SIMPLIFIED METHODS IN TRANSPORTATION ANALYSIS

by
Serge Tsygalnitzky
\title{ Submitted in partial fulfillment of the requirements for the degree of Master of Science }
at the
Massachusetts Institute of Technology

May 1977

Signature redacted
 Signature redacted

Signature of Author Department of Civil Engineering (May i1, i97ij)
Certified by
Certified by

Signature redacted

Signature redacted

ABSTRACT
 SIMPLIFIED METHODS IN TRANSPORTATION ANALYSIS

by

Serge Tsygainitzky

Abstract

Submitted to the Department of Civil Engineering on May 11, 1977 in partial fulfillment of the requirements for the degree of Master of Science

This thesis is concerned with the development of simplified methods of analysis in transportation systems. The objective is to find ways to predict the impacts and estimate a demand model, which are not based on large scale data or computer-based analyses. Instead, the methods are designed to be used on programmable pocket calculators for ease of analyst use.

The methods are intended to be useful to analyse decisions from the perspective of a transportation operator. Among the specific methods developed, the most important are:

- Design of a simplified way of forecasting using a logit model;
- Estimation of a logit model with least squares method;
- Inferences about the context when a lot of data is missing, as obtaining of 0-D matrix for all modes when the characteristics of only one mode are known.

In conclusion, directions for future work are also indicated. The results of this thesis demonstrate that useful simplified methods can be developed, and thus open up an important new field of research.

Thesis Supervisor:
Marvin L. Manheim
Titile:
Professor

ACKNOWLEDGMENTS

I would like to take this opportunity to thank all those who assisted in this effort.

Professor Marvin L. Manheim, my thesis supervisor for his guidance and patience with my efforts and for his attempts to make this document readable.

My friends, Jesse Jacobson, who helped me in the discussion of the ideas presented in this thesis, and Peter Furth, who gave freely of his time in writing calculator programs.

Finally, I would like to thank Gilbert High and lane Roth for their wonderful typing.

Cette these est dediée a mes parents.

CHAPTER I

Summary 1
CHAPTER II
II-1 The Nature of the Approach 4
II-2 To Whom Is This Methodology Addressed? 6
II-3 The Basic Steps of Decision for A Bus Operator 8
II-4 The Specification of Demand Function 10
4-1 Procedure of Forecast 16
4-2 Procedure of Estimation 18
CHAPTER III
III-1 Data Collection 21
III-2 Application of the Logit Model 25
2-1 Work Trips 27
2-2 Shopping and Social Recreational 28
III-3 Forecast 29
3-1 Analysis of the Changes 30
3-2 Calculation of the New Ridership 34
3-3 Time Split 41
III-4 Methods of Getting a Demand Model 42
4-1 Estimation of Demand Models 42
4-2 Resolution of the Regression Problem 51
4-3 Updating Models 55
CHAPTER IV
IV-1 Introduction 58
IV-2 Inferences about Distribution Data 62
2-1 Transit Data 66
2-2 Distribtuion Variable for All Modes 79
IV-3 Inferences about Level of Service 86
IV-4 Inferences about the Socio-Economic and 93
Attraction Data
IV-5 The Concept of Elasticity 94
CHAPTER V98
Conclusion
APPENDIX 102

Page

Figure 1 9
Figure 2 14
Figure 3 22
Figure 4 34
Figure 5 44
Figure 6 59
Figure 7 62
Figure 8 95
Table 1 72
Table 2 73
Table 3 76
Table 4

CHAPTER I

Summary

In transportation systems analysis the concern is to try to predict the effect of any change in the transportation system. These changes are short range as well as long range. In this thesis we will focus on the first type of prediction. To do this prediction an analyst needs a demand function. During many years this demand function has been the fundamental subject of many studies in transportation. This demand function has first been an aggregate one giving prediction in an aggregate way, and taking aggregate data as inputs. Unfortunately, this model was more correlative than causal. Lately the behavioral models have been introduced trying to put heavier emphasis on human psychology for prediction than the previous ones. In both cases it has appeared that the accuracy of the prediction has increased with years. On the other hand, the amount of data required to estimate a model, or to make a forecast has also increased. The availability of computers to process all this data has become nowadays a decisive point. However, if there is a need for such accurate demand functions, it is not the ideal solution for all kinds of problems. In many cases there is a need for short range approximate predictions, and the use of developed models can be too expansive for the use of the results.

Therefore, there is a need for simplified methods of prediction. This thesis will try to find some of them. In the second chapter, we will define the goal of simplified methods. Mostly they are useful for transportation operators. We will also develop a basic methodology. We
will choose a generic demand function (logit model) and try to apply some of these methods. In particular we will develop a simplified method of forecast (pivot point method) and estimation (least squares method).

In Chapter 3 we will focus primarily on the decision process of a transportation operator (b us operator). We will develop the methods presented in the previous chapter and study them for the different implementations the operator can take. Basically, these implementations are going to be changes in the level of service of the transportation system.

We will see how the pivot point method can be applied for different purposes, and how an operator can be able to predict the new ridership on the transportation system after a change in the service.

We will also develop the model estimation giving some examples for the two basic cases: modal split model and multiple choice model. We will then study a simplified way of running multiple linear regressions in order to be able to program them on a pocket calculator.

In Chapter 4 we will be concerned with the inferences about the context. Every stage of the prediction process is based on data, and the data is expensive to get. Therefore, we will try to develop some methods in order to infer the basic data for a model estimation or a prediction from a minimum data. We will not study all the cases but will give some interesting examples, such as: how to get an 0-D matrix for transit when only boarding and alighting counts are available. How is it possible to derive an 0-D matrix for all modes when only a Transit 0-D matrix is available? Finally, we will introduce an alternative way of making
simplified predictions through the bias of elasticities.
In Chapter 5 we will conclude this thesis trying to show the imperfections of such methods and their limits.

This thesis is by no means a guide for simplified methods. Its goal is primarily to show that there exist some methods that can be applied to get relevant results. Yet they are only examples of what can be done. Mainly in Chapter IV we will try to develop some alternative ways to get some data, but they are only a few examples in an unlimited field of research. Furthermore, we will study some of these methods applied to a specific case of buas operations. The next step would be to extend these methods to other purposes. Also we will make some implicit assumptions that can certainly be argued (as the split of the trips between three purposes: work, shopping and social-recreation).

Lastly, we will develop some methods that are within the capacity of our pocket calculator. (Several programs and worksheets are included in the appendix.) As time passes the capacity of thes pocket calculators increases, and these methods can very well be outdated in a few years. Also, it is important to remember that many of these methods are empirical and have no mathematical argument. Their only quality is that they give fair results according to few experiments.

A caution must then be given to the reader that some of these methods are still subject to controversy and our hope is that one day they will be fillly justified.

CHAPTER II

II-1. The Nature of the Approach

In transportation systems analysis the centrl concern is to try to predict the consequences of any proposed changes in the transportation system. Two types of predictions are possible: long run and short run prediction. For long run prediction changes in the social and économic activity are important. This kind of prediction is essential for Urban Planning.

In short run prediction one is interested primarily in changes in travel patterns: how people will react to a change in the level of service of the system; what kinds of shifts from one mode of transportation to another might result? What changes in frequency or destination of trips will occur?

This thesis is concerned with short run prediction. To make a short run prediction a demand function is an essential component. Therefore the first task of the analyst will be to get such a function. Two cases are possible: the demand function already exists and can be used for prediction or it does not exist and a model must then be estimated.

In the past the demand models used were based on aggregate data (i.e. zonal averages), were more correlative than causal and utilized data obtained by standard survey, especially home interviews. In the present the emphasis has been put on disaggregate behavioral models because they represented more accurately the situation. But in both cases, a lot of data are required for the calibration of the model.

And this is expensive. A home interview survey costs $\$ 50$, and at least 200 home interviews are needed to calibrate a disaggregate model, i.e. $\$ 10,000$. In fact, 1,000 to 2,000 are more often needed. For aggregate models 3% of the entire metropolitan area households are required. Furthermore, this information must be processed and it appears that the only practical way of processing it is to write a program on a computer. As an example the coefficients of the logit demand model are computed as solutions of a non-linear equation (maximum likelihood).

As we can see, the estimation of such models is based on the availability of computers and on a large budget.

If the demand function is available the problem of prediction becomes in a sense simpler. If the model is an aggregate one, the anlayst will need only data fitted to the model to make a forecast and apply the model directly. If the model is disaggregate a problem of aggregation arises and the results are obtained with more computations. At that level the required data will be sometimes less numerous and the computer will not always be necessary.

But of course the accuracy of the results is an increasing function of the data, computer availability, and consequently of the price (for both prediction and estimation). As the budget of a study is a constraint, every analyst should adapt a methodology to this constraint. However, it is not clear that the accuracy is a linear function of the price or that a budget twice bigger than another one will in case lead to results of which the accuracy will be two times greater (if this ever has a meaning!).

Another general comment is the great uncertainty to which some prediction results are subject. A prediction can be performed if the economic environment remains steady but often some unprediciable changes in economy occur (ex. the oil crisis of 1973) and deprives some resuits of significance.

Then it appears that the very expensive methodologies are not the best way of making precictions all the time.

If the goal of the analysis is to get rough estimates in a prediction, a detailed analysis might be too expensive for the use of the results. Therefore, there is a need for a new direction of analysis, where the methodology developed will consist of simple methods, easily applicable and giving results still significant. These methods should be based on "paper and pencil" or even on pocket programmable calculator and consequently avoid to require any computer programs. It will be. a challenge to find some results, but the interests are obvious.

The goal of this thesis is to try to deal with this challenge, develop some simplified methods, try if possible to recognize their limits, and apply them to some examples in order to show their efficiency.

II-2. To Whom Is This Methodology Addressed?

The role of an analyst is to do an analysis which is valid, practical, and relevant to the issues. It means that the relevance of any analysis must be defined in terms of the goals of the decision makers involved. If the goals are comprenensive it may be important to be accurate and very detailed. On the contrary, if the goals are primarily
short range and concerned with specific operational decisions the analysis can be short and more approximate. In many situations a decision maker needs only approximate results to support a decision, because that decision does not require a lot of resources or imply drastic changes in the economics of the situation. This last is the case we are concerned with. This case is especially relevant when the decision makers are operators of a transportation system. Generally operators are mainly concerned with the financial impacts of decisions on their company; as an ultimate reflection of the consequences of changes in seivice and in market responses they try to implement changes which will increase their profit (or more often decrease their loss). These changes are mestly changes in level of service attributes such as frequency or fare or changes in coverage (for bus lines) such as new routes or extensions of an existing route.

To reach a decision in this context the process is an incremental one. First, the operator makes initial judgements about the effect of a possible change, then if the change seems desirable he will supplement his initial judgements with analyses, to develop more information. Simplified methods of transportation analysis are important in this process. Detailed methods are too expensive relative to the importance of the results; but on the other hand, human judgements unsupported by mathematical help is insufficient.

Therefore, this thesis will focus on operator decisions, seek to develop some useful tools to assist them in their first decision. We will focus primarily on bus operators, but the results are readily transferred to other problems.

II-3. Basic Stpes of Decision for a Bus Operator*

The role of a bus operator (or any transportation system manager) can be visualized in 8 steps which are:

1. The system operation summarizing all the activities which are involved in producina transportation
2. The data collection involving data from supply (fares collected, vehicle hours, etc.) as well as demand (ridership, 0-D matrix, etc.)
3. "Data analysis" - this is explained by itself
4. "Identification of the problems"
5. "Evaluation report," which summarizes the previous steps and presents some management actions
6. "Analysis." The actions presented in step 5 are analysed to reach a decision.
7. "Management decision"
8. "Implementation." The decision of step 7 is implemented gradually and the results are studied.

This can be summarized by figure 1.

[^0]Figure 1.

As can be seen the two key steps are step 2 and step 6: data collection and analysis. Of course, everything depends on step 6, which itself depends on step 2.

The level of importance of these different steps can vary according to the importance of the change. But as we are here studying only simple incrementations where the environment is stable economically and where the different alternatives are known by the consumers, simplified methods are necessary for prediction.

Therefore, some simplifications must be done in these eight steps and mainly in steps 2 and 6.

The simplification in step 2 (data collection) will be to classify the data by order of availability and then choose the types that are the most easily obtained. The simplification in step 6 will be, as we said previously, to use easily applicable models, i.e. models which do not require computers or unlimited data to give some results.

These two sorts of simplification are greatly interrelated. It is obvious that in most of the cases it will be impossible to use the simplest model with the most easily available data just because there will be no compatibility with the two concepts. The challenge of the analyst will then be to adjust the data and the model in order to minimize the cost of the study under the constraint to get still relevant results for prediction.

II-4. Specification of Demand Function

As we said previcusily an operator needs a demand function to make
some predictions. This one may take all sorts of possible forms including the aggregate or disaggregate type. But the operator needs also some data as inputs to get the results. Then we can see that the problems will arise when the demand model or the data will be missing. We will study the different cases and the inferences that can be made in Chapter IV. However, we can already assume that the prediction will be straightforward when the data and the model will be available. As we cannot possibly study all sorts of models we will try in this chapter to choose one of them for the rest of the study. This demand model should have two qualities: it should be estimable by hand or pocket calculator, and readily applicable for a forecast.

The choice exists mostly between the aggregate type and the disaggregate type of model. It appears that for a forecast the aggregate models are easier to handle than the disaggregate ones where an aggregation is needed. Furthermore, the calibration of aggregate models is often based on linear regression (that can be programmed on a pocket calculator) while the disaggregate ones are based on maximum likelihood because the data are discrete (the data are based on a binary Yes/No answer from some surveys). On the other hand, the disaggregate models are definitely the most up-to-date. The introduction of the logit model by Mc Fadden (1968) and studies by Ben Akiva (Phd. 1973) have shown a lot of qualities. First, it is more accurate and more policy-sensitive than the aggregate models. Second, it allows a simultaneous procedure for the alternative choices of decision. And this is very realistic. Mainly the stages of demand are divided into generation, distribution and
moial split. With the exception of work trips where the generation and the distribtuion are supposed to reamin constant, it has appeared that the level of service was interfering on the 3 stages of demand for the other purposes, and the logit model takes into account this fact.

The major problem comes precisely from the disaggregate nature of this model; thus, it will need an aggregation to make some forecasts, and requires the resolution of a non-linear equation to be calibrated. The way to overcome these difficulties will be to aggregate this model for both estimation and prediction. Of course, this model will lose some of its qualities (as being very accurate) but on the other hand it will gain the qualities of the aggregate models, and this is what we seek. That is why we will choose this alternative even if we have some inconveniences coming from the aggregation.

The logit model can be presented as:

$$
\operatorname{Pr}\left(i, A_{t}\right)=\frac{e^{\bigcup^{J i t}}}{\sum_{j \notin t} e^{U}} j \quad \quad \text { where }
$$

$\mathrm{t}=$ behavioral unit $(\mathrm{t}=1$, , T)
$A_{t}=$ set of relevant alternatives for behavioral unit t.
$\operatorname{Pr}\left(i ; A_{t}\right)=$ probability that behavioral unit t will choose alternative i out of the set A_{t}.
$U_{i t}=$ the utility of alternative i to behavioral unit $t . \quad V_{i t}$ is a function of the characteristics of alternative i and the socioeconomic characteristics of behavioral unit t.
$v_{i t}=x_{i t}^{\prime} \theta=\sum_{k=1}^{k} x_{i t k} \theta_{k}$
$x_{i t}=$ vector of function depending on alternative i and behavioral unit; $6=$ vector of coefficients.

To aggregate this model we will use the classification given by Koppelman.* Yet the aggregation is not easy and many errors car result from it. The approach of aggregation can be summarized as in Figure 2.

The difficulty consists mainly in the aggregation procedure. There are five types of procedures; the expected share of people choosing an alternative is given:
--- Procedure of enumeration
by the average over all the individuals knowing their characteristics. It is the perfect way of aggregating a model but it requires all the data possible.
--- Procedure of summation
by the sum over all the individuals assuming there is a distribution
of the characteristics over the consumers. It requires the knowledge of the distributions.
--- Procedure of statistical differentials
by linearizing the disaggregate choice function by a Taylor series expansion and taking the expectation across the aggregate prediction groups.

[^1]
Figure 2.

-14-
--- Procedure of classification
by summing over weighted honegeneous groups. But it requires the knowledge of all these groups.
--- Naive procedure
by assuming that all the consumers form an homogeneous group and taking then the average over them.

Of course the more sophisticated the aggregation method, the more accurate the results will be. But once again we want simplified methods based on data which are frequently limited. Therefore, the type of aggregation will be directly related to the data available. However, two types of aggregation should be more important: the procedure of classification and the naive procedure. If our data is explicit enough for the operator to be able to classify the consumers into groups roughly homogeneous, the procedure of classification should be used. This will happen if a home interview has been done, or using the census data, or even if we just classify the consumers by auto availability and income.

In most cases the naive procedure will be the one used; often the aggregation errors are substantial, but compared to the errors coming from other sources (as errors coming from the regressions) they are not so important. Furthermore, the bias can be diminished if the auto availability and bus availability variables can be included in the aggregation, because they are the major sources of the bias. So now we will assume that in most of our analyses we will use a logit mode? with naive aggregation procedures, i.e. an aggregated logit model.

II-4-1. Procedure of Forecast

The next point is to have general methods of forecast using this model. We have:

$$
\operatorname{Pr}(\text { choose alternative } i)=\frac{e^{U_{i t}}}{\sum_{j \varepsilon A_{j}} e^{U_{j t}}}
$$

where this time the behavioral units t will be the group defined by the aggregation procedure. From the point of view of a bus operator, the important thing to know is the probability of choosing transit. (For illustration we consider only mode split. But these methods can be generalized to other choices dimension as will be seen later). We can represent the logit model by:

$$
\begin{aligned}
& \operatorname{Pr}(\text { choose transit })=\frac{e^{U_{T}}}{\sum_{\mathrm{j}_{\varepsilon} \text { all modes }}^{U_{J}}} \\
& U_{J}=\text { utility of mode } J \quad(T=\text { transit })
\end{aligned}
$$

If some changes occur in the level of service of transit, the utility of transit will change:

$$
U_{T} \rightarrow U_{T}^{\prime}=U_{T}+\Delta U_{T}
$$

We can assume after that the utilities of the other modes of transportation will not depend on the utility of transit (i.e. no cross-elasticities). It is a strong assumption, but it is often done. Therefore, it means that U_{J} with $J \neq T$ will remain the same after the changes on the bus line.

Then we can predict the new probability in two ways: *

A - Synthetic

There we just replace U_{T} by $U^{1} T$.
and we get the new probability of transit by:

$$
\operatorname{Pr}(\text { choose iransit })=\frac{e^{U^{\prime} T}}{\sum_{J \neq T} e^{U_{J}}+e^{U^{\prime}} T}
$$

but we will need to know all the characteristics of each utility in order to compute that ratio.

B - Incremental

This method is also called Pivot point method. We have:

$$
\begin{gather*}
P^{\prime}=\frac{e^{U^{\prime} T}}{\sum_{J \neq T} e^{U_{J}}+e^{U_{T}} T}=\frac{e^{\Delta U_{T}} e^{U_{T}}}{\sum_{J \neq T} e^{U_{J}}+e^{\Delta U_{T}} e^{U_{T}}}=e^{\Delta^{U_{T}}} \times \frac{e^{U_{T}}}{\sum_{J} e^{U_{J}}} \times \frac{\sum^{U_{J}} e^{U_{J}}}{\sum_{J \neq T} e^{U_{J}}+e^{\Delta U_{T}} \times e^{U_{T}}} \\
P^{\prime}=P \times e^{\Delta U_{T}} \times \frac{1}{1+P\left(e^{\Delta U_{T}} 1\right)} \tag{1}
\end{gather*}
$$

We see then that the new probability depends only on the old one and on the change in transit utility. Therefore we do not need to know the utilities of all the modes nor all the utility function of transit, but only the present probability or share.

As we are looking for simplified methods, this method seems to be particularly suitable to our concern. However, we will demonstrate other methods, mainly when there will be a change in the coverage of the line.

[^2]Then we can predict the new probability in two ways: *

A - Synthetic

There we just replace U_{T} by $U^{\prime} T$.
and we get the new probability of transit by:

$$
\operatorname{Pr}\left(\text { choose transit) }=\frac{e^{U^{\prime} T}}{\sum_{\mathrm{J} \neq T} e^{U_{J}}+e^{U^{\prime}} T}\right.
$$

but we will need to know all the characteristics of each utility in order to compute that ratio.

B - Incremental

This method is also called Pivot point method. We have:

$$
\begin{gather*}
P^{\prime}=\frac{e^{U^{\prime} T}}{\sum_{J \neq T} e^{U_{J}}+e^{U_{T}^{\prime}}}=\frac{e^{\Delta U_{T}} e^{U_{T}}}{\sum_{J \neq T} e^{U_{J}}+e^{\Delta U_{T}} e^{U_{T}}}=e^{\Delta_{T}} \times \frac{e^{U_{T}}}{\sum_{J}^{U^{U_{J}}}} \times \frac{\sum^{U^{U_{J}}}}{\sum_{J \neq T} e^{U_{J}}+e^{\Delta U_{T}} \times e^{U_{T}}} \\
P^{\prime}=P \times e^{\Delta U_{T}} \times \frac{1}{1+P\left(e^{\Delta U_{T}} 1\right)} \tag{1}
\end{gather*}
$$

We see then that the new probability depends only on the old one and on the change in transit utility. Therefore we do not need to know the utilities of all the modes nor all the utility function of transit, but only the present probability or share.

As we are looking for simplified methods, this method seems to be particularly suitable to our concern. However, we will demonstrate other methods, mainly when there will be a change in the coverage of the line.

[^3]Then we can predict the new probability in two ways:*

A - Synthetic

There we just replace U_{T} by $U^{\prime} T$.
and we get the new probability of transit by:

$$
\operatorname{Pr}(\text { choose transit })=\frac{e^{U^{\prime} T}}{\sum_{J \neq T} e^{U_{J}}+e^{U^{\prime}} T}
$$

but we will need to know all the characteristics of each utility in order to compute that ratio.

B - Incremental

This method is also called Pivot point method. We have:

$$
\begin{gather*}
P^{\prime}=\frac{e^{U^{\prime} T}}{\sum_{J \neq T} e^{U_{J}}+e^{U_{T}} T}=\frac{e^{\Delta U_{T}} e^{U_{T}}}{\sum_{J \neq T} e^{U_{J}}+e^{\Delta U_{T}} e^{U_{T}}}=e^{\Delta^{U_{T}}} \times \frac{e^{U_{T}}}{\sum_{J} e^{U_{J}}} \times \frac{\sum^{U_{j}} e^{U_{J}}}{\sum_{J \neq T} e^{U_{J}}+e^{\Delta U_{T}} \times e^{U_{T}}} \\
P^{\prime}=P \times e^{\Delta U_{T}} \times \frac{1}{1+P\left(e^{\Delta U_{T}}-1\right)} \tag{1}
\end{gather*}
$$

We see then that the new probability depends only on the old one and on the change in transit utility. Therefore we do not need to know the utilities of all the modes nor all the utility function of transit, but only the present probability or share.

As we are looking for simplified methods, this method seems to be particularly suitable to our concern. However, we will demonstrate other methods, mainly when there will be a change in the coverage of the line.

[^4]
II-4-2. Procedures of Estimation

There are cases where the model does not exist, and there is a need to calibrate it. We will set here a general way of estimating this model. The basic assumption will be that we have all the required data. The different cases where this will not be true will be discussed in Chapter IV.

Again we have:
$\operatorname{Pr}\left(i ; A_{t}\right)=\frac{e^{U_{i t}}}{\sum_{j \in A_{t}} e^{U_{j t}}}$
where $U_{i t}=X_{i t}{ }^{\theta}=\sum_{k=1}^{K} X_{i t k} \theta_{k}$
To calibrate a model means to compute this latter vector θ.
There are two ways to compute this vector:
-- The maximum likelihood method
-- The least squares method

A - Maximum likelihood*

In this case we do not aggregate this model. The data required will be disaggregate (i.e. individual answers). The likelihood function is:

$$
L=\prod_{t=1}^{T} \prod_{i \varepsilon A t} P\left(i ; A_{t}\right)^{g_{i t}}
$$

where $g_{i t}=1$ is chosen, 0 otherwise.
Taking the natural \log and then taking derivatives with respect to the coefficient we want to compute, we get:

[^5]$$
\frac{\partial L^{*}}{\partial \theta_{k}}=\sum_{t=1}^{T} \sum_{i \& A_{t}}^{\Sigma}\left(g_{i t}-P\left(i ; A_{t}\right)\right) \cdot x_{i t k}=0
$$
and θ_{k} is the solution of this non linear equation. As we can see this equation is rather, complicated, and unless the number of variables is smail (1 or 2) this cannot be solved by a pocket calculator. (In the case of 1 or 2 varaibles it might be possible to solve this equation, but unfortunately no program has been written yet.)

Then it appears that the maximum likelihood method is not the most appropriate for simplified methods of estimation.

B- Least Squares

This time we will use the aggregation procedure. We have:

$$
\begin{aligned}
& P_{i t}=\operatorname{Pr}(\text { choose alternative } i)=\frac{e^{U_{i t}}}{\sum_{j \varepsilon A_{t}} e^{U_{j t}}} \\
& \left.P_{n t}=\operatorname{Pr} \text { (choose alternative } n\right)=\frac{e^{U_{n t}}}{\sum_{j \varepsilon A t} e^{U_{j t}}}
\end{aligned}
$$

We can then derive

$$
\frac{P_{i t}}{P_{n t}}=\frac{e^{U_{i t}}}{e^{U_{n t}}}=e^{U_{i t}-U_{n t}}
$$

If we take the natrual \log on both sides of the equation, we get:

$$
\begin{equation*}
\ln \frac{P_{i}}{P_{n}}=U_{i t}=U_{n t}=\sum_{k=1}^{K}\left(x_{i t k}-X_{n t k}\right) \theta_{k} \tag{2}
\end{equation*}
$$

As we can see here we have a linear regression of $\ln P_{i}$ on θ, within $\overline{P_{n}}$
the same behavioral unit. We can then run linear regression using the least-squares method.

The major difficulty will consist of computing P_{i} and P_{n} within the behavioral unit. But this kind of problem will be overcome by the different types of aggregation, and mostly the naive aggregation (this will be discussed in the next chapter.).

As we are looking for a simplified method, this method seems more suitable for our concern, because it can be programmed on a pocket calculator. Therefore we will use it in the rest of the study.

CHAPTER III

Our concern is now to study a given bus line of a network. A lot of these lines are located in a corridor CBD-outside town oriented. As we cannot possibly study all sorts of bus lines we will study one of this type because it allows only one degree of freedom for the destination of the trips for the people living in this corridor, and thus, is simpler to study.

The first point is to determine the level of detail of the study, i.e., we can study the line as a whole, or try to split it into nonoverlapping sections with varying sizes. The smallest size of a section would be a bus stop attraction zone. These attraction zones will be delimited by the walking distance.

It is commonty admitted that a person will not walk more than $1 / 4$ mile to go to a bus station. Therefore the sections will be geographically drawn according to that criteria. However, this may vary from one city to another. (figure 3).

III-1 Data Collection

The second point is to gather data related to these sections. The relationship is bilateral, i.e., we can adjust the sections to the data we have or collect the data according to the split of the line. These data are of four different types:
--- The socioeconomic characteristic variables, i.e., the income distribution, the auto ownership, the number of people in the household, the number of workers, etc...characterizing the generation at origin.

FIGURE 3.

SECTIONS
--- The attraction variables, i.e., the retail employment, the ratio of vacancies, the total employment etc..., i.e., characterizing the destinations.
--- The distribution of trips per zones, for the three purposes we will consider, i.e., work, shopping and social recreation. This may or may not be represented by an 0.D. matrix per mode between the different zones. (This would include a fortiori the generation figures and the modal split.)
--- The level of service of the available modes between the zones i.e., the in-vehicle time, the waiting time, the out of pocket cost, etc... per mode. We will consider here that there are 3 different modes available (as is the case in France): auto, transit and 2-wheels. This latter category includes bicycles, mopeds and motorcycles. A complete set of data would consist of all of these described here. However, most of the time only a portion of this data is available, and so we are concerned with exploring different degrees of data availability.

Typically in U.S. cities the following data will usually be available:
--- The socioeconomic data are given by the census which covers the city in blocks (equivalent to a city block) and tracts (areas with approximately 4,000 inhabitants). Block data include population, racial composition, number of rented and owned units. The tract data gives information such as family income, age, household composition, and occupation. As we can see the level of accuracy can be good.
--- The attraction variables can often be obtained from land use, planning data or employment sources. Therefore it can be possible to derive the retail employment, the land use etc.
--- The level of service variables are obtained with surveys. To know the waiting time some surveys can be done at the stations or if we assume that the buses are exactly on time, a look at the schedules might be enough. (We assume that the waiting time for auto and 2-wheels is insignificant). To know the walking and parking time some surveys are needed. The out of pocket cost will be the fare for bus trips and operating cost plus parking cost for auto and 2-wheels. The fare can easily be known as usually a fixed fare exists whatever the destination is. For the operating and parking costs some surveys are necessary or some studres previously made on auto and 2-wheels can be used (i.e., studies on comsumption, etc.) For in-vehicle time we just use the data available to the bus operator for busses and use some studies on the speed of the autos or 2-wheels to know if for these modes.
--- The distribution variables are the most difficult to get and, of course, the most important. Nearly all these data can be obtained only through surveys and the level of confidence of the results is proportional to the size of the sample. Yet some data can be gathered in another way. For example the census tracts (again) will give some journey-to-work data. This is an easy way of getting it. As we can see some of thse data are sometimes hard to get and inferences about the context will be necessary. This will be discussed in Chapter IV. As we saw before we need mainly data aggregated in a
naive way, to do so we need to know how to aggregate them.
The basic assumption is that all the variables are uniformly distributed between the zones or within the zones. It is a strong assumption which will be false in most cases because the zones have been delimited geographically. But it will help for the first approximation we need.

- The socioeconomic variables will be obtained taking the averages within the zones.
- The level of service between the zones will be obtained in the same way.

For the out-of-pocket cost the average fare will be taken for the bus (in most cases this fare will be constant) and the average operating cost (obtained by the computation of the average distance between the zones) will be considered. The same will apply for in-vehicle-time. As a matter of fact the average variables are much easier to get and often they are the only data that exist.

II-2 Application of the Logit Model

We have assumed previously that we could use the naive aggregation to make an estimation or a forecast. The first point will be to determine the homogeneous groups. As the aggregation is naive we will assume that the people in the sections will form these groups. Therefore within a certain zone t the logit model can be written as:
$P_{r}($ choose alternative $n)=\frac{e^{U_{n t}}}{\sum_{P_{\in} A_{t}} e^{U P_{p}}} \quad$ where
$A_{t}=$ set of possible alternative in zone t
$U_{n t}=$ utility of alternative n given by:
$U_{n t}=f\left(T_{n}, S_{t}\right)=\sum_{k=1}^{n} a_{k} X_{n k}$
where
$T_{n}=$ transportation system variable (level of service)
$S_{t}=$ socioeconomic characteristic of zone t
$x_{n k}=$ generic variable representing T_{n} or S_{t}
$\mathrm{a}_{\mathrm{k}}=$ coefficient.
Finally,

$$
\begin{aligned}
\bar{U}_{n t} & =\text { average utility of alternative } \mathfrak{i} \text { taken over the zone } t \\
& =\sum_{k=1}^{k} a_{k} \bar{x}_{n k}
\end{aligned}
$$

Then instead of having a behavioral unit submitted to a set of alternatives At we will have a group V_{t} submitted to the same set and $V_{n t}$ will be the subgroup of V_{t} having chosen alternative n. As we supposed that the zone t was homogeneous we have:

$$
\operatorname{Pr}(\text { choose alternative } n)=\frac{V_{n t}}{V_{t}}
$$

Therefore we can derive:

$$
\begin{equation*}
v_{n t}=v_{t} \times \frac{e^{U_{n t}}}{P_{P_{\varepsilon A_{t}}} e^{U_{p t}}} \tag{B}
\end{equation*}
$$

At this point we can see that this general formula gives the volumes of zone t having chosen the alternative n as a function of the volume V_{t} submitted to the set of alternatives A_{t} and the average utility of each alternative Opt.

But obviousiy as the set of alternative A_{t} varies for each different purpose, the volume of people V_{t} submitted to this set will also vary, and we have to study them differently.

The three basic purposes for people's trips we are considering are: work, shopping and social-recreational.

III-2-1 Work Trips

For work trips the generation and the distribution are supposed to remain constant. The workers are a definite number. Therefore the only thing that might happen if a change in the line occurs will be a shift from one mode to another. The logit model must take into account this fact, and then be only a mode split model for work trips.

As the bus line is in a corridor, outside town-CBD, oriented, the workers have only the choice to go to one of the bus sections of the line. (The CBD section would include all destinations in the CBD.) Therefore:
--- the set A_{t} will be a set of choices between the auto, 2 wheels, or transit mode (indices $\mathrm{A}, \mathrm{W}, \mathrm{T}$) to go to work;
--- the volume V_{t} will be a sub-group of workers going from a random section i to a random section $j,\left(V_{t}=V^{i j}\right)$;
--- the sub-group $V_{n t}$ of V_{t} will be the sub-group of $V^{i j}$ having choser.
the mode N to go to work $\left(V_{n t}=V_{N}^{i j}\right)$;
--- the utility $U_{n t}$ of the alternative n will be the utility $U_{N}{ }^{j}$ of the mode N to go from i to j. This utility should include the level of service of mode N from i to j;
--- the average utility $U_{n t}$ will be the average utility $\bar{U}_{N}^{j j}$ taken over
the zones i and j and over the link ($i, j)$.
The formula (3) can be rewritten as:

III-2-2 Shopping \& Social-recreational Trips

As we said in the previous chapter, one of the qualities of the logit model was that it could represent a simultaneous choice logic especially useful for shopping and social-recreational trips. Consequently, in this case, if a change occurs in the service of the bus line the modal split as well as the generation and the distribution of the trips can change. Still, as we are in a corridor, the change of distribution will remain within that corridor. Therefore:
--- the volume V_{t} described previously will be the entire population of a random section $\mathbf{i}\left(\mathrm{POP}_{\mathbf{j}}\right)$
--- The set of alternative A_{t} will be:

- going to a zone j by one of the three modes,
- not making a trip;
--- the volume $V_{n t}$ will be the volume having chosen to go to a section j by the mode $N\left(V_{n t}=V_{N}^{i j}\right)$;
--- the utility $U_{n t}$ will be the utility of the trip to j by mode N. This utility should include the level of service of the mode N and the attraction variables of destination $j . \quad\left(U_{n t}=U_{N}^{i j}\right.$; the utility of not making a trip will be U_{0});
--- the average utility $U_{n t}$ will be the average utility $\bar{U}_{N}^{i j}$ tasen over the zones i and j and the link (i, j).

The formula (3) becomes

$$
p_{N}^{i j}=\frac{v_{N}^{i j}}{P_{0}^{P_{i} P_{i}}} \times \frac{e^{\bar{U}_{N}^{i j}}}{\sum_{k \in A i M_{E\{R,}^{\sum} e^{\overline{U M}, W\}}+e^{\bar{U}_{0}}}}
$$

(5) where A_{i} is the set of possible destinations k

III-3 Forecast

Given that the bus operator has all the context data available and that he has also an estimated demand model, his task will consist basically in knowing the future ridership of the bus line when a change in the servcie will occur, in order to derive the gross revenues. On the other hand, he will have to estimate the cost of such changes in the service. The changes considered here will be only changes in the level of service (changes in fare, frequency or speed) and changes in the coverage of the line

We are mainly interested in the first part of the forecast. How is the ridership going to evolve? What will be the new volumes on transit for peak hours and off peak hours? Basically the forecast processing will be the following:
--- Analyse the changes in the service and translate them into changes in the demand model. As we said before the changes will be essentially changes in frequency, fare, speed, or coverage. --- : :dy the changes for each of the three pruposes, work (and school), sinopping and social-recreational trips, and compute the new ridership.
--- Split this new ridership between peak and off peak hours.
--- Sum up the new riderships for peak and off peak hours per purpose.

III-3-1 Analysis of the changes

Let's consider the bus line split into several sections. At this point of the analysis we are supposed to have the necessary data (i.e., distribution, attraction, level of service, socio-economic variables) for all the sections. If the logit model is well calibrated, the most important characteristics according to the purposes are included in the utility function. Among others the level of service of all modes will always be included. Therefore when changes in the level of service of transit occur (as changes in fare, speed, or frequency) it will be translated into changes in the utility functions. But on the contrary, as the coverage is not explicitly expressed in the utility functions, we will have to argue differently. However, as we saw the difference between work and non work logit models we will treat them separately. A-Changes in frequency

The frequency is essentially felt by the consumer as the waiting time. Therefore it will be captured by all the variables that include waiting time as: off-vehicle time, total travel time, or even only waiting time, which are the most common.

Usually the waiting time is supposed to be half the headway (though it is only an approximation). In fact the waiting time is greater than 1/2 headway for question of regularity. If Q is the frequency (i.e.. number of vehicle-trips per hour) the headway is given by:

$$
h=\frac{1}{Q} \rightarrow \text { the waiting time } W=\frac{1}{2 Q}
$$

If we change the frequency $Q \rightarrow Q^{\prime}=Q+\Delta Q$, the waiting time becomes:

$$
W^{\prime}=\frac{1}{2(Q+\Delta Q)}=\frac{1}{2 Q} \times \frac{2 Q}{2(Q+\Delta Q)}=W\left(1-\frac{\Delta Q}{Q}\right)
$$

Therefore the change in waiting time will be

$$
\begin{equation*}
\Delta W=-W \frac{\Delta Q}{Q} . \tag{6}
\end{equation*}
$$

For example, if n is the number of vehicles of the fleet of the line, v the average speed of those vehicles, including the stops and $2 L$ the le length of a round trip, the frequency will be given by:

$$
Q=\frac{n V}{2 L}
$$

Then if we want to add a new vehicle on the fleet the frequency will become:

$$
Q^{\prime}=\frac{(n+1) v}{2 L} \rightarrow \Delta Q=\frac{v}{2 L}
$$

and we get:

$$
\begin{equation*}
\Delta W=-\frac{W Q}{Q^{\prime}}=\frac{-W}{n+1} \tag{7}
\end{equation*}
$$

But, in fact, many other factors will interfere in a change in frequency. The regularity, for example, should also increase with an increase of frequency. But these factors cannot readily be evaluated and for a first approximation, they are not taken into account.

B-Changes in Speed

The speed of the vehicles is essentially felt as the in-vehicle time by the consumers. But as we saw previously the speed interferes with the waiting time (the headway is an inverse function of the generalized
speed). Therefore, changes in the speed of the vehicle (i.e., if some newer vehicles were bought) should be expressed as changes in in-vehicle-time, off-vehicle-time if the time spent at the bus stops remains the same, and consequently in total travel time.

If v 'is the new speed (including the stops) of the vehicle, 1
the distance between 2 random stations, the old in-vehicle time will be IVT $=\frac{1}{V}$
and the new one

$$
\text { IVT }=\frac{1}{V},=\frac{v}{V^{\prime}}, I V T
$$

Therefore the change will be:

$$
\begin{equation*}
\Delta T V T=\frac{V-V^{\prime}}{V} I V T \tag{8}
\end{equation*}
$$

If the time spent at the bus stops remains the same we have the old waiting time $W=\frac{1}{n V^{\top}}$
the new waiting time $W^{\prime}=\frac{1}{n v^{\prime}}$
$\rightarrow \quad$ the change in waiting time will be
$\Delta W=\frac{v-v^{\prime}}{v} W$

Again, some other changes would result from an increasing speed, as regularity, but it is difficult to take them into account unless there is an explicit judgement about the variance of the waiting time.

C - Changes in Fare

Obviously the fares are perceived as out-of-pocket cost and a change in fare will only result in a change in this variable.
speed). Therefore, changes in the speed of the vehicle (i.e., if some newer vehicles were bought) should be expressed as changes in in-vehicle-time, off-vehicle-time if the time spent at the bus stops remains the same, and consequently in total travel time.

If v^{\prime} is the new speed (including the stops) of the vehicle, 1 the distance between 2 random stations, the old in-vehicle time will be TVT $=\frac{1}{V}$
and the new one

$$
T V T^{\prime}=\frac{1}{V^{\prime}}=\frac{V}{V^{\prime}} \operatorname{IVT}
$$

Therefore the change will be:

$$
\begin{equation*}
\Delta I V T=\frac{v-v^{\prime}}{V} I V T \tag{8}
\end{equation*}
$$

If the time spent at the bus stops remains the same we have the old waiting time $W=\frac{1}{n v^{\top}}$
the new waiting time $W^{\prime}=\frac{1}{n v^{\prime}}$
$\rightarrow \quad$ the change in waiting time will be

$$
\begin{equation*}
\Delta W=\frac{v-v^{\prime}}{v} W \tag{9}
\end{equation*}
$$

Again, some other changes would result from an increasing speed, as regularity, but it is difficult to take them into account unless there is an explicit judgement about the variance of the waiting time. C - Changes in Fare

Obviously the fares are perceived as out-of-pocket cost and a change in fare will only result in a change in this variable.

D - Changes in Coverage

This is the most complicated change. It cannot reasonably be translated into a change in the utility function. The basic change will be the following: (figure 4)

We have a line going to the stops A B C D, and we want to add a new station E, which will still remain in the corridor. How is the ridership going lo change?

In fact we have to treat this line as a new one. A new attraction zone has been created. As long as the other sections are not overlapping with this new one, they will remain the same. For this new section the 4 types of variables should be computed: the socioeconomic characteristicc, the level of service variables, as well as the distribution for work trips which is very important.

As we are dealing here with minor changes, i.e., the new station remains in a constant environment, we can assume that the demand function will be the same i.e., that the coefficients of the utility functions will keep the same coefficients.

III-3-2 Calculation of the New Ridership

We have at this point to split the study for work trips and socialrecreational and shopping trips. And within these purposes forecast the new ridership for the different changes in service.

A-Work Trips

A-1. Changes in the level of service

As we said before if we have a change in the level of service, and if we know the demand function, the simplest way to forecast the new transit ridership is to use the incremental or "pivot point" method.

As the generation between the zones is supposed to remain constant, the logit model is just a modal split and we have:

$$
P_{T}^{i j}=\frac{v_{T}^{i j}}{V^{i j}} \quad \text { where }
$$

$$
P_{T}^{i j}=\text { Probability of taking transit between } i \text { and } j
$$

$$
\nabla_{T}^{i j}=\text { volume of transit between } i \text { and } j
$$

$$
v^{i j}=\text { total volume between } i \text { and } j
$$

$$
\text { (it is the generation between } i \text { and } j \text {) }
$$

The pivot point can then be written as:

$$
P_{T}^{\prime i j}=\frac{e^{\Delta \bar{U}_{T}^{i j}} \times P_{T}^{i j}}{P_{T}^{i j} \times\left(e^{\Delta \bar{U}_{T}^{i j}}-1\right)+1}
$$

where the ' index indicates the new variables after the changes Then

$$
\begin{equation*}
v_{T}^{i j}=v_{T}^{i j} \frac{e^{\Delta \bar{U}_{T}^{i j}} \times v^{i j}}{v_{T}^{i, j} \times\left(e^{\Delta \bar{U} \dot{q}}-1\right)+v^{i j}} \tag{10}
\end{equation*}
$$

We can see that the new ridership $V_{T}^{i j}$ is only a function of the old one $V_{T}^{i j}$, the distribution of work trips $V^{i j}$ and the change in utility
$\Delta \bar{U}_{T}^{i j}$. This latter variable is important because it shows that sometimes, we will need only one coefficient of the utility function to make a forecast. For example, if we make a change in the fare, and if the out-of-pocket cost (OPC) is included in the utility function we have:

$$
\Delta \bar{U}_{T}^{i j}=\alpha_{O P C} \overline{\Delta O P C}_{i j}
$$

where $O P C_{i j}$ is the out-of-pocket cost (fare) between i and j. We see that we need here only to know $\alpha_{\text {OPC }}$ to make a forecast and that in any case we do not need to know anything about the other modes.

A-2. Change in Coverage

If we add a new station to the line, the change in the ridership
will come from the flows between this new station and the already existing ones. As we have assumed that the generation and distribution were constant for work trips, we can suppose that no change will occur in the ridership between the existing stations.

Therefore, if we had n stations ($i=1 \ldots n$) and we add and $(n+1)^{\text {th }}$ station, the new ridership will be expressed as:

$$
V_{T}^{\prime}=\sum_{i=1}^{n} \sum_{\substack{k=1 \\ k \neq 1}}^{n} V_{T}^{i k}+\sum_{i=1} V_{T}^{i(n+1)}+\sum_{k=1}^{n} V^{(n+1) k}
$$

We know how to compute $V_{T}^{i k}$. To compute $V_{T}^{i(n+1)}$ or $V_{T}^{(n+1) k}$ we will use the same model, as we supposed that the utility coefficients remained the same.

$$
V_{T}^{i(n+1!}=V^{i(n+1)} \frac{e^{\bar{U}_{T}^{i(n+1)}}}{M \stackrel{e^{U_{M}^{i}(n+1)}}{=\{A, T, W\}}} \text { (same for } V_{T}^{(n+1) k} \text {) }
$$

Therefore to compute the new ridership to and from $(n+1)$ we need:

- The coefficients of all the utility functions, and all the characterictics of the new zone.
- The distribution of work trips to and from the new zone.

But V_{T}^{\prime} can be written as:
$V_{T}^{\prime}=V_{T}+\sum_{i=1}^{n} V_{T}^{i(n+1)}+\sum_{k=1}^{n} V_{T}^{(n+1) k}$
and we see here that we do not need the distribution of the work trips between the existing zones, but only the existing total transit ridership. Furthermore if the origin zone characteristics are not included in the utility function, we will need only the characteristics of the new zone. This will happen when the utility functions will be written as:

$$
V_{i t}=f\left(T_{n} ; S_{t}\right)=f\left(T_{n}\right) \text { (i.e. only function of the level of service) }
$$

B-Shopping and Social-Recreational Trips
We know that the operator has at his disposal a simultaneous logit model (for both purposes) where
$\operatorname{Pr}(g o$ to j by transit) from zone \mathbf{j}

$$
\sum_{M} \sum_{j \varepsilon A_{i}} e_{M}^{U_{M}^{i j}}+e^{\bar{U}_{0}}
$$

where M is the mode and A_{i} the set of possible stops.
B-1-Change in level of service
If we change the level of service of the bus line, all the utilities of transit $\bar{U}_{\mathbf{i}}^{i j}$ are going to change:

$$
\bar{U}_{T}^{i j} \rightarrow \bar{U}_{T}^{i j}=\bar{U}_{T}^{i j}+\Delta \bar{U}_{T}^{i j}
$$

Then the new probability can be expressed as:

$$
\begin{aligned}
& P_{T}^{i k}=\frac{e^{\bar{U} t^{i j}}}{\sum_{j \varepsilon A_{i}}\left(e^{\bar{U}_{i}^{i j}}+\sum_{M}^{\bar{U}_{M}^{i j}}\right)+e^{\bar{U}_{0}}} \times \frac{e^{\bar{U}_{T}^{i k}} e^{\Delta \bar{U}_{T}^{i k}}}{\sum_{i}\left(e^{\bar{U}_{T}^{i j}} e^{\Delta \bar{U}_{T}^{i j}}+\sum_{M}^{\bar{U}_{M}^{i j}}\right)+e^{\bar{U}_{0}}} \\
& =\frac{e^{\bar{U}_{T}^{i k}}}{\sum_{j \varepsilon A_{i} M}^{\sum e^{\bar{U}}{ }_{M}^{i j}}+e^{\bar{U}_{0}}} \times e^{\Delta U_{T}^{i k}} \times \frac{\sum_{j}^{\sum} e^{\bar{U}_{M}^{i j}}+e^{\bar{U}_{0}}}{\sum_{j \varepsilon A_{i}}\left(e^{\bar{U}^{j J}} \times e^{\Delta \bar{U}_{T}^{i j}}+\sum_{M}^{\bar{U}_{T}^{i j}}\right)+e^{\bar{U}_{0}}} \\
& =P_{T}^{i k} \times \frac{e^{\bar{U}^{j}}}{1+\sum_{j \in A_{i}} P_{T}^{i k}\left(e^{\Delta \widetilde{U} \psi^{j}}-1\right)} \\
& \text { But as we saw before: } P_{T}^{i k}=\frac{V_{T}^{i k}}{P O P_{i}}
\end{aligned}
$$

Then we can write:

$$
\begin{equation*}
v_{T}^{i k}=v_{T}^{i k} \frac{e^{\Delta \bar{U}_{T}^{i k}}}{1+\sum_{j \in A_{j}}^{\sum} \frac{V_{T}^{j}}{P_{O P i}^{j}}}\left(e^{\Delta \bar{U}^{i j}}-1\right) \tag{12}
\end{equation*}
$$

This formula is very important because it shows that the new transit ridership is a function of the old ones, of the changes in the transit utility functions and of the population in the zones.

We do not need here to know anything about the other modes. If we have a survey giving the volumes of transit $V_{T}^{i j}$ (and this is frequent), if we know the population of the zones (and this is relatively easy) and some coefficients in the utility function (as we saw previously) we can very well predict the new ridership.

B-2 Changes in Coverage

We still want to add a new station $(n+1)$ to the line. The problem here will be less easy. The set of possible choices has increased by 3 alternatives, for the already existing sections: go to ($n+1$) by 3 different modes.

Therefore the new probability to go from a section i to a section k by transit will be written as:

We can derive

$$
P_{T}^{\prime i k}=\frac{P_{T}^{i k}}{1+P_{T}^{i k}\left(\sum_{\text {Modes }} e^{U_{M}^{i(n+1)}-\bar{U}_{T}^{i k}}\right)}
$$

From where we can derive

$$
\begin{equation*}
V_{T}^{i k}=\frac{v_{T}^{i k}}{1+\frac{V_{T}^{i k}}{P_{O P}^{i}}}\left[\sum_{M}^{\left.e_{M}^{i(n+1)}-\bar{U}_{T}^{i k}\right]}\right. \tag{13}
\end{equation*}
$$

Unfortunately we se here that we will need the characteristics of all the zones as well as all the utility functions.

This situation is even worse when we want to forecast the volume going from $(n+1)$:

$$
p_{T}^{(n+1) k}=\frac{e^{\bar{U} T^{(n+1) k}}}{\sum_{M}^{\sum \sum e^{\bar{U} N^{j}}+e^{\bar{U}_{0}}}}
$$

We need to know everything perfectly in order to compute this new probability and then the new ridership.

It appears here that this kind of problem might be a little too complex to get efficient results with limited data. A way to solve this would be to keep the number of zones small.

III-3-3 Time Split

Now that we know how to compute the new riderships we must be able to split them between peak and off peak hour, because it is the point the operator is interested in.

Some studies have been done about the time of day choice models (as CRA Pittsburgh) but they cannot easily be applied. Then the methods presented here are only empirical.

The basic assumption is that the trips split during peak and off-peak hours is in fixed proportion. Therefore if we know the time split by purpose of the old ridership, we can derive the new one. If we know:

During peak hours we have
During off-peak hours we have V_{T}^{0} \} for a given purpose
With $V_{T}^{p}+V_{T}^{0}=V_{T}\left(V_{T}=\right.$ old ridership $)$
Then the new split will be given by:

$$
\begin{equation*}
V_{T}^{\prime P}=\frac{V_{T}^{P}}{V_{T}} \quad V_{T}^{\prime} \quad \text { and } V_{T}^{\prime 0}=\frac{V_{T}^{0}}{V_{T}} \quad x \quad V_{T}^{\prime} \tag{14}
\end{equation*}
$$

If we do not have these riderships V_{P}^{\top}, V_{T}^{0}, we can try to apply some
coefficients derived form some studies. It is known for example, that 85% of the work trips occur during the morning peak in Washington. * That 18% of shopping trips and social-recreational trips occur during the same period.

III-4 Methods of Getting a Demand Model

There are many cases where the operator does not have any demand model available, and needs one to make a forecast. At this point different alternatives are offered to him.

1. Use a model developed elsewhere
2. Use some elasticities
3. Update or transfer an existing model
4. Estimate a completely new model.

Of course the choice of any of these alternative will depend essentially on the data the operator will have. The more detailed the data, the more accurate the method will be.

- Case 1 is straightforward but very inaccurate.
- Case 2 will be studied in Chapter IV.
- Case 3 and 4 will be studied here. Of course the real challenge is Case 4 and this is the one we will study firsi.

III-4-1 Estimation of Demand Mociels

We wili assume all along the arguments that we have the necessary data available. According to Chapter II, we have seen that the least. squares method was the most appropriate to our concern. Eut we need

[^6]an aggregation procedure. We will use the naive one.
Therefore the equation (2) becomes
\[

$$
\begin{align*}
& \ln \frac{P_{n t}}{P_{p t}}=\ln \frac{V_{n t}}{V_{t}} \times \frac{V_{t}}{V_{p t}}=\bar{U}_{n t}-\bar{U}_{p t} \\
& \rightarrow \ln \frac{V_{n t}}{V_{p t}}=\sum_{k=1}^{K} a_{k}\left[\bar{x}_{n k}-\bar{x}_{p k}\right] \tag{15}
\end{align*}
$$
\]

Again we have to make a distinction between the purposes.

A-Calibration of a work mode split model

As we saw previously the logit model was only a modal split for work trips between three different modes: auto, 2 wheels, and transit. Therefore the equation (15) can be summarized by 2 independent equations:

$$
\begin{align*}
& \ln \frac{V_{A}^{i j}}{V_{T}^{i j}}=\sum_{k=1}^{\sum} a_{k}\left[X_{A k}^{i j}-x_{T k}^{i j}\right] \tag{16}\\
& \ln \frac{V_{W}^{i j}}{V_{T}^{i j}}=\sum_{k=1}^{\sum} a_{k}\left[\bar{x}_{W k}^{i j}-\bar{X}_{T k}^{i j}\right]
\end{align*}
$$

Where \mathfrak{i} and j are two random sections taken on the line. As it can be seen the significance of this regression is directly related to the number of zones (i.e. the number of pairs ($i, j)$). Thus, if we divide the line in into N zones, we will have $N \times(N-1)$ zone pairs. If we have the counts $v_{M}^{i j}$ and the values of $\bar{X}_{M}^{i j}$, we can estimate the values of the K parameters a_{k} if k does not exceed $2 \times \mathrm{N} \times(\mathrm{N}-1)-1$.

However the greater the value of $\frac{2 \times N \times}{K}(\mathbb{y}-1)$, the more significant
the results will be.
Among all possible variables the major ones are:

OVT7DST	(out-of-vehicle time/distance)
AAC	(auto ownership)
IVT	(in-vehicle-time)
TWO	(two wheels ownership)
CBD	(dummy CBD variable)

Some of these variables are alternative specific (as auto ownership and 2 wheel ownersinip) and some are generic. The type of variable to choose depends a lot on the data we have. As we are using the least-square method to run our regression the R^{2} test is significant.

Here an example which demonstrates this type of calibration follows. At the same time we will see some simple assumptions to generate input data (this will be discussed in Chapter IV).

The example is a bus line in Toulouse (France), which goes through three basic zones, the LBD, the list ring, and the $2 n d$ ring.(figure5).

CBD	Ist Ring	2nd Ring
Zone 1	Zone 2	Zone 3

For simplification sake we vill consider only two modes. The 2 major variables taken into account are in-vehicle-time and off-vehicle-time/ distance.

The data we have are expressed as modal shares (in percent).
Therefore we have the regression:
$\ln \frac{P_{A}^{i j}}{P_{T}^{i j}}=\bar{U}_{A}^{i j}-\bar{U}_{T}^{i j}=a_{0}+a_{1}\left(\overline{T V T}_{A}^{i j}-\overline{T V T}_{T}^{i j}\right)+a_{2} \frac{\left(\overline{O V T}_{A}^{i j}-\overline{O V T}_{T}^{i j}\right)}{\overline{D S T}}$
We can easily compute IVT T_{T} and $O V T_{T}$ examining the schedules of the bus line.

If we have some data available we can get IVT A and OVT $_{A}$. Otherwise we must make some assumptions. Eg: first we can assume that the speed of a bus is roughly .85 the speed of a car.

$$
\mathrm{IVT}_{A} \simeq I V T_{T} \times .85
$$

Second, we can assume that $O V T_{A} \simeq 2 m n$ (this represents mostly the time to go from the parking to the work location). In this case the utility function can be reduced to:

$$
\bar{U}_{A}^{i j}-\bar{U}_{T}^{i j}=b_{0}+b_{1} \overline{I V T}_{T}^{i j}+b_{2} \overline{O V T}_{T}^{i j} / \overline{D S T}^{i j}
$$

Thus we see that only the bus characteristics are taken into account in this reduced model.

The distance will be expressed in minutes (in vehicle time). The CBD will be represented by the index 1 , the First ring by 2, and the second ring by 3 .

By estimates we have: $\operatorname{DST}(1,1)=4 \quad \operatorname{DST}(1,2)=12$ $\operatorname{DST}(1,3)=16 \quad \operatorname{DST}(2,2)=5.5$

$$
\operatorname{DST}(2,3)=4
$$

To compute the OVT T we assume the relation:

$$
\text { OVT }_{T}=\text { headway } / 2 \& \text { walking time }
$$

To estimate the walking time we can assume that the ridership of the bus is uniformly distributed within $1 / 4$ mile of the bus stops. It means that an average person will have to walk $1 / 8$ mile to get the bus and the same distance to go to the office. So in total he will have to walk $1 / 4$ mile. Knowing that an average person walks at the speed of 3 miles per hour the walking time will be equal to:

$$
1 / 4+? / 3=1 / 12 \text { hour }=5 \mathrm{mn}
$$

In Toulouse during the peak hour the headway is equal to 6 mn .
So in total $0 V T_{T}=5+6 / 2=8 \mathrm{mn}$.
Finally, from analysis of available data we have:

$$
\begin{array}{llll}
\mathrm{P}_{\mathrm{A} 1}^{1}=.60 & \mathrm{P}_{\mathrm{T} 1}^{1}=.22 & \mathrm{P}_{\mathrm{A} 1}^{2}=.55 & \mathrm{P}_{\mathrm{A} 1}^{2}=.22 \\
\mathrm{P}_{\mathrm{A} 2}^{2}=.64 & \mathrm{P}_{\mathrm{T} 2}^{2}=.14 & \mathrm{P}_{\mathrm{A} 1}^{3}=.65 & \mathrm{P}_{\mathrm{T} 1}^{3}=.21 \\
\mathrm{P}_{\mathrm{A} 3}^{3}=.69 & \mathrm{P}_{\mathrm{T} 2}^{3}=.12 & &
\end{array}
$$

These then lead to the following relationships to be estimated:

$$
\begin{array}{ll}
\ln \left(\frac{60}{22}\right)=b_{0}+b_{1} 4=b_{2} 6 / 4 & \ln \left(\frac{55}{22}\right)=b_{0}+b_{1} \times 12+b_{2} \times 6 / 12 \\
\ln \left(\frac{64}{14}\right)=b_{0}+b_{1} \times 5.5+b_{2} \times 6 / 5.5 & \ln \left(\frac{65}{21}\right)=b_{0}+b_{1} \times 16+b_{2} \times 6 / 16 \\
\ln \left(\frac{69}{12}\right)=b_{0}+b_{1} \times 4+b_{2} \times 6 / 4 &
\end{array}
$$

Using a standard regression routine available for a programmed pocket calculator, we get the values for the coefficients:
$b_{0}=1.28$
$b_{1}=.02$
$b_{2}=.15$
These results are not satisfactory with respect to signs; we see that the utility of transit is going to increase with the increase of in-vehicie-time. This can be due to the fact that the in-vechicle-time interferes also in the second variable. Anyway, if we check the correlation we get a R^{2} equal to .27 which is very bad for the small sample we had. So instead of using IVT ${ }_{T}$ as a characteristic variable we will use a dummy variable "CBO" which will be equal to 1 if one end of the trip is the $C B D$ and 0 otherwise.

We have the new regression:
$\ln \frac{P_{A}^{i j}}{P_{T}^{i j}}=b_{0}+b_{1} O V T_{T}^{i j} / D S T^{i j}+b_{2} C R D$
$\begin{array}{ll}\ln \frac{60}{22}=b_{0}+b_{1} \times 6 / 4+b_{2} & \ln \frac{55}{22}=b_{0}+b_{1} \times 6 / 12+b_{2} \\ \ln \frac{64}{14}=b_{0}+b_{1} \times 6 / 5.5 & \ln \frac{55}{21}=b_{0}+b_{1} \times 6 / 16+b_{2}\end{array}$
$\ln \frac{69}{12}=b_{0}+b_{1} \times 6 / 4$
We get the values for the coefficients:

$$
\begin{aligned}
& b_{0}=1.60 \\
& b_{1}=.02 \\
& b_{2}=-.61
\end{aligned}
$$

This time these coefficients have the expected signs; if the OVT $/$ DST increases the utility of transit will decrease and if the destination of the trip is the CBD, it will increase.

Furthermore the correlation test is acceptable because we get a R^{2} equal to .90 (and an adjusted \bar{R}^{2} equal to .80). This shows that with few data and a pocket calculator some results can be found, but the significance of the results are a function of the data. B-Calibration of Multiple Choice Shopping Mode1

We saw previously that the logit represented a simultaneous logic for shopping model. Thus, using naive aggregation we have:
$P_{N}^{i j}=P_{0}($ going to j by roode $N)=\frac{e^{\bar{U}_{N}^{i j}}}{\sum_{K \in A_{i}} \sum_{M=\text { modes }} e^{\bar{U}_{M}^{i k}}+e^{\bar{U}_{O}}}=\frac{V_{n}^{i j}}{P_{O} P_{i}}$

As we have here a model where the generation, the distribution and the modal split are represented at the same time, the regression (15) must represent these properties. Therefore, we can derive from (15)

$$
\begin{equation*}
\ln \frac{P_{N}^{i j}}{P_{N}^{i j}}=\ln \frac{V_{N}^{i j}}{V_{N}^{i j}}=\sum_{p=1}^{p} a_{p}\left[\bar{X}_{N p}^{i j}-\bar{X}_{M p}^{i k}\right] \tag{17}
\end{equation*}
$$

This equation reveals two steps:
--- If the two alternatives compared are"making atrip by a certain mode" we are estimating the parameters of destination and mode.
--- On the other hand if one of the alternatives is the no trip alternative (alternative 0) we will derive the coefficient tor the generation also (i.e., no trip_one trip alternative)

In this case the equation would become:

$$
\ln \frac{V_{N}^{i j}}{V_{0}}=\sum_{p=1}^{p} a_{p}\left(X_{N p}^{i j}-X_{0 p}\right)
$$

where $V_{0}=P O P_{i}-\sum_{j \varepsilon A j} \sum V_{M}^{i j}$
But this last equation (18) is very important, because it makes a lot of simplifications as the $X_{o p}$'s will be cero for most of the P variables.

Among the possible variables, the most characteristic appeared to be
Total travel time/Distance
(TTT/DST)
Out-of-pocket cost/income (OPC/INC)

Retail employment at destination (REMP $_{j}$)
Auto ownership
Two wineels ownership
Retail employment at origin ($_{\text {EMP }}^{i}$)
CBD constant (CBC)

Of course, the number of possible variables depends essentially on the data available. At most if we have all the wanted data, the number of variables could not exceed $3 \mathrm{~N}(\mathrm{~N}-1)$ - 1 where N represents the number of zones. The number $3 \mathrm{~N}(\mathrm{~N}-1)$ represents the number of aggregate equations ($N(N-1)$ for each mode) and -1 represents the constant in the regression. Example: Let's take a line with 3 zones, A and B and C and 2 modes: auto and transit. The data available is (hypothetical data):

Population: $A=10,000$

$$
B=1,000
$$

$$
C=2,000
$$

Retail employment: $A=800$

$$
B=50
$$

$$
C=100
$$

The in-vehicle times:

$$
\begin{array}{ll}
T T_{T}^{B A}=20 m n & T_{A}^{B A}=17 m n \\
T T_{T}^{B C}=20 m n & T T_{A}^{B C}=8 m n \\
T T_{T}^{C A}=25 m n & T T_{A}^{C A}=21 m n
\end{array}
$$

Volumes by all modes:

$$
\begin{array}{ll}
V^{A B}=V^{A C}=0 & V_{T}^{B C}=150 \quad V_{A}^{B C}=200 \\
V_{T}^{B A}=50 & V_{A}^{B A}=100
\end{array} \quad V_{A}^{C B}=V_{T}^{C B}=0 .
$$

Then if we include in the utility function 2 variables - retail employment and travel time, we will have

$$
\ln \frac{V_{M}^{i j}}{V_{0}^{i}}=a_{0}+a_{1} \pi T_{M}^{i j}+a_{2}\left(\operatorname{REMP}_{j}-\operatorname{REMP}_{i}\right)
$$

Then we just replace the varaibles by their value (we have six equations) knowing that:

$$
V_{0}^{i}=P O P_{j}-\sum_{j} V^{i j}
$$

and we get

$$
\begin{aligned}
& a_{0}=.16 \\
& a_{1}=-.139 \\
& a_{2}=.001 \\
& \text { and } R^{2}=.975
\end{aligned}
$$

But here we had all the wanted data. Usually it is rot so, and inferences must be done about the context.

C-Social-recreational trips

The pattern of the demand model is the same as in shopping trip.
Only the variables are going to change. Among the set of possible variables the most characteristic will be:
total travel time/distance
out-of-pocket cost/income
household size
employment density
race of household
ratio of vacant to total area, etc.
Again the number of variables should at any time not exceed $3 \mathrm{~N}(\mathrm{~N}-1)-1$.

III-4-2 Resolution of the Regression Problem

We are going to introduce here two separate issues.

A-Resolution of Simultaneous Regressions

As we saw previously we had to run simultaneous regressions in order to get some results. The general technique is rather complicated and should not be applied here. The only difference between these simultaneous equations are some alternative specific variables. The way this difficulty will then be overcome will be to introduce some dummy variables (unconstrained data pooling) and run the regression as a single one.

The best way to explain it is to show an example. Let's take the case of work trip where we would have two alternative specific variables: AAC (auto ownership) and TWO (two-wheels ownership). We would have to run the regressions:

$$
\begin{aligned}
& \ln \frac{V_{A}}{V_{T}}=a_{0}+a_{2} A A C \\
& \ln \frac{V_{W}}{V_{T}}=a_{1}+a_{3} T W O
\end{aligned}
$$

We introduce here some dummy variables (it is valid), X_{1}, X_{2}, x_{3} ard we get the single regression:

$$
\ln \frac{V_{X}}{V_{T}}=a_{0}+a_{1} \ddot{c}_{1}+a_{2} \ddot{x}_{2}+a_{3} x_{3}
$$

where

$$
\begin{aligned}
& \left\{\begin{array} { r l }
{ x _ { 1 } } & { = 1 \text { when } x = W } \\
{ } & { = 0 \text { otherwise } }
\end{array} \quad \left\{\begin{array}{rl}
x_{2}=A A C \text { when } x=A \\
=0 \text { otherwise }
\end{array}\right.\right. \\
& \left\{\begin{aligned}
x_{3} & =\text { TW0 when } X=W \\
& =0 \text { otherwise }
\end{aligned}\right.
\end{aligned}
$$

and this can be solved more easily.
B-kegression with mone than two variables*
To solve regressions with the help of a pocket calculator, we have to find a way to overcome its limitations especially limited memories. There is a program running directly a double regression, but not more.

If X is a nxk matrix of observations on k independent variables, and if y is the column vector of observations on these variables, to run a regression is to find a vector b as $\hat{y}=X b$ where \hat{y} is as close a possible to y. Using the least-squares criteria we want to minimize the function fo z :
$\left(y-x_{z}\right)^{\prime}\left(y-X_{z}\right)$ this leads to the equations:
$X^{\prime} X b=X^{\prime} y$ or $b=\left(X^{\prime} X\right)^{-1} X^{\prime} \jmath^{\prime}$
As it can be seen the important point is the inversion of the matrix ($X^{\prime} X$). If we have n variables we will have a $(n+1, n+1)$ matrix to invert and beyond a certain value of n, this inversion will be impossible because of the limited memories, even if the calculator routines do not invert matrices directly.

An alternative is as following. Let's suppose we are considering a least squares fit of y on $k+1$ independent variable as ($X x$). That is we seek a vector b and a scalar c such that:

$$
\begin{array}{ll}
\hat{y}=x b+x c \quad & S=(n, k) \text { matrix } \\
& x=n-\text { vector }
\end{array}
$$

[^7]This time we want to minimize the function of z and m :

$$
(y-X z-x m)^{\prime}(y-X z-x m)
$$

and taking the derivatives with respect to z and m we get:

$$
\begin{aligned}
& x^{\prime} X b+X^{\prime} X c=X^{\prime} y \\
& x^{\prime} X_{b}^{\prime}+x^{\prime} x c=x^{\prime} y \\
& b=\left(X^{\prime} X\right)^{-1} X^{\prime} y-\left(X^{\prime} X\right)^{-1} X x c
\end{aligned}
$$

and substituting in the second equation we get

$$
c=\frac{x^{\prime}\left(I-x\left(X^{\prime} X\right)^{-1} x^{\prime}\right) y}{x^{\prime}\left(I-x\left(x^{\prime} X\right)^{-7} x^{\prime}\right) x}=\frac{x^{\prime} M y}{x^{\prime} M x}
$$

but

$$
\begin{aligned}
x^{\prime} M & =(M x)^{\prime} \text { as } M \text { is symetric } \\
& =x-S\left(x^{\prime} X\right)^{-1} X^{\prime} x=(x-\hat{x})^{\prime}=X^{\prime}
\end{aligned}
$$

where ${ }_{x}^{0}$ is the residual vector obtained from a least squares regression of x on X.

This is a very important result coming form some froperties of the least squares which say that the residual vector $y-\hat{y}$ of a regression of y on X is perpendicular to each independent variable vector included in the regression.

Therefore this is the solution to use. If the number of variables exceeds the capacity of the calculator, we first choose a variable and run a regression on the other variables. As an example let's imagine we want to run a regression on:

$$
y=b_{0}+b_{1} x_{1}+b_{2} x_{2}+b_{3} x_{3}
$$

but we can only run a regression with 2 variables at a time. Then we have the following procedure:

Step 1:

We run a regression

$$
x_{3}=a_{0}+a_{1} x_{1}+a_{2} x_{2}
$$

and we get: $\hat{a}_{0}, \hat{a}_{1}, \hat{a}_{2}$
Then we have

$$
x_{3}=\hat{a}_{0}+\hat{a}_{1} x_{1}+\hat{a}_{2} x_{x}+\hat{u}=\hat{x}_{3}+\hat{u}
$$

We compute this residual vector \hat{u}.

Step 2:

Our initial regression can now be written as:

$$
y=b_{0}+b_{1} x_{1}+b_{2} x_{2}+b_{3} \hat{x}_{3}+b_{3} \hat{u}
$$

As \hat{u} is perpendicular to the other variables we can run a
simple regression of y on \hat{u} :

$$
y=c_{0}+c_{1} \hat{u}
$$

and according to the previous properties we will have $\hat{b}_{3}=\hat{c}_{1}$.
Step 3
Now we know \hat{b}_{3} we can run a new regression derived from the initial one:

$$
y-\hat{b}_{3} x_{3}=b_{0}+b_{1} x_{1}+b_{2} x_{2}
$$

As it is a double regression we can do it this time.
As we can see this method can be very useful if we want to compute all the coefficients of the regression. But more often we will be interested in only one coefficient of the regression to make some forecast (as we saw in the Pivot point method). Therefore this method is extremely useful because it will allow to compute this coefficient very easily.

III-4-3 Updating Mode1s

Sometimes it is hard to calibrate a model because the data are missing. However the bus operator can try to use an already existing model used for another place or another time and try to transfer or update it.

There are many ways to update a model and the more sophisticated the method the better the results are. But once again we are limited with our pocket calculator and we cannot use some complicated methods as the Bayesian updating which is often based on maximum likelihood results. To update a logit model means to update the coefficients of the utility function. This utility function is written as:

$$
u_{i}=a_{0}+\sum_{k=1}^{k} a_{k} x_{i k}
$$

Three alternatives are offered to us:
Case I - use the utility function as it already exists from a model estimated elsewhere

Case II - try to update the constant a_{0} only $\rightarrow a_{0}^{\prime}$
Case III - try to update the constant a_{0} and the coefficients $a_{k} \rightarrow$ a_{0}^{\prime} and α

$$
U^{\prime} i=a_{0}^{\prime}+\alpha\left(\sum_{k=1}^{k} a_{k} X_{i k}\right)
$$

In this case we will have to find a_{0}^{\prime} and α considering that $\sum_{k=1}^{K} a_{k} x_{i k}$ is a single one variable.

The two latter cases can be shown by an example. Let's suppose we have an existing model giving:

[^8]$$
U_{A}-U_{T}=a_{0}+\sum_{k=1}^{K} \dot{a}_{k}\left(X_{A k}-X_{T k}\right)
$$

Using the naive aggregation procedure, we get:

$$
\ln \frac{V_{A}}{V_{T}}=\bar{U}_{A}-\bar{U}_{T}=a_{\theta}^{\prime}+\sum_{k=1}^{k} a_{k}\left(\bar{x}_{A k}-\bar{x}_{T k}\right)
$$

The variables V_{A}, V_{T} are a generic way of representing all the flows between the zones \mathbf{i} and j of the bus lines

Case II

If we want just to update the constant we will use:

$$
\frac{1}{n}\left[\ln \frac{V_{A}}{V_{T}}-\sum_{k=1}^{K}\left(\bar{X}_{A k}-\bar{X}_{T k}\right) \cdot a_{k}\right]=\hat{a}_{0}^{\prime}
$$

taking the mean on all the $0.0 t$ pairs ($i, j)$.

Case III

If we want to update the constant and the variable coefficients we just run a regression of:

$$
\sum_{k=1}^{K} a_{k}\left(X_{A k}-X_{T k}\right) \text { on } \ln \frac{V_{A}}{V_{T}}
$$

and we will get:
a_{0}^{\prime} and λ
$\ln \frac{V_{A}}{V_{T}} \neq a_{0}+\lambda\left[\sum_{k=1}^{N} a_{k . .}\left(X_{A k}-X_{T k}\right)\right]$
Sometimes it appears that to update a mode? is even more efficient than to calibrate a model when the data are rather limited. As a matter of fact it has appeared throughout all the studies that some constant were existing in all the models. For example it is a reasonable assumption that $\mathrm{a}_{\text {OVT }}=2.5 \mathrm{a}_{\text {IVT }}$ and $\mathrm{a}_{\text {OPC }}=.167 \mathrm{a}_{\text {IVT }}{ }^{*}$ where OVT, IVT are expressed in minutes and OPC is in ϕ. These results are derived from many models, and they are surprisingly exact for first approximation.

We could then try to use them for the work trips example we had. We will run a regression on:

$$
\ln _{\frac{V_{A}}{}}^{V_{T}}=a_{0}+a_{1}(I V T+2.50 V T) / D S T
$$

and we get:

$$
\begin{aligned}
& a_{0}=.62 \\
& a_{T}=2.05 \\
& R^{2}=.27
\end{aligned}
$$

which is not very good but sitll more significant than a two variables regression. (first regression we made).

[^9]
CHAPTER IV

4-1. INTRODUCTION

As we saw in the previous chapters the possibility to make a prediction is limited by the existence of some relevant data. Unfortunately in most cases these data do not exist or exist but not in the expected form, and cannot be used as they are. Still some results are needed--consequently inferences about the context must be done. The basic examples of such inferences would be: How is ic possible to get reliable data when poor and few surveys are made? How is it possible to make a forecast when the model is missing? It is a challenge to try to find some results but it is worth doing it. Of course the reliability of these results is directly related to the information gathered, but the goal of the study is to determine this relationship.

We saw previously that the data were of 4 types:

- The socio-economic data--important for the origin zones
- The attraction data--i.e. the socio-economic data of the destination zones
- The level of service data
- The distribution data, i.e. riderships, generation distribution, etc.

According to the type of data, and a model availability, the operator has different ways of making a forecast. This can be summarized by Figure 6.

FIGURE 6

As we can see there are 4 major ways to make a forecast according to the type of model available. These four cases can be described as:
a) Some model coefficients are available:

If we are concerned with changes in the level of service of the bus line, we can use the pivot point method to make a forecast. The coefficients we will need to know at that moment will be the coefficients related to the change in the level of service (for example, coefficients of out-of-pocket-cost if the change is a change in fare). We saw also that we needed the distribtuion data and the existing level of service to use that pivot point method. If we are now concerned with changes in coverage, this method cannot be applied.
b) Some elasticities are available:

With some elasticities (with respect to fare or frequency, for example) we are in a position of doing a forecast. This method will be discussed in this chapter. To make this forecast we will need the existing ridership (i.e. distribution data) and the change in the level of service.
c) A complete model is available:

We can of course use the "pivot point" method for changes in the level of service. If a change in coverage has to be studied, we can predict the new ridership if in addition to the distribution data and level of service data we know the origin socio-economic and the destination attraction data.
d) No model is available:

We saw in the previous chapter how it was possible to estimate a model. In order to do so, we need the four types of data in the corridor. After
having calibrated the model we can use either method (a) or (c).
The conclusion to these different cases is the absolute need of the distribution and level of service data for any case. Therefore, the emphasis should be put on inferences about these kinds of data. However, as the level of service of transit is usually easity available for the bus operator, it appears that the inferences about distribution data are by far the most important. As a first priority we will study them. Inferences about the two other types must not be neglected, but as they are both available from the census tracts, in most cases we can assume that they will be known.

4-2. INFERENCES ABOUT DISTRIBUTION DATA

When we have a bus line with several zones we are mainly interested in the volumes going between two zones \mathbf{i} and \mathbf{j}, for different purposes, and different modes.

$$
\text { Figure } 7
$$

In other words we are interested in $V_{M}^{i j}$ for work trip, shopping trip and social-recreational trip. In each of these volumes we have three different stages of the transportation demand process for a given purpose:

- The generation:

From zone \boldsymbol{i} are generated $\mathrm{V}^{\mathbf{i j}}$ trips given by:
$v^{i j}=v_{A}^{i j}+v_{T}^{i j}+v_{W}^{i j}$

- The distribution:

As we have the volumes by $0-D$ pairs the distribution is included.

- The modal split:

If we have the total volumes and the volumes by mode the modal
split is immediately given by:

$$
P_{A}^{i j}=\frac{V_{A}^{i j}}{V^{i j}} ; P_{T}^{i j}=\frac{V_{T}^{i j}}{V^{i j}} ; P_{W}^{i j}=\frac{V_{W}^{i j}}{V^{i j}}
$$

Then if we have all these different characteristics for each of these volumes, we can try to work on the reverse way--i.e., knowing the characteristics of transportation demand try to get the volumes $V_{M}^{i j}$.

The different possibilities to get these volumes are numerous and depend only on the data available. But as we are supposed to work for a bus operator, this method will be heavily based on the transit volumes recause these are the most easily available for him.

A. Transit Data

Our first task will be to explain the transit data. As we are playing the role of a bus operator we are mainly interested in:

- The distribution of the trips by purpose.
- The time split (i.e. the distribution between Peak and off-Peak).

The way to obtain this data is:

- Home interview surveys
- Surveys aboard bus lines; i.e., ask the people waht their origin and destination are and what is the purpose of their trip.
- Peak load counts--i.e., experienced people will estimate the ridership during peak and off-peak hours on the buses.
- boarding and alighting counts: we do not know here what will be the destination of the people boarding or the origin of the people egressing.

It is from this data that inferences can be made. Three major problems, however, will be studied:

- How to get an 0-D matrix for all purposes
- How to spiit the trips between the purposes
- How to split the trips by purposes between peak and off-peak hours.

For each of these problems there are different solutions according
to the existing data. We cannot study all these solutions, but we will study some cases of inferences.

A. 1 Obtaining an 0-D matrix

CASE 1
We will assume here that the collected data are some boarding and alighting counts. We must then make some assumptions on the line itself. We decided in the previous chapters to choose an outside town-CBD-oriented line among the whole network because they were the most characteristic. They are also the easiest to study.

1st method

As a matter of fact if a line is suburb-CBD-oriented, most of the people in the suburb will board in the different stations at the origin of the line, and alight at the last stations at the end of the line. Very few people will alight in the suburb or board in the CBD. This can be verified by some surveys on such bus lines (see the following example).

The second assumption we will make is that the desination if uniformally distributed over the origin. Clearly it means that if a certain percent of the total ridership alights at a certain station j, the same percent of people boarding at a prior station \mathfrak{i} will alight at that station \mathbf{j}.

To explain this we can use an example. We have a bus line with two stops in the suburb, and 2 stops in the CBD:

SUBURB CBD

Our assumption says that the people will board at A and B and alight at C and D. No one (or only an insignificant percent) will go from A to B or from C to D. It is a strong assumption but it is verified by some surveys.

If we have some boarding counts b_{A} and b_{B} at A and B, and some alighting counts a_{C}, a_{D} at C and D our assumption can be written as:
$v^{i j}$ being the volumes between i and j :

$$
\begin{align*}
& v^{A B}=v^{C D}=0 \\
& v^{A C}=b_{A} \times \frac{a_{C}}{a_{C}+a_{D}} ; v^{A D}=b_{A} \times \frac{a_{D}}{{ }^{a_{C}}+a_{D}} \\
& v^{B C}=b_{B} \times \frac{a_{C}}{a_{C}+a_{D}} ; v^{B C}=b_{B} \times \frac{a_{D}}{a_{C}+a_{D}} \tag{19}
\end{align*}
$$

As we have assumed that nobody alighted at B, we have:

$$
a_{C}+a_{D}=b_{A}+b_{B}=v^{A C}+v^{A D}+v^{B C}+v^{B D}
$$

2nd method

Unfortunately, all the lines are not of that kind; however, we must find a way to get an 0-D matrix.

Other assumptions must then be made. Let's figure we have a line with n stations $i=1, \ldots, n$

a) our first assumption will be that the people boarding at station i will not alight at the station $(i+1)$. It is a reasonable assumption that can be explained in words of utility: within a certain distance, the people will prefer the walking mode to the transit. It depends of course on the distance between the zones, but here the distance is usuàlly less than $1 / 4$ mile.
b) The second assumption will be the same as in the previous case with a slight modification. We will assume that the volume alighting at a station will be proportionally distributed over the prior station according to the volumes boarding at these stations diminished by the volumes already alighted. This seems rather complicated but in fact is not-let $b_{1}, b_{2}, b_{3} \ldots b_{n}$ be the boarding counts on the stations and $a_{1}, a_{2} m a_{3} \cdot . a_{n}$ be the alighting counts. Of course $a_{1}=0$ and $b_{n}=0$, but it will be simpler to use them for the rest of the argument. According to the first hypothesis, we should have also $a_{2}=0$ (if it is not so, we will know that $v^{12}=a_{2}$ because the people can come only from station 1). Still, according to the first hypothesis, we will have, for $n \geq 2$,

$$
a_{n}=v^{l n}+v^{2 n}+\cdots+v^{(n-2) n}
$$

(Nobody will go from station ($n-1$) to station n).
According to the second hypothesis we will have:
$\frac{v^{1 n}}{b_{1}-\sum_{i=1}^{n-1} v^{l i}}=\frac{v^{2 n}}{b_{2}-\sum_{i=2}^{n-1} v^{2 i}}=\frac{v^{j n}}{b_{j}-\sum_{i=j}^{n-1} v^{j i}}=--=\frac{v^{n-2 n}}{b_{n-2}}=k$
This represents the volumes already alighted.

Using a simple rule of arithemetic we get:

$$
\begin{aligned}
& k=\frac{v^{l n}+v^{2 n}+\cdots+v^{n-2 n}}{\sum_{j=1}^{n-2}\left(b_{j}-\sum_{i=j}^{n-1} v^{j i}\right)} \\
& \text { but } \sum_{j=1}^{n-2}\left(b j-\sum_{i=j}^{n-1} v^{j i}\right)=\sum_{j=1}^{n-2} b j-\sum_{j=1}^{n-2}\left(\sum_{i=j}^{n-1} v^{j i}\right) \\
&=\sum_{j=1}^{n-2} b j-\sum_{i=1}^{n-1}\left(\sum_{j=1}^{n-2} v^{j i}\right)=\sum_{j-1}^{n-2} b_{j}-\sum_{i=1}^{n-1} a_{i}
\end{aligned}
$$

Therefore, we get the formula:

$$
v^{p n}=\frac{b_{p}-\sum_{i=1}^{n-1} v^{p i}}{\sum_{j=1}^{n-2} b_{j}-\sum_{i=1}^{n-1} a_{i}} \times a_{n}
$$

This is of course an empirical formula, which cannot be proven in any case. But it gives sometimes results which are quite sufficient for first approximations. The two following examples given are taken from surveys in the city of Toulouse (France) made by the IRT.* The 2 lines are CBD--suburb oriented--but one is typically the illustration of the first case, while the other one has a more general type and illustrates the second case.

FIRST TABLE

As can be seen this type of line corresponds exactly to the description made previously. As it is CBD-suburb oriented, nobody alights in the CBD and nobody boards in the suburb. The pair of figures in the matrix represent: - for the top ones the synthetic volumes, and the bottom ones the real volumes.

As can be seen the results are extremely satisfactory. If we take irto account only the relatively important volumes ($V^{i j} \geq 20$) we do not have any relative error greater than 18% which is a very 10 w rate. And the greatest error for the first station where most people have boarded does not exceed 13%, which is excellent.

SECOND TABLE

This line is suburb-CBD oriented, but this time the suburb is a close one. That is why the line does not correspond to the first criteria. The results here are less accurate. However, the accuracy increases with the volumes. For volumes greater than 35 we get a maximum error of 23%. Furthermore, the average error decreases for the alighting at the CBD station.

These two tables have shown that some efficient inferences could be made when some data were missing. But we can realize also that there is some limit to the accuracy of these results, and we can only use these synthetic volumes for a first approximation.

[^10]

TABLE 2		$\begin{aligned} & z \\ & 0 \\ & 3 \\ & 3 \end{aligned}$			$\begin{aligned} & \text { 㟶 } \\ & \text { 品 } \\ & 0 \\ & 0 \\ & \hline \end{aligned}$		$\begin{aligned} & \stackrel{\rightharpoonup}{c} \\ & \stackrel{y}{c} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{訁}{0} \end{aligned}$					$\left\lvert\, \begin{aligned} & \stackrel{\sim}{u} \\ & \underset{Z}{u} \\ & \underset{\sim}{u} \end{aligned}\right.$		\sum_{Σ}^{N}	$\left\lvert\, \begin{aligned} & \stackrel{\rightharpoonup}{\underset{u}{u}} \\ & \underset{\sim}{u} \\ & \underset{\sim}{\sim} \\ & \underset{\sim}{o} \\ & \hline \end{aligned}\right.$		$\begin{aligned} & \text { 岂 } \\ & \text { O} \\ & 0 \\ & \underset{y}{\sim} \\ & \underset{y}{2} \end{aligned}$	
CAFARELLI	（7）																	1
BON REPOS	（5）	（3） 2																8
COLOMBETTE	$\begin{aligned} & (11) \\ & 10 \\ & \hline \end{aligned}$	（5）	$\begin{gathered} (1) \\ 3 \\ \hline \end{gathered}$															17
PROVIDENCE	$\begin{array}{r} (15) \\ 16 \\ \hline \end{array}$	$\begin{gathered} (7) \\ 8 \\ \hline \end{gathered}$	（2）	$\begin{gathered} \hline(4) \\ 6 \\ \hline \end{gathered}$														28
SOUPETARD	(37) 44	（17 $\begin{aligned} & \text { 15 } \\ & 18\end{aligned}$	（4） 3	（9） 7	（5） 3													72
CH. PELLEPOR	（37） 43		（4）	$\begin{gathered} (9) \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} (6) \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} (1) \\ 1 \\ \hline \end{gathered}$												76
CHAUBET	$\begin{array}{r} (32) \\ 30 \\ \hline \end{array}$	(15) 19	$\begin{gathered} (3) \\ 5 \\ \hline \end{gathered}$	（8） 9	（5） 3	(1)	(2)											67
LOUIS PLANA	(38) 36	（18）	（4）	（9） 10	（6）	（1）	（2） 3	（1）										80
PT. de BALMA	（32）	（15）	（3） 16	（8） 18	（5）	（1）	（2）	（1）	（1）									67
ARENES	$\begin{aligned} & 19 \\ & 19 \\ & 14 \end{aligned}$	$\begin{aligned} & \hline\left(\begin{array}{l} 9 \\ 13 \end{array}\right. \\ & \hline \end{aligned}$	$\begin{gathered} (2) \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} (5) \\ 2 \end{gathered}$	（3）	（1）	$\left[\begin{array}{c} (7) \\ 3 \end{array}\right.$	－	$\overline{1}$	1								41
BALMA C	$\left(\begin{array}{l}\text {（134）} \\ 139\end{array}\right.$	（65） 63	(14) 8	（34）	（20）	（5）	$\begin{gathered} 9 \\ 9 \end{gathered}$	(4)	（2）	$\begin{gathered} (6) \\ 3 \end{gathered}$	$\begin{gathered} (2) \\ 1 \end{gathered}$							299
MONS	（27）	（13）	（2）	（7） 10	（4）	（1）	（2）	（1）	（1）	（1）	$\overline{1}$	－						58
CROISEMENT	$\begin{array}{\|c} (33)^{\prime} \\ 43 \\ \hline \end{array}$	$\begin{array}{r} 75 \\ \hline 21 \\ \hline \end{array}$	$\begin{gathered} 1 \\ (3) \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} \hline(2) \\ 4 \\ \hline \end{gathered}$	(5) 2	$\begin{gathered} 7 \\ 1 \\ 1 \end{gathered}$	（2）	（1）	（1）	$\begin{array}{\|c} (1) \\ 1 \end{array}$		(1)	$\begin{gathered} \hline(5) \\ 0 \\ \hline \end{gathered}$					76
Rte．de LAB．	$\begin{gathered} (17) \\ 8 \\ \hline \end{gathered}$	$\left(\begin{array}{l} (8) \\ 3 \\ \hline \end{array}\right.$	(2)	$\begin{gathered} (4) \\ 2 \\ \hline \end{gathered}$	（2） 4	$\begin{gathered} (1) \\ 2 \\ \hline \end{gathered}$	（1）	$\begin{gathered} (-) \\ 4 \end{gathered}$	$\begin{gathered} (-) \\ 1 \end{gathered}$	（1）	$(-)$	（－）	$\begin{gathered} (3) \\ 4 \\ \hline \end{gathered}$	（1）				40
LASBORDES	（37） 43	（18）	（4）	$\begin{aligned} & \hline(9) \\ & 10 \\ & \hline \end{aligned}$	(5) 3	（1）	（2）	$\begin{gathered} 7 \\ 3 \end{gathered}$	$\begin{gathered} (1) \\ 2 \end{gathered}$	（1）	$\begin{gathered} (1) \\ 1 \end{gathered}$	（7）	$\begin{gathered} \hline(6) \\ 8 \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline(1) \\ 2 \\ \hline \end{array}$	$\begin{gathered} \hline(6) \\ 6 \end{gathered}$	$\begin{gathered} (5) \\ 5 \\ \hline \end{gathered}$	y	99
	479	226		116	66		23		6	11	3	2	16	2	6	5		

CASE 2

This time we will assume that we have already an 0-D matrix but it is outdated and we want to update it with some boarding and alighting counts.*

We suppose that we have an $0-D$ matrix $\left(V^{i j}\right)$ where

$$
\left.\sum_{j=1}^{N} V^{i j}=B^{i} \text { (total boarding at station } i\right)
$$

$\sum_{i=1}^{j-1} V^{i j}=A^{j}$ (total alighting at station $\left.j\right)$
$i=1$
We want to update the matrix using some boarding and alighting counts $B^{l i}$ and $A^{l j}$. The first point is to transform the $0-D$ matrix into a contingency table, with marginals.
a marginal of $v^{i j}$ will be given by: $v^{i j}=\frac{v^{i j}}{V}$
where V is the total volume.

$$
V=\sum_{j} \sum_{i} V^{i j}=\sum_{j} A^{j}=\sum B_{i}^{i}
$$

In the same way, the marginal of a boarding and alighting count will be:

$$
\begin{aligned}
& a^{j}=\frac{A^{j}}{V} ; \quad b^{i}=\frac{B^{i}}{V} \\
& a^{-j}=\frac{A^{\prime} j}{V^{\prime}} ; \quad b_{i}^{\prime}=\frac{B_{i}^{\prime}}{V^{\prime}}
\end{aligned}
$$

Then we use an algorithm which converges most of the time (it is not guaranteed to converge with tricky initial values).

[^11]We have

$$
\begin{equation*}
v_{(n+1)}^{i j}=v_{(n)}^{i j} \times \frac{a^{-i}}{a^{i}(n)} ; v_{(n+2)}^{i j}=v_{(n+1)}^{i j} \times b_{(n+1)}^{j} \times \frac{b^{-j}}{b_{(n+1)}^{j}} \tag{21}
\end{equation*}
$$

where

$$
v_{(n)}^{i j} \text { is the result of the } n^{\text {th }} \text { iteration }
$$

and

$$
a^{i}(n)=\sum_{j} v_{(n)}^{i j} ; \quad b^{j}(n)=\sum_{i} v^{i j}(n)
$$

We can show the efficiency of such an algorithm with a simpie example. The numbers chosen are absolutely random (Table 3).

ORIGINAL TABLE

.02	.04	.07	.13
.03	.13	.10	.26
.05	.27	.29	.61
.10	.44	.46	1.0

NEW MARGINALS

		.10 .32 .20$\quad .35$

ITERATION 1 :

.0154	.0308	.0538	.1000	.0309	.0241	.0535	.1085
.0369	.1600	.1231	.3200	.0739	.1251	.1224	.3214
.0475	.2567	.2757	.5800	.0952	.2008	.2747	.5701
.0998	.4475	.4526		.2000	.3500	.4500	

ITERATION 2:

.0285	.0222	.0493	.1000	.0286	.0221	.0493	.1000
.0736	.1246	.1219	.3200	.0470	.1242	.1219	.3201
.0969	.2043	.2789	.5800	.0974	.2037	.2788	.5799
.1990	.3511	.4501		.2000	.3500	.4500	

TABLE 3.

A-2 Split of the Transit Trips by Purpose

This time we want to know how many people are going to use the transit system for shopping, to work or for social-recreational reasons. To derive these volumes we will use the peak load count.

Our assumption will be that the trips for a given purpose are constnatly distributed overtime, i.e. a given proportion of people are going to work, to shop or for other purposes during the morning peak, the day off-peak and the evening peak.

As we can assume that the time in the day of the trip has really no effect on the mode chosen, this proportion will remain the same for the three different modes.

Then if:
α_{1} is the percentage of work trips during the morning peak
β_{1} " " " shopping " " " " "
γ_{2}

α_{2}	$"$	$"$	$"$	work	$"$	$"$	$"$
B_{2}	$"$	$"$	$"$	shopping "	$"$	$"$	$"$
γ_{2}				social-recreational	$"$	$"$	$"$

We have:

	MORNING PEAK	DAY OFF PEAK	EVENING PEAK
WORK	$\alpha_{1} \times W$	$\left(1-\alpha_{1}-\alpha_{2}\right) W$	$\alpha_{2} W$
SHOPPING	$\beta_{1} \times S$	$\left(1-\beta_{1}-\beta_{2}\right) S$	$\beta_{2} S$
SOC.-RECREATIONAL	$\gamma_{p} \times R$	$\left(1-\gamma_{1}-\gamma_{2}\right) R$	$\gamma_{2} R$

where W, S, and R are the volumes for the different purposes.

Then, $Y P_{M}$ is the morning peak load count.

"	" P_{E}	"	evening	"	"	"	.
"	P_{0}	"	off peak	$"$	$"$	$"$	

We have:

$$
\begin{align*}
& P_{M}=\alpha_{1} W+\beta_{1} S+\gamma_{1} R \\
& P_{0}=\left(1-\alpha_{1}-\alpha_{2}\right) W+\left(1-\beta_{1}-\beta_{2}\right) S+\left(1-\gamma_{1}-\gamma_{2}\right) R \tag{22}\\
& P_{E}=\alpha_{2} W+\beta_{2} S+\gamma_{2} R
\end{align*}
$$

As we can see here, we have a system of three equations with three variables W, S, R that in most of the cases can be solved. Therefore, if we have the peak load counts for the three periods of the day, we can easily compute the three volumes W, S, R. In fact, we do not need to make these three counts. only two will suffice. If T is the total daily volume we have:

$$
T=W+S+R
$$

Consequently, with two of the previous equations we have a new system equivalent.

The coefficients α_{j}, β_{i}, j are variable according to the towns. In a survey made in Washington, it has appeared that some of these coefficients were:

$$
\alpha_{1}=.85 \quad \beta_{7}=.18 \quad \gamma_{1}=.18
$$

A-3 Time Distribution

This time we want to know how the transit volumes are going to be distributed between peak and off peak hour, assuming that we know them for each purpose.

The method has already been discussed in the previous chapter. It is notring but the converse of the previous argument.

We know, as a first approximation, that some coefficients $\alpha_{i}, \beta_{i}, \gamma_{i}$ exist which are the peak rates for each purpose. Consequently, if we know W, S and R :
$\alpha_{1} W, \beta_{1} S, \quad \gamma_{1} R \quad$ will be the volumes during morning peak
$\alpha_{2} W, \beta_{1} S, \gamma_{2} R \quad " \quad " \quad$ " evening " $\left(1-\alpha_{1}-\alpha_{2}\right) W,\left(1-\beta_{1}-\beta_{2}\right) S,\left(1-\gamma_{1}-\gamma_{2}\right) R \quad " \quad$ " off "

B. Distribution Variables for All Modes

We want this time to derive the OD matrix for all purposes and all modes. As we have heavily put the emphasis on transit data, we will assume that we already know the 0-D matrix for transit (obtained synthetically, or by survey). But this is not enough, and we will assume furthermore that we know also the generation figures and the modal shares at a high scale (i.e. very general data) for the three purposes. For example, we can know the generation figure for the whole town and the modal shares between the 3 basic zones, CBD, 1st Ring, 2nd Ring, for the 3 purposes. Then we will limit our study to a bus line which is located in a corridor. In this case the people living in that corridor will have only one degree of freedom for the destination of their trips. If we split the line again into sections $i(i=1$. . . N) and assume that the generation figure, for a first approximation, will be the same for the corridor as for the town, the total number of trips originated at a zone i will be:

$$
T_{P_{i}}=\alpha_{p} \times P_{0} P_{i}
$$

where $T_{P_{i}}$ is the number of trips originated in i for purpose P
α_{p} is the generation rate for purpose p
$(P O P)_{i}$ is the population of zone i
Then, for a purpose P (we will drop the index to make the formulas easier) we will have:

$$
T_{i} \underset{j \neq i}{=} v^{i j}
$$

where $v^{i j}=v_{A}^{i j}+v_{T}^{i j}+v_{W}^{i j}$
As we know $V_{T}^{i j}$ the challenge will be to derive $V_{A}^{i j}$ and $V_{W}^{i j}$.
The first step of the argument will be to build a Transit matrix at the same scale as the modal shares we have. For example, if we have the modal shares between or within the CBD, the first ring, and the second one, we must derive the Transit 0-D matrix for these zones.

Then we can assume that the modal shares between these zones in the corridor will be the same as the global ones. At this point we can compute the intermediate volumes $V_{A}^{i j}$ and $V_{W}^{i j}$. We have:

$$
V_{A}^{i j}=\frac{P_{A}^{i j}}{P_{T}^{i j}} V_{T}^{i j}, V_{W}^{i j}=\frac{P_{W}^{i j}}{P_{T}^{i j}} V_{T}^{i j}
$$

where $P_{A}^{i j}, P_{T}{ }^{i j}$ and $P_{W}^{i j}$ are the modal shares for the zones.
If the volumes were the real ones we should have:
$\sum_{j=1}^{N}\left(V_{A}^{i j}+V_{T}^{i j}+. V_{W}^{i j}\right) ? \alpha(P o P) i$
But this will not be the case most of the time. Therefore, we have to adjust the results. We will make strong hypotheses which once again are only an approximation of the reality.
a) the modal share between auto and two wheels will remain the same for all the zones. By the way we are isolating the transit; of course the total modal share will vary.
b) the change of the volumes $V_{A}{ }^{i j}$ and $V_{W}{ }^{i j}$ will be proportional to the value of these volumes.

This can be summarized by the two following formulas:
a) $\frac{V_{A}^{i j}+\Delta V_{A}^{i j}}{V_{W}^{i j}+\Delta V_{W}^{i j}}=\frac{V_{A}^{i j}}{V_{W}^{i j}}=\frac{P_{A}^{i j}}{P_{W}^{i j}}$
and
b) $\frac{V_{M}^{i j}+\Delta V_{M}^{i j}}{V_{M}^{i k}+\Delta V_{M}^{i k}}=\frac{V_{M}^{i j}}{V_{M}^{i k}} \quad(k \neq i) \quad(M=A$ or $W)$
where $\Delta V_{M}{ }^{i j}$ represents the change in volume between i and j using mode M.
These two formulas can be rewritten as:

$$
\frac{\Delta V_{A}^{i j}}{\Delta V_{W}^{i j}}=\frac{V_{A}^{i j}}{V_{W}^{i j}} \quad ; \quad \frac{\Delta V_{M}^{i j}}{\Delta V_{M}^{i k}}=\frac{V_{M}^{i j}}{V_{M}^{i k}}
$$

As it can be seen this is equivalent to:

$$
\frac{\Delta V_{M}^{i j}}{\Delta V_{M^{i}}^{i k}}=\frac{V_{M}^{i j}}{V_{M^{i}}^{i k}} \Leftrightarrow \Delta V_{M}^{i j}=\frac{V_{M}^{i j}}{V_{M^{i}}^{i k}} \Delta V_{M^{\prime}}^{i k} \quad\left(M_{1} M^{\prime}=A \text { or } W\right)
$$

So we have $2 N$ unknown $\Delta V_{M}^{i j}(M=A, W ; j=1.1 . N)$ and $2 N-1$ equations coming from $(2 N-1)$ independent rates $\frac{V_{M}^{i j}}{V_{M^{\prime}}^{i j}}$. But we have also the
formula (23) that can be written as:

Therefore:
$\sum_{j=1}^{N}\left(\Delta V_{A}^{i j}+\Delta V_{W}^{i j}\right)=\alpha P_{o P} P_{i}-\sum_{j=1}^{N}\left(V_{A}^{i j}+V_{T}^{i j}+V_{W}^{i j}\right)$
So we have a system of $2 N$ linear equations with $2 N$ unknown which will be solvable all the time. The solution is:

$$
\begin{equation*}
\Delta V_{M}^{i j}=\frac{V_{M}^{i j}}{\sum_{j=1}^{N}\left(V_{A}^{i j}+V_{W}^{i j}\right)} \times\left[\alpha \operatorname{PoP}_{i}-\sum_{j=1}^{N}\left(V_{A}^{i j}+V_{T}^{i j}+V_{W}^{i j}\right)\right] \tag{24}
\end{equation*}
$$

To show the efficiency of such a method we will take the example of a bus line (line Q) in Toulouse. This line goes from the CBD to the east suburb of Toulouse, and it is the only line available on a large length creating a corridor (first and second ring).

We are given:

- a transit 0-D matrix (station by station) coming from a survey aboard the buses in May 1976.
- global generation rates for the three purposes (for the whole town).
- modal shares for work trips between and within the CBD (zone 0), the first ring (zone 1), the second ring (zone 2).
- the approximate population served by the line, in these three zones

With these data we are able to apply the method described previously, for work trips.

The first point is to get an aggregate transit 0-D matrix for work trips between the basic zones. Using the 0-D matrix (shown previously
in the study) by station, it is easy to aggregate it. Then we know that only 44% of the people on that survey were making work trips. Applying therefore the coefficient. 44 we get the following macrix:

CBD \quad lst RING \quad 2nd RING

CBD (Zone 0)	95	149	272
1st Ring (Zone 1)	105	2	12
2nd Ring (Zone 2)	276	12	22

But there again inferences must be made. This 0-D matrix represents the distribution of work trips for the WHOLE DAY. In other words it means that the volumes shown can be as well trips to go to work or return trips. But according to the existing employment in the different zones, it seems reasonable that all the work trips are going towards the CBD. Furthermore, the matrix is rather symmetric and would show that the trips going from the CBD to the lst ring or 2nd ring are return trips.

As we have assumed that the part of the first and second ring served by the line are in a corridor, we can apply the method.

The population of the zone 2 served by the line is 7250 .
" " " " zone 1 " " " 6000.
The generation rate for work trips at the city scale is a 32 . The modal shares are:

$$
\begin{array}{llll}
\text { within 2nd ring } & P_{A}^{22}=.71 & P_{W}^{22}=.23 & P_{T}^{22}=.06 \\
\text { within 1st ring } & P_{A}^{11}=.66 & P_{W}^{11}=.26 & P_{T}^{11}=.12
\end{array}
$$

Between 1st and 2nd ring $\quad P_{A}^{21}=.69 \quad P_{W}^{21}=.19 \quad P_{T}^{21}=.12$
Between lst ring and $C B D \quad P_{A}^{10}=.55 \quad P_{W}^{10}=.23 \quad P_{T}^{10}=.22$
Between 2nd ring and CBD $\quad P_{A}^{20}=.65 \quad P_{T}^{20}=.16 \quad P_{T}^{20}=.21$
Trien, according to these data we should have for the trips originated in zone 2:

$$
T_{2}=\alpha \times P_{0} P_{2}=.32 \times 7250=2320
$$

As $v_{M}^{2 i}=\frac{P_{M}^{2 i}}{P_{T}^{2 i}} \times v_{T}^{2 i}$, we get the tableau:

	TRANSIT	AUTO	2 WHEEL.S	TOTAL
Zone 2 \rightarrow CBD	274	848	183	1305
Zone 2 \rightarrow Zone 1	12	69	19	100
Zone 2 \rightarrow Zone 2	22	260	84	366
TOTAL	308	1177	286	1771

As we see we do not reach the 2320 predicted trips. Therefore, we can use the formula found previously:

$$
\Delta v_{M}^{2 i}=\frac{v_{M}^{2 i}}{\sum_{j=0}^{2}\left(v_{A}^{2 j}+v_{T}^{2 j}\right)} \times\left(\alpha P_{o P_{i}}-\sum_{j=0}^{2}\left(v_{A}^{2 j}+v_{T}^{2 j}+v_{W}^{2 j}\right)\right.
$$

here $\sum_{j=0}^{2}\left(V_{A}^{2 j}+v_{T}^{2 j}\right)=1463$

$$
\alpha P_{O P}-\sum_{j=0}^{2}\left(V_{A}^{2 j}+V_{W}^{2 j}+V_{T}^{2 j}\right)=2320-1771=549
$$

So we get the new table, giving the computed volumes and the modal shares:

	TRANSIT	AUTO	2 WHz̈ELS	TOTAL
Zone $2 \rightarrow$ CBD	274 (16\%)	1156 (70\%)	252 (14\%)	1692
Zone $2 \rightarrow$ Zone 1	12 (9\%)	95 (71\%)	26 (20\%)	133
Zone $2 \rightarrow$ Zone 2	22 (5\%)	358 (72\%)	115 (23\%)	495
TOTAL	308	1619	393	2320

As it can be seen here the rates of transit are slightly lower than the average. However, this could be explained by the fact that there is only one bus line in this area. In other areas of Toulouse the network is much denser and the ridership is greater. Anyway, we see that we can find some $0-D$ matrix for any mode knowing the global modal shares and the generation rate. Yet the accuracy of the results is greatly related to the exact generation figure, the exact global modal shares and overall the exact population served by the line. The example of the results for the zone 1 can illustrate perfectly this fact. The population has approximately been estimated to 6000 inhabitants in Zone 1. Therefore, the total number of trips originated in Zone 1 will be:

$$
T_{1}=.32 \times 6000=1920
$$

If we compute the volumes according to the global modal shares we get the table:

	TRANSIT	AUTO	2 WHEELS	TOTAL
Zone $1 \longrightarrow$ CBD	105	263	110	478
Zone 1 \longrightarrow Zone 1	2	11	4	17
Zone $1 \longrightarrow$ Zone 2	0	0		e assumed that rips were rerips from $2 \rightarrow 1$
TOTAL	107	276	114	495

As we see there is a tremendous gap between the 2 volumes. And at this point we have not made any important assumption; only that the global shares remained the same in the corridor. The mistake obviously comes from the population that has been overestimated. This shows then that the results will be consistent only if the data are. The inferences about the context are useful if the preliminary studies give some relevant results.

4-3. INFERENCES ABOUT LEVEL OF SERVICE

In many calibrations of models the level of service of all the modes is needed. If the level of service of transit is easily available for the bus operator it is not the case for the level of service of the other modes, and we must then find a way to derive them.

Mainly the level of service variables are:

- the out of pocket cost
- the in vehicle time
$\left.\begin{array}{l}\text { - the waiting time } \\ \text { - the walking time }\end{array}\right\rangle$ which can be replaced by the out of vehicle time We can assume that the out po pocket cost of the waiting time and the in vehicle time are known for the transit mode. Therefore, we will have to derive from these results and from data the other variables.

A. In Vehicle Time

Two cases are possible:
Case 1 - No data at all exists and inferences must be done only from transit data.

Case 2 - Some data are available and the inferences can be done about them.

Case I

The in-vehicle time is essentially based on the generalized speed of the vehicles, i.e. the speed including all the necessary stops (at the stop lights, for example). We are supposed to know the speed of the buses and of course the in-vehicle time. It appears that there exist sone rough coefficients which give the speed of the automobile (and two wheel) as a function of the speed of transit. These coefficients come from some general observations on the traffic.

We have then:

$$
S_{A}=\alpha_{A} S_{T}
$$

$$
S_{W}=\alpha_{W} S_{T} \quad \text { where } S_{M} \text { represents the speed of mode } M \text {, and } \alpha_{i} \text { is }
$$

a constant.

As the in vehicle time can be represented by:

$$
\text { IVT }=\frac{\text { DST }}{S}\left(\begin{array}{l}
\text { (distance) } \\
\text { (generalized speed) }
\end{array}\right.
$$

we have:

$$
\begin{aligned}
& I V T_{A}=\frac{D S T}{S_{A}}=\frac{D S T}{\alpha_{A} S T}=\frac{1}{\alpha_{A}} I V T_{T} \\
& I V T_{W}=\frac{1}{\alpha_{W}} I V T_{T}
\end{aligned}
$$

The generally admitted values of α_{W} are $\frac{1}{.85}$ and 1 on an urban network. But of course these values are inaccurate and represent only roughly the reality. Furthermore, if we apply a coefficient of proportionality between the modes, we will lose an essential property of these variables for an eventual regression: the variance of their difference

Case 2

If we want to keep some variance in the difference of in vehicle time between the modes we need some other results. Many surveys have been done on the urban traffic, and often these surveys can be transferred from one city to another. Usually they give the average speed as a function of the nature of the road. Here follows an example of such data (source Hall and George, Highway Research Board 1959).

TYPE OF FACILITY	SPEED FOR SAN DIEGO DURING PEAK HOUR FOR AUTO
Major St. - Normal	30 MPH
Major St. - Highly Developed	$20 "$
Collector Street	25 "
Local and Business District	$15 \mathrm{"l}$

This kind of data exists very frequently and can easily be used. Knowing the distance between the zones it is easy to compute the in-vehicle time. We first study the kind of link joining the two zones and then a first approximation of the in vehicle time will be:

$$
I V T_{A}=\frac{D S T}{S_{A}} \quad N T_{W}=\frac{D S T}{S_{W}}
$$

Another kind of data gives the average speed of the cars as a function of the existing volume and the capacity of the facility in urban areas. Here follows an example.

Ratio $\frac{\text { VOLUME }}{\text { CAPACITY }}$	AVERAGE OVERALL TRAVEL SPEED
less than .70	$>30 \mathrm{MPH}$
less than .90	$>25 \mathrm{MPH}$
less than .85	$>20 \mathrm{MPH}$
less than .90	
less than .95	
more than .95	
(traffic jam)	

(source: Highway Research Board; Highway Capacity Manual 1965)

Therefore, the task of the analyst is to determine the average distance between the zones, the average spped of the car according to the kind of traffic between the zones and compute the in-vehicle time.

The same kind of inferences can be done about the 2 -wheels but unfortunately the data is missing in the U.S. about that mode of transportation.

B. Waiting (Excess) Time

If the waiting time commonly accepted for the transit is half the headway (as a first approximation), the excess time for the auto mode is not so neatly defined. The excess time for the auto consists of the
parking and unparking time, and of course it will depends essentially on the location of the parking space. The time to park will certainly vary from on city to another. But if no data is available one can try to transfer some data from another city. Here are given rough. estimates of the parking time in Pittsburgh.

Type of Parking Area	Parking time $($ min. $)$	Unparking time $($ min. $)$
Industrial	2	2
High density shopping area	2	2
Low density shopping area	2	2
High density resident	1	1
Low density resident	0	0

(Source: Domencich McFadden; Urban travel demand) (1975)

The excess time for the two-wheels can be assumed to be zero. These vehicles can be parked everywhere, and consequently there is not waiting time.
C. Walking Time

According to some surveys most auto drivers declared that they did not walk more than one block to get their car. Therefore, the waiting time for the auto mode can be assumed to be negligible (i.e. zero). This will be even more true for the 2 -wheels mode, where most of these vehicles are parked in the very building where the people work or live. Therefore, the walking time will be important mainly for the transit mode. We have delimited the emission and attraction zones within 1/4 mile of the bus stations on the line. As we are dealing with aggregate
data, the first point will be to compute the average distance walked by an average passenger. Many assumptions can be made about the distribution of the location of the people taking the bus within the emission zone. The simplest assumption that can be used if nothing else is available is a uniform distribution giving $1 / 8$ mile as the average walking distance. But some studies have been done and showed that this distance can be a function of the income, and that in general more people were taking the bus within $1 / 8$ mile of the station than between $1 / 8$ and $1 / 4$ miles.*

The walking distance will not suffice. Some estimates of the walking speed are aiso required. Some surveys have been done, and this time the results can be transferred because the walking conditions are similar in all cities. Here follows a survey in Pittsburgh giving the walking speed as a function of the walking location.

Walk Location	Average Speed
Downtown (congested streets and sidewalks)	2 mph
High density residential and commercial suburban districts	3 mph
medium density residential and commerical suburban districts	3 mph

(Source: Domencich MacFadden, Urban Travel Demand)
Thus, with the average walking distance and the average speed, the operator will be able to determine the average walking time.

[^12]
D. Out of Pocket Cost

The transit out of pocket cost is the fare. The auto out of pocket - will be the operating and parking costs, and the 2 wheels out of pocket cost will be the operating costs only.
a) Operating Costs

Many studies have been made about the auto operating cost or more exactly about the mileage of a car according to the type of the road. Using these studies, and having the average gas price will give a rough first estimate of the operating cost. In fact, to get a more accurate estimate of these costs we need the costs of repais, tires, etc. Here are two tables giving some of these estimates. They are old but can give an idea of these kinds of data.

Roadway Condition	Miles/Gallon for passenger vehicles
Expressway	22.3
Arterial coordinated signal	18.4
Arterial ordinary	14.9
Congested businees street	8.7

(Source: Gibbons and Proctor, Economic Cost of Traffic Congestion.)

	Cost, cents per vehicle mile				
Average travel speed MPH	Estimated \# of stops per miles	Cost of Fuel	Cost of tires, repairs, etc.	Cost of stops	TOTAL COSTS
10	6.25	3.40	.96	.28	4.62
15	2.71	2.71	.95	.18	3.86
20	1.29	2.30	.98	.11	3.39
30	.26	1.82	1.05	.06	2.91
40	0	1.55	1.19	0	2.76

(Source: CATS Resea:"ch News 1959)

With this kind of data, and the description of the links between the zones it is possible to compute the operating cost for the auto.

The same kind of data might exist for the 2 wheels (in Europe). Unfortunately this data is missing in the U.S.
b) Parking Cost

There is no rule to compute the average parking cost in the different zones. Some surveys are needed in each zone to know the average price of a parking or we can only use the average price for the whole town. 4-4. Inferences about the Socio-Economic and Attraction Data

As we said previously, the socio-economic and attraction variables are usually given (in the U.S.) by the census tracts. Unfortunately, there are cases when even this data is not available. The challenge of the analyst will then become greater, and the inferences harder to make.

I have to admit that unfortunately I could not find any inferences about these variables. But of course it does not mean that it is impossible. The field of research is wide open and it is probably one of the most interesting problems to explore.

4-5. The Concept of Elasticity ${ }^{*}$

A. Definition

The elasticity is a concept which is often used inaccurately. Its definition is: the elasticity of y with respect to n $E_{n}(y)$ is the precent change of y for 1 percent change in n.

Thus the elasticity of the volume V with respect to the level of service S will be

$$
E_{S}(V)=\frac{S_{0}}{V_{0}} \cdot \frac{\partial V}{\partial S}
$$

where Vo, So are the existing volume and the existing level of service. From this exact concept of elasticity must be sometimes derived an approximate concept, the arc elasticity. The arc elasticity will be given by:

$$
\begin{equation*}
E_{S}^{\prime}(V)=\frac{S 0}{V_{0}} \times \frac{\Delta V}{\Delta S} \tag{25}
\end{equation*}
$$

wehre in this case we are examining the changes at a level which is not marginal anymore. The difference between the two concepts is given by Figure 8.

This arc elasticity can in some ways be improved by the introduction of an average arc elasticity given by:

$$
\begin{equation*}
E_{S}^{\prime \prime}(V)=\frac{\bar{S}}{\bar{V}} \frac{\Delta V}{\Delta S} \tag{26}
\end{equation*}
$$

where \bar{S} and V represent the average S and V before and after the change. To compute these last two elasticities, when no demand function is

[^13]
FIGURE 8.

available, the operator has to implement a change in the level of service, analyse the change in ridership provoked by this change, and apply one of the two formulas.

Use of the concept of elasticity:
To make a forecast using this concept, the operator will need to know three parameters:

- The existing ridership
- The existing level of service
- The change in level of service he will try to implement

In this case we can derive from the formula (25)

$$
\Delta V=\frac{V_{0}}{S 0} \times E_{S}^{\prime}(V) \times \Delta S
$$

where we see that the change in volume is proportional to the change in level of service and the rate $\frac{V 0}{\text { So }}$. The new ridership is given then by the formula

$$
\begin{equation*}
V_{1}=V_{0}+\Delta V=V_{0}\left[1+E_{S}^{\prime}(V) \times \frac{\Delta S}{S 0}\right] \tag{27}
\end{equation*}
$$

From the second formula (26) we can derive:

$$
\frac{\Delta V}{V}=\frac{\Delta S}{\bar{S}} \times E_{S}^{\prime \prime}(V)
$$

but $\frac{\Delta V}{\bar{V}}=2 \times \frac{V_{1}-V_{0}}{V_{1}+V_{0}}$ therefore we get:

$$
2\left(V_{1}-V_{0}\right)=\frac{\Delta S}{\bar{S}} \times E_{S}^{\prime \prime}(V) \times\left(V_{1}+V_{0}\right)
$$

if we note $K=\frac{\Delta S}{\bar{S}} \times E^{\prime \prime}{ }_{S}(V)$, we get

$$
\begin{equation*}
V_{1}=V_{0} \times \frac{2+K}{2-K} \tag{28}
\end{equation*}
$$

As we see this is a method to predict a new ridership when the three parameters described previously are known. But this is an inaccurate way of computing it. The elasticity is an approximate concept which varies a lot from one place to another. It also varies along the demand curve (e.g. with logit). Furthermore, it has appeared that the elasticity could be oriented, i.e. the elasticity with respect to an increase of level of service might be different from the elasticity with respect to a decrease in the level of service. In conclusion, it is not a reliable concept (because of the approximation and should be used as a last resort. In France (Paris), the elasticity considered are:

- with respect to frequency: .07*
- with respect to fare: 1.6

[^14]
CHAPTER V

CONCLUSION

When I first started this sutdy, months ago, I was very doubtful about its conclusion. Most of the transportation analysis methods I had learnt were so much based on great collections of data or on computer time that I did not really think it would be possible to find some simplified results. Obviously I was wrong. The methods developed here are simple and give some relevant results. Of course they are far from being perfect and they certainly need a to be improved. Nevertheless, they can help as examples on a new direction or research.

Some preliminary conclusions have come up. This methodology, though simple, is sound. The methods employed are mathematically justified, but incomplete. Therefore, some further research should be done for:

- prediction

As we have used for the prediction a naive procedure of aggregation, a bias has been introduced. This bias should be estimated (cf. Koppelman estimation of bias in aggregation procedure). At this point there is a way to diminish that bias. It can be done with the use of sample *. The pattern of the process is the following:
(1) Establish the basic population units of the corridor
(2) Identify and assemble data for the population of units
(3) Decide on major classification variables and classes
(4) Classify population of units into above categories. This is

[^15]
then the sampling frame.

(5) Decide on the desired sample size, both total and number in each category of the sampling frame
(6) Randomly select a sample of unit from the sample frame
(7) Summarize the relevant socio-economic characteristics from these units.
(8) Calculate the "base case" service level for each unit in the sample
(10) For each unit using the appropriate models, calculate the demand volumes at the base levels of service; expand
(11) If any data is available on actual usage in the corridor, develop adjustment factors to match predicted and observed volumes.

Most of our results have been based on the fact that the people using the bus line were in a corridor and had only one degree of freedom for the destination of their trips. This is an approximation and the error of such an assumption needs to be computed. Our methods of prediction were based on the fact that we were using a logit model but other models can very well be used and some new simplified way, perhaps leading to better results could be found.

- estimation

The method of estimation used here for the logit model was based on the least squares estimators, and needed an aggregation of the data. We surely introduced an error in aggregating these data. An estimation of that error is needed in order to give some limits to the results.

Again, we used the logit model, but all sorts of models could be used, and it would be interesting to compare the results coming from different models estimated in a simplified way..

- inferences about the context

We have here studied only a few specific cases of inferences, and this field of search is nearly unlimited. Many more methods should be developed to try to get the maximum information from the minimum data. Mainly the emphasis should be put on inferences on the socio-economic and the attraction variables. Then the next point would be, once again, to estimate the errors made with such inferences. As a matter of fact, all the results given here have not been bound between some upper and lower limits, and for that reason are not completely valid.

We must not forget that all the methods were developed because they could be programmed on a pocket calculator and did not need any computer hardware. But as the time passes these pocket calculators are improving and it is obvious that the limits we were bound to will be expanded in the future. At this time the field of research will be enlarged and new methods will be possibly applied. For example, it may be possible to calibrate a logit model on a pocket calculator with the maximum likelihood method.

But this is future and we are now using these methods. That's why we must recognize their limits. These methods are useful as a first help for people who just want a rough feeling on a given situation. It may help to predict if a change in the service of the line is desirabie but it will by no means determine with accuracy the consequences of such a change. It means that these methods cannot replace in any case a detailed analysis using the maximum data. The results found by our methods should be limited between upper and lower estimates (unfortunately this part
of the study has not been done). Therefore, these methods will be more useful for the extreme ends of the range of decisions. If the criteria to implementa change is a minimum limit for the future ridership and if our estimates have a lower bound greater than this minimum limit we can assume that we can implement the change. The same kind of inferences will occur with maximum limits. The problem will arise when our methods will give upper and lower estimates which will bracket these maximum or minimum limits for an implementation decision. It is at that point that a simplified method is insufficient and some further studies are required.

Also, we have seen that our methods were heavily based on the few available data. As all sorts of inferences are made from these few data it is essentail for these data to be accurate. By our methods we introduced many errors. If by chance our data are already biased our results will not actually meany anything.

The last conclusion will be a caution for the future. If later these kinds of methods are developed, and they surely will be, they will have to include, all the time, the behavioral characterisitcs of the consumer. The simplification of the methods does not mean the complete abandon of the psychological aspect of the transportation analysis to the profit of the mathematical one. We have simplified or found some mathematical formulas in this thesis, but we tried when it possible to interpret these simplifications by a behavioral aspect of the passengers. It has to be so if the analyst wants to continue to give a meaning to the transportation analysis.

APPENDIX

A. Logit Model Program

This program allows a series of different computations with the logit model. Among others it allows the computation of the existing shares between various alternatives, and the prediction of the new shares, if some changes occur in the utilities of the alternative, or if an extra laternative is add to the set. The number of possible alternatives is equal to 5 . For all the alternatives, we have a vector of coefficients that can be up to 16 dimensions. We will give 3 different worksheets for each of the different use of the program.

1. BASE CASE
θ : Vector of coefficients
INPUTS: $\quad X$: Vector of variable of the utility i
n : number of alternatives

Notice: If the utilities of the different alternatives are known they can be entered as inputs directly.
2. CHANGE IN UTILITIES (PIVOT POINT)

INPUTS $\Delta V_{i}=$ change in utility \mathbf{i}

| θ | $\left.\left(\theta_{0}\right)\left(\theta_{1}\right)\left(\theta_{2}\right)-\cdots-1 \theta_{p}\right)$ |
| :--- | :--- | :--- | :--- | :--- |
| ΔX_{i} | $\Delta V_{i}=\Sigma \theta_{k} \Delta X_{i k}=$ |

3. ADDITION OF NEW ALTERNATIVES

$r_{1}^{\prime 2}$: new \# of alternatives
INPUTS

$$
x_{j}: \text { vector of variables of the new utility } j
$$

θ	$\theta_{0}-\quad-{ }_{n}$
x_{j}	

OUTPUTS
U_{j} : utility of new alternatives
S_{i} : new shares

i	$1-\cdots-n^{\prime}$
U_{i}	
S_{i}^{\prime}	

CAUTION: is we had to use sone arithmetic stack: memories to s ire certain values, never press he $k \in \dot{j}$ CLR unless indicated. Press $C E$ or $=$ and then 0.

SR-52 User Instructions

SR-52
 User Instructions

TITLE LOGIT MODEL BASE CASE
PAGE 2 OF 4
title logit model base case
PAGE 1 OF 4

SR－52
 User Instructions

SR－52
User Instructions

TITLE LOGIT MODEL PIVOT POINT
PAGE ${ }^{3}$ OF 4

STEP！	！PaつここうUPE	Einter	Press			Display
14	I INTRODCCE CHANGES	i	2nd	C^{\prime}		$14+\mathrm{i}$
	IN THE UTILITY ALTi	$\Delta \mathrm{Ui}$	2nd	C^{\prime}		i flashing
15	REPEAT 13 IT NECESSARY		CE			－flashing alternative n
11	PECKLL IF NECESSARY		RCL	$(14+i)$		$\mathrm{e}^{\text {UI }}$
\square	UTILITY Ui			1 n		Ui
10	COMPUTE NEW SHARES		2nd	E^{-}		
！	NETW SHARE ALT 1		A			S_{1}
\vdots	ALT 2		B	，		S_{2}
1	etc．．．．．					
1						
17	IF ALL THE $\mathrm{X}_{\mathrm{i}}{ }^{\prime} \mathrm{s}$		CLR			0
	ARE CHANGED BUT IF		STO	1	5	0
	θ REMAIN the same		STO	1	6	0
	（Different problem）		STO	1	7	0
	RETURN TO STEP 7		STO	1	8	0
			STO	1	9	0

TITLE LOGIT MODEL ADDITION OF A NEW ALTERNATIVE＿PAGE 4 OF 4

STEP	Procedure	Enter ${ }^{\text {a }}$	PGESS		OISPLAY
19	INITYALIZE		2nd	reset	
20	ENTER NEW \＃OF	n^{\prime}	2nd	A^{-}	n＇
	ALTERNATIVES		Y		
8	FILL UP VECTOR OF	$x_{(n+1) 1}$	B，C	D，E	p－1
	NEW UTILITY	！			
	（PROCEDURE RESUMES	，			
	WHERE STEP 8 HAD STOPPED	$x_{(n+1) p}$	B，C	D，E	$(\mathrm{n}+1)$ flashing
					，
10	COMPUTE NEW Shares		2nd	E^{\prime}	
	NEW SHARE ALT 1		A		s_{1}
	ALT 2		B		S_{2}
11	RECALL IF NECESSARY		RCL	（14＋i）	$e^{0 i}$
	NEW UTILITIES	：	1 n		Ui
					，

日10 46	04507	0901	13543	
01016	046	0910	13606	1802
0242	04736	0951	13706	18144
01031	04844	09323	1367	1820
01044	049106	09481	13911	1896
0058	0506	05946	14004	18441
00646	0511	0614	14175	1850
[107 17	5584	W9751	14243	186 08
D08 3	05606	09842	14911	187 DE
00942	05407	09011	14404	1894
0106	05548	100108	1459	18918
0118	0560	10151	14680	1906
-12 01	8678	102 E	14701	19101
01344	15875	1081	14905	192
01406	1059	10446	1495	193010
01509	日60 06	10515	1508	1945
01643	06109	1065	15143	195
0176	0629	10742	15201	1961
01809	06380	10801	15304	19704
01975	06401	10989	15495	1969
02011	06501	1105	15545	1974
021104	D6E 09	1112	1569	2006
12995	8675	11281	1575	20106
02380	16846	11346	15846	E02 50
024 01	06.11	11442	15910	E0\% 01
02505	07 O 5	11542	16050	20461
02605	07142	1160	16100	205
02781	072 01	11708	1621	2063
02846	075	1165	1635	E076
02923	07451	11942	16443	2086
10804	07523	12000	1650	20948
03180	Q7E 81	12107	16\% 16	21006
032 be	07746	12 E	1675	21106
0366	07612	12343	16348	2122
0840	07951	1240	16906	2134
03501	08042	12516	1708	21450
0 0 6\%	081	1262	17195	2150
0378	6ec 06	1278	1725	216
05643	0685	12 E 5	17346	2172
03909	08423	12942	17419	21650
04010	18581	13016	17594	21901
0416	D8E 46	13106	17642	$2 \cos 4$
04236	18713	13244	17719	2 E 11
04343	OES 51	13300	17808	20 02
$\underline{144} 0$	08942	13408	. 17901	2 Sc

B. 0-D Matrix Program

This program has been developed according to the formula (20). The inputs will be the boarding and alighting counts and the outputs will be the volumes $v^{i j}$ between the stations.

Because of the limited memories we can consider only the lines with less than 11 sections.

1	2	3	4	5	n	$n+1$	$m+2$
a	0	0	a	0	\cdots	0	0

According to the first hypothesis we should have no alighting at station 2, and no boarding at station ($n-1$). If it was not so, and if we had a people alighting at station 2 and b people boarding at station n, we would first have to transform $b, \quad b_{1}-a$ and $a_{n} a_{n}-b$, because we will know that the people can only come from station 1 if they alight at station 2, and go to station $n+2$ if they board at station $(n+1)$. Therefore, we would know V^{12} and $V(n+1)(n+2)$, and we can treat the problem without these volumes.

We have then as
INPUTS: a_{j} and b_{i} (defined as on the drawing)
OUTPUTS: $v^{i j}$

The worksheet will just be the 0-D matrix.

CAUTION: We have used some arithmetic unit memories, consequenlty never press the key CLR. Use the key CE or $=$ and then 0 .

SR-52
 User Instructions

Title O-D MATRIX
PAGE $1 \quad$ OF 1

00046	$045 \quad 5$	09046	13581	
0115	04636	09132	13601	18043
002	0478	09248	43794	18101
100347	04809	09306	13945	18 B
010409	0496	019407	13595	1837
00542	05075	09575	14081	18401
D0E De	05143	09643	14146	18508
007106	0 O	0976	14212	186
00842	05806	-96 19	14342	18761
01901	0.54	09995	14409	18日 4
0106	0555	10090	14508	18917
01101	0.56	10101	14611	19024
01242	0570	1020	1474	1910
01309	05609	10306	14900	1922
01409	0.596	10401	14900	19644
01581	06086	10544	15043	19400
01646	06143	1060	15109	19500
017 13	0620	10707	15208	19648
01824	06308	10844	1596	19700
01943	16422	10906	15442	19800
08006	06544	11088	15500	1997
02108	06606	11136	15600	20090
02275	06709	11243	15748	20195
02343	06895	11306	15610	2028
02481	06944	11407	15900	20646
12509	070106	1157	16075	20416
02695	0716	11636	16109	205
0279	07281	1174	16295	2061
0 OE	07343	11806	16381	2072
02987	07409	119 IS	16446	20644
03010	07508	12095	16511	2091
03101	076	12144	16642	2106
03244	07743	12 0 -6	1670	2114
03516	078100	12309	16808	212 01
03407	07900	12441	16901	2130
03544	0809	12582	17044	2145
03606	08180	12601	17101	21501
03708	18901	12744	1720	21698
D38 36	08983	12809	17343	2179
013943	0840	129119	17419	2168
04086	1858	13043	1750	2190
04187	08609	13109	17E SE	2 E 0 0
04244	08742	132 B	17742	2 E 00
04386	08806	13845	17601	2200
04409	08908	13495	17%	22 D

4 MULTIPLE REGRESSION

This program has been developped to be able to run regressions up to 4 variables. It can run indifferently regressions for 2,3 or 4 variables. The method used has been studied in chapter III (resolution of the regression problem).

We can represent the program by the following flow chart:

SR-52 User Instructions

SR-52 User Instructions

PAGE 1 O_ 2

title Linear regression PAGE_2_OF 2

083109	
184 22	1%
O8E 50	124 E
D8E IT	12611
187 43	12744
D8E 0	126 日6
08989	12964
Q9 81	13 H 4
0946	13106
09218	13205
09801	13343
0944	13406
095	13518
1096 090	136
09848	13743
199 06	186
10104	163
10117	140
1025	14280
10846	1420
10417	144
1053	1454
10648	14686
1070	14756
10808	14646
10965	14919
11036	15050
11143	15104
1120	15941
113104	15911
11495	15446
1152	1510
$\begin{array}{ll}116 & 60 \\ 117\end{array}$	1562
11841	150
11994	158
12046	169
12141	160
12286	161
12344	

חпח	
011	
D18	3
D18：	－
［1104	
B15	6.5
Binc	－
－107	－
508	05
	75
010	4
011	$\underline{0}$
112	18
013	40
114	95
［15	4
016	19
117	17
018	65
119	5
120	48
021	16
ロ2\％	D＇9
123	$E .5$
D24	4
D25	1010
DE	07
口ご	75
12\％	43
－2\％	$\underline{\square}$
$\square 31$	$\square 7$
031	411
032	54
13\％	7
$0 \% 4$	5
015	4
036	E1E
137	而
138	6
189	43
［1］	110
101	16
042	75

1438		
1445	$\underline{81} 5$	1306
145	18E 5	1318
146		1% OE
11474	0900	\％$\%$
	0919	13494
11495	可家	15
П6 54	$\underline{168}$	$1 \% 4$
－15 \square^{5}	0940	13706
$\square \square^{\square}$	$\square \square 5$	138
O5S O－	口゙E 5	1397
［54 4	19743	14048
155 ¢	198 0	1415
$\square \square_{0} \mathrm{~B}$	O马G 0	1425
ПS\％	1005	1485
或念 9	1118	14446
［¢G ES	10 E	1450
［10， 5	10308	146
16143	11854	1476
E6\％ 19	10.54	1485
	106	14948
56465	1076	15010
1085 5	1089	15109
EEE 48	10948	15295
－6\％	110	$15 \% 42$
0680	1118	154
ロ6゙心 E5	1125	1550
B7048	$11 \% 43$	156
07100	1146	1578
DFE［9	$11 \% 0$	1597
17\％	11694	159
174 43	1176	160
П7E 日E	11643	16146
Q7E 07	1196	162
日7\％E5	120	1634
口7B 43	121	16400
179 10	$12 \% 5$	185
DED DE	$12 \% 4$	1685
18154	12419	16746
日为 7	12507	1618
	$1 \Xi 6$	169
184 48	$1 \Xi 74$	17010
185 09	12 B	1718
BGE OE	12901	1725

	04343		
\％4E	14480	0876	1305
－01 11	19450	189 5\％	13143
Dige 43	146E	08943	130
1106	114743	0906	$13 \% 06$
01046	11480	0918	13494
1156		096	1858
0643	0504	19343	13643
01070	15142	09410	13706
0108	0508	0950	13608
010975	$05 \% 0$	0975	1395
01043	0544	0973	14043
0110	155	［9E 06	141 1010
－12	056	69\％ 6	1428
01340	－6， 9	10105	1485
01495	念显 97	11143	14443
01542	1596	106	1450
01609	060	1080	14 ET
01707	16143	10454	1475
0186	06\％ 09	1054	1455
0195	Des 07	106	14943
02048	06465	1076	1506
021 06	18.5	1089	1515
O20	O6E 43	10942	15895
123 6	067 Dit	110	15642
12443	168 69	11108	15.4
口25	16.96	1126	155
02607	17143	11343	1565
1275	0710	1146	15746
128 4	－72 \square^{19}	1150	15897
02906	可 3	11694	159
08007	117443	1178	165
03140	17506	11843	16146
03254	07617	119	16 E
13375	0776	120106	16848
0845	－78 43	1219	10.4
$0 \% 4 \%$	076	$12 \mathrm{E5}$	16501
0600	10808	12348	1605
10709	18154	12409	1674
088	0827	12507	16313
08943	1835	12E 95	16943
04010	10843	12742	17 O
O41 10	08509	128010	1710
04275	08606	12901	1785

PROGRAM 3

042	DE	08507
104	10	186 75
$\square 44$	85	10743
04.5	43	08960
1046	010	10808
047	01	0905
048	40	09185
049	6.5	6943
$\underline{0} 5$	43	0980
0.5	-10	09401
05	0.5	0956
058	ES	0965
0.5	43	09743
1.5	010	09810
056	128	097102
0.57	40	106
058	65	1014
059	43	10200
06	010	10 OE
061	07	1047
10:	ES	10543
06	ワ2	10600
15.4	65	1078
065	5	1085
D6e	43	10975
06.7	010	11043
06	010	11100
06.9	6	112 E
071	53	11365
071	43	11443
072	010	1150
073	01	116 BG
0174	65	11754
075	43	1185
676	$\square 6$	1199
0177	06	12042
076	85	12100
079	43	12203
080	010	12381
081	-2	12-
182	6.5	
183	43	
084	06	

PROGRAM 4

－पए	\square	■9］	100	19 B
01	11	Ot 49	10 G	151
DOE	18	05\％il	102	159
पns	4	05G［E	10975	159
0 O 4	O	ण5 \square^{5}	10\％	154 06
D日E	10	पES 46	10日	155 0^{4}
006	75	056 ण0	－G	1568
पि\％	18	प5－ 9	if 0］	15746
पप\％	4	OEf Et	10¢ H	156
00\％	95	0594	1065	1500
010	42	0 O 0 O	11042	16056
011	0 O	0 OL 09	11106	16 ± 6
012	07	0625	12 Ec	16 E
013	65	0675	119	16946
014	59	06417	11442	16406
015	16	065	11500	16 E
016	43	0665	1164	1665
017	017	T¢7 43	11765	1674
018	07	06808	119	16617
019	75	06908	1190	1694
020	17	070 \square^{6}	206	17006
021	40	0714	12194	1710
［122	54	07200	12\％ 85	17256
－2\％	7	073 0\％	12348	17346
024	5	0746	12409	17418
－2 6	16	07548	12.50	1754
प2E	4	Ofe De	126	17606
027	0 0	07 09	1275	1796
029	06	0765	12043	1788
029	75	07942	12605	1795
050	16	08009	1 Bl	18046
091	6	00^{01}	13195	1618
082	17	08c 54	13242	18243
6	54	183 75	18506	18306
034	42	184 43	13405	18405
095	09	085 19	136	18556
0 0	06	DBE DE	136	18646
087	40	0 OF 5	18764	18713
088	95	0 de 5	13885	18943
480	$2 \square$	189 18	13948	19900
840	7 O	0905	14009	190104
感1	97	09143	14104	19156
64	65	09201	142175	
124	53	09301	14343	
［64 4	43	0948	14400	
045	09	09548	145， 04	
$04 E$	07	096010	1466	
047	65	0978	$14 \frac{1}{17}$	
448	53	09685	14895	
049	1 B	19943	1455	

PROGRAM 5

ппп̃ 46	0478	0954
01015	04843	0960
01943	04906	0978
01086	08090	09875
110404	0516	09919
00548	[5E 1E	1006
0109	05940	10143
[106	054	1020
01843	0517	10808
$0 \mathrm{O}-6$	0564	10454
Ø10	0576	1058
01142	05848	10617
01209	0500	1076
01307	06005	1095
01443	0618	10943
01501	06\% 18	11001
01608	06340	11101
01785	0646	112 F
01616	16.5 4	11318
01965	$06 E 00$	11465
02043	0678	11543
02109	0688	11600
02209	06919	11706
02375	ETO 40	118 F
02417	0716	11919
02565	17243	12065
126 43	07911	12143
02701	07400	122010
02605	07575	12 OE
02975	07E 53	12454
03018	07716	12585
0816	0786	12618
08243	1795	1276
03301	18043	1295
01340	08108	12948
13575	口8玉 68	130101
03619	08975	13102
$0 \% 65$	08417	1327
03643	08565	13919
03901	D8E 48	13465
04007	08706	13543
114195	08806	13600
10425	10894	1376
0435	09009	13654
10448	09105	13985
04501	1098	14019
046 04	10918	1416
	09465	14248

PROGRAM 6

[im 46	04197	08254		
00113	04265	08342	12996	16400
002 le	043	08400	125	1650
01043	04445	OES	12648	16698
01040	04509	O8E 54	1279	16%
005105	046	OET 5	12006	16846
00675	0476	O6E 43	12994	170
010716	0485	08909	1308	176
00840	048	OG6 0	13148	176
010995	$\begin{array}{ll}0.51 & 4\end{array}$	0915	13 z 00	1% 1\%
01042	015	0925	13601	1748
01109	056	09618	13495	1750
0186	05475	0954	1355	1760E
0145	15610	09601	1648	17756
01518	0543	0978	129	17646
01643	05701	0987	1896	17917
01700	0568	09810	14042	1810
01807	0.9 0609	1010	1410	18217
01975	0143	10101	14301	188
02017	0620	10201	14396	18446
02254	063109	10419	14481	18518
02375	06454	10548	145	18643
02458	065	10600	1476	16711
02518	0617	10708	14885	180
0264	068	1085	14943	190
02700	0694	10975	15010	19146
028	07609	1116	1510	192
0296	10180	11243	15275	19343
0316	172 75	113	1584	194010
03217	07310	114010	158	19
03954	87488	1155	1568	196
0342	075 09	11642	1578	196 19846
0350	077	11700	15985	$19 \% 10$
83640	07619	118019	1595	2004
0368	07848	12042	16016	20100
03920	08080	121 010	16101	20\% 04
06070	061 D6	12 O	1684	2086

1- Atherton, T.J and Moshe Ben Akiva," Transferability and Updating of Disaggregate Trave1 Demand Models" TRB, January 1976.

2- Ben Akiva Moshe," The Logit Model And Functional Specifications of Alternative Models". MIT Ph.D thesis, June 1973.

3- Bourgin Christian, "L'Utilisation du Concept d'Elasticite dans les Evaluations de Clientele T.C." Note de Travail IRT September 1976. 4- Jacobson, Jesse ," A Case Study Comparison of Alternative Urban Travel Forecasting Methodologies" MIT M.S. thesis June 1977.

5- Koppelman, Franck,"Guidelines for Aggregate Travel Prediction Using Disaggregate Mode1s" MIT Ph.D thesis, June 1975.

6- Highway Research Board,"special Report \#85 " 1965
7- Manheim, Marvin L,"Fudamentals of Transportation Analysis 1977
in Press.
8- Mc Fadden, Domencich,"Urban Travel Demand;A Behavioral Analysis" Amsterdam, The Netherlands, North Holland Press 1976.

[^0]: *(Cf. Marvin L. Manheim, Fundamentals of Transportation Systems Analysis, 1976, in print.

[^1]: *Frarik Koppelman, Guidelines for Aggregate Travel Prediction Using Disaggregate Choice Models (MIT, PhD. Thesis 1975 unpublished).

[^2]: *cf Marvin Manheim, Fundamentals of Transportation Systems Analysis, 1977, in press.
 $\%$ 吅re

[^3]: * cf Marvin Manheim, Fundamentals of Transportation Systems Analysis, 1977, in press.
 y यre

[^4]: * cf Marvin Manheim, Fundamentals of Transportation Systems Analysis, 1977, in press.

[^5]: *cf Moshe Ben Akiva; The Logit Model and Functional Specifications of Alternative Models (Ph.D., 1975).

[^6]: *Jesse Jacobson - Studies on Washington, home interviews, surveys, ¡976, unpublished

[^7]: ${ }^{\star}$ T. Rothenberg; Linear Model (1976 course notes)

[^8]: *Terry J. Atherton and Moshe Ben Akiva; Transferability and Updating of Disaggregate Travel Demand Models - M.I.T., 1975.

[^9]: *Marvin Manheim, Fundamentals of Transportation Systems Analysis.

[^10]: *AVAT - Surveys on line 64 and Q (1976).

[^11]: *John Nordin, "Iterative Proportional Fit and Extrapolation," (MIT, 1977, unpublished.)

[^12]: *John Shortreed, Transit and Pricing Policy.

[^13]: *Marvin L. Manheim, Eundamentals of Transportation Systems Analysis, MIT, 1976, in print.

[^14]: *Christian Bourgin, "L'utilisation du concept d'elasticite dans les evaluations de clientele T.C. (IRT 1976).

[^15]: *Marvin L. Manheim, "Demand Prediction with Geographic Classification," M.I.T., 1977, unpublished.

