

2

PARALLEL COMPUTATION: SYNCHRONIZATION, SCHEDULING, AND SCHEMES

by

JEFFREY MARTIN JAFFE

Submitted to the Department of Electrical Engineering
and Computer Science on August 10, 1979 in partial fulfillment of the

requirements for the Degree of Doctor of Philosophy

ABSTRACT

There are two primary means of resource allocation in computer systems.
There is the powerful mechanism of using a centralized resource manager that
allocates the resources. An apparently weaker mechanism is for the
asynchronous processes of the system to allocate resources with some type of
message passing between themselves. This thesis provides a unifying treatment
of these two methods. It is shown that a managed system may be simulated by
the processes. As a corollary, a wide variety of synchronization algorithms
may be accomplished without a manager.

The simulation works correctly even in an environment with
unrel iabilities. Processes may die in an undetectable manner and the memory of
the system may be faulty. Thus our general simulation provides the first known
algorithm for synchronizing dying processes in a faulty memory environment.

Scheduling jobs on processors of different capabilities is studied.
Algorithms are presented for two machine environments that have better
performance than previously studied algorithms. These environments are
processors of uniformly different speeds with partially ordered tasks and
unrelated processors with independent tasks. In addition, the class of all
preemptive schedules for uniform processor systems are studied. These
schedules aro shown to be more effective than previous analyses.

Scheduling jobs on functionally dedicated processors is introduced.
Algorithms are presented for scheduling jobs on such processors, both in the
case that the processors are equally fast and in the case that they are of
different speeds.

The expressive power of the data flow schemes of Dennis is evaluated.
It is shown that data flow schemes have the power to express an arbitrary
determinate functional. The proof involves a demonstration that "restricted
data flow schemes" can simulate Turing Machines.- This provides a new, simple
basis for computability.

THESIS SUPERVISOR:Albert R. Meyer
TITLE:Professor of Electrical Engineering and Computer Science

3

Keywords

Chapter 2:

distributed control
fair mutual exclusion
fault tolerant computing
mutual exclusion
process systems
resource allocation
resource manager
simulation
stable state
sychronization
unrel iable processes

Chapter 3:

independent tasks
list schedules
maximal usage schedules
nonpreemptive scheduling
partially ordered tasks
preemptive scheduling
sc hedul ing
task systems
typed task systems
uniform processor system
unrelated processors
worst case performance bounds

Chapter 4:

computabi Ii ty
data flow schemes
effective functionals
r.e. program schemes
Turing machines

4

Acknowledgements

During my three years as a graduate student the primary source of
direction has been provided by my thesis supervisor Albert Meyer. He has
suggested exciting research directions to pursue, encouraged me to simplify and
clarify my ideas, and pr.ovided inspiring technical contributions. Most
importantly., he has unselfishly devoted an enormous amount of time to the
development of the concepts in this thesis and to the presentation of the
resul ts.

My two thesis readers are to be credited for sparking my interest in
the general topics covered in this thesis. Ron Rivest deserves primary credit
for training me in the techniques of algorithm design and analysis and giving
me much feedback on the presentation of the thesis. The data flow machine
project of Jack Dennis helped develop my interest in parallel computation.

There are many others that have contributed to my research by providing
new insights or working together with me on some of the technical res-ults.
While I cannot begin to thank them all for the various levels of help they have
provided I would like to single out those who have made the most outstanding
contributions: A. Baratz, E. Davis, I. Greif, D. Harel, E. Jaffe, D. Kessler,
A. LaPaugh, E. Lloyd, M. Loui, C. Papadimitriou, V. Pratt, M. Rabin, A. Shamir,
and G. Stark.

Since no research can be done in a vaccuum, I must thank all of those
friends and family whose kinship and support are necessary ingredients of a
research effort. Most importantly I must express my eternal gratitude to my
wife, Esther for all of her help. It is a rare blessing to be close to someone
that provides not only the necessary love and moral support at home, but also a
vast reservoir of technical assistance in my work.

This thesis was prepared with the support of a National Science
Foundation graduate fellowship, and National Science Foundation grant no.
MCS77-19754.

S

Table of Contents.

Abstract2

Keywords . ..*.....................'--------.. ... 3

Acknowledgements 4........................ 4

Table of Contents...........................e....s2.............- 5

Index of Theorems and informal description of content ... 7
Index of Lemmas 9

Index of Equations 10

Index of Figures and Tables 11

1. Introduction 12

1. 1 Major goals and accomplishments of thesis 12
1.2 Reasons for parallel computation 15

1. 3 Some problems associated with parallel computation 19

2. Synchroni zation -26

2.1 Introduction * 26

2.1.1 Background and motivation 26
2.1.2 Unreliability assumptions and their

motivation................ 30

2.2 Basic definitions ... 0.... 34

2.2.1 Process systems and the definition of
simulation 34

2.2.2 Properties of simulation 41

2. 2.3 Process systems with unreliable memory 45
2. 2. 4 Managed system of processes and the main

results of Chapter 2 . 52
2.3 An Example08-N-- ... 56
2.4 Cooperating system of n simulators *...* 59

2.4.1 Overview of the system 59

2.4.2 Memory of the cooperating system 64

2.4.3 State transitions of the first n processes..... 71
2. 4.4 Simulation of the RM (state transitions of the

simulators)hu..... 74

2.5 Proof of Theorem 2.1 6 81

2.6 Discussion of unreliability properties 104

2.7 Open problems and furtherwork 109

3. Scheduling Theory I........---. .-.--- 111

3.1 Introduction 111
3. 2 Scheduling tasks on processors of uniformly

different speeds 6 119

3.2.1 Basic definitions and models 119
3.2.2 Nonpreemptive scheduling of tasks on

uniform processors 123

3.2.3 Preemptive scheduling of tasks on uniform
processors ,... ... ***e..... .. 143

3.2.4 Scheduling with limited information 159
3. 3 Nonpreemptive scheduling of independent tasks on

unrelated processors 0aaaaa000a 162

3.4 Scheduling tasks on processors of different types 185

6

3.4.1lBasic definitions and models

3.4.2 Nonpreemptive scheduling of tasks on
equally fast processors of different
types

3.4.3 Nonpreemptive scheduling of tasks on
processors of different types and
different speeds

3.4.4 Maximal usage preemptive scheduling of
tasks on processors of different types
and different speeds

3.5 Open problems and further work

4. Schemes.. .
4. 1 Introduction *.*0.0. .
4.2 Syntax and semantics of schemes
4.3 Programming techniques a
4.4 Simulating Turing Machine computations with

restricted data flow schemes
4.5 Simulating arbitrary r.e. program schemes with

data flow schemes
4. 6 Conclusion and future work

References
Biographical note

185

188

196

214
216

219
219
222
228

235

243
255

256
264... 0a 00 00 0 0 a 6 6

7

Index of Theorems and informal description of content

Theorem

Theorem

2.

2.

1

2

Theorem 2. 3

Theorem 2. 4

Theorem 2.5

Theorem 3. 1

Theorem 3.2

Theorem 3.3

Theorem 3. 4

Theorem 3. 5

Theorem 3.6

Theorem 3.7

Theorem 3.8

Cooperating systems simulate managed systems

Every history for a cooperating system matches
some history for the corresponding managed
system

Managed systems may be partially simulated by
systems with n processes

Fair mutual exclusion may be accomplished even with
dying processes and unreliable memory

Cooperating systems without errors simulate
managed systems

List schedules on the fastest i processors are at

most 1 + 2-/m times worse than optimal
where m is the number of processors

List schedules on the fastest i processors are at

most Irn + 0(m1) times worse
than optimal0........

Any preemptive schedule may be transformed into a
maximal usage preemptive schedule in polynomial
time

A bound on maximal, usage preemptive schedules
related to Theorem 3.2

Maximal usage preemptive schedules are at most

Irn + (1/2) times worse than optimal

An algorithm for independent tasks on unrelated

processors is at most 2.5/rn times worse
than optimal

An algorithm which is similar to the one analyzed

in Theorem 3.6 is at most 2.411rn times
worse than optimal

An algorithm which is similar to but slower than the

algorithm analyzed in Theorem 3.6 is at most 1. 5'rn
times worse than optimal

54

97

101

101

102

130

131

152

153

157

176

178

180

B

Theorem 3.9

Theorem 3.10

Theorem 3. 11

Theorem 3. 12

Theorem 3. 13

Theorem 4.1

Theorem 4.2

List schedules for typed task systems are at most k+1
times worse than optimal where k is the number of
types................................

List schedules for typed task systems on processors of
different speeds are at most k plus the maximum
ratio of speeds of processors of the same type worse-
than optimal

A speed independent bound for list schedules on a
subset of processors for typed task systems

A different speed independent bound than that of
Theorem 3.11

A bound on maximal usage preemptive schedules for
processors of different types related to Theorems 3. 11
and 3.12.

Turing Machines may be simulated by restricted data
flow schemes

R.e. program schemes are equivalent to data flow
schemes

188

200

203

204

215

237

247

9

Index of Lemmas

Lemma
Le mma
Lemma
Le inina
Le mma
Lemma
Lemma
Lemma
Lemma
Lemma
Leina
Lemma
Lemma
Le inina
Le mma
Lemina
Lemma
Lemma
Lemma
Lemina

2. 1
2. 2
2. 3
2. 4
2. 5
2. 6
3. 1
3. 2
3. 3
3. 4
3. 5
3. 6
3. 7
3. 8
3. 9
3. 10
3. 11
3. 12
3. 13
3. 14

(progr

...................................... 41

e*s.s Iemma.... 85
........ 92

...............................~.................. 171

.......,......,.........**..**.....*............... 171

....- 7

... 172 1

... 1725

... 1756

........ 189
................. 1689

... 790
... 1971

Lemma 4. 1 (finite translation lemma) 6 60 0 9 9230

10

Index of Equations

Equation
Equation
Equation
Equation
Equation
Equat ion
Equation
Equation
Equation
Equation
Equat ion
Equat ion
Equat ion
Equation
Equat ion
Equation
Equat Ion
Equation
Equation
Equation
Equation
Equa t ion
Equation
Equat ion
Equation
Equation
Equat ion
Equation
Equation
Equation
Equat ion
Equation
Equation

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)

....--.........................

... ..-......... Se@ ee.e.........

.. SSe~ee

.. SSSS610SS@~ ~ .e..............

...

..................................

.. ga

............................ **SSSSSS10SUS*0..........

...................... SSOSSO~esse.g..................

---............................. ~e~e..e~e

...

.......................... **SSSSOSu~Oegeg.s.g........

....................... *OUSUSSeee@ggS.S...............

..

...

................ ,..........................e.,.....

........................... ,,,,,S.,............,....,

....

... , ,

.... a .. 0 a 0

......

.....

....

... 0

...,,.

127
128
128
131
131
134
135
155
156
156
156
156
173
173
173
174
174
174
174
175
175
175
176
199
199
200
201
201
202
202
202
204
204

OS? q'? 5 V 9111211

?v t'? 000008400 60 00000M 6 V C9 11181

PIZ 9 00 a0 @00 0 OS9 OSa S 0 S00S0aS0a 09q09i 0S f@S 0 i 00 aa aaU 00@ aa C a .a.8 a E a @ llsI

E pso 9fl!

0L 0 a. a.t a00 a0 0e a0 a0 909 6a6ina9a8 00aj

IL?~ 0 4 a 0 a a 0 0 4**~~*.** * **9j t

IL Z 60aa 0a0a V a9a0 oin0a00 aa a6 rj000
6 L Z* S SSaS Sa a@ S 0 0 0 a 0 0 * O 6 S Sa a a96 * S O S S O S 0 0 S6 .e.0 0 0*$j9 .69 101aS ! J

zIL? 0 .aa a0 a0 00 *0 a0 00 089 09 0a 60g 0a' 90 9411811 aa a 0

6?? 9 ..a. ...? aaa000 00aaa 000aa8 'aa40E v 94a1)1111
6?? *O 0 iOO.USO00 O 0 0 S0 0 gO8 aa 0 gg 0 O a g40g0tg@ 9a 6ga0ea. ...a. .ajaa*0 0 94f0Baa1aJ

? I? 1 a.60V 090 90 aa0 69 9s a h l ;

LI z.... ? C1 9 jPJ

sajqj pue sasn~l;a jo xapuy

11

1. Introduction

1.1. Major goals and accomplishments of thesis

There are three major topics covered in this thesis. They are resource

allocation or synchronization of parallel processes, job scheduling, and

schemes. In the introduction we give a very brief description of the main

contributions of this thesis. We then give an overview of the usages of

parallel compuation and describe some problems that designers of parallel

systems are confronted with. More extensive introductions to the three main

topics of the thesis may be found in Section 2.1 (synchronization), Section 3.1

(scheduling), and Section 4.1 (schemes).

1.1.1 Synchronization

There are two primary means of resource allocation in computer systems.

There is the powerful mechanism of using a centralized resource manager that

allocates the resources. Managed systems are usually easy to design and easy

to prove to be correct. An apparently weaker mechanism is for the asynchronous

processes of the system to allocate resources with some type of message passing

between themselves. This method has the advantage of not needing a manager to

"poll" the processes even at times that no resource is needed. This thesis

provides a unifying treatment of these two methods. It is shown that a managed

system may be simulated by the processes. As a corollary, a wide variety of

synchronization algorithms may be easily designed without a manager.

The simulation works correctly even in an environment with

unreliabilities. Processes may die in an undetectable manner and the memory of

the system may be faulty. Thus our general simulation provides the first known

algorithm for synchronizing dying processes in a faulty memory environment.,

12

13

1.1.2 Scheduling

Scheduling jobs on processors of different speeds is studied.

Algorithms aro presented for two machine enviTonments that have better

performance than previously studied algorithms. These environments are

processors of different speeds with partially ordered tasks and unrelated

processors with independent tasks. These environments will be defined

precisely in Chapter 3. In addition, the class of all preemptive schedules for

uniform processor systems are studied. These schedules are shown to be more

effective than previous analyses.

Scheduling jobs on functionally dedicated processors is introduced.

Algorithms are presented for scheduling jobs on such processors, both in the

case that the processors are equally fast and in the case that they are of

different speeds.

1.1.3 Schemes

The expressive power of the data flow schemes of Dennis is evaluated.

It is shown that data flow schemes have the power to express an arbitrary

determinate functional. The proof involves a demonstration that "restricted

data flow schemes" can simulate Turing Machines. This provides a new, simple

basis for computability.

We proceed with an overview of parallel computation in general.

Section 1.2 outlines the basic types of machine environments that we consider

under the title of parallel computation. Section 1.3 discusses the three

topics of the thesis in somewhat greater detail. We discuss the relevance of

these issues in different parallel environments. We also explore the

14

relationships between the primary issues of synchronization, scheduling, and

schemes, and secondary issues such as fault tolerant computing, distributed

control, and heterogeneous systems.

15

1.2 Reasons for Parallel Computation

We identify three different sources of interest in parallel

computation: "problem oriented", "machine oriented", and "community oriented"

(distributed).

1.2.1 Problem Oriented Parallel Computation

Part of the original interest in parallel computation arose from

time-consinuing, "number crunching" programs that could not be executed within a

reasonable amount of time on a single conventional machine. Many of these

programs solve extremely important problems such as partial differential

equations and linear programming. In order to solve these important problems

one is often willing to buy a large amount of computing resources if this could

only help obtain the solution. In certain applications (e.g. FFT) special

purpose devices have been built to solve the problem. However, for other less

pervasive applications, using more than one general purpose computer is often

the cost-effective means of solution. By executing different portions of a

program concurrently one substantially reduces the finishing time of a program.

This effort - to understand how to divide programs into different

portions capable of being executed concurrently - promises to continue despite

further advances in hardware technology. While hardware advances consistently

extend the frontier of "which programs may be finished quickly", it seems

unlikely that all important problems will ever be solvable quickly. As soon as

improved technology and reduced hardware costs permit us to efficiently solve

yesterday's intractable problems, a new set of intractable problems invariably

appears on the horizon. Indeed, a large class of important decision problems

are NP-complete. NP-complete problems are widely believed to require an

16

txponential amount of time for their solution [20] in terms of the rize of the

particular problem instance (i.e., for instances of size n, the time required

is 2). in addition, there is a class of somewhat less important problems

which provably require exponential time. For these problems, even moderately

sized instances are beyond the reach of today's technology, and larger

instances which arise in practice, will surely continue to be difficult.

It is interesting to note that the NP-complete problems lend themselves

to parallel techniques; they can be solved quickly if one can explore many

possible situations in parallel. While this use of parallel computation does

not circumvent the apparent exponential growth in the time required for solving

the NP-complete problems, it does permit one to solve larger instances than

would be otherwise possible.

1.2.2 Machine Oriented Parallel Computation

Often the motivation for introducing parallelism into a system is the

"dual" of problem oriented parallel computation. In a problem oriented

environment no individual resource is sufficiently powerful to attack the

problem at hand. The "dual" of this is that available resources are overly

powerful for any single problem. It is then advantageous to divide the use of

the powerful computer among many problems.

This situation has led to a successful series of multiprocessing and

multiprogramming computer environments. Many users simultaneously execute

different jobs, while a central controller allocates processing time and

other machine resources. Typically, some of the users are in an interactive

mode; i.e. the inputs to the program are inserted by the users during program

execution (e.g., editing programs). This slow input process allows the system

17

to serve many users at once; each user's program needs only a small amount of

CPU time per uiit real time. Even programs that are not executed interactively

do not utilize all of the machine resources simultaneously. Thus, if one

program issues numerous Input/Output instructions, other programs may use the

main processor and memory.

There is also some overlap between problem oriented and machine

oriented environments. Consider a given problem oriented environment with a

large cost overhead due to the purchase of extensive computing resources. It

may be useful to amortize that cost by permitting low priority computing to

take place in the "background" - to be executed if system resources would

otherwise be unused.

1.2.3 Community Oriented Parallel Computation

Community oriented parallel computation is a relatively new

development. In a computer network, a large number of computers are separated

by physical distances and linked by communications lines. This interconnection

scheme has become practical for a large number of applications due to the

astonishing decrease in costs for small computers. A network provides a

powerful, flexibile computing system to a large community of users. The

dedication of a computer to a small number of local users provides them with

computational power free from delays that are inherent with processor sharing

in large multiprocessor systems. On the other hand, each user in the system

still has access to a wide variety of system resources. In particular, each

user has access to any resource located anywhere in the network of computers.

Thus (for example), the communications network may enable the user to copy a

"mailing list file" from one remote location, process it locally to removed an

18

undesirable portion of the list, and have the output produced at a different

location; perhaps the single network location with a "mailing label" output

device.

Another advantage of distribution is that most of the system remains

operational if some of the local computers "crash" and have to be withdrawn

from the system. This contrasts with the classical computer model that relies

heavily on the reliability of the single central processor.

To recapitulate, the three motivating forces for parallel computation

that are mentioned here have a number of common high-level goals. The first is

to bring more processing power to bear on a particular environment. In a

problem oriented environment, this occurs with the use of faster or specialized

processors after one completes the programming task of parallelizing the

programs. The multiprogrammed environment acquires more real computational

power by insuring that existing power is not wasted. A distributed environment

enables users to use dedicated machines without giving up the Lapability of a

varied resource system.

A common goal of machine and community oriented computation is to

attain a wider distribution of computer resources. Multiprocessor systems give

each user relatively equal access. Distributed systems provide easier access

to users located near the resources.

19

1.3 Some Problems Associated with Parallel Computation

1.3.1 Synchronization

One of the more challenging problems in the field of parallel

computation is in trying to program moderately difficult algorithms in a

distributed manner. That is, trying to establish protocols between different

centers of computational power that enable the centers to cooperate on the

solution to a particular task. A center of computational power may be a node

in a network in a distributed system, or a process. in a multiprocessor system.

Decentralized algorithms are advantageous as they enable computational tasks to

be finished quickly. Specifically, if the distribution is done properly, the

completion of the algorithm may not be hampered by a center of computational

power which is slow or busy doing other work. The large amount of service work

done is one of the inefficient aspects of a central controller.

Chapter 2 of this thesis is devoted to such a "distributed control"

program. What is more imortant than the fact that this is a distributed

control problem is that it provides a new solution to a practical problem that

has been widely studied (e.g., (15,17,37,63]). The problem is to synchronize

resource assignment in a multiprocess system. Even in a uniprocessor machine

it has long been felt that this should be solved without the central controller

[15]. Since the central controller is busy with other time consuming tasks, it

is helpful to remove some responsibilities from its domain. There is no reason

for the controller to continually poll the users trying to establish if any

resource requests have been made.

Some other solutions to this problem in distributed control may be

found in [15,16,34,35]. The solution presented here takes hardware reliability

into account. The solution works even if there is a failure of any one memory

20

unit. Also, slow processes do not degrade the efficiency of our solution. A

slow process is modelled by a process that stops entirely. The solution

continues to work even if some of the processes stop entirely and thus does not

wait for a slow process (since a slow process will appear to have stopped

entirely). Of course, there is no way of speeding up the system if a slow

process is using the resource. In summary, there is a dual fault protection -.

memory may be unreliable, and processes may die (i.e. be slow) without any

visible signs of death.

The main result is that we show that in the face of unreliability, the

processes may simulate a manager of resources. Since it is a general

simulation, it serves as a paradigm for other issues that arise in parallel

computation. First, there is a general need to develop techniques of

programming in a distributed manner. Our techniques should .be generally

applicable as they are not ad hoc mechanisms that solve only the specific

problem of devising a fair synchronization protocol. Rather the techniques are

mechanisms which enable the processes to cooperate to simulate the actions of a

central controller, even if there is no controller, and memory and processes

are unreliable. We note, however, that the solution itself is not quite usable

to assign resources in distributed environments as it uses global read/write

variables.

There is one final arena in which we believe that our protocols provide

an excellent pedagogical model. This is the area of parallel program

verification. To prove a complicated parallel program correct is quite

difficult, as one must consider all possible interleavings of when which

processes executed their instructions. There have been a number of suggested

proof techniques in the literature.

21

The proof that our protocols simulate a central controller uses a

"stable state" technique. At certain times, the current states of the

processes and values in memory provide a clue as to what the system behavior

will be in the immediate future. These times are defined to be the stable

states. The constraints on the system at stabilization guarantee that the

system will again become stable. Also, these constraints enable us to predict

the behavior until the next stabilization.

1.3.2 Scheduling

One of the classical problems in the design of parallel systems is the

scheduling of a large number of concurrently executable tasks on a fixed set of

processors. The order of execution is an important consideration if one wants

the jobs to be completed quickly [24]. A poor scheduling policy squanders the

potential benefit of a parallel system. The scheduling problem arises in all

three machine environments described in Section 1.1.

This problem has usually been attacked under the assumption that all of

the machine's processors are identical [23]. This is a reasonable assumption

in certain systems, and it is relatively easy to develop fast, near optimal

algorithms in such a system.

In Chapter 3, scheduling algorithms are developed for complex machine

environments with processors of different speeds. This problem has been

considered in [28,30,43], but the known algorithms are not nearly as effective

as in the identical processor case. The assumption that a system has

processors of different speeds is widely applicable. For example, in problem

oriented parallel computation a computer facility may have different machines

with different capabilities. In a multiprocessor system, it is conceivable

22

(although perhaps not likely) that the computer has processors of different

speeds. In a distributed system it is likely that the processors of the system

be different. Also, the time required by a specific job on a specific

processor (in a distributed system) must include some measure of communication

cost. Thus identical processors are viewed as nonidentical from the system's

point of view.

Sections 3.2.2 and 3.2.3 analyze the situation where the relative speed

of any pair of processors is fixed (uniform) irrespective of the task to be

executed. Both preemptive and nonpreemptive algorithms are presented for the

scheduling of a partially ordered set of jobs on uniform processors. In both

cases, approximation algorithms are developed whose worst case performance is

better than known algorithms.

While the machine model with uniform processors is somewhat amenable to

analytic, worst case analysis, the non-uniform (unrelated) case is much harder

to analyze. The unrelated case models machines of specialized capabilities.

In that environment the relative speeds of the processors depend on the task.

This type of specialization may be used to model distributed computing, for

example, even if the local processors are identical. As mentioned above, the

time requirement of a task on a machine, M, depends on the relative distance in

the network between the source of the task and M. Since this environment is

more complex, the major results presented treat the situation that there is no

partial order on the tasks. In that case, an algorithm is presented whose

worst case performance is better than known algorithms.

The limiting case of a processor with specialized capabilities is a

.processor which is capable of executing certain tasks but not others. These

types of processors are incorporated into the design philosophy of machines

such as the data flow machine [14]. This is a general purpose computer that

contains many specialized processors. The simplicity of these processors

permits one to install many of them at low cost. Scheduling problems on such

sets of processors are studied in Section 3.4.

There is no active scheduler in current data flow computer

architectures. Nevertheless, the scheduling results of Section 3.4 serve as a

useful analysis tool. The scheduling algorithms'analyzed include the passive

scheduling that exists in the data flow architecture.

Whether or not a machine architecture permits the use of an active

scheduler, one does not want to spend too much time on job scheduling, since

the time spent on scheduling may be costly. Some of the results of Chapter 3

are applicable even to systems in which one wants to expend little effort in

scheduling. These results suggest that if a processor is sufficiently slow,

then a better worst case performance is obtainable if it is never used.

Furthermore, techniques are provided for deciding which processors are

sufficiently slow that they should never be used. This type of scheduling

result is actually a machine design consideration - the machine should not be

designed with such slow processors. Thus the use of these algorithms presents

a one time cost which need not be repeated for every set of tasks.

1.3.3 Schemes

Synchronization and scheduling may be viewed as special cases of the

fundamental question of how to develop and execute programs that are to be run

in parallel. A basic issue in parallel program design is to develop a language

that naturally exhibits all of the parallelism in a given program. Dennis [12]

has proposed a language called data flow schemes. A program is essentially a

directed graph where nodes represent operations and arcs represent the fact

that one operation may not be executed until the result of another operation is

available. In this manner, a considerable amount of parallelism is expressed.

A subclass of data flow schemes, called well formed data flow schemes,

is equivalent to if-then-while schemes (13]. These are proposed as constructs

that are reasonable to program with. A natural extension of this would be to

develop a data flow langauge that has more power than if-then-while schemes.

It is shown in Chapter 4 that the full class of data flow schemes has as much

expressive power as the class of r.e. program schemes. Thus, in particular,

recursion is expressible in the language of data flow schemes. To prove this,

it is shown that a very restricted version of data flow schemes (without

explicit counters) can simulate Turing Machines.

To recapitulate, the three main areas of study are synchronization of

parallel processes, scheduling of tasks on processors, and development of

expressive parallel languages. In addition, a number of auxiliary issues arise

due to the techniques that are used. The synchronization routines involve the

following wide variety of issues: fault tolerant techniques, methods to permit

parallel processes to cooperate without requiring fast processes to wait for

slow ones, parallel program verification, and simulction of a managed system

with a decentralized system.

The scheduling portion develops algorithms for scheduling jobs in

heterogeneous systems. The results here have an impact on machine design as

they indicate situations where the usage of a processor is rarely warranted.

In addition, Section 3.2.4 discusses some limitations on scheduling with limited

information, such as, without advance knowledge about the actual time

requirements of jobs. This is an important practical consideration since one

often does not have advance knowledge about the actual time requirements of

jobs.

Finally, in the scheme portion a new simple basis for computability is

developed. Moreover, the techniques used to simulate r.e. program schemes (in

particular the finite translation lemma of Section 4.32) quantitatively

describe how data flow schemes differ from well formed data flow schemes. This

difference suggests that perhaps certain additional constructs should be added

to the constructs of well formed data flow schemes to achieve certain

programming tasks.

26

2. Synchronization

2.1. Introduction

2.1.1. Background and motivation

2.1.1.1. Previous Work

The mutual exclusion problem is the problem of arranging for

asynchronous parallel processes to take turns using a resource. Each process

has a "critical section" during whose execution the resource is used. The

critical section may be executed correctly only if no other process is

simultaneously in its critical section. The first solution to the mutual

exclusion problem, which uses read and write instructions as primitives, was

devised by Dijkstra [15].

Often one desires protocols that satisfy additional properties, e.g.

"fairness" properties such as "lockout free" and "linear wait". (A "lockout

free" protocol ensures that every process that tries to enter its critical

section will do so, sooner or later.) In [11,16,35], fairness properties of

synchronization protocols are considered.

Recent work provides "robust" solutions to the mutual exclusion

problem - solutions that work even if parts of the system are unreliable. For

example, a process might "die" and set some special variable to a value "dead"

[34,37,52,53].

While early solutions to the mutual exclusion problem use only reads

and writes, recent work uses the more powerful test-and-set [4,5,17] (as

defined in Section 2.1.1.2). Test-and-set instructions have been used either

to obtain memory efficient solutions or to cope with unreliability in the

processes. In [5], a test-and-set which operates on a single many-valued

variable is used to synchronize reliable processes (i.e., the variable may take

27

on any of many possible values). Developing such synchronization routines is

trivial; the contribution of [5] is in obtaining tight upper and lower bounds

on the number of values that the single variable must take on.

Similarly, Burns [4] obtains upper and lower bounds on the number of

binary-valued variables needed. Again, obtaining some synchronization protocol

is easy, but efficient solutions are hard to find.

Undetectable process death (i.e. no special variable is set at death)

is introduced in [17]. In [17], processes which may die are synchronized with

a single many-valued variable. Once again difficulties arise only when one

tries to obtain tight bounds.

The next generalization of the results of [4,17] is to develop resource

allocation algorithms which work in spite of undetectable process death and use

only bounded-valued variables. Here, it seems to be difficult to arrive at any

solution. We solve this problem as a special case.

2.1.1.2 Focus of the chapter

In this chapter we present a general method for ensuring cooperation

among asynchronous processes. This yields, among other things, a new solution

to the mutual exclusion problem. We show that even with undetectable death in

processes, a large class of synchronization problems is solvable if one uses a

test-and-set on bounded-valued variables. In particular, we describe how

asynchronous processes can simulate a powerful, "resource manager". Systems

with a resource manager easily provide fairness properties (described in

Sections 2.2.4 and 2.3). We have not attempted to be efficient; it appeared

challenging to develop any protocol which simulates a resource manager in an

unreliable environment.

28

This general simulation would not be interesting if we did not assume

undetectable death. With totally reliable processes, one process may be chosen

as the manager, spending part of its time as a manager and part as a process.

Simiiarly, in a system in which processes announce their deaths, one process

may be appointed as the manager, and if that process dies, a different process

is chosen to be manager (note the work of [53] which synchronizes such dying

processes even without a test-and-set). Here, no process can be chosen to be

the manager, since it may die undetectably. Thus all of the processes must act

as managers. They must coordinate their activities as managers, making sure

that they do not interfere with each other's managing efforts. Even this

problem would be easy to solve with many-valued variables. With one

many-valued variable the manager's entire state may be encoded.

A test-and-set instruction in one atomic step reads a multiple-valued

memory cell and updates the cell's value based on the value read. The

algorithms in this chapter use test-and-sets on four-valued memory cells. An

interesting open problem is to use binary variables - since common machine

test-and-set instructions operate on binary variables. (We mention in Section

2.4, a technique which uses three-valued cells.)

2.1.1.3 Memory unreliability

Not only does our simulation work if processes die and bounded-valued

variables are used, but it also tolerates limited memory failure. If only a

single variable is used and this variable is unreliable then the mutual

exclusion problem is not solvable. For every k, we may use many memory cells

of fixed size to achieve fair synchronization even if any A cells fail.

29

Memory unreliability may be viewed as a generalization of the attempts

of [4,5.17] to get tight bounds on memory requirements. One reason to use a

minimum amount of memory is that a system that uses little memory is reliable

if it uses reliable hardware. An alternative approach to providing reliability

is to use inexpensive unreliable memory and protocols that tolerate memory

errors. Other reasons for introducing memory unreliability are discussed in

Section 2.1.2.

2.1.1.4 Outline of the chapter

In Section 2.2 we define models for systems of processes and for

manager-directed synchronization protocols. Section 2.2 also defines what it

means for one system cf processes to simulate another system of processes, and

shows that this definition preserves important fairness properties. The rest

of Chapter 2 shows that a system of processes may simulate an undying manager,

even when the simulating system has unreliable memory, processes that die, and

no controlling manager. A corollary of this is that fair synchronization in an

unreliable environment may be done without a 4anager.

Section 2.3 presents a sample synchronizqtion protocol where a manager

ensures typical fairness properties. Section 2.4 describes our unmanaged

simulation of managed systems. Section 2.5 contains a proof of correctness.

30

2.1.2 Unreliability assumptions and their motivation'

2.1.2.1 Process death

In this section we elaborate on our assumption of undetectable death.

Real processes often fail without setting a variable to "dead". Thus we assume

(as in [17]) that a dead process merely ceases to execute. Our solutions

provide fair mutual exclusion as long as at least one process is alive.

(Concepts such as fair mutual exclusion require reformulation if processes die

undetectably.) We do not consider more extreme modes of failure in which

processes deviate from their protocols.

A problem arises when a process dies while executing its critical

section, thereby "locking out" all other processes. Our solution will recover

from death in the critical section only if processes do announce- their death.

It is clearly impossible to do better if the system cannot recognize that the

process has died.

If a mutual exclusion protocol is tolerant of unannounced death then

extremely slow or dead processes cannot cause arbitrary system slowdowns. For

example, assume that process J will be next to obtain access to a critical

resource. In a previous solution [53], process J waits for signals from other

processes before obtaining access to the resource. Thus, a slow process could

iunnecessarily hold up process J. In any solution tolerant of dying processes,

(e.g. our solution) a process must correctly obtain access to the critical

resource even if all other processes die. It therefore, cannot wait for

acknowledgements from potentially slow or dead processes. This contrasts with

solutions which require that other processes will eventually exhibit some

activity.

Even if processes die in their critical section, a solution assuming

31

unannoinced death can achieve the k-sharing property [17]. Namely, if there

are enough resources for k processes to execute their critical section

simultaneously, the deaths of fewer than k processes (even in their critical

section) should not deadlock the rest of the system.

Finally unannounced death forces the simulation to be truly

decentralized; we can not merely appoint one of the processes as a manager.

2.1.2.2 Memory faults

This section describes the extent to which our simulation methods

tolerate memory unreliability. A memory cell is unreliable if after it is set

to a specified value, the value may change even if the cell is not rewritten.

If all of the memory is unreliable it is impossible for totally reliable

coordination to take place. Our solutions are fault tolerant in the sense that

they do not depend on the reliability of any single memory cell. Rather, they

depend on assumptions about memory failure patterns. Memory is divided into

blocks, and the assumptions are of the form "at most e cells in every block of

s cells are ever in error." The precise dependence of s on e is described in

Section 2.6. For any value of e, there is a value r=f(e) such that the

solution works as long as only e cells in each block of $ cells fail. To

tolerate the failure of any e cells, we make every block of cells tolerant of e

failures.

Certain fault tolerant techniques are not applicable. For example, one

might utilize primitives that test-and-set three cells at once. If at most one

cell is faulty, the three cells still reliably represent a single reliable cell

with majority voting. We outlaw this facility on the grounds that three cells

that may be accessed at once presumably reside in the same memory "unit". We

desire that our solution tolerate the failure of any such "unit". This also

prevents the use of more elaborate coding schemes.

In anoiher fault tolerant technique each process maintains multiple

copies of every cell (and each copy is updated at a different step). If at

most one cell out of three is unreliable, the true value of a cell could be

determined by keeping three copies of every cell and taking the majority.

While this technique usually works if each variable is written by only one

process, complications arise if different processes may write a variable in a

potentially conflicting manner. Since we need to have more than one process

write some variables, this multiple copy technique is not immediately usable.

In summary we assume that no single system unit, even a memory unit, is

immune to failure. The correctness of the solutions depend on assumptions

regarding the number of memory faults. Our protocols handle resource

assignment unless all processes die, or as many die in their critical section

as there are critical resources.

2.1.2.3 Motivating machine models

This section discusses the interpretation of our model in real systems.

In a multiprogrammed environment with several processes running on a single

processor, hardware failure would result in the death of all processes. Thus

death in our model is best thought of as modeling the effect of an undetected

infinite loop. In addition, death models a low priority process which rarely

gets processing time. Such slow behavior must not become a system bottleneck.

Our model is also motivated by distributed environments. Here there

are usually no global variables, but it is conceivable that some shared memory

43 J

might be distributed among the sites of a system. However, even in that case,

our solution cannot handle "site death" because site death causes too much

memory to be lost. Specifically, if the communication links to a site are

unreliable, then all cells at that site are unreliable. If there are n sites

in the system and one site dies (through unreliable communication links), then

1/n of the cells of the system are not reliably accessible. Our solution does

not solve this problem, but does suggest some means of attacking it. As

mentioned above, our solutions work if "at most e of s cells are unreliable".

If such blocks of s cells are partitioned into s/e subblocks of size e, then

the failure of any one subblock is tolerable. For the protocols of this

chapter s/;>16n. (Section 2.6 contains a variation with a factor of 14n.) If

s/e can be kept as small as n, then the death of one network site (containing

one subblock) is tolerable.

q. '

2.2. Basic Definitions

Section 2.2.1 defines a process system, and several notions of

simulation. Section 2.2.2 explores the properties of simulation and describes

how simulation preserves fairness. Section 2.2.3 explains why and how the

definitions of simulation must be relaxed to allow one to cope with unreliable

memory. Section 2.2.4 introduces a special class of process systems, the

managed systems which model resource allocation systems.

2.2.1 Process systems and the definition of simulation

2.2.1.1 Process systems

A process system captures the notion of a set of asynchronously

executing processes each of which represents a program being executed in a

computer system. Memory cells are used for message passing between processes.

Any memory that is local to a process is incorporated into the process's state.

The order in which processes appear in a turns history reflects the order in

which they take turns executing instructions.

A process system, P, consists of a finite set of processes, denoted

processes(P), a finite set of memory cells, denoted cells(P), and a state

transition function 6. Process j (for 1I; processes(P)I) is a possibly

infinite set, denoted PROC(PJ), of process-states. The Jth memory cell (for

1.<jcelIs(P)j) is a finite set, denoted CELL(PJ), of memory-states. A

designated element of PROC(PJ) is the initial process-state of process J and a

designated element of CELL(PJ) is the initial memory-state of cell J.

The set of system-process-states of P, PROCSTATES(P), is the cartesian

product PROC(P,1) x PROC(P,2) x . . . x PROC(P,n) where nclprocesses(P)I. The

set of system-memory-states of P, MEMSTATES(P), is the cartesian product

Ut,

CELL(P, 1) x CELL(P,2) x . . . x CELL(P,m) where m:Icells(P)I. A system-state,

s, consists of a system-process-state, procstate(s), and a system-memory-state,

'cnmnstate(s). The state of process J in a system-state s is the 1 th

coordinate of procstate(s). The state of cellj in s is the Jth coordinate

of memstate(s). The set of all system-states is denoted SYSSTATES(P). The

initial system-process-state is the system-process-state whose Jth coordinate

is the initial state of process J. The initial system-memory-5tate and initial

system-state are similarly defined.

The state transition function, 6, is a map

6:SYSSTATES(P) x (1,..,n)-.SYSSTATES(P) where n=jprocesses(P)I.

The function 6 satisfies:

(a) For k/j, the state of process A in 6(sJ) is the same as that in s.

(b) The sate of process j in 6(sj) is not equal to that in s.

(c) If the states of process J in jI and s2 are the same, and if

memstate(s 1)=memstate(s2), then the state of process J in 6(s) equals the

state of process j in 8(sj,4) and memstate(6(s iJ))=memstate(6(s 2 d)).

if 6(s 1 ,j)=s 2 then s2 follows s 1 after a process J transition.

Condition (a) asserts that at a process J transition, the state of no

other process changes. Condition (b) insists that at a process J transition,

the state of process]j does change, a technical convenience to be explained

later. Condition (c) indicates that the changes in the system-state at a

process j transition depend only on the system-memory-state and the state of

process j. Note that the processes are deterministic.

A turns history for P. is an infinite sequence of integers from the set

{ 1,...,1Proceses(P)I). The system-state-history of a turns history t0 t 1 '"is

the unique sequence of system-states 501"5 such that s0 is the initial

system-state and 6(spt)=s i+i. Process J dies in a turns history T if j

appears only finitely often in T.

2.2.1.2 One definition of simulation

We now discuss one definition cf simulation of a process system P by a

process system Q. This is a weak definition, involving only the memory.

Let 1Id<_cells(P)I. Let s0s1f" be a system-state-history for P and let

m. denote the d-tuple of the states of the first d cells in si. The

memory-history of the first d cells of s0 ' is the sequence m 0 m1 '". We

often refer to the memory-history of the first d cells as the "memory-history".

One only looks at the first d cells in P, since the others may not be

important; they may be used for bookkeeping and not for communication between

processes. If all cells of P are important, then the memory history is only of

interest for d=Icells(P)I.

The important part of such histories are the changes. Let h 0h1

be an infinite sequence (a "history"). The 1th element of h0 4h.'1 is altered if

i=O or if h/i i _ 1 . The altered-history is the subsequence consisting of

altered sequence elements. For example, the altered-memory-history is the

altered history of the memory history.

We define the notion of Q simulating P. Let 1 d Icells(P)I. A

memory-simiilator-function, f, for Q into the first d cells of P, consists of d

functions f I 4...fd, where fJ:MEMSTATES(Q)-.CELL(PJ). The function f1 is

called the memory-simulator-function for cell J of P. If meMEMSTATES(Q), then

f(m)=(fl(m),..4d(m)) is called the simulated-memory-state of m. For any

37

system-state-history, soi"' of Q, the simulated-memory-hisaory is the sequence

f(miemstate(s 0))f(memstate(s 1) The simulated-memory-state and

simulated-memory-history depend on d and f, but this dependence is often

suppressed when obvious. (The simulated-memory-state is not a

system-memory-state of P unless dIcells(P)I.)

Q simuiates the memory of P with respect to a

memory-simulator-function, fi,..fd (i.e. with respect to the first d

cells) if the set of altered-memory-histories of P obtained from all turns

histories for P and the set of altered-simulated-memory-histories of Q obtained

from all turns histories for Q are the same.

One considers altered histories so that Q may spend many turns

simulating one turn of P. Also, if P spends A turns without changing the first

d cells, Q need not waste k turns.

2.2.1.3. Faithful simulation

The above notion of simulation does not require any correspondence

between the processes of Q and P. When modelling entrance into the critical

section, we need a correspondence between the processes of the two systems,

e.g., the jth process of P and the 1th process of Q.

Let P and Q be two process systems and let I1rimin(Iprocesses(P)I,Iprocesses(Q)I).

A process-simulator-function, g, is a set of r functions g,...9 gr where g is

a function g:PROC(Qj)--PRQC(PJ), the process-simulator-function for process

J. The value g1(q) (for qePROC(QJ)) is the simulated-process-state of q.

The essential-state of a system-state s with respect to r and d is the

r+d-tuple listing the states of the first Y processes in s, and the states of

38

the first (I cells in s. The essential-history-with-repetitions of a

system-state--history sos ,- is the sequence 0E 1 '" where e1 is the

essential-state of s. The essential-history is the subsequence of the

essential -history-with-repetitions consisting of altered sequence elements.

One looks only at the first r processes since it may not be important

to simulate the behavior of all of the processes of P. For example, in our

simulation of a managed system, it is not important for any process of the

simulating system to have its state correspond to the state of the manager.

Let Q and P be two process systems. Let seSYSSTATES(Q), let

gg P ... ,gr be a process-simulator-function, and let f fI,...fd be a

memory-simulator-function. The essential-simulated-state of s is the r+d-tuple

listing the simulated-process-states of the first r processes and the

simulated-memory-states of the first d cells. The

essential-simulated-history-with-repetitions of a system-state-history for Q,

SS. .., is Coe1f.'" where ei is the essential-simulated-state of sj.

The essential-simulated-history is the subsequence of the

essential-simulated-history-with-repetitions consisting of altered sequence

elements.

Let T be a set of turns histories of P and let T' be a set of turns

histories of Q. Then Q faithfully simulates P with respect to 7 and 3', with a

memory-simulator-function ff ... Id, and a process-simulator-function

gVg,,...gr' If:

(1) The set of essential-histories of P obtained from turns histories

in 7 and the set of essential-simulated-histories of Q obtained from turns

histories in 7' are the same.

(2) Let TET', and let q0 q('" be the sequence of process J states in the

39

system-state-history generated by T (I<r). If process j does not die in T then

infinitely many elements of the sequence of simulated-process-states

g-(q 0)g1 (qj)- are altered.

Thus, (2) prevents process j from having infinitely many turns in Q

without simulating process j in P. The motivation is that if, in some turns

history a process of Q does not die, then the corresponding simulated process

of P does not die either. By condition (a) of the definition of the state

transition function, the only turns in a turns history for Q at which the

simulated-process-state of process j may change are at process j turns.

. 0 One reason that process j changes state at a process J transition

(condition (b) of the definition of the state transition function), is to

permit us to state condition (2). If a process in P could take infinitely many

turns without changing state, then it -would not make sense to insist that in Q.

the corresponding process could not take infinitely many turns without changing

its simulated state.

The second reason that process J changes its state is related to (1).

If in some history of P process j has a number of turns in which it remains in

the same state, there should be some method of noticing this in histories of Q.

However, since (as explained in Section 2.2.12) it is convenient to define

simulation on altered histories, the fact that process J does not change its

state is not represented in any essential-history. Thus we force the state to

change.

Q faithfully simulates P if it faithfully simulates P with respect to

the set of all turns histories of P and the set of all turns histories of Q.

40

Q faithfully partially simulates P (with respect to 7 and r') if the

set of essential-histories of P (obtained from turns histories in T) contains

the set of essential-simulated-histories of Q (obtained from turns histories in

T') and (2) above holds (for I').

Intuitively, if Q faithfully partially simulates P, then no history of

Q behaves incorrectly, since every history reflects a possible behavior of P..

However, Q may not reflect all possible behaviors of P.

The usefulness of a faithful partial simulation depends on which

features of P one wants to preserve with Q. For example, if P satisfies

properties such as deadlock freedom or bounded waiting (as defined in Section

2.2.2), then so will Q, if Q faithfully partially simulates P. Since these

fairness properties motivate this work, faithful partial simulation is

important here.

41

2.2.2. Properties of simulation.

For this section suppose Q faithfully simulates P with respect to a

memory-simulator-function f~f,...fd, and a process-simulator-function

g9g1 ,-.,gr. We discuss important properties of simulation which are trivial

consequences of the definition.

Lemma 2.1. Q simulates the memory of P.

Proof. Obvious. 0

Lemma 2.2 Let T be a turns history of P, T' a turns history of Q, such

that the essential-history of T equals the essential-simulated-history of T'.

Let j<r. Then processj dies in T iff process J dies in T'. If]j does not

occur in T', then]j does not occur in T.

Proof. If processj dies in T, then there are only finitely many alte-ations

in the "process j history" (i.e. the sequence of process J states), by

condition (a) of the definition of the state transition function. Thus, the

sinulated-process-state of processj may change only finitely often in T'. By

condition (2) on faithful simulation, if process J does not die in T', the

simulated-process-state of process]j is altered infinitely often. Thus process

j dies in T'.

Conversely, assume that process J dies in T. Since at most one change

in simulated-process-state occurs for each occurrence of J in T", the

simulated-process-state of process J changes only finitely often. Thus there

are only finitely many changes in the state of process J in the

42

essential-history of T and so by condition (b) on state transition functions j

occurs finitely often in T.

If j does not occur in T', then the simulated-process-state of process

j never changes and j does not occur in T. 0

Assume that each process of P has one designated critical state. Then

P satisfies mutual exclusion for a set of turns histories, 7, if no two

processes (i.e. of processes 1,...,r) are ever simultaneously in their

designated critical states in any system-state-history that arises from TET.

We say that the simulating system, Q, satisfies mutual exclusion for the turns

histories, r', if in no system-state which is an element of the

system-state-history of a T'e', are the simulated-process-states of two

processes (of processes I,...,r) simultaneously critical. We think of a

process in Q as executing its "critical section" in one of its states whose

simulated-process-state is the critical state of P.

Lemma 2.3. If P satisfies mutual exclusion then Q satisfies mutual exclusion.

Proof. Assume that Q does not satisfy mutual exclusion. Then in some

system-state-history of Q generated by some turns history T' there is a

system-state in which the simulated-process-states of two different processes

are both critical. Look at the first turn at which this happens. The

essential-simulated-state of Q is altered at that turn, and thus appears in the

essential-simulated-history of T'. Since the essential-simulated-history of T'

equals the essential-history of some turns history T for P, it must be that P

violates mutual exclusion. 0

43

Similarly, P is deadlock free for 7 if in every turns history of 7 in

which none of processes 1,...,r dies, some process enters its critical state

infinitely often, and P is lockout free for 7 if in every turns history of 7' in

which none of processes 1,...,r dies, all r processes enter their critical

states infinitely often. With a similar definition of Q being deadlock free or

lockout free, it follows that if P is deadlock free or lockout free, then Q is

deadlock free or lockout free.

Assume that each process of P has a "trying" section; a set of "trying

states" that it enters before entering its critical state. (Before entering

the critical state, a process enters some trying state, and remains in the

trying section until it enters its critical state.) Then P satisfies bounded

waiting for 7 if for some A, there is no turns history of 7 in which none of

processes 1,...,r dies, in which one process enters its critical state more

than k times while another process is in the trying section. With a similar

definition of Q satisfying bounded waiting, if P satisfies bounded waiting then

Q satisfies bounded waiting.

The proof of Lemma 2.3, and the fact that simulation preserves deadlock

freedom, lockout freedom, and bounded waiting depend on every

essential-simulated-history of Q being equal to an essential-history of P.

Thus, all these properties are preserved if Q faithfully partially simulates P.

The property of being deadlock free only concerns turns histories in

which no process dies. More generally, one may develop the notion of being

"enabled" to enter the critical section [17]. Intuitively, this occurs when

process j may enter its critical section after finitely many process J turns,

irrespective of the other processes. A deadlock free system may then be

44

defined to be one that does not deadlock unless some process is dead in its

critical section or is dead while enabled to enter its critical section. The

exact definition to be used is not our objective, and we omit further

discussion.

45

2.2.3. Process systems with unreliable memory

We discuss simulation of a system P with reliable memory by a system Q
with unreliable memory. Due to the faulty memory, the definitions must become

more complicated. In contrast to the definitions of Section 2.2.1 which we

believe to be intuitively reasonable, the revised definitions are not clearly

the best possible. However, they are useful in that they preserve fairness.

2.2.3.1. Error transitions

A process system with errors, Q, consists of sets of processes and

cells (as with ordinary process systems), a set of errors, denoted errors(Q),

and a state transition function 6. The set errors(Q) is a subset of

{(j,k):: j Iccls(Q)) and AeCELL(QJ)). If (J,k)Eerrors(Q) for some

kECELL(Qj) then cell] is called faulty. We will assume that if cell J is

faulty, then for every hECELL(QJ), (J,k)eerrors(Q).

The state transition function, 6, is a map

6:SYSSTATES(Q) x ((1,...,Iprocesses(Q)l) U errors(Q)) -+ SYSSTATESQ). The

next state after a processj transition is the same as in ordinary process

systems. If e=(j,k)Eerrors(Q), then 6 (s1 ,e) is defined to be the state s2

where procsrate(s2)=procstate(s), the memory-states of si and s2 are the

same for all cells other than], and the state of the Jth cell in s2 is A.

The state s. is called the state that follows si after the error transition e.

A turns history for Q is any infinite sequence from the set

(1I,...,processes(Q)I U errors(Q). Other concepts such as

system-state-histories and memory-histories are defined similarly to the

definitions of Section 2.2.1.

46

We will use errors(Q) as a parameter, i.e., we may consider a

particular system Q with different sets of faulty cells.

2.2.3.2. Memory simulation

We illustrate the need to change the definition of memory simulation.

Recall that our assumptions about memory unreliablity are of the form "at most

e of s cells are faulty". Assume that we wanted to design a system Q with one

out of five cells faulty and a single binary-valued cell of P is to be

represented in Q as five cells. Assume that the memory-simulator-function is

defined based on majority voting (i.e., the simulated memory-state equals 0 iff

the majority of the five cells equal 0). Then when these cells are updated

there is a potential oscillation in the simulated-memory-state. Specifically,

assume that at some time the memory-state of exactly three of the five cells

equal zero. If one of the cells containing zero is faulty and oscillates

between 0 and 1, the simulated-memory-state will similarly oscillate. If P

does not exhibit such oscillatory behavior, this unpreventable behavior in Q

would prevent Q from simulating P. To handle such transients in the system we

allow some flexibility in deciding when the simulated-memory-state changes.

There is a transitional period, during which we say that the

simulated-memory-state is in .the process of being changed. We would say

(above) that the memory-state is mapped by the memory-simulator-function to 0

if the state of zero, one, or two cells equals 1, to 1 if the state of four or

five cells equals 1, and to tranhitional if the state of three cells equals 1.

For a memory-simulator-function f from the simulating system with

errors, Q, into the first d cells of P, the component functions f are maps:

f .:MEMSTATES(Q)-.CELL(PJ)U~transitional) for 1,...,d.

47

Assume f.(r)flransitional if m is the initial system-memory-state of Q.
The simulated-memory-state of a given system-memory-state of Q is

defined with respect to a given history. Specfically, let s 0 s'" be a

system-state-history for Q. If f.(memstate(s))MCELL(Pj), then the

simulated-memory-sfate of cell J at step i is f.(memstate(sg)). If

f (ncmstate(s.))=transitional, then the simulated-memory-state of cell J at step

i is the same as the simulated-memory-state of cell J at step i-1.

Intuitively, if f1 (m)=transitional, then whenever the memory-state of Q
equals m the system Q is in the middle of changing the simulated-memory-state

of the jth cell. In a system with errors, one develops simulation techniques

that use the transitional memory-states to prevent the simulated-memory-states

from oscillating.

The simulaeed-memory-history is defined as in a system without errors,

i.e., the sequence of simulated-memory-states.

2.2.3.3. Process simulation

We discuss process simulation in a system with errors, starting with an

example. Assume (as in Section 2.2.3.2) that one cell of P is represented as

five cells in Q and when the cell in P is to be updated by a process from 0 to

1 all five cells in Q are updated by the corresponding process from 0 to 1. In

P, the state of the cell changes at the same turn at which the state of the

process changes. Thus if Q is to faithfully simulate P, the

simulated-memory-state must change at the same turn at which the

simulated-process-state of the process changes. Since the

simulated-memory-state of Q changes at the first turn in which four cells equal

1, the simulated-process-state must change at the same turn. Unfortunately,

48

depending on whether there have been any error transitions, the process may be

in any of a number of states and thus the simulated-process-state cannot depend

only on the process-state. Thus the simulated-process-state of a process

changes based partially on the simulated-memory-state. Intuitively, if a

process of Q is trying to simulate a turn of a process of P, it completes this

simulation when the simulated-memory-state of Q changes.

Let P and Q be two process systems as above. A process-simulator-

function for process], g., is a map g.:PROC(Q,])-+PROC(PJ) U (transitional).

Since the simulated-process-state changes based on the

simulated-memory-state, we need to relate the memory-states to the

process-states.

A process-correspondence c, consists of r component functions

c I,....,cr. The function c. is a pair of functions: the function

and a partition fiunction which partitions MEMSTATES(P) as follows. For each

ordered pair of states (q 1 ,q 2) where q 1 ,q 2ePROC(QJ), and neither g1(q 1) nor

g.(q 2) are equal to transitional, MEMSTATES(P) is partitioned into two sets.

These two sets are called MEMSTATES 1 (q1 1q2) and MEMSTATES 2(q 1 92).

Intuitively, MEMSTATES (q ,q2) consists of those memory-states that would occur

in P while process]j is still in g1(q,), and MEMSTATES 2 (q,q2) are those that

occur by virtue of the process]j turn into gq 2). The simulated-process-state

changes as soon as the simulated-memory-state is in MEMSTATES 2(qlq2).

The following formalizes the notion that the simulated-process-state of

a process depends on its last non-transitional state, the next non-transitional

state it will enter, and the memory (as given by the process-correspondence).

Let c . as above be a process-correspondence for process]J, let f be a

memory-simulator-function, let s 01s" be a system-state-history of Q, and let

49

qq I~ be the processj history of s0,4 f g1)EPROC(PJ), then the

simulated-process-state at step i is g1(q1). if g(q)=transitional, then let

k, / be integers such that neither g(%) nor g(q1) are transitional (AGiOl),

and for k4(, g.(qW)=transitional. Let A be the smallest integer, if any,

k<hl such that f(memstate(sA))EMEMSTATES 2 (qk'qf). Then if k(the

simulated-process-state at step i is g(q), and if /aihl the

simulated-process-state at step i is g(q1). If no h satisfies

f(rnenstafdsh))EMEMSTATES 2 (q,q) (for A(Ail) then the simulated-process-state

at step i is g1(q,) for all W(V.

To complete the definition of simulated-process-state, we discuss one

additional case of relatively small importance. It is possible that

g1(q)Pransifional and for all 1> g(q 1)=transitional. By condition (2') on

faithful simulation (below), this will only happen in turns histories 10rlg,

in which process j dies. In that case, the simulated-process-state changes if

it is cear which simulated-process-state process J was trying to enter.

Specifically, assume g1(q4)ftransirional, but for O> g (q)'transitional. Let

I be the smallest integer such that for NA1>4 qq, i.e., q is the last state

that process j enters. Assume that there is a q'EPROC(QJ) such that for all

turns histories that start t0 t 1 ."tI in which process J does not die, q' is the

first state (after step 1) that process J enters that is not mapped to

transitional. (Intuitively, process j is "on the way" to q'.) Let h be the

smallest integer (if any) greater than A such that

f(nernsat(sh))EMEMSTATES 2 (qk,q'). Then if WSICO, the simulated-process-state

at step i is g(qk). If i>h the simulated-process-state at step i is g ('.

If there is no such q', or if there is a q' but no such A then the

50

simulated-process-state at step i (i) is g1(q.)

Note that the simulated-process-state of process j need not change at a

process j turn.

All the concepts that depend on the simulated-process-state and

simulated-memory-state, such as the essential-simulated-state are defined in a

manner similar to Section 2.2.1. The main difference is that the

simulated-process-state and simulated-memory-state are only defined in the

context of a history, and thus, the essential-simulated-state is only defined

in the context of a history.

The notion of faithful simulation is similar to that of Section 2.2.1,

with the following modified version of cndition (2).

(2') Let T be a turns history for Q and let q 0q5" be the sequence of

process j states in the system-state-history generated by T. Consider the

subsequence, S, of g1(q 0)g1(qj)" consisting of nontransitional elements. If J

does not die in T, then the sequence S is infinite and infinitely many elements

of S are altered.

By (2'), if process]j does not die in Q, it enters infinitely many

states which are not mapped to transitional. Furthermore, this sequence of

infinitely many states is altered infinitely often and thus the process is

acting like process j in P.

We discuss what it means for a simulating system with errors, Q to

satisfy mutual exclusion. The way we have modelled the "critical section" of a

process in Q is that it would be executed while the process is in one of the

51

states of Q whose simulated state is the critical state of the process in P.

Since the simulated-process-state of a process in Q (with errors) depends not

only on the process's state, we must say more about when the process in Q may

execute its critical section.

One way to model the critical state of process J in P is to consider

process j in Q to be in the critical state only if the state of process J is

qEPROC(Qj) where g1(q) equals the critical state of P. Q satisfies

mutual exclusion for r if in no system-state which is an element of a

system-state-history of TcT', are two processes in states that are mapped by

their respective process-simulator-functions to a critical state. This

definition of Q satisfying mutual exclusion is preserved by the definition of

simulation.

52

2.2.4 A Managed System of Processes and the main results of the chapter

2.2.4.1 Definition of managed systems

This section defines a class of process systems, the managed systems.

One process is designated as a manager, and intuitively, it informs processes

that they may use resources by sending them messages. Communication between a

process and the manager is done through a cell associated with the process.

The process and manager alternate in the use of the cell.

A Managed System of n processes is a system of processes, P, with

IProcesses(P)=n+1 and Icells(P)f=n. Process n+1 is called the resource manager

(RAM). The state set of the RM is finite and is partitioned into n subsets

F 1 ,...,F,. Intuitively, if the state of the RM is in F then at its next

turn. it will look for a message from process J. The elements of CELL(PJ)

(1<;jn) are pairs (L .,M .), where I may be either "REQUEST" or "RESPONSE"

and M1 may be one of a set of integer values. The initial state of CELL(Pj)

is (RESPONSE,O).

Intuitively, if .L. is REQUEST, then M is a request from process J to

the RAM. When L . is RESPONSE, M is a response by the RM to the

last process j request.

The state transition function 6, has the following properties. If

A(sg,n+0)=s2,and the state of the RM in skiis in F, then s, and s. must differ

in the state of the RM and may differ in the state of the 1 th cell.

Furthermore, these two coordinates in i2 depend only on these two coordinates

in s, as follows. If L =REQUEST, then they depend both on the state of the RAM

and on the value of M in s. If L =RESPONSE, then the state of the RM in s2

depends on the state of the RM in s 1 and the state of the 1 th- cell is

unchanged.

53

For j<n+1, if 6(s j)=s2 then sI and s2 must differ in the state of

process j and may differ in the state of the jth cell. If L .=REQUEST, then

only the state of process]j changes in s2 , and it depends on the state of

processj in s 1. If L =RESPONSE, then the state of process J, and the value of

M1 in s 2 both depend on the state of process j and the value of M in s

The value of L in s is REQUEST.
2

2.2.4.2 Statement of the main result of Chapter 2

Given a managed system P, we define a system of 2n processes Q such

that Q faithfully simulates P with respect to all of the memory cells and

processes 1,...,n. The last n processes are finite state processes, used to

simulate the actions of the RM. Q may be thought of as an n process system

where the n processes have a small amount of nondeterminism - they may choose

to act either as a process or as a simulator of the RM.

Let 7 be the set of turns histories of P in which the RM does not die

and in which at least one of the first n processes does not die. We only

consider these histories as we think of RM systems operating only when the RM

does not die, and at least one process does not die. In Q, a history is only

of interest if at least one of the n "true" processes does not die (the 1 th

true process is thought of as both the 1th process and the 1th simulator).

For a system of 2n processes, Q, define 7' to be the set of turns histories in

which at least one of processes 1,...,n does not die and for J=1,...,n, process

j dies iff process n+j dies. In every turns history in r' some process has

infinitely many turns. Also, in 7', there is a rough identification of the

1th and n+jth processes, namely, that if the 1th true process is not dead

54

it acts both as a process and as a simulator.

The main result is:

Theorem 2.1. For any managed system P and all k1, there is a system of 2n

processes Q that faithfully simulates P with respect to t and 7' even if any

h of the cells of Q are faulty.

From Theorem 2.1 we see that a simulating system Q can be built with A

faulty cells for any k. Sections 2.4 and 2.5 prove Theorem 2.1 with k=1, and

Section 2.6 discusses the generalization for arbitrary A.

2.2.4.3. Discussion of Theorem 2.1

It seems unlikely that one would be able to find a simulating system

with n deterministic processes. If the processes are deterministic then the

number of turns that these processes use to simulate the RM from a given

system-state will be bounded. Such a system cannot faithfully simulate the RM

system since in the RM system, the RM may have many consecutive turns, more

than the number used by the processes to simulate the RM. Thus, the particular

essential-history of the managed system would not equal any

essential-simulated-history of any simulating system.

One might try to solve this problem by defining all processes to be

nondeterministic and using a different definition of simulation. This,

however, would obscure the issue that prevents n processes from simulating RM

systems. In any real system, once it is determined how often each process acts

as a simulator the n processes cannot simulate the RM system.

Using the process system Q, we devise a system of n processes Q' that

55

faithfully partially simulates P. Then Q' satisfies fairness properties such

as lockout free and bounded waiting if P does. This indicates how n

deterministic processes may accomplish fair mutual exclusion in the face of

unreliability.

In Section 2.5 we explain how to simplify Q to obtain a system Q'"

which faithfully simulates P with respect to r and 7' where there are no error

transitions in the elements of T'. This simulation is correct even with the

more restrictive definition of faithful simulation by a system without errors.

Certain properties of Q make it reasonable for use in practice. The

next state after a process J transition depends only on the state of process J

and the state of one cell. Furthermore, the only memory-state that may change

at the transition is the state of that one cell. Finally, ICELL(QS)I is

bounded for every J; it is at most four.

56

2.3. An Example

We illustrate a managed system, P, that provides fair mutual exclusion.

PROC(Pj)=(qIq 2 9 1 ,f 2 ,c) for j=l,...,n (the dependence on J in the elements of

PROC(PJ) is suppressed). The cells consist only of the L1 portion. At a

process] transition from either "quiessent" state (q, or q2), process J

enters the other quiessent state if LJ=REQUEST and tI if L .=RESPONSE. If

L .=RESPONSE it is set to REQUEST. At a process J transition from a "trying

state" (t 1 or 2), if L =RESPONSE then process J enters the "critical state"

(c), if L ==REQUEST, process J enters the other trying state, and L is

unaffected. At a process]j transition from c, L is set to REQUEST and process

] enters q . The state q , is the initial state of process J.

Intuitively, if process J is in a quiessent state, it requests a

resource and enters a trying state. From the trying state, it waits for

permission to enter the critical state (L=RESPONSE). When leaving the

critical state, processj sets L to REQUEST to signal that it has left the

critical state and enters a quiessent state. As soon as process f's release of

the critical resource has been acknowledged (L =RESPONSE), process J may,

request a resource and enter a trying state.

Intuitively, the RM examines each process to determine whether the

process is requesting access to the critical resource, or has left its critical

state. If process]j is being handled (i.e., the RM state is in F1) and L1 is

RESPONSE, then the RM proceeds to the next process. If L is REQUEST and the

RM 's state indicates that process J is in the critical state the RM interprets

the value of L to mean that process J has left the critical state. The RM

acknowledges this by setting L1 to RESPONSE. If L =REQUEST and the RM's state

indicates that process]j is not in the critical state, then the RM places

57

process j on a list of waiting processes. If it is process J's turn to enter

its critical state, then L is set to RESPONSE.

Formally, the RM state set is an n+2-tuple (j,bit,iG,...,i). The

first coordinate specifies which process is being handled. The bit coordinate

is 0 if no process is assigned to be in its critical state and 1 otherwise.

The coordinates iI9,..,i, represent the queue of processes that are either in

their critical state or waiting to enter. If the size of the queue is less

than n, the last few entries are zero.

The next state function for the RM (as described above) is given as

follows (]+1 means (+) (mod 0)):

Current state

(jwbityi jv.,in)

(j,bit vi ,...,ik,0,...,0)

where jfi ,...,1k'

where j equals one

(J,0,j~meid'I)

(,0,0,...,0)

L

RESPONSE

REQUEST

REQUEST

REQUEST

of i ,...,ik'

REQUEST

REQUEST

Next state

(Q+ ibit 91 1,...,*id)

(Q+1,0,12'em"'in,0)

(/+ Ibi t ji ,...,ikd ,,...,i)

(j+ Ibitli g..i, ,.,)

(J+,1

(Jt11,,+.O

L .

RESPONSE

RESPONSE

REQUEST

REQUEST

RESPONSE

RESPONSE

Line 2 describes how the RM handles the relinquishing of resources by a

process. Line 3 describes a process being added to the list of waiting

processes. Lines 5 and 6 specify that if it is process J's turn to enter the

critical section that the RM informs process J of that fact.

If the memory is reliable and processes do not die, then mutual

1.

2.

3.

4.

5.

6.

58

exclusion is satisfied. The RM keeps track of the "region" that each process

is in, and permits only one to be in its critical state at a time. Due to the

FIFO assignment procedure, deadlock freeness, lockout freeness, and bounded

waiting are satisfied.

If some of the processes die but the RM does not die the fairness

properties still apply if one uses the definitions of (17].

While this example is simple, managed systems can handle multiple

resource systems and systems where some processes have high priority.

59

2.4. Cooperating system of n simulators.

2.4.1 Overview of the system

Section 2.4 describes the system Q, that is used to prove Theorem 2.1.

For a given managed system P, a cooperating system of n simulators is defined;

a system, of 2n processes, that faithfully simulates P. The first n processes

of Q behave like the first n processes of P. The last n processes, called

simulators, behave like the RM. They cooperate to simulate each RM turn with

many simulator turns. (Each simulator consists of finitely many states.)

While each process has occasion to use many cells, at each process j

transition (lQ <27) the next state of process J depends only on its current

state and the state of one memory cell. The state of that memory cell may be

changed but the states of all other cells remain the same.

The memory cells are used for two purposes. One purpose is for

communication between the first n processes and the simulators (similar to the

communication between the processes and RM). The other purpose is to help the

simulators keep track of bookkeeping information such as the current RM state.

The behavior of the simulators is quite complicated. In order for the

simulation to be tolerant of the death of as many as n-1 of the "true"

processes each simulator independently attempts to do the entire work of the

RM.

We proceed with a broad overview of some of the components of Q and

motivate their need. Each simulator tries to do a step-by-step simulation of

the RAM, reading messages from processes and sending responses to processes. In

order to know which process to handle, the simulator first reads a shared

bookkeeping area which includes the current RM state. The simulator reads a

60

message from a process, sends a response, and updates the bookkeeping area.

This naive approach suffers from many inadequacies and we categorize

some of them as follows:

(1) Since bounded-sized memory cells are used, a simulator cannot

update all cells at once. However, if each cell is updated separately, the

bookkeeping area will at times be partially updated and partially old. Othnr

simulators will then not be able to get a consistent picture of the bookkeeping

area.

(2) Assume that some method was devised to permit other simulators to

decode a "static", partially updated and partially old area. A second problem

is tha& a simulator may slowly read the bookkeeping area while the other

simulators are changing that area.

(3) Assume that some method was devised to permit each simulator to get

a consistent picture of the bookkeeping area. A third problem is that the

simulators, working at different speeds, may end up working on different RM

turns. A possible result is a "race condition" in the updating of the cells.

(4) Assume that some method permits all simulators to work on the same

RA turn. A fourth problem is that the simulators must coordinate their

activity at the simulation of each RM turn. Specifically, each simulator tries

to determine if a message is being sent by a process (i.e., whether process J

should be handled as if L were RESPONSE or REQUEST). Since the determination

for each simulator occurs at slightly different times, they may reach different

conclusions as to whether L should be considered to be RESPONSE or REQUEST and

thus they would update the bookkeeping area differently.

61

We now proceed with a sketch of the methods used to solve the above

problems. We postpone the full details until Section 2.4.4.

To solve (1) there are three bookkeeping areas. At each instant only

one of the three is considered current by the simulators. An area is current

if certain "STATUS" cells equal 1. When the current area needs to be updated

the new information is placed in a different area. When the update is

completed, the new area becomes "current".

The old area cannot have its "STATUS" set to 0 at the same time that

the new area becomes current (for reasons to become clear later) and thus at

times two areas seem to be current at once. In that case, the current area is

the one which precedes the other area in a circular ordering of the three

areas. It is for this convention that three areas are needed.

To solve (2), before a simulator reads an area it sets certain

"SIMULATOR-ACCESS" cells to 1 (each simulator has "personal" SIMULATOR-ACCESS

cells in each area). After reading an area, the simulator checks that these

cells are still 1, to determine if the area was changed (they are set to 0 when

the area is changed). If it was changed, the simulator ignores what it read.

To solve (3), before each simulator J turn that is used to simulate the

RA, there are other simulator J turns. At these turns, simulator J determines

which RM turn the "fastest" simulator is up to again by using the STATUS and

SIMULATOR-ACCESS cells. (The fastest simulator, is the one most advanced in

the simulation of RM turns.) If simulator J discovers that it has been

executing slower than the fastest simulator, the simulator tries to catch up to

the fastest simulator. In this manner each slow simulator causes at most one

cell to assume an incorrect state while the fastest simulator is working on

each RM turn. This small amount of incorrect activity is handled by memory

redundancy.

To solve (4) all simulators participate in a protocol which coordinates

their perceptions as to whether a message is being sent. The protocol will be,

described in Section 2.4.4.

In summary, the following basic techniques are used to coordinate the

simulators.

(1) Three bookkeeping areas.

(2) Extra turns to ensure that the bookkeeping information which is

read is consistent.

(3) Extra turns to ensure that each simulator does not get too much

out-of -date.

(4) Memory redundancy for limited out-of-datedness.

(5) A protocol to achieve agreement on whether a message is being sent.

Of these, we have not given all of the details for (2)-(4) or any of

the details for (5). The basic idea behind (2)-(4) should be clear although

the details are fairly complex.

An outline of how a simulator simulates an RM turn is:

(1) Determine which bookkeeping area is current, set the

SIMULATOR-ACCESS bits to 1 in that area, and read the bookkeeping information.

(2) Make sure that the bookkeeping information read is consistent (by

checking STATUS and SIMULATOR-ACCESS).

63

In (3)-(6), between every pair of turns executed, make sure that the

simulator is still up-to-date.

(3) Determine if the appropriate process is sending a message

("appropriate" depends on the bookkeeping information).

(4) Participate in a protocol with other simulators to determine if a

message is being sent.

(5) Read the message from the process (if there is one) and send

response.

(6) Update bookkeeping area (with redundant copies of all cells); set

the STATUS of the next area to 1, set the STATUS and SIMULATOR-ACCESS (for each

simulator) of this area to 0.

Minor details have been suppressed. For example, each process actually

uses many message areas and the simulators maintain a MSG-PTR in the

bookkeeping areas to point to the currently up-to-date message area. This and

other details will be explained in the remainder of Section 2.4. Section 2.4.2

describes the cells that are used in our simulation and Section 2.4.3 describes

the state sets of the first n processes. The techniques that the simulators

use to keep track of the RM state, to remember which bookkeeping area is

current, and to coordinate the determination of whether messages are being

sent, are detailed in Section 2.4.4.

64

2.4.2. Memory of the cooperating system

2.4.2.1. Bookkeeping cells

This section gives the structure of Q's memory. We first describe the

bookkeeping areas. They are three equally sized collections of cells called

COMMON1, COMMON2, and COMMON3 (abbreviated C1, C2, and C3). The simulation of

each RAI turn is associated with a different COMMON area (C area). Thus the

first RM turn is associated with C1, the second with C2, the third with C3, and

the fourth with C1. Each C area contains information such as an RM state, and

whether the area is current. Each simulator reads and writes these cells as it

tries to simulate an RAI turn. The first n processes do not use these cells.

There are six message areas for process J which corirespond to

CELL(PJ). Three are used for messages from process J to the simulators, and

three for messages from the simulators to process J. The message areas will be

described after the description of the C areas.

For most values of J, ICELL(Q)=2 (for some values of J,

jCELL(QJ)j=4). A cell that takes on two states is called a bit. A summary

chart of the C area cells is given in Table 2.1.

Let h=|PROC(P,n+1)I (i.e., the size of the state set of the RM is A.)

The RAI portion of each C area is conceptually a set of Flog2 (h)l bits which

are used for encoding the state of the RM. Each of these Flog2(A)l

"conceptual" bits is copied 2n+1 times. Thus there are (2n+)log2 (h)1 bits

in the RAI portion of each C area.

These 2n+1 copies are needed for two reasons: to protect against one

potential faulty bit and to protect against n-1 bits set in an out-of-date

manner by n-I slow simulators (as in Section 2.4.1). At any time, the majority

of these bits is the "correct" value.

65

The STATUS portion of each C area is one "conceptual" bit, or 2n+ 1

total bits. These bits specify whether the C area is currently in use. If the

majority of the STATUS bits equal 1, then the C area is in use.

The SIMULATOR-ACCESS portion of each C area conceptually consists of n

bits. The 1 th bit is used by simulator J to determine if it is up-to-date

as in Section 2.4.1. There are 2n+1 copies of each of these n conceptual bits.

The MSG-PTR portion is a set of 2n conceptual bits (or n 3-valued

cells) used by the simulators to remember which of three message areas is used

by process j for its next request. The jth pair of bits takes on three

values, and is used with the message cells of process J. There are 2n+1 copies

of. each of these 2n bits.

The MSG-SENT-VOTE portion consists of (4n+1)(2n+1) pairs of bits which

conceptually represent a single piece of information. There is a total of

2(4n+1)(2n+1) bits, but a pair of bits is utilized as one unit in this portion.

These cells are used as 2n+1 blocks of 4n+1 cells. At each RM turn, the

simulators use these cells during a vote which determines whether a process is

sending a message.

The VOTE-TYPE portion consists of one bit (conceptually). This bit is

complemented each time the C area is used. Thus for example, the first and

fourth RM turns (which both use C) have different values for their VOTE-TYPE

bits. This bit is used with the MSG-SENT-VOTE bits as will be explained in

Section 2.4.4. There are 2n+1 copies of this bit.

66

Title Conceptual Bits

RM log 2 (h)

STATUS I

SIMULATOR-ACCESS n

MSG-PTR 2n

MSG-SENT-VOTE I

VOTE-TYPE I

(h=jPROC(P,n+1)j)

Redundancy

2n+1

2n+1

2n+1

2n+

0(n2)

2n+l

Function

Code the RM state

Specifies if C area is in use

Specifies if each simulator is uptodate

Specifies next message area to be used

Used by simulators to vote

Used as a key for MSG-SENT-VOTE

Table 2.1. Summary chart of each of three C area of cooperating system

2.4.2.2. Message areas

We give the details of the six mesasge areas for process J. They

consist of sets of response cells R10 , R1 , and R and sets of request cells

S 0 ' SjI, and S12 (=1,...,n). A summary chart of these sets of cells is

provided in Table 2.2.

Recall that the 1 th cell of the managed system is a pair (L1 ,M 1). If

M1 takes on k values then there are (conceptually) Flog2 (k)l bits in each of

the six message areas for process J. The Flog2 (h l bits represent an encoding

of the value of M J All of the bits of the request cells are triplicated for

fault tolerance purposes (they are only set by one process). There are 2n+1

copies of each bit in the response cells. All of the above bits are called

message bits. There is a single additional conceptual bit for each message

areas, called the flag bit. There are 2n+1 copies of each flag bit. (The flag

bits of the request areas may be set by the simulators, and thus 2n+ 1 bits are

57

needed there too.) The MSG-PTR for process J specifies whether SJO'I, or

Sj2 will be used next for requests from process J.

The basic idea is that the first request from process]J is sent in SJO'

a response arrives In RP, the next request is sent in S, etc., until the

third response arrives in Rjo, and the cycle starts again. After a message is

sent in a message area, the flag bits are set to 1.

Title Conceptual Bits Redundancy Function

request log 2 (k) 3 Messages from process to RM

request flag 1 2n+I Flag for request area

resjonse log2 (k) 2n+1 Messages from RM to process

response flag I 2n+1 Flag for response area

(The value h is the number of values taken on by M1.)

Table 2.2. Summary chart of each of three sets of message areas for each process

2.4.2.3. Memory-simulator-function

This section defines f4, the memory-simulator-function for process J.

For a given system-memory-state m, the expression z'al(R1) is the integer

obtained by viewing the states of the message bits of R A in m as the binary

expansion of an integer. A similar definition applies to val(SIQ. The value

of each conceptual bit in the expansion is the majority of the states of the

2n+1 bits that represent the single bit. In general, "the value of a

conceptual bit" is the majority of the states of the bits that represent the

"conceptual" bit.

68

th
The memory-simulator-function f for the J cell only depends

on the six message areas for process J. It turns out that the configuration of

these six message areas in our simulation always satisfies:

(1) Between one and five of the message areas have at least n+2 of

their flag bits equal to 1.

(2) Those areas that have at least n+2 flag bits equal to 1 are

consecutively areas in the sequence R1 'j0'R R1 i' p R12, 12' Jo jo

etc. Thus for example, if R and S2 have at least n+2 of their flag bits

equal to 1, then in order for the areas to be consecutively arranged, either

S and Rj 2 or R 0 and S j must have at least n+2 flag bits equal to 1.

The current message area is the one that has at least n+2 flag bits

equal to 1, but is not followed by a message area with at least n+2 flag bits

equal to 1. The current area is the one whose information is to be read next

or was read last. Thus the simulated-memory-state depends primarily on the

current area. For a memory-state m, if (1) and (2) above do not apply, -then

f.(m) may be defined arbitrarily. Otherwise, f1 (m) is defined as follows:

(a) If the message area that follows the current area has exactly n+1

flag bits equal to 1, then frn)=transitional.

(b) If the message area that follows the current area has at most n

flag bits equal to 1 and the current message area is S A then

f(rn)=(REQUEST,val(Sk)); if R A then f1 (m)=(RESPONSE,val(RA)).

The way that a new message area becomes current in the simulation is

that its flag bits are set to 1. When n+1 become 1, the value of the

memory-simulator-function is transitional, indicating that the

simulated-memory-state is about to change. If there is an error transition,

69

there is no oscillation in the simulated-memory-state, since a transitional

value for the memory-simulator-function does not change the

simulated-memory-state. When n+2 flag bits become 1, the

simulated-memory-state changes. Then if an error causes one of these n+2 bits

to become 0, again the simulated-memory-state is not affected.

The initial states of all the cells in C2 and C3 are 0. The initial

states of the cells of C 1 are as follows. The RM section is the code of the

initial RM state. Each bit is 0 in the SIMULATOR-ACCESS, MSG-SENT-VOTE, and

MSG-PTR sections. Each bit in the STATUS and VOTE-TYPE sections is 1. This

represents the fact that C1 is used first, and that the first RM turn is

simulated first. Each of j0' Ij1 Sj2, R1j, and R12 have all bits initially

0. All of the message bits of RJO are 0, and the flag bits are 1. Thus

fi(initial state)=(RESPONSE,O) for every J.

2.4.2.4. Error transitions

. To prove Theorem 2.1 (with A=i) we only need to allow for one faulty

cell. However, there is a larger class of faulty cells that are tolerable.

This section describes the way that memory is divided into blocks, as mentioned

in Section 2.1.2.2.

Each group of cells used for "conceptually" the same purpose may have

one cell that has error transitions in a given turns history. For example, the

2n+1 bits that represent a specific bit in an RM section of a C area may have

one faulty bit. Similarly, one flag bit in each R section may be faulty.

The weakest assumption made is that only one of the 8n2 +6n+1 cells in each

MSG-SENT-VOTE area may fail.

Unreliability assumptions such as "one in 8n2" may seem unreasonable.

70

However, trivial modifications in the cooperating system permit stronger

assumptions. For example, for MSG-SENT-VOTE, a modified system allows 2n

failures out of 32n 2 . A more detailed discussion of these issues appears in

Section 2.6. In addition, a system that requires a "one in 6n 2 " assumption

which generalizes to 2n failures out of 28n2 is described.

Recall that ' is the set of turns histories of Q such ,that at least

one of the processes 1,...,n does not die, and for J=1,...,n, process j dies

iff process n+j dies. One may define I'sim to be the set of TeT' such that if

C ,c2 are error transitions of T, then either e I and e2 are error

transitions for the same cell, or are error transitions for different

conceptual cells. We prove a reformulated version of Theorem 2.1: Q

faithfully simulates P with respect to 7 and7-Sim

71

2.4.3 State transitions of the first n processes

This section describes process J (1 JQn) in Q, and the

process-simulator-function g1. We will be slightly informal as we do not list

every state of process J explicitly. The set PROC(QJ) for pl,...,n consists

of three almost identical parts denoted Q0 OfI, and Q2. Intuitively,

process j is in Q.k when it expects a response in RJA.

In process]J tests the flag bits of R to determine if a response

has arrived. If not, process J remains in Qfk and continues to vote on the

flag bits. If a response has arrived, process J reads it and may send its next

request in S.k. After this request is sent, process]J enters Qjk+1 and waits

for a response in Rj 4+1I. In addition to this, process J handles a number of

minor bookkeeping details. The details follow.

For each state pEPROC(PJ) there are three states in PROC(QJ) that are

mapped (by g1) to p, one in each of Q10 ' Q11, and Q12. The other states in

Q o' %ji, and Qj2 are mapped to transitional. We discuss only - and

Qj2 are similar.

There is a collection of states inQ0 that for pePROC(PJ) are called

the voting states of p. The "first" of these states, q, has g(q)=p. In these

JoJstates successive flag bits in R jo are voted on (i.e., each f lag bit is read

and processj determines if the majority are 0 or 1). If process J is in q,

then at each of its next 2n+1 turns process J enters 2n+1 of these voting

states, one to read each flag bit.

If process J determines that the majority of the flag bits are 0, then

process j enters a state q1 EQ 10. Process J stays in QO since it is still

looking for a message in R1 0 . Let p1 be the state that process J enters in P

if its state is pfg (q) and a process j turn occurs with L uREQUEST. ThenIJ

72

If the majority of the flag bits are determined to be 1, process]J

first sets the remaining flag bits of R J to I and then reads the message bits

of R .. The value of the message bits that is read is denoted, v. The setting

of the flag bits of IRis done to ensure that error transitions do not cause

the simulated-memory-state to oscillate. Next, all flag bits of RIandIS

are set to 0 in preparation for the next usage of those areas. Let A equal the

number of values taken on by M . Process J next spends 3Flog 2 (k)1+2n+I turns

modifying Sj0 . First, (for 3log2 ("' turns), the message bits of SJ are set

to what is written in M in P, if process J is in state p and the state of the

th cell is (RESPONSE,v). In the last 2n+i turns, the flag bits of 3 J are

set to 1. At the last of these 2n+1 turns the process enters a state q 2 cQ 11 .

Let p2 be the successor state of p when the state of cell J is (RESPONSE,v).

Then g 1(q 2):P 2 . The function maps all other states described above to

transitional.

Starting in q 2 , process J executes a similar procedure, looking for

messages in R 1 , clearing flag bits in RJ2 and S , sending messages inSJ and

ending up in QJ2'
It is trivial to verify that condition (2') on faithful simulation is

satisfied for any turns history in which process J does not die.

To finish the process-correspondence we must partition MEMSTATES(P) for

each pair q gq 2 ePROC(Q) such that g(q,) and g/q 2) are both not equal to

transitional. We only give the partition if q. follows q, in the manner

described above, otherwise the partition can be arbitrary.

The simulated-process-state of process J should change when the system

can recognize that process J is attempting to simulate a turn of process J in

73

P. Thus, if process]j is sending a request, the sinulated-process-state

changes as soon as the simulated-memory-state reflects this request. Formally,

i follows q as above and q 1,q2 EQ1 0 (i.e., q 2 follows q I after the flag

bits were determined to be 0), then MEMSTATES(q,q 2)x0 and

MEMSTATESq1 1,q2)=MEMSTATES(P). If q1 eQ10 ' q2 eQ1 , then

MEMSTATES 1(q,q2)=(mEMEMSTATES(P):the value of L in m is RESPONSE) and

MEMSTATES 2 (q1 ,q2)=QmEMEMSTATES(P):the value of L in m is REQUEST). In the

first case, the simulated-process-state changes when process J leaves q 1 . In

the second case, the simulated-process-state changes when the

simulated-memory-state reflects the request.

Since process J first looks for a message in R10 , its initial state is

the state qcQ 10 such that g/(q)cp, where p is the initial state of process]

in P.

74

2.4.4 Simulation of the RM (state transitions of the simulators)

The state transitions of the n simulators (processes n+1,...,2n of Q)
will be presented algorithmically. It should be clear how to transform the

algorithms into state sets with a transition function. Before giving the

algorithm, we give a more detailed informal description of the protocols

mentioned in Section 2.4.1. If the reader has forgotten the overview of

Section 2.4.1, we suggest that he reread it at this point.

The simulation of each RM turn is associated with a C area. The C area

in use is the one with the majority of its STATUS bits equal to 1. The

simulators simulate an RM turn by updating the encoding of the RM state (in a

different C area) and by sending responses.

At the simulation of an RM turn, the simulators must agree on whether a

request is being sent. The problem with a redundancy technique where 2n+1

cells protect against a faulty cell and n-1 slow simulators is as follows. The

simulators that are not slow may have different perceptions as to whether a

request is being sent. If n cells are set to reflect that a message is being

sent, and n to reflect that a message is not being sent, and the 2n+ 1st is

faulty, the redundancy does not permit the simulators to agree. In contrast,

when the RAM part of a C area is updated (for example), all Zn+1 bits

representing a conceptual bit are set the same way by the up-to-date

simulators.

To explain the basic way agreement is reached. We first use the

(incorrect) hypothesis that no simulator is out-of-date. Assume that there are

six three-valued cells initialized to -1. (These six cells are used in the

same manner that the MSG-SENT-VOTE cells will be used.) Each simulator first

votes on the flag bits of S (where J depends on the RM state coded in the C

75

area and k depends on the MSG-PTR for process J). Each simulator then tries to

set the first three of the six cells to 0 or I based on whether the simulator

perceived the majority of the flag bits of S k to be 0 or 1. Each one of these

cells is set (with a test-and-set) only if its current state is -1, but if its

current state is 0 or 1, then its state is unchanged. After a simulator tries

to set the first three cells it votes on them. If the majority are 0 (1), then

the simulator tries to set the last three cells to 0 (1) as above. (If one of

the first three cells is -l due to an error and there is no majority, the

simulator may use either 0 or 1.) Each cell is set only if its current state

is -1. The majority of the last three cells is used as the decision as to

whether a request is being sent. Note that each non-faulty cell is set only

once; by the simulator that reaches it first.

Assume that at most one of these six cells is faulty. Then each

simulator will discover the same majority for the last three cells. If the

faulty cell is among the last three cells then all simulators will discover the

same majority for the first three cells. Thus the last three cells are set to

the same state and even with a faulty cell each simulator discovers the same

majority. Assume that the faulty cell is among the first three. Then each of

the last three cells are perceived to be the same by all simulators and hence

the majority is the same. Note that if each simulator originally concluded

that a request is (not) being sent, then the final decision is that a request

is (not) being sent.

To initialize the cells to -1 the VOTE-TYPE is used and four-valued

cells are used as pairs of bits using the following convention. Successive RM

turns that use the same C area have a different value for VOTE-TYPE. The

VOTE-TYPE value is used for one bit of each pair of bits in the MSG-SENT-VOTE

76

cells. The first time a C area is used is of "type" 0 and the MSG-SENT-VOTE

cells are set either to 00 or 01; the second time is of "type" 1 and the

MSG-SENT-TOTE cells are set to either 10 or 11, etc. In an odd numbered usage

of a C area, if the state of a cell is 1i it is interpreted as -1 since odd

usages set the first bit to 0. In the same step it is set (with a

test-and-set) to 00 or 01.

Since a slow simulator may set one incorrect cell during the simulation

of an RAI turn (as in Section 2.4.1), the six cell solution does not work. If

2n+1 blocks of 4n+1 cells are used, the solution works as will be proved in

Section 2.5.

To use three-valued cells one may adapt the above technique,

reinitializing the cells to -1 between usages. We present the simpler

four-valued cells solution. It is an open problem to design the protocol with

two-valued cells.

The above protocol is the only place that a test-and-set is needed in

our simulation. For uniformity, however, we use a test-and-set for all

writing.

The following is the algorithm for each simulator. It is given in two

parts, the synchronizing part and the managing part. The simulator executes

the entire synchronizing part between every pair of turns in the managing part

to verify that it is up-to-date. If the simulator 'determines that it is

up-to-date it resumes its activity in the managing part. Otherwise, it

remembers what it was up to in the managing part, and starts on a new RM turn.

(It remembers what it was up to since it may return to it due to transients in

the system.) In the managing part is the activity necessary for the simulation

77

of the RM.

The algorithm has read and write operations. A "read" is a change of

process-state based on the state of a cell. All writes are with test-and-sets.

Voting is a series of turns where a simulator determines the majority value of

a set of cells. While all reading involves voting on multiple copies of a

single "conceptual" cell, we only make the voting explicit when necessary. ' If

i=3 then Ci+1=C1.

2.4.4.1 Synchronizing part for simulator J:
Step 1. COMMENT. Determine which C area is current.

Vote on the STATUS of each C area. If all three majorities are 0 or all are 1,

go to step 1. If two majorities are 0 and one is 1, let i be the one that is

1. If two majorities are I and one is 0, let i be the one of the two which

precedes the other (i.e. C1 precedes Ca which precedes C3 which precedes Cl).

Step 2. COMMENT. If simulator J has worked on the current RM turn,

then simulator J may execute a step in the managing

part.

Vote on the 2n+1 bits for simulator J in SIMULATOR-ACCESS of Ci. If the

majority is 1 then resume the managing part (i.e., execute the next turn for

simulator j in the managing part). If it is 0, write a 1 on all Zn+1

SIMULATOR-ACCESS bits for simulator j. Also, remember the place in the

managing part that simulator J was up to in Cl-I (in case simulator J will have

to return to that part of the simulation).

78

Step 3. COMMENT. Determine if C1 is still current. (If it is, and C

is changed while simulator j is reading it, simulator]

will be able to discover this, because its

SIMULATOR-ACCESS bits will be set to 0.)

Vote on the STATUS of each C area (as in step 1). If Ci loses- the vote, set

the SIMULATOR-ACCESS bits for simulator J in Ci to 0 and go to step 1 of the

synchronizing part.

Step 4. COMMENT. Determine the state of each cell in CL.

Read Ci.

Step 5. COMMENT. Verify that Ci was not changed while simulator j was

reading it. It suffices to check the SIMULATOR-ACCESS.

Vote on SIMULATOR-ACCESS for simulator J in CL. If the majority is 1, go to

step I of the managing part. Otherwise, set all 2n+1 SIMULATOR-ACCESS bits for

simulator] to 0 and go to step 1 of the synchronizing part.

2.4.4.2 Managing part:

Step 1. COMMENT. Prevent the usage of Ci-1.

Set all 2n+1 STATUS bits of Ci-1 to 0.

Step 2. COMMENT. Clear the SIMULATOR-ACCESS bits for C-1. This

prevents subsequent modification of C-1 from going

unnoticed by a simulator that is reading it.

Set all (2n+I)n SIMULATOR-ACCESS bits of C-1 to 0.

79

Step 3. COMMENT. Determine the process to be handled in this "RM turn"

and whether the process is sending any messages.

Determine which process (process A) is to be handled on the basis of the RM

state in Ci (as read in the synchronizing part). Determine on the basis of the

MSG-PTR for process A of Ci (MSG-PTH(k)) if requests are to be expected in S,,,

Sk ,or S,2. (If MSG-PTR(k)=h then requests are expected in SA. Assume it

is in Sko the modifications for Sk and Sk. are obvious. Vote on the 2n+1

flag bits of Sho. The result of this vote is the initial decision.

Step 4. COMMENT. Participate in the protocol that permits the

simulators to agree on whether process A is sending a

request.

Write the first block of 4n+1 MSG-SENT-VOTE cells in Cl. The first bit written

for each such "pair of bits" is the majority value of the VOTE-TYPE bits of Ci

(as read in the synchronizing part). The second bit is the initial decision.

Write with a test-and-set that changes the cell only if its first bit disagrees

with the VOTE-TYPE. Write the other 2n blocks with the following change. For

a given block, the second bit in each pair is the majority value obtained in a

vote on the second bits of the previous block. (This vote is taken while the

simulator sets the bits.)

Step 5. COMMENT. If a request is being sent, read it and set the rest

of the flag bits of SAO to 1. This prevents errors

from changing the simulated-memory-state.

Vote on the last block of MSG-SENT-VOTE. If the majority is 0 go to 7. If it

is 1, set the 2n+1 flag bits of SAO to 1 and read Sko

80

Step 6. COMMENT. Simulate the setting of the th cell by the RM.

If the state of the RM and value of Sho indicate that nothing would have been

written into the kth cell in the managed system go to 7. Otherwise write

into R, 1 based on the RM state and Sho. The value written is the encoded

version of the value that would have been written into M&. Set the flag bits

of R, 1 to 1.

Step 7. COMMENT. Update the information needed for the handling of the

next process in CI+1.

Update CI+1. Set the RM portion according to the RM state and the value of SAO

(if relevant). Set the VOTE-TYPE bits to the value of VOTE-TYPE in C unless

i=3, in which case VOTE-TYPE is complementcd. If messages were sent to process

k, increment MSG-PTR(k) (mod 3).

Step 8. COMMENT. Start preparing Ci+1 to become current.

Set each STATUS bit in Ci+1 to 19

Step 9. COMMENT. Terminate the use of CL.

Set each STATUS bit in C to 0.

81

2.6. Proof of Theorem 2.1.

It is easy to show that every essential-history of P equals an

essential-simulated-history Q. In this section we prove that every

essential-simulated-history of Q equals an essential-history of P. We only

consider turns histories for Q from rSi (defined in Section 2.4.2.4).

Essential-simulated-histories from these turns histories must equal

essential-histories for P from 7- in which the RM and at least one process has

infinitely many turns. The following terminology is needed.

Definitions. Ci is active. in a memory state of Q if at least n+1 of its

STATUS bits are 1. Otherwise it is passive. If to t i'"Ersim, simulator J is

live in Ci after t if after ti ai least n of simulator i's bits in

SIMULATOR-ACCESS of Ci are 1 and none are faulty, or at least n are I and one

is faulty and is equal to 0, or at least n+1 are 1 and one is faulty and is

equal to 1.

A live simulator might vote on its SIMULATOR-ACCESS bits and determine

a majority of 1, even if the simulator sets no additional bits to 1.

Before each turn that a simulator has in the managing part it executes

the synchronizing part. During this execution, the simulator votes (in step 1)

on which C area is to be considered current (called C in 2.4.4.1). If the

current oie (incorporated in the simulator's state) is C, then at the managing

turn, the simulator executes a turn in Ci.

There are occasions in the managing part that a simulator's turn

depends on the state of Ci that it read when last in the synchronizing part.

We say that "the state of a cell used by the simulator equals its current

82

state" to mean that the state last read by the simulator in the synchronizing

part equals the current state.

During the simulation of an RM turn, once one simulator finishes step 4

of its managing part it is determined whether any request area will be read at

this RM turn. Thus, after the most advanced simulator completes step 4, we can

determine how the system will "progress". Important conditions that exist at

the turn at which step 4 is completed are incorporated into the next

definition.

"The majority of a set of bits does not change" means that if the

current majority Is for example, 1, then at least half of the bits stay 1.

(This is stronger than insisting that at each point the majority is 1.) "A C

area does not become active" means that at least half of its STATUS bits stay

0.

We give an overview of the definition. Conditions (1)-(5) discuss the

memory-state of the C areas and when certain bits are set. Conditions (1) and

(2) specify that Cl is "current", conditions (3) and (4) specify that the

"fastest" simulator has just finished step 4, and condition (5) specifies the

contents of C1. Condition (6) ensures that all simulators live in C1 do

roughly the same thing.

Condition (7) imposes constraints on the system's progress. Conditions

(7)(a)-(d) discuss which C areas are used next, and the behavior of the

memory-state of C 1. Condition -(7)(e) discusses some simulators not live in C 1.

Conditions (7)(f)-(h) are needed to prove that the simulators agree on whether

a request is being sent.

83

Definition. Let t0f "' be a turns history for Q. Q is stable in C at step i

if:

(1) C1 is active after ti.

(2) C2 and C3 are passive afterti.

(3) At r. the last MSG-SENT-VOTE cell of C1 was written by a

simulator live in C1.

(4) Let kQI and assume that atti the last MSG-SENT-VOTE cell of C I was

written by a simulator live in Cl. Let t be the turn at which C3 was most

recently active. Then 4(1.

(5) The RM section of C1 is the code of an RM state and each MSG-PTR'

equals 0, 1, or 2 after t.

(6) No simulator live in C1 is past the first turn of step 5 in its

managing part after ti. Every simulator live in C1 will use the current value

of C1 (i.e., the current majority of the MSG-SENT-VOTE, VOTE-TYPE, MSG-PTR, and

RA sections) at its next managing turn in C1 if the turn occurs before C3

becomes active.

(7) For every sequence ('f,+'"G such that %t"oft1'ft2 ' csim

(a) C2 does not become active after t, before one' of its STATUS

bits is set to I by a simulator live in C1.

(b) C3 does not become active after t before C2 becomes active

and one of C3's STATUS bits is set to 1 by a simulator live in C2.

(c) C1 does not become passive after f, before one of its STATUS

bits is set to 0 by a simulator live in C1.

(d) The state of the RM, the VOTE-TYPE, and the MSG-PTH values

represented in C1 do not change after t before a cell is set in MSG-SENT-VOTE

of an active CS by a simulator live in C2.

(e) If a simulator is live in C2 (C3) after tg it is in the

synchronizing part having just set its SIMULATOR-ACCESS bits to 1.

Furthermore, if it has started voting on the STATUS of C2 (C3) in step 3, the

sum of the number of bits it has determined to be 1 plus the number of bits

it has not read which may become I before a STATUS bit is set to I in c2 by a

simulator live in C1 (resp. before a STATUS bit is set to I in C3 by a

simulator live in C2) is at most n.

(f) No more than n of the cells of MSG-SENT-VOTE of C 1 have

their first bit different from the value of VOTE-TYPE of C1 before a

MSG-SENT-VOTE bit is changed to a different type by a aimulator live in C1.

(g) No more than n of the cells of MSG-SENT-VOTE of C2 or C3

have their first bit equal to the value of VOTE-TYPE of C1 before a

MSG-SENT-VOTE bit in C2 (C3) is changed to this type by a simulator live in C2

(C3).

(h) The majority of the last block of MSG-SENT-VOTE of C1 does

not change before a cell is set in MSG-SENT-VOTE of an active C2 by a simulator

live in C2.

Analogous definitions of being stable in C2 and C3 are left to the

reader. If Q is stable at step i, then t is a stabilization.

The decision of the ith stabilization is the majority of the second

bits of the last block of MSG-SENT-VOTE cells at the ith stabilization. If

the decision is 1, the simulators have decided that there is a request to be

read. If the state of the RM represented in C1 at the 1th stabilization is

in F , the ith stabilization handles process J.

The key to proving correctness is to describe how the system progresses

from one stable state to the next. The constraints on the system-state at

stabilization are used to prove that the simulation is correct. The next two

lemmas establish the existence of stable states.

In Section 2.5 we ofter make statements about C1, S 0 JO, and

MSG-PTR()=O which apply without loss of generality to C2, S ,R1, and

MSG-PTIR()=1 and C5, SJ2, R12 , and MSG-PTR(J)=2. The details are left to the

reader.

We refer to the value of a response area as being "correct based on an

RAM state in a C area and a value in a request area". This means that if for

example, the RAI state in the C area is q and the value of the request area is

11, then the response equals the response that the RM would have sent in P to M

while in state q reading the value v. A similar definition applies to an "RM

portion of a C area being correct based on an RM state and request".

Lemma 2.4 (progress lemma).

Let T=t0t r"7 be a turns history for Q. Assume that after t, Q

is stable for the ith time. Assume it is stable in CI and that the th

stabilization handles process J. If the decision of the ith stabilization is

1 and MSG-PTR(j)=O at the stabilization in C1, assume that for every sequence

t+ t+2'" such that tQ0"fIt C"7im the value of every conceptual

message bit of Sjo does not change before CZ becomes active and a

simulator live in CZ reaches step 4 of its managing part.

Then after t, the system becomes stable in C2. The state represented

in the RAM portion of C2 is correct based on the state of the RM at

stabilization (and value of SJO at stabilizaiton if -the decision is 1).

MSG-PTR() is incremented if the current RM state and value of Sio indicate

that a response is to be sent.

Proof. We show that most activity of the simulators helps achieve the target

stabilized state. The small amount of activity that disagrees with the target

is shown to be tolerable.

First observe the simulators that are live in C1 and execute managing

turns in C1. Those simulators that first execute managing turns in C2 or C3,

or are not live in C1 will be discussed later. By (6), all live simulators use

the current information stored in C1. While they execute steps 1 and 2 in the

managing part they only reinforce the passivity of C3. By (7)(h), steps 3 or 4

cannot affect the majority of the last block of MSG-SENT-VOTE.

Step 5 involves reading a request area iff the decision is 1. The

simulators agree on the same decision by (7)(h) and the first part of (6) (i.e.

since no simulator starts to vote on the decision before stabilization.) If

the decision is 1, all simulators determine the same value of SJO by the

hypothesis of the lemma - the value of 80 does not change. (Also, by the

second half of (6) and by (7)(d) all of these simulators use the same MSG-PTR

and RM information and thus read the same request area.) Step 6 is not

relevant here. At step 7, CZ is updated. Since these simulators know the

current RAM state (by (6) and (7)(d)), and determine the same value of 80 if

-the decision is 1, the RM and MSG-PTH sections are updated according to target.

By (6), no live simulator is up to step 7 at the th stabilization. Thus

some live simulator completes step 7 before any live simulator starts steps 8

and 9. By (7)(a)-(c), C1 does not become passive and C2 and C3 do not become

active before some simulator reaches step 8. Thus each simulator live in C1

87

determines at each execution of the synchronizing part that it should execute

its next managing turn in C1.

Next, C2 is activated (while C1 is still active) by the first simulator

to get through step 8. Then C1 is made passive, but by (7)(c), this occurs

after some live simulator starts step 9. In particular, C1 does not become

passive until all STATUS bits of C2 are set to 1.

After C1 becomes passive, an error transition may reactivate C1. Thus,

after a simulator becomes live and executes managing turns in C2, it may

reenter the managing part for C1. Since the SIMULATOR-ACCESS bits of C1 for

such simulators are not yet set to 0, any simulator that reenters C1, will

resume its activity in the middle of the protocol for C1. For this purpose,

when the simulator started C2 (after being in Cl) it remembered where in C1 it

was up to in step 2 of the synchronizing part. Ultimately, C1 stays passive

since all STATUS bits are set to 0 in step 9 of C1, or step I of C2 and the

simulators do not enter an infinite loop. Note that an error transition can

occur for only one of the STATUS bits. After C2 becomes active, all of the

managing turns in C1 due to Cl's sporadic reactivations are a reenactment of

the above discussion.

Now Q stabilizes in C2. C1 is passive since its STATUS bits are set to

O by simulators live in C2 or simulators in C1 executing step 9. C3 is passive

by (7)(b) of the ith stabilization. (By (7)(e), no simulators live in C2

have set a STATUS bit of C3 to 1.) C2 is active by the action of processes in

C1, before C1 became passive. Thus (1) and (2) are satisfied soon after C2

becomes active. By (7)(e), all simulators already live in C2 progress through

their managing parts from step 1. Also, simulators who first become live in C2

start from step 1. The live simulators come sooner or later to step 4 where

88

the MSG-SENT-VOTE cells are set. When the last MSG-SENT-VOTE cell is reached

for the first time Q stabilizes as we now show.

To verify (4), note that this is the first time that this last cell has

been set by a simulator live in C2 since C1 was active since all live

simulators begin the managing part of C2 from step 1. (If after a simulator

started the managing part, errors made it appear that C1 was active and a

simulator reverted to Cl1, this apparent reactivation must occur before step 1

is completed and thus no simulator is up to step 4. Once step 1 is finished,

C1 cannot appear to become active again.)

Condition (5) follows from the activity of the simulators before C2 was

activated. To verify (6) examine a simulator live in C2. If it became live

after the C2 became active, (6) follows immediately by the above discussion.

If it were live before C2 became active, by (7)(e) it does not read C2 in step

4 of the synchronizing part until a STATUS bit is set in C2 by a simulator live

in C1, and thus (6) follows.

Condition (7) will be verified together with a discussion of those

simulators that executed managing turns although they were not aware that C1

was active or were not live in C1. Each such simulator may write one bit that

disagrees with the above discussion. However, from the ith stabilization

until the time conjectured to be the +11 st, each simulator may not disagree

with more than one bit. After the first disagreement the synchronizing part is

executed and the simulator detects that C1 is active or that C2 is active (if

C1 is already passive). This follows from (7)(a)-(c).

Due to cells that are set to values that disagree with the above

discussion, C1 may become active n times after it first becomes passive. In

addition to one error transition, n-1 of Cl's STATUS bits may be set to 1 by

89

simulators not initially live in C1 (a simulator not live in C1 is called

outdated). Similarly, CZ may not stay active until all 2n+1 STATUS bits are

set to 1. However, once all 2n+1 STATUS bits of C2 are set to 1, at least n+1

will remain I until one is set to 0 by a simulator live in C2. It is to

tolerate this outdatedness that all 2n+1 STATUS bits of C1 are set to 0 either

by simulators in C2 (which stays active after C1 first becomes passive), or by

simulators in C1. At least n+1 remain 0 at least until one is set to 1 by a

simulator liye in C3 (as we discuss soon).

At the turn conjectured to be the stabilization (1), (2), and (5)

cannot be harmed by outdated processes. There is enough protection for one

faulty bit and n-i bits that are set to states that differ from the target.

Similarly, (3) and (4) are unaffected since once the "fastest" simulator

finishes step I of the managing part for C2, C1 stays passive and C stays

active. Condition (6) is unaffected since each cell in C2 has 2n+1 copies and

is tolerant of one faulty bit and n-1 bits sets outdatedly.

The fact that outdatedness is limited helps verify (7). Condition

(7)(a) is inherited from (7)(b) of the ith stabilization. To verify (7)(b),

it must be shown that C 1 may not become active before C3 becomes active and at

least one of C l's STATUS bits are set to 1 by a simulator live in CO. Consider

the STATUS bits of C1. All 2n+1 bits are set to 0 in step 1 of the managing

part of C2. After they are set to 0, at most n of them may become 1 due to

faults or simulators that are out-of-date. Thus, C1 can become active only

after an up-to-date simulator sets a STATUS bit to 1, i.e., after C3 becomes

active and a STATUS bit of C1 is set by a simulator live in C3. Until then,

the number of STATUS bits that equal 0 minus the number of out-of-date

simulators whose next turn is to set a STATUS bit in C1 to 1 is at least n+1.

90

Conditions (7)(c) and (7)(d) are straightforward. For a simulator live

in C3, (7)(e) is inherited from the ith stabilization. To verify (7)(e) for

a simulator live in C1 consider the time that such a simulator set its

SIMULATOR-ACCESS bits. Since it is still live, some of the SIMULATOR-ACCESS

bits must have been set to 1 after they were all set to 0 in step 2 of the

managing part by simulators live in CZ, But if they were set to 1 that

recently, then the only bits that this live simulator may have determined to be

1 (in step 3) are the n-1 bits set by outdated simulators and the one faulty

bit.

For (7)(f), all cells set in MSG-SENT-VOTE of C2 by live simulators

before the turn conjectured to be the i+ 1st stabilization are set to the

correct type. At most n cells may obtain different types by error transitions

or out-of-date processes (some of these n may already be of a different type).

Only after C3 and C1 become active does C2 become active with MSG-SENT-VOTE

cells set to a different type. This can be proved by essentially repeating the

proof of the progress lemma for two more stabilizations. To prove the entire

progress lemma, we need a condition about certain message bits not changing.

However, to use the portion of the proof involving the VOTE-TYPE this added

hypothesis is not needed.

Condition (7)(g) for C1 follows from (7)(f) for the ith

stabilization. Condition (7)(g) for C3 follows from (7)(g) for C3 at the ith

stabilization.

To finish the proof, (7)(h) must be verified. It will be also shown

that if the initial decision of every simulator in C2 is 0 (1), then the

majority of the last block of 4n+i bits is also 0 (1).

Condition (7)(h) is proved in two parts. First we count how many cells

91

may have states that differ from all initial decisions. Then we analyze the

protocol given the amount of unreliability.

By condition (7)(g) of the ith stabilization, as many as n cells of

MSG-SENT-VOTE might agree with the VOTE-TYPE before any simulator reaches step

4. These cells are not be reset in step 4, because they are already of the

correct type. Thus they may disagree with every initial decision. Once a live

simulator starts step 4, most of the MSG-SENT-VOTE cells are set by live

simulators. At most n-1 simulators can set at most one cell each in an

outdated manner. In addition, there is at most one error transition. Thus at

most 2n cells of the (4n+1)(2n+1) cells are potentially .different from states

correctly assigned to them. There will be not more than 2n of these before the

simulators are up to step 4 of C3.

Now, (7)(h) can be verified. Consider the situation that all

simulators have the same initial decision. Tnen that value appears on at least

2n+1 of the cells of the first block, and each simulator uses it as the

decision for the second block. Similarly, this decision wins all votes for all

blocks.

If both initial decisions are represented it does not matter what the

final decision is as long as it is agreed on. At least one of the 2n+1 blocks

does not have any of the 2n uncertain bits. Each simulator that emerges from

that block emerges with the same decision. From that block on, it reduces to

the situation that each simulator has the same initial decision. Condition (h)

follows. 0

The progress lemma shows that the simulators perform as expected, (if

sio does not change when ralevant). The next lemma uses the progress lemma

92

together with information about all the processes at stabilization, to prove

that the stabilizations take place, and the processes behave as would be

expected.

If process i is in Qj0 the bits already cleared in R1 or S refer

to those flag bits of R or S11 that were set to 0 during process J turns in

.jO.

In the next lemma "MSG-PTR(j)=0 at a stabilization", means that

MSG-PTR(j)=O in Ci where Ci is the C area that was stabilized.

The last 2n states of Q h are the collection of states in from which

the state of process j enters Qj1+1 after at most 2n process j turns. Recall

that the voting portion of QjA is the set of states in which the flag bits of

Rik are voted on.

Lemma 2.5. Let TTsim. For i>0.

(i) There is an ith stabilization.

(it) If the decision of the ith stabilization is 1, and

MSG-PTR(j)=O, then at least n+1 flag bits of SfJ were I for part of the time

between the i-11st and the ith stabilizations.

(iii) For =1,...,n, at the ith stabilization, if MSG-PTR()=0 then

process j is in the last 2n states of Q , in or in the voting portion of

Q .. If in addition at least n+1 flag bits of S were I for part of the time

between the i-1 st and the ith stabilizations then process J is in the last

2n states ofQ0 or in the voting portion of Q1.

(iv) For P1,...,n at the ith stabilization, assume MSG-PTR(J)=0. Let

x = the number of simulators that are not live in the active C area and whose

next managing turn is to write a flag bit R1I (S). Let, -the number of

93

bits cleared in R11 (S .) that are equal to 1. If none of the bits cleared in

R (S 1) are faulty then x+yin-1. If one such bit is faulty and is equal to 1

then x+ysn. If one is faulty and is equal to 0 then x+yin-1.

(v) For j=1,...,n at the ith stabilization, assume that MSG-PTR(J)=O,

and that process jis in Q or in Qj0 (but not the last 2n states of Q 0)'

Let x = the number of simulators that are not live in the active C area whose

next managing turn is to write a flag bit in SJO. Let y = the number of flag

bits of S1 0 that are equal to 1. If none of the flag bits in S j are faulty

then x+ygn-1. If one is faulty and is equal to 1, then x+y$n. If one is

faulty and is equal to 0, then x+)Pn-1.

Proof. Use induction on i. The basis is left to the reader. Inductively

assume (i)-(v) for i, and prove (i)-(v) for i+1.

To prove (i) and (ii) for i+1 it suffices to use the progress lemma if

it can be shown that the message bits of SJO do not change before the turn

conjectured to be the i+lst stabilization (if the decision of the ith

stabilization is 1 and MSG-PTR(J)=0). Assume that the-decision is 1 and

process j is being handled with MSG-PTR(J)=0. By (ii), at least n+1 of the

flag bits of S J were 1 between the i-1st and th stabilizations. By (iii),

process j is in the last 2n states of Q0, or the voting portion of Q at

the ijth stabilization. While in Qj0 process J set all the message bits in

SjO, and each of the three bits that represent one conceptual bit were set to

the same state. Thus, the only way that the message bits of Sjo may change

after the ith stabilization is if process J cycles through Q' ,%QO , and back

into Q0. However, even if process J gets past the voting portion of it

clears the flag bits of R A while in Q%. As long as the majority of the flag

94

bits of R are 0, process j certainly cannot enter Q0. Since MSG-PT fl)=:0,

the flag bits of R.2 are not set to 1 by live simulators before the time

conjectured to be the i+lst stabilization. At most n bits set to I by

outdated simulators or errors. Thus any vote taken on the flag bits of R2
determines that the majority are 0.

To verify (iii) - (v) consider first a process (process J) not handled

at the ith stabilization. There are no bits set in the flag section of R.

(except by outdated simulators) before the time conjectured to be the ist

stabilization. By (iv) at the ith stabilization process J cannot progress

beyond the voting portion of since any vote on R will result in a

majority of 0. Each outdated simulator executes at most one turn which

modifies the flag bits of RI (as in the proof of the progress lemma). If

process j started to vote prior to the stabilization, no additional flag

bits of R. could have been equal to 1 since process J is the only process that

ever sets the flag bits of R?1 to 0. Since MSG-PTH(j) is 0 at the 1+1St

stabilization iff it is 0 at the ith, the first part of (iii) is proved. The

second part of (iii) follows from (v) at the ith stabilization and the fact

that each outdated simulator sets at most one bit. Conditions (iv) and (v)

similarly follow for i+1.

Assume process J is handled at the ith stabilization and MSG-PTH(J)=0

at the turn conjectured to be the i+ 1 st. If MSG-PTR(J) was 0 at the ith

stabilization, then (iii)-(v) follow as in the case that process J is not

handled. Although the simulators may set flag bits in S J between the th and

i+st stabilizations, this occurs only if at the ith stabilization process

j is "at least" in the last 2n states of Q 0 (by (ii) and (iii)). MSG-PTR(J)

cannot equal 1 at the ith stabilization since the i+lst stabilization follows

95

from the i th as described in the progress lemma.

If MSG-PTR(J)=2 at the ijth stabilization and MSG-PTR(j)=O at the time

conjectured to be the i+ st, then the decision of the ith stabilization is

I (since the i+1st follows from the ith as in the progress lemma). By

induction, process]J was "at least" in the last 2n states of Q2 at the ith

stabilization. When and if process J finishes the voting portion of Q .it

clears the flag bits of R1 . . Thus process J cannot get past the voting portion

of Q., before the i+1st, proving the first part of (iii). Also, by (iv) at the

ith at most n flag bits of S10 may become 1 until process J enters the last

2n states of 0, and (iii) is verified. To verify (iv), note that once

processj clears the flag bits of R and S only outdated turns and error

transitions will set them. This is because no live simulators set bits in R

or 5 j since MSG-PTR(j)=2 at the ith stabilization. Condition (v) follows from

(iv) at the ith stabilization. 0

Note that (iii) - (v) impose the following structure on the

communication between each process and the simulators. 'Process J begins by

voting in QJ0. Since the flag bits of R 0 are initially 1, process J may send

a request and enter Q1 . By (v) the majority of the flag bits of S 0 are not

equal to I until process J enters the last Zn states of Q10. By (iv), process

j votes in until a response is written in R , at which point MSG-PTRI4)

is set to 1. The simulators then see no message in S until process J sets a

flag bit to I (by (v)). Process J next sends a request in S and votes in Q

until the flag bits of Rj2 are set to 1. At the stabilization at which the

flag bits of R 2are set to 1, MSG-PTR(j) is set to 2 and process]J may send a

request in SJ2. Finally, process J votes in QO until the flag bits of RJO are

96

set to 1, and the cycle is completed.

Thus, the set of message areas with at least n+Z flag bits equal to 1

is consecutively arranged. Once all 2n+1 bits are set to 1, at least 2n remain

1 until process]j clears them. Also, the simulated-memory-state does not

oscillate due to error transitions. Once n+2 bits are set to 1 at least n+1

remain 1 until process J clears them, as at most one of these bits may be

faulty. If n+1 of the bits are 1, the value of the memory-simulator-function

is transitional, protecting the simulated-memory-state from oscillating.

Let T'ES be a turns history of Q. A turns history, T, of P with

essential-history equal to the essential-simulated-history of T' is built

around the turns at which the simulated-process-states of the first n processes

change. Each change in the simulated-process-state of process J is associated

with a turn for process j in T. The ordering of these turns in T is given by

the ordering of the turns of T' at which the simulated-process-states change.

(The same turn in T' cannot cause both process Jj and process J. to change

their simulated-process-states (JIfJZ)) There are no other turns for

processes 1,...,n in T.

To finish the construction of T we include one RM turn associated with

each stabilization as follows. The location of the ith RM turn in T dopends

on what occurs near the ith stabilization. Consider the case that at

stabilization, the state of the RM represented in the C area and the value of

Sjk (if relevant) indicate that a response should be sent. Then the position

of the ith RAI turn in T is given by the position of the turn in 7" at which

the n+2nd flag bit of Rjk+I becomes 1 (i.e., as soon as the

simulated-memory-state of the 1th cell reflects the response). It follows

97

from Lemma 2.5, that all 2n+1 flag bits are set to 1 and at most one becomes 0

(by an error) before process J reads R k+1

If no response is to be sent but the decision is 1, the RM turn in T is

associated with the turn in T' at which the first live simulator sets the last

of the 2n+1 flag bits of Sik to 1. If the decision is 0, the RM turn in T is

associated with the first turn in T (before the stabilization) at which a live

simulator starts step 3 of the managing part.

T has infinitely many RM turns and process turns, i.e., Tcr.

Theorem 2.2. Let Tsim and T as above and let T'ct'ot'"E7sim. The

essential-simulated-history of T' equals the essential-history of some TeT.

Proof. Let T=t0v v" be as above. Since Te, it suffices to show that the

essential-simulated-history of T equals the essential-history of T.

Some of the turns t'i in T' "correspond" to turns in T as described

above. If t'i occurs in T no earlier than the turn of T that corresponds to

t, (in T), but earlier than the turn that corresponds to t , then t" as

preded by e . To prove Theorem 2.2, the following lemma is used.

Lemma 2.6. (1) For every meN where tKm is preceded by i:

(a) The simulated-process-state of process j (1Qn)

after t' is the same as the state of the process in P after tg.

(b) The simulated-memory-state of cell J (1 1n) after

t' is the same as the state of the cell in P after I.

(2) The RM state after the th "n+1" in T is the same as the RM state

represented in CI(mod 3)+1 at the i+1st stabilization.

98

Lemma 2.6 suffices to prove Theorem 2.2. From (1) the only turns at

which the essential-simulated-state of T' changes correspond to turns of T.

Furthermore the essential-simulated-state of T' changes in the same way as the

essential-state of T.

Proof of Lemma 2.6.

The proof is by induction. To prove (1), we assume (1) for all turns

before f' and (2) for stabilizations before i'm. If i'f is a stabilization, then

(2) is proved for tm assuming (1) and (2) before I' '

By construction, the only turns at which the essential-simulated-state

in T' changes correspond to turns in T (this follows from the discussion after

Lemma 2.5). To prove Lemma 2.6, it suffices to analyze turns of T' at which

the essential-simulated-state changes, and turns of T' with which an RM turn in

T is associated. At all other turns, (1) follows from the correctness of (1)

at the previous turn, since the essential-simulated-state does not change, and

the notion of the "preceding turn of T" does not change.

If t' is an error transition, and the essential-simulated-state

changes, let t. be the turn in T associated with t'M. If the cell that changed

was a response cell, then V' is associated with a stabilization (i.e., t is an

RAM turn). By induction on (2) and the fact that there is one RM turn

associated with each stabilization, the state of the RM used to determine the

response equals the state of the RM before t in T. Furthermore, in T, the

th
state of the j cell before i equals the simulated-memory-state of cell J
before t'M in T' (by induction on (1)(b)). The request value used by the

simulators to determine their response must have been this

simulated-memory-state. This follows from Lemma 2.5; the simulators use the

0

99

request area most recently used by process J. Since the simulators used the

correct request and RM state, they send the response that the RM would have

sent in T. Thus after t'm, the simulated-memory-state of the 1 th cell equals

the state of the 1th cell in P after r,, proving (1)(b). . Condition (1)(a) is

trivial.

If at 1'M an S A area obtains n+2 flag bits equal to 1, then it is

associated with a process turn in T. In that case, (1)(a) follows from the

correctness of the simulated -process-state before t and the use of the correct

response by process]J in determining how to change state (Lemma 2.5).

Condition (1)(b) also follows from the correctness of the process-state and the

use of the correct response. Note that each conceptual message bit of RjA has

at most n of 2n+1 bits with the "wrong" value, for the same reason that the

flag bits have the correct "majority".

If t'ME{1,...,n} and the n+ 2 nd flag bit of S or R is set to 1 at

n', the proof is similar to the error transition case. The only other case is

when t'M is the first of 2n+1 turns in which the flag bits of Rik are voted on

and the majority is determined to be 0. Then, the simulated-process-state of

process j changes and t' is associated with an element t, of T. Since the

majority is determined to be 0, n+2 flag bits of the RJA are not yet 1. Thus

the RAM turn at which the state of the 1 th cell changes has not yet occurred

in T. Therefore, in T, the state of process J changes at t1 based on L being

equal to REQUEST and the lemma is satisfied.

if t'ME(n+1,...,2n) and the n+2nd flag bit of R orS is set to I

at 'm, the proof is similar to the error transition case. Otherwise, the

essential-simulated-state of Q does not change at t'M. It must be shown that

the essential-state of P is not altered if t'M has an associated turn I in P.

100

If t. arises from a stabilization that had decision 0, t'C is the start of step 3

of the synchronizing part by the "fastest" simulator. Thus, t'm precedes the

turns in which simulators vote on flag bits of S A. Since the decision is 0,

it is not yet the case that n+2 flag bits of 3Jk equal 1. If that many flag

bits were equal to 1, the decision would be 1. Thus before t, L=RESPONSE in P

(by induction on (1)(b)) and the essential-sate does not change at t.
If f ' is associated with a stabilization that had decision 1 but no

response then t' occurred after the turn in T' that is associated with a

certain S.k becoming current. The simulators used the correct RM state (by

(2)) and value of SjA to determine not to respond. Thus the "n+1" in T

does not change the state of any cell.

Condition (2) is verified similarly; using induction, the progress

lemma, and the fact that the simulators use the correct request area to

determine the next RM state. 0

To finish proving Theorem 2.1, it must be shown that every

essential-history in P from 7 equals an essential-simulated-history from .sim.

This is an easy exercise and is left for the reader. The basic idea is that if

in a turns history T of P, process J has a turn, then in a turns history T' for

Q, processj is given enough turns either to determine that the majority of the

flag bits are 0, or to update the simulated-memory-state if the majority is 1.

If a turn of T is an "n+1", enough simulator turns are given in V until the

system stabilizes and a response is sent (if relevant).

From this discussion and Theorem 2.2, Theorem 2.1 follows immediately. 0

101

Next we define a system of n processes, Q', that faithfully partially

simulates P. Let Q' have the same set of cells as Q. Assume that each

process alternates between acting as a process and simulator, on a step-by-step

basis. Then Q' faithfully partially simulates P. If process J has infinitely

many turns as a process, then it has infinitely many turns as a simulator. Any

history of Q may be thought of as a history of Q and by Theorem 2.2 is mapped

to a history of P. However, not all histories of P are represented. It

follows from this:

Theorem 2.3. The system Q' faithfully partially simulates P. 0

Using the definition of being enabled to enter the critical section

[17] alluded to above, it .follows from Theorem 2.3 that:

Theorem 2.4. There is a process system of n processes which satisfies mutual

exclusion, is deadlock free, and satisfies bounded waiting, and tolerates the

failuie of any one memory cell and the death of any n-1 processes (as long as

no dying process is enabled to enter the critical section). 0

The system Q does not simulate P according to the more restricted way

that simulated-memory-states and simulated-process-states change for systems

without errors. In Q, a change in simulated-process-state of process j is not

associated with a single state of PROC(QS).

The following minor changes to Q produce an error-free system, Q", that

faithfully simulates P. There is one flag bit for S and n+1 flag bits for

R1A. The simulated-memory-state changes when all flag bits of a new area

102

become 1. The n+1 flag bits in R A are set to I by the simulators and process

j does not set any bits in RjA to 1. The single flag bit in S A is set only

by process j.

Process j, and the process-simulator-function are as follows. Let

pEPROC(P,j). There is a state (or actually three states as with Q),

qcPROC(Q'',j) with g(q)=P. There are n additional states used to read

successive flag bits of Rjk, and each of these states are mapped to p. In the

above n+1 states if the flag bit read is 1, process J enters the next state

and reads the next bit. If the bit read is 0, process J enters a state q 1 ,

where g1(q)=p 1 and p 1 is the next state process J enters from p in P if

L .=REQUEST. If all of the flag bits are I process J reads RI, sets the flag

bits of R and Sfk+l to 0, and writes in S . The value written in S

depends on the state of process J and what was read in R A. At the turn when

process j sets the flag bit in Sjk' it enters a state q2 , where g(q2)WP 2 and

P is the state that follows p if the value of L is RESPONSE and the value

of Al is the value just read in RJA. Using this construction:

Theorem 2.6 The system Q" faithfully simnlates (without errors) P with respect

to the histories 7 and 7' defined in Section 2.2.4. 0

Finally, we count the time and space required by Q. Let

z =PROC(P,n+1)I and let z2zCELL(PS)I (assume ICELL(PS)I is the same for

all J). The number of cells in each C area is 0(n 2+nlog(z)). Each of 3n

R A areas use 0(nlog(z 2)) cells. The total space is 0(n 1og(z 2)+nlog(r)).

It is not clear how to count time but we briefly discuss the time

requirement. Error transitions are not counted. Process J requires O(n) turns

103

to determine that a response has not been sent. Process J requires

O(nlog(z2)) turns to determine that a response has been sent and to send the

next request. For a simulator to execute every turn in the managing part of a

C area requires O(n 2 +nlog(z2)+nlog(zI)) turns. Between each of these

O(n 2+7llog(z I)+nlog(z 2)) turns, there are O(n) turns in the synchronizing

part. In addition, the C area is read at least once in step 4 of the

synchronizing part, but this is low order. The total number of turns, for one

simulator to do one RM turn is thus O(n3+nlog(r 1)+n2log(z 2)). If n

simulators execute at about the same speed then O(n4+n 3log(z)+n3log(Z 2))

are required for one R turn. This may be reduced by having the synchronizing

part executed only between every two writing transitions, but this does not

save very much.

104

2.6. Discussion of unreliability properties

This section describes types of unreliability and which types are

tolerated by our simulation.

2.6.1 Process unreliability

Announced process death may be handled by our simulation techniques.

The only constraint is that death in the RM model cannot be announced while it

is the RM's turn to respond. If the RM model is augmented with special "dead"

bits for each process, this constraint is avoided. Thus fair mutual exclusion

with announced death may be accomplished. If less general and more efficient

solutions are desired, the works of [34,37,52,53] should be consulted.

If process death is undetectable, the process cannot be eliminated from

its critical section as it is indistinguishable from a slow process. Our

solution keeps the rest of the system operational if there are multiple

resources.

Other failures may exist if a "clock process" is used. Synchronizing

the speeds of clocks is studied in [38], and we do not elaborate.

A final type of unreliability is where a dead process modifies memory

in a manner that is inconsistent with its protocol. There are no known

solutions for this, and it seems hard to define what a solution would look

like.

2.6.2 Memory unreliability

Before discussing different types of memory unreliability we give a

detailed description of the properties of our simulation.

Consider the request cells, that are written only by process J. Our

105

solution adapts to tolerate m faults out of 2m+1. Thus the proportion of

faulty bits that may be tolerated can be arbitrarily close to fifty percent.

Consider all of the cells (other than the MSG-SENT-VOTE cells) that are

written by the simulators. These consist of almost all of the C cells, the

response cells and the request flag cells. Here, one conceptual bit is

represented by 2n+1 bits to handle n-1 processes that may be out-of-date and

one faulty bit. To tolerate m errors, one needs 2(n+m)-1 bits, 'for m faulty

bits, and n-1 out of date processes. Again, the proportion of faulty bits may

approach fifty percent, but the cost in memory size is higher.

The most stringent assumptions relate to the MSG-SENT-VOTE cells. Only

one cell out of approximately 8n cells may fail. Extending this to tolerate

greater unreliability is inefficient. To tolerate m errors, there may be 2n+M

bits that disagree with the initial decisions of all simulators (see the proof

of. Lemma 2.5). In order for the simulators to agree on a decision, one needs

at least Zn+n+1 blocks of 4n+2m+1 cells. Thus to tolerate m faults, one

requires approximately 2(2n+m)2 cells.

Because of this quadratic growth, the proportion of failures tolerable

does not approach fifty percent. The best proportion is at m=Zn where for 2n

faults one needs only 32n2 cells. While it seems that slight improvements of

our techniques may increase the constant, to improve to o(l/n) apparently will

require new techniques. We discuss one improvement in the constant factor at

the end of this section.

One degree of fault tolerance is to tolerate m faults in a system

(Theorem 2.1 as stated in Section 2.2.4.2). Our solution trivially satisfies

this notion. If each "conceptual" bit is protected against m faults, then the

106

entire system is protected against m faults. Unfortunately, to tolerate m

faults one needs much memory.

A second criterion for correctness is that only m percent of certain

sets of cells fail. For m(50, all of the cells satisfy this except for the

MSG-SENT-VOTE cells. The MSG-SENT-VOTE cells only satisfy this criterion if

(mlI)OO(1/16n). Tolerating m percent of different groups of cells permits the

partition of memory into 100/m memory "units", where any single unit may fail.

Our solution tolerates the death of any one of 16n units. If our model can be

applied to a distributed system, one can tolerate the death of all

communications links to a site if 100/m is as small as n.

A third correctness criterion is that only m percent of all the bits in

the system fail. Here, we do not succeed even for a moderately sized value of

m. If there are r conceptual bits in the system, then even if 100/r percent of

them fail, an entire conceptual bit might fail, ruining the system. Since in

our solution r is large (it grows as a function of the size of the RM and

message areas) our solution does not solve this problem. It is unlikely that

any solution can be developed for a large value of m if the size of each cell

is bounded. One needs many conceptual bits to code the information in the

message areas.

Fault-tolerance is one means of producing a system that with high

probability has no observable errors. If each memory cell has a probability x

of failing per unit time then for each set of r bits, the expected number of

failures is xr. If we use the solution that tolerates 2n MSG-SENT-VOTE

failures out of 32n2 cells, the expected number of faulty MSG-SENT-VOTE bits

is 32xn 2 , which is asymptotically greater than the 2n failures which are

107

tolerable. The fault-tolerance thus does not guarantee (probabilistically)

reliability for a large number of processes, but we believe that it is a good

solution for small values of n.

2.6.3. An improvement in the memory reliability

We discuss a modification in the algorithm which allows greater

unreliability- for the MSG-SENT-VOTE cells. In the voting procedure, there are

2n+1 blocks of 4n+1 MSG-SENT-VOTE cells that are used. Each simulator sets

each cell in a block based on the perceived majority of the previous block.

Each cell is set only if it is not of the correct "type". One needs 4n+1 cells

per block to tolerate 2n "incorrect" cells, at most n that started with the

correct type and were not set at all and at most n that were reset by outdated

simulators after they were set correctly.

We discuss these two classes of incorrect states of cells. Assume that

a (nonfaulty) cell is not set by live simulators because it started with the

correct type. Then this cell was set by an outdated simulator (simulator J)

during or after the last usage of Cl. Simulator J therefore does not set any

other cells incorrectly with the correct type. (Simulator J may set cells to

the incorrect type if simulatorj believes that the simulation is up to the

turn that last used Ci.) Thus there are at most n incorrect cells of the

correct type. (There are also at most n cells of the incorrect type.)

An improvement in the reliability may be obtained by ignoring the cells

of the incorrect type in the voting and to use 2n+1 blocks of 3n+1 cells each.

If all simulators have the same initial decision, then at most n cells of the

correct type may have states that differ from all initial decisions, and there

are at least 2n+1 cells of the correct type. Thus if no initial decision is 0

108

(1), then 0 (1) does not win any vote. Note that 2n+1 blocks are needed, as

otherwise, there may be one incorrect cell in each block and the simulators may

not agree at any block.

The revised algorithm tolerates one faulty cell out of approximately

6 2. If there are more faulty cells, this technique is less useful as each

faulty MSG-SENT-VOTE cell may be of either type. To tolerate m faulty cells

one needs 2n+m+1 blocks with 3n+2m+l cells per block. If mn-n3, one needs n2V3

(2+-3)2 cells for a ratir of 1/n(7+4V3J, or approximately 1/13.9n.

109

2.7 Open Problems and Further Work

The simulation of an arbitrary manager suffers from the same drawbacks

as other general results; it does not take advantage of the simplifications

special to specific problems. There are important, identifiable, subproblems

of a general RAM simulation which are of inherent interest. One such problem is

to develop fair mutual exclusion protocols with bounded-sized faulty cells and

dying processes. Alternatively, one might prove that any such fair mutual

exclusion protocol requires a large number of cells or a large amount of time.

Similarly, a lower bound on the space or time of RM simulation would be of

interest. Techniques which may be applicable are those of [4,5,17].

The next problem is to obtain an efficient RM simulation with an error

free system. Our simulation technique permits processes to improperly modify a

limited amount of memory. The resulting memory inconsistencies are handled as

if they were faults. For that reason, our simulation by a system without

errors is not much simpler than if the simulating system had errors.

Another class of open problems is to obtain mutual exclusion protocols

without test-and-sets. With unannounced process death this has not been solved

even with reliable memory and many-valued cells. (Note that our protocols use

the test-and-set only in step 4 of the managing part, where the simulators

agree on a decision.) If one cannot eliminate the need for test-and-sets, it

would be interesting to develop a protocol where test-and-sets are applied only

to binary variables.

A number of questions relate to the details of the model of Section

2.2, and the simulation of Section 2.4. The definition of simulation is a

"global" definition. It would be easier to deal with a local characterization

of one system simulating another; something to the effect that Q simulates P if

110

whenever a fixed sequence of turns occurs in Q it corresponds to a fixed

sequence of turns in P.

A less important question also relates to the definition of simulation.

If Q is to faithfully simulate P, where Q may have errors, then the

determination of the simulated-process-state of a process is by a powerful

partition function (described in Section 2.2.3.) A definition of simulation

which uses less powerful methods to determine the simulated-process-states is

desired.

The RA systems are one class of process systems that model resource

nllocation. One may prefer a different notion of a manager, e.g., a manager

that uses one variable to communicate with all processes. Alternatively, one

may permit a process to change a request before it is responded to. One

question is to understand how sensitive the simulation is to the properties of

the managed system. Is there some way of classifying process systems that can

or cannot be simulated? A related question is to compare different notions of

managed systems, to determine if some simulate others, or if some are more

powerful than others in some sense.

The main technical question is to improve the reliability of the

simulation. Even if many cells are used, the proportion of cells that can be

allowed to fail in the MSG-SENT-VOTE section is at most 1/14n. When n gets

large, one expects to get O(n 2) errors, but can only tolerate O(n) of them.

The final comment is on the "stable" state proof technique. This is an

ad-hoc technique which seems appropriate here. We need a better understanding

of parallel programs to simplify proofs of this type. It would also be

interesting if the "stable" state technique has wider applicability.

111

3. Scheduling

3.1 Introduction

Chapter 3 of this thesis discusses job scheduling. The basic problem

in job scheduling is that one is given a set of jobs or tasks to be executed on

a given set of processors. There are a wide variety of variations of such

problems. Two important examples that we discuss in detail are that certain

jobs may or may not have to be executed before other jobs, and the processors

may be identical or have different capabilities. For current surveys on

scheduling theory we refer the reader to [7,24].

The problem of job scheduling on processors of different speeds was

introduced by Liu and Liu [42,43]. They studied the scheduling of a partially

ordered set of jobs (i.e. some jobs precede others) on a uniform process

system. In a uniform process system, the ratio of the speeds between any two

processors is independent of the task to be executed.

They studied a class of schedules known as demand driven or list

schedules. The characteristic property of these schedules is that at no time

is there both an idle processor and an unexecuted executable task. They showed

that any list schedule has a finishing time that is at most

1+(b I /b,)-(b fI(bi+,...+b"I)) times worse than optimal where b is the speed

of the ith fastest processor (the optimal schedule is the one with least

finishing time). In addition, examples of list schedules were presented which

do perform as poorly as the bound. This is a discouraging result since a large

gap between the speeds of the fastest and slowest processors implies the

ineffectiveness of list scheduling, independent of the speeds of the other

processors or the number of. processors. List scheduling has been a prototype

of approximation algorithms since its introduction in the identical processor

112

case [23].

One way of avoiding this problem of unboundedly bad behavior is to use

preemptive scheduling. When one is allowed to use preemptive scheduling, one

is allowed to temporarily suspend the execution of an executing task, and

restart it at a later time. Ordinarily, one assumes that preemption is a

cost-free operation. Horvath, Lam, and Sethi studied a "level algorithm" for

the preemptive scheduling of partially ordered tasks 128] which generalizes the

algorithms of [47,48]. It is shown in [28], that the level algorithm has worst

case performance between -/1.5m and Vm/8.

The decision problem of determining whether a given set of tasks (even

without a partial order) can be scheduled on processors of different speeds

within a given finishing time is NP-complete [27]. As a result it seems

unlikely that an algorithm can be found which runs in polynomial time and

always produces the optimal schedule [20]. It is for this reason that we try

to develop algorithms that approximate the optimal solution as we proceed to

explain.

Sections 3.2.2 and 3.2.3 present algorithms for nonpreemptive and

preemptive scheduling of a partially ordered set of tasks on uniform process

systems. The performance bounds are better than those of [42,43] for the

nonpreemptive case and better than those of [28] for the preemptive case. In

fact, the bound proved for the algorithm of Section 3.2.2 (the nonpreemptive

case) is better than the' V 1.5m bound obtained by Horvath, Lam, and Sethi for the

preemptive case (ordinarily, approximation algorithms are closer to optimal in

the preemptive case, than in the nonpreemptive case [24]).

The focus of Section 3.2.2 is to provide a nonpreemptive algorithm

which is guaranteed to be no worse than O(Vr) times worse than optimal,

113

regardless of the speeds of the processors. While Vrn and bIbm (the leading

termn in the bound on list schedules) are incomparable in that either may be

smaller for any particular set of processor speeds, the natural way that the

algorithm is developed guarantees that the worst case performance for any

fixed set of processor speeds is not worse than 1+b,/Ame

The basic strategy of the heuristic is to use only the fastest i

processors for an appropriately chosen value of i. In contrast to other

algorithms that rule out the use of certain processors (21], this algorithm is

unique in that the processors may be ruled out before the set of tasks is

examined. In particular, the algorithm does not need any information about the

time requirement of a task before scheduling the task.

Formal definitions are provided in Section 3.2.1. Section 3.2.2

describes which processors are to be used if O(hn) behavior is desired. A

bound of In + O(m t /4) is obtained on the performance of the heuristic. Also,

for small values of m the exact worst case performance of the algorithm is

computed. This is significant as O(m1/4) is potentially a dominating factor

for small values of m. The time complexity of the algorithm is O(m+n 2) where

n is the number of tasks.

Section 3.2.3 analyzes preemptive scheduling. An improved upper bound

is obtained on the performance of the level algorithm of Horvath, Lam, and

Sethi [28]. This is accomplished by noticing that the O(i) behavior of the

level algorithm comes automatically with the use of preemption - and not from

the particular way in which the level algorithm schedules tasks. Specifically,.

Section 3.2.3 analyzes a class of schedules, called the maximal usage

schedules, that includes all "reasonable" preemptive schedules. Any preemptive

114

schedule may be transformed into a maximal usage schedule in polynomial time,

where the new, maximal usage schedule has a finishing time at least as small as

that of the original schedule. The main result of Section 3.2.3 is that any

maximal usage schedule is at most Vrn+ (1/2) times worse than optimal.

Section 3.2.4 indicates that the nonpreemptive algorithm of Section

3.2.2 is essentially best possible among algorithms using a certain restricted

class of heuristics. It is shown that any algorithm that does not look at the

time requirement of a task before scheduling has worst case performance which

is at least 'i times worse than optimal. Thus the algorithm of Section 3.2.2 is

asymptotically best possible. This result also proves that one of the

algorithms of Section 3.3 (which does not use the time requirement as we

proceed to discuss) is best possible up to a constant factor.

While the uniform assumption is relevant for certain -systems, it is not

necessarily relevant for others. In Section 3.3 we study a number of

algorithms for the scheduling of a set of n independent tasks on m unrelated

processors. The processors arc unrelated in the sense that there is no notion

of a fast processor always requiring less time than a slow processor,

irrespective of the task being executed. Rather, the time required for the

execution of a task on a processor is a function of both the task and the

processor. This models the situation that general purpose processors have

specialized capabilities that permit them to execute certain tasks more

efficiently than others. An example of this might be in a distributed system

where the time requirement of a task on a processor may depend on communication

costs.

115

Polynomial time approximation algorithms for such sets of tasks were

first studied by Ibarra and Kim in [30]. Five algorithms are presented in

[30], each of which is guaranteed to be at most m times worse than optimal in

the worst case. In addition, four of the five are exactly m times worse than

optimal in the worst case. The fifth algorithm was left as an open problem -

its effectiveness was shown to be between 2 and m times worse than optimal.

(In Section 3.3.6 it is shown that this algorithm is at least 1+log2) times

worse than optimal in the worst case. Thus the gap left in [30] is somewhat

tightened, but is still left open.)

The first new algorithm that we present is at most 2.54m times worse

than optimal in the worst case. Thus it may not be as good as the fifth

algorithm of [30], but it is provably better than the other four, and may in

fact be better than all five. The running time of this algorithm is

O0nnlog(n)). We also show that there are examples for which the algorithm is

as bad as 2/rn times worse than optimal, indicating that the analysis is tight up

to a factor of 1.25. This algorithm is somewhat similar to the one of Section

3.2.2 in that processors do not execute tasks for which they are very

inefficient. This algorithm does not use the absolute time requirements of the

jobs that are to be executed. It does however, use information about the

realtive efficiencies of the processors on the tasks. This is discussed in

greater detail in Section 3.3.2. The time complexity of this algorithin is

O(mnlog(n)).

The second new algorithm is a modification of the first, which adds a

largest processing time (LPT) heuristic. This algorithm is at most (1+V)rm

times worse than optimal and also runs in polynomial time. The worst example

known for this heuristic is In times worse than optimal, and we believe that

116

this heuristic is actually more of an improvement over the original algorithm

than the worst case bound suggests. The LPT heuristic has been a useful

heuristic in situations where the processors are identical [23].

The third algorithm is a different modification of the first with a

substantially longer running time. Whereas the first two require polynomial

time in terms of both the number of tasks and the number of processors, this

one requires exponential time in terms of the number of processors. The worst

case behavior is at most 1.51m times worse than optimal. When assigning tasks

on a bounded number of processors, however, the algorithm runs in polynomial

time. Horowitz and Sahni [27,54] devise algorithms of time complexity

O(n271m/E) whose worst cases are within 1+e of optimal. Our algorithm

requires time O(rn'+mnlog(n)). Thus its running time is less sensitive to large

numbers of tasks executed on moderate numbers of processors.

All three of these algorithms may be varied in trivial ways to get

performance bounds which are better than the above bounds by a small constant

factor. While we are able to obtain slightly better performance bounds with

these modifications, we do not believe that the resulting algorithms are

actually any better.

One final result that we present is an additional algorithm which is m

times worse than optimal in the worst case. This algorithm has the useful

property that when extended to an algorithm for scheduling partially ordered

tasks on unrelated processors, it is still at most m times worse than optimal,

Recently, the scheduling of systems with different types of processors

- dedicated to different types of tasks has been studied [22,44]. Examples of

systems where this is relevant include data flow models of computation [12,33]

117

where primitive operations are computed by different processors. Similarly, in

machines such as the CDC6600, there are several specialized functional modules

[59]. Also, in a system where I/O tasks and arithmetic tasks are handled by

different processor units, such an assumption may be relevant. In Section 3.4

we analyze some of the properties of schedules for systems with different types

of tasks.

The complexity of determining the optimal schedule is NP-complete in

very simple cases. It is shown in [22], that the problem of determining

whether a schedule exists for a given typed task system that requires fewer

than a given number of steps is NP-complete even if there are only two

processors, one of each type. Also, if the number of types of processors

varies, the problem is NP-complete even if the precedence constraint is

restricted to being a forest. The techniques used there are adaptations of

those found in [7,60].

Section 3.4.2 discusses extensions to the results of Graham [18], which

provide general bounds for non-preemptive list scheduling strategies which

satisfy fundamental "no-waste" requirements. In ordinary task systems with

identical processors, any list schedule is at most 2-(1/m) times worse than

optimal where m is the number of processors. For typed task systems with

equally fast processors a similar bound is obtained. Any list schedule is at

most k+1-(1/maxOn 1 996..,nM)) times worse than optimal, where A is the number

of types of tasks and m is the number of processors of type i. This bound is

achievable for any value of A and any values of mi,...,mk. These same results

were obtained independently in (44].

The results of [42,43] which provide general bounds for list schedules

on machines with processors of different speeds are also extended. It is shown

118

in Section 3.4.3 that the bound for typed task systems is (approximately)

k+max(li/1i,11i'',bk1Akmh) where b is the speed of the]h fastest

processor of type i. Finally, the results of Sections 3.2.2 and 3.2.3 are

extended to give an algorithm for the preemptive and nonpreemptive scheduling

of typed task systems on processors of different speeds. The worst case

performance of this algorithm is bounded by an expression which is in terms of

the number of processors of each type and is independent of the speeds of the

processors.

The results of Section 3.3 were obtained jointly with Ernest Davis

[10].

119

3.2 Scheduling tasks on processors of uniformly different spcieds

3.2.1 Basic Definitions and Models

A task system (J,<,p) consists of:

(1) A set 7 of n tasks.

(2) A partial ordering (on 7.

(3) A timefunction :X-R+

The set T represents the set of tasks or Jobs that need to be executed.

The partial ordering specifies which tasks must be executed before other tasks.

The value p(T) is the time requirement of the task T.

The total number of steps required by all the tasks of r will be

denoted p(T), i.e., p(T)=ErEr A(T).

Associated with a task system is a set of processors =(P1:1ILm).

Tnere is a rate b. associated with P1 (bPb2...bm>O). If a task T is

assigned to a processor P with rate b, then g(T)/b time units are required for

the processing of T on P. (When discussing a generic processor "P", the

associated rate is taken to be "b".)

A non preemptive scbedule for (TQa) on a set of processors (P

with rates lg,..,bm is a total function S:X-Rx@ satisfying conditions (1)

and (2) below. If S(T)=(t,P) then the starting time of task T is t, the

finishing time of T is t+(u(T)/b) and T is being executed on P for times x such

that t<x(t+(p(T)/b).

The function S satisfies:

(1) For all teR+, if two tasks are both being executed at time t, then

they are being executed on different processors at time C.

(2) For T,T'Er, if TCT' the starting time of V' is no less than the

finishing time of T.

120

Condition (1) asserts that processor capabilities may not be exceeded.

Condition (2) forces the obedience of precedence constraints.

The finishing time of a schedule is the maximum finishing time of the

set of tasks. An optimal schedule is any schedule that minimizes the finishing

time. For two schedules S and S', with finishing times w and w' the

pnformance ratio of S to S' is r/ru'.

A preemptive schedule for (T,Cp) is a total function S that maps

each task TET to a finite set of interval, processor pairs, i.e., the first

element of each pair is an interval and the second is a processor. If

S(T)=(([i 9.(]Q J),([y2]2,'Q2)'"([11],Q')) then

(a) i,jpER for P=1,...

(b) ipip for p=1,...,l and 151 p for P=1,...,l-1

(c) Q Effor p=1,...,l.

For i ,t 4 , T is being executed on processor Q at time t. The time i

is the starting time of T, and the time J is the finishing time of T.

A valid preemptive schedule for (7,<,) on a set of processors

={P I :1 ism) is a preemptive schedule for (?,<,s) that satisfies

conditions (1) and (2) above (for nonpreemptive schedules) and:

(3) For TET (with S(T) as above), (T)=(j1 -i)rare(Q1)+...+(1 -i1)rate(Q1)

where If Q=P then rate(Q.)=b..

Condition (3) asserts that each task is processed exactly long enough

to complete its time requirement.

The notions of finishing time, optimal preemptive schedule, and

performance ratio are analogous to the same notions for nonpreemptive

schedules.

121

A task T is executable at time t if all predecessors of T have been

finished by time t, but T has not yet been completed.

To analyze some of the schedules considered in Section 3.2 it will be

useful to have the following definitions. A chain C is a sequence of tasks

C=(TI,...,9TI)with TcT such that for all J, 1Q/(l, T (T .1 C-starts

with task T 1 . The length of C is Z/1 #T1). The height of a task TEc is

the length of the longest chain starting at T. The height of (r,<,p) is the

length of the longest chain starting at any task TE. The height

of (r,'tp) will be denoted h.

While the notion of the height of a task is a static notion which is a

property of (T,<,p), we also associate a dynamic notion of the height of a

task with any schedule for (TCp). Specifically, let S be a schedule for

(T,(,p), and let t be less than the finishing time of S. Then the height of

the task T at timet is equal to the length of the longest chain starting at T,

where the length of the chain considers only the unexecuted time requirements.

Similarly, the height of (r,<,p) at time t is the length of the longest chain

starting at any task (not yet completed) TEO. Note that if a portion of a task

has been finished at time t, then it contributes to the height the proportion

of the time requirement not yet completed.

It is convenient to analyze schedules based on whether or not the

height is decreasing during a given interval of time. One may plot the height

of (r,(,) as a function of time for a given schedule S and make the

following observation. The function is a nonincreasing function which starts

at the original height of (r,(,M) for tA0, and ends at height 0 for

.=finishing time of S. If during an interval of time, the height was a

monotonically decreasing function of time then that interval is called a

122

height reducing interval. If during an interval the height is constant the

interval is calod a constant height interval. Any schedule may be completely

partitioned into portions executed during height reducing intervals, and

portions executed during constant height intervals.

One more notation is needed. Define B=XE b Thus B is thei fJ"i
total processing power of the fastest i processors. Bm is the total processing

power of all the processors, and B,=b,.

Section 3.2.2 analyzes the nonpreemptive scheduling of tasks on

processors of different speeds. Section 3.2.3 handles preemptive scheduling.

123

3.2.2 Nonpreemptive scheduling of tasks on uniform processors

3.2.2.1 List schedules on the fastest i processors

In Section 3.2.2, we devise an algorithm whose performance is at most

i + O(m1 4) times worse than optimal, for the nonpreemptive

scheduling of partially ordered tasks on processors of different speeds. The

algorithm is related to a class of schedules that has attracted much interest,

the list scheduling model [17]. List schedules are designed to avoid the

apparently wasteful behavior of letting a processor be idle while there are

executable tasks.

A list schedule uses a (priority) list L which is a permutation of the

tasks of T, i.e., L=(T, 1 ...,Td) E(TeT and for 10], T 1 Tfl. The

list scliedu/e for (T,<,) with the list L is defined as follows. At each point

in time that at least one processor completes a task, each processor that is

not still executing a task is assigned an unexecuted executable task. The

tasks are chosen by giving higher priority to those unexecuted tasks with the

lowest indices in L. If r processors are simultaneously available (r>1), then

the r highest priority unexecuted, executable tasks are assigned to the

available processors. The decision as to which processor gets which task is

made arbitrarily (or one may choose to assign higher priority tasks to faster

processors). Only if not enough unexecuted tasks are executable, do processors

remain idle. Note that any schedule that is unwasteful in the sense that

processors are never permitted to be idle unless no free tasks are available

can be formulated as a list schedule.

The motivation for this heuristic comes from several sources. The

primary motivation emanates from the optimality of some list schedule in the

case that the processors are identical and the tasks are all unit execution

124

time tasks. It can be shown that when each task requires an equal amount of

time at least one list schedule is an optimal schedule. Other sources of

interest include the fact that it is simple to implement, and due to its

simplicity, it is a good starting place for building other heuristics.

When the processors are of different speeds, list schedules may be as

bad as 1 +(' 1
1 (6+..+bi)) times worse than optimal [42,43]. The

reason for this "unboundedly" bad behavior (as a function of the number of

processors) Is that an extremely slow processor may bottleneck the entire system

by spending a large amount of time on a task. This motivates the following

class of heuristics. A list schedule on the fastest i processors has a

priority list as above. The difference in the execution strategy is that the

slovwest m-i processors are never used, and tasks are scheduled as if the only

processors available were the fastest i processors.

3.2.2.2 Performance bound for list schedules on the fastest i processors

The first portion of this section entails an analysis of the worst case

performance of list schedules on the fastest i processors. Given a set of

speeds b II...,bm, and given i, a bound will be obtained in terms of the

parameters b 's and i. The second portion of this section analyzes this bound

more carefully, and indicates that for each set of processor speeds, an easily

determined value of i causes the performance ratio to be no worse than 1+2i/M

times worse than optimal. A mr -omplicated analysis then shows that in fact

some value of i causes a ratio of worse than im + O(m1 14). The final

portion of this section provides examples which indicate that the performance

bound is the correct order of magnitude. In particular, for certain sets of

speeds, our heuristic and a class of related heuristics are as bad as -/m-1 times

125

worse than optimal.

It is easy to get a speed independent bound for a simple scheduling

algorithm, but this bound is not very good. It is not hard to see that if only

the fastest processor is used, and it is always used, that the resulting

schedule is no worse ;han ?n times worse than optimal. This possibility is

actually alluded to in (42,43]. The bound of this section (which discusses a

natural generalization of using only the fastest processor) is substantially

better than this.

The approach to be used is to obtain two lower bounds, LB1 and LBB2 '
on the finishing time of the optimal schedule for a given task system. Then an

upper bound, UB, is obtained on the finishing time on any list schedule. The

ratio (UI/max(LB,LB 2)) is then an upper bound on the performance ratio of

the schedule relative to optimal.

Lemma 3.1. Let (t,<,p) be a task system to be scheduled on processors of

different speeds. Let to opt be the finishing time of an optimal schedule.

Then roopt max(A()/Bm,h/b).

Proof. The most that any schedule can process in unit time is BM units of the

time requirement of the system. It is thus follows immediately that wopt0f)/Bm

A chain of length h- requires at least time h/bI to be processed, even

if the fastest processor is always used on the chain. It follows that

r0 pthh/Ii. Combining these two bounds we obtain wopt~max((f)/Bm,h/b 1) 0

Lemma 3.2. Let (7,,) be as in Lemma 3.1. Let to be the finishing time of a

list schedule on the fastest i processors. Then wj (p(7)/Bj)+(h/b).

126

Proof. To analyze the effectiveness of any list schedule on the fastest

i processors, it is convenient to break up the schedule of interest into height

reducing intervals and constant height intervals. The sum of the total

duration of these intervals equals wi

Consider any constant height interval. Throughout the interval all of

the fastest i processors are in use. We will prove this by contradiction. Let

time t be a time within a constant height interval when fewer than i processors

are in use. Consider the set of unfinished tasks that are at maximum height at

time t. By definition, each of these tasks is executable (i.e. has no

unfinished predecessors). Since not all of the fastest i processors are in

use, and the schedule is a list schedule on the fastest i processors, it must

be that all of these maximum height tasks are being executed. But then, it

follows that the height of the task system in this interval is being reduced,

contradicting the fact that this is a constant height interval.

By the above remarks, it follows that during each constant height

interval, the processors are processing at least D units of the time

requirement of the task system per unit time. Thus the total time spent on

constant height intervals is at most g(l)B1 .

Next, examine the height reducing intervals. At each point in time,

some of the tasks being executed are at the maximum height. These as well as

all other tasks being executed are being processed at the rate of at least b .
Since the total height may be reduced by at most A throughout the schedule, it

follows that the total amount of time spent on height reducing intervals is at

most h/bi. Together with the above bound on the amount of time in a constant

height interval, one may conclude that w 1S(p(/)18B)+(h/b 1).

Actually it is easily shown that w (((7)-A)/ 1B)+(A1b 1), but this does not

127

substantially improve the performance bound. This improvement follows from the

fact that at least h units of the time requirement are executed during height

reducing intervals leaving only p(T)-A for constant height intervals. It will be

important to remember this improved bound for some numerical results in Section

3.2.2.3. 0

It follows from Lemmas 3.1 and 3.2 that:

wo (p(T)1B)+(Alb 1)

(1) -------------

to opt max(()/Bm~h/bi)

Equation (1) presents us with an opportunity to formally state the

schedule that will be used. Given a task system (r,(,p), determine the total

time requirement of all tasks (p(T)), and the height of the system (h). Compute

the right hand side of equation (1) for each value of i=1,...,m. The value of

i that minimizes the expression is the number of processors that will be used.

Devise any list schedule on the fastest i processors.

In Section 3.2.2.3 it will be shown that the performance ratio of the above

schedule (relative to optimal) is at most -/M + O(m). Before

proceeding to the proof of that fact, a modification in the scheduling

algorithm will be suggested. The strategy as stated involves doing a separate

calculation for each task system in order to determine how many processors to

use. In fact, to get the Vm + O(m1 4) behavior, it is possible to use

the same number of processors independent of the task system (based only on the

bI's). Note that equation (1) also implies:

128

fly(p(7)1Bd)(Al/b 1) Bm bi

(2) --- ------- + - - -- + ---

roopt ((47)/BM) (h/bl) B bi

The scheduling strategy is to use a list schedule on the fastest i

processors where i minimizes this last performance bound. In Section 3.2.2.3

it is shown that any resulting schedule is not worse than vrn+ O(m) times

worse than optimal irrespective of the value of the bL's.

Note that if the bound used on w1 is w 1 ((p()-h)lB,)+(h/b,) then one may

obtain a bound on the algorithm of:

Bn bb L1

(3) ---- < --- + -- - --

oopt Bi b Bi

Thus, an alternative scheduling algorithm chooses i on the basis of

equation (3). This improved algorithm does not have better asymptotic

behavior, but does provide a better algorithm for small values of m. This will

be discussed further when numerical results are discussed. For asymptotic

bounds we use the algorithm generated by the simpler equation (2).

The right hand side of equation (2) will be denoted E1(b).

The right hand side of equation (3) will be denoted E',(b).

Note that the bound of equation (3) with ism is the performance bound

of Liu and Liu [42,43]. For this reason, the choice of the value of i as the

one which minimizes E'-(b) provides a bound which is at least as good as their

bound for any fixed set of processors. The derivation presented here is

129

similar to the derivation of their bound.

To analyze the running time of the algorithm, note that choosing the

number of processors to use (on the basis of (2) or (3)) requires time O(m);

0(m) time to compute BB2''",Bm, 0(m) to compute E1(b) for each value of i,

and 0(m) to minimize EO(b).

The actual scheduling requires time O(n2) as follows. For each task

T, a number pred(T) is maintained which represents the number of tasks that

preceed T that are not yet completed. The values pred(T) for TOT are

initialized in O(n2) time using the adjacency matrix for C. When a task T is

completed, then if T(T' the value pred(T') is decremented. It requires time

0(n) to update the Pred function each time that a task is completed. If

prrd(T') is set to 0 then T' is added to a list of executable tasks. The

processor that had been executing the completed task T is then added to a list

of idle processors. The actual assigning of the tasks given these two lists

can be done in constant time. Thus the total time complexity is the O(n2)

time required to do the initialization and to update the pred function after

the execution of each task. This is a list schedule as no processors are idle

while there are executable tasks.

Note that we have not described how to determine which of m currently

executing tasks is finished next. This may be done in log2 (m) time if a list

of "currently executing" tasks is maintained in order of their finish time.

When a task is scheduled it is inserted into this list based on its finishing

time. This must be done at most n times throughout the schedule. For m<n,

0(nlog(m)) is a low order term. For n(m, the insertion. requires only log(n)

time, and 0(nlog(n)) is a low order term.

130

3.2.2.3 A speed independent bound

This section analyzes equation (2) in three different ways, The first

way provides an intuitive indication of which processors to use as a function

of their relative speeds. Specifically, if the processors used are those whose

rates are within a factor of V-,nmof the fastest processor, then list schedules on

these processors are at most 1+2/n times worse than optimal. The second

approach proves that one may always choose I such that the bound is

VI + O(m 1 /4) This complicated proof does, not give any intuitive idea how to

choose i in generai, other than calculating E(b) for each value of i and then

minimizing. The third method of analysis is a calculation of the actual

numerical bounds on the algorithm for small values of ?n when the correct choice

of i is made. These bounds are better than 1+2/vn and are more exact than a

bound with an O(m 4) term.

Theorem. 3.1. Consider a set of m processors of different speeds. Then some

value of i (1 <im) has the property that for any task system (with optimal

finishing time rvop), and any list schedule on the fastest i processors for

that task system (with finishing time 1) W /opt 1+2in.

Proof. Recall that rt./rvop0.M1)+ /b). Choose such that v'rnb1 b1

and int 11+1<b 1. Certainly some J satisfies 1m b >b (since b1 satisfies

it) and if no j satisfies 4mb (b, then choose im. From equation (2) and

the choice of i:

A 16P a

lIij bt+i+, +b M /M b1

(4) --- 1I + ------------ + -------

Wopt B.b

This follows from breaking up BM into +6 ++6,Mand

using the upper bound on b1 .

Now clearly BI bi. Also using imb <b for X 1+1 (4) may be modified to

obtain:

'I, (mo-iMb I1

(5) -- < 1+ -+iM

toopt b

Since (m-i)<m one may conclude that wIopt1+Zvin. 0

This bound may be improved somewhat for the choice of i considered in

the proof. We skip the details and proceed to give a more complicated proof

which improves the bound of Theorem 3.1 by choosing I in a more intelligent

manner.

Theorem 3.2. Consider a set of i processors of different speeds. Then some

value of i (1 i<m) has the property that for any task system (with optimal

finishing time w opt), and any list schedule on the fastest i processors for

that task system (with finishing time to) wloptinhii+ O(m1/4)

Proof. The value of i that is chosen is the one that minimizes E1(b). Let

f(P) be the supremum of min E1(b) where the sup is taken over
I

b I' 2 '" >0. It will be shown that f(m) is actually achieved by a

particular set of speeds b1',..bm. Also, these speeds have the property that

for every i f(m)=E1 (b). Using this fact one may conclude that

f(m) Vm+ O(ml/4).

Define BclRm by B=((bi,...,bm)ERm : bibae...bm O and Bm=I).

Note that B consists of every legal set of processor speeds (normalized to sum

to 1), and some illegal sets (e.g. bm=0). For bEB, with b=(b &.bM),

define g(b)=min E,(b). (Note that g(b)$ao since Ei(b)c1+(1/bi)(O.) If

b,,00,then g(b) is a bound on the heuristic with processor speeds b,...,b,

Since B is compact and g is continuous, g attains a maximum at some particular

point b*=(b*1 ... ,b*,)EB. Note that g(&*);f(i). Also, to show g(&)=f(m) it

suffices to show that PM2 0.

It must be that g(b*)EM(b*). To prove this, assume g(b9 EM(b) and

define b' by b'I=b* I(1+E) and b' =(bM+E)/(1+e). Note that b'EB (if

IMtb'in-,), E(b'))E(b*) for i~m, and EM(V')(EM(b). Since EM(b3) was

not the smallest E value for b, for sufficiently small e, g(b*)(EM(b').

Since E1(b'))g(b*) for every i, g(b'))g(b'), contradicting the fact that 5'

maximizes g. (If b&m=biM-1=...=b*i+ (bf, then 5' as defined is not in B.

In that case, one defines V'=(2 1+(c/(n-I(l+e) for Jfl+1,...,m in order to

preserve the decreasing nature of the vector IV. A similar proof then

follows.)

To prove that for every i E1(5) is the same, it suffices to consider

the case that g(b")=EM(b*)=... Ek+1(b)(Ek(b. We will define a sequence

of vectors 5',b"',b' so that each successive vector has the various E values

133

at least as large as g(b) but agreeing with g at one less value of i. That is

Ek+1 (b')>g(b*), Ek+2(b"'))g(b*), etc. Finally, we will obtain

E,, (b))g(b*) for some vector b with either g(b))g(b) or g(b)=g(b5). In the

first case it contradicts the fact that P3 maximizes g. In the second case it

contradicts g(b*)=EM(b) since b then maximizes g and g(Q)Em(b).

The vector V' is defined by V'L-ba for iMh,k+1, b':02 +e and

b'., +1E.It is easy to verify that both E+i(b') and Ek(b') exceed

g(b*) for small E. Also E(b')=E 1(b') for iLk,k+1. We now show b'eB.

From E 5+2(b*)=EA+l(b") we have b*k+1 b+2. Thus b'+>5' k+2for small c.

However, b*k=b\k- is possible which would imply VdB. In that case, the E

is not added to b*, but rather a total of e is added to the processors whose

rates equal b".. The vectors "', b'"', ... are defined in a similar manner.

The final vector has E,(b))g(b*). Since g(b*)E(b), the vector b cannot

maximize g. But Ei(b) g(bl) for every 1*1,...,m. This contradicts the fact

that b" maximizes g.

It follows from the fact that E(b*)g(b") for every i that b2,00 and

thus g(b*)=f(m).

The bound of Vrn+ O(M I) will be proved by using the fact that

f=f(n)=E (b*) for each value of i. Using fzE1 (b") and fzE (b1) one may

conclude that 5'=Bi" /(f-1)(fB*'-1) since b5",b'jB'jl(fB'j-1) and

bs=1/(f-1). This in turn proves that b"I(1/f(f-1))(i+(1/(fB'I-1))). Thus

for j b* (1+(/(fB*-1)))f(f-1). From this it follows that:

134

(6) b*...+b*m=(1-B*) (1+E)(m-i)/f(f-1) where E(1/(fa91 -1)).

In order to use the above equation to get a bound on f, a few other

facts are needed. Note that fp)i. This can be shown by considering the

vector V which is a normalized version of the vector (I-,1,,...,i) since

g"')>imi." Note also that b I1/rn. This follows from the fact that

E g(b*)=E,,(b*) which implies that bi,2 btm* Since mbm 1 the upper bound on

b* I follows. Thus for j=1,...,n &*1 b0C(1/4i13 and the successive sums

B*IB* ,...,B'SMare spaced apart by a distance of at most -/I/in. Thus, for

some value of i B*=rm 1/4 fpr ,me r between 2and 1+VZ (for sufficiently large

M).

Let B*m=rn 1 14 . Then 1+8 1i+e using the expression for E in equation (6).

This follows from the fact that (BOc/l)=(frBe2-B wm)(%iMr2M-1/2-B'r2-Bsl)

using fpir i and B*'=rn 1 / 4 . Since r22 and B' <1, (B*'/c) (r2-B')(2-1)=1

and thus BI3'E. Using (6) and 1+B* 1 l+E we have

f(f- I)<(r-i)(I+B*')/(1 -B' 1) (m-i)(i+rm - 't)(1+2rm 1 4) for sufficiently

large values of m (the last inequality is obtained by expanding l/(i-B's)).

But then (by further increasing the right hand side) V-1) 2 m+4rm 3 4 +4r 2 14m-which

yields f Vrn +2rm /4+1. 0

' While Theorem 3.2 provides a better asymptotic estimate of the

performance of the algorithm than Theorem 3.1, it does not give a better bound

for practical situations. In principle the O(m/4) term may be the

dominating factor for the small values of m that typically arise in practice.

For that reason, it is important to get a more meaningful bound for small

values of m. A third way of evaluating the heuristic is thus presented, which

135

gives numerical bounds on the algorithm for small values of M. This also will

give an intuitive idea as to the growth rate of f(M).

Recall that the heuristic takes its worst value at the vector b with

the property that E(b*) is the same for every i. From E I(b1)EM$b() with

* M= 1,we get b*m=b 12. From E(bz*)=E 1 (b') we get for 1(I1m,

(7) b* =-----------------

B*(i 021+1)-b* 1.

Using B*7=1-(b*+ 1 +...+bM), we note that the above equation is in

terms of bm and b....,& 3 . Hence each P can be determined

inductively as a function of b*'. Using =b*'I+...+b*m, we can solve for b 1 .

Solving this equation and computing 1+(l/b)) gives a bound on the algorithm.

It is not hard to show that there is a unique solution to this equation subject

to bbz>..."m>O.

This calculation was done on the MACSYMA system which generated the

expressions to solve and also solved them. The indication of this small sample

of data Is that /nz+ O(log m) might in fact be an accurate bound. The value

f(m) for the range of values considered seems to be bounded by

VIn + .21(log2 m) + 1. In fact, not only is f(m) bounded by this expression (in

the range we considered), but it seems to grow slower. The results are given

in Table 3.1, together with other key quantities for the sake of comparison.

136

m

2

3

4

5

6

7

8

9

10

50

100

500

1000

5000

10000

f(rn)

2.62

3.06

3.41

3.71

3.98

4.22

4.44

4.64

4.83

9.14

12.24

24.98

34.41

73.88

103.33

1.41

1.73

2

2.24

2.45

2.65

2.83

3

3.16

7.07

10

22.36

31.62

70.71

100

Note that f(m) does seem to be growing faster than Vm+ 0(1) although

this can not be proven by such numerical studies.

The above results were obtained using the bound of equation (2). An

important purpose of these results is to show how f(m) behaves. An additional

reason for this calculational exercise, though, is to get as good a bound as

possible on the heuristic for small values of m. For the purpose of getting a

tight bound on the algorithm for small values of m, a better bound is obtained

if the algorithm uses the slightly more complicated bound given by equation

-Vi~+ mI/

2.60

3.05

3.41

3.74

4.02

4.28

4.51

4.73

4.94

9.73

13.16

27.09

37.25

79.12

110

Table 3.1.

1+24m

3.82

4.46

5

5.48

5.90

6.30

6.66

7

7.32

15.14

21

45.72

64.25

142.42

201

(Vn + .21log 2 m + 1

2.62

3.06

3.42

3.73

3.99

4.24

4.46

4.67

4.86

9.26

12.40

25.24

34.71

74.29

103.79

137

(3). In our analytic studies the b1181 term was ignored since it does not

improve the asymptotic results (in particular it is always less than 1).

Nevertheless, for small values of m it is a significant portion of the bound.

The next table gives a bound on the algorithm in terms of this better bound.

(Incidentally, the same technique was used for generating Table 3.2 as was used

for generating Table 3.1. To use this technique, it must first be shown that a

bound on the algorithm is obtained by analyzing the vector beB which has the

property that E',(bt) is the same for each value of 1. This is a simple

exercise using the technique of the proof of Theorem 3.2.)

Notice that using this better bound gives a result which is about .7 or

.8 better than the bound of equation (2) - a substantial saving for small m.

For large values of m the improvement is slightly smaller, and less significant

due to the large value of either bound.

in bound on the algorithm

2 1.75

3 2.25

4 2.65

5 2.97

6 3.25

7 3.50

8 3.73

9 3.94

10 4.14

Table 3.2

138

Intuitively it seems quite wasteful never to use processors - no matter

how slow they may be. It is an open question to determine how to use the slow

processors in order to provide a quantitatively better performance ratio.

There are certain simple safe techniques that one may use which do not harm the

performance ratio. For example, one may first determine a list schedule on the

fastest i processors. Then, if a slow processor is free at a particular time,

and an executable task is not being executed, and furthermore the finishing

time of the task will be later (with the current schedule) than the time that our

slow processor could finish it, then it is safe to assign the task to the slow

processor (and possibly to make other improvements based on the earlier

finishing time of this task).

The fact that this procedure is not harmful may be easily seen. Since

the finishing time of the chosen task is earlier in the new schedule than in

the original schedule, no task needs to be finished later than in the original

schedule. While it is easy to determine such safe uses for the slow

processors, we have been unable to determine any methods that guarantee faster

behavior.

3.2.2.4. Achievability of the performance bound

In this section it is demonstrated that the results of Section 3.2.2.3

are asymptotically correct. This is shown by demonstrating that for a certain

set of processor speeds and a specific task system, the performance ratio of a

list schedule on the fastest i processors (for any m,...,r) may be as large

as Vr-i. The fact that this example shows that any choice of i has the

potential of being %/m-i times worse than optimal is significant. It tells

us that no sophisticated way of choosing i provides better than VIm

139

behavior if once i is chosen a list schedule is the only added feature of the heuristic.

Consider the situation where bV=rm-1 and b 1 1 for 0>1.

Consider the task system of 2n tasks as diagrammed in Figure 3.1. A node

represents a task and an arrow represents a precedence dependence. The time

requirement of each of the n tasks in the long chain is Vr-1. The time

requirement of the other n tasks is m-1. An asymptotically optimal schedule

proceeds as follows. P1 executes every task in the long chain. Each task in

the long chain requires unit time on P1 . Meanwhile, P'"" 'm execute the

tasks that are not in the long chain. Each of these processors requires time

m-1 for one of the tasks. If n=m-1 then the long chain requires time m-1, but

P? will not finish its task until 2m-3 units of time have passed since its task

is not executable until m-2 units of time elapse. For any value of n the

finishing time is similarly bounded by n+m-2.

To discuss the fact that this task system may be executed

inefficiently, no matter how many processors are used, consider two situations.

The first is the case that one attempts to schedule the system on the fastest

processor alone. The second is the situation that the processing is done on i

processors for any i)1.'

If only the fastest processor is used, then there is not enough

processing power to execute this task system efficiently. Specifically, the

total amount of time requirement of this task system is n(m-1+V6Rfl. With

only Vm-1 processing power available, the finishing time -must be at least

n(1+1 m-1).. For large values of n, this provides a performance ratio of

approximately 1+1 n-i times worse than optimal.

140

0
I

I.

Ftgmu 3.2.1

141

Consider the scheduling of this system on i processors for 01. A

"bad" list schedule uses P1, on the "non-long chain" tasks, and P2 on the

chain tasks. After time -Im-1, P, finishes the first non-chain element, and P2

finishes the first chain element. Repeating this strategy for each pair of

tasks requires time vrm-I for each pair. Thus the total time for the bad schedule

is about n V n-I and the ratio between the finishing times of the "bad" schedule

and the optimal schedule approaches VIn-I for large n. Note that no matter how

many processors one attempts to use, a bad list schedule only allows two

processors 'to be used. 0

The fact that m-I of the m processors have the same speed in this

example is important. In (21], it is shown that with independent tasks and

almost identical processors (in the sense of n-1 of them being identical)

improved algorithms may be obtained.

Recall that the upper bound on the algorithm was In~ + O(m 1/4

It has not been shown that this is the- best upper bound on the algorithm.

However, whatever the numerical value of f(s)umax (g(b)) is, a buund on the
b

heuristic of Section 3.2.2.1 may be obtained in terms of f(m). Consider a set

of m unordered tasks, the Ith having time requirement b3
1. The optimal

schedule requires unit time. Using only the fastest processor (a valid choice

with the algorithm as presented) requires time 1/ba. But f(W)-lc1/b

Thus f(rn) is almost achievable (whatever f(m) is). This means that an exact

bound on the algorithm may be obtained by solving the mathematical problem of

determining f(m), without any need to look at more task systems.

Consider the related heuristic of trying to minimize

E"'i(b*)=(I/B*')+(b*'Ib 1)-(b* 1 /B*1). In that case E' 1 (b)u1/b'1 . Recall that at the

vector b that maximizes min E(b), E' 1(b') is the same for every i, and using
i

142

only the fastest processor is a valid choice. In that case, i/bi for this

vector b is an exact upper and lower bound.

To give a concrete example, consider m=2. E'/ I(b)=1/ and

E - 2(b)=+(b I/b2)-bI. Solving E I(b)=E' 2 (b) provides b1,.57 and

b2=.43. Let p(T 1)=.57, p(T 2)=.43 and <=empty. Then the optimal

schedule requires unit time. The algorithm presented here may choose to use

only the fastest processor and require time 1/.57=1.75. This agrees with the

bound predicted by solving the maximization problem.

143

3.2.3 Preemptive Scheduling of Tasks on Uniform Processors

3.2.3.1 Maximal Usage Schedules

Section 3.2.3 analyzes preemptive scheduling of tasks on processors of

different speeds. We study a large class of preemptive schedules, called the

maximal usage preemptive schedules. As in Section 3.2.2, the goal is to obtain

bounds on algorithms that improve known bounds. Whereas Section 3.2.2

described a new algorithm whose performance was better than known algorithms,

that is not the case here. The worst case performance of the maximal usage

schedules is no better than the worst case performance of known algorithms such

as the level algorithm of [28]. However, our analysis is tighter than

previously done analyses. Thus, for example, our analysis of maximal usage

schedules provides a tighter bound on the level algorithm than was proved in

(28].

A maximal usage preemptive schedule is a valid preemptive schedule

which satisfies the following two additional requirements.

(1) Whenever i tasks are executable, then min(mj) tasks are being

executed.

(2) Whenever i processors are being used, the fastest i processors are

in use.

Maximal usage schedules encompass all preemptive schedules in a very

strong sense. Given any task system, at least one optimal preemptive schedule

is a maximal usage schedule. Furthermore, given any preemptive schedule S

(with finishing time w), one may easily transform S into a maximal usage

schedule S' (with finishing time V') with the property r'<w. We proceed to

describe this transformation algorithm.

Assume that S is given as a listing U I.Ur where each

144

listing element U=([stark,end],TQA). The interpretation of UA is

that task T4 is executed on Q, between times start, and end4 .

The translation from an arbitrary schedule into a maximal usage

schedule will proceed in stages. It starts with the schedule SCSO, and

produces schedules S I,...,s where S is the resulting maximal usage schedule.

The basic idea is that if S satisfies conditions (1) and (2) above before t,

but does not at t, then Si is modified at t to produce S . Specifically, let

(' be the smallest time greater than t that equals start for some k. Then,

if S, does not use all m processors at t and there are executable tasks that

are not being executed at t, then an executable task is assigned to an idle

processor for the interval [t,t']. Assignment of tasks to processors for this

interval continues until there are either no more executable tasks or no more

idle processors. Similarly, if the processors being used at (are not the

fastest processors, then the tasks that are currently being executed on the

slower processors are reassigned to the faster processors.

Next, Si is further modified to insure that the total time requirement

of each task T executed in Si+1 is p(T). This is necessary to insure

that S is in fact a valid schedule. For example, if a listing element

([t,t'],T,P) is added to j and the speed of P is b, then (t'-t)b units of

the time requirement of T are removed from later assignments. Similarly, if T

is rescheduled onto a faster processor at t, then the added time requirement

which is completed is removed from a later interval of T. If executing T on P

during [iy'] causes the total time requirement of T that is assigned to

processors before t' to exceed g(T), then the interval [t,'] is shortened

somewhat.

After the reassignments are made, the translation algorithm determines

145

the smallest time t" greater than t and equal to end& for some k.

Note that r''Q<'. For if any tasks are added in the above transformation, then

they are scheduled to end at or before t'. On the other hand, if no tasks are

added, then it must be that some other task ends between t and f'. For assume

that no other task ended in this interval. Then, consider a task, T, that

starts at (". Since there are no new tasks completed between I and (', and T

is executable at t", T is executable at t. Since no new processors became free

between r and f", the fact that T is started at V' implies that there is a free

processor at t. Thus T would have been rescheduled to start at t in the above

translation contrary to the hypothesis.

Note that S 1 , attains maximal usage before V" and that portion of

the schedule will not be changed again. Starting at U", the procedure

modifies S to produce S1+2 in the manner specified above.

The resulting finishing time of each task in S is at least as small as

in S. From this it follows that the finishing time of S is at least as

small as that of S. -

While the above translation idea is relatively straightforward, the

bookkeeping required for the transformation is rather detailed. The following

data structures are helpful in the modification of S to the maximal usage

schedule S .

We assume that the list S is sorted by the startk coordinate (i.e.

start iestarta... seartr) and stored as a linked list.; If the transformation

algorithm is handling time t it maintains an array, remain, of n numbers which

represents the portion of the time requirement of each task not completed by

the time t. The value pred(T) represents the number of predecessors of T that

are not yet completed (at time t). For each task Ter, the sublist of the

146

current version of the schedule (i.e. one of the S) which has T as the task

component is kept separately. This is kept sorted by the end& value and is

linked (with pointers) to the list S . A linked list, ex, of currently

executable tasks is maintained.

The remain array is initialized to p. The Pred array and the ex array

may be initialized from the adjacency matrix of C. This requires time O(n 2

The n sublists of S (for each task) may be constructed by one pass through S.

(Note that each sublist is sorted simultaneously by the starth and end

coordinates.)

. The algorithm will modify S by adding listing elements to S, and

removing listing elements from SV. The resulting listing is what we have

been calling Si+1'

Transformation Algorithm

1. 1=0.

2. Let '=min(x:x=startk and x0).

3. Let c = the number of tasks that are being executed at time t in

Si (i.e., the current version of the schedule).

4. If c=m go to 11.

5. If c(M, let d = min(m,the size of the ex list).

6. If c=d and the fastest d processors are in use go to 11.

7. If c=d but not all of the fastest d processors are in use go to 10.

8. If cZd, choose the first d-c tasks from the list ex that are

currently not being executed to be rescheduled.

a. Assign each of these tasks (T) to one of the fastest d

processors that are not already in use (P) as follows.

147

i. If remain(T)/b > ('-, then insert a listing element

to Si' namely, ([tr'],T,P). Also add this to the list of intervals for the

task T.

ii. If remainf(T)/b ('-t, then insert a listing element

to Sg, namely, ([t,r+(remain(T)/b)],T,P). Also add this to the list of intervals

for the task T.

b. If T is assigned to P by 8.a.i, then eliminate ('-0lb

units of time from existing intervals for T. Specifically, remove entire

intervals of T that finished latest in S if possible, and/or reduce the

ending time of the latest interval not removed, until (t'-t)b units of the time

requirement of T are removed. If T is assigned to P by 8.a.ii, then remove all

remaining intervals associated with T from Si.

9. If the fastest d processors are in use at I with the current

schedule go to 11.

10. For each task, T, being executed on one of the slowest m-d

processors, P reassign it to one of the unassigned fastest d processors, P',

for the interval (s']. If T was originally assigned to an interval with

ending time t >t', then divide this interval into two portions (t,t'] andf
U't. In the first interval T is assigned to P' and in the second

interval T is assigned to P. To compensate for the additional time

requirement finished in [,r'], remove later intervals of T as in 8.b. The

exceptions to this are if as a result of assigning this task to P', we must

finish the entire task before (or before I'. Then this interval is handledf
as those of 8.a.ii, i.e., all other remaining intervals associated with it are

removed from S and the intervals defined here are shortened.

11. Let t"'=min(x:x=end& and xt).

148

12. For each task T executed in the interval [t,t''], reduce remain(T)

by (t''-t)b if T is executed on processor P. Also, change the list element

([t,],T,P) to two listings: ([,t''],T,P) and ([t'',.J,T,P) if I r'.fI
13. For each task T, for which remain(T) became 0 in Step 12, update the

Prcd values of all the successors of T. Add each task whose pred value becomes

0 to the cx list. Remove from the ex list all tasks that are completed at

1''.

14. If the ex list is empty then end. Otherwise let ftft and go to 2.

There are a number of facts that must be verified about the

transformation algorithm. It must be shown that the algorithm terminates. It

must be shown that the final schedule, S, is a schedule and is in fact a

maximal usage schedule. It must be shown that the finishing time of S is no

larger than the finishing time of S. Also, we will analyze the run-time of the

algorithm.

To show termination, it will be shown that the main loop (2-14) is

executed at most n+2r times. In order to count the number of iterations, we

explore a number of properties of the ending times and starting times of the

intervals (i.e. the listing elements) of S .

There are at most r distinct starting times in the original schedule S.

In addition, a small number of different starting times may appear in intervals

of S . Fix an iteration that analyzes intervals that start at t. Then at this

iteration, even if t is not one of the original starting times, (will become a

starting time when and if tasks are assigned to start at 1. Specifically, if

any intervals are assigned in Steps 8, they are assigned tostart at t. Also,

in Step 10, intervals may be assigned to start either at t or at t' (the next

149

starting time). Note by definition t' is not a new starting time. Finally, in

Step 12, intervals are assigned to start at the time that will be used as the t

value in the next iteration. Thus at a given iteration, the only possible new

starting times are the " value" of that iteration and the "t value" of the

next iteration.

Using this we will show that there are at most 2r+n possible ending

times for tasks in the schedule S . There are at most r ending times in the

original schedule S. Consider a new interval introduced into S . An interval

introduced in 8.a.i. ends at t' where V' is the starting time of some interval.

In fact, it must be the starting time of one of the original r intervals. . This

follows from the above analysis of starting times: The "new" starting times

that arise while r is analyzed are only t itself (note that tt') or a starting

time introduced in Step 12 (i.e., after the interval in 8.a.i. was already

introduced). Thus, the new ending time V' must be the starting time of one of

the original intervals. Similarly, intervals that end at C' in Step 10 arise

from one of the r original starting times. Also, intervals that end at t in

Step 10 or '' in Step 12.do not producenew ending times.

It suffices to analyze intervals introduced in 8.a.ii, and 10, which

complete the time requirement of a task. Clearly, there may be at most n of

these in S . Thus S has at most Zr+n distinct ending times (i.e., the r

original ones, the r original starting times, and the n finishing times of the

tasks). It follows from this that there are at most 2r+n iterations of the

main loop since each iteration completes at least one of these Zr+n ending

times.

To verify that S is a schedule it must be shown that the total time

assigned to each task completes its time requirement, that no processor is

150

assigned to more than one task at once, and no task is assigned to more than

one processor at once. Note that a task is only assigned to a processor in an

interval that the processor did not already have a task assigned to it and the

task was also unassigned. Also, for each new interval added in S , the

total time requirement "used up" during the new interval is removed from other

intervals of the schedule S. Finally, it is easy to see that the precedence

constraints are obeyed.

The fact that S is a maximal usage schedule follows directly from the

algorithm. Assume that time t is the earliest time at which maximal usage is

not attained in S . The time t must be the end of some interval. Thus time t

is the start of some iteration, and if there were any unexecuted executable

tasks at t, they would be assigned to processors in Step 8. Similarly, if the

"wrong" processors were in use at t, the tasks would be reassigned in Step 10.

This contradicts the assumption that maximal usage was not attained at t.

The fact that S has at most as large a finishing time as S follows

from the fact that after each iteration the finishing time of each task is not

increased.

Finally, the run time of the ilgorithm is analyzed. By the above

count of the number of iterations and the fact that n r, there are at most O(r)

iterations. Assume that at the iteration that analyzes intervals starting at

time t, there is a pointer to the tasks that start at t in the current version

of the schedule. Then .at each iteration, Step 2 requires time O(m) to

determine the value of V' and save the pointer to the intervals starting at V'

for later. Steps 3-7 similarly require at most time O(m). (A bit array of

size m is useful to determine which of the fastest d processors are in use in

O(m) time.)

161.

In Step 8 of the algorithm, choosing the d-c tasks may be done in O(m)

time as follows. For each of the first d tasks on the ex list, one may

determine if it is already being executed by checking the first unexecuted

interval on the list for that task (assume that a pointer is maintained to that

location). The rest of step 8.a may similarly be done in O(m) time.

Step 8.b is slightly harder to analyze as potentially, it may require

time O(r) just for one iteration. Note however, that each of the O(r)

iterations introduces at most 0(m) new intervals each. Thus the total number

of removals of intervals, during all iterations, for all tasks, is at most the

total number of intervals that ever appear which is 0(mr). In addition, 0(m)

intervals may be reduced in size at each iteration.

Step 9 takes time 0(m). In step 10, the reassignments require time

O(m), and the total number of removals is bounded by 0(mr) as with Step 8.b.

Using the pointer in the schedule list at t', inserting the intervals that

start at t' may similarly be done in time O(m).

Step 11 requires time 0(m) as the only intervals that need be

considered in the minimization are those that start at 1. For assume that an

interval starts at startk>(, but finishes earlier than any of the intervals that

start at t. This violates maximal usage, which we have shown above to be a

property S . Similarly Step 12 requires time at most 0(m).

The algorithm may spend O(n) time in Step 13 for each task completed.

Thus for all n tasks, the algorithm requires time O(n2) for Step 13. Step 14

requires time 0(m) if there is a pointer from each task to its position in the

ex list. Finally, to reset the pointer in the current listing of intervals to

f' requires time O(m).

Using the above calculation, the total time requirement of the

152

algorithm is O(n2+rnr). Step 13 and some initialization requires a total of

O(n 2) time. Removing intervals for all iterations requires time 0(mr). The

rest of the algorithm requires at most O(m) time per O(r) iterations. Note

that nI+r+m Is essentially the size of the input to the algorithm since the

size of the partial order is O(n2

We summarize the above discussion with the following:

Theorem 3.3. There is an algorithm that takes as input a valid preemptive

schedule S for a task system (r,<,p) on a set of processors &V and produces as

output a maximal usage schedule, 8' for (7,Qa) on F. The finishing time of S'

is less than or equal to the finishing time of S. Furthermore, the running

time of the algorithm is 0(n2+mr) where n is the number of tasks in 3, m the

number of procassors in OI, and r the number of intervals in S.

3.2.3.2 An upper bound related to the nonpreemptive bound

This section provides a bound on the maximal usage schedules by using

the analysis techniques of Section 3.2.2. In Section 3.2.3.3 we use additional

techniques to get a slightly better bound. Recall that Bi ls the sum

of the rates of the fastest i processors.

Recall equation (2) of Section 3.2.2. The equation states that if w is

the finishing time of a list schedule on the fastest i processors and opt is

the finishing time of the optimal nonpreemptive schedule, then

to/v opt (Bm/B1) + (bi/br). We will show that if o is the finishing time of

an arbitrary maximal usage schedule and wopt is the finishing time of the

optimal preemptive schedule, then for every i (1ifin), w/ w1opt Mi) + (bl 'm5

From this, one may conclude that for any task system and any maximal usage

153

schedule for the task system w/oPt(vm + O(m). This proof follows by

applying the bound on wiw opt for the value of I that minimizes

(B?/B) + (bi/bm). For this value of i (BM I) + (bibAM) /M + O(m 4) as proved

in Section 3.2.2.

It suffices to show that wopt satisfies the lower bound of Lemma 3.1

(i.e., max(i(T)/Brn, A/bI)) and w satisfies the upper bound of Lemma 3.2 (i.e.,

(J()/B)+(h/b.)) for every value of i. The former is immediate, since the lower

bound did not consider the fact that nonpreemptive schedules were used.

To get the upper bound on w given in Lemma 3.2, break up all intervals

of any maximal usage schedule into two types of intervals. One type of

interval is when at least i processors are being used, and the second type is

when fewer than i processors are in use. Clearly, one may use at least i

processors for at most a total of p(?)/B1 units of time. Also, the intervals

during which fewer than i processors are in use are height reducing intervals.

These height reducing intervals decrease the height by a rate of at least b

per unit time. Lemma 3.2 follows and thus one may conclude:

Theorem 3.4. Let (r,<,p) as above. Let w be the finishing time of any

preemptive maximal usage schedule, and let wopt be the finishing time of an

optimal preemptive schedule. Then t/w opto + O(m)

3.2.3.3 An Improved Performance Bound

In this section an improved bound on the performance of maximal usage

schedules is obtained in terms of the number of processors. The techniques

here are different than those of Section 3.2.2 as we proceed to explain. We

find two different bounds in terms of the speeds of the processors. The first

154

bound is obtained by using the fact that in a maximal usage schedule the

fastest processor is always in use. This bound essentially proves that maximal

usage schedules are somewhat effective even if the slower processors are

considerably slower than the fastest processor. The second bound uses

techniques similar to those of [56], generalized to the case where the

processors are of different speeds. In [56], a 2-(1/m) bound is obtained in

the identical processor case, for the performance of list schedules (as

compared to the optimal preemptive schedule). It turns out that for any set of

processor speeds, at least one of the two upper bounds is smaller than 4mn+ (1/2).

Lemma 3.3. Let (T,Q) be a task system. Let a be the finishing time of a

maximal usage schedule S and let wopt be the finishing time of an optimal

schedule. Then woru<pt;B lB

Proof. As in the proof of Theorem 3.4, topt p(T)/Bm* Also note that

wog<I)/B1 . This follows from the fact that the maximal usage heuristic forces

the* fastest processor to be in use at every moment before the finishing time.

Thus the ratio between the finishing time of an arbitrary maximal usage

schedule and the optimal schedule is bounded by: (()/By(s()/Bm)Bm/BiE

The second bound is smaller than the first in the situation that the

speeds of the processors are close to equal (in that case the bound of Lemma

3.3 reduces to approximately m).

Lemma 3.4. Let (r,p) be a task system. Let w and opt be as in Lemma 3.3.

Then v/bvopt/1+((m-1)(B)/BM)

155

Proof. First note that as in the proof of Theorem 3.4,ioptimaxW7()/Bm,h/B

To determine the value of , let p1 denote the amount of time during

which exactly i processors are used in the schedule S. By definition

+.. .+p, 1. Due to the maximal usage discipline, whenever i processors

are in use B units of the time requirement are finished per unit time. Thus a

total of P B units of the time requirement of the task system are completed

during the p units of time that exactly i processors are used. Thus

P1 B i+.+PnBmP(T). Solving for Pm in this equation and substituting for

in the equation WC=p+...+pm yields

Fix an interval of time during which exactly i processors are being

used (OW). Assume that during this interval, an unfinished task T is at the

greatest height of the system (i.e., for every t in the interval, the height of

T at time t equals the height of (r<,) at (). Then T is being exe,:uted

throughout this interval. This follows from the fact that the maximal usage

discipline forces the execution of all executable tasks, providing there are

enough processors. Since not all of the m processors are being used, all

executable tasks are being executed. Furthermore, since T is at the greatest

height, it must be executable. It is therefore easy to conclude that when iCm

processors are being used, the height of (t,(j) is reduced at a rate of at

least b1, the speed of the ith fastest processor. Thus bip++m@ 4 m-i

since the total amount that the "greatest height" can be reduced during all of

the times that fewer than m processors are used is at most A.

156

Rewriting equation (8) and using the lower bounds on rupt produces an

upper bound on the performance of arbitrary maximal usage schedules of:

to (IA()/Bm)+P g(1-(BI/Bm))+...o+pm.I(1-(B0M /Bm)

(9) -- -------------------------------------

f'opt max (P(f/BM 1Bi)

The first lower bound on the optimal schedule in equation 9 is used

only as a comparison to the (3T)/BM term in the numerator. Thus:

to p (1-(B1/BM))+...+PM(1-(BM18))

(10) -- K 1 + -----------------

10pt (AB1)

Now, multiply numerator and denominator of the fractional part of

equation (10) by BMB to obtain:

(11) -- K 1 +

wopt

B 1[(p g) BmB)+..+(Prnm-1)(8nm-m 1

-- -- -- - -- -- - ------ - --B- -

Now B -Bi=bi+...4 <(n-Ob since IbjL for . Thus

a'

(12) -- K 1 +

(Bg)[(p)(b)(n-1)+...+(p 1)(bmwIX 1)]

IVopt

157

Using p b1 +..+PiM-1bM-<A and further increasing the numerator of

equation (12), one obtains w/w/, 14 l +((r-l)BiIBm). 0

If all processor speeds are identical then BI /Bm=/m. In

that case, the bound of Lemma 3.4 is 1+((m-1)/m)u2-(1/m). Thus it follows from

Lemma 3.4 that when the processors are identical, maximal usage schedules are

no worse than 2-(1/m) times worse than optimal.

Theorem 3.5. Let (rQ,) be a task system. Let w be the finishing time of a

maximal usage schedule and let ivot be the finishing time of an optimal

schedule. Then w/ropt V + (1/2).

Proof. By Lemmas 3.3 and 3.4 /wopt m B and wiwopt 1+((m-1)B /Bm). Let

r=B 1/B Then r/ioptir and v/wopt<1+(m-1)/r. To maximize min(r,1+((m-1)/r)),

solve r=1+((r-1)/r) and obtain r=(1/2)+(V (1+4(m-1)))/2. This value of r maximizes

min(r,1+(m-1)/r) since r and 1+(m-1)/r are inversely related. Thus

i/hlopt K(1/2)+(%/(1+4(m-1)))/2 C Vm+ (1/2). 0

3.2.3.4. Achievability of the performance bound

This section proves that the bound of Vmn+ (1/2) is almost achievable,

even for machines with one fast processor and m-1 identical slow processors.

The example task system used to prove this is the same as the one used in

Section 3.2.2 to show that the algorithm of Section 3.2.2 is at least Vm-1 times

worse than optimal. The optimal schedule for the task system of Figure 3.2.1

is also an optimal preemptive schedule. The "bad" list schedule on the fastest

i processors (1>1) is also a maximal usage preemptive schedule. The ratio of

158

the finishing time of the list schedule on the fastest i processors to the

finishing time of the optimal schedule is shown in Section 3.2.2.4 to be Vm-1. 0

159

3.2.4 Scheduling with limited information

While the algorithms of Sections 3.2.2, 3.2.3, (and the ones we will

present in Section 3.3) are all better than known algorithms, it is still

somewhat disturbing that the performance of these algorithms is as large as -/M

times worse than optimal. For simpler scheduling problems, there are

algorithms that are at most a constant times worse than optimal [23]. One such

machine environment was briefly mentioned in Section 3.2.3.3. It was proved in

Section 3.2.3.3 that any maximal usage schedule for a machine with identical

processors is at most 2-(1/m) times worse than optimal.

One might wonder if there are polynomial time algorithms that have

worst case behavior that is better than O(v4i times worse than optimal for the

machine environments considered in this paper. We give a partial answer to

that question in this section. We consider a limited class of scheduling

algorithms and show that no algorithm in that class performs better than -/r

times worse than optimal in the worst case even if the tasks are independent

(i.e. no partial order). In particular, no algorithm is better than %/r times

worse than optimal irrespective of the amount of time used by the algorithm.

Specifically, assume that the scheduler knew everything about the task

system and the processors except for the time requirements of the individual

tasks. Such a circumstance is imaginable if for example there are loops of

undetermined number of iterations in the tasks.

In this environment any algorithm must be at least "Iu times worse than

optimal in the worst case. This is true even if before scheduling a task to

start at a given time, the scheduler knows the absolute time requirement of all

tasks finished by that given time (as one might expect that the scheduler would

at least have access to that information). This indicates that the algorithm

160

of Section 3.2.2 is asymptotic to the best possible heuristic that is

restricted to this type of scheduling. It will turn out in a similar way that

one of the algorithms of Section 3.3 is best possible to within a constant

(multiplicative) factor.

To prove this result consider a task system consisting of m independent

tasks to be scheduled on m processors. The rate of the fastest processor is -IV

and the rate of the other processors is 1. If an algorithm schedules all of

the m tasks on the fastest processor then in the worst case, the schedule is %/m

times worse than optimal. This occurs when each task requires unit time. Then

assigning all tasks to the fastest processor requires time %I/, whereas assigning

the jth task to the 1th processor requires time 1.

On the other hand, if any of the tasks are not assigned to the fastest

processor, the performance ratio is still -Irntimes worse than optimal in the

worst case. Assume that the jth task is the first one not assigned to the

fastest processor. Assume that the time requirement of each task is E (C«M1),

th
except for the j task whose time requirement is 1. Then an asymptotically

optimal schedule, schedules the 1th task on the fast processor, and the 1th

task (4$j) on the kth processor. This requires time (1/vI~)+ec, whereas the

heuristic requires at least time 1 by not assigning thej task to the

fastest processor. Thus the heuristic is -In times worse than optimal. 0

Even in this restricted environment, where the time requirements are

not known, the above result is not a strong result for the following reason. A

very weak form of preemption avoids the difficulties illustrated in the

example. Specifically, if at "run-time", a task which has been begun on one

processor may be reassigned to be rerun from the beginning on another, then the

161

above task system may be executed relatively efficiently even if the absolute

time requirements are not known a priori.

162

3.3 Nonpreemptive Scheduling of Independent Tasks on Unrelated Processors

3.3.1 Basic Definitions and Models

As mentioned in Section 3.1, the algorithms presented in Section 3.3

schedule a set of independent tasks on unrelated processors. A variety of

polynomial time algorithms are presented (in Sections 3.3.2, 3.3.5, and 3.3.6).

One of these algorithms is as good as 2%/m times worse than optimal in the worst

case (Section 3.3.5). In addition, an algorithm which requires exponential

time in the number of processors is at most 1.51m times worse than optimal. All

of the bounds on these new algorithms are achievable to within a constant

factor.

Due to the fact that there is no precedence constraint on the tasks,

the style of definition here is slightly different from that of Sections 3.2

and 3.5, to take advantage of this conciseness. Specifically (as we will

proceed to describe), a schedule actually only assigns jobs to processors,

without specifying a starting time function explicitly. Since all Jobs are

initially executable, all the jobs assigned to each processor may be executed

in any order, and the finishing time will be the same (assuming no idle time

for processors).

For notational conciseness we also name the n tasks by the integers

I,...,n, and the m processors by the integers 1,...,in This was not done where

tasks were partially ordered so that one would not confuse the ordering on the

tasks with the ordering on the integers.

A task system of n tasks and m unrelated processors is an n x m matrix

p with entries in R+U(}o) for n,mt such that for every t there is a p such

that p(t,p)tco (1<1<n).

163

The value s(t,p) is the time requirement of the tth task on the pth

processor (1<i<n, I psm).

The execution of jobs by processors is modelled by the notion of an

assignment function for a task system. An assignment function A is a map

A:(1,...,n)-(1,...,m) such that s(ts(t))$oo for r=1,...,n. If A(t)af we will

often say that task t is assigned to processor P. In general we will often

refer to the index t as the tth task, and the index p as the pth processor.

The finishing time of an assignment, A, (denoted w(A)) is defined by:

w(A)= max Z gt,p)

I1Pim t:A(t)=p

An optimal assignment is any assignment that minimizes the finishing time.

For two assignments A and B, the performance ratio of A to B is w(A)/w(B).

Intuitively, the assignment function assigns jobs to processors. The

finishing time intuitively represents the largest amount of time needed by any

of the processors to execute the tasks assigned to it.

While the starting time of each task is not an intrinsic portion of the

schedule, it is still sometimes useful to associate a starting time function s,

with a given assignment function A. Intuitively, for 1 t<n the value s(t)

represents the time at which processor A(t) begins to execute task t.

Formally, a starting timefunction s, is a map s:(1,...,n)-+R satisfying

conditions (a) and (b) below. The value A(t) is called the starting time of

the task t. Task t is being executed on processor p at time x providing that

p=A) and s(t)(x<s(t)+p(t,p).

A starting time function satisfies:

164

(a) For p=1,...,m, at most one task is being executed at any time on

processor t.

(b) For p=1,...,m, if Osx<Z 4 ()=# p(t,p) then at least one task is

being executed at time x on processor p.

Intuitively, the first condition forces all tasks assigned to a

processor to be executed sequentially, and the second condition prevents any

idle periods on the processor.

By abuse of notation w(t)=s(t)+pQ,A(t)) is called the finishing time

of the task t. Similarly, if Tc(1,...,n), w(T):max1 eT w(t)E

The matrix p associates m possible time requirements with each task.

The best time of the ith task, (denoted b(t)), is the smallest of these m

values (i.e. bW)=minP (g(,p))). The efficiency of the pth processor on the

tth. task (denoted ef(t,p)) is b(t)/p(t,p). Note that the maximum efficiency

is one,,

The following algorithm devises an assignment A and a starting time

function s for a given task system. The basic idea is that the processor which

will finish first according to the tasks currently assigned is assigned the

unassigned task for which it is most efficient. If, however, there are no

tasks for which the processor is somewhat efficient, then the algorithm stops

assigning tasks to that processor.

3.3.2 A Scheduling Algorithm

Algorithm 1.

1. For I1Pim sort the n values ef(q,p), 1 t<n. Set sumP*0

for p=1,...,m. Designate all processors as being "active" and all tasks as

being "unassigned".

165

2. Find any value of p such that sum is minimal among active

processors. (Note that there must always be such a p.)

3. Find the task, t with largest value of ef(t,p) among unassigned

tasks. If there are no unassigned tasks then HALT. If ef(tp) l/Vi go to Step

4. Otherwise designate p as being inactive and go to Step 2.

4. Define A(t)=p. Designate t as being assigned. Define s(s)=um .
Set sumP=sumP+pQ,p). Go to Step 2.

It may be noted that A is an assignment function. The algorithm

terminates when there are no unassigned tasks remaining. Note that at

termination some processor is active. For, at any point during the assignment

of tasks, the processor that has the best time on any unassigned task could not

have yet been deactivated.

Since each iteration of the main loop (steps 2-4) either assigns a task

or deactivates a processor, the algorithm terminates after n+m iterations.

It may be noted that this algorithm can be applied as a run time

scheduler even if the absolute time requirements of each of the jobs are not

known in advance, as long as the efficiencies are known. The only place that

the time requirements were needed was in determining which processor is the

next to be assigned a task. If this decision is made at run time (i.e., after

a processor completes all tasks already assigned to it), then the time

requirements are not needed while the assignment is being made.

We recall at his point the results of Section 3.2.4. It was shown that

if the time requirements are not known then any algorithm is at least VIntimes

worse than optimal. This algorithm is in the class of schedules considered,

although the efficiencies must be known for Algorithm 1. It is conceivable

166

that a scheduler would know the efficiencies but not the actual time

requirements. For example, if each task had known characteristics which

indicated which machine would handle it well, but the length of the jobs were

unknown, this assumption would be relevant.

The assignment A and starting time function s determined by Algorithm 1

satisfy the following three conditions:

(1) If A(t)=p then ef(tP)>l1/,v.

(2) If s(Q))s(u), then ef(t,A(u)) ef(u,A(u)) (1 t,ufn).

(3) If 4t:A(t)=p p(t,p)(s(u), then ef(u,p)(11/i'

Intuitively, condition one indicates that a task is executed on a

processor only if the processor is "somewhat" efficient for the task. The

second condition ensures that if a task u is assigned at an earlier time than

t, it must be that processor A(u) is more efficient on u than t. The third

condition prevents a processor from stopping as long as it is still somewhat

efficient for some unstarted task.

The fact that Algorithm I satisfies condition (1) is immediate from the

way tasks are assigned. Condition (2) follows from the fact that if 50)>s(u),

then the fact that u (and not 0 is assigned to A(u) implies that u must have

at least as high an efficiency on A(u) as 1. Condition (3) also follows

immediately from the way tasks are assigned.

In the sequel, the only facts used about Algorithm 1 are conditions

(1), (2), and (3) above. Thus the analysis of Algorithm I applies to any

algorithm that follows these principles. In Section 3.3.5 we combine Algorithm.

1 with a different heuristic which preserves (1), (2), and (3), and thus the

entire analysis applies tc the modified algorithm.

To analyze the running time note that the presorting requires time

167

O(nlog(n)) for each value of p (if sorting is done with comparisons). Consider

the total time spent on iterations in which the value p is chosen in Step 2.

Determining if a given task is unassigned requires time O(log(n)) if that

information is stored as a bit array. Thus, steps 3 and 4 of all iterations in

which a particular p is chosen require time at most O(nlog(n)) (assuming that

the list of tasks sorted by ef(t,p) is maintained with a pointer to the task

that will be looked at next). If a data structure is maintained which keeps

sumP sorted, the m+n iterations of step 2 require at most time

O((m+n)(log(n))). If m>n, a slightly different data structure permits the

execution of step 2 in time O(mlog(n)). Thus the total running time is

O(mnlog(n)).

3.3.3. Analysis of Algorithm 1

To analyze Algorithm I for a given task system, we fix a particular

assignment A and starting function s consistent with (1), (2), and (3).

Certain subsets of (1,...,n) will be defined based on s,A, and an optimal

assignment function B. Let z be the last (or one of the last if there are

ties) task, to be completed, i.e., w(r).w(A). Consider a value p such that

p(z,p)=b(z), i.e., processor p is one of the processors that is most efficient

on z. Without loss of generality assume that p1, i.e., processor 1 is most

efficient on z.

Definition. Let K consist of those tasks executed on the first processor with

starting time earlier than s(z), i.e. KU{fi A(s).1 and s(t)(s()).

168

By condition (3) the first processor may not finish earlier than Az).

Furthermore, all tasks of K must have efficiency one on the first processor or

else condition (2) is violated.

The set K will be partitioned into two sets. The assignment of each

task in B determines the set to which it belongs.

Definition. Let L=Q: tEK and ef(t,B())1//rn).

Thus L consist of those tasks executed on processor 1 before time s(z),

that are assigned somewhat efficiently in B. The second subset of K will be

denoted K-L.

Let A-1((2,...,m)) be the set of tasks that A does not assign to the. first

processor, i.e. A- (2,...,M})={t:A(1)OQ.

To proceed with the proof, it is convenient to define a few more

quantities. For a set of tasks Tc(l,...,n) and an assignment function ASG, the

actualt workload of T under ASG (denoted E(ASG,T)) is ZteTP(tASG(t)).

The minimal workload for T (denoted E 0(T)) is Zteb(t).

In order to evaluate w(A)/w(B), it is convenient to consider a related

task system, A'. This task system has almost identical entries as p, differing

only in the entries for tasks in K-L. In addition, there is a starting time

function, s', associated with A such that ' is consistent with (1), (2), qnd

(3), and s' starts all of L, before it starts any of K-L.

Lemma 3.6. Let s be an n x m task system, A an assignment function for

p obtained from Algorithm 1, and i the associated starting time function. Let

K and L as above. Let B be an optimal assignment for p. Then there is an n x m

169

task system A', and a starting time function s' (with finishing time w')

associated with A such that:

(I) The starting time function s' with the assignment A is consistent

with (1), (2), and (3) for p'.

(ii) w(A)=w'(A) and w(B)r'(B).

(iii) The sets K and L are identical when defined in terms of p, s, and

A, as when they are defined in terms of p', s', and A.

(iv) For everyt eL and t2 eK-L, sV(t1)(s'(2t).

(v) E0(L)dL)

Proof. Define p' as follows. For IEK-L p'(t,p)cp(t,p). For teK-L,

ps'(,A(t))=p(,A(t)), p'(,B())=p(t,B(t)), and p'(t,p)=*O for pAQ) and

ptfl&). Note that w(A)=w'(A) and w(B)=w'(). (In fact B is still an optimal

assignment). The starting time function s' is defined to be only slightly

different from s. For CtK, s'()=sQ). For teL:

S'()= EP p'(u,1)

uc L:s(u)<s(t)

For tEK-L:

s':(=E(L) + X P p'(u,1)

ueK -L:s(u)(s()

Thus, all of the tasks in L are scheduled before all of the tasks in

K-L, and within each set (L and K-L), the order that the tasks are scheduled is

the same in s. Also E 0(L)=w'(L) and the sets K and L are unchanged.

170

Note that A with V' is consistent with (1), (2), and (3) for p'.

Condition (1) follows immediately since tasks are executed on thq same

processors, with the same efficiency as in s. Condition (2) needs to be

verified only for tasks in K. If uEK and s'(t))s'(u) then since ef(u,1)=1,

efQt,1) eJz,1). If tEL, s'(:)>s'(u) and A(u)$1, then since

s(r) s'()>s'u)=s(u), ef(t,A(u)) ef(u,A(u)) (using the fact that (2) was true

for s). If, tEK-L and s'(t))s'(u), condition (2) follows from the fact that in

the primed 'system all tasks t:K-L have efficiency less than 1//m for all but the

first processor. Condition (3) follows in a similar manner. 0

This modification of p to p' is an ad hoc modification needed to make

the technical assumption (v).

To obtain a bound on w(A)/w(B) we compute a bound on the ratio using

the starting function s' on the task system p'. Note that w(K) s(r) by

condition (3) on A and s. Also, w(A)=s(z)+E(A,(z)). Therefore,

w(A)=s(z)+E(A,{r))E(A,{Q))+v(K)=E(A,(z))+E(A,K-L)+E(A,L). A bound will be

obtained on the three summands in terms of w(B). This will be used to get a

bound on w(A)/w(B). In the sequel, we will drop the primes of p, s, and to, for

notational convenience. The proof however refers to this modified task system

and starting time function.

Lemgma 3.6. Let A,B as above and 1 rin. Then E(A,Q)) Vmw(B).

Proof. This follows from the fact that A assigns tasks to processors that are

somewhat efficient for the task. That is,

171

w(T)>E(BQ))=sQBQ)) bQ)=ef(:,A(:))p(r,A(r)). By condition (1),

f(,AW)>1ii Thus efA(e))gt,A(t))p(r,A(t))IViNmE(A,Q))IVFJ o

Lemmas 3.7, 3.8, and 3.9 are technical facts that are needed for the

proof of Lemma 3.10.

Lemma 3.7. Let A,B,K,L as above. Then VnE(A,K-L) E(,K-L).

Proof. E(BK-L)=ZEK-L (tB(t)) ZteK-L Vrnp(t,A(t)) by the definition of

K-L. Thus E(B,K-L) E(A,K-L)4n. 0

Letti EL be the ith task of L (ordered by starting time). Assume

IL I q.

Lemma 3.8. Let A,L as above. Then

ZE:L .b()rW(t)=Z 1b(t)Zb(t) (Z. -bQ)) 2 /2=E(AL) /2 3.

Proof. The first equality follows from the fact that for tet, A(t)=1, and the

fact that all tasks in L are executed sequentially with no intervening tasks.

The last equality follows from the definition of E(A,L). To get the inequality

Z,! b()Z1 .! 1b(t)(E4 1b(;))2/2 note that on the left hand side of

the inequality the term b(t)b(t) appears exactly once. This term appears

twice on the right hand side for iLJ and once for inj in the expansion for

E(A,L) 2. Dividing by two proves the result. 0

172

Lemma 3.9. Let A,B,Af1 ((2,...,m)),L as above. Then

E5(LUA~ IC((2,...,M))) (E(A,L)2 /2w(B))-E(AL).

Proof. The main intuitive idea will be to show that if the set L is

large, then E 0(A~((2,...,m))) must be large. The reason is as follows. Consider a

task teL. Since processor B(Q) is somewhat efficient on t by the definition of

L, processor B() is a candidate processor for t to be assigned to in A. The

only reason that f would not be assigned to processor B(t) is because the

workload in A of tasks assigned to processor B(t) exceeded s() (by condition

(3)). Thus if L is a large set, it must be that the total workload of A~I({2,...,7))

is large, or else tasks of L would be assigned earlier to different processors.

Thus a relation is derived relating the size of L to the value of

E0 (A1(2,...,M}).

To make the above intuitive ideas precise, it is convenient to divide L

into in portions. Lt=LnB-I(t) is the subset of L that is assigned in B to the

pth processor, and in particular is executable efficiently on the tth

processor. The set A I(p) (the tasks assigned to the pth processor by A)

is the set that we will show is large, based on the size of L . Note that

A - I ({2 , , m })) = U = 1

For the rest of the proof, fix a value of p and define the following

parameters (which have an implicit dependence on p). Let e be the number of

tasks in LP, and let these tasks be denoted I 1 ,...,t, with

S(t i)(s(t2)(...<s(e). For i=l,...,e, define U(1sEA I(p) ss(t)(Sg)).

The set UI is the subset of A I(t) started before task t1 .

Note that e(jfp) 1/n by the definition of L. Thus, by condition (3)

w(A~ -1(p)) s(t') for every i. Thus some task in U1 finishes at s(t1) or later

173

and thus w(U') s(t1) where w refers to the finishing time of U in the schedule

A.

For i=I,...,e, define ef1 to be the smallest efficiency of any of the

tasks in U, on P, i.e., ef=mintEU efQ,p). Note that if k>L, then efkhefi

since U 1cLV. Also, ef(tp) ef1 by condition (2) since otherwise ti would have

been assigned to P before the last task in U was assigned to p. Note that

(13) w(B) ,Z(s(tj,p).

This follows because w(B) exceeds the actual workload assigned to any

one processor in B. Also note that

(14) (ill)=b(:,)efQ 1 9p)sQ1.p) efgs(t11p).

Using the above definitions and inequalities, we may now show that the

minimal workload of the set AI(P) must be large if L is large.

For convenience define U0o0, w(0)=O, and ef 4 1=0. From the

definitions we have

(15) E f(A~ (p)) E ((I)t U 1= iZ 1 .0-U bt1zteu. ef(,p)p(I,P).
0 0 leu in feu,4Vw I n eui-i 1

174

Using (15) and ef(p) ef1 for teU1-U, . produces

(16) Co(=(p))' AU-U _ ef 1(tp).

Combining (16) with the fact that w EU i (y,p)cw(U)-w(U 1) (where

again w refers to A) produces

(17) E 0 (A- (p))1 ,fyJ(w(U1)-w(U, 1 i))= 1W(U1)(ef1-ef 4 1).

The last equality is obtained by rearranging indices. Now, using

w(U.)>s(r)=(wQd)-b(d)) we have:

(18) E(A' (p)) I' 1 (w(r)-bQt))(ef 1-ef 1)

To get (18) from (17) note efi ef1 .

Let X= wQ O)(ef-ef) and Y2 (ef,-efj)b(t). Then

E (A1 (p)) X-Y. Note that ef lI for every i. Thus Yir.

Also, for each k we have:

(19) 14k" k)(14;1 (ef 1-ef+)w f) 1uf(w(t1)-w(1_))) X.

Equation (19) follows from ef ef + for every i and w(t1)w(t 1) for

every i. Using (14), (19), and (13) (successively) provides:

175

(20) e b(t)wQ) L'r(1 p)ef1 wQ1) 1.s,p)X<w(sH)X.

Thus X ZEL P w(t)b(t)/w(B). This together with the bound on Y

provides us with

(21) E0 ('4'1) L P b (b(t).

A special computation is done for E 0(L). We claim that

(22) E 0(L) EL ((wt)b(Q)/w(B))-b(()).

This follows from EteL ((w)bQ)Iw(B)-b(t)) ZtEL , w)bWI/w(B)

(maxtEL e(t))2:EL b) Iw(B) maxtEL iw(t). The last inequality follows as

in (13) since w(B) exceeds the finishing time of any one processor. Finally,

by Lemma 3.5, maxtEL w(t)=E0(L) and thus (22) is verified. This is the step

for which we had to transform the original task system into g'.

Finally, we compute E0(LUAI 1((2,...,m))).

E (L UA~I({2,...,m)))=(E m=E(A'I(p)))+E (L) by definition. By (21) and (22),

E (L UAC 1({2,...,))) (ZM=ZL ((w(t)b(f)/w(B))-b()))+(ZeL((w(t)b(t)/(B))-b())). Thus

176

(23) E 0 (L UAC 1 ({2,...,))) Z> bE(

By Lemma 3.8 and equation (23), E 0(LUC 1 ((2,...,M))) (E(A,L)2 /2w(B))-E(A,L). 0

Lemma 3.10. Let A,B,K,L as above. Then E(A,K-L)+E(A,L)(1.5VWn~+1+(1/2Wi~))w(B).

Proof. Combining Lemmas 3.7 and 3.9 we derive that

E(B,31,...,n))E(LUAtI((2,...,in}))+E(B,K -L) (E(A,L)212w(B))-E(A,L)+Vn E(A,K -L).

Note that mw(B) E(B,{1,...,n), since B can do no better than divide the

workload of all the tasks equally among the m processors. Thus

rnw(B) (E(A,L)2 /Zw(B))-E(A,L)+vIE(A,K-L). Let a=E(A,K.-L)/w(B) and

1=E(A,L)/w(B). Then, 2m>b 2 -2b+2a/in. To prove the lemma, we determine the

maximum value for (E(A,L)+E(A,K-L))Iw(B)=a+b subject to 2m>b2 -2b+2aViin.

Note that the maximum value of a+b occurs at a=(2m-b2 +2b)/2VIn~(for any

fixed value of b). Now, to maximize b+((2m-b 2 +2b)/2/n), differentiate with

respect to b, and set the derivative to 0. Solving 1+(2-2b)/2VOm produces

b=1+Vm. For that value of b, the maximum value for a is (v/n2)+(1/2/in).

Thus the maximum value of a+b is 1.5/in +1+(12-vi) and the lemma is proved. 0

Theorem 3.6. Let A be an assignment function for a task system consistent with

(1), (2), and (3). Let B be an optimal assignment function. Then

w(A)/w(B) 2.5/mi + 1+(1/2V/i1i.

Proof. Reduce p to p' as above, and analyze w(A)/w(B), by analyzing

the assignment function A together with the starting function s'. Note that by

177

Lemma 3.6 E(A,(z)) Vvnw(B). Use rv(A)E(A,(z))+E(A,K-L)+E(A,L) together with

E(Ajz})<V? w(B) and E(A,K-L)+E(A,L) (1.5Vn-1+(1121i3)w(B) to get the theorem. 0

3.3.4. Achieving the bound to a constant factor

Consider the following m+1 x m task system. For t 1,...,in-2, p(e,1)=,

p(t,t+2)=E+V, and p(q,p)=o for p1,+2. The value c>0 is a parameter which

will be sent to zero to get as tight a bound as possible. In addition,

P(m-1,2)=E and p(m-1,p)=co for P/2; p(m,3)=m-2-E, p(m,2)uVm and p(m,)=o for P$2,3;

p(m+1,l)=7 p(m+1,3)=m, and p(m+1,p)=o for P/1,3.

An optimal assignment is as follows. For t=1,...,m-2, B()=1+2,

requiring time E+Vim. B(m-1)=B(m)=2, and thus the actual workload of the

tasks assigned to processor 2 is e+Vi~. Finally, B(m+1)=1, requiring time Yi.

An assignment consistent with (1), (2), and (3) may proceed as follows.

First note that no tasks may be assigned to processors 4,...,m since no task is

sufficiently efficient on those processors. A(t)=1 for t1,...,m-2 with

s(Q)=t-1. A(n-1)=2 with s(m-1)0. A(m)4A(n+1):3 with sjn)=0 and s(m+1)=m-2-E.

It is straightforward to verify that this satisfies (1), (2), and (3).

Due to the tasks assigned to the third processor, w(GO2m-2-c. The

ratio between finishing times is (2n-2-E)/(E+V3. As e gets smaller the ratio

approaches 24i-(2// . o

3.3.6 Modifications of the Basic Algorithm

In this section we consider a number of minor modifications to

Algorithm I which provide slightly better performance bounds:

178

Algorithm 2.

Step 1. Same as Step I in Algorithm 1, except that if ef(,P)ef(u,p), then

t is ordered before U if p(:,P) p(u,p).

Steps 2-4. Same as Algorithm 1.

This algorithm satisfies the following stronger form of condition (2).

(2') If s(0>s) then either ef(rA#s))<ef(u,A(u)) or ef(t,A(u))=ef(u,A(u))

and p(,A(u)) p(u,4(u)).

We obtain a bound on this algorithm of approximately (1+12)1W times

worse than optimal.

Using the notation of Section 3.3.3, we wish to place a bound on

(E(A,K -L)+E(A,(z)))/w(B). If K-L is empty then

E(A,K-L)+E(A,z)/w(B)=E(A,(z)/w(B) K-inmby Lemma 3.6. If K-L is not empty,

choose (cK -L. Then w(B)4(t,B(M) m t,I) VW p(z,1) s(z,A(z))=E(A,(G). Thus

E(A,{z))/w(B)=1. Furthermore, by Lemma 3.7, -im~E(A,K-L)E(B,K-L). Since

nmw(B)>E(B,K-L), we conclude E(A,K-L)/w(B) 4m. Hence in either case

(E(A,K-L)+E(A,{z))/w(B) v'm+1.

Applying the inequality E0(LUAI((2,...,ml)) mw(B) to Lemma 3.9, we

obtain mw(B)>(E(A,L) 2 /2w(B))-E(A,L). Let x=E(A,L)/w(B). Then m (x /2)-x.

Solving this for the maximum possible value for x yields x=(1+1 Zm+1). Thus

E(A,L)Iw(B)<1+ iZm~+ (12/i). Using the above inequalities proves:

Theorem 3.7. Let A be an assignment given by Algorithm 2 and let B be an

optimal assignment. Then w(A)/w(B)S(1+42)vi'W+2 + (1/ViI.

179

Next we present a different modification of Algorithm 1, which has a

worst case performance ratio of 1.5Vn time worse than optimal.- This algorithm

has running time O(mm+mnlog(n)), and is therefore quite useless if the number

of processors is an input to the problem. However, in the situation that the

scheduler needs to deal with a bounded number of processors, this is still an

O(nlog(n)) algorithm.

Algorithm 3.

1. Devise an assignment AI and starting function s, using Algorithm 1.

2. Let it be the task that has latest starting time in s, and let

U={:w(t)>s(z)).

3. Determine an optimal assignment for the set U (considered as entire

task system) by trying all possible assignments. Assign each task in U to the

processor that it is assigned to in this optimal schedule (the tasks in U are

assigned to start after the other tasks already assigned to the relevant

processors).

First note that IUI<m. This follows from the fact that if tl,t2 cU

then A I(t I)tA I(t2). For if two tasks are assigned to the same processor,

the later one must have starting time which is later than s(u). Note that the

running time of Algorithm 3 is O(mM+mnlog(n)). Step I requires time

0(nnlog(n)). Step 3 requires time O(mm) since each possible assignment

must be considered. Once these mm schedules have been tried, determining the

best assignment also requires no more time than O(mm). We proceed as in

Section 3.3.3, letting A be an assignment resulting from Algorithm 3, and letting B

be an optimal assignment for p.

180

The sets K and L are defined on the basis of u. At time s(u), if

ef(u,p)=1, then (informally speaking) processor p is still executing tasks that

have efficiency one. Assume again that p=1. The set K consists of all tasks

assigned to processor one with starting time earlier than s(u). As in Section

3.3.3, L={tEK:ef(t,B(e))>1/Vm). The proof that

E(A,L)+E(A,K-L)<(1.5Vm+1+(1/2/4~)w(B) still applies, even though the sets L and

K-L are not the same as those defined in Section 3.3.3.

Let wT(U) be the "optimal finishing time" of the set of tasks U when

considered as a separate task system (i.e., not as part of p). Then it follows

from the design of the algorithm that w(A) E(AK-L)+E(A,L)+w*(U). Thus to obtain

a bound on w(A)/w(B) it suffices to get a bound on w*(U) in terms of w(B). But

clearly w'(U)cw(f). Using this fact together with Lemma 3.10 provides:

Theorem 3.8. Let A be a schedule obtained with Algorithm 3, and let B

be an optimal schedule. Then w(A)/w(B) (1.5'mA+2+(1/2%/m).

To show that the bounds on Algorithms 2 and 3 are achievable (to within

a constant factor), consider the m x m task system given by p(ti)=1,

pQ,r)=c+V, and s(,p)=co for PF 11,. The heuristics assign all tasks to the

first processor and perform Ivm times worse than optimal. 0

The E approximation algorithms of Horowitz and Sahni (27,54] require

time n2/E. Even for a relatively small value of n this algorithm

requires too much time, as n10 or n20 algorithms are actually not

feasible. Algorithm 3 requires time 0(nlog(n)) for any fixed value of m and

thus for most values of m it is more feasible than the algorithms of [27,54].

181

Next we consider even more minor modifications of Algorithm I that also

provide slightly better performance bounds. Specifically, the threshhold of

efficiency chosen by Algorithms 1, 2, and 3 is that if A(t)=p then efQf)>lI/m.

While we feel that this is the best threshhold to choose, we can actually

obtain a better bound using a different threshhold.

Consider the heuristic which is identical to Algorithm 1, except that

it uses a threshhold of 1/c/m. Most of the analysis of the algorithm is the

same with the following easily verifiable changes. (Note that the choice of

whether tasks go into L or K-L depends on the threshhold of 1/c/m) It is

curious to note that Lemmas 3.8 and 3.9 do not depend at all on the

threshhold.

(1) E(A,(z))<c'/rnw(B).

(2) cm E(A,K-L) E(B,K-L)

(3) In the proof of Lemma 3.10, when trying to maximize a+b, the

relevant inequality that constrains the maximization is a (2m-b2+2b)/2cv'm.

This occurs at b=+ce/m. For that value of b, the maximum value of a is

(Vrn(2-c2)/2c)+(1/2cW).

(4) Putting together (1) and (3) provides a bound on the algorithm of

Vrn((3c12)+(1/c)), neglecting lower order terms. The smallest value of this

occurs at c=VZ/3 , where the bound is -46m times worse than optimal. This

is marginally better than the original bound of -16.25m times worse than

optimal. 0

Using this technique in -conjunction with Algorithm 2 provides slightly

better results. If K-L is empty then (E(A,{Q))+E(A,K-L))/w(B)cVm and

E(A,L)/w(I3)K (RXV i/n. If K-L is nonempty then E(A,AC1((2,...,m)))/w(B) 1, and

E(A,K-L)+E(A,L) ((c/2)+(lc))Vrn. The best value of c to choose is the one that

182

minimizes max(r+VZ~(c/2)+(1/c)). Choosing c=2-12 provides a bound of 2/m. 0

Using this technique in conjunction with Algorithm 3 provides

marginally better results. In that case,'E(A,}z)) does not effect the bound,

and E(A.K-L)+E(A,L)<-Vm((c/2)+(1c)) plus lower order terms. For this case,

choosing c=V2 gives a bound on Algorithm 3 of being at most 1Z~inI times worse

than optimal. 0

3.3.6 Two Other Algorithms

The following is "Algorithm D" from [30]. This is the algorithm that

was shown to be between 2 and in times worse than optimal in the original paper

of Ibarra and Kim, and we will show that in the worst case it is at least

1+log2(n) times worse than optimal.

Algorithm D:

Step 1. sumP=0 for 1 psm, S=(1,...,n).

Step 2. If S=0 then end.

Step 3. Find an index tES such that min (sumP+P(tp}))min (sumP+(t',P)) for

all t'ES. Let p be such that sumP+p(t,p) is minimum. Define A()=P. Set

sum P=sum +p(t,p) and S=S-(t). Go to step 2.

The basic idea behind "Algorithm D" is the following. After I tasks

have been scheduled, the scheduler sets up a temporary goal of trying to

schedule one more task and minimize the total finishing time of the system of

i+1 tasks. The scheduler chooses the task to use as the i+ 1st, and which

processor to assign it to. After iterating this procedure n times, all tasks

have been assigned.

183

The following is an m x m task system for which algorithm D performs

poorly. The entries are p(,p)=1 if m-t+1 p and p(t,)=o if m-t+19(. An

optimal schedule has B(t)=m-t+1 with a finishing time of 1. However, the

following schedule is consistent with Algorithm D.

Assume that m is a power of 2. The first m/2 tasks to be assigned are

tasks 1,...,m/a with A(Q)=t. After these are assigned, the workload assigned

to each of the first m/2 processors is 1. Next, tasks (m/2)+1,...,(3m/4) are

assigned. Task (m/2)+p is assigned to processor p. Continuing in this manner,

tasks 1,(m/2)+1,(3m/4)+1,... are all assigned to processor 1. Thus the total

workload assigned to processor 1 is l+log 2(m). The finishing time of A is

l+log 2 (m). 0

The exact worst case performance of this algorithm is left as an open

problem. Note, that while it may be a better algorithm than the algorithms of

this paper in terms of worst case performance, it has a longer running time.

Algorithm I requires time 0(mnlog(n)) whereas "Algorithm D" requires time

O(nn 2

We mention one final trivial algorithm which is quite simple, and in

fact generalizes to the situation where there is a precedence relation. If

there is a precedence relation between tasks, then the starting time function

is needed in order to determine the finishing time of an assignment function.

This is due to the fact that as in Section 3.2 if t(u, the restriction

s(u)>w() is imposed.

This naive algorithm is to assign each task to a processor which has

efficiency one for the task. Since there is a precedence relation in this

184

general case, processors may be temporarily idle and reactivated. However, we

insist that at no time (before the finishing time) are all processors idle.

Let A be a schedule consistent with the heuristic and B an optimal

schedule for such an ordered set of tasks. Clearly w(A)E(1,...,n)), since

E(A,(1,...,n})=E0(,...,}and at least one unit of E(AJ1,...,n)) is

executed per unit time (before the finnshing time). However,

w(t) E((1,...,n})/m. This follows from the fact that B can certainly do no

better than assign all tasks to their best processor, and furthermore do tbrm m

at a time. 0

This bound of i times worse than optimal is achievable even without

any precedence constraint. Consider the m x m task system with p(,1)=1 (for

>1), p(f,t)=l+E, and g(t,p)=c for p1,. The heuristic assigns all m tasks to

processor 1 and requires time m. Optimal scheduling assigns task f to

processor f and requires time I+e. As E goes to 0, the ratio approaches m. 0

This algorithm was worth mentioning only because precedence constraints

have a tendency to make scheduling heuristics perform quite poorly. For

example, it can be shown that the natural extension of Algorithm 1 to the case

that there are precedence constraints provides an algorithm which is as bad as

min times worse than optimal in the worst case.

185

3.4 Scheduling Tasks on Processors of Different Types

3.4.1 Basic Definitions and Models

Section 3.4 generalizes the scheduling models of Section 3.2 to the

situation that tasks and processors are all of a given type, and a task of a

given type may only be executed by a processor of the same type. This is

actually a special case of the unrelated processor model of Section 3.3, except

that in this section we do consider systems with precedence constraints. We

remark that essentially all scheduling results about untyped task systems with

no partial order directly generalize to the situation that there are different

types. This follows from the fact that a k type task system with no partial

order may be thought of as k separate one type task systems; We thus restrict

attention in this section to task systems with partial orders.

Most of the definitions for typed task systems are quite similar to the

definitions in the untyped case. These definitions are briefly discussed here,

assuming familiarity with Section 3.2.1.

A k type task system (T,4P) is a task system (r,<,s) together with

a type function P:7-.(1,...,k). Intuitively, if v(T)i then T must be executed

by a processor of type i.

A set of processors of A different types is a set :=P iL k and

I im). There are m1 processors of type 1. There is a rate b

associated with P and for i=1,...,k, b1b>..b2 m >0. ? is a set of

equally fast processors if b =1 for every i and j.

A nonpreemptive schedule for a A type task system (,(,,) is a

nonpreemptive schedule, S, for (,(,) in the sense of Section 3.2.1 satisfying

the additional property that if S(T)u(t,P1 1), then v(T)CI.

List schedules generalize in a straightforward manner. A (priority)

186

list L=(T 1 ... ,T) (TcT) consists of a permutation of all the

tasks of P. The list schedule for (T,(j,,p) with the list L is defined in

the same way as for untyped systems with the following modification. When

choosing a task for a potentially idle processor, one chooses the highest

priority unexecuted task of the same type. If there are no such tasks, the

processor becomes idle, even if there are executable tasks of other types

available.

The notion of a list schedule on the i fastest processors of

type j (for j=1,...,&) generalizes directly from the notion of a list schedule

on the fastest i (untyped) processors. The basic idea is that one schedules as

if the only available processors of type J are the fastest i processors

of typej.

The total number of steps required by all the type i tasks is denoted

by pi. The total processing power of the fastest J processors of type

I, denoted B is defined by: BizZLb1 1 .

The height of a task is defined in the same way as for untyped systems.

That is, the types are ignored in this definition.

The notion of a preemptive schedule for a typed task system is also

similar to the notion for an untyped system. The only difference in the

definition of a valid schedule is that if T is being executed on

PY, then P(T)=i.

Maximal usage schedules also generalize in a straightforward manner.

the defining characteristics are:

(1) Whenever i tasks of type J are executable, then min(mi)

tasks of type]j are being executed.

187

(2) Whenever i. processors of type J are being used, the fastest i

processors of type] are in use.

The translation algorithm of Section 3.2.3.1 which transforms a given

preemptive schedule into a maximal usage schedule applies here too with little

additional modifications.

188

3.4.2 Nonpreemptive Scheduling of Tasks on Equally Fast Processors of

Different Types

3.4.2.1 Performance Bounds on List Schedules

In this section a bound is obtained on the performance of any list

schedule for a typed task system which is to be scheduled on a set of equally

fast processors. It is shown that the performance ratio is at most

k+1-(1/max(ml,...,rMk)). A naive bound on the performance ratio of any list

schedule relative to an optimal schedule is given by m+...+Mk. This follows

from the fact that an optimal schedule may use at most rn+...+mk processors at

each point in time, and the fact that any list schedule uses at least one

processor at every point in time. The result of this section is that list

schedules are far better than the naive bound. Note that the comparison of

list schedules to optimal schedules is applicable even to the situations that

no optimal schedule is a list schedule.

When k=1, this bound reduces to the bound of 2-1/m) of [23] on the

performance of list schedules on untyped task systems to be scheduled on

identical processors. The techniques used here are somewhat similar to those,

although slightly different.

Some of the results of Section 3.4.2 have been obtained independently

by Liu and Liu [44] using somewhat different techniques.

Theorem 3.9. Let (T,Qv) be a A type task system to be scheduled on

equally fast processors. Then the performance ratio of any list schedule for

(T,(,s,v) to an optimal schedule for (r,,v,) is at most

A+ 1 -(1/max(m 1 9,...,k)).

189

The proof will closely parallel that of Section 3.2.2.Z for list

schedules on general purpose processors of different speeds. First, a series

of lower bounds are derived on the finishing time of an optimal schedule for 7.

Then an upper bound on the finishing time of any list schedule is obtained.

The ratio between these bounds is an upper bound on the performance ratio of

any list schedule to an optimal schedule.

Lemma 3.11. Let (T,(,s,v) as above. Let wopt be the finishing time, of an

optimal schedule. Then ruopt max(Ah, /m 1 ,...,k/mQ).

Proof. Clearly at most m units of time requirement of type i tasks may be

executed during each time unit (for every i). Thus at least Fng/mi1 units of

time must be spent on the execution of 7 for every i. A conservative lower

bound is thus max(si/rnz,...,k/m).

Also, by the way height is defined, the height of (r,() may decrease at

a rate of at -most one per unit time. Thus A is a lower bound on the finishing

time and topt>max(h,,/m1 p,...,k/m).

Lemma 3.12. Let (r,,MYv) as above. Let w be the finishing time of a

list schedule. Then

w<(s 1 /m)+(s2/m2)+".+(sk/mQ+A(1-(1/max(mI ,...,mQ)).

Proof. Given a list schedule S with finishing time w, divide the interval

[O,w] into constant height intervals and height reducing intervals. During

height reducing intervals, the height is decreasing by a rate of one per unit

time. Thus the total length of height reducing intervals is equal to h. The

I Uu'

goal is now to show that the length of the constant height intervals is at most

(1/rI)+...+(k/mA)-(h/max(m 1 ,...,Mn).

Note that at any time unit at which the height is not being reduced, Mi

tasks of type i must be executed for some i. The reasoning is as follows.

Consider any task at greatest height at time t (among unexecuted tasks). Note

that if a task is greatest height, then all predecessors of the task have been

finished. Thus every task of greatest height that has not yet executed, is

executable at time t. Assume that at t the schedule does not use al ni

processors for any i. That is, for each i, at least one processor is unused at

f. Such a "potential waste" of processors may occur only if all executable

tasks are being executed since otherwise one of the unused processors would be

used. In particular all tasks at greatest height are being executed and the

height is being reduced. Thus time I is in a height reducing interval

contradicting the assumption.

Let h. denote the total time requirement of type i tasks executed during

height reducing intervals. Clearly Z AmAA since during a height reducing

interval of length g, the height of (r,() is reduced by g, and at least g units

of time are completed. Now an upper bound on the length of constant height

intervals is obtained. Ncte that for type i, the total length of time at which

in. tasks of type i are being simultaneously executed is at most L(p-A 1)/MJ.

Thus, executing m1 tasks of type I at one time for some i may occur for a total

duration of at most L(g 1 -h 1)/m iJ+...+L(pA-AhQ/mkJ units of time. That is,

the total length of all constant height intervals is at most

(A bound on+... is thusiven)+ +by: m w (sIm)+...+(kam)-(hi/max(m 1,...,mg)'
A bound on to is thus given by: <(/m)..(/k+(-(/am,.,k

1811

We may now put together the upper bound on list schedules and the lower

bound on optimal schedules. The two results combine to show that the worst

possible performance ratio is k+1-(1/max(m 1 ,..,mk)).

Proc r of Theorem. Fix a A type task system (T,(,py), and let

p=max~z 1/r I,..,Mk/mA,h). Then a lower bound on the optimal schedule is P.

A conservative upper bound on any list schedule is (k+1-(1/max(m I,...,m)))p.

Thus the performance ratio of the list schedule relative to the optimal

schedule is bounded by A+1-(1/max(m1 9,...,m). 0

3.4.2.2 Achieving the Performance Bound

In this section it is shown that the bound of Section 3.4.2.1 is

achievable. Specifically, for any A and any values of mi,...,mk there is are A

type task system and list schedules for the systems with the property that the

finishing time of the schedules approach A+1-(1/max(m 1 ,...,mQ) times worse

than optimal. In fact, the task systems are unit execution time task systems,

i.e., p(T)=1 for every TeT. This is significant as for unit execution time

task systems at least one optimal schedule is a list schedule.

The set of task systems used for this proof are sketched below (Figure

3.4.1). Each node in the graph represents one task. Arrows specify the

partial ordering and the labels of the nodes represent the type of the tasks.

As mentioned above, each task has unit execution time. (Assume without loss of

generality that mk=max(mi ,...,m).)

192

I... 1 2 ... 2

1*-- I 2--2i

--- a 2 --- a

S2
se ewe

Ml M2S

. . . *--- -2 2 2 -- 2

m o -I k b

4 a** 4

6 'm I W/4.4 &.Mk

Figure 4.:

n+k-I

193

In the task systems, there are mi 1 columns of tasks that consist

primarily of type i tasks, which we informally refer to as "corresponding to

type I" (1Ci<k-1). Each of these mi 1 columns contains a chain of n+k-l tasks

(n arbitrary). The 1th task in each of these columns has (T)J (for J<L-1)

and ;'(T)=i (for i<;).

There are m+ columns that "correspond to type i". In each of these

columns the jth task (for JiM-1) has P(T)=J. For the first mk of these mk+1

columns there is a chain of n-(n/mk) additional tasks, with P(T)=k for each task

in the chain. For the (m+)st column there is a chain of n additional tasks,

with v(T)=k for each task in the chain.

The following is an asymptotically optimal strategy. The first A-1

tasks of each column are executed using an arbitrary list schedule. For fixed

values of k and the mi's this may be done in constant time. Now, only n units

of time are required to complete the entire system. It is clear that only n

units of time are required to finish the columns corresponding to each of the

first k-i types of processors. During these same n units of time the columns

corresponding to the k th type of processor may be completed as follows:

During each of the n units of time, one of the mk processors of type k is used

on the (mk+l)st of these columns finishing this column in n units of time. The

other mk-1 processors are used on the other mk columns in rotation. Thus

during the first unit of time, no task is executed from the first column,

during the second unit of time, no task is executed from the second column,

etc. Thus, the total amount of time for this procedure is n+0(1).

An ineffective list schedule is now presented. The schedule first

handles all type 1 tasks, then all type 2 tasks, etc. For the first n+-1

units of time only tasks from columns that correspond to type 1 are executed.

194

At the next n+k-1 units of time all tasks from columns that correspond to type

2 are executed, stripping off type 1 tasks from the tops of the rest of the

columns in the process. In this manner, (k-1)n + 0(1) units of time are

required to finish all of the columns that correspond to the first k-1 types of

processors.

Now the last m k +1 columns of the program are executed. Using a list

schedule, only the first mk of them are processed for the next n-(n/mk) units

of time, completing these columns in their entirety. Another n units of time

are required just to process the last of these mr+1 columns. The total amount

of time with this schedule is thus n(k+1-(1/mk)) + 0(1) and the performance

ratio between this and the optimal schedule is (n(k+1-(1/mk))+O(1))/(n+0(1)).

As n goes to infinity, the ratio approaches k+1-(l/mQ. 0

There are a number of other results for schedules on equally fast

typed processors which directly generalize existing results for identical

processors. As mentioned in Section 3.4.1 results involving systems with no

partial order (e.g. [18]) for the most part generalize directly.

We mention two other generalizations which apply even with a partial

order. In [8], Coffman and Graham define a label algorithm which always

produces an optimal schedule for scheduling a partially ordered set of unit

execution time tasks on two identical processors. This algorithm is

generalized in [36] for m identical processors, and the generalized algorithm

is at most 2-(2/m) times worse than optimal. If max(mi,...,iN)2, then the

natural generalization of this algorithm to typed task systems is at most

k+ 1 -(2/max(m 1 ,..,nk)) times worse than optimal. This is hardly an

improvement in performance, but it is an interesting technical result.

195

The proof of this result is a straightforward generalization of the

proof of [36] and thus is omitted. There are only slight modifications

necessary to treat the types with only one processor. This bound is achievable

[45].

The second generalization is related to the level algorithm of Muntz

and Coffman [47,48] for preemptive scheduling. In [36], Lam and Sethi analyze

this algorithm for m identical processors, and obtain a performance bound of

2-(2/m). Using similar techniques one may generalize this to typed task

systems. If max(?nn...,M) 2, then the level algorithm is at most

k+1-(2/nax(in,..in) times worse than optimal.

196

3.4.3 Nonpreemptive Scheduling of Tasks on Processors of Different Types

and Different Speeds

3.4.3.1 Performance Bounds for List Schedules

This section continues the discussion of scheduling tasks on processors

of different types. We consider the situation that within each type, the

processors are of uniformly different speeds as defined in Section 3.4.1. In

Section 3.4.3.1 a bound is obtained on list schedules on the fastest i

processors of type J (=1,...,m). Thus the results of this section are

an extension of the results of Section 3.2.2 for the untyped case. The results

are not as tight, however. There is no single bound (such as the Vn + O(m 4

bound of Theorem 3.2) which is developed as the best speed independent bound.

Rather a number of bounds may be obtained based on the number of processors of

each type and the number of types. Two such bound are discussed in Section

3.4.3.3, either of which may be smaller based on the values of

A special case of list schedules on the fastest i processors is the

case of i = (==1,.. .,k). This case is the ordinary list schedule case, and

the analysis for this case is done slightly more carefully in Section 3.4.3.1.

While list schedules may be disasterously- worse than optimal in cases that have

a wide variation in speeds between the processors, the list scheduling model is

nevertheless an important model to be considered separately. For one thing,

the analysis informs us about the worst case behavior for systems in which no

filtering out of relatively useless processors is done. Also, once it is

decided that certain processors should not be used, it is the list scheduling

bound which is the relevant bound for the remaining processors.

The approach used in this section closely parallels the approach of

Section 3.2.2. The one major difference here is that in order to obtain the

197

proper bound, the concept of height of a task must be modified to take into

account both the type of the task and the speeds of the processors of that

type.

To define the height of a task, it is convenient to use a slightly

different definition of height for each set of A numbers i". tik. The

following is the definition of height if the fastest i processors of type j

are used (=1 ,...,k). (While reading the definition consider the following

motivation. We would like to be able to say that the total amount of time

spent on height reducing intervals is at most the height of the graph. Thus it

is convenient to have the height reduced at least one unit of height per unit

time during height reducing intervals.)

The height length of a task T (of type J) is given by p(T)lb

(Thus if P.. (the slowest processor of type J that the algorithm will use)

processes T, it executes one unit of the height length of T per unit time.)

The length of a chain C, the height of a task T, and the height of (r,<,,p)

are defined as usual, except that summations are taken with respect to the

height lengths of the tasks instead of the time requirements of tasks.

The rest of this discussion assumes a fixed task system (Qv)

executed on a fixed set of processors 6P. Also, the discussion fixes which

processors are to be used, and thus fixes a notion of the height of a task or

of (7,(s,). As before A will denote the height of the system. If A is

the height then there is some chain of tasks whose height equals A. Let ci

denote the sum of the time requirements of all type I tasks along this chain.

Then h=(c1bV1)+...Ckbkih

198

Lemma 3.13. Let (T,(,py) as above. Let wopt be the finishing

time of an optimal schedule. Then

1 opt>Pmax((k /),(P2/"2m2),..,/BkmA),((c ,l/li g)+...+(Ck/bk)).

Proof. The first k bounds follow from the fact that at most B
Imj

units of the time requirement of type J tasks can be executed in unit time.

To get the last bound, consider a chain of height h as above. Then all the type

J tasks in the chain require a total of at least c11b units of time to be

processed, and all tasks must be processed separately. The bound follows

immediately. 0

Lemma 3.14. Let (T,Qay) as above. Let w(Qfl) be the finishing

time of a list schedule on the fastest i processors of type J (j=1,...,k).I
Then ro((i ft) (u 1 B1 1)+...+(AkBk)+((cI)+...+(ckb

Proof. As in Section 3.2.2 consider height reducing intervals and constant

height intervals. Any constant height interval must have all of the fastest

i processors of type J in use for some J. The reason is that otherwise the

unexecuted task with the greatest height is being executed, reducing the height

of the task system. The total time spent in a constant height interval when

all i processors of type J are in use is at most # 1/Bl. Thus the total time

spent on constant height intervals may be at most (i 1 B) (

Consider height reducing intervals. The greatest height task being

executed is being executed at the rate of (at least) I unit of height per unit

time. Thus the time spent on height reducing levels can be at most

h=(c ,lb)+...+(cklbkik)0

199

Lemmas 3.13 and 3.14 imply:

V({Q }) (p I B j I)+...+(ykl ki,)+(c i/b i)+...+(ck/bkik)

(24) - ------

opt max((/B),...(Pk/kmk),(C /1 i i

One way to choose the set (1,) is to compute the right hand side of

equation (24) for each possible choice of processor speeds. As in Section

3.2.2, since this depends on the task system, this can be quite tedious. Note

that this expression depends on which notion of height is used, since the c1 's

refer to a maximal chain, but maximal chains may be different with the

different definitions of height. It is thus even more desirable in the typed

case to obtain a task system independent choice of which processors to use.

Using techniques similar to those in Section 3.2.2 equation (25) follows from

equation (24).

w({Q1)) B B l(Cb)+...+(cklbkik

(25) ----- < ---- +.+8---- + "-------------

to optBN (CA /11)+..+(ck/bk1

Let q=max((b1 1 /b11),(b21/bAt21z)..(bkAlb i)). The value q is the

analog of the b 1/b, term in the ordinary task system case. Note that

q (b /b) for p i,...,k. Thus (c 1/b 11)<(q(c 1)/b1). Substituting

the right hand side of this inequality for c/b In the last of the k+I

summands gives a bound on the last term of q. Thus a task system independent

way of choosing which processors to use would be to minimize:

200

DIm, Bkmk

(26) - +...+ - + max(b b ... klb k

B Bkik

The heuristic is then to compute equation (26) for each possible set of

processor speeds to determine a set of indices 9 (still a somewhat lengthy

procedure, but something that needs be done only once), and then use only the

fastest1i processors of type J. The results of Section 3.4.3.3 will indicate

that such a choice guarantees performance that is no worse than k+21 max (km) times

worse than optimal. In fact, the proof technique is such that it suggests one

simple way of choosing the ij so that the bound is reached, and as such even

one calculation of equation (26) for each possible choice of (9) is

unnecessary.

As in Section 3.2.2, the bound of Lemma 3.14 may be tightened somewhat

by noting that any portion of the time requirement executed during height

reducing intervals may not be executed during constant height intervals. The

marginally better bound that results is always less than one, and does not

contribute to the asymptotic speed independent bound of Section 3.4.3.3. We

introduce this tightening only for the case of list schedules on all the

processors (i.e. i9 m1) - a case that we indicated above is of importance in its

own right.

Theorem 3.10. Let (TQa,v) be a A type task system to be scheduled on a

machine with processors of different speeds as above. Let w be the finishing

time of a list schedule, and let woptbe the finishing time of and

optimal schedule. Then w/wopt A + (max (b 1 1 b))(1-mmn (b /B)).
i j j ftnJm 1m

201

Proof. To get the tighter bound, we take a closer look at the total time spent

on constant height intervals. As in Section 3.2.2, this is done by recognizing

that any portion of the time requirement that is handled during a height

reducing interval cannot be handled during a constant height interval.

Let p1. denote the total time requirement of type J tasks that

is completed during height reducing intervals. Note that (p j ')+...+(pk1bkmk)>h.

For consider a height reducing interval during which one task (of type J) was

at the greatest height throughout the interval (all height reducing intervals

may be partitioned into such intervals). Assume that the height is reduced by

a total of g in that interval. In that case, at least g units of the time

requirement of that task are completed during that interval. Using this

argument for all intervals, the above inequality follows.

Thus- the total time spent on constant height intervals is actually

bounded by z A(-PfBj. Thus if wo is the finishing time of a list

schedule, and w opt the finishing time of an optimal schedule we have:

w (Z_ (s-p)B) + h

(27) -- <--

ouopt max((# p m'" '11)+...+(ck/A h 0

Separating out the P, terms from the summation, and using the

first k lower bounds on toopt yields:

tO A-(PiIBm)+...+(kam

(28) -- C; k+m -----------------------

toopt ((c1 1 1)+...+(ck/bk1l))

Now let d=min b /B . Then for every value of J, B< (b /d). By

increasing the value of the numerator of the right hand side of (28), one thus

obtains:

fit

(29) -- K A+

toopt

h-(d((pb1 m1"+ab mk)

W I / I I)+...+(ck/bh i

Now use h ((p1 /b 1 n)+..+(Ph/bkmk)) together with

h=((c 1 1b)+...+(cA/bk,)) to obtain:

(30) -- < A +

r'opt

(1-d~u,/bin)+...(b/r))

((c/b 11)++(ck/bA k

Let q=max(bIb ,'""0b6 1 Ib A). Using b.(b1q) for every J (in

the numerator of the right hand side of (30)) yields:

op

(31) -- K A +

Wuopt

q(1-d)((c 11bId+...+(CA /bA1)))

(c1/b IlI)+...+(ck/bn))

From equation (31), it follows immediately that wlmopt+q(1-d),

i.e., w/wvopiA + (max (b-/b))(1-min (b 1 /B 1)). 0

Note that this improvement is really quite small. It differs from the

earlier bound by at most 1, as (max (bji/br))(min (b/B))

is at most 1. For if] is the index that maximizes the first term in the

product, the total product is at most b /B 1.

3.4.3.3 Speed independent bound

We now return to the more general consideration of analyzing list

schedules cn the fastest i processors of type j (jfi,...,k).

Theorem 3.11. Consider a set of m processors of different speeds with

m i. of type]j (j=i,...,k). Then some set of indices 'i :1<;fm} have the

property that for any task system (r,,py) (with optimal finishing time w.Pt), and

any list schedule on the fastest ii processors of type j for that task system

(with finishing time r({W))), that w({})/rooptk+2V max (km1).

Proof. Let r=1 max (km). Choose i. such that rb band

rb: . (Leti. if the second inequality fails for each value of
jtj+1 j V ii

b .) Then (B. /B..)=I1+((b. +.4+)IB). Each of the m -i terms in

the numerator of the fraction is at most b1I/r. The denominator is at least

b 1. Thus B. /B.. is at most 1+(m /Y). Now r- for each J.

Thus B /B+.. < 1+(m /A).

By the choice of i9, rb /b for each value of J. Thus

r>max (b /b). Using this, the bound on B DB and

equation (26) provides:

.cuc

(32) w(Q.))/wopt < k+V 1/k (d/ +...+dV)+.

Increasing -/mF to V max (mn) in the above expression yields
jI

(33) w({i .})/Iopt < k+kV max (m1n/k)+r.

- From (33) it is immediate that w({)/wopt k+2r for this choice of

i irrespective of the task systems used or list schedule used. 0

The bound of Theorem 3.11 is the bound that one would use if each of the Mi

were almost equal. For different situations, though, it might be beneficial to

make a different choice of which processors to use. A sample of this is

contained in the following theorem.

Theorem 3.12. Consider a set of m processors of different speeds with

m. of typej (f=1,...k). Then some set of indices (lIi)m} have the

property that for any task system (r,<,py) (with optimal finishing time wopt), and

any list schedule on the fastest 1. processors of type J for that task system
j

(with finishing time w((Lj})), that w(V})Iwo t k4Wi +-+ + ... + Vvnh + maxrn

Proof. Let r =Vr. Choose i such that Tb b and rb(b . Then

(B /B..)<I1+ . Also, max r =maxrn exceeds the k+1st summand in the
in!1 il- jIj J Ij

bound of equation (26). The theorem follows immediately. 0

The choice of which bound is better depends on the values of the m . If

all are equal, the first bound is better by a factor of about (i/')WF If all

the m equal 1 except for one which is large, then the latter bound beats the

former by a factor of %k.

3.4.3.4 Achievability of the performance bound

Three achievability results will be presented for each of Theorems 3.11

and 3.12, and one for Theorem 3.10. The first two results for Theorem 3.11 and

3.12 discuss the situation where A is quite small relative to the number of

processors, and thus the first summand in the bounds of Theorems 3.11 and 3.12

may be ignored.

If k is fixed, and miui...,Mk vary, it is easy to see that for some set

of processor speeds the bounds of Section 3.4.3.2 are achievable to within a

constant factor. For let] be the type that has the most processors (i.e., m

is largest). Then the same construction used in Section 3.2.2, using only

processors of type] gives an achievability result of V/z-1. While this is a

factor of at most 2-A times worse than the bound of Theorem 3.11 and about A+1

times worse than the bound of Theorem 3.12, for a fixed value of k, it is only

a constant factor worse than the bound. 0

A different achievability result is to show that as A is varied and as

the values m i,...,'k are varied, there is a set of processors speeds, a task

system and a list schedule such that the algorithm is as bad as the bound of.

Theorem 3.11. This is in fact not true in general. Neither Theorem 3.11 nor

Theorem 3.12 is tight for all values of the m since either may be as much as aI
factor of O(1k) times more than the true bound (as discussed above). Instead

it will be shown that for any values of m and A where miZ A there are

values for m j and speeds for the processors such that the bound of Theorem 3.11

is achieved and values for m and speeds for the processors such that the bound

of Theorem 3.12 is achieved (assuming that A is small but varying permits us to

ignore additive terms of k but not multiplicative terms in the performance

bounds).

To achieve Theorem 3.12 is easy. Use rn1cr-k+1 and m=1 for 1>1. Then

the construction used in Section 3.2.2 provides an achievability result of a

constant factor. 0

To achieve Theorem 3.11, consider distributions of processors such that

m .=m/k for each value of j (if m0(mod A) then some of the r 's are

appropriately rounded off).

The precedence structure of the graph is the same as the graph of

Figure 3.2.1 (see Figure 3.4.2). A node labelled with the integer J indicates

that the task represented by the node is of type J. In this case, there are n

blocks, each made up of m-k pairs of tasks. The tasks of the first M 1 -1 pairs

are of type 1; the tasks of the next m 2 - 1 pairs are of type 2, etc. The time

requirement of each task in the long chain is vm-k. The time requirement of the

other n(r-k) tasks is m-k. Type J has one processor with rate -Ir-k and

r i-1 with rate 1.

An asymptotically optimal schedule proceeds as follows. At each point

in time, the fastest processor of some type is executing some task on the long

chain. Thus the execution of each task on the long chain requires unit time.

To finish all tasks on the long chain requires time n(m-k). Meanwhile, the

rest of the processors execute the tasks that are not on the long chain. Once

a processor begins executing one of these tasks, it takes m-k units of time

until it is completed. At that time, the processor begins executing the task

that is in the same position in the next block. Thus, after the chain is

0 ,

207

22n-1

22

k k

Figure 3,A 2

frpeaed

208

completed, at most an additional m-k units of time are needed, for a finishing

time of at most (n+i)(m-k).

A bad list schedule on the fastest i processors of type J

(]=1,...,k) might proceed as follows. In fact, only the two fastest processors

of each type would be used (unless ij=1 for some J in which case only the

fastest processor of that type would be used). While executing type J tasks,

the schedule assigns the chain task to processor P1 2 and the non chain task to

processor P1 1 , It takes times Vm-k to finish both of them (simultaneously). If

only one processor of type j is to be used, then it first processes the non

chain task, and then the chain task, again requiring at least VM-k time units to

finish each pair of tasks. Thus the total time required is at least

n(n-k)(-V n-k). This is Vnk(rn-1) times worse than optimal. Since m is

substantially larger than k, Theorem 3.11 is essentially achieved to within a

factor of 2. 0

There is a large spectrum of similar results that may be proved. It

can be shown that Theorem 3.12 is achieved for a class of processor

distributions that have mI 1 =cm for some cC1. Similarly, Theorem 3.11 is

achieved by a class of processor distributions that have max m cm/ for a

fixed 0 1. These added constructions are trivial extensions of the above and

are omitted.

The third type of result involves the situation that the m 1 are

relatively small (compared to A). In this case we will show that k times worse

than optimal is achievable.

Consider Figure 3.4.3. There are in1 columns that informally speaking

c-'-c aaa2u

IL

16%1

=mi *** md
N

qm~kI *.. E~m~j::~ Qmd T 4 $*** Qm-

;qlmU

ws..

EU?'

on

agoTW

TZqiN 'U141**fl

.me K I

TqmS UTq

S.. I

*1
JmIt

I

-
T

qi)

H~q

Tq=u

:L

N)
0
'0

A
+
r

PS

210

"correspond to type 1". Each of these m columns contains a chain of n+h-1

tasks. The jth task in each of these columns has v(T)J (for 1 1-1) and

v(T)=i (for i<Q). The notation pi means that the time required by the

indicated task is the value i (note that the only values that appear are the

integer 1 or the rate of a processor). An asymptotically optimal schedule

first executes the first k-1 tasks of each column using an arbitrary schedule.

Then only n units of time are required. The th remaining task in every

column is executed i units of time later.

A bad schedule first executes only those tasks in the first n 1

columns. The best that could be done in that case (assuming all processors of

type 1 are in use) is that these columns will be finished in time n. In a

similar manner, it takes a minimum of time kn to finish the entire tasks

system. Thus this schedule is at least k times worse than optimal. Thus for

the class of processors considered, the example illustrates achievability up to

a constant factor. 0

The last achievability result is related to the case of list schedules

(i.e. i.=n .). We have been treating this case separately, and we now present a

bound that achieves Theorem 3.10 up to a constant additive factor (in fact, the

difference between the theorem and what can be achieved is at most one).

To obtain this lower bound we combine the construction of Section

3.4.2.2- with a construction used in [42,43]. The result used from (42,43] is

as follows. Fix a set of uniform non-identical processors #), of one type.

Then there are a set of ordinary task systems for JP (with empty precedence

relation) with the property that the performance ratio of list schedules

relative to optimal schedules over this set of task systems is arbitrarily

211

close to 1+(bi1bm)~(b1IBm) where these quantities are as defined in Section

3.2.1.

Consider the task system of Figure 3.4.4. Diagramming conventions are

as in Section 3.4.2.2. The notation p=r(P11) means that the time required for

the task equals the rate of the processor P (i.e., b). A node labelled

with B denotes a copy of one of the task systems in the set used to obtain the

lower bound in [42,43] with the type of each task in this task system being mA.

The interpretation of an arrow between two nodes labelled with B indicates a

precedence dependence of each task at the destination of the arrow on each task

at the source of the arrow. The class of task systems described in the figure

is parameterized by the variable n and the class of task systems described in

[42,43]. Let n' denote the time required to execute B using an optimal

schedule. Assume without loss of generality that

max({(b1 fbi A n)(bI.Bi):J=l,..,k)) is achieved by processors of type A.

An asymptotically optimal schedule first executes the first h-1 tasks

of each column using an arbitrary list schedule. Then only n more units of

time are required. It is clear how to finish the columns that correspond to

the first h-I types of tasks in n units of time. By using the optimal schedule

for each occurrence of B each occurrence of S requires only n' units of time.

Since there are n/n' copies of B only n units of time are required.

A bad list schedule spends (k-1)n units of time completing the tasks

that correspond to the first A-1 types of processors. It then spends

arbitrarily close to (n/n')(n')(l+(bkl/bkm)-(bklIBkm)) units of time to

complete the columns that correspond to the kth type of processor using the

212

=(P)p=r-r(P2) u = r (Pm

p:r(P 1) p r(P12) p r(Pim)

I I *- - I

LJ zr(P) *r(5 r(P)

ar(Pri(Pn, 2 r(P)

MI

.:I . * cm

4)

I I I

(

(

r(r(k-mk-

H - I

_______ _ "'k-I

F,04(1 11410s r(Pk- m -I

ink.,

Figure 3.'.'t

n+k-H

ID

2 ,

k-F,

)

%n kl

213

bad list schedule from [42,43]. The exact amount of time depends on which task

system is used for the nodes labelled with B in the task system sketched in

Figure 3.4.4. The ratio thus approaches k+(b/bkm))-(b1Bkm) for large n and

B 's whose variation in execution speed approaches a ratio of

1 +(b kIA"'knk)-(bkI lB k). 01

The gap between our upper and lower bounds on performance ratios is not

very large. The gap is between k+max((bj/bj:=1,..,k))(1-min((bi/B 1 :p=v..,k))

and k+max((b lb.)-(b lB):j=1,..,Q). Recall that

q=max({b1 . /b 1] :1,..,k)). Since both the upper bound and lower bound are

between k+q and k+q- 1, for all practical purposes the result is tight.

214

3.4.4. Maximal usage preemptive scheduling of tasks on processors of

different types and different speeds

This section discusses preemptive scheduling of typed task systems.

The results are somewhat analogous to those of Section 3.2.3.2 in that we use

the bound on list schedules on a subset of the processors. A better bound

based on techniques such as those in Section 3.2.3.3 has not been devised. The'

preemptive schedules analyzed are the maximal usage schedules defined in

Section 3.4.3.1 which encompass all schedules as in the untyped case.

A performance bound on maximal usage schedules is obtained by appealing

directly to the results of Section 3.4.3. Fix a set of processors with speeds

b . Consider equation (33) in Section 3.4.3. It suffices to show that

equation (33) (when interpreted as a bound on the performance of any maximal

usage schedule) applies to any task system, any maximal usage schedule for the

task system, and any set of indices (i9. From this, one may conclude that for

any task system and any maximal usage schedule for the task system (with

finishing time w), r/rout(k+24max (km) Similarly, one may conclude that for

any task system and any maximal usage schedule

t/roopt-k 1+ M I + ... + Vm + max 4i This proof follows by applying the

bound of equation (33) for the set of i 's that minimize equation (33). For

this set of i.'s, equation (33) is bounded by the above quantities (as shown in

Section 3.4.3.3). Note that in this context wopt represents the finishing time

of the optimal preemptive schedule.

It suffices to show that wopt satisfies the lower bound of Lemma

3.13 and w satisfies the upper bound of Lemma 3.14 (using the definition of

height relevant to the set of chosen i9 's). The former is immediate,

since the lower bound did not consider the fact that nonpreemptive schedules

215

were used.

To get the upper bound on iv given in Lemma 3.14, break up all intervals

of any maximal usage schedule into two types of intervals. One type of

interval is when i. processors of type J are being used for some J, and the

second type is when U processors of type j are not being used for any J.

Clearly, one may use at least i processors of type J for at most a total of

s /B . units of time. Also, the intervals during which i processors of type J

are not used for anyj must be height reducing intervals. These height

reducing intervals decrease the height by a rate of at least one per unit time.

Lemma 3.14 follows and thus one may conclude:

Theorem 3.13. Let (rQy) as above. Let w be the finishing time of

any preemptive maximal usage schedule, and let wopt be the finishing time

of an optimal preemptive schedule. Then

w /w0opt min(A+2l max (km) ,k+v'in1 + ... + /mn + max4m)

Achievability may similarly be obtained by appealing to the

constructions of Section 3.4.3.3. The "bad" list schedules on the i fastest
i

processors of type]j are also bad maximal usage preemptive schedules.

216

3.6 Open Problems and Further Work

We close Chapter 3 with a discussion of some open problems related to

the scheduling results of this chapter. For surveys on scheduling theory, we

refer the reader to [7,24].

It seems that once one considers processors of different speeds, it is

very difflicult to get very close to the optimal schedule. This is something

that this author believes to be inherent. Thus for example, it seems highly

unlikely that there are any polynomial time approximation algorithms that

schedule partially ordered tasks on unrelated processors, which are always

within a constant of being optimal. The most interesting open problem that we

leave is to prove such a result.

As mentioned in Section 3.1, this and a number of the other scheduling

problems considered are NP-complete problems [27]. A characteristic of these

problems is that although it is widely believed that they are not solvable in

polynomial time, this conjecture has not been proved. Indeed, if one could

determine whether one of the NP-complete problems was or was not solvable in

polynomial time, then one could similarly determine the complexity of all these

problems [20]. Thus to prove that no polynomial approximation algorithm is

within a constant of optimal, one would also have to prove that no polynomial

time algorithm always produced the optimal schedule. This is widely believed

to be quite a difficult problem [20].

. However, even if one could not decide the complexity of the NP-complete

problems, one .could still give compelling evidence that there are no constant

factor polynomial time approximations. For example, one could show that unless

the NP-complete problems were indeed solvable in polynomial time, that no

polynomial time algorithm could produce a solution that is within a constant

217

times the optimal. Similar results have appeared in different areas of

scheduling theory. For example, unless the NP-complete problems are all

solvable in polynomial time, no polynomial algorithm for scheduling partially

ordered unit execution time tasks on identical processors can be better than

4/3 times optimal [40]. The techniques used for that proof do not generalize

to a result such as "no algorithm is within a constant times optimal".

Section 3.2.4 tries to get at such a result from a different direction.

It shows that for limited classes of scheduling algorithms, no algorithm, even

one that does use exponential time, can be within -/n times worse than optimal.

It would be interesting to explore other classes of scheduling algorithms, for

example the class of schedules with limited preemption as described in Section

3.2.4.

Of course, there are many open problems of the form "find a better

approximation algorithm for a particular problem". We feel that it would be

quite difficult to improve on O(/m) times worse than optimal for preemptive or

nonpreemptive scheduling of partially ordered tasks on uniform processor

systems. On the other hand, it is quite likely that some algorithm (e.g. the

level algorithm of [28]) improves the algorithms presented here by a constant

factor.

If there is no partial order, there seems to be some hope of improving

on O(W/), even in the unrelated processor case. One of the algorithms of [30]

has not been fully analyzed (Algorithm D) and seems to be a likely candidate

for better than O(WWY times worse than optimal behavior. Even if this algorithm

fails, one might expect to find some other algorithm that does better than the

algorithms considered in Section 3.3.

For scheduling partially ordered tasks on unrelated processors, one

218

might be able to adapt some of the techniques for uniform processors to the

unrelated case, and to thereby obtain 0(v'i) approximations.

There are a number of technical questions that we leave open, related

to tightening some of the bounds on the algorithms. First, there is the

algorithm of Section 3.2.2, of using only a subset of the processors. The

performance of the algorithm is asymptotic to Vm, and thus the analysis is

quite tight. Nevertheless, the fact that the exact performance may be

determined for any fixed value of m leads one to hope that the low order terms

in the performance of this algorithm may be determined.

All of the algorithms of Section 3.3 may have their analyses improved

by a constant factor. The proof of Lemma 3.10 seems to be the cause for the

lack of tightness. The complicated counting argument that is used necessarily

throws away some information. Improving this counting argument is the most

likely mechanism for improving the bound.

Finally, the results of Section 3.4.3, while tight (to a constant

factor) are somewhat unwieldy. Recall that either the bound of Theorem 3.11 or

the bound of Theorem 3.12 may be tighter, depending on the relative number of

processors of each type. A more uniform treatment of the speed independent

bound is needed.

219

4. Schemes

4.1 Introduction

In this chapter, we discuss a number of theoretical results related to

the data flow programming models. There is a class of schemes, introduced as a

mechanism for expressing parallelism, called data flow schemes. The mairi

result is that these schemes, are as powerful as r.e. program schemes. We

begin with some background on the motivating principles behind schematology.

Early researchers investigating the relative "power" or

"expressiveness" of different programming constructs quickly determined that a

comparison of the set of partial recursive functions computed did not

adequately capture the differences between the different programming styles.

Any reasonable set of constructs computes all partial recursive functions, and

thus all constructs are equivalent.

A different technique has evolved for comparing programming constructs.

The notion of a scheme has been introduced [29,46,49], which enables one to

discern differences between the classes of functionals computable by different

constructs. Essentially, in a scheme there are no defined operations and thus

(for example) variables can not be used as counters. Rather, all function and

predicate symbols are uninterpreted, and a "scheme" is a functional over the

symbols. This approach turned out to be quite successful, as it provided a

rigorous interpretation to intuitive ideas such as "recursion is more powerful

than Iteration" [50,58].

A hierarchy of program constructs has been developed [1,9]. It turns

out that just as there is a notion of "all primitive recursive functions",

there is an analogous thesis about a construct being equivalent to "all

effective determinate functionals" or "all recursively enumerable (r.e.)

220

program schemes" [58].

Data flow schemes were introduced by Dennis [12] to serve as a model of

programming constructs to be used for highly parallel, data driven computer

architectures. The power of this basic construct has never been fully

explored. Early researchers in this area felt that it would be worthwhile to

sacrifice the full power of this construct in order to enforce programming

disciplines that are similar to those found in conventional languages. To this

end, well formed data flow schemes were introduced (13]. They are a class of

data flow schemes that satisfy certain structural requirements. These

requirements force subprograms of any given program to behave like

"if-then-while" statements. Indeed it has been shown (41] that the "expressive

power" of vell formed data flow schemes is equivalent to the expressive power

of flowchart schemes.

Although data flow programs are often written using the well formed

constraint, this constraint does not reflect the capabilities of the data flow

computer architecture [14). It is thus worthwhile to evaluate the expressive

power of the entire class of data flow schemes which more closely approximate

the potential of such data driven, asynchronous architectures. The

restrictions which give rise to well formed data flow schemes are a structure

imposed from the outside, having lI.tle to do with machine architecture.

The main result of this chapter is that the class of data flow schemes

is equivalent to the class of effective determinate functionals. One direction

is immediate using usual programming techniques in the language of r.e. program

schemes. The proof of the other half is greatly simplified by two insights

which are of interest in their own right.

The first is a programming technique using the language of data flow

221

schemes. A general translation lemma is proved (using quite simple techniques)

which characterizes a class of boolean functions computable by data flow

schemes but not computable by well formed data flow schemes. ihis lemma

provides much of the machinery to prove later results.

The second insight is a theoretical result of interest. A very

restrictive version of data flow schemes can simulate Turing Machines. This

result implies various undecidability results about simple data flow schemes.

The simulation of Turing Machines (TM's) follows immediately from the

translation lemma using certain coding techniques.

In Section 4.2 r.e. program schemes, data flow schemes, and restricted

data flow schemes are defined. Section 4.3 illustrates the programming

techniques alluded to above. Using these techniques Section 4.4 discusses the

simulation of TM's with restricted data flow schemes. Section 4.5 contains the

proof that any r.e. program scheme can be simulated by a data flow scheme.

Combining the programming techniques of Section 4.3 and the Turing Machine

simulation of Section 4.4, this final simulation is not too hard to develop

since r.e. program schemes obtain much of their power from a finite state TM

control. Once restricted data flow schemes are shown to simulate TM's, they

provide the necessary TM control.

222

4.2. Syntax and semantics of schemes

4.2.1 R.e. program schemes

To define r.e. program schemes it is helpful to first define the

components.

Any particular r.e. program scheme may have infinitely many variable

symbols x,y,u,v,..., finitely many function symbols fJ1 ,..,rf (from an

infinite function symbol alphabet), and finitely many predicate symbols

p1 ,...,ps (from an infinite predicate symbol alphabet). Associated with a

function symbol f (or predicate symbol P) is a number arity(f)EN which

specifies the number of arguments needed by f. In the alphabet there is also a

symbol HALT. Uninterpreted constants are thought of as 0-ary function symbols.

A term is:

(1) a variable x.

(2) a 0-ary function symbol f.

(3) the sequence f(x1 ,...,x,,) where f is a function symbol

of arity n, and x I,....,xn are variable symbols.

(4) the sequence p(x 1 ,...,xn) where p is a predicate symbol

of arity n, and xII,...,Xn are variable symbols.

Terms of types (1), (2), and (3), are called functional terms. Terms

of type (4) are called predicate terms.

A statement is:

(1) a simple assignment x4't where t is a functional term and x

is a variable.

(2) a predicate term.

(3) the symbol HALT.

An r.e. program scheme, P, is an infinite list of statements (indexed by

223

the integers), a finite set of variable symbols (x1 ,...,x,,) called input

variables, a finite set of variable symbols (7,...,) called output

variables and two recursive functions. The first recursive function takes as

input a statement number and produces the statement as output. The second

function r :IN X (0,1) - N, intuitively, specifies the successor statement of a

given statement as explained in Section 4.2.2.

4.2.2 Semantics of r.e. program schemes.

For brevity the presentation of this section will be a bit informal.

For a more formal treatment for the semantics of schemes one may consult [25].

An interpretation, 1, for a r.e. program scheme P consists of a domain D,

an assignment of a total function from Dn to D to each n-ary function symbol, an

assignment of a total predicate on Dn to each n-ary predicate symbol, and an

assignment of an element of D to each input variable. A program is a pair

(P,l).

The computation of a program (PI) proceeds as follows. The first

statement executed is statement 0 (the meaning of "executing a statement"

should be understood - it involves updating variables or evaluating

predicates). Assume that statement i has just been executed. The next

statement to be executed is given by the function r. Specifically, if

statement i was a HALT statement, then the program is said to terminate and the

outputs of the program are the current values of the output variables. If

statement i was a predicate and the result of the predicate was JF(O,l), then

the next statement to be executed is r(iJ). If statement i was not a

predicate then by convention, the next statement is r(i,0). By convention, if

'%%U

224

the execution of a statement involves evaluating an undefined variable, the

program "loops", i.e., it never halts.

4.2.3 Data Flow Schemes

A dataflore' scheme is a labelled (finite) directed graph (with

self-loops and multiple arcs). The labels of the nodes of any particular data

flow scheme come from the following alphabets:

(1) An alphabet of function symbols f 1 f2,'"

(2) An alphabet of predicate symbols '

(3) The gate symbols "T"i, "F", 'T F". (The gate labelled with "T F" is

called a AMerge gate.)

If a function symbol of arity n labels a node then there are n incoming

arcs to the node. (Also, arity("T")=arity("F")=2 and arity("T F")=3).

Each arc in the graph is either a boolean arc or a value arc. (During

execution each boolean arc has associated with it a word wc(0,1) and each

value arc has associated with it a word weD' where D is a domain supplied by

the interpretation). Each arc that leaves a node labelled with a predicate is

a boolean arc. Each gate has a designated "control" boolean arc. (In the

various figures, the control arc is labelled with a "c".) All arcs entering

or leaving a node labelled with a function symbol are value arcs and all

incoming arcs to a node labelled with a predicate symbol are value arcs. All

of the. noncontrol arcs that enter or leave a gate must be of the same type (but

may be either boolean or value arcs). (Examples of various data flow schemes

may be found in Figures 4.3.1-4.3.8. Their semantics are defined in Section

4.2.4.)

An initialized dataflow scheme consists of a data flow scheme with an

225

assignment of a word rUE(0,1) to each boolean arc and an assignment of the

empty word of D* to each value arc.

A restricted dataflow scheme is an initialized data flow scheme whose

nodes are only labeled with "T", "F", and "T F".

Certain uninitialized arcs are designated input arcs. Certain arcs are

designated as output arcs. It is sometimes convenient to allow two additional

labels for nodes, INPUT nodes have no incoming arcs, and OUTPUT nodes have no

outgoing arcs.

4.2.4 Semantics of data flow schemes

An interpretation supplies a domain D, assigns functions to function

symbols, and predicates to predicate symbols as in Section 4.2.2. Also, each

input arc is assigned an input word from its value domain. A program is a

scheme with an interpretation.

A node is said to be enabled if each of its incoming arcs has a non

empty word associated with it. For Merge gates, the definition is slightly

different: a Merge gate is enabled if the first symbol of the data word

associated with its control input is T and its "T" arc is non empty or if its

control input is F and its "F" arc is non empty. Also, INPUT and OUTPUT nodes

are never enabled.

When an enabled node executes, the first symbol (value) of the word

associated with each incoming arc is removed and the function or predicate

labelling the node is applied to the values represented by these symbols. Next

the result of the function or predicate is concatenated to the end of the data

word associated with each outgoing arc. For T gates, if the control arc

is T, then the gate is the identity on the other incoming arc, and if the

control arc is F then the first symbols are removed and nothing is placed on

outgoing arcs. F nodes are the same as T nodes with the role of the control

arc complemented. For Merge gate?, if the control arc is T, the gate is the

identity on the "T" arc and the "F" arc is unaffected. Analogously, if the

control arc is F.

At any step in execution there may be many enabled nodes. There is no

notion of what "must" happen in one step, as the model does not completely

specify this. There is a notion of what may happen in one step. The work of

[51] implies that this incomplete specification does not change the output of

computation (we will momentarily define the output). At one step the data flow

scheme executes any number (greater than or equal to one) of its currently

enabled nodes. The execution updates nime or all of the arcs, by removing old

values from the data words associated with arcs that lead to executing nodes,

concatenating result values to the associated data words of arcs that emanate

from executing nodes, doing both operations to arcs that connect two executing

nodes, and leaving the rest of the arcs unchanged.

A data flow program terminates when no node is enabled. At that time

the words associated with the output arcs are the outputs of the data flow

program. (It is convenient to assume that formally, all constant functions

have one incoming arc, i.e., take one argument for otherwise a data flow

program would never terminate.)

Note that as defined above, data flow schemes do not have a fixed

number of inputs or outputs. To compare data flow schemes to r.e. program

schemes, we extend the definition of data flow schemes to include a set of

integers which specify how many input symbols are to be supplied on each input

arc and how many outputs are to be produced on each output arc. We only

227

consider computations where the proper number of inputs is supplied. If at

termination an output arc is supposed to supply A outputs, then the first &

values are the outputs. If there are fewer than k outputs then the remaining

outputs are undefined.

It is important to note at this point that we rely heavily on the fact

that the queues are infinite. It follows from the pebbling argument of (50]

that no class of schemes that does not have the potential to store an unbounded

amount of information can possibly simulate recursive schemes, and certainly

not the entire class of r.e. program schemes. In the simulation, it will be

pointed out where the assumption of infinite queues is used.

With this in mind, it is interesting to refer back to the results of

[41] which analyze the expressive power of the well formed data flow schemes.

In that case, the expressive power of well formed data flow schemes does not

depend on the size of the queues. That is, even infinite queues do not

increase the expressive power of well formed data flow schemes. Even in the

well formed case, however, there are differences that arise with different

sized queues; but these are not didterences in expressive power. For example,

if one assumes that in one step all enabled nodes are executed, it can be shown

[31] that well formed data flow schemes with large queues may operate

considerably faster than with small queues.

4.3. Programming techniques

There are two goals of this section. The first is to show that

restricted data flow schemes have enough power to define boolean functions

(NOT and OR). This will be needed, as these functions play a role in

subsequent results.

The second task is to prove the lemma alluded to in Section 4.1. This

is a more substantial indication of the programming power of restricted data

flow schemes. It is a useful tool in shortcircuiting the detailed programming

needed to simulate TM's by data flow schemes.

4.3.1 Boolean operators

To define NOT and OR, consider the initialized restricted data flow

schemes of Figures 4.3.1 and 4.3.2. In Figure 4.3.1, a True value on arc A

chooses out the "T" arc of the Merge (i.e. the value False). A similar

arrangement for A having False implies B=NOT(A). (The diagramming convention

for arc A is an arc emanating from a node labelled with an A.)

In Figure 4.3.2, when A is true, then A (i.e. True) is output, and when

A is false then B is output. Thus C=A OR B. Note that in both programs the

initial configuration is restored after one usage. Thus values may be

pieplined through these circuits, and the NOT circuit will always complement

its input, and the OR circuit will always "OR" a pair of inputs.

229

c T

-43 .1
FIgure 4.3.1

A F T

-T

FIgure 4.3.2

I aat aF t ... 1 e 1 ... 2 ... 1 ...a k

9 1 *l

For irni,...,. Vi ISutS 4.3.3

230

4.3.2. Finite translation Lemma.

Lemma 4.1. Let g:(O,1)"-.(0,l}", let ni+...+nkcn and m 1+...+m1cm. Then g is

computable by a restricted data flow scheme with A input arcs and I output arcs

where the input/output conventions are as follows. The n inputs are presented

in the following way: the first n 1 of them appear on the first input arc, the

next n2 on the second input arc ... , and the final nk on the kth input arc.

The outputs occur in the following configuration: the first mi1 of them appear

on the first output arc,..., the last m, of them appear on the lta output arc.

Also, for any such input to g, at termination the configuration of the data

words on the arcs of the data flow scheme matches the initial configuration of

the data words on the arcs.

Proof The following explains certain abbreviations used in the data flow

schemes described in the proof (see Figures 4.3.3 and 4.3.4). The expansion of

these abbreviations is discussed in Section 4.3.3.

1. At times a few nodes are used together labelled 1st, 2nd.....

ith. This abbreviates a program where each node outputs one value for every

i inputs. The node labelled 1th prints out the 1th, 1+jth, Zi-th

(etc.) inputs.

2. A labelled arc that is drawn as a self-loop (and does not emanate

from a node) denotes that the labels (initial values) of the arc constantly

circulate around. Thus there is an infinite supply of those values. While it

may seem that a data flow program with such self-loops never terminates, the

expansion of this abbreviation discussed in Section 4.3.3 does in fact

terminate.

231

.jaal-lwe
C

Figure 4.3.4

Figure 4.3.5

Figure 4,3.6

COW-

c True

Figure 4.3.7

TV

232

Now, consider Figure 4.3.3 which gives the first part of the desired

restricted data flow scheme. For each set of n inputs, arc #J obtains the

1th input. Thus the n inputs are "parallelized" onto n different arcs. The

node labelled d. is an abbreviation for an acyclic graph of boolean operators

which produces the ith digit of the m digit result. Note that all arcs are

restored to their initial data words when the computation is completed.

For each of the I output arcs there is a program segment like the one

in Figure 4.3.4. The figure denotes the program segment for the first output

arc. The arc labelled d. is 1 if the ith of the mi results should be a 1. Arci1

#1 thus obtains the first of the mi1 results that will be output on arc B

(the first output arc), arc #2 obtains the first two of the mi1 results,

and arc #m 1 obtains all mi1 results. Note that every arc has the same data

word associated with it before and after each execution of the program. The

self-loops are discussed in the next section. 0

It is important that the initial configuration matches the final

configuration. The program is thus reusable in the sense that if g must be

applied repeatedly on a sequence of inputs, the same program may be used for

each set of n inputs. Note also that the lemma is clearly false for well

formed data flow schemes due to their well behaved characteristic (51].

4.3.3. Programs for the abbreviations

Figure 4.3.5 is the expanded version of the nodes labelled with ith.

If a node desires to choose the ith of J values, it merely absorbs all but

those of the form nf+i. This is accomplished by circulating around a control

of Fi-ITF$-i to a T gate as in the figure.

Figure 4.3.6 indicates the definition of an arc that is drawn as a

233

self-loop. The arc actually represents two arcs leaving a T gate. One arc

leads to the destination of the arc in the original program, and the other

leads back to the input of the T gate. To control this T gate the program

generates as many True values as needed. In particular, for the control inputs

to the Merges of Figure 4.3.4, one would like i control values to the T gate

for each value on di.

Figure 4.3.7 indicates how to accomplish this. The node labelled xl

expands one value on the input to 1 values on the output. Figure 4.3.8 is the

x13 program and it is easy to generalize this to the construction of the

program for xl for any 1.

The self-loops of Figure 4.3.5 are easier to handle and are left to the

reader.

234

-TF
c

X2 c

rue

xL $

9T
c

Tc

sCoosa

- . True

TF
F c

xe c
cons
True

xww3

lIure 4.3.8

235

4.4. Simulating Turing Machine computations with restricted data flow

schemes.

The object of this section is to present a simulation of one tape

Turing Machines by restricted data flow schemes. (Simulation in this chapter

is related to the usual notion of TM simulation and is not related to the

notion of simulation defined in Chapter 2). The input to any given one tape TM

is given on the single tape, the read head initially scans the leftmost symbol

of the input, and the rest of the tape is blank. The data flow scheme will

simulate the TM by keeping on one of its arcs, a representation of the TM tape.

In Figure 4.4.1 (at the end of Section 4.4) this data arc is labelled arc C.

Note that the arc will not always have a representation of the TM tape.

However, if one observes the sequence of symbols that pass through the arc, the

sequence will be a coded form of successive instantaneous descriptions (i.d.'s)

of the TM computation. We assume familiarity with TM computations [26].

4.4.1. Representation

The data flow simulator represents an i.d. of the Turing Machine

computation by coding it into binary. Let Z be the tape alphabet of a given TM

and Q be the set of states of the TM (ZOQ=w). Let $tZUQ be a "delimiter". Let

r=F log2 (1Z;+QI+1)1. Then the data flow simulator represents an i.d. with

respect to a fixed coding of the symbols of ZUQU($) as r-tuples.

Let f:ZUQU($)-.0,1)r be a 1-1 map. Assume that during a particular TM

computation, after a number of steps the active portion of the TM's tape is

w 1 A ruwiethto.E (the active portion of the tape consists of those squares

already traversed), and that the machine is in state q reading the symbol to

Then the f-code of the TM i.d. at that step is given by

236

f(i.d.)=f(w j)-(w 2 Y j 1* 1)fq)fw)--f(wk)$f(). Note that the r

symbols in the f-code that appear before the coded version of the symbol

currently being scanned, is the coded form of the state and the i.d. is

delimited with f($) at the end.

The f-code of the initial i.d. is f(start-state) followed by the coded

versions of the input to the TM, followed by f($). If the entire tape is

initially blank then the f-code of the initial i.d. is f(start-state)f()f($)

where I is the blank symbol. The f-code of the computation of a given TM on an

input, is the concatenation of the f-codes of the individual i.d.'s (starting

with the initial i.d.). For convenience, assume that any TM has infinitely

many i.d.'s. The successor i.d. of a halt i.d. is the same i.d.

Assume without loss of generality that in one step a TM will either

move left, move right, print acZ, read the symbol being scanned and branch to a

TM state based on what was read, or halt.

If the TM is reading the leftmost active square and moves left, or the

rightmost active square and moves right, then the simulator must know to expand

the size of its representation of the TM's tape. (if the TM head moves right

and ends up scanning a square not yet activated, the data flow simulator does

not activate the scanned square until that square is written on or until the

read head moves to the right of it.) Otherwise, to update an 1.4., only a few

symbols must be changed, with none added.

4.4.2. Description of simulation

Definition. A restricted data flow scheme D with input arc C, simulates

(with respect to f) a TM M if for any input to M, the infinite sequence of

symbols passing through C is the f-code of the computation of M on that input,

237

where the input to D is the assignment of the f-code of the initial i.d. of M

to the arc C.

Theorem 4.1. For any TM M, there is a restricted data flow scheme)

that simulates Al.

Proof. Consider Figure 4.4.1 which schematically illustrates the data

flow simulator for a given TM. Assume that the simulator has the f-code of an

i.d. of the TM on arc C and all other arcs In Figure 4.4.1 are blank. It

suffices to show that the next sequence of symbols to be added to C by the

program is the f-code of the successor i.d. of the current i.d. and that

furthermore the data words on all other arcs are restored to their current

values. Then, to prove the theorem, the program represented by Figure 4.4.1

will be used, with input arc C. Note that the nodes of the data flow graph

will not necessarily execute at the times that are assigned to them in this

discussion. since the models does not specify when nodes must execute. Due to

the determinacy of data flow programs (51], this does not effect the sequence

of symbols that pass throught arc C. Our program will have the property that

it is impossible to indefinitely prevent the execution of a node without

causing the program to terminate while there are still executable nodes.

Arc C .feeds into different arcs denoted C-2,C-COC 1,C 2 '

Initially, all five arcs have the same associated word, except that C- 2 hs

an extra 2r symbols (f($)-f($)), C_ 1 has an extra r symbols (f($)), C1 is

missing the first r symbols of the i.d. and C2 is missing the first 2r symbols

of the i.d.

Technically, to fit the definition of simulation, the input may only

238

appear on a single arc. The way that we provide input to the other arcs is as

follows. Arcs C-2 and C_1I are initialized to f($)2 and f($). There

are "identity boolean function" nodes which separate arc C from each of arcs

(_ and C- 2 . This provides arcs CA and C- 2 with the desired input.

Similarly, it is left as an exercise to remove the first r symbols to get the

desired value on arc C 1 . It is not hard to do if one uses a T gate with an

initial control of r O's. Care must be taken to insure that no further symbols

are deleted.

We now describe how an i.d. is updated to get the next i.d. We will

describe the update for each symbol on the active portion of the TM tape, as

well as the two other symbols of the i.d. Box #1 of Figure 4.4.1 updates the

current i.d. by processing r symbols from each arc at once. If the first r

symbols on arc C0 are the representation of the contents of a TM square, and

the square is "far" from the square currently being scanned by the head, then

these r symbols are copied to the next 1.d. Similarly, if these r symbols are

f($) and the TM head is far from the extreme left or extreme right of the

active portion of the tape, then f($) is copied.

One might wonder how it is possible for the data flow scheme to know

whether the head scans a nearby square. This information is contained on arcs

C- 2 ''"', 2 . The way that arc C is initialized and the way that the arcs are

processed guarantees that at all times the first block of r symbols on arc C1

is the block that will appear i blocks later in the .d..then the current block

of C 0 . (If i is negative, then it is the block that appeared - blocks

earlier.) As will presently be discussed, the changes in the 1.d. may be

determined from these five blocks of r symbols.

To finish the discussion of the updating, the following is done if the

239

read head is near the TM symbol coded by the r bits on arc C 0 . First consider

the case that the i.d. representation need not be expanded (due to the

exploration of new squares on the extreme right or left of the tape). If the

square coded by the block of r symbols on CO is the predecessor of the square

being scanned (i.e., the TM state is coded on C1), and the TM is in a left move

state, then the r symbols output by box #1 are the r symbols of the

representation of the next TM state. If the r symbols on arc C0 are the code

of a left move state, then the output is the first r symbols on arc C_.

Similarly, it is easy to see how to update the i.d. for any type of TM state.

For example, if arc C0 contains the code of a read and branch state, then the

output is the code of the new state based on the first block of r symbols on

C I (i.e., the TM symbol being scanned). If arc CO is the code of a print

state then the output is the code of the next state. If arc C 1, is the code

of a "print a" state, then the output is f(2). A right move is similar to a

left move except that the location of the state symbol is interchanged with the

next symbol of the f-code of the i.d.

The final cases to consider are the cases of a left move onto a new

square, a right move onto a new square, and a print onto a new square. It is

to handle these cases that infinite queues are needed on the arcs. For to

simulate the TM on various inputs may require exploring an unbounded number of

TM squares, and thus unbounded storage is needed in the data flow scheme. A

left move onto a new square is recognized when C- 2 has f($) and C_1I has the

code of a left move statc. Ifl that case, the output is f(0)-g where g is the

input on arc C 0 (is the new leftmost symbol). If C0 has f($) and CI has

the code of a left move state, then the output is f($), and if C0 has a left

move state and C_1I has f($) the output is the code of the next state. In the

240

right move case, If arc Co has the TM state and C1 has f($), the output is

f($) followed by the code of the next TM state. In the print u case (where

the square to be printed is not yet in the active portion of the i.d.), the

block f($) is updated toJ(o)flS). Note that in these cases 2r symbols are

output, whereas in the earlier cases only r symbols need to be output.

For conformity to the hypothesis of the finite translation lemma, it is

convenient to assume that box #1 always gives the same number of results on

each arc for each set of 5 input blocks. Thus, box #1 always prints out 2r

symbols on arc A. Arc B consists of 1 2r when all Zr symbols on arc A are

desired, and W- 11 if only the last r are desired. In the latter case, the

first r on arc A are arbitrary (included for convenience), and the last r are

the desired r symbols. The irrelevant symbols are deleted in box #2.

As far as the actual program is concerned, there is not much to add.

Careful inspection of the specifications of box #1 indicates that it fits the

hypothesis of the finite translation lemma, and thus a program exists for it.

The program for box #2 is trivial, and is given in Figure 4.4.2. 0

4.4.3. Other results about restricted data flow schemes

We discuss a number of corollaries of Theorem 4.1. The above

discussion has not considered the results of computation in the case that the

"TM" has a notion of output. This problem has been ignored since the main

motivation for our simulation has been to help prove that data flow schemes are

as powerful as arbitrary r.e. program schemes. For that purpose, showing that

a data flow scheme can simulate the control structure of a TM is sufficient.

A brief descviption of a possible convention to make the data flow

.scheme halt will be discussed. Whenever C 0 has f(halt-state), box #1 outputs

241

f(halt-state). However, if C_1, has f(halt-state) then the r symbols that

appear on arc C0 are deleted (i.e. arc B consists of 0 2r). Ultimately, one of

the C . becomes void, causing the data flow program to terminate.

Now assume that box #1 also contains two additional outgoing arcs (arcs

D and E) where 1) ordinarily produces Or and instructs a T gate to delete r

symbols output on arc E. When the halt i.d. is reached, at each step that the

data flow simulator deletes r symbols, arc D becomes ir, permitting the r

deleted symbols (that are now sent to arc E) to be preserved. Thus the tape

contents to the right of the read head are preserved during this process.

Now, assume that the desired output convention is that the sequence

of symbols until the first 0, is the output. The symbols that have just been

deleted from the i.d. representation are the input to another data flow program

which outputs its input until it sees f(M) or f($). From that time on, no

output is produced. Such a program may be constructed and is left to the

reader.

There are a number of undecidability results for restricted data flow

schemes that follow from Theorem 4.1. We mention one as a typical example:

Corollary The problem of deciding for a given arc of a given initialized

restricted data flow scheme and a given finite sequence of O's and I's, whether

the sequence ever appears on the arc is undecidable.

Proof. If we could decide the above problem, we could decide the halting

problem as follows. Code the halt state of each TM as r l's, and code all

other states with a string in 0(0+1)r- 2 0. For such restricted data flow

schemes, ir occurs iff the associated TM halts.

242

intial
-(first r)-

)f() ($) -initial nital 4 O$nrt r)

UPDTE NEW I.D.

DELETE EXTRA SYMBOL.S 02

0

Figure 4.4.2

Input from Turing Machine

Determine how to update value list, when to apply
predicates and when to apply functions

a w

Update value list, apply predicates and
fanctions. Return results of predicates 902

and output of scheme.

LRasults of
schwa

0'9
Rasult of
predicate

MLI #3

Result to-
TX

9,

Figure 4.4.1

MA G1

Figure 4.5.1

I

(DI

(D
I

I

243

4.6. Siniulation of an arbitrary scheme with a data flow scheme

The data flow scheme that we use to simulate a given r.e. program

scheme will use a Turing Machine (as simulated in Section 4.4) as a subroutine.

The TM that is chosen is one that is related to the r.e. program scheme in the

following way. Given the current statement number of the program scheme and

(where relevant) the results of predicates the TM has the capability to

generate the next statement number as well as the function or predicate that

the r.e. program scheme applies next.

The TM interfaces with a data flow program called "the scheme

simulator". This program contains the current values of the variables of the

r.e. program scheme (that have already been defined) on a "value list" (one of

its arcs), and also has nodes labeled with the uninterpreted function and

predicate symbols. The TM instructs the scheme simulator when to use these

nodes and how to update the value list. The value list is maintained by the

scheme simulator as a circular buffer, i.e., when a particular value is needed

the other values are circulated around until the desired value reaches the

beginning of the buffer (which we refer to as the "top of the value list"). In

order to know how to instruct the data flow scheme in its circulation of the

value list, the TM maintains an "association table" which keeps track of which

variables occupy which positions in the scheme simulator's value list at any

particular time.

4.5.1. Operation of the Turing'Machine.

Initially, the Turing Machine has a blank tape. The first task of the

TM is to initialize the association table which is stored as data on the TM

tape. If the n input variables to the scheme are xI,...,x,, the table contains

244

information that "for i=l,...,n, the ith value on the scheme's value list is

Assume that the TM has the number of the last statement executed

(initially 1) written on its tape (referred to as i). Assume also that if

statement i was a predicate, that the result of the predicate is currently in

the finite state memory of the TM. The TM then computes the number of the

successor of statement i in the program scheme using the recursive function

that generates the next statement number. (Note that the association table

must be left intact in the process.) The Turing Machine then computes the type

of operation required by s(i), the successor of instruction i (i.e., the TM

computes the "contents" of the statement numbered by s(i)). Assume that all

variables required as input to the operation have already been defined (i.e.

appear in the table), otherwise, the TM loops.

Let the operation required by statement s(i) be Z(y1 ,...,). The

TM now instructs the scheme simulator where to get y,, from, which

function or predicate is referred to by Z, and where to place the result.

First the TM sends a message that tells the scheme simulator what to do with

the top of the value list. Specifically, if it equals y for some i, the

message is "Let the top value be used as the ith input to the operation Z and

circulate the top value to the end of the value list". If it equals none of

the yj then the message is "Circulate the top value to the end of the list".

At this time the TM updates its association table so it knows which value on

the list refers to which variable.

The way that messages are sent is by causing specific "message symbols"

to appear on the TM tape for exactly one i.d. There are finitely many possible

messages, and each is coded as a different symbol of the TM's tape alphabet.

245

These symbols are reserved symbols used only for this purpose and are only

printed by the TM when messages are to be sent. The step following the

printing of a reserved symbol, is always a print u for some nonreserved symbol

u. Thus the same "message" does not exist in two successive i.d.'s. The

motivation for this will become clear when the operation of the scheme

simulator is discussed. Basically, the idea is that the schene simulator will

look at each symbol of each i.d. exactly once and thus will see the message

symbol exactly once.

The TM continues sending messages to the scheme simulator, until all

the inputs to Z have been defined. After Z has received all inputs, subsequent

messages take on one of five forms.

()If Z is a function symbol, and statement s(i) is of the form

X n *-Z(Y,,.) where x. has not previously been defined, then the message

sent is "Add the result of Z to the list of values".

(2) If the statement is a function application xZ(yl,... y) and x.has

already been defined, then if xn is the top value on the list, the message says

"Replace the top value with the result of 2".

(3) In the case of a function application to xn where xn has been

defined but is not the top of the list, the message is "Circulate the top of

the value list to the end of the list". In this case, the TM then proceeds to

determine if the new top of the value list is x .

In all of the above cases, the TM updates its association table.

(4) If Z is a predicate, then two messages are sent. The first message

is "Obtain the result of the predicate Z" which instructs the scheme simulator

which predicate is to be evaluated. Then, a second message called a "return

message" is sent that instructs the scheme simulator to "Return the result of a

246

predicate to the TM". The return is accomplished as follows. The "return

message" sent by the TM is a specific symbol reE like all other messages. Let

o'EZ be a reserved symbol of E whose code differs from that of v in exactly one

bit. (Assume that u has a 0 in that place, and a' has a I in that place.)

Then the scheme simulator leaves r unaffected if the predicate was false, and

changes the code of the message from r to a' if the predicate was true. This

is the only time that the scheme simulator modifies the TM i.d., and the TM

remembers the modification in its finite state control.

(5) If Z is a HALT instruction then getting the values for

(in the above discussion) is all that is necessary, and the scheme simulator

outputs those values.

After operation s(i) is completed, the TM continues to s(s(i))). If

s(i) is a HALT operation, then after s(i) is completed, the TM halts. Using

techniques similar to those of Section 4.4.3, it is easy to see how to make the

data flow version of the TM halt.

4.6.2. Operation of the scheme simulator

The outline for the program of the scheme simulator is given in Figure

4.5.1 (above). The input to the scheme simulator consists of a queue of n

values corresponding to the r.e. program scheme being simulated (on arc G in

Figure 4.5.1). The scheme simulator uses the TM described in Section 4.5.1 as

follows. Consider Figure 4.4.1. Arc C (for the TM) is interrupted and passed

as input to the scheme simulator. The scheme simulator returns an output to

the TM which is identical to the input unless the result of a predicate is to

be returned to the TM. If a predicate is to be returned, exactly one bit is

changed as described above. In this way, the scheme simulator sees every

247

symbol of every i.d. exactly once.

If the scheme simulator sees a reserved symbol, then the simulator

knows that some action must be taken. Otherwise the simulator does nothing.

The possible actions are:

(1) Use the top value of the value list as input to a certain function

or predicate.

(2) Update the top value without using it.

(3) Change the top value according to the result of a function.

(4) Add the result of a function to the value list without deleting

the top value.

(5) Evaluate the result of some predicate.

(6) eturn the result of the last predicate evaluated.

Once it is shown how to write the program for the scheme simulator it

is easy to prove the main theorem:

Definition. Let P be an r.e. program scheme, and D be a data flow

scheme with input arc C. Then P and D are said to be equivalent if for all

interpretations of all the function and predicate symbols of P and D and all

inputs to P, P halts iff D halts, and the output of P equals the output of D,

where the input to D is the ordered set of inputs to P placed on arc G.

Theorem 4.2. Let P be a r.e. program scheme. Then there is a data flow

scheme D that is equivalent to P.

Proof. Use the TM described in Section 4.5.1 appealing to the construction

of Section 4.4. It suffices to show .how to implement the above description for

248

the scheme simulator. The following is a detailed description of the program

for the scheme simulator.

Box #1 of Figure 4.5.1:

Arc A of the flowchart of Figure 4.5.1, is the input from the data flow

program which simulates the TM described in Section 4.5.1. The input is 'used in

the following way. The scheme simulator searches through the i.d.'s for

reserved message symbols. The function of box #1 is to determine which

operations must be performed by the scheme simulator.

Inputs to box #1 are processed r symbols at a tima where r is the

number of bits needed to code each TM i.d. by f. When arc A has f(o) where a

is a reserved message symbol, box #1 decides which action needs to be performed

for this i.d. Each possible arc in the scheme simulator (such as input arcs to

function and predicate nodes) that could use a value from the value list is

assigned an integer position. The possible actions are as follows. If the top

value of the value list is to be used at the ith "position" then arc C. is

true. Otherwise arc C is false. If the result of function fAis to be added

to the value list then arc D is true, otherwise arc D is false. When one of

the D,'s is true, then arc E is true if the result of the function is to

replace the top of the value list and is false if the result is a new value to

be added to the value list. In general, arc E is true if the top of the value

list is updated. In particular, if anything but a reserved message appears on

A, arc E is false. Arc F1 is true if the desired action is to obtain the

result of predicate i, and is false otherwise.

Arc B is a set of r symbols which specify whether a previously

evaluated predicate result is to be returned. Arc B produces Ir, unless

249

f(o) appears on arc A (where r is the "return predicate message") in which case

exactly one of the r symbol, is a 0.

Careful inspection of the function of box #1 indicates that it fits the

hypothesis of the finite translation lemma, and thus a program exists for it.

Box #2 of Figure 4.5.1:

The purpose of box #2 is to apply the functions and predicates. If a

HALT is being processed, and the message says to output the top value of the

value list on the ith output arc, then box #2 outputs the top value of the

value list on arc Hi. If the top value is to be updated, then arc G is

modified according to whether a new value is added to the list, the top value

is changed, or the top value is recirculated. If the top value is to be sent

to a function or predicate as an input, then that is controlled here. If the

result of some predicate is to be sent to the TM, it is sent on arc 1.

The program for box #2 is given in Figure 4.52. For each possible

function or predicate there is a subprogram described in Figure 4.5.2a. For

the HALT action there is a subprogram described in Figure 4.5.2b. The

subprogram for each possible function or predicate is as follows. Assume that

arc C contains the value list and assume that Z is a function (or predicate).

For each input of Z (if any) that needs the top value, the C values

corresponding to that position will be "True", permitting the top value to be

placed as an input to the function or predicate. The gating accomplished with

250

For each FCU or PRED Z of j VBLS, at locations "9,...,1

a

S T C T go@ T T
C C

out (2)
Figurs 4.5.2a

For "ALT" vwith locations La,...

F1g T c T T ure

C

FLgWr 4.5.-26

251

arc E merely insures that the top value is unaffected if it is not supposed to

be looked at during this step. The arc labelled out(Z) obtains the result of

the operation after all inputs to Z have arrived.

Figure 4.5.2b is similar to 4.5.2a. If a HALT is the desired

operation, then the meaning of "needing" the top value as the ith input to

HALT, is that arc H. should get the top value (i.e., the top value is the

ith output value).

Figure 4.5.2c describes the updating of the value list. If a function

has been applied, then arc #1 is the value of the function if the operation was

an fI or f9. Similarly, arc #2 is the result if the operation was f1, f '

or f3 , and arc #3 is the result irrespective of which function was applied.

If the top value is to be recirculated, then it appears on arc #4. If it is to

be replaced then it is absorbed by the F gate that leads into arc #4. If it is

to be ignored at this step, then it remains at the input to the F gate. After

an operation arc #5 contains the new value on the list if a new one was added,

the new value of x if the old value of x was replaced, and the old top

value, if the top value was to be recirculated. Arc #5 then becomes the end of

the value list.

Figure 4.5.2d is similar to 4.5.2c in that it merges the predicate

results. Arc #I is the value of the predicate if it was the first or second

predicate that applied, arc #2 is the value of the predicate if any of the

252

out ci) ut (f2)

D2 T c F T

c

out (f3)

DI V 92 3 T F

c 02

Sout (fr.) 7 D

- c 3 T

ec- 3 f.

O.I. .rVT

ciue4.52

253

first three predicates applied, and arc #3 is the value of the predicate if any

predicate applied. If no predicate applied, this portion of box #2 does not do

anything.

Box #3 of Figure 4.5.1:

The purpose of box #3 is to merge the old TM i.d. with the result of

the predicate if applicable. If arc B has Ir then the block from arc A is

output by the scheme simulator. If arc B has one 0, then arc I is substituted

for one of the result bits. The program for box #3 is given in Figure 4.5.3.

If the set of arcs (H1) are the output arcs of this data flow

program, then the above simulation successfully simulates a given r.e. program

scheme P. 0

254

out (pI) out(p2)

T)T

023

cF e3

flaure 4.5.2d

.1 Fiue A

I

IFIgPrS4.,33

255

4.6. Further Work and Conclusion

The power of two versions of data flow schemes have now been analyzed.

There is a wide gap between well formed data flow schemes which are almost a

direct translation of "if-then-while" programs [41], and data flow schemes

which fully express the architectural constructs of data driven architectures

[14]. It would be interesting to define natural restrictions on data flow

schemes which make a subclass of data flow schemes equivalent to other models

in the scheme hierarchies [1,9].

There have been some attempts at defining recursive data flow schemes

[12], but in order to define them a slightly different execution rule in

needed. Specifically, if a node is labelled with a recursive function symbol,

then it is interpreted as a "macro" denoting another copy of the recursive

procedure. It follows from Theorem 4.2 that anything expressible with

recursion is expressible with data flow schemes with queues. It would be

interesting to find a natural translation between recursive schemes and data

flow schemes, perhaps one that does not rely on the general simulation theorem.

256

References

1. S. Brown, D. Gries, and T. Szymanski, Program Schemes with Pushdown Stores,

SIAM Jounrnal on Computing, 1, 3, Sept. 1972, pp. 242-268.

2. J. Bruno, E. G. Coffman Jr., and R. Sethi, Scheduling independent tasks to

reduce mean finishing time, CACM 17, 7 (July 1974), 382-387.

3. J. Bruno, E. G. Coffman Jr., and R. Sethi, Algorithms for minimizing mean

flow time, IFIP 74, North-Holland, Amsterdam, pp. 504-510.

4. J. E. Burns, Mutual Exclusion with Linear Waiting using Binary Shared

Variables, Sigact News, Whole Number 39, Vol. 10, No. 2, Summer 1978.

5. J. E. Burns, M. J. Fischer, P. Jackson, N. A. Lynch, and G. L. Peterson,

Shared Data Requirements for Implementation of Mutual Exclusion Using a

Test-and-Set Primitive, University of Washington TB No. 78-08-03.

6. Y. Cho and S. Sahni, Bounds for list schedules on uniform processors,

University of Minnesota TB78-13, June 1978.

7. E. G. Cof f man, Computer and job Shop Scheduling Theory, J. Wiley and Sons,

NY 1976.

8. E. G. Coffman and R. L. Graham, Optimal scheduling for two-processor

systems. Acta Informatica, 1, 200-213.

257

9. R. L. Constable and D. Gries, On classes of Program Schemata, SIAM

Jouinal on Computing. 1, 1, March 1972, pp 66-118.

10. E. Davis and J. M. Jaffe, Algorithms for scheduling tasks on unrelated

processors, MIT, Laboratory for Computer Science Technical Memo No. ???, June

1979. Also, submitted to JACM.

11. N. G. de Bruijn, Additional Comments on a Problem in Concurrent Control,

CACAI, 10, 1967, pp 137-138.

12. J. B. Dennis, First Version of a Data Flow Procedure Language, Lecture

Notes in Computer Science 19 (G. Goos and J. Hartmanis eds.) pp 362-376, Also

Symposium on Programming, Institut de Programmation, Univ. of Paris, Paris,

France, April 1974, pp 241-271.

13. J. B. Dennis, J. B. Fosseen, and J. E. Linderman, Data Flow Schemas,

international Symposium on Theoretical Programming, Lecture Notes in

Computer Science 5, Springer Verlag, Berlin 1974, pp 187-216.

14. J. B. Dennis and D. P. Misunas, A Preliminary Architecture for a Basic

Data-Flow Processor, Proceedings of the Second Annual Symposium on Computer

Architecture, Jan. 1975, pp 126-132.

15. E. Dijkstra, Solution of a Problem in Concurrent Programming Control, CACM,

9, 9, 1965, page 569.

258

16. M. A. Eisenberg and M. R. McGuire, Further Comments on Dijkstra's Concurrent

Programming Control Problem, CACM, 15, 11, 1972, page 999.

17. M. J. Fischer, Private Communication.

18. M. H. Garey and R. L. Graham, Bounds for Multiprocessing Scheduling with

Resource Constraints, SIAM J. Comput. 4, 2, June 1975, pp 187-200.

19. M. H. Garey and D. S. Johnson, Complexity Results for Multiprocessor

Scheduling tinder Resource Constraints, Proceedings of the Eighth Annual Princeton

Conference on Information Sciences and Systems, 1974.

20. M. B. Garey and D. S. Johnson, Computers and Intractability, A Guide to the

Theory of NP-Completeness, W. H. Freeman, San Francisco (1979).

21. T. Gonzalez, 0. H. Ibarra, and S. Sahni, Bounds for LPT schedules on uniform

processors, SIAM J. Comput., 6, 1, (1977) pp 155-166.

22. D. K. Goyal, Scheduling Processor Bound Systems, Proceedings of the Sixth

Texas Conference on Computing Systems 1977.

23. R. L. Graham, Bounds on multiprocessing timing anomalies, SIAM J. of Appl.

Alath., 17, (1969) 263-269.

259

24. B. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan,

Optimization and Approximation in Deterministic Sequencing and Scheduling: A

Survey, Di sc ree Optimization, 1977.

25. S. A. Grelbach, Theory of Program Structures: Schemes, Semantics,

Verification. Lecture Notes in Computer Science 36, (G. Goos and J. Hartmanis

Edis.) Springer Verlag, Berlin 1976.

26. J. E. Hopcrof t and J. D. U'lman, Formal Languages and Their Relation to

Automata. Addison-Wesley, Reading, MA, 1969.

27. E. Horowitz and S. Sahni, Exact and app'roximate algorithms for scheduling

nonidentical processors, JACM, 23, 2 (April 1976), 317-327.

28. E. C. Horvath, S. Lam, and R. Sethi, A Level Algorithm for Preemptive

Scheduling, JACM 24, 1, (1977) 32-43.

29. 1. Ianov, The Logical Schemes of Algorithms in Problems of Cybernetics i1,

pp. 82-140, Perganon, NY 1960.

30. 0. H. Ibarra and C. E. Kim, Heuristic Algorithms for Scheduling Independent

Tasks on Nonidentical Processors, JACM 24, 2, (April 1977), 280-289.

31. J. M. Jaffe, The Use of Queues in the Parallel Data Flow Evaluation of

'If-Then-While' Programs, proceedings of the 12th Annual Johns Hopkins

260

Conference on Information Systems and Sciences, March, 1978, Baltimore, MD, pp

451-456. MIT Laboratory for Computer Science Technical Memo 104, May, 1978.

32. D. G. Kafura and V. Y. Shen, Task scheduling on a multiprocessor system

with independent memories, SIAM J. Comput. 6, (March 1977), 167-187.

33. B. M. Karp and R. E. Miller, Properties of a model for parallel

computations: determinacy, termination, queueing, SIAM J. of Applied Math.,

14, 6, Nov. 1966, pp 1390-1411.

34. H. P. Katseff, A new solution to the Critical Section Problem, roc I1tA

Annual Symfposium on Theory of Computing, 1978, pp. 86-88.

35. D. E. Knuth, Additional Comments on a Problem in Concurrent Control, CACM,

9, 1966, pp 321-322.

36. S. Lam and R. Sethi, Worst case analysis of two scheduling algorithms, SIAM

Journal on Computing, 6, pp 518-536, 1977.

37. L. Lamport, A new solution of Dijkstra's Concurrent Programming Problem,

CACM, 17, 8, 1974, page 453.

38. L. Lamport, Time, Clocks and the Ordering of Events in a Distributed System,

CACM, 21, 7, 1978, pp 558-565.

Z6 I

39. E. L. Lawler and J. Labetoulie, On preemptive scheduling of unrelated

parallel processors by linear programming, JACM, 23, 4, 1978 612-619.

40. J. K. Lenstra and A. H. G. Rinnooy Kan, Complexity of scheduling under

precedence constraints, Operaions Research, 25, to appear.

41. C. K. Leung, Formal Properties of Well-Formed Data Flow Schemas, MIT, LCS,

TM 66, Cambridge, MA., June 1972.

42. J. W. S. Liu and C. L. Liu, Bounds on Scheduling Algorithms for

Heterogeneous Computing Systems, TR No. UIUCDCS-R-74-632 Dept. of Comp. Sci.,

Univ. of Illinois, June 1974.

43. J. W. S. Litt and C. L. Liu, Bounds on Scheduling Algorithms for

Heterogeneous Computing Systems, IFIP74, (North Holland Pub, Co.), 349-353.

44. J. W. S. Liu and C. L. Liu, Performance Analysis of Multiprocessor Systems

Containing Functionally Dedicated Processors, Acta Informatica, 10, 1, (1978)

95-104.

45. E. L. Lloyd, Private Communication

46. J. McCarthy, Towards a Mathematical Science of Computation pp 21-28,

Proceedings of IFIP Congress, Munich I9&.

262

47. B. R. Muntz and E. G. Coffman Jr., Optimal preemptive scheduling on

two-processor systems, IEEE Trans. Comptr., C-18, 11 (1969) 1014-1020.

48. R. B. Muntz and E. G. Coffman Jr., Preemptive scheduling of real time tasks

on multiprocessor systems, JACM 17, 2 (1970) 324-338.

49. M. Paterson, Equivalence Problems in a Model of Computation, Ph.D. Thesis,

Univ. of Cambridge.

50. M. Paterson and C. Hewitt, Comparative Schematology, Record of the

Project A AC Conference on Systems and Parallel Computations, ACM, New York,

1970, pp 119-128.

51. S. S. Patil, Closure Properties of interconnections of determinate systems,

Record of the Project M AC Conference on Systems and Parallel Computations, ACM,

New York, 1970, pp 107-116.

52. G. Peterson and M. Fischer, Economical Solutions for the Critical Section

Problem in a Distributed System, Proc 9th Annual Symposium on Theory of

Computing, 1977, pp. 91-97.

53. R. Rivest and V. Pratt, The Mutual Exclusion Problem for Unreliable

Processes: Preliminary Report, Proc 17th Annual Symposium on Foundations of

Computer Science, 1976, pp 1-8.

263

54. S. Sahni, Algorithms for scheduling independent tasks, JACM, 23, 1, (Nov.

1976), pp 116-127.

55. S. Sahni and T. Gonzalez, Preemptive scheduling of two unrelated machines,

Tech. Rep. 76-16 Comptr. Sci. Dept., U. of Minnesota, Minneapolis, MN

(November 1976).

56. Sethi, R. "Algorithms for Minimal-Length Schedules", in Computer and Job

Shop Scheduling Theory, (E. G. Coffman, ed.) J. Wiley and Sons, NY 1976.

57. H. R. Strong, High level languages of Maximum Power, Proceedings of

Twelfth IEEE Conference on Switching and Automata Theory, 1971, pp 1-4.

58. H. R. Strong, Translating Recursion Equations into Flowcharts, fCSS, 5

(1971), pp 254-285.

59. J. E. Thornton, Design of a Computer - The Control Data 6600, Scott,

Foresman College Division, (1971).

60. J. D. Ullman, NP-complete scheduling problems, JCSS 3, June 1975, pp

384-393.

264

Biographical Note

Jef f rey Jaffe was born in New York, NY on July 21, 1954. He soon moved

to Brooklyn, NY where he lived until graduating the Yeshiva University High

School of Brooklyn in June 1972.

Mr. Jaffe attended the Massachusetts Institute of Technology as an

undergraduate where he received a B.S. in Mathematics in June 1976. While an

undergraduate, he was elected to the Xi chapter of Phi Beta Kappa in fall 1975.

Mr. Jaffe continued his MIT education with the Department of Electrical

Engineering and Computer Science in September 1976. He received his Master's

degree from EECS in June 1977, and his Ph.D. in August 1979. During this time

he was a National Science Foundation fellow and was associated with the Theory

of Computation group. Also during this time (6/19/1977) he married the former

Esther Klipper '79.

Mr. Jaffe will be joining the Decentralized Network Control Group at

the IBM - TJ Watson Research Center in September 1979. He will also resume his

tour of the five boroughs by moving to the Riverdale section of The Bronx.

