STEADY STATE ANALYSIS OF PIPING NETWORKS
by

GEORGE C. GOODMAN

Submitted in partial fulfillment
of the requirements for the
degree of
BACHELOR OF SCIENCE
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 12, 1977

Signaturle Of Author..‘ L ® ® 0% 90 ° ® TG O 9 ¢ 08 0 s 8" PO G e S e 0 e
Department of Mechanical Engineering, May 12, 1977

Certified by.. ..

' ------------------ " - ®w w w e wweewuwsw ® o 6 e 0 o0 o

M Thesis Supervisor

Accepted by./f.-“-.-‘b’-o'q“_(’/i'o ‘S e 8 6 06 0o 0a0sens0e0sascose
Chairman, "“Departmental quﬁ%izee on Thesis

JUL 7 1977

Linnames

STEADY STATE ANALYSIS OF PIPING NETWORKS

by

GEORGE C. GOODMAN

Submitted to the Department of Mechanical Engineering
on May 18, 1977 in partial fulfillment of the requirements
for the degree of Bachelor of Science.

ABSTRACT

The author has developed a computer program to
solve for the steady state response of arbitrary piping
networks consisting of pipes, control valves and ideal
pressure and flow sources. Recommendations are given
for extension of the program to accomodate a greater
variety of network elements. It is believed this program
can easily be incorporated into a model of the energy
interactions in the MIT Chilled Water Distribution System.

Thesis Supervisor: Richard S. Sidell
Title: Associate Professor of Mechanical
Engineering

3

ACKNOWLEDGEMENTS

I would like to acknowledge the invaluable advice
of Professor Richard Sidell who kept this effort going
in a sensible direction and Gary Isaacs, whose energy
and enthusiasm enabled me to bring this paper to a

timely conclusion.

TABLE OF CONTENTS

Title Page

Abstract

Acknowledgements

I. INTRODUCTION

II. THEORETICAL BACKGROUND
2.1 Pipes & Valves
2.2 Linear Grapt Theory

2.3 Non-Linear Equations

ITY. IMPLEMENTATION
3.1 Structure
3.2 Operation

Iv. RECOMMENDATIONS

V. CONCLUSIONS
REFERENCES

FOOTNOTES
APPENDIX I, FORTRAN CODE & SAMPLE OUTPUT

PAGE

13

15
15
15
18

19

22

I. INTRODUCTION

A project is under way at the Massachusetts Institute
of Technology to implement centralized computer control
of the environmental varameters in the academic and
administrative buildings. Set points on thermostats,
air vent openings, etc., will be modified according to the
demands of building usage. The purpose of such control
is, of course, to attempt to save energy. Achievement
of this goal is threatened, however, by the following
consideration.

The air conditioning systems in several buildings
require chilled water as coolant. Water is chilled at
a central plant where it is pumped through a three loop
primary system. Each building has its own circulating
purmp to tap off the primary and is thus a secondary
circulating system. The central plant is designed to
operate at specified inlet and outlet temperatures and,
naturally, runs at reduced efficiency when these
temperatures vary from the ideal.

The proposed computer control system will not
directly control the primary chilled water system. It

will, however, indirectly control flow in the building

secondary systems and thus tend to greatly vary the plant

inlet temperature. This implies the plant will be
running at lower efficiency and will, therefore, be
wasting energy.

The next logical step is, therefore, to implement
some form of control to maintain the desired plant
inlet and outlet temperatures. The design of an effective
control scheme requires a mathematical model of the energy
interactions within the distribution system. As a first
step in the development of such a model, this paper
presents a FORTRAN computer program which allows the user
to solve for the steady state pressures and flows in
arbitrary piping networks. Section II explains the theory
required to understand the program implementation described
in Section III. At present, the only permissible network
elements are pipes, control valves, and ideal constant
pressure and flow sources. However, extension of the
program to handle a larger variety of elements is
straightforward and is discussed in Section IV. The
FORTRAN source code and a sample network analysis are

included ir the Appendix.

IT. THEORETICAL BACKGROUND

2.1 Pipes and Valves.

Mathematical approximations to the pressure-flow
characteristics of pipes and control valves are well
known. Assuming turbulent flow, the following equation
has been used for pipes:

3/4

P =a, Qo] (1)

where P 1is the pressure drop across the pipe, Q is
the volume flow rate and a, is a constant "whose
value dependens on the flow rate at which transition
to turbulent flow occurs, the dimensions of the pipe
(diameter and length), the properties of the fluid
(density and viscosity) and the roughness of the inner
walls of the pipe."l

Since a control valve is nothing more than a

variable orifice, the following equation for the pressure

drop across an orifice has been used:
P=a_ Qo] (2)

where a, is a function of the fluid density and t'e
valve geometry.2
At present, the program requires the user to input

both a, and a, explicitly. A simple modification

could cause these constants to be calculated from

parameters which might be more readily available.

2.2 Linear Graph Theory

The theory which follows attempts to define a
procedure for deriving the network governing equations.

Piping networks lend themselves quite readily to
representation as linear graphs. The following definitions
and relationships apply to linear graphs in general.
Pefinition 1: Graph Edges and Vertices

"A linear graph is a set of line segments referred
to as edges, End-point intersections of these edges are
called vertices. All line segments are interconnected
in such a way that the edges are only incident with the

3 The terms edge, branch, and element will be

vertices."
used interchangeably as will the terms vertex and node.
Definition 2: Circuit Loop

"If one begins at an initial vertex point of a
graph and traverses through edges and vertices... until
reaching the initial vertex without crossing any vertex
more than once, the closed path traversed is called a

circuit loop.“4 The terms circuit loop, circuit and

loop will be used interchangeably.

Definition 3: Tree and Branch

"A tree T of some graph G consists of a subpart of
the original graph. It contains all vertices of G but
no circuits. The edges forming this subpart...are
referred to as tree branches."5 A given graph can have
many possible trees.

Definition 4: Link

For a particular choice of tree, a link is an edge
which is not one of the tree branches.
Definition 5: Fundamental Circuit

A fundamental circuit is defined with respect
to a particular tree of a given graph. It is a circuit
which contains one and only one link. For a given link
there is a unique fundamental circuit.

It is easily shown that the number of links, L ,
and therefore the number of fundamental circuits, is
given by

L=E-V+1 (3)
where E is the number of edges in the graph and V is
the number of vertices.

It is well known that an analogy may be drawn between

piping networks and electrical networks where pressure

corresponds to voltage and volume flow rate corresponds

to current. Pursuing this analogy, Kirchhoff's Voltage

10

Law (KVL) and Kirchhoff's Current Law (KCL) may be applied.
If one were to write the KVL equations for all

possible loops in a given network, it would soon be
apparent that some of the equations are not independent.
In fact, there are exactly L independent KVL equations.
One set of such equations may be obtained by choosing
any tree of the network and writing KVL for each of
the resulting fundamental circuits. Obviously, only L
of the variables in these equations are independent.
Since the link pressures each appear only once in the set
and since they all appear in different equations, they
must be the L independent variables.

For non-linear networks, such as piping networks,
it is not convenient to express the remaining tree
pressures directly in terms of the link pressures. Rather,
it is easier to calculate the tree pressures from the tree
flows (by means of the elements'constitutive relations,
assumed known), and to express the tree flows as linear
combinations of the flows through the links. The link
flows are therefore the independent variables in this
set of L equations. These equations may be written

in matrix form as follows:

Q = Kx (4)
P = G(Q) (5)
CP =0 (6)

11

where Q is an E x 1 vector containing the flows in
all the elements, x 1is the L x 1 vector of link flows,
and K 1is an E x L matrix of constants. Equation (4)
expresses the tree flows as linear combinations of the link
flows. 1In Equation (5), P is an E x 1 vector containing
the pressure drops across all the elements and G 1is a
vector function containing the constitutive relations
for all elements. Matrix C is an L x E matrix of
constants. Equation (6) is the explicit statement of
KVL.

It should be fairly obvious that the only constants
C can contain must be 1 , 0 or -1. Similarly, K also
contains only those constants. In fact, it can be shown
that K is the transpose of C. The matrix K therefore
contains all the topological information necessary to
derive the network governing equations. The problem
of deriving the network equations has been solved except
for one detail. The K matrix representation of network
topology is not a representation most people would find
convenient to use. Another more intuitive representation
is therefore proposed.

Let us construct a V x E matrix D according to
the following procedure. Number the elements and the

nodes of the matrix under consideration. Now, assign

12

arbitrary directions to the flovs through all the elements.
This defines a starting and ending node for each branch.

Label the columns of D with the edge numbers
and the rows with the vertex numbers. Now, considering
each column and its associated element in turn, place a
1 in the row corresponding to the starting node of the
element and a -1 in the ending node row.

This matrix is called the incidence matrix for the
network and contains the same topological information
as the K matrix. It follows then, that K may be derived
from D. That derivation will now be described.

First, since every column of D has exactly one 1
and one -1 in it, one row of the matrix may be removed
without losing any topological information. The resulting
(V - 1) x E matrix is called the incidence sub-matrix, A.

Identify a set of tree branches for the network.

Any set of (V - 1) linearly independent columns of D

is one such set.6 Now define
Qf = A A (7)

where At is a (V- 1) x (V - 1) matrix containing the
above mentioned tree columns. Rearrange the columns
of Qf so that the resulting matrix may be partitioned

as follows:

13

lu] (8)

% = DQfll g

vhere Ug is a (V- 1) x (V - 1) identity matrix. Note,
the resulting column order is different from the column
order of the A matrix.

Now define:

T
B, = -Q (9)
£12 £f11

Construct matrix Bf '

By = [Ub|Bf12] (10)

where Uy is an L x L identity matrix. Matrix Bf
is called the fundamental circuit matrix and is the
desired K matrix with the elements renumbered in the

same order as Qf6.

2.3 Non-linear Equations.

This section preseﬁts an algorithm for the solution
of a set of simultaneous non-linear equations.

‘Consider a vector of functions F whose argument
is the vector x. We wish to find the value of x which

satisfies the equation

F(x) =0 (11)

14

Expanding (11) in a Taylor series about the desired
solution vector X and neglecting higher order terms

yields
F(xo) + H(xo) (x - xo) =0 (12)
where H 1is a square matrix such that

= 1 (13)

If we assume that X is the nth iteration of an iterative
algorithm, the following recursion relation may be

deduced

_ -1
X = (H(xn)) F(xn) + X (14)

n+1
The derivative Hij may be approximated by perturbing
the jth variable an amount P to give the vector x*j and

setting

F, (x*.) - F, (x)
- 1] 1
Hij = 5 (15)

Iteration stops when F(xn) is less than a prescribed

tolerance.

15

ITI. IMPLEMENTATION

This section will explain the actual program

structure and operation.

3.1 Structure.

The main program is responsible for the iterative
solution of the L network governing equations. It
uses the algorithm presented in Section 2.3 with x equal
to the vector of link flows and F the function such

that Fi is the sum of the pressure drops around

the ith fundamental circuit. A subroutine named F
is called each time evaluation of the function is required.
Before iteration of the solution algorithm can begin,
the fundamental circuit matrix, here called B, must
be constructed. The subroutine INIT is called which
accepts user input and formulates the B matrix
according to the procedure of Section 2.2.
When the solution has been found the subroutine

OUTPUT is called which prints the results.

3.2 Operation.
A data card for the program looks like this:

cc 1-10 - User pipe number {integer)
array = USERP

16

cc 11-20 - User starting node number (integer)
array = USER

cc 21-30 - User ending node number (integer)
array = USER

cc 31-40 - Element type number (integer)
array = NTYPE

pipe
pressure source
flow source

control valve

= wN -

cc 41-50 - Appropriate datum (real)
array = PIPE

cc 51-60 - Parameter (real)
array = PRMTR

not currently used

cc 61-70 - X - coordinate (real)
array = COORDS (I,1)

not currently used

cc 71-80 - Y -~ coordinate (real)
array = COORDS (I,2)

not currently used
A card with a zero in cc 1 indicates the end of the data.
Subroutine INIT reads the data and stores it in
appropriate arrays. Each time it reads a card it adds
a column to the incidence matrix A. If the user node
numbers are new numbers, it adds appropriate rows to the
matrix and makes the correct entries. The element types

are then examined for flow sources. The columns corresponding

17

to flow sources are shifted to the rightmost columns
in the matrix. The other stored data is also sorted
the same way to maintain internal pipe numbering
consistency. The incidence matrix is then transposed
and passed to the subroutine REDUCE.

The function of REDUCE is to identify the subscripts
of (V-1) linearly independent columns of A. These

columns are used to f£ill the matrix A The product

£ °
At-l A is computed. The columns representing an identity
sub-matrix are identified and rearranged to give
[Qfll|Ug]. The stored element data is sorted again according
to this rearrangement.

The Bf matrix is constructed. The array of element
types is searched again for flow sources. The last (V-1)
elements of the rows corresponding to fundamental circuits
containing flow sources are ghifted to the bottom of B.
The first L elements of stored edge data are sorted
according to this last shifting.

The MAIN program now treats the problem as if the
number of independent variables is I minus the number

of flow sources. Subroutine F calculates pressure

drops across flow sources in such a way as to guarantee

satisfaction ©0f KVL.

18

IV. RECOMMENDATIONS

Several dummy subroutines are called which, when
replaced with actual subroutines, allow the extension
of this program to accept a larger variety of network
elements.

The function ASSIGN can be used to retrieve the
number of a data set in which tabulated pressure-flow
data may be stored. Subroutine F can then call PRESS
to evaluate the necessary constitutive relations.

The COMPUTED GO TO statement in subroutine F can be
altered to accomodate elements having a known closed

form constitutive relation.

19

V. CONCLUSIONS

This program makes the calculation of steady state,
DC response of piping networks an easy matter. It should
be a straightforward task to incorporate this program
in the proposed energy interaction model. Minor additions
allow the extension of the program to a greater variety
of network elements. The accuracy of the assumed
constitutive relations is, of course, still a question

to be experimentally verified.

REFERENCES

Shearer, Murphy, Richardson, Introduction to System
Dynamics, Addison-Wesley, 1967.

Davis, Palumer, Computer Aided Analysis of Electrical
Networks, Charles E. Merrill, 1973.

21

FOOTNOTES

Shearer, Murphy, Richardson, Introduction to System

Dynamics, p. 67.
Ibid., ppo 67—68.

Davis, Palmer, Computer Aided Analysis of Electrical
Networks, p. 124.

Ibido r ppo 124—125.
Ibid., p. 126.
Ibid., pp. 285-286.

Ibid., pp. 123-172.

22

APPENDIX I. FORTRAN CODE & SAMPLE OUTPUT

23

USER=COODMAN 274 84255 JOINT COMPUTER FPCILITY, HIT
EROGRRAM: MRIN

RRCGUMENTS ¢ ROKT

CRLLS:s INIT, OUTPUT, INVERS, EXIT

DESCRYPTTON: THIS IS A PROGRAM TD PRRFOPRH
STEADY STATE AKALYSIS OF PIPING
NETWORXS. TIT CALLS INIT TO INITIAL-
IZE THE NECESSARY MATRICES, THENW
USES AN ITERATIVE TECHNIQUE TO
SOLVE THE RESULTING NON-LIMNEAR
EQUATIONS. THE SOLUTION IS CON-
SIDERED COMPLETE WHEN THE FRROR
IS LESS THAN THE VALUE OF THE
TOLERARCE, TOL.

AN OONOOO00aoM OO NG

IMPLICIT INTEGER*2 (I-N)

INTEGER*2 E,NTYPE(30)

REAL P(30),G{(30),B(30,30),PIPE(30)

INTEGER*2 USERFP(30)

REAL FO(30),DELTA(30),FXP(30),DFDX(30,30),L1(30),H1(30),DX(30)
REAL X(30)

REAL TEMP(900)

coMMoN E,L,P,0,B,NTYPE,PIPE,NSRCE

COMMONK/BLK1/USERP

COMMON /BLK2/X

c READ THE DATA ARD INITIALIZE THE
C REQUIRED MATRICES
CALL YNIT

24

USHRE=CR0DMRAN 274 #4255 JNINT COMPUTER FFCILITY,
LL=L-NSRCE
PEET=.1
TOL=4001
TRIN=30
57 CORTINUE
HUM=0
C FO=F(X)
CALL F{FD,X)
C COUNT THE DELTAS LESS THAN TOL
D9 100 I=1,LL
DELTA(I)=-FO(1) .
IF(ARS(DELTA(I)).LE.TOL)NOM=NUM+1
100 CONTINUE
C ARE WE FINISHED?
IF(NUMLEQ.LLYCALL OUTPUT
C CALCULATE DFDX, THE MATRIX OF
C PARTIAL DERIVATIVES
po 202 J=1,LL
1(3)=K{J)+PERT
CALL F(FXP,X)
Do 150 I=1,LL
DFDX(I,J)=(FXP(I)-FO(T))/PERT
150 CONTINUE
£(J)=X(J)~PERT
200 CONTINUE
c DFDX=INVERSE OF DFDX
CALL INVERS(DFDX,LL,IDIM,TEMP,L1,%1)
C INCREMENT THE LINK FLOW VECTOR RY
C DX WHICH IS THE PRODUCT OF THE
C MATRIX DFDX AND THE VECTOR DELThA.

po 300 I=1,LL
DX(I)=0.
DO 250 J=1,LL:

25

USER=CGOODMAKR 274 A4255 JOINT COXPUTER FACILITY, 4IT

250 DX(I)=DX(I)+DFDX(I,J)*DELTA(J)
¥EI)=X(T)+DY(T)
300 CONTINUE

c GO BACK FOR ANOTHER ITERATION
GO TO 5¢C
CALL EXIT
END)

PROGRAN *MAIN* HAS NO ERRORS

26

USLR=GOODHAN 274 84255 JOIRT COMPUTER FACILITY, HIT
PROGRAK: IN.T
ARRGUMENTS: NCKRE

CALLS: LCSORT, ISORT, SCRT, REDUCTY, ASSIGN
INVERS, EKROR1,ERROR3

DESCRIPTIUN: THIS PROGRAM READS THE INPUT DATA
AND FROM THAT DATA CONSTRUCTS THE
FUNDAMENTAL CIRCUIT MATRIX FOR] THE
NETWORK UNDER ANALYSIS.

anononaooacacaoonna

SUBROUTINE INIT
IMPLICIT INTEGER*2 (I-N)

INTEGER*2 E,NTYPE(30)

REAL P(30),0(30),8(30,30),PIPE(30)
INTEGER*2 USERP(30)

REAL X(30)

INTEGER*2 V,A(30,30),5051(30),USER(30)
REAL M1(30),¥%2(30)

INTEGER*2 V3

INTEGER*2 QF(30,30)

REAL TEMP(900)

REAL PRMTR(30)

REAL COORDS(30,2)

INTEGER*2 SUB(30)

COMMON E,L,?,0,B,NTYPE,PIPE,NSRCE
COMMON /BLK 1/USERP

COMMON /BLK2/X

IDIM=30

27

USLR=GCODMAN 274 84255 JOINT COMPUTER FACILITY, HIT
E=0
V=0
C INITIALIZE THE SUBSCRIFT VICTORS
C SUB AND SUB1.
C INITIALIZE B AND R TO ZERO.
po 7 I=1,IDIH
SuB(I)=1
SUB1(T)=I
Do 7 J=1,IDIN
B{I,J)=0.0
7 A{I,J)=0
5 CONTINUE
C READ THE DATA

READ(B,1OD1)IPIPE,NSTRBT,NEND,ITYPE.DRTUH.PARRH,XCOﬂRD,YC{
1001 FORMAT(4I10,UF10.4)

C IS THIS THE LAST DATR CARD?
IF(IPIPE.EQ.0)GO TO 50
E=E+1

Cc STORE THE ELEMENT DATA

PIPE(E)=DATUM

C ELEMENT TYPES GREATER THAN 4 ARE
c SPECIAL CASES AND HAY REQUIRE DIF-
C FERENT VALUES TO BE STORED IN PIPE.
IF(ITYPE.GT .4)PIPE(E)=ASSIGN(ITYPE)
NTYPE(E)=ITYPE
USERP(E)=IPIPE
COORDS(E, 1)=XCOORD
COORDS(E,2)=YCOORD -
PRMTR(E)=PARAM
c
c CONSTRUCT THE INCIDENCE MATRIX

Do 10 I=1,V
IF(USER(I).NE.NSTART)GO TO 10

USEk=GOODHAN 274 BU255 JOINT COMPUTER FACILITY,

50

aQaaoan

28

AT ,E)=1
GO TO 20
CONTINUE -

V=V +1
USER(V)=HSTART
ACY ,E)=1
CONTIHRUE

DO 30 I=1,V
IF(USER(I)NE.NEND)GO TO 30

MIT

A(I’E)=—1

GO T9o 5

CONTINUE

V=V +1

USER(V)=HERD

A(V,E)=-1

GO TO 5

CONTINUE

IF(E.EQ.0)CALL ERROR1

Vi=V-1

NSRCE=0

NON=0
REARRANGE THE SUBSCRIPT VECTOR SO
THAT SOURCES APPEAR AS THE RIGHTMOST
ELEMENTS

DO 60 I=1,E

IF(RTYPE(I).EQ.3)GO TO 53
NON=NON+1
SUB1(NON)=1I)

29

SFR=GOUDNAN 274 84255 JOINT ONMPUTER FACTLTTY, MIT
GO TO 60
53 CONTINUE

D

aaaoaam

QOON

QOonn

80

TSUB=E-~-NSRCE
SUS1(ISUB)=I
NSRCE=NSRCF+1
CONTINUE

SORT THE COLUMNS OF THE A YATRIX
AND ALL THE DRTA VECTORS ACCORDING
TO THE ORDER OF THE SURSCRIPTS IN
SUB1, '

CALL ICSORT(A,V,E,SUR1)

CALL SCRT(PIPE,E,1,SUB1)

CALL ISORT(NTYPE,E,1,SUR1)

CALL ISORT(USERP,E,1,SUB1)

CALL SORT(COCRDS,E,2,SUB1)

CALL SORT(PEMTR,E,1,SUB1)
SET B=TRANSPOSE OF A

DO 70 I=1,E

O 70 J=1,V

B{(I,T)=A(J,I)

ROW REDUCE B TO FIND THE INDEPEN-
. DENT COLUHNS OF A.
CALL REDUCE(E,E,Y,SUB1)

FILL B WITH THE INDEPENDEWT COLUMNS
OF A. THESE REPRESENT THIX TRER
BRANCHES FOR THE NETHORK.

DO 80 J=1,V1

ISUB=SUB1(J)

DO 80 I=1,V¥1

30

USER=GOODMAN 274 Bu255 JOINT CONPUTER FACILITY, WIT
C
C B=INVERSE OF B
CALL IRVERS(R,V1,IDIM,TEMP,M1,M2)
C
c QF=PEODUCT OF MATRICES B AND A
DO S0 I=1,V1
Do 90 J=1,E
QF(T,J3)=0
DO 90 K=1,V1
QF(I,J)=0F(I,J)+IFIX(B(I K))*A(K,J)
90 CONTINUFE
C
c FIND THE IDENTITY SUBMATRIY IN QF.
L=E-V1
IV2=V-2
C
Lo %1 J=1,E
21 SUB1(J)=a
c
DD 100 I=1,V1
C
DO 85 JJ=1,E
J=SUB1(JJ)
IF(QF(I,J).NE.1)G0O TO 95
ICOUNT=0
C

DO 93 I1I=1,V1
IF(QF(II,J)«EQ.0)ICOUNT=ICOUNT+1
93 CONTINUE

IF(ICOUNT.NE.IV2)GO TO 95
ISUB=L+I
ISAVE=SUB1(ISUB)

31

USER=GOODHAN 27u BH4255 JOINT COMPUTER FACILITY, NIT

SUB1(ISUB)=J
SURI(JIT)I=LISAVE
GO TO 100
AN CONTINUE
C
CALL ERRDR3
140 CONTINUE

C CONSTRUCT THE FUWDARMENTAL CIRCUTY
C MATRIX, B.

D0 110 T=1,L

D0 110 J=1,L

3(T,J3)=0

IF{I.EQ.J)B(I,J)=1
110 CONTINUE

Li=L+1

DO 120 I=1,L
ISUB=SUB1{I)
DO 120 J=L1,E
KSUB=J-L

20 B(I,J)=-CQF(KSUB,ISUB)

SORT THE ELEMENT DATR, CONSISTENT
WITH THE ORDERING OF THE COLUMNS
OF QF.

CALL SORT(PIPE,E,1,SUB1)

CALL ISORT(NTYPE,E,1,SUB1)

CALL ISORT(USERF,E,1,SUB1)

CALL SORT(COORDS,E,2,SUB1)

CALL SORT(PRWTR,E,1,SUB1)

AOQMNOND

USPR=GOODMAN

NSRCE=0

NON=0
DO 130

2704 84255

32

JOINT COMPUTER FACILITY., MYIT

SEARCH THE ELEMENT TYPFS FOR THE
FLOW SOURCES

I=1,L

Tt (NTYPE(T).EQ.3)G0 TO 125
HON=NON+1
SUB1(NON)=1I

GO TO

130

125 CONTIRUE
ISUB=L~-NSRCE
SURT(ISUB)=I
NSRCE=NSRCE+13
130 CONTINUE

RENUMBER THE LINK FLOWS SO THAT

THE FLOW SOURCES HAVE THE HIGHEST
SUBSCRIPTS. INTERCHANGE THE APPRO-
PRIATE ROWS OF B AND SORT THE ELEKENT

DATA VECTORS,
DO 135 I=4,L
DO 135 J=L1,E

QF(I,X)=B(I,J)

CALL ISORT(QF,L,V1,SUB1)
bo 137 1=1,1L

DO 137 J=L1,E

C
C
c
c
C
K=J-L
135
K=J-L
137

B(I,J)=QF(I,K)

CELL SORT(PIPE,L,1,SUB1)
CALL ISORT(NTYPE,L,1,SUB1)
CALL ISORT(USERP,L,1,SUB1)

33

USEE=CODDMAN 274 gu25s JOINT COMPUTER FRCILYITY, MIT

CALL SORT(COORDS,L,2,SUR1)

CALL SORT(PRHTR,L,1,S0B81)

DO 140 I=1,L

X(I)=1.0

IF(NTYPE(I)EQe3)2(I)=PIPE(I)
140 CONTINUE

RETURN
END
PROGRAN INIT HAS NO ERRORS

ok

RS RS RO NN NoNe N RS

QOO

oA

34

R=GNODYAN 274 BuU255 JOINT CCHMPUTER FACILITY, M“IT
PROGRAM: F

ARGUMENTS ¢ A - THE YECTOR EQUAL TO ®(Y¥)

X - THE VECTOR OF LINK FLOWS

CRALLS: PRESS, ABS

DESCRIPTION: SURROUTINE F EVALUATES THE VECTOR

FUNCTION F(X) WHICH IS THE SuM OF
THE PRESSURES AROUND THE FUNDAMENTAL
CIRCUITS

SUBROUTINE F(A,X)

IMPLICIT INTEGER*2 (I-N)

INTEGER*2 E,XRTYPE{30}

REAL P{30),0(30),B(30,30),PIPE(30)
REAL X{(30),A(30)

INTEGEK*2 SUB(30)

CoO¥MON E,L,P,0,B,NTYPE,PIPE,NSRCE

Q=PRODUCT OF MATRICES H TRANSPOSE
AND X. Q IS THE VECTOR OF FLOWS
THROUGH ALL THE ELEMENTS OF THE

NETWORX.
LL=1
DO 10 I=1,E
Q(I)=0.

b0 10 K=1,LL
Q(I)=0(TI)+B(K,I)*X(K)

CALCULATE THE PRESSURE DROP ACROSS
ALL THE ELEMENTS FROM THE VECTOR

OF FLOWS, THE PROCEDURE IS DIFFER-
ENT FOR EACH TYPE OF ELEMENT.

35

UZEH=CGOODXAN 274 BU255 JOINT CCHMPUTER FRACILITY, HIT

PrXP=,75
HSRCE=0
Do 100 I=1,E
0Q=0Q(T)
ITYPE=NTYPE(I)
IF(ITYPE.GT<U4)GO TO 30
GO TO (40,50,60,70),ITYPE
30 CALL PRESS(I)
30 TO 100 ‘
LG PCI)=PIPE(CI)*OQ*ABS(QQ)**PEXP
GO TO 100
50 P(T}=PTPE(I)
GO TO 100
60 RSRCE=HSRCE+1
SUB(NSRCE)=I
P(I)=D.
GO TC 100
70 PC(I)=PIPE(TI)*QQO*ABS(QQ)
1C0 CONTINTIE

C CALCULATE PRESSURE DROP AROUND
C FUNDAMENTAL CIRCUILT LOGPS

DO 105 I=1,LL

A(I)=0.

DO 105 K=1,E
105 ACI)=R(I)+B(I,K)*P(X)
IF(NSRCE.EQ.O0)RETURN

SET THE PRESSURE DROP ACROSS ALL
FLOW SOURCES SO THAT KVL IS SATIS-
FIED.

PO 110 I=1,NSRCE

ISUB=SUB(I)

a0

36

DSEE=GOODMAN 278 84255 JOINT COMPUTER FARCILITY, WIT
110 P(TSUR)=-XA(ISUD)

RETURN

FUD

PRGGRAM F HAS NO EZRRORS

PROGRAX

s

L]
-

&

»

"
-

’

o)
-

u

C
(
{
{
C
e
¢
e
C
c
¢
C
C

37

BR=COODHAR 274 84255 JOINT COMPUTER FACILITY, MIT

PROGREM: PRESS

ARGUMENTS s I - THE SUBSCRIPT IDENTIFYTIHG AN
ELEMENT WHOSE PRESSURE DROP IS TGO
BE CALCULATED.

CALLS: NOTHING

DESCRIPTYXON: PRESS IS R DUMMY SUBROUTIKF TD CAL-
CULATE THE PRESSURE DROP ACROSS
EXOTIC NETWORK ELEMERTS.

SUBROUTINE PRESS(I)
IHPLICIT INTEGER*2 (I-N)
INTEGER*2 E,NTYPE(30)
REAL P(30),0(30),B8(30,30),PIPE(30)
COMMON E,L,P,Q,B,NTYPE,PIPE
P(I)=20.
RETOURWY
END
PRESS HAS RO ERRORS

PROGRAM

38
UsER=CGOODMAN 27L BU255 JOIRT COMPUTER FMCILITY, H
PROGCRAM: OUTPUT
LRGUYENTS NONE
CALLS: eXIT

DESCRIPTION:

OO acan

OUTPUT PRINTS OUT THE DESIRED
RESULTS, THEN CALLS EYIT.

SUBROUTINE OUTPUT
TAPLICIT INTEGER*2 (I-H)

INTEGER*2

E,HTYPE(30)

REAL P(30),Q(30),B8(30,30),PIPE(30)

INTEGER*2

USERP(30)

COMMON E,L,P,0,B,NTYPE,PIPE
COMMON/BLK 1/USERP
WRITE(5,1000)

1000 FORMAT(//,6X,°PIPE NO."',15X, PRESSUGRE®,15X, 'FLOW RATE",/)

DO 100 I=1,E
100 " WRITE(5,1010)USERP(TI),P(I),Q(T)

1010 FORMAT(1X,

CALL EXIT
END
OUTPUT HAS

I10,15X,F10.4 ,15X,F10.4)

NO ERRORS

g

By

T

TE Tl

39

USER=GOODNRR 274 BU25S JOINT COMPUTFR FRCILYTY, WIT
C PROGRAM: REDUCE
c

¢ ARGUMENTS: A - A MATRIX TO BE ROW REDUCED
M ~ NUMBER OF ROWS IN A

~
L

C N - NUMBER OF COLUMNS IN 3
C SUB - VECTOR OF SUOBSCRIPTS INDICAT-
¢ ING THE REARRAMGEHERT OF A
C DURING REDUCTION.
C
C CALLS: NOTHING
Cc
C DESCRIPTION: REDUCE PERFORMKS ROW REDUCTICKN ON
C RRGUMENT HATRIX RBR. THE VECTOR SUB
r CONTAINS THE ORIGINAL A MATRIX SUB-
C SCRIPTS IX THE FINAL ORDER. REDUCE
C ONLY REDUCES THE MATRIX RELOW THE
C DIAGONAL.
C
C
C
SUBROUTINE REDUCE(A,H,N,SUB)
IMPLICIT INTEGER*2 (I-N)
INTEGER*2 SUB(M)
REAL R(30,30)
D0 10 I=1,M
10 SUB(I)=I
C
N1=K-1
DO 100 X=1,H1
C

DO 20 I=K,M
IF(A(I,K).EQ.0.0)GO TO 20
PIVOT=A(I,K)

USTR=GOODMAR 274 BU255

20

C

30
C

40

45

50

60
c
100

C

PROGRANM

REDUCE HAS

ISUB=T
G2 TO 3%
CONTINUE

CALL ERRORU
CONTINGE

DO 40 J=1,H
HOLD=A(ISUB,J)
A(ISUB,J)=A(X,Jd)
L{K,J)=HOLD

ISRVE=SUB(ISUB)
SUB(ISUBR)=SUB(K)
SUB(K)=ISAVE
IF(K.EQ.N1)RETURN

40

JOIHT COKPUTER FRACILITY, MIT

IF(PIVOT.EQ.1.0)G0 TO 52

DO 45 J=1,N

ACK,J)=M(K,J)/PIVOT

CONTINUE
K1=K+1

DO 60 I=K1,K
UMULT=A(I,K)
DO 69 J=K,N

ACI,J)=A(I,J)-UNULT*A(K,J)

CORTINUE

END

NC ERBORS

LA R @

41

USER=GOODMAR 274 84255 JOINT COMPUTER FACILITY, MIT

TG O

Pt e i e T e T
4« 12 VvaL

[P AR

QOO0 adaac

10

PROCRAM: INVERS

ARGUMEHNTS ¢ A - MATRIX T3 BE INVERTED

N - NUMBER OF ROWS USED TN A

K - NUMBER OF ROWS ARD COLUMNS TO
WHICH A IS DIMENSIONED IN THE
CALLING PROGRANM.

B - AR WORKING VECTOR OF DIFENSION
X SQUARED CR LARGER.

M1 - WORKING VECTOR OF LENGTH K

M2 - WORKING VECTOR OF LENGTH X

CALLS: MINV, RBS, ERROR2

DESCRIPTION: INVERS FINDS THE INYERSE OF THE
MATRIX AR. IT IS USEFUL WHEN THE
MATRIX TO BE INVERTED ONLY CONTAINS
USEFUL DATA IN THE OPPER N BY N
SUB-MATRIX. INVERS PACKS THE MATRIX
THEN CALLS THE SSP ROUTINE MINV TO
DO THE ACTUAL INVERSION. THE-RESULT
IS STORED IN A, THEREFORE THE
ORIGINAL IS DESTROYED.

SUBROUTINE INVERS(R,N,K,B,M1,M2)
IMPLICIT INTEGER*2 (I-N)

REAL A(K,X),B(N,N)

REAL M1(N),M2(N)

DO 10 I=1,N

DO 10 J=1,N

B(I,J)=A(1,J)

Bl o

PROGRAM

42

USER=GOODMAN 274 84255 JOINT COMPUTER FACILITY, MIT

CALL 4INV(B,N,DET,M1,H2)
IF(ARS(DET).LT..0001)CALL ERROR2
DO 20 I=1,N

20 AC(IFJ)=B(T,J)
RETURN
END
INVERS HAS HO ERRORS

PROGRAM

43

GSER=GOODNAN 274 84255 JOINT COMPUTER FACILITY,
C PROGRAK: ASSIGH

C ARGUMENTS: N - NUMBER OF ELEMENT FOR MHICH

c L VALUE OF PIPE MUST BE ASSIGNED.
E CALIS: KOTHING

[P I

oMo n

DESCRIPTION:

ASSIGN IS R DUMMY FUNCTION., A
FUNCTIONAL VERSION WOULD RETURN A
NUMBER, USUGALLY A DATA SET NUMBER,
TO BE STORED IN THE DATA VECTOR,
PIPE. ASSIGN WOULD BE RFSPONSIRLE
FOR INTERPRETING EXOTIC USFR
ELEKMENT TYPES.

FUNCTTION ASSIGHN(N)

ASSIGN = 75
RETURN
END
ASSIGN HAS NO ERRORS

MIT

PROGRAK

44

USER=GNODMAN 274 BU255

SUBROUTINFE ERROR1
WRITE(5,1000)

JOINT COMPUTER

FRCILITY,

10060 FORMAT(//,* NO PIPES HAVE BREEN ENTER®D',//)

CRLL EXIT
END
ERBRORY HAS RO ERRORS

MIT

-—

[—

— ——m————

LIl -

ETETEEE R

PROGRAH

45

USER=GOODHARN 274 84255 JOINT COMPUTER FRCILITY, MIT

SUBROUTINE ERROR2
HRITE(S,1000)
1200 FORHAT(//,° INCIDENCE MATRIX TREE COLUMNS WERE DEPENDENT®

CALL EXIT
E¥D
FRROR2 HAS

NO ERRORS

46

USER=GOODHAN 274 84255 JOIRT COMPUTER FACILITY, WIT

SUBROUTINRE ERROR3
WRITE(5,1000)
1200 FORMAT(//,° UNABLE TO IDENTIFY IDENTTTY SUBMAYRIX®,//)
CALL EXIT
END
FROGERAM ERROR3 HAS NO ERRORS

47

UElin=600DMAN 274 84255 JOINT COMPYUTER FAECILITY, MIT

SUBROUTINE ERRORU
WRITE(5,1000)
1000 FORMAT(//," 0 NOMN-ZERD PIVOT FOURD®,//)
CALL EXIT
END
PROGRAM ERRORG HAS NO ERRORS

RERE T TEW § 9

Lo

e

PROGRAN

48

SER=GOODMAN 274 84255 JOINT CO¥PUTER F2CILITY, HIT
C PROGRAMN: ISORT
C
C ARGUMENTS: A - MATRIX TO BE SORTED
C M - XUMBER OF ROWS IN 1
o # - NUMBER OF COLUMNS IN A
C SUB - VECTOR COWTAINING SUPSCRIPTS
C IN THE DESIRED ORDER FOR THE
c ROWS OF A.
C
C CALLS: NOTHING
C
C DESCRIPTION: ISORT (INTEGER SORT) IS A FROGRAN
C TO SORT THE ROWS OF AN INTFGER
C MATRIX, A, IN THE ORDER LICTATED
C BY THE VECTOKR OF SUBSCRIPTS, SUR.
C
C
c

10

20

SUBROUTINE ISORT(R,M,N,SUB)
IMPLICIT INTESER*2 (I-N)
INTEGER*2 A(30,30),B(30,30)
INTEGER*2 SUB(M)

DO 10 I=1,M

ISUB=SUB(I)

DO 10 J=1,N
B(I,J)=A(ISUB,J)
DO 20 I=1,NM
DO 20 J=1,N
A(I,J)=B(I,J)
RETURN
END

ISORT HAS NO ERRORS

439

USER=GOODNHAN 274 84255 JOINT COMPUTER FRCILITY, ¥IT
C PROGRAN: SORT

C

C ARGUMENTS: A - MATRIX TO BE SORTED

C M - RUMBER OF ROWS IN R

C N - NUMBER OF COLUHNS IN A

C SUB - VECTOR OF SUBSCRIPTS

C

C CRLLS: KOTHING

C

C DESCRIPTYION: SORT SORTS THE ROWS OF THE MATRIX
C R IN THE ORDER DICTATED BY THE

C VECTOR SUB.,

C

C

C

10

20

SUBROUTINE SORT(A,H,N,SUB)
IMPLICIT INTEGER®*2 (I~N)
REAL A{(30,30),B(30,30)
INTEGER*2 SUB(Y)

DO 10 I=1,

|

ISUB=SUB(I)

DO 10 J=1,

N

B(I,J3=A(ISUB,J)
DO 20 I=1,H

DO 20 J=1,N
A(I,J)=B(I,J)

RETURN
END

PROGRAM SORT RAS

NO ERRGRS

50

USER=GCODMAN 274 BL25S JOINT COMPUTER FRCILITY, HMIT
PROGEAK: ICSOKT
ARGUMENTS A - MATRIX TO BE SORTED

M ~ NUMBER OF ROUS OF A
N - NUMBER OF COLUHNS OF A
SUB - VECTOR OF SUBSCRIPTS

DESCRIFPTION: ICSORT (INTEGER COLUKN SORT) SORTS
THE COLUKNS OF AN INTEGER ¥ATRIX,
E, ACCORDING TO 'THE ORDER DICTATED
BY THE VECTOR SUB.

aaoaoaonaoaaoaoOoaaaon

SUBROUTIRE ICSORT(A,¥,N,SUB)
IMPLICIT INTEGER*2 (I-N)
INTEGER*2 A(30,30},B(30,30)
INTEGER*2 SUB(N)
P 10 J=1,N
JSUB=SU3(J)
DO 10 I=1,M

10 B(I,J)=A(T,JSUR)
DO 20 I=1,M
DO 20 J=1,N

20 A(I,J)=B(I,Jd)
RETURN
END

PROGRAM TICSORT HAS NO ERRORS

.0 OFERRTiING SYSTEM VERSION 2 REVISION 222 6/13/76 GENERATED 12/17/76 03:26.

HANTLING CHARGE $ 35/ JOB «35

LINES PRINTED PR1 § 1.25 / K LN .89

CARDS READ S 1.50 / X CD 1.03

PLOTTER VECTORS § .25 / 1000 «00

MODEL 70 SECONDS $25.00 / HOUR « 34

MODEL 80 SECONDS $35.00 / HOUR «00
TOTAL C

HARGE $ 2.61

274 84255 LOGGED OOT 05/19/17 23:45. S 6.54% LEFT AFTER 16 LOGINS.

K

51

*SMOTTOI YotTym unx wexboad ay3l UT PIATOS ST SAO0ge JIOMISBU IYJL

0° .Hn..u..m m.luu..m m"n_..m N."u..m
(1) GO d) SIS o I |
L(TT)
=0 (§ e1="e § wy () 01=0 o-e="eh 1) (1) ((})o1=a
(v)

z
= (9} W« I W2

m“u.ﬂ N."UM @"u.m

£/ J0FE BNY GOUSBO
/7 DUP
X >
*PN O CHIDWAT
*RL SSEPMAT
vl BTINARY
*RC OF34
*LC GORh
*LAST
CHLODHAY
EOF
EOF
QK
THUKRSDAY

SSPUAT BTNARRYY

8/19/717 23:37:05

PROGRAM LABELS:
1C00 *MAIN* 3DC6 INIT
7508 RSEIGH 755C ERROR1
8F5C ICLORT 97CC MINY
B5DC ABS a834 EXIT

COMMON-BLCCKS:
Fosu // EF90 BLK1

UNDEFINED SUBROUTINES:
NONE

TRANSFER ADDRESS 1C00

52

RTL

@

6972 F

75DC ERROR2
B26C ALOG
B8DA

EFCC BLK2

CCODHMAN

6DB0O PRESS

766E ERROR3

B364 REXP

4255

6DE4 OUTPUT
76F8 EREOR%Y
BE364 EXP

DISK WRITESa

PROGRAM ENLS AT: X°*BA7AR* AND REQUIRED 006A DISK REMADS;0068

FIND KEFS=0663 RECALL BUFS= 00662
EXECUTION BREGINS: @

PIPE NO.

PRESSURE

-162.473¢
11.0000
-5.8342
-1346,.,8977
-318,3394
350.2810
~930.,1758
-66.4411
-17608076
109.7641
~72.6421
~6.,80€6
22.6407
10.0000
-84,7491

-138.3076

FLOW RATE

-4.4323
102744
-0.9841
11.0000
10.0000
6.5677
-1100000
-11.0000
'4.“323
5.8u421
-4,1579
-0.9641
3.1738
0.9641
-4.1579
-0.1579

=Y ™M

53
£ 197 .5754
74 ekD

JCF VIO CPRRMTTNG SYSTEM VERSION 2 REVISION

Jus HANLLING CHARGE S 235 / JOB

5% LINRS PRINTED PR1 $ 1.25 / ¥ LN

<t CAPIS REXD 3 1.50 / K CD

o0 PLOITTER VECTNHRS $ «25 / 1000

25 #HODEL 70 SECONDS £25.00 / HOUR

CO MODEL 80 SECINDS $35.00 / HOUR
TOTAL CHARGE @

GOODMAYN 274 84255 LOGGED OUT 05/15/17 23:37

222

35
«06
e
.00
.20
o ()
« 69

S

5.8421

§/13/76 GERERATED

9.15 LEFT AFTER

12417

15 Lo

