FLOW GENERATED NOISE OF ACOUSTICAL DUCT LINERS

by

James Dana Hrubes

B.S.M.&., Illinois Institute of Technology
(1975)

Submitted in Partial Fulfillment
of the Requirements for the
Degree of
MASTER OF SCIENCE
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

August 1977

Signature of Author...... ....Jzznh&.zgéhﬂfﬁ??r ............. .

Department of ronautics and Astrcnautics, August 1977

Certified by......[?%%??ééégéieéaﬁfi(f

TP e Zg/ﬁ ‘"Theslis Supervisor
Accepted by........,.

LSO R SR ® e 0 e 00 0 00 0.2 0 i, R e e e e e ® e e s 00 o0

Chairman, Department Committee

e B T
SEP 21 1%

IsRARICS




FLOW GENERATED NOISE OF ACOUSTICAL DUCT LINERS
by

James Dana Hrubes

Submitted to the Department of Aeronautics
and Astronautics on August 12, 1977 in
partial fulfillment of the requirements for
the Degree of Master of Science.

ABSTRACT

Noise generated by flow over acoustic duct liners is
studied with main emphasis on discrete tones produced by
flow instabilities over perforated metal liners in conjunction
with Helmholtz resonator arrays. Specific experiments are
designed to determine the noise source mechanisms. In addi-
tion, the noise generated by duct inlet and exit configurations
and its comparison to broadband foam liner noise is investigated.

Thesis Supervisor: K.U. Ingard
Title Professor of Aeronautics and Astronautics
and Professor of Physics
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CHAPTER I

INTRODUCTION

To attenuate unwanted sound in ducts with flow acoustical
linears are widely used. This absorbing liner provides the
duct boundaries with a finite acoustical impedance thus
attenuating the acoustical energy traveling through the duct.

Acoustical impedance is defined as:

z = p/u where p and u are the total pressure
at the boundary and velocity amplitude
normal to the boundary.

An ideally rigid duct boundary with velocity amplitude at

the boundary equal to zero would have an infinite impedance,

therefore a reflection coefficient R = 1 where:

pr(O) = R pi(O) r - reflected
i - incident
(0) - at boundary

These so-called soft boundaries dissipate acoustical energy,
thus attenuating sound.

Many types of methods and materials are used for
acoustical liners such as foams, glass wool, screens and
perforated plates with and without honeycomb or cavity type
backing. The perforated plate backed with individual cavi-

ties can be regarded as a Helmholtz resonator array, providing



the cavity depth is smaller than A/4 , where )\ is the
wavelength, which is true for the range of values used
here.

An advantage of the Helmholtz resonator is that,
depending on hole and cavity size, the system has a particular
resonant frequency. The sound attenuation is usually quite
high in the vicinity of this frequency, because the forcing
frequency of the input signal matches the resonant frequency.
Unfortunately, the attenuation is usually much lower at lower
and higher frequencies, making the Helmholtz resonator an
effective sound absorber only in relatively small frequency
bands. These resonators are frequently damped by filling the
cavities with porous materials, thus extending the range of
attenuation somewhat, but lowering the magnitude of attenua-
tion.

Most sound absorbers such as the Helmholtz resonator
can be classified as a boundary with a local reaction. A
locally reacting boundary as opposed to an extended reacting
boundary has the feature that each point is decoupled from the
rest of the boundary, thus its motion is virtually unaffected
by any reaction occurring at another area. The case of the
locally reacting boundary makes predicting and analyzing the
characteristics of the boundary much simpler.

Other liners not using resonant cavities are commonly

used. An example includes a simple lining of foam or another
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type of porous material along the duct walls. Sometimes
screens or perforated plates are used as protective coverings
for the foam. These foam linings don't normally attenuate
sound at the magnitude of the Helmholtz resonator, but the
range of attenuation is much larger.

The problem to be discussed in this thesis is not one
of attenuation characteristics of liners, but one of the
adverse qualities exhibited by some liners at certain condi-
tions. A typical liner in the presence of grazing flow
produces a highly turbulent flow near the boundary thus
producing a liner self-noise. Depending on the conditions,
these liners may produce more noise than is attenuated, thus
limiting the liner length to an optimum value.

Undamped and lightly damped Helmholtz resonators and
also perforated liners alone are shown to produce a discrete
tone or tones with a significantly high amplitude, similar
to the edge tone[1’2’3]. In all cases, though, the source of
the problem seems to be that of vortex production at the
holes[4’5'6]. The screech tone seems to be a complex combina-
tion dependent upon duct modes, flow velocity, damping and the
like. Mechel et al.[7] along with his theory on signal
amplification, observed these discrete tones that he calls

pfeife-tones. His observation of the maximum intensity of

the tone to be at a frequency equal to the product of the flow
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velocity and the number of holes per unit length seems to be
an oversimplification. Screech tones such as these are the
subject of discussion and experiment in Chapters II, III, and
IV.

A simple lining of foam, for example, will produce
noise also, but by a different mechanism[s’g’lo]. This
noise is generally of a lower amplitude than that of the
discrete whistle of the perforated plate and it is generally
of a broadband nature. Chapter V is a discussion with experi-
ment of this broadband noise in comparison to the noise pro-
duced by the duct inlet and exit. This inlet and exit noise
is believed to be more significant, in many cases, than the
broadband liner noise.

Chapter VI discusses future investigations and what

are the important directions of research on this subject.
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CHAPTER II

APPARATUS AND EXPERIMENTAL METHODS

2.1 Apparatus for Chapters III and IV

The apparatus used in Chapters III and IV is shown in
Figure 1. The duct and cavity sections were constructed
using 3/4 inch by 7/8 inch aluminum channels with the specific
liner to be studied sandwiched between the two as shown. The
total duct length was approximately 8 feet.

In Chapter III each cavity was 1 inch by 7/8 inch by
3/4 inch, and a combination of tape and metal strips with
clamps, as shown in Figure 1-C was used to seal the duct from
leakage. For the work in Chapter IV, the cavity geometry was
changed accordingly by removing the cavity divisions and
raising a plate to various depths. The cavity divisions were
constructed using securely glued plastic pieces. Static
pressure taps were placed next to microphones 2, 3 and 4 and
a pitot tube was placed as shown.

After experimenting with the internal microphones
(2,3, and 4) it was soon decided that the inlet microphone
(#5) outside the duct was sufficient and best suited for the
remaining experiments. The microphones used were Primo-
Electret Condenser microphones with a nearly flat response
up to 10 KHz. A bellmouth was placed at the inlet to mini-

mize separation problems and inlet noise.
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The duct was then mounted to the surge tank, which
was hooked to the steam ejector to provide suction with the
suction source being an ample distance away, as not to cause
any noise problem.

The electronic equipment was set up as shown in Figure
1-D, using the oscilloscope as a visual monitoring device.
The instruments used included a Federal Scientific UA-14
Ubiquitous Spectrum Analyzer and a model 1014 Spectrum
Averager. The Hewlett Packard 7035B X-Y plotter was calibra-
ted for sound pressure level using an Advanced Acoustical
Research Corporation Sound Level Meter and a 1 KHz sound
source. Perfect calibration was not necessary since our
prime concern here is the frequency of excitation and the
relative not absolute magnitude.

In a typical run for a specific liner case, the flow
speed was adjusted and the microphone output was plotted.
Typically 5 to 10 different flow speeds were taken, except
for the section of Chapter III where many more data points
were taken. The description of specific configurations used
are presented in each individual section.

2.2 Pressure Drop in the Eight Foot Duct

For the 8 foot duct, the pressure drop was examined
for the different liners and a comparison to analytical
results is made. To get an idea of the static pressure varia-

tion for the 3/16 inch hole liner with one inch spacing at
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Figure 4: Pressure drop vs. Mach number for liners with
various hole sizes (one inch hole spacing).
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various Mach numbers, it is plotted as a function of distance
downstream of the inlet in Figure 3. The curve shapes
compare qualitatively with the results of Shapiro[ll].

Next, the pressure drop vs. Mach number is shown in
Figure 4 with the expected results of increasing pressure
drop with hole size being confirmed. To check the validity
of these measurements, the flat plate (no holes) result is
compared to analytical results with good agreement, as shown
in Figure 5. These relations, as shown by Ingard et al[lzl,
are that the pressure drop per unit length of duct is
(£/a) p(V2/2) where a 1is the ratio between the area of
the duct cross-section and its perimeter, and f is the
friction factor given in Moody Diagrams. V is the velocity

and p is the density.

2.3 Apparatus for Chapters V and VI

The apparatus and experimental methods were very much
similar for Chapters V and VI, except that the ducts used
were somewhat different. Chapter VI ducts were all of one foot
length (3/4 inch by 7/8 inch) with a change of liner configura-
tion from a one hole-resonator liner to a two hole-two cavity
liner to a 3 hole-three cavity liner with all resonant cavi-
ties 3/4 inch by 7/8 inch. A microphone was placed 1-5/8
inches in front of the inlet.

Chapter VI ducts were of varying lengths (one foot,

3 feet, and 6 feet) with a 3/4" by 3/4" cross-section without
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Helmholtz liners, but a foam liner was inserted for some
experiments. The set-up is shown in Figure 2.

2.4 Future Experimentation

For future experimentation in this same field a few
suggestions can be offered. For long ducts (L/D > 40) it is
wise to take two pitot measurements and take an average
because the change in flow velocity may be significant. Also
it is wise to plan ahead of time a convenient modular con-
struction for a particular experiment to fascilitate easy
duct geometry change without excess flow disturbance. The
configurations in this investigation were not guite as con-
venient as could have been expected.

Another important consideration is the placement of
the microphones. First of all it should be far enough from
the inlet as not to be disturbed by the turbulent fluctua-
tions of incoming flow. Also, when using a bellmouth, one
should be careful if the placement of the microphone is
too close because the near field behavior of a horn or bell-
mouth is different than the far field. Placing the microphone
in an enclosed area such as in the surge tank is also a
problem, because depending on the placement, the response
could be affected by modes of the enclosure, thus giving a

specific response.
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CHAPTER III

EFFECT OF LINER SURFACE GEOMETRY CHANGE

3.1 Changing Liner Configurations

This chapter concentrates on the effect of changing the
liner plate geometry and not the cavity geometry except for that
investigated later in the chapter where cavity damping is
employed. The basic purpose of this chapter is to note the
effect of hole size and hole spacing on the frequency and
magnitude of screech. The last two sections of the chapter are
specific studies of: 1) an in-depth study of several specific
liner configurations with many data points; and 2) a look at
the screeching characteristics of a highly perforated liner.

The experimental arrangement was that of Figure 1 as
described in Chapter II. Liners of 1/16 inch, 1/8 inch, 3/16
inch, 1/4 inch, and 1/2 inch holes were tested with one-inch
hole spacing on all of them, two-inch spacing on the 3/16 and
1/4 inch, and three- and four-inch spacing on the 1/4 inch liner.

3.2 Cavity Resonances

Before starting with the results of self-excitation, the
cavity resonances are calculated for the 3/16 inch, 1/4 inch, and
1/2 inch liners with the validity of the 1/2 inch hole-cavity
resonance in question as a result of the mass end correction of
the holes valid for the diameter of the hole being much less than

the cross-dimension of the cavity. From the relation of cavity
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resonance with end correction given by Ingard[lB]:

1/2
c A _ 1/2 :
vo 7 [V(t+6) ] S .96 (A) (end correction)
A = Hole area
V = Volume of cavity
Results:

v3/16 = 807 Hz

vl/4 = 989 Hz

vl/2 = 1142 Hz

In taking data for the first few times, it was concluded
that the data from micrcphone number 5 was sufficient for the
study of this phenomenon. The other microphones were simply
redundant and placement of microphones in the duct can lead
to duct mode problems.

3.3 Liners with l-inch Hole Spacing

Each liner was tested with undamped resonator backings.
Each liner consisted of 68 holes spaced at 1 inch and had a
thickness of 1/8 inch. The 1/16 inch and 1/8 inch holes did
not screech at all, which shows that there must be a critical
hole size for a given plate thickness of which these instabili-
ties occur. The 3/16 inch, 1/4 inch and 1/2 inch holes did
screech and these are plotted on Figure 6 with frequency as a

n

function of Mach number. It is seen from the f = CM relation-
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ship that these functions are almost linear (n = 1) . The

peak amplitude increases with increasing hole size and the
amplitude increases to a maximum, then decreases back to the
white noise level in the duct. A typical plot for 1/4 and 3/16
inch holes is shown in Figures 7 and 8.

3.4 Change of Hole Spacing

The next investigation was concerned with change of the
hole spacing. The hole spacing was simply changed by filling
the necessary holes with plasticene, giving the surface a
smooth finish and backing the hole with tape on the cavity
side of the liner. The tape was to insure that a pressure
differential would not force the plasticene out of the hole.
First, the 3/16 inch hole liner was changed to 2-inch spacing,
and it was immediately seen that this configuration did not
exhibit any self-excitation. This also shows that there must
be a critical hole size-hole spacing relationship for these
instabilities to exist. For the 1/4 inch liner a screech was
observed for 2-inch, 3-inch, and even 4-inch hole spacings as
plotted in Figure 9. 1In this detailed investigation of the
1/4 inch hole size it is readily seen that there are two
separate regions of self-excitation. The first region consists
of the diagonal lines in Figure 9 that follow at f = cM"
relationships. We see that the 4-inch spacing exhibited such
a weak screech that it was not recorded. But the trend seems

to be consistent with the n of f = cMm™ , being approximately
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halved for each increase in hole spacing. If this is true,
then for the 4-inch spacing we would expect approximately

f = CM‘17. The corresponding amplitudes are shown in Figure
10 with the 3-inch spacing being very weak, which explains
the absence of the screech at a hole spacing of 4 inches.

It is observed as shown in the typical graphs at the end of
the report (of l-inch and 2-inch spacing 1/4 inch holes) that
at the ranges with high amplitude excitation that many other
modes or harmonies are excited. This is particularly notice-
able in Appendix Figures A-III-4 and A-III-5.

The second range of excitation consists of a single
constant frequency throughout the entire range. This excita-
tion phenomenon occurs right about at the cutoff point of the
first excitation (lower range) as mentioned above, and this
frequency is higher. 1In Figure 9 these constant frequency
plateaus are evident. The plateau for the 1 inch spacing is
not on this graph because the apparatus was not constructed
to measure such high flow speeds, but this higher excitation
does exist at about 7850 Hz, as shown in Appendix Figures
A-III-7 through A-III-9. The flow speed could not be recorded,
but the duct finally choked at the outlet during the highest
flow rate. The sound pressure level curves vs. Mach number
are shown in Figure 1ll1. It is seen that the amplitude of the 4-

inch spacing is quite strong in the upper range as compared to
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the amplitude in the lower range. This strengthens the
idea that there are two independent mechanisms producing the
upper and lower ranges of excitation.

3.5 Damping of Cavities

Next we damped the cavities to see whether the two ranges
could be further separated. The effect of damping is shown on
Figure 12. It was readily seen that the cavity, when filled
up to the hole, did not screech in any range, showing that
the material at the bottom surface of the hole prohibited in-
stabilities from occurring, similar to the wide meshed tissue
backing used by Mechel[l4]. With damping configuration #1,
the characteristics of self-excitation were basically unaffected,
which showed that damping was not sufficient. For the damping
configuration #2, a frequency shift was observed for the lower
excitation range, but the upper range was completely unatffected.
This leads us to the conclusion that the lower range of excita-
tion is cavity dependent, while the upper range is somehow
independent of the cavity and possibly coupled with the duct,
for example. We see that the characteristic slope of f = cm”
was unaffected, but only the constant changed. The amplitudes
of excitation are graphed as a function of Mach number in
Figure 13. The amplitude of the lower range was much more

affected than the upper range, as shown by the decreased ampli-

tude of damped #2.
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One final observation was that for the 1/4 inch hole
the number of holes present was decreased by 5 at a time to
note the change in amplitude. As expected, the amplitude
simply decreased with decreasing number of exposed holes, until
an insignificant level was reached at about 10-15 holes.

3.6 Analysis

The first most obvious note to be made in that the
excitation frequency was not that of the cavity resonance.
But it was discovered that for the 1/4 inch and 1/16 inch holes
the frequency of maximum amplitude corresponds to twice that
o the cavity resonant frequency. This is shown in Figures 7
and 8. The results for the 1/4, 2 and 3 inch spacing for the
lower range are not quite as conclusive to confirm this idea.
It is seen that at 2-inch spacing, the Mach number corresponding
to twice the resonant frequency in Figure 9 does not correspond
exactly to the maximum amplitude in Figure 10.

Also examined was the idea\of a simple feedback mechanism
between holes. If we assume that the disturbance produced by

the first hole is convected downstream at approximately 0.6 of

Cc-v
s Hole j‘—}V/\ ~Hole  Dduct

HENEED

' D l L—-Cavity
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the free stream velocity and, upon striking the downstream hole,

is fed back at acoustic velocity minus free stream, then:

Velocity of Disturbance: Downstream = 0.6 V
Upstream = C-V
Time downstream = T = B
d 0.6V
Time upstream = T = B
P u c-v
. _ D D _ 1 1
Total time = G ¢y + oV - D( AT + &5 )
_ D 1 1
=l oem T 11!
. . the characteristic frequency:
v = 1 _ 1l2cC [ 0.6M(1-M) ]
T D 1-0.4M
for C = 1120 ft/sec D =1 inch M=20.2
we have for D = 3/4 (hole edge to edge)
v = 1402.4 Hz v = 1879 Hz

The frequency does not correspond to the data collected here.

If we change the convected velocity to 0.8 V and use 0.75 for
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D (hole edge to hole edge) we get a reasonable 2400 Hz which
corresponds to Figure 9. For 2-inch hole spacing, D = 2 - 0.25 =
1.75 inch and at M = 0.15 we get an unreasonable answer. There
is, though, still strong reason to believe that acoustic reflec-
tions are taking place to provide a feedback mechanism.

Next, the work of Meche1[9] is investigated, especiallly
his partial wave analysis of signal amplification. The concept
of partial waves may be the basis for this self-excitation, at
least in the upper range. Mechel[9] describes that since the
phase velocity of the fundamental wave is too high to interfere
with the much lower flow velocity only partial wave amplifica-
tion is possible here. These partial waves, which are components
of spatial Fourier synthesis, are described by Mechel[7] .
Appendices 2 and 3 of Meche1[7] describe partial waves in
detail. Mechel's result for the condition of wave amplification

is:

U
vV = ng where V is the flow velocity and
0
1+ fL if equal to Un which is the phase

velocity of the nth wave.

Uo is the phase velocity of the

fundamental wave.

L is the distance between the holes.
A problem encountered is getting the phase velocity of the

fundamental wave in the presence of absorptive boundaries. 1In
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[15] the phase velocity vs. frequency

the work of Galaitsis
was obtained by experiment for a cavity of about 1100 Hz
resonance frequency. The same form was used and a plot
patterned after Galaitsis is shown on Figure 14.

In comparing the result of partial waves with the
experimental results we see that good results were obtained
with the upper range of excitation (constant frequency).

For the 1/4 inch holes, 2-inch, 3-inch and 4-inch spacing the
results are as follows:

1/4 inch hole 2-inch spacing let n = 2 wusing f from

Figure 7.

2

12 0.167 ft f

L =

3500 from Figure 12

U, = C, = 1234

_ 1234 _
vV = 1734(2) = 236 ft/sec - actual 263 ft/sec

1 + 3500(0.167)

1/4 inch hole 3-inch spacing n = 3

vV = 179.0 ft/sec » actual 187.0

1/4 inch hole 4-inch spacing n = 4

_ 1344 _
vV = . 1344 (4) = 146.6 ft/sec -+ actual 135.3

1495(0.33)
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It is seen from these results that the partial &ave relation
is within the experimental results when the n 1is increased
by one for each increase in spacing. Also it is observed
that the velocity is not a strong function of phase velocity.
This analysis is only to serve as an indicator as to whether
this type of theory can be applied as an amplification method
of the liner perturbations.

3.7 A Closer Examination of Screech Data

The purpose of this section is to present the results of
a closer look at the lower range of excitation, as described
earlier in this chapter. From this investigation, we see that
the increase in screech frequency with Mach number is not
continuous, but there are a number of small discontinuous
jumps. This phenomenon was only noticed here, because the
increase in Mach number was made in many small increments
rather than only 10-15 data points as before. There is, though,
still reason to believe that there are two separate ranges
(and mechanisms) of screech as proposed in the first section.

The apparatus consisted of the same equipment used in
the initial investigation, shown again in Figure 1. The major
difference here is that the data were taken in extremely small
increments of Mach number, both increasing from minimum to
maximum and back again. This was done to note the hysteresis

effects which clearly exist.



40

From Figure 15 we see that frequency does increase with
Mach number, but it increases along specific excitation fre-
quencies. The arrows show the path followed by increasing the
Mach number. Decreasing the Mach number lets the frequency
versus Mach number follow to the lower extent of each constant
frequency line as shown. The tendency is for the excitation
to stay at the existing frequency as long as possible, thus
producing the hysteresis effect.

It was noticed that right before the transition point
where the frequency was about to change that the next frequency
jump could be induced by simply putting a slight perturbation
at the inlet, such as a pehcil point. The wake produced by
the object induces a frequency jump to the next level. When
the object was removed the frequency often jumped back to the
original frequency. Also two and sometimes three simultaneous
frequency levels were present if one was careful in adjusting
the flow. Appendix figures A-III-20 through A-III-27 show the
presence of two frequencies simultaneously. As the flow rate
increases the lower frequency diminishes while the higher
frequency grows until only the upper frequency exists.

Figure 16 is the graph for the 1/4 inch hole liner, but
with two inch spacing instead of one. This graph shows the
upper range as in the first report. As demonstrated before
the upper range is present also in the one-inch spaced liner,

but is not shown in Figure 15 because we did not investigate
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high enough flow rates here. This upper range in Figure 16
has different properties than the lower range, such as no
hysteresis, a much more stable tone and as in the previous
report this screech is unaffected by resonator damping as the
case for the lower range.

The closer examination of the screeching of these
liners has shown that the screech frequency is not always
completely predictable, but is rather dependent on small
fluctuations in flow rate, inlet perturbations, and minor
changes in hole geometry. In Figure 17 the frequency versus
Mach number graph is quite different than that of Figure 15.
Although these liners both have 1/4 inch holes at one-inch
spacing, the hole geometries are different. Figure 15 had
holes that were sharp edged, while Figure 17 holes are counter-
sunk on both sides of the liner giving a different hole edge
geometry, thus noticeably changing the screeching effects.
This countersinking seems to lower the maximum frequency of
screech. An additional note to be made is the fact that at
close examination most of these frequency plateaus are not
perfectly constant, but increase slightly with Mach number.
An answer for this effect may be that the convective velocity
increases thus shortening the period and raising the £frequency.

The excited frequencies may correspond to certain eigen-
frequencies of the cavity-liner combination similar to that in

(1]

the edgetone as examined by Power . The edgetone in Powell's
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experiment had the same hysteresis effects and frequency jumps
as shown here. Also in a paper by Nyborg et al 3 the marked
effects of having a resonator adjacent to an edgetone generator
were shown. The tones produced in this particular paper seem
to be governed by the eigenvalues of the resonator. The
experimentation of Chapter IV is formed to investigate the
effect of the resonator backing.

3.8 The Response of the Highly Perforated Liner

In addition to the investigations earlier ‘n the chapter
a short experiment was performed with a highly perforated liner
backed with the standard one-inch cavities. The liner exhibited
a spectrum as shown in Appendix A-III-28 thirough A-III-30. As
one can see, many frequencies are excited in contrast to the
previous liners. An obvious reason for this would be the fact
that there is a more irregqular surface and therefore more
characteristic feedback distances. The perturbations produced
at a hole could be reflected back from many other neighboring
holes. Reflections could be from its nearest neighbor and also
2, 3 or more holes away. The idea of reflections from more
than the nearest hole can figure here since the holes are very
close in contrast to the previous liners where the minimum
distance was one inch. This multiple feedback could not work
well for larger distances because as we have shown earlier with

3 and 4-inch spacing that the excitation becomes extremely weak.
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The spectra here have many peaks that don't seem to
correspond to any expected duct modes, showing that a more
random hole arrangement gives a more random exhibition of
screech. A note to be made is that the peaks did increase in
frequency as the flow velocity increased which gives the same
type of response as the liners earlier in the chapter.

This may be the basis for the thought of making liner
perforations completely random to effectively spread the
acoustical energy over the spectrum instead of directing it
into a discrete tone as seems to happen in previous uniform
liners.

3.9 Conclusions

A general thought of most investigators of this and
similar phenomena is that the instability producing the screech
begins with the production of a series of vortices produced
and shed at each hole. This perturbation must somehow be
transmitted or convected with the flow and either amplified
or fed back by reflections to reinforce the next vortex or an
integer number of vortices after the first one.

From the data collected in this chapter one can see that
change in hole size and spacing does in fact change the response
of the liner-duct configuration, but pinpointing the exact

source of this instability is the major problem.
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CHAPTER IV

EFFECT OF CAVITY GEOMETRY CHANGE

4.1 Experimentation

In this chapter the effect of changing the geometry
of the cavities backing the perforated liner is investigated.
Examining this data can help us determine the role that the
cavity plays in sound production.

The first half of the chapter has mainly to do with
cavity volume change due to lengthening the cavity. All
other parameters such as duct length, cross section and liner
plate geometry (1/4 inch holes spaced 2 inches apart) stay
constant here. The cavity cross section is at all times 3/4
inch by 7/8 inch but the cavity length is changed from one
inch to 70 inches (entire liner length) at the specified
intervals (Figure 18).

The second half of the chapter investigates the effect
of a change in cavity depth. 1If a feedback instability is
occurring by reflection of sound from the cavity bottom, then
this experiment will reveal this. Since it was found that the
screech occurs at full cavity length (70 inches), this length
was held constant and only the depth was changed by raising

a back plate in the cavity (Figure 20).
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4.2 Cavity Length Change

Appendices A-IV-1 through A-IV-7 show some typical
spectra at several cavity lengths. From the graph (Figure 18)
we see that the screech frequency does not seem to change in
any obvious pattern and all looks to be close enough together
to be the same taking into account varying of frequency along
constant frequency plateaus as in Section 3.7. The upper
range (constant range) seem to change somewhat with cavity
length increase, but in no immediately obvious pattern.

Looking at the magnitude plot (Figure 19) it is seen
that the magnitude of screech does decrease somewhat with
cavity length increase as well as shift. From this magnitude
plot we see various shifting and splitting of magnitude peaks
as length is increased, which at this time has not been analyzed
in detail.

A conclusion can be made that the cavity resonance
does not play a direct role in frequency determination of
the instability, otherwise a drastic change in excitation
frequency would have been exhibited. From this data, the
upper range is seen to be slightly dependent on the cavity
geometry.

4.3 Cavity Depth Change

Next the cavity denth was changed as previously de: .ribed

and the same conclusions seem to apply here. As seen from
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Figure 20 the screech frequency seems to be within a screech
envelope as before, but in this case the magnitude seems to
decrease more significantly than with cavity length change.

As before this effect cannot be called a direct
influence on screech frequency. If a feedback instability
relied upon the depth of the cavity bottom for reflection
we would expect a much more marked change in frequency with
depth change.

The frequency of screech may not change significantly,
but the magnitude does decrease with decreasing depth as in
Figure 21. Finally when the back plate is face-to-face with
the back of the perforated liner, the excitation is nearly
gone. Since the frequency does not make any marked changes
one could propose that the characteristic distance determining
the screech frequency is not the cavity depth. Decreasing
the depth, though, probably does weaken the vortex production
at the hole by confining the area where the vortex forms thus
weakening the entire screech mechanism. Sample spectra are
shown in Figures A-IV-8 through A-IV-12. It is also interest-
ing to note that the same type of magnitude split occurred as
with length increase (Figure 21).

4.4 Conclusions

From both of these cavity geometry change experiments

it can be concluded that the cavity itself does not seem to be
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a prime cause of controlling the instability or a direct

cause of an acoustic reflection or feedback. It does, however,
seem to govern the magnitude and quality of the screech in-
stability, possibly by indirectly controlling the vortex forma-
tions at the holes.

By decreasing the depth of the cavity we primarily
confine the vortex production and by lengthening the cavity we
effectively change the impedance of the cavity thus possibly
causing a change in vortex behavior. The depth change did
have a more drastic effect on the response than cavity length
change.

We see that both magnitude plots (Figures 19,21)
exhibited two peaks in the lower range itself which is at this

time an unanswered phenomenon.
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CHAPTER V

ISOLATED CASES OF LINERS WITH ONE,

TWO AND THREE HOLES IN A ONE FOOT DUCT

5.1 Object and Experimental Configuration

This chapter is concerned with the investigation of
liners consisting of only one, two and three holes with
resonant cavity backing. The purpose of this experiment is
to try to separate single hole and multiple hole excitation
and compare these results to the long liners investigated in
the earlier chapters.

The setup shown on each graph (Figures 22, 23 and 24)
consisted of a one foot duct (7/8 inch by 3/4 inch cross
section) with three removeable liners which allowed three
different size holes (3/16 inch, 1/4 inch, 5/16 inch) at
single and multiple hole configurations. Each hole was backed
with a 1 inch by 3/4 inch by 7/8 inch undamped cavity. Air
was drawn through the duct as before with a microphone placed
at the inlet typical to previous investigations.

5.2 Results

It is immediately seen from Appendices A-V-1 through
A-V-10 that there is a set of discrete excitations in each
array. These tones behaved somewhat differently than that of
the long arrays of previous chapters in that there was not a set

of excitation frequencies that changed with Mach number. The
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excitation frequencies seemed to stay quite constant with
Mach number except for the excitation present between the
duct modes in the 2 and 3 hole liners as will be shown.
As seen from Figures 22, 23 and 24, there were
excitations at the axial duct modes of the one foot duct

with the excitation magnitude increasing accordingly with the

increase in the number of holes. But Qe see, though, that
there is an excitation present in the 2 and 3 hole liners
(Figures 23, 24) that is virtually missing in the single
hole liner (Figure 22). This particular excitation does
increase in frequency with Mach number and is of significantly
higher magnitude as shown by the darkened points on the graph.
The fundamental axial duct modes seem to be excited
and all of the peaks in the appendix graphs are at the modal
intervals except the tones produced with the 2 and 3 hole
liners which is between the duct modes. Also it is a general
conclusion that the change in impedance by adding these liners
did not seem to appreciably change the modal response. For
example, by looking at the 1/4 inch holes (Appendices A-V-1
to A-V-4), we see that the peaks follow the modal peaks of
the control duct except for the peak at about 1650 Hz at low
Mach numbers that increases to about 1800 Hz shown in Figures
23 and 24. For the single hole configuration we see that all

the peaks correspond to the modal peaks although the magnitude

is greater than the control duct.
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It is interesting to note that with the 3/16 holes,
the same type of independent response between the modes was
not as pronounced showing, as in Chapter 3, that the 3/16
hole with this 1/8 inch liner thickness was approximately on
the threshold of excitation where with hole sizes smaller than
this did not exhibit these excitations.

Going back to the idea of convection and feedback as
presented in Section 3.6 using .8V as the convective velocity
we see that reasonable results are obtained using this formula
with an integer multiple of frequency of 2 for the 2 inch spaced
liner and 1 for the one inch spacing. We have as tabulated:

Characteristic frequency:

_ 1l2c .8M(1-M)
v= F L r—m |
Mach Number v (Hz) nv (n=2)
.08 460 919
.10 564 1128
.15 807 1615
.20 1068 2137

By taking these results and comparing them to Figure
23, we see there is a close correlation between these results

and the darkened points on the graph except at low Mach numbers.
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For the cne-inch spacing we get:

Mach Number v(HZ) nv(n=1)
.08 1072 1072
.1 1316 1316
.15 1884 1884
.2 2389 2789

Again, if we compaire tihese points with the filled in points
on the graph we get a g9ood correlation. This gives us a
reasonable explanation of how these instabilities are being
amplified, although this theory does leave out the dependence
of hole size if there exists any at all in this configuration.

5.3 Conclusions

From these observations, we may conc.:de that it is
the interaction between holes and not only an instability
produced by a single hole.

The fact that the 2 inch and one inch spacing exhibited
approximately the same response is left unexplained for the time
being. The only immediate answer that can be given is that
possible with the 3 hole liner the hole interaction was taking
place between the first and third hole thus making this also
a 2 inch hole interaction distance as in the 2 hole liner.

Comparison to the long liners of Chapter 3 is quite

difficult at this point. The characteristics of the response
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of these ducts is quite different, but a fair comparison can-
not be made unless these isolated cases of one, two and three
holes are tested in a long duct as in Chapter 3 to get away
from this strong modal excitation.

It is also worth noting that the frequency of excita-
tion can be obtained analytically using the feedback analysis
in Chapter 3 with .8V as the convective velocity. This gives
us an important base that may be used to form future experi-

ments that may verify this theory.
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CHAPTER VI

INLET AND OUTLET NOISE

AND ITS RELATION TO BROADBAND LINER NOISE

6.1 Apparatus

In this Chapter, the effect of inlet and exit noise
and the relation of these to the overall duct noise level is
investigated. The object is to determine whether the effect
of inlet and exit noise from a duct masks any noise produced
by the liner itself.

The experimental apparatus simply ccnsisted of three
ducts (7/8 inch by 3/4 inch cross section) of one foot, three
foot and six foot lengths. A pitot tube was mounted about 6
inches from the exit and the ducts were mounted to a surge tank
which was hooked to a steam ejector to provide a sufficiently
quiet source of suction. A microphone was.mounted in the
surge tank and also in front of the duct inlet as shown in
Figure 1. The inlet microphone was placed such that it did
not obstruct any flow up to the maximum Mach number investigated.
The signals were then fed through a spectrum analyzer, spectrum
averager (averaging 16 spectra) and then plotted on an X-Y
plotter. Various flow rates were recorded with and without
a foam lining. The foam lining consisted of a 3/16 inch foam
placed along one side of the entire length of each duct. This

liner gave only a slightly smaller cross section to the duct
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which allowed slightly higher flow rates. The maximum flow
rate is limited by the steam ejector.

A note to be made is that the pitot tube placement
is not too critical for these low Mach numbers (.02 - .25).
For a Mach number of about .2, the flow deviated from the
front of the 6 foot duct to the end only about 10 feet/sec.,
which is allowable. At higher Mach numbers, careful considera-
tion would have to be made as to the flow rate measuring
technique.

6.2 Data Examination

Appendices A-VI-1 through A-VI-7 are sample spectra
for the unlined ducts. It is seen that the exit noise is quite
dominant in the low frequency range of less than 1000 Hz,
whereas the inlet noise dominates the mid-frequency range (about
5000 Hz at maximum). The inlet noise seems to excite the exit
noise significantly as seen from the increase in the exit noise
level in the range of 5000 Hz. It is clearly evident from
simple calculations of:

f = c/21 (where f is the frequency;
c is sound speed and
1l is the duct length)

that the peaks in the inlet noise correspond to the excitation
of the first axial mode in the duct. The divisions are not
quite as evident in the 6 foot duct because they are small

and easily masked by the broadband noise. The peaks in the
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exit noise seem to correspond to the fundamental cross mode
(m=0, n=1) of the surge tank. It is seen from Figure 25 that
the length of the duct does not appreciably effect the noise
level of either the inlet or exit noise.

Next we look at the lined ducts. 1In Appendices A-VI-8
through A-VI-13, it is immediately seen that the axial modes
exited by the inlet noise are damped out resulting in lower
peaks and lower average inlet noise levels as shown in Figures
26, 27, and 28. The exit level, as shown by these figures,
seems to increase with increasing duct length. As seen in
Figures 26, 27, and 28, the cross modes in the exit are excited
to a much greater extent resulting in a higher peak noise level.

Next, a bellmouth was added to see the change in exit
noise. The inlet noise cannot be compared fairly to that with-
out the bellmouth, because the placement of the microphone
presents a problem. The characteristics of the inlet spectra,
though, can be observed. From Appendices A-VI-14 and A-VI-15,
is seen that with this particular bellmouth only the higher
frequencies greater than 7 KHz are sufficiently subdued, there-
fore, the bellmouth does not allow us to subdue the 5 KHz peak
to observe the effect on the similarly excited 5 K4z peak in the
exit noise.

6.3 Summary

In summary, we see that the inlet and exit noise from

a duct with flow may be much more significant than liner noise
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itself. The addition of the liner did not seem to increase
the entire broadband base. The liner, though, is seen to have
indirect effects on the inlet and exit noise by dampening
fundamental duct mode excitation, therefore, decreasing inlet
noise. Also, the exit noise level seemed to increase due to
increased excitation of the tank cross mode excitation in the
mid-range of the spectrum. The addition of the liner seems
to have opposite effects on the inlet and exit noise. A
further investigation may include an attempt to cut the inlet
noise around 5 KHz to see if the 5 KHz increase in exit noise
is also decreased, assuming the idea that the inlet noise is

propagating down the duct.
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CHAPTER VII

CONCLUSIONS AND DIRECTIONS OF FUTURE RESEARCH

The chapters of this thesis have presented specific
sections of experimental investigations and results with
comment and analytical discussion where applicable. Here we
will quickly review the chapters and add a comment on future
investigations.

7.1 Chapter III

Chapter III presents the results of the screeching
of various liner geometries. A basic conclusion seems to be
the fact that there exists two definite ranges of screech
instability. The upper range seems to be at constant frequency
over a substantial Mach number range. The lower range, converse-
ly, is a screech that has a frequency that is dependent upon
Mach number. This screeching, though, only increases along
specific plateaus as shown in Section 3.7. These plateaus
are possibly eigenvalues of a specific cavity resonance or
feedback instability, although further experimentation will be
needed to pinpoint the basic source of this effect.

We quickly attempted the use of two theories to
possibly find the mechanism causing the screech. Both Mechel's[7]
partial wave theory for the upper range of excitation and the
multiple hole feedback theory for the lower range seem to make

a certain amount of sense.
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The high perforated liner was studied to a very
limited extent and is actually a closer model to actual liners
used in practice, but its complexity forces us to first try to
understand simpler configurations, as in this thesis. We did
see that the more random hole configuration gave a correspond-
ingly more random response. This could possibly indicate that
the more random the hole placement, the higher the number of
excited frequencies. If we possibly can find ways to spread
the acoustic energy widely over the spectrum we may be able
to significantly cut the magnitude.

7.2 Chapter IV

Chapter IV basically revealed that this screech is not
highly dependent upon the cavity behind the liner plate, as
was expected, but is much more dependent upon the liner plate
configuration itself. This fact does, though, allow us to
concentrate on theories concerning hole-to-hole interaction
rather than cavity resonances and the like.

7.3 Chapter V

Chapter V indicates that there does exist an interaction
between the holes themselves. This was shown by the fact that
the single hole liner in our configuration only excited the
normal fundamental axial duct modes where the two and three
hole liners excited the duct modes and also produced a discrete
excitation between the normal duct modes that was dependent upon

Mach number. This, still, was another experiment that seems to
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confirm the idea that the screech is produced by hole inter-
action.

7.4 Chapter VI

In Chapter VI we broke away from the perforated liners
and attempted to throw some light upon the controversy of the
broadband noise produced by rough foam type liners. Many
investigators believe that the noise produced by the rough
liner limits the length of the liner that can be used before
the regeneration of noise be the liner is greater than that
which is attenuated. As this may be and certainly is the
case for certain configurations, here we are trying to show
that the noise generated by inlet and exit noise is substantially
more significant than the broadband liner noise. This seems
to be the case for the configurations tested here. From the
way that these ducts reacted in both the lined and unlined
configuration, I think that this type of result warrants further
investigation into the design of inlet, transition and exit
configurations for ducts.

7.5 Further Research

I believe that this thesis begins to set the basis
for some future experimentation which must go hand in hand
with theoretical development in order to get an answer to
these noise producing mechanisms. Because of the large amount

of data collected here, high levels of detail were not possible,
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therefore, the reader should not only read the text, kut he
should closely examine the graphs and sample spectra for
himself so that he may also formulate his own ideas for future
research.

A wise method to approach this would be to concentrate
upon one aspect of this liner noise such as hole-to-hole
interaction and first develop some theory that might be later
substantiated by experiment. For instance, just the investiga-
tion and comparison of one and two hole resonators in a duct
along with theoretical backing could be very important and
hopefully applicable to long arrays and even actual configura-
tions used in practice.

After some theory is developed, then methods of damp-
ing these instabilities without changing the duct flow or the
liner attenuation and effectiveness should be investigated. As
we see, not only the theoretical answers to the noise producing
mechanism but also an efficient method of reducing this liner

noise is where we should concentrate future efforts.
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APPENDIX

The appendix is a collection of sample spectra taken from
the large amount of data received. Much of these spectra are
referred to in the text.

Chapter III Sample Spectra
68 1/4" holes at one inch spacing
Mach .084 - .243 ...... (A-III-1) - (A-III-7)
34 1/4" holes at two inch spacing
Mach .070 - .273 ...... (A-ITI-8) - (A-III-16)
68 1/4" holes at one inch spacing
High Mach number - approaching 1 A-III-17 - A-III-19
Slow increase in flow speed showing frequency steps
A-TII-20 - A-III-27
Highly perforated liner

Mach .127 - .200 ..... . (A-III-23) -~ (A-III-30)

Chapter IV
Control - No holes ...... (A-IV-1)
for 6 foot duct
34 1/4" holes at two inch spacing
cavity length change from 1" to entire liner length
ceeses (A-IV=2)

Mach number approximately constant - A-IV-7



79

34 1/4" holes at two inch spacing
cavity depth change from 7/8" to face-to-face
backing .... A-IV-8 - A-IV-7

Mach number approximately constant

Chapter V

Control no holes for 1 foot duct showing
axial duct modes A-V-1

One foot duct with 1, 2 and 3 1/4" hole-resonators
Mach number approx. constant A-V-2 - A-V-4

One foot duct with 1, 2, and 3 5/16" hole~-resonators
Mach number approx. const. A-V-5 - A-V-7

Qne foot duct with 1, 2, and 3 3/16 hole-resonators

Mach number approx. const. A-V-8 - A-V-10

Chapter VI
Control inlet and exit noise - no flow A-VI-1
Inlet and exit noise - One foot, 3 foot and 6 foot un-
lined ducts at each at low and high Mach number
A-VI-2 - A-VI-7
Inlet and exit noise - one foot, 3 foot and 6 foot
lined ducts each at low and high Mach number
A-VI-8 - A-VI-13
Inlet and exit noise - 6 foot

lined duct with bellmouth inlet A-VI-14 - A~VI-15
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