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ABSTRACT

Traffic equilibrium analysis has provided useful insight into the
transportation planning process. Even for deterministic demand models,
though, the state-of-the-art does not include any efficient approach that
is applicable for general equilibrium models. Existing convex programming
approaches, which are efficient and guarantee convergence, are restricted
to single commodity (mode, user class) flow problems with invertable demand
functions. In this thesis, we first show that convex programming approaches
cannot be generalized to broader, and yet still realistic, settings. Sec~
ondly, we introduce a new approach that can be applied to multi-commodity
flow problems (including multi-class, multi~modal, and destination choice
user equilibrium models) with arbitrary deterministic demand functions.

The approach consists in formulating the traffic equilibrium problem
as a nonlinear complementarity problem. Based upon this formulation, we
propose and prove general existence and uniqueness theorems, and we develop
a linearization algorithm. We also present computational results on a
variety of test problems to illustrate the generality and the efficiency of
the algorithm. ’

Thesis Supervisor: Thomas L. Magnanti

Title: Associate Professor



ACKNOWLEDGEMENTS

I am indebted and very grateful to my thesis advisor, Professor
Thomas L. Magnanti, who introduced this problem to me. He has always
encouraged me during the past two years, giving of his valuable time
and providing new ideas and comments to make this thesis more clear.

My thanks also to my committee members, Jeremy F. Shapiro and
Robert L. Simpson. Special thanks to my parents and to my people in
Iran who sent me here to continue my education.

I wish to acknowledge the financial support provided by tﬁe
University of Technology, Isfahan, Iran, and the U.S. Department of
Transportation under Contract DOT-TSC-1058.

Finally, I would like to thank Marion Brink and Kathy Sumera for

their exceilent typing, and Martha Heigham for her wvaluable assistance.



ABSTRACT

ACKNOWLEDGEMENT

TABLE OF CONTENTS

LIST OF FIGURES

LIST OF TABLES

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION

CHAPTER 2: TRANSPORTATION MODELING

2.1 INTRODUCTION

2.2 COMPONENTS OF TRANSPORTATION SYSTEMS

2.2.1

2.2.2

Transportation Technology

Transportation Demand

2.3 MODELING TRANSPORTATION SYSTEMS

2.3.1 Aggregation

2.3.2

2.3.3

2.3.4

2.3.5

2.3.6

2.3.7

2.3.8

2.3.9

Deterministic and Stochastig Models
Simultaneous and Sequential Models
Route Choice

General Route Choice

Level of Service

Volume Delay Function

Examples of Volume Delay Functions

Nature of Volume Delay Functions

CHAPTER 3: TRAFFIC EQUILIBRIUM PROBLEMS

3.1 EQUILIBRIUM CONCEPTS

14
14
15
15
16
17

17

19
23
24
27
28
30
33
35

35



3.2 PROBLEM FORMULATION
3.3 EQUIVALENT NONLINEAKR COMPLEMENTARITY PROBLEM

CHAPTER 4: EXISTENCE AND UNIQUENESS OF AN EQUILIBRIUM

4.1 INTRODUCTION
4.2 EXISTENCE
4.3 UNIQUENESS

CHAPTER 5: COMPUTING AN EQUILIBRIUM

5.1 INTRODUCTION

5.2 HEURISTIC TECHNIQUES

5.3 MATHEMATICAL PROGRAMMING TECHNIQUES
5.3.1 Fixed-point Techniques
5.3.2 Optimization Techniques

5.4 A LINEARIZATION TECHNIQUE

CHAPTER 6: LINEARIZATION ALCORITHM AND COMPUTATIONAL RESULTS

6.1 INTRODUCTION
6.2 LINEARIZATION ALGORITHM
6.2.1 e-Approximation Solution
6.2.2 Starting Solution
6.2.3 Path Generation
6.2.4 Decomposition
6.2.5 Algorithm
6.2.6 Assumptions
6.3 COMPUTATIONAL RESULTS

6.4 STORAGE REQUIREMENT AND DATA STRUCTURES

50

50

50

61

70

70

70

71

72

74

90

100

100

100

100

10z

103

104

105

111

111

133



6.4.1 Modified Data Structure 135
6.4.2 Out-of-Core Storage 137
REFERENCES 141
APPENDIX A 151

APPENDIX B 158



LIST OF FIGURES

Figure

2.1 Equilibrium

3.1 Network Configuration for Example 3.1

3.2 Continuous Volume Delay Functions

3.3 Non-continuous Volume Delay Functions

3.4 Decreasing Volume Delay Function

3.5 Negative Demand Function

3.6 Negative Volume Delay Function

5.1 Modified Network Configuration for Example 5.2
5.2 Linearization Scheme

6.1 Steps of the Linearization Algorithm

6.2 Network Configuration for Example 6.1

6.3 Auto Distribution Among the Paths for First O-D Pair
6.4 Network Configuration for Example 6.2

6.5 Network Configuration for Example 6.3

6.6 Sioux Falls Network Configuration

A.1 The Linearization Algorithm

A.2 The Linearization Algorithm Might Not Converge

38
39
40
48
49
88
97

107

113

118

119

123

128

152

156



LIST OF TABLES

Table

6.1 Computational Results for Example 6.1

6.2 Equilibrium Solution for Example 6.1

6.3 Path Flows for Example 6.1

6.4 Link Flow for Example 6.2

6.5 Parameters eij of Demand Function for Destination
Choice Model

6.6 Computational Results for Destination Choice Model

6.7 Link Flows for Destination Choice Model

6.8 Trip Table for Example 6.3

6.9 Link Flow for Example 6.3

6.10 Total Travel Time for Example 6.3

6.11 Computational Results for Example 6.4

6.12 Computational Results for Example 6.5 with Fixed Demand

6.13 Computational Results for Example 6.5 with Elastic Demand

6.14 Memory Requirement to Store the Problem Data

6.15 Computational Results for the City of Hull with Elastic

Demand for Modified Data Structure and Using Out-of-Core

Storage

117

120

121

122

122

123

124

126

129

131

132

134

139



CHAPTER 1

INTRODUCTION

Traffic equilibrium models have recently become useful tools for pre-
dicting vehicular flow in congested urban areas. They can be used for
planning purposes, for managing transportation systems and for improving
transportation technologies to achieve better system performance.

In general, there are two directions of research related to traffic
equilibrium analysis. The first direction, which is called demand predic-
tion, is an attempt to capture the users' behavioral patterns to understand
how they make decisions within the framework of existing technology and to
predict their respomses to future technology. Although a great deal of
research of this nature has been conducted, it is still the weakest link
in transportation modeling.

The second direction of this research, which is also essential for
transportation planning, is predicting vehicular flow in a congested net-—
work, given the users' behavioral patterns. One model of this type now
forms part of the UMTA (Urban Mass Transit Authority) Transportation
Planning System [T-Ul]. In their study of traffic patterns in the city of
Winnipeg, Canada, Florian and Nguyen [T-F8] have shown that equilibrium
mo&els can predict link flow and traffic impedances accurately, particularly
for high volume links and routes., Our purpose in this dissertation is to
contribute to the second stage in equilibrium analysis which we refer to
as the traffic equilibrium probleﬁ.

At present, efficient algorithms are available for traffic equilibrium
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models involving:

1) a single mode (private vehicle traffic has been the
primary application);

2) (elastic) demand functions between every origin—-destina-
tion (O-D) pair that depend only upon the impedance or
shortest travel time between that origin-destination
pair;

3) volume delay functions for each link that depends only
upon the total volume of traffic flow on that link.

Initially, Wardrop [T-W1] introduced the notion of user equilibrium
for modeling urban traffic. Beckman, McGuire and Winsten [T-Bl] showed
that assumptions {1), (2) and (3) produce an equilibrium model that can
be converted into an equivalent convex programming problem. Samuelson
[0-S1] had earlier proposed a similar transformation in the context of
spatially separated economic markets., Since then, geveral researchers
have proposed algorithﬁs for solving this convex problem (Bruynooghe,
Gibert and Sakarovitch [T-B11l], Bertsekas [T-B6], Defermos [T-D1-3],
"Dembo and Klincemicz [T~D5], Leventhal, Nemhauser and Trotter [T-L4], Le-
blanc [T-L2-3], Nguyen [T-N2-6], Golden [T-G4], Florian and Nguyen [T-F6-81).

There are a number of wéys in wh}ch these models might be extended.
Modeling mﬁlti—modal (for example, private vehicle and a transit mode)
and multi-class user equilibrium would be the first extension. Incorporat-
ing demand functions for an O-D pair that depend upon impedance between
other 0-D pairs would permit destination choice to be modeled. Another

extension would permit volume delay on a link to depend upon volume flow
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on other links. This later extension permits modeling of traffic equili-
brium with two-way traffic in one link, traffic equilibrium with right and
left turn penalties, and the like.

Assumptions (1), (2) and (3) are the key to solving the traffic equili-
brium problems. Some attempts have been made to generalize the convex
programming approaches to solve the extended models (i.e., Defermos [T~D1]
for multi-classes of users and Florian [T-F4-5] for the multi-modal case).
We show that these assumptions are strong and that the convex programming
approach is not, in general, applicable to the extended equilibrium model.

The goal of this research is:

i) to formulate mathematically a general traffic equilibrium

model that captures each of these modeling extensions;
ii) to determine when the equilibrium problem can be modeled
as an optimization model;
iii) to determine conditions on the problem data that will
insure that an equilibrium exists and is unique; and
iv) to develop computational procedures for finding an
equilibrium to the extended model.

To resolve these issues we formulate the problem as a nonlinear
complementarity problem. By imposing very mild restrictions on the problem
structure (that are always met in practice), we show that the traffic equi-
librium problem always has an equilibrium solution. We introduce an
algorithm, called the linearization algorithm, to solve the problem effi-
ciently. Although we do not have any formal proof for the'convergence of

the algorithm, computational results on a variety of problems are promising.
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For example, we have been able to use the algorithm to solve problems with
376 links, 155 nodes, 702 0-D pairs and elastic demand in less than 12
seconds on an IBM 370/168 to achieve 5% accuracy. We have also been able
to use it to sclve problems with link interactions and with complex
demand relationships; problems that cannot be solved as equivalent convex
optimization problems.

Recently, Hearn and Kuhn [T-H2] and Asmuth [T-A4] have made similar
attempts to formulate‘the general traffic equilibrium problem as a fixed-
point problem. Asmuth presented results similar to ours concerning exis-
tence and uniqueness issues. Kuhn illustrated the initial steps in applying
fixed-point algorithms to the equilibrium problem. But no computational
results have been presented to demonstrate the efficiency of the algorithms
for realistically sized transportation problems.

We conclude this introduction by briefly outlining the rest of this
research., Chapter 2 reviews transportation modeling in general, and
summarizes the characteristics of major components of the model effort.

In particular, Chapter 2 discusses issues related to the demand function
for transportation services and to the volume delay function or congestion
that vehicular flow imposes on a transportation system., The concept of

a user—equilibriﬁm, which is introduced in Chapter 2, is explored in more
detail in Chapter 3. In Chapter 3, we formulate the equilibrium problem
mathematically and intfoduce an equivalent nonlinear complementarity
formulation for the problem,

Chapter 4 contains our main results concerning the existence and

uniqueness of an equilibrium solution. After briefly reviewing existing
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algorithms for the traffic equilibrium problem and their limitations,
Chapter 5 contains a skeletal introduction to a new linearization algorithm.
Chapter 6 studies the linearization algorithm in more detail. This
chapter illustrates the generality of the algorithm and its convergence
properties by presenting computational results on a vafiety of small
examples modeling different aspects of traffic equilibrium. Finally,
Chépter 6 contains computational results for some larger examples to 1llus-

trate the efficiency of the algorithm.
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CHAPTER 2

TRANSPORTATION MODELING

2.1 INTRODUCTION
Transportation modeling aims to answer the following types of ques~
tions:
i) How do users respond to the transportation technology
available to them (e.g., what is their utilization of
transportation facilities, what is their movement
pattern)?
i1) How do users' utilization of the transportation system
change over time (in terms of location, activity,
awareness, social-economic change, and so forth)?
iii) How do users respond to changes in the transportation
system (changes in system configuration or in quality,
introduction of new facilities, and so forth)?
iv) How can planners improve an éxisting transportation
system to capture the users' future responses to
system changes?
Regardless of the kind of model that might be used to answer any of the
above questions, resolution of the first question is crucial for answering
any'of the others., In the literature, the first type of question is
referred to as short-run-equilibrium and the other questions are referred
to as long-run-equilibrium. In this research we are focusing only on

short-run-~equilibrium models.
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Let us begin by reviewing in rather general terms the essential
ingredients of most transportation systems and the interactions between

these ingredients.

2.2 COMPONENTS OF TRANSPORTATION SYSTEMS.

2.2.1 Transportation Technology

The transportation technology denoted by T, determines the network
structure (e.g., set of nodes, arcs, origins, destinations and modes)
available to the users. Suppose that we are given a performance function
P that measures the performance of the system for any traffic volume V.
In the transportation literature, the performance function associated with
an arc is sometimes called a volume delay function, and the measure of
performance, denoted by L, is called the Zz2vel of serviece. The level of
service; which might be travel time, travel cost, safety, or some function
of all of these, is usually expressed in terms of disutility. L as a

function of T and V can be written as:
L =1(1,V). (2.1

Frequently, the performance function has been referred to as a "supply"
function. This terminology seems inappropriate in this context and might
be misleading because of the usual economic connotation of "supply" as a
response of the producers to the market. In transportation, the producers
are providing transportation technology T, though, and this is fixed for

short-run equilibrium; the level of service is a measure of how the pro-
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duction facilities are being used, rather than their supply. Florian [T-F5]

has emphasized this distinction; see also Sheffi [T-S1].

2.2.2 Transportation Demand

The other component of transportation systems, and models that repre-
sent them, are the users Who utilize the transportation technology T by
making trips. Each user in the system must choose from among a set of
available alternati?és (this is called decision-making process). The main
components of each alternative are trip frequency (to make a trip or not),
destination choice, mode choice and route choice.

Suppose that, with perfect communication and information, for each
user i in the system we are given a function di that specifies the alterna-
tive choice of that user for any technology T and level of service L, given
the user's utility u, . Also suppose that the function D specifies the

traffic volume in the system: that is,
V= D(di(T,Llui) for all users 1i). (2.2)

This expression is called a demand relationship.

Substituting (2.1) in (2.2) we obtain
V = D(d, (T, P (1,V) |uy) for all 1i). (2.3)

Obviously, (2.3) can be interpreted as a fZxed point problem with variable

V in the sense that with fixed technology T, and with given utility func-
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tions u, and decision function di’ the right-hand side of (2.3) for any
given V = VO predicts traffic volume as V' = D. Conditions (2.1) and

(2.2) are satisfied only if V' = V.

DEFINITION 2.1: Given a transportation technology T, the performance
function TP, and decision function di for all users, any traffic volume
Vp which satisfies the fixed point problem (2.3) 1is called an equilibrium
solution.

Equivalently, any pair (VE,LE) that satisfies equations (2.1) and (2.2)

is called an equilibrium point. Figure 2.1 illustrates this concept.

v A v )
D
F v
N
V=D(T,LN)
VE=D(T,LE) _______ l
!
|
!
1
1 -1,
LE = TP (T,VE)
a) Equilibrium Point b) Non-equilibrium Point

Figure 2.1 Equilibrium

2,3 MODELING TRANSPORTATION SYSTEMS

2.3.1 Aggregation

One of the most important and difficult tasks in transportation model-

ing is the calibration of choice functions di for all of the users. For

any real-life problem, the enormous number of users in the system and lack
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of perfect information makes it almost impossible to carry out this kind
of analysis. Therefore, some assumptions are required about how a chosen
user makes decisions.

In the transportation literature, many types of assumptions have been
used for different research purposes and for different steps of the user
decision-making process, mainly to determine frequency of trips, destina-
tion choice, mode choice, and route choice [T-A5, T-M2]. To simplify the
problem, the first attempt in almost all previous work has been the classi-~
fication of the users into homogeneous groups, a process sometimes called
aggregation. Aggregation can be in terms of level of income, family size,
residential location, job classification, and so forth [T-M2, T-M6]. We
assume that all of the users in a group respond similarly to any given
situation and we do not distinguish among users within a group. 1In other
words, we do not care who within a group makes the trip; we just care that
some user does,

The process of calibrating the demand function is complicated not only
by the difficulty in calibrating any particular demand function, but by the
enormous number of points where trips originate, which makes the size of
the problem too large to be manageable. In practice, planners overcome
this difficulty by introducing a spatial aggregation that represents the
homogeneous population of each zone as a point called centroid. Daganzo
[T-D4] discusses this spatial aggregation and the distribution of the
population in each zone.

Another type of aggregation that can be used to reduce the size of

the problem is aggregation in the structure of the network itself; for
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example, aggregation of the nodes, links or even centroids [T-G2, T-H2,
T-Z1]. This type of aggregation reduces the size of the problem so that \
the problem becomes manageable, in terms of both the computational time
and storage requirement, although it causes new errors.

In this report, we will assume that the aggregation process has
already been carried out and that we are given aggregate user demand

functions in an aggregate network.

2.3.2 Deterministic and Stochastic Models

There are two completely different approaches for modeling how users
within a group behave. The first approach is to assume that the user's
response is a random phenomenon with a given density function describing
each group. This approach is called stochastic (non-deterministic) or
disaggregate modeling [T-A3, T-M2, T-M6, T-S1], although the term dis-
aggregate seems inappropriate. The main task in this modeling approach is
calibrating the parameters of the density function. In this research we
are not considering this type of model; instead, we focus on deterministic
models [T-M2].

For the deterministic model, we assume that an analytical function can
be established that specifies the number of users within any group who
select each available alternative or, in other words, it gives the distri-

bution of the flow among alternatives.

2.3.3 Simultaneous and Sequential Models

As we have stated previously, each alternative is composed of a set of

components, mainly, trip frequency (make a trip or not), destination choice,



20

mode choice, and route choice. Depending upon the nature of the trip,
some of the components might be fixed. For example, usually in work-trips
the frequency of trips and the destinations are fixed, while for shopping-
trips, all of the components vary, especially the destination choice.

In reality, the components of each alternative are not independent of
one another, and each user usually makes his decision simultaneously con-
sidering all the components together.

The simultaneous models assume that, for any group of users, any
origin-destination pair and any mode, we are given a function D(A,L) that
specifies the total number of trips to be made with the current system
activities, A, and the current level of service, L.

An example of the simultaneous model is the one developed by Kraft
for intercity passenger travel demand. For the case of three modes, the

model assumes the following functional format:

m m

m d)l q)zm 3 O"mv BE'

Degm(t2e) = 05 (BPp) (Y ¥)) o Cemt * gmt)
where

Dk%m = demand between k and £ by mode m
Pk = population in zone k
Yk = median income in zone k
tk&m = travel time between k and £ by mode m
Com - travel cost between k and % by mode m

<
Q
L
™
i}

parameters of the model (subscripts indicate mode depen-~

dency).
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For more details about this model and other models presented by McLynn
[T-M7] and Baumol-Quandt [T-Ql], see Manheim [T-M2].

Unfortunately, in practice, calibrating a simultaneous demand model
is not an easy job, and might even be impossible for the general'case
[T-M6].

An alternative to simultaneous models is a sequential approach. 1In
this model we assume that some of the components of the decision-making
process are independent, that they can be ordered in a hierarchy of steps
of decision-making, and that they can be modeled separately [T-M2]. One
of the common hierarchy orderings that has been used by a number of trans-
portation planners for both deterministic and stochastic models is as
follows:

i) Frequency of Trips or Trip Generation

ii) Destination Choice
iii) Mode Choice
iv) Route Choice.

In this hierarchy, the first model is used to determine the number of
trips generated at each zome. Given the number of trips generated at the
zones, a destination choice model is applied to distribute the trips among
possible destinations. Given the number of trips between an 0-D pair, the
mode choice model is used to split the total trips among all available modes.
Finally, the route choice model is used for each mode to distribute the
trips among all existing paths between an 0-D pair.

Different researchers have proposed a number of models for each step,

such as a linear model [T-M2] for trip generation, a gravity model [T-M2,
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T-U1] énd opportunity model [T-M2] for the destination choice step, and a
table look-up model [T-Cl] and a binary choice logit model [T-F2] for the
mode choice step.

One of the most common class of models which can generally be used in
any choice situation (both the deterministic and stochastic cases) for
choosing among a set of alternatives is the logit model. Suppose we are
given A alternatives and u? represent some characteristic of the alterna-

tive a. The choice of alternative a is given as:

efa(ua)

2 i ]
g of (W)
a'cA

. a . . a
where d is some constant and f~ is some function of u .

Florian in [T-F4] used the following logit model for the mode choice

step:
o eeum
D (u =4 7
Gum
X e
all modes
m'

where d is the total number of trips by all modes between a given 0-D pair,
u" is the travel time by mode m and 8 is some constant. Dial [T-D7] has
proposed an extention of this model for making both destination choice and

modé choice simultaneously, as follows:
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~
where dp is the total number of trips gemerated at origin p, and rq is an

index of the attraction of destinatioa q.

2.3.4 Route Choice

One of the most traditioﬁal assumptions that has been used indirectly
i almost all past work is that the route choice step is independent of-
the other steps and is the last step in the hierarchy sequence. Further-
more, the distribution of the flow among the available paths is such that
all of the used paths have equal travel time, which is less than or equal
to the travel time for non-used paths. Wardrop was first to state this
law of the distribution and it later became known as Wardrop's first prin-
eciple or as the user-equilibrium law. As we mentioned previcusly, the user-
equilibrium notion has much broader meaning than this special case. This
is only one possible type of assumption that we might make for the distri-
bution of path flow. !
A definition analogoﬁs to Wardrop's first principle that has been used
is:
"At equilibrium no user can improve his travel time
by unilaterally changing paths."
Although mostvpapers in the literature [T-A4, T-F6, T-M2] have explicitly

assumed that these definitions are equivalent, there is noc formal proof.
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In section 3.1 we show by example that these definitions are not always
equivalent.

The second definition says that the users are in.a competitive market
and that each user tries to improve his own travel time. For this reason
it is sometimes called a user-optimized formulation. In contrast with
this formulation, there is system-optimized (Wardrop's second principle)
formulation wherein all the used paths have equal marginal travel times
(or the average travel time is minimum),as compared with the user-optimized

formulation wherein all used paths have the same travel times.

2.3.5 General Route Choice

At least theoretically, we can use any other type of function,besides
the traditional ones,for the distribution of the flow among the paths.
Relaxing the restrictions in the traditional model permit us to have more
flexible models that include directly attributes like travel cost, safety,
and convenience, as well as travel time, which was the only attribute of
the level of service for Wardrop's first principle. Also, in reality, it
is not true that all used paths have equal travel timgs. This might be
bgcause of the lack of user awareness as to their route choice possibilities
or to trével fimes; or, it might be because other attribufes are important
to the useré in their route choice.

Sheffi in his thesis [T-S1] introduced a type of probability distribu-
tion function for the path flow distribution of a stochastic model. This
model pgrmits a small percentage of flow in paths with the higher travel

times, which is more realistic.
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Generally, for the deterministic case, the route choice step can be
modeled like any other step of the decision-making process and in a variety
of ways, like all or nothing routing, logit distribution, and so forth.

For é;ample, consider a logit model. Let d be the total number of users
who are going to travel through k available paths and let Lk denote the

level of service for path k. Then the number of users who travel through

path k is given by:

Appropriate choices of Qk permit us to include implicitly other attributes
besides travel time.

Also, the traditional path flow distribution satisfying Wardrop's
firét principle can be written in the form of the following znalytical

function:

dk = dak for all k.
where ¢ sétisfies:
>
O 2 0
Zak =1
_ iy * S *
0Lk =0 Lk Lmin

*
where Lm is the minimum level of service among all paths at equilibrium.

in
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As we mentioned before, the first advantage of this general route
choice model is that we have more flexibility to assign the flow among
the éaths, considering the other components of the level of service beside
the travel time, which are closer to the real-life distribution of the
flow. The other advantage is that the route choice can be modeled simi-
larly to mode choice, destination choice, or even trip frequency. In fact,
- by introducing new nodes and arcs with appropriate volume delay functions,
all the components of the decision-making process can be induced in the
route choice step in a new network, which is called the hypernetwork [T-S2].

Considerihg the enormous number of paths in the network, it is almost
impossible to calibrate a model like a logit directly for the general
route choice model. However, in reality, only a small number of all avail-
able paths will have positive flow and their choice depends upon the level
of congestion. Therefore, if spmehow we could enumerate the possible paths
with positive flow, then we could use any functional form, such as the
logit model, for the path flow distribution.

On the other hand, there are some existing efficient techniques (i.e.,
a shortest path algorithm) to assign the flow among the paths satisfying
Wardrop's principle, when the level of service consists of travel time only,
without considering all the existing paths explicitly. This fact makes the
use of the flow distribution satisfying Wardrop's principle more attractive.

For the above reason, in this thesis, we only work with the tradi-
tional route choice model in terms of computational results, although, it
seems that the theoretical developments are valid for the general route

choice model and for the hypernetwork.



27

2.3.6 Level of Service

As we have mentioned several times previously, the level of service
vector 1s composed of several components including travel time (in-vehicle
and out-of-vehicle times), travel cost, safety, and convenience. Although
all of the components greatly effect a user's choice of alternatives, it
is difficult to incorporate some of these components, like safety and
convenience, in a mathematical model for the equilibrium problem. It is
hard enough to include other variables that are even easief to measure.
Thus, practically, only travel time and travel cost have been considered
as components for the level of service.

Usually for the short-run equilibrium, the travel cost does not change
with the volume of the traffic in the network, or it is assumed QP be pro-
portional to travel time as perhaps when gas consumption increases as the
in-vehicle travel time increases. (Proportionality may not always be a
good assumption, though. For example, in case of high speed, the travel
cost increases while travel time decreases.) Travel cost does depend
strongly on traffic volume, though. For this reason, most traffic equili-
brium models do not consider travgl costs explicitiy in the demand functions,
whereas the travel time usually is considered explicitly as a variable.
Thus the travel times are needed for the demand model.

Also, almost all previous work uses Wardrop's principle for path flow
distribution and does not include travel cost in the .route choice step.
Although there has been some attempt to use a generalized travel time (a
function, usually linear, of travel time and travel cost), there are no

computational results for these types of models.
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In this research we also consider the travel time as the only mea-
sure for the route choice step, and we use constant travel cost for the
other parts of the demand model. However, it might be possible to extend
all of the results, especially those that are theoretical in nature, to

consider generalized travel time.

2.3.7 Volume Delay Function

Traveling through any path in the network involves delay time associa-
ted with both nodes and arcs in the path., Delay time at a node refers to
waiting time for transfer to another mode, waiting time for service, wait— .
ing time at intersections and so forth. .Delay time at an arc refers to
the actual time required for physical movement and, possibly wait time.
Since the delay time at a node can be represented by the delay time at an
arc in a suitably modified model of the transportation network (for example,
representing an intersection by a set of arcs [T-F7, T-F8]), we can assume
that there is no delay at nodes, and by an arc we mean a generalized arc.

In general, the travel time in a path depends on the volume of traffic
in the whole network. However, to be able to model the problem that can be
éolved, some assumptions are needed. The first "natural assumption is that
the travel time for a path is the sum of the travel times of the arcs in the
path. This assumption might not be true. For example, even if two arcs have
equal travel times, they might have different disutilities. Consider tra-
veling in an attractive neighborhood as compared to another unattractive
neighborhood, or walking comparod to riding in a luﬁurious car. Since, in

- the route choice model the travel time is the only measure, to model
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differences between arcs, we might use some scaling factor in the volume
~delay functiqn for each arc. We have tolnotice that the above assumption
makes the computation of the finding of the shortest path much easier, as
compared to the case of tf;vel times on arcs, are not additive,because there
ére very efficient algorithms available for the additive case.

Thé fact that each user affects the delay time for each arc differently,
for;es us to consider each user individually. But this is not feasible
because the number of uéerS'is enorinous. One way to solve this problem
is to classify the users into homogeneous groups and assume that all of
the users in the group have similar affects upon the delay time. The
classification might be in terms of transportation mode (i.e., auto and
bus), vehicle size (i.e., private auto and truck), drivers (i.e., slow
drivers and fast drivers), and so forth.

Suppose that, for every arc a € A, Ea der.otes the set of groups who are
sharing arc a and v: denotes the volume of traffic on arc a for group e.
Then the volume delay function for group e on arc a can be represented as
t:(v), where v is the vector of traffic volume by all groups and all arcs.
Notice that, for this general type of volume delay function, theoretically,
we éan assume that each arc is used by only one group, simply by duplicat~
ing the'whole network by the number of groups. The new network would be
much larger; however, from the computational point of view this duplication
might be made only impiicitly.

Most existing models have assumed that the delay on an arc depends
only on its own volume, 1i.e., tZ(v) = t:(va), where v, is the vector of

the volumes by all groups using arc a. Although it is true that the delay
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on an arc usually does not depend on the arcs far from that arc, it may
depend upon the flow on arcs close to it. For example, the delay on an
arc corresponding to a left turn strongly depends on the volume of the
flow on the arc representing the cross street and vice-versa. Another
example is two-way streets: the delay for each direction depends on the
volume of traffic in both directions.

Another assumption that has been made for simplicity in most models
is that the effect of different groups on the delay time can be captured
by assigning constant weight factors to each group. In.other words, tZ
is a function of I aeve, where ae is a constant. For example, a bus

ecE
a

is equivalent to 5 autos.

2.3.8 Examples of Volume Delay Functions

Here we review some of the volume delay functions proposed most fre-
quentl& in the literature. Constant functions have been used for arcs
representing walking distances, waiting times (i.e., half of the head-way
per bus), free-way flow time (i.e., uncongested highways, flight times,
in vehicle transit time, and so forth), and so on [T-M2]. There are a few
models for the delay at intersections, especially to'represent traffic
lights (see [T-F8], for example).

For congested street arcs, a variety of models have been used. We
mention only a few of them. In most of the models, the delay time has been
given only as a function of‘total volume on thét arc. Let ¢ denote the

arc capacity,r let v denote the total volume, and let to denote the travel

TDifferent'definitions have been used fof the arc capacity, mainly the
"steady state" capacity used in Overgaard's model and the "practical”
capacity used in BPR model. For more details, see [T-B1l2].



31

time at zero flow for an arc.
In 1962, Irwin and Von Cube [T-I2] introduced a piece~wise linear
function. 1In 1967, Overgaard [T-0l] proposed the following exponential

function:

0‘(v/c)B

t(v) = to

where o and B are constant parameters.
In 1963, Mosher [T-M10] suggested logarithmic and hyperbolic func-

tions, e.g.,

t(v) t, + n for v < ¢ (logarithmic)

o -v

- B

a=-v

a(t
t(v)

I
w0
+

for v < a (hyperbolic)

where o and B are constants. Although these functions are not defined for
v > d, by changing the function for v > aé,where o < 0, we can construct
a well-defined function for all v > 0 (see[T-M10]).

One of the best known and most widely-used volume delay functions is
that often referred to as the BPR (Bureau of Public Roads) [T-Bl2] func-
tion: |

B

t(v) = to[l + a(v/c)"]
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wh2re 0 and B are constant parameters. The BPR engineers suggested values
of 0.15 and 4 for o and B; respectively. However, generally for all of
the above models, the value of the parameters depends upon the structure
of the arcs. For example, they depend upon the number of lanes, the speed
limit, veﬁicle type, and so forth. Usually there are some tables avail-
able to calibrate these functions. For more details concerning these
models see Branston [T-B10].

The transportation literature does not contain many models to represent
the volume delay function for a link that is used by more than one class
of users. In [T-F4], Florian uses a special model for the links that are
used by two modes of transportation, namely private auto and transit bus.
By using some conversion factor,zi, he assumed that the flow by auto, vau,

and the flow by bus, v° are additive, i.e.:

au , — b
=v

A bus is assumed to be equivalent to a multiple of private cars (in the
traffic engineering study [T-H3], o is 3 or 4). Florian uses the BPR

function for the volume delay functions, as follows:

24Py = £ [L + av/o)P)

tb(vau,vb) - Y.tau(vau’vb) + 6
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where § is a constant penalty per mile to allow for stopped time for buses,

and Y is another constant to allow for speed differences between two modes.

2.3.9 Nature of Volume Delay Functions

It is natural to assume that the volume delay function is a continuous
function., This assumption might not be walid in some special instances,
as when modeling delay at a traffic light [T-Gl, T-M8]. When the flow
arriving at a traffic light increases more than the number of vehicles
that can pass in one cycle, the delay time will increase by another cycle
time. Thus, the delay function would have a step-wise character.

The second type of assumption which seems natural is that the volume
delay function is positive and monotone. If t denotes the vector of vol-
ume delay functions (i.e., t(v) = {t:(v)} for all e ¢ E, and a € A) and v

denotes the vector of volumes, then t is called monotone if,
(v-v") o (t(v) - t(+v")) >0.

When t: is only a function of vz then this property says that tz is pon-~
decreasing, which 1s what we expect for the transportation applications.
Furthermore, in this case, for congested arcs, we can assume that t: is
strictly increasing, even though the slope of the function may be close
to zero (see all the above examples). Note though, that if the transpor-
tation techmnology is permitted to vary, then this assumption might not be
valid. For example, the delay ir waiting for a bus might decrease with

increased user demand, as when more frequent bus service is provided at
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rush hours. For the general case, tz might not be strictly monotone,
e . . e S
especially when ta is a function of L v, - For example, it is easy
ecE

to see that the volume delay function used by Florian in [T-F4] is mono-

tone, but it is not strictly monotone.
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CHAPTER 3

TRAFFIC EQUILIBRIUM PROBLEM

3.1 EQUILIBRIUM CONCEPTS

In the transportation literature, the term "equilibrium'" has been
used in a number of different ways. In this section we attempt to unify
and glarify this term and to state what we mean by an equilibrium in this
report.

In general, we refer to any fixed-point solution for the system (2.3)
as an equilibrium point, as stated in definition (2.1). This general
definitionvis valid for both short-run equilibrium (when the transportation
technology T is fixed) and for long-run equilibrium (when T is not fixed).
Also, it is valid for both deterministic and probabilistic demand models.

In the case of the short-run equilibrium, the users are the only
decision makers in the system. This is the reason for referring to the
equilibrium as a user-equilibrium. In this case, if we assume that each
user tries to optimize his own utility independent of the other users, then
at equilibrium the following condition prevails:

User-Equilibrium Law:

"At equilibrium no user perceives a possible increase
of his utility by unilaterally changing alternatives."
This is a generalization of the Wordrop's user-equilibrium iaw (see Sheffi
[T-S1]) for both deterministic and probabilistic demand functions.
For the special case when the travel time is the only attribute of

the level of service in the performance function, when the route choice is
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the only decision for each user to make (i.e., ﬁhen the number of trips
between each 0-D pair, which includes trip generation, destination choice’
and mode choice, is prescribed by a given function), and finally, when each
user's decision is based upon minimizing his own travel time, then the
above user—equilibrium law becomes:

Special User-Equilibrium Law:

“"At equilibrium no user can improve his travel time
by unilaterally changing routes."+
This law was originally stated by Wardrop [T-Wl1l] and later has been
known, at least intuitively, as the definition of user-equilibrium. At the
same time, in practice, to introduce this law into a mathematical formula-
tion of the problem, Wardrop proposed an analogous law (known as Wardrop's
first principle) stated as follows:

Traffic-Equilibrium Law:

"At equilibrium, for eaqh 0-D pair the travel time on
all the routes actually used are equal,and less than
the travel times on non-used routes."
We used the name traffic equilibrium for this law to distinguish between it
and the special user equilibrium law, although in the literature the same
name has been used for both laws.
It is important to note what we mean by the term user in the defini-
tion of a user equilibrium. If we view the transportation system as being
composed of a finite number of individuals who make trips or not, then each

"user" provides an integral unit of flow from its origin to its destination.

Here we assume that each user has knowledge about the effect that his
transfer onto a new route has upon travel time,
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In this case the flow variables must be restricted to assume integral
values. Rosenthal [T-R1] models the equilibrium problem from this point
of view.

On the other hand, if we view the demand between each origin and des-
tination pair as a collection of a large number of individuals who are
making trips, then we might view the flow as being decomposable into a
large number of smaller units or users. A limiting assumption would be
that flow is infinitely divisible; that is, the flow variables are contin-
uous and each user is an infinitesimal unit of flow. The relationship
between the continuous model and limiting behavior of the irtegral model
seems not to be well understood. See Weintraub [T-W3] though, for results
of this mnature.

By imposing implicit assumptions (such as continuous variables, con-
tinuous volume delay functions and non-decreasing volume delay functions)
transportation analysts have assumed that these two laws are equivalent.
Since these assumptions might not be true in general, and alco since it is
not clear exactly when these laws are equivalent, we refer to any equili-
brium point that satisfies the traffic-equilibrium law as the traffic equi-
1ibrium solution. In the next section, when we formulate the problem, we
introduce equivalent mathematical equations that characterize the traffic-

equilibrium law,

EXAMPLE 3.1: To see the differences between these two definitions, when
any of the implicit assumptions are relaxed, we consider a single 0-D pair

example with two units of flow and two paths:
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ty (hy)
p=2= (I T ) =

£ (h,)

Figure 3.1 Network Configuration for Example 3.1

h, and h2 represent the path flows and tl(hl) and tz(hz) are the correspond-

1
ing volume delay functions. We consider the following cases:

Case I: Integral Variables.

Consider the following continuous volume delay functions:

ty (hl) t, (hz)
1\ 'y
3 p
2.5
2 3
1
— — = } + * » h
1 2 1 1 2 2
tl(hl) =1+ hl t2(h2) = 2.5

Figure 3.2 Continuous Volume Delay Fuuctions

For this example with continuous and non-decreasing volume delay functions,
the equilibrium problem with a user-equilibrium law has a unique solution;

namely hl~h2=1 with perceived times tl(hl) = 2 and tz(hz) = 2.5. With
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the traffic-equilibrium law the problem has no equilibrium solution, because

hl = 0 or 1 implies that tl(hl) < 2.5 = tz(hZ) and h1 = 2 dimplies that

tl(hl) = 3> 2,5= t2(h2). However, in the case of continuous variables,

the problem has a unique equilibrium solution for both laws; namely h1 =

1.5 and h, = 0.5 with the perceived travel times equil to 2.5.

2

Case II: Non-Continuous Volume Delay Functilons.

Consider the following non-decreasing volume delay functilons:

Ry | £y (ky)
11

37 — 3t

2t 2

) S L

1 ! 1 2 M
1 for hl <1
L PR hy > 1 f2(hp) = 2

Figure 3.3 Non-Continuous Volume Delay Functions

In the case of integral variables, this example with the user-equilibrium

law has a unique equilibrium solution, hl = 0 and h2 = 2, But with the

traffic equilibrium law it has no solution, because for hl < 1 we have

tl(hl) =1<2-= tz(hz) and for h, > 1 we have tl(hl) =3> 2= tz(hz).

1

In the case of continuous variables, this problem has no equilibrium

solution even with the user-equilibrium law, because if hl < 1 then some
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users, Ah for 0 < Ah < 1 - h_, canfimprove thelr travel times by transfer-—

1
ring from the second route to the first route. For a similar reason, we

cannct have hl > 1.

Case III: Decreasing Volume Delay Function.

Consider the volume delay functions given as follows:

t; (hl) tz(hz)

A A
3 t 3
2 1 2 1
l 1 LS

N » h + + -+ h
1 2 1 1 2 2
tl(hl) = 1 + h1 tz(hz) = 3 - h2

Figure 3.4 Decreasing Volume Delay Function

For continuous variables, this problem with the user-equilibrium law has a
unique solution, that is, hl = 0 and h2 = 2, It has infinitely many solu-
tions with the traffic-equilibrium law; those are h1 = b and h2 =2 -b
for all 0 < b < 2 with travel times equal to tl(hl) = tz(hz) =1+ b.
Among all these solutions, the one with b = 0, which is the solution with
the user-equilibrium law, has the minimum travel time. But minimization

of the travel time is not part of the traffic equilibrium law. -
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These examples show that the continuity assumption for both variables
and volume delay functions, and also a non-decreasing assumption for the
volume delay functioﬁs are necessary conditions for the user-equilibrium
law and the traffic-equilibrium law to be equivalent. Even under these
assumptions, there is no formal proof that the two laws are equivalent.
Because of these differences, in this report we assume that the traffic
equilibrium law governs the distribution of flow among the existing paths.
From this position, by traffic-equilibrium, traffic-assignment, user-
equilibrium, user-optimized, or an equilibrium problem, we mean the fixed-
point problem discussed in Section 2.2 with the traffic-equilibrium law
governing the distribution of flow among the paths.

Also, these examples show that the continuity assumption for both
variables and volume delay functions is a necessary assumption for the
traffic-~equilibrium problem to have a solution, while a non-decreasing
assumption on the volume delay function is not reqﬁired. We prove this
claim in Chapter 3. Although it might seem that the volume delay function
for transportation applications 1s non-decreasing, this is not always true,
especially when the transportation technology is not fixed. For example,
consider a shuttle bus system in which the number of buses depends on the
number of passengers. In this case the delay time (waiting time) may de-
crease as the number of passengers increases and new buses are added to the

system.

3.2 PROBLEM FORMULATION

The Transportation Science and Operations Resea=ch literatures contain
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a number of different representations of the traffic assignment problem,
modeling a variéty of features such as multiple origing and destinations,
multi-modal routing, and multiple classes of users. Although these spe-
cializations facilitate uﬁderstanding of problems and provide intuition
and guidance for developing solution techniques, they lead to somewhat
fragmented views that inhibit investigations that might apply across a
wide range of applications. The area has now matured to the extent that
a broader perspective is possible. In this section we formulate a rather
geheral version of the traffic.assignment problem that can be specilalized
to any of these previously considered cases by defining appropriately the
network structure, the problem variables, and the functional forms for
vehicle delay and origin destination demand., Later in this section we give
an example to make this point clear.

This general formulation reduces notational difficulties enormously
for the theoretical investigations to be pursued in the next chapters.

We formulate the problem as a multiple origin destination traffic
assignment problem. For a given network [N,A] where N is the set of nodes
and A is the set of (directed) arcs, the user-equilibrium traffic assign-

ment problem can be formulated as:

4(Tp(h) - ui)hp =0 for all p € Pi and 1 € I (3.1a)
Tp(h) - u, >0 for all p ¢ Pi and 1 € I (3.1b)
T_(h) = $6 _ +tih) forallpeP, andie I (3.1¢)
. P ap a i
- (3.1) acA
T h_=-D,(u) =0 for all iel (3.1d)
P i

PaPi
h >0 (3.1e)
u > 0 (3.1%)
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where,

the index a denotes an arc, a € A,

I is the set of 0-D pairs,

the index i denotes an 0-D pair, i ¢ I,

the index p denotes a path, p € Pi,

P, is the set of "available" paths for flow for 0-D pair i

(which might, but need not, be all paths joining the 0-D pair),

h is the flow on path p,

h is the vector of {hp} with dimension n, = iEIIPi[ equal to
the total number of 0-D pairs and path combinations,
is an accessibility variable, shortest.travel time, for O-D pair i,
u is the vector of {ui}, with dimension n, = 1],

1 if 1ink a is in path p
aap 0 otherwise

t:(h) is the volume delay function for arc a and 0-D pair i,

i nj 1

€+ RS R,

. R ny 1
Di(u) is the demand function for 0-D pair i, D, : R,™ >R

T(h) is the volume delay function for path p, which is that sum
of that volume delay function of the arcs in path p (a more

general formulation would relax this additivity assumption).

We assume that the network is strongly connected, i.e., for any 0-D
pair i with positive demand there is at least one path joining the origin
to the destination; i.e., |Pil‘2.l- The first three equations require that

for any O0-D pair i, the travel time (generalized travel time) for all paths,



44

P E éi; with positive flow, hp > 0, is the same and equal to Uy, which is
less than or equal to the travel time for any path with zero flow. Equa-
tion (3.1d) requires that the total flow among different paths between
ény 0-D pair i equals the total demand, Di(u), which in furn depends upon
the congestion in the network through the shortest path variable u. Con-
dition (B.le) and (3.1f) state that Eoth flow on paths and minimum travel
times should be non—negative.

Up to this point, we have not imposed any restrictions on the volume
delay function. It is a function of all the flows in the network; by
defining the structure of the network appropriately this formulation can
model a wide range of equilibrium applications, for instance situations
with multi-modal and multi-class of users with mixed type of flow in an
arc (such as bus and auto), with separate type of flow in arcs (such as
subway and auto), or even two way traffic in one arc and,right and left
turn penalties.

For example, consider a single link network with two modes of trans~
portation‘(i.e., auto and bus) and one 0-D pair, and suppose that the volume

delay function for each mode depends upon the flows by both modes.

mode 1 (ml) t 1 (h l,h 2) mode 1
0 - D
m m, m
mode 2 (m2) t 2 (h 1,h 2) mode 2
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To formulate the problem as a single mode problem with multiple O-D pairs,
we make duplicate copies of the networks, one for each mode. Define the

‘volume delay functions as follows:

t. (h)
ml ml m2 1
tl(h) =t~ (h ,h ") > 0 > D > mode 1
£ (1)

|

ot
—~
=)
=
~

: m m
tz(h) =t ? 2 = ==¢’ mode 2

By this device of duplicating the netwofk and letting ta(h) be a
function of the vector of h in the generalized network, we can assume that
there is only one type of commodity (user class, mode, and so forth) flow-
ing in each arc. Thus in the generalized network we can omit index i from
ti(h). In the theoretical part of this report,we will work with this

generalized network,

3.3 EQUIVALENT NON-LINEAR COMPLEMENTARITY PROBLEM (NCP)

Let F(x) = (fl(x),.......fn(x)) be a vector-valued function from a
n-dimensional space R into itself.. Then a vector x € R" is called a
c0mp1ementarity solution if it satisfies the following conditions [see

C-K2]:

"'x * F(x) =0

F(x) >0
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This formulation can also be generalized for the point-to set mapping
[see C-E2].

In this section we show that the traffic equilibrium problem (3.1)
has a complementarity nature. It is clear that equations (3.la), (3.1b)
and (3.le) are complementary in nature. To show that the rest of the
equations can be expressed in a complementarity form requires some mild
assumptions that we would expect to be met always in practice.

First, some simplification in the formulation helps to clarify the

transformation. Let x = (h,u) ¢ R" where n = n, + n, and furthermore,

1

let

fp(x) = Tp(h) - u, for all p ¢ Pi and i g I
and

g.(x) = £ h - D, (w for all i ¢ I.

1 P i

Pe i

Also, let

F(x) = (fp(x) for all p ¢ Pi and i ¢ T, gi(x) for all i ¢ I)e'Rn

then F would be a vector-valued function from a n-dimensional space R"

into itself. Now consider the foilowing nonlinear complementarity system:

( fp(x) hP =0 for all pe P, and i € I
fp(x) >0 for all p e P; and 1 € I
3.2
(3.2) { gs(x) u; =0 for all i € I
gi(x) >0 for all i e I




47

which can be written as the following compact form:

F(x) *x=0

(3.3) F(x) >0
X >0
"1 1
PROPOSITION 3.1: Suppose that t,: R~ ~+R for all a € A. Also, suppose
that D;: Rzg > R for all © € I, Then any solution to the user-equilibrium

system (3.1) is a solution to the nonlinear complementarity system (3.3).

PROOF: Obvious, since gi(x) = (0 in the user equilibrium conditions (3.1).

"q

PROPOSITION 3.2: Suppose that for all a € A that ta: R~ ~ Ri 18 a posi-
n

tive function. Also, suppose that for all i e I that D;: R -+Ri 18 a non-

+

negative function. Then the user-equilibrium system (3.1) is equivalent

to the nonlinear complementarity system (3.3).

PROOF: To prove the theorem, it is encugh to show that any solution to
(3.3) is a solution to (3.1). Suppose to the contrary that there is a

x = (h,u) satisfying (3.3), but that gi(x) = I hp - Di(u) > 0. Then
pEP&
gi(x)ui = 0 implies that u, = 0. Also, since Di is non-negative

But, for

L h > Di(u) > 0 which implies that hp > 0 for some p € Pi'

PEPi )
this particular p, equation fp(x)hp = 0 implies that:

fp(x) = Tp(h) -uy = 0

or

Tp(h) = u;.
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But since u, = 0, T . (h) = ¥ § « £t (h) = 0 which contradicts the
i P achA ap a
assumption ta(h) > O.-

REMARK 1: The user-equilibrium system (3.1) need not be equivalent to the

nonlinear complementarity system (3.3) if the assumption Di(u) >0 is

dropped from this proposition. For example, consider the following net-

- work with a single link and a single O-D pair.

t (h) u

2@ > (——0)~ 1

D(u)
//t(h)

\

Tigure 3.5 Negative Demand Function

In this example, (h,u) = (0,0) is a solution to the nonlinear complemen-

tarity system, while the user-equilibrium system does not have any solu-

tion. -

REMARK 2: The user—equilibrium system (3.1) need not be equivalent to the
nonlinear complementarity system (3.3) if the assumption ta(h) >0 is
dropped from proposition 3.2. For example, consider the following network

Awith a single link and a single O-D pair:
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t(h) A

D(w) +(O——>—) + D(u)

Figure 3.6 Negative Volume Delay Function

For this example, (h,u) = (h,0) is a solution to the nonlinear complemen-

tarity system, but not to the user equilibrium system.ﬁf?
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CHAPTER 4

EXISTENCE AND UNIQUENESS OF AN EQUILIBRIUM

4.1 INTRODUCTION

In this chapter we prove both the existence and uniqueness of the solu-
tion to any traffic equilibrium model (3.1) that satisfies assumptions that
are not very restrictive for transportation applications and do not limit,
in any essential way, the generality of the model. Although the litera~
ture contains some proofs of existence and uniqueness for special cases when
the problem can be formulated as an equivalent optimization problem (sce
[T-D2-3], [T-F6] or [T-S4]),this approach seems to require strong assump-—
tions that make it difficult, if not impossible, to extend the formulation
and the proofs to more general settings (see Section 5.3.2).

The nonlinear complementarity formulation provides us with a stronger
tool to generalize the formulation of the user-equilibrium, to extend the
existence and uniqueness theorems, and even to introduce new solution tech-
niques. This might be because user-equilibrium is essentially complementary

in nature.

4.2 EXISTENCE

Several researchers [C-Kl-4] have developed theorems that provide
necessary conditions for the existence of a solution to the nonlinear com-~
plementarity problem. Unfortunately, most of the conditions are too strong
to be applied directly to the user-equilibrium problem. To illustrate this

situation we introduce a prototype of this theory, by considering results
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due to Karamardian, Later in Section 4.3 when we discuss uniqueness we
utilize some of the concepts introduced at this point. Before starting

the theorem, we require some definitions:
n

DEFINITION 4.1: Let F : D - E®, Dc E*. The function F is said to be

monotone on D if, for every pair x € D and v € D, we have

(x=y) (F(x) - F(y)) > 0.

<
m
)

F is said to be strictly monotone on D if, for every pair x € D,

with x # y, we have

(x-y)(F(x) - F(y)) > 0.

It is said to be strongly monotone on D if there is a scalar k > 0 such

that, for every pair x € D, y € D, we have
2
(x=y) (F(x) = F(y)) >k |x-y]

where || denotes the usual Euclidear norm.

THEOREM 4.1: (Karamardian [C-K2]) If F : Eﬁ + E' is continuous and strongly

monotone on E., then the nonlinear complementarity system has a unique

+.P

solution.
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THEOREM 4.2: (Karamardian [C-K2]) If F : EZ + B is strictly monotone

on Ez, then the nonlinear complementarity system has at most one solution.

Notice that, for traffic equilibrium problems, these theorems require
that F(x) = ( Z Sapta(h)-ui for all p € Pi and i € I, I hp—Di(u) for all
acA pEP
i € I) and necessarily ta(h) be strictly or strongly monotone in terms of
path flows., But this is not usually true since most of the time the volume

delay function ta is a function of the sum of tne flow on different paths

corresponding to the same 0-D pair.

EXAMPLE 4.1: Consider the following single 0-D pair network with 4 possible

paths:
tl(h3+h4) t3(hl+h3)
ow = sWllib ok,
2
t (hl+h2) t4 (h2+h4)

Suppose that x = (El,h2,53,ﬁ4,ﬁ) is a solution to the corresponding nonlinear
complementarity problem. Then clearly y = (El+6, 52—6, EB—G, 54+8, u), which

has the same total O-D flow and same link flows as x, 1s another solution as

long as y > 0. But

(xy) (F(x) ~ F(¥)) = (8,-8,-6,16,0)+0 = 0
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implying that F is not strictly monotone or strongly monotone. =
However, for transportation applications, the volume delay functions
are usually monotone, or even strictly monotone, in terms of link volumes.
Later we use this property to show the uniqueness of the solution in terms
of link flows. In Theorem 4.4 to follow, we show that no monotonicity
assumption is required for the existence of the solution.
Before stating this theorem we recall another existence result for

nonlinear complementarity problems.

DEFINITION 4.2: A bounded set B C Ri -~ D separates D from «, if each un-

bounded closed connected set in R: that meets D also meets B.

THEOREM 4.3: (Kojimas [C-K5]) Let d be a positive vector in R Suppose
that f is continuous, and that B CZRz - {0} separates the origin {0} from
w, and that for each = € B there is an z' ¢ RZ for which (x'-xz)d < 0 and

(x'-x) f(x) < 0. Then (3.3) has a solution.

THEOREM 4.4: Suppose (N,A) is a strongly connected network. Suppose that
t, ? le > Rl i8 a non-negative continuous function for all a € A. Also

suppose that for all 7 € I, D, : RZZ >’ is a continuous function that is
bounded from above. Then the nonlinear complementarity system (3.3) has a

solution.

PROOF: Let d be a vector with components di such that

©>d, >Max {0, Max D, (u)} > 0 for all i € I.
1 u>0 1 -
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This maximum always exists because Di is bounded from above. Also, let

T; > Max{0, Max Max T _(h)} > O for all i e I.
psPi 0<h<d
This maximum always exists because T (h) = I 6a . ta(h)'and ta is continu-
acA

ous. Notice that there is at least one path for each i e I.

Now, let 1 <y < ® and define

§=y(Zd-|p,D+ Z,
iel iel

where lPi[ is the number of paths between 0-D pair i. Also, suppose that

A={x= (h,0) € Rﬁ :y(Z I h)+ I u, = 8}
iel pePi iel
and
1 ? ] 1 n ] 1
A=1{x=( ,u) e R+ :y(Z ¥ h) + T uy <8} .

il peP, PY o jer

Clearly, A separates the origin {0} from ©. Thus by Kojimas' theorem, it
is enough to show that for any x € A there exists an x' € A' such that

(x'-%) f(i)_ﬁ 0 and x'-x < 0. To prove this we distinguish two cases:

Then

Case 1: x € A and for some p € Pi and i € I we have ﬁp Z5di'
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gi(x)<= X hp_— Di(u) > L h -4d, >0,

i<
pi—:Pi pePi

—_— \ — v - - 1 -
Now, if u, > 0 by taking h =h, u, = u, =u, for j # i, j € I and u, = u,

i i 3 3 1

_ | R _ LI
- o for some O < a<:ui, we complete the proof since (x -x)f(x) = (ui—ui)
fi(x)= —agi(x) < 0.

If ﬁi = (0 then we have:

fp(}—{) = TP(E) - uy Tp(h)_>__0.

_ v _
Again, since hp Z_di > 0, by taking u = u, hq = hq for q # p, q € pj, jel

1 - -— L —
and hp = hp - o for some 0< g < hp , we complete the proof since (x -x)f(x)
\ — -
= (h -h )f =—qf < 0.
( p p) p(X) p(X) <

Case 2: x € A and EP <4, for all p € P, and i € I, which implies that

i

I I h - I|p|d, <oO.
i€l peP, P jer +
Also, x € A therefore:
L (t,~u,) =y(EZ I h - I |P/|d,) <0 (4.1)
jer * 1 ieI peP, P i€l it
which implies
Tu>IT >0, (4.2)

iel iel
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We partition the set I into two disjoint sets I. and I, such that

1 2

I. ={ielI: u, >T.}
1 1

}.

=~
I

. : - <
2 {fierI u;, < Ty

Clearly, IlkJ I2 =1, I. I, =& and Il # ® because of (4.2). Now (4.1)

1 2

can be written as:

I (tme)+ I (tmu)=y(I o I h- X |p

i

1 2 1 1 2

«d )+ ( I Y h-=Z
iel ieTl iel pePi iel iel PePi

But, in this equation all terms except I (Ti-ai) are negative and vy > 1,

iel
2
thus:

z (Ti—ﬁi) <y(Z  h - I lPildi) <0

ieIl 1811 psPi 1811

On the other hand, for any i € Il we have:

- - - <
f x) =T (h) - u, T. — u, 0 for all peP,
implying that

z fp(i) < T (tymuy) = [By] (Tymwy) <0

£P
P i pePi

(4.3)
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and that

zoa/leh oz fp(%)_g L (1;-u,) < 0. 4.4)

1811 pePi 1811

Also, for any 1 € Il we have:

g;(®) = L h -Di(ii)> L h - dy

p
pePi pEPi

and, since lPi[ > 1,

g, () > I Ep - |24, (4.5)

pePi

Now, if gi(§) > 0 for some i ¢ I1 then the proof is clear. To see this,

take h' = h, uﬁ = Gj for j # i and j € Il’ and ui = Gi - 0 for some

0 < a<<§i. Therefore, suppose that gi(§) <0 for all i € I,;. Adding (4.5)

for all 1 € Il gives:
0> L g (x> I 2 h - I lPildl (4.6)
1811 1€Il p€Pi 1€Il

Combining (4.3), (4.4) and (4.6) implies that
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I /]e ]y = fp(x) L (T,-uy)
iel pEP, i€l
1 i N 1 >y > 1
I g (x) : T X h - I |P]|d,
. i . P il™i
1811 1€Il pePi 1€Il
Now, define x' = (h', u') as follows:

o nd
]
=1
+
Q
~
La~]

for p € Pi and i1 € I

P 1 1
' - h .

hp hp for p € Pi and i € 12
' 3 T —

u; = u; -0 3 for 1 e Il

u! = u, fori el
i i 2

where o and B are constants satisfying:

£E@) /(L g ()
P iel, =

y<gs< (I @/[|p ) =
€ 1

1€Il P Pi

0 <o < Min (u,/B).
R i
1€Il

To complete the proof, it is enough to show that x' satisfies Kajimas'

conditions. First, it is clear that x' > 0 and x' € A' because:
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YCZ £ W) 4+ Zu =vy(Z I h)+ Iu,

i€ peP, jer * iel peP, ier *
+y(Z ¥ 29 - I a8
iel, peP, IPiI i€l
=38 + y(ar Il[) - asBe Ill

S + a[Ill (y - B) <6 .

Also, (x'-x)e < 0 where e is a vector of n ones because:

(x'-x)ee= I I @/[p;)- I aB

. .
1&11 pePi i I1

=a || -a B'llll

o || @-8)<o0.

The last inequality is valid because B > y > 1.

Finally, (x'—g)'f(ﬁ)_i 0 because:

x'-x)f(x) = L % (a/|Pi|)-fp(§) - Tobgx

1€I1 pEPi 1€I1

=ol I (@/[p]) I £ -8 g (®)]<0
i .

i I1 pePi 1611
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this inequality is valid by definitiowm of B, and the proof is complete.m

THEOR™ 4.5: (Existence) Suppose (N, A) is a strongly connected net-
n t
work. Suppose that t, R+1 R 1.2 a positive continuous function for
n
2 !

all a € A. Also suppose that for all © e I, Di $RT >R, 18 a non-

+

negative continuous function that is bounded from above. Then the user-

equilibriun system (5.1) has o solution.

PROOF: Theorems 3.2 and 4.4 immediately imply the proof of this theorem. |

Recently Asmuth [T-A4] has shown how the user-equilibrium problem can
be formulated as a stationary point problem, and has given existence and

uniqueness proofs for a amore general type of volume delay and demand func-

tions.

EXISTENCE THEOREM 4,6: (Asmuth) Suppose (N, 4A) is a strongly comnected
network. Suppose
z) ta’ the volume delay function, is a positive, convex
value d and upper semi-continuous point-to-set map on
{n|n >0} and
i1) D;s the demand fumetion, i8 a non-negative, bounded,
convex valued cnd upper semi-continuous point-to-set

map on {u | u > 0}.

Then a solution to the user-equilibrium problem exists.

Although Asmuth's proof differs from ours, the underlying ideas are

the same. He uses Saigal's results [C-S1] to give a necessary condition
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for the existence of the sclution for the stationary point problem, instead

of Kojimas' results which we used.

4,3 UNIQUENESS

Although there is a straightforward method to show the uniqueness of
the solution under some assumptions, it is usually difficult to extend the
results to more general cases., In this section we use 1ideas similar to what
Asmuth [T-A4] has used for the stationary point problem to show that the
nonlinear complementarity problem and user-equilibrium problem has a unique
solution under strictly monotonicity assumptions. As we showed previously
in Section 4.2, the path flows usually are not unique and only the arc
volumes will be unique. Also, in this section we extend the results for
situations in which the link flows are not unique, but the path travel times,
the accessibility variables u;, are unique.

To facilitate our study in this section, we represent the traffic equi-
librium problem in a matrix form. Let v, denote the total flow on arc a,
that is, v. = % L 8 <h_, and let v with dimension |A| denote the vec-

iel peP
tor of arc flows. Then ta(h) = ta(v) for all a € A.

Also, let t(v) be the vector of volume delay functions and D(u) be the

vector of demand. functions. Let A = (Gap) be the arc-path incidence matrix

with dimension |A| x n, and let T = (Ypi) be the path-0-D pair incidence

1

matrix with dimension n; X ny, i.e., Ypi = 1 when path p joins 0-D pair i

and Ypi = 0 otherwise.

Then the user-equilibrium problem can be written as follows:



€2

4
(AYet (Ah) = Teu) * h = 0
ATet(Ah) - Tew) >0
ITeh - D(u) =0

Now let G(x) = (t(Ah), - D(u)) where x = (h,u) and G: Ri + R with n = n

1
+n, and m = | + n,. Also let:
_ A 0 _ 0 -T
A = and r = T
0 I r 0

with dimensions m X n and n x n respectively, and I' is the identity matrix
with dimension n, X n,.

Then, the corresponding nonlinear complementarity problem can be written

as follows:

Are@x) + Tx) x

I
o

Badx) +Tx >0 4.7)

x>0,

It is easy to show that ETG(KR) 4+ Tx = F(x) where F has been defined in the

Section 3.3. Therefore (4.7) is equivalent to the system 3.3.
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The following lemma and 1ts proof is very similar to results of Asmuth
[T-A4] concerning a stationary poilnt problem, and is included here for com-

pleteness,

LEMMA 4.1: Let KC Rn, let B be an m x n matrix, and let L = {Bx1 x € K}
c A Suppose that g: L ~+ A" is strictly monotone on L. Let A be an n x n
positive semi-definite matrix. Define f: B* > R by flz) = BTg(Bx) + Ax.
Then the set of solutions (x, f(x)) to the complementarity problem x > 0,
f(x) > 0 and xf(x) = 0 is convex and Bx has the same value for all of these

solutions.

PROOF: Suppose that xl and xz, xl # x2, solve the nonlinear complementarity

problem, i.e.
xi_z 0, f(xi):i 0 and xif(xi) =0 for i = 1,2
then
K2EGY) > 0, xE(xD) >0
and consequently
-z ED) > 0
(x'-x2)E(x%) > 0
which implies that
(xt-x%) (£ - £(x2) < 0
or |
(x1-%%) (Blg(Bx') + Ax- - B g(Bx>) - Ax) < 0
or

=) BT (g (Bx)-g (BN + (M=) A (=i < 0.
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1 2 1 2 .
Since A is positive semi-definite, (x"-x")A(x"-x") > 0, implying that
1 2 T 1 2
(x -x")[B " (g(Bx") - g(Bx"))]1< 0.

or

(Bx -Bx>) (g(Bx") - g(Bx2)) <

A
o

(4.8)

But g is strictly monotone on L, therefore Bx1 = sz.

To prove the convexity of the solution set, let Ac[0,1l] and let x =
Xxl + (l—k)xz. Then clearly x > 0 and also, by the first part of the proof

Bx = ABxl + (l—}\)Bx2 = Bx1 = sz. Therefore

f(x) BTg(Bx) + Ax

ABTg(Bx) + (1-0)BTa(Bx) + AQxT + (1-M)x2)

I o a-08Tedx?) + (1-1)Ax?

ABTg(Bx) + Mx

A(B g (Bxl) + AxY) + (1-1) (B g(Bx’) + Ax’)

- A (xD) + (=M £(x2).

But Ae[0,1] and f(xl).z 0 for i = 1,2; therefore f£(x) > 0. Also, clearly

xf(x) > 0 and

xf(x) = x(BTg(Bx) + Ax)

or
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f(x) = xBTg(Bx) + xAx
= AxBTg(Bx) + (l_—A)xBTg(Bx) + xAx
= Ax'BTg(Bx) + (1-0)x7BTg(Bx?) + xAx.
Also,
xAX = Oxt + A-0x%) AOxL + (1-0xD)
= 2 Zhaxt + a-ntax? + a@-nxiaxt + (1-1) 2x2ax?
= AxtAxT + (1-0)x2Ax% — A(L-N) (F-x) A (x =x2)
and thus,

xE(x) = A [Blg(Bxl) + Ax'] + (1-M)x’[Blg(Bx®) + Ax]
- AQ=N) (-x2) AGE-x2)

= e + A-0EEGED - A0 x DA -x?)
But, by assumption, xlf(xl) = 0 and xzf(xz) = 03 therefore,
xf(x) = - A(1-)) (xl—xz)A(xl—xz).
This imp}l.ies that xf(x) < 0 because A is positive semi-definite. Also, we

showed previously that xf(x) > 0. Consequently, xf(x) = 0 and x is a com-

plementarity solution. .



66

THEOREM 4.7: (Uniqueness) For a strongly comnected network (N, A), suppose
that t, the vector of the volume delay functioms,and -D, the vector of the
negative demand functioné, are strictly monotone. Then the arc volumes, v,
and the accessibility vector u for the equilibrium problem (3.1) are unique,

and the set of equilibrium path flows are convex.

PROOF: With the notation used in system (4.7),we have that G = (t,-D) is
strictly monotonme on L = {Ax = (vou) : x = (h,u) € Rp}. Also, since T is
skew systematic, it is positive semi-definite. (In fact, for any x = (h,u)

we have:

0 ~T

«Tx = (h,u) (h,u) = ~hTu + u T*h = 0).

Thus, with g = G, £ =F, B= A and A =T, by Lemma 4.1, Ax = (v,u) is
unique for the nonlinear complementarity system (3.3) which implies that the
arc volume v and the accessibility variable u are unique for the user-
equilibrium problem (3.1). Also, the set of solutions x = (h,u) to the
nonlinear complementarity problem (3.3) is convex, which implies that the
set of path flows, h, is convex for the user-equilibrium problem. E

Notice that the required conditions for Theorem 4.7 are completely
different than the conditions in Karamardian's Theorem, 4.2. Here, we re-
quire that the vector of volume delay functions is strictly monotone in
terms of arc volume v, while in 4.2 we require that the nonlinear comple-
mentarity function, F(x), is strictly monotone in terms of path flows, h.

As we showed in Example 4.1, the path flows, h, might not be unique even
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if we assume that all ta and —Di are strictly monotone.

Note that both of the functions t and -D are required to be strictly
monotone in Theorem 4.7 to insure che uniqueness of (v,u). In the next
Theorem we show that.this restriction on D can be relaxed, and that unique-

ness of u is maintained if either of t or -D is strictly monotone.

THEOREM 4.8: For a complete network (N, A), suppose that t and -D are both
monotone functions. If either of t or -D is strictly monotone, then u is

unique. Also, 1f t is strictly monotone, then (v,u) is unique.

PROOF: Suppose that xl = (hl,ul) and x2 = (hz,uz), xl # xz, are two solu-

tions. As in lemma 4.1, with g =G, £ = F, B =A and A = T, we have by

equation (4.8)
(Bx-Bx2) (¢ (BxY) - ¢(Bx?)) < o.
But G = (t,~-D) is monotone because it has monotone components, i.e.

Bx -Ax%) (6(BxY) - ¢(Bx)) > o.
Therefore

(Bxt-Ex2) (6(AxY) - G(Bx2)) = 0. (4.9)
By substituting foriz, x = (h,u) and G = (t,~D) we obtain:

(ant-an?y ce(andy - e(an?)) + ul-u?) (-p(ul) + p(ud)) = 0 (4.10)
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But both t and -D are monotone functiuns, thus each term in (4.10) is zero;

that is,

(Ah=an2) (£(anY) - tcand)) = 0 (4.11)

- (rudy @d) - pd) =0 (4.12)

If -D is strictly monotone, then equation (4.12) implies that ul = u2, or
u is unique.

Now, suppost that t is strictly monotone. Then (4.11) implies that
v1 = Ahl = Ah2 = v2, or that the arc volume vector v is unique. But unique-
ness of arc volume vector implies that the travel time, ta(v), on each arc
is unique, which obviously implies that u is unique.!!

When all the traffic from different origins have the same effect on the
travel time of each arc, and there is no interaction between opposing lanes
of two-way traffic or right or left turn penalties, or in other words, ta

is a function only of the total volume in the arc, then the strictly mono-

tone condition on t can be relaxed for the uniqueness results.

COROLLARY 4.1: (Special case) For a strongly connected network (N, A),
suppose that each t, 18 a funetion only of Ve and that it is monotone.

Also, suppose that -D is monotone. Then u is unique.

PROOF: Obviously t, the vector of the volume delay functions, is monotone
because each of its components is monotone. Thus equation (4.11) in

Theorem 4.8 1is true,
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n-an?) (oY - tan?)) = o. (4.13)

But since each component of t is menotone, (4.13) can be separated into a

single form for each arc:
1.2 1 2
(v, a)(ta(va) - £ (vD)) = 0.

. . 2 . . .
This implies that ta(vi) = ta(va), or that the travel time on each arc is

unique and. consequently, that u, the minimum path travel time, is unique
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CHAPTER 5

COMPUTING AN EQUILIBRIUM

5.1 INTRODUCTION

In this chapter we discuss some of the basic approaches that have
been applied to find an equilibrium solution to the traffic assignment
problem. We consider exclusively the deterministic case. For a dis-
cussion of stochastic approaches, see Sheffi [T-S1] and the references
that he cites.

Almost all previous efforts can be classified as being:

i) Heuristic
or 1ii) mathematical programming-based.
In this chapter we briefly discuss approaches from each category, and
their limitations. We conclude the chapter by introducing a new
linearization approach that is based upon mathematical programming,
although we have not been able to prove its convergence.
5.2 HEURISTIC TECHNIQUES

Since 1952, a large number of algorithms have been developed for
the traffic assignment problem. Most of the earlier techniques have
been based upon intuition, without considering congestion effects or
any formal concept of equilibrium. The goal of these approaches was
to assign flow between different paths so that the paths have almost
equal travel times.

The first of these algorithms is the ''diversion curve'" technique

[T-M5, T-M9, T-W5] in which the total number of trips between an origin-

@
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destination pair are divided between two routes, one an expressway oOr
the like, and the other an arterial, or equivalent, highway. These
techniques are only suitable for small networks. The next generation

of this type of algorithm is the "all-or-nothing" or "desire'" assignment
technique used in 1958 in the Detroit Transportation Study [T-D6]. None
of these algorithms incorporates congestion effects or an equilibrium
concept.

The first attempt to account for the capacity of the system is known
as the '"capacity restrained" technique [T-C3, T-D13, T-I1, T-I2, T-S3].
Manheim and Martin [T-M3], in a procedure known as the "incremental
traffic assignment" technique, were the first to account for both con-
gestion and equilibrium concepts in the context of the traffic assignment
problem. This procedure tries to load the network by a small percentage
of flow incrementally, updating the system performance and congestion
measures after each flow change.

Recently, more sophisticated heuristic techniques have been de-
veloped and applied to the large networks (see Jacobson [T-J1] or
Manheim and Ruiter [T-M4], for example). However, neither is there any
good theoretical justification to guarantee the convergence of these
algorithms, nor is there enough computational experience to show how
good they perform in practice.

5.3 MATHEMATICAL PROGRAMMING TECHNIQUES

As we pointed out in the previous chapter, the traffic equili-

brium problem can be formulated as a non-linear complementarity problem

or as a fixed-point problem. Therefore, at least theoretically, any
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algorithm for solving these problems might be used to solve the traffic
equilibriﬁm problem. Also, any non-linear complementarity problem

or fixed-point problem can, again in theory, be visualized as an equi-
valent optimization problem (see Todd [C-T1l]). Therefore, an optimi-
zation algorithm might be used to solve the problem.

Unfortunately, the limitations on existing algorithms in terms of
both the size of the problems that they can sclve, especially for the
fixed-point and complementdrity approaches, and, in terms of the re-
quired assumptiouns, especially for the optimization-based approaches,
makes it almost impossible to apply them to solve any real-life traffic
equilibrium problem. 1In section 5.3.1 we briefly discuss the validity
of these algorithms and review the efforts of various researchers to
use these techniques.

However, under some mild assumptions, the equilibrium problem can
be formulated as special optimization problems for which there are
efficient algorithms currently available. In section 5.3.2, we discuss
this method and its generalizatiomns.

5.3.1 Fixed—~Point Techniques

In the literature, there are many algorithms for solving fixed-
point and non-linear complementarity problems [C-Fl, C-L3, C-K4, C-S2,
' C-Tl, C-T2]. Generally, these algorithms are based upon some division
scheme that subdivides the working region into a number of simplexes,
and then use some clever search (or pivoting) procedure to move among
the simplexes until one is found that approximates a fixed-point (see

Scarf [C-S2] or Todd [C-T1]). A major advantage of these algorithms
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is that they require very few assumptions on the problem, and have the
capability of dealing with highly non-linear problems. Another ad-
vantage is that they can provide solutions to within any prescribed
degree of accuracy.

.However, naturally, the generality and power of these algorithms
creates some disadvantages as well. One disadvantage is a relatively
high solution time, which limité the size of problem that they can
solve. For example, the solution time is on the order of a ccuple of
seconds for a five-variable problem (see Kojima [C-K4] or Lutti ([C-L3],
and a couple of minutes for a problem with 50 variables. Another dis-
advantage is that these algorithms, because of their generality, do
not expluit any inherent properties of the problem under study.

For the transportation applications that we are considering, the
variablas for the associated non-linear complementarity problem are
the available paths in the network. Even for a small-sized network with
100 nodes and 1000 arcs, the number of paths is on the order of milliomns,
although most of them have zero flow. Not even the most efficient
general purpose algorithm for the non-linear complementarity problem
would be able to solve a problem of this size. Also, generally, the
transportation applications do not require the degree of accuracy that
these algorithms are capable of providing.

Finally, regardless of what kind of algorithm is used to solve the
equilibrium problem, knowledge of shortest paths is essential. Since
there are a number of extremely efficient algorithms available for

finding shortest paths, any efficient algorithm for the traffic
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equilibrium problem might be expected to incorporate shortest path
computations as a subroutine. Fixed-point algorithms, generally, do
not take advantage of this aspect of the equilibrium problem.

However, at least theoretically, the fixed-point algorithm will
solve any general equilibrium problem, even when other algorithms
might fail.

In 1977, Kuhn [T-H2] devised a fixed-point method, equipped with
a special pivoting scheme, to solve equilibrium problems with fixed
demands and with separaﬂle volume delay functions. Applications of the
algorithm to a small 4-ncde equilibrium problem required 7 seconds of
computation time and provided a very accurate solution. In 1977,
Aashtiani [T-Al] formulated a more general equilibrium problem as a
non-linear complementarity problem and studied the existence of solu-
tions. Asmuth [T-A4] proposed a similar model which included point-
to-set volume delay functions and demand functions. He proposed a fixed-
point algorithm and applied it to some small exampies that could not be
solved by any other method. The algorithm found accurate solutiomns,
but, again, the solution time was so high that it does not encourage the
application of this algorithm to large, real-life transportation problems.

5.3.2 Optimization Technique

In 1956, Beckman, McGuire, and Winsten [T~-Bl], by imposing the
following restrictions, were the first to formulate the traffic equi-

librium problem as an optimization problem.
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Problem Restrictions:

i) The link performance functions are independent, i.e.,

ta(f) ta(fa) for all a € A

where

z z 6a h .
iel psPi PP

Fh
o
]

. ii) The demand functions are independent, i.e.,
Di(u) = Di(ui) for all i e 1.
iidi) ta(fa), for all a € A, is an increasing function.

iv) Di(ui)’ for all i € I, is a strictly decreasing function.

By imposing these restrictions+, they showed that the Kuhn-Tucker
condition for the following convex minimization problem is equivalent
to the user-equilibrium system corresponding to the traffic equilibrium
law:

f d,

e a i

Minimize X 4) ta(x)dx - ‘Z L) wi(y)dy
acA iel

subject to:

.t.

In this section we assume thai t(f) and D(u) are positive, continuous
functions and that they are differentiable.
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¢

 h - di =0 foralliel (5.1a)
pEPi
fa = ¥ I Ga h for all a € A (5.1b)
iel psPi
h >0 (5.1c)
d >0 (5.14d)

wheré Wi(di) is the inverse function of the demand function Di(ui); it
alwgys exists because Di(ui) is strictly decreasing. The dual variables
corresponding to the first set of constraints (5.1a) are the accessibility
variables, u,-.

In addition, they showed that when ta(fa) is strictly increasing,
then the minimization problem has a unique solution in terms of f and u.

Notice that, although the above formulation has been given for a
single-mode traffic assignment problem, this formulation is valid for the
multi-modal case as long as the assumptions (i) and (ii) hold. In fact,
the problem can be separated into distinct minimization problems, one
associated with each mode.

In the last decade, a number of researchers [T-F4-7, T-G5, T-L2-3,
T-N2-6] have developed algorithms based upon this formulation for both
fixed and elastic demand functions. Among these algorithms is the one
developed by Leblanc [T-L2-3] using the Frank-Wolfe feasible direction
method [T-F9] for fixed demands. Nguyen [T-N3] developed an algorithm

based upon the convex simplex method. Later Nguyen and Florian [T-F6],
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using Benders decomposition, extended the range of applications to
include elastic demand functions. These algorithms have been applied
with success to solve some small real-life problems.

The first attempt to generalize the equivalent minimization approach
to multi~-class users, at least theoretically, was made by Dafermos
[T-D2]. She relaxed the restrictions (i) and (iii) as follows:

i)! ta(f) is a function of the vector of f and

Vt(f) is symmetric. Here t is the vector of ta.
iii)' Vt(f) is a positive definite matrix.
For the fixed demand function, Dafermos proposed a minimization

problem of the form:
Minimize  S(f)

- subject tws:

> hp -d, =0 foralliel
pePi
fa = X T 6 *+ h for all a € A
i€l peP, P
(5.2) {
h >0
L £f>0

She showed that this minimization problem is equivalent to the equi-

librium problem if,

3S(£) _
3fa ta(f) for all aAe A
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and showed that this system of differential equations has a solution
if, and only if, Vt(f) is symmetric. Then S is the specification for

the following line integral:

£
S(f) = %t(x)dx
or
éf
S(f) = It (x)dx .
acA a a

Furthermore, Dafermos showed that S(f) is a strictly convex function if,
and only if, Vt(f) is positive definite.

To generalize the minimization approach to a more general setting,
we permit not only ta(f) to be a function of other link flows, but also
let Di(u) be a function of the full vector u. In other words, we in-
clude any destination or mode choice demand function in the model.
Moreover, we require new restrictions that are weaker than the previously
quoted assumptions, namely:

i)' ta(f) is a function of the vector of f and Vt(f) is
symmetric. Here t is the vector with components ta.
ii)! Di(u) is a function of the vector u and VD(u) is
symmetric. D denotes the vector with components Di'
iii)' Vt(f) is a positive definite matrix.

-9oD,

1
—— < 3
Buj <0 for i # j

and -VZDi(u) is a positive semi-definite matrix for all i € I.

iv)' -VD(u) is a positive definite matrix with
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We propose the following minimization problem:

Minimize Y(h,u) S(£f) + 6(u)

f u
%t(x)dx - uD(u) + %D(v)dv

subject to:

[ G(hyu) = I h -D,(u) =0 foralliel A
pePi
fa = I r Ga * h for all a € A
ieI pePi P P
(5.3) {
hp_z 0 for allpe Pi’ iel up
L ui_z 0] for all i e I Yy

where § denotes a line integral; the symmetry assumptions (i.e., (i)'
and (iii)') guarantee the existence of the line integrals.
If we substitute for the variable f and let A, u, and Yy be the
dual variables for the constraints (5.3), then the Kuhn~Tucker conditions

for the above problem are:

'4

VhW(h,u) + AVhG(h,u) -u=0
VuW(h,u) + XVuG(h,u) -y =0
G(h,u) = 0

(5.4) 3
th = 0
Yu =20

h>0,u>0,u>0,vy>0.

!
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Dafermos provided intuition for choosing S(f). - To motivate our

choice of 8(u), let us look at the second equation in (5.4),

oD,

8wy Aj—l Y, =0 foralliel (5.5)
1 jel
where,
30(u) _ 9 "
Bui = 34 [-uD(u) + é)D(V)dV]
i
oD, (u)
=-D,(u) - I uj 5 + D, (u)
jelI i
or
30 (u) _ oD, (u)
du, © 2 Yy du, ’
i jel

We will show that when -VD(u) is positive definite, the above choice

for 6(u) guarantees that u = -\ and vy = 0. Thus (5.5) becomes:

3D, (u)
Bgu + Z u.__l__ 0 (5.6)
. j odu,
Yy jeT i

It is easy to see that symmetry of VD(u) implies that
u
8(u) = -uD(u) + é)D(v)dv is a solution for the system of differential

equations (5.6), and this motivates our choice of 6(u).

Involving assumptions (i)' and (3ii)' in (5.4), it becomes:
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i Gapta(f) + Ai - up =0 for al} p € Pi’ iel
oD, aD,
Su=L+IA=L+y., =0 foralliel
. jou, . jou, i
J i J 1
 h - Di(u) =0 for all i e I
pEP.
i
(5.7) 1
fa = % ¥ & h for allaceA
ieIl pep, 2
i
uth = 0
ya =20
h>0,u>0, u>0,vy>0.
\ .
It is easy to see that when u = -A and Y = 0, then (5.7) is equivalent

to the nonlinear complementarity problem associated with the equilibrium
system. To prove that assumptions (iii)' and (iv)' guarantee that

u= -\ and Y = 0, we need the following lemmas.

LEMMA 5.1: If A is a positive definite matrix, then Ax‘= 0 implies
that x = 0.
PROOF: Suppose it is not, and x # 0, then

T

xAx = x% + 0 =0

but this is a contradiction, beczuse A is positive definite. I!
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LEMMA 5.2: Suppose that A is a positive definite matrix and that
aij < 0 for all i # j. Then Ax = § has a non-negative solution for
any & > 0.

PROOF: We prove the result by induction. For ﬁ = 1 it is clear.

Suppose that it is true for n = k. We show that it is true for m = k + 1.
It is clear that not all xi can be negative because xTAx = XTG < 0,

which contradicts theé assumption that A is positive definite. Thus,

suppose that xm_z 0 for some m.

By eliminating the mth row and taking the mth column to the other

side of the equation we get the following system of equations:

X ai,xj = 61 - ay X for all i # m .
j#m -

Clearly, the matrix associated with the above system has all the pro-

perties of the original matrix, and also, since aim_i 0 for all i # m,

thus Gi - aimxm-z 0 for all i.# m. Therefore, by induction, the new

system of equations has a non-negative solution, which completes the

proof. , ' ’ )

THEOREM 5.1: Suppose that t(f) and D(u) are poéitive (componentwise)

continuous vector functions and, furthermore, that Vt(f) and -VD(u) are

_ 9D, (u)
symmetric and positive definite matrices with - 553———- < 0 for all

1 # J. Then (5.7) is equivalent to the equilibrium system, i.e.,

u=-=-Xand y = 0.
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PROOF: First, suppose that u > 0. Then the complementarity equation

uy = 0 implies that vy = 0. Thus, the second equation in (5.7) becomes,

oD, (u)
L (u, +A.) 5 =0 foralliel
jer 344 Uy
or
(-VD(@)(u + A) =0 .
By lemma 5.1, we have u + A = 0 or u = -A.

Now, suppose that u = 0 for some m € I. Since Dm(u) > 0, there is
at least one path p' € Pm with hp' > 0 which implies, by complementarity,
that up, = 0, or that

i Saprta®) = Ay -

Also we have,

(-VD(u))(u + X)) =y > 0.
Lemma 5.? implies that u + A > 0 and, in particular, that u + Am_z 0,
or Am-z 0. Thus we havé

i Gap,ta(f) = 'km.i 0

which contradicts the assumption ta(f) > 0. This completes the proof.la

Now the question is, when is the minimization problem (5.3) equi-
valent to the Kuhin-Tucker system (5.7). Assuming fixed demand, Dafermos
showed thét a necessary and sufficient condition is that Vt(f) be a
positive definite matrix, which implies thaf the objective function is a
strictly convex function in terms of the link flow vector f.

For the general case, to have a strictly convex objective function
it is sufficient that 6(u) bé a strictly convex function, or equivalently,

that Vze(u) be a positive definite matrix. Previously we showed that:
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aD, (u)
§%§El = - X u, 5 for all i € I
i jel 3 Y4 |
or equivalently,
VO(u) = - VD(u) * u .

Also, for any 1 € I and k € I we have:

3 30(u). BDk(u) 5 3Dj(u)
3 Y 3u )= - du -z ujBu ( du )
Y i i jeI 4% i
or equivalently,
Vo) = - ww?T - I u. 9D, () .
jel J
Since VD(u) is symmetric, thus we have:
2 _ 2
Vo(u) = - VD(u) - Z ujV Dj(u) .

jeI

One sufficient condition for V26(u) to be positive definite is that,
-VD(u) be positive definite and that —VzDi(u) be positive semi-definite
for all i ¢ I.

However, it is not clear under wﬁat conditions the minimization
problem and the equilibrium problem are equivalent. Also, the validity
of the assumptions is another question, because even the symmetry
assumpticn for both Vt(f) and VD(u) is not valid for real-life problems.

This is one reason why this approaéh might not be applicable for the

general case.
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EXAMPLE 5.1: Consider a single line network with two modes of
transportation, auto and bus, using the same link. To formulate this

problem as a single mode case, we duplicate the network and use a

separate link for each mode, as follows:

f
Dl (u) =>® >l @ =P Auto

f
D2 (u)=D© > 2 @ = Bus

If we let tl(fl’fZ) and t2(f1,f2) denote the volume delay functions,

then the equilibrium problem can be written simply as:

1,2

Fh
|

= Di(ul’uZ) i

o]
]

= ti(fl’fz) i=1,2

£f>0, u>0.

o el

The corresponding minimization problem would be,

f
Min .% tl(x,y)dx~+ t, (x,y)dy - u;D, (uy,u,) - u,D, (uy,u,)

u
+ %Dl(vl,vz)dvl + Dz(vl,vz)dv2

subject to: fi = Di(ul,uz) for i = 1,2

Now consider a special case with a logit demand function and linear

volume delay functions with the following functional forms:
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D, (u,,u,) = dee Tlhietlee 27
>0
-8, u, -B.u -6,.u

_ 2% TP1%1 2%2
D2(ul’u2) = d.e /(e + e )

_ (e}
tl(fl,fz) = tl + alfl + Ble

_ .0
tz(fl’fz) = t2 + oazfl + Bzfz

where d is the total population and f, is the number of passengers using

1

autos and f2 is the number of passengers using buses.

VD(u) is symmetric if, and only if, Gl = 62 and Vt(f) is symmetric

if, and only if, Bl =0 However, none of these assumptions are valid

2"

for real-life problems, because 51 = 0, implies that both modes have equal

2
= B

direct and cross elasticities. Also, o implies that an auto pas-

2 1

senger effects a bus passenger as much as a bus passenger effects an
auto passenger.

When 6. = 6, and Bl =0

1 2 the line integrals become

2’
£

$ t (x,y)dx + t,(x,y)dy
1 2

f1 f2
= % tl(x,O)dx + % tz(fl,y)dy

_,0 1. .2 o 1, 2
= 6 f) T Ey F Eyfy F oy E, H 9B,
and '
A d eeul + e6u2
%D(v)dv ) In 5 .



87

Thus the minimization problem becomes:

. o o 1 2 2
Min tlfl + t2f2 + 2(alf1 + 20L2flf2 + Bzfz)

—-Bu -fu
u,e 1 4+ u,.e —eul —92u2
—d[ 1 2 _ l-ln e + e
—Gul —6u2 0 2
e + e
subject to: -Bu.
o i
fi =4d - - for i = 1,2
1 2
e + e

It is easy to see that Vt(f) is positive definite if, and only if,

o > azBl. But -VD(u) cannot be positive definite, although it is

182

positive semi-definite. |

EXAMPLE 5.2: Consider the following transportation network with 5 one-

way links and 4 nodes:

Suppose that there are two types, modes, of movement in the network,
auto and truck. The auto movement is between origin-destination pairs
1-3 and 1-4, given by a destination choice demand function. The truck

movement is only between 0-D pair 1-3.
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Also suppose that the volume delay function for each mode on the
first link depends on the flow by both modes. And suppose that there
is a right turn penalty at node 2, i.e., tz(f) = tz(fz,f3) and
t3(f) = t2(f2,f3).

To transform the problem into a single mode network we change it

as follows:

1 (uynuy)

Auto

6716 N
D, (u,)=>() > (® == 1,y Truck
Figure 5.1 Modified Network Configuration for Example 5.2

For the following linear demand functions

( —4 —
Dy (upsuy) =@y = Byqu) + 0,50y

A

Dz(ul,uz) = d2 + 621u1 - 822u2 6 >0

| D3(u3) = d3 - 63u3 .

VD ié symmetric if, and only if, 612 = 621, and -VD(u) is positive

Qefinite if, and only if, 911622 > 812621. With these assumptions,

e
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the components of the objective function become,

f (£.,£,)

%t(x)dx = % 176 tl(x,y)dx + t6(x,y)dy

+ 5% tz(x,y)dx + t3(x,y)dy
£ f
r 4 5
+ 5t (0dx +J;) ts (x)dx
and
u 3 (ul’u?.)
-uD(u) + é)D(v)dv = —izluiDi(u) + é) Dl(vl,vz)in+ D2(vl,v2)dv2
U3
+ J;) D3(v3)dv3
3 u1
= -.E u;D, (u) + {) D, (v,,0)dv,
i=1

u, u,
+ {) Dz(ul,vz)dv2 + {) D3(v3)dv3

1. 2 2. 1. 2
=099+ ®Ogy + 6y)ugu, +8,,un] + 50,uy

Then the minimization problem becomes,

£.)

(£,5) (£,,5,

Min 9% tl(x,y)dx + t6(x,y)dy + 95) tz(x,y)dx + t3(x,y)dy
£, s 1 2 2. 1. 2
+ % £,(x)dx + {) to ()dx + 510, u) + (8,476, Ju u 48,500 ] + 56, u;
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subject to:

1 270
f,=hy +h,
f5 = by
fg = bs

where h is the vector of path flows, with single paths hl and h5 for
0-D pairs 1-3 and 5-6, respectively, and three paths, h2’ h3, h4, for

0-D pair 1-4. -

REMARK 5.1: For any link satisfying ta(f) = ta(fa), the line integral
becomes the regular integral. Also, when Di(u) = Di(ui)’ then the
minimization problem for the general case is equivalent to the one
given by Beckman et al, without explicit use of the inverse function
of Di(ui)' This alternate form results from the following fact,
v=D(u) u
&) D_l(v)dv = uD(u) - {)D(t)dt + constant . Il
5.4 A LINEARIZATION TECHNIQUE
As wé showed in section (3.3), under some mild assumptions the
equilibrium problem can be formulated as a non~linear complementarity

problem (NCP), i.e.,
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( xF(x) =0
(NCP) { F(x) >0
L x >0

Usually for transportation applications, the size of this problem
is so large that it cannot be solved by using existing non-linear
complementarity algorithms, such as [C-K4, C-L3]. For example, for a
small problem with 100 O-D pairs, the nonlinear complementarity problem
contains on the order of 1000 variables (if we only consider 10 paths
per O-D pair), whereas the largest (NCP) that can be solved is on the
order of 100 variables (taking a few minutes of CPU time).

One possible way to resolve this difficult and to solve large
scale problems is by an iterative procedure. The idea of an iterative
procedure is that, constructing a "movement scheme' to move from one
point to a new point and follow the following steps:

Iterative Procedure

Step 1 - Choose a starting point xo, and set g = 0.

Step 2 - Apply a "movement scheme" to xq, to move to a new

point xq+l.

Step 3 - Set q = q+1, if x% is a "reasonable" solution to
NCP, then stop. Otherwise, go to step 2.

For any iterative procedure, it is essential to answer three

types of questions:

i) What is the ''movement scheme', the starting solution, and
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the characterization of a "reasonable' solution?

e
e
N’

When is the procedure guaranteed to reach a reasonable
solution (convergence)?
iii) How efficient is the movement scheme, and how many
iterations does it require?

Usually there is a trade-off between the simplicity of the movement
scheme and the number of iterations needed, and, as the movement scheme
becomes easier to apply, more or less, we expect to have more iterations.
We discuss all these questions in this section briefly and, in the next
chapter, in more detail.

As we mentioned previously, to solve the (NCP) associated with
the equilibrium problem, we face two types of difficulties—~the size
of the problem (which is in terms of the number of paths), and the
difficulty, in general, in solving the (NCP) (even for small sized
problems).

To overcome the first difficulty, the size of the problem, we use
an iterative procedure called a decomposition scheme. In this pro-
cedure, we decompose the set of variables {xi; i € I} into a collection

of the mutually exclusive subsets I .,In. Then corresponding to

10

each subset IJ, we define a subproblem as follows:

F.(x)x. =0 for all ie I
i i

M
m
L]

(SPJ) Fi(x) >0 for all

x, >0 for all i e I
i-— J
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where all x's are fixed except those x, with i € Ij. Obviously, each

i
(SPJ) is a restricted version of the original non-linear complementarity
problem.

We propose the following iterative procedure to solve the original

NCP:

Decomposition Scheme:

Step 1 - Choose a starting point x° and set q=0.

Step 2 - For all J = 1,. . .,M, solve each (SPJ) to determine
values for X; by fixing X, = xg for all i € I—IJ. Let
Let xq+1 denote the new point that is generated.

Step 3 - Set q = q+l. 1If x% is a "reasonable" solution to (NCP),
then stop. Otherwise, go to step 2.

The efficiency of this procedure is heavily dependent upon how the
set I is decomposed. Naturally, it is better to collect together those
variables that are most related to each other, so that the corresponding
subproblem has the characteristics of the original problem. For example,
for transportation applications when Di(u) = Di(ui), if we decompose
the problem by O-D pairs, then each subproblem simply becomes a new traf-
fic equilibrium problem in a smaller restricted network with only single
0-D pairs. And, in the case of destination choice demand functions, we
might decompose the problem in terms of origins. We describe the decom-
position criteria in more detail in the next chapter.

If we decompose the set I into smaller subsets, then step 2 of the
procedure becomes easier to carry out, while the number of iterations

increases rapidly, to the point where the algorithms might never converge.
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For the equilibrium problem, it seems, the decomposition in terms of
the 0-D pairs, provides the smallest subproblems that inherit the es-
sential characteristics of the original problem. But, even for this
decomposition, the-number of variables (corresponding to the existing
paths between the origin and destination) is so large that, no non-
linear complementarity algorithm can be used directly to solve the sub-
problems. Although the number of paths with positive flow is usually
small (on the order of 4 or 5) even by knowing those paths it is still
not efficient to use any general purpose non-linear complementarity
algorithm, because the number of functional evaluations is enormous
(at each vertex all the link-volume delay functions have to be
evaluated).

This difficulty, which is in the nature of the (NCP), is overcome
by introducing another iterative procedure called a linearization scheme,
which is similar to Newton's method.

We define the linearized problem for (NCP) at X as follows:

[F(x) + (x - X)VF(x)]x =0

v
o

(LCP) { f(x) + (x - x)VF(X)

Now we propose an iterative procedure to solve (NCP) for x, as follows:

Linearization Scheme

Step 1 -~ Choose a starting point §° and set q = 0.

Step 2 - Solve (LCP) linearized at iq_to find a new point

called x93,
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Step 3 - Set g =q+ 1. If %1 is a "reasonable" solution to (NCP),
then stop. Otherwise, go to step 2.

Clearly, (LCP) is a linear complementarity problem. As is well-
known, when VF(x), the Hessian of F(x), is a positive semi-definite
matrix, there afe efficient algorithms available [C-Cl-2, C-E1,C-L1]
to solve the problem. Problems with 100 variables can be solved in an
order of a few seconds of CPU time. Therefore, if the iterative procedure
gives us a '"'reasonable" solution in a few iterations, then the lineari-
zation scheme would be much faster than any general purpose non-linear
complementarity algorithm (which requires on the order of a few minutes

of CPU time).

Applying this techmique to the traffic equilibrium problem has an
important property, that is, the linearized problem (LCP) has the
characteristics of the original problem, but is much easier to soive.
In other words, the linearized problem is a traffic equilibrium problem
with linear functions. But, even for this simplified traffic equili-
brium problem, there is no algorithm currently available in the trans-
portation literature to find a solution (in the general case), even
though the problem can be solved by linear complementarity algorithms.

In this iterative procedure, because the linearized problem is a
traffic equilibrium problem, we can exploit the nature of the problem
as being cast in terms of path flows. We do nbt need to include all
paths in the prdblem at each iteration. Instead, we can include only
those paths that have positive flows. This is possible because we can

generate shorter travel time paths, if there are any, (using a shortest
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path algorithm) at each itergtion. Therefore, the (LCP) is much smaller
in size than the (NCP) and, consequently, much easier to solve, so that
problems with 100 O-D pairs can be solved easily without using any |
decomposition.

For the traffic equilibrium problem, it is easy to see that VF(x)
is positive semi—definitevwhen both Vt(v) and -VD(u) are positive semi-

definite matrices. To see this, following the notation in section 4.3

we have
x = (h,u) and v = Ah
and
T , T
F(x) = (A"t(Ah) = T'u, T°h - D(u)) .
T -
Thus, A™ » Vt(Ah) ¢+ A , -T
VF(x) = ’
T
T , —VD(ul

Clearly VF(x) is a positive semi-~definite matrix, becuase for any

X = (ﬁ,ﬁ) > 0 and §.= Ah we have:

% = (BATYVE(AR) + (AR) - BiTo + 0'T°h - @ ¥D(u)a

>
<]
=z
7~~~
]
N’
"
|

VL)Y + ul(-VD(u))a > O .

EXAMPLE 5.3: To illustrate graphically how the linearization scheme
works and how fast it approaches the equilibrium solution, consider a

single-~link network written as the following equatiomns,
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( (t(h) - u)h

L]
o

(h -D())u =0
4 tth) —u > 0 .

. t(h) ,
h - D(u) > D (u) =3 0) (D)=>

L h>0, u >0

o

% X %
Figure 5.2 represents this problem graphically. E = (h ,u ) is
the equilibrium point. Let us initiate the procedure at point
E° = (ho,uo). Then the linearized problem at E° can be shown graphically

is the supporting line for t(h) at h°

~ 1
and LDl is the supporting line for D(u) at . E = (hl,ul) represents

the solution of this linear complementarity problem. Similarly,

E2 = (hz,uz) represents the solution of the linearized problem at El.

by lines Lt, and LDl’ where Lt

1 1

o o dt(ho)
{t(a)+(h-h )__EE__}

)dD(uO)}

du

o

{D(uo)+(u—u

:3“’

Figure 5.2 Linearization Scheme
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In this example, the algorithm converges to the equilibrium point
very fast.. The computational results in this report show that the
algorithm, in general, does not require more than a few iterationms.

In the appendix, we prove the convergence for this special case of a
single link, but we do not have any formal proof for the general case. =

Still, for any real-life problem, the size of the linearized problem
is so hig that the procedure cannot be applied directly. However, we
can combine the two iterative procedures (a decomposition scheme and a
linearization scheme). We propose the following algorithm to solve the
original (NCP):

General Scheme

Step 1 - Choose a starting point x° and set q s 0.

Set J

Step 2 0.

Step 3 - Set J=J+ 1. If J > M, go to step 6. Otherwise,

choose a starting point % and set q' = 0.

]
Step 4 - Solve (LSPJ), linearized at ig, to find a new point called
1
-q+
zi,
)
Step 5 - Set q' = q' + 1, if i§ is a "reasonable" solution to (LSPJ)
1
then go to step 3. Otherwise set x3+l = 23 and go to
step 4.
Step 6 — Set ¢ = q + 1. If x¥ is a "reasonable" solution to (NCP),

then stop. Otherwise, go to step 2.
In this algorithm description, (LSPJ) corresponds to the lineari-

zation of (SPJ) at i, defined as follows:
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(

Il

(Fi(x) + (xJ - xJ) . VFi(x))xi 0 for all i € IJ

(LSPJ) Fi(x) + (xj - xJ) . VFi(x) >0 for all i€ IJ

x, >0 forall i e I
i— J

X denotes the vector of x, for all i ¢ IJ, and VFi(E) denotes the

BFi(i) '
vector of ox
k

Clearly, when n = 1, this scheme is the same as the linearization

for all k € IJ.
scheme, and, when all the functions are linear, this scheme is the
same as the decomposition scheme.

In the next chapter, when we describe the details of this algorithm,
we show how to choose the starting point, and give some practical criteria
for assessing when a solution is 'reasonable'.

Alth?ugh we do not have any formal proof for the convergence of
this algorithm, the computational results are so promising that they

encourage the use of this algorithm in practice.
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CHAPTER 6

LINEARIZATION ALGORITHM AND COMPUTATIONAL RESULTS

6.1 INTRODUCTION

In this chapter we appiy the linearization technique, discussed
in section 5.4, to the general single mode traffic assignment problem
(which includes multi-modal situations) as defined in chapter 3.

In particular, we define an e-approximation equilibrium and des-
cribe an algorithmic procedure for computing it. We describe a method
for finding a stérting solution, discuss possible ways to decompose
the problem into subproblems, and give the steps of the algorithm in
detail. _We also delineate assumptions that are needed for applying
the algorithm.

We apply the linearization algorithm to a variety of test problems
that have been solved by other researchers and compare our results
with theirs. Finally, in this chapter, we present appropriate data
structures to solve large scale problems using out-of-core storage
facilities.

Throughout this chapter we refer to a cycle whenever we solve
all subproblems once, and refer to an iteration whenever we solve a
linearized subproblem.

6.2 LINEARIZATION ALGORITHM

6.2.1 e-Approximation Solution
%*
For any € > 0, a flow pattern h is called an "e-approximation'

solution or "e-reasonable" solution if it satisfies the conditions:
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* * X
(Max {T _(h )} - u)/Max {T (h')} < e foralliel (A1)
p EPi P DEP,
h*>0 h*>0"
P P
1 % *
| © hp - D, (u )|/Di(u ) <e foralli I (A2)
pEP,
1

where

* *
u, = Min T (h) for all ie I .
PePi

The first condition (Al) guarantees that the percentage difference
between the longest path with positive flow and the shortest path is
less than € for all 0-D pairs. The second condition guarantees that

' *
the percentage difference between the flowing-flow, ¥ h , and the de-
% . peP
mand, Di(u ), is less than € for all 0-D pairs. Sometimes we refer to
€ as the accuracy of the solution.

When we are applying the iterative method, it is not a good idea
to solve each subproblem to within the ultimate accuracy €, because the
accuracy for any subproblem will be destroyed when another subproblem
is solved. Therefore, it is better to start with a less stringent
accuracy requirement and to decrease it until the ultimate accuracy
is achieved. For example, we can start with 6n€ for some integer n > 0
and some ¢ > 1. When the accuracy 8" has been achieved, the algorithm

., . n-1 n-2
continues to impose accuracy requirements § "€, § ‘g, . . . and

finally, after n steps, accuracy €. This feature increases the

efficiency of the algorithm enormously.
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6.2.2 Starting Solution

To find a starting solution to initiate the iterative algorithm,
we can use an All-or-Nothing assignment [T-D4]. Corresponding to each
0-D pair i, this assignment finds the sortest path pg when all links

have zero flow, and assigns all of the generated demand to that path,

i.e.,
h% =D (uo) for all i € 1
P. i
i
where
o . ,
u. =T 0o(0) for all i e I.
i P

1

Notice that in the above assignment, we assign the flow generated
by the demand function to a shortest path for each 0-D pair sequen~
tially, without considering the effect of the congestion from the
flow previously assigned. This might lead us to assign too much flow
on some links, with low free travel times. To avoid this, we can up-
date the minimum travel times, u, after each assignment. Also, in the
case of an elastic demand function, since the initial u, compared to
the u at equilibrium, is small, and, since the demand functions are
usually increasing, the all-or-nothing assignment procedure generates
too much initial flow, far from the value at the equilibrium. To avoid
this, we can assign only some fraction of the generated demands to the
shortest paths. We have used this modified all-or-nothing assignment,

with the choice of 0.5 for the fraction, in our computational results.
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6.2.3 Path Generation

As we mentioned previously, we do not need to include all existing
paths in the problem, we only include those paths that might have posi-
tive flow and we refer to them as the set of working paths (denote by
PZ)’ Then a solution (h*,u*) is called e-approximation in respect to
the working paths if conditions (Al) and (A2) are satisfied for sets
Pz for all i € I. To guarantee that this solution is an £-approximation
over all existing paths, that is, the sets Pi for all 1 € I, we have to

satisfy the following condition:

% *
u, ~Min T (h)
i P
pEPi

| - | <€ for all i e I. (A3)

u,
1

To comstruct the set of working-paths, we start with the paths in

*
the initial solution. We add any path that gives Min T (h ) and that

pePi

satisfy condition (A3) to the corresponding set of PZ. Also, we

delete any path with zero flow from the set of PY to maintain the size
of the working-paths sets as small as possible.

Although many very efficient algorithms for generating the shortest
paths [T-B3, T-D8, T-D9, T-D1l, T-G5] are available, because of the
enormous number of applications of this algorithm (once for each itera-
tion), it becomes one of the most time consuming components of the
linearization algorithm. 7o reduce the number of applications of the

shortest path algorithm, we recall that most of the shortest path algo-

rithms find all the shortest paths from one origin to all destinations



104

simultaneously. This feature suggests a method for decomposing the
problem, that is, deéomposition by origin. 1In other words, we do not
collect two O-D pairs with different origins as one subproblem unless
all the other O0-D pairs with the same origins are included in the
subproblem.

Secondly, as we mentioned previously, we do not want to spend too
much time in one subproblem to find a very accurate solution, because
this accuracy will be destroyed after solving other subproblems. In-
stead, we prefer to spread our work over all subproblems to achieve,
simultaneously, the same, but relaxed, accuracy for all of them. This
suggests that we test condition (A3) and generate a shortest path for
each 0-D pair only once in each cycle, rather than generating a new
shortest path after each iteration (linearization). When no lineari-
zation (change of flow) takes place in one cycle, then the given accu-
racy has been achieved and condition (A3) is satisfied.

6.2.4 Decomposition

For the traffic equilibrium problem, various forms of decompo-
sitions can be used. The selection from among the wvarious options
depends upon the size of the problem and the nature of the demand
function. For the reasons discussed in the previous sections and also
based upon our intuitions, we have decided to consider the following

levels of decomposition:
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Level 1 - No decomposition
Level 2 - Decomposition by origin

Level 3

Decomposition by 0-D pair

Level 4 - Decomposition by O0-D pair and mode.

Moving from level 1 to level 4, we expect to have more cycles and
less iterations within each cycle (because the subproblems become easier
to solve). Therefore, it is not clear which level of decomposition is
best in terms of efficiency. However, as the size of the problem in-
creases we are forced to use the higher levels of decomposition. On
the other hand, as the demand dependency increases, the lower levels
of the decomposition will be preferred.

Overall, level 1 will be chosen when we have a completely depen-
dent demand function (i.e., the demand for the O-D pairs depends upon
the full vector of accessability variables). Level 2 will be chosen
when we have a destination choice demand function. Level 3 will be
chosen when we have only mode choice demand function, otherwise, level
4 will be used. 1In each case, if the size of the subproblem does not
permit us to use that level, we move to the next higher level of de-
composition.

Notice that, when there is no mode dependency in the demand function,
decomposition by mode might be best as the first level of decomposition.

6.2.5 Algorithm

To see how the linearization algorithm, discussed in chapter 5, is

applied to the traffic equilibrium problem, we describe in this section
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the steps of the algorithm for the case of decomposition by O0-D pairs.

To reduce %the number of applications of the shortest path algo-
rithm, we use a two-level decomposition scheme. In the first level,
w2 decompose the problem in terms of origins, and find the shortest
path tree for each origin. Then for each origin, in the second level,
we decompose the problem in terms of destinations to comstruct sub-
problems. In this way, we only solve shdrtest path problems once
each cycle.

To simplify the notation, we consider the single mode case. For
the multi-modal case, when the above decomposition is used, the steps
of the algorithm remain unchanged except everything is in a vector space
corresponding to all médes. For example, each subproblem corresponds
to one 0-D pair and all possible modes between that O0-D pair. The
algorithm would be slightly different if we first decompose the problem
in terms of modes and then in respect to origins.

Figure 6.1 shows the steps of the algorithm to find an €-approxi-

mation solution.
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Step O

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

~ (initialization) Choose some € > 0, an integer ﬁ_z 0,

and some § > 1. Apply the Modified All-or-Nothing
assignment algorithm to find shortest paths pz and cor-

responding, ug and h°_ for all i e I.

o
eI

Set P = {p°}, h o 2 1%, and u, = T o(h) for all i € I.
* Py i L Py

Set n = n, e, = 6" and IC = G.

Set IC IC + 1 and IT = O.
Choose an origin I0. Apply the sﬁortest path algorithm
from origin I0 to find the shortest paths pi to all i e 1
that have origin (i) = I0; set ui = Tpé(h).
Choose an O-D pair i € I with origin (;) = 10,
Set u; = E;ngp(h). If (§:§ZT (h) - ui)/gzng (h) < e

' h>0 h>0
then go to step 6. Otherwise,
Solve(LSPi)linearized at (h,u), update h, set IT = IT + 1,
and go to step 4.

s s
., — u, , < ste . Otherwise set u, = u,
If (ul ul)/u1 € 80 to p 7 1 i’

delete any Py with hp = 0 from P?. Set Pz P U {pi}

. i
i
and h s = 0. Go to step 4.
Py
If I(Di(u) - pnghP)/Di(u) Z_en, go to step 5. Otherwise,

If steps 3-7 have been run once for all O-D pairs i € I
with origin (i) = I0, then go to step 9. Otherwise, go

to step 3 for a new i.

Figure 6.1 Steps of the Linearization Algorithm
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Step 9 - If steps 2-8 have been run once for all origins, then go
to step 10. Otherwise, go to step 2 for a new origin, IO.

Step1l0 - If IT = O, then go to step 11l. Otherwise, go to step 1.

Stepll - Set n = n-1. If n < 0, then stop (an €-approximation
solution has been achieved). Otherwise, set En = Sne,

go to step 1.

Figure 6.1 (continued)

In this algorithm, IC denotes the cycle number and IT denotes the
iteration number, or the linearization number, within the cycle. Steps
4-7 guarantee that h is an en—approximation solution within each sub-
problem. In other words, step 4 guarantees that the difference between
the longest path and the shortest path among working-paths (P?) is less
than € condition (Al). Step 6 guarantees that the difference be-
tween the shortest path among working-paths (Pz) and all paths (Pi) is
less than € condition (A3). And finally, step 7 guarantees that the
difference between the actual generated demand, Di(u), and the current
carried flow, ZPwh , 1s less than en, condition (A2).

Although,psi%hin each cycle each subproblem has been solved to
within accuracy En’ at the end of the cycle the solution might not be an
en-approximation solution for all subproblems simultaneously, because

any flow change (linearization) for any O-D pair destroys the accuracy

for the other subproblems. However, IT = 0 at step 10 guarantees that
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the current solution h is an en-approximation for the problem, because
no flow change has taken place and, furthermore, no new path is needed
to be added to the sets of working-paths. Thus conditions (Al), (A2),
and (A3) epply to within accuracy e . Finally, at step 11, when n = O
the required accuracy € has been achieved.

To solve each subproblem, we will use the solution from previous
steps as the starting solution. 1t is more reasonable, in the overall
procedure, that we always use the most recently generated information.
To do this, we update all of the data (including path flows, vclume
delays, minimum travel times, and so forth) whenever any change in the
flow occurs. This strategy is applied to the all-or-nothing assignment
and to the decomposition and linearization schemes.

For this algorithm, the corresporiding subproblem for O-D pair

i with the set of working-paths PZ can be written as:

( - . = v
(Tp(h) ui) hp 0 for all p ¢ Pi

T (h) - u >0 for all p € P
) i - P i

(s,) $ (T h =D (w *u; =0

W p
pEPi |
! h -D.(u >0
pePW P i ) —
i
h >0, u, >0 for all p e P

where,
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T ()= 68 =+t (f) for all p £ P*
p( ) 2 Oap a( ) p i
and
£ =F + . & * h for all a € A
a a W ap P

p€Pi

where Fa is the sum of the flows by other 0-D pairs on link a. The

. . . = = \"2
linearization qf (SPi) at (hp’ui) for p e Pi is:

S 3T () .
(lp(h) + 'Z w(hp, - hp,) T - ui) c hp =0 for all p ¢ Pi
P €Pi P
_ _3T_(h) .
T (h) + r (h,-h ,)—:P - u, > 0 for all p e P,
P o p p~ dh_, i - i
p '€EP.
J _ _ 3D, (w)
(@LsP) (L chy =D, (w) = (uy —u=—g—) = u; =0
peP. i
i
. _ 3D, (u)
z Wh - Di(u) - (ui - ui)—gaf"— >0
peP.
i
h >0, u. >0 for all p € Pv
P — i~ i
\
where
3T (h) ata(f) .
—e—%— = 1 z (Sa N 6a, ' "Tf—— for all p,p' € Pi .
p' acA a'er 2P P a'

Although, computation of the coefficient matrix for each (LSPi) at
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each iteration looks difficult and time-consuming, there are efficient
ways to perform these computations (seé appendix R).

6.2.6 Assumptions

From the computational point of view, the linearization algorithm
only requires some mild assumptions. More restrictive assumptions
might be needed, however, to guarantee convergence of the algorithm
(see appendix A). These mild assumptions are:

i) The vector functions t(f) and D(u) are continuocus and

| differentiable.

ii) Both t(f) and -D(u) are monotone functions, i.e., Vt(f) and
-VD(u) are positive semi-definite matrices.
It is easy to show that, for any form of decomposition discussed in
section 6.4, the coefficient matrix associated with any (LSPi) is posi-
tive semi-definite, and this is a sufficient condition to solve (LSPi)
by linear complementarity algorithms [C—KB].+

For transportation applications, these are very mild assumptions
thgt are valid for most of the demand and volume delay models presented
earlier in chapter 2.

6.3 COMPUTATIONAL RESULTS

In this section, we present computational results for some small

problems with different demand models and for some larger examples to

see how the linearization algorithm behaves both in terms of the con-

vergence and efficiency, compared to the other algorithms.

.I.
It is easy to verify that (LSP,) satisfies the conditions of the
existence theorem 4.4, therefore it always has a solution.
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Example 6.1 is a hypothetical problem with a mode-choice demand function
for a multi-modal assignment problem. Example 6.2 is a small problem
presented in [T-L2] with a destination-choice demand function. Example
6.3 is another test problem presented in [T-S4]. Examples 6.4 and

6.5 are larger problems presented in [T-L2] and [T-F6, T-N3] with fixed
and elastic demand functiomns.

We use Lemke's Algorithm [C-L1l]}, which is an efficient algorithm
and can solve the problems with a few hundred variables in a couple of
seconds, to solve the linear complementarity problem. To find the
shortest path trees, we use the algorithm presented by Golden [T-G5]
which is based upon Bellman's méthod [T-B3]. This is a rather fast
algoritbm, faster than Dijkstra's [T-D11], that can solve problems with
1000 nodes and 5000 links in less than one second. Recently, other
efficient algorithms [T-D9] have been developed to find shortest path
trees, using carefully conceived link structures to represent the tree.

All of the programs have been run on an IBM 370/168 using the

Fortran G compiler. Reported CPU times do not include I/O times.

EXAMPLE 6.1: The network for the example has 7 nodes, 12 arcs,
2 0-D pairs, and 2 modes (auto and bus) and has the following con-

figuration.
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Origin 1
Destination
=>
Origin 2
Auto
-~ = =  Bus

Figure 6.2 Network Configuration for Example 6.1

The dark lines denote auto routeé and the dash lines denote bus routes.
(1-7) is the first O-D pair and (2-7) is the second 0-D pair. We use
m to designate the mode, letting m = 1 denote the auto mode and m = 2
denote the bus mode.

We use the following type of volume delay function for each link:
£L o+ 224
a a ]

c

et £y = Em[l + .15
a a a a a

where:

EZ = fixed travel time for link a and mode m (in minutes).
Ca = capacity of 1link a.
f: = total flow on link a by mode m.

Notice that fz is the number of passengers who travel by bus. Thus the

number of buses will vary with the number of passengers traveling by
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the bus modef. We have assumed that each bus carries 20 passengers
and each bus is equivalent to 4 autos from the point of view of con~-
gestion (or each bus passenger is equivalent to 0.2 = 4/20 auto
passengers).

The parameters for volume delay functions are:

Ei 5 3 4 6 9 3 4 3 2 7 5 4
—2
]88 6 6 -"12 - 6 - - 10 7 6

C 500 500 500 500 1000 500 1000 500 500 1000 1000 1000

(Note: Dashes designate that there is no link for the bus mode)

Also, we have used a Cobb-Douglas product form of demand model as

follows:
1
(1,1 2, .1 ,1-a 2.8 m
Di(ui’ ui) = Ai (ui) i e (ui) i o, >0
4
2 2
2,1 2, _ . ool 2 =B m
L D {u;, us) = A ()™« (u)) 74 B; >0

m , 1 2 . P 2 1
where Ai is constant, ai and Bi are direct elasticities and ui and Bi

are cross elasticities. The parameter values are:

-I.
In the example the flow (schedule) of bus routes is not fixed as it
might be in practice.
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i=1l and m=1 600,000 3. 0.7
i=1 and m=2 200,000 0.5 2.

i=2 and m=1 750,000 3.5 0.8
i=2 and m=2 200,000 0.6 1.8

There are 8 auto and 2 bus routes available for each 0-D pair, and
-20 routes overall in the network. We are interested in finding the
amount of flow along each route. There are four access times that we
want to deﬁermine, corresponding to 2 O-D pairs and 2 modes (u?, m=1,2
and i=1,2). Therefore, this problem is a nonlinear complementarity
problem with 24 variables.

We decomposed the problem in terms of 0-D pairs, started with an
arbitrary initial solution, and used the linearization algoritbhm to find
a solution with accuracy € = 0.1, with the starting parameters § = 10
and n = 2.

Table 6.1 shows the total number of iterations, IT, at each cycle
and also for each O-D pair separately. The program sloped after 14
cvcles (with IT = 0). At cycles 2, 8, and 14 the solutions are, respec-
tively, 10%, 1%, and 0.1% accurate.

Computational results show that the total demand and shortest path
times u? remain almost unchanged after 6 cycles, but that the distri-
bution of the flow between the various paths varies for several addi-

tional cycles. We obtained the following solution after 14 cycles.
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Cycle No.

2 4 5 6 7 819 10 11 12 13 14

No. of Iterations 0 1 1 1 1 0Ot1 1 1 1 1 O
for first 0-D
No. of Iterations 0 1 11 0 0o!1 11 2 O O
for second 0-D
Total Number of 0 2 2 2 1 012 2 2 3 1 0
Iterations (IT)

n 2 i1 1 1 110 0 0 O O O
Accuracy o 10% 1% 0.1%
Solution Time 0.3 0.6 1.1

up to the cycle
(sec.)

Table 6.1 Computational Results for Example 6.1

0-D Shortest Pathl Longest Path(min)

Mode | Pair | Total Demand (min) with positive flow
Auto 1 1278 - 16.4772 16.4795
Auto 2 688 14.6850 14.7010
Bus 1 1294 25.0442 25.0442
Bus 2 4424 20.3464 20.3464

Table 6.2 Equilibrium Solution for Example 6.1

The next table specifies the distribution of flow between available

paths, but only for those paths with positive flow.
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0-D .
Mode Pair Path (nodes) Flow
1-4-7 490
1-3-5-7 583
1
1-3-4-7 153
1-3-5-6-7 52
Auto
2-3-5-7 8
2 2-5-7 618
2-6-7 62
1 1-4-7 1294
Bus .
2 2-6-7 4424

"After round-off

Table 6.3 Path Flows for Example 6.1

Figure 6.3 shows the convergence behavior of the algorithm for the

flows between the first 0-D pair by the auto mode.
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of Autos
700 r
600
_p Attt
500
400 X: path (1-4-7)
A: path (1-3-5-7)
300 A: path (1-3-4-7)
D‘~4] 0: path (1-3-5-6-7)
200
W ‘——-‘—-—_‘___.‘___A
100
0

2 3 4 5 6 7 8 9 10 11 12 Iteration No.

Figure 6.3 Auto Distribution Among the Paths for First O-D Pair
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EXAMPLE €.2: The network for this example has 4 nodes, 10 links and

12 C-D pairs (every pair of nodes corresponds to an origin-destination

pair). Figure 6.4 shows the network configuration for this example.

Figure 6.4 Network Configuration for Example 6.2

The volume delay functions are defined as follows:

]

£ (£) = 1.5 + 0.0001 * (f:) for a = 1,2,7,8,9,10

£ () =3. +0.700L % 2% for a = 3,4,5,6
a a a

For the first run we used a fixed demand equal to 20 units for each
0-D pair.

We applied the linearization algorithm to this problem with € = 0.8,
§ = 5, and n = 2, with the choice of decomposition by 0-D pair. The
algorithm terminated after 17 linearizations and 8 cycles, and required
0.54 seconds of CPU time. The non-linear complementarity problem
associated with this small example has 50 variables (38 path-flow
variables and 12 accessibility variables) and would probably require on

the order of one minute of CPU time to solve [C-T3].
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Table 6.4 shows the link flow at each cycle (at cycles 5, 7, and 8,

flow remains unchanged).

away from the exact solution on each link (the last column in table 6.4),

which shows how accurate the solution is.

Frank-Wolfe minimization technique to solve this problem.

The final solution is not more than 0.0027%

Leblanc [T-L2] applied the

The solution

after approximately 35 iterations is not as accurate as the solution

we found by the linearization algorithm.

Cycle Exact
LinR No. |Initial 1 2 3 4 6 Solution
No.
1 20. 26.3739 1 28.6942 | 29.7542 29.7542} 30.0000 | 30.
2 20. 28.5260 | 28.0820 | 29.3494 ] 29.3494| 29.9994 | 30.
3 20. 32.3401 | 31.2497 | 30.2407 | 29.7542| 30.0000 | 30.
4 20. 31.4265 ] 31.9045 | 30.6398 | 29.3494{ 29.9994°| 30.
5 40. 27.6602 | 28.7504 | 29.7595 | 30.2460 | 30.0001 | 30.
6 40. 28.5737 | 28.0955 | 29.3602 | 30.6507 | 30.0005 | 30.
7 40. 31.4741 ] 31.9180 | 30.6507 | 30.6507 | 30.0006 | 30.
8 40. 33.6252 | 31.3059 | 30.2460 | 30.2460 | 30.0000 | 30.
9 20. 30.0188 | 22.8070 | 20.4864 { 19.9999 | 19.9999 | 20.
10 20. 26.9532 | 24.0742 | 21.2904 | 20.0000 | 20.0000 | 20.

For the second run, we used a destination choice

Table 6.4 Link Flow for Example 6.2

following logit functional form:

model with the
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It
=
L d

D, (w) = 30 .l for i = 1,. . .,4, j .4, and i # j

Lr.. e
k#i K

where Dij(u) is the demand between origin i and destination j, 30 is
. 0.,
the demand originating at each origin, and rij = e 13, where 61. is

given in table 6.5. The choice of eij is such that, at the equilibrium,

the flow from each origin to each destination is 10 units.

N\ 1 2 3 4
i
1 - 8.0625 2.5 6.5625
2 8.0625 - 8.0625 14.6250
3 2.5 8.0625 - 6.5625
4 6.5625 14.6250 6.5625 -
Table 6.5

Parameters eij of Demand Function for Destination Choice Model

We -applied the linearization algorithm with € = 0.16, § = 5 and
n = 3, with the choice of decomposition by origin. The algorithm
terminated after 84 linearizations and 23 cycles, and required 0.86
seconds of CPU time. Table 6.6 shows the number of linearizations and
cycles that are needed to achieve different accuracies, and also
shows the ﬁotal link travel time, iAfa . ta(fa) with initial value
a

equal to 191.87. Table 6.7 shows the link flows when different accu-

racies have been achieved.
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Accuracy No. of No. of Total Link
€, Linearizations Cycles Travel Time
20% 50 9 918.95

4% 60 14 827.64
0.8% 70 18 927.45
0.16% 84 23 927.49

Table 6.6 Computational Results for Destination Choice Model

. °n | Initiall  20% 4% 0.8% 0.16% | Exact
Lin .
Solution
No.
1 10. |15.0112 | 15.0047 | 15.0017 | 15.006 15.
2 10. |15.0097 | 15.0005 | 15.0009 | 15.0004 | 15.
3 10. |14.9749 | 15.0340 | 15.0102 | 15.0017 | 15.
4 10. [15.0197 | 15.0026 | 15.0003 | 14.9996 | 15.
5 5. |14.8720 | 14.9665 1 14.9929 | 14.9986 | 15.
6 5. |14.9801 | 14.9971 | 14.9994 | 15.0002 | 15.
7 5. |14.8353 | 15.0061 | 14.9932 | 14.9993 | 15.
8 5. 114.9887 | 14.9951 | 14.9981 | 14.9993 | 15.
9 5. 9.6502 | 9.9134.| 9.9828 | 9.9974 | 10.
10 5. |10.2888 |10.0794 | 10.0228 | 10.0026 | 10.

Table 6.7 Link

Flows for Destination Choice Model
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EXAMPLE 6.3: The network for this example consists of 9 nodes, 36 links,

and 12 0~D pairs. The network configuration is shown in figure 6.5.

Figure 6.5 Network Configuration for Example 6.3
The volume delay functions are given as:

ta(fa) =Q, + 0.002 - Ba . fa

where aé and Ba are defined in table 6.9. There is, for each 0-D pair
i-j for i =1,. . .,4, j=1,. . .,4, and 1 # j, a fixed demand with

values specified in table 6.8.

estination
Origin 1 2 3 4
1 - , 2000 2000 1000
2 200 - 1000 2000
3 | '“‘200 100 - 1000
4 100 200 100 -

Table 6.8 Trip Table for Example 6.3
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Link Flow by Link Flow by
Link No. Link o B Linearization Steenbrink
1 1-5 .35 .35 566.8 562.
2 1-3 .0 1.0 1684.6 1694.
3 1-7 .15 .15 1598.1 1582.
4 1-8 .55 .55 1150.5 1162.
5 2-5 .40 .40 36.2 39.
6 2-4 1.0 1.0 1435.9 1430.
7 2-8 .60 .60 1017.5 1011.
8 2-7 .25 .25 710.4 720.
9 3-1 .0 1.0 276.9 236.
10 3-6 .35 .35 268.6 275.
11 3-8 .55 .55 106.0 100.
12 3-9 .15 .15 731.4 725.
13 4-2 1.0 1.0 189.2 199.
14 4-6 .40 .40 0.0 0.
15 4~-8 .60 .60 33.9 65.
16 4-9 .25 .25 176.9 136.
17 5-1 .35 .35 36.2 39.
18 5-2 .40 .40 566.8 562.
19 5-7 .30 .30 0.0 0.
20 6-3 .35 .35 0.0 0.
21 6-4 .40 .40 268.6 275
22 6-9 .30 .30 0.0 0.

Table 6.9 Link Flow for Example 6.3
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Link Flow by

Link Flow by

Link No. Link o B Linearization Steenbrink
23 7-5 .30 .30 0.0 0.
24 7-1 .15 .15 163.8 161.
25 7~-2 .25 .25 1433.2 1438.
26 7-8 .50 .50 711.5 703.
27 8-1 .55 .55 23.1 64.
28 8-2 .60 .60 110.8 101.
29 8-3 .55 .55 912.4 918.
30 8-4 .60 .60 1209.2 1206.
31 8~7 .50 .50 0.0 0.
32 8-9 .50 .50 757.8 752.
33 9-3 .15 .15 579.9 524.
34 94 .25 .25 1086.2 1089.
35 9-6 .30 .30 0.0 0.
36 9-8 .50 .50 0.0 0.

Table 6.9 (continued)

Link Flow for Example 6.3
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For a decomposition by 0-D pair, and a choice of € = 1.0, § = 5,
and n = 2, the linearization algorithm solves this problem in 0.2 seconds
of CPU time, after 10 cycles and 45 linearizations. Table 6.9 shows
the link-flow volumes founded by this algorithm and also the solution
found by Steenbrink [T-~S4] using a quadratic programming technique.
Notice that, since the volume delay functions for this problem are
linear, the equivalent minimization problem is a quadratic programming
problem. For different levels of accuracies, table 6.10 shows the

value of

36 fa

[ ta(x)dx s

a=1 0
which is equivalent to the objective value function for the minimi-
zation problem. Comparing these values to 16970, the objective value
found by Steenbrink, shows how accurate the linearization algorithm is,
even though the goal of the algorithm is not minimizing the objective

value. Even the solution with 5% accuracy is as good in objective

value as the solution found by Steenbrink.

Accuracy fa
€. CIf et (£) % % t_ (x)dx
a a
Initial 102,031.44 53,246.00
25% 27,369.15 17,198.93
5% 27,003.61 16,971.05
17 26,965.25 16,958.24
Table 6.10 Total Travel Time for Example 6.3
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EXAMPLE 6.4: This test problem has been presented by Leblanc in [T-1.2].
Figure 6.6 shows the network configuration. The network consists of

24 nodes, 76 links, and 552 0-D pairs (all possible choices of i-j for
i=1,. . 424, j=1,. . .,24, and 1 # j). There is a fixed demand

between each O0-D pair, and the volume delay functions are defined as:
E(E) =a +B8 £,
aa a a a
All the data are specifed in [T-L2].
We applied the linearization algorithm to this test problem with
the choice of e =1, § = 5, n = 2, and used decomposition by O0-D pair.
The algorithm terminated after 18 cycles and 564 linearizations, and
required 3.32 seconds of CPU time to find 1l7-approximation solutions.
Table 6.11 contains the number of linearizations, total link
travel time, and the maximum percentage change in the link flow after
each cycle. Also, it includes the maximum percentage change after each
iteration for the Frank-~Wolfe algorithm, used by Leblanc. These results
show how fast the linearization algorithm converges and it exhibits less
of a tailing phenomenon than the Frank-Wolfe algorithm. In terms of
computational time, the linearization algorithm requires 2.15 seconds
on an IBM 370/168 to achieve 5% accuracy, while the Frank-Wolfe algorithm
requires 10 seconds on the CDC 74 (notice that the IBM 370 is much

faster than the CDC 74).
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Cycle} ©No. of Total Link Max 7% Change | Max 7% Change
No. Linedrizations | Travel Time | in Link Flow | in Link Flow
by Frank-Wolfe
0 - 922.96 - -
1 185 140.00 196.9 68.7
2 74 108.91 38.5 46.6
3 30 102,22 14.7 39.4
4 9 100.70 14.5 50.0
5 73 97.09 17.8 32.1
6 48 96.14 14.9 100.0
7 25 95.92 7.2 41.1
8 18 95.82 5.3 21.6
9 5 96.01 6.6 35.4
10 37 95.96 3.1 16.3
11 18 95.94 .8 25.0
12 14 95.94 .8 16.0
13 11 95.91 .8 13.9
14 8 95.92 A 9.6
15 6 95.91 .5 11.4
16 2 35.92 .5 7.7
17 1 95.92 .5 11.2
18 0 95.92 .0 7.9

Table 6.11 Computational Results

for Example 6.4
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EXAMPLE 6.5: This example is a rather moderate-sized test problem from
real-life data, which has been used by other researchers [T-F6, T-N3,
T-N4]. The computational results for this example give some idea of
how good the linearization algorithm is, compared to the other algorithms,
both in terms of convergence and efficiency. The example is based upon
the data for the street network of the city of Hull, Canada.

The network has 155 nodes, 376 one-way links, 27 zones, and 702
0-D pairs (all possible pairs of i-j for i = 1,. . .,27, j =1,. . .,27,
and i # j). There is only one mode of transportation (auto). The volume
delay functions are given by the travel time function suggested in the

BPR traffic assignment manual [T-B12], which has the form:
ta(fa) =t [1+ .15(fa/ca) ] fora=1,. . .,376

with parameters defined as in section 2.2. Finally, there is a fixed
demand between each O0-D pair. The data for this problem is a slight
modification of that used in [T-F6]. (Wotice that there are some minor
differences in the data. 1In particular, we scaled the demand by a
factor of 10, and this is the reason for some differences between our
results and the fesults repdrted in [T-F6, T-N3]).

| For the choice of € =1, § = 5, n=2anda decomposition by 0-D
pair, we applied the linearization algorithm to this problem. The
algorithm terminated after 20 cyéles and 590 linearizations, and re-
quired 16.37 seconds of CPU time to find a solution with 1% accuracy.
The maximum number of paths between.each 0-D pair with positive flow

is 4 and the maximum number of links in the paths with positive flow is 44.
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Table 6.12 shows the number of cycles and linearizatioms to reach
different levels of accuracy. Also, it shows the computational times

and the total link travel time, X fa . ta(fa).

a
Accuracy No. of No. of CPU Total Link
£ Cycles | Linearizations Time | Travel Time
(sec) {min)

Initial 590,336.
25% 4 179 3.81 257,570.
5% 12 405 10.49 236,631.

1% 20 590 16.37 235,776.

Table 6.12

Computational Results for Example 6.5 with Fixed Demand

Nguyen in [T-N3] used the Convex-Simplex Method to solve the

equivalent minimization problem for the city of Hull. This algorithm
required 42.16 seconds of CPU time on a CDC CYBER 74 to find a solution
with an accuracy almost equivalent to 5%, as we defined it in section
6.2.1 (Nguyen has used different criteria for the accuracy).

In [T-F6], Florian and Nguyen reported other computational times
for both fixed demand and elastic demand for variations of this problem,
for different numbers of 0-D pairs, up to 421. For ;he case of 421
0-D pairs, the CPU time is 43.42 seconds on the CDC CYBER 74 to find a
solution with 5% accuracy, as we defined it in section 6.2.1. The

“linearization algorithm requires only 10.49 seconds on an IBM 370/168

for a problem with 702 O0-D pairs.
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In the second run, we used an elastic demand function with a

linear functional form as follows:

Di(ui) = bi - au, fori=1,. . .,702

where a, and bi have been selected randomly, in a fashion similar to

that reported in [T-F6] by Florian and Nguyen. Table 6.13 shows the

results.
Accuracy | No. of | No. of CPU Total Link
£ Cycles Linearizations Tine Travel Time
(sec) (min)

Initial 197,681.

25% 6 468 8.03 234,532,

5% 14 1542 11.21 234,344,

1% 20 2548 18.46 234,004.

Table 6.13 Computational Results for gxemple 6.5 with Elastic Demand

Comparing the results in Tables 6.12 and 6.13 shows that obtaining
an equilibrium assignment with elastic demand only requires 15 per cent
more computational time than the fixed demand case. Although the num-
ber of linearizations increases four fold, the computational time does
not grow nearly as much. This is because the computational time for
the linearization algorithm &epends more on the number of cycles than
the number of linearizations. Therefore, the algorithm does not depend
too much on the type of the demand function.

The algorithm presented by Florian and Nguyen, which is based upon
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Benders Decomposition Method, required 54.13 seconds on the CDC CYBER 74

to achieve 5% accuracy, even with only 421 O-D pairs. This is almost

25 per cent more than the time for the fixed demand problem as’ compared
with 15 per cent for the linearization algorithm. For approximately 702
'O-D pairs, the Florian-Nguyen algorithm required 80 seconds on the CDC
CYBER 74 to achieve 57 accuracy. In contrast, the linearization algo-
rithm required only 11.21 seconds on an IBM 370/168. Of course, the
IBM 370/168 is faster than the CDC CYBER 74, but not more than four
times faster. Also notice that they have used the optimizing FTN
compiler, while we have used the FORTRAN G compiler.

Because of different operating environments, it is difficult to
jﬁdge between these azlgorithms. At the very least, these results show
that the linearization algorithm is as fast as, if not faster than,
the specialized algorithms presented by Florian and Nguyen, which are
among the fastest existing algorithms for solving the traffic equi-
librium problem. However, the linearization algorithm has its own
important advantage, which is the generality of the algorithm compared
to any algorithm based upon minimization technique. A disadvantage
to the linearization algorithm is that, at present, theoretical studies
of its convergence behavior are limited.

6.4 STORAGE REQUIREMENT AND DATA STRUCTURE

The storage requirement for the linearization algorithm consists

essentially of three parts, namely the computer program, the problem

information, and path flow information. The computer program itself
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need 1lOK wecrds of computer memory. This inclqdes the main program and
all of the subroutines such as LCP (the Linear-Complementarity Program)
and BELL (the shortest path algorithm).

To store all of the data specifying the problem requires, at most,
8|A| + 6|N| + 10|I| words of memory, as described in table 6.14, where
IAI is the number of links, |N| is the number of nodes, and |I| is the
number of 0-D pairs. This includes the network structure, the tree
structure for the shortest path algorithm, the link flows and path flows,
parameters of the volume delay and demand functions (such as the data
for the city of Hull with elastic demand), and, finally, it includes

vectors to store the update values for t(f), vt(f), D(u), and VD(u).

Dimension Arrays

Start-node, End-node, Link flow f, Link travel
|A| time t(f), dt(f)/df, 2 arrays for parameters
of the volume delay function, one dummy array
for BELL subroutine.

4 arrays (pointer to the first link starting at
INI each node, pointer to the predecessor node, and
level from the root) to represent the shortest

path tree, shortest travel time from an origin

to all nodes, one dummy array.

Origin node, destination node, 4 arrays for path
III flows h (those with positive flow), minimum
travel time u, total demand D(u), dD(u)/du,
number of paths.

Table 6.14 Memory Requirement to Store the Problem Data
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This data can easily be kept in memory on the iBM 370 even for networks
with 10,000 links. For implementations with limited storage, this
storage requirement can be reduced to 6|A| + 6|N| + 8|I|, in favor of
more computational time by reevaluating t(f), Vt(f), D(u), and VD(u)
whenever they are needed, instead of storing this data. Overall, these
requirements do not create any major difficulty to store any large scale
traffic assignment problem in core.

The last, and major, requirement for storage is the path infor-
mation. If we assume that the maximum number of paths with positive

flows is M. and the maximum number of links in any path is M,, then

1

for each O0-D pair wemight allocate a fixed space equal to Ml * M2 to

2’

store arc-path chains. Therefore, to store all path information we
require Ml ® M2 * |I| words of memory. For the choice of M = 4,

M2 = 50, and III = 700, as is the case of example 6.5, the storage
requirement would be 140K words, which can be stored in core on an
IBM 370. But, most computers will charge for using extra core storage.
To make the linearization algorithm capable of solving larger
problems and, also, to reducé the cost of using extra core storage. we
have to reduce the storage requirement for the path information. There
are two ways to achieve this goal--modifying the data structure for
storing path information, and using out-of-core storage (such as disk
or tape).

6.4.1 Modified Data Structure

Previously we allocated a fixed space equal to Ml * M2 for each

0-D pair. In practice, though, O-D pairs will not have M, paths with

1
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positive flqw (for the city of Hull, there are only 947 paths with posi-
tive flows which shows that, on the average; there are only 1.35 paths
with positive flows joining each 0-D pair) and not all of the paths have
M2 links. Therefore, there is a great deal of un-used allocated storage.
However, this fixed storage scheme has an advantage, and that is, a fast
accessing mechanism to groups of paths with the same 0-D pairs or with
the same origins (this is important for the decomposition schemes that we
use). In fact, in this allocation, the paths are stored in a sequential
order in terms of 0-D pairs and origins.

Since we are generating the paths, it is not easy to keep this se-
quential ordering when we use variables Mi and M; for each 0-D pair i.

However, by introducing some pointers we can store the path information
with variables Mi and M;, and still have a good accessing mechanism to a
group of paths. Naturally, the accessing time to any path will be in-
creased above that required by the fixed space scheme. Thus, there is a
tradeoff between CPU time and the storage utilization.

We have implemented the linearization algorithm for wvariable Mi and

fixed M2. Two pointers are enough to locate any path; these are called
FIRST and NEXT. For O-D pair i, FIRST (i) indicates the location of the
first path joining O-D pair i, and NEXT (p) indicates the location of the
next path with the same O-D pair as path p. Next (p) 1s set to zero when
p is the last path joining an 0-D pair.

The second row in table 6.15, designatéd problem Pl’ shows the

computational results for implementing this modified data structure

scheme for the city of Hull example with elastic demand functions. As
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the results show, the modified algorithm requires 60K words to store the
path information, compared to 140K fcr the original case (PO). This re-
duces the in-core sotrage cost by $2.54, while it increases the CPU
cost by $0.61. Thus, the total savings in cost is $1.93.

Therefore, this modification makes the algorithm capable of solving
larger traffic assignment problems and, at the same time, reduces the
total running cost. An even better improvement might be achieved by

i

9 the number of links in the path, as well.

allocating variable space for M

6.4.2 Out-of-Core Storage

In theory, we can always use out-of-core storage. But the question
is when is it efficient and economical. This depends on the choice of re-
cord size, number of times we need to access to the records, and, more im-
portant, on the order we need to access the records (sequential or random).
For the case of fixed space allocation, all of the paths with the same
0-D pair and same origin are listed in a sequential order. Thus, for the
decomposition scheme discussed in section 6.2.4, we require, within each
cycle of the algorithm, only sequential accessing to all of the records.
This is not the case for the modified data structure. For this reason,
it seems that an out-of-core storage facility is more appropriate for
the fixed storage scheme than for the modified scheme. Now the question
is what is the optimal record size in terms of total computer running
cost.
We have examined two different record sizes. For the first run
we have chosen the record size equal to M, * M, so that we could fit all

1 2

of the path information corresponding to each O-D pair in one record.
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The computational results for this run, indicated by problem P2, is
shown in table 6.15.

Table 6.15 shows the computational results of different runs for
example 6.5, city of Hull. The table contains a variety of infor-
mation, to make the comparison more clear; these are: problem number,
CPU time, CPU cost, record size, in-core storage cost, accessing cost
to out-of-core storage (disk), other costs (which include compiling cost,
1/0 cost, and so forth), total running cost, number of accesses to out-
of-core storage, in-core storage requirements for path information, and
total in-core storage requirements. Notice that all the runs give the
same solution.

Run P2 required only 45K words, which is a reasonable storage re-

quirement for any small computer, compared to 174K for P Therefore,

0
the variable space storage scheme is practical for solving much larger
traffic assignment problems. However, the total running cost increases,
as wemight expect, and by a factor of 3. The first factor contri-

buting to this cost increase is the accessing cost to out-of-core storage.
The second factor is the increase in in-core storage cost, even though
this run requires less in-core storage, because the program must stay
idle during the accessing process. Finally, the last factor is the
increase in the CPU cost due to substantial swapping to transfer data
from the out-of-core storage to the arrays in the memory. To reduce the
total running cost for P2’ we have to decrease the number of accesses

to the out-of-core storage. To accomplish this, we need to increase

the record size.



Problem | CPU CPU {Record| In-core | Accessing| Other| Total No. of In-core Total
No. Time | Cost Size | Storage | Cost to Costs| Running| Accesses| Storage In-core
(sec) S (Words) Cost & | Out-of- $ Cost $ to Out- for paths | Storage
Core of-Core (K words) | (K words)
Storage$ Storage
PO 18.46| 4.84 - 5.22 - 11.47| 21.53 - 140 175
P1 20.85| 5.45 - 2.68 - 10.46] 18.69 - 60 100
P2 53.55}| 12.1Q4 200 18.00 19.50 15.60| 64.0 15620 .2 45
P3 93.61) 20.62| 5200 6.24 1.61 10.14] 38.61 1333 5.2 52
Table 6.15

Computational Results for the City of Hull with Elastic Demand

for Modified Data Structure and Using Out-of-Core Storage

6€T
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For the next run, we have chosen the record size equal to M, *# M, * d,

1 2

where d is the maximum number of destinations associated with each origin
(for the city of Hull, d = 26). In other words, we store all of the
paths originating at each origin in one record. The computational re-

sults for this run, which is indicated by problem P is shown in

3°
table 6.15.

As the results show, the number of accesses to the out-of-core
storage, and therefore the in-core storage cost and accessing cost,
Also, P

has decreased enormously for run P_, as compared to run P

3 2° 3

requires only 7K words more of in-core storage.

The reason that P3 requires more CPU cost is that, in this case,
we musz, at each step, substitute all of the information from the one
record into the corresponding array in memory. But there is a great

deal of non-usable information in most records, because not all of the

0-D pairs have M

1 paths with positive flows. In contrast, for the im-

plementation P2’ we only transfer the paths with positive flows, which
are located at the top of the record, and discard the rest of the record.
This is not possible for the implementation P3.
Over all, among the four schemes, when there is no in-core storage
limitation, the modified data structure scheme (Pl) is>the best in terms
of total cost, and the original scheme (PO) is the best in terms of
speed. When storage is limited, then scheme P3 seems to be best in terms

of total running cost, at least for the computational testing on this

one example.



141

REFERENCES

Traffic Equilibrium

[T-A1]

[T-A2]

[T~A3]

[T-A4]

[T-AS]

[T-B1]

[T-B2]

[T-B3]

[T-B4]

[T-B5]

[T-B6]

[T—B7i

AASHTIANI, H. Z., "The Multi-Modal Traffic Assignment Problems,"
DOT, Technical Summary 77-1 (January 1977).

ACHIM, C., CHAPLEAU, R., CHRIQUI, C. and ROBILLARD, P., "TRANSCOM-
Guide de 1'Utilisateur," publication No. 23, Centre de Recherche
sur les Transports, Université de Montréal (1975).

ADLER, J. and BEN-AKIVA, M., "A Joint Frequency, Destination, and
Mode Model for Shopping Trips,' Transportation Research Board
569, pp. 136-150 (1975).

ASMUTH, R. L., "Traffic Network Equilibrium,'" Technical Report
SOL-78-2, Stanford University, California (1978).

ATHERTON, T. J. and BEN-AKIVA, M., '"Methodology for Short-Range
Trave! Demand Predictions,' Journal of Transport Economics and
Policy, Vol. 11, No. 3, pp. 224-261 (1977).

BECKMAN, M. J., MCGUIRE, C. B. and WINSTEN, C. B., Studies in the
Economics of Transportation, Yale University Press, New Haven,
Connecticut (1956).

BEILNER, H. and JACOBS, F., "Probabilistic Aspects of Traffic
Assignment,” in Newel (editor), Traffic Flow and Transportation,
Elsevier, New York, pp. 183-194 (1972).

BELLMAN, R., "On a Routing Problem," Quart. Appl. Math., Vol. 16,
pp. 87-90 (1958).

BEN-AKIVA, M. E., "Structure of Passenger Travel Demand Models,"
Ph.D. Dissertation, M.I.T., Department of Civil Engineering (1973).

BEN-AKIVA, M. and LERMAN, S., 'Disaggregate Travel and Mobility
Choice Models and Measures of Accessibility," paper presented at
the 3rd International Conference on Travel Modeling, Adelaide,
Australia (1977).

BERTSEKAS, D. P., "Algorithms for Optimal Routing of Flow in Net-

works," Coordinated Science Lab. Working Paper, University of
Illinois at Champaign-Urbana (1976).

BRADLEY, G., "Survey of Deterministic Networks," AIIE TRANSACTIONS,
Vol. 7, pp. 222-234 (1975).




[T-B8]

[T-B9]

142

BRADLEY, S. P., "Solution Techniques for the Traffic Assignment
Problem," Operations Research Center, University of California
ORC 65-35, Berkeley, California (1956).

BRAND, D. and MANHEIM, M. L. (editors), "Urban Travel Demand Fore-

[T-B10O]

[T-B11]

[T-B12]

[T-C1]

[T~C2]

[T-C3]

[T-D1]

[T-D2]

[T-D3]

[T—Dé].

[T-D5]

casting," Proceedings of a Conference held at Williamsburg, Virginia,
Special Report 143, Highway Research Board (1973).

BRANSTON, D., "Link Capacity Functions: A Review," Transportation

Research, Vol. 10, No. 4, pp. 223-236 (1976).

BRUYNOOGHE, M., GIBERT, A. and SAKAROVITCH, M., "Une Méthode d'
Affectation du Traffic," in Fourth Symposium of the Theory of
Traffic Flow, Karlsruhe (1968).

BUREAU OF PUBLIC ROADS, "Traffic Assignment Manual," U. S. Depart-
ment of Commerce, Urban Planning Division, Washington, D.C. (1964).

CASEY, R. F., "Summary Data for Selected New Urban Transportation
Systems," Transportation Systems Center, M.I.T., Cambridge, Massa-
chusetts (1972).

CHARLES RIVER ASSOCIATES, "A Disaggregated Behavioral Model of
Urban Traffic Demand,'" Cambridge, Massachusetts, Report 156-2 (1972).

CHICAGO AREA TRANSPORTATION STUDY, Final Report, Vol. 2, pp. 104-
110 (1960).

DAFERMOS, S. C., "An Extended Traffic Assignment Model with Appli-
cations to Two-Way Traffic," Transportation Science, Vol. 5, pp.
366-389 (1971).

DAFERMOS, S. C., "The Traffic Assignment Problem for Multiclass-
User Transportation Network," Transportation Science, Vol. 7,
pp. 73-87 (1972).

DAFERMOS, S. C. and SPARRCW, F. T., "The Traffic Assignment Problem
for a General Network,'" J. Research NBS Ser. B., 73B, pp. 91-118

(1969) .

DAGANZO, C., '"Network Representation, Continuous Approximations
and a4 Solution to the Spatial Aggregation Problem of Traffic
Assignment," Working Paper 7702, Stochastic Traffic Assignment
Project, Inst. of Trans. Studies, University of California,
Berkeley, California (1977).

DEMBO, R. S. and KLINCEMICZ, J. G., "An Approximate Second-Order
Algorithm for Network Flow Problem with Convex Separable Costs,"
Yale School of Organization and Management, Working Paper Serxies
No. 21 (1978).



[T-D6]

[T-D7]

[T-D8]

{T-D9]

[T-D10]

[T-D11]

[T-D12]

[T-D13]

{T-D14]

[T-F1]

[T-F2]

[T-F3]

[T-F4 ]

[T-F5]

143

DETROIT AREA TRANSPOKTATION STUDY, Vol. 2, pp. 79-107.

DIAL, R. B., "A Combined Trip Distribution and Modal Split Model,"
paper presented at the 1974 Annual Meeting of the Highway Research
Board (1973).

DIAL, R. B., "Algorithm 360 Shortest Path Forest with Topological
Ordering," Comm. ACM 12, pp. 632-633 (1969).

DIAL, R. B., GLOVER, F., KARNEY, D. and KLINGMAN, D., "A Computa-
tional Analysis of Alternative Algorithms and Labeling Techniques
for Finding Shortest Path Trees,'" Research Report CCS 291, Center
for Cybernetics Studies, The University of Texas, Austin, Texas,
(1977).

DIAL, R. B. and BUNYAN, R. E., "Public Transit Planning System,"
Socio-Economical Plan. Science, Vol. 1, pp. 345-362 (1948).

DIJKSTRA, E., "A Note on Two Problems in Connection with Graphs,"
Numerical Mathematics, pp. 269-271 (1959).

DOMENEICH, T. A. and MCFADDEN, D., Urban Travel Demand, North-
Holland, Amsterdam (1975).

DOUGLAS, C. J., "A Method of Traffic Assignment to an Urban Network,"
Highway Research Board 224, np. 64-71 (1959).

DREW, D. R., Traffic Flow Theory and Control, McGraw-Hill, New
York (1968).

FERLAND, J. A., FLORIAN, M. and ACHIM, C., "On Incremental Methods
for Traffic Assignment," Transportation Research, Vol. 9, pp. 237-

239 (1975).

FLEET, C. R..and ROBERTSON, S. R., "Trip Generation in the Trans-
portation Planning Process," Highway Research Record 240, High-
way Research Board, Washington, D.C. (1968).

FLORIAN, M., Traffic Equilibrium Methods, Lecture Notes in Economics
and Mathematical Systems 118, Springer-Verlag, Berlin (1974).

FLORIAN, M., "A Traffic Equilibrium Model of Travel by Car and
Public Transit Modes," Tramsportation Science, Vol. 11, pp. 166-
179 (1977).

FLORIAN, M., CHAPLEAU, R., NGUYEN, S., ACHIM, C., JAMES, L. and
LEFEBVRE, J., "EMME: A Planning Method for Multi-Modal Urban
Transportation Systems," Publication No. 62, Centre de Recherche
sur les Transports, Université de Montréal (1977).



[T-F6]

[T-F7]

[T-F8]

[T-F9]

[T-G1]

[T-G2]

[T-G3]

[T-G4]

[T-G5]

[T-G6]

[T-H1]

[T-H2]

[T-H3]

144

FLORIAN, M. and NGUYEN, S., "A Method for Computing Network Equi-
librium with Elastic Demand," Transportation Science, Vol. 8, No.
4, pp. 321-332 (1974).

FLORIAN, M. and NGUYEN, S., "Recent Experience with Equilibrium
Methods for the Study of a Congested Urban Area," Proceedings of
the International Symposium on Traffic Equilibrium Methods, Uni-

versity of Montreal (1974).

FLORIAN, M. and NGUYEN, S., "An Application and Validation of
Equilibrium Trip Assignment Methods," Transportation Science,
Vol. 10, No. 4, pp. 376-390 (1976).

FRANK, M. and WOLFE, P., "An Algorithm of Quadratic Programming,"
Naval Research Logistics Quarterly, Vol. 3, pp. 95-110 (1956).

GARTNER, N., LITTLE, J. D. C. and GABBAY, H., "Optimization of
Traffic Signal Settings by Mixed-Integer Linear Programming,
Part I and II," Transportation Science, Vol. 9, pp. 321-363 (1975).

GEOFFRION, A., "Customer Aggregation in Distribution Modeling,"
Working Paper No. 259, Management Science Study Center, University
of California, Los Angeles (1976).

GILBERT, A., "A Method for the Traffic Assignment Problem when
Demand is Elastic,'" LBS-TINT-85, Transport Network Theory Unit,
London Business School, London (August 1968).

GOLDEN, B., "A Minimum Cost Multi-Commodity Network Flow Problem
Concerning Imports and Exports," Networks, Vol. 5, pp. 331-356
(1975).

GOLDEN, B., "Shortest-Path Algorithm: A Comparison,'" Operations
Research, Vol. 24, No. 6, pp. 1164-1168 (1975).

GORDON, S. and DENEUEVILLE, R., "Design of Air Transportation
Networks," Transportation Research, Vol. 7, pp. 207-222 (1973).

HALL, H. H. and PETERSON, E. L., "Traffic Equilibria Analyzed via
Geometric Programming,'" Discussion Paper No. 130, Center for
Math. Studies in Economics and Management Sciences, Northwestern
University (1975).

HEARN, D. W. and KUHN, H., "Network Aggregation in Transportation
Planning - Final Report,' MATHTECH, Inc., Princeton, New Jersey
(1977).

HIGHWAY CAPACITY MANUAL, Highwavy Research Becard, Special Report
87, Washington, D.C. (1965)-.




[T-H4 ]
[T-11]
[T-12]
[T-J1]

[T-J2]

[T-K1]

[T-L1]

[T-L2]

[T-L3]
[T-L4]
[T-M1]

tm—mz]

145

HOLROYD, E. M. and SCRAGGS, D. A., "Journey Times by Bus and Car
in Central London," Traffic Engineering and Control, Vol. 6, No. 3,

pp. 169-173 (1974).

IRWIN, N. A., DODD, N. and VON CUBE, H. G., '"Capacity Restraint in
Assignment Programs,' Highway Research. Board 297, pp. 109-127,
(1961).

IRWIN, N. A. and VON CUBE, H. G., "Capacity Restraint in Multi-
Travel Mode Assignment Programs,' Highway Research Board 347,
PP. 258-289 (1962).

JACOBSON, J., 'Case Study Comparison of Alternative Urban Travel
Forecasting Methodologies," S. M. Dissertation, Department of
Civil Engineering, M.I.T., Cambridge, Massachusetts (1977).

JEWELL, W. S., "Models for Traffic Assignment," Transportation
Research, Vol. 1, pp. 31-46 (1967).

KADOSCH, M., "Temps d'Attente dans les Transports Urbain en Commun,"
R.A.I.R.0. Recherche Opérationnelle, Vol. 10, No. 2, pp. 37-54
(1976).

L'ABBE, B. et SCHERER, C., "Un Modéle Global pour 1'Evaluation

des Projets d'Extentions des Réseaux de Transport Public en Région
Parisienne," Proceedings of the AFCET Conference on Traffic Control
and Transportation Systems, North-Holland, pp. 677-688 (1974).

LEBLANC, L. J., "Mathematical Programming Algorithms for Large Scale
Network Equilibrium and Network Design Problems," Ph.D. Disserta-
tion, Department of Industrial Engineering and Management Sciences,
Northwestern University (1973).

LEBLANC, L. J., MORLOK, E. and PIERSKALLA, "An Efficient Approach
to Solving the Road Network Equilibrium Traffic Assignment Problem,"
Transportation Science, Vol. 9, pp. 309-318 (1975).

LEVENTHAL, T. L., NEMHAUSER, G. L. and TROTTER, L. E., "A Column
Generation Algorithm for Optimal Traffic Assignment,” Transporta-
tion Science, Vol. 7, No. 2, pp. 168-176 (1973).

MANHEIM, M. L., "Practical Implications of Some Fundamental Pro-
perties of Travel Demand Models," Highway Research Board Record
422, pp. 21-38 (1973).

MANHEIM, M. L., Fundamentals of Transportation Systems Analysis,
Department of Civil Engineering, M,I.T., Cambridge, Massachusetts
(1974).




146

[T-M3] MANHEIM, M. L. and MARTIN, B. V., "A Research Program for Com-
parison of Traffic Assignment Techniques,' Highway Research
Record 88 (1965).

[T-M4] MANHEIM, M. L. and RUITER, E. R., "DODOTRANS I: A Decision
Oriented Computer Language for Analysis of Multi-Mode Transpor-
tation Systems,' Highway Research Record 314, pp. 135-163 (1970).

[T-M5] MARTIN, B. V., MEMMOTT, F. W. and BONE, A. J., "Principles and
Techniques of Predicting Future Demand for Urban Area Transporta-
tion," Research Report R63-1, M. I. T. Civil Engineering Depart-
ment, Cambridge, Massachusetts (1963). )

T-M61] MCFADDEN, D., "The Theory and Practice of Disaggregate Demand
Forecasting for Various Modes of Urban Transportation,' presented
at the Seminar on Emerging Transportation Planning Methods,
Florida, pp. 1-55 (1976).

[T-M7] MCLYNN, J. M. and WORONKA, T., "Passenger Demand and Modal Split
Models,'" Northeast Corridor Project, U. S. Department of Trans-
portation, Record 230 (1969).

[T-M8] MCNEIL, D. R., "A Solution to the Fixed-Cycle Traffic Light Problem

for Compound Poisson Arrivals,'" Journal of Applied Probability,
Vol. 5, pp. 624-635 (1968). '

[T-M9] MERTZ, W. L., "Review and Evaluation of Electronic Computer Traffic
Assignment Programs,' Highway Research Board Bull, 297, pp. 94-
105 (1961).

[T-M10] MOSHER, W. W., "A Capacity Restraint Algorithm for Assigning Flow
to a Transport Network,'" Highway Research Record 6, pp. 41-70 (1963).

[T-M11] MURCHLAND, J. D., "Road Network Traffic Distribution in Equilibrium,"
paper presented at the Conference '"Mathematical Methods in the
Economics Sciences,'" Mathematisches Forschunginslitut, Oberwolfach
(1969).

[T-N1] NETTER, M., "Equilibrium and Marginal Cost Pricing on a Road Net~-
work with Several Traffic Types," in Proceedings of the Symposium
on the Theory of Traffic Flow and Transportation, G. F. Newell
(editor), Springer-Verlag (1971).

[T-N2] NGUYEN, S., "Une Approche Unifide des Méthodes d'fquilibre pour
1'Affectation du Trafic,'" Ph.D. Dissertation, Publication No. 171,
Department d'Informatique, Université de Montreal (1973).

[T-N3] NGUYEN, S., "An Algorithm for the Traffic Assignment Problem,"
Transportation Science, Vol. 8, No. 3, pp. 203-216 (1974).




[T-M4]

[T-N5]
[T-N6]

[T-01]
[T-P1]

[T-Q1]
[T-R1]
[T-R2]
[T-R3]
[T-51]
[T-82]

[T-83]

[T-54]

147

NGUYEN, S., "A Mathematical Programming Approach to Equilibrium
Methods of Traffic Assignment with Fixed Demands,'" Publication
No. 17, Centre de Recherche sur les Transports, Université de
Montréal (1976).

NGUYEN, S., "Equilibrium Traffic Procedures with Elastic Demands,"
Publication No. 39, Centre de Recherche sur les Transports,
Université de Montréal (1976).

NGUYEN, S. and JAMES, L., "TRAFFIC ~ An Equilibrium Traffic Assign-
ment Program,' Publication No. 17, Centre de Recherche sur les
Transports, Université de Montréal (1975).

OVERGAARD, K. R., "Urban Transportation Planning: Traffic Estima-
tion," Traffic Quarterly, pp. 197-218 (1967).

POTTS, R. B. and OLIVER, R. M., Flow in Transportation Networks,
Academic Press, New York (1972).

QUANDT, R. E. and BAUMOL, W. J., '"The Demand for Abstract Transport
Modes: Theory and Measurement," Journal of Regional Science, Vol.
6, No. 2, pp. 13-26 (1968).

ROSENTAL, R. W., "The Network Equilibrium Problem in Integers,"
Networks, Vol. 3, pp. 53-59 (1973).

ROSENTAL, R. W., "Congestion Tolls: Equilibrium and Optimality,"
Economic Discussion Paper #94, Bell Laboratories (1977).

RUITER, E. R., "The Prediction of Network Equilibrium - The State
of the Art," Transportation System Division, Department oif Civil
Engineering, Massachusetts Institute of Technology, Cambridge,
Massachusetts (1973).

SHEFFI, Y., "Transportation Networks Equilibrium with Discrete
Choice Models," Ph.D. Dissertation, Massachusetts Institute of
Technology, Cambridge, Massachusetts (1978).

SHEFFI, Y. and DAGANZO, C., "A Unified Approach to Transportation
Forecasting: Hypernetworks and Supply-Demand Equilibrium with
Disaggregate Demand Models," paper presented at the 57th TRB
Meeting, Washington, D.C. (1978).

SMOCK, R., "A Comparative Description of a Capacity — Restrained
Traffic Assignment,' Highway Research Record 6, pp. 12-40 (1963).

STEENBRINK, P. A., Optimization of Transport Networks, Wiley
London (1974).




[T-S5]

[T-U1]

[T-W1]

[T-W2]

(T~-W3]

[T-W4]

[T-W5]

[T-Z1]

148

STEFANEK, R. G. and WILKIE, D. F., "Precise Determination of
Equilibrium in Travel Forecasting Problem Using Numerical Techni-
ques," Highway Research Record 369 (1971).

UMTA Transportation Planning System (UTPS) User's Guide, U. S.
Department of Transportation, Urban Mass Transportation Adminis-
tration, Office of Transit Planning, Planning Methodology and
Technical Support Division, Washington, D. C. (1976).

WARDROP, J. G., "Some Theoretical Aspects of Road Traffic Research,'
Proc. Inst. Civil Engineers, Part II, Vol. 1, pp. 325-378 (1952).

WEBSTER, F. V., "Traffic Signal Setting," U. K. Ministry of Trans-
port, RRL Technical Report No. 39 (1968).

WEINTRAUB, A., "Optimal Flows in Network and Games: The Multi-
commodity Flow Problem in Integers," Publication 76/21/C, Depart-
ment of Industrial Engineering, University of Chile (1976).

WIGAN, M. R. and BANFORD, T. J. G., "An Equilibrium Model of Bus
and Car Travel Over a Road Network," Transport and Road Research
Laboratory, Report LR 559 (1973).

WITHEFORD, D. K., "Traffic Assignment Analysis and Evaluation,"
Highway Research Record No. 6, pp. 1-11 (1963).

ZIPKIN, P.VH., "Bounds for Aggregating Nodes in Network Problems,"
Research No. 79A, Graduate School of Business, Columbia University,
New York (1978). ' '

Complementarity Problems

fc-C1]

[c-Cc2]

[C-E1]

[C~E2]

[C~F1]

COTTLE, R. W. and DANTZIG, G. B., "Complementary Pivot Theory of
Mathematical Programming," Linear Algebra and it's Applications,
Vol, 1, pp. 103-125 (1968).

COTTLE, R. W. and DANTZIG, G. B., "A Generalization of the Linear
Complementarity Problem," Journal of Combinatorial Theory, Vol. 8,

pp. 79-80 (1970).

EAVES, B. C., "The Linear Complementarity Problem," Management

Science, Vol. 17, pp. 612-634 (1971).

EILENBERG, S. and MONTGOMERY, D., "Fixed Point Theorem for Multi-
valued Transformation," American Journal of Mathematics, Vol. 68,
pp. 214-222 (1946),

FISHER, M. L. and GOULD, F. J., "A Simplical Algorithm for the
Non-linear Complementarity Problem," Mathematical Programming, Vol.
6, pp. 281-300 (1974).




f[C-F2]

[C-K1]

[C-K2]

[C-K3]

[C-K4]

[C-K5]

[C-L1]

[Cc-L2]

[Cc-L3]

[C-N1]

149.

FOSDICK, L. D., "Algorithm 431: A Computer Routine for Quadratic
and Linear Programming Problems [H]," Arunachalam Ravindran

'Record 24 (1970).

KAKUTANI, S., "A Generalization of Brouwer's Fixed Point Theorem,"
Duke Math. Journal, Vol. 8, pp. 457-459 (1941).

KARAMARDIAN, S., '"The Nonlinear Complementarity Problem with
Applications, Part I and II," Journal of Optimization Theory and
Application, Vol. 4, pp. 87-98 (1969).

KARAMARDIAN, S., "The Complementarity Problem," Mathematical
Programming, Vol. 2, pp. 107-129 (1972).

KOJIMA, M., "Computational Methods for the Nonlinear Complementar-
ity Problem," Department of Administration Engineering, Keia
University, Yokohama, Japan (1973). :

KOJIMA, M., "A Unification of the Existence Theorems of the Non-
linear Complementarity Problem," Mathematical Programming, Vol. 9,
pp. 257-277 (1975).

LEMKE, C. E., "Bimatrix Equilibrium Points and Mathematical Pro-
gramming,' Management Science, Vol. 11, pp. 681-689 (1965).

LUTHI, H. J., "Ein Algorithms Zur Approximation Von Losungen des
Nichtinear Komplementaritats Problems,” Dissertation No. 5183,
Swiss Federal Institute of Technology, Zurich, Switzerland (1973).

LﬁTHI, H. J., "A Simplical Approximation of a Solution for the
Nonlinear Complementarity Problem,'" Mathematical Programming, Vol.
9, pp. 278-293 (1975).

[C-s1]

[C-S2]

[C-T1]

[C~T2]

operative Games,'" Annals of Mathematics, Vol.
)

SAIGAL, R., "Extension of the Generalized Complementarity Problem,"
Mathematics of Operations Research, Vol. 1, pp. 260-266 (1976).

SCARF, H., "The Approximation of Fixed Point of a Continuous
Mapping," SIAM Journal on Applied Mathematics, Vol, 15, pp. 1328-
1343 (1968).

TODD, M. J., The Computation of Fixed Points and Applications,
Lecture Notes in Economics and Mathematical System 124, Springer-
Verlag, Berlin (1976).

TODD, M. J., "A Generalized Complementary Pivoting Algorithm,"
Mathematical Programming,-Vol. 63, pp. 243-263 (1974).




[C--T3]

Others

[0-Al]

f0-Gl]

[O-M1]

[0-01]

[0-51]

[0-T1]

150

TODD, M. J., Private Communication, February (1977).

APOSTOL, T. M., Mathematical Analysis, Addison-Wesley (1957).

GEOFFRION, A. M., "Generalized Bender Decomposition," Journal of
Optimization Theory and Applications, Vol. 10, pp. 237-260 (1972).

MANGASARIAN, O. L., Nonlinear Programming, McGraw-Hill, New York
(1969).

ORTEGA, J. M. and RHEINBOLDT, W. C., Iterative Solution of Non-
linear Equations in Several Variables, Academic Press, New York,

(1970). ‘ :
SAMUELSON, P. A., "Spatial Price Equilibrium and Linear Programming,

American Economic Review 42, pp. 283-303 (1952).

TAKAYAMA, T. and JUDGE, G. G., Spatial and Temporal Price and
Allocation Models, North-Holland, Amsterdam (1971).




151

APPENDIX A

A Convergence Property of the Linearization Algorithm

In this section we discuss some convergence properties of the
linearization scheme for solving the nonlinear complementarity‘problem
corresponding to a traffic equilibrium model.

Consider a simple network with a single arc, a single mode, and a
single 0-D pair. The user-equilibrium system for this network can be
written as the following nonlinear complementarity problem:

r

[t(h) = u] - h=0

[h = D(u)] ¢ u=0

(A1) {4 t(h) - u >0
h - D(u) >0
h > 0, u>0.

\

We start at any arbitrary nonnegative point (ho,uo) > 0,
linearize t(h) at h° and D(u) at uo, and solve the resulting linear
complementarity problem (LCP) to find a new point (hl,ul).

At iteration i, the (LCP) would be:

( ; . . i . ‘
ey + (h1+l - gtég R S PR L& B

[

. . . . i .
a2) { [h1+1 _ D(ul) _ (u1+1 _ ul) dDéz ) . u1+1 -0
s . i .
i+l hl) dtég ) u;+1] >0

L () + @
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(A2)

The procedure is shown in the Figure A.l.

u 3 t (h)
“= £(0°) + (h - h°) 55%%511
x = (h,u) .
1-=~=77===—= o
u ) D(uo) + (u - uO)Qgég_l
WCloee”Z_
10 h1 7%

Figure A.1 The Linearization Algorithm

LEMMA A.1: Let t(h) be a continuous differentiable increasing convex
function on h > 0 and let D(u) be a continuous differentiable decreasing
convex function on u > 0. Then (A1) has a unique solution and further-
more the sequence {hi,ui} generated by solving (42) will comverge to
that eolution (u ,h ).

PROOF: For simplicity of exposition we assume that

t(0) >0
D(O) > O

dt (h) > &

[ § >
ih for some small § 0
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lé%&&ll <M for some large M > O

even though these assumptions are not required.

The proof of uniqueness is clear from the main theorems in chapter 4.
Notice that D(u) is a continuous differentiable decreasing function and,
therefore, is bounded from above. Thus we prove only the last assertion
of the lemma.

Let,
. C = {(h,u)_z 0, t(h) = u >0, and D(u) - h > 0}.

For any (h,u) € C, since D(u) is bounded thus h is bounded, and, since
t{k) is continuous, thus u is bounded. That implies C is bounded.
Also, the continuity of t(h) and D(u) imply that C is closed, therefore
C is compact. Since t(h) and D(u) are convex, for any point in C the
solution to the linearization problem (A2) lies in C as well. There-
. . o O, . i 1
fore, starting at any point (h ,u ) in C, the sequence {h ,u”} generated
by solving (A2) will remain in C.
o o, . o o
Now, we choose (h ,u ) in C such that h™ > 0 and u > t(0).
It is easy to show that ut > 0 at any iteration (intuitively u cannot
be zero because it is the minimum travel time). In fact, we show that
{u"} is an increasing sequence.
. i+l .
First we show that h can not be zero. Suppose that this asser-
i+ . i+
tion is not true and that h 1 is zero. Then, since u 1 > 0, by com~

plementarity we have:
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- ' . . . i,
hl.l _ D(ul) N (u1+l a ul) dD(u’) _ 0
du
or
41 i . DY) i
u u + L 1 > .
-dD{u™)

du

Therefore, the first complementarity equation becomes:

, . . i .
t(hl) + (h1+1 _ hl) dtég ) u1+1

i
iy ide@D ik

= t(h) h ih u

< £(0) - u <t ~u <0 (4.3)

. . . s i+ . . .
which is a contradiction. Thus h L > 0 at any iteration. Notice that

the first inequalityin(A.3) is true because t(h) is convex.
Therefore, if we start at any point in C with uO > t(0) we have
h™ > 0 and u > O for all i, which implies that system (A2) is equi~-

valent to the following linear system:

i
[ . i1 i 5. dp(h)
h1+l -l 4 -(h —D(u‘)) - (u Tt(h )) du

L _de@D) | dn@uh)
(A.4) A dh du

. . . . dt(hl)
. . i i i i —
itl i, —(u-t(h’) - (h'-D(u)) dh
u =u + 1 1
_dt(h™) _ dd(u)
dh du

1

These equalities imply that ul+l_z u" for any (hl,ul) in C, because

all terms in the fraction of the last inequality are positive. Therefore
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{ui}, as an increasing sequence in a compact set, has a limit point,

*
i.e., 1lim ui = u . Therefore, for any € > 0, there exists an I > 0
-0
such that, for any i > I we have:

i+l i
u - u <€-

Then (A.4) implies that
i
1 i i g, dehr)
(t(h™) —u’) + (D(u™) - k™) dh

_de(hl) | dp(uh)
dh du

1

or
(e - uhy/B < e

. , i
@b - nhy/m < e G Dy £

where

de(h™) | dp(u™)
dh du '

B=1-

Also (A4) implies that

i+l

i i i i i
D(u%_hl'*'}t(h)-u!' ldD(u)l

i
- h l f.l B du

|n

2 _ 1
.S’g +ecM=€eM + 6) .

Therefore {h'} has a limit point too.

Suppose that {h,u} is the limit point of the sequence {hi,u1

To show that {h,u} is an equilibrium point, we know that,
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. . i
t(hi) + (h1+1 _ hl) dtg: ) _ ui+l =0

. . . i
S WO U dDéE_l o .

Since t(h) and D(u) are continuous differentiable functions, therefore

at the limit we have:

. T i .
((1im ewh + @ o ph B @y S =0
50
‘ 1
lim h1+l _ D(ul) _ (u1+l _ ul) dD(u’) =h - D(u) =0
. du
\ 17

, % &
and since (Al) Has unique solution thus (ﬁ,a) (h ,u ), which completes
the proof. -

Notice that the coefficient matrix of the linear complementarity

system (A2) is positive definite. Therefore (A2) has always a unique

solution and B is positive.

REMARK A.1: Without convexity assumptions, the Linearization scheme

might not converge. For example:

u A

t(h)

D(u)

Figure A.2 The Linearization Algorithm Might Not Converge
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. . o .
In this example, if we start at x the algorithm will not converge,
. . o] 1 .
but will oscillate between x and x°. Note, however, that if at each
n-1 i
iteration we linearize at =~ ¥ x~ we have convergence. This obser-
i=0
vation suggests that a modification of the algorithm might converge for

nonconvex volume delay and demand functions. !I

REMARK A.2: The convergence properties for this simple case are re-
lated to Newton's Methods for solving systems of nonlinear equations

(see, for example, Ortega and Renboldt [0-01]). ]
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APPENDIX B

Computing the Coefficient Matrix

In the notation of section 6.2.5, we stated the volume delay function

for path p as:

= . \' .
Tp(h) b Sap ta(f) for all p € Pi and i € I
achA
where
f = X r 6 . hp for all a € A.

iel pePY ap

In practice, because of the enormous number of paths, it is not
possible and efficient to store the arc-path incidence matrix {Gap} in
a computer. Instead, as we noted in section 6.4, we can store the
list of arcs in a subset of all paths, called the set of working paths.

If AP denotes the list of arcs in path p, then we have:

T (h) = Z ta(f) for all p ¢ Pz and 1 € I
P acA
P
and
oT (h) ot (£)
_Eﬁ——— = I z 3? for any p and p'. (B.1)
p' acA_ a'eA , "Ta'

By storing and updating values for Vt(f) and using (B.l1l), we can
efficiently evaluate the coefficients of the Vt(h) matrix. First, notice

that Vt(f) is usually a highly sparse matrix because, in general, the



159

flow on each arc depends at most only upon the flow on a few other arcs.
Therefore, for each arc, a € A, only a few components of Vta(f) are
non-zexo that can be stored in a few words of the computer memory. For
the special case when ta(f) = ta(fa) (This haé been the case for most

of the zomputational results by other researchers), we have:

oT_(h) dt (£ )
—iﬁ%——— = z __{%E;é_ for any p and p'
p' a&:ApnAp, a

In this case, a one dimensional array is enough to store the data for
Vt(f). Also, when Vt(f) is symmetric, as is the case when ta(f) = ta(fa),
then VT(h) is symmetric which reduces the computation of the coefficients
by one half. (Notice that we did not include this option in our com~-
putational results because we wanted to impleﬁent the algorithm in as
general a form as possible).

Second, because of the decomposition scheme that we use, the di-
mension of the VT(h) matrix is not very large for each subproblem. In

. T _(h)
fact, the VI(h) matrix only includes those elements of for which

sh_,
_ P
both p and p' are in the subproblem. Also, to update values for Vt(f)
after each linearization (flow change), we only require updating those
non-zero components of Vt(f) for which a € Ap and p is in the subproblem.

Similar observations apply for computing the coefficients of the

VD(u) matrix in the demand portion of the model.





