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ABSTRACT

Two models for analyzing the large deflection, linear elastic, static

behavior of structures have been developed. They are the consistent and

inconsistent assumed stress hybrid finite element models. The consistent

model satisfies the entire stress equilibrium equation while the inconsistent

model satisfies only the linear portion of this equation. These models are

consistently derived from the Principle of Virtual Work for two separate

coordinate frames: a stationary system and a convected (moving), updated

system. Throughout the development "correction" terms are maintained in all

the functionals to minimize the approximate solution drifting away from the

true solution. These correction terms correspond to checks on the stress

equilibrium and compatibility in the reference state. The former check is

recast into a more convenient form, for these models, than is usually used.

Utilizing a tangent stiffness approach (updated at every solution step)

various incremental and incremental-iterative solution procedures are used.

When used the check conditions are represented as equivalent loads.

Careful attention is given to properly define various coordinate systems

and reference frames. In conjunction with this the various definitions of

stress and strain are discussed. Energy and work terms consistent with each

system is considered in detail. The proper statements of the Principle of

Virtual Work are defined.

The actual applications utilize flat and shallow elements to analyze the

large deflection (moderate rotation), small strain behavior of thin, linearly

elastic beams, plates, and shells. For the beam problems two elements are

derived: flat and shallow curved, two node, six degree of freedom beam

elements. For the plate and shell analysis two elements are derived: flat

and shallow shell, three node, fifteen degree of freedom, triangular elements.
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Several example problems are given and compared to independent solutions.

Some of the studies in this work include the comparison of the consistent
and inconsistent models, the flat and shallow elements, the Kirchhoff-Love
and Marquerre shallow shell theories, the two coordinate systems, the effec-

tiveness of the correction terms and solution procedures, and the adequacy

of the models and methods. The results demonstrate that the consistent and
inconsistent models yield essentially the same results, however, much less

computational effort is required by the latter. Shallow elements perform
better than flat elements, however, for fine meshes the results are compar-
able. The two coordinate systems yield slightly different results caused
by the approximations made in the elements. For large deflection analysis
the most effective solution technique is an incremental-iterative procedure
with all the correction terms utilized. Overall, the models yield satis-
factory results with simple elements.

Thesis Committee:

Professor T.H.H. Pian (Chairman)

Professor J. Dugundji

Professor J.J. Connor
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SECTION 1

INTRODUCTION

1.1 Background

The advent of computers enlarged the scope of structural mechanics, as

well as a multitude of other diverse fields, enormously. The mathematics of

numerical methods grew rapidly. Solutions to problems so complex that only a

short time ago were intractable are now solvable. Many numerical techniques

flourish, but one of the most useful of these, for solid mechanics, is the

newest. It is the finite element method.

The finite element method essentially recognizes that structural mechanics

problems may be reduced, mathematically, to boundary value problems [Strang

and Fix, 1973; Crandall, 1956; Courant and Hilbert, 1953]. Hence a solution

of the governing field equations in the interior of a continuum is sought

subject to prescribed quantities on the boundaries. This method divides a

solid continuum into a finite number of regions called elements. Each of

these elements in themselves is a continuum and elements must be connected to

each other in very special ways. This piecewise scheme results in an idealiza-

tion yielding a finite number of simultaneous equations which can easily be

formulated.

The finite element method is most generally based on the method of

weighted residuals [Crandall, 1956]. For solid mechanics problems this is

equivalent to the variational principles. The Principle of Virtual Work is

most commonly used. Courant [19431 first used such principles to solve the

St. Venant torsion problem. It was, however, the works done by Turner et al.

[1956] and Argyris [1960], to name a few, which gave the finite element method

impetus. The term "finite element method" was first introduced by Clough

[19601. During the 1960's its popularity grew exponentially. Since then, the

basic principle has undergone various modifications, all of which yield

alternative variational principles and associated finite element models.

Washizu [1975], Pian and Tong [19721, and Pian [1972] describe many of these

principles and their interrelationships.
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The most popular methods derived from these principles are the compatible

displacement model [Melosh, 1963], the equilibrium model [Fraeijs de Veubeke,

19641, and the mixed models [Herrmann, 1965]. The displacement model is based

on the Principle of Minimum Total Potential Energy. A displacement field is

chosen to be continuous in the entire continuum. This is a minimum principle.

Fraeijs de Veubeke [1964] and Tong and Pian [1967], as well as others, have

shown that for linear analysis the direct flexibility influence coefficients

converge monotonically from below (i.e. too stiff) to the exact solution.

The equilibrium model is based on the Principle of Stationary Total Comple-

mentary Energy. This is a force method where a stress field is chosen such

that it satisfies stress equilibrium over the entire domain. Being a maximum

principle, Fraeijs de Veubeke [1964] has shown that for linear analysis the

direct flexibility influence coefficients monotonically converge from above

(i.e. too flexible) to the exact solution. The mixed model is based on

Reissner's variational principle which is a stationary condition. Here, one

chooses displacement fields and stress fields in such a way as to allow the

integrals in the principle to be defined. Thus, the analyst has more latti-

tude in describing these fields. Details may be found in Pian and Tong [19721

and Washizu [1975].

These basic models require various continuity conditions throughout the

entire continuum Since, in an effort to simplify the analysis, the finite

element method makes use of an assemblage of discrete continua (elements) to

form the whole, the variables must be continuous from element to element.

This, of course, may be difficult to establish. It is possible to generate a

noncompatible model [Zienkiewicz, 1971] as long as the requirements of the

patch test [Strang and Fix, 1973] are met. This model will no longer yield a

lower bound to the solution, however, it will, in general, give better results

than the compatible model. One of the major advances in finite element

analysis was the concept of relaxing such continuity conditions across element

boundaries. Naturally, the variables must still be fully continuous on the

interior of each element. Pian [19721 describes many such possible arrange-

ments which are named hybrid methods.
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For instance, the assumed stress hybrid mcdel, developed by Pian [1964,

1965], is based on a Modified Complementary Energy Principle. Compatible dis-

placement fields must be chosen only along the interelement boundaries and

stress fields on the interior of the elements. This too is a stationary

principle and Tong and Pian [1969, 1970] have shown that while the solution

can not be said to converge monotonically it does convergeto the exact solu-

tion. In fact, as these authors have demonstrated, the convergence of this

solution, for linear problems, is generally faster than that of the displace-

ment or equilibrium models.

For linear analysis much work has been done utilizing many of the possible

finite element models. Systematic classification of the various schemes and

the variational principles upon which they are based are given by Pian and

Tong [1969a], Pian [1971], Atluri and Pian [1972], Washizu [1975] and Knothe

[1974]. This last paper shows an enormous variety of potential schemes, how-

ever, some may not be practical. In these works it can be seen how each con-

sistently derived functional is interrelated with each of the others.* Many

diverse fields such as heat transfer, fluid mechanics, and biomechanics

[Atluri et al., 1975] have made use of these techniques. Since it is not

possible here to discuss these applications in detail, reference is given to

excellent reviews by Desai and Abel [1972], Zienkiewicz [1971], and Pian and

Tong [1972].

1.2 Review of the Pertinent Finite Element Literature

Nonlinear theory has not received as much attention as the linear theory

until very recently. The bulk of this work deals with the displacement

(compatible and noncompatible) model. Reviews of this work may be found in

Stricklin et al. [1971a, 1971b, 1972], Martin [1965, 1971], Felippa [i966],

Oden [1969], and Haisler et al. [19721.

In solid mechanics nonlinearities have two basic forms: those due to

geometric nonlinearities which result from nonlinear strain-displacement

relations, and those due to material nonlinearities which result from nonlinear

*
At the completion of this work it was brought to the writer's attention that
Horrigmoe and Bergan [1975] and Horrigmoe [1975] just completed research
extending this classification to the nonlinear range.
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constitutive relations. Various solution techniques for the nonlinear energy

methods include direct search schemes, iterative methods, incremental methods,

incremental-iterative schemes, and the so-called "self correcting" schemes.

Extensive reference lists on these methods are given by Stricklin et al.

[1971a, 1971b, 1972, 1973], Tillerson et al. [1973], Desai and Abel [1972],

and Pirotin [1971J. Other techniques include the Rungge-Kutta and predictor-

corrector methods, [Ralston, 1965; Pian and Tong, 1971], as well as energy

minimization methods [Schmit et al., 1968]. Hofmeister et al. [1971] suggests

keeping terms in the functionals to act as checks on equilibrium at each

stage of the analysis. These "corrective" terms keep the approximation from

drifting away from the true solution.

Iterative schemes attempt to solve the nonlinear governing equations by

techniques such as the Newton-Raphson procedure and perturbation methods.

Incremental schemes attempt to solve the nonlinear problems as a series of

piecewise linear problems. This allows one to make use of the vast amount of

existing work and experience. Combination schemes of the incremental-iterative

type try to step up the rate of convergence by making iterative corrections

after a certain number of increments have been performed.

In conjunction with these techniques, one may associate an initial

stiffness, tangent stiffness, or combination approach. With the initial

stiffness procedure, the initial stiffness is preserved and 311 nonlinearities

take the form of equivalent loads. This approach is usually associated with

an iterative solution scheme. The tangent stiffness procedure forms a new

tangent stiffness at every step of the solution (incremental and/or iterative)

associated with the current state of deformation. This may be used with any

solution scheme. Combination approaches retain the same tangent stiffness

for a certain number of solution steps and then form a new tangent stiffness

before continuing. Connor et al. [1968] shows that L'rely initial stiffness

approaches may be mathematically unstable. Murray and Wilson [1968, 1969]

state that, for some cases, if the tangent stiffness approach contains correc-

tion terms and the solution is allowed to iterate, an exact tangent stiffness

is not required. Although this is apparently true, Martin [19711 points out

that this sort of approximation requires a high degree of insight for a

specific problem (or class of problems).
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Geometric nonlinearities are the concern of this work. Such nonlinearities

include the effects of instability (linear and nonlinear bifurcation buckling

and limit load buckling) and large deflections (translations and/or rotations).

Large deflections may be caused by large deformations (strains) or by large

rigid body, small strain behavior. The important concept for geometric non-

linearities is that the equilibrium equations in the undeformed and deformed

states are referred to different geometries. The term "large", however, can

be misleading. For instance, a clamped or simply supported plate under a

uniform load exhibits significant deviations from the linear theory when the

maximum transverse deflection is of the order of half the plate thickness.

When this deflection is one to two times the plate thickness, the problem is

well into the nonlinear range.

Since the deformed geometries are no longer coincident, different coordi-

nate systems may be used to describe the states of deformation. These systems

are based on the fact that nonlinear analysis may be decomposed into a series

of linear problems. Either a single stationary system may be used, or as

deformation procedes in a step by step fashion, one may associate a new

coordinate frame with each new, known state. There are several variations

available for the latter system. One must be careful, however, to ensure that

the proper stresses and strains are used with each appropriate coordinate

system.

Although, as mentioned, most of the work in this area has utilized the

displacement model (the first of which was by Turner et al. [19601), other

functionals have been used successfully. Some of these include the Reissner

model, the modified Reissner model, the various mixed models, and the assumed

displacement hybrid model which originally was developed for linear theory by

Tong [1970], and has many of the same features as the assumed stress hybrid

model. In the summary, Subsection 9.1, a partial survey list is tabulated.

This list is mainly concerned with the literature discussing the large deflec-

tion, small strain, linear elastic behavior of thin structures. Although a

variety of functionals and numerical schemes are presented this list is by no

means complete.

Since the main discussion here centers about the assumed stress hybrid

method, a short history of it is in order. For the linear theory, the method
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was introduced for plane stress and plate bending problems by Pian [1964, 19651

and Pian and Tong [1969a, 1969b]. Severn and Taylor [1966] applied it to the

flexure of slabs. Allwood and Cornes [19691 utilized the technique for poly-

gonal elements in plate bending. The method was extended to the bending of

laminated (composite) plates by Boland [1971], Spilker [1972], Pian and Mau

[1972] and Mau et al. [1972]. Mau and Witmer [1972] next extended the method

to the static vibration problems of plates and shells using flat elements.

The free vibration problem has been studied by Tabarrok [1971] who employed

the Toupin principle. Then Mau and Pian [1973] solved the linear dynamics

problem. Atluri [1973a] studied the same problem utilizing convolution

integrals in time. Meanwhile Tanaka [1969] solved the linear static shell

problem using deep, doubly curved, triangular elements. Crack analysis was

also studied using this method by Pian et al. [19721. Modifications of this

principle were discussed by Wolf [1971, 1972], and Atluri [1971]. Further,

Wolf [1974] discussed alternate, extended, and generalized assumed stress

hybrid models.

The first attempt at using the assumed stress hybrid method for buckling

problems was by Lundgren [19671. This work was not consistently derived. To

solve the linear prebuckling problem for flat, sandwiched plates, he utilized

a linear elastic stiffness matrix by standard assumed stress hybrid methods

and simply chose the geometric stiffness matrix associated with the displace-

ment model. His results, however, were reasonable. Tong et al. [1973] used

alternate hybrid models to generate geometric and mass matrices by a unified

approach.

Among other models, Pirotin [1971] derived what hr called a modified stress

hybrid method to solve the geometric nonlinear problem. Although he alluded

to a consistent assumed stress hybrid model, the method he actually uses is an

"inconsistent" assumed stress hybrid model derived from a modified Reissner

principle. This functional is the basis of one of the functionals in this

work. Pirotin derived only the basic functional, for a convected coordinate

frame, with no check conditions. In addition to equilibrium checks, and the

use of two coordinate frames, the functional to be derived here allows for

noncompatible displacement fields and other displacement mismatches. Addition-

ally, Pirotin used only an incremental approach. In this work, several
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solution schemes are used and compared. While Pirotin used a rectangular,

doubly curved, shell element, the present work utilizes simpler, but perhaps

more general, flat and shallow triangular elements.

The first to report on a fully consistent assumed stress hybrid model for

large deflection analysis was Atluri [1973b]. Here the basic functional along

with a Hofmeister et al. [1971] type stress equilibrium check was derived for

a convected coordinate system. There appears to be an error in this paper

which is pointed out in Section 5.* Additionally, a more convenient stress

equilibrium check is developed here.

Recently, Spilker [1974] reported on the assumed stress hybrid method for

plasticity under small deflection theory. Presently, work on creep behavior

under large deflection theory is proceding in the Aeroelastic and Structures

Research Laboratory at Massachusetts Institute of Technology.

The present paper will investigate the large deflection behavior of

structures. From the Principle of Virtual Work, various variational principles

will be developed for two coordinate systems until, ultimately, the assumed

stress hybrid functionals (consistent and inconsistent) are derived. The con-

sistent model satisfies the entire, nonlinear stress equilibrium equation,

while the inconsistent model satisfies only the linear portion of this equation.

These functionals shall be cast in the tangent stiffness, incremental form of

an initial stress solution. Extensive use of stationary and moving coordinate

systems will be used. The general derivations will include all correction

terms.

The general equations will be reduced to analyze the large deflection

(moderate rotation), small strain behavior of thin, linearly elastic structures

such as beams, plates, and shells. The elements utilized will be of the flat

and shallow type. The concept of using flat and shallow elements for the

analysis of curved structures is not new. For the analysis of shells Clough

and Johnson [1968] and Aldstedt [19691 have used planar triangular elements;

Megard [1969] makes some comparisons of planar and curved elements; Johnson

*

The consistent assumed stress hybrid model from the recent work by Horrigmoe
and Bergan [1975] follows from Atluri.
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[1967] utilizes a quadrilateral element formulated from four flat triangular

subelements. These solutions are all based on the displacement model. Mau

and Witmer [1972] formulated four node planar elements for linear shell

analysis based on the assumed stress hybrid method. Various incremental and

incremental-iterative procedures shall be used. Investigations shall be

performed comparing accuracy, efficiency, convergence, physical modelling

limitations, and possible problem dependencies among these elements and with

independent sources.

1.3 Synopsis of the Research

Two models for analyzing the large deflection, static behavior of struc-

tures have been developed. They are the inconsistent and consistent assumed

stress hybrid finite element models. Each case has been considered in two

separate coordinate frames: a stationary system and an updated (moving) system.

The functionals are cast in the initial stress, incremental form. Various

incremental and incremental-iterative solution techniques are used in conjunc-

tion with a tangent stiffness procedure. The actual applications utilize flat

and shallow elements to analyze the large deflection (moderate rotation), small

strain behavior of thin, linearly elastic structures.

Unlike linear analysis, it is important to realize that in large deflection

analysis, the geometries of the undeformed and deformed states do not coincide.

Thus, it becomes obvious that various coordinate systems may be used to describe

the deformation process. Section 2 is an introductory section in that it

presents various coordinate system descriptions and all its implications.

Specifically, Subsection 2.2 describes four common coordinate frames. To define

equivalent forms of work and energy terms, various definitions of strain and

stress are required for each coordinate system. These definitions are the

subjects of Subsections 2.3 and 2.4 respectively. In order that these work

and energy terms are indeed equivalent, consistent strain and stress definitions

must be used concurrently as discussed in Subsection 2.5. Subsection 2.6 makes

a brief attempt at comparing the definitions given here with some selected

authors in the literature. Finally, the effects of some of the simplifying

assumptions to be used later are discussed in Subsection 2.7.
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Section 3 contains various considerations for thin, flat and shallow

structures which will be required in the analysis- Subsection 3.2 discusses

the equations of elasticity under flat and shallow theory. For the latter

both the Kirchhoff-Love and Marguerre theories are presented. Further approxi-

mations are made here to further facilitate the analysis. These equations are

found to apply on the element level. Subsection 3.3 discusses the assembly

procedure for various coordinate frames and the associated transformations

which are necessary.

With this information at hand attention is now turned to the derivation

of the functionals which govern the element matrix generation. First, in

Section 4, the functionals are developed for a Stationary Lagrangiza system.

Starting from the Principle of Virtual Work, Subsection 4.2 derives the

Principle of Stationary Total Potential Energy and generalizes it to the

Hu-Washizu principle. From this, Reissner's principle and the modified

Reissner principle for an assemblage of elements is developed in Subsection 4.3.

Making appropriate modifications of these the consistent and inconsistent

assumed stress hybrid functionals are derived in Subsection 4.4. The consis-

tent model satisfies- the entire, nonlinear stress equilibrium equation while

the inconsistent model satisfies only the linear part of this equation. This

latter model may be thought of as a special case of the modified Reissner

principle. In fact, in some instances they coincide. All correction terms

(stress equilibrium and compatibility checks) are maintained throughout the

entire derivation. In Subsection 4.4.3 these equilibrium checks are all

identified and the functionals are written so the checks may easily be removed.

It is also emphasized that the stress equilibrium check can be written in a

much more convenient form than the typical Hofmeister et al. [19711 corrections.

In Section 5 a parallel development is given for an updated, moving

coordinate frame referred to as the Convected, Updated Lagrangian system. The

derivation was written so that simple comparisons could be made between the

functionals in the two coordinate systems. However, the same simplified

notation is used in both Sections 4 and 5. It is to be understood that the

variables (strain, stress, displacement, etc.) have different definitions in

each coordinate system as indicated in Section 2. The assumed stress hybrid
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functionals can also be derived directly from the Principle of Virtual

Complementary Work and the associated Principle of Stationary Total Complemen-

tary Energy derived in Appendix B.

Section 6 discusses the general finite element matrix equations associated

with the functionals of Sections 4 and 5. The element level matrices are dis-

cussed for the consistent and inconsistent models for the stationary and the

updated systems in Subsections 6.1 and 6.2 respectively. Some problems

associated with the consistent model and the stationary system are discussed.

Subsection 6.3 describes the assembly procedure in more detail. Finally,

Subsection 6.4 discusses the various incremental and incremental-iterative

solution procedures.

These general matrix equations are now reduced to the actual ones to be

used in Section 7. All the approximations and simplifications made in previous

sections are employed here. Subsection 7.1 generates the appropriate matrices

for two node (6 dof) shallow beam elements and notes that these can easily be

reduced to flat beam elements. Both coordinate systems and assumed stress

hybrid models are discussed. Although the Marguerre theory is chosen for the

bulk of the work, comments are made concerning the Kirchhoff-Love theory.

Because of the complexity and apparent lack of efficiency of the consistent

model only the inconsistent model is discussed for plates and shells. Here,

general three node (15 dof) triangular elements are used. This model, in both

coordinate systems, is the subject of Subsection 7.2. Additionally, the satis-

faction of the linear stress equilibrium equations is discussed. Subsection 7.3

simplifies the general large deflection analysis to the linear prebuckling of

a flat plate. Here the consistent model is also considered. Subsection 7.4

discusses, in detail, the computational and updating procedures for each

coordinate system and solution technique.

Applications, evaluation and discussion of these methods are presented in

Section 8. The problems considered consist of the linear prebuckling of a

simply supported, square, flat plate; and the large deflection analysis of a

shallow, sinusoidal arch under a sinusoidal load; a shallow, circular arch

under a central concentrated load; a simply supported and a clamped, square,

flat plate under uniform load; a shallow, clamped, cylindrical panel under
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uniform load; a spherical cap under a central concentrated load; and a shallow,

cylindrical panel under edge compression. The shallow, sinusoidal arch

problem was used for the bulk of the investigations made. Such effects

included the comparison of the consistent and inconsistent models, the flat

and shallow elements, the Kirchhoff-Love and Marguerre theories, the two

coordinate systems, the effectiveness of the correction terms and solution

procedures, and the adequacy of the models and methods.

Section 9 is a statement of the summary and conclusions of this work.

The summary includes a partial listing of the literature in this area. This

section concludes with some suggestions for further research.

Finally, Appendices A-E provide some supportive comments.
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SECTION 2

DESCRIPTIONS AND DEFINITIONS FOR LARGE DEFLECTION ANALYSIS

2.1 Introduction

For general three dimensional elasticity the assumptions of linear

analysis have led to a unified theory. Small displacements imply small strains

and negligable rotations. Thus, the deformed configuration and initial, unde-

formed configuration can be thought of as coinciding. Only one definition of

stress is, therefore, necessary. Virtual work and the many other alternate

energy formulations are straight forwardly derived. So are the finite element

schemes based on these energy principles. With the single extension of allow-

ing for large deflections (extensions, rotations or both) the theory of

elasticity becomes considerably more complicated.

As a structure deforms with large deflections, its deformed and undeformed

states are no longer coincident. Thus, it is obvious that different coordinate

frames may be used to describe the deformation process. In addition, various

definitions of strain and stress must be considered for each of these coordinate

reference frames. One must be assured that the strain and stress definitions

are consistent with each other. Furthermore, since energy considerations are

the ultimate goal of the analysis, virtual work must be dealt with in a con-

sistent manner.

There has been a considerable amount of work done in the area of large

deflection, small strain analysis. In many of the earlier works not enough

attention was given to carefully defining terms leading to consistent energy

principles. A survey of some early formulations is given by Martin [19711.

As more and more work was done, based on earlier work, more and more confusion

seemed to develop. More recently more care has been taken in this respect.

However, since a firm foundation was never laid, one finds conflict in the

literature. Often authors referring to the same definitions of strain, stress,

etc. call them by different names.

This chapter will attempt to carefully define some of the coordinate

systems, strains and stresses, commonly found in the literature. In addition,

consistent virtual work terms will be given.
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2.2 Coordinate System Descriptions

The two most popular coordinate systems would be the Lagrangian and

Eulerian systems. In the Lagrangian system, one stationary reference frame is

established for all time. All variables are measured in this one system. It

may, of course, consist of simple rectangular Cartesian coordinates or, more

generally, curvilinear coordinates. The Eulerian system is one which follows

the ongoing process in time. It is always associated with the moving body.

Generally, curvilinear coordinates are most appropriate here. The former

system is used extensively for solid mechanics while the latter one is popular

in fluid mechanics.

Restricting attention to solid mechanics, the Eulerian approach is not

useful in that the state of deformation is generally not known. However, the

Lagrangian approach is not the only alternative. In fact, for large displace-

ment analysis there are four commonly used coordinate systems. These systems

are based on the fact that nonlinear analysis may be decomposed into a series

of linear problems for which initial conditions exist. Thus, the concept of

initial values for the problem variables and incremental values is established.
0

For instance, a parameter, u, may be decomposed into an initial value, u

and an incremental value, Au, so that

U=U-4 &Lk(2.1)

0
Although the governing equations may be nonlinear in u , they can be considered

linear in Au. Since the initial values are known (from previous solution steps)

the equations in the unknown incremental quantities are linear.

If the initial values are known at some state 'N', one may consider a state

'N+l' which is incrementally close to 'N' (Fig. 2.1). Defining "incrementally

close" to mean that the governing equations may be written as linear functions

of the unknown incremental quantities one may easily solve the system of

equations by standard techniques. Once the solution determines the incremental

values, Eq. 2.1 may be used to define the total quantities at state 'N+l' and

incremental values define the difference between states 'N+l' and 'N+2'.

Throughout the solution procedure intermediate values of the problem

variables are known. This implies that as deformation procedes in a step by

step fashion one may consider each set of coordinate systems associated with
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each known state. Thus, the concept of using an updated or moving coordinate

system is established. It is imperative to realize that this is not the same

as an Eulerian approach, for an updated system is always in the last known

configuration. This updated system has three common alternate approaches

which will be described herein.

By far the most popular coordinate system in solid mechanics is the

Lagrangian system. (For convenience, this system will be referred to herein

as the Stationary Lagrangian (S.L.) system or the Total Lagrangian (T.L.)

system [Bathe et al., 1973, 1974, 1975]). This was the first system used

stemming from linear analysis. This system is used to describe the initial,

undeformed configuration of the structure. Once it is established, it remains

as a stationary reference frame regardless of how the structure deforms. All

variables are measured from this system for all time. All derivatives and

integrations are performed with respect to this one system. Essentially, as

the solution proceeds step by step the structure is always thought of as

remaining in the same initial configuration. To account for deformation the

structure is considered with new sets of initial conditions applied to it.

This is quite convenient in that although the distorted structure might take

on quite complicated shapes, for the purposes of analysis, only the simpler

initial configuration need be viewed.

In practice, however, there is a distinct disadvantage to such a system.

If one is concerned with only moderately large deflections a great simplifica-

tion arises from the general large deflection (possibly large strain) theory

of elasticity. Thus, it is convenient and economical to take advantage of

such simplifications. If now a problem is posed where very large deflections

occur, this theory is now invalid and the approach compromised. Two alterna-

tives are available. Either a more general theory is used, which may be very

costly, or an updated coordinate system is used.

The first of these systems is the Updated Lagrangian (U.L.) system [Bathe

et al. 1973, 1974, 1975]. In actuality it is not a true moving system. Its

coordinate directions remain the same as the S.L. system. However, as deforma-

tions ocaur the coordinates of the structure are updated. The coordinate

values ii the U.L. system may be given as
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(y.nu 4 .~ ('t&4.LL2S.L. (2.2)

Thus, all derivatives and integrations are performed with respect to the U.L.

coordinates. The effect of this procedure is to eliminate initial displace-

ment and strain terms from the formulation. Another significant effect

involves the constitutive relations. These will be described in more detail

in the following subsections. However, because it is not a true moving coordi-

nate system the previously mentioned problem for very large deflections is

inherent.

Another variation of coordinate systems is the Convected Coordinate

(C.C.) system [Fung, 1965; Pirotin, 1971; Atluri, 1973b]. This is a true mov-

ing system in that each step the coordinate system follows the deforming system.

However, unlike the U.L. system, the coordinate values are not changed as

Eq. 2.2 would suggest. The undeformed and deformed configurations are refer-

enced to the same set of coordinates although the metrics of each system are,

of course, different. This is typical of differential geometry used in shell

analysis. The effect here, as in all updated or moving systems, is to remove

initial displacement and strain terms from the formulations. Note that with

such a moving system the effect of large deflections is accounted for by the

movement of the system. For example, large rigid body motions can be achieved

here easily even though the theory may only account for small strains which

imply small incremental deformations. So here a simplified theory is useful

even for very large displacements.

The present work utilizes simple elements which are easily described in

rectangular Cartesian coordinates. The U.L. formulation seems to be a good

choice for such a situation. However, since the simplifications of small

strain theory were to be assumed the drawback of the U.L. system needed to be

avoided.

For the purposes of this work a compromise system was instituted. The

ideas of the U.L. formulation and a convected system were combined. That is,

an updated rectangular Cartesian system such as that of the U.L. system was

used, but, instead of having the same directions as the original reference

frame, it was convected to follow the deforming system. Such a system will
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be referred to as a Convected, Updated Lagrangian (C.U.L.) system. The

advantages of this system will be shown in the following subsections.

The concept of large rigid body displacements but small deformation modes

(strains) has led to a specially tailored C.U.L. system [Belytschko et al.,

1973a, 1973b; Murray et al., 1969]. (Note that these authors designate the

system C.C.) In this system the displacements are actually separated into

two parts: rigid body and deformation displacements, i.e.,

L6 -V -b. ef (2.3)

With this type of decomposition one can determine directly what part of the

motion is due to rigid body displacements and what part is actually strain

producing. If the strains are assumed small then they are only linearly

related to the deformations, udef, although they may be nonlinearly related

to the total displacement, u. This can lead to further simplifications and

still allow for very large displacements in the form of rigid body modes.

For the displacement model in finite element analysis it is convenient to

separate out rigid body displacements from total displacements. For other

approaches, such as assumed stress hybrid models, this is not the case.

The analysis performed in this work was performed by using two of the

above systems, the S.L. and the C.U.L., so that some comparisons could be

made. Therefore, in the following subsections greater attention will be paid

to these.

2.3 Definitions of Strain

Consider a body which in its original configuration, state '0', is

undeformed. At some later state 'N' the body has undergone deformation. It

is assumed that the position and state of strain and stress are completely

known at state 'N'. One now desires to determine these values for the yet

unknown state 'N+]-'. Let it also be assumed that states 'N' and 'N+' are

incrementally close to one another (Fig. 2.1).

Following the notation developed by Yaghmai and Bathe [Yaghmai, 1969;

Bathe et al., 19731 a rectangular Cartesian coordinate system shall exist in
0-

state '0' with base vectors i.. The coordinates and displacements measured

along these directions will be 0x. and 0u. OAu.) respectively. Similarly, a
I1I 1
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rectangular Cartesian coordinate system shall exist in state 'N', however,

its base vectors will be t. The coordinates and displacements measured

along these directions willibe Nx, and Nu. CNAa.) respectively. Thus, one

may define radius vectors to each state as

=LL (2.4a)

+.*LV(2.4b)

F+1 - L OLkaY 46L (2.4c)

where

A b refers to configuration 'A' measured along base

vector 'b' in state 'A'

0- N-
Note that, in general, i and . do not coincide.

Green (Lagrange) strain is defined as follows when referred to state '0'.

z( 0e 40e\3  = r,- ~ - a~z - F,~(2.5)

where

r4 +1 -(2.6)

Placing the leftmost Eqs. 2.4a and 2.4c into Eq. 2.5 gives

z0e 4.0+ ae-) a 0 ~ut*'
(2.7)

or

-Z (Oe +j0'a ell2L . 64A. ,J(2.8)

Finally,

*2 LLbizOLk 1 2AL 0 t% 4 A .ALcfrJ (2.9)
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One may identify front Eq. 2.9 the total Green strain in state 'N' and the

incremental Green strain from state 'N' to 'N+I' .

+0 % L(2.10)

and

Lie A , oUL, 4Z. tL. 1  4 .LLk,200A L. i,
+a a 0 (2.11)

+, ,. * ,

Alternately one may define an Almansi strain referred to state 'N' as

'L - $ - 0 -(2.12)

Placing the outer relationships of Eq. 2.4a and 2.4c into Eq. 2.12 gives

(2.13)

or

(2.14)

Finally

A-Z A! sj+(2.15)

where one may identify the total Almansi strain in state 'N' and the incre-

mental updated Green strain from state 'N' to 'N+1' as

z e - -= , LLu1- tLA N(2.16)

and

<4~LL. + LZbu4ZL Z' g. (2.17)

Note that 0e. . znd 0Ae.. measure displacements along the 0- base vectors and
3-3 I-j 0N

derivatives are taken with respect to xc. The updated strains e. and
I- 'a
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N N-
NAe... measure displacements along the i. base vectors with derivatives taken

3-J N
with respect to the x. coordinates.

IO
The strains referred to the initial configuration ( e..) are an obvious

13
choice for use with the S.L. system. The updated strains teferred to the

convected, updated system (Ne..) are most appropriate for the C.U.L. system.
JJ

These sets of strains must be related to one another since they represent the

same state of strain. To determine this relationship one must consider the

relationship between the two coordinate systems (S.L. and C.U.L.).

In general two rectangular Cartesian coordinate systems can be related

to each other via the direction cosines between their axes. For example

O J 9(2.18)

where

T = array of direction cosines relating the base

vectors in state '0' to those of state 'N'

A unique inverse to this relation exists and is expressed as

-or (2.19)

where

"'0, tmT O r't.n1z (2.20)

Note also that the displacements measured in one system may be related to

components in another system in the same manner

o IA-J (2.21)

and

NU%(2.22)

A property of this array of direction cosines is

aPi* 0)yS_(2.23)

In light of Eq. 2.23 one may observe that

0 j.1 0 N iJ b
UL-V Tkl LL i(A L~ V2.24
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or

C LLkirt Usi. ectLrk inLstt N

Consider the position vector in state 'N'

r.J+ *
Y-= L . ~

.1 NI
-=Yrn 1.wt

Placing Eq. 2.18 into this relation yields

Taking the derivative of this with respect x gives

a (o KjiI
YL(Lx 0

where

At Kronecker delta

It will now be demonstrated that the strains 
in the two systems may be related

as follows

Placing Eq. 2.15 into the above yields

b ' ) C, e ,

N
2~ ( 46Aelj -

No C L1
0 1 .h .16'3

? N
. ~ (o ~

54 .4

AU A~lt. 4 K)e L ak zot(A0kbutLI

Placing Eqs. 2.25 and 2.27 into this gives

CO LLALLmit

-V, 4- -j)0 & ~tLLr f v r-0IUk 01L (2.30)
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Finally, recalling Eq. 2.21 and simplifying gives

and
4- At LL ILL; cUk~tLt~rs~at

to Q tIZIJ -2ej (2.31)

Thus, Eq. 2.29 is shown to be correct and furthermore

0._)____ ______(2.32)

and

A e -1L vz*IArl((2.33

also can be shown to hold.

At this point it is straight forward to introduce the strain tensor for

the simpler U.L. system. Since in this system the base vectors are always

taken to be in the same directions, i.e.

0.1 (2.34)

then the displacements

(2.35)

Introducing Eq. 2.35 into Eq. 2.15 one observes

+ 0 &L%.1 kiL~, & LZ 0aukt (2.36)

where
*I1

aL (2.37)

From Eq. 2.18 the direction cosine matrix becomes an identity matrix

0oJ =- (2.38)
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and so Eq. 2.27 becomes

" )t U+( SJ'M .( 2 .3 9 )

Placing Eqs. 2.36-2.39 into Eq. 2.29 would yield an identity and, therefore,

the same strain transformation law would hold for the U.L. system. It is to

be understood that these transformations reduce from Eq. 2.27 to Eq. 2.39.

All of the strain displacement relations given so far involve displacement

measures which include both rigid body modes and actual strain producing defor-

mation modes. If these two modes could be completely separated, as Eq. 2.3

would suggest, then an alternative strain displacement (deformation) relation

could be written. The advantage here would be under small strain assumptions.

Under these conditions the strain would be only linearly related to the

deformation modes [Belytschko et al., 1973a, 1973b; Murray and Wilson, 1969],

i.e.

2. e11  NLLL 1 1 iLL I

where

L -= acutal deformation

This definition of strain is appropriately associated with the C.U.L. system.

The advantage of this system would, of course, be lost for large strain

analysis where even this relation would become nonlinear.

2.4 Definitions of Stress

In order that energy, or more specifically, virtual work be consistently

defined for various coordinate systems, one must careful in defining appro-

priate stresses. Before doing so some preliminaries must be discussed.

Corresponding to the deformed state 'N' are curvilinear coordinates

associated with the rectangular Cartesian coordinates. Their base vectors

are defined by [Green and Zerna, 1968]

-(- --," ,jK (2.40)
LV 6s n Es.2

or, considering Eqs. 2.18 and 2.27

L =SkLc o ka &J Lr wTn (2.41)
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Also, the metric associated with the deformed state 'N' is

- aL r\ 'I" r) ___ , %)~(2.42)

The base vectors of the rectangular Cartesian system may be related to the

position vectors by (see Eq. 2.4a)

(2.43)

The metric of this system is simply

0. * ' -(2.44)

Considering the definition of Eqs. 2.42 and 2.44 with Eq. 2.5

Zy - -. -. - = . .(2.45)

Elements of area and volume should now be considered for the undeformed

and deformed configurations. The differential of area may be defined as

= -ktL'- (2.46)

and

8,j = J*k tt (vnos urn') (2.47)

where

G e \ (2.48)

- (2.49)

A differential in volume may be expressed as

and

AN "V L't1Att1 =YV cY A01 cVX3 JZd'V (2.50)
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With these preliminaries completed the descriptions of stress become more

straight forward [Green et al. 1970]. Since the notion of curvilinear coordi-

nates (and differential geometry) will be used here a stricter adherence to

tensor notation will follow in this subsection.
-ik

Consider a stress resultant T exerted on the deformed surfaces in state

'N' by a neighboring element in the continuum. This may be expressed in terms

of two stress vectors by (Fig. 2.2)

4  GtG (no sum) (2.51)

Note that here

9L ~ n ~j(2.52)

where
N-i
0 C E stress vector acting on deformed surface but measured

per unit undeformed area

N-ia E stress vector acting on deformed surface and measured
N

per unit deformed area

The true Eulerian stress is defined as

LJZ(2.53)

while the first Kirchhoff stress or simply Kirchhoff stress is defined by

-L P s5L (2.54)

Note that both the Eulerian and Kirchhoff stresses are defined to act along

the deformed base vectors. However, while the Eulerian stress is based on

deformed areas the Kirchhoff stress is based on undeformed areas. From Eqs.

2.51, 2.53 and 2.54 one observes a relationship between these stresses.

or

K J(2.55)

Since the Eulerian stress is known to be symmetric [Green et al. 19701, it
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follows that the Kirchhoff stress is symmetric. Through Eq. 2.40 these
0-

stresses can be written with new components in the i. directions, namely

o ik
T is known as the Lagrange or first Piola stress and should not be confused
0 0,N
with the direction cosines T . Note that this stress is unsymmetric.

Similarly

kSIli.tt )LI= ..T (2.57)

o ik 0 ik
0T may be referred to as a second Piola stress. Like 0T it is unsymmetric.N 0
The two Piola stresses may be related by

2 T =.--wT (2.58)

Since both of these stresses are unsymmetric they are of little use in the

finite element procedure. However, they have been used to describe Comple-

mentary Energy [Langhaar, 1953; Levinson, 1965; Lubov, 1970; Koiter, 1973;

Fraeijs de Veubeke, 1972].

Since this work is primarily interested in using rectangular Cartesian

coordinates it would be very useful to define stresses associated with
N NijO- U-

iS andNT which are in the i. or i. systems but are symmetric. This
0 N 2. 0,N
may be done by use of the tensor transformation Eq. 2.39 ( T =6 ) ormn mn
Eq. 2.27. Considering the more general case of Ni the stress tensor trans-

formation is

4 -_(2.59)

or

-re(2.60)

where
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It is understood that while the left superscript of N1m and Nm refer to
. Nij N-N 0

directions Gn, for a it refers to the i., directions. These stresses aren NJ
symmetric and will be useful for updated coordinate systems. They are referred

to as Cauchy stresses.

2.5 Virtual Work and the Constitutive Relations

Considering a body in the deformed state under the internal stress

resultants and prescribed body forces per unit undeformed volume F, the

equation of equilibrium may be written in vector form as

T E C=) (2.61)

where the undeformed configuration is measured in a rectangular Cartesian

coordinate system and Eq. 2.52 applies. The boundary tractions corresponding

to these stress resultants are

P L (2.62)

where

V. = outward normal from the boundary

And, if S is that part of the boundary S upon which external tractions occur

then the mechanical boundary condition may be expressed as

= on $ (2.63)

where

P = prescribed surface traction on S

S2 is that portion of the boundary S where the geometric boundary conditions

are given. If one allows virtual displacements from the equilibrium con-

figuration to take place without violating the conditions on S2 , then one

may write the Principle of Virtual Work referred to the initial reference

configuration as

(2.64)
V

where

0-6 u = represents a virtual displacement

26



From Eqs. 2.4a and 2.4b one may observe that

"F--. ~r+ -V,. (2.65)

Taking the variation of this

S #4 6 -= 0 -~(2.66)

Introducing Eq. 2.66 into Eq. 2.64 and separating the terms of the first

integral gives

-Yit ff r .5 vh4vv, -If 5J~ 0 (2.67)V V

Integrating the first integral by parts with Eq. 2.62 yields

- PL rAN (2.68)

Placing this into Eq. 2.67 bearing in mind that virtual displacements are not

permitted on S2 then

*L rj-j y? 6 LjL .. ~p b~ P 0 (2.69)

Resolving the stress resultant as in the leftmost relation of Eq. 2.55 t-ith

Vg=l the first integral of Eq. 2.69 becomes

S t4 -K(2.70)

Placing Eq. 2.40 into this gives

= ~(2.71)

In light of Eq. 2.42 this becomes

(=-\'S c 4 O&V (2.72)

Taking the variation of Eq. 2.45 one observes that

(2.73)
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Placing this result into Eq. 2.72 gives

St I)c S 9 os\lJ(2.74)

Now, placing this into Eq. 2.69 results in

0-
Resolving the body forces, prescribed tractions and displacements in the i.

directions

F Oa* aL
(2.76)

L

Pf at0%0s

Finally, placing Eqs. 2.76 into Eq. 2.75 gives the scalar form of the Principle

of Virtual Work.

V V st~K

From this derivation of virtual work it has been shown that for an S.L.

system the Kirchhoff stress corresponds to the Green strain. Since an incre-

mental analysis will ultimately be performed (see Sections 4 and 5) it is

appropriate to consider that possibility now. Eq. 2.77 represents the virtual

work at state 'N'. If we study a state "N+I' which is an incremental distance

away from state 'N', then one may assume that the state variables change incre-

mentally, i.e.

0 j(2.78)

p 2L7 fr

Expanding Eq. 2.77 to account for Eqs. 2.78 results in
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4 -pt 10( VP1 AaLL4 4OAL j(2.79)

Eq. 2.79 represents an incremental expansion of the Principle of Virtual

Work for an S.L. system which will be used as a basis for the derivations in

Section 4. However, one may wish to express a similar result in a C.U.L.

system. To do this all expressions must be consistently transformed to the

updated system so that the Principle of Virtual Work is consistent in both

systems.

First, consider the strain. In the updated system one wants to express

displacements and their derivatives with respect to the i directions and
N

their corresponding x. coordinates. Thus, from Eq. 2.15, the total Almansi

and the incremental updated Green strains are required. These strains are

related to the Green strains of Eq. 2.79 by Eq. 2.29. Considering the first

term of Eq. 2.79 with the strain transformation of Eq. 2.29, one observes

42 .) ~ S~e, .'(2.80)

Recalling Eq. 2.60 the Kirchhoff stress will transform to the Cauchy stress by

the transformation appearing in Eq. 2.80. Thus,

~ A e6JWjVV(2.81)

But, noting Eq. 2.50

K, L'o sj ~ ae'A~

T-j v(2.82)

where

N Aa = increment of second Kirchhoff stress
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Note that NAc is similar to the Kirchhoff stress, however, it is measured in

the new updated state 'N', as opposed to the original state 'O'. Thus, for

the C.U.L. system (and the special case of this, the U.L. system) Cauchy stress

is consistent with Almansi strain.

The other terms in Eq. 2.79 must also be updated to the new system. Since

they are simply vectors this is straightforward. One must remember that the

body forces and prescribed tractions must be based on the updated volume and

area respectively. Thus, for the C.U.L. system Eq. 2.79 would transform to

~Vi~f+ATo'BV~ji 4+w-eqVVFM4&AFLlVw'audx

This Principle of Virtual Work will form the basis of the derivations of

Section 5.

The last consideration is the relations between stress and strain in the

two systems. Suppose that the Kirchhoff stresses may be related to the Green

strains by

- L.- oS, (2.84)

and the Cauchy stresses to the Almansi strains by

a01 -i C n(2.85)
0WikZ N np

then a relationship between C ijk9 and C must exist. Placing Eqs. 2.29

and 2.60 into Eq. 2.84 gives

gYxL) &%).4 A cSZ (tA
"V'.. ocVQ (DV5(2.86)

or

-~ aCK') ce)) Otxv) I ( Ox)

Comparing Eqs. 2.85 and 2.87 one observes that
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C n - (2.88)

Thus, if the material properties are known for one set of stresses and strains,

then they may be determined for their corresponding set in the other coordinate

system by Eq. 2.88. For this analysis, which is assumed linear elastic, one

would expect the material properties to be constant. If this is true for one

system, then, in general, in the other system they would be variable. However,

it can be shown that for small strain the material properties may be taken as

equal constants in each system (see Subsection 2.7).

It should be pointed out that when material nonlinearities are present

the stress strain laws may only be valid incrementally. More care is required

for these situations as well as those for general large strain problems [Bathe

et al. 1973].

2.6 CoMarisons of Definitions with the Literature

To further demonstrate the conflict which exists in the literature, the

definitions given in the previous subsections for coordinate systems, strains,

and stresses, are compared to those of some selected authors. These works are

consistently defined mathematically, however, an entire range of names are

used. Some of these are very misleading.

The information is presented in tabular form for quick reference. The

first table shows comparisons for coordinate systems and strains. The second

one gives comparisons for stresses. This latter variable seems the most

abused. In the literature one often finds variables identified by name only.

In light of the comparisons shown here it seems that this can be dangerous and

mathematical definitions should always be given (or trusted). Names should

only be used for convenience.
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REFERENCE COORDINATE SYSTEMS STRAIN DEFINITIONS

PRESENT S.L. U.L. C.C. C.U.L. GREEN ALMANSI UPDATED

WORK (LAGRANGE) GREEN

WASHIZU GREEN
[19753

BATHE ET AL. T.L. U.L. GREEN- ALMANSI GREEN*
[19733 LAGRANGE

YAGHMAI LAGRANGE LAGRANGE*
[1969)

ATLURI C.C. GREEN*
[1973b]

ATLURI ET AL. U.L. LAGRANGE
[1975]

PIROTIN C.C. GREEN*
[1971]

WUNDERLICH LAGRANGE C.C. LAGRANGE LAGRANGE
[19721

BELYTSCHKO LAGRANGE EULER C.C. GREEN CONVECTED
AND HSIEH
[1973b]

*AUTHOR NOTES THAT THESE ARE BASED ON UPDATED VALUES.
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REFERENCE STRESS DEFINITIONS

PRESENT FIRST FIRST
WORK EULER KIRCHHOFF SECOND CAUCHY PIOLA SECOND

(KIRCHHOFF) KIRCHHOFF (LAGRANGE) PIOLA

WASHIZU PIOLA

[1975] KIRCHHOFF TRUESDELL EULER (LAGRANGE;

FIRST KIRCHHOFF)

BATHE ET AL. SECOND SECOND*

[1973] PIOLA PIOLA CAUCHY

KIRCHHOFF KIRCHHOFF

YAGHMAI SYMMETRIC SYMMETRIC* CAUCHY

[1969] PIOLA PIOLA

ATLURI PIOLA

[1973b] KIRCHHOFF

ATLURI ET AL. .PIOLA PIOLA

[1975] KIRCHHOFF

PIROTIN KIRCHHOFF

[1971]

WUNDERLICH TRUE KIRCHHOFF ?AB

[19721

BELYTSCHKO

AND HSIEH

[1973b]

*AUTHOR NOTES THAT THESE ARE BASED ON UPDATED VALUES.
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2.7 Discussion of Some Approximations

The actual class of problems to be solved in this work are subject to the

following assumptions.

a. Thin, linear elastic (no material nonlinearities) structures such as

beams, plates, and shells with no transverse shear. The Kirchhoff

hypotheses hold.

b. The structures should not deform beyond the limits of shallow shell

theory (within an element).

c. Although the deflections may be large the strain remains small.

d. Only moderate rotations are permitted (inplane displacements are

small).

A real structure when it is thin and undergoes large deflection, small strain

behavior does not, in general, exhibit plasticity. Since this analysis is

static, no creep behavior exists, and the assumption of linear elastic behavior

is justified. Many thin structures may deflect well into the nonlinear range

(5-10 times its characteristic thickness) and still exhibit only moderate

rotations. Such structures have some restraint on boundary displacements.

Here the assumption of moderate rotation (and small inplane displacement) is

justified. These same structures usually exhibit only small strains. For a

structure such as a cantilevered plate undergoing cylindrical bending this

assumption rapidly becomes invalid as the free edge rotates through large

angles. This case is generally less significant. Finally, with the above

geometric assumptions made, it is very unlikely that such a structure would

become non-shallow on the element level to the degree of invalidating the

analysis. Thus, the assumptions made are reasonably consistent with one

another for a wide variety of practical problems.

While the previous analysis has been general, and is not restricted to

any of these assumptions, the actual analysis becomes much more tractable when

the assumptions apply. Much of the simplification can be seen in the equations

of elasticity given in Subsection 3.2. Some remarks are more appropriately

stated here.

a. Linear elastic material:

(1) If a material exhibits a nonlinear constitutive relation, by

34



means of stress or strain dependent material properties, or through higher

order terms, Eqs. 2.84 (or 2.85) may not be stated in the total sense, in

general. At best, it can only be stated incrementally, and procedures and

material laws must be developed in order to update the relations. Under the

assumption of a linear constitutive law this problem is avoided and the con-

stitutive law holds for incremental as well as total values.

b. Small strain (moderate rotations):
0(1) From Eq. 2.45, if e.. is truly small then

IJ

LI.G~\(2.89)

44OAk 8 P3 \(2.90)

(2) Even for a linear elastic material, while the material properties

are constant for one system (S.L. or U.L.) they will be variable in the other.

This can be demonstrated by Eq. 2.88. From Eqs. 2.27 and 2.39 the Jacobian

transforms may be written as

)c.U~. t 0 +U4L )T(2.27)

14 S r n i 4 , iL( 2 . 3 9 )

Also from Eqs. 2.40

(Smit ug ')oi(2.40)

Normalizing this vector and considering Eq. 2.45

- -(no sum on i) (2.91)

Taking G 3 as the unit normal (n) to the shell

--- = = -- C; "L-3,1 ' R *L 4 * /(2.92)
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where

One may write

[(+O I) 4 6+-- e.-"2.3

Or, more conveniently as

(2.94)

Lo

Since the i system follows the deforming structure, it approximates the unit
N-

G.//G.. vectors. Thus, regardless of the magnitude of the rotations, the i.

vectors can be thought of as "average" G.//JJ vectors. The finer the finite

element mesh is the better this approximation is. Under the assumption of

small strain (small deformation) further improvement is realized. Thus, from

Eq. 2.19

07

W. LZ(2.95)

La-

KL3
Therefore

.. L T T(2.96)
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Placing Eq. 2.96 into Eq. 2.27 yields

( %L*IY k LITLra(2.97)

With Eqs. 2.93 and 2.94 one obtains

:ax )Cu.L. ' - (2.98)

Where there is no sum on m. This result may be rewritten as

asAY. rw

c~u. ~ rat'ISVK LLfl,4-LL U.' U 0 fL)Iti30

+ Sr; +2 m )If7H ij (no Sur-M ow -ri) (2.99)

Under the assumption of small strain this can be approximated as

C S (2.100)

Note that

E I(2.101)

and thus, the C.U.L. system is a compromise between the C.C. and the U.L.

systems. Comparing this with Eq. 2.39 one can see that for large or even

moderate displacement gradients the U.L. system has a non-diagonal Jacobian

while for the C.U.L. system the Jacobian is essentially the identity matrix.

One further comment should be made here. For the assumption of thin

plates and shells under moderate transverse rotation and small inplane rota-

tion, the Jacobian for the U. L. system can also be approximated by the identity

matrix.

Under the assumptions stated here, with Eq. 2.84, Eq. 2.88 may be reduced

to

C.C (2.102)
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(3) Furthermore, considering Eq. 2.55, one observes that there is

essentially no difference between the Kirchhoff stresses (first or second) and

the Eulerian stress. Eqs. 2.59 and 2.60 demonstrate that the Cauchy stress in

the C.U.L. system is approximately equal to the Kirchhoff and Eulerian stresses.

c. Use of C.U.L. as an updated system for thin structures:

(1) For thin plate and shell structures it is more convenient to use

the natural coordinate frame associated with the midsurface rather than a
N-

general coordinate system (see Fig. 2.1). Thus, since the i. system approxi-

mates the natural coordinates (especially for flat and shallow elements) the

C.U.L. system seems more appropriate than the U.L. system.

(2) Even if rotations are moderately large, the C.U.L. system allows

the structure to remain shallow on the element level. Thus, if shallow shell

theory is to be adhered to then the C.U.L. would allow larger rigid body rota-

tions than the S.L. system does.

(3) See b. (2).

Recapping the above simplifications.

Linear elastic material:

,jAS LI -

Small strain:

d"Ac k Ak d

NJgrl Z Cz s'

Ll 0~

T Nt)iIIP e,

A 811V
(for C.U.L.)

(for C.U.L.)

Small strain and moderate rotation (small inplane gradients):

c IaMk..- --

2. . . L o~ L-
(for U.L.)

Further discussion for other approximations is more appropriately discussed

in Subsection 3.2.
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SECTION 3

GENERAL FINITE ELEMENT CONSIDERATIONS FOR THIN

FLAT AND SHALLOW CURVED ELEMENTS

3.1 Introduction

In this section the general equations of elasticity will be simplified

for thin, flat and shallow structures. While the general equations shall be

used to develop the general matrix finite element equations for Section 6, the

simplified equations shall be used for a corresponding analysis in Section 7.

The reductions introduced for flat elements are quite straight forward. Those

for shallow structures may be done in several ways. Two of these, the Kirchhoff-

Love theory and Marguerre theory, will be discussed.

Since both two dimensional (plates and shells) and one dimensional (beam)

problems are analyzed, the two dimensional equations will be discussed and the

one dimensional cases can be taken as special cases of these.

Furthermore, since a finite element scheme is to be utilized, a discussion

of the various coordinate systems for element generation and assembly purposes

will be presented.

3.2 Equations of lasticity

Throughout this subsection analysis will be performed without regard to

a specific coordinate system. (Although when necessary for convenience the

S.L. system is assumed.) Thus, all superscripts and subscripts referring to

such systems will be dropped. In addition, all notation here does not neces-

sarily refer to that of other sections and,-therefore, will be defined herein.

The assumptions of large deflection (moderate rotation), small strain elasti-

city will be made. The concepts of initial and incremental quantities will

also be abandoned here in favor of total quantities only.

As shown in Section 2 the Principle of Virtual Work can be written as

r(3.1)

where
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0.. = stress tensor
3-J

e.. = strain tensor
3-J

F. = prescribed body force per unit volume

T.= prescribed boundary traction

u = displacement

dV = element volume

dS = element of bounding surface

The strain displacement relations

= L Cu.iLL- p;4. -uk l(3.2)

and the kinematic (geometric) boundary conditions

LA - On $ (3.3)

are assumed to be satisfied exactly

where gu.
L

Placing Eq. 3. 2 into Eq. 3.1 gives

$\T i $1 C~ ~$)1-~(3.4)

Noting the following forms for integration by parts

L SA. Z;- /V = -- SLL S/ 4 5 (3.5)

and

j(3+)iL

07 Sj/K 5v4+S1 mT1 L- k4,St&- ds (3.6)
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Eq. 3.4 becomes (recall that c.. is symmetric)
1J

Wo A. u- + Su A\/ (3.7)

or

*VKICs-tLckU ckI ,-(3.8)
IL

since 6u=O on S. Since the variations of displacement in V and on S are

arbitrary, then the individual integrands of Eq. 3.2 must be zero. Thus, the

stress equilibrium equation

+.+ (3.9)

and the mechanical boundary conditions

ti -. +(3.10)

result. These form the basic equations of elasticity in general terms.

3.2.1 Reductions for Flat Plate Elements

Following the analysis of Washizu [1975] the large deflection theory for

plates proposed by Von Karmen will be employed. This theory assumes that the

deflections may be large compared to the plate thickness h but small compared

to its characteristic lengths. Thus, only moderate rotations are permitted

and inplane displacements are assumed small. This allows one to analyze the

large deflection of a simply supported plate, but not a cantilevered plate

whose free end rotates through large angles. Therefore, the strain displace-

ment relations of Eq. 3.2 in rectangular Cartesian coordinates may be expressed

as (see Fig. 3.1)

eVa, AtwZ 3.1

41



where

LL1  ' Y LL -. W

(3.12)

S ~ LL, \ ~V( ~ (wI ( WZ "WKV.,q c
and the transverse shear strains are assumed zero. Also, higher order terms

are neglected in Eq. 3.11. Because of the thinness of the plate, the body

forces F. as well as any distribured loads applied to the top and/or bottom

surfaces, may be expressed as

S.+-q = S ( +" Z UL Y: (3.13)

where

SM = the midsurface of the plate

Considering the strain energy

r, s- e ii SeKvoe,,ix,+ ey- + SS-fY JV (3.14)

and placing Eqs. 3.11 into this yields

4---(3.15)

Defining stress resultants as
%[-x

%- N

[A, tItw a 8A(3.16)

N-=Iy S h 7-Try Wy.Viatr.A

Eq. 3.15 becomes

TL-+ M j9t7y-1

4.A1 %,1 ') -~ t~S~i~y)\ &Ay(3.17)
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Integrating this by parts gives rise to the following stress resultant 
equili-

brium equations in S

N Y,H%1 4 4v&,% 0 (3.18)

M%1~ tM q iyy +- 2 IkAnycy A >4JXWL .dw f)

WI(WK11 +v41 yNwVj Y ,Y 4 z--

and the mechanical boundary conditions on C (S + C)

(3.19)

where

bg,? =x, .xIN vy,yY&0,ky; e o'+'AY', '/ (3.20)

V = direction cosine between outward normal of

C and x axis

V = direction cosine between outward normal of
Y

C and y axis

Note that the strains of Eq. 3.11 may be written in terms of midsurface strains

[e I, and curvatures, [k].
~0-

= .- KI (3.21)

where

Lk 4- z

e,y UL y f .It
(3.22)KIw-cy ,-vcfy

43



For an isotropic material the constitutive relations are

Ty-)c +N) yy

combining this with Eqs. 3.16 and 3.22

Eh) ey-6 +)

(3.23)

ct =

gives the familiar relations

NA4 = -b[Wyj 4dVC.J
(3.24)

E = Young's modulus

v = Poisson's ratio

Eqs. 3.11, 3.18-3.22, and 3.24 form the basic equations that will be necessary

to form the energy principles utilizing flat plate elements.

3.2.2 Reductions for Shallow Shell Elements

Two popular theories are used for shallow shell 
theory. Kirchhoff-Love

theory is developed through the use of shell theory with appropriate 
reductions

for shallowness. While Marguerre theory can be developed from formal shell

theory, it can also be derived from extensions of plate theory. The latter

was used for the bulk of the shallow element analysis although some beam

cases were formulated by the former for comparisons.

3.2.2.1 Kirchhof-Love Theory

Let z=z (x,y) represeflt the midsurface of a thin, shallow shell,

and r be a coordinate normal to this midsurface (Fig. 3.2). The shell shall

be considered shallow and thin if

I( 25)''Z t za1 cc-

and

*1 & : C: - -YT-
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From shell theory with these assumptions and those of small inplane displace-

ments the strain displacement relations are

W 4.- ew(3.26)

ILL, L -L z Ut.

where

( ) refer to E and 2 coordinates in the shelL which

correspond to the x and y axis

U =u1a1 +u2a2 +wn

a = base vectors along (in midsurface)

n = unit normal to ridsurface of shell

Note that the displacements and strains are measured in the shell coordinates

Defining stress resultants as

hit v %

-t .- lM-(3.27)
-hhit.

Then the equations of stress resultant equilibrium in the base plane (x,y

plane) are

am'

----- +-L2x +- = 0

- - 4- Z +N
I))CZ-z;yY

+ y ~0 s

where stresses are also measured in the shell. The mechanical boundary

conditions are

(3.28)
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+ 9 4 -7

where

Nb h 4-tb Q
Q0t177+ 4 3').

NiA-9L. M-aQ
(3.30)

The strains of Eq. 3.26 may be separated into inplane (shell) strains and

curvatures, where

'b -t-2a 1 ((bw -
Cl,.=37WVg Z i

tz b I -2w--by

Finally, the constitutive relations are

Nz (vA e

.~tw

K11= W7t
Tbtw

2~b 'At

KAI 1 ) + W-z

"41L -D1Yxz-KtQl

t'" 7. =2 1 4 tZ 1M1t-= - D6i-0Q)Kt

Eqs. 3.26-3.32 define the basic relations necessary for finite element formula-

tions based on Kirchhoff-Love shallow shell theory.

3.2.2.2 Marguerre Theory

This theory is a much more natural extension of flat plate theory

and, in fact, was originally developed for plates with small initial deflections
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(Marguerre, 1938]. Although it can be formulated through shiell considerations

[Washizu, 1975] it is worthwhile to derive it from the plate equations.

Consider the strain displacement relations Eq. 3.11 with an initial dis-

placement, z, such that (see Fig. 3.2)

W -e(3.33)

Thus,

. ---E +- W-+ 2. (3.34)
e- -b , -z bX bY -i I

where in this relation replaces the role of z in Eq. 3.11 and z=z(x,y) here

represents the midsurface of the shell. Eq. 3.34 becomes

a- (3.35)

Recalling the restrictions defining shallowness, Eqs. 3.25 reduces Eq.3.35 to

= g 4* c _W_+1 ( -W )2- (3.36a)
-4 r~z

Similarly

e- { 372Y,(3.36b)

Z-cecy 4-U 4  +

Note that here the previous curvilinear system I ,E2, C is approximated by

the rectangular Cartesian system x,y,? (where the Cs play different roles in

each case).

Defining stress resultants as

- hI-t .. h t

t, ft (3.37)

N A hitv
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The resulting equations of stress resultant equilibrium are

NixK,,L +4ht9,Y *f>,=0

+Y (3.38)

My (N9 I4 'ICW, O .

and the mechanical boundary conditions are

(3.39)

where Eqs. 3.20 for plates still hold. Separating out the inplane strains

and curvatures

(3.40)

7- eYy. LL,q 41 %tZ -1tW,vkZ-,q W) Y-4-V1,.W, y Ky.- W q
The constitutive relations are the same as those for plates, Eq . 3.24.

Eqs. 3.36-3.40, 3.20 and 3.24 define the basic relations necessary for finite

element formulations based on Marguerre theory for shallow shells.

Note that in all the theories given here the geometric boundary conditions

on S (or C ) are the same, namely
U U

W =v (3.41)

However, for Kirchhoff-Love theory u=u1 , vav, and w-w are measured in the
1 2

and C(n) directions.

3.2.3 Summary of Some Approximations

The approximations discussed in the previous subsections here will be

listed in a convenient forrrt for quick reference. Additional remarks were made

in Subsection 2.7.
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a. Thinness (Kirchhoff assumptions hold):

(1) No transverse shear stress or strain, i.e.,

(2) Higher order terms in the thickness variable, 1, are omitted, i.e.,

o(it ) ~to

(3) Volumetric body forces and distributed loads acting on the top and

bottom surfaces are replaced with distributed loads acting over the middle

surface of the structure (see Eq. 3.13).

b. Small strain moderate transverse rotations (small inplane displacements):

(1) The following terms are considered small in the strain displacement

relations.

(2) Only the stress equilibrium equation in the normal direction must be

altered while the others remain linear (i.e. see Eqs. 3.18).

c. Shallowness:

(1) Let z=z(x,y) represent the middle surface of a structure, and C be

the normal coordinate to this midsurface, then the following terms are omitted

in the strain displacement relations

(See Eq. 3.25).

(2) Again, only the stress equilibrium equation in the normal direction

must be altered (i.e. see Eqs. 3.28).

3.3 Coordinate Systems and Transformations

The coordinate systems to be discussed here are those required for the

generation of element level matrices and element assembly procedures. Since

this work predominently makes use of flat plate theory and Margiuerre theory

the majority of the following will deal with rectangular Cartesian systems.

However, since some work involved the use of Kirchhoff-Love theory, and for
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the sake of completeness, Subsection 3.3.3 will make some comments regarding

curvilinear coordinate systems. More detail on this may be found in Appendix A.

3.3.1 Basic Considerations

In the general case of shell analysis there are three basic coordinate

systems (four for the Kirchhoff-Love case) which, in general, do not coincide.

They are

1. a global system which remains fixed. All quantities and processes

(differentiations and/or integrations) can ultimately be defined

with respect to it. This system is usually chosen so that the

initially undeformed structure can be easily described.

2. a local system where individual element properties and processes can

easily be defined. For thin structures this is usually taken as the

natural reference frame.

3. a common system where all the elements will be assembled for solution

purposes.

This common system may have several alternatives. One could allow the

common and global systems to coincide [Aldstedt, 19691. Or, allow it to

represent a tangent plane system to the real shell surface [Megard, 1969].

Alternately, some system could be arrived at by an averaging process of local

systems at a point on the shell surface [Mau and Witmer, 1972]. (See Fig.3.3).

The systems one uses is generally a matter of preference and convenience.

Considerations to be made, however, are what kind of loading will be used and

what type of boundary conditions will be applied. It appears from this work

that choosing a common system which essentially coincides with the real shell

system (utilizing rectangular Cartesian coordinates) is, in general, the most

useful. This allows for the simplest handling of the majority of boundary

conditions and loadings.

It should be pointed out that the local system, or base plane, is not

taken, in general, coincident with the common or global systems. While this

would be legitimate for an entire shell which was shallow, for deep shells

this is not the case. In fact, for deep shells, shallow shell theory is, of

course, invalid. Thus, the local base planes follow the shell (at the nodal

points) so that even for deep shells the elements will be locally shallow.
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This approximation of shallowness gets better and better as the finite element

mesh becomes finer. Theoretically, any deep shell can be represented by a

series of locally shallow shells. For that matter, at the risk of greater

approximation, any shell can be approximated by a series of locally flat planes

(a faceted shell).

3.3.2 Assembly in the Common System

The set of coordinate systems presented here are for flat plates and

shallow shells derived from Maguerre theory. Consider three sets of rectangular
G G ,G L L L

Cartesian coordinates: a global set ( x, y z); a local set ( x, y, z); and

a common set (C C Cz). Any two sets of such systems may be related to each

other via the direction cosines between their axes. Thus

Gt L
[XlCo, (%chc-) COSV(CyLy) COSU2%, .LCE) (3.42)

{ COS('LYK) COS ,'Ly L> C5 l L Lf)

KJL cos (6f->IL-s)C (' z n") cCOSC &i LI>I
where

cos ( y,Lz) = direction cosine between the global y axis

and the local z axis

or, in contracted form

(3.43)

where

(3.44)

Similarly

(3.45)

and
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'-yl='CT C Y (3.46)

If the nodal points corresponding to an element are each located with

respect to the global system, then the normal to the flat plane defined by

the three nodes can easily be determined [Zienkiewicz, 1971; Mau and Witmer,

1972]. This normal then becomes Lz. The two inplane axes, x and Ly, can be

arbitrarily defined in a plane perpendicular to Lz. in this work it was

decided to locate the Lx axis such that it would always remain perpendicular
G G L

to y. Thus, the direction cosine cos ( y, x) vanishes. Once the position
L L Lof the x and z axes are determined with respect to the global axes then y

may simply be determined as the cross product between the Lz and Lx directions.

One must remember that the vectors defining such directions must be unit

vectors. It was also chosen, arbitrarily, that the origin of this local axis

system be at the centroid of its respective element. With this information

at hand the transformation of Eq. 3.43 GL [T] is completely determined for each

element.

In a similar fashion the common system is defined with respect to the

global system. First the z axis must be determined by arranging it in the

same direction as the normal to the shell. It can be shown (see Appendix A)

that the normal to the shell with respect to the global axes is

iC\Y- Ls 6  ty Lj(3.47)

where

=G-

i = base vectors for the global system.

C G
Again, the x direction was chosen to be perpendicular to the y direction.

GOC C.Thus, cos ( y, x) vanishes. y is determined by taking the cross product of

z and z. This information completely determines the transformation, [T],

of Eq. 3.45.
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LC
Finally the transformation [T] may be determined from the previous two.

Noting that a property of the direction cosine transformations states that the

inverse of the transformation matrix is equal to its transpose, i.e.

-
4

L\ -.T \(3.48)

one may write

L ejj AI'[TrG i1 &LflT cLTtiYLk (3.49)

Comparing Eqs. 3.46 and 3.49 yields

L4T1(3.50)

Thus, all the necessary transformations are given by the above.

A comment should be made at this point explaining why assembly is performed

in the common system (the details of which will be presented in Section 7).

Many authors prefer to use the global system. One should recall that thin

plate and shell theory have only five degrees of freedom (dofs) per node.

There is no stiffness contribution for a rotational dof about the normal. To

assemble in the global system, which may be located at a considerable rotation

from the local system, requires the use of six dofs. This is because the

stiffness in the five local dofs will have contributions to all six dofs in

the global system. The displacement solutions are also in the global direc-

tions. If the common system is used, which is some average position between

neighboring elements, then only five dofs are required because the loss of

stiffness in this transformation is negligible. Thus, for every node point

one dof (out of five) is saved. This can lead to substantial savings in

computational effort. Furthermore, the displacement solutions are in the

approximate shell directions which seems more natural for shell analysis.

Additionally, for global assembly, if a flat plate is to be analyzed such that

neighboring elements are coplanar then no stiffness contribution is added to

the fictitious sixth dof and it must be restrained. For the common system

this problem does not exist.
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3.3.3 Assembly in the Shell System

When Kirchhoff-Love theory is used to formulate the problem, the dis-

placements,- stresses, and strains are in the shell coordinates. For shallow

shell theory the curvilinear coordinates associated with each element, which

correspond to their Cartesian counterparts in the base plane, are nearly

orthogonal and can be taken as such. For the entire shell there is also a

set of curvilinear coordinates which correspond to the global rectangular

Cartesian system. The details of these curvilinear systems are given in

Appendix A.

The element matrices are associated with the local curvilinear coordi-.

nates. This set of coordinates has its normal direction coincident with the

normal to the real shell. The inplane coordinates are in the shell surface.

The global curvilinear set of coordinates also has its normal direction coin-

cident with the normal to the shell. An orthgonal set of coordinates can be

formed where the other two coordinates are in the surface of the shell. Since

both sets of curvilinear coordinates have the same normal directions (to the

shell) and both of their other coordinates lie in the surface of the shell

then only a simple inplane rotation is necessary for assembly. Although the

local and global inplane coordinates are not coincident, they may both be

taken as orthogonal and thus, only a simple inplane direction cosine trans-

formation is required.

Since both of these curvilinear coordinate systems can be referred to

the same rectangular Cartesian global system, it is a simple matter to

determine the angle or rotation required for transformation.
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SECTION 4

A GENERAL INCREMENTAL ASSUMED STRESS HYBRID FORMULATION

FOR LARGE DEFLECTION ANALYSIS BASED ON A

STATIONARY LAGRANGIAN COORDINATE SYSTEM

4.1 Introduction

The original variational formulation of the assumed stress hybrid func-

tional [Pian, 1964] was limited to linear elastic, static equilibrium problems.

The formulation was completely consistent and it was shown that, although the

functional only satisfied a stationary condition, it converged [Tong and Pian,

19691. The beauty of this approach lies in the fact that no compatible dis-

placement field need be assumed on the interior of an element -- a problem

which has plagued the use of the displacement model for many years, particularly

for plate and shell problems. However, the functional does require that stress

equilibrium on the interior be satisfied exactly. For the finite element

analysis of linear elastic problems this is easily accomplished. It has been

pointed out [Langhaar, 1953; Washizu, 1975] that for complementary energy

principles this condition no longer exists for nonlinear problems. From Eq. 3.9

one observes that a nonlinear coupling exists in the stress equilibrium equation

and satisfaction of this constraint is extremely difficult. This coupling can

be eliminated by the use of Piola stresses, however, these are unsymmettic.

Fraeijs de Veubeke [1972], has shown the resulting functionals.

The first attempt at extending the assumed stress hybrid formulation to

geometrically nonlinear problems was done by Lundgren [1967]. In an attempt to

solve a bifurcation buckling problem, he used a hybrid elastic stiffness matrix

with a geometric stiffness constructed from a standard displacement method.

Although the method was successful, it was inconsistently derived. Later

Pirotin [1971] derived an inconsistent approach from a modified Hellinger-

Reissner Principle and applied it to the large deflection analysis of beams and

shells. This was a first step and only the basic functional was considered.

Finally Atluri [1973b] presented a finite element approach based on a consistent

assumed stress hybrid functional. This paper is in error and in the formula-

tion to be presented, the differences will be pointed out.
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In this section an assumed stress hybrid functional will be derived from

the Principle of Virtual Work. Although a more direct approach can be realized

by utilizing the Principle of Virtual Complementary Work, derived in Appendix B,

starting with the Principle of Virtual Work allows one to consider a variety of

functionals. A stationary Lagrangian coordinate system will be utilized here.

As in the works by Pirotin and Atluri, an incremental initial stress procedure

will be incorporated. It should be noted that both Pirotin and Atluri used a

convected coordinate system. In the next section a similar system will be

used to derive an alternate updated approach. As discussed in Section 2, for

a stationary Langrangian coordinate system the Kirchhoff stress is consistent

with the Green (Lagrangian) strain. Thus, these shall be used in the deriva-

tion.

4.2 The Hu-Washizu Principle

The Principle of Virtual Work has been a cornerstone in the derivation of

energy principles [Zienkiewicz, 1971 Washizu, 1975]. It has been well estab-

lished and will be used as the starting point for the present formulation.

Consider the volume, V, of a continuum which has the boundary surface 3V

composed of segments. Let S be that portion of WV upon which prescribed

tractions are applied while S is that portion of 3V upon which displacements
u

are prescribed. The Principle of Virtual Work states that the variation of

the functional 7t with respect to e.. and u. may be written as
31] 3-

'~yc yhijb 1  F L ui& T S(4.1)

where

a.. = elastic stress tensor
33

e.. = elastic strain tensor
3-3

F. = prescribed body force
3-

u. = displacements
3-

T. = prescribed surface tractions
3(

()= prescribed quantity
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Eq. 4.1 states that the sum of the virtual work, done by external loads acting

on the body moving through admissible virtual displacements, is equal to the

change in external strain energy of the body, effected by the virtual strains.

Now, consider a state incrementally close to the present state. The variables

in this state may be written as

-
4--A

1J4.-..LA- tLUAZ

where

( ) = initial quantity in reference state

A( ) = incremental quantity.

The initial quantities are assumed to be known from the previous state. The

incremental quantities are the changes in the corresponding variables from the

known state to the incrementally close next state. The Principle of Virtual

Work may now be written as

' i I l(Tij4MP-Se 4-1seq) - i z\i)SCx4&k-J /

+,d~Z L. C4, bL~i C1(4.2)

It should be noted that only incremental quantities are subject to variation

and, therefore, Eq. 4.2 may simply be written as

S IT~tT')$rbw;s O(4.3)

One may now define a state fnction A(Ae..) such that
3.
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%A(aC<-) = tc-ij te ij -..- (4.4

With this strain energy potential defined, the Principle of Stationary Total

Potential Energy (PSTPE) may be formed. It states that the functional vip
p

defined as

4S(~-tVLr)tV.JS (4.5)

is stationary with respect to a variation of displacement increments, Au. when

the strain displacement relations in V and the kinematic boundary conditions

on S are satisfied exactly. The stress equilibrium equations in V and the
U

mechanical boundary conditions on S are the Euler equations of Tr after
ar p

appropriate integration by parts.

The first step in the procedure is to relax the equations of strain dis-

placement and kinematic boundary conditions by allowing them to be satisfied

only approximately. For large displacement analysis, the total* Green strain

displacement relations may be written as

e - 'ej=4 1ua 1  3  i4 a48%,Z +JU~k 4-AIjt)4 (Lt~+A~ikY3] (4.6)

or

(e-Lu 4Lkjr --wtLLLj 4at4Zj*~

-IEIA LL6,f 4 11 t.ULt1 3 4acttg =0 (4.7)

The kinematic boundary condition on S can be written as

v-4--; ,u; - (4.8)

The total strain displacement relations are introduced, as opposed to the
incremental relations, so that a. compatibility check may be obtained consistently.
(See Subsection 4.4.3).
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Through the use of Lagrange multipliers these conditions may be incorporated

into the previous functional, 7rP. The resulting generalized variational

principle states that the functional, 7r , which is stationary with respect to

variations in the incremental quantities a.., and Au., where

I L L r 

++LhLL&I

4- 
(4-9)

Taking the variation of r* recalling that only incremental quantities are

subject to variation.

SIT Seq~ ka~l ALA-

+Aq-'~~~+ L A I AL Lt,;LL% Akb

+X 1~te ~i~a~~q4SAU.1 ; +UCLJk,i'SALtk, 1

LK ,~ YLz4 sz;) - (Th; +aLt tt'S&l-c'
(4.10)

Upon rearranging
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k UL p i - 4 kk AL; ALt1 4Ld 1(Ct-Uk1

- kLiSAl~kttT+ 9LALL- As-VL ,-6LL-

I(Lt46(k) - FA; NaZj 4 , 0(4.11)

Terms containing the variation of incremental displacement gradients must be

integrated by parts such that

P~;s~tc.cI~ ~.~ y~ Sa icV j(4.12)

and

-S x ~ sCxIV (4.13)

Placing Eqs. 4.12 and 4.13 into Eq. 4.11 and rearranging yields

&'r.S Se; + + 'i)4 q +L+o; L c~, 1--t

4 e'L4, -LLLj I-Ia'Aj 4btfiiL4LtbActqj + ALLwj Ut 1l*LkUk0

+SaLY{ 2 -Vrj ts (IL-iSIL +ALtCIk)1 .- t V

4L 4AL444AEiLA tiJ 0 (4.14)

Fromt the above equation and recalling that 3xt=S +S5 the Lagrange multipliers

can be found by

uz +j aq X+,oO~-rj*ct) (4.15)
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and

4. ' Xj(W-ojAAL-Y % -f(,4TA(4.16)

Placing these equations into Eq. 4.14 the Euler equations of the functional

Tr* are as follows.

In the volume, V: * +xcr1

Strain displacement

4 LLW r!SLLtL. ~&LL LL~J + tu.LLj 'j (4.17)

Stress equilibrium

On the boundary: .?EJ2 -- k64, c<X4 t+

Tractions on OV

Ti + =CE r Z-4Qasrij+ (Lrk-tbr-, t .,+a~\~(4.19)

Mechanical boundary condition on S
a-"

Ti &r6 i T i +lTt (4.20)

Kinematic boundary condition on S
U

L Uz .=LL ;+al- (4.21)

Placing Eqs. 4.15 and 4.16 into Eq. 4.9 and relaxing the stress strain relations

(Eq. 4.4) yields the Hu-Washizu functional, Tr which is stationary with respect

to variations in the incremental quantities e. .,A. ., and Au.. After some
r(a1a 1

reduction (and eliminating constant terms)
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Skde %) -bcr1 &a e-&Cr1C eq ( AflbL

7-.i4L LLt 4- -- atU.1 j

Sa

Note that the stress strain relations (Eq. 4.4) and Eqs. 4.17-4.21 are the

Euler equations for the Eu-Washizu functional.

4.3 The Modified Reissner Principle

The next step in the derivation is to obtain Reissner's principle from

the Hu-Washizu principle. First Eq. 4.4 must be satisfied exactly and a new

state function, B(Ac..) , is defined so that
3-J

= aCl oe -- Aae (4.23)

Placing this into Eq. 4.22 gives the functional TR associated with the Reissner

principle. This variational principle is stationary with respect to variations

in the incremental quantities Acr.., AT. and Au..

IT - )- 6'iq eq.)- (vFL .0F;') 6U

+ L(L U..k, L 1> i 4, Wki LLU~~j48U.j i&L

\ S(:-;4+cfft') 6 s -S (TZ4 r;Al(LuL0 C)-(L-4aQA s (4.24)

Before continuing it is now convenient to recognize that these functionals

shall ultimately be used to generate matrix equations for the finite element

method. Thus, the possibility of dividing the continuum into n segments is

considered. If each segment is treated as a continuum and if it is connected

to a neighboring segment properly,= then the entire domain may be treated by

summing the individual segments [Zienkiewicz, 19711. Thus, Tr R can be taken to
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represent one segment and the total principle would involve summing over all

segments. Upon doing this one can envision the creation of internal boundaries.

If one refers to these segments as elements, then the internal boundaries may

be referred to as interelement boundaries. Letting 3! represent the totaln
bounding surface of an element, one can decompose it as follows

4 .\/h = 5( + .% LA(4.25)

where S and S are the same as S and S respectively with the understanding
n u thu

that they now refer to the n element rather than the entire domain. S is
n

that part of 3V corresponding to internal (interelement) boundaries. n
n

Bearing this in mind the modified Reissner principle is derived by relax-

ing the boundary displacement conditions. For all the previous functionals it

was necessary that the displacements be continuous over the entire domain.

With the domain divided into separate elements, each one being continuous, it

is convenient to choose displacements which are continuous in each element but

discontinuous across interelement boundaries. To extend this concept further,

one can relax the continuity conditions between the displacements on the interior

of an element and those on the entire boundary 3v. Of course, it must ben

understood that upon relaxing these conditions, the boundary displacements from

one element must be continuous with the boundary displacements of all neighbor-

ing elements. Consider the equation on @V

Ui + 0LL- LL+ L&U (4.26)

or

(Z +O.L'- a+5u.; 0 (4.27)

where

u.+Au. = displacement on interior of element1 1~

u.+i. = displacement on boundary

Relaxing Eq. 4.27 by the Lagrange multiplier technique, adding the correspond-

ing term to Eq. 4.24 and recalling that one must now sum over all the elements,

the modified Reissner principle results.

63



-Tr?. K = 2 S k -
e;

Vj%

+ Orii 4 a LL 'j + ELk.E Uat., 4 bu-t,.J, -4 6 Lk
-Z

UL 0 Wt. 4- DLL6,z LLb,.! + &LL 1L. C a UIL,

U- L

a"" -r -r - _j) -
-5S ( + ALL

SLL ft

4- A- L LLi +aLLE) GZ .4 0-61 L- 

(4.28)

b-4v%

Taking the variation of TrmR with respect to Agij, AT L r and &u gives

k -a e;i Sacrij S661, I i - ( ; C

U- + au L

+ LLbrL- DLLIM,

+ + U-1.

S6LkFc.j 4' 4LIL 
IL, i

o LA. Au

S6Td(-LLZ-' , i - (-LL;4 - )l LAS

L16 r.

(7 i SrkZ aS + S)A, UZ 4-6UZ +

k-4 
Vk

A 07u 3 S C:) 
(4.29)

Integrating the variation of the incremental displacement gradient terms by

parts (as before) and rearranging

'4 LLjLL -4 ULL. LLILj 4 &L ;,j

+ 6Lkf.C + E4.z Uh'i OLLI..i

6uz (r;, +ad-O, + 6T j) ( U 6U1

SaUi .4

&Lz 8S

L&E& ALE

S tZL 6A14 6LLC j cIS

L '&TC) S (4.30)
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Recalling that aV n=S C +SU +Sn the Lagrange multiplier is determined as

n n nl

L + GCvq + cr1.. CTrjYL&;k LkM4 -=C)(4.31)

or

- Lt; -t~fl(4.32)

Placing Eqs. 4.25 and 4.32 into Eq. 4.30 and rearranging

+ ttj~ L .;,8+ t.-r6tJbLL 4- 4U&(tkJJ-LAj

all jTj + ,1 + (kj LkL.,&, 4-ftLu.j,,C

&LS Scaull-K.4-170 4-t Gi1 4or 104(4 .c UI\(ub EL+ tl;.)btJ

4 r'LLL4&LL LLL.4AL SJ

+1 &;nckt" ~(4.33)

Thus, the Euler equations of the functional are as follows.

In the volume, Vn:

Strain displacement

e11  oe4 t .~i +LLV + LLtkjitt EL 1 3+A~~

4 -Wt4J..wkK 4Lttz Uk 13 4- &Ltk.(BLtL'i(4.34)

Stress equilibrium
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On the boundary:

Tractions on DV
n

TEf 'o-i6++ r j + ( +.LL t) j (4.36)

Mechanical boundary conditions on S
n

T;+aTI = T -+-i (4.37)

Kinematic boundary condition on S
a

LL-d"t= ; A ; (4.38)

Relaxation of displacements on avn

OL; *AU; .U.-+LtU (4.39)

The last term in Eq. 4.33 represents the relaxation of boundary tractions

across the interelement boundaries. If one considers two neighbor elements

(Fig. 4.1), one designated 'a' and the other designated 'b' , then the inter-
a b

element tractions are T. and T.. This term, therefore, states that on S

(Tc aT 4( g; =0(4. 40)

Upon summing over all the elements and their interelement boundaries these

corresponding work terms would cancel each other if Eq. 4.40 were exactly

satisfied.

Placing Eq. 4.32 into Eq. 4.28 the functional 7r corresponding to the

modified Reissner principle results in the stationary condition

2.%'VV 1 t q 4 <g LwiLt

4.LLtLL LL tL, - +ZUL~ ki octtLrj -iB'

S~r~tryca4AL;y.L BZ eaa]BAs c5 ')u;d

Lw; Z)(4.41)

66



It should be noted here that while the Euler equations for 67r=0 (Eqs. 4.17-

4.21) and those of 6 =0 (Eqs. 4.34-4.38) look identical they refer to
mR

different domains. The equations for TrI refer to the entire domain as one

continuum. The equations for Tr refer to the domain of one element or sub-

domain. Since, of course, the elasticity equations govern the entire domain

these sets of equations must be the same. However, in the case of an element,

simpler assumptions ray be made on the space variations of the variables and,

in fact, they must only be continuous in the element domain. This advantage

is paid for by the necessary addition of the last tern in Eq. 4.28. This term

results in the relaxation of displacement compatibility (Eq. 4.39) and boundary

tractions (Eq. 4.40) .

4.4 The Assumed Stress Hybrid Functional

The final phase of this derivation is the formulation of the assumed

stress hybrid functionals. For a fully consistent functional, it is required

that the total stress equilibrium equation (Eq. 4.35) and the total boundary

tractions (Eq. 4.36) be satisfied exactly. These equations are nonlinear.

Although in the incremental analysis they may be linearized they are still

difficult equations to always satisfy. This leads to several compromises in

satisfying the complete stress equilibrium equations. Such functionals will be

deemed inconsistent assumed stress hybrid functionals.

In each of the inconsistent approaches, only the linear portion of the

stress equilibrium equation is satisfied. As will be shown when discussing

particular cases of finite element models (in Section 7) for plates and shells,

the linear portion of the stress equilibrium equation may-be accounted for in

different ways. For the purposes of the general derivations given here it will

suffice to say the linear stress equilibrium equation is satisfied exactly.

This condition results in an artificial constraint on the total stress for the

S.L. system. Computational expediency, however, warrants the study of an

inconsistent model.

4.4.1 The Consistent Model

Although Pirotin [19711 alluded to a consistent assumed stress hybrid

model the details were not carried out due to the complexity of his element

(a deep, doubly curved four sided shell element). The first attempt at
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describing a consistent approach in detail was by Atluri [1973b]. However, the

writer feels this paper is in error and will point out the differences between

Atluri' s functional and that of the present work in the next section. Since

both Pirotin and Atluri used a convected coordinate system, comparisons to the

present work will be deferred to Section 5 for a convected, updated coordinate

system.

Before constructing the consistent functional it is convenient to first

write nr differently. That is, the terms in the volume integrdl which contain

incremental displacement gradients will be integrated by parts. In addition,

it will be necessary that the term

iS Tim.- 3 lao9LUk; &.L 1)cV
be added and subtracted to Eq. 4.41 to preserve the functional. Recalling

Eqs. 4.12 and 4.13, rr may be written as

7, ov+k'C ( rAa ru.~A

-1 (GriL4orkf'LMk 4L4N\4 AuM-a

- S t8 '). Li 4.i1&;) -Z&.(4oflA \(4.42)
or

- S S9?ilwraj ~~L~+ 4.Nrfl(ak.Zo i,\ 4Av

4 fjT46TL(L- 4)4

- ao(rj[Le,i-Vlz(itL, + upi +L iub.)Aclv' .. constit(443
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In the spirit of the assumed stress hybrid functional, the entire stress

equilibrium equation (Eq. 4.35) and the boundary traction requirement (Eq. 4.36)

must be satisfied exactly. Subject to these conditions Eq. 4.43 becomes the
c

consistent modified complementary energy principle Tr C, which is stationary
mc

with respect to the incremental quantities ATi" Au , and Au., where,

5-&r , e Aa4+Uq1- ~~.U 4LLj)I V \(4.44)
The constant terms are dropped because they are not subject to variation.

Eq. 4.44 is subject to Eqs. 4.35 and 4.36. Eq. 4.44 contains very complicated

expressions in light of the fact that Eq. 4.35 and 4.36 must be satisfied ex-

actly. Note that all these equations, unlike linear analysis, exhibit coupling

between stresses and interior displacements. If the increments are kept small,

it is possible to linearize these equations and, although the result is still

complicated, it is worthwhile considering them. If initial quantities are of

0 (1) assume the increments small enough so that incremental quantities are of

a(E) where <<l.

Consider Eq. 4.44 again. Retaining terms up to O(2 ) only.

+ i+ dUrtrrjaiiZ -rL As Z:As i (i Orc

+4(-T;4. AiLL(a LL:\4$ ) TiW4&r5LZ.; A

i crcj [ e "I-4(u.1  I-,4L->4 Lt.;uLVL Jv
(4.45)

One must now also linearize Eqs. 4.35 and 4.36

Lcq~cg 1',~+l.GX iWZ' tk4&t;1 ()i aSLt ,-, LF;-FtJO (4.46)
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and

Taa~ 4 -- + acr --V LL+AL 6 & aj (4.4i17Q

If one takes the variation of Eq. 4.45 with respect to stress, after some

manipulation it will be seen that Eq. 4.34 becomes

e;~ ~6e--z(LLj4aL-M- +U t~f

4 id U~f(AjsL (A*LLkC kr+ AUL LLhr(4.48)

which linearizes the incremental strain as expected.

It should be noted that all the above functionals are complete in that

they make no assumptions on stress equilibrium or compatibility in the initial

configuration. Alternate functionals can be constructed in a similar fashion

to the ones above by assuming different conditions are satisfied in the

reference state. Further comments are made in this regard in Subsection 4.4.3.

4.4.2 The Inconsistent Model

In an attempt to strike a compromise between the fully consistent assumed

stress hybrid model, with all its complexities, and the modified Reissner

principle, with no constraints on stress equilibrium, an inconsistent model

was pursued. Pirotin [1971], who used a basic form of this functional, showed

that for beam analysis this inconsistent procedure yielded better results than

a conventional Reissner approach.

To construct this model it is again convenient to write r differently.mR
Considering Eq. 4.41, integrate only the first two incremental displacement

gradient terms in V by parts.

-anTV --\ [ o34sil e ;eI-CR +8w;')

t-crk-*AU<ViLUI --LLjJ-I+Ukd.4 LA&.4+ LL.ik.ZLt1 .A t'HchjkL1

.4(-r- -A ULi-U~C\-is -~1(TZ ZTAii-LL CaS I(4.49)
LiS6
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Or, after rearranging

w -+ -4tII

'a %

+ Ti+ -iazY -aj U. +r-vle dsz)+Cie>s0 L

v.~ Z7L U LAk. Wksi

(4.50)

From Eq. 4.50 it is obvious that one would satisfy only the linear part of the

stress equilibrium equation, namely

(T- + 0 GcrY + r = (4.51)

Assuming Eq. 4.36 to be satisfied exactly, one may write

{ 0(+3G)(4k .hAu.;) ' - (4.52)

Placing Eqs. 4.51 and 4.52 into Eq. 4.50 yields the inconsistent modified

I
complementary energy principle, Tr , which is also stationary with respect to

mc
the incrementalquantities, A. , U. and Au., where

4453
4\ T, a i s u;'4 Vi-L6$

S-(A(rle;+ -.- JLL+;AL

(4.53)
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where the constant terms are dropped since they are not subject to variation.

In light of Eq. 4.51 the functional Tr would be simpler to implement than that
mc

of T
mc

Assuming that the increments are small the coupling between stress and

displacement increments can be removed. As in the previous subsection, if

initial quantities are of 0(l) the increments can be chosen small enough so

that incremental valu - are of 0(E) where E<<l. Eq. 4.53 can thus be reduced

to

ttil *AT-tliL(Lt6( Z6u-,- + ai o

rs iW toEc.i4. d- 47 whi(hcareageadis
4 i (Tk-i -)L is +6 S(~4T\7i>4A

QU71C.1- )] C1, (454)

where 7V is subject to Eqs. 4.51 and 4.47 which are already linear.
mc

Comparing the consistent and inconsistent functionals (Eqs- 4.45 and 4.54

respectively) one may observe that the initial displacements appear explicitly
I . c

in rI while they appear implicitly through stress equilibrium in T . Further-
mc mc

c
-nore, for Tr , the initial displacements appear explicitly in the stress equili-

mc
brium equations (Eq. 4.46). They do not appear at all in the corresponding

I I
equation (Eqs. 4.51) for Tr . At this point it is obvious that TV would be

mc mc
Mcsimpler to implement than Tr . This will become even more clear when the matrixmc

equations are considered for each functional in Section 6.

4.4.3 Equilibrium Checks
cI

The consistent model, ir , and the inconsistent model, Tr , are given by
mc mc

Eqs. 4.44 and 4.53 respectively. As previously stated these equations make no

assumptions about what conditions may be satisfied in the initial, reference

configuration. Although both these functionals require constraints on the

stress equilibrium equations there is no guarantee that stress equilibrium will
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satisfied in the nth state. While in linear analysis where a one step procedure

is used and the stresses satisfy equilibrium exactly there is no problem. It

is certainly conceivable that the stresses may drift away from the true solu-

tion during the incremental process. In fact, this is quite commonly observed

in nonlinear analysis [ofmeister et al., 1971]. Thus, an equilibrium check

might be appropriate. In addition, the strain displacement relations are Euler

equations in all of these assumed stress hybrid functionals. Since they are

only satisfied in an average sense within an increment they cannbt be expected

to satisfy these conditions in the total sense. It is, therefore, necessary

to consider a compatibility check in the functionals. Finally, a third equili-

brium check is generated if a displacement mismatch occurs between either the

interior and interelement boundary displacement fields or the interelement

boundary and prescribed displacement fields. This check should be considered

only in conjunction with the compatibility check. The equilibrium checks

developed here differ somewhat from those of Hofmeister et al. This is inten-

tional to allow a more natural form of checks for the assumed stress hybrid

models.

Eqs. 4.44 and 4.53 already have all of these checks in them. For both

functionals, the compatibility check and its associated displacement mismatch

checks are most easily identified. They are the last three integrals in each

equation. If the strain displacement relations were satisfied exactly in the

reference configuration the compatibility term would be identically zero.

The stress equilibrium check is a bit harder to see, but it is taken into

account by maintaining an initial stress term, the initial tractions in the sur-

face integrals of the functionals and the corresponding terms in the constraint

equations. The artificial constraint on the total stress for the inconsistent

model in the S.L. system is reflected in the stress equilibrium check. To

identify the correction terms one must first consider the Principle of Virtual

Work again. Repeating Eq. 4.3

V idL tinare ssudt s f (4.3)

In Eq. 4.3 the strain displacement relations are assumed to be satisfied

73



exactly. From Eq. 4.7 the incremental strain displacement relations may be

identified as

(4.55)

Placing Eq. 4.55 into Eq. 4.3 and integrating by parts yields

SIT S I- ( r + DG; + LL , + OL

++r - - h n S d a

4.Vr 1 trti \ tE L ~ 'u~~.dL 4S\4 L4A

-- 1 +5-(4.56)

Recalling that 3V=S +S and that OAu on Su is zero gives

+S(L-+ CAS 0 (4.57)

Identifying the conditions in the initial state as

- t,; r +(4.58)

and

T +(4.59)

the terms in Eq. 4.57 may be separated

A) LL L + q"

V - Th- i T( 44 L \ "SatzN %AS ; -=0(4.60)
Sr-
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If it is required that Eqs. 4.58 and 4.59 are to be satisfied exactly, then

the last two integrals in Eq. 4.60 vanish. Integrating by parts again gives

-- +1.

~1bLaQOzcsrO(4.61)

Following the development of Subsection 4.2 one finds

~ 4cq~woL~1~ -8i~ALL14V(4.62)

and

Acde- tr 7- 8zLL A L. Pc"

* '&i ~z 1 -k LuL LL y; a+ q Oei-

+ 6 41 -VLL~c hdj t1 -AL~khLUt..q +OLLta 6u4..JYJA

S th~ cs-~ M1(U +b6tL') (A;4LLO lJS (4.63)

It is obvious here that the Lagrange multipliers will be identified by

L (4.64)

and

6 at; = A x1  '+ -A ts6 U++ 0YC LL;q-1c(4 .65)

Placing Eqs. 4.64 and 4.65 into Eq. 4.63 gives

= r Sk ae' t 6k.- uic- AF;6Ltz

-*6oI1Lej LLLC4 +u- -+ Lt&.L.b .f\ -- Eq.Lc.;

+ c~.; A~tiJAk LLk Ut-Aujc -Achq Y y~v
- AT; &tJs - ~ Q ~(u0;a".;I1(a; o;Y I

5g~ (4.66)
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For completeness the following functionals are written but no further explana-

tion is necessary

Ur (rii but'. -,but, 'OLL;

+1
U U-1; i _k LILIZt L'Lk' bU

4, LL tL. + ALL IL. , U tL. - LA it, C b LL 1z"
L

UAL,_ 6TC (U +,OtAz OLZ + &UZ J (4.67)

Sir

TI 0 Mit,; 0 U tj

-4
z LL + U1, L A ILIZ'L ALL4 4 IdUja + (4, 'c U

Qlt.z OCLI" - I I %I - S 6T; CU Z 4- OLJ-L- (L'L; +A Ct j

(4.68)

ISO-.

or,

13 04fij gli rC) 6 LLLi 4.41.,-

rL 
VR

[
VVL

L LL 
iSLA'Cls

wr; t7L 8S - 6T -ail 4C,

WO

+ I

Im. 

I

krZ LAb'j- 
(4.69)

7 L4L.;( -1 Ufjj -+Lj

Finally

C

-if M rcj + 6T j &,A L- a LL

OT; LLZ _'6 q Z C1 .5

az (Ui-U;)CIS 
&-T ( LQ_ Lki )Cis

14, 5CA ft

6ri (LA - -+.U It. i, LAit. cl \1 
(4.70)

L 7 Cif
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where Eq. 4.70 is subject to

Ti O( 4 , 0 (u4k, 1k 4 butk j t R0 0(4.71)

and

[CC1 1iG t T-j Ot4IL + A -IL; u.tQ71 .L (4.72)

Note that these last two equations are identical to Eqs. 4.35 and 4.36 if in

the initial state Eqs. 4.58 and 4.59 are satisfied exactly. Comparing Eqs.

4.70 and 4.44 one can see the effect of the equilibrium check on the functional.

By similar argument it can be shown that the inconsistent model without

the equilibrium check can be written as

whi\srllhdsou)ct tortheaondAiti-on

Mnd Eq.4.472.L k)

substins i th inArmts arT k t4LL. Te a y
Salk Wt

- - 4LEA, -Lz*LLlL4u,;.lc4iVX

(4.73)

which is subject to the conditions

(4.74)

and Eq. 4.72.

Eqs. 4.70-4.73 may be linearized in the same fashion as in the previous

subsections if the increments are kept small. The compatibility check can now

be seen as playing an interesting role in these linearized functionals. While

the incremental strain is linear in incremental displacements, the total strain

in the reference configuration is nonlinear in the known total displacements.

Thus, if incremental steps are taken to be large, the compatibility check,

which form imbalance load terms, tends to correct the solution to the proper

value. In fact, when all equilibrium checks are utilized, the entire load may

be taken in one increment and in very few steps the equilibrium checks will

iterate the solution to the correct one. This will be demonstrated in

Section 8 where results are given.

77



SECTION 5

A GENERAL INCREMENTAL ASSUMED STRESS HYBRID FORMULATION FOR LARGE

DEFLECTION ANALYSIS BASED ON A CONVECTED, UPDATED

LAGRANGIAN COORDINATE SYSTEM

5.1 Introduction

An assumed stress hybrid functional based on an updated coordinate system

will be derived from the Principle of Virtual Work in this section. Essentially

a parallel discussion to that of Section 4 will be given. An initial stress,

incremental procedure shall be incorporated. As discussed in Section 2, a

Convected, Updated Lagrangian coordinate system requires the use of Cauchy

stresses, referred to a rotated coordinate system, as initial stresses, and

second Kirchhoff stresses as incremental stresses. Consistent with these are

the Almansi strains as initial strains and updated Green strains as incremental

strains. These Green strains are different from those of Section 4 in that the

displacements and their derivatives are referred to the updated coordinates as

opposed to the initial coordinates. It should also be noted that the reference

configuration is always the last known configuration and must not be confused

with the initial configuration. In the last section they were synonomous.

This updated system should not be confused with either the convected system

[Fung, 1965; Pirotin, 1971; Atluri, 1973b] or the standard update Lagrangian

system [Bathe et al. 19731. (See Section 2.) Since the same functionals will

be derived here as in Section 4, it will simply be stated at this point that

all the variational principles here are stationary with respect to variations

in the same incremental quantities as before (referred to the C.U.L. system).

It is to be understood that although the same symbols will be used in this

section as those used in Section 4 their interpretations are, in general, dif-

ferent. This is done for convenience so that comparisons between the two systems

become more obvious.

5.2 The Hu-Washizu Principle

In a similar manner to the development in Subsection 4.2 this principle

may be derived from the Principle of Virtual Work which is stated as
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eL11 so(.1

Considering a state incrementally close to the present (reference) state the

variables may be expanded as

UiL; U; +-&LJ.----bi

tj, -0 -9- LV

where

( ) = initial quantity in reference state

A ( ) = incremental quantity from reference state

and

.. = Cauchy stress tensor
3-J

A.. = incremental second Kirchhoff stress tensor
3_J

e.. = Almansi strain tensor
3_J

Ae. . = updated Green strain tensor

F. and AF. = prescribed body forces

u. and Au. = displacements

T. and AT. = prescribed surface tractions

() = prescribed quantities

Note that for the updated system the initial displacements are inherent to the

system by virtue of updating the coordinates. Also, the updated reference

state may be thought of as one in which there are initial stresses but no

initial strains. Thus, the initial strain and displacement quantities are

dropped. However, for the reference state at time n there are total displace-

ments from the initial reference frame and these may be related to the Almansi
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strain. This shall form the basis for the compatibility check in the updated

coordinate system.

The Principle of Virtual Work may now be written as

{ S(u;.'.&u) cis o(5.2)

or, with initial strains and displacements assumed to be zero

The volume, V, and the bounding surfaces, V, refer to the reference configura-

tion and, therefore, are the updated volume and surfaces respectively.

Defining a state function such that

At ae--, ci- Sae-AAuelez(5.4)

The Principle of Total Potential Energy, Tr , is thus
p

- S AK As(5.5)

For this principle the appropriate strain displacement relations in V and

kinematic boundary conditions on S are satisfied exactly. The stress equili-
u

brium equations in V and mechanical boundary conditions on S., for the reference

state, are Euler equations. The next step is to relax the strain displacement

relations and kinematic boundary conditions via Lagrange multipliers. The

initial Almansi strain in the present reference configuration is

eu Ut\.; tt, (5.6)

The increment in updated Green strain from the present reference configuration

may be written as
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Also, the kinematic boundary conditions on S are

AUL =~~.; (5.8)

Although the initial strain in the reference state is assumed zero through the

process of updating, Eqs. 5.6 and 5.7 can be combined and added to Tr when

multiplied by an appropriate Lagrange multiplier. (See footnote on page 58.)

In addition, Eq. 5.8 is relaxed resulting in the generalized functional Tr*.

t*j Lt.f' 4AQj- i bLL,4- GU -4, 6 44ALkI\/~

~ + el)6 f- S )a+ r; (6-iu- 6 \4;As S(5.9)
rSA,

Taking the variation of Tr* with respect to incremental quantities only yieldsI

-I e; - CaLL; au.yt4-aAutL .6 1

a C7+-aTLL L&5V"LJS

(5.10)

or, rearranging

+ .r/e;a -(wA- *nup+Lnck(5.k)

Lk,-L- t.c\S u C1 ds La
L L ;'4fa; -Aaiso(.1
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Integrating by parts terms that contain incremental displacement gradients

such that

Su;6-5- X<g at&LLcJ (5.12)

and

- 1 V'j A&tx-JS

-x, L44b, AU- t(5.13)

Consider Eqs. 5.12 and 5.13 with Eq. 5.11 and rearranging gives

Sz6u4 a LLQ 46+ALtz k

Lt 7 LL l j

LAt (&t;-.-ud./+ bL& S O (5.14)

Recalling that 3V=S +S the Lagrange multipliers are determined from Eq. 5.14
ar u

as

Tj +,abGFj+- =0 ,)i (ijt+ ' (5.15)

and

A +Wj&bl Q +r. ) (5.16)

Placing these equations into Eq. 5.14, the functional Tr* has the following

Euler equations.

In the volume, V: - '1 + ro)

Strain displacement

- . . L .

At:---- - AA *-6l.L--A'J. ~(5.17)
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Stress equilibrium

(ciiacah~ c-4-cc Uta'117L -&K' 0 (5.18)

on the boundary: (Ti + 5Ti

Tractions on 9V

6-i i + +(cF T.I4a-')NAcQ-(5.19)

Mechanical boundary conditions on S

i + &T -*-8T 1  
(5.20)

Kinematic boundary conditions on S
U

au-= 6-k(5.21)

Placing the Lagrange multipliers (Eqs. 5.15 and 5.16) into Eq. 5.9 and relaxing

the stress strain relations (Eq. 5.4) yields the Hu-ashizu principle, 7T 1 .

After reducing and eliminating constant terms (not subject to variation)

Ar(a ei- Aqe dc i

7. o 4a'j'ALU i 1-Ltk.L(A 1 IA' .aLL - ALL(ALLfr4 - 1A

- tai)D s S(C .TC+ O (w;z-ajtz)CAs (522)

Eq. 5.22 should be compared to Eq. 4.22 for the corresponding functional, T%,

in the Stationary Lagrangian system. Recall that the variables must be

interpreted in a consistent manner corresponding to the proper coordinate

system.

5.3 The Modified Reissner Principle

Introducing another state function B (AT..), and satisfying Eq. 5.4 exactly,
IJ

Reissner's principle may be obtained from the Hu-Washizu principle. Defining

the state function as

Cz7I-- A LQ- (5.23)
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This in conjunction with Eq. 5.22 gives the Reissner functional,

Sq q - (Pta11= u

z r- 4U.0-f;LLLb, ULK4 U'jAL4bi, i.; ALLIA

- T+Afi') 'A(A CS

(Tt -i(a.4 i - bL; 5(5.24)

At this point the concept of subdomains or elements is introduced as it was

in Subsection 4.3. With the subsequent addition of interelement boundaries

the bounding surface, 9V , may be decomposed as
n

W,=t4 5. (5.25)

where again S represents the interelement boundaries. Allowing for discon-
nn

tinuities between displacements on the interior of an element and those on

the boundary DV one must relax the following condition
n

(5.26)

or

aU.; -LLA. =o (5.27)

where

Au. = incremental displacement on interior of element

Au = incremental displacement on boundary DV
n

Relaxing Eq. 5.27 via Lagrange multiplier and summing over all elements 7v

becomes the modified Reissner principle w .

+ 

L( 
.

- S (t;+&KZZL cisZ -CI

'Ui -L EU L (5.28)
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The variation of 7 m with respect to incremental quantities gives

Sit,~~~j S -aeS~ - SSaiI arijq 1F4PS

W4iS-d +bUS1VCL-(Lt. juILH +t 41 t4LI- t &k%.* A~

't(rij *OG-q) + Swp; fj (&ttI.I- oU,Yl d

- s FUet\SZa SSL ChL.ALJ

-\ ( O-Qt S&AUL (a;-IZ)J

A; S 0 (5.29)

Integrating the variation of the incremental displacement gradient terms bVr

parts and rearranging gives

U'-SL;, U

+ 0% i +OT-+flC's

\(Tc4ort oT cS s\ o(5.30)

The Lagrange multiplier may be determined from Eq. 5.30 by recalling that

n O9 a n
n n n

Tc+Vq -trq jtg-f tcc171)aLL4J Q =o 5.31

or

-JA T+ &\(5.32)
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Placing this into Eq. 5.30 and rearranging

SM1aL l\ I1e I-t(LC 1 7-)*- L%; -L...

+aejTEJbux -i-L ; + uA +

LTL-'o.rt 4 %.. oc t (Sk6U+crk au.;t 1 35 A

S ~6zt t6a14LAS 'J < ;(T+6Tr \sT= 1 (5.33)

The Euler equations of TR are thus

In the volume, Vnn

Strain displacement

dg= V( .i4 'V' k Lt.\ (5.34)

Y au.+aup -8Ls.ALuQ

Stress equilibrium

0 ii + a-'ii,+ -'- ALJ_- ic + O (5.35)

On the boundary:

Tractions on aVn

~T t5T;=- 'iLQS 1 +48 % +-tCT tt(Yi- + )4 kl21  (5.36)

Mechanical boundary conditions on S
n

-a -t (5.37)
'Ti4 ai =-Tc+ &-T

Kinematic boundary conditions on S
n

ak- (5.38)

Relaxation of displacement on aN

(5.39)
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Relaxation of interelement tractions on S
n

n

(T+aTI 4(T!-, \bT =a c(5.40)

One should compare these equations (Eqs. 5.34-5.40) with the corresponding

ones for a stationary system (Eqs. 4.34-4.40).

Placing the Lagrange multiplier (Eq. 5.32) into Eq. 5.28 results in the

modified Reissner principle, TR.
mR

-Mg(-'t *_aa3L-\tcij e; 1 - LjP)auj~

++% UW124;L% +r 614%- +AU. -t tLk.41 111J\

-S(Ti +ta-rtAU, -AJt L a\ci As - A

- S T;+a;Vc&~aitJs1(5.. 41)

This may be compared with its corresponding principle for a stationary system,

Eq. 4.41. Again it is pointed out that the Euler equations (Eqs. 5.17-5.21)

for Tr refer to the entire domain while Eqs. 5.34-5.40 for "R refer to the

domain of an element including its boundaries.

5.4 The Assumed Stress Hybrid Functional

Derivation of the assumed stress hybrid functionals requires some form of

constraint on the stress equilibrium equations and boundary traction require-

ments. For a fully consistent model Eqs. 5.35 and 5.36 must be satisfied

exactly. An inconsistent approach only requires partial restraints on the

first of these equations. Namely, only the linear portion is satisfied. For

the latter model several choices exist and are further discussed in Section 7.

In the C.U.L. system this condition results in an artificial constraint on

the incremental stresses. This approach is computationally more attractive

than the consistent model.

5.4.1 The Consistent Model

Although the updated coordinate system utilized here is different than

the convected system of Atluri [1973b] it will be shown that the basic func-

tional derived is similar. Upon completing this derivation an important

discrepency will be pointed out.
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To construct the consistent model one first rewrites 7w by integratingMR
by parts the volume terms containing incremental displacement gradients. For

convenience the following term will be added and subtracted from the functional.

Performing these operations, if may be written as
taR

ltrnt 4U4LGnjYcFjez-( iA ;Nou;z

Tistra s tha +0 tstreass q rLt1;+briuadbundaryp tatn

condtios (qs.5. 5 ad 5 36resectvel) Ar ex-t.yStsid hs

4Airii+odij(cbf--Wacr'j 1 TC +4' A U.; S

(5.42)

(Ti CT

or

(aqz,1 . J L U .i

(01 S tq)6tkL ) j 444J$

+Lt(Ttico0taatsb"

The cnsisent odelassues tat sressequiibrm anbodrytcin

reurmnsrdcTtt he consistent assumedes ha stress hyiirimadbudridfunction

MR
C.
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n V .I'tI

4-. 1 (-iDLt j-tL +Cqi-jTtt. LyS1L
+ ~ &tAs- (kicT)Aa;A

S(UTi 4 oT;\(a 67.Jc5s

- oi-e -~c4U; #a ;X ~~ (5.44)

where the constant terms not subject to variation are dropped. The functional

Tr (Eq. 5.44) is subject to the conditions of Eqs. 5.35 and 5.36.mc

Comparing this functional with its corresponding principle in the stationary

coordinate system (Eq. 4.44) one observes the striking similarity. Of course,

the stresses and strains are defined differently which accounts for the minus

sign in the compatibility check term of Eq. 5.44. The differences in these

two functionals show up in the conditions of constraint. Comparing the stress

equilibrium equations (Eqs. 4.35 and 5.35) one sees that the former is a func-

tion of the initial displacements while the latter is not. This should be

expected because in updating the coordinates and basing the functional in the

current reference state (as opposed to the initial one) the initial displace-

ments (and strains) are accounted for. A similar statement can be made for

the comparison of the boundary traction requirements (Eqs. 4.36 and 5.36).

Even though the initial displacement quantities are removed from the

equations in this section nonlinear coupling still occurs between the unknown

stress and displacement increments. Thus, a linearization is required through

the assumptions of small increments. If incremental quantities have magnitudes

much smaller than the initial quantities, Eq. 5.44 may be written as

{{)~acj~-iQA iLL 9&~ v
(T 6k

- SLT.t~ ~(ai C..JjC~

ULt

-Sac.{- i t+pua k \
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subject to

(Tiq+ a'U +-i + (tL+.3Pc) -O - (5.46)

and

Ti #6T i T1+1 + 0 AU.t7\?6 (5.47)

C
Furthermore, taking the variation of T with respect to stress would yield

mc
the linearized incremental strain displacement equation

tezg =t$u..41~ +4J , (5.48)

as expected.

The basic functional in Eq. 5.45 is similar to that derived by Atluri

with the major discrepency of the term

It appears that during an integration by parts Atluri inadvertantly left out

this term.

5.4.2 The Inconsistent Model

The constraint conditions which 7t is subject to are still difficult tomc
satisfy exactly even in the linearized form for the updated system (no initial

displacement terms present). Thus, in a compromising fashion an inconsistent

assumed stress hybrid model is derived by satisfaction of only the linear part

of Eq. 5.35.

If one were to integrate by parts only the linear incremental displacement

gradient terms in Eq. 5.41 then TMR may be rewritten as

Wm ~ l 8bAG')-,1 el- (% 4-aP;)

CukjckI + %(%4or 1 A'XZcas

-S(TZ-4 arLk a (5.49)
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Upon rearranging

- SI ;+t&- (wjkw- .- & tt -s I

(Tii + q- q- (Ti+ &r ) aZ- + T'1 a 4
b'4 t+ 1  ics - St+&ijT&As

(- 4 Ya*k')d ) 6A1tA

- ; Ce-'(L (+a ;-L .c jl A\/ + constants
~ (j Lj 1l +1311 'k~' 1 (5.50 )

Thus, if only the linear stress equilibrium equation is satisfied exactly,

namely

;-- ( +&F) =+0 (5.512

and assuming Eq. 5.36 to be satisfied exactly, one may write

T -- = L + tdt) L7 QAdM, k(5.Z)

Placing these two equations into Eq. 5.50 yields the inconsistent assumed

stress hybrid model TrmI
mc

IrS [- -B o~~cS

It 5(5.53)

~6  e~-{u..LL wsCL 4iL.:(C SJv
where the constant terms are dropped.

Assuming that the increments are taken small enough the coupling occurring

in Eq. 5.53 can be removed. The linearized version of Tr may be written asmc
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=r I S Btm5 taj r adauch. M-r

+ Urq. aerj 6v aii d5 . G. t,\SAhLk '-ALO-A, Z As

Ac-ie:-4 L ;+Lf. Zu.r .dv"(5.54)

The constraint conditions are linear. ir here is subject to the constraint
mc

conditions Eqs. 5.51 and 5.47.

Comparing 7rC and TrI for the updated system one observes that these two
mc mc

functionals are subject to different constraint conditions. Comparing these

equations, it is obvious that Tr would be considerably easier to implement
mc

than Trc
mc

The equations presented in this subsection should be compared to their

counterparts for the stationary system in Subsection 4.4.2.

5.4.3 Equilibrium Checks
cI

The consistent model, Trc , and the inconsistent model, 1r , are given by
mc mc

Eqs. 5.44 and 5.53 respectively. The corresponding linearized functionals

are given by Eqs. 5.45 and 5.54 respectively. These equations contain both

the stress equilibrium and the compatibility checks in the updated reference

configuration. The necessity of these checks is discussed in Subsection 4.4.3.

The compatibility check is again easily identified as the last integral

in each equation. Note that since the reference state is updated the strain

displacement relations are of the Almansi type. Note that the associated

displacement mismatch terms discussed in Subsection 4.4.3 are omitted here

because of the updated system. They could, however, be included in much the

same manner as the compatibility check.

Furthermore, the stress equilibrium check can be identified by the initial

boundary tractions inrC and Tr as well as the initial stress terms in the
mc mc

constraint equations. In the C.U. L. system the stress equilibrium check is

exact for both functionals. To identify the correction terms one would have
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to start with the Principle of Virtual Work assuming that stress equilibrium

was exactly satisfied in the reference state. The same procedure can be

followed as that of Subsection 4.4.3. The details will be omitted here (the

reader is referred to Subsection 4.4.3) but for completeness only the functionals

will be written without the equilibrium check.

- 5TA &t;4s (5.55)

l9j = 4 DLL- 5 4 JILkI 4P cO OL(

-Aff- e a.-' .a-

4-0e;;- 4 i uA-c -4 dt .tALa,, )Y1clV

LL;J1 (h q -arq e 4kC-aL M ( - (5.56)

AGI eT Lk-. j L4" +

T-zS- S 6T Ls(q&4A(5.i59)

=Ri-3(rd a4-eif t OI4  az,&L

+LQ + L L + Uf + OC ik614O .,VIJV

& tz .&iU Z- L s SI o42,kZ; s CkraR Jds (5.58)

Finally

&T OLQL -

- ccr t~~(LL-tu;.--.t.LL lA '\ (5.59)

V I IkI
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which is subject to

Th[ +-+ + 6t4 ' o - t A (5.60)

and

41; = k6c~ w Lcr.[+hq~fl At t,/- (5.61)

where it has been assumed that

cry; - F f(5.62)

and

7 T nt(5.63)

are satisfied exactly in the reference state.

Similarly

+ arV' t; ckA -- +DC. LL-,- -- ( 4

&4 ICTi aU;wL A 'i( U - Q.v i
icrl.r

0Q T--e .- u-+tt- (,-L (5.64)

which is subject to

aC+y a *AZJ=Q (5.65)

and Eq. 5.61

again assuming Eqs. 5.62 and 5.63 are satisfied exactly in the reference state.

Linearizing these last two functionals and their corresponding constraint

conditions.

WMnc Lj'Ltr') -4Cit4aLitAh IcAv

+ -i tcis4s - S &T; Z; ds - aT (AZ: -64i;S

+ A -(5.66)
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which is subject to

-r ( jt~uCbj(5.67)

and

tTZ Lam (rk 8Lci\ (5.68)

Also

- T Uc1 - LT4(a -1i\d

"LL

which is subj ect to Eqs. 5. 65 and 5.68.

The same comments apply here as those at the end of Subsection 4.4.3.
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SECTION 6

GENERAL FINITE ELEMENT MATRIX

EQUATIONS FOR AN ELEMENT

6.1 The Stationary Larangian System

The equations derived in Section 4 for the assumed stress hybrid func-

tionals based on a Stationary Lagrangian coordinate system shall be used as a

basis for this subsection. Although the linearized equations for the consis-

tent functional decouple the incremental stresses and incremental displace-

ments (both these quantities are unknown), the unknown stresses still couple

with total displacements. This leads to a difficulty, which will be stated

herein, which compromises the practicality of such a functional. Thus, a

general set of matrix equations will be developed for the inconsistent model

only. The consistent model will be discussed in detail for the updated system

in Subsection 6.2.1.

The complete equations including the equilibrium checks will be utilized

and the terms corresponding to these checks. shall be pointed out. In Section 7

these equations will be specialized to the specific structures considered.

6.1.1 The Consistent Assumed Stress Hybrid Model

Specifically, the linearized equations developed in Subsection 4.4.1 will

be discussed here. The functional of Eq. 4.45 may be written for an element

as

C

ZA LL iG U.;LL~L

t_ LLC \./(6.1)

where it is understood that

-t =(6.2)
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Eq. 6.1 is subject to the constraint conditions

(wx 1&r + I .cr l k U. .Qacr L .1,0L(4.46)

and

a~ia 1  1. U+ QjLL.+ Ukt. LLsZ'(4.47)

Eq. 4.46 may be written as

-[ (6.3)ots 'j A LdA "(7- -ju.L I

or

+6(6.4)

Recalling the definition of the Piola stress, Eq. 2.56, Eq. 6.4 may be written

as

Before continuing, it is convenient to introduce matrix notation to replace

the indicial notation above. Also, the variables shall be interpolated in

terms of unknown parameters in the usual way [Zienkiewicz, 1971; Pian and

Tong, 1972]. Thus, allow the homogeneous stress be represented by stress

parameters

(6.6)

where stress Ac is represented in vector form. Also, note that vectors and

matricies shall be designated simply by underscoring with a tilde, for example

1rac- G- C = '? (6.7)

Similarly, the boundary homogeneous stresses shall be represented by

(acri)HQ I~&)u ~L&(6.8)
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The displacements on the interior of an element, u , Au., shall be interpolated

in terms of the nodal displacements, q, Aq respectively. These nodes are

common with neighboring elements.

L c(6.9)

The boundary displacements, A~., which may be independent from the interior

displacements, Au., may be interpolated with respect to the same set of nodal
3.

displacements [Pian, 1972].

aL \ (6.10)

Derivatives of displacements may be represented by taking derivatives of the

corresponding interpolation functions, i.e.,

L. =(6.11)

Also note that the transpose of a matrix is expressed as

Transpose of IL[A LC\ (6.12)

and the inverse as

inverse of IM1 M(6.13)

Expressing a solution of Eq. 6.5 in matrix form

t.o +(6.14)

It can be shown that

4 = b-JcI (~T+ AO-) (+_ ) b(6.15)

where it should be remembered that p is unsymmetric. Placing Eq. 6.15 into

Eq. 6.14 yields

91?)+ hA % I. A4 (6.16)

Or,

+ +Tp -f A-q C1 a= )(6.17)
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where

a = corresponds to the initial stress term

PS = corresponds to the homogeneous solution

C = corresponds to the forces (F.+AF.)
-p i

AAq = corresponds to the (cr Au. ),. term
kj i,k'j

CyAg = corresponds to the constant of integration which is only a

function of the boundary variable held constant. (This will

yield a needed boundary term -- see Eq. 6.58).

Note that, for instance, (from Eq. 6.5)

K

and

Recognizing the fact that the first integral of Eq. 6.1 is

&(aT $ a (6.18)

where the constitutive law is stated as (for linear elastic materials)

54G- e(6.19)

and the unsymmetric stresses must be assumed leads to a questionable procedure.

The former condition leads to an unattractive situation computationally while

the latter may complicate the technique in general.

The situation can be greatly improved by removing at least the (Mkjui,k

term. Since this term is removed automatically in the updated system, further

discussion of this functional will be deferred until Subsection 6.2.1.

6.1.2 The Inconsistent Assumed Stress Hybrid Model

Unlike the difficulties encountered with the consistent functional the

99



inconsistent model is relatively straight forward. Considering the linearized

equations of Subsection 4.4.2, the functional Eq. 4.54 may be written for an

element as

\c (f. 0 \aka- Tzra1EL÷ZO-Cz&V4

Eq. 6.(T0-ists(bjeutits

ITI

i/ft I 'IIijht' ILj

5iri+ + R+a(4 1where it is again understood that

15 =r -G~ + -(6.21)

rf-T

Eq. 6.20 is subject to

~ '1

and

-'I +ai 4Ai 4 LU,7 ( a- L'- A(4.47)

Eq. 4.51 may be written as

Aci1 Vr-rO~(p e~~ (6.22)

A solution to this in matrix form is

q-0+ TV(6.23)

where the definitions are the same as those of Eq. 6.17. Note that no constant

of integration is required here. Utilizing Eqs. 6.8-6.13 and placing Eq. 6.23

into Eq. 6.20 and considering the terms of Eq. 6.20 on an individual basis

- %(bGLACi5v = -k9aa- T  aa-J4 s

1.5F P z - +izWsc, + consta.ts')k

-7 P- + -d (6.24)
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where

N = P~ dv

56- V (6.25)

S ?T rd.f,

and the constant terms are dropped since they are not subject to variation.

+( G r( L4Y0\/ %7cy'cq. (6.26)

where

r T

OP (6.27)

Note that in actually evaluating these quantities care must be taken. (See

Subsection 7.2.2.)

Tii AU-Y T4Lkk~A
= r j(6.28)

where

(6.29)

S + % 4(6.30)

where
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(6.31)

From Eqs. 4.47, 6.23, and 6.31 the boundary tractions may be written in matrix

form as

h AT 6. +%, +Ab(%t& \ %b & r -6 (6.32)

where

RB+c corresponds to the linear (u. .+Ac.. ) V. terms
~~3-pV 33 3 J

% (q+Aq) corresponds to the kj (u ,+Au.' jv. terms

2BS corresponds to the linear part of Ak.u. , .]j i k j

B corresponds to the initial stress part of Akj.u., V .

Ba corresponds to the particular solution of A U r Vip kj ik

Thusr

A r -r.Br~ B cis

-a +(MbM6) AT+ b AT9-+r ta . (6.33)

where

= -A5RT 0ds (.4

S =13l- ( C- L

\ -n s %(
- 4 -g- CDT) N"E-Z CIS -3:1 (6. 35)
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where

r = )-J(6.36)

Z (j+ 1WZ4&CYGA-0 U.J

6T'C wk Z 4-- L(L r)

4- -o

4-T ( jb ~rT ~T(6.37)

where

'~ 5 - T 5ciCs(6.38)

Mb~ i~Lk+"jlS,

Note that Ecjs- 6.36 and 6.38 require special integration routines in that they

are integrated over only portions of the element boundary. These are completely

consistent terms. One may evaluate such terms in an inconsistent fashion by

simply lumping equivalent loads at the nodes directly. This will be discussed

in Section 7. Also, prescribed displacement conditions are usually quite

simple. Or, elements are generally chosen so that applied displacements can

be handled easily. In any case, it is extremely rare that A'. 6 u. is not
3- 1

satisfied exactly. However, for the sake of generality they will be maintained

here. Next

T r
Ig- M a6 c- (6.39)
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where

IJ L As(6.40)

r- e 8\ t L 50:CIS

8~T;7e- A- = ,)W Scra-

=td-r! cortst&rt'5 ')4cI1/q= (6.41)
where H is defined by Eq. 6.25

nr1  U4,- + Li-z')cV =IS\

= Tspr L 4  Constaxtts5)c,\) =. (6.42)

where

C, S B2 1p(6.43)

LA .~ei.+ 2
tCV ,Lz

iS frp' rL 'u~tr L'4(6.44)

where C is defined by Eq. 6.27 and the same caution must be heeded here as

before.

Placing all these integral evaluations into Eq. 6.20 yields

+++ n A4-+ 0-n1

iVjtj (o ;(6.45)

4p T4. FC

104



where

HS H from stress equilibrium check

B H from compatibility equilibrium check
CT -9

Although these two terms are identical they will be treated separately for

purposes of identification only.

Eq. 6.45 contains two unknown vectors. These are the stress parameters

S and the incremental nodal displacements Aq. while the 5's are independent

on the element level the Aq' s are not. Thus, one may take the variation of

T
w with respect to S.

mc
n

- t~ C6~469 3 G51,A~

-4 4 (6.46)

Solving for 5 gives

+ -1 4C,- , +5, 6.7

Placing this back into Eq. 6.45, and realizing that rt will only be a
Mcn

function of the Aq's one obtains

- .+4.'4r~i+ C-9j - -rr-t
+ 4 ir. .C-,Li + -rj~J

zr) tIUSbb -4?A4.

6Q-4 +jCjllsa tS(6.48)
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Or, upon rearranging and dropping the constants not subject to variation with

respect to Aq

S I T vr r r - -

-rr = U {G+ C -Gu.+5's- 3H-' GC.--& -Se3+ Y-

~ -IA- ++Vi2S

+ M6 Af- 6  A

+ (6.49)

Writing Eq. 6.49 as

-rTrC ( - IAt T 0 - (6.50)

KT becomes the element stiffness matrix and Q becomes the element load vector,

where

-T-r

+ Mb JI Mb -"b1w (6.51)

Q (c44C~s,~Y~>4r4 +j1r* Sb
+ C -5b- -- +e)- qt-

These matrices must then be assembled as shown in Subsection 6.3. Note that

if certain conditions exist, various terms drop out of Eqs. 6.51. They are

as follows

Condition Terms Removed

1. .+Ai. E u.+Au. on Su (C , t - -
1-3 3.3. un t"6 qe;, 'u'~rjr

n ~ ilp a o

2. ap is lumped at nodes p
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3. T.+AT. is lumped at nodes
1 :i

4. No compatibility check (or 6 ,(44~~ +c4 + 69b

associated mismatch terms)

5. No stress equilibrium check , t, 'r and rv
corresponds to AF. only,

6. ii.AiiEu.+Au. on 3V ' ' -cwt

The last of these conditions assumes a compatible displacement field. For

certain kinds of analysis, such as three dimensional or plane stress problems,

compatible displacement fields are easily chosen. Even for the bending problem

some of the displacements will be compatible. This, in conjunction with other

considerations, allows one to remove some of the matrices listed in 6 above.

A much simplified form is achieved by assuming the first three conditions
s c

above are met and by recalling that Hsa = . For this situation Eqs. 6.51

become

Q55 H 6 ,*+ ' C ".511x , r(6.52)

If the last condition is also met, Eqs. 6.52 reduce further to

=(G4C- kTc,1 + c) +k'

T -(6.53)

Under the approximations chosen for actual computation in Section 7 it will be

shown that because some displacement compatibility is present, Eqs. 6.53 form

the basis for the S.L. system.

6.2 The Convected, Updated Lagrangian System

This subsection is concerned with the equations derived in Section 5 for

the assumed stress hybrid functionals based on a Convected, Updated Lagrangian

system. Here a general set of matrix equations will be developed for the
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linearized, consistent and inconsistent models. The number of terms will be

somewhat reduced due to the lack of initial displacement terms (except in the

compatibility check). This fact allows for a more easily derived consistent

model.

It is important to note that although the same symbols wilL be used here

to describe these models as were used for a stationary system their definitions

are different. The appropriate definitions are given in Section 2.

6.2.1 The Consistent Assumed Stress Hybrid Model

The linearized equations developed in Subsection 5.4.L will be utilized

here. The functional of Eq. 5.45 may be written for an element as

J.' J (6.54)

where Eq. 6. 2 is understood. Eq. 6.54 is subject to

(C-II- - + ( A- + V (5--46)

and

Eq. 5.j46 may be written as

~'fL~ '3(6.54)

Comparing this to its counterpart in a stationary system, Eq. 6.4, one can

observe the simplification realized by removing the initial displacement terms.

A solution to Eq. 6.55 in matrix form is

IOU,-= PA -,4--t2+k A 4- Cr(6.56)
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where the definitions are the same as those previously mentioned (for Eq. 6.17).

Placing Eq. 6.56 into Eq. 5.47 yields in matrix form

~ + -=-A - -

Li5t~h 4 A4a% (6.57)

where

A C 1  (6.58)

The nature of the term in Eq. 6.58 is not clearly stated or defined by Atluri

[1973b]. Using similar types of interpolation functions for the variables of

the functional, consider the terms of Eq. 6.54 individually.

-13GCrjav (A +C :-j- 0T- AV

+ A -- + A +C++ i.r) I

. -.(&4 )$ ( + t +

where

' I ( t \ S(Ac. C Tj5(

N -'irct- Q- - (6.60)

c- P'H AsO-

^ oT (A4CcL\ J
T--

V~S(ACr\ ~~j 1' ? A4(C9,.
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aand the constants, not subject to variation, are dropped.

where

LL aL -L aL Cc

T

LlT0 If

(6.61)

(6.62)

Recall that although Eq. 6.62 appears identical to Eq. 6.29 the definition of

stress is different as shown in Section 2.

41
b 7E + oE10U I'

t Irqr - 5

Gow +do ,, a + a

CL s

bt A ) L

-' IT448TJ)0; L4445 -- r > a^'

T

9L = z ( +a (;\G as+

- S T;+~i\LU~z1(j~k ~(rq* Wi~S1 ~LL;5&L)

= -S cf3~rc ~ iTJ Oft )d -( .5
'Tv QL

7-st oa - )
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(6.63)

where

(6.64)

(6.65)

(6.66)

(6.67)
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A54 avOl td2(6.68)

and the samte cormments apply to Eqs. 6.66 and 6.68 as did to Eqs. 6.36 and 6.38.

e -4.Lk

,XYT T 43- CT(A-C4)~ b

* ~rLAT a-5-cnta-r,)t-5ti

(6.69)

wh-ere H and D are def ined by Eqs. 6.60.
"U -.-Q.

rrcx

> Me + N~

= \ ?'u+
cx ~.S (AXP) \c

4q

(6.70)

(6.71)

nrq .U tLA4oL v i

- t . 4('c~T~u~ Con tant,3l A'V
(~ t+04

(6.72)

where

where

4+

a- JAM



where

-Ow -.. (6.73)

N'ote the cautions for Eq. 6.27.

Placing these integral evaluations into Eq. 6.54 gives

~ ~!IAl -erp4t4 . LT(T) AM

r4 r hl, 0%r Po514(6.74)

where

These terms

Taking

Hs=H from stress equilibrium check

Ds=D from stress equilibrium check

H C=H from compatibility equilibrium check

D =D from compatibility equilibrium check

are separated for identification purposes only.

the variation of TC with respect to the independent 6' s yields
mcn

C

S09z ~tI CrIOr'dA6t6 WCO A W

Solving for the a' s

Pai Eqn Eq 64 giv

Placing Eq. 6.76 into Eq. 6.74 gives
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z- i i +t- L 4 4

48% ~yr -rrPQhi -Q? 9pvw-VA

>' CCt ie)4cons6.77t

Upon rearranging and dropping the constants not subject to variation with

respect to Aq

+ a&%M LI.-1 N JNI-'(U"Q - cr -H1r + 4

X,,

~<XA C~.j. z~j\(6.78)
Or in the form

r. k -ar t - (6.79)

where

T H

T C- (6.80)
9 (6r.-IHAfA h"4-U0. +VC~.j

~ - F P

These element level matrices must be assembled as shown in Subsection 6.3. If

certain conditions exist, various terms may be dropped or redefined in Eqs. 6.80.

They are as follows
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Condition Terms Removed

1. A.EAu. on 6S c Jt Q ,MIVA:I. I1 nn~ ~

2. a is lumped at nodes r '

3. TIX+AT. is lumped at nodes

4. No compatibility check C C-r C,

5. No stress equilibrium check HrO) and a corresponds to AF. only
p 

Assuming the first three conditions are met and both equilibrium checks are

utilized a much simplified form of Eqs. 6.80 are realized, i.e.

L&-= i w,'LG-1p\ -4M + M b

(6.81)

6.2.2 The Inconsistent Assumed Stress Hybrid Model

The linearized equations of Subsection 5.4.2 will be discussed here. The

functional of Eq. 5.54 may be written for an element as

hreEq .2 i udr>tod 5E.; 6.A s subjActC to i.Acf~

II

('+ -A eq +(i~ -y =ua+0 L(;.1S)

d(6.82)

whlere Eq. 6.21 is understood. Eq. 6.82 is subject to

anid
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Ti ;+ aT (tri 4+ a0'q + G-kI UL- k (5.47)

Writing Eq. 5.51 as

" , = -m', (6.83)

a solution in matrix form is

6ra .V - r+r 3~y(6.84)

Following the concepts of Subsection 6.1.2 one may write

( )C4 -j+Jlr- - , (6.85)

Glij ALk.- a LL 1, D1, (6.86)

. ' 14 ij A7 .- + Q-5(6.87)

From Eqs. 5.47 the boundary tractions may simply be written as

T+ AT = .4O 4 Aw(6.88)

Thus,

T 'r-1M+(6.89)

S-
"I {;trilasZ T(6.90)

(t. -ai-jCAiz -ALbLs; Gku.1

4 (6.91)

where here,

\ S AA1,s b b 5LAs (6.92)

- .L (A4 + U 1 ;- U.4fk. C=-P2 'r 1 i(6.93)

Placing these evaluations into Eq. 6.82 yields

115



- XaN t ' %4 4Mb yr cV 4 (6.94)

Taking the vatiation of this with respect to the independent S's yields

AULCSL - N +M 6a -6 g4\-l 4 $ (6.95)

Solving for the S's gives

A= 'Y'( - 43 tkor - .c -4c ) 4 t (4- Ga (6.96)

Placing this into Eq. 6.94 yields

4 4 T (Qp - .- +'C (6.97)

or, in the form

1 4VC- T V - )a(6.98)

where

The definitions of these terms are the same as previous subsections (except

where noted) but it is to be understood that the variables are associated with

the C.U.L. system. Comparing Eq. 6.99 to Eq. 6.80, one may observe the reduc-

tion in complication and computation that the inconsistent model allows.
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Eqs. 6.99 may be simplified. Assuming the first three conditions at the

end of Subsection 6.1.2 are met, Eqs. 6.99 become

Q- (6.100)

If additionally the last condition is metr Eqs. 6.100 reduce to

(ST

9 -= GTHA( Ct-Lci (6.101)

Comparison of these with the consistent model (Eq. 6.81) show a significant

simplification. Additionally, compared to the inconsistent model for the

S.L. system (Eqs. 6.52 or 6.53) these equations show more simplification. The

comparisons of this model with the very similar modified Reissner model are

discussed in Appendix C.

6.3 Assembly Procedures

For all the models discussed here an equation of the form

T ATq (6.102)

results. Since these equations were developed by considering functionals for

one element then Eqs. 6.102 represents the tangent stiffness, incremental dis-

placements, and loads for one element. Since local coordinate systems are

used to perform all the differentiations and integrations Eqs. 6.102 are

referred to these local axes. (See Subsection 2.2.)

To analyze a problem the contributions from all the elements must be

summed (i.e. see Eq. 6.2). In order to do this the Aq's for neighboring

elements must be the same. Since this is not the case the contributions from

each element must be suitably transformed before being added to the total

system. However, the Aq's for each element given in the local systems can be

transformed to Aq' s in a common system where contributions may be directly

added.

From Subsection 3.3 one may write

117



L'$ (6.103)

Although the LAq' s do not correspond with neighboring elements the CAq's do.

Considering Eqs. 6.102 for an element

(k L L - a LO(6.104)

Placing Eq. 6.103 into Eq. 6.104 yields

C (5) l ri4 -CfC LCT Cf LC LQ (6.105)

or

-ln 7 n T-(6.106)

where

C c L T-rL IcLr

(6.107)

For an element Eqs. 6.107 represents the contribution of an element. Since

these evaluations are referenced to Aq' s common to all neighboring elements

then the contributions of each element may be directly added to the total

system representing the entire structure. This would result in one set of

total equations for the structure. Recalling that the total structure may be

represented as the sum of the individual elements, from Eq. 6.106

= s j 4 T~ C4 1 4T CScf

T
a .... (6.108)

where the left superscript here refers to the total system and Tq represents

an assembled vector of independent, unknown nodal displacements. These may be

solved for by taking the variation of Eq. 6.108 with respect to TAq.

Eswrsn ttt ,Th sob q(6.109)

Eqs. 6.109 represent the total (system), assembled equilibrium equations.
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6.4 Solution Techniques

The total system of equations may be written as

I -r T0  TQ (6.110)

T T
Therefore, both Aq and Q are vectors which are the total number of degrees

of freedom long and TK is the corresponding total tangent stiffness matrix.

There are several numerical procedures which can be used to solve the

geometrically nonlinear problem. One must remember that although the problem

is nonlinear, Eq. 6.110 has been constructed to be a linear equation in the

unknown Aq's. Thus, incremental and/or iterative techniques are employed to

solve the total problem [Haisler, et al., 1972; Zienkiewicz, 1971; Desai and Abel,

1972]. For the purposes of this work three basic forms of solution have been

used.

The first of these is to utilize the basic equations with no equilibrium

checks at all. As will be seen in Section 8 on results this is not an economical

scheme. Even with small increments the solutions tend to drift. The next

procedure makes use of the equilibrium checks either separately or combined.

This solution technique only uses incremental steps. This is more efficient

than the first procedure, but there is still room for improvement. The last

technique is to combine incremental and iterative steps while using both

equilibrium checks. This is by far the most efficient scheme for both coordi-

nate systems.

Section 8, through the use of some sample problems, demonstrates the

relative problems and merits of each of these solution procedures for beam,

plate, and shell problems. Figure 6.1 schematically demonstrates the proce-

dures.

6.4.1 Incremental Solutions with No Equilibrium Checks

This method of solution assumes that both stress equilibrium and compat-

ibility are exactly satisfied in the reference state for all time. Thus,

choosing the correct equilibrium equation, (Eqs. 6.51, 6.80, or 6.99) depend-

ing on the functional and coordinate system to be used, one must remove the

terms corresponding to the equilibrium checks. This can be done as indicated

in the previous subsections. Since the basic functionals are linearized in

the unknowns then the assumption of small increments must be adhered to.
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Obviously, since the state of stress and strain is assumed to be correct in

the reference state the smaller the increment the better the assumption.

The procedure then is as follows. First, the appropriate tangent stiff-

ness is generated. Next a small increment in external load is applied. This

load may either be consistently derived or systematically lumped at the element

nodes. Note that this load vector is only a function of the external load

since no equilibrium checks are utilized to form an equilibrium imbalance

load. The Tq's are solved by the use of Eq. 6.110. From these an increment

of stress can be obtained (see Section 7) and finally, through the constitu-

tive relations, an increment of strain is calculated. These are then added to

the total quantities and any appropriate updating of geometry, etc. (Section 7)

are carried out. This state is now the reference configuration and since it

is deemed correct no equilibrium balance terms are calculated. Therefore, the

new tangent stiffness matrix and incremental load vector are calculated and.

Eq. 6.110 applied to obtain new incremental quantities and so on.

Since the increments must be kept small the total number of incremental

solutions required may be large. For each increment a new tangent stiffness

matrix and load vector is found. This can be an extremely costly procedure

even though there is no need to calculate the equilibrium check matrices. How-

ever, for small increments, reasonable results can be obtained. (See Fig. 6.1.)

6.4.2 Incremental Solutions with Equilibrium Checks

Realizing that numerical solutions of approximate methods are being carried

out one should expect solutions obtained with no check conditions to drift from

the true solution. The assumed stress hybrid methods maintain some form of

restraint on the stress equilibrium equation and, therefore, drifting due to

lack of this check should be small although definitely significant. The in-

clusion of a stress equilibrium check is more simply accomplished for these

functionals as can be seen by comparing the stress equilibrium check derived

here to that of Hofmeister et al. [19711.

The strain displacement relations, however, are only an Euler equation of

the functional and only can be satisfied in an average sense. It is expected

that a compatibility check may have a greater significance than a stress

equilibrium check. An additional benefit can be derived from such a check.
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While the incremental strain displacement relations must be linearized to

establish Eq. 6.110, the compatibility check may maintain a nonlinear relation

since the total quantities are known. This means that if larger increments

are used a self correcting effect will take place.

The procedure, being incremental only, is identical to that of the pre-

vious subsection with the following exceptions. After a solution of incre-

mental quantities is obtained and added to the total state, this state is

then checked to see if in fact stress equilibrium and/or compatibility is

maintained. If these conditions are not met then there is an imbalance in

Eq. 6.110. This imbalance is treated as a corrective load and is added to

the increment in external load for the next step. Thus, as the solution pro-

ceeds a constant check is maintained to assure that the solution does not tend

to drift. Note that the stress equilibrium equation is not used directly to

form an imbalance term. It is simply assumed that in the next step the initial

stresses do not satisfy equilibrium and, therefore, are carried over with the

incremental stresses of the next step. In other words, at every step the total

stress is required to satisfy the constraint condition rather than just the

incremental stresses.

These equilibrium checks allow for a more accurate solution regardless of

the increment size. Although a new tangent stiffness and load vector are still

calculated at every step, as well as the matrices necessary for the checks,

this system is more efficient because fewer solution steps are required. In

fact, if the compatibility check is used the increment size can become quite

large and still yield reasonable results. This allows this scheme to be much

more efficient than its predecessor. (See Fig. 6.1.)

6.4.3 Incremental-Iterative Solution Procedure

Although the last procedure is quite an improvement its corrections are

actually somewhat in error. Any imbalance that exists should be corrected

within an incremental external load step. This assures that one is on the

proper load path before continuing. Also, just as the procedure with no equili-

brium checks tends to drift, there is no assurance that a one step equilibrium

imbalance check will correct the drift completely. These solutions, therefore,

also tend to drift although not nearly as much as solutions without checks.
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This concept lead to combining an incremental and iterative procedure.

The solution proceeds as follows. An external load increment is applied

and a solution of incremental quantities obtained. These are added to the

totals to obtain a new reference state. As before, stress equilibrium and

compatibility are checked. If an imbalance exists this equivalent imbalance

load vector is applied to Eq. 6.110 with no new increase in external loads.

An option becomes apparent to the analyst for the generation of a tangent

stiffness matrix. One may either use the same stiffness that was used while

the external load was added (at the beginning of a new load increment) or

generate a new one. From Fig. 6.1 one can observe that while creating a new

stiffness matrix may be costly, generally much fewer iterations are required

to correct the solution. Thus, between each new external load increment a

series of iterative steps are performed utilizing imbalance loads. The

iteration process is stopped when convergence of the solution is reached. A

solution is considered converged when the imbalance loads, or the incremental

displacements due to such loads, are within a predetermined percentage of the

external load increment, or displacerment from such a load increment.

It has been demonstrated that even for highly geometrically nonlinear

problems only a relatively small number of solutions are required for this

approach. In this work it was decided to create a new tangent stiffness

matrix for every incremental-iterative solution step. It was possible to

obtain nonlinear results using only one external load step (increment) and

only a couple of iterations. This scheme is by far the most efficientr where

efficiency may be defined as obtaining the most accurate solutions at the

least expense.
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SECTION 7

FINITE ELEMENT MATRIX EQUATIONS

FOR THIN ELASTIC STRUCTURES

7.1 Shallow Curved (Marguerre) and Flat Beam Elements

As seen in the last section for a stationary system there are problems

associated with the consistent model. When discussing this system only the

inconsistent model will be utilized. For the updated system, however, both

consistent and inconsistent models will be discussed.

For each subsection dealing with beams the general equations of Section 6

will be reduced to the one dimensional case. The reduction from the general

case to that for shallow structures subject to moderate rotations requires

care for the consistent models. For the curved beam elements, governed by

the inconsistent functional, the complete linear stress equilibrium equation

is satisfied. In the interest of simplicity, it was assumed that:

(a) The prescribed displacements on SU were identical to the boundary
- -- n

displacements, u.+Au. 2 u.+Au.;

(b) the body forces and external pressure forces were lumped at the

nodes;

(c) the surface tractions, T.+AT. were lumped at the nodes; and
1 2

(d) the displacements are continuous, u.+Au. i.+Aiu.. Thus, Eq. 6.110

may be written as

T -r +- T T (7.1)

where

T
= global lumped external loads

~'E

= consistently generated equivalent check loads

7.1.1 The Stationary Lagrangian System

With the basic assumptions stated above, the inconsistent functional,

Eq. 6.20, becomes for a one dimensional shallow beam
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(7.2

SeeFi .7.-L in ovnin and 4(defInitins.vUnd) +argueretheor

- (.Lm.J~ a =,Tts4& + ( + &X, (7.3)

If +nanNrtst nar tM( t srAA&\Art

* e..

* J(7.2)

See Fig. 7.1 for sign conventions and definitions. Under faruerre theory

(and this formulation)

*(. ,a5)= (KA +C#JlI+0 . i.*r(7.3)

If one integrates the linear terms of the last integral by parts,

+-:A

+

4 LLw+ A) lK+4Ar~ >~ ~l

Eq. 7.2 may be rewritten as

6tt A&J _OM

+ aBLJ (4 +hA tj At'Is (7.5)

Since the lateral displacement w is compatible at the interelement boundaries,

not all nonlinear boundary traction terms have contributions to boundary work.

Throughout this section S and SV shall refer only to those shear terms whose

corresponding boundary work term~s do not vanish in the appropriate functionals.
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or, in matrix formnrN

IT, n I/ -- AN4 A z\(vIjl I
JL L. I C 'e 1% a~~I ~ '~

+a+

-~~2 uAI~ve ~,l

A tIas2
4L A

(7.6)

Note that Eqs. 7.2 or 7.5 are subject to

( I\I4+6 Ib = 0 (77)

and

LM+-AKA\,K 1"1NJ+OIJIZ/, K (7.8)

These equations show that the integral on the right hand side of Eq. 7.4 is

zero. (Recall that constants such as Nu may be added without effecting the

final result which is obtained by variation of the functional.)

The stress resultants must now be interpolated in terms of the unknown

stress parameters, S. From Eqs. 7.7 and 7.8 an obvious choice is

5 t. = - NII(7.9)

(7.10)A r - g b +( + K aA 

cc = x/9.

Z = length of bean in base plane

Then, the displacements Au and Aw may be interpolated in terms of the unknown

nodal values in a linear and cubic fashion respectively.

atL = Lv-aO)a'%, + bL- 4.
(7.11)
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w = (13-5 L+ctfaiz 9q

(7.12)

awg= - -
+W ( - C

- (1-4ot +3 l 4

-a-c(3t- '

The initial displacement quantities would be interpolated by the same functions

but with respect to the initial q' s. Note that the interpolation of Aw in

Eq. 7.12 is the Hermitian interpolation function. Thus, one may write

9-M=--M I - M (7.14)

GA0 0

d OOL
- 1- - L /- MAA4M g - )(L 3  r

0' - - - C4

0 0

,IC-z c '( s-a )~ct'zc

4LAWl .

(7.15)

(7.16)

0 C
( C-2 C-C )

4a +I - sM+.2

AC1,

a 0

(7.17)

"/j~ottI- ( 3 t\

(7.18)
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Placing Eqs. 7.14-7.18 into Eq. 6.50 where, from Eq. 6.53

VrC TCC ( G j +c (7.19)

Q- 7. 20)

Note that the integration by parts allows one to write C1 of Eq. 6.53 as G in

Eq. 7.20 because for a beam these interpolation functions for displacements

are continuous (assumption d). The terms of Eqs. 7.19 and 7.20 may be more

simply defined as

(7.21)

~Qp~j~J~I ~ p~T 5 2 J!

Note that an assumption must be made for describing z, the shallow arch

height. For convenience it was interpolated in the same fashion as w (for an

element). Namely

1.. 1(7.22)

where

L is given by the part of t in Eq. 7.17 representing &w
LW ~W

Lq = the local nodal q's (from the base plane)

Once the local tangent stiffness and loads are calculated from Eqs. 7.19 and

7.20 respectively, they must be transformed and assembled as stated in Sub-

section 6.3.

Assuming the displacements are known (see Subsection 7.4) then the stresses

may be determined by reducing Eq. 6.47 appropriately to

(3 ~ 7 1-A~ (G4C)W i9_ 14+C4)6(7.23)

And finally Eq. 7.14 is utilized. Note that rather than calculating the

incremental stress resultants one may calculate the total initial stress for

the next increment by rewriting Eq. 7.14 as
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t AAA ^0 1(7.24)

From this and Eq. 7.15 the strain may be calculated from the constitutive law,

Eq. 2.84, or simply

C +ae ' 50 r 1i
-o(K+UK)/R4-AF.I 1 2 I + (7.25)

Note that while the displacements are not coupled, the stress resultants

are in Eq. 7.8 by the curvature. If one wishes to use flat elements only then

the value of z is zero.

q = 0 (7.26)

Placing Eq. 7.26 into all the appropriate equations above would yield a finite

element model for flat elements. This further simplifies the matrices and no

coupling at all occurs.

7.1.2 The Convected, Updated Lagrangian System

For the stationary system the differentiations and integrations are all

performed with respect to the initial configuration. Kirchhoff stresses and

Green strains are used. In this subsection the coordinates must be updated

at each step. The initial stresses (stress resultants) are Cauchy quantities

while incremental stresses are of the second Kirchhoff type. Additionally,

initial strains are Almansi values while incrementally updated Green strains

which are referred to the updated configuration, are used. For small strain,

moderate rotations, the differentiation of stresses is not critical but should

be recognized. The same symbols will be used here as those of the previous

subsections.

7.1.2.1 The Consistent Assumed Stress Hybrid Model

With the same assumptions of Subsection 7.1, the consistent functional

for the updated system, Eq. 6.54, becomes for the one dimensional shallow beam

case
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C 1J 8 ;
o EA

++5 P 'L 4-sa &07V (M4 4AA.\AZlf

(7.27)

where here

(s40s+ = AMM L+ 4P44) , + 4J / ,(7.28)

For the consistent case, Eq. 7.27 is subject to

=0 (7.7)

and

(M+6AM),X. ++M4),2 t Awx), 0 (7.29)

If the linear portion of the last integral in Eq. 7.27 is integrated by parts

and Eq. 7.29 is made use of, then

r Ik w, w g+ \i4. +( AM,K-a,1A2, w-AMvi,x] 0  (7.30)

Integrating the integral on the right hand side of Eq. 7.30 by parts yields,

finally

S 4(L ,,4?,'A MV\AKIc )C

r- WAv/y &W, X + 6c. +l J LL 4 A W -a8M W f (7.31)

Placing this into Eq. 7.27 gives
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(7. 32

eq tn i rttni ticom o muain C Al 4 nvnien &ony.

-d 0L.E (7.9)

~ + -+M A"A 0d'y1
0 r-.AaSM

IILLL 
4 SW AA Wz1

(7.32)

Note that similarity between this expression and that of Eq. 7.5. It is to

be understood that all initial displacement terms in Eq. 7.32 come from the

compatibility check only. This is not the case with E. 7.5. This latter

equation is written in this form for computational convenience only.

The stress resultants may now be expressed as

tiJ(7.9)

and

Mt + - w W(7.33)

Note here that the constant of integration of Eq. 6.56 is taken to be zero.

The stress equilibrium equyations, Eqs. 7.7 and 7.29 are still satisfied. The

displacements may be interpolated as before by Eqs. 7.11-7.13. In matrix form

one may write

I? FM P -j j- k

-I-it ~ ii} (7.34)

where

~VJ,(. &(7.35)

and L may be determined by comparing Eq. 7.35 to Eq. 7.12. Also
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i:::: = V0 =+I AV4 (7.36)

It should be pointed out that the general boundary traction term is given by

Eq. 5. 47, namely

-FL1+b *artO - r AUt, I ) (5.47)

For a shallow beam undergoing moderate rotations the boundary tractions may

be written in terms of the axial load, shear, and moment at the nodes. Large

deflection analysis under the above restrictions allows one to write these

terms as (see Subsection 3. 2)

Thus, the nonlinear portion of Eq. 5.47 only applies to the shear term. As

shown in Eq. 6.58 A is normally derived from CI in the general case. Here,

C was chosen to be zero. However, the moment term of the boundary traction

has the form on the interior (from Eq. 7.34)

MAN#4 ?$ + A

To evaluate this on the boundary so that the tractions may be obtained, equi-

valent matrices must exist, i.e.

where

A, 9A ~ ' in general.

Thus, to properly define M here one should replace A by At in Eq. 6.64.

Considering Eqs. 6.81 in light of the rewritten functional Eq. 7.32

KT 4IIV ' c.-4)+11NA +vtj..4- c(7.37)
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where matrices in Eq. 6.81 are replaced by matrices in Eqs. 7.38 as follows

C - i p(7.39)

and K in 2 is an additional term formed during the transformation process.

One may observe that this is computationally more efficient than (while still

exactly equivalent to) Eq. 6.81 since it requires the formation of fewer

different matrices. These matrices may simply be evaluated as

SO P5A =Ay{tA 0j/e vAV i fJ

A, Lw](7.40)

and H, G, C, K are defined by Eq. 7.21. Note that since for the beam problem

u+Au = ii+A this implies that L =L . Eqs. 7.37 and 7.38 must now be transformed
W ~W

and assembled into a global (common) set of equations.

With the displacements obtained from Eqs. 7.1 the stress parameters may

be obtained by reducing Eq. 6.76 appropriately.

grz.. 0' i(7.41)
The total stress resultants may be determined by placing the displacement

solution and Eq. 7.41 into Eq. 7.34.

M-4kAM (7.42)

Total strains are calculated via the constitutive law

e+C L JtM+anA I A (7.43)

C K-i A K)(7.43)
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Applying Eq. 7.26 to all the above generates a consistent model for flat beam

elements.

7.1.2.2 The Inconsistent Assumed Stress Hybrid Model

The inconsistent functional for an updated system (Eq. 6.82) becomes,

under the previously stated assumptions, for a one dimensional shallow beam

element

2. 7-- ela

4- R O&J %'& 4- OS2

~o L . K

" a'W%(7.44)

The same form of the stress equilibrium equations and shear term apply here

as for the stationary system. (They are not functions of initial displace-

ments.) These are Eqs. 7.7, 7.8 and Eq. 7.3 respectively. Integrating by

parts the linear terms of the last integral- in Eq. 7.44 yields the same result

as Eq. 7.4. The same interpolation functions, Eqs. 7.14-7.18, are also used.

Placing these results into Eq. 6.101 they become

K Nk(7.45)

where again C from Eq. 6.101 transforms to G in Eq. 7.46. The definitions of

Eqs. 7.45 and 7.46 are similar to those of Eqs. 7.21. The difference being

that the latter equations are always referred to an updated coordinate system.

Comparing Eqs. 7.45 and 7.46 to Eqs. 7.19 and 7.20 one observes that the forms

are similar except for the initial displacement terms in the tangent stiffness

of the latter. Although the equivalent load vector in the updated system is

different than that of the stationary system, it is still a function of the

initial displacements due to the compatibility check. Note the change in sign

of the Cq term in Eqs. 7.20 and 7.46. This is due to the fact that Eq. 7.20

is based on Green strain while Eq. 7.46 is based on Almansi strain.
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(7.38)

where matrices in Eq. 6.81 are replaced by matrices in Eqs. 7.38 as follows

C4

-. (7.39)

and K in Q is an additional term formed during the transformation process.

One may observe that this is computationally more efficient than (while still

exactly equivalent to) Eq. 6.81 since it requires the formation of fewer

different matrices. These matrices may simply be evaluated as

P 0As L~

?4 T (AE- 0

- -r -eKI (7.40)

ID kA-h1r k ft j w94

and H,' G, C, K are defined by Eq. 7.21. Note that since for the beam problem

u+Au = U+Ai this implies that L =L . Eqs. 7.37 and 7.38 must now be transformed% -%& -- W ~w
and assembled into a global (common) set of equations.

With the displacements obtained from Eqs. 7.1 the stress parameters may

be obtained by reducing Eq. 6.76 appropriately.

The total stress resultants may be determined by placing the displacement

solution and Eq. 7.41 into Eq. 7.34.

MA4- AM -~ A ~ (j

7.41)

7.42)

Total strains are calculated via the constitutive law

Ie.ae +I +'/CA+A

(7.43)
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Applying Eq. 7.26 to all the above generates a consistent model for flat beam

elements.

7.1.2.2 The Inconsistent Assumed Stress Hybrid Model

The inconsistent functional for an updated system (Eq. 6.82) becomes,

under the previously stated assumptions, for a one dimensional shallow beam

element

9-- 274-~v

+rAt aUr

The same form of the stress equilibrium equations and shear term apply here

as for the stationary system. (They are not functions of initial displace-

ments.) These are Eqs. 7.7, 7.8 and Eq. 7.3 respectively. Integrating by

parts the linear terms of the last integral- in Eq. 7.44 yields the same result

as Eq. 7.4. The same interpolation functions, Eqs. 7.14-7.18, are also used.

Placing these results into Eq. 6.101 they become

KrGT= H -+k3  (7.45)

T -

9 -E (7.46)

where again CIfrom Eq. 6.101 transforms to G in Eq. 7.46. The definitions of

Eqs. 7.45 and 7.46 are similar to those of Eqs. 7.21. The difference being

that the latter equations are always referred to an updated coordinate system.

Comparing Eqs. 7.45 and 7.46 to Eqs. 7.19 and 7.20 one observes that the forms

are similar except for the initial displacement terms in the tangent stiffness

of the latter. Although the equivalent load vector in the updated system is

different than that of the stationary system, it is still a function of the

initial displacements due to the compatibility check. Note the change in sign

of the Cq term in Eqs. 7.20 and 7.46. This is due to the fact that Eq. 7.20

is based on Green strain while Eq. 7.46 is based on Almansi strain.
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where matrices in Eq. 6.81 are replaced by matrices in Eqs. 7.38 as follows

C - -- +M-(7.39)

and K in Q is an additional term formed during the transformation process.

One may observe that this is computationally more efficient than (while still

exactly equivalent to) E. 6.81 since it requires the formation of fewer

different matrices. These matrices may simply be evaluated as

~0 PsA= ~ V0 t: 1 1,eLAJ

,?A Lv (7.40)

and E, G, C, KI are defined by Eq. 7.21. Note that since for the beam problem

u--tv = +i5 r bis imnlies that L =L . Eqs. 7.37 and 7.38 must now be transformed

and assembled into a global (common) set of equations.

With the displacements obtained from Eqs. 7.1 the stress parameters may

be obtained by reducing Eq. 6.76 appropriately.

~, N ~ -. C)jJ +f.'0P1AY (7.41)

The total stress resultants may be determined by placing the displacement

solution and Eq. 7.41 into Eq. 7.34.

AM4-AM -~~(7.42)

Total strains are calculated via the constitutive law

e +ae Ti* VI ItA

3 0(7.43)
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Applying Eq. 7.26 to all the above generates a consistent model for flat beam

elements.

7.1.2.2 The Inconsistent Assumed Stress Hybrid Model

The inconsistent functional for an updated system (Eq. 6.82) becomes,

under the previously stated assumptions, for a one dimensional shallow beam

element

S0 VEA 277 t

4.-

The same form of the stress equilibrium equations and shear term apply here

as for the stationary system. (They are not functions of initial displace-

ments.) These are Eqs. 7.7, 7.8 and Eq. 7.3 respectively. Integrating by

parts the linear terms of the last integral- in Eq. 7.44 yields the same result

as Eq. 7.4. The same interpolation functions, Eqs. 7.14-7.18, are also used.

Placing these results into Eq. 6.101 they become

KrJW6 k (7.45)

9 = aR (&-i C.)(7.46)

where again C1from Eq. 6.101 transforms to G in Eq. 7.46. The definitions of

Eqs. 7.45 and 7.46 are similar to those of Eqs. 7.21. The difference being

that the latter equations are always referred to an updated coordinate system.

Comparing Eqs. 7.45 and 7.46 to Eqs. 7.19 and 7.20 one observes that the forms

are similar except for the initial displacement terms in the tangent stiffness

of the latter. Although the equivalent load vector in the updated system is

different than that of the stationary system, it is still a function of the

initial displacements due to the compatibility check. Note the change in sign

of the Cq term in Eqs. 7.20 and 7.46. This is due to the fact that Eq. 7.20

is based on Green strain while Eq. 7.46 is based on Almansi strain.
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Although it may appear that the updated system would have small computa-

tional advantages over the stationary system because it has fewer terms this

may not be the case. This is further explored in Subsection 7.4.

7.1.3 Comments on Kirchhoff-Love Theory

The equations of elasticity are slightly different under Kirchhoff-Love

theory as opposed to those of Marguerre theory. (See Subsection 3.2.2.) The

basic reason for this change is that for the former theory displacements,

more like true shell theory, are measured in the shell coordinates, while in

the latter case the displacements are measured in the base plane. Thus, the

strain displacement relations and expressions for shear resultants change.

As an example, consider iT for an updated system. Eq. 7.44 was written
mc

for Marguerre theory. Under Kirchhoff-Love theory (with the same assumptions)

it would appear as

+ S Lk i% WAMNAW,,.AtWTfj)
(7.47)

where

(Nat = ( A&\ (7.48)

Note that although quantities are measured in the shell system, differentia-

tion and integration are still performed in the base plane as shallow shell

theory permits.

Thus, for this case, the major differences are in the evaluation of the

boundary shear term, the directions of the local displacements, and, corres-

pondingly the assembly procedure as indicated in Subsection 3.3.3. To be

precise the stress equilibrium equations are also slightly different as one

observes by comparing Eqs. 3.28 to Eqs. 3.38. However, if the membrane stress

resultant is constant within an element, as it is here, then the form of the

equations are identical.
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Integrating the linear terms of the last integral of Eq. 7.47 by parts

yields

S.4LL - dAWI

4L6" U A M -VJ,;(7.49)

Eq. 7.47 is subject to

(7.7)

(A/l+-aM Ixx - (d 4 M -2,(7. 50)

Therefore, the inconsistent functional becomes

+=511 -a-'J ' tA ' -dt ,(.1

f+ t E~ A&
2  2 - (.2

IT j~ L FA GMV

Thus, the tangent stiffness and equivalent loads would be determined in the

same manner as Eqs. 7.45 and 7.46 except that R would be defined differently.{U+& 1 0 a P
R/-Z, 0 (7.52)

and

C.
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of course, the directions they correspond to (the dofs) would also be

different so that an appropriate assembly procedure would be necessary.

7.2 Shallow Shell (Marguerre) and Flat Plate Elements

In this subsection the first three assumptions stated in Subsection 7.1

will be observed. Also, the translational dofs will be compatible while the

rotations are not. In addition, only the inconsistent models will be discussed

for the two dimensional cases. As shown in the previous subsection, the con-

sistent models require more matrix generation and, therefore, more computa-

tional effort. As will be seen in Section 8 the additional accuracy obtained

by these models is negligible. Thus, the consistent models were abandoned

here.

The equations shall be generated for shallow elements so by simple reduc-

tion flat elements may be obtained. Being a more straight forward extension

of flat plate theory only Marg-uerre theory will be used. This allows the

same form of transformation and assembly procedure for both flat and shallow

elements. A three node flat triangular element and a doubly curved three node

shallow shell element will be utilized.

7.2.1 The Linear Stress Equilibrium Equations

The inconsistent models require that only the linear portion of the

stress equilibrium equations be satisfied exactly. While for flat elements

this is straight forward, for shallow shells some choices become obvious.

Consider the stress equilibrium equation for a shallow shall under Marguerre

theory.

Nwf t&Icyyt+ C)

Y'Y Y(3.38)

+ t ZM ~ Y +t4pc y *AK +4%\ IJ Y~qrtj

For the case at hand all body loads are lumped at nodes so that they would

not appear in these equations. The inplane stress resultants simply must

satisfy
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M, + +4)LY,/ =0 (7.53)

For the bending stress resultants the nonlinear portions must be removed (and

placed back into the functional) yielding

tY M ytZMK .KYY :t4K, C

+ Yy i,y 41xyZA, 1 C (7.54)

For a flat plate, zSO and there is no choice involved

6AK~w% +A4-4 1 - ZMKYfy, = 0(7.55)

However, since the total stress equilibrium equation Eq. 3.38 is not being

satisfied, then there is no reason that the entire linear portion, Eq. 7.54,

must be satisfied. Thus, two choices become obvious. Either one satisfies

Eq. 7.54 or Eq. 7.55. In the latter case the terms removed from the stress

equilibrium equation must be replaced in the functional.

For these reasons it is actually more convenient to consider the modified

Reissner principle with certain stress equilibrium constraints. This way the

proper terms remain in the functionals.

7.2.2mThe Stationary Lagran n System
The functional to be considered here is Eq. 4.50. If the linear portion

of the compatibility check is integrated by parts, if Eq. 4.47 is satisfied

exactly, and if the above assumptions are made, then Eq. 4.50 may be written

for an element as

-+ L. L acr; 3 ( )

T-Jj A uj a4LkOj\i j b6tJ Cbs'

S OCF;- .e

4-5QQr ' I I (7.56)
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Note that the displacement discontinuity terms on aVT vanish. As shown for

the beam problem, in Subsection 7.1.2.1, the only nonlinear boundary traction

terms come from the shear. Since the shear is multiplied by the transverse

displacement, w, and these displacements are compatible then all nonlinear

boundary terms vanish. (This implies that the matrices involving A, B'br B

and B vanish.) Computationally this implies a substantial savings. If only

Eq. 7.95 is satisfied then (for an isotropic material) Eq. 7.56 may be written

as

77.-7

+6Ah6er+eMY\4( AarA xcd ,.AQ kcbccAv

6 - d45x Ky(I wf~c wy t\4Ujy I(&YW,\exy

4 \U-y + sv1,y) Z'y (IJXy 4ArIcy),,iS,1  6 cyv-c

+ i L ix+Atasl cii'- Lr+y-ze14yt&\A/Sx (s ,os\, aJ~

*h+yv4 +Zgyw~ ~hd

-SI\, LLOrJC rZyIII 8 K&Y)1  a

'0 0K) , W4 1-cJi, 1'jiY/a z a, (7.58)- Ck
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See Fig. 7. 2 for sign conventions.

Interpolation functions must now be established in terms of the unknowns

S and Aq. It has been demonstrated that flat triangular elements by assumed

stress hybrid models tend to be too stiff [Mau and Witmer, 1972]. It has also

been shown that for a given number of displacements parameters, Aq, such an

element can be made more flexible by reducing the number of stress parameters

S [Pian and Tong, 1969b]. However, there is a condition which governs the

minimum number of 6's which can be used [Pian and Tong, 1969a]. If this condi-

tion is violated then kinematic modes may exist leading to erroneous results

[Spilker, 19721. The relation may be expressed as

RIA> -a (7.59)

where

N,.= number of stress parameters
p

N = number of displacement parameters

NC= number of rigid body constraints

Since a flat triangular element is to be considered then the stresses and

displacements in and out of plane completely decouple. Thus, Eq. 7.59 must

be applied to each set, i.e.

Inplane: M >,>to-32=3
(7.60)

Bending: Nf'>1 9- 3- -

Therefore, the minimum condition for membrane stress resultants is constant,

while for bending stress resultants at least three 6's would have to be added

to constant values. To maintain symmetry it was decided that a constant

membrane resultant and fully linear bending resultant would be used. Thus,

using Eqs. 7.53 and 7.55 one may write

.YY

K~y t~y 1Y

$A~y4M~y IA ~IY
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(7.61)

where blank entries are zero. Note that this automatically satisfies Eqs. 7.53

and 7.55.

Interpolations for displacement quantities are more easily generated using

the natural triangular (or area) coordinates, [Zienkiewicz, 1971]. They

are related to the local x,y coordinates as follows. (See Fig. 7.3.)

or, the unique inverse relations are

+b, K +C, Y ZA

,= (a. h+ . cy)/zA (7.63)

3 =(a.!+ b3Kx.ciy)IzA

where

x.,y.= nodal values of x and Y respectively

I k.

b.=y-Y
j k

C=- x -xS kj

i,j,k = (1,2,3) (i/j4k)

A = area of triangle
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and the values of a., b., c. are determined by permutation of indices.

The inplane displacements are interpolated in a linear fashion on the

interior. (See Fig. 7.2.)

aV 1 f- 56v 94  (7.64)

The interior transverse displacements are interpolated as cubic functions

(Zienkiewicz, 1971].
~T

+Alat

\ Lw-4 (7.65)

The derivatives of Aw with respect to x and y may be obtained by chain rule.

b ++ 3 (7.66)

Placing Eqs. 7.63 into this yields

b (&t 4a A44b 3 )/zA

Similarly (7.67)

(C +C-Z + C-3 /A
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Thus, applying the operators of Eqs. 7.66 and 7.67 to Eq. 7.65 yields the

appropriate functions, which can be written as

v W(7.68)

The initial displacements, u, v, and w, are similarly interpolated in terms of

the initial nodal values q.

Although the boundary displacements are interpolated in terms of the same

nodal values as the interior displacements, they may be chosen differently.

It is required that the boundary displacements be continuous among neighboring

elements. This may be done by choosing the inplane displacements as linear.

In fact, if one uses the same interpolation as for the interior displacements,

properly evaluating the functions along the boundary, a linear boundary inter-

polation results. An additional benefit is that the inplane displacements

are continuous from the interior of the element out to the boundaries, i.e.

LL+aLLSL__ L.V+ A -- V-4v (7.69)

For continuity in the transverse directions it is necessary to choose A as

cubic and the tangential slope as its derivative. The normal slope must be

linear. Thus, [Pian and Tong, 1972]

A~I 0  Wi t: Ir L10 1  Iz 4,bwp,~ (7.70)

MoicB~jn N O\,Al, 4 -* ~W 2
4 l4 1 ,6\A z?- (7.71)

=e (ll%5)6W/t + $ SA4/eza, (7.72)

where

Aw = transverse boundary displacement for side p
p

. = nodal value of Ai for side p and node i
P p

AG'- = tangential slope

Aw = normal slope
p ,n

H.. = Hermitian interpolation functions (see Eq. 7.12).
iJ
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It can be shown that if the interior interpolation function for Aw is properly

evaluated at the boundary p then

/ = (7.73)

Thus, the transverse displacement is also continuous from the interior of the

element out to the boundary. This is not the case for the rotations. The rota-

tions are those with respect to the x and y axis, not the s and n system.

Thus, the transformation

6 W, 16 j n (7.74)

must be used. Where

m = cos 0

n = sin 6

0 = angle between local x axis and the outward normal to the side

Thus, one may finally write

(7.75)

where the initial quantities are interpolated in exactly the same manner

except with respect to the initial nodal values q.

Next an interpolation for the height above the base plane, z, must be

developed. It seems natural that the original displacement above the base

plane should be of the same order as the displacement. This, however, is not

necessary. In fact, for the stationary system, where it is convenient to

obtain midside information (since the element is always referred to its initial

configuration), a quadratic distribution was used. Additionally, a cubic
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distribution was developed for comparison and, since it depends only on nodal

information, would be more useful in an updated system. For a quadratic

distribution the z values at the three nodes plus three midside values must

be determined. (See Fig. 7.4.) Thus,

4 
(7.76)

For the cubic case

where: Lw is given by Eq. 7.65

T

In Section 6 Eq. 6. 45 was constructed assuming the entire linear equili-

brium equation was satisfied. Since this is not the case here it is worth-

while to reconsider Eq. 6.45 properly reduced for the assumptions of this

subsection and with the two additional terms (resulting from z40) in Eq. 7.57.

T.T T

+3 T

+ ++(7.78)

where the additional terms are C and G which will be subsequently defined.

3-1TTT

brdi eqatio wab aisidefnetioiro tecs hr tiswrh

C o 4tC 4Z 4+(7.78)
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The solution for the S's is

A =iH~'LLG4C )+(c-t'\Q +h .(&4C+ ( 1 - cK\ 59 (7.80)

Placing this into Eq. 7.78 gives

C:& cc +G +Gfl co tajt (7.81)

Rearranging and dropping the constants not subject to variation

-Trnc(46

+ah+C+ +(t-4 +ca ..- 4 (7.82)

Or, in the form of Eq. 6.50

MCI(A T IT-(6.50)

where

k'T -:.C( ) + CC, L- C:E +(. - cz + 4-fjGcC U (7.83)

Placing Eqs. 7.61-7.77 into these

HT S

4 , vrL a -C ~

S -~r 4 ~A
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.T T

++-:-r-Q1wy(LLI +L, wy) l

C-S 1 1)Y l W A5 A

- (7.84)

eleen i fat(+4) thnnt ht Z . n

K agO-)

(7.85)

Placingr t hinowEqs.h7.83egietstefreducE.7.5 form8aeusd

Cz -=O(7.86)
9R1
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which correspond to Eqs. 6.53 of Subsection 6.1.2 with C => G as a result of
-1 ~~

the integration by parts. (SB 'B , B = 0). Note that the additional matrices

G and C are simple in form and shoulg not add much to the computational effort.

It must be noted that for shallow elements where Eq. 7.54 is satisfied

and then reduced Eqs. 7.86 are used that the P matrix must reflect the change

in stress assumptions. One simple choice would be

(7.87)

There are alternatives to this. One would be to use the static-geometric

analogy commonly used in shell theory. (See Appendix D.)

Once the displacements are determined, a may be determined from Eq. 7.80

(possibly with G =C =0). The stresses are obtained by Eq. 7.61 where the
~.z ~.z

appropriate P matrix must be used. Finally, the strains may be obtained

through the constitutive relations.

7.2.3 The Convected, Updated Lacrangian System

The corresponding functional for Tr is Eq. 5.50. Integrating the linear
mR

portion of the compatibility check by parts, satisfying Eq. 5.47 exactly, and

recognizing the assumptions of this section, Eq. 5.50 may be rewritten for an

element as

-5-. b ('LLn-h+-7d.)

+ STii agi e + LL,.quQjj u<

(7.88)
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Comparing this to Eq. 7.56 for a stationary system, three differences can be

observed. Firstly, the initial displacement terms in the first volume integral

are removed. Secondly, the sign of the nonlinear term in the compatibility

check has changed. Thirdly, the displacement in the last integral is that of

the interior, Au..

The equivalent set of equations to Eqs. 7.83 may, therefore, be written

directly as

KrA d c:1c C' VI + V

T (7.89)

where G* is given by Eq. 6.40 and all the interpolation functions and comments

of Subsection 7.2.2 apply.

7.3 The Linear Prebuckling of Flat Plates

The determination of linear prebuckling requires the solution of an eigen-

value problem. Unlike a limit load buckling situation which requires a full

nonlinear analysis, linear bifurcation buckling is linear and is treated as

such. Thus, there is no need to differentiate between initial and incremental

displacements. In fact, for a flat plate only transverse and rotational

degrees of freedom need be considered. The eigenvalue of the problem is a

load (or stress) factor and so an initial stress problem must be formulated.

Since the nonlinear analysis developed up to this point is of the initial

stress class appropriate simplifications of these functionals will yield the

proper equations. Because initial displacements are of no interest here the

functionals for the updated system will be considered. Removal of the equili-

brium checks is also necessary.

7.3.1 The Consistent Assumed Stress Hybrid Model

Considering the functional presented in Eq. 6.54, a basic version would

become

iW C 01- U 6T~ iE J+ (7.90)
n'IW, I
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where Eq. 7.90 is subject to

AQ + (cT- tiY 0, (7.91)

and

KT+ = ( r- +rkLA.L z\j(7.92)

Using similar interpolations as in previous subsections

a- +A(7.93)

AT +A4 (7.94)

- v(7.95)

u.&' L'j (7.96)

Placing Eqs. 7.93-7.96 into Eq. 7.90 yields

+ &A4-A (7.97)

where these matrices are defined in Subsection 6.2.1. (Note also Eq. 7.36.)

Taking the variation of T" with respect to the independent B's yields
mc

c. n
= n tA%+ IOH(7.98)

Solving for the $'s

p6-IA (7.99)

Placing Eq. 7.99 into Eq. 7.97 yields

-IT( ) -Tk 7K'-'4XH'( RAl1N XW'G M t

+4.fz -Mc (7.100)

Or, writing Eq. 7.100 as

C )z (7.101)
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the element tangent stiffness may be expressed as

14 4 TW1 4 6 - LJW'~A tN+JHIH )+AWIA4A-+N+ -) - K (7.102)

Note from the definitions of these matrices that

H,G are not functions of a

H ,M,K are functions of a

D is a function of (a) 2

Thus, one may rewrite Eq. 7.102 as

Ty-6 r ,17T TH I r1'I 14i (7.103)
T H6t2M 4 R 'A - 4

where

X = critical load parameter

AR5 =M

etc.

Note that this leads to a quadratic eigenvalue problem which can be solved

[Przemieniecki, 1966]. The inplane displacements may be removed and the

matrices of Eq. 7.103 may be defined by

TNt=4 PM 5MPM ctcIJ

-r +

A . -(7.105)
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7.3.2 The Inconsistent Assumed Stress Hybrid Model

The basic version of the inconsistent functional in Eq. 6.82 may be

written

7bcc-TLA. + j LA t , Lk+ + o6' 4L AS (7.106)

where the constraint conditions are simply

a=T (7.107)

and

A D + ~ t~k.(7.108)

Using the simple interpolations

(7.109)

-T T (7.110)

(7.111)

Yj (7.112)

Eq. 7.106 becomes

IL+G- NfL A4H(7.113)

Taking the variation with respect to 6 yields

r
+: (7.114)

Thus

( - (7.115)

Placing Eq. 7.115 into Eq. 7.113 gives

(ar ++(7.116)

The element tangent stiffness may be written as

Kr +(7.117)

or

+ (7.118)
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4hich leads to a standard linear eigenvalue problem. These matrices are defined

similarly to those of the previous subsection.

The eigenvalue problem of Eq. 7.118 was first used by Lundgren [1967]

although he did not consistently derive the functional upon which it is based.

This looks very much like the eigenvalue problem derived from the displacement

model. While the geometric stiffnesses are the same (for the same interpola-

tion functions of the slopes), the elastic stiffness is that of the linear

assumed stress hybrid model.

Comparing Eq. 7.118 with Eq. 7.103 one can appreciate the tremendous

increase in computational effort required by the consistent model.

7.4 Computational Procedures

The computational procedures and subsequent updating of information varies

with solution technique and functional formulation. A brief, general descrip-

tion of the significant points will be given in the following subsections.

7.4.1 Incremental and/or Iterative Procedures

For the specific example elements given in this section, the global

(common) equilibrium equation was given as

= Q T tG?(7.1)

which represents the total, properly assembled equations. As stated in

Subsection 6.4 -here are three general categories of solution procedures that

were used here regardless of the basic functional.

The first was a purely incremental scheme with no equilibrium checks of

any kind. For this case the proper element stiffness matrix must be obtained

and assembled to form TK. An increment of external load is chosen and lumped
T

at the proper nodes in the proper directions (dofs), forming Q . Since no
T

equilibrium checks are to be used, QEO for all time. With this information

Eq. 7.1 is solved for TAq. This is then in turn used to obtain incremental

stresses and strains as indicated in the previous subsections. At this time

the present state is deemed in equilibrium (which is not entirely true, hence

the reed for equilibrium checks). With this new information, element stiff-
Tnesses are generated to form a new KT and a new (next) increment of external

T T
load is assembled to form 9E. Q is, of course, assumed zero so that Eq. 7.1
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is again solved to obtain new Aq's. This process continues until the total

external load has been reached.

The second scheme is also purely incremental. Here, however, it is

recognized that the new state will, in general, not be in equilibrium and,

therefore, equilibrium checks are necessary. This procedure does assume that

the exact equilibrium imbalance can be determined at each incremental step.

Under this assumption the imbalance is determined and transformed into an

equivalent load term Q. Thus, the element stiffnesses are generated as before
T T.

and assembled to form K . At the first increment of external load, Q is

zero since no imbalance yet exists. This first step is solved in the same

manner as in the previous procedure. AT Aq is determined and stresses and

strains obtained from it. Realizing an imbalance to exist it is calculated
T

and assembled to form Q. New element stiffnesses are formed and assembled

as before. Now the next increment of external load is added to the first.

The two load vectors TE and Q are added and Eq. 7.1 is solved for a new set

of Aq's. The reason that the subtotal external load (at the present time)

must be used is the equilibrium checks involve the total initial quantities.

These quantities will develop loadsTQ which ideally should have been equal

and opposite to QE from the previous step. This additional imbalance load

is calculated as shown in the previous subsections. Again it is assumed that

the imbalance can be exactly determined, so that at the end of each step it

is calculated and simply added to the subtotal external load of the next step.

The final scheme recognizes that not only are equilibrium checks necessary,

but that the imbalance can not, at any one step, be calculated exactly. Thus,

the combination of increments and iterations is formulated. The very first

step is the same as the previous procedures. At the end of the first step an

imbalance loadTQ is calculated as in the last procedure. However, rather

than adding this to a new subtotal external load, it is added to the same, old

external load term. Solving Eq. 7.1 with this load gives a correction term in

TAq due to the imbalance of the first external load increment. At this point

a new imbalance load is calculated and again is only added to the old external

load term. Solving Eq. 7.1 again gives a further correction to TAq still for

the first load step (increment). This iterative process within load increments

is continued until some predetermined convergence for that load step is reached.
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Once convergence is reached the next increment of external load is added to

the first to obtain a new subtotal. Now the iterative process takes over

again until convergence is reached. This incremental-iterative procedure

continues until the final total external load is reached.

For the purposes of this work the following scheme was used to determine

if convergence was reached. At load increment "m" the increase in displace-

ment due to the increase in external load was stored as Aq . The magnitude

of this vector was obtained as

(7. 119)

The first correction to this displacement on the first iteration within this
m

incremental load step, Ag , is stored. Its magnitude was similarly obtained

as

(7.120)

th.
Finally for the i iteration

= ((7.121)

A ratio was formed such that

-lArn (7.122)

When this ratio (which should approach zero) gets below a predetermined number

(i.e. 0.001) then convergence was assumed.

7.4.2 Updating the Displacements and Geometry

For all of the elements, procedures, and coordinate systems used it is

convenient to refer the nodal displacements and coordinate locations to a

stationary reference frame. Although for some shell problems it might be

better to give the displacements in the shell system, for the purposes of

plotting deformations it is simpler to use the fixed rectangular Cartesian

coordinate system. Since the solution vector of displacements is in the

common (or shell) system, to reduce the number of dofs, a transformation is

necessary. These transformation matrices already exist, as they are necessary

in the computational process (see Subsection 3.3), and stored for access.

Once the five degrees of freedom at a node are known in the common system, use

154



may be made of Eq. 3.45 to obtain the corresponding six degrees of freedom in

the global reference frame.

CA- - r iC
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(7.123)

of the angle between the global x and

C Ae .= 0

The transformation matrix varies from node to node so that at every node such

a matrix must be stored. Only a 3x3 actually is stored since the other terms

are the same.

For a stationary system the common system remains stationary for all time

and the transformations need be calculated once. In the updated system the

reference (common) system follows the deformation pattern and, therefore, must

be recalculated at every solution step. In either case the matrices are pre-

viously needed and stored so that they will be available.

Since all increments for all time are finally referred to the same set

of coordinates (the global system) they may be directly added to the initial

quantities already in that system. Thus, the total displacements are estab-

lished with respect to the fixed frame.
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Although the stationary system utilizes the original configuration for

differentiation and integrations, many of the matrices to be evaluated are

functions of the initial displacements. The element level matrices are

calculated using an individual, local rectangular Cartesian frame. Thus, the

initial displacements which are the present total displacements in the global

frame, must be transformed to these local frames. In this instance the trans-

formations are for individual elements rather than nodes as before. Since

these local axes are the natural systems only five dofs are non-zero. Utiliz-

ing Eq. 3.49

L -(V) (6/LK\ (r_1 LL

14L
1

1' 0 I 0L a

v (v) v/) L%,VJ o >

(%V L*) L 2) (%L$) (7.124)

ex0 a0 a0 UCOLK(4VL,< L&P<Y
0o 0 0 (4(1K Ly)A(yL\ L4Ly)

Note that the inverse of the direction cosine transformation matrix is equal

to its transpose. These matrices are formed once and for all and stored as

3x3's for future use.

The updated system also requires initial displacement terms for the com-

patibility check. Here, however, since these local systems move with the

deforming body the transformations are calculated for every solution step. It

is not necessary to store the matrices in this instance because the transforma-

tions must be generated and used during element generation.

Once the total displacements are known then the new location on the

structure is known. For the stationary system only the original coordinates

are necessary so that no changes occur here. For the updated system, however,

the new geometry is used as a reference frame. The coordinate locations of

the nodal points are always given with respect to a fixed global frame. Since

the total displacements are in the same system, the x, y, z coordinate loca-

tions may be continually updated by adding the global increment values of
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Au, Av, Aw to them respectively. For flat elements this is all that is

necessary. Shallow elements in addition must have updated slopes. The global

slopes at the nodes may be obtained from the global rotations as

CJj=-Ar's(4GPc') (7.125)

L
With this information the local slopes with respect to the base planes (LZ,

L
and Z, ) can be obtained by (see Appendix A)

L y

LI - CLL y~

L fKy 7 (7.126)

where

C r+ (I4y, :2,

7. 4. 3 Updating the S tresses and Strains

Once the incremental displacements have been obtained and the previous

total displacements are known, then the stress parameters may be determined

by the appropriate equations previously given. A caution is given here in

that these 's were obtained on the element level and, therefore, the dis-

placements must be in the local system. Either the displacements can be

brought into the local system, or the premultiplying product to determine the

's can be transformed when the element stiffnesses are so that the displace-

ments will be referred to the common system (or global if easier). The way

in which this is best handled depends largely on the functional (and its

corresponding check terms) used.

Assuming the 5' s are known they must now be premultiplied by the element

P matrix. For flat elements and small strains these matrices do not change

much and may be considered constant (for a given integration point in the

element). This is, of course, true for a stationary system where no change

is encountered. For shallow shells in the updated system where the P matrix
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is a function of the local z height above the base plane, careful considera-

tion must be given to evaluating P.

In addition, for the consistent models the stresses are also a function

of the incremental displacements (see Eq. 6.56 and Eq. 7.33 for example) and,

thus, to account for the complete stress this additional term must be accounted

for. When using a stress equilibrium check the new total stress can be cal-

culated directly rather than having to add increments to it. (See for example

Eq. 7.61).

Once the total stresses are known, the strains are simply obtained

through the constitutive relations. It must be recognized that the strain

displacement relations are an Euler equation of the assumed stress hybrid

functionals and cannot be used. (This is the basis of the compatibility

check.)

7.4.4 Comments

Upon cursory examination of some of the computations required it may

appear that the stationary system and the updated system could be competitive

computationally, especially when compatibility checks are involved. While

the updated system has fewer calculations for generating element stiffnesses

and loads, it requires more transformations. In general this may be the case.

However, for the simpler elements chosen in Section 7 the stationary system

has significant computational savings.

The most obvious is for uniform meshes. If the mesh is uniform then only

one block of elements (two triangular elements) need be generated and the rest

are the same. In a stationary system this can always be taken advantage of

for those matrices which are not functions of initial stresses or displace-

ments. In the updated system the elements are constantly distorting, so after

the first step the mesh is no longer uniform. Even further, however, the

integrations and interpolations are so simple that once they are performed in

the stationary system the initial displacement and stress terms can be moved

outside the integrals. This means that the integrations need be performed

only on the first step. In every successive step the matrices may simply be

ratioed up rather than reintegrated. Numerical integration is still required

for every step in the updated system and this can be very time consuming. A
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notable difference in time between solutions in the stationary and updated

systems for two dimensional problems can be observed in the results of

Section 8.

The integrations which are performed are done analytically for the beam

elements and numerically for the plate and shell elements. Numerical integra-

tion over the triangular regions is performed by the Rammer rule [Hammer, et

al., 1956; Lyness and Jaspersen, 1975]. In the latter reference integration

coefficients are given for polynomials of up to eleventh order. This is

quite an advance. The Hammer rule is more efficient over triangular regions

than the standard Gauss schemes. The line integrals are performed by Gauss

quadrature.
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SECTION 8

APPLICATIONS, EVALUATION AND DISCUSSION

8.1 Introduction

This section makes use of the models and procedures of Section 7. The

functionals were programmed in Fortran and run on the IBM 370/165 computer

at the Massachusetts Institute of Technology's Information Processing Center.

Extensive use is made of FEABL [Orringer and French, 1972]. It is a modular

package of basic routines required by finite element analysis.

Beam, plate and shell problems were run to demonstrate various aspects of

the analysis. Since the beam ptoblems are the least expensive to run, they

were used to make several investigations. These studies include comparisons

of the consistent and inconsistent assumed stress hybrid models, flat and

shallow elements, the Kirchhoff-Love and Marguerre theories, the stationary

and updated coordinate systems, the value of the equilibrium checks, and the

solution procedures. From these results only certain models were deemed

useful for plate and shell analysis. In particular the following problems

were run:

a. the linear prebuckling of a flat plate. This is basically a linear

problem in that it involves only one solution step (an eigenvalue

problem). The purpose here was to check out the accuracy of the

geometric stiffness matrix. (Fig. 8.1.)

b. a shallow, sinusoidal arch under sinusoidal load. This problem was

used for the bulk of the investigations because reliable independent

solutions exist. (Fig. 8.2a.)

c. a shallow, circular arch under a central concentrated load. The best

procedures from b. were used here and comparisons were made with

independent solutions. The problem can demonstrate the great

efficiency of the models. (Fig. 8.28.)

d. simply supported and clamped, initially flat, square plates under

uniform load. Reliable results for displacements and fairly reliable

results for stresses exist. (Figs. 8.30 and 8.37.)
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e. a shallow cylindrical panel under uniform load. Fairly reliable

results for displacements exist but stress results are only sketchy.

(Fig. 8.38.)

f. a moderately shallow, spherical cap under a central concentrated load.

This is the only doubly curved shell tested. (Fig. 8.39.)

g. a shallow, cylindrical panel under edge compression. This problem

was chosen to test the inplane load capability of the analysis.

(Fig. 8.41.)

In the following subsections each problem with all the appropriate comparisons

are discussed in detail. All the nomenclature and definitions in the follow-

ing tables and figures may be found in the figures, given above, associated

with each problem.

As stated in Section 7 it is assumed that distributed loads are lumped

at the nodes. For truly consistent lumping of loads, the following should be

considered. In plate theory distributed loads occurring on the top and/or

bottom surfaces of the plate are considered as body forces. Thus, the external

load.distribution can be discretized as follows.

\P;L; A (8.1)
A A

where

Fz = pf(xy)

PO = load parameter

f(x,y) = load distribution

(8.2)

L = interpolation functions on the element interior

q = element nodal displacements

Q = element lumped load vector

Placing Eq. 8.2 into Eq. 8.1 gives

L 2 cA o iL qL 4ALx c (8.3)
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or

4L A(8.4)

Eq. 8.4 yields a lumped load vector consistent with the assumed displacements

on the interior of the element. Note that both shear and moment terms result,

in general, from such an analysis. These element load vectors can then be

assembled to form a global, lumped load vector.

For a uniformly distributed load acting on elements of uniform thickness,

the moment terms, corresponding to the rotations, would cancel during the

assembly process. Also, as the mesh is refined a nonuniformly distributed

load can be approximated locally as a uniform load. Therefore, the assembled

moment terms would tend to vanish (except at the boundaries). With this in

mind, a simpler lumped loading was used in this work. Integrating the load

distribution over the element the equivalent shear force is appropriately

distributed to each node. The moment terms are neglected. All of the distri-

buted loadings in this section are uniform with the exception of the shallow

arch problem. In this case, sufficiently fine meshes are used so that the

simpler inconsistent lumped load is reasonable.

Furthermore, to properly consider pressure loadings (nonconservative),

the load should follow the deformed geometry regardless of the coordinate

system used (S.L. or C.U.L.). In this work, cases considered in the C.U.L.

system allow the load to follow the deformed path. In the S.L. system,

however, the loads are always considered to act on the initial configuration

for convenience. Since the deflections and rotations are restricted this is

not a serious drawback, however, this in part accounts for different solutions

obtained in each system. For the problems actually considered in this section,

the maximum error in the normal load is less than one half percent. The

change of inplane load would be approximately three orders of magnitude less

than the inplane loads generated from the nonlinear effects.

2.2 Linear Prebuckling of a Flat Plate

The first attempt at using the assumed stress hybrid model for such an

analysis was done by Lundgren [1967]. Although he applied his method to

complicated sandwiched panels, his formulation was not consistently derived.
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The linear stiffness matrix was that of the assumed stress hybrid method but

the geometric stiffness matrix was derived from the displacement model. The

consistent model derived in this work demonstrates that the associated geo-

metric stiffness is considerably more complicated than this and, in fact,

leads to a quadratic eigenvalue problem. However, since Lundgren only

satisfies the linear stress equilibrium equation then he is actually making

use of the inconsistent model which is also derived in this work. In this

case the geometric stiffness matrix is that associated with the displacement

model (for similar displacement interpolations). The interior displacement

field for the inconsistent hybrid model may be chosen independently of the

interelement (boundary) displacements. If the same displacement field is

chosen for both models, then the geometric stiffness would be the same. This

does not mean the critical loads would be the same because the elastic stiff-

nesses are, in general, different.

As a test case a flat, square plate was loaded uniaxially as shown in

Fig. 8.1. Observing the double symmetry a uniform mesh was used in one quarter

of the plate only. Table 8.1 shows comparisons of the consistent and incon-

sistent models with other independent solutions and the exact solution. The

rate of convergence for each model can be observed as the mesh is refined.

Since Allman [1971] uses a linear moment distribution, his modified Reissner

principle is identical to the inconsistent assumed stress hybrid method. Using

the same displacement distributions, the results should be the same.

Among the triangular elements the assumed stress models are better than

the noncompatible displacement models and about the same as the modified

Reissner model and the assumed displacement hybrid model. There is essentially

no difference between the consistent and inconsistent assumed stress models

although computationally the inconsistent model is more efficient. This can

be seen by comparing the number of computational operations required to solve

the eigenvalue problems expressed by Eqs. 7.103 and 7.118 for the consistent

and inconsistent models respectively. The interior displacements were chosen

to be cubic with dependent rotations. (Note that for hybrid models this is

not necessary.) Thus, the interior displacement fields were similar to the

other models in the table. Upon detail investigation, the geometric stiffness
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from the complicated consistent model was practically identical to that of

the simpler inconsistent model which in turn was similar to the other models.

The noncompatible displacement models are much too flexible and, therefore,

their elastic stiffnesses are not accurately represented. The modified

Reissner model assumes stresses such that the linear stress equilibrium equa-

tion is automatically satisfied. Thus, in actuality it is the same as the

inconsistent model. The assumed displacement hybrid model can provide a more

accurate representation of elastic stiffness than by the standard displacement

model and, therefore, yields very good results. Note that for triangular

elements there are two basic variations in meshes. (See. Fig. 8.1.) The

results in Table 8.1 are for the preferred orientations for each model when

applicable.

In addition, some results are given for rectangular elements. While

rectangular elements generally give better results than triangular elements

it appears that only the fully compatible displacement model is superior. The

inconsistent assumed stress hybrid model for the rectangular case is given by

an independent source. This result should be better than that given in the

table, however, all the details are not available.

8.3 Shallow, Sinusoidal Arch Under Sinusoidal Load

This problem was first considered by Fung--and Kaplan [1952]. The authors

applied Marguerre theory to the entire arch depicted in Fig. 8.2a. It is a

symmetric structure with both ends pinned-fixed. The initial midsurface is

sinusoidal in shape. Similarly, the load distribution is sinusoidal. To

generate an exact Marguerre theory solution it is necessary to assume that

the load distribution acts in the vertical direction as shown in the first of

Figs. 8.2b.

It has been shown by Fung and Kaplan, for the problem they considered,

that depending upon a geometric parameter of the beam, different buckling

modes may occur. This parameter may be given by A expressed as

- - (8.5)

where
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w = the initial central rise of the arch
0

L = length of the global base plane

A = arch cross-sectional area

I = arch cross-sectional area moment of inertia

Thus:

a. if 1 <A<c5g5 the arch exhibits a limit load buckling behavior as

shown in Fig. 8.3.

b. if A>/5.5 the arch exhibits a bifurcation buckling behavior also

demonstrated in Fig. 8.3.

For the purposes of comparisons, only case a. was considered with A=i.5.

A finite element analysis could be carried out by discretizing the arch

into shallow elements and using a single base plane for all the elements.

Applying a vertical load distribution a solution corresponding to Fung and

Kaplan's was obtained- The results for a load just below the buckling load

are presented in Table 8.2. These solutions were obtained using an incremental-

iterative procedure with all the equilibrium checks to ensure convergence.

(See Subsection 8.3.6.) The six element case yields good displacement and

axial load solutions, however, the moments have a considerable error. The

eighteen element solution provides a very good representation of Fung and

Kaplan's solution.

A more general finite element scheme would allow each element to have its

own individual base plane as shown in the second of Figs. 8.2b. Here, even if

the arch were nonshallow, Marguerre theory would still be valid on the element

level. Since the element displacements would be measured in the local base

planes they would more accurately represent the displacements in the arch

midsurface rather than those in the global x-z directions. This would corres-

pond to the Kirchhoff-Love theory. Additionally, a normal sinusoidal pressure

load was to be studied for comparative purposes with another source. Since no

exact Kirchhoff-Love solution exists for this arch problem under a normal load

distribution, a finite element reference solution was needed. The best eighteen

element solution procedure which generated the results in Table 8.2 was chosen

as such a reference. Also, since slightly different results are obtained in
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each coordinate system, an eighteen shallow element (individual base plane)

solution utilizing ten load increments and a convergence ratio of R = 0.001

was run for each system. These cases are taken as the reference solutions for

each system and will be used as such for comparative purposes.

Another independent solution for this problem (under actual pressure

loading) was carried out by Pirotin [1971]. His study utilized curved beam

elements by the standard displacement model, a Reissner model, and what he

called a modified stress hybrid model. This last model is, in fact, the basic

inconsistent assumed stress hybrid model. All of his functionals are purely

incremental and only include the basic forms (in that no equilibrium checks

were used). According to his results the latter model gave the best results

and, with this in mind, only it will be presented with the results given here.

One must be careful about interpreting some of the results to be given in

the following subsections. It might appear, for instance, that a nonconverged

solution for a coarse mesh is better than that for a finer mesh when compared

to the reference solution. This situation is not paradoxical at all. When a

curved beam is approximated by a series of straight beams some error always

exists. For these models this approximation makes the model more flexible (as

can be seen from the linear results) than the actual structure. As the mesh

gets finer the approximation gets smaller and the model more realistically

represents the actual structure. Thus, for a coarse mesh one would expect the

converged solution for this model to be more flexible than the reference

solution. Thus, one must be sure to compare only fuliy converged solutions.

More of these cautions will be given in the following subsections.

8.3.1 Comparison of the Consistent and Inconsistent Assumed Stress

Hybrid Models

Since a consistent model was not developed for the S.L. system, the

following comparisons will be given for the C.U.L. system only. Also, the

consistent model was only run for purely incremental procedures with no

equilibrium checks or with only stress equilibrium checks. For the purposes

of comparing these two models the following parameters were considered:

a. two load steps. A Ap = 5 lb./in. and Ap = 1.25 lb./in. (correspond-

ing to 10 and 40 solutions steps respectively for a total load, p0,
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of 50 lb./in.). The solution was allowed to continue until buckling

occurred.

b. cases with and without a stress equilibrium check (no compatibility

check was used).

c. Two uniform mesh sizes of 6 and 18 elements for the entire beam.

(Symmetry condition was not used.)

d. flat and shallow elements.

Firstly, flat beam elements were considered. Figures 8.4-8.10 show plots

of a load parameter vs. deflection, axial load, and moment parameters at the

center of the arch for various increment sizes, equilibrium checks, and (in

succeeding figures) mesh sizes. The specific arch considered is depicted in

Fig. 8.2. In each plot the reference solution is also given.* Pirotin's best

solution results are only available for displacements. Secondly, Figs. 8.11-

8.17 show similar plots for shallow elements.

The results obtained from the consistent and inconsistent models are

essentially the same and no plotable difference is observed in general. The

only exception to this is the case of the central moment for the six element

solutions (Figs. 8.8 and 8.9; 8.15 and 8.16; 8.24, 8.25 and 8.26). Here the

differences are still small and for the finer mesh the difference diminishes

greatly. Since for most practical situations a finer mesh would be required

(especially since low order elements are being used) then one may conclude

that there is no significant difference between the two models. This conclu-

sion might have been expected in light of the similar findings of Subsection

8.2.

8.3.2 Comparison of Flat and Shallow Elements

While Figs. 8.4-8.17 may be used indirectly to obtain comparisons for

various conditions, Figs. 8.18-8.27 show direct comparisons between flat and

shallow elements when equilibrium checks (stress only) are used. Figs. 8.19,

8.22, and 8.26 are expanded scale plots to provide a clear distinction of the

*
The reference solution is obtained by using eighteen shallow elements and an
incremental-iterative procedure. A load increment of Ap = 5 lb./in. and a
convergence ratio of R = 0.001 is used.
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various solutions. These plots show the effects of various load steps and

mesh sizes for a purely incremental procedure.

Observing Fig. 8.19 for a coarse mesh, one may see that while the flat

elements converge to a solution which is too flexible and exhibits a relatively

poor buckling load, the shallow elements essentially converge to the reference

solution. Note also that even the flat elements with a stress equilibrium

check are not in much greater error than Pirotin' s curved element without any

checks (with the exception of the buckling load). The shallow elements with

checks are superior for converged solutions.

Similar comments can be made concerning the axial load and the bending

moments. Shallow elements exhibit a significant improvement over flat elements

for axial load (Fig. 8.22), but only a slight improvement for moments (Fig.

8.26). Furthermore, for the coarse mesh, the consistent model is essentially

the same as the inconsistent model with the biggest differences occurring in

the moments (Fig. 8.26).

For a finer mesh, Figs. 8.20, 8.23, and 8.27 demonstrate that there is

very little difference between flat and shallow elements for both displace-

ments and stresses. Additionally, no perceptable difference exists between

the inconsistent and consistent models for either flat or shallow elements.

If fine meshes need to be used there appears to be no advantage of choos-

ing the shallow element over the simpler, flat element. However, with the

exception of moments, the shallow elements can produce very good results with

even a coarse mesh. Thus, for shallow structures, a coarse mesh of shallow

elements would be an inexpensive way of determining good approximations to the

buckling load. Note that no attempt is made in this work to determine the

exact buckling loads (or postbuckling behavior) for limit load buckling problems.

Thus, only approximations, at best, of the buckling load can be expected.

8.3.3 Comparison of Kirchhoff-Love and Marcuerre Theories

The Kirchhoff-Love and Marguerre theories for shallow structures are

discussed in Subsection 3.2.2. Although both theories are valid under shallow

shell theory a study was made to determine the numerical differences. This

analysis is performed on the element level and should not be confused with

comparing these theories on a global level. See Subsection 8.3 for further
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comments. Since the Kirchhoff-Love theory uses the shell coordinates, fewer

transformations are necessary. Under Marguerre theory (for finite element

analysis) the element stiffnesses require small transformations which may

involve some loss of stiffness. Although. this should not be significant, it

is expected that this latter theory would be more flexible.

To determine the difference the shallow arch problem of Fig. 8.2a, with

a fine mesh and a stress equilibrium check only, was run. Using a purely

incremental procedure and an inconsistent model, eighty load steps were used

to obtain a total load of 50 lb./in. (just under the buckling load). The

results are shown in Table 8.3. There is no significant difference, as

expected, between these two theories. Furthermore, the Kirchhoff-Love theory

does produce a slightly stiffer solution. Admittedly this comparison could

become problem dependent, however, for shallow structures it may be taken as

valid.

The Marguerre theory was used for the bulk of this analysis since it is

a more logical extension of flat plate theory.

8.3.4 Comparison of the S.L. and C.U.L. Systems

Tables 8.4-8.7 show results obtained for flat and shallow elements, for

various conditions and solution procedures, at a load of 50 lb./in. For the

nomenclature on these tables refer to Fig. 8.2.

Since the S.L. system requires fewer calculations, in that stiffnesses

may simply be ratioed (see Subsection 7.1), it can be observed that solutions

times were faster than the C.U.L. system for corresponding models, elements,

and procedures. The total number of solution steps (increments plus itera-

tions) are, in general, about the same.

The most important observation here is that similar solutions in both

coordinate systems do not converge to the same result. As Bathe et al. [19751

have pointed out, if the two systems are consistently derived they must give

the same result. This statement is, of course, true within the approximations

made in the models. When modeling curved structures with flat, or even shallow

elements, the model tends to be more flexible than the actual structure. This

was verified by considering the linear solutions. The greater the curvature

the greater the flexibility for a given mesh. If a curved structure is modelled
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using the S.L. system, the inherent "flexibility" error remains constant

throughout the deformation process since the initial geometry is always

referred to. When the C.U.L. system is incorporated, the model, geometry,

and base planes are constantly changing. Thus, if the deformation is such

that the curvature becomes greater, then the flexibility error will increase.

In this case an S.L. system should give better results. If the reverse occurs

and the deformed geometry reduces its curvature, then the flexibility error

decreases rendering a better solution than the S.L. system would yield. If

this error could be eliminated and if the assembly procedure was exact (for

Marguerre theory) both systems would yield the same results.

Looking at the tables one observes this phenomenon taking place. The

arch has an initial curvature, however, during the deformation process this

curvature reduces. As expected the C.U.L. system produces better results,

especially for the coarse mesh. The differences are much less pronounced with

the shallow elements. This is also expected since the flexibility error is

less drastic with shallow elements than with flat ones.

This phenomenon will be observed in plate and shell problems to be dis-

cussed later. Thus, if one must choose a coordinate system to use this may

be an important criterion. If a structure deforms such that curvatures in-

crease, then the S.L. should be used. If curvatures decrease the C.U.L. is

superior. However, cost is always an important factor in decision making.

Looking at the tables where C.P.U. times are available, one may observe that

the C.U.L. is more expensive to run. For this beam problem or, in general,

for any small problem the difference in cost is minimal and, perhaps, is not

a factor. Larger problems, such as plates and shells, have considerable

differences in expense. Thus, cost may tend to favor the S.L. system,

especially where relatively small changes in curvature are expected.

8.3.5 Discussion of Equilibrium Checks

Since the C.U.L. system yields better results it was used to carry out

the bulk of the comparisons of equilibrium checks. Tables 8.8 and 8.9 show

results for two mesh sizes and for flat and shallow elements respectively.

In addition, two increment sizes were basically used. While most of the cases

were purely incremental, two cases of the incremental-iterative scheme are
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also shown. Note that for comparison purposes, solutions should be compared

with the reference solution for the particular model. On these tables the

reference solutions are the I = 10, R = 0.001 cases.

For the purely incremental cases the stress equilibrium check seems to

be the most significant. The total equilibrium check (i.e. the addition of

the compatibility check and the stress equilibrium check) seems to bring the

solution even closer to the reference solution. However, even with a total

check more than forty increments would be necessary for full convergence. On

the other hand, when an incremental-iterative scheme with a total check is

used, excellent results are obtained with only one load step or a total of

four or five solution steps. Thus, one can see that this procedure is by far

the most efficient since it combines high accuracy with great economy. The

disadvantage of this approach is the lack of total information. Results are

obtainable for the one final load only.

The value of the compatibility equilibrium check is most evident in the

incremental-iterative scheme where large load steps are taken. Table 8.10

shows some solutions obtained for six flat elements and the S.L. system.

Note that here the compatibility check makes a great difference in the solu-

tions. As the step size increases, the compatibility check becomes even more

important. In fact, without this check an unacceptable result may be obtained.

8.3.6 Comparison of Solution Procedures

Considering Tables 8.4-8.7 again it is apparent that for either coordi-

nate system the incremental-iterative schemes are, by far, the most efficient.

It is obvious that for a model utilizing either element the incremental pro-

cedure without equilibrium checks is totally unacceptable. If one chooses to

use many, many increments the solutions may converge. Of course the risk of

numerical round-off and solution drift will always be present. Although the

stress equilibrium check alone is quite helpful, when both equilibrium checks

are used an incremental procedure can yield reasonable results with a tolerable

number of incremental steps. However, if these checks are to be incorporated,

the incremental-iterative scheme gives the fastest, most accurate solutions.

However, both checks must be incorporated to provide convergence.
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The convergence ratio, R, plays an important role. Since, by definition,

it compares the latest correction in incremental displacement to the initial

incremental displacement for a load step (see Subsection 7.4.1), the ratio is

dependent on the load step size. As can be observed in Tables 8.4-8.7, if

the load steps are small the convergence ratio is not critical. However, for

large load steps, the value of this parameter may become critical.

The advantages of this latter system are many. Besides the obvious one

of efficiency, this scheme virtually allows the analyst to choose as many or

as few information points (load steps) as is necessary and still be assured

that at each one the solution is converged to within the ability of the model.

Since the cost (number of solution steps) is proportional to the number of

information points, the analyst can make a better decision relating to the

information/cost trade-off. Thus, if only maximum load information is needed

an inexpensive technique is available without giving non-essential data.

It should be noted here that when small increments must be used, such as

in the case of material nonlinearities defined by the incremental theory of

plasticity, this approach fails from an efficiency standpoint (in that small

increments must be used).

8.3.7 Adequacy of Models and Methods

In dealing with curved structures one ideally should use curved elements.

However, such elements are often complicated and time consuming (computation-

ally). Thus, flat or shallow elements are well worth considering. To model

a curved structure with these simplified elements generally requires using

a fine mesh. Although the system of equations increases with mesh size, such

a substantial savings can be realized from the simplicity of element genera-

tion that the overall cost may be comparable to higher order elements. For

complicated structures or situations where fine detail in distributions is

required a fine mesh would be necessary regardless of the element sophistica-

tion.

Considering Tables 8.4 and 8.5 one may observe that for fine meshes the

flat elements are reasonably adequate. Since these elements are so simple

to generate this is a very appealing approach to curved structures. One finds,

however, that with a small increase in sophistication, shallow elements give
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quite good results (Tables 8.6 and 8.7) even for coarse meshes (of a shallow

structure). There does seem to be a degradation in the moments. To obtain

good displacements and stresses one must utilize a fine mesh. For a given

mesh size the shallow elements always produce better results. It might be

stated that for crude results using a crude (coarse) mesh one would be better

off using shallow elements, while for fine, detail meshes either flat or

shallow elements may be used.

It is worthwhile mentioning here that the consistent models yield essen-

tially the same results as the inconsistent models. This is true for both

flat and shallow elements. However, with a much greater computational effort

required, the efficiency of the consistent models is low. Because of this

observation, as well as the one in Subsection 8.2, it was decided to eliminate

this model from further numerical study.

The comparisons given in Subsections 8.3.3, 8.3.5, and 8.3.6 led to the

decision that for plate and shell analysis the Marguerre theory would be used

and, with the exception of a few cases, a total equilibrium check with an

incremental-iterative procedure would be used for further analysis. The

comments of Subsection 8.3.4 indicated that although for fine meshes the S.L.

and C.U.L. systems give approximately the same results, the better choice is

somewhat problem dependent. It must be remembered that this effect is due

solely to the approximations in the elements and not because of any incon-

sistencies in the general theory.

Overall, however, the efficiency of the inconsistent flat and shallow

models seems quite adequate. Note that Pirotin's best result, where no checks

are used, is still in error. Considering Fig. 8.11 it can be seen that the

simple shallow elements with no checks give comparable results to Pirotin's

curved elements. When a stress equilibrium check is added better solutions

are obtained with the shallow elements.

8.4 Shallow, Circular Arch Under a Central Concentrated Load

The shallow circular arch shown in Fig. 8.28 was studied. Two mesh sizes

of three and nine elements/half span utilizing shallow elements and the S.L.

system were used. A total equilibrium check was incorporated in an incre-

mental-iterative scheme. Two load step sizes were used. In the first, ten
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load increments were used to demonstrate the overall shape of the solution.

The second used just one step corresponding to the maximum load used in the

previous case. For both load step sizes a convergence ratio of R = 0.001 was

used. Both meshes yield excellent results as shown in Fig. 8.29 differing

from each other only near the buckling load. Note that when only one load

step is used, its solution corresponds exactly to the total load of the ten

step solution. These solutions are extremely efficient. The symmetry condi-

tion was not utilized and the C.P.U. times, therefore, refer to a solution

for the entire arch. By modelling only half the arch these execution times

would all be below one second. The independent solutions are by Dupuis [1971],

Bathe [1973], and Mallet [1966].

8.5 Flat Plates Under Uniform Loads

The large deflection solutions of a simply supported plate by triangular

elements, were studied in some detail. The effects of mesh size, solution

technique, coordinate system, and element type were studied. Based on these

results only a limited study was conducted for a clamped plate.

Stresses are generally given at the node corresponding to the point of

interest. Since the moments vary linearly, in general, within an element,

the nodal value can be determined. If two or more elements meet at the same

node, then nodal averaging is used. The membrane stresses are only constant

within an element. Thus, the average of all element values connected to a

node are used. If only one element contains the node of interest, then the

values from the two elements forming a quadrilateral containing that node are

averaged.

8.5.1 Simply Supported Plates

Levy [1942a] was one of the first investigators of this problem. His

series solutions are used as a reference. Later investigators include Bcklund

[1973], Bergan [1972], and Kikuchi and Ando [1973]. The example considered

is a thin, square, initially flat plate shown in Fig. 8.30. Bcklund used a

modification of Reissner's principle, Bergan used a displacement model, and

Kikuchi and Ando used the assumed displacement hybrid approach. While the

two former writers included the effects of equilibrium checks the latter used

only a basic functional. Bergan utilized quadrilateral elements where the

174



other finite element schemes utilized triangular elements. Bicklund and

Bergan used 4x4 meshes of flat and shallow elements respectively in a sym-

metric quarter of the plate while Kikuchi and Ando used a 5x5 mesh of shallow

elements.

Figures 8.31 and 8.32 show some solutions at the center of the plate by

the present method. Here a simple 2x2 mesh of flat elements (r ) and a C.U.L.
mc

system was run varying the increment size in a purely incremental scheme.

Additionally, the effect of a stress equilibrium check was measured. Although

the stress equilibrium check aided the displacement solution, using a smaller

increment size had a more pronounced effect. It was possible to achieve a

reasonable displacement solution with this coarse mesh. For the stress solu-

tions the same general comments apply. It appears, however, that the shape

of the moment curve is substantially different from Levy's.

Figures 8.33 and 8.34 show the same solutions for a 4x4 mesh. Essentially

little improvement is apparent in the displacement and membrane stresses.

While the moment solution has shifted considerably, its shape is still sub-

stantially different than Levy's. It turns out, however, that the present

moment solution agrees very well with Bicklund and Bergan as shown. Others

[Murray and Wilson, 1969] have also shown Levy's moment solution to be in

error.

From these plots two facts became evident. Firstly, that while displace-

ments and membrane stresses benefitted very little from a finer mesh, the

moment solution was highly dependent upon mesh size. Secondly, that the stress

equilibrium check was necessary for an improved solution and- small load steps

are necessary. Since equilibrium checks are necessary, a more efficient

scheme would be to utilize the incremental-iterative methods with a total

equilibrium check (to ensure convergence).

Figures 8.35 and 8.36 show such a case. Using an S.L. system, and a 4x4

mesh, three load steps, and a convergence ratio of 0.001, the analysis was

run out to a considerable degree of nonlinearity. Excellent agreement was

achieved for both displacements and stresses (noting the error in Levy's

moment solutions).
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Using the same basic procedure a variety of other cases were run for a

load parameter of 150 for easy comparison. Various load steps, both coordi-

nate systems for flat elements, and a shallow element in the C.U.L. system

were used. For the S.L. system only flat elements (or a shallow element

degenerated to a flat element) can be used because the initial geometry is

flat. Table 8.11 presents these solutions with others previously mentioned

as references. The nomenclature on this table corresponds to that of Fig.

8.30.

The flexibility error discussed in Subsection 8.3.4 can be observed here.

Since the deformation causes an increase in curvature it is expected that the

S.L. system will produce better results than the C.U.L. system. This is

observed for flat elements although the effect is small. Also, the shallow

element should be little affected by this. One notes that the shallow element

result is, in fact, stiffer than the flat one. Another significant fact is

the cost differential between the two coordinate systems. The reasons for

this are given in Subsection 8.3.4.

While all the displacement solutions agree well, there are discrepancies

in the stresses. The present solutions agree reasonably well with Bicklund

and Bergan. Although Kikuchi and Ando use a 5x5 mesh and many more incremental

steps (this is a purely incremental procedure) the membrane stress (no moment

available) seems a bit higher than the other finite element solutions. This

solution may not be fully converged since no checks or iteration are used.

Again, it is difficult to say what the exact moment solution is, but reason-

able agreement with Bicklund and Bergan is achieved. A curious phenomenon

occurs with the moment solution for the shallow element. it turns out that

the moment distribution within the element is poor and, therefore, this

result is only marginal. The element centroidal moment is in good agreement

with the other results.

8.5.2 Clamped Plates

Way [1938] and Levy [1942b] solved this problem by a series solution. A

finite element solution was carried out by Kikuchi and Ando using the same

system as for simply supported plates. Prato 19681 utilizes a mixed model

based on Reissner's principle. In a quarter of the plate an 8x8 mesh of flat,
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triangular elements and an S.L. system are utilized. Equilibrium checks are

incorporated in an iterative scheme.

Table 8.12 shows some results obtained with a 4x4 mesh Cr ) by the
mc

present methods compared to some independent solutions. The plate considered

is shown in Fig. 8.37. Basically, a total equilibrium check and an incre-

mental-iterative procedure were used. For the S.L. system a flat element

case was run and for the C.U.L. system a flat and shallow element case were

run. Note that two different values of Poisson's ratio were run because Way

and Levy ran two different values. Such a small change (.300 to .316) should

not significantly alter the results, however, the two series slutions show a

discrepancy in the membrane stresses. In the present work no such difference

occurred.

Only limited data is available for Kikuchi and Ando, and Prato. The

displacements all agree reasonably well. One observes the flexibility error

coming into play for the flat elements. The membrane stress solutions also

agree well with the reference finite element schemes. They also fall somewhere

between the two series solutions. For the moments, the solutions by the

present method seem to agree reasonably well with each other and both series

solutions. Prato's result seems somewhat high.

It is worthwhile mentioning that although the total number of solution

steps required for each of the cases run under the present method is the same,

the total execution time is quite different. This is accounted for by the

greater computational effort (in terms of integrations) required by the C.U.L.

system.

While the flat elements in the S.L. system give adequate results, the

shallow elements seem to yield superior stresses. From an efficiency stand-

point, however, the flat elements in the S.L. system is the superior choice.

8.6 Shallow, Cylindrical Panel Under uniform Load

Although no series solution for this problem is given, there are three

finite element schemes used for comparison. In addition to the works of

Kikuchi and Ando, and Prato (from the previous subsection), a displacement

solution is presented by Brebbia and Connor [19691. The particular panel

under consideration is shown in Fig. 8.38. Brebbia and Connor use the
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standard displacement method in an S.L. system. For a quarter of the panel

an 8x8 mesh of rectangular, shallow, cylindrical panel elements are used.

Prato used a 6x6 mesh.

Table 8.13 shows various solutions by the present method using a 4x4

mesh compared to the above references. The location of these values is noted

in Fig. 8.38. Note that in the S.L. system two types of shallow shell elements

are used. In the first case, only the flat plate, linear moments are used

with the z terms (height above base plane) kept in the functional. The second

case satisfies the total shallow, linear moment equations. This was discussed

in Subsection 7.2.1. For the C.U.L. system a flat element and a shallow

element of the latter type were used.

The two types of shallow elements exhibit basically the same behavior.

In fact, with the exception of one of the moment results, they agree quite

well. These shallow elements have a stiffer behavior than the flat elements.

The flat elements again exhibit the flexibility error effect betweeen the two

coordinate systems. Since, in this case, the deformation tends to reduce the

curvature, the C.U.L. system yields better results. However, considering the

cost factor involved with the C.U.L. system the S.L. results yield more effi-

cient solutions.

The displacement solutions for the shallow elements seem to agree rela-

tively well with Brebbia and Connor,. and Prato. Kikuchi and Ando seem to

exhibit a flexible solution, however, since this information was extracted

from a plot of low resolution this value may not actually be so high. The

membrane stress solutions all seem to agree well regardless of the model.

Note again the discrepancy in moments. Comparison is only available from

Prato and again his result seems to be considerably high. Since his result-

ing moments were high in the previous subsection when compared to other

independent solutions, it is suggested that the moments obtained by the

present methods are more accurate.

8.7 Spherical Cap Under Central Concentrated Load

The problem depicted in Fig. 8.39 was solved by Leicester [1966] using a

series solution, by Dhatt [1970] and by Thomas and Gallagher [1975] using

finite element schemes and an S.L. system. These latter models are modifica-

tions of the displacement method, utilizing triangular shell elements.
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It is the only example of a doubly curved shell given in this work. The

structure actually exhibits a snap through buckling behavior as discussed by

the above authors. The present analysis does not include post buckling

behavior, but the example is a good one in that buckling loads are often

difficult to obtain. Utilizing a 4x4 mesh in a quarter of the shell (as

opposed to a 3x3 meshused by the above writers) flat and shallow elements

were run for the S.L. system while just a flat element was run for the C.U.L.

system. A total equilibrium check incorporated into an incremental-iterative

scheme was used.

For the S.L. system, four load steps with.a convergence ratio of 0.001

were used to ensure that the shape of the solutions was correct. In the

C.U.L. system only one load step with a convergence ratio of 0.00001 was used

to ensure convergence. The flat elements in the S.L. system yield good

results (Fig. 8.40) until near the buckling load. Even at this point, the

error is of the order of three percent. However, since the deformation of

the actual structure tends to reduce the curvature it is expected that the

C.U.L. system would yield better results. To show this, a C.U.L. system

using flat elements and only one load step very near the buckling load was

run. As can be seen, a stiffening affect does occur. A shallow element,

where the moment satisfies the complete linear equation, was run next using

an S.L. system. This solution is in excellent agreement with the other

independent sources.

8.8 Shallow, Cylindrical Panel Under Axial Compression

Shown in Fig. 8.41 this pzoblem has been considered by Schmit et al.

[1968] (see also Bogner, 1968) utilizing an energy minimization scheme in the

S.L. system and by Pirotin [19711 using what actually amounts to an incon-

sistent assumed stress hybrid finite element scheme. Both writers use

rectangular shell elements. Schmit et al. has a high order assumed displace-

ment shell element with 48 dofs. Pirotin's element has 20 dofs and uses a

C.C. system for solution. While the former uses an iterative solution proce-

dure, the latter uses a purely incremental scheme with no equilibrium check

terms, requiring a large number of load steps.
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The boundary conditions of this problem attempt to simulate the edgewise

loading of a cylindrical panel in a testing machine. The compression-deforma-

tion behavior is demonstrated in Fig. 8.42. Note that the central node first

begins to rise and then reverses its direction until snap through buckling

occurs. In this figure Pirotin' s solution corresponds reasonably well with

Schmit's. Both these authors used 2x2 meshes in a quarter of the shell and

it is not clear what would happen if more elements were used.

Using an S.L. system and flat elements, by the present method the solu-

tion using a 2x2 mesh is very poor. Although a 4x4 mesh yields a reasonable

result, a 6x6 mesh gives a good comparison. Furthermore, when one considers

the average edge load, N , versus the edge compression (Fig. 8.43) it becomes
x

evident that the load carrying capability predicted by the present method

converges to a considerably lower value than the independent solutions.
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SECTION 9

SUMMARY AND CONCLUSIONS

9.1 Summary

Numerical methods have been developed to study the large deflection,

small strain behavior of thin, linearly elastic structures. These procedures

are based upon two variations (the inconsistent and the consistent models) of

the assumed stress hybrid finite element method.

Unlike small deflection theory, in large deflection analysis the deformed

and undeformed structure may no longer be thought of as existing in coincident

coordinate frames. Even under small strain restrictions the rotations, corres-

ponding to rigid body mdoes, may be large. Thus, different coordinate systems

may be used to describe the deformed and undeformed geometries. Basic descrip-

tions of these coordinate systems are presented. The relative advantages and

disadvantages of using a single fixed frame (stationary systems) or using

combinations of coordinate frames (updated systems) are discussed. Further-

more, the concept of moving coordinate frames (convected systems) to further

facilitate the analysis is discussed.

Of course, the use of such coordinate frames involves different defini-

tions of stresses and strains. These tensors, as well as the constitutive

relations, are carefully defined with respect to their reference frames.

Since energy principles are sought, it becomes necessary to insure that con-

sistent sets of stresses and strains are used. Additionally, the energy

principles are shown to be equivalent regardless of the reference frame used.

Although these concepts were introduced in a completely general sense, the

convenient reductions in complexity due to certain approximations are stated.

Namely the approximations of linear elasticity, small strains, and moderate

rotations are discussed. Because of some confusion which seems to exist,

comparisons in terminology of the present work and a few selected authors in

the literature are tabulated.

Since eventhe simple initial geometry of a structure may become complex

after deformation, elements which could conform to such distortion are ideally

required. However, general, doubly curved elements are difficult and costly
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to generate. This, coupled with the normally costly process of nonlinear

analysis, suggested the use of simpler elements which could approximate the

general geometry. The simplest such element is a flat one. Adding only a

slight degree of sophistication results in a shallow element. Thus, two node,

six degree of freedom flat and shallow beam elements were developed. For

plate and shell analysis, three node, fifteen degree of freedom flat and

shallow triangular elements were developed. The reasons for this were twofold.

Firstly, they permitted an inexpensive tool for comparative purposes. Secondly,

the effectiveness of these simple elements could be tested.

The linear theory was, therefore, extended to large deflection, small

strain, moderate rotation theory for thin structures obeying the Kirchhoff

hypotheses. The equations of elasticity are discussed under two shallow

structure theories, namely the Kirchhoff-Love and Marguerre theories. The

further reductions in the general theory applicable to thin plate and shell

structures are discussed. The relationships of the various coordinate systems

are discussed in prospective with the appropriate theories and approximations.

A result of these discussions is to choose the coordinate systems most appro-

priate for the ensuing analysis.

Two such systems were chosen. The first of these is the Stationary

Lagrangian (S.L.) system. Based on this frame of reference a general incre-

mental formulation of the variational principles is given. Starting with the

Principle of Virtual Work the derivation develops the appropriate variational

statements for the Principle of Stationary Total Potential Energy and the more

general Hu-Washizu principle. From this, Reissner's principle is derived and,

by appropriate expansion, the modified Reissner principle for an assemblage

of elements is established. The analysis is then extended to the consistent

assumed stress hybrid functional and its counterpart, the inconsistent assumed

stress hybrid functional. Through the entire development no approximations

are made until the very end. At this point the variational statements are

appropriately linearized under the assumptions of small increment size.

Additionally, the complete equilibrium checks are identified. It is further

shown how the stress equilibrium check, in particular, can be more easily

incorporated in these hybrid formulations than the conventional Hofmeister

et al. type check.
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The second coordinate system chosen for study is a combination of two

more popular updated systems. It is the Convected, Updated Lagrangian (C.U.L.)

system. A parallel derivation to that of the S.L. system is developed for

easy comparison. Thus, the corresponding variational statements, and comments,

are given. It is noted that while these assumed stress hybrid functionals

could have been developed more directly from the Principle of Virtual Comple-

mentary Work, given in Appendix B, the more conventional approach is used so

that a variety of variational statements could be shown.

The general matrix equations associated with the consistent and inconsis-

tent assumed stress hybrid models is developed in detail for each of the two

coordinate systems. The matrices associated with the basic functionals, and

each type of equilibrium check (stress and compatibility) are separately

identified. It is then suggested that under certain assumptions some matrix

terms may be removed or altered to simplify the analysis. They include

assuming that stress equilibrium and/or compatibility is exactly satisfied in

the reference state; that external loads may be lumped at the nodes; and that

certain displacement mismatch conditions are removed.

From these matrix equations, the element level tangent stiffness matrix

and load vector are identified. Utilizing the appropriate coordinate trans-

formations, it is shown how these element level matrices may be assembled

into global matrices and finally into global equations necessary for solution.

Once the global equations are established the general methods and procedures

for solution are discussed. Various incremental and incremental-iterative

schemes with various equilibrium checks are explored.

These general matrix equations are then considered for the actual thin

linear elastic elements to be used. Flat and shallow (Marguerre) beam elements

for the consistent and inconsistent models in the S.L. and C.U.L. systems are

discussed. Further comments about shallow beam elements based on the Kirchhoff-

Love theory are made. The details of flat and shallow (Marguerre) triangular

elements appropriate for plate and shell analysis are given. For nonlinear

plate and shell analysis only the inconsistent model was deemed useful. It

was thus developed for both coordinate systems. For the linear prebuckling

of plates, however, both the consistent and inconsistent models were utilized.
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With the detail matrices now available the fine points of the computa-

tional procedures are discussed. The merits and drawbacks of three solution

schemes are examined carefully. The details of the step by step methods are

shown. The updating of the displacements, stresses, strains, and geometry

for both coordinate systems is discussed. General comments are given concern-

ing what the most efficient processes are. Finally, this information is put

to use to make actual numerical investigations.

The first example considered was the linear prebuckling of a flat, square

plate under uniform, uniaxial compression. Both models were run with varying

mesh sizes, and comparisons were made with various independent solutions.

For the first nonlinear case a simple shallow, sinusoidal arch under sinusoidal

pressure was run. This problem was used to make several investigations rela-

tively inexpensively. Such studies included comparisons of the inconsistent

and consistent models, of the flat and shallow elements, of the Kirchhoff-

Love and Marguerre theories, of the S.L. and C.U.L. systems, of the equili-

brium checks, and of the solution procedures. From this information the

adequacy of the models, elements, and procedures was discussed. Decisions as

what to use for further analysis was also made. Utilizing the most efficient

schemes from this problem, a shallow, circular arch under a central concen-

trated load was considered. This problem, which is compared to other inde-

pendent solutions, demonstrates the great efficiency which can be achieved by

the present work.

The large deflection of simply supported and clamped, square, flat plates

was considered next. Some of the investigations made for the sinusoidal arch

problem were run here to further verify some decisions previously made. Only

brief investigations were made for three shell problems. These studies

generally included performance comparisons of flat and shallow elements and

of the S.L. and C.U.L. systems. The first of these was a shallow, cylindrical

panel under uniform pressure. This problem was useful for element and

coordinate system comparisons. The next was a spherical cap under a central

concentrated load. This was the only doubly curved shell considered. Addi-

tionally, this problem exhibts a limit load buckling phenomena. Since buckl-

ing loads are often difficult to obtain, this case gave useful information as
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to the accuracy of the elements. Lastly, a shallow, cylindrical panel under

axial end shortening was run.

The conclusions based upon these numerical calculations are the subject

of the next subsection. Following that are some suggestions for future re-

search. Finally, the table at the end of this subsection is a partial list-

ing of the work which can be found in the literature which pertains to the

finite.element analysis of the large deflection, small strain behavior of

thin, linearly elastic structures.

The nomenclature used in the table may be interpreted as follows:

IT: This represents the variational statements upon which the finite element

method is based. The functionals in the table correspond to the models

listed below.

Tr= displacement model (compatible and noncompatible)
p

Th = assumed displacement hybrid model (based on a modification of )
hd p

TR = mixed model (based on Reissner's principle)

Tr = mixed model (based on modified Reissner principle)
mR

7I = inconsistent assumed stress hybrid model
mc
CT = consistent assumed stress hybrid model
mc

COORD: This corresponds to the coordinate system used.

SL = Stationary Lagrangian system

CC = Convected Coordinate system

UL = Updated Lagrangian system

CUL = Convected, Updated Lagrangian system

SOLN: This designates the general solution procedure used. Note that

there are many ways to incorporate such solution procedures. Thus, the

details of each solution technique can be found in each reference. They

may not be quite the same as in this work.

ES = energy search (energy minimization)

SS = successive substitution

SC = self correcting
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PC = predictor corrector

I = incremental

I-I = incremental-iterative

Note that this last case may be specialized to either a purely incre-

mental or a purely iterative procedure.

CHK: This refers to the type of equilibrium check used. Since there are

many ways to apply such checks one must refer to each reference for the

exact type of check, designated here by 'E'.

- = no check terms

E = equilibrium check used (see reference for specifics)

T = total equilibrium check used (stress and compatibility)

In this work, this last case may be specialized to include each check

separately.

ELEMENT: This refers to the type of elements to be found in each reference.

The code may generally be split into the following:

K Y Z..

specific element type

curvature of element

type of analysis used for

X = B: beam (or arch) analysis

P: flat plate analysis

S: shell analysis

ISO: isoparametric elements

Y = F: flat element

S: shallow element

C: curved element

A: axisymmetric element

Z = CP: cylindrical panel

SR: shell of revolution

T: triangular

DCT: doubly curved triangle

DCR: doubly curved rectangle
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TT COORD: SOLN. CHK. ELEMENT REFERENCE

TT SL ES PoF SCCP SCHMIT ET AL. [1968]
p

7T SL Ss SASR STRICKLIN ET AL. [1968]

TrU SL SC E SASR STRICKLIN ET AL. [1972]

Iff SL PC B S PIAN AND TONG [1971]

Uf SL E- ISO BATHE ET AL. [1974]
p

7T pSL EI SST YAO [1968]

7T pSL I-ISS550 BREBBIA AND CONNOR [1969]

UT SL I-I E SCDCT RODRIQUEZ [1969]

UT pSL IE SCDCT THOMAS AND GALLAGHER [1975]

UT pcc I-BC PIROTIN [1971]

H
co
-.4



COORD: 
I

SOLN.- CHK.1

I F

ELEMENT RIE FE RE NC E

UL p UL SASR YAGHMAI [1969]

UL - E ISO BATHE ET AL. [1974]

7TCULIIB SFT MURRAY AND WILSON [1969]
p ,_ ___L

TfCUL - SASR BELYTSCHKO AND HSIEH [1973a]

CULp IU- BF, SFT BELYTSCHKO AND HSIEH [1973b]

SL I -S SST KIKUCHI AND ANDO [1973]

If dUL I-I E ISO ATLURI ET AL. [1975]

TfRSL PC- BS, SASR PlAN AND TONG [1971]

TR cc I- BC PITOTIN [1971]

MRSL I-I E SST PRATO [1968]

7T

Hco
OD



7T COORD: SOLN. CHK. ELEMENT REFERENCE

7T CULI- E BF, SF BACKLUND [1973)

MR

IT SLI- T BF, ES PRESENT WORK
inc

7f SL I" T SFT, SST PRESENT WORK
inc

TIccI- BC, SCDCR PIROTIN [1971]
ro

7TI CULII T EF, ES PRESENT WORK
mnc

I
IT Mc CULII T SFT, SST PRESENT WORK

c

7f V cc I-BC ATLURI [1973b]

Ic

Tr c CULII T EF, ES PRESENT WORK

HODLO



9.2 Conclusions

Based upon the general derivations given in Sections 4 and 5 as well as

those given in Appendix B, it becomes obvious that unlike linear analysis,

stresses and displacements couple through the stress equilibrium equations.

This becomes a drawback of the assumed stress hybrid methods, for now dis-

placement fields must be chosen on the interior of the elements. Additionally,

for the consistent model, the stress interpolations must contain both unknown

stress and displacement quantities. As discussed in Section 6 this leads to

two difficulties. Firstly, for an S.L. system unsymmetric stresses must be

assumed which may, in general, be complicated. This is highly unattractive

and alternative stresses (first Piola) may have to be used throughout.

Secondly, in both coordinate systems the computational effort to generate

element level matrices is enormous compared to more standard approaches, or

the inconsistent model. The only justification for such an increase in

expense would be a comparable increase in accuracy.

The linear prebuckling of a flat plate and the sinusoidal arch problems

clearly demonstrate that the results obtained by the consistent model (in the

C.U.L. system) are only, at best, slightly better than those obtained by the

inconsistent model. The conclusion must be drawn that, for these simple

elements, the former model is definitely less efficient. Although the

inconsistent model appears to be very similar to a modified Reissner model,

it should be computationally slightly more efficient as may be seen from

Appendix C. Pirotin [1971] has also demonstrated the superiority of the

basic inconsistent model to a basic model derived from Reissner's principle.

Comparisons demonstrate that, based on these assumed stress hybrid

functionals, shallow elements perform better than flat elements for a given

mesh size. It is also shown that the solution of a problem requires approxi-

mately the same number of solution steps for both elements. Yet the shallow

elements require only an insignificant amount of additional computation time.

Thus, from an efficiency standpoint, it appears that shallow elements are

superior. However, if fine meshes are used flat elements will yield compar-

able results. Either of these elements will yield, in general, satisfactory

results for curved structures. If extreme accuracy is needed then perhaps a
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more sophisticated element is required. For most practical engineering

applications, these simple elements will suffice.

Although not much difference is observed between the Kirchhoff-Love and

Marguerre theories utilized on the element level it is more convenient to use

the latter for simple elements. While the former might be slightly more

accurate and more elegant, the latter is more straightforward and a more

logical extension of plate theory.

For the elements and assumptions considered in this work the S.L. system

has considerable computational advantage over the C.U.L. system. Thus, from

an efficiency point of view it is generally better. However, because of the

approximations in the elements (especially the flat ones) different solutions

are obtained by each system. This is basically attributed to the "flexibility"

errors discussed in Section 8 and not to the basic derivations. If accuracy

is the only criterion for the choice of system to be used, then a simple rule

generally applies. If the structure deforms such that its curvature increases,

then the S.L. system will yield more accurate results. If deformation causes

a decrease in curvature, then the C.U.L. is more appropriate.

From an efficiency point of view, all the equilibrium checks should be

included regardless of the element type or coordinate system considered. In

conjunction with this, the incremental-iterative procedure is by far the most

efficient. It must be stressed that these statements pertain only to large

deflection, small strain, linear elasticity, where large incremental steps

may be used.

The inconsistent assumed stress hybrid model seems to yield comparable

results with other models and methods previously considered. It is difficult

to make definitive appraisals as to its efficiency. However, it is felt that

this model should be at least as efficient as the more widely used schemes

for most problems.

9.3 Suggestions for Further Research

Sins a this work was limited to rather simple elements the inconsistent

model should be used to formulate higher order elements. As a first type,

the elements of Appendix E should be considered in more detail. Ultimately,

deep, doubly curved elements should be developed (see Piortin [1971] and
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Tanaka [19691). Additionally, it would be interesting to see how fully three

dimensional elements would behave.

Models using the modified Reissner principle, outlined in matrix form in

Appendix C, should also be investigated. Since the only difference between

this model and the inconsistent assumed stress hybrid model lies in the satis-

faction of the linear stress equilibrium equations, it would be interesting

to compare them to each other. Although the former model requires a small

addition in computation time, the latter may suffer from imposing an incon-

sistent constraint.*

Continuing on this line of thought, it might be appropriate in the

inconsistent model for the boundary tractions to be equated to the linear

boundary stress only (in a manner corresponding to the stress equilibrium

equations). The effect of this would be to eliminate nonlinear boundary

traction terms in the inconsistent functionals. Since such terms are always

multiplied by displacement mismatch terms, their effect may always be small.

If it can be shown that these terms are negligible (perhaps for just a class

of problems) great simplifications can be made.

The behavior of such models should also be studied under combined non-

linearities. The effects of plasticity alone have been studied by Spilker

[1974]. Combining material nonlinearities, such as plasticity and creep,

with geometric nonlinearities is an essential engineering problem.

Although the consistent assumed stress hybrid model has proven to be

difficult to deal with, perhaps an alternative stress approach could be

investigated. As shown in the derivation of the Principle of Virtual Comple-

mentary Work (Appendix B), the first Piola stress is used. It may be that

this, or some other definition of stress, would yield a rather simplified

functional. In fact, written in the form of the Piola stresses the stress-

displacement coupling is eliminated and, perhaps, a functional with the

advantages the linear systems exhibit may emerge. Of course, the drawback

here is that the Piola stresses are unsymmetric. However, this may not be

a problem.

Recently, Horrigmoe [19751 has applied the modified Reissner principle to
large deflection analysis.
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The most logical first extension of this work would be to include the

postbuckling behavior of structures under the same assumptions and approxima-

tions made here. This would involve changing the solution scheme at (or

actually just before) the point of buckling. Before this change the analysis

could be carried out as in this work. When large softening occurs (a large

number of solution steps required in a load increment) the independent vari-

able for solution must become the displacement rather than the load.

Choosing one displacement, which has the largest rate of change with

respect to the load, the corresponding load increment and the remaining nodal

displacements can be determined using a scheme presented by Pian and Tong

[1971]. The procedure must be used for an incremental step with no equili-

brium imbalance load included. This is so because the load distribution must

be known within a single multiplicative constant which is to be determined

and not known a priori. Once this step is carried out, the analysis may

return to an iterative procedure until convergence for the determined load

step is achieved. From this point on one should always proceed at the begin-

ning of a load step by changing the independent variable since the load path

may change directions again (a change in sign of the stiffness matrix deter-

minant). It is conceivable that upon iteration the solution will tend to

diverge. If this is the case, a smaller incremental displacement must be

chosen to determine the size of the load step.
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TABLE 8.1

COMPARISON OF MODELS FOR THE LINEAR PREBUCKLING OF A

FLAT, SQUARE, SIMPLY SUPPORTED PLATE UNDER A UNIFORM,

UNIAXIAL EDGE COMPRESSION (EXACT SOLUTION = 4.000)

NO. OF DIV. TRIANGULAR ELEMENTS
FOR ONE DISPLACEMENT MOD. REISSNER HYB. DISPL. ASSUMED STRESS HYBRID
QUARTER NONCOMPATIBLE INCONSISTENT CONSISTENT

OF PLATE ANDERSON ET AL. ALLMAN [1971] ALLMAN [1971] KIKUCHI AND PRESENT WORK PRESENT WORK
[1968] A1DO [1972]

lxl 4.479

2x2 3.72 3.72 4.031 4.021 4.030

4x4 3.94 4.006 4.003 4.005 4.005

5x5 3.90

6x6

RECTANGULAR ELEMENTS
DISPLACEMENT HYB. STRESS

NONCOMPATIBLE COMPOUND COMPATIBLE INCONSISTENT
KAPUR AND CLOUGH AND CARSON AND

HARTZ [1966] DAWE [1969] FELIPPA [1969] NEWTON [1969] LUNDGREN [1969]

lxl

2x2 3.770 3.978 4.126 4.001

4x4 3.933 3.993 4.031 4.000 3.945

5x5

6x6 3.977

IQ
0
LI'



TABLE 8. 2

COMPARISON OF A FINITE ELEMENT SOLUTION (UTILIZING

SHALLOW ELEMENTS IN THE STATIONARY LAGRANGIAN SYSTEM)

WITH EXACT MARGUERRE SHALLOW ARCH THEORY FOR A SHALLOW, SINUSOIDAL

ARCH UNDER VERTICAL SINUSOIDAL PRESSURE

(p= 187.5, SEE FIG. 8.2b)

6 ELEMENT SOLUTION

SOLUTION

18 ELEMENT SOLUTION
_______ + I

% ERROR SOLUTION % ERROR

W 0.62600 0.62719 0.190 0.62583 -0.027

1S 2.60755 2.60943 0.072 2.60717 -0.015

14 1.64757 1.82102 10.528 1.66613 1.127

w
- C

2
A
I

=N 3
E= (10
EA

M EI(10)
EI

- p0L4 A
2EI I
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TABLE 8.3

COMPARISON OF THE KIRCHHOFF-LOVE AND MARGUERRE

THEORIES FOR THE SHALLOW, SINUSOIDAL ARCH PROBLEM (p = 187.5)

(SEE FIGURE 8.2)

PARAMETER KIRCHHOFF- MARGUERRE % DIFFERENCE
LOVE

w 0.635 0.637 0.315

N 2.634 2.636 0.076

M 1.673 1.675 0.121

- c
W
2

A
I

N .3
EA

-MLm = El (10)
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TABLE 8.4

SHALLOW, SINUSOIDAL ARCH UNDER SINUSOIDAL PRESSURE-COMPARISON OF VARIOUS

SOLUTION PROCEDURES AND MESH SIZES FOR FLAT ELEMENTS IN THE

STATIONARY LAGRANGIAN SYSTEM (p = 187.5)

REF.

SOLN.

1=10

S=10

t=0. 38

I=40

S=40

t=1. 01

I=10

TEQCK

I=40

TEQCK

I=10

R=0.01

PRESENT WORK 6 FLAT ELEMENTS (7f mc

S=10

t=0.38

S=40

t=1. 14

S=25

t=0.77

S=33

t=0.93

I=10 I=5 I=5

R=0.001 R=0.01 R=0.001

S=15

t=0.48

S=18

t=0.53

0.644 0.6011 0.699 0.67910.763 0.82710.82810.826 0.82810.825

N 2.648 2.517 2.754 2.711 2.902 3.043 3.044 3.040 3.044 3.039

M 1.692 1.597 1.856 1.803 2.025 2.196 2.197 2.192 2.197 2.191

REF. I=10 I=40 I=10 I=40 I=10 I=10 I=5 1=5 I=1

SOLN. TEQCK TEQCK R=0.01 R=0.001 R=0.01 R=0.001 R0.001

PRESENT WORK 18 FLAT ELEMENTS (ifmc

S=10 S=40 S=10 S=40 S=22 S=29 S=13 S=16 S=5

t=1.03 t=3.11 t=1.08 t=3.27 t=1.94 t=2.46 t=1.18 t=1.35 t=0.49

W 0.644 0.556 0.619 0.613 0.649 0.655 0.655 0.654 0.655 0.655

N 2.648 2.422 2.583 2.571 2.658 2.672 2.672 2.671 2.672 2,672

M 1.692 1.448 1.612 1.597 1.690 1.705 1.705 1.704 1.705 1.705

SEE FIG. 8.2a FOR NOMENCLATURE

0

I=1

R=0.001

S=6

t=O.21



TABLE 8.5

SHALLOW, SINUSOIDAL ARCH UNDER SINUSOIDAL PRESSURE-COMPARISON OF VARIOUS

SOLUTION PROCEDURES AND MESH SIZES FOR FLAT ELEMENTS IN THE

CONVECTED, UPDATED LAGRANGIAN SYSTEM (p = 187.5)

REF.

SOLN

I=10 I=40 I=10

TEQCK

I=40

TEQCK

I=10 1=10

R=0.01 R=0 .001

1=5

R=O.01

PRESENT WORK 6 FLAT ELEMENTS (I
_mc

S=10

t=O.41

S=40

t=1. 25

S=10

t=0.45

S=40

t=1. 35

S=22

t=0.86

S=29

t=1. 02

S=13

t=0.57

=5

L R0. 001

S=16

t=0.64

1=1

R=0. 001

S=5

t=0.21

W 0.638 0.592 0.677 0.649 0.692 0.696 0.696 0.697 0.6961 0.696

N 2.634 2.497 2.708 2.647 2.749 2.760 2.760 2.762 2.760 2.760

ml 1.684 1.578 1.806 1.737 1.854 1.867 1.867 1.868 1.866 1.866

REF. I=10 I=40 I=10 I=40 I=10 I=10 I=5 I=5 I=1
SOLN. TEQCK TEQCKjR=0.01 R=0.001 R=0.01 R=0.001 R=0.001

PRESENT WORK 18 FLAT ELEMENTS (Imc

S=10 S=40 S=10 S=40 S=22 S=29 S=13 S=16 S=4

t=1.12 t=3.75 t=1.17 t=4.01 t=2.37 t=3.08 t=1.55 t=1.74 t=0.52

W 0.638 0.554 0.617 0.608 0.640 0.644 0.644 0.644 0.644 0.644

N 2.634 2.419 2.578 2.558 2.637 2.647 2.647 2.647 2.647 2.647

M 1.684 1.450 1.613 1.593 1.679 1.691 1.691 1.691 1.691 1.691

SEE FIG. 8.2a FOR NOMENCLATURE

K)
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TABLE 8.6

SHALLOW, SINUSOIDAL ARCH UNDER SINUSOIDAL PRESSURE-COMPARISON

SOLUTION PROCEDURES AND MESH SIZES FOR SHALLOW ELEMENTS

STATIONARY LAGRANGIAN SYSTEM (p = 187.5)

OF VARIOUS

IN THE

REF.

SOLN.

I=10 I=40 I=10 I=40 I=10 I=10 j

TEQCK TEQCK R=0.O1 R=0.001

I=5

R=O.01

I=5

R=0. 001

1=1

R=0. 001

PRESENT WORK 6 SHALLOW ELEMENTS (Imc
_________ ________ _ _______ ic _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

S=10

t=O. 42

S=40

t=1.08

S=10

t=0. 39

S=40

t=1. 13

S=22

t=O.67

S=29

t=O.84

S=13

t=0,42

S=16

t=0.49

S=5

t=0.18

W 0.644 0.552 0.612 0.607 0.640 0.645 0.645 0.645 0.645 0.645

N 2.648 2.412 2.567 2.557 2.638 2.650 2.650 2.650 2.650 2.650

M 1.692 1.584 1.756 1.743 1.835 1.849 1.849 1.849 1.849 1.849

REF. 1=10 1=40 I =10 I=10 1=5 I=5 I=

SOLN. TEQCK TEQCK R=0.01 R=0.001 R=0.001

PRESENT WORK 18 SHALLOW ELEMENTS (rT )
mc

S=10 S=40 S=10 S=40 S=22 S=29 S=13 S=16 S=5

t=1.05 t=3.16 t=1.09 t=3.32 t=2.02 t=2.60 t=1.20 t=1.38 t=0.53

W 0.644 0.551 0.611 0.606 0.639 0.644 0.644 0.644 0.644 0.644

N 2.648 2.411 2.566 2.556 2.636 2.648 2.648 2.647 2.648 2.648

M 1.692 1.448 1.606 1.593 1.679 1.692 1.692 1.692 1.692 1.692

SEE FIG. 8.2a FOR NOMENCLATURE

N)
H
0

I II I



TABLE 8.7

SHALLOW, SINUSOIDAL ARCH UNDER SINUSOIDAL PRESSURE-COMPARISON OF VARIOUS

SOLUTION PROCEDURES AND MESH SIZES FOR SHALLOW ELEMENTS IN THE

CONVECTED, UPDATED LAGRANGIAN SYSTEM (p = 187.5)

REF.

SOLN.

I=10 I=40 I=10 I=40 I=10 I=10

TEQCK TEQCK R=0.01 R=0.001,

I=5

R=0.O01

I=5

R=0.001

I=1

R=O. 001

PRESENT WORK 6 SHALLOW ELEMENTS (7T
.F .I.-, mc -= - -1_ _meait

S=10

t=0.46

S=40

t=l. 41

S=10

t=0.46

S=40

t=l.49

S=22

t=0.95

S=29

t=1.19

S=13

t=0.60

S=16

t=0.68

S=4

t=0. 22

w 0.638 0.551 0.611 0.604 0.635 0.639 0.639 0.639 0.639 0.639

N 2.634 2.410 2.565 2.550 2.626 2.636 2.636 2.636 2.636 2.636

Mj 1.684 1.574 1.738 1.703 1.782 1.790 1.790 1.790 1.790 1.790

REF. I=10 I=40 I=10 I=40 I=10 1=10 1=5 I=5 I=

SOLN. TEQCK TEQCK R=0.01 R=0.001 R=0.01 R=0.001 R=0.001

PRESENT WORK 18 SHALLOW ELEMENTS (Tr I )
mc

S=10 S=40 S=10 S=40 S=22 S=29 S=13 S=16 S=4

t=1.24 t=4.12 t=1.32 t=4.49 t=2.65 t=3.30 t=1.66 t=1.89 t=0.59

W 0.638 0.550 0.610 0.603 0.634 0.638 0.638 0.638 0.638 0.638

N 2.634 2.409 2.564 2.548 2.624 2.634 2.634 2.634 2.634 2.634

M 1.684 1.450 1.608 1.590 1.673 1.684 1.684 1.684 1.684 1.664

SEE FIG. 8.2a FOR NOMENCLATURE

M
H
H



TABLE 8.8

SHALLOW, SINUSOIDAL ARCH UNDER SINUSOIDAL PRESSURE-COMPARISON OF EQUILIBRIUM

CHECKS, SOLUTION PROCEDURES, AND MESH SIZES FOR FLAT ELEMENTS IN THE

CONVECTED, UPDATED LAGRANGIAN SYSTEM (p = 187.5)

REF.

SOLN.

I=40 I=10 I=40 I=10 I=40

SEQCK SEQCK

I=10

TEQCK

I=40

TEQCK
PIROTIN I

PIROTIN PRESENT WORK 6 FLAT ELEMENTS (TVI[19711 mc

S=40 S=10

t=O.41

S=40

t=1. 25

S=10 S=40 S=10

t=0. 45

S=40

t=.35

S=29

t=1.02

S=5

t=0. 21

W 0.638 0.590 0.592 0.677 0.634 0.695 0.649 0.692 0.696 0.696

N 2.634 - 2.497 2.708 2.640 2.757 2.647 2.749 2.760 2.760

M 1.684 - 1.578 1.806 1.693 1.854 1.737 1.854 1.867 1.866

REF. I=40 I=10 1=40 I=10 I=40 I=10 I=40 I=10 1=1

SOLN. SEQCK SEQCK TEQCK TEQCK R=0.001 R=0.001

PIROTIN PRESENT WORK 18 FLAT ELEMENTS ( I
[1971] mc

S=40 S=10 S=40 S=10 S=40 S=10 S=40 S=29 S=4

t=1.12 t=3.75 t=1.17 t=4.01 t=3.08 t=0.52

w 0.638 0.590 0.554 0.617 0.594 0.635 0.608 0.640 0.644 0.644

N 2.634 - 2.419 2.578 2.552 2.637 2.558 2.637 2.647 2.647

M 1.684 - 1.450 1.613 1.549 1.664 1.593 1.679 1.691 1.691

SEE FIG 8.2a FOR NOMENCLATURE

NW
H-

NJ

1=10 I=1

R=0. 001 R=O. 001

I I II I I



TABLE 8.9

SHALLOW, SINUSOIDAL ARCH UNDER SINUSOIDAL PRESSURE-COMPARISON OF EQUILIBRIUM

CHECKS, SOLUTION PROCEDURES AND MESH SIZES FOR SHALLOW ELEMENTS IN THE

CONVECTED, UPDATED LAGRANGIAN SYSTEM (p = 187.5)

REF.

SOLN.

1=40 I=10 I=40 I=10 I=40 I=10

SEQCK SEQCK TEQCK
- t .'- ________

PIROTIN

[19711

S=40

1=40

TEQCK

I=10

R=0. 001

I=l

R=0.001

PRESENT WORK 6 SHALLOW ELEMENTS (Tr )
mc

4 .. -.

S=10

t=0.46

S=40

t=1. 41

S=10 S=40 S=10

t=0.46

S=40

t=l.49

S=29

t=l.19

S=4

t=O.22I 0.638 0.590 0.551 0.611 0.589 0.638 0.604 0.635 0.639 0.639

2.634 - 2.410 2.565 2.543 2.636 2.550 2.626 2.636 2.636

M 1.684 - 1.574 1.738 1.660 1.780 1.703 1.782 1.790 1.790

REF. I=40 I=10 I=40 I=10 I=40 I=10 I=40 I=10 J=1

SOLN. SEQCK SEQCK TEQCK TEQCK R=0.001 R0.001

PIROTIN PRESENT WORK 18 SHALLOW ELEMENTS (TI
[1971]1ic

S=40 S=10 S=40 S=10 S=40 S=10 S=40 S=29 S=4

t=1.24 t=4.12 t=1.32 t=4.49 t=3.30 t=0.59

w 0.638 0.590 0.550 0.610 0.587 0.629 0.603 0.634 0.638 0.638

N 2.634 - 2.409 2.564 2.540 2.622 2.548 2.624 2.634 2.634

M 1.684 - 1.450 1.608 1.545 1.654 1.590 1.673 1.684 1.684

SEE FIG. 8.2a FOR NOMENCLATURE

Nj



TABLE 8.10

SHALLOW, SINUSOIDAL ARCH UNDER SINUSOIDAL PRESSURE-COMPARISONS

OF THE EQUILIBRIUM CHECKS FOR THE INCREMENTAL-ITERATIVE

PROCEDURE (SIX FLAT ELEMENTS IN THE STATIONARY

LAGRANGIAN SYSTEM) (p = 187.5)

(SEE FIG. 8.2 FOR NOMENCLATURE)

PRESENT WORK (r I)mc

I=10 I=10 1=10 I=5 I=5

SEQCK TEQCK SEQCK TEQCK

INCREM. R=0.001 R=0.001 R=O,0001 R=0.001

S=10

t=O. 38

S=27

t=0.84

S=33

t=0.93

S=16

t=O.49

S=18

t=0. 53

In
14
C,

0
4

00H Z
E4
U2E
0

rn E-

0.601 0.712 0.828 0.677 0.828 0.828

N 2.517 2.817 3.044 2.770 3.044 3.044

N 1.597 1.889 2.197 1.800 2.197 2.197
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TABLE 8.11

SIMPLY SUPPORTED FLAT PLATE UNDER UNIFROM PRESSURE-COMPARISONS OF SOLUTIONS

FOR VARIOUS LOAD STEP SIZES, SOLUTION PROCEDURES, EQUILIBRIUM CHECKS,

COORDINATE SYSTEMS, AND ELEMENTS (4x4 MESH) WITH INDEPENDENT SOLUTIONS (p = 150)

(SEE FIG. 8.30 FOR NOMENCLATURE)

BACKLUND
[1973] KIKUCHI

LEVY BERGAN AND ANDO PRESENT WORK (r)
[1942a] [1972] [1973] mc

SERIES MIXED HYB. DISPL. I=10 I=10 I=5 I=5 I=1 I=1 I=1

SOLN. EQCK TEQCK R=0.01 R=0.001 R=0.001 R=0.001 R=0.001

U.L S.L. S.L. S.L. S.L. S.L. S.L. C.U.L. C.U.L.

FLAT SHALLOW FLAT FLAT FLAT FLAT FLAT FLAT ML-NZ

S=10

t=16.2

s=10

t= 17.4

S=14

t=24. 3

S=15

t=25.7

S=5

t=8.8

S=5

t=36.10

S=5

t=35.98

W 1.46 1.47 1.47 1.61 1.46 1.46 1.46 1.46 1.48 1,46

N 6.92 6.58 6.70 6.20 6.50 6.49 6.49 6.50 6.28 6.43

mC 8.63 7.86 - 8.47 7.54 7.54 7.54 7.55 8.10 8.88*

*
MOMENT AT CENTROID OF ELEMENT = 7.58

H
'Ji



TABLE 8.12

CLAMPED, FLAT PLATE UNDER UNIFORM PRESSURE-COMPARISONS OF SOLUTIONS FOR

VARIOUS COORDINATE SYSTEMS AND ELEMENTS (4x4 MESH) WITH

INDEPENDENT SOLUTIONS (p = 150)

(SEE FIG. 8.37 FOR NOMENCLATURE)

KIKUCHI

WAY LEVY AND ANDO PRATO PRESENT WORK (rr)
[1938] [1942b] [1973] [1968] mc

SERIES SERIES HYB. DISPL. MIXED I=1 I=1 I=1 I=1

SOLN. SOLN. EQCK R=0.001 R=0.001 R=0.001 R=0.001

v=.300 v=.316 v=.300 v=.300 v=.316 V=.300 V=.300 \=.300

S.L. S.L. S.L. S.L. C.U.L. C.U.L.

SHALLOW SHALLOW FLAT FLAT FLAT ML-NZ

S=3

t=5.39

S=3

t=5.55

S=3

t=21.21

S=3

t=21. 51

W 1.160 1.170 1.16 1.18 1.171 1.178 1.230 1.182
c

N 1.121 0.875 0.963 - 0.938 0.938 0.915 0.948
C

N 1.269 0.758 - 0.838 0.892 0.890 0.615 0.812
Sx

M 2.294 2.390 - 2.180 2.140 2.300 2.395
c

7.648 7.580 - 10.85 6.500 6.490 6.700 6.695s
x

N)
FA
(3)



TABLE 8.13

CLAMPED, SHALLOW, CYLINDRICAL PANEL UNDER UNIFORM PRESSURE-COMPARISON

OF SOLUTIONS FOR VARIOUS COORDINATE SYSTEMS AND ELEMENTS (4x4 MESH)

WITH INDEPENDENT SOLUTIONS (p = 0.15 psi)

(SEE FIG. 8.38 FOR NOMENCLATURE)

BREBBIA KIKUCHI

AND CONNOR AND ANDO PRATO PRESENT WORK (7T1)
[1969] [1973] [1968] mc

DISPL. HYB. DISPL. MIXED I=1 I=l I=1 I=1 I=1

EQCK EQCK R=0.001 R=0.OO1 R=0.001 R=0.001 R=0.001

S.L. S.L. S.L. S.L. S.L. S.L. C.U.L. C.U.L.

SHALLOW SHALLOW SHALLOW FLAT ML ONLY ML-NZ FLAT ML-NZ

S=3

t=5. 56

S=3

t=5.47

S=3

t=6.00

S=3

t=22. 33

S=3

t=21.92

w% 0.0528 0.0595 0.0528 0.0560 0.0526 0.0528 0.0548 0.0534

N - 16.67 15.70 16.69 16.50 16.51 16.54 16.56

N - - 3.44 3.12 3.27 3.26 3.25 3.27
C

y

m - - 0.395 0.226 0.211 0.169 0.241 0.150
S
x

M - 1.000 0.638 0.613 0.616 0.630 0.621
S
y

N)
H



STATE 'N+l'

STATE 'N' 3

N+l 3 N+l P +
Nx2- N+ Ix

32

1.2.
3

PN

STATE '0'

i 
1

FIG. 2.1 DESCRIPTION OF DEFORMATION STATES AND ASSOCIATED COORDINATE
SYSTEMS
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N-
i2 dy

N 1 2 -
N 2

N-
i dx

N G

N ll-
N a7 1

CAUCHY

-12-
G 2 d O G 2

SG

p KIRCHHOFF

- 1

N12- ------- 1
N T G 2 N G

- 2 2
2

EULER

G 1 dI

FIG. 2.2 DEFINITIONS OF SYMMETRIC STRESSES
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dMP

OPPIW

ow
.pop

p

z

DEFORMED MIDSURFACE
s

I I x

UNDEFORMED MIDSURFACE

FIG. 3.1 GEOMETRY AND COORDINATES FOR FLAT PLATES
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KIRCHHOFF-LOVE THOERY

z

DEFORMED MIDSURFACE

.00, Now

.00
P

mf '01 .000 T aw 
................ ............

WDEFORMED MIDSURFACE

MARGUERRE THEORY

z r C

DEFORMED MIDSURFACE
s

dg*'

.01

low

p .00

P 
op

IMAGINARY FLAT PLATE MIDSURFACE

-UNDEFORMED MIDSURFACE

FIG. 3.2 GEOMETRY AND COORDINNTES FOR SHALLOW SHELLS
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2
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C - Lz,n, y
Lz
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GK

FIG. 3.3 THE LOCAL, GLOBALr AND COMMON COORDINATE SYSTEMS
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al b
T. (S) + T.CS=0

i I

-- 0-.CS)
PQ

(i = 1, 2, 3)

[T.' (S) + T.b (S)]IdS

T 
T

2
T a

22

1 2

FIG. 4.1 INTERELEMENT BOUNDARY TRACTIONS
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'PURELY

INCREMENTAL

NO CHECKS

9F

PURELY

INCREMENTAL
WITH CHECKS

ci

/INCREKENTlAL-

ITERATIVE

WITH CHECKS

NEW TANGENT STIFFNESS
AT EVERY SOLUTION STEP
(USED IN THIS WORK)

Q-

,i

NEW TANGENT STIFFNESS AT
BEGINNING OF LOAD STEP

FIG. 6.1 GENERAL SOLUTION PROCEDURES
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WI-

(l.U -z(X -- PU 2  x

2

=- TANO:

q 6~

sS2

22

mH2

FIG. 7.1 SIGN CONVENTION~S FOR BEAM ELEMENTS
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e
Y

yV
w

v 3

e u 3 ex3

w vY2

6 u ---
2x

x w 2
-nO

2 K2

W, -TANe -e W, TAN Z~

yy1

13'

Z12

11 -- v q14

,' / I/

/o

q -- fobjqq N 7
4 yw t 6 V-9

M
Z x

v

N/'

YV / y

M V V

M( P N2 MS
x /V

F NI..SGCV 
F S

x M
v ~Y

NOTE: STRESS RESULTANTS ARE ACTUALLY IN SHELL SURFACE

(SEE PAGE 124 FOR REMARKS ON S )

FIG. 7.2 SIGN CONVENTION FOR SHELL ELEMENTS
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( 0

E =1/4 / (x,3'3

=3\/4

112'

\ \2

(x(,2y)

AREA (P23)
1 AREA (123)

X = Ixy1+ 2 K2 +33

y = yF+ + 2 + 33

I=% +E2 +E3

E3 (1I+b1 c 1 y1/2A

E2=(a i+b2x+c2y)/2A

= (a3+b3x+c 3y)/2A

a =x2 3 3y2

b= y2-y 3 USE CYCLIC PERMUTATION FOR OTHERS

c = x 3-x2

Sx y
A = DET Ix =AREA (123)

1x
3 Y3

FIG. A7.3 DEFINITION OF AREA COORDINATES (OR TRIANGULAR COORDINATES)
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Y
Z x 3 ,y3 ,z 3

3

(x6 6z6)6. ,

5 (x5' 5,z5

(x yg~

(Ki (x i, z )

2 2' 2, 2

CORNER NODES: l, 2,3

KIDPOINT NODES: 4,5,r6

g(X, Y) = (2C1- 1) E1 T zI

(2E 2-1E 2 z 2

(2E 3- 3 z 3
4E E2 z 4

4C 2E3 z 5

4E 3E z6

FIG. 7.4 COORDINATE POINTS USED FOR A QUADRATIC DISTRIBUTION
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Y

MIESH'B'

a/2

a/2

do-

a--

94-

N

X- THICKNESS =h

TYPICAL 2x2 MESH

(N)r a2 E3

cr 22 211 T 2D 212(1-,v2

FOR PRESENT WORK PERFERRED MESH IS TYPE 'A'

BOUNDARY CONDITIONS: SIMPLY SUPPORTED - ALL EDGES

PROBLEM DATA: E = 10 PSI

V = 0.300

h = 0.100 IN.

a = 10. IN.

FIG. 8.1 DESCRIPTION OF FLAT PLATE FOR LINEAR PREBUCKLING PROBLEM
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Z

p(x)

w W

w(x) =w SIN FL
0 L

w = INITIAL CENTRAL RISE FROM BASE

p = MAXIMUM PRESSURE LB./IN.

L = LENGTH OF BASE PLANE = 100 IN.

BOUNDARY CONDITIONS: PINNED-FIXED

NONDIMENSIONAL PARAMETERS:

- PD4

S = LE42EI -
-- K <N 31w = - N= A---(10

2 - EA

ARCH CROSS SECTIONAL AREA = 9/16

ARCH CROSS SECTIONAL AREA MOMENT

YOUNG'S MODULUS = 10 PSI

irx
p (x) = p SIN --

a L

PLANE = 4 IN.

- ML
S= -- (10)EI

2
IN.

4
OF INERTIA = 1 IN.

EQCK = GENERAL, ITERATIVE EQUILIBRIUM CHECK IN LITERATURE

SEQCK = PRESENT WORK: STRESS EQUILIBRIUM CHECK ONLY

TEQCK = PRESENT WORK: TOTAL EQUILIBRIUM CHECK

I = NUMBER OF INCREMENTS (LOAD STEPS) TO TOTAL LOAD

R = CONVERGENCE RATIO ON ITERATIONS WITHIN AN INCREMENT

S = TOTAL NUMBER OF SOLUTION STEPS (INCREMENTS AND ITERATIONS)

t = TOTAL EXECUTION TIME (SECONDS)

FIG. 8. 2a DESCRIPTION OF SHALLOW, SINUSOIDAL ARCH PROBLEM
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pBx)

BAEPLN

FUNG AND KAPLAN [19521 SOLUTION

p (x)

BASE PLANES-

SHALLOW SINUSOIDAL ARCH UNDER
SINUSOIDAL PRESSURE

FIG. 8.2b FINITE ELEMENT DESCRIPTION OF SHALLOW, SINUSOIDAL ARCH PROBLEMS
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i< A <c7I T-

w (x)= A SINLp L

LIMIT LOAD BUCKLING

W(L/2)

pi

w ()W A SIN r
L

w (x) =B SIN -- + C SIN 2T
L L

NONLINEAR BIFURCATION BUCKLING

W(L/2)

w /

FOR PRESENT WORK: A = 1.5 (SEE FIG. 8.2)

FIG. 8.3 BUCKLING BEHAVIOR OF SHALLOW, SINUSOIDAL ARCH UNDER SINUSOIDAL
PRESSURE
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200 f

.20 .40 .60 .80

REF. SOLN.

.--- PIROTIN Ap=5

-.-- )--- PIROTIN Ap=4.25

---- PRESENT WORK p

---0-- PRESENT WORK Ap=

SEQCK ---- PRESENT WORK Ap

SEQC A PRESENT WORK tp=

- (INCONSISTENT) 0 6 CURVED ELEMENTS

* (INCONSISTENT) A 0 6 FLAT ELEMENTS

II - I -J
1.00

'it

2

*NOTE: CONSISTENT MODEL YIELDS ESSENTIALLY THE SAME RESULTS.

FIG. 8.4 SHALLOW, SINUSOIDAL ARCH UNDER SINSOIDAL PRESSURE UTILIZING
THE CONVECTED, UPDATED LAGRANGIAN SYSTEM - COMPARISONS OF
INCREMENT SIZE AND STRESS EQUILIBRIUM CHECK FOR CENTRAL
DISPLACEMENT (SIX FLAT ELEMENTS)
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200-r

160

120 REF. SOLN.

PIROTIN Ap=5
0 H
041 CCt- PIROTIN Ap=K. 25

~ PRESENT WORK Ap=5

80 - PRESENT WORK Ap=1.25

SEQCK PRESENT WORK Ap=5

SEQCK PRESENT WORK Ap=1.25

40 - (INCONSISTENT) 0 6 CURVED ELEMENTS

*(INCONSISTENT) 18 FLAT ELEMENTS

0 0 .20 .40 .60 .80 1.00

c
2 I

*NOTE: CONSISTENT MODEL YIELDS ESSENTIALLY THE SAME RESULTS.

FIG. 8.5 SHALLOW, SINUSOIDAL ARCH UNDER SINUSOIDAL PRESSURE UTILIZING
THE CONVECTED, UPDATED LAGRANGIAN SYSTEM - COMPARISONS OF
INCREMENT SIZE AND STRESS EQUILIBRIUM CHECK FOR CENTRAL
DISPLACEMENT (EIGHTEEN FLAT ELEMENTS)
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200

160-

120 REF. SOLN.

-C]- PRESENT WORK Ap=5

PRESENT WORK Ap=1.25

SEQCK H PRESENT WORK Ap=5
04 H

04 O 80- SEQCK A-- PRESENT WORK Ap=1.25

*INCONSISTENT MODEL

4C-6 FLAT ELEMENTS

0 0 1.0 2.0 3.0 4.0 5.0

N x 103EA

*NOTE: WITH THE EXCEPTION OF THIS POINT, CONSISTENT MODEL

YIELDS ESSENTIALLY THE SAME RESULTS

FIG. 8.6 SHALLOW, SINUSOIDAL ARCH UNDER SINUSOIDAL PRESSURE UTILIZING
THE CONVECTED, UPDATED LAGRANGIAN SYSTEM - COMPARISONS OF

INCREMENT SIZE AND STRESS EQUILIBRIUM CHECK FOR CENTRAL AXIAL

LOAD (SIX FLAT ELEMENTS)
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200

1.0 2.0 3.0

-- REF.

-- {l-- PRESI

..[---- PRESI

SEQCK -.....- PRESI

SEQCK A PRESI

*INCONSISTENT MODEL

18 FLAT ELEMENTS

4.0

Ap=5

Ap=1.-25

Ap=5

Ap=1.25

5.0

x _Cx103
EA

*NOTE: CONSISTENT MODEL YIELDS ESSENTIALLY THE SAME RESULTS.

FIG. 8.7 SHALLOW, SINUSOIDAL ARCH UNDER SINUSOIDAL PRESSURE UTILIZING

THE CONVECTEDr UPDATED LAGRANGIAN SYSTEM - COMPARISONS OF

INCREMENT SIZE AND STRESS EQUILIBRIUM CHECK FOR CENTRAL AXIAL

LOAD (EIGHTEEN FLAT ELEMENTS)

236

SOLN.

ENT WORK

ENT WORK

ENT WORK

ENT WORK

160 1

120 1

0
04 CJ

80 t

40

0

I i~



200

160

120 - REF. SOLN.

[ IH -PRESENT WORK Ap=5

rj.- PRESENT WORK Ap=1.25

0 w SEQCK PRESENT WORK Ap=5

80 SEQCK PRESENT WORK Ap=1.25

INCONSISTENT MODEL

40 -6 FLAT ELEMENTS

40 '

0 0.5 1.0 1.5 2.0 2.5

ML
-- x 10
EI

FIG. 8.8 SHALLOW, SINUSOIDAL ARCH UNDER SINUSOIDAL PRESSURE UTILIZING

THE CONVECTED, UPDATED LAGRANGIAN SYSTEM - COMPARISONS OF

INCREMENT SIZE AND STRESS EQUILIBRIUM CHECK FOR CENTRAL BENDING

MOMENT (SIX FLAT ELEMENTS; INCONSISTENT MODEL)
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200

160

120 REF. SOLN.

-- {9-- PRESENT WORK Lp=5

----- PRESENT WORK Ap=1.25

SEQCK t PRESENT WORK Ap=5

80-SEQCK ---- PRESENT WORK Ap=1.25

CONSISTENT MODEL

40
6 FLAT ELEMENTS

0
0 0.5 1.0 1.5 2.0 2.5

ML 10
EI

FIG. 8.9 SHALLOW, SINUSOIDAL ARCH UNDER SINUSOIDAL PRESSURE UTILIZING
THE CONVECTED, UPDATED LAGRANGIAN SYSTEM - COMPARISONS OF

INCREMENT SIZE AND STRESS EQUILIBRIUM CHECK FOR CENTRAL BENDING

MOMENT (SIX FLAT ELEMENTS; CONSISTENT MODEL)
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200

160

REF. SOLN.
120

-.--..- PRESENT WORK Ap=5

QH --.- j.-- PRESENT WORK Ap=1. 25

SEQCK .. PRESENT WORK Ap=5
0 H

SEQCK PRESENT WORK Ap=1.25

*INCONSISTENT MODEL

40 _18 
FLAT ELEMENTS

0 0.5 1.0 1.5 2.0 2.5

-- x 10
El

*NOTE: CONSISTENT MODEL YIELDS ESSENTIALLY THE SAME RESULTS.

FIG. 8.10 SHALLOW, SINUSOIDAL ARCH UNDER SINUSOIDAL PRESSURE UTILIZING

THE CONVECTED, UPDATED LAGRANGIAN SYSTEM - COMPARISONS OF

INCREMENT SIZE AND STRESS EQUILIBRIUM CHECK FOR CENTRAL

BENDING MOMENTS (EIGHTEEN FLAT ELEMENTS)
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200 I

.20 .40 .60 .80

-R REF. SOLN

----- PIROTIN Ap=5

------ PIROTIN Ap=1.25

PRESENT WORK Ap=5

-FJ-- PRESENT WORK Ap=1.2

SEQCK --- PRESENT WORK Ap=5

SEQCK A PRESENT WORK Ap=1.2

(INCONSISTENT) 0 6 CURVED ELEMENTS

*(INCONSISTENT) A 0 6 SHALLOW ELEMENTS

1.00

M cCM -

*NOTE: CONSISTENT MODEL YIELDS ESSENTIALLY THE SAME RESULTS.

SHALLOW, SINUSOIDAL ARCH UNDER SINUSOIDAL PRESSURE UTILIZING
THE CONVECTED, UPDATED LAGRANGIAN SYSTEM - COMPARISONS OF

INCREMENT SIZE AND STRESS EQUILIBRIUM CHECK FOR CENTRAL

DISPLACEMENT (SIX SHALLOW ELEMENTS)
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200

160

120 REF. SOLN.

w Q-- PIROTIN Ap=5

-- Q--- PIROTIN Ap=1. 25

--- PRESENT WORK Ap=5

80 ---9-- PRESENT WORK Ap=1.25

SEQCK --- PRESENT WORK Ap=5

SEQCK A PRESENT WORK Ap=1. 25

40 (INCONSISTENT) 0 6 CURVED ELEMENTS

*(INCONSISTENT) A 0 18 SHALLOW ELEMENTS

0
0 .20 .40 .60 .80 1.00

C I~
2 I

*NOTE: CONSISTENT MODEL YIELDS ESSENTIALLY THE SAME RESULTS.

FIG. 8.12 SHALLOW, SINUSOIDAL ARCH UNDER SINUSOIDAL PRESSURE UTILIZING
THE CONVECTED, UPDATED LAGRANGIAN SYSTEM - COMPARISONS OF

INCREMENT SIZE AND STRESS EQUILIBRIUM CHECK FOR CENTRAL

DISPLACEMENT (EIGHTEEN SHALLOW ELEMENTS)
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200

160

120 - REF. SOLN.

-- IH0-- PRESENT WORK Ap=5

-- 0- PRESENT WORK Ap=I.25

0 rH SEQCK - PRESENT WORK Ap=5

80 - SEQCK A PRESENT WORK Ap=1.25

*INCONSISTENT MODEL

40 - 6 SHALLOW ELEMENTS

0

0 1.0 2.0 3.0 4.0 5.0

N 3
x 10EAx

*NOTE: CONSISTENT MODEL YIELDS ESSENTIALLY THE SAME RESULTS.

FIG. 8.13 SHALLOW, SINUSOIDAL ARCH UNDER SINUSOIDAL PRESSURE UTILIZING

THE CONVECTED, UPDATED LAGRANGIAN SYSTEM - COMPARISONS OF

INCREMENT SIZE AND STRESS EQUILIBRIUM CHECK FOR CENTRAL

AXIAL LOAD (SIX SHALLOW ELEMENTS)
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200

160

120------ REF. SOLN.

PRESENT WORK Ap=5o r
---1-- PRESENT WORK An=1.5

SEQCK PRESENT WORK Ap=5

80 - SEQCK A PRESENT WORK Ap=1.5

*INCONSISTENT MODEL

40 - 18 SHALLOW ELEMENTS

0
0 1.0 2.0 3.0 4.0 5.0

- x 103
EA

*NOTE: CONSISTENT MODEL YIELDS ESSENTIALLY THE SAME RESULTS.

FIG. 8.14 SHALLOW, SINUSOIDAL ARCH UNDER SINUSOIDAL PRESSURE UTILIZING

THE CONVECTED, UPDATED LAGRANGIAN SYSTED - COMPARISONS OF

INCREMENT SIZE AND STRESS EQUILIBRIUM CHECK FOR CENTRAL

AXIAL LOAD (EIGHTEEN SHALLOW ELEMENTS)
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200

160

120 REF. SOLN.

-v--- PRESENT WORK Lp=5
0 H

C ---El--- PRESENT WORK Ap=1.25

SEQCK fl PRESENT WORK Ap=5

80 SEQCK -- A-- PRESENT WORK Ap=1.25

INCONSISTENT MODEL

40 6 SHALLOW ELEMENTS

0
0 0.5 1.0 1.5 2.0 2.5

ML 10
x 10

Er

FIG. 8.15 SHALLOW, SINUSOIDAL ARCH UNDER SINUSOIDAL PRESSURE UTILIZING
THE CONVECTED, UPDATED LAGRANGIAN SYSTEM - COMPARISONS OF

INCREMENT SIZE AND STRESS EQUILIBRIUM CHECK FOR CENTRAL
BENDING MOMENT (SIX SHALLOW ELEMENTS; INCONSISTENT MODEL)
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200

160

L IH 120 
- REF. SOLN

PRESENT WORK Ap=5

0 14 PRESENT WORK Ap=1.25

SEQCK PRESENT WORK Ap=5

80 - SEQCK .. __ PRESENT WORK Ap=1.25

CONSISTENT MODEL

6 SHALLOW ELEMENTS
40 -

0
0 0.5 1.0 1.5 2.0 2.5

ML 10
EI

FIG. 8.16 SHALLOW, SINUSOIDAL ARCH UNDER SINUSOIDAL PRESSURE UTILIZING

THE CONVECTED, UPDATED LAGRANGIAN SYSTEM - COMPARISONS OF

INCREMENT SIZE AND STRESS EQUILIBRIUM CHECK FOR CENTRAL

BENDING MOMENT (SIX SHALLOW ELEMENTS; CONSISTENT MODEL)
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200 1

0.5 1.0 L.5 2.0 2.5

-Lx 10
El

*NOTE: CONSISTENT MODEL YIELDS ESSENTIALLY THE SAME RESULTS.

FIG. 8.17 SHALLOW, SINUSOIDAL ARCH UNDER SINUSOIDAL PRESSURE UTILIZING
THE CONVECTED, UPDATED LAGRANGIAN SYSTEM - COMPARISONS OF
INCREMENT SIZE AND STRESS EQUILIBRIUM CHECK FOR CENTRAL
BENDING MOMENT (EIGHTEEN SHALLOW ELEMENTS)
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-I

-__ REF. SOLN.

----- PRESENT WORK Ap=5

------ PRESENT WORK Ap=1.25

SEQCK -A- PRESENT WORK 6,p=5

SEQCK A PRESENT WORK Ap=1.25

*INCONSISTENT MODEL

18 SHALLOW ELEMENTS

160

120

K IH
lq

P4 ,CNI

80

40

0
0



200

160

H 120
Q cvw a

.20 .40 .60 .80 1.00

I

*NOTE: CONSISTENT MODEL YIELDS ESSENTIALLY THE SAME RESULTS

FIG. 8.18 SHALLOW, SINUSOIDAL ARCH UNDER SINUSOIDAL PRESSURE UTILIZING

THE CONVECTED, UPDATED LAGRANGIAN SYSTEM - COMPARISONS OF
FLAT AND SHALLOW ELEMENTS FOR VARIOUS INCREMENT SIZES
(STRESS EQUILIBRIUM CHECK INCLUDED) FOR CENTRAL DISPLACEMENT

(SIX ELEMENTS)
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~ -r

REF. SOLN.

------ PIROTIN Ap=5

--- 0--- PIROTIN Ap=1. 25
SEQCK _ PRESENT WORK tp=5

SEQCK ---- PRESENT WORK Lp=1.25

SEQCK ---- PRESENT WORK Ap=5

SEQCK PRESENT WORK Ap=1. 25

INCONSISTENT 0 6 CURVED ELEMENTS

*INCONSISTENT A 6 FLAT ELEMENTS

*INCONSISTENT 7 6 SHALLOW ELEMENTS

80 1

40 1

0 0
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200

180REF. SOLN.

-8---- PIROTIN Ap=5

H--0--- PIROTIN Ap=l.25

SEQCK A PRESENT WORK Ap=5

0 H 160SEQCK --.t\.. PRESENT WORK Ap=1.25

SEQCK --- PRESENT WORK Ap=5

SEQCK v PRESENT WORK tp=1. 25

140[-INCONSISTENT 0 6 CURVED ELEMENTS

*INCONSISTENT A 6 FLAT ELEMENTS

*INCONSISTENT 6 SHALLOW ELEMENTS

120I1

0.4 0.5 0.6 0.7 0.8 0.9

w _

2

*NOTE: CONSISTENT MODEL YIELDS ESSENTIALLY THE SAME RESULTS

FIG. 8.19 SHALLOW, SINUSOIDAL ARCH UNDER SINUSOIDAL PRESSURE UTILIZING

THE CONVECTED UPDATED LAGRANGIAN SYSTEM - COMPARISONS OF
FLAT AND SHALLOW ELEMENTS FOR VARIOUS INCREMENT SIZES
(STRESS EQUILIBRIUM CHECK INCLUDED) FOR CENTRAL DISPLACEMENT
(SIX ELEMENTS; EXPANDED PLOT)
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200

160

.20 .40 .60 .80

REF. SOLN.

--- PIROTIN Ap=5

--0--- PIROTIN Ap=1.25

SEQCK PRESENT WORK Ap

SEQCK A PRESENT WORK Ap

SEQCK 7 T PRESENT WORK Ap

SEQCK 7 PRESENT WORK Ap

INCONSISTENT 0 6 CURVED ELEMENT

*INCONSISTENT 18 FLAT ELEMENTS

*INCONSISTENT 7 18 SHALLOW ELEME

S

NTS

1.00

w _

CNrT

CONSISTENT MODEL YIELDS ESSENTIALLY THE SAME RESULTS'.

FIG. 8.20 SHALLOW, SINUSOIDAL ARCH UNDER SINUSOIDAL PRESSURE UTILIZING

THE CONVECTED, UPDATED LAGRANGIAN SYSTEM - COMPARISONS OF

FLAT AND SHALLOW ELEMENTS FOR VARIOUS INCREMENT SIZES

(STRESS EQUILIBRIUM CHECK INCLUDED) FOR CENTRAL DISPLACEMENT
(EIGHTEEN ELEMENTS)

249

=5

=L. 25

=5

=l.25

120 |
[FJH

N

80 [

40 F

0
0

*NOTE:



200

160

120 REF. SOLN.

SEQCK - - PRESENT WORK Ap=5

SEQCK -- A-- PRESENT WORK Ap=1.25

SEQCK PRESENT WORK Ap=5

80 SEQCK 7 PRESENT WORK Ap=1.25

*INCONSISTENT A 6 FLAT ELEMENTS

*INCONSISTENT 7 6 SHALLOW ELEMENTS

40

0
0 1.0 2.0 3.0 4.0 5.0

N 3
- x 10

EA

*NOTE: CONSISTENT MODEL YIELDS ESSENTIALLY THE SAME RESULTS.

FIG. 8.21 SHALLOW, SINUSOIDAL ARCH UNDER SINUSOIDAL PRESSURE UTILIZING
THE CONVECTED, UPDATED LAGRANGIAN SYSTEi - COMPARISONS OF
FLAT AND SHALLOW ELEMENTS FOR VARIOUS INCREMENT SIZES (STRESS
EQUILIBRIUM CHECK INCLUDED) FOR CENTRAL AXIAL LOAD (SIX

ELEMENTS)
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REF. SOL

SEQCK .. 5......_ PRESENT WC

/ SEQCK --As---- PRESENT WC

// SEQCK PRESENT WC

/ SEQCIK- PRESENT W(

/ ~ *INCONSISTENT 5 6 FLAT ELE

*INCONISTENT6 SHALLOW

V000

.

ORK Ap=5

ORK Ap=1. 25

ORK Ap=5

ORK Ap=1. 25

EMENTS

ELEMENTS

- .4I I
120 -

1.5 2.0 2.5 3.0 3.5 4.0

N 3- x 10
EA

*NOTE: CONSISTENT MODEL YIELDS ESSENTIALLY THE SAME RESULTS.

FIG. 8.22 SHALLOW, SINUSOIDAL ARCH UNDER SINUSOIDAL PRESSURE UTILIZING

THE CONVECTED, UPDATED LAGRANGIAN SYSTEM - COMPARISON OF FLAT

AND SHALLOW ELEMENTS FOR VARIOUS INCREMENT SIZES (STRESS

EQUILIBRIUM CHECK INCLUDED) FOR CENTRAL AXIAL LOAD (SIX

ELEMENTS; EXPANDED PLOT)
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160

1.0 2.0 3.0

SEQCK L-

SEQCK

SEQCK ----

SEQCK '7

*INCONSISTENT A

kINCONSISTENT 7

4.0 5.0

N 3
-x 103EA J

*NOTE: CONSISTENT MODEL YIELD ESSENTIALLY THE SAME RESULTS.

FIG. 8.23 SHALLOW, SINUSOIDAL ARCH UNDER SINUSOIDAL PRESSURE UTILIZING
THE CONVECTED, UPDATED LAGRANGIAN SYSTEM - COMPARISONS OF
FLAT AND SHALLOW ELEMENTS FOR VARIOUS INCREMENT SIZES (STRESS
EQUILIBRIUM CHECK INCLUDED) FOR CENTRAL AXIAL LOAD (EIGHTEEN
ELEMENTS)
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REF. SOLN.

PRESENT WORK Ap=5

PRESENT WORK Ap=1.25

PRESENT WORK Ap=5

PRESENT WORK Ap=1.25

18 FLAT ELEMENTS

18 SHALLOW ELEMENTS
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I Ha2 I ~
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0
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160

LH 120 REF. SOLN.

SEQCK -- j-- PRESENT WORK Ap=5

0 W SEQCK -- A-- PRESENT WORK Ap=1.25

SEQCK-- -- PRESENT WORK Ap=5

80 -SEQCK ---- PRESENT WORK Ap=1.25

INCONSISTENT 6 FLAT ELEMENTS

INCONSISTENT 6 SHALLOW ELEMENTS

40 -

0
0 0.5 1.0 1.5 2.0 2.5

- x 10
EI

FIG. 8.24 SHALLOW, SINUSOIDAL ARCH UNDER SINUSOIDAL PRESSURE UTILIZING

THE CONVECTED, UPDATED LAGRANGIAN SYSTEM - COMPARISONS OF

FLAT AND SHALLOW ELEMENTS FOR VARIOUS INCREMENT SIZES (STRESS

EQUILIBRIUM CHECK INCLUDED) FOR CENTRAL BENDING MOMENT (SIX

ELEMENTS; INCONSISTENT MODEL)
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200

1.5 2.0

REF. SOLN.

SEQCK ---- PRESENT WORK Ap=5

SEQCK --.. PRESENT WORK Ap=1. 2!

SEQCK PRESENT WORK Ap=5

SEQCK .... PRESENT WORK Ap=1.2!

T

CONSISTENT 6 FLAT ELEMENTS

CONSISTENT 6 SHALLOW ELEMENTS

2.5

Sx 10
El

SHALLOW, SINUSOIDAL ARCH UNDER SINUSOIDAL PRESSURE UTILIZING
THE CONVECTED r UPDATED LAGRANGIAN SYSTEM - COMPARISONS OF

FLAT AND SHALLOW ELEMENTS FOR VARIOUS INCREMENT SIZES (STRESS

EQUILIBRIUM CHECK INCLUDED) FOR CENTRAL BENDING MOMENT (SIX

ELEMENTS; CONSISTENT MODEL)
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220 1-

200

180

REF. SOLN.

SEQCK - - PRESENT WORK Ap=5

KIH - SEQCK --A-- PRESENT WORK Ap=1. 25

H 160 - SEQCK - -- PRESENT WORK Ap=5
C SEQCK -- 7-- PRESENT WORK Ap=1.25

SEQCK ---- PRESENT WORK Ap=5

SEQCK -- C-- PRESENT WORK Ap=1.25

140
INCONSISTENT 6 FLAT ELEMENTS

INCONSISTENT 6 SHALLOW ELEMENTS

CONSISTENT 6 SHALLOW ELEMENTS

12011 11
1.00 1.25 1.50 1.75 2.00 2.25

ML 10
EI

FIG. 8.26 SHALLOW, SINUSOIDAL ARCH UNDER SINUSOIDAL PRESSURE UTILIZING
THE CONVECTED, UPDATED LAGRANGIAN SYSTEM - COMPARISONS OF

FLAT AND SHALLOW ELEMENTS FOR VARIOUS INCREMENT SIZES (STRESS

EQUILIBRIUM CHECK INCLUDED) FOR CENTRAL BENDING MOMENT (SIX

ELEMENTS; EXPANDED PLOT)

255



2001

160

120 1

80 1

40f

0

REF. SOLN.

SEQCK ---- PRESENT WORK Ap:

SEQCK A PRESENT WORK Ap:

SEQCK -- PRESENT WORK Ap:

SEQCK 7 PRESENT WORK Ap:

*INCONSISTENT Z 18 FLAT ELEMENTS

*INCONSISTENT 18 SHALLOW ELEME

0.5 1.0 1.5 2.0

=5

=1. 25

=5

=1.25

NTS

2.5

-x 10
EL

*NOTE: CONSISTENT MODEL YIELDS ESSENTIALLY THE SAME RESULTS.

FIG. 8.27 SHALLOW, SINUSOIDAL ARCH UNDER SINUSOIDAL PRESSURE UTILIZING
THE CONVECTED, UPDATED LAGRANGIAN SYSTEM - COMPARISONS OF

FLAT AND SHALLOW ELEMENTS FOR VARIOUS INCREMENT SIZES (STRESS
EQUILIBRIUM CHECK INCLUDED) FOR CENTRAL BENDING MOMENT
(EIGHTEEN ELEMENTS)

256

<H

c4

4
4,

,r) K



wx)

L

R

w = INITIAL CENTRAL RISE FROM BASE PLANE = 1.09 IN.

P = CENTRAL CONCENTRATED LOAD

L = LENGTH OF BASE PLANE = 34.0 IN.

R = RADIUS OF ARCH = 133.114 IN.

E = YOUNG'S MODULUS = 10 PSI
2

A = ARCH CROSS SECTIONAL AREA = 0.188 IN

I = ARCH CROSS SECTIONAL AREA MOMENT OF INERTIA = 0.00055 IN .

BOUNDARY CONDITIONS: CLAMPED

TOTAL EQUILIBRIUM CHECK AND AN INCREMENTAL-ITERATIVE PROCEDURE IS

USED FOR SHALLOW BEAM ELEMENTS

I = NUMBER OF INCREMENTS (LOAD STEPS) TO TOTAL LOAD

R = CONVERGENCE RATIO = 0.001

S = TOTAL NUMBER OF SOLUTION STEPS (INCREMENTS AND ITERATIONS)

t = TOTAL EXECUTION TIME (SECONDS)

FIG. 8.28 DESCRIPTION OF SHALLOW, CIRCULAR ARCH PROBLEM
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50

LINEAR

SOLUTION

40 -- DUPUIS (32 EIM.)*

BATHE ET AL. (12 ELM.)

MALT (4 ELM. )

30

04

o 20

I S t

10 31 0.98- -- PRESENT WORK (3 ELM.)

10 31 2.66--- PRESENT WORK (9 ELM.)

10 1 6 0.23 0 PRESENT WORK (3 ELM.)

1 6 0.53 0 PRESENT WORK (9 ELM.)

00 .1 .2 .3 .4

VERTICAL DISPLACEMENT AT APEX w(L/2) (IN.)

*ELM. = NUMBER OF ELEMENTS FOR HALF OF THE ARCH

**TIME (SECS.) ARE GIVEN FOR MODEL OF COMPLETE ARCH

FIG. 8.29 SHALLOW, CIRCULAR ARCH UNDER CENTRAL CONCENTRATED LOAD
UTILIZING THE STATIONARY LAGRANGIAN SYSTEM - COMPARISONS
OF INCREMENT SIZE AND MESH SIZE WITH INDEPENDENT SOLUTIONS
FOR CENTRAL DISPLACEMENT
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y
zfw

v,w,N ,M =0I K Y Y

Iuw,N ,CMKE=0

a $

2x2 m

MESH ZTHIcKNESS=hi

Z

jZILI4L0

p = UNIFORM PRESSURE OVER ENTIRE PLATE

a = SIDE LENGTH OF PLATE = 10 IN.

h = THICKNESS OF PLATE = 0.100 IN.

E = YOUNG'S MODULUS = 107 PSI

V = POISSON'S RATIO = 0.316 (UNLESS OTHERWISE SPECIFIED)

BOUNDARY CONDITIONS: SIMPLY SUPPORTED (ALL EDGES)

NONDIMENSIONAL PARAMETERS:

4

- =0

=Eh'

EQCK =

SEQCK =

TEQCK =

I =

R=

S =

t =

-Na
t ~ Eh 3

- G 2

6M
Eh4

GENERAL, ITERATIVE EQUILIBRIUM CHECK IN LITERATURE

PRESENT WORK: STRESS EQUILIBRIUM CHECK ONLY

PRESENT WORK: TOTAL EQUILIBRIUM CHECK

NUMBER OF INCREMENTS (LOAD STEPS) TO TOTAL LOAD

CONVERGENCE RATIO = 0.001

TOTAL NUMBER OF SOLUTION STEPS (INCREMENTS AND ITERATIONS)

TOTAL EXECUTION TIME (SECONDS)

FIG. 8.30 DESCRIPTION OF SIMPLY SUPPORTED FLAT PLATE PROBLEM
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1.61

0

FIG. 8.31

40 80 120 160

1.41

4
pa

Eh 4

SIMPLY SUPPORTED PLATE UNDER UNIFORM PRESSURE UTILIZING THE
CONVECTED, UPDATED LAGRANGIAN SYSTEM - COMPARISONS OF
INCREMENT SIZE AND STRESS EQUILIBRIUM CHECK FOR CENTRAL
DISPLACEMENT (2X2 MESH; FLAT ELEMENTS)
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/

U I I
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8

6

4

2

0
0 40

FIG. 8.32 SIMPLY

4
Eh

LINEAR - -

.SOLN.OP

EQCK
EQCK0

.- 0--
SEQCK A-
SEQCK --A--

INCONSISTENT 0 A 0

80 120 160

LEVY (SERIES)

BERGAN (4x4 MESH)

BACKLUND

PRESENT WORK Ap=1.5

PRESENT WORK Ap=0.375

PRESENT WORK Ap=1. 5

PRESENT WORK Ap=0.375

PRESENT WORK rAp =0.5

Ap 2 =1.0
Ap =1.5

2x2 MESH (FLAT) n

200
4

p0a

Eh4

SUPPORTED PLATE UNDER UNIFORM PRESSURE UTILIZING THE
CONVECTED, UPDATED LAGRANGIAN SYSTEM - COMPARISONS OF

INCREMENT SIZE AND STRESS EQUILIBRIUM CHECK FOR CENTRAL
STRESS RESULTANTS (2X2 MESH; FLAT ELEMENTS)
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1.6 LINEAR
SOLUTION

1.4

1.2

1. 0 -//

1.0

LEVY (SERIES)

EQCK BXCKLUND

.8 - PRESENT WORK Ap=1.5

--- PRESENT WORK Ap=0.375

SEQCK -- PRESENT WORK Ap=1.5

.6 1 SEQCK ..... PRESENT WORK Lp=0.375

C) 4x4 MESH FLAT

.4 INCONSISTENT A 9 4x4 MESH

.2

0

0 40 80 120 160 200

4
paa

Ehi

FIG. 8.33 SIMPLY SUPPORTED PLATE UNDER UNIFORM PRESSURE UTILIZING

THE CONVECTED, UPDATED LAGRANGIAN SYSTEM - COMPARISONS OF

INCREMENT SIZE AND STRESS EQUILIBRIUM CHECK FOR CENTRAL

DISPLACEMENT (4X4 MESH; FLAT ELEMENTS)
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8

0
'-a

40 80 120 160
4

p0a

LINEAR Eh 4
... SOLUTION.

EQCK

-- p EQCK

SEQCK -

SEQCK .-A_-

0

INCONSISTENT AEo

0 40 80 120 160

200

LEVY (SERIES)

BERGAN (4x4 MESH)

BACKLUND

PRESENT WORK Ap=L.5

PRESENT WORK Ap=0. 375

PRESENT WORK Ap=1.5

PRESENT WORK Ap=0.375

4x4 MESH FLAT

4x4 MESH

200
4

p a

Eh4

SIMPLY SUPPORTED PLATE UNDER UNIFORM PRESSURE UTILIZING THE

CONVECTED, UPDATED LAGRANGIAN SYSTEM - COMPARISONS OF

INCREMENT SIZE AND STRESS EQUILIBRIUM CHECK FOR CENTRAL

STRESS RESULTANTS (4X4 MESH; FLAT ELEMENTS)
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320-
.3-0., LEVY

E9 BACKLUND (EQCK)

280 - y BERGAN (EQCK)

PRESENT WORK (TEQCK)

I=3
S=10

240 t=17.32

200

160

120

80

40

0
0 0.4 0.8 1.2 1.6 2.0

w
CENTER DEFLECTION ~ c

h

FIG. 8.35 SIMPLY SUPPORTED PLATE UNDER UNIFORM PRESSURE UTILIZING THE

STATIONARY LAGRANGIAN SYSTEM - COMPARISONS OF CENTRAL

DEFLECTION WITH INDEPENDENT SOLUTIONS
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I I
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I
I

/
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I
/'

A

8

BENDING STRESSES ~

FIG. 8.36 SIMPLY SUPPORTED PLATE UNDER UNIFORM PRESSURE UTILIZING THE
STATIONARY LAGRANGIANI SYSTEM - COMPARISONS OF CENTRAL STRESS
RESULTANTS WITH INDEPENDENT SOLUTIONS
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Y

ZrWU,Vr,W , =0
z~w UV,WrWrO,

a - - _ _,w,w,w , =0

2x2
ME/S ZTHICKNESS=h

zO

p4

p = UNIFORM PRESSURE OVER ENTIRE PLATE

a = SIDE LENGTH OF PLATE = 10 IN.

h = THICKNESS OF PLATE = 0.100 IN.

E = YOUNG'S MODULUS = 10 PSI

V = POISSON'S RATIO = AS STATED ON TABLE 8.12

BOUNDARY CONDITIONS: CLAMPED (ALL EDGES)

NONDIMENSIONAL PARAMETERS AND CODES ARE THE SAME AS IN

FIG. 8.30

FIG. 8.37 DESCRIPTION OF CLAMPED FLAT PLATE PROBLEM
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Y

Z u1 ,u2 ,fu3 ,u3 2=0

5c ' 2 , uyu2 u3 fu3 ,=0

NC

2K2 THICKNESS=h
MESH

p
0

a

h

E

v

Rc

R 
C

e- .

= UNIFORM PRESSURE OVER ENTIRE PANEL

= SIDE LENGTH IN BASE PLANE = 20 IN.

= THICKNESS OF PANEL = 0.125 IN.

= YOUNG'S MODULUS = 4.50X1.05 PSI

= POISSON'S RATIO = 0.300

= RADIUS OF PANEL = 100 IN.

BOUNDARY CONDITIONS: CLAMPED (ALL EDGES)
(NOTE B.C.'S ACT IN SHELL SURFACE)

CODES ARE THE SAME AS IN FIG. 8.30

FIG. .8.38 DESCRIPTION OF CLAMPED, SHALLOWr CYLINDRICAL PANEL PROBLEM
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z~z

u2u,N12,M20 P

t3 12
X yI

-, .- I

2x2 I

R

2x2 R
MESH c

P = CENTRAL CONCENTRATED LOAD (LBS.)

a = SIDE LENGTH OF BASE PLANE = 61.8034 IN.

h = THICKNESS OF SHELL = 3.9154 IN.

R = RADIUS OF CIRCLE AT INTERSECTION OF SPHERE AND
C

PLANES PARALLEL TO GLOBAL x,y,z AXES = 100 IN.

E = YOUNG'S MODULUS = 105PSI

v = POISSON'S RATIO = 0. 300

BOUNDARY CONDITIONS: SIMPLY SUPPORTED (ALL EDGES!
(NOTE B.C.'S ACT IN SHELL SURFACE)

FIG. 8.39 DESCRIPTION OF SPHERICAL CAP PROBLEM
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0
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UG

LEICESTER (SERIES)

DHATT (3x3 MESH)

o THOMAS ET AL. (3x3

o PRESENT -WORK (wI
mc

Gr

A PRESENT WORK (rI
mc

-I

PRESENT WORK O(rI
mc

SI I I J

0 .2 .4 .6 .8 1.0 1.2 1.4

CENTRAL DEFLECTION = w/h
C

FIG. 8.40 SPHERICAL CAP UNDER CENTRAL CONCENTRATED LOAD - COMPARISON OF
CENTRAL DEFLECTION BY VARIOUS MODELS (4X4 MESH) WITH
INDEPENDENT SOLUTIONS
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y

z,w cu2ru3r 2' =

u=+

1 3

I 
I I

II 
K

2x2 /
MESH

6 = UNIFORM EDGE COMPRESSION

a = SIDE LENGTH IN BASE PLANE = 23.9424 IN.

h = THICKNESS OF PANEL = 0.100 IN.

E = YOUNG'S MODULUS = 3xL0 PSI

V = POISSON'S RATIO = 0.300

R = RADIUS OF PANEL = 500 IN.
c

BOUNDARY CONDITIONS: SIMPLY SUPPORTED

uI1(E=a/2)=-a u 1(EI=-a/2)=6

(NOTE B.C.'S ACT IN SHELL SURFACE)

FIG. 8.41 DESCRIPTION OF SHALLOW, CYLINDRICAL PANEL UNDER AXIAL

COMPRESSION PROBLEM
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FIG. 8.42 SHALLOW, CYLINDRICAL PANEL UNDER AXIAL COMPRESSION UTILIZING

THE STATIONARY LAGRANGIAN SYSTEM - COMPARISON OF MESH SIZE

ON CENTRAL DEFLECTION
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1000
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SCHMIT (2x2 CURVED)
S400

PIROTIN (2x2 CURVED)

PRESENT WORK (2x2 FLAT)

PRESENT WORK (4x4 FLAT)

200FPRESENT 
WORK (6x6 FLAT)

0 - I I I
0 .001 .002 .003 .004 .005 .006

AXIAL COMPRESSION . 6 (IN)

FIG. 8.43 SHALLOW, CYLINDRICAL PANEL UNDER AXIAL COMPRESSION UTILIZING
THE STATIONARY LAGRANGIAN SYSTEM - COMPARISON OF MESH SIZE
ON AVERAGE END LOAD (LOAD CARRYING CAPABILITY)
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APPENDIX A

CURVILINEAR COORDINATES FOR THE

KIRCHHOFF-LOVE SHALLOW SHELL THEORY

Four coordinate systems shall be described here. The first is a fixed,

rectangular, Cartesian global system. This system remains stationary in space

for all time and will be referred to as the G.R. system. Next is a curvilinear

global system. This system, referred to as G.C., always remains in the natural

shell coordinates. It represents the shell as a continuum and corresponds

uniquely to the G.R. system. Two local systems also exist. The first of these,

referred to as the L.R. system, is a rectangular Cartesian set of coordinates

corresponding to the local base plane of an element. The L.R. system is uniquely

related to the fixed G.R. system at all times. Finally, corresponding to L.R.

is the L.C. system which is a local curvilinear set. See Fig. A.l.
G G G

Let the coordinates of the G.R. system be x, y, z. Also, let the
G l G 2

coordinates of the G.C. system be G , 2, L. The latter coordinates will be

defined to form an orthogonal set. Let the i coordinate be along the outward
G- G l G 2

normal to the shell n. The E and E coordinates must lie in the midsurface
GIl

of the shell. Choose G such that its orthogonal projection on to the G.R.
G Gl G-

system corresponds to the x axis. Along will be the base vector t .
With this information an orthogonal coordinate E can be obtained if it is

G-
along the base vector t where

n G_ _' (A.l1)

G-
To define these more precisely, consider a position vector r from the

G.R. system to the shell midsurface. (See Fig. A.l.) In terms of the base
G- G- G-

vectors of the G.R. system, ix, i , i
xy z

aa t % Nd+ a K t CK (A.2)

Define base vectors aI and a2 in the shell midsurface as

=- 4e=r7 aI A-
- a t &i cL (A. 3)

aL- 6 ly y 2:ZiLK(A.4)
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Thus, a unit normal vector to the shell may be defined by

i = L/(A.5)

Placing Eqs. A.3 and A.4 into Eq. A.5 yields

4= .xfu -Yj 4 1y 7 *' j (A.6)

where

- G
Since a is projected along x then a unit tangent vector may be obtained as

t1  d-fL.C Cz+, LZ. (A.8)

where

= * 4 (A.9)

G- G-
Because n and t are unit vectors t2 may be defined as

1-2

Ph 4 T 
X 4 :E7- )C4 C eq(A. 10)

G- G-
Therefore, ti, t2 , and n are a triad of unit orthogonal curvilinear base

vectors corresponding to the entire shell. And via Eqs. A.8, A.10, and A.6

respectively are uniquely related to the G.R. system as long as the slopes are

defined.

In a completely analogous procedure a position vector may be established

from the L.R. system to the portion of the shell (element) corresponding to it.

(See Fig. A.l.)

S= Ly + Y +a (A.ll)

L - - -One may define base vectors t and t2 as

L =I-. ' i. L(A.12)

L. LY Li I (A.13)

Since these vectors are in the shell midsurface the local normal is

= '- L. L L-I.Y Lr((A.14)
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Note that these vectors are related to the local slopes which for locally

shallow elements are small. Recalling that a condition of shallowness is

(from Eq. 3.25)

,_I "z4(A.15)

One can see that Eqs. A.12-A.14 are approximately unit vectors and will be

considered as such. Additionally, one may observe that these base vectors
L- L- r-

are approximately orthogonal. ti, t2, n will be considered a triad of unit,

orthogonal curvilinear base vectors uniquely related to the L.R. system. The

L.R. system is also uniquely related to the G.R. system by

1 4 L fLLk\ -(3.43)

The global slopes, Gz, and Gz, can be easily obtained by Eqs. 7.125 so it
G., x G y

only remains to determine the local slopes.

It should be recognized that the global and local normals must be normal

to the same shell surface and, therefore, must coincide.

(A.16)

Placing Eqs. A.6 and A.14 into this gives

4CL-6eyLr + LI) k

W PICLA LV L Y,+ La (A. 17)

Since the base vectors of the G.R. and L.R. systems are related the same way

as the corresponding coordinates, from Eq. 3.43

L (A.18)

Placing this into Eq. A.17 yields

+( ltK((.L9)(4,AL)LT1

z{%L \L ~ \1L~L%, L Lj I

1I6tL tix .t+z- vLL 4.( LPLL1
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Comparing coefficients of the local base vectors one obtains

L C

cz2 t )%,L+t(Iy, Lz t(a ((7;Lr')(A. 20)

Thus, each system can be related to the others and all the terms necessary for

the analysis can be obtained.

According to the Kirchhoff-Love theory the local element displacements
L L LL- L- Lc-

LAu, LAV, LAW would be measured along t 1, t 2 , and n respectively. The

assembled system of equations is referred to displacements measured along t
G- G-

t2, and n. Thus, a transformation is required to bring the element level

matrices into the assembly system (G.C.). Since the normals coincide and

since both systems (G.C. and L.C.) are taken to be unit orthogonal systems

then only a simple planar rotation is required. This plane would be the

tangent plane to the shell at the point of the outward normal. The angle of

rotation required is simply obtained by

Cos 9 L 5

LZ;.1;(A.21)
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FIG. A.1I DESCRIPTION OF GLOBAL AND LOCAL FRAMES FOR RECTANGULAR

CARTESIAN AND ORTHOGONAL CURVILINEAR COORDINATES AND

THEIR ASSOCIATED UNIT BASE VECTORS
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APPENDIX B

THE PRINCIPLE OF VIRTUAL COMPLEMENTARY WORK AND

THE PRINCIPLE OF STATIONARY TOTAL COMPLEMENTARY ENERGY

The Principle of Virtual Complementary Work, in a total sense, for large

deflection analysis has been discussed by Langhaar [19531, Levinson [1965],

and more recently by Koiter [19731. A derivation will be given here which
C

will correspond to the incremental functionals, mC, of Section 4, for the

S.L. system. In a total sense this principle corresponds to c derived by

Washizu [1971].

The external work on a continuum may be expressed as

Expanding this in initial and incremental quantities

The Principle of Virtual Complementary Work states that the sum of the comple-

mentary work done by virtual surface forces .is equal to the virtual comple-

mentary work done under the exact state of strain by virtual stresses satisfying

the stress equilibrium conditions. Considering only incremental forces and

stresses subject to variation, Eq. B.2 becomes

Uw_ S+a ALt4us \/ 4- S d CLL1(B. 3)

The equations of stress equilibrium may be written as

Ei,+ + C)(B. 4)

and the surface tractions as

Ti (TiI + m .i k\Q 1  (B.5)

Since ultimately one seeks a principle which will be stationary, the variations

taken must be on independent variables. As can be seen from Eq. B.4 the first

Kirchhoff stress is dependent on the displacements. Therefore, one may not

take the variation with respect to this stress. However, making use of the

unsymmetric first Piola stress of Eq. 2.56 one may write the stress equilibcium

equations as
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(B.6)

where

S Ti(of Eq. 2.56)

Additionally, the surface tractions may be written as

(B.7)

Eqs. B. 6 and B. 7 may be expanded to incremental form as

+ ) + (Fv +ai J)=O (B.8)

and

Qn4+ &rO) = (ti' a (B.9)

Taking the variation of Eqs. B.8 and B.9 with respect to the independent,

incremental stresses only

(Sat Y ,o (B.10)

and

Sa0T; (B.11)

Placing these back into Eq. B.3 yields

O WL.4LSA4O c[/M.S ($rCMb'(JZLLA$ (3. 12)

Integrating the first term by parts gives

aaw = (Sag --,O.),AV = aU (B.13)

Note that since lAp.. is unsymmetric Eq. B.13 must be left in terms of the

displacement gradients. Equating Eqs. B.3 and B.13 and realizing that 66F.=0

one obtains

(EL *&S $aT CLaz + Outt- s oB.14)

The Principle of Virtual Complementary Work becomes the Principle of Stationary

Complementary Energy which states that of alL the states of stress satisfying

the stress equilibrium equations, the actual state of stress is that which

makes the complementary energy stationary or
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Expanding

Separ-atinc

The varial

S-rfc= SS0 5u4Au (A~V - S-iL'+ zC,>=(B. 15)

Eq. 2.56 for incremental analysis gives

rq -MfOR1 -4 Irkt+ab61\L4- 6UaLI.C0(B. 16)

Sthis into initial and incremental parts

TICS1tkO-k1
2 b(B.17)

Aair +- AI z (B.18)

.ion of Eq. B.18 is not a simple variation of the first Kirchhoff

stress but

$ar~4\ 1Q .L4 Uk ~S9~5t~z\(B.19)

Placing this into Eq. B.15 yields

$esvj . (s\ L-,, ;a\ 'lsqA U;-1 1 (w:,+&).cW

or

L SaI:t-Auz c S

I.-1Ah t kLk

or

-53 S6-r CtL +6az\ cL5 0(B .n)%
IV
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Note that D S + S , ST = 0 on s and 6(u. + Au.)= 0 on S. Eq. B. 20
a' U o - 1 .U

becomes

Z Siazfl(C bfXJ5 = 0(B.2l) SLL

Assuming a potential function exists such that

;9B (arq I= (B.22)

the Eq. B.20 becomes

Lj (6 1 )4 . -LL +acii) aL. d u.c.-\ Av ATZ UB d

4$e4-i1 +kaccytrq\Qw.U~jtkii4 LIC.Z dL( 114 +-A.( cbs

&A1TiUiU(J5.S 0 (B.23)

The last two integrals are zero, as can be shown by us ing the divergence

theorem on the surface integral. From Eq. B1ll

V

S - S $a1'F j LjAt-lv B.24)

Since Eq. B.10 holds withSA = 0. Placing Eq. B.19 into Eq. B.24 gives

-

4c46-j t 1 aj+U;Zcr\(ts LLIIIJt71.JLkJ~A

(B.25)
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where variations on constants can be moved in or out of the variation brackets

as well as added with no change in the virtual principle. Finally, Eq. B.25

may be written as

friI ez

iALtL' Bl.b( + aukL'ug c\/ (B.26)

Placing Eq. B.26 into Eq. B.23 yields

Swp > ncG i+4 $\((q+ar)&Ltfrg tzf)4- Sare bu;d=O (B.27)

Recalling the statements following Eq. B.20

ST S1B8r4\+4 Lcq amPiyos,;12)dLaT; OL L\- (B. 28)

Finally the Principle of Total Minimum Complementary Energy may be written as

T 1DZj-jSjj(B.29)

Therefore, Trc is not just a function of Acr.. as in linear analysis. If the
c 1)

increments are taken to be small with respect to the initial quantities then

Eq. B.29 may be linearized as

-Tr (O'&, i;=S L'I q) i i to DiL.kJOL a riVh' ObTL ClL-A$ (.30)

The functionals of Eqs. B.29 and B.30 correspond to the modified functionals,

c , of Eqs. 4.44 and 4.45 respectively. A similar (and simpler) derivation
mc

holds for the updated system. For convenience, 7r in the updated system is
C

the same as IT of Eq. B.29 (or Eq. B.30) except that the proper defintions of
c

the variables must be used. (See Section 2.) Additionally, in the updated

system, stress equilibrium and surface traction terms are given as

or

(T+A(T-,+Ucb+rk) aLt.k + i t \ = (B.31)
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and

or

T t I~ Ct4 +4AWT; + Lr+ 1 b l &A4 ) Y(B. 32)

Note that Tr has none of the correction terms in it because it is assumed
c

that the initial state is in equilibrium.
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APPENDIX C

DISCUSSION OF THE MODIFIED REISSNER PRINCIPLE AND ITS

COMPARISON TO THE ASSUMED STRESS HYBRID FUNCTIONALS

For purposes of discussion and comparison a finite element model based on

-r for an updated system will be developed. The functional used as a basis
MR

is Eq. 5.50. The results will be compared to both the consistent and incon-

sistent assumed stress hybrid models. Eq. 5.50 written for an element is

In'-Ar+wr ((4-1L A

2V UroTL cr + Acrq\ v1  asC1

' o (T;+oiDWiL6UW-&7u.0

4ia1e kL~LL;Lk1LLVCV(C1)

In a similar fashion to Section 6 the variables shall be interpolated in terms

of the unknowns 6 and Aq and Eq. 5.47 will be satisfied exactly.

(r ,6 cr P T+arol'P4

3La (C.2)

C.C

Placing Eq. C. 2 into Eq. C.lI gives term by term
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o ', + 4- 
(C. 3

C. a(C. 4A

4 " o; I Au

-S(I TT r- v (.1
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Placing Eqs. C. 3-C. 12 into Eq. C. 1 yields

aI 14 It aaTV-%

J-VVM M6 a

_ P Oft JaWf ~ u 6 +

+^' 7T(C. 13)

Solvin forhe 5'

Paing te.val5ito fEq. C.13 yidspett

14 A !nJAlG - GA* A

Uolvngrearrnginganddopn'hsontnsntsbetovrainwt

C- r +C -C.5

Placig Eq C.1 intoEq. .13.ie7d
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APPENDIX D

ALTERNATE P MATRIX BY THE STATIC-GEOMETRIC ANALOGY

In Section 7 it may be desired to satisfy the entire homogeneous stress

equilibrium equation, Eq. 7.54. If this is the case, then the P matrix must

reflect the additional terms which are funtions of z. A simple choice of P

was given as Eq. 7.87. An alternative P matrix may be established through the

use of the static-geometric analogy for shells [Southwell, 1950]. Briefly,

this concept utilizes the analogy which exists between the stress-stress func-

tion relations and the strain displacement relations.

Although the ultimate goal is to establish a P matrix for a shallow shell

element satisfying Eq. 7.54, the flat element properties must not be disregarded.

For a flat plate the relation between the stress resultants, N , N , N , MX,

M , K and the stress functions, U, V, W is
y 2Y

fNly,

Ne y

My

Mwy

0

0

0

0

- 3. y

L j -q

Choose the stress functions to

.IE ; =

0

0

0
Ax0 y

P4K

0y

-032

/0~y

IV
w}l (D 1)

be complete quadratics in x-y space.

K

I

'I

yr
I2

2.

YI

P t

(D.2)

pis
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Placing this into Eq. D.1 yields

N1x

N~q

N xy

AA q

'C

-y

X/Z

%/:

L (D. 3)

Note that five 's can be eliminated immediately and since two of the columns

of P are dependent, one of the corresponding S's may be eliminated. Thus, the

stress functions can be expressed in terms of only twelve independent f' s.

After some rearranging

is IKX
Y{Y% Ky

KY
(D.4)

This equation guarantees that even if the shallow shell reduces to a flat plate,

stress equilibrium will still be satisfied.

For a shallow shell the relation between the stress resultants and stress

functions is
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IWIC I

NItxy0

Placing Eq. D. 4 in-to Eq.

dMW

Mcy

Y/Z

0
00

0

- Y

-t y \w

3lq yE y

D.5 one obtains

-2

1.x
~ ~,KC

t
-y& ~I'cY

(D. 6)

In Equation 7.87 the coupling in the stresses was through z only. Here, the

coupling is through the curvature of the shell surface. For a flat element

z E 0 and although this does not quite look the same as the standard P matrix

it is equivalent. There are other P matrices that could be formed and as long

as Eq. 7.54 is satisfied any one of them is legitimate.
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APPENDIX E

A HIGHER ORDER ELEMENT BY THE INCONSISTENT

ASSUMED STRESS HYBRID FUNCTIONAL

Finite element theory allows one to choose from a whole range of element

sophistication as long as the governing equations are valid and all assumptions

are realized. Elements range from the very simple flat plane stress type to

highly sophisticated- doubly curved deep shell elements. The elements used

here are simple in shape (flat or shallow) and interpolation functions. It is

useful to study the effects of varying the number of stress parameters, degrees

of freedom per node and the number of nodes per element. One may also combine

various elements, condense out certain variables, etc., thereby creating new

elements. In addition to this, displacement interpolations may be varied,

assumptions on the severity of curvature may be made, etc.

For the assumed stress hybrid model under linear theory, Mau and Witmer

[1972] have experimented with a variety of flat elements. Unfortunately,

triangular elements which are most useful ip all types of analyses, are not

as accurate as the rectangular (or quadrilateral) elements. Mau and Witmer

demonstrate this for flat elements. Tanaka [1969] shows that for linear shell

analysis using doubly curved triangular shell elements, often an averaging

process is necessary to yield good results.

Pirotin [1971] has used the basic inconsistent assumed stress hybrid

formulation (purely incremental with no checks) to analyze the large deflec-

tion of shells with a doubly curved four noded shell element. This was some-

what limited in that the curvilinear coordinates were always required to be

orthogonal. These deep shell elements are fairly complicated for large deflec-

tion analysis. Thus, more sophistication on a simpler plane is worthwhile

considering.

One possibility would be a six node, shallow, triangular shell element,

the interior displacements of which are defined by three translations at each

node. Such a displacement field will, of course, maintain the continuity of

the shell surface that the elements are representing. Being an assumed stress

hybrid model the rotations along the boundary can be independently assumed.
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In tact, the distribution of the normal slope 0n at each edge may be assumed

as constant, linear, or quadratic and correspondingly one, two, or three

degrees of freedom will be needed for each edge. The boundaries may also be

curved. For example, the following types of interpolations might be used.

T

(zi 7-1iU(E)1 MV -W

Kc4tY%76 J4  ',

where the (. 's are the triangular (area) coordinates. Since the midside

information would be required, perhaps a stationary system would be simpler

to use.

Recalling that the minimum number of B's depends on the number of q's

(see Eq. 7.59) and since the number of q's have increased then the stress

assumptions must change. Considering that the shell may become flat and the

equations would completely decouple, then the inplane stress resultants would

require nine independent a's while the bending stress resultant would require

six, nine, or twelve independent a's if the distribution of the normal rotation

at each edge is constant, linear, or quadratic respectively.

As can be seen from this appendix one must be extremely careful in choos-

ing elements which will yield an increase in accuracy comparable to the

increase in complexity and computational cost. The simple elements presented

in this work, while useful and efficient for many problems, have drawbacks.

Certain types of problems require extreme accuracy. Some of the higher order

shell elements used in linear theory are just too prohibitively expensive for

nonlinear analysis. Some good intermediate elements are needed.

292



BIOGRAPHY

Mr. Peter Lewis Boland was born in Brooklyn, New York on April 12, 1947.

He received the degree of Bachelor of Mechanical Engineering (Magna Cum Laude)

in February 1969 from the City College of New York, and the degree of Master

of Science in Aeronautics and Astronautics in February 1971 from the Massachu-

setts Institute of Technology.

He has been employed by the Raytheon Company since February 1969. His

studies have been supported by the Raytheon Advanced Studies Program. Addi-

tional support was rendered by the Department of Aeronautics and Astronautics,

Massachusetts Institute of Technology through a fellowship and a research

assistantship.

Mr. Boland is a member of Tau Beta Pi, Sigma Xi, the American Society

for Mechanical Engineers, the American Institute of Aeronautics and Astro-

nautics, and the American Association for the Advancement of Science.

293




