THE ORGANIZATION OF SPIRAL RAINBANDS
IN A HURRICANE
by

Inez Yau-Sheung Fung

S.B Massachusetts Institute of Technology
(1971)

SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE
DEGREE OF
DOCTOR OF SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

January, 1977

+
Signature of Author ...... ; . SO, SR II ........... ceeeeen

Department of Meteorology, January 1977

)y . Che

Certified DY .tiieeriineene e e deeiceecasnennnns e

Accepted by

pSS. ST 7oy
MAY ¢ 977

LiBrarIES







THE ORGANIZATION OF SPIRAL RAINBANDS IN A HURRICANE

by
Inez Yau-Sheung Fung

Submitted to the Department of Meteorology on
20 January 1977, in partial fulfillment of the
requirements for the degree of Doctor of Science

ABSTRACT

Radar pictures of hurricanes show a characteristic and persistent
(for three to four days) spiral pattern of rainbands, even though the
1ife of individual cumulus clouds is less than two hours. These rain-
bands have radial wavelengths of 20 to 60 km and remain quasi-statiomary
relative to the storm center. In this thesis, we hypothesize that the
underlying wave pattern which organizes the cumulus clouds into the
observed spiral bands is a result of the Rayleigh instability of the
boundary layer of the hurricane.

The steady state, axisymmetric and non-linear boundary layer flow
under a hurricane-like vortex is solved numerically by the "pseudo-time-
marching" method of Rivas (1975). A linear perturbation analysis is
performed on the mean flow thus obtained, which possesses both radial
and vertical shears. By approximating the vertical structure by three
layers of constant shear, and by assuming that the spirals are tightly
wound, we obtain, analytically, a dispersion relationship relating the
wavenumbers and frequencies of the perturbations.

A global eigenvalue analysis of the dispersion relationship
reveals that the most unstable wave has lines of constant phase which
correspond well to the spiral arms observed in a hurricane. The most
unstable wave is trapped buth radially and vertically, and the spiral
rainbands persist as long as the hurricane maintains its circulation.

Thesis Supervisor: Jule G. Charney
Title: Sloan Professor of Meteorology
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Fig. 1.1

Radar picture of Hurricane Caroline on August 31, 1975 taken
by WSR-57 radar at Brownsville, Texas. (From film loop of
radar pictures of Caroline. Courtesy of Mr. Billy Lewis, NHEML.)
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CHAPTER ONE - INTRODUCTION

Radar and satellite observations of the mature hurricanme have
revealed characteristically a very organized and persistent pattern of
clouds. The eyewall, a ring of intense cumulus activity, circles the
cloud-free eye at a radius of about 20 km, while, away from the eyewall,
spiral bands of clouds extend to as far as 500 km from the storm center.
Two types of spiral cloud bands are observed. Land-based radar, which
looks at low-level cloud distributions, reveals individual convective
cells grouped together to form spiral bands separated by clear regions.
These radar bands have radial wavelengths of 20 to 60 km and widths of
about half this or 10 to 30 km. The pattern of these bands, the "grand
design'", is fairly constant in shape, and lasts throughout the life of
the mature storm. Figure 1.1 shows a picture of Hurricane Caroline taken
by WSR-57 radar at Brownsville, Texas, on August 31, 1975. Because of
the curvature of the earth, and the usually weaker convective activity at
large distances from the center, the radarscope captures the spiral pat-
tern only within a radius of about 200 km. There also appears to be a
spiral cloud structure of larger radial wavelength, ca 200 km, which is
revealed by brightness enhancement of satellite photographs of the cirrus
cloud cover of the hurricane. In this thesis, we shall be concerned only
with the short wavelength spiral bands, and shall refer to them as spiral
rainbands.

In 1964, Charney and Eliassen demonstrated the importance of fric-

tion, together with cumulus clouds, on the growth of a hurricane depression.
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Frictional convergence in the boundary layer supplies moisture to the
clouds, and the clouds supply latent heat energy to the cyclone to cause
its growth. In this thesis, we shall attempt to show that in a mature
hurricane, it is the instability of the frictionally induced inflow into
the hurricane which is responsible for the organization and persistence

of the spiral rainband pattern.

1.1 KINEMATICS OF RAINBANDS

The rainbands have a very constant shape characterised by the
crossing angle, which is defined as the angle which the spiral makes with
a circle concentric with the storm center. The crossing angle is defined
to be positive if the rainbands spiral outward anticyclonically. Senn
et al. (1957) found that only a few logarithmic spiral patterns with
varying crossing angles (a) are needed to fit all the bands observed on

the radarscope. These log spirals are described by

Ro
JF% = faw & = @( V- ’7‘—) (1.1.1)

where B = tan 20° , and Ro = radius of eyewall. An average value of
the crossing angle is 15°. According to Senn et al., the patterns have
from two to seven arms. Malkus et al. (1961) found that the rainbands
maintain a quasi-conservative position relative to the quadrants in which
they are found and do not rotate about the storm center. By comparing
cloud and radar photographs of Hurricane Daisy on August 25 and 27, 1958,

Malkus et al. found that the major bands of Daisy on the two days remained

in approximately the same position and orientation relative to the eye.
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They moved only some 10 to 20 n.m. closer to the center in two days!
However, Senn and Hiser (1959), by measuring individual echoes in a single
band and plotting their half-hourly positions, and identifying their mo-
tions as that of the band itself, found an apparent propagation radially
outwards at speeds of 4 to 30 kts. They also found that the lifetime of
an individual band is rather short — about 35 minutes, which is about

the lifetime of the echoes that compose the band. The longest-lived ones
last for about two hours. In contrast, Senn et al. (1957) observed that
the bands moved with the mean wind at 2500 feet where the radial speed is

about 2 to 4 kts.

To resolve this contradictory evidence concerning the propagation
of the rainbands, the author studied the film loop of radar pictures of
Hurricane Caroline. A sequence of six pictures of Caroline taken at ten-
minute intervals is displayed in Figure 1.2. Over the twelve hours or so
of observation, it was found that the spacings between the bands remained
nearly constant even though the bands were often irregular and fragmented.
At no time was band propagation or band generation near the center ob-
served, as when a pebble is dropped into a pond. Senn and Hiser were
tracking the migration of a specific set of radar echoes, not an indivi-
dual band. An individual band may have the appearance of propagating
outwards if the echoes which compose them travel with a velocity component

which is directed radially outwards.

1.2 RADAR ECHOES

Rainbands are made up of stratocumulus clouds, except perhaps for

the band closest to the eyewall of an intense hurricane. These rainband
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clouds are not very tall [Hawkins et al. (1976)]. They are generated on
the upwind side of the band, and move cyclonically across the band and
dissipate on the downwind side. Their speed of propagation along a band

is of the order of 100 km/hr [Tatehira (1961)], giving a circumferential
speed of the same order and a radial speed of 100 sin (0) km/hr or 17 km/hr
for the crossing angle of 10° found by Tatehira. He attributed an appar-—
ent outward propagation of the band again to the radial propagation of the

echoes.

1.3 ROLE OF LATENT HEAT

In the mature hurricane, the eyewall, a site of intense convective
activity is made up of cumulonimbus towers reaching to the tropopause.
Except perhaps for the rainband closest to the eyewall, however, the
clouds in the outer portions of the hurricane are not very tall (Figure
1.3). Ligda (1955) found that the echres in the rainbands were indeed
stratiform in character. The numerical experiments of Kurihara (1976)
and Diercks and Anthes (1976a) also showed that the artificial supression
of latent heat release did not affect the formation or propagation of the
gravity waves they found. Thus, although latent heat release plays an
active and necessary role in the formation and maintenance of the hurri-
cane circulation, we shall assume that its influence on the organization
of the rainbands may be neglected. This is, of course, not to say that
there is no feedback from the latent heat release, only that the feedback

is not a dominating effect.
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1.4 THEORIES OF BAND FORMATION

Early investigators of the rainbands made conjectures about their
formation based on their observations:

Fletcher (1945) and Wexler (1947) suggested that the bands were
cloud streets in the trade wind area or the Intertropical Convergence
7one which have "coiled into the hurricane'.

Kessler and Atlas (1956) attributed the spiral bands to a banded
structure in low-level horizontal convergence. This is confirmed by the
analysis of Tatehira (1961). However, neither of these authors gave a
cause for the convergence pattern.

Senn and Hiser (1958, 1959) suggested that "a stroug vertical up-
thrust at the eyewall" moving around the eye as an oscillating disturbance
would create one portion of a spiral band in a given quadrant at a given
time and another portion of the spiral at a later time in the next coun-
terclockwise quadrant. Gravity wave propagation in the vortex or advec-
tion in the hurricane's outflow at cirrus levels would then provide the
mechanism for the outward propagation of the spirals.

Atlas et al. (1963) envisioned the oscillating disturbance as a
convective tower (plume) displaced from the eyewall. The plume in spread-
ing downstream would trace out a spiral. They believed that an instabil-
ity at the base of the melting layer would generate roll clouds like the
rainbands. Contrary to the conjectures of previous investigators, they
thought that it is the spiral clouds themselves which determine where the
low level 1lifting and convergence will occur.

Because their observations showed a remarkable persistence of the
rainband pattern over three days, Malkus et al. suggested a stable iater-

action between the convective and hurricane scale motions in such a way
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that cloud regeneration occurs in a few favored locations. They did not,
however, elaborate on the nature of this interaction.

Both Tepper (1958) and Abdullah (1966) presented models of gravity
waves propagating along an inversion surface. They likened the formation
of hurricane bands to that of squall lines in mid-latitudes. However,
the interfacial waves obtained by Abdullah travel at an impossible speed
— 240 km/hr.

Three-dimensional simulations of the hurricane have produced
banded structures of spiral shape. Yamamoto (1963) recognized that for

el(mnr +16) the lines of constant phase

disturbances proportional to
are spirals. Krishnamurti (1961), Anthes et al. (1971), Anthes (1972),
Kurihara and Tuleya (1974), Mathur (1975), and Diercks and Anthes (1976a)
all performed time integration experiments using elaborate multi-leveled
primitive equation models which included the effects of friction and
latent heat release. All their models produced spiral bands of vertical
motion which appeared to originate near the storm center and propagate
radially outwards. Because the smallest grid size used by these investi-
gators was 20 km, they were unable to resolve the short-wavelength rain-
bands and obtained spiral bands with radial wavelengths of about 200 km.
Although none of the above models explained the origins of the rainbands,
they do shed some light on the nature of spiral-shaped waves in a hurri-
cane vortex.

In experiments in which he included latent heat released by as-
cending moist air at 375 mb (non-convective latent heat release) in
addition to convective release of latent heat above the boundary layer,

Mathur (1975) obtained propagating spiral bands of upward motion which
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developed where strong divergence took place in the upper troposphere of
the outflow region. The bands failed to develop when the upper level
heating was excluded.

Anthes gg_gl'(197l) and Anthes (1972) obtained pronounced spiral
bands of upward motion at the top of the boundary layer when their hurri-
cane model developed asymmetries in the outflow region. These bands had
radial wavelengths of the order of 200 km, propagated outwards at a speed
of 24 kts. and had lifetimes of 2.5 days.

Diercks and Anthes (1976a) showed that these bands were traveling
gravity waves with associated strong convergence of cyclonie angular
momentum in the boundary layer. When they artificially supressed latent
heat release from both convective and non-convective processes, they
found that the bands continued to propagate outwards, suggesting that
latent heat release in the bands was a result, rather than a cause, of
the convergence pattern associated with the traveling wave and hence did
not play an important role in the maintenance or propagation of the
bands.

Kurihara and Tuleya (1974) obtained spiral bands also of the order
of 200 km wavelength which moved outwards at speeds of 50 to 100 km/hr.
These bands behaved like internal gravity waves. These authors favored,
but did not substantiate, the moving point source suggestion of Senn and
Hiser (1959) as the generating mechanism for the bands.

Kurihara (1976) solved an eigenvalue problem for perturbations
which were Archimedes spirals (with constant wavelengths in the radial
direction). His basic state was a hurricane-like vortex which had shears
in both the radial and the vertical directions. Kurihara found that the

pattern with two arms and radial wavelength of 200 km had the fastest
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growth rate. This wave grew near the center of the storm, derived its
energy from the radial shear kinetic energy of the mean wind, propagated
outward and became a neutral gravity wave. His results supported Diercks
and Anthes' numerical result that latent heat release is not important
for the formation and propagation of the spiral bands.

Diercks and Anthes (1976b) found that the formation of the spiral

bands requires rotation in the mean state, though not inertial instability.

1.5 THE PRESENT INVESTIGATION

The problem of spiral bands in a differentially rotating vortex
is not unique to the hurricane. Lin and his co-workers [see e.g. Lin and
Shu (1964), Lin (1970)] have developed the Density Wave Theory to explain
the grand design of the spiral galaxies. The central problem to these
spiral patterns is very well described by Oort (1962) as quoted by Lin
(1966) in an article concerning spiral galaxies:

In systems with strong differential rotation, such as
found in all nonbarred spirals, spiral features are
quite natural. Every structural irregularity is likely
to be drawn out into a part of a spiral. But this is
not the phenomenon we must consider. We must consider
a spiral structure extending over the whole galaxy,
from the nucleus to its outermost part, and constituting
two arms starting from diametrically opposite points.
Although this structure is often hopelessly irregular
and broken up, the general form of the large-scale
phenomenon can be recognized in many nebulae.

Indeed, in a Cartesian coordinate system, any wave of the form

el(kx + Ly - wt) has wavefronts which are parallel straight lines making

-4% with the x~axis. They propagate with a phase

speed given by ¢ =

angles of tan_l[

Similarly, then, in a cylindrical coordinate
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e1(¢(r) + mO-wt) , where @(r) is a well-

system, any wave of the form
behaved function of r, m is a positive integer, and w is a constant, has

1ines of constant phase given by the curve

dCr) + me = constant” (1.1.2)

which describes a spiral pattern. The pattern has m arms. The ''crossing

angle'" o which the spiral makes with a concentric circle is given by

A = ta»w—.{ _fﬁéiﬂ.. } (1.1.3)
(r)

where k(r) =-%% is the wavenumber in the radial direction. If k(r)

is positive, then the spiral will appear as a "erailing" spiral. If

k(r) 1is negative, while m remains positive, then the spiral is a "lead-

ing" spiral. (See Figure 1.4.) The spiral propagates in the r-direction

with a phase speed given by cph = % .

In view of the above discussion, the questions to ask, then, are
not why there should be spirals, but rather:

1) why the spiral which we would expect in a differentially rotating
hurricane should possess the wavelengths and phase speeds that are
observed; and

2) why the spiral pattern should persist for periods of three days
or more when the lifetime of the convective cells which compose
them last for no more than two hours.

The answer does not lie in the suggestions of Fletcher and Wexler

that the rainbands are cloud streets which have coiled into the hurricane.

For then in the course of a day or two there would be an increasing pile-up
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trailing spiral: m>0, k(r)>0

leading spiral: m>0, k(r)<O

Fig. 1.4 Schematic picture of trailing and leading spirals.



23.

of cloud streets wound into oY near the center of the storm. This is not
observed.

Nor are the rainbands just gravity waves propagating outwards as
suggested by Anthes (1971, 1972), Kurihara and Tuleya (1974), and Diercks
and Anthes (1976a). These gravity waves would tend to disappear from the
scene unless there were a continuous generating mechanism or a feedback
process to replenish them. Moreover, the gravity wave spirals obtained
by these authors have wavelengths about ten times those observed on the
radarscope.

The mechanism that we propose for the explanation of both the
structure and the lifetime of the spiral rainbain pattern is Rayleigh
instability in the hurricane boundary layer above the sea surface. (See
Lin (1955) for a discussion of Rayleigh instability.) This explanation
was originally suggested by Faller (1961) who noted the similarity be-
tween the crossing angle and spacing of the rainbands and those observed
in an experimental study of the instability of the laminar Ekman layer.
However, further investigations by Faller (1966, 1972) were concerned
with the instability of the local Ekman flow, and did not deal with the
global instability of the entire hurricane boundary layer.

Because of the strong winds in the hurricane, its boundary layer
structure is determined frictionally rather than convectively. Thus it
possesses Ekman-like velocity profiles which have inflection points in
the inflow velocity U. The presence of the inflection point (or vorti-
city extremum) is in our case a sufficient as well as necessary criterion
for instability. The inflection point then occurs in £he lowest kilo-
meter of the hurricane. The most unstable waves would have wavelengths

about ten times the depth of shear across the inflection point [Rayleigh
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(1-80)]. They would orient themselves to the mean flow so as to maximize
the shear across the inflection point in the velocity component perpendi-
cular to the wavefront. They would also propagate at a speed equal to
the mean wind at the inflection point so that there could be most effi-
cient extraction of energy from the mean flow.

Indeed, the average crossing angle of 15° for the rainbands agrees
well with that for the most unstable wave of the local Ekman flow [Faller
(1964), Tatro and Mollo-Christensen (1967)]. Also the observation that
the bands move with the speed of the mean wind at 2500 feet (0.8 km)
[Senn, Hiser and Bourret (1957)1 supports Rayleigh instability as the
generating mechanism for the rainbands.

The picture we propose for the spiral rainbands is as follows:
Rayleigh instability of the hurricane boundary layer manifests itself as
spiral regions of alternate upward and downward velocities. Inflowing
moist air in the lowest kilometer of the hurricane then, on encountering
this spiral wave pattern, rises (sinks) in the region of upward (down-—
ward) motion, forming clouds (clear regions). The spiral rainband pat-
tern thus does not possess the same clouds throughout its three or more
days of existence, but merely provides a site for cloud formation. 1t
turns out that these waves are trapped both in the vertical and in the
radial direction (see Chapter 4). Thus, even when the waves attain finite
amplitude equilibrium with the mean flow (which we shall not consider in
this study), the spiral wave pattern is capable of existing as long as
the hurricane maintains its strength.

Chapter 2 of this thesis presents the governing equations for the

basic state and the small-amplitude short-wave perturbations. The method
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of multiple scales is briefly reviewed. This method allows, on the scale
of variation of the phase of the waves, separation of the horizontal and
vertical dependencies in the perturbation equations. The nonlinear in-
separable basic state equations are solved in Chapter 3 by the Rivas
scheme (1975). By employing the large Reynolds number approximation and
a three-layer representation of the basic state found in Chapter 3, we
obtain, in Chapter 4, the local dispersion relationship governing the
frequencies and horizontal wave numbers of the waves. By applying the
radial boundary conditions, the global dispersion relationship is obtain-
ed, from which we find the wave with the fastest growth rate. Finally,
the wave amplitude is determined again using the method of multiple

scales.
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CHAPTER TWO - THE MODEL

2.1 GEOMETRY

We shall consider a stationary circular vortex on an f-plane. Its
geometry is illustrated in Figure 2.1. It is semi-infinite in the verti-
cal, bounded below by a rigid bottom, and it extends from some radius R0
radially outwards to infinity. It consists of two layers in the verti-
cal: the upper one corresponding to the stably stratified quasi-Boussin-
esq interior of the hurricane, and the lower layer, its associated bound-

ary layer. We assume that the boundary layer is neutrally stratified.

2.2 GOVERNING EQUATIONS

We shall develop the basic state and linearized equations in our
model in cylindrical coordinates (r, 8, z) whose center coincides with
the center of the storm. The corresponding velocity components are (u,
v, w). The notation for the velocity components is jllustrated in
Figure 2.2.

For the sake of completeness, we shall develop the equations for
a stratified boundary layer. In actual application, the frictional terms
in the interior and the buoyancy terms in the boundary layer equations
are neglected.

The dimensional equations for a quasi-Boussinesq fluid are:
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Fig. 2.1 Geometry of the model.
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Fig. 2.2 Notation of coordinate system and velocity
components.



29.

3“* 2D %
aulx L u, our Ne Uy duxr _ N
2t o t R ee TWra T N7 -f s

:—.L_ 3694 m‘lb(.

B P + * (2.2.1)
AUx 2l e dV% 2 Us Un
2ts ¥ U.q-,ar' ¥ T« 56 W DE* * Y -‘—qu"
2
= - }\;—'r;ba_ﬁ - W Ve Oy (2.2.2)

AWy o, DU Ny dWre g 20T

oty 26 T e 28 > gon
-] W (2.2.3)
$x 23 3 ¥ JJ'V; *
2 2 2 vy 2
bt*(u@‘) v A 2 (nB)+ ;g(lw&)
2
by gs"(,lbw Bs) = O (2.2.4)
2 U M LWr o, 2
20 T Cx oy 26 + f,é‘g,f(f*w‘)
=0 (2.2.5)
where
> 2z L2 2= 2"
Us = 502 * got T G260 5 (2.2.0)



30.

We non-dimensionalize and linearize at the same time, with the

barred quantity (

) representing the basic state, and the primed quan-

tity ( )' the perturbations. The starred quantities are dimensional,

and the unstarred ones are non-dimensional.

Ly

Py

an*

where

b
U

00(5+p') (2.2.7)

— g'
n 0 + —
0
Dr
Dz

D

2.2.1 Scaling of r

= /v/f , L = overall radial scale of hurricane

In the hurricane, there are two radial scales. The mean hurricane

circulation varies on the scale of the radius of the storm, L ~ 500 km ;

the radial wavelength of the rainbands is only about 15 km near the eye,

and about 30 to 60 km farther out. We have used D v 1 km as the scal-

ing parameter for r,

in Equation (2.2.7), even though the wavelengths we

are interested in are at least ten times D. This is consistent with
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Rayleigh's (1880) prediction that wavelength (}) of the most unstable
wave is related to the depth of the shear region (b) (In Rayleigh's
notation, A = 8b). In this problem, the depth of the shear is of the
order of the boundary layer depth D.

To separate these two scales, we introduce the method of multiple
scales (See Nayfeh (1973), Chapter 6, for detailed discussion). The
method of multiple scales is a generalization of the WKB method which
is applicable only to ordinary differential equations.

Instead of using the one radial coordinate r (which is scaled

by D), we introduce two new radial coordinates r, and r,
.
; foz g 8(n) (2.2.8)

where € = %’<< 1, and @(rl) is to be determined from the analysis.

Then, 2 . 8 2 26 2
ar = ar 27 27 B,
_ L dE o 2 L3
= ey A wm v ¢
48 2 >
s - Dfp + e 0\’|

We define k(r ) = &% and Ik(rl)lm 0(1) , so that

1 f

.z + R(n) ow, (2.2.9)
o ¢ g,
and
2
a 2 Z
2L Ry + € b
or al : (2.2.10)

Then a quantity q(r, 6, 2, t) is now a function of (ro, L 8, z, t) .
q(xr, 08, z, t) >alr, r, 9, 2, t)

An 0(1l) variation in T g corresponds to an 0(1) , or "fast" variation
. . . -1
in r, whereas an 0(1) variation 1n T, corresponds to an oE™") ,

. 1
"glow", variation in r. In other words, T, character.zes the '"small"
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scale phenomena, which vary "quickly" on the scale of D, and 1, charac-
terizes the "large' scale phenomena, which vary 'slowly" on the scale of
D.

The steady basic state variables, which show no small-scale varia-

tions, are then functions of r, and z only.

ul(r, z) ~» ﬁ(rl, z)

and the perturbation quantities, which have small-scale phase variation

and large-scale amplitude variation, depend on both r, and T,

u'(r, 6, z, t) ~ u'(ro, L 6, z, t)

As a result of the scaling procedure, two non-dimensional numbers

appear:

the Rossby number Ro = %f

2.2.11
o LD Y (2210
and the Reynolds number RE.= g5 v J}f:‘

with D = E"

and they are related by the radial scaling parameter we have defined

-1

Re = e Ko (2.2.12)

2.3 THE NON-DIMENSIONAL BASIC STATE EQUATIONS

We assume that the mean hurricane is steady and axisymmetric. .

Then the non-dimensional basic state equations are:
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2.4 THE NON-DIMENSIONAL PERTURBATION EQUATIONS
governing the behavior of three-dimen-

The linearized equationg
sional perturbations of the steady ax1symmetr1c mean state are
i v ou _E_

Re %—%’ + &U-Z»a?,,“ T (o 36
— oy -V = -eRe[u'g”(.:,Eg—i‘-' 4—w"“§
_ g_ﬁ L%)] + ¢ %G (U) (2.4.1)
R [20 803 R cu B L2(5]
o - I = -€k [“'23\ P 03 *‘7"_%’
(2.4.2)
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CHAPTER THREE - THE BASIC STATE

Because the forces which operate in the interior of the hurricane
are different from those in the boundary layer, we shall consider the

two regions separately.

3.1 THE INTERIOR BASIC STATE

Observational studies of the hurricane have concentrated on the
interior of the hurricane where frictional effects are negligible. The
hurricane circulation is predominantly a symmetric cyclonic vortex whose
tangential wind speed V decreases with radius away from the eyewall.

A simple representation of this radial distribution of V is Vo r_x,
where .5 < X < 1. The vertical shear of V 1is small as is evident
from Figure 3.1 of Hurricane Hilda. Radial motion in the storm is con-
fined to the inflow layer at the bottom of the storm, and the outflow
layer at the top, and is negligible in the interior portion. (See
Figure 3.2.) The hurricane clearly possesses vertical motions — as
evident from the cloudy and clear regions. However, the maximum verti-
cal velocity, which occurs at the base of the eyewall, is ~ 1 m/sec ,
and is small compared to the tangential wind v 30 m/sec

Figure 3.3 shows a cross—-section of the potential temperature in
Hurricane Hilda. The bulk of the storm is stably stratified %g'> o,

and, except for a region close to the eyewall, the horizontal temperature

gradient is weak, which is consistent with the small %% .
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We shall, therefore, make the following assumptions for the

interior of the mean hurricane:

1) Steady, axisymmetric (3.1.1a)
2) Constant angular momentum: V'w-% (3.1.1b)
) v
3) No vertical shear: 3z 0 (3.1.1c)
4) No mean radial motion: U=z0 (3.1.1d)
_ - ( -H>)/.L
5) ? = e & K (3.1.1e)
where °\ 1is the density scale height, Hp is the height of the
top of the boundary layer, and N2 =g 3::6 = constant > 0 .
We shall call V in the interior V; . This reduces the interior basic

state equation to:

- Qo% - Vo = - Ko %‘2; (3.1.2)
o = - %’%—% - %]',D‘_ (3.1.3)
with ? = -3 H‘)/'u' and
V,g _ _cFl_ (3.1.4)
where c¢ = circulation of the hurricane. A plot of V; is shown in

Figure 3.4.
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3.2 THE BOUNDARY LAYER BASIC STATE

Because of the strong winds in the boundary layer, and the lack
of observation stations in the ocean, especially during a hurricane,
there is little information about the structure in the lowest 1 to 2 km
where friction plays an important role. Low-level flights (23000 feet)
reveal that most of the inflow into the hurricane occurs in this layer
[Hawkins and Rubsam (1968)]. Because of the conservation of angular
momentum and the finite amount of energy possessed by the inflow air,
this inflow cannot penetrate into the center of the storm, and erupts
upwards at the eyewall. The maximum vertical velocity attained in this
region is ~ 1 m/sec at the base of the eyewall and is very small com-—
pared to the tangential wind there (v 50 m/sec).

The hurricane owes its origins to, and spends most of its life
over the warm tropical ocean where the strong evaporation at the surface
provides upwards fluxes of heat into its boundary layer.

The question then arises as to whether it is convection or fric-
tion that plays the dominant role in the boundary layer. A convectively
driven boundary layer, usually called the "mixed layer", is characterized
by nearly uniform potential temperature and wind profile; whereas the
frictionally driven layer has uniform potential temperature but a vari-
able Ekman-like, veering velocity profile.

Instead of estimating fluxes of heat and momentum under hurricane
conditions to determine the relative importance of these mechanisms, we
turn to wind profiles observed at land stations under the influence of a
mature (not-yet-decaying) hurricane. Figure 3.5 shows the hodograph of

the wind observed at Miami at various distances from the center of
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Hurricane Donna (September 38-10, 1960). The diagrams are plotted from

the Northern Hemisphere Data Tabulations Daily Bulletin. They indeed

show an Ekman-type spiral structure.

It is not surprising that the hurricane boundary layer is fric-
tionally driven. The buoyancy effects from the warm ocean, which would
have generated an unstable mixed layer under ordinary quiescent condi-
tions, are inadequate to compete with the turbulent momentum fluxes
which are produced under the stronger hurricane winds.

In view of the discussion above, we make the following assumptions

about the mean hurricane boundary layer:

1) Steady, axisymmetric

2) p=1, N =0

3) v, the eddy coefficient of friction, is constant. This assumption
may not be realistic, but it provides a qualitatively correct first
attempt at the solution of the problem.

The boundary layer basic state equations are then:

2T . < 2U T UV = - R.2P U

RO(U‘%—_‘ +_W _'5-%; — /;-‘- - V RD 2Y\ ¥ vz?— (3.2.1)
= [V v "'b.l’-} r = 2 (3.2.2)

R°[“’Ca’r‘.*7.)*wﬂ« Uy

__ 2P _ gD
O - = a} U" (3.2.3)

_ e

U 2W g (3.2.4)
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We shall solve Equations (3.2.1) - (3.2.4) subject to the follow-
ing boundary conditions:

=W=0 at z =o

<|

U =

=]

=0, v = V; as z > @
Replacing the pressure gradient in (3.2.1) by that in the interior, we

have:

Re(Uigs # W53 + =7 )*( 0 =V) = 1* (3.2.5)
SECRE R SR
'an ‘b\'uW -
vy + D} z o (3.2.7)

Equations (3.2.5) to (3.2.7) are not easy to solve because of
their non-linearity and the radial dependence of V; . They are not
separable in r; and 2z except in special cases [like pure solid
rotation, solved by Bodewadt (1940)].

The momentum-integral method due to Th. von Karman (see
Schlichting, 1955, page 144, for a detailed discussion) is an approxi-
mate method which finds depth-averaged solutions to the boundary layer
equations rather than solutions at every point in the flow. It has
been used by Smith (1968) and Kuo (1971), and is dependent on the
similarity property of the flow for convergence. (In the presence of
rotation, similarity is not possible.)

Carrier et al. (1971) obtained solutions to the non-linear

boundary layer equations by representing the dependent variables by
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series expansions. The Galerkin technique yielded ordinary differential
equations governing the coefficients of the series expansions. These
equations were integrated radially inwards from an Ekman flow at large
radii.

In this thesis, we shall find solutions to the steady state
boundary layer equations by solving the "pseudo-time-dependent” equa-

tions by an ingeniously simple scheme by Rivas (1975).

3.2.1 The Rivas Scheme (1975)

In order to solve a system of equations

F (=20 (3.2.8)

where F is a non-linear, in general complex, matrix operator, and u is

the vector of dependent variables, we look for the steady state solution

to
U _F () (3.2.9)
ot
We iterate (3.2.9) in the following manner from the vth "time step"
to the v + 1th "time step':
~ > v
0= u” + At [Fs*(u") - Fa(u )] (3.2.10)
7
LA HMT[E (u’) + g (U)J (3.2.11)

W do- At[Fs* () - Fal (Y] (3.2.12)

where the * denotes complex conjugates, and FS and FA are the symmetric
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and anti-symmetric matrices of F.
T T
FS+(F+F)/2, FA+(F-F)/2.

The superscript T denotes transpose.

3.2.2 Test of the Rivas Scheme with Carrier's Model (1971)

Carrier et al. (1971) solved the following equations:

) > _
‘57(“‘) ¥ zg(r“’) O (3.2.16)
2u du 2P v M
wl s wiy - 2w - F t 5 = Pr 621D
2 2 (e (= LAy (3.2.18)
uﬁ?U”) +.w'38 (r ) +2Afrw >3-

O = 53 *'ﬁ (3.2.19)

subject to the boundary conditions:
at z = 0 Mz = W=0
at z > = uzop, v, 00) = vV (r) (specified) (3.2.20)

They applied a series expansion method in combination with the
Galerkin technique to solve the equations. They were primarily inter-
ested in predicting the vertical velocity at the top of the boundary
layer — an extremely small but physically important quantity. They

specified the interior flow V(r)

Q|/\‘ oL Tr £ Jf,ro
VCr) = (3.2.21)
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4c
with ¢, = ——% . This is illustrated in Figure 3.6. They chose:
To
5
o= |0 Cynl/‘yao.
Vo = 150 i b at 1= 20 vwules

(3.2.22)

L), = %% radia o '6L9v7T

We solved Carrier's system of Equations (3.2.16) to (3.2.21) by
Rivas' Scheme. The results are shown in Figure 3.7. We see that the
agreement between our solution and Carrier's solution is very good.
(We note that Carrier's solution near the center is an "artifact of
the methodology".)

The discrepancy between our solution and Carrier's solution at
large z could be due to several factors. First, we obtained u and v
directly from the momentum equations in r-z coordinates, and interpo-
lated our result to x-z coordinates (x v r2) for comparison with
Carrier's results. Carrier et al. obtained convergent solutions for
the expansion coefficients, and their solutions u, Vv, W were still
dependent on their choice of expansion function. Also, our choice of
infinity in z coordinates was 2z = 5 , whereas Carrier's was z = 5.6 .
Since w was computed from the continuity equation in both Carrier's
and our solutions, any discrepancy in u between the two solutions become

magnified in w.

3.2.3 The Boundary Layer Solution

We apply the Rivas Scheme to Equations (3.2.5) to (3.2.7) subject

to the boundary conditioms:
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at z=0 a = V = W =0
(3.2.23)
at z > = J:O)v:vao
We specify V; = 50 m/sec at r = 25 km (3.2.24)
so that ¢ = .1
Pick
v =5x 10° cm?/sec
£ =5zx 10"°/sec
(3.2.25)
U = 25 m/sec
L = 500 km
so that
U
R:'_—‘ —
!
(3.2.26)
__D/\
D=»JT = i '{MN\

The numerical scheme is shown in Appendix A. The solutions are shown in

Figure 3.8.

3.3 BOUNDARY LAYER INSTABILITY

At each radius, the boundary layer profile obtained in Section
a constant wind

3.2 resembles that of the classical Ekman profile under

aloft.
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Instability of the classical Ekman layer in a neutrally stratified

atmosphere has been investigated experimentally by Faller (1963), Tatro
and Mollo-Christensen (1967), numerically by Faller and Kaylor (1966), and
analytically by Lilly (1966).

Their results show that there are two different types of insta-
bility associated with this boundary layer; each forms a series of
horizontal roll vortices whose spacing is related to the depth of the
boundary layer. These are summarized in Figure 3.9. The first type,
called class A waves, which occurs at Re > 55 , but vanishes at Re
larger than 110, is oriented at an angle 0° to 8° to the right of the
geostrophic wind, and has wavelengths of about 28D. These waves derive
their energy from the boundary layer wind component which is parallel
to the roll axis, and are hence called "parallel instabilities'.

The other type of instability, called class B waves, occurs at
Re > 110. They are of shorter wavelengths, about 11D, and are oriented
at an angle about 14° to the left of the geostrophic wind. They derive
their energy from the shear of the boundary layer wind components per-—
pendicular to the roll axis. Their existence depends crucially on the
existence of an jnflection point in the wind profile, i.e. a maximum of
vorticity somewhere in the flow, and are referred to as "inflection point
instabilities". Since this class of instabilities was first discovered
by Rayleigh (1887), it is also referred to as "Rayleigh Instability".

In the hurricane, the Reynolds number is of the order of 500,
much greater than the critical 110 for instability, and so we expect to
find, and do indeed find, that the presence of an inflection point in the

radial wind profile 1is the cause of the incipient unstable waves.



55.

3.4 THREE-LAYER APPROXIMATION OF THE BASIC STATE

In order to obtain an analytic solution for the linear perturba-
tions, we shall replace, at each radius, the continuous velocity profile
in z by three layers of constant shear, the velocities being continuous
across each interface. The uppermost layer then corresponds to the
stably stratified interior flow of no vertical shear. The lower two
layers approximate the boundary layer solution obtained in Section 3.2.
The top of the lowest layer is chosen to be the height H, at which
the radial velocity exhibits its minimum value. The top of the middle
layer is chosen to be the height H, at which the boundary layer winds
are equal to the interior winds. Results from Section 3.2 show that
both Hl and H2 are nearly constant with radius.

With this "broken-line" approximation, the vorticity is constant
within each layer, but discontinuous across each interface. The flow
no longer possesses an inflection point, but is still unstable if the
criteria Rayleigh developed in 1887 in the original derivation of Ray-
leigh instability are satisfied.

Rayleigh used three layers of constant shear, the velocities
being continuous across the interface. The criterion for the flow to
be unstable is that the vorticity jumps across the two interfaces be

of different signs. This indeed is satisfied by our "broken-line"

profiles.

3.4.1 Test of the "Broken-Line'" Approximation

in order to show that the broken-line approximation of the basic

state does represent fairly accurately the character of the most
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unstable wave, and to check the validity of the large Reynolds number
assumption which we shall employ in Chapter 4, we work out the large Re
stability analysis of the classical neutral Ekman flow, approximated by
a three-layer system, as shown in Figure 3.10.

The results will be compared with those of Lilly (1966) who found
the eigenvalue solution to the "complete set of linear perturbation
equations" (which includes the effects of the Coriolis force and fric-
tion) and the "Orr-Sommerfeld equations" (which include only the effects
of friction on the perturbations).

We shall express the linear perturbation equation in Cartesian
coordinates and neglect curvature terms. The constant geostrophic wind
is in the x-direction. Since we are looking for banded disturbances, we
assume that the derivatives of all perturbation quantities vanish along
the bands. We then rotate the horizontal coordinate axis through an
angle o such that the new x' axis is aligned with the band axis, and

3 _ o

3% . Now we approximate the basic Ekman flow 'ﬁ, V by three layers

as in Figure 3.10 so that within each layer:

Vé' = - lIa' A d + Va' o1 J (3.4.2)
ﬁ, = 0 for the classical Ekman solution under constant geostrophic

J
wind. The perturbation equations within each layer then are:

DIL" - '. - ! “u'
0Ly , ad 3 { )
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THREE LAYER APPROXIMATION TO EKMAN WIND PROFILE

Figure 3.10. Three layer approximation to the classical Ekman profile.




] l —
W, =y 1 DV e’
— + 3 owr 2% +u =—
Re (52 * Yoy "MTep/ Re 34
> AL I
+ -“‘"ZU.» + ;‘%—2_ (3.4.4)
, !
3 107 .—f—bwﬂ ! 2 / 2
Re(———é- + Vv .’9) 2 — X u«rq’ 24,
A /
20 | 0w
Dy 2} (3.4.6)
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v - 2
k| 3‘8
| (3.4.8)
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Assuming solutions of the form
Pk (y' - wt)
A - .
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) K( LI wt)
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we reduce Equations (3.4.3) to (3.4.6) to two equations

d‘@' . L~ . W dL , 2 7.
(4% o) o R (T) (5 - wng) - 4 )]

+ 3%-\ =0 (3.4.10)
dPQl- 241 - 7 : GiﬂZ?
—(Ig:‘ ~ ~¢62,,[(\<V3--w)’ud + ngflJ?j]

- %\—% = 0O (3.4.11)

o=
d<v;
where —EE% - 0 for each layer because of the constant shear approximation.

When the Reynolds number is large, we neglect, to the lowest order,

terms of order %E-. Hence we get:

ag = (3.4.12)
The B.C. for (3.4.12) are:
4 =0 at 3=0
=4, £ -6 ab 3= B (3.4.13)

w""(h) ¢ - O oL ‘3-’”{’—

A non-trivial solution to the system of equations (3.4.12) subject to the

conditions (3.4.13) exists only if:
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(Su-S1) awindh x ¥ ~0% x ‘
) (3.4.14)
fn:K(W KHe + coshic Ha) 0z ¢ (Aacnbrc Dy + Cosh D,
- $2 pends xw H2 - S, auhe Do
=0
where dV'
93‘ .« 25 j=1 2

4%
Dy = Ha —H

0":= kv:—w y'—'I,I

(3.4.14) is the dispersion relationship. It is a quadratic equation in
w, from which w can be solved explicitly. We search through the x - «
plane numerically to look for the & with the largest w; .
In order to investigate the dependence of the properties of the
most unstable wave on the choice of H, UI , and VI , we studied three

v fixed.

cases indicated in Table 1. We kept the parameters H2 , UII » Vi1

Results regarding the most unstable wave are compared with those
from the eigenvalue study of Lilly (1966), the numerical study of Faller
and Kaylor (1966), and the experimental study of Tatro and Mollo-
Christensen (1971). These are summarized in Table 2.

We see that the results compare very well. In the continuous
model, the growth rate is governed by the magnitude of the shear across
the inflection point in the velocity component perpendicular to the wave-
front Ul.' The most unstable wave is thus oriented at such an angle to
the geostrophic wind aloft so that Ul_ possesses maximum shear across the
inflection point. Since the source of the eddy kinetic energy is at the

inflection point of Ul.’ we expect that the most unstable wave would be
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stationary relative to the inflection point for most efficient extraction

of the mean kinetic energy.

All of these results are fairly well demonstrated in the layered

models, as can be seen in Table 2.
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TABLE 1
Case 1 Case 2 Case 3
H, /3 TN /3
H2 m m m
VI .304 .322 .3
UI .826 .678 .8
VII 0 0 0
UII 1 1 1

Three Three-Layer Approximations to the Ekman flow.
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CHAPTER FOUR - THE LINEAR PERTURBATIONS

4.1 THE LINEAR PERTURBATION PROBLEM

The linear perturbation equations in cylindrical coordinates for
a viscous, rotating and stratified quasi-Boussinesq fluid are: (refer

to Section 2.4)

2 J )
’ —a¢ |, V. ¢ 1 3 e\ - _ ~2u),
S L RI3E +w e tWhE +{&%(f) - —elale
(4.1.1)
~ou _ v Yl 2 (B 1 1-]
+w,b?{ n TMoT *5—;‘(?)] + RA,Y-U +Vwu
20 ~w! YV oV a7 L L2 [P - - !
ye TRUTC FE 2 "“’2‘% *r,acv(?) = €| U 57
—_ ) ) = ] . 2
RTINS T I R T
2w -9 y o' 2 gl + '
—a—gd-ku-a-ro*roaa *fog(:g) 5
= oul! 5 W LT g
;-e[wf.*wz'él"mivw (4.1.3)
2 (¢ ab’ v 2¢ N
-D-E(&) +ku%\’o + Yo 7B v
! )
- . = 2& 'L} 1.
} !
Y LN L L2(ruwt) = - € 4y 2k
%_—-Fo + v 20 + S;a}({ ) [ 1 1) 2Y,
+?_‘-’:"-.]
3 (4.1.5)
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4.1.1 Boundary Conditions in the Vertical

Equations (4.1.1) to (4.1.5) relate the perturbation quantities
within each layer. In order to establish the eigenvalue problem, we
shall need interfacial matching conditions as well as conditions at the
sea surface and at the top of the atmosphere.

At the sea surface, we demand that
w'=0 at z=20 (4.1.6)

In the lowest order solution, the fluid is inviscid because of the large

Reynolds number approximation. Thus u' and v' may be non-zero at

z=0.
At the top of the atmosphere, 2z > ® , W€ shall demand that the
eigen wave mode be trapped, i.e., that the amplitude approach zero, or

else that the energy radiated be upward,

M'f Relp') Re(w') rdrdodt >0 4.1.7)

It turns out that these waves are indeed trapped, as predicted by Charney
and Pedlosky (1963) for vibrations in a fluid which is unstable below and
stable above.

At the interfaces =z = H, and z =H we require that the

2 b

pressure p' and vertical velocity w' be continuous. (4.1.8)

4.1.2 Radial Boundary Conditions

The generation of perturbation kinetic energy (EKE) is maiply in
the region of the boundary layer close to the eyewall where the vertical

shear of the radial velocity is strongest. This EKE may be propagated
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away from or towards the eyewall, depending on the group velocity of the
waves. Since the eyewall is a practically impenetrable region of intense
updraft, most of the energy incident on the eyewall will be reflected.
There may still be residual energy flux across the eyewall into the eye
region. However, this energy will be reflected outwards at r = 0 since
there can be no energy build-up at the center of the hurricane. We shall

therefore assume that all the energy reflection takes place at the eye-

wall, and that there is no energy flux across r, = Ro , i.e.,

”ff Re (p) Relw') r dodzdt =0 at r=Ro

(4.1.9)

(4.1.9) is satisfied if
u'=0 at r_ = Ro (4.1.10)

At large distances from the center of the storm, we shall demand

that the energy density be bounded, i.e.,

'k J‘J-J- :SD_(L(:”—*‘N"L* wn—) Pd&dad-t Lo ‘eywiﬂ—& (4.1.11)

4.2 OUTLINE OF PROCEDURE TO SOLVE THE LINEAR PERTURBATION EQUATIONS

Let us stop briefly to review the purpose of our investigation so
as to give some direction to the lengthy algebra which is to follow.

Equations (4.1.1) to (4.1.5) govern the behavior of the small-amplitude,
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short-wavelength perturbations on the equilibrium state obtained in Sec-
tion 3.2. We are looking for the most unstable wave contained therein,
on the assumption that the wave that draws energy fastest from the basic
state is the one that is observed.

Suppose we can combine (4.1.1) to (4.1.5) into one equation in w:

Llw) = € M (w) (4.2.1)

where both i: and QTL,are operators of order 1, and € = D/L << 1 is
the ratio between the radial scales of the perturbations and the large-
scale flow. Because the mean quantities are functions of r, and z only,
and because we have made the multiple scales assumption, iL contains
derivatives with respect to r -, 6 , z and t but not w.r.f. r, -

In JL , the coefficients of the derivatives of w are the basic

state quantities which are functions of r, and z only. This allows us

1

to write

W(ro‘rq, b, S,t) z [WU)CT.) s) + € w(')(ru }) + élw(.l-)crus) . J
i(fo +me - wt) (4.2.2)

e

Substituting (4.2.2) into (4.2.1), and equating powers in e, we get:
! (o)
L (wt”) = 0 (4.2.3a)

L lwt”) - ahl'( w®) (4.2.3b)

!

' ' . . 3
where JL and qWL are {, and 07L , respectively, with 5;; replaced

t
by i, 5% by im and 3% by -iw . #L, contains only z derivatives:
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I
r, enters only parametrically. ?Vl contains both z derivatives and

first order derivatives in r .

4.2.1 The Lowest Order Equation: The Local Dispersion Relationship

Equation (4.2.3a) allows solutions of the form

(o)

wo. AU-)W"(B; YW, m, %) (4.2.4)

where ;L(w) =0 and A(r)) is the yet-undetermined amplitude of the
solution.

Applying the boundary conditions in z (4.1.6) to (4.1.8) gives us
the local dispersion relationship between the wave number k, m and the

frequency w at every T, . We write the local dispersion relationship as
t#} ( w, ﬁt; m ; ") =0 (4.2.5)

Since Jl depends only on forces acting at r, , the dispersion relation-

ship (4.2.5) is local in r However, by demanding that it be uniformly

1
valid in the entire domain in r , we make it apply globally. This is

done by a mormal mode analysis.

4.2.2 Normal Mode Analysis

For a given azimuthal wavenumber m(=integer), we consider the fre-
quency w as a (complex) constant over the whole domain, and then solve for
the radial wavenumbers k(r,) from the local dispersion relationship

(4.2.5). There are as many solutions k(rl) for each w as the order of

9
aro in J: . The k(rl)'s are, in general, complex, since they depend on

w, which is complex for unstable waves. This procedure does not, however,
lead to the unique determination of the most unstable eigenwave mode, since

(4.2.5) gives complex solutions k(rl) for any complex W assumed. We need
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to apply the radial boundary conditiomns to find the most unstable wave
mode which allows the radial boundary condition to be satisfied.

It is difficult to apply the radial boundary conditions to
Equation (4.2.3a) which has vertical as well as radial dependences. The
k(rl)'s , however, have no vertical dependence, and an ordinary differen-
tizl equation may be constructed whose wave-like solutions have the same
wavenumbers k(rl) as would have been obtained by using (4.2.3a). The
radial boundary conditions can then be applied to the new ordinary dif-
ferential equations, giving a condition on the wavenumbers k, and hence
a unique determination of w.

It turns out that (4.2.3a) is a fourth order in 5%— , so that
&}'(k;w) = 0 has four k solutions. If w were real, then the coefficients
of k in ij would be real, and the k solutions would be complex conjugate
pairs. (Since the flow is unstable, & (k;w) = 0 does not permit real k
together with real w as solutions.) When W becomes slightly complex, as
is the case for unstable waves, the pairs of k(rl) solutions can still

be identified. We shall consider such a complex conjugate pair solution.

2(r) = alr) T o () (4.2.6)

The lowest order representation
(o) ilro+ ™ o= wF)
ar(foy0, & s,t) : w (v, S) e

A\
with ey = A'( kae Az
Ro

ok

may be rewritten

) |'(W\9‘Uﬂ)
wrln, 83,6 = w (7, 5) X () e (4.2.7)
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_— fg.& dor

so that .x (ﬁ ) ~ e

We shall construct an equation for x(rl) . Since we expect that X(ﬁl)
would have two wave solutions with wavenumbers given by (4.2.6), the
governing equation is second order in r, , and is (see Section 4.5 for

details):

a* %
— - 2A04 — - L 2 4}’ = (4.2.8)
s iy A(a* ¢ )X =0
Removing the common wave-factor eiAJadr from ¥
R N "ﬂ.du'
X = 7"5 e Ro (4.2.9)

we can transform (4.2.8), and after dropping terms small compared to A2

obtain:
d,’&. 1 1> -
- A &x =0 (4.2.10)

It turns out that bz(rl) has the schematic form shown in

Figure 4.1, and can be represented by

‘&-tCh) = .F(_f‘) (v, - "c )z + 9 (4.2.11)

where f(rl) >0 and q, Vv o(A"!) and q, > 0.
bz(rl) has a double zero (of order 1) at r, = . -
We can transform (4.2.10) into a standard equation (in this case,

the Weber's Equation) whose solution (the parabolic cylinder functions)

x = a X5, + ax Xsa (4.2.12)

where a, and a, are constants
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bz(r )

%

Fig. 4.1 Schematic plot of b?(r;) .
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is valid in the entire domain Rb < r, <o, including the turning point
r, =T .
N

The asymptotic form of ¥ at large r, >r, has to satisfy the
boundary condition at r, = (4.1.11). This allows only the component
of X (we shall designate Xg, ) which decays for r > r. . This deter-
mines a_ = 0 .

2

,
For R, <r <r_ and r, far away from r, , X = aIXS

(o] 1 1

(which decays for r, > r¢ ) has a standard asymptotic form which in-

cludes both a decaying and an amplifying component. (Refer to Appendix D
for asymptotic formulae of parabolic cylinder functions).
g &
|
A ae A e
fe

(o™ f',_
X~ C.Cf\)[ e + N e 4.2.13)

where A is given explicitly by the standard asymptotic formula of XSl
in the domain R < r < r
o— 1 c
N,
X given by (4.2.13) has to satisfy the boundary condition (4.1.10)
at r, = R0 . However, this involves tedious algebraic manipulations

which can be avoided.

The WKB solution to (4.2.10) is given by
i 7
A 0 &rdr ..Ai; &dr
o [-4 o
X = A(r)e + Bdn) & (4.2.14)

This is valid in the domain R0 <r, <rg (but not at r, =71, ).
The boundary condition at 1,6 = R, can be transformed into a

condition on X(see Section 4.5 for details).

dX
'5.7, = O at .= Ko (4.2.15)
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N
By demanding that X given by (4.2.14) satisfy (4.2.15), we obtain the

relationship between A(rl) and B(rl)

B(r)= Ale) A (4.2.16)

. - | /EP(.RO)
with A .z - faw a (Ro)
(4.2.14) thus becomes ] f.
_ Agg "t de -ASgoe"d"
X = A(v.)[ e ’ « A e ] (4.2.17)

Since (4.2.13) and (4.2.17) are two expressions for %(rl) for

R <r <r, , they must be identical, i.e. we must demand that

o} . rf-
Mg, b "‘fk. &dr
Ae ° AN €
C c A
e
or ZA 2’# A
Ro = ——
e A (4.2.18)

We shall write (4.2.18) as

~JL$ Cj W ﬁé; m, ) =0
Since the initial guess of w determines k(rl) , and subsequently b(r,)
.2.9), T, (4.2.11), A (4.2.13) and A (4.2.16), (4.2.18) is a

condition on w which is imposed by the radial boundary conditions.

‘B = 0 is hence the global dispersion relationship which yields discrete
values of the normal mode frequency w.

The most unstable wave is, in the usual sense, the one with the
maximum Im(w) . The fact that the normal mode approach involves radial
boundary conditions at 1, = Ro and r, = in order to determine w and

k(r,) of the disturbance points out that the eigenvalue W is the frequency
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at which the overall system has to oscillate in order to comstitute a

single mode. The associated eigenfunctions, then, are global solutioms.

We note that with the local dispersion relationship (4.2.5), we could
also determine the local behavior of prescribed disturbances. We fix m,
k(rl) and solve for w(rl) . k(rl) is assumed real, and w(rl) may be
complex. The m(rl) thus obtained is the frequency with which the given
disturbance at any part of the vortex is able to oscillate due to the
physical balance of forces at r . This is the approach adopted by Kuri-
hara (1976). At each of the two reference radii he chose, Kurihara solved
an eigenvalue problem for perturbations of spiral shape. At R = 150 km
and R = 400 km , he assumed the basic state variables E(R,p), V(R,p),
O(R,p) as well as %E(R,p) , %g(R,p) and %g(R,p) . The perturbations
were assumed to be Archimedes spirals with m arms and a constant radial
wavelength D. These spirals were allowed to extend to the center of the
storm. The vertical structure was approximated by a 5% level model (thus
giving extraneous roots as eigenvalues). Kurihara found that unstable waves
existed only at R = 150 km where both the vertical and horizontal shears
of the basic state were strong. At R = 400 km , the flow was stable.
Of the family of spiral perturbations Kurihara assumed, the spiral with
m=2 and D = 200 kn was the most unstable and it propagated outwards.
(Bands which propagated inwards were attributed to artificial layering in
the vertical.) From his study we can conclude that a wave perturbation
with fixed radial and azimuthal wavenumbers may gZrow in the inner, strong-
shear region of the storm, and become neutral as it propagates outwards.
Left unanswered are the questions: 1) what actually determines the observed
configuration of the spiral rainbands, 2) what is the mechanism that con-
tinuously generates these bands and 3) what is the nature of the bands with

D of the order of 20-60 km?
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4.2.3 The First-order Equation: _The Amplitude Equation

The first-order equation is

i'( w_w) ')"'l ( m) (4.2.3b)

2%
) 0
1f i is the adjoint operator of ‘f.; , and $( ) is the solution of

(4.2.18)

(W) =

then the condition for solvability of (4.2.3b) is (see Morse and Feshbach

(1953), pages 874-877):

j‘a 5o (W)

(4.2.19)

W
O

M) =0 at z =0 and = .

provided that w
)
In our problem, it turnms out that JL is self-adjoint, soO that

A0 ( 0) . Equation (4.2.19) is reduced to

IY = 2? , and W
f w2 m (w) d} -0 (4.2.20)

Substituting (4.2.4) into (4.2.20), we get

S M (A @) dy = O (4.2.21)

1
Since the highest order of the T, derivative in ﬁﬁl is one, (4.2.21) is
1) which can easily

a first-order ordinary differential equation in A(r

ject to a radial boundary condition on the amplitude.

be solved sub
1) to (4.2.21) solves for

The analysis outlined in equations (4.2.

the lowest order w solution.
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4.3. A SIMPLE EXAMPLE: WAVES IN A BAROTROPIC VORTEX

To illustrate the procedure outlined in Section 4.2 and to
investigate the gravity waves in the interior of a hurricane vortex, we
solve Equations (4.1.1) to (4.1.5) when the basic flow is a Boussinesq,
frictionless axisymmetric vortex V(r) with no vertical shear. In
order to impose a modal structure in the vertical, we confine the vortex
between rigid walls at 2z = 0 and z = H3.

Equations (4.1,1) to (4.1.5) can be combined to form one
equation in w:

L

2 ' > - 3 '
D ( L M A 2 ‘"’ 4 -LI 2w \
Dt? 23" 2% o 286"/ (4.3.1)
» P L T )
+ N (92 afo" + ro‘ X ) = Z
D -—
where _2 2 v 2_
ot ° 3¢ T % 2
(g2 2 i 2 DYz
Z-\%N"""b‘bb")<bf *Y4)
+ 2_9,<DY5 g 2Y _ _‘_q_\i,_) (4.3.2)
Dt 23 % Dt - > Vo Yo 20
v . 1 )
.""G'[- 27.:"\)’-—4)'4-3;‘('%'] (4.3.3)
2V v
Y,_:—e[(;—;l y = -r-')u'] (4.3.4)
- T - 2
Y& = € { u o + W a.s J z O (4.3.5)
Y T -€ [ U_‘a"'&"’ W 0t ] = 0O
& ar, 2% (4.3.6)
e me [ & -]
s 7 g 211 (4.3.7)
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We shall solve Equation (4.3.1) subject to the boundary conditions:

1) w=0 at z = 0 and at z = H3

and 2) the wave energy flux be directed outwards as r, > ©

Assuming
~ mp - wt )
| o) (4) . “') |((‘b+
W = w “EeWw rew +---| 8 (4.3.8)

we get the lowest order equation

LD (H ) ) -
() (4.3.9)
e ) W s 0

and the first-order equation

) ,
(Y (B e

" (4.3.10)
w )
ND (R rSm) W s Z,
where o0 = El -w (4.3.11)
r
D
'z’ = “(_L +' )(t\,g- Y; + Y4.> \ (4.3.12)
? . i AWM
4—&«-;@(&0%5 ~ikY, - T Y.)
(4.3.9) has solution
~t1 VY
w o= Ae ¥ + Be § (4.3.13)
where
* 2, ot o - Nt
1 = (-?a o) e (4.3.14)

and Re(y) > 0O
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The boundary conditions of zero vertical velocity at 2z = 0 and at

z=H give us

3
w® = Al e~ T (4.3.15)
and
4 Hy = mT m= + 4, *2, ¢ 3, 4.3.16)
Choosing the lowest mode n =1 , we have Yz = EE; and
R (n) = 'iig :f?;i;:— - %%: (4.3.17)

Equation (4.3.17) is the dispersion relationship relating the local
horizontal wave numbers k(rl) and m to the frequency w. Since w is real
for all real k(rl) , the short waves that we have assumed are locally
neutral in the basic flow. Hence, in the absence of a selection mechanism
for the waves, the waves defined by (4.3.17) are all possible. In the
following analysis, we shall assume m and w and study the radial behavior
of these internal gravity waves.

For the case where w > 0 and k > 0 , the lowest order w' has

the solution

.

it:f Rdr Ld/ i(me -wr)
W= Aln) PAMGHF?'S)[ ce™ +D e‘{" } € (4.3.18)

(1Ikdr - iwt) represents an outward propagating

The first wave component Ce
internal gravity wave. lts group velocity is also outwards. The second

(-ifJkdr - iwt) . .
component De represents an inward propagating wave carry-

ing energy inwards towards the center of the storm. The radial boundary
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condition of outward energy flux at r - « demands D = 0 . Therefore,

we can assume C = 1 without loss of generality, and

v, .
iJ'&M’%MD-W)
€1

] -
- — (4.3.19)
pels A(h) [ VY Ha '% e
The first-order equation is
- 2 0) -

mV T D Ww a mY ) ( v Y 1 ) )

— 4] — - e

vra ) 3-51_ + (& + S N ( Yo "w) w (4.3.20)

= 7,

where

tv)
2w

Tw 3
2. = Clrd 27" + Calrn) 3 a%"

= T L) é—-rl Kl_
(4.3.21)
2 T —_
+ = (~— ] _ ”m b v v
2f|( K\.) G-ro.—;'(%\;l +——‘ ~|—|)
26 4
C,,_C(.) = "——;;—‘
The condition for solvability of w(l) is
(4.3.22)

S' U'LD)Z‘ d"é -0

o
or
% (o) 31411'1") o (o) :.wtb)
S [c4c.’.) w —TZT ¥ 2w ¥, 23? ]da (4.3.23)
[

= O
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This can be simplified to

C., (r) Aln) + CaCry) %\',re:

"
O

(4.3.24)

with the solution

- jz.,‘(c'/cs) s
Alr) = AlRo) e (4.3.25)

Equation (4.3.24) could have been obtained more easily from Equa-
tion (4.3.20) in the usual fashion by perturbation analysis. Since

2 (o) 2
21 = 64(',‘)2__‘-!.—- + Cg_("l) 5%—2_"_;‘[_.
a%" '

(0)

when we substitute Ww into (4.3.19) into Z1 , we obtain

2
Zy = ""lﬂ:;' [C;Ch) AlCn) + C.(r) c;‘;A': ] X
;(?'{fkov Fme-wt )
e
In order to eliminate secular terms in w(l) , the expression in the square

brackets must be zero, i.e.,

ct(—"l)A'C"!) + C:.Cﬂ)ilﬁA' = 0
This is exactly Equation (4.3.24).
The amplitude and phase variation for the gravity waves in a vortex
are illustrated for three cases:
1) when the mean vortex is a potential vortex: V=1/r ;
2) when the vortex has constant tangential velocity: V=1; and
3) when the vortex has constant angular velocity: V=r.

The results are illustrated in Figures 4.2a-c. We have chosen

N2=.1, m=2, and 0=0.
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From Figure 4.2, we note that the wavelength is related to the
strength of the flow relative to the propagating wave. The greater
ég% - w) , the shorter the wavelength. Also, both the amplitude and the
energy density decrease outwards with I, » which is consistent with the
radiation condition at large T.

This exercise suggests that in the stably stratified region of the
hurricane, the spiral bands could indeed possess the properties of inter-—
nal gravity waves. However, in the absence of some forcing or selection
mechanism in the flow, we would have no way of picking a particular mode
from the continuous spectrum of these gravity waves.

We note that we arrive at the above conclusion after we impose
only one radial boundary condition, i.e., radiation condition at T; = % .
However, if we had put in, in addition, a wall at r, = Ro and had demand-
ed that u' =0 at 1, = Ro (the wall condition), we would have had no
eigen-solutions unless we had included extra physics in the problem. This

i[kdr ’ e-ij’kdr )

is because we need two wave components (e to form a

standing wave (siandr) so that u' =0 at r = Ro, whereas the radia-

. . . i{kdr
tion condition allows one wave solution ( eI )

. However, if we have
some turning point T = Y. in the flow which separates a two-wave inner
region from a one-wave outer region, both the radiation condition and the
wall condition can be satisfied, and we can have discrete eigen-frequen-—
cies. This problem has been studied by Lau et al. (1976). Their point

r = r, turns out to be the critical level or "co-rotation circle" in

the flow where %z = » . The inclusion of a turning point essentially
[

reduces a semi-infinite string problem (which has no modal solutions)

into a finite string problem where modal solutions are allowed.
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4.4 THE LOCAL DISPERSTON RELATTONSHIP

We now return to the flow under consideration

state is th

e three-layer representation of the hurri

state defined in Section 3. Equations (4.1.1) to (4

linear pert
subscripts

al subscrip

urbations within each layer. We shall us

where the basic
cane equilibrium
.1.5) represent the

e Arabic numeral

(1, 2, 3) to denote values within each layer, and Roman numer-

ts (I, 1II) to denote values at the interf

aces 2z = H1 and

z = H2 .
We assume the following basic density distribution
L p¢yeHa; 4= 12
}g = _2/ae (4.4.1)
e e $ 35 g =3
where 9% 1is the density scale height of the atmosphere, so that
T O O < §)S He j= {, 2
Ny - 1 < (4.4.2a)
and
< S Ha . '={'2
G - YO O <3 (4.4.2b)
T v .
N H; < 3; 3 =‘3

Within each layer i,

equation in W

DI [ S 2 12 :
M‘(hbﬂ‘ Towaer oot N '-’-3) v

+N,3'

J

xU - ]

J

Yo €

.—.-'YYlj.

0 Y 2" L v AL
(K2 + 25w —(b.%;&;—; - 24 u)m

(4.1.1) to (4.1.5) can be combined to form one

[} 03 e 39'



- a-._ l- b\. D\.
where { = 4" Fp +* w6t T oogv
D o p 2 v
Pl . v 2
4. -

% 26% Dt @Sj’ + Q“g )
- . . . 2
_p 2 Bi29y _ 12 Dy 28y . Do 28y
° Dk 2% roe Dt 2% DY 2%
= TR 20 w24 - avary
O - - [T % ral B Wi - D
(4.4.4)
2 /P
- L2 [y _ _ogx,y
o, §J-> vy - VY ]
]
o P30 1% 24y gy
Qo ~ [Mﬂ 2r v A Vs 2% Y,
+ ViYy 0 v ]
s u° - L
-~ 2 — oWy va’
@33 z [ j';;‘f + W 2% 4 ]
st @
Qﬂ'-[%z,«. - J”}]
(35' = - [ gi + éﬂi EEE
J LK b(‘. ¥ D}
We note that with the layered representation of the mean state,
SN Vo
_—'3 = D____4\/ =0
a} 315
Assuming
'l 2_%‘11’ .‘(r,,o-me—wﬂ)
1] . [L .
w4=§ur()+eur5“.~ éLw3)+ Se 39
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we have the lowest order equations within each layer:

s (0) )
[} 3-6;

[s)

1 1 (0) (4.4.6)
-0, [ 2 M L okt ] = 0
b'z”
2 80 1
ot 2 M3 R 1_at gj___"\ (0)
- z - - k| 0, - -
where
o 0. Ak v _
G.a - ‘h u\‘ * r° vo D ) J = 1., 2, 3

(4.4.7)

~

k- = 4&1 + 21:
%

Equation(4.4.6) together with the boundary conditions at z = 0 and at
z -+ » have solutions:

W = AL bk k3
Aln) At %3 + Brn) sk KCz-l-h) '(4.4.8)

_T-&

5

w; = CCV:) e

where

~ 3 ’-OJ-“ M't..
V() = x 2 i by
PR T Re (7) 20O

(4.4.9)
Matching pressure and vertical velocity at the interfaces H; and

H, gives us the three equations in the three unknown amplitudes A(rl) ,

B(rl) and C(rl) . The condition for nontrivial solutions A, B, C gives

the dispersion relationship: (next page)
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(Sz-g:)w.}h wH -0 ¥
djb ’0(4.4.10)
(O’n.?-?»)w wH2 (o‘;?-g,)w-c]),
+ 0« contncHy + 0 x coh e Dz
where
. 2% m avg -
gj = k a; + (p P , J - {: 2
— W -
0y = 2Us + 7, V5 - J= r, T
:;_ - l..ru:z-N" . —‘—_—- e
T 2t TN Toan
D, = B, - H,

4.4.1 Solution of the Dispersion Relationship

For given values of w and m, k(rl) is found from the dispersion
relationship by applying SUBROUTINE LSQNK2 from MIT IPC Mathlib AP-26
(See Appendix B). The subroutine fiads up to four zeros of an analytic
function JS'(k) within a contour in the complex k plane. If there are
more than four zeros within the contour, the subroutine reports only the
number of zeros, and a new smaller contour must then be found.

The domain of analyticity of the dispersion relationship (4.4.10)
in the k-plane is established in Appendix C.

The number of zeros reported within a contour is checked indepen-
dently by Hamming's "crude method" (see Hamming (1962), page 80). For
every point in the complex k plane, g (k) 1is evaluated and the quadrant

number (1, 2, 3, 4) in which &y'(k) lies is plotted. A point k, is a
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zero of multiplicity n if a closed contour around ko traverses n cycles
of quadrant numbers.

The solution k(rl) of (4.4.10) for w= .001 , m = 2 , and
N2 = .1 is shown in Figure 4.3. There are two branches of k(rl) in the
right half plane. The branch in the upper half plane represents a trail-
ing wave whose amplitude decays outwards, whereas the branch in the lower
half plane represents a trailing wave whose amplitude increases outwards.
We note that these two branches are complex conjugates of each other and

we can write

Rir) = atr) + 4 bln) (4.4.11)

b(rl) has an extremum at r, = T,

Since b(re ) v .005 << b(rl) s Ty #$ r, , we can write

A vy) = Gquln) + G (4.4.12)

where Q, = blr. )1'50(.&) and ql(rl) has a double zero at T = To - Thus

we can write
g try = 00 Lr-re )T, BLe) >0

and

"
K = PLn) (v-Te >+ 9o (4.4.13)
We also note from Figure 4.3 that in the region Ro < T, < T

| ¢Cr) | < | acvi )l £ov Relk) >0 (4.4.14)
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4.5 THE GLOBAL EIGENVALUE PROBLEM

In this section, the local dispersion relationship (4.3.10)
together with the radial boundary conditions (4.1.10) and (4.1.11) is
used to obtain a global condition on w. Since the linear perturbation
equations (4.4.6) contain both a vertical and a radial dependence, it is
difficult to apply the radial boundary conditioms to them. However, the
radial wavenumber k(rl) has no z dependence, and an ordinary differen-
tial equation may be constructed whose solutions have the same k(rl)
as would have been obtained by using (4.4.6). We shall thus apply the
radial boundary conditions to the new differential equation.

After we have obtained the new ordinary differential equation and
its boundary conditions, we follow, to obtain the global dispersion rela-
tionship, the procedure in Lau et al. (1976) and Mark (1977) who studied
unstable spiral modes in disk-shaped galaxies.

The representation (4.1.2)

© Yan
wr(r,, Y., 8,3,€) = [ wer,p ] € ) (4.5.1)
. (fo’- Wls“—"b)
with
M
N T S
Ro
may be written
Vs
(v)
wir,0,3,8 = [ W', pe- ] e " (4.5.2)

L (m e -wt)

Y (r) e
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We shall construct a differential equation for x(rl) , governing the

phase distribution in the radial direction.

Y
ir( e dr
,X(Y!) ~ € gﬁo

and ax

= -~ i Ak X

for a pair of solutions

kiv.) = atv) E &)

the governing equation for X(rl) is second-order:

a* X dX
MIL + ' ‘I;‘ + }th =

Since

o

(4.5.3)

(4.5.4)

(4.5.5)

where Hy and u, are to be determined. Substituting (4.5.3) into

(4.5.5), we obtain a quadratic equation in k:

L e +n’./\&,u. + = O

whose solutions are

oo A7 —-ﬁ'—l: F B
4\

A'L
Equating (4.5.7) with (4.5.4), we get

A HA*

15#9' = a ond qut—* = JE%: = ‘az.
A

(4.5.6)

(4.5.7)

(4.5.8)
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or

)-M = - 2AQa

and }J; - _AL( o+ .6-"’) (4.5.9)

Substituting My and M, into (4.5.5), we obtain the governing

equation for x(rl):

o\")C d(x ra 2 2
s -zAawﬁ—,\(a £ X =0 (4.5.10)

We shall now derive the boundary conditions for x(rl) from
(4.1.10) and (4.1.11). From the linear perturbation equations (4.1.1) to
(4.1.5), we can express a' in terms of w' . With the representation

(4.5.1) for w', u' in the interior of the hurricane is

\ Wn (hfy, ke oot
u‘(ro,f.,\%%.t) = 4}(') («Vu)}) e kk e ¢

with
o \ 2wt | (0)
u )(rt, 3) = - * ] - v {

Thus if we write w' as (4.5.2), u' becomes

oy Y X i (me-wt)
] ~ (O
Ll 8,7, 8) =0 (r,1)e € ar e (4.5.11)
)
The wall condition u' = 0 at r1 = Ro becomes
ayr
Td;\ =D oL r= Qo (4.5.12)
The condition at r = becomes

1

X remains bounded as 1‘1 > 0 . (4.5.13)
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We write ,
i
N ir [ laley de,
X = X e (4.5.14)
so that p
~ . a 'I 'v
ax (4 7ye e
n = Uanr + ~«Aa )e
and 1 LY A ( .5.15)
o X L ] X do 2 -..“-J
dm"[ ‘t-r?-h)‘ﬁ——‘ r AL, X -Ao ) *
; A{ ‘alv.') d.!
e

This transforms (4.5.10) into

¢

|

d* . A
" —(/\zb‘-—"')‘% x =0

Iy

. .,da . . 2,2
Dropping 1ka;— which is small compared to A°b we have

1
(4.5.16)

a* Y .~
- ATy X = 0O

——

N

We note that bZ(r;) = q,(r)) +a,
with ql(rl) = f(rl)(r-rc )2 , f(rl) >0 and q, V 0(e) so that
bt

Equation (4.5.16) has a double turning point at = T¢

(4.5.16) has WKB solutions

M
r A‘. otv') dv.'
| - Re

e

X (rn) ~
J 9

This solution is not valid at 1,

Away from r, = T.

(4.5.17)

=1, where q, ¥ 0 . (See Nayfeh,

1973, Section 7.1.3.)

Instead of matching asymptotic solutions at T, we shall

=rc >
’\‘ I}
a solution for X valid in the whole domain Ro £ 1, < o

find
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including the turning point. The aysmptotic bebavior of this solution

at large T, >r, must satisfy the condition of boundedness at infinity.
And its asymptotic behavior for large r, < 1, must be identical to the
WKB solution for % for Ro<r, <r

C

4.5.1 Solution Near the Turning Point T, = T¢

When r, = T,

T

'8’1(—71) ~ '@o(r\"rc ) + %1— (4.5.18)

where fo = f(r, ). We shall assume that r, 1is such that r = Tr.
yet fo(r, - 1, )2 >> 1 and (%)™ (r; - r¢ )? << (B2)" (r, - )2 so
that (4.5.18) is valid.

Now we introduce the Langer transformation (See Nayfeh, 1973,

Section 7.3.2) of both the dependent and independent variables of

(4.5.16):
f‘|
tf J_
A S ;o ‘(f.-rb':>4fc = 4 g.L
and fe (4.5.19)
-h
~\
X = (4%
(&) ¢
so that

i " 'f2
"g Ydr = AS F,Ce - ) + q,,) O
e

Ag P een e 4 A &‘ dr_
rz

A
26 r-f:4.5.20)
e

i; 1 Adr
200

= ir.i" + ‘aﬁi%k, [ ﬁn~ IEE:I:vr' -1 }

[Qmﬁ’.-ﬂ-) —1]
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(4.5.19) transforms Equation (4.5.16) into

Eul. E'"

~ - Lz-_‘-;—s—-]d;:o (4.5.21)

OZ% ) ]‘_ ne”

Since the last two terms on the square bracket are of order 1 and are
small compared to the first term which is of order A2, ¢ is given

approximately by

atad o

T .5;;-—;_-: & =0 (4.5.22)
Using (4.5.18) and (4.5.19), we obtain !

d+d

a [-%s*-p ] =0 (4.5.23)

with p = 7\q2/2f01/2
This is Weber's Equation whose solutions are the parabolic cylinder

functions of order n = -p -1/2
' Cb(_!,) = C, D“(_i) + C2 D—-M-l (‘ii) (4.5.24)

c, and c, are arbitrary constants.

For convenience, we have summarized the asymptotic behavior of

parabolic cylinder functions in Appendix D.

As r, > >, orT £ > o , we see (refer to Appendix D) that

Dn(E) decays while D_n_l(iE) grows exponentially. Thus the condition
of boundedness at 1, = © demands that ¢, = 0. c, is the arbitrary

constant which remains undetermined in a linear problem, and we can set

c, = 1 without loss of generality. Thus,
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d(ed = DalB) (4.5.25)

The asymptotic expression for $(§) when r, < 1T, OT Arg(€) = 7 1is

_.‘\‘.‘Z ”m ,!_if;_‘ mma t‘»’- -m-!

d(E)~ € g - T e e g (4.5.26)

Thus from (4.5.19) we get

N A T L AN
1) A d 7'[ - r
Lt (d"’-) % € 5 T(p+'l2) € € :

(4.5.27)

4,5.2 Solution for Ro < T, < I,

WKB solution for Equation (4.5.16) is valid in the interval

Ro<r, <r :
S " “tar
. ASR.&M -ASRO
X(r)= a, € + Qe (4.5.28)

where a, and a, are arbitrary constants. From (4.5.14) we have

" &) dv " dv

(va+t+ Ca-b

Afm Afz‘éﬁ )]
X(n) = a, € Fa,e (4.5.29)

s dx .
The boundary condition 71— = 0 at r = Ro gives
1
-2 480

¢ (4.5.30)




98.

4.5.3 The Global Dispersion Relationship

Now we want to express (4.5.28) in a form similar to that of

(4.5.27). We can, again, take a, = 1 without loss of generality. We

1

note that ‘ v,
~ A S‘Qo&“ -2t (‘o - 20 & dv
z - e e
e v, e e‘.l
hg‘b &ds Agr‘ L-dr 'ZGFD -Ag &ar -AS;.(_
= e - e e e
Using (4.5.20) we have
re dow *
~ Ag, ke -p n P 2% S
T - e e (aa g™y e %
" . (4.5.31)
-20@0 -)\fl bdar ¢ o Ph -8% _p
+ o
[- e e e C?—Aﬁo } e g

"
gince (4.5.27) and (4.5.31) are two expressions for X(rl) in the

domain Ro < r, <r, , we must have

r
)\r‘a“" -P o -Ph ‘
e Ro e CZ.AFa ) A 2,!"" "(P"li_)ﬂ'k
~ufto - fe L\ P) = -
e ' e tha, b (an ™)™ T{p+i)

or fc

’\gz.“" p - %LwczAg”‘) - L gw(_f.?;z_.

'P(p-f‘{'.)
) LN
- 'C['G’h'z' FRe + n'(j}}:}j = O (4.5.32)

ry E2

’ s =" -

3= 0,
Since k(r,) is determined from the local dispersion relationship
for an assumed value of w (and for m), w is hidden in Equation (4.5.32)

in the parameters b , r fo , p, and PBo [cf. (4.4.4), (4.5.18),

c b ]




(4.5.23) and (4.5.20)]. Equation (4.5.32) is the global dispersion

relationship which yields discrete values for the eigenfrequency w.

4.6. RESULTS

4.6.1. Solution of the Global Dispersion Relationship

To find the eigenvalue w from the global dispersion relationship
QQ ( w; m) = 0, we follow the procedure as outlined in Figure 4.4.
The computation is long and tedious since we have to first assume an
w and find k(rl) from the local dispersion relationship
Jj (k; w , m, rl) = 0 before we can obtain b, r_ , P, fo and B
to substitute into QS . Then we have to evaluate 4% to see
if both the real and imaginary parts of Eb are zero. It takes about
half minute of cpu time to evaluate % for a given w . If |f5|==0,
then the w assumed is an eigenvalue. We then have to vary m and repeat
the procedure until we find a maximum of Im( w ) for various values
of m.

From Figure 4.3, we see that the leading wave solutions
(Real(k) < 0) has a kI of the order of kR (kI n .2 near the eyewall)
so that the amplitude of the wave ( eéf&:di ) would have an
e-folding length of about the wavelength of the disturbance. This
violiates our original assumption that the scale of the amplitude
variation is much greater than the scale of the phase variation.
Hence, we shall use only the right-half k-plane in the solution
of ﬁ?’(k) = 0. We are looking for trailing waves only.

Because of the lengthy computations involved, we set j = 0

in Equation (4.5.32) and stop the search for o when we have located

a local maximum in wI
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> 1 Assume m

]
¥

> | Assume w

}

Substitute m, w into local
dispersion relationship®=0
(4.3.10) and find k(r)

J

Obtain rc ’ b(r|) > P f(rc ) ’
Bo from (4.4.4), (4.5.18),
(4.5.23) and (4.5.30)

|
¥

Evaluate JJY (w; m) (4.5.33)

l

w 1is the eigenfrequency

|

Figure 4.4 Flow chart for the solution of the
global dispersion relationship.
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4.6.2. The Most Unstable Wave Mode

Figure 4.5 shows the graph of the eigenvalue w for three values

of m. The local maximum of Wy corresponds to a wave where m = 4,

and w = (.295x10_2, .295x10—3). The turning circle is at r, .23.
In the inner region between the eyewall and the turning circle, the
wave mode consists of two wave components, ore with an exponentially
growing and the other with an exponentially decaying amplitude. We
shall denote their wave numbers by kl and k2.
Since Re(kl) = Re(kz), we can describe the properties of the

most unstable wave mode with the average wave number

Re 4] Re(R) - ROCR

(4.6.1)
k ranges from k = .33 at Ty, < .1 to k= .12 at r, = .6,
giving wavelengths X of A = 19 at T = .1 to XA =52 at ry = .6 .
The lines of constant phase given by
(l
"é‘ &d{ + P = WM
(4.6.2)

Re
are shown in Figure 4.6. Comparison of Figure 4.6 with the radar picture of

Hurricane Caroline (Figure 1.1) shows an amazing agreement between

the predicted and observed phenomena. The crossing angle a = tan_lflgé:}
k
[+
for the predicted wave ranges from o = 13.6 at r, < .1 to
a = .6 at r, = .6 .
“R
The phase speed c_, = then ranges from c_, = .009
ph X ph

at r; = .1 to cph = .025 at r; = .6. The predicted rainband

pattern is thus nearly stationary relative to the storm center.
The eigenfunctions associated with the most unstable wave

mode are shown in Figures 4.7 a-c. The perturbation kinetic energy

s ——— e —————————



9t

‘w snsidA m  onTeaualdrd Teqor8 9yl jo ydeay ¢4 2an31g

0l xm3

oe 8¢ 9¢ v 2'¢

0°¢

102.

w

W

020

- 220

4 ¥20

4 9z0

= 820

4 ogo
nO_xH3



103.

N2= 0.1
m = 4
W = (2.95x1073,0.295x1073)

e

|
0 50km

Fig. 4.6 Lines of constant phase: m=4 ,w =(2.95x10 3,0.295x10 3)
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e
L

0 1 2 3 4 (arbitrary units)

Figure 4.7a. Graph of lu(o)(r ,z)| at r, = .1, .2, and .3,
associated wigh he wave_?o%e m = 4 and
w = (.295x10 , -295x10 ).
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> »
— »

0 1 2 3 4 5 (arbitrary units)

Figure 4.7b. Graph of lv(o)(rl,z)l at r, = .1, .2 and .3,

associated with the wave mode m = 4 and

w = (.295x1072 , .295x107° ).
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Figure 4.7c.

Graph of Iw(o)(rl,z)l at r1 =
associated with the wave mode m

o = (.295%10°> , .295x10°° ).

.1,

.5 .6
(arbitrary units)
.2 and .3.
4 and
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(EKE) at each radius
13 )z (o)} 2 (o)
EKECn, 3) = 2§ [}“ R A } (4.6.3)

is shown in Figure 4.8. As is expected, EKE is maximum at a height

somewhere between H1 and H2’ i.e. where the inflection point of

the velocity component perpendicular to the wavefront would be.
The slowly varying amplitude A(rl) of the lower order

solution w' is solved from

= (oY {o)
jﬂ w pb’l(uf ) d% =0 (4.6.4)

[od

where ﬂWl is defined in Equation (4.4.4) and w(o) is given by (4.4.8).

Since
, i (me - k)

w' s A Alr,g) X(n) €

the radial envelope of w' is given by
Ey= 1AW 1 XD 5.6.5)

In Figure 4.9, we have plotted EL for the most unstable wave mode.
é,shows a peak near the eyewall and another peak at ry = o ?
beyond which it decays exponentially outwards. The condition of ~
finite energy demsity at r; = « is thus satisfied. We note that
this predicted behacior of the envelope of the most unstable wave
mode, i.e. a local maximum at ;< T and exponential decay beyond,
is also very well exhibited in the actual hurricane. Hurricamne Caroline
has an unbroken segment of rainband in the northwest quadrant at

r = 125 km (rl ~ .25). Beyond that radius, no echoes are observed

despite the proximity to the radar.
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!
A
H,
.2
rl = .1
Hl
0 2 4 6 8 10

(arbitrary units)

Figure 4.8. Graph of EKE(rl,z) at r, = .1, .2 and .3 ,

associated with the wave mode m = 4 and

w = (.295x1072 , .295x10 " )-
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CHAPTER FIVE - SUMMARY AND CONCLUSIONS

Spiral rainbands are a characteristic feature of mature hurricanes.
They have typical radial wavelengths of 20 to 60 km and are nearly
stationary relative to the storm center. This thesis has investigated
the hypothesis that the rainbands are organized by Rayleigh instability
of the boundary layer.

A model of the hurricane is set up, where the interior is a
stably-stratified, quasi-Boussinesq fluid whose mean flow is given by
an axisymmetric potential vortex on an f-plane. The dynamics of the
boundary layer is governed by frictional rather than convective processes,
as is established by a crude analysis of observed boundary layer winds
under Hurricane Donna; the winds have an Ekman-like profile with the
velocities veering with height. The nonlinear nonseparable equations
governing the neutral frictional boundary layer are solved by a numerical
scheme devised by Rivas. The inflow velocity thus computed possesses
an inflection point in the vertical, and this produces an instability in
the boundary layer flow.

A global stability analysis of the steady-state axisymmetric
hurricane for small-amplitude perturbations is performed. In order to
make the nonseparable linear perturbation equations separable and tractable,
a series of approximations are employed. First, the continuous velocity
profiles in the vertical are represented by three layers of constant
shear. Then, because the radial scale of the rainbands is small

compared to the scale of the hurricane, a multiple scale approximation
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is employed. With this approximation, the effects of friction and
Coriolis forces on the local behavior of the perturbations is neglected,
even though these forces are of primary importance in the maintenance of
the mean boundary layer structure. With the separation of variables, the
problem is reduced, at each position in r, to a familiar stability
problem where the mean wind varies only in height. A local dispersion
relationship is thus derived. This relationship describes how perturbations
imposed on the mean hurricane flow would oscillate due to the local
balance of forces. However, it does not describe how the entire hurricane
as a whole oscillates. Finally, by employing an asymptotic analysis over
the whole domain of the hurricane and by demanding that the radial
boundary conditions be satisfied, we derive the global dispersion
relationship from which discrete values of the eigenfrequency and the
growth rate are obtained. These eigenfrequencies are the frequencies

at which the entire hurricane would oscillate.

The results of the global stability analysis are compared with
observations. The eigenwave mode with the largest growth rate (which
corresponds to an e-folding time of 1.3 days) has four arms and has
radial wavelengths of about 20 km near the eyewall and about 50 km at
r = 300 km. The lines of constant phase agree remarkably well with the
spiral rainband pattern of Hurricane Caroline. The mode is nearly
stationary — the phase speed is about .25 m/sec near the eyewall, and
even less farther out. The observed spiral structure is also nearly
stationary! The eigen mode thus obtained consists of both an amplifying
and a decaying wave in the inmer region of the storm between the

eyewall and about r = 115 km, and only a decaying wave in the region
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beyond. For comparison, we see that the rainbands in the northwest
quadrant of Hurricane Caroline are confined within a radius of about
125 km; no radar echoes are observed beyond this radius despite the
proximity to the radar.

The linear asymptotic theory of Rayleigh instability in the
hurricane boundary layer is, of course, limited by the approximations
and assumptions made. However, the theory shows that Rayleigh instability
is a mechanism which organises moist air into ascending and descending
spiral regions, forming a spiral rainband pattern which resembles very
closely the observed phenomenon. The implication of this theory goes
beyond an explanation for hurricane rainbands. The global instability
theory predicts where bands of clouds would form and how they would
propagate even if the basic state were not an axisymmetric vortical
flow, providing that the underlying moist boundary layer were

frictionally controlled.
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APPENDIX A

Rivas Scheme to Solve Equations (3.2.5) - (3.2.7)

Equations (3.2.5) - (3.2.7) are

02.‘ _.i;'- ] . (;Eo _i; ) - é:éz (a.1)

RO[U >, + W 08 P - 337—
-V — oV v - rV
Rp [U v - W D% + —; } + U = DZ" (A.2)
2vd W
afl r a} - O (A.B)

The following notation will be used: For a variable q (=0 , vV , w) ,

denotes the value of 4 at the (j,k)th grid-point in the (r1 -2z)

4T
plane and at the N "time-step".
We write
U
2¢ = A +B (A.4)
‘%‘; - ¢Cc + D (A.5)
W —
2= L 2nd (A.6)
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with

] 700, 720 ]
A-"Ro[U;'—.-a- w } (A.7)
\7»1-—‘ v —l] o'_lZ A.8
B'—’"R"[ v, ]—-I.—V +b8’-(')
I:‘.af\\-; —2:] A.9
C=-R [T 55 « "o “2
— 2" v (A.10)
‘]> = - U A -;EE;
Since u , Vv , w are all real, uw*=u, v*¥ =7V and W* =W .

The Rivas Scheme will be applied to (A.

be found from the continuity Equation (A.6).

th

step" to the v+l "time-step" involves two

4) and (A.5), and w will
To go from the vth "time-

forward steps and one

backward step. At each step s , W,A,B,C and D are evaluated
from (A.6) - (A.10).
s '3 , s . S
wrg e WL, - Az [(34-') Uiy k= = J Y§ ey }
Ar J 4"'/1—
(A.11D)
s s z s T s s Y
Ae = -R. [Luii--,t) - Q‘v“) . Wy Uglery 'u“‘"]
2.0r 202

(A.12)
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V.. — s
— . - A (A.13)
[ Tar ] (V-OJ ,v)
+ Jk-n. - ZU e + ML-L
AE"
: p (A.14)
K . . ) ’ s >
ka = -Ro [U;\; gﬁ) Uiv, & = Viw +-uf§k Nyl ~&gw-t ]
(j +h)ar 252
; : : Y - (A.15)
Dju = - uo-k ¥y Viksr - A t Al .
Ax*
The first forward step is:
& v [
Uie = UJ‘L + AT ( - A,k + BJ'K ) (A.16)
Ar ~ -
Afjk = I‘U";‘k + A-T- (- CJ’“ +DS{¢ ) (A.17)
The second forward step is:
~ L4 &
Ujw = Yie * At ( Aje  +Bje ) (A.18)
(A.19)

ﬂ?q’k e - AT (C:k ""D"‘;)



116.

The backward step is:

In the computations, we chose

Ro =1

Ar = .05
Az = m/20
At = .01
J =40
K = 20

o c/jAr , ¢ = .1

The scheme converged within 1000 "time-steps'.

(A.20)

(A.21)
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APPENDIX B

Attached is the literature on SUBROUTINE LSQNK2 from the MIT Information

Processing Center.
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Applications Program Series

AP-26

NAMES :

DESCRIPTION :

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

INFORMATION PROCESSING CENTER
March 28, 1973

LSONK1 and LSQNK2, to find the zeros of an
analvtic function.

LSCNK1 and LSQNK2 are FORTRAN 1V subroutines
which find all the zeros of an analytic function
f(z) within a contour in the z plane. The
program LSQNK1l requires a single arbitrary closed
curve described in parametric form. LSQNK2
requires a polygonal curve described in terms

of the vertices of the polygon. Each program

is limited to finding at most four zeros within
a given contour. If there are more than four
zeros within the contour, the programs will
report only the actual number of zeros, and

a new smaller contour must be chosen.

The method used is based on the thecry of complex
variables. Specifically, if f£(z) is an analytic
function (has no poles or branch points) of z
within and on C, where C is a closed curve in

the complex plane not passing through a zero

of f(z), then

v
_ 1 . N f'(z) _ N
SN - 2ni kj/,z (z) dz = > z3
A

Cc i=1

Hl b

where z; (i =1,2,...,v) are all the zeros of

f(z) which lie inside C. (A multiple zero is
counted according to its multiplicity in this
formula) . The program computes a seguence of
values SN (N=0,1,...,m), mz4 by numerically

approximating the contour integrals. Using
Newton's Identities, these approximations to

SN are used to form a polynomial p(z) of degree

less than or equal to 4 whose zeros coincide

with the zeros of f(z) inside C. The restriction
to polynomials which are at nost guartics (and

thus to finding at most 4 zeros in a single call)
is due to the fact that quartics can be solved
analytically. LSONK1l and LSQNK2 make use of a

very accurate quartic solving program called ROOTA4.
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In order to numericallv approximate the contour
integrals, an inteagration by parts is performed
on the above integrals to rid them of the
derivative f'(z). This yields:

N

L _j 2N £82) 4, =

271 f(z)
C
1 N 1 . -

wr 2 gy | -n T 2N anceaaz =
z
a C

ng - N L/nzN-l 1n(f(z))dz

C
where z, and z, are the initial and@ terminal points

of the curve C and J is the number of the complex
sheet above the initial sheet (J=0) of the Riemann
Surface for 1ln(f(z)) at the termination of the
integration when z=2 -

The contour integrals

f N1 1n(f(z))az

o

are evaluated using the equivalent real integral
of a complex function:

b
N L} z 1in(f(z)) g

a

where z = g(t) is the parametric equation of the
contour C (describing the complex variable z in
terms of some real parameter t). A Simpson's Rule
adaptive contour integration prograrm LEONY is
used, which properly handles the branch cut of the
logarithm function and ccmputes all the contour
integrals needed simultancously. ©LEQNK is a
modification of SQUANK (refer to AP-31l), an adap-
tive real integration program, and subsequently
CSONK {refer to AP-70), an adaptive contour in-
tegration procram which inteqratos any complex
function alcng an arbitrary contour.

-
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USAGE : LSQNK1
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.
¥

The calling statement for LSOMK1 is:

CALL LSOMNK1(A, B, ERROR, M, NPRINT, ANSW, RETEPRPER,

Where:
REAL*4
COMPLEX*8
INTEGER*4
EXTERNAL
Input:

A and B

ERROR

NO, CURVE, FUN)

A, B

ERROR, ANSW(4), RETERR, CURVE, FUN
M, NPRINT, NO

CURVE, FUN

are the values of the real parameter
t at the initial point and terminal
point of the closed curve C.

is the desired complex tolerance
(absolute error) to be used in the
computation of the contour integrals.
This error tolerance affects only the
contour integral calculation, not the
formation and solution of the approxi-
mating polynomial. To avoid excessive
subdivision of the interval and the
possible resulting round-off error, it
is suggested that a tolerance no

smaller than about 107> + 107 °i be
specified. The answer is usually con-
siderably more accurate than this.

iz the number of =zeros of f(z) expected
inside the contour. M must be a
positive integer less than or equal to
4. The value of M is used to compute
the number of contour integrals to
perform so that if there are actually
more than M zeros, the numcer of zeros
will be returned and the program must
be called acain with a larger value

for M. It is recommended that M=4 be
used since most computer time is uscd
in computing 1n(f{z)) which is done
only once for cach point z.
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NPRINT

Output:

ANSW

RETERR

NO

121.

is an indicator specifving whether
or not to print intermediate re-
sults and error messages.

NPRINT 0 results in no printing.

NPRINT 2 1 results in printing of
information associated
with each set of 5 points
used in the Simpson's Rule
calculation.

NPRINT

]
N

results in printing of the
values (z,f(z)) used in
the integration.

The information printed.is illustrated
and described in the section "Optional
Printouts."

contains the answers, up to four zeros
of f(z).

is the claimed resulting error in the
computation of the contour integrals.

is the number of function evaluations
f(z) required.

External Routines:

CURVE

FUN

is a complex function subprogram
describing the parametric equation of
the contour z = g(t) and its derivative
g% = g'(t).
COMPLEX FUNCTION CURVE(T,DZDT)
REAL*4 T
COMPLEX*8 DZDT
C PROGRAM WHICH DEFINES CURVE AND DZDT

is a complex function subprogram describ-
ing the functicn £(z).

COMPLEX FUNCTION FUN(Z)

COMPLEX*8 2
C PROGRAM WHICH DEFINES FUN
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LSQIK2
The calling statement for LSQNK2 is
CALL LSQONK2(Z, N, ERROR, M, NPRINT, ANSWY, RETERR,
NO, FUN)
Where:

COMPLEX*8 2Z(N), ERROR, ANSW(4), RETERR, FUNM

INTEGER*4 N, M, NPRINT, NO

EXTERNAL FUN

Input:

z is a complex array describing the
coordinates of the vertices of the
polvgonal contour. The vertices must
be given in counterclockwise order.

N is the number of vertices.

ERROR |

M > same as for LSQNK1

NPRINTJ

Output and External Routine:

ANSW

RETERR same as for LSQONK1

NO

FUN J

Notice that no external CURVE function is neces-

sary in this case because the parametric equations

of the straight lines joining the given vertices
are built into LSONK2.

Both LSONK1 and LSQNK2 print the number of zeros

(minus the number of poles), the values of the

contour integrals (moments), the zeros (ANSW),

and the value of the function f at the zeros. A

sample printout is shown below.

\MJMBER NFE JFRNS MTNUUS NUJMRER QF PPLFS = 4

MOAMENTS

0.75CA792F 470 =0.26644045+07
0.9132504F-01 Je5334190F+0)

De3375626F+11 2.3164%32F+00
-N.,3083142F-21 =-0.8593953F-11

nnNT 14

J
T THETI G- "G Ve s BT Y ey
Ne5C0N53G5 40N S R R b

Ne4GSS3BQE+00 Je3334412V¢00
-04249991 3F+30C =-0.5999722F+])

F{7)
VoY, L YR LY,
3

. SLrATIY e

’

R A T AN

Da 121036346 F -4 BN ISR I - PN
Je1363356--C4 De16T4469726 ="
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The examples on page 8 illustrate the performance

of LSQONK1l and LSQNK2. In the first example, LSONK1
finds, using various tolerances, the zeros of a
quartic which lie within the unit circle. HNote that
specifying a smaller tolerance increases the number
of functicn evaluations greatly with very little,

if any, increase in accuracy. Also, the actual pre-
cision of the answers is much better than the preci-
sion returned in RETERR. The precision returned is
that of the most imprecise of the four contour
integrals computed in this case. This example
reinforces the warning that tolerances of less than

1072 + 10721 or 1073 + 10731 should be avoided.
This same function was later examined by using LSQNK1
four times with small circles of radius 1/19 sur-

rounding the zeros found above. When tolerances of

1072 + 10721 were specified, each zero was determined
to between 5 and 6 significant figures, using between
33 and 53 function evaluations. Greater accuracy is
attained due to the smaller contours and to the fact
that they encircle just one zero each; the approxi-
mating polynomial is then linear and solved without
ncticeable loss of precision. Thus using a large
contour first to estimate the zeros and then shrink-
ing it is the best strategy.

The accuracy of the routine is also affected by the
closenecs of the zeros to the contour. The routine
is most accurate when the zercs are near the center
of the region surrounded by the contour since 1n(£f(2))
becomes singular at the zeros. Sometimes LSOQNK1 or
LSONK2 is used just to estimate the zeros and then

a more localized method such as Newton's Method or
Muller's Method may be used to increase the precision.

When a quintic was used for the function £(z), using
the unit circle as contour with four of the zeros

within it, specifying a tolerance of 1072 + 107%

produced zeros with between 2 ané 3 significant
digits in 145 function evaluations. This is not

as good as the accuracy for the quartic exanrle.

In general the more the functiecn f£(z) varies on the
contour, the more function evaluaticns are necessary
to obtain a given accuracy.
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AP-26 B

In the second example, the zeros of the same function
are found using a saquare as contour. Although the
callirna pro~ram revuives onlv one call to LSEQNE2,
interrallv :the contour integration program is called
separately for each of the four sides. Notice that
the number of function evaluations is much less than
for corresponding runs using LSONKl, even though the
square contour used is larger than the unit circle.
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Function: f(z)=z*(z-(.5,0.))*(2+(.25,.6))*(2z-(.5,.3333333))

Contour curve: unit circle X=cos2nt
y=sin2nt 0stsl
LSQNK1 results:
ERROR ANSW (zeros)
1.E-2 + 1.E-2 i -.163903E-4 - .B34595E-6 i
.500030 - .548350E-5 {1
-.249997 - .600002 i
.499992 + .323342 i
1.E-3 + 1.E-3 i -.115627E-4 - .19n730E-5 i
.500026 - .2026615-5 i
.249995 - .620001 i
.499992 + .333340 i
1.E-5 4+ 1.E-5 i -.181784E-4 + .154940E-5 i
.500029 - .619BS7E-5 i
-.249996 - .600004 i
.499993 + .333342 i

EXAMPLE 2

f(z)
-7747E-6 ~ .3110E-5 i
.2283E-5 - ,4259E-5 1
.1301E-5 - .2429E-5 1
.1€57E-5 - .21BEE-5 i
.7992E-6 - .2145E-5 i
-2376E-5 - .3489E-5 i
-2B09E-5 - .2289E-5 i
.1832E-5 - .1679E-5 i
.3348E-6 - .3542E-5 i
.2134E-5 - .4256E-5 i
.1750E-5 - .3777E-5 i
.1464E-5 - .2255E-5 {1

Function : f(2z) = z*(z-(.5,0.))*(24(.25,.6))*(z-(.5,.3333333))

Contour polygon: square with vertices at (1,1),(-1,1),(-1,-1), and (1,-1)

LSQONK2 results:

ERROR ANSW (zeros)

1.E-1 + 1.E-11i .786716E-4 + .498207E-4 i
.500054 + .211982E-4 i

-.249992 - .599672 i

.499938 4+ .333461 i
1.E-3 + 1.E-3 i -.780886E-5 + .162124E-4 i
.499994 - .174343-4 i

-,249999 ~ .559994 i

.500022 + .333344 i
1.E-5 + 1.E-5 i -.953696E-5 + .S54B342E-S5 i
.499996 - .127552E-4 i

-.249999 - .600002 i

.500016 + .333350 i

fl2)

-.1249E-4 +
.BN49E-S -
.1364E-4 +
.1211E~-4 -

-.2815E-5 -

-.2758E-5 -
.2082E-5 +

-.5361lE-5 ~

-.6934E-6 -

-.1976E-5 -

-.4091F-7 -

-.4239E-5 -

.1321E-4
.4614E-5
.1674E-4
.3189E-4
.2105E-5
.1021E-5
.3813E-5
.2177E-5
.2034E-5
.7986E-6
.1481E-S
.3756E-5

T ol e el

NO
137

241

861

NO

48

68

240

RETERR

1.E-2 + 1.E-2 {1

1.E-3 + 1.E-3 i

.3061E-4 + .3240E-4 i

RETERR

1.E-1 ¢+ 1.E-1 4

1.E-3 + 1.E-3 {

1.E-5 + 1.E-5 i
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PRINTOUTS:
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When the NPRINT parameter is nonzero, two optional
printouts may be produced. These allow the user to
watch the progress of his contour integration. A
sample cof the optional printouts is given on page 10.

When NPRINT 2 1 the following information is printed
for each five points involved in a Simpson's Rule
calculation of the contour integrals:

(T
PJUMP = \

_F
Z(1)
ADIFF and
ADIFFI
NJUMP
LEVEL

When NPRINT

The angle betweer the 1ln(f(z)) values
at any two adjacent points of the five
is greater than m/4. In this case,
nonconvergence is assumed and the
program proceeds to a finer level of
subdivision of the integration interval.

The angles described above are all <n/4.

The initial point of the five used in
the Simpson's Rule calculation.

The real and imaginary parts, respec-
tively, of the difference between the
Simpson's Rule calculation for the
wider mesh (3 points) and the finer
mesh (5 points), using the calculation
for that contour integral (of possibly
four) which produces the greatest dif-
ference (error). This quantity is
used to determine convergence oOr non-
convergence based on the specified
tolerance, ERROR.

The number of the Riemann Surface or
sheet above or below the initial sheet
(numbered zero) for the in(f(z)) value
at the fifth point of the five used in
the Simpson's Rule calculation.

The level of subdivision of the inte-
gration interval that these five points
represent. The initial level is zero.

5 the following information is printed

for each pocint of the five.

Z

F(Z)

The point itself.

The value of the function £ at that
point.
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OPTIONAL PRINTOUT FOR NPRINT

0.1000F*01}
0.5000€F+00
0.0
=-0.56005+00
-=0.1000F+01}
=T il
0-.1000€+01
0.7500F +00
0.5000F +00
0.2500F+00
0.0
=T Hn
C.1000F¢01
C.BT5CF+00
0.7500£+00
0.6250E¢CC
0.5000% 400
= F in
0.5002F+00
0.3750F+ 0G0
0e2500F ¢0C
0.1252¢+30
0.0
= F
0.0
-0.2500F+00
=0.50073F+00
-0.750GF+00
-0.1000F+01
Jimp = F I
-0.1000€¢01
-0.1000E+01
-0.1000F 01
=-0.10J20F¢01
-0.100GF+01L
= F 711)
-0.1000€¢01
-0.1002c+01
~0.1000F+01
- C.1000€+01
-0.1000€¢01
MP = F e
-0.1000E+01
—0.1L000E+01
~0.10005+01
-0.1000€¢01
-0,1000F¢01
MP = F 48]
~-C.1000F+01
~0.5000F +00
0.0
0.5000E+n0
0.L00CF+01L
= i ()
-0«1000F +#01
-0.7500f+00
-0.5000E+00
-0.2500€+00
0.0
MpP = T

=S TR Y I )
X z x
v ° °

L T T T T I I I = (R I I V]

c
x
°

(1)

=4
z
A

LU T I "I = I I TR T | By

[
c
x
°

chlon

7¢1)

C.1000€+01
0.100JE+01
0.1000F+01
C.1000F+01 FI7)
C.I000E+0L FI(2)
= 0.1000F +01
C.1000E+01 F(I)
0.1000E+01 F(2)
0.1000E+01 F{Z)
C.100NF+01 FL2)
0.1000F+0C1 F(Z7)
= 0.10C0F¢01
C.1000F+Ci F(2)
0.1000F¢01 FL2)
0.1000F«01 F(2Z)
C.100NE®DL F (7))
C.1000€E+01 Fi1)
= 0.10C0E+O01
0.1000€E+C) F1(2)
C.135007 01 F(7)
CalODDECOL F(2}
C.1000€+0%F F(7)
0.1000E+OL F(2)
= 0.50C0E+00
0.1000€+0Q1 F(2)
0.1000F+01 FI )
C.10G0F«01 F(2Z)
0.1000F+0L F(I?
C.L000F«0L FL2)
= 0.0
0.1000F«01
(.5000c¢00
0.0
-C.%5000F«00
-C.1000F+01
= -0.10COE*OL
C.1000E+0i F(Z)
C.7500F+0D F(Z)
0.5000QF +00
0.7500€+00 F(Z)
0.0 F(Z)
= -0.1000F#*01}
0.0 F(1)
-0.2500F¢00 F(2)
—0.5000F+00 F(I)
-0.7500E¢00 F(2Z)
-0.1N00F+01 F(Z)
= —0.1000E+01
-0.1000€E+01
-0.1000F+01
-0.1000E+01
~0.1000E+91 F(1)
-C.1000F+01 F(2}
= =0.1000E+01
~Ce l000F+01l FLZ)
-0.1000f+01 F(2)
-J.1000€¢01 F(T7)
-0.1000E+01 F(2)
-C.1000E+01 F(Z)

Fiz)
FLI
F(n

FE{Z)
F(I)
Lz
FLry
Ftz)

FLLY
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2

= =-0.2229E+01 ~0.1479€+01
= 0.8167E¢00 -0.1733F+01
= 0.8750€¢00 0.1229F«0)
=  —~3.2242F¢01 0.2108€E+0]
= -0.7221¢F+Cl -0,.1596E¢01
0.1000€¢01 ADIFF = 0.,2905€+00

= =0.2229E+01 -0.1479€+01
= =0.4031E¢00 -0.1683E+01

= 0.8750E+00 0.1229€+01
= 0.12566F¢01 0.708%F-01
= -0.7221E+01 -0.1596€+01
0.1000F +0I ADIFF = 0.2596F+00

=  =0,2229F+01 -0.1479E+0)
= -0.1254E+01 -0.1713€+01
0.B8750F+00 0.1229F+01

= 0.2950F+00 -N.1440E+01

= ~-0.7221E#0]1 -0.1596E+01

0.1000E+01\ ADIFF = 0.2578€-01
~0.2229E+01 =-0.1479€+01

Call4af+dt -0.51306+00
C.8750F¢«0D0 0.1229E+01

%

= =0.2339€E¢01
= 0.7250E¢00
= 0.1333E+00
=  -0.2B46E+¢01

= -0.L000E+01 —0.1000E¢D1

ADIFF =

0.1176c+401 0.6682E¢00
=D.7221F+01 ~0.1596E+01
0.1000€+01 AQLFF = 0.6378E-02
= =0.,2229€E+01 -D.1479€+01
= =0.3333E+400 0.2042E¢01
= 0.6750E+00 0.1229E+01
= =N.4639F+01 0.1029F¢01}
= —0.7221E+01 -0.1596€E¢01
0.1000¢ +01 ADIFF = 0.2778E+00
= -0.7221E+01 -0.1596E+01
= =0.1042€E+¢0] -0.3396E+01
= 0.1987E+0) -0.9750E+00
= 0916 TE+UO 0.2104E+01L
= =0.3704S#01 0.2279€E+01
0.1GOCE+01 ADIFF = 0.4731F+00
= =0,7221E¢01 -0.15956E+0}
= -0.73855€E¢01 -0.3246E+01
= C.19875¢01l -0.9750E+00
= 0.9612E+00 -0.2490€E+01
= -0.3704E+01 0.2279E+01
0.100N0E +0! ADIFF = 0.2829€¢00
= =0.T7221E¢01 —-0.1596F+01
= 0.1965E+01 0.7049E+00
= 0.198TE+C1 -0.9750E+400
= =0.1043E+01 0.2777E+01
= =0.3704E¢01 0.2279€¢01
0.0 ADIFF = 0.2265E+00
= =0.3704F+01 0.2279E+01]
= =0.9583E+400 -0.7917€E+00
= 0.7250E+00 -0.1958E+00
= 0.3333E-01 0.1267€eql
= =0,2846E+01 O.795BE#NO
-0.1000F +01 ADIFF = 0.1964E¢01
= -0.3T04E¢Q1l 0.2279E¢01

0.1104€¢00
-0.1958E+00C
-0.77T7T1F¢00

0.7958€¢00
0.1472E¢00
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= =2
LSONK1 and LSQNK2 are available in load nmodule
form in the iibrary SYSS.MATHLIB.SUBR and in
source form in SYS5.MATHLIB.SOURCE. For further
information about the use of these libraries
refer to AP-60 or consult the Programming Assist-
ants, Room 39-219,

LSONK] uses 19,068 bytes (4A7C in hexadecimal)
of core storage. LSONK2 uses 19,588 bytes

(4C84 in hexadecimal) of core storage. This
does not include the space required by the user-
suppiied CURVE and FUN function subprograms.

LSONK1 and LSQOMNK2 were written by Dorothy
Zaborowski, an IPC staff member, with advice
from Dr. James Rome of the M.I.T. Electrical
Engineering Department, currently with the 0Oak
Ridge tational Laboratory, Oak Ridge, Tennessee.

LSONK1 and LSQNK2 use Method B in the publica-
tion: Delves, L.M. and Lyness, J.N. "A Numerical
Method for Locating the Zeros of an Analytic
Function," Mathematics of Computation, vel. 21,
1967.

The original articles for SQUANK are:

Lyness, J.N. ACM Algorithm 379, Communications
of the ACM, Vol. 13 (April 1970), page 2€0.

Lyness, J.N. "Notes on the Adaptive Simpson
Quadrature Routine," Journal of the ACM, Vol. 16,
No. 3 (July 1969), pages 483-495.

ROOT4 was supplied by C.0. Beasley, Oak Ridge
National Lakoratory.
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APPENDIX C

Domain of Analyticity of f(k)

The dispersion relationship SJ(k) possesses branch lines where

2
or’-8 1 1%

Re(y) , with Yy = [(kz + kez) , changes sign. This is

O'IIZ 4H2
because we have chosen Yy such that Re(y) > 0 . If we write
Y = |Y|e1(e+nﬂ) , then the value n takes on will depend on the value 6

such that Re(y) = |Y|cos(6+mr) > 0 . Hence, in order to use SUBROUTINE
LSQNK2, the contour in the k-plane must be chosen such that it does not
include the branch lines.

To determine the position of the branch lines in the k-plane, we

- first write

Y = (k*A)
where k2 = k* + kez and A=—">5" = |ale and determine
the branch lines in the k-plane. Since H is large, we shall neglect
1/40% .
We write:
l‘ ’
k= |kle

. ' «‘[9b¢ FanTT)
g = @A)"' - el Mt e *

\/
so that Re () = Ikl LAl v oo (9'4—% &—Mﬂ')
We see that in order to have Rg(r) >0
then A= D ov rewn if (8*'%‘ <%‘
. T
it 1o +81 > %

ns { o odd
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Thus the branch lines in the k-plane are at

e
e

and
&

vWo

and the branch lines in the k2-plane are at

16 = Tr—-dJ

and 28 = —ﬂ—¢

KK —Pl_w

- plavae

Since k2% = k? - k62 , the branch line in the k*-plane is
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4&1'$ﬂﬁbvub

v-¢\(/ 1} by tanir-6) = ke tamd
\pmy st

kel.

which translates to, on the k-plane:

4 - plava

The branch line asymptotes to 0 = %-- %— for large k.

Thus we choose the contour in the k-plane which avoids the branch lines:
|

A - plonan
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APPENDIX D

Asymptotic form of the parabolic cylinder function

Reference: Whittaker and Watson, A Course of Modern Analysis, Section 16.5

The parabolic cylinder function Dn(E) is a solution of Weber's

Equation

.d__%:%) Frrit -~ 2E)DlE) =0 (0.1)

The other solution of Weber's Equations is D_n_l(iE) .
We summarize below the asymptotic form of Dn(E) for large & and

different arguments of § :

-¢%"

'Dn(_!,)~ e z“’- la"-ﬁgl < %ﬂ— (D.2)
-¥g’ | 2w nre  ¥et -
I)n(‘%) A~ e "L -
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LIST OF FREQUENTLY USED SYMBOLS

Defined or

Symbol first used Definition
A(r)) 4.4.8 coefficient of solution for wgo)
B(r,) 4.4.8 coefficient of solution for wgo)
b 2.4.6 buoyancy = %;'%%
C(rl) 4.4.8 coefficient of solution for wgo)
c 3.1.4 mean circulation of hurricane
D 2.2.7 scale height of boundary layer = NIE
D, 3.4.14 depth of middle layer
8 (k) 4.2.5 dispersion relationship
f 2.2.1 Coriolis parameter
g 2.2.1 acceleration due to gravity
Y (wym) 4.5.32 global dispersion relationship
H, 3.4 height of lowest layer
H, 3.1.1 height of top of boundary layer
M 3.1.1 density scale height of atmosphere
i /-1
k(rl) 2.2.9 radial wave number
L 2.2.7 overall radial scale of hurricane
m 4.1.2 azimuthal wave number
N2 2.4.6 Brunt-Vaisala frequency, squared
P 2.2.7 pressure (see under u for details)
r 1.1.1 radial coordinate
r 2.2.9 "fast'" radial coordinate



2.2.8

2.2.11

1.1.1

2.2.11

3.4.14

2.2.1

C2.2.1

2.2.7

3.4.3

2.2.7

3.4.1

3.4.1

2.2.7

3.4

2.2.1
3.1.4
2.2.1

2.2.1

1.1.1

4.4.9

2.2.8

1.1.1

2.2.1

3.4.9

2.2.1

134.

"slow" radial coordinate

Reynolds number

radius of eyewall

Rossby number

shear in jth layer

time

radial velocity, dimensional perturbation
radial velocity, non-dimensional

. .th
u in j layer

mean radial velocity

U in jth layer

4l
]
N
[}
=]

z = H, respectively

velocity scale

velocity component perpendicular to wavefront

tangential velocity (see under u for details)
V in hurricane interior
vertical velocity (see under u for details)

vertical coordinate

crossing angle

vertical wavenumber in stratified layer

small parameter = D/L

azimuthal coordinate

potential temperature (see under u for details)

horizontal wave number

eddy coefficient of viscosity



3.4.9

3.2.17

2,2.1

2.2.7

3.4.14

135.

frequency

Earth's rate of rotation

density of air (see under u for details)

scaling parameter for p

Doppler shifted frequency (see under u for

details)
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