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ABSTRACT

Simple moclels are required to handle nonlinear effects in
heat exchangers due to flow rate changes, and especially to
flow reversal transients, such as occur in loss-of-coolant
accidents. This thesis presents very simple models for the
dynamic behavior of such systems. Exact linear distributed
models have been presented by Takahashi(2), Paynter and
Takahashi (1), and Hsu and Gilbert (9).Approximate methods for
simplifying these models include Friedly (4) who presented an
asymptotic approximation which satisfies dynamic response of
such systems at bcth low and high frequencies; however, this
technique involves an infinite order model using a distributed
system.

The simple models of the present paper employ finite
state models or "Lumped Models"; and two, three, and four lump
heat exchanger models are discussed. Both dynamic and static
behaviors of these models are compared with exact results. In
addition, some results for flow reversals are shown.

Studying the results for these simple models shows that
to get the best agreement with exact solutions, a linear
combination of the intermediate out puts should be used.The
benefits of such an improvement are shown.
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Finally, the monotonic parameters are calculated directly
and they are compared with graphical results which are
obtained by technique due to Paynter (8).

Thesis Supervisor: Henry M. Paynter
Title: Professor of Mechanical Engineering
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NOMENCLATURE

Heat transfer area (m?)

Cross sectional area for each fluid (m?)

o
>

ﬁia (dimensionlesg)
H;é. (dimensionless)
M.C cal

Specific heat transfer at constant pressure ( ———)
kg.sec

Transfer function (dimensionless)

Gain (dimensionless)

Normalized gain (dimensionless)

Yom

Gain, used for temperature in improved case (dimension-
less)

Total length of heat exchangér's tubes or shell (m)
Length of nth section (m)

Amount of mass accumulated in each section (kgm)
Mass flow rate (kgm/sec)

Number of Lumpéd-Models (dimensionless)

Total heat transfer per unit time (cal/sec)

Ratio of velocities of two fluids (dimensionless)

Laplace transform variable with respect to 6, (dimen-
sionless)

Temperature of ith fluid (E),(i=l,2,...)
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Temperature of nth section (%)

Time (sec)

Time during that fluid goes through nth section (sec)
Overall heat transfer coefficient (cal/mz.sec.C)

Velocity of fluid (m/sec)

sh Shear work per unit time (joul/sec)

Temperature factor, in stirred tank assumption (dimen-
sionless)

Phase angle (deg.)
Dimensionless time
Density of fluid (kg/m3)

Distribution coefficient for heat transfer (dimension-
less)

$.ay or ¢.a,

Frequency (dimensionless)

Subscripts:

Supply flow (control agent), tube side
Demand flow (controlled medium), shell side
Cold fluid

Hot fluid

Inlet

nth section

Outlet
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SECTION I

INTRODUCTION

One of the problems whichﬁgecently arisen 1is accounting
for thermal lag in fluid systems; in the general case, such
systems contain heat capacitance, which produce significant
effects in many situations such as mechanical, chemical, and
aeronautical applications where precise temperature control is
very important. Temperature-control systems in air-craft are
subject to extreme environmental variation. The controls must
be designed to adjust quickly to these changes in ambient
conditions so as to deliver an air stream without excessive
temperature fluctuation. The choice among proposed control
systems which achieve a required steady state is based on
their transient operation. It is then desirable that the ana-
lysis of systems be carried quite far with paper and pencil
alone leaving a minimum of adjustment to be made on a working
model, However, at present, temperature control problems are
solved mainly through costly experimentation on models of pro-
posed systems,

To obtain design information without experiment, equations

describing the transient operation of the separate parts of a
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proposed system must be solved. A major difficulty is that the
equations for many of these parts are so complicated that
only very rough approximate methods have been available for
their solutions. One such general system whichisused in almost
all areasisthe heat exchanger . Upon changing physical or chem-
ical conditions of the working fluids flows in such a system,
it is then important to know what is happening in different
parts of industrial or power plants, etc., containingsuch heat
exchangers. Therefore, it would be very useful to determine sen-
sitivity of heat exchangers response upon changing different
parameters.

Finally, it should be mentioned that the engineer fre-
quently must simplify the basic scientific picture to make it
more useful for practical application. Calculations, which
render approximate results but at the same time allow a rapid
survey over a wide range of conditions and assumptions, are
important in the approach to an engineering problem, They
serve as timesavers in that they confine the more detailed
investigations to a smaller numerical range.The purpose of
this thesis is to explor@ the task of finding simpler forms

of the exact equations for dynamic response of heat-exchangerss



A PICTURE OF PRECEDING ATTEMPTS FOR THIS PROBLEM:

In the literature, dynamic performance of many heat ex-
changers of various configurations have been explored in very
great detail . Takahashi (2)presented transfer function analy-
sis of heat exchangers processes in 1952, then Paynter and
Takahashi (1) gave a new method of evaluating dynamic response
of heat exchangers, Hsu and Gilbert represented the same re-
sults of Takahashi in 1966. Wen-Jei Yang (17) has produced an
analysis of transient heat transfer in a vapor-heated heat
exchanger with arbitrary time-wise variant flow perturbation.
Myers and others (16),(18) analysed the transient response of
cross-flow heat exchangers, evaporators and condensers. Rea
and Ablow (13) presented a model for transient air tempera-
tures in a duct, They investigated experimentally and theoreti-
cally a thin-walled duct carrying heated air, and they found
the duct wall is shown to be an important heat reservoir.
Rizika (1l4) produced a method to find the thermal lag in sys-
tems such as heat exchanger and pipes. Dusinbere (19) showed a

numerical methods for calculation of transient temperatures

in pipes and heat exchangers. Finally Friedly (4) presented an
asymptotic approximation for exact solution of heat exchangers.

His method is useful both at high and low frequencies. All
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of these researches and evaluations are based on Profos(7)
method of evaluating such systems, and his operator is still

used for this problem,



SECTION II

EXACT SOLUTION AND FRIEDLY'S METHOD

Takahashi (2) used the Profos(7) operator to solve the

heat exchanger problem as follow:

?I-Jt
tI T ////T+ 141

O

—C—

FIGURE(2-1): Profos Operator

mrh .

From energy balance(applied for above element) following

formula is gained:

A o T =p(e-T)

Where ¥ is the surface temperature of solid.

By applying this result fortmheat exchanger of Fig.(2-2) the

following results are produced:
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@
Ta Tog
-5

!

Ta

Tea

—
Tiy Tos
—_— — -
—_—

Tee

FIGURE(2-2):Counter-Flow and Parallel-Flow Heat-Exchanger

X

L

LN RN =2 (T-T)

ﬁ ks
3T
r%’b—f% =a,("T-"T;)

[*Plus sign is for parallel flow, minus sign is for counter-

flow. ]

These results are based on the assumption that both fluids are unmixed,

solid capacities are neglected, and system parameters are constant.

By assuming that the "hot fluid" (tube side) of temper-

ature Tqis the control agent (supply side), and the '"cold fluid"

(shell side), fluid of temperature T, is the controlled medium

(demand side), the transfer function is:
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G{39)= =
i
Then the transfer functions are intefollowing form:

i- For the parallel flow:

G(éﬁ)'——-ﬁ%ﬁ: (€'~ ¢t (2-1)

Were B Ri=[-(heh)/(h-hiany | o (2-2)

ii- For the counter flow:

o %0-€%
G (i) R-R Dt (1= ¢ (2-3)

where  B,P _[ CEARV TR T ]/2

The parameters are defined as follow:

£, =a, + 10

fy=ag+ jra

Friedly's approximate method is based on Schde’s(4)
approach to the dynamics of double-pipe heat exchangers, which

is in the general form of:

(-}-(S)..—_ m-l-'T'S' {~ c(d""‘qg)
{+Ts 445 (2-5)

Where o » ﬂ_ are constants which result from the high-fre-
[}
quency limit of the exact transfer function and m results from

the low frequency limit. The time constant T is arbitrary and
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adjusted to match the exact frequency response as well as
possible, Friedly retained the delay time but eliminated the

adjustable time constant. Then his approximate form is:

- =(ok o
68) =g [1-€°47) @)
Where: "
] m
T k"

In other words, he expanded the. denominator of exact solution

and neglected the termsof order two and more; therefore he got:

A3(x-1)
Clx,sve)—p B & [gﬁ-z)f - (AR ]

(14r)¢ —¢€ + -
4 4) X
G(x,0) = a, AR
&%)
#6%"_q,

Therefore his approximate transfer function is:

(2-7)

GL8 =

[ Er(l-'-)g‘- EC‘;ML)&. E(x«rf)i'
+T9

Where:
K _ az ax‘"-“')

1‘“|+r

(@ -0
ﬁ: — @ x e’ )-1
&

But as the results show , this method is infinite order

and Friedly used & distributed system model.
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It should be mentioned that after presenting the exact
solution, Paynter and Takahashi (1) created another method
for evaluating which based on monotonic systems that Paynter
(3) presented. As Paynter says: The Laplace transform solution

of a monotone process can be written as:
(6 ef-r.c+§-'r’--?r£.-.---

Where the parameters § ,Tm ,T, ,T, are given in terms of
system constants, the symbol S is the complex variable of the
Laplace transformation. In summary,gmeasures the steady state
amplitude ratio between response and disturbance, T, measures
the mean time delay between response and disturbance,T, defin-
es the dispersion or att uation, and T, the assymmetry or
phase nonlinearity. This characterization is very efficient
for any physical process where the step response is monotonic
and nondecreasing in time,

If the Laplace transformation of system is in the form of

G(S) B 1+G.S‘+ﬂz S"'-i-a:gs e -gaksﬂ (2-8)

Where the denominator polynomial may be either finite or
infinite, then the monotone parameters can be obtained direct-

ly by following relationships:
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These monotonic parameters are obtained by this method

for simple model of this present paper.



SECTION 1711

ANALYSTS AND FORMATION OF HEAT EXCHANGER PROBLEM:

The dynamic performance of a cocenteric pipe heat ex-
changer could be charecterized by sol ution of four simult-
aneous nonlinear partial differential equations, the assump-

tions for this analysis are:

f-The heat flow and temperature distribution are functiong
of time and axial distance from tube inlet.
2-Both the inner radius and the outer radius of the tube

are assumed constant.

3-The tube material is homogeneous and isentropic, the
density and the specific heat are conscant.

4-The thermal conductivity of tube material is zero
in the axial direction; the thermal conductivity of the tube
material is considered infinite in the radial direction, this
condition valid for thin metal walls.

3-There is no energy source within the tube material it-
self.

6-The thermal conductivity in the outer wall in the long-
itudinal direction is zero and in the transverse direction is
finite, a condition valid for thick insulated walls.

7-The film coefficients of heat transfer between the fluid

and tube material h are uniform and constant over the inner
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and outer tube surfaces.

8- The specific heats at constant pressure of both the
inner and outer fluids are assumed te be constant.

9- The fluid pressure at any section is indepentent of
time for both inner and outer fluids.

Nonlinear partial differential equations are:

Heat balance, for inner fluid:

)'T' i N — U1 ( )
3P MG

Heat balance, inner wall:

,\T"’Ic}__ U4, (T -1;)+ U:Az (T )

Heat balance, outer fluid:

Ay YT YT _ U 1o Us A _
M: ‘YD: f—.‘; = ’;E‘:(T; 'E)-l' -,f;é(r-l:. T)

Heat balance, outer wall:

P P I il
S i ‘b;;

[*Positive sign is for parallel-flow, negative sign is for
counter-flowj

These results can be gotten by Profos(7) operator, in
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appendix(a) there are the manners of getting these formulas..
These formulas are for general cases that the thermal storage
of walls aren't negligible.

Analysis the problem consists of two parts: Static case,

and Dynamic response, as follow:

STATIC CASE OF HEAT EXCHANGERS:

Based on basic assumptions and neglecting the thermal
storage of walls, for steady state case, from energy balance

(appendix-a), the results are:

for counter-flow

(v~ dT
MC St = P
T (3-1)

WG 2 =+p

v\

L

L
*———Nh
T —z% = ZZ T
4‘——Mg
- i

Toe
FIGURE(3-1): Counter Flow Heat Exchanger



26

A model for this counter-flow case is shown in figure

(3-2):

M,_Cz -%-i- =+

e d LufU(T-T)

!

d%k
M’C’ -‘-rx—-.:.'-l-? 'T:;

FIGURE(3-2): Model for Counter-Flow Heat Exchanger

Since the objective of this thesis ié to reduce the math-
ematical model to a set of simultaneous ordinary differential
equations, the system will be '"finite differenced" or "lumped"

The exchanger is divided into N sections (Fig.3-3) with

each section on tube side corresponding to a section on the sh-

=

4
ell side. i
l|l1

"Ira

h
=

i
'
!
!
I
!
I
]

®”

o *= = =+ 1t = ==+«

FIGURE(3-3): Lumped Heat Exchanger

IR I N

4
==
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For each lump the Profos(7) operator is used then:
Tx $"T:,¢ = Tx-.'—' 'Tn:x_' X“( F’;x“" T;;) Hot Side
TA 91:3= "I_fi_,—- T:‘g+ ch (r\:x—-'tj) Cold Side

Calculations to get these results are in appendix(c). For

static case(steady-state) they are:

.
Tm"’ﬁx =~ Xlx (1;"' Ill) =e
T T+ ic!(q;g— Iej) =o

.

(3-2)

Therefore, it depends on number of lumps, and it is clear that
by increasing this number better results will be gotten.
For N=2:

i- Parallel Flow Heat Exchanger:

Tz .

T— L v T

FIGURE(3-4): Two Lumped Models Heat Exchanger(Parallel)

N

Calculations are in appendix(c) which give following
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results by disturbing only inlet temperature of hot side fluid:

Tos . e@li+498)+ 8%+ % a)
T;u (+ 'ﬁau'*"ﬂ“z)(\"‘ %8+ 4,0,)

T (&0 484) + 0 44

T G+ o+ 2a,)(1+ 0,44, 4)

“Tha — 1+ 4

Ty (448, )+ %) — 020, 4,
e L

Th 0+ &)1+ %4) - 92a, 4,

ii~ Counter Flow Heat Exchanger:

T Tha Tus

—.._u———qn—-’ e

Q Q,

W) 7
‘_////} """" vz

FIGURE(3-5): Tow Lumped Models Heat Exchanger(counter-flow)

The beauty of this model is that for counter-flow only
one of the fluids is reversed and everything is the same:

-~

o 92:01%8+%8) +4, &
T (+3a+ 4a)1r 00+ 4 4)-0008
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s (+R@)(\+Ga)
T 4R+ 00) (4 0400)- 2400,

Il

ke %0 (1+ 4 &)
'-E, Gxo, R.‘I“ﬁdg)(u‘fzmq- ?,G,J_q:q’zqﬂz

T . _ (rfe)(+48+44)
W (v%a+2a)(1+9445,0) 204

Now, for different values of a, , a, we can compare the re-
sults of this model and results of exact solution, but by
changing ¢ and ¢, the optimum results can be gained.Table(3-1)

through(3-4) contain the results of different values of a, , a

I

§ , and 4, .
For N=3:

i-Parallel Flow: As shown following , for this case

there are six equations for six outlet temperatures as shown
in Fig. (3-6):

Equations are:

)
F[;I; _(|+‘ﬁal)rmz+‘ﬁal1;;=o
< %o T+ Ty — (1+%.82) oy smo

To—0+28)Ta + %4 Tes =0
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’
%4 T + Teg = (1) Tey=e

P r'[;ls --(H"&a.).-rnl‘, -+ %a( ‘-E-;:u

‘f:;az TFM -+ 'T'c_g - (H“f, h)ﬂam

\

Tt Tu : -'ﬁu ‘ Tya

Q Q

FIGURE(3-6): Three Lumped Models Heat Exchanger(parallel-flow)

Therefore, results for disturbing only inlet temperature

of hot fluid(Ty) are:

FE‘r . N4 (12% )1+ 8.8,) 384 (+ER)RHA+HEAG 0% )+ & XA
r_]-,;i -[ll' (I +tf" R,-l-‘i} nz )

&=t

Tha _ ]Tf“‘ﬁ": )+% G EA G LAY R )+, 8, 8 (146, )

- 3
T 'LT(uw.- 84§,
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T _ a4t h+50.0+944)

T (1%8+48)(qa.424)
Te _ (0+94)0+%,a: )+ %l
T (1+ @8, +4,4)(H44 +04)

To _ @ Qs

T \+4. 4+ 6 2,

Te _ I+ % &

T \+ 84+ %

ii- For Counter-Flow(N=3): As shown in following, these

six equations are for this case(see Fig.3-7):

Tz
—

T Tus
—_ —4 gy

v
[

Q @

A7 au v Auf
//// //% 7 Zn

FIGURE(3-7): Three Lumped Models Heat Exchanger(counter-flow)

N
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r
T, ~(+02) Vg +% & Tep=0

€4, oo+ ez ~ (144, 22) Tes=o
T —(+%2) g+ @& Tey =
ﬁ 4,8 T +Ta — (+ % &) Ty =e
Ta—(1+%8) Ty + 6 & Tep==

% r];‘r + Ty ~ (4% a) Tymo

!

Results for disturbing Ty, are:

Tr _ _4& 0+ R0+ %4 oot a)+ (-95 A0) 08 %4 19800+4%)
T ettt ts) - a0, T [t che, 0000, 0)

3
T (ott-fa) L] (+%0)

[L]]

T Graar Bt At As) 20, Tt 8, er i)
AT

T — 22 Q1+, ) 4+ + 58 2 +944)
T (el 2 taNeeotd) 2, 3, | T4t E0, 00269
Tos _ (@)1 % 2,)(1+ % £+ a)

™ (02, r D) 02, 430 )00 )040) - 8, ﬂz—rr(%ﬂ#‘ﬁ-'&.ﬂ-*"ﬂ Y

(]
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G 1+ 4 )0+ G & )1+ 4~ &)

T (+het-ga)irRa B 4 4 )Y(+4R) —g,a, ﬁ(w%..-*‘&‘ﬁ«“ﬁ‘fc‘ﬁ«“t)

T _ (200140 )+ 60 Nt 1)~ A 4, (B B+ Cot + 0.4 &)

To  Orbada)iraiternnliogg a s T (. 168,00%%
{w

The results for different values of a;,a; ,¢ ,4,, and @,

are in tables {3-1) through (3-4)

For N=4:

i- Parallel flow heat exchanger, for eight outlet tem-

peratures as shown in Fig.(3-8) there are eight equations

which can be obtained by using the energy balance for each

section.
i
T LI ATl el Tos
Q Q, Qs Q,
T - +Tf?-://¥ . T_’V/ ¢ Ti"’-z/yt".
T 0T

y

L

[ To ~(+28) T2 +4@, Tz =

qlal'T;lll, -+ rE; "'(l*?,ns)']zga-o

FIGURE(3-8): Four Lumped Model Heat-Exhanger(parallel-flow)
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qu Tia 4 Tez — (+RRy) Toy=se
Tois— 0+98) Toy +% & Tea =0
88 Ty + Tos — (g @) Ty e

'E —(H‘Pga.)'ﬁ_g + 7, Tr=o
Ti— 0+8,0)Ts +% & Tes=o

oty T + T — O+, ) Tes=o
.
The results for disturbing Ty are:

T Q,Tj E:‘.mmww]huw@..,azmm.,ca.m.)]

T Tranmear
2 u}
N e e A B TR Ty
—!:‘; -I-:I—(H'ql- a,+4; ﬂg)
T _BetRn R4 (1) Rt U BA 00,0 ) +040 &, 4
T t[(l%% +; 2)
3
T L ORa)8R0 00000+ 00%) 128 2,2 (444
T;’ ﬁ(H%ﬂ +§4;)

(]}

T A48 2120 %)
'T':l (l+ fg,al"'qg ﬂz)(l-i-‘f,a.-!-‘f. az)

;Y (80 ) (+ A1 408y
T (98448 )0+ 04 +44,)
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ez - 2,
'T;I 4 a+9 42
T _ 1+4 0

T 1 t8e+% @

ii- For Counter-Flow(N=4): from appendix(e) which shows
how to get the equations, and Fig.(3-9)the following results

obtained:

TFH 1;2 TH.3 -‘;M ] Tus

S gl I S kool I S8 —_—t 1P —

Q! Qt Qg Q‘r

R /_Ta,f/ A A A IZR

FIGURE(3-9): Four Lumped Models Heat-Exchanger(Counter-Flow)

f

T — (+%a) T g2 T =o
80 Ty + Ta—(1+465) es=s
Ta—0+28)Th + B4 Tep=o
% T + Tes ~(1+8, 2 =o
Ts— (452 Tos + 6 @ Tea=o

B Toy + Tez — (1+ By Ty =o
\
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'T.:;, -1+, a.ﬂ;; + €. 2, Ter=o
4
ety Tos + Tes — G+ 1) ey =o

.

Therefore,

the outlet temperatures by disturbing T are:

Tes _ wwma,)t R R e A 2 S A B e )
T T!'[;%w.a]mm,a.'t}um&(ﬂ%ﬁ%ﬂc)ﬁﬁ*"-"""t‘!)-tf%‘: () ety

i)

:r;.': l%h'%lﬂ:ﬂﬁ% Bt AR 4 a8+ 9410R) H[am]-qq&mmm%mﬂ
w Gk

T.
-I:'[ (+%4) TI_(H%“) ﬁj

&=

Tey %% | 1444194, T

T M4 1+, 4, Thy
The = | SBR U RUGAL () | aGE0a) RO ian (2804 s
T TToreay [Traa) n

Tes, _ ~%8:-%4(+04+5,8) afmwqu(mae.m;j-fgm T
T (+0.2Y0+%4,) (+4,4)(+4,4) T

To __ 1-%428 , a@+9+%8a00s) To
T (490,)(1+44) (+aa, )am.) “T

T e, & Tl &ﬂﬂl—m.licwsfwws@--r&)] &
T BRE T 'ﬂ'(wq;a,) T

&=

Tz Y % Ta
T 1+6e, + |+8& Ty
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Adding the number of Lumped element§ gives a better solu-
tion compare with exact results, but if only a simple model is
desired then only two, three, and four Lumped elements need to
be used, as shown later, by choosing good values for the
distribution coefficients % & % results will be very close to
exact results.

The restrictive assumptions which are shown at the begin-
ning of this analysis may be omitted and the solution will
appear for the more general case. This solution can be real-
ized by virtue of the Lumped Model approach via appropriate
choice of parameters. Quantitive effects of variable heat tra-
nsfer coefficients, existance of heat capacitors, heat inter-
action with ambient or any other cases can be practically ob-
tained only by getting the results of a few equations in a
very simple form.

The results of steady state(static) case are tabulated
and plotted. In appendix(a) the exact scluticusare presented,
for steady state case, and in Fig.(3-12a) through(3-13b)the
results of exact method and several Lumped Models are shown,
for the static case.

Because of differences between exact results and the

Lumped Models, fitting the Lumped Model parameters via the
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exact solution yields substantial improvement, First the para-
llel flow case is fitted and its effects on counter flow are
shown, then the results of fitting counter flow and its eff-
ects on parallel flow are discussed.

The exact equations for static cases (as they are presen-
ted in appendix a) are:

i- For Parallel Flow:

~{a,+4;)X
Ty ng"e ]
= (3-3)
'T’.‘ a,+ ag
T _ &t @ €47 (3-4)
ih: @, + 4
Te:
T —
T ’ T
e i) ——» ——
T —
l!———U-)( l
The
FIGURE(3-~10): Parallel-Flow Heat Exchanger
ii- For Counter Flow:
-(“I —‘I)X "(an"' ’&J
To_ _ae &t (3-5)

-Cal" ﬂ' )

T -, €
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) T KT
T _ AR (3-6)
Tfo r‘;:: ar_ al e" Ca--—‘:)
i
-ﬁt'. ‘——1;“) T‘p
Top—— —
—Tyte)
‘ I
=/ T'I":z;

FIGURE(3-11): Counter-Flow Heat-Exchanger
Now, for two special cases, the results of static case are
computed and plotted:
1)- For case: a,=4 , a =1

T, = T, (cold fluid) T, = Ty (hot fluid)

( -
'Tza)_; '__eSx
“The 5
Parallel Flow < (3-7)
ﬁc:-} - I-Hrésx
L rmt 5
[ 3
T _ 488
Tat 4 —€?
Counter Flow 4 (3-8)
Tw_ -8
Te 4 —€°

-



2)- For case: a,=1 , a =1

Parallel Flow 4 (3-9)

L
Ty
=1{, (1—x
T % 0—)
Counter Flow { T (3-10)
n __ Y b X
= 7
The 2
L

The results of these two special cases are plotted in Figs
(3-12a) through(3-13b), as they indicated these results bear a
very good agreement with Lumped Model results.

For making clear and easier comparison, the results of
static cases for outlet temperatures are plotted respect to
number of Lumped sections. For determining the approximate
slopesof these results, they are plotted respect to Nm, that N
is number of Lumped elements, and m is an exponent value which
makes the relationship linear, and Fig. (3-14) through(3-17)

show these results,indicating for each case the minimum
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number of Lumped elements which gives the best results, and
they are shown on the figures(3-14) through(3-17)

For preceding special cases, the outlet temperatures are
fitted as follows:

a)- Fitting Parallel Flow: Tables (3-1) through (3-4)
contain the results of Lumped Models-outlet temperatures for
each value of ¢ , by calling those data, and putting x=0 or

x=1 in equations (3-7) through (3-10), the results are:

For case a =4 , a,=l
Parallel Flow: -:Eg— =./986 , :]zﬁ~ = ,2054
§ 'ExcT 'T::Ill Excr

Lumped Models: rr

H' il
Counter Flow:
Tec T
(Pﬁ # by i —— -—‘1—- — X
¥ T 2 ’ T 2
El’ll:Tr-# %:-24 ’ ""—-."'ua‘
N 2]
Tee
&l ifld- Conehir )8 114

Therefore, by fitting the parallel flow with exact re-
sults, the counter flow gets the 90% value of the exact re-
sults, in appendix(d) calculations for other cases(different®)

are presented and their results are in tables (3-5)&(3-6).
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b)- Fitting Counter-Flow: The results of Lumped Models
and exact results make following calculations, they are for
whole values of €%, in appendix(d):

For &,=4 , a,=1

Counter Flow:

¢ __.9
?n}i - ) :Ei Toce .2
o

Parallel Flow: T

=4 =9 g

Therefore,

Tc)l.L:* J937% 1.2 =.990 -—F&J—Fll—- = 1,108
Toe)e

ool - Rt/ Pusate
Then by fitting the counter flow with exact results, the

parallel flow gets the 10.8% higher of exact value. Therefore,
as the results show it is better to fit the parallel flow and
improve the counter flow. Figures (3-14)through (3-17) show
the fitting results for different flow, and different cases.

This improvement of static case, by fitting the outlet
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temperature, is useful for dynamic and transient responses,
because the Lumped Model matches the exact solution at low
frequency(by fitting) and it improves the results for high

frequency or in early transient time, as they are shown later.



SECTION IV

DYNAMIC AND TRANSIENT RESPONSE OF HEAT-EXCHANGERS:

In the first part of this thesis, the steady state case
was discussed and equations were obtained showing the temper-
ature gradient as a function of location of each Lumped sec-
tion in the heat-exchanger. The more general case of unsteady-
state operation can now be assumed so that the dependent tem-
perature variables are functions of the independent variables,
Since there is more than one independent variable, the rela-
tionship between temperature, time, and distance can be stated
as a partial differential equation, as it is shown in(l), (4),
(6). However, in keeping with the objective of this thesis,
this partial differential equation can in turn be written
as a set of simultaneous ordinary differential equations. For
this staged systemitis always possible to use the canonical
transformation to uncouple a large number of simultaneous equ-
ations and write them in terms of single first and second or-
der systems. However, there are cases where it is both simpler
and faster to make a direct attack on the problem. A direct

approach is particulary advantageous when the coefficient
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matrix is bi-ortri-diagonal, since for these cases the eigen-

values, or characteristic roots, can be obtained analytically.

Lumped Formulation

As Fig.(4-1) shows, a heat exchanger is divided by N
Lumped, from first law of thermodynamics(energy equation),

there is following relationship for each Lumped:

Rate of Heat Accumulation=Heat Flow in- Heat Flow outk
Heat Transferred

Tin ——

51

)
- a—

e
-5---

v.
FIGURE(4-1): Lumped Heat Exchanger Tee e

—— -En —w» Cn
] ey, Cold Sl

4
" I Ty, Hol Side
S

"~ =
FIGURE(4-2): Element of Heat Exchanger
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For analysis the problem one of the sections should be
formulated for energy balance and then it can be developed for
other sections, that section analfsis can be the same as
Profos operator(7). By uéing above relationship for each sec-

tion(as shown in fig.4-2) the results are:

/
///x’FS} hot side:

Rate of heat accumulation = Mu-i‘{%“—” Cﬂ ‘ﬂ;
Heat flow in =;l;,£’,”=-ﬂ',,c, 'Ti‘q..q

Heat flow out =M;£.n=/"'ucg Ton

Heat transferred = 9’:“‘](1:"—1?)

Therefore, energy balance is:

MGAE =M T o V(T —T)

T =B (Ta=To) =B (T-T) )

An used for area because all of the sections don't need

or

to be equal, only hot and cold sections in the same number
should be the same.

q = As 1n AS 1, = volume of section n

My =4 4 Vh

By assumption of constant density and constant geometry
for both sides:
continuty (mass conservation) -ﬁAS Vi ___/g Ag v,

or V =const,.
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If Tn defined as the time which fluid going through sec-

tion n then:

Tn !

Therefore, MH =/ As N

and _;f. fﬂ

If the total length of tube is L and Y% is the fraction
or ratio of the length section n and total length, and
defined as total time which hot fluid takes to flow through
tube, then:

qz,L-—._.-& => g‘_-_-_ta.T (4-2)

Defined a' as:

- U.hA .. UPL — U.F!n
a‘ Mﬂ'q .M—'-"- .Ca ‘Pn- ﬁ'ﬂ. .CH

Where P-&"‘”n Tn
- a

Therefore: %{”ﬂc’: = q’% 1 (4-3)
n

By substituting (4-2)&(4-3) in(4-1):

i::n =,:', i )= a'('T -T) -

"using equation(4-2)"

Therefore, equation (4-5) becomes as:

4 AW o (. —T)—ea(T-T)

Hot Side

The same equation can be derived for cold side flow, onky
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r which is velocity ratio of two fluids is added to equation:

ggigliiieFlow (ﬁ'lr 49. (r‘zﬂ-l 'T::") —w"a‘('-rn‘rré) (4-7)

There are some changes because of counter flow, and for

such case the equation is:

o ide Tn
goigtzrdFlow ieo "‘(F[:n "5:‘")+‘Fa2(T T:.) (4-8)

Before any further step, the temperature of each stage
should be defined. As it was used in steady state case and
also it is shown in appendix(c), the assumption of stirred

tank is used for each lumped as in following figure:

M; at Tlln MH ot T;fm-l
Mc ot To—— [_. Mg ot T,
l P\.’J—‘\’-\—J—"—"‘i—f\—.
My | Thue
oo
db M'C JTCnﬂ

FIGURE(4-3): A Model of Lumped Section
Therefore, the exit temperature of each lumped(section)

is used for the temperature of whole fluid in that section,
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then as one of the sections picked up as an element for eval-

uvating, it looks like Fig.(4-4):

----------

NN
T

777
24T,
L

"

.
— e e v e e w— —— e -—
e e —_—— — —} —

FIGURE(4-4): nth Lumped Model
Therefore, by using this assumption and substitute the
outlet temperature for section temperature, equations (4-6)

through (4-8) become:

T :
6 4 =T o5 (T

Parallel Flow (4-9)

V'ﬁa 10, ('E.-. Ten)—%aa( Tin— Tn)

\.

JT"—('E.. T) =% (Ton=Teon) %9
Counter Flow A4 (4-10)

rﬂl (Fr| 1Em)'"¢ ﬂ:(qﬂa rIa )

e

Because solving the equations by Laplace transform is

easier;therefore, equations (4-9)&(4-10), by using zero cond-
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ition at the inlet or t =0 are:

(G S+ BoH) To = Thna +% & Ten
Parallel Flow (4-11)

(r?l'l 0+ a?-'") Tﬂ =Tﬂ-l +Ha, T;n

r(%ﬂ;*q;aﬂd)Fﬁ;===;Ehﬂ'4-qha'FE;”

Counter Flow ﬁ (4-12)

ros+4e2) T, =T +6a T,

-
As equations (4-11)&(4-12) show, if the number of Lumped
sections are given, these equations can be extended and their
solutions give the temperature at any section. The same as
steady state case, here for N equals to 2,3, and 4 it will be
discussed, also we can see by putting a large value for time
(t—=»o0) the results of static case can be obtained. Following

is a schematic of this evaluation:



(0. S

H| 1]

FIGURE(4-5): Schematic of Lumped Model for Heat-Exchanger

A simplest problem which is close to heat exchanger prob-
lem of dynamic response is one where there are a number of
first-order systems arranged in series. Letting the time cons-
tant of the nth stage be T;, denoting the dependent variable
leaving stage by the stage number, and including the possib-
ility of being able to control each stage, a balance on the

nth stage gives the equation:

ﬂ,.-ﬁ—" + =%, AU (4~13)
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and the same equation will apply to every stage. Fig.(4-6)

shows this series of first order systems.,

u u i 7]

OO M= O pH O 1

FIGURE(4-6): Series of First-Order Systems

Ifwe assume that the system is originally operating at
some steady state conditiong (as it discussed for heat exchan-
ger is last part), and that the dependent variable represents
deviations from steady state, the Laplace transform of equa-

tion (4-13) gives the result:
(Bs+1)J, =¥ +A4 (4-14)

Thus the complete set of equations can be written as:

(s+)y, =4 +8 %

@zg"")—g. == 0(1-3: +4u

(Tas+) .‘j,, = dni_;l“ﬁnzi

craem T srsseea

Now, the first equation can be solved in the set forj}in

terms of I and & and then use this result to eliminate-y_;
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from the second equation, This procedure can be repeated until
we obtain an explicit expression for Y, in terms of 3: and @ ,

the system inputs. Hence

3- . (otn 0(\--l““""':."“l)'-;i; + ﬂﬂ C@J + 0 CE“S‘H) """" (ﬂ'g'H)
N (B DDA (B5+) @Fﬂ)(?ng-q—n) ...... F(0.g+1)

+ o B (f'._‘s'-;-i)(@,__‘q-l- I)(ﬁg'H) e eee
" @S+ D@, S+1) - ()

By oyoly -+ - Ky ll}_
(‘E.,g-a-l)(@,,_,f-ﬂ) ----- .5+ 1) ]

or, for a case where all of the time constantsfand system gaing

+

are equal, the transfer function for inlet disturbances is
» "
3 @y

and the transfer function for control variable changes is:

3 B io('r(ts'-i-:f
L (rg+)




SPECTAL CASES FOR DYNAMIC RESPONSE:

For two lumped models(N=2):

i-Parallel Flow:

From equation(4-11), for N=2 the results are:

T T T
= 9,4  —t-—4> @4 —
Q
I 7
ey /) //;7 Teq Eiji;>/ ///i::::/A-Ea
@, 4, A 4 2 >
A W
FIGURE (4-%) :

Two Lumped Models Heat-Exchanger(parallel-flow)

r(q’-$'+‘ﬂ¢a+ l)'T;z =Tn +48 Tes
J (re+aaH) To=To + %2 Ty
(GS+0at) =T +9aT,

($r§44y§+0it§==iﬁh-kfaa§ﬁ23

The results of these equations, by disturbing only inlet

temperature of hot fluid, are:

FE; = 4 ap
o GSHR0+)QT+RR)-104,

T (OS+Ra+1)@re +844)-15%2,4

(4-15a-0)
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T (@rs+ §o+)ert R e+ 90l
tl'[(%M‘!ﬂ)(Mﬁd,ﬂ)-ﬁ'ﬂ.‘. (4-15a)

T’ - G (Brs + 8+ Cu (G5 RA 1)

W T [cesaani@moo)-ded (4-15b)

ii- Counter Flow:

From equation(4-12), and as Fig.(4-8)shows the results

are.

T T Tus
— =

0.8 Tt he -

Q

IC_J"V 4’:;:// 4 —Tc—’_7/ L':’az//
oL

FIGURE(4-8): Two Lumped Models of Counter Flow Heat-Exchanger

(g To=Th +42 T
Ces+n+) To=To+42, T

@s+8a+) Th=To+%2 T

(rs+844) T=Ta+%aTg

For disturbing only inlet temperature of hot filuid, the

solutions of above equations are:
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e+ Q) (raS+44+1)-£2¢ 0,
| U[(t-s'l-%-r Nrest9ah) -lffa,d,].:‘q'q,qz

(4-16a)

{ A (rEg+6ar+)
'l:,Tkv.-cma.ﬂ)(msm,u) S an) 084

—J

(4-16b)
O+ 9.0, +1)(r8,9-+6,0s +1)
1‘1'[(% R R EA R AR ZE)

(ragrgah) (SR8 RS B 1)~ 4]
'!,‘_]'[(%s'»f%-)(rﬁman )-E4a] 0004

It is clear that by putting $=0

Al Sl s s
!

, the result of steady-

state case can be gotten.

For three lumped models(N=3):

i- Parallel Flow:

From equation(4-11) for N=3 the results for temperature

labeled on Fig,(4-9)are:

T
A s 1. PO S S O P LN
Q, Q. Q
. /'/C/’ ct NS/ Tes # g Te
1;:' "Pf.va! -I -J{/ C?z/" T~ _(/ {‘?3:%/7/_;
// Vi S Y s s

FIGURE(4-9): Three Lumped Models for Parallel Flow Heat-Excha«
nger(parallel-flow)
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There are three $¥'s, which can be equal or different, but

the sum of them should be unit.
r(‘I’.t.f-t-‘ﬁ‘f.-i- 1) The =Tw +4.2Tx
(res+4a+) Ty =T +00 T
(Be+4a+) T = Te +%2 T
) (Gre+Ba+) To=Te + B Ths
(@9+%a+1) Tie= T+ 42T,

Grs+he+) 'Tc‘l. = Tx +% aziTJQ
-

And the solutions for changing only inlet hot temperature

fluid are:

'-Eﬂ = ‘?\ a!
T €+%a4+ )enha 1)L,

-'T;! Bro+Ras 4 )
T Cr80un@rdstar)-gaa

f

Ta _ s r009) A0+ 404)

W T Jlescgannrnarifse)
B Gt Ren)+ 9844
T

[Tstantosnatg
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T _ bl | (@rss o)+ 204,40 +4, (054 8) ;ummm)@mqﬂ)
W™

TTiesmdemanrirag]
(4-17a)
T Llesa) nunbsasngaq 57 G004
—_— == — 5 —
K [T las+eani@estop)-tian] 4170)

ii- Counter Flow:

Using equation(4-12) for temperature labeled on Fig

(4-10), they give six equations and six unknown temperaturesas
follows:
T T T T
—» ¢, 4a, Ml % a, Pl 4y, @ |

Qy

Qs

Q,
g 7 < 7 -
o A WA Vs

FIGURE(4-10): Three Lumped Models of Counter Flow Heat-Exchanger

r(1’.$'+‘r.a.+l)'7?z='7-ﬂ +%2, T
€se )y =T +40T
€+%9+) o= Ta+ha T
@e+gat) T =T +62: 'R,
@Gs+hen) o= Th+%4 T
s+ T =T +%0 T,

>

.
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Solution for getting outlet temperatures of each section
based on disturbing only hot inlet fluid temperature are in
the next page but instead of these long answers by putting the
numerical valuves of parameters (namely ¢ , 4 , & ,and a,,az;aa,r)
the results will be very simple as they are shown for special

values of these parameters.
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For four lumped models(N=4):

i- Parallel Flow:

Tin Tha Ta

A LP- » & ""'["-"r.b tﬂ,ﬂ. THl' TH5

—t el I qlpa', -—p— %,a, ———3

Q, Q Q Q,

T /¢z'{@12(4*:77E3( w/ ki / i, / s,
A e 0 v T

FIGURE(4-11): Four Lumped Models for Parallel Flow Heat-exchan-
ger,

By using N=4, there are four Y¥'s, and equation(4-11)is

extend to following equations:

. -
(@5 +2a+1) To="To +%4T;

@rs+ea) Ta= To +20, T
Cg+t9+1) Tor= T+ 44 TSy
(®re+90+) Ter=To +8 s
* &9 +%4+) Ty = To+24T¢,
(s +8024) To="Tos -+ B8e T
@s+2,0+) Ty = Ty +44 Tes
| @Brs+59) Tos = T:'.; +4.8 T
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The solutions can be obtained in the same manner of other
cases, but they obtained only for special cases that are in -
the next part.

ii- Counter Flow:

TH’ Tm Tug Tpu T"5
- ¢, q —_—— @.8, -=-t—T> ‘Pg,ﬂ, ——— 3 q’(,;ﬂ, -

Q, Q, Q,

Tes '// Teg 7 ’!// ey // ’v// Z T 7 *7/ T

-] ),z Batai e < %Y'73 - — - A 7 4 .4,
A AV AT

FIGURE(4~12) :Four Lumped Models for Counter Flow Heat-Exchanger

L

Using equation(4-12) for N=4 and four different ©'s, it

is extended to the following equations:

(@s+4a+1) T =Ta +42 T
(@rg+95+) Te="To, +9, & The
@t+89+) Tp=Toe+ 0 Toy
(ars-+e,+) 'T:'+= a+h Ty
@ena+) Tiv=="Ti +84 T3
rsifan) Tao= Tarta Ty,
®9+%at) Ts == Ta + 52 T
L(ﬁm— o) Tor= Ty + 42 Ty
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Solutions for cases which are discussed in next part are
presented. We can develop and get better results by putting

more or larger N.



RESULTS OF TRANSIENT RESPONSE FOR THREE CASES:

In the following cases, solutions for outlet temperatures
of last section for each fluid are found and compared with the
exact results(2) and results of Friedly's model(4).

The exact solution and Friedly's results, as shown in
appendix(a), can be obtained by putting x=1 in them:

Exact solution for counter flow:

Tc 32 (l PPP.)
GO, (e-h ey g 0-8)

Where,

P, ,P, =[.... (#,_fz) ‘..t\[({, 1“1)’:" 44 ﬁ:]/Q

Exact solution for parallel flow:
&)

c;can—- e _(d e
mere, B b=f-Ghot) £\ /GRTraTg, |2

] Pl""PI.
f, =atjn fo=a,+rf |, g =a , g,=3

Friedly's solution for counter flow:

1 E .2

and, K= @, . ?-ﬂ-_ |
‘ - E@ﬂ"l) Q?"_

Then for cases that a,, a

s»and r are specified the above

equations appear as follows:

i- Exact:

For case a,=4 , a,=1 , r=1
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-Counter Flow

2\/225-\!12 + 530
GG0)= -¢
(-5+32\az5. 24530 ) —(2.5+380 +\f35-2%4in ) gVes-255] .
(4-19)
-Parallel Flow 5
: | —-& -39
G(d%) = 5 € (4-20)
For case: a =1 |, a:=1 , r=1l
-Counter Flow ﬂﬁﬁi?iif
G(d2)= = 5 -
(432 230 -5t)—(+3n +gin-2t) B2 -2 (4o21)

52
~Parallel Flow G(ﬁﬂ):%s_é«’”_‘ (4-22)

For case: a =2 , a=1 , r=2

=~Counter Flow

2\[ 28 otr25 44512
GL¥9=: . L—C . -
(54532 —V-ﬁ-zzm'.ﬁsjn )- (l.s +5324\[2s-2282%4530 ) ¢ Vis-2250te453 0
(4-23)

-Parallel Flow

_ 5(1+35)
GUY)=

¢ s-TtSin esc ot s30 )

Vootniz \° - (4-24)

As it is shown in reference(4), Friedly discussed only
counter-flow heat exchanger, and its results for preceding

cases are.
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ii- Friedly's Results:

For a =4 az=l , r=1

-Counter Flow

66) =K [1-E] (4-25)
Where, K= &3
($-2)6-&)

For &g =1 |, an=l r=1

-Counter Flow

K -2-2¢
C:(S)r-'m[l—e ] (4-26)
Where, = |
o K 20 -89
For a, =2 a, =1 , r=2

-Counter Flow
— -3-18
G-(S)'-'-" “—*Km—[l“e ] (4-27)

Where, K= (_e%h

iii- Lumped Model Results:

First, for simplify the calculations all of Y's assumed to
be equal for all cases.

For a, =4 , a,=1 , r=1
a-Two Lumped Models:

41== Y,=1/2 from equations(4-15)&(4-16):
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Counter Flow

-
(4-22a) - ey Ve ‘5
&G T 2soly 22584 25

. T S +15
! G N Sty emghaas)

Parallel Flow

(4-22b)

e 5(8+45)
(s
G = T ¢ 53+35) (+581)*

G- T _ 256 1534325
! T Coeni(sos)’

b- Three Lumped Models:

Q=%=4%=1/3 using equations(4-17)&(4-18)

Counter Flow

(4-23a) rG 6)abe sty 203y 5348 80154251
' Tn T gba33 654 435 £ 2915 £ 311038 8L 0214 S0T22
ﬁ T 27($+4-)
G(s) :
Ta sh3085 4355t 4205 sS4 103085 mauST72

-~

G,()= "I;" 297 [(s-nf +(¢++)¢a*wu) +4-]
Parallel Flow 'T'n (s’ 194 24)

(4-23b) < ~ T 27[(s++)‘+12s'+£0]
Q===

| T (s%41 9 +24)°
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c¢- Four Lumped Models:
®=4-= q& q}—l/& using equations(A-15)&(A-16),(A-21)&(A-22)

in the appendix(e), solution of four lumped,are presented for
molel

special cases only.

r

3
G.(3)= To 250 (45" 788%+53284.126))

T (s+9ff (s+4)¥

Parallel Flow 4
)= B ol [ssatsvsiy BE+8)s o) +4 (48]
i T CONCT N

There are following results for counter flow case:

'ﬁ 4(Sd+3!$ (3!sl'+5421§z-»-21124$2-i-/7l8“'1-74048)

G&) 7 ‘ 3 £
Tor S 528%asasbite ot oo st a5195526 %, a 2040t g Tals ka0

Counter Flow*

Gl)= Tu_ esd (ersy( v 7 shs3m s 260808 % 624008 1 0v0)

| T 6 @veasvnsd st i ens 10938t 51355 26 % 452448 S INITNS 4 134478

For a'=1 , a,=1 , r=1
a- Two Lumped Models:

Using 41 = ,=1/2 in equations(4-15)&(4-16), gives:

rc-‘,c:.)a-.iv;a 2(S+is+12)
Ton  Chdsrl)s™+ do4i0)

Counter Flow

4 Cs-r%)i
(854844 )( 8445 +10)

T _
Gl(s)a -'_—__r_;_.

-
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:
G )= = — 861D

T B (t+dg+8)"

4

= 2
G,6)= '_'_\"._.. _ 40 -1-42
L 1?“ (S!'f‘g '\'8)

b- Three Lumped Models:

Using three equal ®'s §= 1§, = '%=1/3, it means the

heat exchanger has been divided into three equal sections;

then,by applying equations (4-17)&(4-18), the results are:

Counter Flow 4

r

Parallel Flow <

-

2
Mo _ 3(&4';)"—\-2\(5&4)-\-\92

Gl T (S4ngh 558434 )(sSrns390+30)
G,6)= E= 27(s+4)3
T (Br3chasssrss)( Sanste395+20)

G ()= 1} _ 8\(%+4)a+!7

T Cs3) G@+s)?

97 (s+4P 481(5+4)
CS+3)3 (s+5)

GO)=

g
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c- Four Lumped Models:
Applying & =‘f,_=‘f3=(ﬂ,=l/4 in the results which are

presented in appendix(e), give following equations:

Tee 1024 (S+5 XS +108+2()
2 (s46) (s+4)*

Parallel Flow ¢

= T _ s8¢ (=+5) 1534 (815) 4254

- 68 Tou B ($+£)§(s+4‘)"f
rGQ_:,)-_-; T = “‘"4)(’*0(5*‘5) (R4105+99) +9 % £ 8934 S 434400
Ta Seiodnush st ity o0y 39s0s  sauos <tasme

Counter F].OWJ

4 “0“' "'“"*""“‘*97 53%¢ #ﬁstosm(om&r/anmumm+m/)

GO==

-

For a, =2 , a=1 , r=2
a~ Twe Lumped Models:
Using ¥, =%= 1/2 in equations(4-15)&(4-16), gives

following results:

e %650+ 9
GG) FT:H (24558+5) -2

Counter Flow {

Tu__ Mg
T (e 50 5Y-2

G’t (s)=

e
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-
To'c 3847

T~ (% 55045)2

GO =

Parallel Flow 4

¢
GylS)= = Tﬂ t‘& 412841 :
§ T (s+550 +5)

b~ Three Lumped Models:

By using 4, = $p= l}’3=1/3 and equations(4-17)&(4-18),

there are:
r

G ()= B Oty 30(SHSH)+ K7

T 86 fsrtf-ealrsfrelasinto)-

Counter Flow ¢

G 8 )_ 2K ('.:.-HZ)3
T 8 (s35) 354224 (545 € 419249445 5418

T 108(4+2) 454 (S+2)845)4026+5) %54
Gl)= 2= 3
8(s%+7¢ +9)

Parallel Flow

G ls)y==2- T 272 )(2s’+:s+n)
T“ 2 2% 78 +9)

¢- Four Lumped Models:
By using § =1’,_=‘I_’.,=‘&=1/4 and the result of solution

for four lumped in appendix(e), following results are obtained:
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r

T _ [0CaS 4+ %5 WO+ K (2845 )840 810 44 (354)
T (% 8,59 wa)

G5)=

Parallel Flow J

GE= T 105y 535 +( )21- 9 (2645, )-’-l-“(f“m-ﬁ)vf“
L ! (%859 44 Y

~

Cox 2(sbr 2558 thgs syt tis™s 4472855 13108.45308)

$%4:34 8744335 044 38345 T 185100 Y 53975 S8 4unst aL4RE 34T

Counter Flow{

_w) kmg'“'ms*m"n(‘hﬁH"«)@T‘mexslﬂjhﬂa).mm:’ﬂq;g@]

)
s 2sy¥(SeauSr st snness® 185105t 59755T, 934,845 d i+ 34 72)

bee
All of above cases are normal situations of heat-exchan-

gers, for comparing the results of Lumped Models, exact solu-
tion, and Friedly's approximate method all of above cases are
plotted in frequency domain, and the results of step responses
for two Lumped Models(the simplest form) are plotted,

One of the beautissof the Lumped Models is finding the
Monotone parameters directly by the method which H.M,Paynter
presented in(8), and these coefficients can be compared with
the same parameters which are obtained by simple technique
that again Paynter presented which are gained by using the

probability paper. All of these evaluations are in next parts.



RESULTS OF FREQUENCY RESPONSE:

1- Counter Flow Heat-Exchanger
i-Exact Solution:
In preceding section, transfer functions for transient
response were discussed and equations for special cases were
derived, now by recalling those equations the numerical values
of gains and phase angles can be calculated and ploties, here

is for exact solution; recall equation(4-19):

For case: a =4 , a=1 , r=1l

1“225&‘*-632
Gc}ﬂ) - 1 = 2 1
C5230 ~rzsstsin )~ (254304 bns e ) SVPE-30

ag 46&'“):: 0'

'3
FBr $2==0 | \==—1?—T-=34M65

For 2 —> o0 \Gﬂ———#o y §——»-%°

Table(4-1) contains the value of gain and phase angle for

different frequencies,

For case: 4 =1 , a2=1 , r=1

ja-s
G-4)= - (- ¢
(i) (e FE
for Qoo [¢)=05 ) §=a 0’

for Q—> o0 lg|—>0 ) B—an-9°
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In this case |Glis obtained by using Hopital's rule.In table
(4-5) there are numerical values of |Gland & for different

frequencies.

For case: a‘=2 , 8=l r=2
2Y5-228A%4S 30
GL)= = T
(15 +15i0/Bamsstusia )-(15+1530 42 tanigie e
For =0 . | GI_—_ 3971 ) f=¢
For £L—vo0 lGl—s 2 y  O—r-n°

Results for other values of 2 are presented in table(4-9).
ii- Friedly's Solution:

For case a =4 az=1 , =1

-5-2
Glia) = 2@1[1 -? 3“] where  Ke=-2432
For Q=0 : |Gl =.2405 » g=0°
For fl-—apon legl—> 0 y O— %

Table(4-1) contains all numerical values for |Gland €& ,
for different frequencies..

For case a, =1 , a

A , =L, r=l

Recall equation(4-26):

GM)=—e ‘ +zx§ﬂ [\ éa-ﬁlﬂ] where Keae578
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For {l=0 IGl=-5% » B=0°

For £—pos [ I— , 8—-%'°

For other values of £ the results are presented in table
(4-5).

For case a =2 , a,=1 , 1r=2

By using equation(4-27) from preceding section, following
results can be gotten:

G(ﬁﬂ):ﬁm[g_a"m} hore, K= 4076

For f=o |Gl= 373 ) O=0

For Sl—pom lel—s 0 ’ 0 —-9°

Results for other values of frequency are in table(4-9).

iii- Lumped Models Results:

The more interested outlet temperature is usually the
outlet temperature of cold fluid;therefore, the Lumped Models
cold fluid results are discussed.

For case a,=4 , g-=1 , r=1

a- Two Lumped Models:

___ 5
G (42)= 252502, 02838
For Q=o lel=.2 y 8=0°

For $2—% |G|—>0 s H—»-190"
As in static case discussed, for getting better results
we can fit the Lumped Models results with the exact results at

low frequency;therefore, for two Lumped Models all of results
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are murtiplied by a factor:

faclor = ,_E):::;— '?;’5 = {.202

As itsshown in table(4-2) in addition for absolute results of

Lumped Models there is a column for fitted results.
b~ Three Lumped Models:

GGR)= (5l 858 0%)+ 3 (1881.R-4( %)
" (1972+435.9% 103480%.9) +§ (18212 +310%-295.2%)

For Sl=o Gl=.2173 , O=zd

For fl—ro® lG‘—-—*ﬁ ’ 9——-—') -19¢

factor for fitting — '22‘22 ={.1275

The results for other values of frequency are shown in table

(4-3).

¢- Four Lumped Models:

GG59)= 4 Tho48 +¢3198 201008 95)+4 347184 243295 54 25F)
Ossns st mishissitsen) il aruss 2t sul snssa28)
For Q=eo | 6| =+220285

> ﬂzo
For {l—ro (6} —o 8 —9-190

factor for f1tt1ng='£::zs5 =1.092

Results for other values of frequency arepresented in table

(4-4).

For case a =1

Y , a-=1 , r=1

a-Two Lumped Models:
_. 2429t n2in
ciR) (natss)sibin—r2)
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For £l=8 lel = 0.4 s b=0°

For Q—spe |6 — 50 0 — 5180
fitting factor =_:i_.= .25

Table(4-6) shows these results for other values of £l .
b- Three Lumped Models:

3(432 +24_1639%) 43 (21202 14 2%)

)=
) [(84-|sn‘) +l£$52-.n?5][£u—lm‘)+é('91’1--"-’)]
For J{l=o lg|=-428¢ y O=0°
For ) —pos lG-‘ —»0 b —)80"

fitting factor= -;fﬂ = 1444

The whole results are shown in table(4-7).
c- Four Lumped Models

CU9- 4 (32000 43388411520 0% 26) 44§ (27844 SL4302%-27057)
(133000+42208.2%, 9% (90 2 391/8092)4 (5209051 +09800°~ 420 - Wi omr )

For (L=o |Gl = 4444 > f=0°
For fL—po 16]—>0 8 —-180°

fitting fac tor=-—:1-5£:—:;-= {125

Results for other values of frequency are shown in table(4-8).
For case: a =2 , a =1 , r=2

a- Two Lumped Models:

{23+ 24 42%0%+j(555-403)
For ()= 16)=r.3043 s 0'.0

For Q-—po 16— b —s 480°
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{ et ~.3872 4972
fitting factor= 2047 =1.2725

Other results for different values of frequency are in table
(4"10) .
b- Three Lumped Models:

3 {745+ 994 -243.0%) 433(315.2- 28 513)
(2514 69408 428 (218.0%)+} ({55254 84 02 283423)

For Q.=6 le] = 928 > O=p°

GL§ )=

For SL—o 16} —s o 6 — 5 ~18°

+3373
B73_ 118

Results are presented in table (4-11)

fitting factores

¢- Four Lumped Models:

C(i0)= 24475058+ 267501 24,25 (79104 9550~ 144 22)
(3147248851098 ensnlmons?)+ (004N + 39845054 S s39m57)

For =0 |6]=.341 , B=0°
For £ —pes 16) —» 0 > O —p180°
fitting factor= -':3;4—7'3-_:;,'35
Table (4-12) shows the numerical values of gains and phase
angle for other amount of frequency.
In all tables there is a column for normalized gain which
means ratio of gain for every frequency and, gain for zero fre-

exact

quency.

_l¢la



11- PARALLEL FLOW HEAT EXCHANGER

i- The Exact Solution:
From equation (4-20) we have following transfer function
for transient response in parallel flow heat exchanger:
For case: a, =4 , a =1 , r=l
6(ja)= -1t e

As it shows, it is a complete circle with radius

R=.1986 and the phase angle is =52 . Table(4-13) contains the
value of phase angles for different value of 1 .

For case: a;,=2 , a =1 , r=2

| 2
1
6(32)= o0+ élms--zm =
2v2.25--2§ﬂ.'—'5j-n'
For f{2==0 |G} =31€7 , &=0°
For Ll —apos [ — b o0

Table(4-17) contains the results for other values of Q2 .

ii- The Lumped Model Results:

Because the interested outlet- temperatureis the outlet
temperature of cold side, then the following results are for
that temperature, also in following there is a fitting factor
for each case which defined as:

fitting factora= lcolent
| & N taaped
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For case: a =4 , a =1 , r=1

a- Two Lumped Models:

_ B(45+39n)
GL)= G5+ .53 (453
For (lme [G]=.1837 5 f=0°
For fl—0 |6]l— 0 b —s-27"

19
fitting factors= =].08!
g 1837 ).08

Table(/t-14) contains the other values oflG\and & for
different amount of £ , also it has a column forlGI,, ,which is
the ratio of gain for each f) and gain of exact solution at

zero frequency.

b- Three Lumped Models:
G(3%)= 27 (97-30%4+-133w)

(2h-0t 413w
For R=o |&)= 19% , H=e°
For £, —sas 6l — 0 8—» -3¢0’
fitting factor = ”:’i o[ 0483

The results for other values of frequency are in table
(4-15).
c- Four Lumped Models:
a5 (126)-782)+ 254 (50 —4 52°)

Q)=
GG% (3¢-2% +1n3a)4
For fl=o |6 =.922 s B=0°
For {1 —p® 6l —> 0 ! J—y
198¢

fitting factor e

gz = 10333
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Results for other values of frequency are presented in table
(4-16).
For case: a,=2 , gl , r=2
a- Two Lumped Models:
6GR)= 74339

5- Q2553a)t .
For n_. 6] = .28 > O=0

For £) ——po® 6] ——o g —»-220'
fitting factor:.-'%%: 1134

Table(4-18) contains the value of gain and phase angle
for different amount of frequency,

b- Three Lumped Models:
1701 1892 + 10803 $1

G (9= —
) 8(9-a%47392)° .
For Q=o l6l=.292 , &=0
For fl—p o0 16— 0 o—> 34

. s _ 3147 __
fitting factor..iiyi—__LJBK

Table(4-19) contains all of the results.

c- Four Lumped Models:
2 1
{ Q) = 6402416 2+ §(8752 ~ 240 52°)
¢a (14 -9° 48530 )
For {l=o |Gl= <298 , #=0°

For £2 — \Gl—— 0 Oy —450°

fitting factor
& YT R
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Results for other values of gain and phase angle for
different amount of frequency are presented in table(4-20).
To compare the exact solution and simple Lumped Models

results, all of results are plotted in Fig.(4-19)&(4-20),



SECTION V

EFFECT OF USING NONEQUAL ¥'s:

As it was mentioned before, existance of @t in all of
results of Lumped Model systems makes it flexible to adjust
the results with exact values. All of preceding calculations
and results are based on using equal 9 's in the whole Lumped

Models, here it is shown that for one case(ag4 , a,=1 , r=1)

in two Lumped Models what is the effect of using different

P's.
Counter Flow Heat Exchanger, two Lumped Models:

Recalling equation(4-16a) and substitute the a =4 ,a =1

2=
,r=1, and using § =1/3 ,%,=2/3, following transfer function
is gotten:

, T 3(57-458 +3239)
==
G(a ) ,-‘-?“ (864 +4 514_457113)-\‘1.(“172-7‘3!)-

For f=e |Gl= 1379 ’ §=0°
For £l —p o0 \G\-—~+-0 ) —>»-180
. 02405
fitt fact == =
itting factor 979 =125

Table(5-1) shows the results of this case for different
values of frequency, also Fig.(5-1) shows this results compar-

ing to the exact value and results of using equal §'s.



IMPROVEMENT OF LUMPED MODELS TO GET THE BEST RESULTS:

In the preceding section the results of various Lumped-
Models and exact solutions were compared, via tabulations
and plots. The results for counter-flow heat exchangers, Fig.
(4-3) through (4-18), show that a Lumped Model can yield a
good agreement with exact results at low frequency, but at
high frequency both gains and phase angles are characteristi-
cally different. If one looks very carefully at these results,
one finds in all cases the discrepancy between the Lumped-
Model and the exact solution is always the same, i.e. the
phase angles always have 90 degree difference and gains are
about half of the exact values; therefore, one may conclude
that some feature is characteristically the same for all of
them. It is clear that thus 90 degree difference between phase
angles means if a zero is added to the transfer function of
the Lumped Model, then the phase angles at high frequency will
match the exact results very well.

Since the purpose of this thesis is to find simple models
which well match the exact results, evaluating the transfer
functions which were found for different Lumped Models showed
that two-lump models have a very simple form to handle;there-

fore, one should look for a way to add a zero to results of
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two Lump Models to get better agreement.

Recalling the outlet temperature results of two-lump
models for counter-flow heat exchangers, they show that the
transfer function of the first lump has one zero more than the
transfer function of outlet temperature of the second lump;
therefore, if the outlet temperature of the second lump of the
cold fluid is combined with outlet temperature of the first
lump of hot fluid, then the overall result has one zero more
than the zeroes of the outlet temperature of the cold fluid.

Therefore, from above discussion we conclude that to get
the best agreement for lumped model approximations,we should
employ in general a linear combination of the outlet temper-
atures of the various lump, and in particular we have the com-
bination for two lump models as shown in Fig.(5-2).

Now, it is very interesting to determine whether there is

any value for K, and K, which yields a good match between Lump-

1
ed Model results and exact solutions for both gain and phase
angle. The positive answer to this question is explored for
the various cases already discussed. The results are expressed
in terms of the values of K; and K, for different cases.

Finally one may ask whether these values are the same or diff-

erent for different cases and if the parameters are different
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how great is the range of their deviation?

Tz Tus

Tw
L —— nq-—-—-;--uu- >

‘Tcs/ 7, < _'_rc_,_}_'__// Te
T m e

Toc

FIGURE(5-2): Linear Combination for Two Lumped Models Counter-
Flow Heat Exchanger

Ky and K, for case: a‘=4 , a2=1 , r=1l

Counter-Flow Heat Exchanger-

By substituting the parameters in equations(4-15a)&
(4-15a-0) and using equal ¢'s i.e. ¢ =1/2 , following transfer

functions are gotten:

T 2
T{u S"‘-r9$-\-lo

T _ 205593 H4)
T (st4+93+10)(3+6)
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Therefore, the new outlet temperature of cold fluid is:

;Tg‘c_-, -2 2¢s2+ 98 +14) Ky
Ton g4 98410 ($2495+10)(S +6)
oz, (KGRI KKK R,)
GE)= (495 + 10)( 346
K- E) 425 (K R+ Q)
N\=
GL3%) (o-2t+932)( {+3)

To decide how should the gains K., and K, be determined,

1
we have to see the effect of high values of frequency, also we

can't adjust Kl and K, exactly for high frequency because we

2
thereby preclude the adjustment at low frequency. Therefore,
it is clear that adjustments must begin at middle frequencies.
For value of £ =2, the amount of gain and phase angle are set
equal to the exact values and the necessary Ky gpng Ky calcul-
ated. Then the results for other values of frequency are com-
pared.

The results show a very satisfactory agreement at most
values of frequency except at very lowest frequencies;there-
fore, by optimizing K1 and K, around the values that was got-~
ten for£ =2, two values for K's are gotten which they are:

Ky =1.10 ’ K2=2.44

Therefore, transfer function will be:



88 /)¢ 9{?
2(30- 14574 2.4 3 1)

GGY=

(lo-ﬂ’q-gjﬂ)(‘-rjﬂ)
For (A=, Gl =1 e =0
For {l—ypeo 6l 5~0 @ -90

This transfer function is for normalized gain, and the
results for other values of frequency are in table (5-2),

As we compare these results with those for the exact sol-
ution, we conclude that this is the best agreement for whole
range of frequency in a very simple closed form.

Fig.(5-3) shows the plotted results and it is shown that
the results of the simple Lumped Model is more close to exact
results than Friedly's model, with advantage of having a very
easy a simple form which is very useful for control of heat-
exchangers.

Ky and K, for case: ay =2 , a =1 , r=2
Counter-Flow Heat Exchanger-

Recalling equations (4-153)&(4-15a-0) and substituting

given numbers, the results are:

'ffz; o $2+5.5 g+ 7
T (s%+550+5)%-2

Toe . _ 2ls15)(s%558+5)
To  (Gs5e+5)'—2

Then, the new outlet temperature for cold fluid is:
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T _ k2 riighorens)+k(sisseer)

T (4 559+5)"-2
or,
N Tf‘ — (7K 15K K 21K, 27 )+ 1 (55K 2+ 215K 22, I3)
T (3494 - 40.050%)+- (5501}

To get the proper values for K.,Ks, the same manner which

1°
used for first case is used here and the results are:
Ky = 4 s K2 = 2,55

Table (5-3) shows the results of improvement case and it
compares them with the exact results. In fig.(5-4) the exact
solution and improvement of Lumped Model results are plotted,
and it is clear that how this simple model predicts the tran-
sient response of heat exchanger so close to exact solution.

In third case which ai=a2=r=1 , we do the same as what we

have done so forth, but for flactuation part we can use

average values for them and adjust the K's with these values.



STEP AND IMPULSE RESPONSES:

One of the advantagesof Lumped Models system is that it
describes the transfer functions in a very simple form which
it is easy to find the response of heat exchanger respect to
any kind of disturbance like step function or impulse distur-
bance or periodic perturbation and so forth. Specially the ex-
pression of the improved case has a very simple form because
it works only with'- two stirred tank. Here the results of step
and impulse responses are presented for improved case and is
compared with exact responses.The method is the same for every
case;therefore, only for one case the results are presented.

a)- Step response for case: al=4 , a2=1 r=1

In reference(4), the results of step response for exact
solution is presented, and they are used here and they are tab-
ulated in table(5-4).

For Friedly's Method:
- —x)  =R+X  -S(x+r)
Es) = [é‘"“ W _ g g ]

1+TS$
Where: g g, e!a(l-') , (= a, - E@--"IJI
T I

For step response it will be:
Tk
E‘u SQ+TS)

Eﬂé - lf-) _ -é@ v lz)? ég(x +r)



Therefore, for ai=4 , §2=r=1 and x=1:

—Kf""% , K=2242 =—> Ta.484
0 t 4o
:_r;‘IC_= .uz(l_é"“sé) of¢ { 2.

iy _2.005¢ -
242 (.m_.sslc““ ) t320 (5-1)
For Lumped Model:

= To (30+41%2,348)
G (s - [ = 9
) T (B384 246)

For Step Response:

Te _ 20812348 +20)
T SG+€)(8+45+Vings Y8+ 45-Viazs)

= _L” [ 2 QN STH2345 + 3p)
T SLs+£ (3 1454110z )(8 +45-1 1035

Then the result is:

v P
',% =-2405(1-185€ -.aas'é"_..glcum) (5-2)

Table(5-4) shows the result of step response for three

methods which are Lumped Models, Exact and Friedly's approxi-

mation method. Fig.(5-5) presents the plotted comparison bet-
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ween these three methods. It shows clearly that the Lumped-
Model results are closer to exact results than Friedly's meth-
od.

b) - Impulse Response for Case: a =4 , a =1 , r=1

The exact results for impulse response were presented in
reference(10), they also are shown in table (5-5).

Friedly's Method:

Because the impulse response is derivative of step res-

ponse therefore, by taking the derivative of equation (5-1)

following results are obtained:

ro féa
~2ai5¢
:,__%_ _{oas €% ogegs
]
~2.065¢
[ S

Results for different values of time (normalized time)
are precented in table (5-5).

Lumped Model:

To get the impulse response we take only the derivative
of equation which is for step response;therefore, its results

are: 28T

7t
Toe g1 s 0388 10518

Ta

Table (5-5) contains the results of impulse response for

exact solution and Friedly's method and Lumped Model system,



94

In Fig.(5-6) these results are plotted for comparing the accur-
acy of two approximatemethods, and it is clear that in Lumped-
Model method the error is almost zero for all values of time

but we can't say for Friedly's method the error is near zero.



CALCULATIONS OF MONOTONIC PARAMETERS:

H.M.Paynter (3) presented a new evaluation method for dy-
namic response including that for counter-flow and parallel-
flow heat exchangers., He showed that the Laplace transforma-

tion solutions for heat exchangers can be written as:

g-Ts+ lgi.-’;’g’
GS)= ¢ ; Chei

Whére, ¢ measures the steady state amplitude ratio between res-
ponse and disturbance, Tm measures the mean time delay bet-
ween response and disturbance, TS defines the dispersion or
atten uation, and T, is the -asymmetry or phase nonlinearity.
As it is shown in his paper, he concluded that for a given

Laplace transformation solution of the form:

#(5)
S)=
G( ) {+a0 llgS"+a_;$'3 sereee |

and for special case N(s) =1 the monotonic parameters can be

written directly by following relationships:
Tn= Q,
Tl= 2t 1a,
T=26}-Lam, 442,
If N(s) is a function of (s) then the results of para-

meters should be diminished by the same amount which are ob-

tained from N(s).
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Therefore, since the results of Lumped Model method are
in the form of G(S)_—.g—i?)- , then the monotonic parameters can
be calculated very easily.

To compare the calculated parameter with exact monotonic
parameters H.M. Paynter presented following technique(8):

Simple Technique for determination of Monotonic Parame-
ters:

By uming a commercially available "Probability Paper", a
Gaussian distribution can be plotted linearly. If a step res-
ponse of any dynamic behavior is plotted on such paper (as

shown in Fig.5-6)by following method the monotonic parameters

are obtained.

Percenl” Recovery

0.9
Time

FIGURE(5-6): Use of Probability Paper for Monotone Parameters
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PROCEDURE :

1- Points A-A are determined where the step response cur-
ve crosses the 16% and 847 recovery levels.

72- Point C is on the response curve vertically above poi-
nt B .

3- The vertical distance BC set off upwards from the 16%
and 84% levels determines the points D-D.

4- The intersection of line DD with the 847 level fixes
point E.

5- Point F is vertically below E at the 507 level.
Then for determine the parameters we have:

Tt - The time interval from the origin to point B gives
the meandelay,Tm.

TS: - The time interval from point B to point F gives the
dispersion time, T,.

ol : - The ratio of distance BC to distance FE gives one-
sixth the skew coefficient, .

3 3
T,: - Then by determination of &€ we have:r-l;'zoﬂ;

Now, by plotting the results of step responses of exact

solution, Lumped Model, and Friedly's method, on probability

paper we can get the Monotone parameters,also these parameters

can be obtained directly from Laplace transformation solution
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for Lumped Model Method.

Fig. (5-7) through (5-9) show results of plotting the
step responses to exact solution, Lumped Model, and Friedly's
method, the above technique is used and from those plotting

the following results are gained:

For Exact Solution )

=.4¢

Te =87
Te= 119

Ta=148
For Friedly's Method{ M.

To= 42

For Lumped Model

As the results of Paynter's method for determination of
Monotonic parameters show, the values which obtained by Lumped
Model are very close to exact values, but we can't see this
accuracy from Friedly's method, and this is one of the other
advantage of Lumped Model.

Monotone parameters are calculated by the direct method

for Lumped Model and written as follow:
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GG) = 2% 24088+ 40 o 4lIS 03678
RINTY TN IV, {4 L0694 25001783

Therefore:

r’:.=all= 1-0‘ ) r|:t=a‘l=-‘t" N F‘;:'.“—-":.Ks

‘T;' :.:\J ﬂ.?' -2y, .80, FI;‘ =\E‘;-2¢u =3 =} T; =\},3"_.3‘ =74
rﬂ__,\‘f‘—q:,‘ 88:+68 =10 'E—\..‘/m,’,—tq,g;l-{ =3 => "|2=V’ -8 =99

The difference between these results and graphical re-

sults are because of approximation in graphical method.



SECTION VI

DISCUSSION, CONCLUSION, AND SUGGESTIONS FOR FUTURE WORKS:

The essential part of this thesis has been devoted to de-
termination of very simple conceptual and physical models that
would describe heat-exchangers in some of the most important
practical cases that one expects to encounter, particularly un-
der conditions where the flow rates are varied. The low fre-
quency behavior for shell-and-tube exchangers has been matched
as carefully as possible by use of a method due to Professor
H.M. Paynter. It has appeared reasonable to take into account
at least qualitatively the very high frequency behavior to com-
plement the low frequency information. To this end, Friedly
presented an approximate method which works for low and high
frequencies, but which is infinite order;therefore, a simple
low-order model should be found. For certain applications (e.g-
optimal control) since lump models constitute the most linear
way to get Simple results, such Lumped Model have been used
in present work.

Analysis of Lumped Models has illustrated that it is po-
ssible to approximate the dynamics of a variety of plug flow

processes with very simple and basic transfer functions,
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As the discussed examples show, the simple Lumped Models even
without improvement demonstrate very good agreement at low
frequency or for long-duration fluctuations. As those results
show, there is no sensible difference between two lump-Models
and four-lumps ones;in other words, the rate of convergence of
the Lumped Model to the exact solution is quite small with
respect to changes in the number of sections. Therefore, from
the stand-point of significant improvement only two-lump
models were discussed and results show that they sensibly
agree with exact solution over the whole range of frequency-

Since by this technique the outlet temperature of each
section is determined by a very simple transfer function, this
model gives not only the exit temperature of the heat-exchan-
ger but also the temperatures for all intermediate points at
each section along the heat-exchanger, the special cases, which
are included, show that both the frequency and time response
are well approximated over their entire range by a transfer
function derived only from a two-lump model.

There is no evidence limitation for this model, especial-
ly in the improved case, because it includes some adjustable
parameters which make it flexible for all situations;therefore,

many assumptions can be removed by changing those particular
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parameters to achieve a satisfactory solution for most cases.

Another important aspect of this thesis is that the Lumped
Model is capable of directly predicting certain Flow Reversal
effects, The results for steady state behavior show, thus the
outlet temperature of Lumped-Models is very close to exact
solution. To obtain the exact values the Lumped-Models results
can be adjusted by calibration. Thus, it is important to know
that if the parallel-flow case (or alternatively, the counter-
flow case) is so fitted, what will then happen if flow is re-
versed, Fitting the parallel-flow situation with exact value
is shown to yileld better results in such flow-reversal cases.

Comparison of Friedly's approximate method and the tech-
nique of Lumped-Models shows that the use of Lumped-Models has
many advantages with respect to Friedly's model which some of
them are:

1- Basically Friedly's method is an infinite order model
which is complicated from the control point of view while
Lumped-Models are of finite order which are easy to handle and
work with.

2- Friedly's method doesn't yield good agreement in all
cases (as it is shown in reference 4 ) but the Lumped-Models
can be used in a variety of cases with overall better results

than Friedly's model.
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3- Friedly's model has the limitations indicated in re-
ference (4) but as previously mentioned, Lumped-Models provide
flexibility which can be expanded for many cases.

Since the present work gives very useful results for the
discussed cases it would appear to be worthwhile to further
develop the method for more general cases. Therefore, follow-
ing efforts are recommended:

I- The improvement technique is physically acceptable be-
cause Two Lumped-Models for whole heat exchanger yield too low
an exit temperature. Therefore, a combination of an intermed-
iate termperature and an exit temperature gives the best resul-
ts, but it should be proved mathematically why such a compen-
satory technique is true and why a linear combination is
sufficient.

IT- It is interesting to know the effectiveness and sen-
sitivity of the parameterso¢ and $ , where o is used in tem-
perature of each SECtiOﬂ—ﬁEdﬁ+6ﬂ0n] -because in the present
work o was assumed to be zero which clearly isn't precisely
correct for any real case. Also for one special case different
$'s are used to improve the results, Therefore, this parame-
ter has been shown to have significant influence.

III- Lumped-Model could be used (especially the improve

ment case) to eliminate all of the common simplifying assum-
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ption such as: including the wall heat capacities, changing
overall heat transfer coefficient between two fluids along

the heat-exchanger, boundary layer effects, and eliminating
the plug flow assumption.

IV- Heat-exchangers involving gases and vapors are more
complicated to deal with, since the momentum and continuity
equations are now coupled with the thermal equations. There-
fore, it will be interesting to consider Lumped-Models for

such two phase situations.
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a-THE EXACT SOLUTION:

Exact solution of dynamic responses of heat exchangers
can be obtained by using the energy balance (First law of

thermodynamics) for Fig. (A-1):

Tis
f
4,08
T T;‘
1.'].?_"—_:7;/7///////f/%////////////,ff—'_-__-;'?
&;C‘:f‘) -
o 11

Ton
FIGURE(A-1): Counter Flow or Parallel Flow Heat Exchanger

Energy Balance:
Rate of heat accumulation = Heat Flow - Heat flow out *
Heat Transfered

This relation is obtained from first law of thermodynamics by

following assumptions:
L L] [ ] a . { ]
Eey = -m(‘-r{i +592;;-M,., (44--;4-33)'_"-'—4«-!:'

Mass conservation:

ﬂﬁV =Const.
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1 - Assume constant geometry A Const.

\Y Const.

2- Assume constant fluid properties
p = Counst.

Therefore, there is no change in kinematic energy. There is no
shaft work transfer;therefore, we get:
Q =M(hm— h,, ) + ME
MxE =Mh + Q —Mhy,,

By using the Profos operator (7) and equation we get:

RY 26 _ -
)t + \z -—al(oz a,)

LY 8
W r A —aE-)

Where r is ratio of cold flow rate and hot flow rate.
Negative sign is for counter-flow and positive sign is for
parallel-flow case.

Initial conditions:

Gi(x,O) =0
& (x,0) =0
Boundary Conditions:
counter flow
g (1,t) =0

91 (O,t) = TIH
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Parallel Flow 940,t) = Ty,

%OJ) 0
The easiest way to solve partial differential equations
is using Laplace transform, therefore by taking Laplace-

transform of equation:

i- for Counter Flow:

SB+‘19 =a6,-458,

J 4
44 g-0
X
or _
/) 1_49
b= b § g T
4 —
7o 8 5, LiE Sk d8) a7
(rs+a)(B+ 5 8+ g,-r) (9'+§,7:9 h—- =4
then:b
2_
-j—t— - [F(r‘—l)-l- Ca.-.—“-)] db, —S(rS+ra,+2)8 =0
using =, it gives:
- [.s:(r—I)+(a2 -4, )] P—s(rs+ra£ +a, )=0 (A-1)

Equation(A-I) gives two values B, ,B , then by boundary

condition we have:

o 4 R X
9l=ﬂex --Be

5= (Aeﬂ" +Béﬂl) + -!‘-'-(ﬂﬂ g“—|— B&g' ')
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Inserting boundary condition:

A+B = T’.'u

{
A5+ a+R)E +B(S+ 0+ P;)e,"—_-o

which gives:

= R R
B (s+B+R)C —(s4actR et -
T (Gt - Grat R ]
- C et
b (S+l'7r4ﬂ’:)(*:w.ﬂ")(tf‘> & 'ﬂ) (4-3)
T a, [S +A+4P~(S+a,4F) g""“]

Putting x=1 and using proper parameters equations(A-2),
(A-3) becomes the same as equation(2-3).

ii-Parallel flow: using Laplace transform:

¢ -
S§i4-%%-==aggi—wﬂ2E

rh+d -2, a,6
i du
By continue in the same manner of counter-flow, we get:

- B
O _ (g.ra,-;-p,)e'z_. (s+e.+ﬁ)£" (A-4)
Ty P —f

B _ (s+a4h )(S-m.-rpz}(fm- & ) (4-5)
i &, (h—R)

)
Where: P‘ » B ==--( 'I"} — g‘?" iV(n"'a‘;_rs"'s}z S(rg+Ar+a)
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FOR STATIC CASE:

To get the Static(steady state) case, S should be zero,

then:

o [T P4R-P
B _ Gum)C—(R+)E

T [Pra-(Paa)e™]

counter flow

N e-P
b = a%+ﬁ)a%+qng§%"éhﬂh l)

Ta o [P,Lw.—- (R+a) ¢ -‘Pl]

ar _ (hra)e e (0ra) ™
Taw P,__.P’
parallel flow {
b __(R+a)(ad)( e &)
T M (P, —h)
-

By using the values of R , B, in each case the summary

results are:

-8,
4o _ 4 [1-e**]
rEh ah+ah
parallel flow ¢ RN\
60) _ Gy 1R
Tow R+ A
\
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f0) [ 2 E«.—as)n_ Eca.—a:)]

80) _ & g _ -]
T a- e




b-TEMPERATURE OF EACH SECTION IN LUMPED MODELS:

For each section in Lumped Models, we assumed that they
work as a stirred tank, as it¥shown in Fig. (A-2);therefore,
the temperature of tank is a linear combination of it s inlet

and outlet temperatures say:

TaxT+6-2)To  (a-7)

—
) =
T
— i/ ;\ [
_ =

-E — — >0

——y

—_ ~ .

—_— . _—

FIGURE (A-2): Stirred Tank

For tank as a control volume, the first law of thermo-

dynamics is:

M% = Min ("-&{-l-i-j z)in—ﬁ';lt(‘*. ‘g +3zu‘f

There is no mass accumulation and outlet and inlet pipes

have the same geometry ;therefore, by continuiting we have:
-Vi-n=vo'¢f
In the steady state case it is shown that: M=#Mx?
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where M is mass of tank and ® is mass flow rate through con-

trol volume;therefore:

T C,%—l--. ==Cp(Ti'"T;)

or

AT =TT,

(A-8)

Combination of equations(A-7)&(A-8)givest

+ l—d@ﬁ IT| _ | ‘
‘-I, T g (DS y ! T—-,ws_\-l (A-9)

Becauseol is very small and ? is a small number;therefore,
for perfect stirred tank X goes to zero and from equation(A-9)
we get: TE 'T;.'.

This is why, in all of‘ cases(steady or dynamic) the tem-

perature of each section is put the outlet temperature.

* o is small because fluid which leaves the tank has property
of the fluid in the tank, but fluid which comes to tank has
properties of outside the tank;therefore, the temperature of
tankhas more tendency to outlet temperature than inlet temper-
ature,which means o is a small number.



c-ENERGY EQUATION FOR FACH SECTION OF LUMPED MODEL

For each section of Lumped Model we can use the Profos

(7) operator as shown for Kth section:

FIGURE(A-3): Kth Section of Lumped Model
Applying first law of thermodynamics for each of control

vo lumes:

P vl = G (MU M, (b 32) Moy (1 £ 102

Where M is mass of fluid in side the control volume, U is
internal energy of fluid inside the control volume and M is
mass flow rate which comes in and out.

Geometry of control volume is constant(means rigid boun=-:

dary) then from continuity: &wﬂ;—,ﬁ*uﬂ = ‘\{.’ngv.'.r
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Because M;:o (no shaft work), and the internal energy of
fluid and it s enthalpy can be written as temperature, then
we get:
&F=Mc % +#°C {To="Tm)
Therefore, for control volume of Fig,(A-3) the results

are; , JT,“)
Cw L= E=MC L emc(T~T)
(A-10)

But Q can be written as:
. o) ao

and for relation between M, and M@ ,they can be written as:

My=A fe A
My=A A

Where A; is cross-section area and & is length of section then

if ﬂx defined as the time which fluid needs to go through sec-

tion; therefore:

n Towp Eg
Then
IH;==/afk gi—
L«
or
- 2

By definition %"{L , Where L is the total length of tube,

it concludes that the time which fluid takes to go through
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whole of the heat-exchanger is:

Therefore, equation(A-10) becomes:

) ) e %
A (T =T )y B £ e (T o

or

(A-11)

efine: —_— W |
Def Czr__L{ﬂ __([l.ﬂg '

Define:

Therefore, equation(A-11) becomes as:
o) ) 0
% % = T — len— % (T=T ) (A-12)

By taking Laplace transform of equation(A-12):
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i w)
48T =TT % (T2 ")
Using assumption of perfect stirred tank:

qaﬂgmlz 'T‘ug“‘ﬁq(t;,_'n)";i:nﬂ (A-13)

By the same manner, for second control volume, the re-

sult become as:

mrgTu:TKﬁ" ‘Pkalmu;"':]:t)— TK (A-14)

Where r is velocity ratio of two hot and cold fluid
putting §=0, gives the results of steady-state case.For
parallel-flow the policy is the same and results has been
shown in both statie and dynamic cases.

As an example for results of each section treatments,
here is calculations for case N=2:

Counter Flow:

From preceding calculations, there are four equation for

outlet temperatures as follows:
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r

Ta— T =% 4(Tee—~Tes) mo
Ty —"Tes + 82Ty — les)mo
Te—Tis =% & (Tra—Tex)mo
Tre—Tez+% &(Tos— To)=o

-

P e —-—-—-.-’ h————'

, 6,

FIGURE(A-4): Two Section Counter-Flow Heat Exchanger

Solving above equations gives following results:

T _ 84%(r%8+8.6)+04,
T (I+T‘:+‘ﬂﬂz)(l+m+¢ﬁ,a,).tch,

T . (9a)+8%)
T (a8 190)(10048)-2004




d-CALCULATIONS ABOUT FITTING STATIC CASE WITH EXACT VALUE:

i~ Fitting Parallel-Flow:
case: a,=4 , a=1 , r=l

For this case the exact results are:

= 8 : —_

o

Results of Lumped Models are:

'""Parallel Flow" r FFL._4337
¢=4h =

Which gives: Fitting Factor = 1.0811
Therefore, all of results of parallel and counter-flow

are multiplied by 1.0811, then:

T
—toc_ _
T 2

¢

# % T

Tow

"Counter-Flow"

=+

L

y T‘)F"- 24 = Teeks
- 2x1080=.2142 {:24 = I

[ Y ii am.r"
As it shows, if we fit parallel-flow then we diminish the

error in counter-flow by 6.75% . Then the new error is: 9.97% .
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Toe | _ 8945 ——s S _ UBC _,oigs
“ {purel T b5

¢P=1/3 . ™
| == 213 210483 == .2233
! 1?" CounTer. g

The error is decreased by 4.3% and new error is 7% .

-
Toe e -19%
= .92 = = =1.033
'T?l Paval .To.ﬂ)l. "2

¢=b3
Toc_

i

— .22% 1433 =227
Counter-¢

-

The error is decreased by 3% and new error is 5.4% .

Case: a, =1 , a =1 , r=l

—_ s .T;‘c)E _ 1432 _ 1152
£y N 375 'T:c)l. ‘375 T

‘I’: y2 { Paralle!

—Tl-‘- ——4Y M52 = ,4{28
Gomler—§

i

g

The error is decrease by 12% and new error is 7.8% .

[ .
"_T‘E" —.392 = 7.';".," = j:i =1102
B (Qralk! )L

%=1 4
’ Toe — 288X 1102 =472

———

L N Courke- £
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The error is decreased by 7%, and new error is 5.6% .

-~

T Tew 42
— | =40} = = {077
T =

¢
N Pl

gl 4
e == 444 x)077 =479
1;1 Contler-f:

The error is decreased by 77 andnew error is 4.27 .
ii-Fitting Counter-Flow:

Case: a =4 , a=1 , r=l

q’:’/ lg_. = «9 'T:‘)‘ = _-_2_f_'=|'2
2 'nh Counley = T;JL g

Fitting Factor=1.2

'Tc':c i
L 1.234337::-22) 980 =l

Its value is more than exact value, but it is also farther te

exact value than unfitted, and it increases the error by 3.2%,

and new error is 10.7% .

(T T _ 24y

= 2|3 =>
i T 3

g=lf |

Ty
.%. == |BY4 X 1126 = 213 >. 8L
Y Ipnki-

L
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It increases the error by 2.6% , and new error is 7.25% .

-‘-—I;L =, —> 'T"dE =, ::;" = '-09
Toen

tP:f/é- J tH 6“1;{
ey g2k 19209 > 1984

Anele)-f
It increases the error by 2% , and new error is 5.2% .

For case: .a1 =32=1

-:J%ﬁ— =4 = ?_;,‘)E:: .i =125
, P TR

(P“l/z { Coanley
e 375125 = 4687 > 432
r]?" Rerek)-F

L

Because the new value is closer to exact value but higher

then it decreasesthe error by 4.77% ,and new error is 8.5% .

[ Toc 'T;'c)E 5
28 =—> = ".:.f."
TIH Ianh'4 'TJC)L 4290

p=l |
Toe ) .agpxtl =457 > 432
tH {fyel-g

-

It decreases the error by 3.57% ,and new error is 5,8% .

T 7
o ’
| = B s
| rT:H Gunky 'T:C)L 444
te=44 T
—= == 140l X 1125 = 1451 ) 4432
Tt [l
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It decreases the error by 2.87% ,and new error is 4.47 .



e-CALCULATION OF DYNAMIC RESPONSES FOR FOUR LUMPED MODELS :

The general foyxm of energy balance for each section of
Lumped Models gives following equations for heat exchangers
of Fig. (A-5)&(A-6).

I- Parallel-Flow:

T Tﬂl -IBJ -'I-M Tyg

—e -H—-—'-—-’ —b-—l---b --J;--—-—-* _,__p

Q Q,

w0
//// P

FIGURE(A-5): Four Sections Heat-Exchanger

i-For case al=4 R az=1 , r=1

r(S+ 8)?& = 4;’; +'4T‘r.

e 3

6+5)Te=4Td +Tn
(5+8) 'T,;; =4T -H'Tc's
(s+5)'7?, =4 T + T‘j

(s48) T::.=4T¢',f +4 Ty

N
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QSfﬁ);ﬁa==“ﬁZsﬁ-:ﬁa

ts+8) Toy=4 Tas +4 T,

- .

45(5*5)725“ 4Tcs + THs

Solution of these equations gives following results:

g

- T 254( A 78 8%4+-53284124))
Gl = = -
% Gsayi(sr i)t (A-15)

rT-u 4 2 1
Gyls)= 71:5 _. 15 [CS+5)+|215¢51 +3(51"2ﬁf5)+45$*’) +He] (A-16)
" (s+9)* (s+4)

For case: a, =}l , az=l , r=1

Equations for this case are:

(59T =4 T +To
(s+9) Tt Ty + T
(s+5) T =4The + Téo
(s+5) Ty=4 Toe+ T
(s+5) Tu‘-"-"-‘r 'T?s-l- T;";,
bs) =4 T+ T
(6+5) Tas“ﬂ‘ TI'H- Tes
6+5) T= 4 Toy + Ts
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The solution of above equations gives following resuits:

Tes _ 1024 (s+5)(8% 108+24)

— A-17
0e)=g Gsriy (st @G-
Tos 54 9+5)f|-tsx(g+s)izs:
B)=2t—m— = -18
For case: a, =2 , a, =1 , r=2
q=ﬁ=%=@=%

The equations for each Lumped Model give following results:

-(S+6) Te =4Ta +2 T
Cs15) To=4To + Tt
6té) To=4Tp+e T
Gs) To=4Tot+ Ty
! (s+¢) T =4 Thao T
(2¢45) Ic. —'47zz+ T:,
b)) Ts=4Ty+2 Ts
039 Ts= 4T+ T

And by solving the above equations, following results are

gained:

G = Tes ltClhd 818V M L2845 )64€ )84 ) 164 B +1 )
! (s+850+14)*

(A-19)
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—f

3 2
£.09= Tis _ _1602w5)% 94(28v5) +64(5+6M0s05)32 66041 64 (5-20)

T (s*+8.55+14)*
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II1- Counter-Flow Heat-Exchanger:

Fig.(A-6) shows the counter flow case for four-Lumped Models.

T T Ti
T _.-._'.’.J..* —— _..’11_..; — E‘-»—r L_H-S'
Ty

FIGURE(A-6): Counter-Flow Four Lumped Models

For case: ai=4 s 32—1 , r=1
L 4 -.':‘f,_—..-.’-f;::ﬂ: '/4

Using equation of each section for these eight sections ,
results are:

[ _ — —
(s+8) T = 4Ty +4 Tes

(s48) Tosm 4 T + T
(s+8) T =4Tq +4T%4
CS+5)T':,=4=E'3 + Ty
G43) Tp=4Tp, +4 7o
(s+5) Tey =4 Teo+ Ths

-
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($+8)=f;5 = 4?}4 -HT?;

G*S)Tt = 4Té| -+ I.EIS

There are eight equations and eight unknows which

solutiomSof them gives following results:

, 4y 3,;5+53|g"+54z| S+ 2012484 67185+ 74048)
- <Pe 5257y 1158 S44- 10404 £5- 109153 8 ¥ 5138003 ) 146 244 8 atimmen i

(A-21)

cd9) 254(s5)(sb+ 398 +4078 p 5o s50805 (240 5-+isom)
(PP a1k S 10915350, 513552 45 2448 S g O 1WA

(A-22)

For case: afl , a=1 , r=l-

G=fi=h=%=l}
There are following equations:
[ (se5) To=4Tn + Tos
(545) Ty =4 T+ T
5+3) T =4'Tz+T2+
(5+5) t = 4'72, -+ —;,
@+3) o= 4T+ Tes
[s45) To= 4Tt T
(845) Tois=4Tis+ Ta
) T =4T+%
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And the results of soluticon are:

. 4(s+4)s+6)(s15)Prios+39) + X Ly 8934430400

T S dostlotchy (39040008 Uo Sy 391000 Ly 52005 4 239000

cin)= G4 tdvmsssirsadeinsmostianonds posuiuomss ¢l
T G oNH 5+ 40STy (S 4380551 40108 1ChoniE5y 391008y S2cTioS Famees L~ 24)

For case: a‘=2 , a =1

Equations for this case are:

[ (s+6) Too =4 Ty +2. Tes
(25+5) Tos =4 Tog + Ty
ts+¢) Tiv =4 Ty +2 Ty
(2345) Ty =4 Toy + Ty

) 640 T T
(545) Ty =4 Ty + Toy
(s+0) Ty =4 T5 427
L (es+9) T =4 T, + T,

Solution of these equations gives following results:
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o (th+o558 25t ims % 4472554 73008+5348)

clif
\ia D4 34 §14-41,554-398¢5 Craons® 539755 93408 824804 945431472

(A-25)

(2,:1.5)[(5%-8 sS4 (Sho55r230)32(sha, sm+)(s’.e.ss+mqss:a.moré,mg_726)
25w [ Sesaramssbenn s 1s5ios'smmrs agseonsstnisn 3]




TABLE(3-1):

134

Results of Steady State for Parallel Flow

For case: a{=4 32=1
"fwo Lumped-Models"
L] T
i:?? Tea “ca TH, TH
o —
Ty, Ty, Ty, Ty,
Exact .184 .199 .266 .205
Lump .143 . 184 428 .265
"Three Lumped-Models"
el fa | Io | Te | e | Tn | T
T T
H, Hy Thy TH{ TH1 TH1
Exact .162 .193 .199 .351 .228 .205
Lump .125 172 .189 .500 312 . 242
"Four Lumped-Models'
Temp. T
Rati L1 E_g_a Teq Tes | Tha E_f_la E§4 TH;
o 4
B TH, Thy Thy Ty Ty Tyy TH, Th,
Exact| 143 .184 .195 .199 |} [ .43 .266 .219 | .205
Lump |.111 .160 .182 .192 { .555 .358 .270 |.231
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TABLE(3-2): Results of Steady State for Counter Flow

For case:

ay =4 ’ 32 =]

"Two Lumped-Models"

Teml.) . TC’. 3 TI{I .rI_I3
Ratio T_- e e T_
H Ty, Ty, H1
Exact 044 . 240 .213 .038
Lump .067 .200 467 .200
"Three Lumped-Models"
T | Ty | Ty | T | T | Tw | T
atio ‘ _
Ty, Th, Ty, Ty, Ty, THy
Exact | .022 .080 . 240 . 360 124 .038
Lump .037 . 100 .213 .550 .293 147
'"Four Lumped-Models"
el T | o | Tl Te | Tw | Ty | T | Do
Hy TH1 Ty, TH1 Ty Ty, TH1 TH{
Exactl .014 |..044 |.107 |.240 |..466 |.213 | .094 | .038
Lump | .023 .062 |.122 .220 .612 |.370 214 .118




TABLE(3-3):
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Results of Steady State for Parallel Flow
For case:

a, =1 ,

"Two Lumped Models"

Temp. T T T
¢ 1 Hy Ty,
Exact .316 432 .684 .568
Lump. .250 .375 .750 .625
"Three Lumped Models"
Temp. Twp Tc3 Te, T T T
Ratio| T, T, T, e s —
q 1 H.
f TH! THy
Exact .243 .368 .432 .757 .632 .568
Lump .200 .320 .392 .800 . 680 .608
"Four Lumped Models"
Temp. Eg; EE} Igﬁ Egﬁ THa Ths TH4 Ths
Ratio| Ty T T T T, T, T
| Hy He | THy i | T | Tms | Ty
Exact| .197 .316 | .388 .432 | ,803 ) .684 | .612 . 568
Lump .167 .278 | .352 .400 | .833 ] .722 . 648 .600
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TABLE(3-4): Results of Steady State for Counter-Flow

For case:

a,=1

a£=1

"Two Lumped Models"

T
Temp. L E:} EI'_I_Q Eﬂs
Ratio Ty, THy Ty T
Exact .25 .50 .75 .50
Lump .20 40 .80 .60
"Three Lumped Models'

Temp. Egﬁ 353 Egﬁ Eﬂ? Eﬂ} Eﬂﬁ
Ratio Tyy Tyy Ty Ty Thy TH,
Exact| .167 .333 .50 .833 .667 .50
Lump 142 .289 429 .857 714 .571
"Four Lumped Models"

Temp. | ~ez | 2 %“ Tes | Two | T | Twe | T
Ratio| T T T .
Exact | .125 .25 .375| .50 | .875 .75 .625 . 50
Lump | -111 .222 .333 444 | 888 .777 .666 | .555
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TABLE(3-5): Results of Fitting Parallel-Flow

"Static Case"

For case: a =4 a2=1
Unfrtted Ecrar | Tifled Evror
‘P Toc _T_ﬂ:' _'_I'_ocl ,.;-.': ';l?c
Tt |p-p Twi iL-¢ Tin Je-c T e T -
-— =
12 .199 .216 . 240 16.7% 10%
1/3 .199 224 . 240 11.25% 6.7%
1/4 199 | .228 .240 8.3% 5.0%
TABLE(3-6): Results of Fitting Parallel-~Flow
"Static Case"
For case: a,=1 , a,=1
T, . |Unfi‘l§‘# Evver F;h?#, Error
\ ., | P T e 4
M lic ol (2 HEe-p To IL-P Tae IL—P
1/2 432 461 .50 20% 7.8%
1/3 432 473 . 50 14.2% 5.4%
1/4 432 480 . 50 11.1% 4.0%




TABLE(3-7):
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Results of Fitting Counter-Flow

"Static Case"

For case: a,=4 R 32=1
UnﬁﬂhlEﬁmr Rithd Error
" Te Toc T B
Tufi-c Tin i-P TIH,E-P T II.- T 1P
1/2 . 240 .220 .199 7.5% 10.9%
1/3 . 240 .213 .199 5.0% 7.0%
1/4 . 240 .209 .199 3.5% 5.2%
TABLE(3-8): Results of Fitting Counter-Flow
"Static Case" |
For case: a, =1 a, =]
Un?ﬂﬁf Eror F.'ﬁef( Ernr
Toc Toe T,
¢ 2 2 —°’-‘| s i
Th |y - - T
W jL-C TI-H -p L E-P W L_P 'T" L-p
=
1/2 .50 .469 432 13.2% 8.6%
1/3 .50 457 432 9.2% 5.8%
1/4 .50 450 432 7.47% 4.2%
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TABLE(4-1): Gain and Phase Angle
For Case: a,; =4 , a,=1, r=1

"Exact Results"

"Friedly's Results"

COUNTER-FLOW
[] a
Q |y o o IG lu o
0.0 1.0 0.0 0.0 1.0 0.0
0.1 .990 -3.88 0.1 .990 -2.8
0.3 .970 -11.2 0.3 . 984 -8.04
0.7 .880 -22.8 0.7 .946 -20.8
1.0 .820 -29.4 1.0 .900 -25.5
2.0 .630 -45.0 2.0 .707 -45.,0
4.0 416 -60,1 4,0 .458 -62.7
6.0 .300 -69,1 6.0 .325 -71.0
10.0 .200 -76.0 10.0 .202 ~78.3
20.0 .100 -82.7 20,0 .102 -84.1
50.0 .0kl -86.7 50.0 .041 -87.6
80.0 .026 -88.1 80.0 .026 -88.5
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TABLE(4-2): Gain and Phase Angle
For Case: a,=4 , a,=1 , r=l

"Two Lumped Models"

COUNTER

0 6| e}, o IGL_'M LIy
0.0 0.2 .832 0.0 .2405 | 1.000
0.1 0.199 | .831 -5.1 . 240 .997
0.3 0.195 | .812 -15.2 .234 .974
0.7 0.175 | .73 -33.5 210 | .880
1.0 0.157 | .655 -45.0 .189 .780
2.0 0.106 | .440 -71.5 .127 .536
4.0 0.055 | .230 -99.5 .066 .268
6.0 0.03% | .140 -115.5 | .040 .169
10.0 0.016 | .065 -135 .020 .078
20.0 .005 [ .020 -155 .006 .024
50.0 .001 | .003 -169.7 | .001 004
80.0 .0003 { .001 -173.6 | .0003 .001
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TABLE(A-B): Gain and Phase Angle

For Case: a,=4

’

nThree Lumped Models"

, a1 , r=l

Cou NTER
£ IGl “;b o IG[H&J [GLmW&I
0.0 .2133 .890 0.0 . 2405 1.00
041 .213 .886 4.6 .240 .997
0.3 .209 .870 -13.5 .236 .980
0.7 .192 .800 -30 .216 .900
1.0 174 .725 ~40.6 .196 .816
2.0 .122 .506 -65.5 .137 .570
4.0 .067 .280 -91.7 .076 .315
6.0 .043 .180 -107.5 | .048 .202
10.0 .021 .090 -127.6 | .024 .101
20.0 .007 .036 -147.5 | .008 .034
50.0 .001 .005 -167.5 | .001 .006
80.0 .0003 .001 -171.6 | .0003 .001
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TABLE(4-4): Gain and Phase Angle

For Case qf4

ag=1

1

r=1

"Four Lumped Models"

COUNTER
o
0 ¢ ] |G|, & |°4§m¢ ,Gluﬁﬂhl
0.0 .2202 .918 0.0 . 2405 1.0
| 0.1 .2200 .916 -4,2 . 240 .998
0.3 .2160 .900 -12.6 236 ﬁ981
0.7 .1990 .830 -28.0 .218 .205
1.0 .1830 .761 -38.0 .200 .830
2.0 .1310 ;5&3 -61.8 . 142 . 592
4.0 .0750 . 312 -86.0 .082 . 340
6.0 .050 .210 . -101.3 .055 .230
l10.0 .026 .110 -121.4 .029 .120
20.0 010 .040 -145.6 .010 043
50.0 001 006 -165.3L .002 .007
80.0 - - -170 - -
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TABLE(4-5): Gain and Phase Angle

For Case: g =1 ;Caz=1 , r=1

"Exact Results" "Friedly's Results'"

COUNTER-FLOW

0 lel, ¢ Q ], ¢
0.0 1.00 0.0 0.0 1.00 | 0.0
0.1 .997 4.9 0.1 .999 -6.6
0.3 .980 -14.2 0.3 .980 -6.6
0.7 .850 -37.8 0.7 880 33
1.0 814 46 1.0 .822 ~4é.
2.0 .460 -73.3 2.0 .523 -66.
4.0 .254 -69 4.0 .250 ~75.5
6.0 .142 -84.3 6.0 .143 -80.

10.0 .096 -76.5 10.0 .087 -82,.

20.0 .055 -81.6 | 20.0 . 045 -82.

50.0 | - .018 ~93.4 50.0 .020 -81.6

80.0 0141 | -88.6 80.0 014  |--8%.0
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TABLE(4-6): Gain and Phase Angle

For case: a, , a=1 , r=1
"Two Lumped Models"
COUNTER

0 le| 5|, ¢’ 16lge | 161y Ftr
0.0 .400 .800 0.0 .50 1,00
0.1 .398 .79# -8.0 .497 .995
0.3 .386 772 -18.8 .483 .965
0.7 .338 .676 -40.5 422 .845
1,0 .297 .593 ~-55.2 .371 . 741
2.0 .177 .353 -87.7 .221 442
4.0 .076 .151 -117.2 .094 .190
6.0 .041 .083 -131.9 .052 . 104
10.0 018 | .035 -148.0 | .022 . 044
20.0 .005 .010 -162.7 .006 .012
50.0 .0008 .0016 -173.0 .001 .002
BO.Q .0003 .0006 -175.7 . 0004 .0008
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TABLE(4-7): Gain and Phase Angle

For case: ag » d,=1 , r=1
"Three Lumped Models™
COUNTER

£2 e | |e v o IGlg,-W IGIA’,F;IH
0.0 4286 .8672 0.0 .500 1.000
0.1 4272 .8544 -5.8 .498 .956
0.3 .4165 .8330 -17.3 486 .971
0.7 .3720 .7430 -38.4 .433 .867
1.0 .3280 .6550 -52.0 .382 . 764
2.0 .1980 .3960 -83.16 .231 462
4.0 .0886 .1770 -108.3 .103 .210
6;0 .0527 .1054 -122.0 .061 .123
10.0 .0243 .0486 ~140.6 .0283 .057
20.0 .0070 .0141 -158.0 | .0080 .016
50.0 .ooiz .0024 -171.0 .001 .003
80.0 .0004 .0009 -174.6 | .0005 .001
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TABLE(4-8): Gain and Phase Angle

For case: a,=1 |, az=1 , r=1
"Four Lumped Models"
COUNTER
0 ¢ e o o] |¢]
| filked ”;Fily

0.0 A .888 0.0 .500 1.00
0.1 443 .886 -5.5 499 .997
0.3 434 .868 -16.3 .488 .976
0.7 .392 .785 ~36.7 441 .883
1.0 .350 .700 -58.0 .393 .787
2,0 .212 414 -81.25{ .239 477
4.0 .09 .189 -102 .106 .212
6.0 .060 .120 -114.5 .067 .134
10.0 .030 .060 -132.75 .033 .066
20.0 .009 .018 -153 .010 .020
50.0 .0016 .0032 ~-166 .0018 .0036
80.0 .0006 .0012 -173 .0007 .0014
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TABLE(4-9): Gain and Phase Angle
For Case: a,;=2 , a2=1 , r=2
"Exact Results" "Friedly's Results"

COUNTER-FLOW

= jcl, ¢ a ¥ 3
0.0 | 1.00 0.0 0.0 1.00 0.0
0.1 .996 -6.7 0.1 .999 | -7.0
0.3 . 954 -49.3 0.3 939 | -20.0
0.7 .790 -41.0 0.7 .760 | -40.5
1.0 .642 -53.4 1.0 .633 | -50.5
2.0 .370 -72.2 2.0 .378 675
| 4,0 .1986 -77.1 4.0 .203 | -74.2
6.0 .135 -82.6 6.0 .13 | -76.0
10.0 -086 -87.1 10.0 .080 |-84.3
20.0 .045 | -8735 20.0 | .042 |-85.0
50,0 .018 -87.1 50.0 .018 |-87.6
80.0 .011 -89.87 | 80.0. .011 |89.80




149

TABLE(4-10): Gain and Phase Angle

For Case: a,=2 |, al=1 , I=2
"Two Lumped Models"
COUNTER
0 ] [k ¢ 6l gy IGMF:M
0.0 .304 .786 0.0 .387 1.00
0.1 .301 .778 -9.16 .384 .990
0.3 .281 .726 -25.5 .358 .924
0.7 217 . 560 -53.7 .276 712
1.0 173 448 -68.1 .220 .570
2.0 .092 237 -95.0 | 117 - 300
4.0 .640 .101 -120.5 | .050 .129
6.0 .021 .055 -134.4 | 027 .070
10.0 .009 .023 -150.5 | .011 .030
20.0 .0024 .0063 -164.5 | .0027 .007
50.0 . 0004 .001 -173.75| .0005 .0013
80.0 .0002 .0004 -176.0 | .0002 .0005
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TABLE(4-11): Gain and Phase Angle
a,=l , r=2

For case: a4=2 >

"Three Lumped Models"

COUNTER
Q s kﬂ, N IGlﬁmd [y
0.0 .328 .847 0.0 .387 1.00
0.1 .324 .837 -8.3 .383 .988
0.3 .307 .792 24,25 .362 .934
0.7 243 | 627 -50.0 .286 . 740
1.0 .197 .510 -63.75 .232 .600
2.0 107 .276 -89.,0 .126 .325
4.0 .050 127 -112.3 .060 .150
6.0 .028 .074 -126.7 034 .087
10.0 .013 .033 2143.7 .015 .038
20.0 .004 .009 -160.5 .004 .011
50.0 .0006 .0015 -172 .0007 | .0018
80.0 .0002 .0006 -175 .0003 .0007
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TABLE(4-12): Gain and Phase Angle

For case: a,= aa=1 s, =2
"Four Lumped Models"
COUNTER
o T P 1%l | 1 sone
0.0 341 .881 0.0 .387 1.000
0.1 .339 .874 -7.7 .384 .993
0.3 .321 .828 -22.0 . 364 .940
0.7 .257 .665 48,0 .292 .755
1.0 .210 . 542 -61.5 .238 .616
2.0 116 .300 -76.0 .132 . 340
4.0 .050 124 -81.7 .055 .160
6.0 .033 .085 -104.8 .037 .097
10.0 4021 .055 -135.0 .024 .062
20.0 .004 .012 -160.0 .005 014
50.0 .0008 .002 -171.1 .0009 .0022
80.0 .0003 | .0008 -174.2 | .0003 .0009




For Case a,=4 ,
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a2=1 R

TABLE(4-13): Gain and. Phase Angle

r=1

"Exact Results for Parallel Flow"

2 6| kﬂﬁ e
0. .1986 1.0 -0.0
0.1 .1986 140 -5.7

0.3 .1986 1.0 -17.2
0.7 .1986 1.0 -40.3 -
1.0 .1986 1.0 -57.6
2.0 .1986 1.0 -114.6
4.0 .1986 1.0 -229.2
6.0 .1986 1:0 -343.7
10.0 .1986 1.0 -573




TABLE(4-14): Gain and phase Angle

For case: a‘=4H, 32=1 , r=l
"Two Lumped Models"
PARALLEL
|9| |Gb ¢ 1l by e
.1837 .925 0 .1986 1.0
.1 .183 .922 -6.1 .198 .997
.3 .180 .905 -18 .194 .978
.7 .164 .825 -41 ;177 .893
1.0 147 .743 -56.8 .159 .803
2.0 .093 468 -98 100~ 506
4.0 .037 .186 -144.7 .040 .202
6.0 .018 .089 -171.2 .019 .096
10.0 .006 .03 -201.6 .006,, .030
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TABLE(4-15): Gain and phase Angle
For Case: a'=4 N a2=1 , r=1

"Three Lumped Models"”

PARALLEL
£ |G| l ¢ I,v ¢ |G’lﬁw IGl,y,;iM
0.0 .1894 .954 0 .1986 | 1.0
0.1 .189 .952 -5.9 .198 -998
0.3 | .187 .940 -17.7 .196 .985
0.7 .175 .882 -40.8 .184 .925
1.0.7 | .162 .817 -57.3 .170 857
2.0 | .110 .557 -105.3 | .116 .583
4.0 .042 214 -169.4 -046 0232
6.0 | .018 .090 -207.7 | .o019 .094
10.0 .004 .022 -252 .005 .023
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TABLE(4-16): Gain and phase Angle

For Case: a, =4 , a2=1 , r=1

"Four Lumped Models"

PARALLEL

Q <] lel, ¢ (ol | 160
0.0 .1922 .968 0 .1986 1.0
0.1 .1920 .967 -5.9 .1985 .999
0.3 .1900 .957 -17.7 .196 .988
0.7 .181 .910 -40.9 .187 941
1.0 .170 .857 -57.8. -P76 .-885
2.0 .123 .619 -109.5 .127 . 640
4.0 .05 .245 -186.2 .051 .253
L.0 .02 .096 -235.7 .020 .099
10.0 .004 .020 -364.2 .004 . .020
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TABLE(4-17): Gain and Phase Angle (Parallel Flow)
For Case: a,=2 , a2=1 , r=2

"T"he Exact Results"

£ 4 jcl,, ¢
0 3167 1.0 0
.1 .3166 .999 -8
3 .3155 .996 =24
o7 . 3110 .982 -63
1.0 . 3055 .965 -89
2.0 .2730 864 -177
4.0 .1720 . 542 —324
6.0 .0623 ., 197 -572
10.0 .0525 .166 -688
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TABLE(4-18): Gain and Phase Angle
For Case: a’=2 s ag=l , r=2

"Two Lumped Models"

PARALLEL

Q <] e, o lel e | |G
0.0 .280 .884 0.0 .3167 1.00
0.1 .278 .878 -10.1 .314 .993
0.3 .263 .830 -30.0 .297 . 940
0.7 .208 .656 -63.3 .235 742
1.0 .165 .520 -84.8 .186 .588
2.0 .076 .240 -129 .085 .270
4.0 .023 .072 -173 .026 .082
6.0 .009 .030 -198 .011 034
10.0 .0025 .008 -223 .003 .009
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TABLE(4-19): Gain and Phase Angle

For Case: a,=2 , apg=1 , r=2

"Three Lumped Models"

PARALLEL

0 [ lel, o lCls | |Clgsma
0.0 .292 .920 0.0 .3167 1.0
0.1 .290 .916 9.7 .315 .996
0.3 | .280 .882 -29 .303 .960
0.7 .234 . 740 -64.6 .255 .804
1.0 .193 .610 -88 .210 663
2.0 .090 283 -144.7 | .100 .310
4.0 .023 .074 205 ,025 . .080
6.0 .008 .026 -240 ,009 ,028
10.0 .0016 .0053 | -279 ,0018 .0057
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TABLE(4-20): Gain and Phase Angle

For Case: a4=2 R a2=1 , r=2
“Four Lumped Models"
PARALLEL

£ e ] e}, ® 'qmd [} ey
10.0° .298 .94 0.0 .3167 1.0
6:1 .297 .937 9.5 .315 .996
0.3 ,288 .910 -28 .4 .306 .967
0.7 .250 .790 -64.5 .266 8B40
1.0 .213 .673 -89.4 .227 .716
2.0 .164 .330 -154.6 .110 .350
4.0 .025 .080 -229.3 .026 .084
6.0 .008 .025 -274.0 .008 .027
10.0 .0013 .004 -328.0 L0014 .0043
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TABLE(5-1): Gain and phase Angle (Using Different ¢% )

For case: a, =4 , a,=1 , r=l B=t . g=%

"Two Lumped Models"

COUNTER-FLOW

2 IG| 'Glﬂ ¢ IGIF;H IGlﬁﬁ'ﬁ/
0.0 .198 .823 0.0 . 2405 1.00
0.1 .197 .820 4.7 | .2400 .997
0.3 .193 .800 -13.9 .2340 .973
0.7 174 723 | -30.0 .2110 .878
1.0 ,157 652 -40.0 . 1900 .790
2.0 .110 460 -62.3 .1350 .560
4.0 .065 .270 -87.0 .0800 .328

6.0 .043 .180 -104.6 | .0520 .217

10.0 | .02 ,091 -125.0 | .0260 .110

20.0 .007 .030 -149.5 | .0090 .036

50,0 .001 005 -167.5 | .0010 .006

80.0 . 0004 .002 -171.5 | .0004 .002
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TABLE(5-2): Gain and Phase Angle for Improved Case:

a‘=4 , 8,=1 , r=1
"Two Lumped-Models" "Exact"
COUNTER-FLOW
T
Q |¢| e, o | e, o’
0.0 . 2405 1.000 0.0 || 1.00 0.0
0.1 . 2400 .997 -3.75 | .99 -3.8
0.3 .2350 .977 -11.0 .97 -11.2
0.7 .2140 .890 -23.8 I .88 -23.0
1.0 .195 .812 -31.0 .82 -29.5
2.0 144 .600 ~46.0 u .63 -45.0
4.0 .094 .390 -58.0 41 -60.0
6.0 .071 .295 -64.0 | .30 -69.0
10.0 .048 .200 -71.0 .20 -76.0
20.0 .025 .106 -80.0 " .10 -82.7
50.0 .010 .043 -86.0 041 -86.7
80.0 - .006 .027 -87.3 | .026 -88.0
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TABLE(5-3): Gain and Phase Angle for Improved Case:

ag=2 , a,=1 , r=2
"Two Lumped Models" YExact"
COUNTER-FLOW
[} [
Q 5| ], 0 lcl, o
0.0 400 1.037 0.0 1.00 0.0
0.1 .397 1.026 -8.0 .996 -7.0
0.3 .368 .950 -23.0 .954 -20.0
0.7 .280 .720 -46.0 .790 -41.0
1.0 .222 .573 -55.0 . 642 -53.5
2.0 .125 .323 -67.0 .370 -72.0
4.0 .074 .190 -73.2 .196 -77.0
6.0 .051 .132 _78.5 .135 -82.0
10.0 .031 .081 -84.0 .086 -87.0
20.0 .016 041 -87.4 .045 -87.5
50.0 .007 .018 -87.7 .018 287.7
80.0 .004 011 -89.7 011 -89.7




TABLE(5-4): Step Response for Counter-Flow Heat-Exchanger
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For Case: aq=4 , a,=1 , r=1

t l“l Le - IWI
T l.u-pn/ Tew|Execl Ten | Frvedly
0.0 . 000 .000 . 000
0.25 .373 .375 400
0.5 . 580 . 580 . 644
1.0 . 780 .785 .873
1.5 .884 .896 .955
2.0 .925 .94 . 984
2.5 .968 .97 . 989
3.0 .983 .983 .992
3.5 .991 .991 .993
4.0 .995 .995 . 995
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TABLE(5-5): Impulse Response for Counter Flow

For case: ay=4 , a,=1 |, r=1
. T Toc T
Ty Lamped To# | gt Tt | gpuet
0.0 2,16 2.065 2.065
0.25 1.01 1.05 1.23
0.5 0.605 0.625 0.735
0.75 0.410 0.410 0.440
1.00 0.285 0.275 0.262
1.25 0.200 6.190 0.160
1.50 0.150 0.150 0.093
1.75 0.112 0.120 0.055
2.00 0.062 0.050 0.03
2.25 0.051 0.04 .02
2.50 0.032 0.03 0.01
3.00 0.020 0.01 0.005
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FIGURE(3-12a): Static Case of Parallel-Flow

For case: ay=4 , 4&,=I
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FIGURE(3-12b): Static Case of Counter-Flow

For case: a,=4 , a, =1
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FIGURE(3-13a): Static Case of Parallel-Flow

For case: a,=1 , az=1
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FIGURE(3-13b): Static Case of Counter-Flow

For case: a,=1 , a2=1
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FIGURE(3-14): Effect of Fitting Counter-Flow by Exact
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FIGURE(3-15): Effect of Fitting Parallel-Flow by Exact

Values. a’=4 s 8,=1
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FIGURE(3-16): Effect of Fitting Counter-Flow by Exact

Value, a,=1 , a,=1
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FIGURE(3-17): Effect of Fitting Parallel-Flow by Exact

Value. a1=1 , 4a,=1
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FIGURE(4-13): Gain of Frequency Response of Lumped-Models
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FIGURE(4-14): Phase Angle of Lumped Models "Counter-Flow"

For case:

ay=4 , g=1 , r=1
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FIGURE(4-15): Phase Angle of Lumped-Models '"Counter-Flow"

For case ai=1 , 4,=1 , r=1
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FIGURE(4-16): Gain of Frequency Response of Lumped-

Models '"Counter-Flow" a1=1 , =1 ,

r=1
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FIGURE(4-17): Gain of Frequency Response of Lumped-

177

Models '"Counter-Flow" a‘=2, 32=1’ r=2
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FIGURE(4-18): Phase Angle of Lumped Models'Counter Flow"

For case:

ay=2 , a,=1 , r=2
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FIGURE(4-19): Frequency Response of Lumped-Models

"Parallel-Flow" a,=4 , a,=1 , r=l
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FIGURE(4-20): Frequency Response of Lumped-Models

"Parallel Flow" a, =2, a,=1, r=2
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FIGURE(5-1):

For case: a

181

Frequency Responses of Fitted Lumped-Models
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FIGURE(5-3): Gain and Phase Angle for Improved Case

For case: a,=4 s a2=1 , r=l
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FIGURE(5-4): Gain and Phase Angle for Improved Case

r=1

For case: a,=2 , a,=1 ,
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FIGURE(5-5): Step Response of Improved Case

For case: a,=4 , a,=1 , r=l

o—TWO LUMPS

FRIEDLY
—\

12—
1.0

8

6

4

o o @) 8

JYNLVYHIdWIL A3 ZINYWHON

S0

45

15 20 25 30 35 40

t0

03

TIME ——



NORMALIZED TEMPERATURE

185

FIGURE(5~6): Impulse Response of Improved Case

For case: a’=4 s qfl , r=1
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FIGURE(5-8): Monotonic Parameters of Exact Solution

For case: a;=4 , a,=1, r=1
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FIGURE(5-9): Monotonic Parameters of Friedly's Method

For case: a’=4 . a2=1 , r=1
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