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ABSTRACT

The overall objective of this thesis is to develop an economical

computational method for multidimensional transient analysis of nuclear

power reactors. Specifically, the application of nodal methods based

on the multigroup diffusion theory approximation to reactors composed

of regular arrays of large homogeneous (or homogenized) zones was

investigated.

A nodal scheme is formulated using the response matrix approach

as a conceptual basis. Solutions of equivalent sets of coupled one-

dimensional problems are used to treat the local multidimensional re-

sponse problems. Polynomial expansions in conjunction with weighted
residual procedures are employed to obtain approximate solutions of

the one-dimensional problems. A linear set of nodal equations express-

ed in terms of nodal average fluxes and interface average partial cur-

rents is obtained.

Applications to two-dimensional few-group, static and transient

problems demonstrate that the nodal scheme can be an order of mag-

nitude more computationally efficient than conventional finite differ-

ence methods.

Thesis Supervisor: Allan F. Henry

Title: Professor of Nuclear Engineering
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Chapter 1

INTRODUCTION

1.1 Overview

There exists a strong economic incentive to perform accurate, reli-

able, and reasonably inexpensive multidimensional static and transient

reactor calculations. The accurate prediction of multidimensional reac-

tor behavior can lead to direct gains in terms of an increase in operating

efficiency and reactor utilization or more indirect benefits such as a

relaxation of safety margins or an increased confidence in their relia-

bility.

The standard computational technique for power distribution calcula-

tions in full-size reactors is the finite difference method. However, the

limited spatial accuracy of the method with the corresponding necessity

for excessive spatial discretization place severe demands on computer

resources. Thus, only recently, with the development of new computa-

tional procedures and a dramatic improvement in computer technology,

have three-dimensional finite-difference static calculations been under-

taken on a routine basis. Moreover, accurate multidimensional modeling

using finite difference techniques of realistic transients for the large

power reactors currently being built and designed is prohibitively expen-

give.

A number of recently developed higher order computational schemes

have been demonstrated to be efficient alternatives to the finite differ-

ence method for multidimensional static calculations. For a comprehensive

overview, we refer the reader to a number of excellent review papers on
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the requirements of multidimensional static and dynamic calculations

and the development of computational methods to meet those needs. 8

In particular, nodal techniques have reached a high degree of sophistica-

tion in application to static problems.” This demonstrated success with

static nodal schemes has prompted us to investigate the various nodal

formulations with particular emphasis on developing a spatially accurate

and computationally efficient technique for transient calculations. Other

researchers have pursued this same approsch.”

The overall objective of this thesis is to develop an economical

method for transient analysis of nuclear power reactors. In particular,

nodal schemes for time-dependent analysis of light water reactors will be

investigated. However, the basic intent is to develop a method with ade-

guate generality to treat the principal reactor types currently under design.

i  2) Statement of the Problem

[t is generally assumed that multigroup diffusion theory is an accep-

tably accurate neutronics model for the prediction of detailed reactor

behavior. Thus the basic set of time- and spatially-dependent equa-

tions for which we shall discuss approximate solutions are

 Vv + D (r,t) Vé (r,t) - ZL, t) ¢ (r,t)

G
Vv

= [ogg Tg 0+ 0B x, 20 06x.

5 C, (r,t) = 1 2, (r,t);
= Xek Ay s_ ot Tg" 2

1.2....G (1. 1a)
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G
v = 9 : =

Br ol v Zp o(r, t) g(r, t) = MColr, t) = ot Cy(r, t); k = 1, 2, ...K

(1. 1b)

~he ~2

G = total number of neutron energy groups

K = total number of delayed precursor families

dg = neutron flux in group g tem sec”)

C, = density of delayed precursor in family k (cm

D_ = diffusion coefficient for group g (cm)

— : : -1

0 = macroscopic removal cross section for group g (cm 7)

3)

Zig! = macroscopic transfer cross section from group g' to

group g (cm)

cL [° g'=g

gl'#g 1 g! F g

B = total fractional yield of delayed precursors per fission

Xs = prompt fission spectrum for group g

3 Zr = the number of neutrons per fission divided by a normalizing

parameter which is adjusted to establish a steady-state

condition for the reactor with time-independent properties

iimes the macroscopic fission cross section for group g
lem 7)

Xo = delayed spectrum for family k to group g

No = decay constant for family k

3 = fractional yield of delayed precursors in family k per fission
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and the implicit assumption has been made that only one fissionable

isotope is present. Stated nonmathematically, the particular boundary

conditions imposed are that the solution of Eq. (1.1) be restrained to

equal zero on the reactor boundary or be such that the reactor is effec-

tively imbedded in a vacuum. At internal interfaces, continuity of the

flux and normal component of the neutron current are required. For

the reactor with time-independent properties, the static solution (or

initial condition for the time-dependent Eq. (1.1)) is obtained effectively

by varying the parameter y until all time derivatives vanish for any

arbitrary initial condition. The static equations are

V - Dr) Vé (x) - Zot) ¢ (1)

G
s 1s = +y —= = 0: =1,2,...G.=| +e ged * Xgy ® | bg (D) &amp;

(1.2)

The geometrical complexity of most large power reactors is so great

that it is generally impractical to treat the spatial detail directly. To

alleviate this difficulty, prescriptions have been developed for obtaining

equivalent homogenized diffusion theory parameters which are spatially

constant over relatively large reactor regions’ (for instance, the size

of a single fuel assembly in the radial plane). Thus the global reactor

problem is normally partitioned into an array of subregions with constant

material properties and typically uniform geometric properties. This

thesis will only approach the solution of the "homogenized problem."
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1.3 General Review of Solution Techniques

Among the most successful of methods for solution of static multi-

dimensional problems, Eq. (1.2), are finite difference, finite element,

synthesis, and nodal techniques. We cannot adequately detail each of

these approaches here and therefore refer the reader to the comprehen-

sive reviews previously mentioned.’ 2 We merely summarize the advan-

tages and faults of each general class.

The finite difference method’ 9 is based on nodewise integral neu-

tron balance with a low-order difference approximation used to represent

spatial integrals of the leakage term V - D(x) Vo(x). The resulting

equations are sparsely coupled in space and energy making them rela-

tively easy to solve. The spatial coupling is of the "nearest neighbor"

type, meaning that only adjacent nodes are coupled in the representation

of the spatial leakage terms. Powerful numerical solution techniques

using sophisticated iterative strategies have been developed for systems

of equations with this particular type of straciare. 19712 Also, it can

be shown that the finite difference method converges to the exact solu-

tion of the multigroup diffusion equations in the limit of vanishing node

size. However, the finite difference method applied to the "homogenized"

problem has been found to require an excessive number of unknowns to

achieve adequate accuracy.’ Nevertheless, because of the inherent

simplicity and reliability of the method, it is the industry standard for

full-scale reactor analysis, and accordingly, the one to which we shall

compare our schemes.

The finite element method!” 14 uses local polynomial expansions
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for approximation of the detailed spatial variables. Variational proce-

dures are applied to determine the unknown polynomial coefficients. The

use of high-order spatial approximations allows a substantial reduction

in the number of unknowns in relation to the finite difference method to

achieve comparable spatial accuracy. Convergence to the exact solution

of the multigroup diffusion equations in the limit of vanishing mesh size

can be shown. However, the coupling of the unknowns in the finite ele-

ment equations is much less sparse than that of the finite difference

method, and because of this complexity, the advantage in computational

efficiency of the finite element method is severely limited.”

The synthesis schemes 14 employ variational procedures using

precomputed "trial functions" applicable over large regions of the reac-

tor, such as two-dimensional planes, modulated by unknown coefficients

with a reduced spatial dependence. This method can be used to treat the

full spatial detail of the heterogeneous reactor with a vastly reduced

number of unknowns compared with other more direct procedures. How-

ever, the solution accuracy is dependent on a proper choice by the user

of the trial functions. Moreover, systematic error bounds have not

been established. This lack of guaranteed reliability has severely lim-

ited the use of synthesis methods, especially in cases where safety

considerations are important.

Nodal methods are derived directly from integral neutron balances

and relate integral quantities, such average fluxes and neutron currents.

over relatively large spatial regions. Nodal equations can be obtained

directly from the transport equation and thus are not necessarily

limited by the diffusion theory approximation. This class of methods
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includes many variants which are described in a number of review

articles.” 216719 Here we shall pursue in detail only the particular

items which have immediate application to our problem.

One subset of the general class of nodal schemes uses a represen-

tation of interface currents as well as nodal fluxes allowing a system

of equations to be constructed with a nearest neighbor spatial coupling

formulation. Nodal balance equations (neutron conservation equations

for individual subvolumes relating net nodal reaction rates and leakages

in terms of average fluxes and interface currents) identical in structure

to those of the finite difference method can be obtained if spatial coupling

parameters specifying the relationship between fluxes of neighboring

nodes and interface currents are introduced. This nodal approach offers

the advantages of simply-structured equations and a substantial reduction

in the number of unknowns by using average parameters over large re-

gions. Nevertheless, its use has been severely restricted because of

difficulties in predicting accurate spatial coupling parameters.

Fortunately, there seems to be a way around this difficulty. Recent

work on interface current type nodal techniques using an averaged solu-

tion representation which incorporates schemes for the self-generation

of spatial coupling parameters as an integral part of the overall calcula-

tional procedure or which deal directly with the interface currents

has shown much promise for producing efficient methods for multidi-

mensional static calculations.” In this thesis, we will pursue a nodal

scheme based on the interface currents approach in which the neutron

currents are directly employed.
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1.4 Nodal Method Development — Motivations and Objectives

The recent success with the interface currents type of approach

previously discussed prompts us to look further at this particular vari-

ant of the general class of nodal methods. In general, the prospect of

a substantial reduction in the number of unknowns obtained by dealing

only with avarage quantities over large nodal volumes plus the formu-

lation of the equations with a nearest neighbor spatial coupling scheme

seems quite advantageous. However, we feel that previously developed

nodal techniques based on a diffusion theory approach have not fully

exploited the strong conceptual basis underlying the interface currents

approach in conjunction with formulations in which only integral quanti-

ties are represented.

Our specific objective is to develop a nodal method for solution of

the "homogenized," time-dependent, multidimensional, multigroup dif-

fusion theory problem. We intend to use the conceptual basis provided

by the interface currents approach and maintain a formulation involving

only integral quantities. We shall attempt to develop a linear method

without the introduction of auxiliary parameters not directly expressible

in terms of the integral quantities of interest, the nodal average fluxes

and interface average currents.

1.5 Summary

This thesis will be concerned with the development of computation-

ally efficient nodal methods for multidimensional transient analysis.

In Chapter 2, the derivation of the spatially-discretized, time-dependent



23

nodal equations is presented. Solution techniques and results are dis-

cussed for one- and two-dimensional static problems in Chapter 3.

Time-dependent solution techniques and results are presented for two-

dimensional problems in Chapter 4. A summary of the investigation, a

statement of general conclusions, and recommendations for future work

are given in Chapter 5.
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Chapter 2

DERIVATION OF THE SPATIALLY-DISCRETIZED,

TIME-DEPENDENT NODAL EQUATIONS

2.1 Introduction

The derivation in the context of multigroup diffusion theory of a

multidimensional, spatially-discretized set of time-dependent equations

for the determination of average nodal fluxes is presented in this chap-

ter. In this formulation, only average quantities are represented and

a nearest neighbor spatial coupling scheme is preserved in the lowest

order linear approximation and in implied nonlinear higher order schemes.

Since the immediate goal in considering nodal schemes is the replace-

ment of the finite difference neutronics model in the pressurized (PWR)

and boiling (BWR) light water reactor transient analysis code MEKIN, 2?

basic approximations pertaining to geometrical and material represen-

tations as used in that code are employed here. The assumption is made

in the MEKIN code that equivalent homogenized group parameters, spa-

tially constant over large nodal volumes, can be used to predict ade-

quately reactor transient behavior (see Sec. 1.2). Therefore, only

Cartesian geometry and nodes having constant material properties are

considered. Also, for simplicity, only two dimensions are treated. The

reader should find the generalization to hexagonal geometry in two

dimensions (liquid metal fast breeder reactor, LMFBR) and three-

dimensional Cartesian (PWR, BWR) or hexagonal-axial (LMFBR) geom-

etry straightforward, Other researchers are investigating the repre-

sentation of mild nonuniformities in nodal properties in the context of
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depletion studies for nodal schemes of the type presented neve

2.2 Motivation

2.2.1 A Response Matrix Viewpoint

It is well recognized that much of the trouble encountered in deter-

mining spatial coupling parameters which predict accurate leakage rates

based on the average fluxes alone of a node and its nearest neighbors is

due to the fact that these parameters depend on the spatial detail of the

fluxes and currents as well as on material and geometrical properties

of a node and its neighbors.’ 16 Difficulties obviously arise when an

attempt is made to infer spatial coupling parameters predicting leakage

rates based on nearest neighbor average fluxes without some prior

knowledge of the true solution. However, until only recently, this has

been the conventional nodal approach.’

Basically, the difficulties are due to the fact that, in attempting to

use the nodal balance equation without auxiliary relations dealing either

with coupling parameters or with the nodal leakages themselves, an

incomplete system of equations is being used. For instance, the pre-

viously discussed interface current schemes have the nodal balance

equation as only one member of a coupled set that includes relations for

the interface leakages of a node expressed in terms of the leakage cur-

rents from neighboring nodes. Thus there is no reason to try to pursue

the idea of a single nodal balance equation with (necessarily nonlinear)

predetermined spatial coupling parameters to predict nodal leakage rates

based on relations among average fluxes in nearest neighbor nodes.
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A number of recently developed coarse-mesh diffusion methods

employing variants of the interface currents approach in both linear and

nonlinear formulations have been demonstrated to be efficient computa-

tional techniques for multidimensional static caloulations.” (It should

be noted that we neglect the success of the sophisticated high-order

transport interface current approaches essentially because their sophis-

tication vastly exceeds the difficulty of our problem!) The similarity

of the nodal balance equations using nonlinear spatial coupling parameters

to the finite difference equations, for which well-established and powerful

solution procedures exist, have prompted some researchers to pursue

formulations in which the spatial coupling coefficients are generated in

auxiliary calculations included as an integral part of the overall compu-

tational procedure, 22% Others have used linear formulations of the

interface currents approach (linear in the sense that neutron currents

are treated directly) in low-order transport? and diffusion theory! 2:28-31

approximations. In these efforts it is generally true that auxiliary param-

eters not directly expressible in terms of the average quantities of

interest (nodal fluxes and interface currents) or an explicit representa-

tion of the detailed spatial dependence of the solution have been used in

order to achieve adequate spatial accuracy.

We follow the interface currents approach also. In particular, we

consider the response matrix weed. 8 However, we find that the

approximate solution can be restrained to a representation by average

quantities and a high-order spatial accuracy can be achieved without

the introduction of nonlinearities or auxiliary parameters not directly

sxpressible in terms of the average quantities of principal interest (i.e.,
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nodal fluxes and interface currents).

The essential feature of the response matrix method is the deter-

mination of reaction and leakage rates and distributions due to incident

current boundary conditions with continuity of interface currents applied

to complete the global system of nodal equations. Application of this

procedure results in a set of nodal equations with the advantageous fea-

tures of local parameter determination (response parameters are only

dependent on the properties of a single node) and nearest neighbor cou-

pling.

Of course, for practical application, this system must be discretized

in terms of all the transport variables — angle, energy, and space. We

work in the context of multigroup diffusion theory, so only the spatial

dependence of the solution is of real concern (and the time dependence

for the transient problem). The treatment of the spatial dependence of

the nodal fluxes and interface currents is not a trivial matter, however,

especially since we desire to maintain a solution representation in terms

of average quantities only. This problem is discussed in the following

section.

5.2.2 Reduction of the Multidimensional Problem to an Equivalent

Coupled Set of One-dimensional Problems

In order to pursue the response matrix procedure discussed in

Sec. 2.2.1, conceptually we must solve, using multigroup diffusion

theory, local multidimensional problems in homogeneous rectangular

1odes with time- and space-dependent incident current boundary condi-

tions. We desire to find the time-dependent nodal average fluxes and
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time- and space-dependent boundary leakage currents. For solution of

this problem, it is necessary to treat the spatial dependence of the nodal

fluxes as well as the interface currents. However, since we want to

minimize the number of unknowns by working only with average quanti-

ties, we must find approximations for the spatial dependence of the nodal

fluxes and interface currents in terms of the corresponding average

quantities. Alternatively, we can circumvent the problem by some trans-

formation or reduction to an equivalent but more manageable system

whose solution can be expressed in terms of average quantities. We

employ both tactics.

We find that a high order of approximation can be achieved in the

spatial solution of the local multidimensional response problem and the

solution representation by average quantities only can be maintained, if

the multidimensional problem is reduced to a set of equivalent one-

dimensional problems by a straightforward spatial averaging procedure,

and the spatial dependence of the unknowns in these equations are approx-

imated in terms of average quantities associated with each coordinate

direction. In particular, polynomial expansions which have coefficients

that can be interpreted as the average nodal fluxes and the interface

average currents associated with each coordinate direction are used for

approximation of the spatially-averaged one-dimensional fluxes. A

proper choice of polynomials allows a high-order approximation for the

one-dimensional average fluxes to be used without introducing auxiliary

parameters other than nodal average fluxes and interface average cur-

rents. Spatially-dependent terms representing transverse leakage effects
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appearing in the one-dimensional equations are expanded in polynomials

which have interface average currents as coefficients. A simple weighted

residual procedure is used to determine the unknown time-dependent

polynomial coefficients.

2.3 Derivation in Two-dimensional Cartesian Geometry with

Uniform Nodal Properties and a General Energy Group

Structure

2.3.1 Formulation of the Coupled Set of One-dimensional

Problems

First, introduce the notational convention

a4 =Xx,Y; vV=Y,X; V FU

With x and y indicating the coordinate directions, u and Vv will be used

as coordinate subscripts. The global problem is subdivided into a regular

array of rectangular, nuclearly homogeneous regions. The partitioning

of the spatial domain is given by a grid defined by

Vos £=1,2,...L; u = &lt;&gt; \

vhere the following notation has been introduced for the grid indexing

i=1,2,...1; u,v = X

j=1,2,...J; u,v =y

0

Since we do not exclude the use of an irregular spatial domain,

here are a maximum of I X J nodes. For node (ij) defined by

X  —- X.
J

x+
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the node widths are defined as

ou
 nN  = Ugg ~ Ups

u
oy

g

and the node volume as

V..=
i

1¥Y

Now the multidimensional problem is reduced to an equivalent set

of coupled one-dimensional equations by spatially averaging over the

direction transverse to each coordinate direction. For space direction u,

introduce the one-dimensional average neutron flux in energy group g

v

bY 131 t) = — { {+1 dv ¢ (u, v, 1), (2.1)

ond the one-dimensional averace delayed precursor density in delayed

family k

v

cd (ut) = 1 { £+1 dv C,(u, v, t).
k, 1] nv Jv

0 0

(2.2)

By spatially averaging Egs. (1.1) over each coordinate direction and

inserting the definitions (2.1) and (2.2), the equivalent coupled set of

one-dimensional time-dependent equations is obtained for node (ij)
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D_ ..(t) —= (u,b) - = L(t (ua, t)-LY(ut

g. ij? 52 bg, ij{0) = Frg, 350 0g, 35m 0 =Lg yu.

1

1

G
= &amp; = L(t) + 1-BY 2 = C(t Uts1=1 | gl#g gg!', 159 Xgl B) y “fg', it ) | Pot 3% )

5 yon Cl (tel Ze (wn;
ol Xokkk,ij 5, ot “g,ij

g=1,2,...G (2. 3a)
u= x,y

SNC

G
Vv u _ u _ 0 ~u . _

(2. 3b)

where L is the transverse leakage given by

 i

2
y 9

1 0+1 (u, Vv, t)(u, t) = = BET] { dv ba. 31 oo Py

h, vg

Ogi"
(2.4)

2.3.2 Restraints Imposed on the Solution

For node (ij), define the nodal average flux for energy group g

X. Vit |
 EN () - ah ax | Way o (x.y,

gi Vis x, y.
+) (2.3)

and the nodal average delayed precursor density for delayed family k

oD = (Tin dx (7 dy Cox, 3.1.
“kin TV, Jo

To 1] “X.

\ &lt;) 1)
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It follows from the definition of the average one-dimensional fluxes and

precursors, Egs. (2.1) and (2.2), that

u

4 { 4+] du oY .(u,t) = d ..1t);
u g, 1° :

h, LY)

u [val y (2 7)

and

u
1 +1 u = . =

1g Up

 4g
-

i} 4

4c
1 &amp;e ©

N)

These relations, Eqs. (2.7) and (2.8), are just the formal statement

of a consistency condition that must be imposed on any approximate solu-

tion technique we employ. This consistency condition states that, when

averaged over the node, a one-dimensional average quantity must return

the corresponding nodal average quantity.

Let us now consider the boundary conditions imposed on the one-

dimensional solutions. Because the delayed precursors are required to

obey no explicit boundary or interface continuity conditions, we need

only consider the one-dimensional average flux. It is easily seen that

the one-dimensional average flux obeys interface average incident cur-

rent boundary conditions. We define the interface average incident (in)

and leakage (out) partial currents by the normal diffusion theory relations

pin, u-Up) =| 140ey =| Fog wt -3g,1] D ;2 sii? 3 bg) u g, jw
U=U,

out,u-,,, _| 1  u +1 2 58 (utTow-| Tg. + FD 118) 5g bg 550) wma,

(2.9a)

(2. 9b)
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inut,,, _ [1 ,u 1 9 ,u

Tei = : bg, ij" DF 2 Pg," Bu oo)
Uu=up

out,ut,,, _{ 1 ,u 1 9 .u

Tg, 1] =| hog goo 2 Pg,ij Bu 0) I.
U=tpq

(2.9¢)

(2. 9d)

It is assumed that the J'™s are the JOUtig of neighboring nodes and thus

are known by continuity in the solution of the local response problems.

The boundary conditions implicitly incorporated in the transverse

leakage terms, Egs. (2.3) and (2.4), will not be discussed in detail at

this time. As will be seen in a later discussion, the particular high-

order treatment used for the spatial dependence of the transverse leakage

is meaningful only in the context of the coupled global system of equa-

tions. However, just as in the treatment of the one-dimensional average

flux, the interface average quantities associated with the transverse

leakage are always preserved.

2.3.3 Approximate Solution

2.3.3.1 Choice of Approximating Functions

2.3.3.1a One-dimensional Average Flux

A basic approximation of the nodal method to be developed is the

expansion of the one-dimensional average flux in polynomials with a

weighted residual procedure used to determine the unknown coefficients.

As discussed in Sec. 2.3.2, particular consistency and boundary condi-

tion restraints must be imposed on this approximate solution. Because

these restraints are expressed directly in terms of the nodal average

flux and interface average partial currents, we choose to incorporate
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terms in the polynomial expansion for the one-dimensional average flux

which satisfy these restraints and thus involve coefficients which can be

directly interpreted in terms of those quantities. We also desire to find

the interface average leakage partial currents. The leakage partial

currents are directly expressible in terms of the one-dimensional aver-

age flux. Therefore, we also incorporate terms in the polynomial ex-

pansions having coefficients which can be interpreted as the interface

average leakage partial currents. The polynomial expansion for the one-

dimensional average flux in space direction u and energy group g which

incorporates these features is

HH
z

= ¢,u

 (u, t) bg,i5(0 pe ius t)

in, u- in, u- out, u- out, u-
+ JT (t 2 St) + Jd 772 t 2 , t2. 2] (t) Pe. 2 (u, t) 2, i (t) Pa. 13 (u, t)

+
in, ut in, ut out, ut out, ut

2 ’ + ot t .2 ,tTop Meg ty b+ J im ey (wt

(2.10)

where the p's are quartic polynomials dependent only on the geometrical

and time-dependent material properties of a single node and chosen such

that the conditions implied by the coefficients in Eq. (2.10) hold. For

instance, the enforcement of the integral requirement on the average

flux gives

1

L
dup u) =

{au pI Uy) = {au o Oks u-(y) = { au o Ths ut) _ { du Out ut _
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where the limits of integration are over the node extent. The particular

form of o® obeying these constraints is

In

2
. _ u-u - 3

(u) = 30 bd - 60 ) lt ’~ = + 30
0 b 0 |0 hy

Note that because the boundary currents are explicitly treated, the form

of 2? is also chosen such that derivatives at the nodal boundaries vanish.

The complete set of conditions used to determine the expansion functions

as well as their general mathematical form are given in Appendix 1.

The spatial expansion for the one-dimensional average flux is complete

in the quartic sense (4M degree, 50 order) in that any function not

exceeding 4th degree in spatial dependence may be exactly represented

by this polynomial.

2.3.3.1b One-dimensional Average Delayed Precursors

The choice of approximation for the one-dimensional average delayed

precursors is restrained only by the consistency condition because no

explicit interface continuity or boundary conditions are imposed on the

precursor shape. Furthermore, since no spatial derivatives of the

delayed precursors are involved, there is no reason to form explicit

polynomial expansions to obtain a high-order representation of the one-

dimensional average delayed precursors. We may merely choose an

implicit spatial shape representation based on the choice of polynomials

used for approximation of the average one-dimensional flux. The impo-

sition of the consistency condition follows quite readily if a complete
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set of weight functions is used in the weighted residual procedure (or if

the unit weight function is included in the weight function space) applied

to each coordinate direction. This condition occurs because application

of the unit weight function in any coordinate direction returns the nodal

balance equation which involves only the nodal average delayed precur-

sors. Other weighted integrals of the one-dimensional average delayed

precursors involving higher order moments are treated directly as time-

dependent unknowns in the implicit representation of the precursor shape.

An explicit approximation for the spatial shape of the one-dimensional

average delayed precursors has been implemented as an alternative to

the implicit shape representation in an attempt to reduce the number of

precursor-associated unknowns. This approximation is to assume that

the spatial dependence of the one-dimensional average delayed precur-

sors is a constant with a magnitude equal to that of the nodal average

delayed precursors. For delayed family k and space direction u, the

approximation is given by

u —

Cy. 351) = C 5h). (2.11)

For each delayed family, the reduction in unknowns is equal to the total

number of nonunit weight functions employed in the weighted residual

procedure. Intermediate levels of approximation between those of the

constant and implicit shape representations have not been tried.

2.3.3.1c Transverse Leakage

For energy group g and space direction u, the approximation which

we use for the transverse leakage, Eqs. (2.3) and (2.4), expressed in
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terms of interface average partial currents is

u out, v- ut, v- in, v- in, v-
LY (u,t) =JOU Voy | 1 + OU A -TYT1+ £Y T, tg. WY Ig 0; o| tigi © | g 1] | g,ij © )

1
nut, v+ ut, v+ in, v+ in, v+

! oS S00 - J 70. 1 + £77. , 1) |.1+ £2 bo ) g, ij | g.1j )
(2.12)

The general form is one in which the magnitude is given in terms

of the interface average partial currents in a transverse direction and

the shape by expansion functions consisting of a flat function with a time-

dependent shape correction term.

Two approximations have been used. The simplest is a low-order

approximation in which the shape correction terms, f's, are set equal

to zero. We shall refer to this as the "flat" or "constant" transverse

leakage approximation.

The other approximation we have used is one in which the f's are

represented in terms of nonlinear quantities derived from information

from neighboring nodes. For instance,

out, y- _ gout, y- t

Tg,it13M = Ig357
OUT (x,4) =

be

gout, y= 4
g, ij  I

3Outs ¥= py out, y=.LY gy - JOU Y

g +1" g,ij (t)
out, y-

o, 0 (1)
—

,out,y- (x)
gs (3. )

0 Outs y= (x)

gs (3. )1

where the p's are expansion functions chosen such that the interpretation

of interface average partial currents is preserved when the expression
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is averaged over each node.

Although there is a great deal of flexibility incorporated in the nota-

tional convention presented here, the expansion functions, p's, however,

are much simpler than the notation implies. The expansion functions

used are members of the complete set of quadratic polynomials defined

over the interval [= 10%] or v5.12 Y541] possessing the integral

property discussed above. We shall refer to this as the "quadratic®

transverse approximation. Conditions used to determine the polynomial

expansion functions as well as the general mathematical form and graph-

ical form for a particular case of the polynomials are given in Appen-

dix 2.

The approximation for the transverse leakage, Eq. (2.12), is applied

only over the extent of a single node even though information from sur-

rounding nodes is used to construct the approximation. Also note that,

although the shape correction factors, f's, are inherently nonlinear,

the transverse leakage approximation itself is a linear function of aver-

age partial currents. Furthermore, because of the particular choice of

expansion functions, p's, the transverse leakage approximation we em-

ploy can be written in a formulation involving net transverse leakages

of nearest neighbor nodes as the quadratic polynomial coefficients. This

form is the one suggested by Finnemann?? and used in his Nodal Expan-

sion Method.31 In application to the global problem, terms requiring

data derived from spatial positions outside the reactor boundary are

set equal to zero.
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2.3.3.2 The Weighted Residual Procedure

Upon insertion of the polynomial approximations for the one-

dimensional average flux, Eq. (2.10), and the transverse leakage,

Eq. (2.12), into the one-dimensional equations, Eqs. (2. 3), there re-

main five coefficients to be determined for each energy group. These

unknowns are the nodal average flux and the two interface average leak-

age partial currents associated with each coordinate direction. The

interface average incident partial currents are assumed to be known

from applying the continuity of average partial current condition to in-

terface average leakage partial currents of adjacent nodes. Alternatively,

if we consider the solution in each coordinate direction individually, it

is reasonable to regard the average one-dimensional flux, Eq. (2.1), as

the principal unknown in the one-dimensional diffusion equations. Thus,

three weight functions, which in order to maintain integral consistency

must give the unit function in some linear combination, are to be applied

in each energy group and coordinate direction to determine the unknown

flux and leakage current polynomial coefficients. We have chosen a very

simple weighted residual procedure, weighting and integrating with

quadratic moments&gt; &gt; (essentially 1, u, and uy. The actual weight

functions used are the equivalent set consisting of unity and the two sym-

metric functions of the Lagrange quadratics.? The choice of a symmet-

ric set was made in order to minimize the coefficient storage and gener-

ation requirements. These weight functions are explicitly defined and

craphically represented in Appendix 3.

The inclusion of the unit weight function (or equivalently, the use of
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a complete set of weight functions) along with the incorporation of the

integral consistency conditions in the approximations of the one-

dimensional average flux and transverse leakage return the nodal balance

equation repeated for each coordinate direction. The higher order mo-

ments completely determine the average leakage response.

If the implicit shape representation of the one-dimensional average

jelayed precursors is used, then the same quadratic moments weighting

is applied in each delayed family and each coordinate direction of the

one-dimensional delayed precursor equations, Eq. (2.3b). As ex-

pected, the nodal average equation is returned for each direction by

application of the unit weight function and integral consistency condition.

Weighted integrals resulting from the application of higher order mo-

ments are treated directly as time-dependent unknowns. A total of

5G + 5K equations result for each node for the G nodal average fluxes,

4G interface average leakage partial currents, K nodal average pre-

cursors, and 4K precursor-associated weighted integrals.

In the constant shape approximation for the one-dimensional aver-

age delayed precursors, onlythe nodal average delayed precursor equa-

tions are used. In this case, there is a total of 5G +K resulting equa-

tions.

The final form of the nodal equations obtained from this procedure

is summarized in the following section.

2 3 3.3 Final Form

The time-dependent nodal balance equations for node (ij) are
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and

G
v _d . _

By = T Ste 10 0g, 55 - MC, 15 = Ci, 35®5 k= 1.2... K

(2. 13Db)

Denoting the symmetric Lagrange weight function in space direction u

and node (ij) as

7 (a); n=20 |
n.

and the weighted integral of the function F(u)

u

{ {+1 w_(u) F(u)
uu,

as (wo |F), the interface average leakage response equations can be

written as
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and, in addition, for the implicit delayed precursor shape representa-

Lon



473

G

B. = =e 27 nor {7 Le?i] n, i!%a, i587 g, (9

HH

u a a

Lng eg? Tg, 550
fin, u-

in U-in, ut

out, ut

=

\
&gt;

~u,n,,, _ d ~u,n

«30 = gq Ck, 1503 u=Xx,y

n=0,1

k=1,2,...K

(2. 14b)

where

CU Dy = (wh Mdk,ij (Wn, il Cx, 158):

All weighted integrals are evaluated in Appendix 4.

We now present the interface average leakage current response equa-

tions in matrix form. The discretized spatial components are partitioned

in a matrix format. A discrete energy group structure is retained. The

reader should draw correspondence with Eq. (2.14 ) in order to deter-

mine individual matrix elements. In matrix form, Eq. (2.14) becomes

[ngou + Lou flat + Lou shapeo,i] ol] aoutg,ij¥

1 ~ in in, flat in,shape ] in | $ |{[riz 0) ¥ Li ¥ Lin (t) } Ig,1iM ¥ Ro,ij(® g,1iY

G out Xg
= TOU y) — (1- oyel og ij ) + y (1-8) pent 0) 2%]

1

X

in g : in | ot |(Ir 150) r= (=P) ie yo) Igri] *
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(2. 15a)

where for each energy group the overall interpretation of the notation is

[R] = diffusion and removal

[LL] = transverse leakage (split into flat component and shape cor-

rection component

[T]= group transfer

[P] = fission production

(OR) = 4.element column vector of interface average (jeakase )in incident

partial currents

and all matrix operators are (4 X 4) except the ones operating on the nodal

average flux which are (4 X 1). Special attention should be given to the

delayed precursor term. For the implicit precursor shape representa-

tion [C,] is a 4-element column vector of unknown delayed precursor

weighted integrals for delayed family k. For the constant shape approx-

imation, [C.] becomes

(wl1)] Cp ih,

a 4-element column vector whose elements are integrals of the weight
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functions multiplied by the nodal average delayed precursor density in

delayed family k.

In addition, for the implicit delayed precursor shapc

the following matrix equations are included:

representation,

G
1 out out in in ¢

Ra (roto) ; oe) + Pi) ; ra) + #40] ei)

=

Co qd [~

ne]Geis] of Eu] k=1,2.... K (2. 15D)

Equations (2.13) and (2.15) form the basis of the nodal scheme we pro-

pose. The. assumption of continuity of interface average partial currents

along with the application of the reactor boundary conditions (for instance,

with vacuum boundaries, J'™ on the surface of the reactor are set equal

to zero) complete the global system of time-dependent nodal equations.

2.4 Relationship to Other Work

The mechanics of the derivation presented here are similar to the

procedures employed by other researchers in derivation of their coarse-

mesh finite difference and nodal methods”? 23224:29-31 m0 idea of

treating equivalent sets of one-dimensional problems in order to solve

the multidimensional problem has been quite successfully exploited by

Wagner and Finnemann in their nodal codes, 22724; 23-31 Finnemann

has employed various polynomial approximations with weighted residual

procedures for solution of the one-dimensional equations; however,

unlike the method we propose, he introduces auxiliary spatial coupling

parameters in his high-order approximations in order to achieve adequate
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spatial accuracy. The very useful procedure of expanding the transverse

leakage in a polynomial based on information from surrounding nodes

was originally suggested by Finnemann. 2! The final form he employs

for computation is based on an interface current approach as is our

method, but the motivation seems to have been the adaptation of the solu-

tion strategy used in Wagner's nodal collision probability code.??

The relationship of the response matrix method to conventional nodal

schemes has been recognized by other researchers. ®’ 19 Weiss has

done much work recently on the reduction of the response relations to

conventional nodal coupling formulations. '®

2.5 Summary

In this chapter, a set of time-dependent nodal equations based on

multigroup diffusion theory were derived from a response matrix approach

for a global problem consisting of a regular array of two-dimensional

rectangular homogeneous zones. The equations are written only in terms

of nodal average fluxes and interface average partial currents. The

spatial coupling scheme is of the nearest neighbor type, but nonlinear

terms have been introduced in the highest order of approximation in order

to achieve this particular formulation.



47

Chapter 3

STATIC APPLICATIONS

3.1 Introduction

In Chapter 2, a set of time-dependent, spatially-discretized nodal

equations was derived for solution of the multigroup diffusion equations

for a two-dimensional reactor consisting of rectangular, homogeneous

(or homogenized) zones. In this chapter, the set of time-dependent

equations is reduced to the conventional static eigenvalue problem.

Numerical solution techniques are discussed and results are presented

for a number of one- and two-dimensional problems. The method has

been applied only to thermal reactor problems using a two-group formu-

lation. However, the proposed scheme is capable of treating a general

energy group structure. Also, as in the derivation of Chapter 2, only

two-dimensional problems in rectangular geometry are considered.

3.92 Reduction of the Spatially-Discretized Time-Dependent

Nodal Equations to the Static Case

In order to formulate the static problem, all time derivatives in the

nodal balance equations, Eq. (2.13), and leakage response equations,

Eq. (2.15), are set equal to zero. The resulting expressions for the

delayed precursors obtained from Eqs. (2.13b) and (2.15b) are used to

eliminate the delayed precursors from the flux and current equations,

Eqs. (2.13a) and (2.153). This procedure gives the spatially-discretized,

static system of equations analogous to the spatially-dependent formu-

lation of Eq. (1.2)
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The system of static nodal equations is composed of the nodal bal-

ance equations

 Vv

i] ain - jout, u- yin, ut yout, ut | 5
to Vi Lgl gil g,1] g, ij rg,ij g,1j

u=x,y
vu

G , - -o

S +x Lx Lig | ets2 [ogg gg'.ij Tey fg] en (3. 7a)

and the leakage response equations

out out,flat, out, shape | out |R “..|+!|L~ 7.) + | L~.° J.( g, : | g,1) g,1) ) g,1]

 RI, 1 + Lin flat] + | in, shape | ai] + ES i] .

G Xg

= pout | + — po | ao |=1 \( gg', ij Y en) g',i)

- ® 1 - ) 1 -
51] Y g J J g 2? JJ(| gg! J

x A

g
¢ =| pd -

* (| 2g] BE, Ph) _. 0 (3.1Db)

for

g=1,2,...G

i=1,2,...1 .

Soest (ij) € &amp;.

The notation (ij) € ® indicates that the coordinate indices are over

only sets (ij) which indicate nodes within the spatial domain of the reac-

tor. This type of notation is used because we allow an irregular spatial
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domain. The total number of nodes will be denoted as Lg: The nodal

equations are not complete without the nodal interface continuity condi-

tion, which stated nonmathematically, is that a J g on a nodal interface

is equal to the J ot on that interface of the adjacent node which shares

the interface. Finally, the static nodal equations are completed by the

specification of the reactor boundary conditions in terms of interface

average partial currents. A general boundary condition can be written

in terms of albedo conditions such that for a node face comprising a

segment of the reactor boundary

Fin _ Sg a gout
g go 88 ¢

ha

SM 2)

where the albedos (a's) may depend on the location of the particular

boundary segment. For instance, the zero entering partial current con-

dition is given by

a
r 3!

= 0: for all gg!

and the reflective symmetry condition is given by

“get T Ogr=g’

With the application of partial current continuity and the reactor bound-

ary conditions, the total number of unknowns for "N" dimensions in

Cartesian geometry is (1+2N) XG X Lge The factor (1+ 2N) is derived

from the fact that there is one nodal average flux per group per node and

two interface average leakage partial currents per coordinate direction

per group per node. Thus for two-dimensional rectangular geometry,

(N=2), there are 5 unknowns per group per node.



50

The solution of the system of nodal equations for the largest eigen-

value y (the "k-effective" of the reactor) and the corresponding funda-

mental flux-current mode is addressed in the next section.

3.3 Numerical Solution of the Static Eigenvalue Problem

3.3.1 General Formulation

We write the static nodal equations, Eqs. (3.1), in the matrix form

[A114] = [XI [BT [4] (3.2)

where the major block partitioning of these matrices is by the energy

group structure, and the group submatrices contain the spatial detail

within each energy group. The submatrix form of Eq. (3.2) is

Alp Apo

Ag; Ago

Bo~INT

de
J’

wil

pu

CO}

/

9’

[ B. B, Bl Uy |

by

3

A

G1 hac||Ya] | xc!
ol—

Yai
1

(3.3)

These submatrices are defined as

Lb] = column vector of nodal average fluxes and interface average

partial currents in group ¢

“for g' = g, the spatial diffusion-removal operator for

group ¢g
[A

gg'] =
for g' # g, the spatial group transfer (scattering) operator

for group g' to group g



 =~ %&gt;

a

[x 1]= the group g fission spectrum times the identity matrix

[B,] = the spatial fission production operator for group g.

We rewrite Eq. (3.2) as

viv] = [Q][y] (2 4)

where

[Ql = [a]! [x[BIY (3.5)

The discrete static eigenvalue problem is then to determine the largest

(in modulus) eigenvalue of the operator [Q] and its corresponding eigen-

vector [Wy]. The numerical solution of this eigenvalue problem is dis-

cussed in the following section.

3.3.2 Fission Source Iterations

We shall assume that the eigenvalues of [Q], Eqs. (3.4) and (3. 5),

are such that there is a simple, real eigenvalue, largest in modulus.

With these assumptions, we apply the power method! 1” 34 to Eq. (3.4)

in order to obtain approximations to the fundamental eigenvalue and

eigenvector of [Q]. The power method, which essentially consists of

repeated operation by [Q], is guaranteed to converge to the fundamental

mode under the specified assumptions. The power iterations are referred

to as "fission source" iterations, or alternatively, in multidimensional

geometries when additional lower levels of iteration are employed, as

"~uter iterations."

Also, we use Chebyshev polynomials to accelerate the convergence

of the outer iterations.5’ 34 The acceleration strategy we employ uses
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the additional assumptions that the eigenvalue spectrum of [Q] is real

and nonnegative and that the corresponding eigenvectors form a basis

for the associated vector space.

No attempt has been made to prove the validity of these assumptions

theoretically. However, the proper predicted numerical behavior has

been observed with the application of the Chebyshev-accelerated power

iterations to our nodal equations.

It can be seen from Eqs. (3.4) and (3. 5) that, for application of the

power method, the inverse of the diffusion-removal-transfer operator,

[A], on the fission source [xX] (B]T [¢] must be found. For problems with

no upscattering, the inversion can be effectively performed by a single

sweep down through the energy group structure because of the lower

diagonal structure of the blocks comprising [A] for this particular case.

We shall treat only problems with no upscattering in this work and,

therefore, shall use the procedure noted here.

Fo carry out this procedure, within each energy group it is neces-

sary to solve a spatial problem of the form

A, Ly] = [Sg]
(2.6)

lief 2

_ g-1 G

[Sg] = Sion [A gor 1lb] + Xg pa [B,.] [4g]
(C4 7)

The total group source, [8,1 is known. Thus a one-group fixed source

problem m ust be solved within each group. The solution of this within-

croup spatial problem is discussed in the following section.
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3.3.3 Within-Group Spatial Solutions

3.3.3.1 Flux Condensation

We partition the within-group spatial problem, Eq. (3.6), by fluxes

and currents to give

Add
gg

Jo
Ag Ig)

I
g

‘33...3)

Afr AR %] |E
where

[7] = column vector of interface average currents in group g

[o,] = column vector of nodal average fluxes in group g.

The submatrix equation

801 1+ | a%8|1s0= | 2) (3.9)

are the nodal balance equations, Egs. (3.1a), for group g, and the sub-

matrix equation

| JJ | JA J +A =1S| J go ge | 10d =| 5g

are the leakage response equations, Egs. (3.1b), for group g where

54) and 52] are the total group sources due to fission and scattering.

As can be seen from the nodewise form of the balance equation, Eq. (3.1a),

the structure of ad] of Eq. (3.9) is scalar diagonal where the diagonal

elements are total removal terms. Thus, a8] is easily inverted and

[6g] can be eliminated from the leakage current response equations,

Eq. (3.10), giving a system in terms of currents only. Also, only
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currents on the faces of a single node are coupled in each scalar balance

or leakage current equation. Thus, the elimination of the nodal flux from

the leakage current equations does not modify the spatial coupling scheme

of the leakage current equations. This condensation procedure in terms

of the submatrix equations is given by the flux solution

sgl=[a8](-[a 1+ [s2]) (3.11)

and the condensed leakage current equations

EH Lgl = 5 (3.12)

where

-1 ;

JT] | Ad] _[AT0 i oJAl BH a2] Beg Beg. (3.13)

ond

[87] - [57] - [ade] [ate] [st (3.14)

Equation (3.12) is to be solved within each energy group for the

current vector [3] given the known source vector 5). Because of the

simple structure of the diffusion-removal leakage current operator,

Al] of Eq. (3.12), this problem can be solved efficiently in one dimen-
Lo

sion by direct means. The complications introduced in the two-dimensional

case make it necessary to apply iterative solution techniques to this prob-

lem. The solution procedures for one and two dimensions are discussed

in Sec. 3.3.3.2 and Sec. 3.3.3.3, respectively.
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3.3.3.2 Solution in One Dimension

In order to formulate the one-dimensional nodal equations, we delete

all currents associated, for instance, with the y direction in the nodal

equations, Eq. (3.1). It should be noted that this procedure completely

eliminates the transverse leakage terms from the leakage response equa-

tions, Eq. (3.1b). All matrix operators and solution vectors appearing

in the leakage current equations are reduced from an order of four to an

order of two. Also, appropriate modifications must be made to the nodal

geometrical factors in order to achieve a consistent set of one-dimensional

equations.

We partition the currents for group g by node with the vector de-

fined by

yout, x=
g,1

[Jo, il

“—_

yout, x+
g,1

a)

i=1.2....1I. (3.15)

With a consecutive numbering of the nodes, we form the group g

current vector by using the nodal vectors of Eq. (3.15). The current

vector for group g is given by

[™

&gt;}

=

J
g, 2

[3,1
(3.16)

tg
CAM

For this ordering of unknowns, the matrix
~JJ | :
A f Eq. (3.12) is

gg OHA
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block tridiagonal where the submatrices are scalar (2 X 2). The (i-1),

(i), and (i+1) rows have a nonzero block structure shown below:

(i-1)

(1)

(i+1)

(i-2)  (i-1) (i) (i+1) (i 2)

“0 Xx x||X 0!

| 0 A; Il; 0]

[0 x[[x x|[x 0]

sll
0 x]|[x x|[|=x

ol
0"

Furthermore, as can be seen from the diagram above, the nonzero scalar

elements form a striped structure which is pentadiagonal (5-stripe). The

block tridiagonal system or the scalar pentadiagonal system can be solved

by means of generalized factorization techniques.'®’ 11 We apply a factori-

zation scheme to the block tridiagonal form with special considerations

given to the zero elements of the submatrices.

3.3.3.3 Solution in Two Dimensions

3.3.3.3.1 Inner Iterations

We find that the extension of the nodal equations to more than one

dimension results in a spatial coupling scheme for the within-group spa-

tial equations such that the determination of a matrix structure for

a7) of Eq. (3.12) which lends itself to efficient use of direct inversion
L

procedures does not seem feasible. Thus we resort to iterative tech-

niques for the solution of the within-group spatial problem. These
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iterations are referred to as "inner" iterations. In particular, we use

Chebyshev polynomial semi-iterative schemes?’ 12,35 applied to block

partitionings of the matrix equations. By application to block partition-

ings, we imply that groups of unknowns are solved for simultaneously

by direct means.

We consider two block partitionings of the matrix structure. The

first scheme is referred to as the "Row-Column" (RC) structure. This

block structure permits the simultaneous solution for currents directed

along rows and columns and the solution procedure is essentially the

extension of the one-dimensional method to a set of directionally-coupled

equations with a dominant one-dimensional character. The second scheme

is referred to as the "Response Matrix" (RM) structure. All leakage

currents of a single node are solved for simultaneously which results in

a formulation similar to that of the conventional response matrix pro-

cedure 18

In the application of the Chebyshev polynomial iterative methods to

both block structures, iteration parameters that optimize the conver-

gence rates can be determined if the spectral radius of the associated

Jacobi iteration matrix, denoted here as ry is wuown. 5 12,35 This

parameter is predetermined using power iterative techniques applied

to the Jacobi matrix, or corresponding Gauss-Seidel matrix, before

the start of the outer jterations.!®’ 54 In addition, assumptions made

in the application of these iteration procedures are that the eigenvalues

Hf the Jacobi matrix are real and distributed on the interval [-r;. rl,

and that the corresponding eigenvectors include a basis for the associated
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vector space.l0 12,35

A fixed number of inner iterations are done per outer iteration. This

number is determined such that the spectral norm of the continued prod-

uct of iteration matrices is less than some desired error reduction factor.

The spectral norm expressions are in terms of the spectral radius of the

Jacobi matrix and make the assumption that this matrix is Hermitian. 10

The error reduction criterion is chosen such that a proper balance is

obtained between the number of outer iterations (insufficient convergence

- * - 8 -

of the inners slows outer iteration convergence ) and number of inner

iterations per outer iteration in order to minimize overall computational

time.

3.3.3.3.2 The "Row-Column" Block Iterative Method

We form the solution vector by partitioning the leakage currents of

each node as

yout, x- |
g,1]

Jea”

JY| 7 il =

gout, x+
gi

 gout.y-|
g,1]

»

1 PIphetl ed

(3.172)

gout,y+
g,1]

and using these nodal partitions to form the row- and column-associated

vectors
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orem.

 3 il

Te
. 1j

= 23

j=1,2,...J (3.18a)

Xx

To.15 |

—3
g,il

JY
g,12

a2 | i=1,2,...1 (3.18D)

JY
EX]

From the row- and column-associated vectors of Eq. (3.18), we now

form vectors of all row-directed and column-directed unknowns which

are given by

i

5%] =

i

Jt
g,1

I
go, 2

Tg JJ |

(3.19a)

Ea
g,1

52]
7€

og, 2
(3. 19b)

Tg1
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With this notation, the block partitioning of Eq. (3.12) which we em-

ploy is

Arr are
gg gg

p——

J
g

~r
fo’

g

ACT Acc |
gg gg IIg 5g

____
B

(3.20)

If the explicit form of the leakage response equations, Eq. (2. 14a),

is examined, it is found that rows and columns of currents are coupled

only by the transverse leakage terms (regardless of whether the treat-

ment of shape correction factors is linear or nonlinear). Thus the

diagonal blocks of Eq. (3.20) can be formulated as one-dimensional

diffusion-removal spatial operators with the off-diagonal blocks con-

taining only transverse leakage factors. The diagonal blocks have a

block diagonal submatrix structure with each submatrix being the one-

dimensional diffusion-removal operator (see Sec. 3.3.3.2) for a particu-

lar row or column. Thus, the diagonal blocks of Eq. (3.20) can be

directly inverted by applying a factorization technique to the diagonal

submatrices. This procedure results in the simultaneous solution of

511 currents in one direction with an iteration between directions. The

cyclic Chebyshev semi-iterative method!’ 12,35 (CCSI) is used to accel-

erate the iteration between directions. It should be noted that the CCSI

method is only applicable to the particular block (2 X 2) structure as in

Eg. (3.20).



51

3.3.3.3.3 The "Response Matrix" Block Iterative Method

We now return to the nodewise formulation of the leakage response

equations, Eq. (3.1b), with the total group source and flux condensation

notation introduced. The leakage response equation for group g and

node (ij) is

~ out ~ out, flat out, shape | out |- FLT pi ..([&amp; : g,1] | ¥ Lo 1] ) Ie, 1]

RID, | + i nfs in, ripe an , &amp; i) 3.21( g,1] Lg, 1] * Log, 1] ) g,1) °g, 1] ( )

Let us now consider certain aspects of the transverse leakage shape

correction terms. First, note that the flux condensation has been

formulated such that the transverse leakage shape correction matrices,

[1,Shapey are not modified by the condensation procedure. Thus, the

constant transverse leakage approximation can be obtained by setting

the [1.5hapeyg equal to the null matrix. It should also be recalled that

these matrices are nonlinear. This is because information from sur-

rounding nodes regarding the spatial shape of the current is incorpor-

ated into the [1,Shapey, However, the product of these matrices with the

nodal leakage and incident current vectors, as in Eq. (3.21), gives a

linear expression for the transverse leakage shape correction. This
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expression involves currents of neighboring nodes on interfaces not

common to the node for which the leakage response equations apply.

Thus, the spatial coupling scheme is somewhat more extensive in the

linear formulation of the transverse leakage shape correction. In order

to minimize the extent of the spatial coupling of the currents, we could

use information from the preceding outer iteration to generate [1.ShaPe)ig

which would then be held constant for solution of the inner iteration

problem. The alternative is to use the linear expression for the trans-

verse leakage shape correction and directly treat the increased spatial

coupling in the iteration scheme. We convert Eq. (3.21) into the final

form we desire for computation and then discuss these options further.

We rewrite Eq. (3.21) as

7

~out ~ out,flat out, shape | out- FLT +0 | L_".2 J.(|5g: | g,ij g, ij ) g,ij

~in ~ in, fl i

(Ei il ¥ il i] | +9 Ea Jape ) o 5a, i] J... +S...g,1] g,51]_

-

+ a-0)(| Lin shape EE _ Lo; sheze] outg,1] g, 1] g, 1] Tg, ij ) (3.22)

where © is a parameter restricted to the interval [0,1]. Inverting the

left-hand side of Eq. (3.22) and considering the entire nodal system,

we form the within-group set of leakage response equations
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out | _|zdJd in =S od | _ in, shape | Es iEF - EA 1 EA 1 ' i a 15, ij] +! 0) ( Fe, ij g i]

,. out, shape out | \ .Peis Jah:
}

i=1,2,...017 i

i103 gh De® (3.23)

where

-]

~S _ ( ~out | ~out,fiat, out, shape |iz] 5 Se oi Je .5) 1) RS: 1] * Lg, 1] 0 Ly, i] )

~J —_ | =S ( | =zin | in fist) in, edos = .. | + . 0 esal i) i il Air 1] Lg, 1} * Lg, 1] )

(3.24)

(3.25)

along with the conditions of interface current continuity and appropriate

boundary restraints. We now discuss our use of the parameter 6 in

relation to the adoption of linear or nonlinear solution schemes.

For the nonlinear form of the transverse leakage shape correction,

in which the matrices Elen Ly are nonlinear and are evaluated using

data from a preceding outer iteration, we choose 6 equal to one. Equa-

tion (3. 23) then has the standard form of a one-group response matrix

equation for a fixed source problem with a single current mode per

interface.’ The current response operator [A] gives the average leak-

age response to average incident currents and the source response oper-

ator [5°] gives the average leakage response to averaged components of
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a distributed volume source. In this procedure the response matrices,

[a7] and [H°], are improved each outer iteration in order to incorpor-

porate effects of the current spatial shape.

If the [Shape are set equal to the null matrix in order to obtain

the constant transverse leakage approximation, the spatial coupling

pattern of the response equations, Eq. (3.23), is seen to be the same

as when © is equal to one and the nonlinear [1.5haPe] are used. If we

consider an unknown block to be the leakage currents of a single node,

the five-point coupling pattern shown below results

i 1 4

Ho

J

| ¥
»

"

»Y

We now take advantage of this coupling pattern to form a block iterative

method in which half of the spatial unknowns are treated simultaneously

at each step of the iteration procedure.

Consider a mesh numbering scheme in which we classify nodes into

EWO types, 1 and 2, as shown below:

i + I (1) (2)

(2) '1)

j=1 (1) (2)

i + 1

(1)

(2)

(1)

where the pattern is assumed to repeat throughout the mesh structure.
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We use the fact that in the five-point scheme, nodes of type 1 are con-

nected only to nodes of type 2 and vice versa. We form the vectors

EAE
out
 a

g,1]
(ij) € @&amp;®
(ij) = type n

n=1,2

(° 26)Vy

and from these type 1 and type 2 vectors, we construct the solution vector

1
J

g

[I] =
2

J
g

(2.217)

 _—

The block form of Eq. (3.12) becomes

~11 ~121
A A

gg gg

x21 222
gg £8

—

1m
| | al

S
o

(3.28)

where we have assumed that the response formulation of Eq. (3.23) has

~ 1

been used to construct the submatrices | zon ] and that the operations by

the source response matrices, Eq. (3.24), have been performed as

shown in Eq. (3.23) in order to form the IS] of Eq. (3.28).

By inspection of Eq. (3.23), we find that the diagonal blocks of

Eq. (3.28) are identity matrices. All response elements, Eq. (3.25),

are incorporated in the off-diagonal blocks of Eq. (3.28). Thus all nodes

he  9?

of type n can be solved simultaneously by matrix multiplications of re-

sponse operators into leakage current vectors of type n' nodes. The
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spatial iteration is between type 1 and type 2 nodes. The cyclic Cheby-

shev semi-iterative (CCSI) method? 12,35 can be used to accelerate

this block iterative scheme.

We now consider the linear form of the transverse leakage shape

correction in which the linear expression resulting from the [1ShaPey [J]

product is used. Because the spatial coupling of the currents is more

extensive than that of just the faces of a single node, the response

matrices of Eq. (3.24) and Eq. (3.25) cannot be generated directly.

Therefore we set 8 equal to zero. The form of Eq. (3.23) with 6 equal

to zero suggests that we will use the transverse leakage shape correction

terms as a source in order to calculate the leakage from a single node.

This is exactly the case as will be shown in the description of the itera-

tion procedure we consider for solution of these equations. Note that

once again the interpretation of the [H]'s as response matrices is valid.

However, these response matrices are based on the assumption of a

constant spatial shape for the transverse leakage.

The spatial coupling pattern for the linear formulation of the quad-

ratic transverse leakage approximation with a block structure consisting

of leakage currents from a single node is

¥

I Sa.LE

{
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which is a "nine-point" scheme. We find that it is not practical to use

the block partitioning of Eq. (3.28) in this case because the submatrix

form of the diagonal blocks is too complicated (type-n nodes are coupled

to other type-n nodes) to be effectively handled by direct inversion.

Moreover, we find no multinode block partitionings which appear to be

computationally efficient. Thus we resort to block iterative schemes in

which the basic block consisting of the leakage currents of a single node

is the largest partition treated directly.

In Varga's terms,Y the nine-point coupling scheme is not two-cyclic.

Thus successive overrelaxation (SOR) parameters based on factors which

we can estimate numerically (for instance, the spectral radius of the

Jacobi matrix) and which optimize the rate of convergence are not known.

Therefore we must resort to the Chebyshev semi-iterative (CSI) meth-

pal9s 12, 35 which does not require the two-cyclic condition for its appli-

cation. However, the CSI method has an asymptotic rate of convergence

half that of the SOR or CCSI methods when applicable to the same matrix

giructure,” and, in addition, requires extra storage.

The basic iteration scheme is essentially one in which all nodes are

advanced using Eq. (3.23) with unknowns that appear on the right-hand

side evaluated using data from the preceding inner iteration. The CSI

method accelerates this basic iteration scheme. This same technique

could be employed with the previously discussed five-point scheme.

However, since we would be dealing with the direct solution of much

&amp;
The SOR and CCSI methods have the same asymptotic rate of conver-

gence. However, the CCSI method has a greater average rate of con-

vergence. Thus we choose the CCSI method when applicable.
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smaller unknown partitions as well as with a more slowly convergent

iterative scheme, that application would be counterproductive.

We choose the linear formulation of the quadratic transverse leakage

shape corrections for computation. As we have seen, the iterative tech-

nique applicable for solution of this formulation of the equations is not

as powerful as that available for solution of the nonlinear formulation.

However, in the nonlinear formulation the response matrices must be

frequently updated (for instance, every outer iteration in the scheme we

proposed). The calculational expense of forming the response matrices

can be quite high and we desire to minimize the frequency with which

they are recalculated. Also, inclusion of effects of the spatial shape of

the current in the response matrices destroys all symmetry properties

and consequently increases core storage requirements considerably.

In both the constant and quadratic transverse leakage schemes,

boundary conditions are handled by adding nodes at the reactor boundary

with response matrices that are albedos for the appropriate symmetry

or vacuum conditions. This is done because the incorporation of bound-

ary conditions into the actual nodal response matrices adds asymmetries

that complicate the response matrix calculations and increase the storage

requirements for the response elements.

For the linear schemes we have selected, the response matrices are

dependent only on groupwise material properties and the geometrical

configuration of a single node. These matrices are precalulated before

the start of the outer iterations. The necessary matrix inversions are

performed by considering successive subdivisions of the matrices into

(2 X 2) systems and employing analytic expressions for a block (2 X 2)

matrix inverse. Advantage is taken of symmetry in the response ele-

ments in order to reduce storage requirements.
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3.3.3.3.4 Comparison of the Numerical and Computational

Aspects of the Proposed Block Iterative Schemes

For notational convenience, we shall denote the row-column block

iterative methods using the constant and quadratic transverse leakage

approximations as the RC-C and RC~-Q methods, respectively. Likewise,

the response matrix block iterative methods with the two transverse

leakage approximations are denoted as RM-C and RM-Q.

We first discuss the physical aspects of the RC partitioning as com-

pared to the RM partitioning which affect convergence behavior. Then,

we briefly discuss general numerical considerations of size of block

structure and acceleration techniques. Finally, we review some opera-

tional details concerning implementation of these methods on a computer.

In LWR's with assembly-size nodes where the neutron mean-free

path is quite short compared to the node size, we expect reflection to

dominate the leakage current response system. Thus a direct treatment

of the coupled reflective components on nodal interfaces is preferred.

The RC partitioning treats all the components of reflection and transmis-

sion from a node face to the opposing face simultaneously. Side trans-

mission is handled iteratively. In the RM partitioning, transmission is

treated directly; however, the coupling of the reflective components on

nodal interfaces is dealt with iteratively. Therefore we expect the RC

block partitioning to converge more rapidly than the RM block partitioning

in our applications to thermal systems.

It has been found that in general the convergence rates of iterative

schemes increase with use of larger block partitionings in which greater



t C

portions of the problem are solved simultaneously. The RC -C, RC-Q,

and RM-C methods solve for half of the spatial unknowns simultaneously.

The RM-Q method solves simultaneously only for the unknowns of a single

node. Also, the RM-Q method employs the CSI acceleration scheme

which, for the same block structure, is more slowly convergent than

the CCSI or SOR acceleration techniques. Thus, from numerical con-

siderations alone we would expect the RM-Q method to be more slowly

convergent than the other methods.

Because of the physical arguments stated above along with the

numerical points just discussed, we expect the schemes to be ordered

with respect to increasing rate of convergence as the RM-Q method, the

RM-C method, and the RC methods. We see no apparent reasons why

the convergence behavior of the RC-C method should differ considerably

from that of the RC-Q method. This general behavior has been verified

from observations of the numerically estimated spectral radius of the

inner iteration matrix.

The details of implementation of the RC and RM schemes are quite

different. The RC method requires inversion of block (2 X 2) tridiagonal

or scalar pentadiagonal systems of equations. The matrices can be pre-

factorized before the outer iterations begin and a forward elimination-

backward substitution procedure used to determine the unknown solution

vector. This type of procedure must be done for each row and column

of the spatial problem during one inner iteration.

The RM method requires the generation of within-group nodal re-

sponse matrices. These can be precalculated and stored before the
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outer iterations start. The calculation of these matrices can prove to be

rather expensive since matrix inversion is involved. Symmetry proper-

ties of the response elements can be used to reduce significantly the

storage requirements. Compared to the RC method, the operations nec-

essary to do an inner iteration are much less complicated. For each

node, only simple matrix multiplications are necessary to advance the

solution.

in conclusion, we expect that the convergence rates for the RC methods

per iteration are greater than those of the RM methods, but the RM meth-

ods have a higher computational efficiency per iteration. The balance

between convergence and efficiency has not been quantified and will be

investigated numerically in a later section.

3.3.3.4 Extension to Three Dimensions

The block partitioning of the three-dimensional problem into the row-

column (RC) type format is straightforward. Rather than just treating

the coupled set of x- and y-directed one-dimensional problems in the

plane, we now solve a coupled set of x-, y-, and z-directed one-

dimensional problems. The matrix structure shown in Eq. (3.20) be-

comes block (3 X 3) where the block partitioning is once again by coor-

dinate direction. Unfortunately, the block (3 X 3) matrix does not have

the proper numerical properties in order to apply the CCSI or SOR (with

rigorously determined optimum over-relaxation parameters) acceleration

schemes (in Varga's terms, the block partitioned matrix is not two-

cyclic). However, the CSI shceme could be employed. Another problem
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with the extension to three dimensions of the RC methods is that the

requirement of sweeps of the mesh in all coordinate directions could

present a severe data-handling problem.

The extension of the RM methods to three dimensions is readily

done. The only apparent problems are the additional cost of generating

response matrices (6 X 6 matrices must be manipulated) and the devel-

opment of efficient data management strategies.

3.3.4 Computer Codes — Applications and Comparisons

Computer codes were written to solve the one- and two-dimensional

nodal equations. Numerical methods as discussed in previous sections

of this chapter were implemented.

For two dimensions, separate codes employing the RC-C, Q methods

and the RM-C, Q methods have been written. Both codes are written in

the IBM FORTRAN IV language except for some core storage allocation

routines. The RC code is in double precision, the RM code in single

precision. The RC code was compiled under the IBM Level-H compiler,

the RM code under the Level-G compiler. Both compilations used full

optimization procedures. All computation was done on an IBM 370/168

computer.
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The RC code handles only one or two energy groups and uses regular

geometry with uniform mesh spacing. The RM code uses a general

multigroup structure limited to no upscattering and treats irregular

geometry with a nonuniform mesh. The limitations of the RC code imply

no general restrictions on the method, however.

It was found that the required error reduction for the inner iterations

which minimized overall computation time was significantly greater for

the RM method than for the RC method. An error reduction factor of 0.1

was chosen for the RC method, while the RM method required a value of

0.01. Possible reasons for this difference in required inner iteration

error reduction are the violation of assumptions made for the matrix

properties (specifically, the eigenvalue spectrum) in use of the acceler-

ation procedures because of matrix asymmetries, or increased detrimen-

tal effects on outer iteration convergence of error modes introduced by

lack of inner iteration convergence of the RM method as compared to that

of the RC method. This matter has not yet been resolved.

Only the RM code has been documented and retained &gt;This is because,

as will be seen later, only the RM method was extended to time-dependent

analysis.
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3.4 Results

3.4.1 Foreword

The static nodal method is applied to a number of one- and two-

dimensional problems in this section. Complete test problem descrip-

tions are given in Appendix 5.

Nodal solutions are compared with reference solutions which have

been demonstrated to be essentially spatially converged. For a summary

comparison of power distributions, we use the maximum error in region

power and the power-weighted average of the region power errors. These

orrors are defined as the maximum error

and

g = maximum (€
max

all r

the average error

c

2 Pe
_ rr

avg z P_

1

where P. is the total power in region r and €_, the region power error

for region r, is given by

£€ =

reference
P -P

ff aeo X 100.

~reference

Regionwise power distributions are given in Appendix 6.
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3.4.2 One Dimension

3.4.2.1 Kang's One-Dimensional LWR Problem

This problem, which was originally solved by Kang and Hansen,

is a one-dimensional, two-region reactor with half-core symmetry. It

consists of a homogeneous fuel region and a water reflector which are

treated in two-energy groups. Material properties are typical of a LWR.

Results obtained with the nodal method for uniform mesh refinement

are given in Table 3.1. Finite difference results for the corresponding

mesh sizes are presented for comparison. The eigenvalue, thermal

flux at the midline between the core center and core-reflector interface,

and integral of the thermal flux over half of the reactor are given. The

thermal flux has been normalized to unity at the core center. Calcula-

tions were done using half-core symmetry. Zero flux external boundary

conditions were applied. A convergence criterion of 1075 was imposed

on the nodal average flux. The reference solution, which is a cubic

Hermite finite element solution using a one-centimeter mesh spacing,

as well as the finite difference results, are taken from Kang and Hansen.!®

The nodal results display a rapid convergence to the reference solu-

tion with decreasing mesh size. Also, results for very large mesh

spacings are accurate, which is our primary goal in this development.

In terms of the prediction of the integral quantities of eigenvalue and

integrated flux, the nodal method is clearly superior to the finite differ-

ence method in accuracy achieved for a given mesh size as well as num-

ber of unknowns required to achieve equivalent accuracy. For instance,

the 20 cm nodal solution with 9 unknowns per group compared with the



Table 3.1 Results for Kang's One-dimensional LWR Problem
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2.5 cm finite difference solution using 24 unknowns per group gives

equivalent accuracy in eigenvalue and significantly better results for

the integrated thermal flux.

The nodal thermal flux solutions obtained with the larger mesh sizes

oscillate about the reference solution in the fuel and reflector regions

near the core-reflector interface. This behavior accounts for the

inferior pointwise flux result compared with the finite difference method

with a 20 cm mesh. These oscillations are rapidly damped, however,

with mesh spacing refinement. This behavior is graphically illustrated

in Figs. A6.1la, A6.1b, and AB. 1c of Appendix 6 in which the pointwise

thermal flux of the 20, 10, and 5 cm nodal solutions are compared with

the 2.5 cm nodal solution.

In summary, we find for this problem that the nodal method gives

accurate predictions of integral properties with very large mesh sizes.

However, irregularities in the pointwise solution may occur for these

large mesh sizes in regions in which the spatial shape of the solution is

rapidly varying, such as at the core-reflector interface for this problem.

This behavior is not of great concern because we are principally inter-

=sted in prediction of integral properties such as average region power

distributions.

3.4.2.2 A One-Dimensional Version of the IAEA PWR Problem

This problem is a one-dimensional slice through the core of the

[AEA two-dimensional benchmark problem. The problem is a two-

group model of an idealized PWR with multizone fuel loading. Local

perturbations are severe because of the insertion of control rods and
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the influence of the water reflector. The difficulty of this problem is

indicated by the fact that a finite difference solution using a one-centimeter

mesh spacing (170 unknowns per group in half-core symmetry) reported

by Shober=0 was found to be in error with €ave = 0.8% and € an 5%

in comparison with his analytic solution.

Results obtained with the nodal method are summarized in Table 3. 2

for a sequence of decreasing uniform mesh sizes. Regionwise power

distributions are shown in Fig. A6. 2a of Appendix 6. Calculations were

done using half-core symmetry. Zero flux external boundary conditions

were applied. A convergence criterion of 107 was imposed on the nodal

average flux. The reference solution is Shober's analytic solution.

As in Kang's test problem, the assembly-size mesh (20 cm) nodal

results are very accurate. A 10 cm mesh nodal solution with 51 unknowns

per group is significantly more accurate in power distribution than the

reported 1 cm mesh finite difference solution with 170 unknowns per

group. Also, once again the nodal solution is seen to converge rapidly

to the reference solution with decreasing mesh size. It is not known if

the irregular spatial convergence behavior exhibited by the 2.5 cm solu-

tion is characteristic of oscillatory convergence behavior at small mesh

sizes for the nodal method or is involved with some problem of numerical

convergence or precision with these calculations or the reference calcu-

lation.

We find that the same type of oscillatory behavior in the shape of the

thermal flux near the core-reflector interface occurs as reported for

Kang's test problem. It is reasonable to expect that a more accurate



Table 3.2 Summary of Results for the One-dimensional Version of

the IAEA PWR Problem: Uniform Mesh Refinement
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treatment of the reflector region would substantially increase the over-

all solution accuracy. We approach the problem in two ways. One

approach is to replace the reflector by an analytic albedo condition. &gt;®

The other approach is to decrease the mesh size in the reflector and

adjacent fuel assembly. Results of calculations using a 20 cm mesh

within the core with albedo or 10 cm mesh at the core-reflector inter-

face are shown in Table 3.3. Regionwise power distributions are shown

in Fig. A6.2b of Appendix 6. Calculational details are the same as used

in the previously discussed solutions.

These results for the improved reflector treatment show a signifi-

cant gain in solution accuracy over that of the uniform 20 cm solution.

The mesh subdivision near the core-reflector interface shows greater

improvement than just the replacement of the reflector with an albedo

condition. In either case, the power distribution results are as accurate

as the fine-mesh finite difference solution and require the use of much

fewer unknowns (24 or 33 compared with 170 per group).

In summary, we find the nodal method to give good accuracy with

an assembly-size mesh for this difficult problem. The method is shown

to be superior to the finite difference method in terms of number of un-

knowns required for equivalent accuracy. It is also found that significant

improvements can be made in the nodal solutions by improving the treat-

ment of the reflector region.

3.4.2.3 Summary of One-Dimensional Results

The proposed nodal method has been shown to be accurate with the

use of very large mesh spacings for one-dimensional LWR problems.



Table 3.3 Summary of Results for the One-dimensional Version of

the IAEA PWR Problem: Improved Reflector Treatment

Mesh

Layout
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reflector replaced
by albedo
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10 cm in reflector
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The method was found to be superior to the finite difference scheme both

in terms of accuracy for the same mesh size and in terms of number of

unknowns required to achieve equivalent accuracy.

Problems were encountered in the accurate prediction of pointwise

quantities with the use of large mesh sizes because of difficulties in

treating the region near the core-reflector interface. However, our

primary objective is the determination of region averaged power distri-

butions for which the method has been demonstrated to do well in one

dimension with large mesh spacings. Also, it should be noted that with

the averaging procedures applied in the derivation of the multidimensional

method, that the regeneration of pointwise quantities has been somewhat

obscured.

In conclusion, we found sufficient encouragement in these results for

us to pursue the application of the two-dimensional method. It should be

noted that even though the one-dimensional results are promising, the

two-dimensional method includes an approximation for the spatial shape

of a transverse leakage term not included in the one-dimensional scheme,

ond thus we cannot be assured of equally accurate results in two dimen-

sions without further numerical experimentation.

3.4.3 Two Dimensions

3.4.3.1 Comparison of Iterative Schemes for the Inner Iterations

It should be recalled that in two dimensions a within-group spatial

problem must be solved in each energy group during each outer iteration

by iterative techniques. We proposed two iterative schemes in Sec. 3.3.3
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known as the RC (row-column) and RM (response matrix) methods. These

methods are implemented with both the constant and quadratic transverse

leakage approximations (RC-C,Q and RM-C,Q). We now continue our

discussion of Sec. 3.3.3. 3.4 concerning the comparison of numerical

and computational aspects of the proposed schemes by considering their

application to a particular problem.

The problem we have chosen is the IAEA two-dimensional PWR

benchmark.” Results given are for an assembly-size node (20 cm).

Numerical performance of the solution techniques is summarized in

Table 3.4. Solution accuracy will be discussed in a following section.

We present the estimated spectral radius of the unaccelerated group

iteration matrix, the number of inners required for adequate inner iter-

ation error reduction, the number of outers, and associated solution

times. It should be recalled that the RC and RM codes differ in

their implementation on the computer, with the RC code in double preci-

sion and the RM code in single precision, but with the RC code having

the advantage in compiler optimization. With these factors in mind, we

compare the overall problem performance as to efficiency per iteration.

As was anticipated in our previous discussion, for this thermal sys-

tem, the RC method outperforms the RM method with respect to expected

rate of convergence when the iteration matrices are unaccelerated. We

believe this behavior to be related to the fact that in thermal systems

with large node size, reflection is the dominating influence in the numeri-

cal solution. The RC method treats coupled reflective components di-

rectly while the RM method uses an iterative treatment. Thus we expect



Table 3.4 Comparison of Iterative Solution Methods Applied to the IAEA

Two-Dimensional PWR Benchmark Problem
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the RM method to be more slowly convergent than the RC method for this

particular application. This slower rate of convergence is indicated by

the larger estimated values of the spectral radii of the unaccelerated

iteration matrices of the RM method compared with the RC method.

The spectral radii of the RC-C and the RC-Q methods are little dif-

ferent. This is to be expected since the basic iteration scheme is the

same for these methods with only minor differences in the coupling be-

tween the principal block structure of rows and columns of currents intro-

duced in order to treat the transverse leakage shape correction.

The RM-Q method uses a much smaller block partitioning of un-

knowns than the RM-C method, "and, unlike the RM-C method, does not

use the most recently calculated values of unknowns during a mesh sweep.

Thus we would expect the unaccelerated RM-Q method to be more slowly

convergent than the unaccelerated RM-C method. The larger spectral

radii of the RM-Q method compared with those of the RM-C method re-

flect this slower rate of convergence.

It is interesting to note the reversal in group behavior with respect

to the spectral radii of the unaccelerated iteration matrices between the

RC and RM methods. In the RC method, which treats reflection impli-

citly, the increased transmission properties of the fast group over that

of the thermal group dominate in solution difficulty. This effect is indi-

cated by a larger value of the spectral radius for the fast group. In the

RM method, which treats reflection iteratively, the difficulty of treating

the thermal group reflective components dominates. The larger value

of the thermal group spectral radius indicates this difficulty.
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We now discuss the application of acceleration schemes to the basic

iteration matrices and the efficiency of the various iterative techniques

per inner iteration. First we compare the number of inner iterations

required per outer iteration for the accelerated schemes. This factor

in combination with the computational efficiency per inner iteration are

the principal factors causing variations of the total computation time

among the different solution methods.

The number of inners used per outer involves a combination of fac-

tors. These numbers reflect effects of the spectral radius of the unac-

celerated iteration matrix, the choice of acceleration schemes, and the

error reduction required per outer iteration. The RC methods and the

RM-C method use the CCSI (cyclic Chebyshev semi-iterative) accelera-

tion scheme. The more slowly convergent CSI (Chebyshev semi-iterative)

method is used to accelerate the basic RM-Q iteration. In order to pro-

vide a proper balance between the number of inners and outers which

minimizes overall computational time, it has been found that greater

inner iteration error reduction factors are required for the RM methods

than the RC methods. Thus for the same spectral radius of the unaccel-

erated iteration matrix, the methods should be ordered according to the

number of inners per outer as the RC methods, the RM-C method, and

the RM-Q method. Moreover, we observed the spectral radius of the

unaccelerated iteration matrix to increase with this same ordering,

which implies an increased difference in the number of inners required

among the methods.

We now turn to a discussion of computational efficiency. It should
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be noted that we neglect any overhead associated with the outer iterations

in the calculation of computing times per inner iteration shown in Table

3.4. We first discuss the efficiency of the various methods per inner

iteration, and then make general comments on the overall solution effi-

ciency.

The RC methods have essentially the same computational time per

inner iteration. The majority of the work in an inner is devoted to the

direct solution of one-dimensional problems along columns and rows.

The transverse leakage terms appear as sources in these one-dimensional

problems and the shape correction modifications do not significantly

affect the time required to form these sources.

The RM methods differ somewhat. The RM-Q method requires that

the group source be modified to account for transverse leakage shape

corrections before a mesh sweep. Then the mesh sweep involves only

simple matrix multiplications. The source modification is expensive in

relation to a single mesh sweep, however. The RM-C method uses the

same operational procedure for a mesh sweep but does not require the

source modification. The computational time per inner iteration for the

RM-C method is seen to be half of that of the RM-Q method for this

problem. The RC methods and the RM-Q method have essentially the

same time requirement per inner iteration.

The overall solution times for the RC methods and the RM-C method

are quite close. The total number of outer iterations vary somewhat,

but from the time per outer iteration we see that the RM-C method is

only about 30% slower than the RC methods. Because of increased error
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reduction requirements and a more difficult inner iteration problem,

the RM-C method must do nearly three times as many inners per outer

as the RC methods. However, the RM-C method has a computational

speed per inner twice that of the RC methods which offsets somewhat

the greater number of inners required per outer.

The overall solution time for the RM-Q method is not competitive

with the other schemes. It presents the most difficult inner iteration

problem and uses the slower of the acceleration schemes. Moreover,

it has the same efficiency per inner as the RC methods. Thus the total

solution time is quite long compared with the other schemes.

We have found the trends described above to be generally true for

all LWR problems investigated. The RC methods have consistently

proven to be the more efficient schemes for two-dimensional static

LWR calculations. Thus we report all static test problem results from

calculations made with the RC methods except for those involving irreg-

ular cores or nonuniform mesh spacing which only the RM code is pro-

grammed to handle.

As we previously discussed, difficulties may be encountered in the

extension of the RC methods to three dimensions, however. Extension

of the RM methods are straightforward. Moreover, the RM-C method

is competitive in two-dimensional static calculations compared with the

RC methods. Thus it is reasonable to pursue RM-C type methods if

iterative solution schemes are required in the extension to two-dimen-

sional time-dependent problems.
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3.4.3.2 The IAEA Two-Dimensional PWR Benchmark Problem

This problem is a two-group treatment of a highly idealized PWR

with multizone fuel loading. Local perturbations are severe because of

the insertion of control rods and the influence of the water reflector.

Coarse-mesh schemes have experienced difficulties in treating this

problem. Finite difference solutions have been found to be in error with

mesh spacings as small as one centimeter. This difficulty is illustrated

by the results, summarized here in Table 3.5, obtained by Kristiansen” '

with a mesh-centered finite difference code (the same difference scheme

as employed in MEKIN) for a sequence of decreasing mesh spacings.

The reference is an extrapolated sequence of interface-centered finite

difference calculations.

Results for uniform mesh refinement obtained using the nodal method

with both the constant and quadratic transverse leakage approximations

are shown in Table 3.6. The problem was treated in quarter-core sym-

metry and with a rectangular core configuration. Vacuum boundary

conditions were applied on the external surface of the reactor. A con-

vergence criterion of 107° was imposed on the nodal average flux. The

reference solution is Kristiansen's extrapolated sequence of finite-

difference calculations. Regionwise power distributions obtained with

the nodal method are also given in Figs. A6.3a,b of Appendix 6.

These results show high accuracy with very large mesh spacings

snd a rapid convergence to the reference solution with mesh spacing

refinement. It is seen that an assembly-size mesh (20 cm) is adequate

for this problem, giving eigenvalue errors of less than . 1% and maximum



Table 3.5 Summary of Finite Difference Results for the IAEA Two-dimensional

PWR Benchmark Problem
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Table 3.6 Summary of Results for the JAEA Two-dimensional PWR

Benchmark Problem (Regular Core)

Mesh

Layout

nodes per

assembly,
mesh

spacing
(cm)

(1X1), 20

(2X2), 10

(4X4), 5
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assembly power errors of less than 3% for both transverse leakage

approximations.

Overall, the results of the quadratic transverse leakage approxima-

tion are somewhat better than the results of the constant leakage approx-

imation. Eigenvalue predictions of the quadratic approximation are

significantly better than those of the constant approximation. Maximum

assembly power errors occur at rodded positions for the constant approx-

imation and at the core-reflector interface for the quadratic approxima-

tion. The constant approximation is more slowly convergent with de-

creasing mesh size than the quadratic approximation. Note that the

quadratic approximation is essentially converged at a 10 cm mesh spa-

cing.

From comparison of Tables 3.5 and 3.6, we find that a 20 cm nodal

solution with the quadratic transverse leakage approximation is essen-

tially as accurate as a 1.25 cm finite difference solution. This finite

difference method employs approximately 45 times more unknowns than

the nodal solution. If we assume a maximum error of approximately

5% in the region power distribution to be an acceptable limit, we find

that the finite difference method requires a 2.5 cm mesh spacing. For

this situation, the finite difference solution employs approximately

11 times more unknowns than the nodal solution with an assembly-size

mesh spacing which in addition gives significantly more accurate re-

sults. Finite difference results obtained with the VENTURE code indi-

cate a running time of several minutes for this problem” 58 as com-

pared with approximately 4 seconds for our nodal code. Our execution

times and solution accuracy for this benchmark problem appear to be
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comparable with those obtained by other researchers with their nodal

neihods. 5 22,29-31, 36

Much work has been done recently by Kalambokas and Henry"&gt; on

the replacement of reflectors by albedo boundary conditions. This effort

is directed toward minimization of the computational requirements for

solving LWR problems by eliminating the excessive number of unknowns

needed by the finite difference method to represent accurately the reflec-

tor region. We find that an explicit representation of the reflector re-

gion can be maintained and total problem unknowns kept to a minimum

by using coarse mesh nodal solutions with irregular cores. As was shown

in the results presented above, an assembly-size mesh with an explicit

treatment of the reflector gives accurate results. We have solved the

[AEA problem using a 20 cm mesh with all of the reflector eliminated

except for one assembly width surrounding the core. This reflector

region is sufficiently thick such that results should be essentially the same

as for the rectangular problem. A 15% reduction in the number of un-

knowns is achieved as compared with the other coarse-mesh nodal solu-

tions. Results, which are given in Table 3.7 and Fig. A6.3c, are essen-

tially the same as those obtained with the rectangular core. Note that

in comparing solution efficiency, that the RM code has been used for

these calculations. The faster RC code was used to generate the rec-

tangular core results of Table 3.6. However, comparison may be made

with Table 3.4 which gives 20 cm IAEA rectangular core results for

the RM code. All other calculational details are the same as in the pre-

viously reported solutions. This indicates that it is probably not neces-

sary to attempt to eliminate the reflector region by use of albedo condi-
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tions in nodal schemes of this type.

In summary, for this difficult benchmark problem we find the nodal

method to give accurate results with either transverse leakage approx-

imation when used with an assembly-size mesh. The reduction in the

number of unknowns allowed with such large node sizes permits a sig-

nificant gain in computational speed compared with the finite difference

method in order to achieve an equivalent acceptable level of accuracy.

3.4.3.3 The LRA Two-dimensional BWR Benchmark Problem

The LRA BWR test problem is a two- or three-dimensional, two-

group kinetics benchmark problem. In this section, we treat the two-

dimensional reactor in steady state. This problem has been shown to be

rather difficult. For example, a one centimeter finite difference solution

was reported to have a maximum error in region power distribution of

about one percent! Also, Shober=° has found that using the MEKIN finite

difference code, a 2.5 cm solution is necessary to obtain a maximum

error in region power of less than five percent. The solution time he

reports is 333 seconds (adjusted for quarter core calculation).

We summarize the results in Table 3. 8 obtained with the nodal

method in both the constant and quadratic transverse leakage approxima-

tions with a uniform 15 cm mesh spacing. Power distributions are

shown in Fig. A6.4 of Appendix 6. The problem was treated in quarter

core symmetry. Vacuum boundary conditions were applied at the exter-

nal surface of the reactor. A convergence criterion of 107° was imposed

on the nodal average flux. The reference solution is a fine-mesh nodal



Table 3.8 Summary of Results for the LRA Two-dimensional Static

BWR Benchmark Problem

Mesh Layout — uniform 15 cm mesh spacing
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calculation (4 X 4 nodes per assembly) by Shober. 50

These results are not significantly different from those obtained in

solutions of the IAEA problem. Both transverse leakage approximations

give accurate results for an assembly-size mesh with the quadratic

approximation being slightly superior for the mesh size shown.

In comparison with the MEKIN results, the nodal method required

505 unknowns per group and 8.5 seconds of computation time, as com-

pared with 4356 unknowns per group and 333 seconds of computation time,

to achieve equivalent solution accuracy. As in the IAEA problem com-

parison, we see that the nodal method can achieve equivalent accuracy

with approximately an order of magnitude fewer unknowns than the finite

difference method for these difficult benchmark problems. Gains in com-

putational efficiency reflect this difference in number of unknowns as

well as the benefit of less difficult iterative problems because of the

large mesh sizes.

3.4.3.4 The Biblis Two-dimensional PWR Problem

The Biblis reactor is a two-group PWR problem with a "checker-

board" core loading pattern.3? Two cases are considered based on the

insertion or withdrawal of control rods in the outer region of the core.

A summary of the results obtained with the nodal method in the

constant and quadratic leakage approximations for a sequence of de-

creasing mesh spacings is presented in Table 3.9 for the rods with-

drawn case and in Table 3. 10 for the rods inserted case. The problems

were treated in quarter-core symmetry. Vacuum boundary conditions



Table 3.9 Summary of Results for the Biblis Two-dimensional PWR Problem
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Table 3.10 Summary of Results for the Biblis Two-dimensional PWR Problem

(Rods Inserted)
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were applied at the external surface of the reactor. A convergence cri-

terion of 107° was imposed on the average nodal flux. Our standard for

comparison is a (4 X 4) node per assembly nodal solution by Werner&gt;?

which has been shown to be essentially converged in space.

These results show a behavior as indicated in previous problems

for the quadratic transverse leakage approximation. Very accurate

solutions are obtained with large node sizes and the solution rapidly

converges to the reference case with decreasing mesh size. However,

the constant transverse leakage approximation shows unacceptable errors

(~10% in assembly powers) for the assembly-size mesh spacing. Halving

the mesh size (to 11.5 cm) gives much improved results for the constant

approximation. It is seen that the quadratic transverse leakage approxi-

mation is essentially converged at the 11.5 cm mesh spacing. An exam-

ination of the (2 X 2) and (4 X 4) node per assembly quadratic transverse

leakage approximation solutions reveals good agreement with Werner's

solution.

Thus, we now find that the constant transverse leakage approxima-

tion does not always give acceptable accuracy when used with an assem-

bly-size mesh in LWR calculations. The quadratic approximation,

however, produces very good results in cases where the constant approx-

imation fails.

3.4.3.5 Summary of Two-dimensional Results

The proposed nodal method has been shown to be accurate when used

with assembly-size nodes in two-dimensional LWR static benchmark

calculations. The quadratic transverse leakage approximation has
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consistently produced accurate results for these large node sizes. How-

ever, the constant approximation was found to give unacceptable answers

for an assembly-size mesh in a PWR with a "checkerboard" loading

pattern. Thus, some care should be exercised in the application of this

approximation.

Various solution methods for the inner iteration problem were inves-

tigated in the course of the overall study. The RC (row-column) methods

were found to be more efficient than the RM (response matrix) methods

for two-dimensional applications in LWR's. The RM-C (constant trans-

verse leakage approximation) method does appear to be competitive

with the RC methods but the RM-Q (quadratic transverse leakage approx-

imation) method was found to be significantly slower than the other

schemes. Since difficulties may be encountered in the extension of the

RC methods to three dimensions, further work should be devoted to

improvement of other solution techniques.

The nodal solutions were compared with finite difference methods

in terms of number of unknowns needed for equivalent accuracy and were

found to require significantly fewer unknowns. The combination of a

reduced number of unknowns and relatively easy inner iteration prob-

lems because of the use of large mesh sizes give nodal schemes of the

type proposed here a much improved computational efficiency compared

with the conventional finite difference techniques. Gains in computational

efficiency of an order of magnitude can be realized.

3.5 Summary

[n this chapter, the set of multigroup, spatially-discretized, time-
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dependent nodal equations were reduced to the static formulation. The

solution of the static eigenvalue problem was discussed. The method

was applied to a number of one- and two-dimensional LWR problems.

Two iterative schemes were developed for solution of the within-

group spatial problems in two-dimensional calculations. These schemes

were compared for a particular problem and the more efficient applied

to the two-dimensional test problems. The extension of this scheme to

three dimensions may not be practical, however, and further investi-

cations in this area are indicated.

Results of the one- and two-dimensional test problems clearly show

that the nodal method can be used with an assembly-size mesh to obtain

accurate solutions for LWR calculations. Two-dimensional calculations

using the quadratic leakage approximation consistently gave maximum

errors in region powers of less than three percent for difficult bench-

mark problems when applied with an assembly-size mesh. Results for

the constant transverse leakage approximation were nearly as accurate

as those of the quadratic transverse leakage approximation except for

a "checkerboard" PWR core for which unacceptable errors occurred

for a calculation using an assembly-size mesh.

In comparison with the finite difference method, the nodal method

was found to require significantly fewer unknowns for an equivalent

accuracy. It appears that gains in computational efficiency compared

with the finite difference method of an order of magnitude or more can

be achieved.
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Chapter 4

TRANSIENT APPLICATIONS

4,1 Introduction

Let us briefly review the development up until this point: In Chap-

ter 2, a set of time-dependent nodal equations was derived for solution

of the multigroup diffusion equation for a two-dimensional reactor con-

sisting of rectangular, homogeneous (or homogenized) zones. In Chap-

ter 3, this set of time-dependent equations was reduced to the conven-

tional static-eigenvalue problem. Solution procedures were developed

and a number of one- and two-dimensional LWR test problems were

considered. High accuracy with large mesh spacings was consistently

obtained in these applications. The significant gain in computational

efficiency compared with the standard finite difference method demon-

strated in these test results warranted this extension to time-dependent

analysis.

In this chapter, the set of two-dimensional, spatially-discretized

nodal equations with continuous time dependence are written in terms

of discrete time intervals by the introduction of finite difference approx-

imations for the time behavior. Since it is not the intent of this thesis

to develop improved time integration schemes, only relatively simple,

conventional approximations are applied for time discretization. A

numerical solution technique is developed for the discrete time-dependent

system in two dimensions. The formulation of solution procedures is

restricted to those immediately applicable to three-dimensional, few-
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group calculations as performed in the MEKIN code. Two thermal reac-

tor test problems are investigated and results are compared with those

obtained with the finite difference method as well as other coarse-mesh

schemes.

4.2 Discretization in Time

We desire to approximate the solution of the time-dependent,

spatially-discretized nodal equations, Eq. (2.13) and (2.15), at the

times

t= tos ts tos pe Lo

separated by the time intervals

A = -

IE TRE A

In order to formulate the discrete time-dependent system, we apply a

simple, single-level, backwards difference shone to the nodal bal-

ance equations, Eq. (2.13), and leakage response equations, Eq. (2.15),

over the time interval a. Thus the spatial operators are treated in a

fully-implicit manner (evaluated at t = t, +1)

We make one exception to this fully-implicit differencing, however.

Recall the discussion in Chapter 3 regarding the treatment of transverse

leakage shape corrections. There it was noted that the spatial coupling

scheme of the nodal equations can be reduced to a nearest-neighbor for-

mulation if nonlinear transverse leakage shape correction matrices are

used in the solution procedure. However, if a linear formulation is

desired, the resulting spatial coupling scheme is no longer of the nearest-
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neighbor type. This prohibits the use of some of the more rapidly con-

vergent solution techniques which are applicable for the nearest-neighbor

formulation. Disadvantages are associated with the nonlinear formula-

tion also because of requirements of frequent updating of matrices and

increased coefficient storage. In order to avoid these difficulties for

the time-dependent problem, we choose a fully explicit representation

(evaluated at t = t) for the transverse leakage shape correction terms.

Thus, the transverse leakage shape correction is evaluated from known

data and does not complicate the principal part of the spatial operator

which is handled implicitly.

After time differencing the nodal equation, the expression for the

delayed precursors obtained from Egs. (2.13b) and (2.15b) is used to

eliminate delayed precursor unknowns evaluated att ,, from the flux

and current equations, Egs. (2.13a) and (2.15a). This procedure gives

a set of equations for fluxes and currents at t+ in terms of fluxes,

currents, and precursors at t which consists of the nodal balance

equations,

hy |. :

7 ( in, u- _ cout, u- in, ut _ tout, ut/, V.. Ig, ij (the1) Ig, ij (t 41) + Ig. 1j (ter) Ig, ii (t 141)
1=X,y J

£11

—_— (tt )(t D) Pq, i] n+1- + Zrg, ij n+¥ (= s
ng

: (5100 1iltgn) + Xe (1-Pa)¥Bpgr15 )) ¢
gop \g'#geg! if ntlT C Te Tey igh ii ntl Tel
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and the leakage current response equations,
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and

A

Ne kK
k (1 + AN)

After determination of the fluxes and currents at t +10 the nodal

average precursors are advanced by

~

add

Me on &amp;
cia) = Ck, iittn) * Pi 1 Y Zio, ijttnt1) Pg, itn)

k=1,2,...K

i=1,2,...,1

ised (ij) € ®

(4. 2a)

where

3D = A By

k= (1+ AN)

Additional precursor unknowns associated with the implicit precursor

shape approximation are advanced by

. no G

[C(t )] =&lt;X[C n 1 outki: Ent L(t DN] +BE = L( pov | ouli'n No, © k,ij ntl k 1 ¥ ¢ ij tnt1) Ig iin)

[in in ¢

PIR te) ERn) ¥ Po) bg 1itar1))L

(4. 2b)

The inclusion of the interface current continuity condition and the reactor

boundary conditions along with the specification of the initial conditions

(t=0) complete the system of discrete time-dependent equations.

The notation used here is the same as that originally introduced in
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Chapter 2. It should be recalled that the Tg, iil's are four element

column vectors of incident or leakage interface average partial currents

in group g on the faces of node (ij). The [C, I's are four element col-

umn vectors of weighted integrals of the precursor density in delayed

family k when the implicit precursor shape approximation is used.

These vectors reduce to coefficients multiplying the average precursor

density when the constant shape approximation is used for the precur-

sor shape.

Note that, as previously discussed, the transverse leakage shape

correction terms have been treated explicitly in the leakage response

equations, Eq. (4.1b). However, the constant portion of the transverse

leakage approximation, which includes integral properties conserving

net leakage, is treated implicitly as is the remainder of the spatial

operator.

We consider the solution of the discrete time-dependent nodal equa-

tions. Eaqgs. (4.1) and (4.2), in the following section.

4.3 Solution of the Discrete Time-Dependent Equations

4.3.1 Problem Formulation

in advancing the time-dependent solution over the interval (t,, t,+1)

the quantities at t, are known and the right-hand sides of the nodal bal-

ance equations, Eq. (4.1a), and the leakage response equations, Eq. (4.1b),

can be evaluated. Unknown currents and fluxes are to be determined

for tor This problem can be written as

[AG [wt] = [S(t)’
1 3)
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where [A] is the multigroup spatial operator appearing on the left-hand

sides of Eqs. (4.1), [U] is the unknown vector of fluxes and currents at

bot and [S] is a known source evaluated from data at the beginning of

the time interval. The solution of this multigroup, two-dimensional

fixed source problem requires the use of iterative techniques. We dis-

cuss the choice of iterative schemes in Sec. 4. 3.2 and consider the

numerical implementation of the solution procedure in Sec. 4.3.3.

4.3.2 Solution Method

Recall that our immediate goal in examining nodal schemes is to

develop a potential replacement for the finite difference method used to

solve three-dimensional, two-group diffusion problems in the program

MEKIN. Thus in development of the solution technique for the time-

dependent nodal equations we only consider one or two groups and re-

strict ourselves to the use of two-dimensional solution methods which

have straightforward extensions to three dimensions. With this in mind,

we consider the solution of Eq. (4.3).

The operator [A] of Eq. (4.3) contains group transfer terms both

from fissioning and scattering. Thus, the group structure is fully coupled.

In the general case, solution methods which treat the group structure

iteratively must be employed. Also, an additional level of iteration is

required for the spatial problem in each group. However, because we

are imposing a limitation of two energy groups, we consider methods

which treat the group structure simultaneously and thus eliminate a

level of iteration. We now discuss the iterative solution of the spatial

problem.
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Because of the simultaneous treatment of the group structure, we

consider the unknowns in all groups associated with a particular spatial

variable to be a single block unknown. With this viewpoint, we see that

Eq. (4.3) has exactly the same block structure as that of the scalar

structure of the within-group spatial problem, Eq. (3.6), solved in each

group during a fission-source iteration in the static eigenvalue problem.

If we manipulate the groupwise block structure of Eq. (4.3) as we did

the scalar structure of the within-group problem, we may use exactly

the same solution procedures as developed in Chapter 3 for the inner

iterations. This is the technique we employ.

As in Sec. 3.3.3.1, the nodal balance equations, Eq. (4. 1a), are

used to eliminate the nodal average flux from the leakage response

equations, Eq. (4.1b). This procedure gives a spatial problem in terms

of interface average partial currents only. We employ the RM (response

matrix) method of Sec. 3.3.3.3, for which the extension to three dimen-

sions is conceptually straightforward, to solve these equations.

Because we have used an explicit time differencing of the transverse

leakage shape correction terms, only the constant portion of the trans-

verse leakage approximation is incorporated into the spatial operator [A].

Thus, with the basic block unknown defined to be leakage currents from

a node in all groups, the RM-C (constant transverse leakage) solution

method is applied. Recall that this method partitions the nodes into two

blocks which essentially can be thought of as the "red" and "black"

squares of a "checkerboard." In the nearest-neighbor coupling scheme

which occurs with use of the constant transverse leakage approximation,
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nodes of a particular type ("color") are not connected to nodes of the

same type. Thus if "response matrices" which give leakage currents

due to incident currents are formed prior to the start of the spatial

iterations, all leakage currents of a particular node type can be improved

simultaneously by multiplication of the response matrices with latest

values of the leakage currents of the other node type. The spatial iter-

ation is between node types. The ccs? 12, 35 (Chebyshev semi-

iterative) method is used to accelerate this basic iteration.

The formulation of the response matrices is not a trivial matter,

however. With simultaneous treatment of the groups in two dimensions

the response matrices are of order 4G. Moreover, costly matrix inver-

sions are required to construct the response matrices. Fortunately,

symmetry conditions can be used to reduce storage requirements signif-

icantly. However, the response matrices depend on nodal geometrical

and material properties, and consequently, must be modified to reflect

time-dependent changes in material parameters. Frequent regeneration

of these matrices can become excessively expensive. We have not inves-

tigated alternative schemes for updating the response matrices which

mav be less costly, such as correlation of response elements with mate-

rial states.

4.3.3 Numerical Considerations

In this section we consider actual numerical implementation of the

RM-C iterative method described in the preceding section. The deter-

mination of acceleration parameters is first discussed, followed by the

description of a procedure for predicting improved guesses with which
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to begin the iterations. Finally, we describe briefly the computer code

used for time-dependent calculations.

The acceleration parameters of the CCSI method are determined

from the bounds of the eigenvalue spectrum of the associated Jacobi

iteration mairiz. 10 12,35 The properties of the iteration matrix vary

significantly with timestep size and material properties for a fixed

geometrical configuration. For effective use of the acceleration pro-

cedure we must estimate accurately bounds for the eigenvalue spectrum

of the Jacobi matrix. We divide a transient problem into a number of

time domains in which the timestep size is constant. Eigenvalue esti-

mates are made before each time domain based on material properties

at the beginning of the domain. The RM-C iteration matrix is nonsym-

metric and thus complex eigenvalues may occur. We have attempted

to treat this condition in the choice of acceleration parameters? The

procedure used to estimate bounds for the eigenvalue spectrum of the

nonsymmetric iteration matrix is one suggested by Wachpress. 1 It

should be noted that we do not examine the convergence rate obtained

during the iterations of each timestep of a time domain in order to deter-

mine if the acceleration parameters being used are adequate or need to

be reestimated because of changes in the properties of the iteration

matrix caused by changes in material properties.

A fixed convergence criterion is imposed on the iterations of each

timestep. The convergence test is essentially the same as that employed

in TWIGL code.*! 43 Effectively, a norm of the relative error in the

pointwise solution is tested. A minimum number of iterations (typically
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5 to 10) are required before convergence is allowed.

In order to minimize the number of iterations per timestep, it is

important to have a good initial guess with which to begin the iterative

procedure. We use an extrapolation procedure applied to the solution

of the preceding timestep to obtain an improved starting guess. The

time dependence of the solution vector is assumed to be exponential and

the thermal group behavior is used to determine extrapolation factors.

For example, in order to obtain an initial guess for a group g spatial

variable in node (ij), denoted here as dg 14 to begin the iterations for

timestep n, we use

: _ y, n

Gg iil) = exp(@f7 78,)wy (6); g = 4 .G

where

Wg 45) | pono dg ————).

WOE bg, 15tn-1)

Because flux condensation is applied to reduce the spatial problem to

one in terms of currents only, it is necessary only to extrapolate the

currents. Nodal fluxes are regenerated after convergence of the spatial

iteration.

The RM-C method and the associated numerical procedures described

above have been incorporated into a computer code for one- or two-group,

two-dimensional, time-dependent calculations. The code is basically

an extension of the RM-C,Qstatic code and uses the output of this code

as its initial condition. The code is written in the IBM FORTRAN IV
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language except for a few core storage routines. It was compiled using

the IBM Level-G compiler with full optimization. All calculations were

performed on an IBM 370/168 computer. This code has been documented

and retained for future reference, 0

4.4 Results

4.4.1 The TWIGL Two-dimensional Seed-Blanket Reactor Problem

This test problem is a two-dimensional unreflected seed-blanket

reactor 160 cm square with eighth-core symmetry. The problem is

treated in two energy groups and one delayed family. A complete

problem description is given in Appendix 5. Transient solutions for

step and ramp perturbations of the corner seed assemblies were origi-

nally done by Hageman and Yasinsky?’ using the finite difference

code TWIGL. 2 45 We shall present results of nodal calculations for

both perturbations.

Reference results for comparison with our nodal calculations are

not available. This is because our use of vacuum boundary conditions

for this unreflected core prohibits us from making direct comparisons

with other results obtained using zero flux boundary conditions, such

as TWIGL*! or Shober's nodal scheme.8 Nevertheless, we shall

establish our own reference solution in the course of examining aspects

of spatial, temporal, and numerical convergence of our method.

We treat this problem in quarter-core symmetry. For the 80 cm

square quarter core, we use two mesh layouts which are denoted as the

"coarse" mesh and the "very coarse" mesh. These mesh structures

are defined as follows:
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Mesh Division

Region (u=x,y)

Ocm&lt;su&lt;?24cm

24 cm &lt;u &lt;56 cm

66 cm &lt;u &lt;80 cm

Coarse Mesh Very Coarse Mesh

12 cm

16 cm

12 em

24 cm

32 cm

24 cm

We now consider solution of the static reactor. A summary of static

results is presented in Table 4.1 for the two mesh structures with both

the constant and quadratic transverse leakage approximations. Results

for the region power distributions are shown in Fig. A6. 5a of Appendix 6.

Once again, we use the power-weighted average error and maximum

error in region powers for a summary comparison of power distributions.

The reference solution is a nodal calculation with the quadratic trans-

verse leakage approximation for a uniform 4 cm mesh. This solution

has been shown to be essentially spatially converged by comparison with

a sequence of calculations with successive mesh refinements.

We find that results even for the very coarse mesh are accurate.

As in previous static problems, the quadratic transverse leakage approx-

imation gives better results than the constant approximation for both

mesh layouts. The results for the coarse mesh calculations appear to

be nearly spatially converged.

We now consider transient calculations for both the step and ramp

perturbations. These perturbations are introduced by a change in the

thermal absorption cross section of the corner seed assembly. The

total perturbation, which is the same in both cases, corresponds to a

reactivity insertion which is positive but below prompt critical. The
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Table 4.1
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Summary of Static Results for the TWIGL Two-dimensional
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linear ramp perturbation is introduced in 0.2 seconds, after which time

the reactor properties are fixed. The duration of the calculations are

taken to be 0.5 sec.

The time-dependent nodal code was used to solve these problems

with both transverse leakage approximations (constant and quadratic)

and both precursor shape approximations (constant and implicit). Also,

both mesh layouts were considered. Before we discuss overall solution

accuracy, we consider the numerical and temporal convergence behavior

of the nodal method. The step perturbation case was used for these

investigations. Note that for all calculations, the initial total power is

normalized to unity.

First we discuss the degree of convergence required for the spatial

iterations of a timestep. The constant transverse leakage approximation

and the implicit precursor shape approximation were used for these cal-

culations. However, these approximations do not affect the form of

the spatial operator which is to be inverted iteratively at each timestep.

The timestep size was 10 ms for these calculations. (TWIGL results

indicate that a temporal accuracy of approximately 1% may be achieved

with a 10 ms timestep for a fully-implicit solution of the finite differ-

ence equations with an 8 cm mesh.) Also, exponential extrapolation was

applied in these calculations. Total power versus time is shown in

Table 4. 2 for both mesh layouts with convergence criteria of 1073,

107%, and 107° imposed on the spatial iterations. Computing times

are also reported.

It is seen that with use of a 1079 convergence criterion oscillations
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Table 4.2 Total Power versus Time for the TWIGL Two-dimensional

Seed-Blanket Reactor (Step Perturbation): Investigation of

the Spatial Iteration Convergence Criterion

Part a) Very Coarse Mesh (10 ms timestep)

Convergence Criteria

Time (sec)

(.05)

2

7x

=

Computing Time (sec)

1 (i
3

2.047

2.091

2.057

2.094

2.106

2 124

5

10°4

2.015

2.057

2.071

2.088

2.106

2.123

9
-~

 2

109

2.012

2.054

2.071

2.088

2.106

2.123

14 2

Part b) Coarse Mesh (10 ms timestep)

Time (sec)

[ , 05)

&gt;

10
-3

2.066

2.114

2.072

2.097

2.130

2.134

1 0
-4

2.027

2.071

2.085

2.100

2.121

2.138

107°

2.023

2.066

2.085

2.102

2.120

2.138

 i———

Computing Time (sec) 4 2 4...4 &lt; +.
2
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occur in the total power at the beginning of the calculation when the solu-

tion is most rapidly varying. These oscillations are damped and a

smooth power behavior is obtained with use of a 107% convergence cri-

terion. Use of a 107° convergence criterion changes the results only

slightly. However, the running time increases substantially. Choice

of mesh size does not appear to be a factor.

The oscillations encountered in these calculations with loose con-

vergence criteria can be attributed to the use of the exponential extrap-

olation procedure. This effect is shown in the total power versus time

results given in Table 4. 3 in which these same calculations are compared

with 1073 and 107% convergence criteria but with and without exponen-

tial extrapolation. Computing times are also shown.

We find that the calculations with the 10° convergence criterion and

without extrapolation do not display the oscillatory behavior in the initial

phases of the transient as do those with extrapolation. However, the total

power at the end of the calculations is in error by more than 1% com-

pared with the numerically converged results. The use of a 107% con-

vergence criterion without extrapolation gives accurate results but the

running times are significantly longer. Once again, the effect of mesh

layout is not important.

Although not shown, similar results are found in the ramp perturba-

tion case in which oscillations, as described above for the step pertur-

bation, appear at the termination of the ramp with a loose convergence

criterion and the use of extrapolation. Here it is also found that from

a viewpoint of combined accuracy and computational efficiency, the use
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Table 4.3 Total Power versus Time for the TWIGL Two-dimensional

Seed-Blanket Reactor Problem (Step Perturbation): Inves-

tigation of the Effects of Exponential Extrapolation

Part a) Very coarse Mesh (10 ms timestep)

Convergence Criteria

Time (sec)

[ *3)

J

1

Computing Time (sec)

with Extrapolation without Extrapolation

1g 3 10°42 10°32 1074

2.047 2.015 1.975 2.008

2.091 2.057 2.014

2.041

2.049

2.0672.057 2.071

2.094 2.088 2.063 2.084

2.106 2.106 2.082 2.102

2.124 2.123 2.100 2.119

5 8 0
“

¥,
i LZ

%-
1
A 12.7

Part b) Coarse Mesh

Time (sec)

(.05)

hp)

d

H

Computing Time (sec)

Convergence Criteria

with Extrapolation without Extrapolation

1073 1074 1073 107%

2.066 2.027 1.979 2.018

2.114 2.071

2.072 2.085

2.018

2.042

2.061

2.080

2.097 2.100 2.063 2.097

2.130 2.121 2.083 2.115

2 134 2.138 2.101 2.132

24 so&lt;4 2. 7 64.4
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of extrapolation with a tighter convergence criterion is preferred.

Therefore, we conclude that a convergence criterion of 1074 and the

use of extrapolation should give better than 1% accuracy in total power

with the minimum computing time.

We show results for iteration count versus timestep for both the

step and ramp perturbations in Fig. A6.5e-h. A 107% convergence cri-

terion has been used. Both coarse mesh and very coarse mesh results

are presented. The exponential extrapolation is found to be very effec-

tive in decreasing the iteration count except in the case when abrupt

changes in reactor properties occur. For example, the termination of

the ramp insertion causes a temporary, but significant, increase in the

iteration count per timestep.

We now turn to a discussion of temporal convergence. For these

considerations, we present calculations with both the constant and quad-

ratic transverse leakage approximations. Only the implicit precursor

shape approximation was used. (Additional calculations indicate that the

choice of precursor shape approximations has no effect on these results.)

We note that the behavior of the quadratic transverse leakage approxi-

mation is of particular interest since, unlike the fully-implicit time-

differencing of the constant approximation, a portion of the spatial

operator (the transverse leakage shape correction) is treated explicitly.

Results of total power versus time for the step perturbation with

timesteps of 10 ms, 5 ms, and 1 ms are shown in Tables 4. 4 and 4.5

for the constant and quadratic transverse leakage approximations,

respectively. Both coarse mesh and very coarse mesh results are
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Table 4.4 Total Power versus Time for the TWIGL Two-dimensional

Seed -Blanket Reactor Problem (Step Perturbation): Inves-

tigation of Temporal Convergence for the Constant Trans-

verse Leakage Approximation

Part a) Very Coarse Mesh

Timestep Size

Time (sec)

05)

)

3

Vs

tJ

Computing Time (sec)

10 ms

2.015

2.057

2.071

2.088

2.106

2.123

9.3

5 ms

2.030

2.057

2.072

2.089

2.106

2 124

10.2

1 ms

2.038

2.054

2.071

2.089

2.106

92 1924

26.0

Part b) Coarse Mesh

Time (sec)

", 03)

1

2

&gt;
 FP gy

4

)

Computing Time (sec)

10 ms

2.027

2.071

2.085

2.100

2.121

2 138

1G®
/

5 ms

2.044

2.072

2.084

2.102

2.120

2.138

Lv F

1 ms

2.054

2.067

2.084

2.102

2.120

2.138

GR
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Table 4.5 Total Power versus Time for the TWIGL Two-dimensional

Seed-Blanket Reactor Problem (Step Perturbation): Investi-

gation of Temporal Convergence for the Quadratic Trans-

verse Leakage Approximation

Part a) Very Coarse Mesh

Timestep Size

Time (sec)

t

L .05)

&gt;

 Qa

}

Computing Time (sec)

10 ms 5 ms 1 ms

2.065 2.064 2.063

2.082 2.079

2.097 2.096

2.1142.115

2.133

2 151

2.134 2.132

2.152 2.151

9.9 11.3 27.4

Part b) Coarse Mesh

Time (sec)

(.0D)

1

2

&lt;

Z

Computing Time (sec)

10 ms

2.044

2.080

2.093

2.110

2.130

2.147

3 &lt;

5 ms

2.055

2.080

2.093

2.111

2.129

2.147

a

7.(
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presented. Extrapolation was used and a convergence criterion of 107%

was imposed on the spatial iterations. Running times are also shown.

It is seen that, except for minor differences in the prompt jump

region, the solutions are essentially converged in time with the 10 ms

timestep size. There are no significant differences regarding effects

of mesh layout or of order of the transverse leakage approximation.

We have performed similar calculations for the ramp perturbation with

a maximum timestep size of 5 ms and have found these solutions also

to be essentially converged in time.

We see that with refinement of the mesh the total power at the end

of the calculation changes by approximately 0.7% with the constant trans-

verse leakage approximation and approximately 0. 2% with the quadratic

transverse leakage approximation. Also, recall that the static solutions

for both transverse leakage approximations with the coarse mesh were

practically converged in space. These results indicate that these cal-

culations with the coarse mesh and with either transverse leakage

approximation are quite accurate. The solution with the quadratic

transverse leakage approximation and with a 5 ms timestep size appears

to be the most accurate calculation. We believe it to be essentially

converged in time and space. Except in the prompt jump region, the

same calculation with a 10 ms timestep size shows no real differences.

Similar results have been obtained for the ramp perturbation.

Thus in further comparisons, the coarse mesh solutions for the

step and ramp perturbations obtained by using the quadratic transverse

leakage approximation and the implicit precursor shape approximation
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will be used as reference cases. Plots of total reactor power versus

time are shown in Fig. A6. 5c for the step perturbation (10 ms timestep

size) and in Fig. A6.5d for the ramp perturbation (5 ms timestep size)

for these calculations.

As an aside, it is interesting to note the computing times obtained

with decreasing timestep size shown in Tables 4.4 and 4.5. We find that

it is nearly as efficient to solve this problem with a 5 ms timestep as

with a 10 ms timestep. This reflects the decrease in difficulty of the

spatial iterations with decreasing timestep size. With further decreases

in timestep size, the effect of increased total number of timesteps dom-

inates and significantly increases the solution time. Since, in the general

case, temporal accuracy is increased by decreasing the timestep size,

it may not be beneficial from the viewpoint of combined overall solution

accuracy and computational efficiency for implicit time-differencing

schemes of this type to use the maximum timestep size for which ade-

quate temporal accuracy can be achieved.*!’ 42

We now present results for the various combinations of transverse

leakage approximations and precursor shape approximations. Results

for both mesh layouts are given. Total reactor power versus time is

presented in Table 4.6 for the step perturbation and Table 4.7 for the

ramp perturbation. Timestep sizes of 10 ms and 5 ms have been used

for the step and ramp solutions, respectively. A 107% convergence

criterion was imposed on the spatial iterations. Extrapolation was

used for the step perturbation calculations. However, extrapolation

was not used for the ramp perturbation calculations. These results

are summarized in Table 4.8. Errors in total reactor power at the
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Table 4.6 Total Power versus Time for the TWIGL Two-dimensional

Seed-Blanket Reactor Problem (Step Perturbation): Com-

parison of Transverse Leakage and Precursor Shape Approx-
imation

Part a) Very Coarse Mesh

Approximation

Time (sec)

(transverse leakage):

constant constant

(precursor shape):

constant implicit

guadratic

constant

quadratic

implicit
rca————

2.078

2.092

2.110

2.129

2.146

1

Solution

time (sec) | 9.4

Part b) Coarse Mesh

2.057

2.071

2.088

2.106

2.123

1.3

2.105

2.119

2.139

2.157

2.176

J.3

2.084

2.096

2.116

2.134

2.152

0.0

Approximation

Time (sec)

a

2

7]

Solution

time (sec)

(transverse leakage):

constant constant

(precursor shape):

constant implicit

quadratic

constant

2.086

2.099

2.116

2.137

2.153

2.077

2.091

2.107

2.127

2.144

2.071
2.085

2.100

2.121

2.138

4 9FR 1  2? Zl AD ¢

——

quadratic

implicit

2.080

2.093

2.110

2.130

2.147

A

q
.

J
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Table 4.7 Total Power versus Time for the TWIGL Two-dimensional

Seed-Blanket Reactor Problem (Ramp Perturbation): Com-

parison of Transverse Leakage and Precursor Shape

Approximations

Part a) Very Coarse Mesh

Time (sec)

(0.05)

0.1

(0.15)

0.2

(0.25)

0.3

0.4

0.5

Computing
Time (sec)

Approximation

(transverse leakage):

constant constant quadratic

(precursor shape):

constant implicit

1.122

|
1,132

1.316

1.577

1.969

2.072

2.082

2.100

2.118

1.304

1.562

1.950

2.052

2.062

2.079

2.096

1.136

1.325

1.593

2.003

2.094

2.104

2.122

2.140

25 1 24.0 26.8

quadratic

implicit

1.127

1.315

1.581

1.988

2.079

2.089

2.106

2.124

2F.8

(8.3)

“Extrapolation applied
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Table 4.7 (continued)

Part b) Coarse Mesh

Time (sec)

(0.05)

0.1

(0.15)

0.2
(0.25)

0.3

0.4

0.5

Computing
Time (sec)

Approximation

(transverse leakage):

constant constant quadratic

(precursor shape):

constant implicit

1.125

1.309

1.570

1.964

2.067

2.078

2.095

2.113

1 2Lk J 114.9

(29.2)

1923.7

quadratic

implicit

1.125

1.311

1.574

1.974

2.075

2.085

2.103

2.120

1
a e

 £
&amp;-.0

“Extrapolation applied



Table 4.8

Approximation
Transverse Leakage]

Precursor Shape

constant /constant

constant/implicit

quadratic/constant

quadratic/implicit

Summary of Results for the TWIGL Two-dimensional Seed-Blanket

Reactor Problems

Cave at Cax at
Time = 0.5 Time = 0.5

(%) (%)
(normalized (normalized

power power
distribution) distribution)

Mesh Layout Error in Total Power

at Time =0.5 sec (%)

Step Ramp

very coarse -0.05 -0.1 0.7 1.9

coarse Gr 1 -0.3 Ve2 0.9

very coarse -1.1] -1.1 0.5 1.9

coarse 0.4 -0.3 0.2 0.9

very coarse 1.4 3.9 0.2 0.7

coarse 3 0.1 0.03 0.1

very coarse \
‘ vB

- 2 i
I

oR

4 Qo 14

coarse

—

Do
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end of the calculations as well as average and maximum errors in the

asymptotic power distribution are reported. (Note that both perturba-

tions reach an asymptotic state at the end of calculation and thus nor-

malized power distribution results are the same for both cases.) The

reference in each case is the coarse mesh calculation with the quadratic

transverse leakage approximation and the implicit precursor shape

approximation. Power distributions are shown in Fig. A6. 5b.

We find all of the results to be very accurate. For all calculations,

the maximum error in total power at the end of the calculation is less

than 1.5% and the maximum error in the asymptotic power distribution

is less than 2%. In general, the total power is overestimated with the

use of the constant precursor shape approximation and underestimated

with the use of the constant transverse leakage approximation. The

choice of precursor shape approximations has little effect on the errors

in the asymptotic power distribution. As was observed in static calcu-

lations, the quadratic transverse leakage approximation gives somewhat

improved power distribution results as compared with the constant

approximation.

Note also that computational times for a particular mesh size do

not vary widely among the various approximations. Since the delayed

precursors can be advanced simply and separately from the fluxes and

~urrents (see Eqs. 4.1, 4.2), savings incurred with the use of the con-

stant precursor shape approximation are principally in storage require-

ments and not in computation time. The treatment of the transverse

leakage does not dramatically affect solution times because the shape

correction terms appearing in the quadratic transverse leakage approx-
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imation have been treated explicitly in the time-differencing scheme.

Only a modification of the source term for the spatial iterations is re-

quired at the beginning of each timestep to account for these corrections.

Results of computing times for the ramp perturbation show that factors

of 3 can be gained in computational efficiency with the use of the extrap-

olation procedure.

TWIGL solution times are available for these problems for full-

core calculations using an 8 cm finite-difference mesh. *! We compare

with TWIGL results given for the fully-implicit solution technique ,

which is the scheme we employ. The TWIGL times are for a CDC 6600

computer which is comparable in speed to the IBM 370/168 computer

used for our nodal calculations. Dividing the TWIGL times by 4 to adjust

for quarter-core symmetry, we obtain running times of 86.5 sec for the

step perturbation with a 10 ms timestep size and 137.5 sec for the ramp

perturbation with a 5 ms timestep size with a problem duration of 0.5

sec, in both cases. These times are for a 107% convergence criterion

which is the same as that used for our calculations. For quarter-core

symmetry and an 8 cm finite-difference mesh, 100 flux unknowns are

required per group. This gives computing times per group flux unknown

of approximately 0.9 sec and 1.4 sec for the step and ramp cases. Con-

sidering both mesh layouts and using results without extrapolation (which

TWIGL does not use), we obtain maximum running times for our nodal

code of approximately 0.4 sec and 0. 8 sec per group flux-current un-

known for the step and ramp perturbations. Thus we see that the com-

puting speeds per unknown of the codes are roughly comparable for the



13 2

mesh spacings considered. However, we would expect the coarse mesh

nodal solution to be much more accurate than the 8 cm finite difference

solution. As we have seen in static applications, for some problems

an order of magnitude fewer unknowns may be required with the nodal

method as compared with the finite difference method in order to obtain

equivalent accuracy. Therefore, even if we only maintain a rough equal-

ity in computational speed per unknown with implicit schemes such as

TWIGL, we can make dramatic improvements in efficiency merely by

using a reduced number of unknowns. The results of this problem

demonstrate this to be the case since we have shown that, even with the

very coarse mesh layout, high accuracy can be achieved.

4,4,2 The LRA Two-dimensional BWR Benchmark Problem

This problem is a two-dimensional, quarter-core, BWR kinetics

problem treated in two energy groups and two delayed precursor families.

A superprompt critical transient results from the simulated ejection of

a control rod from the reactor at low power. The transient is induced

by a linear variation of the thermal absorption cross section of the

ejected rod position over the interval 0.0 to 2.0 seconds and is followed

to 3.0 seconds. Thermal feedback is modeled using adiabatic heatup

with space-dependent Doppler feedback. The feedback model is given

by the following relations:

adiabatic heatup — a. z. (r, t) ¢. (r, t) + Z.o(r, t) &amp;o(r, t)] = = T(r, t)

Doppler feedback — Z_,{r,t) = Z_, (r,t=0){1 + a. [(NT(x, 1) -NT_1}
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A uniform initial temperature distribution (T)) is assumed. All problem

parameters are given in Appendix 9.

This test problem has been found to be very difficult. Small mesh

sizes are necessary for finite difference calculations in order to achieve

adequate spatial accuracy for the initial conditions. Also, the reactor

power varies over many orders of magnitude during the transient.

For the nodal calculations, we specify two mesh layouts. One mesh

layout, which we shall refer to as the "coarse" mesh, is an assembly-

size mesh (15 cm X 15 em). The other mesh layout, which we shall

refer to as the "very coarse" mesh, is defined as follows for the 165 cm

sguare quarter core:

region (u=x,y)

Ocm=&lt;u&lt; 15cm

15cm &lt;u&lt;105cm

105cm &lt;u&lt;135cm

135 cm &lt;u&lt;165cm

mesh division

15 cm

30 cm

15 cm

30 cm

The nodal array is (11 X 11) for the coarse mesh and (7 X 7) for the

very coarse mesh. For our nodal method, there are 605 and 245 flux-

current unknowns per group for the coarse mesh and very coarse mesh,

respectively.

Let us first consider the static solution. We have already solved

this problem in Chapter 3 with the coarse mesh. It was found that the

coarse mesh solution with the quadratic transverse leakage approxima-

tion was in error by 0.01% in eigenvalue and had average and maximum
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region power errors of 0.5% and 2.0%. (The reference solution is a

nodal calculation with 16 nodes per assembly by Shober.5%) A summary

of results is presented in Table 4.9 for the very coarse mesh with the

quadratic transverse leakage approximation. Also, results are pre-

sented with this same calculation for the final state of the reactor with-

out thermal feedback. A reference solution is not available for this

case. Power distributions obtained from these calculations are shown

in Fig. A6.6a,b of Appendix 6. Both calculations used vacuum external

boundary conditions and a 107° convergence criterion on the nodal aver-

age flux.

We find that an accurate solution for the initial state is obtained with

the very coarse mesh. The eigenvalue is in error by 0. 04% and the

maximum error in region power is approximately 4%.

In Table 4.10, we compare static eigenvalues for the initial state

and final state without feedback predicted by our method with coarse

mesh nodal calculations of Werner, 32 Pionemana, &gt; and Sholier. 58 In

this tabulation we also include coarse mesh results for our method.

Relatively good agreement among all the calculations is observed in

terms of the predicted reactivity worth of the perturbation without feed-

back which is approximated here as gk,

Let us now turn to a discussion of the transient calculation. In order

to minimize computational expense, we have performed the time-

dependent calculation only with the very coarse mesh layout with the

quadratic transverse leakage approximation. Before summarizing our

results, we consider a few computational details.



Table 4.9 Summary of Static Results for the LRA Two-dimensional BWR
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Table 4.10 Static Eigenvalues for the Initial State and Final State (with-

out Feedback) of the LRA Two-dimensional BWR Kinetics

Benchmark Problem

Eigenvalue

state

als

Initial

Final

(without
feedback)

(Y¢ina1 Vinitial) (X 102)
Ytinal

Reference — .99636

(method):

Werner Finnemann Shober

(mesh layout):

Coarse Coarse Coarse

veyy

Coarse very
Coarse

. 99629 . 99630 .99693 .99625 .99595

1.01537 1.01531 1.01693 1.01521 1.01476

1.88 1.99
*

had 7 7 i
tt

Ctyw
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Recall that, in the iterative method we employ to solve the spatial

problem at a timestep, group-coupled response matrices are required

(see Sec. 4.3.2). These response matrices must be modified on a node-

wise basis in order to account for the spatially-dependent thermal feed-

back of this problem. The only approach we have considered for the

formulation of the response matrices is to generate them from the basic

data. Schemes such as correlation of the response elements with mate-

rial thermal state have not been considered in this study. We now con-

sider the cost associated with the regeneration of the response matrices

in order to incorporate thermal feedback.

It was found in preliminary analysis for this problem that approxi-

mately 0.01 sec per node is required by our code to construct the re-

sponse matrices. Thus, to regenerate these matrices each timestep for

the very coarse mesh problem with 49 nodes requires approximately

0.5 sec. It was also found that the iteration speed of our code is approx-

imately 0.0004 sec per node per iteration. This gives an approximate

time of 0.02 sec per iteration for the very coarse mesh problem. There-

fore, the coefficient generation time is roughly equivalent to 25 spatial

iterations.

In examining results of the ramp perturbation TWIGL problem of

Sec. 4.4.1, we found that, with use of exponential extrapolation, typi-

cally 10 to 30 iterations, and rarely more than 100 iterations, were

required per timestep for adequate spatial convergence. Thus regener-

ation of the response matrices for each timestep could conceivably con-

sume as much computational time as the spatial iterations themselves.
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In order to reduce the computational burden associated with the regener-

ation of the response matrices for each timestep, we have considered an

alternative scheme for determining the frequency with which the response

matrices should be modified.

In general, the thermal properties of the reactor vary relatively

slowly in comparison with the timestep size necessary for an accurate

treatment of the flux behavior. In particular, for this problem the power

must increase many orders of magnitude before feedback effects become

important. Thus, we use a scheme in which the response matrices are

modified to account for changes in thermal feedback only when those

changes are estimated to be significant. We update the response matri-

ces for changes in thermal feedback when

rer / x
as, | Tax = Tax! &gt; 6

sk

wher is the maximum region temperatur i mpera-e Tonax aximu egion temperature, Tox is the tempe

ture at which the last thermal update was made, and § is a fixed param-

eter. For this calculation, § was chosen as 0.001. This value was

determined from a simple perturbation theory argument using typical

[LWR characteristics such that the reactivity worth of an update was

predicted to be less than 1 cent. Clearly, the procedure we describe for

updating the response matrices is only applicable to the simple feedback

model used in this problem.

Timestep sizes were taken to be those which Shober&gt;® found to yield

acceptably accurate results with his fully-implicit method. The
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calculation was divided into six time domains. It should be recalled that

spatial iteration acceleration parameters are reestimated at the begin-

ning of each time domain. The time domains and the associated time-

step sizes were as follows:

i

LN3G Jomain

f

Time Interval (sec)

0 &lt;€£t&lt;1.0

1.0 &lt;t&lt;1.3

1.3 &lt;t&lt;1.45

1.45&lt;t&lt;1.6

1.6 &lt;t&lt;2.0

2.0 €t&lt;3.0

Timestep Size (sec)

01

501

0005

. 0005

{Ano

Nt

A convergence parameter of 10” % was imposed on the spatial itera-

tions. Exponential extrapolation was used to improve the initial guess

for the spatial iteration at each timestep.

A summary of transient results for the very coarse mesh calcula-

tion is given in Table 4.11. Results obtained by Werner,” Finnemann, +

and Shober&gt;? with the coarse mesh layout are also presented. Entries

in Table 4.11 which are not reported are either uncertain or unknown.

Detailed results of the very coarse mesh solution are shown in Appen-

dix 6. Total power versus time is shown in Fig. A6. 6c. Average and

maximum temperatures versus time are displayed in Fig. A6. 6d. Power

and temperature distributions for the initial condition and for portions

of the transient in which the total power is most rapidly varying are

given in Figs. Aé6.6e-h. The times reported are 0.0, 1.4, 2.0, and

3.0 sec.



14( ’

Table 4.11 Summary of Results for the LRA Two-dimensional BWR
Kinetics Benchmark Problem

Werner Finnemann Shober

(Coarse (Coarse (Coarse (Very Coarse
Mesh) Mesh) Mesh) Mesh)

Number of

time steps

Execution

time (min)

Time to first

peak (sec)

Average
power
at first

peak (w)

Time to

second

peak (sec)

Average
power at

second

peak (w)

Average tem-

perature at
t= 3.0 sec

Maximum

tempera-
ture at

t = 3.0 sec

1900)

&gt;

1.4175

3712

»

250)

1.4425

hE 8Y

] Qc O

Qo3

1700St

£7

1.402

. 7g—B

2 ()

Q39

4 -

 RK r
t

=198"
3

1300

1.9

1.432

3 0af.\

2.{

Q4(

1 1s 4

273

“IBM 360/91
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In general, the results obtained with the various methods are in

relatively close agreement. The accuracy of our very coarse mesh cal-

culation appears to be roughly equivalent to that of the coarse mesh cal-

culations. However, our computation time is significantly longer than

that reported by Werner and Shober even though we have used the very

coarse mesh rather than the coarse mesh layout. We approach this

situation with a discussion of some of the numerical details of our calcu-

lation.

We give a summary of the computational results of the very coarse

mesh calculation in Table 4.12. Results are reported in terms of aver-

age number of iterations per timestep and total number of thermal up-

dates for each time domain. The number of iterations per timestep is

presented graphically for each time domain in Figs. A6.6i-n of Appen-

dix 6. In these figures, indications are given for the timesteps at which

thermal updates were performed.

During the last time domain, which includes a third of the total

transient time, the reactor power is relatively slowly varying. Thus

we would not expect this portion of the transient to be difficult to treat

numerically. However, out of a total of 1300 timesteps, we find that

over 50% of the computational effort was spent in the 100 timesteps of

the last time domain. This result can be attributed to the stepwise intro-

duction of thermal feedback which, as can be seen in the figures A6. 6

of Appendix 6, causes large oscillations in the number of iterations per

timestep when the larger timestep sizes are used. This effect is



Table 4.12 Summary of Computational Results for the LRA Two-dimensional
BWR Kinetics Benchmark Problem

Time Domain

Average
Number of

Iterations Percentage Number of
Number of Timestep per of Total Thermal

Timesteps Size Timestep Iterations Updates
 ap—

1 (0 sec &lt;t&lt; 1.0 sec)

2 (1.0 sec £t&lt;1.3 sec)

3 (1.3 sec &lt;ts&lt;l.45 sec)

4 (1.45 sec &lt;t&lt;1.6 sec)

5 (1.6 sec €£t&lt;2.0 sec)

6 (2.0 sec £t&lt;3.0 sec)

"30

300

300

300

200

vg70

J -

701

0005

0005

002

Of

"7

10

19

21

26

 3 CC
- 4,

5

11

12

10

v

1

40

12

30

71

J

NN
N°
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especially severe in the last time domain in which a 10 ms timestep size

was employed. The very large number of iterations per timestep for

the last time domain in comparison with the other time domains indicates

that this timestep size is too large to treat adequately the stepwise intro-

duction of thermal feedback.

The perturbations introduced by the inclusion of thermal feedback in

this stepwise fashion apparently cause mild transients to be superimposed

on the overall solution behavior which are relatively difficult to handle

numerically. With large timestep sizes, a relatively large number of

iterations is required to follow the "prompt jump" associated with each

of the thermal feedback perturbations. Also, as we previously discussed,

abrupt changes in reactor properties destroy the effectiveness of the

extrapolation procedure. The effects encountered here suggest that it

would be preferable to treat the thermal feedback in a continuous fashion

in order to minimize numerical difficulties. It should be noted, however,

that even though treatment of the thermal feedback in a stepwise manner

caused irregularities in the numerical behavior, significant distortions

in the time-dependent behavior of the reactor power were not observed.

We feel that a substantial reduction in total execution time could be

made for this problem with proper selection of timestep size for the last

time domain. For instance, if we use the timestep size of the preceding

time domain for the last time domain and assume that the same average

number of iterations per timestep will result as in the preceding time

domain, we find that the overall solution time would be reduced by

approximately 30%. The execution time with these assmptions would
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be 12 minutes rather than 17 minutes.

Clearly, when the difference in number of nodes is taken into account

between the very coarse mesh (49 nodes) which we have used and the

coarse mesh (121 nodes) used by Werner and Shober, this reduced time

is still rather high. A reduction by a factor of 4 to 5 in running time is

required for our scheme to give a solution speed roughly comparable to

those reported by the other researchers. This suggests a number of

areas for further investigation.

One area for additional research concerns analysis of the numerical

properties of the nodal equations and selection of optimum iterative

solution strategies for the implicitly time-differenced formulation. We

have tested only one option for solution of the time-dependent equations

and have not examined a sufficiently wide range of test cases to evaluate

adequately its computational behavior.

Another area is to investigate alternative formulations of the nodal

equations. Werner? &gt;? 24 and Shober&gt;° have chosen nonlinear nodal

formulations in which the primary calculational effort is directed toward

solving flux equations rather than the current equations we employ.

With only the very crudest considerations, this shift in emphasis for the

two-dimensional case would perhaps offer a factor of 4 in computational

efficiency. This gain is derived from the fact that in two dimensions

there are 4 average leakage currents per node as compared with only a

single average flux. However, as Shober&gt;© indicates, coefficient gen-

eration for these alternative formulations can dominate in time require-

ments as compared with the spatial solution itself, and thus direct gains
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in the computational efficiency of the spatial solution may not imply

equivalent gains in the overall solution efficiency.

It should be emphasized that, in comparison with all of these nodal

methods (even in their unrefined state), a finite difference code such

as MEKIN is expensive to use. For this problem, Shober has found

that a (6 X 6) finite-difference mesh per assembly is necessary to achieve

a maximum error of 5% in the region power distribution for the initial

condition. Thus 4356 spatial mesh points are required for the quarter-

core problem. The computing time per timestep on the IBM 370/168

computer required by MEKIN Th

(3 x 10~% sec)(NPTX)(NGX + 0. 3 % NDFX)

where NPTX is the number of spatial mesh points, NGX is the number

of energy groups, and NDFX is the number of delayed precursor fami-

lies. For this problem in which NPTX = 4356, NGX = 2, and NDFX=2,

MEKIN would require 3.4 seconds of computing time per timestep. For

the 1300 timesteps we have used, MEKIN would require 74 minutes to

execute compared with the 17 minutes for our very coarse mesh solu-

tion. Therefore we show an advantage in computational efficiency by

more than a factor of 4 with what we expect to be roughly equivalent

accuracy. Moreover, MEKIN uses an explicit time integration scheme

which typically requires a substantially smaller timestep size in order

to achieve equivalent accuracy in comparison with the fully-implicit

scheme which we employ. Therefore the computational advantage of

our nodal method in comparison with MEKIN may be significantly greater

than the factor of 4 derived above. With consideration of the difference
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in time integration schemes, it is not unreasonable to expect at least

an order of magnitude gain in computational efficiency.

[n summary, we have shown that a relatively accurate solution of

this difficult problem can be obtained with our nodal method with very

large mesh spacings. In comparison with the finite difference method,

large gains in computational efficiency can be achieved. Problems were

encountered in the expense of generating coefficients because of the inclu-

sion of thermal feedback. Also, computational efficiency was found to

be lacking in comparison with other currently proposed nodal schemes.

Further investigation is called for in both of these areas.

4 5 Summary

In this chapter, the two-dimensional, spatially-discretized, multi-

group nodal equations with continuous time dependence were reduced to

a set of discrete time-dependent equations by finite difference approxi-

mations of the time behavior. A solution method for one- and two-group,

two-dimensional problems which is immediately applicable to three-

dimensional calculations was developed and tested.

Results demonstrated that accurate time-dependent solutions can be

obtained with large mesh sizes in relatively short computing times. It

was shown that large gains in computational efficiency can be made in

comparison with conventional finite difference methods.

A problem was identified concerning excessive costs associated with

coefficient generation when feedback effects are included. I.ess costly

schemes for inclusion of feedback effects need to be devised for applica-

tion to the general case of coupled neutronic-thermal hydraulic analysis.



14

A comparison with other currently proposed nodal schemes shows

our method to be competitive in accuracy but lacking somewhat in com-

putational efficiency. Additional work is needed on the formulation and

optimization of solution techniques for the time- dependent nodal equa-

tions which have been developed here.
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Chapter 5

SUMMARY

5.1 Overview of Thesis Results

The overall objective of this thesis was to develop an economical

computational method for multidimensional transient analysis of nuclear

power reactors. Specifically, nodal methods were investigated. This

particular approach was prompted by the success of recently developed

nodal schemes in multidimensional static calculations.”

In Chapter 2, a set of multigroup, two-dimensional, spatially-

discretized nodal equations with continuous time dependence was derived.

The response matrix approachl® was used as a conceptual basis. Solu-

tions of local response problems were obtained in terms of only average

quantities by use of polynomial approximations with weighted residual

procedures applied to an equivalent set of one-dimensional problems.

Two approximations were used for spatially-dependent transverse leak-

age terms appearing in the one-dimensional equations. These were the

"constant" approximation in which spatially-dependent terms were

replaced by their average values and the "quadratic" approximation?)

in which spatial shape corrections were obtained from a fitting proce-

dure applied to average values in neighboring nodes. The final result

was a set of spatially-discretized, time-dependent nodal equations

sxpressed in terms of nodal average fluxes and interface average partial

currents.

In Chapter 3, the set of time-dependent nodal equations was reduced

to the static case. Iterative solution techniques were developed for
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two-dimensional problems and were evaluated with respect to computa-

tional efficiency. Extension of the solution techniques to three-dimensional

dimensional calculations was also discussed. A number of one- and two-

dimensional, two-group test problems were considered. It was found

that in all cases the nodal method gave very accurate results with a

mesh the size of a LWR assembly when used with the quadratic trans-

verse leakage approximation. Only one exception, a "checkerboard"

PWR core, was encountered in which unacceptable errors were obtained

with use of the constant transverse leakage approximation with an assem-

bly-size mesh. Although the quadratic approximation was found to give

consistently better results, the constant approximation for the transverse

leakage permits the use of solution techniques with straightforward

extensions to three dimensions which are more efficient. Gains in com-

putational efficiency of an order of magnitude were demonstrated for the

nodal method in comparison with conventional finite difference methods

for two-dimensional static calculations.

In Chapter 4, the set of nodal equations with continuous time depen-

dence was discretized in time by use of finite difference approximations.

A fully implicit time-differencing scheme was employed for the princi-

pal part of the spatial operator. Shape correction terms associated

with the transverse leakage approximation were treated explicitly in

order to avoid complications in the iterative solution of the spatial prob-

lem at each timestep. Approximations were considered for the delayed

precursor shape in order to reduce the number of precursor associated

unknowns. Results of two-dimensional, two-group test problems
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demonstrated that accurate transient solutions can be obtained with very

large mesh sizes. Comparisons with finite difference codes such as

TwigL*! "43 and MEKINZ® indicated that the nodal method can main-

tain the order of magnitude gain in computational efficiency in transient

computations which was shown for static calculations.

In summary, the nodal method developed in this thesis has been

shown to be highly accurate and relatively efficient for two-dimensional,

few-group, static and transient reactor calculations. In comparison

with finite difference methods, an order of magnitude improvement in

computational efficiency has been shown for the nodal scheme. Thus,

we find this nodal method to be an economical alternative to the standard

Finite difference methods currently employed for design and analysis of

nuclear power reactors.

5.2 Recommendations for Future Work

Work is required in the following areas:

|

11

optimization of currently employed solution methods with

respect to linears? and aonlinene® acceleration techniques;

investigation of nonlinear schemes for treating the transverse

leakage shape corrections in order to reduce the complexity

of the spatial problem to be solved in the response matrix

approach;

iii. application of alternative time-integration schemes such as

semi-implicit and splitting methods as well as the use of trans-

formations in time for reduction of temporal truncation

4
S21rTror

 HN
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iv. development of schemes for economical updating of response

parameters in the response matrix approach when thermal-

hydraulic feedback is considered;

analysis of the numerical behavior of the currently employed

time-dependent solution scheme with particular emphasis on

the relationship of iterative convergence and solution accuracy;

Vi. extension to three dimensions;

vii. investigation of nonlinear solution techniques which shift the

the calculational emphasis from current equations to flux

. 23,24, 36

equations.
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Appendix 1

ONE-DIMENSIONAL AVERAGE FLUX EXPANSION FUNCTIONS

The polynomial approximation for the one-dimensional average flux

Sec. 2.3.3.1a, Eq. (2. 10)] in node (ij), space direction u, and energy

group g is

1 ,u in, u- in, u- ,t

out, u- out, u- in, ut in, u+
 JO t o u,t)y +J 70 (t &gt; (u,tg.ij (Pgij WB +I 0010p, (@1

}
out, u+ out, u+

gy t 2 tIe, ij (t) Pe. ii (u, t)

where the p's are quartic polynomials chosen such that the conditions

implied by the coefficients are satisfied. We introduce the operator

notation

i - 2)

pliu- — lip (1) 2
g, 1] 4 27g,1] du u=u

2
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- u=u
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in,u+ _ [1,1 0

Poi "= 1+in, ij 2).
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out,ut+ _ [1 1 9

Po,ij "= 1-10, 59) 2
“041

u
_ 1 +1

SE Bau
h u,

11

(Al.1)

[f we denote the polynomial approximation for ¢, i509) by by 35(8 t),

then the restraints on y are
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in, u- u in, u=-
|= (u,b) = JL (te, ij Yq, Tk ) 3, ij (t)

out, u- u out, u-
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These restraints require that the p's satisfy the following conditions,

presented here in tabular form:

in, u- out,u- in,u+ out,u+ ¢
* ® 5 . ? 3 ,T - 2 ,T Ld ,t
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1
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9
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(Al. 3)

In order to give specific expressions for the p's, we first introduce quar-

tic polynomial basis functions denoted as q's. These basis functions are

defined by the conditions presented in the following table:
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We define the spatial variable z as

7,

| f Ua

(Al. 5)
-

[ §

With this definition, the q's are given explicitly by

u
3

J
Om) = 1 - 1822 + 322° - 152°

u-,1dy (W) = z - 222 + 62° - = z*

00 = Z122% + 282° - 1522

1 A
1

Ley sa 2k. 473
= A

7
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19920(uy=302% - 602° + 302° (Al. 6)

These basis functions on the unit interval are shown graphically in

Fig. Al.1. In terms of the g's, the p's are

—: « Uta , t) =x= 2qe"1-50u ) D "
go,, ij(0) a”

,1
(u)

out
D

g,
ut 2g"t) =Uy,

17]

, 0

(uLMD : 0i 90 (u)

o 0

~3 - go ii )

hn
out, u+ _ 5 ut,0 { u+, 1

&gt;, i] (u, t) = 20 (u) A D- 0) 9 (u)A

,u uo,0
oP tw) = q50 Or (Al. 7)

Equations (Al.5)-(Al. 7) completely define the one-dimensional average

flux expansion coefficients.
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Appendix 2

"QUADRATIC" TRANSVERSE LEAKAGE

EXPANSION FUNCTIONS

The polynomial approximation of the transverse leakage, Eqgs. (2. 3a)

and (2. 4), discussed in Sec. 2.3.3. 1c, can be written as

I (ut) ” IU (t oY + ~1u u Tu5,04 a 0-100 Pag 1 + TG gp (0) Ppl) + To pu) 0i(®) pp,(@

(A2.1)

where the L's are average total leakages in the direction transverse to

coordinate u in three adjacent nodes in the u direction, and the p's are

quadratic expansion functions dependent only on the grid spacing in the

u direction. In order to preserve the integral interpretation of the aver-

age transverse leakages (or the corresponding average transverse partial

currents), the following conditions presented here in tabular form must

be obeyed by the expansion functions:

5 | a

1hy freoH )
0 Hd

u p(u)

091 (0) pg (1)

h)

u

Poor

}

1 (Yes
5 {0 du pw)
+1 Y41

(A2. 2)
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We define the spatial variable z as

7

A= Yy
(A2. 3)

With this definition, we express the general form of the p's as

u _.u u u

Poo_1(W =2agg3+Dgp 12+ Cop 7
?

u _.u u u 2?

00g) =a), +bp,z+cy,z

u _.u u u 2

pp+1(@ = 23p001TPZ F Copa? (A2. 4)

We denote the mesh spacings as

h. =h'= h

m 0-1

— .u

h = h,

h =
™T

ua

hyo; (A2. 5)

and introduce the normalizing parameter d defined as

u_ 4/1 ) 3(L 2 1 2)19 = n*(4n ho +h’(ghyh +h ho

} 2/1 .3 1.2 1p, 3) (nd 4 Lu2 pdh (4 Woh +ghih 44h ho) +h FhobZ +g hZ hd).

(A2. 6)

By applying the conditions of Eq. (A2.2) to the expansions of

Fg. (A2. 4), we find that the polynomial coefficients (a's, b's, and c's)

a 2)
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wu L401 ) J 2) (3 3)dbal,|=h (3 hh) +b (3h he) +b (g hbo

19p4 -n*(-%n I ) + n’(-n h) + n?(- +h n&gt;)2700-1" 3" mp mp 3 mp

YU200-1 = n*(32 hh ) ’5) +h ($n2 wh?)
p

tat =n?(3 02h ) +0? (5h] Lh212)hay, = (3 ph +h 3 hpphy +5 hh

1.3.2 ,1,2,3

+ h(4 hd h2 +4 hZ n&gt;)

JUpY =n*(h 4 +13 (nh h?) *( 1,3 1 3+n2(- 1 i0704 m 5) mp 3 bts 3 hh)

uu _ 4 ) 3 1.2 1 2){8k = h (-hph, +n3(- hin - 5hbh

ay=03(-bn2n)+n(-nde)

Ju _ nt(- 1, (+ 3 )070041 3 mh) +hi(3 hnbp

15900+1 -n*(3&gt; bb ) &gt;5) +h (312 25 hZ2h2) (A2. 7)

Relations (A2.5)-(A2.7) completely specify the transverse leakage

polynomial expansion functions. Actually, because of the particular

form chosen in Sec. 2. 3.3. 1c for the transverse leakage approximation,

only Pop. 1 and FI are explicitly used. This is the case because the

complete quadratic set Prg-1’ Pog and Poosl is replaced by the equiv-

alent complete quadratic set 1 (=p}4_1 + Pog + Pool ), Poo-1 and Poor]
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The p's for a uniform mesh with unit interval width are shown graphically

in Fig. A2.1. The reader should note that the polynomial coefficients,

Eq. (A2.7), can be greatly simplified in the case of uniform mesh

spacing.
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Appendix 3

WEIGHT FUNCTIONS

A quadratic moments weighted residual procedure is applied in each

energy group and delayed family and in each coordinate direction of the

one-dimensional average diffusion equations (Sec. 2. 3. 3.2) in order to

determine the unknown coefficients of the polynomial expansions used to

approximate the spatial dependence of fluxes and currents. The quad-

ratic weight functions employed are members of the complete quadratic

set defined on the interval [ugrupy,] by requiring unit or zero function

values at the end points and midpoint of the interval. Specifically, we

define the quadratic basis functions, q's, as

u,0,21,0, 4 cy
u,0 +b) } |" : 1 nd”’ 3 tc,

2 a

i u,5 Fy -

Ad _

u, 2 (u) - 0 : . .dy |

u, " ]2 40) = a)9 (A3.1)

where the spatial variable z is defined as

7

&gt; 1
n
J

(A3. 2)
4

The coefficients of these polynomials are completely determined by

the conditions presented in the following tabular form:
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(uy)

au, +3 hy)

1
a u,&gt;

+7 du) a, %(u) a,’ Ly=: 1,

“N ~

0

90, t t)

(A3. 3)

By applying the conditions of Eqs. (A3. 3), we find the polynomial coef-

ficients (a's, b's, and c's of (A3.1)) are

3
A

J
Da

J)

2
~~

J

= 3

) _ 5

11

a
2 _ qo

wt
2

b, “= 4

a.?
2

Cp = -4

u, 1

Dy

Usb_
p=

=]
1.

- 0

= ~1

2 (A3. 4)

Equations (A3.1), (A3.2), and (A3. 4) completely specify the quadratic

set which is complete on the interval [ugoup,] These functions on the

unit interval are shown graphically in Fig. A3. 1.

Actually, only da,’ 0 and a,’ : are explicitly used in the weighted

residual procedure. This is the case because the complete quadratic

u, 0 ug u,l

seta’, dp &gt; and q,’ is replaced by the equivalent complete quadratic

a.

_ u,0 ’2 ul) u, 0 u, l .set 1 (= qp,” + dp + dp » dp’ 7s and q,’ on the interval [ugrup,ql

The weight functions of Sec. 2.3.3.3, denoted as w's, are

_u = uU,n,

vo qi(8) = ap’ (ws TA oe
-

Et rA ed 5)
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Appendix 4

EVALUATION OF WEIGHTED INTEGRALS

The weighted integrals appearing in Sec. 2. 3.3.3 are evaluated here.

These integrals result from application of a quadratic moments weighted

residual procedure in each node to each energy group and delayed family

and to each coordinate direction of the one-dimensional average diffusion

equations in order to determine unknown coefficients associated with

polynomial approximations of flux, precursor, and transverse leakage

spatial shapes. The polynomial approximations are discussed and expli-

citly defined in Sec. 2.3. 3.1a and App. 1 for the one-dimensional aver-

age fluxes, Sec. 2.3.3. 1b for the one-dimensional average delayed pre-

cursors, and Sec. 2.3. 3.1lc and App. 2 for the transverse leakage. The

weighted residual weight functions are explicitly defined in App. 3.

Weighted integrals associated with the one-dimensional average

flux expansions are

2 2 hy

(WP dpm yy cdpmUy yo L(g E

u 2

(wy 45 - platdu g,1] t) = (wy :1,1] 2 pour) = 3 ‘du g, 1] ) - 6 i |
pu “°TD LL(b)

u d in, u+ u d in,u- 1
/ WwW ’ vie WwW » 4 p-

2 2
u d out, ut _ u d out, u- 1

(wo, ijl —7 pga) 0 = Wh, yl pgs (9) = 5-2)
”
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2

(Ww CL d ¢,u u q°ol ret)=(wd Leh) =iN ge? Tei ( il 5 2 Pe 1jM7 = 3 4
0

i . nY

(wl ptmyy=(wd [pm Wy) =n (BL 3
0, 1] g,1] 1,1] g,1] 0 105 280 Dg, 150

pu
u out, u- _ u out, u+ Lu 31 3 0

(Wo,ijlPg, 15 (0) =Cwg i5leg 537 (0) = hy E&gt; * 280 D, Ly

pu
u in, ut _ su in, u- _,u 11 1 0

(Wo, 131g, 3 (1) = (wy, 550°, 55 (t)) = hy - 105 © 168 D, I

pu
u out, u+ su out, u- _.u 11 1 {

(Wo, ijl Pg, oo) = (wy, leg i; (®)=h, - 105 ~ 168 D, Ls)

u $,u _ sou $,u uf 1

(wo, 1jl°g, ij(0) = (wy, 5p) ij(0) = ny(1) (A4. 1)

Weighted integrals of the flat component of the transverse leakage

as well as the shape function associated with the flat approximation of

the one-dimensional average delayed precursors are integrals of the

weight functions themselves and are evaluated as

u _ u _1l.,u

(wo, 15110 = wy 4511) = hy (A4. 2)

We now evaluate weighted integrals associated with the transverse

leakage expansion. The expansion function notation of App. 2 is used.

First we introduce the mesh spacing notation
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h = hY= h

m f-1

=z 1.0

h=h,

—- 1.4

h - hyo 1

and the normalizing factor, d, which is defined as

J finn )+r’(3p2n +dn nu?h'(4 hh) + 0 (3050+3hn2)

2(1.3 1.2.2.1 3) (10302 + Ln2 13)th ($02, +5 0202 + 4h hd +h(ghyhy+ghho).

With these definitions, the weighted integrals of the transverse leak-

age expansion functions are

u u _h J. 47 7 3( 17 2 2( 1 3

(wo,151 Pg, 0-17 ifn (355 hh) ri (35 hh?) th (3% =

u uy _hJ 4/1 3(.11 .2 1 2
(Wo.171 Pee? = fn (26 hb) +h (135 hy+150 hh?)

2(Lndn +202 n2) +n(Lnn?+LnZnd)+ h (3 bby +13 hbo + h 3G baby + 3% a)

u u “hf, 40 1 3( 13,2 2/ 1.3(wo,1510041? ~d fo (- 120 hh )+ h (- 360 hh) +h (- 36 2, )}

 alo gn) = 0 hynny) + 03(- 2 hgh?) +02(- smn)

, u uw,_h YL ) (LL 2 11 2(w} glebe) 5 {in 50 "mp /) * 2126 PmPp*120Pmlp

2(1.2.2, 1 3) (sr h2 + An2nd)+ h (&amp; hnbp+TgBybp)+B35habs+36203)
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u u _h }, 4/7 7 3/17 ,2 2(,3

(wy, 51° p41? -d fo (+2 hh) £1 (355 hZh) th (2m, )}
(A4. 3a)

For the case of uniform mesh spacing, these evaluated expressions can

be greatly reduced and are

u u u u u/ 17

(wo, 151Pa0-17 = (wi, 151 Pegs? = hy (355)

u u u u u/ 7

(Wo, 1j1Pgg? = (wy, i51P00? = hy (75)

u u u u u 13

(Wo. 1jlPees1? = vp, i5lPgo? = ny(- 305): (A4. 3b)
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Appendix 5

DESCRIPTION OF TEST PROBLEMS

A5.1 Kang's One-dimensional LWR Problem

A5.2 A One-dimensional Version of the IAEA PWR Problem

A5.3 The IAEA Two-dimensional PWR Benchmark Problem

A5.4 The LRA Two-dimensional BWR Benchmark Problem

A5.5 The Biblis Two-dimensional PWR Problem

A5.6 The TWIGL Two-dimensional Seed-Blanket Reactor

Problem

Note: In tabulations of macroscopic cross sections, DB? terms are not

included in the total removal cross sections.
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A5.1 Kang's One-dimensional LWR Problem

Feom-z=" AT

With

b )

20 cm
J=20

4

Material Constants:

Group

Composition D, Z 1 Zoy VIZ

|.5 .0A273 .06 D

1.2 2101 Cd 3

Group 2

Composition D, Zs Zio VIZ

Sl

15 02 0

X. = 1, Xo = 0



177

A5.2 A One-dimensional Version of the IAEA PWR Problem

Geometry:

J 0

2 2 3 2. 2 1 4

Fr — pe] é = 0
0 10 30 50 70 90 110 130 150 170

Material Constants:

Material constants are the same as those of the IAEA Two-

dimensional PWR Benchmark Problem (A5. 3). For this one-dimensional

problem, the buckling is not included.
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A5.3 The IAEA Two-dimensional PWR Benchmark Problem

Geometry:

71 Zp

  ¥

{x

I.

* 20

110

y axis

(cm)

-net _ 0

90

70

IBD]

2

Y

aL 0

3

4
Al

¥

1 (

J

0)

2

10 30 50

S—

2

} | | i 1 }

70 90 110 130 150 170

x axis (cm)

i
net

=0
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Material Constants:

-|

Composition D, Zn Zo1 VZa

(em) (em™ly (em) (em”h

{ 5 .04 ,N2  Nn

1.56 03 02 0

 |] B .03 02 3

2.0 .04 04

Group 2

Composition D, Zo Zio Vie

ecm) (em)  (em™ly  (em~

i“ 08  nN .135

J 4 Nes J 25

y 4 13  9) 1!
n=

hb

4 "
- 01 N )

X h
=1, X 5 i.

2
7

= .8%x10"% cm™2 (in all compositions)
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A5.4 The LRA Two-dimensional BWR Benchmark Problem

Geometry:

rin = 0

5
ed

y

1 50 —

2h

120

‘ 105

75h =0
90 —

y axis

(cm) 75—

2
’

I

£ 0 =0

50

15
EL

me

30 —

15 —

/
 ,

0- Pan. "

: , | | | | |
0 15 30 45 60 75 90 105 120 135 150 165

yhet = 0
v

x axis (cm)
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Material Constants:

3

Composition

3

Zr Z91 YZ

(cm) (cm ™ 1) (cm™1) (cm 1

[}

1.255 .033582 . 02533 . 004602

1.268 . 034851 .02767 . 004609

.034172 .02617

.035172 . 02805

1.257 .0481434 ,04754

— Same as 3 —

Group 2

Composition

’

y

Dy Zo Z12 V Zio

(cm) (cm™1y (cm™1) (ecm™1)

211 . 1003

1902 . 07047

2091 .08344

 J) . 1091

9) 08675

0) 1021

1935 . 06552

1592 .01911

0 . 08792

0 0

_ same as 3 —

= {)1 XoX1~&lt;

v = 2. 43

n = 1x10"% em? (in all compositions)
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Kinetic Parameters:

Delayed Family s A (sec™")

0054 0f34

)  001087 1 3"
+

7, = 3X 10° sec/cm, Vv, = 3X 10° sec/cm

Perturbation:

Ramp perturbation in Composition 6

_ - J

AZ, = -.010116 cm

Ramp duration (0 &lt;t &lt;£2.0 sec)

Feedback Model:

Adi 4batic Heatup

Zt
&gt;I
a}

po
ob

TA) é rt) + Zo (r,t) b(n, 1)] = 2 T(r,)

Doppler Feedback

&gt;
a9

1, U)
me 5. (r,t=0){1 + a1[NT(r,1) - NT 11
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Thermal Parameters:

Energy

€
a

conversion factor

3204 x 10°10 ws/f

Viean power desnity att = 0

d = 1.0 X 10-6 w/cc

Conversion factor in feedback model

74
3.83 ¥ 10-11 °K cc

Feedback constant

ry 5 0331

y

X 10°°
1

Je K

initial temperature distribution

I” I'{r,t=0)=300 K
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A5.5 The Biblis Two-dimensional PWR Problem

[imitations concerning industrial confidentiality prohibit us from

presenting a problem description. Overall features are described in

the text of Chapter 3.
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A5.6 The TWIGL Two-dimensional Seed-Blanket Reactor

Problem

Geometry:

Zp

&lt; (1

blanket

54

y axis (cm)
70 » 0

)

net = 0
sezd

hlanket

 Ss. cd= onl

seed
.

a

-

~ ~{}

x axis (cm)

[het =0
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Material Constants:

~

x
r

Composition By Tel Z21 v2

(cm) (cm™1) (cm™ 1 (cm™1)
—

ceed

blanket

4
L

i

|
i 3

Jc

-1

*

 nN ]

n°715

-

4 2
pl

n

Group 2

= 1,
Xy

Composition

~~
- Et

blanket

Xo )

D, Zr Z12 )

(em) (em™l) (em™ly (em

I o-

-

. OR" 06
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Kinetic Parameters:

Delayed Family A A (sec™")
v—

YO 7

l/v, = 1X 107" sec/cm,

&amp;

7 +) Ie

1/v, = 5X 107° sec/cm

Perturbation:

Step perturbation in Region 1

AZ -. 0035 crn”?

Problem duration (0 &lt;t &lt;.5 sec)

Ramp perturbation in Region 1

AZ,=-.0035 cm”

Ramp duration (0 &lt;t &lt;.2 sec)

Problem duration (0 &lt;t &lt;.5 sec)
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Appendix 6

RESULTS

A6.1 Kang's One-dimensional LWR Problem

A6.2 A One-dimensional Version of the JAEA PWR Problem

A6.3 The TAEA Two-dimensional PWR Benchmark Problem

A6.4 The LRA Two-dimensional BWR Static Benchmark

Problem

A6.5 The TWIGL Two-dimensional Seed-Blanket

Problem

Reactor

Ab6. 6 The LRA Two-dimensional BWR Kinetics Benchmark

Problem
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Figure A6.2a Power Distribution for the One-dimensional IAEA PWR

Problem: Results of Uniform Mesh Refinement
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Figure A6.2b Power Distribution for the One-dimensional IAEA PWR

Problem: Refinement of Reflector Treatment
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Figure AB. 3a Power Distribution for the Two-dimensional IAEA PWR

Problem (Regular Core): Results of Uniform Mesh Re-

finement with the Constant Transverse Leakage Approx-

imation
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Figure A6.3Db

LO

Power Distribution for the Two-dimensional JAEA PWR

Problem (Regular Core): Results of Uniform Mesh Re-

finement with the Quadratic Transverse Leakage Approx-
imation
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Figure A6.3c Power Distribution for the Two-dimensional IAEA PWR

Problem (Irregular Core): Coarse Mesh Results
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Figure A6.4 Power Distribution for the LRA BWR Static Problem

(Rods Inserted): Coarse Mesh Results
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Fig. A6.5a Static Power Distribution Results for the TWIGL Two-

dimensional Seed-Blanket Reactor Problem
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Fig. A6.5b Asymptotic Power Distribution Results for the TWIGL Two-
dimensional Seed-Blanket Reactor Problem
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Figure A6. 5e Iterations versus Timestep for the TWIGL Two-

dimensional Seed-Blanket Reactor Problem (Step
Perturbation): Very Coarse Mesh
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Figure A6.5f Iterations versus Timestep for the TWIGL Two-
dimensional Seed-Blanket Reactor Problem (Step
Perturbation): Coarse Mesh

fA

W
+

 =~

"

 er
~
[i

&gt;

3 222
TT ¥ rTrT rr ariiG ERRER i ) : ERAN of ed 1 - RATE ped ord rr

Fargo t= rt debi dep ; foes? FET TITTY
9 mp fmtde bE PLETE fiir Spi RELENLR

Ride 1 p= TT at VTA ep
3 rpg . : ji prim tat, Lp tn
 a ee eT ET pie i ; diel

; CTT TTT seas ea be tT TE me
Cr Ee ER eh i TT Tn G4 brim ep Sapte: ; Ld . ; = : TT ey Fil TY rs.a 3 sdb pe Yk aan 0 EE 341

- HA Fens | " vo conn Toi «er. 1 y RS od ad

DAtra eld yy feta host os nll | rm pte wrt ord]
Toes -F ie pit wn reget ELLER Li CRT

NTT a sit trait EoD ree 1 + YES Sl +t
TTT Tr Th Tapp abode ni Ap Rl ed
alll gadget br np er et =

= a a an) etd, pital Lli 3 Po
Po em pe rer a a pp

add lmmy IT iar pele ; I . fe ee fe bry] erie FEIT IT

poll am og Sosptiiggralivioll palesimiy Poy eeio8 TE ae Se + i rH 3pepe] CTT TE SL AT ee be Abn p ena EE bya

RX Ea oT CYTO ITI OTE UT a ee : oT j : or’ - Cite —— —agy 4 Ew sow A pee pee cone t et oy
 fe Laefe em Le Lg a Toc aonb chee en 5

rs ToT III ELL ei be se be mmm! efecto fete ee bebe dy

Cp pe Le TIT gE 1
Btn eee pr eeeies febrero bdr jeeppestedg peer Foye

 bre pe hee be

f wit kL rrr re I TTT Heer

ZIT a Trrirte be ee FREE
teed F105 ST Tr TTT at] ple
 id Eda pe i Ri de i

, pideA TTT ET i 1 EEE EO | Tol SEE
phy = 288, : NLL nd egy SCOR CT TTT

die TLC 5% CEE SELEY : TED WHT- i . . WP m———————

he ee ee rm A
- ’ ; TTY STI y

Cra 4, wl) iE :
art : met reer ee npypenge 1 ert orbit

rete} a 3 Thus 3 int : a

fi]; Si xg. of vs mh dow —
} mann J Trt TIT TITLE EET YS i

SET a A "UY ae TR Ty PE _
Ee mam ny
Er RL Frit nd ie El rk BN :
3 mn rt = A ig oe Lares vismfuion whe pucks3 fo i daa apis rr EW L yo . 1

5.” TIT TLS Gb Le eee br

ba omen FT rr RO
oe poi mre re os sng Fr Solan bh eae dena = po £3

: hee ces fen eee Bae +d : Te Te oo ve |

PETE vee ee bee be ee eee tp y} Ao

£N ret BS ry iil iu. edd pr

pie AN AONEmerpee
’ rr Tor TT I MrT

bt td bE ot pd at Tal ti
 nw de I peded2bt SER 37 bia E50
: AL RI bial Ya peed as bw Nek Ta

Tul EST Ty Sa we Ag CT STANTS Tres :

bry fai dal LEER EEEN SEAR:
Toned Ian ltt beer I Lop
 Lidstrom fosmid pra pone Eid

TET a Ed Corals ieiswithwf CooItrlanoy Ty Ln Tn ee Eo ee

ar ede TT EES

mo Cipher sera PE ees
Ay©DOecvxI

 3 a raped SE el lrtindt

Jc: ey oo Tera HE : pl Cai ri brmpad lars

= A a A TT eae EES EEL] ed Tena 2
CT Hs TIE oa dan el
 TT EE TE

 i i x et hd apmr PT TL SD

lr pe pe
TOTTI Ton ee
TL EER a
TRE | Ada triad bb gd

ob Lobb ¥.3 0 fod ped ! HL

den EEtr “ET crore ide

 orden i
i$ Sr sg ag 1 ; Joti

Td he WA i= we i Bokeh 1 3 oF

foment love fait L ha ans 5:3
we ee} ee

ar ieee wed mde A eran

EERSTE TT tng ian Bh
 eed SEE = YeploEY PheBape a ye,] pit,
mmm ee er eden eee

Acker rnCLrEITT
rrp Cl RIT TLL LL TE a es

hrs — Sd l——] STR
EE RE ded ME Rw re Ewochong cell
Fr= SUIT Tin rer =
dors panne en
jeg de embed des ES a at yd be
i } : hr

gd] dbp fbb pf pede
ret] bre a

= Reiley pb fe aed rep
” der fs gfe de wo] A de

J Spb A wd fobiodtia] 3 bodoen ode oerWooo | odd bbbbpeb
(des i + ida a Ld indore
J

T'imestep



20¢

Figure A6. 5g Iterations versus Timestep for the TWIGL Two-

dimensional Seed-Blanket Reactor Problem (Ramp

Perturbation): Very Coarse Mesh
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Figure A6. 5h Iterations versus Timestep for the TWIGL Two-

dimensional Seed-Blanket Reactor Problem (Ramp
Perturbation): Coarse Mesh
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Figure A6.6a Power Distribution for the LRA BWR Static Problem

{Rods Inserted): Very Coarse Mesh Results with the

Quadratic Transverse Leakage Approximation
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Figure A6. 6b Power Distribution for the LRA BWR Static Problem

(Rods Withdrawn): Very Coarse Mesh Static Results

with the Quadratic Transverse Leakage Approxima-
tion
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Figure Ab. be Power and Temperature Distributions for the LRA BWR
Kinetics Benchmark Problem at Time = 0.0 sec
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Figure A6.6f Power and Temperature Distributions for the LRA BWR
Kinetics Benchmark Problem at Time = 1.40 sec
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Figure A6.6g Power and Temperature Distributions for the LRA BWR
Kinetics Benchmark Problem at Time = 2.00 sec
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Figure A6.6h Power and Temperature Distributions for the LRA BWR
Kinetics Benchmark Problem at Time = 3.00 sec
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