A DYNAMIC PROGRAM FOR MINIMUM COST

SHIP ROUTING UNDER UNCERTAINTY

by

Henry H.T. Chen
&
B.Sc. University of Newcastle Upon Tyne, ENGLAND
(1973)

S.M. Massachusetts Institute of Technology
(1976)

SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE
DEGREE OF
DOCTOR OF PHILOSOPHY

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
February, 1978

Signature redacted

Signature of Author.......___™~________. ——esi e
Department of Ocean Englneerlng, Febgggx, %378

Signature redacted

Thesis Supervisor

Slgnature redacted

Accepted by....... TYLITIL
Chairman, DepartmentﬁI"tommlttee<on—ﬁraduaéb Students

Certified DYsivsnivamsnswinsmamay




A DYNAMIC PROGRAM FOR MINIMUM COST
'SHIP ROUTING UNDER UNCERTAINTY

by
Henry H.T. Chen

Submitted to the Department of Ocean Engineering
on February 24, 1978 in partial fulfillment of the
requirements for the Degree of Doctor of Philosophy.

ABSTRACT

The minimum cost ship routing system, consisting of a series
of computer programs to prepare the input aata, perform route
optimization and retrieve the expected trajectories was deve-
loped around a stochastic dynamic programming algorithm,

The input environmental data is derived from the directional
wave spectra and other weather products forecasted by the
Fleet Numerical Central of the U.S. Navy. The ship motion
response characteristics are in the form of Response Amplitude
Operators calculated by the M.I.T. 5-D ship motion program
developed at the Department of Ocean Engineering.

The routing optimization program implemented on an IBM 370/168
computer at the Information Processing Center requires 170 K
core region and 2.5 CPU minutes which amounts to $40 per run
at M.I.T. price for a typical Trans-Atlantic voyage. By incor-
porating a modified open-loop control strategy to update

the recommended route several times during a voyage, the
system is economically feasible if 1% of the fuel cost saving
"can be realized.

The algorithm has retained enough flexibility for carrying
out sensitivity studies on the feasible state space discre-
tization. Ways and means for model calibration under real
operating conditions are outlined. Test and evaluation
methods are also recommended for future real-time implemen-
tation.

Thesis Committee: Devanney,III, John W., Assoc.Prof. Ocean Eng.
Frankel, Ernst G., Prof., Ocean Eng.
Slmpson, Robert W., Prof, Aero.& Astro.Eng.
Wilson, Nigel H.M. Assoc. Prof. Civil Eng.



ABSTRACT

This thesis summarizes an approach to the problem of mini-
mum cost ship routing under uncertainty. The problem is
essentially treated as a multi-stage stochastic dynamic
éontrol process under the constraint of ship operational
requirements, probablistic ocean environmental conditions
and ship dynamic response characteristics in seaways. A
stochastic dynamic programming algorithm was developed

to compute the ship's trajectory and its corresponding
power output and heading based on the minimization of the
expected total voyage cost.

The ship routing system consists of a series of computer
programs to prepare the input data, perform optimization

and retrieve the expected ship trajectories. The input
environmental data is derived from the directional wave
spectra and other weather products forecasted by the Fleet
Numerical Weather Central of the U.S. Navy. The ship

motion response characteristics are in the form of Response
Amplitude Operator calculated by the MIT 5-D ship motion
program developed at the Department of Ocean Engineering.

The routing optimization program developed on an IBM 370/168
computer at the Information Processing Center requires 170 K
core region and 2.5 minutes of CPU time which amounts to

$40 per run for a typical Trans-Atlantic voyage at M.I.T.
price. By incorporating a modified open-loop control strategy
to update the recommended route several times during a voyage,
the system is economically feasible if 1% of the fuel saving
can be realized. '

The algorithm has retained enough flexibility for carrying

out sensitivity studies on the feasible state space discre-
tization. Ways and means for model calibration under real
operating conditions are outlined. Test and evaluation methods

are also recommended for future real-time implementation.
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Chapter 1

INTRODUCTION

1.1 BACKGROUND

Historically, the concept of ship weather routing has been
practiced for a long time. Navigators and explorers who had
sailed a particular route would select a track on the basis of
the expected weather pattern rather than following standard or
seasonal tracks. The first weather routed vayage could con-
ceivably be dated back to the fourteenth century when Henry the
Navigator learned how to benefit from the Trade Winds. He led
his fleet to the equator while trying to find a way around the
Cape into the Indian Ocean in order to oust the Venetians and

Arabs from their lucrative trading position in that area.

Over the past decade, there have been some advances in

the state-of-the-art of ship weather routing. Various manual
and computer aided weather routing methods have been practiced
and some of them are commercially available at the present.

These methods* usually work on the principle of minimum time
of transit and storm avoidance, rely largely on human exper-
iences and empirical data to derive the best ship trajectories
with the limited available resources. Even though some of the
models tend to be simplistic and do not guarantee the optimal
track, the strategic and economic advantages of ship routing
are okviously recognized and confirmed by the large number of
ship operators who subscribe to the services.

More recently, there are several major advances in the field
of ocean wave forecasting, naval architecture and shipboard

* For an excellent review of the history and recent development
of weather routing techniques please refer to James' paper,
Ref. [1]. The reference list starts on page

-10-



instrumentation which have enabled us to realistically and
~accurately predict the ship speedkeeping and seakeeping per-
formance at sea. Specifically, the sophisticated Spectral
Ocean Wave Model (SOWM) developed by the U.S. Navy's Fleet
Numerical Weather Central (FNWC) forecasts ocean wave spectra
at 12 hour intervals up to 72 hours. The forecasted direc-
tional wave spectra in fifteen frequency bands and twelve
directions are now available on a regular basis for the major

oceans in the world [2].

In parallel to this major development, the studies sponsored

by the U.S. Maritime Administration (MARAD) on seakeeping
performance of ship carried out by the Massachusetts Institute

of Technolagy (M.I.T.) has resulted in the successful development
of a computer program to predict ship motion responses and sea-
keeping characteristics at sea [3]. For a given ship geometry,
the program can predict the magnitude of bending moment,

absolute or relative motion, velocity and acceleration in five
degrees of freedom plus the added resistance in head seas, in
long crested regular sea as well as in irreqular seas described

by their wave spectra.

In view of these major developments, it is believed that
further advances in ship routing techniques are possilbe.

In particular, it is hoped to develop a powerful ship rout-
ing algorithm which will account for the stochastic varia-
tions in the forecasted environment and be adaptable to
satisfy a variety of pre-selected ship motion criteria and
set functions related to ship's safety and operation at sea.

_]]_



1.2 SHIP ROUTING AS AN OPTIMIZATION PROBLEM

When a ship sails in the open seas, it encounters various
environmental disturbances such as wind, wave, current, ice

fog, etc. which will effect its safety and operating performance.
For the merchant marine, this results in changes of ship
operating economy ,while for military application, it changes

the vessels tactical effectiveness.

Ship routing is concerned with the choice of the most suitable
strategic trajectory or route and the corresponding control
options from the voyage origin to destination so that a

desired objective function or performance index is optimized.

In the modern commercial ship operation, the following is a

list of criteria that are most commonly used:

1. Ship safety
. Prevention of damage to hull, cargo, deck eguipment, etc.
Economy in navigation, e.g. Minimum cost, transit time,etc.

Crew/passenger comfort

b &= w N
.

Maintenance of fleet schedule

Other criteria in logistics of interests to military operations

may include:

l. Minimum probability of detection

2. Minimum time of intercept

3. Maximum combat effectiveness

4. Optimum search and rescue effectiveness

In practice, more than one of the above criteria are relevant,
as a result, we have to select the most suitable one as our
objective function to be optimized while the other criteria

would serve as system constraints in our optimization problem.

-12-



In commercial applications, usually, the most important
objective function for the ship routing problem is to

minimize the total voyage cost. The voyage cost may consists

- of two parts, operating cost (mainly fuel cost) and terminal
cost (cost of delay at the destination). The system constraints
in this case relate to ship motion seakeeping criteria which
ensures crew/passenger comfort and avoids cargo ship damages.
From this viewpoint, the problem is to find the ship route

and the corresponding controls such that the total voyage

cost is minimized while all the constraints on the ship

motion limits are satisfied.
1.3 NEED FOR A REALISTIC ROUTING ALGORITHM

The major part of research and development in mathematical
ship routing has been performed in the United States by the
U.S. Navy (at the Naval Post-graduate School in Monterey,
California) [4,5,6,7,8], and the Fleet Numerical Weather
Central [9]. Commercial services based on manual or semi-
manual routing methods are also available from Oceanroutes
[10], Bendix[11l] and other routing companies.

Considerable amount of work has similarly been done abroad. .
Fugitsu Company, Ltd. of Japan [12] has developed an onboard
Optimum Ship Route Setting System complete with hardware.

With the help of French Bureau Veritas, Empresa Nacional
Elcano, also equipped one of 'its ships with a system for route
optimization [13]. In Britian, a team of scientists and
engineers is working on Weather Routing of Ships in the North
Atlantic [14]. On the software side, two major studies were
cited; one by a Dutch engineer, deWit [15], and the other by
an Italian, Zoppoli [16].

il B



Table 1.3-1

COMPARISON OF SOLUTION METHODS FOR OPTIMUM SHIP ROUTING PROBLEM

HANDLING OBJECTIVE EXTENSION TO COMPUTATION
CLASS METHOD CONSTRAINTS FUNCTION STOCHASTIC MODEL REQUIREMENTS
1 Mathematical As part of the ‘Minimum Lack of mathemati- Minimal, should
Heuristics method ’ time only cal proof be completed
with graphic
display
II Variational Imbeddedin the speed Minimum time Stochastic prog- Sometimes convers-
calculus 2nd function then use ramming techniques gence problem
derivative feasible direction available but the particularly when
methods search complexity of there are high

mathematics puts
restriction on the
objective function

L lst Derivative As above or use Minimum time and type of
'S Methods penalty function or simple constraints
' cost function
III Scatter-gqunning Feasible direction Minimum time Same as above
extremals search and inter- - only
polation
IV Dynamic Checked directly Any function- Basic recursion
Programming al that can be functional form

decomposed into remains the same
a multi-stage for Expected value
form decision making.

seas which vary
rapidly with timeh

Slow convergence
require substan-
tial CPU time.

Faster convergenc

May require sub-
stantial CPU tim
if full model is
desired

|




Generally speaking, the methods that have been developed so
far can be classified into four categories . Table 1.3-1
shows the comparison of various solution methods for the
ship routing problem. At present, all the models are
deterministic which may be unrealistic in view of the un-
certainties in the wind and wave conditions along the route.
Furthermore, because of the difficulties in handling complex
functional forms, the models has been restricted to the
minimization of transit time rather than that of cost, thus
completely ignoring the real tactical and economic reasons

for ship routing from an operator's point of view.

1.4 OUTLINE OF THE THESIS

An algorithm for solving the stochastic minimum cost ship
routing is described in this thesis. In chapter 2, the
problem is formulated as a dynamic program or a multi-stage
decision process. The deterministic and stochastic equations
are then derived and their properties are discussed in the
context of overall uncertainties and accuracies of the input
data. Based on the discussions, a closed open-loop control
stragegy was adopted for the proposed ship routing system.
Finally, sensitivity studies in state space discretization
were performed on a Trans-Atlantic voyage using simulated
data, their implications on computing cost, solution
accuracy and overall uncertainty are also presented in the
section on model calibration.

Chapters 3 and 4 treat the two major required input data
sources in detail. First, various Dynamic Ocean Environmental
Conditions which have significant effects on ship performance
are outlined and their final level of detials as well as

the suitable data format for the routing model are recommended.

-15-



Following the specification of the input environmental para-
meters, a methodology for analyzing the ship seakeeping,

speedkeeping characteristics is proposed.

A summary of available seakeeping criteria recommended for
commercial operation is also presented and their lack of causal
contents to ship, cargo, damages are discussed. It is hoped
that with the help of onboard ship instrumentation, a set of
new seakeeping statistics will be developed in the future

to realistically reflect a ship operator’s criteria for
voluntary speed reduction.

Finally, a computerized Ship Routing System is proposed in
Chapter 5 with a complete systems programming structure

and data management consideration. Based on the preliminary
experiences of running the model, Chapter 6 contains a con-
clusion and recommendations for a three step test and
evaluation procedure before future real-time implementation.

=-16-



CHAPTER 2

A DYNAMIC PROGRAMMING APPROACH TO
SHIP ROUTING PROBLEM

2.1 PROBLEM FORMULATION
2.1.1 PROBLEM STATEMENT

The kinematics of a ship sailing in the ocean can be basic-
ally described in terms of its position as time progresses.
The ship's position as specified by the longitude X and
latitude Y plus the time T determines the ship's trajectory

in a ship routing problem. To completely describe the ship
system, however, we need to introduce the dynamic responses
of a ship in a seaway. They are introduced into the system
by a control vector, G specifying the ship's heading ¢ and the
power output P, plgs a generalized ship motion seakeeping

constraint vector M.
It follows therefore, the evolution or DYNAMICS of the system
can be expressed in a general functional form as:

> >

£{ X',¥",T' U, M )

( X,Y,T )
ceswe (2.1)
where T'= T - AT, Or in words: The ship would arrive at
the present position X,Y, and present time T if controls i}
were applied AT units of time ago, provided that during the
transition ship motion did not exceed the limit M.

Thus the minimum cost ship routing problem can be simply

expressed in mathematical terms as:

] G



Minimize :

T

C( XD,YD,T) =[ a[XYUMT]dT+B[X,YD,T]

where,

XD,Y

+

for all possible time of arrival T

ceerase (2o2)

starting time

dummy variable for integration

scaler functional for cost per unit time before
arrival

vector functional for cost of arrival at various
time T

= coordinates of the destination

The optimization problem can now be stated as following:

Given: 1.

An initial ship position specified by its longi-
tude and latitude, and initial time Tyi
Constraints on inadmissible areas such as land
mass, shallow water, navigation hazards, etc;

on adm1551b1e controls B i € P < P _ and

0 <Y< 360, and on adm1581b1e Shlp motion
seakeeplng limits;

A function describing the ship's transition from
one position to another, i.e., eq. (2.1);
Moperating cost function g, and a terminal
cost function g

Find: The ship trajectory or route which comprised of

( X,Y,T )k for k = 1,2,...N and the corresponding

controls ﬁk so that the total voyage cost is mini-

mized, while all the constraints on admissibility

are satisfied.

-1 8=



2.1.2 CHOICE OF STAGE VARIABLE

Let us now see the problem graphically. Fig. 2.1-1 shows

a grid covering a band along a typical Trans-Atlantic

great circle route. The vertical and horizontal axis des-
cribe the increments in latitude and longitude respectively.
The other dimension, time, is not shown here, but one can
picture similar grids staged on top of another representing
different time increments. Our mission is then to find the
ship trajectory which comprised of a set of feasible grid
points linking origin to destination through time and posi-
tion so that the sum of operating cost and terminal cost

is minimized.

To solve the ship routing problem via dynamic programming
approach [20], we have to formulate the problem as a multi-
stage decision problem. There are clearly two choices of
stage variable, time and a measure of progress of the voyage.
Both of them are monotonically increasing and would lead

to the derivation of a recursive computation procedure

which can be implemented on a digital computer. However,
the recursion equations do have some distinct differences
regarding the limitation and interpretation of the control
policies in the respective feasible state spaces and the
resulting computation efficiency.

Let us first consider the choice of time as the stage
variable. This has been often used in solving many classi-
cal optimal control problems via the dynamic programming
approach. [22,77] The choice is a logical one when obser-
vations or control thanges in the system are limited at
regualr intervals and the performance of the system is
state dependent (eg. chemical plants).

-19-
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Figure 2.1-1 An example of computer generated grid system for a
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For the ship routing problem, however, the situation is quite
different. First of all, we do not have the problem of
limited state observations or control modifications. In fact,
with modern navigation equipments and powerful ship control
devices, the state of the system can be continuously moni-
tored and changed if necessary. Secondly, recalling eg. (2.2)
the operating cost is only dependent on the controls U and
dT, the length of time during which U were executed, but
explicitly independent of the state ( X,Y ) until the ship
reaches its destination, ( Xne Yy ) as a boundary condition.
This property of our problem unfortunately leads to serious
consequences in the required computation efforts to solve

the recursion equation.

Since the operating cost cannot be explicitly expressed as
function of the state variables (i.e. ship's position X,Y),
it creates serious difficulties and ambiguity in interpola-
ting the optimal value function between the discrete grid
points. In other words, we have no way of finding how the
optimal value function would behave over a large area rep-
resented by a grid point. As a result, we may be forced to
use a finer grid system and assume the optimal value function
remains constant over a representative area of each indiv-

dual grid point.

To get a rough estimate of the required computation effort,
let us consider a typical Trans-Atlantic voyage of around
3,500 nautical miles by a 20 knot ship which takes less
than 200 hours of voyage time. If we make the stage
variable at a 2 hour interval, the feasible state space

has 100 stages. At each stage, the area of interests is
again described by a grid covering a bound, say, 500 nauti-
cal miles across the great circle route. Suppose, we use

-21-



a grid system so that each grid point represents a 20 x 20
square miles area or require less than 1 hour to sail from
one boundary to another, then the total number of states
_would add up to 200,000%. At each state, if 15 sets of
control options (5 heading times 3 power settings) are
applied, it would result in a total of 3 million calculations.
Suppose each calculation requires 100 computer operations

or approximately LI.O_4 CPU seconds, then to solve the deter-
ministic ship routing problem, it would require about 5

minutes of CPU time.

As far as the core memory requirements are concerned, it has
not yet caused any problem. The main obstacle seems to be
the excessive computation burden, expecially if we extend

it to the stochastic ship routing problem. It seems, there-
fore, that the multi-stage decision problem formulation using
time as the stage variable would not yield fruitful results
for our stochastic ship routing problem.

The next choice of the stage variable is a measure of the
voyage progress. This choice is perhaps more subtle since
it is not explicitly defined. Let us again refer to the
grid system in fig. 2.,1-1. Suppose, we let the changes

in the X direction (i.e. longitude) be considered as a
measure of the voyage progress and we allow transitions

to be taking place from one longitude to another, then we
have in effect defined the latitude Y and time T as state
variables. More generally, we may use the incremental dis-
tances in the general direction of travel (e.g. using the
great circle route as a reference) as the stage variable
and the incremental distance perpendicular to the reference

route together with time as state variabies.

lThe number of grid points increases from stage to stage

as the voyage progresses. On the average, the feasible state
space per stage is half the size of the entire area.

-22-



Again, we have formulated the ship routing process as a
multi-stage decision problem as shown in figure 2.1-2.

Notice that we now have a more restrictive problem for-
"mulation than the previous one. First of all, by predefin-
ing the allowable transitions, we can not specify the headings
explicitly. Since the ship's headings are determined by

the grid point spacings DX and DY from one stage to another
and the number of such transitions allowed} the level of
ship's power output becomes the only explicitly defined
control variable. 1In comparison, the previous formulation

allows any combination of power and heading as control polices.

In practice, this limitation on allowable transitions means
that the ship will travel in a forward direction. No
matter how severe the sea condition is, it will not turn
back and attempt to run away from the storm, except to
reduce speed and maintain steerage (i.e. directional con-
trolability). Such policy has traditionally been taken
and is believed to be effective from past experiences.

Secondly, since the ship trajectory is now comprised of a
sequence of predefined grid points rather than the dis-
cretized longitudes and latitudes in the feasible state
space, the formulation further requires the system to be
perfectly controlable in the transition between grid points.
In other words, with the continuous dead-reckoning of its
track by modern navigation equipments and the ability of
feedback control modifications by the onboard crew, a modern
ship with powerful control devices should be able to reach
the next grid point sooner or later.

-1
lIn rectangular coordinate system, AY = tan ~(DY/DX).
Under normal operating conditions, the maximum course
changing is less than 35° from ship's original heading.

Private communication with Captain A. Fiore, head of Nautigal
Science department, U.S. Merchant Marine Academy, Kings Point.
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On the positive side, by defining arrival time at a grid
point as a state variable, we have effectively removed
the ambiguity and difficulty of interpolating the op-
timal value function in the feasible state space. Since
both of our cbst functions (operating cost as well as
terminal cost function) are time dependent with ship
positions appearing only in the state transition equation
(2.1), a simple one dimensional interpolation scheme in the
time domain would be sufficient to determine the optimal
value function between the discretized time intervals at
each grid point.

More importantly, since we can generate different grid system
by using different values of the spacings DX and DY, sensi-
tivity studies can be performed to calibrate the routing
algorithm. For example, the size of DX determines the

total number of stages or decision points to change controls
in order to ensure the cost minimization during a voyage.
Together with DY, they also determine the number of control
options and magnitude of course diversion to ensure a
smooth trajectory. Obviously both DX and DY as well as the
time step will have major effects on the accuracy of the
solution which will be investigated later.

To repeat, with the second choice of the stage variable,

we have defined:

.

STAGE Variable: i = A monotonically increasing integer
variable related to the headway and
consistent with the set of allowable
forward transitions at each stage.

-



STATE Variable:

CONTROL Variable:

CONSTRAINTS:

OBJECTIVE FUNCTION:
] _ N
c(X, N+1) = I

i=1

Subject to constraints:

->
€

5 (1)
(1)
(i)

a

€
a

€

= G My
<3 2N =1 -

'§ = (G,t), where G denotes the navigational
coordinates of a grid point on a predefined

grid system; t is a quantized state vari-

able for time.

U = (¢,P) where § now becomes a

set of allowable forward transitions
between present state and the states
in next stage; P is a set of dis-
cretized power output.

M=a generalized ship motion and
seakeeping index same as before.

Minimize the total voyage cost

o [X(i), T(1), M()] + BIXg,,)
cee(2.3)

Within the predefined grid system

Allowable transitions between grids

Allowable motion

2. 2 SOLUTION ALGORITHM

2.2.1 DETERMINISTIC DYNAMIC PROGRAMMING RECURSION EQUATION

Having formulated the ship routing problem as a dynamic pro-
gramming Problem, we are now in a position to derive the re-
cursive computation procedure for finding the optimum solu-

tion based on Bellman's Principle of Optimality
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Recall that equation (2.3), our objective is to minimize the

total voyage cost.

=
C(X,N+1) = ]

> + > i
ai[x'U:Mr] +8 [X
1

N e=

1 N+1

Where the first term represents the operating cost and the

second represents the terminal cost.
Let us define the minimum cost function:

c(X, k) = Min {% o,[X,0,M]}  k=N,N-1....3,2,1
(

---0(2.4)

We can also rewrite the expression as the following:

+ -

C(X, k) = Min > > > N

> {a, [X,0,M])+ X 0.0
U(k) k[ 'U,M] iik_'_lai‘[xcUrM]}.

According to the Principle of Optimality, the minimization
operation can be split into two parts. One involving the
present stage k, the other over the remaining stages k+],
k+2.....N. |

- _ Min _h;.lin N
C(X,k) = Hx) (i) loygX, 0,00+ 1 o, (%,0,0)
i=k+l...N AL

It can be seen that the first term in the brackets depends
only on ﬁ(k) and not on any other ﬁ(i), i=k+l....N. There-
fore, the minimization over ﬁ(i) for i<k has no effect on
this term

=27~



in  Min F 2 %y} - Min >
%(k) (i) Lo (X UMD} = 5 Loy (X,U,M))

i=k+l...N

For the second term, on the other hand, it does not explicitly
depend on ﬁ(k). It is only related to ﬁ(k) through the
state transition Dynamics of eq. (2.1).

(X, 0,8, %)

Therefore it reduces to:

4 N
Min {z a. (X,0,8))
ul1) i=k+1 1
i=k+1...N

But this is exactly the definition of our minimum cost function
for C(i,k+l). Hence, we have derived the recursive relation-
ship which enables us to find the minimum cost function at

the present stage based on the minimum cost function derived
at one stage ago.

c(X,k)= Min {ak[i,ﬁ,ﬁ]+c(§,k+1}}

b

ﬂeua wou ot D)
k=N,N-1...2,1
To carry out the computation of the optimal value function
c(X,k), we must also prescribe a boundary condition at N+1
and that is our terminal cost function on arrival at the

destination.

C(Xg,N+1) = B(xf. N+1) . e 206

By using equations (2.5) and (2.6), the minimum cost from

any state defined by the grid point as well as time of arri-
val to the final destination can be calculated by stepping
backwards stage by stage to the original position and star-
ting time. Once the entire optimal value function has been
evaluated, the minimum cost route and its corresponding con-
trols at each stage can be easily traced out by going forward.

i B



2.2.2 EXTENSION TO STOCHASTIC SHIP ROUTING MODEL

The stochastic routing model is a direct extension to the
deterministic model presented in the previous sections. The
major difference is that it takes into account some of the un-
certainties in ocean environment forecasting and hence the
resulting probablistic travel time. Since our objective

is to minimize the total operating cost plus a terminal
cost,both of which is a function of time, the stochastic
variation of the forecasted environment and the resulting
distribution of time may significantly effect the choice
of optimal control policies as compared with deterministic
models.

In order to introduce the stochastic variation of ocean en-
vironment into the model, let us assume that the seaway may
be characterized by a random vector ﬁ, where R is defined as
a set of parameters which will sufficiently describe the sea
severity in which the ship is operating% The state vector X
_ (position as well as time) thus becomes a random vector as a
function of R and a given set of control U.

The resulting stochastic variations in the state variables
have also changed our objective function which is no longer
the minimization of deterministic costs. There are several
types of decision criteria which can be incorporated in
Dynamic Programming algorithm without expanding the state

1For example, the parameterss may be significant wave height,
peak frequency which are often used to fit a two parameter
spectra;plus a predominant wave direction. More detailed
representation is possible at the expense of more computing
effort. o '
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space . They are the expected value and constant risk aver-
sion decision making. Both these decision rules are of
interest to us in the stochastic ship routing problem. The
former assumes that the ship-owner is an Expected Value
becision Maker who would like to minimize his total voyage cost
'on the average', see Ref. [23] whereas the latter takes
account of his risk preference behavior and requires the
calibration of his utility function in an exponential form. 1
The general recursion equation has been developed for this

type of problem, see reference [24].

For the purpose of our study, we will use the former decision
rule. i.e. to minimize the expected value of the total
voyage cost over the probability distribution of R at all
stages i = 1,2...N. state j =1, 2.........M.

N

ck,k) =Min E (I o, (X, 0, M) ceee(2.7)
: SFERTR B
U gij i=k

To derive the stochastic recursion equation, it is necessary
to assume that the state of the system (grid position as
well as the time in getting there) at any stage depends

only on the state of the system at the previous stage and on
known probabilities. This is essentially a first degree de-
pendence property similar to the first order, time invariant
Markov Process, Ref. [25]. In which case the probability
distribution of ii is given by Pi(ii' §i+1) i=1,2....N.
Each degree of dependence adds another state variable and
makes the recursion equation more unwieldly. For our ship
routing problem involving many states it seems suitable to
use the first order model which does not increase the
original state space in the deterministic model.

1The linearity of expected value operation and the separable
property of the constant risk aversion allows us to retain
the original state space,
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Tﬁe first order model assumes that the random variables Rk

are independent from one stage to another. Under this assump-
tion, the joint probability density function P(R;,R,...R})

can be written as the product of the individual probability

density functions.

-+ > <> - > <>
P[R ,Ry....Ry] = P(R)IP(Ry))....P(Ry) - (5 gy

The dynamics which describe the state transition become in

this case:

> ' R S - - o
Xpe1 = Ex[X/UMR,] cesaa(2.9)

Notice that it is no longer possible to minimize the original
deterministic cost function, because the present state ik

and the controls from thereon ﬁj,ktjsN do not completely
specify the future states ij' k+1<j<N but instead determines
only the probability distribution of these states. The
objective function in this case has to become the minimiza-
tion of the expected value of the total voyage'cost as

specified in the equation (2.7).

More importantly, the first order model also implies that
our control algorithm is a non-adaptive one. This is a so
called "open-loop" control stragegy which determines the
entire ship trajectory based on the forecast environmental
Any observation: of the sea severity

. e N+1°
during a voyage after deriving the minimum cost control

condition Rl,2
policies will not change the probabilistic distribution of

future states or their corresponding controls and minimum
expected costs. The use of the observed sea severity and

EET
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and system responses can only be made at the next update of
the entire optimal value function using the most recent
information of the actual ship position, time and the re-
vised forecasts of environmental conditions. The "continuous"
update of the "open-loop" control stragegy is sometimes called
a Closed Open-Loop Control. Fig. 2.2-1 shows a flow chart of
this kind of strategy.

The derivation of stochastic recursion equation follows very
similiarly as in the deterministic case. First, let us
define the expected minimum cost function:

. N
-+ > > >
‘c(X,k) = Min { (£ a. (X..,0,M,R..)1}
’ U(i) %1' j=x 1 13 i3
i=k...N J
i=k...N
j=1. L ] .M =
~ | ...(2.10)

Since the probability density function of ﬁi is independent

from one stage to anothér we may rewrite the expression..

N

C(%X,k)=Min {E * E Do % .0, M% 0+ T o (% .,0,0,R..)1}
e k '“kj ki’ .o it%ij ij
U(i) Rk' R. . i=k+1
j=k..n 93 1]
e i=k+1l..N
‘jﬂlonoM

Since the expectation is a linear operator and also the in-
dependence assumptions in equation (3.5), it may be carried
out inside the bracket term by term. By applying the
Principle of Optimality to the minimum expected cost function,
and proceed very much as in the deterministic case except
the deterministic cost becomes the expected cost. We may
derive the stochastic recursion equation as the following:

-~

<> >

c(X,k) = [ak(i,ﬁ,n,a)+C(§j,k+1)1 eeeo(2.11)

E
x  Rxj

Y



Fig.2.2-1 Closed Open-Loop Control Strategy

for minimum cost ship routing under uncertainty
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The computation procedure is very similar to that of the
deterministic model. The random vector R is quanterized with
corresponding discrete probability densities

‘ <>
P{rz), £ = 1,2,3:..13 ¥ p€ R, then the expected wvalue operation
is just a simple summation:

E [ak(i,ﬁ,ﬁ,“ﬁ) + C(X,k+1) ]

Ry

]
o M

> > > R ' ’
-1 p(rg‘) * [ak(x’U'M'rl) + C(X(rf’),k-!-l)] ....(_2.12)

Once this quantity has been computed for each state and contrel,
the procedure is exactly the same as in the deterministic case.
It can be seen that the introduction of stochastic variation in
the system increases the computation effort by a factor of L

if we were using only one wave parameter, e.g. wave height, as
a random variable; not increasing the original feasible state
space.

To rewrite the stochastic equation more explicity we have:

in {E [Gk( i L4 G:lﬁrﬁt) + E( E_c k'l'l)]}

kB3 4.

Clgrk) =¥

..oo( 2.13)

By assuming the ship's controls are powerful, G is no longer
a random variable, only tj has a probability distribution_
depending on the stochastic sea severity Rkj and the deter-
ministic quantities of G,U,M. However, Rkj itself is time
dependent and to a certain extent on tj. To properly de-
rive the probability density function of tj' therefore, would
involve as many simultaneous equations as the number of
possible tjs at every grid point. Obviously, such large com-
putational undertaking would not be permitted for the size

of our problem.
-34~



In order to carry out the expected value operation in the
recursion equation and solve our optimization problem, we
propose a method to derive an approximated probability

density function using the expected value of arrival time tj

Recall that the major difficulty encountered in deriving the
probability density function of tj was because of its inter-
dependence with Rkj‘ In the deterministic case, obviously,
we do not have the problem at all. Since the environ-
mental condition is known for certain, there is a one to

one correspondence of the environment and t. for a given

set of G,ﬁ and M. Now, let us bear in minthhat the deter-
ministic model is just a degenerated case of our stochastic
model with known state transition probability of unity.
Suppose we could relax this unit probability and assume that
the variance assocoated with tj is small in the real stochastic
environment, then we may be able to replace the random state
variable tj,by its expected value Ej thus avoiding the
solution of large sets of simultaneous equations. (for mathe-
matical justification see APPENDICES A).

In practice, to make the variance associate with tj small,
it is necessary to reduce the required transition time be-
tween grid points or increase the number of Stagesl.

Thus, we have finally derived the approximated recursion

equation for the stochastic minimum cost ship routing
problem.

-~

cl g

. Min G
t k) g

& > la(—ﬁﬁ)‘+6(G
U(k) Rk] k' € Y tj:k+1)]}
cee.(2.14)

Here we assume that with the onboard feedback of the
actual arrival time, the variance does not propagate
from one stage to another.
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By using the above recursion equation and the boundary con-
ditions in eq. (2.6), the entire optimal value function can
be evaluated in a manner similar to the deterministic case.
However, since it is no longer possible to calculate the
state transitions deterministically due to the stochastic
variations of random environment, the derived control

policy based on the expected cost is itself stochastic
except for the first set of controls after the stochastic
state variable__time of arrival at the grid point becomes
known. The remaining control decisions obtained from the
recursion equation cannot be expressed deterministically in
terms of state variables until the stochastic states that
proceeds them are revealed. In other words, there is no
optimal trajectory as such in the stochastic model. The
closest analogy to the optimal trajectory in the determinis-
tic model is the track based on the expected state values.
The practical implication is therefore to retain the entire
optimal value function on a direct access disc file. The
recommended control policies (heading and power output) are
only revealed one at a time as the ship's actual progress
have been identified. In our non-adaptive control algorithm,
the optimal value function at all the states and the corres-
ponding controls are retained until the next update with the
new forecasted environmental conditions.

2.3 CALIBRATION OF THE STOCHASTIC MODEL

During the development of the stochastic ship routing
algorthm, wvarious simplification and assumptions have been
made in order to make the problem solvable. Let us now see
to what extent can these approaches be realistically used
in reducing the computation effort and more importantly,

what are their effects on the accuracy of the final solution.
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To calibrate the model, the algorithm was programmed and
sensitivity studies were carried out using simulated input
data resembling a Trans-Atlantic voyage by a LASH ship.
.The ocean environmental: conditions (only wave, height,
and direction) were generated by a computer program. The
following are some major results from the investigation.

l. Feasible State Space Reduction

A grid system was constructed covering a band of approximately
3,300 x 450 nautical miles along the great circle route
from the strait of Gibraltar to Charleston U.S.A. See fig.
2.1-1. The width of the band should be a function of the
length of the voyage and the expected wave conditions. If
a widespread storm is expected during the voyage, it is
necessary to increase the width of the band in order to
include more alternatives for course diversion. On the
other hand, when the voyage is short or the sea 1is rela-
-tively calm, then the band width may be reduced to save
computation cost.

In the time domain, the same principle for state space re-
duction can be applied. By using the expeéted maximum and mini-
mum ship speed along the voyage, the earliest and latest arrival
time at a certain grid point can be calculated as a function of
the distance from the origin. Figure 2.3-1 shows an‘example

of the heuristically defined feasible time intervals as a func-
tion of voyage distance and max/min ship speed. Notice that

the required time interval increases rapidly for the low ship
speeds and the long voyage distances. Thus requiring more
computing effort.

This set of heuristically generated bounds on feasible time
of arrival at a certain grid point should be consistent with

the available power output options and expected sea severity.
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Theorectically, there is always a possibility of arriving

at the grid point later than the "latest time" due to the
non-zero probabilities of extremely severe sea conditions.
.To ensure the bounds are large enough, a penalty method
approach derived in APPENDIX B was carried out. Essentially,
we impose a high penalty cost whenever the bound is ex-
ceeded in a single transition. 1In effect, by imposing a
large penalty cost for the states that have non-zero
probability of going outside the bounds, the algorithm

will automatically force the controls of the previous

stages to stay away from this state because of the poten-
tial High cost. However, due to the nature of the re-
cursion equation, if the effect of the penalty did not
diminish quickly and change a large part of the optimal
value function, and hence the corresponding control policies,
then it will introduce substantial errcrin the final
solution. To check whether the bounds are large enough,

we have derived the following set of necessary conditions:

i. The probability P, of starting from an admissible
state and ending outside the bounds after apply-
ing n successive control is small.

ii. The expected value of penalty-i.e. B,,.+M is also
small for sufficiently large penalty M.

In our test runs, we have allowed a time interval of 12 hours
either earlier or later than the scheduled departure time.
The extra computation effort was to make sure that the ex-

pected trajectory would stay within the bound as well as to
facilitate sensitivity study of ship scheduling from the

management point of view.
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2. The Effect of Discretization in the Time Domain

Having defined the feasible state space by a band along

the nominal track and a suitable time interval, the next
step is to investigate the effect of different size of

time steps (DT) in discretization of the state variable,
time. Figure 2.3-2 shows a plot of the optimal value
function along the great circle route at various time
relative to the original departure schedule. The time
bounds corresponding to the ones in Fig. 2.3-1 were set
from -12 hours to +12 hours at the origin of the voyage
and from 162 hours to 215 hours at the destination. Using
the terminal cost function as derived in APPENDIX F, the
optimal value function was evaluated for both the problems
with 25 times steps1 and 50 time steps. The doubling of
the size of DT at this level did not introduce substantial
changes in the optimal function as shown in Figure 2.3-3.
This is perhpas due to the relatively smooth nature of the
input terminal cost function and a slow moving storm sys-
tem. Thus for a discontinuous terminal cost function or
relatively fast moving storm system, it may be necessary to
reduce the size of the time steps in order to closely appro-

%imate the optimal value function.

From the computation point of view, doubling the number of
time steps would nearly double the required computation
effort and core storage for the same problem. Evidently,

the suitable choice of the discretization in the time domain
will be one of the issues under actual implementation con-
ditions when the ability to provide detailed forecasts,
computer hardware availability etc. are taken into considera-

-ion.

1 : ;
For our test runs, the time step size varies from 2.4 hours

at the destination to 1.0 hour at the beginning of the voyage.
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During the execution of the recursion equations, a large
penalty cost of two orders of magnitude larger than the
actual cost was imposed on the states which may have non-
zero probability of going out of bounds in a single tran-
sition. The optimal value function was calculated with and
without the expected penalty. The difference. between the
two were printed out for each state. For the present simu-
lated routing exercise, the differences diminish rapidly
with the number of stages away from the penalty states.

At the origin, the optimal value function was completely un-
affected by the penalties incurred in the previous stages.
This shows that the probability of going out of the bounds
from the initial position time is very small and the al-
gorithm has forced the controls to stay away from the in-
admissible states. Therefore, we can be relatively con-
fident that our predefined bounds were large enough. How-
ever, when there are substantial effects of the penalty
which still remains in the optimal value function, then

the computation should be repeated by increasing the latest
arrival time bound at each stage.

The same type of penalty method are also implemented for
those states which exceed the ship motion constraintsl.

By the same token. if the probability of getting into

one of these motion constraint states is high and the
expected penalty cost has significantly changed the optimal
value function and control policies, then the optimal value
function should be recomputed using a different grid away
from the expected storm area and perhaps with a larger time

interval.

1At present, due to the lack of causal relationship between

ship motion and damage cost, it is considered as hard
constraints. Future effort is required to incorporate
them into the operating cost function.
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3. Effect of Discretization in the Space Domain

There are two dimensions which need to be discretized in
the space domain for the ship routing problem. A simple
algorithm was developed for automatically generating a
grid covering the band of feasible state space. Two im-
portant inputs which specify the distances between grid
points are DX and DY. DX may be considered as the average
distance between grid points along the nominal track
dscribed by the user in terms of a set of coordinates,
and DY is the distance between grid points perpendicular
to the track. Thus in our formulation, the number of in-
crements in the DX direction becomes the stage variable
and that of DY becomes one of the state variables (the
other is time increments)., see Figure 2.1-2.

Although both variables are used to discretize the feasi-
ble state space and approximate the optimal value func-
tion continuum by a grid system, the sizes of DX and DY
have entirely different implications on the final solu-
tion in this formulation .

In the DX direction, since there are transitions taking
place from stage to stage by using the optimal controls,
the size of DX determines the accuracy of the solution.
In other words, with the smaller values of DX, there would
be more chances to modify the controls and ensure the
minimization of the total voyage cost. On the other
hand, there is no such transition taking place in the DY
direction. Besides the accuracy of the solution the
other concerns here are to provide sufficient number of
control options for course diversion and ensure a smooth
trajectory.



To show the sensitivity of the algorithm on state dis-
cretization, several test runs were carried out with
different sizes of DX and DY using the same simulated
environmental data. First, to investigative the effect

of changing DX, two separate runs using DX = 100 nautical
miles; DY = 30. n.m; and DX = 200 n.m; DY=30 n.m. were
carried out. Figure 2.3-4 shows a comparison of the mini-
mum cost function at various stages and time increments.
Notice that the differences between the coarse grid (DX=
200 n.m. dotted line and the finer grid DX= 100.n.m.
solid line) increases as the distances increases from the
destination. For the example shown here, this difference
amounts up to 5% of the total voyage cost at the beginning

of the voyage. Aparantly, the case with the larger size

of DX, hence fewer stagesl, did not provide enough opportunities
for the control modifications to ensure the cost minimiza-

tion in solving the recursion egquation. This is also confirmed
by the frequent jumps of the recommended power outputs

along the ship trajectory. Theorectically, this 5% difference
will diminish with the successively smaller DX when the

actual minimum cost has been reached.

Two separate runs were also carried out for testing the
sensitivity of the final solution to the size of DY.

As mentioned before, besides the question of accuracy,

the size of DY is also responsible for providing a smooth
trajectory which is considered to be important by the on-
board personnel.

To see the changes in the optimal value functions using

the two different grid systems (DX=100, DY = 60) and
(DX=100, DY=30), the minimum costs were plotted for various

stages and a typical time interval as shown in fiaure 2,3-5.

1Total number of stage in the DX =200 n.m. case equals 16

versus 33 in the DX = 100 n.m. case.
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Notice that the results are similar for the stages near the

destination. The simulated storm was somewhere between the stages

10 and 15. The high waves forced the controls to divert
from the original great circle route to a southern route
as shown in Figure 2.3-5., In this case, there is a
difference of up to 3% in the expected voyage cost at
the beginning of the voyage.

Evidently, the size of DY also has a substantial effect

on the final solution and the expected ship trajectory.

The difference comes from the fact that we are approxi-
mating the optimal value function continuum by discrete
points in the feasible state space. The limited power out-
put and course changing options from a coaser grid

system cannot accurately represent the actual optiwal and
its related controls. As a result, the expected ship traj-
ectory may exhibit the zig-zag characteristics as shown

in figure 2.3-6 for the DY=60. nautical miles case.

More importantly, this 3% or 5% changes in the objective
function may seem small percentagewise. It really represents
a large portion of what could have been saved when one
realized that the minimum cost along the great circle route
in calm water situation would amount to at least $70,000.

In other words, it is actually a change of 25% of what could
be saved. Furthermore, from a ship owner's point of view,
this 5% saving, if realized, would translate into thousands
of dollars. For comparision, even though the computation
cost increased 100%,when the number of stages was doubled,
it amounts to $40 from the original $20. Suppose the ship
tracks requires updating once every day in our Closed open-
loop control strategy. The total computing cost would be

around $2001. It is quite obvious that the use of a finer

1The number of stages will decrease as the voyage continues,

hence less computation effort for the later updates. The $200
is an average figure and would be substantially less if a
special purpose computer is used.
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grid system is always preferred even only 1% of the saving
could be realized.

In conclusion, the calibration studies show that the
algorithm is sensitive to the discretization in the

space domain and less sensitive in the time domain for the
type of cost function considered. The algorithm seems
quite efficient when the required computing cost is com-
pared to the expected savings in the actual voyage cost.

2.4 DISCUSSION

In this chapter, a Dynamic Programming algorithm using the
closed open-loop control strategy has been developed for
the ship routing problem under uncertainty. The results
from the calibration exercise have shown that the
algorithm is economically feasible for real-time imple-

mentation.

It is interesting to compare with the mathematically
elegant Calculus of Variation approaches that have been
investigated in many previous studies [4,5,6,7,8] for
minimum time ship routing. 1In the Calculus of Variation
methods, attention was focused upon the function that

yields the minimum value rather upon the numerical values

of the minimized functional itself. 1In these algorithms,
any likely trajectory is chosen. The feasible solution

then is improved according to the gradients of the objective
function until the optimum has been reached and the boundary
conditions are satisfied. The procedures require the solu-
tions of either a set of linear homogeneous differential
equations called ajoint or the Euler Hamiltonian equation

in the vector form. One major difficulty of these methods
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is the evaluation of the partial derivatives of the ship
speed function with respect to the geographic positions
and the ship's controls. The solution procedure generally
breaks down (convergence problem) if the derivatives are
mutually dependent as it is often the case in the ship
routing problem.

Whereas from the dynamic programming viewpoint, the algorithm
centers its attention upon the optimal value function and

upon its attributes-optimal controls. When we adopt this
point of view, the state variable becomes independent of
each other. Any changes in the state variables during the
recursion procedure means that we are changing the initial
boundary conditions and consequently considering a new
variational problem from there on. The procedure continues

until the entire problem is solved.

From a theoretical point of view, the algorithm is, by
definition, an approximated one. When comparing it to the
classical optimal control approach using time as a stage
variable, the algorithm is somewhat restrictive and relies
guite heavily on assumptions with regard to modern ship

control devices and operational practices. However, the
present approach removes the ambiguity in the interpolation

of the optimal value function between geographical position

and more importantly, its lack of generality is far outweighted
by the computation efficiency which makes the stochastic

model to be economically attractive.

One of the very critical assumptions we made in deriving
the stochastic recursion equation was the first order
Markov property on the random environmental conditions.
Such an assumption obviously is not realistic knowing that

the ocean wave is naturally a correlated time and space process.
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To avoid the use of higher order models and also account

for the inaccuracy of the long range weather forecasts,

we have recommended a so-called 'closed open-loop'control
strategy, rather than going for an adaptive one. The

choice was made in view of the limited computing capa-
bility onboard and our inability to specify the probablistic
change of weather patterns in a quantitative manner.

The other less realistic assumption is the expected value
decision-making rule we imposed on a ship owner. The
criteria essentially assumes that he would like to mini-
mize the total voyage cost on the average for the given
uncertainty on the wave conditions. It does not imply

any risk preference on the decision maker's part. i.e.

he is risk neutral. He chooses his control policy by
comparing the expected cost of the alternative policies
under uncertaintyl. Since the ship operating cost consti-
tutes a relatively small portion of the multi-million dollar
investment, the risk preference in making the ship routing
decisions would not make much difference even for the most

daring or the most conservative ship owner.

1For ar axiomatic development of the utility theory and a

vigorous justification of the expected value decision making
criteria see Ref. [27].
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CHAPTER 3

DYNAMIC ENVIRONMENTAL CONDITIONS

3.1 MODELLING OCEAN ENVIRONMENT

Both the atmosphere and ocean have dynamic properties that
strongly influence the performance of a ship in a seaway.

Sea severity not only effects the ship speed during a voyage,
but also induces ship responses such as motion, acceleration,
slamming, etc., which may violate the system constraints M
of the routed ship for reasons of cargo, ship crew safety
and other operation criteria. It is therefore most impor-
tant that an accurate description of the ocean environmental
condition is provided as inputs to our routing algorithm for
evaluating ship speedkeeping, seakeeping responses.

To compute the ship response and seakeeping statistics, it
requires a knowledge of the ship's responses to all individual
wave components that may be encountered in the ocean. Since
by linear theory, the response of the ship to any particular
wave component is the product of the wave component times

the corresponding frequency response of the ship, an adequate
representation of the seaway is absolutely essential besidés
the characterization of the ship responses in the frequency
domain. These two requirements can be pursued with varying
degrees of sophistication depending upon the accuracy and
resolution desired in the output data. for a particular appli-

cation.

The purpose of the chabter is to suggest various ways of
modelling the dynamic ocean environments for ship routing.
Starting from a full detailed approach to a much simplified
parameter approach, the advantages and disadvantages of various
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representations of seaways are discussed in view of the
required data management, online computing time, inter-
polation scheme and other practical implications.

3.2 OCEAN WAVES
3.2.1. DIRECTIONAL SPECTRA REPRESENTATION

The most useful description of a seaway for evaluating ship
responses by frequency domain analysis is in terms of its
spectral representation. The most complete information on
ocean waves for the purpose is in terms of its directional
spectra, Fig. 3.2.-1 shows a three dimensional plot ofAthe
~ concept. To provide such information, FNWC of the

U.S. Navy has developed an operational Spectral Ocean Wave
Model (SOWM). Ref. [2] to forecast directional spectra at
various ocean grid points up to 72 hours.

The model, was developed for Northern hemispheres and used
an icosahedron to depict the shape of the globe as shown in
Fig. 3.2-2. An icosahedron is a twenty sided polygon with
equilateral triangles for its faces. The SOWM uses seven
triangles for the North Pacific Ocean, six for the North
Atlantic Ocean, and one for the Indian Ocean. Each triangle
has 325 grid points with a spacing of approximately 350 km

- at the point of tangency and 194 km at the vertices. At~
each grid point, the wave energy is the sum of all the energy
'in terms of a twelve direction by fifteen frequency band
matrix. Table 3.2-1 shows a typical output of the SOWM. -

Each number represents the incremental mean square wave height
Ae? contained in an elemental band of wave frequency Aw and

direction Ax. The sum of the 12 x 15 elements gives the mean

o s
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square wave height and is also related to the significant
wave height, Hl/3 by definition :

= *l"
H1/3 4:0 Etotal swanl3ed)

The direction intervals Ax corresponds to 30 degree of
compass spread, the frequency interval is not uniform. The
band width at the lower frequencies (may be interpreted as
swell) are smaller than those at the high freguencies (sea).
To incorporate the full directional spectra into our ship
_routing model, storage space must be provided for the 12 X 15
matrixes at all the wave grid points up to 72 hours in 12
hour intervals. For the North Atlantic which has a total of
1950 grid points, a disk data file of at least 10,000 k bytes
of storage space must be available for updating and main-
taining the directional spectra. During the computation of
optimal value function for each state, the directional

. spectra is accessed and interpolated over space as well as
time. Then, various ship motion indices can be calculated
online according to the procedrues outlined in the next
chapter.

The advantage of this approach using the full directional
spectra representation in calculating the ship responses

is that it provides the capability to obtain the complete
power spectra and cross-spectra of the responses for ocean
systems which are highly critical and sensitive to changes
of encounter frequencies, e.g. drilling ship operation, air-
craft carrier landing problems, the ability to predict the
system responses at various wave frequencies and‘directidns
is absolutely essential. The disadvantage is obviously-thé
excessive online computation and storage that are required

to perform these calculations. 1In addition, due to the wide
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Central ‘ Central Frequency

Frequency (rad/sec) Period (Seconds) Bandwidth {Bz]

[H ]

0.164 1.030 6.1 .164 - =
0.153 0.961 6.5 .142 - .164
0.133 0.836 7.5 .125 - .142
0.117 0.735 8.6 .108 - .125
0.103 0.647 9.7 .097 - .108
0.092 0.578 10.9 .086 - .097
0.083 0.522 12.0 ' .080 - .086
0.078 0.490 12.9 .075 - .080
0.072 0.452 13.8 .069 - .075
0.067 0.421 15.0 .064 - .069
0.061 0.383 16.4 .058 - .064
0.056 0.352 18.0 .053 - .058
0.050 0.314 20.0 .047 - .053
0.044 0.276 22.5 .042 - .047
0.039 0.245 25.7 .036 - .042

Table 3.2-2 Frequency definition of
SOWM Spectra Matrix
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spacing between SOWM's grid systems as well as its large fore-
cast interval, severe difficulty may be encountered in trying

to derive the spectra for other non-standard time and positions.

In conclusion, it seems that while this-full detailed approach
would provide the most accurate evaluation of ship responses

in a seaway, the amount of computation and storage require-
ments is not feasible at the present level of computer tech-
nology. Furthermore, such accuracy deteriorates rapidly due
to the unavailability of sophisticated wave interpolation

model and the present state-of-the-art of weather forecasting.

3.2.2 SWELL, SEA SPECTRA REPRESENTATION

One of the approaches to evaluate ship responses that is

most commonly used in design studies is the utilization of
theoretical sea spectral formulae. These formulations which were
derived from a large number of measured point spectra, repre-

sents the most probable spectral shape for a given sea severity.
The most common form that has been widely accepted and

recommended by the International Towing Tank Conference ([30]

is a two parameter Bretschneider spectral formulation:

s(w) = aw 2 exp (-Bw—b) casa3:9)

- 4 2
a 5/16 0y (Hl/3)
4
B = 5/4
/ s
a = 5.0
b = 4.0
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Where S(w) is the spectral density as a function of wave
frequency w. H1/3 is the significant wave height as de-
fined in eq. (3.1) - and wp is the peak frequency often re-
lated to the characteristic wave period.

It follows therefore, by utilizing the two-parameter theore-
tical spectral formulation, we can summarize the full direc-
tional spectra by a few parameters. From eq. (3.1), the
magnitude of significant wave height Hl/3 can be calculated.
To locate the peak frequency, one simplvy has to search for
the frequency band which contains the highest energy per
unit frequency. To account for the directionality and
shortcrestness, a spreading function is usually employed.
One of the most common form is as follows:

S(u) = % Coszu ""‘3'3).

where u wave direction relative to predominant wave direction.

Hence, the full directional spectrum is approximated by a
point spectrumin conjunction with a spreading function.

S(wu) = Sy (w)S, (u) cee.(38.4)

for o0 € w =
-ﬂ/z € p /2

This data reduction procedure drastically reduces the
storage requirement for the wave data file. 1Instead of
storing 180 pieces of information, it only requires about

four for each spectrum. Furthermore, since the spectra are
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parameterized, we can pre-compute the responses for all
combinations of Hl/3 2N and ship-wave angle, then store them
offline. The comparison of the ship responses to a pre-
defined motion constraint criteria M only involves a simple

read operation online once the parameters are known.

Unfortunately, there are a couple of problems with this simple
procedure. First, it is a single peaked spectrum which can-
not realistically represent a seaway when distinct swells

are present. Secondly, the formulation assumes a constant
spectral broadness measure or shape. (i.e. the variability

of the frequency content is constant). In reality, the shapes
of wave spectra measured in the ocean vary considerably (even
though the values of Hl/3 are the same) depending on environ-
mental condition such as stage of growth and decay of a storm,
duration and fetch of the prevailing wind, depth of the

water etc.

Figure 3.2-3 from [69] illustrates dramatically the variability

of spectral shapes which essentially have the same parameters.

One major improvement over the simple two-parameter spectra
approach may be the use of separate spectral formulations

and directions for the primary as well as the secondary wave
components.

In most cases, when a point spectrum has double peaks, it
usually indicates that there is two distinct trains of wave
energy travelling in different directions. The concentration
of energy in the area of low frequency bands especially in

a direction greater than 30° from the existing wind direction
would indicate the existence of swells. Whereas for high
frequency components, the energy spreads over a larger band
and it is usually referred to as sea.
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SUMMARY OF SOME THEORETCIAL TWO PARAMETER SPECTRAL
FORMULATION AND THEIR PROPERTIES

Spectral width or broadness
SPECTRAL TYPES a 8 a b heastire .
€
Bretschneider 5/16 * wp'(Hy ,3)* | 5/4 wp' 5 4 0.59 0.3908
5 2 2
Neuman 1.46 mp (H1/3) 3 wp 6 2 0.816 0.3888
Noznesenski-Netsvetayev 0.457 wp® {EI]_/:,)2 1.51 wp* 6 4 - 0.3157
Daviddan-Lopatukhin 6 Mo wp® 1.2 wp® 6 5 - 0.2997
Darbyshire (w-w )2 1/2 - 0.47
= 2 - D
xlo] = o Hiy =0p 'o7o65 Tama¥0-287)
a = 0.214 =~ 0.26 < (m—wp) < 1.65
Generalized Two-parameter Spectra
S(e) = aw 3exp ( -Bo~P)
. 2 2
Spectral width or | M, 1/2 My 1/2
broadness measure g = [ Is M, ] i q= [~ W] :




To identify swell components in a directional spectrum, one
must first locate the direction by inspecting the angular
distribution of mean square wave heights. See Table 3.2-1. If
there are two separate high energy components traveling at
directions more than 30° apart. There is a high possibility
of swell existence and the resulting double peakness in the

1
point spectra.

By finding the largest wave energy per unit frequency in each
diréction and choosing the one with lower frequency as swell
components, the directional spectrum is represented by two
parts: one swell component and one sea. Thus the original
double peak point spectra is "decomposed" into a unidirectional
long-crested swell spectra and a short crested single peak

sea spectra.

The spectral density contribution from swell is given by

S (w,x) = |S (0; Xx)
Swell ! 1 A w Aw
for Wy~ —5— € w £ ml + ——
(o]
..o-(‘305)

where w,Xx are the central frequency and direction; Aw,Ay
are the bandwidths respectively.

For the "sea", the usual two parameter Bretschneider spectral
formulation may be used to fit the point spectrum and a simple

cosine square spreading function to account for short crest-
ness.

1 ; , ; ;
Private communication with Mr. Norm Stevenson, FNWC.
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Figure 3.2-4 shows an example of the above data reduction method
applied to the directional spectrum presented in Table 3.2-1.

The advantage of the approach is that it reduces the effect of
the two major shortcomings in the previous simple two para-
meter representation of ocean waves. By separating the sea
and swell components according to their energy contents and
directions, the directional ocean wave spectra is approximated
more accurately. Although the question of spectral broadness
or shape of the 'sea' spectra, still has to be resolved if

a two parameter formulation is used to fit the remaining ‘sea’

spectrum, the variation due to swell components have been taken out.

The biggest advantage from data preparation point of view

is that it not only reduces the input description of wave
conditions to [w,X,S(w,Xx)] swell, [Hl/a,mpx] sea, six pieces

of information, but also more importantly allows us to pre-
compute the ship responses offline, and store them on a direct
access disc file. Thus by using the two-parameter Bretschneider
formulation in conjunction with a cosine square spreading

function, the ship motion response may be calculated for the

sea and tabulated according to combinations of the discrete
intervals of significant wave height, peak frequency and

wave direction. For the responses due to sweli, since it is
a unidirectional longcrested wave component, no spreading is
required. Hence the combined response is given by the sum of
the mean square responses due to sea and swell.l The details
of ship motion analysis will be discussed in the next chapter.

1, s 3 .
This is only true for linear systems. In ship motion theory,

it is assumed that linear superposition is valid for most of
the responses.
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Fig. 3 .2-4 An example of point spectra decomposition
into Sea and Swell components.



3.2.3 CHARACTERIZING THE UNCERTAINTIES IN OCEAN
WAVE FORECASTING

Having condensed our forecasted directional spectra into
swell and sea spectral parameters, it is relatively easy
to characterize the uncertainties in the wave forecasting
from which the state transition probabilities are derived.

Recall that in section 2.2.2, we defined R as a random
vector describing the ocean wave conditions. Let us
consider the following scenario: at the beginning of the
voyage, the severities of the waves in the feasible state
space have been forecasted by point estimates of Rkj For
example, the vector R may be the significant wave height
and peak frequency condensed from the directional spectra
at various wave grids forecasted by FNWC at 12 hour inter-
vals. As the time of forecasts increase into the future,
the accuracy of the point estimates of E deteriorates and
the uncertainty in terms of its variance also increases.

Figure 3.2.4 shows a typical plot of the mean error and

variance of forecasted significant wave heights} The values
also vary with the sea severity as shown explicitly in

Fig. 3.2-6. The problem is how to characterize the distri-
bution of R from which the probability density function

of transition time is derived in order to carry out our

stochastic recursion equation.

For the purpose of illustrating the mathematics and also due to
the availability of data, let us only consider one parameter;

the 31gn1f1cant wave height H, and assume that H is normally
dlstrlbuted for a given forecasted wave height parameter H

at a particular forecast period DT(e.g. 0,12,24,36...hours

later).

2
(H-; )]

20

p(H |H,DT) = o + expl

This data was obtained from a wave buoy located somewhere

in the North sea. Similar data should be obtained along
commercial ship routes for verification of the wave model.
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Error in Significant wave height H in feet
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Fig. 3.2-5 Mean error and standard deviation versus
' time of forecasts.
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Error in Significant wave height H in feet.
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