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- ABSTRACT

The solution of a transcendental equation known as "Kepler's
equation," which relates position in orbit with time, requires an iterative
procedure for solution. A method is developed based on one presented by
Gauss in his Theoria Motus dealing with the problem of position determination
for time since pericenter passage in cases where elliptic and hyperbolic
orbits approached very near unity. The problem of interest here is the
more general one of determining final position and velocity from given
initial conditions and a specified time interval. Kepler's equation is
transformed to an equation which is of the form of a cubic and which
provides the nucleus of an efficient iteration algorithm. The final
algorithm is a general form valid for any orbit of any eccentricity and
requires no knowledge of the nature of tke orbit for application. Universal
formulae are developed relating final posi-ion and velocity to initial
values in terms of variables defined in the transformation. Finally, the
method is tested over a wide range of orbits to observe its performance
and comparison is made with the proposed Kepler subroutine for the NASA
Space Shuttle orbiter vehicle.
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CHAPTER 1

INTRODUCT iON

The determination of the position and velocity in two-body orbits
leads to the solution of a transcendental equation commonly referred to
as "Kepler's equation" which relates the dependence of pasition in orbit
with time,

In classical analysis, the shape of these two-body orbits is
described through the use of conics and correspending to each conic
Kepler's equation has & different form. A useful quantity in classifying
conics is a constant e called the eccentricity. For a circle e = 0, for
an ellipse e is between 0 and 1, e equals 1 for a parabola, and is greater
than 1 for the hyperbola. Also obtainable from elementary considerations,

is the general polar equation for the conic which can be stated as

.= h™/u - p (1.1)
1 +ecos f 1 +ecos f

where h is the massless angular momentum, u is the product of the
universal gravitational cunstant and the sum of the masses of the two
bodies, p is the semi-latus rectum or parameter, and f, called the true
anomaly, is the angle between the radius vector and the direction of

pericenter or point of closest approach of the two bodies.



For the parabola, Kepler's equation is simply

6 | (t-<) = tand(f/2) + 3 tan(f/2) (1.2)

where T is the time of pericenter passage. Although Eq. (1.2) is a
special form of Kepler's equation it is more commonly known as "Barker's

formuta." A graph of the parabola is shown in Fig. 1.1.

F
N GF=GN
Figure 1.1 Parabola \
<— 2q—+

In the case of the ellipse, use is made of an angle, denoted by

t— T

E, called the eccentric anomaly, which is based on a reference circle
referred to as the "auxiliary circle," and whose geometrical significance

can be seen in Fig. 1.2.

ot O~
=1}

c F
fe—ae—~

Figure 1.2 Ellipse



In terms of E, Kepler's equation may be expressed as

M = E - esinE (1.3)

Eoo(t - 1.4
a3 ( T) ( )

=
Il

M is the mean anomaly and a is the semi-major axis.
For the hyperbola, instead of ar angle an area is employed as the
auxiliary variable and is also based on a reference geometric shape

referred tc as the "equilateral hyperbola" as shown in Fig. 1.3,

//4<i:§quilateral
hyperbola

Q

.::;igfi;actua1

orbit

Figure 1.3 Hyperbola

Then the appropriate variable H is defined as

Area CAQ = &



so that Kepler's equation may be written as

HE (t-1) = esinhH -H (1.5)

Kepler's equation is transcendental, so that for a given time it
canriot be solved algebraically for the position parameter. However, there
is one and only one solution and for an analytic solution an iterative
process must be employed.

In his Theoria Motus Gauss addressed the problem of determining

the true anomaly from the time, for elliptic and hyperbolic orbits which
are nearly parabolic. In such cases the conventional methods of solution
could not give the precision required. As Gauss expressed it, "The methods
above treated, both for the determination of the true anomaly from the

time and for the determination of the time from the true anomaly, do not
admit of all the precision that might be required in those conic sections
of which the eccentricity differs but 1ittle from unity, that is, in
ellipses and hyperbolas which approach very near to the parabola; indeed,
unavoidabie errors, increasing as the orbit tends to resemble the parabola,
may at length exceed all limits. Larger tables, constructed to more than
seven figures would undoubtedly diminish this uncertainty, but they would
not remove it, nor would they prevent its surpassing all limits as soon

as the orbit approached too near the parabola. Moreover, the methods given
above become in this case very troublesome, since a part of them require

the use of indirect trials frequently repeated, of which the tediousness



is even greater if we work with the larger tables. It certainly, therefore,
will not be superflous, to furnish a peculiar method by means of which
the uncertainty in this case may be avoided, and sufficient precision may
be obtained with the help of the common tables."

Gauss' method of solution is applicable to orbits of any eccentric-
ity. The reguired iterative scheme is a "Picard” type iteration, i.e.
successive substitution, there being no need for trials or tests which are
so characteristic of many iterative schemes. Furthermore the method is
applicable to all conic urbits, the advantage here being that the type of
conic encountered need not be known in order to apply the formulae. Also,
continuity is maintained during transition from one conic to another while
at the same time being free from ambiguities or indeterminant forms. As
will be seen, the speed of convergence is quite rapid. Gauss' method is
briefly outlined here for the elliptic orbit.

Rewriting Eq. (1.4) as

Moo= B -er (¢ ) (1.6)

q being the pericenter distance, Gauss then chose to replace E and sin E

by the quantities

P = E-sintE
(1.7}
Q = f% E + %ﬁ sin E

(6]



With these, Eq. (1.3) takes the form

(1-e)P+( e) Q = M

[y
ol—
ol

then as long as E is a quantity of first order,

Lo
—
o
—
~J

3 1

5
60 - ' 1200

B - ..

is a quantity of the first order. Then defining

3 2
. 6P 2 . Q9 _ Q9

Y = B 5P _ Y
2 1.4 1 6

Y = B -35F -ghp b

is a quantity of second order, while

3 4, 1

B = 1+ 5355

js a quantity which differs from unity by a quantity of the fourth order.

Finally, Eq. (1.8) becomes



1/2

+ 2 (1+9e) v/ - M (1.9)

B {(1-e)YV s
Hence it is readily seen that the choice of f%—and f%—in the definition
of Q was to obtain B, which multiplies the entire left side of Eq. (1.9),
as nearly constant as possible. Eq. (1.9) is essentially an algebraic
equation of third order.

It is easy to see that B can be considered as a function of Y.
Furthermore, in the words of Gauss, "Now, although B may be finally kncwn
from Y by means of our auxiliary table, nevertheless it can be foreseen,
owing to its differing so 1ittle from unity, that if the divisor B were
wholly neglected from the beginning, Y would be affected with a slight
error only. Therefore, we will first determine roughly Y, putting B = 1;
with the approximate value of Y, we will find B in our auxiliary table,
with which we will repeat more exactly the same calculations; most
frequently, precisely the same value of B that had been found from the
approximate value of Y will correspond to the value of Y thus corrected,
so that a second repetition of the operation would be superfluous, those
cases excepted in which the value of E may have been very considerable."
The tables referred to by Gauss were constructed to further simplify the
iteration process by reducing the amount of computation even more. Here
corresponding values of B are listed for values of Y, which are in incre-
ments of .004 from 0 to 1.2, In this manner the tables provide a simple

means of obtaining values of E up to 64° 7'.



To further illustrate the speed of convergence, consider an

elliptic orbit in the x-y plane where pericenter is given by

r, (2 x 10’ m) i

3
v = .2 j
i, LA (6.2 x 107 m/sec) ly

then for the Earth as the central force and an arbitrary value of 5 hcurs

for the time since pericenter passage

e = .928735 M = .0764383

For an initial guess of 1 for B, Y is obtained from Eq. (1.9) ard is

found to be
Y = .59995
Then from Gauss' table,
log B = .0001734 or B = 1.000399
With this value of B8, Eq. (1.9) gives
Y = .59998
and again from the table
B = 1.000399

Hence we have converged to the solution after just one correction at

which point E may be calculated from



_ 1
E = Bﬁ(1+aﬁY)

with a value of 33.7039°.

It is the purpose of this study to extend Gauss' method of solution
of Kepler's equation in standard form to the general problem of determining
final position and velocity vectors for a specified time interval from
given initial conditions at any point in the orbit while at the same time
preserving all or most of the qualities which were inherent in Gauss'
method. Finally, to see just how practical this solution process is,
comparison is made with the algorithm proposed for the on-board computer

in the NASA Space Shuttle orbital vehicle.



CHAPTER 2

EXTENDED FORM OF GAUSS' METHOD

The extension of Gauss' method to the solution of Kepler's equation
for some arbitrary interval of time to obtain the final position and
velocity is presented here for the ellipse and hyperbola, respectively.
The parabola is shown to be the 1imiting form of both the elliptic and
hyperbolic solutions as the eccentricity tends to unity. Furthermore,
universal formulae are derived which permit caiculation of final position
and velocity using the initial position and velocity without knowledge of
the type of orbit encountered. Ffinally a generalized procedure of the
iterative process is presented, the details being left as the topic for

a later chapter.

2.1 The Ellipse

Kepler's equation for a time interval t = tf -t corresponding to

an eccentric anomaly difference AE = E - EO’ may be written aéz)
%0 "o
l%t = AE + —= (1 - cos AE) - (1 - —) sin aF (2.1)
a

where the quantity 9 is defined as

10



Since g = a (1 - e) we have

U
q

= (1 _ e)'3/2 {

Defining the variables

AE - sin AE

a AE + 8 sin AE

1 - cos AE
r
%(1-a—$(1-e))

AE +

0
q

"0
- (1 - ?r-(l - e)} sin AE }

where a and B are constants to be specified such that o + 8

Eq. (2.2) becomes

1 -e) {a AE *+ B sin AE )

1 - )2 (1 -~ cos AE )

o

1 - e)l/? (1 - cos AE )

Then

+ (1 -0 —1(1-¢)) (AE - sin AE )}

q

11



or

r g
i i =32 o 0y _ \1/2
q3 t (1 - e) (q (1 -e) q+ 73-(1 e) R+2yP)
(2.7)
Then, as did Gauss, defining the variables
Q 6P :
and also a new variable
(9]
- 0 _ R _ 2R
¢ =T b Co “%/P/Q " VB (2.9)
it is easily verified that
Q = BA P = 28YY2
Hence, we have in Eq. (2.7)
-3/2 5 (0 172 . |"o 1/2
=t o= (1-e) B{=(1-¢e) Y/ +\=(1-e)'cCy
q q 9
1y

or, defining the variable D such that

12



(2.10)

then

Lot = B(D+cnz+%yn3) (2.11)

Hence, we have succeeded in reducing Kepler's equation to a form which
resembles a cubic equation, the solution of which wiil be discussed in

a subsequent chapter, Notice also that B, C0 and Y are all functions of
AE, so that we may regard B and CO as functions of Y. This fact, as will
be seen, is of great importance in the solution of Eq. (2.11). Also, in
the definition of Q we leave o and B unspecified for the moment instead of
using Gauss' choice of {%-and %ﬁ. The functions B and CO are both

dependent on Y and their sensitivity to particular values of o and g will

be discussed in a later chapter.

2.2 The Hyperbola

Kepler's equation for the hyperbola may be treated in an analagous

fashion. To the time interval t = tf - t0 corresponds the difference

AH = H - H0 and the relevant form of Kepler's equation is
o °0 "o
\L; t = M+ —= (cosh aH - 1) + (1 + -7) sinh AH

13



since q =a (e - 1)

a
JEE; t = (e-1)"% [-pH + 7%(e - )% (cosh an - 1)

r

+ (14 ??-(e - 1)) sinh 2H } (2.12)

Again defining the variables

P = sinh AH - AH (2.13)

Q = o AH + B sinh AH (2.18)

R = cosh AH -1 (2.15)

. o

v = 5(l+a ?r-(e - 1)) (2.16)

gives
-3/2 "o ° 1/2
J13t‘(e D2 Le-na+rLle-nYRe2yp)
q

or, using £qs. (2.8) and (2.9)

r r
\]T% t = (-1 - Y1/2+J—:Q(e-1)1’2CY
q

4 %-y v3/2) (2.17)

14



By letting

Y = "dg (e - 1) D? (2.18)

Eq. (2.17) becomes

Bt = B (p+CD°+EyDd

Ty D> (2.19)

The universality of this method becomes apparent here since, for
different type orbits, the same resulting equation is obtained.
Furthermore, from Eqs. (2.18) and (2.10), it is readily seen that Y may be
used to classify conics in a similar fashion to the eccentricity. If
Eq. (2.10) is accepted as the definition of D then for the ellipse Y is
greater than 0, Y is equal to O for the parabola, and is less than O for
the hyperbola. Hence we now possess a general form for the solution of
Kepler's equation for hyperbolic and elliptic orbits and will show
subsequently that this general form is indeed also valid for parabolic

orbits.

2.3 The Parabola

The parabola can be shown to be the 1imiting form of both the

ellipse and hyperbola as e tends to unity. Here Kepler's equation is

2 Jﬁ% t = {tan(/2) - tan(fy/2)} + % {tan>(£/2) - tan’(Fy/2)]

(2.20)

15



As e approaches unity from either the hyperbola or eliipse a

approaches infinity and from the definition of D, Y tends to 0. It is

easily verified that both B and CO approach unity. Hence we have from

either Eq. (2.11) or Eq. (2.19)

g
sin fO = /p 0 cos f = 2
o 0 rO

and that the root of Eq. (2.21) is

f -,
V2 sin (- )

cos(f/2)

D =

then substitution of Eq. (2.22) and Eq. (2.23) does indeed lead to

Eq. (2.20). As a case in point; at pericenter fO = 0; hence

D = /2 tan(f/2) = 0 TP— =2
0

9
Therefore Eq. (2.21) becomes

o (t - 1) = /2 tan(f/2) + @ tan3(£/2)

16

(2.21)

(2.23)



or

2 \]Ij (t - 1) = tan(f/2) +%~tan3(f/2)
p

which is Barker's formula. Therefore as Y approaches 0 (e 1), the

hyperbolic and elliptic forms reduce to the parabolic form.

2.4 Final Position and Veiocity Vectors

Determination of the final position and velocity from given initial
position ana velocity vectors and a time interval may be done through the
use of universal formulae expressed in terms of the variables Y, B, D,
and CO.

In general, the final position and velocity vectors may be written

in terms of the lLagrangeF and G functions as

|-
1
-n
cgs
+
o
g:

(2.24)

(2)

F = 1- ﬁL-(l - ¢cos AE)
0
i a
Ft T s sin AE

17



3
t—E(L\E-sin AE )

1 -2(1 - cos af)
r

making use of Eq. (2.9) and Eq. (2.5)

o1
1 -cos AE = 5 YB CO
Also from Eq. (2.2) and £q. (2.4)
sin E =Q-aP:Bﬁ—%BY3/2
=Bﬁ(1-%—¥)
r
but since Y = ??-DE
r
sin AE =BD‘@(1-%—Y)
and
3
3 r
p = ME-sinaE = Llpy¥? o DB O
6 6 \a3
Therefore, for an ellipse
3 ]r
_ 1,2 _ 4 _BD” 0
F = 1- 5 D™ B CO G = t 3 7
: BO W .2y _lo L2
ft = 7% ro(l'oY' St 1-+ (0

18



For hyperbolic orbits F and G are

= 4 -
F= 1 - & (cosh &H 1)

0
Fe = = w2 sinh h
r PO
3
G = t - —u(sinhAH - AH)
— a -
G, = 1-3 (cosh AH 1)

making use of Eq. (2.9) and Eq. (2.15)

1 o1 2
sYBCy = 5 (zD°BC

cosh AH -1 0)

Also from Eq. (2.13) and Eq. (2.14)

sinh aH = Q+a P = BN(1+%Y)
lr
_ 0 o
—BDI-a-"(l'l'E-Y)
and
3 r
_ . _ 1 3/2 _ BD 0
P = sinh AH - AH = 6 BY = .j;g

Therefore, for the hyperbola

19



142 _ B D 0
(2.26)
_ _BDJH a ] fo 1,2
Fy = ro(1+6\{) G, 1~ = (30" BCp)

The only difference between Eq. (2.25) and Eq. (2.26) is in the

expression for F This sign difference may be avoided by the convention

¢
that Y<0 for the hyperbola, Y=0 for the parabola, and Y>0 for the ellipse.
Thus, the final position and velocity vectors may be determined through
the use of Eq. {2.24) and Eq. (2.25), where Y determines the conic. Notice
that nowhere in Eq. (2.25) is there any need to know the nature of the
conic,

One further point to be made here is that another means of
calculating v and also Y will be needed if the new form of Kepler's

equation is to be valid for rectilinear orbits as well. This may be

accomplished using the fact that

2
02— e (o eR
(1 +e) 0 0 (2.27)
Recall that
_n2 (g xyg) - (g X ¥p)

P U U
Using the identity

(AxB)-(CxD) = (A-B8)(B-D)-(A-D)(B-L)



we have 2
_ v
P " %
Now 2
2 + 9
(1 - e) =2P_P(PZO)
"0 o
and ) 2 v 2
(1-e _ (1-¢e) _ 2 _p+% _ 2 _T0
q p ro r02 ro H
Hence Eq. (2.6) and Eq. {2.16) become
pa
rn Vv
y = g l-a(@-220) (2.28)
while ‘o V02 , _
t = (2--000p (2.29)

2.5 General Summary of the Iterative Method

The purpose for the following general discussion of the method of
solution is to summarize the work presented in this chapter and also
to give purpose to the material presented in the following chapters.

Given an initial position, velocity and a time interval one may find
the final position and velocity by performing the following sequence of
steps:

1. Calculate Y VO’ Tg» and vy.

21



2. For an initial guess set B and CO equal to unity.

3. Substitute these values into the cubic

}_}1?7 t = B(D+c0’+iy0)
r
0

and solve for D.
4, With this value of D, calculate Y using Eq. (2.29).
5. From B and CO expressed as functions of Y, calculate new
values for B and CO.
6. Test for convergence by using the present values of B, CO and
D in the cubic and recomputing t. Check the error between this
value and the given time interval. I[f the error is larger than
some specified value, return to step 3. If the error is smaller,
then calculate the final position and velocity using Eq. {(2.24)
and Eq. (2.25).
As in Gauss' solution there must be a 1imit to the magnitude of
AE or AH in <he ellipse and hyperbola and hence on the time intervail or
else the number of iterations does not remain small., Therefore it is
necessary to account for larger intervals of time. This aspect along with
determining B and C0 as functions of Y, and determining the root to the
cubic, which in this case may not always possess one real root as was the
case with Gauss' solution since C and y are not constant, will be dis-

cussed in the subsequent chapters.

22



CHAPTER 3

SERIES EXPANSIONS

Probably the most convenient method of obtaining B and C0 as
functions of Y is by power series representation. The means of obtaining
these series is discussed along with the selection of the constants o and
B. A procedure to economize the series is then presented and a potential
means by which further reduction in the amount of computation is

obtained.

3.1 Selection of the Constants o ard R.

Consideration in the selection of the constants o« and B8, in this
instance, must be given not only to B but also to CO. For elliptic
motion, if B and CO are expanded as powers of AE in terms of o and g the
resulting first terms are

_ 1.1 2
B = 1+4(10 g (AE)™ + . . .

C. = 1+1L2(s-—1%) (AEYe + . . .

0

Clearly selection of a= f%—, p= f%- makes B a value which differs from

unity by a quantity of fourth order in AE. But if o= f%-, g= {%— are

selected then C0 will differ from unity by a quantity of fourth order

23



in AE. On the other hand if a= é}-, B= {%— are chosen, both B and Co
differ from unity by the same quantity of second order in AE.

It is possible to observe both B and C0 as functions of Y for these
selections by evaluating B, CO and Y for different values of AE (AH) and
then plotting B vs. Y and C0 vs. Y. The resulting curves are shown in
Figs. 3.1 through 3.4, It is easy to see, for both the hyperbola and
ellipse, that to obtain either B or CO as nearly flat as possible the other
varies significantly. Also notice that for a= f%, CO remains much
flatter than B does for a= %%-. These two choices of o will be compared
in tests to see which gives better results.

The following procedure to obtain B and CO as series in powers of
Y will be explained with o= %%— but results for both o= f%—and %—are

also presented.

3.2 Methods of Derivation

Two methods ¢f obtaining B and CO as a power series in Y were
tried. The first uses the technique of series reversion. The procedure
is to obtain Y as a series in AE (AH) and revert the series such that now
AE (AH) is a series in powers of Y. A convenient expression can be
obtained relating B to AE (AH) and Y in which case substitution of the
reverted series gives the final result. The series for C0 can then be
obtained by making use of the reverted series and the B power series.

This method may prove more applicable if the computation is to be done by

24
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hand, but with the aid of a computer the second method proved to be much
quicker and easier. For this reason the reversion method is explained in
detail in Appendix A.

The second method vas performed on MACSYMA (Project MAC's SYmbolic
MAnipulation system), a large computer programming system used for
performing symbolic as well as numerical mathematical manipulations and
developed by the Mathlab Group Project MAC, of MIT., The procedure was to
obtain the power series in AE, in the case of the ellipse, about AL = O,

for Y, B and CO from their definitions using the algebra for power series.

Hence,

Ag? Ag® 79 AE® 6469 Af0

2
2 AE + _ _
36000 498960000 340540200000

Y = A - 35 - 5040 o

R V- VA DU A 7 A
2800 ~ 84000 ' 258720000 - 100900800000 ~ * *
oo 0%, et 11 aE® a3 aE®  s7a7 aEld
0 20 * 2200 © 504000 ~ 194040000 - 908107200000 = * * °
Now, if a series for B is assumed in the form
B = LA Y (3.1)
[y}

substitution of the power series for Y thern gives B as a power series in
AE which must be equal to the one above. Therefore, the coefficients of

1ike powers must be equivalent. The end result is a system of simultaneous
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equations in the coefficients which may be solved for the coefficients of
Eq. (3.1). The same procedure can be used to obtain C0 as a power series
in Y. Values for the coefficients of the B and C0 power series in Y for
the cases when o =-T% "T% and % are listed in tahles 3.1 through 3.3.
Expansions for the hyperbola were found to differ from those for

the ellipse only in the sign of the coefficients of the odd powers of Y.
Therefore if the convention tnat Y<0 for the hyperbola is invoked, then the
coefficients for the B and CO power series in Y for the hyperbola become
identical to those listed in tables 3.1, 3.2, and 3.3.

In the remainder of this report this convention will be assumed

unless otherwise stated.

3.3 Limits on Y

Before presenting a procedure to determine the number of terms
needed in the series presented above, some discussion is needed on the
range of Y. Clearly before determining the number of terms needed in the
series, it is important to know the magnitude of Y.

Figs. 3.5 and 3.6 illustrate graphs of Y versus AE and pH,
respectively. Clearly, for the ellipse, Y is not single-valued;therefor
AE maximum must be limited such that no ambiguities arise in the series.
Furthermore, from consideration of the figures presented earlier, Y must
be 1imited in such a way that the maximum difference of 8 or CO from

unity is fairly small.
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Table

Coefficients of B and C

3.1

—
ol“o

0 serijes for o=

- - n
n B = 1+JA Y Co 1+ A Y
1 1
]
! 0 - 73
2 _3 o1
2800 700
3 1 R
16800 5000
. 471 53
86240000 8624000
5 L1363 o223
5802600000 436800000
6 434741 4129
9417408000000 50552000000
; 2408477 ) 311177
533653120000000 7770880000000
g 403919063 ) 37728329
397763016640000000 3084 1766400000000
. 2145072731 i 105033143
16329300864000000000 7535919626240000000
10 75471659629837 i 5471610044533
15687142454151168000000000 1297649651536240000000000
1 132411358246191 i 106817118047
361452374235852800000000000 584758666956800000000000
12 55799798992454767 11851702685582548

13

1035351401973977088000000000000
12414235743%70997

2144656475517523968000000000000

" 25883785049349427200G000000000

19027953195172973
~ 3916329216162435G72000000000000
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Table 3.2

Coefficients of B and CO series for o = %

- w ]
n _ n
n B=1+[AnY C0—1+ZAY
1 ) ]
1 -3 3
80 ~ 80
> 201 _ 79
89600 89600
3 __un _ 871
21504000 21504000
4 176613 252481
35323504000 "~ 105971712000
; 271451 _ 12351271
3748659200000 78721843200000
6 8488006389 _ 6865898111
617179250688000000 ©17179250688000000
7 13098502849 . 2525021731
55957585395712000000 3052231930675200000
8 58803292553097 . 330173488030733
1069269517504348160000000 5181844584828764160000000
9 _9420554697114853 _ 16288553229423227
3233471020933148835840000000 3233471020933148835840000000
10 3883596108433264805167 _ 302094967565576376649
1.20632955714051083625037824E34 7.43115042003004919119872E32
1 23098122874658499783029 - 5321748559055768462627

1.01063645712408669000302592E36 1.5957417784064526684258304E 35

- 8704290755686248953605003
3.138917937420692778362339328E39

6441756777920188837201637
3.138917937420692778362339328E38

7006713442959367729144985491 - 1255133409038017992997674049

4.126630781729070772620355436544E42]5,.38256188921183144254828969984E42
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Table 3.3

.. . _ 3
Coefficients of B and CO series for o = 10

(%) n n
n B o= 1+]A Y Cg = L+ LAY
1 1
3
1 - 5 0
) 111 1
5600 560
3 841 1
336000 168000
. 42657 157
137984000 713952000
: 1352179 71
35875640000 2745600000
; 137316943 _ 59569
30135705600000 30135705600000
; 9352130257 4117
17076899840000000 2558976000000
g 5346453665829 i 5437831417
§1578790092800000000 3953 0000000
o | . ___482112405431887 855068051
61673565310156800000000 700835969433600000000
10 56022846609957208997 i 43869829127363
60238627023940485120000000000 393716516496 34 3040000000000
ne 133025677788520291001 435581052799
1204772540478809702400000000000 AT808185326043136000000000
12 1809728048830088249343 - 3159248718285685463
138286935081045983232000000000000 |3180599506864057614336000000000000
13 73263984417650584586453 175461881414420479
1.82287323515024750624E33

© 4.730122343541419016192E34
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For comparison puvrposes, twoc ranges of Y were selected on the basis
of the figures, to illustrate both the number of terms needed in the B and

C. series and the number of iterations required in the basic algorithm

0
for certain test cases to be presented subsequently. These two ranges are
-2<Y<2 and -1s<Ysl.

In the case of an ellipse; for o = %% , a Y of 2 corresponds
to a AE of approximately 84° while for a Y of 1, AE is approximately 58°.

These values are roughly the same for o = f%—.

3.4 Series Economization

A simple procedure to predict the effect of a term in a power series

(1)

is through the use of Chebyshev polynomials:™’If a function is expanded in

a series of Chebyshev polynomials,then the contribution of the nEn

Chebyshev (Tn) term will never be greater than the magnitude of its coef-
ficient since the magnitude of any Chebyshev polynomial does not exceed

unity. Specifically, for a given function

m
f(x) = ¥ a «"  where -~1lsxsl (3.2)
0

K
a(x) = Ib x (3.3)

with K as small as possible, such that
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[F(x) - g(x)] <o

where p is some maximum permissable error. This may be done by expressing

f(x) in terms of Chebyshev polynomials

g(x) = Jc T {x) (3.4)

+£Cnl < p
After Eq. (3.4) is obtained, then by expressing the Chebyshev polynomials
in terms of the powers of x, we obtain Eg. (3.3).

Economizations were performed to obtain 10 decimal place accuracy,
for reasons which will become apparent later, for the two ranges of Y
discussed earlier. For Y between 2, when o = f%-, the B series required
9 terms and the CO series 9 terms. When o = f% » the B series required

11 terms and the C. series 7 terms. For Y between *1; when a = fL-,

0
the B series required 6 terms and the CO series 7 terms. Whena = f%—,

the B series required 8 terms and the C0 series 5 terms, The new
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coefficients for the four cases noted here are Tisted in Tables 3.4 through

M= W

3.7. Out of curiosity, the B series was economized for |Y| < # and

a = %% . In this case only 4 terms were required.

3.5 Series About an Arbitrary Point Y0

If a greater accuracy is required for the vaiues of B and C, and

0
the resulting number of terms required in the above series, expanded about
Y =0, is too large or still further reduction in the amount of computation
in the B and C0 series i1s desired, this may be had by expanding B and CO
about some arbitrary point YO' In this way the range of Y may be divided
into smaller ranges. For example, B and CO might be expanded about the

points Y0=0, *]1, *2. Then, if Y varijes from -2 to +2, this range may be

subdivided, where the different expansions would cover the ranges

-%s(Y+2)s-%
-%S(Y+1)s-%
-z (Y-0< 3
Fsl-1s< 3
%'s.(Y -2) < %

Clearly the symmetry of the expansions is lost here in that different

series are needed for negative values of Y, (i.e. for hyperbolic motion,
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Table 3.4

Economized coefficients of B and Cy series for [Y|< 2 and o = 19—0
) w n ) oo n
B = Ib Y Cg = Ib, ¥
0 0
7843571227151055659629837 1
78423571227075584000000000
1
0 10
672306029706247570163 L
627485698166046720000000 17
1 L
16800 1500
1713582915051373837 __ 53
313742849083023360000000 539000
1363 223
2802800000 13650000
6871740017219921 _ 4129
149401356706201600000000 1414875000
2408477 _ 311177
533653120000000 568522500000
785609842671397 _ 37728329
1568714245415116800000000 354850650000000
2145072731 _ 105033143
46239300864000000000 4952968020000000
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Table 3.5

Economized coefficients of B and C0 series for |Y|< 2 and o = 10

2

B = Lo ¥
0

T n
CO = E bn Y

10

11

69143467538713263567119911750657
69143467540522991616000000000000

3

20

76140129756137295600088249343
3841303752251277312000000000000

841
336000

407147244803613763111750657
1317018429343295078400000000000

_ 1352179
35875840000

5627889561901438168249343
1234704777509339136000000000000

_ 9352130257
17076899840000000

166022723698477749190657
2560869168167518208000000000000

. 482112405431887
61673565310156800000000

288124270208053749321689
265045958905338134528000000000000

- 133025677788520291001
1204772540478809702400000000000

197671683691837831417

197671683686400000000

_ 855068051
77870663270400000000

_ _4412319805831417
24708960460800000000

139055610908051
23361198981120000000

_ 7491676408583
19767168368640000000

2011135659847
77870663270400000000

1340583750421

~ 642432971980800000000

13383263731
77870663270400000000
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Table 3.6

Economized coefficients of B and C0 series for |Y| < 1 and a = —19—

_ 5 n v n
B = } b ¥ Cpb = Ib Y
0 0
2677272312165437747913889689 11627746099237728329
2677272312175132672000000000 1162774609%200000000
1437326685903 _ 3606641246102966857
2855257653248000000000 72132824924160000000
286850635854381151775093 _.515095845728329
267727231217513267200006000 363367065600000000
23898422653221547 _ 450830260809143
401520607488000000000 5409961865312000000
36550962583721353843 _ 446586911671
6693180780437831680000000 72673413120000000
10178067028931 _ 2301313714171
20590800384000000000 4508301557760000000
2363485560315763573 _ 2108834729
50198855853283737600000000 45420883200000000
_ 126270321
28899368960000000
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Table 3.7

Economized coefficients of B and C0 series for |Y|< 1 and « ='ﬁj

- c n . - n
B = Z bn Y CO = Z bn Y
0 0
30842177036313551228049957208997 657851363267207815187053
30842177036257528381440000000000 657851363302339200000000
_ 263140544841223274568113 177959943673
1754270302155571200000000 9967444898611200000000
12226720126207816426%370791003 - 7342044897399429053
616843540725150567628800000000 41115710206771200000000
_ 329317741959020471887 _ 2781028488704629
131570272661667840000000 467223979622400000000
23836782488154859250008997 _ 7858448465474947
7710544259004 3820953600000000 20557855103385600000000
_ 1377004486107208113 8143355863811
36547297961574400000000 311482653081600000000

125422606175071338151003
27537658068087078912000000000

_ 15493403723547727
27410473471180800000000
1635173642596460497637
24095450809576194048000000000
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8 and C0 must be expanded about IYO[ using the hyperbolic definitions and
then the sign of the coefficients for the odd powers of Y chany _d.).

The methods presented earlier are no longer of practical use in
this case. The method of obtaining these coefficients and their values

are presented in Appendix B.
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CHAPTER 4

ROOTS OF THE CUBIC

The cubic equation in Gauss' solution is monotonic in that the

This is not the case

coefficients are such that only one real root exists.

here because of the existence of C and vy which are functions of initial

position and velocity. It is now possible that three real roots may exist

and clearly only one is valid. Two methods are presented here for

obtaining the one correct solution of the cubic.

4.1 Method A

Equation (2.11} is

1 3, .2 _tlu
jYD'CD+D_§-—3-
"o

which may be written in the form
1 3 2 12 t | u
D) +C (YD) +y (YD) = g ,';—g
0

Then by defining
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we have

3 -3ex = 2b (4.3)
where

g = ¢ - Y (4.4)

2b = 3y F+C-3cc (4.5)

From elementry algebra, the criterion for one real root in Eq. (4.3) is

b2 - &3 5 0

In this case it is easily shown that

X = [b+Qb - € ]1/3+(b-4b -53]1/3 (4.6)

is the real root. This may be written in the form

2bm
x = -t (4.7)

(m0 - g} 4 M€

my = (|b] +\]b2 - Y3 (4.8)

The absolute value of b results from taking the positive square root of

b2,

Eqs. (4.7) and (4.8) are more desirable than Eq. (4.6) in computing

x due to the fact that only one and not two cube roots is required and
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that M is obtained by adding two positive numbers in contrast to the
subtraction required in Eq. (4.6).

2 3

When b~ - ¢ < 0, three real roots exist, two of which are equal

when the equality holds. Here the three roots are obtained by calculating

/Z

38 = arccos(—F%=) (4.9)

/3
s¢ that

X, =2 /€ cos ©

N o + if b > 0
Xo =*Z Ve cos{® + - _ifb <O
4n

Xy =%2 Ve cos(s + =
are the three real roots.
Since £ must be greater than zero and b lies between t/ég- for
for these three real roots to exist, selection of the proper root can be
deduced, and easily verified, by plotting the three roots as functions of
b and € as is shown in Fig. 4.1. Using Eq. (4.1), if C is positive then
this equation is equivalent to translation of the y D axis to the right
of the origin whereas if C is negative, translation is to the left.

Rewriting Eq. (4.4) in the form

ol - 7T
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Figure 4.1 Graph of three real roots, b vs. x



it can be seen that if y is negative then absolute C will always be less
than /e . Hence transiation of the axis will be such that X3 is the
correct choice of the root. If y is positive then selection of the roots
Xq Or X, will be based on the signs of b and C.

A simple criterion for selection of the roots can be obtained by
letting 8 run from 0 to mw, starting at pt. A in Fig. 4.1 and moving
aiong the curve,instead of oscillating between 0° and 30° as is seen in
Eq. (4.9). Therefore the roots may be computed using the following

criteria: for b2 < 53,

36 = arccosbil—)

/e3
then for v <0, 120° -8 + 9
for y>0and C <0, 06 + 120%° + ¢
otherwise, 6 remains as calculated (always in the first quadrant)
and

x = 2 /e cos 8

From a continuity standpoint, since small changes in t and hence in
F and b , must correspond to small changes in the root D, then depending
on the values of y and C there are only certain ranges of t for which
this solution method is valid. For example, consider C positive with b
and € being such that three real roots exist. If b is decreased (by
changing t), some value will be reached such that b = -/23 at which point

the value of x = Ve is the solution (pt. B in Fig. 4.1). Any further
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decrease in b results in the existence of one real root and Fig. 4.1
illustrates that a jump from pt, B to point D exists. Hence a discontinuity
in x exists at the point where b = -/ég when ¢ > 0. Since this is not
physically possible, t must be constrained, in this case, such that b> ~/E3,
(we know that requiring that b be less than -/e3 is incorrect from the
simple fact that three real roots exist when t = 0 and hence continuity
must be maintained from this point). In a similar fashion it is seen that
when C is negative, t must be constrained such that b 5_/E§ . Hence
several tests must be incorporated in the algorithm to maintain these
requirements. This is, of course, not desirable.

Depending on the selection of o , in particular if o > %—, it s
possible for y to be equal to or less than zero. If y equals zero then

Eq. (2.11) reduces to a quadratic with solutien

p = L/ /A+AC] (4.10)

Clearly the (+) sign is the correct choice from the simple fact that D
must equal zero when F is zero.

When y is in the vicinity of zerc, computation of the root using
Eq. (4.1) leads to an indeterminant form. In this case, an asymptotic

expansion of the form

Y 1.2
D = D0 + D1 (3) + D2 (3) + ... (4.11)



is appropriatega)Substitution into Eq. (2.11) and equating powers of y gives
a set of expressions for the coefficients of Eq. (4.11) which may be

written in the form

i _ _2F
A =v1+4cF D0 TR
A, = CD, +3D.7° D. = - EQ?
1 1 0 1 A
Dy A
, D. A, + D, A
_ 7 Dy AP E DAy
A, = CDy+3DyD,+D D, = - ;
e T U S e W
4 A

A more convenient form which eliminates all of the indirect
computation may be arrived at after some inspection of the above set of

coefficients. Rewriting Eq. (4.11) in the form

= DY
D = D (1+ g Wy 0—7;?—) ) = D, H (4.12)

and expressing C and F in the forms

(1 + A) D0

F = — cC = =
9 4F 2 DO

we substitute into Eq. (2.11) to obtain
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D e Y
2 ( 0 > ) H3 4
A

A-1) 2,4 - Ar1

2 2

1
3 A

The series definition of H then provides expressions for the coefficients

W in terms of A, Table 4.1 provides a list of several of these

k
coefficients,

The efficiency and practical use of the asymptotic series both
in the amount of computation required and in the accuracy Teaves much to be
desired. The coefficients do alternate in sign so that the truncation
error is smaller in absolute value than the first term omitted. On the
other hand, no precise criterion is apparent to decide when the asymptotic
series must be used or when obtaining the root using Eg. (4.1} is no Tonger
valid. Also, when C is negative (or t is negative in which case F is
also negative), then for y equal zero, t must be such that the radical in
Eq (4.10) is nonnegative. Furthermore, when y is small, t must be such

that A is not in the vicinity of zero, since A is present in the denominator

of the asymptotic series,

4.2 Method B

The second method involves a change in variable from D to x

according to

p = -=F (2.13)
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Table 4.1

Coefficients of asympotic series

2
1 wa (DO Tyr
+
, n A2 o
_A
3
A+ 5 A%
18
A+7 A +16A
51
50 +45 A% + 159 A + 231 A
548
C7A+77 A%+ 357 A% + 847 A% + 896 p°
1943
7 A+ 91 A% + 518 &> + 1638 A" + 2931 A + 2431 AP

3888

11 A + 165 A2 + 1110 A3 + 4330 A® + 10455 A® + 15033 A® + 10240 A’

) 11664

2 6

(429 A + 7293 A® + 56528 A°

+ 260865 A + 780615 A° + 1529847 A

+ 1839739 A’ + 1062347 AB)/839808

(53}
g




Substituting into Eq. (2.11) gives

3

X ~3ex = 26b (4.14)
where now

e = 1+3CF (4.15)

2b = 2+9CF+9yF (4.16)

Note that Eq. (4.14) is identical to Eq. (4.3) with different definitions
of the coefficients. Thus, if b° - €3 1is positive, then the root is
computed using Eq. (4.7).

2

When b~ - &3 < 0 , selection of the proper root can be made by

plotting the three roots as was previously done in Fig. 4,1. When F = 0
(t = 0), the roots of Eq. (4.14) are Xy = 2, Xo = X3 = -1 and b2 = 53.
Hence point A is the solution point for all values of C and y. From a
continuity standpoint, small changes in F, and hence in b, correspond to
small changes in the root. Therefore if b decreases then the correct root

will always be located on that portion of the curve from points A to B.

Hence for three real roots, the correct root is simply calculated from

38 = arccos(—E—) (4.17)
e3

and

x = 2/e cos B (4.18)

53



To avoid any discontinuities, the requirement that b 3_—/63 must be met,
This requirement avoids obtaining a value of x in the vicinity of x = -1
for which case Eq. (4.13) has a singularity.

The most important characteristic of this method is the elimination
of division by y and hence the need for an asymptotic expansion is avoided.
Also computation of the real root has been simplified along with the number
of criteria to maintain continuity. Another quality evident is the effect
of errors resulting in the calculation of x. Small errors in x using

method A are magnified by a factor of %—which is not the case in this

method.
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CHAPTER 5

FINAL ALGORITHM

Incorporating any iterative procedure into an algorithm requires the
use of tests along with certain logic operations to account for cases that
may arise which could pose problems if precautions are not taken. In this
soTution of Kepler's equation only two such cases arise.

The first deals with time intervals which require a larger transfer
angle than that which is permitted by limitations on the range of Y. This
can be handled simply by computing the time interval corresponding to
the maximum value of Y and comparing with the desired time interval. If
the time interval corresponding to Ymax is greater than the desired time
interval then the iteration process is initiated immediately to obtain the
final position and velocity using the desired time interval. If, on the
other hand, the opposite is true then a transfer angle step corresponding
to Ymax is taken. This is done by computing a position and velocity by
means of the universal formulae derijved previously using the values of
B, CO’ D, t and Y corresponding to Ymax . Then the time corresponding to
Ymax is subtracted from the desired transfer time interval. This is
continued untii the time interval corresponding to Ymax is greater than
the present desired time interval. This procedure will be referred to

subsequently as "time stepping.”

For the second case, recall that one requirement in the solution of
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Eq. (4.14) was that b 3--/é§ (when e is positive), to maintain con-
tinuity and also to avoid the singularity at x = -1 in computing D. Note,
b and € are both functions of v, C, and F while y and C, for the most part,
are functions of the initial position and velocity. Thus, b and ¢ vary
with F and hence t. When e is positive and a value of b which is less
than -/gg is encountered, a simple relation to determine that value of
F such that b = -/gﬁ does not seem to exist.

The value of F where b = —#ég is determined from the quadratic

b -t = 9P G+l ety Fry-3c¢%) = 0
and, unfortunately, division by vy is required. If y is very nearly zero,
problems will arise. Furthermore, when £ is negative, there being always
only one real root in this case, there is continuity for all values of b
and £ but now b must be restricted to only positive values to positively
avoid the singularity at x = -1. Hence the first test is to see if b
is positive or negative. If positive, there is no problem. If negative,
then £ must be checked to see if it is positive or negative. If negative,
then a value of F must be determined which will make b at least zero.
Here b is a quadratic itself in F and also requires division by y. If ¢
is positive then b 3_-/£§ must be tested. If it is true, there is no
problem, If it is false then the above quadratic must be solved for that

value of F where b = -/ég.
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Clearly all this testing is very tedious and detracts from the
appeal and potential of this method of solution. It was found that for
all orbits tested that a root less than zero was never encountered and for
the most part was in fact quite Targe. Thus, the need for the tests
described above can be avoided by the simple expediency of assuring only
positive roots. If a negative root is encountered then a prescribed
fraction of the time interval is subtracted and the iteration is
reinitiated. This fraction would be preferred to be near unity ( say .95)
since fairly small changes in t have a significant effect on the root.
Also, a decrease, rather than an increase, in F (t) is taken due to the
fact that as F approaches zero both b and € approach unity while the
root, x, approaches a value of 2. Maintaining x positive not only
satisfies the continuity requirement when € is positive but avoids the
possibility of having to subtract a small quantity from unity when

computing D.

5.1 Procedure

Before presenting the final algorithm the following quantities are

defined:
thax = time interval corresponding to Ymax
t = input time interval
tT = sum of time steps (if any)
T = time interval computed in the iteration for convergence test



Figure 5.1 illustrates the flow chart diagram used in the tests.

In the following discussion, an iteration will be referred to as executing

blocks 12 to 20 in the flow diagram.

5.2 Tests and Data

A11 tests described below were made on a Hewlett Packard model
9820A calculator which employs 12 significant figures internally and
displays 10.

The first set of 28 tests consist of a series of orbits which
comprise the test package for the Kepler subroutine in the Apollo project.
The characteristics of these orbits are listed in Table 5.1. These tests
were first run to examine different ranges of Y. Two ranges were examined;
-1 <Y <1land -2 <Y <2, both for o = f% . The results of the number
of time steps and iterations needed along with the results of the Kepler
subroutine proposed for the NASA Space Shuttle orbiter vehicle are listed
in Table 5.2.

The second set of tests was used to examine the performance of this
method for orbits of very high eccentricities. These cases evolved from
mode11ing the Earth as a series of point masses, resulting in orbits of

very high eccentricities. The orbits and results are listed in Table 5.3.

Finally, we note that several cases were run for different values
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Figure 5.1 Flow Diagram of Final Algorithm
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Table 5.1

Characteristics of test orbits in Apollo test package

Test

Transfer Angle, deg

Case (True Anomaly) Eccentricity Transfer Time, sec
1 7.99998424968 EO1 9.08472055853 E-02 1.148369%9999 £03
2 1.00048154767 E-02 9.08473428889 E-02 1.49999995999 E-01
3 4.99987664764 EQO 9.08473428889 E-02 7.53999999999 EO1
4 1.20000175146 EO2 9.08473428889 E-02 2.13718999999 EO3
5 1.80000041363 EO2 9.08473428889 E-02 3.33458999999 EO03
6 2.40000321827 EQ2 9.08473428889 E-02 4,37899999999 EO3
7 3.10000511619 EQ2 9.08473428889 E-0? 5.40949999999 E03
8 3.59990041015 E02 9.08472106471 E-02 6.13027999999 EO03
9 3.00001706630 EO1 4.74644650401 E-02 5.93839999999 E02
10 3.00000052396 E02 4.74644650401 E-02 6.40665999999 EQ3
10A 1.51788202155 EO2 9.99992103557 E-01 2.49214659999 EO05

10B 1.51804097745 EQ2 9.,99922247179 E-01 2.49386009999 EO05
10C 1.79577137679 EO2 9.99922247179 E-01 2.49733099999 EC5

11 4,99999925700 EQO 9.99999997122 E-01 5.58423099999 E04
12 1.60650689794 EO2 9.99999997122 E-01 1.15658179999 £05
13 3.21302199029 EO02 9.99999997122 E-01 2.31316369999 EO05
14 2.00001935050 EQ1 1.00000008927 EO0O 2.81689999999 EO02
15 1.60651090924 EO2 1.00000008927 EOO 1.15658209999 EO05
16 1.99999947324 E01 2.12962970416 EOO 3.15733599999 EO4
17 2.38668401433 E02 1.87546300185 E0O 7.75691699999 E04
18 1.99994918900 EO1 2.12914297903 EOO 2.26909999999 EO02
19 1.08575407348 E02 2.82215957165 EQO 2.99999999999 E04
20 1.51672933663 E02 9.99999876956 E-01 2.49192869999 EO05
21 1.51672339021 EO2 9.99999998429 E-01 2.49192869999 EO05
22 1.79675677848 E02 9.99999998429 E-01 2.49542759999 EO5
23 1.40807640275 EQ2 8.96059501396 E-01 1.80147099999 EO4
24 1.15344978692 E02 2.12962970416 EOO 3.47293699999 EO04
25 1.09425122755 EQ2 2.70365025705 FOO 2.99999999998 EQ4
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Table 5.2
Number of iterations for Apolio test package

Test Proposed -1l <v<1 2 <vY<2?
sze igggglﬁ n?mber of iterations n?mber of iterations
time steps time steps
1 4 1 3 0 7
Z 3 0 1 0 1
3 4 0 1 0 1
4 5 2 1 1 2
5 5 3 2 2 2
b 5 4 2 2 5
7 5 5 2 3 4
8 3 6 2 4 2
9 4 0 2 0 2
10 5 5 2 3 3
10A 14 0 2 0 2
108 11 0 7 0 7
10C 10 0 7 0 7
11 0 1 0 1
12 0 2 0 2
13 10 0 2 0 2
14 5 0 1 0 1
15 13 0 1 0 1
16 8 2 2 1 5
17 12 7 3 5 3
18 5 0 2 0 2
19 7 3 5 2 6
20 14 0 2 0 2
21 10 0 2 0 2
22 10 0 2 0 2
23 b 1 4 1 2
24 10 3 4 2 6
25 7 3 5 2 6
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Table 5.3

High Eccintricity Test Orbits resulting from use of
Point Masses for a Circular Orbit around Earth

Characteristics

Time interval equals a quarter orbit
Point masses scaled to (1/u,)

Test case Point mass Eccentricity
1 4.99999599999 E-6 2.50374472748 E5
2 2.49999993999 E-6 1.00220726562 E5
3 2.49999999999 E-6 6.96929475557 E5
4 2.49999999999 E-6 4,93695513720 E5
Results
-1 <Y <1 -2 <Y <2
Test  number of number of number of number of
Case time steps iterations time steps iterations
1 1 2 0 3
2 2 3 1 4
3 0 2 0 2
4 1 2 0 3
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of o . The value of f%— was superior to an o of {%—for reasonable values
of transfer angle although they were comparable tor very small transfer
angles. Hence, it was concluded that the value of f%- was the proper

choice, just as Gauss had determined for the more elementary problem.

5.3 Discussion of Results

The preceeding results clearly illustrate the application of this
method to the solution of transfer problems for all types of orbits and
for a wide range of eccentricity.

In the comparison of the two ranges of Y, the smaller range did
tend to reduce the number of iterations in several instances. And, as
would be expected, the smaller range increases the number of time steps
but the amount of computation required in taking a time step is small. Also,
the smaller range of Y requires fewer terms in the B and CO power series.
Selection of the range of Y is largely up to the user although evidence
points towards a smaller range being more benificial. Clearly there is a
point of diminishing returns in reducing the allowable range of Y.
Furthermore reduction of the range of Y below %- yields very little in
the further reduction of the B and CO power series. It is felt that a range

of Y between =1 or possibly i%'wou]d be the best selection.

5.4 Comparison with the Proposed NASA Shuttle Kepler Subroutine

The comparison with the proposed NASA Shuttle Shuttle subroutine

shows a considerable decrease in the number of iterations in most cases.
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It should be kept in mind that the amocunt of computation in an iteration
for both methods is different. Interesting enough, this method shows a

substantial decrease in both the amount of logic and computation in one

iteration.

The convergence test in the Kepler subroutine was based on a

3 between the computed time in the iteration and

relative error of 107!
the desired time. This error criteria was unobtainable due to the
limitations of the HP 9820A model. Hence a convergence test was selected
based on an absolute difference of 10-4 seconds. C(ases were run where
this error was tightened whenever possibie and little or no increase was
evidenced in the number of iterations. Hence the comparison of these
results could be made with little or no hesitation that these results
would differ significantly if the same criteria were used.

Of equal importance to the number of iterations is the accuracy
of the final position and velocity vectors. Here again the calculator
posed limitations. For instance, the desired time interval could not be
posed to full accuracy siiice only 10 significant figures could be used
without calculator round off. Nevertneless, with a convergence criteria
of 10'4 seconds , accuracy of the final position and velocity vectors
was at least 8 significant figures and sometimes even 10. Hence, this
method is not only quicker but also quite accurate. The reason for this
accuracy is due to an added feature in this algorithm. Referring to

the flow chart of Fig. 5.1, the use of T, the computed time in the iteration

for the convergence test, in the statement numbers 22 and 23 has the
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net effect, upon reaching statement 27 , of taking all the errors which
remain in statement 21, on the final iteration of any number of steps,

and iterating on that time interval error. Almost always this error is so
small that only one iteration is required to obtain a good approximation
of Y, B, and CO . Here again, in most cases, the Timits of the calculator
prevented the effectiveness of this feature from being realized since Y
was quite small and the calculator set B and C0 exactly to 1. In several
cases, though, this was the reason for the increased accuracy of the final

position and velocity.
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CHAPTER 6

CONCLUSIONS

The method developed here for the solution of Kepler's equation for
the general problem of determining final position and velocity vectors froum
given initial conditions for a specified time interval through the
extension of Gauss' method in the standard form of position determination
for time since pericenter passage also has resulted in a Picard type
iteration, requiring only successive substitution. Furtihermore, the form
is general, thereby being applicable to all conics without knowledge of the
conic encountered and at the same time is continuous during transition from
one conic to another and is free from ambiguities or indeterminant forms.
Also, it has proven itself to be applicable to both rectilinear motion and
to all orbits of any eccentricity even in the cases where the eccentricity
is very large in which case motion is nearly rectilinear. And, the resulting
universal formulae, relating final position and velocity to initial values,
are not only simple but are also expressed in terms of variables which
have already been computed in the iteration process.

The final algorithm exhibits both simpiicity and strong convergence
and at the same time has very good accuracy in determining final position
and velocity which results from internal correction of errors in the

time interval accumulated in the iteration process.
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Finally, comparison with the Apollo version of solving Kepler's
equation showed not only a decrease in the number of jterations but also
a reduction in the amount of logic and computation in any one iteration
thereby further illustrating its simplicity and potential of Tinding a wide
range of application in computer oriented problems and also presents itself
as a sinple method for hand or calculator computation.

Most important is the basic concept behind the method which was to
transform Keplers equaticon to an equation which is nearly cubic and hence
is solvabie through algebraic methods, the result of which is a simple,
straightforward and expedious means of obtaining the final position and
velocity.

It is recommended that if increased accuracy is desired, say to
16 significant figures in which case better accuracy will be required
for B and C0 , then serious consideration should be given to using the
B and CO power series about points other than Y = 0, since the number of
terms needed in the series about Y = 0 could get quite large depending on

the range of Y selected.
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APPENDIX A

SERTES REVERSION

A procedure for obtaining the coefficients of the expansions of B

and C, 1in powers of Y, which is useful if the coefficients are to be

0
calcuiated by hand, is through the use of series reversion and the algebra

(1)

of power series. The algebraic relations used here are:

If S1 = 1+ a1 X + a, X + ag X +
_ 2 3

52 = 1+ b1 X + b2 X"+ b3 X+

53 = 1+ c, X + Cy x2 + Cq x3 +
then for

(n-1)
53 % 515, ¢p = byt g 3y by
(n=1)
S3 51/3; L bn - g Ck bn-k
2 _ o1, i)

S = S3 % T 7% "7 g A Ak

where c0 = b0,= ao

The variable Y may be expanded in powers of AE using Eq. (2.8)
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Y = 6P _ 60 (AE - sin AE)
Q 9 AE + sin AE
or
2 4 )
Y _ 1+ a1 AE™ + a2 AE " + a3 AEY + . . .
AE? 1 + b, AES + b, AET + b, OE0 4 . . .
1 2 3
where
n n
a = 0= b = —L=l) (1)
(2 n+ 3)! 10 (2 n + 1)!
Then dividing the two series yields
Y 2 4 )
= 1+ ¢, AES + ¢, AET + ¢, BEY +, ., . (2)
A_EZ 1 2 3
where
(n-1)
N (3

The reversion thecrem for a power series states that given an
expansion of the form of Eq. (2) which is convergent in some interval, then
if ¢4 # 0 there exists one and only one function which can be expanded in

the form

2
E° _ 2 3 4
- Lhdy ¥ohdy Yo+ dy Y2k d, Y7+, L (4)

Clearly one method of obtaining the coefficients to Eq. (4} is by
substituting Eq. (2} into Eq. (4) and equating powers. Unfortunately, no

general expression for the nEﬂ coefficient is obtainable through this
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process. An alternate procedure is based on the fact that

n

iﬁ(aﬁl

d = dY ¥=0 (
n-1 n!

N
~—

Differentiating Eq. (2) with respect to AEZ and inverting gives

d 2y _ 2 . 4
where in general

a = =(n+1)c, - ] (k+1)c a (7)

Now the ﬂ-1Eh coefficient in Eq. (4) may be obtained as follows:

1. Compute k coefficients in Eq. (6).

2. Starting with n = 2, compute

d” d (pe2) A [d(n-l)'AEz)
d

“““n(AEz) 5
d dy d(ae?)

MEEN

For example, with n = 2,

oae?) = Lae?) -4, [Sqa?)

dY dy d(AE") {dY
_ 2 2k-2 2k-2
= (1 + a, AET + ...t a4 AE )(a1 + ... K a AE )
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where
2
b_i -
With n = 3,
d°nE%_
a3
where
3
b.i -

and in general

where

=2
1]

2
1+ b, afl

=y 1

2
+ b2 AE

2
a1(1 tay AE™ + ...+ 3,

2 3
al b1 (1 + b1 AE” + ... F

1 Triogy b 4 b2
> [(1+1) biyg + I mbya;
by

2 3 ne
= A bl bl"'bl (1 + by AE

het

m

1 = 1
- [(1+1) biyg ¥ § m

by
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2z
R bi AETT + L)

. 2 2
2k 4)(b + 2 b, AE2 + ...

AE 1

2 2k-4
+ (k'l) bk_l AE )

; .
b, AEST & o)

2 2i

+ ...+ bi AE®T + .LL)

1<i<(k+1-n)

3j-m+l



It can be seen that 1 < n < (k+tl}. At the same time

_gn_AEZ ., bz ba E-.
dYn Y=0 1 1 1'.' 1
- dl'l-].AEz .
av"™ 1 |v=0| b

Hence, if k coefficients are calculated in Eq. (6), then k coefficients
are obtainable in Eq. (4). With the series in Eq. (4) determined, B as

a power series in powers of Y may be obtained since

-2
Y AE Y
(1+ 50

Using the binomial expansion

Y.\-2 _ 2
(1+E) —1+a1Y+a2Y + ...
where
, = (0" (n+1)
then
2 _ 2 pA
B® = (1 + dl Y + d2 Yo+ ,..) (1 + a, Y + a5 Yo+ ...)
_ 2 3
= 1+ b1 Y + b2 Y= + b3 Y- + ...
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where

n-1
b = a, +d + g a; d .
Hence
Bo= 1+A YA, YA Y
with .
n-
Ay = %'bn B %' g bi bpoi

To obtain the C0 power series in Y;

2
2R = 2(1 - cos AE) = 8BS (1 - E8E
and after substitution of Eq. (4) for AE? into

the result is

2

R = AE° (1#b Y +b 2 3

o Y7 + by

+ by, YO+ ...

2n
2 (-1)" At
Pt Tt
the above series and expanding

)

where the b's are the result of raising Eq. (4) to the corresponding

power of AEZ in the above series and adding the coefficients of similar

powers in Y. Now using the definition of C0

2

Cy = () (5 (1+by ¥ +b, ¥7 4 b
or
Cy = (1+a,Y+a, Y2+ ..) (1+d
where
n-1
@ = T A g 3 Ank
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Yo+ by, YO+ L.

Y+ ... (1L +by Y+ ..0)
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Hence, performing the required multiplication

2

CO = (1 + Wy Y + W, Yo+ ...) (1 +0b
where
n-1
wn - an * dn ¥ g ak dn-k
and finally
Co=1+A, Y+A, Y +a Y+
0 1 2 2 tee

where
n-1
S % W, by
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APPENDIX B

SERIES EXPANSION ABOUT AN ARBITRARY POINT Y0

The methods presented earlier for obtaining B and CO as power
series in Y about Y = 0 are no longer practical if the expansion is required
about some arbitrarv point YO. An alternate procedure can be used in this
instance to obtain numerical values of the coefficients for these two
series which makes use of the simplicity of the functions P, Q, and R
and their derivatives and Leibnitz's formula for the differentiation of a

product, which states

n n
Loy = J (ko where () = —M
dx 0 k! (n - K)!

For convenience, let

be the convention for all functions, other than B and CO’ in which case

a1+3 B

glisd)
1 J -
d £ dY E= E

0
will be the convention
Leibnitz's formula for computing the nED- derivative of a function

assumes that the values of the (n-1) derivatives are known. To compute
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Y(n); from Eq. ( 2.8)
QY=6P

Differentiating both sides n times gives

T ony A(n-k) (k) _ (n)
g (k) Q Y = 6P
or solving for Y(")
(n) (n) _ "2hony q(n=k) o (&)
Q Y = 6P - g (k) Q Y
n
For d E = B(n,O); If we let
dAE AEO
x=2°=82 Y2 =6 P Q

but x = 6 P Q, hence
n
X(n) = 6 E (E) P(n‘k) Q(k)
0
Equating Eqs. (3) and (4) gives, when n = 1
(1) = o (P(l} Q + P 0(1))

2z 2 = 0

and for n > 2,
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-1
2 5 Z(n) -6 g (2) P(n-k) Q(k) i n§ :

7y (nek) (K (6)

And since z = B Y, differentiating with respect to E gives

n
Z(n) = E (E) B(n'kso) Y(k)
0
n
_ ny n(n-k,0) (k) (n,0)
= § () B Y + B Y
or )
n :
y glm0) o 0y (%) g{n-k,0) y(k) n=1,2, ... (7)
1
{
Now B‘O’n) = EL{% may be determined using the chain rule
dY"AE
. j .
g{1:3) &d_&' = y(1) 5(0,3+1) (8)
dyd! Ag

Differentiating i times with respect to AE gives

g(i:3) _ fgl (1) y(i-K) glkei+) i=2,3, ...
VD RNC B W S DR O (1 yl16) g(1.341) 0
0
If j is replaced by n-1 in Eq., (8) then
g(1n1) _ (1) 5(0.n) (10)
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hence, B(l’n'l) must be determined. The procedure for doing this can be

seen by expanding £q. (9) for several values of n:

Forn =1, B(l’o) is determined from Eq. (7)

from £q. (10) 8100 - y(1) g(0,1)

For n = 2, 8(2’0) is determined from Eq. (7)
In Eq. (9)
For i=2; j=0  y(1) (11 - (2,00 _y(2) 5(0,1)
From £q. (10)  B(1:1) = y(1) §{0:2)
For n = 3, 8(3’0) is determined from Eq. (7)
In Eq. (9)

For i=3; j=C v gl2,1) _ p(3,0) _ (3) g(0,1) _ 5 y(2) p(1.1)

For 1=2; j=1

From Eq. (10) 8(1’2) = Y(l) B(O’Z)
Hence in general for n > 2, in Eq. (9)

1) gn-i-1, 3#1) _ p(n-3.3) _

Y(
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n .
d Co

AED | A
dAE EO

To determine

using Eq. (2.9) and Eq. (2)

z CO = 2R (12)

Differentiating n times with respect to AE gives

7 () (ko0 S(nk) g gln)
0

or
; n-1
2 c{m0 = el Ty (0 ekl )
0
d"c,
and now — is obtained using Eqs. (8), (10) and (11) where B
dY" |AE

0
is simply replaced by CO'

To summarize the procedure of determining the coefficients of
the B and CO power series in Y about some arbitrary point YO; To calculate
m coefficients to these series the sequence is as follows
i. Evaluate the variables P, Q and R and their m derivatives at the

point AE AHO).

o §
2. Evaluate

(0) _ 6 p0) 0,0) _ o9 (0,0) _ 2 g‘0)
LA N B - "%%UST“ Cop "7 = 107 5(0,0)
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3. For n = 1, evaluate
Y(l) = (6 P(l) - Q(l) Y(O))/Q(O)

3 (P(l) Q(O) + P(O) 0(1))/2(0)

(1)
B(lso) = (2(1) - B(Oso) Y(l))/Y(O)

5(1:0) y (1)

1t

3(0,1)

Célso) = (2 R(l) - Céoso) 2(1))/2(0)

(0D < ((10)y ()

4, Forn=2, 3, 4, ..., m

-1
g(0) y(m) = g p(n) ”g (M gk} y(k)
; -1
, ,(0) () _ ¢ 2 (ny pln-k) (k) "g (0 20k ()

1]
W)
x

—
=
g
=
—
—
~ 3
S
L)
—
-~
>
o
f o —
—
=3
]
-~
gt

For j =0, 1, ..., (n=-2)

Y(l) B(n'j'19j+1) . B(n'jsj) _ n-§-2 (n—j'l) Y(n—j-k) B(khj+1)
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(0,n) = C(l,n-l)
Y(1) C0 20
- (Osn) — (0,")
a, = B /(n!) bn = CO /{nt)
where
m n m n
B = 1+ { a (Y - YO) Cg =1+ % b, (Y - YO)

Table B.1 Tlists the coefficients of the B and CO power series
expanded about the points .5, 1.0, 1.5, 2.0. Table B.2 lists the
coefficients for the points -.5, -1.0, -1.5, -2.0. In both tables

the number of significant figures drops from 29 for the zeroth coefficient
to 15 for the 15Eﬂ . It will he hence safe to assume that the coefficients
from 1 to 5 are correct to 25 figures; coefficients 6 through 10 are

correct to 20 figures and those from 11 through 15 correct to 15 figures.
Finally, it is important to take note of the fact that the sign of Y has not

been accounted for in Table B.2. Hence for Y < 0, the sign of the odd powered

coefficients must be changed.
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Table B.1

B and C0 series coefficients for Y > 0

4.99920793653689037165097540983B~1

%

1;0002755662965972664443028958890

1.11877805591153866712861977927E8-3
1.1469543808139462351712854294901B-3
7.17846525665411241568329493B59B~5
6.87203163064854247174723199308R~6
4.520284338593346129080120036 3287
6.,56822195689472748648576925367E-8
&.82430353790162025933937716942E-9
7.2748738794180315294085182946883F-10
7.909846039151248332594825027154R-11

CONGCADUN- O |3
I

8.738543703946782131647310642643R-12
9.7813164380946985475048074697806E-13
1,1069116458611583976786505863538E~13
1.264345278716782085991390864728-14
1.,455751499449260705844895462873B~15
1.46878015080790852571772840593128-16

bn

R.744636118338569407231225165762R-1

5+1494065146216678109502042477430-2
1.096345074645680626916714147211K-3
P4¢702266387161467223960822394225R~5
7.613397468138983995399551468998k~4
6+73014761036327286623953750243K--7
6.3965490519518327531746757474158-8
6.+383270639051085514650921467205R-9
6:.3972B11162099405415336448214R-10

~ 7.000965145952672223952010846224B~11

10 - 7.584088127704680620509108354011R-12

11
12
13
14

15

—

8,30274547484979165253679453711E-13
?.32484402318727311063977333134k-14
1.052850710168179048031800052898~14"
1.200201315725733463999454808812K~15
1.,37947026856651413829240253971R~16
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Table B.1 Continued

1.05631489201046008637152731697R0

c.a
n

1.001273168941247186530141467973R0
2.49197208826952 2113421 30502850083

1.30335884274550136593427291 27983
8.,9235081820546833183244652089460546R-5
Pe037571347246369830595426307523R~6
P 2376909466027 251865330977384R-7

6 249715000631 126676555239469581R~8

1.116095468524772285064902702864R-6
1+27938068378296321241441892018RK-9
144961 92665255701 596225295801 09810

10 1.77817384248164146134169809988E~11

L

2+ 14143889357880898372004591775R-12

13 2.60758448726320558370280983698R-13
13 3,20511063407351690963263294498R-14
14 3.97140891052001117892837494838Rk--15
135 4.905430172212690865675668304718-16

b
n n
0 9.45483640826002?36714229205519B~1
1 — 5.3329535176554104081393913389941-2
2 = 1.74079946874574180431 235590927583
3~ 1.1629427018735199462924269555 1304
4 - 9,8246166402246847 3264695359207 2312R-4
9 o @.35376460425 70741 16845460427 39467R~7
G - B G734412859719749228471461146376R~8
7 - 1.0287782801213%56133330922183548-8
B — 1.1449466285352562653058145315478--9
? = 130B34H0484199977950772620Y41598-10
10 ~- 1.524186877782390167128292726158~-11
11 — 1.809931637467722645521469246718R~12

12
13
14

135

= Qe l706P266206407314316875056524R~-13
= e 64K09309774744925325001476404E-14
= 3+244670043914499550314204241958R-15
— 4.018007163044204946814271988482R-16
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