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ABSTRACT

The importance of understanding the symmetries of nature
has been increasingly realized in the use of quantum field
theory as a description of nature. These symmetry principles
and the conservation laws which arise from them are often
well understood before dynamics. Within this thesis several
problems in which symmetry principles play a prominent role
are investigated.

The problem of constructing the most general, scalar
potential for an arbitrary compact, semisimple Lie group,

G, is solved. The technique which is derived is then applied
to the specific model of the weak and electromagnetic inter-
actions. The scalar potential for this model is constructed
and analyzed. This analysis points out the existence of a
possible pseudosymmetry.

A new model is then constructed which incorporates the
pseudosymmetry and extends the earlier model to include the
hadrons. This new model is anomaly-free and offers some
ideas as to the role which spin-0 exchange may play in the
weak interaction.

The discussion of the weak interaction ends with a
possible explanation for the AI=1/2 rule among the hadrons
and the anomalous strength of the weak non-leptonic decays.
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The thesis then turns to a brief review of the new
symmetry principle known as supersymmetry.

At the completion of the review, the spinor super-
field is studied. The implicétions of this study are then
used to derive & suitable Lagrangian for the superfield.
Finally a discussion of supersymmetry and gauge invariance
of the internal type are given. This discussion also points
out the similerity of local invariance in both superspace
and ordinary spacetime,

Finally, we study the geometry of global superspace.
This study indicates that global superspace is a metric
space, in the differential geometric sense, which posseses
constant torsion and zero curvature. The study also indi-
cates that a theory of curved superspace may be constructed
as the superspace generalization of Einstein's unified field
theory. This generalization is performed and it is shown
that a non-Riemannian, superspace version of general rela-
tivity exists as a special case.

Thesis Supervisor: James E. Young
Professor of Physics
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I. On the Construction of
Gauge Invariant, Scalar Potentials

Lagrangians which possess gauge invariance with respect
to some compact, semisimple Lie group, G, have become objects
of much study. In a theory where some or all of the symmetries
are broken by the vacuum expectation values of elementary
spin-0 fields, the scalar potential plays a crucial role. It
is the purpose of this comment to describe a procedure for the
construction of the most generali, gauge-invariant, scalar
potential for a given theory.

Por simplicity, let all of the gcalar fields in a theory
be assembled into a real, n-component multiplet denoted by $.
Let ta denote a nxn matrix representation of the a-th
generator of the gauge group. Since the spin-0 multiplet is
real, it follows that the matrices to ta satisfy the following
relations,

tu = t':( tu=-tu*
[t tpl= i5u"t, («,8,7=1,...,p)  (1L.1)

The structure constants, f;B,
metric tensor. We may regard the transformation properties of

form a real, totally antisym-

$ as arising, solely, from the transformation properties of the
cononical basis elements denoted by éE' Indeed since the
canonical basis is complete, we must have a relationship of

the form

A . 4 ‘
tu€y = L hys € (2,2°=1,....m)  (1.2)
| ]
for some set of coefficients hil'
We may continue by considering the set of all second order
tensors, {TA}' which transform irreducibly under the action of

the group. Once again, the completeness of this basis must



imply that,

[t..Tal=1i Ho Ta

(1.3)
Furthermore, the set {TA} may be written in the form
H 2 m
{TWi={7'tu{T*tUu. .. - Lvix™} (1.4)
where each subset {th}, f=1, ... , m, is invariant under gauge

]
transformations. This implies that the coefficients Hi must

only connect elements within the same subset. Also, thg
elements within a subset must transform as the members of a
definite representation of the cauge group. The coefficients,
HiA, are obviously functions of the subsets {7:f1. We could,
therefore, display the dependence by writing these coefficients

in the form

HdAA{.IF} (1.5)

These coefficients indicate to which representation of
the group the subset { f} belongs.

Now our problem is to construct the most general poly-
nomial mapping, U, such that U:R"™R1 and [U,G]=0. In order
to achieve our goal, we first introduce a set of group, bi-
linear covariants, FA' defined by

'y = ‘_’; TA' ‘T; (1.6)

The requirement of renormalizability forces the mapping to be
no more than quartic in the field 3. The only possible form that
the quartic terms may have is

+a"F N, FELI (1.7)

where a 1is a dimensionless, hermitian matrix. If this is
subjected to an infinitesimal gauge transformation, then the
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first order change is proportiovnal to the expression

r_ g

'ﬁ'a“(}d):: EToEF T, P (1.8)
where

(Jdns = [ Hal'sy + (H.D 52 ) 1.9

Clearly, in order for equation (1.7) to be invariant, we must

require that

A’ AB
(9«);\5 a = 0 (1.10)

independent of the values of a, A', and B'. But in equation
(1.7), we need not let the summation on A and B take on

all of the values that are consistent with equation (1.10).

In cther words, there are essential subsets of'{TA} which only
need be considered in equation (1.7). Tec show this we consider
the following. The elements of'{TA} may be chosen so that the

equation
%{TAT;} = |k, SAB (1.11)

is satisfied for some constant ko. This statement together
with the completeness of the kasie provided by'{TA} implies

Bim 8y = (ko)"; (TA)i; (Talam (1.12)

We may use this statement to derive others in the same fashion
that the usuwal Fierz identities are derived. These group Fierz
identities when fully contracted with $ can then be used to
express some couplings as linear combinations of others. 1In
this way, we can see that the range of A and B may be
restricted even further than implied by equation (1.10).

Next in the mapping, U, are the terms which are cubic in
the scalar field. The presence or absence of such terms
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depends on whether the relation

!

A

Hu:{‘I;}= A ua (1.13)

can be satisfied for any of the subsets {ijf}. If this relation

is satisfied then we may have cubic terms of the form

Al > . —» —
MB BB Ta® + he (1.14)

where M 1is a dimensional constant with the units of mass. We
restrict the values of A so that the elements TA are members
of a subgroup { I} which satisfies egquation (1.13). Once again

we may derive the condition for invariance which is given by

A"t Al
(K olaz = 0
g’ t ’ ’ t
(?‘{u):l = [ Hu: 8:. + ﬂ-u; 6: ] (1.15)

Since the number of subsets which satisfy equation (1.13)

may not provide a complete basis, in general we need not find

identities which play the role of the group Fierz identities,
Finally, we come to quadratic terms in the mapping. These

terms will be present whenever any of the subsets {‘If} satis-

fy the equation

A’
HaA{‘IJ;} = 0 {1.16)

The subset containing the identity always satisfies this
equation. The quadratic terms are then given by the expression

yMAet BTa F (1.17)

where, of course, TA is an element of one of the subsets
which satisfy equation (1.16). Without loss of generality
we may assume that the coupling tensors, TA' which appear in

equation (1.17) are hermitian. Therefore, the coupling vector
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C is real and dimensionless.
The full potential is sinmply the sum of equations (1.6),
(.14}, and (1.17}.

UWE) = +a"F To® &Te ¥
Al — —y —

(1.18}

As examples of the method described in the preceding secticn,
we will treat three scalar systems. The three systems are the
Higgs model with a reducible scalar system, the Weinberg-Salam
scalar system, and the Georgi-Glashow scalar system. Of course,
these systems are so simple that the use of the construction pro-
cedure is purely pedagogical.

The Higgs Model has U(l) as its gauge group. The single
group generator in the reducible representation that we are
interested in is given by,

t= I ®@oc® (1.19)

The set of all coupling tensors may be defined once we define
a basis given by;

S =rllelc’+ic!] X t
f s ol . Iel (1.20)

Now we may define the full set of coupling tensors.
{T.v={1,+¢F tFhul 6,855 uf st 811} (1.21)

One may easily verify that the relation

TA{T. Tt = 4 5., (1.22)
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is satisfied. This will iead to the identity

(1)..(Q).; = [ Iaj I[.. + ty taa +(?)£j AF).n
+ (t?)aj' (-t;»)n-n + .é:j ern "‘:A-fi,'ﬁm
+ (3F ) (415 )en + (BTF ) () ]

(1.23)

which can be used to derive other group Fierz identities.
These identities can then be used to show that one essential
set of symmetric tensors is given by {TA}E where

ITde=11,§ t5" £% (1.24)

These may be contracted with the field to form the following
group bilinear covariants.

I, = 1&* T, = & (£1%

I',= $[tFf)Pd T1T,= F[£]-& (1.25)

Thus, the scalar potential is simply given by the expression,
\ AB I-ﬂ ! 2 A |
ue =zxa aIle + M C T, (1.26)

where &a is a real, symmetric, 4x4 "matrix" and C a real
"vector".

The gauge group for the Weinberg-Salam model is U(1l)mSU(2).
The generators of the gauge group may be taken to be

i
it, =z(oc'®@c' Iec?, c*@oc?)

4

+ - 0_.1®I (1.27)

These generators satisfy the usual commutator algebra
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i : . AL rad -
ftw,f*wl— Ld € tw [tY;tW]—o (1.28)
The coupling tensors may be defined once we define one other
matrix, S, The definition of 8 is

S

F(o'vioc!)® o

(1.29)

Thus the coupling tensors-are given by:
1Tt = {I,+3u{stuist Uit uiT, t,t
vitL,stu { ¥,5% (1.30)

Once again there is a completeness relation which may be used
to derive a number of gauge, Fierz identities. From these
identities we may show that an essential set is given by

{1, tyr S, s*} but only the identity is symmetric. Thus,

U(g) = f")\, 1E1Y + & Mall 1$* (1.31)

is the most general, gauge-invariant potential.
For the Georgi-Glashow model, the group 0(3) is chosen.
The generators may be represented by:

(tH)t, = - ieti, (1.32)
The coupling matrices may be taken to be
iTd = {LYviTtui auemi (1.33)
where the matrices a(m) are defined by the relations
1 0 0 0 0 %1 -1 i 0
a(@)==210 1 o0 lazl)==2]0 0 i Ja(z2)=-2|s:i 1 o
0 0 -2 21 i 0 2| 5 o o

(1.34)

The commutation relations between the a~matrices and the
group generators are:
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[+° am] = m oim)
+ - (1.35)
[t5 am)] = VGem(1Fm) {mz))
Thus, we see that the a-matrices are the components of a
epin-2 tensor. The completeness relation is,
] | —_— —
IinImj = EIa.J Imn + i(t)aj'(t)mn
+ £ = _ t 1.36
We may use this relation to show that,
- — - -t 4 +
LPaup¥® Foatp-& =718 (1.37)

80 we may neglect the a-couplings. Furthermore the basis
vectors, éi' and group generators, ti, belong to the same
representation. Thus, in principle there could be trilinear
couplings. But the antisymmetry of the generators implies
such terms are identically zero. The potential is therefore
given by:

u) = + A 18T+ 1 M2, 1817 (1.38)
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1I. The Scalar System of Dual Model I

In the Dual Model of Dicus, Teplitz and Young[l], the
gauge group, G, was chosen to be UY(l)nSUW(z)mSUF(Z). In this
spontanecusly broken gauge theory model, four scalar multiplets
were used. These multiplets, denoted by ¥, o, ¢, and X, trans-
formed as (1, %, 0, (0, O, %). (lr.%; %). and (1, %; %) re-
spectively under the gauge group. Since we are not concerned
here with the vector or spinor sectors of the model, we have

the following Lagrangian:

L =-108,¥*=13upl*= Tadl 13, ¢1"+ 1. x|%
- U(lP.P’cp,x] {(2.1)

In order to construct the most general gauge invariant
potential, U(Y¥,p,¢,x), it is convenient to write the potential
in the form:

U(Pp,e,X) = U¥)+ Ulp) + Uy x)

+ U, p, 4, X) (2.2)

The first two "sub-potentials" are simply given by:
U () = 2 A, 19T+ 2, M5 1w1? (2.3a)
U, (p) ='fc1,lpl++ A Mg L pI* (2.3b)

where the Ai's are dimensionless constants and Mé a dimensional
constant with units of squared mass.

As a first step in the construction of U,, we may define
group, bilinear covariants which we will denote by [ (a;b).
These objects are classified according to; {(a)how they transform
under unitary redefinition of the multiplets ¢ and x, (b)their
transformation properties with respect to the gauge group. An
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essential set of these quantities are defined below.

w®= et 4y xt wr =i (b xt-2x ¢T)

w = P+ xd! wi= petoyyt (2.42)
$° = dTep +xty §a=—i(¢1x-%f¢)

Fl= plx + xte = d'e - xTx  (2.am
w'= ¢ 3ty E? wi=-i(eXt-x ")
W= ¢Et+ x T w'= ¢t - x Xt

T'= ¢+ Xtx E =-i(d'x-%'9)

T'= dtxy + Xt = ' - %X

(2.4c)

(2.44)

where $=c2¢*c? and X=o?x*02?. The transformation laws of ¢
and x are:

Y: ¢ — U,(8)P W: ¢ — 1, (8.)P

F:¢— ¢ UF(-é’F) (2.5)

These can be used to derive the following transformation prop-

perties for the covariants defined above. For instance, the

transformation laws for the w®'s are,

Y: we— 2 W: w®— uww“u\t

Fi:w® — (2.6)
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and one can derive the laws for the other defined covariants.
As can be seen, the matrices w® and £%* are hermitian, while
the matrices W® and F® are not. Since all of the covari-
ants are 2x2 matrices, we would like to construct, using only
wr, £%, w*, F® and their duals, the most general possible
mapping denocted by U, such that U,:C?xC?+R! and [U,,G]=0.

This mapping must have the form:

Uy (P, 2) = a:; TLnlw Ll ?tt + w— fwE
+ @:; Tiw wbtd + w—fwE
+ C:; it + wr— F W E

a nr
+ Mo A, Thl w*d + w — % (2.7)
The coupling matrices a, B, and C are dimensionless as is the
coupling vector A. The determinant of the bilinear covariants
has been neglected since we have the identity

detiMy = TaimM*Y - [Taimi]® (2.8)

for any 2x2 matrix, M. The terms where £ is exchanged with
w may be neglected, because the use of the cyclic property
of traces implies that these only duplicate the w- couplings.
The diagonal terms of the Crs may also be neglected because
of the identity

TaiMRty = 2L det i M3 (2.9)

and the use of equation (2.8). The F-couplings may be ignored
in favor of the W-couplings by the same reasoning which allowed
the elimination of the f-couplings. Furthermore, since w=wi

we assume that aw, Bw, and ¢V are real and aymmetric, Thus

among these matrices there are 10+10+6=26 independent para-
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meters. We may now turn to the terms proportional to

Taiwd Tiw?tl;, Taiwwrtl; Tiww''}
We can show that for any 2x2 matrix, M, we have,

MMt = dtiM¥3 T = Mt (2.10)

which implies that W°=[det¢+detx]II and W¥=[det¢-dety]II.
Because of these equalities and egquation (8), we may let aw,
BW, and CW be hermitian, 2x2, coupling matrices with a and B8
taking only the values 1 and 2. Thus, the mapping U,

which is the scalar potential, may be reduced to the form:
Uy = Qo Tl Tn et} + A, TAiWS T w3
+ @,p il wowtl + @;p Ihi wewrtt
t CopTnima Pl + Cp Tnl wrivet

+ M7 Ay Tnl i (2.11)

The matrices a, B, and C are real and symmetric {o,f=0,1,2,3).
Matrices a', B', and C' are hermitian {(a,8=1],2). ¢ and C' are
further restricted to have no diagonal elements. Thus, we have
a total of forty coupling constants in u,l

We know that U, ig the most general scalar potential which
we may construct from wa, fa, Wa, Fu, and their duals. But, is
it the most general scalar potential? The answer to this gquestion
is affirmative. To prove this atatement, we first introduce
another set of internal, bilinear covariants, I'' (uv;AB) which
are linearly related to the first set. We assume that T' has
the form:

T ( pv: AB) = o+Atc™B (2.12)

where u“=(I,§)'and the fields A and B may take on the
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identities (¢,X,¢,x). Thus, in principle there are
4-4°4-4=162covariants which could enter the potential. The
covariants written in equations (2.4a) through (2.4d) are those
possible with p=v=0. In order to have a gauge invariant
potential, we will be forced to sum over py and v in such a way
that we may utilize the identity:

3
I.;; T.. =131l éﬂ (0" in (O ] (2.13)

]
Thus, the potential constructed wa, fa, Wa, F® and their duals

is, indeed, the most general possible potential.
Finally, we come to Uu which may be written by inspection.

Ue= Ao I PITTaiwet + A, [p1* Th{iw*}
F A P+ A, ptF% + A, TSP
A Bt p+ptF g ] + i 2, [ B1Fp - ptF 5]
+ A, M [F'bp+ptdpte ]+ L A Mg [Yhep - ptdfw]
+ MM [¥xp e ptxtdr] + i Mg [Htxp-ptatr]
M P E+ BT + iAy Mg [¥TeF-ptetY ]

+ N M [HIX T+ Bt xtP] + L X s Mg (WX E - ptxty]  (2.14)

Thus, the total potential U(Y¥,p,¢,x) has a total of seventy-
eight terms.

The fact that both p and its dual, p, appear in the potential
is necessary in order to break the pseudo-symmetry which was
promoted to a symmetry in the Dual Model II.
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ITII. Dual Model II

Summary

In Ref, [1] the authors proposed that duality might also
apply to the electromagnetic and weak interactions as well as
the strong interaction. In that spontaneocusly broken gauge
theory model, the gauge group U(l)aSU(2)mSU(2) was chosen.

The first two subgroups refer to the usual Weinberg-Salam
groups. The remaining group refers to the two different types
of lepton number. The representation of the scalars used in
the model had an interesting property: the existence of a pos-
sible pseudo-symmetry. This caused no problems, however,
because the pseudo-symmetry could be broken by terms in the
scalar potential. Thus, the existence of a pseudo-Goldstone
boson was avoided.

In this paper, we shall consider a model where the pseudo-
symmetry breaking terms in the gauge invariant, scalar potential
are absent and the pseudo-Goldstone boson is used to "grow"
another vector boson with mass. Thus the gauge group for the
present model is U(l)asSU(2)asU(2)aU(l). We will also retain
the requirement of duality as was initially proposed. Further-
more, the requirements of duality and color invariance of the
quark masses, which arise from symmetry breaking, conspire to
give the new model a single primitive coupling constant, /feo.
Scalar exchange is then used to explain the AI=1/2 rule and
the anomalous strength of the weak nonleptonic decays.

In addition the model also describes a "super weak" inter-
action wnere |AS|=2 and neutral, strangeness-changing transitions
are aliowed. But this interaction is mediated by vector bosons
whicu have masses that may be several orders of magnitude larger
than that of the 2z° or W bosons.

Finally, the model predicts that the neutral, hadronic

© boson is composed of an iso-

current which couples to the 2
singlet, vector current component and an isotriplet, axial

vector current component.
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Conventions

In this section we establish the conventions to be used
throughout this chapter. We are using a metric guv with non-
zero elements -1,1,1,1 for u=v=0,1,2,3. We are using the
Pauli spinors in the standard representation. We use o to
denote these matrices and I for the 2x2 identity.

The Dirac matrices that we are using are given by:

Y= o’ Y = ioc?*® & (3.1)

s0 that we have the following identities and definitions.
* v —
Lryr, 7“8 = - 2 g,.
yr‘f — yﬂy’-&yn
5 . - we )
Y = iy r'y'y? = co'e L (3.2)

The following symbols are also uged:

Tr{ } = Trace
+ = Hermitian conjugate
* = Camplex conjugate
t £ Transpositions

The Existence of a Pseudo-symmetry

In the model of Ref., [1l], two complex quartets of scalars,
denoted by ¢ and x, which belong to the (1, %, %) representation
of the U(l)YnSU(Z)WlSU(Z)F gauge group are used. In addition,
two complex doublets, denoted by W and p*, were also used. The
firast doublet belongs to the (1, 7, 0) representation, while the
latter belongs to the (0, 0, 3) representation. The transforma-
tion properties of these scalar fields under the gauge group
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are:

$H —> ”‘(_p[l.i?rgjcb Y-gauge

¢ —— m—ﬂf-l‘i 3w3‘-?.]¢' W-gauge
‘13——-492/;4;[:‘;'_ gF&"-?] F-gauge (3.3)

¥ — m[i"i?r Ej‘f Y-gauge

Y > oap[-ifg,F-TlY W-gauge
Y —s Y F-gauge (3.4)

p*— p*

Y-gauge

o¥— po* W-gauge
¥ —s mp[-itgpﬁ"-*}]ﬂ ¥ F-gauge | (3.5)

where Iyr Ty* and gp are the coupling constants associated

with each subgroup and £ is the parameter of the transformation.
We presently propose to enlarge the gauge group to

U(l)YlSU(Z)WuSU(2)FIU(1)H. We ask that these fields transform

as:

b — b eapl-itg,t]
¥ —
p*— axplii gu5]1 0* (3.6)
under the H-gauge transformation.

In the U(l)mSU(2)mSU(2) model, the most general gauge
invariant scalar potential contains seventy-eight terms.
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among the terms allowed by gauge invariance are:
. ' + .
q_gfq;o_,l’o ; ;ZI}L{¢T0"0_2X*0'1} 1‘(} O"‘O""P

LPTXO':LP (3.6)

We can readily verify that these terms are invariant under Y-,
W-, and F-gauge transfcrmations but not under H-gauge trans-—
formations. It is the presence of such terms which prevent
the appearance of a pseudo-Goldstone boson in the U(l)aSuU(2)a
SU(2) model

Having shown the existence of the pseudo-symmetry in the
aforementioned model, we now present a model which incorporates
the pseudo-symmetry as a gauge symmetry.

Fermions

(a) OQuarks
We consider a model with six left-handed quartets of
quarks, along with twenty-four right-handed singlets. These
left~handed quartets we denoted by Lqi where i=1, ..., 6. The
first three quartets provide a representation of color SU(3).
While the last three quartets provide a representation cof color
su(3). With each quartet, we associate four right-handed
singlets. Thus we are considering a Han-Nambu model[2] which
incorporates the suggestions of Glashow, Iliopoulos, and
Maiani[3] and Pati and Salam[4]. The guartets L_ ., L

11 qi’ " q2
¢ We assign to the (¥Y=1, W=§, F=§, H=1) representation of

and

L
ogr gauge group. The remaining quartets are assigned to the
(-1, %, %, -1l) representation. The right-handed singlets

are either assigned to the (2,0,0,0), (0,0,0,2), (-2,0,0,0),
or (0,0,0,-2) representations. We exhibit qu and its associ-

ated right-handed singlets below.
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| - S P, (6.) c,(68:)
L 2 T
9 , (96) >\|(9¢) Y= H=|

Rp, '-"‘-"i'“'*"ys)Pu Ye2 Neo

i- ( ! + 75)6‘ Yz Heo

R

Ra, =21+ 70N, (g uaa R;,Ei("""s)}‘l Yoo wm¥3.7)

refer to the proton, neutron, lambda,

c
The Cabibbo rotation we

where p, n, A, and
and charmed quarks, respectively.

use is defined by:

p.(&) = p, cnr (2 8) — ¢, .ain (26,)

n,(ec) = n‘m(f..acj + A| M({Bc)
C,(8) = ¢, con(i8)+ P, an(£6c)

k‘Cﬂﬂ({Eh)" n, aim (% 8c)

A (8) =
(3.8)

The second and sixth quartets along with their associated
singlets have the same assignments as those above. The

remaining gquartets and singlets differ from those above only

by the replacements Y+Y-2 and H+H-2.
As can be seen, the Adler-Bell-Jackiw anomalies|[S5], (6],

[71, and [8] of the first three gquartets are cancelled by
those of the last three quartets. A similar statement also

hoids for the anomalies of the right-handed singlets.
With this sort of arrangement, the electric charge is
related to the weak hypercharge and the third component of

weak isospin by the usual relation
(3.9)

Q= w’'+3Y
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(b) Leptons
Keeping in mind that we want a model that is free of

anomalies, we introduce two quartets of leptons. The first
quartet is assigned to the (—l,-%, %, -1) representation.

The second is in the (1, %, %, 1) representation. The singlets
belong to either the (-2,0,0,0) or (2,0,0,0) representations.

Below we exhibit the leptons.

= | - ys UQ‘ U;
Le= 5~ [ ’ J
e, ) Y=-1 Ha-l

Re=2(1+7°)€, vars ueo Ru= 2 C+79p, .,
He O

L, = ! ;Ys [ €2 Ha J

x Vea Ve Y= MN=zl

(3.10)
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Gauge Transformaticns and Spin-l1l Bosons

Our gauge group is U(l)YESU(Z)WmSU(2)FBU(l)H. Accordingly,
we must introduse an octet of vector bosons. We will denote
these bosons by Y _, W ; 3 , and H .

o o o o

In order to complete our "gauging" of the former pseudo-

symmetry, we give the transformation properties of the fermions

under gauge transformations of the first kind:

Y-gauge L — M[{g,B,EJL
W-gauge o — axp(-% g»wa"-r“_
F-gauge L.— L W[‘i‘gp&'?J
H-gauge L. — L axplig.o.5] 3.11)

where 9Y=t1 and BH=11

Y-gauge R — M.p.[i‘aig,&', 5IR

W-gauge R— R

F-gauge R— R

H-gauge R — m[ii?u 6081 R (3.12)

where e§=2,o,-2 and Bﬁ=2,0,-2.

Scalar Bosons: Spurions and Higgs Scalars

The requirement that the two-body scattering amplitude
be dual in the sense defined by equations (2.14a) and (2.14b)
of Ref. [1] for fermions which belong to the same irreducible
representation forces the use of more scalars than were used
in Ref. {1l]. These additional scalars are needed to avoid
some very restrictive mass relations among the fermions.

Motivated by this and the desire to use these fields
most efficiently, we propose that the additional scalars are
physical fields as opposed to being non-physical scalars{8].
We will refer to these physical multiplets as "spurions"[9].



28

We ask that spurions be the explanation for (a)the AI=1/2
rule among the hadrons and (b)the anomalous strength of the
weak nonleptonic decays. The minimum number of spurions
required for our purposes is three, which we will denote by

z, &, and n.

In the present model, we use five spurion fields ¢, &,
n, ¢ and x, all of which we assign to the (1,%,%,-1) represen-
tation of our gauge group. The fields ¢ and x will be allowed
to acquire non-zero vacuum expectation values, while ¢, &, and
n will not.

The Higgs scalars in the present model are Y, o, p,and
p,- These fields transform as (—3,%,0,-% )y, (0,0,0,1),(0,0,1,0)

and (0,0,1,0) respectively.

The Lagrangian
The Lagrangian density for our model is given by:

L= XL, + Ly + L + Lsr (3.13)

where the decomposition denotes vector, scalar, fermion, and

scalar-fermion interactions. Explicitly we have:

Ly = - Y Y — A Wl — I Pl - i HW HY
Yur = 3uYs ~ 82 Ysu Hpw = 3 Ha — 3uH,
Wy = 3. W, — 3. W, + Gw W, X W
Fo= 8.Fw—9.F.+ g FoxFL

(3.14)
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Zs= = |Da®)* = | Duc-l* =% | Dupil ™= T1Dapal’
— LS 1Dz + I DuBI*+ I Dan*+ 10X + [Da Pl §
-~ U(¥ o, 0,055,810, X,P)
Dil= (Bu+ikgyVa-itgud Wals — ElidgyHamidgr5Fu)
Da#= (Bu-iT gy Yumigw T Wa—i¢ guHa)®
Duo = (Bu+ifguHa) o Du Pi = (Ba+ige T-Fu)p;

G =m(otWe + 0" Wa )+ W ; Wi =E(W,Fiw})

FF z&(octFy +o " Fax)+ c'F. ) Fr=&(FFiFl)
e — 5
T Wz &(T'Wa + T-Wa )+ TPwa  ITI =%

2
= 2

E.=m(TFl+T F)+TF. ;ITIP=2

Al

(3.15)

~
1
P

-

Tl Do 70y +i gy B Ya— i gu & Wa) Ly;
E“y“'L,..(igFa’-lE;+i-;..9u Ha) f

+i%_M'i Ru: Y (0w + igy6yYe) R

~5 5 TalLy Y (gr 0y Yu = gu & Wa) Ly;

+ D7 Ly (4,5 Fu +gu6s Hao)

._'!iAZ’;'ﬁ (g.,B,Yq +?H6,.H~)V RA.‘

L e -—

where A=p,n,A,c; M=e,}; Bu = Da — Ou (3.16)
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and finally we have the scalar-fermion interaction terms:

sF —

Lsp = ‘E.; }:fﬁffq;[ﬁ(n.éx,%)lRz,,- + h.oc§
- L 3L LA Ty LA 3,20 Ry + e}
—§ 5:.&{ El.[ X(an, 6ul)]Rn. + ,ﬂ C. }

_hg }:I n{ -L—ll.[ Z(Yn‘l, sng)]Rﬂl + h' c. } (3.17)

where I=p,cC J=n, A

Av60)2 (EcorP+ L aim®)eon? + (PeobtXainb)ain ¥

R(7,8) = necn? + ein? (P cor b +X ainb)
£EO‘1£*O-1 AE O,Q.A*‘o_,l

We require that the potential be such that a minimum occurs at:

¢ =3aMg(I-0o?)

¢§° = Co = N, =
X, =%FaMglo'-ioc?) o, = bMg &

(ple= 2cMg po (pa),= zd Mc B,

¥, = Za Mg 4}.1. (3.18)

is a mass parameter used to characterize the spontane-

where MG
ous symmetry breaking and the constants a, b, ¢ and d are

dimensionless parameters.

Imposing Duality
We may now impose the requirement that the two-body

scattering amplitudes be dual for members of the same irreduci-
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ble representation of the group. In other words, we require
that for every such process we want the lowest-order amplitude
to have the form:

1 _L)

/Q = /\o ( F ¥ (3.19)
for energies and angles such that all masses can be neglected.
By considering the processes pL+nL+pL+nL and n_+\A.»n_+i. we

L 'L L L
obtain the following equations:

a

Gy + Gw - dge + gi=0 (3.20)

q: - 3g: + 1: +g:} = 0 (3.21)

These equations are sufficient to enforce duality for all
scatterings of left-hand fermions. The scattering of right-
hand particles into right-hand particles is slightly more
difficult. The interested reader is referred, Ref. [1].

The scattering of right-handed fermions into left-handed
fermions such as PRtny *PR¥hy will provide the relationship:

1,1 2
()t') = 3y (3.22)
and similarly the process p;+n +p;+ng will require that:
1,2 a
(5.)° = 44 (3.23)

These last two results may be summarized by the equation:

(£) 2= get for charged right-handed singlets
gf* for neutral right-handed singlets (3.24)

Massive Fermions

We now turn to the massive fermions which are generated
by the spontaneous symmetry breaking of the electromagnetic
and weak gauge group. Since the fields ¢, X, ¥, o, p, and p,
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all acgquire non-zero V.E.V's, we may perform shifts of these
fields, First we treat the quark masses which are generated
by the following terms:

-— "Z’. ,{: M y_! m&x Z\.{ [" ;: RI"- + !_?:", $.f Lq’ }
- I}Z; J:: MTI 4""‘81 I"-{ [-ﬁ i- R:,,’ + ﬁ:r,f ir Lq,‘g
B ;’Z) f; MYJ' wsj I’l{ qu 4), R;-"' +- ﬁ”f. 4D°rL”';

_ L I . - = t _

%;, aim Vg aam by Z'L{L,,' Z,R;;,;""R-;,,’ D Lq,} (3.25)
Considering the proton quarks, initially, we find that the
choice 6P= -1/2 ec will eliminate the Cabibbo mixing of proton
and charmed quarks. We then find the proton gquarks masses to
be given by the expression:

(3.26)

[ . - - -

2 a Mg MYF[ Fv (PJP:""P.\.F:.) + gu PV -]
Before going on, we note that in a sense we may regard the
d—-angles as the origins of the Cabibbo rotations. If we now

consider the transformation properties of the above expression
under color SU(3), we see that it may be written as:

-Ta Mg aintp PL(3g, 3001 + (ge-20Y]P  (3.27)

where Ic and %fc are the color identity and hypercharge opera-
tors respectively and P denotes the color triplet of proton
quarke. Now, if 9y=9=9 then the contribution to the quark
mags from the symmetry breaking will be a color SU(3) invari-
ant. Applying the same considerations to the other quarks, we
find by making the choices: 6c=1/2(w-9c), 6n=1/2(ﬁ+ec) and
6A=l/2ec that the mass terms for the guarks are:

~1agMgl 47 PP+ ainYa NN+ ainv. CC (3.28)
+ sm 72 AN ]
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where P, N, C, and A denote color SU(3) triplets, Similar
considerations apply to the guarks that provide the represen-
tation of color SU(3).

Now in a similar manner, we can find the massive leptons
of the model. Needless to say, the lepton masses are also
proportional to the sines of y~angles. Furthermore, we may
use the §-angles to give Cabibbo-mixing of the leptons. For
instance, with the choices 6ﬁ1=° and 5e1=n/2, we find that the
elactron and muon mass terms are:

-TagMal ain¥e € €, + aim ¥, F o] (3.29)

The massive leptons of ng are presumably more massive and can
easily be accommodated in the model.

A Single Coupling Constant

In the previous section we saw how the color invariance
of the quark mass matrix leads to the requirement that both
charged and neutral right-handed singlets possess a single
coupling constant. If we combine this with equations (3.20)
and (3.21), we find that all of the vector coupling constants
are the same. Furthermore, equation (3.23) then implies that
the model possesses a single coupling constant, g.

Massive Vector Bosons

The shifted fields also cause seven vector bosons in the
model to become massive. We find for the mass matrix of
"neutral" bosons:

B 1 11
H AT b2+ 5a>  © o H, |
5
?LM; th o 'é'ax 'i'a: Yu
_W:J i o %aa '%a.:' | _W:_ {3.30)
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For the squarsd masses of vector bosons, the following values

are obtained.
a % a c S
MA = O Mz' = 5? MGO.

M; = g-iM:;-[ b+ % a*]

Thus, we have a massless, neutral, vector boson (the photon)

(3.31)

given by:
Ad = ﬁ[" Yau + W:J (3.32a)
éhd two massive, neutral vector bosons.
Zo=a&l Y. + wWo] (3.32b)
(3.32¢)

a9
Gu = Htx
For the other bosons of the model, we find two electroni-

cally charged, spin-l1 bosons at a mass squared value of:
(3.33)

N %
Mw* = g‘oaMG a_:l
and two electrically neutral, vector bosons at a mass squared

value of:

a
MF* =

Finally, the remaining F-boson, F;=F;, acquires a mass squared

ig‘M;[a"-i- c*+ d*] (3.34)

value given by:
3 i a
Me = F 9’1M6[ al+ 2d4%] (3.35)
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Model Parameters and Phenomenology

Now that we have found the photon, we may make the
identification between the single coupling constant of the
model and the fundamental unit of charge:

? = J3 e, (3.36)

Next we may consider u-decay in the context of this model.
By considering the lowest order contributions to this process,
we may deduce that the mass parameter, MG' which was used to
characterize the spontaneous symmetry breaking, is related to
the weak Fermi coupling constant.

L i ~1
Mg = & G (3.37)

Furthermore the parameters a, ¢, and d are constrained by
the equation:

[ £ e
[ = ar vt GQTicieat (3.38)

We may use this equation to define another parameter o via
the equation:

fanm o = [ +a1/a.°‘+cl+dz}i (3.39)

Continuing by considering B8-decay, we find that the effective
ccupling constant is:

GP = G cor B cor (3.40)

The effective coupling constant for u~decay is just the weak
Fermi coupling constant. Experimentally, these two constants
are within two and one half percent of each other. This implies
that the angle a must be very close to zero. In order to ful-
£ill this condition we will assume that a?<<c?+d?, We will also
agssume that the parameter b is much larger than a. With
these conditions met we find the mass spectrum for the vector
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bosons that is indicated in Figure (#1),
With this mass spectrum, we see that the model describes
the ordinary weak interaction with the exchange of either W

o

. . o
or Z bosons and a "super weak" interaction where F or G

bosons are exchanged. This is important to this model since
both |AS|=2 and neutral, strangeness-changing transitions are
mediated by F-hosons. Such effects are severely suppressed
owihg to the large masses of the F-bosons. By using either
Cabibbo or F-spin rotations of the hadrons we may introduce
CP violation into the model.

Lepton-~Lepton Scattering

In this section we consider the scattering of the "light"
leptons. The part of the Lagrangian which is responsible for
such processes is given by:

L= -el&re + pyviul A, vie [T, v i-v)e +
Dy 1-v) pl Wa ~te, [De ¥4 (1-79) 0, +
87“(l—Y’J|-L]F,; ~ TEe[Ter i~ r)ve + BYX(1-75)E
- DY -vH v, — pr‘(:—v’)p]F: +ze, [T r¥(1-v) v,
+eY'i+ySle + U Y-S}y, + pr“u”‘);«t] Z;
*"i%?[ DeY'(1-7V* )1 + @Y 1-7Y5)e + DY 1~-7 IV, + Ry (1-75lp 1G
“&e| Dalivvile £, (T8 + & (1erse f (e, 80)]
~ZCL D, (147%)e Ly, (¥e,6) + B O1+¥%) @ £, (Ve,80) ]
~E e[ Ve Cey I Rug(r,,8) + BGryHpdely,,s,)]
“f‘fe.[ﬁ,(u-r’)plu,(v,,s,.)+ p(uy‘)rcl,‘w,,s,)] + h.c.

(3.41)
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Figure (1)

My & gimz[dtvitie o)

1

Mes = g* Mg [67+ 01+ 4]
My 5 5giMg (1+a)

M QQ‘M:( 1 +5at)

2
MA

Mass spectrum of vector bosons in Dual Model II.

The Parameter‘gZMé is equal to e;/z/EGF where G is

the weak Fermi coupling constant.



We now turn to the proces

s
butions from W, Zo, FO, Go, and 2 exchanges. The effective

Ue+e+3e+e. This receives contri-

Lagrangian for this process is:

Letr © & De VU 1-7)Ve € Ya(Cy— ¥5Ca) € (3.42)

where

6 . L _b.l_i‘_-— corVe am Vg

C,= % — sin*a + I" 5040 )*'SM:("""" + M;w) (3.43a)
i
5 A

b+ d? 2 17, i ¥
1o+ £ (UFHT) - £ MBS« 4BT%) e

Xvg

Ca =

The angle o is constrained to be very small by our assumption
that c?+d?>>a?, Furthermore, we may assume that %—(b2+d2)/b2d2
is also negligible. Finally the angle Ye is of the order of
me/Mzo' Therefore, we may approximate the above expressions
by;

& J 2

Cy = 5 + 'ET(Ma'/Mn-_..) (3.44a)
hd
5

!
Ca = = 5 M/ M»,.,.)l | (3.44b)

This process has been measured by Gurr, Reines, and Sobel
[10] and their results may be used to put bounds on the mass of
the scalar Nye* Our values for CV and CA are shown for a=0,
b=d=« and for all values of the ratio x=(M /Mn ) in Figure (#2).

Next we may consider the process u +e+vu+e, This process
receives contributions from 2°, F° ' c® , and Ev exchanges. The

effective Lagrangian is:
-G - — . y
Loer = 7% Vu 7“(1—75)1—’,‘ € Youl Cy ~yScile (3.45)

where

’

L L N g Al Y
Ch,=-5 + 5 ( bd‘) - 5 My ( T +""’*“M;w) (3.46a)
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‘ ] ;b - d* L a ot Yo aum Ve
Cia =5 T :_( bzdz') + ?Ma'( M;W + Mlxw) (3.46b)
Once more we may make the same approximations and we find.
’ i ] .
C, = -5 -5 Ma/My,) (3.47a)
’ — 4 £ 1.
Ci= 5 +5(Me/Mp,) (3.475)
In Figure (#3) we plot our values for C! and C! as a function

v A
of x'E(MZ /anu) where a, b, and d are fixed at the same
o

values as in the discussion of C,, and CA given above

v

The AI=1/2 Rule and the Enhancement of the Weak Nonleptonic
Decays

In this section we explicity demonstrate the role that
scalar exchange plays, within the model, in explaining (a)the
AI=1/2 rule among the hadrons and (b)the anomalous strength
of the weak nonleptonic decays. We will set the Cabibbo angle
to zero and ignore color since the scalar interaction is a
color singlet. Furthermore, we will assume that the masses
of the Higgs spurion multiplets are large compared to the non-
Higgs spurions ¢ and £. The only other free parameters, aside
from the masses of these multiplets, are the angles ¢I and ¢J.
We make the choices ¢p=¢c=0 and ¢n=¢h=“/2' Thus the scalar-
quark interaction effectively becomes:

Loys SEULF LA +ZE+ZX ]+ 1) neaatat Aeon?y 1E

B -a-gtc e 88310+ Npeon?p+c canre 1}

+ h.c. (3.48)

Now by considering processes that are characterized by |[AS|=1
and |AC|=0, we find the following effective interaction:

G - -
Lose = 14, \r?{ A-v5){ PP+An +2c +AA](1+75)A +h“_:'(3.49)
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Figure (2)

LO = . o

Dual Meodel IL

-1L0 P

A plot of Cv V8. C for the process v +e+3 ote: The
shaded region is the experxmentally allowed reglon. The
diagonal line which ends at (5, ) is the prediction of
the Dual Model for all values of the parameter x. In the
V-A theory CV=CA=1' while in the Weinberg-~Salam theory

=1 1 5 1 o s
C,=3 and 3 < G, £ 5. For x<3 the Dual Model is in the

allowed region.
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Figure (3)

I ] j | ]
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i I _
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9
r

T

A plot of C& vs. CA for the process vu+e+vu+e. The

diagonal line which ends at (- é, 5) is the prediction
of the Dual Model for all values of the parameter x'.

In V-A theory CV—C'-O, while in the Weinberg-Salam theory

o 1 _._ ) _
CA 5 and < 5.
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where Ac“l/S(ME) COoBY cosYAcos 6. We have assumed that no
appreciable maés splitting occurs within the ¢ multiplet. The
above expression transforms purely as I=l/2. Note that the
expression within the brackets is SU(4) invariant and therefore
an isospin singlet alsc. In the above discussion we set the
Cabibbo angle equal to zero. The appearance of the SU(4)
singlet, however, insures that the above interaction is in-
variant under Cabibbo rotations.

Thus we see that our weak spurions are, indeed, successful
in introducing terms in our weak effective Hamiltonian which
explains the AI=1/2 rule. Now we are able to understand how the
AI=1/2 transitions are able to avoid suppression by the Cabibbo
angle. These processes may proceed through the above inter-
action. On the other hand, processes which have AI>3/2 and
semileptonic processes proceed through vector exchange. The
effective interaction Lagrangian for these processes is pro-
cosb,.,. Therefore, these processes appear

C C
anomalously weak when compared to the AI=1/2 decays.

portional to sind

The appearance of the SU(4) singlet can be traced back
to the assumption of the mass degeneracy of the ¢ multiplet.
This assumption is not only important in guaranteeing the pure
I=1/2 nature of the interaction but it also insures the absence
of |AS|=2 processes. Such processes could arise if the masses
of the scalars cn and L, were considerably different.

One other point that we note is that the choice of ¢-angles
(and therefore coupling constantg) is not unigue. It is pos~-
sible to produce a pure |AI|=1/2, |AS|=1 interaction for other
values of these parameters. By making our choice, the masses
of the £ particles are determined by the decay rates of the
charmed hadrons. Furthermore if the masses of the particles
of the £ multiplet are comparable to that of the [ particles
there exist a AYX=1/2 rule for the decay of the charmed hadrons.
This scalar Lagrangian also allows the charmed hadrons to decay
into strange and nonstrange channels with comparable ratios.
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Returning now to the effective Lagrangian which may
describe the usual AI=1/2 rule, we may perform a Fierz trans-

formation and obtain:

Loep =Dc 2 GYI+Y)F. 9 7 (1-791 (3.50)

where g=(p,n,A,c) and F. is the generator of SU(4) which
transforms like the Kg meson. In this form, it is easy to see
that the Lee-Sugawara relation is satisfied[ll]. Furthermore
we also have the SU(4) generalizacvion of octet dominance.
This is therefore a satisfactory Lagrangian with which to ex-
plain the AI=1/2 rule.

We may now address the question of how the effective
Lagrangian in equation (3.49) transforms under chiral SU(4)m
SU(4). If we let g undergo the following infinitesimal

transformations;
I. 9 — q-L3A*F. 9 IA* << ]

II. q9q— q9- i+ A*F.7%q (3.51)

then we find that the first order change in Iéff is given by;

i-l'lA‘A;T% ‘_I7“(l+7’)[F.,FJ‘1ﬁ)’a(l—r‘)‘i (3.52)
independent of which transformation we use. We can easily see
that the generators Fa and Fays satisfy the usual commutator
algebra of chiral SU(2)mSU(2). We may, therefore, conclude that

[Qll., I.H’-] = [ Qi’ I.;.‘:] (3.53)

if Q. and Q; are the generators of chiral SU(2)aSU(2). In a
paper by Golowich and Holstein[l2], four classes of |AS|=1
Lagrangians are defined. If we make allowances for our nota-
tion, then our total |AS|=1 Lagrangian, derived from both
scalar and vector exchange, is a member of the second class of
Lagrangians. However, Golowich and Holstein concluded that,
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experimentally, class one Lagrangians are preferred. So our
suggestion fails at this point., There is one final observation
which we note. Our suggested, effective Lagrangien contains
terms which are guartic in the "unflavored" guark operators.
As far as we know, in this respect our suggestion is unique.

Conclusions

The present work extends the dual model of lepton-lepton
scattering presented in Ref. [l]. The model has many attractive
features but these are gained at an expensive price: the multi-
tudinous spurions. The same ideas about scalar exchange used
in this model may algso be applied directly to the Weinberg-
Salam model[13]. One could construct a hybrid model by taking
the Weinberg-Salam model and coupling it to a spin-zero exchange
model similar to that proposed by Dicus, Segré&, and Teplitz[l4].
A model of this sort would share many of the features of our
dual model. But again the number of scalar multiplets (two)
needed to explain the AI=1/2 rule may tend to effect the beliv-
ability of such a model. This is not, however, the first time
that spin-zero exchange has been proposed as the explanation
of the AI=1/2 rule among the hadrons[15]. Perhaps, the most
interesting result of this paper is that spin-zero exchange
may play a considerable role in the weak interaction.
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IV. A AI=1/2 Rule in the Weinberg-Salam Model

Here we show how the AI=1/2 rule may be embedded in the
Weinberg-Salam model without adding new quarks, invoking dynam-—
ical enhancement, or disturbing renormalizability. The strategy
we pursue is the addition of more scalar multiplets, "spurions"
to the usual model.

The AI=1/2 rule for nonleptonic processes enjoys ample
experimental support. If we take the viewpoint that this
selection rule arises not as a dynamic effect but instead
from the exchange of some elementary, weakly interacting
particle, we are confronted with a problem. In constructing
the simplest model of the weak interactions, the AI=1/2 rule
still appears anomalous. Various explanations, all using
quarks of "exotic" flavors[l6], have been suggested. Although
these suggestions do, indeed, lead to effective Lagrangians
which transform as isospin doublets, they all, necessarily, are
only guadratic in the ordinary quark operators. As such, these
Lagrangians require the spontaneous creation of ordinary quark-
antiguark pairs to explain the AI=1/2 rule among the observed
hadrons. In this comment, we would like to offer a suggestion
which leads to an effective interaction which is quartic in the
ordinary quark operators.

Consider adding to the Weinberg-Salam model[13], the
following terms.

L= —1&§[ﬁRCI+ﬁ.Ci WA +ERZ;:]7I,, + ln.c.“ 1
Here ?1L denotes the left-handed, weak, isotopic doublet composed
of the proton quark and the Cabibbo-rcotated neutron quark. The
scalar multiplets cp, Lo yr and Lo We will refer to as
"spurions"[9]. The spurions cp and o transform as (-1, —)

under the Uy (l)ISU (2) gauge group. The remaining spurions

belong to the (1.5) representation. The first point we note
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is that the addition of these terms to the usual Weinberg-
Salam model does not disturb its renormalizability.
Now, if we consider the effective |AS|=1 Lagrangian

arising from equation (1), we find:

Lo =(F/M*) cor 6. wine, J (2) Ta(0) (4.2a)

TE)= Av*Ci=7yIn + AYI-Y)A (.20
T0) = pr(1+7Y)p + Av*(1+7°)n

+ AYHI+Y)IN +Cc VO +7)c (4.2c)

In arriving at equation (4.2a) we have performed a Fierz trans-
formation and assumed that the masses of the spurion multiplets
are degenerate. This interaction could also account for the
anomalous strength of the nonleptonic decay modes of the strange
particles. Of course, the two parameters f and M must be
chosen so that the numerical factor (f/MZ)sinec is of the order
of G/Y2. We find a further restriction by requiring that
equation (1) not lead to contributions to AS=2 amplitudes

which are intolerably large.

We now turn to the question of how this effective Lagrangian
transforms under chiral SU(4)&SU(4). From the form of the above
equations, we may verify that we have a left-handed current,
transforming as an isotopic doublet, which is coupled to a
right-handed current, transforming as an SU(4) singlet. Since
this is so, the usual results on nonleptonic decays derived
from current algebra and partial conservation of the axial-
vector current (PCAC), remain intact. Furthermore, the total
|as|=1, effective Lagrangian, derived from both spurions and
vector exchange, belongs to the first class of Lagrangians as
defined by Golowich and Holstein[l2]). This is important since
Class I Lagrangians seem experimentally preferred. We may note
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from eguation (2a) that we have quindecuplet dominance, the
SU(4) generalization of octet dominance.

We make a final observation. The form of equation (1}
is exactly what we would expect if the right-handed quarks are
the members of scme multiplet which carry additional weak
quantum numbers. The conservation ¢f these numbers would then

explain the mass degeneracy of the spurion multiplets.
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V. Basic Supersymmetry

Graded Lie algebras arise naturally with an extension
of the complex number system. In fact, this is the crucial
step in the representation of such algebras. The idea of
extending known number systems to new number systems is as
primitive as passing from the counting numbers to rational
numbers. In order to represent the elements of graded Lie
algebras it is convenient to introduce the concept of a fermi-
cnic number. We will customarily denote such a number by the
symbol 8. This is very similar to the procedure by which we
introduce the symbol i in order to be able to represent the
complex numbers. But for our purposes we introduce four of
these fermionic numbers eaia=-4, ves 5 =1}, We must specify
the algebraic properties of these guantities. Once again we
have the analogous procedure for the complex numbers where we
specify

1" = -1 (5.1)

But for our purposes, since we have four of these "new" nunbers,
we must follow a procedure which more closely resembles the situ-
ation with quaternions. Thus, we specify that the fermionic
numbers satisfy the equation below.

{6*. 6"t = 0 (5.2)
Thus the product of two independent fermi numbers is independent
of both 1 and 82. Similarly the product of three independent
fermi numbers is independent of 1, Ba, and eaeb(a<b). Thus we
see that the elements
1 6" 9‘95 0°0'6° 6'9‘9‘6‘(5,3)
for a<b<c<d form a Grassman algebra. Also we see that the
product of more than four 6's must vanish.
Having introduced these four independent fermi numbers we
now consider another structure, a fermi-bose superspace. A
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superspace of particular interest is an eight~dimensional space
{xM=xM(em ,xn)} where the 8™'s are the fermionic co~ordinates of
superspace and the xp's are the bosonic co-ordinates. Further-
more, we identify the bosonic co-ordinates with the co-ordinates
of space time.

There is additional structure to this space. In identifying
the bosonic co~ordinates of superspace with the co-ordinates cof
spacetime, we have specified how that sector of superspace trans-
forms under Lorentz transformations. We do not want the fermionic
of superspace to be an internal space but to be a nontrivial
representation of the Lorentz group. This is achieved by assign-
ing the fermionic co-ordinates to the spinor representation of
0(3,1). Thus, the generators of the Lorentz transformations on

the superspace are given by

Mpv = -1 (xp- av - X~ ap) + ‘;E {é-a’puﬁ)

= L,‘v)apxqap + .:Lh (v°o. Y“),BB‘B‘

( l_iL1J)A B;Z:JAEQB (5.4)

B

where we have introduced the constant super matrix (va)A‘ in

order to interpret this expression we have had to introduce a

fl

Majorana representation of the Dirac matrices. Furthermore,

we have chosen a representation where complex conjugation of a
Dirac spinor is equivalent charge conjugation. This implies

that the charge conjugation matrix is simply -(Yo). The negative
of this matrix has been used to raise and lower the indices of
the fermionic co-ordinates

B = (Y°)4m 8" (5.5)

ani the gradient with respect to these co-ordinates

3% = (y9)*"(38/36") = (v)'" 3., (5.6)
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according to these rules. Thus we have a generalization of
the Minkowskian metric given by

(7Y% n 0

mn =
o Nupv (5.7)

With this eight dimensional superspace as a carrier space,
it is possible to construct a differential representation of a
graded Lie algebra. The generators of this algebra are

m

ST = il (v)" 0. +iz(v¥0)7 3, ]
P, = -i 3,
Muw = —i(xﬁay—x,.. 3,;_)*‘5‘(50’,‘”5) (5.8)

But the bracketing operation for these generators is not the
usual Lie commutator. Instead, it is necessary to introduce
a graded Lie commutator which we denote by [ , }. Before
defining this operator, we define a mapping o from the set of
generators to the set (0,1). Let A be a generator of a
graded Lie algebra. We define ¢ such that

l; if A contains an odd number
of fermionic factors
o {A)

0; if A contains an even number
of fermionic factors and/or
contains bosonic factors

The graded Lie bracket is defined by the relation

LA,B} = AB - -)"""RB A (5.9)

so that it is simply a commutator unless both operators are
fermionic, Under this bracketing operation we find the following
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algebra,
[ P, Pt =0
[ Py, Mt = =i nua Pu +inuaPy,
[ Mxa, Muud = =i nue Mur + 1 pux My
“t Npa Muv + inva Mup

i

[P.,S7F= 0
[Mu,S7F = -z ()" n S
[S™,8"% = = (r*yo)"" P, (5.10)

The first three relationships are the usual ones obtained for

n

the Poincaré group. The fifth one shows that s™ transforms like
the fermionic sector of superspace as the spinor representation
of the Poincaré group. It is the last relationship which is
most remarkable. We see that the product of two successive
fermionic translations is an ordinary bosonic translation. We
may apply the fermionic translation to the eight-dimensional
superspace, Let €™ be a constant, real fermi number. Under
the transformation, L(e )

T(e)l= expli&S] = anplie™(vhnS"] (s.11)

the superspace transforms as
X" = expli€S]1 X" sapl-i€s]
(", x*)= (8"+e&™, x*+i%(Erre) ) (5.12)

where the second line is for infinitesimal values ofe& . 1In
order for the transformed superspace to be real, we must inter-
pret the action of complex conjugation in a new manner. That
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is, complex conjugation on the superspace not only has its
usual action (i+»-i) but also re-orders products of fermionic
nunbers. With this redefinition, the factor i%{éYue) may be
considered real and the reality of the superspace is preserved.
Thus, we see that the eight-dimensional superspace pro-
vides an adeguate carrier space over which representations of
the Poincaré group may be constructed. The entire conformal
group may also be represented in superspace. Consider the set

of generators given by

—i[%zax +Ji.9£81]

]

D

_i 9,
~iL 2" 9, 2%,V 0., + x¥ 617D

P
K

Muy = =i (X, 3y~ 2, 9) + £ (B0;,0) (5.13)

It may be verified that these generators satisfy the commutator

algebra
[D,D} = [P,P.} = [Ku,Ku} = [ D, Mt =0
[D,P.}= iP, [D, K.t =-iK,
[B,Muwl = -inum Py +innP,.
[Ka,Mput = =i nua Ko + inea Ke
[P, Kyl = idneD -id My

[Muaa, Mo} = ~inuuMus + inun My

""'i Npx Mxv + i Nua Mul-l- (5.14)
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which is, of course, the algebra of the conformal group. But,

we have not considered the results of bracketing the fermionic
translations with all of the generators of the conformal subgroup.
If we bracket D with ST we find.

[D,S7F =iz 5" (5.15)

On the other hand, the computation of the special conformal
generator bracketed with the fermionic translation generator
yields

[K.S™t=-(r). R’ (5.16)
where

R"=-i[ 2¥(7.8)" -x(86)D" - % (8y%6) (v*3)"
+z 67°7*6 (v%,3)" ]

D" 2" - iz(¢ga)” (5.17)

Thus, we must add another fermionic generator, R®, which we
may refer to as the fermionic special conformal generator.
This new spinorial generator satisfies the following bracket
algebra with the conformal subgroup generators.

[D,R"}=-ixR"
[P.,,R"} =~ (Y)",S
[ K., R7}

m n
[Mpv,R } = —Ja:_ (o—pv)mn R (5.18)
If we bracket R® with Sm, we find

n

H

o
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[SM,RI&}= _i(yo)nnD _ _‘;’_‘ c..pvyo)'“ﬂM,‘v +% (,rs},.)lunI—l-
IT = 6753 (5.19)

Now we find a new bosonic generator, II, which we may call the
generator of chiral transformations. This generator has the
algebra

[D,II} =[P, TI} = [K,TL}=[M,,TI}=0 (5.20)

with the conformal subgroup generators. For the spinorial

generators we find

[TT,57} = - ()", S
Finally the bracket of K" with R" gives the result
[R,R "} =~ (yvy)"" K, (5.22)

and we see that the graded algebra has finally closed. Thus,
we have obtained the full, twenty-four element, graded Lie
algebra of Wess and Zumino[l17].

It can be seen that the eight-dimensional superspace
admits this graded algebra in the same way as Minkowski space
admits the conformal algebra. It should be noted that the con-
formal subgroup does not completely fix the superconformal group.
This can be seen, for example, by noting that the transformation

Ko —K,. + « 6667,3 + B (86)* 3, (5.23)

will leave the conformal subalgebra invariant for arbitrary
bosonic values of a and B. But under this transformation the
complete algebra would require the existence of spinor-vector
generators in order to close.
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It is possible to illustrate the superconformal group
in a very concise manner. We may classify all of the generators
according to their Lorentz transformation properties and dilation
properties. The result of this classification is illustrated
in the diagram (4). This diagram shows a marked similarity
to a weight diagram in SU(3). It can be seen how the fermionic
generators are the "sguare roct" of the bosonic translation and
special conformal generators., If we borrow on the SU(3)} analogy
a bit more, we may say that the fermionic co-ordinates of super-
space describe the "internal degrees" of freedom for a point in
spacetime Jjust as quarks describe the internal variables of
hadrons. Thus, superspace may be regarded as an attempt to
describe a spacetime composed of nonclassical points.

Within supersymmetry, an important role is played by an
operator which may be referred to as the fermionic gradient.

Explicitly, this operator is given by

D™ = 3" —ii(Fe) (5.24)

and it may be shown that this operator satisfies the relations

below.
[ P.,D"} =[S",D"% =0
[ M., D"t =-3(c) . D" (5.25)

This gradient operator, unlike the bosonic gradient, is a repre-
sentation of a nontrivial algebra. We may demonstrate that

[D',D'} = ily"r)d, (5.26)
from which it follows that
[D;,DV%=0;[D:,Db% =030y )y v 1™, (5.9

where DZE[%(I:YS)D]a.
Additionally, it followas from definition that
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Figure (4)

+
¥

Z Bosonic generator

O
]

1}

0

Fermionic generator

Diagram illustrating the generators of the super-
conformal group. The classification of these operators
has been made according to intrinsic spin and dimension-
ality,
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DD* = it (y*v)*° 3, + 5 (v)** (DD)

+ & (VrYN(DYD) + 3y (DYY,.D) (5.28)

With this relation as a starting point, there are a number of

identities which one may prove for the fermionic gradient.
Some of the most important ones are

Dy.D = i
Do,.D =0
DUDD)=(DDD” -: 2 (D)

DDr*D) = - (DD)Y(v*D)* + i (v*@FD)"

2 93,

(Dr*y.D)D" = ~(DBD) (v*7.D)* -2 3" (¥*0,,.D)"
(bo)tvs0)*= - (Dy*p) D™ .
D*(D7*y.D) = = (DD)(v*7.D)" =12 9, (7*D)

(D) Dr*,.D) = - (Dr*,D)(DD) = -i2 3. (Dr*D)
(DO)D7Y*D) = - (DY*DI(DD) = i 2 3, (DY*r*D)
(DY,.D)ND7*7,D) = =1, (DD)" + 4 (N, 3*- 3,3.)

+ 2 €,uxa 0 (DY7*D)
(DDY* = - (Dy*D)*

(0*)(DD) = -2 (F§D)* (BD)
(6D)’ = 4 3* (BD)

(5.29)
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The algebra of this derivative will play an important role in

the construction of Lagrangian models.
Since this derivative is fermionic it obeys a generalized

Liebnitz rule,

D*(P,$,) =(D*P) P, £ & (D*°B,) (5.30)

where the plus or minus sign is chosen depending on whether

is bosonic or fermionic,
The representation of the Dirac matrices which shall be

¢,

used throughout is given by

y' = (o?ec? ilec',ic’@o0?*, il@®@oc?)

75 E i#e'al‘v nyayl‘yu — iyo-yfyays
= o'@o?
Y — 4 & » v N yv v_, M
o= izly yYl =iz (Y "y —y>y") (5.31)

then the full set of Dirac matrices is given by

I yyn. O_,p-u . ySyl" , -)Js (5.32)

3 ?

In this representation we find

{y"y*t=-anr diag (n**) = (-1,1,1,1) (5.33)
Under hermitian conjugation, these matrices transform as
lt = 1 .Ysr= y$
y*T= yeyrye (7fym)t = veyfyrye

5.34
(o, )T = o 7° (5.34)
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Furthermore, under transposition these Dirac matrices have

the properties

(v = - (v°) (vov)" = - (voy%)
Creve) = (voy*)  (vrSyt)= - (yeyiye)
(7’°°'r-u)t = (y°orv) (5.35)

where t denotes transposition. For this representation, there
is an orthogonality relation,

#L{FAF;} = $as (5.36)

pv

if we restrict ¢"~ so that u<wv. This in turn implies a

completeness relation given by,
~ v = 1 ' fl'.
‘Si 0, = 71:;’ (T) o (T )t' (5.37)

This equation can next be used to derive the following Fierz
rearrangement matrix.

v 2 83 < 0

(5.38)

The bilinear covariants appropriate here ave

S(1234) = (W) (¥¥,)

Vil 234) = (Ve NP 7.¥,)
T(1234) = 2(P.o"™ Y ) (P o %)
AL 23 4) = (PP Psvsr.v,)
P(1234) = (Wrig)(P,ysy,)

(5.39)
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Note the minus sign preceding the matrix is the consequence of
the anticommutivity of %;, ¥2, Y3, and ¥,. Furthermore, the
sum on ﬁ and v in the tensor T is unrestricted.

Under charge conjugation, time reversal, and parity
transformations, the following transformations may be defined
for a Dirac field ?(t,i)

C: ¥(t,¥) — —(v°)[1'!3(t,i")1t = ¥ ¥

T WY, T) — Yo T(-t, %)

P: P(&,%) — 17°F(¢,-%) (5.40)
Therefore it may be seen that

CTP: ¥(t,8) — iy (-t -%) (5.41)

The fermionic co-ordinates of superspace transform as the
components of a relativistic spinor. This implies that the basis
of a grassman algebra which is given by

a b b d
1 . @ : 8%8° . 0"8°6° ;. 0'6'9°8° (5.42)
{a<b<c<d) does not transform irreducibly under a Lorentz
transformation. But the basis given by

1, 6", 66 ,8ve, 6r’r.0, 666" (86)" (5.43)
does transform irreducibly. The elements of this basis are
simply linear combinations of the elements of the previous basis.
It may be noted that the symmetry properties of (Y°Yu) and
(Y°cuv) preclude the possibility of the vector or tensor from
entering this basis.

With the use of the Fierz transformation, it may be shown
that

8°0°= -+ [ (v** 86 + (Y*7)°*8v%6 + (v*r*v)**@rv,0 ]
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Y0 6% = - 88 (v0)" | 8v°yf06" = - Be (viyrg)*

8°0%0%" =12 [ (¥ vy ) = (v (vt = (ysrey )t (yiy,v9°* ] (B6)®

= et (g0 (5.49)

where the e ~tensor here has its usual properties with

- 3 2 _1
e r ’ " E+l-

The following multiplication table for bilinear products
of the fermionic co-ordinates may be derived.

8o 8ysg a7y, 8
08 (6e)* o o)
67°% o) ~-(8e)* o
67°r,.6 o o “ e (69)*

{5.45)

In manipulations of superfields the properties described above
will often be used without reference.
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Vi. Superfields and Known Models

Just as it is possible to define fields in ordinary
Minkowski space, it is possible to define fields in superspace.
If such a field may be expanded in a power series, then because
of the anticommutivity of the fermionic co-ordinates the expansion
must terminate in the 6 variables. Thus, we are led to define a

superfield by the expansion
D (X)) = A;x) + 8,00 + $§86F,(x) +i%87% G, (x)

+ 7 BY N OAYR) + 5 66 8 Xy(z) + 33 (88) Dyx)
(6.1)

where the label J may be an internal index or a Lorentz index,
either vector or spinor. A single superfield contains boson
and fermion fields as components. It should be noted that this
form is unigue with the assumption that the superfield has a
power series expansion. Superfields may be transformed in a
manner that is analogous to the procedure for transforming
ordinary fields. For instance, a superfield may be subjected
to an infinitesimal dilation. The first order variation in the
superfield will be given by

S®. = (ixD+ 2d) P,

= A(x"9.+36"3. + d)} P, (6.2)

where A<<1l and d is the intringic dimensionality of the
superfield.

Let a scalar superfield be subjected to an infinitesimal
fermionic translation. When this is performed on the expansion
given above, we find
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SA(x) = € ¥ : D= -1 € @ Xix)
sFa) =t €[ xw~i ] ; 860 =iz€r*(X(x)-id¥m]
§A ) = —TEY [V Xw -i ¥\ Pw]
bWy =5 L F) =i Y23, A + 7" Ao + i ¥ Gl le

§Xe0 =2[ Dy ~i 7 F(+i% 0 €, 3 A )
~ 752 9,Gm) - i Y o A ) le (6.3)

It can be seen that the fermionic translation induces a rear-
rangement of the caomponents of the superfield. WNow it may be
noted that the variation in the last component of the superfield

may be written as

sD(x) = 9,.[-1 7" Xiw] (6.4)

for a constant spinorial parameter e . This property will be
of particular importance to the construction of supersymmetric
Lagrangians.

It can be seen that the multiplication of superfields is
closed. That is, the product of a number of superfields is
again a superfield. More interestingly, the fermionic deriva-
tive acting on a superfield produces also a superfield. This
property is trivially satisfied by the bosonic gradient. From
these properties it follows that a Lagrangian constructed from
products of fermionic derivatives, bosonic derivatives and super-
fields is itself a superfieid. The last component nf the La-
grangian superfield will therefore change by a bosonic gradient
under a fermionic translation. Thus, an expression of the form

Jda #(5D)11(¢,3,‘I’,_Dm‘§) (6.5)

will be invariant unde. a fermionic translation. The four powers
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of the fermionic derivative just extract the last component
of the Lagrangian superfield. Thus, the quantity

TP
Jd*x % (DD) (6.6)
should be thought of as a ygeneralized measure for superspace.
In eight-dimensional superspace, however, the expansion
of a superfield given previously does not transform irreducibly

under a fermionic translation. It can be shown that superfields

which satisfy the equations

& ( | + ){5)4‘l D'- @J‘:(X) = 0 {6.7)

transform irreducibly. Such superfields are known as chiral

superfields. All chiral superfields may be written in the form
- i = 3 -
D, (X) = expl 7267 oli Aspin) + 021 2¥v)¥ (1)

+38(1=79)6 F, (mf (6.8)

where the exponential is defined by its power series expansion.
For chiral superfields one may deduce that the term of order
(86) is transformed by a pure bosonic divergence under a fermi-
onic translation. Furthermore, the product of any number of
superfields, all of the same chirality class, is again a super-
field of the same chirality class. The fermionic derivative of
a chiral superfield is not a chiral superfield, however. On
the other hand, the besonic derivative acting on a chiral super-
field does produce a chiral superfield. The product of two
superfields of different chirality produces a general superfield
and not a chiral superfield.

With some care, it is possible to produce chiral Lagrangian
superfields. For these Lagrangian superfields the quantity

Jd*x % (DD) (6.9)

is the generalized superspace measure.
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For each of these superspace measures it is possible to
define a super-delta function. For the non~chiral measure we
define

§(X) = T¢ (88)" 8(x) (6.10)
as the super-delta function. It may be verified that |
Jd*x #(BD)" 8(X) = 1 (6.11)
For the chiral measure the super-delta functions are defined by
5 (X)=58C1£7r>8 §71x) (6.12)
and can be shown to satisfy the egquations below.
Jdte £(DD) 6,.(X) = 1 (6.13)

Now we may begin to consider Lagrangian models in super-
space. The simplest superfield is the scalar superfield.

“I”(X) = A(x) + OP(x) + + B0 F(x)+ix67°6 Glx)

+£ By Ax) + £ 868X (x) + 71(86) Dex) (6.14)

But as we stated previously this superfield is not irreducible.
It has been shown by Sokatchev[18] that for superfields of arbi-
trary spin that it is possible to construct projection cperators
which project irreducible components from arbitrary superfields.
For the scalar superfield these operators are

T[t=‘§"“5=(5D)f)(li:Y5)D (6.15)
II. = [ 1~ 55:(DD)" ] (6.16)

and it can be seen that these are integro-differential operators.
It can be shown with the properties of the fermionic gradient
that these operators satisfy the relations
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I-.[+.]._I_ = 1—.[4.- Ho = U_ 1_.[0 = 0
(T, = TI, (TT.) = TL.
(TT.) = TTI, (6.17)

This justifies the identification of these operators as pro-
jection operators. Using the operators IT+ or‘fT_ we may define
chirally positive or negative, Lorentz scalar superfields.

@t(X) = T1, P(X) (6.18)

These superfields are given by the simpler expansions
@, = Ay + 2802y ) ¥, 0 + $801xv%8 Fatn
FEBY 100 A 0 -iF 868 F 0 £7) Wy (x)
+ 33 (86)* §*A,(x)
= oapl¥387°0]1 A ) + £ BUrIBm +iBUsr98F, § (6.19)

It should be noted that chiral superfields are intrinsically
complex.

The simplest supersymmetric model known is the Wess-Zumino
¢® model. The Lagrangian for this model is

Tue = Jar [+ (OD){ B, &} + % M. (BO){B. + B}
+¢ 9. (DD)] B, + B} ] (6.20)

where ¢ =(¢_)*. It can be seen that the first term is of the
nonchiral type; whereas the final two terms are chiral types.
The restriction that relates the positive chiral superfield to
the negative chiral superfield insures the hermiticity of the
Lagrangian. In terms of components this restriction implies
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that A =(A_)*, F,=(F_)*, and ¥ must be a Majorana spinor. The
Lagrangian may be expressed in terms of the component fields.

Some calculation reveals

F(OD®, B = -2, AI+ iz FFe + IFI
Pm (0D P+ B}

Lo, 0D P+ Bt = 4, [ AF + (AVF -1 AT(+r)W
-~z AP -y ] (6.21)

M, AF + AYF* - £ )

1]

Now it can be seen that the field F is an auxiliary field
which may be eliminated by the use of its equation of motion.

F + M. A* + g.(A%)" = 0 (6.22)
Wwhen this is done one obtains the Lagrangian in the form
Lo = —LI13 A+ MIAIY] + B (if - MO
— gAY - g M. (A+ AT 1AL
-g,[A$(1+r’)"~P + AP 1-vi) ] (6.23)

where the spinor field has been rescaled by a factor. This
model has been studied in detail[l19] and it can be shown that
it possesses some rather remarkable properties when guantized.

Aside from the work of Adjei and Akyeampong[20]}, the only
theories studied thus far are those in which matter superfields
are assumed to be chiral, Lorentz-scalar superfields. Since we
are interested in the spinor superfield, in particular, it is of
some importance that we review the spinor superfield model of
Adjei and Akyeampong. This model describes the interaction of
a chiral, Lorentz-spinor superfield with the chiral, Lorentz-
scalar superfield of the model deecribed above. The chiral,
Lorentz-spinor superfield is given by
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P, (6,2) = 1@[;%97’36]{ b, (x) + % Ax)(127%)0

+ £0C1+7%)6 L) ¢ (6.24)

where ¢ and ¢  are Dirac fields which are not themselves of
a chiral nature. The sixteen-component Duffin-~Kemmer-Petiau

field is given by
- " LR [
A(x) = ()= 1Y vulx) + 120" £ (%)

+ Yy aux) + i7549(1.) (6.25)

The Lagrangian for the free spinor superfield of this model

can be expressed in the form
Ia*dﬂﬁo){?ﬂiﬂ—:m)"{‘- + P_(iF-am,)P, b
$ (00’1 B, B, + FP L] (6.26)

and the interacticn of the spinor superfield with the scalar

superfield is given by the equation

Ja'x S(DD) 5, [ &, B_ P, + &_ P, P_] (6.27)

with §o‘as the scalar-fermion coupling constant.

Unfortunately this model turns out to be unrenormalizable.
This can be partially understood by considering the propagator
for the free spinor superfield. One may add to the Lagrangian
the following chiral source terms

fare (DD [ "T’- N+ + @p n- + h.oec ] (6.28)

To obtain the free spinor superfield equation of meotion, we
simply vary the part of the Lagrangian that is gquadratic in the
spinor superfield. This leads to the equations
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1
=

z (GD) §F+. + (-1 g +2am,) ¥ = Y] -

~z2 (DD)VYP_ + (-iFg+am) P, = M+ (6.29)

These coupled equations may be replaced by two "second order"

uncoupled equations
[};(BD)l—(—Lﬂ-{-zM,)l] a-{ﬁi:
~(-if+A1M) e - 7(DD) n+ (6.30)

We may evaluate the first line of this equation by noting that
the projection operators TI, may be inserted between the "second
order" operator and the spi;or superfield. Then by referring

to the properties of the fermionic derivative we note

$(DD)*TI, = °9°'TI1l, (6.31)

which implies that solutions to the coupled equations are,

'°P1. = +IM,[-i3'I+ M.][(—ia+1m.) N +é(ﬁo)n;] (6.32)

If we let the source functions become chiral, super-delta
functions, these become the propagators of the respective spinor
superfields. By recalling that the fermionic gradient is the
"square root" of the bosonic gradient, we see that for large
momenta this super-propagator approcaches a constant value and

is undamped. Thus, naively, we expect to encounter quartic
divergences in this model. A detailed analysis of this model
has shown that, in fact, only gquadratic and logarithmic diver-
gences survive and render the model nonrenormalizable.
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VII. The Spinor Superfield and the Hemitrion

The spinor superfield has not been extensively studied
thus far. In the work of Adjei and Akyeampong[20], a Lagrangian
for the interaction of the chiral, spinor superfield with the
chiral, scalar superfield was examined in detail. As far as we
are aware, this is the only work that has been done in this
direction.

We find the spinor superfield of particular interest for
two reasons. First of all, the spinor superfield is the simplest
superfield which contains a component which has not been exten-
sively used in models of the elementary particles. This compo-
nent is the Rarita-Schwinger or hemitrion field. We have
wondered whether simple supersymmetric considerations can gen-
erate a nontrivial model which contained the hemitrion in inter-
action with other fields. For instance, is there a supersym-
metric model, for the electrodynamics of the hemitrion, which
avoids the inconsistencies which are present in a nonsupersym-
metric model[21]7?

Secondly, since there exist a fermionic derivative in
supersymmetry, naively, we expect to find a great variety in
the possible Lagrangians one may construct for the spinor super-
field.

Thus motivated by these reasons we shall begin a study of
the spinor superfield.

To begin, we first give the expansion of the spinor super-
field in terms of component fields

Yo ) = le) + ozl + 58085 +367% 7517[7.)

+i% 8770 Y ¥ + £ 86 Bwo + 32(68) Temy(7-1)

where o(x) and B{x) are Duffin~Kemmer-Petiau fields. These
matrix fields may be expanded in terms of the Dirac-I matrices.
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alx) = 200 = 17 Uu) + 130V Eaux) + VY au w1V poo

.t u A
Blx) = stz) =i Y'vum +i20 "t ,(x) + Y7V dum+i7 pix)(7.2)

Thus, we see that the spinor superfield contains a hemitrion

(TA), four hemidions (¢,z,n, andr), two scalars (Aﬂ' and s),

two vectors (vh and vu), two antisymmetric tensors (tpv and

tuv)’ two axial vectors (au and au), and finally two pseudo-
scalars (.p,and pl.

Keeping in mind that it is the hemitrion which motivated
the study of this superfield, it is appropriate that we recall
some features about the Rarita-Schwinger field.

The Rarita-Schwinger field describes a particle of spin
3/2. There are two ways in which we may describe such a field.
We may use a multi-spinor Tabc' where a, b, and ¢ are spinor
indices or we may use a spinor-vector Tbu where b is a spinor
index and p is a vector index. We shall use the latter descrip-
tion. In either case, however, there are subsidiary conditions
which must be satisfied to insure that the field is an irreducible
representation of the Poincaré group. Stated another way, these
conditions insure that the field V¥ is purely a spin 3/2 field

bu
and not a mixture of spins 3/2 and 1/2. These conditions are

)’qu": 0 ar‘-LPr = 0 (7.3)

and give a total of eight conditions. The spinor-vector has a
total of sixteen components and we see that these conditions

imply that only eight components are independent. This is just
the correct number to describe a particle and antiparticle of

spin 3/2. The Lagrangian for a massive hemitrion may be expressed
in the form

i[—e"”r%a, +im°c1“°'s]q-‘, (7.4)
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and the subsidiary conditions are implied by this expression.
The simplest supersymmetric Lagrangian for the spinor

guperfield that we may write is
1 26 aTe - .
Jdx 3BD) 1Pl ig-M. 1P} (7.5)

but this expreseion completeiy neglects the conditions which
must be satisfied by the hemitrion. For this reason this is
an unacceptable Lagrangian.

Thus, we must search for an alternate Lagrangian. After
some work we can convince ocurselves that

Lr S Te =
Jdtx =(BD) ] PrLvSsy"(Br*r.D) — T M1 P ¢ (7.6)
is a much more promising expression. To see this we may expand
this expression in terms of the components. After some algebra

we find the equation below. The details of the calculation are
found in Appendix D.

Jax (P e, . 70" — i (T, ¢ - F )
it Py (. 3-20.3,) % =i ¥y ' - 22,00 ¢
+ i(Efv’r) + 7 al;)
+2 Tl & r 7" (ne 3 -2 3,0.) a 7°r”
+ix*rr*9"8 v v ¥
- 5*7’?’"( i 3% ¥V, ~ BYy) }
~VAM(EL —fn) + JIM. PP

+ AM, Taf &*g + B o }

(7.7)
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Thus, we see that the usual expression for the kinetic energy
of the hemitrion has appeared. Furthermore, we see that the
unphysical components of the hemitricn are coupled to other
unphysical fields. ¢ and . We could vary this Lagrangian with
respect to the component fields to obtain equations of motion
but rather than doing this for all of the fields, we consider
only the equations of the two hemidions ¢ and n.

~ifn +@AM, =0

-if& A M, =0 (7.8)

which then implies that,

(-3*-amM;)Z = (-3'-amMJ)n=0 (7.9)

Therefore, these massive spinors are tachyonic (mfermlon 0). So,
it appears that the massive system is unstable. If we ignore this
presently, we may solve for the propagator for the entire super-
field. As in our discussion of the chiral, spinor superfield
model, we first add source terms to the Lagrangian and then obtain
the equation of motion for the superfield in the presence of the

source., We find
[-%YBTA(DY’YAD)-'-HM.J!‘P = J (e, x) (7.10)

where o is the spinor superfield source term. The solution of
this equation is

Pio ) = Tl ooral i [1-i2 ok 4] (50)

vi M, -
~ &M, [ vy"+ i3 3% Y"1 (Dr%,.D)

-[ 3%+ 1M:J}J(e,x) (7.11)

Once again we relegate the derivation to an appendix. We may
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-1 . . . s
in this expression. This is an

note the presence of (82+2Mé)
indication that there are tachyonic particles in the multiplet.
From the work of Sokatchev, we know that it is possible to con-
struct four projection operators for the spinor superfield which
decompose a general spinor superfield into its irreducible com-
ponents. Two of these operators are the chiral operators which

we have used previously.

TI: = 55:(DD)D (1 7D (7.12)

However, for the spinor superfield there are two additional

operators

I,

il

[1 - 7% (DDJ‘J[ 3 + 75275 3,(brr.D) ]

!

I.=11- '+"5‘(DD) I x - 327 3,0r%D)] (.13

and by using some of the identities of the fermionic deriva-
tive given previously, we can convince ourselves that these are
orthogonal projection operators.

These operators may be used to project the spinor super-
field into its irreducible representations

7 = TIL $iew

or more importantly we may decompose the Lagrangian by defining

Lo = TI, [~y yNDrD) + am,]TIS . (7.1s

Yy

Obviously the mass term is diageonal, leaving the kinetic term
as the nontrivial part of the calculation. After a substantial
bit of algebra we can show that

L LTl =[- % Xe- i3 FII T, + 11, ]
I, LcIT, = [ Z Xu+i2gd ][ TI, + IT, ]
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IT, 2. II, = IT, IknozTZé J:K[H1+Ha] (7.16)

P P’ P pp’
Hé p g Hi = "iysa IIiS (7.17)

with all other terms vanishing. Using the first four of these

relation, we can see that,
E ]-_I-‘l. +Ho] IK[I-I1+H°] = IR[H1+ HoJ (7.13)

Thus, this Lagrangian only makes a distinction between the chiral
and non-chiral parts of the spinor superfield. Therefore, the
propagator should also possess this‘ feature. On making this
observation, we may define for the propagator

[5(3,0)];.0= [II,+TL]1S(3e)[ T, + IT.] (7.19)

[Seel, = Il S(ae) I,

as the relevant projected propagators. When these expressions
are evaluated we find

ES.Lq-o - [ 31+M1 ][ Y )/f‘( Huv ~ 25'5-9””)(5 ysva)

e}
v (3 +am2)] (7.20)

for the non-chiral sector. For the chiral sector we may write
the propagator as a 2x2 matrix

-1 CAM,
1 am, [ K(DD)i"'('Bt"'lMD] XY [ P+ B:“-e- 2mE O 8*)
v _iGAM, (7.21)

"'1 a 2
Yy L g+ e 8] mwALK(BD)- (3 ami)]

where J3 M-
T= 3*+M> Ka[1-i% 75camf)
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Mow it is important to notice that the non-chiral propa-

1 which means

gator is independent of the operator IBZ+2Mg]_
that that sector of the propagator is free from tachyonic parti-
cles. Thus we see that even our second guess at the lLagrangian

must be supplemented by the condition.
i — 1
[ 1~ 35(DD)' ] = P
(DD)Yp = © (7.22)

At this point, we shall not make another guess. It is
more important to consider the information we have learned about
the spinor superfield. As we have just seen, it is possible to
write an expression which, naively, looks to be a perfectly good
Lagrangian. However, when we solve for the propagator we find
that it has "bad" ultra-violet behavior and in order to be free
from particles of imaginary mass we must put a constraint on the
guperfield. The constraint is a gauge-like condition and the
defects of the propagator showing up simultaneously are giving
strong hints about the nature of the spinor superfield.

In ordinary spacetime, if we had written a naive Lagrangian
for a massive vector field, we would find ourselves in the same
situation. Thus, we are led to the idea that the spinor super-
field must be a gauge superfield.
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VIII. Spinor Yang-Mills Superfields

As we have just seen there is some justification for
believing that the spinor superfield is a gauge superfield.

If this is the case then we have a way of generating a reason-
able Lagrangian for the superfield.

We may recall that the fermionic derivative transforms as
a relativistic spinor under the Lorentz group. This suggests
that perhaps the spinor superfield may be able to play a role
that is analogous to that played by gauge vector fields in
ordinary theories. We shall see, shortly, that in exact analogy
with the covariant derivative of usual Yang-~Mills theories, one
may define a "supercovariant derivative" in the fermionic sector
of superspace. More, remarkably, the existence of this fermionic,
Yang~Mills covariantized derivative implies the existence of a
bosonic Yang-Mills covariantized derivative. The truly remarkable
feature about this relation is that it does not require the intro-
duction of independent gauge, vector superfields for the bosonic
components of the supercovariant derivative.

Before we embark on a derivation of this Lagrangian, how-
ever, let us recall scme features of supersymmetric gauge theories.
Within the context of supersymmetry there are two possible view-
points as to the origin of Yang-Mills invariance. One of these
viewpoints might be called the "geometric" view. This scheme is
implemented by proposing that the fermionic co-ordinates of super-
space provide a nontrivial representation of some internal sym-
metry group G. This has been proposed by Salam and Strathdee[22].
Unfortunately there is presently no renormalizable model along
these lines[23]. The second viewpoint, which might be called
"nongeometrical”, is essentially the same as that encountered
in ordinary Yang-Mills theories within four dimensional space-
time. Here it is the fields which provide nontrivial representa-
tions of the internal group. This problem has been solved for
chiral superfields by Salam and Strathdee and Ferrara and Zumino
{24]. It is this mode in which we are suggesting that the spinor
superfield acts as a gauge superfield.
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Results From Ordinary Gauge Theories

We would like to recall some results from other theories
which possess gauge invariance. We begin from the simplest
of gauge theoriesg, gquantum electrodynamics. In this theory,
by the minimal coupling prescription, we introduce a covariant
derivative via the definition,

D, = 98, +ieA, (8.1)

It is natural to introduce a vector field since the operator
au transforms as a vector under the Lorentz group. With this
definition of the covariant deorivative, we can insure the
existence of a local invariance under redefinition of the
phase of the electron field. The well known transformation is
given by;

»

lP. = M,ﬁ[ig.[\(x)] 4,

’

A, = Ap — A (8.2)

where A(x) is an arbitrary local function. Next, we need an
expression for the kinetic energy of the gauge field ,Au, which
is invariant under the gauge transformation. This is done by
defining the field strength tensor,

F.. = 2.A. - 3.A, (8.3)

and contracting it with itself. With these definitions, we
observe that the identities

[Dp,Dv] = e Fr-v | (8.4)
Foo = —i(Lu)s 3. A" (8.5)

are valid.
If we now consider some non-Abelian group{25], we introduce



79

a multiplet of vector gauge fields which transform as the adjoint
representation of the group. The covariant derivative in
equation (8.1l) is redefined so that

D, = 9. +£3,A'_.4 T (8.6)

where Ta is some representation of the group. In analogy

with equation (8.4), we find

LDu,D.1= ig F'd,w T (8.7)

F pv = apAav - avAap - ?-{abc Aprcv
= i (Lw)"[ 3.A, ~ 2 95 L ATWAT, ] @B

where f;c are the totally antisymmetric structure constants of

sore Lie algebra.

Gauge Spinor Superfields

We can easily see that the fermionic derivative of super-
symmetry transforms like a Dirac spinor under the Lorentz group.
For, we find the relation

[M“p,Dx]= "%(O‘“pD)z (8.9)

is satisfied. Thus, if we think about the fermionic derivative,
DE, as being a projection of a superspace gradient, B/BXL, onto
the fermion sector of superspace and the ordinary derivative,
BA' the projection onto the bose sector; then, in the case
wvhere superfields[22] possess some internal symmetry, it does
not seem unreasonable to add to the supergradient the following

guantity
M ' am d
A4 = [ i\ , G F] Te (8.10)

to form a supercovariant gradient.

7 = 3/3X., + i?VM (8.11)
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In equation (8.10) the multiplet of spinor superfields,.ﬂa(x),
must transform as the adjoint representation of the internal
symmetry group. The vector superfields Gi are defined by the
equation below.

GapE -%CDYPAa-F%?}akc Zk.hygAc] (8.12)

The guantities T, have their usual meanings. We may require
that the spinor superfields are constrained to be real. With
our conventicons, this implies that the vector superfields are
also real. A priori, in equation (8.11) we could assume that
the vector superfields are independent of the spinor superfields.
We will have to justify equation (8.12) below. The analogy
between equations (8.11l) and (8.6) is more striking if we
recall that an arbitrary spinor superfield contains a spinor
superfield which is the fermionic derivative of a scalar super-
field. By thinking of this as the analog of the transformation
of the photon field in eguation (8.2), we are led to require
that the Lagrangian for the gauge spinor superfields be invari-
ant with respect to the transformation:

Aa — A -2 D s’ — g $5.. S@’bA‘ (8.13)

where §¢% is an infinitesimal multiplet of scalar superfields.
Under this transformation, the vector superfields m:ﬁ change as

G.— G .- 5, 86" - gfan 56" G . (8.1

which justifies the identification made in equation (8.12).
Next, we need to construct the Lagrangian for the gauge spinor
superfield. To this end, we need to employ the generalized
Lie oracket. This Lie bracket is defined by the relation,

[ABt= AB -()"™BA (8.15)

where a,=(1,0) depending on whether A 1is a fermi or bose
operator. Using this operator on the supercovariant gradient
then leads to,
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( [Dm,ﬂwz)i‘j :"(TMNL)(SL)ij + i?(Rmu)i?

T (8.16)

where we have used the following definitions

a a

R = F(romh.E .. F .. (T
. G ]
E'v = %[0 A” + g8 Ko\ ]
E*= DG -+ A" -43 5. ATG
P e e
G'ho= 3,G- 3.G' - 35 .G .G

i(yoy“),,.,,: 4_5 L=2x, Mz=m, N=n

L ——
IMN =

o ! otherwrtae (8.17)
The term proportional to DL on the right hand side of
equation (8.16) might be called the "anomalous term". It is

anomalous in the sense that it does not have an analog in
equations (8.4) and (8.7). But, the presence of such a term
has an interesting interpretation within the context of dif-
ferential geometry. Such a term can arise from the fact that
we are describing superspace in terms of a noncommuting co-
ordinate basis and therefore the components of the invariant
superspace gradient are the directional derivatives of such a
basis.

Tpere are no nonzero scalars which may be formed from
(fEMN)lj. Therefore, we may form a quadratic and take the
trace over the internal elements to cbtain

a b
' R KLRMN S5ab (8.18)
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Therefore, we may take as the gauge Lagrangian the expression,

HKLMN

’ _ a b
Igauge = ql_'(DD)l{ R KLR MN} Sn" A {8.19)

where AI:LM]:I is the most general constant tensor such that
Fd

gauge is invariant. Thus, we have constructed a manifestly
supersymmetric Lagrangian for the gauge spinor superfields.
As can be seen, there remains gquite a bit of ambiguity in this
equation. We expect, however, that the requirement of renormal-
izability will place further restrictions on the arbitrary super-
tensor. We may note that the various sectors of the superfield
strength tensor E 3\),[‘-‘ ;v' and G 3\) have dimensionalities of
d+1/2, d+1, and d+3/2 respectively, where d=1/2 is the dimen-
sionality of the spinor superfield in units of mass. Therefore,
various sectors of A must differ by powers of inverse mass.

,

Thus, we may argue that A must be chosen so that 'Igauge is
proportional only to the square of fermion-fermion sector of

the superfield strength tensor. So we may assume that

’ — E | v
L oeuge = # (BD)'{ wha ¥, (8.20)

is the form of the gauge Lagrangian.

However, when this expression is expanded in terms of
component fields, it is found not to contain a term which may
be interpreted as the kinetic energy of a vector gauge field.
Thus, by following the procedure which leads to a gauge theory
in ordinary Minkowski space, we have not, as yet, a complete
gauge Lagrangian. On the other hand, the expansion of the
gquantity

L oaye = %fﬁD)a{G;a,‘GaF} (8.21)

is found to contain the kinetic energy term of a gauge vector
field but is not invariant under a gauge transformation. Under
an infinitesimal gauge transformation this guantity is changed
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by an amount
-2 Ga,. " (e ,) (8.22)

Therefore in order to have a Lagrangian which is gauge invariant
we must add an additional term to equation (8.21). This additional
term should have the same dimensionality as equation (B.20). We
ncte that in equations (8.20) and (B.21) two powers of the ferm-
ionic gradient act on the gauge superfield. We also know from
equation (5.28) that two powers of the fermionic derivative may

be combined to yield the bosonic derivative. This suggests that
we may try to add to eguation (8.21) a term which is linear in

au. The simplest such term is of the form below.

ﬁaﬁﬂb Sat (8.23)

We may subject this to the gauge transformation and find it is
changed by the amount below plus two pure divergence terms.

116 Ga, d"(sdd,) (8.24)

Thus, it is clear that the expression

"

L ogne = (DD LG ,Ga"-ig A FA L} (8.25)

will change by pure divergences under a gauge transformation.
But this is exactly the manner a supersymmetric Lagrangian
transforms under a fermionic translation. Therefore, the gauge
Lagrangian for the spinor superfield is

Lowge = (00N ¢, [G G - is AFA: ]
+ C, Ea,“ E."f (8.26)

Using either the bosonic or fermionic sectors of the "super-
covariant derivative" we may couple the gauge fields to matter
superfields, provided that the pure kinetic terms for the matter
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superfields are only expressable with the use of fermionic
and/or bosonic components of the invariant supergradient. An
example of an interacting model is provided by;

L qeuge + (B0 { B[ (5 (v + m, 1§ (8.27;

where ‘@ is a complex scalar superfield belonging to some
representation of the group.

Thus, formally at least, it appears that we have a solution
to the problem of implementing Yang-Mills invariance for non-
chiral superfields. The gauge, spinor superfields allow the
Yang-Mills transformation of the gauge superfields to be realized
linearly in a manner that is consistent with global supersym-
metry. 1In previous works done on supersymmetry and Yang—-Mills
invariance by Salam and Strathdee and Ferrara and Zumino[24],
the Yang~Mills transformaticn of the gauge superfield is imple-
mented nonlinearly with respect to the supermultiplet, by intro-
ducing the gauge fields as components of a multiplet of real
pseudo-scalar superfields,'VVa(X). This allows the definition
of two "phase factors" via the equations

,M(/]a[:th(X” (8.28)

where\fs\fa(X)Ta. Using chiral matter superfields permits the
gauge and matter superfields to be coupled.

+(DD)*{ B, m[3V1@+ + @ expl-g V1 P_t  (a.29)

We will return to this peoint at the end of the next section.
It remains to be seen whether our linear approach will prove
as useful in model building as the nonlinear one. We are
presently studying this question.

Yang~-Mills n-beins and Supersymmetry
In ordinary Yang-Mills theories, we have a set of gauge
fields, A:(x), and a set of generators, Ta' which belong to
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some representation of a compact, semisimple Lie algebra. At
each point in spacetime, we asscciate a set of "internal n-bein”
fields, EilI(x), which are given by the expression

i

e ()

]

'{ W(—ig,xjd/vadA{vJTg]}ir (8.30)

where we have explicitly exhibited the matrix indices i and
I. That we should recognize this as an n-bein for the internal
space is made plausible by observing that we may define a

. J .
connection T in the usual manner,

I
i T i
de ; = dx* I’"HI e s (8.31)

so that the equation below is valid.
1 _ 7 T i
0= dx*Due’s = " (3.8: - [ ur'les (8.32)

Now we may perform the differentiation that is indicated in
equation (8.31) and substitute the result into eguation (8.32)
to find

D, = 9, +ig A*, T. (8.33)

which is the usual expression for the covariant derivative in
a Yang-Mills theory. _

We now observe that the "internal n-bein" concept easily
generalizes in a flat, bose-fermi superspace. Indeed, we may
replace equation (8.30) by the expression,

. X a i
e xy=1 m[-ig.[, (148" + dx* G ,.-)Ta]} 1 (8.34)

where X is some point in the superspace. Here we can see
that it is crucial that both spinor and vector superfields are
present in order to define the supersymmetric generalization of
the line integral.

Equation (8.34) is reminiscent of the phase factor in
equation (8.28). It appears that we may make some identification
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between V2 and the supersymmetric line integral. The fact
that chiral superfields couple to the Yang-Mills group beins
is analogous to the coupling of ordinary spinors to the
vierbeins of gravitational theories. Thus, chiral scalar
superfields may be viewed as Yang-Mills spinors.

It is obvious that the "internal n-beins" are nothing but
Yang's gauge phase factors[26). This in turn implies that the
usual supersymmetric "phase factors" discussed in the previous
section may also be identified as a supersymmetric version of
the Yang gauge phase factor for chiral theories.

This viewpoint suggests a whole class of supersymmetric,
chiral gauge models which have not, as yet, been explared. One
could consider a chiral model where the matter superfields are
chiral spinor superfields. The gauge superfields may couple
to these matter superfields through the chiral, gauge vector
superfields. An example of such a model is given by

L =Lt LD (Vv + VL) E

+ (DO ®_[ir (3, +3V) - M I, + het (835

where for simplicity we have used the notation of Salam and
Strathdeel24]. 1In this expression 4?+ and Q?_ are independent
chiral spinor superfields which belong to a representation of
the group. An interesting point about such a model is that it
easily admits the existence of a conserved fermion number. It
would also be of some interest to see if this model is renormali-
zable in view of the model of Adjei and Akyeampong[20]. It is
clear that the free propagator for the chiral spinor superfield
here is just the Dirac propagator. This is to be compared with
the propagator for the aforementioned model. Therefore, naively,
we might suspect that the model of equation (8.35) may be renorm-
alizable.

As we have just seen on a formal level the spinor superfield
in eight-dimensional superspace may be a gauge superfield for
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internal symmetries.

At this point, we may continue our investigation of the
spinor superfield as a gauge superfield, but in 1+1 dimensions.
The superspace appropriate here is four-dimensional., We will
shortly see that in this superspace that the analog of a chiral
superfield does not exist. This is a consequence of the absence
of a nontrivial y® matrix. However, the Clifford algebra repre-
sented by the fermionic gradient in four-dimensional superspace
is similar enough to that of the eight-dimensional superspace
so that there exists a gauge transformation on spinor super-
fields which involves the fermionic derivative. It is this
transformation which is used to implement the Yang-Mills
transformation of the gauge superfield. We will repeat the
argument of the previous sections and construct the Lagrangian
for a spinor superfield which is the gauge superfield for a
U(l) symmetry. When this Lagrangian is expressed in terms of
ordinary fields we shall find that it contains a gauge vector
field, a Majorana spinor field, and a Hertzian tensor field.

There are some differences between the gauge, spinor super-
field in the two superspaces, however, For instance, we will
find that it is possible to use more components of the super-
field strength tensor in four-dimensional superspace than in
the eight-dimensicnal space. This is possible because the
dimensionality of the gauge spinor superfield is smaller in
four dimensions. Also we will find that the Majorana spinor
which is associated with the gauge field may ke massive without
the breaking of the symmetry. This feature appears unigue to
the four-dimensional superspace.
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TX. The Spinor Superfield in 1+1 Dimensions

2 Four Dimensional Superspace

Let us consider a world which possesses a single temporal
dimension and a single spatial dimension. Therefore, the
analogs of Minkowskian four-vectors are two vectors of the form;

" = (x°, %) (9.1)
We may introduce a metric which has diagonal elements -1 and
1 for py=v=0 and 1, respectively. The Lorentz group will
consist of a single boost, M°!. But the Lie algebra of the
Poincaré group will retain its form since it is, explicitly,
independent of the number of spatial dimensions.

[PF,,P'IJ]=O CMAF,PvJ:'ir'AvPF—i)?uFPA

EMKA,MF'U]= quFM,\u -'i " xv Mlp“"i—q;,‘Myn
"inlvMpK = 0O (9.2)

Next, we observe that the fermion components of the generalized
translation operator is given by the usual expression,

ST = =i [ ()3, +i(7*6)" 3,1 (.3

if we now understand that the fermion space is also two-dimensional.
In order for this expression to have meaning, we must introduce a
set of Dirac matrices in a Majorana representation. One such
representation is given by
[ 2 - 1 t

1, 7' = (o ,LO“), ot = z(¥r"-7r"r") (9. 4)
where 1 is the two by two identity matrix and o are the Pauli
spinor matrices in the standard representation. In this represen-

tation y? is antisymmetric, while Y“yu and vy are symmetric.

uv
Thus, the elements of our superspace are four componented super-

vectors ™

X =(6";x") (9.5)



89

with two fermion components and two boson components. The
concept of a superfield may also be generalized. The scalar
superfield, for instance, is given by the expansion;

Po,x) = Atx) + 8 Pix) + + B8 F(x) (9.6)

The fermion components of the invariant superspace gradient
will then be given by the usual expression

D" = [ ()" 3.~ ik (r*8)"3,] (9.7)

and will satisfy the identity

D'D" = it (v*7)**3, + + (v** (BD) (9.8)
where BaE(YD)abDb' This equation is very similar to its four
dimension analog which possesses two additional terms, on the
right hand side, that are proportional to vy°®. We can under-
stand the absence of these terms here by making the observation
that for two-dimensional spinors there does not exist a Y3
:_natrix. From the above identity it follows that I_)yuD=i3u and
DcuvD=0.

In supersymmetric theories in 1+3 dimensions, chiral
superfields have been used extensively in constructing super-
symmetric models. Here we see that in 1+1 dimension, such
superfields can not even be defined. From the work of Sokatchev
[18], it is known that in 143 dimension it is possible to con-
struct projection operators which decompose an arbitrary super-~
field into its irreducible parts. We may pursue the same
strategy here and we find that for the scalar superfield in
1+1 dimensions these projection operators are given by:

II,=[1 - 3(DD)*] = 0

I, = (50 = 1 (.9
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Thus, the analog of the nonchiral part of the scalar superfield
vanishes and the scalar superfield is composed of the sum of
the analoge of the chirally positive and chirally negative
parts.

Now having demonstrated the existence of a well-defined
supersymmetry in l+1 dimensions, we may begin to consider the
construction of supersymmetric models. The simplest such model
is the analog of the four-dimensional Wess-Zumino ¢? theory
[17]). Here, we find that the following supersymmetric action is
such an analog.

S=Jax[-(DD)iz @[ (DD)-M,]P® + & o @°t] (9.10

But since there are no terms proportional to v3, we may not
consider this as the dimensional continuation of the original
theory.

Gauge Spinor fuperfields

We now pose for ourselves the task of constructing Yang-
Mills invariant theories in our four-dimensional superspace.
Immediately we see that we do not have the option of following
the approach discovered by Salam and Strathdee and independently
by Ferrara and Zumino[24]. This approach depends crucially
on the existence of a nontrivial chirality operator. But, on
the other hand, the approach which we have described for non-
chiral superfields in eight-dimensional superspace can be applied
to four-dimensional superspace.

We observed that the invariant superspace gradient which
is given by 3

= — ™ H

9X (D", 9 ) (9.11)
may be made covariant with respect to Yang-Mills transformations
if we add to it a supervector VM of the form

Ve, = (N7, G ") T 5.12)
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where T, forms a matrix representation of the generators
of some compact Lie algebra. Furthermore, in this expression
j\am and Q;?iare spinor and vector superfield multiplets,
respectively, which satisfy a certain differential eqguation.
The analog ©of that equation in our four-dimensional superspace
is given by,

; _ P -
G'o= k0 D7A +545 A% ] s
and we see that there is only one independent gauge field
multiplet, the spinor superfield multiplet. The gquantities,
fgc' are the structure constants for the Lie algebra. Thus,
we are allowed to define a super-covariant derivative,J /& X

M
via the equation,
L = _B__ . M
SXu = 3Xm t ig V (8,x) (9.14)

and propose that under a Yang-Mills transformation it transforms
as

»

J g

5% = axplig ®15%. enpl-ig®] .19
where Q(e,x)ETa @a(e,x) is an arbitrary scalar superfield.

Now the remarkable thing about equation (9.13) is that if we
loock at the transformation induced on the fermion components in
equation (9.15), then we find that the vectox superfield defined
by equation (9.13) transforms properly as a vector Yang-Mills,
gauge superfield. The proof of this fact depends crucially on
the relations 5YuD=iau and (y“yu)ab=(y°yu)ba. Next we may
define a supertensor which ig the analog of the usual field
strength tensor. This supertensor is explicitly given by the
expression,

-1 o mn a dmuw
a

R ‘o
F ‘ G pu (9.16)
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—_;TE D'U—pvﬂa + :‘!!:gf}dbcj\-bc;vﬂc
i
Fapn = - F n o
E—.d""PE DmGd.v . _!i avA&m__ %g}abcﬂbmﬁcv
Ga’”vE aFGa’v_‘ avG‘p “?;abc GLFGCV

(9.17)

]

<

A4
i}

and the action for the gauge fields is given by,

Sgauge = J.dax (DD){ Ral-(l. RBMN } Sdh AKLMN - {(9.18)

where AKLHN is the most general constant supertensor which is
consistent with super Poincaré invariance.

An Abelian Example

In order to examine the content of the previous results
in terms of component fields, we need the expansion of a spinor
superfield. If A®(6,x) denotes such a superfield then we find

Moz} = 24 + <010 + +00[ 4+Zt+i2 FP0ls.19)

where a is an internal index. The fields ¢a and ;a are
Majorana spin-1/2 fields and a?(x) is a four-componented matrix
field. This latter field may also be expanded.

() = a%x) - i Yrutiw + iz o £ (x) (9.20)

Thus, we see that the spinor superfield also contains multiplets
of scalar, vector, and antisymmetric tensor fields. Let us, for
simplicity, consider a theory with a U(l) internal symmetry.

If we now use the expansion of the scalar superfield and examine
the transformation of the equation (3.5) we find that the
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component fields transform as

4>' ¢ — 2 0 a — F
Up = Up — 9, A

»

L =4 ’
Euw = Luw (9.21)

under infinitesimal transformations. From this we see that the
vector field vu is subjected to an ordinary gauge transformation
as expected. 1In equation (9.18) we may choose the tensor aX

so that the action assumes the form

Sgouge =Jdlx %(ED){ lFH. yvy"Fv + EF‘)GF‘U

When this is expressed in component form we find,

’1

Sauuge = J2xd Z(iF-M0C - %13, v0- 9u v
- 7;‘— l 3,; tap’l“ ;I M, t"v(a,,u,,—a,,v‘,)} (9.23)

Thus, we see that the gauge system consists of a -massive Majorana
spin~1/2 field, a massless spin-l gauge field, and a Hertzian
tensor field. 1In passing from equations (9.18) to (9.22) a

judicious choice of the tensor AKLMN

has been made. Several
factors have governed this choice. First of all we have
neglected terms proportional to IG;uvlz' This term leads to

a quadratic derivative, self-interaction for the spinor fieild.
Secondly, the relative coefficients of the terms proportional

to F 2 and E:uv(:uv have been chosen so as to eliminate a term
in equation (9.23) which would be proportional to the divergence

of the tensor field.
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Appendix A

The Ratio me/mu

In Ref. [1], the question of whether anything could be
learned, within the context of the dual, gauge model, about
the ratio me/mu was addressed. In particular the authors
investigated the possibility that an electron which is massless
in zeroth order might acquire a mass due to radiative corrections
caused by the exchange of weak vector bosons. Several variations
of the basic model were considered but none were successful in
this respect.

I1f we take spin-zero exchange seriously, as in the rest
of this work, we find that it is relatively easy to achieve the
above goal. For simplicity we consider a model with only the
ordinary leptons. Next we introduce two spurion guartets, ¢
and n, which both couple to the singlets Mp and ep. We then
allow ¢ to acquire a non-zeroc vacuum expectation value in such
a way that the e-uy mass matrix has the form

Since this matrix has a zero eigenvalue only one fermion, which
we may take to be the muon, gains mass in zeroth order. Now,
however, there exist second order prccesses due to the exchange
of n which gives the electron mass. The Feynman diagram for
this process is given in Figure 5. Obviously the mass of the
electron will be proportional to e? times the mass of the muon.
We decided against using such a progess in the bulk of the model
" because when we add the heavy leptons, e' and p', we find that
me./mu.=me/m . This implies that the heavy muon should have a

M
mass on the order of a few hundred billion electron volts!
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Figure 5. The higher order process which
may be utilized to produce a mass
for an electron which is massless
in zeroth order.
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Appendix B

Higher Isospin Representations
of the Weinberg-Salam Gauge Group

In this extended footnote we want to discuss two points.
If a scalar multiplet which transforms as (2j,j) under the
Weinberg-Salam U(1)msSU(2) gauges, suffers a spontaneous symmetry
breakdown in a gauge model; then the ratio of the squared masses

of the W and 2° bosons is given by:
L
( F4m/)1 — Fw — (*17) a
M go 230 g7 + g% 2§ cot’ P,

provided that only this scalar multiplet spontaneously breaks
the symmetry group. This change is significant, since in a
pure Weinberg-Salam model Cv and CA would be given by:

Cv = 1 +735 (2 ain*du— %)

Ca = 1 - 5% (‘%)
The other point we note is, that if we use one of these higher
representations in a model it can not couple to the fermions
in the lower isospin representations. So these new particles
interact only with the gauge bosons and as such may not be pro-
duced except in associated production with the vector bosons.
Weinberg has shown (Phys. Rev. Lett. 36, #6, 294) that the mini-
mum mass of the Higgs boson is of order o2, rThus, if these
particles are lighter than the vector boson, they will be abso-
lutely stable!
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Appendix C

Alternate F-spin Scalar System
for Dual Model II

In the body of this work we arranged the scalar system so
that the F bosons gained the major part of their masses from
the two nonvanishing V.E.V.'s of the scalar multiplets p, and
p,- These multiplets transform according to the F=1 representa-
tion of SUF(2). Here we propose a slightly more economical
scheme. We may replace p, and p, by a single multiplet p which
transforms according to the F=2 representation. Explicitly, the
multiplet p is given by:

-

f%po_-ép+ &LP:s \f“’.::.pl
+

! l
Ep‘]' ﬁpl

Ko}
i
A~

<

P
p1 _r;—- Pl —Gpo

Al-

-

which is constructed from the five real components PoreeerP,
Since p is to transform as the F=2 representation of SUF(2),
we may take as the generators:

(Ta)bc_r_- iea

The gauge covariant derivative is then given by:

Dup = Bup - igl(F-T), 0l

Thus, we may construct the following gauge invariant, scalar

b c

Lagrangian;

a

L= Trhi-2IDpl” - Ulp)}

where the potential U(p) is given by:

Up) =2, p + $2.Ma p’ + 20y Mg po”
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If we now ailow p, to acquire a2 nonvanishing V.E.V. given by
1
2
mass matrix:

~3g*Me [ c*UFIT+IFIY) + c*(Fa)']

cMG, we find the following contribution to the F boson

This change causes the F~bosons masses to be given by:

<

Mee = é’-g“i"]; [ a*+c?]

2 | 2 2 2
Me = Fg*Me [ a*+ 4c*)
Thus, the parameter d 1is eliminated from the model and we may

express the parameters a and c¢ in terms of the angle «.
a = 1/ co1

¢ = a5 [ corPa— 51 sin(za)

Since we require ¢ to be real, we have the following restriction

on the angle a.

0 < ox < 0.35 v nad.

But of course we know from BR-decay that ¢ is much smaller than

the maximum given above.
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Appendix D

Derivation of Component Form
of a Lagrangian for the Spinor Superfield

We may begin this derivation by observing that
Dvsv*D = (v, D,D"

= (V) [ 9, -ix(vae,ll 37 -iz(FO)"]

= 3Y7¥*3 + i (BYIr*3F) + #0776 [ 13- 227°9"]

Now we proceed to calculate the action of these operators on

the spinor superfield.
33 Y = A7, -BY6 - %870 7T
iBrEnDT = i %Yo - ix86 v53,n
~i5BY%6 3,8 +ixBYY0 €unyg Y37 WP
~iz 66 3°87%,.7.6
87 6 nad™-23:, 1% = $877%0 (nuad* -2 9492) ¢

~5006(1x28*-23,3,) a ¥*r* 6

L
%

= 0 7¢(86) ( Mxr 3 -2 8x3:) Y

When these three equations are combined and multipled by Equl
we find
VDY DP=-ivb. + 7Y% Y - 87,)6

+izB6dn - i s87%0 vFc

EBYOL i Caprs 190THY — £ yup ¥R
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+ 5 V7P Unag 3% = 2 3,0,) P ]
+F B8 YV [-id BY VY. — ((mapd -2 33,0 a7 ¥*]6
+ 137 (88)" (nap 0%~ 2 2.3,) 7 Y’

Now we multiply by ¥ and consider only the term proportional
to (086)? in the resulting expression

T Lyy* (D, D) P =
76 (86) [~ €prs P 7Y —ig (T V¥ = F Vo 7r)
“ iR P P9 3°=29,05) P = & (9up 8 -2 8,4) 77 P%)
+i(Z@gn+Hndz)
-5 Tad BX (i3 Y N,7, ~ B7Y,)

+ LT S VLI D BY Y, + (9,,3%-2 3,300 ¥ yA] }

where a* is defined by the relation

(Y°&)‘m = (V°O‘)m.£

The above equation will lead to the desired result quoted.
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Appendix E

Derivation of Superpropagator from
an Equation of Motion

The Lagrangian

als S., A7 =
P27y (DY 7%HD) - a™, ]
leads, in the presence of a source JT(e,x), to the equation of

motion
| 5,4, =_58 —_
-z DrY,D)+aA M. 1P = T
Formally, the solution of this equation is simply

Plo,x) = [-2 77> D7*%D) +am, 1" T(e, x)

but the content of this equation is not clear. However, we can
imagine expanding this expression about /fMo and in this way we
are led to an infinite power series in the fermionic derivatives.
Now we may recall the multiplication properties of the operator
BYSYAD and this will then imply that the inverse operator appear-
ing above must be equivalent to

Vo) = Fmr.[ C(3) — v, ¥ SBY3) (DY*r,D)

+ 372 A(3) (DD)* ] J(e, x)

for some choice of coefficients A(3), B“(B), and C(3). These
coefficients are matrices in Dirac space and are only functions
of the bosonic gradient. In order to find these coefficients

we need only substitute this equation into the equation of motion.
Thus, the coefficients must satisfy the equation.

L-z77*(Dy*7.D) +vi™M.] X

mm. L C - &%/, Y B (DY*.D) + (@) AMDD]T = I
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Ncw we may use same of the properties of the fermionic gradient
and this implies that we must have

C- 2(s) 7 B "(n.pd*-03,2,) = 1
A + Y*B, = 0
~ (%) Y%A 3y - P €auap? B 3 -2V By — %Y C = O

The first two of these equations imply that A and C may be
expressed in terms of BY.

C = 1+ 2R 7B (nus 3%~ 843,)

A= -7*'B,

The remaining unknown coefficient is required to satisfy the
unhomogeneous equation

-
{ﬁ.)lysg)ﬂsx ap - 2755p - P—:-; €rpag Y:\B'Fa“

(B Y VY B (nan 3-8, 9,) = 3 7Y,

8

Now we may multiply by y°y" and use various identities for the

Dirac matrices to obtain

[(-33"+am))Y, + 4303, + viM, 0., 3"18"
= am}

At this point we could expand Bp in terms of the Dirac matrices
and solve for the respective parameters which would enter in
such an expansion. Rather than doing this, however, let us
assume that the solution has the form

e ] - AP
B = c. Y’ + C, M, L O
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and substitute this into the equation for Bp. Again we may
use some of the properties of the Dirac matrices to show that

co = +mi{7imm)
C, = “3‘_ M:(aliamt)( 3":-'--1'*1:')

Thus for B we find,

a

BP= %4"['3_1]:_,»4_3][}’P+ a"L+:1M=L a° ]

At this point, we may go back and check to see whether this
solution is unique. This we can do by attempting to solve the
homogeneous version of equation E9. When this is done, one
finds an overspecified system of equations for parameters that
are analogous to <, and . Therefore, the conly solution to
the homogeneocus system is the trivial solution and the form of
BP is unique.

Now that we have obtained the nontrivial part of the super-
propagator, we see that A and C are given b

A= MS [ﬁ][ 1 - 4-':(33?4-!:.»4.‘) H

1 [31+1M:]
C = —~ 7L 3*-m72
At last we may write equation E4 in the form:
1 1 ]{ iaEMo — a
Pl x) = .uiﬁ.[ At 2 [ 1 — sromsamn 7 1(DD)

3a M
- BHe ysy¥ 4 siaeT Y5 3¥1(DYY.D)

[ 3 +ami1 § (e, x)

This is the form of the propagator given in the text.
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Appendix F

Projection Operators for the Spinor Superfield

As stated in the text, the spinor superfield may be pro-

jected onto four irreducible representations of the supersym-
metric Poincaré group. The operators which effect the pro-
jections are

L. DD D1 £v5D

IT, = 5% D
TI.=01- %‘(DD)}[%?+'fﬁ)”a*”3ﬁ(575;D)J
TT,=1[1- (D01 % - 75 750" 3. (D7*7,D) ]

For a complete discussion of the projection algebra for the
superfield of arbitrary spin, the interested reader is referred

to the pioneering work of Sokatchev[18]
We may first satisfy ocurselves that these operators are

orthogonal projection operators

1-[1; Ht_ - _Ié"DDD("-tys)D 331DD D(l:t:Ys)D

= ‘;""r(DD) DUFYIDD(1+2Y5)D
Zr5+[ (BD)* ¥ (BD)*Dv°D ] D1+vHD

7350 ($38) DI FyID D (175D

1}

25 [ DDBO1 =v$)D F DY*DB1+7%5D ]
723 [ BDDC1+y)D ¥ BDy*DBD - (DrysD)* ]
| - — —

7w [DDDCiv)D £ DODYD + (DD)*]
_L

89

i

DDD(ixYy5)D = TI,

1
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By making the appropriate changes in this proof, we see that

-II?t ]i[q: = O

Furthermore, we see that the chiral projectors are orthogonal

to the non-chiral projectors by noting the identities

BD[1 - #5(BD)*}=[1- 35 (OD)']1DD

L

O

DD 73" 3,.(DYV,D)= ¥ or*3,(Dr»D)DD = 0
Now we need only to consider the non-chiral projection
operators in order to complete the proof of the projection

algebra. Thus, we need to evaluate
= b
[1- ;%=(DD)‘}[ L4 %Yo 9, (BY5Y.D)] X
[1-s5(DD)*][S + 5575048 0, (DY*7,D)] =
1+ [1 a'-(DD)"] + E-Lq.tl"s' 75 Viorv 0.(DY3%r,D)

bd — —
Ze3 (oo~ =#) 3,5, DrSr,DD 7D }

ac+ lbd ad +be —2bd _t
[*56 +

= [1- §3(DD)Y % 75 Vo 3. (DY, D) ]

In arriving at this final form we have used the multiplication
table for ﬁysvaﬁYsyeb and used properties of the Dirac algebra.
By choosing the parameters a, b, ¢, and d appropriately, we

may convince ourselves that

(TI,)" = IT, (TT.)" = TT.
IT, T, = O

This completes the proof of the algebraic properties of the
projection operators.
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Appendix G
On the Gecometry of Superspace

Introduction and Summary

There are two well known approaches to the construction
of a model which weds local supersymmetry to a gravitational
theory.

One approach is the gauge supersymmetry approach of
Arnowitt and Nath[27] where one essentially postulates that
the geometry of curved superspace is an extension of the
Riemannian geometry cf ordinary spacetime. From this viewpoint,
one is led to introduce a supermetric, gMN(B,x), which governs
the geometry of curved superspace.

The other approach is the supergravity approach of Freedman,
van Nieuwenhuizen, and Ferrara[28] and Deser and Zumino[29].
Here starting from the principles of local supersymmetry and
general covariance, one constructs a gravitation theory from
a Rarita~Schwinger field, the vierbein fields, and the connection
coefficients.

We will now present an alternative to these approaches.
This alternative is very much in the spirit of gauge supersym-
metry. Indeed, we find the basic ideas which underlie gauge
supersymmetry very plausible. Thus, we will'attempt to formulate
a theory of a curved, eight-dimensional, fermi-bose superspace.
A few months ago[30], we made the observation that a factoriza-
tion of the most general form of the supermetric, that is consis-
tent with global supersymmetry, strongly suggests that a theory
of curved superspace should be constructed as the generalization
of Einstein's unified field theoryl[3l]. It is this generaliza-
tion to superspace to which we shall address ourselves in this
paper.

In the second section, we will study the geometry of global
supersymmetry. This we will do first by investigating the super-
metric of global supersymmetry. Next we will recall some well
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known results about differentiation within global supersymmetry.
These results are presented so as to facilitate their inter-
pretation from a differential geometric viewpoint. Finally, we
study some Lagrangian models of global supersymmetry. This we
do keeping in mind that it is the geometry of superspace which
is our ultimate goal. The conclusions we reach at the end of
this section are that global superspace is a metric space, in
the differential geometric sense, which possesses zero curvature
and constant torsion. It is these final two features which we
interpret as excluding a Riemannian geometry for curved super-
space. We further conclude that simplicity dictates a theory
which is the supersymmetric generalization of Einstein's unified
field theory.

In the third section, we review general relativity from a
very simplistic viewpoint. We undertake this review for two
reasons. First of all, we are interested in demonstrating the
interplay between gauge invariance and differential geometry.

We will show, in an intuitive way, that it is possible to use
only gauge invariance to construct a theory of curved spacetime.
The second reason for this survey is to formulate a stratagem
which we may apply to superspace.

In the fourth section, we address the problem of constructing
a theory which generalizes Einstein's unified field theory. This
construction proceeds in exact analogy with general relativity.
It is shown that the requirement that the local isometries of
the affine super connection coincide with those of the super-
metric places a restriction on the isometries which may be gauged.
This in turns reduces the number of local gauge fields needed
and further allows for the construction of a theory with vanishing
nonmetricity. We also find that global supersymmetry can be
recovered as a continuous limit of this curved superspace theory.
It is noted that complex conjugation seems to play an important
role in the theory of a curved superspace. We suspect that this
has some relation to the fact that there is a connection between
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supersymmetry and twistors[32]. We end by proposing an action
for the gravitational interaction in a fermi-bose superspace.
In conclusion, we give a brief discussion of this approach

and point out some relevant features.

On the Geametry of Global Supersymmetry
As is well known, the fermionic translations of global
supersymmetry induce the following transformation on the super-

space {XM:XM=(em,xu)}.
6" =08" +e&”
x* = x" +iz(Er"e) (1)

By choosing two points in superspace which are infinitesimally
separated, we ﬁay deduce that for differential elements the
transformation law is given by

de’™ = 4™
dx’" = dat +i5(er’dd) (2)

With the use of both sets of equations, we conclude that the
square of the generalized line element

de? = d8" (7 N)wn d8" + [ dxt—is(8rr46)]" (3)

ig invariant under the super Poincaré group.

The super Poincaré group is the graded group which pos-
sesses ag its generators the Lorentz boosts and rotations, the
ordinary bosonic translations and the fermionic translations.

It is illustrated, concisely, in Figure {(#6).

In equation (3), the matrix (YDN)mn must be chosen so
that it is antisymmetric in its indices. This and a generalized
reality are, a priori, the only properties required of this
matrix. As such, the most general form of this matrix is
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(PN = (7)o @6, %) + i (¥°¥5)... Blo,x)

+ (77 Nn P (0,%)
(a)

where ¢S, @P, and @? are unspecified scalar, pseudo-scalar,
and axial vector superfields., We may rewrite equation (3)

in the form
do* = dX " HAaw dX" (5)

where ﬁﬂﬁ is a supermatrix appropriate for the given line
element, It can be seen that the following supermetric sat-
isfies this equation,

. (Y*Naa + F (77,80 (874 i 4 (77, 0).
P =
"‘i%‘.(f.rge)ﬁ 7],;.-.',
(6)

However, we may also proceed one step further and factor the
supermetric. This factorization could proceed in the same
manner as does the factorization of the metric in general
relativity where we write

Guy = Nep € px) e’ 500 (7)

But, here we shall find it simpler to factor the supermetric
in the form below.

ﬁ.:“;. = E“:u’;‘ Y)m.(E*)L& (8)

We will justify this choice shortly.

At this point we must make a choice to satisfy this
eqguation. Fortunately, however, within global supersymmetry
there are many hinta as to the form of the octad Exﬁ. The
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name octad or achtbein is appropriate for this supermatrix
since it plays a role which is analoéous to that played by
the usual tetrads. The solution which seems appropriate for
gleobal supersymmetry is

. 6y O
E .(ox)=
Lz (Yr*e), 8:

(9)

and this implies that the supermatrix denoted by KL is block

diagonal and given by

("N) o, o 1

7?KL J
@ "7“\ (10)

Thus, making our choice of factorization and global octads
leads to this very simple result.

Let us momentarily consider the results which would be
obtained if we replace equation (8) by an equation which
contained two factors of the octad. If this had been done and
if we assume the same form for the global octad, then we would
find that Nk, would contain an additional term of -i(y°yue)g
in the lower left hand corner. Having made this observation,
let us return to the justification of the form of the global
octad.

The form of the global octad given above appears, expli-
citly, in global supersymmetry[33]. To see this, let us con-
sider a function, £(0,x), which is defined over superspace.

A supergradient operator may be defined via the equation
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for infinitesimal d¢ and dx. The components of this naive
supargradient may be identified as
2_ 2 —
8.-. = ( 8.9"‘,9::") = ( 3.'1, 3,;) (12)
Within global supersymmetry, however, it is not this operator
which is used in the construction of Lagrangian field theories.

Instead, one introduces an invariant gradient which we may
denote by VM. Explicitly, this operator is of the form

U = ( Om = iZ(vr*6), 3y, 8, ) = (D, 3,.)

and we may verify that this gradient operator is related to
the naive gradient via the equatiocn

O0n = EK:& Vi (14)

The invariant gradient is invariant with respect to both
fermion and boson compnnents of the supertranslation operator,
@ME(ém,Pu), and therefore satisfies the equation

[Pu,V.F =0 (15)

where [ , l}denotes the graded commutator. The invariant
derivative also possesses the property that its action on a
superfield produces another superfield. The naive gradient
does not have this property.

It may be verified that

2 R A
oxE*: = Lac E"a (16)

where the only nonvanishing components of the supertensor
Ly are given by i%(y°yp)il. We may also verify that the
relations

[ 9c,9cF = © (17)

[V, 7. F = -2 T 0., (18)
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M

are satisfied. The only nonvanishing components of TKL are

given by i%(YDYp)kl' We may note also that the relation

TKLM::%;[LKLH-’- LKL—M] (13)

is valid. Finally, we make the trivial observation that
equation (8) may be differentiated, assuming that ainKL=0,
to obtain

o h o & h
9: Ao = Licm Aax +('—)")i,-.aLm (20)

where o (L) [0 (M)+0 (N)+1]. The assumption that BinKL=0
implies that the previously undetermined fermion-fermion sector
of the supermetric may assume the form below.

(7*Nlgg = K (YDas + L L(v Y + M (rrirt)y, (21

Now if we make the additional assumptions that L=Mu=0 and K=1,

we obtain for'nKL
(Y%)aa ]

0 Mxa
(22)

With these assumptions, we may define an invorse supermetric
which is given by
. (r)"" -iz( v¥e)"
A (ex)= . -
-ig (r*e)" n"“[1-%(86)]
(23)

o omﬁ
and satisfies the condition hiﬁh =6£.

At this point, we relinquish, temporarily, the discussion
of the geometry of global supersymmetry. We shall survey,
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now, some Lagrangian models of global supersymmetry. However,
we shall keep in mind that it is the geometry of global super-
symmetry which we are trying to understand.

The simplest of models involves the scalar superfield,
The kinetic energy term of a Lagrangian may be expressed in
the form below.

L = [ ﬁl-“' - TRLATLkél(aéé)(ag@) (24)

A mass term may be included without difficulty. This Lagrangian
may be compared with the Lagrangian of a scalar field in ordinary
curved spacetime

L = 9‘” (3aP) (95 ) (25)

It may be noted that in the supersymmetric case the derivative
of superfield ccuples not only to the inverse supermetric but
alsc to a bilinear form involving the supertensor T.

Let us turn now to the gauge spinor superfield[34]. It has
been shown that it is possible to make the invariant supergrad-
ient covariant with respect to internal symmetries by introducing
a supervector field. It is possible then to define a super-

covariant derivative
—_ . t
erq = ‘7~1 + 1 ?-‘yr M .ti (26)

where ti denotes a representation of the generators of the
internal group. The bracket of this operator with itself
yields.

[D.,0.3 = -2 T OutigRom @D

whera

Ru- vn. VH - (_).»u.u-m) Vi V..

+ [V Vnd +2Tn Un (28)
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Furthermore, a Lagrangian for the gauge supervector field
has been proposed. This Lagrangian may be written as

I/ = j.‘/l{ C|T [TLHBVAVB + V;. fjAVm]
+ C, P‘_MM P. ABII[RLHRII] } (30)

ABKM

+ ’

LM A

[+
where C, and ¢, are constants and P £7;VL are defined by

the equations.

P;BKME[ TKLATLMBj: TKLBTL”AJ
bAVM = (VA 8:1 — LAMB)VB (31)

In this model, it has also been noted that the supervector
fields ﬁflME(% Klm, G 1u) may be constrained to satisfy the
condition below.

LMN
T R..=o0 (32)

This condition permits the vector components, d;iﬁ, of the
supervector fields tq be expressed totally in terms of the
spinor components, Klm. Once again we see that the supertensor
T plays a prominent role. With this we conclude this survey
of globally supersymmetric models.

At this point, it is necessary to assess the information
which is presently at our disposal. We have seen that the
global supermetric may be factored as an octad, conjugate
octad, and a tangent space metric. 1If this is done, the

tangent space metric can assume the form

(7°)nn o

0 V) po
(33)
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Thus, the tangent space has zero curvature and zero torsion.
This is very similar to the situation in general relativity.
In general relativity, the tangent space metric is the Minkowski
metric., This is why local frames are characterized by the
group SC{(3,1). If we assume that the tangent space metric for
local supersymmetry has the form above, ther the local super-
frame is characterized by 0Sp(4I3,1)[35]. This is not, however,
the full isometric grcup of the supermetric. This follows from
the fact that both the octad and its conjugate appear in equa-
tion (8). In the boson-boson sector, the isometric group is
U{3,1) which confain s0(3,1) as a subgroup.

On the other hand, if we factor the supermetric into octad,
octad, and tangent space metric, then the tangent space metric
can assume the form

(Y)mn s;

‘i(7°7 9)n v
p Nu (34)

This tangent space must, at least, have nonzero torsion.

Thus, we are faced with a choice and if we use general
relativity as a guide, we make the choice in favor of the fore-
most tangent space. This choice implies that if we regard
global supersymmetry as a continuous limit of a curved super-
space theory, then the curved superspace possesses a non-
Riemannian geometry. This is implied by the presence of both
the achtbein and its conjugate in the supermetric. Additionally
if we look at equation (20} we are led to conclude that global
supersymmetry arises as a limit of a non-Riemannian curved
superspace which possesses a complex, graded group as its local
group. Global supersymmetry arises when this space has zero
curvature, zero nonmetricity, and constant torsion. The fact
that the full, local group is complex and therefore may not
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be realized on the co-ordinate basis is in some sense expected.
It is well-known that internal symmetries may be cambined non-
trivially with global supersymmetry[36]. On the other hand,

in ordinary spacetime unified field theories have been formu-
lated. A well-known example of such a theory is the work of
Einstein[31]. 1In such a theory the metric may be described

in terms of complex tetrads. Also, there have been indications
that curved superspace is non-Riemannian every since the work of
Woo[37] and Srivastava[38].

Gauge Theory Concepts and Differential Geometry

At this point, we shall review general relativity and
demonstrate, in a very simplistic manner, the interplay between
gauge invariance and differential geometry. For a rigorous
treatment of this topic, the interested reader is referred to
an excellent paper by Cho[39]. Our goal here is to show that
by applying a few simple ideas which are derived from gauge
theories, we are led directly to general relativity.

All gauge theories are characterized by the presence of
bein fields and gauge fields. The gauge fields appear as
coefficients in the definition of a Lie valued operator which
may be referred to as the fully covariant derivative. The
bein fields may be denoted by e{x) and we must specify the
group or groups for which these fields provide a representation.
In all gauge theories presently known, we require that

S etx)y= 0 (35)

where §J is a symbolic notation for the fully covariant deriva-
tive. The operator {J may also provide a representation for
groups other than those represented by the bein fields.

As an illustration of these points, let us consider
electramagnetism. FPor electromagnetiam, the group is U(1l).
If we choose a complex representation, the bein field may be
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represented by a camplex field, e(x). The group U(l) pos-
sesgses a single generator. Thus, we introduce a single
gauge field and define the covariant derivative by the

relation
D, = 0, + i%A,(x)f (36)

where t is simply a real number, In general, we introduce
one gauge field for each independent group generator. The
requirement that the covariant derivative annihilate the bein

field is simply given by,
[ O, + igAF(x)tJE(x) = 0 (37)

This equation is easily solved to find

e(x) = ,e/:qc[—igjx.@“A;(?)t] (38)

which simply is the Yang gauge phase factor[26], for the
group U(l). Thus, we see that the bein field is completely
determined by the gauge field. This very simple argument
generalizes to all internal symmetry groups in a straight-
forward fashion. We simply replace t by representation
matrices of the group generators. The condition that the
covariant derivative annihilate the bein is now

ar&eil + 1?Aap[(ta)t]enj - (ta)aj e'J]::O {(39)

and once again we note that the bein is completely determined
by the gauge field. The feature which allows this is the fact
that the bein field is only a representation of a single group.
Let us now turn to general relativity. Here the bein
fields e“;(x) are simultaneously a representation of S0(3,1)
and GL(4.R). Stated another way, we may say that the bein
transforms as S0(3,1) on the undotted index and as GL(4,R) on
the dotted index. Thus, in the definition of the fully co-
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variant derivative we need a set of gauge fields for both
groups. The condition that the covariant derivative annihilate
the bein field now takes the form

R :
dae s + (wx)pge i — L*ar‘ea;« = 0 (40)

where we have introduced all the necessary gauge fields. The
new feature which has entered here is that we still have two
fields which may be considered as independent variables. For
instance, L may be expressed in terms of e and w.

Lasip = Liss Pg.,sr'. = Y}ap[ Ok €74 T (wi)™ye’ilef, (a1)

In this eguation we have introduced the metric as the following

bilinear form.
G = Nap %500 €74 (%) (42)

It can readily be seen that the metric possesses a group
of isometries. That is, we may perform the transformation

ed

and if Il is an element of 50{(3,1), the metric will remain

o o
P_———:»u#e._.l_ (43)

invariant. The requiremeat that L should also be invariant
under this set of transformations leads to the transformation
law

(w)*s — [ Ve U™ — (3L 17, (aa)

which is the usual one for a gauge vector field.
Since the fields W transform like the generators of
s0(3,1), it then follows from definition that

A A
aigi,;_:[_-ii ?gp-Lip gip = O (45)

Thus, we see that the gauge field L acts as the connection
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coefficient for the metric in the differential geometric sense.

I+ can further be seen that under the transformation

) 9Fs
e . » ax* € 4
23"
Wi — x* Wa (46a)

the response of the connection is given by

af* 35f 5¢7 9ag ¥ 35
LK,\.P a'x,“ 3']_’,“ 3’5"]-_-&5; + axﬂaxigai :-)X.'i (46b)

This may readily be identified as the transformation law of
an affine connection coefficient. We may decompose L into

two other quantities, ' an@d T where

TM,-‘ ":f.[ Lasia + L.i.k,a]
Thip= 5[ Lasp — Lusipl (47a)

The Riemannian part of the connection, T, is not a true tensor

]

gince it transforms just as L. On the other hand, the tensor

T +transforms as

Txx,a —> Px* 2x* o T&,'.; (47b)

and is seen to be a true tensor.
At this point, it is convenient to introduce a partially
covariant derivative. We define this operator through the

equation
A _ o o
Di = di 6p + (wi) (48)

The connection, I', and the tensor, T, may be expressed in terms

of this operator.

A A
B
rii,l":':;f?}_.p[Dgeqi"'Dien.a]e A (49)
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Tiasp =2 nepl Die s - Die*alely 50

The partially covariant derivative may be treated as any co-

variant derivative. Thus, we find the usual expressions.
A A
([ D«,D:1)%p = (Rax:)" s (51)
(Rus)¥p = Falws)p — 3s (wi) s + ([Lws,wl)s

It may be verified that under the transformations

E2y
w; —* xr Wa (52)
-1 ~1
wi — Uew:W  — (2:U)U (53)
the guantity R;;undergoes the transformations
af* 2s*
Res — 3x* ax*R&ﬁ {54)

-1
Riz: — URx:i U (55)

These transformation laws imply that the simplest invariant
quantity which we may form is given by

a 3 "
L = M nay (Rzs)%e’ e’ (56)

where M2 is a constant with the dimensions of squared mass.
It should be noted that the inverse metric has been introduced
to raise the dotted indices of the vierbeins.

We could also form higher order invariants such as the
Yang action[26].

I’-_‘ (R'NR;H;)“« (57)

Here, we have once again used the metric to raise a pair of
dotted indices.
Thus, by using arguments based on the gauge invariance
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of a theory with a bein which provides a nontrivial representa-
tion of S0(3,1) and GL(4,R) we are led to general relativity.
Therefore, we conclude that the representations provided by
the bein field are very important. For instance, let us con-
sider a bein field, € i0‘1-1'(3-:),. which transforms as S0(2) on
the index i, 80(3,1l) on the index o, and as GL{4,R) on the

ﬁ index. If this bein is factorizable into the form

e “ax) = e'x) e i) (58)
then we may construct a system that is like the coupled Max-
well-Einstein system. If the bein is not factorizable, then
we have a theory of the unified field type. So we cbserve
that bein fields play a particularly important role in gauge

theories.

A Unified Field Theory in Fermi-Bose Superspace
We being by assuming that the constant supermatrix "an
which is given by

(7%)as 0

Nag =
© as (59)

is the supersymmetric generalization of the usual Minkowski
metric. As we have seen, a supermetric which is compatible
with global supersymmetry may be expressed as

»P:.rhﬁ(e,x) = EKFA V’nl.(ﬂ;j*)l-,;. (60)

-]
where the octad, E , takes the form given in equation (9).
It can be noted that the flat supermetric possesses a
graded isometry group. To see this, we may subject the global

achtbein to the transformation
[ -] o

E", — E (W)™ (61)
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where U is an arbitrary supermatrix. Under this transfo.ra-

tion the supermetric transforms as
[-) 2]

o A K *\B
,ﬂl.,:.”:. — E M (?/” AV]KL *) 8 E ; n (62)
1f the supermatrix U{ satisfies the equation
K L
(U a e (U) 5 = nae (63)

then the supermetric is unchanged. This equation defines the
isometries of the supermetric. This graded group plays the
same role as does 50{3,1) for general relativity. However, it
should be noted that the full graded group of isometries is not
realizable on the _.o-ordinates of superspace. There is a sub-
group which may be represented on this basis. This subgroup
contains S0(3,1).

In order to have a curved superspace, we assume that the
octad fields may deviate from the configuration given by i}.
That is, we assume that in curved superspace

EAe:q(B,x) = EA&.(G,x) + ﬁh.:..(e,x) (64)

o~

where Ei is the nontrivial part of the octad. Thus, in curved

superspace wa have
A %68
Aaclo,x) = B anas(E7) & (65)

for the fully interacting supermetric. It should be noted
that the graded group of isometries is a local group. That
is, the supermatrices U may be functions of X.
We are now in position to define a co-ordinate transforma-
tion in superspace. We may define the co-ordinates x" so that

X" = F™2) (65)

where ZN is an alternate set of co~ordinates which label super-
space. This equation implies that
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]

#1 k OF
d X = dZ& 3z*
# « 3F”
AX"E ' a(x) = d2 vz E"u(X) o
If we now define E:Ak(z) so that
9F"
E*u(2) = 52* B a@) | (68)

X = F(2)}

then we have the following eguation.

dX*EAMX)=deEAM2) (69)

Furthermore, by applying the operation of complex conjugation
we conclude that

. aF "\
[E° @) = [E (@] (Ti‘)zipm (70)

Therefore, the supermetric expressed in the X co-ordinates is
related to that in the Z c¢o-ordinates through the equation
F

oF AFN \®
/FLI'(I'.(Z) = ) E.* /pLMN(X) (Ta—ik) I'--F(E} (71)

It may be noted how complex conjugation simplifies the

discussion of transformations properties. This is a conse-
quence of the fact that complex conjugation in superspace is
not the same as ordinary complex conjugation. To illustrate
this let us consider the following example. Let 6% and € b

ab

be independent Majorana spinors. The quantity J is defined

by
. a
J = 1 0 € (72)

and is real. To see this we perform complex conjugation
ab . 2 _by& . bt . ~d _b
(T*)* = -i(6°€’) = -ie’8” = iB"€ (73)

But the fermionic derivative of this quantity is imaginary.
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On differentiating J°0

we find the equation

? db . a4 _ b

38° J = 16, € (74)
Now we take the complex conjugate of this expression to find,

(Z5e T

Thus, even though the two sets of co-ordinates X and Z, are

= - (48 T

real and functionally related by the equation X=F(Z); the guan-
tity (9F/93Z)* is in general not equal to (9F/9%Z). It can be
seen that our notation of derivative and conjugate derivative
is equivalent to the left and right derivatives of Arnowitt

and Nath[27].

Having obtained the transformation properties of the
supermetric under its graded group of isometries and under
general co-ordinate transformations of superspace, we take
the next step and define a fully covariant derivative such

that D‘R EA

B + (W' E . - Lm‘.éEAé:O (76)

Just as before, we may solve this equation to express I in

=0. Thus we require

> e

terme of EE anaW. The result is simply given by
ﬁ — A A *B
Loci £ = Tascn = nas (SE D E s (77)

S«E = nas L WIE " + (wr) cESL] (78)

where once again we introduce a partially covariant derivative.
As we have seen, the supermetric possesses a graded group

of isometries. We therefore expect the connections to also

possess this property. However, we find that under the trans-

formation

EA.& = E/Brﬁ(u»)AB (79)



125

L+ cannot remain invariant. This stems from the fact that
if U is assumed to have both fermionic and bosonic elements,
then it is impossible to define a gauge transformation on
W alone which restores the form oflls. If, however, the

K
supermatrix U is block diagonal like n then we may define

(W) s = L (3cUSs) + (W) U] nee U5 n™*  (a0)

and the form of s will remain unchanged. This can be seen
to be a supersymmetric version of the usual transformation law
of a gauge field.

Thus, we find the unexpected result that the entire
graded group of isometries may not be made into local symmetries
of Is . Actually, we may make a stronger statement. It turns
out that even if U is independent of X, the supermatrix
must still be block diagonal in order for » to remain invariant.
So it is only the block diagonal subgroup of isometries which
may be local symmetries. Therefore, we need only introduce
block diagonal gauge fields (EW%JBA; one such gauge field for
each block diagonal generator. If we use the index XL to de-
note these generators then we have

A e A
(Wa) &« = Wi (t,) 4 (81)
where the supermatrices (t,) satisfy the relations

c c
(tx) a YcA + Nac (t*;) A = O (82)
A [o-ta) - a-¢8)) A
(t.‘l'.) 8 = (-) ‘ (tx_) a (83)
We now differentiate the supermetric to find the result below.

O Acn = L.z.'.R,Ptm + (=) Aca ]I__u“..a.»'-R
-~ Qain
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EA L [(—)ﬂ’(W&.)cA Nes + (—)T"l?ac(w,:)ca] E*Bﬁ

n

@ rim

c(R)[ () +o(m) + 1]

W

Tv

w=o(k)l o(c) + o (L))

I

7= o(K)L o (B) + o(LL) + 1] (85)

In arriving at the above result, we have made use of the fol-

lowing identity
+B c(R)[ (8= otF) 1] B %
9:E & = () (3 &) (86)

Equation (84) may be expressed in the form below.

Oihia = = Racw (87)
Thus, it appears as though our curved superspace must also be

nonmetric in the differential geometric sense.
Let us now show that, in fact, the curved superspace

need not be nommetric. We recall that the fieldsﬁmﬂg are
block diagonal. The product of any number of such matrices
is also block diagonal. This implies that the nonmetricity

may be rewritten in the simple form below.
/ A c iR B
Quin = 7 B i L (W) anees + ™ ac (W G IE" " (88)

In this form it is clear that the nonmetricity will vanish if

(89)

O = (W) Nes + =) yac (W7

We recall now equations (81) and (82) and conclude that the

equation above will be satisfied if
b g oK) 3
Wi =+ 0w (90)

This equation simply implies that the fermi components are
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purely imaginary and the boson components are purely real.
This requirement may seem somewhat artificial. But, we may
recall that it is by an analogous requirement that Einstein's
unified field theory is able to avoid nonmetricity. Thus, we
may formulate a metric theory of curved superspace. In this
metric theory, we are encouraged to identify the quantity La
as the super connection coefficient. It may be noted that
this connection is complex.

Now we turn to the question of the transformation prop-
erties of [ under a general co-ordinate transformation of
superspace. To this end, we subject the octad to the trans-
formation of equation (68) and substitute this into equation

(77) . The response of the connection is
e M oh- o] F" 3F° (___BFC.)*
[owin — () 2% 22f [oase {52*
A .
9F (9;:’ *
+ 3zFazt Ais 32")

(91)

We may write L. as the sum of two other gquantities T and T.
These quantities are defined by the equations

o) o~(L
Fg.‘_;« = &[ Lk;‘.ﬁ + (=) e ,L.:.m] (92)
octk)er(l)
TR:’.H:J:[[LRLH — =) Lociml (93)

The first of these is the generalization of the torsionless
connection of a Riemannian manifold. The seccnd is the genera-
lized torsion tensor. The torsionless part of the connection
transforms just as does L. under a general co-ordinate trans-
formation. But "I’ transforms as a true tensor

A ] <
cthotli-otd] 9F  2F BF \*
T.am — (=) 22" 82" T ase (9%"‘) (94)

under a general co-ordinate transformation.
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At this point, let us consider a limit where

a

e = B (95)
(Wa)'s = 0 (96)

In this limit, equations (76), (84), and (93) go over to
equation (16), (20), and (19) respectively. 1In this limit,
we recover global supersymmetry. Furthermore, we now realize
that equation (30) imples that gauge superfields are allowed to
couple to the torsion tensor. From equation (24) we see that
the scalar superfield is also coupled to the torsion tensor.
Now we return to the arguments which led to general
relativity in the second section. We utilize the partially

covariant derivative to define a curvature tensor.
(05,80 = (R (97)
(R:)s = 3a(Wwl) s = (9773 (w0 + (0w Wilyi08)
This tensor may be subjected to the transformation
(W) 's = U a (W)™ (W) s = (3e UM (W)™,
(U')" e = a0 (U’ "IEM
Mae V)" = §a (99)
The response is the expected result.
(RRL]Ae = 'UAm(R;L)MN(u")Na (100)

Thus, the quantityﬂf{ﬁb‘ﬂ& which is defined by the equation

R «ens = nAC(Rkﬂ)AB Eaﬁ(E*)cfa (101)

is invariant under the local isometries. This is, of course,
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the supercurvature tensor. In the limit of global supersym-
metry it must vanish owing to the vanishing oan%; Thus,
global superspace is flat,

Finally we perform the transformation

9F ¢ B
e

9 Z
e

3 — T2X 0a
aF°

W, — 3zt W (102)

and deduce that the transformation law for the supercurvature

tensor is given by

aF* 9F" JF° DFC | *
B wiow = 52% 27° 22~ R i (é_z"“) (-)* (103

where ¢=0(A) [o(B)+o(L)1+[0(A)+0(B)I[c(C)+0(M)]). This may
be reexpressed in the more symmetric form

A

i : 6
-1 1 o DF  \* [3F \*
R icon — (=) 33% 32° P iae5 (az") (az")
¢ = (A oB)+o(L)] + [oO+1][eci)+ otr)] (104)

Under complex conjugation this tensor has the following trans-
formation law.

(Riacan)” = )5 R iwnn
€= [cl)+a(D)]I[ o) +otir)+ 1 ] (105)

An inverse supermetric may be introduced via the definition
below.
LM ™
At A T bk (106)
In order to preserve this property under co-ordinate transforma-
tion, we require the following statement be valid.
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LA L g o (2E) (Y

(107)

Furthermore, as the supermetric undergoes *™e transformation

AF®
Pow — 35t pae (359)° (108)

the inverse supermetric must transform also.

A (3E) M (5R) (109

A contraction between the inverse supermetric and the super-

curvature tensor may be formed.

(Yot o K
Biv= 777 A Raus (110)

It may be verified with the use of equations (109) and (103)
that this quantity transforms as does the supermetric.

R:.w — ) Ris (3p ) (111)

Finally this tensor may be contracted to form a scalarf2 '
where

. a (L) NL
R = ) R .. A
_ att)[otMr+1] K NiL
= ()" A R anc A (112)

It is apparent that B is the supercurvature and a true scalar
under local and global transformations.
Thus, we may take as an action

Jax | M(E)M(E*)]i R(E,E" W) (113)

where the definition of the superdeterminant has been Jdeveloped
by Arnowitt, Nath, and Zumino[40]. Once again we have the option
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of forming other invariants such as the Yang action or modifi-
cations such as those indicated by Boal and Moffat(4l].

Conclusion

We are now in position to make some comparisons between
this approach and gauge supersymmetry. It was firat shown by
Woo[ll] that if the geometry of curved superspace is assumed
to be Riemannian then global superspace must be identified as
a singular iimit. This may be interpreted in a relatively
straightforward fashion. Global superspace possesses torsion.
This is implicit in the fact that the anticommutator of two
fermionic derivatives is a bosonic derivative. But a Rie-
mannian space cannot pcssess torsion. In order to produce
the torsion of global superspace the geometry of the Riemannian
superspace must be severely distorted. We believe this is the
meaning of the singular limit proposed by Woo.

On the other hand, the theory cutlined here does not lead
to general relativity in the bose sector of superspace. Instead,
we are led to Einstein's unified field theory. Whether this is
an asset or liability we are presently unable to discern. This
theory does possess global superspace as a continuous limit,
however, Alsc we have had to introduce a whole new set of
fields, the super Fock-Ivanenko coefficients which we denoted
by wi. Thus, the number of fields has been increase. heyond
the prodigious number already present in gauge supersymmetry.

At this point there are many questiong which must be
answered. ¥e are encouraged, however, that our earlier
spaeculation concerning Einstein's unified field theory and
local supersymmetry has now been proven.
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Figure {(6)

bi-x

T

Diagram illustrating the super Poincaré group.
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