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ABSTRACT

Appealing to current and past work on the routing problem in
data - communication networks, we motivate the need for algor-
ithms that estimate the derivative with respect to flow, of
the total message delay on each of the links. We then cast
the problem in a queueing theory framework and, making no sta-
tistical assumptions other than stationarity, we propose three
algorithms that process the record of arrivals and departures
of a single-server queue to derive an estimate of the deriva-
tive, with respect to arrival rate, of the total delay accum-
ulated per unit time. Through simulation and analysis we show
that all three algorithms are asymptotically unbiased and
efficient for M/D/1 queues. By simulation of other queues we
investigate the relative robustness of the three procedures.
Finally, through examination of the storage and computational
requirements we identify a single most promising algorithm.
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SECTION 1
INTRODUCTION

1.1 The Message-Routing Problem in Data-Communication Networks

There are several major analytical problems in the design
of a modern data communication network. Given a set of nodes,
different topological configurations may be considered. Having
specified the manner in which the nodes are comnected, there
remains the question of how to assign capacities to the communi-
cation links. For each problem, different constraints and
optimization criteria are appropriate. Once we have resolved
the issue of the structure of the network, the central problem
that remains is how to route a given message from a source to a
destination node. We are interested in store-and-forward computer
networks where messages, or segments of messages called packets,
travel from a source to a destination node, waiting in queues
for retransmission at each intermediate node. One way to specify
a routing policy is by providing a routing table for each node i
listing what fraction of the traffic destined for node j is to
be sent on each of the outgoing links from node i. Routing
strategies vary in character from purely static, the routing
fractions being fixed in time and determined on the basis of

average arrival statistics, to the completely dynamic case where



the fractions vary continuously in time according to the "state'
of the network. The philosophy for implementing any strategy

varies between centralized and decentralized extremes. In the

centralized case a special node in the network receives informa-
tion and does all the routing computations, communicating changes
in the routing fractions to all other nodes. In a decentralized
scheme, each node computes its own routing table on the basis of

"locally" available information.

An intermediary between the strictly static and dynamic
routing schemes is termed quasi-static routing. Here we overcome
the static procedures insensitivity to gradual traffic changes
and the failures of links and nodes by up-dating the routing
strategy periodically, or when a special need arises. 1In the
dynamic routing case, messages that have been segmented into
packets may arrive out of order at the destination node, neces-
sitating a '"reassembly' operation. 1In the quasi-static pro-
cedure, most messages would be delivered in order since the time
intervals between routing charges will be relatively long. Hence,
quasi-static routing procedures suggest a sensible mid-point

between the static and dynamic extremes.



1.2 Purpose of the Thesis

Routing procedures that have been derived to optimize
system performance in the sense of minimizing the total delay Do
accumulated per unit time, work with an objective function of

the following form:

D, = T Dik(fik) (1.1)

The assumptions inherent in (1.1) are discussed by Kleinrock
in [5]. Dik(fik) denotes the average delay/unit time on link

i-k and fi denotes the total link flow in bits/sec. An extra

k
term may be added to include the effect of propagation delays

on link i-k. These previous approaches to routing have employed
closed form expressions for the Dik(fik)'s, derived from queue-
ing theory by making many simplifying assumptions. This approach

to the routing problem has been taken by Kleinrock [5], Cantor

and Gerla [2], and Schwartz and Cheung [7].

The departure of this thesis is from the search for closed-
form expressions to finding efficient algorithms to estimate
the quantities of interest. 1In particular, for static and quasi-
static routing it has been shown in the previously mentioned
works, as well as others like Gallager [3], Agrew [1l], and

Segall [6], that the routing procedure should be based on

10



knowledge of the derivative of the total delay/unit time Dik(fik)
of messages passing through a link i-k with respect to the total

flow fi Rather than differentiating closed from expressions

K’
for Dik(fik)’ we propose processing the queues at the links to
estimate the Dik(fik)'s directly. In this manner we can dis-
associate the optimality of a given routing procedure from all
the assumptions necessary to the closed form formulae for delay.
In this thesis we derive three different estimation procedures
for the marginal delays Dik(fik) by making no assumptions as to
the structure of the queues. However, to study the properties
of each estimator through analysis and simulation methods, we

make very specific assumptions about the structure and underlying

statistics of queues to which the estimation algorithms are to

beapplied.—Hence; inthe following paragraphs—we motivate—the
importance of directly estimating the incremental delays Dik(fik)
by reviewing the previous work in designing routing strategies,

with special emphasis on those results relevant to quasi-static

routing procedures.

1.3 Previous Work

The most common model for routing problems in data networks
is that derived by Kleinrock [5]. He makes the following

assumptions:

¥l



1) Poisson arrival. at nodes
2) Exponential distribution of message length

3) 1Independence of arrival processes at
different nodes

4) The "independence' assumption of service
times at successive nodes. Each time a
message arrives at a node a new service

requirement is chosen from the same
exponential distribution.

On the basis of these assumptions he derives an explicit formula
for the total delay/unit time accumulated on the (i-k)-th link.
1f fik denotes the amount of traffic passing over the (i-k)-th
1ink in bits/sec. and Cik is the capacity of link (i-k) in

bits/sec., the average total delay will be given by

Eik
PirFuid =T~ £, (1.2)
To illustrate how Kleinrock's result in {1.2) is used in
routing problems, we outline the static routing scheme presented
by Cantor and Gerla [2]. The problem of finding an optimal
set of routes is posed as a nonlinear multi-commodity flow prob-

lem, where we want to derive the flow vector f*, whose entries

are,fik's; that minimizes the following objective function:

f
ik
- f (1.3)

ik
12



The summation in (1.3) is taken over all (i,k) pairs that are
connected and y is the total external arrival rate in packets/
unit time. T is interpreted as the average packet delay. The
set of flows that satisfy multi-commodity, capacity, and non-
negativity constraints is shown to be a convex polyredral set

and hence any f in that set may be expressed as a convex combin-

ation of extremal flows o(1)
r r

£= 2 e 2oy -1 (1.4)
i=1 i=1

Letting VT(£f*) denote the gradient of the objective function in
(1.3) evaluated at f*, Cantor and Gerla propose an algorithm
that finds the optimal £ = f* in the sense of (1.3) for a given

basis of external flows (w(l) .o w(k)x and the: generates a new

(k+1)

basis vector ¢ that minimizes (VT(£f%*),o). w(k+1) is the

new extremal flow that will help us reduce T the fastest. The

prccedure continues iteratively until we are as close to the

optimal flow as desired. As part of the calculation of w(i),

we generate a set of routing tables that realize the given flow.

Schwartz and Cheung [7] describe a gradient type algorithm
for calculating the optimal flow vector which motivates a poscible

stochastic approximation algorithm for quasi-static routing.

(m,n)

Let f£,. denote the total bit rate on link (i-j) and fij denote

ij
the bit rate of messages with source m and destination n on link
13



i-j. Let Tij denote the propagation time for link i-j and %

be the average message size in bits. Then the objective function

which Schwartz and Cheung define is the average message delay

1

1
T== ¥ f — uT; (1.5)
Y (4,5 1 (Cij £y3 ”)

vy is the expected total external message arrivals/unit time and

C the capacity of link (i-j) in bits/sec. If NN denotes the

ij?
number of nodes in the network and Yun is the expected number of
arrivals/unit time at node m with destination n, the multi-

commodity, non-negativity, and cupacity constraints on the flows

are stated as follows:

y /p i=m
Wy Wy )
T £, - T fLi’ ={0 i#m, i#n (1.6)
k=1 1=1
-Ymn/u i=n
fgn,n) >0 (L.7)
- (m,n)
fij (m?n) £75 < C;; (1.8)

14



Defining a commodity flow vector £, whose entries are

the fi?’n)'s, the conservation of flow constraints (1.6) may be

expressed as
A f b . 109

b is a vector whose entries are either O, ymn/u, or —ymn/u. Aq

is a matrix consisting of submatrices corresponding to each (m,n)

commodity.

| |
A(1,2)

Aq = ® e R A(m’n) (1.10)

* ., (NN,NN-1)

I

Given a flow fi satisfying constraints (1.6) through (1.8), we
can obtain a feasible direction of descent for the objective

function in (1.5) by projecting vT(fi) onto the constraint sur-
face defined in (1.9). Hence, Schwartz and Cheung propose the

iteration

it _

£ £l thvT(fi) , (1.11)

where h is a step size and Pq a projection operator defined by

15



Py =1 - Ag(AqAZ)-lAq : (1.12)
The capacity constraint is handled implicitly by the penalty
function in the objective function (1.5). Schwartz and Cheung
derive an h' such that for 0 < h < h', the non-negativity of
flows is preserved. The actual h is determined by appealing to

the convexity of the objective function.

Now we recast the procedure of Schwartz and Cheung [7] to
apply to a quasi-static routing situation. Suppose we redefine

the objective function in (1.5) by not using Kleinrock's formula

T

0
< f=

(i?j) Dy (£y5) + £550T55) (1.13)

We assume that the current vector of flows is fi and we have

available estimates for 2D

Hence, we can calculate VT(fi) and apply the iteration

and the Tij are known constants.

et o gl nh'quT(fi) , (1.14)

where h' is the upper bound on the step size to insure non-
negativity of flows and 7 is some scale factor 0 < nn < 1.

Equation (1.14) could be termed a stochastic approximation

16



oD, .
algorithm since our values for g§il would necessarily be
15 | gl
inexact and hence our gradient vT(fi) would only be an estimate.

In the algorithm offered by Cheung and Schwartz, the routing

fractions are determined by knowledge of the commodity flows
g{m>m)
1]

assume the routing computations are performed at a special node

. In addition, the procedure is centralized, namely we

and then communicated with the rest of the network. For many
reasons, decentralized algorithms where the computation is dis-
tributed through the netwoirk are more desirable. We next discuss
a quasi-static routing algorithm derived by Gallager [3] that
not only is decentralized, but works directly with the routing

fractions.

Gallager uses a static model with stationary inputs and
proposes an algorithm that seeks to minimize the total delay DT
in the network specified by Eq. (1.1). He assumes the functions
Dik(fik) are increasing and convex U functions of the flow fik‘
Let ti(j) denote the total expected traffic at node i destined
for node j and ri(j) the total expected external arrivals at
node i destined for node j. The routing variables are defined
as dik(j), the fraction of traffic ti(j) that is routed over
link (i-k). Conservation of flow for traffic with destination j

at node i is expressed with these variables as

17



£ 0) =5 @) T B € (16, (1.15)

Hence, the link flows fik are given as

oD, oD,
Gallager next derives two quantities, S;ETET and 32;;?};’

that appear in his algorithm and are used to characterize the

conditions for a minimum of D,, with respect to the ¢4 variables.

T
oDy, oD,y
= 3 !
5r; (3) E 8 (D Dgp (£gy) + 5T, (3) (1.17)
3D »D
T I (1.18)

T ™ SO P *

He then shows that a necessary condition for ¢ to achieve the

minimum DT is

dD,, >‘ij ; 6ik(j) >0

28, () |5y (1-19)

ij 8,,(3) =0

18



Gallager's algorithm consists of two parts: a protocol
oD
between nodes to calculate marginal delays S;f%%T and keep track
i o

of a number of sets which he terms Bi(j)’ and a procedure for
up-dating the routing variables ¢. The procedure for adjusting
the routing variables is defined as a mapping dl = A(4) that
attempts to move closer to the optimal equalibrium condition
specified by (1.19). The sets Bi(j) denote nodes for which
éik(j) = 0 and the algorithm is not permitted to increase éik(j)
from zero. The way the Bi(j)'s are defined insures the
"looplessness" of routes from any given source i to destinatiom j,
i.e., we can never go from a node i to some intermediate node m,

back to node i, and finally to our destination node j.

We can see that the marginal delays Dik(fik) are fundamental
to Gallager's procedure. While we could obtain them by differen-
tiating Kleinrock's formula [3], it would then be necessary
to estimate the flow fik' Hence, it is important to make the
algorithm independent of Kelinrock's assumptions and estimate
D{k(fik) directly by locally processing the queue for traffic

using link (i-k).

We next review Carson Agnew's discussion in [1] of the
ARPA scheme for routing, since his analysis reveals the reason
for the sub-optimality of that method and he suggests an ARPA

type routing strategy employing marginal delays. In the ARPA

19



procedure, each node in the network maintains a table whose (i,j)-th
entry is an estimate of the minimum time to reach the j-th node
through the i-th neighbor. These estimates are based on the

queue sizes at intermediate nodes, and hence the time it takes to
empty those queues. When a message arrives addressed to the j-th
destination, we look down column j and send the message to the

neighbor with the smallest estimated delay.

Agnew introduces a simple single-commodity network with
input flow A to be split into n routes with Aj arrivals/sec.
each and stationary M/M/1 queues (exponential service require-
ments and exponential inter-arrival times all mutually independent).
The flow, capacity, and non-negativity constraints together with
the objective function corresponding to average message delay are

represented as follows:

n
A= I Ai (1.20)
i=1
0_<_ki_<_pCi (1.21)
—_ 1 B — .
T = x'iza Ai(Ti + Ti) (1.22)

20



The average message length is specified by %. Ti denotes the
average total delay/message for the i'th queue and Ti denotes
some remaining constant delay to get to the destination, such as
a propagation time. Agnew's analysis is not relevant to more

general networks since the Ti should be functions of Ai'

For this simple one destination model, to implement the
ARPA technique we would have a table with i'th entry Ti + (1-+Li)pCi,
where Li denotes the number of messages in the queue and being
serviced. After a long time, the distribution of traffic would
be determined by the equalibrium conditions
T, +T' =T, +T' for A., A, >0
i i j j i’ 73
(1.23)
T, +T'>T, +T! for X, =0,x,.>0
i i h| j i j
However, these do not correspond to the conditions for obtaining

a minimum T in (1.22), which Agnew shows to be

o) = '

_—t’}‘i (AyTy) + :['i °"J (x T ) + TJ Xgs A5 > 0

o T 1 ' =

oAy ()LiTi) + T]._ > (AjT ) + T )\i 0, Aj >0

21



These differing equalibrium conditions (1.23) and (1.24) reflect

the difference between system and user optimization.

For his single-commodity model, Agnew suggests a way to
obtain an ARPA-like scheme that will approach the conditions for
system optimality defined in (1.24). What we need is a quantity
that has an expectation equal to the marginal delay 3%; (kifi).
For an M/M/1 queue he shows that S, =*E%— (1 + Li)(l + Li/2)

i
satisfies the desired property. Hence, he proposes that we do

ARPA-type routing with revised table entries Si + Ti

In [6] Segall proposes for a general network an ARPA-like
routing strategy that uses marginal delays. Suppose that the
objective function we wish to minimize is the total delay accumu-
lated per unit time over the network defined in (1.1). If we
denote by ri(j) the average bit rate of external arrivals at node
i with destination j, and given a small change 6ri(j) in ri(j),
where should we direct the extra traffic? Assuming we direct
éri(j) on a path P from i to j, the associated change in the

total delay DT js given up to first-order terms by

0D
df

6D, = >

T (1.m) <P ﬁri(j) = P Dim(fLm)ari(j) .

Lm (4,m)€P

(1.25)
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6D
Hence, this suggests choosing P so as to minimize 3;-£%7' The
i

routing procedure motivated by (1.25) is analogous to the ARPA-
scheme, but the (i,j)-th location in the routing table would now
6D

list the estimate of the minimum 3;-%%7 for directing extra
i

traffic to destinaton j through neighbor 1i.

1.4 Formulation of Thesis as Queueing Theory Problem

In all of the quasi-static type routing algorithms pre-
sented, the incremental delays Dik(fik) are essential quantities.
Rather than differentiate queueing theoretic formulae, with all
their implied statistical assumptions, we propose estimating
Dik(fik) by operating on the record of the queue associated with
the outgoing link from node i to k. We are interested in find-
ing recursive estimation procedures that process the queueing
record and converge to Dik(fik) as the observation interval
becomes sufficiently large. Hence, our problem can be formulated
in the context of single server queueing theory. 1In our case
the customers are identified with messages. The service time
becomes the transmission time for the message due to the finite

capacity of the communications link.

Hence, in this thesis we derive three algorithms that pro-
cess the record of arrivals and departures of a queue to generate
estimates of the derivative with respect to arrival rate of the

average total delay per unit time. Since we make no assumption

23



as to the exact form of the queue, we are interested in robust
techniques that are as insensitive to statistical assumptions
of the queueing process as pqssible. However, the performance
of the algorithms can be analyzed only for relatively simple
queues. Consequently, although the proposed algorithms can be
applied in practice in very general situations, their explicit

analysis is only done for queueslike M/M/1, M/D/1, etc.

1.5 Summary of Thesis

The plan of the thesis is to examine the behavior of three
estimation procedures, which we term the customer-addition,
customer-removal, and time-contraction algorithms, for a variety
of queues. The algorithms are described in detail in Section 2.1
but we may say now that each procedure corresponds to a different
technique for imagining a hypothetical alteration of the queueing
record to reflect a differential change in arrival rate 6). In
the customer-addition algorithm we conceptually add a customer
at a random time in the observation period to simulate an increase
in arrival rate. In the customer-removal algorithm we randomize
the conceptual removal of customers from the queue, achieving
the effect of a decrement in arrival rate. 1In the time-contraction
procedure we redefine the arrival times of customers to simulate a
compression in time scale'and hence a differential increase in

arrival rate.

24



Section 2 contains the main results of the thesis. First
we give a detailed description of the way the notions for
altering the queueing record indicated above are refined into
the actual estimation procedures. This motivation leads then to
the derivation of the algorithms and their realization in flow
chart form is indicated. The analysis of the algorithms is
performed in detail for special queues in Sections 2.3, 2.6, and
2.8. For the customer-addition and time-contraction procedures
we are able to prove asymptotic unbiasedness for an M/D/1 queue.
For the time-contraction and customer-removal procedures we
define the calculation of the asymptotic bias as a power series
in p, the utilization factor A;, in the case of M/G/1 queues.
Employing this power series representation, we show that for an
M/D/1 queue the bias for the customer-removal algorithm may only
contain terms of third-order or higher in p. We also show that
for an M/M/1 queue, both the bias for the time-contraction and
customer-removal algorithm contain terms with powers of p of
all orders. Since the calculation of the variance associated
with each of the estimators is too cumbersome, we derive Cramer-
Rao bounds for each algorithm in the case of an M/D/1 queue.
Since for purposes of practical implementation, routing calcula-
tions are secondary to the actual transmission of data, it is
important to analyze and compare the storage and computation
requirements of the three algorithms, which we accomplish in the

final section of Section 2. 95



In Section 3 we present the results of simulating all three
algorithms for an M/D/1 queue and the customer-removal and time
contraction procedures for M/M/1, D/M/1, and U/M/1 queues. The
performance measures we use to compare the algorithms are the
relative bias and fractional rms error. Since the queueing
record is segmented into busy and idle periods during which the
server is occupied and unoccupied respectively, the variable we
use to quantify the observation interval is the number of busy
periods N included in the period. Hence, to investigate the
convergence of the algorithms, for each queue of interest we
present curves of the fractional rms error for N = 10, 100, and
1,000 busy periods and similarly present tables of the fractional
bias. Employing our Cramer-Rao bounds for the M/D/1 case, we
find that all three algorithms are both consistent and asymptot-
ically efficient. We examine the robustness of the customer-
removal and time-contraction algorithms by comparing their per-
formance for M/D/1, M/M/1, D/M/1, and U/M/1 queues. The only
significant difference in the two procedures performance occurs
in the case of a D/M/1 queue, where the customer-removal pro-

cedure does worse.
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SECTION 2

THREE ESTIMATION ALGORITHMS

2.1 Introduction

The main goal of this thesis is to propose and evaluate
algorithms which process the record of a single server queueing
system to estimate the derivative of the total delay/unit time
with respect to arrival rate . The available record consists
of exact knowledge of arrivals of customers to the queue and
their departures after service is completed. Time is segmented
into alternate intervals, busy periods, during which the server
is occupied, and idle periods, when the server is free. The
observation interval which is used to form our estimate consists

of a number of busy periods and the intervening idle periods.

A simple thought-experiment motivates all three estimation
algorithms. Consider our single-server queueing system with
its average arrival rate of A customers per unit time. For a

given observation period T,_,, if we can compute the total system

E?
time S, i.e., the sum of all customer's service and waiting
times, then the average delay/unit time is given by D = S/TE.
Suppose we could actually alter the input flow by some 6A. Then,
on the basis of an earlier D, by computing D* for the next

observation period, we can estimate the derivative of the total

delay/unit time by calculating
27



~ N -
pt = DE-D (2.1)

However, in any actual queueing system it would be undesirable
to change flows just for measurement purposes. Even if we
could implement (2.1), the independent statistical fluctuations
in D and D* would probably make it a very poor estimator.
Hence, what we need is some mathematical formalism for an imag-
inary increment in flow 6, which will allow us to compute the
corresponding change in delay without actually perturbing the

arrival rate.

According to intuition, an increase in arrival rate should
result in additional customers entering the system. An extra
customer arriving in a time interval TE with probability & will
increase the effective rate by oA = e/TE. If extra arrivals are
mutually independent events, the probability of two or more cus-
tomers will be of second-order in & and hence of second-order “n
o.. Therefore, only the effect of a single extra arrival has to
be considered explicitly. We also assume that the arrival time
of the extra customer is uniformly distributed over the observa-
tion period TE. In addition, in order to explicitly compute the
change in total system time over the observation intexval due to
an extra arrival, we must assume that the additional customer

has some known service requirement. These assumptions allow us
28




to compute an expected increase in system time conditioned on
the arrival of a new customer, and the resulting estimation pro-

cedure will be called the customer-addition algorithm.

In a second algorithm, an incremental decrease in the effec-
tive rate X is simulated. This is done by assuming that each
customer arriving to the system is allowed to indeed enter the
queue with probability 1 -¢, and is eradicated with probability
£, independently from customer to customer. In this way we simu-
late an arrival process with rate A(lL -¢). Hence - is determined

as follows:

X(L-¢€) =X + 6) (2.2)
¢ = - GTA. (2.3)

We then estimate A by appealing to the law of large numbers. If

M' is the total number of customers in a period T then ATE ~ M'.

E’

Hence, we use

e = — 6) (2.4)

Again, the probability of removal of two or more customers from

the same period TE is second-order in 6A and hence the reduction

of total system time that has to be considered explicitly is due
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to removal of only one customer. This reduction consists of its
own system time and the effect on other customers. The estima-
tion procedure motivated by this second technique for making a

"virtual" change in flow 6)\ is termed the customer-remcval

algorithm.

A second characteristic that we associate with an increase
in arrival rate, besides the fact that more customers appear in a
given time period, is that there is less time between succecsive
arrivals and therefore the customers are more ''compressed"
together. To make this argument quantitative, we note that an
average arrival rate of )\ customers per second means an average
inter-arrival time of -]=. The change in the average inter-arrival

A

time due to an increment in A is given by

L, __1 &
oy = -5 & . (2.5)

If T denotes the arrival time of the n-th customer, we define a

Q 1 1 LI _@. £ - =l,
new set of arrival times T rn(l ) 1f E(7n+1 Tn) o

! - ! = .]_'. - ..6—A-'.. 1 1
then E(Tn+1 Tn) X (1 A.)' This result is consistent with
the change in inter-arrival time predicted by (2.5) due to an

increase in flow 6\. We compute the resulting increment in system
time by considering first the fact that customers arrive a little

earlier and second, the fact that, given our fixed observation

period TE’ the redefinition of arrival times results in the
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trailing edge of the interval being contracted and leaving a gap

%% TE during which extra customers could have arrived. The

estimation method suggested here is termed the time-contraction

algorithm.

The present section contains the derivation and realization
in flow chart form of the three algorithms. In addition, an
extensive analysis of the algorithms is performed. We give a

proof of the asymptotic unbiasedness of the customer-addition and

time-contraction algorithms for a queue with Poisson arrivals and

deterministic service requirements (M/D/1). The asymptotic bias

behavior of the customer-removal and time-contraction algorithms

for M/G/1 systems are examined as a power series in the utiliza-
tion factor p = \x. TFo= an M/D/1 queue we show explicitly that

the customer-removal algorithm is asymptotically unbiased up to

the third power of p and give a construction to prove asymptotic
unbiasedness up to an arbitrary power. Also for an M/D/1 queue,
Cramer-Rao bounds for any unbiased estimator of the delay gradient
are derived. They will be used in Section 3 to determine the
asymptotic efficiency of the algorithms applied to M/D/1 queues.
We complete the present section by analyzing and comparing the

storage and computation requirements of each method.
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2.2 Derivation and Realization in Flow Diagram Form of
Customer-Addition Algorithm

In the customer-addition algorithm we simulate an increase

8\ in the arrival rate. The following assumptions will be made:

1) The probability of an extra arrival in the
interval T_ is OAT..
E E
2) Each extra arrival is independent of all other
arrivals.

3) The extra arrival is uniformly distributed

over the interval TE.

4) The service requirement of the extra customer
is known; we denote it by x.

Let Tk and Ik

periods, respectively. Let 0S denote the increase in system time

denote the duration of the k-th busy and idle

over N busy periods associated with the arrival of an extra
customer. We let 65 denote the expected increase in system time
associated with an increase in arrival rate 6\ and conditioned on
the record of arrivals and departures. By conditioning on the

random arrival time t being in each Tk and Ik we can compute 65

as
68 = E(0S|Queueing Record)T 5)
~ N T, N-1
6s = { T E(bS|teT,, Queueing Record) Tt z
k=1 E =1
T
E(GS\teIk, Queueing Record) — ¢ T 0\ . (2.6)
TE E
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The TEGA outside the brackets is the probability of an extra
arrival. The increment in system time due to an increase in flow
6\ is zero if no additional arrival occurs. The factors Tk/TE
and Ik/TE represent the probabilities of t being in the k-th busy
and idle periods, respectively. This is a consequence of the

assumption that t is uniformly distributed over T Since we are

E.
interested in the derivative of the total delay/unit time with

respect to the flow rate, our estimator is given by

a1 88

=

We focus next on the calculation of E(6S|teT, , Queueing
Record) and E(GS\tGIk, Queueing Record). These expected incre-
ments in system time are composed of the average effect on
existing customers plus the average system time of the additional
customer. In considering additional arrivals in a busy period,
we can distinguish between effects on the customers in that busy
period and interactions with succeeding busy periods. First we
examine the part of E(GS\teTk,QueueingRecord), call it ASk,
that comes from considering the k-th busy period in isolation.

To facilitate discussion, the following notation is defined.
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T; é Arrival time of i-th customer in the busy period
(relative to the start of the busy interval)

Xg 2 Service requirement of the i-th customer
Sy A system time of the i-th customer

s¥ O System time the i-th customer would have had if
an additional customer arrived at time t

M A Number of customers in the busy period
A B system time of the additional customer
t A Arrival time of the additional customer

T A Duration of the busy period. (2.8)

We break up the calculation of the expected increase in system
time into expectations conditioned on an arrival in the interval
[Ti, Ti+1] for i =1 ... M. T, is zero and Tyl 1S defined as
the duration of the busy period T. Then

AS =E{ZS*+A-3Z s |te[0,T]}

M
121 E {S¥+A-3 sn\te[vi,riﬂ]} Pr {telTy,m5 4] \te[0,T1}

(2.9)
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By the assumption of uniformly distributed arrival time

Ts - T,
Pr (telr 7,1 tcl0,11} = 2H——% (2.10)

The system time of a given customer is equal to his service plus
waiting time. The waiting time is equal to the sum of the ser-
vice requirements of those who entered the busy period before him

minus his arrival time. Hence, the system time of the n-th cus-

tomer is given by
S = E X - T . (2.11)

Now consider the new total system time due to an arrival at time

telTys7s4q]

M i M i
T S*+ A= T Sn+ z (Sn+x)+ T xn+x-t).
n=1 n=1 n=i+1 n=1

(2.12)

The first term represents the first i customers whose system times
are unaffected by the new arrival. The second term shows that
each customer ahead of the new arrival will suffer an additional
delay x. The final term represents the system time A of the new
customer. Since conditioned on being in [Ti,Ti+1], the random

variable t is uniformly distributed over that interval, taking

appropriate conditional expectations in (2.12) yields
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i T + 7T
i _ i+l " Ty
E {T Sg + A-3 Sn\te[Ti,Ti+1]} x + nza X, - ( )

+ (M-1)x . (2.13)

Substituting (2.13) and (2.10) into (2.9) results in the follow-

ing expression for AS:

M i T, + T, T, -7
AS = x + T { 5 x - i 1+1}{ i+l i}
. - n 2 T
i=1l (n=1

M T, - T,
. +
+ T M-i)x {—L;;f——Ja}. (2.14)
i=1

The first and second terms represent the service requirement of
the new customer and his expected waiting time, respectively.

The third term is the expected delay suffered by the existing

customers due to the mew arrival.

For the special case where all the service requirements are
the same, namely X, = X, Eq. (2.14) simplifies. This can be seen
by direct substitution of x; = x into Eq. (2.14), but it will be
illuminating to re-examine the computation that led to (2.14).
Suppose our extra customer arrives at time t after the k-th and
before the (k+l)-st customer. The M-k customers ahead of the

new arrival suffer an additional delay x. According to the rule
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described by (2.11), the system time of the new customer is given
by (k+l)x-t. Hence, for an arrival at time t, there is an addi-
tional system time Mx-t+x. This amount of time is equivalent to
allowing the extra customer to wait till the end of the busy
period and then be served. Since t is uniformly distributed over

-
an interval Mx, we have t = Mx/2. Therefore, AS 1s given by

AS = -;—Nnc-*x i ' (2.15)

We complete the calculation of E(6S|teT, , Queueing Record)
by looking at the additional system time that may result from
one busy period overlapping onto another. The following will
hold for arbitrary service times Xy . No matter where an addi-
tional customer arrives in the k-th busy period, that period will
be extended by the extra service time x. The value of x relative
to the following idle period durations will determine the number
of succeeding busy periods that will be affected by an arrival in
Tk' However, the number is always finite. If x 5_Ik, no follow-~
ing busy periods suffer additional delay. If Ik < x S'Ik + Ik+1’
only the (k+1)-st busy period is affected. The exact effect on a
given busy period j in the future, depends on how much an arrival
in T, causes the (j-1)-st busy period to overlap onto the j=th busy

k

period. For example, if x > Ik then each customer in Tk+1 will

suffer an additional delay (x-Ik). Letting Mk denote the number
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of customers served in the k-th busy period, the ﬁreceding reason-

ing leads to the following rule for computing E(68S|teT, , Queueing

Record):
,
ASk ngk
DSy + Mk+1(x-1k) L <x£ I, * Ly
E(6S \teT, , Y
Queueing Record) ﬂ .
L+ ( j-1 L 141
AS, + T qx - © 1 )Zlk+§_xf_21+
k70 Mg\ * 7 Zy Tetm 35 et jo0 <t
(2.16)

The last relation in (2.16) refers to the case when an arrival in

Tk affects (4+l) busy periods into the future.

To complete our description of the customer-addition algor-
ithm, we must now evaluate the average increase in system time
E(GS\teIk, Queueing Record) associated with arrivals in idle
periods. The effect of an arrival in Ik on the j-th busy period
again depends on how much the (j-1)-st busy period slides onto the
j-th busy interval. As the effect on customers in Tj is not
independent of the exact arrival time, we must average over all
times t in the k-th idle period. Let.ak+1 denote the time instant

corresponding to the beginning of the (k+l)-st busy perioed. 1If
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x <l

Hence E(GS\teIk, Queueing Record) is computed as

, an arrival in I, affects only the (k+l)-st busy period.

E(5S |tel Ol
K dt
=x+ (x+t -0y ,.) =
Queueing Record) max {ak+1"1k’ ak+1-x}Mk+1 k+1 Ik
for x £ 1, 44 -
(2.17)

Here, x + t =~ %1 is the amount that the additional customers
service time overlaps onto the (k+l)-st busy period. The '"max"
is necessary in the lower limit of integration since our arrival t
must be in the interval Ik' If x < Ik’ then Oppq ~ X represents
the earliest time at which an arrival can occur and influence
the (k+1)-st busy period. By a simple change of variable,

(- - . .
t t - o the dependence on Oyt disappears. The relation
(2.17) may be generalized to

E(6S |tel,, o 0 "
t
; =x+ Z . (x+t'-S.) =7/
Queueing x j= max {-L ,S. - x} Mk+'J(x J) I
Record) k>"j
. 1+1
for T I, ,.<x< I,.. (2.18)
k+j = F =2 Tkt
=1 =1
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0 j=1

- (2.19)

j j-1
n I

m=1

Ktm j#1

Equation (2.18) corresponds to the case when an arrival in Ik

influences 4+l succeeding busy periods. The value of the inte-

grals in the summation are given by

1 A -
0 Mk+j<x -3 Ik-Sj) -Ik > Sj X
' dt' _
: } Mk+j(x+t -Sj) T =
max {-I, ,S.-x k .
k*73 -b%klil (x-S,) 2 S,-x > ~L
k J
(2.20)

Employing (2.18) and (2.16) in (2.6) and (2.7) we can con-

ceive of a processor which up-dates an estimate for the delay gradient

at the end of each busy period. Let Lk denote the time from the
start of the observation period to the end of the k-th busy period.
Let ﬁzk+1) denote the estimate for the delay gradient based on
k+l busy periods. Let Ay be the incremental expected delay
suffered by the (k+l)-st busy period due to an additional arrival
in the current queueing record. Hence, the up-~dating at the end

of the(k+l)-st busy period assumes the form
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N Yo A

D2k+1) = o Dzk) + Ay (2.21)
Since x is finite, we look back in time a finite number of busy
and idle periods to compute Akf Suppose that the busy and idle
periods are numbered consecutively from the beginning of the
observation time and let iI denote the index of the most recent
idle period. Let ny denote the index of the first idle period at
which an arrival with serviece requirement x can influence the

current (iy +1)-st, busy period. Hence, we need only store idle

period and busy period information for (I S | ) and
np iI+1

. Ti +1). At the end of every idle period, n_, must be

(I I

nptl T iy
up-dated to reflect how far back we must look to compute effects
on the newest busy period. Additional simplification is possible
due to the fact that both E(GS\teIk, Queueing Record) and
E(ﬁS\teIk, Queueing Record) include an x term. Since the incre-
mental expected system time due to an arrival in either a busy or
idle period is weighted in the estimator by the probability for
arrival in that time slot, we can add x at the end. These ideas
are realized in the flow diagrams of Figures 2.2 and 2.3.

Figure 2.1 pictures the relationship between ny and iI’ and

defines the variables that appear in the flow diagrams of Figures

2.2 and 2.3.
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i_+1 = Number of the current busy period.

n. = Number of the first idle period at which an
arrival with service requirement x can cause
customers in busy period 1I+1 to suffer
additional delay.

o
-
oo
I}

Variables denoting the elapsed time from the
beginning of the observation period to the
end of busy periods iI’ 11+1, respectively.

A, S, C = Auxilliary variables.

q = Index of current busy period iI+1.

Ti = Arrival time of n-th customer in i-th busy
period relative to the beginning of that
busy period.

xi = Service requirement of n-th customer in the
i-th busy period.

Mi = Number of customers in the i-th busy period.

D' = Delay gradient estimator.

D, = Delay gradient estimator minus service
requirement of additional customer x.

Figure 2.1 Queueing Record Structure and Definition of Variables
Relevant to Flow Chart Realization of Customer-Addition
Algorithm
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We now pose the question of whether the customer addition

algorithm can be generalized to be applicable to a wider class
of queues than those where all customers have the same service
requirement x. As formulated, the algorithm is limited by an
assumption of a fixed service requirement x for the additional
customer. Hence, we can conceive of extending the algorithm by

doing a final averaging over x,

o]

b= = U/ﬁ B(x) 2 (x) dx (2.22)
T ()N
E
x=0
B(x) denotes the service time density and %% (x) refers to the

unnormalized incremental delay as a function of the assumed

extra customer service requirement x. While possible in principle,
the scheme implied by (2.22) is unacceptable for practical reasons.
The evaluation of (2.22) necessitates saving the entire queueing

record and doing all our processing at the end.

Only when the service time density consists of a discrete set
of values would it be reasonable to implement (2.22). 1In this

situation B(x) is given as a train of impulses.

L

B(x) = X 6 (x-x, ) (2.23)
X =1 Py N

Then (2.22) would become
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L
1 6S

= T p, i (%) . (2.24)
Tg x=1 &0 7k

Hence, for each Xy k =1 ... L we would process the queueing
record in parallel, employing the algorithm given in the flow

diagram of Figure 2.2.

2.3 Proof of Asymptotic Unbiasedness of Customer-Addition
Algorithm for an M/D/1 Queue

We now examine the bias cf the customer-addition algorithm
as the number of busy periods in the observation period, N,
become unbounded. For the algorithm to be asymptotically

unbiased we must prove that

lim {E {;f-l- -gf—}}= -;Lf , (2.25)
N E

where D is the average total delay/unit time.

oD
ox

average total delay/unit time D is equal to )\ times the average

To check (2.25) we must first define the quantity The

total delay/customer Dc' Hence, %%'may be expressed in terms of

oD

—£ s
dA

oD

= £
Dc + A Sl (2.26)

<[
I
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The average total delay/customer is expressible in terms of the

average service time x and the average waiting time v as

D =x +w. (2.27)

Hence, oy can be reformulated in terms of the average waiting

time and service requirement.

dD
A

oD _ T L T L, W
o) xt+tw+ A 3\ (2.28)

We can evaluate the above expression for all queues for which an

explicit form of the waiting time distribution is available.

Reviewing the assumptions inherent in the customer-addition
algorithm, we can expect that the procedure will be asymptotically
unbiased in the case of an M/D/1 queue. The descriptor 'M/D/1"
means the arrival process is Foisson, and the service require-
ments deterministic. Since all customers in an M/D/1 queue have
the same service requirement, the assumption that the additional
customer has a fixed service time is harmless. The two other
assumptions, uniform arrival time distribution for the extra
customer and the probability density for the arrival of extra
customers, are both consistent with a Poisson arrival process.
For a Poisson process the probability density for the time of

occurrence of the i-th event given k > i events did occur in [0,T]
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is uniform on the interval. Let p(k,\) denote the probability
of k arrivals in an interval T given that the arrival rate is X.
If we let (GAT)k be the probability that k additional customers
arrive in an interval T due to an increase in rate 61, p(k,x +06))

must satisfy

wiko

p(k,x +6)) =

p(k—i,k)(ﬁXT)i + p(k,x)(l —iEJL-). (2.29)
i

1 1-0AT

After some manipulation, dividing both sides by 6 and taking

the limit as 6\ approaches zero, we obtain

k,1
2eCal) - pip-1,0) - pGNT (2.30)
By direct substitution we can verify that the Poisson process
formula for the probability of occurrence of k events in a time T

given below satisfies (2.30).

Ik, -AT
plie,n) = AL — (2.31)

Motivated by the preceding arguments, we proceed to prove
that the customer-addition algorithm is asymptotically unbiased
for an M/D/1 queue. Since for an M/D/1 queue, the average wait-

ing time is given in [4] as
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w= 22X (2.32)

where p = Ax is the utilization factor, formula (2.28) dictates
that we must prove the expectation of our estimate (2.7) converges

as N-» « to

0D pX pX
— =x + + . (2.33)
2(1- 2
dA (1-p) 2(1-p)
Since by the law of large numbers we have lim TE = lim Pk

Noveo N
interchanging the limit and expectation operations in (2.25) we

must show that

. (2.34)

~[3

A 1im(lE5—S)=°

Moo \ NM [

~

Employing (2.6), we can break the problem of computing E %%

into evaluating the expectation of two types of terms as below.

a N
E 55 _ % E{E(6S\|t¢T, , Queueing Record)T, }
o o1 k
N-1
+ % E{E(8S|tel, , Queueing Record)I, } (2.35)
=1 k k

The terms E(6S|teT,, Queueing Record) and E(GS\teIk, Queueing
Record) are given by Eqs. (2.16) and (2.18), respectively. Since

the queueing record is given by the number of customers served in
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each busy period (M1 ces MN) and the idle period durations

(I1 cee IN-l)’ we further break the calculations by first condi-

tioning on (M1 ees MN) and averaging over (I1 ce IN-l) and then

averaging over (M1 coe MN) as below.
E{E(GS\teTk, Queueing Record)Tk}

= E{E[E(0S |teT) ,M; ... M, I, ... Lo )T, /M LMY (2.36)

E{E(GS\teIk, Queueing Record)Ik}

= E{E[E(6S \teIk,Ml e M T, IN_I)Ik/Ml ...MN]} (2.37)

We organize our calculations by first computing GST and GSI

1 1

defined below as

6s., & E[E(és\teTl,Ml e M Ty e I )Ty \Ml ...MN]
(2.38)

and

e

6S E[E(6S |tel,,My ... My, Ty .. Iy DT (M ... 1],

50 (2.39)




and then generalizing our result to GST and GSI specified

k k
T and GSI over all k's and
k k

similarly. Finally, we sum 6S

average over (M1 ces MN).

Calculation of GST
1

We calculate GSTl by first illustrating the thinking involved
when the number of busy periods included in the observation per-
iod, N, is three and then generalizing the procedure. Figure 2.4
depicts the queueing record for N=3 and a partitioning of (11,12)
space into three regions: Rl’ R,, and R3. According to (2.16),

TlE(GS\teTl, Queueing Record) is given by

,
A5, Ty x <1, or
(Il;Iz)eR1
T E(8S |teT,, ggizﬁcil“g) = < AS T, + (x-I))M,T, I, <x<1I,or
(Il,Iz)eR2
ASlTl-*-(x-Il)MZT1 X > I1 + 12 or
. + (x-Il-IZ)MsT1 (Il,Iz)eR3
(2.40)

The key to computing the desired expectation is in noting which

region of the (11,12) space corresponds to each term. ASlT1 is
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Figure 2.4 Queueing Record for N=3 and Division of (11,12)
Space
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averaged over the whole space. (x-Il)MzT1 is averaged over

I1 < x and (x-Il-Iz)MBT1 is averaged over I -FIZ < x. Sub-

1
stituting T1 =M1x and employing (2.15) for ASl, we break up the

expectation by averaging each term over the appropriate region.

2 1.2 2
+-—-M1x ) + MlexE(x-Il\x > Il) Pr (x 2'11)

6S = (Mlx 5

T

+ M. M xE(x-Il-Iz\x >1

1M3° + 12) Pr (x > 1

+ 12) (2.41)

1 1

We can now extend the arguments that led to (2.36) to the case of
an arbitrary number of busy periods N. The necessary condition
that there be a contribution to the incremental delay due to the
effect of an arrival in T, on the (k+1)-st busy period is

k

T I, <x. (2.42)
j=1

Hence, (2.41) generalizes in the case of N busy periods to

6S,, = (M x2 +-l-M2x2) + N;} MM YE(X - ; I.| I. <x
T1 1 2 1 k=1 1k+1 =1 i 5=1 j -
k
Pr{ T I, <x}. (2.43)
j=1

We now proceed to define the statistics of quantities which
we need to calculate (2.43). For any M/G/1 queue, the idle
period lengths Ij are independent, identically distributed expon-

ential random variables with parameter A [4]. Hence, their sum
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has a gamma distribution. The density and distribution function
associated with the sum Y of k idle period durations are defined

below.

k
Y= 3% I, (2.44)

j=1

k-1 k =iy
-y Ae
fY(Y) (k-1)1 (2.45)
o k-1 j |

Fo(y) =1 - e ¢ Q9 (2.46)
Y §=0 j!

X

" .
| [ yEy(n) dy - e™ 3z Ll—’;",‘ J)
0 ¢=0 .
E(Y\y < %) = 5oz L : (2.47)
r {y < x} (1-e”‘xk1 :AXIJ)
j=0 J!
Using (2.47) and (2.46), Eq. (2.43) becomes
N-1 k-1 i
_ 2 . 1.22 NPt (Ax)
GST (Mlx + 5 Mlx ) + ? XM1Mk+1 [(x k)(l e :13 31 )
71 k=1 j=
k-1 k
“-AX A X
+ e W] (2.48)
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The first term represents the effect of the additional arrival on

the first busy period and the terms in the summation show effects

on the remaining N-1 busy periods.

Calculation of GSI
1

The preceding procedure, of examining each type of term
separately and imposing conditions on the space or (I1 . IN-l)
such that the term appears in E(GS\teTl,Queueing Record)Tl, may

be applied to computing 6S A more compact statement of

I.°
1
Eqs. (2.18) through (2.20) for E(GS\teIk, Queueing Record) will

make the identification of the relevant terms clearer.

roaHl 1
X + 321 YMers 5 -7 TmS5)

+ (v t‘—}'—tl (x-sj)z}

Queueing
E(8S |tely, pocord ) ={

4+1
<x< T I
j:

for (2.49)

] e
1t
=

k+j k+j
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0 j=1

5, =4 (2.50)
j-1 '
\mE& Ly J71
1 -1 Z’SJ-X
75 = (2.51)
0 S.-x > --Ik

From (2.44), there are three terms in E(ﬁs\tell, Queueing Record)I1

to consider.

xI1 (2.52)
1

My s x - 51 - Sj)Il (2.53)

M4 2

—é-l (x-Sj) (2.54)

The first term (2.52) always appears and hence is averaged over
the whole space of (I1 e IN-l)' Wg next consider the j=1 terms
specified by Eqs. (2.53) and (2.54). There is no condition on

(I1 oo IN-l) needed to guarantee contributions to the incremental

delay due to the effect of an arrival in I1 on the second busy
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period. Relation (2.51) implies that expression (2.53) will
appear if I, < x and expression (2.54) if I, z x. For j>1,
h|
Z IL < x is the necessary condition that arrivals in I1
=2
the (j+l)-st busy period. Taken together with (2.50) and (2.51)

affect

this implies the following rule for computing the expectation of

terms (2.53) and (2.54) for j > 1.

1 ] '
Average Mi+j(x-5 Il - IL)II Over {LE I& < xg (2.55)

L=1 =1
j \
. o T
Average M—lg:l (x - 4,%2 IIL)2 Over > (2.56)
J
,{,22 IL < X )

This discussion of the conditions for the appearance of all
the terms in E(GS\teII, Queueing Record)Il is summarized in the
formulation of its expectation.

N-1

6s. = xEI. + Z M. .
1 1 =1 1+j

1
E{(x-2 I -Sj)Il\Sj+Il<x} Pr {Sj+I < x}

1 1

N-1 M.
+ T —1§'-lE{(x-sj)2\sj+1

>x, S, < x}Pr{S,+I
Pl j i

1 >x, Sj<x}

1
(2.57)
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Sj =< (2.58)

EI1 is the unconditional mean of an exponential random variable
with parameter A and hence is %. The computation for the j=1
terms in the summations are lumped together and the result listed
below.

1 1 -AX

X M2(x + X (e 1)) (2.59)
This term is the part of the incremental system time due to the
effect on the busy period following Il’ The terms for j > 1
represent contributions due to effects on busy periods more than
one removed from Il' To compute the terms in (2.57) for j > 1

we can rewrite the expectations implied in (2.55) and (2.56) as

J J
1 .2
Average M1+j xI1 - (Lza IL)II + 5 I1 Over {LER I& < x}

(2.60)
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j 2
Average M1+j (x - LZ I, + Il) Over < (2.61)

.

\{,21 IL"Il < x

By defining two random variables Yl’ Y2 we can reformulate

the evaluation of the expectations implied by (2.60) and (2.61).

(2.62)
Y. =1, + £ I,= 2 I (2.63)

The joint density for Yl’ Y2 is computed from the density for the

sum of j-1 independent exponential variates.

‘1 i _9 _
-Ayl XJ (yz_yl)J eX(YZ yl)

le,Yz(yleZ) = le(yl)sz\Yl(yz\yl) = (e ) G-2)!
] i_g "AY
D SR L SN
le,Yz(yl’yz) G-2)! (Yz Yl) e
for Yo Z ¥y >0 (2.64)

We now define two regions in (YI’YZ) space.

R, & {(¥,Y,): ¥, <x] (2.65)
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> X, Y, -Y

)Y < x) (2.66)

A .
R2 = {(Y1,Y2)° Y2
By making identifications between Yl’ Y2 and the variables
in (2.60) and (2.61), the desired expectations may be expressed

as follows:

My (T IRY) - (T1Y, (Ry) - 3 (¥ \R)))PriR, ) (2.67)

Moy 2. 3 ) = = ——
5 (% +(Y1\R2) (Y5 [R,) - 2x(Y,-Y; |R,) -2(Y1Y2\R2))Pr{R2}

(2.68)

The notation (g(Yl,YZ)\Rl) denotes E(g(Yl,YZ)\(Yl,YZ)eRl) and
Pr{Rz} denotes the probability that (Y1,Y2) lies in RZ‘ Results

of the calculations in (2.67) and (2.68) are listed below.

X X
Pr{Rl} = I j' le,YZ(yl’yz) dy2 dyl
0 Y1
-AX izl SXXZL
=1 -e z (2.69)

!
i L]
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YRy =] [ yg 122
171 1 Pr (R, dyzdy1
0 Y1 1
j=2 L A+2
1 _ TAX —AX Ax J A x
X (L - &) - xe Ae ? (4+2) 1
- =0 (2.70)
Pr {Rl} ’
X X fY , Y (yl’y2)
TRy = [ [ g2 L2 dy, d
1'% Y1 Pr (Ry) Y2991
0 Y1
2 () L2 % 2x X 3;32 bt
3) 1
=>\2 X £=0 (4+3)!
Pr {Rl}
(2.71)
X X f (¥155,)
_— Y. ,Y 1272
(Y, \RD) =[ [ vy 1272
1271 172 Pr (R.] dyzdy1
0 Y1 1
_ {% (1 - %y -2 rx_ 2x
A
A
J-1 1 . Ax, _ _TAX
+ Y [)L (L-e"") - xe™7]
Eix . j-2 - 143 . A% 2
- =5 | (GH) LL. +(j-1) Qx)
2 = (A3)! 2
A 4=0
Pr {R;}

61 (2.72)



P =
r{R} =1 [ £y ,YZ(Yl’Yz) dy,dy,
Yo©X Y1TYy7%

1
- ltfgiiT' o (2.73)

('371 \Rz) -

|
—
<
|
g
2}
"
=
N
()
oL
<
o
[N
<
N

_ il X
_ (2.74)
Pr {Rz}
—_— o £ (y155,)
2 Y9 g Yp,Yy 71772
Y2 |R.) =
(Y] Ry) = | J vy PE(R,) dy,dy,

j-1
AX 2 2 . . N1
GG [2x" + N (G+)x + i% (JZ'FJ)]eAx
- A

Pr {Rz}

(2.75)

62



— (J“l)! (2 76)
Pr{Rz}
2 S , 1y,
(Y31Ry) = | [ Yo Pr(R,) dy;dy,
Y2=x Y1=Y2‘X
j-1
AX 2,2 2.\
G-1)1 (x~ + x X + kz)e
= Pr{Rz} (2.77)
o 7, le,Yz(yl,yz)
YR =] |7 Y159 PrirR] Y19,
y2—x yl—yz-x 2
j-1 . —
L-)——lxj, (x% + 31—1;1 x + j —?=2-)e>‘X
_ : A
= Pr{Rz} (2.78)

Substituting (2.69) - (2.78) into (2.67) and (2.68) and using

(2.59), we can finally evaluate the expectation of

E(6S\te11, Queueing Record)I1 over (I1 ces IN-I) outlined in
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A X
N-1
+ M. .
j=2 1+j
1 X’(?\X J;:;Z (Lx) 442 N i "é')uX j;32 Ax 143
! !
A 1=0 (4+2)! >\2 1=0 (4+3)!
N-1 j
x) —AX X
+ JZ; M1+_J {(j+l)! e X (2.79)

- 88
Calculation of GSTk, bsIk and E gbh\Ml e My

To use our results (2.48) and (2.79) for GST and GSI
1 1

respectively, in order to derive the mean of the unnormalized

estimator formulated in (2.34), we note that in computing GST
k

and GSI , only the N-k idle periods following Tk enter into the

k
averaging. Hence, we use our answers for 0S and GSI adjusted

T

1 1
to correspond to a N-k+l busy period case. By the preceding
argument, the expectation of the unnormalized estimator over

(I1 e IN-l) is given by
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~

6S
E 6)\\Ml

x o 4 L2y 4 Nél N-j
= X =~ M'x L MM, , . a
MN k=1 M 7 M j=1 k=l 3 j+k7k
N-1
x 1 N s
I NN My e - 1)
N-2 N-k
+ .b.
N-2 N-k
+ .C. (2.80)
=1 =2 Mk+J J
K-1 L k-1_k
- _k A . X))o A X
ay x:(x )\)(1 e Z:O X ) e (R-1)1 $(2.81)
i j i=1) - j-2, 2—
(%- ;Jf) +;-12—+S-]Y—lxex+ (JZ—)X ¥
bj =
i 1 XEA'X J;Z Ax 412 . i e'kx _‘];}’2 Ax 1+3
1
)Y £=0 (4+2)! )\2 4=0 (+3)!
(2.82)
j
_ (x —AX X
Cj = é;l%r e T (2.83)
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The behavior of ay and bi are made clearer by replacing each

summation in their definition by e)\X minus some quantity.

© k-1
_ -AX AX 2=2xx (Ax
a, = x(x - X)e sz'ijjl— + x"e SGEJTTT
R P 9_%’:?__% : L_L*?I 2.80)
i N L I CON f

Evaluation of Limit in (2.34)

Having almost evaluated the expectation of the unnormalized
estimator, we are nearly ready to examine the limit in (2.34).

We complete the expectation of gi by averaging over (M1 ces MN).

This amounts to replacing Mi by M, Mi by M2, and noting that due

to the independence of the M's, EMjMIj+k = MZ. Carrying out the
expectation over the M's, changing the order of summation in the

double sums, and dividing by NM we are left with
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B |-
=1
AN
]
»
N
+
Nl
=215
»
N
+
2|
-
™
7~
4
]
z
F

1 : :
+§5 T @b,y B (N-5C . (2.85)

To examine the behavior of (2.85) as N » = we must evaluate

the following limits:

1im 1 N1

Moo N kfl kay (2.86)
SRR @
Lin Ni a (2.89)



1im

- b. (2.90)
N> j=2 ]j
1im N-1

i c, (2.91)
N j=2 ]

To prove that the three limits (2.86) - (2.88) are zero, it is
sufficient to show that the unnormalized infinite sums are finite.
The infinite -sums implied by (2.86) - (2.91) are evaluated by
switching the order of summation and looking for terms that cor-
respond to the exponential power series. The results are expressed

in terms of p = Ax.

2 1

T ka = x[zp +gpl (2.92)
k=1

2 xze-p 2 3p 1 4 2 o P

z jbj= 2{-§pe--2- + p” + 2e" - 2pe” - 2}
2o
J

(2.93)

e x“e P 2

£ jc, ==—=—{pe - & +1 - 5] (2.94)
=2 1 p

Za a, = %-px2 (2.95)
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o©
z b.=%x + = xe P +E (P-1) (2.96)
=2

- 1 -
=L L oEoe L 2w (2.97)

2 1 2%

Examination of the power series in p that corresponds to (2.92) -

(2.94) shows that each is a bounded function of p on [0,1]. We

are interested in p on [0,1l] since the statistics of the queueing

system are stationary for this range. The boundedness of (2.92) -

(2.94) implies that the limits (2.86) - (2.88) must be zero.

To complete the description of (2.85), we list from [4]
expressions for the first and second moment of the number served

in a busy period for an M/D/1 system.

- 1

M= 7 (2.98)

2 2% -p% . 1

Moo= 2B g (2.99)
(1-p) P

Employing our knowledge of the limits (2.86) - (2.91) provided by
(2.92) - (2.97) and using (2.98) and (2.99), we can calculate the

limit suggested by (2.85).
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2
+ X (1-p) + x (1 ) (2.100)

Nevoo E % 05

L
m (1 _8S)_3 2 2 P
NM 2 (1-p)

Multiplying Eq. (2.85) by A and with some minor rearranging we

obtain

lim { 1 6§ } X X
A S —ES T . (2.101)
N- NH A 2(1 p) 2(1__,))2

This is the desired delay gradient for an M/D/1 queue derived in
(2.33). Hence, on the basis of the thinking leading to (2.34),
we have proven the asymptotic unbiasedness of the customer-

addition algorithm.

2.4 Cramer-Rao Bound for Customer-Addition Algorithm in
Case of M/D/1 Queue

Since the calculation of the exact variance associated with
the customer-addition algorithm is too cumbersome, we derive a
Cramer-Rao bound. If we have an observation vector R, a para-
meter A we want to estimate, and a conditional demnsity P, (R|A),
the Cramer-Rao bound for the variance of any unbiased estimator

4(R) of A is stated as follows:

Var(a(R) - 4) > —t (2.102)
{o LnPr‘a(R\A)§
- E

bA2
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In the case of an M/D/1 queue, the observation vector which
the customer-addition algorithm works with is the concatenation of
two sets of variables. If Y denotes the total observation vector,
then Y & (Ylez) where Y; consists of (M ... M() and Y, of
(11 cee IN-l)' We know that Mi is independent of Mj and Ik
independent of I, for all i # j, k # t. The length of idle period
L is determined by an "end" effect in the k-th busy period.
Hence, the only conceivable place we could find statistical depen-
dence is between Mk and L. We resolve this question by consider-
ing the density for the length of idle period I1 conditioned on

M, = m,. The dynamics of successive waiting times in a queue are

1 1

described by the recursion

W 4q = max {o, CR + X - en} with initial condition “ﬁ==0'

(2.103)

X is the n-th service requirement and en the inter-arrival time
between the n-th and (nt+l)-st customer. If there are my customers

in the first busy period, the following relations must hold.
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e 0 i=1... ml-l (2.104)
w +x -6 <0 (2.105)
I, =8, - (x +w ) (2.106)

For any M/G/1l queue, the unconditional density for 91 is exponen-
tial with parameter A. Hence, the density for I1 conditioned on
m, customers in the first busy period is related by (2.105) and

(2.106) to the density for eml, conditioned on Gm being greater

1
than the sum of the ml-th service and waiting time.

e-)vr A (7 - (xml +wml))
P(r) = =)e
6., \Om >x tw, ")‘(xm tw )
1 ™M™ 1 e 11
for 7 > X + w (2.107)
1 1

From (2.106) and (2.107) we calculate the conditional density of

Il as

P(I;) =e . (2.108)

Hence, since the density for Il conditioned on my customers being

served in the first busy period is identical to the unconditional
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density, M1 and I1 are statistically independent random variables.
This independence is a property of the "memoryless' inter-arrival
density. Based on the preceding arguments, all the variables in

- A
the observation vector Y a=(M1 cee MN I1 cee IN-l) are mutually

independent.

Hence, the joint density of Y may be expressed as

N N-1 -1,
P(Y) = 7 Pr M, =m]} 7 e 3, (2.109)
i=1 j=

For M/G/1 systems, queueing theory has calculated the probability
of k customers being served in a busy period [4]. The result

for an M/D/1 queue is given in [4] as

mi-l
(mip ) ~m.p
i} = mi! e . (2.110)

Pr {Mi =m

For the moment, we pretend that the parameter of interest is p

and using (2.110) we rewrite (2.109) in its terms.

. o1 N N Q_N-1
i T m,~-N-[ Z mjp - I,
- N my i=1 i i=1 1 Q.N-l X j=1 J
PO =\ 7 T [P e G e
i=1 i (2.111)
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We let y denote the delay gradient —— 8D por p on [0,1] Eq. (2.33)

dA°
specifies a 1-1 correspondeince between y and p. Relation (2.33)

may be inverted to find p as a function of vy.

o =1 Jl - 2a-m (2.112)

We can evaluate the second partial derivative of the logar-
ithm of the joint density required in (2.97) by applying the

chain-rule of differentiation

02 in P(Yly) _ % in P(Ylp) (gg)z + 2 4n P(Y|p) bzn (2.113)
oY ]

byz pr dp byz

Performing the above manipulations and employing the two follow-

ing expectations:

N
E T m, =—- 2.114
=1 1 Top ( ‘
N-1
Ez o1 o=t (2.115)
j=1

We can evaluate (2.92) for the customer-addition algorithm.
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2 2
X P

(N-1+p)(1-p)°

Var (y - ¥) = (2.116)

The result (2.116) behaves as expected for p near zero and
one. As the utilization factor p mears 1, the queue becomes mnon-=
stationary. The means and variances of variables such as the
number in the system, the waiting time, and the number served in
a busy period become infinite. Hence, any estimation algorithm
which is a function of these queueing variables might be expected
to diverge as p goes to 1. 1f we conceive of p approaching zero
by fixing X and letting A go to Z€ro, the average idle period
duration becomes unbounded. 1In addition, Var {Mi} goes to zero
as p » 0. Hence, since the queueing variables become ''known'' as
p— 0, it is reasonable to expect that the variance of the

estimator goes to zero for p = 0.

2.5 Derivation and Realization in Flow Diagram Form of
Customer-Removal Algorithm

gince the function p(r) for the average delay/unit time
accumulated by the queue is continuously di fferentiable on
0<Ax< -}_ (0<p<l), the limit defining %?% (A) at a given ¥

p’s
is independent of the direction from which A approaches A*.

- x
22 = lim D("))\_%"i (2.117)
X.—_X* k-»k*
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In the customer-addition algorithm we let X = A* + 60 and allow

O\ to approach zero through positive values. For the customer-
removal algorithm we equivalently let 6\ go to zero through nega-
tive values. We simulate a decrement in arrival rate 6\ by
removing customers from the queue with probability & and computing

the resulting decrement in total system time.

The value for ¢ is motivated by the fact that the expected
change 60Ty in the number of customers arriving in an interval

TE caused by a decrement 6\ in incoming flow equals the negative

of the expected number of customers removed by Bernoulli trials,
M'e. Here M' is the total number of customers arriving in a per-
iod TE. Hence, & = - VUG Letting st denote the change in

system time of the i-th busy period due to the removal of the
j-th customer, the expected change in system time 6S in a time
TE due to a decrement in flow 8\ and conditioned on the queueing
record is formulated as

N 1y TEO
E(8S |Queueing Record) = T Z =68, N (2.118)
i=1 j=1 1 !

where N is the number of busy periods in the TE long observation

period. Hence, the desired delay gradient estimator is given by
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M

D = 1 E(6S|Queueing Record) _ j% N 1

i)
z 5 -ssD),
T oA Mooger g1 d

(2.119)
We compute 68}1) by working with more microscopic quantities.

Let C; denote the amount of system time saved for the M-th

i
H
customer in the i-th busy period by the removal of the n-th cus-
tomer in that busy period. Since the removal of the n-th cus-

tomer can have no effect on customers that preceded him,

C; i = 0 form=1... n-1. Hence, GS§1) can be computed as
b
M‘
(1) g,
6S. =« L C_ .. (2.120)
j m= m,i
We now develop a systematic procedure for calculatiug the
CE i's. To simplify the notation, we drop the i denoting the
b

index of the busy period. Let W Sn’ and X denote the waiting
time, system time and service requirement, respectively of the
n-th customer in the busy period. Let dn and a, denote the cor-
responding departure and arrival time of the n-th customer.
Since the system time the n-th customer saves by the removal of
the n-th customer is Sn’ we have CE = Sn' In considering the
effect of removing the n-th customer on the (n+1)-st customer,

either a new busy period begins with the (n+1)-st customer or
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the (n+1)-st customer remains part of the busy period formed by
customers 1 to n-1. The condition for customer n+1 beginning a
new busy period is that the arrival time a 1 of the (n+1)-st
customer is greater than the departure time dﬁ__1 of the (n-1)-st
customer. In this case, customer n+1 will save its waiting time
CRTE If dn-l >a 49 customer n+1 does not start a new busy
period, and saves an amount of time X since it need no longer

. . n .
wait for customer n to be served. This rule for Cn+1 is summar-

ized by the following:

dn T ght e 5 for 4n+l z dn-l
1 =
Cn+1 f (2.121)
d) = dp-1 T F for d-1 ” 241
Relation (2.121) is more succinctly stated as
n = -
Cn+1 = dn max {an+1, dn-l} (2.122)

. s oL _ n
Noting that max {an+1, dn-l} min { a_ 1> dn-l}’ Cn+1 may be

restated in a final form as

n

Cn+1 = min {“h+1’ xn}. (2.123)
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Similar reasoning to that employed in calculating CE+1 applies
to the computation of Cg. The removal of customer n either causes
customers m and m-1 to be in the same busy period, or customer m
may begin a new busy period. The removal of customer n causes
customer m-1 to save system time Cg-l' Hence, customer m-1 departs
at an earlier time dmm1 - C;-l’ If this new departure time for
customer m-1 is greater than the arrival time a of customer m,
customers m and m-1 remain in the same busy interval and customer
m is saved a system time Cg_l. However, if a > dm_1 - C;-l’
customer m begins a new busy period and saves its waiting time W,

These relationships are summarized in the following rule for com-

. n_
puting Cm.

n n
Cm_1 for dm_1 - Cm__1 > a
o _
Cm = (2.124)
_ _ en
dm_1 ~a, = u for a > dm-l Cm-l
This rule may be expressed more compactly as
n_ . n
Cm min {Cm-l’ “h}' (2.125)

Hence, the algorithm for computing the Cg's may be summarized

as
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C =8

n n

5 -

Ln+1 min [xn, “h+1} (2.126)
n_ . n _ .

Cm = min {Cm_l, “h} m=n+2 ... M

M is the number of customers served in the given busy period.
The customer-removal algorithm is completely specified by (2.126)
and the following form for the delay-gradient estimator derived by

substituting (2.120) into (2.119).

M M N M m

N
- 1 n 1 n
D' == T z T C . =7 z T C_ .
M' 451 pel men ™M i el el ™
(2.127)
The second form suggests calculating and summing C; forn=1l...m

when the m=th customer arrives. Hence, to calculate the inner two
summations in (2.127), we need only M variables g; to store C? as
j is varied. This idea is realized in a flow diagram for the
customer-removal algorithm in Fig. 2.6. The variables in the flow

chart are defined in Fig. 2.5.
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D' = Current estimate for delay gradient

M' = Current total number of customers in observation
period

TS = Running sum of service times in most recent busy
period

x = Service requirement of most recent customer

T = Arrival time of most recent customer relative to
beginning of busy period

w = Waiting time of most recent customer

j = Index of most recent customer in current busy
period

M = Total number of customers in most recent busy
period

£; = Storage location for C§ as j is varied

M M
S= Z z C; for most recent busy period. It is
n=1 m=n

the cumulative system time saved by the removal
of each customer in the current busy period.

Figure 2.5 Definition of Variables for Customer-Removal Algorithm
Flow Diagram
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M' == 0 Initialization
= \
TS=- 0
S—= 0
j=1
i
Compute Waitin
Time of W= TS - T
j Customer
Test for End of w< 0 Yes -
Busy Period ?
No
j :
A Add Cj into TS = TS + x
S, Update TS,| S= S + x + w
and Initial- €j"' X
ize ¢,
J
Compute and | pgo i=17... -1
Add Contri--i v
bution for C; gremin{g,,w)
i=1 ... j-1 LSS * &
-l j<— j+1
Y
e
. Update Delay
?4- J-b];l' " 1 Gradient Estimate
— D' —— D' +=—=S| at End of
M~ MI;{-T-%{I MM Busy Period

Figure 2.6 Flow Diagram for Customer Removal Algorithm
82



2.6 Calculation of Asymptotic Bias for Customer-Removal
Algorithm for M/G/1 Queues

We now investigate the asymptotic properties of the customer-
removal algorithm by first interpreting the terms in the estimator.
For a given busy period, the inner two summations in (2.127) may
be grouped into two terms representing the sum of all the service
times of the customers in that busy period and the cumulative
service time saved by all other customers due to the removal of
each customer separately. If S§i) denotes the system time of the

j=th customer in the i-th busy period, the customer-removal delay

gradient estimator may be expressed as follows:

N i N
sV 3o
Ay - i=1 3=1 i=1
D N R > (2.128)
T M Z M
i=1 * i=1 *
where Pi is defined by
0 if M, = 1
p (2.129)
17 \yM. -
M, 1 Mi _
z Z Cm,i if Mi #1.
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We examine the asymptotic behavior of the mean of the esti-
mator specified in (2.128) by interchanging the expectation and
limit operation. By appealing to the law of large numbers, the

1imitiﬁg form of the estimator as N becomes unbounded is

lim ED' = E lim D' = D_ +% (2.130)

where Dc is the average system time per customer and P is the
expectation of the quantity defined in (2.124). For an M/G/1
queue, the mean of Pi is independent of i since the C;'s depend
on waiting times and service times which are statistically
independent from one busy period to another. M denotes the

average number of customers served per busy period.

Using the general relation derived in (2.26) that the delay
dD
gradient is equal to Dc plus X 75?, we can formulate the asymptotic

bias of the customer-removal algorithm as
b= 1im BD' -2 =L .= (2.131)

We can break up the calculation of P by conditioning on M=1 for

i=2... » and find
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P= I Q£ .
i=2

where

f:i. L Probability that i customers are served in

a busy period

i-1 i
Qi) & = T E(Ch|M=1)
n=1 m=n+l

For an M/G/1 queue, D, is given in [4] as

— p(l + Clz,)
Dc =x|1 +'—§?f:7;y‘ >
where
02
2 __b
Cb = -
X

0% denotes the variance and x is the mean of the service
dD

distribution. Hence, A ?ﬁ? may be expressed as

oD, _(1+C

Ao T X 2

a-eja+ce) z

(k+2) (k+1)  k+1
2 o
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(2.132)

(2.123)

(2.134)

(2.135)

(2.136)

time

(2.137)



The average number of customers served per busy period is given

in [4] by

M= = . (2.138)
The z-transform for the probability density of the number of
customers served per busy period is described in [2.4] by the
following functional equatiom:

F(z) = zB*[x - AF(2)]. (2.139)

B* is the one-~sided Laplace transform of the service time density

and F(z) is defined by

F(z) = (2.140)

] 8
g
Hh
N

n

Having described the quantities that compose the asymptotic bias
b, one may express it as
®

b=(l-p)| T Q@E - = x(1+C
n=2 k=0

2y () (etl) ket
b 4 P ¥

(2.141)

Now suppose P in (2.132) may be expressed as a power series in p.
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P= % Q(n)fn = I a.pj+1

A B o (2.142)
n= J=

then based on (2.141), to prove the customer-removal algorithm is

asymptotically unbiased, we must show that

2) (n+2) (n+1)
b 4

o« = x(1 + C for n=0,1,2, ... (2.143)

In addition, using (2.142), the power series for b is given by

1_ [+
b= [ao -3 x(1-+C§)]p + T [o

1= 2, ,. j+l
R 3 -aj-l ) x(l-%Cb)(J+1)]p .
j=1

(2.144)

For an M/D/1 queuz, we were able to prove (2.143) for
n =0, 1, 2, which shows that for this case, the estimation algor-
ithm is asymptotically unbiased at least up to third order in p.
Although we could not prove (2.143) for arbitrary n, based on our
intqition we believe that for M/D/1 the algorithm is asymptotically
unbiased. We have also examined (2.143) for M/M/1 queues. For
this case it turns out that (2.143) does not hold even for n=0,

which shows that the asymptotic bias contains terms of order p.

In the remainder of this section we give the detailed proofs
indicated above for M/D/1 and M/M/1 queues. The main part is
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the calculation of Q(i) defined in (2.134), so that we divide the

proofs into several steps:

a) Since by (2.121), C2+k is given as a function of waiting

times and service requirements

n =
Cn+k min {xn, W o410 Yttt “h+k} (2.145)
we calculate the joint density of (xn, W4 oo “h+k) conditioned

on M.
n
b) Evaluate E(Cn+k\M).
¢) Proof of (2.143) for M/D/1 for m =0, 1, 2.

d) Calculation of first and second order terms in p in the

asymptotic bias for M/M/1 queues.

Calculation of Joint Density of (Xn’“ﬁﬁl cen “h+k)
Conditioned on M

We approach the problem of deriving p(xn,wn+1 ces n+kun

by deriving the joint density of the service and inter-arrival
times conditioned on M customers being served in the busy period.
Let ej denote the inter-arrival time between the j-th and (j+l)=-st
customer. By the rules for conditional probabilities, we can

break up the joint density of (xl, cees Ky 81> --- GM) con-

ditioned on M as follows:
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p(M\x1 R - coe BIP(Ry oe Xy, 0 cee By)
p(xl e o xM’el e GM\M) = Pr [M}

(2.146)

p(M\x1 TR v ...GM) is either one or zero depending on whether
the variables (x1 "‘XM’el ...GM) satisfy the constraints such
that exactly M customers are served in the busy period. With

no conditioning, the service times and inter-arrival times are
mutually independent random variables. Since our queue is

M/G/1, the inter-arrival times are exponential random variables

with parameter A. Hence, p(x1 cee Xy 0y . GM) is given by
M M -lei
p(x1 PRI vl R OM) = izl B(xi) ill Ae (2.147)

The conditions on the xj's and Oj's that guarantee M customers
are served in the busy period come from requiring that the waiting
times of customers 2 ... M are greater than zero and satisfying
a terminal condition that customer M+l falls outside the busy
period. Earlier we defined the waiting time of the k-th
customer as the sum of the service requirements of preceding cus-
tomers minus his arrival time relative to the start of the busy

period. This relative arrival time may be expressed as the sum
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of the first k-1 inter-arrival times ej. Hence, the condition for
the waiting times of customers 2 ... M being greater than zero may

be expressed as

k-1 k-1
= T x, - . >0 for k=2 ... M. (2.148)
U“k j=1 J j:l J

For the (M+l)=st customer to fall outside the busy period, the
arrival time of the (M+l)-st customer relative to the start of the
busy period must be greater than the departure time of the M-th
customer. Noting that the M-th customer departs when all M ser-
vice requirements have been satisfied, we define a dummy variable

uﬁ&l to state the terminal condition.

X, - 6, <0 (2.149)
1 3 =

[ IS

M1 T,
]
Hence, the joint density of M service times and inter-arrival

times conditioned on M customers being served in the busy period

is as follows:

M M -xei
™ B(x,) ® e
i=1 ¥ 4=1
p(x1 ...xM,el ...OM\M) = fM
k k-1
K=1 . . M-l 0 < e < 2 X - E e
- K—. .
J=1 J i= J
M M-1
6,,> LT x. - Z b.. (2.150)
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As defined by (2.140), fM:denotes the probability that a busy

period has M customers.

We can now calculate p(x1 cee Kyl oo “M\M) by working with
the linear relationship between (61 cee eM) and (“h cee “M+1)
impiied by Eqs. (2.148) and (2.149). The inverse relations for

the ej's as a function of the uﬁ's are
81 T % - %

Ok = % + W = Yy k=2 ... M (2.151)

The non-negativity of the aj's for j =1 ... M and the non-
negativity of “ﬁ for j =1 ... M, together with the relation

(2.149) for Wy 2 result in the following set of constraints on

the waiting times:

0_<_wk+15x.k+u.k k=2 ... M-1 (2.152)

Weyp < 0

The Jacobian J of the inverse transformation between waiting times

and inter-arrival times described by (2.151) is the following matrix:
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B LD PR AT O

J=10 1. -1, (2.153)

Since J is a lower triangular matrix, the diagonal elements are

eigenvalues and hence |det J\ = 1. Thus, we calculate

p(x1 cee KUy e “M+1‘M) by substituting the relations for Gj

defined by (2.151) into (2.150) and combining this with the con-

straints described by (2.152).

M
M "*( A "’M+1)
m B(xi)k e i=1
_ i=1
p(x1 o Xy Wy "'“hHl\M) = = fM

wyyp < O (2.154)

The final step is to integrate out the dummy variable Wy and

service requirement Xy
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M-1 M-1 AX

_ A B* (A =i
p(xl cee Ky 1oy oo U‘M\M) = 7 4 B(xi)e
M i=1
0< wy, < %
Oswk+15-xk+“’k k=2... M-1 (2.155)

B*(\) denotes the single-sided Laplace transform of the density

B(x) evaluated at AX.

We observe parenthetically that (2.155) takes a particularly
simple form from M/D/1 queue. Since the service requirements are
deterministic, B(xj) = f)(xj -x) and B*(S) = ESx. We can integrate
over all the impulses to obtain the joint density of waiting times
conditioned on M. Employing the explicit formula for f£f,,, the
probability of M customers being served in a busy period, found

by solving the functional equation of (2.139) and listed earlier

as Eq. (2.110), we find that p(w2 O‘M\M) is given by

p(w2 aM\M) = M! (ﬁlx—)M-l

0gw2<x

Oswk_'_l_gx+wk k=2 ... M-1 (2.156)
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n
Evaluation of E(Cn+k\M)

We now return to the more general case of an M/G/1 queue and
approach the calculation of the mean of Cz+k conditioned on M by
deriving the joint density of (xn’“h+1 ce “h+k) conditioned on
M. We use this joint density to compute the distribution func-

tion of Cz Let F n (t) denote the probability that
Cn+k\M
< T and P n (1) be the probability density of Cz
Cn+k\M

ditioned on M. Since C:+k is defined as the minimum of the vari-

+k*

Cn

n+k con=

+k

ables (xn’“h+1 ces “h+1)’ we compute the probability that

n
n+k

that each variable is greater than r.

C < 7 as one minus the probability of the complementary event

F (1) & Pr{c:-l-k < 7v|M} =1-Pr{xn>'r:w >T: ..

Cn n+l
ntk |M

'uh+k:>T\M}

(2.157)

Now we calculate the density of C2+k by differentiating with
respect to T.

P () =<F

n dr n
Chtk \M Ctk \M(T) (2.158)

By integrating the density defined in (2.158) we can calculate

n
the desired conditional mean of Cn+k'
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-]

n A w1 -
ECopcp = Cotielm = J ™8 () dr (2.159)
n+k |M

7=0

We obtain the joint density for (Xn’wn+1 wn-l-k) condi-
tioned on M by integrating first over the variables (w2 cos “’n)’
(wn+k+1 a.M) and then (x1 cee Ko _qoX4q e xM) in
P(Xy +vv Ky qsWp «- u,M\M) defined by (2.155). For n#1, the
suggested integrations are performed in two steps and the results

listed below.

X1 *n-1 to -1 *ntk + “nt+k
POXy <o Ky g6y s nepd ) I
wy=hy Wy WpHc+1=0
-1 F -1
e f
u.M=0

p(x1 e Ky 1aWy cen U‘}Vi‘M)d“N dwn+k+1 d(...)2

n-1
for 0 € w44 < ? X: +x,
J—
A n
0<% n ¥ 9%n b & max {“’n+1 - jfk xj,O}
0 < ey < Fpae-1 ¥ Yhke-1 (2.160)
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p(xn,wn+1...wn+k\M) =j‘ « .. J j‘ j‘

n-1 ¥ X+l = ¥n4l Xotk-1  ¥ntk-1

121 x; Z max {w g =%, o

x. >0 j=1...n-1

p(xl vee Ky qWo4q e wn_'_k\M)

dxl ...dxn_ldxn+1 ...dxM_1

(2.161)

A -
W, & max {w g - @ o)

Note that the resulting density in (2.161) has no constraints

remaining on any of the variables except non-negativity. The
case n=1 is worth distinguishing since in the final density ome

constraining relation remains between Wy and X

X1 T 9k -1 T -1

p(xl...xM_l,wz...w1+k\M)=j’ j‘_
¥941=0 u~0

P(Xy oo Ky 1sWy + o wy M) dugy « -« duy g
(2.162)
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for Os_wz_<_x1

05_(:.)1_|_)L_<_x&+o.>L L=2 ...k
p(xl’w2'°'u’1+k‘M) =J‘ PP j‘ j‘ eoe ‘r
Xy =¥, Xy =¥y Xp0 Xp-170

p(x1 cee Ky 1aUy e %+k\M)dm_1 dx]__'_k dx2

(2.163)
for 0 < wy < X
¥, & max {w - w, ,0}
L = 4+1 1’
Hence, the distribution function F n (1) is obtained by
C
applying (2.157) to the results in nte M (2.161) and (2.163).
f
nfl 1 - [ [ cee | P(X 50 4q «ve @y M)
Xn T “nt1 T wn+k=7 d d
TSR N
Fc“ (1) =<
n+k |M
© x]_ © ©
n=1 1- f i) e p(xl,u.\2 wH_k\M)
\. X1=T w2='r w3='r (.dl+k=‘l'

dwl-i'k oo d(.;.)zclx1

(2.164)
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P n (1) could now be obtained by differentiating the above

C
n+k M
integrals with respect to the parameter rt using Leibnitz's rule.

Simpler results for EE+k\M are possible when we specialize
the preceding calculations to the case of an M/D/1 queue. Since
the service requirements are all the same, X, =X and Cg+k can be
expressed as

n

Cn+k = min {x,z} , (2.165)

where

z = min {“h+1’ e W (2.166)

n+k}
By inspection we write the density of Cz+k conditioned on M in
terms of the distribution function of z, FZ\M(T), and the den-~

sity of z, PZ\M(T).

P (1) = (1 - F,(x)8(r-x) + U_y (x=-1)P, (1)

Cn
ntk |M (2.167)

There is a finite probability that Cz+k = x, hence the impulse in

the density (2.167). For z < x, Cz+k = z and hence the density
n
of Cotic? PCn (r), is the same as the density of z for
ntk |M
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0 <7< x. From (2.167), we can express the conditional mean of
n

Cn+k as
X
=@ =F GNx+ [ 1P (r) dr (2.168)
ntk |M z M z |M : :
0
Hence, for an M/D/1 queue, the problem of computing
Eg-l-k IM reduces to calculating the density and distribution function

of z defined in (2.166), conditioned on M. We need the joint dis-
tribution of ((.on_'_1 cee wn+k) conditioned on M to characterize the
distribution function of z. In a manner similar to the deriva-
tion of (2.160) from (2.155), we integrate out the unneeded wi's

from the density p(w2 "‘M\M) given in Eq. (2.156) to obtain

p(wn_'_1 wn-!-k\M)'

1 M-1 x x+w2 x-'-(""n-l x-'-“‘"n-i-k
= M! (= -
p(wn+1 ces wn_'_k\M) M! (Mx) f f . j‘ {
Wby wyhy @y ™0
x+aM_1
j’ d“’M“'dwn+k+1 ...dw2
=0
for 0 < W4 < DX
05_wn+L5_x+wn+L_1 L=2...k

by A max {wn+1 - (n-1+1)x,0}

(2.169)



Hence, by the same reasoning that led to (2.166), FZ\M(T) is

given by
nx Xty Xt -1
Fz\M(T) =1- f cee [ p(ah+1 "'“h+k\M)
“h+1=7 uﬁ+2=7 uh+k=7 d P
wn ""l( o s 0 wn +1 .

(2.170)

Applying Leibnitz's rule successively, we can derive PZ\M(T).

X+T X+wn+2 X+wn+k- 1
A S N A
“at2” T “nt3T “ntk " d d
wn-l-k e o e wn_'_z

nx x+r -1

+ J‘ J\ ) J. p(wn+1,7,wn+3 ) wn_'_k\M)
W =T W =T w
n+l n+3 ntk=r

. dwn"'k LI dwn+2
nx X-'-‘J')n-F.I. x+r

+] } e Plehir * o Gupie-2 > G 1D
1T Y2 T “ntk T d d

“ntk 0 Y%

nx X% X e 2

+ J‘ I e e J‘ p(wn+l L) wn_*_k_l"r\M)
“atl™T “nt2 T “at-1"" d

“ntk-1 0 Y

(2.171)
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P

In the next few paragraphs we show how to compute explicitly

-n

Cn+q\M. We were not able, however, to obtain explicit terms for a

general EE\M and therefore have to rely on (2.173) when other
c?

m\M will be needed. For E§+1\M, z becomes the single variable

SR Note that to compute the conditional mean in (2.168) we

only need PZ\M(T) for 0 < 1 < x. Hence, the approach we take is

to derive the explicit form for P (r) on 0 < 17 < x. From
w =T =
n+l |M
(2.169), we write the density for P (r) on 0 <17 £x as
nt+l |M
" X x-%uﬁ X-+“h-1 xX+T x+uM_1
w o Tl [ o] duyerdeggpdu
n+1 \M (MX) w=0 =0 . =(
p~V W37V Yh=0  “ht+2”" “M=0
~ ~  m— v
n-1 M-n-1
Integrations Integrations
(2.172)

Note that the above integral consists of two sets of inte-

grations defined by the brackets. We define the following set of

jiterated integrals

x+w
In+1(w) = In(w')dw' with I;(w) =1 (2.173)
w=0
Hence, we can express Pw (t) for 0 < 7 < x in terms of these
~ ntl |M
I.'s.
J

101




L ML
Pwn+1\M(T) =MIGD)  I_(0)T, (1) (2.174)

0<r1<x
Examining a few of the Ij's, we assume that In(w) can be

represented as a power series in (x +w) with powers up to (n-1l)-st

order.

~ n-1 (n) i
In(w) = .EO Qi (x +w) (2.175)
1=

To be consistent with Il(w) =1, Q(gl) = 1. Employing (2.173) we

can derive a set of difference equations relating Q§n+l) to the

an)'s.
i
n-1 . .
grtl) o 5 L ( .J-_l)xl-q+1n]§.n)
q i=q-1 q q
g=l ... n
96“*1) =0 (2.176)

It is verified in Appendix A that the solution for the Qj(_n)'s

are given by

102



n-1-i n-2-i
x____(o-1) i=1...n-1
(n) (n-1-1)!1(i-1)! *e

forn > 1 Q& =

0 i=0
forn =1 Q5" =1 (2.177)
Employing (2.168), the expression for the density Pw (1)

n+l |M

given in (2.174), and the definition of the Ij's in (2.173),

-m
Cn+1\M may be expressed as

M-1

Cur M= @ - n (i En(O)EM-r&l(O))x

M-1. T
FMIGE) L (0) [ I, (m)dr. (2.178)

0

By looking at Pw (1) for n=1 we can obtain an expression for
~ n+l |M
IM(O) since the density for ab must integrate to 1 over the interval

[0,x]. Hence, IM(O) must be given by

~

~ _ (Mx M"l
1,(0) = ——M),—— . (2.179)

To specify the only remaining unknown in (2.178), we define
A ~
m [ TI (1) dr. (2.180)
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We evaluate this integral by substituting our explicit form for

In(T) defined by (2.175) and (2.177)

% x2 n=1
n;} Xn+1(n_1)n-2-i ; 1 (i) A1
L i=1 (n-l-i)!(i-l)! 4=0 L+2 L

Putting together (2.179), (2.181), and (2.178), “c'gﬂ \M may be

expressed as

ML )™ (et )M
n!

™ = 1
Copy M = (1 - M GD) M) *

M-1 n-1
1
sy S (2.182)

Bias Calculation for an M/D/1 Queue

Having defined the calculation of Ez+k\M=i and hence Q(i),
we can investigate the behavior of the asymptotic bias b expressed
as a power series in p by Eq. (2.144). For simplicity, we start
with an M/D/1 queue. Ci = 0 in (2.136), since the variance of the
service time density is zero. Since each Cz+k is a function' of
(%50 49 *+- “h+k)’ the summation of C2+k's for a given busy
period with M customers can be expressed as different functions

of (x,u@ e “M) over regions in (“b . wM) space. Hence . Q(M)
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can be expressed as the sum of a set of integrals of functions
of (x,ab ces “M) over regions in (“b ce “M) space weighted by

. 1 M-1
the density p(ab e “M\M) = M!(ﬁ;) specified in Eq. (2.156).
Since the density p(w, ... qn) is a constant, independent of p,

Q(M) will also be a constant with no dependence on p. f_, the

n’
probability of n customers being served in a busy period, is

nn-1 n-1 _-np

ar P e Hence, expanding fn as a power series in p, sub-

stituting the result into the expression for p in (2.142), and
changing the order of summation, we can derive an explicit formula
for s the coefficient of pn+1 in a power. series expansion of E
in powers of p. Therefore, on the basis of (2.143), to show that
the estimation procedure is unbiased up to the 4-th power in p,

we have to show that

n+2 n-i.n+l
-1 i : . +2) (n+1
% = E (i!()n+2-i)! (OREES )4(n :
i=2
n=0... 2-1 (2.183)

By a change of variable n = u'-2 and some manipulation, verifying
conditions (2.183) may be reformulated as checking the following

recursion for the Q(i)'s:
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Q('ﬂ') = '1;.:1 =) (n (n4 -1) x)
ol n'-1 (fl)n'-iin'-l
T AL Z TU@D! Q1)
n' =3 ... ¢+l
with Q(2) = § x (2.184)

Employing the preceding results for an M/D/1 queue, we pro-
ceed to show that the asymptotic bias b only contains powers of p
greater than third order. For =3, relation (2.184) dictates

that Q(2), Q(3), and Q(4) assume the following values:

Q(2) = 3 x
Q(3) = 3 x (2.185)
Q) = 2L x

By definition of the Q(i)'s given in (2.134), Q(2), Q(3), and

Q(4) are given by
~1
Q(2) = T312
Q(3) = Ty|3 + T313 + T3 13 (2.186)
e T DU RO VR
Q(4) = Calh + Cy\4 + T, 14 + T34 + Tyl + T, l4
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We can compute all EE‘M'S of the form Ez+1\M by employing the
general formula derlved as Eq. (2.182). To calculate other
EE\M'S we appeal to the procedure outlined in Egs. (2.165) through
(2.171). The results of the calculations implied in (2.186) are

listed below.

E%\Z ='% X

63\3 = % X E%\B = % X

E§\3 = %'x

Chl4 = 2 x Til4 = 3 x Ei\é-’%%x

Pl=2x =3

Se =2 x (2.187)

By using the results of (2.187) in (2.186) it is easy to see that
the numbers for Q(2), Q(3), and Q(4) are consistent with the

values listed in (2.185).

For the sake of clarity, we go through the derivation of

62\4 as a sample calculation. The remaining EE\M'S, those not

2

covered by relation (2.182), are calculated in Appendix B. C4

is defined as follows:
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CZ = min {x,z} , (2.188)

with

z = min {w ’“Z} . (2.189)

the joint distribution of (“b’“ﬁ’“%) conditioned on M=4 is given

by Eq. (2.156) as

P (wy w0y |M=4) = gi‘g‘ . (2.190)
0 S w, <X

0 S wy <X + w,

0 5_az < x + wy

Hence, the joint distribution of (w, ’“Z) conditioned on M=4 is

given by Eq. (2.169) as

3
p(aﬁ,uh\M?4) = —3 dw, - (2.191)

0 < wy < 2x
0 < 4 <x + wy

More explicitly, (2.191) means that
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3 3
p(w3,w4\M=4) = ;;-2- and p((.a.>3,w4 \M=4) = ;;'_;; (2% - w3)

0_<_w3

IA
]

x_<__w3<2x

w, < 0 < w, <X + Wy (2.192)

Hence, by (2.170) the distribution function of z conditioned on

M=4 and for z in the interval [0,x] is given by

X+ w

3
3_
Fz\M=4(T) =1- J ) day, dusy
W, =T W, =T
0<7rT<x 3 4
9% x+w3 5
- [ [ ;3' (2x - w3) dw4dw3 . (2.193)

Differentiating (2.193) with respect to 7T and doing the integra-

tions yields

_1s .3
Pz \M=4(T) = T6m 8x2 T . (2.194)

0<t<x

From Eq. (2.168), we compute 62\4 as follows:

¢4 = x1 * dr) + * ar = 2
C4‘ = X( = J‘ PZ ‘M=4(T) T) ‘r TPZ \M=4(T) T = 32 X .
0 0
(2.195)
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Bias Calculation for an M/M/1 Queue

We now examine the behavior of the asymptotic bias b for the
case of an M/M/1 queue. The service requirements are now expon-
ential random variables with parameter p. Hence, B(x) and B*(s)

are given by

B(x) = pE“x
. _ (2.196)
B*(s) stp

Since the mean service time is % and the variance of the service
requirement is J%, the C% defined in Eq. (2.136) is one. The
functional equation of (2.139) may be solved to obtain F(z)

and hence fi’ the probability of i customers being served in the

busy period

£ =% (2i-2y __p (2.197)

To characterize the asymptotic bias b we need aj, the coef-

j+1

ficient of p in a power series expansion of 5; which is

defined in (2.132) as a summation of the products Q(i.)fi for

i=2... ». We contend that Q(i)fi can be expressed as a power
series in p whose terms are at least (i-1)-st order in p. Hence,
to find oy we need to collect coefficients of pj+1 in

Q(Z)f2 cos Q(j-+2)fj+2. The reason for Q(:i.)fi being expressible
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as a power series in p with terms of at least (i-1)-st orders
follows from Eq. (2.155) for p(xl R SRRy ...aM\M). QM)
represents the mean of a random variable which 1s expressed as a
T,
summation of Cm s, each of which is a function of (x1 cee Xy 10
w ...uh). Hence, Q(M) could be expressed as an integral of
various functions of (x1 vee Xy 1ol e “M) weighted by
p(x1 cee Ky qaly oo “M\M)’ over (x1 ce Ky 1aWy oo “M) space.
From the density given in (2.155), this integral for Q(M) will
have a leading factor of AM-l/fM. Hence, Q(M)fM can be expressed
as the product of pM-1 and an appropriate integral. This shows

that Q(M)fM can be represented as a sum of terms which are

(M-1)-st order or higher in p.

We now proceed to compute Q(2) and Q(3) so we can calculate

o and oq and then the coefficients of the first and second power
of p in the asymptotic bias b defined in Eq. (2.144). Q(2) is

equal to C,|2 and C, is given by
2 2

C% = min {xl,ab} . (2.198)

From (2.155), the joint density of (Xl’ab) conditioned on M=2 is

as follows:

-Ax
*(\) 1
p(xl,ab\M?Z) = ABEZA B(xl)e . (2.199)
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Hence, by (2.164) the distribution function of Cé conditioned on

M=2 is
- _ AB¥(A 1
Felma(™ =1 - 5= [ BGepe Tdwpdx; . (2.200)

Differentiating with respect to 7 by applying Leibmitz's rule,
we obtain
ABX(L) “AXy
PC; \M=2(T) = E, j' B(xl)e dxy (2.201)
Employing (2.201), we can express the desired conditional mean as
a double integral. Changing the order of integration, we obtain

the following result for an M/G/1l queue:

© -AX
-1 1 AB*¥()A) 2 1
Q(2) = CZ\Z =3 fz f xje B(xl)dx1 (2.202)
x1=0‘

For an M/M/1 queue, (2.202) specializes to

=gcli, 11 __p 1
Q(2) = C,|2 = 3 m (1_+p)4 i, (2.203)

Next, we calculate Q(3) as the sum of E;\B, E§\3, and 53\3.

The joint density of (xl,gb) conditioned on M=3 is specified by
Eqs. (2.155), (2.162), and (2.163) as
- ;.p~1j¢7;;2i3,3




2 © 2 -2 (x,1x,)
p(xl,ué\M?B) = L—%Efll [ f B(xl)B(xz)e 1 2duhdx2.

0 < w <% (2.204)

Performing the inner integration over wj and changing the order
of the integration over the variables Wy and Xy specified in
(2.164), the distribution function of C; conditioned on M=3 is
given by

25000 5 o X (x,4%,)
3(r) =1 - : Bifc; ! [ (p+uy)B(x))BGxy)e H

Fel u=
“ﬁ=7 x1=ab x2=0

dxzdxldwé.
(2.205)
Differentiating (2.205) with Liebnitz's rule we obtain PC'\MFB(T)’
2
Based on this PC'\M?B(T) we can write the following integral
2
expression for the conditional mean:
2 © ® © -)\(X +x )
= _ATB*(A 1 72
02\3 —-———Ei—l [ 77 [ (x2+f)B(x1)B(x2)e dx,dx,dr .
=0 X =T x2=0
(2.206)
For an M/M/1 queue we employ the B(x) specified by Eq. (2.196)
and obtain the result

ci13 =3 Lo — L, (2.207)
o +p) 3



We next consider the calculation of 63\3. C§ is defined as

2
C3 = min {XZ’“b} | (2.208)

By Eqs. (2.155), (2.160), and (2.161), the joint density of

(xz,w3) conditioned on M=3 is

XZB*QQ ® !
\M=3) = 3 f f

p(x,,w
2°%3 3

X; = max {w3-x2,0} w, = max {w3-x2,0]

-k(x1+x2)

B(x1)B(x,)e dw, dx

pdxy (2.209)

Doing the inner integration over W s and noting the form for

F, (t) dictated by (2.164), differentiation of F 9 (1)

C3 IM=3 Cy |1=3
with respect to 7 by Leibnitz's rule will yield the following

- integral
(o]

P, (r) = | P(xz,'r\M?-*B)dx2 + P(T,uh\M?B)dwb (2.210)

C3\M?3 Xp=T wg=T

Employing (2.209) and (2.210), the desired conditional mean may

be expressed as the following integral:
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2 © o “AX, © =-AX
-2 _ ATB*¥(\ 2 1
C3\3 = -——?ﬁ—l I T j B(xz)e f xlB(xl)e dxldxsz
=0 Xy=T x1=0
© -\ T © ® ")\.Xl
+ [ rB(m)e | [ B(xl)e [xl-(uh-r)]dxldagdf
=0 U B

(2.211)

Using the B(x) corresponding to an M/M/1 queue, we obtain

2
Cl3=22 —2— L (2.212)
B o@w+p)” 73

Our final calculation is of Eg13. The quantity Cg is
defined by

1 .
C3 = min {xl,wb,w (2.213)

3}'

The joint density of (xl’“b’ub) conditioned on M=3 is determined

by Eqs. (2.155), (2.162), and (2.163).

2 © "'A.(X +x )
P(xy sy (1m3) = 2EE) Bx)B(x)e - dx,
3 X, =max {w,~w,,0}
0<w <% 2 37U T
(2.214)

Employing (2.164) to derive the distribution function Fcl‘M?3(T)
2

and breaking up the integration over w,; to get rid of the '"max"
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in the limits of the integration over Xy, we obtain

X w
© 1 ) P —A(x1+x2)

Fcé\M?3(T) =1 - LEB%ﬁ&l f [ J J B(xl)B(xz)e
¥)TT @=T Wy=T X,=0 dx,dudu, dx
o) © L “A (xqtx,)
SAEQ g BGxy)Bxy)e
¥PTT GTT 3Ty XpTustW, dx,,dw,duw,dx;
(2.215)

Differentiating (2.215) by applying Liebnitz's rule we can derive

Pcl\M=3(T) and from that a single integral expression for E%\S.
3

X
1 -A(x1+x2)

2 © ©
-1 _ ATB®(\
C,13 - _-_gi-l [ or] [ [ BepBxye dx, dw, dx, d7

=0  X;=T w,=T x,=0

2 © o« © © "A(X +x )
+ L.E%i&l [« [ I B(x)B(x,)e  © °

=0 X1 =T Wh=T Xn=W,~T
1737273 dxydugdx dr  (2.216)

Using the B(x) for an M/M/1 queue given by (2.196), we find

2
ci3=s5% —2 - L (2.217)
H 3

(1+p)6
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Now we can calculate the coefficients in the asymptotic bias
b for the first and second order terms in p. Employing (2.203),

(2.207), (2.212), and (2.217), we compute Q(2) and Q(3) as

11 1

=21 —- L

2 b q+p)* B
(2.218)

1 2 1

Q(3)=10____9.__6__

Eo@+p)” 73

o is defined by the coefficient of p in Q(2)f2. ay is deter-

mined by collecting powers of pz in Q(2)f2 and Q(3)f3. Hence,

we obtain

I
N 1=
T =

%o
(2.219)

=8
0q m
Therefore, from (2.144) we can represent the asymptotic bias b as

1 2
p + —2l 1 p- + 0(p3) . (2.220)

- .1
b=-3 m

|~

0(p3) denotes terms that are third order or higher in p. This
shows that the algorithm is biased for M/M/1 and contains terms

of all orders in p, in contradistinction with the M/D/1 case
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where we showed that the algorithm is asymptotically unbiased up
to third order in p. In fact, we are confident that for an
M/D/1 queue the algorithm is completely unbiased, although we

were not able to show this.

2.7 Cramer-Rao Bound for Customer-Removal Algorithm in Case
of M/D/1 Queue

Now we derive a Cramer-Rao bound for the variance of any
unbiased estimator of the delay gradient that works with the
same observations as the customer-removal algorithm in the case
of an M/D/1 queue. Assuming the service requirement is a known
variable x, the observations which the customer removal algorithm
processes to derive the Cg's and form the estimator are the Mi's,
the number of customers served in the i-th busy period, and

(1) (

(ub .o uh})), the waiting times of customers in the i-th busy
i
period. Hence, we define our observation vector Y' as

2)
2

>

1) (1! (2) (
/ cee Wy ‘MZ’“b oo “N

' (
Y2 (M, )
[}

' N (N
ce :Mﬁ,ué ) ...uMN)).

(2.221)
Since waiting times and the number of customers served per busy

period are statistically independent from one busy period to

another, the joint density of Y' may be expressed as

P(Y') = 1 P(M.,aéi) ... aéi)) . (2.222)




We compute the joint density of (Mi,wél) ces q&i)) by breaking
i
it into the product of P(aéi) . aﬁi) ) and Pr (M,). Hence,
3 My 1
employing Eq. (2.156) for the joint density of waiting times
conditioned on the number of customers served in a busy period,
expressing the densities in terms of the parameter p = Ax, and

applying (2.222) we obtain

N

Z

N . (2.223)
(”)

Letting y denote the delay gradient, y and p may be related

oZLnP(;_f' )

oy
the expectation in (2.114) and the general formulation given in

by (2.112). Employing (2.113), we can derive

. Using

(2.102) for a Cramer-Rao bound on the variance of any unbiased
estimator of a parameter A based on an observation vector R, we

find

Var (y - v) 2 x> —&— . (2.224)
N(1 -p)
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We can shed light on the reason for the p in the numerator
of the bound for the customer-removal algorithm as compared to the
p2 in the numerator of the bound for the customer-addition algor-
ithm by examining the maximum likelihood estimation procedures
that follow from the observation vectors Y and Y' employed by each
technique. The reason for this is that maximum likelihood pro-
cedures that are asymptotically unbiased will asymptotically
achieve the Cramer-Rao bound. Maximum likelihood estimators for

p are defined by the following equations:

f% tn P(Y|p) | 5 = O (2.225)

o

%0 =0 (2.226)

in P(Y'\p)\p=5

Since the delay gradient D' is expressed by (2.33) as a function

of p, the maximum likelihood estimator for D' is given

y + px (2.227)

f)' = X + jx 2 [}
2(1-p)

2(1-p

The maximum likelihood estimator specified by (2.225) is
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N

Z M, -1
~ i=1 1
P =R N-1 . (2.228)
T M.+ T I,lx
i=t * =1

The estimator that follows from the observation vector Y' employed

by the customer-removal algorithm is given by (2.226) as

(2.229)

Each estimator for p can be shown to be asymptotically unbiased
and together with (2.227) must determine an asymptotically

unbiased estimator of the delay gradient.

Since the delay gradient estimator specified by using (2.228)
in (2.227) uses idle period information in addition to the number
of customers served in each busy period, we might expect that
asymptotically, the variance of this estimator will be smaller
than that for the estimator that follows from using (2.229) in

(2.228). Hence, it is not surprising that the Cramer-Rao bound
Mfor the customer-addition algorithm is always smaller than the

corresponding bound for the customer-removal algorithm.
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2.8 Derivation and Realization in Flow Diagram Form of
Time-Contraction Algorithm

In our third algorithm, we simulate an increase in rate 6)
by a linear contraction in time scale. Assume that ¢§i) denotes
the time of arrival of the j-th customer in the i-th busy period
relative to the beginning of the observation interval. We

define a new set of shifted arrival times by

AN ST (2.230)
Since 6\ represents an infinitesimal change in rate, we can choose
it sufficiently small so none of the busy periods are shifted

onto other busy periods by the time contraction. A simple suf-
ficient condition on 6\ so that the redefinition of arrival times
in (2.230) produces no "interactions'" between busy periods is

given by

O ¢ < min {I,} (2.231)
A E . j

J
TE refers to the observation period length and Ij denotes the

duration of the j-th idle period.

We now consider the increment in system time that comes from
each customer arriving a little earlier and hence, waiting a

little longer. The waiting time of the j-th customer in the i-th
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busy period is defined by

j-1
ngi) -z xff) - (T§i) - 7{1)) : (2.232)

If we substitute the shifted arrival times given by (2.230) into

(2.232), we can relate the new waiting times ag(i) to uéi) by

*(1) o (1) L 6 , (1) (1)
“ﬁ = + N [Tj -7 1. (2.233)

R(1)

We define a new variable Tj as the arrival time of the j-th
customer in the i-th busy period relative to the start of that
busy period. Hence, the additional system time over N busy per-

iods that follows from Eq. (2.232) can be expressed as

N
[N
== I Z, (2.234)
I
where
0 Mi=1
o (2.235)
z, &
i Mi
5 ~d) M, #1
n=2 ° *

A second contribution to the increment in system time follows

from the fact that our time contraction procedure shifts the
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right edge of the observation interval, leaving a gap of duration

%%-TE in which additional customers could arrive. Since an
average of ch total delay is accumulated per unit time, where
Dc is the average total delay/customer, the average increment in

system time is given by
R )(AD_) = O\T_D (2.236)
A E c Ec’ ‘
Employing (2.234) and (2.236), we obtain the following

expected increment in system time conditioned on the queueing

record.

N
E(6S|Queueing Record) = GATED + 28 z Z (2.237)
¢ Ay 1

Since both A and Dc are unknowns, we use the fact that asymp-

totically, by the law of large numbers

N
T M,
i=1
o~ (2.238)
E
N M @, N
D~ £ = stz omM (2.239)

i=1 j=1 J i=1

S}l) denotes the system time of the j-th customer in the i-th

busy period. Substituting relations (2.238) and (2.239) into
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(2.237) and normalizing by GXTE we obtain the following delay

gradient estimator:

N % @ N
T T S Tz,
pr = =L 13:1 + 11;1 (2.240)
T M, 5 M
i=1 * i=1 *

Comparing Eq. (2.128) and Eq. (2.240), we see that the
customer-removal and time-contraction estimators have an iden-
tical first term corresponding to an estimate of Dc’ They differ
only in the second term where the customer-removal algorithm
employs Py defined by (2.129) and the time contraction algorithm
uses Z, specified by (2.235). Hence, flow diagrams for both
algorithms are very similar. The variables that appear in the
flow chart are the same as those for the customer-removal algor-
ithm defined in Fig. 2.5 except that we no longer need the gi's
and S is redefined as the sum of all the system times and rela-
tive arrival times of customers in the current busy period.
Dropping the indices for the busy period, S is given by

T. & (2.241)

LS

. o) F
(xJ J)

R
1 j J

2

Noting that w =0 and expressing w, as the sum of the j-1 preced-
“1 3

ing service times minus the arrival time 7? of the j=-th customer
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relative to the start of the busy period, we obtain the following
expression for S since the contribution due to the relative

arrival times is canelled:

M M
S= 3T x,+ ¥ T x, . (2.242)
i=1 =2 4=1 .
We use (2.242) in the flow diagram for the time-contraction

algorithm presented in Fig. 2.7.

The expression for S given in (2.242) suggests an alterna-
tive form for the estimator in (2.240). Changing the order of
summation in the double sum in (2.242) and realizing that S is
the contribution to the numerator of (2.240) corresponding to a

given busy period, we obtain

N
B,
pr= i — (2.243)
T M,
=1 4
where
My
A _ (&D)
B. A £ (M - t+1)x (2.244)
3= 0 T )
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Figure 2.7 Flow Diagram for Time~-Contraction Algorithm
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2.9 Asymptotic Bias Calculation for Time-Contraction Algorithm
in the Case of M/G/1 Queues

To investigate the asymptotic properties of the time-
contraction algorithm we can employ the form for the estimator
given in Eq. (2.240) or (2.243). We first examine Eq. (2.243),
since the asymptotic unbiasedness of the algorithm for an M/D/1
queue follows readily. Exchanging the limit and expectation

operations and appealing to the law of large numbers, we obtain

lim ED' = E lim D' = 2. (2.245)
N - o N-» = M
For an M/D/1 queue xéJ) = x and we evaluate B by conditioning on

M=j and then taking the expectation over M. Hence,<g is given by

B = E,E(BM=]) = -f;_- x M +N . (2.246)

By Eq. (2.245), the mean of the estimator asymptotically

approaches

x| —+1] . (2.247)

N

Employing M/D/1 formulas for M2 and ﬁ'given in Eqs. (2.98) and

(2.99), we obtain the final result that
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N = _PX DX
lim ED x + 2 (1-p) + . (2.248)
N- o 2(1-p)

The expressicn in (2.248) is identical to that in (2.33) for the

delay gradient of an M/D/1 queue.

We can extend the argument of the preceding paragraph to an
M/G/1 queue for calculation of the asymptotic form of the esti-
mator as a power series in p. To evaluate the expectation of B

conditioned on M we need p(x1 .o xM\M) since

E(BIM) = EMx; + (M-1)x, + ... x,|M) (2.249)

By Bayes' rule

pMix, ... J)p(x, ... )
P(xy +v Xy IM) = 1 x‘;‘M 1 “ (2.250)

We calculate p(M\x1 cee xM) as the probability of the region in
(91 cen OM) space that corresponds to M customers with service
requirements (x; ... xM) being in the busy period. By the con-
straints on the ej's specified in (2.148) and (2.149) for M cus-
tomers to be served in a busy period and since the unconditional
joint distribution of the Oj's is a product of M exponential den-

sities with parameter X, p(M\x1 cee xM) is given by
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X xptxy=6) jg=1 T 4= 1
p(M\xl...xbp = I oo [
6,=0 9,0 6,~0
M
N
® R TS
[ Ae dey, ... do
M M-1
6, = ¥ x, - T 6
Moyt 4 1
(2.251)

Doing the final integration over OM and combining with (2.250)

we obtain

AM-]' M -)in
p(x1 xMuJI) = —EMf- g(xl de.) 1:1 B(xi)e ,
(2.252)
where
1 =1
g(xy .. Xy q) = M-1 M-2
r x,. - &
X Xptxy-6) i=1 * q=1 1
[ I oo J d6y_; --- d6
0,=0 6,=0 810
M#1
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Hence, we can calculate B as

B= T (BME, (2.254)
M=1

From the )\M'l/fM factor in (2.252), we can see that (E\M)fM will be
representable as a power series in p with terms of at least

(M-1) ~st order. Forming ﬁ\ﬁ'by multiplying B with 1-p, we can

collect the powers of p in the asymptotic form of the estimator.

We have demonstrated that contrary to what happens for an
M/D/1 queue, for the more general case of an M/G/l queue, analysis
of the expression given by (2.243) for the time-contraction esti-
mator does not yield an explicit closed form expression for the
asymptotic mean of the estimator. Hence, rather than pursuing
the calculation outlined by Eqs. (2.245) through (2.254), we
examine the form of the estimator in (2.240). Comparing this with
(2.128), we note that Zi plays the same role as Py in the customer-
removal algorithm., Therefore, the asymptotic bias of the time-
contraction algorithm for an M/G/1 queue is specified by Eq.

j+l N

(2.134) where ay is defined as the coefficient of p n a

power series ezpansion of Z. Z is expressed using (2.235) as

—_ @ M R
Z=1t E| " . (2.255)
M=2 \i=2 1 u

131



In the n2xt few paragraphs we develop results useful in cal-

M
culating E ( z T?\M). Since 7? is equal to the sum of the first

i=2 M
(i-1) inter-arrival times, the problem of computing E ( z TE\M)
i=2
can be restated as
M R M-1
E{ T ;M =E[ = (M3 M) (2.256)
i=2 j=1

To evaluate the second expectation we need p(el cee 9M~1\M).
Integrating out 8y and xy from p(x1 cor X8y ol OM\M) defined

in Eq. (2.150), we obtain

M"‘l M -AX
_A__"B*(x i
p(x1 cee XM-l’el coe GM_l‘M) F z [B(xi)e ].
M i=1
| k-1
k=1... M-1 0 <6 < Xx. -~ L 6. (2.257)

J=1 J j=1 J

Employing the inequalities that the ej's and xj's must satisfy,

we integrate out (x1 . anl) and find

@ (=}

M-1 -
p(el...eM_l\M)="——%Q)-§ |

X178 Xy, XM-1"M-1
M-1

m [B(xi)e.xxi] dxy 1 --- dx

i=1 L’

(2.258)
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where

A k k-1
X, =2 maxq¢ L 6, - T x.,0,.
k i=1 * g=1 T

By considering a series of linear transformations of
(91 cee eM-l) we can derive the statistics of the sum of rela-
tive arrival times conditioned on M and hence express the con-
ditional mean as a single integral. We introduce the following

two transformations:

R
2 1 1
: = . , (2.259)
; 1
™ Y/ By-1
/ R
m 1 Ty
: =| : : (2.260)
R
-1/ \! 1/ \'n

M1 is the variable that corresponds to the sum of the relative
arrival times. Employing (2.259) and (2.260), we obtain the fol-
lowing composite transformations from (91 .o eM—l) to (n1 "'nM-l)

and the corresponding inverse transformation.
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n 1 6

1 9 1 1
oAt : (2.261)
nM-l M"l M-z 1 OM_l

¢ 1 n

1 -2 1 1

— 1 -2 1 .

S 1 -2, 1, : (2.262)
-1 o1 -2 -1

The absolute value of the determinant of the Jacobian of the
inverse transformation specified by (2.262) is one. Hence, we
compute p(n1 cen nM_l\M) by making the substitutions in

p(e1 ces M_1\M) given by (2.258) for the Oj's in terms of the

S T

6, = m, - 2n (2.263)
L=, - 20, o+, =3 ... M-

O3 T My " By F 5 g !

The constraints on the nj's are obtained by guaranteeing ej > 0.
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-
v
o

Ny > 2n1 (2.264)
n. = 2n. 1" nj_z j=3 ... M-1

J-

Hence, the desired conditional mean may be expressed as

M R © © © ©

E{.Zz Ti\M}=j { . -

i= _ - = - = -
G Py IS R P MM-1"2M-2" M3

'nM_lp(n1 oo nM_I\M)an_1 cee dn1 (2.265)

M/M/1 Bias Calculation

Now we calculate the first and second order terms in p for
the asymptotic bias bT.C. of the time-contraction algorithm in
the case of an M/M/1 queue. Similar to our analysis of the cus-
tomer-removal algorithm, we need to calculate 0 and oG the
coefficients of p and p2 in an expansion of z defined by (2.255).

AM-I M R
From the %% jz;(rj\M)fM}

M
will be representable as a power series in p with terms of at

term in p(e1 cee eMil\M)’ we see that E{

least (M-1)'st order. Hence, to compute ay we need to calculate
M .

E Z (T?\M)EM for M = 2 ... j+2, and collect coefficients of pJ+1.
i=2
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We start by calculating ;§\2. From (2.258), p(el\MFZ) is
given by

® =AX
p(o, |M=2) = Aﬁ%éll [ B&xpe ldx; . (2.266)

X176
Since Tg = 61, we can express the desired conditional mean

;5\2 as a double integral using (2.266). Changing the order of

integration yields

© ')\X
—R,. _ 1 X\B* 2 1
plz=g MEMT ssegpe Ten (2.267)

Using the B(x) and B*(S) for an M/M/1 queue specified by (2.196),

we find
H2=3 1 — - L (2.268)
Foa+p)® %2
M R
Next we evaluate E| I Ti\M for M=3. p(el,ez\M%B) is
i=1

given by (2.258) as

©

2 ®
AB*(\)
P88, ) = 5550
x1=91 X, =max {61+62-x1,0}

-Axl -sz
(B(x;)e ) (B(x,)e ) dx,dx, . (2.269)
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Rreaking up the integration over x; to get rid of the "max" in
the lower limit of the X, integration and making the substiiutions

defined in (2.263) for 8, and 6,, we derive p(nl,nz\M=3) as

Ty~
2 ) 271 e —AX -\x
* 1
p(n sy M=3) = 2 33 R | (B(xe ) (Blxye
X177 ¥2TM M THy dxydx;
@ ® ")\Xl ')\Xz
+ [ [ (B(xpe ) (B(x,)e )dx,dx,y

Xa=N,=N, X,=0
172 7172 (2.270)

—

By (2.265) the desired conditional mean is formulated as ﬁé\M=3..

3 R e (o " 2 .
SRR e A
Mm=0 my=2n1 X TNy Xp=My=ny X

-Axl -sz
6B(x1)e )(B(xz)e ) dxzdxldnzdn1

[+ fo=) ©

T )

M=0 15207 x=ny=n; x,=0

-Axl -sz
(B(xy)e ) B(xz)e dxzdxldnldn2 (2.271)
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Employing B(x) and B*(S) for an M/M/1 queue, we obtain

3 R 1 2,
E| B 7 M=3) =7 = ——49——5 = - (2.272)
i=2 Fa+p) 3

Using Eqs. (2.268) and (2.272), we can calculate the coef-

ficients of the p and p2 terms in the asymptotic bias bT c.* %

is derived by taking the coefficient of p in an expansion of

(;g\Z)fz. oy is obtained by collecting powers of 02 in

(?3\2)f2 and (7y + ?§\3)f3. Hence, we find

=11
% " 2 )
(2.273)
=51l
oy 5 "
Employing Eq. (2.137), we specify bT c. as
.11 .51 2 3
bT.C,_-Z up+2 “p + 0(p7) . (2.274)

Hence, the asymptotic bias of the time-contraction algorithm for
an M/M/1 queue contains all powers of p. This contrasts with the
case of an M/D/1 queue, where we were able to prove asymptotic

unbiasedness of the algorithm.
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2.10 Cramer-Rao Bound for Time-Contraction Algorithm in the
Case of M/D/1 Queues

/
o

We now concludé our analysis of the time-contraction élgor-
ithm by deriving a Cramer-Rao bound on the variance of the esti-
mator for an M/D/1 queue. The form of the time contraction
estimator defined in (2.243) and (2.244) tells us that the obser-~
vations which the algorithm uses, in the case of an M/D/1 queue,
consist of the number of customers served in each busy period.
Since the number of customers served is independent from one busy
period to another and for an M/D/1 queue the probability of M
customers in a busy period is given by Eq. (2.110), p(M1 ...MN\p)
is as follows:

M.-1

N (Mip) * -M.p
T —

Py .. Mglp) = T e - (2.275)
1

i=1

Letting y denote the delay gradient, there is a 1-1 corres-
pondence between v and p specified by Eq. (2.112). Employing
(2.113) and (2.112), as we did before for the customer-addition
and customer-removal algorithms, we can derive a Cramer-Rao bound
for the variance of any unbiased estimator of y that employs

observations (M1 cee MN).

Var (y - 3) 2 x° —2— | (2.276)
N(1-p)
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The bound (2.276) is identical to that for the customer-
removal algorithm. This is to be expected since the maximum-
likelihood estimate for p that follows from (2.275) is the same
as that which follows from P(Y'|p) defined in (2.223), where Y'
denotes the set of observations which the customer-removal

algorithm uses in the case of an M/D/1 queue.

2.11 Computational Complexity and Storage Requirement Analysis
for the Three Algorithms

Now we proceed to analyze, compare, and contrast the compu-
tational complexity and storage requirements of the three
estimation algorithms presented. The procedure for up-dating the
delay~-gradient estimate in all three algorithms assumes the

following form:

Dis1) = LDy *+ A - (2.277)
sz) is the delay gradient estimate based on an observation inter-
val containing k busy periods, { is a factor that renormalizes
ﬁzk) to correspond to a component of the (k+l) busy period
estimate. A denotes the contribution to the (k+l) busy period
estimate that comes from the (k+l)-st busy period. Hence, to
compare the three algorithms, we examine the storage and computa-

tional requirements of forming A.
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In the customer-addition algorithm, A is the expected addi-
tional delay suffered by the customers of the (k+l)-st busy
period due to an arrival in the entire (k+l) busy period record.
According to the notation defined in Fig. 2.1, we need

(1 . Ii )and(Th 41 0 Ti +1) to compute A. In denotes

I I I I I
the first idle period at which an extra arrival with a service

n

requirement x can influence the (iI+1)~st or current busy period.

Hence, x satisfies

1

X > z I
k=nI+1

K (2.278)

We need two buffers with iI-nI+1 storage locations for the idle
period and busy period durations, respectively. We can general-~
ize this argument to say that the probability of x being greater
than the sum of Nb idle period durations is equal to the probabil
ity that we need two buffers with Nb+1 locations. Hence, for the
case of an M/G/1 queueing system, the probability of x being
greater than the sum of Nb independent exponential variates with
parameter A is equal to the probability of a buffer overflow give
we have only N, storage locations per buffer. In designing our
system, we want to choose Nb sufficiently large to make the
probability of an overflow less than some acceptable probability
€. In Eqs. (2.44) through (2.46), we derive the statistics of

the sum of k exponential random variables with parameter A.
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Employing (2.46) and 1etting5 f}‘ Ax we obtain the following
expression for the probability of an overflow given our two buf-

fers have Nb locations:

N
5
Pr {Overflow\Nb Storage Location |Buffer} =1- e > %T .
j=0
(2.279)

By applying Taylor's remainder theorem to an expansion of e" we

obtain

ef < B+ &8, (2.280)
- . j! N, !
j=0 b

By employing (2.280) we can upper bound the probability in (2.279).

N

~"b
Pr {Overflow|N_ Location |Buffer} 5,%—7 (2.281)
b
Since p = Ax and the range of interest of A is 0 < A 5.i3 we
obtain the final bound
Pr {Overflow\Nb Location|Buffer] 5.£§§§%—- . (2.282)
b

We want to make the right side of the inequality in (2.282) less

than some tolerable probability of overflow £. As an example,

for x = x and & = 10-9, NB > 13 satisfies (2.282). Having
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arrived at a suitable value of Nb’ the storage requirement of the

customer-addition algorithm is approximately 2Nb + 12.

We now consider the computational requirements of forming A.
For the customer-addition algorithm, A is composed of a contri-
bution which represents the additional system time resulting from
an arrival in the (k+l)-st busy period plus the effect on the
(k+1)-st busy period of an arrival at any earlier time in the
(k+1) busy period record. We consider first the contribution due
to the effect of an extra arrival in the (k+l)-st busy period.
This term assumes two forms depending on whether all the service
requirements are identical. We employ the notation defined in
Fig. 2.1 for expressing the contributions tqo D. If xéq) = X,

the term is given by

11T (% M*x%) (2.283)
which requires four multiplications and one division to evaluate.
For the more general case ghen xéq) # x, the desired contribution
is given by Eq. (2.14) normalized by 4'. With some manipulation,

the component of A due to an extra arrival in the (k+l)-st busy

period is given by

M k (1 + 7 )] M
1 { [ k+1 ¢ Tk R
— ¢z T x_ - (1 -717,)+x T 17T } .
A k=1 a=1 n 2 k+1 k i=2 i

143 (2.284)




The above takes M+l multiplications, M+l divisions, and 6M-4
additions to calculate. The TE denote arrival times relative to
the start of the busy period. The exprecsion in (2.284) is con-
ceptualized as belng evaluated as the busy period progresses.
Hence, we needn't store all the service requirements and arrival

times.

To enumerate the remaining calculations in forming A we
count the operations involved in computing the effect of an extra
arrival in the preceding iI - nI+1 idle periods and iI -ny busy
periods on the customers in the (iI+1)-st busy period. If we
let iI - nI+1 2, n., then n, corresponds to the current number
of idle period and busy period durations that we store. In terms

of n, the remaining operations to compute A are counted as

7nb - 6 additions

6nb - 2 multiplications
(2.285)

an - 1 divisions

n, comparisons

We can upper bound the number of operations listed in (2.285)
by letting n, = Nb, where Nb is our buffer size chosen to guar-
antee the probability of overflow being lass than some threshold

e. Using our preceding example, we can let n, = 13 for an e==10’9.
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For the general case when the service requirements are not
all identical, the number of operations to evaluate (2.284)
varies with M. Hence it is of interest to bound the probability
of M exceeding some value t. For an M/G/1l queue, the simplest
Chebyshev bound yields
Pr (M >t} < (2.286)
Hence, as p » 1 we need to make t very large for the bound to

give us any information. Therefore, the number of operations

required in (2.284) becomes unbounded as p - 1.

For the customer-removal algorithm we identify S defined in
Fig. 2.5 as the corresponding A. The number of storage loca-
tions required to calculate A is approximately M + 8. The M comes
from the array of gi's in which we store C} as j is varied. The
number of operations required is determined with reference to the

flow chart in Fig. 2.6.

MK%ELL Minimizations or Comparisons

(2.287)

’—4-(-"2;11 + 4M-3 additions
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In the time-contraction algorithm S corresponds to A as
before. The storage requirement to compute A is 8. The number
of operations obtained by examination of Fig. 2.7 is 3M-3

additions.

From the discussion above we see that of all three algor-
ithms, the time-contraction algorithm has the smallest storage
requirement. Unlike the customer-addition and customer-removal
algorithms, the time-contraction procedure requires no buffer
with randomly varying size. 1In addition, the computational load
for the time-contraction algorithm is the least of the three.
Henée, the time-contraction procedure is the least costly to

implement.
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SECTION 3

SIMULATION RESULTS

In Section 2 we derived the asymptotic bias of the three
estimation algorithms. Since we are unable to calculate the
variance of the estimators as a function of N, the question of
consistency, whether the estimates converge asymptotically to the
delay gradient, remains unanswered. In addition, for an M/D/1
queue we would like to know if our algorithms are asymptotically
efficient, whether they achieve the Cramer-Rao bounds derived in
(2.116), (2.224), and (2.276). We would also like to investigate
the robustness of the customer-removal and time-contraction
estimation schemes by seeing how they perform for a variety of
queueing systems. We attempt to provide answers to these ques-
tions in the present section by presenting the results of simu-
lating all three algorithms for an M/D/1 queue and simulating the
time-contraction and customer-removal algorithm for M/M/1, D/M/1,

and U/M/1 queues.

We simulate a single-server queue by the following recursion

for successive waiting times:

w

41— Dax {uh +tx -8, 0} with w = 0. (3.1)

147




X and On are random variables corresponding to the m-th service
requirement and the inter-arrival time between the n-th and
(n+1)-st customer, respectively. When w, goes to zero, this

signals the start of a new busy period.

We now describe the calculations necessary to evaluate the
statistics of a given estimator. To derive the mean and variance
éf a k-busy period estimator sz) we generate a certain sample
size NS of k-busy period records, processing each to form an

estimate ﬁzk) it We compute estimates of the bias g(k) and var-
b

iance g%k) associated with ﬁzk) as follows:

NS
~ 1 ~ dD
b === ¥ D! . - (3.2)
(k) NS 1=1 (k),i o
. N Ng Ng 2
(k) NS-l NS i=1 (k),1i NS i=1 (k),1i
(3.3)

The measure of performance that we use most often is the frac-
tional rms error, which we approximate by employing our estimates

for the bias and variance in (3.2) and (3.3).
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JE(D'(kg_Q' %‘?) \/ (k) %) (3.4)

dA bk

For all the queueing systems under examination, we present curves
of the fractional rms error associated with D(k) for k = 10,

100, 1000 busy periods with NS = 400 Monte Carlo rms for each
estimate. We experimented with NS’ trying NS = 10, 50, 100, 200,
400, and found that NS = 400 insured from one to two significant

figures in our value for the fractional error defined in (3.4).

We do not present separate curves for our estimate of the
bias b (k) defined in (3.2), since in many cases our value for
ﬂ(k) was of comparable size to the statistical fluctuations in the
quantity. To make this notion clearer, (3.2) can be rewritten as
b bD)

© " ( 0 + 5. (3.5)

6 is a zero mean random variable with

~2

g
E62 ~ —&‘9- (3.6)
S

Hence, when our value for b(k) is of the same size as E62 , we
can not possibly measure the actual bias b(k) with any accuracy.

Careful examination of the results of the simulations support the
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conclusion that in the cases where we could not measure b(k)
accurately, it contributed negligibly to the fractional rms error
in (3.4) and when b(k) could be measured accurately, its con-

tribution in (3.4) was non-negligible.

Having defined the measures we will use to compare the
algorithms, we first discuss the simulation results for an M/D/1
queue. From earlier analytical results, we know the customer-
addition and time-contraction algorithms are asymptotically
unbiased for M/D/1 and that the customer-removal algorithm is
unbiased at least up to the third power of p. Curves of the frac-
tional rms error for N = 10, 100, 1000 are presented for all three
algorithms in graphs 3.1, 3.2, and 3.3. The consistency of the
three estimation procedures is suggested by the improved perfor-
mance with increasing N. In graphs 3.4 and 3.5, for N = 100 and
N = 1000, respectively, we present the lower bounds on fractional
rms error that follow from our Cramer-Rao bounds for the variance
of the estimators, together with the simulation results. The
closeness of the simulation curves to their respective lower
bounds suggest that all three algorithms are asymptotically
efficient for an M/D/1 queue. Graphs 3.4 and 3.5 show that as a
function of p the fractional rms error for the customer-addition
algorithm remains below that of the time-contraction and customer-
removal algorithms, and hence we conclude that it performs the

best of the three procedures for an M/D/1 queue. The customer-
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removal and time-contraction algorithm's fractional rms error
curves are quite close, with the customer-removal algorithm's
performance being slightly worse. The bias results for the three
algorithms are displayed in Tables 3-1 and 3-2. We list our

estimate for the relative bias G(k)/%% together with the size of
o (k)/J/Ng

)
dX

statistical fluctuations in the relative bias,
Seemingly anomalous behavior of the relative bias is often
explainable by looking at the size of the statistical fluctuations

in the quantity.

We now proceed to demonstrate that the behavior of the
algorithms for p near zero indicated by graphs 3.1, 3.2, and 3.3
is reasonable. We examine all three algoritbhms for p - 0 by
keeping X constant and considering A - 0. As p is made arbitrarily
close to zero, the density for M,, the number of customers served
in the i-th busy period, becomes an impulse at 1. Hence, as p— 0,
the queueing record approaches a set of single customer busy per-
iods. 1In addition, since i#, the average size of the k'th idle
period is %, the idle periods become unbounded as p — 0. Hence,
with high probability the service requirement of the additional
customer x will be << L . Applying (2.14), (2.15), and (2.17)
through (2.19), we find that with high probability E(6S |teT, ,
Queueing Record) and E(GS\teIk, Queueing Record) will be given as

E(ﬁS\teTk, Queueing Record) = x +-% X (3.7)
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TABLE 3-1

RELATIVE BIAS FOR CUSTOMER-ADDITION ALGORITHM (M/D/1 QUEUE)

PN 3"' /A/_N—
N b Py °

3D oD

3 o
10 3.4 x 1072 7 x 1073
100 1.6 x 1073 0 x 1074
1000 6.5 x 10°% | 4.2 x 1074
10 7.2 x 1072 0 x 1072
100 | -1.4 x 1073 7 x 1073
1000 | -3.6 x 107% 9 x 1074
10 6.3 x 1072 1 x 1072
100 | -7.6 x 1073 8 x 1073
-3 -3

1000 | -1.8 x 10 4 x 10

10 | -1.0 x 1071 7 x 10”2
100 | -4.4 x 1072 3 x 1072
1000 8.6 x 10°% 2 x 1073
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TABLE 3-2

RELATIVE BIAS FOR CUSTOMER-REMOVAL AND
TIME-CONTRACTION ALGORITHM (M/D/1 QUEUE)

be g, aﬁZN).c.R./Jﬁg Eg.c. gﬁzN).T.C./Jﬁ;
PN Y) ) oD D
B Y 2 22 o
0] 1.6 x10°t| 8.7 x 1073 8.8 x 10°2| 6.8 x 1073
1| 100] 1.6 x1072] 2.2 x 1073 7.8x103]| 1.9 x 1073
1000 | 4.7x1073] 7.9 x 107 2.8 x 1073| 7.3 x 107%
w0l 12210t 1.7x10? | s.ax102| 1.4x 1072
a3l 100] 6.3 x103] 5.1x103 |-3.2x103| 4.7 x 107
1000 | 5.0 x 1073| 1.9 x 107 2.8 x103| 1.8 x 1073
ol 3.1 x102]| 2.4x102 |-3.0x103| 2.3x107?
5| 100014 x102| 9.8x10°3 |-1.7x10%| 9.2 x 107
1000 | <9.0 x 1074 | 3.5 x 103 |-1.4x 1073 | 3.3 x 107
0l-1.7x101] 2.8x102 |-1.8x101| 2.8x107?
1 100 |-5.3 x 10°2| 1.6 x102 |-5.7x10%| 1.6x 107"
10001 3.2 x10%| 6.3x103 |[-4.6x10%| 6.2x107
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2

E(6S \teI, , Queueing Record) = x +-l X (3.8)
k 2 Ik
N-1
Using the fact that TE ~ Nk + I Ik for p - 0 and substituting
‘ k=1

(3.7) and (3.8) into (2.5) and (2.6) to form the delay gradient

estimator, we obtain the following expression for ﬁ%N):

L a-bis
D(N) ~ x + ) N-1 (3.9)
x+% T I
N k=1 k

If we let p approach zero, we can make the probability that

N-1

% z Ik is greater than any given number converging to 1 (since
k=1

ik = %). Hence, in the limit as p - 0 the second term in (3.9)

yields a zero contribution and ﬁk x. Therefore, not only is

N)
the customer-addition algorithm unbiased as p — 0, but Var BEN)—'O

for p - 0.

Since as seen in Eqs. (2.123) and (2.242), the customer-
removal and time-contraction algorithms have a similar structure,
we can examine the behavior of both concurrently for p - 0. As
p— 0, M, ~ 1 and each customer has a zero waiting time. Z; and
Pi in Eqs. (2.123) and (2.242) become zero, and both estimators

assume the following form:
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N .
- <3

N |
DEN) ~ L—l—N—— (3.10)

x{j) denotes the service requirement of the first customer in the
b
N) N°?

where a% denotes the variance of the service time density. Since

j=-th busy period. Hence, for p - 0 EﬁEN) ~ % and Var 62

from Eq. (2.24) it follows that %%W 0 = x for a general single-
server queue, the customer-additionp;nd time~contraction algor-

ithms will be unbiased near p =0, but the estimators will have a
variance oi/N. Hence, since o, = 0 for an M/D/1 queue, we expect

graphs 3.2 and 3.3 of the fractional rms error to pass through

the origin.

Before examining the robustness of the time-contraction and
customer-removal algorithms, we review the theoretical relations
for the delay gradient in the case of M/G/1 and G/M/1 queues.
Employing (2.130) for Dc in Eq. (2.22), we obtain the following

relation for an M/G/1 queue:

(1 + cg)

2
5 20 -p) | (3.11)

(1 -p)2

oD _ —
3 x {1 +
where

c

bleTro

2 A
L A (3.12)

»

For an M/D/1 queue Ci = 0, while for an M/M/1 queue Ci = 1.
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In a G/M/1 queue we have a general inter-arrival time density
A(x) with one-sided Laplace transform A*(s), and an exponentially
distributed service requirement with parameter p. The waiting

time W is specified by

g
-V_J= y'(l_o_) > (3-13)

where o solves the nonlinear equation

o = A* (p - po) . (3.14)
0O<ox<1

Applying Eq. (2.24), we find the delay gradient is given by

oD _ 1 o ool
Sl [1 T s ] (3.15)

%%-is determined by expressing (3.14) as a relation between p and

o, differentiating both sides with respect o p, and solving for

felo
dop °

The two examples of G/M/1 systems that we use are D/M/1 and
U/M/1. For a D/M/1 queue the arrivals are periodic. A(x) and
A*(s) are given by

_ 1
A(x) = 6(x - x) (3.16)
=s/A
axs) =% (3.17)
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Relation (3.14) is expressed as

1o
c=e P P, (3.
Differentiating (3.18) with respect to p we find
d G(an)2
20 (3.

0p oing + (l-g) °

For a U/M/1 queue, the inter-arrival times are uniformly dis-

tributed. A(x) and A*(s) are given by

AG) = 5 [0 - U (x - 3] 3.
2
a*(s) = & -:-(1-3X ) (3.

Hqﬂx) denotes the unit step function. Relation (3.14) may be

expressed as

( 2 zg)
PN
-p\l -e" e
o 2(1-0) " (3
Differentiating (3.22) with respect to p we obtain %%-as
2
—_ (1-0) 2
1-¢eP (1 + = (1-0))
M = 2 * (3
op '

_2 (1-0)
21-20 + e P
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To construct %% as a function of p for a G/M/1 queue, we
vary p, solving for the appropriate ¢ by employing the fixed-

point iteration method on Eq. (3.14)

Ot = A%k - po ) (3.24)

We select some starting 0 < 0y < 1 and apply the above iteration

until Ontl -~ Op O the desired accuracy.

Now we examine the robustness properties of the customer-
removal and time-contraction algorithms by comparing their per-
formance for M/M/1, U/M/1, and D/M/1 queues. The simulation
results for the fractional rms error of the two algorithms for
M/M/1, U/M/1, and D/M/1 queues are presented in graphs 3.6 through
3.11, respectively. The results for the relative bias are dis-
played in Tables 3-3 through 3-5. The time-contraction algorithm
performs slightly better than the customer-removal algorithm for
M/M/1 and both perform nearly the same for a U/M/1 queue. The
only dramatic differences occur for the D/M/1 queue. Both the
relative bias and fractional rms error show the time-contraction
algorithm performing better than the customer-removal procedure.
This result is reasonable since for a D/M/1 queus the time-
contraction algorithm simulates a change in arrival rate in the

exact way dictated by the structure of the queue.
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TABLE 3-3

RELATIVE BIAS FOR CUSTOMER-REMOVAL AND
TIME-CONTRACTION ALGORITHM (M/M/1 QUEUE)

~ o ———n ~ c’;o\ —
" b: R. bwy .c.r. Vg by ¢, Doy .1r.c./VNg
aD oD 2D Y
X X X
10 |-1.5 x 10| 1.8x107% |-1.4x10"Y| 1.8 x 1072
1] 100] 1.3x1073 | 7.4 x 1073 2.3x 1073 | 6.7 x 1073
1000 | 7.2 x 1073 | 2.5 x 1073 8.5 x 10 3| 2.4 x 1073
10]-2.3x10Y| 2.4x102 |-2.2x10"Y| 2.4 x 1072
3] 100 |-1.5 x 1073 | 1.3 x 1072 2.6 x 103 | 1.2 x 1072
1000 | 2.1 x 1072 | 4.4 x 1073 2.4 x 1072 | 4.1 x 1073
10-3.0x10°Y| 3.2x10% |-3.0x 10" Y| 3.2x 1072
5| 100 {-2.3x10°2]| 1.9x102 |-2.8x10"2| 1.7 x 1072
1000 | 3.2 x 1072 | 6.4 x 1073 3.6 x 1072 | 6.3 x 1073
10 |-4.4 x 107 | 3.3x10°% |-4.5%x10"t| 3.1 x 102
71 100 1-3.0x1072| 2.8x107% |-2.5x10"2| 2.7 x 1072
1000 | 6.4 x 1073 | 1.1 x 1072 8.8 x10°2| 1.1 x 1072
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TABLE 3-4

RELATIVE BIAS FOR CUSTOMER-REMOVAL AND

TIME-CONTRACTION ALGORITHM (D/M/1 QUEUE)

~ 50\ — ~ 34\ '
N bc k. Dy .c.r./VNg b c. Deny.7.c.//Ng
© D 2D 2D 2D
3 X 3 N
10 [-1.0 x 1071 5x107% |10 x 107t 1.5 x 1072
1| 100 |-5.9 x 1074 0x103 |-5.0x10%] 5.0 x 1073
1000 [-2.4 x 1073 6x1072 |-1.8x103| 1.6« 1073
10 |-2.1 x 1071 7x10°2 [-1.3x107Y]| 2.3 % 102
.3 100 |-1.0 x 1071 0x103 |-8.1x10%] 8.2 x 1073
1000 |-9.8 x 1072 1x1072 {-2.4x103]| 2.9 x 1073
10 | -3.6 x 10°L 6x1072 |-2.1x10°Y| 3.6 x 1072
5] 100 |-2.2 x 107L 1x102 [-1.4x10°2] 1.5 x 1072
1000 {-2.1 x 10°% 2x10° [-5.0x103]| 5.2 x 1073
10 | -4.8 x 1071 8x1072 |-3.4x10']| 4.4 x 102
7] 100[-2.3 x 107 9x102 |-2.7x%x102| 2.2 x 10°2
1000 | -1.2 x 1071 1 x 1073 7.8 x 1072 | 9.2 x 1073
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RELATIVE BIAS FOR CUSTOMER-REMOVAL AND
TIME-CONTRACTION ALGORITHM (U/M/1 QUEUE)

TABLE 3-5

. _ . oa —
. be .z, Dyy.c.r./VNg br c. Deyny.T.c./VNg
oD oD Y oD
2N SN o 3
10 |-1.4 x 1071 7x10% |-1.3x10° | 1.7 x 1072
100 |-1.2 % 1073 4 ox 1073 1.5 x 103 | 6.1 x 1073
1000 | 5.2 x 1073 1 x 1073 7.1x10°3 | 2.0 x 1073
10 |-2.1 x 1071 1x107% |-1.9x10° | 2.3 x 1072
100 | -3.5 x 1072 1x107% |-2.7x1073| 1.1 x 1072
1000 |-1.3 x 1072 6 x 1073 3.1x10°%| 2.8 x 1073
10 | -3.5 x 107} 7x107% |-2.9x10°Y| 3.1 x 1072
100 | -9.7 x 1072 5x10°% |-1.2x102]| 1.6 x 1072
1000 | -4.3 x 1072 3x1073 | 4.5x1072| 6.4 x 1073
10 | -4.7 x 1071 2x1072 |-4.1x101] 3.5 x 1072
100 | -1.4 x 107} 4 %1072 [-3.7x10°2| 2.5 x 1072
-2 -3 -2 -3
1000 | -4.2 x 10 4 x 10 5.7 x 10 9.8 x 10
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In examining the fractional rms errcor curves of the
customer-removal and time-contraction algorithms for M/M/1,
U/M/1, and D/M/1 queues, we first note that the behavior of each
algorithm is nearly the same for all three queues when p is near 0.
This follows from our demonstration that the estimator correspond-
ing to both algorithms approaches Eq. (3.10) as p -~ 0. Since
for all our simulations we take x = % = 1, the variance of the
service time density is 0% = 1. Hence, our N busy period curve
for the fractional rms error for each algorithm should cross the
axis at approximately-%:. The simulation results show this most
clearly in the curves égr the M/M/1 and U/M/1 queues. The points
derived from the simulation of the I//M/1 queue are more scattered

than those for the other two queues, making the interpretation of

behavior near p = 0 uncertain.

For each queue the performance of the estimation algorithms
degrades steadily with increasing p. Since the queue becomes
non-stationary at p = 1, it is reasonable that the fractional
rms error should become unbounded at p = 1. We can summarize the
performance of the time-contraction and customer-removal pro-
cedures for each queue by listing least upper bounds on the frac-
tional rms error for p in the interval [0,.7]. For the N = 100
and N = 1000 busy period estimators, these least upper bounds

are listed in Table 3-6.
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TABLE 3-6

LEAST UPPER BOUNDS ON FRACTIONAL RMS ERROR FOR pe [0, .7]

N = 1000 N = 100
M/M/1 | D/M/1 | U/M/1 { M/M/1 | D/M/1 | U/M/1
mmm ——
Customer~-Removal -
Algorithm .21 .25 .20 .56 46 47
Time-Contraction p
Algorithm .22 .19 .20 .54 .45 .51
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We now pose the question of how long the obsevvation period

TE must be to contain an average number of N busy periods and

hence achieve the fractional rms errors reported. A record of

length T, contains an average number of customers AT From

E E’
queueing theory we can derive an expression for ﬁ, the average
number of customers served/busy period. Hence, ATE/ﬁ'will be

the average number of busy periods/TE sec. observation time.
Appealing to M/G/1 queueing theory, M is given by Eq. (2.93) and
we can obtain the following condition on TE so the average number

of busy periods contained in the observation period is greater

than or equal to N.

s |

p—

EZ 503 (3.25)

We now interpret (3.25) for the case of queues that occur
in computer networks. 1In this situation, the customers are
messages with a certain number of bits L. The service require-
ment is the time needed to transmit the message 4/c, where c is
the capacity of the communications link in bits/sec. Hence x

is given by

. (3.26)

x=

0 le|

For representative purposes, values of Z, c, and x for the Arpa-

network are listed below
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1 = 1000 bits
c = 50 x 103 bits/sec (3.27)
X = L sec

50 *

If p is unrestricted, (3.25) will require an unbounded observa-
tion time as p is made arbitrarily close to 0 or 1. Hence, we
hypothesize that p is restricted to the interval [.1, .9].
Employing the value in (3.27) for x and letting pe [.1, .9], for

the observation interval T_ to contain an average of N busy per-

E

iods we must have

T, > .222 N. (3.28)

For N = 1000 ®g. (3.28) yields Tp 2 222 sec. or T > 3.7 min.

E

> .37 minutes.

and for N = 100, T > 22.2 sec. or T

E E
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SECTION 4
CONCLUSION

Hence, we have three estimation algorithms that appear from
simulation and analytical results to be asymptotically unbiased,
consistent, and asymptotically efficient in the case of an M/D/1
queue. We proved asymptotic unbiasedness for the time-contraction
and customer-addition algorithms in the M/D/1 case. We showed
that the asymptotic bias for the customer-removal algorithm,
expressed as a power series in p, only contains terms of third-
order or higher (for an M/D/1 queue). However, the closeness of
the customer-removal simulation results to those of the time-
contraction algorithm suggest that the customer-removal pro-
cedure is asymptotically unbiased. The consistency and asymp-
totic efficiency of the three algorithms follows from comparing
the fractional rms errors derived from simulating the procedures
on an M/D/1 queue with lower bounds on fractional rms errors
derived from Cramer-Rao bounds on the variance of any unbiased

estimator.

In evaluating the most promising algorithm as far as robust-
ness, computational complexity, and storage requirements, we can
only choose between the customer-removal and time-contraction
algorithms, since the customer-addition algorithm as formulated

is only applicable to queues where all customers have the same
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service requirement. The customer-removal algorithm requires on
the order of M2 minimization, M2 additions, and M storage loca-
tions to form the quantity A needed to up-date the estimate at
the end of the current busy period, where M is the number of cus-
tomers served in the most recent busy period. The time-contraction
algorithm requires eight storage locations and on the order of M
additions. In examining the performance of the two algorithms
for M/D/1, M/M/1, D/M/1, and U/M/1 queues, the only dramatic dif-
ference occurs in the case of a D/M/1 queue, where the customer-
removal algorithm behaves worse as reflected in the size of the
relative bias and the scatter of simulation points for the frac-
tional rms error. Analytical results show that both algorithms
are not asymptotically unbiased for an M/M/1 queue. Hence, our
results suggest the time-contraction algorithm as the best candi-
date since it appears to be at least as robust as the customer-
removal procedure, while having considerably less computational

and storage requirements.

Whatever the estimation procedures we employ, there is a
trade-off between observation time and the accuracy of our estimates
that needs to be investigated further. If we up-date our routing
variables every Tr seconds, it would be desirable that our
estimates should converge in approximately %-Tr seconds. On the
basis of this criterion, and using the result for the Arpa net

derived in Eq. (3.28), if we up-date our routing variables every
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Tr = 7.4 minutes, we will obtain estimates with performance at
least as good as the N = 1000 busy period estimator. Equation
(3.28) assumes that p is confined to [.1, .9]. When the link is
very free or very loaded the estimates will not be as accurate.
However, this is ameliorated by the fact that in the loaded case
we will try to take traffic away and in the lightly loaded case
we will try to add additional traffic. In the Arpa-network,
delay estimates are exchanged between nodes and new routes may be
determined every % second. Hence, we may not be able to up-date
the routing as often as we like if we expect to do the estima-
tion of the delay gradients with reasonable accuracy. However,
since in a quasi-static procedure the changes in the routihg

variables are likely to be small, highly accurate estimates may

be unnecessary.

One possibility for future work is in investigating the
convergence of the quasi-static routing algorithms presented in
Section 1 given that they use estimates, instead of exact values,
for the marginal delays. The most ambitious approach would be
to simulate the entire communication net with queues at each link
and apply the estimation algorithms and the different ''control"
strategies for adjusting the routing variables. A second approach
might be to approximate the estimates as some random variable we
generate in the computer with a mean and variance derived from
simulation results and see whether the quasi-static routing algor-

ithms still converge to the optimal flow pattern.
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APPENDIX A

VERIFICATION THAT (2.117) IS THE SOLUTION OF
DIFFERENCE EQUATIONS (2.176)

The proof that (2.177) is the solution of the difference
equations specified by (2.176) follows from substituting the
solution into (2.176) and checking for equality. The following

two identities are useful at certain steps in the proof:

Ey¢nd =0 (A.1)
q'=0 9 .
koo .
T CDEDYI G =0 (for k > 1) (A.2)
q'=1 1

Formula (A.1) follows from using the binomial representation of
(l-x)k and substituting x = 1. Formula (A.2) comes from similarly

expanding é% (1-x)k and evaluating it at x = 1 for k > 1.

Substituting our expressions for Qén) and Qén+1)

(2.177) into Eq. (2.176), cancelling a common factor of xn-q/(q-l)!

given by

that appears on both sides, and making the change of variables
j = n-2-1i, we are left with the following relation which we must

prove.

92:2:1 _ et (n-2-3) j 1
o B T B R I € L TC = L
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Letting q = n-k, we can recognize the binomial coefficient (jil),

and multiplying both sides by k! (n-k) we are left with

k-1

nk - k'nk-1 = & ( )(n-2-3j) (n~ 1)j + 1. (A.4)
J+1
j=0
Relation (A.4) must be true for k = 0 ... n-1 with n > 1.

By inspection, the relation is true for k=0 and k=1. We prove (A.4)
for k > 1 by matching the coefficients of powers of n on both
sides of the equation. We substitute for (n--l)j the representa-
tion given by the binomial formula and then change the order of

summation, obtaining the following expression for the right side

of (A.4):
k k-1
anj-1tl L

| oz (oG e
v=1 | 5=t-1 J+1 j- &+1

k-1 | k-1 . .

-4+ .
T CEN Gy DI o [t + 1. (A.5)
p=0 | j=¢ T34

The coefficient for n® in (A.5) is given by

k-1

j=§11 (j+1)(j-ﬂ+1)("1

yd okl _ oy (A.6)

The coefficient of nk-1 is given by

k-1 k-1

k j~k+2 j-k+ .
I G G (DT TGy (D) 2(245) = -k .
J= - J= -

(A.7)
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The coefficient of no is obtained by considering the second and

third terms in (A.5).

k-1 .
k iy,o
2 G Qe

33t 245) + 1 (A.8)
Making the change of variable j =q'-1 and then employing (A.l)

and (A.2), since we consider k > 1, we obtain the following

expression from (A.8):

Ky-1)9" +

q

Ky, 139" 1 _
1 (qv)( 17 q 0.

- =

k k [] k
T (CDEDT (@) +1= B (
q'=1 q ql=0 q

(A.9)

The final step in the proof is to show that the coefficients of
nL for £ =1 ... k-2 are zero. From (A.5) the desired coefficient
of nL is expressed as

k-1 . k-1

. 1 (j$1)(j-1+1)('1)j-é+1 ¥ ZL (Jil)(jéb)('l)j
j=t- j=

~4+1 .
(2+3) .

(A.10)

Making the change of variables j =q' +4-1, breaking the second
term into two summations, and regrouping the binomial coefficient

terms in one of the new summations, we obtain
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k-4 k-2
5 (E0@HhEnt w2 fod b end

q =0 q =1

k-4 '
z <“q’.‘°)q'<-1>q . (A.11)
|=1

k

()

q

From (A.2), for k-4 > 1 or 1 < & < k-2, we recognize the last

term in (A.11) as zero. Grouping the first two summations in

(A.11) together, we are left with

k-4
G+ . (EEnT @ ¢

TUTNYY L (AL12)
_1 "1

Now we employ the following identity for binomial coefficients:

@+ 1) = G - (4.13)
Hence, (A.12) becomes
k-4
(D + 2 (e T DT (4.14)

The product of the two binomial coefficients in the summation in

(A.14) may be represented alternatively as

(e AT = HED . (A.15)
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Substituting (A.l15) into (A.1l4), adding and subtracting 1 in the

summation, we are left with

k-1 :
(l,z) + (1;) { z Ehent - 1} . (A.16)
q'=0 9

But Eq. (A.16) is zero, since by (A.1) the summation inside the

brackets is zero.
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APPENDIX B

CALCULATION OF c

313, Eg \&, 'Ezm FOR AN M/D/1 QUEUE

We outline here the calculation of 63\3, 61\4, and 62\4.

3
C% is given by

c; - min {(x,z}, (B.1)

where

z = min {ab,w, (B.2)

5}'

The joint density of Wy and wy conditioned on M=3 is as follows:

2
p(w),w, |M=3) = —5
3 2
3x
0 < w <X
0 Lwy<x + w, (B.3)

Hence, the distribution function of z is

+
2 X X

_ “
Fz\M?B(T) =1 - 3X2 { [ daﬁdab . (B.4)
0<rt<x Wy=T w377

Differentiating (B.4) with respect to T we obtain

P es(T) = =5 (2x-1) . (B.5)

z | 3x
0<r<x
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. _ . =1,, .
Since Fz\M#B(x) =1, by (2.168) C3\3 is computed as

—~1 _ X T B &
C3\3 = Pz\M=3(T) dr = g x (B.6)
0

=1 1
We next consider the calculation of C3\4. Cy and the
appropriate z are defined in (B.1l) and (B.2). The joint demsity

of (w ,ab) conditioned on M=4 is specified by (2.169) as

X + w

3
p (e, M=) = ;3-3-; duy, . (B.7)
X -
0<w <x @, =0
0 < wy < x+w,

The distribution function of z is found as

x +w
3 X 2
Fama(™ =173 LT ey dude,
0<r<x WTT  WyTT

(B.8)

Differentiating (B.8) with respect to T, PZ\M=4(T) is given by

L _ .3 5.2 2
Fapums (™) T o3 g X FEr -l (B.9)
0 <r1<x

Noting again that FZ\M?4(X) = 1, by (2.168) E§\4 is calculated as

i =] OIS zx. (B.10)
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Our final calculation is of 61\4. Ci is defined by
1 .
C4 = min {x,z}, (B.11)
where
z = min {a&,u@,ah} . (B.12)

From the joint density of (ab,w ,qa) conditioned on M=4 given in

(2.190), we express the distribution function of z as

X x+w2 x+w3
-1 _ 3
Fz\M?4(T) =1 3 [ I { duhdu@dab . (B.13)
W

Differentiating (B.13) with respect to 7, we obtain

= 3 [4x? - 1.2 .
Pz\M?4(T) = o3 [4x 31 + 5 7 ]. (B.14)
0<7<x

P = =1 . .
Since Fz \M=4(x) 1, by (2.168) C4 |4 is computed as

>~

X

=1, - = 27 v
C4\4 = g TPZ\M=4(T) dr = g5 % . (B.15)
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