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ABSTRACT

The importance of understanding the symmetries of nature

has been increasingly realized in the use of quantum field

theory as a description of nature. These symmetry principles

and the conservation laws which arise from them are often

well understood before dynamics. Within this thesis several

problems in which symmetry principles play a prominent role

are investigated.

The problem of constructing the most general, scalar

potential for an arbitrary compact, semisimple Lie group,

G, is solved. The technique which is derived is then applied

to the specific model of the weak and electromagnetic inter-

actions. The scalar potential for this model is constructed

and analyzed. This analysis points out the existence of a

possible pseudosymmetry.

A new model is then constructed which incorporates the

pseudosymmetry and extends the earlier model to include the

hadrons. This new model is anomaly-free and offers some

ideas as to the role which spin-0 exchange may play in the

weak interaction.

The discussion of the weak interaction ends with a

possible explanation for the AI=1/2 rule among the hadrons

and the anomalous strength of the weak non-leptonic decays.
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The thesis then turns to a brief review of the new

symmetry principle known as supersymmetry.

At the completion of the review, the spinor super-

field is studied. The implications of this study are then

used to derive a suitable Lagrangian for the superfield.

Finally a discussion of supersymmetry and gauge invariance

of the internal type are given. This discussion also points

out the similirity of local invariance in both superspace

and ordinary spacetime.

Finally, we study the geometry of global superspace.

This study indicates that global superspace is a metric

space, in the differential geometric sense, which posseses

constant torsion and zero curvature. The study also indi-

cates that a theory of curved superspace may be constructed

as the superspace generalization of Einstein's unified field

theory. This generalization is performed and it is shown

that a non-Riemannian, superspace version of general rela-

tivity exists as a special case.

Thesis Supervisor: James E. Young
Professor of Physics
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I. On the Construction of
Gauge Invariant, Scalar Potentials

Lagrangians which possess gauge invariance with respect

to some compact, semisimple Lie group, G, have become objects

of much study. In a theory where some or all of the symmetries

are broken by the vacuum expectation values of elementary

spin-O fields, the scalar potential plays a crucial role. It

is the purpose of this comment to describe a procedure for the

construction of the most general, gauge-invariant, scalar

potential for a given theory.

For simplicity, let all of the scalar fields in a theory

be assembled into a real, n-component multiplet denoted by $.

Let t denote a nxn matrix representation of the a-th

generator of the gauge group. Since the spin-O multiplet is

real, it follows that the matrices to to satisfy the following

relations,

t t = - t

[tctp 1 = i SoVty (O(45,7= I,...,p) (1.1)

The structure constants, fT ,form a real, totally antisym-

metric tensor. We may regard the transformation properties of

$ as arising, solely, from the transformation properties of the

cononical basis elements denoted by &e Indeed since the

canonical basis is complete, we must have a relationship of

the form

A It fA Are (~'i.,) (1.2)

for some set of coefficients ht.

We may continue by considering the set of all second order

tensors, {TA}, which transform irreducibly under the action of

the group. Once again, the completeness of this basis must
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imply that,

[t T J A =c H TA
(1.3)

Furthermore, the set {TA} may be written in the form

{TA =ftilUtiu.X.JPzm}(1.4)

where each subset { }, f=l, ... , m, is invariant under gauge

transformations. This implies that the coefficients H A must

only connect elements within the same subset. Also, the

elements within a subset must transform as the members of a

definite representation of the gauge group. The coefficients,

H1, are obviously functions of the subsets {T I. We could,

therefore, display the dependence by writing these coefficients

in the form

HoAAI'X 7 1(1.5)

These coefficients indicate to which representation of

the group the subset { f} belongs.

Now our problem is to construct the most general poly-

nomial mapping, U, such that U:Rn+RI and [U,G]=O. In order

to achieve our goal, we first introduce a set of group, bi-

linear covariants, FA, defined by

A $ A ' (1.6)

The requirement of renormalizability forces the mapping to be

no more than quartic in the field $. The only possible form that

the quartic terms may have is

AS -. * 

-_ -t(1.7)

Aa +ch rA.#<:P *r"*1"
where a is a dimensionless, hermitian matrix. If this is

subjected to an infinitesimal gauge transformation, then the
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first order change is proportional to the expression

t a AB( ) A:8 c49-T's<4' To' (.8

where

Jo4 A -[ H as' + ( H.)* A (1.9)

Clearly, in order for equation (1.7) to be invariant, we must

require that

A'8' AG

( r )AO J - 0 (1.10)

independent of the values of a, A', and B'. But in equation

(1.7), we need not let the summation on A and B take on

all of the values that are consistent with equation (1.10).

In other words, there are essential subsets of {TA} which only

need be considered in equation (1.7). To show this we consider

the following. The elements of {TA} may be chosen so that the

equation

fTAT > N GAB (1.11)

is satisfied for some constant k . This statement together
0

with the completeness of the basis provided by {TA} implies

AA
-a,, 6,,j = (k 0 V) T'AhJ ( Tfl,,, (1.12)

We may use this statement to derive others in the same fashion

that the usual Fierz identities are derived. These group Fierz

identities when fully contracted with $ can then be used to

express some couplings as linear combinations of others. In

this way, we can see that the range of A and B may be

restricted even further than implied by equation (1.10).

Next in the mapping, U, are the terms which are cubic in

the scalar field. The presence or absence of such terms
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depends on whether the relation

H .i T -- c= A (1.13)

can be satisfied for any of the subsets { }. If this relation

is satisfied then we may have cubic terms of the form

Mi AS I 4  'e-c A#-1, -. 4- (1.14)

where M is a dimensional constant with the units of mass. We

restrict the values of A so that the elements TA are members

of a subgroup {ZT.} which satisfies equation (1.13). Once again

we may derive the condition for invariance which is given by

(M)AA E [ H tA A Aat) 6] (1.15)

Since the number of subsets which satisfy equation (1.13)

may not provide a complete basis, in general we need not find

identities which play the role of the group Fierz identities.

Finally, we come to quadratic terms in the mapping. These

terms will be present whenever any of the subsets {2 f} satis-

fy the equation

H fxl =-0 (1.16)

The subset containing the identity always satisfies this

equation. The quadratic terms are then given by the expression

iN 1 C A'(1.17)

where, of course, TA is an element of one of the subsets

which satisfy equation (1.16). Without loss of generality

we may assume that the coupling tensors, TAD which appear in

equation (1.17) are hermitian. Therefore, the coupling vector
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C is real and dimensionless.

The full potential is simply the sum of equations (1.6),

(1.14), and (1.17).

LA (0A (a TA..,

+jp #Q-cA.,tTA.a +

(1.18)

As examples of the method described in the preceding section,

we will treat three scalar systems. The three systems are the

Higgs model with a reducible scalar system, the Weinberg-Salam

scalar system, and the Georgi-Glashow scalar system. Of course,

these systems are so simple that the use of the construction pro-

cedure is purely pedagogical.

The Higgs Model has U(l) as its gauge group. The single

group generator in the reducible representation that we are

interested in is given by,

t = IeDCr2. (1.19)

The set of all coupling tensors may be defined once we define

a basis given by;

.4 Adxf eucr '+ito-')] ; t

=c T- T(1.20)

Now we may define the full set of coupling tensors.

(1.21)

One may easily verify that the relation

7"04fTit. T to- l + &. (1.22)
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is satisfied. This will lead to the identity

(fft~4 (I1 1iifI Ln

r-i- a< ( r q + ,J,~2m t~jikq

+ (f)Lo(tYn, + 0(AtfX1 . (rL a

(1.23)

which can be used to derive other group Fierz identities.

These identities can then be used to show that one essential

set of symmetric tensors is given by' TA I where

(1.24)

These may be contracted with the field to form the following

group bilinear covariants.

fla ~tfl~ r3 ~ $APJ~a
Thus, the scalar potential is simply given by the expression,

u(f)* AS LA'+ZM C" )fl (1.26)

where a is a real, symmetric, 4x4 "matrix" and C a real

"vector".

The gauge group for the Weinberg-Salam model is U(l)ESU(2).

The generators of the gauge group may be taken to be

t- J 'cr , Ila Cr Cra0- 0-3)

(l.27)

These generators satisfy the usual conuutator algebra

* (f"L~

(1.25)

tij -60no,

f T.4 i, m 110 I,',tf tof'}
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(1.28)

The coupling tensors may be defined once we define one other

matrix, S. The definition of S is

'r cr+tcr Oecr(1.29)

Thus the coupling tensors are given by:

( Ta9 =fit ylU *1 5i U 1 Ef WIUf io ty l

uft51 u ft.S'} (1.30)

once again there is a completeness relation which may be used

to derive a number of gauge, Fierz identities. From these

identities we may show that an essential set is given by

{1, ty,, S+ but only the identity is symmetric. Thus,

41 + ifM X (1.31)

is the most general, gauge-invariant potential.

For the Georgi-Glashow model, the group 0(3) is chosen.

The generators may be represented by:

(t) K = -. t, e K (1.32)

The coupling matrices may be taken to be

['j = I uL UtuictonK)} (1.33)

where the matrices a(m) are defined by the relations

1 0 0 0 0 1-11 i 0
a(O)=! 0 1 01 a( l)=-! 0 0 1 a( 2)=-1 + 1 0

0 0 -2 J V1 1 0L 0 0 Oj

(1.34)

The commutation. relations between the a-matrices and the

group generators are:
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t 3,Ot (M)J = Y OL(w1)

[w (s m n a m O n o I) (1 .35 )

Thus, we see that the a-matrices are the components of a

spin-2 tensor. The completeness relation is,

Tinj = 4 Ij ThMA + (rt) (

+ [ c(p)L (ct(p)I , (1.36)

We may use this relation to show that,

LY ++() #.cXt(p)$ 3 II (1.37)

so we may neglect the a-couplings. Furthermore the basis

vectors, e, and group generators, t , belong to the same

representation. Thus, in principle there could be trilinear

couplings. But the antisymmetry of the generators implies

such terms are identically zero. The potential is therefore

given by:

ii +iM ala(1.38)
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II. The Scalar System of Dual Model I

In the Dual Model of Dicus, Teplitz and Young[l], the

gauge group, G, was chosen to be UY (l)MSUW (2)ESUF (2). In this

spontaneously broken gauge theory model, four scalar multiplets

were used. These multiplets, denoted by T, p, $, and X, trans-
1 1 1 1 1 1

formed as (1, ', 0), (0, 0, n), (1, 2' ), and (1, 1, ) re-

spectively under the gauge group. Since we are not concerned

here with the vector or spinor sectors of the model, we have

the following Lagrangian:

t = -I3,rVIt -' 9 rPl'- Zi f Iar#VA' IarXIN

- U * ,(2.1)

In order to construct the most general gauge invariant

potential, U(V,p,$,X), it is convenient to write the potential

in the form:

U(,p, ,X) U, (*) 4+ U2(p)+ U4(4,x)

+ UP;(2.2)

The first two "sub-potentials" are simply given by:

LA(4)+ #2h;k 4~ 2. M~i 14 I(2.3a)
t4,(A) = k 2 (p1 + 1 p(2.3b)
L3.(P) = T ,fpI + A d ipi(.6

where the L's are dimensionless constants and M2 a dimensional
1 G

constant with units of squared mass.

As a first step in the construction of U3 , we may define

group, bilinear covariants which we will denote by r(a;b).

These objects are classified according to; (a)how they transform

under unitary redefinition of the multiplets $ and X, (b)their

transformation properties with respect to the gauge group. An
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essential set of these quantities are defined below.

lu;+ = +x x

4's Xt + X

T, t#+%tx

4)x + Xt

o.t t+ 00

V'-* z+ x

Oill

where @2a2.*02 and iEa2X* 2. The

and X are:

AAr = -i ( + - X )

;3 pI~- xxt- X X

3II

w i 'tx t

I x=-i( x-Pt)

4> c -SX

(2.4a)

(2.4b)

(2.4c)

(2.4d)

transformation laws of *

Y : c>P-. U0e t e) w:,. (-u )p

F-: #--s +U F(O 9) (2.5)

These can be used to derive the following transformation prop-

perties for the covariants defined above. For instance, the

transformation laws for the wa's are,

Y: W -U-U W

F : Awr *-- AY S (26(2.6)
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and one can derive the laws for the other defined covariants.

As can be seen, the matrices wa and fa are hermitian, while

the matrices Wa and Fa are not. Since all of the covari-

ants are 2x2 matrices, we would like to construct, using only

wa a, Wa, Fa and their duals, the most general possible

mapping denoted by U3 such that U 3:C2 XC2 +R1 and [U 3,G]=0.

This mapping must have the form:

Th 6ingistri a BAnI C TU d

+Pt2q rw4wrtI)

+ C XLAAer4Ut 4- AA- 5WV

(2.7

The coupling matrices a, B, and C are dimensionless as is the

coupling vector A. The determinant of the bilinear covariants

has been neglected since we have the identity

Li~t~fr7 ~S Za.a2.8)

for any 2x2 matrix, M. The terms where f is exchanged with

w may be neglected, because the use of the cyclic property

of traces implies that these only duplicate the w- couplings.

The diagonal terms of the C' 5 may also be neglected because

of the identity

1A{MW01t = OtAtt M(2.9)

and the use of equation (2.8). The F-couplings may be ignored

in favor of the W-couplings by the same reasoning which allowed

the elimination of the f-couplings. Furthermore, since w=wt

we assume that aw, Bw, and C are real and symmetric. Thus

among these matrices there are 10+10+6=26 independent para-
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meters. We may now turn to the terms proportional to

7&t waThtW ti;aLt{ v Pwt1 ; XJ VEXWP*J

We can show that for any 2x2 matrix, M, we have,

Mfr1 = dk iMf J = MlM (2.10)

which implies that Wo=Idet$+detx]II and W3 =[det$-detX] II.

Because of these equalities and equation (8), we may let a W

B W, and CW be hermitian, 2x2, coupling matrices with a and 8

taking only the values 1 and 2. Thus, the mapping U,,

which is the scalar potential, may be reduced to the form:

+ O+P CA iAA-PVVMA 1AI

+ N (2.11)

The matrices a, B, and C are real and symmetric (a,=0,1,2,3).

Matrices a', B', and C' are hermitian (a,=1,2). C and C' are

further restricted to have no diagonal elements. Thus, we have

a total of forty coupling constants in U,3 1

We know that U3 is the most general scalar potential which

we may construct from wa, fc, Wa, F a, and their duals. But, is

it the most general scalar potential? The answer to this question

is affirmative. To prove this statement, we first introduce

another set of internal, bilinear covariants, 1' (pv;AB) which

are linearly related to the first set. We assume that F' has

the form:

r~''( 1 v: As) = aA fAcrvS (2.12)

where a =(I,) and the fields A and B may take on the
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identities ($,X,4,X). Thus, in principle there are

4-4.4.4=162covariants which could enter the potential. The

covariants written in equations (2.4a) through (2.4d) are those

possible with p=v=0. In order to have a gauge invariant

potential, we will be forced to sum over p and v in such a way

that we may utilize the identity:

3

L ,[.C iK( tf (r)CF - "(2.13)
JAS

Thus, the potential constructed wa f, f Wa, F a and their duals
is, indeed, the most general possible potential.

Finally, we come to U which may be written by inspection.

u4.= >4 0 INI T Vfiwi + 2X Ip IAAP1r1

+ A 3 P 41 tP4'-+X fpJ p + s0

+'2 I fJ~p +p tf8'~ i, %,I * 0- ptjZ]

+A M9[V4p+ pt#V] + i AvMjtI+p- pttt*.J

+ AleM 6 (qrtxp +ptxt*7 +i j i p fM ixtx p-ptxt*

+x itt# +t+tV] + tA1, tdM j P*1a Pt tP r

+XtM4WtX'+Itt b sa t5 pt2tV (2.14)

Thus, the total potential U(,p, ,X) has a total of seventy-

eight terms.

The fact that both p and its dual, p, appear in the potential

is necessary in order to break the pseudo-symmetry which was

promoted to a symmetry in the Dual Model II.
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III. Dual Model II

Summary

In Ref. [1] the authors proposed that duality might also

apply to the electromagnetic and weak interactions as well as

the strong interaction. In that spontaneously broken gauge

theory model, the gauge group U(l)ESU(2)mSU(2) was chosen.

The first two subgroups refer to the usual Weinberg-Salam

groups. The remaining group refers to the two different types

of lepton number. The representation of the scalars used in

the model had an interesting property: the existence of a pos-

sible pseudo-symmetry. This caused no problems, however,

because the pseudo-symmetry could be broken by terms in the

scalar potential. Thus, the existence of a pseudo-Goldstone

boson was avoided.

In this paper, we shall consider a model where the pseudo-

symmetry breaking terms in the gauge invariant, scalar potential

are absent and the pseudo-Goldstone boson is used to "grow"

another vector boson with mass. Thus the gauge group for the

present model is U(1)uSU(2)uSU(2)uU(1). We will also retain

the requirement of duality as was initially proposed. Further-

more, the requirements of duality and color invariance of the

quark masses, which arise from symmetry breaking, conspire to

give the new model a single primitive coupling constant, /7e .
Scalar exchange is then used to explain the AI=1/2 rule and

the anomalous strength of the weak nonleptonic decays.

In addition the model also describes a "super weak" inter-

action where IASI=2 and neutral, strangeness-changing transitions

are allowed. But this interaction is mediated by vector bosons

whica have masses that may be several orders of magnitude larger

than that of the Z0 or W bosons.

Finally, the model predicts that the neutral, hadronic

current which couples to the Z0  boson is composed of an iso-

singlet, vector current component and an isotriplet, axial

vector current component.
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Conventions

In this section we establish the conventions to be used

throughout this chapter. We are using a metric g with non-

zero elements -1,1,1,1 for i=v=0,1,2,3. We are using the

Pauli spinors in the standard representation. We use a to

denote these matrices and I for the 2x2 identity.

The Dirac matrices that we are using are given by:

'Y =cr 3L )=i --- ''6D(3.1)

so that we have the following identities and definitions.

fyryto=-I 9rv

Y5  Y Y'v I (3.2)

The following symbols are also used:

Tr{ } E Trace

t E Hermitian conjugate

* E Complex conjugate

t 2 Transpositions

The Existence of a Pseudo-symmetry

In the model of Ref. [1], two complex quartets of scalars,
1 1denoted by $ and X, which belong to the (1, , .) representation

of the U(l)YSU(2)WSU(2)F gauge group are used. In addition,

two complex doublets, denoted by Y and p*, were also used. The

first doublet belongs to the (1, y, 0) representation, while the
1latter belongs to the (0, 0, 2) representation. The transforma-

tion properties of these scalar fields under the gauge group
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are:

# -40-CI

eoox-:pii yElN

p-0 bp'

pA rp 4 -Ito9 0-$I

* * ~ - ; Y$IA

Y-gauge

W-gauge

F-gauge

Y-gauge

W-gauge

F-gauge

Y-gauge

W-gauge

F-gauge

where gy, gw, and gF are the coupling constants associated

with each subgroup and E is the parameter of the transformation.

We presently propose to enlarge the gauge group to

U(1)yuSU(2)WSU(2)FU(l)H. We ask that these fields transform

as:

Ip -=L--*41, 9

pV4> ~ %ft 1 N O

(3.6)

under the H-gauge transformation.

In the U(l)uSU(2)ESU(2) model, the most general gauge

invariant scalar potential contains seventy-eight terms.

(3.3)

(3.4)

(3.5)
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Among the terms allowed by gauge invariance are:

tstX 0 .Apo(3.6)

We can readily verify that these terms are invariant under Y-,

W-, and F-gauge transformations but not under H-gauge trans-

formations. It is the presence of such terms which prevent

the appearance of a pseudo-Goldstone boson in the U(l)aSU(2)a

SU (2) model

Having shown the existence of the pseudo-symmetry in the

aforementioned model, we now present a model which incorporates

the pseudo-symmetry as a gauge symmetry.

Fermions

(a) Quarks

We consider a model with six left-handed quartets of

quarks, along with twenty-four right-handed singlets. These

left-handed quartets we denoted by Lqi where i=l, ... 6. The

first three quartets provide a representation of color SU(3).

While the last three quartets provide a representation of color

Su (3). With each quartet, we associate four right-handed

singlets. Thus we are considering a Han-Nambu model[2] which

incorporates the suggestions of Glashow, Iliopoulos, and

Maiani[3] and Pati and Salam[41. The quartets LqiI Lq2 and

L we assign to the (Y=l, W=7 , F=, H=1) representation of
q62 2
our gauge group. The remaining quartets are assigned to the

1 1
(-1, -, , -1) representation. The right-handed singlets

are either assigned to the (2,0,0,0), (0,0,0,2), (-2,0,0,0),

or (0,0,0,-2) representations. We exhibit Lql and its associ-

ated right-handed singlets below.
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_PI() 
yj)(06)

j(I1+ YS) mn j(X+ 5)Cra1.

jL =. + YMc 4mt N R + V)?Igywe WwN37)

where p, n, X, and c refer to the proton, neutron, lambda,

and charmed quarks, respectively. The Cabibbo rotation we

use is defined by:

pt(,c) ;kp, .&(Le) - c, ,an (Tee)

(3.8)

The second and sixth quartets along with their associated

singlets have the same assignments as those above. The

remaining quartets and singlets differ from those above only

by the replacements Y+Y-2 and H+H-2.

As can be seen, the Adler-Bell-Jackiw anomalies[5],[6],

[7], and [8] of the first three quartets are cancelled by

those of the last three quartets. A similar statement also

holds for the anomalies of the right-handed singlets.

With this sort of arrangement, the electric charge is

related to the weak hypercharge and the third component of

weak isospin by the usual relation

VV+ I3 (3.9)
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(b) Leptons

Keeping in mind that we want a model that is free of

anomalies, we introduce two quartets of leptons. The first

quartet is assigned to the (-l, ', ,l-1) representation.
1 .1 2 To 1) rpreentaion

The second is in the (1, , , 1) representation. The singlets

belong to either the (-2,0,0,0) or (2,0,0,0) representations.

Below we exhibit the leptons.

tve1

i2(. +y) eyos- Noo

OWN=ys LL-s2

1 s i~+x5e~ a a

(3.10)

FI "00 {(' 4Y
rt04
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Gauge Transformations and Spin-1 Bosons

Our gauge group is U(l) YaSU(2)WSU(2)FOU (1)H. Accordingly,

we must introduce an octet of vector bosons. We will denote

these bosons by Ya, ia, Pa, and Ha.

In order to complete our "gauging" of the former pseudo-

symmetry, we give the transformation properties of the fermions

under gauge transformations of the first kind:

Y-gauge L s pJ L

W-gauge L tooxpa- L

F-gauge L L UR x-a.

H-gauge L L - U -Axf a.(3.11)

where e6Y= l and 8H= l

Y-gauge P A+ 9 4X &bY9; SIR

W-gauge R - R

F-gauge F R

H-gauge R - /(3.12)

where Q'=2,0,-2 and O'=2,0,-2.Y H

Scalar Bosons: Spurions and Higgs Scalars

The requirement that the two-body scattering amplitude

be dual in the sense defined by equations (2.14a) and (2.14b)

of Ref. [1] for fermions which belong to the same irreducible

representation forces the use of more scalars than were used

in Ref. [1]. These additional scalars are needed to avoid

some very restrictive mass relations among the fermions.

Motivated by this and the desire to use these fields

most efficiently, we propose that the additional scalars are

physical fields as opposed to being non-physical scalars [8].

We will refer to these physical multiplets as "spurions" [9].
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We ask that spurions be the explanation for (a)the AI=1/2

rule among the hadrons and (b)the anomalous strength of the

weak nonleptonic decays. The minimum number of spurions

required for our purposes is three, which we will denote by

1, $4, and n.

In the present model, we use five spurion fields r, $,
1 1

4, and X, all of which we assign to the represen-

tation of our gauge group. The fields $ and X will be allowed

to acquire non-zero vacuum expectation values, while t, $, and

n will not.

The Higgs scalars in the present model are T, a, piand
3 1

p2 . These fields transform as (-3, ,,-! ), (01,0,,0,1) ,(0j,0j,1,0)

and (0,0,1,0) respectively.

The Lagrangian

The Lagrangian density for our model is given by:

+ Xs X+ + Z, (3.13)

where the decomposition denotes vector, scalar, fermion, and

scalar-fermion interactions. Explicitly we have:

V -- * Y,,YM W - VI,,--, - H, H

Y,, 3 ,Y,, 3 ,vY, Hr,, ar,Hv 3HM

-- 00 --- Oh

, 3,W, - vW + p FrXWV

aF v U&v I+ rFrX(3.14)
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~ I~,VI . ~IEXIiI~o3II kJ~o~a.
Xs -2 D .I + I- D ! a -\D p,\I- 2:\Dap1

-T { \ Dot\ 1 .1\+ [iDqI2 + lvsxI \+ IDAlzi

-uL (*, o-, Pp ,C, r ?, X, )

DacC ao ( 3: i yY. -ilqw -57)4 - wN i, Hot- l. ? - o

Do4's a T \/

DatE (9o -i qrYi-iV-w~~ itM.Ha34'

Du a 3 3 IL g Hot) a- Dc p i - ao3 +irF.

. +( o-+4 --w)+a0-w, ;W Wiwd

IX (c-+F+1k V a--jF )+ o-' F . ;F = 2 F F

at-I (T + TAwc~)+ TW T'wl ol =

R-F 3 iTF, + T~ Fa~-)+ 7: "Fi l=-

(3.15)

+ L,. L itpbt - F+ it H0 )]

+1j RY'(t. + iyY'n)R,.e

-t ZR'I [~yn( 9, Y

+ [,~rLtvL-1,F ÷4e H)I

-&1 RA( yeYyY n + ge'Hw) YORAt

whete Amp,Ac; M=e,p; 'a1 =3) - (3.161
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and finally we have the scalar-ferm ion interaction terms:

J~i A + C. :

MZ7MItLLoLtL (V-M, SMI,)JRMI t Le.3

4f,.{ I L1[i.(1,L6,A)IRn + h.c. .

where I=p,c J=n,A

At,) 1 c?7+ 4mY(e)#c~nY +(XnS +)X 4

f ~ ~ Cr AAM 6 =- C + .L (4>C.,- 6 + X A ,K

Pat 221

I =rtt a r
Ali.

A a

We require that the potential be such that a minimum occurs at:

.= . M (& -'- j cr)

CpX. i cMa p.

;, +a MUcr')

cro C,

7 j L. 4 t1 (3.18)

where MG is a mass parameter used to characterize the spontane-

ous symmetry breaking and the constants a, b, c and d are

dimensionless parameters.

Imposing Duality

We may now impose the requirement that the two-body

scattering amplitudes be dual for members of the same irreduci-

(3.17)
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ble representation of the group. In other words, we require

that for every such process we want the lowest-order amplitude

to have the form:

(3.19)

for energies and angles such that all masses can be neglected.

By considering the processes +nL EL+nLandnL+XL+n+ LkwePL nLPLnL L L L L
obtain the following equations:

2. L.2.
+ -4-'U +- 3 0 (3.20)

a 2.1

.... 3 1, + I , + qj = 0 (3.21)

These equations are sufficient to enforce duality for all

scatterings of left-hand fermions. The scattering of right-

hand particles into right-hand particles is slightly more

difficult. The interested reader is referred, Ref. [1].

The scattering of right-handed fermions into left-handed

fermions such as pR+nL'PR+nL will provide the relationship:

(5I)2. x(3.22)

and similarly the process pL+nR +PL+n R will require that:

= _ x (3.23)

These last two results may be summarized by the equation:

(f)2. 2: for charged right-handed singlets

g : for neutral right-handed singlets (3.24)

Massive Fermions

We now turn to the massive fermions which are generated

by the spontaneous symetry breaking of the electromagnetic

and weak gauge group. Since the fields , x, ' , a, p, and p2
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all acquire non-zero V.E.V's, we may perform shifts of these

fields. First we treat the quark masses which are generated

by the following terms:

A z, " A.,XLA 4L,)t.R1, + Rr,8L
Y. j 7, R3, tLJ

T I ~t " (3.25)

Considering the proton quarks, initially, we find that the

choice 6 = -1/2 8c will eliminate the Cabibbo mixing of proton

and charmed quarks. We then find the proton quarks masses to

be given by the expression:

tO.M 6 M4Z"Y tY IP*,P&aP.L) +-J1PnP3J (3.26)

Before going on, we note that in a sense we may regard the

6-angles as the origins of the Cabibbo rotations. If we now

consider the transformation properties of the above expression

under color SU(3), we see that it may be written as:

2- a.M C in Yr 3 fy + ja4)L + v,-1) Yc P (3.27)

where IC and ?tC are the color identity and hypercharge opera-
tors respectively and P denotes the color triplet of proton

quarks. Now, if gY"gHAg then the contribution to the quark

mass from the symmetry breaking will be a color SU(3) invari-

ant. Applying the same considerations to the other quarks, we

find by making the choices: 6=1/2 (w-6OC), 6n=1/2(7+e ) and

6 X=1/2ECthat the mass terms for the quarks are:

-5a. [MSALnYp PP + A nY. RN + Aim Y CC (3.28)

+0n~aA
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where P, N, C, and A denote color SU(3) triplets. Similar

considerations apply to the quarks that provide the represen-

tation of color SU(3).

Now in a similar manner, we can find the massive leptons

of the model. Needless to say, the lepton masses are also

proportional to the sines of y-angles. Furthermore, we may

use the 6-angles to give Cabibbo-mixing of the leptons. For

instance, with the choices 6 =0 and 6e =n/2, we find that the

electron and muon mass terms are:

- 1.lY. (3.29)

The massive leptons of LR are presumably more massive and can

easily be accommodated in the model.

A Single Coupling Constant

In the previous section we saw how the color invariance

of the quark mass matrix leads to the requirement that both

charged and neutral right-handed singlets possess a single

coupling constant. If we combine this with equations (3.20)

and (3.21), we find that all of the vector coupling constants

are the same. Furthermore, equation (3.23) then implies that

the model possesses a single coupling constant, g.

Massive Vector Bosons

The shifted fields also cause seven vector bosons in the

model to become massive. We find for the mass matrix of

"neutral" bosons:

Hob +t-7&cat 0 0Ho

a St2 5a:

*II1 I(33O
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For the squared masses of vector bosons, the following values

are obtained.

MA 0 Me=r 0.

.= &M [ b + , QJ (3.31)

Thus, we have a massless, neutral, vector boson (the photon)

given by:

A - k-Y" + (3.32a)

and two massive, neutral vector bosons.

jw(3.32b)

GoCH H (3.32c)

For the other bosons of the model, we find two electroni-

cally charged, spin-1 bosons at a mass squared value of:

ajVta=G(3.33)

and two electrically neutral, vector bosons at a mass squared

value of:

M + C2 t+t (3.34)

Finally, the remaining F-boson, F0=F3 , acquires a mass squared

value given by:

Z . [ -(3.35)
MF* =T M6L+~
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Model Parameters and Phenomenology

Now that we have found the photon, we may make the

identification between the single coupling constant of the

model and the fundamental unit of charge:

1,= ra e (3.36)

Next we may consider p-decay in the context of this model.

By considering the lowest order contributions to this process,

we may deduce that the mass parameter, MGI which was used to

characterize the spontaneous symmetry breaking, is related to

the weak Fermi coupling constant.

M G +- + G (3.37)

Furthermore the parameters a, c, and d are constrained by

the equation:

I ... --(- 1 + 0(3.38)

We may use this equation to define another parameter a via

the equation:

tatnoc = +at/afr.+- C"t+ t(3.39)

Continuing by considering S-decay, we find that the effective

coupling constant is:

G,= Gc.-e.CO0 (3.40)

The effective coupling constant for p-decay is just the weak

Fermi coupling constant. Experimentally, these two constants

are within two and one half percent of each other. This implies

that the angle a must be very close to zero. In order to ful-

fill this condition we will assume that a2<<c2+d 2 . We will also

assume that the parameter b is much larger than a. With

these conditions met we find the mass spectrum for the vector
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bosons that is indicated in ,Figure (#1) .

With this mass spectrum, we see that the model describes

the ordinary weak interaction with the exchange of either W

or Z0 bosons and a "super weak" interaction where F or G0

bosons are exchanged. This is important to this model since

both IASI=2 and neutral, strangeness-changing transitions are

mediated by F-bosons. Such effects are severely suppressed

owing to the large masses of the F-bosons. By using either

Cabibbo or F-spin rotations of the hadrons we may introduce

CP violation into the model.

Lepton-Lepton Scattering

In this section we consider the scattering of the "light"

leptons. The part of the Lagrangian which is responsible for

such processes is given by:

Z w = - e~lt&r1e + jivt,4AC +je.fj3,y0(j..-yS)~ -I-

;tY'Y (I -Yvt)w:\e!ve(l-Y-ys)p,)v +

eY1-(i-' ) 3F.~ - ii e.Lr(-rs)ve+*(r-rs~e

- 9, yf( -y)V,pL *I - VS)y .IF" + ie, , i - ys) v,

+ j Y'W( I + YS) e + U, Y 1--Y v,+ TA Y + fA5 z

+ eY6'( i -Y")Ve + Z5'0 I -9se +D, '( n-YS) V 116 Y( Y'%3

-ke.( t'.('b)v')ef,(r,,) +Y

- Ae..L ('+v')e .f ,(4P,S.) + (i.l')e I(yets.)]

+ F(I+Vy)hyd r,,r)) +Ih.C

-Ne. ~+ Y') I l,,(,,,)+ +y 4- (46)] +h. C.

(3.41)
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Figure (1)

M.

A

P*?1M&( + &

Mass spectrum of vector bosons in Dual Model II.

The Parameter g2M2 is equal to et/2v7G where G is
Gt kiFn

the weak Fermi coupling constant.
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We now turn to the process Ve +e+ve +e. This receives contri-

butions from W, Z0 , F0, G0 , and e exchanges. The effective

Lagrangian for this process is:

ef, V;eYo (I-y')ee e 4o( CV- Y 5 CA)e (3.42)

where

_ 2. 10(LtI L(3.43a)CV,= 5 4-n+ ( tlft1hl(Tir

CA =+ bI +4( I + (3.43b)

The angle a is constrained to be very small by our assumption

that c2 +d 2 >>a 2 . Furthermore, we may assume that 2(b2+d2)/b2d2

is also negligible. Finally the angle ye is of the order of

m /M Z. Therefore, we may approximate the above expressions

by;

CV = + M -/MIw)(3.44a)

CA = 3Nt(1r/PM .) (3.44b)

This process has been measured by Gurr, Reines, and Sobel

[10] and their results may be used to put bounds on the mass of

the scalar nve Our values for CV and CA are shown for a=0,

b=d=m and for all values of the ratio x=(M /Mrj ) in Figure(#2).

Next we may consider the process P +ev +e, This process
ov P

receives contributions from Z, Ft, G , and tv exchanges. The

effective Lagrangian is:

-& jj yMp~S e x1(K rc") e CA(3.45)
where

Cv ~ + 5 & + (3.46a)
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C +Iid J& r r(+ mL y ) (3. 46b)
CA I5V IA

once more we may make the same approximations and we find.

C, = - - # C (3.47a)

6 k+ +tF(M /M t)a (3.47b)

In Figure (#3) we plot our values for C' and C' as a functionV A
of x'=(M /Mrv ) where a, b, and d are fixed at the same

Zo 1U
values as in the discussion of C,1 and CA given above

The AI=l/2 Rule and the Enhancement of the Weak Nonleptonic

Decays

In this section we explicity demonstrate the role that

scalar exchange plays, within the model, in explaining (a)the

AI=l/2 rule among the hadrons and (b)the anomalous strength

of the weak nonleptonic decays. We will set the Cabibbo angle

to zero and ignore color since the scalar interaction is a

color singlet. Furthermore, we will assume that the masses

of the Higgs spurion multiplets are large compared to the non-

Higgs spurions c and ,. The only other free parameters, aside

from the masses of these multiplets, are the angles $* and $ .
We make the choices $=$c=0 and $ nc =w/2. Thus the scalar-

quark interaction effectively becomes:

+ I. c. (3.48)

Now by considering processes that are characterized by AS1=1

and |ACI=o, we find the following effective interaction:

GCh
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Figure (2)
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A plot of CV vs. CA for the process ve+e+' v e+e. The

shaded region is the experimentally allowed region. The
6.4

diagonal line which ends at ( ,) is the prediction of

the Dual Model for all values of the parameter x. In the

V-A theory Cv=CA=1, while in the Weinberg-Salam theory

CA=y and -1<CV <f. For x<- the Dual Model is in the

allowed region.
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Figure (3)

A plot of vs. C' for the process v +e)-v +e. Theq A 1i Pi
diagonal line which ends at (- g, -) is the prediction

of the Dual Model for all values of the parameter x'.

In V-A theory C,=C =O, while in the. Weinberg-Salam theory

and- 2 <C1.0A 22 % 2

Dual Model
It 

4

w.E

W@NEW

- V-A
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M22

where A =1/5(+c)2 CosyncosyXCos 2a. We have assumed that no

appreciable mass splitting occurs within the c multiplet. The

above expression transforms purely as I=1/2. Note that the

expression within the brackets is SU(4) invariant and therefore

an isospin singlet also. In the above discussion we set the

Cabibbo angle equal to zero. The appearance of the SU(4)

singlet, however, insures that the above interaction is in-

variant under Cabibbo rotations.

Thus we see that our weak spurions are, indeed, successful

in introducing terms in our weak effective Hamiltonian which

explains the AI=1/2 rule. Now we are able to understand how the

AI=1/2 transitions are able to avoid suppression by the Cabibbo

angle. These processes may proceed through the above inter-

action. On the other hand, processes which have AI>3/2 and

semileptonic processes proceed through vector exchange. The

effective interaction Lagrangian for these processes is pro-

portional to sinO CcoseC. Therefore, these processes appear

anomalously weak when compared to the AI=1/2 decays.

The appearance of the SU(4) singlet can be traced back

to the assumption of the mass degeneracy of the c multiplet.

This assumption is not only important in guaranteeing the pure

I=1/2 nature of the interaction but it also insures the absence

of IASI=2 processes. Such processes could arise if the masses

of the scalars 1n and C were considerably different.

One other point that we note is that the choice of $-angles

(and therefore coupling constants) is not unique. It is pos-

sible to produce a pure IAII=l/2, IASI=1 interaction for other

values of these parameters. By making our choice, the masses

of the ( particles are determined by the decay rates of the

charmed hadrons. Furthermore if the masses of the particles

of the F multiplet are comparable to that of the c particles

there exist a AI=1/2 rule for the decay of the charmed hadrons.

This scalar Lagrangian also allows the charmed hadrons to decay

into strange and nonstrange channels with comparable ratios.
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Returning now to the effective Lagrangian which may

describe the usual AI=1/2 rule, we nay perform a Fierz trans-

formation and obtain:

e = k t 'Y( + Y') F,. 9 r C' - r5) 9 (3.50)

where q=(p,n,A,c) and F6 is the generator of SU(4) which
06

transforms like the K L meson. In this form, it is easy to see

that the Lee-Sugawara relation is satisfiedll]. Furthermore

we also have the SU(4) generalization of octet dominance.

This is therefore a satisfactory Lagrangian with which to ex-

plain the AI=1/2 rule.

We may now address the question of how the effective

Lagrangian in equation (3.49) transforms under chiral SU(4)u

SU(4). If we let q undergo the following infinitesimal

transformations;

1I- 9 - 9 - i f A' F. 9 1A4  « I

II. -. 9- ijA'F.Y5 q (3.51)

then we find that the first order change in X, is given by;

.1 aG -
LIA7. A9 7 9 + ) YF C (1- 4 1) 9 (3.52)

independent of which transformation we use. We can easily see

that the generators F a and Fay5 satisfy the usual commutator

algebra of chiral SU(2)aSU(2). We may, therefore, conclude that

Lc.., Xff . I, Zeff J

if 0 and Q5 are the generators of chiral SU(2)uSU(2). In aa a
paper by Golowich and Holstein[12], four classes of IASI=1
Lagrangians are defined. If we make allowances for our nota-

tion, then our total IASI= Lagrangian, derived from both

scalar and vector exchange, is a member of the second class of

Lagrangians. However, Golowich and Holstein concluded that,
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experimentally, class one Lagrangians are preferred. So our

suggestion fails at this point. There is one final observation

which we note. Our suggested, effective Lagrangian contains

terms which are quartic in the "unflavored" quark operators.

As far as we know, in this respect our suggestion is unique.

Conclusions

The present work extends the dual model of lepton-lepton

scattering presented in Ref. [1]. The model has many attractive

features but these are gained at an expensive price: the multi-

tudinous spurions. The same ideas about scalar exchange used

in this model may also be applied directly to the Weinberg-

Salam modelI13]. One could construct a hybrid model by taking

the Weinberg-Salam model and coupling it to a spin-zero exchange

model similar to that proposed by Dicus, Segr6, and Teplitz[14].

A model of this sort would share many of the features of our

dual model. But again the number of scalar multiplets (two)

needed to explain the AI=l/2 rule may tend to effect the beliv-

ability of such a model. This is not, however, the first time

that spin-zero exchange has been proposed as the explanation

of the AI=l/2 rule among the hadronsIl5]. Perhaps, the most

interesting result of this paper is that spin-zero exchange

may play a considerable role in the weak interaction.
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IV. A AI=l/2 Rule in the Weinberg-Salam Model

Here we show how the AI=1/2 rule may be embedded in the

Weinberg-Salam model without adding new quarks, invoking dynam-

ical enhancement, or disturbing renormalizability. The strategy

we pursue is the addition of more scalar multiplets, "spurions"

to the usual model.

The AI=l/2 rule for nonleptonic processes enjoys ample

experimental support. If we take the viewpoint that this

selection rule arises not as a dynamic effect but instead

from the exchange of some elementary, weakly interacting

particle, we are confronted with a problem. In constructing

the simplest model of the weak interactions, the AI=l/2 rule

still appears anomalous. Various explanations, all using

quarks of "exotic" flavors 1161, have been suggested. Although

these suggestions do, indeed, lead to effective Lagrangians

which transform as isospin doublets, they all, necessarily, are

only quadratic in the ordinary quark operators. As such, these

Lagrangians require the spontaneous creation of ordinary quark-

antiquark pairs to explain the AI=l/2 rule among the observed

hadrons. In this comment, we would like to offer a suggestion

which leads to an effective interaction which is quartic in the

ordinary quark operators.

Consider adding to the Weinberg-Salam model[13], the

following terms.

fkc( 4.1 )

Here 71L denotes the left-handed, weak, isotopic doublet composed

of the proton quark and the Cabibbo-rotated neutron quark. The

scalar multiplets C,, Cn' Cx, and Cc we will refer to as

spurions"19). The spurions C and C transform as (-l, 1

under the Uy (1)USU W(2 ) gauge group. The remaining spurions

belong to the (1,7) representation. The first point we note
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is that the addition of these terms to the usual Weinberg-

Salam model does not disturb its renormalizability.

Now, if we consider the effective IASI=l Lagrangian

arising from equation (1), we find:

Xef =() f t  7- , + e W ( C mY) A (4.2b)

'(o) = p Y"(1+7Y 5 )P+iiY( l+ Y)n

+ i y(I+ ys)2 + c Y'( I + Y') C (4.2c)

In arriving at equation (4.2a) we have performed a Fierz trans-

formation and assumed that the masses of the spurion multiplets

are degenerate. This interaction could also account for the

anomalous strength of the nonleptonic decay modes of the strange

particles. Of course, the two parameters f and M must be

chosen so that the numerical factor (f/M2 )sineC is of the order

of G//7. We find a further restriction by requiring that

equation (1) not lead to contributions to AS=2 amplitudes

which are intolerably large.

We now turn to the question of how this effective Lagrangian

transforms under chiral SU(4)uSU(4). From the form of the above

equations, we may verify that we have a left-handed current,

transforming as an isotopic doublet, which is coupled to a

right-handed current, transforming as an SU(4) singlet. Since

this is so, the usual results on nonleptonic decays derived

from current algebra and partial conservation of the axial-

vector current (PCAC), remain intact. Furthermore, the total

IASI=l, effective Lagrangian, derived from both spurions and
vector exchange, belongs to the first class of Lagrangians as

defined by Golowich and Holsteinjl2J. This is important since

Class I Lagrangians seem experimentally preferred. We may note
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from equation (2a) that we have quindecuplet dominance, the

SU(4) generalization of octet dominance.

We make a final observation. The form of equation (1)

is exactly what we would expect if the right-handed quarks are

the members of some multiplet which carry additional weak

quantum numbers. The conservation of these numbers would then

explain the mass degeneracy of the spurion multiplets.
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V. Basic Supersymmetry

Graded Lie algebras arise naturally with an extension

of the complex number system. In fact, this is the crucial

step in the representation of such algebras. The idea of

extending known number systems to new number systems is as

primitive as passing from the counting numbers to rational

numbers. In order to represent the elements of graded Lie

algebras it is convenient to introduce the concept of a fermi-

onic number. We will customarily denote such a number by the

symbol 0. This is very similar to the procedure by which we

introduce the symbol i in order to be able to represent the

complex numbers. But for our purposes we introduce four of

these fermionic numbers 0a(a=-4, ... , -1). We must specify

the algebraic properties of these quantities. Once again we

have the analogous procedure for the complex numbers where we

specify

i -1 (5.1)

But for our purposes, since we have four of these "new" numbers,

we must follow a procedure which more closely resembles the situ-

ation with quaternions. Thus, we specify that the fermionic

numbers satisfy the equation below.

fL,&Y 0 (5.2)

Thus the product of two independent fermi numbers is independent

of both 1 and e. Similarly the product of three independent

fermi numbers is independent of 1, 0a, and oa6b(a<b). Thus we

see that the elements

1ee99' & O A (5.3)

for a<b<c<d form a Grassman algebra. Also we see that the

product of more than four O's must vanish.

Having introduced these four independent fermi numbers we

now consider another structure, a fermi-bose superdpace. A
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superspace of particular interest is an eight-dimensional space

{XM:tcom , X)} where the Om's are the fermionic co-ordinates of

superspace and the l's are the bosonic co-ordinates. Further-

more, we identify the bosonic co-ordinates with the co-ordinates

of space time.

There is additional structure to this space. In identifying

the bosonic co-ordinates of superspace with the co-ordinates of

spacetime, we have specified how that sector of superspace trans-

forms under Lorentz transformations. We do not want the fermionic

of superspace to be an internal space but to be a nontrivial

representation of the Lorentz group. This is achieved by assign-

ing the fermionic co-ordinates to the spinor representation of

0(3,1). Thus, the generators of the Lorentz transformations on

the superspace are given by

( L,)'zO ÷,j+Y (yabot4 ')OX E0

B
where we have introduced the constant super matrix (L )B. In

order to interpret this expression we have had to introduce a

Majorana representation of the Dirac matrices. Furthermore,

we have chosen a representation where complex conjugation of a

Dirac spinor is equivalent charge conjugation. This implies

that the charge conjugation matrix is simply -(yo). The negative

of this matrix has been used to raise and lower the indices of

the fermionic co-ordinates

-y (5.5)

anJ the gradient with respect to these co-ordinates

(596)
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according to these rules. Thus we have a generalization of

the Minkowskian metric given by

= [(Yi 
] -(5.7)

With this eight dimensional superspace as a carrier space,

it is possible to construct a differential representation of a

graded Lie algebra. The generators of this algebra are

S = -z[ ci"'a,, +,

P =-j9

But the bracketing operation for these generators is not the

usual Lie commutator. Instead, it is necessary to introduce

a graded Lie commutator which we denote by [ , }. Before

defining this operator, we define a mapping a from the set of

generators to the set (0,1). Let A be a generator of a

graded Lie algebra. We define a such that

1; if A contains an odd number
of fermionic factors

a(A) E
0; if A contains an even number

of fermionic factors and/or
contains bosonic factors

The graded Lie bracket is defined by the relation

F A,8} = AS3 -- &-) 'Ws1BA (5.9)

so that it is simply a commutator unless both operators are

fermionic. Under this bracketing operation we find the following
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algebra.

PI, P }= c)

[PA, Mel = -i P + i W P,

[ MXMM, hiM +} = -i r+ M

Ki fr X M + i Y) M,

UPrS} =0

[ M , '}= A( r- ", S"

E S'", S 0, = -( 'D)'" "Pm (5.10)

The first three relationships are the usual ones obtained for
m

the Poincard group. The fifth one shows that S transforms like

the fermionic sector of superspace as the spinor representation

of the Poincard group. It is the last relationship which is

most remarkable. We see that the product of two successive

fermionic translations is an ordinary bosonic translation. We

may apply the fermionic translation to the eight-dimensional

superspace. Let C" be a constant, real fermi number. Under

the transformation, 7(6 )

T(e) = ..sqp i 5J sx=cp [i 'r n5J (5.11)

the superspace transforms as

X' ttp iS1JX tq.L-iFSJ

(+''"X)= (o"+c 'j(9) ) (5.l)

where the second line is for infinitesimal values ofe . In

order for the transformed superspace to be real, we must inter-

pret the action of complex conjugation in a new manner. That
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is, complex conjugation on the superspace not only has its

usual action (i++-i) but also re-orders products of fermionic

numbers. With this redefinition, the factor i(ey6) may be

considered real and the reality of the superspace is preserved.

Thus, we see that the eight-dimensional superspace pro-

vides an adequate carrier space over which representations of

the Poincar6 group may be constructed. The entire conformal

group may also be represented in superspace. Consider the set

of generators given by

D -- i xi' R, + & o34

h4Ki t9 QgeVX + Zx YYV

-i ie rA + t(OO) 1 9J

E)tv3 + j (cz, ) (5.13)

It may be verified that these generators satisfy the commutator

algebra

LD,D} = UPPV} = ,,K}= C , M, 0

roPrl= i'P,D,

PM , = i P1 + i r ,

tPI&,K}= na.irvD - iaM v

C w6alsivJ~wI ljx vI+ i IvKMM1 1

.- i i rrMuiv +i n.>.frMtga (5.14)
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which is, of course, the algebra of the conformal group. But,

we have not considered the results of bracketing the fermionic

translations with all of the generators of the conformal subgroup0

If we bracket D with SM we find.

E D, S'"}I = i I 5m(5.15)

On the other hand, the computation of the special conformal

generator bracketed with the fermionic translation generator

yields

[ K S } = - (V R" (5.16)

where

- i[ V( Yf - * (a) Dn - t (eas) (y5a)"

(5.17)

Thus, we must add another fermionic generator, Rn, which we

may refer to as the fermionic special conformal generator.

This new spinorial generator satisfies the following bracket

algebra with the conformal subgroup generators.

E D, R'J = - i R m

[ P,, 1Rm' - ( 4) on nS

[PK,,R'"} 1
LKrR m h0

[Mr,IR'} = -L - (5.18)

If we bracket Rn with We, we find
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[S% R"D} Ur( ) "D-E) i (ocr vy ) M  ,lr + 4 ( ySy )*fT l

sf =(5.19)

Now we find a new bosonic generator, i, which we may call the

generator of chiral transformations. This generator has the

algebra

[ D fl =EP Il = [ Kr-f[MnE vfh=O (5.20)

with the conformal subgroup generators. For the spinorial

generators we find

r ,SM } = -(Yv nS

[ rR, R'"} = (yS)'" p R(5.21)

Finally the bracket of it with Rn gives the result

U Rm , R "} = t(tY )" K s(5.22)

and we see that the graded algebra has finally closed. Thus,

we have obtained the full, twenty-four element, graded Lie

algebra of Wess and Zumino[17].

It can be seen that the eight-dimensional superspace

admits this graded algebra in the same way as Minkowski space

admits the conformal algebra. It should be noted that the con-

formal subgroup does not completely fix the superconformal group.

This can be seen, for example, by noting that the transformation

K &--pK,+ a 6e 6Y, 9 + p (ism Z, (5.23)

will leave the conformal subalgebra invariant for arbitrary

bosonic values of a and 8. But under this transformation the

complete algebra would require the existence of spinor-vector

generators in order to close.
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It is possible to illustrate the superconformal group

in a very concise manner. We may classify all of the generators

according to their Lorentz transformation properties and dilation

properties. The result of this classification is illustrated

in the diagram (4). This diagram shows a marked similarity

to a weight diagram in SU(3). It can be seen how the fermionic

generators are the "square root" of the bosonic translation and

special conformal generators. If we borrow on the SU(3) analogy

a bit more, we may say that the fermionic co-ordinates of super-

space describe the "internal degrees" of freedom for a point in

spacetime just as quarks describe the internal variables of

hadrons. Thus, superspace may be regarded as an attempt to

describe a spacetime composed of nonclassical points.

Within supersymmetry, an important role is played by an

operator which may be referred to as the fermionic gradient.

Explicitly, this operator is given by

[ C)-i & ( e)' (5.24)

and it may be shown that this operator satisfies the relations

below.

[ P,D"} - [S ,D'} = C

L MrAvUti(O ( ar, w Ln)D(5.25)

This gradient operator, unlike the bosonic gradient, is a repre-

sentation of a nontrivial algebra. We may demonstrate that

c o 6 } = . ( LY L 9(5.26)

from which it follows that

[D:,D }= 0;*D ,D1 =LiO yyy*j (5.27)

where D 4 s (l y a

Additionally, it follows from definition that
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Figure (4)

K JPA&

I C

E Bosonic generator

OE Fermionic generator

Diagram illustrating the generators of the super-

conformal group. The classification of these operators

has been made according to intrinsic spin and dimension-

ality.
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D'D' = atb'(' Y')" + I (-.)'' (to)

+ j ( Y 5yo) ( 5y 4- -+ (y SyM4y)(yYSYD) (5.28)

With this relation as a starting point, there are a number of

identities which one may prove for the fermionic gradient.

Some of the most important ones are

O 7,D = at1'd
D arvD = 0

D(O D)=(DD)D -
D'(0 'D) = - (toD) (ysD) + iZ. (rZD)
(D Y'Y)0'= - COD) (YYD)a - a a (YSCr'taD)
(co)(vsO)'= - (i5Y5D) D'
D' ( b 'Y, D) = -( DD) ( Y'Y, D) t-i.16 ,-(Y -D)

(OD)(DYY'YD) = - ( DrYSD) (toD) = -ia '04 ( 5 Y'D)

(D)(D5YSD) = (bV 5 D)(oD) = ia a1r (t 5 rf'tD)

(tYY(D)(tYDD) = + + ( , ?-V a,,)

+ 2. E,,, '( S

= - (bYSD) t

(o(OD) a = - 12. ('#0) 1(D)
(5.29)

(no?' = + at' (DD)
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The algebra of this derivative will play an important role in

the construction of Lagrangian models.

Since this derivative is fermionic it obeys a generalized

Liebnitz rule,

)}= (D 4P) t C#, (D)'t () (5.30)

where the plus or minus sign is chosen depending on whether

01 is bosonic or fermionic.

The representation of the Dirac matrices which shall be

used throughout is given by

yrA (ctsct LI, c',0 atvLrcr 3 )

I .1t tF f4rv y= SyIOYIY2713

thaw.= iiryrY - 1 YIJ jy'tyat4)n t f ofi

then the full set of Dirac matrices is given by

1 yr
ysy t

I 7

In this representation we find

fyr yv j = y v ; y% P = (-1i)

Under hermitian conjugation, these matrices transform as

I t =.I

Ye~t = y 07yya

Gy y

( y~y~t =yOySylyo

(5.31)

(5.32)

(5.33)

(5.34)

r A W

t Y*Cr',14%
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Furthermore, under transposition these Dirac matrices have

the properties

(Y') = - (yo)

( yyr)* = ( yy4)

(yOyS)V = - ( yyS)

( yyt)t- - (yoysytt)

( YOcrrv) = ( yo r--v) (5.35)

where t denotes transposition. For this representation, there

is an orthogonality relation,

UJilU t
(5.36)SAf

if we restrict a11' so that p<v.

completeness relation given by,

b 5

This in turn implies a

* A$ (lEA) rA")1

This equation can next be used to derive the following Fierz

rearrangement matrix.

1
4T

S

1

-4

6

4

1

V

-l

-2

0

-2

1

T

1

0

-2

0

1

A

1

-2

0

-2

-l1

p

1

4

6

-4

1

s

V

T

A

p

The bilinear covariants appropriate here are

(4i rw t)( * re ft.)
$( ii, a-7p) C( 9: O'fY I
( 'Y'L"')( * Y V'Y, 4)

y yY ) s +

(5.37)

(5.38)

S(1

V(1

T (1

A (1

P (1

2

2

2

2

2

3

3

3
3

3

4)

4)

4)

4)

4)
(5,39)
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Note the minus sign prec&cLing the matrix is the consequence of

the anticommutivity of L -, 1T2, T3, and TP4. Furthermore, the

sum on p and v in the tensor T is unrestricted.

Under charge conjugation, time reversal, and parity

transformations, the following transformations may be defined

for a Dirac field T(t,)

C: 4-t, ) -+ -(yO)[ (tr)1 = 4*(t,7)

P: e, V) -~ Yr* rv(-t,z)

P: f(ti - i?**(, )(5.46)

Therefore it may be seen that

C T P 4 (t,z) -+ 5 (t, ) (5.41)

The fermionic co-ordinates of superspace transform as the

components of a relativistic spinor. This implies that the basis

of a grassman algebra which is given by

1 ; ; 9G & e C 9 ',0 0 (5.42)

(a<b<c<d) does not transform irreducibly under a Lorentz

transformation. But the basis given by

1 ~ 5 ; qy; s , . ,57S ,9; 59e C;(30)(5.43)

does transform irreducibly. The elements of this basis are

simply linear combinations of the elements of the previous basis.

It may be noted that the symmetry properties of (y oy) and

(y"a ) preclude the possibility of the vector or tensor from

entering this basis.

With the use of the Fierz transformation, it may be shown

that

e e = 4[ G(y)" -6+ ( v'ri)"Gve + (Y -"sr'y,e 3
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OY& O = - Oo (vse6)& e vY ee e = -be (v 5 -y'or

g~~loe .V~h.YA sy)6ysocr apy)al6yyY~ae e6 ee=1O ]C~(yy)(~o yy~.afyoeJ(bo)t

I I QaGc)
(5.44)

where the e -tensor here has its usual properties with
..4 _3 _2 .. 1

The following multiplication table for bilinear products

of the fermionic co-ordinates may be derived.

o ry e

0

0

0 0

0

0

-O 'lV (C02

(5.45)

In manipulations of superfields the properties described above

will often be used without reference.
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VI. Superfields and Known Models

Just as it is possible to define fields in ordinary

Minkowski space, it is possible to define fields in superspace.

If such a field may be expanded in a power series, then because

of the anticommutivity of the femionic co-ordinates the expansion

must terminate in the 0 variables. Thus, we are led to define a

superfield by the expansion

(X)=+ 0P%) +#&&xF4) + i -9Y9 Gx)

+ - O e AbA;(x) + 00 0X,t) + 2 (e)0D,(x)

(6.1)

where the label J may be an internal index or a Lorentz index,

either vector or spinor. A single superfield contains boson

and fermion fields as components. It should be noted that this

form is unique with the assumption that the superfield has a

power series expansion. Superfields may be transformed in a

manner that is analogous to the procedure for transforming

ordinary fields. For instance, a superfield may be subjected

to an infinitesimal dilation. The first order variation in the

superfield will be given by

= Ax(z +ie"a,, + (6.2)

where X<<l and d is the intrinsic dimensionality of the

superfield.

Let a scalar superfield be subjected to an infinitesimal

fermionic translation. When this is performed on the expansion

given above, we find
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SA() = 2.; SDx)= - &$Xc)

&P(%) =2i[ F(%) -i Y'aA(x) + Y' A g.) + iy'G(0)JE

S Xteo={[Ehz) i 7xF() + iV o"" &ME,t,7 A'(t)
Y7,17axG - ii ' " A, Wl E (6.3)

It can be seen that the fermionic translation induces a rear-

rangement of the components of the superfield. Now it may be

noted that the variation in the last component of the superfield

may be written as

(= 3, -iC. E t)i (6.4)

for a constant spinorial parameter e . This property will be

of particular importance to the construction of supersymmetric

Lagrangians.

It can be seen that the multiplication of superfields is

closed. That is, the product of a number of superfields is

again a superfield. More interestingly, the fermionic deriva-

tive acting on a superfield produces also a superfield. This

property is trivially satisfied by the bosonic gradient. From

these properties it follows that a Lagrangian constructed from

products of fermionic derivatives, bosonic derivatives and super-

fields is itself a superfield. The last component of the La-

grangian superfield will therefore change by a bosonic gradient

under a fermionic translation. Thus, an expression of the form

Sdrk 4(rmiXn4+ tiDM#) (6.5)

will be invariant undez a fermionic translation. The four powers
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of the fermionic derivative just extract the last component

of the Lagrangian superfield. Thus, the quantity

Sate4+ (or)'(6.6)

should be thought of as a generalized measure for superspace.

In eight-dimensional superspace, however, the expansion

of a superfield given previously does not transform irreducibly

under a fermionic translation. It can be shown that superfields

which satisfy the equations

k (it AY Dt (X) = (6.7)

transform irreducibly. Such superfields are known as chiral

superfields. All chiral superfields may be written in the form

where the exponential is defined by its power series expansion.

For chiral superfields one may deduce that the term of order

(00) is transformed by a pure bosonic divergence under a fermi-

onic translation. Furthermore, the product of any number of

superfields, all of the same chirality class, is again a super-

field of the same chirality class. The fermionic derivative of

a chiral superfield is not a chiral superfield, however. On

the other hand, the bosonic derivative acting on a chiral super-

field does produce a chiral superfield. The product of two

superfields of different chirality produces a general superfield

and not a chiral superfield.

With some care, it is possible to produce chiral Lagrangian

superfields. For these Lagrangian superfields the quantity

S d' i (50) (6.9)

is the generalized superspace measure.
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For each of these superspace measures it is possible to

define a super-delta function. For the non-chiral measure we

define

9)..2. &1,1.)

(x) = i (eo) S x) (6.10)

as the super-delta function. It may be verified that

d X4J(D) 2 61 (6.11)

For the chiral measure the super-delta functions are defined by

1 5 (+) (6.12)Stpx) = + 19(1ktr ) e 6 (tx) (.2

and can be shown to satisfy the equations below.

(D)s(x) ~= 1 (6.13)

Now we may begin to consider Lagrangian models in super-

space. The simplest superfield is the scalar superfield.

@(X)= Ax) + 5 o(x) + teFct Y-+ L4 &rseGx

+L-WOy"GA,jX)+T99eX () + r(6) 0(X) (6.14)

But as we stated previously this superfield is not irreducible.

It has been shown by Sokatchev[18] that for superfields of arbi-

trary spin that it is possible to construct projection operators

which project irreducible components from arbitrary superfields.

For the scalar superfield these operators are

n = jja (aD)5(FD :y')D (6.15)

l =ic +- S(DD)Q a(6.16)

and it can be seen that these are integro-differential operators.

It can be shown with the properties of the fermionic gradient

thAt these operators satisfy the relations
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(I)fl-) = rtT (TTt =~ 0

(6.17)

This justifies the identification of these operators as pro-

jection operators. Using the operators I+ orfTl_ we may define

chirally positive or negative, Lorentz scalar superfields.

4%jx) TT fP(X) (6.18)

These superfields are given by the simpler expansions

+ = A.,() + i O(* 's)ts + e(tv'G F

+ jj ( ) a tA (x)

-~~p[46($&J41Apt 4A(I Y)W+iG (t7VFi(6.19)

It should be noted that chiral superfields are intrinsically

complex.

The simplest supersymmetric model known is the Wess-Zumino

03 model. The Lagrangian for this model is

= dxkCDD)14+&i + 4 M.(DD)f *

+t ( D){ + + (6.20)

where ++=(-)* It can be seen that the first term is of the

nonchiral type; whereas the final two terms are chiral types.

The restriction that relates the positive chiral superfield to

the negative chiral superfield insures the hermiticity of the

Lagrangian. In terms of components this restriction implies
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that A+=(A_)*, F+=(F_)*, and W must be a Majorana spinor. The

Lagrangian may be expressed in terms of the component fields.

Some calculation reveals

D)= -IaA11 + i ir qtP + IF 1,

Mir D)4+ .t i IJM.(AF +A*F* - qi)

(OD) 1)+ E 2= At + (A*) F *-jAJU(+v t

-j \ yi$] (6.21)

Now it can be seen that the field F is an auxiliary field

which may be eliminated by the use of its equation of motion.

F + M. A * + 9. ( A*)2'= 0 (6.22)

When this is done one obtains the Lagrangian in the form

-q:1A14  - .M, ( A + A )Al2

[A i(i + I)% + A* -Y5) .(6.23)

where the spinor field has been rescaled by a factor. This

model has been studied in detaill19] and it can be shown that

it possesses some rather remarkable properties when quantized.

Aside from the work of Adjei and Akyeampong[20], the only

theories studied thus far are those in which matter superfields

are assumed to be chiral, Lorentz-scalar superfields. Since we

are interested in the spinor superfield, in particular, it is of

some importance that we review the spinor superfield model of

Adjei and Akyeampong. This model describes the interaction of

a chiral, Lorentz-spinor superfield with the chiral, Lorentz-

scalar superfield of the model described above. The chiral,

Lorentz-spinor superfield is given by
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(9,x = L pL ex: $eI{ 4>4(x) + o k c()( ' r')e

+ j 9( V )G 4 (x) 1 (6.24)

where and ( are Dirac fields which are not themselves of

a chiral nature. The sixteen-component Duffin-Kermmer-Petiau

field is given by

c((x) = ax-iY trx) + LjC3r- krv(%)

+ y sy .a .) t V5 p(z) (6.25)

The Lagrangian for the free spinor superfield of this model

can be expressed in the form

+ 4f AJKI-d] (6.26)

and the interaction of the spinor superfield with the scalar

superfield is given by the equation

F)D 0+ *4 a J(6.27)
with 5 -as the scalar-fermion coupling constant.

Unfortunately this model turns out to be unrenormalizable.

This can be partially understood by considering the propagator

for the free spinor superfield. One may add to the Lagrangian

the following chiral source terms

S9xi(DbD)[ 'ti+ + + .. + I.c. 1 (6.28)

To obtain the free spinor superfield equation of motion, we

simply vary the part of the Lagrangian that is quadratic in the

spinor superfield. This leads to the equations
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- (OD) J (- 0 + aM) a + (6.29)

These coupled equations may be replaced by two "second order"

uncoupled equations

- (.-~+art)J -- {DDz) (6.30)

We may evaluate the first line of this equation by noting that

the projection operators TT, may be inserted between the "second

order" operator and the spinor superfield. Then by referring

to the properties of the fermionic derivative we note

(6.31)

which implies that solutions to the coupled equations are,

=+M&. [-ji'Mi[(L+P2) . ~b~r 4 (6.32)

If we let the source functions become chiral, super-delta

functions, these become the propagators of the respective spinor

superfields. By recalling that the fermionic gradient is the

"square root" of the bosonic gradient, we see that for large

momenta this super-propagator approaches a constant value and

is undamped. Thus, naively, we expect to encounter quartic

divergences in this model. A detailed analysis of this model

has shown that, in fact, only quadratic and logarithmic diver-

gences survive and render the model nonrenormalizable.
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VII. The Spinor Superfield and the Hemitrion

The spinor superfield has not been extensively studied

thus far. In the work of Adjei and Akyeampong[20], a Lagrangian

for the interaction of the chiral, spinor superfield with the

chiral, scalar superfield was examined in detail. As far as we

are aware, this is the only work that has been done in this

direction.

We find the spinor superfield of particular interest for

two reasons. First of all, the spinor superfield is the simplest

superfield which contains a component which has not been exten-

sively used in models of the elementary particles. This compo-

nent is the Rarita-Schwinger or hemitrion field. We have

wondered whether simple supersymmetric considerations can gen-

erate a nontrivial model which contained the hemitrion in inter-

action with other fields. For instance, is there a supersym-

metric model, for the electrodynamics of the hemitrion, which

avoids the inconsistencies which are present in a nonsupersym-

metric model[21]?

Secondly, since there exist a fermionic derivative in

supersymmetry, naively, we expect to find a great variety in

the possible Lagrangians one may construct for the spinor super-

field.

Thus motivated by these reasons we shall begin a study of

the spinor superfield.

To begin, we first give the expansion of the spinor super-

field in terms of component fields

F(,xj= ckt) + z)8 + e Aro YrIlz>

+i4tr&Yr0 Y 5, X) +4- 4> ()e *(o) 7tz)(7.1)

where a(x) and (x) are Duffin-Kemmer-Petiau fields. These

matrix fields may be expanded in terms of the Dirac-1 matrices.
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0(()Y- o)- i"tr i)+ LiioMtrvx)+ y 5X a)-Ysp'z

= 5(z) -i Yhvrz) + Cr''t,(%) + YSY dtJz) + iYp(x)(7. 2)

Thus, we see that the spinor superfield contains a hemitrion

(T four hemidions ($ ,i, and-r), two scalars (4, and s),

two vectors (1r and v ), two antisymmetric tensors (t and

t ), two axial vectors (a and a ), and finally two pseudo-
liv 1-y

scalars (.p and p).

Keeping in mind that it is the hemitrion which motivated

the study of this superfield, it is appropriate that we recall

some features about the Rarita-Schwinger field.

The Rarita-Schwinger field describes a particle of spin

3/2. There are two ways in which we may describe such a field.

We may use a multi-spinor Tabc' where a, b, and c are spinor

indices or we may use a spinor-vector Tb where b is a spinor

index and p is a vector index. We shall use the latter descrip-

tion. In either case, however, there are subsidiary conditions

which must be satisfied to insure that the field is an irreducible

representation of the Poincar6 group. Stated another way, these

conditions insure that the field Tbw is purely a spin 3/2 field

and not a mixture of spins 3/2 and 1/2. These conditions are

yr4t,= 0 -t = 0 (7.3)

and give a total of eight conditions. The spinor-vector has a

total of sixteen components and we see that these conditions

imply that only eight components are independent. This is just

the correct number to describe a particle and antiparticle of

spin 3/2. The Lagrangian for a massive hemitrion may be expressed

in the form

1P.[ -cPP16YSYCOray + imc' 6 (7.4)
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and the subsidiary conditions are implied by this expression.

The simplest supersymmetric Lagrangian for the spinor

superfield that we may write is

Sa+iD7'P t s -M 0 11PJ a(7.5)

but this expression completely neglects the conditions which

must be satisfied by the hemitrion. For this reason this is

an unacceptable Lagrangian.

Thus, we must search for an alternate Lagrangian. After

some work we can convince ourselves that

JF c CD)t{PU{Ysr Yarr-LD) -13 M.i4 (7.6)

is a much more promising expression. To see this we may expand

this expression in terms of the components. After some algebra

we find the equation below. The details of the calculation are

found in Appendix V.

I* dzL tMe SY 9r awztP --Y,,r Y4 PVAYr

+ +

+~ 'Y~58Y Y

t~M0 (c4(9q *VFAMYPAP

+ FM 07 f 4÷f- V

(7.7)
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Thus, we see that the usual expression for the kinetic energy

of the hemitrion has appeared. Furthermore, we see that the

unphysical components of the hemitrion are coupled to other

unphysical fields. $ and 7T. We could vary this Lagrangian with

respect to the component fields to obtain equations of motion

but rather than doing this for all of the fields, we consider

only the equations of the two hemidions r and n.

-i'; -{fiMtVyv = 0 (7.8)

which then implies that,

(- el~ m, ~= C 1  .M~ 0 (7.9)

Therefore, these massive spinors are tachyonic (memion<0). So,

it appears that the massive system is unstable. If we ignore this

presently, we may solve for the propagator for the entire super-

field. As in our discussion of the chiral, spinor superfield

model, we first add source terms to the Lagrangian and then obtain

the equation of motion for the superfield in the presence of the

source. We find

[*--AY+Y SYA+D)+1ir ,JP JF(ex) (7.10)

where JIFis the spinor superfield source term. The solution of

this equation is

1 -4#JU5D)

M)Y.[ 5 - 3+351 A YL5 8)( 5 Y 5Y,D)

ST . ] (,, ) (7.11)

Once again we relegate the derivation to an appendix. We may
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note the presence of (92+2M12)1 in this expression. This is an
0

indication that there are tachyonic particles in the multiplet.

From the work of Sokatchev, we know that it is possible to con-

struct four projection operators for the spinor superfield which

decompose a general spinor superfield into its irreducible com-

ponents. Two of these operators are the chiral operators which

we have used previously.

7f8 = t rDD (7.12)

However, for the spinor superfield there are two additional

operators

fli = [i y:(0DJaJ[ I + is7 '',D'D)

=Li 4 (D)iL4+Y rd(Y%D)] (7.13)

and by using some of the identities of the fermionic deriva-

tive given previously, we can convince ourselves that these are

orthogonal projection operators.

These operators may be used to project the spinor super-

field into its irreducible representations

=V TTP 4F7e)0(7.14)
or more importantly we may decompose the Lagrangian by defining

or rlrPr - I "rr Dwr~x D) +va- MlY Y'YL a a (7.15)

Obviously the mass term is diagonal, leaving the kinetic term

as the nontrivial part of the calculation. After a substantial

bit of algebra we can show that

T 7. TT1=-XK- i*1ffl+ IT.1
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1 Zk T 1 = T JF1 i) [1' rT0
Pp' p pPo

] J~J' = -- iys5 ~~{ $

(7.16)

(7.17)

with all other terms vanishing. Using the first four of these

relation, we can see that,

[I +11 C3 CkfTl1+f I x-I. 1  rri (7.18)

Thus, this Lagrangian only makes a distinction between the chiral

and non-chiral parts of the spinor superfield. Therefore, the

propagator should also possess this feature. On making this

observation, we may define for the propagator

(7.19)
E 5 (a) 8)2,.o 1 =+ n p-1 a,3>[ 1-r, +-r.C

pp

E (9,9) k= -&P Pogr

as the relevant projected propagators. When these expressions

are evaluated we find

[$11.0 +I-axtM ~[rY~%

+ "-" (a + . (7.20)

for the non-chiral sector. For the chiral sector we may write

the propagator as a 2x2 matrix

1 lm [ 16 K Do. (9 2a)I j Y5L LrimeC)azj

+ ijr4IM. -1 K (.D2

where T.M K a*
TJ d=emonM.K Me 26-t s t-m
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Now it is important to notice that the non-chiral propa-

gator is independent of the operator J.a 2+2M 2 ] which means

that that sector of the propagator is free from tachyonic parti-

cles. Thus we see that even our second guess at the Lagrangian

must be supplemented by the condition.

[1- + ~D7J) IaTr

(DD) a? (7.22)

At this point, we shall not make another guess. It is

more important to consider the information we have learned about

the spinor superfield. As we have just seen, it is possible to

write an expression which, naively, looks to be a perfectly good

Lagrangian. However, when we solve for the propagator we find

that it has "bad" ultra-violet behavior and in order to be free

from particles of imaginary mass we must put a constraint on the

superfield. The constraint is a gauge-like condition and the

defects of the propagator showing up simultaneously are giving

strong hints about the nature of the spinor superfield.

In ordinary spacetime, if we had written a naive Lagrangian

for a massive vector field, we would find ourselves in the same

situation0 Thus, we are led to the idea that the spinor super-

field must be a gauge superfield.
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VIII. Spinor Yang-Mills Superfields

As we have just seen there is some justification for

believing that the spinor superfield is a gauge superfield.

If this is the case then we have a way of generating a reason-

able Lagrangian for the superfield.

We may recall that the fermionic derivative transforms as

a relativistic spinor under the Lorentz group. This suggests

that perhaps the spinor superfield may be able to play a role

that is analogous to that played by gauge vector fields in

ordinary theories. We shall see, shortly, that in exact analogy

with the covariant derivative of usual Yang-Mills theories, one

may define a "supercovariant derivative" in the fermionic sector

of superspace. More, remarkably, the existence of this fermionic,

Yang-Mills covariantized derivative implies the existence of a

bosonic Yang-Mills covariantized derivative. The truly remarkable

feature about this relation is that it does not require the intro-

duction of independent gauge, vector superfields for the bosonic

components of the supercovariant derivative.

Before we embark on a derivation of this Lagrangian, how-

ever, let us recall some features of supersymmetric gauge theories.

Within the context of supersymmetry there are two possible view-

points as to the origin of Yang-Mills invariance. One of these

viewpoints might be called the "geometric" view. This scheme is

implemented by proposing that the fermionic co-ordinates of super-

space provide a nontrivial representation of some internal sym-

metry group G. This has been proposed by Salam and Strathdee[22].

Unfortunately there is presently no renormalizable model along

these lines[23]. The second viewpoint, which might be called

"nongeometrical", is essentially the same as that encountered

in ordinary Yang-Mills theories within four dimensional space-

time. Here it is the fields which provide nontrivial representa-

tions of the internal group. This problem has been solved for

chiral superfields by Salam and Strathdee and Ferrara and Zumino

[24]. It is this mode in which we are suggesting that the spinor

superfield acts as a gauge superfield.
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Results From Ordinary Gauge Theories

We would like to recall some results from other theories

which possess gauge invariance. We begin from the simplest

of gauge theories, quantum electrodynamics. In this theory,

by the minimal coupling prescription, we introduce a covariant

derivative via the definition,

D, r=,A+ ieA, (8.1)

It is natural to introduce a vector field since the operator

a transforms as a vector under the Lorentz group. With this

definition of the covariant dorivative, we can insure the

existence of a local invariance under redefinition of the

phase of the electron field. The well known transformation is

given by;

~z 14itzA dlZ)

A = AdPLA (8.2)

where A(x) is an arbitrary local function. Next, we need an

expression for the kinetic energy of the gauge field ,A , which

is invariant under the gauge transformation. This is done by

defining the field strength tensor,

F PA = 3A. - aA,-t
and contracting it with itself. With these definitions, we

observe that the identities

[DMDV3 J = 6Fv (8.4)

F J, = -( LI)p 3 DccA (8.5)

are valid.

If we now consider some non-Abelian group[25], we introduce
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a multiplet of vector gauge fields which transform as the adjoint

representation of the group. The covariant derivative in

equation (8.1) is redefined so that

+4 A Tit(8.6)

where Ta is some representation of the group. In analogy

with equation (8.4), we find

[D,ID.,) = FiJE%T,(8.7)

F P = t4A V D a -t cAb,,ACV

- i (LM )P[ 9A, Is2 S a iA' 7 (8.8)

where fb are the totally antisymmetric structure constants ofbc
some Lie algebra.

Gauge Spinor Superfields

We can easily see that the fermionic derivative of super-

symmetry transforms like a Dirac spinor under the Lorentz group.

For, we find the relation

[N x9,D 4"I = &c-rmP D) (8.9)

is satisfied. Thus, if we think about the fermionic derivative,

D , as being a projection of a superspace gradient, a/aXL, onto

the fermion sector of superspace and the ordinary derivative,

a., the projection onto the bose sector; then, in the case

where superfieldsf22j possess some internal symmetry, it does

not seem unreasonable to add to the supergradient the following

quantity

MV =[Aam(GLjJL(8.10)

to form a supercovariant gradient.

ecut*+ ="V/T B -fI+ (8.11)
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In equation (8.10) the inultiplet of spinor superfields, Aa (X),

must transform as the adjoint representation of the internal

symmetry group. The vector superfields Ga are defined by the

equation below.

a air6 c-
+ LL)-Yrk eY cAr w (8.12)

The quantities T have their usual meanings. We may requirea
that the spinor superfields are constrained to be real. With

our conventions, this implies that the vector superfields are

also real. A priori, in equation (8.11) we could assume that

the vector superfields are independent of the spinor superfields.

We will have to justify equation (8.12) below. The analogy

between equations (8.11) and (8.6) is more striking if we

recall that an arbitrary spinor superfield contains a spinor

superfield which is the fermionic derivative of a scalar super-

field. By thinking of this as the analog of the transformation

of the photon field in equation (8.2), we are led to require

that the Lagrangian for the gauge spinor superfields be invari-

ant with respect to the transformation:

S a a a c
a .l - i a D sC ~(8.13)

where 60a is an infinitesimal multiplet of scalar superfields.

Under this transformation, the vector superfields E a change as
1i

W,.16 6 (!P (CrU (8.14)

which justifies the identification made in equation (8.12).

Next, we need to construct the Lagrangian for the gauge spinor

superfield. To this end, we need to employ the generalized

Lie oracket. This Lie bracket is defined by the relation,

[A,&}B = A B - '0 AB8A (8.15)

where cA=(1,0) depending on whether A is a fermi or bose

operator. Using this operator on the supercovariant gradient

then leads to,
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(F ZMZv uBd th (TNL)(VL)Int

where we have used the following definitions

C Aw ? 4 MMJ

aa

+~ c A 6 crt

@MEN-%
- b; bcA4In

F
&0

~dvwi
II-.

IL

& V(1

~Oy 5 LMwN
(8.17)

The term proportional to DL on the right hand side of

equation (8.16) might be called the "anomalous term". It is

anomalous in the sense that it does not have an analog in

equations (8.4) and (8.7). But, the presence of such a term

has an interesting interpretation within the context of dif-

ferential geometry. Such a term can arise from the fact that

we are describing superspace in terms of a noncommuting co-

ordinate basis and therefore the components of the invariant

superspace gradient are the directional derivatives of such a

basis.

There are no nonzero scalars which may be formed from

(R ) '. Therefore, we may form a quadratic and take the

trace over the internal elements to obtain

a 6

SKLIRMN 6a46 (8.18)

(8.16)

F rV

([ J

L

TMN

cr,..A

- 1 3Fn

a b

os bc(CM eac-v
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Therefore, we may take as the gauge Lagrangian the expression,

pbmNKLMN

O ,. = 40D+ ) Li? KLR fL1 J sA (8.19)

where A is the most general constant tensor such that

is invariant. Thus, we have constructed a manifestly
gauge

supersymmetric Lagrangian for the gauge spinor superfields.

As can be seen, there remains quite a bit of ambiguity in this

equation. We expect, however, that the requirement of renormal-

izability will place further restrictions on the arbitrary super-

tensor. We may note that the various sectors of the superfield

strength tensor E a , a , and c a have dimensionalities of
PV mv PV

d+1/2, d+l, and d+3/2 respectively, where d=1/2 is the dimen-

sionality of the spinor superfield in units of mass. Therefore,

various sectors of A must differ by powers of inverse mass.

Thus, we may argue that A must be chosen so that Xgauge is

proportional only to the square of fermion-fermion sector of

the superfield strength tensor. So we may assume that

- tj =;p(ED)UIE J O aCO (8.20)

is the form of the gauge Lagrangian.

However, when this expression is expanded in terms of

component fields, it is found not to contain a term which may

be interpreted as the kinetic energy of a vector gauge field.

Thus, by following the procedure which leads to a gauge theory

in ordinary Minkowski space, we have not, as yet, a complete

gauge Lagrangian. on the other hand, the expansion of the

quantity

-A+9,a (8. 21)

is found to contain the kinetic energy term of a gauge vector

field but is not invariant under a gauge transformation. Under

an infinitesimal gauge transformation this quantity is changed
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by an amount

t4 (8.22)

Therefore in order to have a Lagrangian which is gauge invariant

we must add an additional term to equation (8.21). This additional

term should have the same dimensionality as equation (8.20). We

note that in equations (8.20) and (8.21) two powers of the ferm-

ionic gradient act on the gauge superfield. We also know from

equation (5.28) that two powers of the fermionic derivative may

be combined to yield the bosonic derivative. This suggests that

we may try to add to equation (8.21) a term which is linear in

a The simplest such term is of the form below.

1$/\ A a 6 (8.23)

We may subject this to the gauge transformation and find it is

changed by the amount below plus two pure divergence terms.

iM a'6 (fp.) (8.24)

Thus, it is clear that the expression

1= ( ) raa r(- A4a.1 (8.25)

will change by pure divergences under a gauge transformation.

But this is exactly the manner a supersyinmetric Lagrangian

transforms under a fermionic translation. Therefore, the gauge

Lagrangian for the spinor superfield is

1vaue I4NOD) 1 1ciac, ErikA'$A5 4 1

+ Co 1E '(8.26)

Using either the bosonic or fermionic sectors of the "super-

covariant derivative" we may couple the gauge fields to matter

superfields, provided that the pure kinetic terms for the matter
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superfields are only expressable with the use of fermionic

and/or bosonic components of the invariant supergradient. An

example of an interacting .model is provided by;

Xri sj&C+4Nb){ t[-4-O"-.D4) f (8.27)

where(O is a complex scalar superfield belonging to some

representation of the group.

Thus, formally at least, it appears that we have a solution

to the problem of implementing Yang-Mills invariance for non-

chiral superfields. The gauge, spinor superfields allow the

Yang-Mills transformation of the gauge superfields to be realized

linearly in a manner that is consistent with global supersym-

metry. In previous works done on supersymmetry and Yang-Mills

invariance by Salam and Strathdee and Ferrara and Zumino [24],

the Yang-Mills transformation of the gauge superfield is imple-

mented nonlinearly with respect to the supermultiplet, by intro-

ducing the gauge fields as components of a multiplet of real

pseudo-scalar superfields, X a(X). This allows the definition

of two "phase factors" via the equations

z-zpf I1 V(VY)1(8.28)

whereVEvaa(X)T. Using chiral matter superfields permits the

gauge and matter superfields to be coupled.

(5D) 1 4t+ V1 4 ++ KP-.pLI- jVI P k (8. 29)

We will return to this point at the end of the next section.

It remains to be seen whether our linear approach will prove

as useful in model building as the nonlinear one. We are

presently studying this question.

Yang-Mills n-beins and Supersymmetry

In ordinary Yang-Mills theories, we have a set of gauge

fields, A a(x), and a set of generators, Ta, which belong to
pa
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some representation of a compact, semisimple Lie algebra. At

each point in spacetime, we associate a set of "internal n-bein"

fields, C (x), which are given by the expression

41 A -i~~d~~A~vT'ai'Z(8.30)

where we have explicitly exhibited the matrix indices i and

I. That we should recognize this as an n-bein for the internal

space is made plausible by observing that we may define a

connection r in the usual manner,
}iI

d e L dx 7 iIT e eL(8.31)

so that the equation below is valid.

0o = 44 MPDt6 /=r( 
0 r - FMI 7) (r (8.32)

Now we may perform the differentiation that is indicated in

equation (8.31) and substitute the result into equation (8.32)

to find

D, =+i Aa T&(8.33)

which is the usual expression for the covariant derivative in

a Yang-Mills theory.

We now observe that the "internal n-bein" concept easily

generalizes in a flat, bose-fermi superspace. Indeed, we may

replace equation (8.30) by the expression,

(!X) t+Jsct )T&irnP r (8.34)

where X is some point in the superspace. Here we can see

that it is crucial that both spinor and vector superfields are

present in order to define the supersymmetric generalization of

the line integral.

Equation (8.34) is reminiscent of the phase factor in

equation (8.28). It appears that we may make some identification
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between va and the supersymmetric line integral. The fact

that chiral superfields couple to the Yang-Mills group beins

is analogous to the coupling of ordinary spinors to the

vierbeins of gravitational theories. Thus, chiral scalar

superfields may be viewed as Yang-Mills spinors.

It is obvious that the "internal n-beins" are nothing but

Yang's gauge phase factors[26). This in turn implies that the

usual supersymetric "phase factors" discussed in the previous

section may also be identified as a supersymmetric version of

the Yang gauge phase factor for chiral theories.

This viewpoint suggests a whole class of supersymmetric,

chiral gauge models which have not, as yet, been explored. One

could consider a chiral model where the matter superfields are

chiral spinor superfields. The gauge superfields may couple

to these matter superfields through the chiral, gauge vector

superfields. An example of such a model is given by

+4(o ' i~7~÷v- 0 I%4.+ WCJ(8. 35)

where for simplicity we have used the notation of Salam and

Strathdee[243. In this expression and @ _ are independent

chiral spinor superfields which belong to a representation of

the group. An interesting point about such a model is that it

easily admits the existence of a conserved fermion number. It

would also be of some interest to see if this model is renormali-

zable in view of the model of Adjei and Akyeampong[20]. It is

clear that the free propagator for the chiral spinor superfield

here is just the Dirac propagator. This is to be compared with

the propagator for the aforementioned model. Therefore, naively,

we might suspect that the model of equation (8.35) may be renorm-

alizable.

As we have just seen on a formal level the spinor superfield

in eight-dimensional superspace may be a gauge superfield for

I,
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internal symmetries.

At this point, we may continue our investigation of the

spinor superfield as a gauge superfield, but in 1+1 dimensions.

The superspace appropriate here is four-dimensional. We will

shortly see that in this superspace that the analog of a chiral

superfield does not exist. This is a consequence of the absence

of a nontrivial y5 matrix. However, the Clifford algebra repre-

sented by the fermionic gradient in four-dimensional superspace

is similar enough to that of the eight-dimensional superspace

so that there exists a gauge transformation on spinor super-

fields which involves the fermionic derivative. It is this

transformation which is used to implement the Yang-Mills

transformation of the gauge superfield. We will repeat the

argument of the previous sections and construct the Lagrangian

for a spinor superfield which is the gauge superfield for a

U(l) symmetry. When this Lagrangian is expressed in terms of

ordinary fields we shall find that it contains a gauge vector

field, a Majorana spinor field, and a Hertzian tensor field.

There are some differences between the gauge, spinor super-

field in the two superspaces, however, For instance, we will

find that it is possible to use more components of the super-

field strength tensor in four-dimensional superspace than in

the eight-dimensional space. This is possible because the

dimensionality of the gauge spinor superfield is smaller in

four dimensions. Also we will find that the Majorana spinor

which is associated with the gauge field may be massive without

the breaking of the symmetry. This feature appears unique to

the four-dimensional superspace.
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TX. The Spinor Superfield in 1+1 Dimensions

A Four Dimensional Superspace

Let us consider a world which possesses a single temporal

dimension and a single spatial dimension. Therefore, the

analogs of Minkowskian four-vectors are two vectors of the form;

(X )(9.1)

We may introduce a metric which has diagonal elements -1 and

1 for p=v=O and 1, respectively. The Lorentz group will

consist of a single boost, M0 . But the Lie algebra of the

Poincar6 group will retain its form since it is, explicitly,

independent of the number of spatial dimensions.

[P P1= 0 UMA ,P J= i riqP, vP

[MX,,M,.. = iJK,<,M v-ikllN r+LihrM,,K

M= (9.2)

Next, we observe that the fermion components of the generalized

translation operator is given by the usual expression,

+= -i[r 3, +y( e J9.3

if we now understand that the fermion space is also two-dimensional.

In order for this expression to have meaning, we must introduce a

set of Dirac matrices in a Majorana representation. One such

representation is given by

where I is the two by two identity matrix and a are the Pauli

spinor matrices in the standard representation. In this represen-

tation y0 is antisymmetric, while yyp and y0 a are symmetric.

Thus, the elements of our superspace are four componented super-

vectors

1 (9. 5)
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with two fermion components and two boson components. The

concept of a superfield may also be generalized. The scalar

superfield, for instance, is given by the expansion;

Q ,9) = A(x) + O$cr) + i 05 F0 z) %(9.6)

The fermion components of the invariant superspace gradient

will then be given by the usual expression

= [ (yO)'"" 9 - j (yv9)'" 3J (9.7)

and will satisfy the identity

D 6 = jj (YY)' 3 + ( ( )(9.8)

wherea (yO)abD b This equation is very similar to its four

dimension analog which possesses two additional terms, on the

right hand side, that are proportional to y5 . We can under-

stand the absence of these terms here by making the observation

that for two-dimensional spinors there does not exist a ''

matrix. From the above identity it follows that Dy D=ia and

Da D=O.

In supersymmetric theories in 1+3 dimensions, chiral

superfields have been used extensively in constructing super-

symmetric models. Here we see that in 1+1 dimension, such

superfields can not even be defined. From the work of Sokatchev

118], it is known that in 1+3 dimension it is possible to con-

struct projection operators which decompose an arbitrary super-

field into its irreducible parts. We may pursue the same

strategy here and we find that for the scalar superfield in

1+1 dimensions these projection operators are given by.

IT(DD)= 1

TIt = i7(LD = 1(9-9)
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Thus, the analog of the nonchiral part of the scalar superfield

vanishes and the scalar superfield is composed of the sum of

the analogs of the chirally positive and chirally negative

parts.

Now having demonstrated the existence of a well-defined

supersymmetry in 1+1 dimensions, we may begin to consider the

construction of supersymmetric models. The simplest such model

is the analog of the four-dimensional Wess-Zumino 3 theory

[17]. Here, we find that the following supersymmetric action is

such an analog.

S JE[- (DF DD)D)- L ON M. + I (@}F(9.10)

But since there are no terms proportional to y5, we may not

consider this as the dimensional continuation of the original

theory.

Gauge Spinor Luperfields

We now pose for ourselves the task of constructing Yang-

Mills invariant theories in our four-dimensional superspace.

Immediately we see that we do not have the option of following

the approach discovered by Salam and Strathdee and independently

by Ferrara and Zumino[24]. This approach depends crucially

on the existence of a nontrivial chirality operator. But, on

the other hand, the approach which we have described for non-

chiral superfields in eight-dimensional superspace can be applied

to four-dimensional superspace.

We observed that the invariant superspace gradient which

is given by

arm w(9.11)

may be made covariant with respect to Yang-Mills transformations

if we add to it a supervectorVM of the form

(la ') Ta (9.12)
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where Ta forms a matrix representation of the generators

of some compact Lie algebra. Furthermore, in this expression

am and (;a are spinor and vector superfield multiplets,

respectively, which satisfy a certain differential equation.

The analog of that equation in our four-dimensional superspace

is given by,

aIa+ra bntC.
17LDY45 +-ttbtflc.l (9.13)

and we see that there is only one independent gauge field

multiplet, the spinor superfield multiplet. The quantities,

fa are the structure constants for the Lie algebra. Thus,

we are allowed to define a super-covariant derivative,Z1 / XM
via the equation,

=ax,,,+ V (~)(9.14)

and propose that under a Yang-Mills transformation it transforms

as

) ] (9.15)

where O(OX)=Taa (O,X) is an arbitrary scalar superfield.

Now the remarkable thing about equation (9.13) is that if we

look at the transformation induced on the fermion components in

equation (9.15), then we find that the vector superfield defined

by equation (9.13) transforms properly as a vector Yang-Mills,

gauge superfield. The proof of this fact depends crucially on

the relations DryD=iDa1  and (y y 0() ab= y ba Next we may

define a supertensor which is the analog of the usual field

strength tensor. This supertensor is explicitly given by the

expression,

ALC(9.16)
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a, ,a xb )CR S A.l

E EA? c~A A+

L 

A a n Ea-

a a Va F"aCa

41 a. , a V a v (C) + C 
( )& + g-N ( * ,(CZ+ h .t& ( ( .1

(9.17)

and the action for thegauge fields is given by,

x= S x) (OMD) IKL RtMh 1+ ai A K N (9.18)

where AaLjs the Most general constant supertensor which is

consistent with super Poincar6 invariance.

An Abelian Example

In order to examine the content of the previous results

in terms of component fields, we need the expansion of a spinor

superfield. iffla(in ) denotes such a superfield then we find

aa a

where a is an internal index. The fields a and a are

Majorana spin-l/2 fields and cza (x) is a four-componented matrix

field. This latter field may also be expanded.

4 =44t ~(9.20)
c( OC) i ()+ L 3 crttt(x

Thus, we see that the spinor superfield also contains multiplets

of scalar, vector, and antisymmetric tensor fields. Let us, for

simplicity, consider a theory with a U(l) internal symmetry.

If we now use the expansion of the scalar superfield and examine

the transformation of the equation (3.5) we find that the
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component fields transform as

4h'> k-5=A F

t JA ~ W t 71(9.21)

under infinitesimal transformations. From this we see that the

vector field vV is subjected to an ordinary gauge transformation

as expected. In equation (9.18) we may choose the tensor AKLM

so that the action assumes the form

5g~u~e dz4IDJ{ aF, YyrLFv + 7~

+_LM.E E } (9.22)

When this is expressed in component form we find,

85. eMitx 4i$1t> IK va ,- ,~l

- -idMI t# ~ (tr-avzlp45 (9 .23)

Thus, we see that the gauge system consists of a- massive Majorana

spin-l/2 field, a massless spin-1 gauge field, and a Hertzian

tensor field. In passing from equations (9.18) to (9.22) a

judicious choice of the tensor A has been made. Several

factors have governed this choice. First of all we have

neglected terms proportional to |(P. | 2. This term leads to

a quadratic derivative, self-interaction for the spinor field.

Secondly, the relative coefficients of the terms proportional

to F 2 and E "')C yv have been chosen so as to eliminate a term
in equation (9.23) which would be proportional to the divergence

of the tensor field.
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Appendix A

The Ratio me/M1

In Ref. [1], the question of whether anything could be

learned, within the context of the dual, gauge model, about

the ratio me/mP was addressed. In particular the authors

investigated the possibility that an electron which is massless

in zeroth order might acquire a mass due to radiative corrections

caused by the exchange of weak vector bosons. Several variations

of the basic model were considered but none were successful in

this respect.

If we take spin-zero exchange seriously, as in the rest

of this work, we find that it is relatively easy to achieve the

above goal. For simplicity we consider a model with only the

ordinary leptons. Next we introduce two spurion quartets, $

and n, which both couple to the singlets pR and eR. We then

allow $ to acquire a non-zero vacuum expectation value in such

a way that the e-i mass matrix has the form

Since this matrix has a zero eigenvalue only one fermion, which

we may take to be the muon, gains mass in zeroth order. Now,

however, there exist second order processes due to the exchange

of n which gives the electron mass. The Feynman diagram for

this process is given in Figure 5. Obviously the mass of the

electron will be proportional to e2 times the mass of the muon.
0

We decided against using such a process in the bulk of the model

because when we add the heavy leptons, e' and y ' , we find that

m */m ,=Me/mV . This implies that the heavy muon should have a

mass on the order of a few hundred billion electron volts!
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Figure 5. The higher order process which

may be utilized to produce a mass

for an electron which is massless

in zeroth order.
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Appendix B

Higher Isospin Representations
of the Weinberg-Salam Gauge Group

In this extended footnote we want to discuss two points.

If a scalar multiplet which transforms as (2j,j) under the

Weinberg-Salam U(l)mSU(2) gauges, suffers a spontaneous symmetry

breakdown in a gauge model; then the ratio of the squared masses

of the W and Z0  bosons is given by:

provided that only this scalar multiplet spontaneously breaks

the symmetry group. This change is significant, since in a

pure Weinberg-Salam model and C would be given by:

Cv = 1

CA = I - j

The other point we note is, that if we use one of these higher

representations in a model it can not couple to the fermions

in the lower isospin representations. So these new particles

interact only with the gauge bosons and as such may not be pro-

duced except in associated production with the vector bosons.

Weinberg has shown (Phys. Rev. Lett. 36, #6, 294) that the mini-
-l/mum mass of the Higgs boson is of order aG ./2 Thus, if these

particles are lighter than the vector boson, they will be abso-

lutely stable!
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Appendix C

Alternate F-spin Scalar System
for Dual Model II

In the body of this work we arranged the scalar system so

that the F bosons gained the major part of their masses from

the two nonvanishing V.E.V.'s of the scalar multiplets p, and

p2 . These multiplets transform according to the F=1 representa-

tion of SUF (2 ). Here we propose a slightly more economical

scheme. We may replace p1 and p2 by a single multiplet p which

transforms according to the F=2 representation. Explicitly, the

multiplet p is given by:

UPO

which is constructed from the five real components p0 ,...,p4 .
Since p is to transform as the F=2 representation of SUF (2),

we may take as the generators:

crajbc abc

The gauge covariant derivative is then given by:

Da . p -- ip F-T ), ]

Thus, we may construct the following gauge invariant, scalar

Lagrangian;

where the potential U(p) is given by:

tJ(4\p*÷+xa 3 +iX 3 mlp2
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If we now allow p4 to acquire a nonvanishing V.E.V. given by

1cMG we find the following contribution to the F boson

mass matrix:

qh16 L # c I l aF. + IF~a) +

This change causes the F-bosons masses to be given by:

Thus, the parameter d is eliminated from the model and we may

express the parameters a and c in terms of the angle a.

a. = 1 / crot<x

c.J5 2=c

Since we require c to be real, we have the following restriction

on the angle a.

Q<c<3 < 0. 3 5 r 2.

But of course we know from $-decay that a is much smaller than

the maximum given above.
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Appendix D

Derivation of Component Form
of a Lagrangian for the Spinor Superfield

We may begin this derivation by observing that

D -Y -=j(j'^y( ÷kyei>D'

= 'ra+ i yii~ )+ Yaa 4a 1

Now we proceed to calculate the action of these operators on

the spinor superfield.

4s4 Z=-.Y 5 Q -Y'Ye -4erYxAe e-r

's-- a YY - 6e Y 5 a q

-ikSx'eaA +j y5y)9 ECv ySy

-Yi 4 6o 15S Y5YX lD

##rr"G ra3- am,* = toxbro (vp4 Aa- a 9K9AJ#Y OY, YA t aKaaYSX
- b SG( a'- 23 ax ax -L) a 5yxe

-ik(&0)7 ( J Y-2 )

When these three equations are combined and multipled by fy Y

we find

LYSYrDYrAtD4= iY/ +&y'(caYrYr,,--ysrs,)o

+- 46r5 e Y

+ y we py a my--a7
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+ 3(60)2 ( 9 2. a

+Yi n ( i)"8 (Y, Y - O a,)7

Now we multiply by W and consider only the term proportional

to (Ge)2 in the resulting expression

'I rY'Y ([5Y'rD) a =

Tr ( E)"- E A 16 7 roaY ' - i(wR Y YO, r )

-M ( 14VO a, a o- 93)q - (n,Oro . a CLa,)ro '')

Xt i(FIx P" +'ar) x)

where &* is defined by the relation

( -YD* K) I., = (V* o)..,..

The above equation will lead to the desired result quoted.
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Appendix E

Derivation of Superpropagator from

an Equation of Motion

The Lagrangian

'P -Lf- M 0-1D4

leads, in the presence of a source J (OX), to the equation of
motion

=L - ' (Y Y CY sYD) + 5L M. = ,

Formally, the solution of this equation is simply

'(I% ,x) =[/- '.Y"(DY AD)+flM.V' JY(e,vZ)

but the content of this equation is not clear. However, we can
imagine expanding this expression about /7M and in this way we0
are led to an infinite power series in the fermionic derivatives.
Now we may recall the multiplication properties of the operator

Dysy D and this will then imply that the inverse operator appear-
ing above must be equivalent to

'hez~aML (aL 0 S5a)DY)

+ J- A(a) (DD) 2.1J~(e,x)

for some choice of coefficients A(a), B (), and C(). These

coefficients are matrices in Dirac space and are only functions

of the bosonic gradient. In order to find these coefficients

we need only substitute this equation into the equation of motion.
Thus, the coefficients must satisfy the equation.

U- i 5Y'(EY 5r ) + ri 0M.] x

F . Y 5 OY.) +h(tY A (DD)']J = Zr
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Now we may use some of the properties of the fermionic gradient

and this implies that we must have

C - (k.)zr^Br( ,aL- as9r,) = I

A -'B = 0

( s)$Y Aa-r.r d%,Auto-'13B' - { Y5Yr C = 0

The first two of these equations imply that A and C may be

expressed in terms of BP.

o = 1 + ( XyW5P% a - a a)

A = -Y^\3\
The remaining unknown coefficient is required to satisfy the

unhomogeneous equation

Now we may multiply by y ya and use various identities for the

Dirac matrices to obtain

[( a+:La'lY, ++ 4 dp+ p; jg

At this point we could expand BP in terms of the Dirac matrices

and solve for the respective parameters which would enter in

such an expansion. Rather than doing this, however, let us

assume that the solution has the form

B" = c. Y'+ c, +. L a
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and substitute this into the equation for B . Again we may
p

use some of the properties of the Dirac matrices to show that

C 3

Thus for BP we find,

=Bh L2tJx+ 3 4V7AmaK
At this point, we may go back and check to see whether this

solution is unique. This we can do by attempting to solve the

homogeneous version of equation E9. When this is done, one

finds an overspecified system of equations for parameters that

are analogous to c and c1 . Therefore, the only solution to

the homogeneous system is the trivial solution and the form of

BP is unique.

Now that we have obtained the nontrivial part of the super-

propagator, we see that A and C are given by

C = -r10z r m-t.e J

At last we may write equation E4 in the form:

) tThc 5to F 1 teat)xt.D)

This is the form of the propagator given in the text.
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Appendix F

Projection Operators for the Spinor Superfield

As stated in the text, the spinor superfield may be pro-

jected onto four irreducible representations of the supersym-

metric Poincar6 group. The operators which effect the pro-

jections are

8Ia lYDD D(I1t7Y)D

2I -] [1 1 -t) j' Ycr v,(QY',D) 3

T 1 1 gDD)I- y 5r % (7xyD) I

For a complete discussion of the projection algebra for the

superfield of arbitrary spin, the interested reader is referred

to the pioneering work of SokatchevI18].

We may first satisfy ourselves that these operators are

orthogonal projection operators

ITIJ4 = aDDD(YItY)D &5D (iv )D

=w 9++(DD)'(IF Y)DF5(v5D )D')

=( +q.(- 3) TD Y0)D 5o] (*Y)

r,52- ) DE 5 rrn0FY'D 5(t5) Y')D

5[ DD t't( iY ) [) D r-Y 50( rDD ]

5D a D(LLY')t) F D YD + + D)

= +DD ( Y5)D = TI .
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By making the appropriate changes in this proof, we see that

TI ITIf = o

Furthermore, we see that the chiral projectors are orthogonal

to the non-chiral projectors by noting the identities

OD E1- 2- D):'] = [ 1 - 4L (D )2t] DD = 0

OD Y'r v ( Y'Y>D)> Y'o-r ,(DrD)DD = 0

Now we need only to consider the non-chiral projection

operators in order to complete the proof of the projection

algebra. Thus, we need to evaluate

[I A IpODfl { + by d YS,)x

[ 1 - t(DD)J [ + 3 (DYyD) 3 =

f it U 1 - QLAD)* +bC| j5 Y'c--" dr(DYSY,,)

&~ (o--t7-r P) r DYYVsF DY 'YD D 
E= C- ac+3b" c+-- (

164.R3+t

In arriving at this final form we have used the multiplication

table for By5y V DBY>y aD and used properties of the Dirac algebra.

By choosing the parameters a, b, c, and d appropriately, we

may convince ourselves that

(n 2= 1r1  (n,)2 -= 1-0

ITI = 0

This completes the proof of the algebraic properties of the

projection operators.
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Appendix G

On the Geometry of Superspace

Introduction and Summary

There are two well known approaches to the construction

of a model which weds local supersymmetry to a gravitational

theory.

One approach is the gauge supersymmetry approach of

Arnowitt and NathJ27] where one essentially postulates that

the geometry of curved superspace is an extension of the

Riemannian geometry of ordinary spacetime. From this viewpoint,

one is led to introduce a supermetric, g(MNQ,X), which governs

the geometry of curved superspace.

The other approach is the supergravity approach of Freedman,

van Nieuwenhuizen, and FerraraI28] and Deser and Zumino[29].

Here starting from the principles of local supersymmetry and

general covariance, one constructs a gravitation theory from

a Rarita-Schwinger field, the vierbein fields, and the connection

coefficients.

We will now present an alternative to these approaches.

This alternative is very much in the spirit of gauge supersym-

metry. Indeed, we find the basic ideas which underlie gauge

supersymmetry very plausible. Thus, we will attempt to formulate

a theory of a curved, eight-dimensional, fermi-bose superspace.

A few months agoI30, we made the observation that a factoriza-

tion of the most general form of the supermetric, that is consis-

tent with global supersymmetry, strongly suggests that a theory

of curved superspace should be constructed as the generalization

of Einstein's unified field theoryl3l]. It is this generaliza-

tion to superspace to which we shall address ourselves in this

paper.

In the second section, we will study the geometry of global

supersymmetry. This we will do first by investigating the super-

metric of global supersymmetry. Next we will recall some well
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known results about differentiation within global supersymmetry.

These results are presented so as to facilitate their inter-

pretation from a differential geometric viewpoint. Finally, we

study some Lagrangian models of global supersymmetry. This we

do keeping in mind that it is the geometry of superspace which

is our ultimate goal. The conclusions we reach at the end of

this section are that global superspace is a metric space, in

the differential geometric sense, which possesses zero curvature

and constant torsion. It is these final two features which we

interpret as excluding a Riemannian geometry for curved super-

space. We further conclude that simplicity dictates a theory

which is the supersymmetric generalization of Einstein's unified

field theory.

In the third section, we review general relativity from a

very simplistic viewpoint. We undertake this review for two

reasons. First of all, we are interested in demonstrating the

interplay between gauge invariance and differential geometry.

We will show, in an intuitive way, that it is possible to use

only gauge invariance to construct a theory of curved spacetime.

The second reason for this survey is to formulate a stratagem

which we may apply to superspace.

In the fourth section, we address the problem of constructing

a theory which generalizes Einstein's unified field theory. This

construction proceeds in exact analogy with general relativity.

It is shown that the requirement that the local isometries of

the affine super connection coincide with those of the super-

metric places a restriction on the isometries which may be gauged.

This in turns reduces the number of local gauge fields needed

and further allows for the construction of a theory with vanishing

nonmetricity. We also find that global supersymmetry can be

recovered as a continuous limit of this curved superspace theory.

It is noted that complex conjugation seems to play an important

role in the theory of a curved superspace. We suspect that this

has some relation to the fact that there is a connection between
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supersymmetry and twistorsj32]. We end by proposing an action

for the gravitational interaction in a fermi-bose superspace.

In conclusion, we give a brief discussion of this approach

and point out some relevant features.

On the Geometry of Global Supersymmetry

As is well known, the fermionic translations of global

supersymmetry induce the following transformation on the super-

space {XM:Xt=(emXP)}1,

() "' = 19'M+C_

xi -- tj~t lIJ/(1)

By choosing two points in superspace which are infinitesimally

separated, we may deduce that for differential elements the

transformation law is given by

d'' n= o e

d.:x'* = dxJ +ii(ExYte) (2)

With the use of both sets of equations, we conclude that the

square of the generalized line element

c14 = d"'(Y'N),,,, J9fl a k -if(7 9f 4 d9" YO~rnC + [C9jj( yP~t9)J (3)

is invariant under the super Poincard group.

The super Poincard group is the graded group which pos-

sesses as its generators the Lorentz boosts and rotations, the

ordinary bosonic translations and the fermionic translations.

It is illustrated, concisely, in Figure (#6).

In equation (3), the matrix (y0N) must be chosen so

that it is antisymmetric in its indices. This and a generalized

reality are, a priori, the only propertiea required of this

matrix. As such, the most general form of this matrix is
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(Y*N)mn = ( Y*)nn (&,X) + j (x0Y 5XM c!P &e))

+ (YOy ), AY(,X
(4)

S P Awhere 5 , ( , and 4 are unspecified scalar, psoudo-scalar,

and axial vector superfields. We may rewrite equation (3)

in the form

- LXN {X(5)

where ghk is a supermatrix appropriate for the given line

element. It can be seen that the following supermetric sat-

isfies this equation.

-(yo're),; J 1.

(6)

However, we may also proceed one step further and factor the

supermetric. This factorization could proceed in the same

manner as does the factorization of the metric in general

relativity where we write

tz) e 4x) (7)

But, here we shall find it simpler to factor the supermetric

in the form below.

E ..ttfc i ) .. (8)

We will justify this choice shortly.

At this point we must make a choice to satisfy this

equation. Fortunately, however, within global supersymmetry

there are many hints as to the form of the octad E A' The
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name octad or achtbein is appropriate for this supermatrix

since it plays a role which is analogous to that played by

the usual tetrads. The solution which seems appropriate for

global supersyinmetry is

EK (e~z) =

[ 
8?]-a(9)

and this implies that the supermatrix denoted by mKL is block

diagonal and given by

0ThA (10)

Thus, making our choice of factorization and global octads

leads to this very simple result.

Let us momentarily consider the results which would be

obtained if we replace equation (8) by an equation which

contained two factors of the octad. If this had been done and

if we assume the same form for the global octad, then we would

find that n KL would contain an additional term of -i(y 0y 0)
in the lower left hand corner. Having made this observation,

let us return to the justification of the form of the global

octad.

The form of the global octad given above appears, expli-

citly, in global supersymmetryJ33]. To see this, let us con-

sider a function, f(O,X), which is defined over superspace.

A supergradient operator may be defined via the equation
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for infinitesimal de and dx. The components of this naive

supergradient may be identified as

91(g )(X)(12)

Within global supersymmetry, however, it is not this operator

which is used in the construction of Lagrangian field theories.

Instead, one introduces an invariant gradient which we may

denote by VMS Explicitly, this operator is of the form

3 -i(yy'vo)m 990 , ) =, ( D.(13)

and we may verify that this gradient operator is related to

the naive gradient via the equation

= "KvK (14)

The invariant gradient is invariant with respect to both

fermion and boson components of the supertranslation operator,

9 (S P), and therefore satisfies the equation
M- mv

[&(M ) VM} 0(15)

where [ , Idenotes the graded commutator. The invariant

derivative also possesses the property that its action on a

superfield produces another superfield. The naive gradient

does not have this property.

It may be verified that

A A N(6= ELKLREAA(16)

where the only nonvanishjng components of the supertensor

LL are given by i 7 (vyy)j. We may also verify that the

relations

}0(17)

=- (T. LVm18
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are satisfied. The only nonvanishing components of TKLM are

given by i4(yy)kz. We may note also that the relation

TKLM= i[LKLM + L (19)

is valid. Finally, we make the trivial observation that

equation (8) may be differentiated, assuming that D UKL O'

to obtain

9LAMN t LN +&I, L (20)

where Tr=a (L) Ica(M)+a (N)+lj. The assumption that 3 VKL0

implies that the previously undetermined fermion-fermion sector

of the supermetric may assume the form below.

(YD N)AA = K (y)4  + i L (Yy5)AA + M (CysyM) (21)

Now if we make the additional assumptions that L=M =0 and K=l,

we obtain for nKL

A.

(22)

With these assumptions, we may define an inverse supermetric

which is given by

A (e) [L-ii (ree)" rfNf1- f~e)] I
(23)

oA A
and satisfies the condition hik =djL.

At this point, we relinquish, temporarily, the discussion

of the geometry of global supersymmetry. We shall survey,
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now, some Lagrangian models of global supersymmetry. However,

we shall keep in mind that it is the geometry of global super-

symmetry which we are trying to understand.

The simplest of models involves the scalar superfield.

The kinetic energy term of a Lagrangian may be expressed in

the form below.

- LA 711ak 64) C (2 4)

A mass term may be included without difficulty. This Lagrangian

may be compared with the Lagrangian of a scalar field in ordinary

curved spacetime

'- (ai o(25)

It may be noted that in the supersymmetric case the derivative

of superfield couples not only to the inverse supermetric but

also to a bilinear form involving the supertensor T.

Let us turn now to the gauge spinor superfield[34]. It has

been shown that it is possible to make the invariant supergrad-

ient covariant with respect to internal symmetries by introducing

a supervector field. It is possible then to define a super-

covariant derivative

V Oti (26)

where t. denotes a representation of the generators of the

internal group. The bracket of this operator with itself

yields.

. [ L-Zr1 op-IaTL Ml N am+ iq ELM  (27)

where

LM VLSIM -(

+ LV4 Vm }+ 2.TLmN"'VN (28)
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Furthermore, a Lagrangian for the gauge supervector field

has been proposed. This Lagrangian may be written as

T = -{ cTLA[T L,2V r. +XVLAVMJ

AB5L M'

ABKM 0where c0 and c1 are constants and PBK A.J are defined by

the equations.

PABKM [ TKLATLMB TKL8TL M A

5 AVM (VA S 1 -L A)VB (31)

In this model, it has also been noted that the supervector

fields V'ME 'm ' ) may be constrained to satisfy the
condition below.

T"R = (32)

This condition permits the vector components, C of the

supervector fields to be expressed totally in terms of the

spinor components, A m Once again we see that the supertensor

T plays a prominent role. With this we conclude this survey

of globally supersymmetric models.

At this point, it is necessary to assess the information

which is presently at our disposal. We have seen that the

global supermetric may be factored as an octad, conjugate

octad, and a tangent space metric. If this is done, the

tangent space metric can assume the form

( Y'),,,,,33

(33)
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Thus, the tangent space has zero curvature and zero torsion.

This is very similar to the situation in general relativity.

In general relativity, the tangent space metric is the Minkowski

metric. This is why local frames are characterized by the

group SO(3,1). If we assume that the tangent space metric for

local supersymmetry has the form above, then the local super-

frame is characterized by OSp(4I3,1)1351. This is not, however,

the full isometric group of the supermetric. This follows from

the fact that both the octad and its conjugate appear in equa-

tion (8). In the boson-boson sector, the isometric group is

U(3,1) which contain SO(3,1) as a subgroup.

On the other hand, if we factor the supermetric into octad,

octad, and tangent space metric, then the tangent space metric

can assume the form

(Y5) ,0

(34)

This tangent space must, at least, have nonzero torsion.

Thus, we are faced with a choice and if we use general

relativity as a guide, we make the choice in favor of the fore-

most tangent space. This choice implies that if we regard

global supersymmetry as a continuous limit of a curved super-

space theory, then the curved superspace possesses a non-

Riemannian geometry. This is implied by the presence of both

the achtbein and its conjugate in the supermetric. Additionally

if we look at equation (20) we are led to conclude that global

supersymmetry arises as a limit of a non-Riemannian curved

superspace which possesses a complex, graded group as its local

group. Global supersymmetry arises when this space has zero

curvature, zero nonmetricity, and constant torsion. The fact

that the full, local group is complex and therefore may not
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be realized on the co-ordinate basis is in some sense expected.

It is well-known that internal symmetries may be combined non-

trivially with global supersymnetryj36]. On the other hand,

in ordinary spacetime unified field theories have been formu-

lated. A well-known example of such a theory is the work of

EinsteinL3l]. In such a theory the metric may be described

in terms of complex tetrads. Also, there have been indications

that curved superspace is non-Riemannian every since the work of

Woof37] and Srivastaval38].

Gauge Theory Concepts and Differential Geometry

At this point, we shall review general relativity and

demonstrate, in a very simplistic manner, the interplay between

gauge invariance and differential geometry. For a rigorous

treatment of this topic, the interested reader is referred to

an excellent paper by Choj39]. Our goal here is to show that

by applying a few simple ideas which are derived from gauge

theories, we are led directly to general relativity.

All gauge theories are characterized by the presence of

bein fields and gauge fields. The gauge fields appear as

coefficients in the definition of a Lie valued operator which

may be referred to as the fully covariant derivative. The

bein fields may be denoted by e(x) and we must specify the

group or groups for which these fields provide a representation.

In all gauge theories presently known, we require that

fle(x)= 0 (35)

where J is a symbolic notation for the fully covariant deriva-

tive. The operator t may also provide a representation for

groups other than those represented by the bein fields.

As an illustration of these points, let us consider

electromagnetism. For electromagnetism, the group is U(1).

If we choose a complex representation, the bein field may be
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represented by a complex field, e(x). The group U(1) pos-

sesses a single generator. Thus, we introduce a single

gauge field and define the covariant derivative by the

relation

,iAc(x)t (36)

where t is simply a real number, In general, we introduce

one gauge field for each independent group generator. The

requirement that the covariant derivative annihilate the bein

field is simply given by,

[ 9,A + L. j A,(x) t I e(x) = 0 (37)

This equation is easily solved to find

e(x) = tpE-itJd &A t) tJ (38)

which simply is the Yang gauge phase factor[26], for the

group U(1). Thus, we see that the bein field is completely

determined by the gauge field. This very simple argument

generalizes to all internal symmetry groups in a straight-

forward fashion. We simply replace t by representation

matrices of the group generators. The condition that the

covariant derivative annihilate the bein is now

,e + itA r[(ta)"jei Ct ) e 6,]= Q(39)

and once again we note that the bein is completely determined

by the gauge field. The feature which allows this is the fact

that the bein field is only a representation of a single group.

Let us now turn to general relativity. Here the bein

fields ea *(x) are simultaneously a representation of SO(3,1)

and GL(4,R). Stated another way, we may say that the bein

transforms as SO(3,1) on the undotted index and as GL(4,R) on

the dotted index. Thus, in the definition of the fully co-
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variant derivative we need a set of gauge fields for both

groups. The condition that the covariant derivative annihilate

the bein field now takes the form

9~e>+ (w %et ~ A(40)

where we have introduced all the necessary gauge fields. The

new feature which has entered here is that we still have two

fields which may be considered as independent variables. For

instance, L may be expressed in terms of e and w.
) p.- iL APr=. (4 1)

= L ~~= 7 of [aiet. wo'ed

In this equation we have introduced the metric as the following

bilinear form.

= e%(x) C (x)(42)

It can readily be seen that the metric possesses a group

of isometries. That is, we may perform the transformation

e i -e(43)

and if U is an element of SO(3,1), the metric will remain

invariant. The requirement that L should also be invariant

under this set of transformations leads to the transformation

law

( W UW*L -' (44)

which is the usual one for a gauge vector field.

Since the fields w transform like the generators of

SO(3,1), it then follows from definition that

Thjw -tht tegAugefi- Latsa henti 0 (45)

Thus, we see that the gauge field L acts as the connection
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coefficient for the metric in the differential geometric sense.

It can further be seen that under the transformation

WKi C(46a)

the response of the connection is given by

LA ~-x g* aWU ~ 4 + ;itjkq1(4PL06b)

This may readily be identified as the transformation law of

an affine connection coefficient. We may decompose L into

two other quantities, r and T where

L i I(47a)

The Riemannian part of the connection, r, is not a true tensor

since it transforms just as L. On the other hand, the tensor

T transforms as

9a,(47b)

and is seen to be a true tensor.

At this point, it is convenient to introduce a partially

covariant derivative. We define this operator through the

equation
A 

a

p + C(48)

The connection, r, and the tensor, T, may be expressed in terms

of this operator.

= rpfa & + ADA e~ (49)
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A AP

- a cp[Di et,- Di e % ] e (50)

The partially covariant derivative may be treated as any co-

variant derivative. Thus, we find the usual expressions.

( E[DO',bD' ]I) a' A ( Rfkt Y f (51)

(-RAi)Op == DCL P- 3 (W;J) ,s+ ( WLo'wJ)%P

It may be verified that under the transformations

.. 7- X ca(52)

the quantity R undergoes the transformations

i (54)

Ri L -UPRiiI U -(55)

These transformation laws imply that the simplest invariant

quantity which we may form is given by

=oM rv (RAiveP e (56)

where M2 is a constant with the dimensions of squared mass.

It should be noted that the inverse metric has been introduced

to raise the dotted indices of the vierbeins.

We could also form higher order invariants such as the

Yang actionf26].

- ( R' RA;)% (57)

Here, we have once again used the metric to raise a pair of

dotted indices.

Thus, by using arguments based on the gauge invariance
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of a theory with a bein which provides a nontrivial representa-

tion of SO(3,1) and GL(4,R) we are led to general relativity.

Therefore, we conclude that the representations provided by

the bein field are very important. For instance, let us con-

sider a bein field, eia-(x), which transforms as SO(2) on

the index i, SO(3,1) on the index a, and as GL(4,R) on the

i index. If this bein is factorizable into the form

e cc (Y) =e x) e %(58)

then we may construct a system that is like the coupled Max-

well-Einstein system. If the bein is not factorizable, then

we have a theory of the unified field type. So we observe

that bein fields play a particularly important role in gauge

theories.

A Unified Field Theory in Fermi-Bose Superspace

We being by assuming that the constant supermatrix n AB
which is given by

JAB

-O g 1 ~(59)

is the supersymmetric generalization of the usual Minkowski

metric. As we have seen, a supermetric which is compatible

with global supersymmetry may be expressed as

AA (e, x) E t" 1 K L(E )N(60)

where the octad, E , takes the form given in equation (9).

It can be noted that the flat supermetric possesses a

graded isometry group. To see this, we may subject the global

achtbein to the transformation

'AA (61)
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where IJ is an arbitrary supermatrix. Under this transforzna-

tion the supermetric transforms as

tA (u)--AAnYKL u) 8 (E*)N (6 2)

If the supermatrix bU satisfies the equation

(U) AVJ.L(UJ) = r=AB (63)

then the supermetric is unchanged. This equation defines the

isometries of the supermetric. This graded group plays the

same role as does SO(3,1) for general relativity. However, it

should be noted that the full graded group of isometries is not

realizable on the so-ordinates of superspace. There is a sub-

group which may be represented on this basis. This subgroup

contains SO(3,1).

In order to have a curved superspace, we assume that the

octad fields may deviate from the configuration given by E2.
That is, we assume that in curved superspace

EA 
) 

A A

where E is the nontrivial part of the octad. Thus, in curved

superspace we have

= 1(0') EA (E*)e 8(65)

for the fully interacting supermetric. It should be noted

that the graded group of isometries is a local group. That

is, the supermatrices ?X. may be functions of X.

We are now in position to define a co-ordinate transforma-

tion in superspace. We may define the co-ordinates so that

A = EY(E) (66)

where Z is an alternate set of co-ordinates which label super-

space. This equation implies that
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ctta

A It$LC~ r

If we now define E A (Z) so thatK

E^ A( =
3 EJA

It' E ~ ~ n ( )

(67)

(68)

then we have the following equation.

X(d) (69)

Furthermore, by applying the operation of complex conjugation

we conclude that

IIE)
*(yf* (~~i)*

Therefore, the supermetric expressed in the X co-ordinates is

related to that in the Z co-ordinates through the equation

AF x ')* rF ~ a (71)

It may be noted how complex conjugation simplifies the

discussion of transformations properties. This is a conse-

quence of the fact that complex conjugation in superspace is

not the same as ordinary complex conjugation. To illustrate

this let us consider the following example. Let a and E b

be independent Majorana spinors. The quantity Jab is defined

by
a

(72)

and is real. To see this we perform complex conjugation

ab * = (9E* =- .i e (73)

But the fermionic derivative of this quantity is imaginary.,

(70)
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On differentiating Jab we find the equation

& b .& 6
cT i E (74)

Now we take the complex conjugate of this expression to find,

a & b * 2 T(75)

Thus, even though the two sets of co-ordinates X and Z, are

real and functionally related by the equation X=F(Z); the quan-

tity (OF/3Z)* is in general not equal to (DF/aZ). It can be

seen that our notation of derivative and conjugate derivative

is equivalent to the left and right derivatives of Arnowitt

and Nath[27].

Having obtained the transformation properties of the

supermetric under its graded group of isometries and under

general co-ordinate transformations of superspace, we take

the next step and define a fully covariant derivative such

that YtEA=O. Thus we require

dAgc (gJ)A E gC. -=A QA(76)

Just as before, we may solve this equation to express L in

terms of E andWr. The result is simply given by

LAL = VAs rAE> E:(77)
A A A

Zr5A t=EVAS [ 3 E L+ WkA [CJ .(78)

where once again we introduce a partially covariant derivative.

As we have seen, the supermetric possesses a graded group

of isometries. We therefore expect the connections to also

possess this property. However, we find that under the trans-

formation

= E (tL)AS (79)
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iL cannot remain invariant. This stems from the fact that

if?! is assumed to have both fermionic and bosonic elements,

then it is impossible to define a gauge transformation on

Wk alone which restores the form oflia. If, however, the

supermatrix Z- is block diagonal like n then we may define

(vIA) s [ K t) (-+-CU 7cEFIF1A (80)

and the form of L will remain unchanged. This can be seen

to be a supersymmetric version of the usual transformation law

of a gauge field.

Thus, we find the unexpected result that the entire

graded group of isometries may not be made into local symmetries

of L . Actually, we may make a stronger statement. It turns

out that even if Ut is independent of X, the supermatrix tt

must still be block diagonal in order for lo to remain invariant.

So it is only the block diagonal subgroup of isometries which

may be local symmetries. Therefore, we need only introduce

block diagonal gauge fields (Wf)B ; one such gauge field forkA
each block diagonal generator. If we use the index L to de-

note these generators then we have

A A

(XYA AA ( ti) 5 (81)

where the supermatrices (tz) satisfy the relations

(t)C6 7c.A + V C(t*t)CA = 0 (82)

A [0-C) (t'
(ti) = (-) (tz) a(83)

We now differentiate the supermetric to find the result below.

= kAhA + icAA L
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LE A Vr(vt)A )cB + 7(vpIZ k)c 6 3 [E

-iv R - )fO-(L)+crW)+1J

7T' o-U)[cr(c)+ cr(t)

/t r(k)L. o(B)+cy(L) + 3 (85)

In arriving at the above result, we have made use of the fol-

lowing identity

9 *6 i( 9 %B * (86)

Equation (84) may be expressed in the form below.

oAC A = - Q (87)

Thus, it appears as though our curved superspace must also be

nonmetric in the differential geometric sense.

Let us now show that, in fact, the curved superspace

need not be nonmetric. We recall that the fields Xkf are

block diagonal. The product of any number of such matrices

is also block diagonal. This implies that the nonmetricity

may be rewritten in the simple form below.

Q eEC= U-)VI4/4E* (C fc(-lE) A (88)

In this form it is clear that the nonmetricity will vanish if

0 = (Tk )CA. c + (-) 0,) k AC (Wr '*)C (89)

We recall now equations (81) and (82) and conclude that the

equation above will be satisfied if

w e = 4() ( t * (90)

This equation simply implies that the fermi components are
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purely imaginary and the boson components are purely real.

This requirement may seem somewhat artificial. But, we may

recall that it is by an analogous requirement that Einstein's

unified field theory is able to avoid nonmetricity. Thus, we

may formulate a metric theory of curved superspace. In this

metric theory, we are encouraged to identify the quantity L

as the super connection coefficient. It may be noted that

this connection is complex.

Now we turn to the question of the transformation prop-

erties of L[ under a general co-ordinate transformation of

superspace. To this end, we subject the octad to the trans-

formation of equation (68) and substitute this into equation

(77). The response of the connection is

A

BIF iiTdA (IF4A

(91)

We may write la as the sum of two other quantities r and T.

These quantities are defined by the equations

= a1 C La_._ri -C )r0.C 100C.*) lia a AJ( 2

TkL -2 L k icr y L L C;, ] 1(93)

The first of these is the generalization of the torsionless

connection of a Riemannian manifold. The second is the genera-

lized torsion tensor. The torsionless part of the connection

transforms just as does L. under a general co-ordinate trans-

formation. But T transforms as a true tensor

C )frc03(1 aK F '8/(9
91" Z ' TA L_((94)

under a general co-ordinate transformation.
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At this point, let us consider a limit where

E E (95)

A

(W k)t 8 = 0 (96)

In this limit, equations (76), (84), and (93) go over to

equation (16), (20), and (19) respectively. In this limit,

we recover global supersymmetry. Furthermore, we now realize

that equation (30) imples that gauge superfields are allowed to

couple to the torsion tensor. From equation (24) we see that

the scalar superfield is also coupled to the torsion tensor.

Now we return to the arguments which led to general

relativity in the second section. We utilize the partially

covariant derivative to define a curvature tensor.

a(IAA9

[ ZkJA,D I) 2 ( )) (97)

This tensor may be subjected to the transformation

Y At A (99)

The response is the expected result.

A A AA1

R^= ' ^((R'99f(U-)"N (10)

Thus, the quantity Rj66 which is defined by the equation

R A = r)c(R )^ EBA(E*)CA (101)

is invariant under the local isometries. This is, of course,
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the supercurvature tensor. In the limit of global supersym-

metry it must vanish owing to the vanishing of W-. Thus,L
global superspace is flat.

Finally we perform the transformation

A

'9F
---- ?1- fg(102)

W 2Wi

and deduce that the transformation law for the supercurvature

tensor is given by

9FA DF' 8 F'/ F
R. 5jLP ijA Rkw6 ((103)

where $Ec(A)Ia(t)+a (L)]+[a(A)+a(A)I a(d)+a(A)]. This may

be reexpressed in the more symmetric form

6BF (F F' F )

' = cr(A)Lr( 6) +r(YC)1 + [ cr(b)+ 1] C(OcD O )(1 (104)

Under complex conjugation this tensor has the following trans-

formation law.

( RAL 2* = )E PRkh

e= [o-i(Uk)4+('][ cri)+o-(k)- 1 . (105)

An inverse supermetric may be introduced via the definition

below.

ALA =(106)

In order to preserve this property under co-ordinate transforma-

tion, we require the following statement be valid.
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'3 F 9i _ A* F
'> -F(107)

Furthermore, as the supermetric undergoes Je transformation

CZRA (108)

the inverse supermetric must transform also.

ALH(fl)* A .23)(109)

A contraction between the inverse supermetric and the super-

curvature tensor may be formed.

f N (-C rL)1 (110)

It may be verified with the use of equations (109) and (103)

that this quantity transforms as does the supermetric.

'(93F 1*

() R ~b

Finally this tensor may be contracted to form a scalarR ,

where

= c A+4A A (112)

It is apparent that R is the supercurvature and a true scalar

under local and global transformations.

Thus, we may take as an action

isa'x [ dvt(E )c t(E*)a R (EcxE*, W(113)
where the definition of the superdeterminant has been developed

by Arnowitt, Nath, and ZuminoI40]. Once again we have the option
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of forming other invariants such as the Yang action or modifi-

cations such as those indicated by Boal and Moffat[41].

Conclusion

We are now in position to make some comparisons between

this approach and gauge supersynmietry. It was first shown by

Woolll] that if the geometry of curved superspace is assumed

to be Riemannian then global superspace must be identified as

a singular limit. This may be interpreted in a relatively

straightforward fashion. Global superspace possesses torsion.

This is implicit in the fact that the anticommutator of two

fermionic derivatives is a bosonic derivative. But a Rie-

mannian space cannot possess torsion. In order to produce

the torsion of global superspace the geometry of the Riemannian

superspace must be severely distorted. We believe this is the

meaning of the singular limit proposed by Woo.

On the other hand, the theory outlined here does not lead

to general relativity in the bose sector of superspace. Instead,

we are led to Einstein'& unified field theory. Whether this is

an asset or liability we are presently unable to discern. This

theory does possess global superspace as a continuous limit,

however, Also we have had to introduce a whole new set of

fields, the super Fock-Ivanenko coefficients which we denoted

by 'W. Thus, the number of fields has been increaser 'eyond

the prodigious number already present in gauge supersymmetry.

At this point there are many questions which must be

answered. We are encouraged, however, that our earlier

speculation concerning Einstein's unified field theory and

local supersymmetry has now been proven.
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