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ABSTRACT

The principal computational step in using homomorphic sig-
nal processing is the computation of the complex cepstrum which
requires phase unwrapping. A technique based on fitting the
splines to the phase derivative curve is proposed and analyzed
in one and two dimensions. It is shown that the use of splines
leads to a very reliable phase unwrapping algorithm.

In one dimension an analysis is made, under the assumption
that the zeroes of the finite length sequence are known, to
relate the closeness of the zeroes to the required frequency
sampling rate. The minimum FFT size and the thresholds of the
phase unwrapping are analyzed as a function of the radii of the
zeroes. These results are useful if we have some idea about
the order of closeness of zeroes relative to the unit circle
for the specific type signal under consideration.

An application of complex cepstrum in testing the stabil-
ity of one and two dimensional recursive digital filters is
considered. This method of checking the stability is compared
with the existing methods on the basis of computational com-
plexity, programming, and efficiency.
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CHAPTER 1

INTRODUCTION

I.1 Introduction

Homomorphic signal processing, a class of nonlinear fil-
tering techniques, based on linear filtering operations, has
been applied to a variety of problems in image processing,
speech analysis-synthesis, seismology, EEG data processingetc.

The main computational step in using this technique is
the computation of complex cepstrum. For minimum or maximum
phase sequences, there exist a set of recursive equations
which can be used for its computation. Howeveé, the applica-
tion of these recursive equations to a mixed phase sequence
does not make any sense. Furthermore, the use of these equa-
tions is inefficient. 8o in general for a sequence of data,
we need a direct method of computation.

The complex cepstrum is defined as the inverse z-trans-
'form of the complex logarithm of the z-transform of a signal.
Since the complex logarithm is a multi-valued function, the
condition of uniqueness and analyticity require that the
phase function associated with the signal be defined so that
it is continuous, odd and periodic. An inverse tangent rou-
tine will typically compute a phase value, called the princi-
pal value, between -7 and 7. Thus the phase is obtained mod-

ulo 27 and must be "unwrapped" to satisfy the continuity
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requirement. This process is known as phase unwrapping.

I.2 Previous Work

In the past phase unwrapping in one dimension has been

done using the following three techniques:
(i) Processing of the principal value of the phaSe [1}
(Schafer's Algorithm)
(ii) Numerical integration of phase derivative
(iii) Adaptive numerical integration scheme [2] (Tribolet's
Algorithm) .

In Schafer's algorithm it is essential to correctly iden-
tify the jumps of 2m for successful phase unwrapping and it
has been shown that the principal value alone is not suffi-
cient for successful phase unwrapping [2]. Numerical integra-
tion requires a perfect integration rule so that, while integra-
ting the phase derivative, the truncation error will be small.
The adaptive numerical integration scheme combines the first
two approaches. It requires a considerable amount of computa-
tion time because of the step interval adaption, the global
estimate of the linear phase and the simple trapezoidal rule
for integration used.

The two-dimensional (2-D) cepstrum is a straightforward
extension from the one-dimensional (1-D) definition. Dudgeon
[3] has given the necessary and sufficient conditions (which
are similar to the 1-D case) for its existence. There have

been two attempts [4, 22] for the computation of the 2-D cep-
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strum. Both are based on processing the principal value of
t;e phase and therefore, they are not reliable for the same
reasons as mentioned in the 1-D case; Moreover, until now no
analysis has been made relating the frequency sampling rate
to changes in the phase derivative curve or to the locations

of zeroes of a finite length sequence relative to the unit

circle.

I.3 Main Purpose

The main purpose of this dissertation is to make a com-
prehensive study of the complex cepstrum and its application
for testing the stability of 1-D and 2-D recursive digital
filters.

An investigation of piecewise interpolation methods for
integration, viz., cubic spline, Bessel and Hermite interpola-
tion has been carried out. It is shown that the use of splines
leads to a very reliable phase unwrapping algorithm.

This approach to phase unwrapping has also been implemented
in two dimensions, where a number of computational strategies
have been considered. In one dimension an analysis is presented
to relate the closeness of the zeroes of a finite length se-
quence and the frequency sampling rate in order to answer the
question cf what the minimum FFT size should be if the zeroes
are very close to the unit circle. Other issues such as the
need for double precision, efficient computation of DFT at a

single frequency which is not on the BFT raster and a more
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reasconable estimate for the linear phase component 2re con-
sidered.

Finally, the use of the complex cepstrum for checking
the stability of 1-D and 2-D recursive digital filters is
explored. In 1-D we make use of the fact that the number of
zeroes outside the unit circle is equal to the slope of the
linear phase. In 2-D this concept does not apply because
there is no factorization theorem. But in 2-D we make use
of the fact that if the system is stable, then the cepstrum
is non-zero only where impulse response is nnn-zero. The
comparison of this method with the existing methods is also
considered.

In Chapter II we review the basic theory of one-dimen-
sional homomorphic systems. In Chapter III we present the
existing methods for phase unwrapping, introduce the use of
piecewise polynomial interpolation and discuss in detail the
computational problems encountered and their solutions for
phase unwrapping in one dimension. Chapter IV presents an
analysis of various theoretical and practical questions
associated with phase unwrapping in one dimension. Chapter V
discusses the properties and computation of the two-dimen-
sional complex cepstrum. In Chapter VI we consider the use
of the comp.ex cepstrum for checking the stability of fil-
ters in one and two dimensions. Finally, Chapter VII gives
a summary and suggestions for further work that can be carried

out.
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CHAPTER II

ONE DIMENSIONAL HOMOMORPHIC SYSTEMS

II.1 Introduction

Generally a linear filter is used when one is faced with
the problem of separating two signals which have been added.
The linear filters are easy to analyze and are convenient in
filtering such signals. This is a consequence of the super-
position property, according to which the behavior of a linear
system L for the sum of signals xl[n] and xz[n] is the sum of

responses yl[n] and y2[n], that is,

L(axlln] + bx2[n]) = aL(xlln] + bL(xZ[n]) = aylln] + bylln]

(2.1)

for arbitrary constants a and b.

However, in many situations, we encounter signals which
are combined by a rule other than addition, e.g., multiplica-
tion or convalution. In such cases linear systems may be
quite ineffective in separating or independently modifying
the component signals. However, it is desired to filter the
signals through systems that are matched to such.rules (multi-
plication, convolution etc.) in the same way fhat linear sys-
tems are matchéd to addition. This leads to the consideration
of classes of nonlinear systems that obey a generalized prin-

ciple of superposition. An}approach to characterizing such
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nonlinear systems based on linear algebra was originally pro-
posed by Oppenheim [6]. In this approach signals are regarded
as vectors in vector spaces. Since such systems are represen-
ted by algebraically linear transformations between input and
output vector spaces, they have been called homomorphic sys-
tems. Two classes of homomorphic systems viz., multiplica-
tive homomorphic system and homomorphic system for convolu-
tion have been used in a wide variety of applications [7].

In this chapter we review the basic theory of one-dimen-
sional homomorphic systems. This will establish the necessary
notations and background for‘the following chapters. Two

dimensional counterpart is considered in Chapter V.

II.2 Generalized Principle of Superposition

Let M be a system transformation between signal vector
spaces and let us denote by O and : the rules of vector addi-
tion and scalar multiplication in the input vector space for H.
Similarly, O.and'L correspond to vector addition and scalar
multiplication in the output vector space for H. Then the sys-
tem H is said to obey a generalized principle of superposition,

if

Hi(c:x [n])o(d:x,[n])] = [cLH(x [n])JO[dLH(x, (a1  (2.2)

A homomorphic system which obeys eg. (2.2) can be repre-

sented as shown in Fig. 2.1.
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-

x[n] H —————= y [n]

Fig. 2.1 Representation of a Homomorphic System

IT.3 Canonic Representation of Homomorphic System

It has been shown [6] that all homomorphic systems have a
canonic representation as the cascade of a non-linear system
followed by a linear system and then another non-linear sys-
tem. Using the notations of earlier section, such a canonic

representation is shown in fig. 2.2.

x[n}

Fig. 2.2 Canonic Representation of Homomorphic Systems

The system DD is a homomorphic transformation from O to

addition space so that D has the property

DD[(c:xlln])D(d:len])] = cDD(xlln]) + dDD(xz[n])

= c§1[n] + d§2[n]

(2.3)
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and thus obeys a generalized principle of superposition. Sys-
tem L is a linear system in the conventional sense of eq. (2.1).

The homomorphic system D;l serves to transform from addition to

0, so

D;]' (c91 [n]+d§(2 [n]) el D;l(izl [n])lo[d1l D;I(f'z [n1)1]

= (C‘Lyl[n])o(dlyzln]) (2.4)

= yl[n]
(2.5)

The systems D and D0 depend entirely on the specific
operation for combining signals and have been termed as charac-
teristic systems for O and O respectively. It is to be noted
that all the filtering ability of a homomorphic‘system speci-
fied in the canonic form lies in the choice of the linear sys-
tem. The canonic homomorphic system may also be used in the
synthesis of more general classes of homomorphic system when

preceded by appropriate non-canonic normalization mappings [8].

II.4 Homomorphic Systems for Multiplication and Convolution

Multiplicative Homomorphic System -- In general a multi-

plicatiVe homomorphic system in which the operations 0O and O
are multiplication and the operations : and "L are exponentia-
tion involves complex log and all the sequences &[n], x[n], §[n] and

v[n] are complex. The formal representation of such a canonic
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system for multiplication is shown in Fig. 2.3. It has been

guccessfully used in image enhancement.

[ + +

complex
xn] ._ﬁ 1og x[n] v

———— v [n]

Fig. 2.3 Multiplicative Homomorphic System

since the complex log is a multivalued function, the rep-
resentation shown in Fig. 2.3 is not unique unless thé ambi-~
guity in the imaginary part of the complex log is resolved.
These problems are thoroughly treated in the following discus-

sion of homomorphic system for convolution.

Homomorphic Systems for Convolution -- The homomorphic

system for convolution has been used in a wide variety of
applications such as in image processing, speech analysis,
echo removal and detection, speech vocoding, system identifi-
cation, EEG analysis and seismic signal processing. The for-
mal representation of the canonic system for convolution as

the input and output operation is shown in Fig. 2.4,

—®> y [n]

Fig. 2.4 Canonic Representation of Homomorphic System
for Convolution
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where the characteristic system D, is such that the z-trans-
form of its output is equal to the complex log of the z-trans-

form of its input, i.e., if

% [n]

D*[x[n]] (2.6a)

Then, X(z) = Log X(z) (2.6b)

Recently [8] the representation of Fig. 2.4 has been
called a full band homomorphic system to emphasize the fact
that it is not appropriate for the processing of band-pass fil-
tered signals. A new class of systems referred to as band-pass
homomorphic systems was suggdested which is suited to band pass
signals. These systems are defined as the cascade of a band-
pass mapping system with a full band homomorphic system fol-
lowed by the inverse band-pass mapping system. The character-
istic system}of these band pass homomorphic systems is essen-
tially a logarithmic mapping whose domain is restricted to
, encompass only the pass-band of the input. 1In this thesis we
shall restrict our attention to the full band homomorphic

system of Fig. 2.4.

II.5 The Characteristic System

The key to the mathematical representation of the charac-

teriséic system D, shown in Fig. 2.5 (or equation (2.6)), is

/
/



20

that the z-transform of a convolution of two sequences is equal
to the product of the z-transforms of each of the signal

sequences, i.e.,

If x[n] = % [n]"'x2 [n}

then X(z) = Xl(Z)°X2(Z) (2.7)

Then, the z~-transform operation can be viewed as a homo-
morphic transformation with convolution as the input operation
and multiplication as the output operation. However, the z-
transforms are also linear transformations in the conventional
sense. Therefore, we may represent the characteristic system
D, in terms of a cascade of three homomorphic systems as shown

in Fig. 2.5.

*
-==-1
]
!
!

I
]
i
!
|
|
)
l
i
!
1
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|
1
I
I
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|
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I
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I
-J

-+

—Fﬂ 2~ 1 —t———8p= 2 [n]
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»
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|
N
<
)
[
0o
Q

Fig. 2.5 Representation of Characteristic Systems D,

It is noted that in this representation, it is not neces-

sary to include the z !

block since at its input signals are
already additively combined, however, doing so has the advan-

tage that the output of D, is now a sequence.



21

Impiicit in the representation of Fig. 2.5 is the assump-
tion that both X(z) and X(z) converge in some annular region
in the z-plane. We require the region of convergence of ﬁ(z)
to include the unit circle, thus restricting the sequences
%[n] to be stable which is a very reasonable practical require-
ment. The most important implication of analyticity of X(z)
on the unit circle is that ﬁ(ejw) must be a continuous func-
tion of w.

If x[n] < x(ejw) and %x[n] < ﬁ(ejw),

x(e3¥) = xR(ej“’) + ij(ej“’) (2.8a)
: . jw
= |x(e3w)| e] argl[X(e- )1 (2.8b)
and
f(e3¥) = (e + 3R (7% (2.9a)
= log |x(e3¥)| + § arg [x(eI“)] (2.9b)
Then comparing egs. (2.9), we get
% (e3) = 10g |x(e1")| (2.10a)
and
% (e3%) = arg x(e3¥)1 (2.10b)

Therefore, log |x(e3w)| and arg [x(e3”)] must be continuous

functions of w.
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Continuity of log IX(er)l -- The log magnitude function

is continuous on the unit circle if X(z) and its inverse x-l(z)
are both analytic on the unit circle. So we cannot take arbi-
trary signals as inputs to this homomorphic system. In particu-
lar, low-pass, high-pass and band-pass signals are not allow-
able. Thus the set of signals to which we are restricted is -

the class of stable sequences with stable inverses.

Continuity of argﬁ[X(eJm)] -- The continuity of

arg [x(ejw)] is the most stringent requirement which makes the
efficient and reliable computation of complex cepstrum a chal-
lenging task. Since the complex logarithm is a multivalued
function, the continuity of arg [x(ejm)] depends not oniy on
the specific properties of the signal x[n] but also on the
definition of complex logarithm. One approach tc such a defi-
nition is to assume that the continuous complex logarithm is
obtained by the integration of its derivative. Assuming a
single-valued differentiable complex logarithm, we have

1
X(2z)

L %(z) = £ 1og Ix(2)] = = x(2) (2.11)

Evaluating this logarithmic derivative on the unit circle,
we get
? jm
X {e”)

%' (ejw) = &;(ejm) + ji;;(ejw) = -;(_(:ﬂ’)— (2.12)
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where the prime denotes differentiation with respect to w.
Equating imaginary parts on both sides in the above equation,

we obtain the phase derivative as

Ri(ej“’) = a% arg [x(e?%)]

[N [ I g [N [
x (e 1 (e3Y) - x (3% xp(e?)

|x(e7%)]
(2.13)

It can be shown easily that the phase derivative is
pounded on the unit circle whenever the signal sequence x[n]
and its inverse are stable. The phase derivative is an even
function of w, whenever x[n] is a real sequence. Furthermore,
using the linearity of derivative operator, it can be shown
that,

L arg 1x, (3%, (31 = & arg 1x) (7)1 + g5 ars %, (e3) 1

(2.14)

pefinition of the phase function by the integration of its
derivative (eqg. 2.13) is unique to within an integration con-
stant. This'integration constant is determined according to
the requirement that the logarithm be a homomorphic mapping
between multiplication and addition, as represented in Fig. 2.5.

Therefore, we require that .
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arg [xl(ejw)xz(ejw)] = arg [xl(ejm)] + arg [xz(ejw)] {2.15)

Al

The above equation for real x[n] can only be satisfied if

the integration constant is chosen such that:

arg [x(e3") ]| =0 (2.16)
w=o

oo

Since X(e3“)| = I x[n] (2.17)
’w=o == 00

it follows that only signals with a positive DC compénent will

satisfy this requirement. Finally, arg [x(ejwn must be, of

course, periodic in w with a period 27m. Being odd due to eq.

(2.16) and continuous, the phase must satisfy:

arg [x(ej“’n' =0 (2.18)
W=7

K
Since arg [X(er)]l ='f é% arg IX(er)] dw (2.19)
w=Tm .
0

and since the phase derivative is an even function of &, we con-
clude that only signals with zero mean phase derivative are
compatible ﬁith the above requirement.

The inverse characteristic system, D:l, is shown in fig.

2.6.
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Fig. 2.6 Representation of Inverse Characteristic System D;

ITI.6 Input Normalization

We have seen that the input space to the characteristic
system D, is formed by all stable sequences with stable
inverses having positive D.C. component and zero mean phase
derivative. 1In general, however, we might be interested in
analyzing seqguences which do not satisfy these conditions.
Let us look at how restrictive the above attributes are and
then describe the modifications to be used in analyzing gen-
eral sequences.

For a real sequence x[n], the most general ratiocnal z-

transform can be written as,

m; m
T (1-az"") T (1-b,z)

X(z) = s.A , X k=1 k=1 (2.20)
X x .
Pi -1 . Po
it (l-ckz )y I (14dkz)
k=1 k=1

where s is equal to +1 or -1, Al is a positive real value,
r, is an integer and Iakl, Ibkl, |ck| and 1dk|‘are less than

unity.
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It can be shown [7] that

o

s, = sgn ( £ x[nl) (2.21)

n=-—oo
where sgn denotes the signum function and that

m

r, =5 f 2 [arg [x(ej“)]] duw (2.22)

-

_sx.is known as the polarity of x[n] and r, as the lag of xIn].
Thus in order to handle any stable signal with stable

inverse having arbitrary polarity and lag, we need a trans-

formation N, called the normalization transformation defined by

N(x[n]) = r, x[n+r ] | (2.23)

The normalization N corresponds to a sign reversal for
sequences with negative polarity and to a time shift by an
amount equal to the signal lag. N is well defined from a theo-
retical point of view, and in the z-transform domain it can be

represented in a simple analytic form as,

N “Tx

X(2z) —+ 8,2 X(z2) (2.24)

N also satisfies the conditions required for it to be cascaded
with a canonic homomorphic system for convolution, leading to

the synthesis of a general homomorphic system for convolution [8
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From a practical point of view, and in the context of
Qeconvolution by homomorphic signal processing, the normaliza-
tion amounts to the normalization of the signal components.
Thus their true polarities and lags cannot be determined by.
this technique. This is analogous in linear system theozy to
the situation in which two signals, each with nonzero DC
label have been added. Using linear filtering on the sum of
the signals, the true DC labels of the components can never be
determined.

For most deconvolution problems, however, the loss of
polarity and lag information does not represent a serious
problem, since such information can often be measured by

other means.

II.7 The Complex Cepstrum

Having discussed the characteristic system D,, we concen-
trate on its output.

The cutput x[n] of the system D, is referred to as the
complex cepstrum of the signal x[n]. This terminology is moti-
vated by the relationship between this transformation and the
cepstrum as proposed by Bogert, Healy and Tukey ([9] for the
detection of echoes. Specifically, the real cepstrum c[n] of
a signal x[n] was defined as the power spectrum of the loga-
rithm of the power spectrum of x[n]. Since the cepstrum was
directed toward echo detection rather than deconvclution,; phas

information was not important. Thus it does not utilize phase
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information and involve the logarithm of real, positive values.
By contrast the output of the system D, is referred to as
the complex cepstrum to emphasize the fact that it requires the
use of a complex logarithm. It is to be noted that the com-
plex cepstrum of a real sequence is a real valued sequence.
Defining the even and odd components of the complex cep-

strum ﬁe[n] and ﬁo[n], as,

ZInl = %_[n] + %, [n] (2.25a)

%[n] + x[-n]

where ﬁe[n] = 3 = xe[-n] (2.25b)
and
% [n] = e R A Y (2.25¢)
it follows that:
A 1 jw 2
% [n] = 5 IFT [log |x(e’™) | } (2.26a)
and
% [n] = IFT {arg [x(e?")1} (2.26b)

Thus, the cépstrum c[n] as defined by Bogert, Healy and
Tukey is proportional to the even part of the complex cepstrum.
The sequence ﬁe[n] is also referred to as the real cepstrum.
The sequences ﬁi[n] and ﬁg[n] have been referred as the power

and phase cepstrum, respectively.



29

II.8 Properties of Complex Cepstrum

In order to investigate the properties of the complex cep-
strum, we consider the rational z-transform of a signal x[n]
given by eq. (2.20) with m, zeroes and P; poles inside the
unit circle and m, zeroes and P, poles outside it. The
sequence x[n] is thus, in general, mixed phase.

We group all the poles and zeroes inside the unit circle
in a single factor, defining a normalized minimum phase
sequence xmin[n], where z-transform is,

mj

I (1l-a z 1)

X . (z) = X221 . (2.27)
min Pj -1 )

| (l-ckz )
=1

k

Similarly, we define a normalized maximum-phase sequence

xmax[n]' whose z-transform is,

Mg
I (1-b, z)
k=1 k

xmax(z) = (2.28)

Po
2 (l-de)

k=1

Thus the sequence x[n] satisfies

x[n+rx] = sxAx[xmin[n]* xmax[n]] (2.29)

where xmin[n] =0, n <»0 and xmax[n] =0, n>0.
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The normalized sequence N(x[n]) is then given by,

N{x[nl]) = Ax[xmin[n] * xmax[n]] (2.30)

and it follows that,

X(z) = log Ax + log xmin(z) + log xmax(z) (2.31)

and consequently,

x[n] = log Axé[n] + xmin[n] + xmax[n] (2.32)

Now using the power series expansion for log it follows

that
© n
log (1maz'h) = - 2 2271 |z] > |a] (2.33)
n=1
and
g an n -1
log (l-az) = - Z =-z lz] < |a 7| (2.34)
n=1
It follows that
. m; az Pi cg‘
X ._[n] = [- T — 4+ Z ——] uln-1] (2.35)
min k=1 n k=1 n
and
T b]:n Po d]:n
X [n] = [+ T —- ———] u[-n-1] (2.36)
max k=1 P -1 0
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From the above equations, we observe the following prop-

erties of the complex cepstrum:

Property 1 The complex cepstrum decays at least as fast as

1/n. Specifically

n
|%In1| < cl%r|, -0 <n <®

where c is a constant and o equals the maximum |ak| ,
lbkl, |c) | and |, |-

property 2 If x[n] is of finite duration (p; = P, = 0), xI[n]

will nevertheless have infinite duration.

Property 3 The complex cepstrum of a minimum phase sequence

is zero for n < 0. The complex cepstrum of a max-

imum phase sequence is zero for n > 0.

The complex cepstrum was'gerived above in terms of the poles
and zeroes of X(z). It is also possible to obtain an expres-
sion relating x[n] with &I[nl], which in certain cases reduces
to a very useful recursion formula. This relation may be
derived as follows:

Assuming x[n]) to be normalized, then

—z 3‘12- %(z) = —tr - (;-z 4 x(z)] (2.37a)

and it follows that

nx[n] * x[n] = nx[n] (2.37Db)
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Since for (normalized) mixed-phase signals, both x[n] and
X[n] are two sided sequences, the above relation cannot be
rearranged into a recursion formula for the computation of x[n]
from x[n], or vice versa.

However, -both xmin[n] and ﬁmin[n] are causal sequences.
Similarly, both xmax[n] and %max[n] are anti-causal sequences.
In these cases equation (2.37b) can be used to derive recur-

sive formulas which are valid for the class of minimum and

maximum-phase sequences.

Property 4 The complex cepstrum of a minimum phase sequence

satisfies:

n-1

xmin[n] = xmin[n] - ki

=10

. xmin[k] xmin[n-k] (2.38)

Propérty 5 The complex cepstrum of a maximum phase sequence

satisfies
A -l kA
xmax[n] = xmax[n] - k=§+l o xmax[k] xmax[n-k] (2.39)

The above two relations can be used to compute complex
cepstrum, if the signal is known to be minimum or maximum phase.
However, for a mixed phase sequence their use does not make
any sense.

Also we mention that exponential weighting of the signal

can be used to move the zeroes which are outside the unit circle
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to inside. Exponential weighting has the effect of scaling
the poles and zeroes of the z-transform of the inputs. Thus.
a mixed phase signal can be converted to a minimum phase sig-
nal. Now the complex cepstrum of this sequence can be easily
determined. However, it has certain limitations ([8].

In this chapter we have reviewed the basic theory of
homomorphic systems and carefully treated the problems asso-
ciated with the complex log. In the next chapter we consider
the existing methods of phase unwrappihg together with the
methods based on piecewise polynomial interpolation. Various
computational strategies are considered to make the computation

of the one dimensional complex cepstrum more efficient and

reliable. Some of the examples are also presented.
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CHAPTER III

COMPUTATION OF ONE-DIMENSIONAL COMPLEX CEPSTRUM

III.1 ZIntroduction

In the last chapter we have discussed the basic theory of
homomorphic systems and observed that a class of homomorphic
system (Fig. 3.1) for convolution can be defined using a com-’
plex logarithmic characteristic system D; whose output is
known as the complex cepstrum of the input signal. In this
chapter we are concerned with the problems associated with
the implementation of this homomorphic system in one dimen-
sion. First we critically examine the existing methods of
phase unwrapping and then investigate the use of piecewise
polyrnomial interpolation-such as spline, Bessel and Hermite
interpolations for phase unwrapping. Our objective is to con-
sider all those features which may lead to the most efficient
and reliable computation of the 1-D Cepstrum. Therefore, we
consider the various issues such as improvement of the inte-
gration routine, efficient computation of DFT at a single fre-
quency which is not on the DFT raster, need for double preci-

sion, selection of thresholds, linear phase, etc.

R S _=§[rll
’M-:‘E] LOG —-D[ IFT —E—bl L
‘-L-,—a—---—-;----_---'—-——_-l-—-_-_-a. - o ool :
P T e T T bty |
paLI : IFT | | EXP |&— FT 4:F 9[n]
[ Sy —egz1------—-- ————==-4
*

Fig. 3.1 Representation of Homomorphic System
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III.2 DFT Implementation of Homomorphic System for Convolution

Our discussion in the last chapter was based on the use .
of the Fourier transform and accordingly the characteristic

system D, (Fig. 3.1) is represented by the equations

[ ]

x(e?¥) = £ x[n) e JUP (3.1a)
%(e3) = 10g [x(e¥] (3.1b) ,
™ ] . w
2[n] = E;FJ x(e?¥) eI¥" au (3.1c) ,
- =

However, since digital computers perform finite computa-
tion, we are limited to finite length input sequences and we
can compute the Fourier transform at only a finite number of
points. So we need to use the discrete Fourier transform
instead of the Fourier transform for the actual implementation
of homomorphic systems.

Let the finite length sequence x[n] exist in the interval
0 < n < N-1. Thus, for N-point DFT instead of eq. (3.1), we

have the computational realization

9 N=1 jz%k +72%5
2 [nl == T X(e ) e (3.2a)
P N x=0

.2

J—_

where ﬁ(e N) is the sampled complex logarithm:
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. 2Tk : j21rkr N-1 _+21kn

X(e" M) =log {se” ¥ * = xmje V) (3.2b)
n=0
and S, and r, are signal polarity and signal lag as defined in
Chapter II.

Since the complex cepstrum is computed from samples of

its Fourier transform, time aliasing of the complex cepstrum

occurs. That is,
£ [nl = I R(n+kN) (3.3)

The complex cepstrum £[n] in general has infinite dura-
tion, so a certain amount of time aliasing will always occur.
However, as has been shown, £[n] decays faster than an expo-
nential sequence, so it is to be expected that the aliasing
can be reduced by appending zeroes to the data x[n] before
computing the DFT, in order to increase the total length N.
This corresponds to a finer spectral sampling of ﬁ(ejw).

The se;ection of a particular transform size is depen-
dent on how much cepstral aliasing one is willing to toler-
ate. As with all problems involving aliasing phenomenon,
such judgement is very much application dependent.

The DFT implementation of the inverse cepstral mapping
yields:

. N-l j2gk j22¥n

yp[nl = Z Y(e ) e (3.4)
k=0

2=
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.2Tk

where Y(e N,) iz the sampled complex exponential.

. 2Tk N-1

Ny —exp [ 2 §Inl e
n=0

_j2ﬂkn

N

Y(e ] (3.5)

where yp[n] is an aliased version of y[n] with period N, which
might accurately represent yIn] to the extent that yIn] is a

finite sequence of length not greater than N.

IfI.3 Unwrapped Phase -- From eq. (3.2b) it can be noticed

+hat we need to evaluate the samples of the continuous complex
logarithm. In particular, we need to determine the samples of
the continuous phase function of the normalized input.

As we discussed in Chapter II, the input normalization is
associated with the proper definition of the continuous phase.
Normalization of the signal polarity can be easily done by
observing the sign of X(0) = ﬁ x[n]. If it happens to be neg-
ative, then we change its sign and take care of it in deter-
mining the principal value. The signal lag or the slope of
the linear phase at w = m .is, in general, not known a priori
(If the location of the zeroes of the finite length sequence
is known, then the signal lag is equal to the number of zeroes
outside the unit circle.) 1In practice the required input
.normalization is done in the process of evaluating the contin-
uous phase. Thus, using arguments similar to those of Chapter
1I, we define a phase function arg [x(ejw)] associated with

the non-normalized input x[n] as an integral of the form:
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w
arg, [x(e?®) = J [g% arg; [x(eI¥)] dy], 0< w < 7 (3.6a)
0

where arg, [X(eJO)] =0 (3.6b)
and the phase derivative is given by

xR(ej“)x;(ej“)-xI(ej“)x;(ej“)

arg:1 [x(eI¥)] = (3.7)

1x(e3%)]|
and X (eI¥) = x;(ej“) + jx;(ej“) = -4 F.T.[nx[n]]  (3.8)

The phase function arg [x(ejw)] is commonly called the
unwrapped phase of x[n].

As has been shown in Chapter II, the signal lag r, is
simply the mean of the phase derivative. Thus, in general,
the unwrapped phase will exhibit a linear phase component
due to rx, which may be computed as,

arg_ [x(e3™)]

r, = (3.9)
T

Therefore, the continuous phase of the normalized input satis-

fies,

jwr .
arg [s e * x(el?) Y] - wr (3.10)

] = arg [x(el <
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In spite of the fact that the unwrapped phase is very
precisely defined by egs. (3.6) to (3.8), such equations can
never be exactly implemented on a digital computer because
of the finite amount of computation. It is therefore, of
interest to investigate alternative methods of evaluating
the unwrapped phase. Such methods have been referred to as

phase unwrapping methods. In the following section we care-

fully examine the existing methods of phase unwrapping.

TII.4 Existing Methods of Phase Unwrapping

Following are the techniques that have been used for
phase unwrapping in one diemnsion.

(i) Numerical integration of phase derivative

The_mdst straightforward approach to phase unwrapping is
to do numerical integration of the phase derivative usi?aﬂﬁhe
trapezoidal rule for integration. Samples of arg; [x(eJ—N—)],
k=0, 1,...,N-1 can be evaluated very efficiently by comput-
ing the DFT's of x[n] and nxl(n] usinngFT algorithm and com-
bining the results according to egs. (3.7) and (3.8). The
method depends very critically on the frequency sampling inter-
val. It does not give good results even with reasonably large
size FFT's [2]. The reason being that the truncation error
can not be brought down to zero. However, if a better integra-
tion rule is used, the truncation error can be made small.

But all this is not satisfactory, because whatever error is

made, is carried over throughout.
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(ii) Processing the principal value of the phase (Schafer's

Algorithm) [1]

The idea of phase unwrapping based on this approach is to
compute the principal value of the unwrapped phase

2Tk .27k

N )] = [argu (X(e N

)]] ’ k = O'OOI'N-l (3.11)

ARGu [X(e .
mod 2T

w . . -
). Discontinuities

using inverse tangent routines on X(ej
introduced by the modulo 27 operation are then detected and
finally unwrapping is done by appropriately adding multiples
of 27 to the principal value until the discontinuities intro-
duced by the modulo 21 operation are removea. Specifically,
(a) whenever a jump of -2T is detected while unwrapping
along the positive w axis, a constant 27 is added to
the principal value at that point, and
(b) whenever a jump of +21 is detected while unwrapping
along the positive w axis, a constant -2w is added
to the principal value at that point, where the jump
iz defined as the difference between the new and old
principal value.
An example is shown in Fig. 3.2. Phase unwrapping as illus-
trated in this figure appears quite simple, however, in prac-
tice the problem becomes complicated by the fact that we have
only the samples of the principal value curve and it is possi-
ble to miss a jump of *27. Once we have missed even a single

jump, we shall obtain a completely erroneous result. This is
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illustrated in Fig. 3.3. Thus any error made at any point
along w axis while unwrapping the phase tends to propagate
undiminished. Therefore, in this method, a jump is said to
exist when the difference between the two principal values
at adjacent frequencies is greater than a threshold (a frac-
tion of 2m). This threshcld depends to some extent on the
sampling frequency. However, this involves a tradeoff,
because if it is too small, we shall be missing jumps, and
if it is too large, we shall be identifying a jump when there
was none. In short

(a) This method requires that the frequency sampling be
fine enough so that the difference in the principal
values of two adjacent samples be always less than

| the prescribed threshold.

(b) It has been shown [2] that in spite of a very high
sampling rate, the method may not work even when a
single zero is close to the unit circle lying between
two samples of DFT. The principal value alone is
not sufficient to allow a reliable operation [2,4].

(iii) Adaptive numerical integration scheme (Tribolet's
Algorithm) [2]

This method of phase unwrapping combines the numerical
integration and the information about the principal value of
the phase. At each frequency, a set of permissible phase
values is defined by addinq integer multiples of 2w to the

principal value of the phase. The selection of one of these
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values is done with the help of phase estimate formed by
trapezoidal integration of the phase derivative with a given
step interval. This step interval is adapted until the phase
estimate becomes arhitrérily close to one of the permissible

phase values.

Fig. 3.4

Let us now formulate the eguations. Let w, be an arbi-

1
A
trary frequency value (refer to Fig. 3.4) and ARG [X(eJ l)]
be the principal value of the phase at Wy . The set of permis-
sible phase values at Wy is given by
Ju,
ARGu [X(e )1 + 27k, k integer (3.12)
The whole problem of phase unwrapping is to find the cor-

rect integer value of kc(ml) such that

j‘”l jwl . )
arg [X(e )1 = ARG [X(e )] + 2ﬂkc(ml) (3.13)

This is done through the use of numerical integration of
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the phase derivative hsing the trapezoidal rule for integra-
tion. Let the unwrapped phase be known at a frequency Wy < Wy .

Then the phase estimate at w, is given by

1

~ jw | jw
arg [X(e 1)| ] = arg [X(e ©)]
Yo
Wy =W jw ' Jw
1l "o ' o 1
+ (=) [argu [X(e 7)) + arg, [X(e )]]
(3.14)
where the step interval is Aw = Wy = W Clearly the csti-

mate of the unwrapped phase at Wy improves as Aw becomas

smaller. The phase estimate at wy is said to be consistent,
if it lies within a predefined threshold 92, called the con-
sistency threshold, of one of the permissible phase value at

w that is, if there exists kc(wl) such that

ll

juwg jw

1
)1 - 2ﬂkc(ml) < 8, < m (3.15)

Ia;g [X(e )| ]— ARG [X(e )
1)

(o]

The basic idea of this algoxithm is to adapt the step
intervai Aw until a'consistent estimate is found. The value
kc(ml) so obtained is then used to form the unwrapped phase
at Wy s which in turn is used to estimate the unwrapped phase
at W, (wy > w;) and so on.

In the implementation of the above approach we must
determine the phase derivative and the principal value of the

phase at a set of uniformly spaced frequencies with interval
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%? using FFT's of size N to evaluate the DFT's of x[n] and

nx[n] for 0 € w < 7 (uéing the fac£ that we are computing the
DFT of a real sequence and the phase is an odd function). At
each Wyer phase estimate is initially formed by one-step tra-
pezoidal integration at w, _,- 'If the resultant estimate is
not consistent, the adaptive integration scheme is applied
within the interval [wp_q1e wel. The search for consistency

is done by consecutively splitting the step interval in half.
The phase derivative and the phase principal values are com-
puted at these intermediate poinﬁs and are stored in a stack
fashion (Note that for each splitting of the step interval

we must take 2 DFTs at an intermediate frequency and then
compute the phase derivative, the phase principal value,

form the phase estimate and check the consistency). Assoon
as a consistent estimate is found, the corresponding data is
moved out of the stack to a register that holds the most
recent consistent estimate of the phase at some frequency
within [mk-l' mk]. New.estimates are always found by inte-
~grating from the most recent estimate to the frequency cor-
responding to the top of the stack.

Besides the check for consistency two more checks are
used in this implementation to increase the reliability of
phase unwrapping.

(1) We compute the phase increment using the linear phaée

estimate (obtained by summing the phase derivative
values and then dividing by the total number of points) .

If the phase increment so obtained differs from the

® 1y TR
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increment obtained using the trapezoidal rule for
integration in the interval [w, ;. w1 by a certain
threshold, 01, called the incremental threshold,
then the algorithm will adapt.

(2) Having computed the unwrapped phase at Wy, we check
whether the difference between the unwrapped phase

at Wy and w_. is greater than m. If yes, then again

o
the algorithm will adapt.

We shall elaborate more on these checks in the following
sections.

This method of phase unwrapping works reasonably well.
However, it takes a considerable amount of time for phase
unwrapping because of the step interval adaption, and the
simple rule for integration used. Direct computation of DFT
at a single frequency which is not on the DFT raster, global
estimate of the linear phase (signal lag), and the high pre-
cision requirement for certain variables also affect the
phase unwrapping algorithm.

The cases where the phase unwrapping is difficult are
those in which the zeroes of the sequence are close to the
unit circle and such situations exhibit large narrow peaks
in the phase derivative curve. In such instances, use of the
trapezoidal rule for integration results in large truncation
errors (refer to fig. 3.5) and the execution of the program

takes a rather long time due to the step interval adaption.

So we consider the use of other piecewise polynomian inter-
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polation methods such as spline, Bessel and Hermite interpola-
tions since they give rise to better rules for integra-
tion {11,13,16,17] and can be easily incorporated into a

phase unwrapping algorithm.

?

Phase Derivative

Fig. 3.5

Tribolet's phase unwrapping algorithm based on adaptive
numerical integration computes the DFT at intermediate fre-
quencies directly, which requires 4N real multiplications and
4N-2 real additions to compute the DFT at a single frequency
where N is the length of the sequence. However, a more
efficient algorithm that can be used for computing the DFT at
a single frequency is Goertzel's algorithm [7]. It requires
2N + 4 real multiplications and 4N + 1 real additions to
compute the DFT at a single frequency. However, the straight-

forward use of Goertzel's algorithm to find the DFT at inter-
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mediate frequencies yields the correct amplitude, but the
phase is wrong. Bonzanigo [10] shows that the phase correction
term can be easily obtained by using an identity. Such a
method to compute the DFT will be referred to as modified
Geertzel algorithm. It requires 2N + 8 real multiplications
and 4N 4+ 6 real additions to compute the DFT at a single
frequency. Details of this will be given in the following
sections.

The linear phase estimate obtained as the mean of the
phase derivative in Tribolet's algorithm is a global estimate
in the sense that the value of the estimate depends upon the
values of the phase derivative at all the DFT points. This
estimate is erroneous if a DFT sampling point happened to the
one at which the phase derivative is very large (zero close to
the unit circle) and the FFT size is not very high. In such
situations the method requires adaption because the incre-
mental constraint mentioned earlier is not satisfied and it
takes excessive amount of time. Our interest is to find an
efficient estimate (which is local) for the linear phase in
order to make the computation faster.

Tribolet [2] uses a stack size of 13 for storing variables
such as phase derivative, phase principal value at the inter-
mediate frequencies. Thus the adaptive feature of the
algorithm is able to divide any interval between two DFT points

by a factor of 4096. For example, 1024 points FFT corresponds
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to the frequency spacing of 0.00613923 radians. Now dividing
this frequency spacing by 4096, we get the minimum frequency
spacing of about 4.98:{10“7 radians. Because in single pre-
cision the machine used (Digital Equipment Corporation PDP 11/50
with a floating point processor and 32K words of core memory)
has only a precision of about 6 digits of real arithmetic, we
see that the computation at intermediate frequencies becomes
susceptible to numerical errors. The FFT computation and
hence the evaluation of phase derivative is very much suscept-
ible to numerical errors when the zeroes are close to the

unit circle. We shall point out which variables should be
computed in double precision to maintain accuracy. Also we
shall consider the selection of the incremental and consistency

threshold for Tribolet's implementation.

III.5 Use of Piecewise Polynomial Interpolation

In the last section we carefully considered the ekisting
methods of phase unwrapping and pointed out the various fea-
tures which should be incorporated in the phase unwrapping
method based on the adaptive numerical integration so as to
make it more efficient and reliable. In this section we shall
consider the use of piecewise polynomial interpclation methods
such as cubic spline, Bessel and Hermite interpolations as
they give rise to better rules of integration and can be

easily included in the phase unwrapping algorithm.
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Spline interpolation - Here the problem of phase un-

wrapping is viewed as fitting a curve to a finite set of known
values of the phase derivative in order to perform numerical
integration utilizing the extremal properties of spline
functions in numerical quadrature [16]. The integration alone
is not sufficient since whatever error is committed is carried
over throughout. So the adaptive nature of the algorithms
will be used to relate the density of the data to the local
smoothness of the phase derivative.

Throughout this discussion when we say splines, we mean
cubic splines. Consider the fitting of splines s(w), having
continuous first and second derivatives, to the phase deriva-
tive between w = 0 and w = T at N given points. The spline
approximation is the smoothest in the sense that the mean
square value of its second derivative is minimal [13]. More-
over, the solution is unique and consists of different
cubics in each interval. Also the cubic arcs that make up
s(w) join smoothly in the sense that the two polynomials that
represent s(w) to the left and to the right of w, have the
same ordinate and the same values of first and second order
derivatives.

Symbols used - We refer to the phase derivative .as the

fuanction, denoted by y (refer to fig. 3.6), to which we want to
fit the splines. The values of the function, y;r are known at

discrete points w; (1 2 i S N). Dperivatives of the function
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] L1
will be denoted by vy , Y , ¥ ... S(w) denotes the spline;

[ ] "
its derivatives are s ', s ,... When a subscript is used, it

means that the derivative is computed at the point (wi,yi).

Phase Derivative Curve

w. w

w i+l

€
e

i-1

Fig. 3.6 Notations used in the Discussion of
Piecewise Polynomial Interpolation

Basic Spline Equation - The condition for a cubic spline

fit are that we pass a set of cubics through the points Y; of
the function using a new cubic in each interval. We require
that the slope and curvature be the same for the pair of
cubics that join at each point (cu: vature is approximated by
second derivative). The equation [1l1l] satisfying the above

constraints is,

1 ! 1 ’
—) s . + — s . =
1 hi i hi

1 [}

s + 2 (— +
i-1

1
h _

h i-1
Yi=¥i1 Yiv17Yi

)
2
b hy

3( (3.16)
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where, h., = . - W

This equation applies at each interval point from i = 2
to N-1, N being the total number of points. Thus we obtain

N-2 equations relating the N values of s'i. Two additional

] ]
equations involving s 1 and S N are obtained when we specify

end conditions.

End Conditions - setting s 1 =Y qr 8 y=Y (3.17)

N

we mean that the first derivative of the spline (interpolating
curve) at the two boundary points is equal to the actual value
of the first derivative of the function (or second derivative
of the phase) that we want Lo approximate. The expressioh for
the phase second derivative can be obtained from eq. (3.7) as

" l e L}

Wy, 2 -
arg  [X(e’)]} = |X|4 (x| {xpX; XX 1+

I

)2 }+ 2xR'xI'{ xIZ-sz} ] (3.18)

2X X, {(xR')2 - (X
where we ha. avoided the argument notation for the sake of
simplicity

From this equation it is easy to conclude that the phase
second derivative at wy = 0 and wy =T is always zero irre-
spective of the presence or absence of the linear phase com-

ponent in the unwrapped phase. So our end conditions become
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s = g = Q0 (3.19)

Once we have computed s'i (for i = 2 to N-1) we know the
equation of the spline in each interval [15,16] and now our
interest is to integrate it so as to obtain an estimate of
the phase. Integrating thiseq. of spline, it is easy to
obtain [1l1],

2

Wisl h h. , ,
1

[ sde = 3 (it ) - 1o (8 5418 ) (3.20)

wi

for 1 £ i £ N-1

Since we are using the FFT to compute the phase deriva-
tive, our data points are equally spaced. (Note that for this
reason quadrature formulae which give an optimal distribution

of abscissa could not be used.) Thus
h. = w. - w; = h (i =1 to N-1) and (3.21)

eq. (3.16) simplifies to

v ' ] _ yi+l-yi-l

=6 ( 5h ), i=2 to N-1 (3.22)

where the bracketed term in the above equation is the mean
central difference. Specifying the boundary conditions (3.19),

the above equation can be written'in matrix form as
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[ v
4 1 0 s, Y3~Y,
]
1 4 0 S3 Y,~Y,
0 1 0 s' Y-V
- (3.23)
]
4 1 spr2 Yn-1"¥n-3
0 0 O 0 4 S N-1 Y "Yo-o

So the N-2 unknowns s 5, to s are obtained by solving

N-1
the above nonsingular matrix, which is diagonally dominant,

Before looking into the efficient method of solving the
above matrix, let us look at the integration rule for equal

interval case. For equal intervals, eqg. (3.20) becomes,

Wil
h

h 2
fm s(w)de = 5 (Yi+Y-+l) - 13 (

i -s .) (3.24)
i

0

i=1 to N-1

Note that the first term of the above equation is the
trapezoidal integration term and second term is similar to the
truncation term in the trapezoidal rule, usually given by

Note that if the phase derivative curve happens to be a
cubic between each subinterval, the integration rule given by
eq. (3.24; is exact.

To usé‘eq. (3.24), it is necessary to know the values of
s for i = 2 to N-1. There can be two approaches:

L}
(1) Compute the exact values of s i (i=2 to N-1) from
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eqg. (3.18).

(2) Solve the tridiagonal matrix eq. (3.23)using Gaus-
sian elimination specifically suited to it. This will give an
approximate computation of the phase second derivative [12,15].

It can be shown that Eq. (3.23) can be solved more
efficiently from computations and memory requirement points of
view than using Eq. (3.18) which requires the DFT's of x[n],
nx[n] and n2 x[n]. However, in spite of all the advantages
of second approach, it is shown below that it is essential to
compute the second derivative exactly using Eq. (3.18), when
the zeroes are quite close (£10-3) to the unit circle.

The spline approximation is global in the sense that the
value of s(yp) in any interval [wi’wi+1] depends on all si's
without exception. So if the phase derivative happens to be
irregular even at just one sampling point, the effect of
irregularity propagates throughout, but fortunately diminishes
by a factor of 0.268 in each subinterval [5,14].

Bessel's interpolation - Bessel's method of cubic inter-

polation has an advantage over spline interpolation. In local

]
cubic interpolation, the s i (i=2 to N-1) are calculated from

AY ;

]
(wj_qthwg)s § = [hw; 2Yi-1 + aw;_; 2¥iy (3.25)
Awi_l Awi
where Aw; = wjyy ~ wir AY; = Yiu7Y5 (3.26)

or, for equal intervals,
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(wipgmwi_3) 8 53 = (¥i497¥;.9) (3.27)

Hermite interpolation is then used to compute s(w) in
each interval. From this we obtain a piecewise cubic poly-
nomial having continuous first derivative. It gives the

integration formula

w -
i+l 2 5 .
_h _h ' e h iv
Ty, swlde =35 3#¥54) =13 8 478 ) Y qg ¥ (&)
< < ,
wi SES Wy, (3.28)

This equation is similar to eq. (3.23) except for the last
term. Also it follows that spline approximation differs from
the cubic Hermite interpolation only by the terms which are

small, of order h5 in interior subintervals.

III.6 Computational Strategies

In this section we consider the various features to be
incorporated in a phase unwrapping technique based on the
adaptive numerical integration scheme. The next section will
include various examples.

Modification of Integration Routine - In the last section

we obtained the integration formula (eq. (3.24)) for splines,
which in terms of more explicit notation, is

w

i+l . P L0 .
fo arg' [x(e?’)ldw = A%[arg'[x(ej 1) rarg' [x(ed 1)) -
1
2 LW . . W,
Bw) rargrixted 1)1 - arg® (x(e? 11 (3.29)

12
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where Ay = wjp1 w5’ and 1 < i ¢ N-1.

In order to use the above equations as the integration -
routine in the phase unwrapping algorithm, we need to compute
the phase first and second derivatives at the DFT points.
Formulae for these derivatives are given by egs. (3.7) and
(3.18) respectively. The evaluation of the phase second
derivative (eq. (3.18)) requires the FFT's of X[n], nx[n] and

n2x[n], where

xR(ejw) - Re(F.T. x[nl), XI(ejm)=Im(F.T. x[nl),

X'R(ejm) = Im(F.T.nx[n]), X'I(ejw) = -Re(F.T.nx[n]),

" Jw

and X (e )

o —Re(F.T.n°x[nl), x"I(ej“) — —Im(F.T.n%x[nl).

So now we take 3 FFT's instead of 2 as in Tribolet's
phase unwrapping algorithm based on adaptive numerical inte-
gration. Thus we increase the amount of computations while
hoping to reduce the number of times that the algorithm must
adapt. Also when adaptation is required, we must compute 3
DFT's. Thus a tradeoff is involved.

The modification of the integration routine reduced the
number of times that the algorithm must adapt by a factor of
up to 20%. One such example is presented in the next section
(Example 3.1). ‘However, on the basis of computation time it
does not provide a significant saving. The computation time
required using this feature is comparable to that of Tribolet's

(refer to table 3.1). However, the biggest advantage of using
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this modification is the significant increase in the reliability
and precision of phase unwrapping technique.. In the next
section we shall present an example (refer to example 3.2)

where the Tribolet algorithm fails and the phase unwrapping
employing the modified integration routine is successful due

to the improved integration.

Modification for computing the DFT at a single freguency -

By definition, the discrete Fourier transform is,

N-1 nk
X(K) = £ xI[n] WN (3.30)
n=)
where WN = e:%zl, K=20,1,...,N-1 and N is the length of the

sequence = length of the DFT. However, we need not evaluate

all the N different values of X(K). We are interested in
evaluating X(K) for one value of K. In the adaptive part of
the phase unwrapping we want to compute the DFT at a frequency
K/M for M>N. Then,
X(K) = Ngl x (n) o~ i2mgn (3.31)
n=0

Using the identity [10],

. K
1 = eI2my(N-N) _ Wy, K(N_N), we have
\ KN N-1 .~ K
X (K)=(e" 2T 5 x[n] e)2My(N-n) (3.32)

n=0

The term outside the square bracket is the phase correction

term. Eq. (3.32) can be implemented using Goertzel's. algorithm
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[7] to calculate the term inside the square bracket and the
result so obtained can be multiplied by the phase correction
term. Thus we can efficiently compute the DFT at a single
frequency, K/M, which doces not lie on the DFT raster. It
requires 2N+8 real multiplications and 4N+6 real additions
per DFT point. Thus whenever the length of the sequence is
greater than 4 or 5 the modified Goertzel algorithm is more
efficient to use than the direct computation. Its extension
to the two dimensional case is discussed in Chapter 5. Table
3.1 illustrates the improvement provided by this technique of
computing the DFT at a single freguency. Also it has been
found that the modified Goertzel algorithm is more susceptible
to numerical errors thau the direct DFT when considering
zerces close to the unit circle because of the pri«ision (6
digits in rcal arithmetic) involved.

Need for Double Precision - We need double precision for

certain va.iables ir the phase unwrapping algerithm because of
the following two reasons.

l) The computation of DFT in single precision is subjec®
to errors, and

2) When the algorithm adapts, the computation is very
sensitive to the value of the intermediate frequency at which
we compute the DFT's of x[n], nx[n] and n2x[n] and, theréfore,
the computation of phase derivatives and principal value is

affected. In the next section we shall present examples for
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the computation of phase derivatives and principal value is

affected. In the next section we shall present examples for
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the above two cases. In the second case the lack of double
precision leads to the failure oi the algorithm (Example 3.3
and Table 3.2, 3.3).

The variables which are to be used in double precision
are 1, the intermediate frequency when the algorithm requires
adaption and the computation of DFT's of x[n], nx[n] and
nzx[n]. In single precision the problem occurs because of
rounding in the DO loop implementation of computing the DFT
at a single frequency where we are multiplying numbers and
summing them up.

Linear Phase Estimate - Since in practice we may encounter

signals having strong linear phase components associated with
them, our interest is to find an efficient estimate (which is
local) for the linear phase in order to make the computation
faster. Tribolet [2] uses the mean of the phase derivative
which works alright when the FFT size is of the order of 1024.
However, it gives an erroneous estimate when the FFT size is
not very high and if a derivative point happens to be the one
at which phase derivative is very large. In such situations
the linear phase estimate is quite large compared to the
number of signal points, which is certainly unrealistic. If
it is less than the sequence length we make use of it other-
wise we don't make use of it in the incremental criterion.
Example 4 given in the next section illustrates this point.

Also the algorithm based on adaptive numerical integra-
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tions [2] assumes the thresholds arbitrary. They may be fine
for one set of data, but may not be suited to the other type
of data. Table 3.1 shows how the computation time varies for
various values of these thresholds. 1In Chapter 4 we discuss
in detail the relations between these two thresholds. How-
ever, there is a difference in the incremental threshold
definition of Chapter 4, and the one that has been used here.
In this chapter, we evaluate the phase increment from the
linear phase estimate and the area criterion. If the absolute
value of the difference between these two values is greater
than a certain number, called the incremental threshold, then
the algorithm requires adaption. 1In the analysis presented

in Chapter 4, we don't make use of the linear phase and hence
we simply check whether the absolute value of the phase
increment obtained from area criterion is greater than a certain
number called the incremental threshold. So the results

obtained in Chapter 4 will be more conservative.

ITI.7 Examples and Comments

In this secticn we consider various examples in support
of the arguments presented in the last section.

Example 3.1 - 256 points synthetic signal shown in

Fig. 3.7 requires 16% fewer adaptions compared to the algorithm
which uses trapezoidal integration. FFT size selected was

1024. Fig. 3.8 shows the phase first and second derivatives,
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Fig. 3.1C shows the principal value plot. From this it can be
seen that it has a large number of jumps at . Fig. 3.9

is the log magnitude of the frequency response. Figs. 3.11
and 3.12 show the unwrapped phase before and after the removal
of linear phase. From Fig. 3.11, it can be seen that the
phase unwrapping has worked successfully and the jumps in the
principal value plot (Fig. 3.0) have been removed. Finally
Fig. 3.13 shows the complex cepstrum. The linear phase was
=120 and the estimated linear phase was -131.6 which is quite
close to -120.

Table 3.1 illustrates the time required by the phase
unwrapping algorithm based on adaptive numerical integration
scheme when the various features are added to it and for
the various values of thresholds. The signal used in Table 3.1
is the same as has been shown in Fig. 3.7. The FFT size was
1024 and the sequence length is 256. Table 3.1 illustrates
that how the arbitrary selection of thresholds affect the
computation time. Issues pertaining to thresholds are dis-
cussed in more detail in the next chapter. Also, the compu-
tation time in the algorithm using the modified integration
obtained from the splines criterion is comparable to the case
where it is not used; Now we present an example which shows

the need for improving the integration routine.

Example 3.2 - This is the example in which Tribolet's

algorithm (signal is shown in Fig. 3.14b) fails to do success-
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FFT size = 1024, Sequence length = 256
CO0l = Same as Tribolet's (using Direct DFT implementation)
€02 = Tribolet's + Modified Goertzel
C03 = Tribolet's + Modified Goertzel + Double Precision
C04 = Modified integration + Modified Goertzel
C05 = Modified integration + Modified Goertzel + Double Precision
Increment Consistency
TIME IN SECONDS Threshold Threshold Comments
co1 Cc02 Cc03 c04 co05
38.3 33.6 33.1 35.4 37.1 3 2 1)Timing in-
: cludes 21/0
47 33.3 32.3 36.1 40.1 2.5 1.5 operations
47.9 41.4 41.3 42,2 48.7 2 1 2)Time is
accurate to
57 42.5 52.2 49.6 57.9 1.5 1 within -2
sezs,
90.6 56.0 70.4 715.6 96.2 1 0.5
3)Unwrapping
135,.2 76.8 100.7 101.4 128.6 0.75 0.4 was alright .
: for all the
190.8 108.8 144 .4 155.1 192.7 0.5 0.25 values of
both thresh-
411.5 215. 294.,7 314. 412.5 0.25 0.1 olds except
’ the last
1052.3 559.9 777.4 858.4 1148.1 0.1 0,05 pair of
values.
Failed Failed Failed Failed Failed 0.01 0.005

5]

0.99999

Effect of Thresholds on Phase Unwrapping
Table 3.1

Example 3.2

x[n] 8.99 B.EET SIZE 1024

Fig.

3.14 (a)

0.99
1

o

0 1 2 3 4 15 6

Fig. 3.14(b) (Nos. shown to
Diagram not to Scale two places of decimal)

n
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ful phase unwrapring as a result of the poor integration of
the trapezoidal rule. The sequence shown in Fig. 3.14(b) is
generated corresponding to the pole-zero plot shown in

Fig. 3.14(a). The FFT size used was 1024. Figs.3.15 and 3.16
show the two phase derivatives. Fig. 3.17 shows the principal
value plot. Figs 3.18 and 3.19 show the unwrapped phase
before and after the removal of the linear phase. Fig. 3.20
shows the log magnitude of the frequency response and finally
Fig. 3.21 shows the cepstrum. Note *that the cepstrum is

mixed phase and also the plot of unwrapped phase in Fig. 3.18
can be verified from the selected geometry of pole-zero in
Fig. 3.14(a). The value of increment threshold used was 2 and
tha;Aof consistency threshold 1. Theoretical details about

the values of cepstrum are given below.

Z,,%y* zeroes at tn/4 + 0.707099 * j 0.707099
+m +
ZZ'ZZ* zeroes at (Z+8192)+ 0.706842 = j 0.707384
T 27 + =
Z3’Z3* zeroes at (E+8192)+ 0.70655 T j 0.707634
-1 -1 -1 -1 1 1 2
* - - - -
_ Zo%, (1 Z,% ) (1 Zl*Z ) (1 Z42 ) (1 Z3*Z ) (1 Z._))(,l 7% )
X(z) = vE :
P
X(0) = Log[Zzzz*] = log[l.00001] =~ O
. z,"  zx Rz (397
X[n] = = n + ( n ) + n + n n>0
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Fig.3.15 Phase First Derivative

Fig. 3.16 Phase Second Derivative
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Fig. 3.17 Phase Principal Value

Fig. 3.18 Unwrapped Phase before Removal
of Linear Fhase

AN

Fig. 3.19 Unwrapped Phase after Removal of
T.in =»r Ph-g
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Fig. 3.20 Log Magnitude of the Frequency Response

(o]
Lot

'Fig. 3.21 Complex Cepstrum
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X(1) = ~2.827298
X(2) = 0.00153
X(3) = 0.94384
X(4) = 0.999934
X(5) = 0.48
X(6) = -0.050
and, X[n] = % [ L — t L -n] n<9o
*
(2,) (24%)
X(-1) = -1.413684

X(=2) = 0.000766

X(=3) = 0.471958
X(-4) = 90.500017150
X(-5) = 0.24116150
X(=6) = -0.00624

Now using Table 3.2 we illustrate how the computation of
DFT is susceptible to errors when the zeroes are very close to
the unit circle and simgle precision is used. The example
considered is shown in Fig. 3.14. We took the 128 pt. FFT.
We show the phase derivative and principal value obtained in
the neighborhood of 7/4 (17th DFT point) where the complex
pair of zeroes occur.

It can be noted from Table 3.2 that in the immediate

neighborhocd of m/4, the computation of the DFT in single
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Values obtained with a
12 digit accuracy on a

DFT Values with Single Precision HP 9830 calculator
Foint Phase Prin- Phase Prin-
Phase Der. cipal val. Phase Der. cipal val.
14 -2.989718 -1.912977 -2.999536 -1.914346
15 -2.972331 -2.056977 -2.998973 -2.061574
16 ~-2.859446 -2.175950 -2.9960430 -2.208737
17 -0.9343479 -0.2880554 -1022.008 1.239700
18 -2.421185 0.6192901 -2.996019 0.637929
19 -1.813523 0.4890796 -2.998962 0.490767
20 -2.946232 0.3432840 -2.999553 0.343539
21 -2.994130 0.1962455 -2.999735 0.196294
Table 3.2
Susceptibility of the DFT Computation to Errors

precision is susceptible to errors and because of this the

phase unwrapping may not be correct, so we need double pre-

cision for the values mentioned in the earlier section, while

adaption is needed.

Now we present an example in which if we don't use double

precision for the computation at intermediate frequencies,

then the phase unwrapping breaks down.

Example 3.3 - The real speech example used to illustrate

the need for double precision is shown in Fig. 3.22. The

sequence length is 200 and the FFT size is 1024.

The incre-
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Phase Principal Value

Unwrapped Phase before Removal of Linear Phase

oL —%

Unwrapped Phase after Removal of Linear Phase Fig. 3.24
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Fig. 3.25 Log Magnitude of the Frequency Response

Fig. 3.26 Complex Cepstrum
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ment and consistency thresholds were 2.5 and 1.5, respectively.

Fig. 3.23 shows the phase 1st & 2nd derivatives. Fig. 3.25 shows
the log magnitude of the frequency response. Fig. 3.24 shows
the principal value and the unwrapped phase before and after
the removal of the linear phase. Finally Fig. 3.26 shows the
complex cepstrum.

Table 3.3 shows the values of phase derivative and

principal values optained with and without using double pre-

cision.
Double Precision Single Precision
Phase Prin- Phase Prin-
Phase Der. cipal val. Phase Der. cipal val.
I=170 - 99.35 -2,2827 - 99.35 -2.2827
K=2049 -105.777 0.533904 -105.776 0.533885
1025 -105.349 0.695856 -105.346 0.695842
513 -104.687 0.776484 -104.676 0.776464
257 - 97,402 C.816018 96.997 0.815943
129 - 23,843 -0.230057 - 19.312 -0.230037
193 - 39.72 0.823937 - 38.490 0.823888
16l 24556.11 0.768034 26378.48 0.7639676
145 260.846 -2,298963 263.361 -2.29887
153 1791.73 -2,290237 1838.64 -2.28965
157 14372.07 -2.259461 14331.08 -2.258796
159 897333.6 -1.911259 669723.1 -1.96540
160 - B 150562.2 0.670899
I=171 -106.587 .208161 ——— -—

Table 3.3
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From the Table 3.3 it can be observed that when the fre-
quency spacing becomes very small, double precision helps.
In this table I corresponds to the DFT point and K corresponds
to the division of the frequency spacing between I = 170 and
171. For example, K = 2049 means we are at the midpoint of
the interval. Details about K can be seen in [2].

Now finally we present an example which illustrates the
linear phase computation.

Example 3.4 - Consider a complex pair of zeroes located

at *n/4 as shown in Fig. 3.27

0.9999

Fig. 3.27

An FFT size of 32 was used with increment and consistency
thresholds of 2.5 and 1.5. The linear phase estimated by

Tribolet's algorithm was found to be -122.5, which is com-
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pletely unrealistic and because of this incorrect estimate
adaption was required 1001 times. However, we note that the
linear phase estimate is greater than the length of the
sequence which is 3. 8o making use of this fact reduced the
number of adaptions to 18.

In this chapter we considered the various issues related
to the computation of the one-dimensional complex cepstrum.
We have shown that the incorporation of the added features
such as using the integration routine obtained from splines
consideration, efficient computation of DFT at a single
frequency, double precision for certain variables, and linear
phase in the phase unwrapping method based on adaptive numer-
ical integration becomes very reliable and more efficient.

In the next chapter we discuss the theoretical and practical
issues such as the relation between the min. FFT size and
closeness to the unit circle, relation between the thresholds

of phase unwrapping are thoroughly discussed.
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CHAPTER IV

THEORETICAL ISSUES RELATED TO THE COMPUTATION OF
ONE DIMENSIONAL CCMPLEX CEPSTRUM

IV.l Introduction

In the last chapter we described the existing methods for
phase unwrapping in one dimension and criticélly examined their
shortcomings and relative advantages. We also considered the
use of piecewise polynomial interpolation such as spline,
Bessel and Hermite interpolation for this purpose. However,
the following questions remain unanswered for all these methods
of phase unwrapping:

(1) How do we know a priori the minimum FFT size to be
used for successful phase unwrapping. In other words we want
to know what is that value of maximum frequency spacing which
leads to successful phase unwrapping.

(2) How do we choose the increment and consistency thresh-
old for different types of signals such as for speech, seismic,
image etc. |

(3) How does the minimum FFT size vary for successful
phase unwrapping when we move zeroes of the finite length
sequence closer to the unit circle.

(4) How much two zeroes inside or outside or one
inside and the other outside the unit circle can be close
together as well as the extent of their closeness to the unit

circle for successful phase unwrapping using real arithmetic
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or even using extended precision.

In practice for a given sequence, we select a particular
FFT size depending upon the length and type of the signal and
the amount of aliasing tolerated. If the phase unwrapping
algorithm breaks down because the allocated stack size is not
sufficiently large then we use a longer FFT. In this chapter
we develop analytical relations in order to answer the above
questions in the special case when the location of the zeroes
is known. Then we consider the case of arbitrary signals.
Examples are presented where we show how the minimum FFT size
varies with the location of the zeroes relative to the unit
circle and their generalization is suggested.

The way the actual values of the incremental and con-
sistency thresholds are presently taken ié arbitrary, but
there is a relationship between them for a particular FFT
size. The problem with this arbitrary selection is that we
may have a particular value of incremental and consistency
thresholds that work fine for a certain set of data, whereas
they may be quite unreasonable for some other set of data.
Also if the values of these thresholds is made too émall, the
algorithm may break down, and even if it works; it may take a
large amount of time. On the other hand if these thresholds
are made larger, we may not be sure about the computed values
of tﬁe unwrapped phase. The approach discussed here makes it
possible to know the values of these thresholds and to select

their values in relation with each other.
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IV.2 Integral Relations for the Exact Computation of Unwrapped
Phase

In this section we derive the exact formulae for the
unwrapped phase in the case of a real zero and for the case of
a complex pair of zeroes. These two relations allow us to com-
pute theoretically (as opposed to using the phase unwrapping
algorithms) the unwrapped phase for any given combination of
real or complex pair of zeroes. It is to be noted that we are
carrying out our present discussion in terms of zeroes, because
for a finite length sequence all the poles are located at the
center of the unit circle.

There are two methods to obtain the required relation-
ships. In the first method we obtain the results geometrically.
This, however, has certain limitations. 1In the other method we

actually integrate the phase derivative.

Case 1 Real Zero

Fig. 4.1 shows the sequence for a real zero and the cor-

responding pole-zero plot.

x[nlh

1lé |a| # 1
-a and a real

n
- 4 —8- —

(a) , (b)

Fig. 4.1 Two Point Sequence and Its Pole-Zero Plot
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From the pole-zero plot shown in Fig. 4.1(b) it is easy

to obtain the:unwrapped phase using geometry as

Juyy = - -l _sinw
arg [X(e”™)] w + tan [_a+cos m] (4.1)
In the above expression -7 < tan-l[-] < T depending on the
sign of the numerator and denominator. However, this expres-
sion cannot be used for all values of a without some restric-
tions. Specifically, for a > 1 evaluating eq. (4.1) for w = 0

and w = m, we get

arg [X(ejw)l ] =04+ T=n"
w=0

and

arg [X(ejw)l ] = -1 4+ 7T =0
W="T

which is contrary to our requirements,

arg [X(ejw) ) =0
o

and
arg [x(ejw)l ] = =T
w=T

giving a 1inéar phase of -1. 8So eqg. (4.1) cannot be used as
a general formula for all values of a.

In the second method we obtain the unwrapped phase using
integration. The unwrapped phase has been defined as the

integral of phase derivative, i.e.,
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W
. 1
Jw ' :

arg [X(e l)] = J [arg [x(el®)] dw (4.2a
0

and

arg (X(ejm)l ] =0 (4.2b
w=0

to ensure that arg [X(ejw)] is an odd and continuous function

of w. The z-transform of the signal shown in Fig. 4.1(a) is,

1

X(z) = l-az (4.3)
or the Fourier transform,
X(ed¥) = X(z) p = l-ae V¥
z=e?
or,

jw . . 4
X(e’ ) =1 - acos w+ ja sin w (4.4a;

The Fourier transform of the signal nx[n] is,
jw . . :
Xl(e ) =-acos w + ja sin w (4.4b,

From eq. (2.13) the phase derivative, is
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arg"[x(ejw)] _ _ Re(F.T.x[n]) -Re(F.T.nx[n]) +Im(F.T.x[n]) «Im(F.T.nx[n])
[Re (F.T.x[n]) 1%+ [Im(F.T.x[n]) ] %

(4.5a)

- _ (1 - acosw)(-a cos w)+a2 sin2 w
(1 - a cos m)2+a2 sin2 w
(4.5b)
Simplifying, We get,
! j a cos w - a2
arg [x(e??)] = =05 (4.6)

(l+a2) - 2a cos w

Now using egs. (4.1) and (4.2), the unwrapped phase at

W = wy is,

l
JQHI _ I a.cos¢u-a2
0

arg [X(e dw (4.7)

(l+a2)~2a cos W

: wy “
jw [
or, arg [X(e 1)] =a J gos w dw - a2 I 5 duw (4.8)
0 (1+a”)=-2a cos w g (1+a”)-2a cos w
Make use of the following substitution
y = tan % (4.9)
Then dw = 29Y (4.10)
1+y

and cosw = 1:17 (4.11)
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Using egs. (4.9), (4.10) and (4.11), eq. (4.8) becomes

tan ?%
Juy (1-y%)ay
arg [X(e Y] = 2a f 5 5 3 )
g (1+y™) [(1+y7) (1+a”) ~-2a(l-y") ]
w
tan ?l-
2 dy
- 2a J Z 2 2

d (1+a“) (1+y“)-2a(1-y“)

After making partial fractions and simplifying, the above

expression can be written as

w w
s tan - (1+a2) ay tan —
arg [x(te” M1 = 2a | 2 —--] 5
S (1-a) 2+ (1+a) 2y? 1ty
w
tan 7%
- 2a’ I R
0 (1-a) "+ (1l+a) "y
wl w
= (1-a%) f Ly - J =,
o (1-a) "+(1+a) "y o l+y
w w
tan Tl tan —
_ _1-a® I dy dy
) 2 2
(1+a) % L-a, % 2 1+y
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Now using standard integral formulae, we get

w wy
i tan > tan >
arg [X(e 1)] = [tan-l (%ég)y} - [_tan_l Yy
0 0
_ 1 l+a w - Y
= tan [(I:E) t 3 ] - tan [tan ?T]
jw w w
1, _ _ 71 -1 l+a 1
or, arg [X(e ) = —- + tan . {(I:E) tan — ] (4.12)
or, in general
arg [X(e3%)] = - £ 4 tan~1 [(lii) tan 9) (4.13)
2 l-a 2 :

If a > 1, then the two point sequence shown in Fig. 4.1 is
maximum phase and we expect a linear phase of -1. Evaluating

eq. (4.13) we see that

arg [x(el¥)] =-2
w=T
which gives a linear phase of -1.
Thus eq. (4.13) allows us to compute the unwrapped phase
in the case of a single real zero for all values of a. Now we

are interested in the case of a complex pair of zeroes.
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Case 2 Complex Pair of Zeroes

Fig. 4.2 shows a sequence for the complex pair of zeroes

and corresponding pole-zero plot.
x[n]

o, B are real

(a) (b)
Fig. 4.2 Three Point Sequence and Its Pole-Zero Plot

Using geometry shown in 4.2(b) the unwrapped phase can be

easily obtained as,

‘0 _ . _ .
arg [x(ej )] = -2w + tan 1 [51ntu r sin Y]

-r cos y + cos w

+ tan_l [51n w + r sin Y 4
-r COs y + cos w

(4.14)

However, for the reasons similar to those mentioned before
while deriving the expression for unwrapped phase using Fig.
4.1(b), the eq. (4.14) cannot be used as a general formula for
the unwrapped phase for a complex pair of zeroes. So we use

integration.

The z-transform of the signal shown in Fig. 5.2(a) is

X(z) =1+ az L+ Bz-2
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and the Fourier transform,

X(2) jw =1+ ae J?
z=e

X (eJ¥) + Be J 2w

or, X(er) =1+ acos w+ B cos 2w - jlo sin w + B sin 2w]

The Fourier transform of the sequence nx[n] is
jw . , .
Xl(e ) = acos w+ B cos 20w - jla sin w + B sin 2w]

The phase derivative is given by

arg  [x(eI¥)] = -[0%+282+0(1438) cos w + 28 cos 2w]

(1-3)2+a2+2a(1+6) cos w + 4B cos2 w

is

Therefore, unwrapped phase at w = Wy

W
. 1
jw 2 2 +
arg [X(e” )] = - f [o +%§ t?(l+38) cos w + 2B cos %?] du
0 (1-B) "+0"+2a(1+8) cos w + 48 cos‘ w
Using the only possible substitution y = tan %, the eval-

uation of the above integral in terms of the general notation
a and B becomes quite complicated as the integrand involves
quartic polynomial in y. Therefore, an alternative idea is
used.

Consider the figure shown in 4.3. If we cap evaluate
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x[n] o is complex
1 a = a +jb and a2+b2 # 1
-a
I :
-9 & —© —=
0 1

Fig. 4.3 Two Point Complex Sequence

the unwrapped phase for this case, then thé unwrapped

phase for the complex pair of zeroes can be easily determined.
We are interested in the real sequence for which a real cep-
strum exists and for which all complex zeroes must occur in
conjugate pairs.

Looking at Fig. 4.3 it may appear that if a is complex
then we may substitute o for a in eq. (4.13) to get the
unwrapped phase in this case since arctan of a complex number
is a well defined operation in terms of complex log which
however, is multivalued. But it is to be noted that the expres-
sion for the phase derivative of the signal in Fig. 4.3 cannot
be obtained just by replacing a by its complex value in eq.
(4.5b) since its derivation involves the separation of real
and imaginary parts.

Now considering the signal of Fig. 4.3, we find that the

phase derivative of the signal is.

2,,2

' +b“)+a cos w + b sin w

arg [x(eI¥)] = =(a

l+a2+b2—2a cos w - 2b sin w
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is

So, the unwrapped phase at w = Wy

w
. 1
Juy -(a2+b2)+a cos w + b sin w

= J 2., 2
0 l+a®"+b”"=2a cos w - 2b sin w

arg [X(e (4.15)

The evaluation of eq. (4.15) is somewhat complicated and its
proof is given in Appendix A. The integral of eq. (4.15) or

the unwrapped phase is given by

2,2 9y
Jwy —wy -1 -2b+[(1+a) “+b“] tan 5
arg [X(e )] = —= - tan 5>
2 a“+b -1
+ tan"t [_izzg_—]r a2+p2 # 1
a +b -1

(4.16)

and, therefore, for a complex pair of zerces at a*jb, the

unwrapped phase in general is given by

. _1 [-2b+[(1+a)?+b?] tan 2
arg, IX(eJ )1 = =w - tan )
a +b"-1
_y [+1(1+a)24b?] tan 2
- tan 73
a“+b"-1
al+b241 (4.17)

When w = m and complex zero pair lies inside the unit

circle (a2+b2.< 1), then



argc [X(ejw)] n‘= -7 - tan = [-»] - tan_l [=oo]
w=

and, when the complex zero pair lies outside the unit circle

(a2+b2 > 1), then

arg, (x(e3%) ] = -1 - tan (o] - tan"t[=]
W=

so then the value of linar phase is -2 as expected as two
zeroes lie outside the unit circle.

Egqs. (4.13) and (4.17) represent the unwrapped phase for
the case of a real and a complex pair of zeroes respectively.
These two equations can be used to compute the unwrapped phase
for any given combination of simple and complex pairs of zeroes.
The total unwrapped phase will be the sum of unwrapped phase
for each simple and complex pair of zeroes. It should be noted
that egs. (4.13) and (4.17) are the result of a definite intce-
gral and the value of arctan in these eduations will always be

between * %



93

i

IV.3 Analysis of Unwrapped Phase

In this section we present an approach which may be use-
ful to answer the various questions related to phase unwrap-
ping mentioned at the beginning of this chapter. We restrict
ourselves to the special case in which the zeroes of the finite
length sequence under consideration are known a priori. 1In

the following section we make a generalization of these results.

Approach

From the given pole-zero plot, we determine the sequence.
Having obtained the phase derivative of the signal, we con-
sider the following question.

Given analytic expression of the phase derivative, what
should be the maximum value of frequency spacing Aw (which
corresponds to the minimum size of FFT to be used) such that
the following two constraints are satisfied.

(1) The approximate area between the two sampling points

~given by
Awg ' Jwiyy ' Jug
5= [arg [X(e )1 + arg [X(e )]]
2 . .
(Aw.) - jw, ' jw,
-t [arg x(e” *1yy - arg  [x(e 1)1] (4.18)
12

be less than or equal to a certain threshold 61,

called the incremental threshold. It is to be noted
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here that we are using the integration rule obtained
from spline interpolation.
(2) The value of the approximated integral differs from

the true value by less than a certain threshold 62,

called the consistency threshold (Fig. 4.4), i.e.,

jw,
A3 = |Al - arg, [X(e l+l)]| < 62

or _ (4.19)
04

A4

|a2 - arg, [X(e Y1 < o,

i+l)]

P e ea-

(a) A3 < A4 (b) A3 > A4

Fig. 4.4 Illustration of Consistency Criterion

where

Awi = w - Wiy frequency spacing in radians between the

i+l
two samples of phase derivative.
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jw., jw,
arg_[X(e 1ty 1oarc[x(e” 11y
Al = IFIX » 2T
2T
jw,
+ ARG [xie 171y (4.20)
IFIX[x] = (sign of x) * M, where M is the largest integer
< |x|.
jw., Jw,
arg_[X(e itly _arcix(e” 1
A2 = Al + 27 * Sgn (4.21)
2m
Sgn (x) =1, x>0
=-l'x<0
' 30541
arg [X(e )] = Phase derivative of the given signal at
©i+1
jw,

t
arg [X(e l)] = Phase derivative of the given signal at ws

' Jw,
arg [X(e l+1)] = Phase second derivative of the given signal

at w;4g

" jw,
arg [X(e *)] = Phase second derivative of the given signal

at w,
i
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jw

ARG [X(e l+1)] = Principal value of X(ejm) at w = Wy and
jw,
such that -m < ARG [X(e l+l)] < 7.
05 41
argaIX(e )] = Exact value of the unwrapped phase up to

wy + approximated phase increment between wy

and W41 given by eq. (4.18).

By the exact value above we mean that the phase unwrap-
ping has been done successfully up to w = W, . Also we mention
that in the course of finding the maximum value of frequency
spacing Aw, we shall also be answering some of the questions
posed at the beginning of this chapter.

Before we delve into more details, we want to make the
second constraint more clear.

By definition the complex log is

Jw, . Jw. jw,
log X(e” **1) = 10g jx(e” **1)| + j arg Ix(e” 1)) (4.22)
jw. jw, jw,
or, loglx(e” **1yj = 109 [x(e” )| + j (ARG (x(e” '
+ 2mk] (4.23)

where k is an integer.
As we have mentioned the whole problem of phase unwrap-
ping is to find the right value of k in eq. (4.23) so that the

complex log can be unambiguously defined and be made continuous.
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Let ka = an integer which is within *1 of the integer k

"and is obtained as (referring to eqgs. 4.22 and 4.23),

3% 3%
arg_ [X(e i+y1 - arG [x(e 1%y

k = IFIX
a
27

So the exact value of the unwrapped phase,

3o,
- ARG [x(e” *h) 4k -2m=m1

jw,
arg_ [X(e l+1)]

I
A

~Al + 2m + Sgn [k ] = A2

depending upon whether A3 = |Al - P| or A4 = |A2 - P| is
smaller, i.e., the integrated value which lies between Al and
A2 is within 62 to either Al or A2. Fig. 4.4 illustrates the
two possible cases, A3 < A4 or A3 > A4.

Now we give examples, one is for the case of a real zero
and the other one is for a complex pair of zeroes. These two
Qill allow us to formalize the procedure in general for finding
the maximum value of frequency spacing or the minimum FFT size
needed for successful phase unwrapping for a finite length

sequence which may have any combination of zeroes.

Example 4.1 Real Zero Case

A pole-zero plot is shown in Fig. 4.5(a) and the signal

is shown in Fig. 4.5(b),
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x[n]A
z-plane 1é
la] # 1
-a
s Smm—
a 1 l
o— 7 > —% N
(a) (b)

Fig. 4.5 Pole-Zero Plot and Corresponding Sequence
for a Real Zero Case
We follow the stepwise procedure given below to answer
the various questions related to phase unwrapping in this
case.
(a) Obtain the expression for the phase derivative (even,

periodic and continuous) of the signal in Fig. 4.5(b).

2
a cosw = a (4.24)

] 'w
arg [x(e?))] = 5
(1+a”) - 2a cos w
Obtain the expression for the phase second derivative

(odd, periodic and continuous),

arg [x(ejw)] = é% [arg' [X(ejm)]

-a(l-az) sin w
(1+a2

3 (4.25)
-2a cos w)
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(b) Obtain the expression for the unwrapped phase,

D8 tan Y

arg [x(e?)] 2

w -
- +
> tan

- ‘ (4.26)
arg [X(eJ )] =0, if a <1
W=Tr
-m if a > 1
(c) Setting the phase second derivative to zero in eq.
(4.25), we find that the absolute maxima or minima
is going to occur at ¢y = 0 or w = m. Table 4.1 shows

the location and values of maxima and minima for var-

ious ranges of a.

Location Location
of Max. of of Min. of Max. Value Min. Value
Phase Der. Phase Der. of of
Value of a in radians in radians Phase Der. Phase Der.
a -a
< < = —a
0 <a <l 0 T I-a i+a
‘-a a
L cace m 0 Tra I-a
-a -a
l <a <0 ™ 0 m -l_a
a -a
o <a < =1 0 1 m‘ m

Table 4.1 Maxima, Minima Values for Real Zero Case

In the illustration presently under investigation we con-
centrate on the values of a between 0 <a < 1. The same pro-
cedure applies for the other three cases. TFor ¢ < a <1, the

absolute maxima occurs at w = 0 and the absolute minima at



100

w = 7. The value of maximum derivative is T%E and the value of

minimum phase derivative is fi3°

(d) Fig. 4.6 shows the phase derivative curves and
unwrapped phase curves for several values of a. From this we
observe that the maximum area under the peak is in the neigh-
borhood of w = 0. Referring to eqs. (4.2) and (4.18), the
area under Aw (see Fig. 4.6(a)) is given by

arg. [x(e)] 1= 42 farg’ [X(ej“)ll + arg [X(ejwﬂl ]
a b o=Auw w=0 w=Aw

2 " 2 e 2
B rarg’ x@?1] - arg” ey
=Aw =0

(4.27)

Substituting values from egs. (4.24) and (4.25), we get

. 2
w a cos - a
arg, [x(el) 1 =40 12+ o - ]
w=Aw 1+a“-2a cos w lw=Aw

(Aw) 2 [(—a(l-az) sin

) ]
12 G&a2—2a cos w)2 lw=Aw
(4.28a)
ARG [X(er) ] = Principal value of x(er) at Aw
w=Aw
- -1 a sin w
= tan [m—w] (4. 28b)

w=Aw
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0

Fig. 4.6(a) Phase Derivative for Several Values of a; ajra,, as

Unwrapped
Phase

/2T

_."/2 ~

Fig. 4.6(b)

Unwrapped Phase for Various Values of a; ayr @5, Ay
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Now using eqgs. (4.19), (4.26) and (4.26) we conducted an
experiment in the following way: we selected a particular
value of a and found the maximum value of Aw such that the
calculated value of the unwrapped phase obtained after satis-
fying the consistency criterion matches the theoretical value
'given by eq. (4.26). This we carried out for values of a
from a = 0.05 to 0.999999. These results are shown in Table
4.2.

In Table 4.3 we show the maximum derivative for various
values of a and the product of Awﬁax and maximum derivative
which helps to find the value of the incremental threshold.

Also in this table we show the minimum FFT size needed, when

the real zero is located at a certain value of z = a.

Discussion of Tables 4.2 and 4.3

Column 1 of Table 4.2 shows the values of a varying from
a = 0.05 to 0.999999 i.e., we move more and more close to the
unit circle. In column 2 we have shown only the maximum value
of frequency spacing at which the theoretical value of the
unwrapped phase as obtained by using the exact integration
formula and the calculated value of the unwrapped phase
obtained after applying the consistency criterion are in
agreement. For example, for a = 0.9 the theoretical and cal-
culated value of the unwrapped phase are in agreement for Aw
< 0.37. If we set Aw = 0.375, the two values are not in agree-

ment as there happens to be a jump of 27 in the value of Al
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and A2.

In Table 4.3, the third column shows the maximum value

_a
l-a

of phase derivative which is given by for 0 <a <1. 1In
the next column we have multiplied Aw by the maximum value of
phase derivative. This gives a reasonable estimate of incre-

mental threshold § that is,

ll

Incremental threshold el =~ Awmax X Maximum value of phase der.

It is observed from this table that for 0.7 < a < 0.999999,

the value of incremental threshold 6, becomes approximately

1
constant. Also from Table 4.2 we observe that the value of A3
(= value of consistency threshold 62) becomes constant at a
value of 0.7 for 0.7 < a < 0.999999. So we conclude that the
reasonable value of consistency threshold to be used in con-
junction with the incremental threshold of 3.5 is 0.7. Thus
the approach that has been used above allows us to find the
matching values of two thresholds and thus we need not select
them arbitrarily. Also from this table it is noted that as
the value of a tends towards 1 say from 0.999 to 0.9999, the
maximum Aw for successful phase unwrapping decreases by a
factor of 10.

Table 4.3 also shows how the minimum FFT size varies when
the real zero is moved towards the unit circle. These results

have been verified separately using the phase unwrapping algo-

rithm discussed in Chapter III. The minimum FFT size tells us
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that if the zero is close to the unit circle, say a = 0.9999,
then the minimum FFT size to be used for successful phase
ﬁnWrapping is 215. This analysis assumes no use of the phase
adaption feature. This does not mean that in practice we have
to use such a large size FFT, because we can always reduce the
FFT size by providing the adaptive feature of the phase unwrap-
ping algorithm. For example, in this case we can have 2lo =
1024 point FFT with minimum stack size of 6 or 29 = 512 point
FFT with minimum stack size of 7. So, the phase unwrapping
algorithm with 1024 point FFT and a stack size of 13 is able
to handle zerces as close to the unit circle as 10-6 provided
we use double precision as has beenlconcluded in Chapter III.
All the results obtained in this chapter were obtained using
double precision. Fig. 4.7 shows graphically the relation
between the minimum FFT size needed and closeness to the unit

circle, l-a for values of 0.05 < a < 0.9. For values of 0.05

<a < 0,7, it is possible to use a little larger value of
2T

Awmax

ever, we were not interested in this, as we want to keep the

Aw and trence slight reduction in the value of How-

max
size of FFT about 4 times that of the sequence due to cepstral
aliasing. Moreover, for this range of a, the FFT size is not
critical.
Because of the large range of a, we have plotted the mini-
mum FFT size versus closeness to the unit circle € = l-a on a
log-log paper for 0.95 < a < 0.999995 (Fig. 4.8). This rela-

tiornship comes out to be a straight line on the log-log scale.
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It has been found that required relation between € = l-a and

minimum FFT size N, comes out to be
EN = 2.45 (4.29)

In order to know the minimum FFT size required and the
closeness of the two peaks in the phase derivative curve (dis-
cussed in detail in the next section) we need to know the width
of the peak. In the following we determine the width of the
peak in the phase derivative for a zero close to the unit cir-
cle (Fig. (4.6a). Note that the phase derivative is an even
function.)

The expression for phaSe derivative as obtained in eq.

(4.24) is
! jw acosw - a2
arg [X(e" )] = 5
(1+4a“) - 2a cos w
2
Approximating cos w = 1 - %T' we have

aw2
2
(l-a)2 + aw2

a(l-a) -

arg  [x(eI®)] =

For a = 1, the 3 db frequency,

2
02 = (l-aa) ~ (1-2)2

or, w= 1l-a (4.30)
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Corresponding to this value of w,

. .
arg [x(er)] ~ % (Ti‘—a) =3 X maximum value of phase derivative
So 3 db frequency is indeed equal to (l-a). Thus we conclude

that Example 4.1 illustrates the following points:

(1) There exists a definite relation between the minimum
FFT size needed and the closeness of the real zero close to
the unit circle. This relationship is €N = 2.45. _This has
been obtained for 0.05 < ¢ < 5x10-6.

(2) A definite procedure can be used which allows us to
find the incremental and consistency threshold which are in
agreement with each other.

(3) Also it has been found that using single precision
arithmetic it does not make sense to consider the zeroes
which are closer to the unit circle by more than 10—5 as the
machine used (PDP 11/50) has 6 digits of precision in real
arithmetic.

Now we present the example for the case of a complex pair

of zeroes, which further reveals some important facts about

phase unwrapping.

Example 4.2 Single Complex Pair of Zeroes

A complex pair of zeroes located at radius r and the cor-

responding signal is shown in Fig. 4.9.
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x[n] é
1
r B
r#l o
Y ) oa,B real
(2) 1

o - ———e—o—Ff - N

0 1 2

Fig. 4.9(a) Pole-Zero Plot Fig. 4.9(b) Sequence

Fig. 4.9 A Complex Pair of Zeroes, Ekample 4.2

Let Rl r cos Yy
R2 = r sin ¥y

Then the sequence shown in Fig. 4.9(b) is,

2

x[0] =1, x[l] = q = -2R1, x[2] =B =R =r

2, 2
1+R;
The following ste.wise procedure is used to answer the

various questions related to phase unwrapping for this example.

(a) Obtain the expression for phase derivative for the signal
shown in Fig. 4.9 (b),

. 2,..2 '
arg' [x(eJm)] | +§B ;a(l+36) cos w + 2B cos gw](4.3la)

(1-8) "+a"+2a(1+B) cos w + 4B cos” w

Setting k, = az + 282

~
i

, = (1+3g)
(4.31b)

kK, = (1-8)2 + o2

~
I

20 (148)
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Phase derivative becomes

-[kl+k2 cos w + 2B cos 2w]

arg [x(e¥)] = (4.32)

k,+tk, cosw + 48 coszw

3 74

Differentiating the above expression, we get the expression for

phase second derivative,

arg  [x(e)] =

sin [(k2+88cos m)(k3+k4coqu+4Bcoszw)-(k4+BBcos w)(kl+k2c050)+26005 2w) ]
: 5 5
[k3 + k4 cos w + 48 cos” w]

(4.33)

(b) The expression for unwrapped phase is given by,

- 2 2 w
2R, + [(1+Rl) + R2]tan >

arg [x(el®)] = -w - tan™! [—2 ]
2 2
Rl + R2 1
_1 t2R, + [(1+Rl)2 + Ré]tan %
- tan [ 1 (4.34)
2 2
Rl + R2 -1
2. .2
R1+R2 # 1

(c) Setting the phase second derivative to zero in eq. (4.33)
we find that the relative maxima or minima are going to occur

at



w=nm, n=20, £, x,... (4.35)
or w given by
408 (1-B) cos2 w + 88(1-82) cos w+ o - a3 ~ 5a32 + 508 - aB3 + u3B =0
(4.36)

Let ai and b, be the two roots of eq. (4.36) which are

less than or equal to 1, then

w, = tan-l [(V/(l—ai)Val], similarly corresponding to bl'

S | .2
w = w, = tan [(V (1 bl)Vbl]

Egs. (4.35) and (4.36) may suggest that there are a total of 4
relative maxima and minima between 0 and 7 including end points.
However, from the nature of the pole-zero plot shown in Fig.
4.9 (a), we expect only one relative maxima or minima for 0 < w
< T (two exist at w = 0 and w = ™),

In this illustration we concentrate on the values of 0 <
r <1 and assume that Yy = 45°., However, the same set of ideas
apply for any value of |r| # 1.

For this case, it is found that for r < 0.3, the values
of cos w given by eq. (4.36) are both greater than 1 and in
that case we conclude that there cannot be any relative maxima
or minima between 0 < w < 7, and the phase derivative should

vary linearly between w = 0 and w = 7, However when r 2 0.3,
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we find that the one root of cos w is less than 1 and the
other one is greater than 1, so we get a relative maxima
between 0 < w < 7T as expected.

Now our interest is to find the absolute maxi: »~ and min-
ima in this case. For r > 0.4, the absolute maxima occurs
for 0 < w < 7 and tends towards 7/4 as we move closer to the
unit circle i.e. r » 1. The absolute minima occurs at w = 0
and m. (The value of phase derivative at these points is
about the same whén r is'very near to 1 and this value is‘
about -0.9999.) We are interested in the maximum which
occurs between w = 0 or w = 7 since in general the absoclute
maxima or minima which occur at w = 0 or w = m can always be
handled by the procedure outlined for the case of real zero
- in example 4.1.

So in this example we answer the various questions
related to phase unwrapping when peék in the phase derivative
occurs for 0 <w < wm. Fig. 4.10 shows the phase derivative

curves and unwrapped phase curves for various values of r (r3
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Phase
Derivative r,

w

Fig. 4.10(a) Phase Derivative Curves for Various Values

of r for Example 4.2

Unwrapped
Phase

Fig. 4.10(b) Unwrapped Phase
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Fig. 4.11 Phase Derivative Curve for Some Typical Value
of 0.4 <r <1

(d) Now we find the maximum frequency spacing Aw for the suc-
cessful phase unwrapping. We take two points 1 and 2 on the
left and right of the peak, and determine the unwrapped phase
at Wy s knowing the value of the unwrapped phase at Wy s i.e.,
we compute the theoretical value of the unwrapped phase at w
using eq. (4.34) and add to it the area between Wy and W,
using eq. (4.18) (with i = 1) to approximate the unwrapped
phase at W, . At this point it is possible to find the value
of Awmax = Wy T oWy such that for Aw < Awp oy the calculated
value of the unwrapped phase at w, satisfying consistency
criterion and the theoretical value of the unwrapped phase at

Wy obtained using eq. (4.34) are in agreement. But it is not

reasonable because the integration may be too bad and we may

l .
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be quite far away from Wy such as the points 3 and 4 in Fig.
4.11. With a view to improve the integration and for the
approach to work in general, we select the value of consis-
tency threshold, 62 as 1 (in principle it can be anything
less than mw). So now we shall choose two points on the two
sides of the peak (Fig. 4.11) such that the consistency
threshold 62 < 1. Hence the procedure is

(1) Select a consistency threshold of 1.

(ii) Using eq. (4.34) compute the theoretical value of
the unwrapped phase at w = Wy and use eq. (4.18) to
find the area under the phase derivative curve
between Wy and Wy Thus, we obtain
jw

arg, [X(e

wz_wl

‘ jw .
2 5—) [arg' [X(ed¥)]

)] = arg [X(e 1)1 + ¢

w=wl

+ arg' [X(ejw)]

w=w2

2 71
12

(w,~w )2 'y .
- —— [arg [X(ej“’)]‘
w=w2

- arg"[x(ejw)]’
w=w

|

1

(4.37)
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where use is made of egs. (4.32) and (4.33). Principal value

at w = w, is given by,

ju, 1| - {e sin (w) + B sin (2w)}
ARG [X(e 7)] = tan

l + o sin (w) + B sin (2w)

Now using eqgs. (4.19), (4.37) and (4.38) we conducted an
experiment in the following way:
For a particular value of r we find the maximum Aw = Wy =

w, such that the consistency threshold 62 is just less than 1

1
and the calculated value satisfying consistency criterion and
the theoretical value are in agreement. This was carried out

for 0.4 < r < 0.99999. The results are shown in Table 4.4.

Discussion of Table 4.4

Column 1 shows the radius of location of complex pair of
zeroes from the origin. This radius varies from 0.4 to 0.99999.
Column 4 shows the maximum value of frequency spacing around
Weo s for which the consistency threshold is under 1. Column 5
gives the values of maximum phase derivative. It is to be
noted that this value of maximum derivative is very close to
r/(1l-r). Column 6 shows the product of Awmax and the maximum
phase derivative. From this we conclude the value of incre-
mental threshold. It is observed that the value of this
threshold becomes constant at 2. Similar to the simple zero

case in example 4.1, it is observed here that if we increase

the radius from 0.999 to 0.9999, the max Aw required decreases



121

by a factor of 10. Finally, the last column of the table
shows the minimum FFT size to be used when the complex pair of
zeroes is close to the unit circle by a given amount. In an
attempt to verify the FFT size given by this table, we used
thevphase unwrapping algorithm and found that for some cases

a FFT size, half of that given in this table work for success-
ful phase unwrapping. This was expected as we have discussed
earlier. We conclude that the FFT size given in this table

is guaranteed to work if we picked up the incremental and
consistency threshold as 2 and 1. But in some cases it may
not be the least one.

In Fig. 4.12, a plot is gi?en of the minimum size of FFT
versus closeness (e = 1l-r) of zeroes to the unit circle. We
observe the same type of behavior as in the example 4.1 (Fig.
4.8) for 0.8 < r.

In this case the required relation between € = l-a and

the minimum FFT size N comes out to be
eN = 3.5 ' (4.39)

which is a.hyperbola in the €,N plane.

Using eq. (4.32) and following the approaches similar to
that in example 4.1, the determination of the width of the
peak in the phase derivative curve becomes extremely compli-
cated. However, we expect an expression for the width of the
peak similar to that of example 4.1. (The value of maximum

derivative for the two examples can be noted.)
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We approximate the width of the peak (occurring in general

for 0 < w < m as
2(1 - 1) (4.40)

The factor 2 appears here because in example 4.1 we con-
sidered only one side of the peak. 1In the next section we
show that such an approximation is quite reasonable.

In summary, for this example of complex pair of zeroes
we have shown

(1) how the minimum FFT size varies as we move the com-

plex pair of zeroes more and more close to the unit
circle.

(2) how one can determine the value of incremental

threshold for a given value of consistency threshold.

(3) Just as in the case of example 4.1, it has been

found that it does not make sense to consider the
zeroes which are closer to the unit circle by more

than 10-'5 while using real arithmetic.

IV.4 Generalization

Having discussed the examples for the case of a real
zero and a complex pair of zeroes, we wish to extend their
results for the case of a finite length signal whose pole-
zero plot consists of any arbitrary number of zeroes whose
location is known in the z-plane and then to any arbitrary

real or synthetic signal for which we do not know the exact
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pole-zero plot.

In section IV.3 we did not encounter the problem of how
close two zeroes can be together and to the unit circle and
still be able to do phase unwrapping. The exact mathematical
answer to this question seems to be very difficult. We sug-
gest a procedure in the following and present experimental
results.

When two zeroes are close togethar, following are the
three situations which may exist in the phase derivative
curve.

(i) two positive peaks (Fig. 4.13(a))
(ii) two negative peaks (Fig. 4.13(b))

(iii) one positive and one negative peak (Fig. 4.13(c)).

A typical phase derivative curve is shown in Fig. 4.14.

If we can handle the above mentioned 3 cases, then we
should be able to comment about phase unwrapping for any
finite length sequence whose pole-zero plot is known.

Note that for each of the cases (Fig. (4.13)) the expres-
sion for the exact unwrapped phase can be obtained using eq.
(4.17). 1In this figure h depends on the angular displacement
of the two zeroces and the height of the peak depends upon the
closeness of the corresponding complex pair of zeroes to‘the
unit circle. Fig. 4.13(b) is the upside down of Fig. 4.13(a),
so we need to concentrate only on Figs. 4.13(a) and 4.13(c).

We suggest the following procedure for these situations.
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Find the relative maxima or minima (location and value)
of the phase derivative. Say in Fig. 4.13(a) we have found
the absolute maxima or in Fig. 4.13(c) picked the absolute
maxima or minima whichever is larger in absolute value. Cor-~
responding to this we find the minimum FFT size, N from
Table 4.4. Since we know the location of both the peaks we
can find out the frequency spacing h between them. Then we

obtain,
_2m

If N1 < N, we select N as the size of FFT to be used for
phase unwrapping and consider the two peaks as independent
from eachhbéher. If however, N1 > N, we say that the two
peaks are dependent and we use the following idea for obtain-
ing the minimum FFT size for successful phase unwrapping.
Determine the width of the two péaks using eq. (4.40).

Let the minimum of the two peaks be denoted as L. Then, the

minimum FFT size equals
— (4.42)

The size so obtained conforms with the seventh column of
Table 4.4.
In general an experiment similar to example 4.2 can

always be carried out.
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Now we give a stepwise procedure that can be used to
answer the various questions mentioned at the beginning of

this chapter for any sequence whose pole-zero plot is known.

(1) From the given pole-zero plot, determine the sequence.

(2) Obtain the expression for phase first and second deriva-—
tives.

(3) Obtain the exact relation for the unwrapped phase using
egs. (4.13) and (4.17). |

(4) Obtain the relative and absolute maxima and minima (loca-
tion and value) of the phase derivative.

(5) Determirie the absolute maxima or absolute minima whichever
is larger in absolute value. Hereafter referred to as the
super peak.

(6) Apply the procedure similar to that of example 4.2 around
the super peak picked up in step (5). Obtain the minimum
FFT size, say N1.

(7) Obtain the frequency spacing between every two adjacent
relative maximas or minimas in the phase derivative curve.
Let the minimum spacing be denoted by h. Then N = %}.

(8) If N < N1, the minimum FFT size obtained in step (6) i.e.,
Nl is all right, otherwise the new minimum FFT size which
should be used equals 21._“ where L = minimum width of all the

relative maximasor minimas occurring in the phase deriva-

tive.
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It has been found that if we are using 1024 points FFT
with stack size of 13, we can do successful phase unwrapping
when the three zeroes are close to the unit circle by a factor
of 10_5 and separated from each other by n/104. In this case
all the three zeroes lie between two DFT points.

Until now in this chapter we have considered the cases
where it has been assumed that we know a priori the location
of zeroes of the finite length sequence, but in practice this
may not be the case. However, the above given results can be
used if we, somehow, have an idea about the order of closeness
of zero to the unit circle depending upon its generation,
for example, whether it is a speech, seismic, image or milling
machine signal. For example if the signal happens to be close
to periodic, we expect zeroes very close to the unit circle
and phase unwrapping becomes relatively more difficult. In
practice using the incremental threshold of 2 and consistency
threshold of 1, the FFT size given in Table 4.4 can be used.

In the next chapter we discuss the properties and compu-

tational strategies for the two-dimensional complex cepstrum.
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CHAPTER V

COMPUTATION OF TWO DIMENSIONAL COMPLEX CEPSTRUM

V.l Introduction

In the previous chapters we have discussed in detail the
theoretical and practical issues related to the computation
of the one-dimensional complex cepstrum. We considered sev-
eral features such as the improvement of the integration rule,
efficient computation of the DFT at a single frequency which
is not on the DFT raster, the need for double precision for
certain variables, determination of incremental and consis-
tency thresholds and linear phase so as to obtain an efficient
and reliable phase unwrapping algorithm. Now‘in this chapter
we consider the computation of the two-dimensional complex
cepstrum. The need for the efficient and reiiable two dimen-
sional.phase unwrapping has been long felt. Various attempts
were made to use the complex cepstrum in image processing for
deblurring purposes and recently for checking the stability of
two dimensional recursive digital filters. Filip [4] esti-
mated the impulse response of linear, shift invariant image
deblurring system using homomorphic filtering technique as
opposed to using power spectral density and maximum likelihood
techniques for modeling the image as a random field because
homomorphic technique incorporates the information about the

phase of the transform which is necessary in image restoration
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[20]. He used the¢ phase unwrapping algorithm based on the
phase principle value (Schafer's algorithm) and this led to

the poor estimate of the phase. Rom [18] considered the two
dimensional real cepstrum. Stockham [19] found the major weak-
ness of the solutions of blind deconvolution (both signals are
unknown and the only data available is the convolution itself
and the task is to estimate or eliminate one of the unknown
signals) is the inability to acorrect for the unknown phase dis-
tortions in the general case as he makes no use of phase un-
wrapping. Ekstrom [21] ccnsiders the use of complex cepstrum
for checking the stability of two dimensional recursive digi-
tal filters by taking the input of the characteristic system

as the autocorrelation of the signal so as to avoid phase un-
wrapping. Ekstrom [22] has also considered the use of Schafer's
phase unwrapping algorithm as it greatly simplifies the stabil-
ity test. We have already mentioned that the use of a phase
unwrapping algorithm based only on the principal value is not
sufficient [2], so we seek better phase unwrapping methods.

In this chapter we consider two dimensional homomorphic
systems for convolution, discuss some important properties of
the 2-D cepstrum and consider several phase unwrapping compu-
tational strategies.

We shall restrict the use of complex cepstrum to checking
the stability of one and two dimensional recursive digital fil-

ters and this application is considered in the next chapter.
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V.2 “Two-Dimensional Homomorphic System for Convolution

AN
The definition of 2-D complex cepstrum is a straightfor-

ward extension from its one dimensional definit+ion. It is

given by
X[m,n] = Z-l [log z(x[m,n])] . {(5.1)

A 2-D homomorphic system for convolution is shown in Fig. 5.1.

X [m,n]

X (w, z) X[w, 2] 1 £[m,n]
— Z[] B log( ] [—¥ 2 [‘]_—l
L
y [m,n] )
e Y(w,2) ¢ (w,2) ¥ [m,n]
44— 7 “[-] expl[-] zZ[-]
Fig. 5.1

Dudgeon [3] has given the necessary and sufficient condi-
tions fcr the existence of 2-D cepstrum. These conditions are
similar to those in the 1-D case. Specifically, any real two
dimensional array whose Fourier transform has a log magnitude
which is continuous, even and periodic, and whose phase is con-
tinuous, odd and periodic over the frequency plane will have a

well defined two dimensional complex cepstrum which is real.
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various relations involved are:

%Im,n] <> X(w,2z) = log [X(w,z)] (5.2)
=2 I %[m,nlw "z " (5.3)
mn

'~ defined within its region of convergence that includes |w| =
lz] = 1.

Evaluating

X(w,2)

we get

~ . -\) . '\)
X(eju,eJ ) = log [X(eju,eJ )]

~ i 3 N 3 iV
= XR(eJu,er) + jXI(eJu,eJ )

log Ix(eJu,er)l + j arg (x(ed¥, eI
: v : v
So, % (eI",e3Y) = log |X(e3“,eJ ) | (5.4)

R

arg [x(el¥,edV)] (5.5)

and ﬁI(eju,er)

Similar to the 1-D case, if we define the unwrapped phase
as the integral of phase derivative, then the representation
is not unique in the sense that we could integrate any of the

three second partial derivatives. We define it as
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arg [x(e?",e?V)1 = ix(eju,ejv)
AY]
" A Jug iy,
- [ [ — k. (e te Yy augav, (5.6)
6 0 M1V
and arg [X(eju,ejv)l =0 (5.7)
n=v=0

If the phase as defined in egs. (5.6) and (5.7) is not peri-
odic, it can be made so by subtracting off a linear phase com-
ponent along the two axes which corresponds to a shift in the
time origin of the original signal.

Since we have assumed that the complex log is well
defined so its derivatives also represent the promer Fourier

transform, we have

0

. . X, (=X;) - (==X,) X
9 3 Ju _Jvy, _ "R "9p’I au R I
™ X (e”",e) IXI2 : (5.8)
. 2 2
9 @ Ju _Jv 1 2 9 d
— X (e"",e”") | x| 7 X (—5X;) - X (—=X,)]
302 N RY,2T I, 2R
2 ] 2
+ 2X xI[( 2 x ) - (auxI) 1
+ 2(32%0) (2 (x2 - x2) (5.9)
Bu R ou I R *
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and
2 . . 2 2
d - Ju _Jv, _ 1 2 d _ 0
EXTERS XI(e re” ) = le4 {Jx| [XR(BquXI) (auavx )X ]
d d
+ 2XpX [ (5 X )(av R " (5p¥p) (5y%p) ]
XD = Xp) LX) (Xp) + (Xp) (g¥p) ]

('5.10)

In the above three equations we have avoided the argument
notation for simplicity. Derivatives with respect to the v
variable can be obtained similarly. Note that the determina-
tion of first derivatives of the phase requires the calcula-
tion of the Fourier transforms of x[m,n], mx[m,n] and nx[m,n].
Second derivatives require the determination of Fourier
transforms of x[m,n], mx[m,n], nx[m,n], m2x[m,n], n2[m,n],

and mnx[m,n].

V.3 Properties of Two Dimensional Complex Cepstrum

Many of the properties of one dimensional complex cep-
strum can be extended to two dimensions. In the following
we discuss three properties which are somewhat different from

the 1-D case and which we shall be using in the next chapter.

Property 1 For a separable sequence the complex cepstrum

exists only on the axes, i.e., ®[m,n] # 0 only on the m and

n axes for x[m,n] = xl[m] x2[n].
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Proof

Given x[m,n] is separable, i.e.,

x[m,n] = xl[m] x2[n] (5.11)

Then X(eju,ejv) = Xl(eju) Xz(ejv) from the definition of the

Fourier transform.

log [Xl(ej“)] + log [X2(ejv)]

log [X(gju,ejv)]

log (X, (e")] +1(v) +log [X,(e?¥)] +1(n)

(5.12)

where, 1(v) is a function that has a unit value for all v
and 1(u) is a function that has a unit value for all y.
Taking the inverse Fourier transform of the above equation

we get
&[m,n] = ﬂl[m] e 6[n] + 22[n] § [m] (5.13)

This shows that the cepstrum of a separable sequence exists

only on the axes.

Before considering the next property, a few definitions
(see Ekstrom [21]) follow:
Support of h[m,n] is the set {(m,n) |h(m,n) # 0}

Non-symmetric half plane (NSHP) is a region of the form

{m>0,n>0} U {m>0,n<0} or their rotations. There are total

eight NSHPs.
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Admissible region is a NSHP intersected with a sector.

Property 2 If the support of him,n] lies in an admissible

region, then support of h[m,n] lies in the same admissible
region.
Proof

By definition of complex cepstrum

H(w,z) = exp (ﬁ(m,Z))

A, k
[H{w,2z)]

*1 (5.14)

|
Il ™ 8

The above expression corresponds to a k-fold convolution,

8

L (A, #h] (5.15)
o K

*~ h[m,n] =
k

™

Using the fact that two functions with support on a sec-
tor will have the same support for their corvolutions, we con-
clude that k-fold convolutions will have the same support s as
that of ﬁ[m,n]. And since h[m,n] is the sum of such terms, so

it also has the support s.

Property 3 Here we develop the recursive equations for the

signal x[m,n] which is known to be min-min phase i.e., has no
poles or zeroes in the region |w| = 1, |z| > 1.

Assume log X(w,2) is analytic.
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X(w,2z) = Z > x[m,n]m“mz_n
m=0 n=0
X(w,z) = log [X(w,z)] (5.16)

9
A 2 [X(w,2)]
gL Xw,z) = Y (5.17)
w X(‘J)IZ)

x[m,n] <> X(w,2)

-mx [m, n] ++(u§% X(w,2)

Multiplying by w both sides of eq. (5.17), we have

[0 = R(w,2) 1 [X(0,2)] = 0 o=[X(0,2)]

Since multiplication in the z-domain is the convolution in the

time domain, by taking the inverse z-transform, we have

Since

So,

or,

-2 2 kRlk,2] x[m-k,n-2] = -mx[m,n]
k ¢
x[m,n] =0 for m < 0, n < 0
&[m,n] =0 for m < 0, n < 0
1 W n
x[m,n] = = z Z x[m-k,n-21k2[k,21,
k=0 2=0
m# 0
m n
1
x[m,n] = Xlmnl _ > % x[m-k,n-21kfI[k, 2]
x[0,0] ~ mxro,0T 2, %
k=m, £=n m# 0
x[0,0] # O

not simultaneously
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In order to find x[0,0], we use the initial value theorem.

[o¢) [e 0] m
X(w,z) = Z T ®[m,njw Mz M

m=0 n=0

%[0,0] 1im [log X(w,z)] log | 1im X[m,z]]

W w->o
Z->00 Z 00

= log [x[0,0]]

So the following are the recursive equations for solving x [m,n],

0 m< 0, n< O
x[m,n] =
x[m,n] 1 m o
ALY R ¥ 2 x[m-k,n-2]1kx[k,2](5.18)
k=m, 2=n

not simultaneously m>0,nz>0

x[0,0] # O
%[0,0] = log [x[0,0]] (5.19)

Eq. (5.18) cannot be used to find the value of complex
cepstrum along n axis. However, if we integrate with respect
to z in eqg. (5.16) and carry out he simplification similar to
that above, we get

m n
fimn) = XAl o —fr T 5 x[mek,n-210%0k,2] (5.20)

k=0 2=0
k=m, 2=n

not simultaneolisly n>0 m=>0

xi0,0] # 0
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Thus egs. (5.18) and (5.20) are to be used first to get
the value of x[m,n] along the axes and then either of them can

be used to get x[m,n] in the 2-D plane for m > 0, n > 0. '

V.4 Various Strategies for Computation

In two dimensions because of the presence of two indepen-
dent variables, there can be several approaches for phase unwrap-
ping.

An integration of eq. 5.6 can be carried out. The mixed
second partial derivative is computed using eq. (5.10). How-
ever, we are not interested in the integration alone because
of the truncation error in the process of numerical integra-
tion. Also for the same reasons we are not interested in the
algorithms which make use of the principal value alone. Effi-
cient and reliable use of bicubic spline interpolation [23]

does not seem feasible. .-So finally we would like to use an

e

P

adaptive numerical iﬁtegration scheme with all the added fea-
tures as discussed in Chapter IiI. Some of the approaches are
shown in Fig. 5.2, where for the sake of simplicity we have
indicated phase arg [X(ej“,ejv)] by f and p and v variables by
x and y respectively.

The approach that we have used for phase unwrapping is
shown in Fig. 5.2(a). Here we compute the partial derivatives
with respect to x at each of the DFT points and partial deriva-
tive with respect to y along the first column only using egs.

(5.8) and (5.9). Now making use of eq. (5.7) we unwrap the
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- 2

! E"_I_—'T__“ Computation —-Df/9x, é—% at every point

v ax”~

EF: ” af/éy, 32f in the first
y |, 5,2 column only

e B\ Y

R First along column wise and then r w wise

1], -4

e e X (a)

(b) Staircase pattern,
alternate direction

y

¢

b )V'?iiyj&’ﬁ (c) Each time add one point diagonally and

B unwrav for the additional points of

y 5.;y’|;/’q;y‘ the square so formed.

¥——s

2 jV' }y’ jyi’

[ % 1
(d) First along the axes
y | %X x unknown '
//‘ ?, . known
T
o x

Fig. 5.2
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phase along the first column using the optimized adaptive phase
unwrapping algorithm. Having computed the unwrapped phase
along the first column, we compute the unwrapped phase for
every row. Now we determine the linear phase along the two
axes by looking at the value of the unwrapped phase at 7 along
the two axes. Linear phase isisubtracted from the unwrapped
phase to make it periodic.

In the present implementation we have directly computed
the 2-D DFT at a single frequency which is not on the DFT
raster. However, it can be efficiently computed by extending
the modified Goertzel Algorithm discussed in Chapter III.
Specifically, consider a sequence x[m,n)] of area (M,N) i.e.,
the sequence exists for 0 < m < M-1 and 0 < n < N-1. Suppose

we want to compute DFT at frequency ﬁ%, ﬁ% where Ml > M and

Nl > N. Then by definition of the 2-D DFT, we have,
M-1 N-1 km 2n
Xk, = Z z x[m,n]wM wN (5.21)
m=0 n=0 1 1
-j 2qw _ =3 2m
where w. = e -, W = e — (5.22)
My M’ "Ny Ny
and, k=0,1, ..., M-1
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Using the identity,

- el 27 (M- 32T ¢ e
1 e My k(M-M) e Ny 2 (N-N)
: M-1 N-1
X(k,L) = e J ZH(i{d_M + 'Iﬁ_N) > ) X[m,n]WI:Ik(M_m)W_Q'(N n)
1 1  m=0 n=0 1 N3

Now exponential term outside the square brackets is the
phase term and term inside the square brackets can be imple-
mented using the approach of 1-D Goertzel Algorithm [7].

In this chapter we have discussed some of the properties
of two—dimensiqnal complex cepstrum and described the computa-
tional strategy that we have used for the computation of 2-D
complex cepstrum. In the next chapter we consider the use of
complex cepstrum for checking the stability of 1-D and 2-D

recursive digital filters.
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CHAPTER VI

APPLICATION TO TESTING THE STABILITY
OF ONE AND TWO-DIMENSIONAL RECURSIVE DIGITAL FILTERS

VI.1l Introduction

In the iast chapter we discussed the basic issues related
to the computation of the two-dimensional complex cepstrum.
We also considered some of its important properties. 1In this
chapter we shall use the complex cepstrum to check the stabil-
ity of recursive (infinite impulse response) digital filters.

The problem of testing an IIR filter for stability is of
fundamental importance in the design and application of these
filters. Particularly, in two-dimensions the stability prob-
lem becomes complicated because of the absence of a factoriza-
tion theorem for two-dimensional polynomials. A number of
attempts [24 - 27] have been made to develop stability
theorems and to formulate algorithmic tests based on these
theorems. However, the numerical implementation of these
tests is usually inefficient. Moreover, these results are
applicable only to the class of two-dimensional IIR filters
which are quadrant causal, i.e., impulse response is non-zero
only in one quadrant. The use of the complex cepstrum gen-
eralizes the concept of stability test in the sense that it
not only includes quarter-plane filters, but also non-sym-
metric half plane filters. Furthermore, the implementation

of the complex cepstrum is more efficient than existing
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tests when the FFT is employed.

For testing the stability of 1-D linear discrete-time
systems, we make use of the fact (which has not been empha-
sized because of the absence of an effective method of phase
unwrapping) that the number of zeroes outside the ﬁnit circle
is equal to the absolute value of the slope of the linear
phase. 1In 2-D this concept does not apply, but it is known
that if the system is stable, then the cepstrum is non-zero
only where the impulse response is non-zero. So we shall
make use of this fact to check the stability of quarter plane
and non-symmetric half plane filters. A number of examples
are presented including cases where the filter happens to be
unstable.

This method of testing the stability is compared with
existing methods on the basis of computational complexity,

programming efficiency etc.

VI.2 Stability Testing in One Dimension

Once an IIR filter has been designed, the question of

the stability of the resulting filter X(z) arises. Let X(2)

N(z)
D(z)°

The polynomial D(z) can always be factored to determine the

There are a number of stability tests in one dimension.

poles of the filter, but this is a costly procedure that is
best avoided. In the following we shall first discuss the
~use of the complex cepstrum for checking the stébility of

/
one-dimensional linear discrete-time systems/and then we
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shall compare it with the other metho’ s which

are bilinear

transformation from z-to-s domain, Jury's method based on

Schur-Cohn determinants [28] and Levinson's recursion for

the autocorrelation method of linear prediction [29].

In Chapter II we mentioned the following

of the complex cepstrum:

(1) If x[n] is minimum phase, then X%[n] 0,

(2) If x[n] is maximum phase, then f[n] 0,

two properties

n < 0

n >0

These two properties follow in a straightforward manner

from the definition of the complex cepstrum. Specifically,
since
ﬁ(z) = log X(z)

Differentiating with respect to z, we get

d 2 _ 1 4a

az *?) = 3z az *(#

_ N(z)
but X(z) = D(z)’ sO we have
. § ]
é% ﬁ(z) _ N(z)D (z) - D(z)N (=) (6.1)

N(z)D(z)

Also, %[n] +~ ﬁ(z) and n&[n] «»> -z g% ﬁ(z).

From the above expression it is clear that the poles of

the z-transform of n&[n] occur at the poles and zeroes of the

z-transform of x[n]. So, if all the poles and zeroes of X(z)
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lie inside the unit circle (i.e., x[n] is minimum phase),
then all poles of -z é% X(z) lie inside the unit‘circle and
thus nx[n] or &[n] is zero for n < 0. A similar argument
can be used to show the property for maximum phase case.
From these properties it can be noted that %[n] is non-zero
only where x[n] is non-zero.

Using the above properties the stability test using

complex cepstrum becomes

(1) Find the complex cepstrum a[n] corresponding to the

- N(z))
D(z)

0 for n < 0 (causal case)

given D(z) (system function X(z)

(2) Check whether d[n]
=0 for n > 0 (anti-causal case)
and thus conclude about the stability. Note if d[n] happens
to be mixed phase, then the system is unstable.

Now we develop an important result which could alterna-
tively be used for checking the stability. It only requires
the determination of the unwrapped phase and states that the
number of zeroes outside the unit circle is equal to the slope
of the linear phase evaluated at w = .

For a finite length sequence which is non-zero only

between 0 < n < M, we have

x[nlz ™ (6.2)

il
™

X(z)
n=0

th

Obviously, X(z) is an M degree polynomial in z—l, it has M

zeroes and M poles. All these poles are located at the origin.
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There are two possibilities for M zeroes. They may be inside

or outside the unit circle. Let

mi = number of zeroes inside the unit circle

and md = number of zeroes outside the unit circle

so that M = m. + m_.
i o mj

These zeroes may be represented as kEl(l—akz—l) and
iile) -
I, (1-b, z), where Iakl, Ibkl < 1. Now in order to get the

valid z-transform X(z) we must divide the product of these

m
o L L .
zeroes by z . So within a constant factor A, we can write

m. m
i -1 o
A T (l-a,z ") T (1-b,2)
X(z) = k=1 k=1
m
O
z
. m. m
jw TJumg 1t -jw, 2 Jw
or X(z) = x(e3%) = ae (1-a,e™ ) 1 (1-be’®)
.u-) — —
o] k=1 k=1
(6.3)

Assuming that the sign of A has already been made positive,

we have

m m

i o
I (1l+a,) I (1l+b,) (6.4)
=1 k' k=1 k

. -jmm
X(ejw) = Ae °

W= k

. . jm
= |x(eI™) | oI 2rglx(e )] (6.5)
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From egs. (6.4) and (6.5),

arg [X(ej“)] = - mmg

_ _ arg [X(ej“)]
o] ™

(6.6)

This shows that the number of zeroes outside the unit circle
is equal to the absolute value of the slope of the linear
phase. It can be noted that this result is in complete anal-
ogy to the Routh-Hurwitz criterion for stability in continu-
nus time case, which makes it possible to find out exactly
the number of roots of a polynomial lying in left half plane
and right half plane without having to evaluate the actual
roots. Thus we can give a binary answer (stable or unstable)
about the stability of a linear discrete-time system.

So the procedure for checking the stability of linear
discrete-time systems will be the following:

(1) Given the order of the system, we know the total
number of zeroes of the denominator polynomial D(z) of the
system function. In an attempt to find the complex cepstrum
of D(z) we obtain the value of the slope of linear phase and
thus determine the number of zeroes inside and outside the
‘unit circle.

(2) Depending upon the slope of the linear phase con-

clude:
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« For the causal stable system linear phase should be
zero.

« For the anti-causal stable system, linear phase must
be equal to the order of the system, i.e., all the
zeroes of D(z) are outside the unit circle.

+ If the slope of linear phase is greater than zero
but not equal to the order of the system, then the
system is unstable.

Computation required in the determination of complex cep-
strum is proportional to N 1092 N, where N is the FFT size
used. Also we only approximate 2[n] due to DFT as has been
discussed in Chapter III.

Now let us consider the other metnods for checking the
stability of one-dimensional discrete time systems.

(1) Use of bilinear transformation z = 2;% to map the
inside of the unit circle in the z-plane into the left half
of the s-plane and then applying the Routh-Hurwitz criterion.
This transformation involves two difficulties [28].

(a) Algebraic manipulations for higher-order systems
become complicated.

(b) The final constraints on the coefficients in the
z-plane become unwieldy and require algebraic
reduction to yield the minimum number of terms.

Because of these limitations this criterion is not usually

used for systems higher than second order.
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A method suggested by Jury [28] is based on the evalua-
tion of Schur-Cohn determinants computed directly from the
system characteriétic equation.. For an n-th order system,
the Schur-Cohn determinants consist of two first-order deter-
minants, two second-order determinants and so on up to two
n-th order determinants. The number of zeroes outside the
unit circle is found by noting the number of sign changes
in the sequence of determinants. Using Gaussian elimination
total number of arithmetic operations (defining each divi-
sion, and each multiplication-subtraction as a single opera-

tion) to evaluate an n-th order determinant equals

3 3
n -n . nh +2n
3 + (n-1) = —3
. 2 D32
total number of operations = % Z (k7+ 3 k)
3 ._ 3
k=1
= 2t (3n%43n+44) (6.7)

Thus the amount of computation is proportional to the fourth
power of the order of the system.

One other method for testing the stability [29] is to
solve the autocorrelation normal equations for predictor coef-
ficients using Levinson recursion modified by Durbin. Now
predictor parameters can be used to compute the reflection

coefficients ki by a backward recursion and the condition for
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the stability of X(z) is that |ki| <1 for 1 € i € n where n
is the order of predictor. This method of checking the sta-
bility is essentially the same as the Lehmer-Schur method
[29]. The amount of computation is proportional to n2.
Comparing the above methods with the use of complex cep-
strum for checking the stability, on the basis of amount of
computation, it can be seen that the methocd based on solving
the autocorrelation normal equations is the most efficient.
For high order systems use of complex cepstrum may be very
efficient. For zeroes extremely close (by 10_6) to the unit
circle, as the phase unwrapping becomes difficult so are the

ill-conditioning of Schur-Cohn matrix [4] and the autocorrela-

tion matrix [29].

VI.3 Examples and Comments

In this section we present two examples.

Example 6.1 - 3rd order unstable system

Let the system function be

X(z) = Mz) _ 1 (6.8)

D(z) 148z Y44z 242573

Corresponding to D(z), sequence is shown in Fig. 6.1.
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d[n] A
?8

2
-B ) -&———06—f> n
0 1 2 3

Fig. 6.1 Sequence Corresponding to D(z)

Looking at Fig. 6.1, we expect a linear phase of -1 (one zero
should be outside the unit circle) and since the system is of
3rd order, we conclude that the system is unstable. Fig. 6.2
show. the phase derivatives, principal value, unwrapped phase and
cepstrum of the signal. FFT size used is 512 points. From
the cepstrum plot it can be seen that the cepstrum exists for
low times and high times, hence the signal is mixed phase.

In this simple example, let us factor D(z) to find out

the exact location of roots.

- * -
D(z) = 7.5z 1 (14-7%5 2 1

-1
z )(1+zl

z) (14 z ), (6.9)

1

where 2z, = -0.25 + 3j0.433.

Thus we see that one real zero isatz = -7.5 and a complex

pair of zeroces at z, = -0.25 * j0.433., So we expect

Linear phase = -1

da[o] = 2.0149

LA BN Bialel mwR T TR ”’wr""‘!ﬂ- QT et
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EXAMPLE 6.1
Third order 1-D
153 unstable system

>y

(=]
AR R i e R U

Phase Derivative Phase Second Derivative

T

Q

PAmE RGN T 1R

4

Phase Principal Value Unwrapped Phase before re-

moval of linear phase

X -

Unwrapped Phase after Complex Cepstrum
Removal of Linear Phase

Fig. 6.2
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_l n
. (—7 5)
d[n] = 5 , n <0
* n
~ (z )n (z, )
d[n] = - [ 1 + 1 ] , n>0
n n

Example 6.2 - 8th order stable causal system

Let the system function be

X(z) = N(z) _ 1
D(z) _ -1 -2 -3 -4_ -5 -6_ -7 -8
1l alz +a22 a3z +a4z asz +a6z a7z +asz
(6.10)
where ay = 0.137897, a, = 0.0110411, a3 = -0.130083, o, = 1.809621,
a2 = (0.138284, a6 = 0.011621, a, = -0.129644, a8 = 0.809659

Sequence corresponding to D(z) is shown in Fig. 6.3. We have
generated this sequence corresponding to the pole zero plot

shown in Fig. 6.4.

d[n]‘*

%4
) .
(12 (13 (16 a7
—& - ‘ ] T 2 ! o o—3p
o 1 2 3 4 5 6 7 ‘
% ~0g

Fig. 6.3 Sequence Corresponding to D(z)
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°0-99999

HI+°16

Fig. 6.4 Pole-Zero Plot for D(Z)

Since d[n)] is minimum phase, we expect a linear phase of
zero. Fig. 6.5 shows the phase derivatives, principal value,
unwrapped phase and cepstrum. Cepstrum values can be checked
using minimum phase recursive formula or summing the contri-~
butions to the cepstrum from each zero. Here we have consid-
ered zeroces very close té the unit circle and also quite close

with each other.

VI.4 Stability Testing in Two Dimensions

The basic theorem for guaranteeing boﬁnded input -
bounded output stability of 2--D recursive digital filters was
presented by Shanks [24] in 1972. Although this test is con-~

ceptually straightforward, it is computationally involved.



LAALIE LD Ve o
Eighth order stable,
156 causal 1-D system

1

Phase Derivative, arg' [D(e?®¥)]

Phase Second Derivative,

arg'' [D(ejw)]

Log magnitude of frequency response,
log |D(ed®)|

Fig. 6.5(a)
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The reason being that to test stability by ensuring that the
denominator polynomial D(w,2z) # 0 is impossible to do compu-
tationally, since we must check D(w,z) at an infinite number
of points. A simplified version of Shanks®’ stability theorem
was given by Huang [25]. Various efforts have been made to
find implementations of Huang's test which require only a
finite amount of computation. Huang showed that his test
could be reformulated in a form which only required a finite
number of computational steps using a test of Ansell's for
continuous system. Anderson & Jury [27] showed that the

main component of Huang's test (bilinear transformation)
could be accomplished using a Schur-~Cohn matrix test and

thus saving a substantial computational load for any but the
simplest two-variable polynomials. Maria and Fahmy [26] have
also proposed more efficient implementation of Huang's test.
This method has the advantage that all the determinants used
in the computation are of dimension two, while Huang's test
uses determinants of an order up to the order of the filter.

2(N_l)) for an NxN

This test requires computations of O(N2 2
filter. However, there are problems with this approach
while implementing higher order filters.

Ekstrom and Woods [21] have described a method for
checking the stability which requires computation of
O(N2 log N) and is based on the homomorphic signal processing
approach. They avoid the problem of phase unwrapping by

taking the input of a homomorphic system as the autocorrela-
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tion of the sequence. After computing the cepstrum it is
multiplied by a suitable window depending upon the choice
of region in the 2-D plane and the resultant signal is taken
as the input of the inverse characteristic system. Now the
output of the inverse characteristic system is compared with
the input sequence. If they happen to be the same, then the
filter is stable, otherwise not. This procedure is compu-
tationally not as attractive as the method based on computing
the complex cepstrum which requires phase unwrapping. Very
recently Ekstromand Twogood [22] have presented the stability
test which uses the complex cepstrum and requires phase
unwrapping. However, as we have described in the last chap-
ter, the phase unwrapping which they employed is based on
Schafer's [1] algorithm and is not reliable. Filip [4] got
a very poor estimate of the phase while using homomorphic
signal processing for estimating the phase angle of the
degrading linear shift invariant system using Schafer's phase
unwrapping approach. Our approach for testing the stability
is similar to Ekstromand Twogood [22] but the phase unwrapping
technique that has been used is different from theirs. The
technique that is used has been described in the last chapter.
It is to be noted that because we cannot factor 2-D poly-
nomials, the concept of using linear phase (similar to that
in the 1-D case) components along the two axes cannot be
used to determine the stability in two dimensions. So we

look at the first idea given in the 1-D case for checking the
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stability, whose 2-D version is given below.

Let the system function of the 2-D recursive filter be
given by

N(w, z)

~ D(w,z) ’

G(w, Z)

where N(w,z) and D(w,z) are each 2-D polynomials.
In order to check the stability of this filter
(i) We take the denominator polynomial D(w,z) and find
its cepstrum d[m,n].

(ii) Check whether the support of a[m,n]-is the same as
that of dfm,n]. If yes, then the filter is stable,
otherwise it is unstable. (Proof of this theorem
has been given in the last chapter.)

Similar to that of the one-dimensional case, the DFT
implementation of the characteristic system will give aa[myn]
which is an aliased version of d[m,n]. But since the cepstrum
decays faster than an exponential, aa[m,n] will be a reason-
able approximation of a[m,n] for the modest size of 2-D FFT's.

One advantage of using the method based on computing the
2-D complex cepstrum for checking the stability is that the
concept of checking the stability in two dimensions is gen-
eralized in the sense that we do not care whether the filter
belongs to the quarter-plane or non-symmetric half-plane
classes etc. Ail that we need is to check the support of
d[m,n] and a[m,n]. Furthermore, this method requires less

computation than any other method of checking the stability
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of 2-D recursive digital filters. Also the order of filter
can be very high. We have just to take the sufficiently
large size of 2-D FFT so as to minimize the aliasing.

In the next section we present a number of examples for
testing the stability of 2-D recursive digital filters. We
also consider the unstable examples and comment on the pnase

unwrapping for such cases.

VI.5 Examples and Comments

In this section we present several examples for testing
the stability of 2-D recursive digital filters using the
method of computing the complex cepstrum discussed in Chapters
V and VI. We have divided the examples to be discussed ir
+e following three categories:

(1) Quarter-plane filters involving

(a) separable sequences
(b) nonseparable sequences
(2) Non-symmetric half-plane filters

and (3) Unstable quarter-plane filters.

Quarter-plane filters involving separable sequences

In this category we consider two examples.

Example 6.3 Separable sequence exponentials

Let the denominator array of the 2-D recursive filter

be given by
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m n
almn] = (3) (%) , 0<mc<3
0 <n <3
i.e.,
O m
1 1 1
1 3 1 )
n
dim,nl = 3 7 5 i
1 1 1 1
2 8 6 )
1 1 1 1
8 % P €4

The z-transform corresponding to this 2-D array is

l—-——-wl -4 l—-Lz-‘]I
D(w,2) = (—=—r) (==
' 1 -1 LT
2 22
D(w,z) = log D(w,2z)
_ _l_ -4, _ 1 -1
= log [1 Te% ] log [1 S 1

4 1

+ log [l—fgz'_ ] - log [1—%2— 1

Using the series expansion for log, we get

(6.11)

(6.12)



1 1, n
. (5) (3) 1
dlm,n] = —=—um-1] + ain-1] = 3 §[m-24]
2 2
1 1.°.1, 2 R S
- 3% §[n-4] - (Ig) > S [m-8] (lé 3 § [n-8]
- 3 3
l l l '.]_-. —
- (TE) 3 §[m=-12] - (Tg) 3 §[n-12]
4 4
- &) - L sime16) - (g - F 6 161 - ...

(6.13)

From eq. (6.13) or Fig. 6.7 it can be observed that
the complex cepstrum exists only on the axes as was
expected from the Property 1 of Chapter 5. Fig. 6.6
shows LD(eju,ejv)|, log |D(ej“,ejv)|, phase first deriva-
tive and second derivative. FFT size taken was 32x32.
From the derivative curves the separable nature of the
sequence can be observed. Fig. 6.7 shows the principal
value of the phase, the complex cepstrum and the
sequence as obtained from the inverse characteristic
sjstem. In this case the plot for the unwrapped phase
is the same as for the principal value. The support of
d[m,n] and d[m,n] are the same as can be clearly bbserved,

X hence the system has got to be stable.
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EXAMPLE 6.
(2%,2%) geparable gequence
Exponentials
FFT size 32X

A Q 27

I .
-.'«f‘-_\A\\-_;q,: =

e
B S

=
~

ey

5

(e°)

phase first derivative,

ju,ejv)]

arg ip(e



ped

Principal value or unwrap
phase;

arg (e?*,eIM)]

(16, \6) Cie, 19 Cley16) (e, 1)
)
=
il
) Y e
\\
T\ —
— Vi \
\[——
-
,-16) _ R 6,19 €16 -18) _ — (6, -16)
Complex cepstrum, dm,n] output of inverse characteristlc
system, dm,n}

Fig. 6.7
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Example 6.4

This is another exawple of a separable sequence
which has been examined by Anderson & Jury [27]. The 2-D

denominator array of the filter is given by

d[m,n] = 12 10 2 (6.14)

o

Since one row is the multiple of the other, the sep-
arable nature of sequence d[m,n] can be identified. The

z-transform is,

1

X(w,z) = (3+w 1) (2+0" 1) (2427 1) (6.15)

The complex cepstrum can be easily obtained from eq.
(6.15) as

_ 1., 1™ 1,
dim,n] = [log 12]1&8[m,n] - ﬁ[("i) + (-5) ] ulm-1]

1D
(-%)
2 ul[n-1] (6.16)

Figure 6.8 shows |D(eju,ejv)| and log |D(ej“,ejv)|.
Fig. 6.9 shows phase first and second derivatives. Sep-
arable nature of the sequence is evident from these plots.
Fig. 6.10 shows the unwrapped phase (it is the same as

principal value plot), complex cepstrum sequence and
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Principal value or unwrapped phase, arg [D(er,er)]

—_— R ————————————— _
QSE-SQM (hny)yTT]mmm—————= (32

L3y
Complex cepstrum, d[m,n] Output of inverse charac-
teristic system, d[m,n]

Fig. 6.10
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and sequence d[m,n]. Note the same support for d[m,n]
and d[m,n] and stability is guaranteed. Also observe
that a[m,n] exists on the axes. The FFT size used was

64x64.

Quarter-plane filters involving non-separable sequences

In this category we consider two examples.

Example 6.5 Quarter-plane filter examined by Huang [25]

This example is a test of a filter examined by Huang
and Ekstrom and Woods [21] using autocorrelation approach.
Also this is the example about which ﬁuang incorrectly
concludes that it is unstable. The 2-D denominator array

of the filter is given by

LT N

| =

d[m;n] =

[
™| =
NI

In this case it may be little difficult to find
the closed form formula for the cepstrum. However, using
the recursion equations obtained in Property 3 of the last

chapter, we list some values of the cepstrum.
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200,0] = 0, %[1,0] = 3, %[2,0] = ¢,

! =L

813,01 = -,

Fig. 6.11 shows the absolute value of the frequency
response and log of absolute value of the frequency
response. Fig. 6.12 shows the phase first and second
derivatives. Looking at these derivatives plot we expect
that the sequence should be non-separable as it is.
Finally Fig. 6.13 shows the unﬁrapped phase plot (same as
the principal value plot, no jump), the complex cepstrum
plot and the sequence plot. Note the same supports for
d[m,n] and a[m,n] and hence conclude that the filter has
got to be stable. FFT size used was 64x64.

Example 6.6 Quarter-plane 6™ order bandpass filter
examined by Ekstrom and Twogood [22].

The denominator array is given by

0.015626
0.09375 0.046875

0.375 0.28125 0.09375

n
0.875 0.09375 0.46875 0.109375
dlm,n] =
1.5 1.875 1.3125 0.46875 0.09375
1.5 2.25 1.875 0.09375 0.28125 0.046875
1 1.5 1.5 0.875 0.375 0.09375 0.015625
0

m (6.17)
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EXAMPLE 6.3
(02T) (2%,2%) geparable Sequence
' Exponentials
FFT size 32x32

Absolute value of fregquency Log magnitude of frequency
response, response, '
|D(e3u,e3v)l 109 \D(e]u,e]v)l

(5°)

(27%,0) (0,0)

Phase first derivative, Phase second derivative,

v : . e A s
arg  (ple3¥,e?M] arg io(ed¥,e?M) 1
Fig. 6.6
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Example 6.4

This is another exa.ple of a separable sequence
which has been examined by Anderson & Jury [27]. The 2-D

denominator array of the filter is given by

o

dim,n] = 12 10 2 (6.14)

o

Since one row is the multiple of the other, the sep-
arable nature of sequence d[m,n] can be identified. The

z-transform is,

1

X(w,z) = (3+w 1) (2+0~ 1) (2427 1) (6.15)

The complex cepstrum can be easily obtained from eq.

(6.15) as

m

. _ 1.,.1 1,"
dim,n] = [log 12]16[m,n] - ﬁ[(—g) + (—7) ] ulm-1]

n
(-3)

u[n-1] (6.16)

Figure 6.8 shows |D(ejp,ejv)| and log |D(eju,ejv)|.
Fig. 6.9 shows phase first and second derivatives. Sep-
arable nature of the sequence is evident from these plots.
Fig. 6.10 shows the unwrapped phase (it is the same as

principal value plot), complex cepstrum sequence and
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arg [D(ej“,ejv)]

Principal value or unwrapped phase,
(32,32) I 2% 32)
===
_— — =
‘-’_‘: —

“-———'——-———_—_______- _.‘__—-_:—__—-._——
—— T e— -—"'—'—————.———-——__T‘———-ﬂ-
—-—'—"“_-'-—‘———_"—'—_:—_—_———-—— .._'—‘_-_'.—'—_ﬁ—-——ﬁ____.__"' ———
M “n_ h_r ———
“h———————_,________.'—_'—"""--—_"_-__'_"-——' Mﬁ-—
e —————e——e =
e —— e ——
—_— _—————————
—_——— ————— -
-——-—-——-——_-_._______-'-_'*———-———Lal‘a ) (.31;39""——-——-————-___. ( 32 32.)
Output of inverse charac-
teristic system, d[m,n]

d(m,n]

Complex Ccepstrum,

B L3V
Fig. 6.10
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and sequence d[m,n]. Note the same support for d[m,n]
and d[m,n] and stability is guaranteed. Also observe
that a[m,n] exists on the axes. The FFT size used was

64x64.

Quarter-plane filters involving non-separable sequences

In this category we consider two examples.

Example 6.5 Quarter-plane filter examined by Huang [25]

This example is a test of a filter examined by Huang
and Ekstrom and Woods [21] using autocorrelation approach.
Also this is the example about which ﬁuang incorrectly
concludes that it is unstable. The 2-D denominator array

of the filter is given by

| p

™| =
|

dlm,n] =

[
N~
| =

In this case it may be little difficult to find
the closed form formula for the cepstrum. However, using
the recursion equations obtained in Property 3 of the last

chapter, we list some values of the cepstrum.



&[o0,0] = 0, %[1,0] = %, &[2,0] = %a

&[3,0]

1l
|
£
o
=Y

-
o
e
!

Fig. 6.11 shows the absolute value of the frequency
response and log of absolute value of the frequency
response. Fig. 6.12 shows the phase first and second
derivatives. Looking at these derivatives plot we expect
that the sequence should be non-separable as it is.
Finally Fig. 6.13 shows the unwrapped phase plot (same as
the principal value plot, no jump), the complex cepstrum
plot and the sequence plot. Note the same supports for
dim,n] and a[m,n] and hence conclude that the filter has
got to be stable. FFT size used was 64x64.

Example 6.6 Quarter-plane Gth order bandpass filter
examined by Ekstrom and Twogood [22].

The denominator array is given by

0.015626
0.09375 0.046875

0.375 0.28125 0.09375

n
0.875 0.09375 0.46875 0.109375
dlm,n] =
1.5 1.875 1.3125 0.46875 0.09375
1.5 2.25 1.875 0.09375 0.28125 0.046875
1 1.5 1.5 0.875 0.375 0.09375 0.015625
0

m (6.17)
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The first few values of the complex cepstrum using

recursion equations are given by

&[0,0] 0, &[1,0] = 1.5, &[2,0] = 0.375,

®[3,0] = -0.25, %&[4,0] = 0.046875 (6.18)

Fig. 6.14 shows the absolute value of the frequency
response and its logarithmic. Fig. 6.15 shows the phase
first and second derivatives. Fig. 6.16 shows the prin-
cipal value and unwrapped phase plot. Note that the dis-
continuities because of modulo 27 operation have been
removed. Fig. 6.17 shéws the cdmplex cepstrum and sign~l,
Observe that both of these lie in the first quadrant and
hence we conclude that the filter is stable. The FFT

size tceken was 64x64.

Non-~symmetric half-plane filters

Having discussed the quarter-plane filters we now con-
sider non-symmetric half-plane filters. We shall present twc
examples for these filters.

Example 6.7

Let the system function of the filter be

Glw,z) = (6.19)

so, D(w,2z) = l-%z (6.20)
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Fig. 6.15



178

")_’K, 1_'K)




(32,32)

179
(323
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Complex cepstrum, d[m,n]
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Cutput of inverse characteristic system, d[m,n]

Fig. 6.17
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The complex cepstrum corresponding to the above
equation can be found out by taking the logarithmic of
the above equation and using a power series expansion.
The complex cepstrum in closed form is given by

1 2m+n
2m+nJ (3) 2m+n > 1

2m+n

(6.21)

which lies in the first and fourth quadrants. The input

array which we used for computing the complex cepstrum is

1
3 0 0 0
L1 0 0 0
dim,n] = (6.22)
1
0 -3 0 0
0 0 0 0
0
-

and thus we have introduced a linear phase of 2 along the
n-axis. Fig. 6.18 shows the absolute value‘of the fre-
quency response, its log and phase first and second deri-
vatives. Fig. 6.19 shows the principal value and the
unwrapped phase plot. Note that the jumps introduced by
the modulo 2m operation have been removed. Fig. 6.20
shows the unwrapped after we have removed the linear

phase along the n-axis. It also shows the complex cep-
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strum and the sequence obtained at the output of the
inverse characteristic system.

It is to be noted (Fig. 6.20)that both the cepstrum and
the sequence occupy the same support and we conclude
that the filter is stable. FFT size used was 64x64.

Example 6.8 Non-symmetric half-plane fan filter
examined by Ekstrom and Twogood [22].

The denominator array of the filter is,

0.001 -0.001

-0.010 0.004 -0.025 -0.002

0.051 0.002 0.025 -0.002

-0.227 -0.152 0.004 0.003 0.001

0.355 0.218 0.026 0.007 0.001

dlm,n] = (6.23)
0. 0.040 0.050 0.005 0.001
n 0. -0.037 -0.009 0.005
0. 0.003 -0.004 -0.002
0. -0.001
0 m

Setting the origin in the (m,n) plane as shown ébove
we have introduced a linear phase of 4 along the n-axis.
Fig. 6.21 shows the absolute value of the frequency
response, its magnitude and the phase first and second
derivatives. Fig. 6.22 shows the principal value, the

unwrépped phase before and after the removal of the
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linear phase; Since we have introduced the.linear phase,
we observe jumps in the principal value plot. Actually
we would like to feed our input array such that (settting
origin properly using the periodicity of 2-D DFT) no
linear phase is introduced, because it makes the unwrap-
ping more difficult. Fig. 6.23 shows the cepstrum and
the sequence. We have rotated the upper two plots so as
to get the lower two figures. It is clear that the
sequence (output of the inverse characteristic system)
and cepstrum have the same support, hence the filter is
stable. FFT size used was 32x32. It also worked for

16x16.

Unstable quarter-plane filters

Having considered the stable quarter-plane and half-

plane filters, we are interested in the behavior of phase

unwrapping or the complex cepstrum when the filter happens

to be unstable.

Example 6.9

First we tried the counter example of Shank's con-
jecture by Genin & Kamp [30]. 1In this case the denomina-

tor array is

0 m
1 ~-1.15 -0.902 1.75
-1.15 3.72 -2.23 -0.902
n (6.24)
-0.902 -2.23 3.72 -1.15

1.75 -0.902 -1.15 1
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It is found that the magnitude of the frequency
response (shown in Fig. 6.24) becomes zero at a certain
DfT point and hence the cepstrum cannot be calculated.
The filter is unstable. The planar least square inverse

[24] of the above array is also unstable.

Example 6.10 Unstable filter examined by Shanks [24].

The denominator array is given by

n -0.9 0.05

d[m,n] = 1 -0.95 (6.25)

Using Huang's test filter can be shown to be
unstable. Fig. 6.25 shows the magnitude of the fre-
qguency response, its log and phase first and second
derivatives. Fig. 6.26 shows the principal value plot
and the unwrapped phase. We got the linear phase of
-1 along the two axes. Fig. 6.27 shows the unwrapped
phase after the removal of linear phase. The unwrapped
phase before and after the removal of linear phase
appears to be discontinuous. Finally Fig. 6.28 shows
the complex cepstrum and the sequence'as obtained at
the output of the inverse characteristic system. These
two do not occupy the same support, hence the filter

is unstable. FFT size used was 32x32.



191
EXAMPLE 6.10
Unstable gua
filter
FFT size 32x32 ‘;#gﬁﬁﬁﬁﬁggﬁm
&5 o N
T, (WL&L'ﬁﬁg }- e

rter plane.Shank's

7

& ‘
e ‘



192

T

f

(0/ LR ) %

L

—r

v

TIIE

ARG [D(eju,ejv)]

Phase principal value,

f

(’ll‘/o

S

‘.
suwiy
Regrail]



193

LZ°9 °*bta

:>mw._..§mvn: bxe ‘sseyd zesaury jo TeAOWSI I933e aseyd poddeamun

mo\kﬂu —_— —— mo\pu

/ | —

(¥z¥T)



194

Output of inverse charac

teristic system

\

Complex cepstrum
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Example 6.11 Unstable filter examined by Shanks [24].

The denominator array is given by

0.5 -0.75 0.25
dimnl = -1.2 1.8 -0.72 (6. 26)
1 -1.5 0.6
0 m

Figs. 6.29 to 6.32 shows thé magnitude ofvthe
frequency response, its log, two derivatives, principal
ﬁalue plot, unwrapped phase before and after the femoval
of linear phase and the complex cepstrum and the sequence.
FFT size used was 64x64.

Comments similar to Example 6.10 apply here. Using
contour plots Shanks shows that zeroes lie right on the

unit circle and the stability theorem is not satisfied.

In thé above two unstable examples, we observe the dis-
continuity in the phase plots and the cepstrum and the output
of the inverse characteristic system do not occupy the same
support. These are the characteristics of the complex cep-
strum for the unstable cases. |

In an attempt to observe how the computation of the com-
plex cepstrum is susceptible to the slight changes in the
values of thé 2-D denominator array, we changed the value of
x[2,2] in eq. (6.26) from 0.25 to 0.29. Thus getting the

array as,
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0.5 -0.75 0.29
n -1.2 1.8 -0.72
d