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ABSTRACT

Traffic equilibrium analysis 4~s provided useful insight into the
transportation planning proce~s. Even for deterministic demand models,
though, the state-of-the-art does not include any efficient approach that
is applicable for general equilibrium models. Existing convex programming
approaches, which are efficient and guarantee convergence, are restrj.cted
to single commodity (mode, user class) flow problems with inv~rtable demand
functions. In this thesis, we first show that convex p~ogramming approaches
cannot be generalized to broader, and yet still realistic~ settings. Sec­
ondly, we introduce a new approach that can be applied to multi-commodity
flow problems (including multi-class, multi-modal, and destination choice
user equilibrium models) with arbitrary deterministic demand functions.

The approach consists in formulating the traffic equilibrium problem
as a nonlinear complementarity problem. Based upon. this formulation, we
propose and prove general existence and uniqueness theorems, and we develop
a linearization algorithm. We also present cOlnputational results on a
variety of test problems to illustrate the generality and the efficiency of
the algorithm.
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CHAPTER 1

Il~TRODUCTION

Traffic equilibrium models have recently become useful tools for pre­

dicting vehicular flow in congested urban areas. They can be used for

planning purposes, for managing transportation systems and for improving

transportation technologies to achieve better system performance.

In general,there are two directions of research related to traffic

equilibrium analysis. The first direction, which is called demand predic­

tion, is an attempt to capture the users' behavioral patterns to understand

how they make decisions within the framework of existing technology and to

predict their responses to future technology. Although a great deal of

research of this nature has been conducted, it is still the weakest link

in transportation nlod.el.ing •.

The second direction of this research, which is also essential for

transportation planning, is predicting vehicular flow in a congested net­

work, given the users' behavioral patterns. One model of this type now

forms part of the UMTA (Urban Mass Transit Authority) Transportation

Planning System [T-Ul]. In their study of traffic patterns in the city of

Winnipeg, Canada, Florian and Nguyen [T-F8] have shown that equilibrium

models can predict link flow and traffic impedances accurately, particularly

for high volume links and routes. Our purpose in this dissertation is to

contribute to the second stage in equilibrium analysis which we refer to

as the traffic equilibrium problem.

At present, efficient algorithms are available for traffic equilibrium
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models involving:

1) a single mode (private vehicle traff'ic has been the

primary application);

2) (elastic) demand functi.ons between every origin-destina-

tion (O-D) pair that depend only upon the impedance or

shortest travel time between that origin-destination

pair;

3) volume delay functions for each link that depends only

upon the total volume of traffic flow on that link.

In!tiaIly, Wardrop [T-WI] introduced the notion of user equilibrium

for modeling urban traffic. Beckman, McGuire and Winsten [T-Bl] showed

that assumptions (l), (2) and (3) produce an equilibrium model that can

be converted into an equ~valent convex programming problem. Samuelson

[0-51] had earlier proposed a similar transformation in the context of

spatially separated economic markets. Since then, several researchers

have proposed algorithms for solving this convex problem (Bruynooghe,

Gibert qud Sakarovitch [T-BIl], Bertsekas [T-B6]t Defermos [T-Dl-3],

° Dembo and Klincemicz [T-D5], Leventhal, Nemhauser and Trotter [T-L4], Le-

blanc [T-L2-3], Nguyen [T-N2-6], Golden [T-G4], Florian and Nguyen [T-F6-8]).

There are a number of ways in which these models might be extended.
i

Modeling multi-modal (fo~ example, private vehicle and a transit mode)

and multi-class user 'equilibrium would be the first extension. Incorporat-

ing demand functions for an O-D pair that depend upon impedance between

other O-D pairs would permit destination choice to be modeled. Another

extension would permit volume delay on a link to depend upon volume flow
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on other links, This later extension permits modeling of traffic equili­

brium with two-way traffic in one link, traffic equilibrium with right and

left turn penalties 9 and the like.

Assumptions (1), (2) and (3) are the key to solving the traffic equili­

brium problems. Some attempts have been made to generalize the convex

programming approaches to solve the extended models (i.e., Defermos [T-Dl]

for multi-classes of users and Florian [T-F4-S] for the multi-modal case).

We show that these assumptions are strong and that the convex programming

approach is not, in general, applicable to the extended equilibrium model.

The goal of this research is:

i) to formulate mathematically a general traffic equilibrium

model that captures each of these modeling extensions;

ii) to determine when the equilibrium problem can be modeled

as an optimization model;

iii) to determine conditions on the problem data that will

insure that an equilibrium exists and is unique; and

iv) to develop computational procedures for finding an

equilibrium to the extended model.

To resolve these issues we formulate the problem as a nonlinear

complementarity problem. By imposing very mild restrictions on the problem

structure (that are always met in practice), we show that the traffic equi­

librium problem always has an equilibrium solution. We introduce an

algorithm, called the ZineaPization aZgopithm, to solve the problem'effi­

ciently. Although we do not have any formal proof for the convergence of

the algorithm, computational results on a variety of problems are promising.
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For example, we have been able to use the algorithm to solve problems with

376 links, 155 nodes, 702 O-D pairs and elastic demand in less than 12

seconds on an IBM 370/168 to achieve 5% accuracy_ We have also been able

to use it to sclve problems with link interactions and with complex

demand relationships; problems that cannot be solved as equivalent convex

optimization problems.

Recently, Hearn ani Kuhn [T-HZ] and Asmuth [T-A4] have made similar

attempts to formulate· the general traffic equilibrium problem as a fixed­

point problem. Asmuth presented results similar to ours concerning exis­

tence and uniqueness issues. Kuhn illustrated the initial steps in applying

fixed-point algorithms to the equilibrium problem. But no computational

results have been presented to demonstrate the efficiency of the algorithms

for realistically sized transportation problems.

We conclude this introduction by briefly outlining the rest of this

research. Chapter 2 reviews transportation modeling in general, and

summarizes the characteristics of major components of the model effort.

In particular, Chapter 2 discusses issues related to the demand function

for transportation services and to the volume delay function or congestion

that vehicular flow imposes on a" transportation system. The concept of

a user-equilibrium, which is introduced in Chapter 2, is explored in more

detail in Chapter 3. In Chapter 3, we formulate the equilibrium problem

mathematically and introduce an equivalent nonlinear complementarity

formulation for the problem.

Chapter 4 contains our main results concerning the existence and

uniqueness of an equilibrium solution. After briefly reviewing existing
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algorithms for the traffic equilibrium problem and their limitations,

Chapter 5 contains a skeletal introduction to a new linearization algorithm.

Chapter 6 studies the linearization algorithm in more detail. This

chapter illustrates the generality of the algorithm and its convergence

properties by presenting computational results on a variety of small

examples modeling different aspects of traffic equilibrium. Finally,

Chapter 6 contains computational results for some larger examples to illus­

trate the efficiency of the algorithm.
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CHAPTER 2

TRANSPORTATION MODELING

2.1 INTRODUCTION

Transportation modeling aims to answer the following types of ques­

tions:

i) How do users respond to the transportation technology

available to them (e.g., what is their utilization of

transportation facilities, what is their movement

pattern)?

i1) How dausers' utilization of the transportation system

change over time (in terms of location, activity,

awareness, sorial-economic change, and so forth)?

iii) How do users respond to changes in the transportation

system (changes in system configuration or in quality,

introduction of new facilities, and so forth)?

iv) How can planners improve an existing transportation

system to capture the users' future responses to

system changes?

Regardless of the kind of model that might be used to answer any of the

above questions," resolution of the first question is crucial for answering

any of the others. In the literature, the first type of question is

referred to as shopt-pun-equiZibpium and the other questions are "referred

to as Zong-pun-equiZibpium. In this research we are focusing only on

short-ron-equilibrium models.
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Let US begin by reviewing in rather general terms the essential

ingredients of most transportation systems and the interactions between

these ingredients.

2.2 COMPONENTS OF'TRANSPORTATION SYSTE~.

2.2.1 Transportation Technology

The transportation tec4nology denoted by T, determines the network

structure (e.g., set of nodes, arcs, origins, destinations and modes)

available to the users. Suppose that we are given a performance function

Fthat measures the performance of the system for any traffic volume V.

In the transportation literature, the performance functi.on associated with

an arc is sometimes called a vo~ume delay funation, and the measure of

performance, denoted by L, is called the Zdve~ of sepviee. The level of

service; which might be tra'vel time, travel cost, safety, or some function

of all of these, is usually expressed in terms of disutility. L as a

function of T and V can be written as:

L = lP (T, V) • (2.1)

Frequently, the performance function has been referred to as a "supply"

function. This terminology seems inappropriate in this context and might

be misleading because of the usual economic connotation of "supply" as a

response of the producers to the market. In transportation, the producers

are providing transportation technology T, though, and this is fixed for

short-run equilibrium; the level of service is a measure of how the pro-
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duction facilities are being used t rather than their supply. Florian [T-F5]

has emphasized this distinction; see also Sheffi [T-Sl].

2.2.2 Transportation Demand

The other component of transportation systems, and models~' that repre-

sent them, are the users who utilize the transportation technology T by

making trips. Each user in the system must choose from among a set of

available alternatives (this is called decision-making process). The main

components of each alternative are trip frequency (to make a trip or not)t

destination choice, mode choice and route choice.

Suppose that, with pepfect communication and information, for each

user i in the system we are given a function d
i

that specifies the alterna­

tive choice of that user for any technology T and level of service L, given

the user's utility u .• Also suppose that the function D specifies the
1

traffic volume in the system: that is,

v = D(d.(T,Llu.)
1 1

for all users i). (2.2)

This expression is called a demand relationship.

Substituting (2.1) in (2.2) we obtain

for all i). (2.3)

Obviously~ (2.3) can be interpreted as a fixed point problem with variable

V in the sense that with fixed technology T, and with given utility func-
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tions ui and decision function di , the right-hand side of (2.3) for any

given V = VO predicts traffic volume as V' = D. Conditions (2.1) and

(2.2) are satisfied only if V' = Va.

DEFINITION 2.1: Given a transportation technology T, the performance

function F, and decision function d. for all users, any traffic volume
1

VE which satisfies the fixed point problem (2.3) is called an equilibrium

soZution.

Equivalently, any pair (VE,L
E

) that satisfies equations (2.1) and (2.2)

is called an equiZibpium point~ Figure 2.1 illustrates this concept.

v

'--------------·L

v

lP

~--~-------- L
L= lP (T,V

N
)

a) Equilibrium Point b) Non-equilibrium Point

Figure 2.1 Equilibrium

2.3 MODELING TRANSPORTATION SYSTEMS

2.3.1 Aggregation

One of the most important and diffic~~t tasks in transportation model­

ing is the calibration of choice functions d
i

for all of the users. For

any real-life problems the enormous number of users in the system and lack
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of perfect information makes it' almost impossible to carry out this kind

of analysis. Therefore, some assumptions are required about how a chosen

user makes decisions.

In the transportation literature, many types of assumptions have been

used for different research purposes and for different steps of the user

decision-making process, mainly to determine frequency of trips, destina­

tion choice, mode choice, and route choice [T-AS, T-M2]. To simplify the

problem, the first attempt in almost all previous work has been the classi­

fication of the users into homogeneous groups, a process sometimes called

aggregation. Aggregation can be in terms of level of income, family size,

residential location, job classification, and so forth [T-M2, T-M6]. We

assume that all of the users in a group respond similarly to any given

situation and we do not distinguish among users within a group. In other

words, we do not care who within a group makes the trip; we just care that

some user does.

The process of calibrating the demand function is complicated not only

by the difficulty in calibrating any particular demand function, but by the

enormous number of points where trips originate, which makes the size of

the problem too large to be manageable. In practice, planners overcome

this difficulty by introducing a spatial aggregation. that represents the

homogeneous population of each zone as a point called oentpoid. DaganzQ

[T-D4] discusses this spatial aggregation and the distribution of the

population in each zone.

Another type of aggregation that can be used to reduce the size of

the problem is aggregation in the structure of the network itself; for
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example, aggregation of the nodes, links or even centroids [T-G2, T-H2,

T-Zl]. This type of aggregation reduces the size of the problem so that

the problem becomes manageable, in terms of both the computational time

and storage requirement, although it causes new errors.

In this report, we will assume that the aggregation process has

already been carried out and that we are given aggregate user demand

functions in an aggregate network.

\

I

2.3.2 Deterministic and Stochastic Models

There are two completely different approaches for modeling how users

within a group behave~ The first approach is to assume that the user's

response is a random phenomenon with a given density function describing

each group." This approach is called stochastic (non-deterministic) or

disaggregate modeling [T-A3, T-M2, T-M6, T-Sl], although the term dis­

aggregate seems inappropriate. The main task in this modeling approach is

calibrating the parameters of the density function. In this research we

are not considering this type of model; instead, we focus on deterministic

models [T-M2].

For the deterministic model, we assume that an analytical function can

be established that specifies the number of users within any group who

select each available alternative or, in other words, it gives the distri­

bution of the flow among alternatives.

2.3.3 Simultaneous and Sequential Models

As we have stated previously, each alternative is composed of a set of

components, mainly, trip frequency (make a trip or not), destination choice,
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mode choice, and route choice. Depend~ng upon the nature of the trip,

some of the components might be fixed. For example, usually in work-trips

the frequency of trips and the destinations are fixed, while for shopping-

trips~ all of the components vary, especially the destination choice.

In reality, the components of each alternative are not independent of

one another, and each user usually makes his decision simultaneously con-

sidering all the components together.

The simultaneous models assume that, for any group of users, any

origin-destination pair and any mode, we are given a function D(A,L) that

specifies the total number of trips to be made with the current system

activities, A, and the current level of service, L.

An example of the simultaneous model is the one developed by Kraft

for intercity passenger travel demand. For the case of three modes, the

model assumes the following functional format:

3 m oma , IJ Im m
• IT (tk~m' • ck~m')
m' =1

where

DkR,m = demand between k and i by mode m

P
k

= population in zone k

Yk = median income in zone k

t kim
= travel time between k and ~ by mode m

ckR,m = travel cost between k and ~ by mode m

ep~a,f3 = parameters of the model (subscripts indicate mode depen-

dency).



21

For more details about this model and other models presented by McLynn

[T-M7] and Baumol-Quandt [T-Ql], see Manheim [T-M2].

Unfortunately, in practice, calibrating a simultaneous demand model

is not an easy job, and might even be impossible for the general case

[T-M6].

An alternative to simultaneous models is a sequential approach. In

this model we assume that some of the components of the decision-making

process are independent, that they can be ordered in a hierarchy of steps

of decision-making, and that they can be modeled separately [T-M2]. One

of the common hierarchy orderings that has been used by a number of trans­

portation planners for both deterministic and stochastic models is as

follows:

i) Frequency of Trips or Trip Generation

ii) Destination Choice

iii) Mode Choice

iv) Route Choice.

In this hierarchy, the first model is used to determine the number of

trips generated at each zone. Given the number of trips generated at the

zones, a destination choice model is applied to distribute the trips among

possible destinations. Given the number of trips between an D-n pair, the

mode choice model is used to split the total trips among all available modes.

Finally, the route choice model is used for each mode to distribute the

trips among all existing paths between an O-D pair.

Different researchers have proposed a number of models for each step,

such as a linear model [T-M2] for trip generation, a gravity model [T-M2,
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T-Ul] and opportunity model [T-M2] for the destination choice step, and a

table look-up model [T-ell and a.binary choice logit model [T-F2] for the

mode choice step.

One of the most common class of models which can generally be used in

any choice situation (both the deterministic and stochastic cases) for

choosing among a set of alternatives is the logit'model. Suppose we are

given A alternatives and ua represent some characteristic of the alterna-

tive a. The choice of alternative a is given as:

, ,-
L efa (u

a
)

a'EA

where d is some constant and fa is some function of au •

•

I

Florian in [T-F4] used the following logit model for the mode choice

step:

eum
Dm(u) = d __e ~

m'
L e

8u

all modes
m'

where d is the total number of trips by all modes between a given O-D pair,

m
u is the travel time by mode m and 8 is some constant. Dial [T-D7] has

proposed an extention of this model for making both dest~nation choice and

mode choice simultaneously, as follows:



23

8urn
r e pq

DID (u) = d 9
pq P m'eu ,

L E r e pq

q' m' q'

.....,
where c is the total number of trips generated at origin p, and r is an

p q

index of the attraction of destinatioi1. q.'

2.3.4 Route Choice

One of the most traditional assumptions that has been used indirectly

ilL almost all past work is that the route choice step is independent of,

the other steps and is the last step in the hierarchy sequence. Further-

more, the distribution of the flow among the available paths is such that

all of the used paths have equal travel time, which is less than or equal

to the travel time for non-used paths. Wardrop was first to state this

law of the distribution and it later became known as Wardrop's fipst ppin-

aipZe or as the u.sep-equiZibpi7AJ1l Zaw. As we mentioned previously, the user-

equilibrium notion has much broader meaning than this special case. This

is only one possible type of assumption that we might make for the distri-

bution of path flow.

A definition analogous to Wardrop's first principle that has been used

is:

"At equilibrium no user can improve 11i8 travel time

by unilaterally changing paths."

Although most papers in the literature [.T-A4, T-F6, T-M2] have explicitly

assumed that these definitions are equivalent, there is no formal proof.
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In section 3.1 we show by example that these definitions are not always

equivalent.

The second definition says that the users are in a competitive market

and that each user tries to improve his own travel time. For this reason

it is sometimes called a usep-optimized formulation. In contrast with

this formulation, there is system-optimized (Wardrop's second principle)

formulation wherein all the used paths have equal mapginaZ travel times

(or the average travel time is minimum),as compared with the user-optimized

formulation wherein all used paths have the same travel times.

2.3.5 General Route Choice

At least theoretically, we can use any other type of function,besides

the traditional ones,for the distribution of the flow among the paths.

Relaxing the restrictions in the traditional model permit us to have more

flexible models that include "directly attributes like travel cost, safety,

and convenience, as well as travel time, which was the only attribute of

the level rJf service for Wardrop's first principle. Also, in reality, it

is not true that all used paths have equal travel times. This might be

because of. the lack of user awareness as to their route choice possibilities

or to travel times; or, it might be because other attributes are important

to the users in their route choice.

Sheffi in his thesis [T-Sl] introduced a type of probability distribu­

tion function for the path flow distribution of a stochastic model. This

model permits a small percentage of flow in paths with the higher travel

times, which is more realis~ic.
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General~y, for the deterministic case, the route clloice step can be

modeled like any other step of the decision-making process and in a variety

of ways, like all or nothing routing, logit distribution, and so forth.

For example, consider a logit model. Let d be the total number of users

who are going to travel through k available paths and let Lk denote the

level of service for path k. Then the number of users who trav'el tllrough

path k is given by:

-8.L.
Ee J J

j"

8. > O.
J

Appropriate choices of 8
k

permit us to include implicitly other attributes

besides travel time.

Also, the traditional. path flow distribution satisfying Wardrop's

first principle can be written in the form of the following ~nalytical

function:

for all k.

where a satisfies:

a, > 0
k-

Ect
k

= 1

* *Ok = 0 if Lk
> L

ruin

*where L
min

is the minimum level of service among all paths at equilibrium.
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As we mentioned before, the first advantage of this general route

choice model is that we have more flexibility to assign the flow among

the paths, considering the other components of the level of service beside

the travel time, which are closer to the real-life distribution of the

flow. The other advantage is that the route choice can be modeled simi­

larly to mode choice, destinntion choice, or even trip frequency. In fact,

by introducing new nodes and arcs with appropriate volume delay functions,

all the components of the decision-making process can be induced in the

route choice step in a new network, which is called the hypernetwork [T-S2].

Considering the enormous number of paths in the network, it is almost

impossible to calibrate a model like a logit directly fo! the general

route choice model. However, in reality, only a small number of all avail­

able paths will have positive flow and their choice depends upon the level

of congestion. Therefore~ if somehow we could enumerate the possible paths

with positive flow, then we could use any functional form, such as the

logit model, for the path flow distribution.

On the other hand, there are some existing efficient techniques (i.e.,

a shortest path algorithm) to assign the flow among the paths satisfying

Wardrop's principle, when the level of service consists of travel time only,

without considering all the existing paths explicitly. This fact makes the

use of the flow distribution satisfying Wardrop's princi.~le more attractive.

For the above reason, in t~is thesis, we only work with the tradi­

tional route choice model in terms of computational results, although, it

seems that the theoretical developments are valid for the general route

choice model and for the hypernetwork.
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2. 3,. 6 Level of Service

As we have mentioned several times previously, the level of service

vector is composed of several components including travel time (in-vehicle

and out-of-vehicle times), travel cost, safety, and convenience. Although

all of the components greatly effect a user's choice of alternatives, it

is difficult to incorporate some of these components, like safety and

conveni~nce, in a mathematical model for the equilibriunl problem. It is

hard enough to include other variables that are even easier to measure.

Thus, practically, only travel time and travel cost have been considered

as components for the level of service.

Usually for the short-run. equilibrium, the travel cost does not change

with the volume of the traffic in the network, or it is assumed to be pro­
\

portional to travel time as perhaps when gas consumption increases as the

in-vehicle travel time increases. (Proportionality may not always be a

good assumption, though. For example, in case of high speed, the travel

cost increases while travel time decreases.) Travel cost does depend

strongly on traffic volume, though. For this r~ason, most traffic equili-

brium models do not consider travel costs explicitly in the demand functi.ons,

whereas the travel time usually is ·considered explicitly as a variable.

Thus the travel times are needed for the demand model.

Also, almost all previous work uses Wardrop's principle for path flow

distribution and does not include travel cost in the.route choice step.

Although there has been some attempt to use a generalized travel time (a

function, usually linear, of travel t~me and travel cost), there are no

computational results for these types of models.
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In this research we also consider the travel time as the only mea­

sure for the route choice step, and we use constant travel cost for the

other parts of the demand model. However, it might be possible to extend

all of the results, especially those that are theoretical in nature, to

consider generalized travel time.

2.3.7 Volume Delay Function

Traveling through any path in the network involves delay time associa­

ted with both nodes and arcs in the path. Delay time at a node refers to

waiting time for transfer to another mode, waiting time for service, wait­

ing time at intersections and so forth. Delay time at an arc refers to

the actual time required for physical movement and, possibly wait time.

Since the delay time at a node can be represented by the delay time at an

arc in a suitably modified model of the transportation network (for example,

representing an intersection by a s~t of arcs [T-F7, T-FB]), we can assume

that there is no delay at nodes, and by an arc we mean a generalized arc.

In general, the travel time in a path depends on the volume of traffic

in the whole network. However, to be able to model the problem that can be

solved, some assumptions are needed. The first "natural" assumption is that

the travel time. for a path is the sum of the travel times of the arcs in the

path. This assumption might not be true. For example, even if two arcs have

equal travel times, they might have different disutilities. Consider tra­

veling in an attractive neighborhood as compared to arlother unattractive

neighborhood, or walking compared to riding in a luxurious car. Since, in

. the route choice model the travel time is the only measure, to'model
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differences between arcs, we might use some scaling factor in the volume

delay function for each ,arc. We have to notice that the above assumption

makes the computation of the finding of the shortest"path much easier, as

compared to the case of travel times on arcs, are not additive,because there

are very efficient algorithms available for the additive case.

The fact that each user affects the delay time for each arc differently,

forces us to consider each user individually. But this is not feasible

because the number of users' is enormous. One way to solve this problem

is to classify the users into homogeneous groups and assume that all of

the users in the group have similar affects upon the delay time. The

classification might be in terms of transportation mode (i.e., auto and

bus), vehicle size (i. e., private auto and truck), d.rivers (i. e., slow

drivers and fast drivers), and so forth.

Suppose that, f~r every arc a E A, E derloteB the set of groups who ~rea

sharing arc a and v
e

denotes the volume of traffic on arc a for group e.
a

Then the volume delay function ,for group e on arc a can be represented as

e
t (v), where v is the vector of traffic volume by all groups and all arcs.a

Notice that, for this general type of volume delay function, theoretically,

we can assume that each arc is used by only one group,simply by duplicat-

ing the' whole network by the number of grol1ps. The new network would be

much larger; however, from the computational point of view this duplication

might be made only implicitly.

Most existing models have.assumed that the delay on an arc depends

1 it 1 i t e(v)on y on s own va ume, .e~, =a te(v ), where va is the vec.tor ofa a

the volumes by all groups using arc a. Although it is true that the delay
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on an arc usually does not depend on the arcs far from that arc, it may

depend upon the flow on arcs close to it. For example, the delay on an

arc corresponding to a left turn-strongly depends on the volume of the

flow on the arc representing the cross street and vice-versa. Another

example is two-way streets: the delay for edch direction depends on the

volume of traffic in both directions.

Another assumption that ~as been made for simplicity in most models

is that the effect of different groups on the delay time can be captured

by assigning constant weight factors to each group.

is a function of LaVe where a is a constant.esE e a' e
a

is equivalent to 5 autos.

2.3.8 Examples of Volume Delay Functions

eIn other words, t
a

For example, a bus

Here we review some of the volume delay functions proposed most fre-

quently ~n the" literature. Constant functions have been used for arcs

representing walking distances, waiting times (i.e., half of the head-way

per bus), free-way flow time (i.e., uncongested highways, flight times,

in vehicle transit time, and so forth), "arJ.d s~ on [T-M2]. There are a few

models for the delay at intersections, ~special1y to represent traffic

lights (see [T-Fa], for example).

For congested street arcs, a variety of models have been used. We

mention only a few of them. In most of the models, the delay time has been

given only as a function of total volume on that arc. Let c denote the

-t
arc capacity, let v denote the total volume, and let to denote the travel

tDifferent "definitions have been used ~or the arc capacity, mainly the
"steady state" capacity used in Overgaard's model and the "l-tractical"
capacity used in BPR modele For more details, see [T-B12].
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time at zero flow for an arc.

In 1962, Irwin and Von Cube [T-I2] introduced a piece-wise linear

function. In 1967, Overgaard [T-01] proposed the following exponential

function:

t(v)

where a and S are constant parameters.

In 1963, Mosher [T-MlO] suggested logarithmic and hyperbolic func-

tions, e.g.,

t(v) for v < ex (logarithmic)

t(v) = a +
a( to - 13)
----- for v < ct

a, - v (hyperbolic)

where a and S are constants. Although these functions are not defined for

v > a, by changing the function for v > a. ,where ex < (t, we can construct
- - s s

a well-defined function for all v ~ 0 (see[T-MIO]).

One of the best known and most widely-used volume delay functions is

that often referred to as the BPR (Bureau of Public Roads) [T-B12] func-

tion:
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wh;re a and S are constant parameters. The BPR engineers suggested values

of 0.15 and 4 for a and S, respectively. However, generally for all of

the above models, the value of the parameters depends upon the structure

of the arcs. For example, they depend upon the number of lanes, the speed

limit, vehicle type, and so forth. Usually there are some tables avail-

able to calibrate these functions. For more details concerning these

models see Branston [T-BID].

The transportation literature does not contain many models to represent

the volume delay function for a link that is used by more than one class

of ·users. In [T-F'4], Florian uses a special model for the links that are

used by two modes of transportation, namely private auto and transit bus.

auBy using some conversion factor, a , he assumed that the flow by auto, v

band the flow by bus, v are additive, i.e.:

au - b
v = v + c::1V •

A bus is assumed to be equivalent to a multiple of private cars (in the

traffic engineering study [T-H3], a is 3 or 4). Florian uses the BPR

function for the volume delay functions, as follows:

b au b au au b
t (v ,v) = y. t (v ,v) + <5
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where 0 is a constant penalty per mile to allow for stopped time for buses,

and y is another constant to allow for speed differences between two modes.

2.3.9 Nature of Volume Delay Functions

It is natural to assume that the volume delay function is a continuous

function. This assumption might not be valid in some special instances,

as when modeling delay at a traffic light [T-Gl, T-M8]. When the flow

arriving at a traffic light increases more than the number of vehicles

that can pass in one cycle, the delay time will increase by another cycle

time. Thus, the delay function would have a step-wise character.

The second type of assumption· which seems natural is that the volume

delay function is positive and monotone. If t denotes the vector of vol-

ume delay functions (i.e., t(v) = {te(v)} for all e E E and a E A) and v
a a

denotes the vector of volumes, then t is called monotone if,

(v - VI) • (t(v) - t(v'» > 0 •

When t
e

is only a function of ve then this property says that t
e is non-a a a r-

decreasing, which is what we expect for the transportation applications.

Furthermore, in this case, for congested arcs, we can assume that t
e is
a

strictly increasing, even though the slope of the function may be close

to zero (see all the above examples). Note though, that if the transpor-

tation technology is permitted to vary, then this assumption mtght not be

valid. For example, the delay in waiting for a bus might decrease with

increased user demand, as when more frequent bus service is provided at
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For example, it is easy

is mono-

LaVe
e aeEEa

to see that the volume delay function used by Florian in [T-F4]

. e
rush hours. For the general case, t might not be strictly monotone~

a

i 11 h e. f · fespec. a y w en t 18 a unct10n 0
a

tone, but it is not strictly monotone.
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CHAPTER 3

TRAFFIC EQUILIBRIUM PROBLEM

3.1 EQUILIBRIUM CONCEPTS

In the transportation literature, the term "equilibrium" has been

used in a number of different ways. In this section we attempt to unify

and clarify this term and to state what we mean by an equilibrium in this

report.

In general, we refer to any fixed-point solution for the system (2.3)

as an equiZibpium point, as stated in definition (2.1). This general

definition is valid for both short-run equilibrium (when the transportation

technology T is fixed) and for long-run equilibrium (when T is not fixed).

Also, it is valid for both deterministic and probabilistic demand models.

In the case of the short-run equilibrium, the users are the only

decision makers in the system. This is the reason for referring to the

equilibrium as a u8ep-equiZib~ium. In this case, if we assume that each

user tries to optimize his own utility independent of the other users, then

at equilibrium the following condition prevails:

User-Equilibrium Law:

"At equilibrium no user perceives a possible increase

of his utility by unilaterally changing alternatives."

This is a generalization of the Wardrop's user-equilibrium law (see Sheffi

[T-Sl]) for both deterministic and probabilistic demand functions.

For .the special case when the travel time is the only attribute of

the level of service in the performance function, when the route choice is
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the only decision for each user to make (i.e., when the number of trips

between each O-D pair, which includes trip generation, destination choice~

and mode choice, is prescribed by a given function) ,.and finally, when each

user's decision is based upon minimizing his own travel time, then the

above user-equilibrium law becomes:

Special User-Equilibrium Law:

"At equilibrium no user can improve his travel time

by unilaterally changing routes."t

This law was originally stated by Wardrop [T-WI] and later has been

known, at least intuitively, as the definition of user-equilibrium. At the

same time, in practice, to introduce this law into a mathematical formula-

tion of the problem, Wardrop proposed an analogous law (known as Wardrop's

first principle) stated as follows:

Traffic-Equilibrium Law:

!'At equilibrium, for each O-D pair the travel time on

all the routes actually used are equal~and less than

the travel times on non-used routes."

We used the name tpaffia equilibrium for this law to distinguish between it

and the special user equilibrium law, although in the literature the same

name has been used for both laws.

It is important to note what we mean by the term user in the defini-

tion of a user equilibriumo If we view the transportation system as being

composed of a finite number of individuals who make trips or not, then each

"user" provides an integral unit of flow from its origin to its destination.

t Here we assume that each user has knowledge about the effect that his
transfer onto a new route has upon travel time.
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In this case the flow variables must be restricted to assume integral

values. Rosenthal [T-Rl] models the equilibrium problem from tllis point

of view.

On the other hand, if we view the demand between each origin and des­

tination pair as a col1e~tion of a l.arge number of individuals who are

making trips, then we nlight view the flow as being decoInposable int.o a

large number of smaller units or users. A limiting assumption would be

that flow is infillitely divisible; that is, the flow variables are. contin­

uous and each user is an i.nfinitesimal unit of flow. The relationship

between the continuous model and limiting behavior of the Integral model

seems not to be well understood. See Weintraub [T-W3] though, for results

of this nature.

By imposing implicit assumptions (such as continuous variables, con­

tillUOUS volume delay functions and non-decreasing volume delay functions)

transportation analysts have assumed that these two laws are equivalent.

Since thes,e assumptions might not be true in general, and a] ~o since it is

not clear exactly when these laws are equivalent, we refer to any equili­

brium point that satisfies the traffic-equilibrium law as the tpaffic equi-.

Zibpium solution. In the next section, when we formulate the problem, we

introduce equivalent mathematical equations that characterize the traffic­

equilibrium law.

E~AMPLE 3.1: To see the differences between these two definitions, when

any of the implicit assumptions are relaxed, we consider a single O-D pair

example with two units of' flow and two paths:
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Figure 3.1 Network Configuration for Example 3.1

hI and hZ represent the path flows and t1(h1) and t 2 (hZ) are the correspond­

ing volume delay functions. We consider the following cases:

Case I: Int~gral Variables.

Consider the following continuous volume delay functions:

3

Z

1

2.5

1 2 1 2

Figure 3.2 ContilluoUS VolumA Delay FUllctj,ons

For this example with continuous and non-decreasing volume delay functions,

the equilibrium problem with a u~er-equilibrium law has a unique solution;
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the traffic-equilibrium law the problem has no equilibrium solution, because

hI = 0 or I implies that tl(hl ) < 2.5 = t 2(h2) and hI = 2 implies that

t1(h1) = 3 > 2.5 = t 2(h2). However, in the case of continuous variables,

the problem has a unique equilibriwn solution for both laws; namely h =
1

1.5 and h 2 = 0.5 with the perceived travel times eq~11 to 2.5.

Case II: Non-Continuous Volume Delay Functions.

Consider the following non-decreasing volume delay functions:

.t1 (hl ) t z(1-1
2

)

3 3

2 2

1 1

I ..... hI
, .... hZ1 2 1. 2

{~
fo~ h < 1

t 1 (111)
1

t
2

(hZ) 2= =
for hI ~ 1

Figure 3e3 Non~ContinuOu9 Volume Delay Functions

In the case of integral variables, this example with the user-equilibrium

law has a unique equilibrium solution, hl = 0 and h2 = 2. But with the

traffic equilibrium law it h~s no solution, because for hi < 1 we have

In the case of continuous variables, this problem has no equilibrium

solution even with the user-equilibrium law, because if hI < 1 then some
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users, 6h for 0 < ~h < 1 - hl' canJ,improve their travel times by transfer­

ring from the second route to the first route. For a similar reason, we

cannot have hI ~ 1.

Case III: Decreasing Volume Delay Function.

Consider the volume delay functions given as follows:

3

2

1

3

2

1

1 2 1 2

Figure 3.4 Decreasing Volume Delay Function

For continuous variables, this problem with the user-equilibrium law has a

unique solution, that is, hI = 0 and h 2 = 2. It has infinitely many solu­

tions with the traffic-equilibrium law; those are hI = band h2 = 2 - b

for all 0 ~ b ~ 2 with travel times equal to tl(hl ) = t 2(h2) = I + b.

Among all these solutions, the one with b = 0, which is the solution with

the user-equilibrium law, has the minimum travel time. But minimization

of the travel time is not part of the traffic equilibrium law. III
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These examples show that the continuity assumption for both variables

and volume delay functions, and also a non-decreasing assumption for the

volume delay functions are necessary conditions for the user-equilibrium

law and the traffic-equilibrium law to be equivalent. Even under these

assumptions, there is no formal proof that the two laws are equivalent.

Because of these differences, in this report we assume that the traffic

equilibrium law governs the distribution of flow among the existing paths.

From this position, by traffic-equj.librium, traffic-assignment, user­

equilibrium, user-optimized, or an equilibrium problem, we mean the fixed­

point. problem discussed in Section 2.2 with the traffic-equilibrium law

governing the distribution of flow among the paths.

Also, these examples show that the continuity assumption for both

variables and volume delay functions is a necessary assumption for the

traffic-equilibrium problem to have a solution, while a non-decreasing

assumption on the volume delay function is not required. We prove this

claim in Chapter 3. Although it might seem that the volume delay function

for transportation applications is non-decreasing, this is not always true,

especially when the transportation technology is not fixed. For example,

consider a shuttle bus system in which the number of buses depends on the

number of passengers. In this case the delay time (waiting time) may de­

crease as the number of passengers increases and new buses are added to the

system.

3.2 PROBLEM FORMULATION

The Transportation Science and Operations Resea~ch literatures contain
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a number of different representations of the traffic assignment problem,

modeling a variety of features such as multiple origin8 and destinations,

multi-modal routing, and multiple classes of users. Although these spe-

cializations facilitate understanding of problems and provide intuition

and guidance for developing solution techniques, they lead to somewhat

fragmented views that inhibit investigations that might apply across a

wide range of applications. The area has now matured to the extent that

a broader perspective is possible. In this section we formulate a rath,er

general version of the traffic assignment problem that can be specialized

to any of these previously considered cases by defining appropriately the

network structure, the problem variables, and the functional forms for

vehicle delay and origin destination demand. Later in this section we give

an example to make this point clear.

This general formulation reduces notational difficulties enormously

for the theoretical investigations to be pursued in the next chapters.

We formulate the problem as a multiple origin destination traffic

assignment problem. For a given network [N,A] where N is the set of nodes

and A is the set of (directed) arcs, the user-equilibrium traffic assign-

ment problem can be formulated as:

(T (h) ut)hp = 0 for all p E P. and i E I (3.1a)
p 1.

T (h) - u. > 0 for all p e: P. and i E I (3.1b)p 1 - 1-

T (h) = L 0 • ti(h) for all p £ Pi and i E I (3.Ie)
. (3.:1) P ae:A ap a .

L h - D
i

(u) = 0 for all i 8 I (3.1d)
PEP! P

h > 0 (3.le )-

u > 0 (3.1£)
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where,

the index a denotes an arc, a £ A,

I is the set of O-D pairs,

the index i denotes an O-v pair, i £ I,

the index p denotes a path, p £ P. ,
1.

P. is the set of "available" paths for flow for O-D pair i
1.

(which migh~, but need not, be all paths joining the O-D pair),

h is the flow on path p,
p

h is the vector of {h } with dimension nl = L Ip.1 equal to
p iEI 1

the total number of O-D pairs and path combinations,

U
i

is an accessibility variable, shortest. travel time, for O-D pair i,

u is the vector of {ui }, with dimension nZ = III~

o =11 if link a is in path p

ap 0 otherwise

ti(h) is the volume delay function for arc a and O-D pair i,
a

n2 1
Di(u) is the demand function for O-D pair i, Di : R+ + R+

T(h) is the volume delay function for path p, which is that sum

of that volume delay function of the arcs in path p (a more

general formulation would relax t~is additivity assumption).

We assume that the network is strongly connected, i.e., for any O-D

pair i with positive demand there is at least one path joining the origin

to the destination; i.e., IPi'·~ 1. The first three equations require that

for' any O-D pair i, the travel time (generalized travel time) for a~l paths,
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P £ Pi' with positive flow, hp > 0, is the same and equal to ui ' which is

less than or equal to the travel time for any path with zero flow. Equa-

tion (3.1d) requires that the total flow among different paths between

any O-D pair i equals the total demand, Di(~)' which in turn depends upon

the congestion in the network through the shortest path variabl~ u. Con-

clition (3.1e) and (3.1f) state that both flow on paths and minimum travel

times should be non-negative.'

Up to this point, we have not imposed any restrictions on the volume

delay function. It is a function of all the flows in the network; by

defining the structure of the network appropriately this formulation can

model a wide range of equilibrium applications, for instance situations

with multi-modal and multi-class of users with mixed type of flow in· an

arc (such as bus and auto), with separate type of flow in arcs (such as

subway and auto), or even two way traffic in one arc and~right and left

turn penal~ies.

For example, consider a single link network with two modes of trans-

portation (i.e., auto and bus) and one O-D pair, and suppose that the volume

delay function for each mode depends upon the flows'by both modes.

mode 1 mode 1

mode 2
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To formulate the problem as a single mode problem with multiple O-D pairs,

we make duplicate copies of the networks, one for each mode. Define the

·volume delay functions as follows:

m
1

m m
t

1
(b,)

t
1

(h) = t (h l,h 2) ~ ~==* mode 1

m
2 (h~ ,h

ID2
)

t
2

(h)

t
2

(h) = t 0 D
2
~ mode 2

By this device of duplicating the network and letting t (h) be a
a

function of the vector of h in the generalized network, we can assume that

there is only one type of commodity (user class, mode, and so forth) flow-

ing in each arc. Thus in the generalized network we can omit index i from

ti(h). In the theoretical part of this report,we will work with thisa

generalized network.

3.3 EQUIVALENT NON-LINEAR COMPLEMENTARITY PROBLEM (NCP)

Let F(x) = (f1(x)t ••••••• fn(x» be a vector-valued function from a

n-dimensional space Rn into itself •. Then a vector x £ Rn is called a

complementarity solution if it satisfies the following conditions [see

C--K2] :

x • F(x) = 0

F(x) > 0

x > O.
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This formulation can also be generalized for the point-to set mapping

[see C-E2].

In this section we show that the traffic equilibrillffi problem (3.1)

has a complementarity nature. It is clear that equations (3.1a), (3.1b)

and (3.1e) are complementary in nature. To show that the rest of the

equations can be expressed in a complementarity form requires some mild

assumptions that we would expect to be met always in practice.

First, some simplification in the formulation helps to clarify the

transformation.

let

n
Let x = (h,u) E R where n = 01 + 02 and furthermore,

f (x) = T (h) - u. for all P E P. and i E I
P P l. 1.

and

g. (x) = I: h D. (u) for all i E: I.
1.

PEP. P l.

1

Also, let

F(x) = (f (x) for all p £ P. and i E I, g. (x) for all i E: I) E Rn
p 1. 1.

then F would be a vector-valued function from a n-dimensional space R
U

into itself. Now consider the following nonlinear complementarity system:

f (x) h = 0 for all p £ P. and i E: I
p p ~

f (x) > 0 for all p E Pi and i E I
P -

(3.2)
gi(x) u = 0 for all i E I

i

g. (x) > 0 for all i £ I
~

x > 0
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which can be wI'itten as the following compact fonn:

x > 0

F(x) • x = 0

(3.3) F(x) > 0

n1 1
PROPOSITION 3.1: Suppose that t a: R+ + R fOT' al.Z a E A. AZso, suppose

n2 1
that Di : R+ + R for aZZ i £ I. Then any soZution to the usep-equiZibrium

system (3.1) is a soZution to the nonZinear compZementapity system (3.3)s

PROOF: Obvious, since g.(x) = 0 in the user equilibrium conditions (3.1).11
1.

PROPOSITION 3.2:

tive function.

S th t ~ Z~ A th t t n1 1. ·UppOS8 a Jor a ~ a £ a a: R+ + R+ ~s a pos~-

n 2 1
AZso, suppose that foT' aZl. i E I that Di : R+ +R+ is a non-

negative funation. Then the user-equiZibrium system (3.1) is equivaZent

to the nonZinear aompZementaPity system (3.3).

PROOF: To prove the theorem, it is enough to show that any solution to

(3.3) is a solution to (3.1). Suppose to the contrary that there is a

x = (h,u) satisfying (3.3), but that g.(x) = L h - D.(u) > O. Then
1 p P 1pE

gi(x)ui = 0 implies that ui = O. Also, since DiiiS non-negative

L h > D.(u) > 0 which implies that h > 0 for some p E Pi- But, for
P 1 - P

PEPi .
this particular p, equation f (x)h = 0 implies that:

p p

. f (x) = (h) 0p Tp - ui =

or

T (h) = u .•P 1
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But since ui = 0, Tp(h) = L 0 • ta(h) = °which contradicts the
aEA ap

assumption t (h) > 0.11a

REMARK. 1: The user-equilibrium system (3.1) need not be equivalent to the

nonlinear complementarity system (3.3) if the assumption D.(u) > 0 is
1. -

dropped from this proposition. For example, consider the following net-

work with· a single link and a single a-n, pair,

t(h)

D(u) + @---+----0 + .

u

--------------------...JJ.... h

~igllre 3.5 Negative Demand Function

In this example, (h,u) = (0,0) is a oolution to the nonlinear complemen-

tarity system, while the "user-equilibrium system does not have any solu­

tion. II

REMARK 2: The user-equilibrium system (3.1) need not be equivalent to the

nonlinear complementarity system (3.3) if the assumption t (h) > 0 is
a

dropped from proposition 3.2. For example, consider the following network

with a single link and a single O-D pair:
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u

t(h)

D(U)+~+

t (II)
..,-

h

11

Figure 3.6 Negative Volume Delay Function

For this example, (h~u) = (h,O) is a solution to the nonlinear complemen­

tarity system, but not to the user equilibrium system.1I
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CHAPTER 4

EXISTZNCE AND UNIQUENESS OF ~UILIBRIUM

4.1 INTRODUC~ION

In this chapter we prove both the existence and uniqueness of the solu­

tion to any traffic equilibrium model (3.1) that satisfies assumptions that

are not very restrictive for transportation app11ications and do not lilnit,

in any essential way, the generality of the model. Although the litera­

ture contains some proofs of existence and uniqueness for special cases when

the problem can be formulated as an equivalent ~~timization problem (see

[T-D2-3], [T-F6] or [T-S4]),this approach seems to require strong assump­

tions that make it difficult, if not impossible, to extend the formulation

and the proofs to more general settings (see Section 5.3.2).

The nonlinear complementarity formulation provides us with a stronger

tool to generalize the formulation of the user-equilibrimJ, to extend the

existence and uniqueness theorems, and even to introduce new solution tech­

niques. This might be because user-equilibrium is essentially complementary

in nature.

4.2 EXISTENCE

Several researchers [C-Kl-4] have developed theorems that provide

necessary conditions for the existence of a solution to the nonlinear com­

plementarity problem. Unfortunately, most of the conditions are too strong

to be applied directly to the user-equilibrium problem. To illustrate this

situation we introduce Q prototype of thi8 theory, by considering results
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due to Karamardian. Later in Section 4.3 when we discuss uniqueness we

utilize some of the concepts introduced at this point. Before starting

the theorem, we require some definitions:

DEFINITION 4.1: Let F : D -)- En, D C En. The func tion F i.8 said to be

monotone on D if, for every pair x £ D and y E D, we hav~

(x-y)(F(x) - F{y» > O.

F is said to be stpictZy monotone on D if, for every pair K 8 D, Y 8 D

with x ~ y, we have

(x-y)(F(x) - F(y» > O.

It is said to be stpongly monotone on D if there is a scalar k > 0 such

that, for every pair xED, Y E D, we have

(x-y)(F(x) - F(y» > k Ix-y]2

where II denotes the usual Euclidean norm.

THEOREM 4.1: (Karamardian [C-K2]) If F : Ff + If is ~ontinuoU8 and strongly
+

monotone on ~~ then the nonlinear complementarity system has a unique

BoZution.
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THEOREM 4.2: (Karamardian [C-K2]) If F : ~ + ~ is strict~y monotone

on ~~ then the nonlinear aomp~ementarity system r~s at most one so~ution.

Notice that, for traffic equilibrium problems, these theorems require

that F(x) = ( Lot (h)-u. for all p £ Pi and i E I, L h -Di(u) for all
aEA ap a 1 PEPi P

i £ I) and necessarily t (h) be strictly or strongly monotone in terms ofa

path !Z01.Us. But this i8 not usually true since most of the time tIle volume

delay function t is a function of the sum of tne flow on different paths
a

corresponding to the same O-D pair.

EXAMPLE 4.1: Consider the following single O-D pair network with 4 possible

paths:

D(u) ~ ~: =:cc :=xv~

Suppose that x = (h
l
,h

Z
,h

3
,h

4
,u) is a solution to the corresponding nonlinear

complementarity problem. Then clearly y = (hl +8, h
2
-8, h3-8, h4+8, u), which

has the same total o-n flow and same link flows as X, is another solution as

long as y ~ O. But

(x--y) (F(x) F(y» = (8,-8,-8,+8,O)·Q = 0
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implying that F is not strictly monotone or strongly monotone. II
However, for transportation applications, the volume delay functions

are usually monotone, or even strictly monotone, in terms of Zink voZumes.

Later we use this property to show the uniqueness of the solution in terms

of link flows. In Theorem 4.4 to follow, we show that no monotonicity

assumption is required for the existence of the solution.

Before stating this theorem we recall another existence result for

nonlinear complementarity problems.

nDEFINITION 4.2: A bounded set B C R - D separates D from 00, if each un-- +

bounded closed connected set in R~ that meets D also meets B.

THEOREM 4.3: (Kojimas [C-K5]) Let d be a positive vector in R
n. Suppose

that f is continuous~ and that B C It;. - {O} separates the origin {o} from

oo~ and that for each x E B there is an x' E R
n for which (x'-x)d < 0 and
+

(x'-x) rex) ~ o. Then (J.3) has a soZution.

THEOREM 4.4: Suppose (N~A) is a stpongZy connected netwopk. Suppose that

n1 ~ R1t a : R+ ~ is a non-negative continuous function for all a E A. Also
n

ha -P: ..,..,. 2 1" " ~ t" h "suppose t t JOP avv ~ £ I 3 Vi : R+ + R ~B a aont~nuoUB Junc ~on t at ~B

bounded [pom above. Then the nonZineaP aorrrpZementaraity system (3.3) flas a

soZution.

PROOF:
i

Let d be a vector with components d such that

00 > d
i

> Max {a, Max D.(u)} > 0
u>O 1. -

for all i E I.
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This maximum always exists because D. is bounded from above. Also, let
1

L i > :Max{O, Max Max T (h)} > 0
pEP. O<h<d P -

1.

for all i £ I.

This maximum always exists because T (h) = ~ 0 • t (h)' and t is continu-
P aEA ap a a

aus. Notice that there is at least one path for each i E I.

Now, let 1 < Y < 00 and define

<S = y ( L d.· IPl.. I) + L 1".
· I 1. • I 1.1£ 1£

where IPil is the number of paths between O-D pair i. Also, suppose that

and

y( L E h) + L u. = 8}
i£1 P£P

i
p i£1 1

, , "
8 = {x = (h ,u ) £ R:

,
y( 2: E h) +

iEl PEP. P
1.

E u
i

< cS} •
lEI

Clearly, ~ separates the origin {a} from 00. Thus by Kojimas' theorem, it

is enough to show that for any x£ ~ there exists an x' £ ~, such that

(x'-x) • f(x) < 0 and x'-x < O. To prove this we distinguish two cases:

Case 1: x E ~ and for some p £ P. and i E I we have h >. d •
]. p - i Then
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I

g. (i).= ~ h -- D. (~) > L: h - d. > o.
]. pEP. p. 1 peP. p 1 -

]. 1

, ,
Now, if ui > 0 by taking h = h, u

j
= u

j
= u

j
for j ~ i, j E I and ui = ui

'- - , -
- ct for some 0 < ct <Ui , we complete the proof since (x -x)f(x) = (ui-ui )

f ~ (x) = - ex gi (x) < o.
1. -

If u. = 0 then we have:
].

f (i) = T (h) - u. = T (h) > o.
p p ]. p -

Again, since h > d. > 0, by taking u
p - 1,

and h = h - a for some 0< a < h ,
p p P, - --

= (hp-hp) f p (x) = -ctfp (x) < o.

= u, h = h for q ~ p, q E p., j E I
q q J,

we complete the proof since (x -x)f(x)

Case 2: i £ ~ and hp < di for all p E Pi and i E I, which implies that

E L h - L IPild. < O.
iEI pEP P iEI 1

i

Also, x E ~ therefore:

(4.1)

which implies

(4.2)



Clearly, II U I Z = I, II n I Z = ep and II :f ep because of (4.Z). Now (4.1)

But, in this equation all terms except E (Ti-~') are negative and y > 1,
iEI

Z
J.

(4.3)

for all p e: P .
1.

L (T.-U.) < y( L L h - LIp. Id.) < 0
iEl

1
1. 1. · I pEP. P · I 1. 1.

1.£ 1 1. 1.E 1

1: f (x) <
e:p Pp .

].

f (x) = T (h) - u. < T. - u. < 0
p P 1. - 1 1
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II = {i £ I: u. > T.}
1. 1.

I Z = {i E I: ~i ~ Ti }·

implying that

thus:

On the other hand, for any i E II we have:

can be written as:

L: (T.-~.)+ z: (T.-~.)=Y( l: l: h - l: Ip.(od.)+y( E 2: hp- E Ipiled .
· I 1 1. • I 1. 1. • I P P · I 1. 1. • I P P 1..£1

2
~ 11£ 1 18 2 1.E 1 pE i 1.E 1 1.E 2 E i

We partition the set I into two disjoint sets II and 12 such that
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and that

Also, for any i E 11 we have:

(4.4)

g. (i) =
1.

L ii
pEP. P

1.

D. (~) >
1.

L h - d
p ipEP.

1.

(4.5)

Now, if g. (x) > 0 for some i E 11 then the proof is clear. To see this,
1.

- and u! -
take h' = h, u! = u. for j # i and j E II' = u. - ct for some

J. J 1. l.

o < Cl < u
i

. Therefore, suppose that g. (x) < 0 for all i Ell. Adding (4.5)
1.

for all i E II gives:

Combining (4.3), (4.4) and (4.6) implies that

(4.6)



E (l/lp. I) L f (x)
· I 1 P P1£ 1 p£ i

E g. (i)
· I ].
1.£ 1
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>

L: Ip.1 d_
· I 1 1.1£ 1

2: y > 1.

Now, define x' = (h', u') as follows:

h' = h + a/(P·I for p E P. and i £: IIP P 1- 1.

hI = h for p E: Pi and i E 12p P

u! = u. - a a for i £ II1. 1

u! = u. for i E 12]. ].

where a and a are constants satisfying:

y < a < (L (l/IPil) L f (i) / (L g.(x»
i I pEP. P · I 1£ 1 ]. 1E 1

o < a < Min (Ui'S).
iEl

l

To complete the proof, it is enough to show that x' satisfies Kajimas'

conditions. First, it is clear that x' > 0 and x' £ ~, because:
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y( L L hI) + L ui = y( L L h) + L U.
is! pEP. P i£I is! PEP. P iEl 1

1 1

+ y( E E a_) - ~ a S
iEl l PEPi IPil iEll

Also, (x'-i)e < 0 where e is a vector ofn ones because:

The last inequality is valid because a > y > 1.

Finally, (x'-x)ef(i) ~ 0 because:

(x'-x)f(x) = E E (a/lp.I)·£ (x) - E a a g.(X)
· I P 1 P · I 11£ 1 P€ i 1£ 1
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this inequality is valid by definition of a, and the proof is complete. II

THEOR~M 4.5: (Existence) Sup~o8e (N, A) is a Bt~ongly connected net-
n t

k h R 1 f' • • • .f-'. • +'WOP. Suppose t at ta: + -I- R+ 1,8 a POs1,t'l-Ve aont'l-nUOUB iunat'l-on J Of1
n ,

aZZ a E A. AZso suppose that fOf1 aZZ i E I J Di : R+
2

+ R+ i8 a non-

negative aQntinuoU8 funotion that is bounded [porn above. Then the uaer-

eql.tiZibr-iwn system (~ .. l) has a BoZution.

PROOF: Theorems 3.2 and 4.4 immediately imply the proof of this theorem.1I

Recently Asmuth [T-A4] has shown how the user-equilibrium problem c,ao

be formulated as a stationaPy p01:nt problem, and has given exlstence and

uniqueness proofs for a iTiOre general type of volume delay and demand func-

tionso

EXISTENCE THEOREM 4.6: (Asmuth) Suppose (N, A) is a Bt~ongZy aonneated

ne tu:JoT'k.

i)

Suppose

t , the voZume delay funation, is a positive, convex
a

vaz'ue d and upper semi-aontin1l.ous point-to-set map on

{h I h ~ O} and

ii) Vi' the demand funation, i8 a non-negative, bounded~

aonvex vaZued and uppep semi-continuous point-to-set

map on {u I u ~ O}.

Then a soLution to the usep-equiZibpium probZem exists.

Although Asmuth's proof differs from ours, the underlying ideas are

the same. He uses Saigal's results [C-Sl] to give a necessary condition
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for the existence of the solution for the stationary point problem, instead

of Ko j imas' resul ts wllich we used.

4.3 UNIQUENESS

Although t:here is a straightforward method to show the uniqlJeneS8 of

the solution under some assumptions, it is usually difficult to extend the

results to more general cases. In this section we use ideas similar to what

Asmuth [T-A4] has used for the stationary point problenl to show that the

nonlin~ar complementarity problem and user-equilibrium problem has a unique

solution under strictly monotonicity assumptions. As we showed previously

in Section 4.2, the path flows usually are not unique and only the arc

volumes will be unique. Also, in this section we extend the results for

situations in which the link flows are not unique, but the path travel times,

the accessibility variables u i ' are unique.

To facilitate our study in this section, we represEnt the traffic equi-

librium problem in a matrix form. Let v denote the total flow on arc a,
a

that is, v = ~ L Q -h, and let v with dimension IAI denote the vec­
a 1£1 pEP ap p

i
tor of arc flows. Then t (h) = t (v) for all a E A.

a a

Also, let t(v) be the vector of volume delay functions and D(u) be the

vector of demand. functions. Let ~ = (0 ) be the arc-path incidence matrix
ap

with dimension IAI x n
1

and let r = (Y
pi

) be the path-O-D pair incidence

matrix with dimension n1 x n2, i.e., Ypi = 1 when path p joins O-D pair i

and y . = 0 otherwise.
pl.

Then the user-equilibrium problem can be written as follows:
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(

(l\T·t(l\h) - r·u) • h = 0

l\T·t(Lih) - r·u) > 0

rT·h - D(u) = 0

h > 0 u > 0

Now let G(x) = (t(l\h), - D(u» where x = (h,u) and G: R~ + RID with n = nl

+ nZ and ID = IAI + nZ" Also let:

6 =
o

I'
and r =

o - r

rT 0

with dimensions m x nand n x n respectively, and II is the identity matrix

with dimension n2 x °2 -

Then, the corresponding nonlinear complementarity problem can be written

as follows:

> 0

x > 0 •

(4. 7)

It is easy to show that l\TG(l\x) + rx = F(x) where F has been defined in the

Section 3.3. Therefore (4.7) is equivalent to the system 3.3.
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The following lemma and its proof is very similar to results of Asmuth

[T-A4] concerning a stationary point problem, and is included here for com-

pleteness.

LEMMA 4.1: Let KeRn, 'let B be' an m x n matllix" and 'let L = {Bxl x E: K}

c IfI. Suppose that g: L + If' is stl"iatty monotone on L. Let A be an n x n

positive semi-definite matpix. Define f: Rn
+ ~ by f(x) = BTg(BX) + Ax.

Then the set of soZutions (x, !(x)) to the compZementarity ppobZem x ~ 0,

!(x) > 0 and xf(x) = 0 is convex and Bx has the same vaZue fop aZZ of these

soZutions.

PROOF: 121 2Suppose that x and x , x ~ x , solve the nonlinear complementarity

problem, i.e.

i f(xi) i ix ~ 0, > 0 and x f(x ) = 0

then

for i = 1,2

and consequently

{

2 1 "1
(x -x )f(x ) > 0

1 2 2·(x -x )f(x ) > 0

which implies that

or

1 2 TIl T 2 2
(x -x )(B g(Bx ) + Ax - B g(Bx ) - Ax ) < 0

or

1 2 T 1 2' 1 2 1 2
(x -x )[B (g(Bx )-g(Bx »] + (x -x ) A (x -x ) < o.
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Since A is positive semi-definite, (x1_x2)A(x1_x2) ~ 0, implying that

1 2 T 1 2(x -x )[B (g(Bx ) - g(Bx »]< O.

or

1 2But g is strictly monotone on L, therefore Bx = Bx .

(4.8)

To prove the convexity of the solution set, let AE[O,l] and let x =

Ax1 + (1-A)x2• Then clearly x > 0 and also, by the first part of the proof

Bx = ABx1 + (1-A)Bx2 = Bx1 = Bx2• Therefore

f(x)
T

= B g(Bx) + Ax

T T 1 2= AB g(Bx) + (l-A)B g(Bx) + A(AX + (l-A)x )

ABTg(Bx1) + AAx1 + T 2 2
= (l-A)B g(Bx ) + (l-A)Ax

= A(B
T

g(Bx
1

) + Ax
1

) + (1-A)(B
T

g(Bx
2

) + Ax2)

= Af(x1) + (1-A)f(x2).

But AE[O,l] and f(x i
) > 0 for i = 1,2; therefore f(x) > O. Also, clearly

xf(x) > 0 and

or

xf(x)
T= x(B g(Bx) + Ax)
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l'
xB g(Bx) + xAx

T T= AxB g(Bx) + (l,-A)xB g(Bx) + xAx

Also,

xAx =

1 1 2 2 1 2 1 2= AX Ax + (l-A)x Ax - A(l-A)(x -x )A(x -x )

and thus,

2 2o and x f(x ) = 0; therefore,

This implies that xf(x) ~ 0 because A is positive semi-defin~te. Also, we

showed previously that xf(x) ~ O. Consequently, xf(x) = 0 and x is a com­

plementarity solution. II
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THEOREM 4.7: (Uniqueness) Fop a stpongZy connected netwopk (N~ A)~ suppose

that t~ the vectop of the voZume deZay !unations,and -D~ the veatop of the

negative demand funations~ aPe stpictZy monotone. Then the ape voZumes~ v~

and the accessibility vectop u fop the equilibpium ppobZem (3.Z) ape unique~

and the set of equiZibpium path flows ape convex.

PROOF: With the notation used in system (4.• 7) ,we have that G = (t,-D) is

strictly monotone on L = {l\x = (v,u) : x = (h~u) E: RO}. Also, sin.ce r is

skew systematic, it is positive semi-definite. (In fact, for any x = (h,u)

we have:

xrx = (h,u)
[

0 -r]
rT 0

T(h,u) 0) •

Thus, with g = G, f = F, B = il and A = r, by Lemma 4.1, ~x = (v,u) is

unique for the nonlinear complementarity system (3.3) which implies that the

arc volume v and the accessibility variable u are unique for the user-

equilibrium problem (3.1). Also, the set of solutions x = (h,u) to the

nonlinear complementarity problem (3.3) is convex, which implies that the

set of path flows, h, is convex for the user-equilibrium problem. II
Notice that the required conditions for Theorem 4.7 are completely

different than the conditions in Karamardian's Theorem, 4.2. Here, we re-

quire that the vector of volume delay functions is strictly monotone in

terms of arc volume v, while in 4.2 we require that the nonlinear comple-

mentarity function, F(x), is strictly monotone in terms of path flows, h.

As we showed in Example 4.1, the path flows, h, might not be unique even
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if we assume that all t a and -D
i

are strictly monotone.

Note that both of the functions t and -D are required to be strictly

monotone in Theorem 4.7 to insure che uniqueness of (v,u). In the next

Theorem'we show that this restriction on D can be relaxed, and that unique-

ness of u is maintained if either of t or -D is strictly monotone.

THEOREM 4.8: Fop a complete netwopk (N~ A), suppose that t and -D ape both

monotone functions. If eithep of t OP -D is strictly monotone, then u is

unique.

PROOF:

tions.

AZso, if t is stpictZy monotone, then (v,uJ is unique.

111 222 1 2
Suppose that x = (h ,u ) and x = (h ,u ), x ~ x , are two solu-

As in lemma 4.1, with g = G, f = F, B = ~ and A = f, we have by

equation (4.8)

But G = (t,-D) is .monotone because it has monotone components, i.e.,

Therefore

By substituting for ~, x • (h,u) and G m (t,-D) we obtain:

121 212 1 2(Ah -~h )(t(6h ) - t(6h » + (u -u )(-D(u ) + D(u » N 0

(4.9)

(4.10)
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But both t and -D are monotone functiuns, thus each term in (4.10) is zero;

that is,

(4.11)

1 2If -D is strictly monotone, then equation (4.12) implies that u = U , or

u is unique.

Now, suppost that t is strictly monotone. Then (4.11) implies that

1 1 2 2v = ~h = fih = v , or that the arc volume vector v is unique. But unique-

ness of arc volume vector implies that the travel time, t (v), on each arca

is unique, which obviously implies that u is unique. II
When all the traffic from different origins have the same effect on the

travel time of each arc, and there is no interaction between opposing lanes

of two-way traffic or right or left turn penalties, or in other words, t
a

is a function only of the total volume in the arc, then the strictly mono-

tone condition on t can be relaxed for the uniqueness results.

COROLLARY 4.1: (Special case) Fop a stpongZy connected ne~opk (N, A),

suppose that each t is a function onZy of v , and that it is monotone.a a

Atao, suppose that -D is monotone. Then u is unique.

PROOF: Obviously t, the vector of the volume delay functions, is monotone

because each of its components is monotone. Thus equation (4.11) in

Theorem 4.8 is true,
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(4.13)

But since each component of t is monotone, (4.13) can be separated into a

single form for each arc:

121 2(v -v )(t (v ) - ta(v )) = o.a a a a

This implies that t (vI) = t (v2)t or that the travel time on each arc is
a a a a

unique and~ consequentlYt that U t the minim~m path travel timet is unique. II
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CHAPTER 5

COMPUTING AN EQUILIBRIUM

5.1 INTRODUCTION

In this chapter we discuss some of the basic approaches that have

been applied to find an equilibrium solution to the traffic assignment

problem. We consider exclusively the deterministic case. For a dis­

cussion of stochastic approaches, see Sheffi [T-Sl] and the references

that he cites.

Almost all previous efforts can be classified as being:

i) Heuristic

or ii) mathematical programming-based.

In this chapter we briefly discuss approaches from each category, and

their limitations. We conclude the chapter by introducing a new

linearization approach that is based upon mathematical programming,

although we have not been able to prove its convergence.

5.2 HEURISTIC TECHNIQUES

Since 1952, a large number of algorithms have been developed for

the traffic assignment problem. Most of the earlier techniques have

been based upon intuition, without considering congestion effects or

any formal concept of equilibrium. The goal of these approaches was

to assign flow between different paths so that the paths have almost

equal travel times.

The. first of these algorithms is the "diversion curve" technique

[T-M5, T-M9, T-W5] in which the total number of trips between an origin-

'0
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destination pair are divided between two routes, one an expressway or

the like, and the other an arterial, or equivalent, highway. These

techniques are only suitable for small networks. The next generation

of this type of algorithm is the "all-or-nothing" or "desire" assignment

technique used in 1958 in the Detroit Transportation Study [T-D6]. None

of these algorithms incorporates congestion effects or an equilibrium

concept.

The first attempt to account for the capacity of the system is known

as the "capacity restrained" technique [T-C3, T-D13, T-II, T-I2, T-S3].

Manheim and Martin [T-M3], in a procedure known as the "incremental

traffic assignment" technique, were the first to account for both con­

gestion and equilibrium concepts in the context of the traffic assignment

problem. This procedure tries to load the network by a small percentage

of flow incrementally, updating the system performance and congestion

measures after each flow change.

Recently, more sophisticated heuristic techniques have been de­

veloped and applied to the large networks (see Jacobson [T-Jl] or

Manheim and Ruiter [T-M4], for example). However, neither is there any

good theoretical justification to guarantee the convergence 0: these

algorithms, nor is there enough computational experience to sho·w how

good they perform in practice.

5.3 MATHEMATICAL PROGRAMMING TECHNIQUES

As we pointed out in the previous chapter, the traffic equili­

brium problem can be formulated as a non-linear complementarity problem

or as a fixed-point problem. Therefore, at least theoretically, any
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algorithm for solving these problems might be used to solve the traffic

equilibrium problem. Also, any non-linear complementarity problem

or fixed-point problem can, again in theory, be visualized as an equi­

valent optimization problem (see Todd [C-Tl]). Therefore, an optimi­

zation algorithm might be used to solve the problem. ~

Unfortunately, the limitations on existing algorithms in terms of

both the size of the problems that they can solve, especially for the

fixed-point and complementarity approaches, and, in terms of the re­

quired assumptions, especially for the optimization-based approaches~

makes it almost impossible to apply them to solve any real-life traffic

equilib~ium problem. In section 5.3.1 we briefly discuss the validity

of these algorithms and review the efforts of various researchers to

use these techniques.

However, under some nlild assumptions, the equilibrium problem can

be formulated as special optimization problems for which there are

efficient algorithms currently available. In section 5.3.2, we discuss

this method and its generalizations.

5.3.1 Fixed·...Point Tecl!niques

In the literature, there are many algorithms for solving fixed­

point and llon-linear complementarity problems [C-Fl, C-L3, C-K4, C-S2,

C-Tl, C-T2]. Generally, these algorithms are based upon some division

scheme that subdivides the working region into a number of simplexes,

and then use some clever search (or pivoting) procedure to move among

the simplexes until one is found that approximates a fixed-point (see·

Scarf [C-S2] or Todd [C-Tl]). A major advantage of these algorithms
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is that they require very few assumptions on the problem, and have the

capability of dealing with highly non-linear problems. Another ad­

vantage' is that they can provide solutions to within any prescribed

degree of accuracy.

However, naturally, the generality and power of these algorithms

creates some disadvantages as well. One disadvantage is a relatively

high solution time, which limits the size of problem that they can

solve. For example, the solution time is on the order of a cCllV1e of

seconds for a five-variable problem (see Kojima [C-K4] or Lutti [C-L3],

and a couple of minutes for a problem with 50 variables. Another dis­

advantage is that these algorithms, because of their generality, do

not expl~i~ any inherent properties of the problem under study.

For the transportation a?plications that we are considering, the

variabl2s for the associated non-linear complementarity problem are

the available paths in the network. Even for a small-sized network with

100 nodes and 1000 arcs, the number of paths is on the order of millions,

although most of them have zero flow. Not even the most efficient

general purpose algorithm for the non-linear complementarity problem

would be able to solve a problem of this size. Also, generally, the

transportation applications do not require the degree of accuracy that

these algorithms are capable of providing.

Finally, regardless of what kind of algorithm is used to solve the

equilibrium problem, knowledge of shortest paths is essential. Since

there are a number of extremely efficient algorithms available for

finding shortest paths, any efficient algorithm for the traffic
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equilibrium problem might be expected to incorporate shortest path

computations as a subroutine. Fixed-point algorithms, generally, do

not take advantage of this aspect of the equilibrium problem.

However, at least theoretically, the fixed-point algorithm will

solve any general equilibrium problem, even when other algorithms

might fail.

III 1977, Kuhn [T-H2] devised a fixed-point method, equipped with

a special pivoting scheme, to solve equilibrium problems with fixed

demands and with separable volume delay functions. Applications of the

algorithm to a small 4-node equilibrium problem required 7 seconds of

computation time and provided a very accurate solution. In 1977,

Aashtiani [T-Al] formulated a more general equilibrium problem as a

non-linear complementarity problem and studied the existence of solu­

tions. Asmuth [T-A4] proposed a similar model which included point­

to-set volume delay functions and demand functions. He proposed a fixed­

point algorithm and applied it to some small examples that could not be

solved by any other method. The algorithm found accurate solutions,

but, again, the solution time was so high that it does not encourage the

application of this algorithm to large, real-life transportation problems.

5.3.2 Optimization Technique

In 1956, Beckman, McGuire, and Winsten [T-Bl], by imposing the

following restrictions, were the first to formulate the traffic equi­

librium problem as an optimization problem.
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Problem Restrictions:

i) The link performance functions are independent, i.e.,

t (f) = t (f) for all a £ A
a a a

where

f =
a

L L 0 h
iEr pEP. ap p

1

.f-

ii) The demand functions are independent, i.e.,

iii) t (f ), for all a E A, is an increasing function.a a

iv) Di(ui ), for all i E I, is a strictly decreasing function.

By imposing these restrictionst , they showed that the Kuhn-Tucker

condition for the following convex minimization problem is equivalent

to the user-equilibrium system corresponding to the traffic equilibrium

f d.
Minimize E ~ ata(x)dx - E ~ 1wi (y)dy

aEA iEl

subject to:

tIn this section we assume thai t(f) and D(u) are positive, continuous
functions and that they are differentiable.
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d. = 0 for all i E I
1

(5.1a)

(5.1)·

f =a
L L 0 h

iEI pEP. ap p
1

for all a E A (5.1b)

h > 0

d > 0

(5.1c)

(S.ld)

where w.(d.) is the inverse function of the demand function Di(u.); it
111

always exists because D.(u.) is strictly decreasing. The dual variables
1 1

corresponding to the first set of constraints (5.1a) are the accessibility

variables, u .•
1

In addition, they showed that when t (f ) is strictly increasing,
a a

then the minimization problem has a unique solution in terms of f and u.

Notice that, although the above formulation has been given for a

single-mode traffic assignment problem, this formulation is valid for the

multi-modal case as long as the assumptions (i) and (if) hold. In fact,

the problem can be separated into distinct minimization problems, one

associated with each mode.

In the last decade, a number of researchers [T-F4-7, T-G5, T-L2-3,

T-N2-6] have developed algorithms based upon this formulation for both

fixed and elastic demand functions. Among these algorithms is the one

developed by Leblanc [T-L2-3] using the Frank-Wolfe feasible direction

method [T-F9] for fixed demands. Nguyen [T-N3] developed an algorithm

based upon the convex simplex method. Later Nguyen and Florian [T-F6],
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using Benders decomposition, extended the range of applications to

include elastic demand functions. These algorithms have 'been applied

with success to solve some small real-life problems.

The first attempt to generalize the equivalent minimization approach

to multi-class users, at least theoretically, was made by Dafermos

[T-D2] • She relaxed the restrictions (i) and (iii) as follows:

i) , t (f) is a function of the vector of f and
a

Vt(f) is synunetric. Here t is the vector of t .
a

iii)' 'It(f) is a positive definite matrix.

For the fixed demand function, Dafermos proposed a minimization

problem of the form:

Minimize S(f)

," subject t"J:

L h
PpEP.

1.

d. = 0 for all i E I
1.

f =
a

(5.2)

L L <5

iEI e:P apP i
• hP

for all a E A

h > 0

f > 0

She showed that this minimization problem is equivalent to the equi-

librium problem if,

oS(f) =
af

a
t (f)

a
for all a e: A
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and showed that this system of differential equations has a solution

if, and only if, ~t(f) is symmetric. Then S is the specification for

the following line integral:

f
S(f) = ~ t(x)dx

o

or

S(f)
f

= ~ L t (x)dx
o aEA a a

Furthermore, Dafermos showed that S(f) is a strictly convex function if,

and only if, Vt(f) is positive definite.

To generalize the minimization approach to a more general setting,

we permit not only t (f) to be a function of other link flows, but also
a

let Di(u) be a function of the full vector u. In other words, we in­

clude any destination or mode ch~ice demand function in the model.

Moreover, we require new restrictions that are weaker than the previously

quoted assumptions, namely:

i) , t (f) is a function of the vector of f and Vt(f) is
a

symmetric. Here t is the vector with components t .
a

ii)' D.(u) is a function of the vector u and gD(u) is
1.

symmetric. D denotes the vector with components D.•
l.

iii)'

iv)'

Vt(f) is a positive definite matrix.
-aD

i
-VD(u) is a positive definite matrix with au. ~ 0 for i ~ j

and -V2D.(U) is a positive semi-definite mat~ix for all i E I.
1.
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We propose the following minimization problem:

Minimize

subject to:

~(htu) - S(f) + 8(u)

f u
= , t(x)dx - uD(u) + '- D(v)dv

o 0

Gi(h,u) - for all i £ I

(5.3)

f =
a

LEo
lEI psP ap

i

• hp
for all a £ A

h > 0p- for all p £ Pi' i E I

for all i E I

lJp

where ~ denotes a line integral; the symmetry assumptions (i.e., (i)'

and (iii)') guarantee the existence of the line integrals.

If we substitute for the variable f and let A, ~, and y be the

dual variables for the constraints (5.3), then the Kuhn-Tucker conditions

for the above problem are:

VhW(h,u) + AVhG(h,u) - 1-1 = 0

V ~(h,u) + AV G(h,u) - Y = 0
u u

G(h,u) = 0
(5.4)

llh = 0

yu = 0

h 2:. 0, u 2:. 0, 11 2:. 0, Y2:. 0 •



Dafermos provided intuition for choosing S(f) .. To motivate our

choice of 8(u), let us look at the second equation in (5.4),'

where,

aD.
L A

j
--2 - Y = 0

jEI aUi i
for all i £ I

or

u
as(u) = __a__ [-uD(u) + ~ D(v)dv]"

aUi aU i 0

aD. (u)
= -D (u) - L U. J + D.(u)

i jEI J aUi 1

a6(u)
au.

1

= -
an. (u)

L u _ ...J __
· I j au.JE 1

We will show that when -VD(u) is positive definite, the above choice

for S(u) guarantees that u = -A and y = O. Thus (5.5) becomes:

It is easy to see that symmetry of VD(u) implies that
u

S(u) = -uD(u) + ~ D(v)dv is a solution for the system of differential
o

equations (5.6), and .this motivates our choice of S(u).

Involving assumptic;>ns (i)' and ('1'1)' in (5.4),. it becomes:
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E 0apta(f) + A. - 11 = 0 for all pEP. , i £ I
1 P 1

a

aD. dD.
z: u.at + L A·at + y. = 0 for all i '£ I
j J u. . J u. 1

1 J 1

L h - D. (u) = a for all i E I
pEP. P 1

1

(5.7)

f L L <5 h for all a E A '"=a
iE! pEP.

ap p,
1

llh = 0

yu = 0

h ~ 0, u ~ 0, I..l ~ 0, y ~ o.

It is easy to see that when u = -A and y = 0, then (5.7) is equivalent

to the nonlinear complementarity problem associated with the equilibrium

system. To prove that assumptions (iii)' and (iv) , guarantee that

U = -A and y = 0, we need the following lemmas.

LEMMA 5.1: If A is a positive definite matPix, then Ax = 0 impZies

that x = o.

PROOF: Suppose it is not~ and x +0, then

T T
x Ax = x • 0 = a

but this is a contradiction, because A is positive definite. II
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LEMMA 5.2: Suppose that A is a positi~e.definite matrix and that

a .. < 0 for all i =J j. Then Ax = <5 has a non-negative solution for
'l,J -

any 0 > o.

PROOF: We prove the result by induction. For n = 1 it is clear.

Suppose that it is true for n = k. We show that it is true for n = k + 1.

It is clear that not all Xi can be negative because xTAx = xTo ~ 0,

which contradicts the assumption that A is positive definite. Thus,

SuppOGe that x > 0 for some m.
ro-

B 1 ... · the mth d k · h th 1 h hy e lmlnatlng rowan ta 1ng t e m co umn to teat er

side of the equation we get the following system of equations:

for all i :f m

Clearly, the matrix associated with the above system has all the pro-

perties of the ~rigina1 matrix, and also, since a .. < 0 for all i :f m,
1m -

thus 0. _. a. x > 0 for all i :f m. Therefore, by induction, the new
l. l.m m -

system of equations has a non-negative solution,·which completes the

proof. II

THEOREM 5.1: Suppose that t(f) and D(u) aPe positive (a.omponen~ise)

continuous veatop functions and~ furthepmope~ that.Vt(f) and -VD(u) are
. aD.(u)

symmetpia and positive definite matpiees with - d ~ ~ 0 fop aZZu.
J

i ~ j. Then (5.7) is equivalent to the equiZibrium system~ i.e.~

U = -A and y = o.
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PROOF: First, suppose that u > O. Then the complementarity equation

for all i e: IL (U. + A.)
j e:1 J J

uy = 0 implies that y = O. Thus, the second equation in (5.7) becomes,

an. (u)
_ ....J__ = 0

dUe
J

or

(-~D(u)(u + A) ~ 0 •

By lemma 5.1, we have U + A= 0 or U = -A.

Now, suppose that u = 0 for some m E I. Since D (u)' > 0, there is
m ,m.

at least one path p' £ P with h , > 0 which implies, by complementarity',
m p

that ~ , = 0, or that
p

L 0 ,t (f) =
a ap a

-A
m

Also we have,

(-VD(u))(u + A) = Y~ o.

Lemma 5.2 implies that u + A > 0 and, in particular, that u + A > 0,
m m-

or A > O. Thus we have
m-

L 0 ,t (f) =
a ap a

-A < 0m-

which contradicts the assumption t (f) > O. This completes the proof.1I
a

Now the question is, when is the minimization problem (5.3) equi-

valent to the Kuhrt-Tucker system (5.7). Assuming fixed demand, Dafermos

showed that a necessary and sufficient condition is that Vt(f) be a

positive definite matrix, which implies that the objective function is a

strictly convex function in terms of the link.flow vector f.

For the general case, to hav~~a strictly convex objective function

it is sufficient t~at 8(u) be a strictly convex function, or equivalently,

2that V S(u) be a positive definite matrix. Previously we showed that:
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aD. (u)
_ E u _d_ (_J__ )

jEI jauk aU i

T 2- VD(u) - L u.V D.(u)
j £1 J J

ae (u)
aD. (u)

= - L U. J for all i E: 1
atl

i · I J au.JE 1

or equivalently,

\78(u) = - 'VD(u) • u •

Also, for any i E I and k E I we have:

or equivalently,

Since VD(u) is symmetric, thus we have:

2 2'V 8(u) = - VD(u) - L u.V D.(u)
j£I J J

One sufficient condition for V2S(u) to be positive definite is that,

-VD(u) be positive definite and that -V2D.(u) be positive semi-definite
1

for all i E: I.

However, it is not clear under what conditions the minimization

problem and the equilibrium problem are equivalent. Also, the validity

of the assumptions is another question, because even the symmetry

assumption for both Vt(f) and VD(u) is not valid for real-life problems.

This is one reason why this approach might not be applicable for the

general case.
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EXAMPLE 5.1: Consider a single line network with two modes of

transportation, auto and bus, using the same link. To formulate this

problem as a single mode case, we duplicate the network and use a

separate link for each mode, as follows:

Auto

Bus

If we let tl(fl,fZ) and tZ(fl,fZ) denote the volume delay functions,

then the equilibrium problem can be written simply as:

i = 1,2

i = 1,2

f ~ 0, u > 0 .

The corresponding minimization problem would be,

f
Min ·~O tl(x,y)dx.+ tZ(x,y)dy - ulDl(ul,uZ) - uZDZ(ul,uZ)

u

+ ~Dl(Vl'Vz)dVl + DZ(vl,vZ)dvZ

subject to: for i = 1,2

f > 0, u > 0 .

Now consider a special case with a logit demand function and linear

volume delay functions with the following function~l forms:
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D
1

(U
1

,u
Z

)
-8

1
u

1
-8

1
u

1
-8 ZuZ= d. e I(e + e )

e > 0

D2(u
1

,uZ)
-82u

2
-8

1
u

1
-8ZuZ

= d. e I(e + e )

where d is the total population and f
1

is the number of passengers using

autos and £2 is the number of passengers using buses.

VD(u) is symmetric if, and only if, 81 = 82 and Vt(f) is symmetric

if, and only if, Sl = U
2

e However, none of these assumptions are valid

for real-life problems, because 8
1

= 8
2

implies that both modes have equal

direct and cross e1asticitiese Also, Uz = 8
1

implies that an auto pas­

senger effects a bus passenger as much as a bus passenger effects an

auto passenger.

When 81 = 82 and (31 = uz' the line irltegrals become

ft t 1 (x,y)dx + t 2 (x,y)dy

£1 £2
= ~ t 1 (x,O)dx + t t 2(f1 ,y)dy

and

~ u eUI 8uZ
1 d e + e1> D(v)dv =e 1n 2
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Thus the minimization problem becomes:

Min

subject to:

f. = d
1

-eu.
1e

-eu -eu
2e 1 + e

for i = 1,2

f 2:. 0, u > 0 .

It is easy to see t4at Vt(f) is positive definite if, and only if,

UlS2 > u2Sl o But -VD(u) cannot be positive definite, although it is

positive semi-definite. II

EXAMPLE 5.2: Consider the following transportation network with 5 one-

way links and 4 nodes:

Suppose that there are two types, modes, of movement in the network,

auto and truck. The auto movement is between origin-destination pairs

1-3 and 1-4, given by a destination choice demand function. The truck

movement is only between O-D pair 1-3.
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Also suppose that the volume delay function for each mode on the

first link depends on the flow by both modes. And suppose that there

To transform the problem into a single mode network we change it

as follows:

Truck

Figure 5.1 Modified Network Configuration for Example 5.2

For the following linear demand functions

e > 0

VD is symmetric if, and only if, 812 = 821 , and -VD(u) is positive

definite if, and only if, 811822 > 812821 • With these assumptions,
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the components of the objective function become,

and

Then the minimization problem becomes,

(£1'£6) (£2'£3)
Min t t 1 (x,y)dx + t 6(x,y)dy + t t 2(x,y)dx + t 3(x,y)dy

£4 ·£5 1 2 2 1 2
+ f t 4(x)dx + f t 5 (x)dx + "2[811u1 + (812+"821)u1u2t622u2] + "2B3u3

O· 0
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subject to:

h - D (u) = a
1 1

h2 + h3 + h4
- D

2
(u) = 0

hS - D' (u) = 0
3

£1 = hI + h3 + h4

£2 = hZ

£3 = hZ + h4

£S = h
3

£6 = h
S

h > 0, U > 0

where h is the vector of path flows, with single paths hI and h
S

for

O-D pairs 1-3 and 5-6, respectively, and three paths, hZ' h3 , h
4

, for

O-D pair 1-4.•

REMARK 5.1: For any link satisfying t (f) = t (f ), the line integral
a a a

becomes the regular integral. Also, when D.(u) = D.(u.), then the
111

minimization problem for the general case is equivalent to the one

given by Beckman et aI, without explicit use of the inverse function

of D.(u.). This alternate form results from the following fact,+ 1

v=D(u) 1 u
1 D- (v)dv = uD(u) - LD(t)dt + constant • ..o 0

5.4 A LINEARIZATION TECHNIQUE

As we showed in section (3.3), under some mild assumptions the

equilibrium problem can be formulated as a non-linear complementarity

problem (NCP), i.e.,
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xF(x) = 0

(NCP) F(x) > 0

x > 0

Usually for transportation applications, the size of this problem

is so la~ge that it cannot be solved by using existing non-linear

complementarity algorithms, such as [C-K4, C-L3]. For example, for a

small problem with 100 O-D pairs, the nonlinear complementarity problem

contains on the order of 1000 variables (if we only consider 10 paths

per O-D pair), whereas the largest (NCP) that can be solved is on the

order of 100 variables- (taking ~ few minutes of CPU time).

One possible way to resolve this difficult and to solve large

scale problems is by an itepative ppoaedupe. The idea of an iterative

procedure is that, constructing a "movement scheme" to move from one

point to a new point and follow the following steps:

Iterative Procedure

o
Step 1 - Choose a starting point x and set q = O.

Step 2 - Apply a "movement scheme l1 to x
q , to move to a new

point
q+l

x .

Step 3 - Set q = q+l, if xq is a "reasonable" solution to

NCP, then stop. Otherwise, go to step 2.

For any iterative procedu~e, it is essential to answer three

types of questions:

i) What is the "movement scheme", the starting solution, and
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the characterization of a "reasonable ll solution?

ii) When is the procedure guaranteed to reach a reasonable

solution (convergence)?

iii) How efficient is the movement scheme, and how many

iterations does it require?

Usually there is a trade-off between the simplicity of the movement

scheme and the number of iterations needed, and, as the movement scheme

becomes easier to apply, more or less, we expect to have more iterations.

We discuss all these questions in this section briefly and, in the next

chapter, in more detail.

As we mentioned previously, to solve the (NCP) associated with

the equilibrium problem, we face two types of difficulties--the size

of the problem (which is in terms of the number of paths), and the

difficulty, in general, in solving the (NCP) (even for small sized '

problems).

To overcome the first difficulty, the size of the problem, we use

an iterative procedure called a "decomposition soheme. In this pro-

cedure, we decompose the set of variables {x.; i E I} into a collection
1.

of the mutually exclusive subsets II'. . ., I .
n

Then corresponding to

each subset I
J

, we define a subproblem as follows:

F. (x)x. = 0
1. 1.

F. (x)
1

> 0

x. > 0
1-

for all i £ I
J

for all i E I J .

for all i E I
J
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where all x's are fixed except those xi with i E r .. Obviously, each
. J

(SP
J

) is a restricted version of the original non-linear complementarity

problem.

We propose the following itera~ive procedure to solve the original

NCP:

Decomposition Scheme:

Step 1 - Choose a starting point XO and set q = O.

Step 2 - For all J = 1, ••• ,M, solve each (SP
J

) to determine

values for x
J

by fixing Xi = xi for all i E r-r
J

• Let

Let xq+l denote the new point that is generated.

Step 3 - Set q = q+l. If xq· is a "reasonable" solution to (NCP) ,

then stop. Otherwise, go to step 2.

The efficiency of this procedure is heavily dependent upon how the

set I is decomposed. Naturally, it is better to collect together those

variables that are most related to each other, so that the correspoIlding

subproblem has the characteristics of the original problem. For example,

for transportation applications when D.(u) = D.(u.), if we decompose
1. 1. 1.

the problem by O-D pairs, then each subproblem simply becomes a new traf-

fic equilibrium problem in a smaller restricted network with only single

O-D pairs. And, in the case of destination choice demand functions, we

might decompose the pr0blem in terms of origins. We describe the decom-

position criteria in more detail in the next chapter.

If we decompose the set I into smaller subsets, then step 2 of the

procedure becomes easier to carry out, while the number of iterations

increases rapidly, to the point where the algorithms might never converge.
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For the equilibrium problem, it seems, the decomposition in terms of

the O-D pairs, provides the smallest subproblems that inherit the es­

sential characteristics of the original problem. But, even for this

decomposition, the number of variables (corresponding to the existing

paths between the origin and destination) is so large that, no non­

linear complementarity algorithm can be used directly to solve the sub-

problems. Although the number of paths with positive flow is usually

small (on the order of 4 or 5) even by knowing those paths it is still

not efficient to use any general purpose non-linear complementarity

algorithm, because the number of functional evaluations is enODmous

(at each vertex all the link-volume delay functions have to be

evaluated).

This difficulty, which is in the nature of the (NCP) , is overcome

by introducing another iterative procedure called a Zinearizati.on scheme,

which is similar to Newton's method.

We define the linearized problem for (NCP) at x as follows:

[F(x) + (x ~)VF(i)]x = 0

(LCP) f(x) + (x - x)~F(i) > 0

x > 0

Now we propose an iterative procedure to solve (NCP) for x, as follows:

Linearization Scheme

Step 1 Choose a starting point i O
and set q = O.

Step 2 - Solve (Lep) linearized at xq to find a new point

called i q+1 •



95

Step 3 - Set q = q + 1. If xq
is a "reasonable" solution to (NCP) ,

then stop. Otherwise, go to step 2.

Clearly, (LCP) is a linear complementarity problem. As is well-

known, when VF(x) , the Hessian of F(x), is a positive semi-definite

matrix, there are effi-cient algorithms available [C-Cl-2, C-El,C-Ll]

to solve the. problem. Problems with 100 variables can be solved in an

order of a few seconds of CPU time. Therefore, if the iterative procedure

gives us a "reasonable" solution in a few iterations, then the lineari-

zation scheme would be much faster than any general purpose non-linear

complementarity algorithm (which requires on the order of a few minutes

of CPU time).

Applying this technique to the traffic equilibrium problem has an

important property, that is, the linearized p'roblem (LCP) has trie

characteristics of the original problem, but is much easier to solve.

In other words, the linearized problem is a traffic equilibrium. problem

with linear functions. But, even for this simplified traffic equili-

brium problem, there is no algorithm currently available in the trans-

portation literature to. find a solution (in the general case), even

though the problem can be solved by linear complementarity algorithms.

In this iterative procedure, because the linearize'd problem is a

traffic equilibrium problem, we can exploit the nature of the problem

as being cast in terms of path flows. We do not need to include all

paths in the problem at each iteration•. Instead, we can include only

those paths that have positive flows. This is possible b'ecause we can

generate shorter travel time paths, if there a~e any, (using a shortest

'. .
, '. I • '. • • \. p ~." .' • ":. ...... • •• : '.' 1,. • •••_ . :','; "~:.~ .: _:•• : .... , ...•~ ' ..,',:';".< ::.
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path algorithm) at each iteration. Therefore, the (LCP) is much smaller

in size than the (NCP) and, consequently, much easier to solve~ so that

problems with 100 O-D pairs can be solved easily 'without using allY

decomposition.

For the traffic equilibrium problem, it is easy to see that VF(x)

is positive semi-definite when both Vt(v) and -VD(u) are positive semi-

definite matrices. To see this, following the notation in section 4.3

we have

x = (h,u) and v = ~h

and

Thus,

\/F(x) =

-1'

Clearly ~F(x) is a positive semi-definite matrix, becuase for any

x = (b,u) > 0 and v = ~h we have:

-T - -T -
= v Vt(v)v + u (-VD(u»u ~ 0

EXAMPLE 5.3: To illustrate graphically how the linearization scheme

works and how fast it approaches the equilibrium solution, consider a

single-link network written as the £0110'".-1iog equations,
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(t(h) - u)h = 0

(h - D(u»u = 0

t (h) - u > 0 .

h - D(u) > 0 D(u)

h > 0, u > 0

* * *Figure 5.2 represents this problem graphically. E = (h ,u ) is

the equilibrium point. Let us initiate the procedure at point

EO = (ho,uo). Then the linearized ~roblem at EO can be shown graphically

o
by lines Ltl and LDl , where Ltl is the supporting line for. t(h) at h

, 0 E1 1 1and LD
I

is the supporting line for D(u) at u • = (h,u ) represents

the solution of this linear complementarity problem. Similarly,

E2 = (h2,u2) represents the solution of the linearized problem at El .

u

Figure 5.2 Linearization Scheme



98

In this example, the algorithm converges to the equilibrium point

very fast. The computational results in this report show that the

algorithm, in general, does not require more than a few iterations.

In the appendix, we prove the convergence for this special case of a

single link, but we do not have any formal proof for the general case. II

Still, for any real-life problem, the size of the linearized problem

is so big that the procedure cannot be applied directly. However, we

can combine the two iterative procedures (a decomposition scheme and a

linearization scheme). We propose the following algorithm to solve the

original (NCP):

General Scheme

oStep 1 - Choose a starting point x and set q _ O.

Step 2

Step 3

Set J = O.

Set J = J + 1. If J > M, go to step 6. Otherwise,

choose a starting point x; and set q' = O.

Step 4 - Solve (LSP
J
), linearized at xi, to find a new point called

•_q+l
xJ • ,

Step 5 - Set q' = q' + 1, if xj is a "reasonable" solution to (LSP
J

)

then go to step 3. Otherwise set xj+l = xj' and go to

step 4.

Step 6 - Set q = q + 1. If x
q

is a "reasonable" solution to (NCP),

then stop. Otherwise, go to step 2.

In this algorithm description, (LSP
J

) corresponds to the lineari­

zation of (SP
J

) at X, defined as follows:
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(F. (i) + (x
J

- x' ) • VFi (X»Xi = 0 for all i E 1
J1 J

(LSP
J

) F. Ci) + (X
j

- i
J

) VFi(i) > 0 for all i £ I
J1

x. > 0 for all i E I
J1-

X
J

denotes the vector of Xi for all i £ 1
J

, and VFiCi) denotes the
, aF . (i)

1

scheme $ and, when all the functions are linear, this scheme is the

same as the decomposition scheme.

In the next chapter, when we describe the details of this algorithm,

we show how to choose the starting point, and give. some practical criteria

for assessing when a solution is "reasonable".

Although we do not have any formal proof for the convergence of

this algorithm, the computational results are so promising that they

encourage the use of this algorithm in practice.
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CHAPTER 6

LINEARIZATION ALGORITHM AND COMPUTATIONAL RESULTS

6.1 INTRODUCTION

In this chapter we apply the lineariza~ion technique, discussed

in section 5.4, to the generaZ single mode 'traffic assignment problem

(which includes multi-modal situations) as defined in chapter 3.

In particular, we define an E-approximation equilibrium and des-

cribe an algorithmic procedure for computing it. We describe a method

for finding a starting solution, discuss possible ways to decompose

the problem into subproblems, and give the steps of the algorithm in

det~il. We also delineate assumptions that are needed for applying

the algorithm.

We apply the linearization algorithm to a variety of test problems

that have been solved by other researchers and compare our results

with theirs. Finally, in this chapter, we present appropriate data

structures to solve large scale problems using out-of-core storage

facilities.

Throughout this chapter we refer to a cycZe whenever we solve

all subproblems once, and refer to an itepation whenever we solve a

linearized subproblem.

6.2 LINEARIZATION ALGORITHM

6.2.1 E-Approximation Solution

*For any £ > 0, a flow pattern h is called.an lis-approximation"

solution or liE-reasonable" solution if it satisfies the conditions:
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* * *(Max {T (h )} - ui)/Max {T (h )} < E for all i E I
P EP P pEP. P
h*>Oi h*>01

p p

(AI)

where

*I l: h
pEP. P

1.

I (A2)

* *u. = Min T (h) for al.L i E I .
1 pEP. P

1

The first condition (AI) guarantees that the percentage difference

between the longest path with positive flow and the shortest path is

less than E for all O-D pairs. The second condition guarantees that

*the percentage difference between the flowing-flow, L h , and the de-
* PEP P

mand, D.(u ), is less than E for all O-D pairs. Sometimes we refer to
1

E as tile accuracy of the solution.

When we are applying the iterative method, it is not a good idea

to solve each subproblem to within the ultimate accuracy £, because the

accuracy for any subproblem will be destroyed when another subproblem

is solved. Therefore, it is better to start with a less stringent

accuracy requirement and to decrease it until the ultimate accuracy

is achieved. For example, we can start with OnE for some integer n > 0

and some 0 > 1. When the accuracy OnE has been achieved, the algorithm

n-1 n-2continues to impose accuracy requirements 0 £, 0 £,. and

finally, after n steps, accuracy E. This feature increases the

efficiency of the algorithm enormously.
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6.2.2 Starting Solution

To find a starting solution to initiate the iterative algorithm,

we can use an AZZ-or-Nothing assignment [T-D4]. Corresponding to each

O-D pair i, this assignment finds the sortest path p~ when all links

have zero flow, and assigns all of the generated demand to that path,

i.e.,

where

for all i E I

o
u. =

1
T 0(0)

p.
1

for all i £ I.

Notice that in the above assignment, we assign the flow generated

by the demand function to a shortest path for each O-D pair sequen-

tial1y, without considering the effect of the congestion from the

flow previously assigned. This might lead us to assign too much flow

on some links, with low free travel times. To avoid this, we can up-

date the minimum travel times, u, after each assignment. Also, in the

case of an elastic demand function, since the initial u, compared to

the u at equilibrium, is small, and, since the demand functions are

usually increasing, the all-or-nothing assignment procedure generates

too much initial flaw, far from the value at the equilibrium. To avoid

this, we can assign only some fraction of the generated demands to the

shortest paths. We have used this mo4ified aZZ-op-nothing assignment,

with the choice of 0.5 for the fraction, in our computational results.
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6.2.3 Path Generation

As we mentioned previously, we do not need to include all existing

paths in the problem, we only include those paths that might have posi-

tive flow and we refer to them as the set of wopking paths (denote by

w * *P.). Then a solution (h ,u ) is called E-approximation in respect to
1

the working paths if conditions (AI) and (A2) are satisfied for sets

P~ for all i £ I. To guarantee that this solution is an E-approximation
1

over all existing paths, that is, the sets p. for all i E I, we have to
1

satisfy the following condition:

* *lii - Min T (h )
pEP. P

---------~------I < E for all i £ I.
u.

1

(A3)

To construct the set of working-paths, we start with the paths in

*thfl initial solution. We add any path that gives Min T (h ) and that
pEP. P

1 Wsatisfy condition (A3) to the corresponding set of P .• Also, we
1

wdelete any path with zero flow from the set of Pi to maintain the size

of the working-paths sets as small as possible.

Although many very efficient algorithms for generating the shortest

paths [T-B3, T-DB, T-D9, T-Dll, T-G5] are available, because of the

enormous number of applications of this algorithm (once for each itera-

tion), it becomes one of the most time consuming components of the

linearization algorithm. To reduce the number of applications of the

shortest path algorithm, we recall that most of the shortest path algo-

rithms find all the shortest paths from one origin to all destinations
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simultaneously. This feature suggests a method for decomposing the

problem, that is, decomposition by origin. In other words, we do not

collect two O-D pairs with different origins as one subproblem unless

all the other O-D pairs with the same origins are included in the

subproblem.

Secondly, as we mentioned previously, we do not want to spend too

much time in one subproblem to find a very accurate solution, because

this accuracy will be destroyed after solving other subproblems. In­

stead, we prefer to spread our work over all subproblems to achieve,

simultaneously, the same, but relaxed, accuracy for all of them. This

suggests that we test condition (A3) and generate a shortest path for

each O-D pairon~yonce in each cycle, rather than generating a new

shortest path after each iteration (linearization). When no lineari­

zation (change of flow) takes place in one cycle, then the given accu­

racy has been achieved and condition (A3) is satisfied.

6.2.4 Decomposition

For the traffic equilibrium problem, various forms of decompo­

sitions can be used. The selection from among the various options

depends upon the size of the problem and the nature of the demand

function. For the reasons discussed in the previous sections and also

based upon our intuitions, we have decided to consider the following

levels of decomposition:
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Level 1 - No decomposition

Level 2

Level 3

Level 4

Decomposition by origin

Decomposition by O~D pair

Decomposition by O-D pair anci mode.

Moving from level 1 to level 4, we expfac t to have more cycles and

less iterations within each cycle (because the subproblems become easier

to solve). Therefore, it is not clear which level of decomposition is

best in terms of efficiency. However, as the size of the problem in­

creases we are forced to use the higher levels of decomposition. On

the other hand, as the demand dependency increases, the lower levels

of the decomposition will be preferred.

Overall, level 1 will be chosen when w'e have a completely depen':'

dent demand function (i.e., the demand for the O-D pairs depends upon

the full vector of accessability variables). Level 2 will be chosen

when we have a destination choice demand function. Level 3 will be

chosen when we have only mode choice demand function, otherwise, level

4 will be used. In each case, if the size of the subproblem does not

permit us to use that level, we move to the next higher level of de­

composition.

Notice that, when there is no mode dependency in the demand function,

decomposition by mode might be best as the first level of decomposition.

6.2.5 Algorithm

To see how the linearization algorithm, discussed in chapter 5, is

applied to the traffic equilibrium problem, we describe in this section
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the steps of the algorithm for the case of decomposition by O-D pairs.

To reduce the number of applications of the shortest path algo­

rithm, we use a two-level decompositiou scheme. In the first level,

we decompose the problem in terms of origins, and find the shortest

path tree for each origin. Then for each origin, in the second level,

we decompose the problem in terms of destinations to construct sub­

problems. In this way, we only solve s-hortest path problems once

each cycle.

To simplify the notation, we consider the single mode case. For

the multi-modal case, when the above decomposition is used, the steps

of the algorithm remain unchanged except everything is in a vector space

corre"sponding to all mod~s. For example, each subproblem corresponds

to one O-D pair and all possible modes between that O-D pair. The

algorithm would be slightly different if we first decompose the problem

in terms of modes and then in respect to origins.

Figure 6.1 shows the steps of the algorithm to find an £-approxi­

mation solution.
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Step 0 - (initialization) Choose some E > 0, an integer n ~ 0,

and some 0 > 1. Apply the Modified All-or-Nothing

o
assignment algorithm to find shortest paths Pi and cor-

responding,
0 and hO for all i £ I.u.
1. p.

l.

p~ {p~},
'<, 0 T o(h)Set = h 0 ~ h 0, and u. = for all i £ I.

1 p. Pi 1 p.
1. 1.

Set n = n, € = OnE and Ie = o.
n

Step 1 Set Ie = Ie + 1 and IT = O.

Step 2 - Choose an origin 10. Apply the shortest path algorithm

s
from origin 10 to find the shortest paths p. to all i E I

1.

s
that have origin (i) = 10; set u. = T s(h).

1. Pi

Step 3 - Choose an O-D pair i £ I" with origin (i) = 10.

Step 4 Set u.
1.

= Min T (h).
pe:P~ p

1.

If (Max T (h)
pEpw P
h>Oi

u.)/Max T (h) < £
1. pW P np£ .

h>Ol

then go to step 6. Otherwise,

Step 5 - Solve (LSP.)linearized at (h,u), update h, set IT = IT + 1,
1.

and go to step 4.

Step 6 - If (u.
s s

- u.)/u. < E: go to step 7. Otherwise set u. = u.,
1. 1. 1. n 1. 1.

delete any Pi with h 0
w

Set p~
w {p~}= from P .• = Pi u

p. l. 1 1.
1.

and h s = o. Go to step 4.
Pi

Step 7 - If I(Di(u) - L h )/D.(u) > £ , go to step 5. Otherwise,
pW p 1 - n

pe: •
Step 8 - If steps 3-7 1 all O-D pairs i e: Ihave been run once for

with origin (i) = 10, then go to step 9. Otherwise, go

to step 3 for a new i.

Figure 6.1 Steps of the Linearization Algorithm
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Step 9 - If steps 2-8 have been run once for all origins, then go

to step 10. Otherwise, go to step 2 for a new origin, 10.

Step 10 - If IT = 0, then go to step 11. Otherwise, go to step 1.

Step 11 - Set n = n-l. If n 5:. 0, then stop (an £-approximation

solution has been achieved).

go to step 1.

Otherwise, set E = oUE ,
n

Figl~re 6.1 (con.tinued)

In this algorithm, Ie denotes the cycle number and IT denotes the

iteration number, or the linearization number, within the cycle. Steps

4-7 guarantee that h is an £ -approximation solution within each Bub­
o

problem. In other words, step 4 guaralltees that the difference between

w
the longest path and the shortest path among working-paths (P.) is less

].

than e: , condition (AI). Step 6 guarantees that the difference be..­
n

tween the shortest path among working-paths (P~) and all paths (Pi) is

less than £ , condition (A3). And finally, step 7 guarantees that the
n

difference between the actual generat(~d demand, Di(u), dnd the current

carried flow, L h , is less than E , condition (A2).
PEP~ P n

Although, wi£hin each cycle each subproblem has been solved to

within accuracy E , at the end of the cycle the solution might not be an
n

E -approximation solution for all subproblems simultaneously, because
n

any flow change (linearization) for any O-D pair destroys the accuracy

for the other subproblems. However, IT = 0 at step 10 guarantees that
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the current solution h is an £ -approximation for the problem, because
n

no flow change has taken place and, furthermore, no new path is needed

to be added to the sets of ~orkillg-path6. Thus conditions (AI), (A2) ,

and (A3) apply to within accuracy E. Finally, at step 11, when n :-:: 0
n

the required accuracy £ has been achieved,

To solve each subproblem, we will use the solution from previous

St8PS as the starting solution. It is more reasonable, in the overall

procedure, that we always use the I110St recently generated information.

To do this, we update all of the data (including path flows, volume

delays, minimum travel times, and so forth) whenever any change in the

flow occurs. This st~ategy is applied to the all-or-nothing assignment

and to tile decomposition and lillearization schemes.

For this algoxithm, the corresponding subproblem for O-D pair

i with the set of working-paths PV: can be writteIl as:
1.

(T (h) ... u.) • h
p 1. P

T (h) - u.
P 1.

= 0 for all p £ P~

> 0 for all p E P~

(SP. )
1.

(L h
PE:P~ p

1.

D. (u) • u. = 0
1. 1.

> 0

where,
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T (h) = L 0 • t (f) for all p € P~
P aEA ap a

f = F + L 0
a a pW appE: •

1

• hp
for all a E: A

where F is the sum of the flows by other O-D pairs on link a. The
a

linearization of (SP.) at (h ,u.) for p £ p~ is:
1 p 1 1

(T (h) + E (h,
p P'E:P~ P

1

for all p E: p~
1

T (h) +
p

aT (h)
- pL (h, - h ,) ~h - u.

w p P d 1p'EP
i

- p'
.> 0 for all p E: p~

1

(LSP. )
"1

aD. (u)- - ~

(L h - D.(u) - (u. - u.) d )
Pw P 1. 1. 1 u.

p£ . ' 1
1.

aD. (u)
~ - 1.L h - D.(u) - (u. - u.)---~----

PEP~ P 1. 1. 1. QUi
1.

• u i
= 0

> 0

wl1ere

h > 0, u. > 0 for all p £ p~p- 1- 1

aT (h)
_P_-= L L: <5

ahp ' aEA a'EA ap
• <5a'p'

at (f)
a

()f ,
a

wfor all p,p. E Pi

Although, computation of the coefficient laatrix for each (LSP.) at
1
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each iteration looks diffi~ult and time-consuming, there are efficient

ways to perform these computations (see appendix B).

6.2.6 Assumptions

From the computational point of view, the linearization algorithln

only requires SOUle mild assumptions. More restrictive assumpti.ons

might be needed, however, to guarantee convergence of the algorithm

(see appendix A). These mild assumptions are:

i) The vector functions t(f) and D(u) are continuous and

differentiable.

ii) Both t(f) and -n(u) are monotone functions, i.e., Vt(f) and

-VD (u) are positive semi-definite tnatrices.

It is easy to show that, for any form of decomposition discussed in

section 6.4, the coefficient matrix associated with any (LSP.) is posi­
1

tiv'e semi-defillite, and this is a sufficient condftion to solve (LSP.)
1

by linear complemen.tarity algorithms [C-K3].t

For transportation applications, these are very mild assumptions

that are valid for most of the demand and volume delay models presented

earlier in chapter 2.

6.3 COMPUTATIONAL RESULTS

In this section, we present computational results for some small

problems with different demand models and for some larger examples to

see how the linearization algorithm behaves both in terms of the con-

vergence and efficiency, compared to the other algorithms.

t
It is easy to verify that (LSP

i
) satisfies the conditions of the

existence theorem 4.4, therefore it always has a solution.
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Example 6.1 is a hypothetical problem with a mode-choice demand function

for a multi-mDdal assignment problem. Example 6.2 is a small problem

presented in [T-L2] with a destination-choice demand function. Example

6.3 is another test problem presented in [T-S4]. Examples 6.4 and

6~5 are larger problems presented in [T-L2] and [T-F6, T-N3] with fixed

and elastic demand functions.

We use Lemke's Algorithm [e-LI], which is an efficient algorithm

and can solve the problems with a few hundred variables in a couple of

seconds, to solve the linear complementarity problem. To find the

shortest path trees, we use the algorithm presented by Golden [T-GS]

which is based upon Bellman's method [T-E3]. This is a rather fast

algorithm, faster than Dijkstra's [T-Dll], that can solve problems with

1000 nodes and 5000 links in less than one second. Recently, other

efficient algorithms [T-D9] have been developed to find shortest path

trees, using carefully conceived link structures to represent the tree.

All of the programs have been run on an IBM 370/168 using the

Fortran G compiler. Reported CPU times do not include I/O times.

EXAMPLE 6.1: The network for the example has 7 nodes, 12 arcs,

2 O-D pairs, and 2 modes (auto and bus) and has the following con­

figuration.
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==t> 1
Origin 1

5

Destination
-=i>

--- Auto

- - - .Bus

Figure 602 Network Configuration for Example 6.1

The dark lines denote auto routes and the dash lines denote bus routes.

(1-7) ~s the first O-D pair and (2-7) is the second O-D pai~. We use

m to designate the mode, letting m = 1 denote the auto mode and m = 2

denote the bus mode.

We use the following type of volume delay function for each link:

where:

-m
t = fixed travel time for link a and mode m (in minutes).

a

C = capacity of link a.
a

fm = total flow on link a by mode m.
a

2
Notice that f is the number of passengers who travel by bus. Thus the

a

number of buses will vary with the number of passengers traveling by
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the bus modet . We have assumed that each bus carries 20 passengers

and each bus is equivalent to 4 autos from the point of view of con-

gestion (or 'each bus passenger is equivalent to 0.2 = 4/20 auto

passengers).

The parameters for volume delay functions are:

a 1 2 3 4 5 6 7 8 9 10 11 12

-1 5 3 4 6 9 3 4 3 2 7 5 4t
a

-2
8 6 6 . 12 6 10 7 6t

a

C 500 500 500 500 1000 500 1000 500 500 1000' 1000 1000
a

(Note: Dashes designate that there is no link for the bus mode)

Also, we have used a Cobb-Douglas product form of demand model as

follows:

1 1 2 = A~
1 1

( I)-a.. ( 2)S.D. (u .. , u. ) . U. 1 • U. 1
1 1- 1. 1. 1 1

2 1 2 A~
2 2

( I)a.. ( 2)-S.D. (u., u. ) = u. 1.. . u. 1
1. 1. 1. 1 1 1.

m
Ct. > 0
1-

s~ > 0
1.-

where AID. 1..·s const~nt, 1 d f32 d· 1· .. d 2 d 0
1

~ Ct. an . are lrect e ast1..C1.t1es an Ct. an ~.
11.], 1. 1.

are cross elasticities. The parameter values are:

t
In the example the flow (schedule) of bus routes is not fixed as it
might he in practice.
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An: j'l1 Smcx,.
1 1 i

i:=l and m=l 600,000 3. D.7.

i=l and m=2 200,000 0.5 2.

i=2 an.d m=! 750,000 3.5 0.8

1=2 and m=2 200,000 0.6 1.8

There are 8 auto and 2 bus routes available for each O-D pair, and

-20 routes overall in the network. We are interested in finding the

amount of flow along each route. There are four access times that we

rn
want ~b determine, corresponding to 2 O-D pairs and 2 modes CUi' rn=1,2

and i=1,2). Therefore, this problem is a nonlinear complementarity

problem with. 24 variables.

We decomposed the problem in terms of O-D pairs, started with an

arbitrary initial solution, and used the linearization algorithm to find

a solution with accuracy E = 0.1, with the starting parameters 0 = 10

and ii = 2.

Table 6.1 shows the total number of iterations, IT, at each cycle

and also for each O-D pair separately. The program sloped after 14

cycles (with IT = 0). At cycles ~, 8, and 14 the solutions are, respec-

tively, 10%, 1%, and 0.1% accurate.

Computational results show that the total demand and shortest path

times u~ remain almost unchanged after 6 cycles, but that the distri-
1

bution of the flow between the various paths varies for several addi-

tional cycles. We obtained the following solution after 14 cycles.



116

~ 1 2 3 4 5 6 7 8 9 10 11 12 13 14

No. of Iterations 3 0 1 1 1 1 1 0 1 1 1 1 1 0
for first O-D

No. of Iterations 2 0 1 1 1 1 0 0 1 1 1 2 0 0
for second O-D

Total Number of 5 0 2 2 2 2 1 0 2 2 2 3 1 0
Iterations (IT)

n 2 2 1 1 1 1 1 1 0 0 0 a 0 0

Accuracy E' 10% 1% 0.1%
n

Solution Time 0.3' 0.6 1.1
up to the cycle

(sec.)

Table 6.1 Computational Results for Example 6.1

O-D Shortest Path Longest Path(min)
Mode Pair Total Demand (min) with positive flow

Auto 1 1278 16.4772 16.4795

Auto 2 688 14.6850 14.7010

Bus 1 1294 25.0442 25.0442

Bus 2 4424 20.3464 20.3464

Table 6.2 Equilibrium Solution for Example 6.1

The next table specifies the distribution of flow between available

paths, but only for those paths with positive flow.
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O-D"
*Mode Pair Path (nodes) Flow

1-4-7 490

1-3-5-7 583
1

"1-3-4-7 153

1-3-5-6-7 52

Auto

2-3-5-7 8

2 2-5-7 618

2-6-7 62

1 1-4-7 1294
Bus

2 2-6-7 4424

*After round-off

Table 6.3 Path Flows for Example 6.1

Figure 6.3 shows the convergence behavi.or of the algorithm for the

flows between the first O-D pair by the auto mode.
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No. of Autos

700

X: path (1-4-7)

~: path (1-3-5-7)

!: path (1-3-4-7)

D: path (1-3-5-6-7)

0.-+----------------------------5 6 7 8 9 10 11 12 Iteration No.

400

600

200

300

SOD

100

Figure 6.3 Auto Distribution Among the Paths for First O-D Pair
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EXAMPLE 6.2: The network for this example has 4 nodes, 10 links and

12 O-D pairs (every pair of nodes corresponds to an origin-destination

pair). Figure 6.4 shows the network configuration for this example.

2 5

Figure 6.4 Network Configuration for Example 6.2

The voluffi8 delay functions are defined as follows:

t (f ) = 1.5 + 0.0001 * (f4) for a = 1,2,7,8,9,10
a a a

t (f ) = 3. + a.Ca01 k (~4) for a - 3,4,5,6 .
a a a

For the first run we used a fixed demand equal to 20 units for each

O-D pair.

We applied the linearization algorithm to this problem with E = 0.8,

o = 5, and n= 2, with the choice of decomposition by O-D pair. The

algorithm terminated after 17 linearizations and 8 cycles, and required

0.54 seconds of CPU time. The non-linear complementarity problem

associated with this small example has 50 variables (38 path-flow

variables and 12 accessibility variables) and would probably require on

the order of one minute of CPU time to solve [C-T3].
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Table 6.4 shows the link flow at each cycle (at cycles 5, 7, and 8,

flow remains unchanged). The final solution is not more than 0.002%

away from the exact solution on each link (the last column in table 6.4),

which shows how accurate the solution is. Leblanc [T-L2] applied the

Frank-Wolfe minimization technique to solve this problem. The solution

after approximately 35 iterations is not as accurate as the solution

we found by the linearization algorithm.

~
Exact

Lin No. Initial 1 2 3 4 6 Solution
No.

1 20. 26.3739 28.6942 29.7542 29.7542 30.0000 30.

2 20. 28.5260 28.0820 29.3494 29.3494 29.9994 30.

3 20. 32.3401 31.2497 30.2407 29.7542 30.0000 30.

4 200 31.4265 31.9045 30.6398 29.3494 29.9994' 30.

5 40. 27.6602 28.7504 29.7595 30.2460 30.0001 30.

6 40. 28.5737 28.0955 29.3602 30.6507 30.0005 30.

7 40. 31.4741 31.9180 30.6507 30.6507 30.0006 30.

B 40. 33.6252 31.3059 30.2460 30.2460 30.0000 30.

9 20. 30.0188 22.8070 20.4864 19.9999 19.9999 20.

10 20. 26.9532 24.0742 21.2904 20.0000 20.0000 20.

Table 6.4 Link Flow for Example 6.2

For the second run, we used a destination choice model with the

following logit functional form:
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= 1, ... ,4, j = 1,. . ., 4, and i 1= j

given in table 6.5.

where D.. (u) is the demand between origin i and destination j, 30 is
1J e..

the demand originating at each origin, and r .. = e 1
J , where 8 .. is

1J 1J

The choice of 8 .. is such that, at the equilibrium,
1J

the flow from each origin to each destination is 10 units.

I~ 1 2 3 4

1 - 8.0625 2.5 6.5625

2 8.0625 - 8.0625 14.6250

3 2.5 8.0625 - 6.5625

4 6.5625 14.6250 6.5625 -

Table 6.5

Parameters 8 .. of Demand Function for Destination Choice Model
1J

We·applied the linearization algorithm with £ = 0.16, 0 = 5 and

n = 3, with the choice of decomposition by origin. The algorithm

terminated after 84 linearizations and 23 cycles, and required 0.86

seconds of CPU time. Table 6.6 shows the number of linearizations and

cycles that are needed to achieve different accuracies, and also

shows the total link travel time, L f • t (f ) with initial value
A

a a a
aE:

equal to 191.87. Table 6.7 shows the link flows when different accu-

racies have been achieved.
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Accuracy No. of No. of Total Link
E Linearizations Cyc~.es Travel Time

n

20% 50 9 918.95

4% 60 14 927.64

0.8% 70 18 927.45

0.16% 84 23 927.49

Table 6.6 Computational Results for Destination Choice Model

~
Initial 20% 4% 0.8% 0.16% Exact

No.
Solution

1 10. 15.0112 15.0047 15.0017 15.006 15.

2 10. 15.0097 15.0005 15.0009 15.0004 15.
'\,..

3 10. 14.9749 15.0340 15.0102 15.0017 15.

4 10. 15.01"97 15.0026 15.0003 14.9996 15.

S 5. 14.8720 14.9665 14.9929 14.9986 15.

6 5. 14.9801 14.9971 14.9994 15.0002 15.

7 5. 14.8353 15.0061 14.9932 14.9993 15.

8 5. 14.9887 14.9951 14.9981 14.9993 15.

9 5. 9.6502 9.9134./ 9.9828 9.9974 10.

10 5. 10.2888 10.0794 10.0228 10.0026 10.

Table 6.7 Link Flows for Destination Choice Model
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EXAMPLE 6.3: The network for this example consists of 9 nodes, 36 links,

and 12 O-D pairs. The network configuration is shown in figure 6.5.

~igure 6.5 Network Configuration for Example 6.3

The volume delay functions are given as:

t (f ) = a + 0.002 • S • fa a a a a

where a· and S are defined in table 6.9. There is, for each O-D pair
a a

i-j for i = 1, ... ,4, j = 1,., ... ,4, and i :f j, a fixed demand with

values specified in table 6.8.

I~Origin 1 2 3 4

1 - ·,2000 2000 1000

2 200 - 1000 2000
- . .. co -

" -. . .. ... ~

3 200 ·100 - 1000

4 100 200 100 -

Table 6.8 Trip Table for Example 6.3
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Link Flow by Link Flow by l
Link No. Link a S Linearization Steenbrink

1 1-5 .35 • 35 566.8 562 .

2 1-3 • 0 1.0 1684.6 1694 .

3 1-7 .15 .15 1598.1 1582.

4 1-8 .55 .55 1150.5 1162.

5 2-5 .40 .40 36.2 39.

6 2-4 1.0 1.0 1435.9 1430.

7 2-8 •60 .60 1017.5 1011 .

8 2-7 . 25 .25 710.4 720 .

9· 3-1 .0 1.0 276.9 236.

10 3-6 .35 .35 268.6 275.

11 3-8 •55 .55 100.0 100 .

12 3-9 .15 .15 731.4 725.

13 4-2 1.0 1.0 189.2 199.

14 4-6 .40 .40 o.0 o.

15 4-8 • 60 .60 33.9 65 •

16 4-9 .25 .25 176.9 136.

17 5--1 .35 .35 36.2 39.

18 5-2 .40 .40 566.8 562.

19 5-7 .30 . 30 0.0 o.

20 6-3 .35 .35 0.0 o.

21 6-4 .40 .40 268.6 275

22 6-9 .30 .30 0.0 o.

Table 6.9 Link Flow for Example 6.3
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Link Flow by Link Flow by
Link No. Link a f3 Linearization Steenbrink

23 7-5 .30 .30 0.0 o.

24 7-1 .15 .15 163.8 161.

25 7-2 . 25 .25 1433.2 1438 .

26 7-8 •50 .50 711.5 703 .

27 8-1 .55 .55 23.1 64.

28 8-2 .60 . 60 110.8 101 .

29 8-3 .55 .55 912.4 918.

30 8-4 . 60 .60 1209.2 1206 .

31 8-7 .50 .50 0.0 o.

32 8-9 .50 .50 757.8 752.

33 9-3 .15 .15 579.9 524.

34 9-4 .25 .25 1086.2 1089.

35 9-6 . 30 .30 0.0 o.

36 9-8 .50 .50 0.0 o.

Table 6.9 (continued) Link Flow for Example 6.3



126

For a decomposition by O-D pair, and a choice of E = 1.0, 8 = 5,

and n = 2, the linearization algorithm solves this problem in 0.2 seconds

of CPU time, after 10 cycles and 45 linearizations. Table 6.9 Ghows

the link-flow volumes founded by this algorithm and also the solution

found by Steenbrink [T-S4] using a qUadratic programming technique.

Notice that, since the volume delay functions for this problem are

linear, the equivalent minimization problem is a quadratic programming

problem. For different levels of accuracies, table 6.10 shows the

value of

36 fa
Eft (x)dx ,

aa=1 a

which is equivalent to the objective value function for the minimi-

zation problem. Comparing these values to 16970, the objective value

found by Steenbrink, shows how accurate the linearization algorithm is,

even though the goal of the algorithm is not minimizing the objective

value. Even the solution with 5% accuracy is as good in objective

value as the solution found by Steenbrink.

Accuracy f
£ L:f • t (f ) E .b ata(x)dx

n a a a
a a

Initial 102,031.44 53,246.00

25% 27,369.15 17,198.93

5% 27,003.61 16,971.05

1% 26,965.25 16,958.24

Table 6.10 Total Travel Time for Example 6.3
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EXAMPLE 6.4: This test problem has been presented by Leblanc in [T-L2].

Figure 6.6 shows the network configurhtion. The network consists of

24 nodes, 76 links, and 552 O-D pairs (all possible choices of i-j for

i = 1, •.• ,24, j = 1, ••• ,24, and i f j). There is a fixed demand

between each O-D pair, and the volume delay functions are defined as:

t (f ) = a + S • f4
a a a a a

All the data are specifed in [T-L2].

We applied the linearization algorithm to this test problem with

the choice of E = 1, 0 = 5, n= 2<, and used decomposition by O-D pair.

The algorithm terminated after 18 cycles and 564 linearizations, and

required 3.32 seconds of CPU time to find l%-approximation solutions.

Table 6.11 contains the number of linearizations, total link

travel time, and the maximum percentage change in the link flow after

each cycle. Also, it includes the maximum percentage change after each

iteration for the Frank-Wolfe algorithm, usee by Leblanc. These results

show how fast the.1inearization algorithm converges and it exhibits less

of a tailing phenomenon than the Frank-Wolfe algorithm. In terms of

computational time, the linearization algorithm requires 2.15 seconds

on an IBM 370/168 to achi~ve 5% accuracy, while the Frank-Wolfe algorithm

requires 10 seconds on the CDC 74 (notice that the IBM 370 is much

faster .than the CDC 74).
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Cycle No. of Total Link Max % Change Max % Change
No. Linearizations Travel Time in Link Flow in Link Flow

by Frank-\volfe

0 - 922.96 - -

1 185 140.00 196.9 68.7

2 74 108.91 38.5 46.6

3 30 102.22 14.7 39.4

4 9 100.70 14.5 50.0

5 73 97.09 17.8 32.1

6 48 96.14 14.9 100.0

7 25 95092 7.2 41.1

8 18 95.82 5.3 21.6

9 5 96.01 6.6 35.4

10 37 95.96 3.1 16.3

11 18 9.5.94 .8 25.0

12 14 95.94 .8 16.0

13 11 95.91 .8 13.9

14 8 95.92 .4 9.6

IS 6 95.91 .5 11.4

16 2 95.92 .5 7.7

17 1 95.92 .5 11.2

18 0 95.92 .0 7.9

Table 6.11 Computational Results for "Example 6.4
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EXAMPLE 6.5: Thi.s example is a rather mode~~te-sized test problem from

real-life data, which has been used by other researchers [T-F6, T-N3,

T-N4]. The computational results for this example give some idea of

how good the linearization algorithm is, compared to the other algorithms,

both in terms of convergence and efficiency. The example is based upon

the data for the street network of the city of Hull, Canada.

The network has 155 nodes, 376 one-way links, 27 zones, and 702

O-D pairs (all possible pairs of i-j for i = 1, .•. ,27, j = 1,_ .. ,27,

and i ~. j). There is only one mode of transportation (auto). The volume

delay functions are given by the travel time function suggested in the

BPR traffic assignment manual [T-B12], which has the form:

t (f ) = to[1 + .15(f Ie )4] for a = 1, ••. ,376
a a a a a

with parameters defined as in section 2.2. Finally, there is a fixed

demand between each O-D pair. The data for this problem is a slight

modification of that used in [T-F6]. (Notice that there are some nlinor

differences in the data. In particular, we scaled the demand by a

factor of 10, and this is the reason for some differences between our

results and the results reported in [T-F6, T-N3]).

For the choice of E = 1, 0 = 5, n= 2 and a decomposition by O-D

pair, we applied the linearization algorithm to this problem. The

algorithm terminated after 20 cycles and 590 linearizations, and re-

quired 16.37 seconds of CPU time to find a s~lution with 1% accuracy.

The maximum number of p'aths between each O-D pair with positive flow

is 4 and the maximum number of links in the paths with positive flow is 44.
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Table 6.12 shows ths number of cycles and linearizations to reach

different levels of accuracy. Also, it shows the computational times

and the total link t~avel time, E f • t (f ).
a a aa

Accuracy No. of No. of CPU Total Link
E Cycles Linearizations Time Travel Time

(sec) (min)
\

Initial 590,336.

25% 4 179 3.81 257,570.

5% 12 405 10.49 236,631.

1% 20 590 16.37 235,776.
--1

Table 6.12
Computational Results for Example 6.5 with Fixed Demand

Nguyen in [T-N3] used the Convex-Simplex Method to solve the

equivalent .minimization problem for the city of Hul1~ This algorithm

required 42.16 seconds of CPU time on a CDC CYBER 74 to find a solution

with an accuracy almost equivalent to 5%, as we defined it in section

6.2.1 (Nguyen has used different criteria for the accuracy).

In [T-F6], Florian and Nguyen reported other computational times

for both fixed demand and elastic demand for variations of this problem,

for different numbers of O-D pairs, up to 421~ For the case of 421

O-D pairs, the CPU time is 43.42 seconds on the CDC CYBER 74 to find a

solution with 5% accuracy, as we defined it in section 6.2.1. The

·~·linearization algorithm requires only 10.49 seconds on an IBM 370/168

for a problem with 702 O-D pairs.
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In the second run, we used an elastic demand function with a

linear functional form as follows:

D.(u.) = b. - aiu
i

for i = 1, ... ,702
11.1.

where a. and b. hava been selected randomly, in a fashion similar to
1 1

that reported in [T-F6] by Florian and Nguyen. Table 6.13 shows the

results.

Accuracy No. of No. of CPU Total Link
E Cycles Linearizations Ti'lne Travel Time

(sec) (min)

"

Initial 197,681.

25% 6 468 8003 234,532.

5% 14 1542 11.21 234,344.

1% 20 2548 18.46 234~OO4.

Table 6.13 Computational Results for Example 6.5 with Elastic Demand

Comparing the results in Tables 6.12 and 6.13 shows that obtaining

an equilibrium assignment with elastic demand only requires 15 per cent

more computational time than the fixed demand case. Although the num-

ber of linearizations increases four fold, the computational time does

not grow nearly as much. This is because the computational time for

the linearization algorithm depends more on the number of cycles than

the, number of linearizations. Therefore, the algorithm does not depend

too much on the type of the demand function.

The algorithm presented by Florian and Nguyen, which is based upon
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Benders Decomposition Method, required 54.13 seconds on the CDC CYBER 74

to achieve 5% accuracy, even with only 421 O-D pairs. This is almost

25 per cent more than the time for the fixed demand problem as' compared

with 15 per cent for the linearization algorithm. For approximately 702

O-D pairs, the Florian-Nguyen algorithm required 80 seconds on the CDC

CYBER 74 to achieve 5% accuracy. In contrast, the linearization algo-

rithm required onJy 11.21 seconds on an IBM 370/168. Of course, the

IBM 370/168 is faster 'than the CDC CYBER 74, but not more than four

times faster. Also notice that they have used the optimizing FTN

compiler, while we have 'used the FORTRAN G compiler.

Because of different operating environments, it is difficult to

judge between these elgorithms. At the very least, these results show

that the linearization algorithm is as fast as, if not faster than,

the specialized algorithms presented by Florian and Nguyen, which are

among the fastest existing algorithms for solving the traffic equi-

librium problem. However, the linearization algorithm has its own

important advantage, which is the generality of the algorithm compared

to any algorithm based upon minimization technique. A disadvantage

to the linearization algorithm is that, at present, theoretical studies

of its convergence behavior are limited.

6.4 STORAGE REQUIREMENT AND DATA STRUCTURE

The storage requirement for the linearization algorithm consists

essentially of three parts, namely the computer program, the problem

information, and path flow information. The computer program itself
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need 10K words of computer memory. This includes the main program and

all of the subroutines such as LCP (the Linear-Complementarity Program)

and BELL (the shortest path algorithm).

To store all of the data specifying the problem requires, at most,

alAI + 61NI + lolrl words of memory, as described in table 6.14, where

fAI is the number of links, INI is the number of nodes, and III is the

number of O-D pairs. This includes the network structure, the tree

structure for the shortest path algorithm, the link flows and path flows,

parameters of the volume delay and demand functions (such as the data

for the city of Hull with elastic demand), and, finally, it includes

vectors to store the update values for t(f), Vt(f), D(u), and VD(u).

Dimension Arrays

1------- -.--+-------------,----------------1

Start-node, End-node, Link flow f, Link travel
time t(f), dt(f)/df, 2 arrays for parameters
of the volume delay function, one dummy array
for BELL subroutine.

4 arrays (pointer to the first link starting at
each node, pointer to the predecessor node, and
level from the root) to represent the shortest
path tree, shortest travel time from an origin
to all nodes, one dummy array.

III

Table 6.14

Origin node, destination node, 4 arrays for path
flows h (those with positive flow), minimum
travel time u, total demand D(u), dD(u)/du,
number of paths.

Memory Requirement to Store the Problem Data
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This data can easily be kept in memory on the IBM 370 even for networks

with 10,000 links. For implementations with limited storage, this

storage requiremerit can be reduced to 61AI + 61NI + alII, in favor of

more computational time by reevaluating t(f), Vt(f), D(u), and VD(u)

whenever they are needed, instead of storing this data. Overall, these

requirements do not create any major difficulty to store any large scale

traffic assignment problem in core.

The last, and major, requirement for storage is the path infor­

mation. If we assume that the maximum number of paths with positive

flows is M
1

and the maximum number of links in any path is M
2

, then

for each O-D pair we might allocate a fixed space equal to M
l

* M
2

to

store arc-path chains. Therefore, to store all path information we

require Ml * M2 * III words of memory. For the choice of Ml = 4,

M2 = 50, and III = 700, as is the case of example 6.5, the storage

requirement would be l40K words, which can be stored in core on an

IBM 370. But, most computers willch~rge for using extr~ core storage.

To make the linearization algorithm capable of solving larger

problems and, also, to reduce the cost of using extra core storage. we

have to reduce the storage requirement for the path information. There

are two ways to achieve this goal--modifying the data structure for

storing path information, and using out-of-core storage (such as disk

or tape).

6.4.1 Modified Data Structure

Previously we allocated a fixed space equal to M1 * M2 for each

O-D pair. In practice, though, O-D pairs will not have M1 paths with
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positive flow (for the city of Hull, there are only 947 paths with posi-

tive flows which shows that, on the average, there are only 1.35 paths

with positive flows joining each O-D pair) and not all of the paths have

M2 links. Therefore, there is a great deal of un-used allocated storage.

However, this fixed storage scheme has an advantage, and that is, a fast

accessing mechanism to groups of paths with the same O-D pairs or with

the same origins (this is important for the decomposition schemes that we

use). In fact, in this allocation, the paths are stored in a sequential

order in terms of O-D pairs and origins.

Since we are generating the paths, it is not easy to keep this se­

quential ordering when we use variables Mi and M~ for each O-D pair i.

However, by introducing some pointers we ca~ store the path information

with variables Mi and M~, and still have a good accessing mechanism to a

group of paths. Naturally, the accessing time to any path will be in-

creased above that required by the fixed space scheme. Thus, there is a

tradeoff between CPU time and the storage utilization.

We have implemented the linearization algorithm for variable M
i

and
1

fixed M
2

• Two pointers are enough to locate any path; these are called

FIRST and NEXT. For O-D pair i, FIRST (i) indicates the location of the

first path joining O-D pair i, and NEXT (p) indicates the location of the

next path with the same O-D pair as path p. Next (p) is set to zero when

p is the last path joining an O-D pair.

The second row in table 6.15, designated problem PI' shows the

computational results for implementing this modified data structure

scheme for the city of Hull example with elastic demand functions. As
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the results show, the modified algorithm requires 60K words to store the

path information, compared to l40K fer the original case (PO). This re­

duces the in-core sotrage cost by $2.54, while it increases the CPU

cost by $0.61. Thus, the total savings in cost is $1.93.

Therefore, this modification makes the algorithm capable of solving

larger traffic assignment problems and, at the same time, reduces the

total running cost. An even better improvement might be achieved by

i
allocating variable space for M

2
, the number of links in the path, as well.

6.4.2 Out-of-Core Storage

In theory, we can always use out-of-core storage. But the question

is when is it efficient and economical. This depends on the choice of re-

cord size, number of times we need to access to the records, and, more im-

portant, on the order we need to access the records (sequential or random).

For the case of fixed space allocation, all of the paths with the same

O-D pair and same origin are listed in a sequential order. Thus, for the

decomposition scheme discussed in section 6.2.4, we require, within each

cycle of the algorithm, only sequential accessing to all of the records.

This is not the case for the modified data structure. For this reason,

it seems that an out-of-core storage facility is more appropriate for

the fixed storage scheme than for the modified scheme. Now the question

is what is the optimal record size in terms of total computer running

cost.

We have examined two different record sizes. For the first run

we have chosen the record size equal to M1 * M2 so that we could fit all

of the path information corresponding to each O-D pair in one record.
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The computational results for this run, indicated by problem Pz' is

shown in table 6.15.

Table 6.15 shows the computational results of different runs for

example 6.5, city of Hull. The table contains a variety of infor­

mation, to make the comparison more clear; these are: problem number,

CPU time, CPU cost, record size, in-core storage cost, accessing cost

to out-af-core storage (disk), other costs (which include compiling cost,

I/O cost, and so forth), total running cost, number of accesses to out­

of-core storage, in-core storage requirements for path information, and

total in-core storage requirements. Notice that all the runs give the

same solution.

Run Pz required only 45K words, which is a reasonable storage re­

quirement for any small computer, compared to 174K for PO. Therefore,

the variable space storage scheme is practical for solving much larger

traffic assignment problems. However, the total running cost increases,

as wemight expect, and by a factor of 3. The first factor contri-

buting to this cost increase is the accessing cost to out-of-core storage.

The second factor is the increase in in-core storage cost, even though

this run requires less in-core storage, because the program must stay

idle during the accessing process. Finally, the last factor is the

increase in the CPU cost due to substantial swapping to transfer data

from the out-af-core storage to the arrays in the memory. To reduce the

total running cost for Pz' we have to decrease the number of accesses

to the out-of-core storage. To accomplish this, we need to increase

the record size.



Problem CPU CPU Record In-core Accessing Other Total No. of In-core Total
No. Time Cost Size Storage Cost to Costs Running Accesses Storage In-core

(sec) $ (words) Cost $ Out-of- $ Cost $ to Out- for pa.ths Storage
Core of-Core (K words) (K words)
Storage$ Storage

Po 18.46 4.84 - 5.22 - 11.47 21.53 - 140 175

PI 20.85 5.45 - 2.68 - 10.46 18.69 - 60 100

Pz 53.55 lZ.10 200 18.00 19.50 15.60 64.0 15620 .2 45

P3 93.61 20.62 5200 6.24 1.61 10.14 38.61 1333 5.2 52

Table 6.15

Computational Results for the City of Hull with Elastic Demand
for Modified Data Structure and Using Out-af-Core Storage

~
W
\0
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For the next run, we have chosen the record size equal to M1 * M2 * d,

where d is the maximum number of destinations associated with each origin

(for the city of Hull, d = 26). In other words, we store all of the

paths originating at each origin in one record. The computational re­

sults for this run, which is indicated by problem P3' is shown in

table 6.15.

As the results show, the number of accesses to the out-of-core

storage, and" therefore the in-core storage cost and accessing cost,

has decreased enormously for run P3 as compared to run P2· Also, P3

requires only 7K words more of in-core storage.

The reason that P3 requires more CPU cost is that, in this case,

we mus~:, at each step, substitute all of the information from the one

record into the corresponding array in memory. But there is a great

deal of non-usable information in most records, because not all of the

O-D pairs have MI paths with positive flows. In contrast, for the im­

plementation P2' we only transfer the paths with positive flows, which

are located at the top of the record, and discard the rest of the record.

This is not possible for the implementation P3-

Over all, among the four schemes, when there is no in-core storage

limitation, the modified data structure scheme (PI) is the best in terms

of total cost, and the original scheme (PO) is the best in terms of

speed. When storage is limited, then scheme P3 seems to be best in terms

of total running cost, at leas~ for the computational testing on this

one example.
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APPENDIX A

A Convergence Property of the Linearization Algorithm

In this section we discuss some convergence properties of the

linearization scheme for solving the nonlinear complementarity problem

corresponding to a traffic equilibrium model.

Consider a simple network with a single arc, a single mode, and a

single O-D pair. The user-equilibrium system for this network can be

written as the following nonlinear complementarity problem:

(AI)

[t(h) - u] • h = 0

[h - D(u)] • u = 0

t(h) "- u > 0

h - D(u) > 0

h > 0, u > 0 •

We start at any arbitrary nonnegative point (hoJuo) ~ OJ

linearize t(h) at hO and D(u) at uo, and solve the resulting linear

compleme~tarity problem (LCP) to find a new point (hlJul ).

At iteration i, the (LCP) would be:

[t(hi ) + (hi +l hi) dt(hi ) i+l 1 • hi +1 = 0
dh - U j

(A2) . [hi +l D(u
i

) (i+l i) -lD(ui ) i+l au - u • u =du

i+l]u. > 0
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(A2)

h
i +l > 0 , i+l

u > 0

The procedure is shown in the Figure A.I.

u

x = (h,u)

1
u

o
u

Figure A.I The Linearization Algorithm

LEMMA A.I: Let t(h) be a continuous diffepentiabZe incpeasing convex

function on h ~ 0 and Zet D(u) be a continuous diffepentiabZe decpeasing

aonvex function on u ~ o. Then CAl) has a unique so Zution and further­

mope the sequenee {hi ,ui } genel~ated by solving (A2) Mill eonvepge to

* '*that solution (u ,h J.

PROOF: For simplicity of exposition we assume that

teO) > 0

D(O) > 0

dt(h) > <5

dh
for some" small Q > 0



/dD(U)I < M
du
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for some large M > 0

even though these assumptions are not required.

The proof, of uniqueness is clear from the main theorems in chapter 4.

Notice that D(u) is a continuous differentiable decreasing function and,

therefore, is bounded from above. Thus we prove only the last assertion

of the lemma.

Let,

. C = {(h,u) ~ 0, t(h) - u > 0, and D(u) - h > O}.

For any (h,u) £ C, since D(u) is bounded thus h is bounded, and, since

t(h) is continuous, thus u is bounded. That implies C is bounded.

Also, the continuity of t(h) and D(u) imply that C is closed, therefore

C is compact. Since t(h) and D(u) are convex, for any point in C the

solution to the linearization problem (A2) lies in C as well. There­

fore, starting at any point (ho,uo) in C, the sequence {hi,ui } generated

by solving (A2) will remain in C.

Now, we choose (ho,uo) in C such that hO > 0 and uO > teO).

i
It is easy to show that u > 0 at any iteration (intuitively u cannot

be zero because it is the minimum travel time). In fact, we show that

{ui } is an increasing sequence.

F · h h h i +1 b1rst we s ow t at can not e zero. Suppose that this asser-

i · d h h i +1 .t on 18 not true an t at 18 zero.

plementarity we have:

Th · i+l 0 ben, S1nce u >, Y com-
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·+.1 i (ui +l u
i

)
dD(ui )h 1 . - D(u ) = 0

du

or

i+1 i
+

D(ui ) > u
i

u = u
i-dD(u )

du

Therefore, the first complementarity equation becomes:

t(hi ) + (hi +l _ hi) dt(h
i

) i+l
dh - u

t(h
i

) hi dt (hi) i+l= - u
dh

< t(O) -
i+l < t(O)

i
< 0 (A.3)u - u

which is a contradiction. i+lThus h > 0 at any iteration. Notice that

the first inequality in (A •.3) is true because t(h) is convex.

Therefore, if we start at any point in C with uD > t(O) we have

hi > 0 and u
i

> 0 for all i, which implies that system (A2) is equi-

valent to the following linear system:

(A.4)

( iii i
hi +1 = hi I -(h -D(u )) - (u -t(h »

I _ dt(h
i

) • dD(u
i

)
dh du

i+lu

Th 1 · 1 h i+1 i (hi,ui )ese equa ities 1mp y t at u ~ u for any in C, because

all terms in the fraction of the last inequality are positive. Therefore
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{u.}, as an increasing sequence in a compact set, has a limit point,
1.

i.e., lim u
i = u*. Therefore, for any E > 0, there exists an I > 0

i~

such that, for any i > I we have:

i+1 i
u - U < E •

Then (A.4) implies that

or

where

Also (A4) implies that

£ 1< - + ceM = E(M + 7) .- 0 u

Therefore {hi} has a limit point too.

< £

i ·
Suppose that {h,~} is the limit point of the sequence {h ,u

1
}.

To show that {h,~} is an equilibrium point, we know that,
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f
t(hi ) + (hi +1 _ hi) dt(hi~ i+l

0- u =dh

l h i +1 _ D(ui
) (i+1 i) dD(ui ) a- u - u ---- =-

du

Since t(h) and D(u) are continuous differentiable functions, therefore

at the limit we have:

lim
i~

t(hi) + (hi+1 _ hi) dt(h
i

) i+1 A Adh - - U ='t(h) - u = 0

lim
i-i<n

A

D(u) = 0

,,,\ A * *and since (AI) has unique solution thus (h,u) = (h ,u ), whiclt conlpletes

the proof••

Notice that the coefficient matrix of the linear complementarity

system (A2) is positive definite. Therefore (A2) has always a unique

solution and B is positive.

REMARK A.I: Without convexity assumptions, the Linearization scheme

miBht not converge. For example:

u

t(h)

o h

Figure A.2 The Linearization Algorithm Might Not Converge
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In this example, if we start at X
O

the algorithm will not converge,

but will oscillate between X
O

and xl. Note, however, that if at each
0-1

1 iiteration we linearize at - E x we have convergence. This obser-
n · 01=

vation suggests that a modification of the algorithm might converge for

nonconvex volume delay and demand functions. II

REMARK A.2: The convergence properties for this simple case are re-

lated to Newton's Methods for solving systems of nonlinear equations

(see, for example, Ortega and Renboldt [0-01]). II
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APPENDIX E

Computing the Coefficient Matrix

In the notation of section 6.2.5, we stated the volume delay function

for path pas:

where

T (h) = E 5 • t (f)
p aEA ap a

for all p £ p~ and i £ I
1

f =
a

l: L <5
isI p£P~ ap

1.

• 11
P

for all a £ A.

In practice, because of the enormous number of paths, it is not

possible and efficient to store the arc-path incidence matrtx {o } in
ap

a computer. Instead, as we noted in section 6.4, we can store the

list of arcs in a subset of all paths, called the set of working paths.

If A denotes the list of arcs in path p, then we have:
p

and

T (h) = L t (f)
P aEA a

p

for all p £: p~ and i £ I
1

aT (h)
-..p---- = L

dh I a£Ap p

at (f)L __a__

a'EA afa ,
pI

for any p and pl. (B.l)

By storing and updating values for Vt(f) and using (B.l), we can

efficiently evaluate the coefficients of the Vt(h) matrix. First, notice

that Vt(f) is usually a highly sparse matrix because, in general, the



159

flow on each arc depends at most only upon the flow on a few other arcs.

Therefore, for each arc, a E A, only a few components of Vt (f) are
a

non-zero that can be stored in a few words of the computer memory. For

the special case when t (f) = t (f ) (This has been the case for most
a a a

of the ~omputational results by other researchers), we have:

aT (h)
----p-- =ah ,

p
L

a£A nA I
P P

dt (f )
a a
df

a
for any p and pI •

In this case, a one dimensional array is enough to store the data for

Vt(f). Also, when Vt(f) is symmetric, as is the case when t (f) = t (f ),
a a a

then VT(h) is symmetric which reduces the computation of the coefficients

by one half. (Notice that we did not include this option in our com-

putational results because we wanted to implement the algorithm in as

general a form as possible).

Second, because of the decomposition scheme that we use, the di-

mension of the VT(h) matrix is not very large for each subproblem. In
aT (h)

fact, the VT(h) matrix only includes those elements of a~ for which
p'

both p and p' are in the subproblem. Also, to update values for Vt(f)

after each linearization (flow change), we only require updating those

non-zero components of Vt(f) for which a E A and p is in the subproblem.
p

Similar observations apply for computing the coefficients of the

VD(u) matrix in the demand portion of the model.




