
Computer Animation

in the World of Actors and Scripts

by
Craig William Reynolds

Bachelor of Science in Computer Science and Engineering
Massachusetts Institute of Technology

1975

Submitted in Partial Fullfillment of
the Requirements for the Degree of

Master of Science

at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 19, 1978
@ MIT 1978

Signature of the Author Signature reda'cted
~----r--oepart.,fuent of Architecture

Certified by

Accepted by

Signature redacted
May 19, 1978

I ' Nicholas Negroponte
Associate Professor of Computer Graphics

SiQnature redacted Thesis Supervisor

-----=-=-=-=-=-=-=-=--=======~--..&..-,---N. John Habraken
Chairperson, Department Committee for Graduate Students

The work reported within was supported by:

IDM (from 10-1-76 to 9-30-77)
Research Agreement with MIT

dated October 1, 1976

ARPA (from 10-1-77 to 2-28-78)
Contract number MDA 903-78-C-0039

B.RCHIVF~
MASSACHUSETIS INSTITUTE

OF TECHNOLOGY

AUG 101978
LIBRARIES
1

A B S T R A C T

Computer Animation
in the World of Actors and Scripts

Craig William Reynolds

Submitted to the Department of Architecture on
May 19, 1978

in partial fulfillment of the requirements for the degree of
Master of Science

A technique is presented for producing animated video images
using a special purpose computer system. The Actor/Scriptor
Animation System uses a written :!£_riE!_ to sequence and direct
the actions of actors. ~tor~ are independent, animated
program structures who serve as "puppeteers", invisibly
controlling the formation and ongoing modification of three
dimensional geometrical models, hence giving them animated
motion. Geometrical operations may be specified either in
terms of an object~s own frame of reference, or in terms of
the scene as a whole. These animate.d models are "seen" from a
similarly animated point of vi!l!!, (the "camera ..) producing a
t~o dimensional perspective rendering of the view as color
video images. Each "still" of the animation is produced
seperately and the entire sequence is assembled onto a
magnetic video disk for eventual playback.

Thesis Supervisor:
Signature redacted _ _,_ __ __._ ----~---------------~~-Nicholas Negroponte

Title: Associate Professor of Compute.r Graphics

2

Page Section

2 Abstract

3 Table of Contents

7 Table of Illustrations

8 Introduction
9 Animation
12 Why produce animation with computers?
15 Why produce computer animation with scripts?
20 Paths not taken

25 Actor/Scriptor Animation System User's Manual

27 General
28 Overview
29 Scripts and Actors
31 Geometrical Objects and Operations
34 Notation
36 Expressions
37 Evaluation
40 Numbers
42 Angles
44 Coordinate Systems
48 Data types
49 Camera
51 Background
51 Color
52 Rgb
52 Ihs
54 Programs
56 Variables
58 Global
60 Input
61 Local
62 Private

63 Scripting Constructs
63 Script
65 Animate
68 Cut
69 Cue
71 At
73 Actor
78 Start
80 Stop

3

Run
For
Until -cue

In

Give-cue
See

Geometrical Objects
Vector
Polygon
Group
Solid
Pov
Subworld

90
91
92
94
96
98
100

104
108
109
109
109
110
110
110
110
110
110
111
112
112
113
113
114
116
116
117
119
122
124
126
127
128
129
130
131

133
133
136
137
137
137

Control Structures
Defprog
If

Then
Else

Loop

4

81
82
82
83
87
88

Geometrical Operations
Grasp
Self-relative operators

Forward (move forward)
Backward (move backward)
Right (turn right)
Left (turn left)
Up (tilt up)
Down (tilt down)
Cw (roll clockwise)
Ccw (roll counterclockwise)
Home
Grow
Shrink
Zoom-in
Zoom-out
Recolor

Global operators
Scale
Move
Rotate
Stretch
Mirror
Cut-hole
Prism

Replicating Operators
Row
Ring
Repop

138 Repeat
139 While
139 Until
139 Loop-exit
140 Loop-top

141 Other Useful Programs
141 Numeric operators
141 Plus

141 Difference (dif)
141 Times

141 Quotient (quo)
142 Square-root (sqrt)
142 Inc
142 Dec
143 Comparison and testing operators
143 Empty
143 Less
143 Less-eq
143 Greater
143 Greater-eq
143 Equal

143 And
143 Or
145 General Purpose Utilties
145 Help
146 Read
146 Print
146 Back-trace
146 Release
147 Quit

148 Video Production Utilities
148 Animation-mode
149 Black
150 Color-bars
150 Test-pat
151 Count-down
151 Slate

152 Exotic, Special Purpose Programs
152 Low Level Geometric Operations
152 Vadd
152 Veub
152 Magnitude
152 Vx

152 Vy
152 Vz
153 Area

153 Low Level Data Base Interface
153 Color-of

5

153 Lofcof
154 "Bld-" functions (data type builders)
155 "-P" functions (data type predicates)

156 Bibliography

6

T F I LLUSTRAT IONS

Page Number Subject

46 1 Coordinate axes.

75 2 Actors as puppeteers.

94 3 Definition of a Triangle.

98 4 Definition of a Tetrahedron.

105 5 Self-relative operations as spaceship maneuvers

107 6 Coordinate axes.

117 7 Scaling about the origin.

119 8 Several "moves".

121 9 Rotations

123 10 Stretchings

125 11 Mirroring

130 12 Row operator.

7

T A B L E

INTRODUCTION

This report is a computer system user's manual posing as a

Master's thesis. It describes work done at The Architecture

Machine Group (of the Massachusetts Institute of Technology)

over the last year and a half. The work was not directl.y in

"computer animation" but rather in the design of tools and

techniques, aids to the production of computer animation. Tne

resulting "Actor/Scriptor Animation System" is a technique for

producing, from written instructions, images of animated three

dimensional objects. The first specific application of this

work is anticipated to be in connection with ongoing research

in dynamic mapping techniques. This document is intended both

to describe this approach t6 animation, and tutor the

prospective user of the system.

8

A N I M A T ION

To animate means "to give life to", a lifeless ink line on a

piece of paper can be made "alive" by the process of

animation. The term "animation" will be used in this report to

mean the illusion of motion we perceive when a series of

incrementally different still images are presented to us in

quick succession. We tend to blend the multitude of

"snapshots" of an object into a single object in motion.

The first animated pictures were probably "flip charts" of

hand drawn sketches. Later, mechanical devices such as

spinning disks and drums we used as "light choppers" to

regulate the time each "snapshot" or "still" was visible. With

the invention of photography, and much later, the invention of

flexible film base, it became possible to make animated

photographs, "movies". Cinematography also became the media of

the hand animatbr. Each hand-drawn image would be photographed

onto successive frames of the movie film. This film, when

projected at standard rates produces vivid, high quality

animated artwork. With the introduction of "talkies", movies

with synchronous sound tracks, animation could be combined

9

wLfn neLurdec1 speech and music. The desire to transmit moving

pictures electronically led to the development of video, and

television broadcasting. But before video could be used as an

animation media, there had to be a convenient way of

assembling individual frames into a video sequence. Within the

last ten years the development of the video disk ("slo-mo"

machine) has provided this capability. More recently "floppy"

video disks have brought the price of this technology down

from the upper stratosphere.

By a fortuitous happenstance, computer systems able to produce

color video images became available at about the same time as

low cost video disks. These two advancements led to the

technical ability which is the basis of the computer animation

system described in this report.

The fact that the production of the stills, and the assembling

of the stills into a sequence, are seperate operations leads

to some of the unique features of animation. While a frame

will only last for 1/30th of a second during playback, the

animator may have thought and sweated and scratched his or her

head for hours over the production of that one frame. This

ability to "compress effort" leads to some of the most

striking animated effects. Most artforms share this quality to

some extent, a painter spends more time painting the canvas

10

than even the most ardent admirer will spend looking at it in

a museum. However in animation we have complete control of how

long the audience will be able to look at a sequence. A short

segment of an animated sequence, though it may flash by in a

few seconds, can have extremely rich texture and detail. The

result can be dazzling. On the other hand, animation can be

soft, and gentle, and restrained. It is this "dynamic range"

that gives animation such great potential.

Because animation has an element of time in it, some features

of animation are similar to music, dance, or the theater.

These dynamic artforms deal largely with matters of timing

(beat, tempo, pacing). To effectively produce animation, tools

must be provided which allow us to talk about time structure.

In music there is a notion of "beat", a synchronizing time

signal that is used to pace the other aspects of the music,

such as pitch and harmony. Animation is closely tied to a

similar "clock" mechanism, the frame rate. But most features

of an animation will last for hundreds or thousands of frames.

The "characters" of an animated sequence may interact and

modify each others actions, while the musical notes of a song

are concurrent but largely independent of each other.

Animation production is largely a matter of describing ongoing

dynamic processes, and their interactions.

11

Why produce animation with computers?

One of the worst reasons to do animation with computers is to

replace the hand animator. Something made by hand is to be

appreciated for that reason. Both handwriting and typescript

can be used to convey the written word, but each has a

different purpose to which it is best suited. Handwritten

business letters, or typewritten love letters, both seem

somehow out of place. Stretching perhaps an analogy, a script

based computer animation system is something like an

"animation typewriter". Such a system could produce anything a

hand animator could, although with perhaps somewhat less

individuality. It is worth noting that handwriting has not

been replaced by the typewriter.

There will always be a demand for hand animation just as there

will always be a demand for painting or any other artform.

Some of the work now done by hand might someday be done with

computers. But some (perhaps most) of the animation that will

eventually be produced with the aid of computers is simply not

being produced at all now. Because of financial, technical, or

artistic limitations, people who might otherwise have an

12

interest in animated pictures or diagrams have no means of

producing them.

If making animated pictures was as easy as typing a letter,

many people would come to find uses for animation. The teacher

who needs instructional visual aids, the executive trying to

get a plan understood and accepted by coworkers, the

researcher trying to visualize the spatial relationships of

experimental data, or the computer animator as artist -

creating a work of art for its own sake, all would find

applications of animation that do not exist today.

Computer systems in general are becoming smaller, cheaper,

faster, more powerful, more widely available, and more

comfortable to use. To some extent, any technique based on

computers must follow these trends.

The computer is an ideal animation media for another reason.

Most of the dynamic arts, music, theater, dance rely on a team

of people working in concert to produce the final artform. As

more and more indiviauals participate, more and more "events"

may occur at any given instant. This increasingly complex time

structuring gives a work depth and interest. When there is

more going on in a performance then we can easily follow, we

become drawn in, straining to catch those details we keep just

13

missing. In the theater, when we wish to add a new character,

we hire a new actor. But with computer animation, we can

merely ask the computer to split its attention, to "play" both

"parts". Because a computer can "split" any number of times,

the number of individual events in a computer animated

sequence is essentially unlimited.

14

Why produce computer animation with scripts?

The Actor/Scriptor Animation System is based on the notion

that it is intrinsically worthwhile to be able to describe an

animated sequence in written form. A "script" is basically a

long string of typewriter keystrokes (characters), and these

written symbols completely describe the animation. To

understand the impact of a notation for animation, consider

the difference between music and dance. Music has a very old,

standardized notation. Once a piece of music is committed to

paper it becomes permanent and reproducible to a certain

degree. Music which only exists in audible form is transitory

and subject to matters of perceptual (mis)interpretation. The

musical notation removes these ambiguites. Dance on the other

hand does not have an accepted, precise notation (notations

have been developed, but they have not been widely used). The

nuances of the dancer's movements, or the advice the

choreographer gave the dancer during rehearsal, are not fully

described in written form. Because of this lack, a particular

choreography will be lost to the future except as it may be

passed from older to younger dancer. Even if we where to

videotape the dance performance (with a "camera of record"),

15

the information about how it was made is lost.

The point is not a concern for the archieval quality of an

artform, but rather the benefits that accrue from having a

complete written description. If the master videotaped copy of

a piece of scripted computer animation is lost, a new master

can be "run off" by having the computer follow the script

again. Because this is an automatic process, it can be done

cheaply and easily compared to the original effort of

preparing the script. Going from the formal script to

videodisk requires only computer time, no people time. The

cost of computer time continues to go down, the cost of people

time continues to go up.

The fact that automatic production is comparatively cheap

means that "retakes" can be easily made. After doing a trial

production of a script the animator may see things which need

to be changed. By merely altering the script (with the

computer system's text editor) to reflect the desired changes,

the script can be "executed" again by the animation system,

producing an incrementally improved version of the animated

sequence. This process of revision can be repeated until the

animation meets the animators judgement. In tradtional "cel"

animation, altering just one aspect of a sequence usually

means completely redrawing many individual "cel"s.

16

The ability to reproduce a sequence from a modified script is

an advantage over other types of animation, but there is an

associated cost. Because a script must contain every detail

necessary to specify the production, it is much more work to

prepare a formal script than the loose, informal "story board"

which is used to "script" a hand animated sequence. A story

board is a series of sketches of "typical" frames from

significant parts of the sequence. This description is

"informal" because it is still open to interpretation. Leaving

one detail out of the story board is not critical, someone

will probably notice and fix it eventually. From the story

board the animator draws "key frames", artwork which will

actually appear in the finished production. The key frames are

widely spaced throughout the sequence, many frames are skipped

over, this serves to "rough in" the motion. Then an army of

people known as "in-betweeners" draw the intermediate frames

by mentally interpolating between the key frames.

The majority of the effort in hand animation is in the

in-betweening phase. And it is fairly "mindless" work, it does

take skill to be able to draw the frames, but there are so

many of them, and they are so much alike each other. In a

scripted computer animation system the large majority of the

effort is in the writing of the script. Luckily scriptwriting

17

is not a very intrusive activity, you could do it at the beach

for example.

Because we are constrained to put all of the control of the

animation into the script, there can be a frustration factor

caused by having only indirect control over the animation. The

feeling can be a little like threading a needle while wearing

thick rubber gloves. These problems are a direct result of the

design of the system, if an individual animator feels unable

to work in this indirect manner, they should use some

technique other then script based computer animation.

Since the basic control of the animation system is through

typed dialog, the ability to draw (by hand) the thing we wish

to animate is not very important. While it is possible to

convert hand drawn information into a form usable by the

animation system1 it is not necessary. Two benefits follow

from this fact; people who cannot draw well can still produce

animation, and animation can be produced on subjects whose

visual appearence is not known by anyone. The latter is often

called "modeling", deriving the probable actions of a large

system by knowing only the nature of the component parts. For

example, we might not know the general "shape" of a particular

atom, but by knowing the properties of the subatomic

particles, we can get them each to interact according to those

18

properties. The resulting simulation will show us what might

go on in and around the atom, at least to the extent that our

model of the subparts is accurate.

Perhaps the most powerful advantage gained by using a script

based animation system is the notion of a "utility library", a

concept from computer system design. When ever a programmer

writes a program which solves a problem of general interest,

the program is put in a "library" of programs. In the future

anyone needing to perform the same computation need only use

the program which already exits in the library. This saves the

programmer time by eliminating duplication of effort. The

library itself can only get larger and more useful as time

goes on. Because an animation script is essentially a computer

program, the same principle can be used for scripts and

scripting utilities. Once we write a description of how to

make an object "bounce" (for example), the "bounce" program

goes into the library. From then on, no one need ever rethink

the process of bouncing. In "cel" animation the only advantage

to having done a bouncing object before is the personal

experience, which is of no use to your coworkers.

19

P A T H S N OT T A K E N

Our work consists both of what we do and what we choose not to

do. This section notes some other approaches to computer

animation and how they differ form the Actor/Scriptor system.

The first computer animation was produced by programs written

in standard programming languages (assembler, Fortran) which

controlled refresh vector-drawing displays. [32] The programs

where fast enough so that they could redraw the scene 20 to 40

times a second. By slight modification of each "frame" an

animated motion is produced. More recently techniques have

been developed to produce animated, shaded color raster-scan

images of three dimensional objects at these rates. [33]

But these "real time" approaches have a "ceiling". If the

complexity of the animation crosses a specific limit, the

system will become overloaded. At that point the system will

either "fail" (produce an erroneous image) or slow down, thus

ceasing to produce real time animation.

The Actor/Scriptor Animation System recognizes this problem

20

and presumes that in general it will not operate in real time.

This is why the system includes a video disk. As the

complexity of the animation increases, the time taken to

produce each frame also increases. Hence the rate of finished

frames going to the video disk slows down, but does not stop.

When played back, the result will always be "real time"

regardless of complexity.

One of the most useful "shorthand" techniques in traditional

animation is "key framing". This is a process by which the

animator can specify an animated sequence by an initial and

final frame and some kind of interpolation rule for going from

one to the other. An assistant animator called an

"in-betweener" then creates the intermediary frames. Computer

animation systems have been built based on this technique. [3,

221 The main problem with these key-frame systems is that they

fail to do the same job as the in-betweeners. The computer

interpolaters operate at too low a level, they are given only

geometrical information about the first and last frames. They

have no information on the physical constraints of the motion,

whereas the human in-betweeners "know" how objects should move

from everyday experience. Consider the example of an animated

automobile driving around a curved section of road. A naive

interpolater will drive the car straight from the start to the

end of the curve. The in-betweener knows to drive along the

21

road.

User-oriented computer systems often consists of a fixed

number of "commands" which can be used in any combination or

order. Such a system is usefull only if everything the user

wants to do is well described by the set of available

commands. A more flexible system design would allow new

features (new commands) to be added to the system, describing

them in terms of the existing features. Because the

Actor/Scriptor Animation System is such an "extensible" system

it can be expanded to include any number of new techniques.

For example, a naive (linear) interpolator has been written

for this system. Hence the animator is free to use the key

frame technique (or any mixture of key framing and other

techniques), but is not limited to it. The commercial

Synthavision computer animation system [30] is an example of a

system which is made bulky and hard to use because it is not

extensible. Every new script for Synthavision must be started

from scratch, it cannot build on previous work. However

.Synthavision does yield beautiful images to the patient

animator.

When computer animation scripting languages are based on

conventionial programming languages the control structure of

the language is imposed on the script, and hence the

22

animation. Most programming languages do not provide a way of

talking about concurrent events. Hence it is unwieldy to write

a program/script which directs actions which are both

concurrent and yet independent. Many authors have noted the

applicability of the notion of "parallel processes" to such

concurrent/independent control problems - in animation [15,

16, 17, 29] and other areas [10, 11, 12, 13, 31].

More recently, programming languages have been designed which

allow descriptions of concurrent control structures. The

SIMULA "class" [2, 5], the SMALLTALK "class" [7, 8], the

MODULA "module" [34], and the PLASMA "actor" [10, 12] are all

linguistic techniques for describing concurrent systems.

Both the Actor/Scriptor System and Ken Kahn's animation system

[17] are based on this notion of "actors". The two systems

differ in emphasis. Kahn's system focuses on issues of "common

sense" intelligence on the part of the actors, to allow then

to "participate" in the script in a mannor befitting their

role. (A car in Kahn's system would know enough to drive

around the curved road.) The system described in this report

has been much more concerned with three dimensional geometry

and motion, and straight-forward ways of describing them, it

assumes that the majority of the intelligence will be provided

by the script writer. This has led to the development of a

23

three dimensional analogue to LOGO "turtle geometry" [1, 9,

19], sort of a "flying turtle". Two dimensional turtle

geometry has been shown to be much easier to learn

(particularly by children) then more traditional geometric

techniques. [26, 27, 28]

24

TH E

ACTOR / SCRI PTOR

ANI MAT ION

S Y STE M

U

M

S

A

E

N

R

U

' S

A L

March 8, 1976

revised:
Friday May 19, 1978

I

The Architecture Machine Group

Massachusetts Institute of Technology

Cambridge, Massachusetts

25

COMMENTS, SUGGESTIONS, COMPLAINTS (OR PRAISE)

This is the first generally available version of the majority
of this material. Any feedback on specific errors,

typographical glitches, suggestions for further work, or
comments on the general workability of the animation system

would be greatly appreciated. Letters may be sent via United

States Postal Service to:

Craig W. Reynolds
The Architecture Machine Group
Massachusetts Institute of Technology
Room 9-516
77 Massachusetts Avenue
Cambridge, Ma. 02139

or via MagicSix mail (at the Architecture Machine):

cwr @ AM (the author)
hbb @ AM (current maintainer, appointed expert)
asas @ AM (mailing list of ASAS users)

or via the ARPAnet mail to:

amg.ar @ mit-multics

HOW TO MAKE IT GO

This manual describes an implementation of the

Actor/Scriptor Animation System which runs under the

MagicSix operating system at the Architecture
Machine Group. The animation system is entered by

typing the asas command with the directory
>demo>asas-dir in your search rules. Alternately,
one may log in as "asas".

26

INFORMATION

This section of the manual explains the concepts used in the

Actor/Scriptor Animation System. If you are reading this for

the first time, you probably do not want to read this section

all of the way through. Perhaps the best scheme is to skim

over this section, just getting familiar with the ideas being

used, but not going into them in detail. The rest of the

manual concerns the actual scripting (programming) constructs

and expressions. In each section, just after the section

title, there is a list of topics to "see also". These will

reference other related scripting features, and will also

refer back to the General Information section for the concepts

underlying a particular scripting feature.

The eight major topics of the manual are arranged (more or

less) in order of interest, and within each topic the

subtopics are also listed in order of interest, and so on.

Actor/Scriptor Animation System User's Manual
Page: 27 , Section: General

O VE RV IE W

The Actor/Scriptor Animation System is a technique for

producing color video computer animation from formal written

"scripts". The script is essentially a computer program

written in a special purpose "scripting language". The

animation system will execute a script without intervention

producing as output a series of animation "stills" which are

assembled onto a video disk for eventual playback and transfer

to video tape.

The script is usually a collection of either "animate blocks"

or video production utilties. The animate block is basically a

list of cues, these are pairs of "what-to-do" and

"when-to-do-it". Most of the cues start, stop or give

directions to actors. These are "little gremlins" who pop in

between frames to make changes to the picture. All of the

animated motion seen in a production is controlled by actors.

The actors main job is to create and modify "geometrical

objects" to be seen by the animation system "camera". The

geometrical objects are models of three dimensional colored

Actor/Scriptor Animation System User's Manual
Page: 28 , Section: General; Overview

shapes. In general these objects are "plane faced" like the

surface of a geodesic dome, the overall object may be curved,

but the surface is made up of flat plates. Some geometrical

objects come predefined, and the animator may confine the

animation to use only these shapes. Or the animator may define

new shapes or combinations of other shapes as part of the

script.

S C R I P T S A N D A C T O R S

The terms "script" and "actor" come from the real-world

concepts of a theaterical or television script and the human

actors who play it. It is the actions of the actors (and crew)

of a production which form the substance of a drama. The

others involved in the production (the writer, the director,

the choreographer, the costume designer) do their work

"off-line". During the play their presence is felt, after all

it is they who decided how the actors should move, what they

should say - and when, and how the actors should appear to the

viewer. But on the night of the performance the choreographer

(for example) could be just as well be in another city.

These two types of participation form the model that is used

in the Actor/Scriptor Animation System. The animation scripter

Actor/Scriptor Animation System User's Manual
Page: 29 Section: General; Overview; Scripts and Actors

(analogous to the writer, director, costumer, and

choreographer rolled into one) writes a formal description of

what is to go on the during the animation (a "script"). This

is then given to the computer system, which then produces an

animated videotape corresponding to the specifications in the

script. As far as the script writer is concerned, no

intervention is needed (or allowed) during production. It

could for example, be done late at night when demand on

computer systems is lessened.

The scripter's time during the day could better be used either

deep in thought, or interactively using the system to try out,

visualize, and "rehearse" sequences. I include the notion of

being "deep in thought" because frankly, I have never seen any

computer system which can directly aid the thought process (in

fact they often seem to serve as distractions). This is not to

say that a "thought provoking" computer system could not be

built, but the nature of such systems is poorly understood at

this time. The Actor/Scriptor Animation System makes no

pretense of being able to aid the animators in their deep

thinking, in fact it is expected that the majority of

complicated script writing would be done "off line . Every

room where people are expected to think should be equipped

with one blank white wall, devoid of any detail, in order to

encourage "staring at a blank wall".

Actor/Scriptor Animation System User's Manual
Page: 30 , Section: General; Overview; Scripts and Actors

Possibly the largest advantage to structuring the task of

animation production in terms of scripting and automated

production (although some would call it a disadvantage) is

that we effectively transform the art of animation into the

art of computer programming. This is not to say that

"traditional" animation is somehow inferior to programming,

merely that it is very different, and that is good. If we open

the world of animated pictures to those who are at ease with

programming, we will have greatly augmented the pool of talent

from which animators are drawn. This can only be a positive

contribution to the overall quality and usefulness of

animation.

G E O M E T R I C A L O B J E C T S

A N D O P E R A T ION S

The images we will see in an animated sequence from this

system will be views, as seen by the camera, of the

geometrical objects which the script is manipulating via the

actors. Geometrical operators are the "tools" used to

manipulate the objects. The Camera (itself, a geometric

object) is also under the control of the script and actors. No

other component of the animation system is ever visible. We

Actor/Scriptor Animation System User's Manual
Page: 31 , Section:
General; Overview; Geometric Objects & Opers

cannot see actors or programs for example, because they have

no geometrical description. Certain geometical objects are

also defined to be invisible for convenience sake. "Cameras"

are presumed to be too small to see, so that if we happen to

have a few spare cameras in the middle of everything they will

not be seen in the animation.

The geometrical objects are best thought of as models (or

descriptions) of "real" three dimentional solid objects. They

are similar to a "blueprint", telling the graphics subsystem

how to "build" an object. Some objects come predefined by the

system, others can be defined by the user. But all geometrical

objects are handled by the same geometrical operators. The

move operator can be used to move a vector, a camera, or a

group which contains a model of an entire city. The operator

itself decides how to treat the object it is given.

The basic sorts of geometrical operations which can be

performed are; growing and shrinking, changing position,

rotations, stretching, and changes in color. Operators are

also available to group seperate objects together into one

conglomerate object. Because the scripting language is

extensible, new operators may be added by the user. simply by

writting programs using the predefined operators. The

geometrical operators take in one object and return another

Actor/Scriptor Animation System User's Manual

Page: 32 , Section:
General; Overview; Geometric Objects & Opers

object. The operators NEVER modify the particular object they

are given as input, the result of the operation is a modified

copy of the original object.

Actor/Scriptor Animation System User's Manual
Page: 33 , Section:
General; Overview; Geometric Objects & Opers

N O T A T 1ION

See also: Expressions, Evaluation

The scripting language used in the Actor/Scriptor Animation

System is what is called an "extension" to the programming

language Lisp. This means that the animation system was

implemented by writting Lisp programs (they are all called

"functions" in Lisp). The scripting constructs are just calls

to these animation system functions.

The Lisp notation is a little unique in format, but the format

is very consistant. Basically Lisp expressions consist of

words and parenthesized lists of words or other lists. Hence

the scripting expressions used as examples in this manual tend

to consist of lots of nested parenthesis, with words

intermixed. The words will either be specific animation system

keywords, or they will be examples of user's variables. All

keywords in this manual will be underlined. This is only done

for the sake of this manual, the computer system does not

require the keywords to be underlined.

In each section of this manual which describes a program there

Actor/Scriptor Animation System User's Manual
Page: 34 , Section: General; Notation

will be a "general usage format" or diagram of how the program

is used:

(program-name <inputl> <input2>

In these diagrams the underlined keyword is at the left of a

list, the rest of the things in the list will either be words

in <angle-brackets> or an ellipsis %... The name in angle

brackets is a "meta-name", a name for a class of objects. For

example, if a certain program (call it "frob") expected two

inputs, a number and a color description, we would write its

usage format as:

(frob <number> <color>)

This means that-we should call the program "frob" by writing a

list with three things in it; the word "frob", an expression

whose value is a number, and another expression whose value is

a color.

An ellipsis ("...") in the usage format means that the

meta-name to the left may be repeated as many times as

desired. For example the group program will accept any number

of expressions whose value is a geometrical object:

(groue <gobj-l> <gobj-2> ...)

If a meta-name is in (curly brackets) it means that it may,

but need not appear in the program call.

Actor/Scriptor Animation System User's Manual
Page: 35 , Section: General; EX essions

E X P R E S S 1ION

See also: Evaluation, Program, Variables, Numbers, Data-types

Expression is the general term which refers to all of the

elements of the Actor/Scriptor language (e.g. programs,

actors, lists, variables ...). The evaluator (the function

eval) assigns a value (or meaning) to expressions. These

values are also expressions.

Because the parts of a complex expression can themselves be

expressions the definition of an expression is said to be

recursive.

an expression is an: atom
or its a: parenthesized list

an atom is a: variable
or its a: number

a parenthesized list is a: "
followed by zero or more: expressions
followed by a: ")o

The value of the various expression types, are explained in

detail in the section on evaluation; but numbers evaluate to

themselves, variables to their defined value, and lists

indicate that a program (whose name appears at the left of the

list) is to be run to obtain the value.

A Nvalid expression" usually refers to one that could be

Actor/Scriptor Animation System User's Manual
Page: 36 , Section: General; Expressions

evaluated without error. For example, the use of a variable

which is not declared by any of the expressions which surround

its use is defined to be an error. In fact it is an "invalid

global variable reference" error. Programs containing such

expressions are detected and trapped at -program definition

time.

The term "<something>-expression" (e.g. "cue expression",

"lambda expression", or "loop expression") usually refers to a

parenthesized list whose first (leftmost) element is that

<something>:

(cue (at 10) tout))

(lambda (x) (plus x 1))

(loop (until (empty snodge))
(drib dralb)
(klitz klork klump))

E V A L U A T ION (a n d E X E C U T ION)

See also: Expression, Defprog, Actor

The fundamental operation of (LISP and hence) the animation

system is called evaluation, the process of assigning a value

to an expression. The function which performs evaluation is

called eval, it expects one expression as input and returns

its value (which is an expression itself). Here is a list of

Actor/Scriptor Animation System User's Manual
Page: 37 , Section: General; Evaluation

how various expression types are evaluated (the symbol "=>" is

read "evaluates to"):

numbers => themselves.

variables => their defined value.

parenthesized lists -> the result of running a
specified program with the
inputs listed:

[Bun the program whose name appears as the j
/I leftmost thing in the list.

/ [With the values of these expressions I
/ I[as inputs.

func a b c d)

A list indicates that a program is to be run to obtain the

answer. The name of the program to be run is the first

(leftmost) thing in the list, its inputs are formed by

evaluating each of the rest of the elements of the list. The

input variables of the program are defined to these values, in

order, from left to right. When (if?) the program finishes, it

returns a value (sometimes called the "return value" or

"functional value" or just the "result"). From then on the

evaluation proceeds as though the functional value had been

written rather then the parenthesized list.

Example (assume "i" is defined to be 48):

(plus 5 (times (quotient i 2) 3))

(plus 5 (times (quotient 48 2) 3))

Actor/Scriptor Animation System User's Manual
Page: 38 , Section: General; Evaluation

(plus 5 (times

(plus 5 72)

77

24 3))

There are two reasons to evaluate a program, for value, or for

effect, (or for both). All programs return a value, although

when we run a program for effect we often simply ignore the

returned value, this type of evaluation is sometimes refered

to as execution. Generally, programs without effect (those

used solely for value) are easier to understand, debug, and

use.

The order of steps in the evaluation process are:

(1) Lookup of actual function from function's name.

(2) Evaluation of the input expressions (left to right).

(3) Saving of old values of program variables,
(pushed onto stack).

(4) Binding of new values of program variables.

(5) Evaluation of program body,
(and possible side effects).

(6) Old values of program variables are restored,
(poped from stack).

(7) Functional value returned.

"Normal" functions always have all of their input expressions

evaluated But we can define special functions which will

evaluate their own input expressions in the order they chose,

Actor/Scriptor Animation System User's Manual
Page: 39 , Section: General; Evaluation

this allows selective, repetitive, or conditional execution.

Most control functions (e.g. .loop, if, animate, define) are of

this type.

N U M B E R S

See also: Numeric operators

Numbers are used throughout the animation system. Here is a

list of the ways that numbers are used:

To measure or specify time, usually in terms of
animation frames, or seconds of animation time.

To measure or specify distance, as in vector
coordinates.

To measure or specify angles, in terms of
revolutions.

To measure or specify size changes, scale factors,
and zoom factors.

To measure or specify colors in terms of either;
intensity, hue, and saturation of the color; or the
individual intensities of each of red, green, and
blue.

To uniquely identify each of the active actors
(integers only).

As repitition counts, the number of times to repeat
something.

As inputs to numerical operators.

We can write numerical constants in several different ways.

Actor/Scriptor Animation System User's Manual
Page: 40 , Section: General; Numbers

Numbers may be positive or negative, and they may be integers

or floating point numbers (fixnums and flonums in Lisp

terminology). There are two ways to write floating point

values.

Integers are used to count things which do not come in

fractional parts. Take people for example, we can have 0 or 1

or 2 people, but having one-and-a-half people in a room with

you is very messy.

Floating point numbers are used to represent values which may

take on any value, even the in-between values. Temperature is

an example of this, we can have a tempreture of "64" or of

"65" or of "64.8329". Floating point numbers can be written in

each of two formats, one is called "decimal point notation",

the other is "fraction notation". In decimal point notation, a

decimal point "." is used to seperate the integer digits from

the fractional digits. In fractional notation the value is

written as a ratio of two integers, with a fraction sign "/"

in between. Note that in fractional notation there are many

ways of writting the same value, since any fraction which can

be simplified will be equal to its simplifications.

Actor/Scriptor Animation System User's Manual
Page: 41 , Section: General; Numbers

Integer
Notation

0

1

-48329

Decimal Point
Notation

0.0

0.5

0.66666

1.0

-48329.0

25.9

1.001

Fractional
Notation

0/1

1/2

2/3

385/385

259/10

1001/1000

A N G L E

See also: Numbers, Rotate, Left, Right, Up, Down, Cw, Ccw,

Ring

The description of a rotation has two parts, the "axis" and

the "angle" of the rotation. If we think of rotating our own

head, the neck (actually the spine) is the axis, the amount by

which we turn our head is the angle. In the animation system

we will often be rotating geometrical objects about various

axes, either their own self-relative axes, or those of the

external coordinate system.

The angle by which an object is to be rotated is given as a

number. Rotations are measured in "revolutions" (units which

Actor/Scriptor Animation System User0s Manual
Page: 42 , Section: General; Angles

are easy to understand, but non-standard among

mathematicians). One revolution is one complete turn, or 360

degrees, or (2 * pi) radians. Hence an angle of 1/2 means

"half way around", the angle between numerals on a clock face

is 1/12. This handy chart should help you traditionalists:

Table of equivalent angles in different units.

revolutions degrees radians

0 (0.0) 0 0.0
1/4 (0.25) 90 1.570796
1/3 (0.333) 120 2.092299
1/2 (0.5) 180 3.141592
2/3 (0.666) 240 4.188784
3/4 (0.75) 270 4.712388
1 (1.0) 360 6.283184

The number used to specify an angle in "revolutions" is

therefore usually between 0.0 and 1.0, exclusive. If a value

outside this range is used, it will have its integal part

ignored (for example: 4.267 revolutions is the same as 0.267

revolutions). Using an integer value for an angle is not an

error, but it is somewhat useless, since all integer values

are equivalent to a rotation of 0.0, or "none".

Actor/Scriptor Animation System User's Manual
Page: 43 , Section: General; Angles

C O O R D I N A T E S Y S T E MS

See also: Vector, Subworld, Self-relative and Global Operators

Because the geometrical objects in the Actor/Scriptor

Animation System are three dimensional, we must have standard

ways of describing positions and orientations in three

space.For humans, perhaps the most natural direction to

conceptualize is "forward", the direction we walk. We can

easily turn to either side, and hence we have freedom to move

in two dimensions. But because of gravity, we cannot easily

move up and down. We generally do not have as much personal

experience with three dimensional motion. In thinking about

geometry in the third dimension it may be helpful to think of

spaceships, zipping around in the void of space. In a

free-falling spaceship there is not enough gravity to effect

the motion of objects. If we place a box in the middle of the

cabin it will not fall anywhere, it will just "sit" there

floating in the middle of the cabin. SCUBA divers and fish

live in a much more three dimensional world than most of us,

since they can also move unencumbered in the vertical

direction.

Actor/Scriptor Animation System User's Manual
Page: 44 , Section: General: Coordinate Systems

Coordinate geometry is a method of specifying positions by

means of numbers. "Cartesian coordinates" is one such

technique which measures positions in terms of distances along

predefined "coordinate axes". We are all familiar with the two

dimensional version of this system, many modern cities are

arranged on a rectangular grid of streets. To specify an area

of the city we use phrases like: "Near the corner of 'B'

Street and Tenth Avenue". This specifies a location by telling

how many blocks along each coordinate axis ("A" Street and

First Ave serve as the axes). Hence in two dimensional

Cartesian coordinates we use two "rulers" to measure position,

these "rulers" indicate both a distance and a direction ("10

blocks along 'A' Street"). Note that the "rulers" are

perpendicular to each other, and that the length of units

("blocks") along each axis may be different.

Three dimensional Cartesian coordinates are just an expansion

of this concept into three dimensions. A three dimensional

position can be specified as some given height above a two

dimensional location. We simply add a new "ruler" which is

perpendicular to the other two. In our city example, this

would be as though we described how to get to our office as:

"Go to the corner of 'B' and Tenth, go into the Schmooha

building and take the elevator to the fourteenth floor."

Actor/Scriptor Animation System User's Manual
Page: 45 , Section: General; Coordinate Systems

Since we must differentiate between the three coordinate axes,

we give them names. The easiest way of visualizing this is to

imagine youself at the center of the coordinate system. If you

hold your right arm out to the side it will be pointing in the

"positive X" direction, your left arm points in the "negative

X" direction. The top of your head points in the "up" or

"positive Y" direction, "down" is the "negative Y" direction.

The direction your nose points is the "forwards" or "positive

Z" direction, your tail (if you had one) points in the

"backwards" or "negative Z" direction. Since a "negative"

direction is merely the opposite of the positive, we can

specify a coordinate system's orientation in terms of three

"rulers" (or "coordinate axis definition vector") called "x",

"y", and "z"; or "right", "up" and "forward". We need only

specify where we are and how our three "rulers" are oriented

in order to completly describe the coordinate system.

Figure 1

Self-relative directions and the positive coordinate directions.

Actor/Scriptor Animation System User's Manual
Paqe: 46 , Section: General; Coordinate Systems

Iy

-forwuirj V

cw

To specify a location in our own coordinate system (that is, a

location "relative" to us) we tell how far away it is in terms

of distance along each of our coordinate axes. If we are

sitting in a seat in an airplane for example, the person two

rows in front and three seats over would be at a relative

position of "3 to the right, 0 up, and 2 rows forward". The

vector data-type is used to contain this type of information,

and as a vector that person's position would be:

(vector 3 0 2)

The upper tip of the tail would be approximately at location:

(vector 0 10 -20)

That is: "none to the right, 10 units above my head, straight

back 20 rows".

Two flavors of coordinate systems are used in the

Actor/Scriptor Animation System, they are called

"self-relative" and "global". The coordinate system discussed

in the airplane example is an example of a "self-relative"

system. In such a system, the object or agent under discussion

is always at the center of its own coordinate system, as they

rotate or change size their coordinate system rotates or

changes size with them. The rule is sort of "as you go, so

goes your coordinate system". By a "global" coordinate system

we actually mean "someone else's" coordinate system. An

Actor/Scriptor Animation System User's Manual
Page: 47 , Section: General: Coordinate Systems

example of the difference between these types of coordinates

would be to refer to some object as "the big red thing to my

left" or as "the big red thing in the northeast corner of the

room". The first is a self-relative specification, the second

uses an external coordinate system (that of the room). The

major difference is that a "global" or external coordinate

system is not modified as we modify the objects within it.

D A T A - T Y P E

The term "data-type" is used occasionally throught this

manual, by it we mean a Lisp data structure which represents

some component of the animation system (such as a program, an

actor, or a geometrical obiect). Lisp structures which do not

fit into one of these categories are considered "random cruft"

and will cause most of the animation system's operators to

choke. I

The data-types used in the animation system are of the sort

known as "self-evident" data types. This means that given a

object we can determine what type it is. Consider two pieces

of paper covered with digits, a "self-evident" piece of paper

might have the notation "The first 10,000 digits of Pi" thus

telling us how to interpret the data. The piece of paper with

Actor/Scriptor Animation System User's Manual
Page: 48 , Section: General: Data Types

no title, just digits, is an example of untyped data.

Because the compenents of the animation system are

"self-evident" the programs and operators which deal with t.aem

can do "run time type checking". This means that an operator

which is expecting a vector as an input can check what it

actually gets to be sure it is a vector. Operators which

receive inputs of an incorrect type will stop and complain.

For hints on what happened after such an error, see the

back-trace and release operators.

C A M E R A

See also: See, Pov, Animate, Script, Geometrical Objects,

Geometrical Operators, Local Variables, Define

The animation system provides actors to provide the animated

control of geometrical objects, and the geometrical operators

with which to manipulate the objects. The end goal of all of

this creation and modification of objects is to produce

"subjects" for the animation "camera" to take pictures of.

The "camnra" is a geometrical object itself (although it is

not visible) and so can be manipulated in just the same way as

Actor/Scriptor Animation System User's Manual
Page: 49 , Section: General; Camera

the other objects. For example (if the "world" contained only

the camera and one object) we could move the object closer to

the camera or we could move the camera closer to the object,

to achive the same effect. A camera is represented by a point

of view (pov) geometrical object, and since we can save an

object by name (with a "variable"), we can keep several camera

definitions around and switch between them.

A point of view has three parameters, a position in three

dimensional space, an orientation (which way is up, and right,

and forward?), and a "magnification" or "zoom" factor. We

think of this as a video camera floating somewhere in space,

aiming off in some direction, and with its "zoom lens" set at

the specified magnification. One advantage of using an

imaginary camera, over a real one is that the zoom lens on a

real camera will not have a "zoom ratio" of more than 20 to 1,

the animation system's camera has a zoom ratio of about one

million to one.

THE camera is a local variable owned by the active animate

block. To reference the current camera we just use the

variable of that name. To change the current camera we

redefine that variable. This sequence of commands saves the

current camera (as "cam-l"), modifies the current camera

(saving it as "cam-2"), then switches back to the original

or/Scriptor Animation System User's Ma
Page: 50 Section: General; Camera

poif of view:

(define cam-1 camera)

(grasp camera)

(forward 10)

(zoom-in 2)

(define cam-2 camera)

(define camera cam-1)

B A C K G R O U N D

See also: Animate, Color, Local variables, Define

The two dimensional image produced by the camera will often

contain areas where no geometrical object is visible - what

should we see there? The system uses the concept of a

"background" color. This is much like a cyclorama in the

theater, a large hemicircular, featureless curtain which is

behind all of the scene pieces. In the animation system we can

consider the background to be a huge sphere which completely

surrounds the camera and all of the geometric objects. The

color of the background can be changed merely by defining the

variable "background" to a new color object.

C O L OR

Actor/Scriptor Animation System User's Manual
Page: 51 , Section: General; Color

See also: Global variables, Numbers, Polygon, Solid, Data

types

In order to display things on a color display we must be able

to specify colors. The animation system uses a data type

called color to represent them. Two different functions are

provided for specifying colors, they are called rgb and iha

("red, green, blue" and "intensity, hue, saturation"). Note

that the hardware display unit in use allows only 1024

distinct colors per frame.

R G B

IN rgb space we specify a color in terms of how much red,

green, and blue light is to be mixed together to get the

desired color. Each of the primary's levels may be adjusted

from 0.0 (none) to 1.0 (full intensity) . The particular color

display unit in use allows 256 distinct levels for each

primary. Usage format:

(rgb <red-fraction> <green-fraction> <blue-fraction>)

I H S

Actor/Scriptor Animation System User's Manual
Page: 52 , Section: General; Color

In ihs space a color is specified in terms of three different

parameters:

Intensity: How bright is the color?

Hue: Where is the color on a circular color scale?

Saturation: How vibrant (vs. washed out) is it?

Intensity runs on a scale from 0.0 (none) to 1.0 (full

intensity). Hue values form a cycle, and the spectral hues

fall between 0.0 and 1.0:

color: hue value:

red 0 0.0000
yellow 1/6 0.1666
green 1/3 0.3333
cyan 1/2 0.5
blue 2/3 0.6666
magenta 5/6 0.8333
red 1 1.0000

The saturation values run from 0.0 (no saturation, the color

is a gray tone) to 1.0 (fully saturated, vivid color).

Here are some common colors specified as rgb and iha for

comparison. For a full list of predefined colors see the

section on Global Variables.

black (rgb 0.0 0.0 0.0) (ihs 0.0 0.0 0.0)

gray (50%) (rgb 0.5 0.5 0.5) (hs 0.5 0.0 0.0)

white (rgb 1.0 1.0 1.0) (ihs 1.0 0.0 0.0)

cyan (rgb 0.0 1.0 1.0) (Aba 1.0 0.5 1.0)

yellow (rgb 1.0 1.0 0.0) (ibs 1.0 1/6 1.0)

pink (rgb 1.0 0.3 0.3) (ih 1.0 0.0 0.5)

Actor/Scriptor Animation System User's Manual
Page: 53 , Section: General; Color

P R O G R A M S

See also: Defprog, Variables

The features provided by the Actor/Scriptor Animation System

are intended to be those which would be most useful to the

"average" user. However since no one considers themselves

average, there will be times when the user wants to do

something which is not provided as a basic feature. The

solution to this is to write new programs. It is this ability

to add new features to the system which gives it real

expressive power. In a non-extensible system, where it is not

possible to define new operations the user must be content to

use the set of operations provided by the system designer.

There is no way however, for the designer to ensure that all

of the useful features have been thought of beforehand.

Doing something which would require a combination of lots of

basic operations is the usual reason to write a program. This

accomplishes several things:

(1) We can name the conbination operation with one

concise name which from then on will refer to the

whole thing. This npare is usually chosen so that it

clearly identifies the process carried out by the

Actor/Scriptor Animation System Userfs Manual
Page: 54 , Section: General; Programs

program it represents.

(2) By refering to the large combination expression by a

name we can eliminate the big expression wherever it

would have appeared, hence shortening the calling

program.

(3) A program serves as an "abstract" solution to a

general problem. For example, the program which adds

numbers has the rules of addition built in. Once it

"knows' these, it can add ANY two numbers. Once a

program is written for one particular set of input

values, it will work for any others of the same type.

A very useful way to design programs is what is called

"top-down" design, this means that while we are writing our

script we may decide that the action to take place at one spot

in the script is too complicated to explicitly write down all

of the details. The solution is to make a new program to do

all of the dirty work. But rather then worry about the details

of that program (after all we were trying to write the scrift

originally) we just make up a name for the program-to-be and

call it from the script just as though it already existed.

Later, after we have finished the "top level" script (or

program) we will come back and write the "sub-program". Note

that there is no real difference between a program and a

subprogram.

Actor/Scriptor Animation System User's Manual
Page: 55 , Section: General; Programs

V A R I A B L E S

See also: Evaluation, Program

To save information produced at one point in a script to be

used elsewhere, we need some kind of storage or memory. At the

machine level, individual storage cells have numeric

"addresses" (e.g. memory location #52,647), but in most

programming languages we are allowed to refer to the cells by

name (the programming system figures out which name

corresponds to which memory cell).

Since the name "stands for" the value stored in the memory

cell, we can change the "meaning" of a name by changing the

contents of the cell. Hence we say that the name is a

'ariable, standing for one thing now, another thing later.

Usually the name is chosen so that it suggests the usage of

the value of the variable. For example, in a program which

constructs something, the variable "size" may specify how big

the something is. We would not need to know the specific value

of "size" in order to understand the general workings of the

program.

Actor/Scriptor Animation System User's Manual
Page: 56 , Section: General; Variables

To allow us to be free to use the same name in different

programs (to mean the size of a triangle one place, the size

of a ball elsewhere) we specify which programs "own" which

variables. When a program is entered, space is reserved for

each of its own variables, when the program is done that space

is recycled for use later. Within the definition of a program

(a defprog construct) we can only look at, or change the

variables of our own program, or those "global" variables

which we explicitly declared to be accessable. This

no-global-references rule is also enforced for these

constructs: script, animate, and actor.

There are four "classes" of variables in the Actor/Scriptor

Animation system, they are listed below along with the

constructs which may "bind" them:

(1) global defprog, script loop, animate, actor

(2) input defprog, scrtpt

(3) local detprog, script, loop, animate, actor

(4) private actor

From the user's console only global variables are available

for use. Within a program only variables which are "declared"

may be used. A variable is declared by appearing in a global,

input, local, or private expression. These "variable

declaration" expressions have the same form as a function, but

Actor/Scriptor Animation System User's Manual
Page: 57 , Section: General; Variables

they are not executed at run time, they are there to provide

information about the program at definition time. The format

is a parenthesized list of variables to be declared with the

variable's "class" as the first thing in the list. The "class"

of a declaration is followed by a colon ":" to differentiate

declarations from functions:

(<type>: <varl> <var2> ...)

G L OB AL

Variables which exist but do not belong to the current program

are called "global variables". As an example, certain

geometric models come predefined. The global variable "cube"

is one such.. We can use the symbol "cube" from the console

(e.g. "(display cube)"), but if we wish to reference "cube" in

a program we must specify (for the program defining program)

that "cube" is a valid symbol to use in the program, and that

the program should not reserve space for it (as it would for a

local variable) . This is done with a global variable

declaration expression:

(global: <varl> <var2> ...)

For example, to declare that the program "thorf" wants to

access the global variable "cube":

Actor/Scriptor Animation System Users Manual'
Page: 58 , Section: General; Variables

(defprog thorf

(global: cube)
000)

Globalness is a relative thing, it is like the layers of an

onion, each layer is "global" (surrounding, outside) to the

ones below it. If the we are in program A and a tall is made

to program B, the variables of program A are part of the

global environment of B. Program B may examine the variables

of A by declaring them to be global.

This is a list of the global variables that come predefined

when the Actor/Scriptor system is entered:

Name Value

t t ("true")
nil nil ("false" or "none")

x-axis ' x-axis

y-axis y-axis
z-axis z-axis

objects (tetrahedron cube octohedron cylinder pipe
ball)

colors (black white red red-yellow yellow
yellow-green green green-cyan cyan
cyan-blue blue blue-magenta magenta
magenta-red)

The variables on the list *objects" are geometrical objects

suggested by their names, those on the list "colors" have been

defined to be the indicated colors.

Actor/Scriptor Animation System User's Manual
Page: 59 , Section: General; Variables

I N P U T

See also: Defprog, Evaluation

The most flexible way of getting values into a program is not

global variables, but inut variables. This class of variable

belongs to the program that declares it, space is set aside

for it. Input variables get their initial values when the

program of which they are a part is "called" (or invoked) from

another program. The input expressions in a call to a program

are evaluated, and the values are assigned to each of the

input variables of the program, matching them up left to

right. Consider this calling expression and partial definition

for "wacko":

(wacko (piy 1 2)
(vector 1/2 1/4))

(defprog wacko
(inputs: size vec)
. ..

After the call, "size" would have the value 3, and "vec" would

have the value: (vector 0.5 0.24 0.0).

Because input variables belong to their program, they may be

altered during the execution of the program if desired. This

will not modify values in the global environment.

Actor/Scriptor Animation System User's Manual
Page: 60 , Section: General; Variables

I N P U T

See also: Defprog, Evaluation

The most flexible way of getting values into a program is not

jobal variables, but input variables. This class of variable

belongs to the program that declares it, space is set aside

for it. Input variables get their initial values when the

program of which they are a part is "called" (or invoked) from

another program. The input expressions in a call to a program

are evaluated, and the values are assigned to each of the

input variables of the program, matching them up left to

right. Consider this calling expression and partial definition

for "wacko":

(wacko (plus 1 2)
(vector 1/2 1/4))

(defprog wacko
(inputs: size vec)
...

After the call, "size" would have the value 3, and "vec" would

have the value: (vector 0.5 0.24 0.0).

Because input variables belong to their program, they may be

altered during the execution of the program if desired. This

will not modify values in the global environment.

Actor/Scriptor Animation System User's Manual
Page: 60 , Section: General; Variables

L O C A L

See also: Evaluation, Actors, Defprog

Local variables are "extras", temporary values used only

during the lifetime of the program. Note that programs defined

with 4efprog to be "called" have a lifetime of just one call,

actors on the other hand have very long lifetimes. It is the

local variables of an actor which provide its "memory". In a

local variable declaration expression we can specify initial

values for the variables. If no initial value is given, it is

assumed to be nil. The format for specifying initial values is

to write:

(<variable-name> <initial-value-expression>)

in the place where we would normally write just the name of

the variable. The initial value expression is evaluated at

definition time.

Examples of use:

(defprog funf
(input: funfee)
(local: funfer)

Defines a program named "funf" with one input, and one
local variable.

(start (actor (local: (time 0))

Actor/Scriptor Animation System User's Manual
Page: 61 , Section: General; Variables

(inc time)
..))

Starts an actor with a local variable named "time",
note that teactor increments its "time" each frame.

P R I V A T E

See also: Actor, In

Because actors are an independent lot, they insist on having

hiding places where they can keep secret information. These

are called private variables. Local variables of actors can be

changed from the "outside" by use of the in operator, private

variables cannot.

Imagine for example that we wanted to make a "sluggish" actor,

when you told it to be somewhere, it would casually mosey over

to that location. The actor must prevent outside agents from

actually setting its position. To do this we give the actor a

private variable to store its real position, the public

variable "position" will be used only as the target towards

which it moves:

(define sluggish
(actor (local: position object)

(private: real-position)
...)

Actor/Scriptor Animation System User's Manual
Page: 62 , Section: General; Variables

S C R I P T

See also: Animate, Defprog, Video utilities, Local Variables

The top level controller for the production of animation is

the "script". The scripj construct is similiar to the script

for a motion picture or television drama. Both serve as a

written description of the production, both specify the

sequence of the elements of the action. In the animation

scripting language, the elements of the script are usually

animate blocks or one of the "video production utilties" (such

as: black, color-bars, test-pat, and count-down). Add

the script specifies the name of the production, and may

declare variables for use by the elements of the scrit.

General usage format:

(script <script-name>
<declarations-of-var.Iles >
<script-el ement-l>
<script-element-2>
. . .)

or:

(script <script-name>
<script-element-l>
<script-element-2>
.6S.)

Examples of use:

, (script grunch

Actor/Scriptor Animation System User's Manual
Page: 63 , Section: Scripting Constructs; Script

(black 10)
(color-bars 10)
(blac 5)
(count-down 5)

(animate .0.)
(animate ...)

(black 10))

Now "grunch" is defined as a "scripting function", it consists

of 10 seconds of black, 10 seconds of "color bars" (a

standardized color test image), a 5 second count down, two

animated scenes (whose details have been omitted), and then

more black.

If a script wants to declare that it will use variables, the

declarations fall between the <script name> and the <script

elements>:

(script frizz
(local: velocity

acceleration
(size 28))

The scripting function "frizz" declares that space must be

reserved for three local variables, "velocity",

"acceleration", and "size". "Size" has also been given an

initial value of 28 (the other variables will have the default

initial value nil).

At the time a script is read in by the animation system (from

Actor/Scriptor Animation System User's Manual
Page: 64 , Section: Scripting Constructs; Script

a file or from the users console), it is not "produced", it is

merely defined. To cause the production to begin, we type the

name of the script as a function (that is, surrounded by

parenthesis):

(grunch)

or:

(frizz)

A N I M A T E

See also: Script, Cue, Actor, Cut, Animation-mode

The animate function is used to control one animated

"sequence". But the length and complexity that constitutes a

"sequence" is chosen to suit the animator's taste. A script

may contain just one sequence, or it can have as many as

desired.

An invocation of animate is sometimes refered to in this

manual as an animate block. The execution of the contents of

the contents of this block (the "body" of the animate) is

similar to the execution of a lo. An animate block will

execute each of the expressions in its body, and produce one

frame of animation every "cycle". Usually the expressions in

the body are conditional cues. These are used to start, stop,

Actor/Scriptor Animation System User's Manual
Page: 65 , Section: Scripting Constructs; Animate

or direct the actions of the actors. It is the actions of

these actors which underlie all animated action. Generally

there is at least one actor (some of whom are more like

"invisible stagehands") responsible for every ongoing change

in the animated sequence. Sometimes more than one actor will

co-operate to accomplish some joint goal.

If we think of the eventual playback of the animated sequence

now in production, one particular animate block will be

active, each frame it would complete a cycle (30 times a

second in playback time). During that cycle each of these

things happen:

(1) Each expression in the body is executed.

(2) All of the actors are awaken and allowed to "do
their thing", occasionally asking the displayer
to make objects visible.

(3) The frame is cleared to the background color.

(4) All of the visible objects are displayed.

(5) An entry is made at the console for each actor

being traced.

(6) The end-of-frame message is printed on the console.

(7) The frame of animation is stored (onto an analogue
video disk).

(8) The animation clock is advanced one frame.

Steps 3 through 7 are optional, to control which are executed

we use the animation-mode function. Steps 3 and 4 are

Actor/Scriptor Animation System User's Manual
Page: 66 Section: Scripting Constructs; Animate

controlled by the "display" mode flag, step 5 by the "trace"

mode, step 6 by the "eof" mode, and step 7 by the "record"

mode.

As the animated sequnce continues (as the animate block

continues to loop) the time for each cue comes and goes. These

cues initiate various changes in the progress of the

animation, such as creating and starting new actors or

directing those actors already running to modify their

actions.

An animate block can contain declarations of local scratch

variables, used to store information about the state of the

ongoing animation. The cue and give-cue functions make special

use of these variables as "cues", markers of points in time,

used to signal actions by the actors. Variables may be used as

cue-names, or as temporary storage, but not both.

The looping of the animate block will continue until

somewhere, within its body it executes a cut expression.

Examples:

(animate (cue (at 10)
(cut)))

Produces 10 frames of blank background color.

Actor/Scriptor Animation System User's Manual
Page: 67 , Section: Scripting Constructs; Animate

(animate (cue (at 20) (start quack))

(cue (at 40) (start quux))

(cue (at 60) (cut)))

This produces a 60 frame animated sequence, with the
actor named "quack" entering at 20 frames into the
action, and actor "quux" starting at frame 40.

(animate (local: actor)

(cue (at 50)
(define actor

(start frob)))

(cue (at 100)
(speed-up actor 1.25))

(cue (at 150)
(cut)))

This animate block declares a variable named "actor", and
uses it to save the idenification code of the actor it is
running. This is so it can refer to that particular actor
later (in this case, to speed up its action by a factor
of 1.25). Note that any actors still active at the end of
the animate block are automatically flgpped.

C U T

See also: Animate, Script, Loop

The cut function does nothing other then terminating the

current animate block. After an arimate block is entered, it

will continue to loop (and produce frames of animation) until

it executes a cut. The term "cut" is from the filmmaking

Actor/Scriptor Animation System User's Manual
Page: 68 , Section: Scripting Constructs; Cut

usage. Cut is ta animate as loop-exit is to loop.

Example of use:

(animate ...
(cue (at 1000)

(cut))

(cue (at quitting-time)
(cut)))

This skeleton of an animate block will continue to loop
until either; it reaches the 1000th frame, or the cue
"quitting-time" is given by someone.

C U E

See also: At, Script, Animate, Give-cue, Until-cue

A "cue" is an event which serves as a landmark in time. We use

cues in everyday life:

"When I wave my arms, you pull on the rope."
"I'll see you in April."
"On your mark, get set, GO!"

The wave of the arm, the coming of April, and the shouted

"GOI" all serve as cues, indicating the time at which

something starts.

In the Actor/Scriptor Animation System a cue is indicated by

the settings of special program variables within an animate

block. Normally a cue is "off" or "uncued", but the 9ive-cue

function can be used to set the variable to "cued". The

Actor/Scriptor Animation System User' s Manual
Page: 69 , Section: Scripting Constructs; Cue

variable will automatically reset (to "uncued") one frame

later.

Usually the cue function is used to test variables used as

cues. The execution is conditional, as in if:

(cue <when> <what>)

The <when> part is evaluated, if it is true (it asks a

question whose answer is "yes"), then the <what> part is

executed. Said another way: the <what> test serves to cue the

<when> part.

The cue function is usually used with the 'at' function as the

<when> part. The <what> part is often one of functions which

direct actors: start, stop, run, or in. It can also be define,

give-cue, or any expression desired.

Examples:

(cue (at 0) Call the program "startup"
(startup)) on the very first frame.

(cue (at midpoint) Whenever the cue "midpoint"
(start frobber)) is given, start the actor

"frobber".

(cue (at (plus beat delay))
(give-cue back-beat))

Everytime the cue "beat" is given, give the cue "back-beat"
after a pause of "delay" frames.

Note that these two expressions are equivalent:

Actor/Scriptor Animation System User's Manual
Page: 70 , Sections Scripting Constructs; Cue

(cut (la5)
(iqsart zapper))

(if (at 5)
(0 t en (s~tart zapper)))

A T

See also: Cue, Animate, Give-cue

The at function answers the question "Is it time yet?" At is

usually used with cue or if.The at function expects one input,

which can be a frame number or a cue-name.

If the argument is a cue name, then at returns:

true if the cue has been given during the last frame.
not-true otherwise.

If the cue is a frame number, then at returns:

true if that is the number of the current frame.
not-true otherwise.

Examples of use:

(cue (at 105) ...)

(cue (at restart) ...)

(if (at (plus 5 move-start))
(then a)
(else b))

Do the "..." only on frame
number 105.

Do the ... " whenever the cue
named "restart2 is given.

If it is five frames since the
frame whose number is stored
in "move-start" then return the
value of "a", otherwise return
the value of "b".

Actor/Scriptor Animation System User's Manual
Page: 71 , Section: Scripting Constructs: At

Actor/Scriptor Animation System User's Manual
Page: 72 , Sec!tior: Scripting Constructs; At

A C T OR

See also: Script, Animate, Variables (Local and Private)

The word "actor" is actually used in three slightly different

ways in this manual. In one sense, we wish to suggest an

analogy with the real-world concept of a theaterical or

television actor. While performing in accordance with the

intent of the director (of the play or video production), a

human actor is "on their own" during the actual performance.

The director has planned and rehearsed the roles of the actors

beforehand, but it is the actor's job to play their role

without constant intervention by the director.

Within the animation system we use the term actor to describe

an entity in the computer system with some of the same

properties as a human actor. This usage is attributed to Carl

Hewitt of MIT, and his "actor model of computation" [10, 11,

12, 131. In this model, the program units are called "actors"

(things which act). Actors are only allowed to send "messages"

to one another, one actor cannot force another to take any

action.

The Actor/Scriptor Animation System is a hybrid of the actor

Actor/Scriptor Animation System User's Manual
Page: 73 , Section: Scripting Constructs; Actor

model and the traditional "recursive function theory". To

produce an animated sequence, we write a formal description of

what is going to happen when. This is called the script,

essentially a normal computer program. The main task of the

script is to sequence and direct the actors. Once an actor has

been started (gone "on stage" or "on camera") it will continue

to perform its "task" or "action" without any intervention

from the script. If, for example, we have an actor which

causes a big red box to sail across the screen, the script

need only specify when we would like the action to start (in

terms of animation time or cues). If the actor knows how to do

its job, no further attention needs be paid to it. The script

might have specified when the actor should stop (go "off

stage", or "off camera"), or the actor might decide for itself

(for example, when it realizes that the big red box is off the

screen, and hence no longer visible).

Just as in the theater, more than one actor may be active or

"on stage" at one time. These actors may simply ignore one

another, each going about its own business. Or, the actors may

cooperate and work in a communal effort toward some common

goal.

While the analogy with human actors is useful, it should be

kept in mind that the actors in the animation system are not

Actor/Scriptor Animation System User's Manual
Page: 74 , Section: Scripting Constructs; Actor

directly visible. Perhaps the notion of a "puppeteer" is

closer then a theatrical performer, since we see not the

puppeteer but the puppet that they control. In the example

above, we saw the big red box, not the actor who was moving

it. We could also think of an actor as an "invisible

stagehand" who moves, replaces, or repaints pieces of scenery,

costumes, or props without being seen themselves.

-~Ar

Figure 2

A scene from the ?roduction of the "Hanna- Barbara Happy
Hour" (a children s TV program seen weekly on NBC). The

marionette/puppets (known as "Honey" and "Sis", the stars of

t he show) a re be ing cont rol le d by th e pu ppe tee rs be hind them.

Only the puppets will remain after the video mixer replaces

e verything blue in the pictur e, including the blue ba ckg round

and the puppeteers in their blue tights. (this tracing is from

a photograph which appeared in the April 15, 1978 issue of TV

Actor/Scriptor Animation System User's Manual
Page: 75 , Section: Scripting Constructs: Actor

Guide magazine, pp. 10-11)

As mentioned above we use the term "actor" has three slightly

differnt usages; the theatrical analogy, the notion of an

independent computational process which communicates by

message sending, and the actor function. This function is used

in the scripting language to specify and construct the actors

that the script will use. The actor data-type itself (the

thing returned by the actor expression) is an element of the

animation system which can be handled in the usual ways. For

example, this defines the variable "John" to be the specified

actor:

(define John (actor ...

where the "..." is replaced by the actual specification of the

actor. The actor expression returns the actual actor

data-type, and so may be used in a define or directly as an

input to an other function which expects an actor as an input.

Either of these two cue expressions could be used to start a

specified actor at frame number 10:

(cue (at 10)

(define Jane
(actor ...))

(start Jane))

(cue (at 10)

Actor/Scriptor Animation System User's Manual
Page: 76 , Section: Scripting Constructs; Actor

(start (actor ...)))

An actor is made up of two parts, a memory and a role. Its

memory is a collection of data, think of it as a set of memos,

each with a topic name at the top and an expression written

below. At the programming level this means that an actor has a

set of bound variables. The "role" of an actor is represented

by a program. An actor acts by running this program once

betweeen each frame, using its memory to keep track of its

progress.

To specify an actor we must indicate:

(1) the names of all variables to be used by the actor

(and optionally, initial values for them)

(2) the expressions which make up the body, the "role"

The general form of an actor expression is:

(actor <declarations-of-variables> <body>)

Examples of use:

(actor (local: (age 0))

(inc age)
(print age)))

This actor has one local variable called "age" which it
increments, and then prints each frame.

(define blinker
(actor (local: (on-time 5)

(off-time 10)
(object nil))

Actor/Scriptor Animation System User's Manual
Page: 77 , Section: Scripting Constructs; Actor

(private: (time 0))

(inc time)

(if (less time on-time)
(then (see object)))

(if (greater time
(plus on-time off-time))

(then (define time 0)))))

The variable "blinker" has been defined to be the specified
actor. It causes a geometrical object called "object" to
alternate between being visible and invisible. The times it
is in each of these states are controlled by the variables
"on-time" and "off-time". The actor keeps its own private
"time" so that it will not forget what time it is.

S T A R T

See also: Actor, In, Stop, Run

The start operator takes an actor object and "activates" it.

This means that an "instance" (or copy) of it is added to the

active actor list. It is these active actors which are awaken

each frame, the ones who are *on stage".

Start returns a functional value, an integer number. This

number is known as active actor "id". It uniquely identifies

an individual active actor. Because we may wish to have

several identical actors active at one time, we use these

numbers to refer to a particular instance of an actor. Rather

Actor/Scriptor Animation System User's Manual
Page: 78 , Section: Scripting Constructs; Start

then deal directly with the id numbers themselves, we usually

define a variable to the result of the start:

(define Hamlet
(start ...

From that point on, when we refer to the variable "Hamlet", we

are refering to this particular instance of the actor.

The start operation allows additional input expressions which

are not immediately executed, but are sent in to the newly

created instance of the actor for initialization (see in).

Usage:
(start <actor> <in-exprl> <in-expr2> ...)

The <in exprs> must be of the type allowed for use with in;

basically define expressions for variables declared by the

actor.

Examples of use:

(start (actor ...)) Create an actor and
start it.

(start blinker Starts an instance of the
(define object cube)) actor "blinker", defining

its blinkee "object" to
be a "cube".

(define floink-1
(start floink

(define size 1)))

(define floink-2
(start floink

(define size 2)))

This starts two instances -of an actor ("floink"), saving the

Actor/Scriptor Animation System User's Manual
Page: 79 , Section: Scripting Constructs; Start

individual active actor ids (as "floink-1" and "floink-2").
The two instances have each been given different initial
sizes.

S T OP

See also: Actor, Start, Rn

The stop operator will deactivate an active actor. The dear

departed instance is lost (ultimately to be recycled and born

again). Sto2 allows one input which should be an active actor

id, the one to stop. If this input is omitted, the &urrently

active actor stops itself. Hence an actor may be stopped by

anyone who knows their id, or they can stop themselves.

Usage:

(ato)

(stop <active-actor-id>)

Examples of use:

(stop Hamlet) The actor instance "Hamlet" is

stopped.

(actor (local: (time 0))

(if (less time 100)

(then (frobulate time)
(inc time))

(else (stop))))

This is an actor expression containing a use of the no

Actor/Scriptor Animation System User's Manual
Page: 80 , Section: Scripting Constructs; Stop

input form of stp. The actor calls the function
"frobulate" every frame for the first 100 frames after it
is started, then stops itself.

R U N

See also: Actor, Start, Stop, For, Until-cue, Give-cue

The run function is a combination of start and stop. It takes

advantage of the fact that we often use these other operations

in certain combinations, hence we develop a shorthand. Run is

used either;

(1) to run an actor for a certain period of time (some

number of frames for example).

(2) to run an actor until a particular named cue is

given.

Run expects at least two inputs; the actor to run, and a

"termination ag tj". The termination actor is usually

constructed by either the for or until-cue functions.

Additional input expressions may be given which will not be

immediatly executed, but are sent to the newly created actor

by the in operator.

Usage format:

(run <actor> <termination-actor>)

(run <actor>
<termination-actor>
<in-exprl>

Actor/Scriptor Animation System User's Manual
Page: 81 , Section: Scripting Constructs; Run

<in-expr2>
... 5)

The functional value returned by run is the same active actor

id that is returned by start when the main actor is started.

Hence we can define a variable to be the result of the run

function, to allow us to refer to that instance later in the

script:

(define Ophilia
(run ...))

By the use of for and until-cue we start actors with

predetermined fates. The "termination actor" serves as a grim

reaper who will do away with the main actor at the anoited

moment. The for function expects one input, a number of

frames. It creates an actor which will stop another actor in

that number of frames. The until-cue function takes a cue-name

and makes an actor which will do in the other when the cue of

that name is given. The cue-name is a variable and must have

been declared in a surrounding expression (the script,

animate, or defprog containing the give-cue expression). The

cue name supplied to give-cue will not be evaluated, the name

itself is used.

Usage format:

(run <actor> (for <frame-count>) ...)

(run <actor> (until-cue <cue-name>) ...)

Actor/Scriptor Animation System User's Manual
Page: 82 , Section: Scripting Constructs; Run 0

Examples of use:

(run (dwonk dcount) The actor formed by the "dwonk"

(for 300)) function is run for the next
300 frames.

(run mover The actor "mover" is run for
(for 1000) 1000 frames, its initial

"speed" is set to 30

(define speed 30))

(define b7
(run blunk

(until-cue stop-blunks)))

An instance of the actor "blunk" is started. It will run

until someone else gives the cue named "stop-blunks".
This particular instance of "blunk" will be known as
"b7".

I N

See also: Actor, Start, Variables, Private, Define

The in function is used to communicate with actors after they

have been started. When the script wats to send directions to

an actor, or wants to ask an actor a question, it uses the in

function. Additionally, active actors may communicate with

each other by using the in function.

An actor is composed of two parts, its "role" and its

"memory". The communication facility provided by the in

function deals solely with the memory part (local variables of

Actor/Scriptor Animation System User's Manual
Page: 83 , Section: Scripting Constructs: In

the actor). We may examine or modify the non-private variables

of an actor. The name "in" is used because the variables are

examined or modified "within" or "inside" the world of the

specified actor.

In expects two or more inputs, the first specifies the actor

we wish to communicate with, this value should be an "active

actor identification number" as returned by start or run. The

rest of the input expressions are evaluated AFTER we jump into

the world (binding context) of the actor.

General usage format:

(in <active-actor-id> <exprl> <expr2> ...)

The <expr>s must be one of the two allowable types. They may

either examine or define a variable, hence the expression may

be either:

(1) the name of the variable, or

(2) a define expression for the variable.

In either case, the variable must be both:

(1) declared by the specified actor, and

(2) not declared to be private.

Any other type of expression will cause a run time error

condition.

Actor/Scriptor Animation System User's Manual
Page: 84 , Section: Scripting Constructs; In

If the expression is a define for variable "foo", the second

input of the define (the value part) may not contain any

references to undeclared variables (as usual) with the

exception of "foo". For example, the last in expression in the

following example is valid even though "foo" is not declared

in the program "klork" which contains the in:

(defprog klork
(inputs: actor-id new-bar)

(in actor-id
(define bar new-bar))

(in actor-id
(define foo (times 2 foo))))

The proceeding program will cause a run time error unless the

actor indicated by "actor-id" has variables (memory cells)

with the names "foo" and "bar".

To read information from an actor we supply (through the in

expression) the name of the variable containing the desired

information. For example, to ask for the "speed" of an active

actor whose id number is held in the variable "actor2" we

would write:

(in actor2 speed)

or

(define actors-speed

(in actor2 speed))

In returns as its value the result of evaluating its LAST

Actor/Scriptor Animation System User's Manual
Page: 85 , Section: Scripting Constructs; In

input expression inside the context of the specified actor. In

the previous example, the last expression is "speed"; so the

value of "speed" in "actor2" is returned.

To send information to an actor we must supply both the

information itself and the "name" of the message. It is as

though the actor had not just one mailbox, but one for each

type of message it might possibly recieve (one for bills, one

for paychecks, one for love letters, one for magazines, ...).

So if we wish to send a message of the form "Change your

'speed' to 100", for example, we would write:

(in actor2

(define speed 100))

Using the mailbox analogy, this would correspond to putting

the value 100 into the actor's "speed" mail box.

We can either use the in function directly from the script or

an actor, or we may use it as a primative operation with which

to construct more complex operations. One powerful result of

the structure of actors is that we can make programs which

modify a particular named parameter of ANY actor, regardless

of the particular structure of that actor. Here is a program

called "speed-up" which will change the "speed" of any

specified actor by a given scale factor.

Actor/Scriptor Animation System User's Manual
Page: 86 , Section: Scripting Constructs; In

Example of use:

(defprog speed-up
(inputs:, actor factor)

(in actor
(define speed

(times speed factor))))

G I V E - C U E

See also: Cue, Until-cue, Script, Variable

Events in the course of an animation script are marked by

Ucues", points in time at which significant happenings occur.

The signaling of these "cues" is done by the give-cue

operation. It expects one input which is the name of the cue

to signal (the name is not evaluated).

The effect of signaling a cue is as though we had shot off a

skyrocket. Everyone who is interested can see that it has

happened. One give-cue may start any number of actions, cue

expressions in the main script may be triggered, active actors

may stop or change what they are doing because of the cue

being signaled.

A cue is a short lived phenomenon, just as the skyrocket, the

cue soon burns out and is no longer visible. A cue lasts for

Actor/Scriptor Animation System User's Manual
Page: 87 , Section: Scripting Constructs; Give-cue

exactly one frame of animation. Because of the way actors and

scripts are defined, this means that everybody who might care

gets at least one chance to see the signaled cue.

Usage format:

(sive-cue <cue-name>)

Examples of use:

(give-cue Now)

(cue (at master-cue)

(sive-cue subcuel)

(give-cue subcue2))

The cue named "Now" is signaled.

In this cue expression from
an animate block, the cue
named "master-cue" is used to
signal two other cues named
"subcuel" and "subcue2".

S E E

See also: Camera, Geometrical objects, Subworld, Script

The see operation is used to indicate which of all of the

existing geometrical objects are to be "seen* by the camera of

the animation system. See expects one input, the object to be

seen:

(see <geometrical-object>)

The exact copy given to see is placed on the visible object

list. At the end of the frame all of the visible objects are

Actor/Scriptor Animation System User's Manual
Page: 88 , Section: Scripting Constructs; See

made into a subworld with the camera as the point of view, it

is that subworld which is actually displayed. The visible

object list is emptied before each new frame.

Examples of use:

(see box)

(see (rotate 1/3 Joe))

The object "box" is made
visible for this frame.

A rotated copy of "Joe" is
made visible this frame.

Actor/Scriptor Animation System User' s Manual
Page: 89 , Section: Scripting Constructs: See

GEO R MIE TL OIJCCAS

The objects which make up the Actor/Scriptor Animation System

can be divided into two main classes:

(1) Programming constructs (control structures)

(2) Geometrical objects (data structures)

All of the programming features exist ultimately to create,

modify, and display the geometric models used to represent the

visible objects in an animated sequence. Both conventional

programming features and special "animated" programming

constructs are provided to allow the most convenient way of

manipulating the geometrical objects. This section deals with

the nature of the geometrical objects, and how they are

created by programs.

The geometrical objects are so called because their common

property is a description based upon coordinate geometry. The

objects contain information about their type (e.g. vector,

solid ...), information about their specific description

(positions, orientations, colors), and information about their

structure (such as specification of the members of a group).

Actor/Scriptor Animation System User's Manual
Page: 90 , Section: Geometrical Objects; Vector

V E C T OR

See also: Numbers, Coordinates

A vector is a group of three numbers, they are interpreted to

represent distances along each of three coordinate axes

(called "x", "y", and -"z", in that order). A vector may

specify either a relative distance from a base location, or an

absolute position (by being based on the "origin", the

position where the three coordinate axes intersect). To create

a vector with a given set of coordinates we would use the

vector function:

(vector (x} (y} (z})

The three inputs to the vector function are optional, missing

coordinates will be set to zero. Hence these pairs of

expressions are equivelent:

(vector) => (vector 0.0 0.0 0.0)

(vector 1) => (vector 1.0 0.0 0.0)

(vector 1 2) => (vector 1.0 2.0 0.0)

(vector 1 2 3) => (vector 1.0 2.0 3.0)

The coordinate expressions used in a call to the vector

function can be any expression as long as it returns a number.

Any type of number (fixnums or flonums) may be used, although

the vector function always returns a vector with three flonum

coordinates.

Actor/Scriptor Animation System User's Manual
Page: 91 , Section: Geometrical Objects; Vector

Examples of use:

(vector (plus a b)) Forms the vector:
(vector a+b 0.0 0.0)

(move (vector a b c) Forms a vector which is the
(vector q r s)) vector sum of the two given.

(define position Redefines "position" by
(move position adding an incremental

velocity)) "velocity" into it.

P O L Y G ON

See also: Vector, Color, Cut-hole

A polygon is very much like a thin piece of cut-out sheet

metal, hanging suspended in three space. A polygon is flat and

has straight sides, it can be painted with a color (or 2

different colors for the front and back), and can have holes

or "windows" cut through the otherwise opaque surface. One of

the possible colors for a polygon's side is the "no color"

color nil, which corresponds to "invisible". If the face of a

polygon which is toward the camera is colored nil it will not

be seen. This is the mechanism used to remove "back faces".

To create a polygon object we use the polygon function. It

expects at least four input expressions. The first input is a

color or a groug of two colors. The rest of the inputs are

vectors specifying the positions of the vertices of the

Actor/Scriptor Animation System User's Manual
Page: 92 , Section: Geometrical Objects; Polygon

polygon. The order of the listing of the vertex vectors is the

order we would encounter the vertices if we started at any

vertex and walked around the polygon in a clockwise direction:

(polygon <color> <vectorl> <vector2> <vector3> ...)

At least three vectors are expected, because the polygon with

the smallest number of vertices is a triangle, which has

three. A full <color> specification includes a front, back and

edge color, in that order, omitted colors will be set to nil:

<color> becomes: (group <color> nil)

(group <cl> <c2>) becomes: (group <cl> <c2>)

Hence the default back face color is "invisible".

The polygons produced by the polygon function are "simple

polygons", they have just one boundary, and so no holes. To

form polygons with holes we make one polygon the shape of the

outside, and one polygon the shape of the hole, the holey

polygon is formed from these two simple polygons with the

cut-hole operator.

Example of use:

(polygon red Forms a isosceles right
(vector 1 1) triangle in the x-y plane,
(vector 1 4) which is red on its front,
(vector 4 1)) and invisible from behind:

Actor/Scriptor Animation System User's Manual
Page: 93 , Section: Geometrical Objects; Polygon

Figure 3

G R O U P

The group is the facility that is used to "glue" simpler

objects together into more complex objects. Although the

objects need not actually "touch" to become rigidly attached

to each other. Group takes any number of input expressions,

and returns the group of the values of all the input

expressions.

(jrp j <objectl> <object2>

Once objects are grouped together, they will be treated as a

single object by all of the geometrical operators. For

example, if we had already defined two objects "ding" and

"dong":

(define both This defines "both" as a group
(group ding dong)) containing "ding" and "dong"

glued together into one object.

(define rot-both Defines "rot-both" to be a

Actor/Scriptor Animation System User's Manual
Page: 94 , Section: Geometrical Objects; Group

esp
lo1om.*&

(rotate 0.3 both)) rotated copy of "both".

In this example, the rotate operator handles the group of

"ding" and "dong" as though they were both glued onto a

tabletop, and the entire table was rotated. Because of the

"copy, then modify" rule that the operators obey, rotating the

grou2 has no effect on the original ding" or "dong" or

"both".

Actor/Scriptor Animation System User's Manual
Page: 95 , Section: Geometrical Objects; Group

S O L I D

See also: Color, Vector, Polygon, Local variables

Using groups of polygons we can construct objects which would

appear as solids in three space. For example, six squares

could be positioned and grouped to form a object which would

appear as a cube. However if the aim is to construct a three

dimensional bounded region of space, the most direct way is to

use the solid function. In addition to specifying the vertex

and face information, the vertices of a solid are shared among

the faces which contain them, thus avoiding replication. Also

the description of a solid allows geometric operators to act

on the object as a solid chunk, when solids are represented as

grouped polygons this is not possible.

To create a solid we use the function of the same name, the

input expressions are evaluated in a nonstandard manner. The

general format of a solid expression is:

(solid <color> <vertex-declarations> <polyl> <poly2> ...)

The <color> is evaluated to yield a standard color object. The

<vertex declarations> are contained in a vertices expression.

Actor/Scriptor Animation System User's Manual
Page: 96 , Section: Geometrical Objects; Solid

The face <poly>s have the sam'l form as a polygon expression.

The format of a vertices expression is exactly the same as the

format of a local variables expression (except for the

substitution of the word "vertices" for the word "local"):

(vertices: (<vertex-name-l> <initial-value-expression-l>)
<vertex-name-2> <initial-value-expression-2>

(<vertex-name-3> <initial-value-expression-3>

The vertices expressions serves to assign a name to each

vertex of the solid, and to specify the vector position of the

vertex. The <initial value expression> is the only part of the

vertices expressions which is evaluated.

There must be one polygon expression for each face of the

solid. The color and the vertices (listed by name, in

clockwise order) which make up that face are specified. The

color expression is the only part that will be evaluated at

definition time. If the color expression for a face is "*,

then the solid's default color will be used.

As an example of the use of the solid function, there follows

a program which constructs a tetrahedron (one of the five

regular polyhedra, a pyramid with a triangular base) with

three red faces and one yellow face. The yellow side lies in

the x-y plane, the red sides "point" in the positive "z"

direction. The program expects one input, the size of the

Actor/Scriptor Animation System Users Manual
Page: 97 , Section; Geometrical Objects; Solid

tetrahedron to construct:

(defprog yellow-red-tet

(input:
(qlobal:
(local:

size)
yellow red)
(vec (vector 0 size))

(point (vector 0
0
(times size

(sgrt 2.0)))))

(solid red
(vertices: (a vec)

(b (rotate
(c (rotate
(d point))

1/3 vec))
2/3 vec))

(polygon
(olyon
(polygon
(Polygon

yellow
*

*

*

a
a
a
c

b
d
c
b

%

wooI'

-c-di-p

c)
b)
d)
d)))

YdIoeA

Figure 4

Construction of a yellow and red tetrahedron.

P 0 V (Point of View)

See also: Coordinates, Self-relative, Camera, Subworld

Actor/Scriptor Animation System User's Manual
Page: 98 , Section: Geometrical Objects; Point-of-view

The point of view geometrical object is used to represent the

relationship between an object's local coordinate system and

the external, global coordinate system. A pov can be used to

describe the appearent changes in an object's position,

orientation and size as "seen" from differing points of view.

For example, the camera of the animation system is a gov

object. The subworld data-type consists of a aov and another

object which is to be situated AT the pov.

The parameters which make up a point of view description

include:

(1) The position of the local origin. (As an absolute
position vector.)

(2) The orientation of the coordinate system. (As direction
vectors along the local coordinate axes.)

(3) Three scaling factors. (One for each local coordinate
axis.)

This information is held as four vector objects. One is the

base position vector, the other three are vectors parallel to

the local coordinate axes. The magnitudes of these three

vectors are the scaling information. It is worth noting in

passage that the 12 parameters of a pov (4 vectors times 3

coordinates each) correspond to the 12 parameters of a 3X4

transformation matrix which is often used as a formalism of

this notion. (A 4X4 matrix is used in homogeneous

Actor/Scriptor Animation System User's Manual
Page: 99 , Section: Geometrical Objects; Point-of-view

coordinates.)

The pov function is used to create pov objects. It expects

zero or four inputs. If no inputs are given, the "home" ov is

returned, this is the orientation of an object at the global

origin, pointing down the "z" axis. Otherwise the four inputs

are the vectors which describe the pov:

(Pov_)

(nov <position> <x-axis> <y-axis> <z-axis>)

S U B W O R L D

See also: Pov, Self-relative operators

The subworld data-type allows us to think of geometrical

objects as having their own view of the world, by allowing an

object to have its own personal coordinate system. The

"origin" in such a "centered on one's self" coordinate system

is usually located at the object's center. The positive

coordinate axes ("x", "yN, and "z") correspond directly to the

object's directions of "right", "up", and "forward". The

self-relative geometrical operators are used to manipulate an

object with respect to its own coordinate system.

Actor/Scriptor Animation System User's Manual
Page: 100 , Section: Geometrical Objects; Subworld

A subworld has two major parts:

(1) A description of the relation of the internal

coordinate system to the external coordinate system

(a point of view ("pov") object).

(2) Another geometrical object (frequently a group)

which is to be situated at the point of view.

Hence the object is put int the same "frame of

reference" as the POV.

The usage of such a data-type is perhaps best thought of in

terms of the animation system's camera, the imaginary TV

camera which is used to take pictures of the imaginary

geometrical objects. If the script calls for the camera to

"tilt up", we could accomplish this in two different ways. We

could "tilt up" the camera, or we could "tilt down" everything

the camera was looking at. Surely it would be easier to tilt

one camera then to tilt the rest of the "world" (even if both

the camera and the "world" are just figments of the computer's

imagination). At the end of each frame, all of the visible

objects are seen through the currently defined camera. This

means that that we may change our view without operating on

all of the visible objects.

However in the case of a subworld, its contents are PLACED AT

the pov rather then SEEN FROM it. The pov serves as a platform

Actor/Scriptor Animation System User's Manual
Page: 101 , Section: Geometrical Objects; Subworld

on which to situate the contents. The subworld's contents are

modified at display time to conform to the position,

orientation, and scale of the pov. Usually the subworld object

is used to contain a complicated object 'so that we may modify

just the point of view part and leave the rest alone. If we

had constructed a geometrical model of a airplane, we would

have described its position in whatever terms were most

convenient (although usually we want to have the origin of the

local coordinate system to be coincident with the "center" of

the object). However to make the plane fly, we need to

reposition and reorient it. Again we could either modify each

part of the description of the airplane (move the wing, move

the tail, move the landing gears ...) or we could have

constructed a subworld object whose content is the model of

the airplane. Then to fly the airplane we need only modify the

subworld itself, the original model remains unmodified.

An object's own "self-relative" coordinate system may be, but

need not be, the same as the "global" or external coordinate

system. When they are the same, the object is said to be

"home". We usually create a subworld object in its "home"

position and orientation. The subworld function expects both

the 2ov description, and the object which will become the

contents of the subworld:

(subworld <pov> <object>)

Actor/Scriptor Animation System User's Manual
Page: 102 , Section: Geometrical Objects; Subworld

If the <pov> expression is "(pov)", then the subworld object

is created in its "home" position, otherwise the supplied

coordinate system is used.

Additionally, these parameters are automatically determined at

the time the subworld is constructed:

(1) A "maximum radius", the distance from the local origin

to the most remote part of the contents of the

subworld. (Used in screen and detail clipping.)

(2) A "typical" color (which can be nil). (Used to

display the entire object (as a "dot") when it would

appear too small on the display screen to show any

detail.)

Example of use:

These two expressions construct the subworld containing the

airplane as discussed above (omitting the details of the

airplane itself):

(define airplane-model

(group ...

(define airplane
(subworld (pov)

airplane-model))

Actor/Scriptor Animation System User's Manual
Page: 103 , Section: Geometrical Objects; Subworld

G E O M E T R I C O P E R A T O R S

See also: Geometrical objects, Coordinate systems

The Actor/Scriptor Animation System provides two way to

manipulate geometric objects. We can express motion either

from the point of view of the object involved (with

self-relative operators), or in terms of an external

coordinate system or "frame of reference" (using global

operators).

Self-relative operators express a new position or orientation

for an object relative to its current position and

orientation. This is somewhat like spaceflight, the

self-relative operators are similar to the controls of a

spaceship. The direction in which the spaceship is pointing

establishes the "forward" direction (also refered to as the

"nose vector"). Using the ship's steering jets the pilot can

alter its heading. The ship's nose can be turned right or left

(just as in an automobile), tilted up or down (like a

see-saw), or the ship can be "rolled" about the nose vector in

either the clockwise or counterclockwise direction. The pilot

can fire the main thruster to move in the forward direction

(along the "nose vector"). We will also assume our imaginary

Actor/Scriptor Animation System User's Manual
Page: 104 , Section: Geometrical Operators

spaceship has a thruster at its nose so that it can be flown

"backwards".

tilt up

frollturn right
PCW oll

CW

tilt down

Figure 5

Self-relative operators as spaceship maneuvers.

This type of operator is called self-relative because

measurements of changes (such as how far to go forward, or how

much to turn right) are made from the objects own "frame of

reference" or coordinate system. It is as though we put

ourselves in the place of the object we wish to change, and

described how we would move from that position to the desired

position.

Actor/Scriptor Animation System User's Manual
Page: 105 , Section: Geometrical Operators

For those learning geometry for the first time this "personal"

frame of reference is easier to understand than a fixed,

external system. Seymore Papert (and the LOGO Group at MIT)

have successfully used this approach to teach two dimensional

geometry to young school children. [.26, 27, 281 Using a

programming language called LOGO, students as young as 6 years

have learned how to program a computer-controlled graphical

device called a "turtle" to draw very complicated and

interesting designs. In "turtle geometry" as it is called, the

turtle can walk forwards and backwards, and turn right and

left. Upon command the turtle can also lower a marking pen

attached to its belly, so that its path is traced on the large

sheets of paper spread on the floor. [1, 9, 19] The

self-relative operators of the Actor/Scriptor Animation System

ate a three dimensional generalization of the ideas of "turtle

geometry".

The global operators provide another way of specifing

geometrical changes. The major difference between the two

types is that in global operations, the "center of the

universe" is defined by the coordinate system in use. When we

use the self-relative operator right we expect the center of

the rotation to be wherever the object is. When using the

slobal operator rotate the center of the rotation is the

center of the coordinate system. This location in three

Actor/Scriptor Animation System User's Manual
Page: 106 , Section: Geometrical Operators

dimensional space, also known as the "origin", is represented

as the position vector: (vector 0 0 0). Any other position is

measured in terms of its distance from the origin, along three

mutually perpendicular directions known as "coordinate axes".

The axes are named "x", y", and "z" (similar to "right',

"upm, and "forward"), which intersect at the origift.

forwr j

leftrict X

bockwarJ

Figure 6

The positive coordinates axes.

Just as self-relative operators are similar to flight, the

global operators could be compared to afixing the objects

involved to invisible machanical linkages. The rotate operator

has an effect like placing an object on a phonograph

turntable, the move operator is akin to placing the object on

a conveyor belt, the scale operator does what a pantograph

does. The set of global operators are similiar to the machine

tool operations familiar to machinists.

Actor/Scriptor Animation System User's Manual
Page: 107 , Section: Geometrical Operators

G R A S P

See also: Variables

The grasp function causes no geometrical changes itself, but

is used to control other operations. The individual operators

can work in either of two ways. If passed an object to operate

on, they will produce an altered copy of the object, and

return the copy as their functional value. Otherwise we can

use the gjras operator to specify the "current object" and

from then until the next use of grasp, operations will operate

by default on the "current object". One way to think about

this is that the operators all use an imaginary "hand" to

change objects. We can tell the operator where to put the hand

(by specifying an object in the call). Or, we can indicatc

that the operation should use the object already in the

"hand", by omitting the object specification.

To use the grasp function we pass it one input, the name of a

variable which is defined to be a geometrical object. Grasp

does not evaluate the variable, it remembers the name itself.

From then on operators which are not passed an object, operate

on the object attached to the "grasped" variable. Hence these

two chuncks of code do equivalent things:

(grasp thing) (define thing
(right .02 thing))

Actor/Scriptor Animation System User's Manual
Page: 108 , Section: Geometrical Operators

(right .02)
(define thing

(forward 30) (forward 30 thing))

Warning: since the grasp operator uses NAMES rather then

VALUES there is an opportunity for the "funarg" monster to

raise its ugly head. If a program, which does not use the

grasp operator, references the "grasped" object (e.g.:

(forward 10)) there is a possiblity of name conflicts between

the name of the grasped object and the variables of that

program.

F O R W A R D B A C K W A R D

See also: Number, Grasp

The forward operator moves an object along its own "forward"

direction. Forward expects one or two inputs, the first is the

distance to move along the "forward" direction. The second

input, if given, is the object on which to operate. If the

second input is ommited, the currently grasped object is used.

The backward operator differs from forward only in that the

motion is in the opposite direction.

Actor/Scriptor Animation System User's Manual
Page: 109 , Section: Self-Relative Geometrical Operators

R I G H T , L E F T

See also: Angle, Grasp

These operators cause an object to rotate about its own

vertical axis, to the right or left by an angle of rotation

specified as the first input. If an object is specified as a

second input, it is operated upon, otherwise the object

currently grasped is used.

U P , DOW N

See also: Angle, Grasp

These operators cause an object to rotate about its own

horizontal ("through the ears") axis, causing its "nose

vector" to go 2R or down by an angle of rotation specified as

the first input. If an object is specified as a second input,

it is operated upon, otherwise the object currently grasped is

used.

C W C C W

See also: Angle, Grasp

These operators cause an object to rotate about its own

Actor/Scriptor Animation System User's Manual

Page: 110 , Section: Self-Relative Geometrical Operators

horizontal ("nose vector") axis, in the clockwise (cw) or

counterclockwise (ccw) direction by an angle of rotation

specified as the first input. If an object is specified as a

second input, it is operated upon, otherwise the object

currently grased is used.

Examples of usage of self-relative operators:

(grasp camera)

(forward. 20)

(down 1/4)

These three steps cause the
object currently defined as
"camera" to be moved forward
20 units, then to tilt straight
down.

(defprog chase-tail
(input: object)

(left 0.01
(forward 2 object)))

This program, if used to redefine an object each frame,
would cause it to chase its tail around in a circle, like
dogs sometimes -do.

(defprog barrel-roll
(inputs: speed object)

(forward speed
(cw 1/100

(gg 1/100 object))))

This program will make the incremental change in an
object which would produce a "barrel-roll" flight path if
used to redefine an object each frame. Both the
"airspeed" and the object to be modified are specified.

H O M E

Actor/Scriptor Animation System User's Manual
Page: 111 , Section: Self-Relative Geometrical Operators

See also: Pov, Coordinates, Grasp

The home function will cause an object to be restored to its

"home" position and orientation. This has the effect of

undoing any self-relative operations which the object has

undergone. If given an object as an input, home will reset

that object. Otherwise the currently grped object is reset.

Example of use:

(grasp schmoo) Grasp the object named "schmoo"

(cw 1/3) Modify it ...

(IL 1/4)

(define schmoo2 schmoo) Save the modified version under
another name.

(home) Reset the state of "schmoo".

G R OW, S H R I N K

See also: Number, Scale

Grow and shrink cause an object to change size (about its own

center) by a specified amount. Both of these operators expect

one or two inputs, the scale change factor (a number), and

optionally, the object to change. If the second input is

omitted, the currently grasped object is used:

(q Lo w<growth-factor> (object>)

Actor/Scriptor Animation System User's Manual
Page: 112 , Section: Self-Relative Geometrical Operators

(grow <growth-factor>)

(shrink <shrinkage-factor> <object>)

(shrink <shrinkage-factor>)

Example of use:

(define big-flower Defines "big-flower" to be the

(grow 10 flower)) result of growing "flower" by
a factor of 10 in size.

Z O O M - I N, Z OO M - 0 U T

See also: Number, Scale, Camera

Zoom-in and zoom-out both basically do the same thing, they

are used to change the "magnification" ("zoom") of a point of

view ("camera") object by a specified amount. The camera of

the animation system is a variable whose value is n point of

view object. Both of these operators expect one or two inputs,

the zoom change factor (a number), and optionally, the pov to

change. If the second input is omitted, the currently grasped

pov is used:

(zoom-in <zoom-factor> <object>)

(zoom-in <zoom-factor>)

(zoom-out <zoom-factor> <object>)

(zoom-out <zoom-factor>)

Examples of use:

Actor/Scriptor Animation System User's Manual
Page: 113 , Section: Self-Relative Geometrical Operators

(grasp camera) The "camera" is made the
current object. It is moved

(forward 36) forward, turned to the
right, and then zoomed in.

(right 1/3)

(zoom-in 1.5)

(define cam2 A new camera ("cam2") is
(zoom-out 2 caml)) defined to be like "caml"

but with twice the angle
of view.

R E C OL OR

See also: Color, Polygon, Solid

The recolor operator will change the color of an object

without changing its shape, orientation, or position. Recolor

expects one or two inputs, the first is the new color for the

object. The second input is the object to be recolored, if it

is omitted the currently grasped object is used:

(recolor <color>)

(recolor <color> <object>)

The object returned by recolor is a copy of the original,

except that any colors occuring in the object (as part of a

polygon, solid, or subworld) will have been replaced by the

new color. The <color> used may be a simple color or a group

of two colors.

Actor/Scriptor Animation System User's Manual
Page: 114 , Section:
Self-Relative Geometrical Operators; Recolor

Examples of use:

(recolor red town)

(define blue-ball
(recolor blue ball))

Paints the town red.

Defines Tblue-ball" as a
blue copy of "ball".

Actor/Scriptor Animation System User's Manual
Page: 115 , Section:
Self-Relative Geometrical Operators; Recolor

S C A L E

See also: Numbers, Grasp

The scale operator is used to change the size of an object,

without changing its shape or color. We specify a number (a

scale factor") an an object, and scale returns an enlarges

(or shrunken) copy of the object. A scale factor of "2" means

to make the copy twice as large, a scale factor of one-half

(0.5) means that the copy should be just half the original

size. The difference between scale and the self-relative grow

and shrink is that the scaling is done about the global,

rather then local If the second input is omitted, the

currently grasped object will be used.

General usage:

(scale <scale-factor>)
or:

(scale <scale-factor> <object>)

Examples of use:

(scale 2 house) Makes a double sized copy of
"house".

(define tower Redefines the variable

(scale 10 tower)) "tower" to be ten times as
large as it was previously.

(define tiny-ball "tiny-ball" is defined to be
(scale .001 ball)) 1/1000 the size of "ball".

Actor/Scriptor Animation System User's Manual
Page: 116 , Section: Global Geometrical Operators; Scale

Figure 7

Note that when an object is scaled,
and it is not centered about the origin (vector 0 0 0),

it will appear to move away from the origin during a enlargment
(or towards the origin for a reduction in scale).

MHO V E

See also: Vector, Coordinates, Grasp

The moveoperator is used to change the position of an object

without changing its orientation or other properties. When we

pull the drawer out from a desk or a dresser, we are

performing a "move" operation on the drawer. The shape and

color of the drawer are the same, and it has not been rotated.

In English the word "move" has a more general meaning, but

here in this manual we will restrict it to mean this

particular type of "sliding without turning".

Actor/Scriptor Animation System User's Manual
Page: 117 , Section: Global Geometrical Operators; Move

9S

position vector". This is just one way of interpreting a

vector. The three coordinates of a vector specify "how far" in

each of three directions, "left", "up", and "forward" (also

known as "x", "y", and "z"). When we consider a vector as

"relative" we measure each of the distances from "where we are

now", parallel to the axes of the current coordinate system.

Move expects one or two inputs, a relative vector, and an

object to be moved. It returns a moved copy of the object.

This means that each part of the copied object will have been

moved along the vector from its previous position. If the

object specification is omitted, the currently gjrased object

is operated upon.

General usage:

(move <vector>)

(move <vector> <object>)

Examples of use:

(move that-a-way bad-guys) Makes a copy of "bad-guys"
which is moved along the vector
called "that-a-way" from its
original position.

(define friggle Redefine "friggle" to be one
(move (vector 0 0 1) "unit" further in the z or

friggle)) forward direction, then it was.

(move elevator-shaft-location
(move elevator-altitude elevator-car))

or equivalently:

Actor/Scriptor Animation System User's Manual
Page: 118 , Section: Global Geometrical Operators; Move

(move (move elevator-shaft-

location e evator-altitude)
elevator-car)

These expressions produce a copy of "elevator-car"
with compound motion based on the sum of two vectors,
the location of the elevator shaft, and how high the
elevator currently is within the shaft.

Y 2

Figure 8

A cube shown before, and after several moves,
along each positive coordinate axis.

R O T A T E

See also: Angle

The rotate operater is used to turn an object "around" an

axis. For example, the motion of a wheel around its axle is a

rotation. Rotate is also used to form anything with rotational

symmetry, such as the placement of petals of a flower about

its stem. Rotation does not effect shape or color, it will

Actor/Scriptor Animation System User's Manual
Page: 119 , Section: Global Geometrical Operators; Rotate

however change the position of an object which is away from

the axis of rotation (rotating the wheel changes the position

of the valve stem, for example).

Rotate can take one, two, or three inputs. We must always

specify the angle of rotation (how much to rotate) as the

first input. The second input is the object to rotate, if it

is omitted, the currently qrasged object is used. The third

input is the axis about which to rotate the object, if it is

omitted, the z-axis is used.

General usage:

(rotate <angle>)

(rotate <angle> <object>)

(rotate <angle> <object> <axis>)

The z-axis is the line perpendicular to the center of the

display screen (as seen by the initial camera), thus not

specifying a third input to rotate indicates that a rotation

of the x-y (screen) plane is desired. Rotation about the

z-axis is sometimes called a "two-dimensional" rotation (since

the z coordinates remains unchanged), and is the most commonly

used of any rotational axis. Axes may be specified as one of

the standard, named axes. These are x-axis, y-axis, and

z-axis. the convention for positive angles is that as we look

(in the positive direction) along the axis of rotation, a

positive rotation is clockwise.

Actor/Scriptor Animation System Usere's Manual
Page: 120 , Section: Global Geometrical Operators; Rotate

The angle by which the object should be rotated is given as a

number. Rotations are measured in "revolutions", one

revolution is one full turn.

Examples of use:

(rotate 0.1 wheel)

(rotate 1/2 wheel axle)

Form a copy of "wheel" rotated
one tenth of a revolution.

Rotate "wheel" half way around
the axis "axle".

(def ine krakle Redefines the object "krakle "

(rotate .001 krakle)) to be slightly rotated about
the z-axis.

(rotate (times angle step)
(move reposition frob)
current-axis)

An example of an expression which calculates all of its
inputs "on the fly" thus allowing them to change every time
the expression is re-evaluated.

I %

Figure 9

(a) The original "glork".
(b) result of: (rota'ce 1/6 glork).

(c) result of: (rotate 0.2 glork x-axis).

Actor/Scriptor Animation System User's Manual
Page: 121 , Section: Global Geometrical Operators; Stretch

S T R E T C H

See also: Scale, Coordinates, Grasp

The stretch operator is a more general case of the scale

operator. In scale we specify one scale-factor and this is

used to multiply all coordinates. In stretch we are allowed to

specify different scaling-factors for each coordinate axis

("x", "y", and "z"). If, for example, we wish to make an

object "tall and skinny", we would like to increase its

height, while decreasing its width and thickness. This would

correspond to a "scaling factor vector" similar to:

(vector 0.1 5.0 0.1)

The "scaling factor vector" indicates that "x" and "z"

coordinates should be reduced by a factor of 10 (multiplied by

0.1), while the "y" coordinates should be increased by a

factor of 5. When we wish one of the coordinate directions to

remain uneffected by a stretch operation, the corresponding

scale factor should be 1.0.

The stretch operator expects one or two inputs, a scaling

factor vector and optionally, the object to stretch. If the

object is omitted, the currently grasped object is stretched.

General usage:

Actor/Scriptor Animation System User's Manual
Page: 122 , Section: Global Geometrical Operators; Stretch

(stretch <scale-factor-vector>)

(stretch <scale-factor-vector> <object>)

Examples of use:

(stretch (vector 100 1 1) Produces a copy of "quux"
quux) which is 100 times wider then

the original.

(define wire
(stretch very-long cylinder))

Defines a "wire" to be a very long "cylinder".

(de ne short-people
(stretch (vector 1 0.75 1)

average-people))

"Short-people" are just "average-people" with less "y" scaling.

Figure 10

(a) The original octahedron.

(b) The result of: (stretch (vector 2 1 1)
octahedron)

(c) The result of: (stretch (vector 1 2 2)
octahedron)

Actor/Scriptor Animation System User's Manual
Page: 123 , Section: Global Geometrical Operators; Stretch

M IR R OR

Your left and right hands are very similar in overall

structure, but in a sense they are exact opposites. The mirror

operator changes the "handedness" of an object, just like

being reflected in a looking glass. Mirror needs no

parameters, it expects one input (the object to reflect) but

if it is omitted, the currently qrasped object is used:

(mirror)

(mirror <object>)

The object will be reflected about the y-z plane. As seen from

the camera's home position, this means that things on the left

hand side of the screen will be reflected to the right hand

side.

Examples of use:

(define right-hand Defines "right-hand" to
(mirror left-hand)) be a mirror image of

"left-hand".

(define ship-hull

(grou half-hull
(mirror half-hull)))

Defines "ship-hull" as two mirror symmetrical halves.

Actor/Scriptor Animation System User's Manual
Page: 124 , Section: Global Geometrical Operators; Mirror

Figure 11

(group gwiz (mirror gwiz))

Actor/Scriptor Animation System User's Manual
Page: 125 , Section: Global Geometrical Operators; Mirror

C U T - H O L E

See also: Polygon

When constructing polygons with the polygon function we are

limited to forming polygons with just one boundary. To form

multi-boundary polygons we use the cut-hole operator. Cut-hole

allows any number of inputs, which all must be polygons. It

returns one polygon which contains the boundaries of all of

the input polygons, and the color of the first input polygon.

General usage format:

(cut-hole <polygonl> <polygon2> ...)

Polygons are filled by "parity" (also known as the

"checker-board" rule), this means that if we where to crawl

across the plane of the polygon, every time we crossed a

boundary the "filled-in-ness" of the polygon changes. If a

polygon has two boundaries, one inside the other, the inner

boundary forms a hole in the polygon. If there was yet another

boundary inside the other two, it would surround a filled-in

part, an "island".

Examples of use:

(define wall
(cut-hole rectangle window-1 window-2))

Actor/Scriptor Animation System User's Manual
Page: 126 , Section: Global Geometrical Operators; Cut-hole

Defines "wall" as a rectangle with two specified windows cut

through it.

(define board
(cut-hole board knot-hole))

Redefines "board" as having a "knot-hole" through it.

P R I S M

See also: Color, Vector, Polygon, Solid, Move, Cut-hole

In geometry, as in the animation system, a prism is a solid

with two identically shaped, parallel polygons as "ends", and

between the corresponding edges of the ends, "sides" in the

shape of parallelograms. The prism operator expects three

inputs; a color for the sides, a vector representing the

relative positions of the "ends", and a polygon which will

become one of the "ends". The other "end" is formed by moving

the polygon along the vector (and reversing its front and back

colors). Prism returns a solid which has the specified

prismoid shape. Note that a polygon with "holes" may be used

to make a prism, and the resulting solid will have holes

through it. Usage format:

(prism <color> <vector> <polygon>)

Examples of use:

Actor/Scriptor Animation System User's Manual
Page: 127 , Section: Global Geometrical Operators; Prism

(defprog pentagon-doughnut

(inputs: color size thickness hole-ratio)
(local: pent)

(define pent
(reg-poly color 5))

(define pent
(cut-hole (scale size pent)

(scale (times size hole-ratio)
pent)))

(Erism color
(vector 0 0 thickness)
pent))

This is a function which forms a "pentagon-doughnut",
this is the shape of the Armed Forces Headquarters in
Washington D.C. The parameters represent; the color of
the whole thing, the size from the center out to the
edges, the thickness of the prism, and how much of the
bulk is hole. The "reg-poly" function returns a regular
polygon and is defined in the section on "Low Level Data
Base Interface".

R E P L I C A T I N G O P E R A T O R S

See also: Group

Geometric operators like forward and rotate give us back an

object with exactly the same structure as the object we passed

to the operator. The group operator takes many objects and

returns a single object whose structure contains all of the

others. The programs known as replicating operators take one

object, and return a group of many modified copies of the

original object. Replicating operators function much like an

Actor/Scriptor Animation System User's Manual
Page: 128 , Section: Replicating Geometrical Operators

office photocopier, you give it an original, it gives you back

a group of copies.

R O W

See also: Vector, Move

The row operator is used to make a row of copies of an object.

Row expects two or three inputs, the first is the number of

copies to make, the second is the object to copy. If a third

input is given it is the vector we would use to move the

original object to the position of the next object in the row.

(row <count> <object>)

(row <count> <object> <vector>)

If the third input is not specified, it is assumed to be a

unit vector in the "x" direction: (vector 1 0 0).

Typical uses for row include: making a multi-story building

from a model of just one story, making rows of rows (columns)

to form rectangular arrays, or to construct a picket fence

from one picket:

(define building
(row 20

single-story
(vector 0 10 0)))

(define rect-array
(row 5

Actor/Scriptor Animation System User's Manual
Page: 129 , Section: Replicating Geometrical Operators

(row 5
array-ele.uent
(vector 50 0))

(vector 0 50)))

(define fents
(row 100 fent))

Figure 12

Adapted from "Never Eat Anything Bigger Than
Your Hlead & Other Drawings" by B. iliban.

R I N G

See also: Angle, Rotate

The ring.operator forms multiple copies of an object, arranged

along a circle. We specify the number of copies, and the

object to be copied. If a third input is given, it is the axis

about which to rotate the copies, otherwise the z-axis is

used.

General usage format:

(ring <count> <object>)

(ring <count> <object> <axis>)

Actor/Scriptor Animation System User's Manual
Page: 130 , Section: Replicating Geometrical Operators

- De

of

Examples of use:

(define stonehenge Defines "stonehenge" as a ring

(ria 30 stones)) composed of 30 upright "stones".

(define wheel

(group hub
rim
(ring 40 spokes x-axis)))

Defines "wheel" as being made up of a "hub", a "rim" and
40 "spokes" arranges about the hub.

R E P OP

See also: Row, Ring

eoa is a generalized replicating operator. Just as with row

and ring, wk specify the number of copies, and the object to

be copied. In addition we specify an expression which tells

how to form the "next" element of the group from the previous

element. General usage format:

(repop <count> <object> <next-expr>)

The <next-expr> is any valid expression, and may contain

references to the variable named "*". The <next-expr> is not

evaluated until we are inside the reeop. But when the

<next-expr> is evaluated, the variable "*" will contain the

previous element of the group. For example, to indicate that

each element should be twice as large as the previous one we

Actor/Scriptor Animation System User's Manual
Page: 131 , Section: Replicating Geometrical Operators

would use this <next-expr>:

(scale 2 *)

As an example of the use of the repop operator, here is a

definition of the two input version of row. We will call it

"row2":

(defprog row2
(inputs: count object)

(repop count
object
(move (vector 1 0 0) *)))

Actor/Scriptor Animation System User's Manual

Page: 132 , Section: -Replicating Geometrical Operators

OTRLST RU C TU RES

The parts of the scripting language described in this section

are those which make it a full programming language rather

then simply a collection of predefined actions. The scripting

features described in the second section are intended to

provide for about 90% of the scripting that might be done with

this system. For the oddball 10% however, it is possible to

create your own programs to do what the predefined programs

cannot.

To allow general programming, features are prqvided for

attaching program definitions to names (defprog), for

conditional evaluation (if, then, else), and for repetitive

evaluation (loop). Programs can have parameters (input

variables) and auxiliary storage (local variables). Parameters

are passed just as in Lisp (if that does not mean anything to

you, ignore it). All programs, like any other expression,

return values.

D E F P R 0 G (Define Program)

See also: Program, Variables, Evaluation, Expressions

Actor/Scriptor Animation System User's Manual

The defprog function is used to name and define programs. Once

a program has been defined by defprg it can be invoked

("called") from scripts or from other programs (in fact a

program can call itself).

(defprog <prog-name>
(declarations-of-variables)
<exprl>
<expr2>

S..)

Let us assume for a moment that we found that in some script

we were writing, that we frequentally needed to double the

size of various objects. We might then want to define a

program to do this:

(defprog double
(input:. object)

(scale 2 object))

This defines the program "double", making the name stand for

the operation of scaling an object by 2. The defprog

e-xpression also declares that the program has one variable, an

input variable (or "formal parameter" as they say in the

formal computer science biz) named "object". This means that

when we call this program from somewhere, we will pass it one

input expression, which is evaluated to form the object to

have its size doubled (that object is sometimes called the

Actor/Scriptor Animation System User's Manual
Page: 134 , Section:
Control Structures; Define Program Operator

'actual parameter").

The "body" (or executable portions) of the defprog follow the

name and any program variable's declarations. The body may

cotain any number of expressions, during execution each

expression is evaluated in turn. The value returned by the

entire program (to the caller) is the value of the last

expression in the body. in the example above, "double" only

has one expression in its body, a call to the scale function,

so the result of the scale is returned as the result of the

invokation of "double".

To use the program "double" from somewhere else we would write

the same kind of calling expression we would use for a

predefined program, that is: a parenthesized list with the

name of the program as the first thing in the list, followed

by any input expressions for the program. Since "double" has

just one input, it would have just one input expression. For

example to make a copy of a cube twice the size of "cube":

(double cube)

Or to double the size of a group of "cube" and "tube":

(double (group cube tube))

To define "c-and-t" to be the double sized group of "cube" and

tube":

(define c-and-t

Actor/Scriptor Animation System User's Manual
Page: 135 , Section:
Control Structures; Define Program Operator

(double (group cube tube)))

I F (If-Then-Else)

See also: Cue, Evaluation

When a decision has to be made, a choice made between

alternate actions, we use either the cue function or the if

function. If expects 2 or 3 inputs, an expression to test for

truth or falseness, plus a then clause and/or an else clause.

These clauses are lists of expressions, starting with either

then or else. The first input is evaluated, if it is true the

body of the then clause is evaluated, otherwise the body of

the else clause is evaluated. The value returned by the entire

if is the value of the clause which was evaluated. Either of

the clauses may be omitted (if an omitted clause is selected,

its value is nil).

Usage:
(if <test>

(then <then-body>)
(else <else-body>))

or:
(if <test>

(then <then-body>))

or:
(if <test>

(else <else-body>))

Actor/Scriptor Animation System User's Manual
Page: 136 , Section: Control Structures; If Construct

Examples of use:

(if (less x 0)

(then (define x 0)))

(if (equal a b)

(then. (start zipper))

(else (start zapper)))

If 'x" is non-positive,
redefine it to be zero.

When "a" and "b" are
the same, activate the
actor "zipper".
Otherwise activate the
actor "zapper".

L O OP

When we produce animation, there is an ongoing loop structure.

Each frame we repeatedly go through the same set of cues,

repeatedly activating each of the actors, and so on. However

the implicit loop in an animate expression is not the only

place where it is convenient to use the notion of a "loop".

For this reason, the looR construct is provided. A loop is the

programming equivalent of saying "and so on ... ".

When there are several similar tasks to be performed, we could

either repeat the expression needed to accomplish the task

several times, or we can use the log construct to execute the

same expression several times.

For example, assume we want to print the value of the variable

"slunk" six times, we could write:

Actor/Scriptor Animation System User's Manual
Page: 137 , Section: Control Structures; Loop Construct

(print slunk)
(print slunk)
(print slunk)
(print slunk)
(print slunk)
(print slunk)

or we could use a loo:

(loop (repeat 6)

(print slunk))

A lo expression is a parenthesized list of expressions

starting with the word "loop". Each expression in the body of

the loop is executed in turn, and in the absence of any loop

control expressions (see below) this will repeat over and

over. The looping will go on until the end of time, or when

the program is interrupted from the user's console (whichever

comes first).

Normally a loop is exited when any of the loop termination

conditions occur. The programs which can cause these

conditions are: repeat, while, until, and loop-exit.

Repeat expects a number and optionally a return value

expression:

(repeat <count>)

(repeat <count> <return-value-expr>)

When a repeat expression is executed for the (<count> + 1)th

Itime, the surrounding loop will be exited, if a return value

Actor/Scriptor Animation System User's Manual
Page: 138 , Section: Control Structures; Loop Construct

expression was specified, it is evaluated and returned for the

value of the entire loop.

The while expression is similiar, except the first input is an

expression to test for "true". If the value is "true" then the

loop will continue on. But if the expression is "false", the

surrounding loop is exited, and the return expression (if any)

is returned as the value of the loopg:

(while <test>)

(while <test> <return-value-expr>)

The until expression is just about the same as the while

expression, except that the sense of the test is reversed. The

loop will exit when the <test> is "true":

(until <test>)

(until (test> creturn-value=expr>)

Loop-exit causes an unconditional exit of the surrounding

loop, an optional input will be evaluated and returned by the

loopg:

(loop-exit)

(loop-exit return-value-expr>

One other loop control program is provided loop-top, which

expects no inputs and simply jumps, to the top (start) of the

Actor/Scriptor Animation System User's Manual
Page: 139 , Section: Control Structures; Loop Construct

loop in which it occurs:

(loop-top)

In addition to the loop control expressions, and any other

executable expressions, the first thing in a loog body may be

a local variables declaration expression. These variables may

be given initial values, and will disappear when the loop

exits.

Examples of use:

(loop (local: (i 0))

(while (less i 20))

(inc i)

(run zipper
(for 1000)
(define speed i)))

Starts 20 instances of the actor "zipper" with assorted
Sspeeds.

(loop (define x

(get-next-one))

(until (equal x 0))

(process-it x))

This will repeatedly call "get-next-one", and if its

value is not zero, it will "process-it". As soon as an

"x" is encountered which is zero the loop will exit. Note

that the until expression is embedded in the loop body,

just as any of the other loop control programs may be.

This is a solution to the "loop-and-a-half" problem,
which is common to many programming languages.

Actor/Scriptor Animation System User's Manual
Page: 140 , Section: Control Structures; Loop Construct

N U M E R I C

See also: Number

O PERA T OR S

The numeric operators are functions for performing basic

arithmetic operations on numbers. Functions are supplied for

addition, subtraction, multiplication, division, and square

rooting. Programs are also provided which increment or

decrement a variable's value.

The plus function takes any number of numerical inputs and

returns their sum.

The difference function (also called dif) takes any number of

numerical inputs, dif of two inputs is normal subtraction. Dif

of other numbers of inputs are handled like this:

(dif a) == -a
(dif a b) -= (a-b)
(dif a b c d e ...) == ((((a - b) - c) - d) - e)

The times function takes any number of numerical inputs and

returns their product.

The quotient function (also called quo) takes any number of

numerical inputs, quo of two inputs is normal division. JQUo of

Actor/Scriptor Animation System User's Manual
Page: 141 , Section: Numerical Operators

other numbers of inputs are handled as in dif.

The square-root function (also called sgrt) takes one

numerical input and returns its square root. Remember that

using real numbers (as we are), the square root of a negative

number does not exist.

The increment and decrement operators (inc and dec) are used

to redefine a variable's value as having had one added to, or

subtracted from it. These are used to manipulate "counters",

variables used to keep track of how many times we have done

something. For example, every time somebody passes through a

turnstile, a mechanical counter is incremented. Inc and dec

are just shorthand for the use of define and plugs, these two

expressions do exactly the same thing:

(inc sheep-count) (define sheep-count

(plus 1 sheep-count))

Actor/Scriptor Animation System User's Manual
Page: 142 , Section: Numerical Operators

Example of use:

(defrog magnitude

(input: vector)

(sgrt (plus (sq (vx vector))
(sq (vy vector))
(sq (vz vector)))))

(defprog sq
(input: x)

(times x x))

These programs serve as an implementation of the vector

operator magnitude which calculates the length of a

vector. The functions vx, _y, and vz are used to extract
the coordinates of a vector. Note the use of an auxiliary
function "sq" used to square numbers.

C O M P A R I S ON A N D T E S T I N G O P E R A T O R S

See also: Cue, If, While, Until, Low Level Data Type Predicates

These testing functions answer questions about their inputs,

such as "is A equal to B?" or "is A numerically less then B?".

They return a value which represents "true" or "false" (t or

nil). These values are used by various control programs (such

as if) to determine which path to take through the user's

program.

The empty function tests to see if its one input is an empty

Actor/Scriptor Animation System User's Manual
Page: 143 , Section: Comparison and Testing Operators

list, that is "()" or nil.

The less function tests its two numerical inputs to see if its

first input is less then its second input.

The less-eq function tests its two numerical inputs to see if

its first input is less then or equal to its second input.

The greater function tests its two numerical inputs to see if

its first input is greater then its second input.

The greater-eq function tests its two numerical inputs to see

if its first input is greater then or equal to its second

input.

The equal function tests its two inputs (which may be of any

type) to see if they are equal.

The and function takes any number of expressions (usually

comparison operators) and returns "true" only if all of the

input values themselves where "true".

The or function takes any number of expressions (usually

comparison operators) and returns "false" only if all of the

input values themselves where "false".

Actor/Scriptor Animation System User's Manual
Page: 144 , Section: Comparison and Testing Operators

Examples of use:

(less a b) Is "a" less than "b"?

(greater x 0)) Is "x" positive?

(defprog less-eq This is an implementation of

(input: p q) the less-eq function, using
less, equal, and or.

(or (less p q)
(equal p q)))

G E N E R A L P U R P OS E U T I L T I E S

These programs are not strictly part of the Actor/Scriptor

Animation System, in fact they are part of the Lisp system in

which ASAS is implemented. They are however often useful for

the animator to know about.

Help is used while you are at the console to get information

about the system. The usage is:

(help <topic-name>)

The <tQic name> is not evaluated, the name itself is used. If

the topic name is "*", a list of all available topics is

printed. To get information about a specific topic (say actor)

type "(help actor)" and the documentation will be printed at

your console. For the most part, the documentation will be the

same as the corresponding section in this User's Manual.

Actor/Scriptor Animation System User's Manual
Page: 145 , Section: General Purpose Utilities

Read is a function of no inputs, which returns the next full

expression from the user's console. It waits until the

expression is complete (all parenthesis must balence for

example).

Print expects one input, and will print the value of that

expression on the console.

Back trace (or bt) is used to help describe what happened

after an error condition occured. After the error message, you

are not back to where you started, you are still "inside" the

program which got the error. To see how you got there, type:

(back trace)

It will give a list of the programs which you have entered,

but not yet exited. Hence the list "a, b, c" means the error

occured in "a", which was called from "b", which was called

from "c".

(bt t t)

This will list the entire expression from which each program

was invoked.

Release (or rl) is used to get out of the error handler, and

down to the previous level. Pending program variables will

then be restored to their previous value. Note that error

Actor/Scriptor Animation System User's Manual
Page: 146 , Section: General Purpose Utilities

handlers can "stack" so that if you get two errors in a row

without releasing you will be on the second level.

juit gets you out of the Lisp interpreter, and hence out of

the animation system. It does a "release all levels" before

exit. Quit is one of the rare functions that does not return a

value, it just puts you back into the MagicSix operating

system.

Actor/Scriptor Animation System User's Manual
Page: 147 , Section: General Purpose Utilities

V I D E O P R O D U C T ION U T I L I T I E S

See also: Script, Animation

The programs described in this section are used only in the

final stages of animation production. They are used to control

the graphical output of the animation system, and to specify

the production time options. Programs are provided to produce

test patterns, count downs, and black leader.

AN I MAT ION-MODE

The animation-mode program sets system parameters which effect

the action of the system as it produces an animated sequence.

This program has two names, for typing convenience, the name

amode may be used. The program expects two inputs, the first

is not evaluated and specifies the name of one of the

animation mode flags. The second input is the new value for

for that mode flag, which may be either the word "on" or "off"

or any other expression to be evaluated:

(animation-mode <mode-name> <new-mode-value>)

Modes:

Actor/Scriptor Animation System User's Manual
Page: 148 , Section: Video Production Utilties

Name: Description: Allowable values:

display (display enable) on / off
eof (end-of-frame message enable) on / off
number (display frame number on each frame) on / off
record (video disk recording enable) on / off
pause (wait on console each frame) on / off
trace (active actor tracing) <actor-id> / off
untrace (removes from tracing list) <actor-id>

The on/off modes are straitforward, they act like light

swithes. Pause mode is used to "step through" the execution of

a script, each frame the system will pause and listen to the

user's console. At that time the animator may either just tell

it to go on, or may examine the state of program variables.

The trace mode is used to watch the action of particular

active actors. The value "off" stops any ongoing tracing. If

the value is a number, it is presumed to be a actor

identification number (as returned by start, or run). If it is

a valid id number, that actor is added to the tracing list.

Then at the appropriate time during the animate loop, each

traced actor is listed at the console.

Examples of use:

(animation-mode record off) Tells the system not to
record frames on the disk.

(amode trace actorl) Adds "actorl" to the tracing
list.

B L A C K

Actor/Scriptor Animation System User's Manual
Page: 149 , Section: Video Production Utilties

The black program is used to produce frames with nothing on

them, this is usually put at the beginning and end of a

production, and between any sequences which must be seperated.

Black expects one input, the number of seconds of black frames

to produce:

(black 5) Puts out 5 seconds, or 150
frames of black.

C O L O R - B A R S

Color-bars is a standard test pattern used to calibrate color

balence information on video recordings. It consists of

patches of the primary and secondary colors, as well as gray,

"I" and "Q". The program expects one input, the number of

seconds of "bars" to produce.

T E S T - P A T

Test-pat is a color, gray level, linearity, and resolution

tester. It also includes the date produced. The test-pat

program expects one input, the number of seconds to produce.

Actor/Scriptor Animation System User's Manual
Page: 150 , Section: Video Production Utilties

C OU NT - D OW N

The count-down function is used to mark the actual beginning

of the animated production. It is used by anyone who will mix

your animated sequence with anything else (for example, a

television program about computer animation). The start of the

count down is a "warning" that the real start is coming up.

The count serves to allow the person doing the mixing to

synchronize the end of the previous scene with the start of

your animated sequence.

S L A T E

A slate is the information frequently put at the start of a

piece of film or tape, giving the date produced, title of the

production, and the people involved in the production. The

slate program expects one or more input expressions, the f-irst

input is the number of seconds of slate desired. The next two

input expressions will not be evaluated, but are considered to

be the title and the animator's name. These are specified as

either a single word, or a parenthesized list of words. Any

additional input expressions are treated as more text for the

slate. The date and time of the production are automatically

added to the slate. General usage format:

Actor/Scriptor Animation System User's Manual
Page: 151 , Section: Video Production Utilties

(slate <seconds> <title> <animator>)
or:

(slate <seconds> <title> <animator> <textl> ...)

Example of use:

(slate 5
(Actor/Scriptor Animation System Demo)
(Craig W. Reynolds)
(The Architecture Machine Group - MIT)
(Cambridge, Massachusetts))

L O W L E V E L G E O M E T R I C A L O P E R A T O R S

See also: Vector, Polygon

These functions provide low level manipulation of certain

geometrical objects. They are often useful when defining your

own geometrical operators.

The vadd and vsub functions add and subtract vectors, the

result is another vector. Each expect two inputs, both

vectors.

The magnitude function expects one vector as input, and

returns the magnitude or length of the vector.

Three functions are provided to extract the "x", "y", and "zN

coordinates from a vector. The functions are called vx, yy,

and vz; they each expect one vector input.

Actor/Scriptor Animation System User's Manual
Page: 152 , Section: Low Level Operators

The area function expects one polygon as input, and returns

the area of the orthagonal projection of the polygon onto the

x-y plane. If the area is positive, the "front" of the polygon

points towards the x-y plane, otherwise it points away. The

area is expressed in units of pixel areas; hence if a polygon

has an area of 123.4 this means that it would cover about 123

pixels if projected onto the display screen.

L O W L E V E L D A T A B A S E I N T E R F A C E

See also: Data types

Occasionally we cannot construct the objects we desire using

the standard operations. The data base primitives are

essentially used to convert between Actor/Scriptor Animation

System data types and Lisp lists.

The color-of function returns the color of its one input, a

geometrical object.

The lofcof function takes one geometrical object and returns a

list of the contents of the object.

Actor/Scriptor Animation System User's Manual
Page: 153 , Section: Low Level Operators

The bid- functions take a list of "contents" and build the

specified type of object. For example bld-vec takes a list of

coordinates and builds a vector data type from them. Here is a

list of the bld- functions and expected args:

(bld-color <red> <green> <blue>) Color

(bld-qrp <list-of-objects>) Group

(bld-poly <color> <list-of-vectors>) Polygon

(bld-pov <list-of-vectors>) Pov

(bld-ald <color> Solid
<list-of-vertex-names>
<list-of-vectors>
<list-of-faces>)

(bld-sub <pov> Subworld
<color>
<size>
<list-of-objects>)

(bld-vec <list-of-coords>) Vector

Example of use:

(defprog reg-poly

(inputs: color sides)

(bld-poly color
(lofcof (ring sides

(vector 0 1)))))

This is a program to create regular polygons, as inputs
it takes the number of sides desired on the polygon and
its color. It works by creating a ring of vectors, (which
is a group or vectors), taking the ring's contents, and
using them to build The new polygon.

Because the "type" of an object can be determined by examining

it at run type, a set of functions are provided to test the

Actor/Scriptor Animation System User's Manual
Page: 154 , Section: Low Level Operators

type of a given object. These "predicate" functions test for a

particular type and return a "true" or "false" result. Each of

the predicate functions expects just one input, the object to

test. The names of the predicates are the name of the type,

followed by the letter "P", for predicate. Additionally the

.objectp predicate test to see if its input is any of the

valid geometrical objects. Usage formats:

(Actorp <object-to-test>)

(colorp <object-to-test>)

(groupp <object-to-test>)

(objectp <object-to-test>)

(numberp <object-to-test>)

(2olygon- <object-to-test>)

(po~vP<object-to-test>)

(soglidp <object-to-test>)

(subworldp <object-to-test>)

(vectorp <object-to-test>)

Actor/Scriptor Animation System User's Manual
Page: 155 , Section: Low Level Operators

B I B L I 0 G R A P H Y

1
Austin, H., "The LOGO Primer", MIT A. I. Lab. Logo Working
Paper 19.

2
Birtwistle, Dahl, Myhrhaug, and Nygaard, SIMULA Begin,
Auerbach 1973.

3
Burtnyk, N. and Wein, M. "Interactive Skeleton Techniques
for Enhancing Motion Dynamics in Key Frame Animation",
CACM, October 1976, p. 564.

4
Church, A "The Calculi of Lambda Conversions", Annals of
Mathematical Studies 6, Princeton University Press 1941.

5
Dahl, Myhrhaug, and Nygaard "The SIMULA 67 Common Base
Language", Norwegian Computing Centre, Oslo, 1968.

6
Dijkstra, E.W. "Notes on Structured Programming", August
.1969

7
Goldberg, A. "SMALLTALK and Kids -- Commentaries",
Learning Research Group, Xerox Palo Alto Research, 1974

8
Goldberg, A. and Kay, A. "SMALLTALK-72 Instruction ManuaV"
Learning Research Group, Xerox Palo Alto Research, March
1976.

9
Goldstein, I., Abelson H., and Bamberger, J. "LOGO Progress
Report 1973-1975", MIT A.I. Lab Memo 356, March 1976.

10
Greif, I. and C. Hewitt "Actor Semantics of PLANNER-73",
Proc. of ACM SIGPLAN-SIGACT Conf., Palo Alto, Ca.,
January 1975.

11
Hewitt, C. and Atkinson, R., "Parallelism and Synchron-
Actor/Scriptor Animation System User's Manual
Page: 156 , Section: Bibliography

ization in Actor System", ACM Symposium on Principles
of Programming Languages 4,JanuaryI1977 h.77ThClifornia.

12
Hewitt, C. "Viewing Control Structures as Patterns of
Passing Messages", A.I. Memo 410, MIT A.I. Lab, 1976.

13
Hewitt, C. and B. Smith, "Towards a Programming Apprentice",
IEEE Transactions on Software Engineering SE-1, March 1975.

14
Jones, B. "An extended ALGOL-60 for Shaded Computer
Graphics", ACM SIGPLAN/SIGGRAPH Symposium on Gr
Languages, April 1976.

15
Kahn, K. "An Actor-Based Computer Animation Language",
Proc. of the ACM-SIGGRAPH Workshop on U
Design of CoMputer Graphics Systems, Pittsburg, P
October 1976.

16
Kahn, K., "A Computational Theory Of Animation", MIT A.I.
Lab. Working Paper 145, April 1977.

17
Kahn, K., MIT Doctoral Thesis, to be submitted this year.

18
Kitching, A. and Emmett, C. "The ANTICS Computer Animation
System", ACM-SIGGRAPH Newsletter: Computer Graphics,
Winter 1976.

19
Lieberman, H. "The TV Turtlc: A Logo Graphics System for
Raster Displays", ACM SIGPLAN/SIGGRAPH Symposium on
Graphical Languages, April 1976.

20
Lieberman, H. and Kahn, K. "Computer Animation: Snow White's
Dream Machine", Technology Review magazine, MIT, October-
November 1977.

21
McCarthy, Abrahams, Edwards, Hart, and Levin, "Lisp 1.5
Programmer's Manual", MIT Press, Cambridge, Mass. August
1962.

22

Actor/Scriptor Animation System User's Manual
Page: 157 , Section: Bibliography

Mezei, L. and Zivian, A. "ARTA: An Interactive Animation

Animation", Technical Report, University of Toronto, 1976.

23
Moon, D. "Maclisp Reference Manual", MIT Project MAC memo,
December 1975.

24
Negroponte, N., "The Return of the Sunday Painter or The

Computer in the Visual Arts", Future Impact of Computers

and Information Processing, Dertouzos and Moses editors.

1978.

25
Newman, W. and Sproull, R. Principles of Interactive

Computer Graphics, McGraw - Hill, 1973.

26

Papert, S., "Teaching Children Thinking", MIT A.I. Lab,
Memo 247, October 1971.

27

Papert, S., "Teaching Children To Be Mathematicians vs.

Teaching About Mathematics", MIT A.I. Lab, Memo 249, 1971.

28
Papert, S., "A Computer Laboratory for Elementary Schools",
MIT A.I. Lab, Logo Memo 1, October 1971.

29
Pfister, G. "A High Level Language Extension for Creating
and Controlling Dynamic Pictures", ACM SIGPLAN/SIGGRAPH

Symposium on Graphical Languages, April 1976.

30
Rivlin, R. "Electronic Image Creation and Manipulation
System", Millimeter magazine, October 1976.

31
Smoliar, S. "A Parallel Processing Model of Musical Struct-

ures" MIT A.I Lab. AI-TR-242, September 1971.

32
Sutherland, I. "Sketchpad: A Man-Machine Graphical Com-
munication System", MIT Lincoln Lab TR-296, 1963.

33
Watkins, G. "A Real-Time Visible Surface Algorithm", Univ.

of Utah Tech. Report, UTECH-CSc-70-101, June 1970.

Actor/Scriptor Animation System User's Manual
Page: 158 , Section: Bibliography

34
Wirth, N. "MODULA: a Language for Modular Multiprogramming",
Software, Practice and Experience 7,1; 1977 pp. 3-35.

Actor/Scriptor Animation System User's Manual
Page: 159 , Section: Bibliography

