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ABSTRACT

This thesis demonstrates how the use of a global context can improve the power of a

local character recognizer. The global context considered is a computer tutor of high school

algebra that observes a student working algebra -problems on a graphics tablet. The tutoring

system is integrated with a character recognizer to understand the pen strokes of an algebra

solution coming from the computer tablet. A tablet based input understander for an algebra

tutoring system is designed and implemented.

This thesis joins together two uses of a computer, intelligent tutoring and tablet

communication. Natural communication with computers has been pursued through speech

understanding, English text understanding, special purpose languages, hand printing and

graphics. This work extends the power of hand-printing understanders by using more varied

and higher level sources of knowledge than have been used previously.

Thesis Supervisor: Ira P. Goldstein, Assistant Professor of Electrical Engineering
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Algebra

INTRODUCTION
This thesis demonstrates how the use of a global context greatly improves the power

of a local character recognizer. The global context considered is a computer tutor of high

school algebra that observes a student working algebra problems on a graphics tablet. The

tutoring system is integrated with a character recognizer to understand the pen strokes of an

algebra solution coming from the computer tablet.

This thesis joins together two interesting uses of a computer, inteligent tutoring and

tablet communication. Natural communication with computers has been pursued through

speech understanding, English text understanding, special purpose languages, hand printing

and graphics. This work extends the power of hand-printing understanders by using more

varied and higher level sources of knowledge than have been used previously. The tablet is a

unique medium for communicating .in what could be called Chalkboard Languages.

Chalkboard Languages

Let us examine the Chalkboard Languages that make communicating with a tablet

unique. By Chalkboard Languages, I mean the kind of communication that calls for a two-

dimensional dynamic medium. Consider what is written on a blackboard at the end of a

lecture or discussion and how difficult it can be to reconstruct the conversation. The missing

element is the development, in time, of the symbols on the board. To watch the board all

through a conversation is quite different than to see it statically at the end. The board is used

to outline and elaborate, propose and modify, introduce and refer to ideas. Erasing, pointing

and overscoring are uniquely possible. As a two dimensional medium it differs from spoken

and written language, and resembles drawing and diagramming. There are extra degrees of

freedom for expressing relationships between elements of the conversation. Just as many

disciplines augment English with their own vocabulary, there are domain specific conventions

for graphical expression. These conventions range from informal outlining and arrow

drawing to more formal notations such as architecture or mathematics. Chalkboard Languages

have the added property that they are media for communicating with oneself. People talk to

themselves and write to themselves but the more natural ways to think about "half-baked ideas"

are scribbling, outlining, diagramming, sketching, etc., all two-dimensional, dynamic processes,

performed naturally on blackboards.
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Algebra

There are many examples of chalkboard languages. There are block, diagrams that

use arrows in trees and graphs to express hierarchy, communication paths, similarities, etc.

Architectural sketching is a chalkboard language. Electronic circuit schematics have graphical

symbols and two dimensional conventions. Formating programmer's code to show structures is

two dimensional and idiosyncratic. Geometry is discussed and theorems proved with the help

of dynamic diagrams. The outlining of ideas for a paper or talk sometimes becomes a two

dimensional process with an interesting development in time. Likewise the proofreader's

correction notation is a two dimensional language that depends heavily on pointing, circling

and underlining. Maps embody a specialized two dimensional language. The notes that a

reader makes in the margin of books and his underlines are a small language. A process is

often described with diagrams which are changed to reflect the changing states of the system

being described. There have even been programming languages developed around diagrams

and flowcharts. Pygmailian [Smith 1975) is an example of such an iconic programming

language, though the diagrams are built largely from pointing and menus. And last but hardly

least (for me anyway) is the chalkboard language of algebra problem solving. Algebraic

manipulations are naturally performed in two dimensions. In problem solving the rigid syntax

of algebra is relaxed to allow fragments and overwriting to change subexpressions. In the

tutoring situation there can be pointing, focus for emphasis and significant pauses. The

algebra domain has a number of good features for a test case.

Overview of AICAI System Model

The computer tutor is a second focus of my thesis. I uz' a system of modules based

on the work of [Brown 1975][Burton 1975][Goldstein 1977). The block diagram in figure I shows

the organization of an AICAI System (Artificially Intelligent Computer Aided Instruction),

following [Goldstein 1977).

The expert module is central to this system organization, because an intelligent tutor

needs to know about its subject matter. Recent work in CAI has incorporated experts into

tutors for geography (Scholar (Carbonell 1970)), electronics (Sophie [Brown & Burton 1975]), set

theory (Excheck (Smith et al, 1975]), arithmetic (West [Burton & Brown 1976]), planning and

debugging (Goldstein & Miller 1976]. In Goldstein's organization, an expert can propose actions

in the domain to be compared with the actions chosen by the student. The expert detects non-
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Algebra

optimal actions and reports them to the tutor for comment. Another function of the expert is
to aid the input and output modules by answering semantic questions about the domain of
discourse.

The Student Knowledge Model represents the student's current skill or what part of
the expert's knowledge he has mastered. The knowledge state is represented by overlay
modelling [Goldstein&Carr 197J, a technique that models the learner's skills as a subset of the
expert's skill. Expert rules that he uses correctly become part of this model, while unused but
appropriate rules do not. The tutor consults the model to restrict its remarks to be relevant.

The Psychologist is responsible for watching the student-tutor dialogue and keeping

the student knowledge accurate. It associates with each expert rule its confidence that the
student does or does not understand and use the rule.

The Tutor decides which problems to present and which issues to discuss or comment
on. It decides what when and how to advise the student, based on information from the
expert, the knowledge model and the learning model.

The Learning Model represents the student's prefered style of receiving advice and

comments, which is a subset of the instruction styles available to the tutor.

The Input and Output modules are responsible for communicating with the student,

enabling the tutor to instruct and the expert and tutor to follow his work. This module

receives the most attention in this thesis.

It is the irteraction of these modules that makes the tutor flexible, intelligent and

responsive.
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SPECIFIC DOMAIN

Algebra Tutoring

The chalkboard language that I concentrate on is elementary algebra problem

solving. A student works an algebra problem on a graphics tablet, and the computer watches

and reacts. Algebra is a good domain for study; it is bounded but not artificial, and it is rich

enough to be interesting. The inclusion of the algebra tutor make this world all the more

interesting and makes the communication more focused. This domain has the advantage that

hand printing is more natural than cursive hand writing in algebra expressions. This property

makes the lower-level character recognition easier, preventing the system from being front-end

bound. The algebra conventions are fairly uniform between individual dialects, so a generally

useful system is more feasible. A system for architecture sketching, for example, has to know a

lot about individual styles [Negroponte 1975][Herot 1974]. Algebra is used both for the

individual's problem solving and for communicating that process or result to others. Both of

these modes are present in the algebra lesson environment and serve to enrich it. A

conversation can be maintained between tutor and student. the possibilities for both long or

short interactions allow various uses of discourse phenomena in the understander. In algebra

the two dimensional nalure of expressions is very important. The procedures being taught are

invoked by cues that include 2-D relationships in the expressions. Cancelling rules, for

example, are learned with reference to "above and below the fraction bar." The Algebra lesson

is interesting for the many sources of knowledge that come into play.

One source of knowledge is the individual character's features. Another is the set of

differential diagnostics to distinguish similar characters, i.e. knowledge of which features are

most important to choosing one character over another to account for some input. Next the

system knows the formal syntax for algebra, which expressions are well formed; for example,

parentheses usually match. Also there is an informal syntax for algebra which has to do with

such things as the ordering of subexpressions, the spacing and clustering of expressions.

Numerical factors precede variables, variables are generally alphabetized, coefficients of one

are dropped, etc.. Next, there is semantic reasonableness such as typical values for such things

as exponents. There is, in fact, the whole semantics of algebra that underlies the expressions

and procedures. The procedures of algebraic manipulation, themselves, are a powerful source

of knowledge that determine which transformations are possible in one step (given, perhaps.
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the student's level). Substitutions, for example, have a procedure; sometimes parentheses must

be introduced in numerical substitutions and sometimes not. A higher-level source of potential

knowledge is the discourse structure. The algebra session is goal oriented. There is coherence

to the subexpressions throughout a problem session. Finally, the system can have a model of

the student user. His strengths and weaknesses, his consistent bugs or conventions can help the

system to understand his input. There are so many diverse sources of knowledge to help the

system that the major challenge of this project is organizing them to work cooperatively.

Organization

In the AICAI system model, this research concentrates on the input module and part

of the expert module. There are three major modules as shown in figure 2.

The first major module is the character recognizer, which communicates-with the

tablet and the parser. It receives a stream of pen co-ordinates from the tablet, collects them into

strokes and collects the strokes into characters for the parser. The characters that it finds are

organized and communicated in a chart [Kay 1967J. The chart is a lattice ordered by the

arrival time of strokes from the tablet.

The recognizer learns its alphabet in a training session, and can easily be taught to

distinguish 50 to 60 different characters. It can be taught an individual's idiosyncratic printing

style or it can be trained on a generally universal character set. The recognizer can find

multiple interpretations of ambiguous characters and will assign plausibility weights to the

alternative interpretations. The characters it finds are next used by the parser.

The parser is the second major module of the system. It receives the chart of

characters from the recognizer and builds a chart of phrases and finally one phrase for the

expert. The character chart is ordered by the temporal sequence of strokes on the tablet, while

the phrase chart is organized spatially by the two dimensions of the tablet.

The parser includes a grammar of algebra syntax that defines the structures to be

discovered in the characters. The phrases that it produces are tree structured algebra

expressions. Several structures are built in parallel, and there is a scheduler that allocates

resources such as time and space to the alternative, growing interpretations. The scheduler is

based on a system of potential. plausibility scores for the partial theories and can be tuned to

search in a depth first fashion or in a breadth first one or in somewhat both ways. The

8 Purcell
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expressions found by the parser are matched by the expert to the expressions in the problem

and in previous lines of the solution.

The expert is the third major module of the system and communicates with the-

parser and nominally with the tutor, which is not included in this work, but is discussed in

(Brown et. al. 1975]. The expert takes the phrase chart from the parser and matches

expressions to the previous context to discover the series of algebra transformations that the

user has made, which is the output to the tutor. A secondary output is confirmation scores for

the parser, which are found when subexpressions match the previous context. Also the expert

can get ahead of the parser and predict expressions for the parser to verify.

The expert includes an expression matcher, simplifier, canonicallizer and transformer.

It can ignore details by abstracting from the surface graphical representation of an expression

to a more algebraically canonical form. So, the expert makes sense of the parsers output and

intermediate outputs to guide the parsing and, in turn, the character recognition.

Figure 3 shows the hardware that supports the system. Half of the system runs in a

dedicated IMLAC computer and half in a time shared PDP-10. The IMLAC is interfaced with

a keyboard, a vector display screen, and a COMPUTEK graphics tablet. The processing

power of the IMLAC is used to track the pen, maintain the display and extract features from

the pen strokes. Most of the system is written in INTER LISP [Teitteman 1975] and runs under

the Tenex operating system on the PDP-10.

The above major logical modules of the system will be discussed in further detail in

the chapter called SYSTEM ORGANIZATION. Having seen the hardware and software

organization, we will now look at an example of the problem solving that the system is

designed to understand.

10 Purcell
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SCENARIO

What follows is an example of input for the system to understand. The system's
output is printed in capitals, and my commentary is written in italics.

PLEASE REDUCE:

(A -:- [(2A-3BX2A-:-3B)} + 1/2

YOU CAN WRITE ON THE TABLET NOW.

'.> A

.
OK.

DIVISION GOES TO MULTIPLICATION.

DIVISION IS CHANGED TO FRACTIOr.

UPPER CASE CHANGED TO LOWER.

REMOVAL OF SQUARE BRACKETS.

Note that the system must be aware of common notational variations and ambiguities, such as
lower and upper cases for literals. The system must recognize when "x" is used for multiplication

and when it is used as a variable. This difference, of course, cannot be detected locally. Here the
"(2" closely resembles the letter "R". The local features of these strokes are consistent with either

interpretation and can confuse the recognizer. The ambiguity is resolved by more global

constraints. For example, the following ")" must be matched; under the "R" interpretation there
would be no matching "(". The choice would be reinforced by matching the input to a
transformation of the problem statement.

12 Purcell
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(7,A -39)

OK.

MULTIPLICATION OF FACTOR AND FRACTION.

REMOVAL OF PARENTHESES.

UPPER CASE CHANGED TO LOWER.

ONLY PART OF EXPRESSION IS WORKED ON.

The student has only transformed a subexpression that his attention is focused on, dropping the

"1/2". The dqference locally between a "T and a "Z" is only the sharp upper corner of the "Z%.

When context otherwise discriminates, this feature need not be drawn carefully; on the other hand

this feature might be the only clue to an important difference and then the feature must be reliably

detectable. Part of the expression could be interpreted as (2A-3B) 2 . The local parser will build

this theory but not extend it.

-I-
3> (LL-i4)

OK.

MULTIPLICATION OF FACTOR AND FRACTION.

DISTRIBUTION OF FACTOR OVER SUM.

Here we pick up the 112" that was dropped last line. Notice the stroke segmentation problem

that can occur above. If the "1" overlaps the fraction bar "-" it could be mistaken for a "+ or

an "L". It is not enough to cluster strokes into characters solely on the basis of overlap.

.13 Purcell
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.A-3 _

14 Purcell

oOPS.

HOW DOES 4a2-sab GO TO Za(a.-3b) ???

OR 4aZ GO TO 2a)a) ???

ATTEMPTED FACTORING OF SUM.

PLEASE TRY AGAIN.

The best match between this expression and the last one, breaks down where the student incorrectly
factors. In the subexpression "3", If the vertical alignment of the characters is careless, then the

subexpression without context could mean exponentiation. Since the context of the previous

expressions rules this out, the system must tolerate a "b" written above to the right of the "3" and

make the right inter pretation, ignoring local information to satisfy more global considerations. The

expert nay even want to propose the discrepancy as a student error, but the tutor would probably

classify it as careless and not fundamental, unless it were re-occurring.

24( 2c-3 L)
OK.

FACTORING SUM.

A context free parser would have much d/fficulty inter pretting the double fraction bars. Both

fraction bars are of equal width, but one must be subordinate to the other (the possible meanings

are quite different - division is not associative). Context will easily help out here.
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- - ..- + --

C2&- 3 L)
OK.

CANCELLING FACTORS.

REMOVING DOUBLE RECIPROCAL.

There are many handprinted characters that closely resemble each other. The "b" resembles a "6";
the "a" and "u" resemble each other. Likewise, "2" and "Z". "1" and ")" etc.

;;.. (2a.-3t. z ( -31)

M~
06

x(~&-3 ~')

OK.

INTRODUCING FACTORS.

OK.

ADD FRACTIONS (LIKE DENOMINATOR).

1
OK.

CANCEL TERMS.

Cancellation does not fit well into a tree structured parse. It links separate 'lower' branches of the
parse tree. Also It is intimately tied to the two dimensional layout of the expression. In a linear
text representation of the expression, cancellation would be much less convenient.

15
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SYSTEM ORGANIZATION

Recognizer

The block diagram in Figure 4 shows the major submodules of the recognizer.

Tablet

A computer graphics tablet is the student's medium to communicate his work to the

System. An algebra problem may be worked out line by line on the tablet just as it would be

solved on paper. The System follows the motions of the pen and thereby watches the student

work. The pen actually writes on paper over the tablet so the student can see his work directly.

or he can watch his writing traced on the display screen. Watching the screen assures the

student that the system is following the pen correctly. Also if the screen outputs information

the student will see it conveniently. Most people find it easy to draw on the tablet and watch

the screen. The parallelism is usually learned in about 20 minutes of practice,

[Bernstein](adapting to the SRI/Xerox mouse requires similar training). The Computek tablet

does not have the most desirable properties for printing. The best tablet and pen combination

is one with: (1) low pressure required to depress the pen, (2) even lower pressure to keep it

depressed (hysteresis for a click feeling), (3) short travel to depress the pen: about 1/16 inch and

(4) high friction between the pen and tablet. The Computek pen fails in pressure and travel,

having too much of each. The friction between its pencil lead and paper is adequate. We

have begun tests with a Summa-Graphics tablet which seems better in all these categories.

Experience with the tablet overcomes these obstacles largely, but when a novice uses the systerm

the poor data is very difficult for the System to cope with.

The tablet is directly connected to the IMLAC display processor, which extracts

features from the pen strokes and sends them to LISP on the PDP-10. The IMLAC samples

the pen location about 60 times per second and maintains an image of the strokes on its

display. A switch in the pen detects when the tip is pressed to the tablet for writing. The

signal from this switch defines the start and end of each pen stroke. The feature extraction

and character segmentation is organized around the data in each stroke from pen down to pen

up. Each stroke is gathered from the tablet; its features are computed and sent along to the

character recognizer.

17 Purcell
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Feature Extracter

The character recognizer suggests interpretations for the strokes based on their

features and mutual positions. The vector of features computed in the IMLAC for each stroke

is: (XMIN XCTR XMAX YMIN YCTR YMAX S1 S2 S3S54 VISITS CORNERS START

END TOTAL) as shown in Figure 5.

The individual features are as follows:

XMIN,XMAX,YMIN,YMAX are the horizontal and vertical boundaries of the stroke, that is

its enclosing rectangle.

XCTR,YCTR are the coordinates of the stroke's center.

SI,S2,SS,S4 are boundry crossing counts. The enclosing rectangle is divided into thirds

horizontally and also vertically. The four interior boundaries (like a tic tack toe

board) generate nine subregions. Each feature is a count of the times the stroke

crosses one of these four boundaries. The crossing count is limited to three bits and

the side of the boundary that the stroke started on is encoded in a fourth bit. Each

Sn, then, ranges from 0 to 15.

VISITS is a nine bit binary integer that records the subregions visited by the stroke. Each bit

indicates whether the stroke entered each of the nine regions.

CORNERS is another nine bits to record the inflection points, or corners of the stroke. This

information is used to distinguish for example a 2 from a Z. The curvature is

calculated at each point in the stroke and compared to a threshold. When the curve

is tighter the corner bit for the point's region is set. An improved algorithm could

take into account time information, but the one implemented does not.

START,END are the directions in which the stroke travels near its start and end. There are 16

values chat these directions can take. These features are important for distinguishing

a C from a left parenthesis.

TOTAL is the total winding count of the stroke. This obscure feature was added when ones

and twos were confused and the other features were not sufficient to separate them.

Trainer

The character recognizer learns its alphabet from examples that the user prints

during a training phase. The trainer presents a menu of characters to be learned and accepts

printed examples one character at a time. The feature extracter builds the same vector of

19 Purcell
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YMAX

S4=+1

S3=+1

YMIN

XMIN S1=+2 S2=-3 XMAX

VISITS = 7168 CORNERS = 0

Figure 5. FEATURE EXTRACTION ON STROKE
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features that are used in the purely recognition phase and attempts to recognize the character.

When the user corrects the recognizer, the new pairing of features and character is

remembered. Since the trainer only accepts single characters it does not have the same

segmentation problem that the recognizer has in continuous printing. Instead, a pause between

strokes of about 1/2 second signals the end of a character. To relate the multiple strokes of a

character, their centers are considered to trace a path in space much like the path of a stroke.

This path is summarized like another, final stroke. In multiple stroke characters, then, each of

the features named above is really a series of that feature with one instance per stroke that

makes up the character.

The four series SI to S4 are each filed into a tree structured discrimination net for

efficient look up later. For the character pairs that are not well distinguished by the SI to S4

features a table of diagnostics describes which other features are evidence for which characters.

This diagnostic information is not subject to training, but there is no reason it couldn't be.

The recognizer can be tailored to one individual's printing, or it can be taught to

accept a sort of super set of common printing styles. Go far the training sets have been

somewhere between a universal character set and the author's own style of printing.

Recognizer

The recognizer must take the features of the strokes in a proposed character and find

the most likely interpretations of that collection of strokes. To propose interpretations, it uses

the SI to S4 features of the character strokes as an index into the tree structured dictionary

formed during training. Each feature (or sequence of them in multi-stroke characters) suggests

a set of characters. The characters that are suggested by most of the features are the best

candidates for an interpretation. A character may fail to show exactly the same features as the

trainer saw, because a nearest neighbor matching is used. Nevertheless, for a character to be

recognized successfully, a similar one must have been seen in training. The similarity needed is

a function of how well the features ignore small variations in character style and yet capture

the differences between separate characters. The features used are admittedly ad hoc, and are

not necessarily a model of the important features in a character as seen by a person. The

recognizer produces a set of proposals and a confidence score for each.

21 Purcell
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Segmenter

The rccognizer needs to know the group of strokes that constitutes a character. The

system can reliably find the boundry between strokes by watching for the pen to be lifted, but

the boundaries between groups of strokes that make up characters is not well marked. A

recognizer that accepts continuous characters and strokes is significantly more difficult to

construct than one which requires some signal between characters, such as a pause of 1/2 second

or so.

The Segmenter's task is to find the group of strokes in each characters in conjunction

with the recognizer. These groups are subject to several constraints. First, strokes must be

written sequentially in time. Thus the recognizer can not understand i's and t's that are dotted

or crossed after intervening characters. The grammar, however, can know about such

constructions. Second, the strokes of one character usually touch each other. The exceptions

such as '-' are accounted for in a table of inter stroke distances for the spread out characters.

Second, the strokes must be grouped in such a way that all the groups can be interpreted. In

particular, all the strokes must be accounted for. Within these constraints the segmenter may

find several ways to group the strokes.

The multiple groupings form a lattice of characters, the character chart (Figure 6);

and the parser must accept these possible groupings as its input. The character recognizer

places its proposed characters in this lattice and the spatial relation specialist observes the

lattice's implied alternatives. The scoring functions takes into account the mutual exclusion of

alternatives in the lattice by normalizing the scores of alternatively competing interpretations to

the best score of the group. More will be said about this normalization process in the section

on the scheduler. The segmenter's alternatives are based on local information that the

recognizer has about characters; the more global constraints of parsing an interpreting the

input is expected to provide the constraints to arrive at the definitive interpretation for the

segmentation and character recognition.

Character Diagnostics.

After the recognizer finds candidate interpretations based on its training session, this

set of proposals is winnowed down by the use of differential diagnostics. The character

diagnostic tells, for a pair of characters, which features are most reliable for choosing between

22 Purcell
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Figure 6. CHARACTER CHART
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the pair. For example the knowledge that inflection points in certain areas of characters

distinguish the 2 from the Z, or the U from the V. The diagnostics use a wider set of the

extracted features than the trainer does. This component of the recognizer is more hand

tailored to an a priori alphabet, and as such, complements, nicely the trainable character

definitions.

Parser

The block diagram in Figure 7 shows the major submodules of the parser.

Spatial Specialist.
The spatial relationships between characters of an algebra expression express

meaning that must be recognized (see Figure 8). Some operations of algebra are not even

written with symbols but by spatial arrangement of their operators. Multiplication is denoted

by concatenation, exponentiation by superscripts and indexing by subscripts. Even operations

denoted by symbols expect their arguments to be found in certain spatial arrangements.

Fractions are written vertically, and equations horizontally. In one dimensional languages. the

possible concatenation relationships are reduced to two: left and right. A two dimensional

language requires more relationships.

This algebra system is organized around nine relations: above, below, left-of, right-

of, on, left-above, left-below, right-above and right-below (see Figure 9). There is a specialist

that can compare any two characters (or phrases) and find one of these nine relationships. For

each character all the other characters fall into nine sets relative to it. Actually only the closest

neighbor in each set is likely to combine with it to become a larger phrase. The syntactic rules

for algebra refer explicitly to these spatial relationships. In a grammar for a one dimensional

language the rules implicitly specify the spatial arrangements. In fact the rules are written in

one dimension and rely themselves, on one-dimensional ordering and concatenation just to be

expressed. The spatial relations are maintained explicitly in the Spatial Network data structure

for the parser and grammar to use.

When characters (or phrases) are recognized to be constituents of a larger phrase, the

new phrase's neighbors must be made explicit. Most of the constituents neighbors are inherited

by the new phrase. Of course the constituents themselves were related neighbors but they will

not become neighbors of the new phrase. Since a phase's sub-constituents must be disjoint, a

24 Purcell
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Figure 8. SPATIAL INFORMATION IN ALGEBRA -
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BELOW

Figure 9. SPATIAL RELATIONS
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phrase cannot combine with part of itself to make a new phrase. Since the extent of a phrase

is defined to be the union of its constituents' extents, its constituents cannot be its neighbors.

The other neighbors of its subphrases, however, can and often will be its new neighbors. If

phrases concatenated vertically combine, then the neighbors above the higher one will be

neighbors above the new phrase, and likewise below. A phrase that was a right neighbor to

both phrases will be right related to the new phrase. A phrase that is a right neighbor to only

one phrase is a trickier case; it will be a new right neighbor only if it is almost to the right of

both. This inheritance of neighbors is central to parsing algebra and to discovering operator

precedence.

Spatial Network

The relationships discovered by the specialist are held in the Spatial Network data

structure to guide the parser. A relation connects two characters (or phrases) and the two sets

of phrases built on them. New phrases are created across this boundry by matching a

grammar rule to the relation type and to the phrase type of two phrases, one from each side of

the relation. The phrases on either side of the boundry have plausibility scores, and the

relation can estimate the plausibility of the best new phrase that it could find. All the relations

in the network can be queued by their potential, and the search for new phrases can be

organized around them.

The relations are represented as pairs of complementry relations each directed in an

opposite direction. The relations manage the growth of new phrases at their site in such a way

as to assure that any phrase is constructed only once. Otherwise the chart of phrases is

polluted with costly duplications that will grow in parallel.

Spatial relations can be formed to a new phrase but more often the relations between

characters support relations between higher phrases. The relations are sensitive to the lattice-

structured chart produced by the character recognizer. The alternatives of the character chart

are implicitly mutually exclusive. Since the spatial specialist looks for nearest neighbors it has

to really look for nearest consistently existing neighbor. So the spatial network is grown

between not just the correctly interpreted characters, but between all the alternative

interpretations of the input strokes. Also since the system runs concurrently with user input.

new characters can clobber previously closest neighbors. The spatial network is designed to be

dynamically modifiable.
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Phrase Chart

The recognized phrases are connected to their subphrases and superphrases in the

Phrase Chart data structure. The phrase chart is like a well-formed substring table of Wood's

ATN system. It is an extensional representation of the grammar, instantiated with phrases

recognized from the input. It contains many partial parses that share common substructure. It

consists of the linked data structures representing phrases, relations and other objects. 'The

chart holds the state of many progressing parsing produced in a search that tries to extend the

most promising interpretations.

The chart is formed from phrases and the objects that they are connected to. A

phrase consists of:,

TYPE: e.g: number, expression, term

STROKES: that part of the input accounted for by the phrase.

SUBPHRASES: the immediate constituents.

SUBR ELATION: the relation between constituents.

SUPERPHRASES: phrases built out of this one.

NEIGHBORS: phrases that might combine with this one.

COORDINATES: X-Y information: location, extent.

SCORE: Plausibility or likelihood that this is the correct interpretation.

ALGEBRA: Algebraic meaning.

Grammar of Algebra

The system's grammar is a generalization of augmented phrase structure grammars

for one-dimensional languages, examples of which can be in [Heidorn 1975] and (Pratt 19731.

Each rule specifies a syntactic transformation from one pattern of phrases to another. The

rules use the nine spatial relations explicitly to specify the two dimensional structure of the

algebra language. There are noni-terminal categories of phrases also mentioned in the rules

such as: digit, letter, term, expression, etc. The rewrite part of a rule typically looks like:

<phrase type> -=> <phrase type> <spatial relation> <phrase type>

The rule also contains two expressions of scoring information, one to be evaluated before the

application of the rule, which can check for preconditions, and one to be evaluated after the

rule is applied and a new phrase is built. The rule aL gives its algebraic meaning by
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specifying how to generate the algebraic interpretation of the phrase in terms of the

interpretations of its constituents. For example the rule that describes the construction of

multiplication by horizontal concatenation will build the product of the new phrase's

subphrases.

The nonterminal phrase categories form a hierarchy by inclusion. A digit can be a

number, which can be an expression, etc. The grammar could have rules from each category to

the next more general one. Instead these 'IS-A' relations are combined with the grammar to

form a more expanded version, where every rule that held for expressions will hold for

numbers as well. When the system is initialized, the grammar is compiled into a discrimination

net and expanded to include the transitive closure of the 'IS-A' links. This expansion -saves the

construction of many redundant phrases at runtime.

Parser

The parser matches the tablet input to some phrase-structured tree producible by the

grammar. It builds many trees in parallel until one can be extended to account for the entire

input, or failing that, it trys to cover the input with only a few trees. The half-built trees are

held in the Phrase Chart data structure, while the parser works at extending the phrases with

the highest'scores. Neighboring phrases in the chart may combine into a new phrase according

to the grammar rules. The spatial specialist forms triples of neighboring phrase types and

their spatial relationship to use as an index into the grammar. When the triple matches a

grammar rule, the parser evaluates the pre-application scoring expression and queues a task

with the resulting priority to build a new phrase. When the phrase construction task runs, it

adds the new phrase to the chart data structure, finds the new phrase's neighbors and updates

the relations that border the phrase. The search for new phrases can be organized by queuing

phrases as tasks to look for neighbors to combine with. Or, as currently done, the relations

may be queued as tasks which will take pairs of phrases from the phrase sets on either side of

themselves -and try the combination. From the scores of the phrases it touches, a relation can

estimate the potential score of new phrases that it could create; this gives a priority to queue

the relation task at. The algebra expert has the chance to see the growing expressions and to

modify their plausibility scores as it sees fit. In this way the phrases that shouldn't extended

should sink down the task list never to waste resources, and the good phrases should be

extended until they become the parsing of the whole input.
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Scheduler

The Scheduler controls the effort allocated to extending the competing theories in the

parser's phrase chart. The system uses a numerical scoring system that is tenuously based on

probabilities. Zero is the perfect score, and larger numeric scores indicate less plausible

constructions. Negative scores are not used. When combining scores of a phrase's constituents,

the size of each constituent is used to weight each score. In this way, scores behave as densities,

and since they are combined additively they should correspond to log probabilities. When a set

of mutually exhaustive alternatives are scored the scores are normallized to make the best

alternative have score zero. In this way, the parser works on phrases that are locally

implausible, but without better alternative; while good phrases that have as alternatives even

better phrases are pursued less actively. This normalizing system follows one used at SRI

[Paxton&Robinson 1975] and Woods' Shortfall scoring (Woods 19761 Parsing can be viewed as

search, and it is up to the scheduler to control that search.

Expert

The block diagram in Figure 10 shows the major submodules of the expert.

Abstracter

The expert uses a hierarchy of abstractions to represent algebra expressions. Each

level of abstraction is like an equivalence class of expressions over stronger and stronger

algebraic equivalences. Each class is represented by its canonical member. For example, the

associativity of addition generates equivalence classes of sums, each of which can be

represented by the left associating versions. These abstractions allow the expert to find

corresponding expressions in a problem solution that differ only in the application of algebraic

transformations. Sums that are equivalent by associativity have the same abstractions (Lisp

EQ). The more powerful abstractions help the matcher bridge larger transformations of

expressions. On the other hand, simple transformations may not have any effect on the

abstractions. So if the system is to notice a simple change like removing parentheses, it must

have a very literal representation of the user's expressions as well. When the student

transforms an expression, the level of abstraction that best reflects the transformation is a

measure of his sophistication. Beginners operate on the surface representation of algebra with
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rules for moving signs and parentheses, while experts operate on more underlying trees of

operations. For example, the expert combines like terms that may be alike not at the surface

representation, but only in the expert's head after reordering factors. So, an algebra expert

needs to see many layers of detail in an expression.

The matcher part of the expert tries to see the current line of algebra as some

transformation of a previous line. To do so it matches expressions and subexpressions at

various levels of abstraction. It acts a little like a theorem prover trying to achieve a goal (the

current line) from the premises (the previous lines). It could find a series of steps at the

surface representation level, but the sequence could be long and hard to find. Looking for a

chain at more abstract levels is like using lemmas or finding islands in the proof to aim for.

As an alternative to forward and backwards chaining, this method is really an intelligent

middle out strategy. Abstractions are powerful aids to matching and searching.

What are the levels of abstraction? First, the lowest level is just the characters and

spatial relations as the parser finds them. These objects and links are a very undigested

representation of algebra. But they may be just the one used by beginning students. When a

beginner misapplies transformations, the strongest invariants may be at this surface level, while

the tree structure seen by an expert will undergo radical change when the illegal transformation

is performed. The second level of representation is the phrase structured parse tree, just what's

on the paper, but grouped correctly. This tree still represents artifacts of the external forms of

algebra such is parentheses, small and capital letters that might be interchangable

representations of one variable. Graphical variations for the same algebraic operations are still

represented as this level. Multiplication can be expressed by 'x', by a dot or by concatenation.

Fractions can be written horizontally or vertically. Next level is just the underlying algebraic

variables and operations without regard to the graphical idiom. This level ignores parentheses

because operators and arguments are represented unambiguously. But the order of arguments

to commutative operators is still preserved. At the next level that arbitrary order is removed;

as is*the nesting of successive associative operators. The next deeper level simplifies the

expressions as much as it conveniently can.

Complete simplification is too difficult and open ended in general [Moses 67].

Instead, the abstracter only applies. conservative strategies to make expressions simpler. It

applies basic arithmetic identities such as elimination of factors of one and terms of zero. It

combines like terms and like factors; it expands certain products, and it factors certain sums.,
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There is no guarantee that all algebraically equivalent expressions will have the same canonical

form, but many will. Algebraic equivalence, in its most general form is undecidable.

A more abstract level yet, is to evaluate the expression in some model. That is, the

abstracter makes some random assignment of value to each variable, where instances of a

variable all get the same assignment. Then the expression is evaluated for those values. There

are technical details associated with the choice of domain for the variables and operations.

With real numbers, roundoff and overflow are problems for any finite representation. A finite

field such as the integers modulo a prime can be used, but division by zero and advanced

functions like square root are troublesome. In any case this hash evaluation method is even

more powerful than the simplifier for matching legally transformed expressions.

So far the abstractions have captured legal transformations at many levels, but what

about illegal ones? The first answer is that they do, in fact, help catch mistakes by identifying

the fragments of an expression that can be accounted for and matched. The remaining

transformation, if it can't be accounted for legally, must be an illegal one. Once it is isolated it

can be looked for in a table of common mistakes. Still, it would be nice to have an abstract

level that bridges even illegal transformations. There would probably have to be a series of

standard forms that would suggest two expressions were related. These forms would

characterize features of expressions that probably would not change during most operations.

The occurance of each (free) variable in the expression is such a feature, that will not

disappear across most transformations. Certainly, new variables are not introduced often. A

less reliable feature is the presence of a given operator. The power of abstractions for

matching across mistakes begins to break down because equality at some level must be replaced

by some more difficult nearest neighbor match. All in all the abstract levels greatly aid the

matcher.

Abstract Chart

Corresponding to the phrases in the phrase chart are phrases in the Abstract Chart.

An abstract version is associated with each syntactic phrase in the parser's chart. These

abstractions are forced to be unique. When two expressions are equal in Lisp they must also be

S in Lisp. Equality is detected with a data base of expressions, with links from each

expression to a list of all the larger expressions containing it. The equalizer uses this hash

array of backpointers like Conniver does, to match lists by intersections. Each element of a
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new expression is uniquized and then a previous occurance of that list is looked for in. the

intersectien of the element's back pointers. The uniqueness of expressions helps to order terms

of a sum uniquely. The abstracter and equalizer work hand in hand to give the expert many

useful views of an expression.

Previous Context

Previous lines of an algebra solution provide a context for interpreting the latest tine

of input. All the lines of a problem solution should be connected by the application of algebra

rules. Further, there is continuity between lines that can aid the recognizer and parser. The

same variables should appear in the lines. Even larger subexpressions are often copied from

line to line as other parts of expressions are modified. The system, then, can be guided by the

previous context. For a simplification problem the context is the series of expressions leading

to the solution. Likewise in solving equations the context is a series of transformed equations.

The matcher will compare new input expressions with the previous context to judge their

plausibility and to make predictions.

Matcher

The matcher tries to read between the lines of a solution. It compares the previous

context to the current input, as algebraic expressions and as their associated abstractions. The

matcher looks for syntactic congruence in the tree structures, and builds a list of corresponding

fragments over some portion of the tree. Rather than match from the fringe of the expression

tree up, all fragments of the tree-structured expressions are examined for matches. In

particular all instances of the variable X in the first expression are tenatively matched to all

other instances in the second expression. Likewise all additions are matched to all other

additions. Then these seeds of a match are extended wherever connected structure continues to

match. In this way the seed matches are extended over as much of the trees as possible.

Similarities

The areas that can be matched are the similarities between expressions. When there

are alternative matchings, all but one should be eliminated. Matching at one layer of

abstraction can guide the matching at other layers. The similarity is a tree structure like the

matched expressions, but incomplete. It has loose ends where the match failed to continue.
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These loose ends are the boundaries of the expression differences.

Differences

The differences are those unmatched portions of the trees, which may be loosely

related by their connection to matched portions. The differences are evidence that an algebraic

transformation has been applied. A difference can be characterized by the appearance or

disappearance of operators or variables. When multiplication is distributed over addition, a

multiplication operator appears as does a new copy of one factor. The features of the

differences are used as an index to the rules of algebra.

Algebra Rules

The algebra rules allow the matcher to continue matching expressions that differ by

algebraic operations. The rules must be organized according to the differences that the

matcher will find in the before and after expression. When the rule is applied to the before

expression, the result should match the after expression.- A transformer makes the rule

applications.

Transformer

The transformer applies the algebra rules to finish the work of the matcher. A

successful match using a rule is evidence that the rule was used between the previous context

line and the current context line. The expectation model of the current line can be

transformed by the discovered rule and thereby reflect more accurately the best current

expectation.

Current Context
The Current Context is a dynamically changing expression of what the system

expects the user to be writing. As each line begins the current context is initialized to the

previous context, giving rise to the expectation that the previous line will be repeated. As

evidence accumulates that the current line is not merely a copy of the previous line but a

transformation of that line, the current expectation is modified to reflect discovered

transformations. At that point the current context may be a more accurate model of the user's

input than the parser was able to discover by itself, and so it acts as top down prediction to
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guide the parser.

It is a simplification to assume that any line will simply repeat the last line. A natural

extension is to predict the transformations that the user will apply and let the current context

reflect the expected transformation before any evidence is discovered. Of course the table -of

transformation rules acts like a more general expectation that some of those rules will be

applied, but it is not as specific a prediction.

When the current context matches the parser's output then all transformations have

been discovered and the understanding is complete. Dynamically, the current context

mechanism acts like a servo-system with negative feedback. The matcher differences the input

with the current context and provides feedback through the algebra rules that modifies that

current context until it matches.the input. The series of modifications defines how the input is

related to the previous context.
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SCENARIO REVISITED

Now that we have seen the system organization, let us return to our scenario for a

closer look (refer to previous figures). In particular let's look at the student's second expression

and see how the system processes it. The student wrote:

A

2>

2a

(2R-3B) -

3b

First the tablet will divide the input into 15 strokes and extract the features from each. The

features that the Imlac will send to Lisp look like:

(((373 781 399 799 3 3 1 9 379 257 339))

((388 791 394 792 9 98 8 560 752))

((177 751 642 766 9 9 80 568 512))

((688 751 692 771 0 0 1 1 393 0 716))

((686 759 784 768 9 98 8 56 0'512))

((723 769 727 791 8 8 1 1 457 0 714))

((714 759 751 760 9 9 8 856 8 512))

((718 736 743 751 11 9 1 1 470 272 512))

((184 691 200 727 2 1 1 1 423 8 671))

((205 697 223 719 11 11 1 1 503 257 527))

((239 696 257 723 2 9 3 3 379 257 939))

((247 787 261 708 9 9 0 8 56 8 512))

((288 786 289 708 9 98'S 7 8 736))

((318 698 328 726 12 12 1 1 511 97 4))

((594 685 622 736 10 18 1 1 399 8 728))))

Each list holds the features for one stroke, as described above in feature extraction section.
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From training sessions the recognizer has a character-set description, structured as four trees.

These four trees are applied to the features SI to S4 of groups of strokes, yielding character

interpretations for the strokes, which are passed in a chart to the parser:

(P1H837 b)

(PH835 3)

(PH833 -)

(PHB3L A)

(PH829 a)

(PH827 2)

(PH825 Z))

(PH823 b)

(PH821 3)

(PH819 -)

(PH17a)

(PH815 2)

(PH814 Z)

(PH812 R)

(PH818 X

- (PH888 -4

. (PH888 -

(PH884 A)

(PH882 a)

Next the parser uses the algebra grammar to build phrases from the characters.

Every subphrase that will eventually be part of the interpretation must be discovered, and

along the way many side pathes will be explored. Many "obviously wrong" theories are

discovered by this parser because it tries to parse every subset of the characters without regard

to the characters outside that subset. Phrases are proposed in a context free way and then

evaluated with respect to context. Some of the phrases built by the parser:

CPH884 (DIVIDE A (TIMES (PAREN (- (TIMES 2 a)
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[PH883 (TIMES

[PH882 (DIVIDE

(PH881 (DIVIDE

(PH888

(PH879

(PH878

(DIVIDE

(DIVIDE

(DIVIDE

(TIMES 3 b)))

(DIVIDE (TIMES 2 a)

(TIMES 3 b)

(PAREN (- (TINES 2 a)

(TIMES 3 b)))

(DIVIDE (TIMES 2 a)

(TIMES 3 b)

A (DIVIDE (TIMES 2 a)

(TIMES 3 b)

(TIMES 2 a)

(TIMES 3 b)))

(TIMES 2a)))

A (DIVIDE 2 b)))

R (TIMES (PAREN (- (TIMES

(TIMES

(PH877 (TIMES (PAREN (-

2 a)

3 b)))

(DIVIDE 2 b)

(TIMES 2 a)

(TINES 3 b)))

(OIVIDE 2 b)))

[PH876 (DIVIDE A (TIMES (PAREN (- (TIMES

(TIMES

- (DIVIDE 2 (TINES

(PH875 (TIMES (PAREN (- (TIMES 2 a)

(TIMES 3 b)))

(DIVIDE 2 (TIMES 3 b]

(PH74 (DIVIDE A (DIVIDE 2 (TIMES 3 b]

(PH873 (DIVIDE 2 b))

(PH872 (DIVIDE 2 (TIMES 3 b)))

2 a)

3 b)))

3 bl

Phrase 84 (PH084) is the complete parse which includes phrases PHO83, PHOS1, and PH080,

but not the others. Recall the five abstract levels for expressions; I use nm> for line n of the

input at abstract level m. The Abstracter receives the phrase:
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(DIV-BAR A (TIMES (PAREN (- (TIMES 2 a)

(TINES 3 b)))

(DIV-BAR (TINES 2 a)

(TIMES 3 b]

It builds the other levels:

(DIVIDE A (TIMES

(DIVIDE A (TIMES

C- (TIMES 2 R)

(TIMES 3 B)

(DIVIDE (TIMES 2 A)

(TIMES 3 B)

(ADO (TINES 2 A)

(MINUS (TIMES 3 B))

(DIVIDE (TIMES 2 A)

(TIMES 3 B)

2.5> (NUL (RAT 3 2)

B

(EXP (ROD (MUL 2 A)

(MUL -3 B))

-1))

The student's next line was:

A ,

3>.---------------- + -

/4a 2 -Sab\ 2

\ 3b /

Purcell
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A major operation is performed between line 2 and line 3, a factor (2a) is distributed

over a sum (2a-3b). Nevertheless the level 5 abstraction does not change. The expressions are

not directly equal, due to the student's changing focus, but the matcher can easily see that line 2

is a subexpression in line 3. When the matcher tries to make this'matching on level 4, it finds

itself matching the product (2a-3bX2a/3b) with the quotient (4a2-6ab)/3b. The difference can

be accounted for by the transformation "multiplication of factor and fraction." The resulting

numerator would be (2a-3b)2a instead of 4a2-6ab. These are seen to be equal at level 5 but not

at level 4. The transformation to account for the difference is "Distribution of factor over

sum."

At abstract level 5 (canonically simplified) there are only two different expressions in

the whole scenario (except line 2 focuses on a subexpression). Lines I to 6 reduce to:

3b 1 (ADD (IUL (RAT 3 2)

+.- B

2(2a-3b) 2 (EXP (RDO (MUL 2 A) -

(IUL -3 B))

-1)

(RAT 1 2))

While lines 7 to 9 reduce to:

a (MUL A

(EXP (RDO (MUL 2 A)

2a-3b (MUL -3 B))

This example shows two algebraically equivalent expressions that have different

semi-canonical representations. The step that the student took but the simplifier did not is the

introduction of factors while adding fractions.
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PREVIOUS AND RELATED WORK

This thesis builds on previous research in several areas, extending some and

borrowing from others.

Recognizers for Tablets

My character recognizing module is similar to many recognizers previously built for

tablets [Diamond 1957], [Bernstein 1969], (Teitleman 1963), (Ledeen in [Newman&Sproull 1973)).

Researchers have found dynamic character recognition on tablets to be significantly easier than

the more general problem of static character recognition through cameras or image scanners,

especially in the hand printing domain. The time information available from the tablet makes

stroke segmentation much easier. A number of schemes were developed to classify strokes and

characters by significant features such as some description of shape. Diamond and Bernstein

classified shape by local geometry, namely the sequence of directions that the stroke traveled in.

At eaclh interval of time or stroke length, the direction was quantized and added to a growing

stroke description. This description would be matched against a dictionary of descriptions,

which defined a character set. This relative stroke description failed to capture important

features such as closed or intersecting. The difference between a small a and a small u is

whether or not the character is closed at the top. The relative directions at each interval of the

strokes are nearly the same (figure 11).

To overcome this difficulty, some features of global geometry must be used.

Teitleman, Groner and Ledeen computed global features of strokes by imposing grids of lines

over characters which divided them into regions. The stroke could be viewed as the sequence

of regions visited or as boundry-crossing features. Now features like closure could be described

as starting in, and returning to the same region. The recognizer module that I use takes this

global approach. The general shape of strokes is not enough to recognize characters. The u

and v have similar shapes but are distinguished by the v's sharp point. The presence of points

or corners is an important feature that early recognizers ignored. In the Ledeen recognizer, for

example, the letter Z was crossed to distinguish it from the digit 2. My recognizer, like some of

Bernstein's, looks for the inflection points as features. It uses only spatial information to find

them, but velocity information can greatly aid the detection of corners (Negroponte 1975).

There is a tradeoff between using local descriptions and using global ones. Just as we saw the

local descriptions fail at closure, the global descriptions fail to capture efficiently features that

43 Purcell



Algebra Purcell

C (2%

Figure 11. CHARACTER EXAMPLES
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really are local. For example many characters can be printed with long tails at the end of a

stroke (figure 11 ). The letter a or the digit 2 may have long tails that will distract a global

system from properly normalizing the size and position of the character before imposing the

grid. When the grid is misaligned, the stroke will not be properly described, and recognition

may fail. The tail can affect most all of the global features, yet in a local scheme only a very

few of the features describe the tail. (Here again time information can be used to advantage.

If the intervals are chosen by time, because it corresponds closely to importance, then the long

tail which.is most likely quickly executed, will not appear in as many 'syllables' of the

description and not carry as much significance. The local method can thus filter out certain

variations in style and execution which only confuse the global method. Probably the best

recognizer would combine these methods, but mine does not, and I know of none that does.

There is a basic difference of emphasis between my system and previous recognizers.

A common theme was to keep the systems as context free as possible, designing them to identify

characters soley on local evidence, not to make second guesses and not to make mistakes.

Systems that incorporated recognizers expected perfect characters from them, so the user was

given immediate feedback to check constantly. My system frees the user from checking the

local results of the recognizer by using all the global evidence and context that it can.

Algebra Systems

A number of two-dimensional parsers for algebra have been designed or built

[Henderson 1968], [Anderson 1968, [Guertin 19711, (Martin 1971], [Bernstein 19711 Henderson

and Anderson view algebra as an instance of a two dimensional language which is a

generalization of the one dimensional simple phrase structure language. The syntax of the

language is a set of replacement rules that can generate any legal sentence from the start

symbol by successively replacing phrase categories with phrases according to the replacement

rules. Anderson parses an expression by performing this generation non-deterministically until

he generates an expression to match the input, then the tree structure which is apparent in the

generated expression is taken as the structure of the input expression, which was not apparent.

This top down approach to parsing depends on strong predictions from the language's

grammar, or gross inefficiencies arise. In fact for efficiency, Anderson designed another parser

better tailored to algebra. The more efficient parser was not as committed to algebra's intrinsic

two dimensions, but sought to reduce the input first to one dimension before parsing. A
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preprocessor linearized the expression by inserting special characters to mark the two

dimensional information. This linearization was done with as little information as possible and

as locally as possible. Guertin, in his Matter system, and Martin also used linearizers before

parsing. Unfortunately the linearizing choices are made with minimum evidence and are

difficult to undo later, which tends to make these systems fragile and exacting. An example of

the assumptions made by the linearizer is that neither the numerator nor denominator of a

fraction will extend farther to the left than the fraction bar. This may usually hold, and users

may easily adapt to the requirement, but such a system will not degrade gracefully; A two-

dimensional feature that is hard to decide without context is the vertical alignment of

sequential characters. If exponentiation is plausible, then the raised character is significant, if

not then the user can be sloppier and the relative vertical positions is accidental.

Parsers

Much of my system is patterned after various speech understanding systems: HWIM

at BBN [Woods 1976J, HEARSAY at CMU [Lesser 1975], and one at SRI [Walker 1975]. All

these systems try to assign meaning to user input in the face of -uncertainty based on fallible

knowledge sources. Algebra understanding is like a mini speech understanding project. It is

more difficult than text, because the input is much less reliable and less constrained. Text

parsers rely heavily on the small function words that cannot be reliably found in speech, to

guide parsing. Algebra has fewer function symbols, less redundancy and has the uncertainty

similar to speech. Speech is, of course, much harder because the information is so locally

sparse. There are, at least in algebra, simpler methods that begin to give results. The previous

algebra systems have gotten as far as they did with much less power than must be used to do

speech. In borrowing from these natural language domains, I had to generalize them to two

dimensions; but they did serve as guides.

The first similarity between these projects and miae is the use of multiple knowledge

sources. All the speech systetns use roughly the same sources: 1) Acoustics, 2) Phonetics,

3) Lexicon, 4) Verification, 5) Prosodics, 6) Syntax, 7) Semantics, 8) Pragmatics, and 9) Control.

All of the systems organize the interaction of these knowledge sources around theories or

partial interpretations of input. Each KS (Knowledge Source) can inspect a theory and extend

it or criticize it. When a theory is extended enough to explain the whole input adequately then

the system has done its job and has understood the input. The idea of a parser is usually
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extended to include structure building in the domain of each KS. My system is like these ones

when its parser builds parallel structures in the syntactic and semantic domains of algebra,

guided by the high level context and the low level features. Character recognition is like

phoneme and word identification.

A second similarity is that like my system, each of the others must manage partial

theories and usually maintains several of them, working on them concurrently. Each system

has a data structure and bookkeeping system to hold the theories in. SRI uses the Parse Net, a

consumer and producer structure based on Kaplans GSP [Kaplan 1973]. CMU uses a

Blackboard as a communication channel where KSs make proposals and criticisms. BBN uses

a Well Formed Substring Table to hold completed phrases and a word-phoneme lattice for the

Phonetics, the Segmentation, the Lexicon and the Verification. A common theme in all these

data structures is to eliminate duplicated effort. A phrase should not be constructed twice for

different purposes, if a pnrase is discovered twice it should only be represented once. The

phrases that are discovered by producers should be routed to the appropriate consumers.

Phrases are filed in the data structure according to some characteristics such as position, phrase

type, etc. This data structure serves as the market place for consumers and producers. My

phrase chart organizes partial interpretations (the phrases) according to their position and

neighboring phrases. The scheduler actively matches the mutually consuming phrases.

My system can be compared to PAZATN, an automatic protocol analyzer for

elementary programming [Miller & Goldstein 1976b]. Both systems have synthetic grammars

which can generate interpretations to be matched to an input. Like my phrase chart, their

DATACHART holds the state of partially completed interpretations. Their PLANCH ART

serves a role similar to my expert's current context, providing expectations for the parser.

PAZATN's preprocessor serves a function similar to my character recognizer; it classifies and

locally processes input items. Both systems rely on a scheduler to conduct a "best first'

coroutine search. There are parallels in the structure building of each: the :protocol (fringe)

register corresponds to the strokes register in my phrases. :Title corresponds to name, :inputs to

inputs, :plan to algebra expression. The systems differ in their choice of linguistic formalisms.

As its name implies, PAZATN is based on the ATN formalism rather than on augmented

context free rules. I also tried to use the ATN formalism but encountered difficulties that will

be discussed later. PAZATN maintains Conniver contexts as it builds interpretations, while I

have nothing similar. Miller and Goldstein have capitalized on the idea that linguistic parsing
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methods can be generalized to many forms of analysis. In a sense I have made a similar

generalization of parsing to analyzing algebra problem solving. To show its generality they

have also applied the PAZATN system to a mathematical domain, symbolic integration. The

algebra tutor could benefit greatly from their formalisms for planning and debugging [Miller

& Goldstein 1976ai

Multiple Representations

The Expert module's use of abstractions takes advantage of multiple representations

as many other Al programs do. MYCROFT (Goldstein 1974,1975] derives much of its power

from the correspondences between turtle programs and an analytic model of geometry. Each

domain uses its own representations and procedures, but the system has additional knowledge

of mapping between these domains. Another example of mapping in and out of a model is the

SOPHIE electronics tutor [Brown&Burton 1975). A quantitative model (simulation) of a circuit

is used to answer both quantitative and qualitative questions about the circuit and its possible

faults. Many systems model their domain but few have knowledge about the model that is

separate and that use the model in ways that extend it so. My system uses multiple

representations of its algebra knowledge. Its syntactic grammar defines one representation of

algebra expressions, namely the two dimensional printed one. In the expert each level of

abstraction is another representation of the form and meaning of an expression. The

abstracter maps expressions from one representation to another. The parser uses two different

charts for its task; the character chart is ordered temporally, while the phrase chart is ordered

and connected spatially. The spatial specialist controls the mapping between these

representations. The system benefits from multiple specialized but connected representations,

rather than trying to use one universal formalism to express its knowledge.

Computer Instruction

Computers Aided Instruction (CAI) has earned a very bad name in the education

world, and rightly so. Most CAI has used computers as page-turners and bookkeepers.

Flexibility and adaptability are repeatedly recommended for this field. Yet the typical answer

is a preprogrammed lesson with branches between possible "paths". In essence, every possible

lesson must be anticipated by the author. This kind of CAI could be a medium for a very

gifted teacher, but the computer is used for little more than distribution and glitter. The
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horizons of CAI were broaded by the introduction of simulations that students could perform

on the machine. The system could only guess what use the student made of the simulation,
however, because that simulation was a black box to it. For example, in physics there are

simulations of arbitrary gravitational fields [Bork 1975] and elementary circuits; in genetics

there is a fruitfly simulation of inherited genes and characteristics written for the PLATO

terminal system. These systems vary in their generality. Some only allow the student to vary

parameters, others allow more "structural" modifications. Still, most CAI system lack anything
resembling intelligence.

An early attempt at adding intelligence to CAI was the SCHOLAR system

[Carbonell 19701 The SCHOLAR system teaches geography by a two way dialogue of question

posing, question answering, and reasoning from a semantic "net" data base [Collins 19751.

Another approach to improving CAI was the use of a theorem prover to teach formal logic

[Goldberg 19731 That system could check students proofs, give hints, and complete partially

solved proofs.

A system that added some intelligence (about the domain) to simulation is the
SOPHIE electronics tutor [Brown&Burton 1975. That system uses an electronics simulator to

answer questions and "reason" about a power supply circuit. Faults are introduced and

measurements are simulated. The student troubleshoots the circuit and the tutor comments on

the students strategies and reasoning.

Many people have advocated "student models" for CAI but few have been able to

give substance to the phrase. A system called WEST [Burton&Brown 1975] does make effective

use of modeling student strategies and performance in comparison to an "expert" strategy and

performance. WEST is a game involving arithmetic that the student plays "against" the

computer, who makes hints and comments. In WEST the student's choices are noted and

hypothetically explained by various strategies or methods. Reoccurrences of methods are

commented on; suggestions for improved play are made on the basis of these patterns. WEST

partially inspired the AICAI system model presented above, and its greatest contribution is in

student knowledge modelling by means of overlays. It includes all the other modules (except

the learning model), in at least rudimentary form.

The AICAI paradigm has been applied to learning decision theory and probability in

the game of Wumpus [Stansfield,Carr&Goldstein 1976]. WUSOR, the Wumpus Advisor

program offers advice to players on choosing moves in a game of uncertain knowledge. The
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advisor is designed to illustrate the AICA! organization. The authors try to implement each

module as a rule based system. Future directions for tutors of computer games are outlined in

a proposal for Computer Coaches [Goldstein 19761 that exploits the similarities of good tutoring

for an enjoyable game to good coaching in athletics. The research would address goals of Al,

psychology, pedagogy, and computer science.

Systems like the above are changing the image of CAI. Computers can make a

positive impact on education [Brown et.al. 19751 The economics of education for too long have

been that only one teacher can be provided per 20 to 40 students. Computers will have the

advantage of availability. AICAI systems may eliminate the disadvantage of stupidity.



Algebra

SIGNIFICANCE '
I The significance of this research can be discussed in terms of the good ideas that

went into the system, the ideas that led to dead ends, the surprises encountered, and the A..

issues and techniques applied.

The Good Ideas

I think this research combines many good ideas, some original and some drawn from

other work. The focus idea was to integrate a graphical communication channel with an

AICAI tutor of algebra. To accomplish this, many more ideas were employed.

The trainable character recognizer is a very general and powerful model of

recognition. A set of features is chosen to be extracted from the input, and a record is kept of

the training set which guides future recognition. This general model was successfully applied

to tablet character recognition, guided by existing recognizers and extending them where

necessary.

Augmented context free parsing is another good idea that was adapted to Algebra

Understanding and was generalized from one dimensional languages to two dimensional ones.

Algebra fits conveniently into this kind of syntactic language description. Parsing is facilitated

by many techniques. The character chart for the recognizer-parser interface and the phrase

chart are important organizing devices. The spatial specialist formalizes the geometric relations

underlying graphical algebra expressions. Parsing can be viewed with insight both as search

and as a pattern match between the grammar and the input. Parsing would be next to

impossible without the addition of a Scheduler and Scoring system. In this area the good ideas

include the use of multi-tasking with a queue of tasks and priorities. The scoring strategy of

shortfall density is also interesting.

The expert's abstracter is a general scheme for representing algebra expressions at

many levels. The particular levels chosen are based on ideas for simplification and hash-

evaluation. The expression matcher generalizes simple subexpression matching and can take

advantage of the expert's levels of abstraction. The abstracter and matcher combine in a novel

way to use the "discourse" context in the understanding process and to potentially guide the

parser directly.

Intelligent systems are the combination of many good ideas, not merely a few

'universal' principals as early researcher hoped. It has taken many ideas to design and build
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this algebra system, and not all the ideas could be integrated in or made to work.

Dead Ends
Some ideas looked promising but for various reasons were eventually rejected. For

example I thought the parsing paradigm of Augmented Transition Nets (ATNs) [Woods 1970]

could be generalized to two dimensions. I thought the arcs could include spatial direction

restrictions.and 'pushes' for subexpressions. But on closer examination, the generalization fell

apart. When recursion was included, the direction restrictions and the pushes for

subexpressions did not occur together in pairs as envisioned. Instead, if an ATN had three

pushes it would have two spatial restrictions to knit them together. This modification might

have been accommodated but the ATN view suffered from worse problems. The spatial

predictions broke down across the recursion; the subexpression's location could be predicted,

but not the location of its 'first' constituent. In fact there isn't a very natural notion of 'first'

constituent of an expression. A left-to-right and up-to-down ordering can be imposed. but it is

not as natural as the time ordering in natural language and other one dimensional languages.

For example, after a parenthesis is found, an expression can be expected to its right. But if

the expression is for example a fraction, then the first constituent, the numerator, is up to the

right from the parenthesis. It doesn't help to call the fraction bar the first constituent either,

because the next constituents, the numerator and denominator would not be directly related,

and since the fraction might occur as a denominator, the natural first constituent would again

be the numerator. More juggling has failed to produce a suitable generalization of ATNs and

I have given up that attractive, but unworkable idea.

Another dead end was the use of destructive modifications of partial theories to build

larger theories. Standardly, subexpressions are incorporated into higher expressions without

modification. The tree structured phrase structures can share subtrees; in this way duplication

of effort is avoided. In parsing infix operators with precedence, it looked attractive to modify

phrases as new information was discovered. For example the parser might find a + b and

build the appropriate phrase. Next it might look further and see that the input was 2 a + b

where the multiplication had higher precedent and therefore preceded the addition. Either the

addition phrase could be discarded or the first argument a could be changed to 2a. The

modification seemed like an elegant way to handle precedence of operators, but it turned out

that it conflicted fundamentally with the chart idea. There is always uncertainty in the theories

52 Purcell



Algebra

that the parser builds, and so it cannot afford in general to be modifying a phrase that might

actually have been correct without modification. If the system could be sure that it always did

the right thing, then it could use destructive modification and parse deterministically as Marcus

is able to do for English [Marcus 1975]. To get around the objectionable modification, I

experimented with putting a level of indirection between operators and arguments. I tried

using formal names for function arguments and maintaining contexts of name value bindings

to preserve the notion of alternative theories that shared structure. In the above example the

plus operator would have two symbolic arguments, one of which would be bound to a. When

the multiplication was discovered, that argument name would be rebound to the product of 2

and a. The tesulting system would have intensional names which could be manipulated

without knowing their referents. Equivalence classes would be necessary, because many names

could have the same referent, and in different interpretations, one name could have different

referents. The design became unwieldy and I could not get a clear picture of what I wanted,

nor see my way through the details. This idea became another dead end explored and

abandoned.

Surprises

Research is never without surprises. I am ever surprised how easy it is to design or

describe a system of processes, techniques and features, but how slow and difficult it is to put

those ideas into programs. The dead ends mentioned above came as surprises.

Characters in context are surprisingly sloppier than those printed alone. It was

probably a mistake to build the recognition trainer to handle characters one at a time. One

cannot help printing a single character more carefully than one character in many. The same

effect occurs in speech; a word in isolation is pronounced distinctly, while in the context of a

sentence it may undergo radical transformation and degradation. I expected this effect that

speech has, but I was still surprised by it.

Also I was surprised to find duplicate theories could develop in my chart and clog the

parser. Rather then check for duplication, the parser tries to enumerate possible phrases in

such a way that each potential phrase is proposed only once. Unfortunately, this desired

behavior is a global property of the algorithm and is fragile with respect to many local

perturbations. When consecutive phrases are duplicated the extra phrases increase
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multiplicatively. If I were redesigning the system I would have more consistency checks to

avoid wasted replication.

Finally, I was pleasantly surprised how small and simple the expression simplifier

became as I understood it better and could combine similar rules into more general ones. The

first steps of symbolic math processing were instructive and satisfying to rediscover. It is

surprises like these that make a project like this one interesting.

Al Issues

This system is more an exercise in Al-engineering than basic research on one topic.

The two goals, computerized tutoring and tablet communication, can each be pursued with and

without the use of A techniques, but I think the use of knowledge based programming is

necessary for achieving either goal. I think the techniques drawn together in my system begin

to acheive these goals of machine intelligence.

A central Al issue in this research is the use and control of multiple knowledge

sources. One source of knowledge is the individual character's features. Another is the set of

differential diagnostics to distinguish similar characters, i.e. knowledge of which features are

most important to choosing one character over another to account for some input. Next the

system knows the formal syntax for algebra, that is, which expressions are well formed; for

example, parentheses usually match. Also there is an informal syntax for algebra which has to

do with such things as the ordering of subexpressions, the spacing and clustering of

expressions. Numerical factors precede variables, variables are generally alphabetized,

coefficients of one are dropped, etc. Next, there is semantic reasonableness such as typical

values for such zhings as exponents. There is, in fact, the whole semantics of algebra that

underlies the expressions and procedures. These semantics are modeled by the levels of

abstraction the expert uses and the transformation rules of algebra. The next higher source of

knowledge is the discourse structure. The algebra session is goal oriented. There is coherence

to the subexpressions throughout a problem session. Finally, the system can have a model of

the student user. His strengths and weaknesses, his consistent bugs or conventions can hep the

system to understand his input.

My approach to organizing these diverse knowledge sources is extending the non-

determinism of the parsing strategies to encompass them. Observing the principle of least

commitment, each module offers multiple explanations of what it sees. A scheduling and
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scoring system combines the evidence of the various modules and filters out the less likely
interpretations. The representations and interactions among the modules is not as uniform as
in CMU's Hearsay, for example, because the system's layers are arranged to communicate
directly with their neighbors. The recognizer communicates with the parser but not with the
expert, for example. The simple stylized communication helps to keep the system simple.

Like most Al systems, this one can be viewed as rule based. I think rules are the
more regular component of knowledge but cannot be separated from their interpreter. My
description of the two-dimensional constraints in algebra is composed of simple rules built out
of a handful of spatial relations. Making the rule behave correctly, however, required spatial
knowledge to be embedded in the rule interpreter, the parser. I think generally that there are
domains of knowledge that are simple to describe when the right primitives are chosen.
Programming is greatly simplified by a good language; linguistics has been searching for the

right interpreter for rules of syntax. Transformational grammar is one interpreter, Marcus's
WASP parser is another interpreter that makes grammar rules very simple. Beginners in a
field or to a skill often find they must absorb a methodology before they can acquire any
content. For my system, I know I have the right primitives and interpreter when the rules can
express simply the knowledge in a module. The character recognition trainer is almost like a
rule editor and debugger. It helps you input rules for character identification and shows
conflicting rules where further debugging is needed.

My system benefits from a large collection of ideas and view points that have
developed in the name of Artificial Intelligence.
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CONCLUSION
This research does not have a clean conclusion. I chose a very open-ended project

with many goals, the first of which were met, many more were explored to differing degrees,

and some goals were completely out of reach. The possibilities for continued research are

plentiful. The Algebra Tutoring system as sketched could be completed. Only the start of the

expert module was designed. The tutoring and modeling modules were ignored. Many topics

in the input module remain to be explored. There is the possibility of specializing the

character set to a student as he works. A more thorough attempt could be made to understand

a student that consistently mis-parses expressions; this system actually leans heavily on nearly

correct algebra. A more deterministic approach to the parsing could probably succeed and be

more efficient. Another direction of development which ought to be pursued is self

explanation. The student is learning to do just what the tutor must do, and if the machine's

algebra procedures resemble the student's, then it could explain in more understandable ways

how to, for example, clump symbols of an expression into phrases observing precedence and

other conventions, or it could explain why it chose some algebraic transformation to perform

over mnother. The use of computers in education has this potential to be an example; to be

not a black box, but "a white box" [Goldstein&Papert 76].

In conclusion, I think tablet understanders and computer tutors complement each

other nicely. This research has demonstrated some of the capabilities of the combination and

some of the techniques for engineering such systems. Much remains to be done in this area to

build fluent computer tutors.
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APPENDIX

Character Set

The character recognizer has been trained to recognize the digits, the upper and

lower case alphabet (where they differ) and various math symbols as follows:

0123456789

Aa Bb C Dd Ee Ff Gg Hh Ii Jj K LI Mm

Nn O P Qq Rr S Tt U V W X Yy Z

( ) { } [E]
+ -- <> ?

square root

long division

less -than or equal

greater than or equal

division symbol (dot bar dot)

integral sign

sigma

Pi
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Algebra Grammar

* Category Inclusions:

EXP----ITER M

[PROD-FACTOR-ILETTER--------{AB,...,Z,a,b,...z

INUMB--DIGIT-{0,1,...,9

ADDOP-{+,-,PM

Rewrite Rules:
(ADDOP LEFT-OF

(EXP LEFT-OF

(PROD LEFT-OF

LEFT-OF*

(I LEFT-OF

(PROD LEFT-OF

(EXP ABOVE

(NMRTR ABOVE

(ROOT ON

(NUMB LEFT-OF

(+ ABOVE

(0 ON .

(FACTOR LEFT-BELOW

PROD)

TERM)

FACTOR)

PROD)

PROD)

RECIP)

-x)
EXP)

EXP)

DIGIT)

-p)

EXP)

EXP)

TERM

EXP

PROD

RECIP

RECIP

EXP

NMRTR

FACTOR

EXP

NUMB

PM

EXP

FACTOR
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Simplifier
At level 5, the abstracter simplifies expressions find a semi-canonical form for them.

The simplifier applies algebraic identities, evaluates the variable-free expressions, regroups the

arguments of associative operators, reorders the arguments of commutative operators, combines

like terms and factors (cancellation), and selectively applies the distribution properties. In order

to order the arguments of commutative operators, all expressions are given a unique

identification number. The following type conventions are used to express the simplifier's

rules:

a,b,c

r,q

n,mr

aO,bl

+,1I-,^

algebra expressions

rational numbers

signed integers

algebra expressions ordered by unique id-number (aO<bl)

addition, multiplication, exponentiation

SIMPLIFIER'S RULES:

Identity

0 + a

0 * a

I cc a

0 ^a

^ a

a 0

a a

Evaluation

* q s r

q ̂ n

Associativity

a+(b+c) n-> (a+b)+c
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Algebra

a (b c) m-> (a * b) * c

a (b cr) ->(a> ^b)^Ar

a (b c) <= (a^b)^c

Commutivity

+ bl + aO -- > + aO + bl

bl * a0-> * aO *bl

Cancellation

+ acq + aor --=> ao(q+r)

* a q o a^r -.> aA(q+r)

Distribution

+ r(a+b) -=> + roa + rob

*(a*b +acc) an> *a*(b+c)

(aob + aoc) ^ r -a> a^r * (b+c)^r

The internal representation for expressions at this level

prefix operators:

(VAR a) variable

(RAT m n) rational number

(ADD a b) addition

(MUL a b) multiplication

(exp a b) exponentiation

is in Lisp S-expressions using the

All algebraic operations must'be expressed in terms of these basic ones. A/B is expressed as

(MUL A (EXP B -1)).
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