -1, Mehra obtains

d
dtx(t) = [-A(t)]x(t) - w(t) (4.43)

He then applies the usual Kalman filter equations to this backwards sys-

tem by letting T=T-t and thereby obtains (4.39) and (4.40). This same

argument was later adopted by Kailath and Frost [ 70 ]. It is incorrect,

however, because "future" (with respect to T) values of the driving noise

w are correlated with the present state (see Ljung and Kailath [ 71 1

where this observation was first made). That is, (4.43) is not a usual

state-space realization. Therefore, it is not possible to blindly apply

the Kalman filter to (4.43) and obtain the backward filter (4.39) and

(4.40).

Mehra also addresses the question of independence of the estimates

x(tlt) and ",b(t). His approach is to write the differential equations

for the forward error x(tit) and the backward error x(t),

x(tit) = [A(t) - K(t)C(t)]x(tlt) + w(t) - K(t)v(t) (4.44)

dt

- (t) = [-A(t) - Kb(t)C](t)](t) - w(t) - Kb t v t (4.45)

Equation (4.44) is integrated from 0 to t while (4.45) is integrated from

T to t. Thus Mehra points out that x(tlt) depends on {w(T),v(T)1O < T <t}
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and 3b(t) depends on {w(T),v(T)ft < T C T -- two independent sets of

noises. Is this sufficient for the conclusion that x(tlt) and xb(t) are

independent? Obviously not, 2(tt) and tb(t) may be dependent because

of their initial values. For example, the random variable x(o) is corre-

lated with (in fact, equal to) R(ofo) and therefore with i(tlt). Is bT)

also correlated with x(o)? Mehra can't say because at this point in his

development he has not specified any initial values for xb(T) or Pb(T).

It should be clear that without such a specification, the independence of

x(t t) and jb(t) is indeterminate. Nevertheless, Mehra prematurely de-

clares that they are independent because they are functions of independent

sets of noises. The independence of these two estimates will be erramined

further in Section 4.3.

The behavior of the the two-filter smoother when there are errors in

the various model parameters (such as the system matrix or initial covari-

ance) was also considered by Mehra [43 J. Following the work of Nishimura

[72 ] and Fitzgerald [73 ], Mehra performs a sensitivity analysis to ob-

tain an expression for the covariance of the errors of the forward and

backward Kalman filters. In order to obtain the smoothed error covari-

ance, he combines these two covariances assuming the forward and back-

ward errors of the mismatched filters are uncorrelated! Of course this

is not the case, and in Section 4.4 an expression for the smoothed error

covariance is found which includes the correlation between the forward

and backward errors.

In summary, this section has presented the two-filter smoother as
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developed by Mayne [41 ] and Fraser [42 ]. This solution of the FI

smoothing problem is unique compared to the Rauch, Tung, Striebel [ 69 3

smoother, and others [66 ], in that it is not given as a correction to

the Kalman filter estimate at the same point. Rather, it takes the form

of a combination of two optimal linear filter estimates. The work of

Mehra [ 43] was primarily directed toward deriving this smoother from

basic principles. Unfortunately, as discussed above, this derivation is

incorrect. It must be realized, in fairness to Mehra, that the reversed-

time Markov models which are so crucial to the development in the next

section, were not available when he performed the work in [43 ]. Sec-

tion 4.3 presents a second attempt at obtaining the two-filter smoother

from basic principles by carefully considering the use of future obser-

vations for estimating the present state.

4.3 A New Solution to the Fixed-Interval Smoothing Problem

4.3.1 Motivation

When forming the smoothed Bayesian estimate of x(t), there are three

separate sets of information,

i.) a piK data, E x(t) = 0 and E x(t)x' (t) = (t)

(ii.) past observations, {y(T)10 < T < t}

(iii.) future observations, {y(T)jt < T < T

Intutitvely, the smoothed estimate should incorporate each of these sets

exactly once. One of the main contributions of Section 4.3 will be to

show how this incorporation takes place in the two-filter smoother.
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The filtered estimate x(tlt) is based on the a patitA data and the

past observations. This is easily obtained via the Kalman filter. Also,

it is a simple matter to form an estimate of x(t) from just the a pkioi

data, i.e. the estimate is zero and the covariance is E(t). What is less

well-known, however, is how to use future observations in forming an

estimate of x(t). To this end, reversed-time Markov models will be in-

troduced in the next subsection. When combined with the Kalman filter,

these reversed-time models yield the expression for a Bayesian estimate

of x(t) based on a pAtLoPi data and future observations.

Only the continuous-time problem is considered in Section 4.3. The

analogous results for the discrete-time version are presented in Appen-

dix B. Note that with respect to the continuous-time problem, the pre-

sent observation y(t) is a linear measurement of x(t) corrupted by addi-

tive noise having an infinite covariance. Thus the isolated observation

y(t) contains no information about the process x(t). This remark is

purely formal, of course, as is the entire development of this section.

These arguments can be made rigorous through the use of Ito calculus,

but for ease of presentation and understanding, a formal development

is deemed perferable. The future observations, therefore, can be defined

as {y(T)jt < T < T}, where now y(t) is included in the future observa-

tions, without altering the analysis. This is in contrast to the dis-

crete-time case where the present observation contains non-zero informa-

tion and is the major cause of any differences between the equations of

Section 3 and those of Appendix B.
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4.3.2 Reversed-Time Markov Models

Essentially simultaneously in the summer of 1976, several authors

introduced reversed-time Markov models [ 71 3 r t 74 3, [ 75 3. Corres-

ponding to the forward system of (4.1), consider the reversed-time model

ci -l
- x (t) = [-A(t) - Q(t)E (t)Jx (t) + ((t) (4.46)
dt r r

where

E x (T) = 0, E (t) = 0, E x (T)x'(T) = E(T)
r r r

E E(t)t'(T) = Q(t) 6 (t-T) , E ((t)x'(T) = 0
r

Equation (4.46) is meant to denote that the reversed-time process x (t)
r

propagates backwards from T to 0, i.e. xr(t) is a Gauss-Markov process

in negative time.

Theorem 4.1. The stochastic process x(t) of (4.1) and the stochastic

process x (t) of (4.46) have the same covariance function.
r

proof: A simple algebraic proof is given in [ 71].

Since x and x are both zero-mean, Theorem 4.1 states that they are
r

equivalent up to second order properties. If both processes are Gaussian,

then they have the same joint probability density functions. Therefore,

(4.1) and (4.46) can be viewed as two realizations of the same stochastic

process. That is, x and x are stochastically indistinguishable. This
r

does not mean, however, that x and xr have the same sample paths. One



-147-

implication of this equivalence is that the observations yr (t),

yr(t) = C(t)x (t) + v(t) (4.47)r r

are stochastically equivalent to the observations y(t) on x(t). Another

implication of this equivalence is any least-squares linear estimator

of x(t) is also a least-squares linear estimator for xr (t), and vice

versa. That is, given any set of observations, the estimate of x(t) is

the same functional on these observations as is the estimate of x Ct).
r

This is a key point in the development of the sequel.

Recall the time-varying Lyapunov equation describing the state co-

variance Z (t),

d
-t Z(t) = A(t)E(t) + Z(t)A' (t) + Q(t) (4.48)

Using this equation, the reversed-time system matrix -A(t)-Q(t) E 1(t)

may be written as

-A(t)-Q(t) (t) = E(t)A' (t)Zl (t) +( dt E1(t) E(t) (4.49)

The stability of the reversed-time system can now be examined from (4.49).

Consider first the case of a time-invariant system in the steady-state.

Then the reversed-time system matrix is simply EA'Z -1. But A must be a

stability matrix and has the same eigenvalues as A'. Moreover, EA' E1 is

just a similarity transformation of A' and therefore has the same eigen-

values. The conclusion then is that the reversed-time system matrix
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ZA' E is also a stability matrix and has the same eigenvalues as the

forward system matrix A. Therefore the forward-time process x(t) and the

reversed-time process x (t) both have stable realizations.
r

In the time-varying case, it is necessary to consider the adjoint

system of (4.1),

d
dtp (t)= A' (t) p (t) (4.50)

This system propagating backwards in time has the same stability proper-

ties as the original forward system. Let z(t) = Z(t)p(t) . Then

d-1d -1- (t) = E(t)A' (t)E(t) + E (t)E(t)] z(t) (4.51)
dt dt

The resulting reversed-time system matrix is, according to (4.49), the

same as the system matrix for the reversed-time process xr. The system

(4.46) will have the same stability properties as (4.50), and hence as

(4.1), if z (t) = Z(t) p (t) is a Lyapunov transformation 1 53 1. For this

transformation to be a Lyapunov transformation, the following conditions

must hold [ 53 I:

(i.) Z has a continuous derivative

d
(ii.) E and -- are bounded

dt

(iii.) there exists a constant m such that 0 < m < Idet Z(t) , vt

Assuming these conditions are met, the forward- and reversed-time realiza-

tions (4.1) and (4.46) possess identical stability properties.



-149-

4.3.3 An Estimate Based on Future Observations Plus

A P'KZ.d Inf ormation

The conditional expectation of x (t) (or x(t)) given the future ob-
r

servations is denoted xr (tit),

X (tt) = Efx (t)1y (T) , t < T < T} (4.52)

The process xr (t) is a Gauss-Markov process in reversed-time as given

by (4.46). Therefore, this Bayesian estimate can be computed from the

Kalman filter for the reversed-time system model. Explicitly,

- Xr (tt) = [-A(t)-Q (t) Z (t)]r (tit)+

+ K (t) [y(t)-C(t)r (tit) (4.53)
r r

P (tlt) = [-A(t)-Q(t)Z (t)]p (tIt)+
dt r r

+ P (tft) [-A(t)-Q(t)Z 1 (t)I' + Q(t)+
r

- Pr (tjt)C' (t)R 1 (t)C(t)P(tit) (4.54)

K (t) = P (tt)C'(t)R 1 (t) (4.55)
r r

where & (TIT) = 0 and P (T) = E(T). Note that the conditions at timer r

T for this filter are finite, in contrast with the initial conditions of

Fraser's backward filter (4.39) and (4.40).

The Bayesian estimate Xr (tjt) of x(t) is a combination of a ptc.i
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information and the future observations. Of course, it is possible to

estimate x(t) from only the a p/KatZ data,

X (t)=0 (4.56)
a.p.

P (t) = E(t) (4.57)
a.p.

Consider now a maximum likelihood estimate of x(t) based only on the

future observations, i.e. an estimate that uses the future observations

but not a pLZoJti data. Denote this estimate as xCt)future( and the co-

variance as Pfuture (t). The error x(t) - tfuture) in this estimate is

solely due to the driving noise and the observation noise over the inter-

val [t,T]. Therefore, the estimates x (t) and X (t) have inde-
future a.p.

pendent errors. This means that

futuret) = x(t) + V(t) (4.58)

where E )(t)V' (t) = Pfuture (t) and E x(.t)V' (t) = 0. Equation (4.58)

treats the random variable x (t) as a noisy observation of x(t).
future

By proposition 4.2, the Bayesian estimate of x(t) given xfuurCt) (or,

equivalently, given the future observations) is

x (tjt) = P (tft) Pu (t) x (t) + (t
r r future future(tX a.p. W

-l
= P (t t) P (t) x t) (4.59)

r future future
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Pr(tjt) [Pt r(t) + Z1(t)](4.60)
r future

An interesting feature of (4.59) and (4.60) is that they are inver-

tible in that it is possible to solve for f (t) and P (t) in

future future
terms of the other quantities. This yields

x fut t) M = P f (t)e P~r (t It) X r(tit) . (4.61)
future future r r

ft (t) = P (tt) - E'(t)] (4.62)
future r

Differentiating (4.61) and (4.62) with respect to -t yields differential

equations for the maximum likelihood estimate X"(t and P u (t)future future

propagating backwards from T. This is precisely what is done in the

proof of

Theorem 4.2. The maximum likelihood estimate 5futuret) and covariance

Ptfuture() are identically equal to Fraser's x.(t) and Pb(t).

That is,

t) = Pb(t)Pr(tIt)x(tt) (4.63)

Pb(t) = Pr1(tit) - E2(t) (4.64)

proof: Explicit dependence on t is suppressed throughout this proof.

-l -I -l(covariance) It is shown that P equals P - . At time T,
b r

P-TJT -1 ( -l
P r 1(TIT) - El(T) = 0=Pb1(T), so it suffices to show that the derivatives

are equal.
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proof: (contd.)

d -1 -1 d l-I
dt b b Lbdtb b

-1 -1 -1 -1 -1
b b b+ C'R C from (4.40)

= P - c'A + A -P' - -E -1 '-1 )-1 -1 -
r 1 r r (r

+ C'R~ C by hypothesis

Pr'(A + QZ') + (A + QZ 1 )P' Pr Q P + C'R'C +

- A-A'Z -z QZ rearranging

d -1 d -1- -P + -Z from (4.48) and (4.54)dFt r dt

dt [r

(estimate) The proof is completed by showing Pb equals P r. Once

again, it suffices to demonstrate the equality of the derivatives since

the quantities are equal at time T.

d ^-x+P-1 d
dt b bd /b+Pb dt b

Pb A + A'Pb b b1 +C'R C/xb +

+ P (-Axb + PbC'R'[y - C 1j from (4.39) and (4.40)

(A' - Pb'Q)Pbxb + C'R1y combining terms
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proof: (contd.)

- k b b =(A' - P' r + C'R y by hypothesis

(A + QQP - Pr /rr + C'R y rearranging terms

=( 1 [A + Q + [A + QE P - PrQ p + CRlCXr +

+ Prl([A - QZ X + PC'R'Y - Cx

adding and subtracting p~r [A + QZ']x + C'R 1 C<
r r r

S r p) r + - ) from (4.53) and (4.54)dt r r r dt r

d -
dt[Pr xr]

Q.E.D.

This result says that the a pXiZOILi information can be "subtracted out"

from the conditional expectation of x(t) to form the backward estimate.

Moreover, this backward estimate is the maximum likelihood estimate of

x(t). The conditional expectation comes from a reversed-time Kalman fil-

ter. Using this Kalman filter together with the Lyapunov equation for

the state covariance has yielded a differential equation for the maximum

likelihood estimate of x(t) based on future observations.
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4.3.4 The Solution

Theorem 4.3. The smoothed Bayesian estimate and covariance satisfy

x (t) = P (t) Pl(t lt)x(tt) + P 1 (tlt)x (tit) (4.65)
S S r r

P (t) = P(tit) + PC(tIt) - Zi(t) (4.66)
s IrI

proof: There are two realizations of the process x(T), a forward-time

realization (4.1) and a reversed-time realization (4.46). A third reali-

zation is introduced in this proof which combines (4.1) and (4.46) to

propagate x C(t) forward and backward from time t. The process x C(T) is

generated by

d
- x CT) = A(T)x (T) + w(T) , T > t
dT c c

d ()X -+ T
- -- x (T) = [-A(T) - Q(T)E (T)] x(T) + (T) , T t

where E x (t) = 0, E w(T) = 0, E E(T) = 0, E xc(t)x'(t) =E(t),
C C c

E w(T)w'(W) = Q(T)6(CT-G), E ECT)'C() = Q(T)6(T-c),

E w(T)x' (t) = E ((T)x' (t) = E w(T) ' () = 0
c c

These differential equations are meant to denote that x CT) may be written

as
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A (c)x C)dcr +fdw (a) + x c(t) , T > t
tt C

X (T )=
c

T T

f [-A (5)-(C) E (O)x c (5)d+f d(a) + xc(t), T < t

t t

The process x c (T) is easily shown to be stochastically equivalent to xu(T)

and xr (T). Let 'pastas t) and Ppast (t) be the maximum likelihood estimate

of x(t) and the error covariance given the past observations. By applying

the same argument that was used in Section 4.3.3 for Xfuture (t) and

P (t) to (t) and P Ct) one obtains
future past past

x (t) = P (t)P (t It) X(tIt)
past past

( 
past Ct) = P-1(tit -tj-(t)

Consider now the third realization, i.e. the process x C(T). The errors

in the maximum likelihood estimates x Ct) and x ft) are caused
past future

by {E (T), v(T)10 < T < t) and {w (T), v(T)jt < T <_ T, respectively.

Therefore these estimates are independent estimates, and Proposition 4.1

can be used to obtain the maximum likelihood estimate of x (t) (or x(t))
C

given all the observations,

A Ct t) F (- t)x (t) + C t)x (t)lXML C) =
1 ML past past W future future(J

(t CP (t) +Pft(tj
ML I past future I
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From Proposition 4.2, the smoothed Bayesian estimate is

x (t) = P (t) P (t) x (t)

=P (t) P (t) x (tW + P_ (t)X"(tW=St pas t )past future future

[ -^--

(t) 1 (t t) x (t t) + P- (t t) x (tit)
S 1P r r

Ps () =P -(t) + W(t

= [P t(t) + P t (t)+ E1(t)1
pasfuture

+-1U1t-1
= -1 (tit) + P1 (t It)- (t

Q.E.D.

Aside: An alternate proof of Theorem 4.3 is to note that substitution

of (4.63) into (4.41) yields (4.65) and substitution of (4.64) into

(4.42) yields (4.66)

This theorem expresses the smoothed estimate as a combination of two

filtered estimates

* one estimate from a forward Kalman filter for the forward

system model

sone estimate from a reversed-time Kalman filter for the

reversed-time model.

These estimates are not independent, however, because they both include

the a p/LiOti. information. The two different sets (past and future)
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of observations may be said to be independent observations of x C(t) be-
C

cause the observation noise processes are independent. Schoute, et al.

[ 76 ] have obtained very similar expressions to (4.65) and (4.66) for

the smoothed estimate of a discrete-time system in the steady-state.

Their approach is closely related to the approach taken here in that they

employ a reversed-time model and Kalman filter.

One striking characteristic of the smoother.Theorem 4.3 is the com-

plete symmetry with respect to forward-time vs. reversed-time. Equations

(4.65) and (4.66) are called symmetric because both estimates x(tt) and

xr (tlt) are conditional expectations of x(t) given the past and the future

observations, respectively. This is certainly in contrast with the usual

two-filter smoother. The symmetry between forward- and reversed-time will

be developed and discussed further in Section 4.3.6.

Another important characteristic of this smoother is that both the

forward and backward models used in forming the two Kalman filters are

stable (assuming the original forward realization is stable). This fea-

ture will allow a sensitivity analysis in Section 4.4 that requires the

integration of only stable differential equations.

Finally, it is noted that even though this development assumed the

random process x(t) was zero-mean, the case of a nonzero-mean process is

easily handled. Letting z(t) equal x(t) minus the mean value of x(t)

yields a zero-mean process obeying the same state equation (4.1). Then

taking as observations of z(t) the observations y(t) minus the mean value

of y(t) produces a smoothing problem of the form studied here. The
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smoothed estimate of x(t) is simply the smoothed estimate of z(t) plus

the mean of x(t).

4.3.5 The Linear Time-Invariant Infinite-Lag Case

For the special cas2 of smoothing over the interval (-co, +*) with a

time-invariant system, it is possible to investigate the symmetry between

forward- and reversed-time in detail. If the system matrix A is a scalar,

then the reversed-time system matrix EA'E 1 equals A. That is, from

(4.46), the reversed-time realization is identical to the forward-time

realization. Thus the two Kalman filters are identical, and so the two

steady-state error covariances P and P are equal. From (4. 65 ), itr

is clear that this implies the two estimates x(tft) and xr (tjt) are

weighted equally in forming the smoothed estimate. This confirms the

intuitive expectation of Section 4.1 that the future and past should be

equivalent.

The following proposition extends the above result beyond the scalar

case:

proposition 4.3. The reversed-time system (4.46) equals the forward-time

system (4.1) in the time-invariant infinite-lag case if and only if

the autocorrelation function of x is symmetric, i.e. EA'E1 = A if

and only if R (t) = R' (t).
x x

proof: (if) By assumption R (t) R'(t), hence
x x
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eAt eA't Vt

-1
At A't -1 EA'E t

==> e = Ee Z

A A'E 1

(only if) R (t) = eAtE
x

-i
(ZA'Zt)E(by assumption)

eA'(t)

= R' (t)

Q.E.D.

Of course R (t) = R'(t) is equivalent to R (t) = R '(-t), the condition
x x x

needed in Section 4.1 to show that the same Wiener filter can be used to

estimate x(t) from either the future or the past. From Proposition 4.3,

whenever the autocorrelation function is even, the future and past ob-

servations are equally valuable in forming an estimate of the present.

Theorem 4.3 expresses the smoothed estimate of x(t) as a linear

combination of a causal filter estimate and an anti-causal filter esti-

mate. In the LTI infinite-lag case, the Wiener filter and smoother can

also be used to obtain these estimates. From Theorem 4.3, an identity

between the Wiener filter and smoother can be derived.
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Let H (s) be the transfer function of the Wiener filter for esti-

mating x(t). Then [ 77 3

Hf Cs) = {5 (s

S) (S) IS (S)
y y+

(4.67)

where S (s) = bilateral Laplace transform of the autocorrelation function
y

of y

S (s) = bilateral Laplace transform of the cross-correlation
xy

function between x and y

m

J (s-z)

S Cs) = for tz. tp 1  9 the LHP zeros (poles) of S (s)

J7J-1s-p.)

1=1

S (s) +
S (s) = - S +(-s)

Y S+ () yS+(s)
y

and the operator {*}+ is uniquely defined by

+cO+ sSt-st
F(s)F(s)e ds etdt{Fs} + O [] 2Trj IJ

o~ j

i.e. the transform of the causal part of the inverse transform of F(s).

The transfer function of the Wiener smoother is simply

S (s)
H (s) = xy(4.68)

S
S (s)
y
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From (4.65), the causal part of the Wiener smoother must equal P P-1
s

times the Wiener filter since they are the same function of the observa-

tions. That is,

{H(s)} = PP 1 Hf(S) (4.69)

This completes the proof of the next proposition.

Sx(S) 1 fS(y
Proposition 4.4. P P 1 f - =(-s T (s)+-

y (+ S()(Ss) iS(S)
y y+

Of course a similar identity exists between the anti-causal Wiener filter

and the anti-causal part of the smoother. Proposition 4.4 says that the

Wiener filter has the same poles as the causal part of the Wiener

smoother; the zeros, however, are different.

4.3.6 Discussion

Two key ingredients of the two-filter smoother are the maximum like-

lihood estimates x (t) and 2 (t). Theorem 4.2 showed that
past future

(future (t) equals Fraser's backward estimate ",(t). There is also a back-

wards estimate X? (t) of the reversed-time process x (t). The estimate
rb r

x (t) is based on the observations {y(T) jo < T < t0 and may be shown
rb

(by repeating the proof of Theorem 4.2) to equal past (t). The differ-

ential equations for X^ (t) and P (t) are just Fraser's (4.39) and (4.40)
b rb

with the reversed-time system matrix in place of the forward system ma-

trix,
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tb (t) = -A (t) - ( t(t)] (t) + K (t)[y(t)-C(t)2(tj
trb L.b rb )r

(4.70)

dt rb(t) = -A(t)-Q(t)E (t) Pr(t) +P(t)-A(t)-Q(t) (t) + (t)+
T rb rb r [A tbt) ()

-1
- P (t)C'(t)R (t) C (t) P (t) (4.71)

rb rb

where K (t) = P (t)C'(t)1R (t) , P (a) = 0, and lim (t)-X" (t) 0.
rb rb rb - L rb C )

This filter must be implemented as an information filter because of the

initial conditions.

Using the estimate 2 , it is possible to obtain another version of
rb

the two-filter smoother

(t) = Ps(t) [P(t)2 (t) + P'(tlt).Ctrt) (472)

(t) = Pr(t) + P1 C(tIt) (4.73)

This is essentially Fraser's smoother (4.41) and (4.42) applied to the

reversed-time realization instead of the usual forward realization. The

a p)tkO/u information is combined with the future observations to form one

estimate; the second estimate is formed from the past observations alone.

All of the smoothing algorithms presented by Sidhu and Desai [ 74 ] are

in this same spirit -- they are obtained by applying a standard smoothing



-163-

algorithm to the reversed-time model.

Consider now the problem of filtering for a linear system where the

initial covariance E(o) is unknown when the observation begins. One would

like to operate a Kalman filter to obtain the estimate i(t[t), but the

initial conditions for the filter are unknown. At first glance, it appears

that it is possible to propagate Rrb(t) and then later, if the covariance

E(o) became known, use (4.17) and (4.18) to construct the filtered esti-

mate 2(tit). Indeed, applying the smoothing formula (4.72) and (4.73) at

time T, the filtered estimate equals the smoothed estimate and can be

written as

2(TIT) = P(TIT)P~1(T)2 (T) (4.74)
rb rb

P(TIT) = P1(T) + Z1(T)j (4.75)
1r b

Certainly (4.74) and (4.75) seem to accomplish what was just proposed.

This scheme, however, does not quite work because of the equation

for x (t). From (4.70), the computation of this estimate involves the
rb -

reversed-time system matrix -A(t) -Q(t) E (t) . That is to say, .2 (t)
rb

depends on the covariance E, and if the covariance were unknown, then it

would be impossible to compute X . The point here is that 2 (t) is a
rb rb

maximum likelihood estimate of x (t) based on its "future" observations
r

(future with respect to -t, i.e. {y(T) It > T > Q}). When the covariance

of x(t) is E(t) as used in the reversed-time realization, the two pro-
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cesses x(t) and x (t) are stochastically equivalent. But if Z(o) is un-
r

known, then one does not know which reversed-time model to use in the

computation of x (t).
rb

One conclusion from the above analysis is that the smoothing formulas

developed here do not yield a simple change of initial conditions result

for the filtered estimate. It will now be shown that such a result can be

obtained for the smoothed estimate x (o).
S

The problem of interest is to compute the smoothed estimate of x(o)

by first processing the observations assuming E(o) is unknown and then

correcting this result to account for the known value of E(o).. But this

is exactly what Fraser's two-filter smoother (4.41) and (4.42) does. The

observations are used to compute (o), and then the smoothed estimate is

just

-1
x(o) = P (o)Pb (o).xb(o) (4.76)

P (o) = [ (o) + Pb1 (o)J (4.77)
s b

since the filtered estimate x(olo) is just the a pLioAiv zero value with

covariance Z(o).

A closely related problem is the following: suppose the smoothed

estimate x (o) of x(o) is obtained assuming that E x(o)x' (o) = H(o).
s

The true initial covariance is E(o), however. Is it possible to obtain

the optimal smoothed estimate x (o) from xs (o) without further reference

to the observations? Note that this is truly a change of initial condi-
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tions question. The answer to this question is yes,and the result is

easily obtained from (4.76) and (4.77). Applying these equations with

the incorrect initial covariance 11(o) yields

x (o)=P (o)P b() () (4.78)

P (0)= iv(o) + Pb'(o)] (4.79)

Thus given x (o) and P (o), the backward quantities may be computed as
5 s

y(o) = Pb(o)Ps (o) s(o) (4.80)

Fr -q -1'-
P (o) = IPH(o) - 1 (0)1 (4.81)
b Ls J

Substituting into (4.76) and (4.77) yields the simple relationship

x (o) = P (o)P Co) x (o) (4.82)
s s s S

P (o) = P 11(0)-1 - 7-1(0) + Z'(o) (4.83)
s S

The very .natural interpretation of this result is that the incorrect

covariance H(o) is removed from the estimate x (o) and then the correct
s

covariance E(o) is added. Equations (4.82) and (4.83) are much simpler

than the change of initial conditions formula for smoothed estimates pre-

sented by Ljung and Kailath in [ 78 3.

An important implication of this last result deals with the reversed-

time estimate x (tit). Recall that x (tit) is the filtered estimate of
_r r
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the reversed-time process x (t) given observations from T to t. Thus

X S(o) = Xr (010) (4.84)
xs r

Now suppose that the backwards Kalman filter is designed for the reversed-

time system

d 11l- r---ix(t) = -A(t)-Q(t) (t x (t) + P(t) (4.85)
dt r r

where E x (T)x (T)' = 11(T) and
r r

k 11(t) = A (t)11(t) + 1(t)A' (t) + Q (t) (4.86)
dt

instead of the reversed-time system (4.46). This amounts to replacing Z,

the true state covariance, with H, a quantity which also obeys the Lya-

punov equation. The output of this reversed-time Kalman filter, initia-

lized at time T with covariance 11(t), is just xr(tlt) . The smoothed esti-

mate x (o) can now be found from the output of this (incorrect) Kalman
s

filter by using (4.82) and (4.83).

It should be realized that the time 0 is not special in this develop-

ment, and (4.78)-(4.85) can all be appropriately altered to be valid for

any time t. The smoothed estimate and covariance can then be expressed

in terms of the reversed-time estimate x (t) asr

x (t) = P (t)P'(tIt)x(tlt) + P (t It)X (it),(4.87)
s s=PCL ' r rLLLJ x(it t)I1t(4.87)

(t) = P (t)+ P1 1(tjIt) - 11'(t)] (4.88)
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Equations (4.87) and (4.88) are a generalization of (4.65) and (4.66) of

Theorem 4.3 in that the covariance Z has been replaced by an arbitrary

function H satisfying (4.86).

Consider the implementation implications of this last observation.

Basically any legitimate covariance function can be used in the reversed-

time system matrix and Kalman filter. This added flexibility may be quite

useful, especially when the forward system is time-invariant. In this

case, one could use the steady-state covariance and thereby attain a

time-invariant reversed-time model. This eliminates some of the problems

involved with directly implementing the reversed-time filter.

4.4 Sensitivity Analysis and Reduced Order Smoothers

Sensitivity analysis is concerned with the increase in the smoothed

error covariance caused by using incorrect model parameters. For example,

if a smoother is implemented with the system matrix A*(t) in place of the

correct matrix A(t), what is the resulting error covariance? Reduced

order smoothing refers to smoothing with a model of lower dimensional

than the actual system (4.1). Griffin and Sage [ 79 ] have treated the

sensitivity problem, but not the reduced order smoother, for only discrete-

time processes by considering the Rauch, Tung, Striebel smoother [ 69 1.

The analysis given here is thought to be the first correct treatment of

the two-filter smoother and is performed for both continuous- and dis-

crete-time (see Appendix B for the discrete-time results). The reduced

order smoothing problem will be treated first, and then the results will
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be specialized to perform sensitivity analysis. Throughout this section,

explicit time dependence will often be suppressed for ease of presenta-

tion.

The model used by the reduced order smoother for the dynamics and

observations is

dx A*x* +w* (4.89)
dt

y =Cx +v (4.90)

where w* and v* are independent white noise processes with covariances

Q* and R*, respectively and E x* (o) x*' (o) *(o). The superscript as-

terisk will be used consistently to denote model parameters as distin-

guished from the true system parameters. It is assumed that there is an

output z of the actual system defined by

z = H x (4.91)

which is approximated by the output z * of the model,

z * =H*x (4.92)

The only restrictions imposed on the model are that y* and z* have the

same dimensions as y and z, respectively.

A smoothed estimate of the output is obtained as z* = H *, and the
s s

question is, "What is the covariance of z - z* ?" In order to determine
s

a expression for this covariance, first the forward-time system and
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filter are jointly analyzed, and then a similar analysis is performed

for the reversed-time system and filter. Nextr the correlation between

the forward- and reversed-time estimates are obtained. All these re-

sults are finally combined to yield the output error covariance.

Forward-Time System and Filter - The model (4.89) and (4.90) can be

used to design a reduced order Kalman filter,

a X* = A*x* + K*Ey - C*x*l (4.93)
dt

K* P*C*VR*(4.94)

dP A* A*P* + P*A*' + Q* -P*C*'R* 1 C*P* (4.95)
dt

where x* (o) = 0 and P* (o) = Z (o). Notice that the input to this filter

is the actual observations y, of course. By combining the estimate x*

with the actual state x, one obtains an augmented state vector having

dynamics

X~ A 0 ~ xU

d +(4.96)

at

The covariance of this augmented state is defined as

M x

= E I (4.97)

M NJX _
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and must obey the Lyapunov equation

M A 0 M E M A 0
d+

dt

.. M' N. _LK C A -K C. .M'_ M' N Kj C.AM-KNC_.

'Q 0

+ [J(4.98)
-0 K RK'

Reversed-Time System and Filter - The reduced order reversed-time

system corresponding to the model (4.89) is

d * = -A* - X + .(4.99)

dt r r

where E * is a white noise process with covariance

* *'*
E x (T)x (T) = E*(T), and EZ' is given by

r r

dAZ + E A ' +(4.100)
dt

By analogy with the forward-time case, there exists a reduced-order

reversed-time Kalman filter having gain K* and producing the estimate
r

x . The reversed-time augmented system is
r

>1 -'

-X0 
AA* C] 1x

dt + (4.101)

LrJ Kr C-Kr C xri r _
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Let the covariance be

K M E {x%[

r r x X

E r r

-M'. Nx

r r
+=Mr E.]r(4.102)

Kr r

since x and Xr are stochastically indistinguishable. Then

d E M -A 0 - E M r +

r rr

M *' N K*C -A*-Q*E* -K*C* M'*

r r r r -- r r-

variances of x and x and their cross-correlations with x. Before oner

can obtain an expression for the smoothed error covariance, it is also

*** -l*** **

necessary to know the cross-correlation of xndr adin xasiate shx

can be written in integral form from the variation of constants formula

as
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t

x*(t) =J tA*-K*C*(t,&)K (C) y(W) da (4.104)

where (DA*-K*C* is the state transition matrix of the forward Kalman fil-

ter,

d A*-K*C*(t,o) = A(t) - K (t)C (t)I A*K*C*(to)dtt i K**( KC* (4.105)

with the identity initial condition qA*-K*C*(oo) = I.

reversed-time estimate can be written

Similarly, the

t

x* (t)

T
v .(t,T)K*(T) yCT) dT

-K*C* r
r

(4.106)

where

- T (tT) = -A*t)Q*t* t) *(tT)

-A-Qz -KC -A-Q -KrC
r.0r

(4.107)

* - * *-A*-Qz*-K*Cr

(TT) = I. Combining the integral expressions (4.104)

and (4.106) and taking the expectation yields

t t

Ex (t)x (t) = J A *C *(,)K* (a) E[Y (G)Y'(T) K*''(T)-
r f T A-KC t

0 T

(4.108)
* A-K*Ct

r

The autocorrelation function of y is evaluated in the following lemma:

and T I
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Lemma 4.1 For Q< T,

E y(G)y' (T) = c (a) (at)E (t) V (T, t) C' (T) + R (c)6(a-T)

(4.109)

where t 6 [ C,T] and

A (T,t) = A(T) 0A(T,t) , A(t,t) = I (4.110)
dT A A A

d
(c,t) =[-A )-QC(&('Ct)

dG -A-Q E~-A-QZ

T-A -QEZ -1(t t ) = I(4 
.1 1 1 )

i.e. A and -A _are the state transition matrices of the forward- and

reversed-time systems, respectively.

proof: E y(G)y' (T) = E{[cC(W)x(a) + v(0) [C(T)x(T) + v(ft)]

= Cc) E x(a)x (T)} C' (T) + E v (a)v' (T)

= C(C) E(c-A-Q1(Ft) xt(t)[AT t) C' (T) + R (0)6C(-T)

=cC(a)T (a,t) Et) ' (T ,t) C' (T) + R(a)b6 (-T)

-A-QZ- A

Q.E.D.

Equation (4.109) can now be substituted into (4.108). Note that the term

involving the delta function drops out because of the limits on the dou-

ble integral. Thus
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t ']

EF x* (t) x*'(t) =
r A* **(tG) K*(a)C(a)T1(yt)E(t)

* 4' (Tt)C' (T)K (T) Y'
A

(4.112)(t,T) dTdk

r

This result is now expressed as

E x*(t)* x Ct) = a ()E()S()
r

where

(4.113)

t

ci (t) = * * *(t,cr)K*(c)C(a) (Gt) dGx
A -K C -1

T

St)= ' (T ,t)C' rt)K* (T)'
A (Kr

t

(4.114)

(t,T) dT
A*-Q**-K*C

r
(4.115)

proof: Lemma 4.2 is an immediate consequence of (4.112).

The integral expressions for a* and * may be replaced by differential

equations.

Lemma 4. 3 dt* (t) = A*-K*C* ca (t) + c (t) -A-QZ j + K*C

(4.116)

d * t) = A] (t) + g*(t) -A*-Q *.-K*C* + C'K
dt r r

(4.117)

with initial conditions a* (o) = 0 and S*(T) = 0.

Lemma 4. 2

I
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proof: Differentiating (4.114) with respect to t yields

t

d *d**
-- (t) f 8r{ **(t,G)K*(C)C(a) c(Gt)}do+ K*(t)C(t)dTO t)f dt A -K C -

=ft[ A (t)-K*(t)C*(t) 0 A*-K* C* (trG) K(G) C(G) (aft)+
0 -- A-QE

+ QA*-K*c *(tO, o)K* (c)c (a)P A (cIt) -A (t)--Q (t)Z7'(t)]dG

+ K (t) C (t)

S[A(t)-K*(t)C*(t)>a* (t) + a* (t) -A (t)-Q (t)Z ~(t)]+ K*(t)C(t)

Equation (4.117) is obtained in a completely analogous fashion.

Q.E.D.

The cross-correlation between x (t) and x*(t) is given by the

relatively simpl expression (4.113) of Lemma 4.2 where c* and * obey

differential equations of the Lyapunov type. The coefficients of a* and

* in these equations are

* A*-K*C*

* A'

forward-time filter matrix

reversed-time system matrix

forward-time system matrix transposed

* [A*Q*z*I-K;C*j: reversed-time filter matrix transposed.
r
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Notice the symmetry. In the linear time-invariant infinite-lag case, all

four of these matrices are stability matrices. The steady-state alge-

braic versions of (4.116) and (4.117) will, therefore, always have unique

solutions.

Everything necessary for the evaluation of the smoothed output error

covariance is now available. The next theorem puts it all together.

Theorem 4.4 The error covariance of the reduced-order smoothed output

estimate is given by

cov[z(t)-2*(t)] = HEH'- H*E*[P*lM' + P* M']H'- H[MP* l+ M P*]E*H* +
s s r1r r r s

+ H*S*Fp NP*+ P-Pl*+r*- -+ P-l P *-l -l -f+ P*L N P
s1r r r r r is

(4.118)

where E, M, N come from (4.97);; M and N come from (4.102); and a* and
r r

come from (4.116) and (4.117).

proof: cov z(t) - s(t] = cov[H x - H xJ
sZ s

x HI

4H -HJEt] x' X

x -H
s

= H E x x'}H' - H* E x x'}H' - H Ex x} H +

+ H* E x x H
Ss sI
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(I.) E x x'

(II.) Ex*x = Z E P * X* +P*x X
s s f r r

P M' + P [M' from (4.97) and (4.102)
S r r]

(III.) E x x E P } X+ * l + P
S S s r rl r r }s

-E* P* NP * + P E P + P u SP + P _ N P
sr r r r r s

from (4.97), (4.102) and (4.113)

[^-l *-l -l -1._ E *
s.ncovz-zj = HEH'- H*E*JP*lM + P;'j H'- H[MP* + MP* H +

.S] S r r] r r s

+ H*Z [P*l1NP* 1+ P* E* ' * ~1+ P* * -P*~+ P*~1N P *- rH
S r r r r r s

Q.E.D.

This theorem is the main result of this section. Certainly (4.118) is a

messy expression for the error covariance. The only difficult part of

the derivation, however, was finding an expression for E x 1. All the
r

other steps were quite straight-forward.

Before leaving the reduced-order smoother for the sensitivity ana-

lysis, notice that the cross-correlation between x and x could have

been evaluated in an analogous fashion to the way (4.112) was obtained.

This yields
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t

E x*(t)xI(t) * * *-K*C*(t,a) K* (a) C (cf) (a t)(t)dt

0 -A-QS

= cit(4.119)

But E x*(t) x (t) = M' (t) from (4.97) . Therefore,

a*= 14S1 (4.120)

Similarly,

* = 5M (4.121)r

Since the Lyapunov equations (4.98) and (4.103) have to be solved and

yield M and Mr, (4.120) and (4.121) allow the evaluation of the output

covariance without the solution of the additional equations (4.116) and

(4.117) for a* and 5*.

The solution of the sensitivity analysis problem is easily obtained

from Theorem 4.4 by simply setting H and H equal to the identity.

Corollary 4.1 cov[x(t) - x*(t)] = s - .s*[*M + P M] +

N *-l+ M P*l +
r r s

+ s:[P*lNP*l+ P l Ea*c* p*-l+Pa*s P + P N P
S r r r r r s

(4.122)

The expression for the smoothed error covariance could also be obtained

by expressing the smoothed error as a linear combination of three errors

-- forward error, reversed-time error, and a. pAioAL error,
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-- X_-^*) + P* (x2*)-E* 1(x) (4.123)
s s - r rI

The covariances of these errors and their cross-correlations can be

found from (4.98), (4.103), and (4.113). By making these substitutions

and performing some tedious algebraic manipulations, one is able to

arrive at (4.122) from (4.123). The details are omitted.

In summary, this section has addressed the problem of FI smoothing

using an incorrect model. In the case of a reduced-order smoother, the

actual smoothed output error covariance is given in Theorem 4.4. A

special case of this result is the senstivity analysis expression (4.122).

To use either equation, it is necessary to solve the forward- and reversed-

time Lyapunov equations (4.98) and (4.103).. The quantities a and

* also obey Lyapunov equations, but can be computed (perhaps more con-

veniently) from (4.120) and (4.121).

4.5 Conclusions

The two-filter smoother expresses the smoothed state estimate as a

linear combination of two optimal estimates. One of the main contri-

butions of this chapter has been to obtain this smoother from first prin-

ciples. Other derivations of the two-filter smoother have proceeded by

showing equivalence with some other smoothing algorithms. Because of

these derivations, it has never been clear exactly what type of estimate

the backwards estimate xb(t) is. Therefore, perhaps more important than

the derivation of a new two-filter smoother in this chapter is the in-
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sight gained from this approach. The backwards estimate is simply the

maximum likelihood estimate. The backwards filter comes from removing

the a pxiofi information from a reversed-time Kalman filter. This re-

versed-time Kalman filter, a key element throughout the chapter, is de-

signed from a reversed-time realization of the state process. Other

authors, e.g. [ 74 ], have used the reversed-time model to obtain

smoothing formulas, but these results essentially just applied standard

smoothing formulas to the reversed-time model. Section 4.3 used the

reversed-time filter in conjunction with the forward filter to obtain

the resulting expression for the smoothed estimate. It should be noted

that some of the equations in Section 4.3 are quite similar to ones ob-

tained by Ljung and Kailath [ 65 ] by using the relationship between lin-

ear least-squares estimation and scattering theory. The approach taken

here seems to be a much more natural one for addressing the smoothing

problem and yields the very simple change of initial conditions formula

(4.82) and (4.83) for x (o).
s

The smoothing formulas presented here are symmetric with respect to

forward-time vs. reversed-time. This is not meant to imply that the two

filter error covariances P(t) and P (t) are equal, but rather the form
r

of the smoother is the same for both the past and the future. For ex-

ample, the two estimates x(tIt) and "r(tit) that are combined to produce

the smoothed estimate are both conditional expectations of x(t). As

discussed in Section 4.1, intuitively there is an equivalence between

past and future observations. Where the difference between forward- and
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reversed-time become apparent was in Section 4.3.6 when the question of

uncertain initial covariance was considered. The reversed-time system

matrix -A(t) -Q(t)Z (t) obviously depends on the state covariance; the

forward system matrix A(t), of course, is independent of Z. Therefore,

when considering change of initial covariance problems, the fact that

the original system model is given in forward-time introduces a distinc-

tion between forward- and reversed-time. Using the forward model, one

can form a maximum likelihood estimate of x(o) which can be combined with

the a p/LiO/i. data to provide a change of initial condition formula for

the smoothed estimate xCs (o). There does not exist an analogous formula

for the filtered estimate X(tlt) because the reversed-time system matrix

is a function of the state covariance.

In order to implement the two-filter smoother given in Theorem 4.3,

it is very convenient to use the information filter form of the forward-

and reversed-time Kalman filters. This means one should compute P 1 t(tit),

P 1 (tjt), P1(tlt)xCtlt), and P-1 (tt)x (tit) instead of the usual Kalman
r r r

filter estimate and covariance. If these quantities are available, then

only one matrix inversion is needed in the computation of the smoothed

estimate -- the inverse of P(tt) + Pr(tit) - E(t) is all that is

required.

The final contribution of this chapter is the analysis of reduced-

order smoothers and the sensitivity of two-filter smoothers. The approach

taken here is similar to that of Mehra [ 43 ] except that Mehra errone-

ously assumed the forward and backward filtered errors were uncorrelated.

Hence the main contribution of Section 4.4 is Lemma 4.2 which gives the
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cross-correlation between x*(t) and x (t), the forward- and reversed-time
r

estimates. Another important aspect of the analysis in Section 4.4 is

that both Lyapunov equations (4.98) and (4.103) can correspond to stable

systems. In particular, for the time-invariant infinite-lag problem,

the forward- and reversed-time augmented systems are both stable.
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CHAPTER 5

CONTROL AND ESTIMATION FOR TOEPLITZ SYSTEMS

5.1 Introduction to Toeplitz Systems

5.1.1 Definition

Toeplitz systems are infinite-dimensional, spatially-invariant linear

systems. They are composed of an infinite number of identical subsystems

and are the natural infinite-dimensional analog of circulant systems.

Primary attention will be paid to stationary discrete-time Toeplitz sys-

tems, although continuous-time systems will also be used on occasion.

th
The dynamics of the k subsystem in a deterministic Toeplitz system

are given by

x.k(i+A) = _A x(i) + Bk-u(i) (5.1)

where k=O,+l,... . The state of the kth subsystem at time i is xk )En

m th
and uk (i)e m is the local control. The k output is

Yk(i) =ZCkxki)(5.2)

where k=O,+l,... and y(i)em . For notational simplicity, the infinite-

dimensional state, input, and output vectors are defined,
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u (i

u0

u Ci

In terms of these vectors, the infinite

(5.1) and (5.2) are written as

set of equations represented by

x(i+1) = A x(i) + B u(i) (5.3)

(5.4)y(i) = C x(i)

where the Toeplitz system matrix is

Ao A_ A_2 A -3

A A A A2

A 2 A 1 A 0 A_ 1

A A A 1
3 2  1.0

The Toeplitz input and output matrices B and C are of the same form. The

mutual interaction between subsystems k and depends only on k-Z, as can

be seen from (5.1). It is in this sense that Toeplitz systems are called

x (i) =

x_ (i)X-1W

x 0 i)

x (i)x1()

,ui) =
y(i)

i0

yi
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spatially-invariant.

The z-transform can be used to decouple Toeplitz systems in very

much the same way the DFT was used to decouple circulant systems in Chap-

ter 2. The z-transform of the state vector x(i) is

x(iz) = Z [xk(i)]

+O (5.5)

k
= X k(i) z

k=-o

The transforms y(i,z) and u(i,z) are defined similarly. The transform of

the system matrix is

A(z) = Z[A kk

+CO (5.6)

= EAkZk
k=-w

The nXm matrix B(z) and the pXn matrix C(z) are defined similarly from

B and C.

The system dynamics (5.1) and output (5.2) equations can be rewritten

in the z domain. Using the property of the z-transform- for convolution

sums [ 80 J yields

x(i+l,z) = A(z) x(i,z) + B(z) u(i,z) (5.7)

y(i,z) = C(z) x(i,z) (5.8)

These equations indicate that the Toeplitz system is composed of indepen-
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dent subsystems, where the subsystems are indexed by the complex variable

z. Compare with (2.17) and (2.18), the subsystem dynamics and output for

circulant systems. There is an important difference between Toeplitz and

circulant systems, however. The Toeplitz subsystems are indexed by a

continuous complex variable; the circulant subsystem index has only a

finite number of values.

In the case of an unforced system, the Toeplitz matrix A is an oper-

ator mapping the sequence {xk(i)} into the sequence {x (i+1)}. For the

operator A to be a bounded operator on the space of square summable se-

quences, the induced norm of A must be finite. Widom [ 81 ] has shown

that the operator norm of A is related to the z-transform A(z) by

JAIl = ess sup IA(z) 1 2  (5.9)

Z U

where the set U is the unit circle in the complex plane. Since only

bounded operators A are of interest as the system matrix for a Toeplitz

system, it is assumed that the z transform of A does exist and that the

region of convergence includes the unit circle. The region of conver-

gence of A(z) is an annulus in the complex plane consisting of all z for

which the defining sum (5.7) is absolutely convergent. Likewise, the

transforms B(z) and C(z) are also assumed to exist and tO have regions

of convergence containing the unit circle. Melzer and Kuo [30 ] and

Chu [ 31 ] have studied these systems and mistakenly claim that a suffi-

cient condition for the existence of (say) A(z) is that lim Ak = 0.
k+*+ok
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Of course this condition is neither necessary nor sufficient; what does

suffice is that the sequence geometrically approach zero in at least one

direction.

A further assumption that will be useful throughout this chapter

is that all the z-transforms of the matrices used in the Toeplitz model

are rational functions of z. This assumption is not necessary for much

of the development, and it will be explicitly noted when the rationality

assumption is used. What this assumption allows, however, is the construc-

tion of an efficient procedure for optimal linear filtering or. optimal

control. In summary,

Assumption 5.1. All the z-transforms of matrices used in Toeplitz models

are assumed to exist, to have regions of convergence including the

unit circle, and to be rational functions of the complex variable z.

Survey of Chapter 5 - The remainder of this section will present the

results of Melzer and Kuo [ 30 1 and Chu [31 ] on the optimal control of

continuous-time Toeplitz systems. Their work deals with the use of the

z-transform for the off-line design of centralized and decentralized

feedback controllers. Section 5.2 discusses Attasi's [ 28 ) work in re-

cursive processing of noisy images. Attasi's model and filtering solution

are presented and related to Toeplitz systems. This solution employs the

z-transform to obtain an efficient on-line implementation of the filter.

The estimation problem for general Toeplitz systems is then posed and

solved in Section 5.3. The goal of this section is a filter which has an
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efficient on-line implementation. The key to obtaining such an efficient

processor is the use of the spatial dynamics of the Toeplitz systems as

they appear in the spatial z-transform. The implications of this result

for filtering of large-scale systems and some implementation issues of such

a filter are also covered in Section 5.3. The optimal control problem is

addressed in Section 5.4 as the dual of the Toeplitz estimation problem.

For Toeplitz systems having a block diagonal input matrix, i.e.,

B = B 6 , the optimal control for each subsystem is expressed in a
k o k,o

novel and interesting fashion. Section 5.5 contains some concluding

remarks about the chapter.

5.1.2 Optimal Control via'z-Transforms

Motivated by the infinite string of vehicles problem (see 2.1.3),

Melzer and Kuo [ 30] investigated the optimal regulator problem for

Toeplitz systems. They considered a quadratic performance index and ob-

tained the centralized, full-state feedback solution. This solution was

arrived at by using the z-transform to decompose the original problem

into decoupled lower-order problems indexed by z.

Melzer and Kuo consider the continuous-time version of the dynamics

(5.1) ,

dAkt) =7 x. (t) + Bk-.u. Ct) (5.10)
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The optimal control problem is to find the sequence of control vectors

which minimizes the performance index

T

J= (T) F x (T) +- x'(t)Q x(t) + u' (t)R u(t) dt (5.11)

0

for arbitrary initial conditions x(o) where F, Q, R are Toeplitz matrices.

The notation x'(t)Q x(t) is defined by

+co +cc

x'(t)Q x(t) = Zx (t)Q . (t) (5.12)
.i i-kxkt

i =-.ck= -cc

Also, it is assumed that F > 0, Q > 0, and R > 0, i.e. for example

XIF.k > (5.13)
i=-co k=-co i-k -

for all sequences {x 1. By assumption 5.1, the matrices F, Q, R are

assumed to have rational z-transforms.

This problem is the infinite-dimensional version of the standard

linear-quadratic regulator problem. Using the maximum principle, Melzer

and Kuo obtain a solution which is formally the same as the linear-quad-

ratic regulator solution. In the z-domain, the optimal control at time

t is just

u(t,z) = G(t,z) x(t,z) (5.14)

when the feedback gain G(t,z) is given by

G(t,z) = -R (z)B' (z 1)K(t,z) (5.15)
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K(t,z) is obtained from a Riccati equation,

a -i
K(t,z) = -K(t,z)A(z) - A' (z )K(t,z) - Q(z)

-K(t,z)B(z) R 1(z)B'(z )K(t,z) (5.16)

where K(Tz) = F(z). Taking the inverse transform yields the optimal

controller in the spatial or index domain,

u(t) = G(t) x(t)

= -R 1B' K(t) x(t) (5.17)

where G(t) and K(t) are block Toeplitz matrices whose elements are given

by the inverse z-transform of G(t,z) and K(t,z),respectively. The

matrix K(t) is symmetric and positive semi-definite just as in the

finite-dimensional case.

The solution of the Toeplitz regulator problem is, from the Riccati

equation (5.16), decomposed into the solution of lower-order, independent

subproblems. Each subinput, however, depends upon all the substates,

u (t) =2E G (t) x. (t) (5.18)

That is, this solution requires that the information of all the states

be available to every subsystem. The efficient implementation of this

operation will be discussed later. Chu [ 31 ] moved beyond this centra-

lized problem and considered optimal regulation when the individual sub-
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inputs were only a function of some "local" information.

In Chu's decentralized regulator, the information available to the

th th
k controller is assumed to be only the k suboutput yk (t). For

example, if the information structure were knowledge of the state of

the local subsystem and the two nearest neighbors, then

Xk-l(t)

yk(t) xk(t) (5.19)

k+l(t)

i.e. C. = I for i=0,1,-1 and zero otherwise. The control is constrained

to be a linear, nondynamic function of ykr

uk(t) = G yk(t) (5.20)

The design problem is to determine the nXp matrix G0, thereby specifying

the controller for all the subsystems. Chu considers the infinite-

horizon version of the cost (5.1),

00

J = x' (t)Q x(t) + u' (t) R u(t) dt (5.21)
0

and proposes choosing G to minimize this cost. Note that even for con-

trollable systems, there is no guarantee that a minimizing or stabilizing

G exists because of the constraints imposed on the control system.
0

The closed-loop system is still Toeplitz and has dynamics

x(t) = [A + BGC) x(t) (5.22)
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or

x(t) = exp{[A + BGC]t} x(o) (5.23)

where G is a block diagonal Toeplitz matrix with diagonal element G0

In the transformed domain,

x(t,z) = exp{[A(z) + B(z)GC(z)]tIx(orz) (5.24)

The transformed version of the cost is

00

1-l -lj f f<x(t,z )Q(z)x(t,z)> + <u'(t,z )R(z)u(t,z)> dt (5.25)
200
0

where < > denotes the zeroth element of the inverse z-transform, i.e.
0

1 -1
<x(t,Z)> - x(t'z)z dz (5.26)

0 27rjf

Substituting (5.24) into the expression for the cost yields

CO

J f<x'(tzl){Q(z) + C'C(z)G' R(z)G C'(z)}x(tz)> dt
2 0 0 0

cc

= - <x'(o,zl)exp{[A(zl) + B(z)G C(z )]'t}M(z) X

x exp{[A (z) + B (z) G0C(z) ]t} x(o,z)>0 dt (5.27)

-l
where M(z) = Q(z) + C'(z )G' R(z)G C(z). Interchanging integration with

0 0

respect t and z and using the vector identity x'y = tr(yx) gives

C

J = <- tr exp[A (Z-1)t]' M(z)exp[AC(z)t]x(,z)x' (oz)dtc>
2 NJex L(2CL)

(5.28)
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where A (z) = A(z) + B(z)G C(z) is the transformed closed-loop system
CLo

matrix.

The minimization of J over G0 produces a result which from (5.28)

will in general depend upon x(o,z). In order to eliminate this depen-

dence, the initial disturbances are assumed to be random variables with

zero mean and transformed covariance X(o,z). (see [ 55 ]). The opti-

mization problem, then, is to choose G to minimize

cc

lf -l
J =<-trjexp[A (z )'t)M(z) exp[A (z)t]X(o,z) dt> (5.2 9 )

2 CL CL
0

Chu gives the following necessary condition for the optimal feed-

back gain G:

-l -l -1
<R(z)G C(z)P(z)C'(z )> + <B'(z )K(z)P(z)C'(z )> = 0

o o 0

(5.30)

whnere K (z) and P (z) are given by

-l
K(z) A (z) + A ' (z )K(z) + M(z) = 0 (5.31)

CL CL

-l
P(z)A '(z ) + A (z)P(z) + X(o,z) = 0 (5.32)

CL CL

Note that A and M are functions of G, so that this necessary condition
CL

is a coupled set of nonlinear equations. The proof of this result is

similar to the proof of the circulant case discussed in Section 3.2.

The details may be found in [31 1.

This necessary condition for the optimal decentralized regulator
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is not nearly as nice as the solution given by Melzer and Kuo for the

centralized regulator. The z-transform does not decompose the decentra-

lized problem. In both cases, it should be realized, the solutions must

be obtained analytically and not numerically. This is because the in-

dexing variable z is a continuous variable. This requirement makes the

solution of either problem so difficult that the only examples published

in the literature are for first and second order subsystems. Further-

more, the on-line aspects of these solutions have been neglected. Thus

these solutions to the centralized and decentralized regulator problems

are somewhat less than satisfactory. In particular, it is still of

interest to determine an efficient solution of the regulator problem that

is applicable to as general a class of Toeplitz systems as is possible.

Analogous results can be obtained for the discrete-time centralized

and decentralized regulator problems. Also, by duality, the linear

least-squares estimation problem for Toeplitz systems can be treated

similarly. Attasi [ 28 ] has treated the estimation problem for a special

type of Toeplitz system. The next section discusses Attasi's work with

emphasis on his efficient filtering algorithn. With the insight gained

from this algorithm, the general Toeplitz estimation problem is solved.

The efficient solution of the optimal control problem is then obtained

by duality.
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5.2 Attasi's Work in Image Processing

The z-transform has been shown to be a vehicle for the off-line

solution of linear-quadratic optimal control problems. The work of

Melzer and Kuo discussed in 5.1.2 was directed toward the computation

of optimal feedback gains via the z-transform. This transformation is

also useful for considering the on-line solution of these problems.

Attasi [ 28 ] has used z-transform techniques to obtain an efficient

algorithm for filtering in a very special type of Toeplitz system. The

overall objective of this chapter is to use the z-transform in both parts

of control and estimation problems. That is, the transform domain will be

used to obtain, of f-line, a solution which has an ef ficient on-line im--

plementation.

There has been much work in the image processing fidld directed

toward the recursive estimation of discretized images from observations

corrupted by additive noise [ 25 ). In the search for computationally

tractable estimation formulas, the use of two-parameter models for images

has proved helpful [ 27 ]. Of primary interest in this section is the

two-parameter model introduced by Attasi [ 28 1. This model will be

shown to give rise to a very efficient recursive estimation procedure.

Attasi has considered least-squares estimation of an image z(i,j)

under noisy observations

y(i,j) = z(i,j) + v(i,j) (5.33)

where the image is generated by
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z(i,j) = H x(i,j) (5.34)

x(i,j) = F1x(i-lj) + F2x(ij-l) - F1F2x (i-l,j-l) + w(i-l,j)

(5.35)

with the restriction that F1F 2 = F2F. Here x(i,j) eR'n, y(i,j) e]R

and w(i,j) and v(i,j) are independent, zero-mean, Gaussian white noise

processes with covariances Q and R, respectively. Equations (5.33)-(5.35)

are a stochastic realization of the doubly indexed sequence of vectors

{y(i,j)l3.

The estimation problem is to compute the estimate x(i,j) of x(i,j)

given the observations y(k,Z) for k < i and all , i.e.

x(i,j) = E x(ij)Iy(k), k <_ i and Z 0, +1,... (5.36)

This is "line-by-line" filtering since the entire ith line {x(i,j)}
j=O,- 1,..

is estimated from the observations of all the lines to the

left of line i. An estimate of the image z(i,j) is then simply

z(i,j) = H x(i,j) (5.37)

The filtered estimate x(i,j) is obtained by Attasi from a two stp

procedure analogous to discrete-time Kalman filtering. First, the pre-

dicted value x(i,j) is defined as

~x(i,j) = E x(ij) Iy(k,) , k < i and t = 0,+1,... (5.38)
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and may be computed from

x(i, j) =F 1 x(i-l, j) (5.39)

At this point, it is unclear why x(i,j) is given by (5.39); this will

become obvious shortly. The second step is the estimation of the error

e(i,j) in the predicted value,

e(i,j) = x(i,j) - i(i,j) (5.40)

from the observations of line i. Once the estimate e(i,j) is available,

the filtered estimate of x(i,j) is just

(i,xj) = x(i,j) + e(i,j) (5.41)

The remaining problem,

error from the observations

innovations on line i as

therefore, is computing the estimate of the

{y(i,j) } . along line i. Define the
J=0,+_1 ,...

l(i,j) = y(i,j) - H i(i,j) (5.42)

Then it is immediate that

j(i,j) = H e(i,j) + v(i,j) (5.43)

i.e. the innovations are noisy measurements of the errors. Thus the

innovations along line i can be used to produce e(i,j) as the solution of

a smoothing problem along the line. This smoothing problem is easily

solved once the autocorrelation function E{e(i,Z) e'(i,k)} of the pre-
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dicted error of line i has been determined. Attasi is able to specify

the error autocorrelation function by finding a recursive equation for

the spectrum of the error 1 28 J. The details of using the spectrum to

perform smoothing and thereby obtain e(i,j) are given in Section 5.3.

The filtering algorithm is illustrated in Figure 5.1.

This two step filtering procedure, consisting of prediction by

(5.39) and then smoothing, was developed by Attasi for the two-parameter

model (5.33)-(5.35). The nature of filtering procedure, however, is

suggestive of an infinite -dimensional one-parameter model -- infinite-

dimensional because each line has infinite extent, one-parameter because the

lines are handled one at a time. It will now be shown that (5.33)-(5.35)

are equivalent to a Toeplitz system. In Section 5.3, Attasi's two step

filtering procedure will be extended to a much wider class of Toeplitz

systems.

Define the infinite-dimensional state and driving noise vectors as

x(i,Oi)= w(i-) (5.44)

x(i) = x(i,0) , W (i) = w i ,0)

x(i,1) w(i,1)

Also, two Toeplitz matrices are defined,
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F

0

F

F

x(i-l,k) x(i,k)
F

kt

x(i,k) = x(i,k) + e(i,k)

k
F

F1

F1

0

i-i i

a.) uncoupled prediction b.) smoothing along line i

yields e(i,k)

Figure 5.1 Attasi's two step filtering procedure consists of
predicting ahead from line i-1 to line i and then
smoothing along line i.
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T=-F2 I (5.45)

F2

F

S= F (5.46)

F

Then it is claimed that the dynamics of Attasi's model may be written

as

T x(i+1) = T S x(i) + w(i) (5.47)

th
This is easily proved by writing out the j component of (5.47),

-F2x(i+l,j-1) + x(i+lj) = -F F1 x(i,j-1) + F1xU',) + Wi,9

(5.48)

Recalling that F and F commute, it is easily seen that (5.48) is12
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-1
identical to (5.35). Pre-Multiplying (5.47) by T yields the Toeplitz

system

x(i+l) = S x(i) + T-1 w(i) (5.49)

where

'0
T- *F2 1(5.50)

2

F F I
-2 2

Note that this requires that all the eigenvalues of F2 lie inside the

unit circle. Componentwise, the dynamics (5.49) are

xk(i+l) =-F1Xkj) + ZF2 Y wk-(i) (5.51)

Thus the two-p;arameter model used by Attasi can be considered to be

a Toeplitz system. Also, from (5.49) it is clear why the prediction

step is just (5.39) -- the system matrix is diagonal. Once the dynamics

are written as (5.49), it is possible to use Attasi's filtering algorithm

even if F and F do not commute.1 2

Those Toeplitz systems which correspond to Attasi's two-parameter

model are a very special class within the set of all Toeplitz systems.

One might ask whether this class could be enlarged and still permit
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filtering by prediction and smoothing. This is the subject of the next

section.

5.3 The Estimation Problem

5.3.1 Formulation and Solution

Motivated by the work of Attasi on estimation for two-parameter mo-

dels, the problem of obtaining minimum variance estimates for Toeplitz

systems is addressed. The objective is to use z-transforms to determine

a filter which has an efficient on-line implementation.

A stochastic discrete-time Toeplitz system is one of the -form

4-w

xk(i+l) ZAk x(i) + Dk-,w(i) (5.52)

+cO

yk(i) =ZCxk-k(i) + vk(i) (5.53)

where k = 0,+l,+2,... .. Here the noises wz(i) and vj(i) are independent

zero-mean Gaussian white noise processes,

E{wk( )jP)} o 6i,j k,Z(5.54)

E vk(i)v'(j)} = R 6 . 6 (5.55)

The initial state xk(0) is also assumed to be zero-mean and Gaussian and

is independent of the driving and observation noises. In terms of the

infinite-dimensional state vector x and observation vector y, (5.51) and

(5.52) are written as
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x(i+l) = A x(i) + D w(i) (5.56)

y(i) = C x(i) + v(i) (5.57)

where A, C, D are Toeplitz matrices. The interpretation here is that

xk(i) is the state of subsystem k at time i.

The filtering problem is to obtain the minimum variance estimate

k iji)OfXk(i) given all the observations up to and including time i,

{yz(i)I0 < j < i and all f}. Under the condition of detectability for

the system (5.56) and (5.57), Hager and Horowitz [ 82 1 have shown that

the solution to this problem is a Kalman filter,

x(i i) = x(iji-1) + K(i)[y(i) - C x(ii-1)] (5.58)

x(iji-l) = A S(i-l i-1) (5.59)

K(i) = P(iIi-1)C'[C P(ili-l)C' + R] (5.60)

P(ili) = [I - K(i)C]P(ii-l) (5.61)

P(i i-l) = A P(i-li-l)A' + DQD' (5.62)

where the matrices P(iji) and P(ij i-i) are covariance matrices of the

filtered error x(ili) - x(i) and the predicted error (ili-1) -x(i),

respectively. Equations (5.58), (5.60), (5.61) define the measure-

ment update step; the prediction step is given by (5.59) and (5.62)

If the initial state covariance matrix P(0[-l) is Toeplitz, then
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K(i), P(iji), and P(iji-1) will be Toeplitz matrices for all i. Thus the

Kalman filter can be written in the z-transform domain,

X(i, z i) = (i,zli-1) + K(i,z)[y(iz) - C(z)2"(izli-1)] (5.63)

x(i,z i-1) = A(z) x(i-lzji-1) (5.64)

K(i,z) = P(i,zI i-l)C*(z) [C(z)P(i,z i-l)C*(z) + R(z))-1 (5.65)

P(i,zli) = [I - K(i,z)C(z))P(i,zfi-l) (5.66)

P(i,zji-l) = A(z) P(i-l,zji-1) A*(z)+ D(z)Q(z)D*(z) (5.67)

The z-transforms P(i,zji) and P(i,zli-l) are the spectra of the filtered

and predicted errors, respectively.

It is to be noted that the Kalman filtering equations (5.63)-(5.67)

can be formally thought of as defining the optimal filter for the system

x(i+l,z) = A(z) x(i,z) + D(z) w(i,z) (5.68)

y(i,z) = C(z) x(i,z) + v(i,z) (5.69).

where the noises w and v are white noises in both i and z, i.e.

E[w(i,z )w'(j,z )1 = Q 6(z -z )5. . (5.70)
1 2 o 1 2 ij

E[v(i,z1)v'(j,z2 )] = R 6(z1-z)6.. .(5.71)

These equations, of course, are purely formal. But in the transform

domain, the dynamics and observations are decoupled and the noises are
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independent. Thus the filtering problems for different values of z are

independent of one another, e.g. the estimate $(i,z ji) depends only on
0

the observations y(j,z0), j < i. The solution to the filtering problem,

therefore, is just a set of low-order Kalman filters, (5.63)-(5.67),

indexed by the continuous transform variable z.

In order to determine how the Kalman filter (5.58)-(5.62) can be

efficiently implemented, the prediction and update cycles of the discrete-

time filter will be addressed separately. First, the measurement update

procedure will be considered. The predicted error of substate k at time

i is defined as

k(i) = xk(i) - (ijki-l) (5.72)

It is immediately seen that the innovations process I (i) is related to
k

the predicted error by

k M yk (i) - C k-k 2k(ii1
p=-X,

Cke Pj(i) + vk (i) (5.73)

By the Orthogonal Projection Theorem of Hilbert Space Theory [ 83 },

the estimate xK(ili) is simply the sum of 2 k (ili-l) and ek (i), the

optimal estimate of ek (i). Thus the problem of interest is to determine

the estimate ek(i). By (5.58), the optimal estimate of ek (i) is just

the convolution of the filter gains {K1(i)} with the innovations process

IT k(i)},F
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ek M) (i)I Wi)(5.74)

Schoute, etal. [76 1 have given a recursive realization of a Toe-

plitz operator such as the filter gain K(i) in (5.74). The context in

which they worked was recursive estimation of images. They modeled 'an

image as the output of a stochastic, discrete-time Toeplitz system (5.52)

and (5.53). The Toeplitz systems considered, however, were of a very

special type -- the substates were scalars, the output yki) was just

xk(i) + vki (i.e. Ck = 6kO), and the system matrix A was just p (a

scalar between 0 and 1) times the identity. The image enhancement prob-

lem was then solved by performing filtering for the Toeplitz model.

Schoute, et al. observed that if the linear dynamical system S has

impulse response {Kk(i) }(i is fixed),, then by (5.74) the esti-
k=O,+l,...

mates ak(i) are the output of S when the input is Ik(i). The system S,

however, is not a causal system since Kk(i) is not zero for all negative

k. It is possible to express the impulse response of S as the sum of

a causal and an anticausal part,

{Kk(i) 1= hk + fhk} (5.75)

where

{ht} = {...,O,0,aK (i)f, K1(i), K 2(i),...

{hW} ={...,K2CI K C-1i), (1-a)K(i),O,0,1...}

and a is an arbitrary scalar. Let S (S) be a causal (anticausal) dynam-
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ical system with impulse response {hy} ({hy) . Then

e (i) = C + Fk(5.76)
k k k

where Ek (E ) is the output of S (S ) when the input is 1i . The system

S is anticausal for increasing k, but causal for decreasing k. That is,

if S is viewed as a linear system running backward over k, then it is

causal. The estimate e^k (i) is the sum of the outputs of two linear dy-

namical systems -- one (S+) running forward over k and one (S~) running

backward. This provides a recursive method for implementing (5.74).

Moreover, under Assumption 5.1 that the transforms A(z), C(z), D(z), and

PC ,zI-l) are all rational, the transformed filter gain K(i,z) is also

rational for all i. This implies that the sequences {hk} and {hk} have

rational z-transforms and, therefore, the linear systems S and S have

finite-dimensional realizations. It is to be noted that Assumption 5.1

is only needed to insure that there exist finite-dimensional realizations

of S and S

For the special type of Toeplitz systems considered by Schoute, et al.,

the filter gain matrix is symmetric, K = K'. This means that

I = hk (5.76)

for all non-zero k. Equation (5.76) holds for all k including zero if a

is taken to be In this case, the forward system S and the backward
2s

system S~ are equal. Thus the same finite-dimensional realization can be
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used to compute Ck and Ek

Summarizing the development this far, the update cycle of the filter

consists of the following steps:

(1.) propagate the error spectrum by (5.65)-(5.67)

(2.) obtain realizations for S+ and S

(3.) run the forward and backward systems S+ and S with

input IkCi)

kk(4.) combine the two outputs by (5.76) to get e k(i)

(5.) the updated estimate is xkkii) = xk(ili 1) + ek i

The spectrum propagation and realization problem can be done off-line.

From (5.73), it is clear that the innovations are nothing but linear

observations of ek(i) corrupted by additive noise. In general, each I ki)

depends on all the ek(i). In the special case when C(z) = C , the inno-

vation Ik(i) is simply a noisy observation of ek(i). Then determiningk k

e k(i)} from {Ik(i)} is a smoothing problem. It is interesting to note

that the models of both Attasi [28 ) and Schoute, et al. [ 76 1 satisfy

this condition on C(z). The physical interpretation of this assumption

is that each subsystem observes a suboutput which is a function of only

the local substate.

Assumption 5.2 C(z) = C , i.e. C = C 6
o kc o k,o

Even with assumption 5.2, the optimal estimate ek (i) cannot be made

on the basis of Ik(i) alone since the predicted errors ek (i) and ez(i)

are correlated. The cross-correlation is given by
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Pk(i i-l) = E [e (i) ek (i)) (5.77)

and so P(i,zji-l) is the spectrum of the predicted error process. For

all i, P(i,zj i-i) will be a rational function of z if Assumption 5.1 is

valid. In other words, the stationary discrete process ek (i), as a

function of k, has a rational spectrum. Therefore, by the spectral fac-

torization theorem [ 84 ], there exists a finite-dimensional linear

time-invariant system

tk+(i) I= D (i) Ek(i) + F(i)vPk(i) (5.78)

k i) =G(j) k (i) (5.79)

driven by the vector white noise process Vyki) having identity covariance,

such that the spectrum of Ck (i) equals P(i,zji-l). That is to say, the

sequence ek(i) can be identified with the sequence Ck (i) and viewed as

the output of the above system. Then the innovations Ik (i) are sirply

noisy linear observations of the state (i)

T (i) = C o(i) (i) + v (i) (5.80)

and can be used to estimate it. The optimal estimate 1 (i) is now

0(i) k(i) where (i) is the smoothed estimate of (i)kkk

There are many ways to obtain the smoothed estimate (. (i); the

discrete-time two-filter smoother described in Appendix B is one alterna-

tive. Using this smoother, the estimate is
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W () _Iflf() P1(i) ~rj(5.81)k s f k k r lkk+1( )J

iS f(i) + Pr ()- iJ(5.82)

where

f

k k =the forward Kalman filter estimate of t(i)

= the reversed-time Kalman filter one-step-ahead

predicted estimate of k i

P (i) = the steady-state covariance of the forward

Kalman filter estimate

Pr(i) = the steady-state covariance of the reversed-time

Kalman filter predicted estimate

P (i) = the smoothed error covariance

G(i) the steady-state a ptioK system covariance

of (5.78)

The forward Kalman filter operates in the positive k direction; the

reversed-time Kalman filter operates in the negative k direction. Both

filters are in the steady-state since the k index extends to plus and

minus infinity. This smoother may be interpreted as realizing the filter

gain matrix by two causal dynamical systems, as proposed by Schoute, et al.,

by choosing the parameter a in (5.75) equal to one.

Under Assumptions 5.1 and 5.2, the update cycle of the filter can be
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summarized as

(1.) propagate the error spectrum by (5.65)-(5.67)

(2.) obtain a realization (Q(i),1(i),O(i)) of P(i,zji-1)

(3.) perform forward and backward Kalman filtering for this

system

(4.) combine the filtered estimates according to (5.81) to

get the smoothed estimate

(5.) the updated estimate is X", (iji) = x. (i[i-1) + O(i)t .(i)
J J3

Implementation considerations for this algorithm will be discussed in

Section 5.3.3. For now it suffices to note that the first two steps

of this procedure can be performed off-line.

The remaining step in the filtering algorithm is prediction. In

the spatial domain, the prediction step will be a convolution sum,

(iix) =ZA i-lIi-I) (5.83)

One noteworthy feature of this expression is that if the dynamics of

each sybsystem depend directly on only a finite number of other sub-

systems, then the convolution sum (5.83) will be a finite sum. That is,

suppose A is non-zero for only a finite number of values, say Z e -1.

Then the predicted estimate Xk (ili-l) can be computed from only

(i-li-)l)IZ e JI , a finite set. In the general case, the Toeplitz

operator A can be realized by the procedure introduced earlier for the

operator K(i) . Namely, consider the sequence {Ak} to be the impulse response

of a linear systerr and then express this response as the sum of a causal
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and an anti-causal part. In this way the predicted estimate k(i i-1) is

obtained as the sum of the outputs of a forward and a backward linear

system. These systems have inputs i k(i-lhi-1) and have a finite-dimen-

sional realization if A(z) is rational.

In summary, the prediction and update steps of the Toeplitz Kalman

filter can both be realized by forward and backward linear dynamical

systems. Under Assumption 5.1, these systems are finite-dimensional for

all i. The prediction step can be obtained as a finite sum whenever there

are only a finite number of subsystem interactions. Under Assumption 5.2,

the update step is equivalent to a smoothing problem and can be realized

by forward and backward Kalman filters.

The models used by Attasi [ 28 ) and Schoute, et al. [ 76 J for

image processing fit into this framework very nicely. In both cases

(see (5.49)), the Toeplitz system matrices are block diagonal and so.

prediction is particularly simple. Also, both classes of models employ

a block diagonal C matrix; hence Assumption 5.2 is satisfied, and smooth-

ing can be done to update the estimates. The substates in the model of

Schoute, et al. were constrained to be scalars because they were con-

sidering enhancement of monochromatic images. For color pictures, it is

necessary to have vector substates. The development of Section 5.3.1

canitherefore, be viewed as extending the algorithm of Schoute, et al.

to color pictures. This was left as an open problem in [ 76 ].
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5.3.2 Implications for Filtering in Large-Scale Systems

The Kalman filter for a large-scale system requires, in general, the

totally centralized processing of all the subsystem outputs. In the case

of a large-scale system modelled as a Toeplitz system by (5.52) and (5.53),

the filter has a special structure. In particular, the preceding devel-

opment will be applied to show how the Kalman filter can be implemented

with only very limited inter-subsystem communication.

Consider first the measurement update step for a Toeplitz system

satisfying Assumption 5.2. In this case, the update step is equivalent

to a smoothing problem and is accomplished by two steady-state Kalman

filters. In order to better understand the update procedure, consider

subsystem k as it estimates ek (i). Subsystem k-l computes the forward

^f
estimate ( (i) and communicates it to subsystem k. The estimate

k-ljk-1

^f
( ki) can now be computed as

kj k

( ) = ̂(i) , (i) + K (i) i - C (i) (i) ( ()
k~ WU)Ck-I k-1 f()k 0k-1 Ik-11

(5.84)

where K (i) is the steady-state gain of the forward filter. This esti-

mate is then furnished to subsystem k+l, and the forward filter continues

up the line. Meanwhile, the reversed-time filter is operating down the

line independently of the forward filter. At some point, the reversed-time

filter reaches subsystem k+l. The one-step-ahead predicted estimate for

the reversed-time filter, k1 l(i)C, is then furnished to subsystem k from
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subsystem k+l. The next estimate is computed from

rr (=r(){Qk+l i) + K(i)[IT(i) - C 0(i) (kjk+(i)i

(5.85)

where K (I) is the steady-state gain of the reversed-time filter and
r

the reversed-time system matrix is Gr ()=ci 'i)iCi. The re-

versed-time filter then continues in the negative k direction. Subsystem

k can now use (5.81) and (5.82) to obtain the smoothed estimate (k(i) and

then ek i) = 0(i) ~(i).k k

The striking aspect of the update step of this Kalman filter is the

very limited communication between adjacent subsystems. All that is re-

quired is that each subsystem furnish its two nearest neighbors with es-

timates of the process Ck(i). When Assumption 5.2 is not valid, the up-

date step can be realized by a causal and an anticausal dynamical system.

These two systems do not have the interpretation of Kalman filters, but

they can be implemented by the same inter-subsystem communication pattern

described above. Therefore, the update step requires only limited com-

munication between adjacent subsystems, regardless of whether Assumption

5.2 holds.

The prediction cycle of the Kalman filter is implemented by the con-

volution sum (5.83). Consider the important case of a Toeplitz system

with only nearest neighbor interactions, i.e. AQ=, k/ -1,0,1. The

predicted estimate of substate k is then simply
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xk ( = A lk (i-li- + AXjJ(i-l i-1) + A3l (i-l Ii-l)
k -1'k+ I 1-

(5.86)

This means that subsystem k can form the predicted estimate of its own

state from the state estimates of its two nearest neighbors. That is,

each sybsystem can predict optimally with only nearest neighbor communi-

cation of local estimates. Of course, whenever the subsystem interactions

are localized spatially, a similar result holds. Indeed for systems of

the type considered by Attasi or Schoute, each subsystem is able to pre-

dict independently of all others. In the general case, the operator A

can be realized by two linear dynamical systems. The prediction step,

then, requires only communication between adjacent subsystems, the same

inter-subsystem communication pattern as for the update step.

.5.3.3 Filter Implementation Issues

The optimal centralized Kalman filter for Toeplitz systems satisfying

Assumption 5.1 has prediction and update cycles which involve a very in-

teresting communication pattern among the subsystems. The purpose of

section 5.3.3 is to examine in depth some of the issues that are involved

in implementing this Kalman filter.

The optimal filter, of course, will be time-varying. For the update

step, this implies that for each time i, a realization problem must be

solved for S and S-, the two finite-dimensional linear systems which

are used to implement the operator K(i). The computational problem of

determining these two realizations can be done off-line. The transformed
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filter gain K(i,z) is recursively computed from the discrete-time Riccati

equation (5.65)-(5.67), and hence the degree of K(i,z) as a rational

function of z grows rapidly with increasing i. In other words, the com-

plicating fact in this filtering procedure is that the order of the

realizations S+ and S- is quickly increasing with i. One is lead, there-

fore, to consider a time-invariant suboptimal filter.

The time-invariant steady-state Kalman filter is specified by the

steady-state predicted error covariance P. The corresponding spectrum

P(z) is given by the discrete-time algebraic Riccati equation in the

transform domain,

P(z) = A(z){P(z) - P(z)C*(z) [C(z)P(z)C*(z) + R] -1C(Z)P (Z) A*(z) +

+ D(z)Q D*(z) (5.87)

The difficulty here is that even though P(i,zji-l) is a rational function

of z for all i, in general, the limiting value P(z) will not be a ra-

tional function. There are cases when P(z) is rational, as the following

example demonstrates.

Example 5.1. The Toeplitz system in this example has scalar subsystems

and dynamics given by

xk(i+l) = cxk-l(i) + xk ( + w k-(i) + w(k

The output y is just the substate x (i) plus noise, and the driving and
bak

observation noises have covarianc es equal to one. Thus
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ExaMple 5.1. (contd.)

A(z) =z1 + 1

C(z) = 1

D(z) = z + 1

Q = 1

R 1

In the scalar case, (5.75) reduces to

2
[C(z) C*(z)]IP2 (z) + [R-A(z) A* (z) R - C(z) C* (z) D (z) D* (z)Q]P(z)

- D(z)D*(z)QR = 0

Substituting,

P (z) + [1 - (uz +1) (cz+1) - (z +1) (z+1) JP(z) - (z +1) (z+l) = 0

P (z) - [(t+1) z+ (a2+2) +(a+-1)z ]P(z) - (z+2+z ) = 0

From the quadratic formula,

P (z) 4 +1) z+ (a2+2) +(a+1) z -1 + (c+l) z+ (C 2 +2) + (+1) z'l+4 (z+2+z 1)

L{[a+1)z+(2+2) + ( z+1] +

+/a 2+2a+1) z2+(2 3+2 2+4a+8)z+(a4+6a2+4a+14)+(2u3+2&2+4+8) ziJ(U2+2+)z}
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Example 5.1. (contd.)

3 2For a between zero and one satisfying a -Oc -2a+1 = 0, the expression

under the radical is (a+l) z+(-xF+4a+2)+(a+1) z']. Then P(z) is

P (z) = j 1)z+ (a 2+2)+ (cA) H] + [(Al) z+ (-2c+4a+2) + (c+l) z

= (a+l) z + 2 (a+1) + (c+1) Z

In this case, P(z) is a rational function of z. One realization of

this spectrum is

(k+1) 0 1 (k)

+ y(k)

2 (k+l) 0 0 (2 (k)

(k)

S(k)=l

E2 (k)

0 0
where E 11(k)p' (k) = . The steady-state covariance a of this

0 a+1-

system satisfies

G1 2= [0 1J 0 0 0 0

Cr2 CF3_ L 0 G2 31 1 0 0 a+1

0 a+1
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Example 5.1 (contd.)

U+1 0-

Hince G = . From Appendix B, the reversed-time system

ma0i i+s

matrix is

tr = ac0' = 1 4
1 0

and the reversed-time driving noise process pa has covariance

Qr r

1 0 0 0 .0 1 1 0
(+1)[' 13 - (c+1)El [ j 5 1

0 l_1 0 0_j0

a+1 

0

E 01
The predicted error covariance of the forward steady-state Kalman

is obviously of the form

P 0
Pf (-) = [ +1

where p is to be determined. The gain matrix is then

K = P (-)O'[OP (-)O' + R]

Sa r p 0 I1

U +1 __0 U+1 1-
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Example 5.1. (contd.)

K =1 + I IT f 2+prr /+

The updated error covariance P,(+) is given by
4.

P (+) [I - K GYP (-)

([1 01 ) p

(0 2 2+p+L -1 +1
[1 pL 00 a1

1 __ p (a+2) -p (a+1)

2+p+a)-p+1 (p+) (c+1) J

Then P (-) must obey

Pt (--) = P9 (+)4P' + Q

11 p(+2) -p(c+1) 1 01

Li ( 2+p+cx)L-p P(Y+ (p+1) (l+1)JL1 cJ

0 0 (1+) (1+p)
(2+p+a)

+ +I 0 c +

Therefore, p is given by

(1+a) (l+p)
(2+p+a)

p = - +AW
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Example 5.1. (contd.)

Similarly, the covariance and gain matrices for the reversed-time

filter are formed to be

a+1 0-

P H)

r 0 P2

1(p+1) (a+1) -P(a+ 1)
P (t) =

r =2+p+a)L 1-p6+ 1) p(a2

r 2+p+a

The estimates of these two filters are then combined according to

(5.81) and (5.82).

Example 5.1 shows that is is possible for the steady-state error spec-

trum P(z), and hence the filter gain K(z), to be a rational function of z.

Characterizing precisely when this is the case is still an open problem.

It is expected, however, that the occurrence of a rational P(z) and,

therefore, a finite-dimensional realization of the update step will be

quite rare.

When P(z) is irrational, some approximation must be made in order to

obtain a finite-dimensional realization of K(z). Let Pa(z) be a rational

approximation of P(z). The corresponding approximate filter gain Ka (z)

is given by

K (z) = P (z)C*(z) [C(z)P (z)C*(z) + R(z)] 1  (5.88)
a a a
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Alternatively, one could directly approximate K(z) by some rational

K (z) without the intermediate step of obtaining P (z). In either case,a a

Schoute, et al. [ 76] suggest defining the relative approximation error

s by
K

= IK - K 
(5.89)

KTV

where the norms here are the induced operator norms introduced in Section

5.1.1. By (5.9), the relative approximation error can be computed from

the z-transforms of K and Kar

ess supjj K(z)-Ka (Z) 12
z eU

K zU(5.90)

ess sup IIK(z) 12
zeu

Of more interest than the relative approximation error, however, is

the steady-state covariance that results when K (z) is used as the filter

gain. The predicted error is given by

e (i+1) = x(i+l) - x (i+ Ili) (5.91)

= JA x(i) + Dw(i)} - A{x(ili-l)+ K a [y(i) -CX(ijI i-l)]}

= A[I- K C]e(i) + D7(i) - AK v(i)

If the filter system matrix A[I- K C) is stable, then the predicted error

covariance reaches a steady-state value. The resulting predicted error

spectrum Pp(z) is given by

P (z) = A(z) [I-K (z)C(z)]P (z) [I-K (z)C(z)) A* (z) + D(z)Q(z)D* (z) +
p a p a

+ A(z)K (z)R(z)K* (z)A*(z)
a a (5.92)
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Equation (5.92) is just the steady-state Lyapunov equation for the

system described by (5.91).. In terms of P (z), the filtered error spec-

trum P (z) is simply

P (z) = [I-K (z)C(z)] P (z)[I-K (z)C(z)] + K (z)R(z)K (z) (5.93)
f a p a a a

The suboptimality of the approximate filter gain Ka (z) can be evaluated,

therefore, from (5.92) and (5.93).

The update step when Assumption 5.2 holds, i.e., C(z) = C , will now

be examined further. Recall that in this case the update step is equiva-

lent to a smoothing problem and can be realized by two Kalman filters.

Let P (z) be a rational function of z which very closely approximates

P(z). The corresponding finite-dimensional linear system (0 a ,0 ) might
a a a

have a very high dimension. Assume that this is the case. The idea here

is not to use (0 ,I' ,0 ) to implement the smoothing of the predicted
a a a

errors, but rather to use it as a benchmark against which reduced order

smoothers can be compared. Consider the reduced-order model (0 ,V ,O ).r r r

Then the suboptimality of smoothing with this reduced order model instead

of the higher-order model can be evaluated from the results in Appendix B--

assuming that the spectrum Pa (z) is the actual predicted error spectrum.

Of course, Pa (z) only approximates the actual spectrum P(z), and so the

above procedure yields only the approximate suboptimality of using the

reduced-order model. Nevertheless, if Pa (z) is chosen to be an accurate

representation of P(z), this approach will provide a useful measure of the

suboptimality of the reduced-order smoother.
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The above discussion has centered on approximating the irrational

function of z, K(z), by a rational function Ka (z). The rational filter

gain can then be implemented by two finite-dimensional linear systems.

This approximation necessarily introduces a degree of suboptimality into

the filter. There is a second possible source of suboptimality which will

now be discussed.

The estimate ek(i) of the error at subsystem k depends, in general,
k

on the innovations I (i) all along the line, i.e., V Z. This centralized

estimate is obtained from two Kalman filters, both starting infinitely far

away from subsystem k. Clearly, this implementation has some undesirable

properties, e.g., an infinite delay is required to compute ek(i). Consider,

therefore, estimating ek (i) from only a finite number of the innovations

1(i) at neighboring subsystems. This corresponds to using a filter gain

K which has only a finite number of nonzero elements. Any such gain K

has a transform Ka(z) which is a rational function of z, and hence (5.92)

and (5.93) can be used to evaluate the suboptimality of using only a finite

number of measurements to update each substate estimate x(ili).

In general, it is not particularly clear how such a Ka, with only a

finite number of nonzero elements, should be chosen. But under Assumption

5.2, it is quite obvious how to handle this situation. Suppose the estimate

ek (i) is restricted to being a function of 1(i) for k-N<_ Z <_k+N2-

This is nothing but a finite interval smoothing problem. Thus, the esti-

mate ek (i) can be obtained as the output of two Kalman filters -- the

forward one starting at k-N1 and the reversed-time one starting at k+N2'

The two filters are not in the steady state, but are time(space)-varying.
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The covariance of the estimate ek(i) can be obtained from the reduced

order smoother results of Appendix B assuming that P (z) is the spectrum

of the process ek(i).

The implementation of the finite-interval smoother will now be con-

sidered. Since the estimate ak (i) is obtained from two Kalman filters,

only the forward filter will be explicitly considered. Similar comments

apply to the reversed-time filter.

The forward estimate of ek (i) is based on 1(i) for k-N1 < Z < k.

This estimate is obtained from a forward Kalman filter starting at sub-

system k-N . If the forward estimate of ek+(i) is based on the same

number of innovations, i.e., IY, (i) for k-N1 + 1 < t k< k+l, then another

Kalman filter starting at subsystem k-N + 1 is required. Continuing this

argument, it is clear that if each estimate uses exactly N1+1 of the

innovations, then it is necessary to start a forward Kalman filter at each

subsystem. Also, each innovation 7 (i) is used to update N1+1 different

forward Kalman filters. Figure 5.2 illustrates the use of a separate

filter to obtain each estimate. The number of updates required to compute

the forward estimate of ek (i), of course, is also N + 1.

Since each estimate is computed from a separate forward Kalman filter,

this is a totally parallel computational scheme. Consider now the proces-

sing that occurs at each subsystem as this parallel filtering is performed.

The innovations lk(i) at sub:-ystem k are used N +1 times to update N+1

different filters, as previously noted. Subsystem k transmits N of these

estimates to subsystem k +1; the other estimate yields ek(i). The
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computational burden at each sybsystem under this parallel filtering

procedure, therefore, is very much different from the computational burden

when all the forward estimates are computed from one filter starting at

minus infinite -- essentially a totally serial computational scheme. In

the latter case, the innovation Ik (i) is used to update only one filter,

and only one estimate is transmitted from subsystem k to subsystem k+l.

The conclusion is that the parallel scheme greatly increases both the

number of times each subsystem must update a filter, and the number of

transmissions between subsystems.

By altering the requirement that each forward estimate must be based

on exactly N+1  of the innovations, it is possible to obtain a tradeoff

between: (i) the computations and transmissions required at each sub-

system, and (ii) the delay in computing all the forward estimates. Delay

here refers to the maximum number of updates and transmissions needed to

compute any particular estimate. This will become more clear shortly.

Suppose the requirement is that at least N +1 innovations are used for

every forward estimate and a new Kalman filter is started every M1 sub-

systems. This implementation is shown in Figure 5.3. Under the totally

parallel scheme, Ml was equal to one.

If a new filter happens to be started at subsystem k, this filter

provides its first estimate (based on N +1 innovations) at subsys ;n

k + N1 . The next filter starts at subsystem k + 1 and provides itso 1o 1

first estimate at subsystem k + M +N . The filter that started at sub-
o 1 1

system k0 , therefore, must provide estimates at subsystems k +M, k0 +M +1,.NaMo 1

. . ., k0+M1 +N1 -l -- a total of M1 estimates . This last estimate (the one
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at subsystem k +1 +N1-1) is based on N1+M innovations. This means

that the delay in obtaining this estimate is due to updates at D1+M1

subsystems and transmissions between N+ 1-1 subsystems. When a new

Kalman filter is begun at every subsystem, i.e., M = 1, its last (in

fact only) estimate requires just N +1 updates and N1 transmissions.

Choosing M I greater than one, therefore, increases the delay in obtain-

ing the forward estimates.

However, what is the effect of increasing M on the computational

burden of each subsystem? Consider the choice N =3 and M =5 as depicted
1 1

in Figure 5.3. If a new filter is begun at subsystem k , then subsystems

k , k +1, and k +2 must update two different filters, and subsystems k0S o 0

and k +1 must transmit two estimates apiece. The remaining subsystems
0

update only one filter and transmit only one estimate. For general N

and Mi, simple counting arguments may be used to determine how many updates

and transmissions must be performed by the various subsystems. The point

here is that the computational burden at the individual subsystems is

reduced by increasing Mir the separation between adjacent Kalman filters.

Increasing Mi, however, was previously observed to result in an increased

delay before the last estimate of a Kalman filter was available. Therefore

the parameter M l can be used to perform a tradeoff between (i) computations

and transmissions, and (ii) delay, as was desired.

The above discussion has dealt with a suhoptimal update step that

uses only a finite number of the innovations to update each subsystem.

How many innovations are required to yield a good estimate of ek i?



-230-

Recall that the process ek (i)} is viewed as the output of the linear

system [41i) ,1(i), 0(i)]. If the innovations used to estimate ek(U)

extend about subsystem k for several of the slowest time (space) constants

of fl(i), then the resulting estimate should be quite good. There are,

therefore, two time scales of interest here. First, of course, is the

actual time index of the system. For example, one may ask how large i

must be before the system can be considered to be in the steady state.

The second time scale is actually a spatial scale. The question here is

how many neighboring subsystems must be used to crovide an accurate

estimate of a substate.

It is important to realize that as more neighboring subsystems are

used to compute a substate estimate, i.e., as the number of space constants

is increased, the time required to perform the update step is also increased.

This means the space and time indices of the system directly interact in

the filtering process. There is an interesting and important tradeoff,

therefore, between (i) the actual time period at which the observations

are sampled, and (ii) the number of neighboring subsystems used to update

a substate estimate. Work in the area of filtering for systems with

multiple time scales, such as [ 17) might be useful here in making

this tradeoff.

5.4 The Dual Control Problem

The Toeplitz optimal control problem which is the dual of the estima-

tion problem in Section 5.3 will be solved in thS section. The dynamics

of the deterministic discrete-time Toeplitz system under consideration are

given in terms of the infinite-dimensional state vector x and input vector

u as

x(i+l) = A'x(i) + C'u(i) (5.94)



-231-

For subsystem xk, the dynamics are written

x(i+1)h3 Ak+p x(i) + Ck+u(i) (5.95)

where the subsystem matrices A' k+ and input matrices C' k+ are

reversed as well as transposed. The quadratic cost functional to be

minimized is

J= x' (T)Sx(T) + - [x'(i)DQD'x(i) + u'(i)Ru(i)] (5.96)

i=O

where S = S' is a positive definite Toeplitz operator.

The optimal control problem consists of determining the input time

function u(i) which minimizes the cost functional J. If the system

(5.94) is stabilizable, then Hager and Horowitz [ 82 1 have shown that

the optimal control at time i is given by

u(i) = - G(i)A'x(i) (5.97)

where the gain G (i) is

G(i) = [R + CL(i+l)C']~ CL(i+1) (5.98)

and L(i) is given by the Riccati equation

L(i) = A L(i+l)-L(i+l)C' [R+ CL(i+1)C'] -CL(i+l) A' + DQD'

(5.99)

L(T) = S

The operator L(i) yields the cost-to-go since

-x' (i)L(i)x(i) = min (T) Sx (T) + [x' (j) DQD'x (j) +
2 e 2 x2 Z-

. u (j), Ij=1

+ u' (j)Ru'j)] (5.100)
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Suppose the cost operator S is chosen equal to P(0-l), the

initial state covariance in the estimation problem. Then it is easily

shown from (5.60)-(5.62) and (5.99) that

L(i) = P(T-iIT-i-l) (5.101)

for all i between 0 and T. Moreover, comparing (5.98) with (5.60) yields

G(i) = K' (t-i) (5.102)

i.e., the control gain at time i equals the transposed filter gain at

time T-i. Because of the equalities in (5.101) and (5.102), the optimal

control problem defined by (5.95) and (5.96) is called the dual of the

estimation problem covered in Section 5.3.

For notational convenience, let x (i) equal A'x(i). Then the optimal

control uk(i) is the convolution of the control gains {Gk (i)} with the

projected process { x (i)}

uk i) = L Gk-(i)x (i) (5.103)

The Toeplitz operator G(i), of course, can be recursively realized by a

causal and an anticausal linear system, as explained in Section 5.3.1.

Denote these two linear systems by S and S-, respectively, and let Pk + k)

be the output of S (S) when the input is x (i). Then

uk k + pk (5.104)
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The various comments made in Section 5.3.1 concerning this realization

and the discussion in Sections 5.3.2 and 5.3.3 are equally applicable

here and will not be repeated.

Systems which satisfy Assumption 5.2, however, will be investigated

further. Recall that Assumption 5.2 was that Ck = C 6kO ;in the

context of the optimal control problem, this means that the input matrix

is block diagonal, i.e., the input directly affects only the local sub-

system. Under this assumption, the smoothed estimate of e (i) was found

tobe a weighted sum of two filtered estimates [see (5.81)]. It will

now be shown that the optimal control uk (i) is just the sum of two opti-

mal controls - one control is for a system operating in the positive k

direction, the other control is for a system ocerating in the negative k

direction. This proof will proceed by first reconsidering the dual filt-

ering problem at time T-i and then proposing the forward and backward

control problems which yield uk(i).

Recall that because P(T-i,zjT-i-l), the spectrum of the predicted

error process, was a rational function of z, it was possible to view

ek (T-i) as the output of the linear system defined by the triple

[I(T-i),F(T-i),O(T-i)]. In order to obtain the smoothed estimate of

f
ek (T-i), the forward estimate k (T-i) and reversed-time estimate

^ r

Cklk+l(T-i) were both needed. The forward estimate is computed by the

usual Kalman filter (explicit dependence on T-i now is suppressed),

^f ^f ^ f
=+ K' I -( )5 i( 0Ak+l k+l %jk fjk+l (c0) klk1 k(5.105A)

Kf = Pf (C00) (C O)Pf (C0 ®)' + Rj (5.105B)
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P = [I- K r(C0) ]Pf (5.105C)

P- ( P+ 0I rIp = p Pf +r (5.105D)

Here P and P denote the steady-state filter and one-step-aheadf f

predictor error covariances, respectively. In Section 5.3, only the

filter error covariance was needed, and so P. was simply denoted as Pf.

Using the variation of constants formula together with (5.105A), the

^f
filter estimate kk may be written as

'If )I

k0k [(I-KfC0) ] K 7k- (5.106)

Y'=0

Similarly, the reversed-time estimate kIk+1 is computed by a reversed-

time one-step--ahead predictor,

r .K^(C0rr(
kjk+l j k+lk+2+ rj tk+1 0 'k+ljk+2 (5.107A)

-l
K = P_(CO0) (C O)P (C0)' + R (5.107B)r r o 0 r 0 0

P = [I -K (C R))P (5.107C)r r 0 r

P =- P + r F(5.107D)
r r r r r

where the matrices 0 and r are computed from the formulas (B.3) andr r

(B.4) in Appendix B. Once again, Pr and P denote the steady-stater r

filter and one-step-ahead predictor error covariances, respectively. In

Section 5.3, P = P . Alternatively,r r
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+CO

^r [= (I -KG C Q)]eKXI( 1
klk+l zND r r 0 r r k+%+1 (5.108)

Therefore, using (5.81),

+)^O-(P ) t (
k s f kIk r k k+1J(5.109)

+ CO

P [(I- K C0)Q] K f k- +

+ OP [ (I-K C () D K
s r r o r rk+-+1

Since ek (Ti) is known from (5.74) to be the convolution of the filter

gains {Kk(T-i)} with the innovations f k ')), (5.109) implies that the

filter gains are

-1 k0 P P [(I-K C 0) ) K , k > 0
sf f o f

kT-i)(5.110)

0 P P_1[0(I-K 0C)] - K , k < 0
I Sr r ro r r

A forward-time and a reversed-time optimal control problem will now

be posed, solved, and related to the two filters used in the previous para-

graph. First, consider the following forward-time system:

r rrn = 0'n + (C0)'u (5.111)
k r k-l o k-i

with the infinite-horizon quadratic cost functional

.11 - - -.. " ., -Im.- I -- p .; 1. I..R .I. . I rl 7 -. wr
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J L k(1rf) K + u R u (5.112)r k r r k k 0 k
k=O

The superscript r was used in the dual filtering problem to denote

reversed-time quantities. Hence in the control problem, the superscript

r denotes the forward-time state k and control uk. The realization in

(5.111) may be viewed as coming from a factorization of the cost-to-go

matrix L(i). The well known solution to this control problem is that

r
the optimal control uk is given by

r r
u = - G 'P' n (5..113)
k r r k

where the gain G is
r

G = [R + (C O)L (C 0) ] (C 0)L (5.114)

and the cost-to-go Lr satisfies the algebraic Riccati equation

L = L ' + 1'0' - @ L (C 0)'[R + (C )L (C 0)3(C 0)L 0'
r r r r r r r r o o a r o o r r

(5.115)

The closed-loop system, therefore, is

r = [(I - 0'C'G ' r (5.116)
k or r k-1

Next, consider the reversed-time system

f f I f
n ='n + (Cc00)-u (5.117)
k k+1 0 k+l

with the infinite-horizon cost functional
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f f f f' f

k = [ K + (C 0)) (r') [rik + (C S) +UkRUk (5.118)

The solution to this problem is

f f
uk = - 0Gft (5. 119)

where the control gain Gf is

Gf = j(C0o)[ Lfv' + FI'](C0 ) + R'1(C O)H[ L f' + FE'] (5.120)

and the cost-to-go Lf is given by

Lf = [I-G'(C 0)] [D L,'+ rr'][I-(C )'G0 + G'R G (5.121)f o r o f o f

The resulting closed-loop system is

f I f
TI= ['(I-O'C G )] n (5.122)k 0 f k+1

The forward- and reversed-time optimal control systems are now related

to the two filters which yield the smoothed estimate ek. First, eliminat-

ing P from (5.107B)- (5.107D) yields
r

K = P (C00)' [ (C 0)Pr (C0)' +_R ] (5.123)

P = Q P ' +FPr,' - P (C 0)' [(C 0)? (C 0)' +R ] (C 0)P '
r r r r r r o o r o o o r r

(5.124)



-238-

A comparison of (5.115) with (5.124) shows that

Lr P
r r

Therefore, from (5.114) and (5.123), the control gain equals the trans-

posed filter gain,

G = K'
r r

Likewise, eliminating Pf from (5.105B)- (5.IO5D) yields

Kf = [P +' + rr'j
f

Pf =[I-Kf(C)][P Q' + F,]
P f

It is not obvious that P equals Lf. However, from (5.121),

L [I-G' (C )][OL ' + '][I-(cC)', + G'GL f 0Gf [ + r f o f

[L '+ 'L]-G' (C )[QL 4'+ Fo'r - [rL Q' P'](c 0)G +f f o f f o f

+ G' (C 0)[QL Q + Fr'](c 0)'+ R G-[Lf+ f 0 E

[ oQ+ r '] -G' (C 0) [CDL '+ F '

[I-G' (CO)][LQ' + LY']
f of (5.129)

Now, comparing (5.128) with (5.129) and (5.127) with (5.120), one sees

that

L Pf

Gf f
G = K'f f

(5.130)

(5.131)

(5.125)

(5.126)

(5.127)

(5.128)

(C 8' (C 0 )[ p '+ I'(C O)'+ R



-239-

Consider the closed-loop systems (5.116) and (5.122) where now

Xk enters these systems as a disturbance. Tiat is,
k

r r+,0 l- 1  p
=[(I-0 'C' K ')]T, ki r +(OD'--1 (5.132)k r r k-1I r s ~k-*

f f -l C
I= [I' (I-'C' K' )]n + (P P1 6') X_(5.133)k o f k+1 f s (

where K' and K' have been substituted for C and G , respectively.r fr f

From the variation of constants formula,

r -

f + I- E'C ' K ' )( ) D( P ') ;(5.134)k r r r s N-,-z

Y=O

I = [ (I - ('C' K') (P 'P ')- x(5.135)k f f s X

From (5.103), the optimal input uk is the negative of the convolution

of the control gains {Gk} with the projected process {4} . Furthermore,

from (5.102) G = K' and so, using (5.110),
k -k

-lP
K' [' (I-'C'K' )]P, P ' , k < 0
ff s

G k =1 (5.136)

K'k Dr [ (I-'C ' K ' ) P P ' , k > 01 o r r r s
o r 13

But, from (5.113), (5.119),(5.134) and (5.1 3 5 ) , the optimal controls u r and
k

f
uk are

r - 1p

- K-' 1' [(I-0'C ' K 0' )Q' ] ~P 1 P 0')x (5.137)
k r r or r r s k-Z-l

u = -- K; [0'(I-'C ' K' ) () (5.138)
k for -k+P, 0
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A comparison of (5.137) and (5.138) with the two parts of (5.136) shows

that

r f
uk = Uk + uk(5.139)

That is to say, the optimal input uk(i) to subsystem k at time i is

simply the sum of two inputs -- the one u [ , the input for a system

propagating in positive k; the other uk , the input for a system prop-

agating in negative k. Interestingly enough, this is not a weighted

sum of the forward and backward inputs, but simply their algebraic sum.

The weights which are used to combine the two estimates and ^ r
kik ki k+l

in the dual smoothing problem are found on the process x as it

enters as a disturbance in (5.132) and (5.133).

In summary, this section has considered the dual optimal control

problem to the Toeplitz estimation problem covered in Section 5.3. The

realization of a Toeplitz operator given in Section 5.3.1 and the dis-

cussion in Sections 5.3.2 and 5.3.3 are, by duality, also applicable

to the dual control problem. The most interesting result in this

section, however, concerns the optical control problem for systems satis-

fying Assumption 5.2. The update step of the dual filtering problem

in this case was shown in Section 5.3 to be essentially a smoothing

problem. By dynamic programming, one step of the optimal control problem

consists of the following minimization:
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uk R\ + T, ( ~ ~ Xzp + C Uz,)l(x + Co' uk -(x +C 0 )

The minimizing uk has been expressed as the su of the optimal control

for a forward-time system plus the optimal control for a reversed-time

system. This appears to be a novel solution to the dual of the standard

smoothing problem.

rain

{u } k=-ca

(5.140)
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CHAPTER 6

CONTRIBUTIONS AND SUGGESTIONS

Throughout this dissertation, spatial transformations have been

used to provide a deep, coherent treatment of spatially invariant linear

systems and the associated control and estimation problems. Both finite-

dimensional circulant systems and infinite-dimensional Toeplitz systems

were investigated. It is strongly felt that the results in this disser-

tation demonstrate the utility of viewing control and estimation prob-

lems from the spatial frequency domain. The major contributions of this

work follow:

(1) The complete treatment of circulant systems, their system

theoretic properties, and the associated Lyapurwav and Riccati equations

by using the spatial DFT to perform decomposition.

(2) The procedure for imbedding in circulant systems both symmetric

and antisymmetric tridiagonal systems, such as those arising from some

discretized partial differential equations or systems having longitudinal

structure.

(3) The development of design procedures for suboptimal decentral-

ized control gains from the optimal centralized control gains by analogy

with digital filter design.

(4) The study of the two-filter smoother and the resulting increased.

understanding of the role and nature of the backwards filter in computing

the smoothed estimate.
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(5) The development of a sensitivity analysis and a reduced-

order smoother analysis for the two-filter smooTher and change of

initial conditions formulas for smoothed estimates.

(6) The application of the spatial transform together with the

two-filter smoother to solve the filtering problem for certain Toeplitz

systems.

(7) The formulation and solution of the optimal control problem

which is the dual of the fixed-interval smoothing problem.

Some of the possible topics for future research related to the

results obtained and approaches developed in this disseration are the

following:

(1) The imbedding of other classes of linear systems within cir-

culant systems, e.g., can more general tridiagonal systems be imtedded

in circulant systems by combining the results for symmetric and anti-

symmetric tridiagonal systems?

(2) The characterization of when a circulant decentralized controller

is' stabilizing and the development of bounds on the resulting suboptimal-

ity.

(3) The development of procedures for determining the appropriate

circulant approximation to a given large-scale system for purposes of

control and estimation; the characterization of the stability of the

resulting closed-loop system; and the bounding of the suboptimality of

the circulant controller or estimator.

(4) A study of the numerical properties of the new two-filter

smoothing formulas and the equations for sensitivity analysis and reduced-

order smoother analysis.
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(5) A theoretical study of the use of reversed-time realizations

and the reversed-time innovations process.

(6) An examination of the space-time intrplay that occurs in.

filtering for Toeplitz systems, e.g., the tradeoff between the number of

innovations used to estimate the state of each subsystem and the time

interval at which observations are made.

(7) The development of the finite-dimensional version of the fil-

tering results obtained for Toeplitz systems.
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APPENDIX A. CIRCULANT MATRICES

Let A be an N x N circulant matrix

a

aN-1

aN-1

a
0

a1

aN-2

a
N-2

aN-1

a0

a
1

a
2

a
3

a
0

N
(A. 1)

I
The eigenvalues and eigenvectors of A will now be found following the proof

given by Bellman [44]. If WN = (ixp ), then W-k is one of the Nth

roots of unity, i.e., W k)N = 1. Let

N-i

Ak I 0 a i kil

From (A.2) and the fact that WNk

that satis fies the following

(A.2)

is an N root of unity, it is obvious

set of equations:

2 N-i

= 0 + aN-1%+) aN 2 .. +a

xkQ) a1 + a 0 (w)+ aN- (! + ... + a 2,w,7

N-1 2 N-

ak W N-1 + aN0-2 (W k+ a. N - 3 N +.. + ao

(A. 3)

a N-3 ..
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Writing this set of equations in matrix form yields

or

1

Wk

(N-1)k

a
0

a
aN-i

aN-1

a 0 a 
\.0 . a

N-2 4! 0 'a

'1

N

w(N-1)k
WN

A k = A$y

(A.4)

(A.5)

where the eigenvector k is simply

.k

1

N

2k
N

W(N-l)k
N

(A.6)

The eigenvalues Ak of the circulant matrix A are given by (A.2) -- the

elements of the discrete Fourier transform of the top row of A. The eigcln-

vectors ck are observed to depend only on N and not on the elements of A.
k

a0 l
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Let 0 be the matrix of eigenvectors,

This matrix

-1

N

II 1 1

1 W
N

2
1WM

N

1

2

N

4
N
N

(N1)

(N-2)

N (A.7)

(N-1) (N- 2) (N-1) (N-1)1 W W .IN N * - N 

is invertible, since its inverse can be explicitly written as

1

1

1

1

1

w(N-1)
N

(N- 2 )
N

WI
N

1

(N- 2 )
N

w(N-
4 )

N

1

Wi
N

2
N

2
WN
N

(A.8)

NI

Hence, the eigenvectors of a circulant matrix form a linearly independent

set, and so any circulant matrix can be diagonalized,

N-l

(A.9)
-1

4' A4 =

-0
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Consider now the block circulant matrix A where the blocks Ak

have dimensions r x s,

A A A.
0 N-i N-2

A1 A0 AN-i .

A 2

A
Ni1

A
*1

A
.0

A2

.3

A A
N-2 N-3

The partitiond rN X rN matrix )r is defined as

I
r

I
r

1
I W I
r Nr

21
I W I
r N r

r N-1
r N r

I
r

2
W I
N r

4
W I

N r

2 (N-i)IW I
N

N-I
N r:

2 (N-i). * .W I
N r

(N-1) (N-i)
r **N

where Ir is the rx r identity matrix. By analogy with (A.8), the inverse

of 4r can be explicitly written as

N

IIr
I
Ir

Ir I
r

N-1 -2
W IrI
N r N r

V-2IWN-4
r N r N r

12
"W I N Ir N r N r

I
r

N)

2r

W I

N-1I
N r

(A .12)

A = (A.iO)

r (A.ii)

I
r

-1

r
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In the case of lx 1 blocks, the matrix or @ has the inter-
1

pretation of the matrix of eigenvectors. The matrices q or Q , of course,
r s

do not. have this interpretation. Nevertheless, r and P can be used to
r s

block diagonalize the matrix A.

Proposition A.l. If A is a block circulant matrix with rx s blocks, then

-l
r A s is block diagonal,
r S

A = 4-1A
r s

A0

A1
0

A

A N-1

where A =
k

Proof: The

(AO )s krkA

where k, t

ofD-1 A
r s

N-1

i=0

(kI )

-ki
A. W.i N

block of A is
5

N-1

-=> (A) .A(K(A k, i S
i=0

N-1
it

= AW
.6 k-i N

i=O

ir

0,1, ... , N-1 and the indices are modulo N. The (m, 9) block

can now be written,



-1
(r A )r s
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N-1

R ) (At)
r s
, m,k k,

N-1NN-

Nl - iZ-mk
>j N. W

k=0 N-ik=o i=o

-
N -1(k-n)

Nk nN
K=O n=O

N-1

n=0

N-n
-nk

A nWX (
k=O

-iN

k-rnk

wNk(Z-m)

A W -

n N

0 , k m

Q.E.D.

The converse of Proposition A.i is also true. Namely, if A is a block

diagonal matrix, then 4r A ~ is block circulant. The details are omitted.
r s

Using this converse, it is easily shown that the product of two block cir-

culant matrices A and B is also block circulant,

[ -1( B r -1
AB = 0 [((D A (D ) (0 )

= @ A AD-

= @ A 4 -
r AB r

Sn=k-i

(A.13)
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where it is assumed that A has rx s blocks and B has s xr blocks. The

matrix A is block diagonal, since both A and A are, and so AB is block
AB A B

circulant. Similarly, the inverse of a block circulant matrix is still

block circulant,

A - (D-1A 1)P P (A.14)
s s r r

-l -l --1
(4(4 A )

s r s r

s A r

Let C be the set of all block circulant matrices of order N having
r

r xr blocks. Then, since the sum of two block circulant matrices is

obviously a block circulant, Cris an associative ring with respect to

the operations of matrix addition and multiplication. The unit element is

just the rN xrN identity matrix. C is also a commutative ring, but none of
1

the other C is.
r
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APPENDIX B. DISCRETE-TILE SMOOTHING FORMULAS

Consider the discrete-time linear system

x(k+l) = (k+1,k)x(k) + w(k) (B.1)

y(k) = C(k)x(k) + v(k) (B.2)

where x(O), w(k), and v(k) are all independent, zero-mean, Gaussian random

variables and

E x(O)x'(0) = E(0), E w(k)w'(i) = Q(k)6. B v(k)v'(i) = R(k)6.i,k i,k

The discrete-time FI smoothing problem is to compute the conditional expecta-

tion of x(k) given the observations {y(i)I 0 < i < T}. The estimate is

denoted xs (k) and the error covariance is Ps (k). The system covariance

Ex(k)x'(k) at time k is denoted by 1(k).

The reversed-time system corresponding to (B.1) is

xr (k) [ E(k)t'(k+l,k)1 EI(k+l) ] xr (k+1) + F(k+l)

= 4 (k,k+l)xr (k+l) + ;(k+l) (B. 3)

where the covariance of the reversed-time white noise driving process is

Qr (k+l) = E r (k+1)' r (k+l)

= X(k) - Z (k)' (k+i , k) Z_1 (k+l) (k+l, k) E(k) (B.4)

If the state transition matrix t(k+1,k) is invertible, this covariance may

be written as
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(kZ) = (k)P'(k+l,k) Z~(k+l)Q(k)4 1(k+l,k)' (B.5)

-l
r 

c(k,k+1)Q(k)4 (k+l,k)

The random variables xr T) and U(k) are independent, zero-mean, Gaussian

and E xr r (T)x'T) = E(T). Under these conditions, the processes x(k) of

(B.1) and xr (k) of (B.3) have the same covariance function and, therefore,

the same joint probability density functions. It should be noted that

Friedlander, Kailath, Ljung [ 85] and Sidhu, Desai [74 ] have previously

given reversed-time realizations of the discrete-time process x(k). The

reversed-time systems in both these papers, however, are incorrect, and

it is believed that (B.3) and (B.4) are the first correct equations for a

discrete-time reversed-time realization.

For the smoothing problem, there are four disjoint sets of information

about x(k),

1) past observations: {y(i) 0 < i <k

2) future observations: {y(i)l k < i < T}

3) present observation: {y(k)}

4) a. pbiotui data: mean 0 and covariance E(k)

By grouping these sets of information in various ways, one arrives at the

variety of estimated quantities below:

Kalman filter estimate x (k1k)= 1) + 3) + 4)

Kalman filter one-step predictor x(kjk-1) 1) + 4)

reversed-time Kalman filter estimate xr(klk) = 2) + 3) + 4),
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reversed-time Kalman filter one-step predictor

backwards estimate

present conditional expectation

a p)LLtOAL estimate

xr (kk+l)= 2)+ 4)

x(kk) = 2) + 3)

x p~a (klk) 3)+ 4)
p.a.p

x~ap (k) = 4)

and others. The reversed-time Kalman filter estimate and one-step predicted

estimate are obtained from applying the Kalman filter equations to the

reversed-time realization (B.3). The estimate Xp.a-p.(k) is just E[x(k)Iy(k)].

The backwards estimate xb(klk) is used in the discrete-time Mayne-Fraser

smoother.

The smoothed estimate, of course, must incorporate all four sets of

information exactly once. There obviously exists a plethora of ways to com-

bine these various estimates to obtain xs (k),

(k) = Zs (k)[P 1 (kjk)x(kjk) + Pb1 (klk+l)xb(klk+l)] (B.6A)

= Z (k)[P 1 (klk)x(klk) + P 1 (kjk+l)x (kk+l1)
s r r (B.7A)

= Z (k) [P (kIk)x(klk)+ P 1 (klk)x (kIk)- P (kjk)x (kIk)]s r r p.a.p. p.a.p.

(B.8A)

= Z (k)[P (klk-l)x(klk-1) + P-(k k+l)x (klk+l) +s r r

+ P 1  (klk)x (kik)]
p.a.p. p.a.p.

E (k) = [P~1(klk) + Pb1(k k+1) ]

= [P 1 (kjk) + Pr('kk+l) - (k)]
r

= [P 1 (klk) + Pr(kk) - P -l (kjk)]
r p.a.p.

[P (kk-l)+ P r(kj-k+l)+ P (klk)- 2 (k)]
r p.a.p

(D.9A)

(B. 6B)

(B.7B)

(B.8B)

(B.9B)
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The proof of these results is analogous to the proof of Theorem 4.3

and is omitted. Equation (B.6) is just the Mayne-Fraser two-filter

smoother. Equation (B.7) expresses the smoothed estimate as a combination

of two Kalman filter estimates. The other two formulas, (B.8) and (B.9),

are included to show that the smoothed estimate can be written in terms of

an expression that is symmetric with respect to forward- and reversed-time.

There are, of course, many other possibilities besides (B.6)-(B.9) for

giving the smoothed estimate.

For the reduced-order smoother analysis, the formula (B.7) will be

used. Notice that this expression is asymmetric with respect to forward-

and reversed-time, and so it is to be anticipated that the resulting reduced-

order covariance expressions will also have some asymmetry. It is assumed

that the model used in reduced-order smoothing is

x* (k+l) = c* (k+l, k) x* (k) + w*(k) (B.10)

y* (k) = C* (k) x* (k) + v* (k) (B.ll)

z*(k) = H*(k)x*(k) (B.12)

The actual process x(k) and observations y(k) are generated by (B.1) and

(B.2), and the actual output z(k) is given by

z(k) = H(k)x(k) (B.13)

The approach and assumptions are the same as in Section 4.4. Also, explicit

dependence on time will be suppressed.

Forward-Time System and Filter - A reduced-order Kalman filter is designed

on the basis of the model (B.lO) and (B.ll). Let K* be the gain of this

filter. Then consider the augmented state vector consisting of x and x*r
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x (k+l) ~~ $-0 ~ ~ x (k ) u (k )

Lx* (k+ k+l)_K*C# (I-K*C* Lx*:(kk K*C K*] v:(k+1)>]

(B. 14)

Let

M x

E [X' x*' ](B. 15)

M' N x*

This augmented state covariance is given by the discrete-time Lyapunov

equation.

Reversed-Time System and Filter - Let K* be the filter gain of the reduced-r

order, reversed-time Kalman filter. Then

x (k) 0 x (k+l) Fi 0 (k+1)
r r r r

x*(k k+) L*KC * (I-K* C*) Lx*(k+lik+2 )L 0 Kr Lv(k+l)
r r r r r r r rj

(B.16)

Let the corresponding system covariance be

21 M x
r r

= E ] [x I x*'] }1(B.17)
rr r

Cross-Correlation of x*(klk) and x*(k k+l) - Using the discrete-time versions
r

of the arguments given in Section 4. 4 for continuous time yields

B [x*(klk)x*(klk+l) ] = *(k)Z(k) *(k)
r (B.18)
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where cx* and * are recursively computed from

(k)=K*(k)C(k) + { [I-K* (k)C* (k) ]t*(k,k-1)}a* (-l){z(k-l)t' (kk-l)K 1(k)}

(B.19)

and

(k)=' (k+lk) C(k)K* (k+1)E*~ (k+l)'p*(k+lk)E*(k) +r

+{cp' (k+lk)}* (k+l){ T*(k)'p* '(k+1,k)E*~ (k+l) [I-K* (k+l) C* (k+1)]}
r

(B.20)

with initial conditions a*(-1) =*(T) 0.

The smoothed output error covariance is therefore

[x (k) [x'(
cov [z (k) - z* (k)]=H-H* E

-x* (k )

x*'(k) H'

H* 3
(B..21)

= HEH' - H*E{x*x }H' - H E{xx'} H*' + H*E x* X*'} H*'
stSiast

Using (B3.7) for the smoothed estimate,

E{x x*'}
s

E {x[x*'P*-1 + ' - * }
r r s (B..22)

[gp*'l +M P* ] E
r r s

and
^* ^*.

s s
= E{Z*[P x* + P* x*] [x* p* + x* p* 3*}(B.23)s r r r r '

Z*[P*-" NP*1 + P* 1  *P* 1 +P*-la*E*p*
s r r

+ p*-1 *I+P N P J
r r r s

. "'i--

+
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Substituting (B.22) and (B.23) into (B.21) yields

cov[z(k) -z*(k)] = iEH'-H*E*[P* N +P M' )]H'- H[NP* +M
S rr r s

+ H*E* [P*-Np* + P*~1*'EU*'P*-l+ P*-1  ***1 + N P* *H*'
S r r r rr 5Ss

(B.24)

The sensitivity analysis problem is solved by taking H and H* equal to

the identity matrix.
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