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ABSTRACT

This thesis is a study of rigid designation. In the ten years
since Kripke called attention to the notion, a variety of claims have
been made about rigid designators. Many of the claims are problematic,
and some of them are in direct conflict with others. The effect is to
raise doubts about the notion. The principal goal of this thesis is a
clear statement of what rigid designators are and what is special about
them.

The first part of the thesis offers a definition of rigid
designation and defends it against others that have been proposed. The
concern is whether there is a distinct notion here at all. I conclude
that there is an intuitively well-motivated, theoretically interesting
notion of rigid designation. Furthermore, it can be defined perspicuously
in terms of necessity de re. I argue that any adequate definition must
at least resort to such a modal operator, but it need not employ the full
paraphernalia of possible worlds.

The second part of the thesis explores the logic of singular
terms in modal contexts. The goal is to determine the logical properties
that rigid designators have and other singular terms lack. To this end,
various formal modal languages are emphasized. I conclude that rigid
designators have a number of important properties--e.g. the substitutivity
of identity holds for them. But they do not have some of the properties
that they are often claimed to have. In particular, differences in the
scope of a rigid designator in a modal context can affect truth-value.
Thus rigid designators are not scope neutral.

Much of the second part of the thesis is devoted to accounting
for why rigid designators might be thought to be scope neutral. This con-
cern leads to some interesting conclusions about the regimentation of de
re modality. For instance, the tendency to liken rigid designators to
the constants of standard logic is found to be a major source of trouble.
I show that constants like those in standard logic cannot be introduced
in the formal modal languages considered in the thesis without in the
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process rendering these languages philosophically uninteresting. Simi-

larly, a previously unexamined approach to quantified modal logic is found
to conform unusually well with intuitions about the scope characteristics
of rigid designators, and with essentialist intuitions generally. I
indicate ways in which this approach to regimenting de re modality, which
distinguishes between normal and recherche predicates, is more promising
than other approaches.
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Chapter I

Introduct ion



Saul Kripke's lectures "Naming and Necessity" and "Identity and

Necessity" have attracted a good deal of philosophic attention since their

publication. One of the central notions in the lectures is rigid designa-

tion. The idea of a rigid designator is easy to motivate. Many singular

referring expressions can switch reference when they occur in counter-

factual contexts. For example, 'the inventor of bifocals' does not denote

Benjamin Franklin on one reading of 'the inventor of bifocals might have

been born in the ninth century'. Rigid designators do not suffer from

such vagaries of reference. Thus, they would provide a way of maintaining

reference to specific objects even in counterfactual and modal statements.

A pivotal thesis of Kripke's lectures is that proper names in

natural language are rigid designators. Many of his most important argu-

ments turn on this thesis. It is not altogether surprising, therefore,

that a good deal of controversy has developed around the thesis. Un-

fortunately, this controversy has been less than illuminating. One

difficulty with it is that different disputants seem to take the thesis

to mean quite different things. One reason for this is that there are a

number of related notions with which rigid designation might be confused,

and there have been a number of related claims about proper names that

might be confused with the claim Kripke is making. It is also in part a

result of the brevity with which Kripke introduces the notion. He gives

a possible worlds characterization ("call something a rigid designator if

in any possible world it designates the same object"), a single paradigm

('the square root of 25'), and an intuitive test involving a schema that

is open to different readings. I think Kripke's point comes through

clearly. Still, given the leverage provided by the thesis that names



are rigid, he might well have anticipated a tendency to misconstrue

it.

There is a need, then, to clarify the notion of rigid designa-

tion. Such clarification will be my immediate concern in this dissertation.

I will not as such address the question whether proper names are rigid.

Indeed, I will give comparatively little attention to natural language.

Rather, the goal will be a clear statement of what rigid designators are

and of what properties they have in suitable regimented languages.

Following the publication of Kripke's lectures, a number of

distinct definitions have been offered of rigid designation, and a number

of conflicting claims have been made about the logical properties of rigid

designators. The natural question to ask in these circumstances is whether

there is a specific intuitive notion of rigid designation at all. I argue

in the next chapter that the answer to this question is yes--there is a

naturally motivated, theoretically interesting notion of rigid designation,

indeed the one that Kripke points out. I offer a formally explicit

definition of rigid designation and then show that this definition isolates

the naturally motivated, theoretically interesting notion from other close-

ly related ones. This definition is then defended at length against others

in the literature.

Given a formally explicit definition of rigid designation, the

obvious next question is, what are the distinctive logical properties of

rigid designators. The definition put forward in the next chapter uses

'0', the necessity operator of modal logic. No formal interpretation of

'O' is given in the chapter, however, so that its use there is primarily for

perspicuity. But equipped with a definition framed in the syntax of
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quantified modal logic and facing a question about logical properties, the

natural approach is to concentrate on the logic that rigid designators, so

defined, have within quantified modal logic. This is the approach taken

in the long final chapter.

Quantified modal logic remains controversial. One source of

this controversy is the complaint that "it leads us back into the meta-

physical jungle of Aristotelian essentialism." But as we will see, this

complaint has little force for someone studying rigid designation; rigid

designation is part of this same jungle. Indeed, Aristotelian essentialism

amounts to the view that certain predicates are necessarily true of some

individuals and not true at all of others. If the goal is to find a

regimented framework in which to express such claims prior to evaluating

them, then the appropriate stance to adopt toward the complaint against

essentialism is that it should be held in abeyance. This is the stance I

adopt throughout. But this stance does not eliminate the controversy

surrounding quantified modal logic. Having granted that the goal is a

framework in which to express essentialist claims, the question remains

whether the framework of quantified modal logic is adequate. In particular,

is a single necessity operator--e.g. '('--sufficient for expressing both

claims that certain sentences are necessarily true and also claims that

certain predicates are necessarily true of certain individuals? There are

reasons to suspect not. Efforts to formalize quantified modal logic have

more often than not yielded theorems like 'O(3x)Fx ~ (3x)QFx' and

'(-x)aFx 0C(3x)Fx'--the so-called Barcan and Buridan formulas--that are

unacceptable to most proponents of essentialism. Indeed, many quantified

modal logics in the literature contain as theorems denials of such basic
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essentialist claims as (i) there are contingently existing objects and

(ii) predicates can be necessarily true of contingently existing objects.

In addition to these worries, concerns have been expressed about the

interpretation of free variables in modal contexts. The issue raised

is whether one can coherently quantify into modal contexts. Part of its

force comes from doubts about the logic of singular terms in quantified

modal logic.

The question whether the framework of quantified modal logic is

adequate remains in the background throughout most of the long chapter on

the logic of rigid designators. But it is nevertheless the question of

ultimate concern. Of course, our approach to it is somewhat indirect.

The immediate question concerns the logic of singular reference within the

formal setting of quantified modal logic. But evidence that the behavior

of singular terms in this setting is idiosyncratic or counterintuitive is

evidence against the adequacy of quantified modal logic. In particular,

quantified modal logic is put in doubt to the extent that the logical

properties of rigid designators in it are not compatible with those that

rigid designators have in informal settings.

Because of this question in the background, the logic of rigid

designators turns out to be more interesting than one might have antici-

pated. As expected, the substitutivity of identity holds for rigid desig-

nators. But contrary to claims prevalent in the literature, rigid designators

are not "scope neutral"--i.e., the truth-value of modal sentences containing

rigid designators is often sensitive to the scope of these designators.

Much of the long final chapter is devoted to determining the significance

of this seeming discrepancy with informal expectations. Two important
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results emerge. First, philosophically interesting modal quantificational

languages cannot contain constants of the kind found in standard logic.

The tendency to think otherwise is a major source of confusion both about

rigid designation and about quantified modal logic. Second, there is a

modal quantificational framework that conforms well both with essentialist

intuitions and with informal expectations about the scope characteristics

of rigid designators. This framework appears to be the most promising of

those that have been proposed for regimenting essentialist reasoning.

Hence, instead of challenging the adequacy of quantified modal logic, our

results lend a particular version of it support. The logic of singular

terms in modal contexts appears to be perspicuously captured by this

quantified modal logic.
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Chapter II

Rigid Designation and Its Variants
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Michael Slote claims that in "Identity and Necessity" and "Naming

and Necessity" Kripke has blurred a distinction between two kinds of rigid

designation.. Slote calls the one kind inclusively rigid and the other

exclusively rigid. On his account, a designator is inclusively rigid if

and only if, should it pick out a certain object in some one possible

world, then it picks out that same object in every other possible world

in which that object exists. By contrast, a designator a is exclusively

rigid if and only if it designates some actual object and rit is not logi-

cally possible that d be something other than the thing that in fact is <

is true.

In "Naming and Necessity" Kripke says, "call something a rigid

designator if in any possible world it designates the same object;"2 and

he adds that of course the object in question need not exist in every

possible world. This specification corresponds to Slote's condition for

inclusive rigidity. Yet on the very next page, in arguing intuitively

that proper names are rigid designators, Kripke says, "although the man

(Nixon) might not have been the President, it is not the case that he

might not have been Nixon." This phrasing of an intuitive test for rigid

designation suggests Slote's condition for exclusive rigidity. Accord-

ingly, if Slote is correct that the two kinds of rigid designation are

distinct, then there is some evidence that Kripke has blurred the distinc-

tion.

Slote is not alone in complaining about Kripke's specification

of what a rigid designator is. In calling attention to the ambiguity of

Kripke's initial specification, Hugh Chandler says that Kripke may be

offering any of the following definitions: 3
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Definition I: Given a term that, in the real world, designates
an object, the term is a "rigid designator" if, and only if,
every possible world in which that object exists is one with
respect to which the term designates the object.

Definition II: Given a term that, in the real world, designates
an object, the term is a "rigid designator" if, and only if,
every possible world with respect to which the term designates
at all is one with respect to which it designates that object.

Definition III: Given a term that, in the real world, desig-
nates an object, the term is a "rigid designator" if, and
only if, (1) every possible world in which that object exists
is one with respect to which the term designates the object, and
(2) every possible world with respect to which the term desig-
nates at all is one with respect to which it designates that
object.

Chandler does not go on to discuss the relative merits of these three

alternatives, for he is concerned with a different question.

Slote's and Chandler's remarks raise the question whether we have

a clear notion of rigid designation at all. It is one thing not to have

successfully defined a clear notion and quite another not to have a clear

notion to define. Which is true in the case of rigid designation? This

is the central concern of this chapter. I shall begin with Slote's dis-

tinction between inclusive and exclusive rigidity. Once that distinction

is clear, I will consider among other topics the relation between Slote's

two conditions and Chandler's three definitions. For the moment I will

not be concerned with whether proper names or any other linguistic

entities are in fact rigid designators.

A difficulty with Slote's statement of the condition for ex-

clusive rigidity is that substitution instances of the schema it relies
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on are open to more than one reading. In particular, substitution

instances in which '4' is replaced by a definite description suffer from

the standard sort of scope ambiguity. Including the phrase 'in fact' in

the schema does not eliminate such ambiguities; it merely calls attention

to the need to pick out the relevant reading. Thus Slote would better

have said that a is an exclusively rigid designator if and only if e picks

out some actual entity and rit is not logically possible that c be some-

thing other than the thing that in fact is L' is true on a certain reading.

But what is this reading? Consider the following definition:

An instance of the schema

is an exclusively rigid designator if and only if (1)

the corresponding instance of the schema

(3x) [(Vy)(.*.y.*. y=x) & O((Vy)(...y... =0 y=x)

is true.

It eliminates the ambiguities. And it seems to capture what Slote wants.

On the one hand, according to it 'the inventor of bifocals' is not ex-

clusively rigid. For Thomas Jefferson might have been the inventor of

bifocals. On the other hand, according to it 'the thing which is identical

with Scott' appears to be exclusively rigid. For intuitively the follow-

ing appears to be necessary: if y is the thing which is identical with

Scott, then y is identical with Scott.

Two points need to be made about (1). First, defining exclusive

rigidity for definite descriptions rather than for terms in general need

not involve any loss of generality. Quine's method of eliminating names

from regimented languages--e.g., use the predicate 'Nixonizes' and a

definite description to eliminate 'Nixon'--gives us one way for (I) to
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handle names. Or we might say, for example, that 'Nixon' is a rigid

designator only if the definite description 'the individual that is

identical with Nixon' is. By framing the definition in terms of definite

descriptions, we can eliminate scope ambiguities completely.

The second point about (1) is that it employs modality de re.

That is, the modal operator occurs within the scope of the existential

quantifier. Consequently, whether (1) yields a precise definition depends

in part on whether we can make sense of modality de re. I do not want to

worry about this here. For now let us assume that an adequate account of

modality de re can be given. The force of the governing schema of (1)

is then clear. Its existential quantifier requires that there exist an

actual individual, and its modal clause requires that something be

necessarily true of that individual. Of course, if the reader insists,

the schema is open to possible world interpretation. I am reluctant to

introduce such an interpretation at this point, not only because there is

controversy as to which possible world interpretation of quantified

modal logic is best, but also because I am uncertain whether a possible

world interpretation does anything to clarify this schema. I have framed

the definition in terms of a schema with a modal operator rather than in

terms of possible worlds in order to remain neutral on questions of how

to explicate modality de re.

How are we to state with comparable precision Slote's condition

for inclusive rigidity? First note that his statement of this condition,

unlike his statement of the condition for exclusive rigidity, does not

expressly require the designator to designate an actual individual. 7
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Nevertheless, to keep the conditions parallel with one another, I will

assume that inclusive rigidity does require this of a designator. We

might then mistakenly try to exploit the parallelism by proposing the

following:

An instance of the schema

(1x)(.--x...)
is an inclusively rigid designator if and only if (2)

the corresponding instance of the schema

(3x) (y)(-.-y... - y=x) & O(Vy)(y=x = .. y...)]
is true.

The attractive feature of this proposal is that the modal clause in

the schema is the converse of the modal clause in the schema for ex-

clusive rigidity. Thus, if the proposal were right, we could readily

account for any blurring of the distinction between the two kinds of

rigidity. And we could construct a further kind of rigid designation,

as follows:

An instance of the schema

( x)(-..x...)
is a completely rigid designator if and only if (3)

the corresponding instance of the schema

(3x) (y)(...y... = y=x) & o(Vy)(...y. _ y=x)]
is true.

This third kind of rigid designation will yet be of interest. But (2)

will not do as a definition of inclusive rigidity, for the last clause is

not strong enough. In possible worlds terminology, for a definite descrip-

tion to be inclusively rigid, not only must it be true of an object in every

possible world in which that object exists, but it must be uniquely true
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of that object in every such world. The modal clause of the governing

schema of (2), unlike those of (1) and (3), does not require uniqueness.

The following definition secures the desired uniqueness:

An instance of the schema

(1x)(.*x.x--)
is an inclusively rigid designator if and only if

the corresponding instance of the schema (4)

(3x) [(V)(y***Y.. e y=x) & O(V'y)(y=x >

(..y*..* & (Vw)((***w-- a w=x)))]

is true.

The sort of possible world interpretation which Slote adopts in his book

indicates that the governing schema of (4) is what he wants. On the one

hand, according to (4) 'the inventor of bifocals' is not inclusively

rigid. For in some possible world Franklin exists and in that world is

not the inventor of bifocals. On the other hand, according to it 'the

thing which is identical with Scott' appears to be inclusively rigid. For

intuitively if in a possible world there is an individual that is identical

with the actual Scott, then in that world that individual is uniquely the

thing which is identical with Scott.

Four governing schemata have been singled out in (1) through

(4):

Ox) P(Vy)(.-.y... e y=x) & (Vy)(...y... y=x)] (5)
(3x) (Vy)(0.y.y.. -- y=x) & 0(Vy)(y=x : ... y...)) (6)
(3x) (Vy)(---y-m.- y=x) & O(Vy)(--.y--- E y=x) (7)

(3x) [(Vy)(...y.. , = y=x) & Q(Vy)(y=x o (8)
(...y... r (Vw)(...w... w=x)))]

What are the relations among these four? As already remarked, (6) does

not entail (8), though obviously (8) entails (6).10 (7) entails each of
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the others, but is not entailed by any one of them. That is, if a

designator is completely rigid, then it is both inclusively and exclusive-

ly rigid. Furthermore, since the conjunction of (8) and (5) entails (7),

a designator which is both inclusively and exclusively rigid is completely

rigid. What remains, then, is to examine the examples Slote uses to argue

that an exclusively rigid designator need not be inclusively rigid, and

conversely.

Slote's example of an exclusively rigid designator that is not

inclusively rigid is 'the being that is identical with Nixon and also a

politician'. Intuitively it satisfies (1). For, letting 'n' stand for

'Nixon' and 'P' for 'is a politician', (9) is intuitively true:

O(y) (y=n & Py) = y=n] (9)

But this designator does not similarly satisfy (4), for intuitively (10)

is false:

CI(Vy)[y=n = (y=n & Py & (Vw)((w=n & Pw) = w=n))] (10)

(10) is false because, of course, Nixon might have existed and yet not

been a politician. We agree with Slote, then, that an exclusively rigid

designator need not be inclusively rigid.

Slote's example of an inclusively rigid designator that is not

exclusively rigid is 'the being that came from Harry', where 'Harry' is

the name of the particular sperm from which Slote himself originated.

The reason it is not exclusively rigid is that the sperm in question

might have united with a different egg and thereby yielded an individual

other than Michael Slote. Thus (ll) is intuitively false, where 's'

stands for 'Michael Slote' and 'H' for 'comes from Harry':

O(Vy)Hy >y y=s (11)
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The question then is whether, as Slote claims, 'the being that came from

Harry' is inclusively rigid. Slote bases his claim on the supposition

that his coming from Harry is one of his essential attributes. I will not

quarrel with this supposition here. But notice that even if this attribute

is essential to him, it may not be essentially unique to him. Slote might

have had an identical twin, and then two different individuals would have

12
come from Harry.2 Hence, 'the being that came from Harry' is not in-

clusively rigid. It does not satisfy (4), although it does satisfy the

mistaken definition of inclusive rigidity, (2).

Is there an inclusively rigid designator that is not exclusively

rigid? We might try to get around my objection by modifying Slote's

example to read 'the first-born being that came from Harry'. But this

does not help. For, though the attribute invoked is one that would hold

uniquely if at all, there is no reason to think that it is an essential

attribute. Isn't it logically possible for identical twins to be born

in either order?

To get a clear example, Slote needs an attribute that on the one

hand holds essentially and essentially uniquely of a certain object, but

on the other hand might hold of some other object were the first object

not to exist. In possible world terms, Slote requires an attribute that

(i) holds uniquely of some object in every possible world in which that

object exists and (ii) holds of some other object in some other possible

world. It would be nice to find an everyday attribute of this sort since

contrived examples are less compelling. But I have not found one. Of

course, this should not be surprising. It is a direct reflection of the

problem central to Kripke's lectures, viz, the problem of fixing the
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reference of an expression that is rigidly to designate a contingent

entity. We seem not to know of an everyday attribute that is essential

and essentially unique to a contingent object. If we did, we could

readily fix the reference of a name of that object, and in the process

give that name a sense.

Nevertheless, we can get a designator that on the intuitive

interpretation of logical necessity is inclusively, but not exclusively

rigid. In particular, we can construct an example in parallel with the

one Slote gives us of a designator which is exclusively, but not inclusively

rigid. The example may seem awkward, but it accomplishes what we want,

and it is not without precedent in the literature. Consider the designator,

'the thing which is identical with Nixon, or should nothing be identical

with Nixon, the thing which is identical with 0'. The idea here springs

from Frege's suggestion that failure of reference be eliminated from

regimented languages by stipulating that otherwise denotationless names

14
denote 0. In symbolic notation the example might be expressed as

follows, where 'n' stands for 'Nixon':

(ix)[x=n v (-(3z)(z=n) & x=0) (12)

However, this formulation will unfortunately require us to adopt a free-

logic if its second clause is not to be vacuous. A better formulation

is therefore as follows, where 'N' stands for 'Nixonizes':1 5

(Ix)rNx v (''(3!z)(Nz) & x=0)J (13)

This designator is not exclusively rigid since it is presumably possible

for Nixon not to have existed, in which case it would designate 0 rather

than Nixon. Thus (14) is intuitively false:

O(Vy) (Ny v (~(,! z)(Nz) & y=O)) > y=nJ (14)
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But since (15) seems true, this designator appears to be inclusively

rigid:

(Vy) [y=n I (Ny v (O(3! z)(Nz) & y=O)) &

(Vw)((Nw v (o(3!Iz)(Nz) & w=0)) w=n])

That is, intuitively it is necessary that if Nixon exists, then the

description holds of him and of him uniquely.

We therefore agree with Slote that an inclusively rigid desig-

nator need not be exclusively rigid. This example, together with the

parallel one that Slote gave us earlier, shows that neither an inclusively

nor an exclusively rigid designator need be completely rigid. The three

notions are distinct.

II

Slote's proposed distinction has led us to define three dif-

ferent notions of rigid designation--inclusive, exclusive, and complete

rigidity. The three correspond to Chandler's alternative definitions of

rigid designation, quoted earlier. The correspondence is easy to see

once we give the usual possible world interpretation to the governing

schemata of (4), (1), and (3). For consider a definite description that

successfully picks out a certain object in the actual world. Such a de-

scription is inclusively rigid provided that the actually designated

object uniquely satisfies the description in every possible world in which

it exists. What inclusive rigidity leaves open is whether some other ob-

ject satisfies the description in a possible world in which the actually

designated object does not exist. By contrast, a definite description is
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exclusively rigid provided that in no possible world does any object

other than the actually designated object satisfy the description. What

exclusive rigidity leaves open is whether there are possible worlds in

which the actually designated object exists, but fails to satisfy the

description. Finally, a definite description is completely rigid provided

that the actually designated object satisfies the description in every

possible world in which it exists and in no possible world does any other

object satisfy the description. The only differences between these

characterizations and Chandler's are matters of wording. I persist in

the view that neutral definitions in terms of a de re modal operator are

preferable to definitions in terms of possible worlds. Still, the corres-

pondence between Chandler's and our definitions is interesting. It is

evidence that our definitions have been stated correctly, and it is evidence

that we have successfully identified the principal notions of rigid desig-

nation.

An obvious question, given these three notions, is whether any

one of them is of more interest than the others. Neither Chandler nor

Slote addresses this question. In offering three possible definitions of

rigid designation, Chandler prompts the question. But instead of choosing

one, he develops a separate argument around each of them for an independent

point. Slote, having called our attention to a potential difficulty, pro-

ceeds to restrict his attention to what we have called completely rigid

designation.

Of course, since what is of more interest from one point of

view may not be from another, the question is vague as it stands. The

way in which Kripke introduces the notion of rigid designation suggests
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two more precise questions. First, Kripke introduces the notion by appeal-

ing to an intuitive distinction between rigid and nonrigid designators, as

illustrated by some paradigms. This suggests the question, which of our

three notions best approximates the intuitive notion Kripke invokes?

Second, Kripke introduces the notion in order to explicate certain features

of reference. This suggests the question, which of our notions is most

useful for explicating these features? Which, if any, of our notions

promises to be central to the theory of reference? Since intuitive

notions sometimes prove not to be best for developing a theory, these

two questions need not receive the same answer. Furthermore, neither

question is trivially answered by citing Kripke's paradigms. All three

notions fit them. His paradigm of a rigid designator, 'the square root

of 25', satisfies (1), (3), and (4); and his paradigm of a nonrigid desig-

16nator, 'the inventor of bifocals', satisfies none of them. We will have

to look deeper for answers.

It seems clear to me that, though the questions are distinct,

the answer to both is the same, viz., completely rigid designation. That

is, I think that (3), the definition of complete rigidity, provides the

best definition of the intuitive notion Kripke's examples invoke. And I

think that the notion of complete rigidity is the most useful of the

three in addressing questions about reference. I have four arguments

for these claims. The structure of each argument is the same. The

initial step is to show that complete rigidity has an attribute that

exclusive and inclusive rigidity lack. This step usually requires most

of the effort. The shorter, concluding step divides into two parts. One

part shows how its having the attribute in question is evidence that
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complete rigidity is the intuitive notion; the other part shows how the

same thing is evidence that complete rigidity is the notion of principal

theoretical interest.

One argument is that all examples I have found of designators

which are exclusively or inclusively, but not completely rigid seem con-

trived. 'The thing which is identical with Nixon and a politician' and

'the thing which is identical with Nixon or, should nothing be identical

with Nixon, the thing which is identical with 0', even when less awkwardly

phrased, do not represent ordinary ways of designating things. Examples

like these do not favor exclusive or inclusive rigidity. Of course,

this line of argument would be more compelling if I could show that the

only possible examples of exclusively or inclusively rigid designators

which are not completely rigid are contrived. We could then argue that

complete rigidity is more likely the intuitive notion Kripke's paradigms

invoke, since whatever the principle for projecting from these paradigms

is, the projection should extend to as few contrived cases as possible.

Similarly, we could argue that complete rigidity is more likely to be

central to the theory of reference, for normal, not contrived cases com-

prise the principal explicative burden of a theory. Unfortunately, I

cannot show that the only examples are contrived. Still, this line of

argument suggests that complete rigidity is the better founded of the

notions and that the others are weakened offshoots.

A more compelling line of argument considers how other notions

of designation give rise to that of a rigid designator. The idea is that

the way in which they naturally give rise to it will be found under close

inspection to imply that it is the same as completely rigid designation.
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The basic notion is that of a designator simpliciter--i.e., a singular

referring expression which in fact picks out exactly one actual individual.

We can define this notion in parallel with our earlier definitions as

follows:

An instance of the schema

(x)(...x...)
is a designator (simpliciter) if and only if

the corresponding instance of the schema

(3x)(Ny)(0*ey... *- y=x)
is true.

Of course, a singular referring expression may in fact designate something

without it being necessary that it designate anything. This suggests the

notion of an unfailing designator--i.e., a singular referring expression

which is guaranteed to pick out some individual or other. We can define

this notion as follows:

An instance of the schema

is an unfailing designator if and only if (17)

the corresponding instance of the schema

(3x) (Vy)(---y--- : y=x)

is true.

But again, a singular referring expression may be guaranteed to designate

something without it being necessary that it designate the particular

individual it now does. This suggests a further notion, viz., that of a

singular referring expression which in some sense is guaranteed to desig-

nate the individual it now designates. The notion we get at in this way,

I submit, is rigid designation.
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Roughly, then, the idea of the argument is to motivate the

notion of a rigid designator, much as Kripke does, by considering designa-

tion in general vis-a-vis logically possible counterfactual situations.

However, we need to develop this approach at some length and with some

care before it can help us to choose among our three kinds of rigid

designation. In particular, we need to answer the question, how is what

an expression might have designated pertinent at all?

First, however, we need to make more precise the possibilities

these other kinds of designation leave open. Assume we are given a

singular referring expression that is a designator in a language L--one

like 'the x such that Fx'. Assume further that the rules governing L,

especially those governing reference, remain fixed. And now consider

the ways in which things might have been different. One possibility

that designation simpliciter leaves open is that things might have been

different in such a way that 'the x such that Fx' would have designated

some other object even though the object it now designates would still

have existed. For example, suppose that Franklin had concentrated on

politics rather than science and Jefferson had developed bifocal lenses.

Then 'the inventor of bifocals' would have designated Jefferson, and yet

Franklin would still have existed. A second possibility left open is

that things might have been different in such a way that 'the x such that

Fx' would have designated nothing even though the object it now designates

would still have existed. For example, suppose that Franklin had con-

centrated on politics and that eyeglasses had never been conceived of.

Then 'the inventor of bifocals' would have designated nothing, and yet

Franklin would still have existed. A third possibility left open is that
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things might have been different in such a way that 'the x such that Fx'

would still have designated something even though the object it now

designates would not have existed. For example, suppose Franklin had

never been born and that Jefferson had developed bifocal lenses. Then

'the inventor of bifocals' would have designated Jefferson and Franklin

would not have existed.

Other possibilities left open by designation need not concern

us here. Note that unfailing designation also leaves the first and third

possibilities open. For a singular referring expression can be an unfail-

ing designator without having to designate the object it does. And if

the object it now designates had not existed, it would have had to desig-

nate some other object to have been unfailing. Finally, in saying that

designation leaves a certain possibility open, I do not mean that all

designators leave it open. I mean only that a singular referring expres-

sion can be a designator and yet the possiblity in question remain open.

What difference do these open possibilities make? And how do

they give rise to a notion of rigid designation? They would seem to

make no difference if the reference of every singular referring expression,

regardless of context, were determined solely on the basis of what is

actually the case. For then, regardless of the context in which it

occurs, a designator would always in practice designate the same thing.

What it might have designated or what it would have designated if things

had been different would be just a matter of curiosity. And the open

possibilities would probably not give rise to a notion of rigid designation.

However, some languages, notably English, have contexts in which

the reference of singular referring expressions can also be determined on
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the basis of what might have been or would have been the case. Consider

the following ambiguous sentences:

The inventor of bifocals might have been the third

President of the United States.

If Jefferson had devoted more time to optics, the

inventor of bifocals would have been the third (19)

President of the United States.

One way in which they are ambiguous is that in both 'the inventor of

bifocals' can be taken to refer either to Franklin or, for example, to

Jefferson.17  If Franklin, then its reference is being determined on

the basis of what is actually the case; but if Jefferson, then its

reference is being determined on the basis of what might have or would

18have been the case. Now, if the reference of singular referring ex-

pressions in some contexts can be determined on the basis of counter-

factual conditions, then what a designator might have or would have

designated is not just a matter of curiosity. Given our open possibil-

ities, a designator could in practice denote something else. The open

possibilities would then make a difference--e.g., they could lead to a

certain type of referential ambiguity.

The idea, then is to focus on languages having contexts in

which the reference of singular referring expressions can be determined

either on the basis of the actual situation or on the basis of a counter-

19
factual situation. We need to examine the consequences of the possi-

bilities left open by designation simpliciter and unfailing designation

in such languages to see how these possibilities give rise to a notion

of rigid designation.
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We can fix our ideas by concentrating on contexts of the follow-

ing form:

Suppose p had been the case; even so the x (20)
such that Fx would have been G.

The detailed workings of reference in such contexts in English need not

concern us here. We will simply assume that in such contexts the

reference of 'the x such that Fx' can be determined on either of two

bases:

Basis 1: What is actually the case.

Basis 2: What would have been the case if p had been true. 20

Now consider the three open possibilities sketched earlier. In

the first a designator would have designated something other than what it

now does even though the latter would still have existed. But then a

sentence of the form of (20) could be true if the reference of 'the x

such that Fx' were determined on Basis 1 and not true if it were deter-

mined on Basis 2. To illustrate, consider the following example:

Suppose Jefferson had developed bifocals and Franklin

had concentrated on politics; even so, the inventor (21)

of bifocals would have been a delegate to the

Federal Convention.20

Presumably the second clause of (21) is true if 'the inventor of bifocals'

is taken to refer to the person who actually invented bifocals, Franklin;

and it is not true if the phrase is taken to refer to the person who

would have invented bifocals in the supposed counterfactual situation,

Jefferson.

In the second open possibility, a designator would have failed

to designate anything at all even though the object it now designates
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would still have existed. But then a sentence of the form of (20)

could be true if the reference of 'the x such that Fx' were determined on

Basis I and not true if it were determined on Basis 2.22 To illustrate:

Suppose human eyesight had never needed correction

and eyeglasses had never been invented; even so, (22)

the inventor of bifocals would have been a delegate

to the Federal Convention.

Presumably the second clause of (22) is true if 'the inventor of bifocals'

is taken to refer to the person who actually invented bifocals; and it

is not true if the phrase is taken to refer to someone who would have

invented bifocals in the supposed counterfactual situation.

Finally, in the third open possibility, a designator would have

designated something even though the object it now designates would not

have existed. But then a sentence of the form of (20) could be true if

the reference of 'the x such that Fx' were determined on Basis 2, and not

true if it were determined on Basis 1. To illustrate:

Suppose the Franklins had had no children and

Jefferson had developed bifocals; even so, the (23)

inventor of bifocals would have been in France

during the Federal Convention.

Presumably the second clause of (23) is true if 'the inventor of bifocals'

is taken to refer to Jefferson; and it is not true if the phrase is taken

to refer to Franklin.

Thus in languages of the specified type designation simpliciter

and unfailing designation leave open the possibility that certain sentences

-- e.g., descriptions of counterfactual situations--will have contrasting

truth-values when the reference of designators occurring in them is



32

determined on one basis rather than another. This possibility calls

attention to a special kind of designator, one that, regardless of the

basis on which its reference is determined, never leads to contrasting

truth-values. This special kind of designator, I take it, is a rigid

designator.

We now have a natural way of motivating rigid designation.

This way requires some comments before we continue with the argument.

First, note that according to our characterization it is not the point of

a rigid designator to eliminate contrasting truth-values by forcing

reference to be determined on only one basis. Rather, the point is to

eliminate contrasting truth-values while still permitting reference to

be determined on different bases. This helps to explain why I have

characterized rigid designation as a way of eliminating contrasting

truth-values rather than as a way of eliminating ambiguities. For assume

that 'the x such that x Franklinized' rigidly designates Benjamin Franklin,

and consider the following:

Suppose the Franklins had had no children; even so,

the x such that x Franklinized would have been a (24)

delegate to the Federal Convention.

To me the second clause of (24) still seems open to two readings. On

one reading it says that there is exactly one individual who Franklinized

and this individual would have been a delegate even in the supposed

situation. On the other it says that even in the supposed situation

there would have been an individual who alone Franklinized and who was a

delegate. 2 3 If so, (24) has two readings, and these correspond to two

bases on which the reference of 'the x such that x Franklinized' can be
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determined. The rigid designator would thus not eliminate the ambiguity.

But since (24) is presumably not true on either reading, it would

eliminate contrasting truth-values.

Second, note that we have motivated rigid designation only for

a certain type of language. The point of distinguishing the rigid

designators of a language is lost according to our characterization un-

less the language has some contexts in which the reference of singular

referring expressions can be determined on different bases. Now, I

suspect that a language does not have to be of this type. Even in

English it is not obvious that much expressive power would be lost if the

reference of singular referring expressions were invariably determined

on the basis of what is actually the case. But if so, rigid designation

is not a particularly fundamental theoretical notion. A philosophically

ideal language could avoid the need for it. This may be one reason why

rigid designation has only recently come to attract so much attention.

Finally note that our characterization universally quantifies

over contexts of a language. A rigid designator provides a way of

designating an object without causing any sentence to have contrasting

truth-values when the reference of the designator is determined on one

basis rather than another. Now, in practice confusion stemming from a

referential ambiguity in a single sentence can be reduced by pragmatic

factors or by using a more refined designator. For example, (25) is less

confusing than (21):

Suppose Jefferson had developed bifocals and Franklin

had concentrated on politics; even so, the person who (25)

invented bifocals and experimented with lightning

would have been a delegate to the Federal Convention.
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Yet 'the person who invented bifocals and experimented with lightning'

is no more a rigid designator than 'the inventor of bifocals'. We can

thus deal with a source of referential ambiguity in practice on a case

by case basis, as the ambiguity arises. We rarely, if ever, need one

way of dealing with it that works across the entire language. 2 4  Rigid

designation might therefore be thought of as a practical notion carried

to a theoretical limit. This may be another reason why it has only

recently attracted attention.

If the comments of the last two paragraphs are correct, there

is neither a compelling theoretical nor a compelling practical reason

for rigid designators. Rigid designation is motivated by a type of

referential ambiguity that does not have to occur and that, when it does,

can be handled in other ways. In a way this is as it should be. For if

rigid designators were somehow mandated, there should be little controversy

over proper names being rigid, since they are the only candidates we have

for rigidly designating contingent objects.

Let us return to the argument. So far we have a natural way of

motivating a notion of rigid designation. A rigid designator is one that

does not cause any sentence to have a contrasting truth-value when the

reference of the designator is determined on the basis of what might

have been or would have been the case instead of on the basis of what is

the case. What conditions must a designator satisfy to achieve this?

One condition is: regardless of how things might have been, the desig-

nator would not have denoted any object other than the now designated

one. Otherwise, in those circumstances in which it would have denoted

another object, something would have been true of this other object that
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would not have been true of the now designated object. This is the point

of the first and third open possibilities discussed earlier. Another con-

dition is: regardless of how things might have been, if the now designated

object had still existed, the designator would have denoted it. Otherwise,

in those circumstances in which it would have failed to denote the object,

something would still have been true of the object. This is the point of

the second open possiblity.

Now, these two conditions are precisely the ones satisfied by

complete rigidity. And they are not satisfied by exclusive or inclusive

rigidity. Exclusive rigidity fails to satisfy the second condition. It

leaves open the possibility that the designator would have denoted nothing

even though the now designated object would still have existed. Thus a

sentence of the form, 'The x such that Fx would have been G', could be

true if the reference of the exclusively rigid designator, 'the x such

that Fx', were determined on the basis of what is the case, and not

true if its reference were determined on the basis of what would have

been the case. Similarly, inclusive rigidity fails to satisfy the

first condition. It leaves open the possibility that the designator

would have denoted another object if the now designated object had not

existed. Thus a sentence of the form, 'The x such that Fx would have been

G' could be true if the reference of the inclusively rigid designator,

'the x such that Fx', were determined on the basis of what would have been

the case, and not true if its reference were determined on the basis of

what is the case. Accordingly, if the point of rigid designators is to

avoid contrasting truth-values of the sort sketched above, then rigid

designation is completely rigid designation.
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The preceding analysis is meant to expand on Kripke's remarks.

It is worth noting that at one point Kripke expressly indicates that what

he means by 'rigid designation' is what we have called 'completely rigid

designation':

All I mean is that in any possible world where the object
in question does exist, in any situation where the ob-
ject would exist, we use the designator in question to
designate that object. In a situation where the object
does not exist, then we should say that the designator
has no referent and that the object in question so
designated does not exist.25

Thus the upshot of our long second argument is compatible with Kripke.

So far the argument has shown that one natural way of motivating

rigid designation leads to complete rather than to exclusive or inclusive

rigidity. It remains to show how this bears on the claim that complete

rigidity is both the intuitive and the more central theoretical notion.

First, whichever intuitive notion Kripke is invoking, the principle for

projecting from his paradigms must be one for which there is a natural

motivation. Otherwise, the projected notion is not intuitive. The

preceding analysis has yielded a naturally motivated principle for pro-

jecting from his paradigms. And what this principle projects, among our

alternatives, is completely rigid designation. Thus, in the absence of a

different natural principle, our argument provides evidence that complete

rigidity is the intuitive notion. Similarly, whichever notion we make

central to a theory of reference, it should be useful for explaining those

features of reference that give rise to notions of rigid designation.

According to the preceding analysis, a major item to be explained is why

certain designators do and others do not cause sentences to have contrast-

ing truth-values when their reference is determined on one basis instead
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of another. But the designators that cause this are not completely rigid;

and those that do not are the completely rigid ones. Our argument thus

provides evidence that complete rigidity is the more useful notion in

addressing questions about reference.

However, on neither point is this argument conclusive. For

we have not shown that our way of motivating rigid designation is the

most natural one. Nor have we shown that the features of reference we

used to motivate rigid designation are the most important features for a

theory to explain. Still, until we have an alternative analysis of

how other notions of designation give rise to that of a rigid designator,

our second argument will remain compelling.

Ill

Of the arguments I have in favor of complete rigidity, the

preceding one is probably the most important. Still, two further lines

of argument deserve consideration. The first of these focuses on the

26
problem of defining subordinate notions of rigid designation. The idea

is that complete rigidity yields better definitions. Kripke calls atten-

tion to the notion of a strongly rigid designator--i.e., a rigid designator

which, because it designates a necessary entity, cannot fail to designate

that entity.27 If we identify rigidity with complete rigidity, we can

define this notion as follows:

An instance of the schema

(Ix)(.--x-..)
is a strongly rigid designator if and only if

the corresponding instance of the schema (25)
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(3x) (Vy)(...y.-* e y=x) & O(Vy)(...y... y=x) &

is true.

The correlative notion is that of a weakly rigid designator--i.e., a

rigid designator which, because it designates a contingent entity, can

fail to designate that entity. We can define this notion as follows:

An instance of the schema

(1x)(---x-.-)
is a weakly rigid designator if and only if (26)
the corresponding instance of the schema

(3x) [(y)(...y... - y=x) & O(Vy)(...y... y=x)] &
-0(3x)[e.*x...'

is true.

These definitions have several virtues. They bifurcate the class of rigid

designators (so construed). They are simple and transparent. And they

are expressly of the genus-difference type. That is, their governing

schemata are obtained by conjoining a clause to the schema for completely

rigid designation; they involve no modification of the clause correspond-

ing to that schema.

What happens if we instead identify rigidity with exclusive or

inclusive rigidity? When we conjoin the same clauses to the schema govern-

ing exclusive rigidity, we get the following:

(x)[(Vy)( y y=x) & O(y)(.--y.-- * y=x)] & (27)
Q(3x) Co-x...*

(tx)4(Vy)(.y...y y=x) & Cl(Vy)(...y... = y=x) & (28)

Now (27) defines a notion of strong rigidity. For it entails both that

the designator cannot fail to designate the object it does and that the

object is necessary. But (28) does not define a notion of weak rigidity



39

because it does not entail that the designated object is contingent. 'The

number which is the square of 3 and which numbers the planets' satisfies

(28) and yet denotes a necessary entity. To get a notion of weak rigidity

we need a more complicated conjoined clause:

(3x) [(Vy)(***..**.. y=x) & O(y)(...y.. = y=x) & (29)
(3x) x..a--- .&O0(3y)(y=x)J

By analogous reasoning, we need (30) and (31) to construct definitions

of strong and weak rigidity out of inclusive rigidity:

(3 x)(Vy)(.-,y-**. " y=x) &CO(Vy)(y=x V (-y-.- &

(Vw)(.***w*** w=x)))j & (3x)C.--x-.. & 3O(Vy)(y=x) (

(3x) [(Vy)(...y*... y=x) & u(lvy)(Y=x = ( y- & (31)

( .w)( *w. .= w=x))) &P-PD(3x) ***.x--*
The two pairs of definitions so obtained are less perspicuous than (25)

and (26). In neither case are the correlative schemata--(27) and (29) or

(30) and (31)--duals of one another. In neither case do they bifurcate

the class of rigid designators (so construed). Nor are they so simple

and transparent as the schemata in (25) and (26). In particular, the

added clauses in (29) and (30) are more complicated. There are simple

alternatives to (29) and (30); for example, (32) is equivalent to but

simpler than (29):

(3x)[(Vy)('&*y-- y=x) & O(Vy)(.'y.'' = y=x) & (32)

~ (Vy) (y=x)]

But this simplicity is gained at the sacrifice of an expressly genus-

difference form of definition. That is, unlike the other schemata, (32)

does not leave the rigidity clause intact.

Grant me that complete rigidity yields better definitions of

these subordinate notions. How does this show which notion is the
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intuitive one and which is theoretically more central? On the second point,

one of the roles of a central notion in a theory is to provide definitions

of subordinate notions. If better definitions are obtained from one

rendering of a fundamental notion than from others, then in the absence

of opposing reasons, considerations of simplicity and elegance make this

rendering preferable. Thus, in the absence of opposing reasons, the

argument shows that complete rigidity is the preferable theoretical

rendering of rigid designation. On the first point, the correlative

notions of strong and weak rigidity are intuitively closely related to

rigid designation. If rigidity is identified with complete rigidity, then

the relation is indeed close since the two bifurcate it. But the relation

is not so close if rigidity is instead identified with either of the

other two. The argument thus offers further evidence that complete

rigidity is the intuitive notion. However, considerations of simplicity

and elegance--whether with respect to our intuitions or with respect to

a theory--are not conclusive unless other factors do not outweigh them.

We have not shown that there are no overriding factors here.

The three preceding arguments have indicated what we lose with

exclusive and inclusive rigidity. We must admit more contrived examples

We must give up a natural way of motivating rigidity out of other notions

of designation. And we must accept less elegant definitions of some

subordinate notions. The final argument examines what we must give up

when we identify rigidity with complete rigidity. If we lose more with

complete than with exclusive or inclusive rigidity, then we should reconsider.

We appear to lose little in choosing complete over exclusive

rigidity. An exclusively rigid designator never would denote any other
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object. But, it may include superfluous details in its description

component--i.e., details not needed to insure that it would never denote

anything else. And these details can affect whether it would refer in

some counterfactual situations. For example, Slote's 'the being that is

identical with Nixon anda politician' includes such a detail. The

addition of extra details can be carried to extremes. It is logically

possible to incorporate enough details that the exclusively rigid desig-

nator would lack reference in any but the actual situation. By contrast,

completely rigid designators contain no superfluous details that could

28
ever affect their reference. Thus, with complete rigidity we must give

up a license for imprecision which, given our ignorance of essential

attributes, we might want to retain. But surely complete rigidity is

none the worse for this. We want the central notions of a theory to deter-

mine matters exactly. We have found here that in one respect complete

rigidity will distinguish between the crucial and the superfluous more

directly than exclusive rigidity. Thus, what complete rigidity loses

vis-a-vis exclusive rigidity does not detract from its usefulness in

theories. Furthermore, it is scarcely an intuitive feature of rigidity

that a rigid designator might lack reference in any but the actual situa-

tion. Therefore, what complete rigidity loses vis-a-vis exclusive rigidity

does not make it any the less intuitive.

We appear to lose more in choosing complete over inclusive

rigidity. For we have to give up devices like Frege's for eliminating

all failure of reference. 'The x such that x is identical with Nixon or,

should Nixon not exist, is identical with O' illustrates Frege's device.

As we found earlier, it is inclusively, but not completely rigid. Of
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course, inclusively rigid designators need not be unfailing. But in-

clusive rigidity does permit us to make all designators in a regimented

language unfailing. Complete rigidity does not. Thus, if we permit

completely rigid designators of contingent objects in a language, we

will have to face failure of reference problems that we might otherwise

avoid. Now, since devices like Frege's are scarcely intuitive, in

losing them we are not sacrificing an intuitive feature of rigidity.

Hence, the claim that complete rigidity is the intuitive notion is not

being challenged here. Rather, the challenge is to the claim that

complete rigidity should be made central to the theory of reference.

The objection is that in so doing we increase the burden on the theory.

It must now treat failure of reference as a basic rather than as a peri-

pheral phenomenon. The point can be made in another way. It is reason-

able to contend that all the central notions of a theory of reference

should be reflected in a philosophically ideal, regimented language. Now,

if complete rigidity is central, then such a regimented language can have

failure of reference problems when reference is determined on counter-

factual bases. But failure of reference problems are the very ones that

Frege thought a mathematically ideal, regimented language should not have.

Can we nevertheless justify making complete rigidity central?

I think so. Our long second argument showed that in languages of a certain

type unfailing designators can lead to contrasting truth-values. We find

now that in languages of this type completely rigid designators can

lead to failures of reference (i.e., when their reference is determined

on counterfactual bases). Of course, we may not want a regimented

language to have contexts in which the reference of singular referring
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expressions can be determined on any but the actual basis. But if the

language has such contexts, then problems of one sort or another will

have to be faced. On the one hand, we can avoid failure of reference

problems if we make all designators unfailing. But then we will have no

way of circumventing contrasting truth-value problems. On the other hand,

we can circumvent contrasting truth-value problems by having a completely

rigid designator for every object the language refers to singularly. But

then we will require means for handling cases in which a designator would

lack reference if its reference were determined on a counterfactual basis.

Now, the theory of reference should show us that regimented

languages of the indicated type involve a trade-off between contrasting

truth-value problems and failure of reference problems. The theory

should indicate both that a choice must be made and what the choice will

affect. But the theory can do this better if both unfailing designation

and completely rigid designation are central notions in it. It can then

explicate directly the trade-off between using an unfailing designator and

using a completely rigid designator to designate a contingent entity.

The theory cannot explicate this trade-off so directly if instead in-

clusively rigid designation is made central. Thus, as before, what complete

rigidity loses vis-a-vis inclusive rigidity does not detract from its use-

fulness in theories.

In sum, our fourth argument has shown that the obvious things

we have to give up when we identify rigidity with complete rigidity are

just as well given up. Sacrificing them does not detract from either the

intuitive quality of the explicative power of rigid designation. However,

again, the argument is not conclusive. We have not shown that the
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features we have discussed are the only ones lost in choosing complete

over exclusive and inclusive rigidity. Nevertheless, until other features

lost with complete rigidity are put forward, the argument will carry

weight.

IV

None of the four arguments offered above for complete rigidity

is conclusive. But together they make a strong case. We can restate

their conclusion formally by means of the following definitions:

An instance of the schema(0x)(***xV**)
is a rigid designator if and only if (33)

the corresponding instance of the schema

(3x) (Vy)(--*y-* 0 - -y=x) & O(Vy)(*0-y--- - y=x) ]

is true.

An instance of the schema

(,x)(*..**x*)
is a nonrigid designator if and only if (34)

the corresponding instance of the schema

(3x)[(Vy)('*'''y*" y=x) &#3(Vy)('Y'y') ( y=x)]

is true.

Various subordinate notions can be defined. Exclusive and

inclusive rigidity, as defined by (1) and (4), can be viewed as degenerate

notions of rigidity, obtained by weakening its requirements. Strong and

weak rigidity have already been defined by (25) and (26). We should

note that a strongly rigid designator is an unfailing rigid designator,

and vice versa. Another subordinate notion is that of a conditionally

rigid designator--i.e., a singular referring expression which, if it
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designates something, is a rigid designator. One way to define this

notion is via the material conditional:

An instance of the schema

(Ix)(..-x--.)
is a conditionally rigid designator if and only (35)

if the corresponding instance of the schema

(3x)[(Vy)(0**y*.. -_ y=x) = (3x)D( y)( y... y=x)]
is true.

On this definition, all singular referring expressions which happen not

to designate are conditionally rigid designators. A stronger notion of

conditional rigidity is obtained if we instead use the strict implication

connective. But even with this all inconsistent singular referring ex-

pressions are conditionally rigid designators. A yet stronger notion

is thus desirable, although we must leave the point here. A final sub-

ordinate notion is that of a potentially rigid designator--i.e., a

singular referring expression which can be a rigid designator:

An instance of the schema

(tx)(-.-x---)
is a potentially rigid designator if and only if (36)

the corresponding instance of the schema

(3x)[((Vy)('-y' -m o y=x) & O(Vy)(---y. -- y=x)]

is true.

These are the principal notions related to rigid designation.

Undoubtedly some people will want to identify rigid designation

with potential rigidity rather than with complete rigidity. Their

rationale derives from a possible world reading of its governing schema.

The standard possible world interpretation for the schema is: in some

possible world there exists exactly one object of which the description



46

is true, and necessarily of this object and only of this object is the

description true. This interpretation reads just like the one for

complete rigidity except that 'in some possible world' replaces 'in

the actual world'. In other words, so the rationale continues, the

only difference between a completely rigid designator and a potentially

rigid designator is whether the object described exists in the actual

world. This suggests that a potentially rigid designator designates--

indeed, rigidly designates--the object that satisfies its description,

even though that object is a possible-yet-not-actual object. But then why

restrict rigid designators to those that designate actual objects?

The contribution which a designator makes to determining whether a

sentence is true on a specific world is essentially the same whether

the world is actual or just possible. Hence, to restrict rigid desig-

nators to those designating actual objects reflects an arbitrariness

that the theory of language can ill afford.

Slote promotes this view when he characterizes an inclusively

rigid designator as one that, should it pick out a certain entity in some

one possible world, picks out the same entity in every other possible world

in which that entity exists. Indeed, the view seems natural for anyone who

accepts possible-yet-not-actual objects existing in possible, but non-

actual worlds. Moreover, once one is inclined to the view, other con-

siderations appear to recommend it. For example, on the possible world

reading, potential rigidity seems a straightforward generalization of

complete rigidity. More general characterizations of a notion are

preferable. Similarly, if rigidity is identified with potential rigidity,

then whether a singular referring expression is a rigid designator is a
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matter of logic, not a matter of contingent fact. And we would prefer

to categorize linguistic items on formal grounds, as independently as

possible of contingent facts. Finally, if complete rigidity promises to

yield an account of denoting proper names, then potential rigidity

promises to yield an account of proper names in general, including

fictional names. And we would prefer a unified account of names.

All these considerations not withstanding, I think that rigid

designation should not be identified with potential rigidity. Indeed, I

think that there are decisive arguments against identifying the two.2 9

However, for now I want to take a more moderate line, one requiring a

less ambitious argument. I want to leave open the question whether

potential rigidity is the well-motivated, straightforward generalization

of complete rigidity that the two preceding paragraphs suggest. We can

leave this open and still claim that rigidity is complete rigidity. For

there is too much that is problematic in the rationale for identifying

rigidity with potential rigidity. First, the possible world interpreta-

tion of the schema is open to dispute. Not only are possible world style

interpretations of quantified modal formulas still controversial when

taken literally, but there may also be more than one reasonable possible

world interpretation of this schema.30  Second, even if we accept the

possible world interpretation of the schema, perhaps we need not accept

such controversial entities as possible-yet-not-actual objects. Plantinga,

for example, would agree with the possible world interpretation of the

schema, yet he rejects such objects. 3 1

Third, we can even grant both the possible world interpretation

and the existence of nonactual objects, and yet deny that a potentially
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rigid designator designates anything. For suppose some singular refer-

ring expression is potentially rigid--i.e., suppose that necessarily

its description is satisfied by exactly one possible, nonactual object.

It is still not clear that the expression denotes the object. To

secure reference, a possible world in which the object exists and rules

for picking out the object in that world may also be needed. This point

can be made in another way. The condition set down by the governing

schema of complete rigidity is necessary and sufficient for rigidly

designating an object in the actual world. Still, this schema may

succeed only because of background rules governing reference that do

not apply in the case of nonactual worlds. If so, then why should we

conclude that the schema for potential rigidity gives a condition

necessary and sufficient for rigidly designating an object in a nonactual

world? We know too little about how reference is determined, especial-

ly in the case of possible worlds, to accept the generalization of rigid

designation to nonactual objects uncritically. 32  Finally, even granting

all the points we have questioned and also granting that proper names

are rigid designators, fictional names need not be (generalized) rigid

designators. If proper names are rigid, they are so in part by

virtue of the way their reference gets fixed--e.g., by baptism. But

it is not clear whether the reference of a fictional name can be comparably

fixed.33

Such difficulties indicate that potential rigidity is not the

intuitive notion of rigid designation. Furthermore, they discourage us

from taking potential rather than complete rigidity as a central notion
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in the theory of reference. A better strategy is evident. For the

present we should make complete rigidity the central notion. This will

permit us to build a theory on comparatively firm grounds. Potential

rigidity should for now be regarded as a related, but subordinate notion.

As the theory develops, we can re-examine the status of potential

rigidity. As we come to know more about singular reference, we may

have grounds/for extending rigid designation to include potentially

rigid designators. I predict not. But this way we can handle the

issue sensibly.

Let us recapitulate. We began by questioning whether we have

a clear notion of rigid designation at all. Slote and Chandler provoked

the question by calling our attention to three conflicting plausible

definitions of rigidity. Our main accomplishment has been to put the

doubts raised by Slote and Chandler to rest. Among the notions related

to rigid designation, one--complete rigidity--is both the intuitive notion

Kripke invokes and the notion of principal theoretical interest. The

other notions--exclusive and inclusive rigidity and, for that matter,

potential rigidity--are degenerate forms of rigid designation, obtained

by weakening its conditions in one way or another. We have thus dispensed

with the concern that provoked the original question. However, we have

not yet quite answered the question. Our formal definition of rigidity,

(33), contains an unexplicated de re modal operator. Whether de re

necessity itself is clear remains controversial. Hence, our definition

will not convince everyone that we indeed have a clear notion of rigid

designation.
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V

The de re modal operator in our definition of rigid designation

is not necessarily a flaw. The notion may well be inherently modal, for

better or worse at Quine's third grade of modal involvement. However,

if it is not, then our definition is at best misleading. We thus have

cause to be interested in whether rigid designation can be defined without

resorting to modal notions. From the discussion so far, one would suspect

not. But not all of the definitions proposed in the literature are modal.

Christopher Peacocke has proposed a definition which is meant to be, and

34
which on the surface appears to be nonmodal. His definition for the case

of a language L free of indexicals and ambiguity is as follows:

A singular term t is a rigid designator in L if and

only if there is an object x such that for any (37)

sentence G(t) in which t occT"rs, the truth condition

for G(t) is that <x> satisfy G( ).35

The idea behind this definition is that of "a certain object entering the

truth-conditions of all the sentences of the language in which t occurs."36

If Peacocke has succeeded here, we will have to reconsider our

definition--and we will probably have to abandon it. But has he succeeded?

Does (37) provide an adequate definition of rigidity without implicitly

or covertly relying on modal notions? This is the principal question of

this section of the chapter.

Before addressing this question-we should discuss a direct ob-

jection Peacocke lodges against a definition like ours. His main com-

plaint against Kripke's definition is that it "quantifies over possible

worlds and appeals to transworld identity.' 3 7 But there is a simple
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way to avoid this complaint and still employ a modal definition: one

can define rigid designation, as we have, in terms of uninterpreted modal

operators. Peacocke calls attention to this move, and he responds to it.

Specifically, he responds to the following definition of this type:

A singular term t is a rigid designator in L if and

only if it is true in L that nothing else might have (38)

been t or, more carefully, if and only if
r-"

r(3x) x=t &~(3y)(y=t & yx)J'

is true in L. 3 8

He contends that the indicated condition is neither necessary nor suffi-

cient for rigid designation.

This criterion is not necessary, for it presumes that
the object language is capable of defining a possibility
operator, which is not, intuitively, required for a
language to contain rigid designators. It is not
sufficient either; for if t is, intuitively, a rigid
designator, then so, by this criterion, is (7x)(x=t & p),
for any true sentence replacing p.39

How broad a conclusion he expects us to draw from this argument is not

clear. The conclusion suggested is that no necessary and sufficient

condition for rigidity can be stated in terms of uninterpreted modal

operators. By intimation, then, the argument challenges our definition.

Part of what is going on here should be evident. The modal

clause of the condition can be rewritten as follows:

S(Vy)[y=t y=xJ (39)

Thus the condition that Peacocke says is not sufficient is just the con-

dition for exclusive rigidity. And indeed, the schema he uses to argue

that the condition is not sufficient is transparently akin to 'the x such

that x is Nixon and a politician'--Slote's example of a designator which

is exclusively, but not inclusively rigid. Accordingly, Peacocke's
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argument does not show that our condition, the condition for complete

rigidity, is not sufficient.

Furthermore, his argument against modal definitions being neces-

sary rests on a mistake. The definition should not require truth in L.

The correct form of definition has the condition expressed in the meta-

language and requires simply that the instances of the schema be true.

To see the absurdity of requiring truth in L, observe what happens if L

employs for example intuitionistic rather than classical negation or if

L has no negation connective at all: then the condition expressed is not

necessary for rigidity in L even if L does contain a possibility operator.

Of course, once the form of the definition has been corrected, there is

nothing left to the argument that L must contain a possibility operator

for the condition to be necessary. Consequently, Peacocke has not shown

that our condition--and a fortiori the condition for exclusive rigidity--

is not necessary for rigid designation. If hiis paper is to undermine our

definition, the success of his alternative definition will have to do

the undermining.

But does (37) successfully define rigid designation without

indirectly relying on modal notions? As (37) stands, the question is

difficult to answer. The meaning of the key phrase, 'the truth condition

for G(t)', is not clear. To answer the question, we need to rephrase

(37) to make the criterion it sets down explicit and clear. An obvious

way to rephrase it is as follows:

A singular term t is a rigid designator in L if and

only if there is an object x such that for any (40)
sentence G(t) in which t occurs, G(t) is true if

and only if <x> satisfies G ( ).
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(40) should be contrasted with the modal definition that is like it save

for the last clause reading, 'necessarily G(t) is true if and only if

4x> satisfies G( ).' The logical connective in the last clause of (40)

is the material biconditional. Hence (40) is clearly nonmodal. The

question is whether it succeeds in capturing rigidity.

Consider first the case of a purely extensional language, L.

Let 'the F' be short in L for 'the x such that x invented bifocals.'

According to (40), 'the F' is a rigid designator in L. For let G(t) be

a sentence of L. Since L is purely extensional, substitution of co-

referring expressions preserves truth in L. Hence, if G(the F) is true,

then <Franklin> satisties G( ); and if <Franklin> satisfies G( ), then

G(the F) is true. In other words, in an extensional language something

is true of Franklin if and only if it is true of Franklin as picked out

by a description. The argument clearly generalizes: every denoting definite

description in a purely extensional language satisfies (40). (40) is

therefore too weak. In the case of extensional languages, it would have

us relinquish the distinction between designators and rigid designators.

A similar result holds for certain nonextensional languages.

Let L' be a language like L except for having modal operators at Quine's

third grade of modal involvement. As before, let 'the F' be short for

'the x such that x invented bifocals.' Now consider the open sentence

G( )--'necessarily x is identical with Franklin'--derived from 'necessarily

Franklin is identical with Franklin.' Under what conditions is G(the F)

true? It depends on how the scope ambiguity in G(the F) is resolved.

G(the F) can be read as (41) or (42):
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G(3x)f(Vy)(Fy Sy=x) & (x=Franklin)] (41)

(3x)[(Vy)(Fy E y=x) & O(x=Franklin)] (42)

As is evident on inspection, (42) is true if and only if <Franklin>

satisfies G( ). Moreover, the reasoning does not depend on our choice of

G( ). Hence, if 'the F' is always read with wide scope vis-a-vis modal

operators in L', then for any open sentence H( ), H(the F) is true if and

only if <Franklin> satisfies H( ). The argument clearly generalizes:

every denoting definite description always read with wide scope vis-a-vis

modal operators in L' satisfies (40). Again (40) is too weak. In the

case of certain nonextensional languages it could force us to concede that

even some paradigmatic nonrigid designators are rigid.

The arguments of the last two paragraphs exploit a point we

made when discussing how other notions give rise to rigid designation.

The gist of (40) is to require of t that it designate the same object in

every sentence in which it occurs. But as we noted earlier, in the

right sort of language a singular referring expression may invariably

designate the same object and yet not be a rigid designator. For example,

consider a language in which the reference of every singular referring

expression, regardless of context, is determined solely on the basis of

what is actually the case. In such a language, any singular referring

expression that happens to denote will invariably denote the same object.

This is the point the arguments exploit. In a purely extensional language,

the reference of Russellian definite descriptions is determined on the

basis of what is actually the case; and to read a definite description with

wide scope in a modal language is tantamount to determining its reference

on the basis of what is actually the case. But just because a singular
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referring expression invariably designates the same object does not mean

that it is a rigid designator. To think so is to confuse a motive for

having rigid designators with the criterion that distinguishes them. A

rigid designator is one that, even if things other than language had been

different, would have denoted the object it now does, provided that

object would still have existed; and it would in any case have denoted no

other object. 'The inventor of bifocals' is not rigid because it would

have denoted Jefferson if he had invented bifocals. And whether 'the

inventor of bifocals' occurs in a purely extensional language or is

always read with wide scope does not alter this fact. (40) is too weak,

therefore, because it fails to impose a constraint on what t would have

denoted if things had been different. If (37) is to define rigidity,

the explication of 'the truth condition for G(t)' will have to yield such

a constraint.

Peacocke notwithstanding, the obvious way to impose such a

constraint is to use modal notions. But this must be done with care.

For consider the strengthened version of (40) in which the connective in

the last clause is the strict biconditional--i.e., the version in which

the last clause reads 'necessarily G(t) is true if and only if <x> satis-

fies G( ).' This definition imposes on t the constraint that, even if

things had been different, still G(t) would be true if and only if <x>

were to satisfy G( ). The strengthened definition thus indeed imposes

a constraint on what t would have denoted if things had been different.

The trouble is that it imposes too strong a constraint. A singular term

t will satisfy the modified definition only if t bears to the object it

denotes a relation that is essential to this object. But no terms of
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languages of interest bear to the objects they denote a relation that is

essential to these objects.40 Hence, none will satisfy the modified

definition. Strengthening (40) this way accordingly does not yield an

alternative to our definition of rigidity. The modification goes too far.

A rigid designator is one that would have denoted no other object even

if things other than language had been different. The strengthened version

of (40) drops the italicized qualification.

We originally introduced (40) as a plausible way of spelling

out the meaning of 'the truth condition for G(t)' in Peacocke's first

definition of rigidity, (37). Now (40) is not something that Peacocke

proposes. To the contrary, he expressly notes that the troublesome

phrase must be explicated "in a way that prevents the notion of a truth-

condition of a sentence from collapsing into that of a material equivalent

of it."42  Nevertheless, (40) and the strengthened version of it have

served a purpose. They have helped us to see what the problem is in

rephrasing (37). The basic problem is to impose the proper constraint

on what t would have denoted if things had been different. An adequately

rephrased definition must be stronger than (40), but weaker than the

strengthened version of it. For Peacocke, there is of course an added

dimension to the problem: the constraint must be imposed without resort-

ing to modal notions.

How does Peacocke end up rephrasing (37)? It would not be

helpful to quote his final definition here. In spelling out what he

means by 'the truth condition for G(t)', he introduces elaborate technical

apparatus. Some aspects of the apparatus remain rough. Much of it is

designed to accommodate languages that include indexicals. To present
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his apparatus in sufficient detail to make his final definition intelligible

would take us far afield. Happily, however, not every aspect of his

apparatus is crucial from our point of view. Accordingly, instead of

quoting his definition and providing the background it requires, we will

sketch it only in enough detail to permit us to assess it as an alternative

to ours.

Peacocke's strategy is to replace the notion of truth-conditions

for sentences with the notion of a "Tarski-Davidson" truth theory for a

language. Indeed, his final definition gives a criterion not for a term's

being a rigid designator, but for its being treated as a rigid designator

43by such a truth theory. His account of truth theories is largely standard.

A truth theory contains for each sentence A of the object language a

preferred derivation terminating in a theorem of the form

A is true 8B

where A is a structural-descriptive name of A, and B is a suitable trans-

lation of A in the metalanguage. (For example, if A contains no "semantical"

predicates like 'true' and 'satisfies', then B must contain none to be

suitable). The preferred derivation for A is the shortest one yielding

a theorem of the required form. The resources used to effect such

derivations are the usual ones: a function that translates the predicates

and constants of the object language into predicates and constants of the

metalanguage; a definition of truth in terms of satisfaction; axioms that

recursively characterize what it is for a sequence of objects s to satisfy

a sentence; and an evaluation function val that, given a sequence of ob-

jects and a term of the proper sort, picks out an object. The evaluation

function is used at the base of the recursion to characterize satisfaction
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for atomic predications. That is, it enters derivations via biconditionals

like

s satisfies Pt P'val (s,r)

where PT is a structural-descriptive name, P' is the translation of the

object language predicate in the metalanguage, and val(s,r) is the object

from s assigned to t.

Peacocke's account is distinctive primarily in that his evalua-

tion function provides for indexicals. It is defined roughly as follows:

.th th
the i object in s if ' is the i variable of

the object language.

the kth object demonstrated by the speaker at

the time the sentence is uttered if r is
val(s,)kth

the k placeholder of the corresponding

reduced sentence.

the object denoted by the translation of f if 1

is a constant.

(The reduced sentence is obtained from the original sentence by replacing

anaphorically distinct indexicals with distinct special terms called'

"placeholders.")

Peacocke's final rephrasing of (37) fixes on preferred deriva-

tions. Consider all of the sentences G(t) in which a term t occurs.

According to Peacocke, a truth theory treats t as a rigid designator if

and only if t gets treated in a certain way in the preferred derivations

for these sentences. Stated informally, the treatment of t must satisfy

two conditions:

i. The evaluation function must be applied either to t

or to a term that exactly corresponds to t (e.g.,

a placeholder).
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ii. The evaluation function must not treat t as a

44
variable.

For a first order language without indexicals, Peacocke's definition boils

down to this: a truth theory treats t as a rigid designator if and only

if the preferred derivation for each sentence G(t) in which t occurs

treats t as a constant.45

The whole point of this definition, as far as I can see, is to

46
deny that Russellian definite descriptions are rigid. A truth theory

treats a singular term as a Russellian definite description if and only

if the term becomes expanded in the usual way during the course of

preferred derivations. But once expanded, there remains no term to which

the evaluation function becomes applied that exactly corresponds to the

original term. The evaluation function ends up being applied to terms--

namely variables--that represent parts of a Russellian definite descrip-

tion, and not to a term that corresponds to the entire description. Con-

sequently, no Russellian definite description will satisfy Peacocke's

final definition of rigidity.

This will not do. The paradigm of a rigid designator, 'the

47
square root of 25', is a Russellian definite description. In other

words, if there are any rigid designators, then certain Russellian

definite descriptions are among them. Hence, Peacocke's proposed defini-

tion does not capture the notion dubbed "rigid designation" by Kripke.

Peacocke's efforts seem directed toward a different notion, one for which

he has infelicitously chosen the name Kripke used. Peacocke seems pre-

occupied with the notion of a term's occurring only in singular term

positions in the underlying logical form of any sentence. He speaks of
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48
"genuine singular terms" and of "a criterion of rigid designation or

genuine reference," 4 where 'genuine reference' is presumably meant to

contrast with reference that includes descriptive or predicative elements.

Peacocke may have adequately characterized such a notion. We have not

provided enough details of his account to discuss the matter. He may even

have given a sufficient condition for rigidity, although arguments are

clearly needed to support this claim. But he has definitely not given a

necessary condition for rigidity. Consequently, his final definition is

not an alternative to ours. Nor is it in any way evidence that (37) can

be rephrased to capture rigidity successfully without resorting to modal

not ions.

VI

Peacocke is not alone in taking rigid designation to be akin to

pure reference. In "On Predicating Proper Names" Michael Lockwood speaks

of "the Kripke-Donnellan conception of proper names as "rigid designators"

,50
or purely referential devices.,50 As the wording suggests, Lockwood

considers Kripke's distinction between rigid and nonrigid designators to

be closely related to Donnellan's distinction between referential and

51
attributive uses of singular terms. But he does not think that the

two distinctions are quite the same. For example, he grants that 'the

cube of 408' is rigid even when used attributively. Still, he hastens

to add that "the rigidity of 'the cube of 408' here stems from an

irrelevant source....Here we have a term whose rigidity is insured, quite

independently of the speaker's intentions, by the necessity of a certain
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mathematical proposition." 52  On his view, then, referential uses of

singular terms form the salient subclass of rigidly designating uses.

Cases in which a singular term is used attributively and yet rigidly are

aberrations. Nevertheless, having conceded that modal considerations

make 'the cube of 408' always rigid, Lockwood might be expected to adopt

a modal definition of rigidity. But instead, he offers a nonmodal defini-

tion along lines suggested to him by Peacocke:

Let S(t) be a sentence, containing a definite singular

term t. In uttering this sentence, by way of making

an assertion, a person will be using t as a rigid

designator if and only if it is a necessary and (43)

sufficient condition of the truth of what S(t) is

being used to assert that x satisfy the predicate ex-

pressed by the context S( ).53

This definition is like (40) except that Lockwood drops the universal

quantification over sentences in order to extend his definition to

languages with ambiguities. Since (43) is a weakened version of (40),

it is open to the objections we gave earlier. Notice here that our (40)

is not entirely a straw man. Once one chooses (in Peacocke's words) to

base rigid designation on "the idea of a certain object entering the

truth conditions" of the sentences in which the designating term occurs,

(40) lurks nearby.

It is difficult to see why anyone would confuse Kripke's rigid

designation with a notion of pure reference. In "Identity and Necessity"

and "Naming and Necessity" Kripke does claim both that proper names are

54
rigid designators and that proper names are nonconnotative. But

these two claims need not amount to the same thing. Similarly, in one
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footnote he uses the phrase, "both a 'referential' (rigid) and a non-

rigid reading of the description." 55  But the scare-quotes around

'referential' should warn against quick conclusions. Besides, the

textual evidence against identifying rigid designation with pure reference

is clear and overwhelming. As we have said repeatedly, Kripke's paradigm

of rigid designation is not purely referential. Also, in a footnote in

"Identity and Necessity" he plainly indicates that Russellian definite

descriptions can be rigid:

Some logicians have been interested in the question
of the conditions under which, in an intensional
context, a description with small scope is equivalent
to the same one with large scope. One of the virtues
of a Russellian treatment of descriptions in modal
logic is that the answer (roughly that the description
be a 'rigid designator' in the sense of this lecture)
then often follows from the other postulates for
quantified modal logic.56

Furthermore, there is clear textual evidence against identifying Kripke's

distinction between rigid and nonrigid designators with Donnellan's

distinction between referential and attributive uses of definite de-

scriptions. In "Naming and Necessity" Kripke calls attention to Donnellan's

distinction. But he then elects to confine his remarks to attributive

uses--i.e., to uses for which 'the referent of the description' means

"the object uniquely satisfying the conditions in the definite descrip-

tion. ' 57  Donnellan's referential uses of definite descriptions may well

be rigidly designating uses, as Peacocke and Lockwood think. But nowhere

in "Identity and Necessity" or "Naming and Necessity" does Kripke make

this claim. 8

Perhaps the tendency to confuse rigid designation with pure

reference comes from taking proper names to be paradigms of rigidity.
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This in turn may be prompted by confusing the thesis that proper names

are rigid with the claim that they are nonconnotative. These latter

mistakes are serious. They deserve comment even though it requires a

brief digression. For these mistakes significantly misrepresent what

Kripke is doing in "Identity and Necessity" and "Naming and Necessity."

Most notably, they rob some of his central arguments of their force.

For example, in both works Kripke argues that "an identity

statement between names, if true at all, is necessarily true"--e.g., if

'Hesperus is identical with Phosphorus' is true, then 'If Hesperus exists,

Hesperus is identical with Phosphorus' is necessarily true. 5 9  His

argument has the following form:60

(i) Denoting proper names are rigid designators.

(ii) Any identity statement between rigid designators,

if true, is necessarily true. (44)

(iii) .'. Any identity statement between denoting proper

names, if true, is necessarily true.

The notion of necessary truth here is the weak notion exhibited in the

above example. Kripke's defense of premiss (ii) is straightforward.

A rigid designator denotes the same object in every possible world in

which that object exists, and it denotes no other object in any possible

world. Hence, if two rigid designators denote the same object in the

actual world, then they denote the same object in every possible world in

which that object exists and they denote no other objects in any possible

world. The premiss can also be defended without explicitly resorting to

possible world reasoning. From (iv) and (v) below and our definition of

rigidity, (33), we can derive (vi) via "standard", intuitive modal reasoning

(e.g., within less controversial parts of standard modal predicate logics): 6 2
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(iv) '7xFx' and 'iyGy' are rigid designators

(v) ixFx=7yGy

(vi) G[((3x)Fx v (3y)Gy) (3!x)(3!y)(Fx & Gy x=y)]

Accordingly, in (44) the premiss that carries the weight of the argument

is (i). If one is to disagree with Kripke's conclusion, then short of

objecting generally to standard modal reasoning, one must disagree with

the thesis that proper names are rigid designators.

This thesis seems no less crucial to Kripke's argument against

strong versions of the cluster theory.6 3 At least it is crucial to my

reconstruction of the argument. Let X be a denoting proper name and let

the 4's be the properties in the cluster that, according to the theory,

determines the reference of X. Strong versions of the theory are those

that include (i):

(i) rIf X exists, then X has most of the 0's

expresses a necessary truth.

Kripke contends that the proponent of a cluster theory must grant some

lattitude in the choice of X and the O's. In particular, they can be so

chosen that, for someone's idiolect, the O's all hold contingently (if

at all) of the individual having most of them in the actual world. Kripke

makes the point this way: "it does not seem that it should be trivially

true on the basis of a theory of proper names" that, for example, some

of the properties commonly attributed to Aristotle are properties that

64
are essential to him. Accordingly, X can be so chosen that the pro-

ponent of (i) must allow a stipulation of (iii) along with his stipula-

tion of (ii): 6 5

(ii) In the actual world the individual denoted by

X, and only this individual, has most of the k's.
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(iii) The individual that has most of the *'s in

the actual world might still have existed and

yet had none of the *'s.

I take the form of the argument to be that, since proper names

are rigid designators, such an X is a counterexample to (i). We thus add

one more premiss:

(iv) Denoting proper names are rigid designators.

Since X is a denoting proper name, from (iv) we get (v), and from (ii)

and (v) we get (vi):

(v) X is a rigid designator.

(vi) With respect to any possible world w, X desig-

nates the individual that has most of the 4's

in the actual world, provided this individual

exists in w.

But (vii) is a consequence of (i) and (vi):

(vii) With respect to any possible world w, if the

individual that has most of the 4's in the

actual world exists in w, then this individual

has most of the O's in w.

And (vii) contradicts (iii) since (iii) can be paraphrased as (viii):

(viii) There is some possible world w in which the

individual that has most of the *'s in the

actual world exists and yet has none of the O's.

Therefore, since (ii) and (iii) are true for X by stipulation, (i) is

false.

Now without (iv) we do not get (vi). But without (vi), (i),

(ii), and (iii) are compatible. They can be reconciled with one another

in the context of counterpart theory. That is, if with respect to every
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possible world w, X denotes the individual (if any) that has most of

the O's in w, then (i), (ii), and (iii) are clearly compatible.66

Accordingly, like the argument on the necessity of identity statements,

the argument in "Naming and Necessity" against (i) seems to hinge on

the thesis that proper names are rigid. If the proponent of (i) is to

respond, then short of resisting the stipulation of (iii) or short of

objecting to the modal reasoning, he must disagree with this thesis.67

Of course, the thesis that names are rigid is not the only

major claim about names put forward in "Identity and Necessity" and

"Naming and Necessity." Prominent in the lectures are other claims

needed to support this thesis. For example, there is the claim that

proper names are nonconnotative. The exact claim here is not clear. For

present purposes the following approximation will suffice: proper names

are not synonymous with any definite descriptions (or clusters of

descriptions) that are suitable for determining their reference. The

"suitability" restriction is meant to exclude descriptions like 'the
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individual identical with Benjamin Franklin'. Now, we seem to know of

no description, suitable for picking out an entity not yet named, that

is necessarily and necessarily uniquely true of any contingent entity.

Hence, if a proper name of a contingent entity were synonymous with a

description (or a cluster), the description (or cluster) in question

would have to be contingently or contingently uniquely true of the

individual picked out. But then this proper name would not be a rigid

69
designator. Similar reasoning applies to the claim that the reference

of a proper name can be fixed via a description without giving the name

a meaning. Kripke concedes that the reference of some names may be
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fixed via descriptions that are only contingently or contingently uniquely

true of the individuals names. But if fixing reference in this way were

to give names meaning, then those names whose reference is so fixed would

not be rigid.70

Accordingly, given that we do not know of suitable descriptions

that are necessarily and necessarily uniquely true of contingent entities,

and given that the reference of some names may nonetheless be fixed via

contingent marks of the entities names, Kripke needs these other claims

to retain the thesis that names are rigid. But these claims are never-

theless logically independent of this thesis. They could be false, and

yet it be true. For, it is logically possible for the reference of each

proper name to be fixed by means of a description that is necessarily and

necessarily uniquely true of the individual named. In this case proper

names would be rigid even if they were connotative and even if the way

in which their reference is fixed gave them their meaning. Consequently

these other claims should not be confused with the thesis that proper

names are rigid. Only the latter is crucial to the two arguments just

discussed.

Consider now the consequences of taking proper names to be

paradigms of Kripke's notion of rigid designation. If they are paradigms,

then any explication of rigidity will be constrained by their having to

satisfy it. Hence, if they are paradigms, the claim that they are rigid

is trivially true (if anything is rigid). But arguments central to

"Identity and Necessity" and "Naming and Necessity" turn on this claim.

If this claim is trivially true, these arguments can amount to little more

than bare assertions of their conclusions. Therefore, to take proper
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names to be paradigms of rigidity, as Peacocke and Lockwood perhaps do,

is to rob some of the central arguments in the text of their force. Even

if Peacocke and Lockwood do not take names to be paradigms of rigidity,

I suspect that they have underestimated how much weight the thesis that

proper names are rigid carries in Kripke's lectures. It is a strong

thesis. It says that in salient respects proper names are like certain

definite descriptions, viz. those that are necessarily and necessarily

uniquely true of the objects they denote. Thus to think that no Russellian

descriptions are rigid or even to think that rigidity is akin to pure

reference is to distort and weaken the thesis. The pivotal role this

thesis plays in the lectures is strong evidence that Peacocke and

Lockwood have misconstrued Kripke's notion. 71

VII

The preceding digression should have put Peacocke's definition

to rest. Since Russellian definite descriptions can clearly be rigid

if anything can, Peacocke's definition is wrong. But what about his

approach? Can the apparatus he uses to rephrase (37) provide a nonmodal

definition of rigidity? That is, can rigid designators be precisely

characterized in terms of the way they are handled in the preferred

derivations of Tarski-Davidson truth theories?

The answer appears to be no, if the preferred derivations do no

more work than they do in standard Tarski-Davidson truth theories. In a

standard theory the working steps of preferred derivations give satisfaction

conditions for molecular constituents of sentences in terms of the
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components of these constituents. Every preferred derivation thus con-

stitutes a step-by-step compositional analysis of what the theory takes to

be the logical form of a sentence. Accordingly, how preferred derivations

handle a term depends first on what the theory takes to be the term's

logical form and second on what the theory takes to be the way the term

contributes to the logical form of sentences. But as we have noted, the

difference between rigid and nonrigid designators does not seem to be a

matter of their logical form or of the way they contribute to the logical

form of sentences. Some Russellian descriptions are rigid, and some are

not. The differences between those that are and those that are not fail

to be systematically reflected in the logical form of sentences. How then

are rigid designators to be discriminated in preferred derivations?

This objection can be made precise. Consider "Russellian

English", a language like English except that it is restricted to purely

extensional, first order sentences and all definite descriptions in it

are read as Russellian descriptions. Both 'the number of pardoned

Presidents' and 'the number of even primes' occur in it. A standard

truth theory for it will construe these two comparably--i.e., the preferred

derivations will handle them comparably. Yet 'the number of pardoned

Presidents' is intuitively nonrigid, and 'the number of even primes' is

intuitively rigid. That one is rigid, and not the other, is not altered

by their occurring in Russellian English rather than in English. The

same point can be made about other syntactically like pairs: e.g.,

'the number of books in Aristotle's Metaphysics' and 'the number of

modalities in Lewis's 54', or 'the set of golden mountains' and 'the set

of composite primes'. Now, rigid designators can be precisely characterized
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in terms of how they are handled in the preferred derivations of standard

truth theories only if the preferred derivations of each'such theory

handle rigid designators in a way that is distinctively different from

the way they handle nonrigid designators. The truth theory for Russellian

English fails this necessary condition. Accordingly, rigid designation

cannot be defined on the basis of the way terms are handled in the pre-

ferred derivations of standard Tarski-Davidson truth theories.

Can Peacocke's approach be saved by extending Tarski-Davidson

truth theories? That is, can the work done in preferred derivations be

increased to the point where they might handle rigid designators distinc-

tively? Perhaps. However, even if it can, this seems an ill-motivated

way of saving the approach. Consider how truth theories would have to be

extended. Standard preferred derivations do not handle rigid designators

distinctively for a good reason. A standard Tarski-Davidson truth theory

is a purely linguistic theory. It does not tell us which sentences are

true; it only gives us the conditions under which sentences are true. But

the difference between definite descriptions that denote and those that

do not--and a fortiori the difference between those that rigidly designate

and those that do not--is in crucial respects extralinguistic. Hence,

preferred derivations will not be able to handle rigid designators

distinctively unless they include steps warranted by extralinguistic con-

siderations. In other words, to make Peacocke's approach work, the domain

of Tarski-Davidson truth theories will have to be extended to various

extralinguistic matters.

Of what significance is the apparent failure of Peacocke's

approach? Should we draw any conclusion from it? To answer these



71

questions, we must examine the reason for framing the definition in terms

of what happens in preferred derivations. Why pursue this indirect way

of using the notion of a truth theory? A definition like (45) is an

obvious, more direct approach to using this notion to render (37) precise:

A singular term t of a language L is treated as a

rigid designator by a truth theory of L if and only

if there is an object x such that, according to the (45)

truth theory, any sentence G(t) in which t occurs is

true if and only if <x> satisfies G( ).

(45) has some virtues. It is not modal. Its notion of truth conditions

is not obscure. And it does not require preferred derivations to handle

rigid designators distinctively. It has, however, a decisive fault. It

is open to the same objections as (40). For instance, every denoting

definite description of a purely extensional language satisfies it.

Peacocke expressly recognizes this.72 He turns to a definition

in terms of preferred derivations in the effort to get a criterion that

is not satisfied by nonrigidly designating definite descriptions. His

appeal to preferred derivations is accordingly in response to a primary

desideratum. It is intended to accomplish without modality what the

modal clauses of other definitions accomplish, viz. to impose the proper

constraint on what a term would have denoted if things besides language

had been different. Earlier we identified the problem of satisfying this

desideratum as the problem that is basic to rephrasing (37) without using

modal notions. Indeed, we examined (40) just to bring this problem out.

It is easy to eliminate the obscurity of (37). The problem is to avoid

resorting to modal notions and yet formulate the constraint that excludes

nonrigidly designating definite descriptions. The significance of the
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failure of Peacocke's approach is thus apparent. The failure puts us back

where we began, with an obscure (37) and an inadequate (40).

What conclusion should we draw from the failure of Peacocke's

approach? The issue is whether (37) can be rephrased somehow to yield

an exact criterion of rigidity without resorting to modal notions. So

far we have shown only that Peacocke has given no evidence that it can.

We have not yet shown that it cannot. However, we do have some evidence

pointing to the stronger conclusion. There is a pattern to the failures

of the various attempts to rephrase (37). Both Peacocke's approach and

definitions like (40) and (45) fail in the same respect: they do not

mark the distinction between rigidly and nonrigidly designating definite

descriptions. If a denoting definite description could have denoted

some object other than the one it does had things other than language

been different, then it is a nonrigidly designating definite description.

If, to the contrary, it could have denoted no other object and would

still have denoted the object it does provided that object still existed,

73then it is a rigidly designating definite description.

The modal clause in our definition, (33), specifically marks

this distinction. It requires rigidly designating definite descriptions

to be necessarily and necessarily uniquely true of the objects of which

they are true. The modal clauses in the definitions of exclusive and

inclusive rigidity, (1) and (4), also mark this distinction, although

they draw the boundary at slightly different places. For a definite

description to be rigid, it must satisfy some modal condition--either ours

or one much like it. The attempts to rephrase (37) simply fail to come

up with a nonmodal condition that will be satisfied only if a modal
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condition like ours is satisfied. These attempts thus fail exactly where

they should if there is no way to rephrase (37) successfully without

resorting to modal notions. The pattern of failure hence gives us some

evidence confirming our suspicion that (37) cannot be rephrased success-

fully without using modal notions.

Two questions prompted our looking at Peacocke's paper in detail.

First, is his definition of rigid designation in any way preferable to

the one we defended at length in the last section? Our conclusion is no.

Second, and more important, is there reason to doubt that rigid designation

is a de re modal notion, as our definition and the others we examined

earlier imply? Our study of Peacocke has given us no reason to doubt

and some reason to believe that rigid designation is an intrinsically

modal notion. But is the modality de re modality? The need for modality

is clearest in connection with discriminating between rigidly and non-

rigidly designating definite descriptions. We have found that this dis-

tinction can be marked naturally by a de re modal condition. But does it

have to be? Can it instead be marked by means of a de dicto modal con-

dition? That is, for each denoting definite description, is there a

proposition such that the description is rigid if and only if the pro-

position is necessarily true?

An obvious candidate for such a de dicto condition is given

in (46):

A denoting definite description of the form

the x such that Fx

is a rigid designator if and only if the proposition

expressed by the corresponding sentence of the form (46)

~I ___ I_ _ _~ I_ _ I
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the object that happens to satisfy F satisfies

and uniquely satisfies F

is necessarily true.

Symbolically, the condition is:

F()xFx) & (yy)(Fy -_ y=(7xFx)) is necessarily true. (47)

This condition admits of two readings, depending on whether we interpret

'necessarily true' in the usual strong way or in the weak way Kripke

suggests. Consider the strong reading first, as given by (48), with

the definite description operators having narrow scope:

0 F(IxFx) & (Vy)(Fy - y=( xFx))] (48)

Once the description operators are expanded, (48) simplifies to (49):

D(3x)4Fx & (Vy)(Fy =E y=x)] (49)
But (49) amounts to nothing more than an instance of the schema governing

"unfailing designation,." as defined by (17). The strong reading of (47)

fails to mark the distinction between rigidly and nonrigidly designating

descriptions for the same reason that unfailing designation is not exten-

sionally equivalent to rigid designation. (49) says that the predicate

F must be satisfied by some object; but it fails to say that the predicate

must be satisfied by the very object that happens to satisfy it.

Consider now the weak reading of (47), in which 'necessarily

true' is taken roughly as 'necessarily true provided the object that

happens to satisfy F exists'. The condition in this case is given by

(50), again with the description operators having narrow scope:

S~(3x)(Fx & (V'y)(Fy " y=x)) (50)
(F(1xFx) & (Vy)(Fy 3 y=(ixFx)))]

Once the description operators are expanded and the expression simplified,

the necessitated clause is found to be a tautology:
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[(3x)(Fx & (Vy)(Fy 3 y=x)) (51)

(3x)(Fx & (Vy)(Fy y=x))J

Hence, the weak reading of (47) fails to mark the distinction between

rigidly and nonrigidly designating descriptions since every definite

description satisfied it. (51) can be revised to avoid this objection:

[(3x)(Fx & (Vy)(Fy = y=x)) (52)
o (3x) (Fx & (Vy)(Fy S y=x))3

But (52) is like (49) in failing to say that the predicate F must be

satisfied by the very object that happens to satisfy it.

Thus the simplest proposals for a de dicto distinction between

rigidly and nonrigidly designating definite descriptions do not work.

Perhaps there is a subtler way to construct a de dicto condition marking

the distinction. I do not see how to close off this possibility, though

we should keep in mind the failure of other attempts to replace de re

74with de dicto modality. At any rate, our use of de re necessity in (33)

is naturally motivated. It is the natural way to mark the distinction

between rigidly and nonrigidly designating descriptions. By contrast, the

attempts we have examined to fashion a nonmodal or a de dicto distinction

fail to specify that the description must be satisfied by the very same

object that happens to satisfy it. The de re modal distinction succeeds

where these approaches fail. This was the upshot of the long argument in

Section II: the de re modal aspect of rigid designation specifically shuts

off possibilities left open by the nonmodal notion of designation simpliciter

and by the de dicto modal notion of unfailing designation.

The conclusion is clear. All the evidence we have is that,

for better or worse, rigid designation is intrinsically a de re modal
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notion. Earlier we concluded that (33) is clearly preferable among the

suggested de re modal definitions of rigidity. We now further conclude

that (33) is the preferred definition among those in the literature

generally. (33) is the best working definition we have.
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25 Kripke, op. cit., p. 146.

26 This line of argument was suggested by Ali Akhtar.
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details of a completely rigid designator are ones that can never affect

reference.
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tifier as existence of an object in some possible world; and what the

truth conditions are for the formula.



80

31 Alvin Plantinga, The Nature of Necessity, (Oxford: Oxford U. Press,

1974), Chapter VII.

32 In the addenda to "Naming and Necessity" Kripke calls attention to

the problem noted here. He says, "Similarly, I hold the metaphysical

view that, granted that there is no Sherlock Holmes, one cannot say

of any possible person that he would have been Sherlock Holmes, had he

existed. Several distinct possible people, and even actual ones such

as Darwin or Jack the Ripper, might have performed the exploits of

Holmes, but there is none of whom we can say that he would have been

Holmes had he performed these exploits. For if so, which one?" (p. 764.)

This question--for if so, which one?--is the one we are claiming may
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world.

33 Cf. Kripke, ibid., p. 764.

34 Christopher Peacocke, "Proper Names, Reference, and Rigid Designation,"
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in Peacocke's article (as we shall see), but the constraint against
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36 Ibid.

37 Ibid.

38 Ibid., p. 114. Peacocke uses 't' as a name of a term and as a

term. I trust the reader can sort out any potential use-mention

confusions deriving from this double duty.

39 Ibid. Again I trust the reader can sort out any potential use-

mention confusions in the quoted passage.

40 I qualify this remark because perhaps there is a language in which

the denotation relation is the identity relation, in which case terms

would bear essential relations to their denotata.
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appears to be no small task; but our definition, (33), is just such an

intermediate, stated in a less confining framework.

42 Peacocke, op. cit., p. 115.

43 The presentation in the text is rather sketchy. A more thorough

presentation of the standard account can be found in "On the Frame of

Reference," by John Wallace, in Semantics of Natural Language, ed.

Harman and Davidson.

44 Two phrases in this characterization make it informal: 'corresponds
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stituents like 'Ft' may be replaced by constituents like 'Gt & Ht' during

a preferred derivation. Exact correspondence is not easily made formally
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somewhat tediously. I trust the characterization in the text is

adequate for the purposes at hand. For those interested, Peacocke's

actual definition is as follows:

Truth theory T treats expression e of language L as a rigid
designator iff for any sentence G(v) of L containinge , given
as premisses specifications of the objects demonstrated by
person p at time t, then: in any maximally short derivation
in T from those premisses of a target biconditional of the
form

T(G(w) ,p,t) A

where A does not contain sats, the evaluation function of
T is applied to some expression e (e.g. d. itself or a place-
holder) which occupies the. place of this occurrence of a
via the application of the satisfaction axiom for the atomic
predicate in which the given occurrence of % features as
argument in the original sentence G(*.); where the evaluation
is such that either given p, t, and the fixing of the
indexical referents, there is a sequence of objects so such
that evaluation of e only with respect to s o occurs in
maximally short derivations, or e is such that the result of
evaluating it with respect to any sequence of objects is
always the same. (P. 125.)

The next to last clause is intended to distinguish between variables

and indexicals, and the final clause, between variables and constants.
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The definition assumes that the original sentence is expressed in terms

of atomic predicates, so that the problem alluded to above is avoided.

45 Presumably, Peacocke wants to restrict his definition to denoting

constants. However, if we follow Church's terminological conventions,

the added qualification is gratuitous. (Cf. Church, Introduction to

Mathematical Logic, (Princeton: Princeton U. Press, 1956), p. 4.

46 Restricting this claim to Russellian definite descriptions is crucial.

Peacocke distinguishes between two kinds of definite descriptions,

Russellian and "entity-invoking." The entity invoking use of a definite

description is something I am not altogether clear about. Peacocke says

the following: "if, in an utterance of "the F is G", what is strictly

and literally said would equally and appropriately be said by an utterance

of "that F is G", then "the F" functioned as a rigid designator. I shall

label this an entity-invoking use of the description." (Op. cit., p.

117.) He introduces the apparatus for indexicals in order to account

for entity-invoking uses of definite descriptions being rigid while

Russell ian uses are not. That Peacocke definitely wants to deny that

Russellian definite descriptions are rigid can be seen at many places

in his article; for example, see p. 110, p. 117ff, p. 122ff.

47 I am being somewhat presumptuous here in claiming that Kripke

intended 'the square root of 25' to be Russellian. Some people may

want to claim that it is for example Strawsonian. But notice that either

way it comes out to be rigid, if anything is rigid. (This is subject

to our earlier proviso that Kripke is talking about the domain of posi-

tive integers.) Kripke's use in no way seems entity-invoking. Indeed,

throughout the lectures, as we shall see shortly, Kripke shows a

distinct preference for reading definite descriptions in Russell's way.

48 Peacocke, op. cit., p. 126.

49 Ibid., p. 119.

50 Michael Lockwood, "On Predicating Proper Names," Philosophical

Review, LXXXIV, (October, 1975), pp. 471-498.
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51 Donnellan's distinction is between referential and attributive uses

of definite descriptions. Lockwood extends the distinction, and we

follow him for the sake of discussion. Lockwood wants to claim that

proper names occur in attributive uses.

52 Ibid., p. 487.

53 Cf. ibid., pp. 485 and 487.

54 What Kripke expressly claims in "Naming and Necessity" is that

Mill is "more-or-less right about 'singular' names" (p. 322), and he

later says that "the present view endorses Mill's view of singular

terms." (P. 327.) I have chosen to express this position in terms

of Mill's 'nonconnotative'; I do not think that Kripke uses this term.

55 Kripke, "Identity and Necessity," p. 149n.

56 Ibid., p. 140n. I presume that this footnote is where Peacocke's

idea that rigid designators are scopeless comes from. But scopeless

in what sense? Let 'txFx' be a rigid designator. Consider 'aG(CxFx)'.

This admits of three readings:

(3x)((y)(Fy E y=x) & OGx)

(3x)O((QVy) (Fy " y=x) & Gx)

1(3x)((Vy) (Fy -- y=x) & Gx)

Surely it is not Kripke's view that these three have the same truth

value in all instances. For the last can be false even when the

others are true on standard interpretations of ''. We will return

to this footnote and the question of the relation between scope and

rigid designation in some detail in the next chapter.

57 Kripke, "Naming and Necessity," p. 254. Kripke is careful in

presenting Donnellan's distinction. He does not generalize it in the

manner of Lockwood and Peacocke.

58 Elsewhere ("Identity and Necessity," p. 14 9n), in considering the

view that definite descriptions in English can be used both rigidly

and nonrigidly, Kripke remarks that those who call the nonrigid or

innermost scope reading of a description "attributive" are "following
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Donnellan, perhaps loosely." He also distinguishes between Donnellan's

distinction and the distinction between the purportedly alternative

readings of definite descriptions in English.

59 Kripke, "Naming and Necessity," p. 310. The form of the identity

statement is given on p. 311.

60 Cf., for example, "Identity and Necessity," p. 154.

61 Cf. ibid. or "Naming and Necessity," p. 306.

62 (vii) and (viii) can also be derived from (iv) and (v):

(vii) (3x) (y)O((Vz)(Fz z=x) & (Vz)(Gz - z=y) & x=y)

(viii) (3x)(3y)((Vz)(Fz - z=x & (Vz)(Gz = z=y) & cx=y)

In some respects (vii) captures Kripke's weak sense of necessity as

well as (vi) does. But (vi) has modality de dicto, whereas (vii) has

modality de re; and Kripke seems to want to claim that if an identity

statement is true, then a certain de dicto statement involving identity,

viz. (vi), is true.

63 The argument to which I refer is presented compactly in "Naming and

Necessity," pp. 287-289. It is initially developed in pp. 270-281.

64 Cf. ibid., p. 287. Also, on p. 279, Kripke remarks, "Many people

just have some vague cluster of his most famous achievements. Not

only each of these singly, but the possession of the entire disjunc-

tion of these properties, is just a contingent fact about Aristotle."

65 A version of the argument that gives the proponent of the cluster

theory less room to maneuver is obtained if (i) is replaced by (i') and

(iii) by (iii'), with appropriate adjustments elsewhere:

(i) r'If X exists, then X and X alone has most of the *'s'

expresses a necessary- truth.

(iiiP) The individual that has most of the O's in the actual

world might have existed and yet not been the individual

that has and alone has most of the #'s.
The proponent of the cluster theory will find the stipulation that (iii")

is true for some X harder to dispute than the stipulation that (iii) is

true.
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66 I take this to explain why Kripke argues against counterpart theory

while developing his case against (i).

67 1 remind the reader that resisting the stipulation of (iii) is not

an easy way out, if only because a like argument can be run off of

(i') and (iii'), and the stipulation of (iii') is hard to resist.

68 1 do not see how to characterize those descriptions that are not

suitable for determining the reference of names. This is the respect

in which the claim has been only approximately stated.

69 This is an argument that the proper names of contingent entities

would not be rigid if they were so synonymous. In "Naming and Necessity"

Kripke extends the claim to names of necessary entities like iT (Cf.

p. 278). However, he does not give an argument. Furthermore, as he

notes, whether the claim is true of names of necessary entities does

not matter to the lectures.

70 Kripke's causal "picture" of fixing the reference of proper names

also supports the thesis that proper names are rigid. For it suggests

a way of accounting for how the reference of proper names can be deter-

mined so that they would still denote the same object, if they denote

anything, even had things been different.

71 Of course, arguments in "Identity and Necessity' and "Naming and

Necessity" pertaining to common names turn on a like thesis, viz. that

they too are rigid designators.

72 Cf. Peacocke, op. cit., p. 116. Peacocke offers the following

criterion that closely resembles that of (45):

(3U)(for all sentences GT~T of L IT(G(t)) • <<>sats G(f))

His main reason for rejecting this is as follows: "Provided TL is

cast in a free logic, it is possible to write out a truth theory for

a first-order extensional language that evaluates definite descrip-

tions directly (as terms), and which contains as theorems sentences of

the form

T(G-lx) Fx) = <(Ix)Fx> sats G(")"

He also objects to it on the grounds that it will exclude his entity-



86

invoking uses of definite descriptions--the ones for which he intro-

duces his apparatus for indexicals. His final moves are thus in

response to these two objections to the above criterion, and hence

indirectly to (45).

73 1 here leave open the question whether definite descriptions that

are exclusively or inclusively, but not completely rigid should be

counted as rigid or nonrigid. The important issue concerns modality.

Exclusively, inclusively, and completely rigid descriptions must all

satisfy some modal condition.

74 Cf. M. J. Cresswell, "The Elimination of De Re Modalities," The

Journal of Symbolic Logic, Vol. 34, No. 3 (September, 1969), pp.

329-330; and Richard Cartwright, "Some Remarks on Essentialism,"

The Journal of Philosophy, LXV, No. 20 (October 24, 1968), pp. 615-626.
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Chapter ill

Scope and Rigid Designation
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The relationship between rigid designation and the scope of

modal operators is a matter of controversy. There is general agreement

that rigid designators have scope-related characteristics that distinguish

them from nonrigid designators. But what these characteristics are is

disputed. On the one hand, some hold that rigid designators always have

only wide scope with respect to modal operators. For example, in arguing

that proper names are not rigid designators, Michael Dummett contends that

rigid designators always have wide scope, whereas names can have either

wide or narrow scope. Tyler Burge appears to agree with Dummett about

rigid designators since he says that they are always taken to have

referentially transparent position in modal contexts.2 On the other hand,

some hold that rigid designators can have either wide or narrow scope

with respect to modal operators; but they add that these scope differences,

unlike the corresponding ones for nonrigid designators, do not affect

truth-value. Thus, Christopher Peacocke says that the truth conditions

of modal sentences containing rigid designators are the same whether

these designators are read with wide or narrow scope. 3 Michael Slote

says that rigid designators enable one to argue with appropriate existence

qualifications from modality de dicto to modality de re and conversely.4

If we view the difference between modality de dicto and modality de re as

a difference in the scope of designators vis-a-vis modal operators, then

Slote is suggesting that, with appropriate existence qualifications,

rigid designators can be taken to have wide or narrow scope in modal con-

texts salva veritate. Leonard Linsky is explicit on this point. He
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remarks that the de re/de dicto distinction for modal propositions con-

taining rigid designators collapses.5 He then gives as a necessary and

sufficient condition for a designator a to be rigid that, for all

atomic F),rG#(4) have the same truth-value whether a be taken to have

6
wide or narrow scope.

Kripke sides with Peacocke, Slote, and Linsky. In the course

of a footnote in "Identity and Necessity," he comments:

Some logicians have been interested in the question of the
conditions under which, in an intensional context, a descrip-
tion with small scope is equivalent to the same one with large
scope. One of the virtues of a Russellian treatment of descrip-
tions in modal logic is that the answer (roughly that the
description be a 'rigid designator' in the sense of this
lecture) then often follows from the other postulates for
quantified modal logic; no special postulates are needed, as
in Hintikka's treatment. Even if descriptions are taken as
primitive, special postulation of when scope is irrelevant can
often be deduced from more basic axioms.7

These comments are reminiscent of the discussion of theorems 14.3 to

14.34 in Principia Mathematica. There Whitehead and Russell show that

"when E!(x)(4x), the scope of (Tx)( x) does not matter to the truth-

value of any proposition in which (lx)(+x) occurs" in an extensional

context.8

There is an obvious name to be given to singular terms satis-

fying the condition that Whitehead and Russell identify:

An instance of the schema

(7x)(*...x *..)
is a designator if and only if the corresponding ()

instance of the schema

(x)(Vy)(...y... - y=x)

is true.

Suppose or is a definite description in a first order quantificational
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language all of whose sentential connectives are truth-functional. Let A

be any sentence in which . occurs with its scope unmarked; and let B and

B' be any two sentences obtained from A via Russellian expansions of o.

(In the cases of interest B and B' will reflect different construals of

the scope of oL in A.) What Whitehead and Russell show is that if 4 is a

designator, then B and B' are materially equivalent. One claim Kripke

makes in the quoted footnote is that when certain modal sentential con-

nectives are added to the quantificational language, the analogue of the

Whitehead-Russell condition is (roughly) that 1 be a rigid designator.

This claim about rigid designators is comparatively precise.

At least it is precise if we ignore the qualifier 'roughly' and if we

specify which modal languages we are talking about. We are best off

deciding whether it is correct first. We can subsequently return to the

general question of the relationship between scope distinctions and

rigid designation.

For now, then, we will adopt Russell's treatment of definite

descriptions. The question is whether rigidly designating definite

descriptions in modal languages are the analogue of designating definite

descriptions in truth-functional languages. We will consider two families

of modal languages, one described in detail and the other alluded to

in passing in Kripke's "Semantical Considerations on Modal Logic." We

will consider the scope of definite descriptions vis-a-vis the four dis-

tinct higher modalities of S5, symbolized by 'O', 'c', '~ ', and '~4'. We

will also consider weak necessity and contingency operators corresponding

to the weak notion of necessity Kripke employs in "Naming and Necessity"

and "Identity and Necessity." The question is whether rigidly designating
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definite descriptions can be read with contrasting scope with respect to

these operators without affecting.truth-value.

The answer is slightly surprising. The analogue of the Whitehead-

Russell condition turns out not to be rigid designation, but to be what

Kripke calls "strongly rigid designation." In the case of the languages

Kripke discusses in detail in "Semantical Considerations on Modal Logic,"

rigid designation is not sufficient for truth-value to be unaffected by

scope for any of the six modal operators we consider. In other words,

rigid designators as a class exhibit no salient scope-related character-

istics in the modal languages most discussed in the recent literature.

However, they do exhibit salient scope-related characteristics in the

modal languages Kripke alludes to in passing. Even in the case of these

languages, rigid designation is not sufficient to make truth-value immune

to scope for the strong necessity and contingency operators, 't' and

'~0'; and in a wide range of contexts it is not sufficient to do so for

any of the six operators. Nevertheless, in what may appropriately be

called "simple standard" contexts in these languages, rigid designation

is sufficient for truth-value to be unaffected by scope for all of the

operators we consider except strong necessity and contingency. Kripke

undoubtedly meant to exclude these strong operators in his original

claim. With suitable qualifications about contexts, then, Kripke's

claim is correct if taken as applying to the languages he alludes to in

passing. But it is incorrect if taken as applying to the languages we

more often associate with him.

Developed in detail, these results are more significant than

they at first may appear to be. Scope considerations have sometimes been
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advanced in an effort to motivate the notion of rigid designation. One

consequence of our results is that, while scope considerations can be

used to motivate the stricter notion of strongly rigid designation, they

are an ill-conceived way of motivating the notion of rigid designation.

Substitution of co-referring designators in modal contexts salva

veritate and elimination of a type of referential ambiguity in counter-

factual descriptions provide much sounder bases for motivating rigidity

simpliciter. Rigid designators are not the logical analogue of standard

constants in modal languages; strongly rigid designators are.

How then are we to account for the fact that rigid designators

are widely thought to have distinctive scope-related characteristics in

modal contexts? The most striking consequences of our results are in

response to this question. If we construe informal essentialist talk

along the lines of the formal languages Kripke develops in detail in

"Semantical Considerations on Modal Logic," we have no way of accounting

for the mistaken views other than to attribute them to confusion. But

if we construe this talk along the lines of the formal languages Kripke

alludes to in passing, we can readily account for them. For, so long as

necessity and contingency are taken weakly, rigid designators have just

the right sort of scope-related characteristics in these other languages.

The preferred regimentation of essentialist talk remains a matter of

controversy. A second consequence of our results is that intuitions about

the scope behavior of rigid designators are evidence in favor of these

other languages. This, along with other points brought out below, in-

dicates that these languages deserve more attention than they have yet
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received. They may well be the best formal languages for regimenting

essentialist talk.

These languages and the contrast between weak and strong

necessity and contingency account for many mistakes about the logic of

rigid designators. But they do not account for all of them. A further

source of error is the predilection to view constants as paradigms of rigid

designation. Constants in standard logic have three sets of features:

i. A distinct logic, involving scope and instantiation as

well as the substitutivity of identity.

ii. Distinct referential features, best summarized by the

claim that constants are comparable to denoting proper

names in natural languages.

iii. A distinct relation to free variables, often expressed

by the claim that free variables are like generalized

constants, but perhaps better expressed by the claim

that constants are like fixed-valued free variables.

A third consequence of our results is that in philosophically interesting

modal languages constants can have at most one of these three sets of

features. Mistakes result from thinking that they can have more--mistakes

not just about rigid designation, but also about the construal of free

variables in modal contexts. To put the point differently, philosophi-

cally interesting modal languages cannot include constants of the sort

found in standard nonmodal languages. The tendency to think otherwise

is a special source of trouble in quantified modal logic.

Since the chapter is long, a brief outline of the rest of it is

called for. The next three sections pose the question about the "scope

neutrality" of rigid designators in formal languages in a full and precise
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way. The fifth section then answers this question in detail, and the

sixth applies the answer to the claim Kripke makes in the footnote

quoted earlier. The following three sections critically examine a

variety of claims that have been made about the logic of rigid designa-

tors. Finally, the tenth section addresses the problem of constants in

quantified modal logic, and the last section offers a few remarks about

the regimentation of de re modality.

II

Our initial question is not yet precise. We need to specify

which modal languages we will be considering, and we need to give a formal

criterion under which definite descriptions are rigid designators. Some

may object to the latter on the grounds that definite descriptions--

particularly Russellian definite descriptions--are never rigid designa-

tors. The footnote from "Identity and Necessity" quoted earlier is clear

evidence that Kripke thinks they can be. Also, his paradigm of a rigid

designator is 'the square root of 25', and nothing in his lectures dis-

courages us from taking it to be Russellian. If further justification

is wanted, our criterion and its consequences will show that one can

talk coherently about rigidly designating definite descriptions.

We here require only a necessary and sufficient condition for

definite descriptions to be rigid designators. Criteria for the rigidity

of other kinds of singular terms do not matter. Indeed, since the modal

languages Kripke discusses in "Semantical Considerations on Modal Logic"

lack constants, contextually expanded definite descriptions are the only
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means for singular reference available in them. Still, we should note

in passing that the criterion we give for definite descriptions may

suffice for other kinds of singular terms as well. For example, Quine's

method for eliminating names from regimented languages via special predi-

cates like 'Socratizes' offers a means for applying our criterion to names.

If Quine is correct about the eliminability of names, a criterion for the

rigidity of definite descriptions may be all that will ever be needed.9

We will use the formal criterion for rigidity developed and

defended in the preceding chapter:

An instance of the schema

(Ix)(..*x**.)
is a rigid designator if and only if the (2)
corresponding instance of the schema

(.x) [(Vy)(..y** =
0 y=x) & o(Vy)(...y*.. y=x)]

is true. 10

The criterion requires several comments. First, although as stated the

criterion applies literally only to expressions containing an )-operator,

it is meant to apply to definite descriptions in general, and not just

to those that happen to be symbolized in this customary way. Second, the

redundant initial clause of the schema is included to emphasize that on

this criterion a definite description must be a designator in order to

be a rigid designator. In this respect, the criterion should be con-

trasted with one in which 'O' is prefixed to the entire schema. Third,

since '~' occurs within the scope of a quantifier, it is of course to be

taken as expressing necessity de re. If our criterion is correct, rigid

designation is, for better or worse, a de re modal notion. Fourth, the

instances of the defining schema are formulas in the metalanguage. They



96

need not be formulas in the object language. Thus the criterion says

that a certain expression in the object language is a rigid designator

just in case a certain related expressipn in the metalanguage is true.

The criterion therefore applies to definite descriptions in nonmodal as

well as in modal languages. Of course, when the criterion is applied

to a modal quantificational language, homophonic translation may make the

instances of the defining schema formulas in the object language too. We

will be taking advantage of such homophonic translation below. Finally,

as the criterion stands, 'El' in the schema remains an uninterpreted modal

operator, to be read 'it is necessary that' or 'necessarily'. Thus

according to the criterion, a definite description is a rigid designator

if and only if, informally speaking, there exists an object that necessarily

and necessarily uniquely satisfies the description.12 Here the interpreta-

tion of 'necessarily' is left open. In the context of a specific modal

language, 'a' in the schema will receive a more precise interpretation.

In particular, in the context of the modal languages that we will be con-

sidering, the criterion for rigid designation will admit of a "possible

world" model-theoretic interpretation.

Rigid designation should be distinguished from what Kripke calls

"strongly" rigid designation:

An instance of the schema

(7x)(---x-..)
is a strongly rigid designator if and only
if the corresponding instance of the schema (3)

(3x) (Vy)(...y... .y=x) & U(Vy)(...y...* y=x) &

i (3x)(truxe.)
is true.
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A strongly rigid designator thus rigidly designates a necessarily existing

object. This notion will be important below.

There are several arguments in favor of our criterion. One is

based on Kripke's account of rigidity. On the standard possible world

interpretations of our criterion, a designator is rigid just in case

there is an actual object that it designates with respect to every

possible world in which that object exists; and with respect to other

worlds it designates nothing. But this is precisely what Kripke says in

"Identity and Necessity." 1 3 A second argument is based on Kripke's

intuitive test for distinguishing rigid designators. Our criterion

exactly captures the test he means to use, namely that ra.might not have

been o' be false on the reading in which the first occurrence of a. has wide

scope and the second, narrow scope with respect to the modal operator.

Another argument concerns descriptions of counterfactual situations. The

reference of singular terms in such descriptions can be determined either

on the basis of the actual situation or on the basis of the supposed

counterfactual situation. Our criterion singles out essentially just

those designators whose reference can be determined on either basis

without affecting the truth of the counterfactual descriptions in which

they appear. Other arguments turn on more formal considerations. For

example, as (3) shows, our criterion yields a perspicuous formal state-

ment of the distinction between strongly and weakly rigid designators.

Such arguments in support of (2) have been developed in con-

siderable detail in the preceding chapter. Other proposed criteria

for rigidity have also been examined there. For present purposes, the

preceding sketches of the arguments will have to suffice.
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III

Next we have to identify the modal quantificational languages

we will be considering. A word of warning is needed here. We will rely

on possible world model theory to characterize the languages. Hence,

there will be much talk below of possible worlds, of objects existing in

possible worlds, and the like. Nothing we do will require any of this

talk to be taken literally. It is only an heuristic substitute for the

purely mathematical characterizations of the languages that the model-

theoretic definitions of truth provide. The model-theoretic definitions

themselves are given in an appendix. Model theory will enable us to

determine whether certain formulas are valid in the different languages.

Of course, if a formula is valid in a language and the logic of that

language is axiomatizable, then the formula is derivable from the axioms.

Accordingly, our proofs of validity and invalidity will also have a

bearing on a further claim Kripke makes in the footnote quoted earlier,

namely that with a Russellian treatment of descriptions, the adequacy of

rigid designation for eliminating scope difficulties "often follows

from the other postulates for quantified modal logic."

We will be considering two families of modal languages. One

consists of those languages that admit of the definition of truth Kripke

gives in detail in "Semantical Considerations on Modal Logic." 14 This

definition has two distinctive features. First, the truth-value of a

quantified formula with respect to a given possible world is evaluated

with the quantified variable ranging only over the objects that exist in

that world. Second, the function that assigns T and F to formulas with
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respect to possible worlds (given an assignment of objects from the

universe of discourse to the variables) is a complete function. Thus,

if a predicate is not satisfied with respect to a possible world by an

object in the universe of discourse, then the complement of this predicate

is satisfied by the object with respect to that world, even if the object

fails to exist in it. An example will help. Consider a possible world

in which Socrates does not exist. Even with respect to this world,

Socrates is either in the extension of 'Q is a philosopher' or in the

extension of 'Ois not a philosopher'. Moreover, given the first dis-

tinctive feature of the truth definition, Socrates may be in the extension

of '$ is a philosopher' with respect to this world, and yet the formula

'(3x)(x-is a philosopher)' still be false with respect to it. Another

consequence of the truth definition is that an object satisfies an open

formula 'oGx' only if it is in the extension assigned to 'G$' with res-

pect to every accessible world, even those in which it fails to exist.

We will call the members of this family "the K-languages." They

differ from one another model-theoretically by having different admissible

model-structures. First, they do not place the same restrictions on the

accessibility relation among possible worlds. For some of the languages

the relation only has to be reflexive, in the manner of T, while for

others it has to be, for instance, symmetric and transitive as well, in

the manner of S5. Second, the languages do not place the same restrictions

on which objects exist in different worlds. Among the K-languages is the

naive extension of S5 in which both the Barcan and the converse Barcan

formulas are valid. 1 7 This language requires the same objects to exist

in all worlds. Also among the K-languages are the ones Kripke sets out in
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"Semantical Considerations on Modal Logic." In these neither the Barcan

nor the converse Barcan formulas are valid. These languages place no

restrictions on which objects exist in different worlds (other than that

each object in the universe of discourse exists in at least one world).

The quantified version of T for which Kripke specifies axioms is the weak-

18
est of the K-languages. Its valid formulas are included among those of

all of the other K-languages.

Our second family of modal languages springs from an alternative

truth definition Kripke mentions while discussing the converse Barcan

19
formulas. Unlike the definition just reviewed, this one renders these

formulas--'o(Vx) (Fx) (Vx) (aFx)' and '(3x) (*Fx) 0 Q(3x) (Fx) '--valid even

for model-structures in which there are no special restrictions on which

objects exist in different worlds. This definition differs from the other

one in two ways. First, only objects that exist in a possible world

satisfy atomic predicates or their complements with respect to that world.

Thus, for these languages, the function that assigns T and F to formulas

with respect to worlds need not be complete. For some assignments of

objects from the universe of discourse to variables, the function may

fail to assign either T or F to certain formulas for some worlds. The

second respect in which this truth definition is different compensates

for the first. Instead of OrAý being assigned T just in case A is

assigned T with respect to every accessible world, QA' is assigned T (if

it is assigned a value at all) just in case A is assigned F with respect

to no accessible world. This treatment of 'U' leaves the usual "de Morgan

relations" between '=' and '0' intact. But on this definition, unlike

the other, an existing object satisfies an open formula 'PGx' provided
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merely that it is in the extension assigned to 'Ge' with respect to all

accessible worlds in which it exists.

The striking feature of this alternative truth definition,

then, is that it allows what might be called "satisfaction gaps." That

is, open formulas may fail to have a truth-value with respect to a world

for some assignments of objects to variables. For example, when Socrates

is assigned to 'x', the formula 'x is a philosopher' will not have a

truth-value with respect to any possible world in which Socrates does not

exist. However, since quantified variables still range only over the ob-

jects that exist in a world, every closed formula will still have a truth-

value with respect to every possible world. Hence the phrase "satisfac-

tion gaps" rather than "truth-value gaps."

Our second family consists not of languages that satisfy this

alternative truth definition, but of ones that satisfy a slightly modified

version of it. The trouble with the truth definition as it stands is

that too many of the languages satisfying it are philosophically deviant.20

To appreciate this, consider the closed formula '(3x)(vO(3y)(y=x))'.

Normally this is taken as asserting that at least one object exists whose

existence is contingent. In terms of possible worlds, it is taken as

asserting that at least one object that exists in the actual world fails

to exist in some other accessible world. But it cannot be taken this

way when it occurs in a language that satisfies the alternative truth

definition. For '(3x)(~O(3y)(y=x))' would not be true in such a language

even when some object that exists in the actual world fails to exist in

some accessible world. In order for this closed formula to be true in

such a language, the open formula 'O(3y)(y=x)' would have to be false of
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some object--say Socrates--that exists in the actual world. But this

open formula is false when Socrates is assigned to 'x' only if there is

some accessible world with respect to which the open formula '(3y)(y=x)'

is false when Socrates is assigned to 'x'. This last formula, however,

is never false of any object with respect to any world in such a language.

For, according to the alternative truth definition, when Socrates is

assigned to 'x', '(3y)(y=x)' is true with respect to those worlds in

which Socrates exists, and it lacks a truth-value with respect to all

other worlds. In other words, regardless of which objects exist in

which worlds, '(Vx)(u(3y)(y=x))' is true in all languages satisfying the

alternative truth definition as it stands. But then in these languages

'(Vx)(D(3y)(y=x)' cannot be taken as it normally is, viz. as asserting

that every object is a necessary existent.

This point can be generalized. The usual way of constructing

predicates for contingent and necessary existence does not work for the

languages in question because in them 'y=x' has a truth-value only when

the objects assigned to both variables exist. But the point does not hang

on the identity predicate. Let 'EO' be an existence predicate--i.e. let

'Ex' be true of an object with respect to a world just in case the object

exists in that world. Then the natural way to express contingent and

necessary existence is via formulas like '~~CEx' and 'IVEx', respectively.

But such formulas do not express contingent and necessary existence in

languages satisfying the alternative truth definition. For according to

this definition, 'Ex' will lack a truth value with respect to any world in

which the object assigned to 'x' does not exist. Thus 'Ex' will never be

false of any object with respect to any world. Hence 'SEx' will be true
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of every object that exists in the actual world, regardless of which other

worlds these objects exist in. According to this truth definition, then,

'(Vx)(DEx S Ex)' is logically true and '(3x)(~vEx)' is logically false.

But surely then ',i3Ex' and 'OEx' should not be taken as expressing con-

tingent and necessary existence in these languages.

This is not to say that languages satisfying the alternative

truth definition cannot express contingent and necessary existence at all.

For let 'Cx' be true of an object with respect to a world just in case

the object exists in that world and not in some accessible world. Then

'Cx' will express contingent existence. The trouble is that the modal

relationship between existence and contingent existence--as expressed by

'(Vx)(Cx' .~:~Ex)'--cannot be affirmed in these languages (except vacuously,

when there are no contingent objects). It is the inability to affirm this

relationship in these languages that makes them philosophically deviant.

Again, this is not to say that the existence and the contingent

existence predicates will not be related to one another in the right way

in these languages. In fact, the open formula 'Cx' will be true of an

object with respect to a world if and only if the open formula 'Ex' is not

true of that object with respect to some accessible world. Therefore, the

requisite modal relationship between 'Cx' and 'Ex' can be affirmed in a

suitable metalanguage. The trouble is that this relationship cannot be

(non-vacuously) affirmed in the languages themselves. This is what makes

them philosophically deviant. The incongruity of the object languages

and metalanguages in this regard underscores the deviance of the object

languages.
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The deviance of these languages would be of less concern here

if it did not extend to our criterion for rigid designation. But it is

easy to see that it does. Intuitively, a designator is rigid only if it

would in no circumstances designate any object other than the one it

designates in the present circumstances. In possible world terms, a

definite description, '()x)(Fx)' is a rigid designator only if, with

respect to every accessible world, the open formula '(Vy)(Fy _ y=x)' is

true of no object other than the one it is true of with respect to the

actual world. But if our criterion for rigidity is interpreted in

accordance with the alternative truth definition, it fails to secure this

requirement. For let 'Gx' be uniquely true of some contingent object--

say Socrates--with respect to every world in which that object exists; and

let it be uniquely true of some other object--say 0--with respect to

every other world.21 Since by hypothesis '()x)(Gx)' will designate the

number 0 with respect to some accessible world, it does not satisfy the

indicated requirement for rigidity. Yet it does satisfy our criterion

for rigidity when that criterion is interpreted in accordance with the

alternative truth definition. For according to this definition,

'O(Yy)(Gy f y=x)' will be true of Socrates since, with respect to every

accessible world, '([y)(Gy S y=x)' either will be true or will lack a

truth-value when Socrates is assigned to 'x'. In other words, our

criterion, so interpreted, fails to require the definite description to

denote nothing with respect to worlds in which the designated object does

not exist.

The point can be put in another way. When '(3x)(O(Vy)(Fy 3 y=x))

is taken to be a sentence in a language that (non-trivially) satisfies the
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alternative truth definition, it does not express the necessary and

sufficient condition under which '(7x)(Fx)' is a rigid designator. Worse,

no sentence in such a language can express this condition. For no sentence

in such a language can express the requirement that the definite descrip-

tion denote nothing with respect to worlds in which the designated object

does not exist. These languages simply have no way to require either that

something be true of or that something be false of an object with respect

to a world in which it does not exist. They have no way of saying any-

thing about an object with respect to a world in which it does not exist.

Of course, the inexpressibility of the necessary and sufficient

condition for rigidity does not prevent these languages from containing

rigid designators. Their rigid designators can even be picked out by our

criterion when it is expressed in an appropriate metalanguage. Hence we

could perfectly well study the scope-related characteristics of rigid

designators in these languages. But we will not do so. Instead we will

turn to languages that satisfy a slightly modified version of the truth

definition. Although a little more complicated, these languages avoid

the shortcomings we have been discussing. Moreover, we can turn to them

without sacrificing anything of note. In particular, our study of rigid

designators in them will straightforwardly determine the scope-related

characteristics of rigid designators in the languages satisfying the un-

modified alternative truth definition.

The way to change the truth definition is evident. The identity

predicate should be handled differently from the standard predicates. The

basic change we need is for the case in which the object assigned to but

one of the variables does not exist. Specifically, an open formula of
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the form 'y=x' should be false with respect to a world if the object

assigned to one of the variables exists in that world and the object

assigned to the other variable does not. One way to accomplish this change

is to have 'y=x' be true with respect to a world so long as the same ob-

ject is assigned to both variables, and false otherwise. The identity

predicate would then be handled exactly as it is in the K-languages, so

that 'x=x' would invariably be assigned T with respect to all worlds.

Another way to accomplish the basic change is to introduce it directly, but

still have 'y=x' lack a truth-value with respect to worlds in which the

objects assigned to both variables do not exist. This way is somewhat

more in keeping with the spirit of the alternative truth definition since

the self-identity predicate would still be neither true nor false of

22
nonexisting objects. For our present purposes, the choice between

these two ways of achieving the basic change is of no consequence. We

will therefore leave the choice open, though where definiteness is needed,

we will proceed as if identity is handled in the second way.

The change, regardless of how it is made, is easy to motivate.

It is not so peculiar to hold that 'y=x' is true when the same object is

assigned to both variables, even should the object not exist. At worst,

this is comparable to saying that 'Athena is identical with Minerva' is

true. Equally, it is not so peculiar to hold that 'x-x' and 'y=x' lack a

truth-value when the objects assigned to the variables do not exist. At

worst, this is comparable to saying that 'Pegasus is identical with Pegasus'

and 'Athena is identical with Minerva' lack a truth-value. By contrast,

it is definitely peculiar to hold that 'y=x' lacks a truth-value when the

object assigned to 'y' exists and the object assigned to 'x' does not.
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This is comparable to saying that 'Socrates is identical with Pegasus'

is not false. If an object exists in a world, then surely it is distinct

from any object that does not exist in that world. Indeed, for 'y=x' to

lack a truth-value in this case is so peculiar that one is likely not to

notice that the alternative truth definition Kripke mentions requires

this of the identity predicate. And in missing it, one is likely also

to miss the philosophic deviance of the languages satisfying this truth

definition.

This one change will remedy the points of deviance we called

attention to. In all the languages we are considering, binding a variable

automatically restricts its range with respect to each world to just those

objects that exist in that world. Hence, with the truth definition

changed to treat '=' as we have suggested, the open formula '(3y)(y=x)'

will never exhibit any satisfaction gaps. Furthermore, since it will be

false wherever it had no truth-value before, 't•((y)(y=x)' and '"D( y))(y=x)'

will now successfully express necessary and contingent existence. Similarly,

with the truth definition changed, open formulas of the form '(Vy)(Fy y=x)'

will exhibit no satisfaction gaps. As a consequence, our criterion for

rigidity will no longer fail to express the proper necessary and sufficient

condition. In particular, '(Ix)(Fx)' will now satisfy our criterion only

if, with respect to every accessible world, '(Vy)(Fy = y=x)' is true of no

object other than the object it is true of in the actual world. Indeed,

with the change, our criterion will express basically the same necessary

and sufficient condition for rigidity in all of the languages we will be

considering. Of course, different languages have different admissible

models. But consider a class of admissible models in which the existent
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objects that 'Fx' is true of with respect to each world remain fixed. On

these models '(3x)(O(Vy)(Fy y=x))' will be true according to the revised

alternative truth definition if and only if it is true according to the

truth definition for the K-languages. 2 3

The change does complicate matters. The new languages contain

two distinct kinds of open formulas, one standard and the other not.

The standard open formulas have a truth-value with respect to a world

just in case the objects assigned to their free variables exist in that

world. Open formulas of this kind are what the alternative truth defini-

tion was set up to provide. By contrast, the nonstandard or special open

formulas are permitted to have a truth-value with respect to worlds in

which an object assigned to one of their free variables does not exist.

The nonstandard open formulas thus do not display satisfaction gaps in at

least some circumstances in which the standard ones must. The open formu-

las discussed in the preceding paragraph, '(3y)(y=x)' and '(Vy)(Fy y=x)',

are nonstandard in the extreme since they never display any satisfaction

gaps. Corresponding to the distinction between standard and special open

formulas is a distinction between standard and special predicates. Thus

'FR' and '(FO• GO)' are standard predicates, while '(3y)(y=0)' and

'(vy)(Fy y=o)' are special.

The distinction between the two kinds of predicates becomes

significant only in the case of de re modal contexts. So long as the

variables associated with a predicate are not bound from outside the

scope of a modal operator, any closed formula containing the predicate

will have the same truth-value whether the predicate is taken to be

standard or special. But when a variable is bound from outside the scope
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of a modal operator, a closed formula can have one truth-value if the

predicate is taken to be standard and a contrasting truth-value if it is

taken to be special. Suppose, for example, that 'FO' and 'FO' have

identical extensions with respect to each world, where 'FO' is standard

and 'F@' is not. Then, as we have seen, '(3x)(GFx)' can be true even when

'(3x)(1 x)' is false. The standard predicates thus stand out in de re

modal contexts. Indeed, what the alternative truth definition gives us

is a family of languages whose standard predicates exhibit a logic in de

re modal contexts distinctly different from that exhibited by the predicates

of the K-languages.

The contrast in the handling of modality de re in the two families

is more significant than it may first appear to be. To see this, consider

the notion of essential predication. Essential properties are usually

deemed to be those an object has to have if it exists at all. In a footnote

in "Identity and Necessity," Kripke remarks that "an exception must be made

for existence itself; on the definition given, existence would be trivially

essential. We should regard existence as essential to an object only if

the object necessarily exists. Perhaps there are other recherche pro-

perties, involving existence, for which the definition is similarly

24
objectionable."2 (I take it that existence predicates also underlie

Kripke's opposition to the converse Barcan schema insofar as he wants to

allow 'o(Vx)(3y)(x=y)' to be true without having '(Vx)O(3y)(y=x)' be true.)

In the present context it is better to talk not about essential

properties, but about predicates being essentially true of an object.

Suppose we say that 'Fe' is essentially true of an object just in case

'aFQ' is true of it. Then a standard predicate in the languages satisfying
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the alternative truth definition will be essentially true of an object if

and only if it has to be true of the object if the object exists at all.

In other words, the standard predicates will conform to the usual way of

defining 'essential' in metaphysics. But the nonstandard predicates will

not. (Nor will K-language predicates.) In particular, the existence

predicate, '(3y)(y=0)', will be essentially true of just those objects

that necessarily exist. Perhaps the fact that the usual definition fits

the standard predicates in the new languages, and not the nonstandard

predicates, is no accident. Perhaps these languages closely mirror our

usual way of talking about essential properties. If so, this is a key

feature that makes them philosophically interesting.

There is a further, related virtue to the languages that satisfy

the alternative truth definition. Many who talk about essential properties

also want to hold that a relation can be "internal" to one relatum and not

to the other. For example, suppose '0 is the offspring of& ' is true of

a pair of objects, s and t. Then many want to hold that the relational

predicate '0 is the offspring of t' is essentially true of s, but 's is

the offspring of (' is not essentially true of t. Given the definition of

'is essentially true of' proposed in the preceding paragraph, such an

asymmetry is straightforwardly expressible in the languages satisfying the

alternative truth definition (presuming that '0 is the offspring ofQ ' is

a standard predicate). But the asymmetry is not expressible in the K-

languages except under a definition of 'is essentially true of' on which

the existence predicate will be essentially true of everything.

The languages of our second family contain an unlimited number

of nonstandard as well as standard predicates. However, the only
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nonstandard atomic predicate we will require them to contain is the iden-

tity predicate. Perhaps it is the only nonstandard atomic predicate there

is any reason for them to contain. But whether it is will not matter here.

We will permit the languages to include any number of other nonstandard

atomic predicates, so long as all of them are marked in the syntax as non-

standard. They can be marked by resorting to special symbols, as we have

done with '=', or by using qualified predicate letters, as we did with

'F' in the preceding paragraph. Unmarked atomic predicates will always

be taken to be standard. Marking the nonstandard atomic predicates in

the syntax will enable us to take advantage of the following restricted

rule of substitution:

Suppose a logically true closed formula A contains

one or more occurrences of an unmarked n-place

atomic predicate c. Then any closed formula obtained

from A by replacing all occurrences of Cr with an n-

place standard predicate is also logically true.

Since the standard and nonstandard predicates differ logically in de re

modal contexts, the languages of our second family, unlike the K-languages,

will not in general allow an unrestricted rule of substitution. But this

restricted rule will suffice for our purposes.

Let me summarize. Our second family consists of modal languages

that satisfy the modified version of the alternative truth definition

Kripke calls attention to. In these languages roA1 is assigned T

(should it be assigned a value at all) if and only if A is assigned F with

respect to no accessible world. But rCA could just as well be handled in

this way in the K-languages too. The real contrast between the two

families comes from their handling atomic predicates differently. Unlike
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the truth definition Kripke develops in detail, our other truth definition

distinguishes between two kinds of atomic predicates, standard and non-

standard. On this truth definition, an atomic open formula formed with a

standard predicate is assigned T or F with respect to a world if and only

if the objects assigned to its free variables exist in that world. As a

result, the standard open formulas of these other languages, unlike those

of the K-languages, display satisfaction gaps. That is, they display

satisfaction gaps unless the same objects exist in every world.

The nonstandard predicates of these languages contrast less

sharply with the predicates of the K-languages. Their principal and per-

haps their only nonstandard atomic predicate is the identity predicate.

This predicate can be handled in either of two ways without affecting any

of our results. On the one hand, it can be treated as a K-language predi-

cate. In this case, an open formula of the form 'y=x' is assigned T

with respect to a world w if and only if the same object is assigned to

both variables; and it is assigned F otherwise. On the other hand, it

can be treated more in keeping with the standard predicates. In this case,

an open formula of the form 'y=x' is assigned T with respect to a world w

if and only if the same object is assigned to both variables and this

object exists in w; it is assigned F with respect to w if and only if

different objects are assigned to the variables and at least one of these

objects exists in w; and it is assigned neither T nor F if and only if the

object or objects assigned to the variables do not exist in w. Either way,

as a result of the special handling of the identity predicate (and of any

other nonstandard atomic predicates), the languages contain various non-

standard open formulas--open formulas that may have a truth-value even with
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respect to worlds in which the objects assigned to their free variables

do not exist. These nonstandard open formulas do not have to be entirely

comparable to the open formulas of the K-languages. They can still display

satisfaction gaps, as 'y=x' would on the second approach to identity when

the objects assigned to 'x' and 'y' do not exist. But some nonstandard

open formulas--e.g. '(3y)(y=x)' and '(Vy)(Fy y=x)'--display no satis-

faction gaps in these languages. The predicates corresponding to these

open formulas are completely comparable to the predicates of the K-

languages.

Since our second family of languages derives in some part from

the work of Prior and Hintikka, we will call its members "the PH-languages."

Like the K-languages, they differ from one another model theoretically in

placing different restrictions on the accessibility relation and on the

existence of objects from world to world. One of the PH-languages is the

naive extension of S5 that requires the same objects to exist in all worlds.

Consequently, our two families overlap at their strong ends. But they do

not overlap at their weak ends. The weakest of the PH-languages is one

for which the accessibility relation is just reflexive and no restriction

is placed on which objects exist in different worlds (again, other than

that each object exist in at least one world). This language is not a

K-language since '(Vx)(O(Fx (3y)(Fy)) = (oFx -- (3y)(Fy)))'--i.e.,

Kripke's distribution axiom schema--is not valid in it.25  Furthermore,

the K-languages Kripke sets out in "Semantical Considerations on Modal

Logic" are not PH-languages since '(3x)(OFx) ' (3x)(Fx)' is not valid in

them. The validity of '(3x)(OFx) > 0(3x)(Fx)' and 'O(Vx)(Fx) > (Vx)(OFx)'--
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i.e. the converse Barcan formulas with standard predicates--is a salient

feature of all PH-languages. Notice, however, that the first version of

the converse Barcan formula is not valid when the predicate is the non-

existence predicate, '#(3y)(y=0)'; and the second version is not valid when

the predicate is the existence predicate, '(3y)(y=0)'. The validity of the

converse Barcan formulas with standard predicates and the invalidity of

them with such recherche predicates as existence is no small virtue of most

of the PH-languages. In this respect these languages conform with intui-

tions in a way that none of the K-languages do. This is another feature

of the PH-family that makes it philosophically interesting.

IV

We can now make our principal question precise. We want to

know whether rigidly designating definite descriptions can be read with

contrasting scope without affecting truth-value. Let 'u' be replaceable

by '1', l'8', '8', ''-', '1', and ','--where '9', to be defined in the

next section, corresponds to Kripke's weak notion of necessity. Consider

formulas of the following form:

(3x) (VYy) (Fy ' y=x) & (Vy) (Fy y=x)] (4)

[,s(3x)((Vy)(Fy S y=x)&Gx) 3 (3x)((Vy)(Fy - y=x) &SGx)]

The schema embodies the following claim: if a Russellian definite descrip-

tion is a rigid designator, then a secondary occurrence of it vis-a-vis 4

will yield the same truth-value as the corresponding primary occurrence.

We ask our principal question of each of our two families of languages

separately: are all formulas of the form of (4) valid in all languages
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of the family? Different answers give rise to different subsequent

questions. If the answer is yes, then will a weaker satisfiable ante-

cedent still secure validity across the board? If the answer is no,

then for which modal operators and for which members of the family does

validity fail? Further, how must the antecedent of (4) be strengthened

to secure validity across the board for the family?

The point of considering the two families separately will become

evident as we proceed. But a few words are needed now about the way we

put the issue. Suppose first that some formulas of the form of (4) are

not universally valid in a family. Then rigid designation would not be

the analogue of the Whitehead-Russell condition in the case of modal

languages generally since it would not be the analogue in the case of

certain PH- or K-languages. It would remain then to show that this result

is not just a consequence of some idiosyncratic feature that should dis-

qualify these particular languages from consideration. This is the point

of our subsequent questions should the answer to our principal question

be no.

Now suppose instead that all formulas of the form of (4) are

universally valid in a family. Of what significance would such a positive

result be? To answer we need to make some terminology precise. Suppose

'1' stands for an operator, modal or extensional. A definite description,

'(ix)(Fx)', will be said to have a primary occurrence vis-a-vis o in

formulas of the form

(3x)[y)(Fy - y=x) & dGx]

Correspondingly, it will be said to have a secondary occurrence vis-a-vis 5
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in formulas of the form

O(3x) [(Vy)(Fy E y=x) & Gx]

When formulas of the indicated forms occur embedded in further contexts,

'(7x)(Fx)' will have neither a primary nor a secondary occurrence vis-a-

vis 9 (though it will still have wide and narrow scope vis-a-vis -). We

are thus reserving the notions of primary and secondary occurrence vis-a-

vis - to the appropriate Russellian expansions of nonembedded formulas of

the form r .((ix)(Fx)) .26 The notions cease to be pertinent once

rC-o((?x)(Fx))1 is embedded in a further context.

Suppose now that all formulas of the form of (4) are valid

throughout a family. The significance of such a result would depend on

the family. In the case of the K-family, we could conclude that any

secondary occurrence of a rigid designator vis-a-vis a modal operator will

yield the same truth-value as the corresponding primary occurrence. But

in the case of the PH-family, a positive result for (4) would generalize

only to rigid designators occurring in standard contexts--i.e., to

occurrences as in )((Ux)(Fx)) , where V(Y) is a standard open formula.

That is, we could only conclude that a secondary occurrence of a rigid

designator vis-a-vis a modal operator in any standard context in a PH-

language will yield the same truth-value as the corresponding primary

occurrence. The question then would be whether rigidity is sufficient

to assure like truth-values for corresponding primary and secondary

occurrences vis-a-vis modal operators in nonstandard contexts. However,

since the most extreme nonstandard predicates in the PH-languages are just

like K-language predicates, this question will turn out to be answered
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when we answer our principal question for the K-family. Hence, our way of

addressing the issue will end up covering all cases of concern for non-

embedded formulas.

For either modal family, then, a positive result for (4) would

be of some significance. Nevertheless, obtaining a positive result for

(4) for a family would not be tantamount to showing that rigid designa-

tion is the analogue of the Whitehead-Russell condition for the family.

To show this, we would have to extend the generalizations discussed in the

preceding paragraph to cases in which rY((7x)(Fx))I is embedded in further

contexts. For only then could we conclude that the scope of a rigid

designator will never affect the truth-value of any formula in any language

of the family. Of course, the generalizations can be extended straight-

forwardly to cases of yY((ix)(Fx))I embedded in extensional contexts.

For materially equivalent formulas can be substituted for one another in

extensional contexts salva veritate. However, they cannot in general be

substituted for one another salva veritate in modal contexts. Hence, we

have no offhand reason to think that the generalizations of the preced-

ing paragraph can be extended to cases of r.V((ix)(Fx))' embedded in

modal contexts. Rather than resolve this matter now, I want to postpone

considering cases of A.((ix)(Fx)) embedded in modal contexts until the

end of the next section of the paper. By then the question whether rigid

designation is the analogue of the Whitehead-Russell condition will be

moot for both of the modal families under discussion.

A positive result for (4) would be of considerable interest

even if it cannot be extended to cases of rYf((1x)(Fx))' embedded in

modal contexts. Modal formulas embedded in modal contexts are scarcely

~ __ _1____11____ 1 I I
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the basis for our intuitions about rigid designation. An important

question to raise, given a positive result for (4) is whether it can

be used to motivate the notion of rigid designation. This is the point

of asking about weaker antecedents when the answer to our principal

question is yes. Indeed, this question of weaker antecedents is worth

pursuing even should all formulas of the form of (4) be universally

valid in a family for just some one modal operator. Because of this, we

will want to look at each modal operator separately.

V

The best way to attack our principal question is to examine

each combination of operator and family in turn. The detail we generate

as we proceed in this way may at the time seem cumbersome. But in the

long run it will help us to develop a number of points, both about

rigid designation in the formal languages we are considering and about

the relationship between scope and rigid designation generally.

Consider first '0' and the PH-languages. Suppose '(7x)(Fx)'

is a rigid designator. Then (5) has the same truth-value as (6) in

every PH-language: 2 7

(x) C(Vy)(Fy y=x) S Gx (5)
0(3x) [(Vy) (Fy - y=x) & Gx] (6)

(5) is true in a PH-language if and only if in the actual world there

exists an object that satisfies 'Fx' uniquely, and this object satisfies

'Gx' with respect to some accessible world in which it exists. (6) is

true in a PH-language if and only if in some accessible world there exists
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an object that satisfies both 'Fx' uniquely and 'Gx'. But '(7x)(Fx)'

is a rigid designator. Hence, in the actual world there exists an

object that satisfies 'Fx' with respect to every accessible world in

which it exists, and in no accessible world does there exist any other

object that satisfies 'Fx'. Thus, because '(?x)(Fx)' is a rigid

designator, both (5) and (6) are true in a PH-language if and only if the

object satisfying 'Fx' in the actual world satisfies 'Gx' with respect

to some accessible world in which it exists.

The reasoning here is general. When ' ' replaces 'F', all

formulas of the form of (4) are valid in every PH-language. Consequently,

in all standard contexts in PH-languages, any secondary occurrence of a

rigid designator vis-a-vis '0' yields the same truth-value as the corres-

ponding primary occurrence.

Can the antecedent of (4) be weakened, yet the schema obtained

when 'O' replaces 'F' still be valid in all PH-languages? First, suppose

'(?x)(Fx)' is not a designator. Then (5) is false regardless of the

extensions assigned to 'Ge'. But (6) is then false regardless of the

extensions assigned to 'Ge' just in case no accessible world contains

an object that satisfies 'Fx' uniquely. Thus there is a way to weaken

the antecedent of (4) and still have a schema valid in all PH-languages

when 'O' replaces W''. For let the antecedent be (7):

(3x){(Vy) (Fy y=x) & O(Vy)(Fy E y=x)] v 0(3 x)(Vy)(Fy _ y=x) (7)

However, weakening the antecedent in any other way so that it no longer en-

tails that '()x)(Fx)' is a designator will yield a schema that is not valid

in many PH-languages. In particular, weakening it to allow '(7x)(Fx)' to

single out a "possible-yet-not-actual" object will yield a schema that is

~ _ ~I _~_ I _I I I
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28
not valid in most PH-languages. As will become clear below, the schema

thus obtained is also not valid in most K-languages.

These results are of some note. Weakening our criterion for

rigid designation by prefixing 'O' to it will simply insure that, in

most of the languages we are considering, rigid designators fail to

render scope ambiguities innocuous. Those who prefer such a weaker

criterion for rigidity should be mindful of this. Similarly, weakening

the criterion in the manner of (7) will simply insure that rigid

designators fail to render ordinary truth-functional scope ambiguities

innocuous. If rigid designation is to be an extrapolation of the Whitehead-

Russell condition to modal languages, then rigid designators must at least

satisfy this condition. Accordingly, we will give no further considera-

tion below to (7).

Next suppose '(lx)(Fx)' is a designator, but not a rigid

designator. We need to consider the several different ways in which

this can happen. The last way we consider will be the sole exception to

the general pattern.

First, suppose the object satisfying 'Fx' in the actual world

fails to satisfy 'Fx' with respect to some other accessible world in

which it exists. Then (5) could be true even though (6) is false. For

suppose 'GO' is a contrary of 'F&'. Then (6) will be false since in no

accessible world will there be an object that satisfies both 'Fx' and

'Gx' Nevertheless, the object that satisfies 'Fx' in the actual world

might exist and satisfy 'Gx' in some accessible world in which it does

not satisfy 'Fx'. Thus (5) could still be true.

_ ~II_ _ I _ I _ _ ~I _ ~ I_ _ _ ~
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Next, suppose '(7x)(Fx)' is a nonrigid designator by virtue of

one of more "errant" objects satisfying 'Fx'. That is, suppose that (i)

the object satisfying 'Fx' in the actual world properly satisfies 'Fx' with

respect to every accessible world in which it exists; yet (ii) some other

object--i.e. an "errant" object--both exists and satisfies 'Fx' in some

accessible world. There are two cases to consider. On the one hand, it

may be the case that in some accessible world there is an errant object

that satisfies 'Fx' uniquely. Then (6) could be true even though (5) is

false. For suppose the object that satisfies 'Fx' in the actual world

does not satisfy 'Gx' with respect to any accessible world in which it

exists. Then (5) will be false. Nevertheless, an errant object might

satisfy 'Gx' in an accessible world in which it is the sole existing object

that satisfies 'Fx'. Thus (6) could still be true.

On the other hand, it may be the case that in every accessible

world in which an errant object satisfies 'Fx', more than one object

satisfies 'Fx'. Again there are two cases to consider. First, the

object that satisfies 'Fx' in the actual world may exist and satisfy

'Fx' in an accessible world in which an errant object does the same.

Then (5) could be true even though (6) is false. For suppose 'Gx' is

satisfied only in those accessible worlds in which there exists more than

one object satisfying 'Fx'. Then (6) will be false. Nevertheless, the

object that satisfies 'Fx' in the actual world may exist and satisfy

'Gx' in one of these worlds. Thus (5) could still be true.

Second, the object that satisfies 'Fx' in the actual world may

not exist in the accessible worlds in which multiple errant objects

satisfy 'Fx'. This final case furnishes the only exception. In it
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accessible worlds fall into three distinct groups. Some contain the ob-

ject that satisfies 'Fx' in the actual world; in these worlds, it and it

alone satisfies 'Fx'. Other worlds contain more than one object

satisfying 'Fx', but they do not contain the object that does so in the

actual world. Finally, perhaps some accessible worlds contain neither

an object satisfying 'Fx' nor the object that does so in the actual

world. Only worlds in the first group can render either (5) or (6) true

in any PH-language. From this it is easy to see that both (5) and (6)

are true in a PH-language if and only if the object that satisfies 'Fx'

in the actual world satisfies 'Gx' in some accessible world. In this

one case, then, (5) and (6) must match in truth-value in all PH-languages

even though '(7x)(Fx)' is a nonrigid designator.

In sum, weakening the antecedent of (4) in the manner of (8)

yields a schema that is still valid in all PH-languages when 'O'

replaces ',':

(3x)f(Vy) (Fy - y=x) & O.(~Vy)(Fy = y=x) v [('((3y)(y=x) &

(3y)(Fy)) (3y)(3z)(Fy & Fz & y#z)]J

Moreover, should the antecedent be further weakened, yet still entail

that '()x)(Fx)' is a designator, then the resulting schema would be

invalid in some PH-languages. Let us call a nonrigid designator

'(?x)(Fx)' a semi-rigid designator just in case (8) is true. A

semi-rigid designator is a nonrigid designator that picks out the same

object with respect to every accessible world in which it exists, but

fails to pick out a single object with respect to other accessible

worlds. Perhaps not all semi-rigid designators are curiosities. Consider

'the individual that grew from r', where 'r' names the zygote from which
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Socrates developed. Some claim that it is essential to Socrates that

he grew from the zygote he did. One might also plausibly claim that

had this zygote produced identical twins, Socrates would not have been

one of them. If both claims are correct, then 'the individual that grew

from r' is a semi-rigid designator.

Earlier, we showed that if '(7x)(Fx)' is a rigid designator,

then (5) and (6) must match in truth-value in every PH-language. We

have now extended the result to semi-rigid designators, and we have

shown that it holds for designators only of these two kinds. We have thus

answered our questions for '"' and the PH-languages. Every secondary

occurrence of a designator vis-a-vis 'O' is guaranteed to yield the same

truth-value as the corresponding primary occurrence in standard contexts

in all PH-languages if and only if the designator is either rigid or

semi-rigid.

This pairing of rigid and semi-rigid designators will continue

to hold throughout our results. Furthermore, the natural ways of motivat-

ing the notion of rigidity do not isolate it from semi-rigidity.29 From

a theoretical standpoint, then, semi-rigid designation is not entirely a

curiosity.

Now consider '"' and the K-languages. The possible world

interpretation of our criterion for rigid designation is the same in

both families of languages. Nevertheless, the rigidity of '(ix)(Fx)' is

not sufficient to assure that (5) and (6) agree in truth-value in every

K-language. Unlike the PH-languages, the K-languages generally permit an

open formula like 'Gx' to be satisfied with respect to a world even by

objects that do not exist in that world. As a result, even when '(7x)(Fx)'
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is a rigid designator, (5) could be true in some K-languages while (6) is

false. For suppose that the object rigidly designated by '(Ix)(Fx)' does

not satisfy 'Gx' with respect to any accessible world in which it exists.

Then (6) will be false since in no accessible world will there exist an

object that satisfies both 'Fx' and 'Gx'. But the designated object

may still satisfy 'Gx' with respect to some accessible world in which it

does not exist. Thus (5) could still be true. Accordingly, the schema

obtained from (4) when 'O' replaces ' ' is not valid in some K-languages.

The counter-model to the schema exploits the fact that the

converse Barcan formulas are invalid in some K-languages. Any counter-

model to '(3x)(OGx)> (3x)(Gx)' furnishes a counter-model to the schema

so long as one of the relevant objects that exists and satisfies 'OGx'

in the actual world can be rigidly designated. Furthermore, if '(Ox)(Fx)'

is rigid, (5) and (6) can differ in truth-value in a K-language only if

'(3x)(OGx)' can be true without '0(3x)Gx' being true. Therefore, the

schema obtained from (4) when 'O' replaces 'A' is valid in just those

K-languages in which the converse Barcan formulas are valid. Kripke

has shown that these formulas are invalid unless the K-language requires

each object to exist in every world accessible from any world in which it

exists. 30 Our counter-model thus equally exploits the fact that

'()x)(Fx)' can designate a "contingently existing" object--i.e., an

object that fails to exist in some accessible world. This tells us how

to strengthen the antecedent of (4) to obtain a schema that is valid in

all K-languages. The object rigidly designated by '(7x) (Fx)' must be

required to exist in all accessible worlds. In other words, the ante-

cedent must entail that '(7x)(Fx)' is a strongly rigid designator.
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This completes the answers to our questions in the case of '0'

and the K-languages. Every secondary occurrence of a designator vis-a-vis

'O' is guaranteed to yield the same truth-value as the corresponding

primary occurrence if and only if the designator is strongly rigid. Simple

rigidity does not suffice unless the converse Barcan formulas are valid.

As remarked earlier, the most extreme of the nonstandard

predicates of the PH-languages are just like K-language predicates.

The other nonstandard predicates fall between these and the standard

predicates--i.e., they display some satisfaction gaps, but not everywhere

that standard predicates would. A distinctive feature of all of the

nonstandard predicates is that the converse Barcan formulas formed with

them are invalid in those PH-languages that permit contingently existing

objects. In particular, '0(3x),(3y)(y=x)' is invariably logically false,

while '(3x)O~(3y)(y=x)' is true so long as there is at least one con-

tingently existing object. Accordingly, the preceding results for the

K-languages also give us results for the nonstandard contexts in the

PH-languages. The rigidity of a designator is not enough to make truth-

value unaffected by the scope of 'O' in nonstandard contexts in many PH-

languages. The designator must be strongly rigid. In other words, every

secondary occurrence of a designator vis-a-vis '0' is guaranteed to yield

the same truth-value as the corresponding primary occurrence in all con-

texts in all PH-languages if and only if the designator is strongly rigid.

Our earlier positive result for '0' and the PH-languages holds for rigid

and semi-rigid designators only in standard contexts. When this restric-

tion is dropped, the result no longer holds.
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The striking conclusion about '-' is the contrast between the

two families of languages. (9) is valid in all PH-languages, but not in

all K-languages:

(3x) [(Vy) (Fy y=x) & o(Vy)(Fy y=x)] (9)
o(3x) ((Yy) (Fy y=x) & Gx) 3 (3x)((Vy)(Fy y=x) S&Gx)]

The K-languages in which it is not valid are among the philosophically

more interesting in that they sanction rigid designation of contingent

objects. To obtain a schema valid in all K-languages, the antecedent of

(9) must be strengthened, as in (1), to entail that '()x)(Fx)' is a

strongly rigid designator:

{(3x) [(V'y)(Fy y=x) & Oi(Vy)(Fy S y=x)] & [(3x)(Fx)1 = (10)

[O(3x)((Vy)(Fy 3 y=x) & Gx) = (3x)((Vy)(Fy 2 y=x) & Gx)]

Next consider 't' and the PH-languages. Suppose '()x)(Fx)' is

a rigid designator. Even so, (11) and (12) need not match in truth-

value in some PH-languages:

(3x) C(Vy) (Fy - y=x) & DGx] (11)

n(3x) [(Yy) (Fy _ y=x) & Gx] (12)

For suppose the rigidly designated object fails to exist in some

accessible world. Since '()x)(Fx)' is rigid, no object existing in that

world will satisfy 'Fx'. Thus (12) will be false. Nevertheless, the

object that satisfies 'Fx' in the actual world may satisfy 'Gx' in every

accessible world in which it exists. Thus (11) could still be true.

For that matter, (11) could still be true in the K-languages. For the

object that exists and satisfies 'Fx' in the actual world may satisfy

'Gx' with respect to all accessible worlds, including those in which it

does not exist. But (12) will be false in K-languages when the rigidly
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designated object does not exist in all accessible worlds. Therefore,

for neither family of languages is rigidity sufficient to guarantee that

differences in the scope of a designator with respect to 'u' do not

affect truth-value. Both in some PH-languages and in some K-languages,

the schema obtained from (4) when 'a' replaces ',' is not valid.

The counter-models to the schema in this case require '(rx)(Fx)'

to designate a "contingently existing" object. Indeed, when '(7x)(Fx)'

is rigid, (11) and (12) can differ in truth-value in any of the languages

we are considering if and only if 'O" ( Fx) ' is true. Presumably, any

of the languages that permits contingently existing objects also permits

rigid designation of some of them. If so, the schema is valid in just

those PH- and K-languages that bar contingent objects. But in these

languages rigid designation is tantamount to strongly rigid designation.

This shows that to obtain an always valid schema when 'O' replaces 'A',

the antecedent of (4) must be strengthened to entail that '(ix)(Fx)' is

a strongly rigid designator. If '(7x)(Fx)' is strongly rigid, then

both (11) and (12) are true in any PH- or K-language just in case the

object that satisfies 'Fx' in the actual world satisfies 'Gx' with respect

to every accessible world whatever. Thus, in all of the languages we

are considering, every secondary occurrence of a designator vis-a-vis 'O'

is guaranteed to yield the same truth-value as the corresponding primary

occurrence if and only if the designator is strongly rigid.31

In the case of 'o', then, the results are the same for both

families of modal languages. (13) is not valid in those languages in

each family that sanction rigid designation of contingent objects; but
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(14) is valid in every one of the languages:

(3x) (Vy)(Fy = y=x) & O(Vy) (Fy y=x)]

13(3x)((Yy)(Fy- y=x) & Gx) - (3x)((Vy)(Fy y=x) &uGx)]

{(3x) [(Vy) (Fy E y=x) & O(Vy)(Fy Y y=x)] & O(3x) (Fx)j z (14)

[O(3x)((Vy) (Fy y=x) & Gx) (3x)((Vy) (Fy e y=x) & OGx)]

This conclusion is so easily established that it is unclear why anyone

might think that rigidity alone would suffice. The only hope I see for

holding that rigid designators are neutral with respect to the scope of

'a' when they designate contingent objects is to adopt a free-logic in

which definite descriptions are not Russellian. But Kripke is clearly

not talking about such logics in the footnote quoted earlier. Rather,

he must be excepting 'a' from his claims.

Our conclusions about '0' must be circumscribed to prevent

confusion. As interpreted in the languages we are considering, '0'

expresses necessity de re in (11) and de dicto in (12). So far we have

shown that, even if '()x)(Fx)' is a rigid designator, (11) and (12) need

not be materially equivalent. However, this is not to say that no purely

de dicto modal formula is guaranteed to have the same truth-value as

(11) when '(7x)(Fx)' is rigid. To the contrary, in all PH-languages--

though, as we shall see, not in all K-languages--(15) is such a formula:

o[(3!x)(Fx) = (3x)((Vy)(Fy - y=x) & Gx)] (15)

For suppose '(7x)(Fx)' rigidly designates the object s. With respect to

any accessible world in which s does not exist, the bracketed portion of

(15) is true by virtue of the falsity of its antecedent. Therefore, when

'(7x)(Fx)' is rigid, (15), like (ll), is true in a PH-language if and

only if s satisfies 'Gx' with respect to every accessible world in which

it exists.
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Furthermore, if '(7x)(Fx)' is a nonrigid designator, then un-

less it is semi-rigid, (11) and (15) need not agree in truth-value in some

PH-languages. Case-by-case reasoning like that which led us to identify

semi-rigidity during the discussion of (5) and (6) will establish this

result. (Simply reversing truth and falsity in the models used to con-

trast (5) and (6) will yield models on which (11) and (15) contrast in

truth-value.) But we do not have to proceed exhaustively through all of

the types of nonrigid designators to see why the result holds. The upshot

of the case-by-case reasoning is that, if '(Ix)(Fx)' is a designator, it

must meet two conditions before (11) and (15)--or (5) and (6)--are

guaranteed to agree in truth-value in all PH-languages. First, the

designated object must satisfy 'Fx' uniquely with respect to every

accessible world in which it exists. Second, there must be no object

that satisfies 'Fx' uniquely with respect to any other accessible world.

Rigid and semi-rigid designators are the only ones that meet both con-

ditions. They differ merely in the way they meet the second condition.

Rigid designators meet it because no existing object satisfies 'Fx' with

respect to accessible worlds in which the designated object does not

exist; semi-rigid designators meet it because no one existing object

satisfies 'Fx' with respect to these worlds. Nonrigid designators of

other types fail to meet one of the two conditions and thereby open

certain PH-languages to models on which (11) and (15) contrast in truth-

value.

(15) is reminiscent of the weak notion of necessity that Kripke

uses in "Identity and Necessity" and "Naming and Necessity." The weak
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notion is illustrated by parsing (16) as (17):

Necessarily, Hesperus is self-identical. (16)

'Hesperus is self-identical, if it exists' is a (17)

necessary truth.

The antecedent in (17), like that in (15), renders the conditional

trivially true should the designating expression in the consequent fail

to denote. Let us use 'a' to represent such a weak necessity operator.

rSA1 is to be read along the lines of 'it is necessary that A is true

unless a designating expression in A lacks reference'. The general

approach to characterizing '61' model-theoretically is obvious: rsA' is

assigned T just in case A is assigned F with respect to no accessible

world in which there exist objects denoted'by the designating expressions

in A. The difficulty lies in picking out the designating expressions in

A after, for example, definite descriptions have been expanded in the

manner of Russell. To a first approximation, '()x)(Fx)' is a designating

expression in A if and only if there is an open formula *( ) such that

rA - 0(()x)(Fx))7 is valid when '(7x)(Fx)' has maximal scope. Several

refinements are needed, but so far as I can see, they can be introduced

only rather clumsily. 32  Fortunately, the approximate characterization

will suffice for our present purposes.

Two minor consequences of this way of characterizing the desig-

nating expressions in a formula should be noted. First, free variables

are not designating expressions. Second, a definite description can be

a designating expression in a constituent of a formula without being a

designating expression in the overall formula. For example, ' (x)(Fx)'



131

is not a designating expression in '(3!x) (Fx) (3x) ((Vy) (Fy _ y=x) & Gx)'

though it clearly is one in the consequent of this formula.

With '9' thus characterized, (18) and (19) are respectively

equivalent to (11) and (15) in every language we are considering:

(3x) (Vy)(Fy - y=x) & Gx] (18)

3(3x4x)(Vy) (Fy . y=x) & Gx] (19)

Moreover, 'GO' can be replaced by any predicate, standard or nonstandard,

that contains no designating expressions, and the equivalences between

(11) and (18) and (15) and (19) will continue to hold in all PH- and K-

languages.

Given such equivalences, our earlier results for (11) and (15)

imply that (18) and (19) must match in truth-value in every PH-language

if '(7x)(Fx)' is a rigid or semi-rigid designator. Specifically, when

'(?x)(Fx)' is rigid or semi-rigid, both (18) and (19) are true in any

PH-language just in case the designated object satisfies 'Gx' with

respect to every accessible world in which it exists. In the PH-languages,

therefore, (18) and (19) are related to one another in the same way as

(5) and (6). Furthermore, since 'GO' is in the scope of '9' in both

(18) and (19), this result holds for any standard predicate replacing

'GO'. Thus with regard to scope, '9' is just like ' ' in the PH-languages.

(20), the schema obtained from (4) when '9' replaces 'h', is valid in all

of these languages:

(3x) (Vy)(Fy y=x) & O(Vy)(Fy y=x)] = (20)

{1 (3 x)((Vy)(Fy = y=x) & Gx) = (3x)((Vy)(Fy " y=x) & BGx)

More generally, every secondary occurrence of a designator vis-a-vis '9'

is guaranteed to yield the same truth-value as the corresponding primary
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occurrence in standard contexts in all PH-languages if and only if the

designator is either rigid or' semi-rigid.

'l' also behaves like 'O with regard to scope in the K-languages.

Even when '(Qx)(Fx)' is a rigid designator, (11) and (15) need not agree

in truth-value in some K-languages. For suppose the rigidly designated

object satisfies 'Gx' with respect to every accessible world in which it

exists. Then (15) will be true. Nevertheless, the designated object might

fail to satisfy 'Gx' with respect to an accessible world in which it does

not exist. Thus in some K-languages (11) could still be false. But (11)

and (15) are respectively model-theoretically equivalent to (18) and (19)

in every K-language. Hence, even when '(7x)(Fx)' is a rigid designator,

(18) and (19) need not match in truth-value in some K-languages.

The contrast between the K-languages and the PH-languages is

accordingly the same for 'a' as for 'O'. (20) is valid in all PH-languages,

but it is not valid in those K-languages that permit rigid designation of

contingent objects. As before, to get a schema that is valid in all K-

languages, the antecedent of (20) must be strengthened, as in (21), to

entail that '()x)(Fx)' is a strongly rigid designator:

{(3x) (Vy) (Fy y-x) & o(Vy) (Fy y=x)] & O(3x) (Fx) (21)

B(3x)((Vy)(Fy y=x) & Gx) - (3x)((Vy)(Fy y=x) & Gx)]

More generally, every secondary occurrence of a designator vis-a-vis '8'

is guaranteed to yield the same truth-value in all K-languages as the

corresponding primary occurrence if and only if the designator is

strongly rigid. 3 3

(15) was first introduced as an example of a purely de dicto

modal formula that is materially equivalent in every PH-language to
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(ll), a purely de re modal formula, when '(7x)(Fx)' is a rigid designator.

But (15) is not an example of such a formula in the case of the K-languages.

In fact, if '(ix)(Fx)' is a designator, then unless it is strongly rigid,

no purely de dicto formula of the form roAl will be materially equivalent

to (11) in every K-language. 34  For consider the K-languages in which

'()x)(Fx)' rigidly designates a contingent object, s. In these languages

the truth of (11) will depend in part on whether s satisfies 'Gx' with

respect to worlds in which it does not exist. Hence, if rUA were

materially equivalent to (11) in all of these languages, its truth

would also have to depend on whether s satisfies tGx' with respect to

such worlds. However, there is no way for the truth of 1rA) to depend

on this. Since rDA is by supposition a purely de dicto modal formula,

A contains no free variables. And, with respect to any particular world,

the quantified variables in A range only over objects that exist in that

world. Hence, no variable in A will range over s with respect to a world

in which it does not exist. Consequently, with respect to every such

world, the truth of A will be independent of whether s satisfies 'Gx'.

But then the truth conditions for rIA' will differ from those for (11)

in the K-languages in which '(Ix)(Fx)' rigidly designates s. 3 5

Accordingly, no purely de dicto modal formula of the form QbA1

will be materially equivalent to (11) in all K-languages when "(ix)(Fx)'

is a rigid, but not a strongly rigid designator. Of course, if it is

strongly rigid, then (12) is a formula of the desired form that is

equivalent to (11) in all K-languages. Again, however, the important

result is the contrast between the two families of modal languages. In

standard contexts rigid designators bridge the truth-value gap between
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de re and de dicto (strong) necessity in all PH-languages; but they do

not do so in all K-languages.

The relationship between (11) and (15) provides some further

results. (11) is model-theoretically equivalent to (22) in all of the

languages we are considering:

(3x) [(Vy)(Fy - y=x) & ~O~ Gx (22)

(15) is likewise equivalent to (23), which in turn simplifies to (24):

"o{•, (3x)(Vy)(Fy - y=x) v (3x)[(Vy)(Fy E y=x) & Gx]3 (23)

SG(3x)[ (Vy)(Fy = y=x) & -Gx] (24)

With no loss of generality, 'H' can be substituted for 'MG' in (22) and

(24) to get (25) and (26):

(3x)I(Vy) (Fy = y=x) & ',9Hx] (25)

0"(3x)[(Vy)(Fy = y=x) & Hx] (26)

Therefore, (25) and (26) must be related in the same way in the various

languages as (11) and (15). That is, if '(7x)(Fx)' is a designator, then

(25) and (26) must match in truth-value in all PH-languages if and only

if '(?x)(Fx)' is rigid or semi-rigid. By contrast, they must match in

truth-value in all K-languages if and only if it is strongly rigid.

Therefore, (27)--the schema obtained from (4) when the impossibility

operator, '~O', replaces 'A'--is valid in all PH-languages, but not in

all K-languages:

(3x) [(Vy)(Fy = y=x) & 3(Vy) (Fy y=x)] (27)
r ,, (3x)((Vy) (Fy - y=x) & Gx) (3x)() y)(Fy y=x) %&FGx)1

To get a schema that is valid in all K-languages, the antecedent of (27)

must be strengthened to entail that '()x)(Fx)' is strongly rigid.
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The contrast between the PH- and the K-languages is thus the

same for '~"' as for '0'. Every secondary occurrence of a designator

vis-a-vis ',*' is guaranteed to yield the same truth-value as the corres-

ponding primary occurrence in standard contexts in all PH-languages if

and only if the designator is either rigid or semi-rigid. But to guarantee

matching truth-values in all K-languages, the designator must be strongly

rigid.

It is instructive to make the same move with (12) as we made

with (11) and (15). Just as (15) is model-theoretically equivalent to

(24) in all of the languages we are considering, (12) is equivalent to

(28):

0~,(3x) [(Vy)(Fy - y=x) & Gx] (28)

(28) should not be confused with (24), for the second occurrence of ','

has wide scope in (28) and narrow scope in (24). Since (15) is also

equivalent to (19), the contrast between (28) and (24) parallels that

between (12) and (19). The contrast between (28) and (24) thus shows

that, in the languages we are considering, the difference between the

de dicto ' ' and the de dicto '8' is akin to the difference between

outer and inner negation.

That '-9' behaves in the same way with regard to scope as 'O'

should not be surprising. Interchanging truth and falsity in our arguments

about 'O' will trivially yield parallel arguments about ' ~'. This point

holds equally for '~0' and 'oe'. That is, in the languages we are con-

sidering, the strong and weak contingency operators behave respectively

in the same way with regard to scope as the strong and weak necessity
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operators. Thus, neither in all PH- nor in all K-languages is (29)

valid:

(3x) •(y)(Fy y=x) & Q(Vy) (Fy yx)]

~3o(3x)((Vy)(Fy - y=x) & Gx) E (3x)((Vy)(Fy E y=x) &DGx (29)

To get a schema that is valid in all of the languages in either family,

the antecedent of (29) must be strengthened to entail that '()x)(Fx)' is

a strongly rigid designator. Hence, in the languages we are considering,

every secondary occurrence of a designator vis-a-vis '~O' is guaranteed

to yield the same truth-value as the corresponding primary occurrence

if and only if the designator is strongly rigid.

In the case of ',B', we get the usual contrast between the two

families of languages. (30) is valid in all PH-languages, but not in all

K- Ianguages :

(3x) (Vy)(Fy E y-x) & (V) (Fy ) y=x) ]
(30)

~S(3x)((Vy) (Fy y=x) & Gx) (3 x)((Vy)(Fy y=x) &*SGx)]

To obtain a schema that is valid in all K-languages, the antecedent of

(30) must be strengthened to entail that '()x)(Fx)' is a strongly rigid

designator. More generally, every secondary occurrence of a designator

vis-a-vis '.9' is guaranteed to yield the same truth-value as the corres-

ponding primary occurrence in standard contexts in all PH-languages if

and only if the designator is rigid or semi-rigid. But the designator

must be strongly rigid to guarantee matching truth-values in all K-

languages.

The results for '9)', 'A'0', and '-iB' thus add little to our

earlier findings. However, the fact that '•' and 'uO* ' do not have the

same scope characteristics in the PH-languages does call attention to
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something we have so far ignored. If '(7x)(Fx)' is a designator, then

(31) and (32) must have the same truth-value:

(3x) [(y) (Fy I y=x) & ~Gx] (31)

(3x) [(Vy)(Fy = y=x) & Gx] (32)

But when either 'O' or 'O' is prefixed to both (31) and (32), '(7x)(Fx)'

must be a strongly rigid designator to assure that the resulting two

formulas match in truth-value. Thus, for example, (33) will be trivially

false while (34) will be true in all those PH- and K-languages in which

'(7x)(Fx)' is a rigid, but not strongly rigid designator:

O (3x) (Vy) (Fy = y=x) & vFx (33)

y(3xx) (y)(Fy w y=x) & Fx] (34)

Similarly, if 'Fx' is a logical contrary of 'Fx', then (35) will be false

and (36) will be trivially true in these languages:

E (3x) [(y)(Fy -y=x) & -"Fx (35)

0o(3x) [(Vy) (Fy -- y=x) & Fx (36)

Of course, if '()x)(Fx)' is a strongly rigid designator, (33) and (34)

will both be false, and (35) and (36) will both be true in every language

we are considering.

'W' is not the only operator that has different scope character-

istics when it occurs embedded in modal contexts. Earlier we showed that

(5) and (6)--i.e., '(3x)[(Vy)(Fy - y=x) &OGxJ' and '*(3x)[(Vy)(Fy . y-x)

& Gx '--must match in truth-value in all PH-languages when '(lx)(Fx)' is

a rigid designator. But (37) and (38) need not match in truth-value in

all PH-languages when '()x)(Fx)' is rigid:

S(3x) [(Vy)(Fy -_ y=x) &#GxJ (37)

D o (3x) [(Vy)(Fy - y-x) & Gx] (38)
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For example, consider PH-languages in which the actual world is acces-

sible from all other worlds. Suppose the object designated by '(7x)(Fx)'

satisfies 'Gx' only with respect to the actual world. Then (38) would

be true; but (37) would be false unless the designated object exists

in all accessible worlds. In other words, (37) and (38) need not

match in truth-value in the PH-languages in question unless '(Ix)(Fx)'

is a strongly rigid designator. However, if it is strongly rigid, then

(37) and (38) will match in truth-value in all PH-languages, for then

'(3x) [(Vy) (Fy 4 y=x) &'Gx]' and 'O(3x)(Vy) (Fy - y=x) & Gx]' will match

in truth-value with respect to every accessible world.36

The contrast between (37) and (38) when '()x)(Fx)' is rigid,

but not strongly rigid, resolves a matter we left open at the end of the

preceding section of the paper. The positive results we have obtained

for the scope of rigid designators vis-a-vis modal operators in the PH-

languages are limited. They do not generalize to the case of modal

formulas embedded in modal contexts. They do not genera'lize any more

than Whitehead's and Russell's positive results for the scope of designa-

tors vis-a-vis truth-functional operators generalize to the case of

truth-functional formulas embedded in modal contexts. Of course, such

positive results do generalize to the case of formulas embedded in

extensional contexts. But this generalization requires only that

'(3x)[(Vy)(Fy . y=x) & iGx]' and 'o(3x)[(Vy)(Fy - y=x) & GxJ' always

be assigned matching values with respect to the actual world.3 7 By

contrast, the generalization to embeddings in modal contexts requires

that '(3x) (Vy)(Fy - y=x) & )Gx3' and 't(3x)[l(dy)(Fy 3 y=x) & Gx3'

always be assigned matching values with respect to every accessible
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world. In the PH-languages, as well as in the K-languages, this last

requirement is met if and only if '(ix)(Fx)' is a strongly rigid desig-

nator.

This conclusion can be stated formally. Let 'o' stand for an

operator, modal or extensional. Then all formulas of the form of (39)

are valid both in all PH-languages and in all K-languages:

(x) [f(Vy)(Fy S y=x) & DOC(Vy) (Fy y=x)j & O(3x) (Fx) (39)
1O3 (3x)[(Vy) (Fy S y-x) & Gx] S (3x)(YVy)(Fy = y=x) & -Gx] 9

However, if the antecedent of (39) is weakened so that it no longer en-

tails that '(ix)(Fx)' is a strongly rigid designator, then some formulas

of the resulting form will not be valid in some PH-languages and in some

K-languages.

What condition, then must a definite description satisfy to

assure that its scope never affects the truth-value of any formula in

any language in one of our modal families? The answer is the same for

both of our families: the definite description must be a strongly rigid

designator. Earlier one might have thought that strong rigidity is the

answer in the case of standard contexts in the PH-languages only because

of our insistence on interpreting '0' strongly. But the contrast

between (33) and (34), which do not contain 'O', shows otherwise. The

requirement of strong rigidity comes from deeper considerations. Our

crucial examples have all turned on the same model-theoretical feature

of the PH- and K-languages, viz., that with respect to any world, bound

variables range only over the objects existing in that world. If one

wants to weaken the requirement of strong rigidity, this feature is the

appropriate one to abandon.
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VI

The principal question we have been addressing is whether all

formulas of the form of (4) are valid in either all PH- or all K-

languages:

(3x) [(Vy) (Fy S y=x) & O(Vy) (Fy y=x) (4)
[[j(3x)((Vy)(Fy y=x) & Gx) (3x)((Vy)(Fy y=x) &SGx)]

The answer for both families of languages is no. We found that all such

formulas are valid in a PH- or K-language just in case (40) is valid in

that language:

But (40) is not valid in PH- and K-languages that permit rigid designa-

tion (in the sense of (2)) of objects whose existence is contingent.

The validity of (40) is required for the validity of (4) because

of the way the PH- and K-languages treat variables occurring in contexts

governed by '0'. For suppose . rigidly designates a contingent object in

a PH- or K-language in which (40) is not valid. Then in this language

an open formula Y(C) can be necessarily true of the object . designates

without the corresponding closed formula Y(L) being a necessary truth.

This can happen because the PH- and K-languages treat variables that are

bound from within the scope of '0' differently from those that are not.

In particular, in the PH- and K-languages that countenance contingent

objects, 'C3x)(OGx)' can be true without '0(3x)(Gx)' being true. Of

course, this treatment of variables does not lack motive. It is the basis

for claiming that the PH- and K-languages need only one modal operator to

capture both de re and de dicto necessity.
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The requirement that (40) be valid provides the answer to a

follow-up question we posed--viz., how must the antecedent of (4) be

strengthened to transform the schema into one that is valid for all modal

operators in all PH- or all K-languages? The answer for both families of

languages is that the antecedent must entail that '(7x)(Fx)' is a strongly

rigid designator.

Our principal question was put forward as a step toward answer-

ing another question: with regard to scope distinctions, are rigidly

designating Russellian definite descriptions the analogue in modal

languages of designating Russellian definite descriptions in truth-

functional languages? Unless our definition of rigid designation is

radically in error, again the answer is no. In the case of PH-like or

K-like modal extensions of standard quantificational languages, the

analogue of Whitehead's and Russell's "scope equivalency" condition is

not that the definite description be a rigid designator, but that it be

a strongly rigid designator. This result is worth stating precisely.

Suppose U. is a definite description in a PH- or K-language. Let A be

any sentence in which a occurs with its scope unmarked; and let B and B'

be any two sentences obtained from A via Russell ian expansions of a. Then

B and B" are guaranteed to be materially equivalent just in case 4 is a

strongly rigid designator.

Although the general result is the same for both families of

languages, the results in the case of individual modal operators are

different. This is not surprising. The two families construe occurrences

of modal operators outside of the scope of quantifiers in basically the

same way; but they construe occurrences inside quantifiers differently.



142

To appreciate the difference, consider a PH- and a K-language with the same

vocabulary, both of which countenance contingent objects. Let them be

sufficiently comparable to one another that both can be interpreted on all

the same models, with like extensions assigned to their atomic predicates

with respect to every world. Then, on individual models, some formulas

like '(3x)(UGx)'--and hence also like '(3x)(SGx)'--will be true in the

PH-language, yet false in the K-language; and some formulas like '(3x)(OGx)'

will be true in the K-language, yet false in the PH-language. However, on

each model the truth-value of any formula like ',"(3x)(Gx)' will be the same

in both languages. Moreover, on each model the same definite descriptions

will be rigid designators in both languages. Therefore, the relationship

between rigid designators and the scope of modal operators must not be

the same in the two languages.

In the K-family, designators are "scope neutral" in all exten-

sional contexts, and strongly rigid designators are "scope neutral" in all

contexts, But as a class, rigid designators--i.e., rigid Russellian defi-

nite descriptions--exhibit no distinctive scope-related characteristics. A

secondary occurrence of a designator vis-a-vis any of the modal operators we

are considering need not yield the same truth-value as the corresponding

primary occurrence in all K-languages unless the designator is strongly

rigid. Specifically, (4) is invalid regardless of the modal operator re-

placing 'L' in just those K-languages in which the converse Barcan formulas

are invalid. Accordingly, the failure of rigid designators to exhibit distinc-

tive scope characteristics across the family of K-languages can be viewed as

a consequence of the converse Barcan formulas being invalid in some of these

languages. But the model theory for the family provides another, perhaps
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more instructive way of viewing it. Rigidly designating definite descrip-

tions have an important model-theoretical characteristic in all the

languages we are considering: only with respect to those worlds in which

an object exists does it fulfill a definite description that rigidly

designates it. However, whether an object satisfies 'jLGx' in the K-

languages may depend on all accessible worlds, including those in which

it does not exist. Consequently, in the K-languages a rigid designator

may fail to pick out the designated object with respect to some of the

worlds it must in order to block contrasts in truth-value associated with

scope ambiguities. Metaphorically speaking, the reference of a rigid

designator may not extend widely enough in the K-languages.

The model-theoretical situation is different in the PH-family.

Whether an object satisfies 'iGx', where 'Gx' is standard, does not depend

on worlds in which it fails to exist. Instead, it depends on just those

worlds with respect to which the object fulfills any definite description

that rigidly designates it. A rigidly designating definite description is

thus an apt way of referring to an object in standard contexts in the PH-

languages. Of course, the more privileged status of rigid designators in

the family of PH-languages can also be viewed as a consequence of the con-

verse Barcan formulas being valid in all of these languages. But regardless

of how the matter is viewed, (4) is valid in all PH-languages for many modal

operators. Among the modal operators we are considering, the only excep-

tions are 'U' and '~'. With these exceptions, every secondary occurrence

of a rigid designator vis-a-vis the modal operators we are considering is

guaranteed to yield the same truth-value as the corresponding primary

occurrence in standard contexts in all PH-languages.
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Thus, as a class, rigid designators do exhibit some special

scope-related characteristics in the PH-family. But these characteristics

are nonetheless not distinctive since in this family semi-rigid designators

exhibit the very same characteristics. Therefore, their scope characteris-

tics cannot be used to differentiate rigid designators even in the case

of the PH-languages.

Among the claims Kripke makes in the footnote we quoted at the

beginning of the paper are: (i) ambiguities in the scope of a definite

description have no effect on truth-value in modal contexts if the

definite description is a rigid designator; (ii) roughly, the condition

that a definite description must satisfy for it to be thus scope neutral

is that it be a rigid designator; and (iii) when definite descriptions

are treated in the manner of Russell, (i) and (ii) often follow from the

other postulates of quantified modal logic. One difficulty in assessing

these claims is that it is not clear which modal quantificational languages

Kripke had in mind. All three claims are true of those strong languages

that form the intersection of the PH- and K-families. But these languages

are not of much philosophic interest, since their domains of discourse are

restricted to objects whose existence is necessary. Moreover, the claims,

though true, are somewhat misleading in the case of these languages. The

distinction between rigid and strongly rigid designation is too important

to be glossed over. Yet the claims are true of rigid designators in

these extreme languages just because rigidity in them is tantamount to

strong rigidity. Hence, if these are the languages Kripke had in mind,

it would have been more appropriate for him to phrase his claims to be

about strongly rigid designators.
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Kripke's claims are of more note if they are about rigid

designators in languages in which rigidity and strong rigidity diverge.

But which languages of this sort might he have had in mind? Even with

qualifications his claims are not in the least true of rigid designators

in any K-language of this sort. In such K-languages ambiguities in the

scope of a rigid designator can affect truth-value regardless of which of

the customary modal operators forms the modal context. In particular,

then, the claims are in no way true of the minimal K-language that Kripke

presents in detail in "Semantical Considerations on Modal Logic." To be

true of this language, the claims would have to single out not rigid,

but strongly rigid designators.

Strictly speaking, the claims are also not true of rigid

designators in any PH-language in which rigidity and strong rigidity

diverge. Again, they would have to be modified to single out strongly

rigid designators. Nevertheless, the claims are in a sense more true for

these PH-languages than they are for the corresponding K-languages. For

they can be made to hold for rigid designators in these PH-languages by

adding four qualifications. First, scope ambiguities occurring embedded

within broader modal contexts must be excepted in (i) and (ii). Second,

the claims must be restricted to definite descriptions occurring in

contexts formed with standard predicates. Third, '0' and '-0' must be

excepted. Finally, the 'roughly' in (ii) must allow for the fact that

semi-rigid designators have the same scope-related characteristics as

rigid designators. With all of these qualifications, (i), (ii), and (iii)

become true in the case of the PH-languages in which rigidity and strong

rigidity diverge.
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Perhaps, then, these are the languages Kripke had in mind. How-

ever, if they are, he again seems open to criticism. For the requisite

qualifications are far too significant to have been left unstated. Hence,

as far as I can see, unless Kripke had entirely different formal languages

in mind, his claims about scope and rigid designators are at best mislead-

ing. But notice that once (i), (ii), and (iii) are revised to become

claims about strongly rigid designators, they become true for all of the

formal languages we have considered. Revising the claims in this way is

clearly the most reasonable move to make.

VII

At the very beginning of this chapter I called attention to a

number of conflicting claims regarding scope distinctions and rigid

designation. How do our results for the PH- and K-languages bear on

these comparatively broad claims? One advantage of focusing on precise

questions about specific formal languages, as we have been doing, is that

answers are often forthcoming. Now we must face a disadvantage. Drawing

conclusions of general interest from our results will require some

potentially controversial intervening assumptions. For example, we will

have to assume that our definition of rigid designation is correct. I

see no problem here, but others--e.g., Peacocke and Dummett--may. We

will also have to assume that name-free regimented languages employing

Russell's treatment of definite descriptions are not mere contrivances,

of no general significance. Since our results are for definite de-

scriptions that in fact denote, perhaps Russell's treatment will not be
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so controversial here as it sometimes has been made out to be in dis-

cussions of vacuous reference. Nevertheless, because many of our results

have turned on the existential implications of Russell's treatment, the

possibility of alternative treatments of definite descriptions is clearly

germane.

Finally, we will have to assume that at least one of our two

language families achieves a tolerable representation of relevant modal

notions. The burgeoning list of formal modal languages in the literature

40
indicates that some will object to this assumption. Both of our families

represent de dicto modalities in basically the same way; but, as we have

noted, they treat de re modalities differently. To draw conclusions of

general interest, we will have to assume that their representation of

de dicto modalities is acceptable and that at least one of the families

represents de re modalities adequately. Each of the families has some-

thing to be said for it in regard to these assumptions. On the one hand,

the K-family derives from the most straightforward way of joining axioms

for normal modal propositional logic with ones for standard quantifica-

tional logic without in the process automatically validating the Barcan

41
formulas. Hence, its easily motivated formalization weighs in favor of

the K-family. On the other hand, as I tried to indicate in passing while

defining it, the PH-family avoids the salient counterintuitive ramifica-

tions of other approaches to formalizing de re and de dicto modalities

without resorting to separate operators. Hence, its apparent fit with

our informal intuitions weighs in favor of the PH-family. It is accord-

ingly not unreasonable to assume that at least one of our families achieves

a tolerable representation of the relevant modal notions. But until some
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agreement on quantified modal logic is reached in the literature, this

assumption is likely to be controversial. In particular, the possibility

of needing separate operators for de re and de dicto modalities cannot yet

be dismissed.

Too much space would be needed to defend these various inter-

vening assumptions here. Since none of them is eccentric, I suggest that

we put debate over them aside for now and turn to the ramifications of

our results, taken at face value. I will return to these assumptions

briefly at the end of the paper.

Consider first Linsky's claim that a designator oL is rigid if

and only if, for all atomic (r), r~(0 )1 has the same truth-value whether

a. is taken to have wide or narrow scope. If he intends rO((l) to be con-

strued as it would be in either the PH- or the K-languages, then he is

43
mistaken. His condition is generally necessary and sufficient not for

a to be rigid, but for it to be strongly rigid. Indeed, so long as '3'

expresses strong necessity in a language that treats singular terms in

Russell's way, Linsky's condition will not be both necessary and suffi-

cient for * to be rigid unless the language also requires that nothing be

de re necessarily true of any contingent object.

Short of radical moves, I do not see how Linsky can save this

claim. Perhaps it can be saved by shifting to nonstandard languages--

e.g., to languages based on a free-logic or to languages in which a

Strawsonian treatment of singular terms leads to truth-value gaps. But

Linsky does not seem prepared to abandon Russell's treatment of definite

descriptions. Nor would I abandon it just to save this one claim about

rigid designation. Maybe he would prefer to interpret 'O' as expressing
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weak necessity. If his condition were stated in terms of r' )(4) instead

of O#(.) , then it would be a necessary condition for the rigidity of a

in the case of PH-like languages. But it would still not be a necessary

condition in the case of K-like languages. And even in the case of

PH-like languages, it would not be a sufficient condition since semi-

rigid designators would also satisfy it. Our results are clear on this

point. If the modalities are represented tolerably in either the PH-

languages or the K-languages, then no scope-based condition will be both

necessary and sufficient for a Russellian definite description to be a

rigid designator. Scope considerations are ideal for demarcating

strongly rigid designators; but they cannot serve to demarcate rigid

designators.

Next, consider Linsky's claim that rigid designators collapse

the de re/de dicto distinction. If he means by this what he appears to,

viz. that ambiguities in the scope of a rigid designator never affect

truth-value, then he is mistaken as before. But this claim he can save.

To see this, consider Slote's similar, but more guarded suggestion that,

with appropriate existence qualifications, inferences from de dicto to

de re and vice versa are legitimate when rigid designators are used.

Unfortunately, as it stands this suggestion puts no limits on what can

count as an appropriate existence qualification. Thus if Slote means to

require the rigid designators to be strongly rigid, then his suggestion

is true, but misleading and uninteresting. There are, however, inter-

pretations under which the suggestion is true and interesting. For

example, if Slote means only to be excepting strong necessity and
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contingency in favor of their weak counterparts, then although his sugges-

tion is false in the case of K-like languages, it is true in the case of

standard contexts in PH-like languages. Even better, it is true in the

case of standard contexts in PH-like languages, although again not in the

case of K-like languages, if by 'appropriate existence qualifications' he

simply means to require that an antecedent clause like the one in (15) be

introduced into de dicto cases involving strong necessity and contingency.

Thus, if taken to be about PH-like and not K-like languages, Slote's

suggestion is correct when suitably interpreted. Rigid designators do

license inferences across the de re/de dicto boundary in PH-like languages.

Hence, as Linsky claims, they do in a certain sense collapse the de re/

de dicto distinction in these languages. Again, however, they are not

alone in doing so, for semi-rigid designators license the same inferences.

Slote's suggestion is open to a more interesting interpretation

than those just considered. As last interpreted, it authorized clauses

like the one in (15) to be introduced into the premisses as well as the

conclusions of inferences. This enabled us to exploit our finding that

every purely de re modal formula involving a rigid designator in a

standard context is materially equivalent in PH-languages to a purely

de dicto modal formula. But suppose now that we allow such existence

qualifications to be introduced only into the conclusion of an inference,

and never into the premiss. Is Slote's suggestion correct under this

restriction? That is, can de re and de dicto conclusions, perhaps in-

corporating such existence qualifications, be respectively inferred from

unqualified de dicto and de re premisses when rigid designators are used?
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This version of Slote's suggestion is worth making more precise.

As we can see from what has gone before, permitting the categories of de

re and de dicto modality to include occurrences of modal operators embedded

within modal contexts will complicate the issue without improving the sug-

gestion's chances of being correct. Hence we will restrict these categories

for present purposes to occurrences of modal operators that are not them-

selves within the scope of a modal operator. Even so, such occurrences

can be simultaneously de re with respect to one designator (or variable)

and de dicto with respect to another--e.g. as in '(3x)[(Vw)(Fw - w=x) &

I[(3y)((Vw)(Gw . w=y) & Hxy)]'. Hence, we need to construe Slote's sug-

gestion to be about inferences between de re occurrences of an operator

with respect to a designator and de dicto occurrences of that operator

with respect to the same designator. Finally, we need to restrict ap-

propriate existence qualifications to clauses like the one in (15) that,

when introduced into a de re case, add no variables bound from within the

scope of the modal operator, and when introduced into a de dicto case,

add no variables bound from outside the scope of the operator. The idea

behind this last restriction is to bar the existence qualifications from

making a de re case more de dicto or a de dicto case more de re than it

would be without the added existence qualification.

I suspect that the version of Slote's suggestion we get with

these restrictions is the one he had in mind. It is clearly of some

interest. But is it correct? Of course, it is false just as before in

the case of K-like languages. Inferences between de re and de dicto

cases involving a rigid designator are generally not warranted in these
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languages unless the designator is strongly rigid. In particular, our

earlier results for the K-languages show that if the designator is not

strongly rigid, then even with existence qualifications of the sort

specified, we cannot infer de dicto from de re strong necessity.4 5

Equally then, this version of the suggestion is not true in the case

of nonstandard contexts in PH-like languages. What is slightly sur-

prising is that it is also not true in the case of standard contexts

in these languages. It is almost true. Existence qualifications of

the sort specified are all that is needed in this case to license the

inferences from de re to de dicto. (Our earlier results show that the

existence qualifications are not even needed except when going from

de re to de dicto strong necessity and contingency.) Moreover, with

one notable exception, the inferences from de dicto to de re are

legitimate in this case--indeed, without existence qualifications. The

exception is strong contingency. In PH-like languages, as well as in

K-like languages, such existence qualifications are not enough to license

inferences from de dicto to de re cases involving rigid designators and

strong contingency. A formula like (41) may be true in a PH-language

(or in a K-language) only because '()x)(Fx)' is not a strongly rigid

designator:

~O(3x)[(Vy)(Fy - y=x) & GxJ (41)

Accordingly, the form of qualification needed to license an inference

to a corresponding de re formula is not like the one in (15), but like

the one in (42):

Q(3x)(Fx) > (3x) (Vy)(Fy = y=x) & -0Gx] (42)
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This qualification, however, is tantamount to requiring the rigid

designator '(7x)(Fx)' to be strongly rigid.

So, the most interesting version of Slote's suggestion turns

out to be false not just for K-like languages, but even for standard

contexts in PH-like languages. Even with allowances for nonstandard

predicates, in neither kind of language can one always infer a conclusion

of opposite modality from an unqualified de re or de dicto premiss in-

volving a rigid designator. In both kinds of languages such inferences

are universally legitimate only if the designator is strongly rigid. In

a certain important sense, then, rigid designators do not collapse the

de re/de dicto distinction in either K-like or PH-like languages.

Sentences of the sort represented schematically in (43) through

(46) are commonly held to be open to two readings, one with the modal

phrase taken to be expressing modality de dicto and the other, modality

de re:

The x such that Fx had to be G. (43)

The x such that Fx did not have to be G. (44)

The x such that Fx might have been G. (45)

The x such that Fx could not have been G. (46)

What do our results show about how the alternative readings are related

to one another? In order for our results to show anything about such

sentences, we must first stipulate that the definite descriptions in

them can be construed in the manner of Russell without unacceptable

distortion. We must also stipulate that the treatment of madality de

dicto in the PH- and K-languages is adequate to capture the de dicto
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readings of the sentences. Then, if we ignore unsatisfiable definite

descriptions, our results show three things. First, if the de re readings

are construed as in the K-languages, then the definite descriptions in

the sentences must be strongly rigid designators in order to guarantee

that the alternative readings agree in truth-value. This conclusion

also holds if the de re readings are construed as in the PH-languages and

'G' is allowed to stand for a nonstandard predicate. Second, even if the

de re readings are construed as in the PH-languages and 'G' is taken to

stand for a standard predicate, the definite descriptions still must be

strongly rigid to guarantee like truth-values if the modal phrases in

sentences like (43) and (44) are taken to express strong necessity

and contingency. Finally, however, if the modal phrases in sentences

like (43) and (44) are taken to express weak necessity and contingency

and if the de re readings are construed as in the PH-languages with 'G'

standing for a standard predicate, then to guarantee like truth-values it

is both sufficient and necessary that the definite descriptions be rigid

or semi-rigid designators.

Intuitively, using rigid designators seems the right move to

make to avoid problems stemming from the de re/de dicto ambiguity of

sentences of the sort schematized in (41) through (44). Such intuitions

gain support from our results. But they do so only if four potentially

controversial points are acceded to, not the least of which is the

adoption of a PH-like construal of the de re readings.

With some stretching, these last results can be brought to bear

on Peacocke's claim that the truth conditions of modal sentences containing
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rigid designators are the same whether these designators are read with

wide or narrow scope. It is unclear whether he intends this claim to hold

when the alternative readings are both embedded within a modal context.

If he does, then his view is thoroughly incompatible with our findings for

the PH- and K-languages. Moreover, such a broad claim seems in trouble

independently of formal languages. Consider, for example, (47) and (48),

which employ Peacocke's method of exhibiting scope:

It might have been the case that: Heath (47)
is not human

It might not have been the case that: (48)

Heath is human.

These two appear to me to have different truth-conditions insofar as

(48), unlike (47), can be true simply because Heath's existence is con-

tingent. I suspect Peacocke would agree since in dealing with a related

example he feels it necessary to stipulate in a footnote that the 'not'

following the colon has narrow scope with respect to the designator.46

At any rate, none of his examples involve alternative readings embedded

within broader modal contexts. Hence, it is neither unreasonable nor

uncharitable for us to exclude such cases from his claim.

This still leaves us with Peacocke's idiosyncratic use of 'rigid

designator'. His rigid designators are closer to Russell's logically pro-

per names than to Kripke's rigid designators. Thus for him the paradigm

of a rigid designator in a regimented language is a constant, and all

Russellian definite descriptions are paradigmatically nonrigid. I will

discuss the scope characteristics of constants in modal languages in

two later sections. For reasons that will become increasingly clear then,
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I think that Peacocke's claim in no way turns on the special syntax of

constants. The examples he offers to illustrate and defend his claim

support this contention. These examples indicate that for him differences

in the scope of a rigid designator in a modal sentence amount basically

to what others have identified as the de re/de dicto distinction.

Furthermore, thanks to Quine's method for eliminating them, there seems

to be no crucial reason to have constants in any regimented language. I

am therefore going to take Peacocke's claim not to be about constants as

such, but to be about special definite descriptions that have the crucial

semantic characteristics of constants.

Once we agree that certain special definite descriptions--call

them "rigid designators"--can do the semantic work of constants, Peacocke's

claim takes on a different guise. He can then be appropriately viewed as

claiming that the truth conditions of alternative readings of sentences

of the sort schematized in (43) through (46) are the same provided that

the definite descriptions in them are of the special type. Furthermore,

once we allow special definite descriptions to replace constants, little

motivation remains for restricting rigid designation as severely as

Peacocke does. Instead, we can interpret his claim to be about rigid

designators in our sense. Then, since he treats singular terms in a

standard rather than in a Strawsonian or a free-logic way, our conclu-

sions about (43) through (46) become pertinent. Specifically, Peacocke's

claim is correct if he intends such sentences to be construed in the manner

of standard predications in the PH-languages and if he uniformly adopts the

weak reading of modal phrases expressing necessity and contingency. But

if he allows such phrases to express strong necessity or contingency or
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if he intends such sentences to be construed in the manner of the K-

languages, then his claim is wrong.

In putting his claim forward, Peacocke relies primarily on our

intuitions about some examples. What he says about these examples gains

support from our results. Again, however, it gains this support only

after certain major points concerning the semantics of modal sentences

have been acceded to--points that are not transparently at issue in his

examples. Admittedly, then, our results do not offer much in the way of

an argument on behalf of Peacocke. A more promising move to make at this

juncture is to turn the argument on its head. Our review of Peacocke's

claim, like our review of Slote's and Linsky's, suggests that our informal

intuitions about the scope characteristics of rigid designators ought to

be taken as evidence favoring a PH-like construal of modal sentences.

This last point deserves emphasis. Several philosophers--

Kripke, Linsky, Slote, and Peacocke among them--have claimed that rigid

designators are "scope neutral" in modal contexts. An adequate account

of the scope characteristics of rigid designators should do more than just

determine whether this claim is mistaken. It should also make clear why

philosophers would think that the claim is correct. Much of our attention

in this and the two preceding sections has been devoted to the latter

question. Part of the answer--a tendency to disregard modal sentences

embedded in further modal contexts--is of little philosophical interest.

A more significant part of the answer is the inclination to read informal

necessity and contingency statements weakly. This helps to explain why

obvious counterexamples involving 'O' and '~p' escape notice. But it is
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still not enough to explain why someone would think that rigid designators

are scope neutral. The main part of the answer thus seems to lie in the

PH-family. If we construe modal sentences in the manner of the K-languages,

we have no way to explain the scope neutrality claim other than to write

it off as a blunder. If, however, we construe modal sentences in the manner

of the PH-languages, we can readily explain why it is reasonable to have

thought that rigid designators are scope neutral. This, as I said, is

evidence that a PH-like construal is more in keeping with our informal

intuitions about rigid designation. And this in turn is evidence that the

PH-family offers the more attractive approach to regimenting de re modality.

VIll

So much for those who think that rigid designators, like other

singular terms, can have wide or narrow scope with respect to modal opera-

tors. What about those, such as Burge and Dummett, who think that rigid

designators have a peculiarly restricted logical syntax? Although our

approach to this claim will have to be different, we will again be con-

cerned with two questions. The immediate question is whether the claim

is mistaken; but the more interesting question is what would lead some-

one into thinking that it is correct. Differences between the PH-family

and the K-family have no bearing on either of these questions. Hence, we

will have to look elsewhere for answers. This will be our central con-

cern throughout the next three sections. It will lead us to another

important factor that has caused confusion both about rigid designation

and more significantly about the regimentation of de re modality.
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The first question, then, is whether Burge and Dummett are

correct in claiming that rigid designators have a restricted logical syn-

tax. Here, our formal results show little. True, in PH- and K-languages

rigid designators (as we have defined them) have the same logical syntax

as all other singular terms. Hence, on the surface our results stand

opposed to views like those of Burge and Dummett. But that they do so

was guaranteed beforehand. From the outset we asked our principal ques-

tion only of modal quantificational languages in which all singular terms

have the same logical syntax. Taken by themselves, therefore, our results

are either at cross-purposes with Burge and Dummett, or they beg questions

of concern to them.

Even so, we can develop an indirect line of argument against

Burge and Dummett. First, consider Dummett's position that a designator

is rigid just in case it always has wide scope with respect to modal

48
operators. One consequence of this view is that no PH- or K-language

contains any rigid designators at all. Indeed, since Dummett holds that

names can have wide or narrow scope with respect to modal operators, he

must believe that virtually no formal modal language that has been put

forward contains any rigid designators. Rigid designation thus becomes

a rather empty notion on his view. Moreover, whether a designator is

rigid becomes an issue about its syntax within a given language, and not

an issue about the relationship between it and the object it denotes.

Thus, should there be a language in which 'the inventor of bifocals' is

always read with wide scope vis-a-vis modal operators, then even this

paradigmatically nonrigid designator will be rigid in that language,

_C_ _ _ _ _ _ _ _ ~ _ _ _ _ ~ _ _ _ I_ _ I I _ _ I _ _
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even though it be accidental to Benjamin Franklin that he invented

bifocals. Worse still, Dummett's view is incompatible with Kripke's

intuitive test for rigid designation. For, according to Kripke's test,

. is a rigid designator provided that 'c might not have been v is false

on a reading in which the first occurrence of a has wide scope and the

second, narrow scope with respect to the modal operator.

In sum, Dummett's view departs radically form the usual approach

to rigid designation. As such, it calls for justification. Our results,

however, are evidence that any such justification will be difficult to

come by. For our results show that a reasonable account of rigid designa-

tion is possible without compromising, much less abandoning, the usual

approach. Our definition of rigidity is a formal restatement of Kripke's

test. On our definition, 'the inventor of bifocals' is a rigid designator

in any language only if it is essential to Benjamin Franklin that he

(uniquely) invented bifocals. And our definition does not outlaw rigid

designators in standard formal modal languages. What reason can there be,

then, for adopting Dummett's radical alternative?

One requirement Dummett places on his characterization of rigid

designation is that it be free of "the metaphor of possible worlds."

Another is that in sentences with modal operators a rigid designator still

refer to the object it refers to in sentences with no modal operators.

In the case of modal languages that treat bound variables in the manner

of the PH- and K-languages, Dummett's characterization meets the second

requirement trivially. For when a designator occurs with wide scope

with respect to modal operators in such languages, its reference is

determined in the very same way as when it occurs in a nonmodal context.
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By contrast, we do not insist that rigid designators have wide scope.

Nevertheless, on our characterization a rigid designator that has narrow

scope with respect to a modal operator still refers to no object other

than the one it refers to when it has wide scope. Thus, on our character-

ization, if a rigid designator occurs in a modal sentence, then whenever

it has reference, it refers to the same object as it does when it occurs

in a nonmodal sentence. The qualification allows for loss of reference

in the case of modal contexts that require the object in question not to

exist. With this one qualification, then, our characterization meets

Dummett's second requirement. Moreover, it meets it less trivially. On

our characterization, a nonrigid definite description fails to be rigid

not by virtue of special rules governing the logical syntax of individual

singular terms, but because the description is only accidentally true of

or accidentally uniquely true of the object it happens to be true of.

Dummett's syntactic characterization of rigidity is obviously

free of the metaphor of possible worlds. Though it may be less obvious,

our characterization is free of this metaphor too. Of course, our

characterization does include a modal operator. But to use a modal

operator in explicating a notion is by no means to invoke all the par-

phernalia of possible worlds. Modal operators in their own right provide

far less expressive power than is employed in possible world talk. For

example, there is no way to express 'there is an x that is an F with

respect to exactly two possible worlds' in any PH- or K-language.

Similarly, 'only with respect to the actual world is there an x that is

an F' cannot be expressed. 50 Those of us who resist viewing possible

worlds as anything more than a heuristic for a model theory are
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particularly skeptical about counting over these worlds and referring to

specific ones of them. But most formalisms with modal operators are

like the PH- and K-languages in having no way either to count over such

worlds or to refer to them individually. Modal operators as such, then,

should not be confused with "the metaphor of possible worlds."5 1

Moreover, resorting to a modal operator in characterizing rigid

designation may be unavoidable. We have no reason to think that modal

notions can be reduced to nonmodal ones. Hence, it is entirely appropriate

for a characterization of rigid designation to include a modal operator if

the notion is, as it appears to be, intrinsically modal. As far as I

can see, then, unless Dummett has requirements besides those he mentions,

he has no basis for objecting to our characterization of rigidity.

The contrast between Dummett's version of rigid designation

and ours can be sharpened by considering counterfactuals like (49):

Suppose the row of tomato plants had been

planted in reverse order; even so, the (49)

fourth plant from the right would have

had the greatest yield.

'The fourth plant from the right' is referentially ambiguous in (49).

Its reference can be based either on what is actually the case, so that

it denotes the tomato plant that is now fourth from the right, or on what

is counterfactually supposed to be the case, so that it denotes the one

that would have been fourth from the right had the row been reversed.

Furthermore, which one it denotes may affect the truth-value of (49).

(Perhaps their specific locations is the factor controlling the relative

yields of the plants in question.) Now both we and Dummett would insist
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that, unlike 'the fourth plant from the right', rigid designators exhibit

a certain invariance of reference in such counterfactual contexts. Dummett

would have rigid designators do this by having their reference always based

on what is actually the case. On his view, there would be special rules

applying to some, but not to all, singular terms. These rules would block

the reference of these terms from ever being based on what is counterfac-

tually supposed to be the case. In effect, then, he would have the grammar

of the language mark some singular terms with the feature of referential

invariance, and others not.

On our view, by contrast, the reference of any singular term

occurring in a position like 'the fourth plant from the right' in (49)

could still be determined on either of the two bases. But on either basis,

a rigid designator, unlike other singular terms, would always be assigned

the same referent whenever a referent is assigned to it at all. Rigid

designators would be thus referentially invariant not because of special

grammatical rules governing the way their reference is determined, but

because of the nature of the semantic relation they bear to the objects

they denote. That is, according to our version of rigidity, but not

Dummett's, the reference of rigid designators is in certain respects

insulated from the vagaries of how things happen to be. Even if things

besides language had been different, a rigid designator would still have

denoted the object it now does, had that object still existed; and regard-

less, it would have denoted no other object. Consequently, a rigid desig-

nator in a counterfactual like (49) can have its reference determined on

either of the two bases without giving rise to a true reading on one

basis and an untrue one on the other. This is an important feature of
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rigid designators, one that any characterization of them should secure.

But why tamper with the syntax of singular terms when it can be secured

in a theoretically more interesting, less artificial way?

The argument against Dummett's position, then, is directed at

the claim that rigid designators always have wide scope with respect to

modal operators, and not at the considerations that lie behind this claim.

I agree with him that rigid designators provide a safe, neutral--i.e.,

rigid--way of referring to objects in counterfactual contexts like (49).

Indeed, this feature can be exploited to motivate the notion of rigid

designation in the first place. It is easy to show that counterfactual

contexts like (49) engender referential ambiguities and that these am-

biguities can affect truth-value. The idea of a special kind of desig-

nator that never yields conflicting truth-values in any such context is

then a natural one. This is much the way Kripke motivates rigid designa-

tion in "Naming and Necessity" and "Identity and Necessity," although in

this case he resorts to talk of possible worlds where in general he prefers

to let the counterfactuals speak for themselves. Because it does not rely

on technical, formal considerations, this way of motivating the notion

has a comparatively direct and broad intuitive appeal. It is the best way

52
I have found to motivate the notion. Still, it is not perfect. Since

semi-rigid designators have the very same sort of referential invariance,

it does not quite succeed in picking out rigid designators alone.

The argument against Burge closely resembles the one against

Dummett. Burge holds that, unlike other singular terms, rigid designators

occur only in referentially transparent positions. Specifically, he says

that what seems crucial to rigid designation "is that, in modal and related
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contexts, a term in the surface syntax always be taken in the semantical

representation to have referentially transparent position--or Frege's

'customary reference'.1 5 3 Of course, in the PH- and K-languages the dis-

tinction between surface syntax and semantical representation collapses

once definite descriptions are expanded or, what amounts to almost the

same thing, once their scope is marked. Furthermore, in these languages

every singular term can occur within the scope of 'o'; and all singular

term positions within the scope of 'O' are referentially opaque. Con-

sequently, if Burge is correct, the PH- and K-languages contain no rigid

designators whatever.

Indeed, if Burge is correct, there are no rigid designators in

most every formal modal language that has been put forward. For even

those formal modal languages that contain constants generally permit them

to occur in referentially opaque positions--e.g., in de dicto necessary

formulas. Burge's position is thus unusual. Perhaps he differs from

others in thinking that rigid designation is not so much a logical as a

linguistic notion, and therefore should not be exemplified in formal

languages designed to exhibit principles of logic. Or he may think that

a different kind of formal modal language is needed to capture the logic

of reference in modal contexts. Either way, his position calls for

justification. But here our results become pertinent, for they challenge

whether any compelling justification can be given. Our results show that

a reasonable account of rigid designation is possible without abandoning

the usual approach. Why then pursue an unusual approach? What reason can

there be for insisting that rigid designators--in Kripke's sense--occur

only in referentially transparent positions?
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Burge's remark is too brief for us to decide what he had in

mind. Nevertheless, his mention of Frege's "customary reference" does

suggest something. Frege attributes failures of the substitutivity of

identity to loss of customary reference. On Frege's view, then, co-

referring designators that always have customary reference can always be

substituted for one another salva veritate. Hence, Burge's intended point

may only have been that co-referring rigid designators can be substituted

for one another in modal contexts salva veritate. As the reader can

readily verify, in both every PH-language and every K-language, co-

referring designators that are rigid in our sense can be substituted for

one another in any context without disturbing truth-value. In this

respect, unlike in others we have noted, rigid designators behave the

same way in the K-languages as in the PH-languages. The substitutivity

of identity throughout each of these languages is a striking feature of

rigid designators. It is not, however, a feature that distinguishes them,

for semi-rigid designators exhibit it too.54  (We have yet to come upon a

more felicitous basis for defining rigid designation than the "essentialist"

one we used in (2).)

The principle of the substitutivity of identity for PH- and K-

languages is worth stating precisely:

For all singular terms a and AE and all formulas A

and A in a PH- or K-language, if

i. q is a rigid or semi-rigid designator

ii. ,s is a rigid or semi-rigid designator (50)
iii. a =,~ is true

iv. A is like A save for having an occurrence

of 4. where A has an occurrence of a

then AI is true only if A is true.
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Of course, conditions (i) and (ii) can be dropped if the occurrences of (

and p in A and A' are not within the scope of a modal operator.

An important consequence of (50) is that, in Kripke's words,

true identity statements between rigid designators are (weakly) necessar-

ily true. That is, for all singular terms d and A in a PH- or K-language,

if =a ' is true and * and ge are rigid designators, then the de dicto for-

mula rEL, 81 is true. This follows from (50) because the de dicto formula

r~~A= is valid in all of these languages. 55  The same, however, cannot

be said for 'O'. True identity statements between rigid designators

need not be strongly necessarily true, for the de dicto formula rodl=

56
is not true unless . is a strongly rigid designator. A correct way of

putting the point in terms of 'O' is that (51) is valid in every PH- and

K-language (where the scope of each definite description is bounded by

the brackets within which it occurs):

{( 3x)O(Vy) (Fy y=x) & (3w)D(Vy)(Gy y-w) &

(1x)(Fx)=(iw) (Gw) O D1(3! )x)(Fx) v (51)(1 w) (Gw)] [(Ix)(Fx)=(iw) (Gw)]
This is another striking feature of rigid designators in the languages we

are considering. Again, however, it is not a feature that distinguishes

them. For if ~=,4 is true and either or both of a and ,e are semi-rigid

instead of rigid, then on our understanding of '8', the de dicto formula

r 57roL=, is still true. 5 7

The last two paragraphs have described features rigid designa-

tors have in the PH- and K-languages. But we need not have confined the

claims to these languages. On our characterization, a rigid designator

is formed with a definite description predicate--i.e., one of the sort
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'(Vy)(Fy = y=O) '--that is special: the object denoted by a rigid designa-

tor could not exist and fail to have the predicate in question be true of

it; and no other object could exist and have the predicate be true of it.

But then the definite description predicates of co-referring rigid desig-

nators must be strictly equivalent. So long as strictly equivalent

predicates can always be substituted for one another in modal contexts

without disturbing truth-value, so too co-referring rigid designators can

always be substituted for one another in modal contexts without disturb-

ing truth value. That true identity statements between rigid designators

are always (weakly) necessarily true then follows.

If the substitutability of co-referring rigid designators was

what Burge had in mind, then our argument against him parallels our

argument against Dummett. That is, our argument against his position is

directed at the claim that rigid designators occur only in referentially

transparent position, and not at the considerations that lie behind this

claim. I agree that co-referring rigid designators can be substituted for

one another in modal contexts salva veritate. Indeed, this is another

feature that can be exploited to motivate the notion of rigidity. As

Quine has amply illustrated, it is easy to show that de dicto modal con-

texts resist the substitutivity of identity. The idea of a special kind

of designator for which the substitutivity of identity in modal contexts

is preserved is then a natural one. As before, however, this way of moti-

vating the notion does not do everything we would like it to do. Since

semi-rigid and rigid designators have the same substitution characteristics,

it too does not quite succeed in picking out rigid designators alone.58
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IX

The substitutivity of identity is not to be confused with

"scope neutrality." The condition co-referring designators must satisfy

to be everywhere substitutable for one another salva veritate is not the

same as the condition designators must satisfy for differences in their

scope never to affect truth-value. Of course, the two conditions do

amount to the same thing for extensional languages, and for virtually all

59intensional languages scope neutrality implies substitutivity. 59 These

facts alone, however, should not lead anyone to conclude that the two

conditions are equivalent. The main source of such a mistaken conclusion

in the case of modal languages is, I suspect, a tendency to liken rigid

designators to the constants of standard logic. It is natural to con-

ceive of rigid designators as those singular terms in modal languages that

behave in essentially the same way constants behave in standard quantifi-

cational languages. The trouble comes from thinking that the various

special features constants have in standard languages automatically go

hand in hand with one another. The substitutivity of identity and scope

neutrality are two such features. Constants are scope neutral in standard

languages not just in the trivial sense that their scope is syntactically

unmarked, but in the important sense that, regardless of what operator

replaces ' ', all formulas of the forms of both (52) and (53) are valid:

OFc - (3x)(x=c & oFx) (52)

Fc - OC3x)(x=c & Fx) (53)

Our formal results show clearly that substitutivity and scope

neutrality do not amount to the same thing in the PH- and K-families.
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Rigid and semi-rigid designators satisfy the condition for the substitu-

tivity of identity, but only strongly rigid designators satisfy the

condition for scope neutrality. This conclusion need not be confined to

the PH- and K-families. We have already seen that the substitutivity of

identity in modal contexts is a general trait of rigid and semi-rigid

designators. A similar point holds for scope neutrality and strongly

rigid designators. Intuitively, (54) is true, but (55) is false:

The planet Hesperus exists and is necessarily (54)

self-identical.

It is necessarily the case that the planet (55)

Hesperus exists and is self-identical.

On the natural reading of the formal notation, (56) is true, while (57)

is false unless '(Ix)(Hx)' denotes a necessarily existing object:

(3x) [(Vy)(Hy y=x) & Gx=x] (56)

O(3x) (Vy)(Hy = y=x) & x=x] (57)

From intuitive considerations alone, then, we should expect only strongly

rigid designators to be scope neutral. Indeed, on the natural reading,

(58) is true, while (59) is false unless 'c' denotes a necessarily exist-

ing object:

3x)(x=c &0x=x) (58)

S(3x) (x=c & x=x) (59)

Hence, we should not expect even constants to be scope neutral in modal

languages unless we are prepared to require them to denote necessarily

existing objects.

Since scope neutrality and the substitutivity of identity do

not amount to the same thing in modal languages, care is needed in liken-

ing rigid designators to the constants of standard logic. The idea of a
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special kind of designator that behaves in modal languages in essentially

the way constants do in standard languages is undoubtedly natural. But

it is a poor idea nonetheless since it induces confusion with strong

rigidity. For that matter, using standard constants as guides to fashion

any special category in modal languages risks confusion. Given our con-

clusion about (58) and (59), we have reason to doubt that any singular

terms in modal languages have all of the semantic features constants

characteristically have in standard languages. But if this is correct,

the idea of a modal counterpart of standard constants cannot be used with-

out qualifications even to motivate the notion of strongly rigid designa-

60tron.

Several factors have led to confusion in the literature on rigid

designation. Up to now we have concentrated on two of these factors--the

tendency to lose sight of the distinction between weak and strong necessity

and the failure to notice how much rides on the contrast between PH-like

and K-like languages. I suspect, however, that the principal source of

confusion in the literature is a predilection to think of rigid designators

as having all of the semantic features that constants have in standard

logic. As we will see, this predilection has ramifications not just for

rigid designation, but for quantified modal logic generally.

Likening rigid designators to standard constants has prompted

confusion where one would least expect to find it. Consider Quine's

remarks about rigid designators and quantified modal logic in his recent

article, "Intensions Revisited. Noting difficulties with substituting

constants for variables in contexts involving 'a', he recommends that

constants be dropped in favor of special definite descriptions, which "can
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be defined away in essentially Russell's way." He then asks "how singular

terms fare when restored definitionally as descriptions."6 2 Specifically,

he asks what the conditions for languages with modal operators are under

which singular terms qualify first for the substitutivity of identity and

second for instantiation of quantifications. Problems with substitutivity

in such languages are well known from his earlier papers on modal logic.

The problem he calls attention to with instantiation (which he says "is

under the same wraps as the substitutivity of identity"63) is that invalid

inferences like those from (60) to (61) and from (62) to (63) must be

distinguished from the parallel valid ones:

(Vx)lx is a number > (0(5 < x) v 0(5 - x))] (60)

1(5 . number of planets) v 0(5 a number of planets) (61)

(5 < number of planets) & ~0(5 < number of planets) (62)

(9x) 5< x &~0(5 x)] (63)
Quine's answer is that what qualifies a term "for the instantial role

in steps of universal instantiation and existential generalization in

64
modal contexts" is that it be a rigid designator. He then adds that

rigid designators also "lend themselves in pairs to the substitutivity of

simple identity."6 5 Thus, the impression--if not the claim--that he

leaves us with is that in languages with modal operators singular terms

qualify for instantiation and the substitutivity of identity just in

case they are rigid designators.

Before responding to this, I need to comment on the way Quine

characterizes rigid designators. He remarks that "a rigid designator

differs from others in that it picks out its object by essential traits.
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It designates the object in all possible worlds in which it exists."66

But his formal characterization is that of is a rigid designator just in

case r(3x)D(x=-.) is true. d. must have narrow scope in this expression

to avoid having every designator be rigid. Thus his condition is that

'(ix)(Fx)' is a rigid designator if and only if (64) is true:

(3x)o(3w) (Vy)(Fy yw) & w=x] (64)

Since he does not indicate otherwise, I assume that he intends variables

bound from within the scope of a modal operator to be handled as they

usually are--i.e., as they are in the PH- and K-languages. But then (64)

represents not the condition under which '(7x) (Fx)' is a rigid designator,

but that under which it is a strongly rigid designator. Perhaps the

trouble here is that Quine intended 'O' to express a weaker necessity,

as in (65):

(x)ofCruw)(w=x) v (3!w)(Fw)j (65)
(w) (Vy)(Fy y=x) & w=xJl

But (65) too does not represent the condition under which '(ix)(Fx)' is

a rigid designator; rather, it gives the condition under which '(ix)(Fx)'

is either a semi-rigid or a rigid designator. On either plausible

reading, then, Quine's formal characterization fails to pick out what

Kripke has called "rigid designators."

Now consider Quine's remarks about instantiation and the sub-

stitutivity of identity. Universally instantiating as in (61) involves

a shift from de re to de dicto and hence an implied shift in scope. To

put the point more graphically, from (66) we can always infer (67), but

not always (68):
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(3! x)(Fx) & (Vx)( Gx) (66)

(3x) [(Vy)(Fy : y=x) & OGx] (67)

C(3x)(VIy)(Fy - y=x) & Gx] (68)

Similarly, existentially generalizing as in (63) involves an implied

shift in scope, since we can always infer (69) from (70), but not always

from (71):

(3x) ('O Gx) (69)

(.x)(Vy) (Fy E y=x) &1O3Gx] (70)

~3O(.x)[(Vy)(Fy y=x) & Gx3 (71)

The inferences from (67) to (68) and from (71) to (70) are precisely

the ones we found were problematic in both the PH- and K-families unless

'(ix)(Fx)' is a strongly rigid designator. Therefore, as Quine sets up

the instantiation problem for modal languages, a designator qualifies

for the instantial role in universal instantiation and existential

generalization if and only if it is strongly rigid. This is the formal

condition he gives, interpreted as in (64). By contrast, as we have

seen, co-referring designators qualify for the substitutivity of identity

if and only if they are rigid or semi-rigid. This is the formal condi-

tion he gives, interpreted as in (65). But (64) and (65) are by no means

equivalent to one another, and neither represents the condition under

which '()x)(Fx)' is a rigid designator. I can only conclude that Quine

is confused about rigid designation.

What has misled him? The argument of the preceding paragraph

turned on the fact that rigid designators are not scope neutral. Never-

theless, I am not sure whether the main source of difficulty is his
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assuming that rigid designators are scope neutral or his assuming that

they have another feature constants have in standard non-modal languages,

viz. being like "fixed-valued free variables." Viewing constants as

fixed-valued free variables is to turn upside-down--or, perhaps better,

right side up--the familiar idea that free variables are "generalized

names." The difference between free variables and constants in standard

logic is that a free variable takes on different values, while the value

of a constant does not change. So long as the value of a free variable

remains the same, the difference disappears. A constant in standard logic

is accordingly just like a free variable whose value has become fixed.

In particular, in standard nonmodal languages an open formula 'Fx' is

true of the object denoted by 'c' if and only if the corresponding closed

67
formula 'Fc' is true. Accordingly, given a specific assignment of

objects to variables, an open formula in these languages is akin to a

closed formula in which suitably denoting constants replace its free

variables. If an open formula is true when certain objects are assigned

to its free variables, then so long as there are constants denoting these

objects, there will be a corresponding true closed formula of the indicated

sort. The special relationship between free variables and standard con-

stants, summarized in the claim that constants are just like fixed-valued

free variables, thus secures a comparable special relationship between

certain open and closed formulas. This latter relationship is, of course,

widely exploited in a variety of formal methods in standard logic.

One virtue of this way of viewing the constants of standard

logic is that it helps in conceptualizing and explaining universal

instantiation and existential generalization. Both of these forms of
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inference, on this view,. are mediated by an intervening step, consisting

of an open formula whose relevant free variable has as its value the

object denoted by the instantial constant. For example, from the truth

of 'Fc', we first infer that 'Fx' is true of the object denoted by 'c';

given that free variables range only over existing objects, we then

infer the truth of '(3x)(Fx)' from the fact that 'Fx' is true for at

least one value of x. The parallel analysis of universal instantiation

is obvious. Given the interpretation of the quantifiers, then, the

instantial role of constants in standard logic can be viewed as a con-

comitant of their being like fixed-valued free variables.

As we saw in the discussion of (66) through (71), rigidity does

not always qualify a designator for the instantial role in universal in-

stantiation and existential generalization. It does not do so even in

the case of the PH- and K-languages in which free variables range only

over existing objects. By the argument of the preceding paragraph, how-

ever, fixed-valued free variables would be instantiable in these latter

languages. Therefore, in the languages we are considering, rigid desig-

nators are not just like fixed-valued free variables. Free variables in

the PH- and K-languages always occur in what Quine calls referential posi-

tion. Consequently, even when the value of a free variable has been fixed,

open formulas in which it occurs never express pure modality de dicto. To

say that "OYr(()': is true when a certain object is the value of the vari-

able is just to say that r ()1 is true of that object. By contrast,

r~oY((1x)(Fx))7 can be read as expressing pure modality de dicto even when

'(lx)(Fx)' is rigid. Thus, as we saw, -Dr((rx)(Fx)) can be true, yet

1DY(r) not be true of the object rigidly designated by '()x)(Fx)'. This
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simple point clearly established our conclusion. In modal languages of

the sort we are considering, fixed-valued free variables would be like

rigid designators in having invariant reference, and co-referring fixed-

valued free variables could be everywhere substituted for one another

salva veritate. Rigid designators, however, provide something that fixed-

valued free variables would not, viz. the power to express purely de dicto

strong necessity and contingency statements, like (68) and (71), in which

the singular terms have invariant reference and qualify for the substitu-

tivity of identity.

,,69At one point Quine says that variables "figure only de re,"

and at another he says that rigid designators enjoy "de re privileges in

,70a de dicto setting." This suggests that he does not think of rigid

designators as being just like fixed-valued free variables, so that his

claim about their instantial role must amount to the claim that they are

scope neutral. Still, he nowhere says that they are scope neutral, and

when illustrating their supposed instantial role, as in (60) through (63),

he simply exchanges the bound variable and singular term. This suggests,

to the contrary, that he does think of rigid designators along the lines

of fixed-valued free variables. But regardless of what has misled Quine,

the important thing to notice here is how two quite different ideas--that

rigid designators are scope neutral and that they are like fixed-valued

free variables--both can lead to the mistaken conclusion that they have

the instantial characteristics of standard constants. At the beginning

of the paper I pointed out that the literature on the scope behavior of

rigid designators divides into two camps, one holding that they are scope
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neutral, and the other, in effect, that they always occur de re. We now

see that both camps may well spring from the same mistaken belief about

the instantial behavior of rigid designators. If the idea that rigid

designators should be instantiable in modal contexts in the way that

constants are in nonmodal ones is given up, perhaps the two camps and

the controversy between them will disappear.

At any rate, the idea that rigid designators are like fixed-

valued free variables is undoubtedly what lies behind both Dummett's

claim that they always have wide scope and Burge's claim that they always

occur in referential position. The upshot of our argument against Dummett

and Burge is that in modal languages like those in the PH- and K-families,

which contain no constants, no singular terms whatever are just like

71
fixed-valued free variables. Even strongly rigid designators, which

have the instantial characteristics of standard constants, occur in

referentially opaque de dicto as well as referentially transparent de re

positions, and hence are not exactly like fixed-valued free variables.

We have seen how four features constants characteristically

have in standard logic cease to go hand in hand with one another in modal

logics. In modal languages of the sort we have considered, the conditions

under which singular terms (i) lend themselves to the substitutivity of

identity, (ii) are scope neutral, (iii) qualify for the instantial role in

universal instantiation and existential generalization, and (iv) are like

fixed-valued free variables, though still related, are none entirely

extensionally equivalent. An obvious conclusion to draw is that rigid

designators should not be conceived of as modal counterparts of the
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constants of standard logic. Constants should not even be taken to be

paradigms of rigidity, as Peacocke takes them. The notion of rigidity is

better developed in other ways, employing modal languages that have no

constants.

X

Needless to say, then, I agree with Quine when he suggests that

allowing constants in regimented modal languages only engenders confusion.72

Still, since constants are so widely used, the difficulties we have called

attention to do invite the question, how are constants best introduced in-

to modal languages? In particular, how are they best introduced into the

PH- and K-languages? Evidently constants cannot have all of the features

in these languages that they have in standard nonmodal languages. Which

combinations of these features can they have?

We should specify the features more carefully before trying

to answer these questions. Substitutivity of identity for constants

amounts to all formulas of the form of (72) being valid:

c=d = (Gc Gd) (72)

Scope neutrality requires all formulas of the form of (73) to be valid,

regardless of the operator replacing '0':

(3x) (x=c & 3 Gx) 3 3(3x) (x=c & Gx) (73)

So long as strictly equivalent formulas can be substituted for one another

in all contexts salva veritate, scope neutrality can also be expressed by

the requirement that all formulas of the form of (74) be valid: 7 3

Gc (3x)(x=c & Gx) (74)
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The validity of these last formulas of course represents the "existential

presupposition" of standard constants. The instantial role of constants

in universal instantiation and existential generalization requires all

formulas of the forms of (75) and (76) respectively to be valid:74

(Vx)(Gx) . Gc (75)

Gc : (3x)(Gx) (76)

But this alone does not make constants instantiable in the stricter

sense Quine invokes with (60) through (63). For them to be instantiable

in this sense, all formulas of the form of (75) and (76) must be valid

when the constants in them are construed to have minimal scope.

The requirements for constants to be like fixed-valued free

variables are not so simple to spell out. The general idea is clear: a

formula like 'Gc' is to be construed just as the corresponding open for-

mula 'Gx' is when the object denoted by 'c' is the one assigned to 'x'.

Thus, as remarked earlier, part of what is implicated is that (77) hold

on all interpretations:

For all formulas *(I), ~(') is true of the

object denoted by the constant a. if and only (77)

if 0(4) is true.

Constants are not entirely like fixed-valued free variables, however, un-

less also they can be introduced in effect by fixing the value of a free

variable. Hence, (78) should also hold on all interpretations:

Suppose a is a constant letter that has not yet

been assigned an object. If *(J) is a formula

that is true of at least one object, then . can be (78)

introduced as a constant that denotes an object

of which #(f) is true (without introducing an

inconsistency).
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(77) and (78) together are the conditions that lie behind the use of con-

stants as "witnesses" in Henkin-style completeness proofs for standard

quantificational logic; the constants themselves or equivalence classes

75of them become the objects in the domains of the canonical models.

Hence, those inclined to prefer Henkin-style proofs will want (77) and

(78) to hold. These conditions also lie behind the use of constants in

inferences involving existential instantiation and, though less obviously,

universal generalization. When (77) and (78) hold for a language, they

comprise a comparatively weak sufficient condition for introducing new

constants. In this regard, (78) should be contrasted with, for- example,

(79), which probably comes closer to the condition under which new names

are introduced into natural languages:

Suppose a is a constant letter that has not yet

been assigned an object. If *( ) is a formular-

such that r(!3) (())( is true, then a can be

introduced as a constant that rigidly designates

the object of which 0(f) is true (without

introducing any inconsistency).

One last feature of standard constants should be noted. They

resemble natural language names not just in being syntactivally atomic, but

also in often having ambiguous scope. For example, '&.Gc' can be read as

predicating 'NGs' of the object denoted by 'c' or as the negation of the

closed formula 'Gc'. Of course, so long as constants are scope neutral,

such ambiguities are innocuous.

How then might constants be introduced into the PH- and K-

languages? I see little point in exploring approaches that abandon the

substitutivity of identity. This is not to say that such approaches are



182

invariably incoherent. Thomason's Q3 has such constants, and if con-

stants were added to Lewis's counterpart version of quantified modal logic,

78it would have them. As these examples illustrate, however, the natural

way of introducing constants while abandoning the substitutivity of iden-

tity is to treat them as logically akin to abbreviations for definite

descriptions. But treating constants as abbreviations for definite de-

scriptions, without requiring the definite descriptions to satisfy any

special modal constraints, would clearly sacrifice virtually all of the

other features listed in the preceding paragraphs. Since our present

concern is to see how many of these features can be saved, approaches

that abandon the substitutivity of identity seem not worth pursuing.

As suggested earlier, the most straightforward way of intro-

ducing constants into the PH- and K-languages would be as strongly rigid

designators. This way of introducing them would save most of the features

listed, so that they would retain much of the logical character of standard

constants. It would obviously save the substitutivity of identity, scope

neutrality, and their full instantial role in existential generalization.

It would also save their full instantial role in universal instantiation

provided that at least one necessarily existing object is guaranteed in

every domain. It would even save (77), so that in a limited respect

such constants would be like fixed-valued free variables. But they would

not be like fixed-valued free variables in the respect expressed by (78).

Neither (78) nor (79) would hold, since in addition to the requirements

they impose, an object would have to be one whose existence is necessary

before a constant could denote it. This requirement of necessary existence
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is of course why such constants would be scope neutral and instantiable in

Quine's strict sense. Constants in standard quantificational languages

have these features precisely because they are required to denote existing

objects. Simply put, the counterpart of this requirement in the case of

the PH- and K-languages is necessary existence.

The trouble with introducing constants as strongly rigid desig-

nators is that they would be of little use or interest. For example,

they would not suffice as witnesses for Henkin-style completeness proofs

except in the case of the philosophically uninteresting languages that

require every object to exist necessarily. Equally, they would not suffice

for inferences involving existential instantiation and universal general-

ization except in the case of these languages. Moreover, most of the

resemblance between constants and natural language names would be lost.

Indeed, since it is at least disputable whether there are any necessarily

existing objects, there may not even be any strongly rigid designators.

So, if this is the best way of introducing constants into the PH- and K-

languages, they are probably not worth the bother. Strongly rigidly

designating constants would have the virtue of preserving the basic logic

of standard constants. No valid sentence schemata involving constants

would be lost in going from standard to modal languages, and the scope of

constants would still in general be ambiguous without the ambiguity affect-

ing truth-value. Such constants would thus especially be a reminder of the

relationship between the conditions for scope neutrality in standard and

in modal languages. But otherwise they would add nothing.

A second way of introducing constants into the PH- and K-

languages would be as rigid designators. Rigidly designating
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constants would still not suffice for such purposes as Henkin-style com-

pleteness proofs in the case of languages that permit "possible-yet-not-

actual" objects. But they would more closely resemble natural language

names. They would qualify for the substitutivity of identity, and presum-

ably (79) would hold for them, though not (78). Scope neutrality, however,

would be lost, so that many sentences containing such constants would be

nontrivially ambiguous--i.e. open to different readings that need not

match in truth-value. In this respect, rigidly designating constants

would be too much like natural language names. However tolerable such

nontrivial ambiguities may be in natural languages, they are unacceptable

in regimented languages.

The ambiguities in question could be eliminated if the scope of

constants were always marked or if a convention were adopted that would

always yield a univocal sentence. But marking the scope of constants in

an orthographically perspicuous way is easier said than done. Anyone who

is going to try to mark the scope of rigidly designating constants would

undoubtedly be better off adopting Quine's strategy of replacing names

with special Russellian definite descriptions. A major virtue of such

special definite descriptions is that their scope can always be indicated

perspicuously.

The troublesome ambiguities could be eliminated, at the sacri-

fice of some of the resemblance to natural language names, by adopting a

convention covering the scope of constants. The obvious move is for con-

stants always to have maximal or always minimal scope. If constants were

always to have maximal scope, then they would always occur in referential
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position, so that modal sentences containing them would never express

pure modality de dicto. There would still be sentences equivalent to any

de dicto reading--e.g., 'O(3x)(x=c & Gx)' with the convention would be

equivalent to the de dicto reading of 'OGc' in its absence. Also, since

both constants and free variables would always occur in referential posi-

tion, (77) would hold. Such rigidly designating constants would thus be

instantiable in the limited sense that all formulas of the form of (75)

and (76) would be valid. But of course they would not be instantiable in

Quine's sense. This failure reflects a deeper shortcoming. In keeping

with a point Kripke makes, if designating constants were always to have

maximal scope, a formula like 'QGc' would not assert the necessity of the
8O

closed formula 'Gc'. Consequently, strictly equivalent formulas could

not always be substituted for one another salva veritate. For example,

all formulas of the form of (80) would be valid, but not all of the form

of (81):

Gc E (3x)(x=c & Gx) (80)

DGc - a(3x)(x=c & Gx) (81)

This would be a lot to give up for so little in return.

The alternative remaining is that rigidly designating constants

always be taken to have minimal scope. Again no expressive power need be

lost since, for example, '(3x)(x=c & OGx)' with this convention would be

equivalent to the de re reading of 'DGc' in its absence. Unlike the

other convention, this one would not sacrifice the substitutability of

strictly equivalent formulas. In particular, all formulas of the form of

(81) would be valid, thereby providing a limited sort of existential
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generalization. But such constants would not be instantiable either in

Quine's strict sense or in the looser sense exhibited by (75) and (76).

Also, since rGY(f)' could be true of the object denoted by a without

r0 V((L)1 being true, (77) would not hold. As a result, such constants

would not suffice for existential instantiation, universal generalization,

or Henkin-style completeness proofs except in the case of the uninteresting

languages that require all objects to exist necessarily. If rigidly

designating constants are to be added to the PH- and K-languages, always

assigning them minimal scope is probably the best way to do it. But the

only thing gained would be a class of singular terms slightly resembling

natural language names, and even then the logic of these names would be

better captured by Quine's definite descriptions. Rigidly designating

constants would add nothing to the formal logic of the languages. Accord-

ingly, the gain would appear not to offset the attendant risk of confusion.

A third way of introducing constants into the PH- and K-languages

would be as fixed-valued free variables. Much of the resemblance between

constants and natural language names would be lost since, unlike names,

free variables occur only in referential position. But the special re-

lationship between free variables and constants would be saved, so that

(77) and (78) would hold along with the substitutivity of identity. In

the languages whose variables range only over existing--i.e. "actual"--

objects, such constants would be instantiable in the loose sense. General-

ly speaking, however, the logic of these constants would differ markedly

from the familiar standard one. Fixed-valued free variables would clearly

not be scope neutral in the sense of (73). Even in the languages whose
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variables range only over "actual" objects, the left-hand side of (82)

could be true and the right-hand side false unless all objects are re-

quired to exist necessarily:

(3x) (x=c & DGx) M (3x) (x=c & Gx) (82)

Hence, with the exception of the philosophically uninteresting languages

that require every object to exist necessarily, valid sentence schemata

involving constants would be lost in going from standard to our modal

languages. Accordingly, to the extent that preservation of standard logic

is a concern, introducing constants as fixed-valued free variables would

be open to objection.

In fact, such constants would have different nonstandard

logics in our two families. Consider the K-family first, for which this

way of introducing constants has been prevalent in the literature. Since

'Gx' is always either true or false of an object in the K-languages, 'Gc'

would always be either true or false; and since 'Gx' can be true of non-

existing objects, so too 'Gc' could be true, yet '(3x)(x:c)' be false.

Such constants would thus have a familiar logic in the K-family, viz.

free-logic. Hence, not all formulas of the form of (74) would be valid.

In part because of this, substitution of strictly equivalent formulas

would not be undermined when constants were introduced even though the

constants would in effect always have maximal scope. Since they would

lack "existential import," such constants would not be instantiable in

the sense exhibited by (75) and (76). But modified versions of universal

instantiation and existential generalization, as in (83) and (84), would

hold:
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(Vx)(Gx)) I(3x)(x=c) Gc] (83)
Gc [(x)(x=c) (3x)(Gx)] (84)

Such constants could also be used in free-logic versions of existential

instantiation and universal generalization. A further virtue of intro-

ducing constants as fixed-valued free variables in the case of the K-

family is that they would suffice as witnesses in Henkin-style completeness

81
proofs. The constructions for Henkin-style canonical models are com-

paratively straightforward. This is probably why this way of introducing

constants into the K-languages is prevalent in the literature. The fact

that fixing the value of a K-language variable results in a familiar free-

logic constant only makes the move more palatable.

To the best of my knowledge, the logic fixed-valued free vari-

ables would have in the PH-family is not one that has been explored in

the literature. Unfortunately, it would be quite complicated since free

variables occur in two kinds of contexts in the PH-languages--standard

and nonstandard. Occurrences of such constants in nonstandard contexts

would be like occurrences in the K-languages, so that free-logic would

82
hold for them. Occurrences in standard contexts, however, would require

a Strawsonian logic. As a result, once such constants were introduced

into the PH-languages, the logic of closed formulas would cease to be

classically two-valued. A closed formula like 'Fc' could be true, false,

or lack a truth-value. The resulting complications are too involved to

pursue here. For example, whether instantiation formulas like (75) and

(76), with 'Gx' standard, would be valid would depend on whether 'valid'

would mean "always true" or "never false."8
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Since the logic of the constants would be both hybrid and not

classically two-valued, it would be dramatically different from standard

logic on two counts, even ignoring modal formulas. The question is whether

the added complications would yield an adequate return. The preferred

return would be simple deductive techniques or Henkin-style completeness

proofs for the PH-family. In deference to those who emphasize Henkin-

style proofs, let us examine this possibility; similar remarks apply to

the possibility of achieving simple deductions via such rules as existential

instantiation and universal generalization. Our condition on introducing

constants, (78), would have to be relaxed, for as it stands it would not

provide the "possible-yet-not-actual" witnesses needed to invalidate the

Barcan formulas. For example, it might be modified to allow an available

constant to be introduced whenever O(A,) or &(31()(r=t, & #( )) is true

of an object. Presumably nothing would then stand in the way of equivalence

classes of such constants being the needed witnesses in canonical models.

But the constructions required for the models remain unclear. At best,

then, it is an open question whether tractable and interesting Henkin-style

completeness proofs would emerge should constants be introduced as fixed-

valued free variables into the PH-languages. If not, and if simple deduc-

tion techniques would also fail to emerge, then the added complications do

not seem worth the bother.

These, in sum, appear to me to be the reasonable choices.

Constants can be introduced as strongly rigid designators, as rigid

designators, or as fixed-valued free variables. If they are introduced

as strongly rigid designators, then the standard logic of constants will
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be preserved in the sense that the class of valid sentence schemata

involving constants will be a conservative extension of the class for

standard logic. But the range of values of the constants will be too

narrow for them to retain either their resemblance to natural language

names or their special relationship to free variables. If instead they

are introduced as rigid designators, then they will resemble denoting

proper names both in their range of values and in the fact that, unless

a convention is adopted, their scope will often be ambiguous. But their

range of values will still be too narrow to permit such things as Henkin-

style completeness proofs and rules of existential instantiation and

universal generalization; and they will not be instantiable and scope

neutral in the way standard constants are. Finally, if they are intro-

duced as fixed-valued free variables, then the special relationship between

them and free variables will remain. But their scope will not be ambiguous,

so that much of their resemblance to names will be lost; and again some

valid closed formulas of standard logic will cease to be valid. The stan-

dard logic of constants, their resemblance to denoting proper names, and

the relationship between them and free variables--at most one of these can

be retained when adding constants to the PH- and K-languages.

Some may wish to conclude, so much the worse for modal logic.

I think this would be a mistake. The appropriate conclusion, I think, is

that the combination of features found in standard constants is a happy

accident. Standard constants resemble denoting proper names in their

range of values, in their being syntactically atomic, and in their having

ambiguous scope in many contexts. Yet they enter into truth conditions
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in a manner equivalent to that in which free variables whose values are

fixed enter. And since they are scope neutral, ambiguities in their scope

are no reason for them to give way, for purposes of regimentation, to

syntactically nonatomic terms whose scope can be marked perspicuously.

As standard logic attests, this is a nice combination of features to find.

But the lesson modal logic teaches us is that the possibility of this

combination of features is a special, parochial virtue of standard logic.

Various lines of argument against quantifying into modal con-

texts and hence against quantified modal logic can be detected in the

literature. One line objects to quantified modality on the grounds that

1185it "leads us back into the jungle of Aristotelian essentialism." Nothing

that has been said in this paper has any bearing on this line of argument.

Rather, we have presupposed the desirability of expressing essentialist

claims in a regimented language and have inquired into the logic under-

lying such claims in certain regimented languages. Hence, this is not

the place to respond to this line.

A second line of argument emphasizes the repeated failures to

come up with a quantified modal logic that fully conforms to our pre-

theoretical essentialist intuitions. I sympathize with this line because

it raises the issue whether de re/de dicto distinctions would be captured

better by resorting to separate modal operators than by relying on scope

86distinctions with single modal operators. Here, however, some of our

efforts have a bearing. The PH-languages, though initially fashioned to

account for mistakes about the scope characteristics of rigid designators,

appear not to have any of the counterintuitive features objected to in
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other modal quantificational languages. So perhaps the PH-languages

vitiate this line of argument.

The line of argument that has received the most attention in

the literature questions whether quantifying in is formally coherent.

This line stresses the need for restrictions on the substitutivity of

identity and on the instantiation of quantifiers in modal quantificational

languages. The need for such restrictions is a point well taken. The

issue is whether it is evidence that binding a variable from outside the

scope of a modal operator is in some way incoherent. Here our efforts

have their greatest bearing. As we have seen, the languages in the PH-

and K-families, which of course contain no constants, are in no way formal-

ly incoherent. The class of valid closed formulas in every one of the

languages in these two families is a conservative extension of the class

for standard logic without constants. And differences in the scope of

quantifiers vis-a-vis modal operators account for the differences between

referentially transparent de re and referentially opaque de dicto readings

of informal modal statements. Quine himself concedes as much. So, this

line of argument must ultimately come down to the claim that standard

constants cannot be coherently introduced into the philosophically in-

teresting languages of these families. With this I agree. But this seems

to me just to be evidence that one should be wary of constants when dealing

with modal languages.

The combination of features found in standard constants pre-

supposes an extensional logic and hence should not be expected in the

case of intensional languages. Equally the interpretation given free
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variables in modal languages should not be narrowly parasitic on standard

constants. The specific handling of free variables that fall within the

scope of modal operators appears to be the critical factor in constructing

a modal quantificational language. This is one of the more striking

lessons brought out by the contrast between the PH- and the K-families.

But then it is important that we be no less wary of letting standard con-

stants lead us into a parochial treatment of free variables in modal

languages.

XI

What morals should be drawn from all of this? Our basic tech-

nical result is firm. Under our definition of rigid designation, rigidly

designating Russellian definite descriptions need not be scope neutral.

To be scope neutral in all extensional and modal contexts, a Russellian

definite description must be a strongly rigid designator. One moral I

obviously want to draw involves the direct generalization of this result.

Rigid designators are not invariably scope neutral; but strongly rigid

designators are. Thus, strongly rigid designators, and not rigid desig-

nators, are the modal counterparts of Whitehead's and Russell's designators.

As a consequence, it is a mistake to think of rigid designators as if they

were logically akin to the constants of standard logic. The roots of the

notion of rigid designation lie elsewhere.

Some may question whether this is the appropriate moral to draw

from our basic result. Some, for instance, may prefer to conclude that

rigid designation, as we have defined it, is not the important referential
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notion one might have thought. But surely strongly rigid designation is

too restrictive a notion to be of much importance. Moreover, our rigid

designators do what such designators are primarily supposed to do--i.e.

they provide a way of referring rigidly to specific objects in modal and

counterfactual statements. The notion of rigid designation does not stand

or fall with scope neutrality. Scope considerations are, of course, ex-

tremely important in the case of modal contexts. Nevertheless, too much

can be made of them.

Again, some may prefer to take our basic technical result as

evidence that regimented modal languages should employ Strawsonian rather

than Russellian definite descriptions. On the face of it, Strawsonian

definite descriptions added to the K-languages appear likely to resemble

88
Russellian definite descriptions in the PH-languages. So, this sugges-

tion is not entirely uninteresting. But to draw such a moral from our

findings nonetheless seems to me to be a mistake. One obvious drawback to

employing Strawsonian definite descriptions is that a new primitive will

have to be added to quantification theory. What is to be gained in return?

So far as I can see, no expressive power pertinent to the issues we have

discussed would be gained. Existence qualifications of the sort we intro-

duced in representing Kripke's weak necessity in terms of 'a' can provide

the same thing as Strawsonian definite descriptions would in modal contexts.

And such existence qualifications have the virtue of leaving standard

logic intact. It might be different if our basic result indicated a lack

of expressive power in modal languages of the sort we have considered.

But our result does not indicate this.
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I see no reason, then, to think that the direct moral I want to

draw is inappropriate. But there are other morals that I want to draw

too, ones that bear on the general question of how modality de re should

be represented in regimented languages. For example, consider Quine's

view that proper names of natural language are best represented by

special definite descriptions, and not by constants, in regimented

languages. His main reason is to avoid various difficulties arising

89with names that lack denotation. But such difficulties arise in modal

contexts even with denoting names--e.g. as in 'Nixon could have failed

to exist'. Furthermore, as we have seen in some detail, constants are a

direct source of confusion in regimented modal languages. So, a second

moral I want to draw is that Quine's method of handling proper names

ought to be adopted in the case of regimented modal languages. Several

things are to be gained from doing so. Our definitions of rigid designa-

tion and related notions will then cover all forms of singular terms.

There will be no need for a special logic for the nonstandard constants

that would have to be introduced otherwise. It will be possible to

eliminate significant scope ambiguities in a perspicuous manner. And,

as I trust our efforts testify, no expressive power will be lost in the

process.

Lack of constants is not the only Spartan aspect of the modal

languages we have considered. These languages represent the simplest

extension of standard quantificational syntax to include unary modal

connectives. In effect, the list of unary connectives has just been

extended to include '0' and 'O' along with ''. As a result, scope
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differences are the only means available in them for expressing such

contrasts as that between modality de dicto and de re. Now, we have not

found this Spartan syntax unduly restrictive. To the contrary, it has

proved adequate for exploring and displaying the distinctive logic of

singular terms in modal contexts. Moreover, no logical difficulties

have arisen from quantifying into modal contexts. Indeed, we have

grounds to think that the difficulties often alluded to in this regard

are ones with constants, not ones with quantifiers and free variables.

So a third moral I want to draw is that there is no compelling reason

to turn to a more elaborate syntax for purposes of regimenting de re and

de dicto modality. In particular, there is no compelling reason to

introduce different operators for the two kinds of modality.90 Modal

considerations of the sort we have dealt with do not require radical

departures from standard quantificational syntax.

If we can agree about the resources needed for representing the

logic of singular terms in modal contexts, then the obvious next question

is, which specific regimented framework is best? In the present context

the appropriate version of this question is whether the K-family or the

PH-family offers the more promising approach. The two families have a

number of virtues in common. Both leave standard quantificational logic

(sans constants) intact; and both leave normal modal sentential logic

intact. Also, both families contain philosophically interesting languages--

e.g. languages that permit contingently existing objects to have things

necessarily true of them. The choice between the two will therefore have

to be based on more subtle considerations, be they formal or essentialist.
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The K-family is the one most widely discussed in the philo-

sophic literature. In part this is owing to the influence of Kripke.

But even more it reflects the formal simplicity and elegance of the

logics associated with the K-languages. As Kripke showed, these logics

can be axiomatized in a manner strongly reminiscent of Quine's preferred

axiomatization of quantification theory. This is no small virtue in

the present climate of opinion toward quantified modal logic. Neverthe-

less, from the standpoint of philosophers interested in expressing

essentialist doctrines in a regimented framework, the K-family has serious

shortcomings. The failure to distinguish between normal and recherch'

predicates and the unqualified invalidity of the converse Barcan formulas

in the K-languages that permit contingently existing objects do not conform

well with pre-theoretical intuitions. Worse, as we indicated in Section

III, certain common essentialist claims appear to be incompatible with

the K-languages. For example, one is apparently forced to give up either

the claim that '0 exists' is not essentially true of contingently existing

objects or the claim that some relations, like '(Dis the offspring of)',

are internal to one relatum and external to the other. And finally, the

K-family fails to provide an explanation of why rigid designators have

been widely held to be scope neutral.

The PH-family, on the other hand, does provide such an explana-

tion. But of course it was devised specifically for this purpose. We

needed the converse Barcan formulas to be valid in order for rigid

designators to be scope neutral in a limited, yet reasonable range of

modal contexts. Identity then had to be treated specially to prevent the
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PH-family from being philosophically unacceptable. What is striking

about the PH-family is that, though it was concocted for such a narrow

purpose, it nevertheless appears to provide an adequate framework for

expressing essentialist claims. In particular, it avoids the short-

comings of the K-family. And it does so through two simple moves that

to some extent can be motivated on other grounds. Of all the regimented

modal frameworks that have been proposed in the literature, the PH-family

appears to conform best with pre-theoretical essentialist intuitions. Its

only obvious shortcomings are formal--having two different kinds of

predicates complicates the formal logic. But if the point is to find a

regimented framework for expressing essentialist doctrines, formal con-

siderations ought to weigh less heavily than essentialist ones.

The final moral I want to draw, then,is again in the form of

a proposal: the PH-family should be viewed as offering a more promis-

ing framework than the K-family offers for regimenting de re modality.

___ --
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Appendix

The purpose of this appendix is to give an explicit character-

ization of the two families of modal quantificational languages considered

in the text. The characterization is a semantic one, using the mathe-

matical framework of "possible world" model theory. The first section

sets up the framework, and the two remaining sections characterize the

K-family and the PH-family respectively.

The Semantic Framework

By a qml-model structure, we mean a quadruple Q =<co, K, R,J>,

where K is a set, co e K, R is a reflexive binary relation defined on K,

and Z is a function that assigns a set to every member of K. For

heuristic purposes, K is the set of possible worlds, co is the actual

world, R is an accessibility relation, and a(c) is the domain of c--i.e.

the set of objects that would exist were c the actual world. Different

languages in a family are obtained by imposing different further restric-

tions on the accessibility relation and on the domain function. For

example, a language that imposes no further restrictions on R and 0 is

to be contrasted with one that requires R to be an equivalence relation

and Z(c) = (co) for all c E K.

The universe of discourse of a qml-model-structure Q is the set

S= i •(c). Let IT be the set of predicate letters (with numerical super-

scripts indicating the number of places in the predicate). A function o

defined on ITx K is a qml-model on a qml-model-structure Q provided that

0(P", c)S 5 for all c E K and all predicate letters Pn. A qml-model
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is then a couple )= <Q,po>, where Q is a qml-model-structure andp is a

qml-model on it.

We now proceed in a customary way. A function or from the

variables of the language into the universe of discourse A of a qml-model

Mr is an assignment (of values to the variables) on m. Let A be the set

of well-formed formulas of the language. The next step is to define a

function In,r from the set Ax K into fT, F3. This function is called

the valuation induced by the assignment V on the qml-model 7. The

valuation functions will be different for the K-family and the PH-family.

In particular, the valuation functions for the K-family will be total

functions, while those for the PH-family will generally be partial func-

tions.

The difference between the PH-family and the K-family will be

specified below when we specify the requirements on their respective

valuation functions. Once the valuation functions have been characterized,

other semantical categories can be defined in terms of them. For example,

a formula A is said to be satisfied with respect to a world c by an

assignment 1 on a qml-model mjust in case mr,r(A, c) = T. A closed for-

mula B is true on m if and only if it is satisfied with respect to the

actual world by every assignment on r--i.e. if and only if I,n#(B, co) = T

for all assignments Y on Tl. Finally, a closed formula B is logically true

or valid just in case it is true on all qml-models.

The K-Family

A function Im,r from Ax K into {T, F is the K-valuation in-

duced by the assignment 1 on the qml-model fl7 provided that it satisfies
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the following conditions for all A, B&A and c e K:

i. For atomic identity formulas ',l = • , Im,~( =, = , c) = T

iff 1( ,) = T(rr); otherwise, Im,r( , =C , c) = F.

i i. For other atomic formulas rpO... n,1 mrP,..-l , c) = T

iff <>r((,),...., r (i,)> 6 p (Pn, c); otherwise,

m(rp pn".. .,,'I, c, ) = F.

iii. m,t(r'A & B', c) = T iff TI,,t(A,
otherwise, Im,r(rA & B7, c) = F.

iv. Im,F(rA v B c, c) = T iff Im,,(A,

otherwise,[m,r(rA v BE, c) = F.

v. m,r( rA B , c) = T i ff Im,r(A,

otherwise, m,r (rA z B', c) = F.

vi. Inm,t( rA = B , c) = T iff Inm,t(A,

otherwise, Im,r( (rA B', c) = F.

vii. Im,t(r A , c) = T iff Im,t(A, c)

t , c) = F.

viii. Ic,,( rDA, c) = T iff for all c'

otherwise, mm ( rA', c) = F.

c) = T and Im,r(B, c) = T;

c) = T or Im,r(B, c) = T;

c) = F or Im,,r(B, c) = T;

c) = Im,r(B, c);

= F; otherwise,

such that cRc', Imr(A, c') = TUMOM-- ---- $ ! ---- ) .--

ix. It,r(rA', c) = T iff there is some c' such that cRc' and

Im,r,(A, c') = T; otherwise, Xm,r (rOA, c) = F.

x. I•,(r(,,))A, c) = T iff for every assignment To' that is

like 'r save perhaps at I, 1 (f))e (c) only if 1m,t'(A, c) = T;

otherwise, In,r (r(YV)A, c) = F.

xi. Im,t.(r()A , c) = T iff there is some assignment r' that is

like V" save perhaps at and for which 1'(f) 4 -(c) and

IpTh'(A, c) = T; otherwise, Im,A (r(3Y)A , c) = F.

The K-languages are those languages whose valuation functions

on qml-models are K-valuations.

The two important things to notice about K-valuations are

first, that an open formula can be satisfied with respect to a world by

an assignment that assigns "nonexisting" objects to its free variables--

i.e., objects that are not in the domain of that world; and second, that
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when a quantificational formula is evaluated with respect to a world,

quantified variables, unlike free variables, range only over the domain

of that world. This contrast between free and quantified variables is

also a feature of the PH-languages.

The PH-Family

A function Ir from A xK into fT, F3 is the PH-valuation in-

duced by the assignment r on the qml-model m provided that it satisfies

the following conditions for all A, BeA and c e K:
i. For atomic identity formulas r,=• , m,r( r,=I , c) = c

iff t(I,) = r(,); otherwise, Z,Ir( rI T , c) = F.

i i. For other atomic formulas rpf l or( rpA ... , c) is

undefined iff r(1,) OZ(c) or...or r(f,,)# (c); otherwise,

,v,~( rp'~ ...~n , c) = T if <#r(r,),..., 7(,)> (P", c), and

rm, r(rP">", - - ' l, c) = F if(rm(,),..., cr()n)> gp(Pr, c).

iii. Im,,'("A & B', c) is undefined iff m,,-(A, c) or Im,.r(B, c) is

undefined; Im,X'( rA & B', c) = T iff Irm,.(A, c) = T and

Im,r(B, c) = T; otherwise, I•n,r(A & B', c) = F.

iv. m ,(rA v B', c) is undefined iff Im,r(A, c) or m,,,r(B, c) is

undefined; m, r((A v B, c) = T i ff rm,'r(A, c) = T or

mrT(B, c) = T; otherwise, I,,r(r(A v B, c) = F.

v. Imy(rA = B ), c) is undefined iff £m,r(A, c) or Im,r(B, c) is

undefined; Im,r(rA = B', c) = T iff Im,r(A, c) = F or

Im,r(B, c) = T; otherwise, Im,r(rA = B', c) = F.

vi. m,,,r(rA O BE, c) is undefined iff Irm,(A, c) or tm,,,(B, c) is

undefined; otherwise, rm,r( rA C) B, c) = T if I,r(A, c)

In,,r(B, c), and %I,,,(rA B', c) = F if £,,M(A, c) 1 I%,'r (B, c).

vii. Im r(rA', c) is undefined iff Im,r(A, c) is undefined;

Im~,r('A, c) = T iff £m,r(A, c) = F; otherwise,

viii. Im,r(r 'A', c) is undefined iff Zm,r(A, c) is undefined:

m,7('rtA', c) = T iff there is no c' such that cRc' and
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m,Ir(A, c) = F; otherwise, Xm,r(rOA , c) = F.

ix. Tm,r(rOAP , c) is undefined iff Im,r(A, c) is undefined;

Xmf(rOA' , c) = T iff there is some c' such that cRc' and

mw,,(A, c) = T; otherwise, Im,r(rOA', c) = F.

x. Sm,r(r(V)A, c) = T iff either V(c) is empty and no variable

other than occurs freely in A or r(c) is not empty and for

every assignment 1' that is like 1 save perhaps at ,

'(f) 6 d(c) only if Im,r'(A, c) = T;

I1 ,,(r(Vry)A7 , c) = F iff there is some assignment ir' that is

like T' save perhaps at J and for which r'(f)e 5 (c) and

Im,.t(A, c) = F; otherwise,I,,,• (r(Vf)A7 c) is undefined.

xi. Im,(r(35)A" , c) = T iff there is some assignment '" that is

like 'r save perhaps at - and for which -1'($) (c) and

Im,,(A, c) = T; Im•1r(r(3y)A, c) = F iff either a(c) is

empty and no variable other than occurs freely in A or Z(c)

is not empty and for every assignment "' that is like r save

perhaps at , r'(t) e (c) only if Im,r"'(A, c) = F; otherwise,

Im,r(r3P)A', c) is undefined.

Clauses (x) and (xi) include special provisions for worlds with empty

domains. The need is to prevent such a world from validating

'(3x)O(\Vy)FZxy ' and from invalidating '(3x)O(3y)Fxy'.

The PH-family includes all those languages whose valuation func-

tions on qml-models are PH-valuations. But we permit it to include other

related languages as well. The characterization of PH-valuations pre-

supposes that identity is the only special, nonstandard atomic predicate.

As indicated in the text, however, perhaps there are reasons to include

other nonstandard atomic predicates. This can be done by singling them

out syntactically and adding further clauses between (i) and (ii) to

cover them. Languages whose valuation functions on qml-models involve

such extensions of PH-valuations are also considered PH-languages. Of
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course, from a logical standpoint, it would be nice if identity turns out

to be the only well-motivated nonstandard atomic predicate.

The main differences between PH-valuations and K-valuations are

in clauses (ii) and (viii). Clause (ii) introduces satisfaction gaps at

the atomic level, and clause (viii) adjusts the handling of 'O' to

accommodate these gaps. Of course, nothing would be affected if the first

part of clause (viii) in the definition of K-valuations were also,

Im,r(rOA , c) = T iff there is no c' such that cRc'and Im,,(A, c') = F.

Accordingly, the critical difference in the PH-valuations is clause (ii).

The other clauses must then provide for satisfaction gaps, which under

the valuation rules given propagate to nonatomic levels. Only open formulas,

however, can fail to be assigned T or F. PH-valuations never fail to assign

a value to closed formulas. Hence, the term "satisfaction gaps" is appro-

priate.

The treatment of identity in clause (i) is the same as in K-

valuations. This is the most straightforward way of treating identity,

and it simplifies formal matters considerably. As mentioned in the text,

however, one might instead adopt the following treatment:

i'. m,r( = , c) is undefined iff (r(J,) (c) and
l(fi) 5 (c); otherwise, 2m,r(r , = s. , c) = T if

t(1 ) = t(r3 ), and Im,(Y r , c) = F if f(,) T(f).

None of the conclusions in the text is affected if (i') is chosen instead

of (i).

The valuation rules given above for the truth-functional con-

nectives are the familiar "weak" three-valued ones. Thus an open formula

that is a truth-functional compound is not assigned a value just in case
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it includes a constituent that is not assigned a value. The weak valua-

tion rules were adopted because they promise to be easier to work with

than other three-valued approaches. But none of the conclusions in the

text turns on this choice. In particular, the points put forward in favor

of the PH-family hold equally well, for example, for the related family

obtained by adopting Kleene's "strong" valuation rules: 91

AA A & B BA B AAB rA vB rA B rA_____
T T F T T T T

T F F F T F F

T - F - T

F T T F T T F

F F T F F T T

F - T F - T -

- T - - T T -

- F - F - - -

Any philosophically motivated choice between such alternative valuation

rules would have to be based on essentialist considerations beyond those

emphasized in the text. For example, is 'FO& (3y)(y =0D)' essentially

true of every object that 'Fe' is essentially true of? One good reason

to prefer the weak valuation rules comes from sentences like 'Jimmy Carter

had to be the offspring of Miss Lillian'. (i) expresses this straight-

forwardly with the weak valuation rules, but not with the strong valuation

rules since with them it is false just because Miss Lillian did not have

to exist.

(i) (3x)(('y) (Jy 3 y=x) &D(3w)((V y) (Ly _ y=w) & Ozxw))
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assumption relaxed.

11 Peacocke, op. cit., p. 114, has intimated that definitions of

rigid designation that employ modal operators do not give necessary

conditions for rigidity since nonmodal languages can contain rigid
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12 As we shall see, this informal characterization is not quite accurate

when the schema is interpreted in accordance with the modal languages

Kripke develops in detail in "Semantical Considerations on Modal Logic."

A more accurate, though otherwise less felicitous characterization

would be as follows: a designating definite description is a rigid

designator if and only if it is impossible for (i) the object it desig-

nates to exist and not satisfy the description and (ii) for any other

object to exist and satisfy the description. This point will be dis-

cussed further in footnote 23.

13 Kripke, "Identity and Necessity," p. 146.

14 Kripke is not always consistent about his intuitive test. Some-

times his test seems not to be that rt might not have beenao be

false, but that ra might have been something other than the thing

that in fact is ' be false. (Cf., "Naming and Necessity," p. 270,

where the alternative phrasings occur in consecutive paragraphs; or

see "Identity and Necessity," p. 148.) The two phrasings differ

significantly. Suppose d is a designating definite description,

'(Ix)(Px)'. Then the test based on a' might not have been i' requires

that (i) be false:

(i) G3 x)O~(y) (Py y=x)

By contrast, the test based on La might have been something other

than the thing that in fact iso requires that (ii) be false:

(ii) (3x)0(3w) ((Vy) (Py y=--w) & ̂ 0(w=x))

The crucial difference between (i) and (ii) is a difference in the

scope of negation. As can readily be verified, the falsity of (i) is

in keeping with the criterion for rigidity we give in the text, whereas

the falsity of (ii) is not. As Slote has pointed out (op. cit., p. 72ff),
(ii) is false if '(7x)(Px)' is taken to stand for 'the individual that

is Nixon and a politician'. Hence according to the test based on

'L might have been something other than the thing that in fact is a.,
an intuitively nonrigid designator--'the individual that is Nixon and

a politician'--would be rigid. By contrast, (i) is true if '(7x)(Px)'

is taken to stand for this designator. That is, the test based on



208

rL might not have been 9' --and hence our criterion--excludes this

intuitively nonrigid designator. These considerations lead me to

conclude that the test Kripke meant to propose, his lapses not with-

standing, is that ar might not have been a be false.

15 Kripke, "Semantical Considerations on Modal Logic," reprinted in

Reference and Modality, ed. Leonard Linsky, "London: Oxford U. Press,

1971), p. 66f.

16 Here and elsewhere in the paper I use Quine's notation for predicates.

Cf. W. V. Quine, Methods of Logic, third edition, (New York: Holt,

Rinehart and Winston, 1972), p. 143ff.

17 This modal language is discussed at length under the title "LPC + SS"

in G. E. Hughes and M. J. Cresswell, An Introduction to Modal Logic,

(London: Methuen, 1972), Chapters 8 and 9, pp. 133-169.

18 Kripke, ibid., p. 69.

19 Ibid., p. 68.

20 The languages that require the same objects to exist in every

accessible world are not deviant in the manner described (though,

of course, they are philosophically objectionable on other grounds).

The deviance described is easy to miss. I am indebted to Drew Christie

for first calling my attention to it in regard to the criterion for

rigid designation given earlier.

21 '(ix)(Gx)' will be what Slote calls an "inclusively rigid designator,"

as contrasted with an "exclusively rigid designator" exemplified by

'(Ux)(Px)' in footnote 14 (op. cit., p. 72ff). As I point out in my
"Rigid Designation and Its Variants," where inclusively and exclusively

rigid designators are systematically contrasted with rigid designators,

the example Slote gives of an inclusively rigid designator will not

quite do. I am indebted to Richard Cartwright for the Fregean example

I use in the text.

22 Thus 'x=x' would still be handled differently from the way it is in

the K-languages. The identity predicate would not be just a K-language
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predicate. But '(Vx)((Ox=x)' would continue to be logically true on

the modified definition. By contrast, it would not be logically true

if we required 'y=x' to be false with respect to worlds in which the

object assigned to at least one of its variables does not exist.

23 I use the phrase, "existent objects 'Fx' is true of," for good

reason. We need to be careful about what our criterion for rigidity

requires of a designator '(1x)(Fx)'. One thing it requires, stated in

model-theoretical terms, is that the predicate '(Yy)(Fy 5 y=O)' not be

satisfied with respect to any accessible world by any extraneous

object--i.e. by any object other than the designated object. (When I

speak of an object satisfying "the defi:nite description" or "the definite

description predicate," I am alluding to a predicate of this sort.)

This requirement must not be confused with a related one, viz. that

'F0' not be satisfied with respect to any accessible world by any

extraneous object. In the case of our revised alternative truth

definition, these two requirements are equivalent. This is one of

several features of the languages picked out by this truth definition

that makes them philosophically attractive. But the two requirements

are not equivalent in the case of the truth definition for the K-

languages. Any number of objects that do not exist in a world may

satisfy 'F0' with respect to that world in a K-language, and yet

'(Vy)(Fy- - y=D)' still be satisfied only by the designated object.

K-languages are peculiar in this respect. The requirement our criterion

imposes on 'FO' in their case is that it not be satisfied with respect

to any accessible world by any existent extraneous object. Of course,

our criterion clearly imposes this same requirement in the case of

the languages picked out by our revised alternative truth definition.

There is another potential confusion here. In standard logic (i)

and (ii) are equivalent:

(i) (3x)(Vy)(Fy E y=x)

(ii) (3x)(Fx & (Vy)(Fy a y=x))

One might therefore expect (iii) and (iv) to be equivalent:

(iii) (Ix)a(F(y) (Fy _ y=x)

(iv) (3x)l(Fx & (Vy)(Fy a y-x))
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And indeed they are equivalent in the case of our revised alternative

truth definition. But they are not equivalent in the case of the

truth definition for the K-languages. Specifically, (iv) can be

false while (iii) is true since (iv) additionally requires 'FD' to

be true of the object in question even with respect to accessible

worlds in which this object does not exist. The non-equivalence of

(iii) and (iv) is another peculiarity of most K-languages. Two con-

siderations lie behind our adopting (iii) rather than (iv) in our

criterion for rigidity. First, imposing requirements with respect to

worlds in which the designated object does not exist seems gratuitous

to a referential notion like rigid designation. Second, if a require-

ment of this sort were to be imposed, a more appropriate one would be

for 'Fe' to be uniquely true of the designated object with respect to

every accessible world--i.e. the requirement expressed by (v) in the

K-languages:

(v) (.x)U(Fx & ('y)u(Fy = y=x))

Even though (iii) and (v) are equivalent in the case of our revised

alternative truth definition, I do not find (v) perspicuous as an

expression of our intuitive notion of rigid designation. Whether

these two considerations suffice to justify our choice of (iii) will

not be important here. None of our results pertaining to scope will

turn on this choice.

What then does our criterion for the rigidity of a designator

'()x)(Fx)' require of 'FG'? Stated in language that is free of model-

theoretic talk about possible worlds and that is neutral with respect

to all of the modal languages we are considering, our criterion

requires that

a. the designated object cannot exist unless 'F0' is true of it.

b. no other object can both exist and have 'F0' be true of it.

Neither of these requirements is readily expressed in standard philo-

sophic terms like 'essential' and 'essentially unique'. But this

should not be altogether surprising. We have no reason to expect our

standard philosophic terminology to be neutral with respect to all

of the modal languages we are considering. Undoubtedly, some of these
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languages conform more closely to this terminology than others do.

At this point we should be pleased just to have an informal character-

ization of our criterion that is neutral with respect to all of the

formal languages we are considering.

24 Kripke, "Identity and Necessity," p. 151.

25 The example is Drew Christie's. He has shown that a restricted

form of the distribution axiom schema holds in all PH-languages. Also,

see Jaakko Hintikka, "Modality and Quantification," Models for Modalities,

(Dordrecht: Reidel, 1969), p. 65.

26 Our metalinguistic convention has 'V' as a variable ranging over

variables and 'd.' as a variable ranging over singular terms. '#(I)'

denotes an open formula in which has one or more free occurrences.
'4(o)' denotes the formula that results from substituting oa for in

4(0), and '#(()x)(Fx))' denotes a formula that results from substitut-

ing '(Ix)(Fx)' for Y in 0(4).

*27 According to our convention about the representation of predicates

in the PH-languages, both 'F&' and 'GO' are standard predicates in

(5) and (6). As will be evident, our conclusions about (5) and (6)

will require 'GO' to be standard. But they will not require 'Fe' to

be standard. 'FQ' occurs in (5) and (6) only within a definite

description predicate, '(Vy)(Fy - y=0)'. Whether the predicate

occurring thusly is standard or not makes no difference to the truth-

value of any PH-sentence in which the definite description predicate

occurs. Hence, although we will use definite descriptions formed

with standard predicates--e.g. '(Ux)(Fx)'--when discussing the PH-

languages, our results will always extend to definite descriptions

formed with nonstandard predicates.

28 Some may prefer (7) to (2) as the criterion for rigid designation.

Kripke's comments about 'Sherlock Holmes' in the addenda to "Naming

and Necessity" (ibid., p. 764) are compatible with both of them.

Furthermore, the intuitive considerations that best serve to motivate

the notion of rigid designation do not discriminate between them. (7)
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is, of course, less restrictive. And it has the virtue of allowing

the thesis that proper names are rigid designators to stand without

qualifications for fictional names, assuming Kripke's comments are

correct. Still, I prefer (2). As we will see, (7) is not the only

weakening of (2) that is in accord with the intuitive underpinnings

of the notion of rigidity. Considerations beyond these motivating

ones will be needed to settle on a definition in any case. For me,

one such consideration is the incongruity of expressions like 'the

round square' being rigid designators.

29 Obviously, the distinction between rigidity and semi-rigidity can

be drawn. But I do not see how to motivate it except by expressly

appealing to "essentialist" considerations. Such considerations seem

to me more elusive than the ones usually put forward to motivate a

special class of designators in modal languages. This point will be

explored further in Section VIII.

30 Kripke, "Semantical Considerations on Modal Logic," op. cit., p. 67f.

31 Note that this conclusion holds for the PH-languages even when the

occurrences of the designator are restricted to standard contexts.

The distinction between standard and nonstandard predicates is not

significant when '0' replaces 'u' in (4).

32 1 think that the model-theoretical characterization of rBAI below

accomplishes everything needed. Given a formula A, let 0'A be the set

of satisfiable closed formulas Bi such thatr

i. Bi is (3! )( i())), where no atomic predicate occurs more

times in Bi than in A.

ii. There is an open formula "i( ) such that A (•,) (Vft)

(4ý(5t) (Y & '& ( *)I' is valid.
In the K-languages, rBA' is assigned a truth-value with respect to

all worlds. In the PH-languages, it will have satisfaction gaps in

the usual manner. With this proviso, one rule for assigning truth-

values will serve for all of the languages: given an assignment of

objects to variables, rBA • is assigned T with respect to a world

if and only if (i) the members of O'A are mutually satisfiable and
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(ii) A is assigned F with respect to no accessible world in which

all members of 0 A are assigned T. (The first clause, or something

like it, is needed to prevent such formulas as '(ix)(Fx)=(7x)(Gx)'

from being weakly necessarily true when '(3x)(Fx) -ow(3x)(Gx)' is

necessarily true.)

33 It is possible to construct a weaker necessity operator than '8'

that has the desired scope-related characteristics in the K-languages.

Let rB'A be assigned T in a K-language just in case A is assigned F

with respect to no accessible world in which (i) there exist objects

denoted by the designating expressions in A and (ii) the objects

assigned to the free variables in A exist. '"l in the K-languages

mirrors '8' in the PH-languages provided that one ignores nonstandard

contexts. '"' and '0"' can be similarly constructed to mirror 'O'

and '0' in the PH-languages, again excepting nonstandard contexts.

,, , and '0" have the same scope-related characteristics in

the K-languages as '18', '0', and '0' have in standard contexts in the

PH-languages. However, these weakened operators in the K-languages

lack many of the philosophic virtues of the corresponding operators

in the PH-languages. The distinction between standard and nonstandard

contexts is an important feature of the PH-languages. Thus, for

example, we cannot say that 'G0' is essentially true of an object

just in case 'OG@' is true of it unless we concede that the

existence predicate is trivially essentially true of every object.

Thus '"'' is not the philosophic analogue in the K-languages of '0'

in the PH-languages. 'DOG' in the PH-languages seems to capture the

notion of an essential predicate exceptionally well. In passing, we

should also note that 'BGO' in the PH-languages does not give an

acceptable representation of essential predicates unless we concede

that there are no relations that are "internal" to one relatum and

"external" to the other. (These points are discussed in more detail

in Christie and Smith, op. cit.)

34 The requirement is that A be closed and contain no de re occurrences

of modal operators. The latter is needed because the following formula
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is materially equivalent to (II) in every K-language when '(7x)(Fx)'

is a rigid designator:

O(Vy) (y=(,x)(Fx). Q Gy)
(where the definite description is read with minimal scope).

35 A corollary of this result is that, without employing de re

modality, there is no way in the K-languages to refer singularly to

an object with respect to worlds in which it does not exist. This

holds for the PH-languages even without the stricture against de re

modality.

36 A parallel point can be developed about '-' in the PH-languages by

replacing 'W' with '8' and 'Gx' with 'Fx' in (37) and (38).

37 That is, both must be assigned 'T', 'F', or nothing. (Keep in

mind that extensional contexts include ones like '(Vx).......'.)

38 Both Peacocke and Dummett seem to insist on a nonmodal definition

of rigid designation. Not surprisingly, the nonmodal definitions they

offer turn out to be thoroughly incompatible with our definition. I

discuss their definitions briefly later. A more detailed discussion,

particularly of Peacocke's definition, can be found in my "Rigid

Designation and Its Variants."

39 The best defense of this assumption I know of is by Quine (cf. Word

and Object, (Cambridge: MIT Press, 1960), pp. 176-190). Although the

point is sometimes ignored, Quine's method of reparsing names involves

two steps: first, names are replaced by definite descriptions formed

with special predicates and second, the definite descriptions are then

treated in the manner of Russell. The latter is the controversial

step. Without it, the former step is essentially notational. Thus

one could have name-free languages in which definite descriptions are

treated along the lines suggested by Strawson or as they are in some

free-logics (e.g. as in K. Lambert and B. C. van Fraassen, Derivation

and Counterexample, (Encino: Dickenson, 1972), Chapters 7 and 10).

As I hope this paper illustrates, one important advantage of replacing

names by definite descriptions is that it puts one in a position to
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mark scope distinctions that otherwise are difficult to mark and thus

are sources of confusion.

40 Our two families together cover a large fraction of the formal modal

languages in the literature. Still, there are modal languages in the

literature that are not in either family. For example, languages in

which bound variables always range over all of the objects in the

universe of discourse are neither PH- nor K-languages (unless, of

course, they require the same objects to exist in every possible world).

An unattractive feature of such languages is the extent to which their

nonmodal fragments depart from standard quantificational theory.

The PH- and K-families should also be contrasted with the family

of modal languages in which the semantics is just like Kripke's except

F is assigned to an atomic open sentence with respect to every world in

which an object assigned to one of its free variables does not exist.

(Robert Stalnaker has promoted a variant of these languages in his

"Complex Predicates," The Monist, 60, 3, (July, 1977), p. 334ff.)

One unattractive feature of this family, pointed out by Kripke (in

"Semantical Considerations on Modal Logic," fn. 11, p. 66), is that

validity is not always preserved when nonatomic predicates are sub-

stituted for atomic ones in valid formulas. Another unattractive fea-

ture of this family is that '(3x)( ~(3y)(y=x) &Qx=x)' is invariably

false in it, so that it precludes contingently existing objects being

necessarily self-identical. Hence, being essential cannot reasonably

be identified with being necessary de re.

41 Of course, the Barcan formulas are valid in some K-languages. But

these languages are special: in the model theory, they require the

universe of discourse to consist of just the objects that exist in

the actual world. Informally, the Barcan formulas assert that if it

is possible for '(3x)(Gx)' to be true, then there is an actual object

of which 'Gx' can be true. This is a strong claim, reaching well beyond

pre-theoretical intuitions. Still, given our present understanding

of de re modalities, we cannot entirely rule it out. As matters stand,

an ideal formalism for expressing alternative essentialist theories is



216

one that leaves the question of the validity of the Barcan formulas

open. One virtue of the K-family (and the PH-family) is that it does

just that. Indeed, it does more since it brings out what is at issue

in the question by systematically contrasting those member languages

in which the Barcan formulas are valid with those in which they are not.

The converse Barcan formulas are also not automatically validated

in the K-family. Their pre-theoretical status is, however, sharply

different from that of the Barcan formulas (cf. Alvin Plantinga, The

Nature of Necessity, (Oxford: Oxford U. Press, 1974), p. 59). The

Barcan formulas are suspect generally. But the converse Barcan for-

mulas seem correct for most predicates. That is, it seems reasonable

to grant that if there is an actual object of which 'Gx' can be true,

then unless something peculiar is going on with the predicate, it is

possible for '(3x)(Gx)' to be true. The objectionable instances of

the converse Barcan formulas exploit exceptional predicates such as

the nonexistence predicate, ",(3y)(y=0)'--predicates Kripke would call

"recherche." An attractive line to take with the converse Barcan

formulas is to distinguish two kinds of predicates, one for which the

formulas in question are universally valid and another for which they

are not. This is precisely the line taken in the PH-family.

In spite of some counterintuitive features, the K-family has been

dominant in the recent philosophic literature on essentialism. I

suspect this is as much owing to the historical role of Kripke's

formalization as it is to its elegance. Until "Some Considerations on

Modal Logic," efforts to join axioms for standard quantificational logic

with ones for S5 invariably ended up validating the Barcan formulas

(cf. A. N. Prior, "Modality and Quantification in S5," Journal of Sym-

bolic Logic, 21 (1956), pp. 6-62, and Hughes and Cresswell, op. cit.,

Ch. 8-10). This made the enterprise of quantified modal logic suspect.

For it is counterintuitive for a principle making so controversial a

claim to be a logical consequence of independently motivated principles

that seem to make no such controversial claim. Kripke put an end to

this source of suspicion (though not to others) by finding axioms for
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the two logics that when combined do not validate the Barcan formulas.

It is not just that Kripke's formalization of quantified modal logic
leaves standard quantificational logic and normal modal propositional

logic intact. The formal logic underlying the PH-family does this.

The point is that each of Kripke's axioms is an axiom for either

standard quantificational logic or normal modal propositional logic.

Hence, each of his axioms is motivated completely independently of

de re modal considerations. The one restriction he introduces is that
only closed formulas can be theorems, so that open formulas in proofs

must be taken as abbreviations of their universal closures. But even

this restriction can be motivated within standard quantificational

logic (cf. Quine, Mathematical Logic, (Cambridge: Harvard U. Press,
1947), pp. 76-89). Consequently, to object to the K-family, one must

argue that some basic principle of standard quantificational logic or

of normal modal propositional logic requires modification in the context

of quantified modal logic.

It is striking that the one restriction Kripke imposes pertains to

open formulas. This reinforces a point suggested by contrasting the

PH- and K-families, viz. that the treatment of open formulas is the

crucial issue in quantified modal logic.

42 The PH-family has many intuitively attractive features that other

formalizations have been criticized for lacking:
i. It leaves standard quantificational logic intact.

ii. It leaves normal modal propositional logic intact.

iii. It allows contingently existing objects.

iv. The Barcan formulas are not automatically valid in it.
v. It allows predicates to be essentially and necessarily true

of contingently existing objects.

vi. It requires every object to be essentially and necessarily

identical with itself.

vii. It allows being essential to be straightforwardly defined

in terms of de re necessity--viz. by equating the two.
viii. In it, existence is essential only to necessarily existing

objects.
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ix. It allows relations that are internal (essential) to one

of their relata and external (nonessential) to the other--

i.e., relations of the sort that being the off-spring of is

often held to be.

x. It represents the distinction between de re and de dicto

modality via differences in the scope of modal operators

vis-a-vis quantifiers, and not via separate operators for

de re and de dicto modalities.

xi. Validity is preserved when nonatomic predicates are sub-

stituted for atomic ones in its valid schemata (subject to

a syntactically specifiable restriction on substitution).

xii. Instances of '(3x)(DGx) =I 0(3x)(Gx)' are not automatically

valid in it.

xiii. The condition can be specified under which co-referring

designators can be universally substituted for one another

in it salva veritate--viz. that the designators be rigid or

semi-rigid.

xiv. Rigid designators are "scope neutral" in a specifiable

range of its contexts that can appropriately be considered

the "intuitively standard" contexts.

xv. The converse Barcan formulas are valid in it in the case of

normal predicates, but not in the case of a specifiable set

of recherche predicates.

xvi. Normally, a predicate is essentially true of an object in

it if and only if it is necessary that the predicate be

true of the object should the object exist; but this condi-

tion is not sufficient in the case of a specifiable set of

recherche predicates.

xvii. Normally, '*Gx 2 (3y)(Gy))' is not false in it regardless

of the object assigned to 'x'; but instances of the schema

can be false in it in the case of a specifiable set of

recherche predicates.

xviii. Normally, 'Gx a (3y)(Gy)' is not false in it regardless

of the object assigned to 'x'; but instances of the schema
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can be false in it in the case of a specifiable set of

recherche predicates.

xix. It allows the two versions of the Russellian definite

description predicate-- r(0) & (VY)((Y). =0 and

r( =0)--to be interchanged salva veritate

unless C(~) is a recherch predicate.

To the best of my knowledge, every other approach to formalizing de re

and de dicto modalities in the literature lacks at least one of these

features.

Of course, some features in the list carry more intuitive weight

than others. I have tried to list them in what I take to be roughly

the order of their importance. Again, to the best of my knowledge,

every other approach to formalizing de re and de dicto modalities in

the literature lacks at least one of the first ten features. For ex-

ample, Kripke's approach cannot have all of (vii), (viii), and (ix).

For suppose 'Gx'is essentially true of s is equated with 'UGx' is true

of s; then the K-family will bar relations that are internal to one

relatum and external to the other. Suppose instead 'Gx' is essentially

true of s is equated with '0((3y)(y=x)= Gx)' is true of s; then

existence will be essential to contingently existing objects. Need-

less to say, the K-family also lacks (xiv) through (xix). Formally,

the PH-family secures the features the K-family lacks chiefly through

a not unreasonable revision of the distribution axiom: r3 (A = B)

(OA1 OiB)' becomes rC(A B) = (QA = D((3f)(f==,)&...&(3') ('=f%) & & B))',

where I,, .... ,k are the variables occurring free in standard contexts

in A but not in B (cf. Christie and Smith, op. cit.).

Showing that the PH-family has all of the features listed does not

show that it is beyond objection. Perhaps it has some yet to be

noticed feature that conflicts with our informal intuitions. The list

covers only those features that other formalizations have been criticized

for lacking. Still, since the PH-family does have all of these features,

it is not open to any of the usual objections. This fact provides a

good prima facie case that the family fits our intuitions. It also
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provides a good prima facie case against the claim that to get an in-

tuitively reasonable formalization of de re modality, one must resort

to separate de re and de dicto operators (cf., for example, David

Wiggins, "The De Re Must, " Truth and Meaning, ed. Gareth Evans and

John McDowell, (Oxford: Oxford U. Press, 1976), pp. 285-312).

43 Linsky alludes to the PH-languages (op. cit., p. 134), but the for-

mal semantics he elaborates and defends is that of the K-languages,

supplemented with constants (pp. 130-152).

44 This does not imply that de re modality can be reduced to de dicto

modality in standard contexts in the PH-languages, for rigid designa-

tion is itself an inherently de re modal notion.

45 Under the imposed restrictions, the only such inferences that are

warranted in K-like languages are ones from de dicto to de re possi-

bility and strong necessity.

46 Peacocke, op. cit., p. Ill.

47 Ibid., p. Illf.

48 Some may think that the position I attribute to Dummett, while suit-

ing my purposes, is not entirely faithful to his text. I attribute

the position to him primarily on the basis of the following passage

(op. cit., p. 128):

Kripke's doctrine that proper names are rigid designators

and definite descriptions non-rigid ones thus reduces to the

claim that, within a modal context, the scope of a definite

description should always be taken to exclude the modal

operator, whereas the scope of a proper name should always

be taken to include it. Even if this were so, it would not

demonstrate the non-equivalence of a proper name with a

definite description in any very strong sense: it would

simply show that they behaved differently with respect to

ad hoc conventions employed by us for determining scope. But,

in any case, we have already seen that Kripke's doctrine,
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thus understood, is false on both counts. Kripke himself

gives several examples in which a definite description is

taken as having a scope inclusive of the modal operator;

while we have noted that there are, conversely, cases in

which the scope of a proper name must be taken to exclude

the modal operator, a fact which is implicitly admitted by

Kripke in his comments on the example of the standard metre

rod.

Notice that, even though Kripke's paradigm of a rigid designator is a

definite description, Dummett nonetheless attributes to him the view

that all definite descriptions are nonrigid. In his haste to reject

Kripke's claim that names are rigid, Dummett appears to me not to

have fully grasped what Kripke is getting at. I discuss Dummett's

response to Kripke in more detail in my "Rigid Designation and Its

Variants."

49 Every designator would trivially satisfy Kripke's test if the two

occurrences of d were taken to have the same scope, be it wide or

narrow. Hence, Dummett's view completely undermines this test. It

cannot even be employed to argue that 'the inventor of bifocals' is

nonrigid.

50 In both the PH- and K-languages, all variables that are bound from

outside the scope of modal operators range only over the objects that

exist in the actual world. Nevertheless, 'there are no possible-yet-

not-actual objects' cannot be expressed in any of these languages

unless first a further modal device--e.g., an actuality predicate or

operator--is introduced that in effect permits one to refer to other

possible worlds in contrast to the actual world. 'a', ' ', and '-'

do not enable one to talk exclusively about worlds other than the

actual one.

51 Given Dummett's criticisms of the explanatory use of possible world

model theory (cf. ibid., p. 284f), I would expect him to agree that one

can use modal operators independently of the possible world metaphor.
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52 This way of motivating the notion proved to be especially effective

in my "Rigid Designation and Its Variants," where it is used to defend

the definition of rigid designation given earlier--i.e., (2)--against

some alternatives that have been proposed in the literature.

53 Burge, op. cit., p. 244.

54 This point is easy to see. Substitution of '(Vy)(Gy = y=x)' for

'(Vy)(Fy - y=x)' preserves truth in all modal contexts so long as

'O(Vx) [(Vy)(Fy E y=x) " (Vy)(Gy - y=x)]' is true. But the latter is

clearly true if '(1x)(Fx)' and '(ix)(Gx)' denote the same object with

respect to every accessible world in which it exists, and they denote

no object with respect to any other accessible world.

55 So long as both occurrences of o have narrow scope with respect

to 'a', t =, is valid regardless of whether 4. is even a designator.

- If, however, one or both occurrences of ao has wide scope, then r•L=40

is valid only if d. is a designator. Of course, the substitution of

j6 for an occurrence of a in rBaL=c is comparatively uninteresting un-

less the occurrence of A in question has narrow scope.

56 The purely de dicto formula 'rl==c', which is not true unless a is

a strongly rigid designator, should not be confused with the purely

de re formula b.L =.- , which is true even if .L is only a designator.

57 On our understanding of 'l', if &($) is 'Gx', the de dicto formula

r1 ((0)x)(FX)) is equivalent to '1a[(3!x)(Fx) Z (3x)((Yy)(Fy = y=x) & Gx)'.

One might instead drop the uniqueness requirement from the antecedent,

so that the equivalent formula would read 'O((3x)(Fx)= ...... '. On

this understanding of '',rE =19 would no longer follow from ra =,i'

unless both d and a are rigid designators. Semi-rigidity would no

longer suffice because the de dicto formula rI9c=- would not be true

if o. is a semi-rigid designator. Such an alternative construal of

'8', while no more arbitrary than ours, is nonetheless too arbitrary

to provide a natural way of motivating the notion of rigid, as opposed

to semi-rigid, designation.
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58 Identity statements do yield a characteristic or rigid designators

that semi-rigid designators interestingly lack. If '(ix)(Fx)' and

'(7x)(Gx)' are co-referring rigid designators, then 'O(~dx)(Fx - Gx)'

is true. But it need not be true if either or both of them are semi-

rigid. This difference is nonetheless a flimsy intuitive basis for

motivating rigid, as opposed to semi-rigid, designation. As the text

indicates, the pair of notions together can be naturally motivated

without blatantly invoking essentialist considerations. I suspect,

however, that essentialist considerations like those used in our

definitions of the two notions are indispensable for motivating the

distinction between them.

59 Co-referring, scope neutral designators can be everywhere substituted

for one another salva veritate unless some of their wide scope occur-

rences are not referentially transparent. If there is such an exception,

it is clearly idiosyncratic.

60 The main difference remaining between strongly rigid designators

and standard constants is that the latter can denote, if not any exist-

ing object, at least any object that can be picked out by a definite

description, whereas the former can denote only necessarily existing

objects. Of course, this difference would disappear if every existing

object were to exist necessarily. Perhaps this is why the early

quantified modal logics, like Barcan's, required every object to

exist necessarily; the alternative was a quantified modal logic with

no exact counterparts of standard constants.

61 W. V. Quine, "Intensions Revisited," Midwest Studies in Philosophy,

Volume II: Studies in the Philosophy of Language, ed. Peter A. French,
Theodore E. Uehling, Jr., and Howard K. Wettstein, (Morris: University

of Minnesota, 1977), pp. 5-11.

62 Ibid., p. 7.

63 Ibid.
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(Princeton: Princeton U. Press, 1956), p. 10ff, where this view of

constants is explicit. Church remarks (ibid., no. 27),
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p. 139, n. 4), 'O(5x)(x=c & Gx)' would not be the necessitation of

'(3x)(x=c & Gx)'.
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73 If all formulas of the form of (74) are valid, then so too are all
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(i) oGc = (3x)(x=c & )Gx)

(ii) Gc (3x)(x=c & Gx)
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From the latter we conclude, by virtue of the substitutability of

strictly equivalent formulas, that all formulas of the form of (iii)

are valid:

(iii) 'Gc S -(3x)(x=c & Gx)

The validity of all formulas of the form of (73) then follows from (i)

and (iii).

74 For universal instantiation we here assume that domains are never

empty. The adjustment needed to allow for empty domains is obvious.
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constants in the modal case are required to be strongly rigid desig-

nators.
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81 Even though the constants of Q3 are not fixed-valued free variables,

Thomason's completeness proof for Q3 shows that such constants would
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83 In keeping with the interpretation of '0' in the PH-family, 'valid'

would probably best mean "never false." But questions of proper for-

malization remain to be answered here.

84 One way to make the construction more manageable is to restrict

occurrences of constants to '=' contexts and adopt a K-language treat-

ment of 'V=V'. This would avoid the loss of a classically two-valued
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