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ABSTRACT

GLASS FORMATION AND THERMAL HISTORY

by

PAULETTE IRENE KANTOR ONORATO

Submitted to the Department of Materials Science and Engineering on
May 5, 1977 in partial fulfillment of the requirements for the degree
of Doctor of Philosophy.

The kinetic treatment of glass formation is extended by the intro-
duction of continuous cooling (CT) curves to estimate the cooling rates
required to form glasses of various materials. The CT curves may be
constructed from isothermal time-temperature-transformation curves
following the approach originally suggested by Grange and Kiefer. The
modified analysis is used to evaluate the effects of nucleating hetero-
geneities found in most liquids, those characterized by contact angles
greater than about 100° have a negligible effect on the cooling rate
required to form glasses. Heterogeneities with smaller contact angles
can, however, have a significant effect on glass formation, with the
critical cooling rate increasing with decreasing contact angle. The
effects on glass formation of changes in the contact angle of nucleating
heterogeneities are also compared with the effects of changes in the
thermodynamic barrier to nucleation (in the crystal-liquid surface
energy).

A simple method is suggested for the determination of the relative
glass-forming behavior of materials. The critical cooling rate for glass
formation can be determined through measurements of T,, the melting
point and the heat of fusion. The temperature at which the minimum
time is required to form a given volume fraction of crystallites is
found to be about 0.77 of the melting point for many materials and the
viscosity at that temperature is crucial in predicting the minimum
conditions for glass formation.

The theory of crystallization statistics is extended to include
the quenching and subsequent reheating of glass-forming materials. The
temperature of crystallization upon heating is predicted. Correlations
between predicted and measured (by DTA or DSC) crystallization
temperatures are good.

Heat flow calculations have been done which describe the two-stage
cooling model for impact melts suggested by Simonds. The model involves
initial phase of thermal equilibration between small unmelted particles
(clasts) and the surrounding melt, and a second phase of heat loss from




the melt to the surroundings. In the first stage, the cooling is
approximately logarithmic with time for about 90% of the overall change
in melt temperature. The time to reach equilibrium is independent of the
initial volume fraction of clasts. The dependence of the final volume
fraction of clasts on initial temperature and initial volume fraction of
clasts has been evaluated for several criteria for clast digestion.
Small clasts are preferentially digested, resulting in an increase in
the mean clast size. In the second stage of cooling, the boundary
conditions have a large effect on the cooling behavior. Three sets of
boundary conditions have been considered: (1) a melt sheet with
essentially infinite cold insulating layers on both sides; (2) a melt
sheet with infinite insulation on one side and radiation from the other
side; and (3) a melt sheet with infinite insulation on one side and a
thin cold blanket on top. Results showing the relationship between the
time to cool to 1300°K and 900°K and the distance from the boundary are
given for the first two sets of boundary conditions. The instantaneous
cooling rates at these temperatures are also discussed as a function of
distance from the boundary. Also considered is the thermal behavior
with the third set of boundary conditions (with a 1 m cold blanket on
top). At short times, the cooling behavier for the third set of
boundary conditions is similar to that of the doubly-insulated case,
while at long times the behavior is similar to the case with radiation
at the boundary. The model was applied to the cooling of the Apollo 17
Station 6 Boulder and to the terrestrial impact site Manicouagan.

Non-isothermal diffusion in mineral systems is modelled to determine
the thermal history of rocks. The partitioning of a solute between two
phases has been modelled to determine the cooling rates of lunar
samples 15065, 15075, 15076, and 15085 (18, 18, 25, 39 °C day'l respec-
tively. The homogenization of zoned olivines has been modelled to
determine the cooling rates of lunar samples 12002 and 15555 (10 and
5° C day~l respectively).

The effects of motion on the growth and dissolution of a bubble in
a glass melt have been investigated. It is found that such motion can
have a profound effect on the rates of growth and dissolution, partic-
ularly for large bubbles (> 0.1 cm). Increasing the rate of motionm,
as by centrifugation, can further increase the rate of dissolution.
The dissolution time and the growth rate can be dramatically changed by
changing the relative saturation of the gas in the melt. The condition
used to describe the concentration of gas at the bubble melt interface
can have a significant effect on the dissolution time, particularly for
small bubbles or under conditions where the concentration of gas in the
melt is close to the solubility limit.

Thesis Supervisor: Donald R. Uhlmann
Title: Professor of Ceramics and Polymers
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I. INTRODUCTION

Knowledge of the effect of thermal history on the state of crystal-
linity in a system is useful to the glass scientist in predicting the
glass-forming behavior of materials and to the geologist in determining
the origin of lunar and terrestrial rocks. Several approaches have been
taken to determine the criteria for glass formation in a variety of
materials and the thermal histories of specific lunar and terrestrial
samples.. Tobe considered are the effects of nucleating heterogeneities,
simply measurable parameters, and nonisothermal histories on glass form-
ation. 1In completely crystalline bodies, the effect of thermal history
on solid state diffusion and homogenization has been investigated.
Thermal histories have been calculated for lunar gnd terrestrial impact
melt sheets with specific geometries and initial conditions of physical
interest. These calculations are combined to provide a description of

the thermal histories, and hence the origins, of a number of rocks.

The effect of several factors, including temperature and rate of
bubble movement, on the fining of silicate melts has been investigated.
A model has been developed which takes into accouat the effect of motion

on the growth and dissolution of gas bubbles in glass melts.
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II. PREVIOUS WORK

A. Kinetics of Glass Formation

The problem of glass formation has been approached from several
points of view, with attention variously directed to structural (1,2,3)
thermodynamic (4-7), and kinetic (8-12) aspects of the problem.. Only
kinetic treatments will be discussed here because of the potential which
they offer for obtaining quantitative predictions of glass—-forming behav--
ior and because the question of élass formation primarily involves
kinetic considerations. That is, nearly any liquid will form a glass if
cooled sufficiently rapidly to a sufficiently low temperature, and will

form a crystalline or partly crystalline body if cooled too slowly.

The essential question to be asked in considering glass formation
is not whether a material will form an amorphous solid when cooled in
bulk form from the liquid state, but how fast must it be cooled.
Different models use different criteria as to the definition of what
constitutes a glass. Sargeant and Rby (10) defined their critical
cooling rate as "the rate which will not allow the growth of a IOR
nucleus within a 10° interval." The results were very approximate which
is not surprising considering the physical basis of the model. Specifi-
cally, the model assumes that the critical cooling rate is proportional
to the melting point and to the molecular mobility at the melting point.
Whiie these are undoubtedly important quantities in describing glass

formation, they are not sufficient to predict the critical cooling rate.

Turnbull (12) and Vreeswijk et al . (9) assumed that the condition for
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glass formation was the absence of even a single nucleation event

n=v Io dt n<l (11-1)
o

In both models, only homogeneous nucleation was considered. Turnbull

used the expression for steady state nucleation rate

K -16 o3
I =—ex — )
(AGV)

o = &¥P I3 1 (I1-2)

where 0 1is the crystal-liquid specific surface free energy and Gv is
the difference between the liquid and crystal phases of the standard

Gibbs free energy per unit volume. Turnbull used the approximation that

¢ = ag AL (11- 3)
v v TE

where AHv is the latent heat of fusion per unit volume, TE is the

melting point, and AT = T_-T is the undercooling. This holds well for

E
metals, but for large departures from equilibrium, the differences
in enthalpy and entropy between phases must be taken into account. AGV

may then be expressed as:

A

=3

T
I (11-4)
TE

|

AGv v AHV

or
=

This was the approximation used by Vreeswijk et al.

Turnbull's steady state nucleation frequency was then
3 T 2

_K -16m o B E _
Io=qnexe L5 Ty | (11-5)
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while that of Vreeswijk was

3 5
B T
K 16m ¢
I, = exp [- 3“ 5 3E ] (I1-6)
ATT
where '
w 13
=TT (11-7)
f
AH AS
£ £
TR, TR (11-8)
E

Results of droplet nucleation experiments on a variety of materials
using Eqn.(iLﬁ)Witth= 1030 and n D 10_.2 indicate a ) 0.4-0.5 for metals
and o 1/3 for non metals (13). Vreeswijk et al. took a = 0.32,
suggested that the transient time in nucleation is important, and used

the expression to determine a critical cooling rate.
T
= - — II.—
Io(t) I exp( t) ( 9)

Turnbull's results confirmed the observation that in pure metals
copious nucleation of crystals should be expected and a glass would not
be formed even at the fastest attainable cooling rates (10§K/sec—l)~—
save for very small samples or for materials with exceptionally high
glass transition temperatures. The results of Vreeswijk et al.
provide a basis for grouping materials into classes of good or bad
glass—-formers; however upon closer examination, the results indicating
relative glass-forming ability of different materials are not in accord

with experience.

Dietzel and Wickert (11) use the term "glassiness'" for the



reciprocal of the growth rate, and carried out an extensive Study of
growth ra;es for various compositions in the Na20—8102 system. No
quantitative relation betwéen "glass:’mess'i and cooling rates required to
form different compositions as élasses was given. The work did list
several factors which are critical in glass formation: (1) high
viscosity; (2) large compositional difference from compounds noted in
the phase diagram; and (3) low liquidus temperature. Suzuki and Saito
(14) neglected the nucleation processes and considered only the growth

' rate and the rate pf heat liberation at the solid-liquid interface.
They defined the.criticél cboling rate for glass formation as that which

will not allow the growth of a 50 A nucleus. The heat evolved during

o
the growth of a 50 A nucleus is very small and could easily be absorbed
by the surrounding melt. Furthermore, in many glass—forming systems,

the growth process is limited not by the transport of heat away from

the interface, but by interface kinetics (15).

The models mentioned thus far take into account either nucleation
or growth and thus have only limited applicability. To include both
aspects of the crystallization process, Uhlmann (8) adopted the formal
‘theory of transformation kinetiCS(16, 17) which describes the fraction
of a phase transformed in a given time at a given temperature. He

assumed that the growth rate U and the homogeneous nucleation frequency

IV are not functions of time. The volume fraction transformed is

_T 3 4 -
X = 3 Iv u t (II-10)

18.
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where X is small and the crystallifes do not impinge on each other.

The homogeneous nucleation frequency per unit volume is

o 1.024TE
I =N Vexp - 55— (I1-11)
v v T3AT2
v=—XL (1I- 12)
3 2
naon

from the S;okes—Einstein equation, Nz is the number of single molecules
per unit volume and a, is the molecular diameter. In obtaining this
relation, it was assumed that the free energy of forming the critical
nucleus is 50 kT at AT/TE = 0.2 frcm the results of Turnbull and that
AGv = Ava AT/TE T/TE' More recent measurements of nucleation frequency

indicate that the nucleation barrier for lunar glasses is higher, about

55 to 65 kT at AT/TE = 0.2 (18).

This model does not include heterogeneous nucleation and therefore
provides a minimum critical cooling rate for glass formation. The growth

rate was expressed

AHfm AT
= - -— II-
u f\)ao[l exp ( RT T ) 1] ( 13)

E
f = 1 for materials with small entropies of fusion (AHfm/TE< 2R) in which
normal growth is expected; f oy 0.2 AT/TE for materials with a large
entropy of fusion (AHfm/TE’>v4R) in which growth should take place at

steps on the interface.

To determine the critical cooling rate for different materials,

time—-temperature-transformation (TTT) curves were constructed using



20.
equations (II-10, II-13). Example of such curves are shown inFig.II-l,for
volume fractions crystallized of 10_6 and 10_8 in salol. In constructing
these curves, the time required to form a given fraction of crystalline
material is calculated at a given temperature and the calculation is
repeated at other temperatures. The nose of a TTIT diagram, which
corresponds to the least time for the given volume fraction to crystal-
lize, results from a competition between the driving force for crystal-
lization, which increases with decreasing temperature, and the mobility,
which decreases with decreasing temperature. The critical cooling rate

was taken as:

dr =t (I1-14)

t critical "n
where ATn = TE—Tn; Tn is the temperature at the nose of the TTIT diagram
and T is the time of the nose.

Estimates of the critical cooling rate employing equation (II-10)
overestimate the difficulty of forming a glass. Equation (II-10)
implicitly assumes that the crystallization kinetics over the full range
of temperature between the melting point and the nose of the TIT curve
are as rapid as the temperature of the nose. Grange and Keifer (19)
developed a method for the construction of constant cooling (CT) diagrams

from which a better estimate of the critical coocling rate can be

determined. This technique will be covered in Chapter IV.

The models mentioned thus far which include nucleation take into

account only homogeneous nucleation. In many cases, the nucleation event
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takes place heterogeneously on container walls, impurity particles, or
structural imperfections (20). Assuming a spherical cap nucleating on a

flat surface, the nucleation barrier is

AG *_ AG*[(2+cose)(1—cose)2]/4 (11-15)

where AG* is the homogeneous nucleation barrier and 6 is the contact
angle between the nucleus and the substrate. The nucleation barrier is
decreased because when a nucleus forms on a substrate, surface energy

contribution to the free energy is decreased.

The heterogeneous nucleation frequency is

AG*L(2+cose)(l~cosﬁ)2] (11-16)
4kT

T HE A X0 v exp -
v VvV S

where AV is the area of nucleating substrate per unit volume of the melt,
N: is the number of molecules per unit area of substrate. Many studies
of homogeneous nucleation (21-24) have indicated that a division of a
specimen into 10-20 um diameter droplets is sufficient to ensure that
about 99% of them do not containanwleating heterogeneity. These results
indicate a density of heterogeneities of about 2 x 107/cm3. In many
cases this value represents an upper limit to the expected density of
nucleating heterogeneities as many materials--e.g., the transition metals
and most lunar compositions--are characterized by appreciably smaller

concentrations due to their greater fluxing ability.

The above models developed from transformation kinetics have proved

to be very useful in predicting the glass-forming ability at different
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materials. They provide, however, no direct information about the size
and number distributions of crystals in a nominally glassy or partly
devitrified body subject to a given thermal history. A later development
of the analysis (25) does provide such information. It introduces a
crystal density function y(r,t,R) to represent the distributions of the
crystallites which form within a body subject to a given thermal history.
This function is defined such that the number of crystals, dn in the

volume dv at position r having radii between R and R+dR at time t is:

dn = y(r,t,R) dvdR (11-17)

This function provides essentially complete statistical information about
the state of crystallinity in a sample; and the analysis is predictive in
representing distributions of crystal sizes. These results were applied
to tiie cooling of spheres of partially devitrified lunar glasses cooled
by radiation (26). It was shown that for a given thermal history T(t)
and growth rate U(T(t)) there exists a one-to-one correspondence between
R(r,t,to) and t,- Here t, is the time at which a particular crystal
nucleated. The problem can be inver.ted and the calculations used to
determine the thermal history of a sample from measurement of the crystal
distributions. This model was applied to the determination of the thermal
history of lunar samples 60095 and 14259. The number density and volume
fraction crystallized were determined at various locations in a semi-
transparent sphere cooling by radiation and in a quenched opaque slab
cooling by conduction. It was assumed that AG* = 50 kT at AT/TE = 0.2,

The results overestimated the difficulty of forming a bedy of glassy
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material which was observed in the lunar sample. It was suggested that a
nucleation barrier of 60-65 kT is sufficieat to describe the experimental
observations. Even without detailed measurements of crystal size dis-
tributions, this method can be used to model the extent of crystallization
due to complex thermal histories. The volume fraction crystallized at

(r,t) is
bl

Fv(r,t) = %'n R(r,t,to)3 IV[T(r,to)]dto (I1-18)

o

Hruby (27) has suggested a simple method of evaluating the glass-~
forming tendency of materials on the basis of the relative position of
the glass transformation temperature, Tg’ the melting temperature TE’ and
the temperature of recrystallization upon heating Fv' He made three

assumptions:

1. at Tg all glasses are in comparable states

2. The interval Tr-Tg is directly proportional to the glass-
forming tendency

3. The interval TE—Tr is inversely proportional to the glass-

forming tendency.

He defined a parameter which is a numerical measure of the glass
forming tendency

T T
K = ﬁTr—ﬂ (I1-19)
& E "cr

Thornburg (28) pointed out the dependence of this parameter on

heating rate and Lasocka (29) showed its dependence on quenching rate as
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well as heating rate.

B. Thermal Histories

In order to confirm tne applicability of the'abéve theories to -
materials of unknown thermal h!:tory it is necessary to model the thermal
history of these materials, apply the theory of tranéformation kinetics
and compare the predicted degree of crystallinity to that which is
observed. Simonds (30) has proposed a model to describe the origin of
certain lunar and terrestrial samples which contain unmelted particles
(clasts) in a glassy or part;y‘crystalline matrix. Simonds suggeéted
thaé the melt produced by a-meteoritic impactvis mixed with unmelted
particles. These particles serve as heat sinks and quench the melt to
some equilibrium temperature. In the process, some of the clasts melt.
The fraction of clasts remaining and equilibrium temperature are functions
of the initial melt temperature and the volume fragtioq.of clasts
initially present. Théreaftér, the melt sheet as a whole cObls by
conduction and radiatibn to the surrounding. If the cooling rate is
sufficiently rapid the melt will form a glassy or partly crystalline

matrix.

When cooling rates are so low the sample becomes completely
crystalline, it is stilli possible to determine cooling rates using the
model of zoning suggested by Taylor (31). Concentratién gradients
within olivine grains can only persist if the cooling rate is sufficiently
?épid. Diffusion in the solid state would promote homogenizatién :

within the grain.
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Another aspect of the microstructure which bears consideration is
the absence of bubbles in the clastic lunar and terrestrial rocks
produced by impact events. It remains to be demonstrated whether the
time-at-temperature is sufficient for the removal of substantially all

gas bubbles and for the observed degree of homogenization.

1. Impact Melts

" Simonds (30) has proposed a two-stage cooling model to describe the
thermal history of impact melts. The initial stage of melt cooling
involves heat transfer between superheated silicate liquid and enclosed
cold clasts.» The second stage of cooling involves loss of heat'from
the melt sheet to its surroundings. Suéh sheets of impact melt are
formed at mixtures of molten rock, fused near the point of impact, which
is violently mixed with fine grained cold clastic debris. The fluid
mixture is then.laid down as a horizontal layer in or near the crater of
excavation. If the cooling rate during the first-stage cooling is
sufficiently high that the nose of the continuous cooling curve for
X = 10—-6 for the matrix material is avoided (32), and if the equilibration
temperature is sufficiently low that detectable crystallization does not
take place during the much slower secdnd—stage cooling, then a glassy
matrix breccia be formed. A breccia is a rock consisting of smaller
fragments of rock embedded in a matrix. With progressivély slower cooling
and higher eQui}ibration temperatures, breccias with partly crystalliﬁe
matrices and eventually completely crystalline rocks will be formed.

A quantitative analysis is made of the physical model suggested by
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Simonds and the consequences of ranging the clast content, the initial
temperature of the melt and the boundary conditions are explored. The

model is applied to two impact structures, one lunar and one terrestrial.

The Apollo 17 Station and Boulder, which is actually a series of
blocks, lies at the foot of the North Massif in the Taurus-Littrow
Valley on the Moon. Simonds (30) argues that the boulder is a partial
section through a horizontal sheet of impact melt, about 10 m thick,
at least 1 km. long, and lying about 1/3 of the way up to 2 km high
massif. The boulder is inferred to consist of a series of units differing
in vesicularity and clast content (33); but the narrow range in chemical
composition (30) and ages (34) suggest that all are part of a single |

melt sheet.

The Manicouagan structure is located 800 km northeast of Montreal.
It has a diameter of 65 km and an original thickness estimated as 239 m.
Its age has been measured as 214 million year (35). The structure is
believed to have resulted from a meteorite impact which, due to its
3

large kinetic energy (estimated as 1030 ergs), melted about 200-600 km

of crustal material.

There is evidence (35) that this huge mass cf rock cooled much more
quickly than would be allowed by simple cooling to the surroundings. The
clast distribution is not uniform; rather, there exists a gradient in
the clast content such that the fraction of clasts decreases with

increasing height above the basement rock.
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In an analysis relevant to cooling a melt by heat flow to cold
clasts, Carslaw and Jaeger (36) considered the change with time in the
temperature of molten material upon introducing a spherical particle
initdally at a different temperature. They also considered the change
in temperature of the sphere as a function of time. The melt was assumed
to be well-stirred, i.e., to have infinite thermal conductivity. The
effects of various volume fractions of particles can be evaluated by
considering different ratios of the heat cavnacity of the particle to
that of the melt. According to this model, the time for thermal
equilibration increases somewhat as the volume fraction of particles

decreases.

Simonds et al. (35) advanced a simplified model in which it was
assumed that all digestion of clasts takes place at the temperature of
thermal equilibrium reached at the end of the first-stage cooling.

The equilibration temperature was determined by a simple energy balance,
and the fraction of clasts melted was equated with the difference
between the equilibration temperature and the solidus divided by the
difference between the liquidus and solidus temperatures. Simonds et al.
provided a graphical representation of the enthalpy of solid, partially

melted, and completely melted silicates as a function of temperature.

The model was used to estimate the equilibrium temperature for
various combinations of melt temperatures and initial volume fractions
of clasts (Fig. II-2) and was applied to the formation of lunar rocks.
It was suggested that for a given melt composition with a given glass-

forming tendency, the model could be used to describe the microstructures
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initial melt temperature and initial fraction of clasts, assuming that’

all digestion takes place at the equilibrium temperature (after Ref. 35).
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of materials produced in a melt sheet, from glassy matrix breccias to

clast-free impact melts which are completely crystalline.

Analyses of heat flow appropriate for second-stage cooling, where
a melt sheet loses heat to its surroundings, have been advanced by
several authors. In general the equation to be solved is the one
dimensional heat flow equation:

oT ) T
ol _ 9. a1, I1-2
pCp at 9x K 90X ( 20)

where K is the thermal conductivity and p is the density.

a. The treatment of a cooling intrusion by Lovering (37), who
considered an intrusion as an infinite slab of finite thickness and
initially uniform temperature, whicn is intruded into a medium which is
also at a uniform temperature. Both the intrusion and the surroundings
were assumed to have the same constant thermal conductivity. The latent
heat of fusion was not explicitly included in the analysis. It was
suggested, however, that the effects of latent heat might be approximated
by increasing the scale or initial temperature of the melt sheet. The
former modification would produce results that are applicable at short
times and the latter at long times. The error function solution obtained

by Lovering is an exact solution to the simplified problem.

b. The analysis of temperature distributions in cooling igneous
bodies by Jaeger (38,39 ), who provided a highly insigntful and rather
comprehensive, albeit somewhat simplified, theory of heat flow in an

magma initially at a uniform temperature. The magma was taken as
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cooling by conduction into country rock which has the same thermal
properties as the magma. Realistic complications were considered,
including two finite sheets in contact, a finite sheet between two thick
cold bodies, and flows with irregular boundaries. In the latter paper,
it was suggested that the latent heat (L) could be included by replacing
the heat capacity in the temperature range between the liquidus (TL)
and the solidus (TS) with:

cp' = cp + L/(T -T) (I1-21)
According to Jaeger (39), hear the boundaries between the melt and the
country rock, the distance of an isotherm from the boundary is proportion-
al to tllz. Hence the mean cooling rate at a given temperature, defined
as the temperature range through which a point cools divided by the
time it takes to cool through this range, is proportional to Y , where
Y is the distance from the boundary.

Provost and Bottinga (40) numerically solved the heat flow equation
for a lava flow of initially uniform temperature cooling by radiation or
the upper surface and ccnduction into a cold basement. The top of the
flow was assumed to radiate as a black body? with the energy loss given
by the Stefan-Boltzmann law:

oT _ 4 4
K x - © (TT —Tv ) (1I1-22)
' -12 2 o,h
Here o is Stefan's constant, 1.355 x 10 cal/sec cm” °K’; TT is the
temperature of the top surface of the flow; and TV is the equivalent

temperature of space above the flow. The thermal conductivity of the

fluid lava was taken as infinite relative to that of the surroundings,
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i.e., convection in the melt was assumed to reduce thermal gradients and

produce an isothermal melt.

Provost and Bottinga considered the growth rate of crusts developed
in both the upper and lower regions of the flow, and included the effects
of latent heat generated at the crust-melt boundaries (the thermal flux

was equated to the rate at which the heat of fusion is liberated:

They did not consider cooling rates directly, rather they
derived an expression for the velocity at which the upper crust (near the

radiating boundary) grows:
.Y_ a Y“‘O.89 OrY a t0.53 (11_23)

The results were compared with observed isotherms in the upper crusts of

two Hawaiian Lava lakes and to Apollo 11 basalts.

2. Cooling Rate Indicators in Rocks

When a rock is completely crystalline, it is difficult to apply
transformation kinetics to determine the cooling history. Various other
techniques have been used including the examination of phase-equilibria.
The relaxation of compositional gradients brought about by segregation
during normal freezing, and the subsolidus partitioning of minor

constituents between two phases.

Walker et al. (1) studied the cooling history of lunar sample 12002,
a rock containing coarse crystals in a finer-grained matrix and consisting

of olivine, augite and small amounts of feldspar. They found that under
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equilibrium conditions, phases crystallize in the order olivine,
chromium spinel, pyroxene, plagioclase, and ilmenite. Under non-
equilibrium, controlled cooling conditions, ilmenite and plagioclase
reverse their order of appearance and silica crystallizes in the matrix.
Comparing the microstructure of 12002 with the results of controlled
cooling rate experiments, they deduced an initial cooling rate of about
1K hr—l, which subsequently decreased by at an order of magnitude or
more. They suggested that the change in cocling rate was probably
continuous, rather than relatively abrupt as suggested by the two stage
cooling model for impact melts. The cooling rates during the first

stage of Simonds model are much faster than 1 K hr—l.

Studies of distribution coefficients during solidification and
partitioning in two solid phases are based on the same simple theory.

Let My be the chemical potential of a component in phase i. Then

o

= II-
My ui + RT &n a; ( 24)

o

i

At equilibrium, the chemical potential of each component must be the same

where p, is the standard state chemical potential and a; is the activity.

in both phases (solid and liquid, or two solid phases). Thus

o

= exp [~(n; - uy )/RI] = K, (T) (11-25)

® I"‘m

2
If X is the mole fraction of a species in phase i, and if the activity
coefficients 1 defined by a; = y;x, are constant over the range of

composition involved,
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1_" _ i}
T K. (T) = KZ(T) (I1-25)

N

I1f solidification is rapid and there is not enough time for
substantial diffusion in the solid, there will be compositional gradients
after solidification even in a system which exhibits complete solid
solubility. One system of this type is the forsterite-fayalite
(HgZSiO4-FeZSiO4) system, which is very common in lunar and terrestrial

rocks and which exhibits zoning within individual olivine((Mg,Fe)ZSioa)

grains.

There are two sets of isothermal diffusion data for this system.

Misener (42) found that the dependence of the interdiffusion coefficient,

n,
D, upon temperature and composition is given by

" -2 49.831-4.5+9.05N2
D= (1.53 + 0.25 - 1.12N2) x 10 © exp (- )
- RT
(I1-26)
where N2 is the action note fraction of Mg. This applies in the

temperature range 900 < T < 1100 and the composition range

0.10 < N, < 0.60. He also found that the interdiffusion coefficient is

2
N WY
a function of crystallographic direction Da>Db, and that D decreases with

increasing pressure. He did not take into account the oxygen fugacity,

which is of importance in dealing with transport in this system.

Buening and Buseck (43) did take the oxygen fugacity into account.

.+
They found that the interdiffusion coefficient in olivine in the c

direction at P, = 10-12 is given by:

2
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N,
Dc = exp[- 0.045 XFe 310 -3.47] exp ~-[(2.143 ev ~-0.0096 XFe 310 ) /kT]
2519, 2°19,
' (I1-27a)
at T>1125C
and
BC = exp[-0.0501 (Xp_ .0 1=14.03] exp-[(1.373 ev - 0.0095 Xy g, N
2510, 2510, :
(I1-27b)

at T < 1125C

They also found that the anisotropy of the diffusion coefficient increases
with decreasing temperature, Da being less than DC by a factor of about
3.4 at 1100 C, 4.0 at 1050 C and 4.7 at 1000 C. They also found that the

interdiffusion coefficient is a function of the oxygen fugacity

be B 0.172 (11-28)

2
with an accuracy oft 0.022 in the exponent. This was consistant with

a vacancy diffusion mechanism by which D should be proportional to

1/6
0,

P

When a small amount of solute is partitioned between two phases in
a cooling system, the inhomogeneity can increase rather than decrease
with time. Taylor and Uhlmann and their co-workers (44) advanced a
simplified model to describe partitioning under continuous cooling
conditions, and a more realistic and detailed treatment of isothermal
partitioning. Partitioning is controlled by both the partition coefficient
and the diffusion coefficient, both of which may be functions of

temperature and therefore, in the mnonisothermal case, time.
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Analytical solutions were obtained for a finite isothermal system. The

system was assumed to be in equilibrium at the interface, i.e.:

- _ +
Cl(o ,t) = K C2(O ,t) (I1-29)

where the subscript indicates the phase. The diffusivity was taken as

constant within each phase.

The solutions to the isothermal partitioning problem are not directly
applicable to the determination of the thermal histories of lunar or
terrestrial samples, but are of utility in interpreting laboratory
isothermal partitioning experiments aimed at providing estimates of

K(T), Dl(T) and D2(T).

The simplified analysis (44) was used to estimate the cooling rate of
a lunar sample whose observed partitioning ratio equals that of an
isothermal laboratory experiment carried out at temperature To' It was
assumed that the characteristic diffusion distance below To and after

time to is approximately the grain size Xg of the sample:

[tf 1/2
[ D(t")dt'] =X (I1-30)

‘Jt g

o

If the cooling were faster, less partitioning could occur at temperatures
below To over a region of size Xg and the observed partitioning ratio
would correspond to a higher temperature. A constant cooling rate, a, and
an Arrhenius form for the diffusivity D = D0 exp (- %)were assumed. An

“expression for the cooling rate as a function of To and Xg was found for

the partitioning of Zr between ilmenite and spinel.
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D T
log a = log —% + 2 log T_ - 0.434 A _0.868 2  (1I-31)
AX . o To A
g

3. Elimination of Bubbles

The elimination of bubble can be used to estimate the rate of cooling
of breccias and glasses. The processes by which gas bubbles are removed
from silicate melts are relatively slow; and in commercial practice, the
rate at which molten glass of high quality can be withdrawn from the tank
is often limited by this process. In the case of clastiec lunar (and
terrestrial) rocks produced by impact events , it remains to be demonstrated

whether the time-at-temperature is sufficient for the removal of substan-

tially all bubbles.

The process by which gas bubbles are eliminated from glass melts is
termed fining. In industry the batch from which glasses are made usually
contain carbonates of sodium and calcium. These decompose upon heéting
to form CO2 bubbles. Even when glass is produced by adding only cullet

to bubble-free melts, bubbles are formed (45) due to gases absorbed on

the surface of the batch particles and entrained air.

a. Experimental Results.

The mechanism of fining and the effects of fining agents have long
been a subject of discussion among glassmakers. Many fining agents have
been used effectively including A5203, Sb203, Can, Na2804, NaCl, and
NaNO3 (45, 47). Of the two most intensively studied fining agents, the
use of A5203 goes back to the middle ages when it was referred to as

"glassmaker's soap." (48) The importance of Na2304 was recognized as
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early as 1866 (49).

It was originally believed that fining agents volatilize and form
large bubbles which rise to the surface, sweeping out the smaller bubbles.
Turner and his associates (50) showed that most of the arsenic added is
retained and is found in the melt in the oxidized state. It was then
hypothesized that at high témperatures, oxygen is evolved from the melt,
leading to the growth of the bubbles and their rise to the surface.
Greene and his colleagues (51-53) measured the size of a bubble as a
function of time by rotating the sample to maintain the bubble at a fixed
position. Oxygen bubbles were found to dissolve easily in melts refined
with arsenic in the temperature range 1000-1300 C, with the dissolution
rate increasing with increasing temperature. Boffe et al. (54) reported

that CO, bubbles also shrink rapidly.

2
Cable et al. (54) found that at 1400 C, when arsenic is added to the

batch, the composition of the gas in a bubble changes from CO2 to 02.

Cable and Haroon (52) found that at 1200 C, with or without arsenic the

composition of the gas changes from 002 to 02, and that the addition of

arsenic increased the rate of this reaction. The most rapid change of

gas composition is observed with the addition of arsenic that produces the

fastest refining. Furthermore, the rate of decrease of the carbon dioxide

concentration was more than ten times greater than the rate of increase

of oxygen concentration in the bubbles, despite the fact that the

diffusivity and solubility of CO, in soda-lime-silica glass are smaller

2
than those of 02 (56). It was concluded that the most important function
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of a refining agent is to permit the melt to absorb C02. Considering the
small volume of gas involved, Cable suggested this occurred by increasing
the rate of reaction with little or no change in the equilibrium solubility.
There is no evidence to indicate that the presence of arsenic in the melt
increases the solubility of C02. It does, however, increase the 02
solubility at melting temperatures (57). There is also some evidence that
at high temperature, A5205 dissociates into A3203 and O2 (58). If this
dissociation occurs in glass, the transport of this oxygen to the bubbles
would cause their growth. It is found, however, that As+5 is the
predominant species in glass under ambient conditions (58, 59). The
addition of oxidizing agents such as KNO3 or NaNO3 diminishes the loss

of arsenic by vaporization (59) in accord with the suggestion that

+
A35 is more stable in glass at melting temperatures than As+3,

Konijnendijk and Buster (60) recently showed that the As+5/As+3

1

ratio of 30K,0-708i0, glasses containing about 1 mole percent A5203 is

2 2
approximately 12 and does not change significantly over the temperature
range between 1000 and 1600 C. In soda-lime-silica glasses there was also

. . +5 . . - <.
no significant decrease in the amount of As on increasing the melt

temperature from 1250 to 1400 C (59).

Sbme contradictory evidence has been presented by Nemec (61), who
showed that above 1400 C, the bubbles in a séda—lime-silica melt grew
rather than shrank when fining agents were added to the batch. If no
fining agents were added, there were no changes in bubble size. During
cooling, the bubbles ceased to grow and began to shrink at a temperature

between 1370 and 1400 C. In interpreting these results, it was assumed
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that 002 is inert. This does not agree with the results of Cable who
showed that the change in gas composition in the bubble involves more than
gimply the diffusion of 02 into the bubble with a concomitant dilution of
the Co, . Rather, the evidence indicates that the CO2 dissolves in the
melt. The evidence presented thus fér, indicates that arsenic aids in

fining by increasing the rate of O2 dissolution over the whole temperature

range.

- A second and even more widely used fining agent is Na2804 (saltcake).
Lyle (62) showed that the effectiveness of sulfates in decreasing the
fining time (the minimum.time to produce a bubble-free melt after the
addition of batch to a previously bubble-free melt) depends strongly on

the glass composition. With a constant SO3 addition of 0.3%, the Nazo—

Ca0-8i0 phaSe diagram was divided into two regions of relatively constant

2

fining times. The boundary between the regions was a straight line,
(% SiOz)—Z.Z(Z NaZO) = 44.3. A sulfate content of 0.3% SQ3 was found to

produce good fining for the high silica~low alkali glasses, while glasses

containing less Si0, had shorter fining times with only 0.1% 803.

2
Cable (63) studied two melt compositions predicted to have quite

" different fining characteristics but similar viscosities and batch-free
times. The two glasses were designated Bad (16Na20, 12Ca0, 728102) and

Good (13Na,0, 13CaO, 748102) according to Lyle's predictions. It was

2
reported necessary to add 0.46% SO3 to the batch to obtain a glass

containing 0.3% 803, but only 0.395% SO3 to the batch to obtain a glass

containing 0.357 803.
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For both glasses at 1475 C, bubbles in the size range 0.20~0.40 mm.

- disappeared at about the rate predicted for removal by rise to the
surface, and smaller bubbles disappeared much faster than this mechanism
would predict. The "Bad".glass céntained more bubbles than "Good" glass
at the batch-free time, and it fined more slowly--in agreement with Lyle's
predictions. Without sulfur at 1475 C, the ''Good" glass refined more

slowly than the "Bad". The addition of 0.30% SO increased the fining

3
rate of the "Good" glass significantly, but not that of the ''Bad". Further

increases to 0.35 and 0.407 SO

3 improved the fining behavior of the '"Bad"

glass.

Using additional fining agents it was also found that the best results
could be obtained by reducing the "Bad" glass (adding A3203) and by

oxidizing the "Good" glass (adding Na202).

It was suggested that the grouping (a4 la Lyle) of compositions into
good and bad fining behavior at 1475 C represents a condition of constant
| SO3 solubility, and it was indicated that the mechanism of sulfate fining
cannot be elucidated from available information. It is clear, however,
that dissolution of gas bubbles in the melt is importént and that the gas
in the bubbles is predominantly SO2 (64). Greene and Platfs (65) measured
25 O2 and SOZ+02
- and without fining agents. The rate of absorption of both 02 and 802

the size of SO bubbles in soda-lime-silica melts with

increased as the temperature was increased from 1090 C to 1235 C. It was
found that Na,SO

2774
The shrirking of an SO

alone has no effect on the shrinkage of 02 or SO2 bubbles.

2 bubble in a glass with NaNO3 and A3203 was very
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rapid but the addition of NaZSO4 to the batch decreased the rate of

absorption of SO However, glass containing Na2504, NaNO3 and A8203

9°

absorbed 0, faster than a glass containing only NaNO3 and A3203. The

2
size of the bubbles was found to decrease as the square root of time,
suggesting that the rate-limiting step is diffusion. The mechanism of

SO, solution was suggested to involve oxidation by A3205 to SO3 which is

2
readily soluble in the glass. Conroy and coworkers(66, 67) examined the
melting and fining behavior of soda-lime-silica glasses with and without
the addition of sulfates. Under a hot stage microscope they observed

that without sulfate, bubbles which formed earlier in the melting process
and unmelted batch showed little or no movement. When sulfate is added,
‘bubble formation and movement is rapid and solid particles "literally
scoot over the surface of the melt." It was suggested that at low
temperatures (above about 1050 C) sulfate acts as a surfactant, collecting
at solid-melt and bubble-melt interfaces. It promotes rapid dissolution
of the batch and the rise of bubbles to the surface. Above about 1100 C,

appreciable reaction of the sulfate with the melt takes place to form

sodium metasilicate.

Na,S0, + Si0, = Na,0-SiO

1
250, 2 9 2 + SOz(g) + E-Oz(g) | (11~32)

NaZSO4 and Na20-5102

insoluble in more siliceous melts (68). Above about 1315 C, it was

are completely visible but Na2804 is essentially

suggested that the sulfate decomposes according to the reaction

Na,50, = Na(g) + S0,(g) + 0,(g) (1I-33)
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As decomposition proceeds the reaction products, particularly the highly
soluble sodium and oxygen, pass easily into the melt, disrupting the
liquid Na2804—melt interfacial forces and creating a convective motion at
the interface. Above about 1450 C the partial pressure of the reaction
products reaches one atmosphere and new bubbles are formed. It was |
suggested that these bubbles serve in the homogenization of the melt as
they rise through the melt, growing when they enter a region of high
Na20 concentration and shrinking when they enter a region of high SiO2
concentration. When the glass iscooled , NaZSO4 condenses on the surface
of the bubble and the bubbles collapse. Na2804 as well as sulfur have
been found on the surface of bubbles (69).

Holmquist (68, 70) studied the thermodynamics of NaZSO4 in sodium

silicate melts. He suggested that NaZSO4 decomposes according to the

following reaction:

Na,§0, (1) = Na,0(%) + S0,(g) + _32£ 0, (&) (11-34)

He suggested that the gas is dissolved in the melt by reacting with free
oxygen ions, 02_, to form 5042-. This agrees with Poole's (71) results
which show the importance of the partial pressures of 502 and 02. He
suggested that the most important effect of NaZSO4 was not its effect as
a fining agent but its ability to promote melting of sand grains and to
decrease the batch-free time. It was pecessary to supply oxygen to the
melt =so the SO2 would be oxidized te SO3 which can be dissolved in the

melt. It was found that a deficiency of 02 as by adding a reducing agent

C would result in bubbles containing 802 and C02. Too much O2 would
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result in bubbles containing O,.

Kenworthy (49) suggested that SO3 is formed within the bubble. Near
the interface the SO3 concentration was suggested to be high, the Na20
concentration be low, and the system may be represented by Eqmn. II-32.

If the Na,O concentration is very small, in order to restore the equilib-

2
rium conditions, more gas is produced, and the pressure is increased until
boiling occurs. The interface is thus disrupted and the rate of mass
transfer is increased. He suggests that the mechanism of sulfate fining

is the disruption of the bubble-melt interface and the subsequent increase

in the rate of transfer of the gases in the bubble into the melt.

b, Mathematical Models

Several models have been proposed to describe the dissolution of
gas-bubbles in molten glass. Greene and Gaffney (51) observed that
the radius of a bubble decreases with the square root of time, and

suggested that dissolution is a diffusion-controlled process.

Doremus (72) presented a model which assumed: (1) diffusion of the
solute in the solution is the only process which affects phe size of the
bubble; (2) the concentration of solute in the sphere (CS), at the
interface (Ci) and in the bulk (Cw) are constant; and (3) the diffusion
coefficient is not a function of concentration. He suggested that a

plausible expression for the bubble size as a function of time is

2 2 R,
R “ - R =2DBt(1 + ) (11-35)
o V1Dt '
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where Rb is the initial radius and B = (Ci—Cm)/(Cs_Ci)’ This solution
provided good agreement with the data of Greene and Kitano, at least for
the early stages of dissolution; and it was shown that the dilution

of oxygen by another gas such as N2 could not account for the deviation
at longer times. The deviation was suggested as caused by the finite
size of the specimen, with oxygen diffusing into the melt from the

surroundings, causing an increase in the bulk concentration.

Cable (56) recognized that the preséure within a bubble is not
constant but increases as the bubble shrinks. He assumed that Henry's
law is obeyed at the gas-melt interface, increasing the gas concentration

at the interface as the bubble dissolves.

Readey and Cooper (73) numerically solved the diffusion eQuation for
a stationary bubble in a melt, taking into account the moving bouhdary.
They also included the effect of the change in volume of the glass caused
by the transfer of material across the interface. This last effect is
found to be negligible for a gas dissolving in molten glass. Cable (74)
also considered the moving boundary problem for a stationary bubble. Cable
and Evans (75) assumed that the interface concentration was constant,
as was the concentration within the Bubble, and that initial concentration
at the interface was a step function. The effect of the radial flow was
found to make a sphere dissolve more slowly than predicted by models such
‘as that of Doremus, since as the boundary moves inward, the size of the

diffusion layer increases.-

For growing bubbles, Cable and Evans found that errors may be
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introduced unless the dissolution rate is small and the concentration

field around the sphere expands faster than the sphere itself.

Data and Vrentas (76) advanced a perturbation solution to describe
the dissolution or growth of a bubble. The first term of their solution
is the same as the solution of Doremus. They also advanced a finite
difference solution to the problem of the growth or dissolution of a
bubble. This solution was compared with the fine difference solution of
Cable and Evans. Both of these models took account of the effects of
the moving boundary, and both assumed a constant concen;fation of gas

~at the bubble-melt interface.

All the models described thus far apply to a stationary bubble.
Except for exceptional melting conditions and very small bubbles, however,
a gas bubble in a glass tank is not stationary. Further, recent develop-
ments at Owens-Illinois concerned with centrifugation fining (77),
together with interest in melting glasses under microgravity conditions,
have directed attention to the effects of motion on the growth and

dissolution of bubbles.

Greene and Lee (53) showed that wﬁen a bubble is allowed tc rise
through the melt, the rate of dissolution is4an order of magnitude faster
than that for a stationary bubble. As the bubble rises, it moves away
from its diffusion field. Levich (78) obtained a solution for the
diffusional flux to a moving drop. The concentration distribution in

the boundary layer was described by
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<

2
ac 6 8c _ | 3¢
- 5;-+ B -0 5 (11-36)

V —
r 0 or

Here V? and Ve are the radial and tangential components of the velocity
of the fluid as it moves relative to the bubble. This expression does
not take into account terms which relate concentration with respect to
radius, the tangential components of the concentration gradient, or the
effect of the moving boundary. Levich assumed that the concentration at
the interface is constant. The bubble is found to rise faster than the
Stokes law velocity predicted for a solid sphere. Due to the mobility
of the interface, the tangential component of the velocity is now zero.
This leads to a decrease in the energy dissipated in the liquid, so with
the same driving force (gravity), the velocity of a fluid within a fluid
should be greater than the velocity of a solid ;phere. The presence of
surfactants would make the bubble behave more like a solid and would

decrease its velocity.

The diffusional flux to or from the surface of a bubble of radius a

is

p(C_-C.)
j= D(%f:) = —5 2 (I1-37)
=a

where § is the boundary layer thickness

1/2

-/t 2bh
8 = ‘/g_ (Vo) (1+cos6)?

and V0 is the velocity of the bubble

2
v =£ea (11-39)

o 3
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Here p is the density of the melt, n is its viscosity, and g is the
gravitational constant. Levich assumed that the diffusion layer is
small compared with the size of bubble. Hence Eqns; (11-37) and

(1I1-38) would not hold for small bubbles, but since the velocity is

small, the solutions for a statiomary sphere would be sufficient.

Using the results of Levich, Nemec (61) derived an expression for
the size of a bubble as a function of time, assuming that the bubble

behaved as a solid sphere:

1

2/3g /3p1/3
1

n1/3 0

D

a=a + O.38(Cm-Ci) t = a, + kt (11-39)

Here p' is tﬁe density of the diffusing gas. This relation indicates
that the bubble size changes linearly with time, in accord with Nemec's
experimental results but at variance with the experimental data of
others and with other theoretical models. A linear change in bubble

size with time indicates that the bubble moves out of its diffusion

field so rapidly that the scale of the diffusion field is constant.
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IITI. PLAN OF WORK

In the worx that follqws, several aspects of glass formation are
investigated, including crystallization kinetics, thermal history, and
fining. Special emphasis is given to the determinatioﬁ of the thermal
history of materials by modelling the conditions of formation and comparing
aspects of the microstructure predicted by mddel to those observed in
lunar, terrestrial and laboratory samples. Each model is presented and

discussed in turn.

First, the effect of heterogeneous nucleation on the minimum cooling
rate for glass formation is investigated. The efficiency of various types

of nucleating sites is determined.

Second, a simple model for the prediction of the glass forming
ability of many materials is presented. This is derived from the more
complex model of transformation kinetics proposed by Uhlmann (8) and

several time-temperature-transformation curves calculated from his model.

Third, the model of Hopper et al. (25), which describes crystalliza-
tion statistics in glass—forming systems, is examined and expanded to
include the reheating of samples after initial cooling. The crystal-

lization temperature is determined as a function of cooling rate,

heating rate, and nucleation barrier, and the predictions of the model

are compared with DSC experiments on several materials.

Fourth, heat flow calculations are presented which model the two-

stage cooling process proposed by Simonds (30) to describe the thermal
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histories of certain lunar and terrestrial impact sites. The extent of
clast digestion in the first stage of cooling by heat flow to cold
clasts is estimated. For the second stage cooling by heat flow to the

surroundings, several sets of boundary conditions are used. The results

-~
-

are used to compare the effects of boundary conditions on the overall

cooling of impact melt sheets.

Fifth, nonisothermal diffusion in the solid state is modelled to
determine the thermal history of samples exhibiting incomplete solute
redistribution or zoning. The results are compared with the model

proposed by Taylor et al. (31).

Sixth, the fining process is examined. Three models are proposed
to describe the growth or dissolution of a moving bubble. The effects

of temperature, relative solubility and gravity are discussed.
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IV. NUCLEATING HETEROGENEITIES AND GLASS FORMATION

A. The Model

In evaluating the effects.of.heterogeneousvnucleation on glass
formation, we shall utilize the expression for the volume fractipn X,
crystallized in a time t, provided by the mormal theory of transformation
kinetics. When the nucleation rate Iv and the crystal growth rate u

are independent of time, the volume fraction crystallized is

34
X l/31rIvu t

(Iv-1)
for small values of X. The assumption of a time-independent nucleation
frequency should be good in nearly all cases of homogeneous nucleation
and in many cases of heterogeneous nucleation. The assumption of a
time-independent growth rate should be good for crystallization without

a change of composition, as well as for many cases involving large

compositional changes on crystallization.

In using Eqn. (IV-1) to describe glass formation, measured growth
rates are used whenever possible. To determine the growth rate over the
whole temperature range of interest, the computer was used to determine
a parabolic least squares fit of the growth rate vs. temperature in order
to interpolate and extrapolate the data ﬁor'each material. A comparison
of the measured and calculated growth rates is shown in figure IV-1.
Where such data are unavailable, the growth rate was calculated from the

relation

u=fva [l-exp (-AH AT/RT Tp)] (1V-2)
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Figure IV-1 - Measured and calculated growth rate vs. T/TE assuming parabolic

least squares fit for lunar composition 65016, anorthite, and o-terphenyl.



53.

where ; is the‘freQuency Qf atom tfansport at the cfystal-liquid interface,
a is a molecular diameter, AHfM is the molar heat of fusion, AT is the
unidercooling, R.is the gas constant, and f is the fraction of preferred
growth sites on the interface. According to the Stokes-Einstein

approximation, the frequency factor v is

v = kT/3nao3n (1V-3)

where n is the viscosity. Again, a parabolic least squares fit of the
available viscosity data was used to predict the viscosity vs. temperature
relation over the temperature range of interest. A comparison of the

measure and calculated viscosities is shown in Figure IV-2.

When only homogeneous nucleation of crystals is considered, the

nucleation frequency can be expressed as

HO o
Iv o Nv v exp (-Q) (IV-4)

o . - . . .
where Nv is the number of single molecules per unit volume and Q is

given by

2

Q = .02048B TES/T3AT (1V-5)

This is based on the standard treatment of homogeneous nucleation
with a nucleation barrier of B k T at AT/TE = 0.2. In most cases a
nucleation barrier of 60 kT is assumed.

The critical cooling rate can be approximated from TTT diagrams by

AT

dT N
(dt x ™ (1V-6)
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Figure -IV-2 - Measured and calculated viscosity vs. Tg/T relation assuming

parabolic least squares fit for lunar composition 65016, anorthite, and

o-terphenyl.
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T . is the temperature at the nose of the TTT curve;

where ATN = TE—TN, N

TE is the liquidus, and T is the time at the nose.

Equation (IV-6) as calculated from isothermal TTT diagrams over-
estimate the difficulty of forming a glass because the method of cons-
truction assumes that the kinetics during cooling from the liquidus to
the temperature of the nose of the TTT diagram are as rapid as at the
temperature of the nose. Uhlmann and Klein (79) and Onorato and Uhlmann
(80) followed the procedure of Grange and Keifer (19) in the construction
of continuous cooling (CT) curves which were originally developed for use
in steelmaking. In this approach, the fractional changes in the degree of
crystallinity was determined for times dt in the temperature raige dT.
The critical assumption is that on cooling through a limited temperature
range, for example the range from Tl at time tl to T2 at t2, the amount
of crystallization is substantially equal to the amount indicated by the
isothermal TTT curve at the mean temperature (T1+T2)/2 after a time

interval tz—tl.

The transition from TTT curves to CT curves is illustrated in Fig.
IV-3. For a cooling rate Rl, the volume fraction Xl is not reached at
temperature To, or even at the temperature Tl' Only at T2 is Xl reached:
the isothermal point corresponding to A on the CT curve is A' at

[(T0 + Tz)/Z, t For a slower cooling rate R,, the volume fraction

2tol-

Xl will be reached at point B (temperature T3); while for a faster cooling

rate R3, X. will be reached at point C (temperature TQ)' The locus of

1

points such as A, B, C defines the CT curve for a fraction crystallized
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of Xl' When this procedure is repeated for a different fraction crystal-
lized X2, results such as those shown in Fig. IV-3 are obtained.

In terms of that figure, cooling rates between R3 and R2 will result
in fractions crystallized between Xl and Xz; and cooling rates greater
than R3 are required to avoid a fraction cryscallized of Xl. As seen in
Fig. IV-3, the curves describing crystallization during continuous
cooling indicate that a given degree of crystallization is developed at
lower temperatures and longer times than a cursory examination of the
isothermal TTT curves or use of Eqn. (IV-6) would suggest. This tech-

nique has been successfully applied to the determination of the thermal

histories of lunar samples (32, 79, 80).

In assessing the effect of nucleating heterogeneities on glass
formation, it is convenient to use the familiar spherical cap model of
the heterogeneous nucleus. In terms of this model, the nucleation
frequency for a heterogeneity characterized by a contact angle 6 can be

expressed as

1 = AVNSO v exp[-Qf (8)] (1V-7)

where AV is the area of nucleating substrate per unit volume of the melt,
NZ is the number of molecules per unit area of substrate, and f(0) is
'given by

£(8) = [(2+cos6) (1-cos8)’]/4 (1v-8)
In accord with previous nucleation experiments, the value of 2 x 107 hete-

rogeneities/cm3 was used together with an assumed area of 1.5x10—10cm2
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o
per particle (corresponding to particles 500 A in extent). With these
values, A.V ~ 3 x 10_-3 cm-l; and the rate of heterogeneous nucleation can
be calculated from Eqn. (IV-7). The overall nucleation rate is the sum

of the rates of homogeneous and heterogeneous nucleation:

I =1 " 41 (IV-9)

The TTT and CT curves corresponding to a just—detectable degree of
crystallinity (X = 10—6) have been constructed for the following materials:
SiOz, Ge02, NaZO-ZSioz, CaO-A1203-28102, o-terphenyl, salol, H20, a
silver-like metal, and several lunar compositions. The lunar samples

and their compositions are listed in Table IV-1. For H20 and the metal,
the growth rates were calculated using FEqn. (IV-2) with AHfM(HZO) = 1430

cal/mole and AHfM (metal) = 2700 cal/mole. 1In all other cases, measured

growih rates were used.
B. Results

Typical results for the effects of nucleating heterogeneities on
glass formation are shown by the TTT curves in Fig. IV-4 for NaZO'ZSiOZ.
As seen there, heterogeneities characterized by modest contact angles
(6<100°) can have a pronounced effect on the time required to achieve a
given degree of crystallinity--and hence on glass-forming ability--while
heterogeneities characterized by large contact angles (6>120°) have a

negligible effect on glass-forming ability.

The corresponding CT curves for Na20-28102 are shown in Fig. IV-5.

From these curves, critical cooling rates are calculated according to
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Table 1IV-1

Lunar Compositions Investigated

(wt. %)

15418 60095 70019 65016 79155
50, 45.0  46.4 41.3 44.2 34.1
Ti0, 8.4 0.6 13.7
AL,0, 26.7  23.5 12.4 26.5 3.5
FeO 5.4 6.9 16.1 5.5 22.6
M0 5.4 10.5 10.2 7.3 11.1
Cal 6.1 12.1 11.2 15.3 10.6
Na,0 0.3 0.4 0.2
K, 0 0.8 0.1
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Figure IV-4 - The TTT curves for Na20-25102 corresponding to a volume
fraction crystallized of 10-6. Curve A, homogeneous nucleation only,

8=160°, =120°; curve B, 0=100°; curve C, 6=80°; curve D, 0=60°;

curve E, 06=40°,
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Figure IV-5 - The CT curves for NaZO-ZSiO2 corresponding to a volume

fraction crystallized of 10-6. Curve A, homogeneous nucleation only,

6=160°, 6=120°; curve B, 6=100°; curve C, 6=80°; curve D, 0=60°;

curve E, 6=40°. Curves constructed from TTT curves following method

showing in Fig. IV-3.
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Eqn.(IV-6) where the subscript N refers to the nose of the CT curve rather
than the TTIT curve. The cooling rates required to allow a volume fraction
crystallized of 10-.6 are about 300, 10, 0.3, 8 x 10-_3 and 6 x 10—3 K sec_l
are for samples containing heterogeneities with contact angles of 40°,
60°, 80°, 106°, and (120°, 160°, only homogeneous nucleation). As suggested
above, the cooling rate required to make a glass of the sample with
6=120° heterogeneities is closely similar to that required for a. By
comparison, the critical cooling rates calculated according to Eqn. (IV-6)
from TTT diagrams represent an overestimate of the cooling rate necessary

2

to form a glass, the cooling rates being about 400, 30, 0.6, 2 x 10 “ and

6 x 10_3 K sec—l for the 6 values cited above.

The results of similar calculations for a variety of materials,
including oxides, metals, organics, and water--indicate that nucleating
heterogeneities present in the indicated concentration with 6 values
greater than about 100° quite generally have a negligible effect on
glass-forming ability. The results are illustrated by the comparison in
Table IV-2 between the critical cooling rates estimated assuming only
homogeneous nucleation, and those estimated with the indicated density
of heterogeneities all characterized by contact angles of 40, 60, 80,
and 100°. The sources for the experimental data used in the calculations

are given in Appendix A.

The effects on glass formation of changes in the barrier to nucleation
are shown in Table IV-3, where critical cooling rates calculated from CT

curves are compared for barriers to homogeneous nucleation at L\.T/TE = 0.2



Effect of Contact Angle of Heterogeneities (2x107cm—3)

Table IV-2

63.

on Calculated Critical Cooling Rates for Glass Formation

Homogeneous 6=100° 6=80° 8=60° 0=40°

Material nucleation
K s—1 K s_l K s“l K s.-1 K s"l
510, 9x10° 107 2x10% 8 x 10" 2 x 10
GeO 3x10° 3x10° 3x102 1 20
2

Na,0-2510, 6x10° 8x10° 3x10% 10 3 x 102
Ca0-A1,0,-2510, 3 x10° 3 x10° 5x10° 2x10° 2 x 10°
lunar comp. 15418 60 60 7 x 102 2 x 104 2 x lO5
lunar comp. 60095 20 20 3 x 102 10% 10°
lunar comp. 70019 10_1 10—l 6 5 x lO2 2 x 104
lunar comp. 79155 7 2.5 80 5 x 103 1x 105
lunar comp. 65016 30 32 3x 10> 1x10*% 1x10°
o-terphenyl 1x10°2 4x10” 8 2 x 102 1 x 10*
salol 2x102% 3x102% 1 102 8 x 10°
H,0 5 x 10° 5 x 10° 5 x 10° 108 10°
metal 9x108 9x10° 2x10° 101 5 x 1010



Table IV-3

Effect of Nucleation Barrier on Calculated Cooling Rates

for Glass Formation (Homogeneous Nucleation)

64.

AG*=50 KT AG*=60 kT M3*%=70 KT
Material at AT/TE=O.2 at AT/TE=O.2 at AT/TE=0.2
K st R st K st
510 7 x 107 9 x 1070 1070
2
GeO,, 2 x 1072 3 x 1073 4 x 10
Na,0-2510, 6 x 1072 6 x 103 9 x 10~
Ca0-A1.0. -2810 3 x 103 3 x 102 40
2°3 2
lunar comp. 15418 4 x lO2 60 9
lunar comp. 60095 lO2 20 2
lunar comp. 70019 9 x 10_l 10—l 10—2
lunar comp. 79155 17 2.3 3 x 10
lunar comp. 65016 2 x lO2 Ix 101 6
o-terphenyl 2 x 10“2 1x 10-'3 8 x 10
salol 2 x 1071 2 x 1072 2 x 10°
H,0 4 x 10° 5 x 10° 10°
metal 5 x 10° 9 x 108 2 x 10°
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of 50, 60, and 70 kT. As seen there, these effects can also be substantial.
When the calculated rates for various oxides, including a number of lunar
compositions, are compared with experience in the laboratory, the difficulty
of forming glasses is generally overestimated when it is assumed that

AG* = 50 kT at AT/TE = 0.2; that is, the calculated cooling rates, even
neglecting nucleating heterogeneities, are consistently higher than those
required to form glasses in the laboratory. Reasonable agreement between
calculated rates and laboratory experiments can be obtained by taking
somewhat larger values for AG* (in the range 55-65 kT at AT/TE = 0.2).
Recent measurements of the nucleation frequency by Klein and Uhlmann (79)
for the 70019 composition indicate a nucleation barrier of 55 kT at

AT/TE = 0.2.

C. Discussion and Conclusions

The analysis of glass formation in the preceding section is based on
using the formal theory of transformation kinetics, together with an
identification of 10_6 as a just;detectable degree of crystallinity. 1In
estimating the critical cooling rates required to form glasses of different
materials, TTIT curves are constructed from calculated nucleation rates,
calculated or measured growth rates, and measured viscosities. Continuous
cooling (CT) curves are then constructed from the TTT curves, and critical
cooling rates are estimated directly from the CT curves. The critical
cooling rates obtained in this way are more reliable than those obtained
directly from TTT curves because the latter approach makes the implicit

assumption that the crystallization kinetics over the whole cooling range
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are as rapid as they are at the nose of the TTT curve. Relative comparisons
of the glass—forming ability of different materials can, however, be made

using either TTT or CT curves.

In evaluating the effects of nucleating heterogeneities on glass
formation, use has been made of the spherical cup model of the heterogeneous
nucleus, together with a density of heterogeneities inferred from many
nucleation studies. The results presented above indicate that while all
heterogeneities characterized by contact angles 6<180° are properly
described as nucleating heterogeneities, only those with 6 smaller than
about 100° have significant effect on glass-forming ability, at least for
concentrations of nucleation sites in the range of lO7 cm_3 or less.
Nucleating heterogeneities characterized by larger contact angles become
effective only at large undercoolings where they have little effect on

the overall crystallization kinetics.

The contact angle is a function of the interfacial surface energies

(v) between the crystal nucleus (c), the substrate (s) and the liquid (R):

Yoy cosf = Vg + Yer (Iv-10)

Assuming that Yog? the interfacial energy between crystal nucleus and
liquid is constant, effective nucleating substrates (those with small 6's)
are those with Ysl or low Ysc' In assessing the effects of heterogeneous
nuclei, we have used concentrations of such nuclei inferred from
experiments on a variety of materials. It should be noted, however, that

the assumed concentrations may represent overestimates of the actual
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densities of nucleation sites in some cases; and smaller concentrations
would be expected for liquids which serve as effective fluxes. Such
liquids include the transition metals, many of which can be undercooled in
bulk form by hundreds of degrees without crystallization; multicomponent
oxide melts containing sizable concentrations of transition metal oxides;
many materials which require very high temperatures for their initial
melting; and many silicate compositions containing large concentrations of
PbO. It is recognized that superheating a material well above its liquidus

temperature is conducive to the elimination of heterogeneous nuclei.

The effects on glass-forming ability of changes in the surface energy
barrier to homogeneous nucleation have also been explored. Changes in
the corresponding free energy barrier over the range between 56 and 70 kT
at a relative undercooling of 0.2 can change the critical cooling rate for
glass formation by nearly two orders of magnitude. As shown above for

Na,0-2Si0,,, such changes are comparable with those which result from only

2 2?
homogeneous nucleation being operative to heterogeneities with contact
angles of about 70° being present in concentrations of 2 x 107 cm_3.

From this result, it may be inferred that the concentration of relatively
potent nucleating heterogeneities has a more pronounced effect on glass

formation than the magnitude of the surface energy barrier to nucleation

(for both quantities considered in a reasonable range).

The results shown in Tables IV-2 and IV-3 for water and for the
metal are subjected to considerable uncertainty. For both, the viscosity

data had to be extrapolated over a wide range of temperature in carrying
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out the calculations, and in the case of the metal, a high value was

assumed for the glass transition temperature (which is unknown) to ensure
consideration of the minimum conditions for glass formation. The results
should simply be taken as indicating that it is unlikely, with or without

heterogeneities, that a pure metal can be found as a glass from the melt.

The present analysis takes no direct account of the crystal size and
number distributions of crystals within a melt. The method by which the
CT curves are derived from the TTIT curves does not allow for the
.continuation of the CT curve beyond its intersection with the TTT curve;
nor does it take into account more complex thermal histories which include
reheating. In cases where these factors are important, a more complete
analysis of crystallization statistics (25) is required. This will be

discussed in a later chapter.
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V. A SIMPLIFIED MODEL FOR GLASS FORMATION

A. The Hodel

The determination of the critical cooling rate for glass formation
has been determined for mény materials using the forﬁal theory of trans-
formation kinetics. In order to apply this theory to a particular material,
it is necessary to know the viscosity and the crystal growth rate over a
wide range of temperature. It is also important to know the magnitude
of the nucleation barrier in the material. Unfortunately, such information
is not available for many materials; and measurements of this type are
time consuming. It would therefore be useful to have a simple model
which could be applied with limited data to determine the critical cooling
rate necessary to form a glass. This is particularly important for lunar

glass=2s whose thermal histories are of considerable interest.

When determining the critical cooling rate from a TTT diagram, the
only part of the curve which is ultimately required is the nose of the
curve. If the time and temperature of the nose could be predicted, the
critical cooling rate could also be predicted. According to transformation

kinetics, the volume fraction transformed at a time t is

_T 3.4 -
X = 3 Ivu t (Vv-1)

where IV is the volume nucleation frequency which for homogeneous

nucleation only may be expressed:

N° kT .02048B TE5

3naon(T) TBAT2

(V-2)
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and U is the crystal growth rate, which for normal growth is

u(T) = ———%z———-(l - exp - Q¥A$ ) (V-3)
3naon(T) ' E

Substituting these expressions into Egqn. (V-1) one obtains:

o bl b 5
NOK'T ¢t .02048B T_ RV

x = exp[- 1[1 - exp[- 11 (v=4)
243n3ao9(n<'r))‘* K Tg

T3AT2

The time for a volume. fraction X to crystallize is:

5

.02048B T -3/4
€(T) = C “éT) exp T (l-exp - 2000 (V-5)
4LTTAT E
where 9/4
1/4 1/4 3/4 a
x (243) n o (V-6)

C = oy 1/4
(Nv) k
If the temperature of the nose of the TTIT diagram is known, the

critical cooling rate can be estimated:

daT - TE-Tnose (V-7)
t (T )

crit nose

The application of the theory of transformation kinetics to a wide
range of materials has produced many TTT and CT curves. The temperatures
at the nose are shown in Table V-1 for several classes of materials. If
the temperature of the nose is compared with the liquidus temperature, it

can be seen that the ratio of these temperatures is approximately constant:

Tnose/TE:}u"77. Changing the barrier to homogeneous nucleation changes

the temperatures of the nose only slightly. The only material which



Table V-1

Temperature of Nose of TTT Curve Compared with Melting

Point or Liquidus Temperature

Material Thelt (K) Those (K) Tnose/ melt

at AT/TE=0.2

Apollo 15 Green Glass 1543 1140 (60kT) .739
Lunar comp. 15286 1483 1129 (60kT) .761
Lunar comp. 15498 1543 1176 (60kT) .762
Lunar comp. 60095 1543 1165 (60kT) .755
Lunar comp. 65016 1633 1207 (60KT) .739
Lunar comp. 70019 1453 1132 (55kT) .779
Lunar comp. 79155 1523 1176 (60kT) 772
Na,0-2810, 1146 894 (50KT) .78

GeO2 1389 1040 (50kT) .749
Salol 316.6 240 (70kT) .757
Metal 1234 784 (50kT) .635
HZO 273 202 (50kT) .74

510, 1996 1540 (50kT) .772
Anorthite 1823 1389 (60kT) .762
O-terphenyl 328 269 (50kT) .82

Lunar comp. 67975 1483 1184 (60kT) .80
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differs significantly from the rest is the silver-like metal, for which
a highly approximate n-T relation was used extensively--since neither

growth rate data nor even the glass transition temperature is available.

Making the approximation that for all materials

nose = 0:77 Tg (V-8)
Eqn. (V-7) becomes:
2
S B Ao exp(- —02048B o BH(.23),
dt erit t(.77TE) Cn(.77TE) 4(.77)3(.23)2 RTE.77
(V-9)
or
a1 177 1, aag. 34
() = ———=— exp (- .21173)(l-exp - = (V-10)
dt orit Cn(.771E) RTE

To predict the critical cooling rate for a material of unknown
glass-forming ability, all that remains is to determine or estimate
the heat of fusion, the nucleation barrier, and the viscosity at .77TE.
The heat of fusion is readily measured, but the other two quantities

are more elusive.

1. Nucleation Barrier

When Turnbull (12) applied nucleation rate theory to his measure-
ments of homogeneous nucleation in liquid metals, he took the free

energy for forming a critical rucleus as

AG* = .1_6.11 _.13__ (V-11)
3 (Acv)2
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where ¢ is the crystal-liquia specific surface free energy andAAGv is
the difference between the volume free energies of the liquid and
crystal. Turnbull used the approximation:

AH AT
v

AG, g (v-12)
E

Studies of crystal nucleation have been carried out on a variety
of liquids. 1In estimating the nucleation frequency, and thence the
crystal-liquid surface energy, from measurements of the temperature
range of homogeneous nucleation, all workers have used the approximation
of Eq. (V-12). The values of the surface energy per unit area, o, have
been converted to the surface energy per mole, UM’ and compared with
the molar heat of fusion, AHfM. The results of the original studies

indicated OM/AHfM v 1/2 for metals, and UM/AHfM v 1/3 for non metals.

" Vreeswijk and coworkers (9) used a value of qM/AHfM = 0.32 in
calculating critical cooling rates for forming glasses of some materials.

They assumed, however, thaur
ac. oo 2L L (V-13)
~ T

which is applicable for large undercoolings where account must be taken
of the temperature variation of the enthalpy and entropy difference
between the crystal and liquid phases. This is not taken into account

in Eqn. V-12.

Taking AHfM = ASfM TE and OM/AHfM = 0.32, Eqns. (V-11) and (V-13):
5
_ -.549 ASfM:E
= ° -—
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For typical values of ASfM, this indicates high nucleation barriers.
For example, ASfM for‘NaZO'ZSiO2 is about 4R. The exponent in the
expression for the nucleation barrier is then 2.196 TES/T3AT2, which
corresponds to a nucleation barrier of 107 kT at a relative undercoocling
(AT/TE) of 0.2. For AS'fM values of 5R, which correspond to lunar
compositions, this would indicate a nucleation barrier of 134 kT at
a relative undercooling of 0.2. This does not agree with Kleiﬁ's (18)
measurement of 55 kT at AT/TE = 0.2 for lunar composition 70019.
Vreeswijk et'al. used values of 0 calculated according to Eqn. (V-12)
with Iv calculated according to Eqn. (V-13). In order to calculate

the crystal nucleation frequency it is necessary to develop an

approach which is consistant.

To find a more reasonable approximation for GM/AHfM to be used for
large undercoolings where Eqn. (V-13) is preferred, the original data
were re—examined. The experiments divided various materials into fine
droplets, supercooled them and noted the temperature at which they
crystallized. In this way, heterogeneous nucleation was avoided in
about 99% of the droplets. Following Thomas et al. (23) we assumed
that the ﬁucleation rate was 1 droplet—l 10 sec—l. The calculated
nucleation barrier is insensitive to all factors except the undercooling

at which crystallization takes place. The nucleation rate may be

expressed:
g 3 AH_, T 4
I = 10x4m _3 32 M fM 'E -1 -3 .
v 3 ¥~ 1077 exp (AH ) RT3T2 sec cn (V-15)

fM
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where r is the radius of the droplet in the nucleation experiment. Taking

_ ~1 -1 .
IV = 0.1 droplet =~ sec ~ and fo? solving GM/AHfM

1/3

.075
Mo ( 3R AT2T3 (ln i 2.303 x 32 -~ 3 %nr) )

o™ 16m TE AHfM

(v-16)

The data and resultant values for OM/AHfM are shown in Table V-2. The
AHfM data were taken from the CRC Handbook whenever possible. When the
CRC Handbook did not include information on a particular material,

the AH_ data was calculated from Staveley's results. When AH_. . values

M M

calculated from Staveley's results are used for all materials, the

average value of oM/AH decreases to 0.27. These values are quite

™
different from the average values determined using Eqn. (V-12). If

OM/AHfM = 0.25, a not uncommon value, the nucleation frequency is

5
- S
0.26 LLMIE

I =N° v exp (V-17)

v v RT?AT¢

2

For ASMfAR the exponent is then 1.04 TE5/T3AT s which corresponds to

a nucleation barrier of 51 kT at a relative undercooling (AT/TE) of 0.2.

2

For AS_  values of 5R, the exponent is 1.30,TE5/T3AT » which corresponds

M

to a nucleation barrier of 63 kT at a relative undercooling of 0.2.

2. Viscosity

A number.of theoretical models have been proposed to describe the
viscous flow of liquids (81-83). Cukierman (84) found that the free
volume model provided the best fit to the high temperature data for
aﬁorthite, which is frequently a major constituent of lunar compositions.

He also found that the free volume theory described the high temperature
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Water

Boron Trifluoride
Cyclopropane
Methyl Bromide
Methyl amine
Sulfur dioxide
Chloroform
Thiophene
Methyl Chloride

NH,

Table V-2
Relative Undercoolings and GM/AH
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- AH
AT/Tg M _ radius oM/AHfM
(cal mole ") (microns) '
.247 557.2 10 .419
.250 1336 10 .342
.208 1720 10 .349
.166 2505 10 .285
.133 1224 10 .336
.150 4770 10 .260
.140 2550 25 .317
.184 8300 7.5 .262
.184 2700 10 .383
.172 3030 10 .367
174 3110 10 .368
.206 3450 25 401
.185 4200 25 .377
.187 3640 10 .394
.164 3560 15 .379
.182 4120 15 .380
.181 4700 10 .374
.143 1430 10 .254
.123 480 25 .278
.122 1248%* 35 .202
.136 2616 25 .179
.199 1445% 25 .261
.167 1778*% 25 .233
.250 2103.5 25 .264
.216 1187.2 25 .315
.317 1526% 25 .296
.206 1352%* 25 .278
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Table V-2 (cont'd.)

. AH

AT/TE (cal ﬂgle- ) ;igizis 0M/AHfM
cc1, .202 783 25 .36
H,0 .148 1430 25 .263
CeHe .252 2379 25 .280
Br- (CH) ,-Br .235 2591 25 .267
Diphenyl. .250 4065% 25 .250
Naphthalene .267 4494 25 .249
CBr, .226 2747% 25 .280
CeHe COLH .304 4111% 25 .276
LiF .210 2360 1.5 .396
Licl .210 3200 © 1.5 .331
LiBr .240 2900 1.5 .351
NaF .220 7000 1.5 .292
NaCl .160 7220 1.5 .239
NaBr .160 6140 1.5 .248
KC1 .160 6410 1.5 .246
KBr .170 5000 1.5 .272
KI .150 4100 1.5 .269
RbC1 .160 4400 1.5 .274
CsF .140 2450 1.5 ~.308
cscl .170 3600 1.5 .294

*
Calculated from results of De Nordwall and Stavely (22) and Thomas and
Staveley (23). Other values are from CRC Handbook.
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flow behavior of four organic glass-forming liquids.

Laughlin and Uhlmann (85) found that the glass transition temperature
provided a useful normalization of the viscosity data of several liquids.
The glass transition temperature was taken as the temperature corresponding
to a viscosity of lOlsp. It was found that the viscosity vs. reduced
temperature Tg/T for Si0, is similar to that for GeOz. Both exhibit less

2
curvature than the corresponding relation for B203, Na O-ZSiOZ, KZO‘ZSiOZ,

2
and two standard NBS silicate liquids; and these display a less steeply
curved logn vs. Tg/T relation than four simple organic glass-forming
liquids. If the viscosity vs. reduced temperature relations for lunar
compositions are compared with the results of Laughlin and Uhlmann, the

flow bebhavior of the lunar glasses is found to lie between that of oxide

liquids and that of simple organic and metal alloy liquids (Fig. V-1).

Using Tg as a corresponding states parameter, we have obtained a

least-squares fit of the Vogel-Fulcher relation

B

575712;— (v-18)
g

loglon = A+

to the flowdata on 13 lunar compositions. Values of'A.and B were deter-
mined for all compositions with o varying from 0.8 to 1.2 at intervals of
0.01. The mean and the standard deviation of both A and B were determined
at each value of a. It was found that the best overall fit to the

viscosity data for lunar compositions was

3.12

/T - 183 (=19
g

loglon = -1.60 +
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Figure V-1 — T_/T normalization of viscosity of glass-forming liquids.

® 6 o Least squares Vogel-Fulcher fit for lunar compositions.
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This relation describes the viscosity at the temperature of interest
(0.77 Tm) within about an order of magnitude of that interpolated from

measurements (see Table V-3).
B. Results

As a first approximation Eqmns. (V-10) and (V-19) were combined to
calculate the critical ccoling rate for glass formation for several com-
positions, assuming a uniform nucleation barrier of 60 kT at AT/TE=0.2.
As.a second approximation, the nucleation barrier was then varied by the
substitution of Eqn. (V-17) into the expression for critical cooling rate.
It was assumed that AHfM = ASMTE for all materials, with ASM=5R for
lunar compositions and ASM = 6R for anorthite. The critical cooling rates
for glass formation calculated according to both approaches are shown
in Table V-4, These rates are compared with the critical cooling rates

calculated from TTT and CT diagrams (18).

The agreement between the first approximation and the TTT diagram
from which it is derive&, is quite good. The second approximation increases
the nucleation barrier to 64 kT for lunar materials and 77 kT for aﬁbrthite
(both at T/TE=O.2). This change in nucleation barrier decreasés the
critical cooling rate calculated from TIT and CT diagrams by about a
factor of two for the lunar compositions and about a factor of 23 for anorthite
The simplified method agrees in general with the TTT and CT diagrams

which use measured values of the viscosity and the growth rate.



Table V-3

Temperature and Viscosity at the Nose of

TTT Diagrams

Material Tg TE 77 TE loglo log10
(K) (K) (K) (meas.) (calc.)

Lunar comp. 67975 940 1483 1142 7.05 6.51
Lunar comp. 14259 970 1513 1165 7.40 6.81
Lunar comp. 14310 950 1583 1219 6.45 5.29
Lunar comp. 15555 900 1548 1192 5.0 4.71
Lunar comp. 68502 1000 1603 1234 6.25 6.12
Lunar comp. 74220 930 1473 1134 6.77 6.41
Lunar comp. 65016 1013 1633 1257 5.30 5.99
Anorthite 1120 1823 1404 5.20 5.77
Lunar comp. 60095 933 1543 1188 5.85 5.44
Lunar comp. 15418 1000 1613 1242 6.35 5.97
Lunar comp. 15498 940 1543 1188 6.37 5.59
Lunar comp. 15286 850 1483 1142 6.25 4.48
Green Glass 850 1543 1188 5.00 3.90

8l.
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C. Discussion and Conclusions

The results shown in Table V-4, which are derived using Eqn. (V-17),
agree well with experience. The Apollo 15 Green Glass is in fact the
most difficult composition to form as a glass among all the lunar
compositions tested. Composition 79155 is a relatively poor glass former,
and 70019 and 67975 are good glass-formers. The nucleation barrier for
the lunar compositions is not significantly different from that calculated
assuming AG*=60 kT at AT/TE=0.2. As noted above, Eqn. (V-17) corresponds
to a nucleation barrier of 64 kT at AT/TE=0.2 for ASM=5R and a nucleation
barrier of 77 kT at AT/TE=O.2 for ASM=6R.

Materials such as anorthite, which have high values of ASM, should
have high nucleation barriers. 1In fact, anorthite is a reasonably good
glass—-former, which is not evident from TTT and CT diagrams constructed
using typical values for the nucleation barrier of 50-60 kT at AT/TE=0.2.
Thus if Eqn. {V-13) is to be used, particularly for oxide materials,

smaller values of oM/AHfM than those obtained using Eqn. (V-12) must be

employed if consistent results are to be obtained.

The differences between the simplified method and the complete
method using TTT and CT diagrams are derived from two sources: the
viscosity and the temperature at the nose of the TTT diagram. The
difference due to the temperature at the nose is not significant. For
example, the cooling rate calculated from the TTT diagram of lunar-com-
position 67975 is 7 x 10_2 °K sec—l. If the viscosity is correct but the

. = o017, = °
temperature is wrong, (Tnose—1184 K; T.77 1142 °K), the cooling rate is
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Table V-4

Critical Cooling Rates for Glass Formation Calculated from TTT and CT

curves andUsing Simplified Method of Viscosity Approximation Assuming
*
(1) AG =60 kT and AT/TE=0.2, or (2) Nucleation Barrier from Eq. (V-17)

. 1 2
Material Simplificd Simplified
TTT CT Method TTT CT Method
2 2 3 2 2
Apollo 15 Green Glass 5.5x10 2.2x10° 1.4x10 2.7x10° 89 6x10
Lunar comp. 15286 12 4 5.3x102 5.5 2 2.3x102
Lunar comp. 15498 14 5 44 6.4 1.8 19
Lunar comp. 60095 46 15 63 21 7.5 27
Lunar comp. 65016 90 30 20 43 16 8.4
-1 -1 -1 -1
Lunar comp. 70019 3.3x10 10 4.2 1.4x10 — 38x10 1.8
Lunar comp. 79155 6.9 2.3 2.3x10%° 2.9 8x10"1 10
Lunar comp. 67975  6.9x1072 1.3x1072 4.9 2.6x107% 6.7x107° 2.5

Anorthite 10 4x10° 81 4t 14 2.3
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3.4 x 10-2 °K sec_l which differs by only a factor of 2. However, if the
approximation for the viscosity is not good, the critical cooling rate
will not be well described by the simplified modei. The largest discrep-
ancy in viscosity occurs for lunar composition 15286 which is much more
viscous than the viscosity approximation would indicate. Accordingly,

the simplified method overestimates the difficulty of forming a glass.

The determination of a critical cooling rate for glass formation has
been reduced to three measurable quantities: the glass transition
temperature, the melting temperature and the molar heat of fusion. For
ease of glass formation, the heat of fusion should be high, so that the
nucleation frequency is low; the liquidus ﬁémperature or melting point
should be low and the glass transition temperature should be high. The
melting temperature may be high if the glass transition temperature is
also high; but a high melting temperature and a low glass transition
temperature indicate a poor glass-former (Apollo 15 green glass). This

is in accord with the previous findings.
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VI. CRYSTALLIZATION STATISTICS

A. The Model

Hopper et al. (25) have developed a theory of crystallizatién
statistics by which the state of crystallinity of a material can. be
determined if the thermal history is known and the thermal hiétory of a
material can be determined if the state of crystallinity is known. The
aésumptions used in deriving the crystal distribution function § have
been discussed in Chapter II. According to Hopper et ai., a crystél

nucleating at a time to<t has a radius at time t of
t
- -
R(r,t,to) = u[T(r,t')]dt’ R>0 (Vi-1)

t
o

and the change in crystallite size with nucleating time is

3%—-= - u[T(r,t )] (VI-2)
o]

Eq. (VI-2) is very important when deriving the expression for the crystal

distribution function

IV{T[r,to(¥,c,R)]}

> .
! ’t’R = | -
b(x,e,R) o{Tlr,t_(F,£,R) 1} (VI-3)
which is used in calculating the number density of crystals
R
max
D (T,t) = $(r,t,R)dR (VI-4)
0
and the volume fraction crystallized
R'max
> 4 3 -
Fv(r,t) = SﬂrR v(r,t,R)dR (VI-5)
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where

il

R (r,t) u [T(r,t")]de’ (VI-6)

0]
In the present analysis it was assumed that the sample is of uniform
temperature so there is no ? dependence of either nucleation frequency or
growth rate. Furthermore it is noted that the radius of a crystal is a

function of its initial size as well as the growth rate, time, and

temperature. That is

R(t,to) = u[T(t")]1dt" + R*[T(to)] (V1i-7)

t
(o)

The radius of the critical nucleus, R*, can be determined from classical

nucleation theory:
R*¥ = —— (VIi-8)

where o is the specific interfacial energy and AGv is the free energy

difference between the crystal and liquid phases. 1In the present analysis,

it was assumed that

T
AT o
AG = AH — — (VI-9)
v v TE TE
- T = — "
where T, o(to) and AT TE Lo(to)

Using the results of Chapter V for non-metals

g
AH

fu -
2/3 _1/3 .
where AH_,, = AH V and Oyp = OV N 3 V is the molar volume and N _is
™ vm ! m o m o

v 0.25 (VI-10)

Avogadro's number. Therefore
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N o.sxﬁf/3 Té
RE ¥ 7 } (VI-11)
N2 AT T
(o] (o]

and hence R, the crystal size, is a function only of t and tc.
J

It is assumed that if at any time and temperature the crystallite is
smaller than the critical size corresponding to that temperature, it will
‘melt completely and will not be included in any future calculations of

crystal distribution; that is,

y (c,e)) =0 (VI-12)

when R(t) to) <R*¥(t') for some t' on (to,t). There will be a range of
R(t,to) for which R(t',t0)> R*¥(t') and the number of crystallites in that

range can be calculated.

The number of crystals nucleating during the time interval between

tl and t2 in the volume dv is

)

dle = dv IV[T(to)]dto (VIi-13)

t
From Eqn. (VI-7), one obtains1

R _ aR* _
o= elme ]+ g (VI-14)

Changing variables in Eqn. (VI-13),

-R %
rRl Rl .
-4
dv,, =dv —-—ﬁ d (R-R*) (VI-15 a)
J - *
R,)-R,y
or rR
2 g
dN = dvy v
12 ) drR (VI-15b)
JR. " T T 4c
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where R, = R(t,tl) and R, = R(t,tz). Therefore

1 2
I {T[t (£,R)]}
y(r,R) = v..=° (VI-16)

u _dr* [t (t,R)]
{T[to(t,R)]} dto?t,R)

As will be shown, the inclusion of R* in the expression for crystal-
lite size is significant when calculating the volume fraction crystallized.
When the temperature is cycled below the glass transition, whc ‘e the growth
rate is essentially zero but dR*/dto is not, as well as when a sample is
cooled below and reheated above the glass transition, the modification

of Eqs. (VI-7) to (VI-16) is necessary to obtain reliable results.

An alternative method of calculating the volume fraction crystallized
in a material with a known thermal history is to integrate the number of

nuclei and their volume over time

t
F () = %—nR(t,t0)3 I [T(e )] dt_ (VI-17)
0

where the finite size of the critical nucleus must in general be
considered.

In the work that follows, the volume fraction crystallized has been
calculated for several materials with thermal histories that include
quenching from the melt to a temperature below the glass transition
temperature and subsequent reheating until crystallization takes place.
This is a method used in many laboratory measurements of the glass~forming
ability of materials. Using differential thermal analysis (DTA) or

differential scanning calorimetry (DSC), the temperature at which a sample
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crystallizes Tcr is determined.

Hruby (27) has formulated a parameter

K = T (VI-18)
g E "cr

as a measure of glass-forming ability. Using Eqn. (VI-17), the variation
of Kgl with cooling rate, heating water and assumed nucleation barrier

can be determined.

To determine the crystallization temperature of sevefal materials,
Eqn. (VI-17) was integrated numerically. The growth rate and viscosity
for each material were determined in the same way as in Chapter IV. The
nucleation barrier was varied in the range suggested by the results of

Chapter V and by previous workers.

° -.02048B TE5

I =N Vexp:
v v (AT)2T3

where B = 40-85 which corresponds to a nucleation barrier of BkT at a

(VI-19)

relative undercooling of 0.2. At every step in the integration, the
crystallite sizes were compared with the critical nucleus size for that
temperature and any that were smaller than the critical sizes were no

longer included in calculations of the volume fraction crystallized.

When materials show significant crystallization over a range of
temperature, it is necessary tco take into account the effects of excluded
volume. Therefore, when the degree of crystallinity exceeded 10%, the
volume fraction crystallized was taken as:

t
F () = 1 - exp {- gﬂ R(t,t0)3 I [T(t )] de ) (VI-20)
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The temperature range during which the greatest amount of crystal-
lization took place was taken as the crystallization temperature. An
alternative approach is to take the temperature at which significant
crystallization first occurs as the crystallization temperature. In
comparing the calculations with actual DTA and DSC runs, both approaches
depend on the sensitivity and response time of the equipment. The latter

"significant crystallization'.

method also depends on the definition of
If the latent heat of fusion is known, it is possible to construct the
entire crystallization curve directly from the results of the calculations.
In the results that follow, only comparisons of the temperatures at the

beginning and endoferystallization and the temperature of maximum crystal-

lization rate are made.

Several DTA and DSC runs were made on a variety of materials to
compare the results of calculations with experimental data. Several lunar
materials, oxide glass formers and two simple organic glass formers were
studied. The ceramic samples were from the same melts as the samples
used in the crystal growth, viscosity and nucleation studies discussed in
Chapter IV and V. These samples had been quenched by being poured onto an
aluminum plate. Although this is often an effective test of glass—forming
ability, the actual cooling rate is not known. As will be shown, the
cooling rate can have a significant effect on the crystallization tem-
perature. These samples were heated at rates of 10 and 20 C min_l. Less

than 10 mg of sample were required for each run.

The organic materials, salol and o-terphenyl, were tested in a DSC

which had been cooled to about -30C before inserting the sample.
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This made it possible to melt the samples under controlled conditions so
their melting points could be checked to ensure that extensive degradation
had not taken place during storage. The melting temperatures were the

same as the published values. The samples were then held at a temperature
about 15C above the melting temperature to reduce the effect of hetero-
geneous nucleation. They were then cooled at a rate greater than 20 C min
to u#bouvt 15C below their glass transition temperature and reheated at rates

of 0.625 to 20 C min_l. These samples could be remelted and used again.
B. Results

The calculated values of Kgl for SiOz, GeO2 and salol are shown in

Fig. VI-1 for heating rate of 10_7 to 10--2 °sec—l. Most of this range of

heating rates is not experimentally practical, so the calculated values of
Kgl cannot be tested. As would be expected, SiO2 would crystallize only at

very low heating rates and GeO, would crystallize at somewhat higher

2
heating rates. If a material is heated at a rate which is too high, the
temperature of the material would reach the liquidus before appreciable
crystallinity could develop. Salol was melted well above its liquidus,
quenched in a liquid nitrogen cooled DSC and reheated at a rate of 0.01°/

sec. It did not crystallize. If the actual nucleation barrier for salol

ie 60 kT and AT/T, = 0.2, it should crystallize at about 285 K (Kglx 2.3).

That it did not indicate that the nucleation barrier is higher and it is a

better glass—-former than previously thought.

The crystallization temperature has been measured for three materials,
o-terphenyl, lunar composition 65016 and anorthite. The measured and

calculated crystallization temperatures for o-terphenyl are shown in
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Fig. VI-2 for heating rates of 0.625 to 20°/min (0.0l toO.33°/sec); The
agreement is very good. For o-terphenyl, 2 nucleation barrier of 50 kT at
a relative undercooling of 0.2 was assumed. For 65016 and anorthite the
DTA results could be matched by the calculations if the assumed nucleation
barriers were 73 and 85 kT respectively. Kgl for 65016 and anorthite are
shown in Fig. VI-3. The calculated and measured values for o-terphenyl are
shown in the same figure for comparison. Although o-terphenyl has a much
lower nucleation barrier than 65016 and anorthite, its Kgl value is much
greater than that of 65016 and anorthite at any given heating rate. It is

also more easily formed as a glass.

Lunar compositions 70019 and 79155 were also crystallized by DTA. They‘
were much poorer glass formers than predictéd by crystallization statis-
tics; that is, they crystallized at much lower temperatures. The viscosity-
temperature relation at low temperatures is not well known for these
materials. When calculating TTT and CT curves, the only relevant portion
of the temperature range is that between the melting point and the nose.
However when reheating from below Tg’ the nucleation frequency and growth
rate below the nose,both of which depend on the viscosity, can have a
significant effect on the crystallization temperature. If the cooling
rate is not fast enough, the volume fraction of crystgllites at Tg can
affect the measured crystallization temperature. The effect of cooling
rate on Kgl calculated for 70019 is shown in Fig. VI-4. It was found tha;
in general, the volume fractions crystallized less than 10-9 - lO_10 have
no effect on crystallization temperature, but larger volume fractions

crystallized decrease the crystallization temperature.
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Figure VI-3 - Measured and calculated Kgl vs. heating rate relation of

o-terphenyl, anorthite, and lunar compositions 65016,
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C. Discussion and Conclusions

Kgl is one parameter which can be easily measured and which gives an
indication of the glass—-forming behavior of a material. However its
value does not provide an absolute measure of glass forming ability.

Rather, the relative values of K . for a variety of materials gives an

gl
indication of their relative glass—-forming ability.

When using crystallization statistics to calculate Kgl for a material,
a variable that has a pronounced effect on the crystallization temperature
is the nucleation barrier. The effect of changing the estimated nucleation

barrier on K for anorthite is shown in Fig. VI-5. An early estimate

gl
(8) of the nucleation barrier was 50 kT at a relative undercooling of
0.2. The excellent agreement of the experimental data for anorthite with
that assuming a nucleation barrier of 85 kT emphasize the importance of
being able to predict accurately the nucleation barrier in materials.
Accor&ing to the analysis of the previous chapter, for anorthite a nucle-
ation barrier of 85 kT corresponds to a molar entropy of fusion of 6.7 R;
according to the cpnstant cooling curwe derived from the TTT curves for
homogeneous nucleation of Chapter IV, the critical cooling rate is
0.33°/sec. For lunar composition £5016, a 73 kT nucleaiion bharrier

indicates a molar entropy of fusion of 5.75 R and a critical cooling

rate of 0.25°/sec.

Hrubv suggested that Kg1 be used as an indication of the glass-
forming ability of a material. This is based on the assumption that the
thermal stability of a glass is directly proportional to the ease of its

formation. Hruby also assumed that at Tg all glasses are in comparable
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Figure VI-5 -~ Calculated Kgl values for anorthite as a function of

assumed nucleation barrier.
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states. From Fig. VI-4, it can be seen that this is not in general true

and that Kgl depends on the cooling rate as well as the heating rate.

CT curves and the critical cooling rate can be calculated from crystal-—
lization statistics as well as from isotherm TTT curves. A comparison of
the resultant curves is shown in Fig. VI-7 for lunar composition 67975.

The approximation suggested by Grange and Kiefer overestimates the degree
of crystallinity at the nose of the CT curve at a given cooling rate. They
ignore any crystallization which may take place below the nose of the CT
diagram, when actually, according to crystallization statistics some
crystallization takes place to temperatures well below the nose. The
temperature of the nose as calculated from the CT curve derive from the
TTT diagram agrees with that calculated from crystallization statistics,
the latter being defined as the temperature interval in which the change
in volume fraction crystallized is a maximum. However it is necessary to
cool to a lower temperature than the nose to avoid a given volume fraction
crystallized. The ratio of the volume fraction crystallized at the nose
to thét at the glass transition temperature is constant (about 0.62 for

67975) and does not depend on the cooling rate.

In toto, crystallization statistics is a powerful tool in deter-
mining the glass-forming ability of a material. Combined with the
experimental determination of the crystallization temperature it can be
used to estimate closely the nucleation barrier of a material. It can
also be used to check the reliability of other models in predicting
critical cooling rates. However, care must be taken to avoid the effects

of insufficient quenching and heterogeneous nucleation. Crystallization
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below the nose of CT curves must be taken into account if a given volume

fraction crystallized is to be avoided.

Hruby's parameter Kgl does not result in direct comparison of the
relative glass-forming ability of several materials. The method presented
in Chapter II which uses three experimental parameters (melting temperature,
glass transition temperature and heat of fusion) provides a more reliable
ranking of the glass-forwaing ability of materials. Therefore while Hruby's
approach could be used as a check of the applicability of other models,
it is necessary to calculate the critical cooling rate for glass formation

by more rigorous techniques.



103.

VII. THE THERMAL HISTORY OF IMPACT MELTS

This chapter reports the results of calculations thch quantify the
model proposed by Simonds (30) to describe the thermgl history of impact
melts. In particular it is applied to two impact sites, one lunar--The
Apollo 17 Station 6 Boulder--and one terrestrial--The Manicouagan Struc-
ture in Quebec. The thermal history is divided inﬁo two stages: (1) heat
transfer between z superheated silicate liquid and enclosed clasts; and
(2) heat transfer from the melt sheet to the surroundings. The two stages
are modeled separately because the dimensions of the heat flow problem
differ by a factor of over 100 and the relevant geometry of initially
hot and cold regions is different. Calculations of this form have broad
applicability to the cooling of other melts in which cold material is
picked by a hot liquid. It is implicit in the calculations that the hot
and cold materials are mixed very rapidly. While sizable thermal
gradients must exist in the melt immediately after its formation,
velocities of several km sec—1 are expected for the melt (86) which
presumably mix the liquid very well. The extreme chemical nomogeneity
of the Station 6 Boulder (30) and Manicouzjan (87) as well as other
impact melts (88-90) support the assumption of thorough mixing of the
liquid in times shortér than are required for thermal equilibratioﬁ and

crystallization.
A. The Model

The lateral dimensions of the melt sheet are assumed to be large

compared with its thickness, so the heat flow problem can be reduced to
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the one-dimensional heat flow equation:

2
9T 0 T
pC (T) == 2= (VII-1)
P ot TH BXZ

Here p is the density; Cp is the heat capacity, assumed a function of tem-

perature, T; t is the time; k is the thermal conductivity.

TH
Equation (VII-1) has been solved by replacing the differential

equation by its backward difference analog:

~ - +
: Toont1Tin . Tivn o1 ™?Ti,nt1 i1, 041
pC (T) =k )
p At TH (%)

(VII-2)

where n indicates a point in time where the solution is known and i
indicates a point in space. The appropriate boundary conditions were

applied and the solution found by the Thomas Tridiagonal method (91).

In this problem, the heat capacity—-—-and sometimes the boundary con-
ditions—-are functions of temperature, which makes the equation nonlinear.
The correct solution was approached by using the temperature at time n to
predict the coefficients at time nt+l. The procedure was iterated using
the predicted values for time ntl to calculate the solution at that time
again. This was repeated as many times as required; only 1 to 3 iter-
ations were needed for the short-time (first-stage) problem, while as
many as 5 were scmetimes used for the long-time (second-stage) problem.
The solution converged quickly? particularly when the change in tem-
perature or time interval was small. At very long times, the results
sometimes became unstable, resulting in severe oscillations about the
correct solution, particularly at the surface where the temperature was

changing quickly. This problem was corrected by averaging the results
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of previous iterations in calculating future iterations.

The latent heat of fusion was taken into comnsideration using the
assumption of Jaeger (39) that the latent heat (L) is liberated uniform-—
ly over the temperature range between the liquidus (TL) and the solidus

(TS), so the heat capacity in that range can be replaced by:

L
C'=C + 7777 (VII-3)
P P TL TS

The latent heat of fusion and heat capacity of the melt have been ap-

proximated by those of diopside 103 cal g_l and .251 + .265 x 10_4T
-.69 x lOl*T_2 cal g_l°K—l respectively (92).
. -3 -1 -1,,-1
The thermal conductivity was taken as 4 x 10 ~ cal em =~ sec °K 7,

a value typical for glass—forming silicate liquids at modest tempera-
tures. At high temperatures, radiative transport can make a significant
contribution to the heat flow in transparent materials. For iron~rich
materials, such as the boulder composition, their large optical absorp-
tion coefficients make the radiative contribution to kTH quite small,

at least up to temperatures of 1500°K. For this reason, a constant
value of the thermal conductivity was employed in all calculations

reported here.

The effects of a temperaturé dependent kTH have previously been
explored in the heat flow calculations of Hopper et al. (26) concerned

with other lunar melts.

1. Short-time (first-stage) problem
The short-time problem has been represented by a small region of

thickness X, consisting of a mixture of melt and randomly distributed
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clasts. It was assumed that there is no convection nor any heat flow

into or out of this small region, that is

% - 0at X =0, (VILl-4)

where Xl =l cm for the Station 6 boulder and Xl = 10cm for Manicouagan.
The initial temperature distribution is assumed to be bimodal, with

cold clasts all at one temperature and hot melt all at another tempera-
ture. In the lunar sample, the lack of lamellae or textures suggestive
of recrystallized feldspar glass suggests that the clasts still visible
were not exposed to shock pressures greater than 150 kbar. Such low
shock pressures are compatible with shock heating of clasts to tempera-
tures of no more than 200C (93). In the calculations for lunar and
terrestrial impact melts, all clasts were assumed to start at 100C. The
initial temperatures of impact melts are not known and the calculations
treat a broad range, from the liquidus to 2500C. Studies of Ries glasses
(94, 95) suggest several hundred degrees of superheat, and numerical

calculations (86) also support the suggestion that the melt is substantial-

ly superheated.

For the calculations of short-time cooling in the Station 6 boulder,
the 1.cm representative region was divided into 1000 ten micron units.
The clasts still visible in thin sections of the boulder range is size
down to about 50 um, beyond which recognition becomes difficult. As
will be discussed below, there are reasons to believe that preferential
digestion of small clasts may have taken place. Most of the clasts

visible ir thin sections range in size from 50 to 500 um. The clasts
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were assumed to have a log-normal size distribution with a median of
100 pym and a standard deviation of a factor of 4. This was done by using
computer—-generated random numbers, which determined if a clast would
exist at a point. 1If so, the particle size was chosen using a method
which relies on the central limit theorem (96) and generates numbers
in a normal distribution. The particle size was rounded to the nearest
10 ym and the requisite number of clast units were initiallized at the
starting clast temperature of 100C. The clasts could melt when the
temperature at a point exceeded the liquidus of the melt, 1310C and such

a point was then considered part of the melt.

This approximation of uniform clast melting underestimates the
fraction of cilaste digested, since in the natural situation some clasts
would melt at temperatures below the liquidus. The melting of clasts
in a melt is not a process of complete chemical equilibrium since sub-~
stantial time is required for the material digested to diffuse into the
melt, and as will be seen below, the process of clast-melt thermal
equilibrium is extremely rapid. In effect, many clasts are surrounded
by melts of essentially their own composition, greatly increasing the
effective melting point zbove the equilibrium temperature for the com-—

position of the melt.

In treating the first stage cooling of Manicouagan, it was assumed
that the melt sheet was a random mi%ture of clasts with a log-normal
size distribution and a median size of 1.0mm with a standard deviation
of a factor of 3. The 10 cm representative section was divided into

100 um units; the smallest clast taken as 100 uym and the largest asl.cm.
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Four types of clasts have been included in these calculations. Each type
was assigned a different liquidus and solidus. The clasts were assumed
to have the same density, heat capacity, thermal conductivity and
minerology as the melt sheet, for which the sequence of crystallization
is the following: Type 1, plagioc]ase'(first 25%, melting range = 1131-
1175 C); Type 2, plagioclase and pyroxene (heat 28%, melting range =
1082 - 1131C); Type 3, alkali feldspar and opaqués (36%; melting range =
1019-1082C) ; and type 4, alkali feldspar plus quartz (last 117, melting

range = 1000-1019C).

Calculations have also been carried out for systems with large
volume fractions of either high-melting or low-melting clasts; and the
results of these calculations are compared with those for the standard

distributions.

The melting properties as well as the clast size assigned to a clast
have been determined by independent random processes. There was taken
to be no correlation between clast size and clast type, although such a
correlation mighﬁ be useful in some applications. In some calculationms,
the random number sequence was initializea by the programmer only once
when the clast-and melt distributions were being determined. In other
sets of calculations, the sequence was initiallized at the same point
for successive calculations in order to explore the effect of various
initial temperatures on particular distributions of clast type and clast

size.

Because of the random nature of the process used to identify the

size and type of clast (if any) at a given point, as well as the modest
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population sampled, the detailed distributions of clast sizes and types
in a given calculation could differ significantly from the observed
distributions. To obtain a distribution of clast types which corresponds
closely to the observed volume fraction of clasts of different types and
has the desired total volume fraction of clasts, it was necessary to try
many sequences of random numbers. For example, the distribution of
clasts with total initial volume fraction of 0.235 was chosen from 200
calculated clast distributions having a nominal volume fraction of 0.20.
These distributions ranged in clast content from 0.05 to 0.35. The
sample chosen was the one which fit most closely the desired volume

fraction of clasts and the distribution of clast types.

it has been assumed that crystallization and melting take place in
a linear distribution between the overall liquidus (1175C) and the
solidus (1000C) of the melt. This is similar to the assumption used by
Simonds et al. (35). The liquidus (TLC) and solidus (TSC) of each type
of clast are determined such that

T - T
LC SC
V., =3 (VII-5)
fc TL TS

where VfC is the volume fraction of each type of clast assumed above.
The liquidus of one type of clast is taken as equal to the solidus of

the next most refractory type of clast.

Two criteria for the melting or partial melting of a clast were used:
(1) similar to the calculations for the Apollo 17 Station 6 Boulder, a
clast or part of a clast could melt when its temperature was greater

than its liquidus (not necessarily the same as the liquidus of the melt)
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and (2) similar to the simplified calculations of Simonds, a clast could
partially melt when its temperature is aﬁové its solidus but below its
liquidus. The temperatures to be nonsideréd when determining the extent
of clast digestion at a point are the highest temperatures attained at
that point at any time during the approach to equilibrium. They are not
necessarily the same as the final equilibrium temperature. The extent of
partial clast melting due to raising the temperature above the solidus is
added to that due to complete m;lting due to raising the temperature
above the liquidus. This approach could slightly overestimate the extent
of clast digestion depending on the kinetics of melting of a par#icular
type of clast. On the other hand, Simonds model would underestimate the
degree of clast digestion because it‘ignores any melting which may take
place during the approach to equilibfium. A quantitative comparison of
the effect on fractional clast digestion of several approaches to this

problem will be made.

The calculations were used to provide information about the rate of
cooling due to the included clasts, the maximum temperature to which a
clast is raised and the fraction of‘clasts which remain when the uniform
temperature is reached--all as a function of the suﬁerheat and the

initial volume fraction of clasts in the melt.
2. Long-time (second-stage) problem

The setting of the melt sheet from which the Apollo 17 Station 6
boulder was derived is poorly known and the calculations of heat flow
from the melt sheet to the surroundings are largely intended to show

the effect of varying the boundary conditions rather than precisely
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determining the cooling history of this boulder.

The melt sheet was assumed to be 10 m thick and the initial tem-
perature was taken as 1500 K, a representaﬁive value for the uniform
temperature at the end of first-stage cooling that is below the liquidus
temperature to account for the preservation of observed clasts in the

melt.

The country rock beneath the melt sheet was taken as cold (initially
273°K) material with the same thermal properties as the melt sheet. In
all caseé, the lower boﬁndary condition was the same: at 30 m below the
iower edge of the melt, the temperéture was taken as constant at 273°K for
all times. For the range of times covered by the calculations, the use
of this condition with a cﬁld region 30 m in thickness is equivalent to

an infinite body below the cooling melt sheet.

The melt sheet: from which the boulder is derived is now covered with
more than a kilometer of debris. Itis mot known, however, how much of this
material covered the sheet at the time of emplacement. Three different
types of boundary conditions above the melt sheet were therefore con-
sidered in the calculations:

(1) The melt sheet is covered with a cold blanket identical to the
insulating layer (30 m thick) beneath it. Since the melt sheet and
surroundings are symmetrical about the center of the sheet for this case,
the heat flow problem was solved for only one half of its thickness. If
Y is the thickness of the slab (10m) and X = 0 is the center of the melt

sheet, the boundary conditions are:
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gzsg§£l-= 0; i.e., no heat flow across the center
of the sheet (Vii-6a)
T(3.5Y,t) = 273°K (VII-6b)

For the time scale covered by the calculations, this boundary con-
dition is equivalent to a very thick layer of debris on top of the melt
sheet.

(2) The melt sheet represents a surface flow with no insulating
layer above it. The melt then cools by conduction into the cold region
below and by radiation into space on tép. If X = 0 is the top surface

of the melt, the boundary conditions for this case are:

T(4Y,t) = 273°K (VII-7a)
dT(0,t) 4 . '
gAYt/ _ -

kTH 5X ceT (0,t) (VII-7b)

Here € is the emissivity of the melt (assumed to be 0.85) and o is the

Stephan-Boltzman constant.

(3) There is a thin, cold (initially 273°K) insulating layer on
top of the melt sheet, such as would be expected if debris from the
impact event immeciately fell on top of the melt sheet. If X = O is the
top surface of the insulating layer above the melt sheet, Y is the
thickness of the melt sheet, and Z is thickness of the upper insulating

layer, the boundary conditions for this case are:

T(Z + 4Y,t) = 273°K (VII-8a)
aT (0, t

Upper insulating blankets of 1 and 5 m were used to explore this

boundary condition. These are thin enough that conduction through them
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and radiation from the top surface into space is appreciable.

.For Manicouagan, only one type of boundary condition was considered.
The melt sheet was assumed to be 200 m thick with a 600 m insulating
layer initially at 273 K below it and an identical cold blanket above it.
It was assumed that at 600 m from the edge of the melt the temperature is
constant. This is the same as for the first type of boundary condition
considered for the lunar example. The boundary conditions were
eqn. (VII-6) with Y = 200 m. The initial melt temperature was taken
as 1500 K, which is above the liquidus of the melt. Besides a uniform
temperature in the melt,aninitial gradient from 1400 K at the melt sheet-
basement interface to 1600 K at the melt sheet—cold blanket interface was
considered. 1In other calculations, the effect of a "warm'" (400 C)
blanket was also investigated. 1In both cases, the results were not

significantly different from those presented here.

Boundary conditions which included radiation at the surface, either
with or without an insulating blanket, were applied; but this resulted
in instabilities in the solution to the heat flow equation. (The
large time intervals in the solution of the difference equation required
to cool the bulk were not compatible with the high cooling rate at the

surface due to radiation.)

The calculations for second-stage cooling were used to provide
information about the cooling rates at different temperatures and various
locations in the melt sheet, as well as the time required for various

parts of the sheet to cool to selected temperatures of interest.
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B. Results

1. First-stage cooling

Over much of the temperature range covered by first-stage cooling,
the average temperature of the melt-clast mixture is found to vary
approximately logarithmically with time. An example of this behavior for
Manicouagan with Vinitial = 0.41 and Tinitial = 1600C is shown in Fig.
VII-1. The average temperature of the melt decreases by more than
400 C in ten seconds. Thereafter, the cooling rate decreases substantial-
ly. After about 500 seconds, the average temperature of the melt has
essentially reached its final value. The melt-clast mixture is, however,
far from equilibrium, with the temperature in the mixture ranging over

some 100 C. Final thermal equilibrium for the first-stage cooling of

Manicouagan is reached only after 6000 to 10,000 seconds.

The initial cooling in the Station 6 Boulder is much faster due to
the presence of very small clasts. In a typical case, the change in
average melt temperature reaches 907 of its final value within about
1 sec, which marks the end of logarithmic cooling. Thereafter, the
cooling rate decreases considerably; and final thermal equilibrium occurs

after about 100 sec.

The rapid, approximately logarithmic, initial decrease in tem-
perature is associated with heat flow to local sinks (the clasts), and
the time scale is determined by the sizes of the clasts and the dis-
tances between them, and hence by the spatial distribution of clasts
in the melt. The time for final thermal equilibrium is independent of

the initial volume fraction of clasts and of the initial temperature of
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the melt, but does depend upon the spatial distribution of clasts in the
melt. The time for final equilibration should increase as the square of

the scale of the thermal inhomogeneity.

As shown in Fig. VII-2 in more detail, increasing the volume fraction
of clasts initially present decreases the mean temperature of the melt
at any time. It does not, however, change the time necessary for the
melt to reach its final mean temperature. At a given volume fraction of
clasts, decreasing the avérage clast size will decrease the average
melt temperature at short times, and will decrease the time to reach the
final mean temperature. Not only does the mean temperature of the melt
decrease more rapidly with the presence of many small clasts, but also
the temperature range in the melt-clast mixture is also reduced more
rapidly. As would be expected, the smaller clasts melt much sooner

than large clasts.

The final volume fraction of clasts in the melt (after the first-
stage cooling of the Station 6 Boulder is complete) varies with the
initial melt temperature and initial fraction of clasts as shown in
Fig. VII-3. 1In this case it was assumed that all clasts are of the same
type and they melt only when the liquidus of the melt is reached. The
final clast content is a function of three parameters: the initial melt
temperature, the initial volume firaction of clasts, and the distribution
of clast sizes. As shown in the figure, regions can be defined where

various final clast contents are expected.

The detailed locations of these regions depend on the average size

and distribution of sizes of the clasts initially present in the melt.
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For example, if the melt is initially superheated by as little as 200°C,
small isolated clasts will melt (see Fig. VII-4). 1If, however, a small
clast is located near a large clast, it will not melt unless the super-
heat of the melt is sufficient that the large clast also starts to melt.
Some isolated clasts, even if they do not melt, are often raised to
quite high temperatures. During first-stage cooling, the average clast
size generally increases. Although the clasts do not grow, the small
ones disappear completely while the larger ones become only slightly

smaller by partial melting.

An examination of the extent of clast digestion predicted for
Manicouagan yields similar results. Many clasts are partially melted at
the end of first-stage cooling because their edges are raised to tem-
peratures above the liquidus. Small isolated clasts, even of the most
refractory type, tend to be digested. Those located near large clasts
are preserved as long as the large ciasts are not raised to a tem-
perature such that the small clasts can melt. This preferential melting
of small clasts again results in an increase in the average clast size.
Considering only clasts that have melted completely due to being raised
to a temperature greater than their liquidus, this effect may be

illustrated by the following results.

For a melt with an initial temperature of 1400C, a mixture containing
41% clasts with a mean initial size of 154 um becomes after equilibration
a mixture of 30% clasts with a mean size of 180 um. At the higher initial
temperature there is more digestion of large clasts than at the lower

temperature, and hence the increase in mean clast size is smaller.
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Figure VII-4 - Temperature vs. distance in a representative 1 cm section in
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melt-clast system. Initial volume fraction of clasts = 0.21. Final volume
of clasts = 0.19. 1Initial temperature = 1773 K. Equilibrium temperature

= 1518 K. Times: 0.0 secy ——- 0.07 sec; — —— 0.6 sec; — - 5.0

sec; 30 sec.
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Table VII-1 shows fcr Manicouagan, the extent of clast digestion
due to (A) only heating above the liquidus of the clast; and (B) heating
above the liquidus of the clasts plus partial melting due to heating
above the solidus. The initial melt temperature was taken as 1300C. The
calculations for an initial volume fraction of clasts of 0.235 shown in
Table VII-1 assumed a distribution of clast types as follows: type 1 -
17%; type 2 - 30%; type 3 - 40%; and type 4 - 13%. Further calculations
with an initial melt temperature of 1300C and an initial clast content of
0.243 were carried out with a high proportion of refractory clasts (type
1 - 49%; type 2 - 42.8%; type 3 - 3.7%; and type 4 - 4.5%) with the same
melting ranges as assumed previously. In this case, the equilibration
temperature is 1102 C or 14C higher than in the case with a more even
distribution of clast types. The volume fraction of clasts remaining
after melting due to clasts being raised above their liquidus is 0.217
or 3 times that shown in Table VII-1. After melting due to clasts being
raised to a temperature between their liquidus and solidus, the volume

fraction remaining was 0.154 or more than twice that in Table VII-1.

If the proportions of clast types are inverted (type 1 - 4.5%3
type 2 - 3.7%; type 3 - 42.8%; and type 4 - 49%) to consider a high pro-
portion of low melting clasts, the equilibration temperature is reduced
to 1072 C and the volume fractions of clasts remaining after the two types
of melting are 0.03 and 0.01. Thus a high proportion of low-melting
clasts results in more melting of clasts, thereby absorbing more heat

from the melt and lowering the equilibration temperature.



VInitial

Clast Digestion in Manicouagan

Table VII-1

0.235

D.409

0.608

0.074
0.074
0.0
0.0
0.328
0.30
0.185
0.126
0.599
0.55
0.543
0.54

0.369

Vfinal

B

0.072

0.038

0.0

0.296

0.257

0015

0‘085

0.57

0.54

0.529

0.49

0.222
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Tinitial Tfinal

(°C) (°C)
1300 1088
1400 1110
1500 1171
1600 1217
1300 1023
1400 1040
1600 1083
1800 1105
1400 826
1600 903
1700 952
1800 1009
2000 1074
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2. Second Stage Cooling:

Table VII-2 shows the effect of different boundary conditions on the
cooling of a 10 m thick slab from an initial temperature of 1500K. The
cooling rate is seen to be a complicated function of time, location, and
boundary conditions. For example, Fig. VII-5 shows the temperature as
a function of time for various locations in the melt for the case when
the melt sheet is covered by a 1lm cold blanket. Fig. VII-6 shows the
temperature as a function of position in the melt sheet for the three

boundary conditions treated.

There is significant heating of the insulating layer beneath the
melt sheet, but the assumption that the insulating layer is 3 times the
thickness of the melt sheet or 30 m thick is reasonable: the character-

istic distance for heat flow in lO8 sec is approximately
1/2 _
X x(DTHt) = 6.3m (VII--5)

Therefore a 30m insulating layer has the same effect as an infinitely

thick insulating layer.

The temperature of 1300°K was chosen for particular attention, since
it approximates the temperature at the end of crystallization. At lower
temperatures, grain growth and solid state phase changes can still
contribute to changes in morphology. Considering as a group all three
sets of boundary conditions on the 10 m melt sheet, crystallization
should be complete throughout the sheet in 0.6-1.1 yr. The top surface
of the melt sheet crystallizes in 1.9-2.6 days, save in the case of
radiation directly from the top of the sheet, where the surface crystal-

lizes in only 24 min. The presence of only 1 mof insulating material
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Figure VII-6 - Temperature profiles through a 10 m melt sheet for 3 sets of
boundary conditions at times of 105, 107, and 108 sec

In all cases, a 30 m
cold basement is taken below the melt;

= 30 m cold blanket above sheet;

—— —— = 1 m cold blanket above sheet and radiation from top surface of
blanket; -—— =

radiation directly from top surface of melt.




Table VII-2

Cooling of 10 m Sheet from 1500°K

126,

Instantaneous Time to cool to
Temperature Location cooling rate temperature
" (a) Insulated on both sides
1300°K Center 1.0°K day_l 1.1 year
Edge 78.5°K day © 2.0 days
1200°K Center 0.73°K day'l 1.4 year
Edge 33.8°K day—l 4.2 days
1100°K Center 0.57°K day—l 1.9 year
Edge 6.0°K day_l 10.6 days
1000°K Center 0.38°K day"; 2.5 year
Edge 0.18°K day-l 0.95 year
900°K Center 0.13°K day—l 3.5 year
Edge 0.19°K day—l 2.4 year
(b) Radiation from top of melt
1300°K Top 0.14°K sec:_l 24 min.
Center 1.57°K day_1 0.63 year
1200°K Top 0.13°K sec T 38 min.
Center 1.8°K day_l 0.76 year
1100°K Top 0.09°K sec 53 min.
Center 1.8°K day_l .92 year
1000°K Top 0.07°K sec t 72 min.
Center 1.3°K day'_l 1.1 year
900°K Top 0.04°K sec™t 105 min.
Center 0.96°K day-l 1.4 year
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Table VII-2 (Cont'd)

Instantaneous Time to cool to
Temperature Location cooling rate temperature

(¢) 1 m cold blanket on top, radiation from its surface

1300°K Top 67.1°K day 2.4 days
Center 1.8°K day_l 0.70 year
1200°K Top 40.0°K day_l 4.5 days
Center 1.8°K day_l 0.86 year
1100°K Top 9.8°K day-—l 11 days
Center 1.3°K day_l 1.0 year
1000°K Top 5.3°K day”l 27 days
Center 1.3°K day—l 1.3 year
900°K Top 3.6°K day_1 49 days
Center 1.0°K day—l 1.5 year

(d) 5 m cold blanket on top, radiation from its surface

1300°K Top 67.0°K day * 2.9 days
Center 1.0°K day_l 0.92 year
1200°K Top 26.7°K day-l 4.7 days
Center 1.1°K day_l 1.1 year
1100°K Top 2.9°K day“l 17 days
Center 0.83°K day“l 1.5 year
1000°K Top 0.31°K day * 0.51 year
Center 0.67°K day-_l 1.8 year
900°K Top 0.50°K day“1 1.2 year

Center 0.30°K day 2.3 year
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on top of the melt sheet is enough to slow the coocling rates to a range
similar to those expected for a thick insulating blanket on top. TFor all
three sets of boundary conditions, the cooling rates near the bottom of

the melt sheet are closely similar.

Table VII-3 shows the time required for various positions in a 200m.
thick melt sheet such as Manicouagan to cool from 1500 K to several lower
temperatures. There is significant heating of the insulating layer
surrounding the melt sheet; the characteristic distance for heat flow in
3200 years is approximately 200 m. Crystallization should be complete
throughout the sheet in about 1600 years. The outer 3.5 m. should

crvstallize in about 6.6 vears.

C. Discussion

1. First-Stage Cooling:

A model has been proposed to describe the thermal history of impact
melts such as the Apollo 17 Station 6 Boulder and Manicouagan. The
sheets are described as a complex silicate melts mixed with cold clasﬁs.
The clasts very quickly absorb heat from the melt. The short times
required for the melt-clast mixture to reach a uniform temperature
suggest that division of the cooling process into two separate stages,

with quite different characteristic times, is highly realistic.

According to the results of Carslaw and Jaeger (36) the time for
thermal equilibration of a melt-particle system increases somewhat as
the volume fraction of particles decreases. In contrast, the present

results indicate an equilibration time which varies only slightly if at
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Table VII-3

Time Required to Cool to Various Temperatures
for 200 M ielt Sheet

Jaeger
K = 0.004 cmzsec—l K = 0.004 cmzsec—l

T (°C) p?E(T) pCp =1 cal cm'_3°K_l pqp = 1 cal cm_3°K_l
A. at 10.5 m. from boundary

1027 35 years 17 years 18 years

927 86 years 32 years 34 years

827 350 years 85 years 70 years

727 2200 years 320 years 320 years

627 3900 years 1800 years 1600 years
B. at center of melt sheet

1027 1600 years 950 years 82 years

927 2100 years 1400 years 1200 years

827 2750 years ‘ 1900 years 1650 years

727 3800 years 2700 years 2300 years

627 5300 years 3900 years | 3300 years
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all with volume fraction of clasts. The difference between the two
results is associated with the random distribution of clasts of various
sizes used here vs. a single particle in a melt of various heat capacities

(in various amounts of melt).

For a given volume fraction of melt, Carslaw and Jaeger (36)

found the time for thermal equilibration increases as the square of the
barticle diameter. A similar result was found in the present work, when
mean particle sizes are compared (for similar distributions of sizes);
The times required for the melt temperature to reach 907 of its final
value are shorter by a factor of 3-10 for the Carslaw and Jaeger treat-
ment than for the present results. This difference is likely associated
in large part with the assumption of an infinite thermal conductivity
used previously vs. the finite value used here, and also with the use of
spherical geometry in the previous calculations vs. the one-dimensional

model used here.

Essential to the present results is the assumption that the 1 cm
region of the melt containing small clasts can be taken as representative
of the melt-clast mixture as a whole. This assumption should be valid
provided the cooling behavior is not dominated by a few large clasts
which fall beyond the distribution used in the calculations--and even
in that case, the effects of the large clasts should be most pronounced
in the final portion of.firét;stage cooling (as the uniform temperature
is aﬁproached), and should be rather minimal in the initial portion of

most rapid temperature drop (logarithmic cooling).



13L

Comparing the results presented here with those of the simplified
model suggested by Simonds et al. (35) indicate several notable differ-
ences (Fig. VII-7). The previous work assumed a linear relation between
the equilibrium temperature and the fraction of clasts melted, and also
assumed that all clast digestion takes place after equilibration. At
an equilibrium temperature which is at a given fraction of the difference
between the liquidus and the solidus of the melt, the model which
ircludes only melting due to clasts being raised above the liquidus of
the melt indicates a lesser degree of clast digestion than SimondsY
model; that model, in turn, indicates less clast digestion than the model
which includes four types of clasts with discrete melting points. Wher
the equilibrium temperature is below the solidus of the melt, Simonds'
model indicates no clast digestion but the other models indicate that
some clast digestion is possible. If partial melting due to temperatures
above the solidus is taken into account, the difference between the
Manicouagan model presented here and the other two models is even greater.
This difference results from clasts, particularly isolated clasts,
reaching temperatures considerably above the equilibrium temperature and
melting. Chemical equilibrium may not be achieved in the short equili-
brium times, but at least partial melting and perhaps zoning should be

evident.

A weak tendency for clast size to increase with decreasing volume
fraction of clasts and increased fraction of refractory plagioclase is
observed in Manicouagan by Simonds et al. (97), in accord with the pre-

dictions of these calculations.



132.

T 1 T I T I T | T
.2 —
A
A
A A ]
s ]
A,
..'0. 4 A ‘A_
Refractory clasts-—7"
— A a A4
& 04 \ u*j
'_‘ 2 "Low melting clasts A
E 02 1 —~
P
= Type 1 s
¢ It N
a3 “
~ -0.2} —
-04+ —
-0.6 —
-0.8}- —
-1.O | | | | | | | ! )

O Ol 02 03 04 05 06 07 08 09 10
Final clasts / Initial clasts

Figure VII-7 - Equilibrium temperature as a function of fractional clast
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!
The equilibrium temperature determined by Simonds' (35) method of

energy balance between clasts and melt is similar to that determined
by the method presented here for Manicouagan, although the calculations
of Simonds showed overestimate temperatures by about 10C because of the

underestimate of melting.

The model presented here for the Station 6 Boulder underestimates
the extent of clast digestion, which should be much more reliably rep-
resented by the model for’Ménicouagan. If anything, the latter results
will overestimate the extent of clast digestion in systems where the
process of digestion is limited by mass transport rather than by heat
flow. In most systems of interest, however, the long times required for
final temperature equilibration suggest that the Manicouagan model should
provide useful estimates of clast digestion even in kinetically-sluggish
systems. In systems with small clasts, such as the Station 6 Boulder,
the time to reach thermal equilibrium will be smalier, but then the
melting of small clasts would not have the kinetic problems associated

with the melting of large clasts.
2. Second State Cooling

According to Jaeger (39), near the boundaries between the melt and
the insulating layers, the distance of an isotherm from the boundary is

1/2

proportional to t . Hence the mean cooling rate at a given temperature,

defined as the temperature range through which a point cools divided by
-2

the time it takes to cool through this range, is proportional to Y ,

where Y is the distance from the boundary. The solutions determined in

this paper for the doubly insulated melt sheet show this dependence only
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over a limited range of temperature and distances from the boundary. At
1023C, for example, departures from the Y_2 dependence are seen for
distances from the p boundary greater than about 2.5 m for the 10 m melt

sheet and 50 m for the 200 m melt sheet (Fig. VII-8).

Such departures from the Y_2 dependence are expected whenever the
finite extent of the cooling body becomes significant (the Ym2 dependence
is strictly valid only for a body which is large relative to the scale of
thérmal diffusion). In the present case, the temperature of the center of
the melt sheet departs from the initial temperature only when the 1627C
isotherm is zbout 2.5 m from the boundary of a 10 m slab and 50 m from
the boundary of a 200 m slab. At greater distances from the boundary,
the time required to cool to 1027C is smaller than predicted by the Y2
dependence. As shown in Fig. VII-8 the location of the 927C and 827C
isotherms also follows the Y2 dependence to some distance from the bound-
ary. In a 200 m thick melt sheet the 927C isotherm follows the Y2
dependence to about 35 wu from the edge and the 827 C isotherm follows the
y2 dependence to about 15 m from the edge. Thé 727 C and 627 C isotherms

do not follow this dependence even for short times.

The instantaneous cooling rate at 1027 K, i.e., the rate at which a
particular location in the melt cools through a given temperature--is
found to be proportional to Y_z, at least for the region in which the
finite extant of the melt sheet is not important. Jaeger (39) did not
consider this cooling rate. In the region where the finite extent of
the melt sheet is important, the instantaneous cooling rate in our cal-

culations remained approximately constant through the range of 1027C. As
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cooling proceeds, the differences in cooling rate at different locations
decrease until at 627 C the instantaneous cooling rate varies by only a
factor of about 2 over the entire melt sheet.‘ For example, in a 200 cm
thick melt sheet at 1027C the instantaneous cooling rate 3.5 m from the
edge is 0.45°/sec while that at locations greater than 60 m from the edge
is about 3 x 10-3°C/sec. At 627C, the instantaneous cooling rate 3.5 m
from the edge is 3.4 x 10-4°C/sec while that at distanceé greater than
45 m from the edge is about 7.5 x 10r4°C/sec. Since the melt sheet has
been divided into finite incfements in order to solve the heat fiow
equation, the solution at 3.5 m from the e&ge is the closest possible to

that at the interface.

To evaluate the effects of latent heat and to compare different
methods of analysis, the heat flqw calculations for the second stage
cooling of Manicouagan were done both with and without consideration of
the temperature dependence of the heat capacity and latent heat. In Table
VII-3, these results are compared with the analytical treatment of Jaeger
(39) assuming a constant heat capacity such that pCp = 1 cal cm-3K—l.

At short times, when latent heat is ignored the present numerical cal-
culations agree very well with the analyticél solution of Jaegér. The
temperature at the interface drops immediately to (T0+Tm)/2 or 613 C and
remains there for about 32 years, when the center of the melt starts to
cool. The temperature of the surroundings never goes above this tem-
perature. When latent heat is included, however, the country rock at

3.5 m from the edge of the melt sheet is raised to a maximum temperature

of 700 C in about 136C years. Including the latent heat in an effective
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heat capacity in the melting range reduces the thgrmal diffusivity from
about 0.0048 to about 0.0018 cmzsec_l (Cpx 0.19 cal gm—lK_l). This resﬁlts
in an increase in the time required to cool to a given temperature com-
pared to that required when latent heat is not included. When the center
of the melt sheet starts to cool the analyfical results of Jaeger do not
agree well with the present numerical results obtained using a constant
heat capacity. This difference is associated with the finite nature of the
melt sheet considered in the present work relative to the infinite sheet

described in Jaeger's analytical work.

The calculations of heat flow in Manicouagan were done with only one
set of boundary conditions. However, the results for the lunar case show
the importance of the boundary conditions on the time required to cool to
a given temperature (Table VII-2). A melt sheet which is allowed to cool
by radiation cools much faster than a well-insulated melt sheet, particular-

ly at the upper surface.

Provost and Bottinga (40) derived an expression for the velocity at

which the upper crust (near the radiating boundary) grows:

Lay 08 opye (VII-9)

where Y is the thickness of the upper crust (the distance from the upper

boundary). This expression is in close agreement with the present results

for cooling through the range of 1023 C for the case of radiation from the
0.52

top surface of the melt. In the present work, it was found that Y = t

for the top 4 m of the melt sheet.
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Correspondingly, the time required for cooling to 1023C for locations

Y1.92. These numerical results for cooling

1/2

with a radiation boundary condition are close to the t and Y2 depend-

within the top 4 m varies as

ences expected for the doubly-insulated case when the finite extent of the
melt is not significant. In the present case, with radiation from the

top surface, the finite extent of the melt is apparent when the 1023 C
isotherm is about 2 m from the top surface; yet the to'52 and Yl'92
dependences continue to be followed to a distance from the surface of 4 m.
At distances greater than 4 m from the surface, the time to cool to 1023 C
increases less rapidly than predicted by the Y2 dependence. The point
which takes the largest time to reach 1023 C(0.63 year) is located about

6 m from the surface. With greater distances from the surface, the time
to cool to 1023 C decreases and approaches values similar to those

obtained for the doubly-insulated case as the lower boundary (with the

basement layer) is approached.

For the case of radiation from the top surface of the melt, the
instantaneous cooling rate at 1023 C is very high near that surface
(see Table VII-1), and decreases rapidly with distance into the melt until
at the center it is nearly 4 orders of magnitude lower than at the top
surface. The cooling rate continues to decrease with distance from the
top surface until a minimum of 1°C day_l reached at 7.5 m from the surface.
Then it increases again to rates similar to those calculated for the

doubly-insulated case [case (1)] due to cooling to the basement.

At 623 C, by which temperature most transformations have ceased,

cooling continues very much in the same manner as at 1023 C. The surface
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cools quite quickly (0.C4°K sec_1 at 623C) compared with the center of
the melt (where it is about 0.96°K day-—l at 623C). The Y.-2 dependence
of instantaneous cooling rate on distance from the surface holds to 2.5
m from the surface. Then it is approximately constant at about 1°C day_l

to about 6 m from the surface, beyond which it decreases further to about

0.48°K day-l at the lower boundary.

The time required to cool to 900°K varies with distance from the
surfaces in the same way (following the Y2 dependence) as the time
required to reach 1023C. At 623C, this relation holds to about 3 m from
the surface. Thereafter, as before, the cooling times are smaller than
predicted by the Y2 relation. This type of cooling causes the tempera-
ture maximum to shift toward the lower boundary with longer times and
lower temperatures. A maximum of 623C occurs at about 7.5 m from the
upper surface in about 1.5 years. The cooling behavior with a radiation
boundary condition on the top surface of the melt is thus quite dif-
ferent from that for the doubly-insulated case. In the latter case, the
cooling rate at 623C and the total time required to reach 623C are not
strongly dependent on position in the melt sheet; whereas for the
radiation boundary condition, significant variations in cooling rate and

time to cool are still observed at 623C.

As shown in Fig. VII-6, when there is a 1 m thick insulating layer
on top of the melt sheet, the temperature distribution at short times
(lO5 sec) coincides with that for a melt sheet with thick insulation on
both sides. At intermediate times (107 sec), the temperature distribution

near the top surface is intermediate between the former case and that
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with no insulating layer on top. At depths greater than half the thick-
ness of the melt sheet below the upper boundary, all three cases have the
same temperature profile. At long times (lO8 sec), the case with a thin
insulating layer is similar to that with no insulating layer and the

temperature maximum has shifted to the lower boundary.

D. Conclusions

The following conclusions may be drawn from the calculations of the
present study:

(1) The cooling behavior of a clast-laden melt can usefully be
modeled in terms of two distinct stages, the first involving heat flow
from hot melt to cold clasts and the second involving heat flow from the
melt to its surroundings.

(2) The thermal equilibration of a hot melt-cold clast system takes
place quite rapidly, with equilibration times in the range of 100 sec
being typical for clasts having the size distribution typical of a lunar
s0il (median size of 0.1 mm).

(3) During the initial portion of first-stage cooling, the average
temperature of the melt-clast system decreases approximately logarith-
mically with time. At the end of this period of logarithmic cooling,
the temperature has decreased by some 907% of the difference between the
initial temperature and the final temperature, in a time which is short
relative to the final equilibrium time.

(4) The time of equilibration of the melt-clast system increases as

the square of the spacial heterogeneities.
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(5) During equilibration of the melt-clast system, there is a

preferential digestion of small clasts in the melt. This results in an
increase in the mean clast size.

(6) During first-stage cooling, the heat flow process is determined
not only by the volume fraction of clasts, but also by their spatial
distribution. Small clasts located near large clasts are protected from
digestion in the melt, save when the large clasts also start to melt.

(7) Second-stage cooling, which involves heat flow from the melt to
the surroundings, takes place on a time scale which is typically larger
by orders of magnitude than the time of thermal equilibration in first-
stage cooling. This provides support for the division of the thermal
problem into two separate problems.

(8) At short times of cooling the cooling behavior ior 10 m sheets
with a 1 or 5 m insulating layer above the melt sheet is similar to that
for a sheet with an infinite insulating layer, while at long times the
behavior with a thin insulating layer is similar to that with radiation
directly from the top surface of the melt.

(9) For bodies in the size range of 10 m and initial temperature of
1500°K, the boundary condition of radiation from the top of the melt
results in faster cooling than the condition of conduction to another
body.

(10) For the case with radiation from the top surface of the melt,
the time to cool to a given temperature increases approximately as the
square of the distance from the top surface, even beyond the point where

the finite extent of the melt sheet has become significant.
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(11) For models with thick insulation both above ard below the melt
sheet, the time to cool to a given temperature increases as the square
of the distance from the boundaries of the melt sheet--but only for a
sufficiently limited range of temperature and distance from the boundary
that the finite extent of the melt sheet is not significant.

(12) When greater ranges of temperature and time are considered, the
time to cool to a given temperature increases less rapidly with distance

from the boundary than the distance predicted for an infinite body.
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VIII. COULING RATES OF ROCKS

Knowledge of the cooling rates of rocks can have both geologic and
selenologic significance. Estimated cooling rates cah be uséd to estimate
the size of the parent body of a lunar rock or meteorite and the mechanism
of its formation, whether it was a lava flow, impact melt, or common
igneous rock. Differences in the texture, morphology and chemistry of
rocks with similar bulk compositions can be attributed to differences in
thermal history. In some cases, the cooling history of a rock can be
éimulated in the laboratory to compare the crystallization sequence and
chemistr§ of slowly cooled and rapidly cooled rocks (41, 98, 99). When
the cooling rate is very slow and simulation experiments are not feasible,
there may not be any morphological differences which can be used to
determine the relative and absolute cooling rates of rocks. Yet other
differences do exist among rocks of varying cooling rates. The signifi-
cance of these differences must be evaluated and techniques must be found
to determine quantitatively the effect of thermal history on properties.

Two such techniques will be presented here.

A, The Non-Isothermal Partitioning of a Solute in a Finite Couple

The partitioning of a solute bet&een two phases or grains in a rock
is a useful indicator of the thermal history of that rock. The calculation
of diffusion profiles in a finite couple is necessary to correlate
measured concentration profiles and estimated cooling rates. The'infinite
nonisothermal problem (100) and the finite isothermal problem (101) have
been solved, but in geologicél systems, the situation which most closely

describes the temperature dependent partitioning between two phases in a
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polycrystalline body is the nonisothermal finite problem.

1. The Model

Taylor et al. (102) have shown that partitioning is a function of
temperature only, and is relatively constant for a given lunar sample.
This is to be expected when (1) the activity coefficients are constant
over the composition range encountered; (2) the concentration of solute
in each phase is less than the solubility limit; and (3) the phase
relations are not significantly affected by the solute over the compo-
sition ranges. The partition coefficient for Zr in ilmenite (FeTiO3) and

ulvospinel (FezTiOA) is

(@]

K(T) = Fl- = 23.9 exp (- 3—%@) (VIII-1)
Cy

 where 1 and 2.are the phases.

In the present work, it was assumed that this relation holds at the
inte?face (X = 0) at all times. It was also assumed that the cooling rate
is constant, although any dependence of temperature on time could be used.

In this case

T =T -at - , (VIII-2)

Several cooling rates, a, were used and the resultant values of Cl/CZ

determined.

This involves the solution of two simuitaneous differential equations.
The equation to be solved is the one-dimensional diffusion equation in
each phase, with the diffusion coefficient a function of temperature and

therefore time. That is:
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aCl(x,t) 82Cl(x,t)
T " Dl[T(t)] — (VIII-3)
ox
2,
3C, (x,t) 97C, (x,1)
- = DZ[T(C)] __;;;-——- (VIII-4)

It was assumed that the diffusion coefficient is not a function of solute
concentration. These equations cannot be solved analytically because

of the concentration dependence of the boundary condition.at x = 0. The
diffusion coefficient of Zr in coexisting ilmenite and ulvospinel has been

estimated to be (44)

4
D(T) = 1.6 x 10 > exp (- g4l‘¥—!£L0 (VIII-5)

It is difficult to separate the diffusivities in the two phases because
the reaction will be controlled by the smaller diffusivity (103). Since
the diffusion data for zirconium in each of the phases is not known, the'
effect of different diffusivities was investigated by assuming that
either (1) the unknown diffusivity is factor of 10 greater than this

experimental value, or (2) it is the same.

The effect of the solute distribution at high temperatures on the
value of Cl/C2 after cooling was also explored. At one extreme, it was
assumed that initially there is a uniform distribution of solute at a

high temperature, such as the solidus.
Cl(x,O) = CZ(X,O) (VI1I-6)

At the other extreme, it was assumed that at high temperatures the

solute concentration is at equilibrium throughout both phases
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¢, (x,0) = K[T(O)].Cz(xao) (VIII-7)

In both cases, it was assumed that as the temperature was lowered the
solute concentrations at the boundary are able to adjust sc that the

equilibrium ratio is maintained at the interface.

Cl(O,t) = K[T(t)] C2(0,t) (VIII-8)

Since the zirconium flux must be the same on either side of the

interface, the boundary condition at the boundary is

BCl(O,t) BCZ(O,t)
—Dl[T(t)] e - D2[T(t)] BT (VIII-9)

It was assumed that there is no solute flux across the center of

a grain

BCl(—Rl,t)

% =0 (VITII-10)
3C2(R2,t)
————7E;~——— = 0 (VIII-11)

where R1 and R2 are the radii of the grains. In the calculations

presented here, the grain sizes were taken as R1=R2=7’5 um (15 um grains).

To solve this problem numerically, Eqns. XIII-3, 4, 9, 10, and 11 are
réplaced by their backward difference analogs with the substitution
y = =x for 0 < x §_R2 Eqs. VIII-3 and 4 were replaced by a difference

equation of the form

c 2D[T( )]+-(-A—’9—2+ DIT(t)]C =
1 ,n+1 (2DITCE 2L S

D[T(t)] C, At i

1—l,n+1 -

2
- (Bx) (VIII-12)

Ci,n At

where nt+l is an unknown level in time and i is a point in space. The
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boundary conditions at x = -R, and y = R, (Eqns. VIII-10, 11) are

1
replaced by:

Cl(—Rl + Ax,t) - Cl(—Rl,t) =0 (VIII-13)

il

0] (VIII-14)

(:2(—R2 + Ay,t) - Cz(—Rz,t)

If Rl and R2 are divided into R units such that RAx = Rl and
RAy = R2, these equations form two matrices which are tridiagonal. These
sets of simultaneous equations can be solved separately, and preliminary

values for the distribution of solute in each grain determined up to the

R-1 step in space. (See Appendix B for this method.)

To include the boundary condition at the interface which couples
the two differential equations, Eq. (VIII-9) was replaced by its finite

difference analog

[(€(0,0) = ¢ (-bx,0)] [C,(0,£) = C,(~by,t)]

Dy Ax =- Db Ay

(VIII-15)

From the Thomas Tridiagonal method (91)

€, (=bx,t) ¢,(0,¢t) (VIII-16)

T YWr-1 T "(VRr-1
C,(-Ay,t) = Y(2)R-1 ~ n(Z)R_lcz(o,t) (VIII-17)

where y and n are shown in Appendix B

These equations were then substituted into Eqn. (VIII-8) with the

result:
D.[T(t)] v D [T(t)] v
1 (1)R-1 2 (2)R-1
C2(O,t) —' A + Ay
D, [T(e)] K[T(t)] D, [T(t)]
" (140 g ygogd ¥ 7y gy ]

(VIII-18)
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From Eqns. (VIII-8) and (VIII-18), the values of Cl(x,t) and C2(x,t) can
be caldulated by the Thomas method. This procedure is repeated at every

step in time.

The concentration profiles of Zr in coexisting ilmenite and
ulvospinel were calculated for cooling rates over the range of 0.3 to
1000 K day-l. It was found that for slow cooling rates and high tem-
peratures (large diffusivities), the results were inaccurate if the steps
in time were too large. At high temperatures, the characteristic
diffusion distance, /BE, it comparable to the particle radius and the
difference equation is no longer a good approximation to the differential
equation. Therefore at high temperatures the time increment is small and
as the temperature is decreased, the time increment is increased by one or

more orders of magnitude.

The initial temperature of the diffusion couple is taken as 1400 K
and the concentration of the solute is taken as 1%. This is probably

somewhat high and a more realistic value would be 0.5%Z (44).
2. Results

If the diffusion coefficient in Phase 2 is 10 times that in Phase 1
and the initial solute concentration is uniform, at high cooling rates,
the solute cannot equilibrate within one phase even at high temperatures.
Concentration profiles of this type due tora cooling rate of 1600 C day_
are shown in Fig. VIII-1. There is a maximum concentration profile of
Phase 1. At temperatures greater than 977 K, the equilibrium solute
concentration at the boundary in Phase 1 is greater than that in Phase 2.

Below 977 K the reverse is true. This results in an effective change in
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the direction of diffusion, which is most evident during rapid cooling

when equilibrium is not attained within the grains.

If the cooling rate is decreased to 3 day_l (Fig. VII-2) and all
other conditions are taken to be the same as in Fig. VIII-1, after an
initial transient, equilibrium is maintained as the sample is cooled to
about 1123 K. Below this temperature sufficient diffusion cannot take
place and concentration gradients within the grains develop. After
cooling is complete, significant gradients remain within 3 um of the
grain boundary in Phase 1 and within about 2 um of the grain boundary
in Phase 2. Solute concentration in the two phases is assumed to be
at the equilibrium ratio at 1400 K (Fig. VIII-3), the initial transient
as shown in Fig. VIII-2 is not present but the concentration profiles
at all lower temperatures are identical to those shown in Fig. VIII-2.
Again the concentration gradients are larger in Phase 1 than in Phase 2.
If the diffusion coefficient is the same in both phases (Fig. VIII-4),
the final concentration gradient at the interface in each phase differs
from that calculated when D,=10 Dl' In Phase 1, the gradient is smaller

2

when D2=Dl than when D2=10 Dl

D2=Dl than when D2=10 Dl' As would be expected from Eqn. (VIII-9), when

D1=D2 the gradient in Phase 1 is equal to the opposite of the gradient

in Phase 2, the gradient is larger when

in Phase 2.

The relation between cooling rate and the final ratio of concentra-
tions is shown in Fig. VII-5. 1In calculating curves A, B, and C, it is
assumed that the solute concentrations in each of the phases was at

equilibrium at high temperatures. Curve A indicates the relation between
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the ratio of the average solute concentration in each phase and the
cooling rate, assuming D2=10 Dl' In calculating Curve B it was again

assumed that D_ =10 D but the compositions at the center of the grains

2 1
was used to compute the ratio. This curve more closely approximates the
experimental situation because there are large gradients near the
boundary which would change the average compositions but could not
be measured using-an electron microprobe. Curve C is determined assuming
D1=D2 and the concentrations to be compared are those at the center of

the grains.

For a given solute concentration ratio, Curve A indicates a higher
cooling rate than that indicated by Curve B, which in turn indicates a
higher cooling rate than Curve C. These differences are significant:

The predicted cooling rate can vary by more than a factor of 10 depending
on how the solute concentration ratio is determined. Also shown are
points representing the final solute concentration ratios calculated from
the average and the center concentrations of the grains when the phase
cannot equilibrate at high temperatures as in Fig. VIII-1l. At lower
cooling rates, the phases are able to equilibrate and the calculated
solute concentration ratios coincide with those calculated assuming

equilibrium initial conditions (Eq. VIII-7).

3. Discussion

The above results show that the nonisothermal partitioning of a
solute between two phases can be used to determine the cooling rate of a
rock. Thetre is a significant variation in the ratio of solute con-

centration of two adjacent grains with cooling rate. However, there is a
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strong dependence of estimated cooling rate on the technique of measuring
the ratio of solute concentrations. According to the results presented
here, there are large gradients within 2 to 3 microns of the interface.
These gradients cznnot be measured by conventional electron microprobe
techniques. Therefore a more realistic model to compare with experimental
values of the solute concentration ratio is one that considers only the
solute concentrations at the center of the grains. By comparing Curves A
and B of Fig. VIII-5, the effect of changing the method of calculating the
solute concentration ratio on the estimated cooling rate can be seen.

Use of the average concentrations in the grains predicts a cooling rate
that is faster by a factor of about three than using the concentrations at

the center of the grains. This is constant for all heating rates.

Changes in the initial conditiorns can also have an important effect
on the final solute concentration ratio. At high cooling rates, a sample
with an initial uniform solute distribution exhibits much less solute
partitioning than one with an initial equilibrium solute distribution.
The same center concentration ratio of C1/C2 = 1.37 could be obtained
' if a sample had a uniform solute distribution and was cooled at 1000 D
day_l or it had an equilibrium solute distribution and was cooled at
10 K day—l. However, the concentration profiles within the grains would
be quite different. There would be no danger in choosing the wrong
cooling rate because there would be other morphological differences

between rocks cooled at these drastically different rates.

The solute concentration ratio is also dependent on the diffusivity

of the solute in both grains, and not just the slower one. During
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cooling, there is first a temperature at which the slower phase cannot
equilibrate. This causes both the average and center ratios to deviate
from the equilibrium concentration ratio. Assuming hcwever that
equilibrium holds at the boundary, continued diffusion will take place in
the faster phase, resulting in continued change of the center and average

solute concentration ratios.

If the diffusivity is the same in both phases, the final center
concentration ratio corresponds to a higher temperature at which parti~
tioning effectively stops. How this effects the concentration ratio
depends on the temperature dependence of the partition coefficient. In
this case, a given center concentration ratio indicates a cooling rate
that is slower by a factor of about 2-4 when the diffusivities are the
same compared with that estimated when D2(T) = 10 Dl(T). This difference
is a factor of only 2 when the average concentration ratios are compared.
Thererore it is important to know the diffusion coefficient of the
solute in both phases. In Fig. VIII-5, the open circles correspond to
the results of Taylor et al. (44). The results presented here indicate
a cooling rate that is higher by a factor of about 6 for a given solute
concentration ratio. The model proposed by Taylor et al. is a very
rough method of cooling rate approximation. Taking the square root of
the integrated time dependent diffusion coefficient as equal to the
radius of the grain ignores the finite grain size as well as any Zr

partitioning below a characteristic temperature To.

When the results which assume D1=D2 are applied to the determination

of the cooling rates of the Apollo 15 Elbow Crater gabbros 15065, 15075,
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15076, 15085, it is estimated that they cooled at rates of 18, 18, 25,
and 39(Iday_l, respectively. This was done by using the measured Zr
partition of Taylor et al. (44). The measured Zr ratio is accurafe to
about + 10%. This results in an accuracy within a factor of 2 in the
cooling rate estimated here. This is in good agreement with the results
of Lofgren (99) that these lunar samples cooled at rates of less than

24 C day_l. In that experiment the cooling rate was estimated by
crystallizing a melts of the appropriate composition at known cooling
rates and reproducing the texture and minerology of the lunar sampleé.
The accuracy of this technique was estimated to be within a factor of 2
or 3. Of the conditions explored in the present work, the best
agreement with the results of previoﬁs work was obtained by assuming
that Dl(T) = D2(T) and that the solute concentration measured is that

at the center of the grains. This suggests that the diffusivity of Zr
is the same in ilmenite and ulvospinel. WMore importantly, these results
stress the importan;e of_accurately measuring.the diffusion éoefficient
in both phases of interest. This technique can be applied to any system
which meets the qriteria stated earlier and is useful in determining the

absolute cooling rates of lunar and terrestrial rocks.

4. Conclusionsg

The partitioning of Zr between existing ilmenite and ulvospinel
can be used to estimate the cooling rate of lunar and terrestrial rocks,

providing that the concentration of Zr can be measured accurately.

The estimated cooling rate for a given solute concentration ratio

depends on the diffusivities in both phases and not just on the lower
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diffusivity. For high cooling rates (100-1000 K day_l) the ratio depends
on the initial conditions to lower cooling rates, the grains (7.5 um
radius) can reach equilibrium at high temperatures and the initial
conditions are not important. The final center aéd average solute con-
centration ratio in larger grains would be affected by the initial
conditions for cooling rates lower than 100 K day—l. For high cooling
rates or larger grains, the initial temperatufe of the calculations is
important; for small grains or low cooling rates, equilibrium can be
reached over a range of temperatures as the rock cools and the initial
temperature does not change the final center énd average concentration

ratios.

Rather than measuring a solute concentration at a given distance from
the grain boundary, actual concentration gradients should be measured
to determine the extent of solute partitioning and diffusion. This method
of absolute cooling rate determination in rocks can be applied to any
system in which (1) the diffusion and partifion coefficients can be
determined as a function of temperature, (2) the activity coefficients
are constant over the composition range of interest, (3) there is no
precipitation of a third phase, and (4) the major phase relations are

not affected by the presence of the solute.
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B. Diffusion in Olivine

Of the major igneous rock-forming minerals (e.g., pyroxene, plagio-
clase, olivine), the complications of the phase equilibria and kinetics
within the pyroxene and plagioclase systems are well known. However, the

relatively simpler chemistry of olivines should lend itself to geother-

mometry.

The present study was directed at the olivine system, in particular,
the diffusion of Fe++ and Mg++ within compositionally zoned olivines,
forsterite (Mg28104) and fayalite (FeZSiOA). Partitioning of Fe anq Mg
between olivine and orthopyroxene has been shown (104)‘not to be sig-
nificantly temperature dependent over fhe temperature range 900-1300 °C.
Hence, diffusion across olivine-pyroxene grain boundaries can be assumed
to be minimal, and the reequilibration of compositionally zoned olivines
is largely one of response to prolonged cooling. Thus, a given com-
positional gradient within an olivine grain will tend to decrease with

time at slow cooling rates until the olivine is chemically homogeneous.

1. The Model

The minimum cooling rate necessary for the preservation of compo-
sitional zoning in an olivine grain has been determined. At equilibrium,
there are no concentration gradients in the forsterite-fayalite sygtem.
The'extent to which a grain approaches equilibrium during cooling depends
upon the concentration profile at the solidus, as well as upon the thermal
history (cooling rate). Lacking information about the‘as-solidified
concentration profile, it has beeh assﬁmed that at the sblidus; there was

a step-function in the forsterite concentration within the grain. That
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is, initially there are no compositional gradients within the grain other
than the infinite gradient at the boundary between the Fo-rich core and

a Fa-rich rim.

This assumption directs attention to the minimum cooling rates
associated with the preservation of a given gradient since a system with
an initial gradient would equilibrate more rapidly than one with a steo-
funcﬁion profile. Likewise, the largest compositional gradients found in
the olivine crystals of a particular sample were used for this analysis.
It has also been assumed that there is no flux either across the center
of the grain or across the grain boundary. The initial Fe concentrations
in the core, Cl’ and the rim, CZ’ were varied slightly. In order to
determine the relative initial sizes of the core and the rim, Xy and Xo
it was assumed that the grain was effectively a closed system and that

mass balance was maintained.

Attention was specifically directed to a finite system, rather than
an infinite system as described by Lasaga and Richardson (100). Concen-
tration pr@files were calculated for both one-dimensional and spherical
geometries. The one—-dimensional case is described by the eame equations
as the solute partitioning model presented earlier in this chapter with
the exception of Eqn. (VIII-8) and the inclusion of the concentration
dependence of the diffusivity. The resvlts do not vary significantly
from those calculated for the spherical geometry in which the shape of
a grain is approximated by a spherical Fo-rich core and a thin spherical

Fa-rich shell.
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The equation which describes diffusion within a spherical grain is

(=34

2
€ _ L. 9% 3c |
2 = 25 (7RI, T 5 (VIII-18)

(=]

' 4
where C is the mole fraction of fayalite Fe and Da is the interdiffusion
coefficient in the a crystallographic direction. The initial conditions
are:

for O<r<rl for rl<r<rl + r,

C(r,0) =C C(r,0) = C (VIII-19a)

1 2

where Ty is the radius of the core and r, is the thickness of the rim.
These conditions can be changed to include segregation during solidifi-
cation if the distribution coefficient is known as a function of tempera-
ture. Such modified conditions can readily be handled by the program

used to solve the diffusion problem.

The boundary conditions are

3C(0,t) _ BC(rl+r2,t) )
or or

0 (VIII-19b)

Expanding Eq (VIII-18) results in the following expression

2. A 2 25 3l
d C 9 C a a

2 - Da 2 + r + or )
ot or

3¢

o (VIII-20)

Two experimental determinations of the interdiffusion coefficient
have been made (42, 43). To determine which of these data would be used,
isothermal diffusion experiments were conducted (44), the procedure and
results are presented in Appendix C. The results of Buening and Buseck

are used in the present work.
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Buening and Buseck (43) showed that the interdiffusion of Fe and
Mgt+ in olivine is a function of (1) temperature, (2) composition, (3) f02,
and (4) crystallographic direcﬁion. In the forsterite-fayalite system at

an FO, of 10-'12 and in the c direction, the interdiffusion coefficient,

2
v
Dc’ is
. (1.373ev—.0095XFe25102
Dc = exp (-.0501 XFe sio. " 14.03) exp - { KT }
27774 )
(VIII-21)
for T 1125°C. The diffusion coefficient varies with oxygen partial
pressure as
¥ = kep. 172 (VIII-22)
0]
2
with an accuracy in the exponent of +0.022. This is consistent with a
simple vacancy process which exhibits a pressure dependenée of Py 1/6.This

2
was used to determine the diffusion coefficient over a range of tempera-

tures and partial pressures of oxygen.

N , e (1.373ev-.0095 XFeZSiO4)
D, = 10° p, exp(-.0501 xFe2810 -14.03) exp-{ }

2 4

kT

(VIII-23)A
The oxygen partial pressure which corresponds to lunar conditions is about
0.5 log atm. below the iron-wustite buffer curve (105). The temperature
dependence of the log of the oxygen partial pressure is approximately

linear.

log;y Pg = -015T(°K) - 34.6 (VIII-24)
2

Buening and Buseck show a significant anisotropy in the diffusion
coefficient. No analytical expression was given for this difference, but
N n
the tabulated data indicate that DC is greater than Da by a factor of

about 4 at 1050°C. As an approximation, it will be assumed that
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5 =5 (VIII-25)

for all temperatures. The anisotropy increases as the temperature
decreases; so the approximation overestimates the éxtent of diffusion
below 1050°C and to a lesser degree underestimates it above 1050°C.
Combining Eqns. (VIII-22, 23, and 25) results in the following expression
for the fayalite concentration as a function of time and temperature only

(1.373ev - .0095C) o€
kT ot

.04 exp(~.00576T + 13.28) exp (.0501C + 1403) exp

2 L
=254 2+ (0501 +

.0095, aC., 3aC
2 )
or

T ) ard ar (VIII-26)

Equation (VIII-26) has been solved by replacing it with its finite
difference analog, applying the boundary conditions, and solving the
resultant set of simultaneous equations by the Thomas tridiagonal method
(Appendix B). Due to the non-linearity of the equation, it was necessary

to iterate the procedure to approach the correct solution.

Concentration prcfiles were calculated for séveral cooling rates and
sets of‘initial conditions. The values of Tys Ty C1 and C2 indicate
possible solidus conditions in thé lunar samples investigated. These
parameters could not be changed independently because mass balance and

the size of the grain had to be maintained.

For cooling rates larger than about 5°C dayﬂl, there was little
change in the forsterite profile at temperatures below about 750°C.
" Cooling rates smaller than about 1°C day-1 allowed diffusion to be
effective at lower temperatures. Since the diffusion cogfficient depends

on concentration, each case (i.e., olivine grain) must be considered
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separately. The absolute concentration, as well as the concentration

gradient, are important parameters for specifying the minimum cooling

rates.

2. Results

Two lunar samples were chosen (i.e., 12002 and 15555) for which
cooling rates have been experimentally estimated based on dynamic crystal-
lization studies (41, 106, 107). Therefore, these samples provide a
means of comparison between our theoretical approach and the empiritical
studies. Since the two lunar specimens are compositionally and texturally
different, different cooling rate estimates should be obtained from

compositional gradients in their olivines.

To estimate the initial conditions the planar geometry was assumed
and the measured Mg concentrations integrated over the grain. Assuming
a constant Mg content and initial core and rim compositions, it was then
possible to estimate the relative initial sizes of the core and the rim.
Due to the large grain size this assumption of planar geometry is
sufficient for the determination of the relative core and rim sizes.
Samole 12002 olivine originally had a core radius of 234 ym and a rim
thickness of 60 pm. According to the best fit of calculated forsterite
distribution, the core initially contained 73.5% Fo and the rim, 58.57% Fo.
In similar manner, 15555 had a core radius of 188 um and a rim of 106 um

thick. The core contained 627 Fo and the rim, about 5% Fo.

Figures VIII-6 and VIII-7 show the compositional profiles as a
function of temperature for samples 12002 and 15555 starting with the

initial step-function assumption. The cooling rates for the two samples,
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assumed for illustration, are 10° and 5°C day, respectively. The calcu-
lated curves labelled 2-4 were generated by cooling from 1100°C to 1000°,
900°, or 800°C, followed by quenching. As to be expected, the tempera-
ture to which effective diffusion is still operative is lower for the
slower cooling rate. Below 900°C in the case of 12002 at 10°€ day (Fig.
VIII-6) and 800°C for 15555 at 5°C day (Fig. VILI-7), there is little

change in the profiles--i.e., they converge.

Figures VIII-8 and VIII-9 show the calculated diffusion profiles for
lunar compositions 12002 and 15555 as a function of cooling rate. The
calculated profiles are compared with the profiles measured in these
samples by Taylor (Appendix C). Grains exhibiting the stéepest con-
centration gradient between the core and the rim were used for the
cooling rate estimates. The agreement between the calculated and
 observed profiles is good for 10 C day-_l and 5 C day-.l for 12002 and

15555 respectively.

3. Discussion

The cooling rates presented above compare favorably with those
obtained from controlled crystallization studies by Walker et al. (41,
107) and Bianco and Taylor (106). These investigators estimated rates
of 10-20°C day_l for both of these rocks. The results from the present
study are lower by a factor of 2-3. Kowever, it should be emphasized
that the olivine-based cooling rate estimates presented here are minima,
since an initial step function rather than an "as-solidified" profile
was used. Walker et al (107) haye recently compared the cooliﬁg rates

estimated according to Zr partitioning, and olivine homogenization
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following to the model of Taylor (44) with an olivine homogenization model
which solves the diffusion equation exactly. To do this it is necessary
to ignore the compositional dependence of the diffusion coefficient. A
closed system and an initial concentration indicate characteristic of that
in zoned phenocrysts which have not homogenized were assumed. A cooling
rate higher by a factor of three than that calculated according to Taylor
(44) model was found. It was also assumed that the diffusion distance
is equal to the grain size although it can be seen from microprobe analysis
that the characteristic diffusion distance can be much smaller. This
smaller diffusion distance results on higher cooling rates. It was
suggested that the solution to the diffusion equation is more dependent
on the diffusion distance and the diffusion coefficient than on the
initial concentracion profiles and grain geometry. We found that solving
the diffusion equation for the one-dimensional case (two parallel plates
rather than a sphere) resulted in virtually identical concentration
profiles. The diffusion coefficient is a function of concentration so in
order to compare calculated profiles with actual profiles, this must be
taken into account. The agreement between calculated and measure profiles

shown in Fig. VIII-8 emphasizes this point.

The use of the spherical geometry is important when the effect of
finite size of the grain is important. In the lunar samples considered
here, large regions in the core of the grains exhibited flat concentration
profiles, indicating that the effective diffusion distance was less than
the radius of the grain. However, the concentration gradient in the rim

is affected by the finite nature of the rim. Therefore it is necessary
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to use a finite geometry in this case. However, it is not necessary to
use a spherical geometry. If the grains were smaller or the cooling rate
lower so that the firite size of the core is significant, it would be
necessary to use the spherical geometry. In Fig. VIII-9, the agreement
between measured and calculated profiles is not as good as in Fig. VIII-8.
This could be the result of a different initial profile or a higher initial
temperature.

The cooling rates estimated here are minimum rates because if there
were any initial finite gradients within the olivine grain, it would
tend to equilibrate more rapidly and a higher cooling rate would be
necessary to preserve the observed gradient. With more refined knowledge
of the starting profile, a more detailed statement of the absolute cooling

rate is possible.

4. Conclusion

The compositional zonation in olivines can be used to estimate
cooling rates. The Fe+2 and Mg+2 diffusion in olivine is a function of
(1) temperature, (2) composition, (3) f02, and (4) crystallographic
orientation. Differences in cooling ratesibetween otherwise similar rocks
can be discerned. A model was developed to describe the nonisothermal
diffusion within an olivine grain. An initial step function in the
concentration is assumed, the position of this step is based on mass
balance considerations of the measured compositional profile. This
results in a minimum cooling associated with the preservation of a given
gradient. The cooling rates of lunar rocks 12000 and 15555 were estimated

as 10°C day—1 and 5°C~day"l respectively.
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IX. THE EFFECT OF MOTION ON THE FINING OF GLASS MELTS

This chapter is concerned with establishing the ranges of bubble
size and fluid motion where fining will be significantly affected by
motion. The model presented below takes into account the effects both
of the moving boundary and of the bubble rising through the melt. To
avoid undue complexity, the description is concerned with bubble growth
and dissolution associated with the diffusion of a single gas (oxygen) ;
and complications due to the presence of another gaseous species have

been neglected.
A. The Model

Equation (IX-1l) is the expression which governs the diffusion of a
gas in the region of a bubble of radius a, which is moving through a

melt and shrinking:

2 v
8¢ _ _a_dad _, 3C 6 23C 2 -
ot r2 dt Or Vr or r 06 + DV C (Ix-1)

Here C is the concentration of the gas; t is time; r is the radial
distance from the center of the bubble; Vr and Ve are, respectively, the
radial and tangential components of the velocity; and D is the diffusion

coefficient.

On the right side of the equation, the first term represents the
contribution due to the moving boundary as the bubble shrinks. The
second and third terms represent the convective flux due to the radial
and tangential velocities of the melt. The components of the velocity
are those relative to a sphere with a fluid boundary. At the surface

of the bubble, the radial component of velocity is zero but the tangential
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component is nct. Due to the fluidity of the boundary, the gas bubble
rises through the melt at a rate V0 which is 1.5 times faster than the

velocity calculated according to Stokes' Law. This rate may be expressed:

v o=oe ga2/3n (IX-2)
Here p is the density of the melt, g is the gravitational constant and

n is the viscosity of the melt.

It has been assumed in the calculations that the diffusion coefficient
is independent of concentration. In some calculations, it was assumed
that Henry's law applies at the bubble-melt interface; in others, a
constant concentration at the interface was applied. Far from the inter-
face, the concentration is taken as a constant, C_. The boundary con-

ditions are:

C (IX-3a)

[ o]

C0 (IX-3b)

C(R,t)

C(a,t)

where Co = CS when the concentration at the interface is constant, and

Co = CS (1 + 20/paa) when Henry's law applies at the interface; CS is the
concentration of the gas at saturation (the solubility); o is the surface
tension of the bubble~melt interface; and P, is the ambient pressure;

and R is the distance from the center of the bubble to the outer edge of

the diffusional boundary layer surrounding the bubble.

The distance R was determined from the expression by Levich (78)
for the form of the diffusion field around a bubble moving with the

velocity VO:

_ m,ab. 2+cosf _
a +// ( ) (1+cosB)? (IX-4)
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This relation has the form one would expect for the diffusion layer

surrounding a rising bubble, and is depicted in.Fig. IX-1.

In order to solve Eqn. (1), the coordinates were transformed using

the substitution

p(8,t) = (r - a(t))/(R(B,t) - a(t)) (IX-5)
Transforming the coordinates in this way simplifies the boundary
conditions, as they become:

C(O,t) (IX""68)

il
(@)

c(1,t)

I
(9]

(IX-6b)

In this way the diffusion layer can be divided into units which are
constant as a function of angle in p-0 space. This makes the numerical
solution of the differential equation and the application of the boundary
conditions straightforward. It complicates the diffusion equation,
however, so that the physical significance of each term is no longer

clear. Specifically, the diffusion equation becomes:

aC 1 1

P =S Py E
2
1 2. 2u aC
+ (R-a)+a (-a"a - Dcot6pU - Dp(W R-a)))) %0
DoU o’c . D 2 2¢ ) (1X-7)
- - VA
(p(R—a)+a)2 969p R-a 3p
or
2 2
ac _, 3¢, , 3¢ 2°C (1X-8)

ot - 2190 T 2 3527t A3 365,
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Figure IX-1 - Diffusion field for moving bubble according to Levich (78).
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Here S is the time derivative of the boundary layer thickness; and U and
W are, respectively, the first and second derivatives of the boundary
layer thickness with respect to angle. These values can be calculated

directly from the expression for R.

The initial conditions were such that the concentration of dissolved

gas decreases exponentially from C0 at the interface to C_ at p(6,0) = 1.0.

To determine the dissolution rate, the expression derived by Cable

(56) was employed:

da _ 3RTDa aC
dt M(QG3ap + 40) 3r
a r=a

(IX-9)

where R is the gas constant; T is the temperature; and M is tie mclecular
weight of the gas. The gradient at the interface was multiplied by a
weighting factor which is a function of 6, and the flux was averaged

over the surface of the bubble to determine the rate of shrinkage.

The concentration gradient at the interface, which is critical in

determining the dissolution rate or growth rate, was evaluated from:

ac|  _ cap,r) - C(0,t)

or r=a (R-a)Ap

(Ix-10)

A very steep concentration gradient was found near the interface.
In the case of small bubbles (th.OS cm), it was therefore necessary to
divide the distance fromp= 0 to p = 1 into greater than 200 increments
in order to describe accurately the slope at the interface (3C/3r|r=a).
Since this required an unduly large amount of time, an exponential

distribution of points was used, according to the following algorithm:
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Py = 1.0, Pr1 = O.SQI, cee Py ® .Sp3, Py = 0

A =

1 Prer — P (Ix-11)

I

In this way, the increments near the interface can be arbitrarily small.
. -11 .

In the present work, I = 13 was employed. For this, Ap] = 2 , which

gave the same results as constant increments of 0.002. To use this

approach, it was necessary to derive the difference equations from the

Taylor series expansion at a point for non-uniform spatial increments in

one coordinate.

The difference analog to Eqn. (IX-8) is:

“i,3m A €y s1,mt1 ~ Cit1,4-1,nt0)
At 3 Ap . AD
1
c . A . 24, i A, )
i+l,j,ntl bpthos 1 beg(Bp jo1T0e)  Lp A8
2A A
2 3 1
+ C, . ( + + = (IX-12)
i,j,ntl Api_lApi ApiAe At
2
T Ci1,5,nt1 (A :13 T A l:i +A ))

The boundary conditions were applied, and the resulting set of simulta-
neous equations were solved by standard numerical methods on an IBM370-
168. Since Eqn. (IX-12) or its analogue, Eqn. (IX-13) is nonlinear, it
was necessary to iterate the process to determine the solution to the
diffusion equation.

The solubility of the gas in the glass was taken as that used by

Cable (56) 3 x 10—4 wgt.pct. This is appropriate for the dissolution
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of oxygen in a sodarlime-silicate glass, although little is known about
the temperature dependence of Cs' Values for the diffusivity and
viscosity as functions of temperature, also appropriate for oxygen and

a soda-lime-silicate glass, were taken from Doremus (108).

B. Analytical Models

Two analytical exp%essions may be derived to describe the dissolution
of a gas bubble in a glass melt. Both models use the results of Levich
(78) to describe the diffusional flux at the surface of the bubble, and
ignore the flux due to the moving bounda;y as the bubble shrinks. Levich
assumed that the thickness of the diffusional layer, &, is small compared

with the size of the bubble, a, and derived the following expression for

the flux:
DV 1/2 2
. _ ne8C _ _ (O 3 /(1tcosb) _ _
i=0G) = - () ,/:: / 5+ cass CoCa) (IX-13a)
or
D(C_-C,)
j=- g?;ygzgy (IX-13b)
where
1/2 1/2
= (Ta. - (fDn___. -
S(a) = Gy G 5 (IX-142)
2
5(0) = / (LFrcosd) (IX-14b)

2+cosb

and C0 is the concentration at the interface and C_ is the concentration
-1
in the bulk melt. An average value for §(9) over the surface of the

bubble is determined numerically:

N
11 sinf o
$ " =x i1 26(6,) (IX-15)
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The expression obtained by Levich describes the flux due to the
concentration gradient at the surface of the bubble. Using simple mass
balance relations, Cable (56) derived an expression which relates the flux

at the butble-melt interface to the rate at which a bubble will grow or

shrink:
C_ L (5,2 da -
j=—75 @a"e + 2a1) ¥ (1X-16)
3a
where
Mpa
= 2 X~
Py = RT (IX-17a)
and
_ 2Mo _
T = RT (IX-17b)

If one equates the expression derived by Levich, which describes the
flux at the interface due to concentration gradients in the melt, with
the expression of Cable for the effect of that flux on the size of the

bubble, one obtains for the shrinkage rate:

3/2(c_-C_)
da _ Ka O (1X-18)
dt ap, + 40/3

where

1/2 1/2
K = RTD ~ é?%
n

2 s(0) ™t (1X-19)
Two suggestions (72, 56) have been made concerning the concentration

of dissolved gas at the bubble-melt interface. Each of these models may

be combined with Eqn. (IX-18) to derive expressions for the rate of

" ghrinkage of a bubble and for the time it takes to dissolve completely.

The first view (72) considers that the gas concentration at the

bubble-melt interface is constant. If it is assumed that the melt is
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saturated at the interface, i.e., CO=CS, Eqn. (IX-18) becomes:

3/2
da Ka (CS—Cw)

T ap, + 4o/3 (1X-20)

Rearranging this expression and integrating from the initial bubble radius

a to 0, cne obtains the time for a bubble to dissolve as:

a

cc) | ° ap, + ;1
t = X 372 da (IX-21a)
0 a
Upon integratiﬁg,
(Cs-Cm) paal/Z 200 -1/2 %
t = X ( 5 -3 a )a=0 (IX-21b)

This expression cannot be evaluated at the lower boundary, but Eqn.
(IX-21a) can be evaluated numerically. This approach was used in the

present work.
The second view of the gas concentration at the bubble-melt inter-
face (56) considers that Henry's law applies at the interface. That is:

¢ -+ (1%-22)
o p,a’ s

Expressing the bulk concentration as a fraction x of:the saturation value

and combining Eqns. (IX-18) and (IX-22), one obtains for the rate of

shrinkage:
&+ (1-x)a)
da al/2 Py
Tl KCS w (1X-23)

3

Rearranging and integrating (in this case, the integral can be evaluated

at both a=a and a=0), the time for a bubble to dissolve may be expresgsed:
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p,/a /2 p /‘Z\l—x)P a
=g ot /=2 retan /) E- L1 (axe2w
1-x

KC 1-x 20
S

The times to dissolve as calculated by Eqn. (IX-21) and by Eqn.
(IX-24) are very close. For example, a bubble of initial radius 1.0 mm.
with x = 0.9 at 1400°C dissolves in 1040 seconds according to Eqn. (IX-21)
and in 1044 seconds according to Eqn. (IX¥-24). Both of these analytical
models indicate a dissolution time which is longer than that calculated
by numerical solutions to the diffusion equation which take account of

the effect of the moving boundary.
C. Results

Fig. IX-2 shows how a bubble, initially 0.1 cm. in radius, shrinks
as a function of time at several temperatures and under two levels of
gravitational force (two velocities for a given size). Raising the
temperature decreases the time to dissolve, at least for a constant 995
solubility, which is in accord with the results of Greene and Kitano (57).
In each case, the ratio of C, to CS was 1.0, and it was assumed that
Henry's law applies at the interface. For Cm/CS = 1, the rate of
dissolution increases as the bubble size decreases. With no convection,
bubbles under these conditions would rise to the surface of a tank 4
feet deep before they dissolve. The time to dissolve under different
initial conditions is shown in Table IX-1l. When Cw/CS = 1.0, it takes less
time for a 0.1 cm bubble to rise to the surface than for a bubble half

that size to dissolve.
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Table IX-1
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Calculated Dissolution Times for Oxygen Bubbles in

Soda-Lime-Silicate Melts Under Several Sets of

Conditions
Time to
Boundary Initial Radius C /C Temperature Gravity Dissolve
Condition (cm) ® 8 (°0) (sec.)
1 0.10 1.0 1200 1 4.2x104
10 1.4x104
1300 1 1.25x10
10 4.5 x10°
1400 1 5.5x10°
1500 1 2.65x107
1 0.10 0.9 1200 1 4.2x10°
10 1.4x10°
1300 1 1.3x103
10 450
1400 1 540
1500 1 260
2 0.10 0.9 1300 1 1650
1400 1 650
1500 1 300

In the column indicating boundary condition, 1 = Henry's Law applies

at the interface; 2 = the concentration at the interface is constant

and saturated.



185,

Table IX-1 (Cont'd)

Time to
Boundary Initial Radius c_/C Temperature Gravity  Dissolve
Condition (cm) ® S (°c) (sec.)
1 0.01 1.0 1200 1 650
10 290
1300 1 160
10 93
1400 ' 1 70
1500 1 35
1 0.01 0.9 1200 1 250
10 130
1300 1 80
10 43
1400 1 26
1500 1 13
2 0.01 0.9 1300 1 170
1400 1 60

1500 1 28
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If the ratio of C_ to Cs is decreased slightly to 0.9, the rate of
dissolution increases substantially, so even a large bubble dissolves
before it reaches the surface (Fig. IX-3). Changing the conceatratira of
gas in the bulk changes the shape of the curve describing the size of the
bubble as a function of time. When the bubble and its velocity are large
and the driving force for dissolution is large, as with a small Cm/CS, the
bubble dissolves at a high rate and the rate decreases as the bubble size
and velocity decrease until the bubble i5 small. For small bubbles
(Fig. IX-4), when Cm/CS is decreased to 0.9, the effect of increased
solubility at the interface due to Beary's law is so great that the

dissolution rate increases as the bubble size decreases.

If the curves describing the dissolution of 0.1, 0.05 and 0.0l cm.
bubbles are compared, they superimpose very well over the range of common
sizes. This indicates that the initial conditions used in the present
analysis are realistic. More importantly, the history of a bubble is not
significant in predicting its path to dissolution. The use of Levich's
expression for the boundary layer thickness is most accurate for large
bubbles where the diffusion layer is small compared with the size of the
bubble. Hence this should not be a source of error in describing the

shrinkage of large bubbles.

An increase in gravity by a factor of 10, as by centrifugation,
increases the rate of dissolution by about a factor of 3; and the effect
is the same for large and small bubbles. In glassmaking processes using
centrifugation as a method of increasing the rate of fining, the distance

a bubble must travel to reach the surface is much smaller than in
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conventional processes, but the residence time is likewise much smaller.
Large bubbles would have no trouble in reaching the surface in a short
time. This is not the case with very small bubbles, however, particularly
if the Cm/Cs ratio is not favorable. Further calculations show that if
the gas solubility is decreased by a factor of 10, the time to dissolve is

increased by about a factor of 10.

Figs. IX-3 and IX-4 also show the respective paths to dissolution for
0.01 and 0.1 on bubbles at 1400°C according to several solutions of the
moving bubble problem. The model which assumes that Henry's law applies
at the interface and numerically solves the diffusion equation indicates
a high dissolution rate. Assuming a constant, saturated concentration
at the interface decreases the dissolution rate, particularly for small
bubbles. Eqn. (IX-3), which assumes Henry's law at the interface,
indicates a dissolution rate that is substantially slower than if the
diffusion equation is solved directly. TIf the concentration is constant
at the interface, Eqn. (IX-20) indicates a very slow dissolution rate,

particularly for very small bubbles.

Considering now the growth of gas bubbles in ,glass melts, the times
required for a bubble to grow to a radius of 2A0 and 4AO are shown in
Table IX-2. Here Ao is the initial radius of the bubble. Table IX-2
also shows the time required for a bubble to rise a given distance above
its initial position, and the size it has attained at that time. Fig. IX-5

shows the increase in bubble radius as a function of time. As the

bubbles grow, their velocity increases; and this in turn increases their

rate of growth. The effect of using a condition of Henry's law rather than
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a constant composition at the interface is found to have a sizable effect
on the growfh rate only for very small bubbles (see the times réquired for
the bubbles to grow to 2Ao and AAO). Since small bubbles rise slowly,
the time required for a bubble to rise a given distance (as 5 cm. or 150
cm.) is not appreciably affected by the assumption that Henry's law applies
at the interface. The size reached by a bubble when it has risen a
given distance in the melt does not vary éignificantly for bubbles of

significantly different initial sizes.

When Cw/CS is increased, the time required for a bubble ;o rise a
given distance decreases, and the radius reached at that distance increases.
Increasing gravity by a factor of 10 increases the rate of growth of the
bubbles by about a factor of 3, and decreases the time to move a given
distance by about a factor of 4. Fig. IX-6 shows the distance risen by
a bubble as a function of time, for several values of initial radius and
Cmﬁgé. It is seen that long times are required for small bupbles.to grow

sufficiently to rise even 1 cm.

D. Discussion

Several factors are important in determining the time required for
a bubble to dissolve (or the rate at which it grows). Among these factors
are: the relative saturation-of the melt at various temperatures (which
depends on the relative saturation prior to fining and on the change of
glass solubility with temperature); the diffusion coefficient of the gas
in the melt and the viscosity of the melt (which in turn depend on tem-
perature); the driving force for bubble motion (gravity or mechanical

forces); the size of the bubble; and the condition on gas concentration
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FigureAIX-6 - Height a growing bubble has risen as a function of time.
(1) A0=0.1 cm, Cw/CS=1.l; (2) AO=0.05 cm, Cm/CS=1.l; (3) Ao=0.01 cm,
C,/C,=1.1; (4) A =0.001 cm, C,/C_=1.1; (5) A =0.01 cm, C_/C_=1.2; (6) A =
0.01 cm, cm/cs=1.05; (7) AO=O.01 cm, cm/cs=1.1, gravity = 10g.
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at the bubble-melt interface.

If the results shown in Table IX-1 are compared graphically (Fig. IX-
7), it can be seen how a slight increase in the concentration of gas
dissolved in bulk melt increases the time required for a bubble to
dissolve. For example, assuming Henry's law at the intefface, a 0.1 cm.
bubble in a melt with a Cm/Cs ratio of 0.8 at 1200 C takes the same time
to dissolve as a 0.1 cm. bubble in a melt with a Cw/CS ratio greater than
0.99 at 1500 C. The effect of increasing the gas concentration (relative
to saturation) in the melt is smaller for sma;l bubbles than for large

bubbles.

Assuming a constant concentration equal to the solubility limit at
the interface results in dissolution times which are longer than if
Henry's law is assumed. At Cw/CS values greater than 0.9, the differences
in results obtained by using the two assumptions are substantial. To
illustrate the differences which the two assumptions can make, consider
the case where Cm/CS = 1.0. 1If Henry's law applies for this case, a
bubble will dissolve; while if the concentration at the interface is
constant, the bubbles size will be stable. If Cw/CS is slightly greater
than 1.0, the bubble would still dissolve if Henry's law applies, while
growth of the bubble would occur if the concentration at the interface
is constant. If Henry's law applies, the concentration of dissolved gas
in the glass is greater than the saturated concentration (solubility
limit) after the bubble dissolves. Because the free energy required to
form a melt-gas interface in nucleating a bubble, the supersaturated

solution could be stable for long periods of time.
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An increase in temperature for a given CW/CS ;esults in a large
decrease in the dissolution time. In practice, maintaining the melt at
a high temperature is often not the solution to fining problems; and
raising the temperature of an initially-cooled (and even reiined) melt
can result in the reboil phenomenon which is too often observed in sulfate-
containing melts. Lacking data on the solubility of oxygen in a soda-
lime-silicate melt as a function of temperature, we have assumed it to be
constant in considering the temperature dependence of the dissolution rate.
Since the dissolution rate depends strongly on the Cm/CS ratio, it seems
highly desirable to obtain data on the solubility in glass melts of oxygen
and other gases of interest (particularly nitrogen) as a function of
temperature--as well as data on the actual concentrations of gases in
the melts. Available information indicates that C_ and C, can be
affected by the presence of refining agents in the melt (18, 19, 56), as

well as by bb-ages in the melt composition.

Comparing the time to dissolve for bubbles of different radii
(Fig. IX-6) with the correspbnding times obtained by Cable and Evans
(75), it is found that motion of a bubble can significantly increase its
rate of dissolution, and that the effects of motion in decreasing
dissolution time are greater for large bubbles. Physically, the increase
in dissolution rate reflects motion of the bubble away from its associated
diffusion field into regions of relatively low concentrations of gas.

The previous estimates of dissolution times for stationary bubbles
with which the present results are compared did not allow for the flux

due to the moving boundary. As the bubble shrinks, the diffusing gas
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must move in a direction opposite to that of the inward flux of the melt.
This increases the distance which the gas must travel, and thus increasgs
the dissolution time. Since small bubbles dissolve at a higher rate

than large bubbles, the effect of the moving boundary is greater for
small bubbles than for large ones. The fact that large moving bubbles
take less time to dissolve than large stationary bubbles, in spite of the
inclusion of the flux due to the moving boundary, accentuates the

importance of bubble motion on dissolution rate.

Experimentally, Greene (53) showed that if a large bubble (a0>0.05
cm ) is allowed to rise through a melt, its dissolution rate increases by
an order of magnitude over the rate at which a stationary bubble dissclves.
For example, the time required at 1400 C for a 0.1 cm bubble to dissolve
increases an order of magnitude from 540 sec to 5500 sec when Cm/CS is
increased from 0.9 to 1.0. Under the same conditions, the time required
for a 0.01 cm bubble to dissolve increases by only a factor of 2.7, from
26 sec to 70 sec. This agrees very well with the results shown in
Fig. IX-7. |

The effect of Henry's law on the dissolution time is not large for
large bubbles (Fig. IX-8). For a 0.1l cm. bubble, the concentration at
the interface is increased by only about 0.6%. For a 0.01 cm. bubble,
however, the concentration at the interface is increased by about 67%.
This has the same effect as decreasing Cm/CS by a similar amount.
Accordingly, the difference between the dissolution times calculated by

the two models is large for small bubbles (ag 0.025 cm.).
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The velocity at which small bubbles rise through the melt is quite
small; and hence the analysis for a stationary bubble should provide an
appropriate description, at least under velocities calculated for normal
gravitational forces. The diffusion layer around a bubble siuould approach
a spherical shape as the bubble size and the bubble velocity approach
zero. The solution due to Levich from which the shape of the diffusion
field is derived assumes that the thickness of the diffusion layer is
smali compared with the size of the bubble. This solution provides a
close description of the boundary layer for large bubbles (ao > 0.1 cm.);
but the accuracy of the description begins to limit the results for
smaller bubbles (ao<0.01 cm.). Increasing the velocity of bubble motion
(as by increasing gravity) serves to restore the applicability of the
description to small bubbles by decreasing the thickness of the diffus:ion
field, and by distorting the diffusion field from sphericity.

When a bubble grows, the effect of its'motion (rising) through the
melt cannot be ignore. Unlike the case of a shrinking bubble, in which
the effect of the bubble motion decreases as time progresses (as its
velocity decreases), the effect of the motion of a growing bubble on its
size increases with time. Initially, the growth of a small stationary
bubble, as Ao = 0.01 cm,is similar to the growth of a small rising bubble
(Fig. IX-5). Before the bubble has doubled in radius, however, the results
start to diverge. The time for a small bubble to quintuple in radius at
1200°C is 1400 sec--which is larger than that for a moving bubble by a
factor of about 3.3. For larger bubbles, the effect is even greater.

For example, a stationary 0.05 cm. bubble doubles its radius at 1200°C
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in 3500 sec., whil= a moving bubble at the same temperature doubles its

radius in 350 sec.

Increasing the gravity as by centrifugation increases the rate of
dissolution in two ways: First, it directly increases the velocity of
the bubble; and secondly, by increasing the growth rate it increases the
acceleration of the bubble rising through the meit. The growing bubble
rises at an accelerating velocity so that it rapidly moves away from its
diffusion field into a region in which the dissolved gas is not depleted.
An increase in the dissolved gas content of the melt increases the rate
at which bubbles disappear by causing them to grow faster, with a

concomitant increase in the rate of their rise to the surface.

Under comparable conditions of supersaturation and undersaturation
(Cm/CS = 0.9 or 1.1), the time required at 1400°C for a 0.1 cm. bubble
to grow and rise to the surface of a 4 ft deep tank is the same as for it
to dissolve, about 640 sec. For smaller bubbles, as A0 = 0.01 cm, the
time to dissolve decreases to about 55 sec. while the time to rise to the
surface increases to about 1300 sec. At 1500°C,the time required for a
0.1 cm. bubble to grow and rise to the surface of a 4 ft. deep tank (350
sec.) is greater than it is to dissolve (260 sec.). For smaller bubbles,
as Ao = 0.01 cm, the time to dissolve decreases to about 28 sec. while the
time to rise to the surface is about 700 sec. This assumes that the
oxygen solubility in the melt is constant. In a large glass tank the
problem is complicated by the non-isothermal conditions which cause

convection as well as variations in the gas solubility.
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bubble-melt interface--whether Henry's law or a constant concentration--
can have a significant effect on the dissolution time, particularly for
small bubbles or under conditions where the concentration of gas in the

melt is close to the solubility limit.

In a supersaturated melt, moving bubbles grow much more rapidly than
stationary bubbles, with the increased growth rate becoming more
significant as time prcgresses (as the bubbles grow in size). Increasing
the velocity of bubble motion through the melt, as by increasing gravity,
can increase substantially the rate of growth of the bubbles. The con-
dition used to describe the concentration of gas at the interface does
not have a significant effect on the rate of disappearance of bubbles by

rising to the surface of the melt.

In toto, the present analysis offers the prospect for describing in
detail the growth and dissolution of gas bubbles in glass melts. To take
full adventage of the analysis, it will be necessary to-obtain data on the
solubility of gases (particularly oxygen and nitrogen) in glass melts as
a function of temperature, as well as further sampling of gas concentra-
tions at various stages of the melting process and various conditions of

melting.
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Convection has two principal effects on the process of fining besides
its effect on homogenization, and hence on gas solubiiity. Specifically,
conQection can provide motion of gas bubbles with‘respect to regions of
the melt, and can provide a longer residence time of the bubbles in the
melt. The overall effect of convection is to increase the importance of
dissolutjon relative to motion to the surface in eliminating gas bubbles

from glass tanks.

E. Conclusions

In this chapter the effectslof Buﬁble motion on the dissolution rate
and growth rate of gas bubbles'in glass melts has been investigated. It
has Been found that such motion can have a profound influence on the rates
of dissolution and growth. The dissolution time for bubbles with an
initial radius of 0.1 cm. moving under the force of gravity is smaller
by more than an order of magnitude than the dissolution time for stationaey
bubbles of the same initial size. Increasing the rate of motion of the
bubbles, as by centrifugation, can further increase the rate of

dissolution.

The dissolution time can be dramatically decreased by decreasing
the Cw/CS ratio--that is, by decreasing the concentration ﬁé dissolved
gas in the melt, or by increasing'the solubility of the gas. Changes
as small as 207% in the CQ/CS ratio can change the dissolution time by a
factor as large as 20. This effect is more pronounced for large bubbles
than for small bubbles.

The condition used to describe the concentration of gas at the
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X. SUGGESTIONS FOR FURTHER WORK

The effect of changing the concentration of nucleating heterogeneities .
should be investigated. Crystallization statistics should be extended to
include nucleating heterogeneities with the object of predicting the grain
size distribution in partially crystalline bodies with complex thermal

histories.

Semi-empirical models of viscosity (109, 110) should be applied to the
implified method for predicting critical cooling rate for glass formation.
Measurements of heat of fusion for lunar samples would also aid in the
refinement of this method. Correlations between nucleation barriers
suggested by the simplified method, by measurement of the crystallization
temperature upon reheating and crystallization statistics,and by direct

measurement of the nucleation frequency should be examined.

The first stage cooling model by Simonds should be extended to take
into account melting kinetics and three dimensional heat flow. The second

stage cooling model should be extended to take into account convection.

More measurements of diffusion and solute partitioning in mineral
systems should be made. Both solute partitioning and homogenization
could be used for a wide range of compositions if this data were known.
The model which describes homogenization within a grain should be extended
to include solidification from the melt with diffusion in the liquid and

the solid and effects of the moving boundary.

Models for the growth and the dissolution of gas bubbles in glass

should be extended to include more than one bubble. The gas solubility
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as a function of temperature and composition must be determined, as well
as the dissolved gas concentration in actual melts. The model should
be combined with existing models of commercial glass melting tanks to

more realistically describe forces and flows.
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APPENDIX A

SOURCES OF VISCOSITY AND GROWTH RATE DATA

Growth Rate

Composition Viscosity Reference -Reference
15418 111 112
50095 113 - 113
70019 112 112
65016 113 113
79155 112 112
67975 114 114
14259 115 116
14310 115 116
15555 111 111
68502 111 -
74220 113 -
15498 117 117
15286 Intrusion 117 117
Anorthite 118 119
Na20-28102 120 120
Salol 84 121

o-terphenyl 84 121
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APPENDIX B

THE THOMAS TRIDIAGONAL METHOD

The equations are:

aju; 3 tbyuy tejuy =4y

for 1<1i<R

with al = CR =0

The algorithm is as follows:

First, compute

a.c
_ 1591 _
Bi = bi i e with Bl = bl
i-1
_9 T3 I 4
Yy B. Y %y
i 1

The values of the dependent variable are then computed from

. = R b £
R 'R i~ Y B,

This algorithm is taken from von Rosenberg (91).
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APPENDIX C
INTERDIFFUSION COEFFICIENTS IN OLIVINE

Experiments have been conducted by Buening and Buseck (43) and
Misener (42) to determine interdiffusion coefficient data for Fe and Mg
in olivine. Buening and Buseck used a crystal of one composition and a
powder of another to make their diffusion couple; Misener used two
crystals of different compositions placed together. In such experiments,
the question of the quality of the grain-to-grain contacts is always

present.

The diffusion data to be reported below are derived from experi-
mentation wherein two different compositions, with the same crystal-
lographic orientation, are placed in contact to form a diffusion couple.
After annealing at a given tempergture and FOZ for a predetermined time,
the compositional profile across the boundary of the two phases is
measured using an electron microprobe. This profile is subjected to the
Boltzmann-Matano solution (Crank, 1956), from which the interdiffusion

coefficient, B, can be determined.

Isothermal heating experiments were conducted by Taylor et al. (31)
to test the validity of interdiffusion coefficient determinations of
Buening and Buseck (43) and Misener (42) for Fe++ and Mg++ diffusion
between natural specimens of forsterite (F092) and fayalite (Faloo).
Chips from these phases were polished (1 um diamond compound in the last
step), sized by sawing into 3 mm cubes, and joined together (with c axes
parallel) across the cleared, polished surfaces by placing them in

Ag70Pd foil, in turn wrapped with Pt wire. The reactants, Fo92 and

30
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FalOO’ therefore, defined a diffusion couple for this experiment.

Two sets of experiments were designed in order to check for possible
grain boundary effects upon diffusion of cation species between phases in
the couple: (1) a sample, prepared as above, was sealed in an evacuated
silica tube, duplicating the technique used by Misener; and (2) a free-
floating éilica rod, exerting a load of about 5 lbs/in2 on the sample
("hot pressing") in the vertical position, was sealed in an evacuated
gilica tube. The loaded capsule was designed to minimize grain boundary

effects upon cation diffusion rates.

Both charges were then heated at 1000°C for 311 hours, quenched,
and examined with a binocular microscope to check the nature of the grain
boundary contact surface. No apparent displacment along this surface
could be discerned. Each couple was mounted in epoxy and a polished
surface prepared such that the compositional profiles, measured with an
automated, MAC 400S electron microprobe, were those across the center of

the contact surface between forsterite and fayalite.

Optical observations of the fayalite in some experiments revealed
evidence for noticeable oxidation of the fayalite to magnetite + silica.
The experiments were consequently performed in triplicate. One set of
charges were, in fact, subjected to heating at 400°C for 3 hours under a
pumping vacuum prior to sealing of the silica tube. It would appear that
some oxidation occurred late during the annealing process. In spite of
these complications, compositional profiles away from the grain boundary

into Fo92 were obtained. The profiles are somewhat flatter than obtained’
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by Misener and about the same as calculated for FO2 = 10--12 atm. from the
data of Buening and Buseck. This indicates that the interdiffusion data
by the latter authors is probably closer to correct. Also, no differences
between profiles in the loaded and unloaded samples were detected.

. . ++ ++
Therefore, the interdiffusion coefficient data for Fe and Mg as

determined by the very thorough investigation of Buening and Buseck was

used in the present study.

Concentration profiles in lunar samples 12002 and 15555 were measured
by Taylor in conjunction with the development of the kinetic model
presented in Chapter VIII. The applicability of the kinetic model is
dependent upon a well-defined choice of phases from which a diffusion
couple can be described. In the case of lunar samples 12002 and 15555,
this entailed finding and measuring the compositions of olivines which
had compositionally different cores and rims. The profiles across these
grains, by necessity, had to flatten over cores and rims to ensure the
reliability of cooling rate estimates from the data. Large, equant grains
were chosen which exhibited differences in birefringence between rim and
core (transmitted light, crossed polars). Several crystals were subjected
to electron microprobe analyses in order to determine a grain with the
largest compositional gradient. The regular geometries of the crystal
cores and rims provided a means for choosing grains suspected of having
symmetrical compositional profiles. Those grains containing melt or
crystal inclusions were not chosen, since compositional gradients are

perturbed in the vicinity of these inclusions.
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Core and rim geometries and compositional profiles were defined by
traversing each olivine grain such that compositional variations were
known at all points on the grain. No measurable oscillatory or reversed

zoning was present in any of the grains analyzed.
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