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ABSTRACT

Simple models are required to handle nonlinear effects in

heat exchangers due to flow rate changes, and especially to,
flow reversal transients, such as occur in loss-of-coolant
accidents. This thesis presents very simple models for the

dynamic behavior of such systems. Exact linear distributed

models have been presented by Takahashi(2), Paynter and

Takahashi (1), and Hsu and Gilbert (9).Approximate methods for
simplifying these models include Friedly (4) who presented an

asymptotic approximation which satisfies dynamic response of

such systems at both low and high frequencies; however, this

technique involves an infinite order model using a distributed

system.

The simple models of the present paper employ finite
state models or "Lumped Models"; and two, three, and four lump

heat exchanger models are discussed. Both dynamic and static
behaviors of these models are compared with exact results. In
addition, some results for flow reversals are shown.

Studying the results for these simple models shows that

to get the best agreement with exact solutions, a linear
combination of the intermediate out puts should be used.The
benefits of such an improvement are shown.
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Finally, the monotonic parameters are calculated directly
and they are compared with graphical results which are
obtained by technique due to Paynter (8).

Thesis Supervisor: Henry M. Paynter
Title: Professor of Mechanical Engineering
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NOMENCLATURE

A Heat transfer area (m2 2 )

As Cross sectional area for each fluid (M 2 )

a U.A (dimensionlest)
M.C

a 2U.A (dimensionless)
cal

C Specific heat transfer at constant pressure kg.sec )
G(s) Transfer function (dimensionless)

cG Gain (dimensionless)

GIN Normalized gain (dimensionless)

j VP

K Gain, used for temperature in improved case (dimension-

less)

L Total length of heat exchanger's tubes or shell (m)

In Length of nth section (m)

M Amount of mass accumulated in each section (kgm)

M Mass flow rate (kgm/sec)

N Number of Lumped-Models (dimensionless)

Q Total heat transfer per unit time (cal/sec)

r Ratio of velocities of two fluids (dimensionless)

s ' Laplace transform variable with respect to & (dimen-
sionless)

Ti Temperature of ith fluid (t),(i=l,2,...)
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Tn Temperature of nth section (C)

t Time (sec)

en Time during that fluid goes through nth section (sec)

U Overall heat transfer coefficient (cal/m2.sec.C)

V Velocity of fluid (m/sec)

W'sh Shear work per unit time (joul/sec)

Temperature factor, in stirred tank assumption (dimen-
sionless)

Phase angle (deg.)

Dimensionless time

2 Density of fluid (kg/m3

Distribution coefficient for heat transfer (dimension-
less)

T.alor y a2

A Frequency (dimensionless)

Subscripts:

1 Supply flow (control agent), tube side

2 Demand flow (controlled medium), shell side

c Cold fluid

H Hot fluid

i Inlet

n nth section

0 Outlet
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SECTION I

INTRODUCTION

One of the problems which{ecently arisen is accounting

for thermal lag in fluid systems; in the general case, such

systems contain heat capacitance, which produce significant

effects in many situations such as mechanical, chemical, and

aeronautical applications where precise temperature control is

very important. Temperature-control systems in air-craft are

subject to extreme environmental variation. The controls must

be designed to adjust quickly to these changes in ambient

conditions so as to deliver an air stream without excessive

temperature fluctuation. The choice among proposed control

systems which achieve a required steady state is based on

their transient operation. It is then desirable that the ana-

lysis of systems be carried quite far with paper and pencil

alone leaving a minimum of adjustment to be made on a working

model. However, at present, temperature control problems are

solved mainly through costly experimentation on models of pro-

posed systems.

To obtain design information without experiment, equations

describing the transient operation of the separate parts of a
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proposed system must be solved. A major difficulty is that the

equations for many of these parts are so complicated that

only very rough approximate methods have been available for

their solutions. One such general system whichmused in almost

all areasisthe heat exchanger. U.pon changing physical or chem-

ical conditions of the working fluids flows in such a system,

it is then important to know what is happening in different

parts of industrial or power plants, etc., containingsuch heat

exchangers. Therefore, it would be very useful to determine sen-

sitivity of heat exchangers response upon changing different

parameters.

Finally, it should be mentioned that the engineer fre-

quently must simplify the basic scientific picture to make it

more useful for practical application. Calculations, which

render approximate results but at the same time allow a rapid

survey over a wide range of conditions and assumptions, are

important in the approach to an engineering problem. They

serve as timesavers in that they confine the more detailed

investigations to a smaller numerical range.The purpose of

this thesis is to explorE the task of finding simpler forms

of the exact equations. for dynamic response of heat-exchangers.



A PICTURE OF PRECEDING ATTEMPTS FOR THIS PROBLEM:

In the literature, dynamic performance of many heat ex-

changers of various configurations have been explored in very

great detail . Takahashi (2)presented transfer function analy-

sis of heat exchangers processes in 1952, then Paynter and

Takahashi (1) gave a new method of evaluating dynamic response

of heat exchangers, Hsu and Gilbert represented the same re-

sults of Takahashi in 1966. Wen-Jei Yang (17) has produced an

analysis of transient heat transfer in a vapor-heated heat

exchanger with arbitrary time-wise variant flow perturbation.

Myers and others (16),(18) analysed the transient response of

cross-flow heat exchangers, evaporators and condensers. Rea

and Ablow (13) presented a model for transient air tempera-

tures in a duct. They investigated experimentally and theoreti-

cally a thin-walled duct carrying heated air, and they found

the duct wall is shown to be an important heat reservoir.

Rizika (14) produced a method to find the thermal lag in sys-

tems such as heat exchanger and pipes. Dusinbere (19) showed a

numerical methods for calculation of transient temperatures

in pipes and heat exchangers. Finally Friedly (4) presented an

asymptotic approximation for exact solution of heat exchangers.

His method is useful both at high and low frequencies. All
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of these researches and evaluations are based on Profos(7)

method of evaluating such systems, and his operator is still

used for this problem.



SECTION II

EXACT SOLUTION AND FRIEDLY'S METHOD

Takahashi (2) used the Profos(7) operator to solve the

heat exchanger problem as follow:

T+-TTg
it

ta T T+ aT j

T

FIGURE(2-I): Profos Operator

From energy balance(applied for above element) following

formula is gained:

Where T is the surface temperature of solid.

By applying this result fortheat exchanger ofFig.(2-2),the

following results are produced:
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T I 9 KI
74-To7 "ii -a

-'p

T,

ot
-ITOrMIM

FIGURE(2-2):Counter-Flow and Parallel-Flow Heat-Exchanger

[*Plus sign is for parallel flow, minus sign is for counter-

f low.]

These results are based on the assumption that both fluids are unmixed,

solid capacities are neglected, and system parameters are constant.

By assuming that the "hot fluid" (tube side) of temper-

ature T is the control agent (supply side), and the "cold fluid"

(shell side), fluid of temperature T2is the controlled medium

(demand side), the transfer function is:

ML

1 1 1
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Then the transfer functions are intifollowing form:

i- For the parallel flow:

riiP.i P.
L df)-P...P (2-1)

Where j [ ,PiF(44) (;q-f+4,3]/ (2 -2)

ii- For the counter flow:

-(P,...P, t)+ ((I-(2-3)

Where ( . .t-4ts2

The parameters are defined as follow:

f, =a, + jnl

f,=a2+ jrg

go =a,

g,=aL

Friedly's approximate method is based on Schoe's(4)

approach to the dynamics of double-pipe heat exchangers, which

is in the general form of:

G(S)-- -T9'X ai4
I+1s 'a+47 (2-5)

Where 0q , 4sare constants which result from the high-fre-

quency limit of the exact transfer function and m results from

the low frequency limit. The time constant T is arbitrary and
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adjusted to match the exact frequency response as well as

possible. Friedly retained the delay time but eliminated the

adjustable time constant. Then his approximate form is:

Where:

T / K ,
In other words, he expanded the, denominator of exact solution

and neglected the termrof order two and more; therefore he got:

(+r)g - e+ -- 1

G(xo)=a g -'

Therefore his approximate transfer function is:

.(er:(2-

Where:

T j+r e
TR-.j

But as the results show , this method is infinite order

and Friedly used a distributed system motel.
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It should be mentioned that after presenting the exact

solution, Paynter and Takahashi (1) created another method

for evaluating which based on monotonic systems that Paynter

(3) presented. As Paynter says: The Laplace transform solution

of a monotone process can be written as:

Where the parameters 5 ,T,, ,TI, ,T are given in terms of

system constants, the symbol S is the complex variable of the

Laplace transformation. In summary,1measures the steady state

amplitude ratio between response and disturbance, T,. measures

the mean time delay between response and disturbance,T1 defin-

es the dispersion or att uation, and T the assymmetry or

phase nonlinearity. This characterization is very efficient

for any physical process where the step response is monotonic

and nondecreasing in time.

If the Laplace transformation of system is in the form of

Where the denominator polynomial may be either finite or

infinite, then the monotone parameters can be obtained direct-

ly by following relationships:
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Tm =aj

T I=a9 -2a1

T: =24 -6z% +6a 3

.a..... etc .a......0.0.

These monotonic parameters are obtained by this method

for simple model of this present paper.



SECTION III

ANALYSIS AND FORMATION OF HEAT EXCHANGER PROBLEM:

The dynamic performance of a cocenteric pipe heat ex-

changer could be characterized by sol ution of four simult-

aneous nonlinear partial differential equations, the assump-

tions for this analysis are:

I-The heat flow and temperature distribution are functiong

of time and axial distance from tube inlet.

2-Both the inner radius and the outer radius of the tube

are assumed constant.

3-The tube material is homogeneous and isentropic, the

density and the specific heat are conscant.

4-The thermal conductivity of tube material is zero

in the axial direction; the thermal conductivity of the tube

material is considered infinite in the radial direction,this

condition valid for thin metal walls.

5-There is no energy source within the tube material it-

self.

6-The thermal conductivity in the outer wall in the long-

itudinal direction is zero and in the transverse direction is

finite, a condition valid for thick insulated walls.

7-The film coefficients of heat transfer between the fluid

and tube material h are uniform and constant over the inner
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and outer tube surfaces.

8- The specific heats at constant pressure of both the

inner and outer fluids are assumed to be constant.

9- The fluid pressure at any section is indepentent of

time for both inner and outer fluids.

Nonlinear partial differential equations are:

Heat balance, for inner fluid:

IV I /U1 A 1>t 1

Heat balance, inner wall:

9T1i ( T.1) + jP44Tral T)
AllC, M1C,

Heat balance, outer fluid:

%~VtatV'bT. ') kL
AllTIPI [4

Heat balance, outer wall:

it - aA -SJ

[*Positive sign is for parallel-flow, negative sign is for

counter-flow.]

These results can be gotten by Profos(7) operator, in
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appendix(a) there are the mannersof getting these formulas...

These formulas are for general case that the thermal storage

of walls aren't negligible.

Analysis the problem consists of two parts: Static case,

and Dynamic response, as follow:

STATIC CASE OF HEAT EXCHANGERS:

Based on basic assumptions and neglecting the thermal

storage of walls, for steady state case, from energy balance

(appendix-a), the results are:

for counter-flow

T

lhe -- Y //I k&///// -+T+--M2TCA- //)WC

M,1

FIGURE(3-1): Counter Flow Heat Exchanger
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A model for this counter-flow case is shown in figure

(3-2):

dop

9

?usAhfCl>Tc)

I

FIGURE(3-2): Model for Counter-Flow Heat Exchanger

Since the objective of this thesis is to reduce the math-

ematical model to a set of simultaneous ordinary differential

equations, the system will be "finite differenced" or "lumped"

The exchanger is divided into N sections (Fig.3-3) with

each section on tube side corresponding to a section on the sh-

ell side. Ili
I.

a 2 I

K Dd

KI

S.. . . . I. . . . . .

FIUR(33:It H anger

FIGURE(3-3): Lumped Heat Exchanger

1C2 Li4 sI, m=+

J

TO V,

I
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For each lump the Profos(7) operator is used then:

T qj- t 49( i-T Hot Side

T- - ( -- 1 j) Cold Side

Calculations to get these results are in appendix(c). For

static case(steady-state) they are:

. (hr 1 T)=

T 1 - i ( 4x -7 j m=o(3-2)

Therefore, it depends on number of lumps, and it is clear that

by increasing this number better results will be gotten.

For N=2:

i- Parallel Flow Heat Exchanger:

IQ, Qt

Tcs

FIGURE(3-4): Two Lumped Models Heat Exchanger(Parallel)

Calculations are in appendix(c) which give following
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results by disturbing only inlet temperature of hot side fluid:

Ta _

'I'

-~ _

TC

+Tfa,%)(%+9Szt- a )

( + fz)O+t ) eaa2

+ )-qa,2)

(+ ca)(i+cE) -9ga,R1

ii- Counter Flow Heat Exchanger:

~I H VI
aQ 2

FIGURE(3-5): Tow Lumped Models Heat Exchanger(counter-flow)

The beauty of this model is that for counter-flow only

one of the fluids is reversed and everything is the same:

=C

TO,

CTHT02
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Now, for different values of a,,al we can compare the re-

sults of this model and results of exact solution, but by

changing q and T, the optimum results can be gained.Table(3-1)

through(3-4) contain the results of different values of a , a,

and IT.

For N=3:

i-Parallel Flow: As shown following , for this case

there are six equations for six outlet temperatures as shown

in Fig. (3-6):

Equations are:

,gjf.. 1 kt'DhRI Cafo
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fTzz rf l 4~-I1%2) Ts

L392 14 wOTQ .-m(I %) T4%20

a ] Tnf

IQ, Q2

T4

mQ3

t *i A2T  *4-
ag -MMa ~ m o& 1 oe9

FIGURE(3-6): Three Lumped Models Heat Exchanger(parallel-flow)

Therefore, results for disturbing only inlet temperature

of hot fluid(T,) are:

qI+ 6.t':(cP f)A Rt+'ajt4a) .rC, L)+'C 3

it (l+0I4)i-1

3
17 6*14) +f; A z~t724sb,+ allr) +qreV:&at 40+l%

(+r Ul+%R2)

mommommommm

=won-ow

Now*

TC44

own-"
3

7-T1=1

I
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IA _.

w-wflat+ Ta2

~+e~a1 -'-ce a2

ii- For Counter-Flow(N=3): As shown in following, these

six equations are for this case(see Fig.3-7):

T,

FIGURE(3-7): Three Lumped Models Heat Exchanger(counter-flow)

0,04
4Q2

IQ3

/000"

TC 494)

TRS

To, 
Alto 

+1 
cpsa
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i, (i a,) T -+% a, q o

OaT,2t T - f--c14, az)T4ao

Th,--( a.)T+.ia, 1T3-o

ef1 14iT3 -- r' C1 + -9I4&S)T 1 =n

'T-(-3a,)4%-+% ,Tc==e

Tg A.14-rTh O-t% )T%-

Results for disturbing Tm are:

Tat +aTeta)a%)(9)q a,

3

Ta ._C 6+ 'aa2)T6+%

'3;'_ =__2(+%0a 2)Q&+?J )+'44Tq)

CIL#
_Es._ ____ 64a,)( + % 9)(,+ %4+q. e)

Tat(i+/a~A)(e~a+%XtA~ge,..at-tF(+.,.gp. Liz)g
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CL 3 Z- +TiAL0 t aI&S)S

RI C+%attatbetux+f a

The results for different values of a,,a,cgIf, and g

are in tables (3-1) through (3-4)

For N=4:

i- Parallel flow heat exchanger, for eight outlet tem-

peratures as shown in Fig.(3-8) there are eight equations

which can be obtained by using the energy balance for each

section.

0, Q4QQ

FIGURE(3-8): Four Lumped Model Heat-Exhanger(parallel-flow)

Ifat +T, -C14otes) Tc1cr
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% To +s-a -0%):*

V3-- O+9-)24 +% 14!-O

'3( 14 t 'N1-,-(.SC.

7 4--6+%G,)''.) -H40+ TJ=.

-v,- (.i+04A)Ts ++ 1 ,To4

q4p,7 +14 -O+%af4,)Te

The results for disturbing TM are:

T ( a ,cJ a2)

(I+%f+%ft)

3

=f4y +qaIg+q+,a , +, 2,

S.(+a.%+ ;a,+ Q )
(O+%aC+%RaY$0+Afa)

('., +3$az)Cj+'RQ)+Yas)
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ii- For Counter-Flow(N=4): from appendix(e) which shows

how to get the equations, and Fig.(3-9)the following results

obtained:

T" T2 T3T 4T

0,, '4,Q
dTO Tc4 Tcu ./ T Tco

FIGURE(3-9): Four Lumped Models Heat-Exchanger(Counter-Flow)

Tm .-- (i-+ ,a,)7u-i + aT = 0

% ,4T +rT -0 +% ) To'I- v

% 0 il+ TO -t I+ ,)Tf =

TP-(i+q3a) o,+ qi, T3

Tr,72z-O+%R,)%Te
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- -o+i* ,)%t.

Therefore, the outlet temperatures by disturbing T are:

r ~ h4U }et s44z&++4WA44) f4iwmt+%I6ERIt%

T). 
+)

Ti + tvllx N
To get Lt~l OU, Ti

I- se (+t-R . i.Ux)

T+a,)
leC

C+A)tai1 ,)

+*( g)('4tegs),o p.wqa Ts
,L&T,)(w'i'eaA

gal

ra

To,

--. m_4._4t a++(q+IP+to f9jqpfra? I l s
(.+'qa.J6+-ara) &+ %a)O+%a,)

I
+ -Fa

IR

TeLu'

141 To

rH

rM,

TO;

1C1_

1i
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Adding the number of Lumped elements gives a better solu-

tion compare with exact results, but if only a simple model is

desired then only two, three, and four Lumped elements need to

be used, as shown later, by choosing good values for the

distribution coefficients Tf & 'a results will be very close to

exact results.

The restrictive assumptions which are shown at the begin-

ning of this analysis may be omitted and the solution will

appear for the more general case. This solution can be real-

ized by virtue of the Lumped Model approach via appropriate

choice of parameters. Quantitive effects of variable heat tra-

nsfer coefficients, existance of heat capacitors, heat inter-

action with ambient or any other cases can be practically ob-

tained only by getting the results of a few equations in a

very simple form.

The results of steady state(static) case are tabulated

and plotted. In appendix(a) the exact solutionsare presented,

for steady state case, and in Fig.(3-12a) through(3-13b)the

results of exact method and several Lumped Models are shown,

for the static case.

Because of differences between exact results and the

Lumped Models, fitting the Lumped Model parameters via the
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exact solution yields substantial improvement. First the para-

llel flow case is fitted and its effects on counter flow are

shown, then the results of fitting counter flow and its eff-

ects on parallel flow are discussed.

The exact equations for static cases (as they are presen-

ted in appendix a) are:

i- For Parallel Flow:

ii=t a2 t+ta,

a.+ i 1

JIL
TTo

FIGURE(3-10): Parallel-Flow Heat Exchanger

ii- For Counter Flow:

E(R-met") a(it,&

a(4u a
a. iC4

(3-3)

(3-4)

(3-5)TO)

T,
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Ii cd - W 4]
(3-6)

a,-..a1 gCQ-agt

fit)1

.4

lit

FIGURE(3-11): Counter-Flow Heat-Exchanger

Now, for two special cases, the results of static case are

computed and plotted:

1)- For case: a,4 ,v aI=1

T2 = TC (cold fluid)

Parallel Flow 4

Ti To (hot fluid)

L o +

1;ot 4-iF3

Counter Flow

T2.

IL

(3-7)

(3-8)

6 To wm-
T4 i =7b

lb

I

T

I Nip

V
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2)- For case: a,=1 , a1 =1

Parallel Flow (3-9)

Counter Flow (3-10)

Sot

The results of these two special cases are plotted in Fig'

(3-12a) through(3-13b), as they indicated these results bear a

very good agreement with Lumped Model results.

For making clear and easier comparison, the results of

static cases for outlet temperatures are plotted respect to

number of Lumped sections. For determining the approximate

slopesof these results, they are plotted respect to Nm, that N

is number of Lumped elements, and m is an exponent value which

makes the relationship linear, and Fig. (3-14) through(3-17)

show these resultsindicating for each case the minimum
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number of Lumped elements which gives the best results, and

they are shown on the figures (3-14) through(3-17)

For preceding special cases, the outlet temperatures are

fitted as follows:

a)- Fitting Parallel Flow: Tables (3-1) through (3-4)

contain the results of Lumped Models-outlet temperatures for

each value of I , by calling those data, and putting x=O or

x=1 in equations (3-7) through (3-10), the results are:

For case a =4 , a,=1

Parallel Flow: - -- 96==a 0_R =,Z064

Lumped Models:

q6 21837 ,Tm

Counter Flow:

Tip rig

rT'I Lexac s .2x4 .-

Therefore, by fitting the parallel flow with exact re-

sults, the counter flow gets the 90% value of the exact re-

sults, in appendix(d) calculations for other cases(differentV)

are presented and their results are in tables (3-5)&(3-6).
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b)- Fitting Counter-Flow: The results of Lumped Models

and exact results make following calculations, they are for

whole values of 'f, in appendix(d):

For a,=4 , a.=1

Counter Flow:3k 22

Tom Tc)L L4,

Parallel Flow: Tge

Therefore, 1.109

Then by fitting the counter flow with exact results, the

parallel flow gets the 10.8% higher of exact value. Therefore,

as the results show it is better to fit the parallel flow and

improve the counter flow. Figures (3-14)through (3-17) show

the fitting results for different flow, and different cases.

This improvement of static case, by fitting the outlet
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temperature, is useful for dynamic and transient responses,

because the Lumped Model matches the exact solution at low

frequency(by fitting) and it improves the results for high

frequency or in early transient time, as they are shown later.



SECTION IV

DYNAMIC AND TRANSIENT RESPONSE OF HEAT-EXCHANGERS:

In the first part of this thesis, the steady state case

was discussed and equations were obtained showing the temper-

ature gradient as a function of location of each Lumped sec-

tion in the heat-exchanger. The more general case of unsteady-

state operation can now be assumed so that the dependent tem-

perature variables are functions of the independent variables.

Since there is more than one independent variable, the rela-

tionship between temperature, time, and distance can be stated

as a partial differential equation, as it is shown in(l), (4),

(6). However, in keeping with the objective of this thesis,

this partial differential equation can in turn be written

as a set of simultaneous ordinary differential equations. For

this staged systemitis always possible to use the canonical

transformation to uncouple a large number of simultaneous equ-

ations and write them in terms of single first and second or-

der systems. However, there are cases where it is both simpler

and faster to make a direct attack on the problem. A direct

approach is particulary advantageous when the coefficient
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matrix is bi-ortri-diagonal, since for these cases the eigen-

values, or characteristic roots, can be obtained analytically.

Lumped Formulation

As fig.(4-1) shows, a heat exchanger is divided by N

Lumped, from first law of thermodynamics(energy equation),

there is following relationship for each Lumped:

Rate of Heat Accumulation=Heat Flow in- Heat Flow outi

Heat Transferred

ocTo

1

FIGURE(4-1): Lumped Heat Exchanger Tic 1c

T C M _% _ _P _ C4 P C o l d S i d e
All - r.

Oc u0T ;Oh

FIGURE(4-2): Element of Heat Exchanger
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For analysis the problem one of the sections should be

formulated for energy balance and then it can be developed for

other sections, that section analysis can be the same as

Profos operator(7). By using above relationship for each sec-

tion(as show in fig.4-2) the results are:

or hot side:

Rate of heat accumulation Cl1T

Heat flow in =N ' =V4 C

Heat flow out =M (Ra ' ICr

Heat transferred = P=JfA(l-TC)

Therefore, energy balance is:

or

( TnT")(4-1)

An used for area because all of the sections don't need

to be equal, only hot and cold sections in the same number

should be the same.

MH =4A 1 n A In = volume of section n

M 4 =4As Vh

By assumption of constant density and constant geometry

for both sides:

continuty (mass conservation)-)As V 1  p As V2

or V =const.
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If V defined as the time which fluid going through sec-

tion n then:

Therefore, f4

and

If the total length of tube is L and %n is the fraction

or ratio of the length section n and total length, and

defined as total time which hot fluid takes to flow through

tube, then:

TnL == =(4-2)

Defined a as:

. 1 A.T PL _____a

Where ACgnLc

Therefore: (4-3)

By substituting (4-2)&(4-3) in(4-1):

T"raT T" (4-4)it T
if 0-dt !tLO

"using equation(4.-2)"

Therefore, equation (4-5) becomes as:

H o t S i d e 
IT1AV

The same equation can be derived for cold side flow, only
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r which is velocity ratio of two fluids is added to equation:

Cold Side Y "=(Wrc T 44a(t~VoT)(47
Parallel Flow n (4-7)

There are some changes because of counter flow, and for

such case the equation is:

Cold Side K Ar ae(T~i
CounterdFlow fnl 00j n t-w) 'nV2'w (4-8)

Before any further step, the temperature of each stage

should be defined. As it was used in steady state case and

also it is shown in appendix(c), the assumption of stirred

tank is used for each lumped as in following figure:

M T -M;'at at To

MatTn M atT

MW T"+

M',Tc,

FIGURE(4-3): A Model of Lumped Section

Therefore, the exit temperature of each lumped(section)

is used for the temperature of whole fluid in that section,
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then as one of the sections picked up as an element for eval-

uating, it looks like Fig.(4-4):

I nl-f I T I n+f I

I

FIGURE(4-4): nth Lumped Model

Therefore, by using this assumption and substitute the

outlet temperature for section temperature, equations (4-6)

through (4-8) become:

Parallel Flow (4-9)

Jo.

Counter Flow (4-10)rq ,, =0 f'leer j1 1 ono~mb)z

Because, solving the equations by Laplace transform is

easier;therefore, equations (4-9)&(4-10), by using zero cond-

dp of 4p Tcq7, T e .140 ct -

I
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ition at the inlet or t =0 are:

Parallel Flow

Counter Flow

(r +cru+) =P + T 'f~Tn

+%m, T nt nt1

As equations (4-11)&(4-12) show, if the number of Lumped

sections are given, these equations can be extended and their

solutions give the temperature at any section. The same as

steady state case, here for N equals to 2,3, and 4 it will be

discussed, also we can see by putting a large value for time

(t-+oo) the results of static case can be obtained. Following

is a schematic of this evaluation:

(4-11)

(4-12)
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Uit

U,..

FIGURE(4-5): Schematic of Lumped Model for Heat-Exchanger

A simplest problem which is close to heat exchanger prob-

lem of dynamic response is one where there are a number of

first-order systems arranged in series. Letting the time cons-

tant of the nth stage be t,, denoting the dependent variable

leaving stage by the stage number, and including the possib-

ility of being able to control each stage, a balance on the

nth stage gives the equation:

i+ : c ntt --4aU(4-13)
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and the same equation will apply to every stage. Fig.(4-6)

shows this series of first order systems.

FIGURE(4-6): Series of First-Order Systems

Ifwa assume that the system is originally operating at

some steady state conditions, (as it discussed for heat exchan-

ger is last part), and that the dependent variable represents

deviations from steady state, the Laplace transform of equa-

tion (4-13) gives the result:

(4-14)

Thus the complete set of equations can be written as:

=R ~ j4

Nowthe first equation can be solved in the set forzin

terms ofj and and then use this result to eliminate
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from the second equation. This procedure can be repeated until

we obtain an explicit expression forJ in terms of 3 and ii ,

the system inputs. Hence

or, for a case where all of the time constantstand system gairux

ar e equa, the transfer function for inlet disturbances is

and the transfer function for control variable changes is:

S(sw+o)



SPECIAL CASES FOR DYNAMIC RESPONSE:

For two lumped models(N=2):

i-Parallel Flow:

From equation(4-ll), for N=2 the results are:

THI TwxT

Q, IQ,

Tc~ f/CxT

FIGURE(4-7): Two Lumped Models Heat-Exchanger(parallel-flow)

( g +'a1 I) 1 &i;- T-+ ai,

Ckg÷=ap + I2 t ,' a2

(4+ ja+')'Teb=2' +v12atTo'3

The results of these equations, by disturbing only inlet

temperature of hot fluid, are:

(4-15a-0)
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T (t,Ra+%j)(t% +1+ 9 tA
( ++-

%EzO(trs&th&S%~I

It

(4-iSa)

(4-15b)

ii- Counter Flow:

From equation(4-12), and as Fig.(4-8)shows the results

are:

TlI

Te 3

T

FTCURE(4-8): Two Lumped Models of Counter Flow Heat-Exchanger

&i~~~+9 Av') djows a1j

For ditrigol+ne eprtr fhtfud h

solutions of above equations are:

6*a

Q4

LTC,
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T+in 
(4 -16b)

t [c+sFrt P(tit +

cre~isgu i (fd+t+l)(rL f+')-s a8:

It is clear that by putting 5=0, the result of steady-

state case can be gotten.

For three lumped models(N=3):

i- Parallel Flow:

From equation(4-ll) for N=3 the results for temperature

labeled on fig.(4-9)are:

Tif

QI Q.Q 3

Tc;c / j- ce Tc4

FIGURE(4-9): Three Lumped Models for Parallel Flow Heat-Excha*%
nger (parallel- flow)

IFo

IT
4
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There are three f's, which can be equal or different, but

the sum of them should be unit.

r(yt 1+1 ,+ )T=TOW, + if a T
(cC az-t,+) T 2 =t : 4a '

%rs + )TO' + = iR ms
($5+%,+i'T= t +% ali

(%rs+4A+) T4= HS+T3 P at.

And the solutions for changing only inlet hot temperature

fluid are:

T (a+10gv+qq~ tWIIMAaL

24 - -(&a ,0vaV#+i4%t&+I

To,- Tvlrel)+%0+11eptl+e)vi

rp - p

r~c, (fllM6+fr: 0 WSO(fat+

=H T(+4rveOi
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(4-17a)

r 3

+'(4-17b)

ii- Counter Flow:

Using equation(4-12) for temperature labeled on Fig.

(4-10), they give six equations and six unknown temperaturesas

follows:

T.

QI Q3

IqIf 
14I

FIGURE(4-l0): Three Lumped Models of Counter Flow Heat-Exchanger

(TdY+ U2.4I) V3 = r-,+ (ffrg

(fitrt) 7 r,+~ 71
(I~q+ , L

ohm 0

-- 1 -1
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Solution for getting outlet temperatures of each section

based on disturbing only hot inlet fluid temperature are in

the next page but instead of these long answers by putting the

numerical values of parameters (namely cg , 4j ,and a1 ,a ,a3 ,r)

the results will be very simple as they are shown for special

values of these parameters.



lka~ te +q-Ti-S+

i - +[+ t~ % +~t oa)- y. 1 3  .g,+Yi 4 te v4 J,,1..sgj

]1 (4e~O4?### a)[ s9%+fia+Q-se4 s~ .. w n

1;;o..w [ g , Cg,tJ+&Cg% ] 4,c gs Lss+ t,,ctgs

a. Cwv+s~d+,xmo<,

Ta Q l+-J c+a ) ' +

iT (ts esm g4geqjqg]. g1+9n
3

t4-.186))
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For four lumped models(N=4):

i- Parallel Flow:

Toi TI TOs T0, T

QQQ3Q

Tt T0 TaT

FIGURE(4-ll): Four Lumped Models for Parallel Flow Heat-exchan-
ger.

By using N=4, there are four If's, and equation(4-ll)is

extend to following equations:

&q3v+4to.+Y14o= T7+% t4

(trs+ Toeat t=T+
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The solutions can be obtained in the same manner of other

cases, but they obtained only for special cases that are in

the next part.

ii- Counter Flow:

TI T TO T4 T

L~

Q, Q2 Q3 Q4

Tc T 4ToTc TI

FIGURE(4-12):Four Lumped Models for Counter Flow Heat-Exchanger

Using equation(4-12) for N=4 and four different e's, it

is extended to the following equations:

(was +wvttl+ ) 4TO % QT1  T,

&,rs9 a+t) T -W3 L+IP IT

12=~~K+takFrt5
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Solutions for cases which are discussed in next part are

presented. We can develop and get better results by putting

more or larger N.



RESULTS OF TRANSIENT RESPONSE FOR THREE CASES:

In the following cases, solutions for outlet temperatures

of last section for each fluid are found and compared with the

exact results(2) and results of Friedly's model(4).

The exact solution and Friedly's results, as shown in

appendix(a), can be obtained by putting x=1 in them:

Exact solution for counter flow:

Where,

Exact solution for parallel flow:

Toe. St (e.e

Where, r(itt) 41+&

f, =a,+jf1 , f =a, +r30 1 , g, =a, , g, =a,

Friedly's solution for counter flow:

Where , -.... and_, ..

Then for cases that a, , a2 ,and r are specified the above

equations appear as follows:

i- Exact:

For case a,=4 , =l , r=1
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-Counter Flow

2\2.& 2 -+ 53.Q

(4-19)

-Parallel Flow

GO)5 (4-20)

For case: a,=1 , a=l , r=l

-Counter Flow__

wfe
t 2 a 2 -ill

(4-21)

-Parallel Flow G;()-2)= (4-22)

For case: a,=2 , a2=1 r=2

-Counter Flow

2O4i5#4.S+4Jl

eGi3)=te654.63946-22.526452 5+.5IS3+ 5.. 4

(4-23)

-Parallel Flow

9..it- 23.A (4-24)

As it is shown in reference(4), Friedly discussed only

counter-flow heat exchanger, and its results for preceding

cases are:
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ii- Friedly's Results:

For a,1 =4 , a2 =1 , r=1

-Counter Flow

[42=-2g](4-25)
1+2R-1

Where, K

For a, =1 , a1 =1 r=l

-Counter Flow

UL"- 1(4-26)
Where,

For a,=2 , a2 =1 , r=2

-Counter Flow

J (4-27)

Where, e-"
(2e-1)6..)

iii- Lumped Model Results:

First, for simplify the calculations all of f's assumed to

be equal for all cases.

For a1=4 , a 2 =1 ,r=l

a-Two Lumped Models:

= =l/2 from equations (4-15)&(4-16):
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Counter Flow

.2g'. t.t-'+ 2.S

(g e. f+3 -2Gjis)To =-5t45+

Parallel Flow

= -5(1+45)
Atd) A --. S+3J(.S u+if

I 7D 0to65+3,sf(96f+4Y

L TwC
.et+ Lf+1t25

a-s ( 2+
CAs5g t)'sg)

b- Three Lumped Models:

I, = 'Fz= %=1/3 using equations (4-17)&(4-18)

Counter Flow

(4-23a)

Parallel Flow

(4-23b)

3$1- t43+534+11+2511

G5 t+nsiI 3 &+ +315 g g +1W4'tII7TZ

+327(9++4)

r tr~5 43gf~ns9+D~fs'+ flWt772 '

27 +7f+(Y+4Jt0+7AMk4)+4]

27[(S+4)+1240
Iro % C

('tu +241

(4-22a)

(4-22b)

=
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c- Four Lumped Models:

fti = tIt= 4= #=1/4 using equations (A-15)&(A--16) , (A-21)&(A-22)

in the appendix(e), solution of four lumpedare presented for
moit

special cases only.

25t(49 -79.+ 5329t+aa.I)

Te(S+V'(s+4)
Parallel Flow

There are following results for counter flow case:

V 0+l95+131L+542A24124S2+17114648)

Counter Flow

9(gft)cQwa7sts317 2W0S -4%441)

Te (48)&41t't+1&sst,.wst+sussz + 15z!4455rf;9'4tl tt

For a,=1 , a=l r=

a- Two Lumped Models:

Using % = fz=1/2 in equations(4-15)&(4-16), gives:

GI( )= --
%=

Counter Flow "

'rV csrL4& ) +'i4s t1)
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Parallel Flow
IL ~~cs43) ,

0205+lvta9

4s)=7It 4C t5#t4

b- Three Lumped Models:

Using three equal f's = f.= %=1/3, it means the

heat exchanger has been divided into three equal sections;

thenby applying equations (4-17)&(4-18), the results are:

Counter Flow
___ (5j- N 21($t4)-+

Tom 62(%4)+ ns)

Parallel Flow
doe

ii;TG:6) 1==-

0.
gl (S+4) + 27

tL4f+%)(S+4)

Ls,*39 LSr5M

-ammommme

F em
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c- Four Lumped Models:

Applying =tfj=%=%4=1/4 in the results which are

presented in appendix(e), give following equations:

Parallel Flow

Counter Flow

tf24S)5X)tt++2j)

(C+5) 1-I53tL 53
L.

Tc4 (st'4X)0+ stfttt IOS+ 3 )M~Zss.o
cs)

~moo

For a4=2 , a =1 r=2

a- Two Lumped Models:

Using %=%= 1/2 in equations(4-15)&(4-16), gives

following results:

Counter Flow

TS

(t5.5sv+ s9y2sh-6Sf+

mmmmmvm: d

.m-.Ew..Mmmw

No--N&

Toe
Tiv
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T 
Parallel Flow

39+7
(0+ S.5g+ ),

G T . 4e+ 12 f+t 1
Gs)= -- =(S'+s5 i

b- Three Lumped Models:

By using T4=z='I 3=1/3 and equations (4-17)&(4-18),

there are:

Counter Flow -

Parallel Flow

rA mc t12 C+SJ I(S+t-+ 3v(s+stS2)+4 47

[ 4(1 2W&-F+2)
B(s45)'6+z)L4 (5+tJ1+ .)gt +5y.4s-

'-a _ e8$tf+4&zts)+7sfSS4
TN

27 (,+2)( f?+ss+11)

Tu 2(0+70-+5.f

c- Four Lumped Models:

By using =f'=$=t'=1/4 and the result of solution

for four lumped in appendix(e), following results are obtained:
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Iq MOM

Parallel Flow

Counter Flow

2 t2,2$9%5+2U.75+414$t +44745 e 73106+53(8)
t+34 s7+4u :1+35 S+O186094+t 53. i94ss4.atl-t3107

IMLf5 +6 4s~~sw4s&~va~tsto.4Isg1wsI

All of above cases are normal situations of heat-exchan-

gers, for comparing the results of Lumped Models, exact solu-

tion, and Friedly's approximate method all of above cases are

plotteJ in frequency domain, and the results of step responses

for two Lumped Models(the simplest form) are plotte4.

One of the beauttesof the Lumped Models is finding the

Monotone parameters directly by the method which H.M.Paynter

presented in(8), and these coefficients can be compared with

the same parameters which are obtained by simple technique

that again Paynter presented which are gained by using the

probability paper. All of these evaluations are in next parts.

[-go I lb =I



RESULTS OF FREQUENCY RESPONSE:

I- Counter Flow Heat-Exchanger

i-Exact Solution:

In preceding section, transfer functions for transient

response were discussed and equations for special cases were

derived, now by recalling those equations the numerical values

of gains and phase angles can be calculated and plottect, here

is for exact solution; recall equation(4-19):

For case: a,=4 , a,=1 , r=I

Inc

Far 2o 01cM %2W

F Ir 12 -+o--+-+ (4 e >$----

Table(4-1) contains the value of gain and phase angle for

different frequencies.

For case: a=1 , a=l r=l

212r.A-S.-
-e

Fr Dae = 1=0.6

F.r .- cc I--0
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In this case IGlis obtained by using Hopital's rule.In table

(4-5) there are numerical values of IGland 9? for different

frequencies.

For case: a1=2 , a1 =1 , r=2

+LAixr4-io 

For 1i= I=.3973

For fl-t.-+ C4. a

Results for other values of 0 are

ii- Friedly's Solution:

For case a4 =4 , a=1 r=l
2

GL$S)u = 53 14- .r.i+N2. 23j

For .Q=o j\I .45

For S.--- loI--+0

Table(4-1) contains all numerical

for different frequencies..

For case a,=1 , a2 =l r=l

Recall equation(4-26):

1+zr -- were

8= c

p 0-+-d n

presented in table(4-9)0

K=02422

values forIGl and &' ,

Ko 579



75

For .2=o G-= -, P P=0

For fl----+o 16O4.--0.0 0'0

For other values of 0 the results are presented in table

(4-5).

For case a, =2 , a1 =1 , r=2

By using equation(4-27) from preceding section, following

results can be gotten:

For SQ=0 GICI=073 O$z 00

For .Q---c IGt--0t16-oo

Results for other values of frequency are in table(4-9).

iii- Lumped Models Results:

The more interested outlet temperature is usually the

outlet temperature of cold fluid;therefore, the Lumped Models

cold fluid results are discussed.

For case a,=4 , gj=l , r=l

a- Two Lumped Models:

For (.=o IG|r.2 ,

For S.-+tc lGI-+0 0

As in static case discussed, for getting better results

we can fit the Lumped Models results with the exact results at

low frequency;therefore, for two Lumped Models all of results
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are mutiplied by a factor:

Fatir == e = .2465

As ittshown in table(4-2) in addition for absolute results of

Lumped Models there is a column for fitted results.

b- Three Lumped Models:

411 5I.-5tif a0) +Vi0iSol -11SZ 3J

(1s72+4.SAtisl.nts.i+M) +Js912+331L15A?)

For fl.=o IG =.21333 , =0

For ...-- G4.y @ ,IS

factor for fitting= 2405 =.1275
'2133

The results for other values of frequency are shown in table

(4-3).

c- Four Lumped Models:

G6i#)4( ijif .ia2tgISt -Sl2$85)+3( t1S77fl+S%#4.OY -.552.

For f=o G=-22025 ,

For ).a--co G. -- we e .;o'

factor for fitting .'246 4,,2
-22025

Results for other values of frequency arepresented in table

(4-4).

For case a=l , a=1 r=l

a-Two Lumped Models:

1.4-2S.251.
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Fo r CS. IGicO.4

For fl---pG- .$.,

fitting factor = oe =1,25

Table(4-6) shows these results for other values of l.

b- Three Lumped Models:

3(432+4--l32)+4(s12n-.s3)

ff 4.nati)+ s ?w.9)( s- th+ (i--')

For fO lGI=.42 S , Oz?

Fo r fl lg. o e

fitting factor.-f4II

The whole results are shown in table(4-7).

c- Four Lumped Models

4@22tt+38i452M2 0 -. ')+4j(7344.L+.01lf-Lh 713)

For .e, 04444

Focr .fl.a 1I-I-

fitting factor- 5f25

Results for other values of frequency are shown in table(4-8).

For case: a=2 , a=l ,r=2

a- Two Lumped Models:

GLAQ)f.1cz)+S.44S) j 6Fl I NA
For .Q=e IG 3l43 . O

For -a --+43e

An AS
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fitting factor= ' =1.2725

Other results for different values of frequency are in table

(4-10).

b- Three Lumped Models:

C t)= 3L2174.5+-2St4--43S')+30315T-a-. 283-a3)

(zs -.5 L+ .A4--.4 tI u8A)+3(s(s i+91 4S-2 8 440)

For fl=e GIC318 = 0o

For fl p--+ IG-+1 .-- Ise

fitting factor. ' 3 .278

Results are presented in table (4-11)

c- Four Lumped Models:

2 &-47SS10-44UU+2U.7&tJt)t+i (\a.Q+2.Q.SJLt l44A.')
La 4n2+a3-qsioat4vss. -s4h.d)+A(a24Ua +2B4 5 a~53-iSJ2)

For Q=o IGI= .3411 9=00

For .0. -po IG --W 0 - ..I 9e

fitting factor =P* 173

-34',
Table (4-12) shows the numerical values of gains and phase

angle for other amount of frequency.

In all tables there is a column for normalized gain which

means ratio of gain for every frequency andgain for zero fre-

quency.

G|r



II- PARALLEL FLOW HEAT EXCHANGER

i- The Exact Solution:

From equation (4-20) we have following transfer function

for transient response in parallel flow heat exchanger:

For case: a1=4 , a=1,r=l

GrGin) 1-Le

As it shows, it is a complete circle with radius

R=.1986 and the phase angle is 9=S.. . Table(4-13) contains the

value of phase angles for different value of ..

For case: a =2 , a =1 , r=22

For 0==0 I&I=-7 ,

For A.A--too Ir-)1-0-+-..0

Table(4-17) contains the results for other values of ..

ii- The Lumped Model Results:

Because the interested outlet- temperatureis the outlet

temperature of cold side, then the following results are for

that temperature, also in following there is a fitting factor

for each case which defined as:

fitting factor=IG4Ift
I r146r
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For case: a1 =4 , a=1 r=l

a- Two Lumped Models:

-(4.t5 tj S)

(35+ .6 SA? +4

For 2we 1G11837O

Fo r .f.-+c0----+-97

fitting factor=

Table(4-14) contains the other values of IGland 0 for

different amount of fl , also it has a column forIGL, ,which is

the ratio of gain for each.. and gain of exact solution at

zero frequency.

b- Three Lumped Models:

For fnmo G-|=.\9A4 , 6e

Fo r fln-.too IG1.o

fitting fac tor.' w.048J

The results for other values of frequency are in table

(4-15).

c- Four Lumped Models:

For fl= a GA =811,

For l.-- oe ,-,,ro

fitting factor 0.91'--0333
1921
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Results for other values of frequency are presented in table

(4-16).

For case: a1 =2 , =l , r=2

a- Two Lumped Models:

For Io]=.n.

For 1 -- G70

fitting factor.=

Table(4-18) contains the value of gain and phase angle

for different amount of frequency.

b- Three Lumped Models:

v7o I - lo sl-t16809 -a

9('9--a+7j-Q)" 0
For f. N G=..t

For .-- *co-

fitting factor= 3 =I.e81

Table(4-19) contains all of the results.

c- Four Lumped Models:

cxss)= 1440-242-+1 9752A-240-0)
114.2Q(14 4Se 4965Jfl

For fl=vo IG=.-sS 6=?

For .f.l--Co\40

fitting factorn l-a.
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Results for other values of gain and phase angle for

different amount of frequency are presented in table(4-20).

To compare the exact solution and simple Lumped Models

results, all of results are plotteS in fig.(4-19)&(4-20).



SECTION V

EFFECT OF USING NONEQUAL f's:

As it was mentioned before, existance of kin all of

results of Lumped Model systems makes it flexible to adjust

the results with exact values. All of preceding calculations

and results are based on using equal ? 's in the whole Lumped

Models, here it is shown that for one case(a1 =4 , a,=1 , r=l)

in two Lumped Models what is the effect of using different

I 's.

Counter Flow Heat Exchanger, two Lumped Models:

Recalling equation(4-16a) and substitute the a,=4 a=1

,r=l, and using g =1/3 ,%?=2/3, following transfer function

is gotten:

Q(Sfl)E ZikC= 3L5%-4SI +t321SL)
37 V (SM4 +4JA 0-4a7sL0-tjIw.-F7t2)

For .Q.==o 0 ,90971 ,&$ 0"

For XI. o 1G *

fitting factor 4
0\971

Table(5-1) shows the results of this case for different

values of frequency, also Fig.(5-1) shows this results compar-

ing to the exact value and results of using equal If's.



IMPROVEMENT OF LUMPED MODELS TO GET THE BEST RESULTS:

In the preceding section the results of various Lumped-

Models and exact solutions were compared, via tabulations

and plots. The results for counter-flow heat exchangers, Fig.

(4-3) through (4-18), show that a Lumped Model can yield a

good agreement with exact results at low frequency, but at

high frequency both gains and phase angles are characteristi-

cally different. If one looks very carefully at these results,

one finds in all cases the discrepancy between the Lumped-

Model and the exact solution is always the same, i.e. the

phase angles always have 90 degree difference and gains are

about half of the exact values; therefore, one may conclude

that some feature is characteristically the same for all of

them. It is clear that thus 90 degree difference between phase

angles means if a zero is added to the transfer function of

the Lumped Model, then the phase angles at high frequency will

match the exact results very well.

Since the purpose of this thesis is to find simple models

which well match the exact results, evaluating the transfer

functions which were found for different Lumped Models showed

that two-lump models have a very simple form to handle;there-

fore, one should look for a way to add a zero to results of
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two Lump Models to get better agreement.

Recalling the outlet temperature results of two-lump

models for counter-flow heat exchangers, they show that the

transfer function of the first lump has one zero more than the

transfer function of outlet temperature of the second lump;

therefore, if the outlet temperature of the second lump of the

cold fluid is combined with outlet temperature of the first

lump of hot fluid, then the overall result has one zero more

than the zeroes of the outlet temperature of the cold fluid.

Therefore, from above discussion we conclude that to get

the best agreement for lumped model approximations,we should

employ in general a linear combination of the outlet temper-

atures of the various lump, and in particular we have the com-

bination for two lump models as shown in fig.(5-2).

Now, it is very interesting to determine whether there is

any value for K1a nd K2 which yields a good match between Lump-

ed Model results and exact solutions for both gain and phase

angle. The positive answer to this question is explored for

the various cases already discussed. The results are expressed

in terms of the values of K1 and K2 for different cases.

Finally one may ask whether these values are the same or diff-

erent for different cases and if the parameters are different
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how great is the range of their deviation?

THe Hi IIT

[o.~ Q2.

-- -+ K2- K, +

Toc

FIGURE(5-2): Linear Combination for Two Lumped Models Counter-
Flow Heat Exchanger

Ki and K2 for case: a, =4 , a2 =1 , r=1

Counter-Flow Heat Exchanger-

By substituting the parameters in equations(4-15a)&

(4-15a-0) and using equal tv's i.e. (9 =1/2 , following transfer

functions are gotten:

=of

o
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Therefore, the new outlet temperature of cold fluid is:

T424 2 6es99r14) K,

TL,, -C+3 si+3StP) i

or, 4Kitt VKtK)

To decide how should the gains KI and K2 be determined,

we have to see the effect of high values of frequency, also we

can't adjust K1 and K2 exactly for high frequency because we

thereby preclude the adjustment at low frequency. Therefore,

it is clear that adjustments must begin at middle frequencies.

For value offl =2, the amount of gain and phase angle are set

equal to the exact values and the necessary K1 and K2 calcul-

ated. Then the results for other values of frequency are com-

pared.

The results show a very satisfactory agreement at most

values of frequency except at very lowest frequencies;there-

fore, by optimizing K1 and K2 around the values that was got-

ten fori2 =2, two values for K's are gotten which they are:

Ky =1.10 , K2 =2.44

Therefore, transfer function will be:
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66f=2 0 .41At 12.305)

For .. :. |G =1 04

Fo r fl--+*c-+ -+-90

This transfer function is for normalized gain, and the

results for other values of frequency are in table (5-2).

As we compare these results with those for the exact sol-

ution, we conclude that this is the best agreement for whole

range of frequency in a very simple closed form.

Fig.(5-3) shows the plotted results and it is shown that

the results of the simple Lumped Model is more close to exact

results than Friedly's model, with advantage of having a very

easy a simple form which is very useful for control of heat-

exchangers.

K1 and K2 for case: at =2 , a=1 ,r=2

Counter-Flow Heat Exchanger-

Recalling equations (4-15a)&(4-15a-0) and substituting

given numbers, the results are:

Then, the new outlet temperature for cold fluid is:
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WtS K162S3 4~Z5'1~ '(t.97

or,

(74 ISt-K Li I4 14456A2SKZQa 3)(23 4,2+=55 -

To get the proper values for K1 ,K 2 , the same manner which

used for first case is used here and the results are:

KI = .4 , K2 = 2.55

Table (5-3) shows the results of improvement case and it

compares them with the exact results. In fig.(5-4) the exact

solution and improvement of Lumped Model results are plotted,

and it is clear that how this simple model predicts the tran-

sient response of heat exchanger so close to exact solution.

In third case which aI =a2 =r=l , we do the same as what we

have done so forth, but for flactuation part we can use

average values for them and adjust the K's with those values.



STEP AND IMPULSE RESPONSES:

One of the advantages of Lumped Models system is that it

describes the transfer functions in a very simple form which

it is easy to find the response of heat exchanger respect to

any kind of disturbance like step function or impulse distur-

bance or periodic perturbation and so forth. Specially the ex-

pression of the improved case has a very simple form because

it works only with two stirred tank. Here the results of step

and impulse responses are presented for improved case and is

compared with exact responses.The method is the same for every

case;therefore, only for one case the results are presented.

a)- Step response for case: a=4 , a2=1 r=

In reference(4), the results of step response for exact

solution is presented, and they are used here and they are tab-

ulated in table(5-4).

For Friedly's Method:

I+T$[

Where: K a1 .d O

For step response it will be:

7ac= K F.-'6) -(,tc gcr
-1e e .
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- ~. 1 jan)x
T

Therefore, for a =4 ,

K
T

0

.241 (- i )
..!m

-1 o-s--st e,

a =r=l and x=l:
I

T= 424e

J' .4 0

gee ,

o lfo

For Lumped Model:

(C+ +0) mo+o

For Step Response:

Ty ~6S+t )CC+N4Y+?DZ X1+ 45-/o,:s)

'ia. 2. ti.l e + 2.3 4 + )

T L~ 1 tO.IS'-Nt e+s)(i+$6-.r1So

Then the result is:

To $-ft -7t -nt

Ti =2455( -- t --- 5e -j--.e0 )

(5-1)

(5-2)

Table(5-4) shows the result of step response for three

methodswhich are Lumped Models, Exact and Friedly's approxi-

mation method. Fig.(5-5) presents the plotted comparison bet-

0
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ween these three methods. It shows clearly that the Lumped-

Model results are closer to exact results than Friedly's meth-

od.

b)- Impulse Response for Case: a =4 , a =1 , r=l

The exact results for impulse response were presented in

reference(lO), they also are shown in table (5-5).

Friedly's Method:

Because the impulse response is derivative of step res-

ponse therefore, by taking the derivative of equation (5-1)

following results are obtained:

Results for different values of time (normalized time)

are presented in table (5-5).

Lumped Model:

To get the impulse response we take only the derivative

of equation which is for step response; therefore, its results

are: '.Jd4

7im g 4-e0+.oBet.4I5J

Table (5-5) contains the results of impulse response for

exact solution and Friedly's method and Lumped Model system.



94

In Fig.(5-6) these results are plotted for comparing the accur-

acy of two approximate methods, and it is clear that in Lumped-

Model method the error is almost zero for all values of time

but we can't say for Friedly's method the error is near zero.



CALCULATIONS OF MONOTONIC PARAMETERS&

H.M.Paynter (3) presented a new evaluation method for dy-

namic response including that for counter-flow and parallel-

flow heat exchangers. He showed that the Laplace transforma-

tion solutions for heat exchangers can be written as:

Where, 6 measures the steady state amplitude ratio between res-

ponse and disturbance, TM measures the mean time delay bet-

ween response and disturbance, Ts defines the dispersion or

atten uation, and Ta is the asymmetry or phase nonlinearity.

As it is shown in his paper, he concluded that for a given

Laplace transformation solution of the form:

f +as1 +a91 4a3 9...

and for special case N(s) =1 the monotonic parameters can be

written directly by following relationships:

f '6al 2a,

If N(s) is a function of (s) then the results of para-

meters should be diminished by the same amount which are ob-

tained from N(s).
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Therefore, since the results of Lumped Model method are

in the form of G(S)=[(S , then the monotonic parameters can
DC')

be calculated very easily.

To compare the calculated parameter with exact monotonic

parameters H.M. Paynter presented following technique(8):

Simple Technique for determination of Monotonic Parame-

ters:

By using a commercially available "Probability Paper", a

Gaussian distribution can be plotted linearly. If a step res-

ponse of any dynamic behavior is plotted on such paper (as

shown in Fig.5-6)by following method the monotonic parameters

are obtained.

so7:[0I__
4
*

0

0 D.2 0,~t69

FIGURE(5-6): Use of Probability Paper for Monotone Parameters
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PROCEDURE:

1- Points A-A are determined where the step response cur-

ve crosses the 16% and 84% recovery levels.

2- Point C is on the response curve vertically above poi-

nt B .

3- The vertical distance BC set off upwards from the 16%

and 84% levels determines the points D-D.

4- The intersection of line DD with the 84% level fixes

point E.

5- Point F is vertically below E at the 50% level.

Then for determine the parameters we have:

Tm: - The time interval from the origin to point B gives

the meandelay,T'

T : - The time interval from point B to point F gives the
5

dispersion time, Ts.

d : - The ratio of distance BC to distance FE gives one-

sixth the skew coefficient,O(.

Ta: - Then by determination of oc we have:T=oLTs

Now, by plotting the results of step responses of exact

solution, Lumped Model, and Friedly's method, on probability

paper we can get the Monotone parameters,also these parameters

can be obtained directly from Laplace transformation solution



98

for Lumped Model Method.

Fig. (5-7) through (5-9) show results of plotting the

step responses to exact solution, Lumped Model, and Friedly's

method, the above technique is used and from those plotting

the following results are gained:

For Exact Solution

For Lumped Model

For Friedly's Methodrr.=.sw

As the results of Paynter's method for determination of

Monotonic parameters show, the values which obtained by Lumped

Model are very close to exact values, but we can't see this

accuracy from Friedly's method, and this is one of the other

advantage of Lumped Model.

Monotone parameters are calculated by the direct method

for Lumped Model and written as follow:
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2.24249 c 0 I-I+-. 411S'+.037 9

+s t4+.6IA9+-25e+00117

Therefore:

rM jTj 8TIM2 . * 4liU7

~ $,j%,q+~%o, r,' :4=i,. i e 3T ta-VIC=.n

The difference between these results and graphical re-

sults are because of approximation in graphical method.



SECTION VI

DISCUSSIONS CONCLUSION, AND SUGGESTIONS FOR FUTURE WORKS:

The essential part of this thesis has been devoted to de-

termination of very simple conceptual and physical models that

would describe heat-exchangers in some of the most important

practical cases that one expects to encounter, particularly un-

der conditions where the flow rates are varied. The low fre-

quency behavior for shell-and-tube exchangers has been matched

as carefully as possible by use of a method due to Professor

H.M. Paynter. It has appeared reasonable to take into account

at least qualitatively the very high frequency behavior to com-

plement the low frequency information. To this end, Friedly

presented an approximate method which works for low and high

frequencies, but which is infinite order;therefore, a simple

low-order model should be found. For certain applications (e.g.

optimal control) since lump models constitute the most linear

way to get Simple results,such Lumped Model have been used

in present work.

Analysis of Lumped Models has illustrated that it is po-

ssible to approximate the dynamics of a variety of plug flow

processes with very simple and basic transfer functions.
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As the discussed examples show, the simple Lumped Models even

without improvement demonstrate very good agreement at low

frequency or for long-duration fluctuations. As those results

show, there is no sensible difference between two lump-Models

and four-lumps ones;in other words, the rate of convergence of

the Lumped Model to the exact solution is quite small with

respect to changes in the number of sections. Therefore, from

the stand-point of significant improvement only two-lump

models were discussed and results show that they sensibly

agree with exact solution over the whole range of frequency-

Since by this technique the outlet temperature of each

section is determined by a very simple transfer function, this

model gives not only the exit temperature of the heat-exchan-

ger but also the temperatures for all intermediate points at

each section along the heat-exchanger, the special cases, which

are included, show that both the frequency and time response

are well approximated over their entire range by a transfer

function derived only from a two-lump model.

There is no evidence limitation for this model, especial-

ly in the improved case, because it includes some adjustable

parameters which make it flexible for all situations;therefore,

many assumptions can be removed by changing those particular
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parameters to achieve a satisfactory solution for most cases.

Another important aspect of this thesis is that the Lumped

Model is capable of directly predicting certain Flow Reversal

effects. The results for steady state behavior show, thus the

outlet temperature of Lumped-Models is very close to exact

solution. To obtain the exact values the Lumped-Mbdels results

can be adjusted by calibration. Thus, it is important to know

that if the parallel-flow case (or alternatively, the counter-

flow case) is so fitted, what will then happen if flow is re-

versed. Fitting the parallel-flow situation with exact value

is shown to yield better results in such flow-reversal cases.

Comparison of Friedly's approximate method and the tech-

nique of Lumped-Models shows that the use of Lumped-Models has

many advantages with respect to Friedly's model which some of

them are:

1- Basically Friedly's method is an infinite order model

which is complicated from the control point of view while

Lumped-Models are of finite order which are easy to handle and

work with.

2- Friedly's method doesn't yield good agreement in all

cases (as it is shown in reference 4 ) but the Lumped-Models

can be used in a variety of cases with overall better results

than Friedly's model.
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3- Friedly's model has the limitations indicated in re-

ference (4) but as previously mentioned, Lumped-Models provide

flexibility which can be expanded for many cases.

Since the present work gives very useful results for the

discussed cases it would appear to be worthwhile to further

develop the method for more general cases. Therefore, follow-

ing efforts are recommended:

I- The improvement technique is physically acceptable be-

cause Two Lumped-Models for whole heat exchanger yield too low

an exit temperature. Therefore, a combination of an intermed-

iate temperature and an exit temperature gives the best resul-

ts, but it should be proved mathematically why such a compen-

satory technique is true and why a linear combination is

sufficient.

II- It is interesting to know the effectiveness and sen-

sitivity of the parametersce and p , whereo is used in tem-

perature of each section-[T=oc46-c)T.J -because in the present

work o< was assumed to be zero which clearly isn't precisely

correct for any real case. Also for one special case different

IP's are used to improve the results, Therefore, this parame-

ter has been shown to have significant influence.

III- Lumped-Model could be used (especially the improve

ment case) to eliminate all of the common simplifying assum-
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ption such as: including the wall heat capacities, changing

overall heat transfer coefficient between two fluids along

the heat-exchanger, boundary layer effects, and eliminating

the plug flow assumption.

IV- Heat-exchangers involving gases and vapors are more

complicated to deal with, since the momentum and continuity

equations are now coupled with the thermal equations. There-

fore, it will be interesting to consider Lumped-Models for

such two phase situations.
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a-THE EXACT SOLUTION:

Exact solution of dynamic responses of heat exchangers

can be obtained by using the energy balance (First law of

thermodynamics) for Fig. (A-1):

T

-CC :ec

TTee

F-Wx

FIGURE(A-1): Counter Flow or Parallel Flow Heat Exchanger

Energy Balance:

Rate of heat accumulation = Heat Flow - Heat flow outt

Heat Transfered

This relation is obtained from first law of thermodynamics by

following assumptions:

Mass conservation:

PI- ==Const.
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1- Assume constant geometry A = Const.

V = Const.

2- Assume constant fluid properties

)0 = Const.

Therefore, there is no change in kinematic energy. There is no

shaft work transfer;therefore, we get:

Q=MK(h - h ) + M E

MXE' ==Mh + Q--A.

By using the Profos operator (7) and equation we get:

+

Where r is ratio of cold flow rate and hot flow rate.

Negative sign is for counter-flow and positive sign is for

parallel-flow case.

Initial conditions:

91 (x,0) = 0

% (x,0) = 0

Boundary Conditions:

counter flow

@I(1,t)=0

9 (0,t) =TIN
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Parallel Flow fo(0,t) = T

b(0,t) = 0

The easiest way to solve partial differential equations

is using Laplace transform, therefore by taking Laplace-

transform of equation:

i- for Counter Flow:

4x

or Woe

then:

42-44-.[j(r-m)+ .a )(r'+rA,

using G,=e , it gives:

P2 -[s(r-I)+(a2 -a )]P-s(rs+ra1+a2 )=0 (A-I)

Equation(A-I) gives two values P , , then by boundary

condition we have:

IP P Y

g'=XeP+B
+ 

li , P



111

Inserting boundary condition:

A B= %t

4(s+a+P)t .+b(2+a,+P1 )e =0
which gives:

ot___ (sta I2)c -Ls4to)e

Putting x=l and using proper parameters equations(A-2),

(A-3) becomes the same as equation(2-3).

ii-Parallel flow: using Laplace transform:

rs.+L-
dA

By continue in the same manner of counter-flow, we get:

---%( P )

cs:'-(a,.P,) (r4 )

Where: --- ) SNt .
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FOR STATIC CASE:

To get the Static(steady state) case, S should be zero,

then:

a

f4

counter flow

parallel flow

Ai

PA A6Pt tPrP
(P 1+,)t -CP++Ot

[P H(P+e tP -
(P,+u)CP~tJLCK tIPg

cp2 +ale t(c,-i+ a1)

PAZ

By using the values of P, P in each case the summary

results are:

parallel flow

Atot) at [ica4'*R"ES")t

RAa,

rl)7a A 4 a J
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Counter Flow 4

'ta x --ewas))
a-- 4a

(a- ae)X --
)xaa

hgt)

'Ti w



b-TEMPERATURE OF EACH SECTION IN LUMPED MODELS:

For each section in Lumped Models, we assumed that they

work as a stirred tank, as ittshown in Fig. (A-2);therefore,

the temperature of tank is a linear combination of it s inlet

and outlet temperatures say:

T=4-t 6-dro (A-7)

T

FIGURE (A-2): Stirred Tank

For tank as a control volume, the first law of thermo-

dynamics is:

M*t 4hrL1 4 4't t4

There is no mass accumulation and outlet and inlet pipes

have the same geometry ;therefore, by continuiting we have:

In the steady state case it is shown that: $j=Av?
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where M is mass of tank and f is mass flow rate through con-

trol volume; there fore;

T c at =CT-T)

or

t T = 'TmT
(A-8)

Combination of equations (A-7)&(A-8)gives:

, 1-Ott$rI~ 6I _'ml

'I
(A-9)

Becauseetis very small and V is a small number; therefore,

for perfect stirred tank 0( goes to zero and from equation(A-9)

we get:

This is why, in all of cases(steady or dynamic) the tem-

perature of each section is put the outlet temperature.

* C< is small because fluid which leaves the tank has property
of the fluid in the tank, but fluid which comes to tank has
properties of outside the tank;therefore, the temperature of
tankhas more tendency to outlet temperature than inlet temper-
aturewhich means o< is a small number.

T c:4 Tftr



c-ENERGY EQUATION FOR EACH SECTION OF LUMPED MODEL

For each section of Lumped Model we can use the Profos

(7) operator as shown for Kth section:

FICURE(A-3): Kth Section of Lumped Model

Applying first law of thermodynamics for each of control

vo lumes :

It = PM4 T K++

Where Mis mass of fluid in side the control volume, U is

internal energy of fluid inside the control volume and M is

mass flow rate which comes in and out.

Geometry of control volume is constant(means rigid boun-.:

dary) then from continuity: 1=v t %fN=YW.
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Because h=o (no shaft work), and the internal energy of

fluid and it s enthalpy can be written as temperature, then

we get:

Therefore, for control volume of fig.(A-3) the results

are: IN)ir(
At INK

(A-10)

But QI can be written as:

.u(Tl T ')

and for relation between Nand M ,they can be written as:

Where As is cross-section area and e. is length of section then

if4, defined as the time which fluid needs to go through sec-

tion; therefore:

~x

Then:

tK
or

By definition q ,where L is the total length of tube,
Ki

it concludes that the time which fluid takes to go through
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whole of the heat-exchanger is:

Therefore, equation(A-10) becomes:

U I (K) (t) & 9
~a (TLTP) 1 ticjrg M C Tgr XSR ttM c;r )

PT(0
tK-f '.lTum

9citK ,w c4 if( ) a

Define:

Define:

_cL

"-sC
GONE

I
$09-mom

@=-M UAI __I

al /4m M#C T

- UA .
bN C

9, tm It I-t Je

Therefore, equation(A-1l) becomes as:

cx
r r L1 ( T V a "f oo r

By taking Laplace transform of equation(A-12):

or

(A -li)

(A-12)
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V Vo

Using assumption of perfect stirred tank:

0 

7 R (---7 T ex) 06 e tl(A -13)

By the same manner, for second control volume, the re-

sult become as:

t tr Vzrt) lM (A-14)

Where r is velocity ratio of two hot and cold fluid

putting S=0, gives the results of steady-state case.For

parallel-flow the policy is the same and results has been

shown in both static and dynamic cases.

As an example for results of each section treatments,

here is calculations for case N=2:

Counter Flow:

From preceding calculations, there are four equation for

outlet temperatures as follows:
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To lt-%- - CT--T)no

TC --Th.+tt(T-aTs)nMo

Tz-1 3 -t "t (3---nT)so

7/c-'I't+'aat (11)-/3

Q,

T

FIGURE(A-4): Two Section Counter-Flow Heat.Exchanger

Solving above equations gives following results:

To1 P. 2 -cg 1- A.4w I&a÷'e a g

44;
Tes_ _4 as.64A+/&4+ o#s



d&CALCULATIONS ABOUT FITTING STATIC CASE WITH EXACT VALUE:

i.- Fitting Parallel-Flow:

case: a1 =4 , a,=1 , r=1

For this case the exact results are:

_TS -=@flg T = .2054t

Results of Lumped Models are:

"Parallel Flow" F Oc

Too ONSrr. ' 1137

Which gives: Fitting Factor = 1.0811

Therefore, all of results of parallel and counter-flow

are multiplied by 1.0811, then:

"Counter-Flow" "C-

L 2 TU V ". 1 L $P

As it shows, if we fit parallel-flow then we diminish the

error in counter-flow by 6.75% . Then the new error is: 9.9% .
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@It.' 945 ==4
TO TOL.

fi03
' =f.u483

233Toe

The error is decreased by 4.3% and new error is 7% .

T I 122 ;=4 il="1 L.033

To) L 192n

LT C.- =-e22X fa33= .27

The error is decreased by 3% and new error is 5.4%

,a =1 r=1

[375
I eat eI

=== =' =52 16152
oc)L '375

TK zo z41 L12.4(tg

The error is decrease by 12% and new error is 7.8%.

ilku 10 3
?qreIW 9

'UCE 4;
- = - old

.otw. jf==.47f
cow~c..*

K

F
Case: a1 =1

(?:02

L

(f 10 '/3 4

V4

If = V3
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The error is decreased by 7%, and new error is 5.6%

To TP41434=1,7

The error is decreased by 7% andnew error is 4.2%

ii-Fitting Counter-Flow:

Case: a =4 , a =1 , r=1

q= / Toc= -Trot- := 2

P c. t' Tn)E ' 2

Fitting Factor=1.2

OC == .2f137r-22I -ol .U

Its value is more than exact value, but it is also farther to

exact value than unfitted, and it increases the error by 3..2%,

and new error is 10.7% .

24.. * 3 ::*P' 1 1L-

fbT~*I4
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It increases the error by 2.6% , and new error is 7.25%.

.===-22 == ALO

fa --rC-p [ ff1122X 109>i7U 9

It increases the error by 2% , and new error is 5.2%

For case: a =a2 =1

.,k =.
Ceiv

.5 c.I *Z
= 4pm =1

LO-E ==- 375X126 ==.4187'>.43.

Because the new value is closer to exact value but higher

then it decreasesthe error by 4.7% ,and new error is 8.5% .

T =4z 8
TK '-4t I

L 392IX nixw -467>.431

It decreases the error by 3.5% ,and new error is 5.8%

To - ,

cmt4%,

== = 491 XIUS =:461> 43I

I.

F3/4. 4
Tc), '44
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It decreases the error by 2.8% ,and new error is 4.4%



e-CALCULATION OF DYNAMIC RESPONSES FOR FOUR LUMPED MODELS:

The general form of energy balance for each section of

Lumped Models gives following equations for heat exchangers

of Fig. (A-5)&(A-6).

I- Parallel-Flow:

Q Q1I3Q

Tc1 T," 0 Tct7 Tc5

FIGURE(A-5): Four Sections Heat-Exchanger

i-For case a1 =4 , a2 =1 , r=l

Ls9) 7=41z &+47 T

C&+ 5)Vis=t4Vd.+ iT,
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s.t 5)T4n 4]7 . S+04

1ts) T, 41,4t4R,

LS) T, 474 +T.

Solution of these equations gives following results:

T W6( 40+70$+53140260 
A-5

s (A -16)

T14, (S+9)f(S+4

For case: a =1 , =1 , r=1

Equations for this case are:

(S+S)T 4zt +Fj

(5) T @ wO04tt+'/4
s+s) 1=+ ;Tel

(St )t rC4

(its) ==Tot T+

TI,+T) t +
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The solution of above equations gives following results:

I 1024. t+5X+ IDS+()
C1ts)= -=-T(A-17)m . rS + j)4 (C j44)

iow ""- )jSkC- W(A - 18)

If~(S4)4(S +et)4

For case: a4=2 , a =1 , r=2

The equations for each Lumped Model give following results:

(s+) 1z =41 + tZ'V

LSt) 7c= 414+z7g

(S ) T c5 4r,+ ,

And by solving the above equations, following results are

gained:

TS f0.n++ti+eq i S+s)&tij6:+, f4 ( C+ti (A -19)
.sz+8,5.+14)



6?1
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II- Counter-Flow Heat-Exchanger:

Fig.(A-6) shows the counter flow case for four-Lumped Models.

T 5  T1 TjT4T#

FIGURE(A-6): Counter-Flow Four Lumped Models

For case: a =4 , a=1 r=1

Using equation of each section for these eight sections

results are:

cs+s) 1U= 47, +417s

CS4 )+T=4 + Ta

(s-e) o,.7t4c+

(c+s) Th 4'1 TL+4
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(s+e) , =4 T4 -- 4 T

(s+)T =4Tei + s

There are eight equations and eight unknows which

solutionsof them gives following results:

4r4(0+.31+04+542409+2244+178%+74048)
S+ +.7+1156 S-144 0S+19153+s13vt1-5244 9 +py7&0470 (A -21)

2gLts)(S$+.30-N+27.$531/4+250804S-144m)
W-Q) 7S+37+3V,24 44) (A -22)CstB%'424 ,s14 144$ 13 2s444 nifti -u,7/447W;

For case: a=1 , a =1 ,r=l=

2=1

There are following equations:

(St+5) Tt=4'1iT+

(w+5) r,- 4 ,-r 1T

Uts) C2= 4T', +14

Lti6) Tv=474- s
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And the results of solution are:

4(st+4)(S-)St5)DS7+(K+3+) +lXisSn3e
+4A S44e. (A-23)

C+WtXt94O42S4v (A-24)

For case: a=2 , a=l r=2

Equations for this case are:

C2ii) 1 es4To + 7

(T+~Cg4 : -T

(s-i) T=~4C, ts

L'+5J)t41,++74T

095) p4- T21

Solution of these equations gives following results:
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2 .4+25-59 +2is .75S4+1114.S0+4471.6 + 7]IP+5319)2& 5s-2.n+,sz9 47)?=73nt5 ) ( A -2 5)
z7 34 +n.' 9+3*5 s%4wn4 +53 fl+493408.e+$21+1%+3147i

(21t 5)64.,S44t.5S+23t)+32(85A4b+)(s +AO *&# 4%f*J
(A-26)

26+1' 44 ?.4n. e+N4 S5.+I Sg$4+jqI
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TABLE(3-1): Results of Steady State for Parallel Flow

For case: a,1=4 , a =1

"Two Lumped-Models "

Temp. Tct IT TH2.T%
Ratio THE THTH

Exact .184 .199 .266 .205

Lump .143 .184 .428 .265

"Three Lumped-Models"

Temp. Tc,. Tc!s Tc4 THP TH3  TH4
RaTtio TATH 1  THE T H4 T Hi T Hi

Exact .162 .193 .199 .351 .228 .205

Lump .125 .172 .189 .500 .312 .242

"Four Lumped-Models"

Temp.1 TT Tc4  __ T T T TTc, Tcg _3 _ Tcu THa _Hs H4 H5
Ratio Tm TH, THI TH1  THi THI TH TH1

Exact .143 .184 .195 .199 .43 .266 .219 .205

Lump .111 .160 .182 .192 .555 .358 .270 .231
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TABLE(3-2): Results of Steady State for Counter Flow

For case: a1=4 , a2=

"Two Lumped-Models"

Temp. TC2 T T3_TTH_
Ratio TH T11  THT

Exac t .044 .240 .213 .038

Lump .067 .200 .467 .200

"Three Lumped-Modelsi"

Temp. TC2 T TC4  TH T11  T

Ratio TH, TH, T HI T Hi TH. TH

Exact .022 .080 .240 .360 .124 .038

Lump .037 .100 .213 .550 .293 .147

"Four Lumped-Models"

Temp. TC2  T 3  TC4 TCS TH2 T T TH
Ratio T~~H~ ~ -i~T~T--- -I

HI TH1 THi TH THi TH Hi T H

Exact .014 ..044 .107 .240 .466 .213 .094 .038

Lump .023 .062 .122 .220 .612 .370 .214 .118
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TABLE(3-3): Results of Steady State for Parallel Flow

For case: a4 =l , a,=1

"Two Lumped Models"

"Three Lumped Modelso"

Temp. Tct T TC4  T T T_ctC3 c Ha. H3 H1*
Ra tio THE T r~--

Hi TH4 Hi THf THi THI

Exact .243 .368 .432 .757 .632 .568

Lump .200 .320 .392 .800 .680 .608

"Four Lumped Models"

Temp. Tcj T 3  Tc4  Ts THi TH3 T H4  TH 5
Ratio TH TH4  THi THf T Hi T111  HiT_

Exact .197 .316 .388 .432 .803 .684 .612 .568

Lump .167 .278 .352 .400 .833 .722 .648 .600
I-- I I j

Temp. T T T T. ... C._ cL3 _Hz H3
Ratio TH THf THiT4

Exact .316 .432 .684 .568

Lump. .250 .375 .750 .625
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TABLE(3-4): Results of Steady State for Counter-Flow

For case: a4=1 , a2=l

"Two Lumped Models"

T _T 2T TCT

Temp. _.2  T 3  gHs
RatioTHI THi TM THi

Exact .25 .50 .75 .50

Lump .20 .40 .80 .60

"Three Lumped Models"

Temp. Tci, Tc 3  Tc4  TM2  T TM4

Ra tio THE TMf THf H TH TH

Exact .167 .333 .50 .833 .667 .50

Lump .142 .289 .429 .857 .714 .571

"Four Lumped Models"

Temp. Tcz. Tin T4 T THa T T T

Ratio TH4 TH TH THI THf THI TH, TM,

Exact .125 .25 .375 .50 .875 .75 .625 .50

Lump .111 .222 .333 .444 .888 .777 .666 .555
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TABLE(3-5): Results of Fitting Parallel-Flow

"Static Case"

For case: a1 =4
a2 =1

Urff dFrNertd Crfpr

If ThI_ I ITocj OC
To"tL.p Tin IL-c Tot E-c 7 j41L-C TI -

1/2 .199 .216 .240 16.7% 10%

1/3 .199 .224 .240 11.25% 6.7%

1/4 .199 .228 .240 8.3% 5.0%

TABLE(3-6): Results of Fitting Parallel-Flow

"Static Case"

For case: a=1 , a2=l

Uri j*d Error Frfi1rrr

Tm TimPPThIIEP

1/2 .432 .461 .50 20% 7.8%

1/3 .432 .473 .50 14.2% 5.4%

1/4 .432 .480 .50 11.1% 4.0%
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TABLE(3-7): Results of Fitting Counter-Flow

"Static Case"

For case: a1 =4 a=l

Unfired Crrer Pft/ Error

T41C1IC I ,C1'
_TiIL-PT TmeL .P l.--P

1/2 .240 .220 .199 7.5% 10.9%

1/3 .240 .213 .199 5.0% 7.0%

1/4 .240 .209 .199 3.5% 5.2%

TABLE(3-8): Results of Fitting Counter-Flow

"Static Case"

For case: a =1 , a=

U4td Eior Fieg (

TilL-c To -p TJai IF..Ip

1/2 .50 .469 .432 13.2% 8.6%

1/3 .50 .457 .432 9.2% 5.8%

1/4 .50 .450 .432 7.4% 4.2%
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TABLE(4-1): Gain and Phase Angle

For Case: a=4 , a2=1 , r=1

"Exact Results" 'Friedly's Results"

0. IGIN,,9

0.0 1.0 0.0

0.1 .990 -3.88

0.3 .970 -11.2

0.7 .880 -22.8

1.0 .820 -29.4

2.0 .630 -45.0

4.0 .416 -60.1

6.0 .300 -69.1

10.0 .200 -76.0

20.0 .100 -82.7

50.0 .o41 -86.7

80.0 .026 -88.1

COUNTER-FLOW

0.0 1.0 0.0

0.1 .990 -2.8

0.3 .984 -8.04

0.7 .946 -20.8

1.0 .900 -25.5

2.0 .707 -45.0

4.0 .458 -62.7

6.0 .325 -71.0

10.0 .202 -78.3

20.0 .102 -84.1

50.0 .041 -87.6

80.0 .026 -88.5
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TABLE(4-2): Gain and Phase Angle

For Case: a4=4 , a2=1 , r=1

"Two Lumped Models"

COUNTER

LIIGII GIN',9"IG!VW IGig

0.0 0.2 .832 0.0 .2405 1.000

0.1 0.199 .831 -5.1 .240 .997

0.3 0.195 .812 -15.2 .234 .974

0.7 0.175 .73 -33.5 .210 .880

1.0 0.157 .655 -45.0 .189 .780

2.0 0.106 .440 -71.5 .127 .536

4.0 0.055 .230 -99.5 .066 .268

6.0 0.034 .140 -115.5 .040 .169

10.0 0.016 .065 -135 .020 .078

20.0 .005 .020 -155 .006 .024

50.0 .001 .003 -169.7 .001 .004

80.0 .0003 .001 173.6 .0003 .001
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TABLE(4-3): Gain and Phase Angle

For Case: a =4 , a , r=1

"Three Lumped Models"

COUNTER

0.0 .2133 .890 0.0 .2405 1.00

0.1 .213 .886 -4.6 .240 .997

0.3 .209 .870 -13.5 .236 .980

0.7 .192 .800 -30 .216 .900

1.0 .174 .725 -40.6 .196 .816

2.0 .122 .506 -65.5 .137 .570

4.0 .067 .280 -91.7 .076 .315

6.0 .043 .180 -107.5 .048 .202

10.0 .021 .090 -127.6 .024 .101

20.0 .007 .030 -147.5 .008 .034

50.0 .001 .005 -167.5 .001 .006

80.0 .0003 .001 -171.6 .0003 .001
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TABLE(4-4): Gain and Phase Angle

For Case a=4 , a2 =1 , r=l

"Four Lumped Models"

COUNTER

JcjI I IG IW IGIMgftd

0.0 ,2202 .918 0.0 .2405 1.0

0.1 .2200 .916 -4.2 .240 .998

0.3 .2160 .900 -12.6 .236 .981

0.7 .1990 .830 -28.0 .218 .905

1.0 .1830 .761 -38.0 .200 .830

2.0 .1310 .543 -61.8 .142 .592

4.0 .0750 .312 -86.0 .082 .340

6.0 .050 .210. -101.3 .055 .230

10.0 .026 .110 -121.4 .029 .120

20.0 .010 .040 -145.6 .010 .043

50.0 .001 .006 -165.3 .002 .007

80.0 -- [ -170 - -
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TABLE(4-5): Gain and Phase Angle

For Case: a, =1 ,.'a2 =1 , r=1

"Exact Results" "Friedly's Results"

COUNTER-FLOW

0.0 1.00 0.0

0.1 .997 -4.9

0.3 .980 -14.2

0.7 .850 -37.8

1.0 .814 -46

2.0 .460 -73.3

4.0 .254 -69

6.0 .142 -84.3

10.0 .096 -76.5

20.0 .055 -81.6

50.0 .018 -93.4

80.0 .0141 -88.6

II 0

0.0 1.00 0.0

0.1 .999 -6.6

0.3 .980 -6.6

0.7 .880 -33.

1.0 .822 -44.

2.0 .523 -66.

4.0 .250 -75.5

6.0 .143 -80.

10.0 .087 82.

20.0 .045 -82.

50.0 .020 -81.6

80.0 .014
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TABLE(4-6): Gain and Phase Angle

For case: a1 =1 , a2=l . r=l

"Two Lumped Models"

COUNTER

o Ic! IGIN f jag

0.0 .400 .800 0.0 .50 1.00

0.1 .398 .797 -8.0 .497 .995

0.3 .386 .772 -18.8 .483 .965

0.7 .338 .676 -40.5 .422 .845

1.0 .297 .593 -55.2 .371 .741

2.0 .177 .353 -87.7 .221 .442

4.0 .076 .151 -117.2 .094 .190

6.0 .041 .083 -131.9 .052 .104

10.0 .018 .035 -148.0 .022 .044

20.0 .005 .010 -162.7 .006 .012

50.0 .0008 .0016 -173.0 .001 .002

80.0 j.0003 .0006 -175.7 .0004 .0008
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TABLE(4-7): Gain and Phase Angle

For case: a =1 , a2 = =1 r=1

"Three Lumped Models"

COUNTER

G GI I G G

0.0 .4286 .8672 0.0 .500 1.000

0.1 .4272 .8544 -5.8 .498 .996

0.3 .4165 .8330 -17.3 .486 .971

0.7 .3720 .7430 -38.4 .433 .867

1.0 .3280 .6550 -52.0 .382 .764

2.0 .1980 .3960 -83.16 .231 .462

4.0 .0886 .1770 -108.3 .103 .210

6.0 .0527 .1054 -122.0 .061 .123

10.0 .0243 .0486 -140.6 .0283 .057

20.0 .0070 .0141 -158.0 .0080 .016

50.0 .0012 .0024 -171.0 .001 .003

80.0 .0004 .0009 -174.6 .0005 .001
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TABLE(4-8): Gain and Phase Angle

For case: a, =1 , a2 =1 , r=1

"Four Lumped Models "

COUNTER

jc(GIN Qr Iclj IGINFp

0.0 .444 .888 0.0 .500 1.00

0.1 .443 .886 -5.5 .499 .997

0.3 .434 .868 -16.3 .488 .976

0.7 .392 .785 -36.7 .441 .883

1.0 .350 .700 -58.0 .393 .787

2.0 .212 .414 -81.25 .239 .477

4.0 .094 .189 -102 .106 .212

6.0 .060 .120 -114.5 .067 .134

10.0 .030 .060 -132.75 .033 .066

20.0 .009 .018 -153 .010 .020

50.0 .0016 .0032 -166 .0018 .0036

80.0 .0006 .0012 -173 .0007 .0014



148

TABLE(4-9): Gain and Phase Angle

For Case: a4=2 , a1=1 , r=2

"Exact Results" "Friedly's Results"

COUNTER-FLOW

0.0 1.00 0.0

0.1 .996 -6.7

0.3 .954 -49.3

0.7 .790 -41.0

1.0 .642 -53.4

2.0 .370 -72.2

4.0 .196 -77.1

6.0 .135 -82.6

10.0 .086 -87.1

20.0 .045 -87055

50,0 .018 -87.1

80.0 .011 -89.87

AIG IN g0

0.0 1.00 0.0

0.1 .999 -7.0

0.3 .939 -20.0

0.7 .760 -40.5

1.0 .633 -50.5

2.0 .378 -67.5

4.0 .203 -74.2

6.0 .134 -76.0

10.0 .080 -84.3

20.0 .042 -85.0

50.0 .018 -87.6

80.0. .011 89.80
- .
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TABLE(4-10): Gain and Phase Angle

For Case: a,=? , a,=1 , r=2

"Two Lumped Models"

COUNTER

jcjGlINI GV IGI~vi

0.0 .304 .786 0.0 .387 1.00

0.1 .301 .778 -9.16 .384 .990

0.3 .281 .726 -25.5 .358 .924

0.7 .217 .560 -53.7 .276 .712

1.0 .173 .448 -68.1 .220 .570

2.0 .092 .237 -95.0 .117 .300

4.0 .040 .101 -120.5 .050 .129

6.0 .021 .055 -134.4 027 .070

10.0 .009 .023 -150.5 .011 .030

20.0 .0024 .0063 -164.5 .0027 .007

50.0 .0004 .001 -173.75 .0005 .0013

80.0 .0002 .0004 -176.0 .0002 .0005
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TABLE(4-ll): Gain and Phase Angle

For case: a4 =2 , a2 =l r=2

"Three Lumped Models"

COUNTER

0 G 1G1k & IGIG

0.0 .328 .847 0.0 .387 1.00

0.1 .324 .837 -8.3 .383 .988

0.3 .307 .792 -24.25 .362 .934

0.7 .243 .627 -50.0 .286 .740

1.0 .197 .510 -63.75 .232 .600

2.0 .107 .276 -89.0 .126 .325

4.0. .050 .127 -112.3 .060 .150

6.0 .028 .074 -126.7 .-034 .087

10.0 .013 .033 -143.7 .015 .038

20.0 .004 .009 -160.5 .004 .011

50.0 .0006 .0015 -172 .0007 .0018

80.0 .0002 .0006 -175 .0003 .0007
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TABLE(4-12): Gain and Phase Angle

For case: a4=2 , a2=1 , r=2

"Four Lumped Models"

COUNTER

l N 0 IGIIGIF

0.0 .341 .881 0.0 .387 1.000

0.1 .339 .874 -7.7 .384 .993

0.3 .321 .828 -22.0 .364 .940

0.7 .257 .665 -48.0 .292 .755

1.0 .210 .542 -61.5 .238 .616

2.0 .116 .300 -76.0 .132 .340

4.0 .050 .124 -81.7 .055 .160

6.0 .033 .085 -104.8 .037 .097

10.0 .021 .055 -135.0 .024 .062

20.0 .004 .012 -160.0 .005 .014

50.0 .0008 .002 -171.1 .0009 .0022

80.0 .0003 .0008 -174.2 .0003 .0009
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TABLE(4-13): Gain and, Phase Angle

For Case a,1=4 , a2=1 r=1

"Exact Results for Parallel Flow"

__ __ _ Ic IIGINf a

0. .1986 1.0 -0.0

0.1 .1986 110 -5.7

0.3 .1986 1.0 -17.2

0.7 .1986 .1.0 -40.3-

1.0 .1986 1.0 -57.6

2.0 .1986 1.0 -114.6

4.0 .1986 1.0 -229.2

6.0 .1986 1 o -343.7

10.0 .1986 1.0 -573



153

TABLE(4-14): Gain and phase Angle

For case: a1 =4 , aI=1 , r=1

"Two Lumped Models"

PARALLEL

19GliNIGIFrk lcG ,

0 .1837 .925 0 .1986 1.0

.1 .183 .922 -6.1 .198 .997

.3 .180 .905 -18 .194 .978

.7 .164 .825 -41 .177 .893

1.0 .147 .743 -56.8 .159 .803

2.0 .093 .468 -98 .100 .506

4.0 .037 .186 -144.7 .040 .202

6.0 .018 .089 -171.2 .019 .096 -

10.0 .006 .03 -201.6 .o00o@__ .030
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TABLE(4-15): Gain and phase Angle

For Case: a4=4 , a1=1 , r=1

"Three Lumped Models"

PARALLEL

IGIG90G #G

0.0 .1894 .954 0 .1986 1.0

0.1 .189 .952 -5.9 .198 .998

0.3 .187 .940 -17.7 .196 .985

0.7 .175 .882 -40.8 .184 .925

. .162 .817 -57.3 .170 .857

2.0 .110 .557 -105.3 .116 .583

4.0 .042 .214 -169.4 .046 .232

6.0 .018 .090 -207.7 .019 .094

10.0 .004 .022 -252 .005 .023
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TABLE(4-16): Gain and phase Angle

For Case: a1 =4 , a1=1 , r=1

"Four Lumped Models"

PARALLEL

0.0 .1922 .968 0 .1986 1.0

0.1 .1920 .967 -5.9 .1985 .999

0.3 .1900 .957 -17.7 .196 .988

0.7 .181 .910 -40.9 .187 .941

1.0 .170 .857 -57.8 .176 .885

2.0 .123 .619 -109.5 .127 .640

4.0 .05 .245 -186.2 .051 .253

u.0 .02 .096 -235.7 .020 .099

10.0 .004 .020 -364.2 .004 . .020
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TABLE(4-17): Gain and Phase Angle (Parallel Flow)

For Case: a1=2 , a2=1 r=2

"The Exact Results"

G G

0 .3167 1.0 0

.1 .3166 .999 -8-

.3 .3155 .996 -24

.7 .3110 .982 -63

1.0 .3055 .965 -89

2.0 .2730 .864 -177

4.0 .1720 .542 -324

6.0 .0623 .197 -572

10.0 .0525 .166 -688
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TABLE(4-18): Gain and Phase Angle

For Case: af =2 , a2=1 , r=2

"Two Lumped Models"

PA RAL LE L

G G 9- G IGIa 10!1lOIN 1G1 F

0.0 .280 .884 0.0 .3167 1.00

0.1 .278 .878 -10.1 .314 .993

0.3 .263 .830 -30.0 .297 .940

0.7 .208 .656 -63.3 .235 .742

1.0 .165 .520 -84.8 .186 .588

2.0 .076 .240 -129 .085 .270

4.0 .023 .072 -173 .026 .082

6.0 .009 .030 -198 -011 .034

10.0 .0025 .008 -223 .003 .009
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TABLE(4-19): Gain and Phase Angle

For Case: a,=2 , at=1 , r=2

"Three Lumped Models"

PARALLEL

IGI jcJI0#IGIF I GI4Fd

0.0 .292 .920 0.0 .3167 1.0

0.1 .290 .916 -9.7 .315 .996

0.3 .280 .882 -29 .303 .960

0.7 .234 .740 -64.6 .255 .804

1.0 .193 .610 -88 .210 .663

2.0 .090 .283 -144.7 .100 .310

4.0 .023 .074 -205 .025 .080

6.0 .008 .026 -240 .009 .028

10.0 .0016 .0053 -279 .0018 .0057
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TABLE(4-20): Gain and Phase Angle

For Case: a1=2 , aI=1 , r=2

"Four Lumped Models"

PARALLEL

I) G IG J( 0G G t

-0.0 .298 .94 0.0 .3167 1.0

.. 297 .937 -9.5 .315 .996

0.3 .288 .910 -28.4 .306 .967

0.7 .250 .790 -64.5 .266 .840

1.0 .213 .673 -89.4 .227 .716

2.0 .164 .330 -154.6 .110 .350

4.0 .025 .080 -229.3 .026 .084

6.0 .008 .025 -274.0 .008 .027

10.0 .0013 .004 -328.0 .0014 .0043
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TABLE(5-1): Gain and phase Angle (Using Differentt's )

For case: a =4 , a2=1 , r=1

"Two Lumped Models"

COUNTER-FLOW

'aIG G IWIV0 GI,

0.0 .198 .823 0.0 .2405 1.00

0.1 .197 .820 -4.7. .2400 .997

0.3 .193 .800 -13.9 .2340 .973

0.7 .174 .723 -30.0 .2110 .878

1.0 .157 .652 -40.0 .1900 .790

2.0 .110 .460 -62.3 .1350 .560

4.0 .065 .270 -87.0 .0800 .328

6.0 .043 .180 -104.6 .0520 .217

10.0 .022 .091 -125.0 .0260 .110

20.0 .007 .030 -149.5 .0090 .036

50.0 .001 .005 -167.5 .0010 .006

80.0 .004 .002 -171.5 .0004 .002
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TABLE(5-2): Gain and Phase Angle for Improved Case:

a1=4 , a.=1 r=

"Two Lumped-Models" "Exact"

COUN T E R-FLOW

JG IGN I9G

0.0 .2405 1.000 0.0 1.00 0.0

0.1 .2400 .997 -3.75 .99 -3.8

0.3 .2350 .977 -11.0 .97 -11.2

0.7 .2140 .890 -23.8 .88 -23.0

1.0 .195 .812 -31.0 .82 -29.5

2.0 .144 .600 -46.0 .63 -45.0

4.0 .094 .390 -58.0 .41 -60.0

6.0 .071 .295 -64.0 .30 -69.0

10.0 .048 .200 -71.0 .20 -76.0

20.0 .025 .106 -80.0 .10 -82.7

50.0 .010 .043 -86.0 .041 -86.7

_80 .0 }.006 .027 -87.3 .026 -88.0
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TABLE(5-3): Gain and Phase Angle for Improved Case:

a, 2 , a1=1 , r=2

"Two Lumped Models"

COUNTER-FLOW

"Exact"

IG GG

0.0 .400 1.037 0.0 1.00 0.0

0.1 .397 1.026 -8.0 .996 -7.0

0.3 .368 .950 -23.0 .954 -20.0

0.7 .280 .720 -46.0 .790 -41.0

1.0 .222 .573 -55.0 .642 -53.5

2.0 .125 .323 -67.0 .370 -72.0

4.0 .074 .190 -73.2 .196 -77.0

6.0 .051 .132 -78.5 .135 -82.0

10.0 .031 .081 -84.0 .086 -87.0

20.0 .016 .041 -87.4 .045 -87.5

50.0 .007 .018 -87.7 .018 -87.7

80.0 .004 .011 -89.7 .011 -89.7
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TABLE(5-4): Step Response for Counter-Flow Heat-Exchanger

For Case: aI=4 , =l , r=i

tA -A - -

Iep Tz Ie .i TA I rl

0.0 .0001 .000 .000

0.25 .373 .375 .400

0.5 .580 .580 .644

1.0 .780 .785 .873

1.5 .884 .896 .955

2.0 .925 .94 .984

2.5 .968 .97 .989

3.0 .983 .983 .992

3.5 .991 .991 .993

4.0 .995 .995 .995
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TABLE(5-5): Impulse Response for Counter Flow

For case: a1 =4 , a2 1 ,r=1

Te TC Tct

0.0 2.16 2.065 2.065

0.25 1.01 1.05 1.23

0.5 0.605 0.625 0.735

0.75 0.410 0.410 0.440

1.00 0.285 0.275 0.262

1.25 0.200 6.190 0.160

1.50 0.150 0.150 0.093

1.75 0.112 0.120 0.055

2.00 0.062 0.050 0.03

2.25 0.051 0.04 0.02

2.50 0.032 0.03 0.01

3.00 0.020 0.01 0.005
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FIGURE(3-12a): Static Case of Parallel-Flow

For case: al=4 a=1
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FIGURE(3-12b): Static Case of Counter-Flow

For case: a,=4 , a2
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FIGURE(3-13a): Static Case of Parallel-Flow

For case: a4=l ,a =1
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FIGURE(3-13b): Static Case of Counter-Flow

For case: a1 =1 , a 2 =
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FIGURE(3-14): Effect of Fitting Counter-Flow by Exact
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FIGURE(3-15): Effect of Fitting Parallel-Flow by Exact

Values. a =4 , a"
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FIGURE(3-16): Effect of Fitting Counter-Flow by Exact

Va lue. a4 =l , ag=l
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FIGURE(3-17): Effect of Fitting Parallel-Flow by Exact

Value. a =1 , a =1
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FIGURE(4-13): Gain of Frequency Response of Lumped-Models

"Counter-Flow" a, =4 , a2 =1 r=l
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FIGURE(4-14): Phase Angle of Lumped Models "Counter-Flow"

For case: a,=4 , al=1 , r=1

*-TWO LUMPS

x-THREE LUMPS

A-FOUR LUMPS

1.0 10 100

FREQUENCY----

4d

100

-120

-160

-180

01

FRIEDLY

EXACT

-N

-- I



175

FIGURE(4-15): Phase Angle of Lumped-Models "Counter -Flow"

For case a=1 , a2=1 , r=l
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FIGURE(4-16): Gain of Frequency Response of Lumped-

Models "Counter-Flow" a=1 , a=1 r=l
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FIGURE(4-17): Gain of Frequency Response of Lumped-

Models "Counter-Flow" a =2, a =1, r=2
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FIGURE(4-18): Phase Angle of Lumped Models"Counter Flow"
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FIGURE(4-19): Frequency Response of Lumped-Models

"Parallel-Flow" a1 =4 , a2 =
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FIGURE(4-20): Frequency Response of Lumped-Models

"Parallel Flow" a, =2, al=1, r=2
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FIGURE(5-1): Frequency Responses of Fitted Lumped-Models

For case: a =4 , a=1 r=1 , =V 3  2
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FIGURE(5-3): Gain and Phase Angle for Improved Case

For case: a1=4 , 2=1 r=1
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FIGURE(5-4): Gain and Phase Angle for Improved Case

For case: a,=2 , a,=1 , r=1
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FIGURE(5-5): Step Response of Improved Case

For case: a1=4 , =1 , r=1
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FIGURE(5-6): Impulse Response of Improved Case

For case: a1=4 , a=1,r=1
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FIGURE(5-8): Monotonic Parameters of Exact Solution

For case: a1=4 , a =1 , r=l
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FIGURE(5-9): Monotonic Parameters of Friedly's Method

For case: a,=4 , 2 r=1
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